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Abstract 

The CH bond activation by high-valent iron complexes have been investigated into detail 

using density functional theory (DFT). The first part of the present PhD thesis concerns 

with the reaction mechanism of CH bond hydroxylation by mononuclear iron(IV)oxo 

model complexes ([FeIV(O)(NH3)5]
2+ (a), [FeIV(O)(OH)(axial)(NH3)4]

+ (b), [FeIV(O)(OH)2(eq)(NH3)3] 

(c)). In addition to the classical -pathway for quintet state (5
) and -pathway (3

) for 

triplet state, two new reaction pathways, 5
 and 3

, have been established. This is the first 

time that all viable reaction pathways for the CH bond hydroxylation by high-valent 

iron(IV)-oxo complex have been identified in the same system. The new triplet σ pathway 

(3
) is too high in energy to be involved in CH bond activation, but the reactivity of the 

quintet π channel (5
) is comparable or even higher than the triplet pathway. The 

existence of at least three energetically feasible pathways may offer, however, a new 

element of specificity control in CH bond activation reactions by iron(IV)–oxo species.  

The second part of the thesis deals with the H-atom abstraction reactivity of six hypothetic 

ironoxo (Fe(O)(NH3)4(OH)axial) and ironnitrido (Fe(N)(NH3)4(OH)axial) model complexes. 

The iron oxidation state ranges from IV to VI. The calculations reveal that the iron-oxo 

species (1 ‒ 3) and their nitrido analogues (4 ‒ 6) feature dramatically different intrinsic 

reactivity towards C-H bonds. In the case of the iron-oxo series, the reactivity order of 1 < 

2 << 3 was observed, reflecting an increase in the electrophilicity of iron-oxo complexes 

upon the increased iron oxidation state. Surprisingly, the iron-nitrido series is not as 

reactive as its oxo counterpart and the reactivity order was inverted in the oxidation of 

ethane C-H bonds, i.e., 4 ≥ 5 > 6. All these results correlated well with the Bell-Evans-

Polanyi principle in which a linear relationship between the energy barrier and the 

thermodynamic driving force was observed. Furthermore, the different properties of the 

ironoxo and nitrido complexes as well as the counterintuitive reactivity of these two 

series were understood by analyzing the thermodynamical nature of H-atom affinity, i.e. 

its electron and proton affinity component. 

The CH bond activation by four high-valent diiron complexes, two with diamond core 

structure, (FeIII(μ-oxo)2FeIV, 1 and FeIV(μ-oxo)2FeIV 2) and two with open core structure 

(OH-FeIV-O-FeIV=O, 3 and OH-FeIII-O-FeIV=O, 4) was reported in the third part of this thesis. 

Our calculations show that, processing from 1 to 4, the computed barriers decrease and 

follow the order 1 < 2 < 3 < 4, in good agreement with the reactivity trend observed 

experimentally (Xue, G.; De Hont, R.; Münck, E.; Que, L. Nature Chem. 2010, 2, 400–

405.). Their reaction mechanisms fall essentially into two categories, hydrogen atom 



transfer in the case of 1, 3 and 4 and hydride transfer for 2. The different reactivity of 

complexes 1 – 4 can be well rationalized by the thermodynamic and kinetic considerations. 

First, the thermochemistry has successfully captured the essence of the hydride transfer 

reaction by 2 that, there is a thermodynamic preference of 27.5 kcal/mol for hydride 

transfer pathway than that for HAT. Second, the relative sluggish reactivity of diamond 

core complexes 1 and 2 can be attributed to the higher energetic penalty required for the 

structural arrangements upon redox processes than the open core ones 3 and 4. Finally, 

the highest efficiency of HAT by complex 4 originates from the thermodynamic and kinetic 

preference. The strongest OH bond formed during the oxidation process by 4 offers the 

largest thermodynamic driving force, and the lowest reorganization energy both for the 

diiron reagent and substrate makes 4 also favorable in kinetic aspect. 

The last part of the present thesis is about the hydrogen bond effect in modulating CH 

bond activation. The CH bond activation by two high-valent localized open core diiron 

complexes (1-OHcis, OH–FeIII–O–FeIV=O and 1-Ftrans, F–FeIII–O–FeIV=O) have been explored 

using DFT. The computed geometry parameters of these two complexes show that 1-OHcis 

adopts a cis conformation in which an Hbond is formed between the terminal oxo and 

hydroxo group. However, a trans conformation is established for 1-Ftrans. Our detailed 

reactivity study demonstrates that 1-Ftrans displays even higher oxidation power than that 

of 1-OHcis, which is in good agreement with the experimental findings. Furthermore, our 

calculations revealed that the hydrogen bond between the oxo and hydroxo group in 1-

OHcis does not significantly change the electrophilicity of the reactive FeIV=O unit. However, 

during the reaction of C-H bond oxidation, this hydrogen bond has to be partially broken. 

This leads to the slightly higher barrier for 1-OHcis relative to 1-Ftrans, which has similar 

open-core structure but no hydrogen bond. 
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1 Chapter 1 

1. Introduction 

The selective transformation of ubiquitous but inert C–H bonds to other functional groups 

has far-reaching practical implications, even though it has been studied for over 100 years. 

The thermodynamic stability of most C–H bonds is often cited as the most common 

reason for their underutilization in chemical synthesis.1 To overcome the thermodynamic 

barrier, one has to use reagents that are highly oxidizing, nonselective, and often 

incompatible with other functional groups. In addition, many of these oxidants contain 

expensive and toxic metal ions, whose cost and environment incompatibilities would limit 

their use. Therefore, the development of new reagents that are efficient, benign, and 

easily accessible toward specific C–H bond activation is currently an important area in 

chemical science.  

Directly linked to the quest for new reagents for C–H functionalization are investigations 

into the chemistry of metal complexes with dioxygen, a connection arising from the 

prevalence of metal-containing oxygenases that selectively cleave C–H bonds.2-8 These 

metalloproteins typically contain one or more metal ions within their active sites, which 

first bind and activate dioxygen, initially producing what are believed to be high valent 

metal–oxo species that then cleave C–H bonds of substrates. There are several features of 

metalloenzyme-catalyzed C-H bonds functionalization: 1) These enzymes have evolved to 

efficiently perform these transformations under mild conditions; 2) metalloenzyme-

catalyzed oxidation exhibits exquisite substrate specificity as well as regioselectivity 

and/or stereoselectivity; 3) most metalloenzymes achieve this  challenging task by using 

cheap, abundant and environmental friendly first-row transition metals, like iron, copper 

and manganese. Therefore, unveiling the key chemical principles that underlie their high 

efficacy will enable people to gain atomic level insight into catalytic reactivity of the 

enzymes and could also shed light on synthesizing new reagents that can modify target 

CH bonds with high efficiency and specificity. 

In this chapter, a brief review of metalloenzyme-catalyzed C-H bonds functionalization in 

biology will be given, and then the development of synthetic catalysts that model 

enzymatic functions will be summarized, based on the significant advances in 

understanding of how these enzymes functionalize.  
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1.1 Iron-oxo complexes 

1.1.1 Iron-oxo complex in biology 

1.1.1.1 The heme paradigm 

The most extensively studied oxygen-activating enzymes are the cytochromes P450 

(P450).9-12 P450 represent a large superfamily of heme thiolate proteins, which catalyze a 

great variety of stereospecific and regioselective oxygen insertion processes into organic 

compounds. Generally, the P450s react as monooxygenase that transfer one oxygen atom 

originating from molecular oxygen to the substrate, which is either hydroxylated (aliphatic 

or aromatic), epoxidized, or sulfoxidized.13-17 These processes are of vital importance in 

biochemical transformations ranging from biodegradation of toxic compounds in the liver 

to the biosynthesis of hormones in the body. Furthermore, its drug metabolism and 

involvement in brain chemistry make this enzyme a target for the drug industry and 

biochemical research.10  

The consensus oxygen activation mechanism for P450 is referred to as the heme paradigm 

(Figure 1.1). The main steps include: (i) substrate binding to the Fe3+ center of P450 (A); 

this step usually perturbs the water ligand coordinated as the sixth ligand of the heme iron 

and changes the low-spin (LS) state in A to a high-spin (HS) state in the substrate-bound 

complex B. (ii) first electron reduction to build up a Fe2+ state; the Fe3+ state has a more 

positive reduction potential and thus is much easier reduced to the ferrous state (C). (iii) 

binding of O2 to the Fe2+ heme; oxygen binding leads to an oxy-P450 complex (D), which is 

the last relatively stable intermediate in the reaction cycle. (iv) delivery of the second 

electron; the second reduction step is the rate-determining step in many P450s; this 

relative slow step generates a negatively charged iron(III)-peroxo complex (E). (v) delivery 

of the first proton; the protonation of the terminal oxygen atom in E produces a P450-FeIII-

OOH intermediate F. (vi) cleavage of the O-O bond in the oxygen derived ligand; this step 

is also called the second protonation step in which formally an iron(V)-oxo species G and a 

water molecule are generated by heterolytic cleavage of the O-O bond. (vii) insertion of an 

oxygen atom into the substrate and release of the hydroxylation product. Steps (vi) (vii) 

are certainly the most complicated ones to understand, owing to the fleeting nature of the 

intermediates. 

The high-valent iron complex G is regarded as the active oxidant toward CH bond 

activation. This complex termed as Compound I (CpdI) in P450 enzymes has one oxidizing 

equivalent that is not stored at the iron center but instead delocalized on the porphyrin 

marcocycle ring, and hence is best formulated as an iron(IV)-oxo unit chelated by a 
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porphyrin -radical. The fleeting nature of this intermediate has long been a big obstacle 

for its assignment as the active oxidant in P450, only indirect evidence from biomimetic 

and computational studies18,19 supported its existence.18,19 Until recently, Rittle and Green 

have successfully trapped and characterized CpdI using Mössbauer, electron paramagnetic 

resonance, and UV-Vis spectroscopic methods, and provided unambiguous proof for its 

activity in substrate hydroxylation.20 

 

Figure 1. 1 Schematic representation of the different intermediates generated during 

the catalytic cycle of cytochrome P450 

1.1.1.2 Non-heme iron enzymes 

Two types of high-valent iron-oxo active sites have been identified in non-heme enzymes. 

The first type involves mononuclear iron centers that are coordinated to two histidines 

and a carboxylated group, thereby forming a characteristic 2-his-1-carboxylate facial triad, 

which has been recognized as a common structural motif for many mononuclear non-

heme iron enzymes.8,21,22 In contrast to the monooxygenase P450 enzymes that use only 

one atom of molecular oxygen to hydroxylate substrates while the second oxygen atom 

leaves the process as water, this type of non-heme enzymes are able to utilize both 

oxygen atoms of molecular oxygen and therefore work as dioxygenase. One of the most 

important dioxygenase is the α-ketoglutarate dependent dioxygenases (αKGD), which are 

involved in e.g. the biosynthesis of collagen in mammals and antibiotics in microbes.23-25 
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The big difference between αKGD and P450 enzymes, however, is the fact that the 

dioxygenase are non-heme enzymes that do not contain a co-enzyme but utilize α-

ketoglutarate (αKG) as a cosubstrate instead. Taking the extensively studied αKGD enzyme, 

TauD, as an example, the proposed catalytic mechanisms for non-heme iron enzymes are 

shown in Figure 1.2. The cycle starts from the resting state (H), where the active center is 

a six-coordinated iron(II) ligated by two histidine amino acid residues (His99, His205), a 

carboxylic acid group from Asp101 and three water molecules. The initial step in the cycle is 

binding of αKG via its C-1 carboxylate and ketone oxygen to the Fe(II) center of the binary 

enzyme:Fe(II) complex, with displacement of two water ligands. The next step in the 

catalytic cycle is substrate (taurine) binding and leads to formation of a five-coordinated 

Fe(II) site by dissociation of a third coordinated water molecule (J). Upon dioxygen binding 

(intermediate K) the catalytic cycle enters a grey zone, where the intermediates react so 

fast and only limited information about the individual intermediates is known. It has been 

postulated that the dioxygen molecule take an end-on attack to the open coordinate site 

on the Fe(II) (complex L), followed by a nucleophilic attack of the uncoordinated oxygen 

atom of O2 on the carbonyl of αKG yielding succinate and an oxo–iron species (complex M). 

In 2003, intermediate M has been trapped and characterized with various spectroscopic 

techniques, such as Mössbauer, resonance Raman, and X-ray asbsorption spectroscopies, 

showing that the intermediates have a high-spin (S = 2) iron(IV)-oxo unit with double bond 

character between the iron and oxygen atom. The high-valent iron(IV)-oxo intermediates 

have been identified as the key active oxidizing species for other non-heme enzymes as 

well.7,26,27 The iron(IV)-oxo species subsequently abstracts a hydrogen atom from taurine 

(complex N) and rebounds the hydroxyl group to the rest group to form the product 

complex (O). Release of products (succinate and hydroxylated taurine) and rebinding of 

water molecules to the active center brings the catalytic cycle back into the resting state.   

There is an alternative key reactive species proposed in the mononuclear non-heme iron 

enzymes. Mechanistic studies of naphthalene 1,2-dioxygenase, a member of the Rieske 

dioxygenase family, point strongly towards the involvement of a highly electrophilic 

iron(V)-oxo species, but with only indirect proof of its existence.8,26,28-32 Very recently, 

using variable-temperature mass spectrometry, Prate a al. provided evidence for such a 

reactive intermediate in a synthetic system.33  

The second type of non-heme enzymes contains carboxylate-bridged non-heme diiron 

active sites, which are associated with methane and toluene monooxygenases, fatty acid 

desaturases and ribonucleotide reductase.34,35 Soluble methane monooxygenase (sMMO) 

is a well-studied case and can convert methane into methanol. The sMMO consists of 

three separate protein components termed (i) hydroxylase (MMOH), (ii) NADH 

oxidoreductase (MMOR), and (iii) regulatory protein (MMOB).36,37 Kinetic and 

spectroscopic studies have shown that the reactions of oxygen activation and substrate 
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hydroxylation occur at MMOH site which has an (αβγ)2 subunit structure with a bis-u-

hydroxo dinuclear Fe(III) cluster in the active site of the α-subunit.37-39 The mechanism of 

this diiron non-heme enzyme is similar to those of mononuclear heme- and non-heme 

containing enzymes, that is, the O2 is activated through a reductive process that results in 

OO bond cleavage and then generation of a high-valent ironoxo reactive species (Figure 

1.3).   

 

Figure 1. 2  The proposed mechanism of Taurine hydroxylation catalyzed by TauD.  

Intermediate Q is considered as the key oxidizing species in the catalytic cycle of sMMO, 

performing the chemical challenging conversion of methane to methanol. A detailed 

analysis of EXAFS and Mössbauser spectroscopic data by Que, Münck, and coworkers 

revealed that Q is best described as a strongly exchange-coupled diiron(IV) species with an 

Fe…Fe distance of 2.46 Å and pairs of short and long FeO bonds of 1.77 and 2.05 Å, 

respectively, consistent with an [FeIV
2(u-O)2] diamond core.40,41 

 

In all the non-heme iron enzymes, the iron(IV) center has been found to be in a HS S = 2 

state, presumably due to the weak ligand field exerted by a combination of histidine and 

carboxylate weak ligands.  
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Figure 1. 3 Catalytic of O2 activation and alkane hydroxylation in sMMO.  

1.1.2 Biologically inspired catalysis 

One of the major goals of bioinorganic chemistry is the elucidation of factors that 

determine enzymes’ ability to active inert C-H bonds. Central to these efforts have been 

attempts to obtain electronic and geometric characterization of the highly reactive 

intermediates, high-valent iron(IV)-oxo species, which is thought to be responsible for 

such demanding oxidation.18,42,43  However, due to the different locations of the two 

oxidizing equivalents in the high-valent iron(IV)-oxo species, i.e. the two oxidizing 

equivalents are distributed between the iron center and the porphyrin ligand for P450, 

between the two iron centers in sMMO and are localized on the mononuclear iron center 

of TauD, there are thus several possible strategies for developing biomimetic catalysts. 
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1.1.2.1 Heme-based biomimetic catalysts 

 
 

Figure 1. 4 Correlation between electron richness of iron(IV)-oxo complexes and their 

reactivity.44  

 

Figure 1. 5 Axial ligand effects on the O-atom transfer (dotted line) and H-atom 

abstraction (bold line) reactivity of complex [(TMP–)FeIV(O)(X)] (X = CF3SO3
, Cl, AcO, 

OH).45 

Much effort has been invested into the development of metalloporphyrin catalysts that 

mimic the reactivity of P450.46 The first high-valent iron(IV)-oxo porphyrin -radical 

intermediate was synthesized and characterized in 1981 by Groves and co-workers.47 In 

the reaction of [(TMP)FeIII(Cl)] (TMP = meso-tetramesityl porphinate dianion) with meta-

chloroperbenzoic acid in a dichloromethane-methanol mixture at –78C, a green species, 

which is best described as an iron(IV)-oxo coordinated with a porphyrin -radical, [(TMP-
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)FeIV(O)(CH3OH)]+ has been detected on the basis of various spectroscopic measurements. 

This species exhibits the characteristic features of CpdI intermediates and was found to be 

the kinetically competent oxidant in olefin epoxidation and alkane hydroxylation.48-50 Since 

then, a number of iron(IV)-oxo porphyrin -radicals bearing electron-rich and –deficient 

porphyrins and with different axial ligands have been prepared in an effort to understand 

the electronic effects of porphyrin and axial ligands on the reactivity of the iron(IV)-oxo 

intermediates.22,48,49,51 The results of these studies indicate that the electronic properties 

of porphyrin ligands control the oxidizing power of iron-oxo porphyrins, and that iron(IV)-

oxo species with electron-deficient porphyrin ligands exhibit higher reactivity towards 

oxygenation of organic substrates (Figure 1.4).44 The axial ligands bound trans to the iron-

oxo moiety also remarkably influence the reactivity of the iron(IV)-oxo porpyrin -radicals. 

For example, a study reported by Gross et al., in which pronounced axial ligand effect has 

been observed in the O-atom transfer reactions with a range of complexes [(TMP–

)FeIV(O)(X)] bearing different axial ligands. The results shows that [(TMP–)FeIV(O)(X)] 

complexes bearing ligating anionic ligands (e.g., F, Cl, and CH3CO2
) have a greater 

reactivity than those bearing nonligating anions (e.g., CF3SO3
 and ClO4

) in the 

epoxidation of styrenes.52 Very recently, an investigation of a series complexes [(TMP–

)FeIV(O)(p-Y-pyO)]+ (Y = OCH3, CH3, H, Cl) and [(TMP–)FeIV(O)(X)] (X = CF3SO3
, Cl, AcO, 

OH) in H-atom abstraction and O-atom transfer reactions by Kang et al. showed that the 

reaction rates of both the O-atom transfer and H-atom abstraction increase with 

increasing electron donation from the axial ligand (Figure 1.5).45 Thus, all the results 

mentioned above have been extended to correlate the strong oxidizing power of the 

thiolate-ligated P450 enzyme whereby the cysteinate ligang creates a “push-effect” and 

donates electron density to the heme iron center.12  

1.1.2.2 Non-heme-based biomimetic catalysts 

In contrast to the heme-inspired systems in which the synthesis and characterization of an 

iron(IV)-oxo porphyrin species appeared in 1981,47 the original report of a non-heme 

iron(IV)-oxo complex appeared almost two decades later in 2000.53 A non-heme iron(IV)-

oxo intermediate in the reaction of [FeIII(cyclam-acetato)(CF3SO3)]
+ and O3 in acetone and 

water at –80C was detected spectroscopically by Wieghardt and co-workers for the first 

time; this green species was characterized as an intermediate-spin (IS) Fe(IV)-oxo (S = 1) 

intermediate based on the Mössbauer analysis.53 Subsequently, the first well-

characterized mononuclear non-heme iron(IV)-oxo complex was reported in 2003. Münck, 

Nam, Que, and their co-workers reported the first X-ray crystal structure of a 

mononuclear S = 1 iron(IV)-oxo complex that was generated in the reaction of 

[(Me4cyclam)FeII(CH3CN)]2+ (Me4cyclam = 1,4,8,11-tetramethylcyclam) and iodosobenzene 

(PhIO) in CH3CN at –40C.54 This intermediate was characterized with various 
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spectroscopic methods and features a short Fe=O bond distance of 1.646(3) Å.54-56 Since 

then, extensive efforts have been devoted to examining the reactivities of mononuclear 

non-heme oxoiron(IV) complexes bearing macrocyclic tetradentate N4, tripodal 

tetradentate N4, and pentadentate N5 and N4S ligands in the oxidation of various 

substrates, including alkane hydroxylation, olefin epoxidation, alcohol oxidation, N-

dealkylation, and the oxidation of sulfides and PPh3.
26,51,57-71 (Figure 1.6).  

