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Abstract

This thesis addresses the question to what extent it is possible to reconstruct

human full-body motions from very sparse control signals. To this end, we

�rst investigate the use of multi-linear representations of human motions.

We show that multi-linear motion models together with knowledge from pre-

recorded motion capture databases can be used to realize a basic motion

reconstruction framework that relies on very sparse inertial sensor input only.

However, due to the need for a semantic pre-classi�cation of the motion to

be reconstructed and rather restricting database requirements, the described

framework is not suitable for a more general motion capture scenario.

We address these issues in a second, more �exible approach, which relies

on sparse accelerometer readings only. Speci�cally, we employ four 3D ac-

celerometers that are attached to the extremities of a human actor to learn

a series of local models of human poses at runtime. The main challenge in

generating these local models is to �nd a reliable mapping from the low-

dimensional space of accelerations to the high-dimensional space of human

poses or motions. We describe a novel online framework that successfully

deals with this challenge. In particular, we introduce a novel method for

very e�ciently retrieving poses and motion segments from a large motion

capture database based on a continuous stream of accelerometer readings, as

well as a novel prior model that minimizes reconstruction ambiguities while

simultaneously accounting for temporal and spatial variations.

Thirdly, we will outline a conceptually very simple yet very e�ective frame-

work for reconstructing motions based on sparse sets of marker positions.

Here, the sparsity of the control signal results from problems that occurred

during a motion capture session and is thus unintentional. As a consequence,

we do not control the information we can access, which introduces several

new challenges. The basic idea of the presented framework is to approximate
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the original performance by rearranging suitable, time-warped motion sub-

sequences retrieved from a knowledge base containing motion capture data

that is known to be similar to the original performance.
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1
Introduction

Motion capture, the process of recording movement and transferring it onto

a digital model, is nowadays widely used in military, entertainment, sports,

medical, and computer graphics applications. When used in �lmmaking, the

term performance capture has recently become very popular, describing the

attempt to simultaneously capture all aspects of an actor's performance (e.g.,

including his facial expressions) rather than only his overall body movements.

Most commercially available (full-body) motion capture systems are based

on optical sensors (e.g., arrays of calibrated cameras), which are used to tri-

angulate the 3D positions of special markers attached to an actor. While

these systems typically allow tracking and recording human motions at very

high spatial and temporal resolutions, they are in general very cost-intensive

regarding software, equipment, and data acquisition. In addition, they often

impose limiting constraints on the actor and the recording environment. In

recent years, low-cost motion tracking systems have become popular, espe-

cially in video game and sports applications. Examples for this are depth

1



1 Introduction

sensor-based systems like Microsoft's Kinect, or accelerometer-based devices

like Nintendo's Wii, Nike Plus, or Adidas MiCoach, which can be easily

attached to an actor's body or even �t in a shoe. The information ob-

tained from such sensors is, however, often low-dimensional and a�ected by

noise, so that in general high-dimensional motions cannot be inferred with-

out incorporating additional knowledge. Here, data-driven methods, which

incorporate such additional knowledge in the form of pre-recorded motion

capture databases, have turned out to be a powerful approach. When using

low-dimensional control signals to capture full-body motions, many degrees

of freedom are necessarily unconstrained. In order to eventually yield high-

dimensional full-body animations, these degrees of freedom then need to be

synthesized or reconstructed using the knowledge embedded in the database.

This is why I will refer to the task of creating full-body motions from low-

dimensional measurements of a performance as motion reconstruction rather

than motion capture.

In this thesis I will present three di�erent data-driven approaches to mo-

tion reconstruction. The main focus lies on control signals obtained from

inertial sensors (Chapters 2 and 3), and I will in particular present a sys-

tem for reconstructing motions on the basis of sparse accelerometer readings

only (Chapter 3). Due to their estimative character, motion reconstruction

frameworks are in general neither able nor meant to be a substitute for high-

quality (full-body) motion capture systems. This holds especially for the

�lm industry, where an actor's movements have to be accurately reproduced

rather than estimated. Sometimes, however, very demanding motion capture

conditions cause signi�cant gaps in the actually acquired data, which�due to

the high costs of a motion capture session�often have to be manually �lled

by artists afterwards. In addition to the aforementioned techniques that rely

on sparsely designed, inertial-based control input, I will thus also describe

an approach to motion reconstruction that deals with such unintentionally

sparse, position-based control data (Chapter 4).

2



2
Motion reconstruction using

multi-linear motion models

2.1 Introduction

Motion representations based on linear models together with linear dimen-

sionality reduction techniques like principal component analysis (PCA) have

become well-established techniques in motion synthesis applications [Tro02,

SHP04, GBT04, BSP+04, CH05, FF05, LZWM05, OBHK05]. Using these

methods one neglects information about the motion sequences, such as the

temporal order of the frames, information about di�erent actors, or seman-

tic information, which is often given when dealing with motion capture

databases.

In the context of facial animation, Vlasic et al. [VBPP05] have success-

fully applied multi-linear models of 3D face meshes that separably parame-

terize semantic aspects such as identity, expression, and visemes. Follow-

3



2 Motion reconstruction using multi-linear motion models

ing up work that I started in my diploma thesis [Tau07], Krüger et al.

[KTW07, KTMW08] investigated how multi-linear models can be used to

represent human (full-body) animations. Here, motion data was encoded in

high-order tensors, whose various modes explicitly account for both technical

and semantic aspects of not only one motion but an entire class of (semanti-

cally) related motions. It was not only shown that reduction techniques based

on higher-order singular value decomposition (HOSVD) outperform linear

PCA-models in terms of data compression, but also how tensor representa-

tions can be used for synthesizing new motions. Building upon these ideas, we

created a multi-linear framework that�under certain assumptions�allows us

to create naturally looking full-body animations that are driven by extremely

sparse control signals. The ideas discussed in this chapter have originally

been presented in the paper Reconstruction of Human Motions Using Few

Sensors [TKZW08]. A very similar usage of motion tensors was later pre-

sented by Min et al. [MLC10]. Here, the authors applied multi-linear analysis

techniques to construct a generative motion model for synthesis, retargeting,

and editing of personalized human motion styles.

When comparing our reconstructed motions with ground-truth motions,

we realized that the established approaches to compute a distance between

motions on the average error of local joint orientations can fail: Being purely

pose-based, the distance measure might fail to detect artifacts like direc-

tional �ips or jitter (i.e., the distance between the original motion and the

reconstructed motion is small although the latter exhibits these artifacts).

Therefore, we also present a novel practical distance measure for comparing

motions based on quantities represented in a global coordinate frame. As-

suming a �xed skeleton topology, our goal is a universal measure that both

matches the human perception and is simple enough to be implemented in

time-critical environments.

Before diving into motion synthesis, I will brie�y recall the basics of multi-

linear algebra and the use of multi-linear models for representing human

motion data [Vas02, RCO05, MK06, KTW07, KTMW08] that will be central

to our approach.

4



2.2 Basics

Figure 2.1: Simpli�ed representation of the HOSVD for a tensor of order 3:
The data tensor is shown on the left side, its decomposition into
a core tensor and three orthonormal matrices on the right side of
the equation.

2.2 Basics

2.2.1 Multi-linear algebra

Multi-linear algebra is a natural extension of linear algebra. A tensor Θ

of order N ∈ N and type (d1, d2, . . . , dN) ∈ NN over the real number R is

de�ned to be an element in Rd1×d2×...×dN . The number d := d1 · d2 · . . . · dN is

referred to as the total dimension of Θ. Intuitively, the tensor Θ represents d

real numbers in a multi-dimensional array based on N indices. These indices

are also referred to as the modes of the tensor, and the vectors spanned by

the k− th mode (those aligned with the k-th axis of the tensor) are referred

to as mode-k-vectors. As an example, a vector v ∈ Rd is a tensor of order

N = 1, having only one mode. Similarly, a matrix M ∈ Rd1×d2 is a tensor of

order N = 2, having two modes that correspond to the columns and rows.

A tensor Θ can be transformed by a higher-order singular value decom-

position (HOSVD), sometimes also referred to as N-mode singular value de-

composition. The result of the decomposition is a core tensor Φ of the same

size as Θ and associated orthonormal matrices U1, U2, . . . , UN . The matrices

Uk are elements in Rdk×dk , where k ∈ {1, 2, . . . , N}. Figure 2.1 shows a sim-
pli�ed graphical representation of this decomposition. Mathematically, this

decomposition can be expressed in the following way:

Θ = Φ×1 U1 ×2 U2 ×3 . . .×N UN . (2.1)

This product is de�ned recursively, where the mode-k-multiplication ×k with

5



2 Motion reconstruction using multi-linear motion models

Figure 2.2: Since variance is concentrated in one corner of the core tensor,
the data tensor (on the left hand side) can be approximated by
truncated versions (drawn in darker blue) of the core tensor and
the respective matrices.

Uk replaces each mode-k-vector v of Φ ×1 U1 ×2 U2 . . . ×k−1 Uk−1 for k > 1

(and Φ for k = 1) by the vector Ukv. One important property of Φ is that its

elements are sorted in a way that the variance decreases from the �rst to the

last element in each mode [VBPP05]. A reduced model Φ′ can be obtained by

truncating insigni�cant components of Φ and the matrices Uk, respectively

(see Figure 2.2). In the special case of a 2-mode tensor, this procedure is

equivalent to principal component analysis (PCA) [Vas02]. A more detailed

description of multi-linear algebra is given in [VBPP05], and a very compre-

hensive discussion of the HOSVD can be found in [LMV00]. Furthermore,

Kolda and Bader [KB09] provide an overview of di�erent higher-order tensor

decompositions, their applications, and available software.

2.2.2 Motion tensors

In our case tensors are �lled with motion data similar to the way Krüger

et al. suggest [KTW07, KTMW08]. A frame is de�ned by the position of

its root node p and quaternions (q1 . . . q31) describing the orientations of the

skeleton segments. A motion is de�ned to be a sequence of frames. We build

two motion tensors, one for the root positions, in the following denoted by

Θp, and one for the rotational data, in the following denoted by Θq. The

reason for separating these types of data into two separate tensors is their

di�erence in variance: While the values of unit quaternions are in the interval

[−1, 1], the translational o�set of the root position is not limited at all.

In these tensors, data is arranged in what is referred to as technical modes,

which correspond to the structure of the underlying motion capture data,

6



2.2 Basics

Figure 2.3: Visualization of a motion tensor of order 3, having one technical
mode (data) and two natural modes (styles and actors). Each
skeleton represents a sequence of poses.

and natural modes, which correspond to properties of motions that typically

appear in the context of a motion capture session. The technical modes split

up into DOF mode, Joint mode and Frame mode, the natural modes into

Style mode, Actors mode and Repetition mode. Whenever the size of a tensor

is given in this work, the order of its modes will exactly follow this order,

with technical modes preceding the natural modes. Due to the structure of

the database used in all our experiments (see also Section 2.3.5), the size of

the Actors mode will always be 5, and the sizes of both Repetition and Style

mode will always be 3. With our skeleton representation having 31 joints, and

each local orientation expressed as a 4-dimensional unit quaternion, a typical

tensor Θq has a dimension of N = 6 and a size of d = 4× 31×F × 3× 5× 3,

with F being the number of frames. Since only one node is considered in a

tensor Θp storing the translation of the root node, this tensor does not need

a Joint mode and its dimension reduces to N = 5. Identifying the degrees

of freedom of the root node with the axes in 3D space, the size of the DOF

mode in this case becomes 3.

Unfortunately, there is no intuitive way of visualizing tensors of order

greater than 3. Figure 2.3 thus simpli�es the data structure once again for

visualization purposes by combining all technical modes into a single data

mode and discarding one of the three natural modes. In this visualization

of a motion tensor, each skeleton represents a single (large) column vector

containing the rotational data of not only a single pose but a full motion

sequence.

7



2 Motion reconstruction using multi-linear motion models

Figure 2.4: By multiplying the core tensor with all matrices corresponding
to technical modes (one in this example) and a single row of all
matrices corresponding to natural modes (two in this example),
one of the original motions (visualized as the darker blue bar
inside the data tensor on the left hand side) is reproduced.

2.2.3 Motion synthesis

As described in Section 2.2.1, a data tensor Θ can be decomposed into a core

tensor Φ and related matrices U1, . . . , UN . In this decomposition, each matrix

Uk corresponds to a speci�c mode (e.g., the Actors mode), and each row in a

matrix Uk corresponds to a speci�c entry of this mode (e.g., a certain actor).

Instead of reproducing the complete data tensor Θ (by mode-multiplying Φ

with all matrices Uk), this representation also allows us to directly reproduce

a single original motion, i.e., a motion contained in the data tensor. This

is done by �rst multiplying Φ with each matrix corresponding to a technical

mode, and then multiplying the result with only one row of each matrix

corresponding to a natural mode. Let t be the number of technical modes,

n the number of natural modes, and let uik be the i-th row of matrix Uk.

Reproducing a motion m then can be expressed in the following way:

m = Φ×1 U1 . . .×t Ut ×t+1 u
i1
t+1 . . .×t+n uint+n. (2.2)

Figure 2.4 illustrates reproduction of an original motion for a tensor that has

one technical and two natural modes.

While multiplying with a single row of each matrix Ut+1, . . . , Ut+n repro-

duces one of the original motions, it is also possible to synthesize a new

motion mnew by using linear combinations of matrix rows. This can be ex-

8



2.2 Basics

pressed mathematically in this way:

mnew(λk) = Φ×1 U1...×t Ut ×t+1 λt+1Ut+1...×t+n λt+nUt+n, (2.3)

with

λkUk =
(
λ1
k . . . λ

dk
k

)
u1
k
...

udkk

 =

dk∑
i=1

λik u
i
k =: xk. (2.4)

Motion classi�cation

With the above model in hand, we are able to formulate an optimization

problem based on the variables λk: Given an input motion minput, our goal is

to �nd values λ̂k, with 1 ≤ k ≤ n, such that the synthesized motion mnew(λ̂k)

best matches this input motion:

λ̂k = min
λk

dist(minput,mnew(λk)), 1 ≤ k ≤ n, (2.5)

with dist(m1,m2) being an arbitrary distance measure measuring the dissim-

ilarity of two motions m1 and m2.

While in our reconstruction scenario we are dealing with a sparse input

signal rather than with a complete input animation, the described framework

can already be used for motion classi�cation. Optimizing for λk then simply

relates to classifying the input motion with respect to each natural mode.

More precisely, given a motion tensor like the one described in Section 2.2.2,

the λ̂k tell us to which extent each actor, style, and repetition contributes to

approximating the input motion. Given a weight distribution like this, arbi-

trary heuristics can be employed to derive a classi�cation result. The most

obvious strategy would be to assign the input motion to exactly that actor

(style, repetition) that has the highest weight compared to all other actors

(styles, repetitions). As there might, however, not always be a clear winner

in each considered mode, more sophisticated strategies could for instance try

to disambiguate the assignment by (iteratively) re-optimizing a subset of λk
after excluding candidates with low weights from the optimization. Of course

9



2 Motion reconstruction using multi-linear motion models

this still does not guarantee an unambiguous classi�cation result.

While classifying a motion with respect to the Repetition mode is a rather

unappealing task, optimizing it with respect to Style and Actors mode en-

ables two di�erent but equally interesting applications. Probably the more

classical scenario would be to classify a motion with respect to its Style mode:

What kind of motion are we dealing with? Optimizing for the Actors mode

on the other hand in principle allows for actor identi�cation: Whose mo-

tion is this? Note, however, that even Actors and Style Mode only represent

di�erent shades of the same basic motion class (e.g., walking motions), and

that a single motion tensor is in general only capable of storing one such base

class. Thus, a meaningful motion tensor-based classi�cation requires some

kind of semantic pre-classi�cation: Which is the appropriate base class for

this motion? Or in other words: Which tensor must we use? Following these

considerations, Krüger [Krü11] has shown that tensor-based motion classi�-

cation can be bene�cial in a two-layered approach, seeking to re�ne a coarse

pre-annotation, which in general is much easier to obtain automatically.

Classi�cation is, however, beyond the scope of this work. Instead, we want

to focus on motion reconstruction based on a sparse control signal. Before

stating the optimization problem in this scenario, I �rst want to discuss the

control signal itself.

2.3 Motion reconstruction

2.3.1 Control signal

The control signal in our reconstruction scenario is provided by up to four

Xsens MTx inertial measurement units (IMU) [Xse11] that are attached to an

actor's extremities. Each IMU consists of an accelerometer measuring its 3D

linear acceleration, a gyroscope tracking changes in its 3D orientation, and a

magnetic �eld sensor pointing towards the magnetic north pole. Fusing the

information of all integrated sensors, these devices also provide (real-time)

information about their 3D orientation.

In contrast to the system presented later in Chapter 3, we are here not
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2.3 Motion reconstruction

only making use of the accelerometer readings, but also of the orientation

information. More precisely, we use the orientation information to transform

local accelerations aL�accelerations given in the devices' local coordinate

systems, as reported by the accelerometers�into global accelerations aG,

accelerations expressed in a �xed global (world) coordinate system. Note

that up to this point both local and global acceleration represent an overlay

of acceleration due to motion and acceleration due to gravity:

aG = amotion
G + agravity

G (2.6)

Knowing the sensor orientation, however, enables us to subtract the accel-

eration due to gravity, leaving us with the pure acceleration due to motion

amotion
G . In the following, this acceleration due to motion (also referred to as

coordinate acceleration) will serve as our control signal and be denoted as

asensor:

asensor := amotion
G . (2.7)

In order to compare synthesized motions with this control signal, we simulate

the coordinate accelerations of so-called virtual sensors that are attached to

the virtual actor in the same way as the real sensors are attached to the real

actor. Simulating the coordinate accelerations of virtual sensors is a very

straightforward process: All we have to do is computing the second time

derivatives of the virtual sensors' positional trajectories, which we can easily

obtain using standard forward kinematics.

