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Abstract

This thesis reports on an efficient implementation of first- and second-order derivatives for non-variational

wave functions used for the calculation of molecular properties in a linear response framework. Since, the

accurate quantum chemical description of second-order molecular properties is strongly limited by the size

of the system, a reliable method, which can be routinely applied from medium-sized to large molecular

compounds is desirable.

Inspired by the excellent performance of the recently developed double-hybrid density functionals for

energetics, thermodynamics and electron spin resonance hyperfine coupling tensors, this work focused

on the efficient implementation of second derivatives for these ’fifth rung’ functionals. The phrase ’fifth

rung’ functional is used in the context of ’Jacob’s ladder’, which categorizes the development of density

functionals into five different stages, referred to as rungs. Density functionals of the ’fifth rung’ include

non-local correlation by involving virtual Kohn-Sham molecular orbitals.

In double-hybrid functionals part of the semi-local correlation introduced by a gradient corrected exchange

correlation functional is replaced by nonlocal, orbital-dependent dynamic correlation by second-order

Møller-Plesset (MP2) perturbation theory.
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Therefore, the theory of second derivatives with respect to imaginary (magnetic) and real (electric)

perturbations for non-variational wave functions has been rederived and extended to the use of the

popular ’Resolution of the Identity’ approximation. The first derivation of second double-hybrid functional

derivatives within the ’density fitting’ approach is presented.

Besides numerical results for static polarizabilities, chemical shifts and electronic g-tensors, a benchmark

study on a fairly large system with an extended basis set (∼1400 basis functions) employing the recently

developed RIJCOSX approximation is presented in this thesis. Such a calculation is performed within a

few days of computer time. We are not aware of any other method beyond self-consistent field theory

(Hartree-Fock, density functional theory) that can routinely applied to molecules of dimension.

MP2 is well known as the simplest ab initio method, that accounts for dynamic correlation effects. Besides

its plenty advantages MP2 often fails for complicated electronic structures. The reason could be attributed

to the poor reference wave function, which is usually of Hartree-Fock quality. A new Ansatz has been

derived based on the well-known Hylleraas functional, which minimizes the total energy with respect to

the molecular orbital coefficients and the double excitation amplitudes.
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Consequently, the molecular orbitals can relax in the presence of the dynamic correlation field.

This orbital-optimized MP2 method has shown to provide drastically improved energetics compared to the

canonical MP2 method. Furthermore, the calculated electron spin resonance hyperfine coupling tensors



have almost been of the same quality as what can be achieved with the more rigorous Coupled-Cluster

Singles Doubles (CCSD) method, but with substantially less computational effort. The orbital-optimized

MP2 method is characterized as an iterative O(N5) procedure, whereas CCSD scales with O(N6) per

iteration.

The formalism of the orbital-optimized MP2 method has, also for the first time, been extended for the

calculation of first- and second-order properties.

In the last part of this thesis, two complex molecular compounds, 2,3,5,6-Tetrafluorophenylnitren-4-yl and

3,4,5,6-Tetrafluorophenylnitren-2-yl, could be characterized as σ,σ,π-triradicals through analysis of the

singly occupied spin-unrestricted natural orbitals in a localized representation. Multireference ab initio

calculations predict well isolated 4A2 and 4A′′ ground states for the radical compounds. The calculation of

the zero-field splitting tensor provides a detailed insight into the orientation and the individual contribu-

tions of the D-tensor. This application nicely demonstrates the interplay of high-resolution spectroscopy

and high-level quantum-chemical methods.
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1. Motivation

Quantum chemical methods play an important role in nowadays chemical applications, since they provide

a profound insight into the electronic structure of the molecular system. Therefore, the development of

accurate electronic structure methods and their efficient implementation in quantum chemical program

packages is of great interest for academical as well as industrial research.

The theory most quantum chemical calculations are based on, is Hartree-Fock (HF) theory, which yields

a reasonable description of the electronic structure of the system in question. However, due to the

exaggeration of the electron repulsion caused by the mean-field approach, electron correlation has to be

accounted for in a suitable way. The concept of full configuration interaction allows the exact description

of electron correlation effects in a given basis, but the number of determinants grows rapidly, and truncated

configuration interaction methods are not size consistent. Size consistency and size extensitivity represent

fundamental requirements for ab initio theories.

The development of density functional theory in the Kohn-Sham framework permits the incorporation of

electron correlation effects at the cost of Hartree-Fock calculations. But since the exact density functional

is not known, the way and to which extend different density functionals incorporate electron correlation

is most often questionable. Furthermore, many density functionals violate fundamental constraints, e.g.

predicting correlation energies for one-electron systems. Nevertheless, density functional theory, especially

the hybrid variant, which contains a fraction of Hartree-Fock exchange, often yields reliable results for

energetics and thermodynamic properties. [1]

The simplest ab initio method which accounts for dynamic electron correlation effects is second-order

many body perturbation theory with the Møller-Plesset partitioning of the Hamiltonian. [2] The idea to

take the Hartree-Fock wave function and the corresponding energy as zero-order approximation to the

exact solution of the Schrödinger equation and to treat the difference between the exact Hamiltonian

and the HF Hamiltonian as small perturbation, was developed by Møller and Plesset already in the early

1930s. [2] The big breakthrough of Møller-Plesset perturbation theory (MPPT) came with the develop-

ment of many-body perturbation theory from second- to fourth-order for general use in electronic structure

calculations in the 1970s. [3] The rivaling pioneers of MPPT John A. Pople and Roger J. Bartlett devel-

oped perturbation theory up to fourth-order by employing the algebraic and the diagrammatic approach

to many-body perturbation theory, respectively. [3–10] In the following years the routine application of

MPPT in electronic structure calculations was encouraged by the development of analytic derivatives

and corresponding efficient algorithms. Pople et al. reported first derivatives for second-order MPPT

(MP2) already in 1979. [11] Bartlett and co-workers were the first who established the concept of relaxed

densities [12, 13] in the framework of second and higher order MPPT. Furthermore, the removal of the

perturbation dependence from the coupled-perturbed Hartree-Fock equations was adopted for MPPT and

Coupled-Cluster gradients. [13–15] In 1986 the first analytical evaluation of second MP2 derivatives for

the calculation of analytic harmonic frequencies has been published. [16] The generalization of the second

MP2 derivatives for the calculation of magnetic properties with purely imaginary perturbations has been

reported by Gauss. [17]
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The popularity of MPPT is due to its formal simplicity as well as to the availability in most quantum

chemical program packages. [3] MPPT is size extensive to all orders, as could be demonstrated by

Goldstone [18] via the ’linked cluster’ theorem. Second-order MPPT already recovers 80–90% of the

basis set correlation energy with a formal scaling of O(N5). The shortcomings of MP2 theory are also

well known, i.e. MP2 is not variational or even stationary with respect to wave function parameters,

and it does not incorporate any orbital relaxation when based on a HF reference determinant. Orbital

relaxation is partially taken into account, if Brillouins’ theorem [19] no longer applies, and single excitations

contribute to the first-order wave function. The non-variational character of MP2 is of minor consequence

for the calculation of electron correlation effects, but complicates and increases the computational effort

for the evaluation of MP2 derivatives.

Therefore, it is desirable to develop efficient and robust approximations to MPPT. The most popular

approximation used in combination with the MP2 method is the ’Resolution of the Identity’ (RI) approx-

imation, in which products of orbitals are expanded in an auxiliary basis set. [20] The RI-MP2 method

was first reported by Feyereisen et al. [21] and was based on the results of Vahtras, Feyereisen and Almlöf

who showed that the RI technique performs best in the Coulomb metric. [22] But the use of the ’density

fitting’ technique has never been extendend to MP2 second derivatives, which is one goal of the present

thesis. Furthermore, the evaluation of second derivatives for the new class of double-hybrid density func-

tionals, which incorporate a fraction of MP2 dynamic correlation, has recently been reported for analytical

frequencies, [23] but has not been extended to magnetic properties yet. Thus, analytic second derivatives

for the double-hybrid functionals for purely real and purely imaginary perturbations have also been derived

within this thesis.

Besides the outstanding performance of the RI approximation in conjunction with MP2, which yields

speedups of one to two orders of magnitude in energy calculations, it is worthwhile to develop further

approximations, which efficiently accelerate the self-consistent field calculation, that represents the bot-

tleneck in large-scale RI-MP2 calculations. Therefore, the RIJCOSX approximation to MP2 first- and

second-order property calculations is presented.

On the other hand, the calculation of accurate first principles spin densities requires the incorporation of

a substantial amount of dynamic correlation. But MP2 is known to be insufficient and often provides

somewhat erratic results when applied to open-shell systems. So, an orbital-optimized MP2 method

has been developed, which optimizes the orbitals alongside with the double excitation amplitudes based

on the well-known Hylleraas functional [24]. The orbital-optimized MP2 (OO-MP2) method has been

successfully applied to the calculation of hyperfine coupling constants. Furthermore the OO-MP2 gradient

as well as OO-MP2 second derivatives have been derived.

The derived equations have been efficiently implemented into a development version of the ORCA program

package [25] and will be available soon.

Finally, the application of high-level ab initio methods for electronic structure calculations on chemically

complex systems is demonstrated on the example of 2,3,5,6-Tetrafluorophenylnitren-4-yl and 3,4,5,6-

Tetrafluorophenylnitren-2-yl, two quartet ground-state nitreno radicals.
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2. Theory

2.1. Introduction to Møller-Plesset Perturbation Theory

2.1.1. Hartree-Fock Theory

Hartree-Fock (HF) theory represents the most popular approximate method for solving the electronic

time-independent Schrödinger equation. It is often referred to as a mean-field theory, since the motion of

each electron is described in the averaged field generated by all other electrons. Thus, the motion of the

reference electron is independent of the motion of the remaining electrons (independent particle model).

The wave function for the independent particle model is a single Slater determinant built up of one spin

orbital per electron.

The minimization of the expectation value of the Born-Oppenheimer Hamiltonian via the variational

principle ensures that the energy obtained represents an upper bound to the exact solution. The canonical

HF equations are obtained by minimizing a functional of the spin orbitals {Ψ} through a constraint

optimization via Lagrange multipliers, and setting the variation to zero,{
ĥ(x) +

∑
j

Jj(x)−Kj(x)

}
ψi (x) =εiψi (x) (2.1)

F(x)ψi (x) =εiψi (x). (2.2)

The operator ĥ contains the one-electron kinetic and potential energy operator. The HF Hamiltonian

is an effective one-electron operator since it depends only on the coordinates x of the considered electron.

The HF equations are a set of coupled one-electron eigenvalue equations, in which the Fock operator F
depends on all spin orbitals through the Coulomb J and exchange K operators,

Jj(x1)ψi (x1) =

[∫
dx2ψ

?
j (x2)r−1

12 ψj(x2)

]
ψi (x1) (2.3)

Kj(x1)ψi (x1) =

[∫
dx2ψ

?
j (x2)r−1

12 ψi (x2)

]
ψj(x1). (2.4)

where the superscript ? denotes the complex conjugate of the spin orbital. Therefore, these equations are

solved iteratively. The diagonalized matrix of the Lagrange multipliers ε can be interpreted as orbital ener-

gies. The solution of the HF equations can obtained either by numerical methods, or by expanding the spin

orbitals in a finite basis set and searching for the lowest energy solution (Hartree-Fock-Roothaan equa-

tions). The iterative procedure for solving the Hartree-Fock-Roothaan equations is called self-consistent

field (SCF) method.

The drawback of HF theory is its lack of instantaneous electron-electron interactions, the so-called electron

correlation. The correlation energy is defined as the difference between the exact non relativistic energy
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and the HF energy,

∆Ecorr = Eexact − EHF . (2.5)

Post-HF methods improve on the HF method by (partial) inclusion of different electron correlation effects.

Dynamic correlation arises from the instantaneous correlation in electron motions due to their mutual

repulsion. By contrast, static correlation originates from the qualitative error of the single-configuration

model. In this thesis special emphasis is paid to dynamic correlation effects.

2.1.2. Rayleigh-Schrödinger Perturbation Theory

In this subsection the formal expressions of Rayleigh-Schrödinger perturbation theory in the quantum me-

chanical framework are derived. Starting from the Schrödinger equation, the Hamiltonian H is separated

into a zero-order part H0 and a perturbation λV, with |Ψn〉 denoting the exact solutions.

H|Ψn〉 = (H0 + λV)|Ψn〉 = En|Ψn〉. (2.6)

The eigenfunctions |Φn〉 and the eigenvalues E
(0)
n of the unperturbed Hamiltonian H0 are assumed to be

known,

H0|Φn〉 = E (0)
n |Φn〉 with 〈Φn|Φm〉 = δnm. (2.7)

If the perturbation V is small compared to the unperturbed Hamiltonian H0, we can expect |Ψn〉 and En
to be reasonably close to |Φn〉 and E

(0)
n , respectively. In order to systematically improve the eigenfunctions

and eigenvalues ofH0 so that they converge to the eigenvalues and eigenfunctions of the total Hamiltonian

H, the exact eigenfunctions and eigenvalues are expanded in a Taylor series in the ordering parameter λ.

En = E (0)
n + λE (1)

n + λ2E (2)
n + ... (2.8)

|Ψn〉 = |Ψ(0)
n 〉+ λ|Ψ(1)

n 〉+ λ2|Ψ(2)
n 〉+ ... (|Ψ(0)

n 〉 = |Φn〉) (2.9)

For convenience, intermediate normalization is chosen,

〈Φn|Ψn〉 = 〈Φn|Ψ(0)
n 〉+ λ〈Φn|Ψ(1)

n 〉+ λ2〈Φn|Ψ(2)
n 〉+ ... = 〈Φn|Ψ(0)

n 〉 = 1. (2.10)

Insertion of the Taylor expansions of eqs. 2.8 and 2.9 into the Schrödinger equation (eq. 2.6) yields,

(H0 + V)(|Ψ(0)
n 〉+ λ|Ψ(1)

n 〉+ λ2|Ψ(2)
n 〉+ ...)

= (E (0)
n + λE (1)

n + λ2E (2)
n + ...)(|Ψ(0)

n 〉+ λ|Ψ(1)
n 〉+ λ2|Ψ(2)

n 〉+ ...). (2.11)
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Equating coefficients of powers of λ,

H0|Ψ(0)
n 〉 = E (0)

n |Ψ(0)
n 〉 (2.12)

H0|Ψ(1)
n 〉+ V|Ψ(0)

n 〉 = E (0)
n |Ψ(1)

n 〉+ E (1)
n |Ψ(0)

n 〉 (2.13)

H0|Ψ(2)
n 〉+ V|Ψ(1)

n 〉 = E (0)
n |Ψ(2)

n 〉+ E (1)
n |Ψ(1)

n 〉+ E (2)
n |Ψ(0)

n 〉 (2.14)

H0|Ψ(3)
n 〉+ V|Ψ(2)

n 〉 = E (0)
n |Ψ(3)

n 〉+ E (1)
n |Ψ(2)

n 〉+ E (2)
n |Ψ(1)

n 〉+ E (3)
n |Ψ(0)

n 〉 (2.15)

(E (0)
n −H0)|Ψ(m)

n 〉 = V|Ψ(m−1)
n 〉 −

m−1∑
l=0

E (m−l)
n |Ψ(l)

n 〉. (2.16)

In eq. 2.16 the general expression for the mth-order perturbation equation is given. Multiplying the above

equations with 〈Φn| and using the normalization condition, eq. 2.10, yields the following expressions for

the mth-order energies,

E (0)
n = 〈Φn|H0|Ψ(0)

n 〉 (2.17)

E (1)
n = 〈Φn|V|Ψ(0)

n 〉 (2.18)

E (2)
n = 〈Φn|V|Ψ(1)

n 〉 (2.19)

E (3)
n = 〈Φn|V|Ψ(2)

n 〉 (2.20)

E (m)
n = 〈Φn|V|Ψ(m−1)

n 〉. (2.21)

Expansion of the perturbed wave functions |Ψ(m)
n 〉 in the complete set of eigenfunctions of the zero-order

Hamiltonian |Φn〉,

|Ψ(m)
n 〉 =

∑
k

a
(m)
kn |Φk〉 =

∑
k

|Φk〉〈Φk |Ψ(m)
n 〉 (2.22)

leads to the conditional equation for the expansion coefficients a
(m)
kn , by multiplying the mth-order equation

(eq. 2.16) with 〈Φk |,

〈Φk |(E (0)
n −H0)|︸ ︷︷ ︸

=(E
(0)
n −E

(0)
k )〈Φk |

Ψ(m)
n 〉 = 〈Φk |V|Ψ(m−1)

n 〉︸ ︷︷ ︸∑
j〈Φk |V|Φj〉〈Φj |Ψ(m−1)

n 〉

−
m−1∑
l=0

E (m−l)
n 〈Φk |Ψ(l)

n 〉︸ ︷︷ ︸
=a

(l)
kn

(E (0)
n − E

(0)
k )a

(m)
kn =

∑
j

〈Φk |V|Φj〉a(m−1)
jn −

m−1∑
l=0

E (m−l)
n a

(l)
kn . (2.23)

Since, there exists no equation, that determines a
(m)
nn , intermediate normalization can be chosen once

more,

〈Φn|Ψ(m)
n 〉 = 0 (m > 0)

a(m)
nn = δm0. (2.24)
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The explicit form of the first-order equations become,

(E (0)
n − E

(0)
k )a

(1)
kn = 〈Φk |V|Φn〉 − E (1)

n a
(0)
kn︸︷︷︸

=δkn

= 〈Φk |V|Φn〉 (n 6= k)

⇔ a
(1)
kn =

〈Φk |V|Φn〉
E

(0)
n − E

(0)
k

(n 6= k) (2.25)

where |Φk〉 represents any state but the ground state. Finally, the well-known expression for the second-

order energy is obtained,

E (2)
n = 〈Φn|V|Ψ(1)

n 〉 =
∑
k

a
(1)
kn 〈Φn|V|Φk〉

=
∑

k(k 6=n)

|〈Φn|V|Φk〉|2

E
(0)
n − E

(0)
k

. (2.26)

Analogue considerations yield the expressions for E
(3)
n , E

(4)
n , ... but for our purposes the expressions up

to second-order are sufficient. The famous Wigner’s (2n+1) rule states that knowledge of the mth-

order correction to the wave function Ψ
(m)
n allows the direct determination of all energy expressions up

to (2m+1)th-order. In the case of the third-order energy correction the knowledge of the second-order

correction to the wave function is formally required. This can be circumvented by resolving eq. 2.14 for

the second-order wave function correction,

|Ψ(2)
n 〉 =

(
H0 − E (0)

n

)−1 [(
E (1)
n − V

)
|Ψ(1)

n 〉+ E (2)
n |Ψ(0)

n 〉
]

(2.27)

projecting from the left on |Φk〉 for k 6= n yields,

〈Φk |Ψ(2)
n 〉 =

(
E

(0)
k − E (0)

n

)−1 [
〈Φk |

(
E (1)
n − V

)
|Ψ(1)

n 〉
]

. (2.28)

Insertion of eq. 2.28 into eq. 2.20 leads finally to the third-order energy expression.

E (3)
n = 〈Φn|V|Ψ(2)

n 〉

=
∑
n 6=k

〈Φn|V|Φk〉〈Φk |Ψ(2)
n 〉

=
∑
n 6=k

〈Φn|V|Φk〉〈Φk |V|Ψ(1)
n 〉

E
(0)
n − E

(0)
k

− E (1)
n

〈Φn|V|Φk〉〈Φk |Ψ(1)
n 〉

E
(0)
n − E

(0)
k

(2.29)
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2.1.3. Møller-Plesset Perturbation Theory

The suggestion of using the HF wave function and the corresponding HF energy as 0th-order approximation

to the exact wave function and energy, respectively, was first proposed by Møller and Plesset in 1934. [2]

The Fock operator F is assigned to the appropriate Hamiltonian H0 of the unperturbed problem,

H0 = F =
∑
i

ĥ(i) + VHF (i) =
∑
i

ĥ(i) +
∑
i

∑
j

[
Jj(i)−Kj(i)

]
(2.30)

Fpq = hpq +
∑
j

[
〈p|Jj |q〉 − 〈p|Kj |q〉

]
︸ ︷︷ ︸
〈pj|qj〉−〈pj|jq〉=〈pj||qj〉

. (2.31)

The Fock operator F is an effective one-electron operator, which describes the motion of each electron

in the averaged field of all other (N-1) electrons (mean-field theory). The perturbation V is then defined

as the difference between the exact Hamiltonian H and the zero-order Hamiltonian H0,

H =
∑
i

ĥ(i) +
∑
i

∑
j<i

r̂−1
ij (2.32)

V =
∑
i

∑
j<i

r̂−1
ij −

∑
i

∑
j

[
Jj(i)−Kj(i)

]
. (2.33)

This perturbation is often referred to as fluctuation potential, as it describes the difference between the

instantaneous electron-electron interaction and the mean field treatment. The expansion of the perturbed

ground state wave functions becomes,

|Ψ(0)
0 〉 = |ΦHF

0 〉 (2.34)

|Ψ(m>0)
0 〉 =

∑
k(k 6=0)

a
(m)
k0 |Φk〉 =

∑
ia

t i(m)
a |Φa

i 〉+
1

4

∑
ijab

t
ij(m)
ab |Φab

ij 〉+ ... (2.35)

where the mth-order expansion coefficients a
(m)
k0 have been replaced by the corresponding single, double, ...

excitation amplitudes t
i(m)
a , t

ij(m)
ab , .... The zero-order wave functions |Φk〉, which are the eigenfunctions

to the higher order eigenvalues, correspond to single, double, ... excited determinants. Insertion of the

Møller-Plesset (MP) partitioning of the Hamiltonian into the energy expressions, eqs. 2.17, 2.18 and

2.19, yields the corresponding MPm energy terms for the ground state,

E
(0)
0 = 〈Φ0|H0|Ψ(0)

0 〉 =
∑
i

εi (2.36)

E
(1)
0 = 〈Φ0|V|Ψ(0)

0 〉 = −1

2

∑
ij

〈ij ||ij〉 (2.37)

E
(2)
0 = 〈Φ0|V|Ψ(1)

0 〉 =
1

4

∑
ijab

t
ij(1)
ab 〈Φ0|V|Φab

ij 〉 =
1

4

∑
ijab

t
ij(1)
ab 〈ij ||ab〉. (2.38)

The sum of the zero-order and first-order energies yield the Hartree-Fock energy. Thus, the correlation

energy first appears in second-order MP (MP2) perturbation theory. The singly excited determinants do

not contribute to the second-order energy correction, since they have no nonzero matrix elements with

the HF determinant due to Brillouins’ theorem.
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The first-order double excitation amplitudes are defined by eq. 2.25,

t
ij(1)
ab = −

〈Φab
ij |V|Φ0〉

E
(0)
0 − E

(0)
2

= − 〈ab||ij〉
εa + εb − εi − εj

. (2.39)

Finally, the well-known MP2 energy correction is derived,

E
(2)
0 = −1

4

∑
ijab

∣∣〈ij ||ab〉
∣∣2

εa + εb − εi − εj
. (2.40)

Higher order MP2 energy expressions can be obtained similarly, e.g. the third-order energy correction is

given as [3],

E
(3)
0 = −1

4

∑
ijab

〈ij ||ab〉bij
ab (2.41)

with

bij
ab = (εa + εb− εi − εj)−1

[
1

2

(∑
cd

〈ab||cd〉t ij(1)
cd +

∑
kl

〈kl ||ij〉tkl(1)
ab

)
−
∑
kc

P(ij)P(ab)〈kb||jc〉t ik(1)
ac

]
(2.42)

where P permutes the indices i , j and a, b by simultaneously accounting for the sign.

2.2. The Hylleraas functional

The idea of the Hylleraas variation principle is to obtain the even-order energy corrections and the

corresponding perturbed wave functions by minimizing a functional of the wave function in question. The

Hylleraas functional for the second-order MP2 energy is obtained by multiplying the first-order equation

(2.13) by 〈Ψ(1)
n |,

〈Ψ(1)
n |H0 − E (0)

n |Ψ(1)
n 〉 = 〈Ψ(1)

n |E (1)
n − V|Φn〉 (2.43)

and adding the equation for the second-order energy (2.19),

E (2)
n = 〈Φn|V − E (1)

n |Ψ(1)
n 〉+ 〈Ψ(1)

n |V − E (1)
n |Φn〉+ 〈Ψ(1)

n |H0 − E (0)
n |Ψ(1)

n 〉. (2.44)

The Hylleraas functional is then defined as,

J2[Ψ] = 2<e〈Ψ|V − E (1)
n |Φn〉+ 〈Ψ|H0 − E (0)

n |Ψ〉 (2.45)

and it is obvious, that the insertion of Ψ
(1)
n yields the second-order energy E

(2)
n . By varying the Hylleraas

functional and requiring that δJ2[Ψ] = 0 for any δΨ, the first-order equation is obtained,

V − E (1)
n |Φn〉+H0 − E (0)

n |Ψ〉 = 0 (2.46)
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X

(a) 1e−-operator F (b) 2e−-operator r̂−1
ij

(c) 1st order wave function in the Bra

〈Ψ(1)
n | =

∑
i<j

∑
a<b

t
ij(1)?
ab 〈Φij

ab|
(d) 1st order wave function in the Ket

|Ψ(1)
n 〉 =

∑
k<l

∑
c<d

t
kl(1)
cd |Φkl

cd 〉

Figure 2.1.: Required diagram elements to derive the exact form of the Hylleraas functional for MP2, employing
the diagrammatic method.

for which Ψ = Ψ
(1)
n represents a solution. By enforcing intermediate normalization, the Hylleraas func-

tional simplifies to,

J2[Ψ] = 2<e〈Ψ|V|Φn〉+ 〈Ψ|H0 − E (0)
n |Ψ〉. (2.47)

Finally, it can be shown, that if E
(0)
n is the lowest eigenvalue of H0 then J2[Ψ] is an upper bound to E

(2)
n .

Therefore, Ψ = Ψ
(1)
n + χ is inserted in eq. 2.47,

J2[Ψ] = E (2)
n + 〈χ|H0 − E (0)

n |χ〉. (2.48)

If E
(0)
n is the lowest eigenvalue of H0 then the integral 〈χ|H0−E

(0)
n |χ〉 is nonnegative and is only zero if χ

is the corresponding eigenfunction. Thus, it holds that J2[Ψ] ≥ E
(2)
n if Φ0 is an exact eigenfunction of H0,

and therefore the first-order wave function and the second-order energy can be obtained by minimizing

the Hylleraas functional of an arbitrary trial function Ψ.