 
 

Figure 1. 6  Polydentate chelating ligands used in the synthesis of iron non-heme 

biomimetic complexes. 

The most challenge task in laboratory chemistry now is to synthesize Fe(IV)=O reagents 

that possess high-spin, S = 2 ground states as found in nature. Indeed, synthetic high-spin 

iron(IV)-oxo complexes remain rare and are limited to seminal contributions by Bakac, 

Que, Borovik and Chang (Figure 1.7).72-76 In these complexes, the iron(IV)-oxo core is 

mainly protected by the sterically bulky chelator which would attenuate their reactivity 

towards CH bond cleavage. As such, the identification and characterization of new high-

spin state iron(IV)-oxo complexes, particular with high efficiency towards CH bond 

activation, is of fundamental interest in elucidating underlying principles of their reactivity.   
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Figure 1. 7  The four synthesized high-spin iron(IV)-oxo complexes.  

In contrast to the great number of synthesized iron(IV)-oxo complexes, the true iron(V)-

oxo complexes are rather rare. Till now, the sole iron(V)-oxo complex was 

spectroscopically characterized by Collins et al.77 This compound is supported by a 

tetraanionic ligand, which is likely quench its electrophilicity, and was found to be a 

sluggish oxidant, reacting with the weak CH bond of dihydroanthracene only.77 

 

Although considerable effort has been made by synthetic chemists to prepare viable 

models for the putative reaction intermediates in sMMO, the nature of the high-valent 

diiron(IV) intermediate Q remains less understood than those of mononuclear iron(IV)-oxo 

compounds.51 A synthetic precedent for the [FeIV
2(u-O)2] diamond core proposed for 

intermediate Q has been recently reported by Xue et al..40 By electrochemical oxidation of 

the precursor [(Me2(OMe)TPA)2FeIII/IV(u-O)2](ClO4)3 (with Me2(OMe)TPA = tris(3,5-dimethyl-4-

methoxypyridyl-2-methyl)amine), they succeeded in preparing the first and only example 

of a synthetic complex possessing a [FeIV
2(u-O)2] core structure.78 Analysis of Mössbauser 

and EXAFS spectroscopic data revealed that this complex contains two IS FeIV centers that 

are antiferromagnetically coupled and exhibits FeO and Fe…Fe distances of 1.78 and 2.73 

Å, respectively.  

1.1.3 C-H bond activations 

The reactivity of high-valent iron(IV)-oxo complexes in CH hydroxylation also has been 

investigated in depth by theoretical and experimental methods.  The central focus of 

active research has been directed toward understanding the nature of these high-valent-
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metal intermediates and how they react with C–H. So far, all the studies have led to some 

significant progress on many aspects of iron(IV)-oxo mediated C–H oxidation.  

1.1.3.1 Reaction mechanism 

The mechanism of high-valent iron(IV)-oxo mediated CH bond hydroxylation has been a 

subject of intense studies; however, the mechanistic features remain disputed and raise 

questions. The consensus mechanisms for both heme and non-heme iron(IV)-oxo 

complexes are the “rebound mechanism” which was first proposed in 1978 in a short 

communication by Groves, McClusky, White, and Coon.79 In this mechanism, the ferryl 

oxygen initially abstracts a hydrogen from the substrate, leaving a carbon radical on the 

substrate, which in turn recombines with the equivalent of a hydroxyl radical coordinated 

to the iron atom (Figure 1.8). All theoretical studies indicated that the initial H-atom 

abstraction from the substrate is the rate-determining step of the process.  

 

Figure 1. 8  The proposed rebound mechanism for CH bond hydroxylation. 

 

Figure 1. 9  Schematic summary of the electronic changes along the reaction pathway in 

the heme-base iron(IV)-oxo catalysts. 

In heme-based catalysts, the d4 configuration (2
*1

*1) of the iron center can either 

ferromagnetically or antiferromagneically couple to the unparied electron of porphyrin -

radical (a2u
1), leading to two low-lying spin state: quartet (S = 3/2) and doublet (S = 1/2), 
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labeled as 4,2A2u. Figure 1.9 shows the orbital evolution diagram for CH bond 

hydroxylation by these two spin states. In the course of H-abstraction, an β or α electron 

shifts from the CH orbital to the singly occupied a2u orbital in quartet and doublet states, 

respectively, leading to intermediates 4,2Irad(IV) with FeIV centers that are 

antiferromagnetically or ferromagnetically coupled to the substrate radical ϕC. In the 

rebound steps, the electron will shift from ϕC to the heme to form the ferric-alcohol 

complex [4,2P(III)]. In the case of 2Irad(IV), the bound process involves transferring the 

electron in ϕC to the low-lying *XZ(FeO) orbital and thereby is nearly barrier-free. 

Whereas for the rebound step of 4Irad(IV), the electron has to be shifted into the higher-

lying *Z2 orbital thus leading to a significant rebound barrier.80  

There are two additional layers of complexity for CH bond activation by mononuclear 

non-heme iron(IV)-oxo complexes. First, the non-heme iron(IV)-oxo complexes are known 

to have either triplet or quintet ground spin states. Therefore, they have different d-

electron occupation in the iron centers and several of the semi-occupied or unoccupied 

iron-based molecular orbitals could serve as electron acceptors. The second layer of 

complexity stems from the geometry of the substrate approach. The cleaving CH bond 

may attack the iron(IV)-oxo unit either from the top or from an equatorial position. Both 

types of reaction geometries lead to different electronic structures in transition states and 

hence to different reaction pathways. Figure 1.10 shows the orbital occupancy evolution 

diagram for the well-established reaction pathways in CH bond hydroxylation by non-

heme iron(IV)-oxo complexes. In the triplet channel, the electron of the substrate is 

transferred into the *(FeO) antibonding orbital (-mechanism). To accomplish the 

maximum orbital overlap between the electron-donor and –acceptor orbitals, the 

substrate may take a horizontal approach to the iron(IV)-oxo reactive center. Finally, the 

offset between the orbital overlap and the Pauli repulsion leads to the transition states 
3TSH characteristic of a bent Fe-O-H angle. In the quintet state pathway, the electron of 

the substrate is shifted to the *(FeO) orbital (-mechanism). The upwards pointing lobe 

of the Opz orbital requires a vertical approach of the substrate; hence, 5TSH features a 

nearly collinear Fe-O-H-C arrangement. In the rebound step, the formation of the CO 

bond is accompanied by a simultaneous electron transfer from the substrate into the Fe 

dz2 and Fedxz/yz orbitals, respectively. Thus, the rebound step appears to follow a -

mechanism on the triplet state surface and a -mechanism on the quintet state surface.  

So far, all the theoretical studies have led to the common conclusion that the quintet 

ferryl species are aggressive oxidants than the corresponding triplet counterparts, the 

analysis of the electronic structure changes along the reaction coordinate revealed that 

increased Pauli repulsion and attenuated orbital interaction increase the barriers for the 

triplet -pathway.5,81-85 Direct experimental evidence for the higher reactivity of the S = 2 

state is lacking in the literature. Presumably, because the majority of model complexes 

prefer the triplet ground states and the few recently reported S = 2 complexes are 
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sterically bulky, their reactivities toward CH bond cleavage are only comparable with 

triplet ferryl analogous.51,73,74,76  

 

Figure 1. 10   Schematic summary of the electronic structure changes along the reaction 

pathway in the triplet and quintet state of mononuclear non-heme iron(IV)-oxo 

complexes. 

Due to the lack of the exact structure of the active site of intermediate Q, different 

computational models have been proposed in order to study the mechanism of methane 

hydroxylation by sMMO.86-88 Four different models were proposed by the research group 

of Yoshizawa,88-90 MorocumaBasch,91 Siegbahn,92-94 and FriesnerLippard.86,95-97 These 

models differ in their size, spin state, charge, and Fe coordination number. Mechanistically, 

they fall into two distinctively different classes. The first class was proposed by Yoshizawa 

and Hoffmann based on the reaction mechanism of CH bond activation by bare metal-

oxo [FeO]+ species.98-101 It is called as the noradical mechanism with the salient feature of 

formation a Fe-C bond in the catalytic cycle (Figure 1.11). This mechanism implies that the 

metal is an actor in the CH bond activation. The second reaction mechanism is called as 

the radical oxygen rebound mechanism, which is the same as the “rebound mechanism” 

established in mononuclear heme and non-heme iron(IV)-oxo complexes (Figure 1.12). 

The MorocumaBasch, Siegbahn, and FriesnerLippard models all follow this mechanism. 

Unlike the Yoshizawa model, in this reaction mechanism CH bond activation takes place 

at the one of the bridging oxo group. The initial oxidative CH bond activation is the rate-

limiting step, which involves the first electron transfer to one iron center. The reaction 

proceeds by the attack of the substrate radical at the newly formed bridging hydroxide 

group and finally leads to the reduction of the second iron center.  
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Figure 1. 11  Rebound mechanism for the hydroxylation of substrate by sMMO.  

 

Figure 1. 12  Noradical mechanism proposed in the Yoshizawa model of sMMO. 

1.1.3.2 TSR/MSR scenarios 

 

Figure 1. 13  The two-oxidant hypothesis using CpdI and Cpd0, and a probe substrate (P) 

that can open differently depending on whether it leads to radical or a cationic 

intermediate.102 

The support for the consensus rebound mechanism are mainly from the findings of 

rearranged alcohol products which indicate the presence of a free radical with a finite 

lifetime103 and the kinetic isotope effect (KIE) measurements of Dinnocenzo, Jones et al.104 

The picture started to cloud, however, when radical clocks were used to gauge the rate of 

the rebound step.13  Several studies by Newcomb and co-workers, designed to probe the 

radical using alkane substrates that would yield ultrafast radical clocks, do not concur with 

a free-radical intermediacy.102,105 For example, some rearrangement patterns of clocks like 

P, depicted in Figure 1.13, were shown to correspond to carbocationic species.105-108 

Subtraction of the rearranged products from the overall product mixture results in 
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lifetimes as short as 70 fs;105,106 apparent lifetimes are too fast to correspond to a real 

free-radical intermediate. These unrealistic lifetimes and the rearranged products derived 

from carbocations have led Newcomb and co-workers to propose a “two-oxidant 

hypotheses” as an alternative mechanism and suggest that the radical intermediate is not 

present during the reactions (Figure 13).102 

Newcomb’s work has cast the rebound mechanism into doubt, and the mechanistic 

dilemma posed by the reactivity patterns is perhaps too subtle for current experimental 

means to be resolved. An eventual resolution of this controversy will no doubt come from 

the interplay of the theory and experiment. In this sense, the two-state reactivity (TSR) 

and multistate reactivity (MRS) concepts have emerged in response to intriguing 

experimental data.10,109-113 The fundamental feature of the TSR/MSR scenario is that the 

reaction proceed at least on two potential energy surfaces with different spin 

multiplicities that either cross or remain in proximity, whereby different states coproduce 

different reaction intermediates and products in a given process. Figure 1.14 shows a 

typical TSR/MSR scenario, with CH activation and rebound in the reaction of cyclohexane 

hydroxylation by [(N4Py)FeIVO]2+. It is seen that the quintet state cuts below the barrier of 

the triplet ground state and hence predominantly mediates the transformation.114 This 

scenario paradigm provides a satisfactory rational for the controversial findings in the field. 

Till now, this TSR/MSR scenario has been extensively performed by Shaik, Jerusalem, and 

Yoshizawa et. al.80,114-117 

 

Figure 1. 14  B3LYP/LACV3P++**//LACVP-calculated TSR/MSR scenario during 

hydroxylation of cyclohexane by [(N4Py)FeIVO]2+.114 

1.1.3.3 Axial ligand effects 

One of the central focuses of current active research is to determine the role of the axial 

ligand in the reactivity of iron(IV)-oxo species.45,118-122 For many years, it has been believed 
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that the nature of the axial ligand is one of the predominant determinants of the 

chemistry performed by high-valent intermediates. This important hypothesis originally 

arises from the different catalytic ability of heme oxygen activating enzymes. P450s are 

known as powerful oxidants toward specific functionalization of unactivated hydrocarbons, 

while the peroxidases, such as horseradish peroxidase (HRP), are only function as one-

electron oxidants. They cannot readily perform the demanding two-electron oxidations or 

oxygen-transfer reactions observed for P450s. The difference in the axial ligands between 

the P450s and other oxygen activating enzymes has been proposed to be the reason for 

their differences in catalytic function. The cysteinate ligand in P450s creates a “push-effect” 

and donates electron density to the heme iron center, while the histidine axial ligand in 

peroxidases withdraws electrons, thus resulting in a pull effect. This difference in 

push/pull effect of the axial ligand changes the central properties of the heme-iron unit 

and results in functional differences. Indeed, Gross et al.52,123,124 and Nam et al.45,55,65,125,126 

have unambiguously identified the axial ligand effect on the substrate oxidation by a 

series of iron(IV)-oxo oxidants with variable axial ligands. These studies used biomimetic 

iron(IV)-oxo oxidants where the ligand trans to the oxo group was occupied by either an 

anion, e.g., F, Cl, acetate, perchlorate, etc, or a neutral solvent molecule, e.g., 

acetonitrile. Rate constants for styrene expoxidation and hydrogen abstraction reactions 

were measured and shown to vary with the nature of the axial ligand.  

 

Understanding the role of axial ligand is therefore very important. Green et al. have 

undertaken a systematic study of the high-valent form of P450s by using a variety of 

spectroscopic techniques. The results pointed out that all thiolate-ligated heme proteins 

have much higher enhanced basicity of the ferryl in the compound II intermediate and it 

would therefore confer to the preceding compound I greater CH-activating potency or, 

alternatively, equivalent potency at diminished potential.122 This results lead to the 

conclusion that the redox potential is not the only parameter that needs to be considered 

for C-H bond oxidation. Mayer has elegantly used thermodynamic cycles to evaluate the 

ability metal-oxo complexes to cleave C-H bonds.127,128 Building on the pioneering work of 

Polanyi129-132 and Bordwell133, Mayer’s approach demonstrates a direct thermodynamic 

connection of the OH bond dissociation energies (BDEOH) for the metal-hydroxo (MOH) 

complexes formed after the initial cleavage event with the strength of the cleaving C-H 

bond: the energy require for hemolytic CH bond cleavage must comparable to that 

produced in forming the MOH bond.128,134  

 

A thermodynamic cycle for such an analysis is shown in Figure 1.15a, from which one can 

derive an equation: BDEOH = 23.06 E + 1.37 pKa + C.133 C is a constant that corrects for the 

properties of the hydrogen atom in solution and depends on solvent and the redox 

potential reference. From this equation, one can see that the critical feature of this 
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analysis is the inclusion of the pKa values for the metal-hydroxo species, the conjugate acid 

of the metal-oxo unit, and thus a gauge of the basicity of the oxo ligand. Furthermore, this 

analysis shows that the basicity of the oxo ligand affects the reactivity of metal-oxo 

complexes and provides another tunable parameter that can influence the efficacy of CH 

bond cleavage. The importance of this effect is illustrated graphically in Figure 1.15b for 

the cleavage of a CH bond in methane. Note that at low pKa values the redox potentials 

required are prohibitory to maintain the function. However, as the basicity of the oxo 

ligand increases there is a decrease in the required redox potential for CH bond oxidation.  

 

Figure 1. 15 Thermodynamic cycle describing the BDEOH (a), and the relationship 

between redox potential and pKa for a metal-oxo species in the cleavage of a CH bond 

in methane (b).   

In summary, advances in understanding key factors that dictate the reactivity of metal-oxo 

species towards CH bond clevage have been achieved through the extensive studies of 

the tuning effect of the axial ligand.3,119,134,135 Within a thermodynamic framework that 

relies on the interplay between basicity and redox potential, axial ligands control these 

basic properties in proteins and are now being used in synthetic systems to discover new 

catalysts.  

1.2 Nitrido complexes 

Iron-nitrido complexes, which are isoelectronic to iron-oxo species, are also considered as 

key intermediates in a number of important biological transformations.136-138 However, 

while a number of transient high-valent iron-oxo intermediates in the catalytic cycle of 

heme and non-heme enzyes have been identified and spectroscopically 

characterized,8,21,22,34,35,48-50,139 direct evidence for the involvement of iron-nitrido 

intermediates in biology is lacking. To probe the possibility of the involvement of iron-

nitrido intermediates in biological dinitrogen-reduction and atom-transfer reactions, 
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bioinorganic chemists became interested in the synthesis and reactivity studies of model 

compounds involving high-valent metal-nitrido moieties. Till now, the  synthetic 

ironnitrido complexes have iron oxidation state ranging from +4 to +6.140-149 Here we 

briefly summarized the recent advances in this field. 

  

All reported terminal iron(IV)-nitrido complexes possess the distorted trigonal pyramidal 

coordination geometry, and two isolable iron(IV) nitrido complexes have been 

crystallographically characterized recently.140,142,143,150 The first terminal FeIV
N complex 

was synthesized by Betley and Peter in 2004.140 By using phenyl-tris-

diisopropylphosphinoborate (PhBPiPr
3
) as the stabilizing tripodal chelating ligand and 

lithium amide 2,3,5,6-dibenzo-7-azabicyclo[2.2.1]hepta-2,5-diene (dbabh) as the N-atom 

transfer reagent, the four-coordinate [(PhBPiPr
3
)FeIV(N)] could be obtained and thoroughly 

characterized by various spectroscopic techniques. The first crystallographically 

characterized FeIV
N complex was accomplished in 2008. Photolysis of an N-anchored 

tris(carbine)-ligated azide complex [(TIMENmes)FeII(N3)]
+ (TIMENmes = tris[2-(3-

mesityimidazol-2-ylidene)ethyl]amine) yield the four-coordinate tetravalent 

[(TIMENmes)FeIV(N)]+.142 Later, Specpaniak et al. reported the second crystallographically 

characterized FeIV
N complex [(PhB(tBuIm)3)FeIV(N)] (PhB(tBuIm)3 = phenyl-tris(1-tert-

butylimidazol-2-ylidene)borate) by combining the ligand systems of Vogel et al. and that 

of Betley and Peter.143 The characterization of iron(V)-nitrido complexes started from the 

resonance Raman detection of [FeV(N)(TPP)]– (TPP2– = tetraphenylporphinate(2-)) complex 

by Nakamato and coworkers.151 More recently, the photolysis of [(cyclam–ac)Fe(N3)]
+ 

(cyclam–ac– = 1,4,8,11–tetraazacyclitetradecane–1–acetate) leading to the desired 

[(cyclam–ac)FeV(N)]+ species was reported.53 Later, the detailed geometric and electronic 

structure analysis using a combined spectroscopic and theoretical approach revealed the 

complex has a doublet ground state.148 Very recently, Meyer and Smith reported the 

synthesis of a four–coordinated iron(V)-nitrido complex supported by a tripodal N–

heterocyclic carbine ligand, which also feature a LS (S = 1/2) ground state.144 When it 

comes to the iron(VI)-nitrido complex, Wieghardt and coworkers reported the second 

Fe(VI) compound (the first one is [FeVIO4]
2+) generated by photolysis of a stable iron(IV) 

azido compound, [(Me3–cyclam–ac)FeIV(N3)]
2+.149 This is the first hexavalent iron 

compound to be synthesized in laboratory. The reactivity of the synthetic iron-nitrido 

complexes with various oxidation states have also been investigated in depth 

experimentally; interestingly, most of the reactions exhibited to be non-catalytic, with the 

reactivity falling far short of that of ironoxo complexes.142-144  

1.3 The aim of current thesis 

The first part of the present PhD thesis is concerned with the reaction mechanism of 

alkane hydroxylation by model iron(IV)-oxo complexes [Fe(O)(NH3)5]
2+, [Fe(O)(NH3)4(OH)]+, 

and [Fe(O)(NH3)3(OH)2]. By exploring all the possible pathways in CH bond hydroxylation, 
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the energetic feasible quintet -channel provides a new element of specificity control in 

CH bond activation by iron(IV)-oxo species. The choice of - or -pathways could be 

controlled  at least in part  by steric hindrance in model systems or by the restrictions of 

the protein pocket in metalloenzymes.  