Denoting the simulated coordinate accelerations of virtual sensors by asim
and the actual coordinate accelerations of the real sensors by asensor, the

optimization problem becomes: Find the synthetic motion m̂new such that

the simulated accelerations asim(m̂new) derived from this motion best match

the actual coordinate accelerations asensor of the real sensors:

m̂new = min
mnew

dist(asensor, asim(mnew)). (2.8)
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2.3.2 Distance measure

In order to solve this optimization problem, we �rst have to de�ne a distance

measure for comparing accelerations. While accelerations expressed in a

global coordinate system are invariant under motion translation, they are not

invariant under motion rotation: Say we have two motions, one of them being

an exact copy of the other but being rotated about the vertical axis by 180

degrees. Acceleration vectors derived from both motions then will have the

same magnitudes but di�erent directions.1 When comparing motions, both

invariance under motion translation and rotation, however, are in general

very desirable properties of a distance measure. To be more precise: We

want our distance measure to be invariant under translation at least in the

horizontal plane and to be invariant under rotation only about the vertical

axis. Note that a simple comparison of acceleration magnitudes would not

only be invariant under arbitrary rotation�a property we usually do not

want�but would also neglect some relational information between di�erent

sensors that is established by the directions of the accelerations. Comparing

poses on the acceleration level is inherently very di�cult because of their

ambiguity. The easiest way to illustrate this problem is to consider static

poses without any measurable coordinate acceleration. In order to reduce

this ambiguity, we want to calculate distances between entire motions instead

of calculating distances between single frames, which also allows us to make

use of the smoothness conditions contained in the motion data.

Our proposed distance measure is based on the one presented by Kovar

et al. [KGP02]. Here, the authors de�ned the distance between two win-

dows of frames as the minimal weighted sum of squared distances between

corresponding points in two point clouds, given that an arbitrary rigid 2d

transformation may be applied to one of the point clouds. Without loss of

generality, let pj,f represent the position of joint j in frame f . The distance

between two motions m and m′ of arbitrary (but same) length is then de�ned

1To be more precise, the acceleration vectors will be mirrored on a plane perpendicular
to the ground plane.
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as:

dist(m,m′) = min
θ,x0,z0

(∑
f

∑
j

‖pf,j − Tθ,x0,z0p′f,j‖2

)
, (2.9)

where Tθ,x0,z0 is a linear transformation that rotates a point p about the

(vertical) y-axis by θ degrees and then translates it by x0, z0. This minimiza-

tion problem has a closed-form solution [KGP02]. While in their framework

points represent positional data�in general a downsampling of the virtual

character's mesh deformed according to the underlying skeleton's pose�we

will identify points with the coordinate accelerations of the sensors. As men-

tioned before, accelerations are inherently invariant under motion translation,

so we do not even have to solve for the translational part of the transforma-

tion T and yield:

dist(m,m′) = min
θ

(∑
f

∑
s

‖af,s − Tθa′f,s‖2

)
, (2.10)

where af,s represents the 3-dimensional vector of coordinate accelerations

reported by sensor s in frame f . The same closed-form solution can be

applied to this problem.

2.3.3 Optimization problem

As stated earlier, our optimization problem consists in �nding the synthetic

motion that best �ts the sensor data. In the following, we assume that a se-

mantic pre-classi�cation of the motion to be reconstructed is given, and that

the respective motion tensor contains 45 motions spanning a 5-dimensional

Actors mode, a 3-dimensional Style mode and a 3-dimensional Repetition

mode (cf. Section 2.2.2). Furthermore, let masr be the motion of actor a,

style s and repetition r, and let λasr be a weight assigned to this motion,

1 ≤ a ≤ 5, 1 ≤ s, r ≤ 3. Given that we want to approximate the original per-

formance by a linear combination of the original motions, the general linear
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2 Motion reconstruction using multi-linear motion models

Figure 2.5: In the multi-linear framework, a new motion is synthesized by
computing linear combinations of respective matrix rows. The
resulting motion (visualized as green bar on the left side) then
is a linear combination of original motions. In this example, the
tensor has three natural modes (A,S,R) with dimensions 5, 3 and
3, respectively. Φt denotes the result of mode-multiplying the
core tensor Φ with all matrices related to technical modes.

(as opposed to the multi-linear) approach would calculate mnew as

mnew(λasr) =
∑
a

∑
s

∑
r

λasr ·masr, 1 ≤ a ≤ 5, 1 ≤ s, r ≤ 3, (2.11)

thus comprising a 45-dimensional optimization problem. Please note that,

due to the forward kinematics required for simulating virtual sensor readings,

the minimization problem stated in equation 2.8 is non-linear (regardless of

the chosen distance measure) and no closed-form solution exists.

By arranging the original motions in a multi-linear model and decompos-

ing it using HOSVD, we yield a representation that e�ectively reduces the

number of variables in the optimization to 11: Instead of having one param-

eter for each motion (5 · 3 · 3 = 45), we only have one for each actor, one for

each style, and one for each repetition (5 + 3 + 3 = 11). Let λA = (λ1
A . . . λ

5
A)

be the weights assigned to the individual actors, λS = (λ1
S . . . λ

3
S) the weights

assigned to the individual styles, and λR = (λ1
R . . . λ

3
R) the weights assigned

to the individual repetitions. Then we can reformulate equation 2.3 as

mnew(λA, λS, λR) = Φt ×A λAUA ×S λSUS ×R λRUR, (2.12)

with Φt = Φ ×1 U1... ×t Ut being the product of the core tensor Φ and all

matrices related to technical modes (Figure 2.5).
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2.3 Motion reconstruction

2.3.4 Synthesizing motions of arbitrary length

Motion reconstruction as described above is limited to motions of a speci�c

�semantic� length (for locomotions in means of number of steps). For a

variety of locomotions, we can, however, overcome this restriction with a

slight modi�cation of our method. The basic idea is to partition motion

sequences into natural motion units and locally optimize these units using

appropriately-sized tensors. For locomotions, a single step de�nes a natural

motion unit, and �foot on ground� phases give natural transitions between

these motion units. For more general motions, techniques used for motion

graphs [KGP02, SO06, HG07, SH07, MP07] have to be employed.

The here described extension of the multi-linear model has originally been

developed by Golla [Gol09]. The goal of his thesis, however, slightly di�ered

from ours: While we aim at synthesizing plausible motions based on a sparse

sampling of an actual motion performance, he sought to synthesize motions

based on low-dimensional user speci�cations (or constraints), similar to the

Motion Doodles interface described by Thorne et al. [TBv04]. More precisely,

the input for his motion synthesis was a user-drawn (two-dimensional) curve,

interpreted as a (smoothed) projection of the skeleton's hip trajectory onto

the ground plane. As a consequence, he didn't have to deal with the problem

of �nding the correct partition of the control input: Either the choice was

given to the user (thereby giving him control over certain properties of the

resulting motion), or it was determined by a simple analysis of the respective

motion units in the used tensors. We, however, have to �nd the correct

partition based on our control signal.

As a more concrete example, say we want to synthesize a walking sequence

containing di�erent step lengths. For this we build two tensors: One storing

single steps (of di�erent step lengths) with the right foot, the other storing

respective steps with the left foot. In order to make use of these tensors, we

now have to partition the input signal into alternating left and right steps.

In Golla's framework, the input signal might resemble the curve shown in

Figure 2.6 (a). Assuming that the scale of this curve is �xed (e.g., de�ned

as a mapping from image pixels to meters), the easiest way to de�ne a par-
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Figure 2.6: (a) Example of a user-speci�ed input curve together with a pre-
de�ned scale. (b)-(d) Di�erent partitions of the input curve. R
represents a step with the right foot, L a step with the left foot.

tition would be to simply project average step sizes (calculated over the two

tensors, and without loss of generality expressed in meters) onto this curve.

A possible result of this projection is visualized in Figure 2.6 (b). Note that

even the choice with which foot the synthesis should start is completely free.

Obviously, di�erent partitions will produce di�erent outcomes. Figure 2.6 (c)

shows a partition into very small fragments, consequently leading to a synthe-

sized motion consisting of small steps, and Figure 2.6 (d) shows a partition

into fragments of varying lengths.

Once this partition is de�ned, several methods are possible to synthesize

the full motion sequence. Golla basically distinguishes between a local, a

global, and a window-based approach. In the local approach, each single step

is optimized individually, and the �nal motion is created by appropriately

aligning and concatenating (blending) the resulting synthesized steps. In the

global approach, all steps are optimized simultaneously, trying to �nd the

global motion sequence that best follows the control curve while satisfying

certain transition constraints. The best results, however, were achieved by

the window-based approach. The basic idea of this approach is to simul-

taneously optimize a window of several consecutive steps, and after each

optimization shift this window forward by one step, thereby always taking
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advantage of the previous outcome. Details can be found in Golla's the-

sis [Gol09].

The same methods can be applied to our motion reconstruction scenario,

given that we manage to �nd the correct partition of our input signal2. With

accelerometers attached to the feet, automatic foot step detection for most

locomotions, however, is a solvable task.

2.3.5 Motion database

For our approach we need a database of motions that is semantically pre-

classi�ed. Using the category names, such a semantic pre-classi�cation is

available in the commonly used CMU database [Car04]. However, the collec-

tion of motions contained in the CMU database is not su�cient for building

a multi-linear model, since most motions are performed by one actor only

without any stylistic variation.

For our purposes we found the data provided by the HDM05 motion cap-

ture database [MRC+07] more suitable. This database contains more than

three hours of systematically recorded and well-documented motion capture

data. All motion sequences were performed by �ve non-professional actors

according to the guidelines �xed in a script. The script consists of �ve parts,

where each part is subdivided into several scenes. In addition to the full

takes, the HDM05 database also provides a set of short mocap clips that

have been cut out of the takes and arranged into a set of roughly 100 motion

classes. It is this set of cut-out motion clips that we used for all our experi-

ments. Most of the represented classes contain 10 to 50 di�erent realizations

of the same type of motion, covering a broad spectrum of semantically mean-

ingful variations. The resulting motion class database contains roughly 1,500

motion clips and 50 minutes of motion data.

2Please note that a partition of an acceleration-based control signal means a partition in
time rather than in space.
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2.4 A novel distance measure

For the numerical evaluation of a reconstruction result, the synthesized mo-

tion has to be compared with the original (ground truth) motion. At this,

�nding a distance measure matching the human perception of motion is a

nontrivial task. A well-established approach is to compute a distance based

on the average error of local joint orientations [CH05]. However, such meth-

ods may be inappropriate if global similarities of poses have to be computed

since the hierarchical organization of a skeleton is completely neglected: An

error at a parent joint also a�ects its children. Hence, a local error at a joint

at the top of the skeleton hierarchy is likely to have a bigger impact on the

global error than the same error at a lower level joint. As a consequence, the

resulting globally visible error may be not properly re�ected by a distance

measure based on local joint orientations. Moreover, using the L2 norm on

Euler Angles directly su�ers from the problem of �nding an adequate distance

measure for this representation of rotations.

In this section, we present a novel practical measure for comparing similar-

ities of motions based on quantities represented in a global coordinate frame.

Assuming a �xed skeleton topology, our goal is a universal measure that both

matches the human perception and is simple enough to be implemented in

time critical environments.

The basic idea is to frame-wise compare the cross product ~c j
i formed by a

joint j and two of its child joints a and b (Figure 2.7 left):

~c j
i (a, b, f) = ~vj→a(f)× ~vj→b(f) (2.13)

Here, f denotes the frame of a motion i for which the cross product at a

joint j is computed, ~vj→a the vector pointing from j to a, and ~vj→b the

vector pointing to b, respectively. Please note that ~c j
i can be interpreted ge-

ometrically as the normal of the triangle spanned by ~vj→a and ~vj→b weighted

by two times the area of this triangle. Hence, ~c j
i characterizes the orien-

tation and the relative angle of two connected bones. In the following, the

frame-based trajectory of ~c j
i is denoted t

j
i .
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2.4 A novel distance measure

Figure 2.7: Left: Notation. Middle: Comparing two trajectories tx and ty to
a reference t. Frames are indicated by dots. Note that ty is just
a shifted copy of t. Although the spatial distance is the same
for tx and ty, tx clearly di�ers from t which can be detected by
comparing the local Taylor expansions of tx and t. In this example
a purely pose-based approach with frame-wise comparison fails.
Right: Illustrating the meaning of T j1 , T

j
2 , T

j
12 and T j21. In this

example, Dj
1,2 = ‖T j1 − T

j
2‖.

Supposing that two di�erent motions of a joint j (and its child joints)

are given, we use a local Taylor expansion of ~c j
i to frame-wise describe the

similarity between these two motions. For the two corresponding �rst-order

Taylor expansions ~T j1 and ~T j2 around the frame f we get:

~T j1 (f) = ~c j
1(a, b, f) + ∆t ~̇c

j
1(a, b, f) (2.14)

and
~T j2 (f) = ~c j

2(a, b, f) + ∆t ~̇c
j
2(a, b, f), (2.15)

where ∆t is a time-step and ~̇c j
i is the time derivative of ~c

j
i . Let moreover

~T12 and ~T21 be two functions of mixed terms of ~T1 and ~T2:

~T j12(f) = ~c j
1(a, b, f) + ∆t ~̇c

j
2(a, b, f), (2.16)

~T j21(f) = ~c j
2(a, b, f) + ∆t ~̇c

j
1(a, b, f). (2.17)

If the two trajectories are traversed in a similar manner, ~T j1 , ~T
j
2 , ~T

j
12 and

~T j21 have to match. Consequently, di�erences indicate local errors (see also

Figure 2.7, middle and right). Based on this observation, our local distance
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measure Dj
1,2 with respect to a frame f computes as:

Dj
1,2(a, b, f) = max(‖~T j1 − ~T j2‖, ‖~T

j
12 − ~T j21‖), (2.18)

which can be simpli�ed to:

Dj
1,2(a, b, f) = Cj

1,2(a, b, f) + Ċj
1,2(a, b, f) (2.19)

with

Cj
1,2(a, b, f) = ‖~c j

1 − ~c
j
2‖ (2.20)

and

Ċj
1,2(a, b, f) = ∆t ‖~̇c j

1 − ~̇c
j
2‖. (2.21)

Setting the remaining free parameter ∆t to

∆t =
‖~vj→a‖‖~vj→b‖
‖~̇c j

1‖+ ‖~̇c j
2‖

(2.22)

scales Ċj
1,2 to the range of Cj

1,2. Now that a similarity measure for a single

joint j and two children a and b can be computed we �nally generalize this

measure to a distance measure Dpv for an arbitrary set of joints by summing

over all frames f , all joints j and child joints a, b according to

Dpv =

√√√√ d2∑
f=1

d3∑
j=1

Dj(f), (2.23)

with

Dj(f) =

sj∑
a=1

sj∑
b=1

(1− δab)
(
Dj

1,2(a, b, f)
)2
. (2.24)

Please note that the error at a joint is implicitly weighted by the length

of its bones. This is a desirable property, since longer bones are very likely

to dominate the perception of a motion. Moreover, subtle errors like �ipped

joints are detected by the proposed method. However, although Dpv is in-

variant under translation, rotating motions yields di�erent results. This is a
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Figure 2.8: Pictures of a walking motion. The left picture is taken from
the video, the right picture shows the corresponding pose of the
reconstruction. The synthesis was driven by only four inertial
sensors.

direct consequence of performing all computations with respect to a global

coordinate frame.

2.5 Results

We evaluated the techniques described in the previous sections in two di�er-

ent ways. First, we used real sensor data obtained from four Xsens inertial

sensors (cf. Section 2.3.1) attached to the hands and feet of an actor as con-

trol input for our motion reconstruction. As we do not have ground truth

data in this case, the synthesized motion was compared with a video of the

performance. In Figure 2.8, a single frame of the video is shown as a refer-

ence, for more results we refer to the supplemented video.

Second, in order to numerically evaluate the outcome of our multi-linear

motion synthesis framework, we simulated sensor readings based on mo-

tion segments taken from the CMU [Car04] and HDM05 [MRC+07] motion

databases and used these as input for our motion synthesis.

In both scenarios, the multi-linear model was built based on the HDM05

motion database as described in Section 2.3.5. Table 2.1 shows the average

reconstruction errors as reported by the novel distance measure described

in Section 2.4 and the commonly used L2-distance on joint angles, using
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Figure 2.9: Comparison of two frames of an original walking motion (brown)
and a reconstruction with our method (green). We only used the
acceleration data of the left foot and the left hand to reconstruct
these motions.

di�erent sensor setups on two very di�erent kinds of motion (walking and

cartwheel). For visual comparison we refer again to the supplemented video.

When comparing the numerical outcomes with actual renderings of the re-

constructed motions, we see that the novel distance measure better identi�es

problematic cases. This �nding is also supported by a series of experiments

we performed with a di�erent motion synthesis framework [TKZW08]. In

these tests, the joint angle-based measure failed to penalize artifacts like

directional �ips or jitter. Our proposed distance measure, however, clearly

identi�ed these artifacts that drastically a�ect the human perception of mo-

tions, while assigning small distances to perceptually similar motions.

Finally, Figure 2.10 shows a result of the extension discussed in Sec-

tion 2.3.4 using the window-based reconstruction scheme.

2.6 Conclusion

The results of this work can be seen as an early proof-of-concept that�

under certain assumptions�using a pre-classi�ed motion capture database

high-dimensional full-body motions can be reconstructed on the basis of ex-

tremely sparse control inputs. In several applications there will be a priori
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Figure 2.10: Result of reconstructing a motion consisting of 21 steps with the
window-based approach. The original motion (green) with our
reconstruction (red) are shown in form of some sample frames
and the trajectories of a virtual marker on the left foot and the
right hand.

