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Abstract

Understanding the dynamics of spatially extended systems represents a challenge

in diverse scientific disciplines, ranging from physics and mathematics to the earth

and climate sciences or the neurosciences. This challenge has stimulated the devel-

opment of sophisticated data analysis approaches adopting concepts from network

theory: systems are considered to be composed of subsystems (nodes) which inter-

act with each other (represented by edges). In many studies, such complex networks

of interactions have been derived from empirical time series for various spatially

extended systems and have been repeatedly reported to possess the same, possi-

bly desirable, properties (e.g. small-world characteristics and assortativity). In this

thesis we study whether and how interaction networks are influenced by the anal-

ysis methodology, i.e. by the way how empirical data is acquired (the spatial and

temporal sampling of the dynamics) and how nodes and edges are derived from

multivariate time series. Our modeling and numerical studies are complemented by

field data analyses of brain activities that unfold on various spatial and temporal

scales. We demonstrate that indications of small-world characteristics and assorta-

tivity can already be expected due solely to the analysis methodology, irrespective

of the actual interaction structure of the system. We develop and discuss strate-

gies to distinguish the properties of interaction networks related to the dynamics

from those spuriously induced by the analysis methodology. We show how these

strategies can help to avoid misinterpretations when investigating the dynamics of

spatially extended systems.
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1 Introduction

We live in a world where complex systems are all around us. Understanding, pre-

dicting, and controlling their dynamics lies at the heart of many of today’s global

challenges, ranging from climate change, global population growth, decrease in bio-

diversity, spread of infectious diseases, to the global financial crisis at the beginning

of the 21st century. To meet these challenges and in order to extend our knowledge

of the world around us, complex systems are studied in various sciences, includ-

ing physics, mathematics, climate and earth science, quantitative finance, biology,

medicine and the neurosciences. Breaking down complex systems into their con-

stituents which are then separately studied has been proven to be a very successful

approach in the past. However, complex systems can display properties as a whole

which are not present on the level of single constituents. Thus, the next step towards

a better understanding of such a system is based on studying its constituents (sub-

systems) and taking into account their mutual interactions. This approach has been

pursued in physics, where scientists have made remarkable advances in bridging

the gap between the microscopic and the macroscopic features of systems (e.g., in

statistical mechanics).

During the last decade, research into the dynamics of complex systems has

adopted and advanced concepts from network theory [1]. The rapid propagation of

network-theoretic ideas in various disciplines such as physics [1–9], biology [10–13],

sociology [14–18], and the neurosciences [19–27] reflects the insight that many nat-

ural systems can be understood as networks of interacting constituents. The suc-

cess of network approaches also becomes noticeable in a growing number of more

specialized reviews recently published in the physics and mathematics literature

(see reviews focussing on synchronization and critical phenomena [8, 9], spatial

networks [28], community structure [29, 30], edge prediction [31], semantic net-

works [32], random processes on networks [33, 34]). From the network perspective,

properties of the dynamics of a complex system are reflected in the topology of an

interaction network (also called functional network) whose nodes represent subsys-

tems and whose edges represent interactions between them. In contrast, edges of a

structural network represent physical connections between subsystems of a natural

system (e.g., synaptic connections between neurons in the brain). Structural net-

works serve as the physical substrate of the dynamical patterns observed in interac-

tion networks. The intricate interrelationships between the dynamics of subsystems,
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their physical connectivity, and the dynamical patterns displayed by the whole sys-

tem (i.e., structure–function relationships) are subjects of ongoing research activi-

ties, including modeling and field studies.

In field studies, interaction networks are derived from empirical data. The data

usually consists of a number of time series, each of which is obtained with a sensor

that is placed so as to efficiently capture the dynamics of a subsystem. Most interac-

tion networks are derived by associating each sensor with a node, and the inference

of edges is based on estimates of signal interdependencies between pairs of time

series (e.g., the Pearson correlation coefficient). Based on this approach, interaction

networks of various spatially extended systems have been derived and studied. For

instance, climate networks derived from physical observables such as temperature

or pressure revealed richly structured topologies indicating the presence of com-

munities, connections between geographically very distant nodes (teleconnections),

or properties reflecting the El Niño-Southern Oscillation climate pattern (see, for

example, references [35–37]). Moreover, climate networks may turn out to be a use-

ful tool to investigate the stability of the climate system and the impact of global

warming (see references [38, 39] and references therein). Seismic networks are de-

rived from time series of the physical observables of earthquake dynamics (see

references [40–44] and references therein for different approaches towards network

construction). Some of the findings reported so far indicate that main shocks are re-

flected in central nodes (also called “hubs”, i.e., nodes with more edges than most of

the other nodes) [42, 44], that long-range connections might reflect large geological

faults (which transfer stresses) [44], and that seismic networks may help to iden-

tify triggered earthquakes [44]. In the neurosciences, functional brain networks are

typically derived from time series obtained via electrophysiological or neuroimag-

ing techniques such as electroencephalography (EEG), magnetoencephalography

(MEG), or functional magnetic resonance imaging (fMRI) (see reviews [19–27] for

an overview). Network characteristics were reported to reflect physiological pro-

cesses such as aging [45], cognitive performance [46, 47], and sleep [48–50], to be—

to some extent—heritable [51], and also to change in pathological conditions like

Alzheimer’s disease [52,53], schizophrenia [54–56], or epilepsy [57–63]. These find-

ings indicate that network characteristics may prove useful as diagnostic markers

for mental and neurological disorders and that the mechanisms causing brain dis-

orders may be better understood from a network perspective, possibly driving the

development of novel treatment strategies.
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Although the aforementioned complex systems differ in types of subsystems and

interactions, they were reported to share striking features on the level of their inter-

action networks, a finding which may point—as hypothesized by many research-

ers—towards a universal organization principle of dynamical systems. For instance,

seismic [42, 44], climate [35, 39, 64], and functional brain networks [19, 20, 24] have

all been repeatedly reported to possess small-world topologies. Such networks dis-

play strong local connectivity and possess long-range connections (as characterized

by the network metrics clustering coefficient and average shortest path length). More

recently, studies of seismic [43] and brain functional networks [65–71] revealed that

edges of interaction networks preferentially connect nodes with a similar number

of edges, a feature called assortativity. Both network characteristics—small-world

topology and assortativity—have been shown in numerical studies to support the

resilience of a network to random failures or targeted attacks (removal of some

nodes or edges). In addition, small-world topologies allow for an efficient transport

of information, masses, or other entities throughout the network. While resilience

and efficient transport are desirable features from a biological perspective, where

evolutionary selection pressures may have shaped the physical substrate of interac-

tion networks, the interpretation of these findings for non-biological systems is not

yet quite clear.

A key challenge when analyzing empirical interaction networks is to reliably as-

sess whether findings are significant or not, i.e., whether they reflect characteristics

of the dynamics of the system under study. Such an assessment can pave the way to-

wards a deeper understanding of the dynamics and is an inevitable prerequisite for

the interpretation of analysis results and the development of further research strate-

gies. A common way to establish significance of findings is based on a comparison

of features of interaction networks with those found in ensembles of random net-

works [6]. If features differ (e.g., according to some statistical test), the finding is

called significant. In this context, the chosen random network ensemble encodes an

expectation of what can be assumed to be present “by chance”. The vast majority

of network studies makes use of the very same random network models, regardless

of whether nodes represent entities embedded in space (e.g., airline networks) or

not (network of scientific citations), regardless of whether edges represent static re-

lations (e.g., the physical connections of an electric power grid) or reflect dynamic

interactions unfolding on certain temporal scales (interactions between neurons),

and regardless of the actual acquisition of the data which may also be subject to

various constraints. In the case of spatially extended dynamical systems, the in-

ference of interaction networks relies on the spatial and temporal sampling of the
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dynamics inevitably yielding a limited amount of data. Whether and how the way

empirical data is acquired and interaction networks are derived from time series

influence properties of interaction networks and the assessment of significance is

largely unknown.

In this thesis, we investigate whether and how the spatial and temporal sam-

pling of spatially extended dynamical systems together with commonly applied

methods for edge inference influence the topological properties of interaction net-

works derived from multivariate time series. Moreover, we develop and propose

strategies which can help to distinguish properties of interaction networks related

to the dynamics from those spuriously induced by the identified influences. The

investigations performed involve modeling and numerical studies, as well as field

data analyses. All these studies are designed, carried out, and interpreted with

respect to the perspective of researchers who face the challenge of acquiring and

analyzing data of complex systems. The majority of the presented studies focus on

small-world characteristics and assortativity as the former have been frequently as-

sessed in field studies and the latter receives growing attention [1, 72]. To examine

whether and to what extent findings obtained in modeling and numerical stud-

ies carry over to field data studies, interaction networks derived from the human

brain—a prime example of a spatially extended dynamical system whose dynamics

lives on various spatial and temporal scales—are investigated with respect to spa-

tial and temporal sampling. These interaction networks are obtained from healthy

subjects as well as from epilepsy patients. The latter could particularly benefit from

a better understanding of the disease epilepsy with its most prominent dynamic

feature: recurring and in many cases uncontrollable epileptic seizures.

This thesis is organized as follows. In chapter 2, concepts in the context of interac-

tion networks are delineated and notation is introduced. To illustrate the network

approach, exemplary field studies of brain functional networks are presented in

chapter 3 and their findings are briefly discussed, which shapes the strategy pur-

sued in the following investigations. The subsequent chapters are devoted to inves-

tigations of the impact of the spatial sampling (chapter 4) and the impact of the

temporal sampling (chapter 5) on properties of interaction networks derived from

the dynamics of complex systems. Each of these chapters includes an in-depth dis-

cussion of the findings and possible ways to approach the identified challenges.

Finally, in chapter 6, the key results of this thesis are summarized, their potential

impact on other areas of research are discussed, and possible further directions of

research are outlined.
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2 Basic concepts

An interaction network is a means to characterize the dynamics of a system. Nodes

represent subsystems which interact (represented by an edge) or not (no edge) with

each other. For the inference of interaction networks and for the interpretation of

their properties, we recall basic definitions, focus on few but important concepts in

graph theory (section 2.1) and time series analysis (section 2.2), and introduce the

notation used in this thesis.

2.1 Network basics

A complex network can be studied using concepts from graph theory in which it is

represented as a graph. An unweighted graph is defined by a non-empty set of nodes

and a set E of unordered (or ordered) pairs of elements of the set of nodes [6].

E represents the set of edges connecting the nodes of the undirected (or directed)

graph. Let N denote the number of nodes, which is also known as the size of the

graph1 [6]. A graph is said to have finite size if N < ∞. A node i is said to be a

neighbour of node j if there is an edge e ∈ E connecting i and j. A weighted graph

can be defined by adding a set of values to the sets of nodes and edges. These

values are usually real numbers and represent weights attached to the edges. Note

that—unless otherwise stated—we will consider unweighted undirected graphs in

this thesis, and we will use the notions graph and network interchangeably in the

following.

A graph of size N can be represented by a N × N square matrix A, the adjacency

matrix. For unweighted undirected graphs, entries Aij = Aji of A indicate whether

an edge between nodes i and j exists (Aij = 1) or not (Aij = 0). Adjacency matrices

of undirected graphs are symmetric, while those of directed graphs are typically

not. In accordance with the majority of the mathematics or physics literature on

networks, we do not account for self-connections of nodes, and thus, by definition,

Aii = 0∀i. Weighted graphs can be described by a N × N square matrix W , the

weight matrix (Wij represents the weight of the edge between i and j).

1 This is just one example demonstrating the different use of terms in physics and mathematics. In
the mathematics literature, the size of a graph is the number of edges while the order of a graph
corresponds to the number of nodes. We will stick to the notations used in physics throughout
this thesis.
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Figure 2.1: Sketch of an exemplary network with N = 10 nodes (represented as
circles) and |E| = 11 edges (black lines). The network is unweighted, undirected,
and connected. We consider two exemplary nodes i and j. Their degrees are ki = 4
and kj = 2 and both are connected by a shortest path of length lij = 3. Their
local clustering coefficients are Ci = 0 and Cj = 1. The mean degree of the network

amounts to k̄ = 2.2. The edge density can be determined by ǫ = 2|E|/(N(N − 1)) =
k̄/(N − 1) ≈ 0.24.

A path from node i to j is a sequence of neighbouring nodes which begins with i

and ends with j and in which no node is contained more than once [6]. The number

of edges contained in the path is also known as the path length, and a path is said to

be finite if its length is finite. Different paths may exist between nodes i and j, and

the paths with the minimum length are known as shortest paths. The length of the

shortest path between i and j is denoted by lij (cf. figure 2.1). A network is said to

be connected if a finite path exists between every pair of distinct nodes i and j of the

graph; otherwise, the graph is said to be unconnected or disconnected. A component is

a subset of nodes and a subset of edges of the graph precisely containing the edges

that also appear in the graph over the same set of nodes. A component is said to

be connected if there exists a finite path between every pair of distinct nodes of the

component. The number of connected components is denoted as Nc, and we will

also regard the special case of a single disconnected node as a component of the

graph.

An important notion in graph theory is the degree ki of a node i, defined as the

number of neighbours of i,

ki =
N

∑
j

Aij. (2.1)
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A list of the degrees of all nodes is called the degree sequence in the physics liter-

ature [5, 6]. Closely related to the degrees of nodes is the notion of the degree dis-

tribution which is considered as one of the most basic characterizations of a graph.

The degree distribution p(k)—also denoted by pk—is defined as the probability

that a node chosen uniformly at random has degree k [6]. Equivalently, p(k) is the

fraction of nodes of the graph possessing degree k. The first moment of the degree

distribution is known as the mean degree k̄ of the network,

k̄ = N−1 ∑
i

ki. (2.2)

Related to the mean degree is the edge density, ǫ = k̄/(N − 1), which corresponds

to the number of edges of the graph divided by the number of all possible edges.

Often one observes that nodes show a tendency to connect to nodes with similar

or dissimilar degrees, also known as degree-degree correlations. Such a behaviour

can, for instance, be studied by determining the two-point conditional probability

p(k′|k) that a neighbour of a node with degree k has degree k′ [5]. In other words, it

is the probability that any edge from a node with degree k connects to a node with

degree k′. We note that this concept can be extended to multi-point conditional

probabilities p(k′ , k′′, . . . , k′(n)|k) that a node of degree k is connected to n nodes

with corresponding degrees k′, . . . , k′(n) [1]. A network is said to be uncorrelated if

the degree of any node is independent of the degrees of its neighbours [73], i.e.,

the conditional probability does not depend on k. Note that uncorrelated networks

may not always exist due to structural constraints related to the finite size of the

network and its degree sequence [1]. To simplify the notation, we will also call

networks uncorrelated which show degree-degree correlations due to structural

constraints only.

2.1.1 Network characteristics

In the following, we present network characteristics which have been frequently

used in numerical, theoretical, and in field data studies.

Clustering coefficient. In many natural networks, it can be observed that if node

i is connected to nodes j and m, then there is an increased probability that j and

m are also connected to each other. This tendency, often referred to as clustering or

transitivity (in the context of sociology [1, 14]), is often associated with a robustness
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of the network towards random removal of nodes and can be assessed by various

methods. A prominent method is the clustering coefficient [74],

C =
1

N

N

∑
i=1

Ci, (2.3)

which is the average of the local clustering coefficients of the network. The local

clustering coefficient Ci is defined as the fraction of the number of existing links

between neighbours of i among all possible links between these neighbours [5,6,74],

Ci =

{

1
ki(ki−1) ∑j,mAijAjmAmi, if ki > 1

0, if ki ∈ {0, 1}.
(2.4)

Note that, by the definition of the adjacency matrix [6], Aii = 0∀i, which ensures

that Ci,C ∈ [0, 1]. Various extensions and alternative definitions of the clustering

coefficient have been proposed in order to allow for a characterization of weighted

networks (see, e.g., references [75–79]). Finally we mention that the transitivity of

a network can also be characterized by the fraction of transitive triples defined as

the fraction of connected triples of nodes which also form triangles [5,6]. While this

definition is frequently used in sociology studies [14], the definition given in (2.3)

and (2.4) is more common in numerical studies and field data analyses [5].

Average shortest path length. Different approaches can be pursued in order to

characterize the efficiency of a network to transport information or other entities

(depending on the type of network considered) between nodes. A prominent net-

work characteristic based on the concept of shortest paths is the average shortest

path length [5],

L̃ =
2

N(N + 1) ∑
i≤j

lij, (2.5)

which has been investigated in many studies (see, e.g., chapter 2.2.2 in reference [80]

for a brief historical overview). Networks whose average shortest path length scales

at most logarithmically with the number of nodes are said to possess the small-

world property. Such networks have small average distances between nodes and are

regarded as very efficient in terms of information transfer. The exact definition of

the average shortest path length varies across the literature. We decided to include

the distance from each node to itself (lii = 0) in the average of equation (2.5), as is
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done in various studies. The exclusion, however, will just alter the value of L̃ by a

constant factor of (N + 1)/(N − 1) [5].

For disconnected networks, the above definition yields infinite values of the av-

erage shortest path length since such networks possess nodes i and j for which

no connecting path exists, and thus lij = ∞. This is an issue for numerical stud-

ies in which finite values of this network characteristic are preferred. Several ap-

proaches have been pursued in order to overcome this issue. For instance, lij could

be replaced by l−1
ij which leads to the definition of a network measure called ef-

ficiency [81, 82]. Another strategy followed in many studies is to exclude infinite

values of lij from the average. We will adopt this approach in the following, which

leads to the definition of the average shortest path length as

L =
1

|S| ∑
(i,j)∈S

lij, (2.6)

where

S = {(i, j) | lij < ∞; i, j = 1, . . . ,N} (2.7)

denotes the set of all pairs (i, j) of nodes with finite shortest path. Note that L → 0

for Nc → N, i.e., for a network without edges. Finally we mention that the concept

of the average shortest path length can be carried over to analyze weighted net-

works. In this case, the shortest paths determined between nodes take the weight

of edges into account [23, 83, 84].

Assortativity coefficient. The tendency of nodes of a network to preferentially

connect to other nodes with similar or dissimilar degree can be quantified in dif-

ferent ways [1]. A prominent approach, which we will pursue in the following, is

to evaluate the degree of nodes at either end of edges. Let e ∈ E be an edge of the

network, and let le and me denote the degrees of the nodes at either end of this

edge. The assortativity coefficient [72, 85] is then defined as

a = corr(l,m), a ∈ [−1, 1], (2.8)

where corr denotes the correlation coefficient determined between the degrees of

nodes at either end of edges. We mention that a is not well defined for the spe-

cial case of regular graphs, i.e., for networks whose nodes all have the same de-

gree. Negative or positive values of a indicate dissortative or assortative mixing of
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node-degrees (also referred to as degree-degree correlations), respectively. Networks

displaying such types of mixing patterns are briefly called dissortative (sometimes:

disassortative) or assortative networks. Networks which are neither assortative nor

dissortative are said to be uncorrelated [1, 73]. An alternative concept proposed to

assess degree-degree correlations is the evaluation the two-point conditional prob-

ability p(k′|k) (see, e.g., reference [86] for a study based on empirical data). This

approach, however, may be sensitively affected by statistical fluctuations if only

short datasets are available for analysis [1]. To this respect, an approach based on

the average degree of nearest neighbours seems to be more robust [87, 88]. Exten-

sions of the concept of assortativity have been proposed to quantify the assortativity

of individual nodes (local assortativity coefficient [89]) or to account for weighted

and directed networks [23, 75, 90].

Community structure (clusters). In many networks it can be observed that nodes

are strongly interconnected within a group of nodes but only weakly or not con-

nected with the rest of the network. The division of network nodes into such groups

is called community structure [91], and groups are interchangeably called communi-

ties, clusters, or modules. The reliable identification of clusters is a challenge in dif-

ferent scientific disciplines such as social sciences, earth sciences, engineering, life

sciences, mathematics, and physics (see, e.g. references [29,92,93] for an overview2).

Unfortunately, there is no generally accepted formal definition of a cluster, and

many definitions are rather vague. Instead, clusters are often defined as the out-

come of some algorithm without a precise a priori definition [29]. The outcome of

such algorithms is usually called partition or clustering (not to be confused with

“clustering” in the context of the clustering coefficient). Methods usually need to

deal with two challenges, namely to actually identify clusters and to determine

the number of clusters justified by the data. Hierarchical methods produce a series

of partitions with a varying number of clusters from which one has to choose,

while non-hierarchical methods need the number of clusters to be specified prior to

analysis. Each partition can be evaluated with various quality functions (see refer-

ences [91,94,95]), and the partition with the number of clusters is chosen for which a

quality function (for instance, the thoroughly studied modularity [91,96]) obtains an

extremum. Among the many methods available for identifying clusters, we choose

a method [97,98] from the domain of spectral clustering. The approach is detailed in

section 7.1.

2 Reference [29] pays special attention to contributions made by physicists and is close to our nota-
tion.
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Interpretation of network characteristics. Values of network characteristics or the

presence or absence of community structure are typically interpreted with respect

to the ability of the network to transport information (or other entities, e.g. masses)

and its resilience to random or targeted attack (or error), i.e., the removal of nodes

or edges. Large values of the clustering coefficient are considered to be indicative of

resilient networks. A removal of a node will most probably not prevent information

transport between arbitrary nodes since parallel routes likely exist. Following the

same line of reasoning, assortative networks are considered to be robust against

attack since they possess a resilient core of connected high-degree nodes [23]. This

core, in addition, may facilitate the spread of information over the network. In

contrast, dissortative networks are reported to be more chain-like, vulnerable, and

fragile. Low values of the average shortest path length indicate that information

can be exchanged between two arbitrary nodes by crossing just few edges. This

property makes them very efficient in terms of information transfer.

2.1.2 Network models

Over the past decades, numerous network models have been developed and inves-

tigated (see references [1,6,28] and references therein). Network models can help to

improve our understanding of potential mechanisms shaping the topology of real

networks. Moreover, they can be used as a means to implement null hypotheses

when assessing the significance of properties found in real networks. For the lat-

ter purpose, network models are commonly employed whose generation includes

stochastic parts to various extent and obeys some chosen constraints. In the fol-

lowing, we briefly present three network models and focus on some of the many

findings which are of importance in the context of this thesis.

Erdős-Rényi graphs. Considered as prototypical random networks, Erdős-Rényi

graphs have been intensively studied in the mathematics literature [99–103] and

are easy to generate. They are used when lacking any information about the mech-

anisms leading to the creation of edges. Two different models are referred to as

Erdős-Rényi graphs. In the first model, edges are randomly created between dif-

ferent nodes (avoiding multiple edges) until a fixed number of edges is reached

[100–102]. In the second model, for each pair of nodes, an edge is created with

probability 0 ≤ p ≤ 1 [99]. Both models are closely related to each other and co-

incide in the limit of large N taken at fixed k̄ (see references in [6]). While the first
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model has found frequent use in field studies, the second model is more frequently

used in analytical considerations. We will use the second model throughout this

thesis3, and with “Erdős-Rényi networks” we will refer to this second model from

now on.

By construction, edges in Erdős-Rényi graphs are equally likely and indepen-

dently chosen to become edges. Hence, the degree of a given node has a Binomial

distribution, i.e., the probability pk of a node in an Erdős-Rényi graph of size N to

possess a degree k reads

pk,N,ER(p) =

(

N − 1

k

)

pk(1− p)N−k−1. (2.9)

Since edges are connected to nodes regardless of their degree, Erdős-Rényi graphs

represent uncorrelated graphs. Thus, the expectation value of the assortativity coef-

ficient vanishes. The clustering coefficient CER of Erdős-Rényi graphs can be easily

derived, CER = p, and vanishes for N → ∞ at fixed k̄. The dependence of the aver-

age shortest path length on p and N is much more complicated [6,104], but a typical

distance l in Erdős-Rényi graphs is l ≈ lnN/ ln k̄ [5], i.e., it scales logarithmically

with N. Thus, Erdős-Rényi graphs possess the small-world property. Finally we

mention that almost any Erdős-Rényi graph is connected for k̄ ≫ ln(N) [74].

Generalized random graphs. Empirical networks usually do not show a Binomial

degree distribution, which inspired the investigation of network models allowing

for non-Binomial degree distributions. Networks of such models possess randomly

assigned edges, and the assignment of edges is solely constrained by a prede-

fined degree distribution (or degree sequence). Prominent models may loosely

be categorized into two classes with respect to whether they are based on stub-

matching or link-switching. Stub-matching is employed in the renowned configura-

tion model [105, 106] for generating networks (cf. references in [1, 5]; see [107] for

a brief historical overview). A degree sequence {ki} is obtained from the prede-

fined degree distribution and each node i is assigned a number ki of stubs. Stubs

of pairs of nodes are connected at random until all stubs are connected. If multiple

edges between nodes or self-connections occur, the network is discarded, and the

process is restarted. Several approaches have been proposed to make this ansatz

3 We did not observe qualitative differences between both models in the numerical experiments
carried out for this thesis.
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computationally more efficient (see, e.g, references [108, 109]). Methods based on

link-switching (also known as Markov-Chain Monte Carlo methods, see [108–111]

for an overview) are more frequently used in field studies and start with a net-

work in which edges already exist. The simplest approach [86, 112, 113] considers

two randomly selected edges (i, j) and (k,m). If edges (i, k) and (j,m) do not exist,

these edges are added and edges (i, j) and (k,m) are deleted, which is called link-

switching. This step leaves the degrees of nodes unchanged and is repeated many

times4. The resulting network is said to be randomized, and we refer to such graphs

as degree-preserving randomized networks in the following. Variants of this approach

have been proposed [110, 111] in order to ensure a uniform sampling of networks

with predefined degree sequence.

By construction, generalized random graphs do not show degree-degree correla-

tions apart from those induced by structural constraints due to the finite size of the

graphs. Thus, the expectation value of the assortativity coefficient approaches zero5

or vanishes if a network without any degree-degree correlations is realizable given

a defined degree sequence and the finite size of the graph. The clustering coefficient

and an approximation of the average shortest path length then solely depend on the

graph size and on the first two moments of the degree distribution [1]. Moreover,

generalized random graphs show the small-world property.