The second part of the thesis is focus on the reactivities of high-valent iron–oxo and –

nitrido complexes with the iron oxidation state ranging from IV to VI. All the calculations 

were performed on model complexes in which the iron centers is coordinated in a 

distorted octahedral arrangement with ammonia acting as the equatorial ligand, and 

hydroxyl group as the axial ligand tran to the oxo or nitrido group. The nearly identical 

coordination environment of all the complexes allows us to make more generalized 

comments about structural and electronic properties, relative reactivities of high-valent 

iron–oxo and –nitrido species. Clarifying the difference in the redox reactivity between the 

iron–oxo and –nitrido moieties in the nearly identical structures and oxidation states, that 

is, Fen+O and Fen+N, contributes to a basis for enhanced understanding of nature’s redox 

enzymes and the matching catalyst systems to target oxidation processes. 

The third part of the thesis deals with the reactivities of four close related diiron 

complexes. These four complexes can convert with each other but differ by charge, spin 

state and core geometry structure. Clarifying the difference in reactivity of these 

complexes will provide a comprehensive theoretical framework in which the preference of 

the terminal Fe=O unit and HS state of iron(IV) center in CH bond activation can be 

understood. 

 

The forth part of the thesis is a cooperation work with experiment. In this study, we well 

rationalized the relative higher oxidative power of the fluoride substituted complex 1-Ftrans 

(FFeIII
OFeIV=O)2+ compared to its precursor 1-OHcis (OHFeIII

OFeIV=O)2+. Our 

calculations revealed that the hydrogen bond between the oxo and hydroxo group in 1-

OHcis does not significantly change the electrophilicity of the reactive FeIV=O unit. However, 

during the reaction of C-H bond oxidation, this hydrogen bond has to be partially broken. 

This leads to the slightly higher barrier for 1-OHcis relative to 1-Ftrans, which has similar 

open-core structure but no hydrogen bond. 
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2. Theoretical Background and Methods 

2.1 Elementary quantum chemistry 

Quantum chemistry is a branch of chemistry whose primary focus is the application of 

Quantum Mechanics (QM) to solve chemical problems. QM is centered on the Schrödinger 

equation, which exists in time-dependent and time-independent form. In the present 

thesis, ground state chemical reactions have been studied. In this case it is sufficient to 

use the time-independent form of the Schrödinger equation (ĤΨ = EΨ) as a starting point. 

However, only for one-electron systems the equations can be solved exactly, the 

interactions of a many-body system are too complicated to be solved. Hence 

approximations are necessary. The first approximation is the so-called Born-Oppenheimer 

approximation that based upon the large difference in the mass between nuclei and 

electrons. It assumes that in a molecule electrons move in a static nuclear framework and 

the electron can thereby be approximated to move in a field of fixed nuclei. Therefore, the 

kinetic energy of the nuclei can then be neglected, and the nuclei-nuclei repulsion will be 

constant for a fixed geometry. The electronic energy is obtained for a frozen conformation 

of the nuclei. By calculating the electronic energy for different nuclear arrangements a 

potential energy surface can be obtained, which defines the equilibrium conformations of 

a molecule. The notion of potential energy surface is meaningful only under the validity of 

the Born-Oppenheimer approximation.  

Unfortunately, the Born-Oppenheimer approximation is not enough to solve the 

electronic Schrödinger equation for a many-body system. Further approximations for 

wave functions are needed. The basic wave function method is called the HartreeFock 

(HF) method, which is based on the independentparticle model or molecular orbital (MO) 

model. There are certain conditions, which the wave function must satisfy in order to 

describe some peculiar properties of the electrons. Each electron is associated with a one-

electron wave function, which is the product of a spatial function that depends on the 

coordinate of the electron and a spin function that depends on its spin (the one-electron 

wave functions are called spin orbitals). The molecular orbitals in a molecule are usually 

constructed as a linear combination of the atomic orbitals of the corresponding atoms 

(LCAO, Linear Combination of Atomic Orbitals). In order to satisfy the antisymmetry 

principle, which also fulfills the Pauli Principle, the solution of the Schrödinger equation is 

obtained by constructing the wave function as a Slater determinant. Each column in the 

Slater determinant contains a spin orbital and the rows are labeled by the electron 

coordinates. If two electrons occupy the same spinorbital, two rows in the determinant 

become equal, i.e. the determinant will vanish (Pauli Exclusion Principle). An interchange 
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of two rows, which corresponds to interchange the coordinates of two electrons, changes 

the sign of the determinantal wave function, thus satisfying the requirement of 

antisymmetry. After having selected the form of the wave function, the variational 

principle provides a method to numerically solve the Schrödinger equation. The 

expectation value of the energy is minimized with respect to some parameters of the trial 

wave function and by imposing the appropriate normalization condition.  

However, a major limit of HF method is that it treats each electron in an average field due 

to the repulsion from all other electrons, instead of the explicit electron-electron 

interaction. In other words HF method lacks a certain part of the electronic energy, 

referred to as correlation energy. Although the correlation energy represent a quite small 

percentage of the total energy, it is rather essential for solving chemical problems and the 

evaluation of relative energies.  

To improve the accuracy beyond the HF method, explicit correlation between electrons 

has to be included. Many highly correctly wave function based approaches have been 

developed in order to take into account the correlation energy explicitly. Some of them, 

like the MøllerPlesset perturbation methods (e.g. MP2 and MP4), configuration 

interaction method (e.g. CISD) and coupled cluster methods (e.g. CCSD(T)), achieve this 

goal by including more determinants in the wave function. The wave function thus 

becomes more flexible allowing the electrons to correlate their movement in different 

orbitals. However, all the methods mentioned above are built upon the single 

determinant HF method. Thus, when a single determinant is a bad initial approximation, 

this problem will be “inherited” to the wave function even including correlation. This 

occurs when a system is of multiconfigurational character (near degeneracy). In these 

cases the multiconfigurational selfconsistent field (MCSCF) and the complete active 

space (CASSCF) methods, are better starting points. These methods add more 

determinants and optimize both their orbitals and coefficients. NEVPT2 is a multireference 

method using additionally perturbation theory, which will improve the results more 

significantly.  

The accuracy of the calculations with the methods listed above is improved significantly 

compared to HF; however, the computational costs are also extremely increased. Thus, 

only small systems can be treated. For large systems, as in the present thesis, alternative 

methods have to be used.  

2.2 Density functional theory 

From the first attempts to use the electron density instead of the wave function dates 

back to the 1930s and the breakthrough paper of Hohenberg and Kohn in the 1960s 

showed that the ground-state energy and other properties of a system were uniquely 

defined by the electron density.152,153 The development of DFT methods opened up a new 
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era where relatively large systems, containing transition metals as well, could be 

investigated quantum mechanically.154  

The foundation which DFT is built upon is the HohenbergKohn theorem, which shows 

that the total energy is a unique functional of the electron density of the system, E[ρ], and 

the determination of the complicated manyelectron wave function is not needed. In 

other words, the fundamental problem in DFT is that the exact form of the functional 

connecting the energy with a given electron density is not known. The energy functional 

can be written as a sum of terms from the kinetic energy T[ρ], electronelectron repulsion 

Eee[ρ], and nuclei and electrons interaction Ene[ρ]: 

E[ρ] = T[ρ] + Eee[ρ] + Ene[ρ] (2.1) 

Kohn and Sham introduced the mathematical framework for the numerical determination 

of the electronic ground state of manyelectron systems.155 The noninteracting one 

electron orbitals, called Kohn-Sham (KS) orbitals (ϕi), make it possible to express the 

electron density as the sum of the squared orbitals. Thus, it means that the real system of 

interacting electrons is formally described through a fictitious system of non-interacting 

particles. In this formulation large part of eq. 2.1 can be written as: 

E[ρ] = Ts[ρ] + J[ρ] + Ene[ρ] + Exc[ρ] (2.2) 

Where Ts[ρ] is the kinetic energy of non-interacting particles; J[ρ] and Ene[ρ] are the 

classical electronelectron and electronnuclei Coulomb interactions, respectively; and 

finally Exc[ρ] is the exchangecorrelation energy containing the corrections to the 

noninteracting approximation. Minimizing the total energy of a determinant constructed 

by KohnSham orbitals with respect to their shape is similar to the HF approach, and the 

KohnSham eigenvalue equation can be written as follows:  

ĥksϕi(r) = ɛiϕi(r)  (2.3) 

where ĥks is the one-electron operator given in eq. 1.4, with the analytical expression for 

Ts[ρ] and J[ρ]. 

ĥks = 
 

 
        ∫

     

       
    + 

       

     
  (2.4) 

If the exact form of Exc was known, the exact total energy including correlation would be 

obtained. Thus, the accuracy of a DFT method depends on how well the 

exchangecorrelation functional can be approximated.  
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Several classes of density functionals can be marked out. The simplest one is known as 

Local Density Approxiamtion (LDA) and Local Spin Density Approximation (LSDA) for 

openshell systems. It assumed that exchange term can be formulated analytically for a 

uniform electron gas, but the correlation term is only estimated.156,157 LSDA methods are 

capable to provide results with accuracy of HF. The further step inclusion of not only the 

density but also its gradient   gives the so-called Generalized Gradient Approximation 

(GGA). Among the most prominent GGA functionals are the Perdew’s BP86,158 the LYP 

function by Lee, Yang and Parr,159 and BLYP developed by Becke (exchange part) and Lee, 

Yang and Parr (correlation part). The GGA approximation describes chemical bonding 

markedly better than LSDA, with the accuracy similar to MP2.160 Finally, the best methods 

of modern DFT are of hybrid functionals, which combine functionals of LSDA, corrections 

from GGA, and also a fraction of HartreeFork exchange   
  , calculated via KS orbitals. 

The dominating hybrid functional is the B3LYP functional, which has been used in the 

present thesis. In B3LYP the exchangecorrelation functional is a linear combination of 

local and gradient corrected exchange and correlation and HF exchange, using a few 

empirical parameters.161 The B3YLP functional can be written: 

   
             

          
      

         
           

    (2.5) 

Where   
       is the Dirac-Slater exchange,   

   is the Hartree-Fock exchange term, 

  
      is the gradient part of the exchange functional of Becke,162    

    is the correlation 

functional constructed by Lee, Yang and Parr159 and   
    is the correlation functional by 

Vosko, Wilk and Nusair.157 The parameters A, B and C are determinated empirically by 

Becke163 by fitting them to thermochemical data, using the PW91 functional instead of the 

gradient part of LYP correlation functional.164 Recently, a new family of “double-hybrid” 

density functionals was proposed that employs the occupied and virtual KS orbitals in 

second-order many-bondy theory to replace a fraction of the semi-local GGA 

correlation.165 Unlike traditional KS-DFT approaches, double-hybrid DFT can perform well 

in both noncovalent and covalent systems. It has been well tested that the first double-

hybrid functional B2-PLYP yielded high accuracy in thermochemistry as well as in the 

prediction of molecular structure.165-170   

2.3 Reaction mechanism 

A chemical reaction is the rearrangement of the pattern of the atomic nuclei relative to 

each other.171 A reaction mechanism is an exact step-by-step description of what occurs 

molecularly in a given chemical reaction. Each step of the reaction mechanism is known as 

an elementary process, a term used to describe a moment in the reaction where one or 

more molecules changes geometry or is perturbed by the addition or omission of another 

interaction molecule. So collectively, an overall reaction and a reaction mechanism, is 



 
25 Chapter 2 

usually made up of multiple elementary processes. These elementary steps are the basic 

building blocks of a complex reaction and cannot be broken down any further.  

Because a reaction mechanism is used to describe in detail exactly what takes place at 

each stage of an overall chemical reaction, it also describe the reactive intermediates, and 

transition states. A reaction intermediate is any stable geometry configuration (i.e., that 

exists at a minimum of the energy) occurring during a reaction and having a lifetime 

longer than the period of typical molecular vibrations (on the order of 1013  1014). They 

are often free radicals or ions. Transition states (TS) are commonly molecular entities 

involving an unstable number of bonds and/or unstable geometry. They correspond to 

maxima on the reaction coordinate, and to saddle points on the potential energy surface 

(PES) for the reaction.  

A complete reaction mechanism must also describe the relative rates of the reaction steps. 

The equation of an elementary reaction defines its corresponding rate, which at constant 

temperature is proportional to the products of the concentrations of the reactants. 

Therefore for the elementary reaction:  

aA + bB  Products  (2.6) 

the corresponding rate equation is :  

    

  
           (2.7) 

where the coefficient k is called the rate constant and is independent on the 

concentrations (and dependent on the temperature). A differential rate equation 

depending on concentrations and microscopic rate constants can be associated with a 

chemical reaction once its reaction mechanism (i.e., the sequence of elementary reactions) 

has been defined. To know the reaction mechanism is essential to understand which 

factors govern the rate of a reaction.  

2.4 Transition State Theory 

The subject of investigation presented in this thesis is enzymatic chemical reactions in 

which the reactants are transformed into products. The main approach in the theoretical 

study of catalyzed reaction mechanisms is to calculate the PES along the reaction 

coordinate, which involves locating and characterizing the minima and transition states 

and their relative energies. In particular, the ability to model transition states is crucial for 

estimating activation barriers (G‡), which is defined as the difference in the free energies 

of the reactant and transition state.  
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Transition State Theory (TST) makes the connection between the calculated data (free 

energy barriers) and the reaction rates, which come out form experimentally 

measurements. Let us consider now a bimolecular reaction with R (reactants A and B) and 

P (products C) (Figure 2.1):  

 

 

Figure 2. 1  The chart showing the PES of an elementary single-step bimolecule reaction.   

         
  

↔     
  

→         (2.8) 

where the equilibrium constants K is introduced as 

    
    

   
 (2.9) 

and concentration of respective species are given in square brackets. Though TS occurs at 

an energy maximum, TST assumes that the molecular system at the transition point is in 

rapid equilibrium with the reactants, as reflected in eq. (2.9). This permits to introduce the 

free energy equilibrium constant K, following from the Maxwell-Boltzmann statistics: 

         ⁄  (2.10) 

where   is the Gibbs free energy difference between TS and R, T is the absolute 

temperature, and R is the gas constant. Another important assumption of the TST states 

that the rate of reaction is directly proportional to the concentration [TS] of the activated 

complex. Since [TS] is small, its decomposition is the rate-determining process of reaction. 
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The first-order rate constant k’ in eq. (1.8) is thus related to the decomposition of TS to P 

as follows:  

    

  
             (2.11) 

where k is the first-order rate constant for reactants R procession. Evaluation of k’ is based 

on a proposal by Eyring that activated complex breakdown occurs during its first 

vibrational excursion: 

k’ = v (2.12) 

where v is the vibrational frequency of the bond to be broken and , the transmission 

coefficient, is the probability that the immediate breakdown of TS will end in product P 

formation. The  factor rarely falls outside the range 0.5-2.0 and accounts for re-crossing 

(when a molecular passes over the TS but is reflected back to the reactant R side,   1), 

tunneling (when a system penetrates through the barrier from the side of R-valley on PES 

and appears on the P-valley side,   1) and deviation from equilibrium (Blotzmann) 

distribution in eq.(2.10). The v value can be determined from Plcank’s law:  

   
   

 
 (2.13) 

where    and h are the Boltzmann and Planck’s constants, respectively. Then combines 

eqs.(2.10) through (2.13) yields the final expression for the rate constant k in the form of 

Arrhenius equation: 

   
   

 
     ⁄  (2.14) 

Examination of the eq.(2.4) formula shows that an increase of   by 1.36 kcal/mol only 

leads to the reaction ten times slower (k/10) at the normal temperature T = 298.15K. 

Several important notes follow from this observation:  

 The rate constant k can be predicted only to an order of magnitude at best when 

using theory, because for the majority of computational methods, an inherent 

accuracy of 3 kcal/mol for the relative energies is already a good value. 

 The weakly varying transmission coefficient  is usually ignored (equivalently,  = 

1). 

 In case of a multistep mechanism, the reaction rate is defined by the transition 

state with the highest activation barrier, and the corresponding step in the rate-

limiting. 

Typically, a reaction in biochemistry occurs with a very high “friction” parameter when 

considering PES, as compared to zero “friction” of a gas phase reaction. The reason is that 

kinetic energy tends to dissipate very quickly in liquid medium, and frequency of 

interparticle collisions is much higher as compared to frequencies of kinetically 
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determined reaction steps. Due to this quick dissipation of kinetic energy, the   value 

corresponding to the rate of a given reaction is the maximal energy difference found 

between any of transition states and the lowest point on the PES, preceding this particular 

transition state.  

2.5 Solvent effects 

Basic calculations in quantum chemistry are done in gas-phase manner, assuming that the 

interaction between the model complex and surrounding medium is negligible. However, 

most natural and laboratory chemistry does not occur in vacuum. There exists an 

interaction between solute and solvent. The solute properties as structure, stability, 

spectra, and reactivity depend on the solvent, particularly a polar one. To consider the 

solvent, a common approach is to include it as a continuum with a given dielectric 

permittivity constant  and the solute is considered as contained in a cavity of this 

continuous medium.  In the dielectric cavity methods the solvent acts as a perturbation on 

the gas-phase behavior of the system since the solute is subjected to the electrostatic 

potential created by the continuum, which in turn is polarized by the influence of the 

solute itself.  

One of the extensively used “continuum solvation” models is the conductor-like screening 

model, abbreviated as COSMO. In the COSMO approach, the details of the cavity 

construction differ in different COSMO implementations in most cases it is constructed as 

an assembly of atom-centered spheres with radii approximately 20% larger than the Van 

der Waals radius. For the actual calculation the cavity surface is approximated by 

segments, e.g., hexagons, pentagons, or triangles. 

COSMO derives the polarization charges of the continuum, caused by the polarity of the 

solute, from a scaled-conductor approximation. If the solvent were an ideal conductor the 

electric potential on the cavity surface must disappear. If the distribution of the electric 

charge in the molecule is known, e.g. from quantum chemistry, then it is possible to 

calculate the charge q* on the surface segments. For solvents with finite dielectric 

constant this charge q is lower by approximately a factor f():  

q = f()q* (2.15) 

the factor f() is approximately 

      
   

   
 (2.16) 

where   = ½ has been found most useful based on theoretical arguments. From the thus 

determined solvent charges q and the known charge distribution of the molecule, the 

energy of the interaction between the solvent and the solute molecule can be calculated. 
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2.6 Chemical models 

Successful applications of the B3LYP hybrid functional have proved that even transition-

metal mediated reactions can be investigated by means of theoretical calculations. To 

date the computational power limits a quantum chemical investigation with B3LYP to a 

size of at most 100-200 atoms. Thus, the real enzyme systems should be reduced to a 

minimum-sized active site model, where those atoms undergoing chemical changes during 

catalysis are included. This works well as long as the activity of an enzyme depends mainly 

on a concentrated part, and the protein matrix can be regarded as a passive protection for 

the reaction center. The small part of the protein catalyzing a reaction is called the active 

site.  

When building a model for the investigation of enzymatic catalysis, amino acid residues 

essential for the chemical transformation of interest can be reduced to smaller molecules. 

For example, the carboxylate functional group of the glutamic acid and the aspartic acid 

can be safely modeled as a acetate. Histidine can be modeled as an imidazole ring. In the 

first two parts of present thesis, the supporting ligands are further reduced to the even 

smaller ammonia and/or hydroxide ligand. Although these model systems are seriously 

truncated and might lose some minor effects on the reactivity, they are quite enough for 

elucidating the reaction mechanism and the comparison between the established reaction 

pathways. In particularly, the six model systems in chapter 4 which containing nearly 

identical coordination environment form a firm basis to allow us to probe the different 

reactivity of iron-oxo and –nitrido complexes. This investigation may offer a projection 

form a small molecular ensemble onto the enzymatic process.   