Figure 2.11: Reconstruction of a cartwheel sequence. The original motion
(green) with our reconstruction (red) are shown in form of some
sample frames and the trajectories of a virtual marker on the
left foot and the right hand.
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Walking Cartwheel

Regarded joints Dpv DE Dpv DE

footL 15.23 12.16 21.22 15.32
footR 17.63 12.02 40.34 15.83
handL 14.83 11.44 25.35 15.57
handR 14.75 10.13 50.42 17.63
footL, footR 15.32 8.18 26.50 15.11
footL, handL 23.41 5.55 24.81 15.37
footL, handR 14.47 10.18 41.49 16.19
footL, footR, handL 17.26 14.55 25.22 15.39
footL, handL, handR 14.50 10.64 23.45 16.59
footL, footR, 14.82 10.15 29.69 15.29
handL, handR
footL, footR, handL, 14.98 10.45 29.62 15.29
handR, shoulderR
footL, footR, handL, 14.54 10.67 25.27 15.26
handR, kneeL, kneeR

Table 2.1: Average reconstruction errors for sample motions using our Multi-
linear Motion Model (MMM). Errors are given using the novel
distance measure de�ned in Section 2.4 summing over all joints
(denoted by Dpv), and the commonly used L2-distance calculated
over the joint angles (denoted by DE).

knowledge about the input motion that gives rise to the low-dimensional

control signal, for example in computer games or in sport training and re-

habilitation. For sport training one could for example build a multi-linear

motion model with motions of professional athletes as well as beginners (and

arbitrary intermediate levels). With such a model in hand, we could not only

numerically rate a new user's skill level, but also reconstruct and visualize

his performance just on the basis of a low-dimensional control signal. For

reconstructing motions for which there is no a priori knowledge available,

our approach could be combined with motion classi�cation techniques such

as motion templates [MR06]. This idea has also already been investigated by

Krüger [Krü11].

The requirements of multi-linear models, however, render them pretty

much useless in a realistic (real-time) motion capture scenario. Here, we do in
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general not have any a-priori knowledge about the input motion. Moreover,

the model is inherently too in�exible for reconstructing arbitrary motions:

As mentioned earlier, a single tensor can only represent a single class of very

related motions (e.g., walking motions). Such a class of motions is even fur-

ther restricted by the fact that all motions to be stored in the same tensor

have to be in temporal correspondence (achieved by dynamic time warping

in a pre-processing step [KTW07, KTMW08]), which basically forbids any

variation in the length of these motions. To be more precise: Original mo-

tions may di�er in speed and thus in duration (as the dynamic time warping

will take care of this), but not in �semantic length�, e.g., their number of foot

steps. This is why generously speaking of a tensor of walking motions ac-

tually conceals some serious restrictions (related to basically every approach

that seeks to interpolate entire motions rather than single poses): Motions

in such a tensor must at least have the same number of steps and start with

the same foot. Unfortunately and obviously worse, this also holds for the

motion to be reconstructed with this tensor, which is why we have to rely on

a pre-classi�cation.

2.6.1 Optimization problem revisited

In Section 2.3.3, we brie�y discussed the intuitive interpolation interface and

the inherent variable reduction provided by the multi-linear framework. It

has to be stated, however, that the same interface can be transferred to the

linear model by de�ning

λasr := λaA · λsS · λrR (2.25)

(using the same notation as in Section 2.3.3), and solving for the reduced pa-

rameter set (λA, λS, λR) only. In fact, as far as motion synthesis is concerned,

the multi-linear model only restricts the space of possible linear combinations

(and hence synthesizable motions) compared to the full parameter optimiza-

tion. Moreover, the linear model together with the parameter reduction

de�ned in equation 2.25 does not only provide the same intuitive interpola-

tion interface, it even requires less multiplications to produce the exact same
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outcome (even without taking the HOSVD into account). So why do we need

multi-linear models?

Indeed, this question is quite justi�ed. There is, however, one discipline

where the multi-linear framework outperforms the linear one: compression.

As was shown by Krüger et al. [KTW07, KTMW08], the conservation of

semantic information enables higher compression rates. While the pure data

reduction seems to be not that important in our case, the more appealing

thing is the following: Opposed to the linear model, truncating the compo-

nents of the multi-linear decomposition even allows us to further reduce the

number of parameters needed for the synthesis of a new motion, and thus

the number of variables we have to solve for. The idea is visualized in Fig-

ure 2.12: Instead of solving for {λaA, λsS, λrR} =: Λ and explicitly computing

linear combinations of matrix rows, we directly solve for {xǎA, xšS, xřR} =: X.

Note that since all mode-matrices are orthogonal and hence square, the num-

ber of variables in Λ equals the number of variables X in the uncompressed

case, but is lower when matrices are truncated. The relation between the

di�erent variable sets in the general case has already been mathematically

expressed in equation 2.4.

In the reconstruction scenario (as opposed to the classi�cation task), we

are usually not interested in the actual values of the parameters that give

rise to the synthesized motion. Thus, we usually do not care that the new

variable set X is less descriptive and less intuitive than Λ. If we are, however,

interested in the more descriptive solution, it has to be stated that while

X-values can be in principle easily transformed into Λ-values, this requires

solving an underdetermined system of linear equations, which in general has

in�nitely many solutions.

In conclusion, we must say that despite building a uni�ed and simple

framework with an intuitive interface for data (or dimension) reduction, (�ne-

grained) motion classi�cation, interpolation-based motion synthesis, and mo-

tion reconstruction (with aforementioned restrictions), multi-linear motion

models are inherently not �exible enough to ful�ll general motion capture

requirements. This is why we �nally decided not to further pursue the multi-

linear approach for motion reconstruction.
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2.7 Outlook

Figure 2.12: By truncating the core tensor Φ and respective mode-matrices,
we can speed up the optimization not only by saving multipli-
cations due to smaller-sized matrix factors, but also by further
reducing the number of variables when solving for xǎA, x

š
S, x

ř
R in-

stead of λaA, λ
s
S, λ

r
R. The resulting motion (visualized as green

bar on the left side) then is an approximation of a linear combi-
nation of original motions. In this example, the tensor has three
natural modes (A, S, R) with dimensions 5, 3, and 3, which were
truncated to 2, 2, and 1 dimensions, respectively. Φ̌t denotes the
result of mode-multiplying the truncated core tensor Φ with all
truncated matrices related to technical modes.

2.7 Outlook

A di�erent approach to performance animation was taken by Chai and Hod-

gins [CH05]. In their seminal work, Chai and Hodgins present a complete

data-driven real-time animation system for synthesizing motions based on

low-dimensional control input obtained by tracking a small set of retro-

re�ective markers attached to an actor's body. While the general framework

makes the system �exible and powerful, the type of control signal imposes

various constraints on the recording environment. As has already been noted

by the authors, their method should not only be suitable for sparse sets of

optical markers, but also for other low-dimensional control signals, e.g., ones

provided by inertial sensors. Unfortunately, as we have already pointed out

[TKZW08], simply replacing the position-based control signal by accelera-

tions does not yield any satisfying results. Furthermore, opposed to our

naive assumption at that time, it is not possible to reliably estimate new

control points in position space by using the position information from the

previously reconstructed pose and double integrating the acceleration data
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2 Motion reconstruction using multi-linear motion models

for one time-step. Even though the position estimate bases on a very short

time span between two frames, the problem of velocity and position drifts

due to data noise, imperfect pose reconstruction, and inaccurate estimation of

sensor orientations is not negligible. Nevertheless, we considered the general

framework presented by Chai and Hodgins as very appealing for our appli-

cation. The following work will describe the challenges introduced by our

intention to replace a position-based control signal by an acceleration-based

one, and how we successfully dealt with them.
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3
Motion reconstruction based on

sparse accelerometer data

3.1 Introduction

The increasing availability and demand of high-quality motion capture (mo-

cap) data has become a driving force for the development of data-driven

methods in computer animation. One major strand of research deals with

the generation of plausible and visually appealing motion sequences by suit-

ably modifying and combining already existing mocap material. In the syn-

thesis step, task- and application-speci�c constraints are to be considered.

Such constraints may be speci�ed by textual descriptions [AFO03] or by

low-dimensional control signals as supplied by recent game consoles [Nin11,

Son11].

Chai and Hodgins [CH05] describe a data-driven scenario where a sparse

set of video-based control signals is used for creating believable character
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3 Motion reconstruction based on sparse accelerometer data

animations. In their seminal work, the authors present a complete on-

line animation system, where control data obtained by tracking 6�9 retro-

re�ective markers is used to construct a local model of the user's motion

from a prerecorded set of mocap data. From this model, a high-dimensional,

naturally-looking animation is synthesized that approximates the controller-

speci�ed constraints. One drawback of this approach is that the usage of

retro-re�ective markers and calibrated cameras to generate the control in-

put imposes various constraints on the recording environment (e.g., illumi-

nation, volume, indoor). Furthermore, such systems are inconvenient with

respect to setup and calibration, while being comparatively costly. Slyper

and Hodgins [SH08b] describe a �rst system for retrieving upper-body mocap

sequences using a small number of low-cost accelerometers as control input

only.

The work described here, originally presented in the article Motion Re-

construction Using Sparse Accelerometer Data [TZK+11], builds upon, com-

bines, and extends the approaches by Hodgins et al. discussed above. We

introduce a complete data-driven system for generating plausible full-body

motion streams; see Figure 3.1 for an overview. As control input, we employ

four 3D accelerometers that are �xed next to the wrists and ankles of a user's

body in a prede�ned way. Furthermore, motion priors are given in form of

a knowledge base consisting of a large number of motion sequences, which

have been recorded using marker-based mocap systems. In our approach, the

knowledge base may be heterogeneous, containing motions of di�erent types

and styles performed by various actors. In a preprocessing step, we derive

suitably simulated acceleration readings from the stored motion sequences,

making them comparable with the sensor input. Furthermore, for later us-

age, the knowledge base is indexed using a kd-tree structure. At runtime,

the sensor input is processed, frame-wise triggering a nearest-neighbor (NN)

search. For the current input frame, the retrieved poses are used to update

a data structure that points to entire motion subsequences in the knowl-

edge base best explaining the controller input over the past frames. This

data structure, which is an online-capable extension of the lazy neighborhood

graph introduced by Krüger et al. [KTWZ10], is then used in the reconstruc-
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3.1 Introduction

Figure 3.1: Overview of the animation system.

tion step to compute the current frame of the outputted animation. For the

reconstruction, we introduce an optimization procedure that depends not

only on the retrieved information, but also considers the temporal context

as well as the forward-integrated control signals.

3.1.1 Main contributions

First, we introduce a novel online framework for reconstructing full-body mo-

tion streams based on very sparse accelerometer input. Slyper and Hodgins

[SH08b] aim to reconstruct the upper-body motion using �ve accelerome-

ters, whereas our method allows for full-body motion reconstruction with

only four sensors that are �xed next to the wrists and ankles. The suitability

of the number and placement of sensors is backed up by our experiments.

In contrast to all existing methods for motion reconstruction from sparse

accelerometer data, our method is the �rst that allows for synthesizing new

motions from a given knowledge base. Our approach can �exibly deal with

temporal and spatial variations�as opposed to previous methods that re-

construct a motion by choosing a prerecorded clip from a database [SH08b].
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3 Motion reconstruction based on sparse accelerometer data

Furthermore, the database used in Slyper and Hodgins [SH08b] is small and

contains only a restricted number of di�erent motion clips. In contrast, our

knowledge base is orders of magnitude larger and contains many di�erent

motions performed by di�erent individuals in various styles. Because of the

increased complexity and ambiguity, more sophisticated approaches regard-

ing retrieval and motion synthesis are required. In contrast to Slyper and

Hodgins, our reconstruction is frame-accurate where an optimal pose hypoth-

esis is computed for each frame of the control input. As second contribution,

we present an online variant of the lazy neighborhood graph previously in-

troduced by Krüger et al. [KTWZ10]. Opposed to the original graph, our

novel variant allows for a very e�cient analysis of continuous motion streams

having a speedup of more than one order of magnitude for the application

presented in this work. Based on our novel approach, NN-based motion

retrieval does not constitute a computational bottleneck any longer.

As a third main contribution, we elaborate on a novel prior model that

minimizes reconstruction ambiguities for data-driven motion synthesis even

in challenging cases and simultaneously accounts for temporal and spatial

variations on the controller side and knowledge base side. Our proposed

kernel regression-based pose prior is quite di�erent from other approaches

previously presented in the context of position-based reconstruction and syn-

thesis [CH05, SL06, SKL07, LWB+10]. The main advantage of our approach

lies in its generality: our algorithm even produces reasonable results if the

poses retrieved by the NN-search belong to various logically distinct mo-

tions. This property is essential to our application as similar accelerometer

(control input) readings may be associated with very di�erent motion classes

and thus di�erent hypotheses. Novel motion and smoothness priors used in

our work e�ectively guide the synthesis process towards a relatively smooth

and plausible reconstruction. Please note that in previous work in the �eld

of motion synthesis [CH05] ad hoc temporal priors that enforce smoothness

by minimizing accelerations have been applied. In contrast, our approach is

fully data-driven and adapts to variations that occur in particular when the

directionality of a motion changes (e.g., at turning points of a locomotion).
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3.2 Related work

There are many ways for capturing and recording human motions including

mechanical, magnetic, optical, and inertial devices. Each motion captur-

ing (mocap) technology has its own strengths and weaknesses with regard

to accuracy, expressiveness, and operating expenses, see Maiocchi [Mai96],

Moeslund [MHK06], or Wikipedia [Wik11] for an overview. For example,

optical marker-based mocap systems typically provide high-quality motion

data such as positional information as joint coordinates or rotational infor-

mation as joint angles [Pha11, Vic11, Gia11]. However, requiring an array

of calibrated high-resolution cameras as well as special garment equipment,

such systems are not only cost intensive but also impose limiting constraints

on the actor and the recording environment.

In recent years, low-cost inertial sensors, which can be easily attached to

an actor's body or even �t in a shoe, have become popular in computer

game and sports applications [SH08b, Nik11, Adi11, Nin11]. However, the

inertial information obtained from such sensors, such as joint accelerations,

angular velocities, or limb orientations, is often of low expressive power and

a�ected by noise. To avoid drifts that often occur when using inertial sensors,

various approaches based on sensor fusion have been proposed to improve

and stabilize motion tracking. For example, in the Xsens system rotational

drifts are avoided by incorporating magnetic �eld sensors [SRV10]. Vlasic

et al. [VAV+07] combine inertial sensors with ultrasonic distance sensors to

compensate for relative positional drifts.

Another strategy for improving motion capturing is to include prior knowl-

edge on kinematics or dynamics of the motion to be expected. Here, data-

driven methods, as also employed in our work, have turned out to be a

powerful approach generating such additional constraints. The (real-time)

control of virtual characters using mocap data�also known as computer

puppetry [SLSG01]�is one key challenge in the �eld of computer animation.

Besides the use of high-dimensional optical systems, various controller-based

systems have been described that allow for generating and reconstructing vi-

sually appealing motion sequences from low-dimensional sensor input. In its

33



3 Motion reconstruction based on sparse accelerometer data

easiest form, as is also often done in commercial computer game applications,

controller data may trigger certain actions. Low-dimensional sensor input is

often used for specifying free parameters in model-based computer animation;

see, for example, Badler et al [BHG93], Cooper et al. [CHP07], Dontcheva

et al. [DYP03], and Oore et al. [OTH02]. Shiratori and Hodgins [SH08a] use

inertial-based control data to specify a small number of free parameters in

physically-based character animation. When high-dimensional data has to

be generated using only low-dimensional control data, especially data-driven

approaches show promising results. For example, Feng et al. [FKY08] use

sparse control points and an example-based model to deform complex geome-

tries. Another approach is to use the low-dimensional sensor input to retrieve

suitable motion sequences from a database containing high-dimensional mo-

cap sequences. For example, Slyper and Hodgins [SH08b] describe a system,

where a small number of low-cost accelerometers are used to identify and

playback prerecorded human upper-body motions. An extension to this work

is sketched by Kelly et al. [KCHO10], where a motion database consisting

solely of tennis motions is used to reconstruct the actions of a tennis player

wearing six accelerometers. Such reuse of prerecorded human mocap data re-

quires e�cient retrieval of similar motions from databases [KPZ+04, MRC05],

as well as a good understanding of how motions have to be parametrized in or-

der to yield smooth transitions between several retrieved motion clips [KG03].

Liu et al. [LWC+11] recently presented a framework that is conceptually very

similar to the performance animation system presented by Chai and Hod-

gins [CH05], outlined earlier. However, they formulate the motion recon-

struction problem in a maximum a posteriori framework, utilizing a series of

online local dynamic motion models, and the control input is provided by a

small set of both inertial and ultrasonic sensors.

Our approach is also inspired by the animation system presented by Chai

and Hodgins. Opposed to using optical markers and calibrated cameras,

we use a sparse set of four 3D accelerometers to generate the control data.

Also, we do not use a static graph structure quadratic in memory size, but

instead employ a memory-e�cient data structure that much better scales

to larger datasets. Finally, opposed to the system presented by Slyper and
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3.3 Control input and knowledge base

Figure 3.2: The four accelerometers are attached to the lower arms and lower
legs using simple straps.

Hodgins [SH08b], our approach allows for handling moderate temporal and

other variations that are not re�ected well by the given database motions.

3.3 Control input and knowledge base

In this work, the control input is provided by the same devices that we

used in the multi-linear framework presented earlier. Speci�cally, four Xsens

MTx devices [Xse11] are attached to the lower arms and lower legs of an

actor, next to the wrists and ankles, respectively. Despite the fact that

these kind of sensors provide a lot of di�erent information, including rate of

turn, magnetic �eld and orientation (see Section 2.3.1), we here only use the

calibrated readings of the devices' accelerometers. Thus, our �ndings can be

applied to much smaller (and less expensive) sensors using accelerometers

only. These calibrated readings are given in the unit m/s2 and are expressed

with respect to the sensors' local coordinate systems.

In order to make the data originating from these sensors comparable with

data originating from the knowledge base, the sensors have to be carefully

aligned with the respective limbs they are �xed to. Figure 3.3 shows the

ideal placement of the sensors, where the X-axis of the sensors coincides

with the direction of the underlying bone, pointing away from the body's

center. In case of the arms, we align the sensors such that their Z-axes are

pointing upwards when the arms are stretched out and the palms are pointing

downwards. The sensors at the legs are placed in a way that the Z-axes are

pointing forward while being orthogonal to their related X-axis as well as to

35



3 Motion reconstruction based on sparse accelerometer data

Figure 3.3: Schematic representation of the ideal sensor setup.

the rotation axis of the corresponding knee. Finally, the Y-axes are chosen

to form right-handed coordinate systems with respect to the X- and Z-axes.