Explicit formulation of Hylleraas MP2

In this subsection the explicit formulae for the Hylleraas MP2 Ansatz are derived via diagrammatic

techniques. The first reformulation of MP2 theory in terms of the Hylleraas functional was presented by

Pulay and Saebø and leads to an orbital-invariant MP2 theory. [26] Starting from the general expression

of the Hylleraas functional (eq. 2.47) and inserting the first-order wave function, yields,

J2[Ψ(1)
n ] = 2<e〈Ψ(1)

n |V|Φn〉+ 〈Ψ(1)
n |H0 − E (0)

n |Ψ(1)
n 〉. (2.49)

In Fig. 2.1 the required diagrammatic representations of the operators and the wave functions are illus-

trated. Combining the corresponding diagram elements and labeling yields the three diagrams displayed

in Fig. 2.2. The lines labeled with the indices i , j , k, ... correspond to hole lines, since they annihilate an

electron in an orbital occupied in the HF reference determinant. In contrast, the indices a, b, c , ... indicate

particle lines, in that they create an electron in a virtual orbital, which is unoccupied in the HF reference
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b ja i

(a) 1
4

∑
ijab

t
ij(1)
ab 〈ij ||ab〉

a i X

j

k
b

(b) − 1
2

∑
ijkab

t
ij(1)?
ab t

ik(1)
ab Fkj

a i X
b

c

j

(c) 1
2

∑
ijabc

t
ij(1)?
ab t

ij(1)
ac Fbc

Figure 2.2.: Constructed diagrams corresponding to eq. 2.49.

determinant. Thus, the following explicit expression for the MP2 Hylleraas functional is obtained,

E2[t] =

{
1

2

∑
ijab

〈ij ||ab〉t ij(1)
ab − 1

2

∑
ijkab

Fkj t
ij(1)
ab t

ik(1)
ab +

1

2

∑
ijabc

Fcbt
ij(1)
ab t ij(1)

ac

}
. (2.50)

The MP2 Hylleraas functional now becomes a functional of the MP2 double excitation amplitudes, since

the expansion of the perturbed wave function in the basis of the zero-order wave function has been

inserted (eq. 2.35). The MP2 residual Rab
ij is in general defined as,

〈Φab
ij |H|Φ0〉+ 〈Φij

ab|H0 − E0|Ψ(1)
n 〉 = 0 (2.51)

R ij
ab = 〈ij ||ab〉 −

∑
k

(
t
kj(1)
ab Fki + t

ik(1)
ab Fkj

)
+
∑
c

(
t ij(1)
ac Fbc + t

ij(1)
cb Fac

)
= 0 (2.52)

and the derivative of the MP2 Hylleraas energy functional with respect to the MP2 double excitation

amplitudes is,

∂E2

∂t
ij(1)
ab

= 2R ij
ab = 0. (2.53)

If eq. 2.53 is fulfilled, the conditional equation for the MP2 amplitudes assuming canonical HF orbitals,

corresponds exactly to the first-order amplitude equation derived from conventional MP2 theory (eq. 2.39).

t
ij(1)
ab = − 〈ab||ij〉

εa + εb − εi − εj
. (2.54)

Rewriting the MP2 Hylleraas functional shows, that the conventional MP2 energy expression is obtained,

if the Hylleraas functional is stationary with respect to small changes in the first-order amplitudes.

E2[t] =
1

4

∑
ijab

(
〈ij ||ab〉+ R ij

ab

)
t
ij(1)
ab (2.55)

Hence, the MP2 double excitation amplitudes can be regarded as having been optimized by minimizing

the Hylleraas functional.
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2.3. Derivative Theory

2.3.1. Density Matrices

The construction of a density matrix [27] from an approximate wave function represents a convenient way

to treat one- and two-electron properties. The first-order reduced density matrix is defined as,

γ(x1|x′1) = N

∫
Ψ(x1, · · · , xN)Ψ?(x′1, · · · , xN)dx2 · · · dxN =

∑
pq

γpqψp(x1)ψ?q(x′1). (2.56)

with the diagonal elements representing the probability of finding an electron in dx1 at x1, independent

of the location of all other (N − 1) electrons,

γ(x1|x1) = ρ(x1). (2.57)

The expectation value of an arbitrary one-electron operator O(x) can then be expressed by,〈
Ψ
∣∣∣O(x)

∣∣∣Ψ〉 =
∑
pq

γpq〈ψp|O|ψq〉x=x′ =
∑
pq

γpqOpq. (2.58)

The second-order reduced density matrix is analogously defined as,

Γ(x1, x2|x′1, x′2) = N(N − 1)

∫
Ψ(x1, x2, · · · , xN)Ψ?(x′1, x′2, · · · , xN)dx3 · · · dxN

=
∑
pqrs

Γpqrsψp(x1)ψ?q(x′1)ψr (x2)ψ?s (x′2). (2.59)

Thus, the expectation value of the Born-Oppenheimer Hamiltonian HBO over the HF determinant can

be rewritten as,

〈Ψ|HBO |Ψ〉 =
∑
pq

hpqγpq +
1

2

∑
pqrs

gpqrsΓpqrs (2.60)

where hpq and gpqrs represent the matrix elements of the one- and two-electron operators, respectively.

Furthermore, molecular properties represented as first derivatives of the energy with respect to an external

perturbation, can always be written in the form,

dE

dλ
=
∑
pq

γpqh{λ}pq +
∑
pq

WpqS (λ)
pq +

∑
pqrs

Γpqrsg (λ)
pqrs . (2.61)

In eq. 2.61, Wpq is the energy-weighted density matrix and S
(λ)
pq represents the derivative of the overlap

matrix element with respect to the external perturbation. The index (λ) indicates the explicit derivative

of the basis functions with respect to the perturbation parameter λ. {λ} refers to the explicit derivative

of basis functions and operators. If the basis functions are independent of the perturbation, e.g. in the

case of an external electric field, the derivative simplifies to,

dE

dλ
=
∑
pq

γpqh[λ]
pq (2.62)
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with [λ] denoting the derivative of the operator. A convenient formula for the calculation of reduced

density matrices in second quantization is,

γpq = 〈Ψ|apq |Ψ〉 (2.63)

Γpqrs = 〈Ψ|apr aqs − δqr aps |Ψ〉 (2.64)

where apq represents a replacement operator, which annihilates one electron in spin orbital ψq and creates

an electron in ψp. In eq. 2.64 it was made use of the fact, that for a single determinant wave function

the second-order density matrix is fully determined from the reduced one-particle density matrix.

2.3.2. Linear Response Theory

The calculation of molecular properties, which are specific for a given electronic state, can be interpreted

as the ’response’ of the system to an external perturbation. The energy can then be expanded as a Taylor

series around the energy in the unperturbed case E0,

E (λ) = E0 +
dE

dλ

∣∣∣∣
λ=0

λ+
1

2

d2E

dλ2

∣∣∣∣
λ=0

λ2 + ... . (2.65)

Whereas first-order properties involve the first derivative (gradient) of the energy with respect to λ,

second-order properties require the calculation of the corresponding second derivative, etc. These deriva-

tives can be easily calculated via finite-differentiation techniques, but besides its formal simplicity these

approaches recover some disadvantages, i.e. the limited accuracy and the tremendous computational

effort. Therefore, analytic derivatives are preferred for the calculation of molecular properties.

Introduction to General Derivative Theory

The energy as well as the wave function incorporate a specific dependence on the perturbation. The

explicit dependence on the perturbation is given through the Hamiltonian and through the basis functions,

respectively, whereas the implicit dependence occurs through the wave function parameters, e.g. the

molecular orbital (MO) coefficients. The energy then becomes a functional of the perturbation λ, and

the perturbation dependent wave function parameters c(λ),

E = E [λ, c(λ)]. (2.66)

Differentiation of the energy with respect to the corresponding perturbation leads to the following gradient

expression,

dE

dλ
=

(
∂E

∂λ

)
+

(
∂E

∂c

)(
∂c

∂λ

)
. (2.67)

In the case of variationally determined wave function parameters, the energy is stationary with respect to

changes in c and the partial derivative
(
∂E
∂c

)
vanishes. Thus, the general derivative expression simplifies

to,

dE

dλ
=

(
∂E

∂λ

)
(2.68)



2.3 Derivative Theory 13

and there is no need to determine the perturbed wave function parameters. The expression for the second

energy derivative takes the form,

d2E

dλdκ
=

(
∂2E

∂λ∂κ

)
+

(
∂2E

∂λ∂c

)(
∂c

∂κ

)
+

(
∂2E

∂κ∂c

)(
∂c

∂λ

)
+

(
∂2E

∂c2

)(
∂c

∂λ

∂c

∂κ

)
+

(
∂E

∂c

)(
∂2c

∂λ∂κ

)
(2.69)

whereas the last term of eq. 2.69 vanishes for variational wave functions.

Derivatives of the Hartree-Fock Energy

The Hartree-Fock energy is defined as,

EHF =
∑
i

hii +
1

2

∑
ij

〈ij ||ij〉 =
∑
µν

Pµνhµν +
1

2

∑
µνκτ

PµνPκτ 〈µκ||ντ〉 (2.70)

with Pµν denoting the SCF density matrix,

Pµν =
∑
i

c?µicνi . (2.71)

The derivative of the HF energy under the additional constraint enforcing the orthonormality of the MO

coefficients can be derived in the AO basis as,

dEHF

dλ
=
∑
µν

Pµνh{λ}µν +
1

2

∑
µνκτ

PµνPκτ 〈µκ||ντ〉(λ) −
∑
µν

WµνS (λ)
µν . (2.72)

In eq. 2.72 {λ} indicates the derivative of the operator and of the basis functions with respect to λ,

whereas (λ) denotes only the basis function derivative itself. The energy-weighted density matrix Wµν

arises from the orthonormality constraint and is defined as,

Wµν =
∑
i

c?µiεicνi . (2.73)

The first-order derivative of the SCF energy with respect to the perturbation λ can be rewritten in terms

of the 1- and 2-particle density matrices as,

dEHF

dλ
=
∑
µν

γµνh{λ}µν +
∑
µνκτ

Γµνκτ 〈µν|κτ〉(λ) −
∑
µν

WµνS (λ)
µν . (2.74)

with the density matrices given by,

γµν = Pµν (2.75)

Γµνκτ =
1

2
PµκPντ −

1

2
PµτPνκ. (2.76)

The derivative of the SCF density matrix is not required for the calculation of the HF gradient, since the

MO coefficients are the variational wave function parameters in HF theory. The first HF energy derivative

simplifies in the case of perturbation independent basis functions to,

dEHF

dλ
=
∑
µν

Pµνh[λ]
µν (2.77)
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where [λ] refers to the derivative of the one-electron operator.

The second derivative of the HF energy yields the following expression,

d2EHF

dλdκ
=
∑
µν

Pµνh{λ,κ}
µν +

1

2

∑
µνκτ

PµνPκτ 〈µκ||ντ〉(λ,κ) −
∑
µν

WµνS (λ,κ)
µν

+
∑
µν

P〈κ〉µν

(
h{λ}µν +

∑
κτ

Pκτ 〈µκ||ντ〉(λ)

)
−
∑
µν

W 〈κ〉
µν S (λ)

µν , (2.78)

with 〈κ〉 denoting the MO coefficient derivatives and

P〈κ〉µν =
∑
i

{
∂c?µi
∂κ

cνi + c?µi
∂cνi
∂κ

}
(2.79)

W 〈κ〉
µν =

∑
i

{
∂c?µi
∂κ

εicνi + c?µiεi
∂cνi
∂κ

}
+
∑
i

c?µi
∂εi
∂κ

cνi . (2.80)

The perturbed MO coefficients are expanded in terms of the zero-order coefficients by means of the orbital

rotation or coupled-perturbed HF (CPHF) coefficients Uλ
pi ,

cλµi =
∑
p

Uλ
picµp =

∑
p

(xλpi + iyλpi )cµp. (2.81)

The virtual-occupied block of the CPHF coefficients are determined from differentiating the Brillouin

condition,∑
µν

c?µaFµνcνi = Fai = 0 (2.82)

with

Fµν = hµν +
∑
κτ

Pκτ 〈µκ||ντ〉. (2.83)

The resulting CPHF equations take the following form,

(εa − εi )Uλ
ai +

∑
jb

Uλ?
bj 〈ab||ij〉+ Uλ

bj〈aj ||ib〉 = Bλ
ai (2.84)

with the right-hand side given as,

Bλ
ai = −h

{λ}
ai −

∑
j

〈aj ||ij〉(λ) +
1

2

∑
jk

S
(λ)
kj

[
〈ak||ij〉+ 〈aj ||ik〉

]
+ εiS

(λ)
ai (2.85)

and the derivative of the overlap matrix,

S (λ)
pq =

∑
µν

c?µp
∂Sµν
∂λ

cνq. (2.86)

The occupied-occupied and virtual-virtual block of the U-coefficient matrix can be chosen arbitrarily as



2.4 Derivatives of the Second-Order Møller-Plesset Energy Correction 15

long as the differentiated orthonormality condition is fulfilled,

∂

∂λ

(
Spq = δpq

)
∑
r

(
Uλ?
rp Srq + Uλ

rqSpr

)
+ S (λ)

pq = 0. (2.87)

The most convenient choice is,

Uλ
ij = − 1

2
S

(λ)
ij (2.88)

Uλ
ab = − 1

2
S

(λ)
ab . (2.89)

If the basis functions are independent on the perturbation the right-hand side simplifies to,

Bλ
ai = −h

[λ]
ai . (2.90)

Eq. 2.84 differs for real and imaginary perturbations as can be shown by resolving the U-coefficients into

real and imaginary parts,

xλai (εa− εi ) +
∑
jb

xλbj

[
〈ab||ij〉+ 〈aj ||ib〉

]
+ iyλai (εa− εi ) +

∑
jb

iyλbj

[
−〈ab||ij〉+ 〈aj ||ib〉

]
= Bλ

ai . (2.91)

Therefore, different sets of CPHF equations have to be solved for pure real (<) and pure imaginary (=)

perturbations,

xλai (εa − εi ) +
∑
jb

xλbj

[
〈ab||ij〉+ 〈aj ||ib〉

]
≡
∑
jb

A
(<)
ai ,bjx

λ
bj = B

(<)λ
ai (2.92)

iyλai (εa − εi ) +
∑
jb

iyλbj

[
− 〈ab||ij〉+ 〈aj ||ib〉

]
≡ i
∑
jb

A
(=)
ai ,bjy

λ
bj = B

(=)λ
ai . (2.93)

The solution of the CPHF equations is obtained iteratively.

2.4. Derivatives of the Second-Order Møller-Plesset Energy

Correction

2.4.1. The MP2 Energy

The expression for the Hylleraas MP2 energy functional is,

E2[t] =

{
1

4

∑
ijab

〈ij ||ab〉t ij(1)
ab + 〈ab||ij〉t ij(1)?

ab +
∑
ij

DijFij +
∑
ab

DabFab

}
(2.94)

where

Dij = − 1

2

∑
kab

t
ki(1)
ab t

kj(1)?
ab (2.95)

Dab =
1

2

∑
ijc

t ij(1)?
ca t

ij(1)
cb (2.96)
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represent the occupied-occupied and virtual-virtual block of the unrelaxed MP2 one-particle density matrix

obtained as expectation value of the spin orbital replacement operators over the first-order wave function.

In the following the index (1), which indicates the first-order MP2 amplitudes, is skipped, since no higher-

order amplitudes are considered.

In the MP2 Hylleraas functional the set of amplitudes t represents the variational wave function param-

eters, whereas the MO coefficients c are fixed.

Density Fitting

The Coulomb matrix can be efficiently approximated by expanding products of basis functions in an

extended auxiliary basis set that is usually 2–4 times larger than the orbital basis set. [22,28,29] In terms

of the ’Resolution of the Identity’ (RI) approximation, the Coulomb matrix (RI-J) is given as,

Jµν =
∑
κτ

Pκτ 〈µκ|ντ〉 ≈
∑
K

dK (µν|K ). (2.97)

It is advantageous here to switch to chemists notation for the two-electron repulsion integrals. The

3-index two-electron repulsion integral is,

(µν|K ) =

∫
µ(r1)ν(r1)r−1

12 K (r2)dr1dr2 (2.98)

where K (r2) is a member of the Coulomb auxiliary basis set {ηK}. The vector dK represents the density

in the auxiliary basis which is best obtained from the linear equation system Vd = g, with VKL = (K |L)

and gK =
∑
κτ Pκτ (κτ |K ), containing two- and 3-index repulsion integrals. It has been shown by

Vahtras, Almlöf and Feyereisen that the optimal expansion coefficients are obtained by minimizing the

residual repulsion. [22] The linear equation system is most efficiently solved by employing the Cholesky

decomposition, which takes advantage of the decomposition of a symmetric, positive definite matrix into

the product of a lower triangular matrix and its conjugate transpose. The Cholesky decomposition is

roughly twice as efficient as the LU decomposition for solving linear equation systems, since the solution

of a triangular set of equations is quite trivial.

An improved variant of this method for the calculation of the near-field part of the Coulomb interaction has

been implemented in the ORCA program package and has been dubbed ’Split-RI-J’. [30] This algorithm

is most suitable for basis sets with many high angular momentum functions for wich a factor of ∼2 is

gained compared to the standard RI-J implementation. Excellent Coulomb fitting basis sets have been

developed by Ahlrichs and co-workers for almost the entire periodic table. [28, 29]

Feyereisen et al. [21] proposed the ’Resolution of the Identity’ approximation to MP2 energy calculations

(RI-MP2) in the mid 1990s. The MP2 energy expression within the RI framework becomes,

EMP2 =
1

4

∑
ijab

〈ij ||ab〉t ijab (2.99)

ERI−MP2 =
1

2

∑
iaP

(ia|P)Γ′Pia (2.100)
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where the 3-index 2-particle density is defined as,

Γ′Pia =
∑
jbQ

V−1
PQ (Q|jb)t

ij(RI )
ab (2.101)

Γ′Pai =
∑
jbQ

V−1
PQ (Q|bj)t

ij?(RI )
ab . (2.102)

The RI-MP2 double excitation amplitudes t ijab are given as,

t
ij(RI )
ab = −

∑
P

BP
aiB

P
bj − BP

ajB
P
bi

εa + εb − εi − εj
(2.103)

with

BP
ai =

∑
Q

(ai |Q)V
−1/2

QP . (2.104)

The calculation of the MP2 energy in the RI approximation affords computational savings of at least a

factor of ∼20 for medium size molecules compared to conventional MP2, as has been recently reported in

Ref. [31]. The error in the total energies calculated with the correlation fitting basis sets [32–34], denoted

P, Q, ..., is usually below 0.5 kcal/mol. [31]

2.4.2. The First Derivative of the MP2 Energy

The first derivative of the MP2 energy functional with respect to an arbitrary perturbation λ is,

dE2

dλ
=

(
∂E2

∂λ

)
+

(
∂E2

∂c

)(
∂c

∂λ

)
+

(
∂E2

∂t

)(
∂t

∂λ

)
. (2.105)

The last term in eq. 2.105 vanishes, since the MP2 Hylleraas functional is stationary with respect to

changes in the double excitation amplitudes. Thus, the MP2 gradient becomes,

∂E2

∂λ
=

1

4

∑
ijab

[
〈ij ||ab〉(λ) +〈ij ||ab〉〈λ〉

]
t ijab +

[
〈ab||ij〉(λ) +〈ab||ij〉〈λ〉

]
t ij?ab +

∑
pq

D ′pq

[
F {λ}pq +F 〈λ〉pq

]
(2.106)

where D ′pq denotes the unrelaxed MP2 density matrix, which contains no elements in its virtual-occupied

and occupied-virtual blocks. Considering perturbation independent basis functions, eq. 2.106 simplifies

to,

∂E2

∂λ
=

1

4

∑
ijab

〈ij ||ab〉〈λ〉t ijab + 〈ab||ij〉〈λ〉t ij?ab +
∑
pq

D ′pq

[
h[λ]
pq + F 〈λ〉pq

]
. (2.107)

In the framework of the RI approximation the derivative takes the form,

∂E (RI )
2

∂λ
=
∑
iaP

(ia|P)〈λ〉Γ′Pia + (ai |P)〈λ〉Γ′Pai +
∑
pq

D ′pq

[
h[λ]
pq + F 〈λ〉pq

]
. (2.108)
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Orbital Rotations

The derivatives of the MO coefficients are determined by the unitary CPHF coefficient matrix U, as

discussed in subsection 2.3.2. Since the basis functions are assumed to be independent of the perturbation,

the U coefficients fulfill the condition,

Uλ
pq = − Uλ?

qp . (2.109)

Dividing the orbital rotation coefficients in its real and imaginary parts,

xλpq + iyλpq = − xλpq + iyλqp (2.110)

xλpq = − xλpq (2.111)

yλpq = yλqp (2.112)

shows, that the imaginary part is symmetric under index exchange, whereas the real part is antisymmetric.

This property is important for the derivation of the MO coefficient derivatives for real, hermitian and

imaginary, hermitian perturbations. As can be seen from the derivative of the SCF density matrix in

eq. 2.113, the first-order density matrix is symmetric for real perturbations and antisymmetric for imaginary

perturbations.

∂ρ(r)

∂λ
=
∑
µν

∂Pµν
∂λ

ϕ?µ(r)ϕν(r)

=
∑
µν

∑
ip

Uλ?
pi c?µpcνi + Uλ

pic
?
µicνp

ϕ?µ(r)ϕν(r)

=
∑
µν

∑
ip

xλpi
(
c?µpcνi + c?µicνp

)
+ iyλpi

(
c?µicνp − c?µpcνi

)ϕ?µ(r)ϕν(r) (2.113)

Thus, for purely imaginary perturbations the electron density does not change to first order, if the basis

functions are independent of the perturbation.
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Derivation of the MP2 Gradient Expression

In this subsection the explicit expression for the MP2 gradient is derived.

Derivative of the Two-Electron Repulsion Integrals The derivative of the two-electron repulsion

integrals becomes,

1

4

∑
ijab

〈ij ||ab〉〈λ〉t ijab =
1

4

∑
ijab

{∑
c

Uλ?
ci 〈cj ||ab〉+ Uλ?

cj 〈ic ||ab〉+
∑
k

Uλ
ka〈ij ||kb〉+ Uλ

kb〈ij ||ak〉

}
t ijab

=
1

4

∑
ia

Uλ?
ai

∑
jbc

〈aj ||cb〉t ijcb + 〈ja||cb〉t jicb


− 1

4

∑
ia

Uλ?
ai

∑
jkb

〈kj ||ib〉tkjab + 〈kj ||bi〉tkjba


=

1

2

∑
ia

Uλ?
ai

∑
jbc

〈aj ||cb〉t ijcb −
∑
jkb

〈kj ||ib〉tkjab

 (2.114)

1

4

∑
ijab

〈ab||ij〉〈λ〉t ij?ab =
1

4

∑
ijab

{∑
k

Uλ?
ka 〈kb||ij〉+ Uλ?

kb 〈ak||ij〉+
∑
c

Uλ
ci 〈ab||cj〉+ Uλ

cj〈ab||ic〉

}
t ij?ab

= − 1

4

∑
ia

Uλ
ai

∑
jkb

〈ib||kj〉tkj?ab + 〈bi ||kj〉tkj?ba


+

1

4

∑
ia

Uλ
ai

∑
jbc

〈cb||aj〉t ij?cb + 〈cb||ja〉t ji?cb


=

1

2

∑
ia

Uλ
ai

−∑
jkb

〈ib||kj〉tkj?ab +
∑
jbc

〈cb||aj〉t ij?cb

 . (2.115)

In the RI formalism, the two-electron integral derivative takes the form,

∑
iaP

(ia|P)〈λ〉Γ′Pia + (ai |P)〈λ〉Γ′Pai =
∑
ia

Uλ?
ai

{∑
c

(ac |P)Γ′Pic −
∑
k

(ki |P)Γ′Pka

}

+
∑
ia

Uλ
ai

{
−
∑
k

(ik|P)Γ′Pak +
∑
c

(ca|P)Γ′Pci

}
. (2.116)

Fock Matrix Derivative The derivative of the Fock-matrix containing terms is given as,

∑
pq

D ′pq

[
F 〈λ〉pq + h[λ]

pq

]
=
∑
pq

D ′pq

(∑
r

Uλ?
rp Frq + Uλ

rqFpr +
∑
ia

Uλ?
ai 〈pa||qi〉+ Uλ

ai 〈pi ||qa〉

)
+
∑
pq

D ′pqh[λ]
pq .

(2.117)
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Total MP2 Derivative Collecting the derivative terms from eqs. 2.114, 2.115 and 2.117 yields the

general expression for the MP2 gradient,

dE2

dλ
=

1

2

∑
ia

Uλ?
ai

∑
jbc

〈aj ||cb〉t ijcb −
∑
jkb

〈kj ||ib〉tkjab

+
1

2

∑
ia

Uλ
ai

−∑
jkb

〈ib||kj〉tkj?ab +
∑
jbc

〈cb||aj〉t ij?cb


+
∑
kl

D ′kl

[∑
c

Uλ?
ck Fcl + Uλ

clFkc + h
[λ]
kl +

∑
ia

Uλ?
ai 〈ak||il〉+ Uλ

ai 〈ik||al〉

]

+
∑
cd

D ′cd

[∑
k

Uλ?
kc Fkd + Uλ

kdFck + h
[λ]
cd +

∑
ia

Uλ?
ai 〈ac ||id〉+ Uλ

ai 〈ic ||ad〉

]
(2.118)

and the RI-MP2 gradient has the form,

dE (RI )
2

dλ
=
∑
ia

Uλ?
ai

{∑
cP

(ac |P)Γ′Pic −
∑
kP

(ki |P)Γ′Pka

}
+
∑
ia

Uλ
ai

{
−
∑
kP

(ik |P)Γ′Pak +
∑
cP

(ca|P)Γ′Pci

}

+
∑
kl

D ′kl

[∑
c

Uλ?
ck Fcl + Uλ

clFkc + h
[λ]
kl +

∑
ia

Uλ?
ai 〈ak||il〉+ Uλ

ai 〈ik||al〉

]

+
∑
cd

D ′cd

[∑
k

Uλ?
kc Fkd + Uλ

kdFck + h
[λ]
cd +

∑
ia

Uλ?
ai 〈ac ||id〉+ Uλ

ai 〈ic ||ad〉

]
. (2.119)

The Fock matrix elements in eqs. 2.118 and 2.119 vanish, since the zero-order wave function is the

Hartree-Fock determinant and therefore, Brillouins’ theorem is valid.