2.7 Calculations setup 

All calculations were performed with ORCA program package.172 For geometry 

optimizations, the hybrid B3LYP and/or pure BP86 density functionals159,162,163 in 

combination with triple-ζ quality basis sets (TZVP)173 for key surrounding atoms involved in 

C-H bond activation and SVP basis sets174 for the remaining atoms were used throughout 

the study. The resolution of the identity175-177 (RI, for BP86) and RI plus chain of spheres178 

(RIJCOSX, for B3LYP) approximations were used to accelerate the calculations using the 

auxiliary basis set def2-SV/J.176 All the geometries were full optimized without symmetry 

constraints. Harmonic vibrational frequencies were computed by two-sided numerical 

differentiation of analytic gradients to verify the nature of the stationary points. The 

minimum structures reported in this thesis have all positive eigenvalues of the Hessian 

matrix, whereas the transition states (TSs) have only one negative eigenvalue. The zero-

point energies, thermal corrections and entropy terms for the optimized geometries were 

obtained from the frequency calculations. 
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In order to obtain single-point energies closer to the basis set limit, B3LYP calculations 

with the much larger def2-TZVPP basis set179 on all elements were carried out. The 

energies reported in this paper refer to these calculations.  

Solvent effects are taken into account via the conductor like screen model (COSMO) for all 

calculations. Acetonitrile (epsilon = 36.6) was chosen as the solvent. To consider 

dispersion forces, geometry optimizations and single point calculations were also 

undertaken included semi-empirical van der Waals corrections (VDW)180-182 for diiron H-

bonded system (chapter 6).  
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3. Analysis of Reaction Channels for Alkane 

Hydroxylation by Nonheme Iron(IV)oxo Complexes 

3.1 Introduction 

Ever since the discovery of xenobiotics degradation by cytochrome P450,15 the 

functionalization of unactivated C-H bonds has been a focal point of experimental and 

theoretical research. Except for the well-accepted oxo-iron(IV) intermediate that 

presumably is the active species in cytochrome P450 as well as in some nonheme iron 

enzymes,2,8,15,21 oxo-iron(V)8,183-186 or hydroperoxo-iron(III)5,187 intermediates might also be 

involved in C-H bond hydroxylation reactions. Such open-shell transition metals in high 

oxidation states display fascinating and highly complex reactivity patterns. The pioneering 

work by Schwarz, Shaik, Schröder and co-workers on the gas-phase reaction of FeO+ with 

H2 has laid out the concept of two-state reactivity as an important motif in transition 

metal oxidation chemistry.112,188 It has been shown, that reaction barriers may differ 

dramatically on potential surfaces that are characterized by different spin multiplicities, 

and that the system may employ more than one such surface during the reaction.10,189 

Much progress has been made in the synthetic modeling of oxo-iron(IV).8,51,57 Moreover, 

quantum chemical studies by Solomon,5,190 Thiel,191 Shaik,10,114,125,189,192,193, Siegbahn,93 

Baerends,83,194-196 de Visser81,197,198 and their co-workers have provided a framework for 

the mechanistic analysis of C-H bond hydroxylation by both heme and nonheme oxo-

iron(IV) complexes. A detailed mechanistic understanding of the reactivity displayed by 

oxo-iron(IV) centers is a prerequisite for the rational design of low-molecular weight 

catalysts. 

Following the pioneering proposal by Groves, the alkane hydroxylation reaction by  oxo-

iron(IV) intermediates follows a rebound mechanism.199 The overall mechanism in 

rebound chemistry is characterized by two steps: a) hydrogen atom abstraction from the 

substrate R-H via transition state TSH leading to a hydroxyl-iron(III) weakly bound to an 

alkyl radical R (intermediate I), and b) hydroxyl back-transfer to the radical R via 

transition state TSRe yielding an iron(II) centre and the hydroxylated product, R-OH. 

However, there are two added layers of complexity. First, oxo-iron(IV) sites are known to 

exist either in triplet or quintet ground states. The majority of model complexes prefer the 

former,51,57 whereas all of the identified nonheme iron enzyme active sites21 feature the 

latter. More recently, model complexes with an S = 2 ground state have been 

synthesized.73,200 From DFT calculations, the reactivity of quintet oxo-iron(IV) 

intermediates towards C-H bond hydroxylation is suggested to be much higher than the 

corresponding triplet species.6,114,189,193 The second layer of complexity stems from the 
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geometry of the substrate approach. The cleaving C-H bond may attack the oxo-iron(IV) 

unit either from top (leading to an essentially linear Fe-O-H arrangement) or from an 

equatorial position (leading to a bent Fe-O-H geometry). Both types of reaction 

geometries lead to different electronic structures in the transition states and hence to 

different reaction pathways.  

 

Scheme 3. 1 The feasible reaction channels for the H-atom abstraction by oxo-iron(IV) 

complexes. 

The initial step of H-atom abstraction involves the transfer of one electron from the 

substrate into the metal 3d-block. Already this step is electronically complicated since it 

has been established that a preparatory step is needed in which the system switches from 

an oxo-iron(IV) to an oxyl-iron(III) on its way towards the transition state.6 Obviously, 

depending on the ground state multiplicity and the geometry of C-H bond approach, 

several of the semi-occupied or unoccupied iron based molecular orbitals could serve as 

electron acceptors. In the quintet channel (Scheme 3.1, bottom right panel), the electron 

of the substrate is transferred into the anti-bonding σ*(FeO) orbital (σ-mechanism). The 

upwards pointing lobe of the Opz orbital requires a vertical approach of the substrate and 

hence 5TSHσ features a nearly collinear Fe-O-H arrangement. In the triplet pathway 

(Scheme 3.1, top left panel), the *(FeO) orbital accepts the electron from the substrate 

C-H bond (π-mechanism). The corresponding transition state 3TSHπ is characterized by a 

bent Fe-O-H unit in order to accomplish maximum orbital overlap between the electron 
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donor and acceptor orbitals. In the rebound step, the C-O bond formation is accompanied 

with a simultaneous electron transfer from the substrate into the Fe-dxz/yz orbitals  and the 

vacant Fe-dz2 respectively. Thus, the rebound step appears to follow a π- mechanism on 

the quintet state surface and a σ-mechanism on the triplet one.  

Despite this already detailed understanding that has been reached through intense 

experimental and theoretical efforts, the picture is not yet complete. A recent study by 

Solomon and co-workers201 on the benzylic hydroxylation of (4-hydroxy)mandelate 

synthase (HmaS) revealed a new reaction pathway on the quintet surface (Scheme 3.1, 

bottom left panel). Here the benzylic hydrogen approaches the electrophilic Fe-O moiety 

in a horizontal fashion. This leads to the transfer of a β- rather than an α-spin electron into 

the π*(FeO) orbital, similar to what is commonly observed for the triplet -pathway 

discussed above. Thus, this study is the first one to propose a π-mechanism for H-atom 

transfer to an oxo-iron(IV) center on the quintet surface. However, this new channel might 

be regarded as a special case. First, the substrate is directly coordinated to the iron active 

site and hence steric encumbrance restricts it to a horizontal approach. Second, the 

reaction involves the abstraction of a benzylic hydrogen atom that is much weaker than 

aliphatic C-H bonds activated by cytochrome P450 or other nonheme iron centers.  

We have thus been interested in the question, whether the quintet π-pathway is a 

generally competitive reaction channel for alkane hydroxylation and whether a σ-pathway 

is also possible on the triplet surface? (Scheme 3.1, top right panel). To this end, we have 

studied all four possible reaction channels with the aid of density functional theory (DFT) 

as well as high level coupled cluster theory with single, double and perturbative triple 

excitations (CCSD(T)). The chosen models resembled those previously investigated for 

property correlations among high-valent iron centers: [FeIV(O)(NH3)5]
2+ (a), 

[FeIV(O)(OH)(axial)(NH3)4]
+ (b), [FeIV(O)(OH)2(eq)(NH3)3] (c).  

3.2 Computational details 

A. See 2.7 Calculations set up  

B. To obtain more accurate single-point energies, the CCSD(T) calculations for H-atom 

abstraction steps for all model systems were employed at the previous B3LYP geometries. 

The basis sets used were def2-TZVP for Fe, N, O and def2-SV(P) for H atoms.202 The 

RIJCOSX approximation with def2-TZV/C basis set for Fe, N, O and SV/C for H was used to 

accelerate the calculations.203 The CCSD(T) calculations were first performed on the 

Hartree-Fock reference orbitals. For the complexes for which the UHF equations cannot 

be converged to the desired state, for example, 3RC, CASSCF(10,8) reference 

wavefunctions have been explored. Kohn-Sham orbitals obtained from B3LYP calculations 

are also good choice as a basis for CCSD(T) calculations. They may offer better 

convergence and much smaller single excitation amptitudes than Hartree-Fock orbitals.204 
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Since coupled cluster theory is known to be nearly invariant with respect to the choice of 

reference determinant all these choices are sensible. Indeed, the relative energies of the 

various species differ by less than 0.5 kcal/mol provided a qualitatively reasonable 

reference determinant is chosen. In order to compare the CCSD(T) energies obtained with 

the different reference orbitals, we also use Kohn-Sham reference orbitals for all species 

in system b. The T1 magnitudes, often taken as a diagnostic measure of multi-reference 

character, lie well within the range of 0.007~0.023, which indicates reliable CCSD(T) 

results. 

3.3 Results and discussion 

The calculated geometric parameters of the transition states of these systems are shown 

in Table 3.1 which agrees well with previous results of the same pathways.114,125,195,205 

Figure 3.1 shows the potential energy profiles of the ethane C-H bond hydroxylation by 

these model systems. Since the three model complexes follow the same reaction trend, 

we only give a detailed discussion on model system a.  

Table 3. 1  Geometric parameters of the transition states of complexes a, b and c. 

 Fe-O O-H C-H C-O ∠FeOH ∠FeOC 
3TSH

a 1.78 1.21 1.33 ~ 118.9 ~ 
3TSH

a 1.78 1.16 1.37 ~ 174.9 ~ 
5TSH

a 1.74 1.27 1.26 ~ 175.8 ~ 
5TSH

a 1.76 1.21 1.33 ~ 123.1 ~ 
3TSRe

a 1.91 0.97 ~ 2.27 ~ 160.0 
5TSRe

a ~ ~ ~ ~ ~ ~ 
5TSRe

a 1.84 0.97 ~ 2.79 ~ 174.7 
3TSH

b 1.78 1.18 1.35 ~ 118.7 ~ 
5TSH

 b 1.80 1.24 1.28 ~ 148.7 ~ 
5TSH

b 1.80 1.19 1.35 ~ 119.9 ~ 
3TSRe

b 1.92 0.97 ~ 2.19 ~ 153.7 
5TSRe

b 1.89 0.97 ~ 2.52 ~ 132.7 
5TSRe

b 1.87 0.97 ~ 2.48 ~ 164.3 
3TSH

c 1.89 1.17 1.37 ~ 121.5 ~ 
5TSH

c 1.81 1.23 1.29 ~ 142.7 ~ 
5TSH

c 1.80 1.16 1.40 ~ 117.4 ~ 
3TSRe

c 2.02 0.97 ~ 2.09 ~ 161.5 
5TSRe

c 1.97 0.97 ~ 2.24 ~ 130.3 
       5TSRe

c 1.95 0.97 ~ 2.31 ~ 161.9 

 

We first discuss the hydroxylation reactions based on the DFT calculations. The processes 

that proceed through 3TSH
a and 5TSHσ

a represent the established pathways on the triplet 
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and quintet surfaces. The reactions proceeding via 3TSHσ
a and 5TSH

a are the non-classical 

ones. The triplet and quintet oxo-iron(IV) reactants have very similar energy, which is 

consistent with previous studies.114,125,197 Comparison of the calculated energy barriers for 

H-abstraction demonstrates that the quintet σ-pathway encounters by far the lowest 

barrier among the four alternatives. By contrast, the π-pathways on the triplet and quintet 

surfaces have comparable energy barriers. The barrier of the triplet σ-pathway, which 

could only be located for model system a, is much higher in energy. For the rebound step, 

the triplet pathway involves a higher energy barrier than the quintet one. Hence, it is clear 

that the hydroxylation reactivity decreases in the order 5σ > 5π > 3π > 3σ. Apart from the 

non-classical channels discussed here, our results are in agreement with previous 

studies81,93,194-196 that demonstrate that the quintet iron(IV)-oxo species is more reactive 

than the corresponding triplet species. 

 

 



 

36 

      

 

Figure 3. 1  Schematic Gibbs free energy (ΔG) energy surface for ethane hydroxylation by 

three model systems: (A) B3LYP/def2-TZVPP//B3LYP/TZVP, (B) CCSD(T) (def2-TZVP for 

Fe, N, O and def2-SV(P) for H atoms)//B3LYP/TZVP. 

Since the electron transfer steps in the established triplet (π-mechanism) and quintet 

reaction pathways (σ-mechanism) have been well studied, our discussion will mainly focus 

on the π-mechanism on the quintet state surface and the σ-pathway on the triplet state. 

Figure 3.2 shows the schematic MO diagrams for the two non-classical pathways of 

system a. It becomes evident that in 5TSHπ
a a -electron from the substrate is shifted 

towards the Fe-dxz based orbital, consistent with a horizontal approach of the ethane 

molecule towards the Fe-O moiety. The key geometric parameters of 5TSHπ
a closely 

resemble those found in 3TSHπ
a (Table 3.1), i.e. a nearly collinear O-H-C moiety, 

comparable C-H and O-H bond distances and a significantly bent Fe-O-H angle. These 

findings may be rationalized by reference to the electronic configuration of 5TSHπ
a. As the 

substrate approaches the oxo-iron(IV) unit, the Fe-O bond gradually elongates and an 

electron hole is generated in the O-px based orbital201 (thus forming a ferric-oxyl species) 

which finally serves as the true electron acceptor. In order to assure the best orbital 

interactions between the C-H σ-bond and the O-px orbital, the substrates must approach 

the FeO core horizontally with a Fe-O-H angle of 90; however, this orientation is only 

possible at the expense of a much larger Pauli repulsion than in the σ-type attack 

geometry.83 Consequently, the opposing requirements of optimal orbital overlap and 

increasing Pauli repulsion lead to bent geometries in 5TSHπ
a with a Fe-O-H angle close to 

120°. Compared to the reduced Pauli repulsion and the optimum orbital interaction of the 

vertical approach in the quintet σ-mechanism, one may readily appreciate why 5TSHσ
a 

features the smallest barrier of the three pathways (5TSHσ
a, 5TSHπ

a
 and 3TSHπ

a). Unlike 5Iσ
a 

containing a high spin ferric ion (SFe = 5/2) that is antiferromagnetically coupled to an alkyl 
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radical (SC = 1/2), the H-abstraction process through the π-mechanism finally leads to an 

intermediate (5Iπ
a) containing an intermediate spin iron(III)-hydroxo complex (SFe = 3/2) 

ferromagnetically coupled to an ethylic radical.  

Figure 3. 2  Schematic MO diagram of 5TSH (A), 3TSH (B), 5TSRe (C) for [FeIV(O)(NH3)5]
2+. 

The vertical approach of ethane towards the Fe-O moiety in 3TSHσ
a

 leads to an α-electron 

transfer from the substrate to the σ*(FeO) antibonding orbital. Although the nearly 

collinear arrangement of Fe-O-H-C features the best orbital interactions and smallest Pauli 

repulsions, the LUMO+1 acceptor orbital σ*(FeO) is much higher in energy compared to 

the corresponding orbital in 5TSHσ
a due to the greatly reduced spin polarization.190 The 

high activation energy of 3TSHσ
a is also in agreement with the geometric parameters that 

indicate a rather ‘late’ transition state. The electronic structure of 3I features 

antiferromagnetic coupling between an intermediate spin ferric (SFe = 3/2) and an alkyl 

radical (SC = 1/2). The energies of these four intermediates of varying spin multiplicities 

decrease in the order 5Iσ
a (SFe = 5/2)  5Iπ

a (SFe = 3/2) ≥ 
3Iπ

a (SFe = 1/2)  3I
a (SFe = 3/2) 

consistent with the weak ligand fields arising from typical nonheme ligand frameworks. 

Starting from 5Iπ
a, the rebound step follows a σ-mechanism through 5TSReσ

a like in the 

triplet -channel. In either case, the remaining α-electron of the substrate radical is 

transferred to the strongly σ-antibonding Fe-dz2 orbital (A schematic MO diagram of a 

post-5TSReσ
a geometry with a C-O bond distance of 2.5Å is shown in Figure 3.2). As the 
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electron is shifted along the Fe-O axis, an almost linear Fe-O-C angle of 174.7° is calculated 

in 5TSReσ
a. Comparison of the rebound pathways reveals that the two channels on the 

quintet state surface80 have a very similar energy barrier while the triplet σ-mechanism 

process encounters the highest one. This trend may be ascribed to two factors: a) the 

nature of electron acceptor orbital and b) the spin polarization induced by the singly 

occupied orbitals in the metal d-block. Given the comparatively weak π-antibonding 

nature of the t2g-derived orbitals compared to the strongly σ-antibonding nature of the Fe-

dz2 based orbital together with the large spin-polarization of the quintet state, it becomes 

understandable why 5TSReπ
a corresponds to the lowest energy rebound step on the three 

surfaces. The situation on the triplet surface is exactly opposite. Here the acceptor orbital 

is the strongly σ-antibonding Fe-dz2 orbital and triplet state spin-polarization is much less 

effective compared to the quintet state. An intermediate situation exists in 5TSReσ
a. 

The CCSD(T) level energies based on B3LYP optimized geometries predict larger triplet-

quintet splittings, again consistent with other studies.206 The CCSD(T) results are slightly 

biased in favour of the high spin state of oxo-iron(IV) complexes. The same behaviour is 

also found in the Spectroscopic Oriented Configuration Interaction (SORCI) calculations.207 

However, it is clear that there is a very large basis set dependence204,208 and the basis set 

limit is difficult to reach with CCSD(T) calculations for systems of the present size. The 

activation energies obtained from CCSD(T) calculations for triplet and quintet pathways 

show a similar trend. In particular, the energy of 5TSHσ
a, which involves a high spin ferric 

iron (SFe = 5/2), is greatly reduced. The pathways involving intermediate spin iron centers 

(SFe = 3/2)), similar energy barriers as predicted by B3LYP calculations are obtained. This 

bias may disappear at the basis set limit, that is, unfortunately, not approachable with 

presently available computational resources. A detailed discussion of how to best obtain 

accurate spin state energies for transition metal complexes is beyond the scope of the 

present work. Nevertheless, the CCSD(T) results are broadly consistent with the B3LYP 

numbers for the H-atom abstraction steps, and further corroborate that the quintet σ-

pathway is the most feasible channel. The CCSD(T) results also confirm that the quintet -

pathway is highly competitive. 

3.4 Conclusion 

In conclusion, this is the first time that all viable pathways are identified in the same 

system, which allows us to compare their relative reactivities. The triplet σ-pathway is 

higher in energy such that it may not ever be involved in actual C-H bond hydroxylations. 

However, the reactivity of the quintet -channel is comparable or even higher than the 

classical triplet one (3π), although it is slightly higher in energy than the established 

quintet one (5σ). The existence of at least three energetically feasible pathways may offer, 

however, a new element of specificity control in C-H bond activation reactions by oxo-
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iron(IV) species. The choice of σ- or -pathways could be controlled at least in part by 

steric hinderance in model systems or by the restrictions of the protein pocket in 

metalloenzymes.190 
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4. Does a Higher Oxidation State of a Metal Center 

Necessarily Imply Higher Oxidizing Power? A 

Computational Study of C-H Bond Activation by High–

Valent Iron–oxo and –nitrido Complexes 

4.1 Introduction 

The isoelectronic high-valent ironoxo and nitrido species have been considered as key 

intermediates in a number of important biochemical transformations. For example, heme 

and non-heme O2-activating iron enzymes utilize ironoxo species to selectively oxidize 

unactivated CH bonds,8,21,22,34,35,47-50 while ironnitrido intermediates are the pivotal 

species for biological synthesis of ammonia.136,209-212 These two kinds of reactions, 

however, are also extremely important industrial processes. Therefore, majority of effort 

has been dedicated to identify and understand key features of these isoelectronic species 

in both biological processes and laboratory researches.  