Obviously, the result of simply attaching the sensors with straps to the

respective limbs (see Figure 3.2) will always diverge to some extent from the

ideal placement shown in Figure 3.3. We found, however, that by �xing the

devices with reasonable care, two of the three rotational degrees of freedom

of all sensors are already very well-de�ned. That is, using reasonably large

and tight straps, the four sensors do (due to their box shape) barely have

any play regarding rotations about their Y- and Z-axes; see Figure 3.4 (a)

and (b). As a result, the X-axis (the axis that coincides with the direction

of the underlying bone) is very well-de�ned. Although the error caused by

a deviation of sensor rotations about this axis is also often negligible, we

performed the following simple calibration step in all our experiments to

re�ne the orientations of the wrist sensors: We simply asked the actor to

hold a t-pose (with palms facing to the ground) for a few seconds, and then

compared the accelerometer readings against the known direction of gravity.

In an ideal setup, the gravitational component would now entirely project

onto the z-axes of the wrist sensors. Assuming that the X-axes are optimal,

we can easily determine the rotational o�set (with respect to the X-axis)

between the actual and the ideal setup. Rather than physically moving the
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3.3 Control input and knowledge base

Figure 3.4: By carefully attaching the sensors to the lower arms using rea-
sonably tight straps, we get near-ideal alignments with respect
to rotation about the Y-axis (a) and Z-axis (b). We use the ac-
celerometer readings in a static t-pose to calculate the rotational
o�set with respect to the X-axis (c) between the actual and ideal
sensor placement.

sensors according to this o�set (which would be very inconvenient), we used

it to numerically correct all future measurements that were taken using the

same setup. Regarding the sensors attached to the lower legs, a similar

procedure could be used. Unfortunately, however, we can not use the t-pose

to estimate the o�set around the X-axis, as in this case the X-axis is parallel

to the direction of gravity. While di�erent calibration poses are possible and

even more complex calibration procedures may be applied, for instance the

one proposed by Slyper and Hodgins [SH08b], carefully �xing the sensors

and only re�ning the orientations of the wrist sensors turned out to su�ce

in the context of our application.

In the following, we assume that our knowledge base consists of a sequence

of poses indexed by the set [1 : N ] := {1, . . . , N}, with N denoting the total

number of frames. Furthermore, we assume that each pose is given in joint

angle representation denoted by ~qn, n ∈ [1 : N ]. To obtain joint positions of a

pose, forward kinematics need to be applied based on a given skeleton model,

which contains information about the topology, the actor's bone lengths, as

well as the degrees of freedom of each joint. In the following, we assume

that all skeletons underlying the data of our knowledge base have the same

topology. One key mechanism in our approach is the identi�cation of suitable

high-dimensional joint angle data by using low-dimensional accelerometer

readings as query.
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3 Motion reconstruction based on sparse accelerometer data

In this cross-modal retrieval scenario, we need to compare two di�erent mo-

tion data representations of di�erent dimensionalities. To bridge this gap,

we simulate accelerometer readings for all motions in the knowledge base by

computing the accelerations of virtual sensors that are placed on the limbs

of the virtual actors in the same way as the real sensors are placed on the

limbs of the real actors. After calculating the positions of these virtual sen-

sors using forward kinematics, we compute their second time derivatives and

obtain their accelerations relative to the global frame. Then, we simply add

the acceleration component corresponding to gravity�which is inherently

measured by each accelerometer�and transform the resulting quantity to

the local coordinate systems of the virtual sensors. Helten et al. [HMT+11]

present a systematic analysis of various feature representations (including

local accelerations) in the context of a cross-modal retrieval scenario, where

inertial-based query motions are used to retrieve high-quality optical mocap.

In addition to simulated sensor data, we pre-compute quantities that we

later use in the synthesis step of our method, including the positions ~xn,

velocities ~vn, and accelerations ~an of all joints. For normalization purposes,

these quantities are given in the root coordinate system. All derivatives are

approximated using a �ve-point stencil that has an approximation error of

order O(h4). The respective formulas are

~v(t) =
−~x(t+ 2h) + 8~x(t+ h)− 8~x(t− h) + ~x(t− 2h)

12h
(3.1)

for the �rst derivative, and

~a(t) =
−~v(t+ 2h) + 16~v(t+ h)− 30~v(t) + 16~v(t− h)− ~v(t− 2h)

12h2
(3.2)

for the second derivative.

Note that instead of using the original skeletons, forward kinematics for all

motions (as well as synthesis) is performed on a standard skeleton, whose bone

lengths are averaged across all skeletons represented in the knowledge base.

We will, however, also present an analysis of the e�ect of varying actor sizes.

For all our tests, we neglected the skeleton's foot and hand joints, resulting
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3.4 Fast similarity search using acceleration data

Figure 3.5: (a) The query frame, taken from a high dynamic motion
(cartwheel). Note that the head is pointing down. (b) Top row:
16 nearest neighbors retrieved based on the positions of the wrist
and ankle joints of the query frame. Bottom row: 16 nearest
neighbors retrieved using the accelerations of the wrist and ankle
joints of the query frame.

in a representation with 21 joints and a total of 43 rotational degrees of

freedom.

The simulated sensor accelerations are denoted by ~αn and indexed using

a kd-tree of dimension 4 · 3 = 12. At those low dimensions, Andoni and

Indyk [AI08] state that kd-trees are well suited for fast nearest-neighbor

searches. In our case, such fast nearest-neighbor searches are used to identify

all poses in the knowledge base that are most similar to a given sensor reading;

see Section 3.4.

3.4 Fast similarity search using acceleration

data

3.4.1 Comparing accelerations

In our scenario, controller input is compared against prerecorded mocap se-

quences on the basis of 3D accelerations. A comparison of motion frames on

the acceleration level is, however, much less descriptive than, for example, on

the joint angle or 3D positional level as used by Chai and Hodgins [CH05].

Thus, this comparison may result in a large number of false positives, in

particular when using a frame-wise retrieval procedure; see Figure 3.5.

In the multi-linear approach discussed earlier we were comparing global co-
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ordinate accelerations of sensors (accelerations with respect to a �xed world

coordinate system). In contrast to that, we are now focusing on accelera-

tions as they are reported by the accelerometers. These accelerations, in the

following referred to as local accelerations, are given in the local coordinate

systems of the sensors and represent an overlay of the sensors' coordinate

acceleration and acceleration due to gravity. Undoubtedly, global coordinate

accelerations are more intuitive than local accelerations. The easier inter-

pretability, however, comes at several costs: First of all, in order to obtain

global coordinate accelerations from our sensors, we have to make use of mag-

netic �eld sensors and gyroscopes in addition to the accelerometers, which in

turn forbids the use of very small and inexpensive devices. Second, by only

using the global coordinate accelerations (and not explicitly making use of the

integrated orientation information) we might even lose valuable information.

To illustrate that, consider a sensor at rest: While the inherent measurement

of the gravitational component present in local accelerations allows us to

determine its orientation up to a single degree of freedom (the orientation

about the vertical axis), its coordinate acceleration is zero in each direction

and its orientation thus indistinguishable from every other orientation. On

the other hand it must not be denied that separating coordinate acceleration

from acceleration due to gravity may also disambiguate measurements.

Slyper and Hodgins [SH08b] address this inherently ill-posed problem by

exploiting the temporal coherence of motions and querying �xed-length se-

quences of accelerometer readings. Temporal variations (e.g., motions per-

formed at di�erent speeds), however, are not handled in their approach. In

our approach, we incorporate temporal coherence by using a data structure

referred to as Online Lazy Neighborhood Graph (OLNG), which is an ex-

tension to the Lazy Neighborhood Graph (LNG) introduced by Krüger et

al. [KTWZ10].

3.4.2 Lazy Neighborhood Graph (LNG)

As we have seen, it is almost impossible to �nd a reliable mapping from

the low-dimensional space of accelerations (when observed at a single point
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in time) to the high-dimensional space of human poses. By comparing se-

quences of accelerations, similar to Slyper and Hodgins [SH08b], we can,

however, heavily reduce the existing ambiguities. We thus now aim to iden-

tify sequences of accelerations in the knowledge base that match the control

signal.

Basically, the LNG described by Krüger et al. [KTWZ10] can be directly

applied to this task. The basic idea of the LNG can be summarized as

follows: Given that every frame in the knowledge base has a unique index

(with consecutive frames having consecutive indices), instead of searching for

a motion sequence that globally matches the input signal (or a subsequence

thereof), we can search for a sequence of consecutive, ascending indices whose

corresponding frames locally match the input signal. More speci�cally, in our

scenario we would proceed as follows: Say that our control input consists of

accelerations ~α1, ~α2, . . . , ~αM , where M denotes the length of the compared

acceleration sequences. First, for each sample ~αt, with 1 ≤ t ≤M , we identify

the K (locally) closest samples in the knowledge base using a �xed radius

k-nearest-neighbors search; see Figure 3.6 (a). Second, we build a graph by

treating each of the M · K samples as a node ntk, with 1 ≤ t ≤ M and

1 ≤ k ≤ K, identifying it by its unique database index i(ntk), and inserting

edges between nodes that form valid continuations. While pointing out that

di�erent de�nitions of valid continuations are possible, Krüger et al. de�ne

them formally as follows (notation slightly adjusted): Let i1 := i(nt1k1) and

i2 := i(nt2k2) be two indices representing nodes in this graph (and poses in

the knowledge base). Then i2 builds a valid continuation of i1, if one of the

following three conditions applies:

• i1 + 1 = i2 and t1 + 1 = t2,

• i1 + 1 = i2 and t1 = t2,

• i1 = i2 and t1 + 1 = t2.

Each case leads to the insertion of a directed edge from i1 to i2. Figure 3.6 (b)

gives a more illustrative interpretation of this de�nition. Note that the second

and third condition actually produce a time warping in the corresponding
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Figure 3.6: (a) The M ·K nodes of the lazy neighborhood graph (visualized
in white) are de�ned by the K locally nearest neighbors of M
subsequent samples taken from the control signal (visualized in
orange). (b) Edges are inserted between nodes that build valid
continuations. The illustrated edges are based on the de�nition
of valid continuations given by Krüger et al. [KTWZ10] (notation
adjusted), with i1 being the database index of a node n

t1
k1
. (c) By

adding an additional source node s (visualized in light green) and
connecting it with all nodes n1

k, we yield a single-source shortest-
paths problem.

motion sequence, and that the three conditions essentially represent the three

basic steps (diagonal, vertical, and horizontal) commonly used in traversing

dynamic time warping (DTW) cost matrices; see Figure 3.10 (a). It can

easily be seen, that the resulting graph is directed and acyclic. In addition,

a topological ordering (which means, whenever there is an edge from x to y,

the ordering visits x before y) is already given by construction.

Associating each node with costs proportional to the distance reported by

the k-nearest-neighbor search1, and paths with costs given by accumulating

the costs of all related nodes, we now want to �nd paths of minimal costs that

traverse the graph �from left to right�, that is from t = 1 to t = M . These

paths will be referred to as global or maximum-length paths in the following.

By adding an additional source node s to the graph and connecting it to

1Krüger et al. formally assign these costs to (incoming) edges rather than to nodes. I,
however, prefer to think of them as being assigned to nodes. Also, my de�nition is
supposed to avoid confusion as I will later introduce an additional type of costs that
naturally relates to edges.
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all �left� nodes n1
k, with 1 ≤ k ≤ K (compare Figure 3.6 (c)), this turns

into a single-source shortest-paths problem, which due to the aforementioned

properties of the resulting graph can be solved in linear time. Each global

path then de�nes a global alignment between the input signal and the motion

segment that is represented by the path.

Krüger et al. state that the paths found by this method �are equal to the

paths found by subsequence dynamic time warping [Mül07] under the con-

dition that all frames that are assigned to each other by subsequence DTW

are in the neighborhood of the query motion.� Whether this condition is ful-

�lled or not does not only depend on the size K of the neighborhood and the

length M of the regarded sequence, but also on the properties of the control

signal. The more discriminative the control signal is, the less scattered are

the retrieved neighbors in pose space (and at the same time also the corre-

sponding indices in the graph), and the more valid continuations and hence

paths exist in the resulting graph structure. While position-based control

signals (like the ones discussed by Krüger et al.) in general provide the re-

quired discriminative power, the local neighborhoods of acceleration samples

can be extremely scattered in pose space, as we have shown in Figure 3.5. As

a consequence, in our scenario the resulting graph has in general less edges,

which means that less global paths can be found. Often the graph does not

even provide a single global path at all.

The most obvious way to compensate the scattering of indices is to increase

the local neighborhoods, and indeed the neighborhoods in our scenario have

to be signi�cantly larger than when querying position-based features. How-

ever, increasing the neighborhoods too drastically will obviously slow down

the whole process. Another way to compensate the scattering is to make

M smaller and search for shorter paths. Note that we are justi�ed to do

this as in our scenario comparing sequences of accelerations instead of single

time samples is just a means to an end: Finding a sequence of accelerations

that matches our control signal makes the mapping into pose space more

reliable, but in contrast to applications discussed by Krüger et al. we are by

no means obliged to report sequences of a speci�c length. Ultimately, we

are still searching for poses that match the actual performance at a single

43



3 Motion reconstruction based on sparse accelerometer data

point in time, so there is no reason to restrict our search to paths of a certain

length only. The de�nition of the LNG, however, requires us to �x M , and

thus introduces a big problem: What is the right choice for M? Choosing it

too large might cause that no (or too few2) global paths can be found, choos-

ing it too small might prevent dissolving the discussed ambiguities. As the

degree of scattering furthermore depends on the control signal itself�that is

on the performed motion�what we actually want is M to be adaptive, or

to only de�ne an upper bound rather than a restriction to the path lengths.

Unfortunately, this is not directly supported in the LNG. The only way to

simulate adaptiveness of the window length in the LNG is to build a graph

of maximum length and then perform several shortest-paths searches with

di�erent source nodes.

Another di�erence to applications of the LNG presented by Krüger et al.

is that we are here dealing with a (sampled) continuous control signal and

need to identify optimal subsequences in the knowledge base at each single

point in time. This would require to build an LNG at each single point in

time. Rebuilding the LNG for every new sensor reading, however, would be

costly and unnecessary, since most of the data inside the graph structure can

be reused. We now introduce an extension to the LNG that we refer to as

Online Lazy Neighborhood Graph (OLNG). This data structure does not only

enable very e�cient updates but also allows us to e�ciently extract paths of

arbitrarily short and upper-bounded length.

3.4.3 Online Lazy Neighborhood Graph (OLNG)

We assume that the control input consists of a (sampled) continuous stream

of sensor accelerations (. . . , ~αt−2, ~αt−1, ~αt, . . .), where ~αt denotes the accelera-

tions at time t ∈ Z, and that we want to �nd poses that match the actual per-
formance at time t. For reasons discussed earlier we will exploit the temporal

coherence of motions by querying sequences of accelerations instead of single

time samples. In order to �nd these without introducing any latency into

2Remember that we want to identify similar poses in order to build local statistical
models, which requires us to identify a certain number of paths.
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3.4 Fast similarity search using acceleration data

our system, we consider the last M sensor readings (~αt−M+1, . . . , ~αt−1, ~αt).

In other words, we search for acceleration sequences in the knowledge base

that match the sensor readings over the last M frames.

Let K be the number of (locally) nearest neighbors, and let St be the set

of indices representing the K nearest neighbors of ~αt, which can be e�ciently

computed using the kd-tree mentioned in Section 3.3. Our goal is now to

identify a subset of St that is reliable enough to build a local statistical

model of poses at time t. As discussed earlier, we consider a pose in St to be

more reliable if a motion sequence of appropriate length containing this pose

matches the control signal. A matching of sequences in turn can be found

by identifying paths of consecutive indices in a data structure like the one

de�ned by the LNG. As a consequence, in order to be able to numerically rate

the reliability of the poses under consideration, we have to �nd for each node

in St the path with minimal cost that leads to this node. Before outlining the

procedure for updating the OLNG, I will �rst describe its overall structure

and point out similarities and di�erences to the previously discussed LNG.

Similar to the LNG, nodes of the OLNG are de�ned by the frames re-

ported by the k-nearest-neighbors search, and directed edges that encode

temporal coherence between frames are inserted between nodes that build

valid continuations. For building the OLNG, however, we use a slightly dif-

ferent de�nition of a valid continuation, enforcing strict monotonicity with

respect to the column (time) index, which e�ectively limits the amount of

possible motion warping. More precisely, we de�ne i2 := i(nt2k2) to be a valid

continuation of i1 := i(nt1k1), if one of the following three step size conditions

applies:

• i1 + 1 = i2 and t1 + 1 = t2,

• i1 + 2 = i2 and t1 + 1 = t2,

• i1 + 1 = i2 and t1 + 2 = t2.

Figures 3.7 (b) and 3.10 (b) illustrate the three conditions.

Again, the edges allow for constructing paths, and each such path yields

an index sequence, which in turn corresponds to a motion subsequence in the
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Figure 3.7: (a) The M ·K nodes of the online lazy neighborhood graph (vi-
sualized in dark blue) are de�ned by the K locally nearest neigh-
bors of the lastM sensor readings. (b) As for the LNG, edges are
inserted between nodes that build valid continuations. The illus-
trated edges are based on our de�nition of valid continuations,
which di�ers from the one given by Krüger et al. [KTWZ10].
Here, i1 is the database index of a node n

t1
k1
. Note that one of the

edges skips a column and thus has to be appropriately penalized
in order not to favor shortcuts when comparing paths.

knowledge base. While costs for nodes are de�ned as in the LNG and like-

wise contribute to the total costs associated with a path, the structure of the

OLNG requires us to introduce additional costs. These additional costs are

in particular necessary since now we have to identify and compare paths of

di�erent lengths: While longer paths are preferred, they contain more nodes

that add to their total cost than shorter paths, so shortness of paths must

be appropriately penalized. This is done by adding an additional cost for

each time sample within the considered time window that is not represented

by the path. The quantity of this penalty cost has to be chosen such that it

exceeds the maximum cost assigned to any node at the respective point in

time, which is the cost assigned to the most distant (K-th) neighbor. In our

implementation we are using twice the cost assigned to the corresponding

K-th neighbor to penalize an unrepresented time point. For the same reason

for which we have to penalize shortness of paths, we also have to introduce

appropriate penalty costs for edges that skip columns (those created by the
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3.4 Fast similarity search using acceleration data

third step size condition; see Figure 3.7 (b)). Otherwise the resulting short-

cuts would be favored in the shortest-paths search. A reasonable choice is to

associate such an edge with the cost of one of the two nodes it is connecting.