Small-World model. The clustering coefficient of Erdős-Rényi networks and of

generalized random graphs vanishes in the limit of large graph sizes (taken at

fixed k̄). In contrast, many real networks possess large clustering coefficient de-

spite of their large graph size. This has spurred the definition of models possessing

adjustable clustering coefficients. The small-world model proposed by Watts and

Strogatz [74,80] allows for both, a large value of the clustering coefficient and small

values of the average shortest path length. In the original model, network construc-

tion starts with a ring lattice of N nodes. Each node has 2m edges where m edges

connect it to the mth nearest nodes clockwise, and the remaining m edges connect

it to the mth nearest nodes counter-clockwise. A node is chosen, and with rewiring

probability 0 ≤ p ≤ 1, the edge connecting it to its first nearest neighbour in a

clockwise sense is reconnected to a randomly chosen node (while avoiding self-

4 In this thesis, the number of randomization steps was set to twice the number of edges present in
the network, i.e., ǫN(N− 1).

5 In our simulation studies, we usually observed deviations from zero in the order of 10−2 for
N = 100.
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Figure 2.2: Means of C̃(p) := C(p)/C(0) (open symbols) and L̃(p) := L(p)/L(0)
(filled symbols) depending on the rewiring probability p (lines are for eye-guidance
only). We used the Watts-Strogatz scheme (N = 1000, k̄ = 4, 1000 realizations
for each p) to generate networks from which clustering coefficients and average
shortest path lengths are determined. Standard deviations for all quantities are
smaller than symbol size.

connections and multiple edges). This procedure is repeated for all nodes of the

ring. Then, the second nearest neighbours are considered and reconnected with

probability p as described before. By circulating around the ring, the rewiring pro-

cess proceeds outward to more distant neighbours after each lap until each edge

has been considered once [74]. Note that even for p → 1 networks are not equiva-

lent to Erdős-Rényi graphs because they retain some memory from the construction

process (each node has at least m neighbours) [114].

With the rewiring probability p, it is possible to interpolate between the case of

a lattice (p = 0, large clustering coefficient) and that of a random graph (p = 1,

small average shortest path length). For illustration purposes, we show in figure 2.2

the normalized clustering coefficient C̃(p) = C(p)/C(0) and the average shortest

path length L̃(p) = L(p)/L(0) as a function of p for N = 1000 and k̄ = 4. Net-

works obtained for small non-zero values of p possess large values of the clustering

coefficients but also display small values of the average shortest path length due

to short-cuts introduced by the rewiring process. These networks are called small-

world networks [6, 74]. In addition, it was shown that networks of the small-world

model have the small-world property already for small non-zero values of p which

depend on the size of the graph [114–116].
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Inspired by the small-world model, many studies evaluated properties of net-

works derived from empirical data in order to classify them into distinct network

classes (random, lattice, and small-world). The evaluation of the small-world prop-

erty requires to investigate the existence of a scaling behaviour of the average short-

est path length, an effort involving the assessment of the average shortest path

length for varying numbers of nodes over multiple orders of magnitudes. This is

typically not viable for empirical networks. Instead, clustering coefficient C and

average shortest path length L of empirical networks are compared to those of an

ensemble of random networks with the same number of nodes and edges. To this

end, γ = C/C̄r and λ = L/L̄r are determined where C̄r and L̄r denote the mean

values of the clustering coefficient and the average shortest path length, respec-

tively, obtained from the ensemble of random networks6. γ ≫ 1 and λ ≈ 1 are

then considered as indicative of a small-world network, whereas γ ≈ 1 and λ ≈ 1

or γ ≫ 1 and λ ≫ 1 are considered to indicate a random network or a lattice

topology, respectively. This approach has been pursued in a vast number of studies

across different disciplines. In this context, the notion “small-world network” signi-

fies the presence of both, a large clustering coefficient and a small average shortest

path length.

2.1.3 Interrelationships between network characteristics

Little is known about interrelationships between network characteristics. With the

increasing popularity of network analyses, however, the question which network

characteristics offer complementary or redundant information has become more

important. For a few network models and network characteristics, analytical inter-

relationships were found. For instance, C and L of generalized random graphs are

functions of the first two moments of the degree distribution [1], and for the small-

world model, C could be related to the mean degree and rewiring probability [114].

Besides exact relationships, bounds were reported which constrain network prop-

erties with respect to other properties. For example, some spectral properties of

networks are bounded by properties of the degree sequence [117]. Beyond that, pos-

sible interrelationships were mainly investigated in numerical studies [7, 118, 119].

Such studies determine correlation coefficients between different characteristics of

network models or networks derived from empirical data.

6 If degree-preserving randomized networks are used, the corresponding quantities will be denoted
as C̄DP, L̄DP, and γDP, λDP, respectively.
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Since many empirical networks show—unlike generalized random graphs—pro-

nounced degree-degree correlations, a number of studies investigated possible re-

lationships between the assortativity coefficient and other network characteristics.

Empirical networks were found to display either assortative behaviour and large

clustering coefficient (social networks) or dissortative behaviour and low clustering

coefficient (non-social networks). It was argued, that assortativity might be a conse-

quence of a pronounced community structure [120] or that networks “need” assor-

tative degree-degree correlations in order to achieve large values of the clustering

coefficient [121]. In numerical studies, the assortativity coefficient was found to be

positively correlated with the clustering coefficient in networks with a scale-free de-

gree distribution [122, 123] and more general but fixed degree sequences [124]. The

same studies report the average shortest path length to be positively (negatively)

correlated with positive (negative) values of the assortativity coefficient. These find-

ings are confirmed by other studies numerically investigating relationships be-

tween the clustering coefficient and degree-degree correlations [113, 125, 126]. It

was demonstrated that the clustering coefficient can be sensitively affected by de-

gree-degree correlations and an alternative definition was proposed [127].

A major advance in unravelling a possible interrelationship between clustering

coefficient and assortativity coefficient was achieved in a recent study [128] pub-

lished at the time of this writing. The assortativity coefficient can be rewritten as a

function of the clustering coefficient, of the number of paths of length 3, 2, 1, and

of the number of stars of four nodes7. In short, three quantities determine the ten-

dency of a network to be assortative or dissortative. For the assortativity coefficient

a holds

a ∝ P3/2 + C− P2/1, (2.10)

where P3/2 (P2/1) is the number of paths of length 3 (2) divided by the number of

paths of length 2 (1), and C is defined as the fraction of transitive triples (cf. sec-

tion 2.1.1). P2/1 quantifies the relative branching of a network and obtains its largest

value for star topologies and its lowest value for a linear chain. P3/2 is considered

to reflect intercluster connectivity as argued in [128]. Thus, the interplay between

the interconnectedness of clusters, the transitivity, and the relative branching deter-

mine whether the network is dissortative (a < 0, strong tendency towards relative

branching) or assortative (a > 0, strong transitivity and/or intermodular connec-

tivity). Finally we mention that numerical studies reported assortative networks to

7 A star of four nodes consists of a central node to which three nodes are connected.
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show a stronger tendency to disintegrate into different connected components than

dissortative networks [129], a finding supported by results from spectral graph the-

ory [130, 131].

2.2 Inferring interaction networks

As described before, an interaction network is a means to characterize the dynam-

ics of a system. This representation requires the identification of nodes and edges

which can be straightforwardly achieved for various systems. When inferring in-

teraction networks for spatially extended systems (e.g., in the neurosciences, in

geophysics, or in climate science), however, a reliable and meaningful identification

of nodes and edges can pose a non-trivial challenge. Nodes are usually associated

with sensors supposed to sample the dynamics of different subsystems. Edges are

assumed to reflect interactions between these subsystems. These interactions can-

not typically be inferred directly, e.g., by controlling the system and varying its

parameters (coined active experiments in reference [132]). Instead, interdependencies

between the signals recorded by the sensors are assumed to indicate interactions

between systems. Signals are usually available as multivariate time series, and inter-

dependencies are estimated using time series analysis techniques (see section 2.2.1).

From these estimates, edges can be derived in a number of ways discussed in sec-

tion 2.2.2.

2.2.1 Estimating signal interdependencies

A large number of estimators of signal interdependence differing in concepts, sta-

tistical efficiency (i.e., the amount of data required), and robustness (e.g., against

noise contaminations) is available [132–138]. Among those, methods from linear

time series analysis are very frequently used in network field studies. Let xi(t) and

xj(t) denote time series of length T (t = 1, . . . , T) measured with sensors i and j.

A prominent example is the correlation coefficient (also known as linear or Pearson

correlation coefficient), corr(xi, xj), which estimates the linear dependence between

the amplitudes of xi and xj. Its absolute value is defined as

ρcij :=
∣

∣corr(xi, xj)
∣

∣ :=

∣

∣

∣

∣

∣

T−1
T

∑
t=1

(xi(t) − x̄i)(xj(t) − x̄j)σ̂−1
i σ̂−1

j

∣

∣

∣

∣

∣

, (2.11)
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where x̄i and σ̂i denote mean value and the estimated standard deviation of time

series xi. Interdependencies occurring with a time lag between signals can be char-

acterized with methods based on cross correlation functions [133]. The maximum

value of the absolute cross correlation between two time series has also been used

in field studies and is defined as

ρmij := max
τ







∣

∣

∣

∣

∣

∣

ξ(xi , xj)(τ)
√

ξ(xi , xi)(0)ξ(xj , xj)(0)

∣

∣

∣

∣

∣

∣







, (2.12)

with

ξ(xi , xj)(τ) :=







∑
T−τ
t=1 xi(t + τ)xj(t) , τ ≥ 0

ξ(xj, xi)(−τ) , τ < 0.
(2.13)

Note that in most studies time series are normalized to zero mean before deter-

mining the maximum absolute value of the cross correlation, in which case equa-

tion (2.12) becomes the maximum absolute value of the cross covariance function. We

will follow this approach and always determine the maximum absolute value of the

cross covariance function. ρcij and ρmij are both confined to the interval [0, 1] where

values close to or equal to 0 indicate no linear dependencies between xi and xj (for

T sufficiently large), respectively, and values approaching 1 indicate the presence

of strong linear interdependencies.

Other methods take into account non-linear aspects of the dynamics when esti-

mating interdependencies between signals. Among them, methods aiming at char-

acterizing phase synchronization [139] have been frequently used in field studies

of brain electric or magnetic activity. Time series xi are assumed to describe oscil-

latory signals from which phase time series φi can be determined using different

techniques (e.g., by employing wavelets [140], the Fourier- or the Hilbert trans-

form [141, 142]). Under certain conditions, these different approaches are equiva-

lent [143, 144]. Once phases are extracted, two signals are considered to be from

phase synchronized systems if the difference between the corresponding phases is

bounded, φi(t) − φj(t) < const (phase entrainment [145]). In this view, the strength

of signal interdependence is said to be stronger the more bounded the distribution

of the phase differences. Phases represent directional data and their distributions

can be characterized employing tools from directional statistics [146]. A frequently

used estimator is the mean phase coherence [140, 147] which is defined as the mean
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resultant length [146] of the distribution of phase differences,

Rij :=

∣

∣

∣

∣

∣

1

T

T

∑
t=1

ei(φi(t)−φj(t))

∣

∣

∣

∣

∣

. (2.14)

Rij takes on values between 0 (no phase synchronization) and 1 (perfect phase

synchronization, strong signal interdependencies).

2.2.2 Deriving edges

Interaction networks can be derived in many different ways from the estimates of

signal interdependence. Let ρij denote some estimate of signal interdependence,

i, j ∈ {1, . . . ,N}, and let us consider some function which maps the estimates ρij

to edges of a network described by the entries Aij of the adjacency matrix. A very

frequently pursued approach to derive unweighted interaction networks is to define

a threshold θ ∈ R above which values of estimators are converted into edges, i.e.,

Aij = H(ρij − θ), (2.15)

where H(x) takes on the value 1 for x > 0 and is zero else. This approach is often

referred to as thresholding and is common in many scientific fields [20,44,64,148]. A

variant of this approach sometimes used if ρij can take on negative values is

Aij = H(|ρij| − θ). (2.16)

Instead of specifying the threshold directly, most studies require the resulting in-

teraction network to possess a predefined mean degree k̄ or, equivalently, a prede-

fined edge density ǫ in which case θ is chosen accordingly. Predefining ǫ is often

considered advantageous since it was demonstrated that ǫ can sensitively affect

network characteristics [149, 150]. Another strategy for determining θ is known as

adaptive thresholding [59] where the largest value of θ is chosen for which the result-

ing network is still connected. Other approaches to derive unweighted interaction

networks rely on significance testing and have been proposed recently [38,151,152].

Such methods set Aij = 1 only for those values of ρij which are considered to be

significant according to some test at a given significance level. Other methods are

based on constructing a minimum spanning tree out of the matrix of estimates of

signal interdependence [153] or on rank-ordered network growth [154].
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Weighted networks can be derived in a number of ways. The simplest one is to

assume all edges to exist and to interpret the estimates of signal interdependence

as weights of the edges, i.e.,

Aij =







1 , i 6= j

0 , i = j
Wij =







ρij , i 6= j,

0 , i = j.
(2.17)

Variants of this approach are, e.g., to set Aij = 0 if ρij = 0 or, alternatively, if the

value of ρij is considered to be not significant according to some test. Besides, ap-

proaches were proposed to derive interaction networks having weight distributions

with fixed first moment or with an additionally fixed second central moment [63],

i.e.,

Wij = ρij − ρ̄ + 1, or Wij =
ρij − ρ̄

σρ
+ 1, (2.18)

where ρ̄ and σρ denote the mean value and the standard deviation of the values

ρij, i 6= j, respectively. The resulting weight distribution is centered around the

value 1. More refined strategies were also suggested that map the values of signal

interdependencies according to their rank order to a predefined distribution of edge

weights [155].
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3 Illustrative examples from field data analyses

During the last years, the dynamics of a large number of complex systems have been

analyzed using tools from network theory. Interaction networks have been studied

in different disciplines such as climate science [37,39,64,156,157], geophysics (seis-

mology [40,42,44,158]), biology [11,12], quantitative finance [148,153,154,159–161],

and neuroscience [19, 20, 24, 25]. Studies published in these diverse disciplines ad-

dress the same questions, namely whether different dynamical states are reflected

in the topology of interaction networks and thus can be classified, predicted, or even

controlled. To this end, promising features of interaction networks are considered

those which cannot be expected to be present by chance. To identify such features,

properties of interaction networks are usually compared with those obtained from

random network models (Erdős-Rényi networks or generalized random graphs, cf.

chapter 2).

Brain structural and functional networks (see, e.g., references [19, 20, 24] for an

overview), climate networks [35, 39, 64], and seismic networks [42, 44] have been

repeatedly reported to show small-world characteristics based on comparisons of

their clustering coefficients and average shortest path lengths with those of random

networks. While assortativity has frequently been investigated in social and tech-

nical networks (the former were typically found to be assortative, the latter to be

dissortative) for many years [120], studies assessing the assortativity in interaction

networks were published in recent times. Seismic networks were reported to be

assortative [43], whereas financial networks were found to be dissortative or assor-

tative depending on the thresholding-strategy pursued for network inference [159].

Studies inferring networks using different neuroimaging techniques consistently

reported brain functional networks to be assortative [65–71]. Brain structural net-

works were reported to be dissortative [66] or assortative [56, 162, 163], an incon-

sistent finding which might—among other influencing factors—be related to the

employed differing neuroimaging and network inference techniques.

A rapidly increasing number of studies in the neurosciences go beyond a mere

classification of brain networks into small-world or assortative networks, but aim to

relate properties of interaction networks to physiological or pathological processes.

Network properties were found to reflect physiologic processes such as sleep [48,49]

or aging [45, 51]. Moreover, many studies reported changes of network properties
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reflecting pathological states such as Alzheimer’s disease [52, 53], schizophrenia

[54–56], or epilepsy [57–63]. For example, topologies of interaction networks were

reported to be closer to random networks for young and old subjects and more

lattice-like for subjects of intermediate age [51]. Interaction networks appeared to

have larger values of the average shortest path length for epilepsy patients [63]

than for healthy controls. The same was found for Alzheimer patients [52], where,

in addition, lower values of the assortativity coefficient [67] compared to healthy

controls were reported. More lattice-like topologies were found during sleep [48,49]

and during epileptic seizures [57–61]. Moreover, recent findings indicate that the

temporal evolution of some network characteristics may also reflect daily rhythms

[164].

In the following, we highlight typical ways how interaction networks are derived

from empirical data. We demonstrate how analysis results are interpreted by con-

sidering exemplary studies of functional brain networks of healthy subjects and

epilepsy patients (section 3.1). From these observations, we draw the attention to

fundamental challenges which are connected to the network analysis approach and

which have not yet been thoroughly studied. Guided by our findings, we outline the

following chapters and explain our strategies to narrow down the overwhelming

number of methods and techniques used in applied network science (section 3.2).

3.1 Exemplary network analyses of brain electric and magnetic

activity

Typical observables assessed by electrophysiological techniques such as electroen-

cephalography [165,166] or magnetoencephalography [167] are electric or magnetic

field components (electroencephalogram (EEG) or magnetoencephalogram (MEG)),

respectively, which are generated by neuronal activity. To pick up this activity, sen-

sors are placed inside the skull (intracranial EEG), on the scalp (scalp EEG), or

outside but in the vicinity of the brain (MEG). At each sensor, the electric or mag-

netic activity is sampled at a prespecified sampling rate. The following studies

investigate whether network characteristics reflect different physiological (see sec-

tion 3.1.1) or pathophysiological (see sections 3.1.2 and 3.1.3) states of the brain.

For all studies, all patients and healthy subjects had signed informed content that

the data might be used and published for research purposes; and the studies were

approved by the local medical ethics committee.
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3.1.1 Network characteristics reflect different physiological states

We present exemplary results from a study [63, 155] in which EEG and MEG data

were obtained from subjects during controlled conditions, namely relaxed with eyes

open or closed. We refrain from presenting all details (which can be found in [63,

155]) but instead show selected findings.

Data. EEG- and MEG-data of 23 healthy subjects (of age 33± 9 years, 11 women)

were collected. Subjects were instructed acoustically to either open or close their

eyes for periods of 15 minutes. The chronological order of the two periods was

randomized across subjects, and surface EEG as well as MEG was recorded simul-

taneously. MEG data were sampled at 254.31Hz (16 bit A/D conversion; bandwidth

0.1–50Hz) using a 148-channel magnetometer system of which data of NMEG = 130

channels entered subsequent steps of analysis. EEG data were sampled at the same

sampling frequency (bandwidth 0–50Hz) from NEEG = 29 electrode sites accord-

ing to the 10–10 system [168] of the American Electroencephalographic Society, and

right mastoid was used as reference.

Analysis. In order to allow for a time-resolved analysis, multivariate time series

were divided into consecutive windows of 16.1 s duration (T = 4096 sampling

points), which can be regarded as a compromise between the approximate sta-

tionarity of the system and the statistical accuracy of the used estimator of signal

interdependence [169–171]. In order to exclude movement artifacts at the beginning

and at the end of the two conditions (eyes closed, eyes open), analysis was restricted

to 40 windows for each condition. Signal interdependencies were estimated by the

absolute value of the correlation coefficient (cf. equation (2.11)) between all pairs

of time series within each window. Unweighted interaction networks were derived

via thresholding the values of signal interdependence such that each interaction

network possessed a prespecified mean degree k̄ (EEG data: k̄EEG = 5, ǫEEG ≈ 0.18;

MEG data: k̄MEG = 15, ǫMEG ≈ 0.12). Clustering coefficient (C) and average shortest

path length (L) were determined for each network. From C and L of each subject,

average values 〈C〉 and 〈L〉 were calculated for each condition separately. Finally,

group averages C̄ and L̄ were determined from all values of 〈C〉 and 〈L〉 for each

condition. Significance of differences between the distributions of 〈C〉 (〈L〉) of the
two conditions was assessed by using a Wilcoxon signed rank test for matched pairs

(p < 0.05).
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Figure 3.1: Mean values of the clustering coefficient C̄ (left) and average shortest
path length L̄ (right) obtained from interaction networks derived from EEG or MEG
data recorded under different physiological conditions. Significant differences in C̄
and L̄ between the different conditions are marked with stars (∗).

Results. In figure 3.1, we show C̄ (left panel) and L̄ (right panel) obtained for

the different conditions (eyes closed, eyes open) and derived from EEG- as well as

MEG-data. Significant differences between both conditions can be observed for L̄

based on the EEG data. This indicates that physiological states are indeed reflected

in this network property. We note, however, that no significant differences could

be observed for C̄ based on the EEG-data and for C̄ and L̄ of interaction networks

derived from MEG recordings. We observe both network characteristics to take on

higher values for networks derived from MEG data—indicative of a more lattice-

like topology—than for networks derived from EEG data. Interestingly, this can be

observed despite ǫMEG < ǫEEG and despite the tendency of networks with higher

edge density to show larger values of the clustering coefficient.

In references [63, 155], a plethora of different network construction methods (in-

cluding different time series analysis as well as thresholding techniques) were em-

ployed. It was a consistent finding that significant differences in network properties

between different conditions were less frequently observed for networks derived

from MEG data compared to networks derived from EEG data [155]. This might

be attributed to various factors including the local currents (generating the electric

and magnetic fields) and their location and orientation relative to the sensors [167].

However, it might also be related to the spatial sampling of the dynamics, to the

number and spatial arrangement of sensors: magnetometer systems, as pointed out

in [155], allow for a higher spatial sampling than EEG sampling schemes, which is
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reflected in NMEG ≫ NEEG. In addition, studies suggest that the strength of signal

interdependence estimated between time series recorded by the sensors may de-

pend on the spatial distance between sensors [172,173]. We will study the influence

of the spatial sampling on network properties in the next chapter.

3.1.2 Network clusters might be predictive of impending seizures

Epilepsy is a brain disorder which is characterized by epileptic seizures, i.e., tran-

sient occurrences of signs and/or symptoms due to abnormal excessive or syn-

chronous neuronal activity in the brain [174]. 25% of the epilepsy patients can-

not achieve sufficient seizure control (neither from medication nor from resective

surgery). These patients would particularly benefit from methods which allow to

predict epileptic seizures. Since early studies conducted in the 1970s, research on

seizure prediction has gained momentum (see [175–177] and references therein for

an overview), but the problem of seizure prediction is still unsolved. While the con-

cept of a well-defined localized area in the brain responsible for seizure generation

was (and still is) widely accepted, there is now increasing evidence that the occur-

rence of seizures may be better understood as a network phenomenon [138,178,179].

In reference [98], we studied whether clusters in interaction networks derived from

EEG data are predictive of epileptic seizures. In this context, a cluster represents a

set of brain regions (nodes) which might even be spatially distant. Here we refrain

from recalling all details of the study but present exemplary results and discuss

findings which point towards influences of the analysis methodology on the net-

work structure.

Data. Multi-day multi-channel EEG data (total recording time: 90 days, mean:

154 h/patient, range: 45-267 h, average number of recording sites: 63, range: 32-

76) were recorded intracranially from 14 patients (patients A–N) who underwent

presurgical evaluation of pharmacoresistant focal epilepsies. Recordings captured

a total number of 119 seizures (mean: 8.5, range: 6-14 seizures/patient), and the

data were sampled at 200Hz (16 bit A/D conversion; bandwidth 0.3–70Hz) using

a referential montage. Analysis was carried out retrospectively.

Analysis. To allow for a time-resolved analysis, multivariate time series were di-

vided into consecutive windows of 20.48 s duration (T = 4096 sampling points; see

section 3.1.1 for the criteria used to choose the length of windows) and band-pass
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filtered in the well-known EEG frequency bands, namely δ (0.5-4Hz), θ (4-8Hz), α

(8-13Hz), β1 (13-20Hz), and β2 (20-30Hz) [180]. For each frequency band and each

window, we estimated signal interdependencies for all pairs of time series by using

the mean phase coherence [140,146,147]. Let R denote the matrix whose entries are

the values of the mean phase coherences estimated for all pairs of time series within

a window. We assume all edges to exist (adjacency matrix Aij = 1∀i 6= j, Aii = 0)

and derive the weight matrix W by setting W = R. This definition leads to a

weighted undirected network. From each interaction network, we determine clus-

ters by using a spectral clustering method which optimizes the modularity function

(see sections 2.1.1 and 7.1 as well as [98] for details). In order to assess whether the

occurrence or absence of clusters prior to seizures are predictive of seizures, we

assumed that a pre-ictal state (i.e., a state prior to a seizure) exists and lasts for a

certain amount of time Tp. We discarded data from recordings within 60min after

the onset of each seizure in order to exclude effects from ictal (i.e., during seizures)

as well as post-ictal (i.e., after seizures) periods. In addition, if data in an assumed

pre-ictal period amounted to less than 70% (e.g., due to recording gaps or due to

seizure clustering), it was excluded from subsequent analyses. Tp was varied from

15min to 240min (in steps of 15min), and we determined the number np of pre-

ictal and the number ni of inter-ictal
1 windows. For each cluster c identified in the

np + ni windows, we determined its occurrence in all windows. Let n(c)p and n(c)i

denote the number of occurrences of cluster c in pre-ictal or inter-ictal time peri-

ods, respectively. We define the true positive rate, TPR(c) := n(c)p /np, and the false

positive rate, FPR(c) := n(c)i /ni for each cluster c, for each assumed duration Tp of

a pre-ictal state, and for each frequency band. We quantify the predictive power of

each cluster by W(c) := |TPR(c) − FPR(c)| ∈ [0, 1], where W(c) = 1 (W(c) = 0) in-

dicates a cluster to perfectly indicate (or not to indicate) a pre-ictal state. Since the

same cluster structure is unlikely to show up in exactly the same pattern in different

windows due to noise contributions, we define groups of clusters, which facilitate a

robust identification of the most-frequently occurring clusters in a recording [181].

For exemplary recordings, cluster groups are algorithmically determined such that

all members of each group of clusters do not differ in more than 6 nodes.