For the ironoxo complexes, iron(IV)oxo and iron(IV)oxo porphyrin radical (Compound I) 

have been spectroscopically identified as active intermediates for CH bond oxidation in 

nonheme and heme systems, respectively.8,21,22,34,35,47-50 Iron(IV)oxo complexes have been 

extensively studied and some common conclusions have been reached.5,11,21,51,57,93,189,213-215 

For example, the consensus OH rebound mechanism was established for CH bond 

hydroxylation by ferryl species;80,114,193,199,216 the quintet iron(IV)-oxo species is a more 

aggressive oxidant than its triplet counterpart;5,81-84 the reactivity of ironoxo complexes 

can be tuned by changing the axial ligand trans to the oxo group.55,65,121,126,195,217 All these 

accumulated information has provided vital insights into the mechanisms that nature uses 

to carry out the important biochemical transformation.  

In contrast to numerous iron(IV)oxo complexes, genuine iron(V)oxo species are rather 

rare. The FeV(O)(OH) species was proposed as the active oxidant responsible for the cis-

dihydroxylation of C=C double bonds in the catalytic cycle of Rieske dioxygenases; 

however, only indirect proof for its existence was obtained.8,26,30,214,218 Theoretical studies 

demonstrated that this putative perferryl species has rather high reactivity towards strong 

CH bond activation and is able to afford large turnover numbers of epoxide and cis-

dihydroxylation products with unprecedented efficiency.28,33,185,219-221 The first isolated and 

well characterized true iron(V)oxo complex ([(TAML)FeV(O)]–) was reported by Collins, 

Que and Münck and coworkers.77 The iron(V) oxidation state was confirmed on the basis 

of its characteristic Mössbauer and EPR spectrum, as well as the EXAFS evidence. The 

detailed reactivity studies revealed that this authentic iron(V)oxo complex is a strong 
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electrophile toward the electron-rich sulfides. As in the oxygen atom transfer (OT) with 

organic sulfides, [(TAML)FeV(O)]- is established to be a high efficient oxidant and it is 4 

orders of magnitude more reactive toward sulfides than its FeIV product.222 However, this 

FeIV complex is a u-oxo-(FeIV)2 dimer, totally different with basic coordination environment 

of the iron(IV)-oxo species we mentioned above. Therefore, the direct information for the 

comparison of the reactivities of this iron(V)-oxo with iron(IV)-oxo complexes is still 

lacking. When return to the CH bond activation we cared about, it turns out that 

[(TAML)FeV(O)]- is a sluggish oxidant, since it only reacts with the weak CH bonds of 

dihydroanthracene, and no cis-dihydroxylation reactions have thus far been reported. 

Neither theoretical studies have been addressed so far.  

Iron(VI)–oxo complexes are even much more rare, and the only known example is the 

tetrahedral FeVIO4
2- anion.223-226 This may be due to its significant oxidizing power. In line 

with this, ferrate (FeO4
2-), derived from mineral salts such as the potassium (K2FeO4) and 

barium (BaFeO4) forms, can mediate oxidation of a wide variety of organic compounds 

such as alcohols,227,228 amines,228 hydrazines,229 peroxides,230 hydrocarbons,231 and 

thiosulfates232 with excellent selectivity.  

Similar to the putative FeV(O)(OH) species in Riske dioxygenases, the direct evidence for 

the involvement of iron-nitrido intermediates in biology remains elusive. The mechanistic 

postulates involving high-valent ironnitrido moieties have nevertheless motivated the 

synthesis and reactivity studies of such model compounds. Till now, synthetic iron nitrides 

complexes have +4,140,141,150 +5,145,147,148,205 and +6149,205 oxidation states. All reported 

terminal iron(IV) nitrido complexes possess the distorted trigonal pyramidal coordinate 

environment and two isolable iron(IV) nitrido complexes have been crystallographically 

characterized recently.140,142,143,150 The characterization of iron(V)-nitrido complexes 

started from the resonance Raman detection of [FeV(N)(TPP)]– (TPP2– = 

tetraphenylporphinate(2-)) complex by Nakamato and coworkers.151 More recently, the 

photolysis of [(cyclam–ac)Fe(N3)]
+ (cyclam–ac– = 1,4,8,11–tetraazacyclitetradecane–1–

acetate) leading to the desired [(cyclam–ac)FeV(N)]+ species was reported.53 Later, the 

detailed geometric and electronic structure analysis combined by spectroscopic and 

theoretical approaches revealed the doublet ground state rather than the quartet spin 

state previously assumed.148 Very recently, Meyer and Smith reported the synthesis of a 

four–coordinated iron(V) nitrido complex supported by a tripodal N–heterocyclic carbine 

(NHC) ligand, which also feature a low–spin (S = 1/2) ground state.144 When it comes to 

the iron(VI) nitrido complex, Wieghardt and coworkers reported the second Fe(VI) 

compound (the first one is [FeVIO4]
2+ as mentioned before) generated by photolysis of a 

stable iron(IV) azido compound, [(Me3–cyclam–ac)FeIV(N3)]
2+.149 This is the first hexavalent 

iron compound to be synthesized in laboratory. The reactivity of these complexes has also 

been investigated in depth experimentally; however, most of the iron-nitrido species 
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exhibited to be non-catalytic, with activities falling far short of the activity of ironoxo 

complexes.142-144  

As mentioned above, intense investigations have been dedicated to clarify the property 

and reactivity of individual high–valent iron–oxo/nitrido complexes. However, to our 

knowledge systemic theoretical research on the two series is still very rare. Neese et al. 

have done a thorough computational study on six “hypothetic” iron–oxo/nitride model 

complexes (1–6 in Chart 1).205 This is the first time to compare the different spectroscopic 

properties of iron–oxo and –nitrido complexes with iron oxidation states spanning from +4 

to +6. However, no reactivity trends were predicted for these complexes. We have 

therefore chosen to investigate the reactivity of 1 – 6. The iron centers of the model 

compounds are coordinated in distorted octahedral arrangements with ammonia acting as 

the equatorial ligands, and hydroxyl group as the axial ligand trans to the oxo or nitrido 

group. The nearly identical coordination environment of 1 – 6 allows us to make more 

generalized comments about the relative reactivity of high-valent iron–oxo and –nitrido 

complexes. Clarifying the difference in reactivity between the two series may contribute 

to a basis for enhanced understanding of nature’s redox enzymes and the matching 

catalyst systems to target oxidation processes.  

 

Scheme 4. 1  Six high-valent ironoxo and –nitrido complexes 

4.2 Computational details 

See 2.7 Calculations set up 
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4.3 Results  

4.3.1 Geometry structures 

In this section, we focus on the properties of Fe=O/N bond which is closely related to the 

ethane C–H bond activation. Table 4.1 collects the selected geometric parameters and 

electronic structures and Figure 4.1-4.4 presents all the schematic MO diagrams 

calculated by B3LYP. 

4.3.1.1 Ironoxo complexes  

Calculations with the B3LYP functional of Fe(IV)–oxo species 1 has been well studied in 

Chapter 3216 and the calculated Fe=O bond distance of 1.64 Å is in good agreement with 

experimental studies.54 

 

 

Figure 4. 1  B3LYP Calculated Schematic MO diagrams for complex 2 and 3. 

. 
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As for the iron(V)–oxo complex 2, there were four different electronic configurations 

established with the B3LYP functional, two for doublet state (22, and 22′), and two for 

quartet state (42, and 42′). As shown in Table 4.1, 22 is the ground state and is favored by 

5.0, 2.8, and 14.8 kacl/mol over the 22′, 42, and 42′ states. The optimized Fe–O bond 

distances with B3LYP functional are 1.72 (1.65 Å), 1.68Å (1.75 Å) for 22 (22′) and 42 (42′), 

respectively, in agreement with other calculated iron(V)oxo complexes, 

[(tpa)FeV(O)(OH)]2+ (1.69 Å), for example.183 While the values are dramatically different 

from that found in the well–characterized iron(V)oxo complex, [FeO(TAML)]– (1.60 Å) and 

even longer than that calculated for the iron(IV)oxo analog 1 (1.64 Å).77 The extremely 

longer Fe=O bond distance in the current model may be rationalized by its distinct 

electronic configurations predicted with B3LYP functional. As shown in Figure 4.1, only 42 

contains a genuine Fe(V) center among the four electron configurations calculated using 

B3LYP. The other three electron configurations (22, 22′, and 42′) are best described as 

consisting of an intermediate-spin iron(IV) center that is antiferromagtically or 

ferromagnetically coupled to an oxyl radical. This special electron configuration slightly 

reduces the Fe=O bond order and thereby lengthening the Fe=O bond in 2. 

With the highest iron oxidation state, the hypothetic iron(VI)oxo complex 3 has two low–

lying electronic state, singlet and triplet. B3LYP calculations predict the triplet ground 

state with the singlet state lying 10.8 kcal/mol above it. The calculated Fe=O bond lengths 

of 13 is 1.53 Å, which is greatly shorter than those in 1 and 2. By contrast, 33 possess an 

elongated Fe=O bond (1.72 Å) which is interestingly comparable to the Fe–OOH (1.79 Å) 

bond distance, reflecting a delocalized O=Fe=O unit generated by the greater Fe–O π-

bonding to both axial ligands. Electronically, the expectedly remarkable short Fe=O bond 

in 13 may be attributed to the triple bond formed between the iron center and oxo group. 

As shown in Figure 4.1, the B3LYP result indicates that 13 indeed contains a genuine Fe(VI) 

center with two paired electrons residing in the nonbonding dxy orbital and hence implies 

a bond order of 3 for the Fe and oxo interaction. While 33, in fact, consists of a high spin 

Fe(V) center that is antiferromagneitcally coupled to an oxyl radical, hence resulting in a 

longer Fe=O bond relative to 13.  

4.3.1.2 Ironnitrido complexes  

The Fe(IV)–nitrido complexes 4 has the quintet ground state and the triplet state is about 

6.3 kcal/mol higher in energy. The geometry description of 4 is somewhat more 

complicated. In contrast to the remarkably short Fe=N distance and distorted structure 

predicted previously,205 our B3LYP calculations proposed a slightly distorted octahedral 

geometry with a relatively long Fe=N bond distance (~1.72 Å) for both spin states. 3,54 

possess analogous electronic structures to those of the corresponding oxo counterpart, 

the remarkable difference is that an inverted bonding situation is observed for the nitrido 

species.  
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The much higher energy of 45 compared to that of 25 rendered us safely rule out the 

existence of 45, and therefore our discussion here is only focus on the doublet state. The 

key geometric and electronic characters for the ground state 25 closely resemble those 

found in 22. For example, B3LYP predicts a rather longer Fe=N bond (1.70 Å) and the 

similar broken symmetry solution leads to a formal iron(V) center in 25.  

  

 

Figure 4. 2  B3LYP Calculated Schematic MO diagrams for complexes 4, 5 and 6. 

The discussion of 36 can also be excluded due to its extremely high energy (Table 4.1). 

Much as found in 13, 16 has a very short Fe=N bond distance, 1.51 Å, and a slightly longer 

Fe–OOH bond which indicates the stronger trans effects of  nitrido relative to oxo. The 

schematic MO diagrams for complex 16 possess a dxy
2dxz

2dyz
2 electronic configuration on Fe 

center and the empty N Py and Px orbitals resulting in an electronic description of LS–FeIIN+ 

in which the Fe=N unit approaches a triple bond in agreement with a very short distance 

calculated for 16.  
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Table 4. 1  Calculated Energies and Selected Geometric Parameters and electronic 

structures for the high-valent Iron–Oxo and –Nitrido Complexes predicted by B3LYP 

calculations (Energy in kcal/mol and Bond Distances in Angstroms). 

 Energy  Fe=E (E=O or N) Electronic structure 
1 31 0.0 1.64 FeIVO2- 

    51 3.6 1.64 FeIVO2- 
2 22(22′) 0.0(2.8) 1.72(1.65) FeIVO•- 

42(42′) 5.0(14.8) 1.68(1.75) FeVO2- 
3 13 10.8 1.53 FeVIO2- 

    33 0.0 1.72 FeVO•- 
4 34 6.3 1.72 FeIVN3– ↔ FeIIN••- 

54 0.0 1.69 FeIVN3– ↔ FeIIN••- 
5 25 0.0 1.70 FeVN3– ↔ FeIIIN••- 

45 13.0 1.90 FeVN3– ↔ FeIIIN••- 
6 16 0.0 1.51 FeVIN3– ↔ FeIIN+ 

36 25.6 1.70 FeVIN3– ↔ FeIVN••- 

  

4.3.2 Reactivity 

As the well-established hydrogen atom transfer (HAT) mechanism for the C-H bond 

activation by iron(IV)-oxo complexes,85,189,216,233,234 here too, all the B3LYP calculations 

pointed toward an initial HAT from a C-H bond in ethane to the iron-oxo or -nitrido group 

of oxidants 1 ‒ 5, except for iron(VI)-nitrido complex 6 (vide infra). These reactions can be 

written schematically as in the following equation: 

 

Clearly, in contrast to the classic organic HAT reactions which use a p-block radical X• such 

as t-butoxyl as an abstraction group, addition of H• to the iron-oxo and –nitrido complexes 

typically results in protonation of oxo and nitride ligands and reduction of the iron center.  

4.3.2.1 Ironoxo complexes  

Figure 4.3 shows the potential energy surfaces (PES) of the ethane H–atom abstraction by 

complexes 1 and 2 and Figure 4.4 demonstrates the electronic structures of transition 

state. Table 4.2 shows the key geometric parameters of the critical points along these 

reaction pathways. Since the B3LYP calculated C–H bond activation by complex 1 has been 
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discussed in Chapter 3,216 we only put the PES and geometric parameter here for 

comparison and start our detailed research from complex 2.  

 

Figure 4. 3  Schematic energy profiles (ΔH) for the ethane hydroxylation by complexes 1 

([FeIVO(OH)(NH3)4]
+) and 2 ([FeVO(OH)(NH3)4]

2+). 

As might have been expected from the higher oxidation state, complex 2 is a stronger 

oxidant than 1 as evidenced by the corresponding lower barriers. As shown in Figure 4.3, 

comparison of the calculated energy barriers for hydrogen–atom abstraction 

demonstrates that the doublet and quartet state pathways encounter similar energy 

barriers (~4 kcal/mol) which is much lower than those calculated for the reaction with 1 

(17.8 kcal/mol). In accord with the much lower energy barriers for 2, very early transition 

states are predicted on both doublet and quartet state surfaces. As shown in Table 4.2, 

relatively short C–H bonds (1.18 Å) and significantly long O–H bonds (1.48 Å) are 

estimated in both transition states. The C–H bond activation by 2,42 both  follows the –

mechanism. For doublet state, the antiferromagnetically coupled intermediate spin Fe(IV) 

metal center and oxyl radical in reactant already electronically resemble the “real” oxidant 

that is required for the hydroxylation by iron(IV)oxo species.6,216 The oxyl radical character 

makes 22 to be more reactive than 1 due to its higher electrophilicity. Indeed, based on 

the changes in the electronic structure along the reaction pathway, one may easily view 

the hydrogen atom abstraction process in doublet state as the transformation of an 

iron(IV)–oxyl species into an iron(IV)–hydroxy complex. As shown in Figure 4.5, in contrast 

to the –electron transfer in the –pathway for 31, the –hole in the oxyl ligand induces 

an –electron shift from the substrate to the (FeO)3+ unit in the reaction of 22. For the 

quartet state, there is no significant interaction achieved between the substrate and the 

Fe=O active center which is in good agreement with the very early geometry structure 

described above. The electronic structure change for 42 is similar to the preparatory stage 

found for the H–atom abstraction by 31, that is, upon approaching TS, 42 evolve to a 

species that is best characterized as a Fe(IV)–oxyl species, generating an electron hole on 

the oxygen atom. Consequently, an equatorial approach of the substrate towards the Fe–
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O unit for both spin states leads to 22TSH and 42TSH with a significantly bent Fe–O–H angle 

(~120°). Thermodynamically, the exothermic rather than the moderate endothermic 

character of the reactivity indicate that 2 has much larger driving force than 1, in good 

agreement with the higher reactivity of 2 compared to that of 1.  

 

Figure 4. 4  Schematic MO diagram of 2TSHπ and 4TSHπ for complex 5 [FeVO(OH)(NH3)4]
2+. 

C grey, N blue, O red, Fe orange. 

Table 4. 2  Selected Key Geometric Parameters of Transition States for C-H Bond 

Activation by the high-valent Iron Oxo and Nitrido Complexes (Bond Distances in 

Angstrom, Angles in Degree). 

 

 

 

 

 

 

 

 Fe=E(E=O or N) E-H(E=O or N) C-H ∠FeOH 
 B3LYP B3LYP B3LYP B3LYP 

1 31TSHπ 1.78 1.18 1.35 118.7 
51TSHσ 1.80 1.24 1.28 148.7 
51TSHπ 1.80 1.19 1.35 119.9 

2 22TSHπ 1.73 1.47 1.18 121.2 
42TSHπ 1.79 1.48 1.18 122.0 

4 34TSHπ 1.77 1.12 1.74 117.0 
54TSHσ 1.77 1.17 1.49 155.8 
54TSHπ 1.77 1.13 1.65 115.0 

5 25TSHπ 1.72 1.16 1.51 122.2 
45TSHπ 1.87 1.25 1.37 116.0 
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Much as found in the experiments that it is very challenging to isolate and characterize 

iron(VI)oxo complexes, complex 3 displays the highest reactivity of all iron–oxo complexes 

under investigation. Based on our B3LYP calculations, the hydroxylation of ethane by 

complex 3 is completely barrierless. We carried out careful relaxed-surface scan 

calculations in which the distance between the oxo and H–atom in the cleaving C–H bond 

is stepwisely decreased to let the substrate gradually approach to the Fe=O active center. 

However, it turned out that the H–atom from the second CH3 group of the substrate can 

be directly abstracted even when the target O–H bond has a rather long distance (1.42 Å) 

and the rebound step can take place immediately after the abstraction. Therefore no 

transition states and intermediates can be located for this process.  

4.3.2.2 Ironnitrido complexes  

 

Figure 4. 5  Schematic Gibbs free energy (ΔG) surfaces for the ethane C-H bond 

activation by the [FeIVN(OH)(NH3)4] (4) and [FeVN(OH)(NH3)4]
+ (5) systems. 

For the reaction with complex 4, three reaction pathways have been established for 4, one 

–mechanism pathway for triplet and quintet state respectively and one –mechanism 

for quintet state. The calculated energy barriers for hydrogen–atom abstraction 

demonstrated the similar trends found in the corresponding processes of complex 1, that 

quintet –pathway encounters by far the lowest barrier among the three alternatives, and 

the –pathways on the triplet and quintet surfaces have comparable energy barriers. As 

the same electron transfer steps established for the three pathways in complex 1, here 

too, the two –pathways involve a –electron transfer from the substrate to the Fe–dxz 

based orbital, which is consistent with a horizontal approach of the ethane molecule 

towards the Fe–N moiety as indicated by a significant bent Fe–O–H angle close to 120 

computed for 34TSH  and 54TSH (Figure 4.6). While for the quintet –mechanism, the 

antiferromagnetically coupled HS Fe(III) ion (SFe = 5/2) and the three–center C–H–N radical 

(SCHN = 1/2) clearly demonstrate an –electron transfer from the substrate to the virtual 

dz2 orbital.  
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Figure 4. 6  Schematic MO diagram of 3TSHπ, 5TSHσ and 5TSHπ for [FeIVN(OH)(NH3)4] (4). C 

grey, N blue, O red, Fe orange. 