The Total MP2 Derivative for Real Perturbations The total MP2 derivative in the case of a real

hermitian perturbation is,

dE2

dλ
=
∑
ia

xλai

∑
jbc

〈aj ||cb〉t ijcb −
∑
jkb

〈kj ||ib〉tkjab

+
∑
ia

xλaiR(D′)ai +
∑
pq

D ′pqh[λ]
pq (2.120)

and

dE (RI )
2

dλ
= 2

∑
ia

xλai

{∑
cP

(ac |P)Γ′Pic −
∑
kP

(ki |P)Γ′Pka

}
+
∑
ia

xλaiR(D′)ai +
∑
pq

D ′pqh[λ]
pq (2.121)

where the response operator for real perturbation has been defined as,

R (D′)ai =
∑
pq

D ′pq (〈ap||iq〉+ 〈ip||aq〉)

=
∑
pq

D ′pq (2〈ap|iq〉 − 〈ap|qi〉 − 〈ip|qa〉) . (2.122)

The Total MP2 Derivative for Imaginary Perturbations The total MP2 derivative in the case of

an imaginary hermitian perturbation differs significantly from the previously derived derivative for real
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perturbations, since the first four terms in eq. 2.123 cancel each other.

dE2

dλ
= − 1

2

∑
ia

iyλai

∑
jbc

〈aj ||cb〉t ijcb −
∑
jkb

〈kj ||ib〉tkjab

+
1

2

∑
ia

iyλai

−∑
jkb

〈ib||kj〉tkj?ab +
∑
jbc

〈cb||aj〉t ij?cb


+
∑
ia

iyλaiR(D′)ai +
∑
pq

D ′pqh[λ]
pq (2.123)

=
∑
ia

iyλaiR(D′)ai +
∑
pq

D ′pqh[λ]
pq (2.124)

The definition for the imaginary response operator is also different from the real analogue,

R (D′)ai =
∑
pq

D ′pq (−〈ap||iq〉+ 〈ip||aq〉)

=
∑
pq

D ′pq (〈ap|qi〉 − 〈ip|qa〉) . (2.125)

By taking the symmetry of the unrelaxed MP2 density matrix into account, it can be shown, that the

elements of the response matrix yield zero,

R (D′)pq =
∑
rs

D ′rs (〈pr |sq〉 − 〈qr |sp〉)

=
∑
rs

(D ′rs − D ′sr )︸ ︷︷ ︸
=0

〈pr |sq〉. (2.126)

Thus, the first derivative of the MP2 energy with respect to an arbitrary imaginary perturbation can be

calculated as expectation value of the perturbed one-electron operator, assuming the basis functions to

be independent of the perturbation.
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The Zero-Order z-vector Equation The total derivative of the MP2 energy functional is,

dE2

dλ
=
∑
ai

xλai

∑
jbc

〈cb||aj〉t ijcb −
∑
jkb

〈ib||kj〉tkjab + R (D′)ai


+

1

2

∑
ia

iyλai

−∑
jbc

〈aj ||cb〉t ijcb +
∑
jkb

〈kj ||ib〉tkjab −
∑
jkb

〈ib||kj〉tkj?ab +
∑
jbc

〈cb||aj〉t ij?cb + R(D′)ai


+
∑
pq

D ′pqh[λ]
pq

=
∑
ai

xλaiXai + iyλaiYai +
∑
pq

D ′pqh[λ]
pq (2.127)

where the MP2 and RI-MP2 Lagrangians are introduced,

Xai =
∑
jbc

〈cb||aj〉t ijcb −
∑
jkb

〈ib||kj〉tkjab + R (D′)ai (2.128)

X
(RI )
ai = 2

∑
cP

(ac |P)Γ′Pic − 2
∑
kP

(ki |P)Γ′Pka + R (D′)ai (2.129)

Yai =
1

2

∑
jbc

−〈aj ||cb〉t ijcb + 〈cb||aj〉t ij?cb +
1

2

∑
jkb

〈kj ||ib〉tkjab − 〈ib||kj〉tkj?ab + R (D′)ai (2.130)

Y
(RI )
ai =

∑
cP

−(ac |P)Γ′Pic + (ca|P)Γ′Pci +
∑
kP

(ki |P)Γ′Pka − (ik|P)Γ′Pak + R (D′)ai . (2.131)

The z-vector method developed by Handy and Schäfer [14] replaces the set of CP-SCF equations for every

perturbation λ by one perturbation independent z-vector equation. This is done by inserting the formal

solution of the CPHF equations, eq. 2.92 and 2.93, into the MP2 derivative expression,

dE2

dλ
=
∑
ia

xλaiXai + iyλaiYai +
∑
pq

D ′pqh[λ]
pq

=
∑
ia

((
A(<)

)−1

B(<)λ

)
ai

Xai + i
∑
ia

((
A(=)

)−1

B(=)λ

)
ai

Yai +
∑
pq

D ′pqh[λ]
pq

=
∑
ia

B
(<)λ
ai

∑
jb

(
A(<)

)−1

ai ,bj
Xbj + i

∑
ia

B
(=)λ
ai

∑
jb

(
A(=)

)−1

ai ,bj
Ybj +

∑
pq

D ′pqh[λ]
pq

= −
∑
ia

B
(<)λ
ai zai − i

∑
ia

B
(=)λ
ai zai +

∑
pq

D ′pqh[λ]
pq . (2.132)

The final z-vector equations are given as,

zai (εa − εi ) +
∑
jb

zbj [〈ab||ij〉+ 〈aj ||ib〉] = − Xai (2.133)

izai (εa − εi ) + i
∑
jb

zbj [−〈ab||ij〉+ 〈aj ||ib〉] = − Yai (2.134)

and the first MP2 derivative becomes,

dE2

dλ
=
∑
pq

D ′pqh[λ]
pq +

∑
ia

zaih
[λ]
ai =

∑
pq

Dpqh[λ]
pq (2.135)
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with the relaxed MP2 density matrix Dpq defined as,

D
(<)
ij = D

(=)
ij = D ′ij (2.136)

D
(<)
ab = D

(=)
ab = D ′ab (2.137)

D
(<)
ai =

1

2
zai D

(=)
ai = 0 (2.138)

D
(<)
ia =

1

2
zai D

(=)
ia = 0. (2.139)

In the imaginary case, the relaxed MP2 density is identical to the unrelaxed MP2 density matrix, since

the Lagrangian Yai is zero. Therefore, a magnetic perturbation does not change the electron density to

first order as in the SCF case.

The Relaxed Density Matrix The relaxed density matrix in MP2 has been first identified by Bartlett

and co-workers [12, 13] as a by-product in analytic gradient calculations. Therefore, the first derivative

of the MP2 energy correction w.r.t. an arbitrary real perturbation has been derived and the z-vector

equations are formulated, cf. eqs. 2.132, 2.133. Any basis function independent perturbation can then

be expressed as,

dE2

dλ
=
∑
pq

Dpqh[λ]
pq (2.140)

and in the special case of a delta-function perturbation h
[λ]
pq = 〈p|δ(r′ − r)|q〉 = ψ?p(r)ψq(r), eq. 2.140

becomes,

dE2

dλ
=
∑
pq

Dpqψ
?
p(r)ψq(r). (2.141)

The matrix D was then identified as the matrix representation of the correlation correction to the electron

density. [12,13] The relaxed density itself is a response property obtained as energy derivative of the MP2

correlation correction w.r.t. to the delta-function perturbation. Therefore, the response density contains

all orbital relaxation effects, in contrast, to the density obtained as an expectation value over the first-

order wave function. [13] It has never been pointed out, what is exactly the case for purely imaginary

perturbations. But referring to the previously derived equations (eqs. 2.132, 2.134), one would never end

up at these z-vector equations.
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2.4.3. The Second Derivative of the MP2 Energy

The derivation of the second derivative of the MP2 Hylleraas functional is given as,

d2E2

dλdκ
=

∂

∂κ

∑
ai

Uλ
ai

1

2

∑
jbc

〈cb||aj〉t ij?cb −
1

2

∑
jkb

〈ib||kj〉tkj?ab +
∑
kl

D ′kl〈ik||al〉+
∑
cd

D ′cd〈ic ||ad〉

+
∑
j

D ′jiFia +
∑
b

D ′abFib


+
∑
ai

Uλ?
ai

1

2

∑
jbc

〈aj ||cb〉t ijcb −
1

2

∑
jkb

〈kj ||ib〉tkjab +
∑
kl

D ′kl〈ak||il〉+
∑
cd

D ′cd〈ac ||id〉

+
∑
j

D ′ijFaj +
∑
b

D ′baFbi


+
∑
pq

D ′pqh[λ]
pq

}
. (2.142)

The derivatives of the Fock matrix elements vanish, since the zero-order CP-SCF equations are obtained,

after expansion of the perturbed MO coefficients in the basis of the zero-order MO coefficients via the

orbital rotation coefficients Uκ, eqs. 2.92 and 2.93.

∑
ija

Uλ
aiD
′
jiF

κ
ai =

∑
ija

Uλ
aiD
′
ji

[∑
k

Uκ?
ka Fki +

∑
b

Uκ
biFab + h

[κ]
ai +

∑
kc

Uκ?
ck 〈ac||ik〉+ Uκ

ck〈ak||ic〉

]

=
∑
ia

[
Uκ
ai (εa − εi ) + h

[κ]
ai

]∑
j

Uλ
aiD
′
ji +

∑
ija

Uλ
aiD
′
ji

∑
kc

[Uκ?
ck 〈ac ||ik〉+ Uκ

ck〈ak||ic〉]

=
∑
ija

xλaiD
′
ji

[∑
kc

A
(<)
ai ,ckxκck + h

(<)[κ]
ai

]
︸ ︷︷ ︸

=0

+i
∑
ija

yλaiD
′
ji

[
i
∑
kc

A
(=)
ai ,ckyκck + h

(=)[κ]
ai

]
︸ ︷︷ ︸

=0

(2.143)

Real Perturbations

d2E2

dλdκ
=

∂

∂κ

{∑
pq

D ′pqh[λ]
pq +

∑
ai

zaih
[λ]
ai

}

=
∑
pq

[
D ′κpqh[λ]

pq + D ′pqh[λ,κ]
pq

]
+
∑
ia

(
zκaih

[λ]
ai + zaih

[λ,κ]
ai

)
+
∑
pq

[∑
r

Uκ?
rp Drp + Uκ

rqDpr

]
h[λ]
pq

=
∑
pq

[
Dκ

pq +
∑
r

xκrpDrq + xκrqDpr

]
h[λ]
pq + Dpqh[λ,κ]

pq (2.144)
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The second MP2 derivative requires the calculation of the first-order density matrix Dκ
pq. The elements

of the perturbed density matrix are given in eqs. 2.145 – 2.148.

Dκ
ij = − 1

2

∑
kab

(
t ik,κ
ab t jk?ab + t ikabt jk?,κ

ab

)
(2.145)

Dκ
ab =

1

2

∑
ijc

(
t ij?,κ
ac t ijbc + t ij?ac t ij ,κbc

)
(2.146)

Dκ
ai =

1

2
zκai (2.147)

Dκ
ia =

1

2
zκai (2.148)

In order to calculate the first-order relaxed MP2 density matrix, the knowledge of the perturbed double

excitation amplitudes and the solution of the first-order z-vector equations is required.

First-Order MP2 Amplitude Equations The zero-order MP2 amplitudes are real, but the first-order

amplitudes might differ for real and imaginary amplitudes. The MP2 amplitude equation can be derived

from the variational condition,

∂E2

∂t ijab
=

∂

∂t ijab

{∑
klcd

[
1

4
tklcd〈kl ||cd〉+

1

4
tkl?cd 〈cd ||kl〉 − 1

2

∑
m

Fkl t
km
cd t lm?cd +

∑
e

1

2
Fcd tkl?ce tklde

]}

=
1

4

∑
klcd

[δikδjlδacδbd − δjkδilδacδbd − δikδjlδbcδad + δjkδilδbcδad ] 〈kl ||cd〉

− 1

2

∑
klmcd

[δikδjmδacδbd − δjkδimδacδbd − δikδjmδbcδad + δjkδimδbcδad ] tkm?cd Fkl

+
1

2

∑
klcde

[δikδjlδadδbe − δjkδilδadδbe − δikδjlδbdδae + δjkδilδbdδae ] tkl?ce Fcd

= 〈ij ||ab〉 − 1

2

∑
k

[
tkj?ab Fik − tki?ab Fjk − tkj?ba Fik + tki?ba Fjk

]
+

1

2

∑
c

[
t ij?cb Fca − t ji?cb Fca − t ij?ca Fcb + t ji?ca Fcb

]
= 〈ij ||ab〉 −

∑
k

tkj?ab Fik + t ik?ab Fjk +
∑
c

t ij?cb Fca + t ij?ac Fcb = 0. (2.149)

Differentiation of eq. 2.149 with respect to the perturbation κ yields the first-order amplitude equation,

eq. 2.150.

∂2E2

∂t ijab∂κ
=
∂〈ab||ij〉
∂κ

−
∑
k

(
Fik

∂tkj?ab

∂κ
+
∂Fik

∂κ
tkj?ab +

∂t ik?ab

∂κ
Fjk + t ik?ab

∂Fjk

∂κ

)

+
∑
c

(
Fca

∂t ij?cb
∂κ

+
∂Fca

∂κ
t ij?cb +

∂t ij?ac
∂κ

Fcb + t ij?ac
∂Fcb

∂κ

)
(2.150)
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The conditional equation for the first-order complex conjugate MP2 amplitudes is,

∂2E2

∂t ij?ab ∂κ
=
∂〈ij ||ab〉
∂κ

−
∑
k

(
Fki

∂tkjab
∂κ

+
∂Fki

∂κ
tkjab +

∂t ikab
∂κ

Fkj + t ikab
∂Fkj

∂κ

)

+
∑
c

(
Fac

∂t ijcb
∂κ

+
∂Fac

∂κ
t ijcb +

∂t ijac
∂κ

Fbc + t ijac
∂Fbc

∂κ

)
. (2.151)

The complete derivative of the amplitudes reads,

t ij ,κab (εa + εb − εi − εj) = −

[∑
k

Uκ?
ka 〈kb||ij〉+ Uκ?

kb 〈ak||ij〉+
∑
c

Uκ
ci 〈ab||cj〉+ Uκ

cj〈ab||ic〉

]
+
∑
k

(
t ik?ab Fκjk + Fκik tkj?ab

)
−
∑
c

(
t ij?ac Fκcb + Fκcat ij?cb

)
=
∑
k

xκak〈kb||ij〉+ xκbk〈ak||ij〉 −
∑
c

xκci 〈ab||cj〉+ xκcj〈ab||ic〉

+
∑
k

(
t ik?ab Fκjk + Fκik tkj?ab

)
−
∑
c

(
t ij?ac Fκcb + Fκcat ij?cb

)
(2.152)

with the perturbed Fock matrix elements given as,

Fκpq = h[κ]
pq + R(Uκ)pq.

The derivative for the corresponding complex conjugate double excitation amplitudes is the same as for

the real MP2 amplitudes. Thus, the first-order MP2 density matrix for real hermitian perturbations is

symmetric.

First-Order z-vector Equations The perturbed z-vector, which defines the virtual-occupied block of

the first-order relaxed MP2 density, is obtained as solution to the first-order z-vector equations. These

necessary equations are easily derived by differentiating the zero-order z-vector equation, eq. 2.133,

A(<) ∂z

∂κ
= − ∂X

∂κ
− ∂A(<)

∂κ
z. (2.153)

The derivative of the matrix A(<) for real perturbations is given as,(
∂A(<)

∂κ
z

)
ai

=

(
∂εa
∂κ
− ∂εi
∂κ

)
zai +

∑
bj

zbj
∂

∂κ
(〈ab||ij〉+ 〈aj ||ib〉)

=

(
∂εa
∂κ
− ∂εi
∂κ

)
zai

+
∑
bj

zbj

{∑
k

Uκ?
ka 〈kb||ij〉+ Uκ?

ka 〈kj ||ib〉+ Uκ?
kb 〈ak||ij〉+ Uκ

kb〈aj ||ik〉

+
∑
c

Uκ
ci 〈ab||cj〉+ Uκ

ci 〈aj ||cb〉+ Uκ
cj〈ab||ic〉+ Uκ?

cj 〈ac ||ib〉

}

=

(
∂εa
∂κ
− ∂εi
∂κ

)
zai −

∑
k

xκakR(z)ki +
∑
c

xκciR(z)ac + R(z̃(<))ai (2.154)
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with the modified and perturbation dependent z-density,

z̃
(<)
jk = −

∑
b

zbjx
κ
bk (2.155)

z̃
(<)
bc =

∑
j

zbjx
κ
cj . (2.156)

The derivative of the real Lagrangian is given in eq. 2.157. Exploring the fact, that the MP2 ampli-

tudes and its derivatives are purely real for electric perturbations, the Lagrangian can be simplified by

summarizing the amplitude terms.

∂Xai

∂κ
=

∂

∂κ

∑
jbc

〈cb||aj〉t ijcb −
∑
jkb

〈ib||kj〉tkjab + R(D′)ai


=
∑
jbc

{∑
k

Uκ?
kc 〈kb||aj〉+

∑
k

Uκ?
kb 〈ck ||aj〉+

∑
k

Uκ
ka〈cb||kj〉+

∑
d

Uκ
dj〈cb||ad〉

}
t ijcb

−
∑
jkb

{∑
c

Uκ?
ci 〈cb||kj〉+

∑
l

Uκ?
lb 〈il ||kj〉+

∑
c

Uκ
ck〈ib||cj〉+

∑
c

Uκ
cj〈ib||kc〉

}
tkjab

+
∑
jbc

〈cb||aj〉t ij ,κcb −
∑
jkb

〈ib||kj〉tkj ,κab +
∂R(D′)ai

∂κ

=
∑
jb

xκbj

−2
∑
kc

(
〈jc ||ak〉t ikbc + 〈ic ||bk〉t jkac

)
+
∑
cd

〈cd ||ab〉t ijcd︸ ︷︷ ︸
2K(tij )ab

+
∑
kl

〈ij ||kl〉tklab︸ ︷︷ ︸
2G ij

ab


−
∑
k

xκak
∑
jbc

〈cb||kj〉t ijcb −
∑
c

xκci
∑
jkb

〈cb||kj〉tkjab

+
∑
jbc

〈cb||aj〉t ij ,κcb −
∑
jkb

〈ib||kj〉tkj ,κab +
∂R(D′)ai

∂κ
(2.157)

The perturbed Lagrangian contains integrals with 4-internal to 4-external indices, which are contracted

with the zero- and first-order amplitudes, respectively. Evaluating the derivative of the response operator

for real perturbations,

∂R(D′)ai
∂κ

=
∂

∂κ

∑
bc

D ′bc [〈ab||ic〉+ 〈ib||ac〉] +
∑
jk

D ′jk [〈aj ||ik〉+ 〈ij ||ak〉]


=
∑
bc

D ′κbc [〈ab||ic〉+ 〈ib||ac〉] +
∑
jk

D ′κjk [〈aj ||ik〉+ 〈ij ||ak〉]

+
∑
bc

D ′bc

∑
j

Uκ?
ja 〈jb||ic〉+

∑
j

Uκ?
jb 〈aj ||ic〉+

∑
d

Uκ
di 〈ab||dc〉+

∑
j

Uκ
jc〈ab||ij〉

+
∑
d

Uκ?
di 〈db||ac〉+

∑
j

Uκ?
jb 〈ij ||ac〉+

∑
j

Uκ
ja〈ib||jc〉+

∑
j

Uκ
jc〈ib||aj〉
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+
∑
jk

D ′jk

{∑
l

Uκ?
la 〈lj ||ik〉+

∑
b

Uκ?
bj 〈ab||ik〉+

∑
b

Uκ
bi 〈aj ||bk〉+

∑
b

Uκ
bk〈aj ||ib〉

+
∑
b

Uκ?
bi 〈bj ||ak〉+

∑
b

Uκ?
bj 〈ib||ak〉+

∑
l

Uκ
la〈ij ||lk〉+

∑
b

Uκ
bk〈ij ||ab〉

}
=
∑
bc

D ′κbc [〈ab||ic〉+ 〈ac ||ib〉] +
∑
jk

D ′κjk [〈aj ||ik〉+ 〈ak||ij〉]

+
∑
bc

D ′bc

−∑
j

xκaj〈jb||ic〉 −
∑
j

xκbj〈aj ||ic〉+
∑
d

xκdi 〈ab||dc〉 −
∑
j

xκcj〈ab||ij〉

+
∑
d

xκdi 〈db||ac〉 −
∑
j

xκbj〈ij ||ac〉 −
∑
j

xκaj〈ib||jc〉 −
∑
j

xκcj〈ib||aj〉


+
∑
jk

D ′jk

{
−
∑
l

xκal〈lj ||ik〉+
∑
b

xκbj〈ab||ik〉+
∑
b

xκbi 〈aj ||bk〉+
∑
b

xκbk〈aj ||ib〉

+
∑
b

xκbi 〈bj ||ak〉+
∑
b

xκbj〈ib||ak〉 −
∑
l

xκal〈ij ||lk〉+
∑
b

xκbk〈ij ||ab〉

}
= R(D′κ)ai −

∑
j

xκajR(D′)ij +
∑
b

xκbiR(D′)ab + R(D̃′κ)ai (2.158)

with the modified and perturbation dependent unrelaxed density defined as,

D̃ ′κbj = − 2
∑
c

D ′bcxκcj + 2
∑
k

xκbkD ′kj . (2.159)

Comparing the derivative of the response operator with the derivative of the A-matrix in eq. 2.154 displays

three similar response operator type terms over the z-vector on the one hand and over the unrelaxed density

on the other hand. Recalling the structure of the relaxed MP2 density matrix shows, that these terms

can be summarized as response-type operators over the relaxed MP2 density matrix, eq. 2.160.

−
∑
j

xκajR(D′)ij +
∑
b

xκbiR(D′)ab + R(D̃′κ)ai −
∑
k

xκakR(z)ki +
∑
c

xκciR(z)ac + R(z̃(<))ai

= −
∑
j

xκajR(D)ij +
∑
b

xκbiR(D)ab + R(D̃κ)ai (2.160)

Collecting all terms for the right hand side of the first-order z-vector equations yields,

− ∂X

∂κ
− ∂A(<)

∂κ
z

= −
∑
jb

xκbj

[
2
∑
k

[
Jjk −Kjk

]
tik + tjk

[
Jik −Kik

]
+ 2K(tij)ab + 2Gij

ab

]
+ 2

∑
jk

xκaktr(Kkjtij) + 2
∑
jkc

xκci (Kkjtkj)ac − 2
∑
j

K(tij ,κ)aj + 2
∑
jkb

Kik
bjt

kj ,κ
ab

−
(
∂εa
∂κ
− ∂εi
∂κ

)
zai − R(D′κ)ai +

∑
j

xκajR(D)ij −
∑
b

xκbiR(D)ab − R(D̃κ)ai
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= −
∑
jb

xκbjσ
ij(1)
ab +

∑
j

xκaj tr
(
σij(2)

)
+
∑
jb

xκbiσ
jj(3)
ab − 2

∑
j

K(tij ,κ)aj + 2
∑
jkb

Kik
bjt

kj ,κ
ab

−
(
∂εa
∂κ
− ∂εi
∂κ

)
zai − R(D′κ)ai +

∑
j

xκajR(D)ij −
∑
b

xκbiR(D)ab − R(D̃κ)ai (2.161)

where the residual vectors σ are defined as,

σ
ij(1)
ab = 2

∑
k

[
Jjk −Kjk

]
tik + tjk

[
Jik −Kik

]
+ 2K(tij)ab + 2Gij

ab (2.162)

tr(σij(2)) = 2
∑
k

tr(tikKjk) (2.163)

σ
jj(3)
ab = 2

∑
k

(Kkjtkj)ab. (2.164)

Imaginary Perturbations

The formal expression for the second derivative of the MP2 energy functional with respect to an imaginary

hermitian perturbations is given in eq. 2.165. Although the zero-order z-vector in the imaginary case is

zero, the perturbed z-vector z
κ
ai might be non-vanishing.

d2E2

dλdκ
=

∂

∂κ

{∑
pq

D ′pqh[λ]
pq +

∑
ai

zaih
[λ]
ai

}

=
∑
pq

[
D ′κpqh[λ]

pq + D ′pqh[λ,κ]
pq

]
+
∑
ia

(
z
κ
aih

[λ]
ai + zaih

[λ,κ]
ai

)
+
∑
pq

[∑
r

Uκ?
rp Drp + Uκ

rqDpr

]
h[λ]
pq

=
∑
pq

[
Dκ

pq +
∑
r

−iyκrpDrq + iyκrqDpr

]
h[λ]
pq + Dpqh[λ,κ]

pq (2.165)

The occupied-occupied and virtual-virtual subspaces of the perturbed density matrices are analogous to

the real case, but the occupied-virtual block differs in sign, in order to account for the skew symmetry of

the imaginary part of the hermitian matrix.

Dκ
ij = − 1

2

∑
kab

(
t ik,κ
ab t jk?ab + t ikabt jk?,κ

ab

)
(2.166)

Dκ
ab =

1

2

∑
ijc

(
t ij?,κ
ac t ijbc + t ij?ac t ij ,κbc

)
(2.167)

Dκ
ai =

1

2
z
κ
ai (2.168)

Dκ
ia = − 1

2
z
κ
ai (2.169)
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First-Order MP2 Amplitude Equations The explicit expressions for the first-order MP2 amplitudes

and the corresponding complex conjugate amplitudes can be derived from eqs. 2.150 and 2.151.

t ij ,κab (εa + εb − εi − εj) = −

[∑
k

Uκ?
ka 〈kb||ij〉+ Uκ?

kb 〈ak||ij〉+
∑
c

Uκ
ci 〈ab||cj〉+ Uκ

cj〈ab||ic〉

]
+
∑
k

(
t ik?ab Fκkj + Fκki t

kj?
ab

)
−
∑
c

(
t ij?ac Fκcb + Fκcat ij?cb

)
=
∑
k

iyκak〈ij ||kb〉+ iyκbk〈ij ||ak〉 −
∑
c

iyκci 〈cj ||ab〉+ iyκcj〈ic ||ab〉

+
∑
k

(
t ik?ab Fκjk + Fκik tkj?ab

)
−
∑
c

(
t ij?ac Fκcb + Fκcat ij?cb

)
(2.170)

t ij?,κ
ab (εa + εb − εi − εj) = −

[∑
c

Uκ?
ci 〈cj ||ab〉+ Uκ?

cj 〈ic ||ab〉+
∑
k

Uκ
ka〈ij ||kb〉+ Uκ

kb〈ij ||ak〉

]
+
∑
k

(
t ikabFκjk + Fκik tkjab

)
−
∑
c

(
t ijacFκbc + Fκact ijcb

)
=
∑
c

iyκci 〈cj ||ab〉+ iyκcj〈ic ||ab〉 −
∑
k

iyκak〈ij ||kb〉+ iyκbk〈ij ||ak〉

+
∑
k

(
t ikabFκkj + Fκki t

kj
ab

)
−
∑
c

(
t ijacFκbc + Fκact ijcb

)
(2.171)

As can be seen from eqs. 2.170 and 2.171 the derivatives of the double excitation amplitudes and its

complex conjugate differ in its algebraic signs, considering the anti-symmetry of the perturbed Fock

matrix,

Fκpq = h[κ]
pq + R(Uκ)pq = − Fκqp.

Therefore, the following relations for the MP2 amplitudes and subspaces of the density matrix are obtained,

=m
(

t ij ,κab

)
= −=m

(
t ij?,κ
ab

)
(2.172)

=m
(

t ij ,κab

)
= −<e

(
t ij ,κab

)
(2.173)

=m
(
Dκ

ij

)
= −=m

(
Dκ

ji

)
(2.174)

=m (Dκ
ab) = −=m (Dκ

ba) . (2.175)

Perturbed z-vector Equations for the Imaginary Case Differentiation of the zero-order z-vector

equation for imaginary perturbations yields,

A(=) ∂z

∂κ
= − ∂Y

∂κ
− ∂A(=)

∂κ
z (2.176)

where the derivative of the A-matrix on the right hand side of the equation system is not required, since

the zero-order z-vector is zero.