Results. We consider receiver operating characteristic (ROC) spaces which are de-

fined by FPR and TPR as x and y axis, respectively [182]. In figure 3.2, we show two

1 All time periods except pre-ictal, ictal, and post-ictal periods.
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Figure 3.2: Exemplary ROC spaces where each point in space is associated with a
cluster and a duration Tp of a presumed pre-ictal period (color- and symbol-coded,
see legend). Durations are given in minutes. Orange-shaded areas mark exemplary
cascades of points in ROC space. Left: ROC space obtained for data in the θ-band of
patient A. The gray line visualizes the distance (V) to the diagonal for an exemplary
cluster. The predictive power of a cluster is higher the larger V. Right: ROC space
obtained for data in the β2-band from patient E.

exemplary ROC spaces in which each point is associated with a cluster and a given

duration Tp of the presumed pre-ictal period. The diagonal represents the set of

points obtained for a random predictor. Thus, clusters are of interest whose points

deviate from the diagonal, as reflected by the shortest distance V(c) between the

respective point and the diagonal in ROC space, V(c) = W(c)/
√
2. Points above the

diagonal represent clusters whose frequency of occurrence is higher in the pre-ictal

periods than in the inter-ictal periods, and the opposite holds for clusters whose

points are below the diagonal. We observe points in ROC spaces (see figure 3.2)

which are associated with very similar FPR values but varying TPR values and

which we call cascades in the following. Interestingly, points of a cascade belong to

the same cluster but to different durations Tp. Moreover, we observe W to increase

for decreasing Tp, which indicates that the frequency of some clusters increases (cf.

left panel) or decreases (cf. right panel of figure 3.2) prior to seizures. This network

reorganization might point towards a gradual built up of some process prior to an

impending seizure.

In figure 3.3, we show exemplary time courses of occurrences of the clusters with

largest W values for two patients. While the enlarged views (figure 3.3 (A) and (B)

top) of recordings from both patients indicate relative changes in frequencies of
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Figure 3.3: Exemplary time courses of occurrences (indicated as vertical green lines;
15 minutes moving-average smoothing as blue line) of the most predictive cluster
(cf. figure 3.2). Seizures are marked by vertical red lines and gray areas indicate
recording gaps. Numbers on the x-axis indicate time of day. (A) Top: Enlarged
view of a recording prior, during, and after a seizure (patient A, θ-band). Bottom:
Complete recording. (B) Same as (A) but for patient E (β2-band).

clusters prior to seizures, we observe a large variability of the frequency of occur-

rence of clusters (shown as moving-average (15 minutes duration) of the discrete

cluster occurrences) on a longer time scale (figure 3.3 (A) and (B) bottom). Thus,

the question whether clusters in interaction networks are predictive of seizures,

cannot be unequivocally answered. The variability of the frequency of cluster oc-

currences might reflect influencing factors such as alterations of the antiepileptic

medication, the specific nature of some epileptic process, physiological activities,

or daily rhythms [164, 181].

Despite these remarkable findings, which deserve future investigations, there

may exist influencing factors related to the acquisition of the data, which can affect
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Figure 3.4: (I) Top: exemplary schematic view of the electrode grid of patient A.
Seizure onset zone was determined by the presurgical workup and is marked
as magenta area (the lesion is marked as gray shaded area). (II) Top: exemplary
schematic view of the electrode grid of patient F. Areas involved in language pro-
cessing as determined by electrical stimulation are marked in green. Bottom: Four
exemplary cluster groups which are among the 12 most frequently occurring clus-
ter groups in the recordings of patient A (I.a, I.b, I.c, I.d) and of patient F (II.a, II.b,
II.c, II.d), respectively. Colors indicate participation frequency of brain sites within
a cluster group (from black (0) to white (1)).



30 3 Illustrative examples from field data analyses

interaction networks. We expect such influences to be present during the whole

length of the recordings. Thus, to investigate this issue, we consider a temporal

mean of the cluster content of all recordings for each patient, i.e., we investigate

most frequently occurring clusters. As detailed above, we define groups of most

frequently occurring clusters in order to minimize side effects due to noise contri-

butions [181]. In figure 3.4, we show examples of groups of the most frequently oc-

curring clusters for patient A (left column) and patient F (right column). We observe

a group of clusters to cover a brain area (seizure onset zone) in which earliest signs

of seizure activity can be identified (patient A, figure 3.4 I.b), which might reflect

pathological activity, as well as cluster groups which cover brain structures sub-

serving physiological activities (e.g., language processing, patient F, figure 3.4 II.b

and II.c). However, groups of clusters are clearly visible which reflect the anatomi-

cal organization of the brain (patient A, figure 3.4 I.c and I.d). Their spatial extent

corresponds to different brain lobes (temporal and frontal lobe) and parts of their

boundaries follow the lateral sulcus. Moreover, for both patients A and F, we ob-

serve groups of clusters to reflect reference electrodes (electrodes A7,A8 in patient

A, figure 3.4 I.a; electrodes A1,A2 in patient F, figure 3.4 II.a). Taken together, these

findings suggest that factors concerning the acquisition of the data (e.g., spatial

sampling relative to the anatomical organization, referencing) might—next to phys-

iological and pathological activities—also leave an imprint in the properties (here:

clusters) of derived interaction networks.

3.1.3 Network characteristics undergo changes during seizures

An improved understanding of the mechanisms underlying seizure initiation,

spreading, and termination in human epilepsy can help to develop more efficient

treatment strategies. To advance knowledge about the epileptic processes, seizure

dynamics might be considered as a network phenomenon, a point of view

corroborated by recent modeling studies [183–189]. In reference [59], we

studied—in a time-resolved way—characteristics of interaction networks which

were derived from EEG recordings capturing seizure dynamics. We briefly recall

the analysis methodology and present exemplary results of this study.

Data. Multi-channel EEG data (average number of recording sites: N = 53± 21)

were recorded prior to, during, and after 100 focal onset epileptic seizures (mean

duration: 110± 60 s) from 60 patients who underwent presurgical evaluation of
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Figure 3.5: γ̄DP (left), λ̄DP (center), as well as ǭ (right) averaged separately for pre-
seizure, discretized seizure, and post-seizure time periods of 100 epileptic seizures.
All error bars indicate standard error of the mean. Lines are for eye-guidance only.

pharmacoresistant focal epilepsies. The data were acquired (using strip, grid, or

depth electrodes) from the cortex and from within other relevant brain structures

(sampling rate: 200Hz; 16 bit A/D conversion; bandwidth 0.5–70Hz). Prior to anal-

ysis, a bipolar re-referencing was applied which might diminish the influence of

the recording reference mentioned in the previous section2.

Analysis. Multivariate time series were divided into non-overlapping consecutive

windows of length 2.5 s (T = 500 sampling points; see section 3.1.1 for the criteria

used to choose the length of windows). For each window, time series were normal-

ized to zero mean and unit variance, and signal interdependencies were estimated

by calculating the maximum value of the cross correlation function for each pair

of time series3. We derived an unweighted interaction network for each window

using adaptive thresholding: for each window, the largest threshold was chosen for

which the resulting network was connected (while possessing a minimum number

of edges). For each network, we determine its edge density ǫ as well as normalized

network characteristics γDP := C/CDP and λDP := L/LDP, where CDP and LDP are

obtained from degree-preserving randomization (cf. generalized random graphs in

section 2.1.2) of the network. Seizures were partitioned into 10 equidistant time

bins, and averages of network characteristics, ǭ, γ̄DP, and λ̄DP, were determined for

each time bin. In addition, averages of network characteristics were also determined

for networks derived from the pre-seizure and post-seizure time periods.

2 Whether this is indeed the case, requires further investigations.
3 We observed qualitatively similar results when using the maximum value of the absolute cross
correlation function (ρm) as estimator of signal interdependence.
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Results. In figure 3.5, time resolved network characteristics γ̄DP (left panel), λ̄DP

(center panel), as well as ǭ (right panel) obtained for all 100 seizures are presented.

We observe γ̄DP and λ̄DP to follow a concave-like movement. Both characteristics

increase during the first part of the seizures and decrease already prior to the end of

the seizures. This indicates a relative shift from more random towards more regular

and back towards more random network topologies. Thus, the seizure state might

be associated with more regular network topologies, which is in accordance with

previous findings obtained from analyzing a smaller number of seizures [58]. These

findings come along with relative changes of the average edge density (right panel)

which follows a convex-like movement, indicating a relative shift from denser to-

wards sparser and back to denser networks.

EEG recordings of epileptic seizures suggest that seizure dynamics are character-

ized by rapid changes in time and frequency [190–193] during finite periods of time

(usually 1-2 minutes). Choosing a length of the analysis windows (here: 500 sam-

pling points, 2.5 seconds as a trade-off between temporal resolution and statistical

reliability of estimators of signal interdependence) introduces an additional time

scale which might influence results obtained from the subsequent network anal-

yses. Furthermore, time series obtained from measurements are inevitably finite

which limits the reliability of estimators of signal interdependence. The reliability

of such estimators, which may also depend on the time scales present in the data,

might also influence properties of derived interaction networks. Due to the adap-

tive thresholding used for network inference, networks can possess varying edge

densities. Results (cf. right panel of figure 3.5) indicate that the edge density ǭ un-

dergoes systematic changes during seizures which might influence γ̄DP and λ̄DP.

Both are known to approach unity for ǫ → 1.

3.2 Discussion and outline

The presented studies exemplarily demonstrate how interaction networks can be

derived from spatially extended dynamical systems, and how network characteris-

tics are analyzed and interpreted. Undoubtedly, the network approach towards the

analysis and interpretation of multivariate data has contributed and still contributes

to advance our understanding of complex systems and inspires the generation of

new hypotheses. However, the fundamental issues of how to identify nodes and

edges in spatially extended dynamical systems and how to assess significance of
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findings are not yet fully understood. Moreover, it is conceivable that uncertainties

with respect to these issues could affect properties of interaction networks derived

from empirical data.

Node identification is typically based on associating nodes with sensors capturing

the dynamics. To this end, appropriate observables have to be chosen and sensors

must be spatially placed. We already observed in section 3.1.1 that different record-

ing modalities can lead to different findings obtained from network analyses. EEG

and MEG recording techniques as used in section 3.1.1 do not only differ in their

number of sensors and in the observables registered, but also in their spatial sam-

pling scheme (including different spatial resolutions). Certainly, a spatial sampling

scheme is usually chosen with regard to the spatial scales present in the system

(thereby considering theorems for an appropriate sampling), but it also underlies

technical constraints. This becomes also apparent when considering the placement

of sensor grids schematically shown in figure 3.4 (cf. section 3.1.2), where it is

straightforward to argue that the spatial sampling of the system will very likely in-

fluence properties of interaction networks derived from the data.

Edge identification is based on time series analysis methods which estimate inter-

dependencies between signals. The reliability of such a method depends on various

aspects such as the contamination of signals with noise contributions or the amount

of available data. In addition, a successful inference of interdependencies will also

depend on whether typical time scales present in the dynamics are technically ac-

cessible and are accounted for by the chosen temporal sampling. Besides, time-re-

solved network analyses approaches (cf. sections 3.1.2 and 3.1.3) introduce addi-

tional time scales (e.g., by splitting time series into sequential parts (windows) of

prespecified length) from which networks are derived. This might also influence es-

timators of signal interdependence. Finally, techniques are employed to infer edges

from the estimates of signal interdependence. The exact influences of these tech-

niques (edge- or mean degree-thresholding (section 3.1.1), adaptive thresholding

(section 3.1.3), edge weight estimation (section 3.1.2), or significance testing [151])

on network properties are largely unknown.

To assess significance of findings obtained from network analyses, values of net-

work properties are compared to those from a null model. Some studies define a

state of the system for which properties of interaction networks are determined

and used for comparison (see, e.g., sections 3.1.1 or 3.1.2), while other studies make

use of network null models (see, e.g., section 3.1.3) in which different concepts of
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randomness are implemented to various extent. Among these null models, Erdős-

Rényi graphs and degree-preserving randomized networks are most frequently

used in field studies. Whether they are suited for interaction networks derived

from the dynamics of a system which was spatially and temporally sampled, is not

yet known.

In this thesis, we investigate the influence of the spatial and temporal sampling

on properties of interaction networks with modeling studies and simulation studies

under controlled conditions. We study whether and to which extent findings carry

over to field data studies by investigating interaction networks derived from the

human brain with respect to the spatial and temporal sampling. In the light of

these investigations, we discuss the appropriateness of commonly used null models

and propose null models which can overcome identified limitations of previous

null models. Given the vast number of different ways of how to derive interaction

networks from empirical data, we need to focus our investigations on the most

frequently used methods. To this end, we pursue the following strategies:

• Wherever possible, we do not use specific estimators of signal interdepen-

dence but instead take advantage of generic properties of such estimators in

our studies (for instance, in large parts of chapter 4). If studies require the def-

inite use of estimators of signal interdependence, we will employ the absolute

value of the correlation coefficient ρc or the absolute value of the maximum

cross correlation ρm, both representing frequently used methods from the do-

main of linear time series analysis techniques. We mention that it is still a mat-

ter of debate whether to prefer methods from the domain of nonlinear time

series analysis (for example, see references [39, 194]) or those from the linear

domain (e.g., references [155, 195–197]). The choice of an appropriate method

will likely depend on the system and its investigated dynamical states [198].

• We translate estimates of signal interdependence into edges via threshold-

ing. The threshold is chosen such that the network possesses a number of

edges parametrized either by a prespecified mean degree or by an edge den-

sity. We chose this approach because of its widespread use in the literature

(for instance, see references [20, 44, 64, 148]), for the sake of simplicity, and

for its mathematical treatability. In addition, interaction networks obtained

using this approach are unweighted and undirected, and thus can be charac-

terized with well established and thoroughly studied methods. We note that
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approaches allowing for the inference of weighted and directed interaction

networks might help to gain deeper insights into the dynamics of complex

systems. Although such approaches are promising, they are at an early stage

of development at the time of writing this thesis and not yet widely used in

network analyses of field data.

• Among the plethora of techniques available for characterizing networks, we

focus on methods yielding a scalar value from the analysis of a network.

This way, we avoid potential complications arising from subsequent steps of

analysis in which characteristics of different networks are often compared to

each other. For instance, if networks possess different sizes, it is not yet well

understood how to compare properties which cannot be represented by a sin-

gle scalar value (e.g., clusterings, centralities) with each other. We choose the

clustering coefficient and the average shortest path length as network charac-

teristics because of their widespread use in the literature and because of their

importance in the context of small-world networks. In addition, we choose

the assortativity coefficient as network characteristic which is investigated in

an increasing number of field studies in order to assess resilience and or-

ganization of networks. Besides, this will enable us to gain insights into the

usefulness of degree-preserving randomized networks for serving as network

null model.
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4 Influence of spatial sampling

Characterizing the dynamics of a complex system in general requires a number of

choices which have to be made prior to analysis. If the equations of motion of the

system are not known (which is most often the case in studies of natural systems),

investigations of the dynamics of a system usually rely on repeated experiments

carried out under well defined conditions during which data from some appropri-

ate observables are collected. When studying the dynamics of spatially extended

dynamical systems, such as climate dynamics, dynamics of earth-quakes or of the

human brain, the identification of appropriate observables which are accessible

via measuring instruments can pose a highly non-trivial challenge. A number of

sensors is placed so as to sufficiently capture the dynamics of the system. Sensor

placement may be based on spatial sampling strategies (e.g., following the Nyquist

theorem), or on a priori knowledge of the structural organization of the system

(which is often not available), or on the intuition of the experimentalist. In most

cases, the placement and the number of sensors is also subject to constraints im-

posed by the measuring instruments and by finite resources.

Interpreting the dynamics of a system in terms of an interaction network comes

along with the assumption that the dynamics can be well represented by interac-

tions (edges) between different subsystems (nodes). As nodes are associated with

sensors, the number and spatial placement of sensors, which are often arranged in a

lattice-like way, may affect the topology of the derived interaction network. In cases

in which subsystems of the dynamics cannot be unequivocally identified, different

sensors may pick up the activity of the same subsystem (i.e., a common source).

In addition, since repeated experiments with well controlled changes of conditions

are difficult to establish for various natural systems (e.g., the climate system), the

inference of causal relationships between subsystems is usually replaced by the in-

ference of correlations between time series. The accuracy of the inference of edges

is typically restricted due to a finite amount of accessible data and is spoiled by

unavoidable noise contributions, all of which may also influence the topology of

derived interaction networks. In this chapter, we address the question whether and

how these influences affect the inference of prominent network characteristics such

as clustering coefficient, average shortest path length, and assortativity coefficient.

These characteristics have been repeatedly used in field studies to classify inter-



38 4 Influence of spatial sampling

action networks into network classes (lattices, small-world networks, random net-

works, assortative or dissortative networks) and to draw conclusions about organi-

zation principles of the dynamics of natural systems. Interaction networks derived

from empirical data have frequently been reported to possess a small-world topol-

ogy and to be assortative. Given these ubiquitous findings, we address the question

whether interaction networks can sensibly and reliably be classified into the afore-

mentioned categories given the currently available analysis methods and given the

way how interaction networks are derived from empirical data.

This chapter is organized as follows: in section 4.1, we begin with an example

from field data analysis. Interaction networks are derived via thresholding the ab-

solute values of the correlation coefficient and are compared to networks whose

edges reflect spatial distances between sensors only. We study the impact of mea-

surement uncertainties and a lattice-like arrangement of sensors (section 4.2.1) as

well as the impact of common sources (section 4.2.2) on network properties of de-

rived interaction networks. We discuss the issue of node and edge identification

in interaction networks as well as the use of traditionally employed network null

models (Erdős-Rényi networks and degree-preserving randomized networks) in

the light of the results reported in this chapter (section 4.3). Finally, we discuss

approaches which can help to deal with the challenges of spatial sampling.

4.1 Exemplary field data analysis

We analyzed multivariate time series of brain magnetic activities recorded by a

148-channel magnetometer system (magnetoencephalography (MEG), see reference

[167]) from a healthy subject with eyes closed [63]. The MEG data were sampled

at 254.31Hz (within the frequency band 0.1–50Hz) using a 16-bit analog-to-digital

converter. We discarded time series recorded by the lowermost sensor ring due

to potential contaminations with muscle activity, which restricts the number of

available time series to N = 130 (see top panel in figure 4.1 for a schematic showing

the spatial arrangement of a subset of sensors). The length of time series was T =

4096 sampling points, and signal interdependence between all pairs (i, j) of time

series were estimated using the absolute value of the linear correlation coefficient,

ρcij (cf. section 2.2.1). Matrix W = ρc is shown in the left panel of figure 4.1 (B). As

has been pursued in many field studies, we derive from W the adjacency matrix

A (right panel) of the interaction network via thresholding (we exemplarily choose
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(A)
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Figure 4.1: (A) Schematic of the spatial arrangement of a subset of sensors used
to sample the dynamics of a human brain by MEG. (B) Left: Exemplary matrix W

where entry Wij=Wji is the absolute value of the correlation coefficient (ρcij) between

MEG time series xi(t) and xj(t) from sensor pair (i, j). Right: Adjacency matrix A

derived from W by thresholding with k̄ = 15. (C) Left: Matrix W̃ with entries
W̃ ij = F(dij), where dij denotes the Euclidean distance between sensors i and j in

3-dimensional space, and F(dij) = (1+ exp(u(dij − v)))−1 with u = 23 and v = 0.1.

Right: Ã derived from W̃ by thresholding with k̄ = 15. Note that Ã is not affected
by the choice of F, as long as F decreases strictly monotonically with increasing dij.
Entries of all matrices range from 0 (black) to 1 (white).
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a mean degree of k̄ = 15). W and A display patterns of diagonals which can be

attributed to spatially close pairs of sensors.

From A we determine the clustering coefficient C = 0.58, the average short-

est path length L = 3.13, and the assortativity coefficient a = 0.67. The value of

a suggests that the interaction network is strongly assortative. In order to assess

whether the interaction network possesses a small-world topology, we here follow

an approach pursued in many field studies: 100 random networks are derived from

A by degree-preserving randomization of edges (cf. section 2.1.2). We denote the

mean values of the clustering coefficients and of the average shortest path lengths

of these networks by CDP and LDP, respectively. We determine γDP = C/CDP and

λDP = L/LDP (cf. section 2.1.2) and assume—like in many field studies—γDP ≫ 1

and λDP ≈ 1 to be indicative of a small-world topology. In the following, we

use γDP > 2 and λDP < 2 as a practical criterion. With γDP = 4.21± 0.15 and

λDP = 1.53± 0.01, this interaction network would be interpreted as small-world

network.

We now come back to the observation that W and A display patterns of diago-

nals which represent edges between nodes whose associated sensors are spatially

close (cf. figure 4.1 (B)). Let us exemplarily consider a basic model which defines a

network without relying on any information about the dynamics of the system but

which is solely based on the spatial distances between sensors. Let ρ̃ij be an inter-

dependence measure which depends on the Euclidean distance dij between sensors

in three-dimensional space only. We assume the measure to strictly monotonically

decrease with increasing distance dij. Thus, ρ̃ij will take on higher values for spa-

tially close sensors than for spatially more distant sensors. The network derived

from ρ̃ via thresholding displays a distance-dependent connectivity structure and

can be considered as a spatial network. We note that spatial networks [6, 7, 28] have

attracted much interest in network sciences during the last years. In the left panel of

figure 4.1 (C) we show matrix W̃ = ρ̃ obtained for choosing a sigmoid function for

ρ̃ij. Ã is derived from W̃ via thresholding as in the previous paragraph (k̄ = 15).

Note that Ã does not depend on the exact choice of the interdependence measure

as long as the latter decreases strictly monotonically with increasing dij. W̃ and Ã

show diagonal patterns which are similar to the ones observed in W and A. Given

the model defining this network, we expect network characteristics to indicate a

lattice-like topology (reflected in large values of the clustering coefficient and the

average shortest path length compared to random networks, cf. section 2.1.2). From
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Ã we obtain C = 0.57, L = 3.14, and a = 0.57. The assortativity coefficient indicates

this network to be strongly assortative. Comparing values of C and L to mean val-

ues obtained for random networks derived via degree-preserving randomization of

Ã, we observe γDP = 4.97± 0.18 and λDP = 1.55± 0.01. Thus, even this network,

whose construction was based on spatial distances between sensors only, would

have been classified as small-world network. Together with the apparent similarity

of W and W̃ , this observation indicates that the spatial arrangement of sensors

may substantially influence the topology of interaction networks.

4.2 Simulation studies

The previous examples already suggest that C, L, a and probably also other network

characteristics reflect the spatial sampling of a dynamical system and the way how

interaction networks are derived from empirical data (i.e., how nodes and edges are

identified). In addition, it has to be taken into account that empirical data is typ-

ically affected by the unavoidable imprecision of the acquisition system and may

be spoiled due to inevitable noise contributions. Moreover, the amount of available

empirical data is finite which further restricts the accuracy of time series analysis

methods. This limited accuracy together with thresholding methods for deriving

interaction networks—for which the mean degree or edge density are often chosen

empirically—may lead to spuriously missing or additional edges in the network.

These considerations lead us to our first question: How reliable do we have to es-

timate edges in order to safely infer characteristics of interaction networks from

empirical data? Another aspect is related to uncertainties in sensor placement. Sen-

sors, which are identified with the nodes of the interaction network, are placed so

as to sufficiently capture the dynamics of the system, and high values of estimated

signal interdependencies are considered to be indicative of interaction between dif-

ferent subsystems. However, due to a lack of knowledge of the actual structural

organization of the dynamical system or due to technical constraints imposed by

the acquisition system, some sensors may capture the dynamics of the same subsys-

tem which will lead to strongly interdependent signals [166,199,200]. Most bivariate

time series analysis techniques cannot distinguish between signal interdependence

caused by interactions between different subsystems or by common sources. How

will this affect network characteristics even in cases, where such a distinction was,

in principle, possible? We will address these questions in the following.
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4.2.1 Measurement uncertainties and latticelike arrangement of sensors

Let us consider an interaction network which possesses a lattice-like topology. This

topology might reflect the lattice-like arrangement of sensors or might truly reflect

the actual interaction structure of some dynamics. It might even reflect a mixture of

both. Lattice-like networks are assortative and display large values of the clustering

coefficient and of the average shortest path length. We investigate, in the presence

of measurement uncertainties, how reliable we have to estimate edges in order to

safely classify the interaction network as a lattice (according to clustering coefficient

and average shortest path length) and as an assortative network (according to the

assortativity coefficient). To this end, we model lattice-like interaction networks as

follows: we generate square-lattices and associate sensors with nodes. We assume

an interdependence measure (as in the previous section, ρ̃) to strictly monotonically

decrease with increasing distance between sensors. The number of nodes N and

the mean degree k̄ for deriving networks are chosen such as to meet typical values

reported in many field studies. Note that not every desired pair of (N, k̄) values can

be realized with this construction (consider a node at the boundary of a lattice and

a node within the center of a lattice). We added a small amount of noise to each

sensor position, which we consider realistic since sensors cannot be placed with

infinite precision in experimental setups. As a result, the degree will vary slightly

from node to node (while the network as a whole will still possess a predefined

mean degree k̄). We carefully checked that the added noise does not qualitatively

change results of our simulation studies and thus can be considered as part of

the construction process of the lattices. We mention that the following qualitative

results can also be observed for three-dimensional lattices.