The computed energy profile of C–H bond activation by complex 5 is also shown in Figure 

4.5. All the energy are quoted relative to the S = 1/2 spin ground state. The quartet state 

lies about 13 kcal/mol above the doublet congener. Therefore, this species cannot be 

prepared in laboratory, in agreement with the experimental finding that all reported 

Fe(V)N complexes have doublet ground states.148 Surprisingly, unlike the reactivity 

enhancement from complex 1 to 2 with the increasing oxidation state of the metal center 

from IV to V, DFT calculations suggest very sluggish reactivity of complex 5 compared with 

2 which is evidenced by both unfavorable kinetic and thermodynamic characteristics of 

the reaction. The reaction requires activation energy of 21.1 kcal/mol and is endergonic by 

18.8 kcal/mol on doublet state surface, far more away from the much lower energy 

barrier (4.0 kcal/mol) and exothermic property (–7.0 kcal/mol) of the reaction with 

complex 2. The hydrogen-atom abstraction also associates with a linear transition state, 

but  occurs very late. In 25TSHπ, the C–H bond is essentially broken (r(C–H) =1.51 Å), while 

the N–H bond is very close to their normal bond length (r(N–H) =1.16 Å). The H–atom 

abstraction step also follows the –mechanism as established for the iron(V)oxo analog. 

As shown in Figure 4.6, it is an –electron from the substrate shifted towards the *(FeN) 

antibonding orbital. Again, the calculated geometric structures also support this, i.e., 

relatively smaller Fe–O–H angles (~120°) are found in the transition states 25TSHπ.  
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Figure 4. 7  Schematic MO diagram of 2TSHπ and 4TSHπ for [FeVN(OH)(NH3)4]
+ (5). C grey, 

N blue, O red, Fe orange. 

Unlike the powerful oxidation ability of iron(VI)–oxo complex 3 which leads to the 

conversion of ethane to ethanol barrierless, the corresponding iron(VI)–nitrido complex 6 

appears uncapable of ethane oxidation. First, singlet is the ground state and the triplet 

state 36 lies in very high level energy relative to 16 (25.6 kcal/mol). Second, there is no 

reaction detected for the ground state 16 by our B3LYP calculation. Relaxed surface scan 

indicated that the H–atom is quite reluctant to get close to the Fe=N active center and the 

energy for the approach to the (FeN)3+ unit  keeps rising. All attempts to locate the 

transition state also failed and revealed that the H–atom back transfer to the CH3CH2
, 

even when the N–H bond distance is very short (1.10 Å) in the initial structure.  

To well understand the different reactivity of these iron-oxo and –nitrido complexes, we 

summarized the most feasible pathway of ethane H-tom abstraction by complexes 1 ‒ 6 in 

Figure 4.8. Clearly, the energy barriers for C–H bond activation by 1 ‒ 6 exhibit interesting 

trends. First, iron–nitrido complexes are not as reactive as their oxo counterpart. For 

instance, the H-atom abstraction by complex 4 undergoes a much higher energy barrier 

than the corresponding one by 1, the same holds true for the comparison of the reactivity 

between complex 5 and 2 (Figure 4.8). Second, quite opposite reactivity trend are 

observed for ironoxo and –nitrido series upon increasing the iron oxidation state from IV 

to VI. For the oxo complexes 1 – 3, the reactivity is enhanced as the oxidation state of the 
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iron center increases and show the following trend: 1 < 2 << 3. As shown in Figure 4.8, the 

energy barrier for complex 2 is lowered by 12.6 kcal/mol compared to that of 1. Moreover, 

complex 3 undergoes the barrierless H-atom abstraction process and hence displays the 

highest reactivity of all iron complexes. This is in good agreement with the experimental 

results that it is very challenging to isolate and characterize iron(VI)oxo complexes.223,224,229 

However, turning now on the reactivites of the iron–nitrido series, an opposite trend was 

observed displaying the following order: 4 ≥ 5 > 6. Unlike the iron-oxo complex 1 – 3, the 

iron-nitrido congeners 4 – 6 demonstrate comparable reactivity between 4 and 5 and 

extremely reduced reactivity for complex 6. It turns out that complex 6 appears to be 

incapable of oxidizing ethane. 

 

Figure 4. 8  Schematic energy profiles (H) for most feasible pathway of ethane H-tom 

abstraction by complexes 1 ‒ 6. 

4.4 Discussion   

As established for iron(IV)-oxo complexes, the real active species toward C-H bond 

activation is FeIII-O•‒ which carries a radical character on the abstracting oxygen atom.85,216 

In the iron-nitrido series, due to the inverted bonding character the Fe=N moiety would 

closely resemble the reactive species found in iron(IV)-oxo complexes. We would 

therefore expect a higher reactivity of iron-nitrido series. However, this is not the case. 

Moreover, we might also expect an increased reactivity upon going from 4 to 6 from our 
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perceptual intuition since the increased formal charge would result in a more powerful 

electrophlies. In fact, the opposite trend was observed again. Then the questions arise: 

why do the iron-nitrido complexes exhibit much lower reactivity compared with that of 

iron-oxo analogues? What drives the quite different reactivities of H-atom abstraction 

between the two series? 

Table 4. 3  B3LYP Calculated Reaction Energies (kcal/mol) and Bond Dissociation 

Energies (kca/mol) for the Most Feasible Reaction Pathway of Iron-Oxo and -Nitrido 

Complexes. 

 ΔH BDEFeE-H(E=O/N) BDEFeE-H 
1 4.4 94.7 0.0 

2 -7.0 110.2 15.5 

3 -20.2 123.9 29.2 

4 13.5 86.0 -8.7 

5 16.4 85.6 -9.1 

6 ~ 86.8 -7.9 

 

 

Figure 4. 9  Plots of the reaction energy barrier (ΔH‡) for the reaction with 1 – 5 as a 

function of the driving force (ΔH).    

A direct clue from the PESs is the dramatically different thermodynamic driving force of 

the reaction. We collected the reaction energies for the most feasible reaction pathways 

of title reactions in Table 4.3. Note that the six oxidants shown in Table 4.3 span a range of 

almost 40 kcal/mol differences in the driving force, indicating that the driving force is 

indeed a quite important factor for modulating the reactivity. Remarkably, we also found 

a rather good correlation (R2 = 0.94) between the driving force and the energy barrier for 
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the most feasible pathway of 1 – 5, viz. the calculated barrier heights for H–atom 

abstraction increases roughly linearly with the decreasing driving forces (Figure 4.9).132,235 

This is in good agreement with the previous research that Polanyi analysis can be applied 

not only to the one abstractor with a series of substrates but also to one substrate with a 

series of “similar” abstractors.236 

 

Figure 4. 10  Correlation between reaction exothermicity with BDEEH. 

In the current research, since the substrate is the same, the underlying factors for the 

dramatic different driving force must be due to the differences in the relative stability of 

the FeE–H (E = O, N) products with respect to their Fe=E  reactants. Indeed a plot of the 

reaction energy (H) for formation of the radical intermediates from the reactants gives a 

linear correlation with BDEEH (Figure 4.10) with a slope close to unity and a correlation of 

R2 = 0.98. In the case of iron–oxo complexes 1 – 3, the increased oxidation state of iron 

center induces to form strong O–H bonds in the Fe–OH products as evidenced by the 

enhanced BDEOH values. Compared with the energy required for the C–H bond rupture of 

the substrate, –104.3 kcal/mol, the reaction of H–atom abstraction catalyzed by 1 is 

moderately endothermic, while those by 2 and 3 are highly exothermic. Thus, different 

thermodynamic driving force nicely explains the observed relative reactivity of iron–oxo 

complexes (1 – 3) towards C–H bond cleavage. However, in the iron–nitrio series N–H 

bonds in the FeN–H products were predicted to be rather weak. The calculated BDENH 

values are nearly identical (~86 kcal/mol) irrespective of the oxidation state of the metal 

center. This value is much lower than the corresponding BDEOH value for iron–oxo series, 

especially for the FeVN and FeVIN compounds. More importantly, the calculated BDENH 

values for 4 – 6 are by far lower than the BDEC–H value of the substrate. Therefore, the 
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energy gained from the N–H bond formation cannot compensate the energy penalty for 

the target C–H bond scission, thereby rendering the reactions with the iron–nitrido 

complexes strongly endothermic.  

 

(a)  the EA calculation for quintet state of 4 proved problematic. The model complex 

falls apart when transfer one electron to its dz2 orbital. Therefore, we put the 

calculated EA and PA values for triplet state for comparison. Based on the 

information of triplet and quintet state for complex 1 (EA: -19.2 vs 0, PA 13.6 vs 0 

for triplet and quintet respectively), we deduced that quintet state should have 

relatively lager EA and smaller PA values than its triplet counterpart. 

Figure 4. 11  B3LYP Calculated Relative Adiabatic Electron and Proton Affinity for most 

feasible reaction pathways of Iron-Oxo and -Nitrido Complexes.  

Although the Polanyi correlation provides a rationale for the observed reactivity, that is, 

iron-oxo complexes are reactive because they can form a strong bond to a hydrogen atom, 

while iron-nitrido complexes react several orders of magnitude slower than iron–oxo 

complexes because the rather weak N-H bonds were formed, the original factor that 

responsible for the bond strength of FeE-H variation still hung in the air. To quantitatively 

understand the questions mentioned above, the first parameter that should be 

considered is the thermochemical affinity of the oxidant for H•.134 This is most easily 

obtained from its electron and proton affinity component. Figure 4.11 collects the 

calculated relative adiabatic electron affinities of Fen+=E (E=O,N) and proton affinities of its 

reduced form [Fe(n-1)+=E]‒. First, the calculated EA and PA values demonstrate the quite 

different properties of oxo and nitrido complexes. For the same oxidation state of the iron 

center, e.g. 1 vs 4, oxo species has much higher oxidizing power than its nitrido 

counterpart and moderately decreased basicity for its one-electron reduced form. This 
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can be readily ascribed to the one unit positive charge decrease in iron-nitrido series by 

replacing the oxo group with nitrido moiety. This leads to much stronger OH bond than 

the corresponding NH bond. For the species with same formal charges, i.e 1 vs 5 or 2 vs 6, 

the same holds true. As shown in Figure 4.11, the EA values for 5 and 6 are still below 

those for 1 and 2, respectively. We attribute this to the inverted bonding character in iron-

nitrido series which renders complexes 4  5 do not contain high-valent iron, but rather 

more “mundane” oxidation state for iron.  

Second, the calculated different BDEFeE-H values for the two series can be understood by 

these two tunable parameters. For the two series, an increased EA value concomitant with 

a decreased PA value for its reduced form is found upon the iron oxidation state 

increasing from IV to VI. That’s to say, the increased iron oxidation state not only increases 

the oxidation power of oxidant Fen+=E, but also significantly decreases the basicity of its 

reduced form [Fe(n-1)+=E]‒. Therefore, the final H affinity is determined by the interplay 

between these two factors. For the iron-oxo series, the increase of the EA value far 

exceeds the extent for PA decreasing, that is |EA|  |PA|. Therefore, a 

strengthening O-H bond in the iron-oxo series is formed upon the increased iron oxidation 

state, i.e BDE1  BDE2  BDE3. In other words, the large increase in BDEOH of iron-oxo series 

must arise from a substantial increase in electron affinity of Fen+=O upon increasing the 

iron oxidation state from IV to VI. For the nitride series, however, although generally the 

same EA and PA variation trends are found as in oxo series, the degree of the increase in 

EA and decrease in PA is roughly equal, i.e |EA|  |PA|, and therefore leading to 

BDENH of nirtido series close to a constant, BDE4  BDE5  BDE6.  

Overall, this stepwise analysis, which corresponds to sequential movement of electron 

and proton, provides a basis for enhanced understanding of nature’s BDEEH in ironoxo 

and nitrido complexes. The over-reduced oxidation power together with moderate 

increased basicity well rationalize the weaker NH bond formed in nitrido series 

compared to the OH bond in oxo complexes.  

4.5 Conclusions 

Six “hypothetic” iron complexes have been studied to investigate the determinant factor 

for controlling the oxidative C-H bond cleavage by iron–oxo and –nitrido complexes. DFT 

calculations demonstrated that although quite opposite reactivity is obtained for these 

two series, a good correlation between the driving force and the energy barrier is 

established, in close agreement with the Polanyi principle. More importantly, a close 

inspection of the thermochemical H• affinity, which determined by its electron and proton 

affinity component, showed that the ironoxo and nitrido complexes have quite 

different properties. The oxo complexes have significant stronger oxidation power than 

their nitrido counterpart, while the nitrido complexes have relatively larger basicity 
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inverse. Additionally, the counterintuitive reactivity of these two series also can be well 

understood by the separate EA and PA analysis. The gradually increased reactivity in oxo 

series is ascribed to the substantial increase in oxidation power, while the offset of the EA 

and PA functions in nitrido series leads to BDENH to be a constant.  
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5. Differences in and Comparison of the C-H Bond 

Oxidation Activity by Diiron Complexes with Diamond 

Core or Open Core Structures: A DFT Study 

5.1 Introduction 

The functionalization of unactivated CH bonds is fundamentally important to life and 

immensely useful in industry.3,87,127,237 In biology, a range of metalloenzymes achieve this 

challenging task using dioxygen as a “green” oxidant.3,8,13,34,51,238 These enzymes have 

evolved to efficiently perform these transformations under ambient conditions. More 

importantly, metalloenzyme-catalyzed oxidation exhibits exquisite substrate specificity as 

well as regioselectivity and/or stereoselectivity. Therefore, unveiling the nature of active 

species and the mechanistic details of reactions catalyzed by metalloenzymes might allow 

us to gain atomic level insights into the reactivity of enzymes, and could also shed light on 

synthesizing new reagents that can modify target CH bonds with high efficiency and 

specificity.  

Of O2-activating metalloenzymes, soluble methane monooxygenase (sMMO) deserves a 

particular attention,34,86 because this enzyme oxidizes methane, which has the strongest 

C-H bond of all hydrocarbons, to methanol.239 In the reaction circle, the intermediate 

called Q prior to methane oxidation has been trapped and characterized with various 

spectroscopic methods.240-244 The experimental findings suggest that intermediate Q 

contains a di(μ-oxo)diiron(IV) diamond core, in which two high-spin (S = 2) FeIV=O units are 

antiferromagnetically coupled.41 Related diiron(IV) intermediates have also been proposed 

as key oxidants in the catalytic circle of fatty acid desaturases and other diiron 

enzymes.245-247 

However, the mechanism for the hydroxylation of methane by intermediate Q is not yet 

fully understood. In light of the recent studies of model systems, the proposed geometric 

structure of Q may need to be reconsidered.34,248 Experiment revealed that although the 

oxidizing power of the diamond core model complex [FeIV
(O)2FeIV] (2 in Scheme 1) is 

slightly higher than its one-electron reduced form [FeIII
(O)2FeIV] (1 in Scheme 1) toward 

9,10dihydroanthrocene (DHA) CH oxidation, it is far below that of the related 

mononuclear S = 1 ferryl complex.40,78 In line with this, the open core analogue 

[OHFeIV
OFeIV=O] (3 in Scheme 1) with a terminal S = 1 Fe(IV)=O moiety exhibits CH 

bond activation reactivity that is approximately 3 order of magnitude higher than complex 

2.249 The latest synthesized open core analogue [OHFeIII
OFeIV=O] featuring an S = 2 
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Fe(IV)=O unit (4 in Scheme 1) displays even higher reactivity toward CH bond 

oxidation.250 This is consistent with the theoretical predication that the quintet ferryl 

species is more aggressive oxidant than its triplet counterpart. By contrast, experimentally 

intermediate Q was found to be extremely reactive towards alkane CH bond activation, 

but no self-oxidation damage to the protein has been detected. Thus, one might suggest 

that intermediate Q may first adopt a more thermodynamically stable geometry in the 

absence of the substrate, such as a “diamond core”, to protect the enzyme from self-

destruction and then transform to an open core structure to effect CH bond activation. 

Experiment also provides the support for this notion. In the reaction of cyclohexane 

hydroxylation by a stable FeIII
OFeIII species, the spectroscopic evidence showed that C-H 

bond oxidation is in fact carried out by a FeIIFeIV=O intermediate with a terminal FeIV=O 

motif, which is generated by isomerization of the original diiron(III) reactant upon 

substrate approaching.251-253 In another example, Xue et. al have also demonstrated that 

the sluggish diamond core [FeIIIFeIV(-O)2] oxidant can be activated by binding of 

hydroxide or methoxide to form an open core [XFeIII
OFeIV=O] adduct which exhibits 

reactivity rapidity of 3.6  107-fold higher.248  

Density functional theory (DFT) calculations have also raised the possibility of 

isomerization of Q. Siegbahn and Crabtree’s study demonstrated that the highly 

asymmetric FeIV
(O)2FeIV bridges may easily open up to a key FeIII

OFeV=O intermediate 

that is shown to be capable of reacting with methane via a lower-energy transition 

state.254 In a QM/MM study, Friesner and co-workers suggested that the electronic 

structure of Q is particularly sensitive to the chemical environment and a diiron(III,V) core 

is likely to coexist with the diiron(IV) unit in protein environments.255 Quantum chemical 

studies have also contributed to the understanding of the mechanism of methane 

hydroxylation by sMMO.34,86-90 However, due to the lack of unambiguous structure for the 

active site of intermediate Q, different models have been proposed in the mechanistic 

study.88-97 The first model was proposed by Yoshizawa in which the catalytically active 

diiron center is treated as analogue to the Fe=O+ ion.88-90 Mechanistically, the modeling 

follows a nonradical mechanism in which the coordinately unsaturated iron center is a 

direct participator in CH bond activation.99,256,257 The other three models, Morocuma-

Basch,91 Siegbahn,92-94 and Friesner-Lippard,95-97,258 are known that the CH bond oxidation 

takes place at the bridging oxo ligand and follow the typical oxygen rebound mechanism. 

All these studies have provided vital insights into the mechanisms of catalysis and a 

precise molecular-level picture of intermediate and transition-state structures, their 

energies, and electronic details of the mechanism. In the present study, we carry out 

detailed theoretical study on the reactivity of four biomimetic complexes shown in 

Scheme 1. Our main aim is to explore the different reactivity of complexes 1  4. Clarifying 

the factors that dictate the different reactivity of these complexes will provide a 
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comprehensive theoretical framework in which the preference of the terminal FeIV=O unit 

and the high-spin state of iron(IV) center in CH activation can be appreciated. The 

insights obtained are then used to understand the reactivity of intermediate Q. 

 

Scheme 5. 1  Scheme 5.1. Core structures and supporting ligand of complexes 1–4, F, 

ferromagnetic; AF antiferromagnetic.  

5.2 Computational details 

A. See 2.7 Calculations set up  

5.3 Results and discussion 

5.3.1 Geometric and Electronic Structures of Complexes 1 ‒ 4.  

To understand the different C-H bond oxidation reactivity of complexes 1 ‒ 4, one has to 

analyze their geometric and electronic structures into some detail. The computed 

geometries of complexes 1 ‒ 4 are shown in Figure 5.1, along with the spin population of 

the key atoms in the core structure. In order to save computational time, the OMe 

substituents on the TPA ligand (TPA = tris(2-pyridylmethyl)amine) (Scheme 5.1) were 

replaced by H-atoms. Geometrically, the iron sites of 1 ‒ 4 are bridged by two (1 and 2) or 

one (3 and 4) oxo ligands and adopt approximately a pseudooctahedral local coordination 

geometry. For 1 and 2, the diamond core structure results in relatively compressed Fe-O-

Fe angles (94.5 ‒ 97.0°) and short Fe···Fe distances (~2.74 Å). The optimized geometry of 1 

overall matches the crystal structure of [FeIII,IV
2(-O)2(5-Et3-TPA)2]

3+.259 B3LYP calculations 

predict two different sets of the Fe–-O bond lengths for the two iron center (1.79 and 

2.02 Å for Fe1 vs. 1.70 and 1.86 Å for Fe2). This indicates that 1 is a valence-localized 

mixed valence complex with the two ferromagnetically coupled iron sites (SFe1 = 1/2, SFe2 = 

1), in contrast to the valence-delocalized diiron core suggested by Mössbauer 
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spectroscopy.260 The calculated structure of 2 exhibits an approximately centrosymmetric 

Fe2(-O)2 rhomb core, in consistent with its electronic structure description of an 

antiferromagnetically coupled pair of intermediate-spin iron(IV) centers. The calculated 

Fe‒oxo bond and Fe···Fe distances are in reasonable agreement with the EXAFS-derived 

value for complex 2.40 In the case of the open core complexes 3 and 4, the calculated Fe‒

-O‒Fe angles and Fe···Fe distances are substantially greater than those computed for 1 

and 2,261,262 a consequence of breaking the rigid diamond core structure. The predicted 

terminal Fe-oxo bond distances are essentially identical irrespective of the spin state of 

the iron(IV) center,207 and are comparable with those found in the crystal structures of 

mononuclear ferryl model complexes.6,85,114,125,195,205,216 The bridging oxo ligand in 3 

mediates a ferromagnetic interaction between the two intermediate-spin FeIV sites, while 

its one electron reduced form, 4, possesses high-spin FeIII and FeIV sites that are 

antiferromagnetically coupled. 