Differentiating the imaginary Lagrangian yields,

∂Yai

∂κ
=

1

2

∂

∂κ

∑
jbc

〈cb||aj〉t ij?cb −
∑
jkb

〈ib||kj〉tkj?ab −
∑
jbc

〈aj ||cb〉t ijcb +
∑
jkb

〈kj ||ib〉tkjab + 2R(D′)ai
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=
1

2

∑
jbc

t ij?cb

[∑
k

Uκ?
kc 〈kb||aj〉+

∑
k

Uκ?
kb 〈ck ||aj〉+

∑
k

Uκ
ka〈cb||kj〉+

∑
d

Uκ
dj〈cb||ad〉

]

−
∑
jkb

tkj?ab

[∑
c

Uκ?
ci 〈cb||kj〉+

∑
l

Uκ?
lb 〈il ||kj〉+

∑
c

Uκ
ck〈ib||cj〉+

∑
c

Uκ
cj〈ib||kc〉

]

−
∑
jbc

t ijcb

[∑
k

Uκ?
ka 〈kj ||cb〉+

∑
d

Uκ?
dj 〈ad ||cb〉+

∑
k

Uκ
kc〈aj ||kb〉+

∑
k

Uκ
kb〈aj ||ck〉

]

+
∑
jkb

tkjab

[∑
c

Uκ?
ck 〈cj ||ib〉+

∑
c

Uκ?
cj 〈kc ||ib〉+

∑
c

Uκ
ci 〈kj ||cb〉+

∑
l

Uκ
lb〈kj ||il〉

]

+
∑
jbc

〈cb||aj〉t ij?,κ
cb −

∑
jkb

〈ib||kj〉tkj?,κ
ab −

∑
jbc

〈aj ||cb〉t ij ,κcb +
∑
jkb

〈kj ||ib〉tkj ,κab

+
∂R(D′)ai

∂κ

= i
∑
bj

yκbj

−2
∑
kc

{
〈jc ||ak〉t ikbc + 〈ic ||bk〉t jkac

}
+
∑
cd

〈cd ||ab〉t ijcd︸ ︷︷ ︸
2K(tij )ab

+
∑
kl

〈ij ||kl〉tklab︸ ︷︷ ︸
2G ij

ab


+ i
∑
k

yκak〈cb||kj〉t ijcb + i
∑
c

yκci 〈cb||kj〉tkjab

−
∑
jbc

〈aj ||cb〉t ij ,κcb +
∑
jkb

〈kj ||ib〉tkj ,κab +
∂R(D′)ai

∂κ
. (2.177)

Thus, the perturbed imaginary Lagrangian is similar to the first-order Lagrangian in the real case, cf.

eq. 2.157, but differs in the sign of the fifth and sixth integral contribution as well as in the definition of

the perturbed amplitudes. The derivative of the imaginary response operator is given,

∂R(D′)ai
∂κ

=
∂

∂κ

∑
bc

D ′bc [−〈ab||ic〉+ 〈ib||ac〉] +
∑
jk

D ′jk [−〈aj ||ik〉+ 〈ij ||ak〉]


=
∑
bc

D ′κbc [−〈ab||ic〉+ 〈ib||ac〉] +
∑
jk

D ′κjk [−〈aj ||ik〉+ 〈ij ||ak〉]

+
∑
bc

D ′bc

−∑
j

Uκ?
ja 〈jb||ic〉 −

∑
j

Uκ?
jb 〈aj ||ic〉 −

∑
d

Uκ
di 〈ab||dc〉 −

∑
j

Uκ
jc〈ab||ij〉

+
∑
d

Uκ?
di 〈db||ac〉+

∑
j

Uκ?
jb 〈ij ||ac〉+

∑
j

Uκ
ja〈ib||jc〉+

∑
j

Uκ
jc〈ib||aj〉


+
∑
jk

D ′jk

{
−
∑
l

Uκ?
la 〈lj ||ik〉 −

∑
b

Uκ?
bj 〈ab||ik〉 −

∑
b

Uκ
bi 〈aj ||bk〉 −

∑
b

Uκ
bk〈aj ||ib〉

+
∑
b

Uκ?
bi 〈bj ||ak〉+

∑
b

Uκ?
bj 〈ib||ak〉+

∑
l

Uκ
la〈ij ||lk〉+

∑
b

Uκ
bk〈ij ||ab〉

}
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=
∑
bc

D ′κbc [−〈ab||ic〉+ 〈ib||ac〉] +
∑
jk

D ′κjk [−〈aj ||ik〉+ 〈ij ||ak〉]

+ i
∑
bc

D ′bc

∑
j

yκaj〈jb||ic〉+
∑
j

yκbj〈aj ||ic〉 −
∑
d

yκdi 〈ab||dc〉 −
∑
j

yκcj〈ab||ij〉

−
∑
d

yκdi 〈db||ac〉 −
∑
j

yκbj〈ij ||ac〉+
∑
j

yκaj〈ib||jc〉+
∑
j

yκcj〈ib||aj〉


+ i
∑
jk

D ′jk

{∑
l

yκal〈lj ||ik〉+
∑
b

yκbj〈ab||ik〉 −
∑
b

yκbi 〈aj ||bk〉 −
∑
b

yκbk〈aj ||ib〉

−
∑
b

yκbi 〈bj ||ak〉 −
∑
b

yκbj〈ib||ak〉+
∑
l

yκal〈ij ||lk〉+
∑
b

yκbk〈ij ||ab〉

}
= R(D′κ)ai + i

∑
j

yκajR(D)ij − i
∑
b

yκbiR(D)ab + R( ˜̃Dκ)ai (2.178)

with the modified and perturbation dependent relaxed density defined as,

˜̃Dκ
bj = 2i

∑
c

Dbcyκcj + 2i
∑
k

yκbkDkj = − ˜̃Dκ
jb. (2.179)

Collecting all terms, which define the right hand side of the first-order z-vector equation for imaginary

perturbations. The final right hand side of the first-order imaginary z-vector equation is given in eq. 2.180,

where the residual vectors are defined in eqs. 2.162–2.164.

− ∂Y

∂κ
− ∂A(=)

∂κ
z

= −
∑
jb

iyκbj

[
2
∑
k

[
Jjk −Kjk

]
tik + tjk

[
Jik −Kik

]
+ 2K(tij)ab + 2Gij

ab

]
− 2

∑
jk

iyκaktr(Kkjtij)− 2
∑
jkc

iyκci (Kkjtkj)ac − 2
∑
j

K(tij ,κ)aj + 2
∑
jkb

Kik
bjt

kj ,κ
ab

− R(D′κ)ai −
∑
j

iyκajR(D)ij +
∑
b

iyκbiR(D)ab − R( ˜̃Dκ)ai

= −
∑
jb

iyκbjσ
ij(1)
ab −

∑
j

iyκaj tr
(
σij(2)

)
−
∑
jb

iyκbiσ
jj(3)
ab − 2

∑
j

K(tij ,κ)aj + 2
∑
jkb

Kik
bjt

kj ,κ
ab

− R(D′κ)ai −
∑
j

iyκajR(D)ij +
∑
b

iyκbiR(D)ab − R( ˜̃Dκ)ai (2.180)
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2.5. The Second Derivative of the RI-MP2 Energy

The ’Resolution of the Identity’ approximation is only applied to the correlation correction, but not to the

Hartree-Fock wave function. Therefore, the Fock and response operators together with its derivatives are

calculated via conventional two-electron repulsion integrals. The formal RI-MP2 second derivative can

be written as,

d2E (RI )
2

dλdκ
=
∂

∂κ

{∑
ia

xλai

[
2
∑
cP

(ac |P)Γ′Pic −
∑
kP

(ki |P)Γ′Pka + R(D′)ai

]

+i
∑
ia

yλai

[
−
∑
cP

(ac |P)Γ′Pic +
∑
cP

(ca|P)Γ′Pci +
∑
kP

(ki |P)Γ′Pka −
∑
kP

(ik|P)Γ′Pak + R(D′)ai

]

+
∑
pq

D ′pqh[λ]
pq

}
. (2.181)

2.5.1. Real Perturbations

The first-order RI-MP2 density matrix differs from its conventional counterpart in the formulation of the

unperturbed and perturbed double excitation amplitudes. The zero-order RI-MP2 amplitudes have been

already derived in eq. 2.103, and the first-order amplitudes take the from,

t
ij ,κ(RI )
ab (εa + εb − εi − εj) = −

∑
cP

xκci
(
BP
caBP

jb − BP
cbBP

ja

)
+ xκcj

(
BP
iaBP

cb − BP
ibBP

ca

)
+
∑
kP

xκak
(
BP
ikBP

jb − BP
ibBP

jk

)
+ xκbk

(
BP
iaBP

jk − BP
ikBP

ja

)
+
∑
k

(
t ik?ab Fκjk + Fκik tkj?ab

)
−
∑
c

(
t ij?ac Fκcb + Fκcat ij?cb

)
(2.182)

with the conventional perturbed Fock matrix elements defined in eq. 2.117. The first-order z-vector

equations are identical to the conventional case. Thus, the derivative of the real Lagrangian in the RI

approximation remains to be derived,

∂Xai

∂κ
=

∂

∂κ

(
2
∑
cP

(ac |P)Γ′Pic − 2
∑
kP

(ki |P)Γ′Pka + R(D′)ai

)

= 2
∑
cP

(∑
k

Uκ?
ka (kc |P) +

∑
k

Uκ
kc(ak|P)

)
Γ′Pic + 2

∑
jbcP

(∑
d

Uκ?
dj BP

acBP
db +

∑
k

Uκ
kbBP

acBP
jk

)
t ijcb

− 2
∑
kP

(∑
c

Uκ?
ck (ci |P) +

∑
c

Uκ
ci (kc |P)

)
Γ′Pka − 2

∑
jkbP

(∑
c

Uκ?
cj BP

kiB
P
cb +

∑
l

Uκ
lbBP

kiB
P
jl

)
tkjab

+ 2
∑
cP

(ac |P)Γ′P,κ
ic − 2

∑
kP

(ki |P)Γ′P,κ
ka +

∂R(D′)ai
∂κ

= 2
∑
jb

xκbj
∑
P

[∑
kc

{
BP
acBP

jk − BP
ajB

P
bk

}
t ikbc +

∑
kc

{
BP
kiB

P
bc − BP

biB
P
kc

}
t jkac

+
∑
cd

BP
acBP

bd t ijcd +
∑
kl

BP
kiB

P
lj tkjab

]
− 2

∑
k

xak
∑
cP

(kc |P)Γ′Pic − 2
∑
c

xκci
∑
kP

(kc |P)Γ′Pka

+ 2
∑
cP

(ac |P)Γ′P,κ
ic − 2

∑
kP

(ki |P)Γ′P,κ
ka +

∂R(D′)ai
∂κ

(2.183)
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with the perturbed 3-index 2-particle density matrix given as,

Γ′P,κ
ia =

∑
jbQ

V−1
PQ (Q|jb)t ij ,κab . (2.184)

2.5.2. Imaginary Perturbations

The perturbed RI-MP2 amplitudes for imaginary perturbations are shown in eq. 2.185 and 2.186.

t
ij ,κ(RI )
ab (εa + εb − εi − εj) =

∑
cP

iyκci
(
BP
caBP

jb − BP
cbBP

ja

)
+ iyκcj

(
BP
iaBP

cb − BP
ibBP

ca

)
−
∑
kP

iyκak
(
BP
ikBP

jb − BP
ibBP

jk

)
+ iyκbk

(
BP
iaBP

jk − BP
ikBP

ja

)
+
∑
k

(
t ik?ab Fκjk + Fκik tkj?ab

)
−
∑
c

(
t ij?ac Fκcb + Fκcat ij?cb

)
(2.185)

t
ij?,κ(RI )
ab (εa + εb − εi − εj) =

∑
kP

iyκak
(
BP
ikBP

jb − BP
ibBP

jk

)
+ iyκbk

(
BP
iaBP

jk − BP
ikBP

ja

)
−
∑
cP

iyκci
(
BP
caBP

jb − BP
cbBP

ja

)
+ iyκcj

(
BP
iaBP

cb − BP
ibBP

ca

)
+
∑
k

(
t ikabFκkj + Fκki t

kj
ab

)
−
∑
c

(
t ijacFκbc + Fκact ijcb

)
(2.186)

The derivative of the RI-MP2 imaginary Lagrangian is given as,

∂Yai

∂κ
=

∂

∂κ

{
−
∑
cP

(ac |P)Γ′Pic + (ca|P)Γ′Pci +
∑
kP

(ki |P)Γ′Pka − (ik|P)Γ′Pak + R(D′)ai

}

= −
∑
cP

∑
k

[Uκ?
ka (kc |P) + Uκ

kc(ak|P)] Γ′Pic −
∑
jbcP

(∑
d

Uκ?
dj BP

acBP
db +

∑
k

Uκ
kbBP

acBP
jk

)
t ijcb

+
∑
cP

∑
k

[Uκ?
kc (ka|P) + Uκ

ka(ck |P)] Γ′Pci +
∑
jbcP

(∑
k

Uκ?
kb BP

caBP
kj +

∑
d

Uκ
djB

P
caBP

bd

)
t ij?cb

+
∑
kP

∑
c

[Uκ?
ck (ci |P) + Uκ

ci (kc |P)] Γ′Pka +
∑
jkbP

(∑
c

Uκ?
cj BP

kiB
P
cb +

∑
l

Uκ
lbBP

kiB
P
jl

)
tkjab

−
∑
kP

∑
c

[Uκ?
ci (ck |P) + Uκ

ck(ic |P)] Γ′Pak −
∑
jkbP

(∑
l

Uκ?
lb BP

ikBP
lj +

∑
c

Uκ
cjB

P
ikBP

bc

)
tkj?ab

− 2
∑
cP

(ac |P)Γ′P,κ
ic + 2

∑
kP

(ki |P)Γ′P,κ
ka +

∂R(D′)ai
∂κ

= 2
∑
jb

iyκbj
∑
P

[∑
kc

{
BP
acBP

jk − BP
ajB

P
bk

}
t ikbc +

∑
kc

{
BP
kiB

P
bc − BP

biB
P
kc

}
t jkac

+
∑
cd

BP
acBP

bd t ijcd +
∑
kl

BP
kiB

P
lj tkjab

]
+ 2

∑
k

iyak
∑
cP

(kc |P)Γ′Pic + 2
∑
c

iyκci
∑
kP

(kc |P)Γ′Pka

− 2
∑
cP

(ac |P)Γ′P,κ
ic + 2

∑
kP

(ki |P)Γ′P,κ
ka +

∂R(D′)ai
∂κ

. (2.187)
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2.6. Validation of the Derived Formulae for MP2 Second

Derivatives

In the actual section we refer to the first derivation of MP2 second derivatives for imaginary perturbations

pioneered and first implemented by Gauss [17]. Although the derivation was in the context of gauge-

including atomic orbitals (GIAOs), which explicitly depend on the external perturbation, this basis function

dependence is simply dropped for comparison purposes. The ORCA package upon the present work is

based on does not yet feature GIAOs. Hence, numerical comparison would also not be possible. The

starting point for the derivation of Gauss is the expression for the MP2 energy expression, which is

explicitly formulated in terms of canonical molecular orbitals. By contrast, the Hylleraas functional, as

orbital-invariant formulation of the correlation correction is used in the previously presented derivation,

cf. eq. 2.49. Of course, both expressions become identical for canonical molecular orbitals.

EMP2 =
1

4

∑
ijab

t ij?ab 〈ab||ij〉 (2.188)

The definition of the unrelaxed density is in both derivations identical,

Dij = − 1

2

∑
kab

t ikabt jk?ab (2.189)

Dab =
1

2

∑
ijc

t ij?ac t ijbc (2.190)

with the double excitation amplitudes defined as,

tabij =
〈ab||ij〉

(εi + εj − εa − εb)
. (2.191)

The occupied-virtual block of the relaxed density is obtained as solution of the z-vector equations. In the

formulation of the z-vector equations, general discrepancies occur. The z-vector equations presented in

Ref. [17] are the ones that arise from a purely real perturbation,

zbj [(εa − εi ) + 〈ab||ij〉+ 〈ib||aj〉] = − Xai . (2.192)

Although, the actual perturbations with respect to which one takes the derivatives in NMR calculations

are the orbital-Zeeman and nucleus-orbit interaction operators, both of which are purely imaginary in

nature. Thus, the formal derivative is with respect to a purely imaginary perturbation. It appears to the

author that the first derivative of the MP2 energy presented in Ref. [17] is the one obtained for a real

perturbation.

Since the present thesis arrives at a slightly different result for the same perturbations, it is appropriate to

compare the two derivations term by term. The MP2 Lagrangian is identical in both derivations, except

for a factor of 2 arising from the Hylleraas functional.

d2E

dλdκ
=
∑
pq

[
∂D ′pq
∂κ

hλpq + D ′pqhλ,κ
pq

]
+
∑
ai

[
∂xλai
∂κ

Xai + xλai
∂Xai

∂κ

]
=
∑
pq

[
∂Dpq

∂κ
hλpq + Dpqhλ,κ

pq

]
(2.193)
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The occupied-occupied and virtual-virtual block of the perturbed relaxed density are given as,

∂Dij

∂κ
= − 1

2

∑
kab

(
∂t ikab
∂κ

t jk?ab + t ikab
∂t jk?ab

∂κ

)
(2.194)

∂Dab

∂κ
=

1

2

∑
ijc

(
∂t ij?ac
∂κ

t ijbc + t ij?ac
∂t ijbc
∂κ

)
(2.195)

(2.196)

with the off-diagonal elements of the perturbed relaxed density defined as,

∂Dai

∂κ
=

1

2

∂zai

∂κ
(2.197)

∂Dia

∂κ
= − 1

2

∂zai

∂κ
. (2.198)

The perturbed amplitude equations are identical, and the derivative of the real Lagrangian with regard

to an imaginary perturbation is,

∂Xai

∂κ
=

1

2

∑
jbc

(
∂t ij?bc
∂κ
〈bc||aj〉+ t ij?bc

∂〈bc||aj〉
∂κ

)
− 1

2

∑
jkb

(
∂t jk?ab

∂κ
〈ib||jk〉+ t jk?ab

∂〈ib||jk〉
∂κ

)

+
∑
jk

(
∂Djk

∂κ
〈ji ||ka〉+ Djk

∂〈ji ||ka〉
∂κ

)
+
∑
bc

(
∂Dbc

∂κ
〈bi ||ca〉+ Dbc

∂〈bi ||ca〉
∂κ

)

=
1

2
i
∑
jb

yκbj

{
−2
∑
kc

(
〈jc ||ak〉t ik?bc + 〈ic ||bk〉t jk?ac

)
+
∑
cd

〈cd ||ab〉t ij?cd +
∑
kl

〈ij ||kl〉tkl?ab

}

+
1

2
i
∑
jkbc

yκak〈bc||kj〉t ij?bc + yκci 〈cb||jk〉t ij?bc +
1

2

∑
jbc

〈bc||aj〉t ij?,κ
bc − 1

2

∑
jkb

〈ib||jk〉t jk?,κ
ab

+
∑
jk

Dκ
jk〈ji ||ka〉+

∑
bc

Dκ
bc〈bi ||ca〉 − i

∑
d

yκdi

∑
jk

Djk〈jd ||ka〉+
∑
bc

Dbc〈bd ||ca〉


+ i
∑
l

yκal

∑
jk

Djk〈ji ||kl〉+
∑
bc

Dbc〈bi ||cl〉

+ R

(
1

2
˜̃Dκ

)
ai

. (2.199)

Comparison with eqs. 2.177 and 2.178 shows, that the derivative of the real Lagrangian with respect to

an imaginary perturbation is identical to the derivative of the imaginary Lagrangian with regard to an

imaginary perturbation. The only difference in the second derivatives arises from the zero-order z-vector,

which enters the first-order z-vector equations. Since, the zero-order z-vector is zero in our derivation the

construction of the A-matrix (eq. 2.132, 2.134) is not required. Therefore, our Ansatz will be referred to

as the ’imaginary’ approach (=m/=m) in the following, whereas the derivation of Ref. [17] is referred to

as (<e/=m) approach for comparison purposes.

In Table 2.1 the similiar and the differing terms (highlighted in blue and red) in both derivations are

listed. The comparison in Table 2.1 reveals that in our derivation the imaginary z-vector equations with a

vanishing imaginary Lagrangian are solved to obtain the zero-order relaxed density. The well-known real

z-vector equations employing a non-zero Lagrangian are solved instead in the approach of Ref. [17]. The

derivative of the corresponding Lagrangian w.r.t. a purely imaginary perturbation yields the corresponding

expressions for the first-order Lagrangian. They only differ by a factor of 2 between the original and the

present formulation. This factor arises from the Hylleraas functional. The first-order z-vector equations
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differ significantly in the two derivations because of the derivative of the real A-matrix, which is not

required in the ’=m/=m’ case, since the zero-order z-vector is zero.

Table 2.1.: Comparison of the ’=m/=m’ and ’<e/=m’ approach to MP2 second derivatives.

term =m/=m <e/=m

energy

correction

E2[t] =

{
1

4

∑
ijab

〈ij ||ab〉t ij(1)
ab + 〈ab||ij〉t ij(1)?

ab

+
∑
pq

D′pqFpq

}
E (2) =

1

4

∑
ijab

t ij?ab 〈ab||ij〉

0th order

amplitudes

tabij = −
〈ab||ij〉

(εa + εb − εi − εj )
tabij =

〈ab||ij〉
(εi + εj − εa − εb)

0th order

density D′

Dij = −
1

2

∑
kab

t ikabt
jk?
ab

Dab =
1

2

∑
ijc

t ij?ac t
ij
bc

Dij = −
1

2

∑
kab

t ikabt
jk?
ab

Dab =
1

2

∑
ijc

t ij?ac t
ij
bc

0th order

Lagrangian

Yai = 0 Xai =
1

2

∑
jbc

〈cb||aj〉t ij?cb −
1

2

∑
jkb

〈ib||kj〉tkj?ab

+
∑
jk

Djk 〈ij ||ak〉+
∑
bc

Dbc 〈ib||ac〉

0th order

z-vector

zai = −
∑
jb

(
A(=)

)−1

ai ,bj
Ybj zai = −

∑
jb

(
A(<)

)−1

ai ,bj
Xbj

0th order

CP-SCF eqs.

Uκai = −
∑
jb

(
A(=)

)−1

ai ,bj
h

[κ]
bj Uκai = −

∑
jb

(
A(=)

)−1

ai ,bj
h

[κ]
bj
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Continued.

term =m/=m <e/=m

1st order

amplitudes

t ij ,κab =

[∑
k

iyκak 〈ij ||kb〉+ iyκbk 〈ij ||ak〉

−
∑
c

iyκci 〈cj ||ab〉+ iyκcj 〈ic||ab〉

+
∑
k

(
t ik?ab Fκjk + Fκik t

kj?
ab

)

−
∑
c

(
t ij?ac F

κ
cb + Fκcat

ij?
cb

)]
×
(
εa + εb − εi − εj

)−1

t ij ,κab =

[
−
∑
k

iyκak 〈ij ||kb〉+ iyκbk 〈ij ||ak〉

+
∑
c

iyκci 〈cj ||ab〉+ iyκcj 〈ic||ab〉

−
∑
k

(
t ik?ab Fκjk + Fκik t

kj?
ab

)

+
∑
c

(
t ij?ac F

κ
cb + Fκcat

ij?
cb

)]
×
(
εi + εj − εa − εb

)−1

1st order

density D′κ

Dκij = −
1

2

∑
kab

(
t ik,κ
ab t jk?ab + t ikabt

jk?,κ
ab

)
Dκab =

1

2

∑
ijc

(
t ij?,κ
ac t ijbc + t ij?ac t

ij ,κ
bc

)
Dκij = −

1

2

∑
kab

(
t ik,κ
ab t jk?ab + t ikabt

jk?,κ
ab

)
Dκab =

1

2

∑
ijc

(
t ij?,κ
ac t ijbc + t ij?ac t

ij ,κ
bc

)

1st order

Lagrangian
∂Yai

∂κ

= i
∑
bj

yκbj

{
− 2

∑
kc

(
〈jc||ak〉t ikbc + 〈ic||bk〉t jkac

)

+
∑
cd

〈cd||ab〉t ijcd +
∑
kl

〈ij||kl〉tklab

}

+ i
∑
k

yκak〈cb||kj〉t
ij
cb + i

∑
c

yκci 〈cb||kj〉t
kj
ab

−
∑
jbc

〈aj||cb〉t ij ,κcb +
∑
jkb

〈kj||ib〉tkj ,κab

+
∑
jk

D′κjk [−〈aj||ik〉 + 〈ij||ak〉]

+
∑
bc

D′κbc [−〈ab||ic〉 + 〈ib||ac〉] + R
(

˜̃Dκ
)
ai

− i
∑
d

yκdi

∑
jk

Djk [〈aj||dk〉 + 〈dj||ak〉]

+
∑
bc

Dbc [〈ab||dc〉 + 〈db||ac〉]
)

+ i
∑
l

yκal

∑
jk

Djk [〈lj||ik〉 + 〈ij||lk〉]

+
∑
bc

Dbc [〈lb||ic〉 + 〈ib||lc〉]
)

∂Xai

∂κ

=
1

2
i
∑
jb

yκbj

{
− 2

∑
kc

(
〈jc||ak〉t ik?bc + 〈ic||bk〉t jk?ac

)

+
∑
cd

〈cd||ab〉t ij?cd +
∑
kl

〈ij||kl〉tkl?ab

}

+
1

2
i
∑
jkbc

yκak〈bc||kj〉t
ij?
bc + iyκci 〈cb||jk〉t

ij?
bc

+
1

2

∑
jbc

〈bc||aj〉t ij?,κ
bc −

1

2

∑
jkb

〈ib||jk〉t jk?,κ
ab

+
∑
jk

Dκjk 〈ji||ka〉 +
∑
bc

Dκbc〈bi||ca〉

+ R

(
1

2
˜̃Dκ
)

ai

− i
∑
d

yκdi

∑
jk

Djk〈jd||ka〉 +
∑
bc

Dbc〈bd||ca〉


+ i
∑
l

yκal

∑
jk

Djk〈ji||kl〉 +
∑
bc

Dbc〈bi||cl〉
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Continued.

term =m/=m <e/=m

1st order

z-vector

z
κ
ai = −

∑
jb

(
A(=)

)−1

ai ,bj

∂Ybj

∂κ

with zai = 0

zκai = −
∑
jb

(
A(=)

)−1

ai ,bj

∂Xbj

∂κ

+
(
A(=)

)−1

ai ,bj

∂A
(<)
ai ,bj

∂κ
zbj

It has to be pointed out, that from the point of view taken in this thesis the collection of terms in the

zero-order real Lagrangian is only possible, if the derivative w.r.t. purely real perturbations is required.

In the above derivation a mixture of real and imaginary perturbations is on hand. In general, the real

Lagrangian should be written in the following form,

Xai =
1

4

∑
jbc

〈cb||aj〉t ij?cb + 〈aj ||cb〉t ijcb −
1

4

∑
jkb

〈ib||kj〉tkj?ab + 〈kj ||ib〉tkjab

+
1

2

∑
jk

Djk [〈ij ||ak〉+ 〈aj ||ik〉] +
1

2

∑
bc

Dbc [〈ib||ac〉+ 〈ab||ic〉] . (2.200)

Formulating the derivative of eq. 2.200 w.r.t. a purely imaginary perturbation will not yield the expression

for the perturbed Lagrangian in eq. 2.199, but instead,

∂Xai

∂κ
=

1

4
i
∑
jb

yκbj

{
2
∑
kc

[
−〈jc ||ak〉t ik?bc + 〈ak||jc〉t ikbc + 〈ic ||bk〉t jk?ac − 〈bk ||ic〉t jkac

]
+
∑
cd

〈cd ||ab〉t ij?cd − 〈ab||cd〉t ijcd +
∑
kl

−〈ij ||kl〉tkl?ab + 〈kl ||ij〉tklab

}

+
1

4
i
∑
jkbc

yκak

[
〈cb||kj〉t ij?cb − 〈kj ||cb〉t ijcb

]
+ yκci

[
−〈cb||kj〉tkj?ab + 〈kj ||cb〉tkjab

]
+

1

4

∑
jbc

〈cb||aj〉t ij?,κ
cb + 〈aj ||cb〉t ij ,κcb −

1

4

∑
jkb

〈ib||kj〉tkj?,κ
ab + 〈kj ||ib〉tkj ,κab

+
1

2
R(Dκ)ai +

1

2
i
∑
l

yκalR(D)li +
1

2
i
∑
b

yκbiR(D)ba + R

(
1

2
D̆κ

)
ai

(2.201)

with

D̆κ
bj = i

∑
k

(Djkyκkb − yκbkDkj) + i
∑
c

(
Dbcyκcj − yκjcDcb

)
= i
∑
k

yκkb (Djk − Dkj)︸ ︷︷ ︸
=0

+i
∑
c

yκcj (Dbc − Dcb)︸ ︷︷ ︸
=0

. (2.202)

The first twelve terms in eq. 2.201 vanish, due to the real nature of the two-electron repulsion integrals and

the zero-order amplitudes. The terms containing the first-order amplitudes cancel each other, due to the

relation between the perturbed real and complex conjugate amplitudes (cf. eqs. 2.170 and 2.171). The

derivative of the real response operator w.r.t. an imaginary perturbation vanishes, since the real response

operator over an antisymmetric density matrix is zero and similarly the imaginary response operator over
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a symmetric density matrix as well. The contracted density matrix D̆κ itself is zero, due to the symmetry

properties of the matrices involved. In summary, the derivative of the real zero-order Lagrangian w.r.t. an

imaginary perturbation is zero and hence, the first-order z-vector gives no contribution to the first-order

relaxed density matrix.