Clustering coefficient and average shortest path length. As in section 4.1, we use

100 degree-preserving randomized networks in order to obtain mean values γDP

and λDP for each lattice. In the top panels of figure 4.2, γDP and λDP are shown

for different pairs of values (N, k̄). We observe γDP ≫ 1 and λDP ≈ 1 for a range

of (N, k̄) values, which would indicate these lattices to possess small-world char-

acteristics. The upper right region of the (N, k̄) plane contains networks with high

edge density ǫ (cf. top right panel of figure 4.3). Since CDP, C, and thus γDP ap-

proach the value 1 for ǫ → 1, these lattices would not be classified as small-world

networks. The lower left region of the (N, k̄) plane comprises networks with low

edge densities for which λDP ≫ 1 would not indicate small-world topologies. For
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Figure 4.2: Top: Mean values of normalized clustering coefficient γDP (left) and
normalized average shortest path length λDP (right) for square lattices with dif-
ferent numbers of nodes N and mean degrees k̄ (maximum standard deviations:
σγDP

= 0.02 and σλDP
= 0.02). White crosses mark (N, k̄) configurations for which

lattices will be classified as small-world network if γDP > 2 and λDP < 2 is cho-
sen as a practical criterion. Bottom: Minimum fraction of randomly replaced edges
κ∗ for which the resulting network would be classified as small-world network
(λDP < 2) in dependence on the edge density ǫ. Error bars denote standard de-
viations derived from 100 independent replacement runs, and lines are for eye
guidance only. Note that error bars are smaller than symbol size in the majority
of cases.

these networks, a reliable inference of edges is of crucial importance for a correct

classification, which we demonstrate in the following.

A limited reliability of the estimation of edges will lead to spuriously additional

and spuriously missing edges in interaction networks. In principle, the probabil-

ity of erroneously detecting edges (false positives) can be controlled by multiple

testing against some appropriately chosen null model [38, 151]. However, such ap-
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proaches are well known to possess a limited power leading to a starkly increased

number of false negatives (missing edges). Moreover, for the large numbers of time

series usually considered in field studies, the generation of appropriate null models

for time series (i.e., surrogates [201]) needed for multiple testing methods can be

computationally expensive. Nevertheless, we can carry over concepts from multiple

testing in order to assess the reliability needed to correctly classify networks in the

lower left region of the (N, k̄) plane as lattices using γDP and λDP. We model un-

certainties from estimating edges by randomly replacing edges in the network. Let

nr denote the number of randomly replaced edges. We define the fraction κ ∈ [0, 1]

of randomly replaced edges, κ := 2nr/(k̄N), which represents the false-discovery

rate [202] in the context of multiple testing methods. Note that the replacement

of edges affects γ only marginally, and we always observed γ ≫ 1. Let n∗r be the

average minimum number of randomly replaced edges1 for which the network

would be classified as small-world network due to a decrease of the average short-

est path length such that 1 ≈ λDP < 2 (see section 2.1.2). The minimum fraction

κ∗ := 2n∗r/(k̄N) of randomly replaced edges is defined accordingly, and its depen-

dence on the edge density ǫ is shown in the lower panel of figure 4.2. A fraction κ∗

of less than 2% is sufficient to falsely classify the lattices in the lower left region of

the (N, k̄) plane as small-world networks due to a decrease of L (and thus λDP). κ∗

even decreases for increasing edge density. Furthermore, depending on the chosen

mean degree, we observed that only one to five randomly replaced edges lead to

γDP < 2 for networks with a small number of nodes. This sensitive dependence of

the average shortest path length on the edge structure has also been reported in a

number of theoretical studies (see, e.g., references [115, 116, 203, 204]). It is crucial

for inferring small-world characteristics from interaction networks derived from

empirical data: changing or adding just a few edges can cause remarkable changes

in the average shortest path length.

Assortativity coefficient. Values of the assortativity coefficient a are shown in fig-

ure 4.3 (top left) for lattices which were generated as described in the previous

section. We observe large positive values of a for most of the lattices in the (N, k̄)

plane (a > 0.5 for a range of edge densities ǫ, cf. figure 4.3 top right). This can be

1 n∗r is determined by 100 replacement runs. For each replacement run s = 1, . . . , 100, we start with
a lattice, randomly replace an arbitrary edge, and determine λDP. The random replacement of
edges is repeated until λDP < 2 in which case we denote the total number of randomly replaced
edges as n∗

r(s)
. Then, n∗r := (∑s n

∗
r(s)

)/100.
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Figure 4.3: Top: mean values of the assortativity coefficient a (left) and values of
the edge density ǫ (right) for square lattices with different numbers of nodes N
and mean degrees k̄ (maximum standard deviation obtained from 10 realization of
the lattices in the (N, k̄) plane: σa = 0.06). Bottom: mean assortativity coefficient
(obtained from 10 simulation runs) in dependence on the fraction κ of randomly
replaced edges for an exemplary lattice (N = 100, k̄ = 10). The grey shaded area
marks the standard deviation, and lines are for eye-guidance only.

explained by the definition of the assortativity coefficient which aims at character-

izing the average similarity (a > 0) and dissimilarity (a < 0) of node degrees at

either end of edges. In our lattice networks, neighbouring nodes possess degrees

which are very similar2. This leads to high values of a. For networks with low

edge densities (lower left region of the (N, k̄) plane), we observe lower values of a

but still a > 0.14. For increasing edge density (ǫ > 0.5, upper right region of the

(N, k̄) plane), values of a fluctuate around 0. Note that the assortativity coefficient

is not defined for ǫ = 1 since the variance of the degree sequence (ki = (N − 1)∀i)
vanishes.

2 In ideal lattices with periodic boundary conditions, all degrees are identical.
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We study the influence of a limited reliability of estimating edges on a by ran-

domly replacing edges in the networks. The dependence of a on the fraction κ of

randomly replaced edges3 is shown in the bottom panel of figure 4.3 for an exem-

plary configuration of N = 100 and k̄ = 10. Findings obtained for other lattices of

the (N, k̄) plane are qualitatively similar. We observe a to decrease for increasing κ

which can be ascribed to the random replacement of edges: it tends to destroy de-

gree-degree correlations in the network and appears to approach the Erdős-Rényi

network model [6] in the limit κ → 1. For a small fraction of randomly replaced

edges (κ < 0.1), our findings suggest that the assortativity coefficient is not as sen-

sitively affected as the average shortest path length by uncertainties in estimating

edges4.

Briefly summarizing, the often used lattice-like arrangement of sensors together

with a limited reliability when estimating edges can lead to indications of small-

world topologies of interaction networks derived from the dynamics of spatially

extended systems even if the actual interaction structure is not small-world. More-

over, a lattice-like arrangement of sensors can lead to interaction networks which

possess positive degree-degree correlations and thus would be classified as assor-

tative networks.

4.2.2 Common sources

As already mentioned above, sensor placement may be based on spatial sampling

strategies, or on a priori knowledge of the structural organization of the system,

or on the intuition of the experimentalist. Since the number and precise location

of subsystems are often unknown prior to analysis, the number N of sensors and

their locations are typically chosen empirically and may, in addition, be subject to

technical constraints. It is thus not surprising that some sensors may capture signals

of the same subsystem. This issue becomes important considering spatial sampling

strategies and interpreting the derived interaction network: in field studies, high

values of estimators of signal interdependence between time series are often con-

3 a(κ) is determined by 10 simulation runs. For each simulation run r = 1, . . . , 10, we start with a
lattice, randomly replace an arbitrary edge, and determine a(r)(κ), κ = 2nr/(k̄N). The random

replacement step is repeated until κ > 0.3. Finally we obtain a(κ) = (∑r a(r)(κ))/10.
4 This finding, however, will substantially change if a limited reliability of estimating edges trans-
lates into a random replacement of edges which favours edges between nodes of similar (increas-
ing a) or different (decreasing a) degrees. We consider such systematic uncertainties unlikely in
typical field studies.
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sidered as indicative of a relationship between different entities (e.g., a functional

interaction between subsystems). However, if two time series reflect the dynamics

of the same subsystem (i.e., a common source), frequently used estimators of signal

interdependence, such as the correlation coefficient or the mean phase coherence,

will also indicate strong interdependencies between these time series, which would

be erroneously considered as indicative of two interacting different entities. Uncer-

tainties when placing sensors together with commonly used time series analysis

techniques will likely lead to additional nodes and edges in a derived interaction

network.

We study the impact of common sources on the clustering coefficient, the aver-

age shortest path length, and on the assortativity coefficient of derived interaction

networks with two models. We assume a dynamical system to be well represented

by a network N consisting of N nodes and some edges. Nodes represent sub-

systems and edges reflect interactions between them. We model the influence of

common sources by introducing for each sensor i an additional sensor i′ with zero

spatial distance between them. The resulting network N ∗ then consists of N∗ = 2N

nodes. In our first model, we assume that edges are derived by using a time series

analysis technique which cannot distinguish between interdependencies reflecting

functional interactions and “false interdependencies” due to sampling the same

subsystem. We note that this holds for most bivariate time series analysis meth-

ods. The network according to the first model is denoted as N ∗
1 . With our second

model, we consider a time series analysis method which we assume to be able to

distinguish between both cases. The resulting network is denoted as N ∗
2 .

First model. Due to the placement of the duplicate sensor, the corresponding node

i′ of the interaction network is connected to the neighbours of node i (cf. inset of

figure 4.4 left). In addition, i′ is connected to i since both associated sensors sample

the same subsystem, and the considered time series analysis methods indicate per-

fect signal interdependence. We derive the clustering coefficient C∗
i and the average

shortest path length L∗ of the network N ∗
1 as functions of Ci and L of N as

C∗
i =

{

3
2ki+1 + 2Ci

ki−1
2ki+1 , if ki > 0

0, if ki = 0,
(4.1)

L∗ = L + L1 with L1 =
N

2|S| , (4.2)
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Figure 4.4: Results obtained for the first model. Left: Local clustering coefficient C∗
i

of node i of N ∗
1 as a function of Ci of N for different node degrees ki. Construction

of N ∗
1 is shown schematically in the inset. Nodes and edges included in N and N ∗

1
are colored black, while nodes and edges only included in N ∗

1 are colored gray.
Right: Means of C̃(p) := C(p)/C(0) (open symbols) and L̃(p) := L(p)/L(0) (filled
symbols) for N depending on the rewiring probability p (lines are for eye-guidance
only). C̃∗(p) and L̃∗(p) denote the corresponding quantities for N ∗

1 . We used the
Watts-Strogatz scheme (N = 1000, k̄ = 4, 1000 realizations for each p) to generate
N networks (symbol △) and derived N ∗

1 networks (symbol ▽) by duplicating all
nodes from N . Standard deviations for all quantities are smaller than symbol size.

where ki and |S| are quantities of N and denote the degree of node i and the num-

ber of pairs of nodes connected by some path, respectively (see section 2.1.1). The

derivation of these equations is provided in section 7.2. Note that L1 ∈ [ 1
2N ,

1
2 ],

where the lower bound holds for connected networks (a path exists between ev-

ery pair of nodes) and the upper bound for networks without edges. Obviously,

the impact of introducing additional nodes (i.e., sensors) on the average shortest

path length can be neglected since L∗ ≈ L. In contrast, the clustering coefficient

is increased, C∗ ≥ C, because for the local clustering coefficients C∗
i ≥ Ci holds.

Their increase depends on the degrees of nodes as well as on Ci (cf. figure 4.4

left). In order to demonstrate this effect, we generate network topologies of N us-

ing the Watts-Strogatz small-world model [74] in which edges are rewired with

probability p: starting from a ring-lattice (p = 0), different topologies are obtained

by successively increasing p until random networks5 are reached for p = 1 (cf.

section 2.1.2). In the right panel of figure 4.4, we observe for all rewiring probabili-

5 We follow the wording in reference [74] and call networks obtained for p = 1 random networks.
Note, however, that these networks are locally not equivalent to random networks since they
retain some information about the rewiring procedure [114].
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ties L∗(p)/L∗(0) ≈ L(p)/L(0). In contrast, C∗(p)/C∗(0) clearly exceeds C(p)/C(0)

when increasing p such that even N ∗
1 networks derived from random networks N

(p = 1) would be characterized as small-world networks.

We now derive (cf. section 7.2 for details) the assortativity coefficient a∗ of N ∗
1 ,

a∗ = a1a + a2, (4.3)

where

a1 := 8
∑ k3i − (∑ k2i )

2/∑ ki

∑(2ki + 1)3 − (∑(2ki + 1)2)2/∑(2ki + 1)
(4.4)

and

a2 :=

(

8(∑ k2i )(1 + ∑ k2i /∑ ki) + 2∑ ki + ∑(2ki + 1)2 − (∑(2ki+1)2)2

∑(2ki+1)

)

∑(2ki + 1)3 − (∑(2ki + 1)2)2/∑(2ki + 1)
(4.5)

are functions of the degrees of nodes in N , and a denotes the assortativity co-

efficient of N . We demonstrate this dependence by generating networks N with

different degrees of assortativity or dissortativity, i.e., different values of a. To this

end, we start with an Erdős-Rényi network from which we derive networks us-

ing a degree-preserving but degree-degree (anti-) correlations inducing rewiring

scheme [122, 123]. The degree of assortativity or dissortativity is governed by some

probability p with which a rewiring step must favour a rewiring which increases

or decreases a, respectively. In the limit p = 0, this rewiring scheme becomes iden-

tical to the one widely discussed and used in the literature [86, 110–113] for gener-

ating degree-preserving random networks without degree-degree correlations. In

figure 4.5, the dependence of the assortativity coefficient a∗ on the assortativity

coefficient a is shown for different values of the mean degree k̄ of N (left panel:

k̄ = 2, right panel: k̄ = 4). Since the rewiring process leaves the degrees of nodes

unchanged, a1 and a2 are constants. We observe the assortativity coefficient of N ∗
1

to be increased compared to the one of N , and the relative increase becomes larger

the smaller the mean degree k̄ (for networks possessing edges). Remarkably, for a

regime of values of a indicating a network N to be dissortative (a < 0), we even

find a∗ > 0 indicating N ∗
1 to be assortative.

Briefly summarizing the findings obtained for the first model, common sources

together with frequently employed time series analysis techniques used to infer

edges likely lead to indications of small-world and assortative network topologies
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Figure 4.5: Results obtained for the first model. Dependence of the assortativity
coefficient a∗ of N ∗

1 (symbol ▽) on a of N for networks with N = 1000 nodes and
a fixed degree sequence. The degree sequence was obtained from an Erdős-Rényi
network (N = 1000) with mean degree k̄ = 2 (left) and k̄ = 4 (right). Networks N
were generated from the Erdős-Rényi network by employing a rewiring scheme in-
creasing or decreasing degree-degree correlations. Lines are for eye-guidance only.

even in cases where the underlying interaction structure is neither small-world nor

assortative.

Second model. We consider a time series analysis technique which we assume to

be able to distinguish between interdependencies reflecting functional interactions

between different subsystems and interdependencies due to a common source. As

in the first model, we introduce for each sensor i an additional sensor i′ with zero

spatial distance between them. In the corresponding interaction network, node i′

is connected to all neighbours of node i. In contrast to the first model, i′ is not

connected to i since the considered time series analysis methods do not indicate a

functional interaction between i and i′. We derive (see section 7.2 for details) the

clustering coefficient C∗
i and the average shortest path length L∗ of N ∗

2 as functions

of Ci and L of N as

C∗
i = Ci

ki − 1

ki − 1
2

, (4.6)

L∗ = L1L + L2, (4.7)

where

L1 =

(

1− N0

2|S|

)−1

and L2 =

(

N − N0

|S| − 1
2N0

)

. (4.8)
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Figure 4.6: Same as figure 4.4 but for the second model. Left: Local clustering coeffi-
cient C∗

i of node i of N ∗
2 as a function of Ci of N for different node degrees ki. Con-

struction ofN ∗
2 is shown schematically in the inset. Nodes and edges included inN

and N ∗
2 are colored black, while nodes and edges only included in N ∗

2 are colored
gray. Right: Means of C̃(p) := C(p)/C(0) (open symbols) and L̃(p) := L(p)/L(0)
(filled symbols) for N depending on the rewiring probability p (lines are for eye-
guidance only). C̃∗(p) and L̃∗(p) denote the corresponding quantities for N ∗

2 . We
used the Watts-Strogatz scheme (N = 1000, k̄ = 4, 1000 realizations for each p)
to generate N networks (symbol △) and derived N ∗

2 networks (symbol ▽) by du-
plicating all nodes from N . Standard deviations for all quantities are smaller than
symbol size.

N0 denotes the number of nodes without neighbours in N , N0 = |{i | ki = 0, i =

1, . . . ,N}|. Note that L1 ∈ [1, 2], where the upper bound holds for networks without

edges (N0 = N) and the lower bound for networks in which each node possesses

at least one edge (N0 = 0) which, e.g., is the case for connected networks. Further-

more, L2 ∈ [0, 12 ], where the lower bound holds for networks without edges and is

approached by connected networks (L2 = N−1). The upper bound is approached

by the special case of networks with decreasing N0 and increasing number of con-

nected components and reached for N/2 connected components and N0 = 0. Taken

together, the impact of introducing additional sensors (i.e., nodes) on the average

shortest path length can be neglected in networks possessing edges, and L∗ ≈ L.

Since C∗
i ≤ Ci, the clustering coefficient C∗ is smaller than or equal to C depending

on the degrees of nodes in N . Note that the maximum possible reduction amounts

to C∗
i = 2

3Ci (ki = 2) only (cf. left panel of figure 4.6) and that C∗
i = Ci for ki ∈ {0, 1}

and that C∗
i → Ci for increasing ki. These three factors will likely lead to only a

slight decrease in C∗ in real world networks.
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To demonstrate the relationships derived above, we generate networks N according

to the Watts-Strogatz small-world model as before. C∗(p)/C∗(0) and L∗(p)/L∗(0)
of N ∗

2 as well as C(p)/C(0) and L(p)/L(0) of N are shown for different values of

the rewiring probability p in figure 4.6 (right panel). We observe C∗(p)/C∗(0) ≤
C(p)/C(0) and L∗(p)/L∗(0) ≈ L(p)/L(0) for all rewiring probabilities. Thus, net-

works N ∗
2 derived from random networks N (p = 1) would not be falsely classified

as small-world but as random network.

We continue and derive the assortativity coefficient a∗ of N ∗
2 as a function of a of

N (details can be found in section 7.2). Remarkably,

a∗ = a. (4.9)

Summarizing the findings obtained for our second model, common sources do

not affect the assortativity coefficient if edges are inferred using time series analysis

techniques which are capable of distinguishing between interdependencies due to

a common source and interdependencies reflecting functional interactions between

subsystems. Moreover, for such time series analysis methods, common sources do

not artificially increase the clustering coefficient. As a result, random networks are

not misclassified as small-world networks in the presence of common sources in

our model.

Taken together, our findings indicate that interaction networks are likely to be

classified as small-world networks even if the underlying interaction structure is

lattice-like (due to measurement uncertainties) or random (due to the presence of

common sources and the use of common time series analysis techniques). Moreover,

interaction networks are likely to display assortative mixing of node-degrees even

in cases in which the underlying interaction structure corresponds to a dissortative

or uncorrelated network (due to the presence of common sources and the use of

common time series analysis techniques).

4.3 Discussion

As demonstrated, properties of interaction networks derived from spatially ex-

tended systems can non-trivially be influenced by the spatial sampling of the dy-

namics. In the following, we discuss this influence in the context of the identification

of nodes, the identification of edges, and the choice of null models. Finally, we sug-
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gest research directions which can guide the development of methods taking into

account the issue of spatial sampling.

The identification of nodes is based on the assumption that the studied system

can be meaningfully decomposed into different parts. While this decomposition

can be straightforwardly achieved in many cases, e.g., when studying social net-

works, transportation networks, or the internet, it represents a challenging task

for the investigation of many spatially extended natural systems where either the

exact structural organization of the systems is not known or the dynamics are spa-

tial diffusion or field processes. The identification of nodes is often approached

by associating nodes with sensors supposed to capture the dynamics of different

subsystems, thereby translating the issue of node identification into the notoriously

non-trivial challenge of spatially sampling the dynamics. This includes the choice

of the number of sensors, the choice of a spatial sampling strategy (spatial arrange-

ment of sensors) as well as choosing various characteristics of the sensors (e.g.,

sensitivity). The spatial sampling implicitly leads to a coarse graining of the dy-

namics and determines a spatial scale at which the dynamics is studied. Together

with considering a spatially extended system as a network of interacting subsys-

tems, the spatial sampling imposes a spatial structure on the system, irrespective of

its actual organization, which may also underlie spatial restrictions.

We analyzed an exemplary recording of brain magnetic activity (cf. section 4.1)

and compared the derived interaction network with a network generated from a

spatial model which depended on the position of sensors in three-dimensional

Euclidean space only. The remarkable similarity of the clustering coefficient, the

average shortest path length, and the assortativity coefficient of both networks al-

ready suggested a strong influence of the spatial sampling on network properties.

Both networks would be classified as assortative small-world networks when com-

paring their properties with those of degree-preserving randomized networks. In

simulation studies (cf. section 4.2), we demonstrated that the spatial sampling can

introduce spatial correlations in the topology of derived interaction networks. We

studied experimental setups in which sensors capture the dynamics of the same

subsystem (a common source) leading to similarities in the recorded time series. In

order to infer edges, we considered typical time series analysis techniques which

cannot distinguish between signal interdependencies due to common sources and

interdependencies reflecting interacting different subsystems (see first model in sec-

tion 4.2.2). Nodes associated with sensors capturing the same dynamical subsystem
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lead to an increase of the clustering coefficient, because these nodes are highly in-

terconnected to each other due to the common source. It has been suggested to

manually correct the clustering coefficient for this influence [205], but such an ap-

proach relies on a priori knowledge about the exact spatial organization of the

system which may not be generally available. In our model, nodes capturing the

dynamics of the same subsystem possess the same degree and, in addition, are

connected to each other. Thus, common sources induce extra edges between nodes

of similar or equal degree which increase the assortativity coefficient of the net-

work. In our simulation studies, we observed that this can lead to a classification

of an interaction network as assortative network even in cases where the actual in-

teraction structure is dissortative. We found the average shortest path length also

to be influenced by common sources but to a much smaller extent than the clus-

tering coefficient and the assortativity coefficient. This may be partly attributed to

the fact that nodes reflecting the same subsystem possess the same neighbourhood,

are connected to each other, and thus share a common pattern of shortest paths.

However, the value of the average shortest path length was sensitively influenced

by uncertainties when estimating edges, as discussed in the following.

The identification of edges poses a challenge which is partly interrelated with the

issue of identifying nodes. Active probing for interactions between subsystems is

often not possible in natural dynamical systems. Instead, interactions are inferred

from observations by interpreting signal interdependencies estimated using time

series analysis techniques. The inference of edges is then influenced by several

factors which we discuss in the following and which may be associated with four

aspects, namely the issue of common sources, the issue of indirect interactions, the

issue of a limited reliability of edge estimation in the presence of noise and a limited

amount of empirical data, and the question of how to decide whether to translate

an estimated value of signal interdependence into an edge or not.

First, as discussed above, common sources lead to additional edges in derived

interaction networks since most time series analysis techniques cannot distinguish

between interdependencies due to common sources or interdependencies reflect-

ing interactions between different subsystems. Methods capable of unequivocally

distinguishing between both types of interdependencies could remedy the prob-

lem of an artificial increase of the clustering coefficient and the assortativity coef-

ficient as suggested by our simulation studies (see second model in section 4.2.2).

To our knowledge, only few time series analysis approaches have been proposed
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[200, 206–208] which address the problem of sampling common sources employ-

ing different strategies. Methods proposed in references [200, 207, 208] are based

on the assumption that a common source leads to instantaneous interdependencies

(with zero time lag) between time series. If these instantaneous interdependencies

could be separated from those associated with a non-zero time lag, this would lead

to techniques capturing interdependencies reflecting interactions between different

subsystems only. Another strategy is based on a priori knowledge of the system

and relies on the modeling of common sources [206]. All these methods have not

yet been thoroughly investigated in the context of deriving interaction networks

and, in addition, have not yet found wide application in field data studies. They

do not account for the second issue, namely the challenge of how to distinguish

between direct and indirect interactions. Although we did not explicitly study this

influencing factor, its effect on the topology of derived interaction networks can be

straightforwardly deduced: signal interdependencies between two different non-in-

teracting subsystems can arise due to a third subsystem which interacts with the

other two (see, e.g., references [209–212]). This will likely lead to the inference of

edges between neighbours of a node and thus to an artificial increase of the cluster-

ing coefficient of the derived interaction network. Third, a limited reliability of the

estimation of edges in the presence of unavoidable noise contributions and a limited

amount of available data likely leads to the spurious addition of, change in, or the

deletion of edges. We observed in our simulation studies (cf. section 4.2.1) the aver-

age shortest path length to depend sensitively on the actual edge structure which

is in agreement with a number of theoretical studies (see, e.g., [115, 116, 203, 204]).

Uncertainties of edge estimation will likely introduce spurious short-cuts in the net-

work decreasing the average shortest path length. While the average shortest path

length can significantly change when changing just a few edges, the clustering co-

efficient and the assortativity coefficient appeared to be more robust with respect to

uncertainties in edge estimation. Taken together, the artificial increase of the clus-

tering coefficient and the assortativity coefficient due to common sources and the

artificial decrease of the average shortest path length due to a limited reliability

when estimating edges will likely lead to interaction networks which are classified

as small-world networks with assortative edge structure. Our results show that this

can also be expected for derived interaction networks where the underlying inter-

action structure of the system has a lattice topology (cf. section 4.2.1). In addition,

if sensors are arranged in a lattice-like fashion and spatially neighboured sensors
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pick up activity from common sources, a lattice topology will naturally arise from

the measurement and the way how interaction networks are typically derived from

empirical data. The topology of such a network will likely be classified as small-

world given the sensitive dependence of the average shortest path length on noise

contributions. This sensitive dependence on the actual edge structure calls for the

development of improved time series analysis techniques and for the control of

the amount of spurious edges in the inferred network. This is related to the fourth

aspect, namely the question how to decide whether to translate an estimate of sig-

nal interdependence into an edge or not. In principle, this decision can be based

on significance testing against some appropriate null model. Multiple testing tech-

niques have been developed to control the probability of false positives (spurious

edges) in networks derived from empirical data [151]. While methods controlling

the familywise error (i.e., the probability of detecting spurious edges among all

possible pairs of nodes) have been developed over the years but are known to come

along with a high risk of false negatives (spuriously missing edges) [213], methods

controlling the false-discovery rate (i.e., the probability of false positives among

all inferred edges) appear to be promising approaches with a lower risk of false

negatives [151, 202, 214]. However, limiting the probability of erroneously adding,

changing, or deleting just a few edges—needed for a reliable estimate of the average

shortest path length—calls for small probabilities of both, detecting false positives

as well as missing false negatives, which represents a challenging task for currently

available multiple testing methods.