 

Figure 5. 1  B3LYP optimized structures and spin populations of key atoms in core 

structure for complexes 1  4. Fe green, O red, N blue, C grey, H white. 

5.3.2 Reactivity 

Figure 5.2 demonstrates the potential energy surfaces (PES) of DHA C‒H bond activation 

by complexes 1 ‒ 4 (Figure 5.2a), and the comparison between the calculated and 

experimental rate constants (Figure 5.2b). Our calculations generally well reproduce the 

reactivity trend observed experimentally, progressing from complex 1 to 4, the computed 
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barrier decreases and follows the order 1 < 2 < 3 < 4.250 Specifically, the activation energy 

for complex 2 is 2.3 kcal/mol lower than that of its congener 1, in reasonable agreement 

with the experimental finding that 2 is ~10 times more reactive than 1 in oxidizing weak C-

H bonds. Likewise, there is a decrease of 4.1 kcal/mol in the energy barrier for 3 relative to 

2, this value also corresponds well to the 300-fold difference in their reaction rates. 

However, our calculations may underestimate the reaction barrier for 4 and hence predict 

much higher reactivity as compared with experiment (Figure 5.2b).  

 

Figure 5. 2  Potential energy surfaces for DHA C–H bond oxidation by complexes 1 ‒ 4, 

and the comparison of rate constants obtained from experiments and DFT calculations. 

The blue bars represent experimental reaction rates, whereas the red bars correspond 

to the calculated relative rate constants using 1 as reference. 
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Figure 5. 3  B3LYP calculated transition state structures and spin populations for the key 

atoms. Fe green, O red, N blue, C grey, H white. 

 

Scheme 5. 2  Orbital occupancy-evolution diagrams during C-H bond oxidation and the 

corresponding orbital-selection rules for predicting transition state structures. 

In fact, the mechanisms by which complexes 1 ‒ 4 oxidize C-H bond are different. The 

reactions mediated by 1, 3, and 4 only involve 1e‒ and 1H+ transfer in a single kinetic step, 

characteristic of an H-atom transfer (HAT). By contrast, in total a hydride transfer pathway 

is operative for the reaction with 2 (Scheme 5.2). By comparison of the spin populations of 

the substrate in the transition states of complexes 1 ‒ 4 (Figure 5.3), one can easily 

appreciate that the electron transfer has been nearly completed for 2, while only partial 
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electron transfer occurs for the other systems. The decay of the transition state of 2 is 

accompanied with the second electron transfer to the other FeIV center (Figure 5.4). The 

difference in the reaction mechanism can be ascribed to the fact that complex 2 has the 

highest electron affinity of all systems and contains two antiferromagnetically coupled 

ferryl centers. For the latter, otherwise, the second electron transfer is spin forbidden. For 

3, the H-atom abstraction by the terminal FeIV=O unit is concomitant with the electron 

transfer between the two iron centers (Scheme 5.2 and Figure 5.5). This reflects that the 

potential electron accepting orbitals at the FeIV
OH site are lower in energy than those at 

the FeIV=O moiety. In line with this, the additional electron for the one-electron reduced 

form of 3 was found to reside at the Fe-OH unit. Thus, both iron(IV) centers of 3 involve in 

the HAT, FeIV=O functions as a proton accepting site, and FeIV
OH as an electron accepting 

site. We also investigated the reaction where the C-H bond oxidation takes place at the 

FeIV
OH site. It turned out the transition state is ~3 kcal/mol higher in energy than that 

with the FeIV=O moiety acting as the reactive unit. As for C-H bond activation by 

mononuclear ferryl complexes, the Fe-O-H angle in the transition state is a good structural 

marker for differentiating different reaction pathways.6,84,85,89,198,201,216 The bent Fe1O1H 

angles ( 140) computed for the transition states of complexes 1, 2 and 3 (Figure 5.3) 

suggest that the reactions of CH bond activation by them follow a mechanism, in 

which a spin-down electron in the C-H of the substrate is shifted to the halffilled *(FeO) 

orbital of FeIV. By contrast, the reaction by complex 4 proceeds with a channel, as 

indicated by a nearly collinear arrangement of Fe1O1H (165.0). This reaction pathway 

involves an electron transfer from the substrate to the empty *(FeO) orbital, in consistent 

with the considerably increased spin population on the reactive iron center.  

 

Figure 5. 4  Orbital occupancy-evolution diagrams for CH bond activation by 2. 
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Figure 5. 5  Orbital occupancy-evolution diagrams for CH bond activation by 3. 

 

Figure 5. 6  Overlays of the geometries of complex 1  4 (green line) and their 

corresponding transition state (magenta line). For clarity, all hydrogen atoms and the 

substrate in the transition states are not shown. 
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5.4 Discussion  

As complexes 1 – 4 differ in total charge and geometric and electronic structure, and more 

importantly, follow different reaction pathways towards CH bond activation, there could 

be several factors accounting for their different reactivity. Mayer, however, offered a 

possible assumption that the distinct reactivity of 1 – 4 may result from differences in the 

reaction driving force (G°
HAT) and/or the intrinsic barrier (λHAT).

236 In the following 

discussion, we will firstly analyze the thermodynamic properties of the reactions and then 

discuss the kinetic considerations with respect to the energetic contributions to the 

computed reaction barriers. 

5.4.1 Reaction driving force. 

The thermodynamic driving force is usually assumed to be one of the determinant factors 

in modulating the reactivity of HAT by metaloxo catalysts, especially for the mononuclear 

iron-oxo complexes.45,65,119,126,134,263,264 However, in the current study, there is no clear 

correlation between the activation barriers and the reaction energies (Figure 5.2), 

presumably due to the fact that the different reaction pathways are operative for C-H 

bond oxidation by complexes 1 – 4. Even though, analysis of the reaction driving forces 

sheds some important insights into the reaction mechanism. 

Above all, thermochemistry can successfully explain why the C-H bond oxidation by 

complex 2 favors the hydride transfer channel. As demonstrated in Scheme 5.3, the HAT 

reaction mediated by complex 2 is exothermic by 14.0 kcal/mol, while the hydride 

transfer releases much higher energy (41.5 kcal/mol). Therefore, there is a 

thermodynamic preference of 27.5 kcal/mol for the hydride transfer pathway, this energy 

renders the second electron transfer occur without any barrier during the decay of TSH2.  

 

Scheme 5. 3  Comparison of the reaction driving forces of DHA C-H bond oxidation by 

complex 2 with the different reaction pathways. 

For the HAT reactions, the thermodynamic driving force varies with respect to the energy 

difference between the MOH bond being formed and the CH bond being broken. In the 
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current study, the substrate is the same; therefore, the key parameter that is responsible 

for the thermochemistry of DHA C‒H bond cleavage is the bond dissociation energy (BDE) 

of the O‒H bond in the intermediates (IN). This property is also equivalent to the H-atom 

affinity of metal-oxo reagents, which is a function of both the redox potential of the 

MN+=O oxidant and the pKa of the M(N-1)+‒OH reduction product based on a 

thermochemical cycle developed by Bordwell et. al.133 and others265-267. Thus, the oxidizing 

power of complexes 1  4 should be discussed not only within the context of their redox 

potentials but also the basicity of their reduced form. To address this question directly, we 

have calculated the relative electron and proton affinity (EA and PA) for complexes 1  4 

and the BDEO‒H values for all INs of HAT choosing 1 as the reference (Figure 5.7).  

 

Figure 5. 7  B3LYP Calculated Relative Adiabatic Electron Affinities for Complexes 1 – 4, 

Proton Affinities for Their One-Electron Reduced Form and Bond Dissociation Energies 

for the O-H Bond of Their Intermediates. 

Unexpectedly, the IN of complex 4 is predicted to have the strongest O-H bond among this 

series. Since complex 4 has the lowest number of the positive charges, one may anticipate 

that it should have the lowest EA value and the highest PA value of its reduced form. 

Indeed, the calculations confirm the highest PA value of its reduced form. However, the 

computed EA value for 4 is identical to that for 1, although they are differing by 1 unit of 

the total charge. This can be attributed to the consequence of the enhanced exchange-

stability of the high-spin FeIII state.6,84,85,216 The overall larger BDEOH of 4 reflects that the 

basicity of oxo ligands in metal-oxo complexes has important effects on HAT 

reactivity.122,135,236 As expected, complex 2 has the highest EA value; however, the 

dominantly compensating PA value makes its BDEO‒H values only ~3 kcal/mol higher than 

that for 1. This value is in excellent agreement with the predicted reaction energy of the 
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HAT by 2 relative to 1 (14.0 kcal/mol for 2 vs. 10.4 kcal/mol for 1). The computed relative 

BDEOH for 3 is comparable to 1, consistent with their reaction energies (Figure 5.2). The 

estimated higher EA of 3 relative to 1 may result from their different reorganization 

energies required for the redox change. As aforementioned, the CH bond activation by 

complex 3 finally leads to the reduction of the FeIV
OH unit rather than the FeIV=O moiety. 

It follows that the H-atom affinity of 3 is composed by the redox potential of the FeIV
OH 

unit and the proton affinity of the FeIV=O moiety. Consequently, the calculated reduced 

basicity in Figure 3 is for FeIV=O, not for its reduced form FeIII
O. The offset of the EA and 

PA values finally leads to the essentially equal H-atom affinity between 1 and 3. However, 

the HAT reactions by 1 and 3 proceed at vastly different rates; 3 reacts at least 1000 times 

faster than 1. 

In short summary, thermochemistry has nicely explained the hydride transfer behavior of 

2. Considering the thermodynamics of HAT in term of its component step, i.e., electron 

and proton transfer, has provided insights into the factors that drive the reaction. Our 

analysis highlights the importance of both the redox potential and proton affinity in HAT 

reaction. High redox potential does not necessarily mean high reactivity in HAT (in case of 

complex 2) and the strong basicity of oxo ligands may render the metal-oxo complexes 

being able to oxidize CH bonds with relative low redox potentials (in case of complex 4).  

5.4.2 Kinetic considerations 

More important insights into the distinctive HAT reactivity of complexes 1  4 can be 

gained by dividing the reaction barrier into three energetic contributions: (1) the 

reorganization of the diiron reagents to accommodate the incoming substrate and the 

bonding alteration arising from the redox change, (2) the lengthening of the target CH 

bond, and (3) the interaction between these two fragments, consisting of the orbital 

interaction and the Pauli repulsion between them. Figure 5.8 demonstrates the three 

energetic contributions to the reaction barrier of DHA CH bond activation by complexes 

1  4, as well as the energy barrier calculated with electronic energy (blue line). In the 

following discussion, we will focus on the electronic energy only, because the corrections 

originating from the zero-point energy, thermal corrections and entropy term are nearly 

identical for all systems  

Let us first look at the reorganization energy of diiron complexes. The salient feature of 

this contribution is that the diamond core reagents 1 and 2 are suffered more energetic 

penalty than the open core complexes 3 and 4 upon redox processes, in line with the 

transition state geometric distortion discussed above. Specifically, the reorganization 

energy of 1 is ~5 kcal/mol higher than those for open core complexes, and the structural 

arrangements of the more rigid diamond core in complex 2 needs much more energy (~8 
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kcal/mol than those for 3 and 4). According to Figure 5.8, it is the different reorganization 

energy between 1 and 3 that leads to their different HAT reactivity. More importantly, the 

counterintuitive sluggish reactivity of 2 is also ascribed to the highest energetic cost 

required for the diamond core rearrangements.  

 

Figure 5. 8  Three energetic contributions to the reaction barriers for DHA C-H bond 

oxidation by complexes 1  4.  

We next consider the distortion energy of the substrate and the interaction energy 

between the two reagents. These two contributions are closely related to the properties 

of the transition state. The earlier transition states exhibit relatively less stretched CH 

bonds and hence possess lower degree of the substrate distortion. The calculated CH 

bond lengths in the transition states follow the order 1 ≈ 3  2  4, in good agreement 

with the computed reorganization energies of DHA (Figure 5.8). Moreover, in the early 

transition states, TSH2 and TSH4, the orbital interaction nearly cancels off the Pauli 

repulsion, thereby leading to a negligible contribution of the interaction energy to the 

reaction barrier. While in the case of TSH1 and TSH3, the Pauli repulsion outweighs the 

orbital interaction and raise the energy barrier by 4  5 kcal/mol. The highest kinetic 

facility of 4 stems from the lowest reorganization energy of the diiron core and the 

substrate. Thus, the quintet –pathways are favored not only by the exchange enhanced 

stability in thermochemistry,6,81-83,125,190,193,198,216,268 but also a favorable stereochemistry in 

the kinetic aspect. 
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To sum up, the kinetic considerations have nicely interpreted the difference in the 

computed reaction barrier. The larger reorganization energies required for the diamond 

core structure compared to those for the open core complexes make a primary 

contribution to their different reactivity. The highest efficiency of the HAT by complex 4 

originates from the lowest reorganization energy both for the diiron reagent and for the 

substrate.  

In conclusion, the thermodynamic combined kinetic analysis has nicely rationalized the 

different reactivity observed for complexes 1 – 4. Given the high energetic cost arising 

from the geometry reorganization for the diamond core, the diamond core complexes 

exhibit reactivities that fall far short of that associated with open core ones. Based on this 

information, it is very likely that the detected diamond structure Q is a resting state in the 

absence of substrate and then it collapses to a more powerful oxidant, such as an “open 

core”, to proceed the following effective CH bond activation. This might be one direct 

theoretical evidence for the notation of core isomerization of Q. 

5.3.3 The relevance to Marcus Theory 

Marcus-Hush theory and its extensions have been remarkably successful in understanding 

a wide range of electron transfer (ET) processes.269 Recently, Mayer et. al. has elegantly 

described the use of Marcus framework to evaluate the ability of metaloxo complexes to 

cleavage C‒H bond, and accuracy in describing HAT reactions is remarkable.236 The success 

of the Marcus framework indicates that HAT reaction barriers (G) are primarily 

determined by two parameters: the reaction driving force (G°) and the intrinsic barrier λ. 

In the current research, the reaction driving force has been nicely discussed based on the 

two functions of BDEOH, i.e., the electron and proton affinity of the metaloxo diiron 

complexes. However, the intrinsic barrier λ is not illustrated in the way developed by 

Marcus,270 and we have to take the second best to better understand the magnitudes of 

λHAT. As noted from extensive experimental database of organic HAT reactions, λHAT is 

dominated by the inner-sphere reorganization (within the reactants) and the solvent 

reorganization is little if any solvent influence on the actual HAT step. Viewed from this 

perspective, our study is focused on the factors that affect the innersphere 

reorganization energies. Our kinetic discussion showed that the quite different kinetic 

reactivity of diamond core complexes relative to the open core ones can be ascribed to 

the different distortion energy of diiron reagent.  The diamond core structure is supposed 

to suffer more energetic cost to rearrange the rhomb accompanying the redox process. 

We would, therefore, expect similar bonding changes in their selfexchange reactions and 

it would appear then that there may be larger intrinsic barriers for diamond core 

complexes than for the open core ones. If the bonding changes in our kinetic analysis can 

be considered analogous to, or partially reflect the reorganization energy in selfexchange 
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reactions, then the analogy between the present study and explorations of the Marcus 

cross-relation is evident. Therefore, this can be considered as one example of the success 

of Marcus theory in exploring HAT reactions.  

5.4 Conclusion 

We have performed a systematic DFT study on the DHA oxidation by complexes 1 – 4. Our 

studies show that the DHA oxidation by complexes 1, 3 and 4 follow the HAT mechanism 

while a hydride transfer pathway is established for 2. The greatly enhanced reactivity from 

complex 1 to 4 can be understood with respect to the thermodynamic (BDEOH) and kinetic 

consideration (three energetic contributions to TS). First, switching from the diamond core 

to the open core structure greatly reduces the geometric changes upon redox process 

thereby lowering the energetic cost required for the transition states. Second, the high-

spin state of Fe(IV)=O center enables complex 4 to follow a quintet pathway that is 

favored not only by the exchange enhanced stability in thermochemistry but also by a 

favorable stereochemistry in the kinetic aspect. Our analysis reflects the importance of 

driving force and differences in reorganization energies in understanding hydrogen atom 

transfer reactivity. Given the high energetic cost resulted from the geometry 

reorganization of the diamond core, our study suggest that as the consequence of 

substrate binding and/or carboxylate shift the diamond structure Q may collapse to a 

more powerful oxidant, such as an “open core”, to proceed the following CH bond 

activation. If the kinetic consideration in our discussion can partially reflect the intrinsic 

barrier mentioned in Marcus theory, then our study can be considered as one example of 

the success of Marcus theory in exploring HAT reactions.  
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6. Hydrogen Bonding Effects on the Reactivity of [X-FeIII–

O–FeIV=O] (X = OH, F) Complexes towards C–H Bond 

Cleavage 

6.1 Introduction 

The controlled oxidation unactivated CH bonds such as those of methane is one of the 

great challenges in synthetic chemistry and typically requires catalysts by transition 

metals.271 Iron is the most common metal center used in nature to oxidize C-H bonds by 

dioxygen activation mechanisms, in which high-valent oxoiron species are often 

postulated or demonstrated to act as the actual oxidizing species. Of these O2-activating 

metalloenzymes, soluble methane monooxygenase (sMMO) deserves a particular 

attention,34,86 because this enzyme oxidize methane, which has the strongest CH bond of 

all hydrocarbons, to methanol.239 In the catalytic circle, the intermediate called Q prior to 

methane oxidation has been trapped and characterized with various spectroscopic 

methods.240-244 The experimental finding suggest that intermediate Q has a di(-

oxo)diiron(IV) diamond core, in which two high-spin (S = 2) Fe(IV)=O units are 

antiferromagnetically coupled.41 Related diiron(IV) intermediates have also been proposed 

as key oxidants in the catalytic circle of fatty acid desaturases and other diiron 

enzymes.245-247  

The mechanism of methane hydroxylation by sMMO-Q, however, is not yet fully 

understood. For example, there is an ongoing debate issue about the isomerization of 

proposed structure Q during the oxidation process. This notion originates from the fact 

that Q has extremely high reactivity towards unactivated CH bond activation but no self-

oxidation to the protein was detected. Indeed, some DFT calculations have raised the 

possibility that [FeIII
OFeV=O] or [FeIII(-O)2FeV] isomers of the [Fe2

IV(-O)2] diamond core 

may be involved in methane oxidation. The reactivity patterns of several synthetic diiron 

complexes also suggest reconsideration of the proposed structure of Q. In the work of 

Caradonna and Rybak-Akimova on a diiron(II) catalyst for efficient hydroxylation of 

cyclohexane with ROOH as oxidant, the spectroscopic evidence showed that the relative 

stable [FeIII
OFeIII] reagent isomerizes to a more reactive oxidant [FeIIFeIV=O] that has a 

terminal Fe(IV)=O unit upon substrate approaching.251-253 In a series work of Que and 

coworkers, they have characterized the first examples of complexes with [FeIII(-O)2FeIV] (1 

in Scheme 1) and [Fe2
IV(-O)2] core structures, proving synthetic precedents for the 

[Fe2
IV(-O)2] core proposed for Q. However, these model complexes exhibit CH bond 

oxidation reactivities that are far below those of a closely related mononuclear oxoiron(IV) 

complex and a more recently synthesized open core complex [HOFeIV
OFeIV=O] (2 in 
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Scheme 6.1). These comparison suggests that an oxidant with a terminal Fe(IV)=O unit 

might be more effective for CH bond cleavage than one having an oxo-bridged FeOFe 

center and indicate that further structural characterization of Q is necessary to 

understand better how this intermediate hydroxylates methane.  