2.7. The RIJCOSX Approximation to MP2

In RI-MP2 energy calculations the computation time for the evaluation of the RI-MP2 energy correction

exceeds by far the time required for the solution of the SCF equations. Despite the unfavourable scal-

ing of the MP2 step, which scales with O(N5), the SCF calculation with a practically observed scaling

of O(N1.5) dominates the total wall clock time. In order to overcome the drawbacks of Coulomb and

exchange formation algorithms, which proceed via the generation of traditional four-index two-electron

integrals, the best approximations for each contribution should be selected. [35, 36]

The ’Resolution of the Identity’ approximation to the Coulomb matrix (RI-J) was first invented in the

framework of density functional theory (DFT) [37, 38] and has been discussed in detail in section 2.4.1.

The error introduced by the incompleteness of the fitting bases could be shown to be negligible, whereas

the speedups obtained are of a factor of 10−100. [28,29] Thus, as long as exact exchange is not required,

the Coulomb fitting gives rise to SCF calculations that are 1−2 orders of magnitude more efficient than

traditional Hartree-Fock calculations.

The RIJCOSX approximation combines the advantages of the Split-RI-J variant of the Coulomb den-

sity fitting approximation with a semi-numeric exchange treatment, which is efficiently implemented via

the ’chain of spheres exchange’ (COSX) algorithm [39] into the ORCA program package. Hence, this

algorithm is termed RIJCOSX-MP2. COSX is closely related to Friesners pioneering pseudo-spectral

techniques but is conceptually simpler as discussed in detail in Ref. [39]. In this section this concept is

extended to the first and second derivatives of the RIJCOSX-MP2 energy. Substantial savings compared

to the standard MP2 and also to the RI-MP2 method arise from the more efficient SCF step, the more

efficient treatment of AO derivative integrals and the accelerated solution of the z-vector equations. [14]

2.7.1. The Semi-Numeric Exchange Matrix

The basic idea for the efficient evaluation of exchange-type matrices is to combine a numeric integration in

the physical space with an analytic integration over the Coulomb singularity. The original pseudospectral

method has been developed by Friesner and co-workers since the mid 1980s. [40–43] Recently, Neese

and co-workers presented a semi-numeric exchange formation on the basis of Friesners’ pseudospectral

method, but with conceptual simplifications. [39] The conventional exchange-type matrix is given as,

Kµν =
∑
κτ

Pκτ (µκ|ντ) (2.203)

where Pκτ is any density-type matrix. The exchange integrals can be approximated as,

(µκ|ντ) =

∫
dr′ϕµ(r′)ϕκ(r′)

∫
dr
ϕν(r)ϕτ (r)

|r − r′|

≈
∑
g

wgϕµ(rg )ϕκ(rg )

∫
dr
ϕν(r)ϕτ (r)

|r − rg |
(2.204)



2.7 The RIJCOSX Approximation to MP2 41

where the first analytical integration over the coordinates r′ is replaced by a numerical integration over

grid points rg . The corresponding grid weights wg are determined by Becke’s weighting scheme. [44] The

exchange-type matrix can then be efficiently evaluated as,

Kµν ≈
∑
g

Rµg
∑
τ

Aντ (rg )
∑
κ

RκgPκτ

= tr
(
RG+

)
µν

. (2.205)

with

Rµg = w
1
2
g ϕµ(rg ) (2.206)

Fτg = (PR)τg (2.207)

Aντ (rg ) =

∫
ϕν(r)ϕτ (r)

|r − rg |
dr (2.208)

Gνg =
∑
τ

FτgAντ (rg ). (2.209)

Note, the absence of least-square fitting operators or any of the advanced features that characterize the

pseudospectral approach. [45]

Semi-Numeric Exchange Gradient

The exchange gradient can be written as,

∂Kµν
∂λ

=
∑
κτ

Pκτ
∂(µκ|ντ)

∂λ
. (2.210)

Due to the permutational symmetry of the exchange integrals, the derivative expression can be rearranged

as follows,∑
κτ

Pκτ
(
µκ|ντλ

)
≈
∑
g

Rµg
∑
τ

Aντλ(rg )
∑
κ

RκgPκτ (2.211)

=
∑
κτ

Pκτ
(
ντλ|µκ

)
≈
∑
g

Rνg
∑
κ

Aµκ(rg )
∑
τ

RτλgPκτ (2.212)

where Rτλg is defined by,

Rτλg = w
1
2
g
∂ϕτ (rg )

∂λ
. (2.213)

The formulation of the exchange gradient differs only slightly from the derivation of the semi-numeric

exchange itself. Due to the rearrangement of the two-electron exchange gradient integrals only the

derivatives of the basis functions on the grid are needed instead of the derivatives of the analytic integrals.
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2.7.2. RIJCOSX-MP2 Derivatives

The RIJCOSX approximation to the total RI-MP2 energy is given as,

E ≈ E (RIJCOSX )
0 + E (RI )

2

=
∑
µν

Pµνhµν +
1

2

∑
µνκτ

PµνPκτ
∑
K

BK
µνBK

κτ −
1

2

∑
µν

tr(FG+)µν +
1

2

∑
µνP

(µν|P)Γ′Pµν (2.214)

where the Hartree-Fock Coulomb contribution is approximated by the RI-J technique with the Coulomb

fitting basis set {ηK}, and the MP2 energy correction is calculated employing the RI approximation with

the correlation fitting basis set {ηP}. In contrast, the exchange contribution to the Hartree-Fock energy

is evaluated via the COSX algorithm. In principle, only the Fock matrix is approximated via the RIJCOSX

algorithm, whereas the RI-MP2 energy correction is evaluated in the conventional way.

The First RIJCOSX-MP2 Derivative

In the first derivative of the RIJCOSX-MP2 energy the RIJCOSX approximation goes into the terms origi-

nating from the Fock matrix derivatives, i.e. the response-type operator in the Lagrangian (eqs. 2.129, 2.131)

and the left-hand side of the z-vector equations (eqs. 2.133, 2.134). Thus, the RIJCOSX-MP2 Lagrangians

become,

X
(RIJCOSX )
ai = 2

∑
cP

(ac |P)Γ′Pic − 2
∑
kP

(ki |P)Γ′Pka + R̃ (D′)ai ≡ X̃ai (2.215)

Y
(RIJCOSX )
ai =

∑
cP

−(ac |P)Γ′Pic + (ca|P)Γ′Pci +
∑
kP

(ki |P)Γ′Pka − (ik|P)Γ′Pak +
˜
R (D′)ai ≡ Ỹai (2.216)

with

R̃ (D′)ai = 2
∑
pq

D ′pq
∑
K

BK
ai B

K
pq −

∑
g

RagG D′

ig + RigG D′

ag (2.217)

˜
R (D′)ai =

∑
g

RagG D′

ig − RigG D′

ag (2.218)

and

G D′

pg =
∑
r

F D′

rg Apr (rg ) (2.219)

F D′

rg = (D′X̃)rg . (2.220)

The z-vector equations in the RIJCOSX approximation are given by,

zai (εa − εi ) + 2
∑
jb

zbj

∑
K

BK
ai B

K
bj −

∑
g

Rag

∑
b

Abi (rg )F z
bg −

∑
g

Rag

∑
j

Aji (rg )F z
jg = − X̃ai

(2.221)

izai (εa − εi ) + i
∑
g

Rag

∑
b

Abi (rg )F z
bg − i

∑
g

Rag

∑
j

Aji (rg )F z
jg = − Ỹai

(2.222)

where the generation of traditional four-index two-electron repulsion integrals can be avoided.
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The RIJCOSX-MP2 Gradient

The general form of the MP2 gradient is given as,

∂E
∂λ

=
∑
pq

Dpqh{λ}pq +
∑
pq

WpqS (λ)
pq +

∑
pqrs

Γpqrs(pq|rs)(λ) (2.223)

where the additional terms arise from the perturbation dependence of the basis functions. The energy

weighted density matrix within the RIJCOSX approximation W̃ is defined as,

W̃ij = −
∑
kabP

BP
iaBP

kbt jkab −
1

2
Dij(εi + εj)−

1

2
R̃(D)ij (2.224)

W̃ab = −
∑
ijcP

BP
iaBP

kct ijbc −
1

2
Dab(εa + εb) (2.225)

W̃ai = − 2
∑
kP

(ik|P)Γ′Pak (2.226)

and the separable (S) and non-separable (NS) parts of the 2-particle 4-index density matrix Γ̃ are,

Γ̃S
pqrs(pq|rs)(λ) =

(
Dpq − Dpr

)
(pq|rs)(λ)

= Dpq

(
(pq|rs)(λ) − (ps|rq)(λ)

)
= Dpq

[
2
∑
KL

(pq|K )(λ)V−1
KL (L|rs)−

∑
KLMN

(pq|M)V−1
MKV

(λ)
KL V−1

LN (N|rs)

]

− 2
∑
g

∂Fpg

∂λ
GMP2
qg − 2

∑
g

∂FMP2
pg

∂λ
Gqg (2.227)

Γ̃NS
iajb(ia|jb)(λ) =

1

2
t ijab

[∑
RS

{
(ia|R)(λ)V−1

RS (S |jb) + (ia|R)V−1
RS (S |jb)(λ)

}
−
∑
RSTU

(ia|T )V−1
TR V

(λ)
RS V−1

SU (U|jb)

]
. (2.228)

A detailed derivation of the working equations for the RIJCOSX-MP2 gradient has been reported in

Ref. [31].

The Second RIJCOSX-MP2 Derivative

In the second MP2 derivative the calculation of the perturbed double excitation amplitudes which incor-

porate the derivative Fock matrix elements is required. Therefore, the RIJCOSX approximation implicitly

affects the computation of the first-order amplitudes by accelerating the formation of the first-order Fock

matrix.

F̃ (<),κ
pq = h[λ]

pq + R̃(U)ai (2.229)

F̃ (=),κ
pq = h[λ]

pq +
˜
R(U)ai (2.230)

Furthermore, the derivative of the response-type operators as contributions to the perturbed Lagrangians

are also approximated via the RIJCOSX technique according to the first-order response-type operators in

eqs. 2.217 and 2.218.
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The Four-External Contribution to the First-Order Lagrangian The most expensive term in the

calculation of the real as well as of the imaginary second MP2 derivative is the 4-external contribution

K (tij)ab to the first-order Lagrangian, cf. eqs. 2.183 and 2.187. The evaluation of this term takes at

least about 20% of the total wall clock time and hence, represents the rate limiting step. Therefore,

efficient algorithms have to be developed to overcome this bottleneck. Since, there exist no efficient

implementations of the four-external contribution to the perturbed Lagrangian within the RI approximation

the standard implementation proceeds via traditional AO four-index integrals and uses large-scale BLAS

level 3 matrix multiplications in the inner loops. An alternative Ansatz is to calculate this contribution

via the ’chain of spheres exchange’ algorithm, as,

σ
ij(4−ext)
ab =

∑
cd

(ac |bd)t ijcd ≈
∑
cd

∑
g

wgψa(rg )ψc(rg )

∫
dr
ψb(r)ψd(r)

|r − rg |
t ijcd ≡ K̃ (tij)ab. (2.231)

The performance of the two alternative approaches will be numerically compared in Section 4.1.3.

2.8. Derivatives of Double-Hybrid Density Functionals

2.8.1. Density Functional Theory

The basis of density functional theory (DFT) is built on the two Hohenberg-Kohn theorems. [46] The

first Hohenberg-Kohn theorem demonstrates that the electronic ground state energy is fully determined

by the electron density ρ. Therefore, the energy becomes a unique functional of the electron density

and depends only on three spatial coordinates. The second Hohenberg-Kohn theorem states, that the

ground state energy can be obtained variationally. The exact ground state electron density is the one,

that minimizes the total energy.

The break through of DFT was due to Kohn-Sham theory. [47] The basic idea is to relate a system of

non-interacting electrons moving in an effective potential to the real system of interacting electrons in a

static potential. The effective potential includes the external potential (VeN) and the electronic exchange

and correlation interactions. Thus, the energy becomes,

E [ρ] = TS [ρ] +

∫
vext(r)ρ(r)dr +

∫ ∫
ρ(r)ρ(r′)

|r − r′|
drdr′ + EXC [ρ] (2.232)

where TS [ρ] is the Kohn-Sham kinetic energy calculated from the Kohn-Sham orbitals. Unfortunately,

the exact energy functional is only known for the free electron gas. Thus, the major problem of DFT is

to mimic the exact density functional as exact as possible. The density functionals are best classified by

its ingredients, refered to as ’Jacob’s ladder’, [48]

• Local-Spin-Density Approximation (LSDA): EXC =
∫

f (ρα, ρβ)dr

• Generalized Gradient Approximation (GGA): EXC =
∫

f (ρα, ρβ , γαα, γαβ , γββ)dr

• Meta-Generalized Gradient Approximation (meta-GGA): EXC =
∫

f (ρα, ρβ , γαα, γαβ , γββ , τα, τβ)dr

• Hybrid- and Hyper-Generalized Gradient Approximation (hyper-GGA):

EXC =
∫

f (ρα, ρβ , γαα, γαβ , γββ , (τα, τβ), εX )dr

• Random Phase Approximation (RPA): EXC =
∫

f (ρα, ρβ , γαα, γαβ , γββ , εX , {ψσa })dr

with the density gradient γσσ′ = ∇ρσ∇ρσ′ , the kinetic energy density τσ = 1
2

∑
i |ψσi |2, the exact

exchange εX and the inclusion of virtual Kohn-Sham molecular orbitals {ψσa }.



2.8 Derivatives of Double-Hybrid Density Functionals 45

2.8.2. Double-Hybrid Density Functionals

Double-hybrid density functionals supplement the well-known hybrid density functionals by a semiempir-

ically scaled second-order perturbation correction. Thus, the solution of the Kohn-Sham SCF equations

serves as zero-order reference for the perturbation expansion. Since, the DFT Hamiltonian already partially

accounts for electron correlation effects through the exchange-correlation potential, the perturbation cor-

rection has to be scaled. The double-hybrid functionals replace part of the semi-local correlation present

in gradient corrected functionals by nonlocal, orbital-dependent dynamic correlation. In Perdew’s [48]

concept of ’Jacobs’s ladder’, double-hybrid functionals occupy the ’fifth rung’ of the metaphorical ladder,

which leads from the ’Hartee World’ to the ’Heaven of Chemical Accuracy’. Density functionals of the

’fifth rung’ include non-local correlation by involving virtual Kohn-Sham [47] molecular orbitals.

The energy expression for perturbatively and gradient corrected hybrid functionals is, [49]

E = VNN +
∑
µν

Pµνhµν+
1

2

∫ ∫
ρ(r1)ρ(r2)

|r1 − r2|
− 1

2
ax
∑
µνκτσ

Pσ
µκPσ

ντ (µν|κτ)+cDFEXC [ρα, ρβ]+cPT2EPT2

(2.233)

with VNN representing the nuclear repulsion energy and hµν is a matrix element of the one-electron

operator. The Coulombic interaction is represented by the third term in eq. 2.233 and the fourth term

is the Hartree-Fock exchange. The global scaling parameters allow to procced from Hartree-Fock (ax =

1,cDF = 0,cPT2 = 0) to MP2 theory (ax = 1,cDF = 0,cPT2 = 1), from pure DFT (ax = 0,cDF =

1,cPT2 = 0) to hybrid DFT (0 < ax < 1,cDF = 1,cPT2 = 0) and finally to the double-hybrid functionals

(0 < ax < 1,cDF = 1,0 < cPT2 < 1). The molecular spin orbitals are expanded in atomic centered basis

functions with MO coefficients cµp as (σ = α,β),

ψσp (r) =
∑
µ

cσµiϕµ(r). (2.234)

with the electron density given as,

ρ(r) =
∑
iσ

|ψσi (r)|2 =
∑
µνσ

Pσ
µνϕµ(r)ϕν(r) = ρα(r) + ρβ(r) (2.235)

and the σ-spin density matrix Pσ
µν =

∑
i cσµic

σ
νi . The exchange-correlation contribution to the total energy

is,

EXC =

∫
f (ρα, ρβ , γαα, γαβ , γββ)dr. (2.236)

The Fock matrix is defined as,

Fσµν = hµν +
∑
κτ

Pκτ (µν|κτ)− axPσ
κτ (µκ|ντ) + cDFV XC

µν (2.237)

with the exchange-correlation potential V XC defined as,

V XC ,σ
µν =

δf

δρσ
(ϕµ(r)ϕν(r)) + 2

δf

δγσσ
~∇ρσ ~∇(ϕµ(r)ϕν(r)) +

δf

δγσσ′
~∇ρσ′ ~∇(ϕµ(r)ϕν(r)). (2.238)
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The derivative of the Fock operator is given as,

∂Fpq

∂λ
= F (λ)

pq + h[λ]
pq +

∑
r

Uλ?
rp Frq + Uλ

rqFpr

+
∑
kr

Uλ?
rk

[
(pq|rk)− ax(pk |rq)

]
+ Uλ

rk

[
(pq|kr)− ax(pr |kq)

]
+ cDF

(
δV XC

pq

δζ

∂ζ

∂λ

)
= F (λ)

pq + h[λ]
pq +

∑
r

Uλ?
rp Frq + Uλ

rqFpr + R(Uλ)pq (2.239)

with the response-type operator defined as,

R(Uλ)pqσ =
∑
kr

Uλ?
rk

[
(pq|rk)− ax(pk |rq)

]
+ Uλ

rk

[
(pq|kr)− ax(pr |kq)

]
+ cDF

(
δV XC

pq

δζ

∂ζ

∂λ

)
︸ ︷︷ ︸

RXC (Uλ)pq

=
∑
kr

Uλ?
rk

[
(pq|rk)− ax(pk|rq)

]
+ Uλ

rk

[
(pq|kr)− ax(pr |kq)

]
+ cDF

∫ {∑
ζ

∂2f

∂ρσ∂ζ
ζUλ(r)

(
ψσp (r)ψσq (r)

)
+
∑
ζ

[
2

∂2f

∂γσσ∂ζ
~∇ρσ(r) +

∂2f

∂γσσ′∂ζ
~∇ρσ′(r)

]
ζUλ(r)~∇

(
ψσp (r)ψσq (r)

)
+

[
2
∂f

∂γσσ
~∇ρUλ

σ (r) +
∂f

∂γσσ′
~∇ρUλ

σ′ (r)

]
~∇
(
ψσp (r)ψσq (r)

)}
dr (2.240)

with

ζ = ρα, ρβ , γαα, γαβ , γββ (2.241)

ζUλ = ρUλ

α , ρUλ

β , γUλ

αα, γUλ

αβ , γUλ

ββ (2.242)

ρUλ

σ =
∑
pqr

Uλ?
rpσψ

σ
r (r)ψσq (r) + Uλ

rqσψ
σ
p (r)ψσr (r) (2.243)

γUλ

σσ = 2~∇ρUλ

σ
~∇ρσ. (2.244)

As can be seen from eq. 2.243 the XC contribution to the response operator vanishes for imaginary

perturbation, due to the symmetry of the U-coefficients. The derivative of the response operators in the

real and imaginary cases are given as,

∂R(D′)ai
∂κ

= R(D′κ)ai + R
XC

(D′κ)ai −
∑
j

xκajR(D′)ij +
∑
b

xκbiR(D′)ab + R(D̃′)ai + R
XC ,κ

(D′)ai

(2.245)

∂R(D′)ai
∂κ

= R(D′κ)ai + R
XC

(D′κ)ai + i
∑
j

yκajR(D)ij − i
∑
b

yκbiR(D)ab + R(D̃)ai (2.246)
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with the derivative of the zero-order XC response operator defined as,

R
XC ,κ

(D′)aiα =
∂

∂κ

(∫ {[
∂2f

∂ρα∂ρα
ρD′
α (r)

∂2f

∂ρα∂ρβ
ρD′
β (r) +

∂2f

∂γαα∂ρα
γD′
αα(r) +

∂2f

∂γαβ∂ρα
γD′
αβ(r) +

∂2f

∂γββ∂ρβ
γD′
ββ(r)

]
×
(
ψαa (r)ψαi (r)

)
+2

[
∂2f

∂ρα∂γαα
ρD′
α (r) +

∂2f

∂ρβ∂γαα
ρD′
β (r) +

∂2f

∂γαα∂γαα
γD′
αα(r) +

∂2f

∂γαβ∂γαα
γD′
αβ(r) +

∂2f

∂γββ∂γαα
γD′
ββ(r)

]
~∇ρα(r)~∇

(
ψαa (r)ψαi (r)

)
+

[
∂2f

∂ρα∂γαβ
ρD′
α (r) +

∂2f

∂ρβ∂γαβ
ρD′
β (r) +

∂2f

∂γαα∂γαβ
γD′
αα(r) +

∂2f

∂γαβ∂γαβ
γD′
αβ(r) +

∂2f

∂γββ∂γαβ
γD′
ββ(r)

]
~∇ρβ(r)~∇

(
ψαa (r)ψαi (r)

)
+

[
2
∂f

∂γαα
~∇ρD′

α (r) +
∂f

∂γαβ
~∇ρD′

β (r)

]
~∇
(
ψαa (r)ψαi (r)

)}
dr

)

=

∫ {∑
ζ

∑
ξ

∂3f

∂ρα∂ζ∂ξ
ξUκζD′ (ψαa ψ

α
i ) +

[
∂2f

∂ρα∂γαα
γUκD′
αα +

∂2f

∂ρα∂γαβ
γUκD′
αβ +

∂2f

∂ρα∂γββ
γUκD′
ββ

]
(ψαa ψ

α
i )

+ 2
∑
ζ

∑
ξ

∂3f

∂γαα∂ζ∂ξ
ξUκζD′ ~∇ρα ~∇ (ψαa ψ

α
i )

+ 2

[
∂2f

∂γαα∂ρα
ρD′
α
~∇ρUκ

α +
∂2f

∂γαα∂ρβ
ρD′
β
~∇ρUκ

α +
∂2f

∂γαα∂γαα

(
γD′
αα
~∇ρUκ

α + γUκD′
αα

~∇ρα
)

+
∂2f

∂γαα∂γαβ

(
γD′
αβ
~∇ρUκ

α + γUκD′
αβ

~∇ρα
)

+
∂2f

∂γαα∂γββ

(
γD′
ββ
~∇ρUκ

α + γUκD′
ββ

~∇ρα
)]

~∇ (ψαa ψ
α
i )

+
∑
ζ

∑
ξ

∂3f

∂γαβ∂ζ∂ξ
ξUκζD′ ~∇ρβ ~∇ (ψαa ψ

α
i )

+

[
∂2f

∂γαβ∂ρα
ρD′
α
~∇ρUκ

β +
∂2f

∂γαβ∂ρβ
ρD′
β
~∇ρUκ

β +
∂2f

∂γαβ∂γαα

(
γD′
αα
~∇ρUκ

β + γUκD′
αα

~∇ρβ
)

+
∂2f

∂γαβ∂γαβ

(
γD′
αβ
~∇ρUκ

β + γUκD′
αβ

~∇ρβ
)

+
∂2f

∂γαβ∂γββ

(
γD′
ββ
~∇ρUκ

β + γUκD′
ββ

~∇ρβ
)]

~∇ (ψαa ψ
α
i )

+
∑
ζ

2
∂2f

∂γαα∂ζ
ζUκ ~∇ρD′

α
~∇ (ψαa ψ

α
i ) +

∂2f

∂γαβ∂ζ
ζUκ ~∇ρD′

β
~∇ (ψαa ψ

α
i )

}
dr (2.247)

and

ζD′ = ρD′

α , ρD′

β , γD′

αα, γD′

αβ , γD′

ββ (2.248)

ξUλ = ρUλ

α , ρUλ

β , γUλ

αα, γUλ

αβ , γUλ

ββ (2.249)

γUλD′

σσ = 2~∇ρUλ

σ
~∇ρD′

σ . (2.250)

A detailed derivation of the derivative of the zero-order XC response operator is given in Appendix A.

2.9. The Orbital-Optimized RI-MP2 Method

The second-order Møller-Plesset correlation energy [2] can be regarded as being stationary with respect to

the MP2 amplitudes, since the latter can be considered as having been optimized through minimization

of the Hylleraas functional [24, 26].

E2[t] = 2<e〈Ψ(1)
0 |H|Ψ

(0)
0 〉+ 〈Ψ(1)

0 |H0 − E (0)
0 |Ψ

(1)
0 〉 (2.251)

H0 is the 0th order Hamiltonian as proposed by Møller and Plesset, Ψ
(0)
0 is the reference determinant,

Ψ
(1)
0 is the first-order wave function and E (0)

0 = EHF = 〈ΨHF |H|ΨHF 〉 corresponds to the HF energy. The

first-order MP2 amplitudes are collectively denoted t.
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Figure 2.3.: Constructed diagrams corresponding to eq. 2.255.

Since the MP2 energy is not variational with respect to the molecular orbital (MO) coefficients, no orbital

relaxation due to the additional dynamic correlation field is taken into account. In order to allow for

orbital relaxation, a new Hylleraas functional can be formulated, which does no longer depend on the

MP2 amplitudes alone but becomes also a functional of the orbital rotation parameters, which parametrize

the changes in the MO coefficients. The total MP2 energy will then become stationary with respect to

the MP2 molecular orbital coefficients and with respect to the MP2 double excitation amplitudes. The

extended Hylleraas functional to be minimized, is

E2[t, R] = E (0)
0 [R] + 2<e〈Ψ(1)

0 |H|Ψ
(0)
0 〉+ 〈Ψ(1)

0 |H0 − E (0)
0 |Ψ

(1)
0 〉. (2.252)

R are the orbital rotation coefficients that are used to update the MO coefficients c by means of a unitary

transformation. [50] If a spin-unrestricted scheme is desired, different orbitals for different spins are used

throughout the entire orbital optimization.

cnew = exp(R)cold (2.253)

|Ψ(0)
0 〉 is the reference determinant, but unlike eq. 2.251 the reference determinant does no longer cor-

respond to the Hartree-Fock determinant. By minimizing the total energy with respect to the MP2 MO

coefficients the reference determinant changes with every variation step. The reference energy E (0)
0 [R]

changes simultaneously and therefore it is no longer stationary with respect to the HF MO coefficients.