Network null models can be used to assess the significance of properties found

in interaction networks derived from empirical data. Null models usually imple-

ment some default position which is expected to be matched in the trivial case

and which needs to be rejected in order to establish significance of findings. The

spatial sampling of the dynamics of a spatially extended system leaves an imprint

in the topology of derived interaction networks, but the most frequently employed

network null models in field data studies, Erdős-Rényi networks and degree-pre-

serving randomized networks, do not account for this imprint. As a result, many

findings of small-world topologies in interaction networks of spatially extended

dynamical systems might be attributed to the use of null models not taking into ac-

count an artificially increased clustering coefficient due to the spatial sampling. We

even observed that a comparison of properties with those of random networks can

falsely indicate an actual lattice to possess a small-world topology (cf. section 4.2.1)
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according to a widely employed classification scheme. This is because a comparison

with some null model can only provide clues as to how much the topology differs

from the one of the null model (in this case a random network). A comparison with

lattices has been proposed [215] but has not yet been frequently employed in field

studies. Indeed, using lattices as null models will likely indicate derived interaction

networks to possess small-world topologies since such a null model does not take

into account uncertainties of estimating edges which can significantly decrease the

average shortest path length. In addition, one has to decide upon the dimensional-

ity and construction of lattices, which both can decisively affect the result of such

a comparison. Another result of using Erdős-Rényi networks or degree-preserving

randomized networks as null models is the finding of interaction networks which

are assortative. Both null models describe random network ensembles which are,

by definition, neither assortative nor dissortative. Our results indicate, however,

that the spatial sampling likely leads to the inference of interaction networks which

are assortative, irrespective of the underlying interaction network structure. Taken

together, our finding call for the development of refined null models taking into

account the effects of spatial sampling on the network topology.

In this chapter, we restricted our investigations to the clustering coefficient, the

average shortest path length, and the assortativity coefficient. We believe that other

network characteristics (for instance centrality measures or community structures)

can also be strongly influenced by the spatial sampling. A steady growing number

of studies employing such measures call for an investigation of potential influences

of the spatial sampling. Different research directions appear promising to approach

the issue of spatial sampling. These directions may be attributed to two main strate-

gies. The first strategy aims at an improved identification of the actual structural

organization of the dynamical system and can help to advise the design of appropri-

ate sensor placement schemes. While this approach is currently being pursued, for

instance, in the neurosciences [162], it appears to be appropriate for those systems

in which subsystems can be unequivocally identified. If the latter cannot be mean-

ingfully achieved (which might be the case for spatial diffusion or field processes),

a representation of the dynamics of such systems by an interaction network will al-

ways constitute a coarse graining of the dynamics. The value of such a description

may vary and will depend on the application and aim of the study. Influences of

the coarse graining scheme and the spatial scale on analysis results have been stud-

ied under different notions in various contexts among which we mention spatial
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analysis of areal data (see references [216, 217] and references therein), climate sci-

ence (e.g. reference [218]), or in interaction networks derived from fMRI data [219].

The second strategy aims at improving existing and developing novel time series

and network analysis techniques [29, 200, 208, 215, 220, 221] as well as null models

which take into account the spatial sampling of the system. Such developments

may benefit from computational network analyses (see, e.g., [222–224]). Among

the many possible directions we mention spatial null models [28, 225], data-driven

node-merging strategies (which represent coarse graining schemes on the network

level) [29, 221], the development of network characteristics that are invariant under

influences of spatial sampling [226], and the development of time series analysis

techniques which aim at distinguishing between direct and indirect interactions (cf.

chapter 8.3 in [133] and references [210–212, 227–229]). These strategies can help

to disentangle network characteristics reflecting true functional interactions from

those spuriously arising from the spatial sampling of the dynamics.
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5 Influence of temporal sampling

As was demonstrated in the last chapter, the spatial sampling of a system can in-

troduce non-trivial structure in the topology of interaction networks. This structure

typically does not reflect properties of the studied dynamics but properties induced

by the sampling scheme superimposed on the actual (and often unknown) spatial

organization of the system. Effects induced by spatial sampling will probably be of

less importance if properties of interaction networks are to be compared across dif-

ferent measurements during which the spatial sampling scheme does not change.

A common scenario would be a sliding window analysis of long-lasting multivari-

ate time series, where relative changes of network properties across windows are

of interest only (see, e.g., references [59, 63, 164, 230, 231]).

Let us assume that we could spatially sample a dynamical system under study

in a perfect way. In addition, let noise contributions be negligible. Will interaction

networks solely reflect mutual relationships between interacting dynamical subsys-

tems in such a situation? We will now focus on two aspects connected to the tem-

poral sampling of the dynamics. First, time series considered in field studies are

inevitably finite which might introduce spurious properties in derived interaction

networks. This issue aggravates in the light of a growing interest in time-resolved

network analyses, where the length of time series has to be chosen small enough

in order to allow for a high temporal resolution. Thus we will study possible influ-

ences of the length of time series on properties of interaction networks. Second, the

dynamics of subsystems may act on different time scales which might, in addition,

also change over time. Depending on the time scales captured by the recording,

typical estimators of signal interdependence might show a varying limited reliabil-

ity, which in turn might affect properties of interaction networks. Assessing time

scales in the data can be achieved, for example, in the time domain (auto-correla-

tion function) or in the frequency domain (power spectral density estimates)1. Here

we choose the latter.

This chapter is organized as follows: the first part (section 5.1) is devoted to the

theoretical and numerical study of widely used network characteristics (clustering

coefficient, average shortest path length, assortativity coefficient, degree distribu-

tion, edge density, connectedness) in dependence on the length and on the spectral

1 Both are closely interrelated by the Wiener-Khinchin theorem.
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content2 of time series. In the light of interaction networks being frequently re-

ported in field studies to possess a small-world topology and, if assessed, to be

assortative, we pay special attention to these aspects in our simulation studies. We

introduce a model which allows us to generate time series from which we derive

interaction networks. In this model, we implement the null hypothesis that time se-

ries are observed from independent stochastic processes. Interaction networks are

derived by thresholding values of estimators of signal interdependence (absolute

value of the correlation coefficient and the maximum cross correlation; see sec-

tion 2.2.1). In order to facilitate the presentation of results and to keep the model

as simple as possible, we assume all time series from which an interaction net-

work is derived to possess the same number of sample points (a requirement met

in most studies) and, on average, the same frequency content. The last require-

ment, which we call homogeneity assumption, will be relaxed in the second part of

this chapter (section 5.2). There we study, in a time-resolved manner, multichannel

electroencephalographic recordings of 100 epileptic seizures, which are known for

their complex spatial and temporal dynamics. We investigate whether dependen-

cies identified in the simulation studies can also be observed in empirical data. In

addition, we propose a framework for generating random networks tailored to the

way how interaction networks are derived from multivariate time series. Using this

approach, we demonstrate how properties of the interdependence structure related

to the dynamics can be distinguished from those spuriously induced by the finite

length of time series and their frequency content. We end this chapter (section 5.3)

with a brief summary and discussion of results.

5.1 Simulation studies

We study networks derived from random time series of adjustable length T and

with adjustable spectral contents. Let zi, i ∈ {1, . . . ,N}, be time series whose en-

tries zi(t) are independently drawn from a uniform probability distribution U on

the interval (0, 1). Choosing different values of T and inferring networks from mul-

tivariate time series zi enables us to study the influence of the length of time series

on properties of interaction networks. To study the influence of different spectral

contents of time series on properties of derived interaction networks, we add the

2 The spectral content of a time series is determined by power spectral density estimates. We will
use the notions spectral content and frequency content interchangeably in the following.
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possibility to low-pass filter the time series and define

xi,M,T(t) := M−1
t+M−1

∑
l=t

zi(l), zi(l) ∼ U , (5.1)

where 1 ≤ M ≪ T and t ∈ {1 . . . , T}. M denotes the size of the moving average

which controls the frequency content of the time series. Choosing large values of

M results in time series with a high relative amount of power in low frequencies.

Note that xi,1,T(t) = zi(t)∀t, and that xi,M,T and xj,M,T are independent for i 6= j

by construction. When considering a particular realization r out of a total of R

realizations of time series, it is denoted as x
(r)
i,M,T, r ∈ {1, . . . , R}.

For all pairs of time series xi,M,T and xj,M,T, signal interdependencies are esti-

mated by determining either the absolute value of the correlation coefficient ρcij or

the maximum value of the absolute cross correlation ρmij (see section 2.2.1). We de-

rive interaction networks from matrices ρc or ρm by thresholding with predefined

edge density ǫ (cf. section 2.2.2).

Most simulation studies we carry out follow a similar scheme: first, we study

the influence of T on network properties by considering time series xi,1,T for dif-

ferent T. Second, in order to study the influence of different spectral contents on

network properties, we consider time series xi,M,T′ with T′ = 500. We choose this

value of T′ because we want to investigate time series of short length as frequently

considered in field studies. In both cases, we determine estimates of network prop-

erties by calculating the average value of the considered network property obtained

in R realizations of interaction networks. These networks are derived from R re-

alizations of xi,M,T for fixed values of ǫ, M, T, and network size N. The obtained

estimates are denoted by a hat-symbol and may depend on the chosen parameters,

e.g., L̂(ǫ,M, T). We omit the notation of the network size N because we choose

N = 100 for all but one simulation study in the following. To keep the presentation

of results concise and clear, we focus on results obtained using ρcij and only report

results obtained using ρmij if these results are qualitatively different.

5.1.1 Impact on clustering coefficient and edge density

This section is organized in three parts. First, we study the influence of the length T

of time series on the edge density ǫ and clustering coefficient C of derived interac-

tion networks. Second, we investigate a potential influence of the frequency content
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of time series on the aforementioned network properties. Third, in the light of the

findings obtained in the previous two parts, we trace back observed dependencies

of network properties to properties of the time series generated by our model.

Since the time series defined by equation (5.1) are independent, the question

arises whether a derived interaction network, which is supposed to reflect interde-

pendencies between time series, does possess any edges. To gain some intuition,

we consider R realizations of two time series x
(r)
i,1,T and x

(r)
j,1,T, r ∈ {1, . . . , R}, i 6= j.

To simplify notation, let

ρ
(r)
ij,1,T :=

∣

∣

∣
corr(x

(r)
i,1,T, x

(r)
j,1,T)

∣

∣

∣
= ρc(x

(r)
i,1,T, x

(r)
j,1,T) (5.2)

denote the absolute value of the empirical correlation coefficient obtained for time

series x
(r)
i,1,T and x

(r)
j,1,T. Since x

(r)
i,1,T and x

(r)
j,1,T are independent and the correlation coef-

ficient is symmetric, values of the correlation coefficient will be distributed around

the mean value 0. The variance of this distribution will be higher the lower we

choose the length T of time series. Let us randomly pick one value ρ
(r)
ij,1,T out of the

R values. Since almost surely ρ
(r)
ij,1,T > 0, there are thresholds θ with 0 < θ < ρ

(r)
ij,1,T

for which we would establish an edge. Applying this argument to a number N

of time series, we can find a threshold for which the resulting network possesses

edges and, as a result, ǫ > 0. Moreover, for a fixed value of θ > 0, we expect ǫ to be

larger the lower we choose T. For a constant value of ǫ, we hypothesize that θ will

be higher the lower T.

To explore this hypothesis, we derive an approximation ǫal for the edge density

by taking the asymptotic limit (T → ∞, see section 7.3 Lemma 2 for details),

ǫal(θ, T) = 2Φ(−
√
Tθ), (5.3)

where Φ denotes the cumulative distribution function of a standard normal dis-

tribution. The dependence of ǫal on θ is shown in the top left panel of figure 5.1

for selected values of T. As hypothesized, the edge density indeed decreases for

increasing θ (while keeping T constant) and, for a constant value of θ, the edge

density is higher the lower T.

Since we took the asymptotic limit, the validity of equation (5.3) might be limited

to the case of large values of T. Thus we numerically study the dependence of

the edge density on θ for small values of T, which are relevant in field studies.

Consider R = 106 values of ρ
(r)
12,M,T obtained from R realizations of two time series
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Figure 5.1: Top row: Dependence of edge density ǫ̂(θ,M, T) (left) and of clustering
coefficient Ĉ(θ,M, T) (right) on the threshold θ for different values of the size M
of the moving average and of the length T of time series. Values of edge density
ǫal(θ, T) obtained by taking the asymptotic limit (equation (5.3)) are shown as lines
(top left). Bottom left: Dependence of the ratio γ̂(ǫ,M, T) = ĈM,T(ǫ)/CER(ǫ) on
edge density ǫ. Note, that we omitted values of estimated quantities obtained for

θ ∈ {θ : (R−1 ∑r H
(r)
12,M,T(θ)H

(r)
13,M,T(θ)) < 10−3} since the accuracy of the statistics

is no longer guaranteed. Bottom right: Dependence of effective length Teff as deter-
mined by equation (5.10) (black line) and its numerical estimate T̂eff (red markers)
on M.
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x
(r)
i,M,T, i ∈ {1, 2}, r ∈ {1, . . . , R}. We estimate the edge density ǫ̂(θ,M, T) by

ǫ̂(θ,M, T) := R−1 ∑
r

H
(r)
12,M,T(θ), (5.4)

where

H
(r)
ij,M,T(θ) :=







1 , ρ
(r)
ij,M,T > θ

0 , else.
(5.5)

ǫ̂(θ,M, T) is the numerically determined probability that there is an edge between

two nodes given θ, M, and T. We mention that ǫ̂(θ,M, T) does not depend on N.

As shown in the top left panel of figure 5.1, ǫ̂(θ, 1, T) matches well ǫal(θ, T) except

for small values of T (T < 30).

We continue by studying the clustering coefficient for our model networks. For

a chosen length of time series, we expect to observe the clustering coefficient to

decrease with increasing the threshold because the edge density becomes smaller.

Consider R realizations of three time series x
(r)
i,M,T, i ∈ {1, 2, 3}, r ∈ {1, . . . , R}. We

estimate the clustering coefficient by

Ĉ(θ,M, T) :=
∑r H

(r)
12,M,T(θ)H

(r)
13,M,T(θ)H

(r)
23,M,T(θ)

∑r H
(r)
12,M,T(θ)H

(r)
13,M,T(θ)

. (5.6)

Indeed, for a constant value of T, the top right panel of figure 5.1 shows that the

clustering coefficient Ĉ(θ, 1, T) is decreasing in θ. For constant values of θ, we ob-

serve Ĉ(θ, 1, T) to be higher the lower T.

Comparing the clustering coefficient Ĉ(θ,M, T) of our model networks with the

clustering coefficient CER(ǫ) obtained for Erdős-Rényi networks requires our esti-

mate in equation (5.6) to be rewritten. Using equation (5.4), we define

ĈM,T(ǫ) := Ĉ(θ̂(ǫ,M, T),M, T) (5.7)

with

θ̂(ǫ,M, T) := inf{θ : ǫ̂(θ,M, T) ≥ ǫ}. (5.8)

This enables us to determine the ratio γ̂(ǫ,M, T) := ĈM,T(ǫ)/CER(ǫ) (cf. section

2.1.2). We observe γ̂(ǫ, 1, T) to be higher the lower ǫ and T (lower left panel of fig-

ure 5.1). For a range of values of T and ǫ , γ̂(ǫ, 1, T) ≫ 1. These findings suggest that

there is a relevant dependence between the three random variables ρij,M,T, ρil,M,T,
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and ρjl,M,T for small values of T and different indices i, j, and l. This dependence

vanishes for T → ∞ and constant edge density, and C converges to CER [232].

To investigate the influence of the spectral content of time series on the edge

density and the clustering coefficient, we repeat the steps of analysis using time

series xi,M,T′ for which we keep T′ = 500 constant and choose different values

of M. The findings shown in figure 5.1 (top panels, lower left panel) demonstrate

that the higher the amount of low frequency contributions in the time series (large

values of M) the higher ǫ̂(θ,M, T′) and Ĉ(θ,M, T′) (for constant θ > 0), and the

higher γ̂(ǫ,M, T′) (for constant ǫ ≪ 1). We observe γ̂(ǫ,M, T′) ≫ 1 which is higher

the smaller ǫ and the higher M, underlining the difference between our networks

and Erdős-Rényi networks.

Summarizing the findings obtained so far, the similar dependence of ǫ̂, Ĉ, and γ̂

on T and M becomes apparent. We hypothesize that this similarity can be traced

back to properties of time series, and, more specifically, to similar variances of ρij,1,T

and ρij,M,T′. We aim at determining a value of T = Teff, the effective length of time

series, which leads to Var(ρij,1,Teff) ≈ Var(ρij,M,T′). By using the asymptotic variance

of the limit distributions of T → ∞ (see section 7.3, Lemma 1 for details), we obtain

Var(ρij,M,T) ≈ g(M)Var(ρij,1,T), with g(M) =
2

3
M +

1

3M
, (5.9)

which allows us to define the effective length of time series,

Teff(M) :=
T′

g(M)
. (5.10)

Teff(M) is shown in the lower right panel of figure 5.1 and is decreasing in M.

Since equation (5.10) was obtained by exploiting the asymptotic limit (T → ∞), we

numerically study the case of small values of T as follows: we determine Ĉ(θ, 1, T)

for different values of θ (like before) and for T ∈ {3, . . . , T′}. In addition, for some

chosen values of M, we determine Ĉ(θ,M, T′). Finally, for each value of M, we

determine a value T for which Ĉ(θ, 1, T) and Ĉ(θ,M, T′) curves best match in a

least-squares sense. This value of T which is denoted as T̂eff is shown in figure 5.1

(lower right panel). Indeed, T̂eff and Teff are in good agreement with a maximum

deviation of |T̂eff − Teff| ≈ 2. Thus, equation (5.10) seems to hold also for small

length T of time series. In figure 5.1, values of M and T for quantities ǫ̂, Ĉ, and

γ̂ have been chosen according to equation (5.10). Our above-mentioned hypothesis



66 5 Influence of temporal sampling

is supported by the remarkable similarity between dependencies of ǫ̂ and Ĉ on θ,

and γ̂ on ǫ for pairs of values (M, T′) and those dependencies obtained for pairs of

values (1, Teff).

In summary, the clustering coefficient of networks derived from random time se-

ries with a large amount of low frequency contributions or with a small number

of sample points is higher than the one obtained for corresponding Erdős-Rényi

networks—independently of the network size (cf. equation (5.6)). We observed this

difference to become more pronounced for lower edge densities, lower length of

time series, or, likewise, for a larger amount of low frequency contributions. These

findings reveal fundamentally different properties on the level of the network con-

struction: in Erdős-Rényi networks, each possible edge is (1) equally likely and (2)

independently chosen to become an edge. While property (1) is fulfilled in our

model networks, property (2) is not, which becomes apparent in the clustering co-

efficients differing from those of Erdős-Rényi networks.

5.1.2 Impact on average shortest path length

To investigate the influence of the length and frequency content of time series on

the average shortest path length of derived networks, we pursue a similar but dif-

ferent simulation approach. Consider an ensemble of R = 100 networks. Each net-

work r (r ∈ {1, . . . , R}) possesses the same number N of nodes and is derived by

thresholding ρ
(r)
ij,M,T (i, j ∈ {1, . . . ,N}) using a fixed edge density. We set N = 100

but also obtained qualitatively similar results for small network sizes (N = 50) as

well as for larger network sizes (N = 500). Let L(r)(ǫ,M, T) denote the average

shortest path length of network r derived from ρ
(r)
ij,M,T, and let L

(r)
ER(ǫ) denote the

average shortest path length obtained from the r-th Erdős-Rényi network of size N

and edge density ǫ. Mean values over realizations are denoted as L̂(ǫ,M, T) and

L̂ER(ǫ), respectively. In order to compare the average shortest path length of our

networks with the ones obtained for corresponding ER networks, we determine

λ̂(ǫ,M, T) := L̂(ǫ,M, T)/L̂ER(ǫ) (cf. section 2.1.2). As in the previous section, we

consider L̂(ǫ,M, T′) (λ̂(ǫ,M, T′)) for different values of M and fixed T′ = 500 as

well as L̂(ǫ, 1, T) (λ̂(ǫ, 1, T)) for different values of T and fixed M = 1.

The dependence of L̂ and λ̂ on ǫ is shown in figure 5.2 for different values of T

and M. L̂ and λ̂ are decreasing in ǫ since additional edges reduce the average short-

est path length in our networks as well as in ER networks. Remarkably, we observe

similar dependencies as in the previous section: L̂(ǫ, 1, Teff) ≈ L̂(ǫ,M, T′) which in-



5.1 Simulation studies 67

0.05 0.1 0.15 0.2 0.25 0.3
1.6

1.8

2

2.2

2.4

2.6

2.8

3

ǫ

L̂(ǫ,1,500)

L̂(ǫ,5,500)

L̂(ǫ,1,148)

L̂(ǫ,30,500)

L̂(ǫ,1,25)

L̂(ǫ,100,500)

L̂(ǫ,1,7)

0.05 0.1 0.15 0.2 0.25 0.3
0.95

1

1.05

1.1

1.15

1.2

1.25

ǫ

λ̂(ǫ,1,500)

λ̂(ǫ,5,500)

λ̂(ǫ,1,148)

λ̂(ǫ,30,500)

λ̂(ǫ,1,25)

λ̂(ǫ,100,500)

λ̂(ǫ,1,7)

Figure 5.2: Dependence of the average shortest path length L̂(ǫ,M, T) (left) and
of the ratio λ̂(ǫ,M, T) = L̂(ǫ, 1, T)/LER(ǫ) (right) on edge density ǫ for different
values of the size M of the moving average and of the length T of time series. Lines
are for eye-guidance only.

dicates that similar variances of the time series lead to similar average shortest path

lengths in our model networks. Differences between our model networks and ER

networks as characterized by λ̂ become more pronounced the smaller ǫ, the smaller

T, or the larger the amount of low frequency contributions (as parametrized by M).

For typical edge densities reported in field studies (ǫ ≈ 0.1), these differences are

not as pronounced (λ̂ ≤ 1.2, cf. figure 5.2 right) as for the clustering coefficient

(γ̂ > 2 for selected values of M and T, cf. figure 5.1 bottom left).

5.1.3 Impact on assortativity

To assess the influence of the finite length and the spectral content of time se-

ries on the assortativity of derived networks, we adopt the simulation scheme

of the last section. Consider R = 1000 realizations of networks. Each network

r ∈ {1, . . . , R} possesses N = 100 nodes and is derived by thresholding the val-

ues ρ
(r)
ij,M,T, i, j ∈ {1, . . . ,N}, such that the network has a prespecified edge density

ǫ. Let a(r)(ǫ,M, T) denote the numerically determined assortativity coefficient of

network r. We determine â(ǫ,M, T) by averaging over the values obtained for the R

realizations, â(ǫ,M, T) = R−1 ∑r a
(r)(ǫ,M, T). To assess the influence of the spectral

content of time series on the assortativity coefficient, we determine â(ǫ,M, T′) for a
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â(ǫ,1,500)
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â(ǫ,1,25)
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Figure 5.3: Left panel: Dependence of the assortativity coefficient â(ǫ,M, T) on the
edge density ǫ for different values of the size M of the moving average and of
the length T of time series. Right panel: Dependence of the assortativity coefficient
â(ǫ,M, 500) and â(ǫ, 1, Teff(M)) on the size M of the moving average for a selected
value of ǫ = 0.1. Lines are for eye-guidance only.

fixed value of T′ = 500 but different values of M and ǫ. On the other hand, in order

to explore a potential influence of the finite length of time series on the assortativ-

ity coefficient, we determine â(ǫ, 1, T) for a fixed value of M = 1 but for different

values of T and ǫ. Finally we mention that values of T and M are chosen according

to equation (5.10) such that for each value of M we obtain a corresponding value of

T = Teff(M).

In figure 5.3 (left panel), we show the dependence â(ǫ,M, T′) for selected values

of M and the dependence of â(ǫ, 1, T) for selected values of T on ǫ. For constant val-

ues of ǫ, we observe the assortativity coefficient to be higher the larger the amount

of low frequency components (larger values of M) or the smaller the length of time

series. â approaches values around 0 as ǫ increases. Remarkably, for a range of val-

ues of ǫ, M, and T, the assortativity coefficient clearly indicates our networks to be

assortative. Values of â(ǫ, 1, 500) are slightly smaller than zero indicating a slight

dissortative configuration of the networks. This dissortative configuration is also

reflected in the assortativity coefficient âER of corresponding Erdős-Rényi networks

(âER(ǫ) ≈ â(ǫ, 1, 500), data not shown) and is related to the finite size of studied

networks [1]: we observed â(ǫ, 1, 500) (as well as âER(ǫ)) to further decrease in the

negative regime for smaller network sizes, N ≪ 100, and to approach the value 0

for higher values of N.
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Figure 5.3 (left panel) also reveals that â(ǫ,M, T′) and â(ǫ, 1, T) are approximately

equal for large values of T = Teff and small M but start to diverge for larger values

of M and smaller values of T. To gain more insight into this issue, we show in the

right panel of figure 5.3 the dependence of â(ǫ,M, T′) and â(ǫ, 1, Teff(M)) on M for

a fixed value of ǫ = 0.1. We observe that â(ǫ,M, T′) ≈ â(ǫ, 1, Teff(M)) for M < 80

and that both quantities become different for larger values of M or, equivalently,

for smaller values of T. We suspect this finding to reflect that equation (5.10), which

has been derived for T → ∞, does not hold any more for very low length of time

series.

5.1.4 Impact on connectedness and degree distribution

We continue with investigating the influence of the finite size and the frequency

content of time series on the number of connected components Nc of interaction

networks. As pointed out in section 2.1.1, Nc can affect the average shortest path

length and determines the number of clusters if a cluster is defined as a connected

component. Following the same steps as in the previous section, we derive R in-

teraction networks from thresholding ρ
(r)
ij,M,T, i, j ∈ {1, . . . ,N}, r ∈ {1, . . . , R},N =

100, R = 100 such that the networks possess a prespecified edge density ǫ. We ob-

tain N̂c(ǫ,M, T) as the average over the values N
(r)
c (ǫ,M, T) determined from the

R interaction networks. In addition, for different values of ǫ, we generate R Erdős-

Rényi networks of size N = 100, and we determine N̂c,ER(ǫ) as the average over

N
(r)
c,ER(ǫ) values.