The high reactivity of the open core complexes are confirmed by Que’s later work. The 

new synthesized valence-localized high-spin [HOFeIII
OFeIV=O] complex (1-OH) cleaves 

strong CH bonds a million-fold more rapidly than its [FeIII(-O)2FeIV] analogue. More 

recently, they have also been able to obtain by treatment of 1 with fluoride the related 

open core complex 1-F, which has a [FFeIII
OFeIV=O] core that is closely related to that 

of 1-OH. The reactivity study demonstrates that 1-F is a more powerful oxidant than 1-OH 

for CH bond activation. Similar reactivity differences are also observed for 1-OCD3, with a 

[CH3OFeIII
OFeIV=O]. Que have suggested that the higher reactivity of 1-F and 1-OCD3 is 

due to the lack of H-bond to the terminal oxoiron(IV) moiety. The presence of H-bond in 1-

OH and its absence in 1-F and 1-OCD3 would be expected to result in the attenuation of 

the H-atom abstracting capability of 1-OH. Borovik has also elegantly demonstrated the 

significance of intramolecular hydrogen bonds in stabilizing the first crystallographically 

characterized, synthetic oxoiron(III) complex.5 Oxidizing the oxoiron(III) center to its 

iron(IV) counterpart significantly weakens H-bonds to the FeIV=O center,6 but how this 

affects reactivity has not been determined. In the present chapter, we carry out detailed 

theoretical study on the reactivity of 1-OH and 1-F complexes shown in Scheme 6.1. 

Clarifying the factors that how H-bond affects the reactivity of 1-OH will provide a 

comprehensive theoretical framework in which the presence of the H-bond in modulating 

the CH bond oxidation reactivity.   

 

Scheme 6. 1  Structures of high-valent diiron complexes. 

 

https://mail.google.com/mail/u/0/html/compose/static_files/blank_quirks.html#_ENREF_5
https://mail.google.com/mail/u/0/html/compose/static_files/blank_quirks.html#_ENREF_6
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6.2 Computational details 

A. See 2.7 Calculations set up  

6.3 Results and discussion 

6.3.1 Geometric structure 

DFT calculations were performed on 1-OHcis proposed above. Below the results obtained 

with the B3LYP functional are documented. Very similar results were obtained with the 

BP86 functional (Appendix). The computed key geometrical parameters (Figure 6.1) are in 

good agreement with the previous theoretical results (Figure 6.2).262 The optimized 

structure of 1-OHcis features an open core structure of [OH-FeIII-O-FeIV=O]2+, similar to its 

one-electron oxidized diiron(IV) analog.249 As shown in Figure 6.1, the calculated bond 

distances of O1‒H1 (1.78 Å) and O1‒O3 (2.73 Å) clearly indicate the presence of a weak 

hydrogen bond between the terminal oxo and hydroxyl groups, consistent with the van 

der Waals radii of the H- (1.20 Å) and O-atoms (1.52 Å).272 Formation of the hydrogen 

bond is facilitated by the proximity of the Fe=O and Fe-OH units. Consequently, a 

relatively short Fe‒Fe distance of 3.34 Å and a bent Fe1-O2-Fe2 angle of 131.9° are 

obtained in 1-OHcis. For comparison, we also computationally investigated the trans 

conformer where the oxo and hydroxo groups are in a trans configuration. A nearly 

isoenergetic structure (1-OHtrans) resulted that is only about 2.4 kcal/mol higher in energy 

than 1-OHcis. Due to the loss of the cyclic H-bond, 1-OHtrans shows a nearly linear Fe1O2Fe2 

arrangement of 174.5°, thereby leading to the longer Fe···Fe distance of 3.62 Å compared 

to 1-OHcis.  

 

Figure 6. 1  Optimized Core structures of 1-OH and 1-F. Bond lengths are in angstroms, 

angles in degrees. Atom color scheme: H, white; O, red; Fe, orange; F, green. 

Both cis and trans conformations were also calculated for the complex 1-F. The computed 

cis conformer 1-Fcis, that most closely resembles 1-OHcis, represents a local minimum. It is 

calculated to be 5.2 kcal/mol higher in energy than the trans conformer, 1-Ftrans. Thus, in 

agreement with experiment, the calculations confirm that, the trans configuration is 
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energetically slightly favorable. Our calculated key geometric parameters for 1-Ftrans match 

the experimental EXAFS data reasonably well (Figure 6.1) as well as previous DFT 

calculations (Figure 6.2).262 The absence of the hydrogen bond in 1-Fcis results in a loose 

“pocket” as evidenced by the rather long F‒O1 bond distance (2.99 Å) and the slightly 

larger Fe1‒O2‒Fe2 angle (135.2°) compared to 1-OHcis. The calculated Fe-oxo bond length is 

1.64 Å, which is comparable to 1-OHcis (1.66 Å) and 1-OHtrans (1.65 Å). 1-Ftrans features a 

linear Fe1O2Fe2 arrangement with a long Fe1···Fe2 distance of 3.57 Å, similar to that 

calculated for 1-OHtrans. 1-OHcis and 1-Fcis contain bent Fe1O2Fe2 cores and hence display 

relatively short Fe1···Fe2 distances (Figure 6.1). 

  

Figure 6. 2  The geometric data from previous theoretical results for 1-OHcis and 1-

Ftrans.
262  

6.3.2 Reactivity  

The incredible oxidizing ability of 1-OHcis towards C–H bond oxidation has previously been 

demonstrated by the million-fold activity enhancement compared to its one-electron 

oxidized form.250 Under the same reaction conditions, the fluoride substituted complex 1-

Ftrans displays even higher C-H bond cleavage reactivity towards DHA (the reaction rate 

turns out to be 10-fold faster than that of 1-OHcis). Herein, the reactivities of 1-OHcis and 1-

Ftrans were theoretically modeled. In the following study, we only focus on the rate-

determining H-atom abstraction step. Table 6.1 lists the selected structural parameters 

from the B3LYP optimized geometries, and Figure 6.3 shows the Gibbs free energy profiles 

of the DHA C-H bond activation by 1-OHcis, 1-OHtrans and 1-Ftrans systems.273 The DFT results 

nicely reproduce the experimental findings. As shown in Figure 6.3, the energy barrier of 

H-atom abstraction by 1-OHcis is calculated to be 6.7 and 3.3 kcal/mol at the B3LYP and 

B3LYP + VDW levels of theory, respectively, a few kcal/mol higher than that calculated for 

the 1-Ftrans system (4.3 and 2.5 kcal/mol). This is in good agreement with the rate 

enhancement observed experimentally that corresponds to a decrease in the activation 

energy by ~1 kcal/mol.  
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Figure 6. 3  Calculated Schematic Gibbs free energy (ΔG) surfaces for DHA C-H bond 

activation by 1-OHcis, 1-Ftrans and 1-OHtrans. In parentheses, energies without inclusion of 

VDW effects are given.  

 

Figure 6. 4  BP86 Calculated Schematic Gibbs free energy (ΔG) surfaces for DHA C-H bond 

activation by 1-OHcis and 1-Ftrans. In parentheses energies with inclusion of VDW effects 

are given. 

In fact, the process of C-H bond oxidation by the two complexes follows the same reaction 

mechanism. As expected, the reaction takes place at the FeIV=O unit and follows the 

typical -mechanism that has been well established for S = 2 mononuclear iron(IV)oxo 

complexes.198,201,215,216,274 The electrophilic attack of the substrate on the high spin FeIV=O 

center involves the transfer of one spin-up electron from the substrate into the σ*(Fe-oxo) 

antibonding orbital (Scheme 6.2). During this process, the oxidation state of the diiron 
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core changes from a mixed valence state of FeIV-FeIII in the reaction complexes (RC) to a 

FeIII-FeIII state in the intermediates (IN). As the two complexes are supported by the same 

ligand and, more importantly, share the similar open core structure [X-FeIII-O-FeIV=O]3+ the 

main question is why 1-Ftran may have stronger oxidizing ability than 1-OHcis. 

 

 

Scheme 6.2 Orbital occupancy-evolution diagrams for CH bond activation by 1-OH and 1-

F. 

6.3.3 Discussion 

There could be several factors accounting for the different reactivities upon going from 

system 1-OHcis to 1-Ftrans. The first factor might be the changes in the electronic properties 

of the FeIV-oxo reactive center that directly involved in the reaction. As shown in Table 6.1, 

the estimated Fe=O bond distance in 1-OHcis is marginally longer than that in 1-Ftrans. 

Moreover, the calculated Fe=O bond order of 1.7 for 1-OHcis is slightly lower than that for 

1-Ftrans (1.8), which is consistent with the computed Fe=O stretching frequencies (834 cm–1 

for 1-OHcis vs. 867 cm–1 for 1-Ftrans). Therefore, the hydrogen bond slightly weakens the 

Fe=O bond in 1-OHcis. This will tend to lower the barrier for H-atom abstraction rather 

than increasing it, because lengthening of the Fe=O bond is a key reaction 

coordinate.7,114,193,216 However, nearly identical Fe1-O1, C-H2 and O1-H2 bond distances 

were found in TSH(1-OHcis) and TSH(1-Ftrans) (Table 6.1), indicating that the hydrogen bond 

in 1-OHcis does not lead to significant changes in the electrophilicity of the FeIV-oxo motif. 

The second reason for the increased reactivity of 1-Ftrans over 1-OHcis could be different 

steric hindrances encountered in the two systems. In fact, as shown in Figure 6.4, the 

reaction center (terminal oxo) in 1-Ftrans system is partially shielded by the pyridine group 

which has a cis orientation with respect to the terminal oxo group. Therefore, it is easier 

for the substrate to approach the reactive center in 1-OHcis system than in 1-Ftrans. 

Consequently, we would expect higher reactivity of 1-OHcis compared to that of 1-Ftrans 

from such an analysis. However, both experiment and theoretical calculations 
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demonstrated the opposite trend for the reactivity of the two complexes. Thus, the 

underlying reason for these intriguing reactivity differences must lie in other factors.  

 

Figure 6. 5  Space-filling models of reaction complexes (RCs) and transition states (TSHs) 

for 1-Ftrans, 1-OHcis and 1-OHtrans. Atom color scheme: C, gray; H, white; N, blue; O, red; Fe, 

orange; F, green. 

In the H-atom abstraction process by mononuclear iron-oxo complexes, the key reaction 

coordinates are lengthening of the target C-H bond of the substrate with a simultaneous 

increase of the Fe=O bond distance.7,114,193,216 Indeed, for the reaction with 1-Ftrans, we 

have not observed any other coordinates to undergo significant changes towards 

approach of the transition state. Interestingly, a third coordinate undergoes significant 

changes during the reaction with 1-OHcis. This motion involves lengthening of the 

hydrogen bond between the hydroxide and terminal oxo groups. As shown in Table 6.1, 

comparison of the structures of RC(1-OHcis) and TSH(1-OHcis) clearly demonstrates 

weakening of the hydrogen bond during the reaction process, especially for the absence 

of the VDW correction. This is readily ascribed to the changes in the electronic structure of 

the FeIV=O unit along the reaction coordinate. As discussed elsewhere, as the Fe-oxo bond 

lengthens, the FeIV-oxo intermediate evolves to a species that is best characterized as 

FeIIIoxyl.85 This should result in a geometric adjustment of the hydrogen bond length (O1–

H1) because of the lower electron donating capability of the oxyl group relative to the 
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more negatively charged oxo ligand. As a consequence of the hydrogen bond lengthening, 

more energy may be required en route to the transition state for 1-OHcis due to the larger 

geometric distortion compared to 1-Ftrans. To test this hypothesis, we have theoretically 

investigated the same reaction with the trans conformer 1-OHtrans. It turns out that 1-

OHtrans is more efficient in C-H bond activation than 1-OHcis and 1-Ftrans (Figure 6.5). This 

indicates that partially breaking the hydrogen bond indeed slows down the reaction for 1-

OHcis and explains the higher energy barrier encountered by 1-OHcis than that for 1-Ftrans.  

6.4 Conclusion 

In summary, our calculations revealed that the hydrogen bond between the oxo and 

hydroxo group in 1-OHcis does not significantly change the electrophilicity of the reactive 

FeIV=O unit. However, during the reaction of C-H bond oxidation, this hydrogen bond has 

to be partially broken. This leads to the slightly higher barrier for 1-OHcis relative to 1-Ftrans, 

which has similar open-core structure but no hydrogen bond. 
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Table 6. 1  Selected Geometry Parameters for the Key Points along the Reaction Pathways. Normal, with VDW effect. In parentheses, values 

without VDW effect are given. 

 Fe1-O1 Fe1-Fe2 Fe1O2Fe2(°) O1Fe1Fe2O3(F) 
(°) 

O1-O3 O1-H1 O1-H2 C-H2 
RC(1-OHcis) 1.66(1.66) 3.34(3.37) 133.34(134.04) 2.59(0.02) 2.73(2.74) 1.79(1.80) ~ 1.10(1.10) 

TSH(1-OHcis) 1.73(1.75) 3.33(3.38) 131.90(134.31) -5.55(-15.53) 2.77(2.84) 1.82(1.89) 1.40(1.40) 1.20(1.21) 

         IN(1-OHcis) 1.88(1.89) 3.33(3.39) 132.25(135.71) 1.42(0.96) 2.75(2.79) 1.80(1.84) 0.96(0.96) 2.41(2.59) 

RC(1-Ftrans) 1.64(1.65) 3.59(3.61) 176.00(178.79) -174.10 (-178.58) ~ ~ 2.45(2.42) 1.10(1.10) 

TSH(1-Ftrans) 1.72(1.73) 3.59(3.63) 172.79(175.92) 173.44(172.99) ~ ~ 1.39(1.41) 1.20(1.20) 
         IN(1-Ftrans) 1.86(1.88) 3.60(3.62) 167.86(166.38) 175.29(170.65) ~ ~ 0.96(0.96) 2.51(3.12) 

RC(1-OHtrans) 1.65(1.65) 3.58(3.60) 171.04(166.68)  -151.00(-143.79) ~ ~ 2.29(2.50) 1.10(1.10) 

TSH(1-OHtrans) 1.72(1.73) 3.59(3.64) 176.02(178.25) -172.54(172.92) ~ ~ 1.38(1.40) 1.21(1.22) 

IN(1-OHtrans) 1.88(1.87) 3.63(3.64) 174.06(174.13) -178.27(178.94) ~ ~ 0.96(0.96) 2.58(3.04) 

 

Table 6. 2  BP86 Calculated Geometry Parameters for the Key Points along the Reaction Pathways. Normal, with VDW effect. In parentheses, 

without VDW effect. 

 Fe1-O1 Fe1-Fe2 Fe1O2Fe2(°) O1Fe1Fe2O3(F) (°) O1-O3 O1-H1 O1-H2 C-H2 
RC(1-OHcis) 1.68(1.69) 3.23(3.32) 126.94(131.71) -31.41(-5.62) 2.67(2.60) 1.69(1.61) ~ 1.11(1.11) 

TSH(1-OHcis) 1.76(1.77) 3.24(3.33) 127.62(132.98) -25.39(-19.00) 2.68(2.74) 1.71(1.76) 1.20(1.23) 1.34(1.35) 

IN(1-OHcis) 1.89(1.91) 3.21(3.34) 127.34(134.09) -36.21(-21.97) 2.85(2.88) 1.94(1.93) 0.98(0.98) 3.33(2.48) 

RC(1-Ftrans) 1.67(1.67) 3.55(3.53) 173.68(146.45) -177.18(132.97) ~ ~ ~ 1.11(1.11) 

   TSH(1-Ftrans) 1.74(1.75) 3.54(3.60) 165.60(168.28) 177.79(165.55) ~ ~ 1.21(1.21) 1.33(1.35) 

IN(1-Ftrans) 1.87(1.87) 3.55(3.57) 163.54(162.23) 173.25(168.34) ~ ~ 0.98(0.97) 2.30(5.50) 
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7. Conclusion  

In the present Ph.D thesis, the CH bond activation by different high-valent ironoxo or –

nitrido complexes are addressed. 

1.  In the CH bond activation by four different mononuculear iron(IV)oxo complexes, we 

have first characterized all viable pathways in the same system, which allows us to 

compare their relative reactivities. The new established triplet σ-pathway is higher in 

energy such that it may not ever be involved in actual C-H bond hydroxylations. However, 

the reactivity of the quintet -channel is comparable or even higher than the classical 

triplet one (3π), although it is slightly higher in energy than the established quintet one 

(5σ). The existence of at least three energetically feasible pathways may offer, however, a 

new element of specificity control in C-H bond activation reactions by oxo-iron(IV) species. 

The choice of σ- or -pathways could be controlled at least in part by steric hinderance in 

model systems or by the restrictions of the protein pocket in metalloenzymes. 

2. Six “hypothetic” iron complexes have been studied to investigate the determinant 

factor for controlling the oxidative C-H bond cleavage by iron–oxo and –nitrido complexes. 

DFT calculations demonstrated that although quite opposite reactivity is obtained for 

these two series, a good correlation between the driving force and the energy barrier is 

established, in close agreement with the Polanyi principle. More importantly, a close 

inspection of the thermochemical H• affinity, which determined by its electron and proton 

affinity component, showed that the ironoxo and nitrido complexes have quite 

different properties. The oxo complexes have significant stronger oxidation power than 

their nitrido counterpart, while the nitrido complexes have relatively larger basicity 

inverse. Additionally, the counterintuitive reactivity of these two series also can be well 

understood by the separate EA and PA analysis. The gradually increased reactivity in oxo 

series is ascribed to the substantial increase in oxidation power, while the offset of the EA 

and PA functions in nitrido series leads to BDENH to be a constant.  

3. We have performed a systematic DFT study on the DHA oxidation by four diiron 

complexes, two with diamond core structure, (FeIII–(O)2–FeIV, 1 and FeIV–(O)2–FeIV 2) and 

two with open core structure (OHFeIV
OFeIV=O, 3 and OHFeIII

OFeIV=O, 4). Our 

studies show that the DHA oxidation by complexes 1, 3 and 4 follow the HAT mechanism 

while a hydride transfer pathway is established for 2. The greatly enhanced reactivity from 

complex 1 to 4 can be understood with respect to the thermodynamic (BDEOH) and kinetic 

consideration (three energetic contributions to TS). First, switching from the diamond core 

to the open core structure greatly reduces the geometric changes upon redox process 

thereby lowering the energetic cost required for the transition states. Second, the high-

spin state of Fe(IV)=O center enables complex 4 to follow a quintet pathway that is 
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favored not only by the exchange enhanced stability in thermochemistry but also by a 

favorable stereochemistry in the kinetic aspect. Our analysis reflects the importance of 

driving force and differences in reorganization energies in understanding hydrogen atom 

transfer reactivity. Given the high energetic cost resulted from the geometry 

reorganization of the diamond core, our study suggest that as the consequence of 

substrate binding and/or carboxylate shift the diamond structure Q may collapse to a 

more powerful oxidant, such as an “open core”, to proceed the following CH bond 

activation. If the kinetic consideration in our discussion can partially reflect the intrinsic 

barrier mentioned in Marcus theory, then our study can be considered as one example of 

the success of Marcus theory in exploring HAT reactions.  

4. Of the H-bond effect in modulating CH bond activation, there could be several factors 

accounting for the different reactivities upon going from system 1-OHcis to 1-Ftrans. Our 

results revealed that the hydrogen bond between the oxo and hydroxo group in 1-OHcis 

does not significantly change the electrophilicity of the reactive FeIV=O unit. However, 

during the reaction of C-H bond oxidation, this hydrogen bond has to be partially broken. 

This leads to the slightly higher barrier for 1-OHcis relative to 1-Ftrans, which has similar 

open-core structure but no hydrogen bond. 
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