Consequently, Brillouin’s theorem [51] is no longer valid and the off-diagonal blocks of the Fock matrix

do not vanish. Hence, the first-order wave function would contain contributions from single excitations.

|Ψ(1)
0 〉 =

∑
ia

t ia|Φa
i 〉+

1

4

∑
ijab

t ijab|Φ
ab
ij 〉 (2.254)

Thus, the orbital-optimized MP2 Hylleraas functional takes the form,

E2[t, R] = E (0)
0 [R] + 2

∑
ia

t ia〈Φa
i |H|Φ0〉+

1

2

∑
ijab

t ijab〈Φ
ab
ij |H|Φ0〉

+
∑
ijab

t iat jb〈Φ
a
i |H0 − E (0)

0 [R]|Φb
j 〉+

∑
ijklabcd

t ijabtklcd〈Φab
ij |H0 − E (0)

0 [R]|Φcd
kl 〉

+
∑
ijkabc

t iat jkbc〈Φ
a
i |H0 − E (0)

0 [R]|Φbc
jk 〉+

∑
ijkabc

t ijabtkc 〈Φab
ij |H0 − E (0)

0 [R]|Φc
k〉. (2.255)

Evaluating the matrix elements according to the diagrams shown in Fig. 2.3 and applying the ’Resolution
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of the Identity’ approximation [22, 32, 52] to the MP2 correction, yields,

E2[t, R] =
∑
i

hii +
1

2

∑
ij

〈ij ||ij〉+ 2
∑
ia

t iaFia +
1

2

∑
iaP

[
(ia|P)Γ′Pia + (ai |P)Γ′Pai

]
−
∑
ija

t iat jaFij +
∑
iab

t iat ibFba −
1

2

∑
ijkab

t ijabt ikabFkj +
1

2

∑
ijabc

t ijabt ijacFcb. (2.256)

Since orbital optimization introduces all important effects of the single excitations, we prefer to leave

them out of the treatment. Any attempt to the contrary has been found to destroy the convergence

properties. Hence, the explicit form of the orbital-optimized MP2 Hylleraas functional within the density

fitting approximation (OO-RI-MP2) including only double excitations becomes,

E2[t, R] =
∑
i

hii +
1

2

∑
ij

〈
ij ||ij

〉
+
∑
iaP

(ia|P)Γ′Pia +
∑
ij

DijFij +
∑
ab

DabFab. (2.257)

The MP2 like density blocks and the double excitation amplitudes, are defined according to conventional

MP2 theory. The orbital changes are parameterized by the anti-Hermitian matrix R such that no La-

grangian multipliers are required to ensure orbital orthonormality. The Fock operator is expanded to first

order in the orbital rotations as,

Fpq =
∑
r

RrpFrq + RrqFpr + R(R)pq (2.258)

R(R)pq =
∑
kc

Rck

{
〈pc||qk〉+ 〈pk||qc〉

}
. (2.259)

Thus, the first-order energy change becomes (gpqrs ≡ 〈pq||rs〉),

LOO[t, R] =
∑
ic

Rci

(
hci + hic

)
+

1

2

∑
ijc

Rci

(
gcjij + gijcj

)
+ Rcj

(
gicij + gijic

)
+ 2

∑
iacP

Rci (ac |P)Γ′Pia − 2
∑
ikaP

Rak(ik|P)Γ′Pia

−
∑
ij

Dij

(
R(R)ij +

∑
c

{
RciFcj + RcjFic

})
+
∑
ab

Dab

(
R(R)ab −

∑
k

{
RakFkb + RbkFak

})
. (2.260)

The condition for the energy functional to be stationary with respect to the orbital rotations
(
∂LOO[t,R]
∂Rai

= 0
)

,

yields the expression for the orbital gradient and hence, the expression for the OO-RI-MP2 Lagrangian.

∂LOO[t, R]

∂Rai
≡ gai = 2Fai + 2

∑
j

DijFaj − 2
∑
b

DabFib + R(D)ai

+ 2
∑
cP

(ac |P)Γ′Pia − 2
∑
kP

(ik|P)Γ′Pia (2.261)

In order to implement a practical orbital optimization scheme we have chosen a simple DIIS method. [53]

A matrix B that contains the orbital gradient in its off-diagonal blocks and the orbital energies in its
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diagonal is repeatedly diagonalized and provides the orbital rotation coefficients directly, eq. 2.262.

B =


ε0 gia

ε1

gai
. . .

 (2.262)

The whole procedure is carried out self-consistently until both ||gai || and ∆E fall below predefined thresh-

olds. The orbital energies are obtained by diagonalizing the Fock operator in the occupied/occupied and

virtual/virtual subspaces of the current orbital set. A flowchart of the optimization procedure is shown in

Fig. 2.4.

At convergence, the relaxed density matrix and the one obtained as an expectation value over the first-

order wave function become identical. The entire density is given by the sum of the reference density and

the correlation contribution,

DOO
pq = P ref

pq + Dpq (2.263)

P ref
µν =

∑
i

cµicνi . (2.264)

In an infinite basis set, the Hellmann-Feynman theorem [54,55] becomes valid and the OO-RI-MP2 density

matrix can be used for the calculation of expectation values and to calculate the OO-RI-MP2 gradient,

respectively.

Consider a one-electron perturbation of the form λhλ, e.g. an external electric field, and assume the basis

functions to be independent of the perturbation. The first derivative of the OO-RI-MP2 energy w.r.t. the

perturbation λ, corresponds to the expectation value of hλ, if the OO-RI-MP2 equations have converged,

eq. 2.265.

∂EOO

∂λ
=
∑
pq

Dpqhλpq (2.265)

2.9.1. The OO-RI-MP2 Gradient

The general gradient expression is,

dE

dλ
=
∑
pq

γpqh{λ}pq +
∑
pq

WpqS (λ)
pq +

∑
pqrs

Γpqrs(pq|rs)(λ) (2.266)

with the first-order reduced density matrix corresponds to the OO-RI-MP2 density matrix, and the second-

order reduced density matrix is defined as,

ΓS
pqrs = Dpq − Dpr (2.267)

ΓNS
iajb =

1

2
t ijab. (2.268)
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The difference of the OO-RI-MP2 gradient compared to the conventional MP2 gradient arises in the

formulation of the energy weighted density,

Wij = −
∑
kabP

BP
iaBP

kbt jkab −
1

2
Dij(εi + εj)−

1

2
R(D)ij (2.269)

Wab = −
∑
ijcP

BP
iaBP

kct ijbc −
1

2
Dab(εa + εb) (2.270)

Wai = − 2
∑
kP

(ik|P)Γ′Pak − 2
∑
b

DabFib (2.271)

where an additional Fock matrix element appears in eq. 2.271. However, obviously the calculation of the

OO-RI-MP2 gradient is of the same computational effort as the conventional MP2 gradient, once the

OO-MP2 equations have converged.

2.9.2. The OO-MP2 Second Derivatives

In this section the second derivatives for the orbital-optimized MP2 method with respect to real pertur-

bations are derived. The RI approximation is neglected for simplicity. Following the general derivative

theory for variational wave functions, the perturbed wave function parameters, which are absent in the first

derivative have to be determined for the second derivative. In OO-MP2 theory the wave function depends

on two sets of parameters, i.e. the molecular orbital coefficients and the double excitation amplitudes.

Thus, the following equation system (CP-OO-MP2) is obtained, ∂gai
∂Uκ

∂gai
∂tij ,κ

∂2E2

∂tij∂Uκ
∂2E2

∂tij∂tij ,κ

 Uκ

tij ,κ

 =

 goo got

ato att

 Uκ

tij ,κ

 =

 bκ0

bκ1

 (2.272)

with the orbital gradient given as,

gai =
∑
jbc

〈aj ||cb〉t ijcb −
∑
jkb

〈ib||kj〉tkjab + R(D)ai + 2
∑
j

DijFaj − 2
∑
b

DabFib + 2Fai . (2.273)

The derivative of the orbital gradient becomes,

∂gai

∂κ
= − 2

∑
j

Uκ
ajFji + 2

∑
b

Uκ
biFab + 2h

[κ]
ai + 2

∑
jb

Uκ
bj [〈ab||ij〉+ 〈aj ||ib〉]

+
∑
jb

Uκ
bj

[
−2
∑
kc

{
〈ak||jc〉t ikbc + 〈bk||ic〉tkjac

}
+
∑
cd

〈ab||cd〉t ijcd +
∑
kl

〈kl ||ij〉tklab

]
−
∑
jkbc

Uκ
aj〈jk||cb〉t ikcb −

∑
jkbc

Uκ
bi 〈kj ||bc〉tkjac

+
∑
jbc

〈aj ||cb〉t ij ,κcb −
∑
jkb

〈kj ||ib〉tkj ,κab

+
∑
j

Dκ
ij Faj −

∑
jk

DikUκ
ajFjk +

∑
jb

DijU
κ
bjFab +

∑
j

Dijh
[κ]
aj +

∑
jkb

DikUκ
bj [〈ab||kj〉+ 〈aj ||kb〉]

+
∑
b

Dκ
abFib −

∑
bc

DacUκ
biFbc +

∑
jb

DabUκ
bjFij +

∑
b

Dabh
[κ]
ib +

∑
jbc

DacUκ
bj [〈ib||cj〉+ 〈ij ||cb〉]

+
∑
bc

Dκ
bc [〈ab||ic〉+ 〈ib||ac〉] +

∑
jk

Dκ
jk [〈aj ||ik〉+ 〈ij ||ak〉]
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+
∑
bc

Dbc

−2
∑
j

Uκ
bj {〈aj ||ic〉+ 〈ac ||ij〉} −

∑
j

Uκ
aj {〈jb||ic〉+ 〈ib||jc〉}


+
∑
cd

Ddc

[∑
b

Uκ
bi {〈ad ||bc〉+ 〈bd ||ac〉}

]

+
∑
jk

Djk

[
2
∑
b

Uκ
bj {〈ab||ik〉+ 〈ak||ib〉}+

∑
b

Uκ
bi {〈aj ||bk〉+ 〈bj ||ak〉}

]

−
∑
kl

Dlk

∑
j

Uκ
aj {〈jl ||ik〉+ 〈il ||jk〉}

 . (2.274)

Form the derivative of the perturbed orbital gradient (eq. 2.274) w.r.t. the U-coefficients,

∂gorb
ai

∂Uκ
bj

≡ goo = − 2δabFji + 2δijFab + 2 [〈ab||ij〉+ 〈aj ||ib〉]

− 2
∑
kc

{
〈ak||jc〉t ikbc + 〈bk||ic〉tkjac

}
+
∑
cd

〈ab||cd〉t ijcd +
∑
kl

〈kl ||ij〉tklab

− δab
∑
kc

〈jk||cb〉t ikcb − δij
∑
kc

〈kj ||bd〉tkjac

− δab
∑
k

DikFjk + DijFab +
∑
k

Dik {〈ab||kj〉+ 〈aj ||kb〉}

− δij
∑
c

DacFbc + DabFij +
∑
c

Dac {〈ib||cj〉+ 〈ij ||cb〉}

+
∑
c

Dbc [−2 {〈aj ||ic〉+ 〈ac ||ij〉} − δab {〈jb||ic〉+ 〈ib||jc〉}]

+ δij
∑
cd

Ddc {〈ad ||bc〉+ 〈bd ||ac〉}

+
∑
k

Djk [2 {〈ab||ik〉+ 〈ak||ib〉}+ δij {〈aj ||bk〉+ 〈bj ||ak〉}]

− δab
∑
kl

Dlk {〈jl ||ik〉+ 〈il ||jk〉} (2.275)

and form the derivative of the perturbed orbital gradient (eq. 2.274) w.r.t. the perturbed amplitudes,

∂gorb
ai

∂t jk,κ
bc

≡ got =
∂

∂t jk,κ
bc

{∑
lde

〈al ||ed〉t il ,κed −
∑
lmd

〈ml ||id〉tml ,κ
ad

+
∑
de

[
1

2

∑
lmf

t lm,κ
df t lmef + t lmdf t lm,κ

ef

]
[〈ad ||ie〉+ 〈id ||ae〉]

+
∑
lm

[
−1

2

∑
nde

t ln,κ
de tmn

de + t lndetmn,κ
de

]
[〈al ||im〉+ 〈il ||am〉]

}
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= 2
∑
lde

δijδklδbeδcd〈al ||ed〉 − 2
∑
lmd

δjmδklδabδcd〈ml ||id〉

+
1

2

∑
de

[
2
∑
lmf

δjlδkmδbdδcf t lmef + δklδjmδcdδbf t lmef + δjlδkmδbeδcf t lmdf + δklδjmδceδdf t lmdf

]
[〈ad ||ie〉+ 〈id ||ae〉]

− 1

2

∑
lm

[
2
∑
nde

δbdδceδjlδkntmn
de + δcdδbeδklδjntmn

de + δbdδceδjmδknt lnde + δcdδbeδkmδjnt lnde

]
[〈al ||im〉+ 〈il ||am〉]

= 2δij〈ak||bc〉 − 2δab〈jk||ic〉

+
∑
e

t jkec [〈ab||ie〉+ 〈ib||ae〉] + tkjeb [〈ac ||ie〉+ 〈ic ||ae〉]

+
∑
d

t jkdc [〈ad ||ib〉+ 〈id ||ab〉] + tkjdb [〈ad ||ic〉+ 〈id ||ac〉]

−
∑
m

tmk
bc [〈aj ||im〉+ 〈ij ||am〉] + tmj

cb [〈ak||im〉+ 〈ik||am〉]

−
∑
l

t lkbc [〈al ||ij〉+ 〈il ||aj〉] + t ljcb [〈al ||ik〉+ 〈il ||ak〉]

= 2δij〈ak||bc〉 − 2δab〈jk||ic〉

+ 2
∑
d

t jkdc [〈ad ||ib〉+ 〈id ||ab〉] + tkjdb [〈ad ||ic〉+ 〈id ||ac〉]

− 2
∑
l

t lkbc [〈al ||ij〉+ 〈il ||aj〉] + t ljcb [〈al ||ik〉+ 〈il ||ak〉] . (2.276)

The derivative of the amplitude equation is,

∂2E2[t, U]

∂t ijab∂κ
≡ at =

∂

∂κ

{
〈ij ||ab〉 −

∑
k

t ikabFjk + tkjabFik +
∑
c

t ijacFcb + t ijcbFca

}
=
∑
c

Uκ
ci 〈cj ||ab〉+ Uκ

cj〈ic ||ab〉 −
∑
k

Uκ
ak〈ij ||kb〉+ Uκ

bk〈ij ||ak〉

−
∑
k

t ik,κ
ab Fjk + tkj ,κab Fik −

∑
kc

t ikabUκ
cjFck + t ikabUκ

ckFjc + tkjabUκ
ciFck + tkjabUκ

ckFic

−
∑
k

t ikabh
[κ]
jk + tkjabh

[κ]
ik + t ikabR(Uκ)jk + tkjabR(Uκ)ik

+
∑
c

t ij ,κac Fcb + t ij ,κcb Fca −
∑
kc

t ijacUκ
ckFkb + t ijacUκ

bkFck + t ijcbUκ
ckFka + t ijcbUκ

caFck

+
∑
c

t ijach
[κ]
cb + t ijcbh[κ]

ca + t ijacR(Uκ)cb + t ijcbR(Uκ)ca. (2.277)

Form the derivative of the perturbed amplitude equation (eq. 2.277) w.r.t. the U-coefficients,

∂at
∂Uκ

ck

≡ ato =
∂

∂Uκ
ck

{∑
c

Uκ
ci 〈cj ||ab〉+ Uκ

cj〈ic ||ab〉 −
∑
k

Uκ
ak〈ij ||kb〉+ Uκ

bk〈ij ||ak〉

−
∑
lc

t ilab
[
Uκ
cjFcl + Uκ

clFjc

]
+ t ljab [Uκ

ciFcl + Uκ
clFic ]−

∑
l

t ilabR(Uκ)jl + t ljabR(Uκ)il

−
∑
kd

t ijad [Uκ
dkFkb + Uκ

bkFdk ] + t ijdb [Uκ
dkFka + Uκ

akFdk ] +
∑
d

t ijadR(Uκ)db + t ijdbR(Uκ)da

}
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=
∂

∂Uκ
ck

{∑
kc

Uκ
ck

[
δik〈cj ||ab〉+ δjk〈ic ||ab〉 − δac〈ij ||kb〉 − δbc〈ij ||ak〉

−
∑
l

t ilab [δjkFcl + δlkFjc ]−
∑
l

t ljab [δikFcl + δlkFic ]

−
∑
l

t ilab [〈jc ||lk〉+ 〈jk||lc〉] + t ljab [〈ic ||lk〉+ 〈ik||lc〉]

−
∑
d

t ijad [δdcFkb + δbcFdk ]−
∑
d

t ijdb [δacFkd + δdcFak ]

+
∑
d

t ijad [〈dc ||bk〉+ 〈dk ||bc〉] + t ijbd [〈dc ||ak〉+ 〈dk||ac〉]
]}

= δik〈cj ||ab〉+ δjk〈ic ||ab〉 − δac〈ij ||kb〉 − δbc〈ij ||ak〉

−
∑
l

t ilab [δjkFcl + δlkFjc ]−
∑
l

t ljab [δikFcl + δlkFic ]

−
∑
l

t ilab [〈jc ||lk〉+ 〈jk||lc〉] + t ljab [〈ic ||lk〉+ 〈ik||lc〉]

−
∑
d

t ijad [δdcFkb + δbcFdk ]−
∑
d

t ijdb [δacFkd + δdcFak ]

+
∑
d

t ijad [〈dc ||bk〉+ 〈dk ||bc〉] + t ijbd [〈dc ||ak〉+ 〈dk||ac〉] (2.278)

and form the derivative of the perturbed amplitude equation (eq. 2.277) w.r.t. the perturbed amplitudes,

∂aκt

∂t ij ,κab

≡ att =
∂

∂t ij ,κab

{
−
∑
k

t ik,κ
ab Fjk + tkj ,κab Fik +

∑
c

t ij ,κac Fcb + t ij ,κcb Fca

}
= −

∑
k

δjkFjk + δikFik +
∑
c

δbcFcb + δacFca

= − εj − εi + εb + εa. (2.279)

The right-hand sides of the CP-OO-MP2 equations are given,

bκ0 = 2h
[κ]
ai +

∑
j

Dijh
[κ]
aj +

∑
b

Dabh
[κ]
ib (2.280)

bκ1 = −
∑
k

t ikabh
[κ]
kj + tkjabh

[κ]
ki +

∑
c

t ijach
[κ]
cb + t ijcbh[κ]

ca (2.281)

and the total 2nd derivative of the OO-MP2 energy becomes,

∂2E2

∂λ∂κ
=

∂

∂κ

2
∑
ia

Fai +
∑
i

h
[λ]
ii +

∑
ijabc

〈aj ||cb〉t ijcb −
∑
ijkab

〈kj ||ib〉tkjab

+2
∑
ija

DijFaj − 2
∑
iab

DabFib +
∑
ij

Dijh
[λ]
ij +

∑
ab

Dabh
[λ]
ab +

∑
ia

R(D)ai
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= − 2
∑
ija

Uκ
ajFji + 2

∑
iab

Uκ
biFab + 2

∑
ai

h
[κ]
ai + 2

∑
ai

R(Uκ)ai

+ 2
∑
ai

Uκ
aih

[λ]
ai +

∑
i

h
[λ,κ]
ii

+
∑
jb

Uκ
bj

[
−2
∑
kc

{
〈ak||jc〉t ikbc + 〈bk ||ic〉tkjac

}
+
∑
cd

〈ab||cd〉t ijcd +
∑
kl

〈kl ||ij〉tklab

]
−
∑
jkbc

Uκ
aj〈jk||cb〉t ikcb −

∑
jkbc

Uκ
bi 〈kj ||bc〉tkjac

+
∑
jbc

〈aj ||cb〉t ij ,κcb −
∑
jkb

〈kj ||ib〉tkj ,κab

+ 2
∑
ija

Dκ
ij Faj + 2

∑
ijab

Uκ
bjDijFab − 2

∑
ijka

Uκ
akDijFkj + 2

∑
ija

Dijh
[κ]
aj + 2

∑
ija

DijR(Uκ)aj

− 2
∑
iab

Dκ
abFib − 2

∑
iabc

Uκ
ciDabFcb + 2

∑
ijab

Uκ
bjDijFij − 2

∑
iab

Dabh
[κ]
ib − 2

∑
iab

DabR(Uκ)ib

+
∑
ij

Dijh
[λ,κ]
ij +

∑
ij

Dκ
ij h

[λ]
ij +

∑
ija

Uκ
aiDijh

[λ]
aj + Uκ

ajDijh
[λ]
ia

+
∑
ab

Dabh
[λ,κ]
ab +

∑
ab

Dκ
abh

[λ]
ab −

∑
iab

Uκ
aiDabh

[λ]
ib + Uκ

biDabh
[λ]
ai

+
∑
ia

Rκ(D)ai

= 2
∑
ai

Uκ
aih

[λ]
ai +

∑
i

h
[λ,κ]
ii + gooUκ + gott

ij ,κ

+
∑
ij

Dijh
[λ,κ]
ij +

∑
ij

Dκ
ij h

[λ]
ij +

∑
ija

Uκ
aiDijh

[λ]
aj + Uκ

ajDijh
[λ]
ia

+
∑
ab

Dabh
[λ,κ]
ab +

∑
ab

Dκ
abh

[λ]
ab −

∑
iab

Uκ
aiDabh

[λ]
ib + Uκ

biDabh
[λ]
ai . (2.282)

The CP-OO-MP2 equations to solve have the form,

gooUκ + gott
κ = bκ0 (2.283)

atoUκ + attt
κ = bκ1 (2.284)

⇐⇒ tκ = (bκ1 − atoUκ) (att)
−1

⇐⇒ gooUκ + got

[
bκ1 − atoUκ

]
(att)

−1 = bκ0

⇐⇒
[

goo − gotato (att)
−1

]
Uκ = bκ0 − gotb

κ
1 (att)

−1 (2.285)

⇐⇒
∑
jb

[
goo
ai ,bj −

∑
klcd

got
ai ,ck,dla

to
ck,dl ,bj

(
attck,dl

)−1
]

Uκ
bj = b0,κ

ai −
∑
klcd

got
ai ,ck,dlb

1,κ
ck,dl

(
attck,dl

)−1
. (2.286)

Apparently, the CP-OO-MP2 equations are substantially more complex than the well-known CP-SCF

equations. In Section 3.3 a very preliminary algorithm for the solution of the these equations is proposed.

2.9.3. Spin Contamination

The expectation value of the total spin operator Ŝ2 is regarded as a diagnostic tool to measure the spin

contamination in the UHF reference determinant [56–58]. In post-Hartree-Fock methods 〈Ŝ2〉 can be

evaluated by means of response theory [56]. The perturbation λS2 is added to the Hamiltonian, and the
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derivative of the perturbation dependent energy yields the desired expectation value, eq. 2.287.

〈Ŝ2〉 =
dE (λ)

dλ

∣∣∣∣
λ=0

(2.287)

Note, that the perturbation expansion only corresponds to the exact expectation value of Ŝ2 in the case

of variational methods. 〈Ŝ2〉 for the OO-RI-MP2 can be expressed as [57],

〈Ŝ2〉OO = 〈Ŝ2〉ref + 2〈Ψ0|Ŝ2|Ψ1〉. (2.288)

The correlation correction to the expectation value of the total spin operator over the reference determi-

nant has the explicit form [59],

2〈Ψ0|Ŝ2|Ψ1〉 = − 1

2

α∑
ia

β∑
jb

Sαβib Sβαja t ijab (2.289)

where Sαβib =
∫

Φα
i s+Φβ

b dτ and Sβαja =
∫

Φβ
j s−Φα

a dτ . [57] Φα
i , Φβ

j denote internal and Φα
a , Φβ

b represent

virtual α-/β-spin orbitals, respectively.
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Figure 2.4.: Flowchart of the OO-RI-MP2 module.
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3. Computational Details

3.1. Implementation of RI-MP2 First and Second Derivatives

In this section the implementation of RI-MP2 derivatives is described. The algorithm is divided into two

major parts, i.e. a part, in which the zero-order relaxed RI-MP2 density matrix is calculated and a second

part, in which the first-order relaxed RI-MP2 density matrix is constructed.

3.1.1. First Derivatives

The first part for the calculation of first-order properties proceeds as demonstrated in Listing 3.1.

1 Form V−1/2
pq

Perform RI -transformation of BP
ip ← cµi cνp(µν|P)V

−1/2
PQ

3 store I ij (P, 1), I i (a, P) on disc

// Calculate additional RI -integrals , if second derivatives are requested

5 if (DerivMode == _SECOND_)

if (StoreABV)

7 Perform RI -transformation of BP
ab ← cµacνb(µν|P)V

−1/2
PQ

store I ab(P, 1) on disc

9 Calculate the Coulomb -type integrals J ij (a, b)← BP
ij B

P
ab

store J ij on disc

11 remove BP
ab from disc

else

13 Direct transformation of BP
aibbib

← cµaib cνbib (µν|P)V
−1/2
PQ in a loop over batches ib of ab -pairs

Calculate the Coulomb -type integrals J ij (aib , bib)← BP
ij B

P
aibbib

for the current batch

15 store J ij on disc

endif StoreABV

17 endif DerivMode

Loop over op1

19 Loop over batches of i

Loop over op2

21 Loop over j

form K ij (a, b)← BP
iaB

P
jb

23 t ij (a, b)← −
[
K ij (a, b)− K ij (b, a)

]
× (εa + εb − εi − εj )−1

Γi (P, a)← t ijabB
P
jb

25 Dsym(a, b)← 1
2

(
tij tij+

)
ab

store t ij (a, b) for the actual batch only

27 if (DerivMode == _SECOND_)

store K ij (a, b), t ij (a, b) on disc

29 endif DerivMode

end loop j

31 Loop over j

Loop over k

33 read t ij , t ik

form Dsym(j , k)← − 1
2 tr(tij tik+)

35 end loop k

end loop j

37 end loop op2

end loop i

39 // Construct 3-interal and 3-external contribution
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// to the real Lagrangian

41 if (PertMode == _REAL_)

Loop over i

43 Loop over a

form X sym(a, i)← Γi (P, a)BP
ip

45 end loop a

end loop i

47 endif PertMode

end loop op1

49 // Store unrelaxed density matrix

Transform Dsym(µ, ν)← cµpcνqD
sym(p, q)

51 Store Dsym(µ, ν) on disc

// Finalize the real Lagrangian and

53 // solve the zero -order z-vector equations

if (PertMode == _REAL_)

55 form X sym(a, i)← R(D)(a, i)

solve A<ai ,bjz
sym(a, i) = −X sym(a, i)

57 form Dsym(a, i)← − 1
2 z

sym(a, i)

// Store relaxed density matrix

59 transform Dsym(µ, ν)← cµpcνqD
sym(p, q)

store Dsym(µ, ν) on disc

61 endif PertMode

// Finalize first derivative

63 Form EλMP2 ← tr
(
Dsym · h[λ]

)
Listing 3.1: Algorithm for RI-MP2 first derivatives.

Starting with the calculation of the negative square root of the V-matrix by using the Cholesky decompo-

sition of the inverse V-matrix, the 2- and 3-index two-electron repulsion integrals and its contraction to

the corresponding BP
µν intermediates are calculated and the RI-integrals in the AO basis are transformed

to the requested MO-basis integrals.

If second derivatives are required, the 2-internal/2-external Coulomb integrals are calculated and stored

on disc. This can be done either in the MO basis requiring the temporary storage of the 2-external

RI-integrals BP
ab, or using an AO-direct algorithm in which the storage of BP

ab can be avoided. The latter

version is strongly recommended for larger systems.

In a loop over the number of operators, i.e. spin cases, and a loop over batches of internal orbitals, the

2-external/2-internal exchange integrals are calculated on the fly and directly contracted to the double

excitation amplitudes. Additionally, the 3-index 2-particle density is constructed and the virtual-virtual

block of the symmetric MP2 unrelaxed density matrix is formed via BLAS level 3 matrix multiplications.

The MP2 amplitudes are temporarily stored for the actual batch. The internal-internal block of the unre-

laxed density matrix is built from the prestored amplitudes by employing BLAS level 3 matrix operations.

In the case of real perturbations the 3-external and 3-internal contributions to the MP2 Lagrangian are

formed and stored in the symmetric matrix X. The unrelaxed MP2 density matrix is transformed to the

AO basis and stored on disc.

For real perturbations the Lagrangian is finalized and the zero-order z-vector equations are solved. The

resulting z-vector is added to the unrelaxed density forming the relaxed density matrix, which is trans-

formed to the AO basis and stored on disc. The MP2 density matrices are then used to calculate the

total first derivative of the MP2 energy correction.