For different values of T and a fixed value of M = 1, the dependence of N̂c(ǫ, 1, T)

on ǫ is shown in the right panel of figure 5.4. N̂c(ǫ, 1, T) ≈ 1 for all values of

ǫ considered here. This finding is in agreement with the number of connected

components observed for corresponding ER networks, N̂c,ER(ǫ) ≈ 1 for ǫ > 0.05,

which can be expected due to the connectivity condition ǫ ≫ lnN/(N − 1) ≈ 0.05

(N = 100) which holds for ER networks (cf. section 2.1.2). The left panel of figure 5.4

shows Nc(ǫ,M, T′) for different values of M and a fixed value of T′ = 500. Remark-

ably, for low edge densities (ǫ < 0.25), the number of connected components is

higher the larger the amount of low frequency contributions (as parametrized by

M) indicating a stark difference between our networks and ER networks. In ad-

dition, Nc(ǫ,M, T′) is larger than Nc(ǫ, 1, Teff(M)). This finding points towards a

difference between our networks derived for different length of time series and
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Figure 5.4: Dependence of the number of connected components Nc(ǫ,M, T) on
the edge density ǫ for different values of the size M of the moving average (left,
for T = 500) and of the length T of time series (right, for M = 1). Lines are for
eye-guidance only.

those derived for different frequency content of time series despite the variances of

the underlying time series being approximately equal.

We continue by numerically estimating the connectivity condition of our net-

works, namely the minimum edge density ǫ∗ or, equivalently, the minimum mean

degree, k∗, for which a network of a given size N is connected. For a given value of

N, we determine the minimummean degree k∗ of our networks as follows: consider

time series x
(r)
i,M,T with R = 500 and i, j ∈ {1, . . . ,N}. In a first step, we derive R

networks from the time series using ǫ = 0 and we determine the fraction of the net-

works which are connected (for ǫ = 0 this fraction will be zero). We repeat this step

with an increased edge density (such that the derived networks possess one more

edge than in the previous step) and again determine the fraction of the networks

which are connected. The iteration is stopped as soon as the fraction reaches 95%,

and the edge density at this step is denoted as ǫ∗(M, T). ǫ̂∗(M, T) and k̂∗(M, T) are

determined by averaging the values obtained from 5 runs of this simulation3 . As in

the previous sections, we choose different values of M and constant T = T′ to study

3 The computation became feasible by exploiting the fact that the number of possible values of the
edge density (or mean degree) is finite for finite networks. By making use of nested intervals,
the minimum edge density or mean degree for which a network is connected was determined
efficiently.
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Figure 5.5: Dependence of the minimum mean degree k̂∗(M, T) (left) and minimum
edge density ǫ̂∗(M, T) (right) on the number of nodes N for different values of the
size M of the moving average and of the length T of time series.

the influence of the frequency content as well as different values of T and constant

M = 1 to investigate the influence of the length of time series on the connectedness

of networks. In addition, we numerically determine the minimum edge density ǫ̂∗ER
and minimum mean degree k̂∗ER of ER networks by following the same steps as for

the calculation of ǫ̂∗(M, T) and k̂∗(M, T) but with one difference: instead of deriv-

ing networks from time series, we generate ER networks with prespecified numbers

of edges.

The dependence of ǫ̂∗(M, T) and k̂∗(M, T) on N is shown in figure 5.5. Consid-

ering the connectivity condition of ER networks, we expect the minimum degrees

to take on higher values and the minimum edge density to take on lower values

as N increases. Indeed, we observe ǫ̂∗(1, T) and k̂∗(1, T) to agree well with the

minimum edge density ǫ̂∗ER and minimum mean degree k̂∗ER numerically obtained

for ER networks, respectively (maximum differences: |ǫ̂∗(1, 500) − ǫ̂∗ER| < 10−2,

|k̂∗(1, 500) − k̂∗ER| < 0.3). Just for short lengths of time series (T < 10), we observe

slight differences between ER networks and our model networks in the minimum

mean degree (cf. figure 5.5 left panel, |k̂∗(1, 7) − k̂∗ER| < 4.6). For M > 5, we ob-

serve a strong deviation from ǫ̂∗(M, T′) (k̂∗(M, T′) ) from ǫ̂∗(1, T) (k̂∗(1, T)): for a

given N, the minimum mean degree and the minimum edge density is higher the

larger M. In addition, while the minimum mean degree for our networks derived
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Figure 5.6: (a-c) Degree distributions p̂k(ǫ,M, T) estimated for R = 1000 realiza-
tions of networks derived from time series xi,M,T (N = 100) via thresholding using
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Stars indicate significant differences in comparison to κL(1) (Bonferroni corrected
pair-wise Wilcoxon rank sum tests for equal medians, p < 0.01). Lines are for eye-
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for M = 1 and larger values of T appears to scale logarithmically with N (as does

the minimum mean degree for ER networks), the minimum mean degree of our

networks derived from time series with a high amount of low frequency contribu-

tions grows faster than lnN. Taken together, larger edge densities (or, equivalently,

mean degrees) than the ones for ER networks are necessary to assure connected-

ness of networks derived from time series with a large amount of low frequency

contributions.

To gain a better understanding of the differences observed between networks

derived from time series of small length and those obtained from time series with

a large amount of low frequency components, we investigate degree probability

distributions. We define the estimated probability of a node to possess a degree k

as

p̂k :=
|{i(r) : k(r)

i = k, r ∈ {1, . . . , R}}|
(NR)

. (5.11)

With p̂k(ǫ,M, T) we denote the estimated degree distribution for networks which

are derived from xi,M,T via thresholding with an edge density ǫ. In figure 5.6 (a–c),

we show estimated degree distributions obtained for different values of ǫ (N = 100,

R = 100) and, for comparison, different degree distributions of ER networks. We

recall (cf. equation (2.9) in section 2.1.2) that the degree distribution pk,N,ER of ER

networks follows a Binomial distribution,

pk,N,ER(ǫ) =

(

N − 1

k

)

ǫk(1− ǫ)N−k−1. (5.12)

As expected, the degree distributions shift towards higher values the larger ǫ since

k̄ ∼ ǫ. Remarkably, for different values of T but constant M = 1, we observe

p̂k(ǫ, 1, T) to coincide with the values pk,N,ER obtained for corresponding ER net-

works (within the errors to be expected due to the limited sample size). In contrast,

for constant T′ = 500 and different values of M > 1, we observe striking differences

between p̂k(ǫ,M, T′) and pk,N,ER. These differences become larger the higher M. In

particular, the probability of nodes with zero degree (k = 0) increases for decreas-

ing edge density and higher values of M. With the number of single nodes (each

of which is considered as a connected component, cf. section 2.1), the number of

connected components observed in the networks increases.

Given the results obtained so far, we hypothesize that differences in the degree

distributions as well as in the number of connected components may be related
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to differences between the spectral content of time series x
(r)
i,M,T′ for M > 1, i ∈

{1, . . . ,N}, N = 100. Specifically, a node i with a large degree ki might be associated

with a time series x
(r)
i,M,T′ whose amount of low frequency contributions is larger

than most of the other time series x
(r)
j,M,T, j ∈ {1, . . . ,N} \ i. To investigate this

hypothesis, we generate R realizations of time series x
(r)
i,M,T′ and determine their

periodograms P̂
(r)
i,M( f ), f ∈ {0, . . . , fNyq}, via Fourier transform [233]. fNyq denotes

the Nyquist frequency. We normalize all periodograms such that ∑ f P̂
(r)
i,M( f ) = 1.

From the same time series, we derive networks using ǫ = 0.1 and determine the

degree of nodes, k
(r)
i . For some chosen value of f ′ ∈ {0, . . . , fNyq}, let us define

P̂
L,(r)
i,M =

f ′−1

∑
f=0

P̂
(r)
i,M( f ), P̂

U,(r)
i,M =

fNyq

∑
f ′

P̂
(r)
i,M( f ), (5.13)

where P̂
L,(r)
i,M (P̂

U,(r)
i,M ) quantifies the total power in the lower (upper) frequency range.

In addition, for each realization r, let

κ
(r)
L = corr

(

k(r), P̂
L,(r)
M

)

, κ
(r)
U = corr

(

k(r), P̂
U,(r)
M

)

(5.14)

denote the empirical correlation coefficients between the degrees and the corre-

sponding total amount of power in the lower and upper frequency range, respec-

tively. We determine mean values over realizations by κL(M) = R−1 ∑r κ
(r)
L and

κU(M) = R−1 ∑r κ
(r)
U . Note that κL(M) = −κU(M) by construction. f ′ = f ′(M)

is chosen such that 40% of the total power of the filter function associated with

the moving average [233] is contained in the frequency range [0, f ′]. We mention

that the exact choice of f ′ does not qualitatively change our results as long as

0 < f ′ ≪ fNyq holds.

In figure 5.6 (d), we show the empirical correlation between the degrees and

the amount of low frequency contributions, κL(M), for different values of M. For

M = 1, we do not observe a significant correlation, i.e., κL(1) ≈ 0. For M > 1,

however, the degrees of nodes are higher the larger (the lower) the amount of low

(high) frequency contributions. This correlation becomes stronger for larger M. This

finding supports our hypothesis that differences in the degree distributions can in-

deed be related to different spectral contents of time series. In addition, considering

the degree of a node as a way to quantify the centrality [6, 84, 234] which is a lo-

cal property of a network, our results highlight how univariate properties of time

series (spectral content) may be reflected in local properties of networks (degree).
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Based on the simulation studies, four main conclusions can be drawn. First, the

clustering coefficient of our networks derived from independent random time series

is typically larger than those of corresponding ER networks. The clustering coeffi-

cient is higher the larger the amount of low frequency contributions, the smaller

the length of time series, and the smaller the edge density (cf. figure 5.1). Second,

like the clustering coefficient, the average shortest path length of our networks is

larger the higher the amount of low frequency contributions, and the smaller the

length of time series (cf. figure 5.2). We mention that the average shortest path

length as defined in equation (2.6) depends non-trivially on the amount of low-fre-

quency contributions: with the amount of low frequency contributions, the number

of connected components increases (cf. figure 5.4), Nc → N, which in turn leads

to L → 0. Since, for small edge densities, the clustering coefficient deviates more

strongly from those of ER networks (γ̂ > 2) than the average shortest path length

(λ̂ ≤ 1.2), our networks would be characterized as small-world networks (cf. sec-

tion 2.1.2 and chapter 4). Third, our networks become more assortative the higher

the amount of low frequency contributions, the smaller the length of time series,

and the smaller the edge density (cf. figure 5.3). Nodes with a high (low) degree

are preferentially linked to nodes with a high (low) degree. Thus, taking into ac-

count that our networks are derived from random time series, our networks show

degree-degree correlations (see section 2.1.1) as opposed to ER or generalized ran-

dom graphs representing uncorrelated random networks. Fourth, we observed the

amount of low-frequency contributions as well as of the length of time series to

have a similar influence on the clustering coefficient, average shortest path length,

and on the assortativity coefficient. Differences can be observed, however, in the

number of connected components, in the connectivity condition, and in the degree

distributions. These properties are equal (within the errors of the simulation) to the

ones of ER networks for our networks with M = 1 but different length of time

series. In contrast, increasing the amount of low-frequency contributions leads to a

higher number of connected components than ER networks and to degree distribu-

tions and connectivity conditions deviating strongly from those of ER networks.

5.2 Field data analysis

Spatial and temporal changes in frequency content can typically be observed in

field data reflecting the dynamics of complex systems. As a prototypical example

well known for its notoriously complex changes in frequency content [190–193], we
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here analyze electroencephalographic (EEG) recordings of epileptic seizures. The

aim of this section is threefold: first, we study whether the influences illustrated in

the simulation studies can also be observed in field data. We restrict the time-re-

solved analysis to network properties often assessed in field studies, namely to the

clustering coefficient, the average shortest path length, and the assortativity coeffi-

cient. In addition, we focus on the influence of the spectral content of time series

on network properties. Second, the model used throughout the simulation studies

assumes time series to possess, on average, the same frequency content (homogene-

ity assumption). This assumption is usually not fulfilled in field studies where the

spectral content of time series recorded from different parts of the system may differ

substantially. We investigate whether findings observed in the simulation studies

carry over to field studies where time series possess different spectral contents. For

this purpose, we define two ensembles of random networks which are generated in

a data-driven way mimicking the empirical time series in different degrees of de-

tails. Third, we depict a methodological framework which can help to distinguish

network properties of interdependence structure reflecting the dynamics of a com-

plex system from those structures spuriously induced by the applied methods of

analysis.

5.2.1 Description of data and steps of analysis

We analyze multichannel EEG recordings from 60 patients4 capturing 100 epileptic

seizures reported in references [59, 235]. During presurgical evaluation of drug-re-

sistant epilepsy, the data were recorded from the cortex and other relevant struc-

tures of the brain using implanted strip, grid, or depth electrodes (N = 53± 21

channels). The EEG data were sampled at 200Hz within the frequency band 0.5–

70Hz using a 16-bit analog-to-digital converter. Electroencephalographic seizure

onset and end were detected automatically [235]. For each channel and recording,

the data were divided into consecutive, non-overlapping windows of 2.5 s duration

(T = 500 sampling points). Time series of each window were normalized to zero

mean and unit variance for each channel separately.

We derive networks by thresholding values of estimators of signal interdepen-

dence (using ǫ = 0.1) as in the previous section. In order to study whether the

influences identified in the simulation studies depend on the chosen estimator of

4 All patients had signed informed consent that their clinical data might be used and published for
research purposes.
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signal interdependence when analyzing field data, we use the absolute value of the

correlation coefficient ρc and the maximum value of the absolute cross correlation

ρ
m (cf. section 2.2.1). Characteristics of networks based on ρ

c or ρ
m are denoted as

Cc, Lc, ac or Cm, Lm, am, respectively. We omit the notation of the window index in

order to facilitate the presentation of results.

To assess time-resolved network characteristics of all 100 epileptic seizures, we

determine averages of network characteristics as follows: since seizures vary in

length (mean seizure duration: 110± 60 s), we normalize seizure durations by par-

titioning each seizure in 10 equidistant time bins (similar to reference [59]). Thus,

each data window and its associated network characteristic within a seizure is as-

signed to a time bin. In addition, we define a pre-seizure and a post-seizure time

bin which both contain the same number of data windows. Time-resolved network

characteristics of all 100 epileptic seizures are obtained by averaging over the re-

spective network characteristics contained in a time bin. We denote the quantities

obtained this way as C̄c, L̄c, āc or as C̄m, L̄m, ām.

We study the influence of the spectral content of time series on network prop-

erties by comparing their values to those obtained for two ensembles of random

networks. Networks of both ensembles are based on random time series which

mimic properties of the EEG time series at two different levels of detail. The first

random network ensemble is based on random time series with a spectral con-

tent which is approximately equal to the mean spectral content of EEG time series

within a window. Thus, the construction resembles the one used in our model stud-

ies but allows to incorporate spectral contents that are found in empirical data. For

a given patient, consider a window and let N denote the number of time series

contained in this window. The periodogram P̂i( f ) is estimated for each time se-

ries i, and the mean power spectral density is determined, P( f ) = N−1 ∑i P̂i( f ).

We generate N random time series of length T = 500 whose entries are drawn

from the uniform probability distribution U (see section 5.1). Each of these random

time series is filtered in the Fourier domain using
√

P( f ) as filter function, and

we normalize the filtered time series to zero mean and unit variance. From these

time series, we derive a network based on ρ
c or ρ

m using ǫ = 0.1 and determine the

network characteristics (clustering coefficient, average shortest path length, assorta-

tivity coefficient). In total, 20 realizations of the network are generated and network

characteristics are determined. The average of the respective network characteristic

over the 20 realizations is denoted as C
(1)
c , L

(1)
c , a

(1)
c , or as C

(1)
m , L

(1)
m , a

(1)
m . This way,

we determine network characteristics for each window and each patient.
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Figure 5.7: (Left) Relative amount of power contained in the δ- (Pδ, black), ϑ- (Pϑ,
blue), α- (Pα, green), and β- (Pβ, red) frequency bands during an exemplary seizure
(N = 66). Profiles are smoothed using a four-point moving average. Grey-shaded
area marks the seizure. (Right) Mean values (P̄δ, P̄ϑ, P̄α, P̄β) of the relative amount
of power averaged separately for pre-seizure, discretized seizure, and post-seizure
time periods of 100 epileptic seizures. Lines are for eye-guidance only.

With the second random network ensemble, we take into consideration that the

spectral content of EEG time series capturing signals from different brain regions

may differ considerably. Networks of this ensemble are derived from univariate

time series surrogates [201, 236] that are random but possess power spectra and

amplitude distributions which are practically indistinguishable from those of the

EEG time series: to generate a surrogate, amplitudes of an EEG time series are

iteratively permuted while the power spectrum is approximately preserved. This

randomization scheme is known to destroy any significant linear or non-linear

dependencies between time series and has been frequently used to test the null

hypothesis of independent linear stochastic processes. For each patient and each

window, we generate 20 realization of random networks (ǫ = 0.1) and determine

their network characteristics. The mean of the respective network characteristics is

denoted as C
(2)
c , L

(2)
c , a

(2)
c , or as C

(2)
m , L

(2)
m , a

(2)
m .

5.2.2 Spectral contents of data

To gain insight into a possible influence of the spectral content of time series on net-

work properties, we characterize the time-dependent spectral content of the EEG



5.2 Field data analysis 79

recordings. The relative amount of power contained in the δ- (0–4Hz, Pδ), ϑ- (4–

8Hz, Pϑ), α- (8–12Hz, Pα), and β- (12–20Hz, Pβ) frequency bands is determined

from P( f ) (cf. section 5.2.1) for each patient and each data window. For an exem-

plary recording of a seizure, we show in figure 5.7 (left) the temporal evolution

of the relative amount of power in different frequency bands. Prior to the seizure,

more than 50% of the total power is contained in the δ-band, i.e., in low frequen-

cies. This amount is nearly halved during the seizure while the relative amount of

power in higher frequency-bands is enlarged compared to the pre-seizure time in-

terval. At seizure end, the total power is shifted back towards low frequencies, and

we observe Pδ to be even higher than prior to the seizure. The mean values of the

relative amount of power (P̄δ, P̄ϑ, P̄α, P̄β) obtained for all seizure recordings shown

in figure 5.7 (right) support this finding: we observe a shift of the total power from

low frequencies prior to seizures towards higher frequencies during seizures and

back towards low frequencies after seizures.

5.2.3 Clustering coefficient and average shortest path length

Figure 5.8 shows the temporal evolution of the clustering coefficient and the aver-

age shortest path length based on ρ
c (top panels) or ρ

m (bottom panels) obtained

for an exemplary recording of a seizure. During the seizure, network characteris-

tics Cc, Cm as well as Lc and Lm show pronounced differences when compared to

the network characteristics obtained from both random network ensembles. These

differences are smaller prior to and after the seizure, and they nearly vanish for Cm

and C
(2)
m as well as for Lm and L

(2)
m . C

(1)
c and C

(1)
m decrease during the seizure and

increase already prior to seizure end where they remain at an elevated level com-

pared to the pre-seizure period. These changes resemble the temporal evolution of

the relative amount of power in the δ-band, Pδ (cf. left panel of figure 5.7). This

similarity corroborates the results obtained in our simulation studies, namely that

the clustering coefficient of our random networks is higher the larger the amount

of low frequency contributions in the time series. Findings obtained in the simula-

tion studies also indicate that the average shortest path length is influenced by the

frequency contents of time series to a lesser extent than the clustering coefficient.

This result is also supported by L
(1)
c and L

(1)
m which both vary little over time. Only

after the seizure, L
(1)
c is slightly increased and reflects the high amount of power in

the δ-band.
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Figure 5.8:Network properties Cc and Lc (top row, black lines) as well as Cm and Lm
(bottom row, black lines) during an exemplary seizure (cf. figure 5.7 (left)). Mean
values and standard deviations of network properties obtained from surrogate time

series (C
(2)
c , L

(2)
c , C

(2)
m , L

(2)
m ) are shown as blue lines and blue shaded areas, respec-

tively, and mean values and standard deviations of network properties obtained

from the overall spectral content model (C
(1)
c , L

(1)
c , C

(1)
m , L

(1)
m ) are shown as red lines

and red shaded areas, respectively. Profiles are smoothed using a four-point moving
average. The grey-shaded area marks the seizure. For corresponding Erdős-Rényi
networks, CER ≈ 0.1 and LER ≈ 2.4 for all time windows.
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The clustering coefficients obtained from the two random network ensembles,

C
(1)
c and C

(2)
c , differ only slightly from each other. The same can be observed for

the average shortest path length L
(1)
c and L

(2)
c . The slight differences appear to be

systematic, which is reflected in C
(1)
c .C

(2)
c and L

(1)
c &L

(2)
c for many windows. This

suggests that both random network ensembles are equally suited for characteriz-

ing the influence of the amount of low-frequency contributions on the clustering

coefficient and on the average shortest path length if interaction networks are de-

rived from ρ
c. In contrast, we observe differences between both random network

ensembles in clustering coefficient and average shortest path length if network con-

struction is based on ρm. The differences between C
(1)
m and C

(2)
m as well as between

L
(1)
m and L

(2)
m are most pronounced during the seizure and for L

(1)
m and L

(2)
m also after

the seizure. These findings indicate that clustering coefficient and average shortest

path length of networks based on ρ
m intricately depend on the spectral content of

individual EEG time series recorded from different brain regions. For these inter-

action networks, the second random network ensemble accounting for the complex

changes in spectral contents of different brain regions appears to be more suited to

characterize the influence of low-frequency contributions on clustering coefficient

and average shortest path length.

The temporal evolution of mean values of C and L over all seizures is shown

in figure 5.9. Network characteristics C̄
(1)
c , C̄

(2)
c , L̄

(1)
c , L̄

(2)
c , C̄

(1)
m , and L̄

(1)
m decrease

during seizures and increase already prior to seizure end, which roughly reflects

the temporal changes of the relative amount of power in the δ-band, P̄δ (cf. right

panel of figure 5.7). As in the case of the exemplary seizure recording, C̄
(1)
c and C̄

(2)
c

as well as L̄
(1)
c and L̄

(2)
c follow similar courses in time which appear to be system-

atically shifted along the ordinate. We observe differences between both random

network ensembles for characteristics of interaction networks based on ρm, namely

for C̄
(1)
m and C̄

(2)
m as well as for L̄

(1)
m and L̄

(2)
m . These findings are in agreement with

the ones obtained for the exemplary recording of a seizure. This indicates that in-

deed the clustering coefficient and the average shortest path length of interaction

networks based on ρm depend more sensitively on the spectral contents of indi-

vidual EEG time series recorded from different brain regions than the respective

quantities derived from ρ
c.

The courses in time of L̄c and L̄m resemble each other showing an increase during

seizures and a decrease at seizure end. In contrast, while C̄c and C̄m increase at the

beginning of the seizures, C̄m decreases at the end of the seizures, where the average
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Figure 5.9:Mean values (black) of network properties Cc (top left), Lc (top right), Cm

(bottom left), and Lm (bottom right) averaged separately for pre-seizure, discretized
seizure, and post-seizure time periods of 100 epileptic seizures. Mean values of
corresponding network properties obtained from the first and the second ensemble
of random networks are shown as red and blue lines, respectively. All error bars
indicate standard error of the mean. Lines are for eye-guidance only.
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Figure 5.10: Mean values of Cc/C
(2)
c and Cm/C

(2)
m (left) as well as Lc/L

(2)
c and

Lm/L
(2)
m (right) averaged separately for pre-seizure, discretized seizure, and post-

seizure time periods of 100 epileptic seizures. All error bars indicate standard error
of the mean. Lines are for eye-guidance only.

amount of power in low-frequencies is large, and C̄c stays at an elevated level. The

corresponding quantities obtained from the second random network ensemble for

networks based on ρc and ρm also show a different behaviour: while C̄
(2)
m does not

increase at the end of the seizures but fluctuates around 0.3± 0.01, C̄
(2)
c increases

at the end of the seizures and traverses an interval of values roughly three times

larger than the interval containing values of C̄
(2)
m . All in all, these findings suggest

that indeed the values of the clustering coefficient and of the average shortest path

length are influenced by the pronounced changes of the spectral content of EEG

time series observed during epileptic seizures.

We continue by comparing values of the clustering coefficient and average short-

est path length with those obtained for our random networks. In the case of Erdős-

Rényi networks, such a comparison is often realized in various studies by calculat-

ing the ratio of the value of the network characteristics to the value obtained for

corresponding ER networks. Since clustering coefficient and average shortest path

length of ER networks do not change over time (for constant edge density), such

a comparison just rescales the quantities by a constant factor and thus only shifts

the curves shown in figure 5.9 along the ordinate. We take into account the varying

frequency content of time series and calculate the ratios of the clustering coefficient

and the average shortest path length to their corresponding values obtained from

the second random network ensemble. These normalized quantities are shown in

figure 5.10 and describe a concave-like movement over time which indicates a re-
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Figure 5.11: Top row: Assortativity coefficients ac and am (black lines) during an
exemplary seizure (cf. figure 5.7 (left)). Mean values and standard deviations of net-

work properties obtained from surrogate time series (a
(2)
c , a

(2)
m ) are shown as blue

lines and blue shaded areas, respectively, and mean values and standard deviations

of network properties obtained from the overall spectral content model (a
(1)
c , a

(1)
m )

are shown as red lines and red shaded areas, respectively. Profiles are smoothed
using a four-point moving average. The grey-shaded area marks the seizure. For
corresponding Erdős-Rényi networks, aER = −0.04 ± 0.02 for all time windows.
Bottom row: Mean values (black) of network properties ac (left), am (right) aver-
aged separately for pre-seizure, discretized seizure, and post-seizure time periods
of 100 epileptic seizures. Mean values of corresponding network properties ob-
tained from the first and the second ensemble of random networks are shown as
red and blue lines, respectively. All error bars indicate standard errors of the mean.
For corresponding ER networks, āER ≈ −0.06± 0.01 for all time bins. Lines are for
eye-guidance only.
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configuration of networks: From more random topologies before seizures towards

more regular (during seizures) and back towards more random network topolo-

gies. Our findings thus support results reported in an earlier study [59] in which a

different and seldom used thresholding method was employed.