Edges that do not skip columns are de�ned to have zero costs. The total

costs of a path are �nally given by summing up

• the costs of all related nodes, measuring the local dissimilarities of

acceleration samples,

• the costs of all related edges, avoiding a favoritism of shortcuts in the

graph,

• and the costs penalizing overall shortness of paths in support of longer

paths.

Based on these costs we can now easily rate and compare the poses in St, and

only keep a subset for the construction of our local statistical pose model.

Figure 3.8 illustrates the computation of path costs. Note that in this exam-

ple nodes are identi�ed by their costs rather than by their indices.

We now describe the procedure for e�ciently updating the OLNG. Sup-

pose that the OLNG has been constructed for the readings (~αt−M+1, . . . , ~αt),

and that for each node in ST we have identi�ed the path with lowest costs

leading there. Now a new reading ~αt+1 arrives. First, for ~αt+1, the K nearest

neighbors are retrieved (using the kd-tree) and stored in St+1. The OLNG

is extended by adding nodes corresponding to these indices (forming a new

last column). Furthermore, novel edges that end in the added nodes are

introduced; see Figure 3.9 (b). These edges are chosen in such a way that

they ful�ll the step size and index conditions while extending previously con-

structed paths of minimal cost. Finally, the nodes corresponding to ~αt−M+1

as well as the involved edges are removed to obtain the updated OLNG; see

Figure 3.9 (d).

As the graph structure is built incrementally and not as a whole as pro-

posed by Krüger et al. [KTWZ10], our implementation is suitable for online

applications. There is no latency introduced by our OLNG, even at the
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Figure 3.8: A toy example of size M = 4 and K = 6 illustrating the com-
putation of path costs in the OLNG. The M ·K = 24 nodes are
identi�ed (as well as column-wise ordered) by their costs rather
than by their indices. The costs of a path are given by summing
up all costs assigned to nodes and edges along the path. An edge
that skips a column is associated with the cost of the node it is
pointing at, all other edges have zero costs. The red boxes indi-
cate the costs that penalize unrepresented time points (or more
general: shortness of paths), de�ned as twice the costs of the
most distant neighbor.

beginning of a data stream. Moreover, the original �static� approach com-

pletely ignores all paths (motion segments) that start to evolve within the

boundaries of a given frame window, regardless of their global performance.

Due to its incremental nature, our approach detects and considers such paths

directly as they appear. Hence, the window size M in our case only gives

an upper bound on the length of retrieved motion segments without limiting

them to that length, and can be seen as the preferred path length. Thus, in

cases where no full-length matches can be found, shorter motion fragments

are considered by our method.

In order to make the OLNG even more robust towards scattering of indices,

we have considered additional valid continuations in our implementation.

The main motivation for this was the �nding that a single highly scattered

(and possibly unrepresentative) local neighborhood can cause useful paths to

48



3.4 Fast similarity search using acceleration data

Figure 3.9: Online Lazy Neighborhood Graph (OLNG) withM = 4 and K =
8. Each vertical column corresponds to the K nearest neighbors
(each neighbor indicated by a circle) of a sensor reading ~αt−m+1,
m ∈ [1 : M ]. The edges encode temporal coherence between the
nearest neighbors. The �gure illustrates the implementation of
the OLNG.
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3 Motion reconstruction based on sparse accelerometer data

Figure 3.10: Visualization of the discussed step size conditions as their cor-
responding steps in a DTW cost matrix. (a) The step sizes used
in the LNG. (b) The basic step sizes used in the OLNG. (c) Ad-
ditional step sizes used in our implementation in order to bridge
gaps caused by a single scattered neighborhood (visualized in
orange).

be discarded. This is why we additionally de�ned i2 := i(nt2k2) to be a valid

continuation of i1 := i(nt1k1) if one of the following three conditions applies:

• i1 + 2 = i2 and t1 + 2 = t2,

• i1 + 3 = i2 and t1 + 2 = t2,

• i1 + 4 = i2 and t1 + 2 = t2.

Note that appropriate costs have to be assigned to all the resulting edges.

Figure 3.10 summarizes all discussed step size conditions by illustrating them

as their corresponding steps for traversing a dynamic time warping (DTW)

cost matrix.

In summary, the novel OLNG allows for extremely e�cient retrieval of

motion subsequences, which is of central importance for our online applica-

tion. More precisely, by using the proposed implementation a speedup of

more than one order of magnitude can be achieved for the examples pre-

sented in this work compared to tests with an implementation based on the

static method. Generally speaking, this speedup is linear in the size of the

sliding window M . Our retrieval procedure can handle moderate temporal

variations and is extremely memory e�cient: only the kd-tree of size O(N)

is stored and one OLNG of size O(KM). Furthermore, each update step
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3.5 Motion reconstruction

requires only O(K logN) operations, where the nearest neighborhood search

determines the complexity. Opposed to previously introduced data structures

of quadratic complexity, our approach scales well to large datasets consisting

of millions of frames.

3.5 Motion reconstruction

The goal of our reconstruction approach is to closely approximate a per-

formed motion. As our system is driven by a very low-dimensional control

input, there is no way to directly infer complete high-dimensional motions.

Thus, to eventually estimate plausible full-body results, the missing degrees

of freedom need to be synthesized using the knowledge embedded in the

database. While there exist many methods for synthesizing motions, the

method of choice in most data-driven scenarios is to build a new motion

based on similar (�neighboring�) prerecorded motion clips or poses. We adopt

this basic idea by using the online algorithm described in Section 3.4, which

provides for each time-step t a set of K paths together with associated costs.

Each path represents a motion subsequence in the knowledge base and points

to a speci�c pose at time t, and the related cost is assumed to describe the

dissimilarity of this pose to the actual performance at this point in time. In

practice, due to the aforementioned properties of the control signal, most

of the resulting paths are rather short and have high costs. In the follow-

ing, we will discard these and only consider those I � K paths having the

lowest costs for building our local statistical model of poses at time t. We

denote Ct = {ct1, . . . , ctI} to be the costs of these I paths. Let furthermore

Qt = {~qt1, . . . , ~qtI} be the set of joint angle con�gurations of these poses, and
X t = {~xt1, . . . , ~xtI}, V t = {~vt1, . . . , ~vtI}, and At = {~at1, . . . ,~atI} be the sets of
positions, velocities, and accelerations of their joints, with respect to the root

coordinate system. As these quantities were already computed in the prepro-

cessing step, see Section 3.3, they can be easily obtained from the knowledge

base at runtime. Finally, based on the costs Ct = {ct1, . . . , ctI}, we introduce
normalized weights denoted by W t = {wt1, . . . , wtI}, where the value of each
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3 Motion reconstruction based on sparse accelerometer data

weight wti is given by

wti =
max(Ct)− cti∑I

j=1(max(Ct)− ctj)
. (3.3)

Now, we formulate motion reconstruction as an energy minimization prob-

lem. For each time-step we aim to �nd a pose ~qbest that optimally satis�es

constraints imposed by the observation (measured acceleration data) while

also being consistent with similar motion clips retrieved from the database.

More precisely, our energy function to be minimized is based on two compo-

nents where a data prior term enforces plausible reconstruction results and

a control term is driven by the measured accelerometer data:

~qbest = argmin
~q

(wprior · Eprior(~q) + wcontr · Econtr(~q)). (3.4)

Here, the two weights wprior and wcontr are user-de�ned constants. In the

following, we will take a closer look on the terms of this energy function.

To this end, we assume that we have already reconstructed the motion up

to time t. Now, at t + 1, a new control input ~αt+1 arrives from the sensors,

which is used to update the OLNG. The most recent information we get from

the OLNG are Qt+1 and W t+1.

In the following sections, joint positions are predicted using short time

integration. At this point we emphasize that despite this fact our method

is not prone to error accumulation. The main reason for this is that the

predicted joint positions are only used as an additional control input that

helps to guide the synthesis in position space. Also, they are predicted for

one frame into the future only. The overall motion, however, is mainly driven

by the local models that are generated by the OLNG, which in turn is based

on prerecorded database motions and continuously updated by the control

signal itself.
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3.5 Motion reconstruction

3.5.1 Prior term

For human motions, similarity in a (low-dimensional) acceleration space does

not automatically induce similarity on pose or joint velocity level. Thus, for

large heterogeneous databases, motions with similar control signals tend to

be scattered in both pose and velocity space. As our approach relies on such

neighborhoods, using the control signal alone as objective function may yield

artifacts such as jittering or degenerated poses. To avoid implausible results,

a data-driven prior model that measures the a priori likelihood of a motion

based on the motions given by the knowledge base is used. Our prior model

consists of three di�erent components: First, a pose prior characterizes the

probability of a pose with respect to the distribution in pose space determined

by database samples. Second, a motion prior measures the likelihood of a

pose regarding the temporal evolution of a motion. Third, a smoothness

prior reduces jerkiness. Based on this model a three-term energy function

Eprior with user-de�ned weights wpose, wmotion, and wsmooth is computed:

Eprior(~q) = wpose · Epose(~q)

+ wmotion · Emotion(~q) (3.5)

+ wsmooth · Esmooth(~q)

In contrast to existing approaches used in the context of motion synthe-

sis [CH05], the term Eprior is e�ective also in cases where the retrieved poses

Qt+1 belong to very di�erent types of motion. Moreover, ad hoc smoothness

heuristics are avoided by taking a data-driven approach.

Pose prior

The set of poses Qt+1 with corresponding weights W t+1 provided by the

online algorithm are used to locally characterize the probability density in

pose space. Instead of using a multivariate normal distribution model, as

was done by Chai and Hodgins [CH05], we propose a kernel based approach
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to approximate the likelihood ppose of a synthesized pose candidate ~q:

ppose(~q) ∝
I∑
i=1

wt+1
i · K(|~qt+1

i − ~q|). (3.6)

Here, K is a symmetric kernel function. Note that such a kernel-based repre-

sentation is well suited to approximate arbitrary shaped probability density

functions including multiple peaks, which is a desirable property not only

for our application but also for data-driven motion synthesis in general. As

for conventional unit integral kernel functions (e.g., Gaussians), ppose is max-

imized for poses that are likely according to the samples included in the

database. To this end, the prior needs to be reformulated as an expression

suitable for energy minimization. In practice, a square root kernel is used to

compute the energy term Epose:

Epose(~q) =
I∑
i=1

wt+1
i ·

√
|~qt+1
i − ~q|. (3.7)

The above expression yields results (regarding optimality) comparable to

ppose (see Figure 3.11) while�due to the choice of K�not being prone to

numerically vanishing gradients if ppose ≈ 0, which is desirable for gradient-

based energy minimization techniques.

Motion prior

Besides being plausible on a pose level, the temporal evolution of a recon-

structed motion should be consistent with motions observed in reality. More

speci�cally, the movement of the joints should be directed in a believable way.

The latter objective is achieved by employing a motion prior accounting for

the joint velocities V t+1 and the joint accelerations At+1 of the neighboring

database poses included in Qt+1. To be more precise, we estimate a prob-

ability density distribution for ~xt+1 (the true joint positions at time t + 1)

by computing the second-order Taylor expansion at the joint positions ~xt

(associated to ~qt) using V t+1 and At+1. For the i-th sample (i ∈ {1, .., n}),

54



3.5 Motion reconstruction

Figure 3.11: A simple example illustrating the e�ect of our kernel based ap-
proach in case of clustered data samples. Here, the green dashed
lines indicate the kernel functions centered at the sample posi-
tions and the solid blue line represents our energy term Epose.
The dotted purple line symbolizes the energy function proposed
by Chai and Hodgins [CH05]. Please note how the local sam-
ple density is determining the likelihood of a pose candidate
in contrast to Chai and Hodgins: Clusters of samples induce
distinctive local minima of Epose.

the estimated positions ~x′
t+1

i are then given by

~x′
t+1

i = ~xt + ~vt+1
i ·∆t+

1

2
~at+1
i ·∆t2. (3.8)

To approximate the probability density based on the set {~x′t+1

i |i ∈ [1 : I]},
we take a kernel-based approach very similar to ppose. Hence, for the resulting

energy term, with ~x denoting the joint positions of a pose candidate ~q, one

gets

Emotion(~x) =
I∑
i=1

wt+1
i ·

√
|~x′t+1

i − ~x|. (3.9)

Smoothness prior

Using prior and control terms for energy minimization already yields plau-

sible results in many cases. However, as these two terms at most account

for the last synthesized pose, high frequency jitter may occur. In contrast to

most existing approaches that attempt to enforce smoothness by minimizing
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joint accelerations, we make direct use of the a priori knowledge provided by

the database. A pose ~q (with joint positions ~x) is assumed to be plausible,

if the induced joint accelerations are consistent with the joint accelerations

of neighboring database samples. Again, as for pose and motion priors, the

likelihood of a pose candidate is measured by kernel based density estimation:

Esmooth(~a) =
I∑
i=1

wt+1
i ·∆t ·

√
|~at+1
i − ~a|, (3.10)

with

~a = ∆t−2 ·
(
~x− 2~xt + ~xt−1

)
. (3.11)

3.5.2 Control term

Accelerations have already been used to retrieve motion subsequences (and

thereby also poses) that are likely to be similar to the actual performed ones.

As the subsequent motion synthesis is based on these poses, this step already

provides a certain degree of implicit control and e�ectively restricts the space

of possible outcomes. However, a direct use of these accelerations as control

signal is not a viable choice as it provides not enough discriminatory power

to guarantee a similarity in pose space, which is essential for a stable motion

reconstruction. For exactly that reason, the control term is computed based

on extremal joint positions that closely match the actual sensor positions.

Let 〈~y〉 be the projection of a vector ~y to the subspace formed by the com-

ponents related to the joints that are next to the virtual sensors. Assuming

proper positions ~xt at frame t the probability density distribution of the next

joint positions at t+ 1 is estimated by numerical integration of the equation

of motion using V t:

~̃x
t+1

i =
〈
~xt + ~vti ·∆t

〉
+

1

2
~̂αt ·∆t2. (3.12)

Here, accelerations ~̂αt are computed by transforming control signal readings

~αt to root frame coordinates using the local frames induced by the previously

synthesized pose ~qt and subtracting gravity. Assuming that the database
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includes motions similar to the one performed, we use {~̃xt+1
i |i ∈ [1 : I]} to

derive an energy term to be minimized:

Econtr(~x) =
I∑
i=1

wt+1
i ·

√
|~̃xt+1
i − 〈~x〉 |. (3.13)

Using velocities from the database e�ectively avoids overshooting e�ects

that would otherwise occur if, for example, no smooth transition between

di�erent poses can be synthesized.

Naturally, our approach is only approximate as no direct control in pose

space is available and the quality of results depends on estimated proper-

ties (such as the current pose) and the motion clips included in the database.

Moreover, root accelerations have not been explicitly considered, which makes

the method less accurate in case of high-dynamic root movement. However,

despite all these theoretical de�ciencies, the proposed method works well in

practice. The main reason is that, if a class of motions is included in the

database, the reconstructed motion is mainly driven by this data and only

adjusted by measured joint accelerations.

3.5.3 Energy minimization

We employ a gradient-descent-based method3 to minimize the objective func-

tion (Equation 3.4) with respect to a pose that optimally satis�es our sta-

tistical and control constraints. Initializing energy minimization with the

previously synthesized pose, the method usually quickly converges after few

iterations. During optimization, the di�erent user-de�ned weights included in

Equation 3.4 were kept �xed at the following values: wcontr = 1, wprior = 5,

wpose = 0.6, wmotion = 0.2, wsmooth = 0.2. According to our experience,

slightly changing these values does not substantially a�ect the overall qual-

ity of reconstruction results.

To decrease optimization costs and to improve robustness of the approach,

this minimization is not performed in the high-dimensional pose domain. As

originally proposed by Chai and Hodgins [CH05], a local linear model ap-

3The lsqnonlin function (large scale) of MATLAB was used.
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proximation of the pose space is applied instead. Using a weighted PCA

for dimensionality reduction we take full advantage of the pose weights W t

computed at each frame. Generally, there is a trade-o� between accuracy

and optimization speed. If a fast synthesis is essential, a lower-order PCA

approximation will, while being less accurate, yield faster results. Preserving

99% of the original variance, the dimension of a pose reduced from 43 for

the full pose representation to as few as 14 components on average while

still producing visually satisfying results. Note that the nature of our con-

trol signal, in contrast to a position-based one, may cause scattered and in

particular clustered neighborhoods in pose space and thus suppress strong

dimensionality reduction.

3.6 Results

We have tested the e�ectiveness of our system with simulated as well as

real sensor readings. As relating human perception to numerical distance

measures is inherently di�cult [TWC+09], the widely accepted average RMS

error of joint positions (relative to the skeleton root frame) is used in the

following for all numerical comparisons. Please note that the distance mea-

sure introduced in Section 2.4 performs all computations with respect to a

global coordinate frame, we are here, however, not explicitly reconstructing

the root motion. While we describe a very simple procedure for estimating

the root motion in Section 3.6.4, synthesized motions may be still arbitrarily

rotated about the vertical axis. The suggested distance measure thus can

not be directly used for evaluating our system.

3.6.1 Tests based on real sensor readings

The treadmill experiment

One of the very �rst experiments we did was the following treadmill exper-

iment. Its goal was to evaluate the OLNG search rather than the motion

synthesis which hadn't been fully developed yet at this point. The nice
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Figure 3.12: Snapshots taken from the video of the treadmill experiment.
The video shows an overlay of the 128 most similar poses iden-
ti�ed by the OLNG, and a recording of the actual performance.
The 128 poses are visualized by the positions of their wrist and
ankle joints, with red, orange, green, and turquoise represent-
ing the right wrist, left wrist, right ankle, and left ankle, re-
spectively. The snapshots were taken at times of very di�erent
treadmill speeds.

thing about the treadmill environment was that it allowed us to very pre-

cisely control and smoothly vary the speed of the performance. One person

equipped with four accelerometers (attached next to his wrists and ankles)

simply had to adapt his motion to the speed of the treadmill, which was con-

trolled by a second person. Starting at rest, the speed of the treadmill was

continuously and slowly increased to 12 km/h, thereby smoothly changing

the athlete's motion from standing to walking to jogging/running. While the

used knowledge base contained walking and jogging motions (among other

motion classes), the very �ne variations and transitions between them were

not directly represented. We used the OLNG based search to �nd for each

frame of the performance the 128 most similar poses.