3.1 Implementation of RI-MP2 First and Second Derivatives 61

3.1.2. Second Derivatives

The implementation of the second RI-MP2 derivative starts with the precalculation of the 3-/4-internal

integrals from the previously stored RI-integrals. The formation of the σ-vectors is also performed using

the prestored MO-integrals, except for the 4-external contribution, which is calculated in the AO basis

with either the AOBLAS algorithm or via the semi-numeric exchange treatment (COSX).

In the loop over perturbations, the CP-SCF equations are solved for the actual perturbation and the

perturbed Fock matrix is formed with the resulting U-coefficients. The response-type operator R(U)

is calculated in the AO basis and then transformed to the MO basis. The 3-external contribution to

the first-order RI-MP2 amplitudes is partially precalculated by transforming the external index of the U-

coefficients to the AO basis and contracting them with the 3-index RI-AO-integrals. These intermediates

are temporarily stored on disc.

In a loop over operators and batches of internal orbitals, the first-order double excitation amplitudes

are formed and stored for the actual batch. Furthermore, the first-order 2-particle 3-index density is

constructed and the perturbed amplitudes are contracted to form the unrelaxed first-order MP2 density

matrix using BLAS level 3 matrix operations. In the case of imaginary perturbations, the perturbed MP2

density matrix is antisymmetric.

Subsequently, the 3-external and 3-internal contributions to the first-order Lagrangian are calculated from

the first-order 2-particle 3-index density and the corresponding integrals. The 3-external contribution is

calculated in the AO basis and then transformed to the MO basis.

The contributions to the first-order Lagrangian containing the derivatives of the two-electron integrals

are computed from the prestored σ-matrices by contraction with the corresponding U-coefficients.

The derivative of the response-type operator is calculated in the AO basis and subsequently back trans-

formed to the MO basis. In the case of double-hybrid functionals, the contribution R(D′κ)ai already

contains the scaled contribution from the XC kernel, and the functional derivatives of the XC kernel

RXC ,κ(D′κ)ai are added separately to the first-order Lagrangian. The real perturbed Lagrangian is final-

ized by adding the perturbed orbital energies contracted with the zero-order z-vector.

The solution of the first-order z-vector equations yields the first-order z-vector, which is required to finalize

the first-order relaxed density matrix. The resulting MP2 density matrix is transformed to the AO basis

and stored on disc. The entire algorithm for the calculation of the first-order relaxed RI-MP2 density

matrix is shown in Listing 3.2.

1 Calculate I ij (k, p)← BP
ikB

P
jp from the stored RI-integrals

store I ij (k, l), I ij (k, a) on disc

3 Calculate the σij (a, b)-matrices

σij(1)(a, b)← t ik (a, c)
[
Jkj (c, b)− K kj (c, b)

]
+
[
J ik (a, c)− K ik (a, c)

]
tkj (c, b) + K ij (k, l)tkl

5 if (KCOpt == _AOBLAS_)

σij(1)(a, b)← cµacκb(µν|κτ)t ij (ν, τ)

7 elsif (KCOpt == _COSX_)

σij(1)(a, b)← cµacκbwgϕµ(rg )ϕν(rg )(κ|τ)t ij (ν, τ)

9 endif KCOpt

tr
(
σij(2)(a, b)

)
← tr

(
t ikK jk

)
11 σij(3)(a, b)←

(
K kj tkj

)
ab

store σij(1), tr
(
σij(2)

)
, σj(3) on disc

13 /* ***************************************************************** */

/* Loop over perturbations */

15 /* ***************************************************************** */

Loop over ipert

17 // ----------------------------------------------------------------

// Solve the CP -SCF equations for appropriate perturbation
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19 // ----------------------------------------------------------------

Solve Aai ,bjU
κ
bj = −hκai

21

// ----------------------------------------------------------------

23 // Calculate the perturbed Fock operator

// ----------------------------------------------------------------

25 R(Uκ)(p, q)← cµpcνqU
κ(η, τ) [(µν||ητ)± (µν||τη)]

FX (p, q)← hκ(p, q) + R(Uκ)(p, q)

27

// ----------------------------------------------------------------

29 // Precalculate 3-external contribution to the

// perturbed amplitudes

31 // ----------------------------------------------------------------

TX i (a, P)← −cνaUκµiB
P
µν

33 store TX i on disc

35 // ----------------------------------------------------------------

// Start batching over internal orbitals

37 // ----------------------------------------------------------------

Loop over op1

39 Loop over batches of i

Loop over op2

41 Loop over j

form tx ij (a, b)← −Uκ(k, a)I ij (k, b)− Uκ(k, b)I ij (k, a)− TX i (b, P)I j (a, P)− TX j (a, P)I i (b, P)

43 tx ij (a, b)← t ik (a, b)FX (j , k) + FX (i , k)tkj (a, b)− t ij (a, c)FX (b, c)− FX (a, c)t ij (c, b)

Γx i (P, a)← I j (b, P)tx ij
ab

45 if (PertMode == _REAL_)

DX (a, b)← 1
2

(
txij tij+ + tij txij+

)
ab

47 elsif (PertMode == _IMAG_)

DX (a, b)← 1
2

(
txij tij+ − tij txij+

)
ab

49 store tx ij (a, b) for the actual batch

end loop j

51 Loop over j

Loop over k

53 read t ij , t ik from disc

read tx ij , tx ik

55 if (PertMode == _REAL_)

DX (j , k)← − 1
2

(
tr(txij tik+) + tr(tij txik+)

)
57 elsif (PertMode == _IMAG_)

DX (j , k)← − 1
2

(
−tr(txij tik+) + tr(tij txik+)

)
59 end loop k

end loop j

61 end loop op2

end loop i

63 // ----------------------------------------------------------------

// Form 3-internal and 3-external contribution to the perturbed

65 // Lagrangian LMP2X

// ----------------------------------------------------------------

67 Loop over i

Loop over a

69 if (PertMode == _REAL_)

Xx sym(a, i)← −2BP
kiΓ
′P,κ
ka

71 Xx sym(a, i)← 2BP
µνΓ′P,κ

iν

elsif (PertMode == _IMAG_)

73 Yxasym(a, i)← 2BP
kiΓ
′P,κ
ka

Yxasym(a, i)← −2cµaB
P
µνΓ′P,κ

iν

75 endif PertMode

end loop a

77 end loop i

end loop op1

79 // ----------------------------------------------------------------

// Contract the precalculated sigma -vectors with the

81 // corresponding U- coefficients

// ----------------------------------------------------------------

83 if (PertMode == _REAL_)
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Xx sym(a, i)← xκbjσ
ij(1)
ab − xκja tr

(
σij(2)

)
− xκbiσ

jj(3)
ab

85 elsif (PertMode == _IMAG_)

Yxasym(a, i)← iyκbjσ
ij(1)
ab + iyκja tr

(
σij(2)

)
+ iyκbiσ

jj(3)
ab

87 endif PertMode

89 // ----------------------------------------------------------------

// Calculate the derivative of the response operator

91 // ----------------------------------------------------------------

if (PertMode == _REAL_)

93 Xx sym(a, i)← R(D′κ)ai − xκajR(D)ij + xκbiR(D)ab + R(D̃)ai

if (PertMode == _IMAG_)

95 Yxasym(a, i)← R(D′κ)ai + iyκajR(D)ij − iyκbiR(D)ab + R(D̃)ai

endif PertMode

97

// In the case of double -hybrid functionals add the contribution

99 // containing the third functional derivatives

if (DHDF && (PertMode == _REAL_) )

101 Xx sym(a, i)← R
XC ,κ

(D)ai

endif DHDF

103

// ----------------------------------------------------------------

105 // Add perturbed orbital energies to the Lagrangian

// ----------------------------------------------------------------

107 if (PertMode == _REAL_)

Xx sym(a, i)←
(
∂εa
∂κ −

∂εi
∂κ

)
zai

109 endif PertMode

111 // ----------------------------------------------------------------

// Solve first -order z-vector equations

113 // ----------------------------------------------------------------

if (PertMode == _REAL_)

115 Solve A<ai ,bj
∂zbj
∂κ = −Xx sym(a, i)−

∂A<ai ,bj
∂κ zbj

elsif (PertMode == _IMAG_)

117 Solve A=ai ,bj
∂zbj
∂κ = −Yxasym(a, i)

endif PertMode

119

// ----------------------------------------------------------------

121 // Finalize the perturbed relaxed density

// ----------------------------------------------------------------

123 if (PertMode == _REAL_)

DX sym(a, i)← − 1
2 z
κ(a, i)

125 DX sym(p, q)← xκrpDrq + xκrqDpr

elsif (PertMode == _IMAG_)

127 DX asym(i , a)← 1
2 z
κ

(a, i)

DX asym(a, i)← − 1
2 z
κ

(a, i)

129 DX asym(p, q)← −iyκrpDrq + iyκrqDpr

endif PertMode

131

transform DX (µ, ν)← cµpcνqDX (p, q)

133 store DX (µ, ν) on disc

135 end loop ipert

Listing 3.2: Algorithm for RI-MP2 second derivatives.

3.2. The ’Chain of Spheres Exchange’ Algorithm

The semi-numeric exchange treatment is efficiently implemented via the ’chain of spheres exchange’

(COSX) algorithm. [39] In this algorithm each contracted basis function is surrounded by a sphere outside
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of which its contribution to the exchange matrix is assumed to be negligible. Practically, this basis function

cutoff is 10−10 which corresponds roughly to a radius of ∼3Å for a valence basis function. Given these

spheres, a list of partners for each basis function with a non-negligible differential overlap (S-junction) is

constructed. Likewise, a list of partners which are connected via a non-negligible density matrix element

(P-junction) is built. These lists are expected to become asymptotically constant, as long as Kohn’s

conjecture holds, i.e. the absolute values of the density or overlap matrix elements, respectively, drop

asymptotically with the distance of the corresponding orbital shells. The structure of the COSX algorithm

as it is implemented is shown is Listing 3.3.

1 Preselect interacting pairs of basis functions

Loop ig over grid points

3 Calculate basis function values Rµg // O(N)

if (DoGrad)

5 Calculate basis function derivatives R
µλg

// O(N)

Construct secondary (and tertiary) shell lists // O(N)

7 Perform BLAS level 3 matrix multiplication Fτg =
∑
κ RκgPκτ // O(N)

Calculate analytic integrals Gνg =
∑
τ FτgAντ (rg ) // O(N)

9 Perform BLAS level 3 matrix multiplication Kµν =
∑

g RµgGνg // O(N)

if (DoGrad)

11 Perform BLAS level 3 matrix multiplication Kλµν =
∑

g R
µλg

Gνg // O(N)

end

Listing 3.3: Schematic diagram of the COSX algorithm.

First, the interacting pairs of basis functions which interact via S- or P-junction are preselected. In

the loop over batches of grid points the surviving basis function values and, if requested, its derivatives

are calculated. Then a secondary shell list is constructed with basis functions, which interact with the

primary list of shells via the density matrix. The tertiary shell list is not required for the evaluation of

the semi-numeric exchange gradient, due to the permutational symmetry of the two-electron derivative

integrals. The Fτg -intermediate is built via large scale BLAS Level 3 matrix routines. The analytical

integration represents the rate limiting step, and in the formation semi-numeric exchange matrix and its

gradient, respectively, use of BLAS level 3 routines is made again. The COSX algorithm is potentially

linear scaling, but due to the small decay constant of the exponential functions the secondary shell list

only becomes constant for fairly large systems, i.e. ∼25Å.

3.2.1. COSX integration grids

The integration grids employed for the numerical integration within the COSX algorithm are derived from

standard DFT grids included in the ORCA program package, but are considerably smaller. The accuracy

of the integration grids is controlled by the radial resolution parameter ε together with the largest Lebedev

grid used in constructing the atomic grid. ε defines the number of radial shells nr for a given atom and

is calculated as nr = 15ε + 5r − 40 [60], where r is the row of the periodic table to which the atom

belongs. For a radial integration accuracy of ε={3.34;4.01;4.34;5.01} the number of radial grid points

for the 1st to 3rd row of the periodic table is {(15,20,25);(25,30,35);(30,35,40);(40,45,50)}. The pruning

algorithm of Gill et al. is used to reduce the number of points in the inner and outer regions. [61] In order

to investigate the influence of the employed integration grids on the accuracy of the resulting first- and

second-order properties, different angular grids in combination with several radial resolution parameters

have been tested for diverse molecules and varying basis sets.
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Figure 3.1.: Deviation of the RIJCOSX-MP2 gradient norm [%] depending on the SCF grids with regard to
the original MP2 method. ZGridX 1-3 refer to Lebedev-50/3.34, Lebedev-50/4.01 and Lebedev-
194/4.34.

RIJCOSX-MP2 Gradient For comparison, the same four representative molecules with the same di-

verse basis sets, as for the earlier evaluation of the SCF grids have been chosen. [39]

The grids used for the calculation of the response-type operators are dependent on the chosen SCF grids,

since they originate from the HF equations. Therefore, the influence of the employed integration grids

for the solution of the z-vector equations on the quality of the calculated gradient norm compared to

the original MP2 gradient norm has been tested. As shown in Fig. 3.1, the deviations of the gradient

norm are very small (<3%) and the very limited deviations follow no general trend. We therefore have

considered the smallest SCF grid as being appropriate for the present purpose.

The calculation of the derivative of the basis functions on the grid required for the RIJCOSX-MP2 gradi-

ent is independent of the employed SCF grids. Therefore, we tested different angular grids in combination

with several radial integration accuracies. In Fig. 3.2 the deviation of the norm calculated with the RIJ-

COSX approximation compared to the norm of the original MP2 method is presented.

The trend of the norm deviation changes between different molecules but is almost independent of the

angular grid. The maximum deviation of the gradient norm is 3.5% for the cyclohexane molecule, but is

considerably smaller for the other molecules in this test suite (<1%). The curves corresponding to the

large 302 and 434 point Lebedev grid nearly coincide and even the deviations obtained with the smaller

194 point Lebedev grid are still reasonable. However, extended test calculations have shown, that best

convergence in geometry optimizations is obtained with the Lebedev-302 radial grid in combination with

a radial integration accuracy of 4.43. Hence we choose this very conservative scheme as our default

setting.
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Figure 3.2.: Deviation of the RIJCOSX-MP2 gradient norm [%] depending on the grids used for the evaluation of
the basis function derivatives with regard to the original MP2 method. Triangles=110 point Lebedev
grid, filled squares=195 point Lebedev grid, circles=302 point Lebedev grid and empty squares=434
point Lebedev grid.

RIJCOSX-MP2 Second-Order Properties The COSX grids used for the solution of the first-order

z-vector equations as well as for the evaluation of the perturbed response-type operators depend on the

chosen SCF grids. As it has already turned out for the calculated gradient, the second-order properties

are almost unaffected by the grid choice as well. Therefore, the only grid to be determined, is the one

used in the calculation of the 4-external contribution to the σ-vector. In Fig. 3.3 the deviation of the

isotropic polarizability calculated with the COSX approximation compared to the one calculated with the

conventional AO-based algorithm is presented. The error is usually <0.001 au and both Lebedev-195

and Lebedev-302 grids show negligible errors, which are almost independent on the radial integration

accuracy. The deviation is for each molecule and all grids <0.01%. The error introduced by the COSX

approximation in the calculated isotropic g-shifts is shown in Fig. 3.4. The deviations in the g-tensor are

one order of magnitude larger (<0.1%) compared to the error in the polarizabilities. Overall, it turned out

that the Lebedev-110 angular grid in combination with a radial resolution parameter of 3.34 represents a

good compromise between efficiency and accuracy.
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3.3. Proposed Algorithm for the Calculation of Second

Derivatives

In this section a preliminary algorithm for the solution of the coupled-perturbed OO-MP2 equations,

derived in Section 2.9.2, is proposed. Listing 3.4 presents the construction of the right-hand side of the

CP-OO-MP2 equations. The first step is to contract the one-electron perturbation matrix h[κ] with the

corresponding zero-order double excitation amplitudes and the orbital energy denominator attck,dl . The

resulting four-index quantity is saved on disc and later used for the formation of the 3-internal/3-external

contributions to the Lagrangian.

Further contraction with another set of zero-order amplitudes leads to a matrix ttxh with which the

response-type operator R(ttxh)ai can be calculated and added to the first-order Lagrangian LXai . The

3-external contribution to the Lagrangian can be efficiently evaluated in the AO-basis, whereas the 3-

internal contribution is calculated with prestored integrals. The Lagrangian is finalized by adding the

contracted and uncontracted h
[κ]
ai terms. The first-order Lagrangian is then used to solve of the CP-OO-

MP2 equations.

/* *********************************************************************************

2 Form the right -hand side of the OO -MP2 equations for each perturbation κ

********************************************************************************* */

4 // Construct auxiliary matrix for the contraction in ttxh ← tklb1,κ
ck,dl · (a

tt
ck,dl )

−1

loop over k

6 loop over l

Get stored amplitudes tkl

8 loop over m

// Form the internal part of the txh -matrix

10 Get stored amplitudes tkm, tml

Form txhkl ← −tkmh[κ]
ml − h

[κ]
km tml

12 end loop m

// Form the virtual part of txh -matrix

14 BLAS_Add_Mat_x_Mat(txhkl , tkl , hV [κ])

BLAS_Add_Mat_x_Mat(txhkl , hV [κ],†, tkl )

16 loop over c

loop over d

18 // Finalize txh -matrix

txhkl (c, d)← txhkl (c, d) · (−εk − εl + εc + εd )−1

20 end loop d

end loop c

22 Store txhkl on disc

24 // Form virtual part of the ttxh -matrix

BLAS_Add_Mat_x_Mat(ttxhV , 2 · tkl , txhkl ,†)
26 BLAS_Add_Mat_x_Mat(ttxhV , 2 · t lk , txhkl )

loop over m

28 Get stored amplitudes tml , tmk

// Form internal part of the ttxh -matrix

30 ttxh(m, k)← −2 · BLAS_Trace(tml , txhkl ,†)

ttxh(m, l)← −2 · BLAS_Trace(tmk , txhkl )

32 end loop m

end loop l

34 end loop k

36 // Construct the first -order Lagrangian

loop over batches of i

38 loop over a

LX (a, i)← 2 · h[κ]
ai

40 loop over j

LX (a, i)← Dijh
[κ]
aj

42 end loop j
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loop over b

44 LX (a, i)← Dabh
[κ]
ib

end loop b

46 end loop a

loop over AOs

48 loop over l

// Form 3-external contribution to LX

50 LX (a, i)← 4 · cµacκl (µν|κτ)txhilντ
end loop l

52 end loop AOs

54 loop over l

Get stored 3-internal integrals I il ← (ik|ld)

56 loop over a

// Form 3-internal contribution to LX

58 LX (a, k)← −4 · (ik|ld)txhilad
end loop a

60 end loop l

end loop ibatch

62

// Calculate response -type contribution to LX

64 LX (a, i)← 2 ·R(ttxh)ai

66 // -----------------------------------------

// Solve the OO -MP2 equations

68 // -----------------------------------------

Call function Solve_OOMP2Eqs ()

Listing 3.4: Proposed algorithm for the construction of the right-hand side of the CP-OO-MP2 equations.

In Listing 3.5 a potential algorithm for the solution of the CP-OO-MP2 equations is presented. Several

terms which occur in the first-order Lagrangian for the conventional MP2 method appear on the left-

hand side of the CP-OO-MP2 equations. First, a σ-vector is calculated and stored on disc just like in the

canonical MP2 case. Then an adequate initial guess has to be made for the U-coefficients. Afterwards,

the well-known left-hand side of the CP-SCF equations is formulated as one contribution to the CP-OO-

MP2 left-hand side. Then the formal derivative of the response-type operator similar to the MP2 case is

built. Several Fock-matrix terms are added and finally, to complete the Gai intermediate the σ-vector is

contracted with the corresponding orbital rotation coefficients.

In a second step a four-index quantity is formed, which contains a response-type operator over the

U-coefficients contracted with the zero-order amplitudes, several Fock-matrix elements contracted with

the double excitation amplitudes and the U-coefficients as well as 3-external and 3-internal two-electron

repulsion integrals multiplied by the actual U-coefficients. The Rck,dl quantity is scaled by the denominator

attck,dl and stored on disc.

The intermediate four-index quantity is first contracted with the OO-MP2 amplitudes to calculate a

response-type operator, and subsequently used for the contraction with 3-external/3-internal two-electron

integrals.

The left-hand side of the OO-MP2 equations is finalized and convergence is checked. If convergence has

not been achieved yet, the U-coefficients are updated, e.g. by a DIIS procedure.

At convergence, the U-coefficients are used to calculate the first-order OO-MP2 amplitudes and the entire

second derivative.
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/* *****************************************************

2 Solve the CP -OO -MP2 equations

***************************************************** */

4

Calculate the σij (a, b)-matrices

6 σij(1)(a, b)← t ik (a, c)
[
Jkj (c, b)− K kj (c, b)

]
+
[
J ik (a, c)− K ik (a, c)

]
tkj (c, b) + K ij (k, l)tkl

if (KCOpt == _AOBLAS_)

8 σij(1)(a, b)← cµacκb(µν|κτ)t ij (ν, τ)

elsif (KCOpt == _COSX_)

10 σij(1)(a, b)← cµacκbwgϕµ(rg )ϕν(rg )(κ|τ)t ij (ν, τ)

endif KCOpt

12 tr
(
σij(2)(a, b)

)
← tr

(
t ikK jk

)
σij(3)(a, b)←

(
K kj tkj

)
ab

14 store σij(1), tr
(
σij(2)

)
, σj(3) on disc

16 // ------------------------------------------

// INITIAL GUESS

18 // ------------------------------------------

Uκbj = − LX
εa−εi

20

loop over CP-Iter

22 // ------------------------------------------

// Generate
∑

jb U
κ
bjg

oo
ai ,bj

24 // ------------------------------------------

Calculate
∑

jb U
κ
bjg

oo(ai , bj)←
∑

jb U
κ
bjA

(<)
ai ,bj

26

// Add response -type terms to the left -hand side of OO -CP -MP2 equations

28 Gai ←
∑

jb −δabU
κ
bjR(D)ij + δijU

κ
bjR(D)ab +

∑
k DikR(Uκ)ak +

∑
c DacR(Uκ)ic + R(D̃)ai

30 // Add Fock -matrix terms

Gai ←
∑

jb U
κ
bj

[
DijFab + D ij

ab − δab
∑

k DikFjk − δij
∑

c DacFbc

]
32

// Add σ-terms

34 Gai ← Uκbjσ
ij(1)
ab − Uκja tr

(
σij(2)

)
− Uκbiσ

jj(3)
ab

36 // ------------------------------------------

// Generate
∑

jb U
κ
bj

∑
klcd got

ai ,ck,dla
to
ck,dl ,bj (a

tt
ck,dl )

−1

38 // ------------------------------------------

Form the contraction Rck,dl ←
∑

jb U
κ
bja

to
ck,dl ,bj (a

tt
ck,dl )

−1

40 Calculate response -type contribution

Rck,dl ← −
∑

m R(Uκ)lm · tkmcd + R(Uκ)km · tml
cd −

∑
e R(Uκ)ed · tklce + R(Uκ)ec · tklde

Add Fock -matrix terms

Rck,dl ←
∑

jb U
κ
bj

[
−
∑

m tkmcd [δljFbm + δmjFlb ] + tml
cd [δkjFbm + δmjFkb ]−

∑
e t

kl
ce [δebFjd + δdbFej ] + tkled [δcbFje + δdbFej ]

]
42 Add 2-electron repulsion integrals

Rck,dl ←
∑

jµ δkjU
κ
µj〈µl||cd〉 +

∑
jν δljU

κ
νj〈kν||cd〉 −

∑
jb U

κ
bj [δcb〈kl||jd〉 + δdb〈kl||cj〉]

Multiply with the denominator Rck,dl ← Rck,dl · (attck,dl )
−1

44 store Rck,dl on disc

46 Form the contraction Oai ←
∑

ck,dl g
ot
ai ,ck,dlRck,dl

Calculate response -type contribution Oai ← 2R(t ·R)ai

48 Add 2-electron integral contribution Oai ← 2
∑

klκτ δik〈µl||κτ〉Rκk,τ l − 2
∑

klcd δac〈kl||id〉Rck,dl

50 Finalize the left -hand side of the CP -OO-MP2 equations Oai ← Gai − Oai

52 if (CP-Iter > 0) CheckConvergence ()

54 if (NotConverged) UpdateUCoefficients ()

else break

56

end loop CP-Iter

Listing 3.5: Algorithm for the solution of CP-OO-MP2 equations.
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By analyzing the individual terms occurring on the left-hand side of the CP-OO-MP2 equations, it appears

that the solution of the CP-OO-MP2 equations is of the similar computational effort as the calculation of

the first-order MP2 Lagrangian in conventional MP2 theory. However, the CP-OO-MP2 equations have

to be solved iteratively, and thus the computational costs scale with the number of iterations. Thus,

the solution of the first-order z-vector equations in general MP2 theory is replaced by the solution of the

CP-OO-MP2 equations in the OO-MP2 method.
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4. Validation

In the present section the validation of our implementation of second RI-MP2 derivatives is presented.

Therefore, the calculated electric and magnetic properties are compared to MP2 results obtained with

the CFOUR program package [62]. A numerical check for the imaginary second MP2 derivatives could

not be performed, because the use of complex molecular orbital coefficients is not available in the ORCA

program package.

4.1. Polarizabilities

4.1.1. Calculation of Polarizabilities

Static polarizabilities can be considered as second-order response of the molecular system with regard to

an external electric field ~E . Therefore, the energy can be expanded in a Taylor series around |E| = 0,

E (~E) = E (0)+
∑
α

(
∂E

∂Eα

)
|E|=0

Eα+
1

2

∑
αβ

(
∂2E

∂Eα∂Eβ

)
|E|=0

EαEβ+
1

3!

∑
αβγ

(
∂3E

∂Eα∂Eβ∂Eγ

)
|E|=0

EαEβEγ+... .

(4.1)

with α,β, γ, ... = x , y , z . Comparing eq. 4.1 with the expression for the energy of a molecule in an electric

field in classical physics, eq. 4.2,

E (~E) = E (0) −
∑
α

µαEα −
1

2

∑
αβ

ααβEαEβ −
1

3!

∑
αβγ

βαβγEαEβEγ + ... (4.2)

shows, that the polarizability tensor α can be expressed as second derivative of the energy w.r.t. an

external electric field.

ααβ = −1

2

∑
αβ

(
∂2E

∂Eα∂Eβ

)
|E|=0

(4.3)

Analogously, the dipole moment µ corresponds to the first and the hyperpolarizability to the third energy

derivative.

4.1.2. Validation of Polarizabilities as Implemented in the ORCA Program

Package

In Table 4.1 the calculated isotropic polarizabilities for a series of small organic compounds are listed.

The polarizabilities have been calculated employing a triple-ζ basis set (TZVP [63, 64]) and Dunning’s

quadruple-ζ basis set (cc-pVQZ [65]). For the ’Resolution of the Identity’ approximation the corresponding

correlation fitting basis sets from the Turbomole library [32, 33] were used. The energies were converged
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to 10−10 Eh. The results maintained with the ORCA program package are compared to the CFOUR

results. The error introduced by the RI approximation is assumed to be negligible, since the error in

the total energies is usually <1 mEh. This is confirmed by the numbers presented in Table 4.1, where

the deviations in the isotropic polarizabilities are typically ≤0.005 au for the TZVP basis and ≤0.02 au

for the cc-pVQZ basis compared to the conventional MP2 reference. The error ranges from −0.003 to

0.006 au and from −0.004 to 0.037 au, respectively. Since, the error is in the interval of the typical

error introduced by the RI approximation, we consider the correct implementation of the RI-MP2 second

derivatives as proven for real perturbations.