5.2.4 Assortativity

For an exemplary recording of a seizure, the temporal evolution of the assortativity

coefficient of interaction networks based on ρc and ρm is shown in the top panels

of figure 5.11. Compared to the clustering coefficient and the average shortest path

length (cf. figure 5.8), ac and am appear to fluctuate stronger during the recording.

We observe am—and to a lesser extent ac—to be increased during the seizure and

to take on lower values before and after the seizure. The assortativity coefficient

derived from the first random network ensemble, a
(1)
c , slightly increases at the end

of the seizure, reflecting the increased amount of low frequency contributions in

the time series. In contrast, we do not observe such a behaviour for a
(1)
m , which

fluctuates around some value during the recording. Remarkably, the assortativity

coefficient derived from the second random network ensemble, a
(2)
m , closely follows

am after the end of the seizure, which is similar to the behaviour of C
(2)
m and L

(2)
m

with respect to Cm and Lm (see figure 5.8).

The bottom panels of figure 5.11 show the mean values of assortativity coeffi-

cients obtained for all 100 seizures. The average values reveal structures which are

partially hidden by fluctuations observed on the level of individual seizure record-

ings: āc and ām are increased during seizures and show lower values before and

after the seizures. Concerning the first random network ensemble, we observe ā
(1)
c

and ā
(1)
m to roughly reflect the course in time of the relative amount of power in

the δ-band (cf. figure 5.7), which can be expected due to the findings obtained in

the simulation studies (cf. figure 5.3). ā
(2)
c and ā

(1)
c take on similar values over time,

and both increase at the end of the seizures. In contrast, the temporal evolution of

ā
(2)
m differs from ā

(1)
m , which indicates that the assortativity coefficient based on ρ

m

depends sensitively on the different spectral contents of EEG time series recorded

from different brain regions.

We are not aware of a common way agreed upon in the literature to compare the

values of the assortativity coefficient with those obtained from random networks.

Determining the ratio ā/ā(2) appears to be not well suited for values defined on

the interval [−1, 1] which can, in addition, fluctuate around zero (as is the case for
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Figure 5.12: Difference values ā
(D)
c and ā

(D)
m for pre-seizure, discretized seizure, and

post-seizure time periods of 100 epileptic seizures. All error bars indicate standard
error of the mean. Lines are for eye-guidance only.

ā
(2)
c and ā

(2)
m ). Here we refrain from developing a sophisticated method allowing

for a comparison between assortativity indices but instead define a tentative index,

namely the difference

ā
(D)
c =

∣

∣

∣

∣

ac − a
(2)
c

∣

∣

∣

∣

and ā
(D)
m =

∣

∣

∣

∣

am − a
(2)
m

∣

∣

∣

∣

. (5.15)

These quantities are shown in figure 5.12. ā
(D)
c and ā

(D)
m have a similar course in

time indicating a gradual increase of the assortativity during the seizures and a

sudden decrease at the end of the seizures. This indicates that the interaction net-

works during seizures display topologies which are more assortative than the ones

obtained before and after the seizures.

5.3 Discussion

In this chapter, we studied the influence of the finite length and the frequency con-

tent of time series on properties of derived interaction networks. The network ap-

proach to multivariate time series analysis assumes the studied dynamics to be well

represented by a model of mutual relationships (i.e., a network), in which edges

reflect interactions between subsystems (nodes). We studied interaction networks

derived from time series of independent processes, which would not advocate the

representation by a model of mutual relationships. Remarkably, these networks dis-
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played non-trivial topologies which did not reflect interactions between subsystems

but were solely induced by the finite length and the frequency content of the time

series and by the way how networks are derived from empirical data. The length of

time series (i.e., the number of data points) and the temporal sampling frequency

determine the observation duration which has to be chosen such that it allows for

a reliable identification of interactions between subsystems. This choice becomes

non-trivial if typical time-scales of the dynamics are unknown a priori. In addi-

tion, if pursuing a time-resolved analysis, to achieve a better temporal resolution,

it is tempting to increase the sampling frequency while keeping the length of time

series per window constant. If done irrespectively of the typical time scales of the

studied dynamics (oversampling), this will likely yield time series with an artificially

increased amount of temporal correlations reflected in slower decaying autocorrela-

tion functions and, equivalently, in a larger amount of low-frequency contributions.

These artificial temporal correlations can induce structures in interaction networks

derived from the time series. Taken together, the question then arises as to how

informative network analysis results are with respect to the studied dynamics. This

question can be addressed by defining and making use of appropriate null models

of which we discuss the most frequently employed ones in the following.

Erdős-Rényi (ER) networks have found frequent use as null models in field stud-

ies. We recall (cf. section 2.1.2) that in ER networks, possible edges are equally likely

and independently chosen to become edges. Using this null model, interaction net-

works can be tested whether they comply with the notion of such random networks.

In our interaction networks derived from time series generated by independent pro-

cesses, possible edges are equally likely but not independently chosen to become

edges, which can be deduced from the behaviour of the clustering coefficient (cf.

section 5.1.1). We observed the clustering coefficient C, the average shortest path

length L, and the assortativity coefficient a of our interaction networks to clearly

differ from those of corresponding ER networks. A comparison of C and L to those

of ER networks, as pursued in numerous field studies, will likely lead to a classifi-

cation of our networks as small-world networks. Compared to ER networks, which

are uncorrelated random networks, our networks are likely classified as assortative

networks: the analysis methodology alone can readily induce degree-degree corre-

lations which are, by construction, not present in ER networks (apart from effects

due to the finite size of networks). Taken together, a comparison of properties of

interaction networks with those of ER networks is likely to yield spurious find-
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ings which are not related to the studied dynamics but to the way how interaction

networks are derived from finite empirical data. Since the ER model does not ac-

count for the latter, it may not be well suited as null model for interaction networks

derived from multivariate time series.

Another null model is based on randomization of a network topology while the

degrees of nodes are preserved [86, 112, 113] (cf. section 2.1.2, generalized random

graphs). We recall that this model can be used to test whether an interaction net-

work under consideration is random under the constraint of a given degree se-

quence. Although we did not directly investigate this model in this chapter, our

findings allow us to draw substantial conclusions about its usefulness for inter-

action networks derived from empirical data: the structures induced by the way

how networks are derived from finite time series cannot be reflected in the de-

gree sequence only. This result is based on the observation that C, L, and a pro-

nouncedly depended on the finiteness of the data (length of time series T) while

the degree distribution did not (cf. figure 5.6 (a–c), M = 1). This behaviour might

be explained by degree-correlations which do not manifest themselves in the de-

gree distribution. Indeed, it has been argued in the literature that the clustering

coefficient and the average shortest path length can be influenced by degree-corre-

lations [122, 123, 127, 129]. In this context, we observed the assortativity coefficient,

which is indicative of degree-degree correlations in the network, to sensitively de-

pend on the length of time series as well as on the amount of low-frequency contri-

butions (cf. figure 5.3). On the other hand, for a constant length of time series, we

observed the degrees of nodes to be correlated with the relative amount of low-fre-

quency contributions in the time series (as parametrized by M, cf. figure 5.6 (d)).

Thus, we expect the degree distribution to at least partially reflect the frequency

contents of the underlying time series. If our interaction networks were uncorre-

lated (no degree-correlations), this finding would advocate the use of degree-pre-

serving randomized networks as null model. Since our results clearly show that

degree-degree correlations can already be induced by the analysis methodology

applied to finite data, we consider degree-preserving randomization of networks,

which yields—by construction—uncorrelated random networks, not well suited for

serving as null model for interaction networks. This view is corroborated by a de-

bate in which the usefulness of degree-preserving randomized networks as null

model was questioned because they do not take into account different character-

istics of the data and its acquisition [237, 238]. Finally we mention that the edge-
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switching algorithm widely employed to generate degree-preserving random net-

works is known to non-uniformly sample the space of networks with predefined

degree sequence (see, e.g., references [110,111]). Alternative randomization schemes

have been proposed which can overcome this deficiency (see, e.g., [108,109,111] and

references therein).

We propose a null model which takes into account the way how networks are

derived from empirical time series of finite length and of individual frequency con-

tent. To this end, we apply the same analysis steps as in typical field data studies

(estimation of signal interdependence, thresholding of interdependence values to

derive edges) and use surrogates [201, 236] of the empirical time series to derive

networks. These surrogate time series comply with the null hypothesis of indepen-

dent linear stochastic processes and preserve length, amplitude distribution, and

frequency content of the original time series (second random network ensemble in

section 5.2.1). In our simulation studies, we observed C, L, and a of such networks

to be higher the larger the amount of low-frequency contributions, the shorter the

length of time series, and the smaller the edge density. Regarding the connectiv-

ity condition, the minimum edge density ǫ∗ for which a network is connected was

higher the larger the amount of low-frequency contributions but appeared to be

independent of the length of time series. The influence of the frequency content on

the values of C, L, and (to a lesser extent) a was confirmed by results obtained from

analyzing multichannel EEG recordings of 100 epileptic seizures. Findings reported

in an earlier publication (cf. figure 2c in reference [59]) show that the minimum edge

density ǫ∗ increases at the end of the seizures where the relative amount of low-

frequency contributions increases. This supports our findings obtained from the

simulation studies. By comparing properties of interaction networks with those of

our random networks, we were able to distinguish aspects of the network dynamics

during seizures from those spuriously induced by the methods of analysis and by

the finite length and spectral content of time series.

Our findings are of particular relevance to numerous field data studies assessing

and interpreting global as well as local characteristics of interaction networks. Our

random networks are likely classified as small-world networks when comparing

values of C and L with the ones of corresponding ER networks. This might indicate

that the small-world characteristic of interaction networks derived from empirical

data as reported in an ever increasing number of studies could partly or solely be

related to the finite size and individual frequency contents of time series. In this
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regard, our proposed null model can be of interest for studies in which short time

series with large amount of low-frequency contributions are investigated, which is,

for example, the case in resting state functional magnetic resonance imaging stud-

ies (see, e.g., references [65, 219, 239–242]). The same applies to studies assessing

the assortativity of interaction networks (see, e.g., references [65–71]). Concerning

local network characteristics, our observations of correlations between the degree

of nodes and the relative amount of low-frequency contributions in the respective

time series has important implications. The node degree has been frequently used

to characterize the centrality of a node (see [6, 243] and references therein) within

a network and to identify hubs (nodes which are highly central). If findings of

hubs could be partially or solely be attributed to the individual frequency contents

of time series, hubs would be an overly complicated representation of features al-

ready present on a single time series level. The same holds true for other network

characteristics including the ones investigated here. We are confident that using

our null model can help to unravel global as well as local network characteristics

related to the studied dynamics from those spuriously induced by the finite length

and the frequency contents of the time series and by the methods used to derive

networks.

Results of our field data analysis show that network characteristics depend also

on the time series analysis method employed to infer edges. This dependence was

intricately related to differences in frequency contents among time series: in the

simulation studies, all time series were assumed to possess approximately the same

frequency content (homogeneity assumption), whereas the frequency contents of

time series of the seizure recordings can vary considerably among each other (het-

erogeneity of spectral contents). In our simulation studies, network characteristics

C, L, and a showed qualitatively the same dependence on the length of time se-

ries, the amount of low-frequency contributions, and the edge density for networks

based on thresholding absolute values of the correlation coefficient (ρc) or of the

maximum cross correlation (ρm), respectively. For the seizure recordings, if net-

work construction was based on ρc, the dependence of these network character-

istics on the relative amount of low-frequency contributions was qualitatively the

same as in the simulation studies (see first random network model, section 5.2.1).

This observation suggests that estimating the mean spectral content of empirical

time series can help the experimentalist to tentatively assess the potential relative

increase of C, L, and a in different networks based on ρc. This rule of thumb will
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not be useful for networks based on ρm, for which we observed a sensitive de-

pendence on the heterogeneity of spectral contents of EEG time series (see second

random network model, section 5.2.1). In regard to the latter, we consider future

investigations promising that address the question, which aspects in the definition

of ρc and ρm exactly leads to the observed difference in the sensitive dependence

on the heterogeneity of spectral contents.

Conclusions can also be drawn for a network construction technique which relies

on significance testing in order to derive edges [151]. For this method, null distri-

butions of the estimator of signal interdependence (ρm) are generated for each pair

of time series. An edge is established if the null hypothesis of independent pro-

cesses generating the time series can be rejected at a prespecified significance level.

In order to reduce the computational burden for generating such null distributions,

it was suggested to restrict the creation of null distributions to a limited subset of

time series only [151]. However, our findings indicate that networks constructed

this way will yield an artificially increased number of false positive or false nega-

tive edges. This number will likely depend on the relative spectral contents of time

series being part or not part of the subset.

Finally we mention that our results might also be of value for network modeling.

The simulation studies demonstrate that networks can be generated whose network

characteristics C, L, and a are approximately equal but whose degree distributions

and connectivity conditions differ. Such networks can be produced by choosing a

threshold and generating time series obeying the relation between the size of the

moving average and the length of time series.

We close this chapter by summarizing its main contributions: first, we found that

the finite length and the frequency content of time series together with the com-

monly used methods to define edges can induce non-trivial structures in derived

interaction networks. These structures do not necessarily reflect mutual interactions

between subsystems and will likely lead to a classification of a network as small-

world and assortative. Second, to distinguish network structures related to the dy-

namics from those spuriously induced by the analysis methodology, we proposed a

null model which incorporate knowledge about the way how interaction networks

are derived from empirical data (second random network ensemble, section 5.2.1).

Our approach is data-driven and yields random networks with non-trivial topolo-

gies solely related to the methods of analysis, the finite amount of available data,

and the spectral content of time series. It can be regarded as an instance of a general
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framework which allows for the generation of random networks by implementing

the null hypothesis already on the time series level. Third, to assess the relevance

of our findings for field data analysis, we investigated multichannel EEG record-

ings capturing 100 epileptic seizures which are known for their complex spatial

and temporal dynamics. Results indicate that the pronounced changes of the fre-

quency content during seizures are reflected in network properties. This influence

sensitively depended on the chosen method to estimate signal interdependence. By

using our null model, we were able to distinguish properties of interaction net-

works related to seizure dynamics from those spuriously induced by the analysis

methodology. Fourth, our findings open up the way to promising research direc-

tions. For example, we restricted our investigations to frequently used network

characteristics, but we expect also other network properties to be affected by the

identified influences. Most of our results were based on numerical studies, but an-

alytical approaches can be expected to complement our findings and advance the

understanding of exact interrelationships between properties on the level of time

series and properties of interaction networks. Moreover, our proposed framework

for generating random networks can be extended or changed in various parts in

order to meet different demands. This possibility allows one to study different

network construction techniques other than thresholding (e.g., networks based on

minimum spanning trees [153] or weighted networks), or different non-linear and

linear methods for estimating signal interdependence [132, 133, 137]. Finally, em-

ploying other surrogate concepts on the level of time series [244–249] allows one to

define different random networks which may prove useful for various purposes.
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6 Conclusion

Concepts from network theory have been applied in various scientific disciplines

and can advance our understanding of the dynamics of complex systems. Results

obtained in an ever increasing number of field studies revealed richly structured

topologies (including small-world characteristics and assortativity) of interaction

networks derived from spatially extended systems. The inference of such networks

is based on empirical data and relies on the spatial and temporal sampling of the

dynamics. A key challenge of this approach and an inevitable prerequisite for the

interpretation of results is to reliably assess whether characteristics of the interac-

tion networks are significant or not and whether they indeed reflect properties of

the dynamics. In this thesis, we investigated whether and how the spatial and tem-

poral sampling of the dynamics together with commonly applied methods for edge

inference influence the properties of interaction networks and affect the assessment

of the significance of findings. In modeling and numerical studies, we identified

factors which easily influence network properties and which are not related to

the dynamics but to the spatial and temporal sampling together with the analy-

sis methodology used to infer networks from empirical data. These findings were

supported by results obtained from our field studies of brain functional networks.

We developed and proposed strategies which can help to distinguish properties

of interaction networks related to the dynamics from those spuriously induced by

the identified influences. Our findings related to small-world characteristics and as-

sortativity call for a careful reconsideration and reinterpretation of analysis results

reported in earlier studies in diverse scientific fields. Moreover, our results indi-

cate that also other network characteristics (such as centralities or communities) are

affected by the identified influences.

The network approach towards the analysis of the dynamics of complex systems

comes along with several assumptions—often made implicitly—about what is in-

teracting, how interaction takes place, and on which temporal and spatial scales

the dynamics unfold. These assumptions manifest themselves in different ways,

for example when deciding about the type and number of sensors and where to

place them, or when choosing an observation duration and sampling frequency. On

the network level, these assumptions translate into the challenges of how to iden-

tify nodes and edges. Whereas these questions can be straightforwardly answered
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for various systems (e.g., electric power grids), they pose a non-trivial challenge

for many natural systems (e.g., in climate science, earth science, or in the neuro-

sciences).

The spatial sampling is crucial for the identification of nodes and edges of inter-

action networks (cf. section 4.3 for an in-depth discussion). Since nodes are usually

associated with sensors when inferring interaction networks, missing to sample the

dynamics of a subsystem or accidentally sampling the dynamics of the same sub-

system (i.e. a common source) with two or more sensors can remarkably change the

topology of derived interaction networks. As we demonstrated (cf. section 4.2), the

presence of common sources leads to an artificial increase of the clustering coefficient

if using commonly employed time series analysis techniques to infer edges. More-

over, frequently used time series analysis techniques cannot distinguish between

direct and indirect interactions, which represents an additional mechanism for an

artificial increase of the clustering coefficient. If the data is contaminated with noise

contributions, which is often unavoidable in empirical studies, the average shortest

path length is likely to be artificially decreased due to uncertainties arising from

the identification of edges. Taken together, this yields interaction networks which

possess a small-world topology even if the actual underlying interaction structure

is not small world (cf. section 4.2). Moreover, such interaction networks are prone

to be classified as assortative networks even in cases in which the actual inter-

action structure is dissortative (cf. section 4.2). We identified several strategies to

approach the aforementioned issues. On the network level, data-driven node-merg-

ing strategies [29, 221] could account for “redundant” nodes which represent the

same subsystem, and network characteristics could be developed which take into

account spatial correlations present in the data [205, 226]. On the level of time series,

some analysis techniques [200, 207, 208] (cf. section 4.3) might be capable of dis-

tinguishing between signal interdependencies due to interacting subsystems and

those due to sampling a common source. Other techniques may be able to distin-

guish between direct and indirect interactions [133, 210–212, 227–229]. Finally, on

the system level, an improved determination of the actual structural organization

may help to design suitable sensor placement strategies.

Improving the determination of the actual structural organization of a system

may not be applicable in cases in which separate entities (subsystems) cannot

be unambiguously defined. The network approach then superimposes a model

on the data which does not necessarily match the organization of the underly-
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ing system. For instance, if the system is characterized by a physical field (e.g.

pressure, temperature, electric or magnetic field), a decomposition of the system

into subsystems represents a coarse graining of the dynamics and may introduce

spatial correlations in the topology of interaction networks. Care should be used

(and awareness is already developing in some studies, see, for example, refer-

ences [39, 199, 205, 219, 225, 250–253]) to ensure that assessed network characteris-

tics do reflect properties of the dynamics and not properties solely arising from

the applied coarse graining scheme (e.g. from the arrangement of sensors, cf. sec-

tion 4.2). If the spatial sampling does not change during the acquisition of data, a

time-resolved network analyses which strictly focusses on relative changes of net-

work properties over time can represent an approach to exclude potential spatial

sampling effects. While relating features of interaction networks to those of the un-

derlying dynamics might still be challenging, the network approach can nonethe-

less be used as a powerful tool to achieve information reduction when analyzing

multivariate time series obtained from a multitude of sensors.

The temporal sampling of the dynamics plays an important role for the identifi-

cation of edges (cf. section 5.3 for a thorough discussion). In numerical studies (cf.

section 5.1), we found that the finite length of time series (as determined by the choices

of observation duration and sampling frequency) as well as the amount of low-fre-

quency contributions can lead to spurious properties in derived interaction networks

if frequently employed methods for edge identification (thresholding estimators of

signal interdependence) are used. This even holds true in cases in which the system

is appropriately spatially sampled and an unambiguous identification of nodes is

possible. We investigated interaction networks that were derived from time series of

independent stochastic processes. The latter would not advocate a representation

by a network which is a model of mutual relationships. Remarkably, the result-

ing interaction networks showed non-trivial structures which deviated from those

of random (Erdős-Rényi) networks. This deviation was stronger the smaller the

length of time series or the larger the amount of low-frequency contributions. Next

to influences on the degree distribution and connectedness of networks, we found

these networks to likely show small-world and assortative network characteristics.

We consider these findings to be of particular interest for studies in which network

inference is based on short time series (e.g. time-resolved network analyses aiming

at high temporal resolutions or studies based on notoriously short time series such

as fMRI or financial data). Different strategies can be pursued to address the afore-
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mentioned issues. On the system level, an improved determination of the temporal

scales on which the dynamics unfold may help to guide choices related to tempo-

ral sampling schemes and subsequent steps of data analyses. On the time series

level, significance testing using null distributions of the employed estimator of sig-

nal interdependence for the inference of edges can help to control the probability of

spurious edges [151, 202, 214] and may thus reduce spurious properties in derived

interaction networks. On the network level, a comparison of interaction networks

with those obtained from network null models that take into account how interac-

tion networks are derived from empirical data can help to distinguish properties

reflecting characteristics of the dynamics from those spuriously induced. We devel-

oped such a network null model and demonstrated its usefulness when studying

seizure dynamics in epilepsy patients (cf. section 5.2).

Ensembles of random networks are typically employed as network null models to

assess whether findings obtained by the network approach are significant or not (cf.

section 5.3 for a detailed discussion). These models always encode an expectation of

what can be assumed to be present “by chance”. Most field studies rely on the very

same random network ensembles, namely on degree-preserving randomized net-

works or on Erdős-Rényi (ER) networks, and thus implicitly share the same “null”

expectation (e.g. for ER networks: edges are equally likely and independently cho-

sen to become edges). If one aims to interpret features of interaction networks and

to gain a better understanding of the dynamics of spatially extended systems, our

findings call for the development and use of more sophisticated null models which

take into account the way (spatial sampling, temporal sampling, employed time se-

ries analysis techniques and strategies towards edge inference) interaction networks

are derived from the dynamics of the system. We demonstrated a basic network null

model accounting for the spatial arrangement of sensors (cf. section 4.1 and refer-

ence [254]). Such models can be tailored to various applications (see reference [225]

for an example in the neuroscience), and their further development can profit from

research into spatial networks [28]. We proposed a framework to construct network

null models which take into account the temporal sampling (finite length and fre-

quency content of time series) as well as the applied methods for edge inference (cf.

chapter 5 and reference [232]). Such network null models, which are currently used

to study climate networks [255], may help to uncover previously hidden properties

in interaction networks.
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We restricted our investigations to unweighted undirected networks, but we

expect that the identified influences also leave an imprint on weighted and di-

rected networks. The development of appropriate null models for such networks

can be considered as promising and may profit from previous work (see refer-

ences [256–258] and references therein).

Recent years have undoubtedly seen tremendous success of the network ap-

proach towards the analysis of the dynamics of complex systems. Currently, as

the network approach matures, challenges increasingly become apparent in diverse

scientific fields [199,225,232,250,251,254,255,259–261] and need to be met in order

to avoid misinterpretations and to make progress. Such efforts promise to advance

applied network science and can reward us with a far better characterization and

deeper understanding of the dynamics of complex systems.
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7 Appendix

7.1 Identifying clusters in weighted networks

We choose to identify clusters in weighted networks defined by their weight matrix1

W using an approach which is based on the concept of a random walk on the

edge structure [97, 98]. Such an approach is closely related to spectral clustering (see

references [262,263] for an overview, and references [264,265] for early work in this

area). The key idea is that nodes should belong to a cluster if the random walk

stays long within the cluster and only seldom jumps to nodes not being part of the

cluster. We define the transition probability matrix M of a Markov chain,

M = WD−1, (7.1)

with entries Wij ≥ 0∀i, j,Wii = 1∀i, and D is a diagonal matrix with entries djj =

∑
N
i Wij. Mij represents the transition probability from node j to i. A natural choice

for a distance between nodes i and j in terms of transition probabilities would be to

consider the vector distance between the i’th and the j’th column of M. Moreover,

we can exploit the time evolution of the stochastic process by considering powers of

M which allows us to explore the connectivity structure of nodes from a local to a

global perspective [98]. (Mτ)ij with τ ≥ 0 represents the transition probability from

node j to i in τ steps. Thus, we consider a weighted vector distance, the diffusion

distance d2 [266–268], between nodes i and j,

d2(i, j) =
N

∑
k=1

ck
∣

∣(Mτ)ki − (Mτ)kj
∣

∣

2

=
N

∑
k=1

|νk|2τ (Aki − Akj)
2, (7.2)

where ck = ∑i,jW∗
ij/∑ jW∗

kj are the weights, Aki is the i’th component of the k’th

normalized (∑i A
2
ki/ci = 1) left eigenvector of M, and νk denote the corresponding

eigenvalues (ν1 = 1 > |ν2| ≥ . . . ≥ |νN |). For τ → ∞, d2 vanishes (|νk|2τ → 0

with k > 1, and A1i = 1∀i) representing a perspective in which all nodes belong

1 Note that we assume all edges to exist, i.e., the adjacency matrix A has entries Aij = 1, i 6= j, and
is zero else.
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to a single cluster. In contrast, for τ → 0, Mτ becomes the identity matrix and d2

increases for all pairs of nodes, which belongs to a perspective in which the network

disintegrates into as many clusters as there are nodes. To identify a number q of

clusters, we determine the corresponding time scale τ = τ(q) by requiring the

(q + 1)st eigenvalue to vanish, i.e.,
∣

∣

∣
ν(q+1)

∣

∣

∣

τ
= ξ where 0 < ξ ≪ 1 is a non-zero

small number (here we used ξ = 0.01), which leads to τ(q) = ln ξ/ ln
∣

∣

∣
ν(q+1)

∣

∣

∣
. Note

that equation (7.2) can be rewritten as Euclidean distance between vectors ~o(j) =

(|νk|τAkj), k = 1, . . . ,N associated with nodes j. If τ(q) is chosen appropriately,

contributions from terms k > q can be neglected and are zero for k = 1 since

A1j = 1∀j. Thus, it is sufficient to consider Euclidean distances between “reduced”

position vectors

~ored(j) = (|λk|τ Akj), k = 2, . . . , q (7.3)

in a (q − 1) dimensional space only, which represents an effective dimensionality

reduction. In this space, clusters are determined using the common k-means clus-

tering algorithm [269] which is initialized with estimates of the cluster centers [97].