As we do not have ground-truth data of the athlete's performance, we eval-

uated the quality of the retrieved local models visually. The accompanying

video shows an overlay of the 128 poses that were considered to be most

similar to the actual performance by the OLNG�visualized by the positions

of their wrist and ankle joints�and a video recording of the performance.

Please note that due to a missing camera calibration the overlay had to be

59
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adjusted manually so that the two layers do not perfectly match. Figure 3.12

shows some snapshots of the video. It can be seen in the video that the very

slow motion at the beginning of the performance is barely identi�ed by the

OLNG. This is because the measured acceleration is too small and thus not

discriminative enough. The athlete is, however, still slowly walking when

the walking pattern is �nally captured and re�ected by the local models.

During normal and fast walking, the sets of poses are very bundled and very

few frames show scattered poses. The transition from fast walking to slow

jogging is immediately re�ected by the retrieved local models and introduces

only a little amount of scattering for a very short time. In the following, the

retrieved poses re�ect the actual performance very well until the maximum

running speed of 12 km/h is achieved. All in all, we considered the results

of this �rst experiment as very promising and motivating for our following

work.

A question that might arise is whether the treadmill environment actually

re�ects a realistic scenario with respect to the sensor readings, as it obviously

eliminates basically every forward motion of the athlete. As a consequence,

in contrast to any general environment, the athlete's global position is even

at high speeds barely moving on a treadmill. Since we are dealing with

accelerations, the di�erence in sensor readings, however, is actually very

small. In fact�what might not be obvious at �rst sight�it is only the

acceleration of the treadmill that introduces a deviation, and its actual speed

does not a�ect the sensor readings at all. In other words, it does not make any

di�erence to the accelerometer readings whether the athlete is running (with

constant speed) on a treadmill or on the street (neglecting any di�erences in

the conditions of the ground). Since in our experiment the acceleration of the

treadmill is very small compared to the actual accelerations of the sensors,

it can be neglected and the environment can be seen as a realistic scenario.

Outdoor motion reconstruction

In a second test, we reconstructed motions of two di�erent actors performed

in an outdoor setting. As we again do not have ground-truth data to quantify
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Figure 3.13: Frames taken from the video illustrating our outdoor motion
reconstruction experiment. The motion synthesis was driven by
four 3D accelerometers attached to the lower arms and lower
legs of one of two actors. Reconstructed poses are always shown
to the left of the original performance.

the reconstruction accuracy in this case, the results shown in the video�

reconstruction alongside a video recording of the original performance�only

provide a qualitative comparison. However, the main challenges are illus-

trated by the given examples. In addition, the outdoor setting clearly shows

that, as opposed to optical systems, inertial-based devices as used in our

scenario impose only very little constraints on the actor or the recording

environment with regard to lighting conditions, recording volume, or setup.

Due to the time warping capabilities of the OLNG employed for �nding

close matches to a given query, our approach is not sensitive to moderate

temporal variations. As a consequence, we are able to synthesize motions at

speeds not explicitly covered by the knowledge base, as already indicated in

the treadmill experiment. As it is inherently complicated to create temporal

variation for arbitrary motions, we restricted an additional analysis to a

sequence of localized jumping jack motions performed at di�erent speeds.

The results�the reconstruction errors with respect to ground-truth data,

given for our method as well as a variant that avoided to time warp motions

in order to match them�are summarized in Figure 3.14. Here, the lower

errors obtained with our method clearly show the general advantage of the

OLNG over a conventional linear search algorithm that does not account for

time warped motions in the retrieval step.
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Figure 3.14: Smoothly varying the relative speed of a jumping jack motion
over time. Here, the dashed red line indicates the relative speed
and the red dots the �hand clapping� frame for six subsequent
jumping jacks. Blue: Reconstruction error using our method.
Green: Reconstruction error using a variant of our method that
does not account for time warped motion sequences.

Figure 3.15: Reconstruction error for motions with recorded ground-truth.
Blue: reconstruction errors using sensor data (MTx accelera-
tions). Green: reconstruction errors using simulated accelerom-
eter readings. Red: relative di�erence between both.
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Figure 3.16: Comparison of simulated sensor data (red) and real accelerom-
eter readings (blue) obtained from an MTx device attached to a
user's left wrist.

Comparison to simulated accelerometer readings

In order to quantify di�erences between real and simulated sensor readings

(computed from given MoCap data), we simultaneously captured a set of 41

motions (of one actor) using Xsens MTx sensors and an optical motion cap-

ture system (a 12-camera Vicon system). Then, we reconstructed all these

motions on the basis of the actual sensor readings as well as of simulated

ones. The average reconstruction errors for both scenarios are given in Fig-

ure 3.15. Although almost all reconstructions on the basis of simulated data

numerically perform slightly better, the di�erences of the reconstruction er-

rors are much smaller than the reconstruction error of our method per se.

Also, both error curves are highly consistent in their overall course.

As demonstrated by the numerical ground-truth comparison, simulated

sensors yield comparable results to real readings. This high similarity is fur-

thermore underlined by Figure 3.16, where real sensor readings are compared

directly to simulated ones. These observations enable us to use the large

body of systematically recorded motions of the HDM05 database [MRC+07]

for systematic evaluations of our method.
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3.6.2 Tests based on simulated sensor readings

In this section, we report on a series of tests to evaluate how our proposed

reconstruction behaves under the variation of several important aspects. To

this end, we �rst take a closer look on how our reconstruction is a�ected by

the size and diversity of the used knowledge base. Second, we elaborate on

the in�uence of the window lengthM used in the OLNG. Third, we test how

the size of the actor in�uences the reconstruction process, in particular when

the actor to be reconstructed is much smaller or much larger than all the

actors included in the knowledge base. Finally, we evaluate how the number

and the placing of the sensors a�ects the quality of our reconstruction.

General scenarios used for testing

In the following experiments, the knowledge base consists of motion clips

taken from the publicly available motion database HDM05 [MRC+07]. This

database consists of various parts and sections in which di�erent motion

classes including locomotion, grabbing and depositing, and sports motions

are performed. The motions inside the database were performed by �ve

di�erent actors, referred to by their initials (bd, bk, dg, mm, tr). In the

following, we denote di�erent knowledge bases by the same naming pattern

that was used in the documentation of the HDM05 database to describe

single motion �les:

HDM_{actor}_{part}-{scene}_{take}_{framerate}.

In our case, we use asterisks serving as wildcards to represent any possible

value of that �eld. Furthermore, if an �M� was added to the name, also

copies that have been mirrored at the natural symmetry axis of the skeleton

(inverting �left� and �right�) were added. Analogously, a su�x �R� means

that also the time-reversed counterparts of the motions were added to the

knowledge base. For example, the knowledge base HDM_bd_01-**_**_25M

represents all motion clips from Part 1 of the HDM05 database performed

by the actor bd, together with their mirrored copies.

In all of the following experiments, the used control data was obtained

by simulating virtual sensors, as described in Section 3.3, using a set of test
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Scenario Knowledge base

1 Contains also motions of actor to be reconstructed
2 Contains only motions of actor to be reconstructed
3 Contains no motions of actor to be reconstructed

Table 3.1: Summary of the three scenarios used for our evaluations.

motions also obtained from the HDM05 database. The actual test motion

itself was never included in the knowledge base. Furthermore, we de�ned

three di�erent reconstruction scenarios, where the type of the scenario was

determined by whether the actor of the considered test motion was included

in the knowledge base or not; see Table 3.1 for an overview.

For some of the following experiments, we additionally de�ned three special

types of knowledge bases matching the scenarios shown in Table 3.1.

• DB1: All motion clips of all �ve actors contained in the HDM05 database

together with mirrored copies. In total this knowledge base comprises

about 0.56 million frames (370 minutes of MoCap at 25 fps). Again,

despite the fact that the actor to be reconstructed is always included in

this knowledge base, the corresponding test motions are never included

in the knowledge base.

• DBi
2: A subset of DB1 including only motion samples of the ith (i ∈

[1 : 5]) subject, whose motion is reconstructed.

• DBi
3: DB1 without samples of the subject, whose motion is recon-

structed (DBi
3 := DB1\DBi

2).

Size and diversity of the knowledge base.

In a �rst experiment, we analyzed how the size and diversity of the knowledge

base in�uences the quality of the reconstructed test motions. To this end,

we created �ve sets of test motions (one for every actor), each containing six

motion clips from Part 1 (locomotion) of the HDM05 database, deliberately

chosen in such a way that every motion class described in Part 1 was covered.

Additionally we composed a set of 20 di�erent knowledge bases, largely dif-

fering in size and diversity and re�ecting all previously described scenarios,
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3 Motion reconstruction based on sparse accelerometer data

and used them to reconstruct all test motions of all actors.

The reconstructed motions were then compared to the original test motions

using the RMS error of joint positions. The results of this experiment are

shown in Figure 3.17. The columns give the name of the knowledge base, the

scenarios resulting from combining this knowledge base with the respective

test motions, the size of the knowledge base (with average numbers of frames

for scenario 3, where all motions of a certain actor had to be removed),

and�for each actor separately�the color-coded averaged RMS errors of the

reconstructed motions.

The �rst important observation of this experiment is that the reconstruc-

tion quality is noticeably better when motions of the actor to be recon-

structed are contained in the used knowledge base (scenario 1 and 2), one,

however, still obtains satisfying results if this is not the case (scenario 3).

This can directly be seen by comparing subsequent rows in sub�gures 3.17 (b)

and 3.17 (d), as well as by the prominent blue diagonals in sub�gures 3.17 (a)

and 3.17 (c) representing scenario 2. As our method is very robust towards

variations in actor sizes (see Section 3.6.2) and relatively robust towards mod-

erate variations in speed (see Section 3.6.1), this is mainly due to the varia-

tions in style that exist between di�erent actors. When examining the under-

lying motion data from the HDM05 database it becomes clear that this is es-

pecially true for actor mm, where one can observe large performance variations

even within the same actor category. The second important observation is

that the reconstruction quality only slightly decreases when knowledge bases

become bigger and less homogeneous. This can be seen by comparing rows

corresponding to same scenarios in sub�gures 3.17 (b) and 3.17 (d), as well

as by comparing the overall appearances of sub�gures 3.17 (a) and 3.17 (c).

Strictly speaking, one should distinguish between a mere increase of the size

of the knowledge base (e.g., obtained by including mirrored motions) and the

apparent increase of the diversity by including new motion classes. This is,

however, quite di�cult, as both attributes are strongly related in most prac-

tical scenarios. In particular, the results for actor mm, however, support our

intuition that increasing the diversity has a higher in�uence on the results

than a mere in�ation of the knowledge base.
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Figure 3.17: Average reconstruction error for a given knowledge base and a
given actor to be reconstructed. In addition, the sizes of the
knowledge bases (in terms of number of frames) as well as the
e�ective scenarios are indicated (with blue diagonals in the �rst
and third box representing Scenario 2).
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Figure 3.18: Histogram of the average RMS error for the di�erent scenarios.

Since the averaged RMS error over all frames gives only a limited in-

sight, we conducted another experiment in which we analyzed the distribu-

tion of the RMS error. To this end, we reconstructed all motions of the

HDM05 database, using the knowledge bases DB1, DBi
2, i ∈ [1 : 5], and

DBi
3, i ∈ [1 : 5], re�ecting the scenarios 1, 2, and 3. While in case of DB1

all motions were reconstructed using the same knowledge base (except for

the absence of the currently regarded test motion), in case of DBi
2 and DBi

3

only motions performed by the ith actor were reconstructed, and the results

were uni�ed and summarized as DB2 and DB3 respectively. Here, for each

scenario, the resulting per-frame RMS errors of all reconstructed motions

were accumulated and plotted as histogram with a binning of 0.5 cm; see

Figure 3.18. As indicated by the narrow peaks at relatively low error levels,

reconstructed poses are very likely to be consistent with the original ones.

Moreover, DB1 and DB2 give higher-quality results than DB3, as has been

expected.

Window size

As our motion synthesis highly depends on the quality of the local mod-

els identi�ed by the OLNG, the size M of the window used to retrieve paths

might be a critical parameter. However, asM only de�nes an upper bound to

the lengths of paths rather than constraining them to a speci�c length (as in

the algorithm described by Krüger et al. [KTWZ10]), its assignment is far less
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Figure 3.19: In�uence of the window size M of the OLNG. All motions were
sampled at 25 frames per second.

critical than in the original approach. Figure 3.19 shows the reconstruction

results using di�erent window sizes. As can be seen, the minimum recon-

struction error was obtained when using a window size of 13 frames, which

roughly corresponds to half a second at a sampling rate of 25 frames per

second. The signi�cantly larger errors at smaller window sizes indicate that

sequences of a certain length e�ectively help to evaluate and disambiguate

the local neighborhoods. The slight increase of the error when expanding the

window to 25 frames can be explained by paths that stretch across the entire

window of 25 frames, and thus are preferred over shorter ones, although they

describe the control signal signi�cantly worse in its second half (the last 13

frames). This result indicates that half a second is a viable choice for the

window size, and that accelerations older than half a second may not be

representative for the actual performance anymore. An easy way to take the

�aging� of paths into account would be to weigh the costs of nodes propor-

tional to their (temporal) distance to point of time we are actually interested

in. The reason for the error not increasing more when further expanding the

window size is simply that in our scenario almost no paths longer than a

second are found.
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Figure 3.20: Dependency of the average reconstruction error on the size and
proportions of actors: (a) Comparing the use of original propor-
tions (blue) in the underlying knowledge base with our standard
approach of using skeletons with averaged bone lengths (green).
(b) Uniformly scaling the actor to be reconstructed, while us-
ing averaged skeletons in the underlying knowledge base. The
scaling factor is indicated, ranging from 0.5 to 1.5.

Size and proportions of actors

To investigate how di�erent sizes and proportions of actors a�ect the re-

construction results, we performed two tests. In a �rst experiment we built

the knowledge bases (containing simulated sensor readings) using the origi-

nal skeleton information of the �ve di�erent individuals�with body heights

ranging from roughly 170 cm to about 200 cm�included in the HDM05. As

can be seen from Figure 3.20 (a), the reconstruction error is virtually unaf-

fected by naturally occurring variations in actor sizes. Also, these numerical

�ndings are supported by visually comparing the quality of reconstructed

motions. For a second, more synthetic test, we got back to our standard

practice, using knowledge bases built upon skeletons whose bone lengths

were averaged across the di�erent actors. Now, however, we systematically

scaled the bone lengths of the actor to be reconstructed in the range [0.5, 1.5]

(hence modi�ed the simulated sensor readings) while keeping the knowledge

bases unchanged. To account for the fact that the used point cloud distance

measure linearly depends on the scaling factor, the scaled bone lengths were

transformed to their original size after reconstruction for the sake of com-
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parison. Figure 3.20 (b) shows the average reconstruction errors in the three

described scenarios plotted against the scaling factor. Again, this test indi-

cates that the reconstruction is relatively robust regarding diversity in body

height.

The prior model

As discussed in Section 3.5.1, the novel priors substantially improve the re-

construction quality compared to existing models previously presented in

the context of motion synthesis. In order to validate this claim we made

comparisons to methods that attempt to adapt existing prior models to our

framework:

• Using a prior along the lines of Chai and Hodgins [CH05]: A local mul-

tivariate normal distribution was used to approximate the distribution

of local neighbors in pose space and the distance of a synthesized pose

was measured by its Mahalanobis distance to compute Econtr. Moreover

an ad hoc smoothness prior replacing the original energy term Esmooth

was employed that minimizes joint accelerations.

• Employing the Mahalanobis distance (instead of using the proposed

kernel regression method) for each term of the prior Econtr, Emotion,

and Esmooth.

The results, the average reconstruction error for each of our database sce-

narios summarized in Table 3.21 clearly evidence the bene�t of using our

motion priors together with kernel regression: The average reconstruction

error decreases by about 30% for the new model.

Tests with di�erent sensor setups

The average reconstruction error was analyzed for di�erent sparse sensor

con�gurations (refer to Table 3.2) including one to six sensors. This was

done by both a histogram based approach, similar to Section 3.1 (see Fig-

ure 3.22 (a)), performed on the complete HDM05 database, and�for the sake

of easier comparison�an evaluation of the subset of test motions described
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Figure 3.21: Comparing the average reconstruction error obtained with the
new prior model (a) to approaches that attempt to adapt ex-
isting ones to our framework: (b) Replacing kernel regression
in Econtr, Epose, Emotion, and Esmooth by Mahalanobis distance;
(c) Using multivariate normal distribution prior model for Econtr

together with an ad hoc smoothness assumption.

5

6

2

4

1

3
Number of sensors Used sensors
1 [3]
2 [2 3]
3 [1 2 3]
4 [1 2 3 4]
5 [1 2 3 4 5]
6 [1 2 3 4 5 6]

Table 3.2: Di�erent sensor setups

earlier in this section (see Figure 3.22 (b)). Naturally, additional sensors tend

to improve the reconstruction quality as less information needs to be inferred

from the knowledge base. However, as demonstrated by our results, a large

variety of motions can be well approximated with surprisingly few sensors.

This is in particular true for motions that are performed similarly across dif-

ferent individuals (e.g., walking or running motions) where more than four

sensors gave no substantial improvement. Of course, our reported results

are empiric results with respect to the test motion database: Although our

test databases taken from HDM05 contain a variety of motions, they con-

tain rather few motions where there are di�erent movements of the head
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Figure 3.22: Dependency of the average reconstruction error on the sensor
setup: (a) Histogram-based evaluation, performed on the com-
plete HDM05 database. (b) Evaluation based on a selected set
of test motions.

and torso for the same motions of the hands and feet (like sitting down a

table without moving feet and hands versus other static poses, certain �belly

dance� motions, etc.). On the other hand, even less than four sensors may

produce reasonable results in certain cases, if the control signal is expressive

enough to di�erentiate between di�erent motion styles and if joint movement

is highly correlated (such as for walking motions).