Partitions are determined for q = 1, . . . ,N, and the partition is chosen which maxi-

mizes a quality function. We choose the modularity [91] as quality function, because

it has already been successfully used in different studies and its limitation have

been thoroughly investigated [96].

7.2 Duplication models

Network models involving duplication processes have been studied in the context

of gene duplication [270, 271], which is considered a feature of biological evolu-

tion. Many studies investigate protein–protein interaction networks, i.e., networks

whose nodes are proteins (coded by genes) and whose edges represent binding in-

teractions in a cell. The evolution process likely leaves an imprint in the topology

of such networks via duplication, which is used in various modeling studies (see,

e.g., [272, 273]) and is exploited for analysis purposes [274].

We carry over concepts from duplication models in order to study the influence

of common sources on the clustering coefficient, the average shortest path length,

and the assortativity coefficient of interaction networks (cf. section 4.2.2). Two dif-

ferent duplication processes are considered. In the first model (cf. left column in fig-

ure 7.1), a node i is duplicated by introducing an additional node i′. i′ is connected
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Figure 7.1: Schematics showing the construction of N ∗
1 (left column) and N ∗

2 (right
column) out of N by duplication according to the first and second model, respec-
tively. The exemplary network N consists of two nodes i and j which are connected
(top row). The bottom row shows networks N ∗

1 (left) and N ∗
2 (right) derived from

N .

to all neighbours of i and, in addition, it is also connected to i (this corresponds to

type B twins in [274] if nodes of arbitrary degrees are allowed). In the second model

(cf. right column in figure 7.1), the duplication of i introduces the duplicate node i′

which is connected to the neighbours of i only (type A twins in [274]). LetN denote

some network of size N. In the following, we investigate properties of networks N ∗
1

and N ∗
2 which are derived from N by applying the duplication process from the

first model or the second model, respectively, to each single node of N . Note that

N ∗
1 and N ∗

2 networks possess 2N nodes by construction.

To simplify the notation, we refrain from introducing additional subindices or

symbols to differently denote network characteristics of the two duplication models.

Instead we report results obtained for the two models in separate paragraphs which

allows one to distinguish between network properties of N ∗
1 or N ∗

2 networks.

Clustering coefficient

We recall the definition of the clustering coefficient,

C =
1

N

N

∑
i=1

Ci, (7.4)
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where N denotes the number of nodes,

Ci =

{

1
ki(ki−1) ∑j,mAijAjmAmi, if ki > 1

0, if ki ∈ {0, 1}.
(7.5)

is the local clustering coefficient, ki denotes the degree of node i, and Aij is an

entry of the adjacency matrix A defining the network. Let Ei be the set of edges

connecting neighbours of node i with each other, and let |Ei| be the number of such

edges. Note that 2|Ei| = ∑j,mAijAjmAmi and thus

Ci =
2|Ei|

ki(ki − 1)
for ki > 1. (7.6)

When considering a network N ∗
1 or N ∗

2 derived by duplicating all nodes of the

ancestor network N , |E∗
i | denotes the number of edges between neighbours of node

i in N ∗
1 or N ∗

2 , and k∗i denotes the degree of node i in N ∗
1 or N ∗

2 .

First model. Note that |E∗
i | = 4|Ei|+ 3ki and k∗i = 2ki + 1 for nodes i in N ∗

1 . With

equation (7.6) we obtain

C∗
i =

2|E∗
i |

k∗i (k
∗
i − 1)

=
3

2ki + 1
+

4|Ei|
(2ki + 1)ki

=
3

2ki + 1
+ 2Ci

(ki − 1)

(2ki + 1)
, (7.7)

which holds for ki > 0. For nodes i with ki = 0, the duplication produces isolated

connected pairs of nodes, which results in C∗
i = 0. Thus we obtain

C∗
i =

{

3
2ki+1 + 2Ci

ki−1
2ki+1 , if ki > 0

0, if ki = 0.
(7.8)

Second model. Observe that |E∗
i | = 4|Ei| and k∗i = 2ki. Thus, the local clustering

coefficient of node i in N ∗
2 reads

C∗
i =

2|E∗
i |

k∗i (k
∗
i − 1)

=
8|Ei|

2ki(2ki − 1)
=

2|Ei|
k∗i (k

∗
i − 1

2)
= Ci

ki − 1

ki − 1
2

. (7.9)
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Average shortest path length

The average shortest path length is given by

L =
LS
|S| =

1

|S| ∑
(i,j)∈S

lij, (7.10)

where

S = {(i, j) | lij < ∞; i, j = 1, . . . ,N} (7.11)

denotes the set of ordered pairs (i, j) of nodes for which a finite path of length lij

exists, and LS is the sum of the lengths of all shortest paths between these nodes.

For the sake of brevity, we call |S| the number of pairs of connected nodes in the

following.

First model. In order to derive L∗ of a network N ∗
1 , we consider the sum L∗S of

shortest paths in N ∗
1 . N ∗

1 is composed of two “layers”. The first layer consists of the

ancestor nodes while the second layer consists of the duplicate nodes derived from

the ancestors. The sum of shortest paths within each layer is LS. Let us first neglect

the edge between each ancestor and its duplicate node. Then, the sum of shortest

paths established via all other edges between both layers will amount to 2LS. We

now consider the edges between each ancestor and its duplicate node only, whose

sum of shortest paths amounts to 2N since we treat the shortest path from node i

to j and from node j to i separately (see equations (7.10) and (7.11)). Thus,

L∗S = 4LS + 2N. (7.12)

Via the same line of reasoning, we obtain the number of pairs of connected nodes

in N ∗
1 ,

|S∗| = 4|S|. (7.13)

Note that the number of pairs of connected nodes within each layer amounts to

|S| and contains self-connections of nodes (lii = 0 by definition). The remaining

number of pairs of connected nodes 2|S| accounts for the paths between both lay-

ers including the path between each ancestor node and its duplicate node. Using

equations (7.12) and (7.13) we get

L∗ =
L∗S
|S∗| = L +

N

2|S| . (7.14)
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Second model. In order to derive the average shortest path length of N ∗
2 , we need

to define the number of nodes without neighbours in N ,

N0 = |{i | ki = 0, i = 1, . . . ,N}|. (7.15)

Following our line of reasoning presented above, we consider network N ∗
2 to be

composed of two layers, the first containing nodes of N and the second containing

all the duplicate nodes. The sum of shortest paths within each layer amounts to

LS. Edges between both layers establish additional shortest paths whose sum is

composed of two parts. The first part amounts to 2LS and reflects all shortest paths

between nodes of the two different layers excluding the path between each ancestor

node and its duplicate node. The second part reflects the shortest paths between

ancestor nodes i and their duplicate nodes i′. Note that shortest paths between i

and i′ only exist if ki > 0 in N . If such a shortest path exists, its length must be

lii′ = 2 due to the construction of N ∗
2 . Taking into account that we distinguish

between paths from i to i′ and from i′ to i, the second part amounts to 4(N − N0).

Thus we obtain

L∗S = 4LS + 4(N − N0). (7.16)

To derive the number of pairs of connected nodes in N ∗
2 , we consider equation

(7.13). Note that the number of pairs of connected nodes (i, j) where i and j belong

to different layers may be smaller than 2|S|. This is because nodes with no neigh-

bours in N do not possess a connecting path to their duplicate nodes in N ∗
2 . The

number of pairs of connected nodes in N ∗
2 thus reads

|S∗| = 4|S| − 2N0. (7.17)

The average shortest path length of N ∗
2 is then given by

L∗ =
L∗S
|S∗| = L1L + L2, (7.18)

where

L1 =

(

1− N0

2|S|

)−1

and L2 =

(

N − N0

|S| − 1
2N0

)

. (7.19)
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Assortativity coefficient

Consider the set E of edges of a given network, and denote with le and me the

degrees of nodes at either end of edge e ∈ E. We briefly recall the definition of the

assortativity coefficient which is defined as the correlation coefficient (corr) between

the degrees of nodes at the end of edges,

a := corr(l,m) =
Cov(l,m)

σlσm
=

Cov(l,m)

Var(l)
, (7.20)

where Cov(l,m) denotes the covariance between the degrees of nodes at either

end of edges, and σl and Var(l) denote the standard deviation and variance of the

degrees of nodes at one end of edges, respectively. The second equality in equa-

tion (7.20) holds only for undirected networks since σl = σm in such cases.

We begin with collecting some facts. Let ki be the degree of node i and let N

denote the number of nodes of the network. For the number |E| of edges we obtain

|E| =
N

∑
i=1

ki. (7.21)

Furthermore, we observe that

∑
e∈E

le =
N

∑
i=1

k2i , ∑
e∈E

l2e =
N

∑
i=1

k3i , l̄ =
∑

N
i=1 k

2
i

∑
N
i=1 ki

, (7.22)

where l̄ denotes the mean of the degrees of nodes at one end of the edges. Using

these equations, it is straightforward to show that

Var(l) =
∑

N
i=1 k

3
i −

(

∑
N
i=1 k

2
i

)2
/∑

N
i=1 ki

∑
N
i=1 ki

, (7.23)

and

Cov(l,m) =
1

∑
N
i=1 ki

∑
e∈E

leme −
(

∑
N
i=1 k

2
i

∑
N
i=1 ki

)2

. (7.24)

First model. Observe that the number of edges within the network N ∗
1 is |E∗| =

4|E| + 2N (we treat each undirected edge as two directed ones) and the number

of nodes is N∗ = 2N. Let l∗e denote the degree of a node at one end of edge e in
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N ∗
1 . Note that each node i in N has a new degree in N ∗

1 , k
∗
i = 2ki + 1, and that its

duplicate i′ has the same degree k∗i′ = k∗i . Let the node indices be ordered such that

i ∈ {1, . . . ,N} are the ancestor nodes and i ∈ {N + 1, . . . , 2N} are the duplicate

nodes. Thus, we can rewrite ∑
2N
i (k∗i )

s = 2∑
N
i (k∗i )

s for any value of s ∈ {1, 2, 3}. By
making use of these observations and equation (7.23) we obtain

Var(l∗) =
∑

N
i=1(2ki + 1)3 −

(

∑
N
i=1(2ki + 1)2

)2
/∑

N
i=1(2ki + 1)

∑
N
i=1(2ki + 1)

. (7.25)

To derive the covariance Cov(l∗,m∗), we use

∑
e∈E∗

l∗em
∗
e = 4 ∑

e∈E
l∗em

∗
e + 2

N

∑
i=1

(2ki + 1)2

= 4 ∑
e∈E

(2le + 1)(2me + 1) + 2
N

∑
i=1

(2ki + 1)2

= 16 ∑
e∈E

leme + 16
N

∑
i=1

k2i + 4
N

∑
i=1

ki + 2
N

∑
i=1

(2ki + 1)2. (7.26)

We can eliminate term ∑e∈E leme by using equation (7.24) and thus we obtain

Cov(l∗,m∗) =
1

2∑
N
i=1(2ki + 1)

(

∑
e∈E∗

l∗em
∗
e

)

−
(

∑
N
i=1(2ki + 1)2

∑
N
i=1(2ki + 1)

)

=
1

∑
N
i=1(2ki + 1)

[

8 Cov(l,m)

(

N

∑
i=1

ki

)

+ 8

(

N

∑
i=1

k2i

)2/(

N

∑
i=1

ki

)

+
N

∑
i=1

(8k2i + 2ki + (2ki + 1)2)

]

−
(

∑
N
i=1(2ki + 1)2

∑
N
i=1(2ki + 1)

)2

.

(7.27)

With equations (7.25), (7.27), and (7.20) we finally obtain

a∗ =
Cov(l∗,m∗)
Var(l∗)

= a1a + a2 (7.28)

with

a1 := 8
∑ k3i − (∑ k2i )

2/∑ ki

∑(2ki + 1)3 − (∑(2ki + 1)2)2/∑(2ki + 1)
(7.29)
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and

a2 :=

(

8(∑ k2i )(1 + ∑ k2i /∑ ki) + 2∑ ki + ∑(2ki + 1)2 − (∑(2ki+1)2)2

∑(2ki+1)

)

∑(2ki + 1)3 − (∑(2ki + 1)2)2/∑(2ki + 1)
, (7.30)

where a denotes the assortativity coefficient of N .

Second model. Let le and me denote the degree of the nodes at either end of an

edge e. Observe that the number of edges |E∗| of N ∗
2 is four times the number of

edge |E| in N , |E∗| = 4|E|. Each edge in N is represented by four edges in N ∗
2 ,

where the latter share all the same degrees at their ends. Moreover, for the degrees

of nodes i in N ∗
2 holds k∗i = 2ki which carries over to the degrees of nodes at an

end of an edge, l∗e = 2le. Thus,

∑
e∈E∗

l∗em
∗
e = 4 ∑

e∈E
l∗em

∗
e = ∑

e∈E
(2l∗e )(2m

∗
e ) = ∑

e∈E
(4le)(4me). (7.31)

Therefore, the correlation coefficient of N ∗
2 can be expressed by

a∗ = corr(l∗,m∗) = corr(4l, 4m) = corr(l,m) = a, (7.32)

where the third equality follows from the fact that the correlation coefficient is

invariant to changes of scale of the variables (except for a sign).

7.3 Proofs

For the sake of completeness, the proofs needed in chapter 5 are presented. All con-

tent of this section was kindly provided by Martin Wendler, University of Bochum,

Germany, and was published in reference [232].

Lemma 1

For every i, j ∈ {1, . . . ,N} with i 6= j, we have the following limit of the probability

distribution of the empirical correlation:

P

(
√

T

g(M)
corr(xi,M,T, xj,M,T) ≤ x

)

→ Φ(x) with g(M) =
2

3
M +

1

3

1

M
(7.33)

as T → ∞, where Φ denotes the cumulative distribution function of a standard

normal random variable.
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Proof. In order to simplify the presentation, we write yi,M,T(t) = xi,M,T(t) − 1
2 ,

so that Eyi,M,T(t) = 0. First note that yi,M,T(t) is a M-dependent sequence, i.e., for

|s− t| > M, yi,M,T(s) and yi,M,T(t) are independent. So we have that the covariance

Cov
(

yi,M,T(1)yj,M,T(1), yi,M,T(t)yj,M,T(t)
)

= 0 for T > M.

Additionally,

Cov
(

yi,M,T(1)yj,M,T(1), yi,M,T(t)yj,M,T(t)
)

=

Cov (yi,M,T(1), yi,M,T(t))Cov
(

yj,M,T(1), yj,M,T(t)
)

(7.34)

and Cov (zi(s), zi(t)) = Var (zi(1)) if s = t and otherwise Cov (zi(s), zi(t)) = 0. For

1 ≤ t ≤ M, we obtain by the definition of the moving average and the independence

of the underlying process zj(t), t ∈ N that

Cov
(

yi,M,T(1)yj,M,T(1), yi,M,T(t)yj,M,T(t)
)

=
1

M4

(

M−(t−1)

∑
s=1

Var
(

zj(s)
)

)2

(7.35)

=
1

M4
(M− (t− 1))2Var2 (zi(1)) .

By the central limit theorem for M-dependent random variables, see reference [275],

1
√

Var
(

1
T ∑

T
t=1 yi,M,T(t)yj,M,T(t)

)

1

T

T

∑
t=1

yi,M,T(t)yj,M,T(t) (7.36)

converges in distribution to a standard normal random variable as T → ∞. Further-

more, we have the following convergence for the variance as T → ∞:

TVar

(

1

T

T

∑
t=1

yi,M,T(t)yj,M,T(t)

)

→ Var(yi,M,T(1)yj,M,T(1)) + 2
M

∑
t=2

Cov
(

yi,M,T(1)yj,M,T(1), yi,M,T(t)yj,M,T(t)
)

=

(

1

M2
+

2

M4

M

∑
t=2

(M− (t− 1))2

)

Var2 (zi(1)) =
g(M)

M2
Var2 (zi(1)) . (7.37)
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The last equality follows easily by ∑
n
i=1 i

2 = n(n+1)(2n+1)
6 . With the same central limit

theorem, 1√
T

∑
T
t=1 yi,M,T(t) converges to a normal limit, so 1

T
3
4

∑
T
t=1 yi,M,T(t) → 0 in

probability and consequently

√
T

(

1

T

T

∑
t=1

yi,M,T(t)

)(

1

T

T

∑
t=1

yj,M,T(t)

)

=

(

1

T
3
4

T

∑
t=1

yi,M,T(t)

)(

1

T
3
4

T

∑
t=1

yj,M,T(t)

)

→ 0 (7.38)

in probability as T → ∞. By similar arguments, we have that 1
T ∑

T
t=1 y

2
i,M,T(t) →

Var(yi,M,T(1)) = 1
MVar (zi(1)) and 1

T ∑
T
t=1 yi,M,T(t) → 0, so we get

1

T

T

∑
t=1

(yi,M,T(t) − ȳi,M,T)2 =
1

T

T

∑
t=1

y2i,M,T(t) −
(

1

T

T

∑
t=1

yi,M,T(t)

)2

→ Var(yi,M,T(1)) =
1

M
Var (zi(1)) . (7.39)

By Slutsky’s theorem [276] and with (7.36), (7.37), (7.38), and (7.39), we finally obtain

that

√

T

g(M)
corr(xi,M,T, xj,M,T)

=

√
T 1

T ∑
T
t=1 yi,M,T(t)yj,M,T(t) −

√
T
(

1
T ∑

T
t=1 yi,M,T(t)

) (

1
T ∑

T
t=1 yj,M,T(t)

)

√

g(M) 1
T ∑

T
t=1(yi,M,T(t) − ȳi,M,T)2 1

T ∑
T
t=1(yj,M,T(t) − ȳj,M,T)2

(7.40)

converges in distribution to a standard normal random variable as T → ∞. This

completes the proof.

Lemma 2

For T → ∞, R → ∞

ǫ̂

(

θ
√

Teff(M)
,M, T

)

→ 2Φ(−θ) (7.41)

in probability with Teff(M) = T
g(M)

.
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Proof. With Lemma 1, we have that

E

[

H
(r)
ij,M,T

(

θ
√

Teff(M)

)]

= P

(

ρij,M,T >
θ

√

Teff(M)

)

= P

(

corr(xi,M,T, xj,M,T) >
θ

√

Teff(M)

)

+ P

(

corr(xi,M,T, xj,M,T) <
−θ

√

Teff(M)

)

= P

(
√

T

g(M)
ρij,M,T > θ

)

+ P

(
√

T

g(M)
ρij,M,T < −θ

)

→ 2Φ(−θ)

as T → ∞. Furthermore, H
(r)
ij,M,T is bounded by 0 and 1, so Var

(

H
(r)
ij,M,T

)

≤ 1
4 . By

the independence of the R random networks

Var

(

ǫ̂

(

θ
√

Teff(M)
,M, T

))

=
1

R2

R

∑
r=1

Var

(

H
(r)
ij,M,T

(

θ
√

Teff(M)

))

≤ 1

4R
→ 0

as R → ∞. The lemma follows with the Chebyshev inequality.
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[121] M. Á. Serrano and M. Boguñá. Percolation and epidemic thresholds in clus-
tered networks. Phys. Rev. Lett., 97:088701, 2006.

[122] R. Xulvi-Brunet and I. M. Sokolov. Reshuffling scale-free networks: From
random to assortative. Phys. Rev. E, 70:066102, 2004.

[123] R. Xulvi-Brunet and I. M. Sokolov. Changing correlations in networks: assor-
tativity and dissortativity. Acta Phys. Pol. B, 36:1431–1455, 2005.

[124] Z. Jing, T. Lin, Y. Hong, L. Jian-Hua, C. Zhi-Wei, and L. Yi-Xue. The effects
of degree correlations on network topologies and robustness. Chinese Phys.,
16:3571–3580, 2007.

[125] P. Holme and J. Zhao. Exploring the assortativity-clustering space of a net-
work’s degree sequence. Phys. Rev. E, 75:046111, 2007.

[126] D. V. Foster, J. G. Foster, P. Grassberger, and M. Paczuski. Clustering drives
assortativity and community structure in ensembles of networks. Phys. Rev.
E, 84:066117, 2011.

[127] S. N. Soffer and A. Vázquez. Network clustering coefficient without degree-
correlation biases. Phys. Rev. E, 71:057101, 2005.

[128] E. Estrada. Combinatorial study of degree assortativity in networks. Phys.
Rev. E, 84:047101, 2011.

[129] C. C. Friedel and R. Zimmer. Influence of degree correlations on network
structure and stability in protein-protein interaction networks. BMC Bioinfor-
matics, 8:297, 2007.



120 Bibliography

[130] P. van Mieghem, H. Wang, X. Ge, S. Tang, and F. A. Kuipers. Influence of
assortativity and degree-preserving rewiring on the spectra of networks. Eur.
Phys. J. B, 76:643–652, 2010.

[131] H. Wang, W. Winterbach, and P. van Mieghem. Assortativity of complemen-
tary graphs. Eur. Phys. J. B, 83:203–214, 2011.

[132] A. S. Pikovsky, M. G. Rosenblum, and J. Kurths. Synchronization: A universal
concept in nonlinear sciences. Cambridge University Press, Cambridge, UK,
2001.

[133] D. Brillinger. Time Series: Data Analysis and Theory. Holden-Day, San Francisco,
USA, 1981.

[134] S. Boccaletti, J. Kurths, G. Osipov, D. L. Valladares, and C. S. Zhou. The
synchronization of chaotic systems. Phys. Rep., 366:1–101, 2002.

[135] H. Kantz and T. Schreiber. Nonlinear Time Series Analysis. Cambridge Univer-
sity Press, Cambridge, UK, 2nd edition, 2003.

[136] E. Pereda, R. Quian Quiroga, and J. Bhattacharya. Nonlinear multivariate
analysis of neurophysiological signals. Prog. Neurobiol., 77:1–37, 2005.
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[183] G. Buzsáki, C. Geisler, D. A. Henze, and X. J. Wang. Interneuron diversity
series: circuit complexity and axon wiring economy of cortical interneurons.
Trends Neurosci., 27:186–193, 2004.

[184] T. I. Netoff, R. Clewley, S. Arno, T. Keck, and J. A. White. Epilepsy in small-
world networks. J. Neurosci., 24:8075–8083, 2004.



124 Bibliography

[185] B. Percha, R. Dzakpasu, M. Zochowski, and J. Parent. Transition from local
to global phase synchrony in small world neural network and its possible
implications for epilepsy. Phys. Rev. E, 72:031909, 2005.

[186] J. Dyhrfjeld-Johnsen, V. Santhakumar, R. J. Morgan, R. Huerta, L. Tsimring,
and I. Soltesz. Topological determinants of epileptogenesis in large-scale
structural and functional models of the dentate gyrus derived from exper-
imental data. J. Neurophysiol., 97:1566–1587, 2007.

[187] S. Feldt, H. Osterhage, F. Mormann, K. Lehnertz, and M. Zochowski. Inter-
network and intranetwork communications during bursting dynamics: appli-
cation to seizure prediction. Phys. Rev. E, 76:021920, 2007.

[188] R. J. Morgan and I. Soltesz. Nonrandom connectivity of the epileptic dentate
gyrus predicts a major role for neuronal hubs in seizures. Proc. Natl. Acad.
Sci. U.S.A., 105:6179–6184, 2008.

[189] A. Rothkegel and K. Lehnertz. Recurrent events of synchrony in complex
networks of pulse-coupled oscillators. Europhys. Lett., 95:38001, 2011.

[190] P. J. Franaszczuk, G. K. Bergey, P. J. Durka, and H. M. Eisenberg. Time-
frequency analysis using the matching pursuit algorithm applied to seizures
originating from the mesial temporal lobe. Electroencephalogr. Clin. Neurophys-
iol., 106:513–521, 1998.

[191] S. J. Schiff, D. Colella, G. M. Jacyna, E. Hughes, J. W. Creekmore, A. Marshall,
M. Bozek-Kuzmicki, G. Benke, W. D. Gaillard, J. Conry, and S. R. Weinstein.
Brain chirps: spectrographic signatures of epileptic seizures. Clin. Neurophys-
iol., 111:953–958, 2000.

[192] C. C. Jouny, P. J. Franaszczuk, and G. K. Bergey. Characterization of epileptic
seizure dynamics using Gabor atom density. Clin. Neurophysiol., 114:426–437,
2003.

[193] F. Bartolomei, D. Cosandier-Rimele, A. McGonigal, S. Aubert, J. Regis,
M. Gavaret, F. Wendling, and P. Chauvel. From mesial temporal lobe to tem-
poroperisylvian seizures: A quantified study of temporal lobe seizure net-
works. Epilepsia, 51:2147–2158, 2010.

[194] R. G. Andrzejak, D. Chicharro, K. Lehnertz, and F. Mormann. Using bivariate
signal analysis to characterize the epileptic focus: The benefit of surrogates.
Phys. Rev. E, 83:046203, 2011.
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