3.6.3 Runtime

The prototypic implementation of our method is computationally relatively

costly, as a motion synthesis is required for motion reconstruction. Please

note, however, that the search for similar motion segments in large databases

is no longer a bottleneck, opposed to existing techniques. As can be seen

in Table 3.3, optimization is the most time-consuming step of the whole

pipeline. It takes about 380 milliseconds per-frame to reconstruct a motion

based on a given stream of control data in our single-threaded MATLAB

implementation. For all tests presented in this work the size of the neigh-

borhood used for OLNG and priors/control was K = 4096 and I = 256,

respectively.
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Preprocessing kd-tree construction 1 390 ms

Online reconstruction
kd-tree-based NN search 51 ms
OLNG update 12 ms
Energy minimization 380 ms

Table 3.3: Runtimes for the components of our reconstruction pipeline (using
DB1 with N ≈ 6 · 105, K = 4096, I = 256). The runtimes were
measured using single-threaded MATLAB-Code on a Core i7 @
3.07GHz. While the runtime of the preprocessing is as given, the
runtimes of the online motion reconstruction are averaged over all
frames.

3.6.4 Synthesizing a plausible root motion

So far all poses were considered to be normalized with respect to skeleton

root position and orientation. However, there are applications that aim to

synthesize characters that freely move in space over time, which require a

world frame representation of poses. As no information about the actual

root movement is given, the required data needs to be synthesized from

database samples. We found that using the weighted average of root mo-

tions of samples included in Qt with weights W t already yields acceptable

results in cases where similar motion clips are included in the database. Al-

though more sophisticated approaches are possible in principle, we believe

that a substantially more accurate and robust estimate would require ad-

ditional sensors measuring root orientation and global positions. A simple

example indicating that the proposed method generates consistent root mo-

tions is given in Figure 3.23. Here, the estimate of the root velocity of the

run-walk-run motion sequence presented in the video is shown. The di�erent

subsequent phases (continuously accelerating the running speed, turning into

a short walking phase, turning into a running again) are clearly re�ected by

the root velocity. This example does not only show that our rather simple

method for estimating root motions is of practical use, but does also demon-

strate the capability of our approach to account for temporal variations of

motions. In the underlying HDM05 database no range of running motions

at various speeds have been captured but only the slight variations of a slow
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Figure 3.23: Estimated root speed of a run-walk-run motion

running.

3.6.5 Limitations

Since our framework largely relies on similarities in joint acceleration space,

e�ective motion reconstruction is possible only if similar motion sequences

induce similar acceleration sequences and vice versa. In other words, sensor

readings need to be discriminative enough to di�erentiate between di�erent

motion classes across di�erent subjects while still covering possible varia-

tions. If a motion is violating this assumption, a plausible reconstruction is

not possible.

An obvious limitation of our method is that occasionally jumps between

poses may occur. However, please note that this is a potential issue of any

online method that attempts to reconstruct motions based on ambiguous

data streams. Another general restriction of the method is that, due to

missing positional and orientational information, root motion is only ap-

proximate, and that acceptable results are obtained only if motions very

similar to the one to be reconstructed are included in the database. Finally,

all currently publicly available mocap databases have been designed without

our application in mind. As a result, no special care was taken in creating

a skeleton representation whose joint frames are consistent with the actual

motion. While this might be no issue for joint positions, it substantially

a�ects the usability regarding our method.
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3.7 Conclusion

We presented a novel data-driven framework together with a prototypical

implementation for reconstructing high-dimensional full-body motions from

low-dimensional accelerometer readings. Key components of this framework

are a data structure that we referred to as Online Lazy Neighborhood Graph

(OLNG) and a novel, fully data-driven prior model. We described how the

OLNG can be applied for very e�ciently retrieving similar poses and motion

sequences from a large and heterogeneous motion capture database using

a continuous stream of control inputs (accelerometer readings in our case).

We demonstrated the robustness of our system in a comprehensive series of

experiments. At this, we in particular showed that our novel prior model is

able to minimize reconstruction ambiguities while simultaneously account-

ing for temporal and spatial variations in both the knowledge base and the

control signal. Although the control input for our experiments was gener-

ated by inertial sensors, we want to emphasize again that we only made use

of the integrated accelerometer readings. Thus, our results can be achieved

with much smaller and less expensive devices. Our work can be seen as a

proof of concept that, although acceleration data of motions contains less in-

formation than positional data, not only action recognition but also motion

reconstruction is possible in many cases using the data of surprisingly few

accelerometers only.
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Motion reconstruction using a

subsequence graph

4.1 Introduction

Optical motion capture systems rely on tracking the positions of a (gener-

ally large) number of markers attached to an actor. However, often markers

are occluded by surrounding objects, interacting actors, or even by the actor

himself. While current systems that commonly rely on a large number of

calibrated cameras can handle marker occlusions pretty well up to a certain

degree, they inevitably fail if the available information becomes too sparse.

In this case, data-driven approaches can be used to �ll in the missing infor-

mation afterwards. In the following, I will present a conceptually very simple

yet very e�ective data-driven approach that �lls in the missing information

using a small set of motions that are known to be similar to the original

performance.
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4.1.1 Related work

Various approaches have been suggested for reconstructing full-body motions

from low-dimensional control signals. In this work, I have not only introduced

two very di�erent reconstruction frameworks myself, but I have also already

discussed the state of the art in this �eld of research; see Section 3.2.

The problem in this chapter, however, is slightly di�erent. While earlier

presented approaches rely on a strategically designed control signal, we now

have to deal with unintentionally sparse control input. Furthermore, we now

deal with positional data rather than with acceleration data. The given task

thus relates to the missing marker problem which is commonly encountered

in marker-based mocap systems. Rudimentary missing marker recovery solu-

tions, more or less based on interpolation techniques and kinematic informa-

tion about the underlying skeleton, are provided by commercial mocap sys-

tems [Vic11, Pha11, Gia11]. These systems, however, fail if a signi�cant per-

centage of markers is missing for an extended period of time. Kinematic in-

formation together with information about positions of neighboring markers

in previous frames is also exploited by Herda et al. [HFP+00]. Kalman �lters

have been employed to predict the trajectories of missing markers [DU03],

but also inevitably fail if markers are missing for an extended period of

time, or if they are missing entirely. Also data-driven methods have been

proposed [LM06, LMFP10, LC10, BKZW11b, BKZW11a]. None of these,

however, deal with extremely sparse measurements, e.g., measurements that

provide only 10% of uncorrupted data.

Grochow et al. [GMHP04] describe a style-based inverse kinematics system,

and outline how a global, nonlinear dimensionality reduction technique, a

Gaussian Process Latent Variable Model [Law04], can be applied to the task

of motion capture with missing markers. While the results shown in their

accompanying video look very appealing, it is not clear how they are a�ected

by large amounts of marker �ickering (markers appearing and disappearing),

and how much natural motion detail is lost due to the proposed optimization

in low-dimensional pose space.

Conceptually, the method described here can be seen as a speci�c type of
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a motion graph, aiming to synthesize a new motion by appropriately rear-

ranging existing clips. Thus, it in particular builds upon ideas presented by

Kovar et al. [KGP02], Arikan and Forsyth [AF02], Leet et al. [LCR+02], and

Arikan et al. [AFO03]. I furthermore found that some ideas are similar to

work by Hsu et al. [HGP04] as well as Basu et al. [BSC05].

4.2 Control signal, knowledge base and

skeleton representation

Control signal

The control signal in the here presented problem is in many respects very

di�erent from the control signals discussed in Chapters 2 and 3. First of all

and most obvious, we are here dealing with positions rather than acceler-

ations. As we have shown earlier, positions are much more discriminative

than accelerations, so that this can be seen as an advantage. Unfortunately,

it comes with a big handicap: While in the earlier presented frameworks

we deliberately chose a sparse control signal (in order to reduce costs, setup

time, and intrusiveness), the sparsity of the control input here is caused by

problems that occurred during the motion capture session and is thus unin-

tentional. In other words: We do not control the information that we can

access. In practice this leads to the following problems:

• We may have very local information only (e.g., only markers on the

actor's head).

• The structure and dimensionality of the control signal are constantly

changing (as markers appear and disappear).

• We may have gaps in the control signal, i.e., frames with no information

about the performance at all.

Please note that we didn't have to deal with any of these problems in the

earlier presented approaches. Speci�cally, our control signal consists of a

sparse set of 3D points that are given in a global reference frame. We do

79



4 Motion reconstruction using a subsequence graph

however assume that each of these 3D points is correctly labeled, i.e., assigned

to a marker, and that we know for each marker its reference joint in the

underlying skeleton topology together with its local positional o�set. This

allows us to regard our control signal as a set of T marker trajectories, with

T being the total number of markers attached to the actor. Most of these

trajectories will however be incomplete or even empty. From now on I will

refer to the motion that produced the control signal (i.e., the motion we seek

to reconstruct) as the original performance.

Knowledge base

In contrast to the mostly large and heterogeneous motion capture databases

employed in the earlier presented approaches, our knowledge base here con-

sists only of a small number of motions that are known to be similar to

the original performance. These motions are taken from similar (success-

ful) recordings in the same motion capture session, from reference shots that

were done earlier, or even from sequences that were recorded afterwards with

the sole purpose of supporting the reconstruction. So why do we then need

to reconstruct the original motion at all? The reason is that in general we

cannot reproduce the exact performance afterwards. After all, the problems

we have to deal with (the sparsity of the control signal) are caused by very

demanding (often outdoor) motion capture environments, usually involving

interactions with objects and/or simultaneously captured persons. These

interactions need to be spatially and temporally aligned. If such reference

motions are recorded afterwards, this is done in less demanding (studio) en-

vironments. Due to the lower costs, such reference motions are also often

performed by di�erent persons, which means that our knowledge base might

contain motions of various actors.

Skeleton representation

In our case, the skeleton is represented by a hierarchical (tree-like) struc-

ture of 93 so-called bodies, one of which is declared as root. The root, which

is located in the center of the skeleton's pelvis, is the only body that does
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4.2 Control signal, knowledge base and skeleton representation

Figure 4.1: Skeleton representation and exemplary marker setup.

neither have a parent nor a spatial expansion (i.e., it has zero length). It

is furthermore the only body whose degrees of freedom (dofs) are expressed

in world coordinates. While the root has exactly three rotational and three

translational dofs, all other bodies have between zero and three rotational

and between zero and three translational (stretching) dofs, all of which are

expressed in the coordinate frame of their respective parent body. In total,

this adds up to 128 dofs for the complete skeleton representation. However,

not all of these intrinsic dofs are exposed to the user or the animation system.

In fact, an animation is driven by a smaller number of extrinsic dofs. While

many of these directly map onto intrinsic ones, some a�ect more than one

intrinsic dof. Examples for that are the spine stretch dof, that stretches all

bones belonging to the spine at once, or the �nger curl dof, that produces a

simultaneous curl of all �ngers (on the same hand). The exact mapping onto

intrinsic dofs in these cases is determined by pre-de�ned weights. Motions

are captured by (optically) tracking a set of roughly 50-60 passive markers

attached to an actor, using a commercial mocap system [Gia11]. All mo-

tions were recorded at 60 fps. Figure 4.1 depicts the skeleton representation

together with an exemplary marker setup.
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4 Motion reconstruction using a subsequence graph

4.3 Subsequence graphs

4.3.1 Objective and preliminary considerations

As we have seen, motion synthesis can be performed on windows of frames

(cf. Chapter 2) or in a frame-wise manner, as is usually required in an online

framework (cf. Chapter 3). While a frame-exact optimization in general is

expected to be more �exible and yield higher accuracy, several reasons made

me choose the window-based approach for the given problem: First, the

problem is an o�ine task and there is no need to make it online-capable.

Second, the control input is likely to be extremely sparse, very local (i.e.,

limited to a certain body part only) and may even contain gaps, which makes

frame-exact reconstruction inherently very di�cult. Third, the structure

and dimensionality of the control input is constantly changing, which can

easily introduce signi�cant amounts of jitter in a frame-wise motion synthesis.

Fourth, no matter how close the synthesized motion is to the control input

in the end, in a movie production pipeline it will be edited afterwards by

an artist anyway. Based on this, we can formulate our objective as follows:

Given a sparse set of (labeled) marker trajectories as control input, and a

knowledge base consisting of motion data that is known to resemble the

original performance (or parts thereof), we want to synthesize a motion that

best re�ects the temporal and spatial characteristics of the control input,

and in particular provides a suitable basis for subsequent (both manual and

automatic) motion editing. This means that it is particularly important that

the �nal animation has all the natural details that are contained in motion

capture data but are di�cult to create by hand. For this reason I decided

to �rst avoid any local optimizations or interpolations that run the risk of

washing out natural details, and instead synthesize a motion by stitching

together original motion clips.

4.3.2 Outline of the approach

Based on the above considerations, a very simple approach can be outlined

as follows:
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Figure 4.2: Outline of our approach to motion reconstruction using a subse-
quence graph (SSG).

1. Divide the control signal into equally-sized time windows.

2. For each window �nd the unique (temporally and spatially aligned) mo-

tion subsequence in the knowledge base that best matches the control

signal within that window.

3. Concatenate all retrieved subsequences to get the resulting animation.

This approach, however, does not produce satisfying results. The main rea-

son lies in the sparsity of the control signal, which causes subsequences to be

reported that locally match the control signal but do not �t into the overall

motion. As a result, subsequences cannot be meaningfully concatenated and

transitions look very unnatural. Very simple modi�cations however already

largely improve the outcome, and lead to the following procedure:

1. Divide the control signal into I windows wi of size N frames, with

consecutive windows wi, wi+1 overlapping by o frames (Figure 4.2 (a)).

2. For each window wi �nd the k (temporally and spatially aligned) mo-

tion subsequences in the knowledge base that best match the control

signal within that window (Figure 4.2 (b)).
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3. Build a graph structure (in the following referred to as subsequence

graph (SSG)), where:

• each of the I · k retrieved subsequences is a node,

• subsequences belonging to consecutive time windows wi, wi+1 are

connected by a directed edge pointing from wi to wi+1,

• costs are assigned to nodes based on their distance to the control

signal,

• costs are assigned to edges based on the similarity of the two cor-

responding subsequences within the overlapping region (transition

costs),

• a source node is inserted that connects to the k subsequences that

belong to the very �rst time window.

Note that by construction the subsequence graph is (similar to the LNG

and OLNG presented in Section 3.4) topologically ordered, directed,

and acyclic, and thus shortest paths can be found in linear time. The

structure of the subsequence graph is illustrated in Figure 4.2 (c).

4. Find the path with lowest costs that starts at the source node and

ends at a subsequence that corresponds to the very last time window

wI (Figure 4.2 (d)).

5. Concatenate all subsequences that belong to this path by cross-fading

them within their overlapping regions (Figure 4.2 (e)).

4.3.3 Subsequence retrieval

For constructing the subsequence graph we need to identify for each window

of the control signal a set of similar motion subsequences in the knowledge

base. While this is done using subsequence dynamic time warping (subse-

quence DTW) similar to the method described by Müller in Section 4.4 of

his book Information Retrieval for Music and Motion [Mül07], I want to

point out a small but important detail regarding my implementation. For

details about the general procedure please refer to Müller's book.
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While it identi�es optimal warping paths with respect to their total costs,

the algorithm for retrieving subsequences from a knowledge base as described

by Müller favors short paths. It is thus biased towards decelerating motions

in the knowledge base in order to align them with the control signal. In my

implementation I counterbalanced this preference by introducing local weights

in the computation of the accumulated cost matrix, similar to the variation

of DTW Müller describes in Section 4.2.2 of his book. Due to di�erences

in the initialization of this matrix, its structure in the subsequence retrieval

scenario, however, slightly di�ers from that in classical DTW, which is why

weights need special attention. Speci�cally, when using the classical DTW

steps (horizontal, vertical and diagonal, cf. Figure 3.10 (a)) in a subsequence

retrieval scenario, the diagonal and the vertical (the one that produces a

deceleration in the retrieved subsequence) step need to be appropriately pe-

nalized by local weights. I will now formalize and concretize this statement

following the notation used by Müller: Let M be the number of frames in

the knowledge base, N the number of frames in our query sequence (a win-

dow taken from the control signal), C ∈ RN×M the (local) cost matrix, and

n ∈ [1 . . . N ] and m ∈ [1 . . .M ] row and column indices, respectively. The

accumulated cost matrix D ∈ RN×M for retrieval of subsequences without

preferring any alignment is then recursively de�ned:

D(n,m) =



C(n,m) if n = 1∑n
k=1C(k,m) if m = 1

min


D(n− 1,m− 1) + 2 · C(n,m)

D(n− 1,m) + 2 · C(n,m)

D(n,m− 1) + C(n,m)

otherwise

(4.1)

In my implementation I furthermore chose the step size conditions to con-

strain the slope of warping paths to the bounds 1
2
and 2 (cf. Figure 3.10 (b)).
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Figure 4.3: (a) Initialization of the accumulated cost matrix for subsequence
DTW using step size conditions that constrain the slope of warp-
ing paths to the bounds 1

2
and 2 (cf. Figure 3.10 (b)). (b) De�ning

D(n,m) = ∞ if m = 1 and n > 1 will propagate in�nity values
to the red area and e�ectively restrict the search for optimal
warping paths to valid regions.

With these step size conditions, the accumulated cost matrix computes as:

D(n,m) =



C(n,m) if n = 1

∞ if m = 1 and n > 1

min


D(n− 1,m− 1) + C(n,m)

D(n− 1,m− 2) + C(n,m)

D(n− 2,m− 1) + 2 · C(n,m)

otherwise

(4.2)

By additionally de�ning D(n,m) := ∞ if n = 0 or m = 0, all boundary

conditions are handled. Figure 4.3 gives a more illustrative interpretation

of the initialization of D, representing the �rst two cases in Equation 4.2

together with the boundary de�nition. Given this accumulated cost matrix

D, the k best subsequences are retrieved following the procedure described

by Müller, also discarding subsequences that only di�er by a slight shift from

already retrieved ones. Please note that the introduced weights also have to

be considered when backtracking the optimal warping paths in D.
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Distance measure

The (local) cost matrix C that is needed for the computation of the accumu-

lated cost matrix D is obtained by evaluating a local cost or distance measure

comparing each frame of the control signal to each frame of the knowledge

base. Two things make it di�cult to �nd an e�ective as well as e�cient

distance measure: First, marker positions are given in a global world coor-

dinate frame, which means that they are not directly comparable, and there

is no obvious way to de�ne a local reference system. Second, most markers

are only occasionally visible, which means that the available information and

thus the dimensionality of the control signal varies over time. This makes

it basically impossible to de�ne a consistent (pre-computable) feature set

among frames, and thus forbids the use of e�cient data structures like, for

example, a kd-tree.1

For these reasons I chose the point cloud distance measure proposed by

Kovar et al. [KGP02], a variation of which I had already used in the multi-

linear framework for comparing point clouds of accelerations. It de�nes the

distance between two point clouds as the minimal (weighted) sum of squared

distances between corresponding points, given that a rigid 2D transforma-

tion consisting of a rotation about the vertical axis and a translation in the

ground plane may be applied to one of the point clouds. As a result from

this de�nition, this distance measure is not only invariant under horizon-

tal translation and vertical rotation, but also provides us with the optimal

transformation that aligns one point cloud with the other. Furthermore, it

�exibly adapts to the variations in the dimensionality of the control signal.

Based on this distance measure, each entry of the local cost matrix com-

putes as:

C(n,m) = min
θ,x0,z0

(∑
j

λj‖pnj − Tθ,x0,z0p′mj ‖2

)
, (4.3)

where pnj is a point in the cloud de�ned at frame n of the control signal, p′mj

1Baumann et al. [BKZW11a] build a new kd-tree for each motion cleaning process using
a subset of viable markers. In our case, however, the control signal is in general too
sparse to provide reliable marker subsets. Also, by not restricting us to pre-computable
feature sets, we can make full use of all available information.
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is a corresponding point in the cloud de�ned at frame m of the knowledge

base, λj is a weight assigned to the pair (pnj , p
′m
j ), and Tθ,x0,z0 is a linear

transformation that rotates a point by θ degrees about the (vertical) y-axis

and then translates it by x0, z0. Similar to what Kovar et al. suggest in their

work, I also de�ned point clouds on windows of frames, thereby e�ectively

incorporating derivative information into the metric.2 Speci�cally, I used a

window of a quarter of a second (i.e., 15 frames at 60 fps), centered at the

frame under consideration, with weights tapering o� to both ends according

to a Gaussian function.

4.3.4 Graph construction

Once the k best subsequences are identi�ed for each window wi, 1 ≤ i ≤ I,

the subsequence graph (SSG) is built as outlined in Section 4.3.2. Construc-

tion of the SSG is very straightforward (see also Figure 4.2): All retrieved

subsequences are considered as nodes, nodes belonging to subsequent time

windows are connected by directed edges, and costs are assigned to both

nodes and edges. The cost assigned to a node is directly given by its respec-

tive DTW distance (measuring the e�ort of aligning the control signal to the

corresponding subsequence in the knowledge base), the cost assigned to an

edge is computed based on the similarity of the two involved subsequences

within their overlapping region. The latter is used as an indicator of how well

two subsequences can be concatenated and is also referred to as transition

cost. More precisely, the transition costs ct(S, S ′) of two subsequences S and

S ′ are de�ned as:

ct(S, S
′) =

∑
j

(
‖Tθ,x0,z0pj − T ′θ,x0,z0p

′
j

∥∥2
), (4.4)

where p and p′ are 3D points in the overlapping regions of the subsequences

S and S ′, and T and T ′ are transformations that optimally align the two

subsequences with their corresponding windows of the control signal. For

2Please note that these windows are di�erent from the (possibly overlapping) windows
used to subdivide the control signal.
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the computation of T and T ′ we again use the point cloud distance measure

de�ned in Equation 4.3, with λj := 1 for all j. Please note that we do not

compute optimal alignments between subsequences, but instead compute for

each subsequence its optimal alignment with the control signal. This ensures

that the resulting motion is not only locally but also globally aligned with

the control signal.

By adding an additional source node that connects to all subsequences

corresponding to the very �rst time window w1, we turn our motion recon-

struction task into a shortest path problem. Now we just have to search for

the path with lowest accumulated cost that leads from the source node to

a subsequence corresponding to the very last time window wI . The costs of

a path are given by summing up all costs of related nodes and edges, and

an additional parameter is introduced to control the relative importance of

both. As mentioned earlier, due to properties of the SSG, an optimal path

can be found in linear time (linear in the number of nodes). Note, how-

ever, that the number of nodes is fairly small (in fact, generally orders of

magnitude smaller than in the OLNG presented in Chapter 3), and the time

needed for the path search is negligible compared to the computation of the

subsequences.

4.3.5 Motion synthesis

Given a path in the SSG, all that is left to do to yield a reconstruction

of the original performance is to appropriately concatenate the identi�ed

subsequences. This is done by simply cross-fading their exposed dofs within

their overlapping regions according to

qi,i+1(t) = α(t) · qi(t) + (1− α(t)) · qi+1(t). (4.5)

Here, qi and qi+1 are the dof values of two subsequences Si and Si+1 to be

cross-faded, qi,i+1 denotes the dof values of the cross-fading result, t indicates

the frame index relative to the beginning of the overlapping region (i.e.,

1 ≤ t ≤ o within this region), and α(t) is a C1-continuous transition function

with α(t) = 1 for t ≤ 1 and α(t) = 0 for t ≥ o.
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Gaps

As mentioned earlier, the control signal may contain gaps, i.e., time windows

without any information about the original performance at all. Most of

these gaps, however, will be very small (often even consist of a single frame

only), and do not need any special attention. In fact, our implementation

simply ignores all gaps that are smaller than half the size of the windows

used to subdivide the control signal. Such small gaps are then automatically

�bridged� by a single subsequence or a concatenation of two of them. Larger

gaps, however, have to be treated in a special way during the construction of

the SSG. The basic idea to do this is as follows: If a (large) gap is encountered,

1. �nd the k best subsequences that end immediately before as well as

the k best subsequences that start immediately after the gap,

2. for each of these 2k subsequences determine a warping factor based on

their warping paths3,

3. use these warping factors together with the knowledge base to extend

the subsequences such that they (temporally) span the entire gap4,

4. add the extended subsequences as nodes (together with appropriate

edges and related costs) to the subsequence graph.

The resulting graph is a valid SSG and can be used for motion reconstruction

as described earlier.

4.4 Results

The following exemplary evaluation of the described framework is based

on synthetic data, which means that I simulated sparse control signals by

discarding available information from clean motion data. Speci�cally, our

3The warping factor is simply a number that de�nes the amount of acceleration or de-
celeration. In our implementation, using the slope-constraining step size conditions
described in Section 4.3.3, the warping factor is a number between 1

2 and 2.
4Subsequences �behind� the gap have to be extended backward in time.
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knowledge base consisted of about 75 seconds (roughly 4500 frames at 60

fps) of locomotion data (including walking, jogging, and running motions, as

well as respective transitions), and control signals of di�erent sparsity were

simulated based on a motion of about 13 seconds (roughly 780 frames at

60 fps). The motion that was used to simulate the control signal was never

included in the knowledge base. In fact, the framework ensures that if the

original motion was included in the knowledge base, the synthesized motion

would always be an identical copy of it, no matter how sparse the control

signal was chosen.

In a �rst test, I used the trajectories of four markers, which were attached

to the hands and feet of an actor, as control signal. Figure 4.4 (a) shows the

corresponding local cost matrix, overlayed with white warping paths repre-

senting subsequences retrieved by the subsequence search, and red warping

paths representing subsequences that belong to the optimal path and are

thus part of the reconstructed motion. In this example, the size of each

time window was set to N = 20 frames (1
3
second), the overlap between

subsequent time windows to o = 10 frames (1
6
second), and the number of

subsequences per time window to k = 8. The resulting motion is shown in

the accompanying video.

In a second test, I used the same marker trajectories as control signal,

but introduced gaps by discarding all marker data in randomly chosen time

intervals of varying lengths. Figure 4.4 (b) shows the local cost matrix, with

gaps in the control signal visualized as dark blue bands. In this example, the

smallest gap was 5 frames wide, and the largest gap was 80 frames wide. The

accompanying video shows the motion synthesized based on the depicted cost

matrix. For this example, I used the same settings (N = 20, o = 10, k = 8)

as in the previously described case without gaps.

I performed more tests in order to evaluate the framework regarding its

e�ectiveness with respect to not only very sparse but also very local data. In

one of them I used the sparsest possible control input, consisting of a single

marker only, which was attached to a foot. The local cost matrix together

with warping paths is depicted in Figure 4.5 (a), the synthesized motion

is again shown in the video. A similar result was obtained by using the
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trajectory of a single marker attached to a hand as control input. It has to

be stated, however, that the trajectories of feet and hands are likely the most

descriptive ones for this kind of locomotion, and that we in general cannot

rely on having a such descriptive control input. Figure 4.5 (b) shows the

local cost matrix for a less descriptive control signal, de�ned by a small set of

markers attached to the head and upper back of the actor only. The blurriness

of the matrix illustrates the lack of discriminatory power: The local distance

measure largely fails to discriminate poses. Although the resulting animation

clearly re�ects these issues, the outcome, which is shown in the video, is still

plausible. The result was obtained choosing N = 15, o = 6, k = 16, and

additionally increasing the transition weights to get smoother transitions.

I was also able to run a test on real production data. In the given scene,

which was shot in a very demanding outdoor setting, the actor's body was

so heavily occluded by surrounding objects that only a few markers on his

head and his upper back could be tracked.5 Furthermore, all these markers

were constantly appearing and disappearing. The knowledge base consisted

of reference motions that had been recorded afterwards (by the same actor)

in the mocap studio. The animation produced by my subsequence graph

framework was generally considered as a very suitable basis for subsequent

motion editing.

4.5 Conclusion and future work

I presented a conceptually very simple yet very e�ective method for recon-

structing full-body motions from extremely sparse, position-based control

signals. Although the resulting animations do not meet the quality require-

ments of a movie production, they provide a suitable basis for subsequent

motion editing. Since existing motion clips are only played back (and cross-

faded), the results strongly depend on the motions in the knowledge base,

5While the structure of the control signal in the previously described experiment was
intentionally chosen to resemble the structure of the control signal in the production
shot, the latter was much more repetitive and thus actually less demanding than the
synthetic data.
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4 Motion reconstruction using a subsequence graph

(a
)
U
sin

g
th
e
tra

jecto
ry

o
f
a
sin

g
le

m
a
rker

a
tta

ch
ed

to
a
fo
o
t
o
f
th
e
a
cto

r
a
s
co
n
tro

l
sig

n
a
l.

(b
)
U
sin

g
a
sm

a
ll
set

o
f
m
a
rk
ers

a
tta

ch
ed

to
th
e
h
ea
d
a
n
d
b
a
ck

o
f
th
e
a
cto

r
a
s
co
n
tro

l
sig

n
a
l.

F
igure

4.5:
T
he

vertical
axis

gives
the

fram
e
of

the
control

signal,
the

horizontal
axis

the
fram

e
of

the
know

ledge
base

(w
ith

all
m
otions

in
the

know
ledge

base
�horizontally

stacked�).
B
lue

encodes
sm

all
distances

(very
sim

ilar),
red

encodes
high

distances
(very

unsim
ilar).

W
hite

paths
represent

the
b
est

(tim
e-w

arp
ed)

subsequences
found

for
each

tim
e
w
indow

,
red

paths
represent

the
subsequences

that
are

part
of

the
synthesized

m
otion.

T
he

blurriness
of
(b)

com
pared

to
(a)

indicates
that

the
trajectory

of
a
foot

is
m
uch

m
ore

discrim
inative

for
locom

otion
than

the
m
otion

of
the

head
or

back.

94



4.5 Conclusion and future work

and high accuracy (in terms of matching the control signal) can generally

only be achieved by adopting or additionally applying other techniques.

One way to achieve such accuracy is to apply an inverse kinematics (IK)

solver to the reconstructed motion in a post-processing step. In fact, I have

already performed �rst tests using a Space-Time IK (STIK) solver, which

simultaneously solved for all frames in the entire motion. Speci�cally, this

solver tried to make the motion match the control signal (using soft con-

straints) while globally minimizing its joint accelerations and the di�erence

to the original motion (which is, in our case, the motion produced in the

reconstruction step). The accompanying video also shows a result of this

combined reconstruction e�ort.

The simple motion blending scheme used in my implementation sometimes

causes footskating artifacts. Thus, a footskate cleanup, as for example de-

scribed by Kovar et al. [KSG02], would be another useful post-process.

Unfortunately, I was not able to perform a comprehensive systematic eval-

uation of the described method. Instead I presented an exemplary evaluation.

In order to re�ne the method, however, I consider a more thorough analysis

as an important part of future work.

I can think of several improvements to the method. For example, I pre-

sume that there are better ways to segment the control signal. Instead of

fragmenting it into equally-sized windows, one could for instance cut it at

extremal points of its acceleration curve. Early experiments also indicated

that adaptive window sizes can be dynamically determined during the com-

putation of the global cost matrix. The gap �lling is based on a very simple,

linear motion extrapolation. For large gaps, one idea would be to add ad-

ditional nodes (subsequences) to the graph, candidates for which could be

easily retrieved by searching for subsequences similar to the extrapolated

ones (or even subsequences thereof).

Another idea would be to use the outcome of the described reconstruction

framework as (additional) input for a second data-driven synthesis step. The

outcome could then be seen as a �rst guess of the motion, which, for exam-

ple, would allow for frame-wise nearest-neighbor searches in high-dimensional

pose-space (or arbitrary, lower-dimensional subspaces thereof).
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4 Motion reconstruction using a subsequence graph

Basically, I consider the conceptual simplicity of the described method

appealing. The fact that only very few and intuitive parameters have to be

speci�ed in order to quickly obtain a reconstruction result also seems to be

appreciated by potential users in a production environment. As discussed

earlier, however, for producing high-quality motions additional techniques

have to be applied. While �rst steps towards this have already been taken, it

is part of future work to investigate how di�erent strategies can be optimally

combined.
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5
Conclusion and future work

In this thesis I presented three di�erent data-driven approaches for recon-

structing human motions based on very low-dimensional control signals.

I �rst discussed a multi-linear framework, where motion sequences were

arranged in high-dimensional tensors and decomposed using a higher-order

singular value decomposition (HOSVD) to yield an intuitive interface for syn-

thesizing new motions. The control input for this framework was provided by

a small set of inertial sensors. By simulating the readings of virtual sensors

for synthesized motions, we were able to formulate motion reconstruction as

an o�ine optimization problem, aiming to �nd a linear combination of orig-

inal motions whose simulated sensor readings best match the actual sensor

readings. Given that a pre-classi�cation of the control signal was available,

this approach allowed us to create naturally looking animations driven by an

extremely sparse control signal. Due to the need for such a pre-classi�cation

and several other discussed limitations, the multi-linear framework, however,

was not able to meet the requirements of a more general and less restricted
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5 Conclusion and future work

motion capture scenario. Although several extensions to the implementation

of the multi-linear framework are possible, I consider some of its limitations

as too fundamental for the task of motion reconstruction and thus do not

plan to pursue this particular approach any further.

The second approach that I presented in this thesis was inspired by the

performance animation system described by Chai and Hodgins [CH05]. Here,

our control input was provided by a small set of accelerometers, and motion

reconstruction was formulated as an online optimization problem, at each

point in time trying to maximize the likelihood of the synthesized pose with

respect to a local statistical model of poses that was learned at runtime. The

main challenge in replacing the position-based control signal used in the orig-

inal system by an acceleration-based one was to �nd a reliable mapping from

the low-dimensional space of accelerations to the high-dimensional space of

poses. I addressed this problem by introducing a dynamic data structure

called online lazy neighborhood graph (OLNG), that very e�ciently exploits

temporal coherence of motions in order to disambiguate the mapping. The

OLNG is a very general technique that can be used in basically every online

retrieval scenario where matching sequences have to be identi�ed based on a

continuous control signal. Krüger et al. [KZBW11] for instance applied the

OLNG for retrieving short motion sequences from a motion capture database

based on a stream of skeletal joint angle data. These sequences were then

used to enhance an existing animation. Motion sequences retrieved from

a knowledge base in general do not only provide a priori knowledge about

their history, but also contain empirical information about their possible fu-

ture evolution. Thus, the OLNG also directly allows for real-time motion

anticipation, which I expect to be useful in a motion capture scenario that

has to deal with severe occlusions, or also for collision avoidance in robotics

applications. As another contribution, I presented a novel, fully data-driven

prior model that e�ectively minimized reconstruction ambiguities even in

challenging cases while simultaneously accounting for both temporal and

spatial variations. This model also lays the foundation for a di�erent anima-

tion task: Although technically very di�erent from the approach suggested

by Pullen and Bregler [PB02], it can be used for synthesizing speci�ed miss-
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ing degrees of freedom in key-frame animations (motion completion), or for

enhancing key-frame animations with details of motions extracted from a

database (motion texturing). In fact, it has already been successfully applied

recently to both disciplines [BKZW11a, KZBW11, BKZW11b]. A particu-

larly appealing topic of future research would also be to add a physics-prior

to the optimization model. Such a prior would allow us to exploit yet another

aspect of available prior knowledge, and to eventually constrain the outcome

to a physically valid motion. For most applications it will be essential to

have a real-time capable implementation, which is not given at this point.

Overall, I consider the presented ideas a valuable contribution towards ro-

bust, (cost-)e�cient, and non-intrusive reconstruction of full-body motions,

which various disciplines in (bio-)medical engineering, sports science, and

game development may bene�t from.

Finally, I described a method for reconstructing motions on the basis of

very sparse marker trajectories. In particular, I introduced a novel motion

graph structure that I referred to as subsequence graph (SSG), and showed

how it can be used to synthesize naturally looking full-body motions that

globally match an extremely sparse, constantly changing, and possibly very

local control input. Using a conceptually very simple motion prediction

scheme, the SSG was also able to produce meaningful animations in the

presence of gaps in the control signal, i.e., time windows in which we did

not have any information about the original performance at all. Although

the resulting animations did not ful�ll movie quality requirements, they were

generally regarded as a very solid basis for subsequent motion editing. Given

the incompleteness of the measurements, such a basis was furthermore con-

sidered to be much more cumbersome and time-consuming to obtain by hand.

How to optimally combine the practicability and robustness of subsequence

graphs with the �exibility and accuracy of (local) motion optimization tech-

niques is a topic of future research.
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