Table 4.1.: Calculated isotropic polarizabilities for a series of small organic compounds in [au]. Comparison of
CFOUR and ORCA implementation. Structures have been optimized at the RI-MP2/TZVP level.

molecule TZVP cc-pVQZ

CFOUR ORCA CFOUR ORCA

HF MP2 HF RI-MP2 HF MP2 HF RI-MP2

CH4 13.701 13.847 13.700 13.849 15.274 15.582 15.274 15.583

C2H2 18.276 17.278 18.277 17.277 21.450 20.574 21.450 20.574

C2H4 24.212 23.020 24.212 23.021 25.800 24.936 25.800 24.936

C2H6 25.008 25.484 25.008 25.487 26.702 27.400 26.702 27.402

C3H4
a 30.484 29.892 30.484 29.894 33.818 33.453 33.818 33.455

cyclo-C3H6 33.026 33.768 33.026 33.774 34.021 34.911 34.029 34.920

C3H8 36.201 37.159 36.201 37.165 38.073 39.322 38.081 39.332

1-Butynea 42.243 42.125 42.244 42.128 45.663 45.799 45.678 45.795

1-Butene 47.165 46.686 47.165 46.689 49.416 49.420 49.419 49.442

trans-2-Butene 47.150 46.735 47.150 46.741 49.660 49.727 49.675 49.744

C6H6
a 61.914 62.303 61.914 62.300 64.700 65.202 64.735 65.239

cyclo-C6H12 64.545 66.821 64.545 66.832 —b —b 66.600 69.247

CH3OH 16.825 17.396 16.825 17.399 18.681 19.481 18.681 19.482

CH3CHO 25.093 26.202 25.093 26.202 26.965 28.273 26.977 28.284

C2H5OH 28.085 29.157 28.085 29.162 30.135 31.483 30.145 31.495

MD 0.0000 0.0025 0.0076 0.0086

MAD 0.0002 0.0030 0.0076 0.0091

4.1.3. RIJCOSX Error

In this section the accuracy of the RIJCOSX approximation is benchmarked. Therefore, isotropic po-

larizabilities have been calculated with three different basis sets up to quintuple-ζ quality [65] with the

corresponding auxiliary basis functions [66]. The standard COSX integration grids analyzed in Sec-

tion 3.2.1 have been employed. The RIJCOSX approximation becomes more efficient with increasing

angular momenta and increasing system size. Therefore, the largest speedup is achieved for the cc-pV5Z

basis set. For systems with ∼500 basis functions an overall speedup in the total wall clock time of a factor

of 10 could be achieved. For the cyclohexane molecule with a basis dimension of 1206 even a factor of

15 has been reached.

aCFOUR energy convergence criterion decreased to 10−8 Eh.
bCFOUR calculation could not been finished.
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Table 4.2.: Calculated isotropic HF polarizabilities for a series of small organic compounds in [au]. Estimation of
the RIJCOSX error. Structures have been optimized at the RI-MP2/TZVP level.d

molecule cc-pVTZ cc-pVQZ cc-pV5Z

HF RIJCOSX-HF HF RIJCOSX-HF HF RIJCOSX-HF

CH4 14.657 14.667 15.274 15.279 15.582 15.600

C2H2 19.650 19.674 21.450 21.560 22.407 22.647

C2H4 24.305 24.280 25.800 25.791 27.007 27.114

C2H6 26.019 25.980 26.702 26.668 27.033 26.995

C3H4 31.826 31.836 33.818 33.920 34.851 35.079

cyclo-C3H6 33.112 33.077 34.029 34.002 35.267 35.231

C3H8 37.220 37.187 38.081 38.058 38.900 38.855

1-Butyne 43.559 43.636 45.678 45.795 47.239 47.500

1-Butene 47.671 47.612 49.419 49.418 50.784 50.952

trans-2-Butene 48.032 48.005 49.675 49.700 51.188 51.403

C6H6 61.618 61.621 64.735 64.930 68.481 68.953e

cyclo-C6H12 65.516 65.474 66.600 66.580 69.484 69.791

CH3OH 17.725 17.729 18.681 18.682 19.224 19.240

CH3CHO 25.769 25.783 26.977 26.988 28.371 28.348

C2H5OH 29.064 29.075 30.145 30.164 31.402 31.401

MD −0.0071 0.0314 0.1259

MAD 0.0275 0.0466 0.1450

In Tables 4.2 and 4.3 the calculated isotropic polarizabilities at the Hartree-Fock and MP2 level are

presented. The error in the static polarizabilities grows with increasing basis dimension. This behaviour

is also observed for single point energies and has been analyzed in detail in Refs. [39] and [31]. Therefore,

the use of larger integration grids has been recommended for calculations with extended basis sets.

Nevertheless, a mean absolute error of 0.1–0.15 au in isotropic polarizabilities for the cc-pV5Z basis set is

still satisfactory. Except for the benzene molecule, for which the SCF failed to converge on the standard

COSX grids, no outliers have been observed. Thus, the RIJCOSX approximation demonstrates again its

robustness and high efficiency.

dErrors in final RIJCOSX-SCF energies are for
cc-pVTZ=0.02.0.01.0.17.0.07.0.02.0.08.0.10.0.09.0.26.0.19.0.08.0.35.0.01.−0.01.0.01 kcal/mol and for
cc-pVQZ=0.25.−0.03.0.33.0.54.0.26.0.41.0.67.0.27.0.98.0.95.0.83.1.40.0.43.0.25.0.39 kcal/mol and for
cc-pV5Z=0.60.0.22.0.90.1.07.0.73.1.19.1.44.1.05.2.09.2.11.2.43.−0.03.0.95.0.75.1.02 kcal/mol.

eDue to SCF convergence problems the following COSX grids were employed: small SCF grid Lebedev-50/3.67, medium
SCF grid Lebedev-110/4.01, final SCF grid Lebedev-194/4.34 and if so COSX K(tij )ab grid Lebedev-302/4.34.
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(a) BQ•− (b) BQ•−×2H2O (c) BQ•−×4H2O

Figure 4.1.: Structures of the p-benzosemiquinone anion radical (BQ•−) coordinated with up to four water
molecules.

Table 4.3.: Calculated isotropic MP2 polarizabilities for a series of small organic compounds in [au]. Estimation
of the RIJCOSX error. Structures have been optimized at the RI-MP2/TZVP level.f

molecule cc-pVTZ cc-pVQZ cc-pV5Z

RI-MP2 RIJCOSX-MP2 RI-MP2 RIJCOSX-MP2 RI-MP2 RIJCOSX-MP2

CH4 14.844 14.855 15.583 15.591 15.965 15.987

C2H2 18.801 18.824 20.574 20.674 21.509 21.719

C2H4 23.376 23.344 24.936 24.915 26.129 26.206

C2H6 26.529 26.478 27.402 27.356 27.838 27.787

C3H4 31.418 31.422 33.455 33.545 34.519 34.712

cyclo-C3H6 33.691 33.646 34.920 34.884 36.431 36.386

C3H8 38.199 38.159 39.332 39.303 40.301 40.250

1-Butyne 43.565 43.646 45.795 45.934 47.484 47.729

1-Butene 47.433 47.348 49.442 49.384 50.902 51.004

trans-2-Butene 47.825 47.774 49.744 49.728 51.452 51.608

C6H6 62.008 62.007 65.239 65.410 69.272 69.663e

cyclo-C6H12 67.731 67.674 69.247 69.217 72.632 72.925

CH3OH 18.286 18.290 19.482 19.483 20.237 20.257

CH3CHO 26.824 26.838 28.284 28.294 29.891 29.870

C2H5OH 30.103 30.116 31.495 31.519 33.005 33.013

MD −0.0141 0.0205 0.1106

MAD 0.0341 0.0519 0.1346

COSX Timings The speedup obtained by employing the RIJCOSX approximation to RI-MP2 sec-

ond derivative calculations is analyzed in the present paragraph. Therefore, the structures of the para-

benzosemiquinone anion radicals (BQ•−) coordinated with up to four water molecules (Fig. 4.1) have

been optimized with the TPSS [67] meta-GGA density functional and a TZVP [64, 68] basis set under

fErrors in final RIJCOSX-MP2 energies are for
cc-pVTZ=0.04.−0.13.0.08.0.17.−0.01.0.01.0.23.−0.10.0.37.0.29.0.43.−0.64.0.22.0.04.0.02 kcal/mol and for
cc-pVQZ=0.25.−0.03.0.33.0.54.0.26.0.41.0.67.0.27.0.98.0.95.0.83.1.40.0.43.0.25.0.39 kcal/mol and for
cc-pV5Z=0.60.0.22.0.90.1.07.0.73.1.19.1.44.1.05.2.09.2.11.2.76.0.07.0.95.0.75.1.02 kcal/mol.
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tight optimization criteria. The structure of the BQ•−×4H2O anion radical was taken from Ref. [69].

The static isotropic polarizabilities have been calculated with Ahlrichs’ TZVPP [66,70] basis set together

with the corresponding auxiliary basis sets.

Table 4.4.: Timings in [s] for the formation of the 4-external contribution to the σ-vector K(tij)ab and total wall
clock times for one polarizability calculation in a TZVPP basis set with the RIJCOSX-MP2 method.

Molecule NBasis NAuxBasisJ NAuxBasisC Time K(tij )ab Total Time

AOBLAS COSX AOBLAS COSX

BQ•− 304 436 728 5523 (47.6%) 1790 (21.5%) 11603 8312

BQ•−×2H2O 422 578 1000 33690 (53.2%) 7161 (18.6%) 63318 38495

BQ•−×4H2O 540 720 1272 130721 (56.2%) 20311 (16.5%) 232611 122988

In Table 4.4 the speedup achieved by calculating the 4-external contribution K (tij)ab to the σ-vector

semi-numerically with the ’chain of spheres exchange’ algorithm is tabulated. The total wall clock times

listed in Table 4.4 refer to the formation of the first-order relaxed MP2 density matrix employing the

RIJCOSX approximation. Whereas in the default AOBLAS algorithm the calculation of K (tij)ab is the

time determining step, which takes ∼50% of the total wall clock time, the COSX treatment reduces the

computational effort drastically to ≤20%. The speedup for the entire calculation is ∼1.5 for the smallest

compound and ∼2 for the solvated BQ•−×4H2O radical.

Table 4.5.: Timings in [s] for the formation of the perturbed response operator R
κ

(D)ai and the solution of the
first-order z-vector equations zai for one polarizability calculation in a TZVPP basis set.

Molecule NBasis NAuxBasisJ NAuxBasisC Time R
κ

(D)ai Time zai

AO (direct) RIJCOSX AO (direct) RIJCOSX

BQ•− 304 436 728 1082 (6.0%) 241 (2.1%) 6255 (35.0%) 1553 (13.4%)

BQ•−×2H2O 422 578 1000 2224 (2.8%) 438 (0.7%) 16610 (20.7%) 3978 ( 6.3%)

BQ•−×4H2O 540 720 1272 3815 (1.4%) 685 (0.3%) 20775 ( 7.9%) 4304 ( 1.9%)

In Table 4.5 the timings for the formation of the perturbed response operator R
κ

(D)ai and for the solution

of the first-order z-vector equations are shown. The formation of R
κ

(D)ai can be accelerated by a factor

∼5 if the Coulomb-type integrals are approximated by the ’Resolution of the Identity’ approximation

and the exchange-type integrals are evaluated semi-numerically. But this speedup has almost no effect

on the total wall clock time, since the step is by far not rate limiting. The situation changes for the

solution of the z-vector equations, which account for ∼35% of the entire wall clock time for the smallest

p-benzosemiquinone anion radical, but becomes less expensive for growing systems. Nevertheless, a factor

of ∼4–5 can be gained by employing the RIJCOSX approximation to the solution of the z-vector equations.

An overall speedup of ∼2 could be achieved even for these small systems by employing the RIJCOSX

approximation throughout and by treating the 4-external contribution semi-numerically.

4.1.4. Numeric versus Analytic Polarizabilities

In this section the numeric calculation of isotropic polarizabilities is compared to the analytic evaluation.

Therefore, the structures of the nitropyridine compounds shown in Fig. 4.2 have been optimized with
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(a) I (b) II (c) III

Figure 4.2.: Structures of (a) 2-nitropyridine, (b) 3-nitropyridine and (c) 4-nitropyridine coordinated by hydrogen
fluoride.

the BP86 [71, 72] GGA density functional in a polarized triple-ζ basis set (TZVPP [66, 70]) under tight

optimization conditions. The static polarizabilities have been calculated at the RI-MP2 [21] level with

Dunning’s cc-pVTZ [65] basis set and the corresponding auxiliary basis functions [66]. The numeric

polarizabilities have been evaluated either by first finite differences of dipole moments (POLAR2) or by

second finite differences of energies (POLAR3). In order to speedup the analytic calculation of isotropic

polarizabilities (POLAR1) the COSX approximation has been applied for the calculation of the 4-external

term in the first-order Lagrangian ’COSX’ (cf. eq. 2.231) or the RIJCOSX approximation has been

employed throughout ’RIJCOSX’. The standard COSX integration grids analyzed in Section 3.2.1 have

been used.

The timings listed in Table 4.6 refer to total wall clock times for a polarizability calculation subsequent

to a single point and relaxed RI-MP2 density calculation for the SCF, the RI-MP2 unrelaxed and relaxed

densities. The difference in the total time required to perform one numeric polarizability calculation

using the POLAR2 approach compared to an analytic evaluation with conventional RI-MP2 is almost

negligible, due to the small system size (15 first row atoms) and basis set. The second finite differences

of energies technique (POLAR3) is roughly a factor 2 more slower compared to the analytic derivative

evaluation, due to the larger number of displacements. Calculating the 4-external contribution to the

first-order Lagrangian semi-numerically (COSX) gains ∼20–25% in computation time. The application

of the RIJCOSX approximation to the analytical computation thus saves ∼60% of the total wall clock

time.

Table 4.6.: Total wall clock times for numeric versus analytic isotropic polarizabilities [au] for 2-/3-/4-nitropyridine
compounds in [s] for a cc-pVTZ basis set (NBas=370, NBasJ=545, NBasC=960).

POLAR1 POLAR2 POLAR3

COSX RIJCOSX

I 68 445.9 (αiso = 78.80) 54 744.5 28 544.1 71 052.4 (αiso = 78.78) 150 614.6

II 71 026.3 (αiso = 79.74) 54 634.8 30 435.9 73 200.4 (αiso = 79.78) 152 946.1

III 68 763.0 (αiso = 78.80) 52 248.3 28 449.0 71 261.2 (αiso = 78.80) 152 163.9
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Benchmark Study In order to benchmark the implementation of second analytic RI-MP2 derivatives the

16-annulene molecule, shown in Fig. 4.3, has been chosen. The structure of the 16-annulene compound

has been optimized at the RIJCOSX-MP2 level with a TZVP [66,70] basis set. The static polarizabilities

have been calculated with triple-ζ and quadruple-ζ basis sets (cc-pVTZ, cc-pVQZ [65]).

Figure 4.3.: Structure of 16-annulene optimized at RIJCOSX-MP2/TZVP level.

For the cc-pVTZ basis set (NBas=704, NBasJ=960, NBasC=1776) the total wall clock time for the analytic

polarizability calculation is roughly ∼3 days 23 hours 2 minutes (∼1 day 11 hours 16 minutes with

RIJCOSX) on a Intel(R) Xeon(R) CPU with 2.4GHz and 6GB RAM. The same calculation using the

finite differences technique of dipole moments took ∼4 days 8 hours 14 minutes (∼1 day 8 hours 43

minutes with RIJCOSX) on the same machine. The polarizability calculation employing the cc-pVQZ

basis set (NBas=1360, NBasJ=960, NBasC=2992) took roughly 17 days 9 hours employing the RIJCOSX

approximation on a Quad-Core AMD Opteron Processor with 2.2GHz and 8GB of main memory. The

computation time is dominated by the calculation of the 4-internal contribution to the σ-vector, which is

somewhat surprising. It has to be checked whether this is an artifact of load balancing on the computer or

if the routine itself has to be further optimized for large-scale applications. By contrast, the evaluation of

the 4-external contribution to the σ-vector took only ∼6% of the overall time required for the calculation

of the relaxed RIJCOSX-MP2 density matrix. For comparison, the MP2 polarizability calculation of the

benzene molecule in a cc-pVQZ basis set (NBas=510) took ∼8 days 20 hours with the CFOUR program

package on an identical machine.

4.2. Chemical Shieldings

4.2.1. Calculation of Chemical Shielding Tensors

In magnetic resonance spectroscopy the concept of effective spin Hamiltonians plays a fundamental role in

the understanding of experimental data. [73] The effective spin Hamiltonian used to resemble the nuclear

magnetic resonance (NMR) spectra for closed-shell compounds is given as,

HNMR
S = −

∑
A

γA~ ~BT (1− σA)~IA +
1

2

∑
A 6=B

γAγB~2~IAT (DAB + KAB)~IB (4.4)

where γA is the nuclear magnetogyric ratio for nucleus A and ~IA represents the nuclear spin operator.

The nuclear magnetic dipole moment ~MA is related to the nuclear spin operators via

~MA = γA~~IA. (4.5)
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In eq. 4.4 σA is the nuclear magnetic shielding tensor, which describes the magnetic shielding effects of

the electrons; DAB indicates the classical dipolar interaction between nuclear magnetic dipole moments

and KAB denotes the reduced indirect nuclear spin-spin coupling between nuclear dipoles induced by the

surrounding electrons. [74] The effective NMR spin Hamiltonian reproduces the nuclear magnetic energy

levels in a molecular system without explicitly accounting for the electrons. [74] Expanding the electronic

energy in the magnetic field ~B and in the nuclear magnetic moments { ~MA} yields,

E ( ~B, { ~MA}) = E0 +
1

2

∑
αβ

BTα
∂2E

∂Bα∂Bβ

∣∣∣∣
|B|=0

Bβ +
∑
A

∑
αβ

BTα
∂2E

∂Bα∂MA
β

∣∣∣∣∣
|B|=0,|M|=0

MA
β

+
1

2

∑
A 6=B

~MAT
α

∂2E

∂MA
α∂MB

β

∣∣∣∣∣
|M|=0

MB
β (4.6)

with α,β, γ, ... = x , y , z . In eq. 4.6 the first-order terms vanish for closed-shell systems, either due to the

imaginary nature of the operator or because the spin operators generate triplet wave functions. [74] The

second energy derivatives in eq. 4.6 can be identified by comparison with the spin Hamiltonian in eq. 4.4

as,

ξαβ = − ∂2E

∂Bα∂Bβ

∣∣∣∣
|B|=0

(4.7)

σA
αβ =

∂2E

∂Bα∂MA
β

∣∣∣∣∣
|B|=0,|M|=0

+ 1 (4.8)

KAB
αβ =

∂2E

∂MA
α∂MB

β

∣∣∣∣∣
|M|=0

− DAB
αβ . (4.9)

The second energy derivative w.r.t. two components of the magnetic field in eq. 4.7 is the molecular

magnetizability ξαβ , which corresponds to the polarizability in the electric case. The magnetizability

tensor does not enter the NMR spin Hamiltonian. The chemical shielding tensor σA
αβ can be expressed

as mixed second energy derivative w.r.t. the magnetic field and nuclear magnetic moment of nucleus

A (eq. 4.8), and the reduced indirect spin-spin coupling tensor KAB
αβ corresponds to the second energy

derivative w.r.t. the components of the nuclear magnetic moments (eq. 4.9). The second-order molecular

properties can be generally expressed by means of time-independent perturbation theory as, [75]

∂2E (λ,κ)

∂λ∂κ
=

〈
Ψ(0)

n

∣∣∣∣ ∂2H
∂λ∂κ

∣∣∣∣Ψ(0)
n

〉

−
∑
n 6=k

〈
Ψ

(0)
n

∣∣∂H
∂λ

∣∣Ψ
(0)
k

〉〈
Ψ

(0)
k

∣∣∂H
∂κ

∣∣Ψ
(0)
n

〉
E

(0)
n − E

(0)
k

+

〈
Ψ

(0)
n

∣∣∂H
∂κ

∣∣Ψ
(0)
k

〉〈
Ψ

(0)
k

∣∣∂H
∂λ

∣∣Ψ
(0)
n

〉
E

(0)
n − E

(0)
k

(4.10)

where the second energy derivative in eq. 4.10 consists of a ground-state expectation value over the

second-order Hamiltonian (diamagnetic contribution) and a sum-over-states contribution over all excited

states of the molecular system and transition moments between ground and excited states with the first-

order Hamiltonian (paramagnetic contribution). [74,75] The nonrelativistic molecular Hamiltonian in the
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presence of an external homogeneous magnetic field and nuclear magnetic moments is given as,

H( ~B, { ~MA}) =
1

2

∑
i

π2
i +

∑
i

miB
tot(ri )−

∑
iA

ZA

riA
+

1

2

∑
i 6=j

1

rij
+

1

2

∑
A 6=B

ZAZB

RAB

−
∑
A

MABtot(RA) +
∑
A>B

MT
A DABMB . (4.11)

The kinetic momentum operator is defined as,

πi = −i∇i + Atot(ri ) (4.12)

and the magnetic field is uniquely determined by the vector potential Atot(ri ) through the following

relation,

Btot(ri ) = ∇i × Atot(ri ) (4.13)

where the superscript ’tot’ indicates, that the total magnetic field is considered, i.e. the external magnetic

field and the magnetic field due to the magnetic moments of the nuclei. The diamagnetic contributions

to the nuclear magnetic properties are obtained by formulating the corresponding second derivatives of

the Hamiltonian in eq. 4.11. Therefore, the operator describing the nuclear contribution to the chemical

shielding tensor in atomic units is obtained as second derivative of the nuclear Zeeman interaction, [74,76]

∂2H
∂Bα∂MA

β

= −1 +
α2

2

r(r − RA)δαβ − rβ(r − RA)α

|r − RA|3
. (4.14)

The Gauge-Origin Problem The gauge-origin problem can be traced back to the use of the vector

potential A for defining the magnetic field, since the choice of A is not unique. [76] This does not affect

the exact solution to the Schrödinger equation, but since gauge-invariance can not be enforced for the

wave function itself, approximate solutions do not necessarily satisfy the requirement of gauge-invariance,

due to the finite-basis set representation. [76, 77] While the nucleus represents the natural gauge origin

for atoms, there exists no such intuitive choice for molecules. The use of distributed gauges has proven to

be the best alternative to ensure gauge-invariance in molecular property calculations. The most popular

approaches are the individual gauges for localized orbitals (IGLO) approach by Kutzelnigg [78,79], and the

gauge-including atomic orbital (GIAO) approach [80–84], which is based on individual gauges for atomic

orbitals. In present day computational chemistry the GIAO approach is the one that is dominantly used.

4.2.2. Validation of Chemical Shielding Tensors as Implemented in the ORCA

Program Package

The implementation of RI-MP2 second derivatives for magnetic perturbations in the ORCA program

package is compared to the CFOUR implementation on the example of chemical shielding tensors. All

structures have been optimized at the MP2 level of theory employing the RI approximation and the

TZVP [63, 64] basis set with the corresponding auxiliary basis functions [32, 33] under tight convergence

criteria. The chemical shielding tensors were calculated employing the split-valence basis set SVP [64,85]

as well as the triple-ζ basis set TZVP [64, 68] with the appropriate auxiliary basis sets [66]. The energy

convergence was chosen to be 10−10 Eh and the threshold for the residuum norm in the CP-SCF equations

was set to 10−10. Due to the dependence of the calculated magnetic properties on the gauge origin, the
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point of origin {0.0, 0.0, 0.0} has been chosen for this purpose throughout.

Table 4.7.: Calculated isotropic chemical shieldings for a series of small organic compounds in [ppm]. Comparison
of CFOUR and ORCA implementation for SVP basis set. Structures have been optimized at the RI-
MP2/TZVP level.

molecule CFOUR ORCA

HF MP2 CCSD HF RI-MP2 RI-B2PLYP

=m/=m <e/=m =m/=m

1H

CH4 31.149 30.935 31.032 31.149 30.931 30.930 30.876

C2H4 22.753 22.809 22.970 22.753 22.617 22.820 22.569

C2H6 29.914 29.572 29.708 29.914 29.540 29.566 29.451

C3H8 19.901 19.194 19.359 19.901 19.044 19.166 19.457

33.011 32.777 32.929 33.011 32.783 32.775 32.507

34.422 34.121 34.286 34.422 34.092 34.128 33.723

C5H12 30.896 30.550 30.730 30.893 30.507 30.548 30.322

C6H6 8.937 8.382 — 8.937 7.866 8.384 8.657

cyclo-C6H12 18.780 17.917 — 18.780 17.694 17.892 18.111

40.173 40.093 — 40.173 40.125 40.102 39.380

13C

CH4 204.134 207.890 206.180 204.134 208.242 208.515 202.415

C2H4 86.817 103.554 103.664 86.817 105.451 105.759 91.589

C2H6 206.981 208.807 208.087 206.981 209.401 209.634 201.558

C3H8 202.024 203.023 202.983 202.024 203.710 203.944 195.762

215.712 215.931 216.104 215.711 216.894 217.084 207.371

C5H12 195.647 195.645 196.698 195.647 196.536 196.755 188.323

243.736 241.147 242.756 243.736 242.552 242.678 231.044

C6H6 103.066 117.968 — 103.066 120.781 121.030 107.548

cyclo-C6H12 214.501 213.257 — 214.501 214.243 214.427 204.530

In Tables 4.7 and 4.8 the isotropic chemical shieldings for two different basis sets are listed. The approach

derived in Section 2.5 is referred to as ’=m/=m’ approach, whereas the derivation of Gauss [17] (Sec-

tion 2.6) is dubbed ’<e/=m’ Ansatz. The Hartree-Fock chemical shielding tensors are identical for the

CFOUR and the ORCA program package. For the majority of the test suite the differences between the

MP2 and RI-MP2 implementations are reasonable: ∼0.1 ppm for 1H and ∼1 ppm for the 13C chemical

shieldings (Table 4.9). An error of this magnitude can be traced back to the error introduced by the RI

approximation. The RI error in the final energies is in the range of 0.005–0.5 mEh (∼10–30µEh/Atom).

Hence, the implementation of analytic second RI-MP2 derivatives in the ORCA program package was

shown to be consistent with the CFOUR implementation.

Furthermore, isotropic chemical shieldings calculated with the double-hybrid density functional B2PLYP [1]

are presented in Tables 4.7 and 4.8. In order to benchmark the results obtained with the B2PLYP func-

tional CCSD [86] calculations for the smaller organic compounds have been performed with the CFOUR

program package. As can be seen from the error statistics in Table 4.9 the B2PLYP functional performs

poorly for the chemical shielding tensors of the organic compounds in the present test set. The hydrogen

shielding constants are worse by a factor of 2 compared to MP2/RI-MP2 and for carbon it is even a factor
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of 3–4. Thus, the performance of B2PLYP for the prediction of chemical shielding constants appears to

be disappointing.

Table 4.8.: Calculated isotropic chemical shieldings for a series of small organic compounds in [ppm]. Comparison
of CFOUR and ORCA implementation for TZVP basis set. Structures have been optimized at the
RI-MP2/TZVP level.

molecule CFOUR ORCA

HF MP2 CCSD HF RI-MP2 RI-B2PLYP

=m/=m <e/=m =m/=m

1H

CH4 31.279 31.103 31.193 31.279 31.080 31.097 31.132

C2H4 23.326 23.376 23.544 23.326 23.170 23.388 23.194

C2H6 29.871 29.529 29.666 29.871 29.482 29.520 29.509

C3H8 21.749 21.010 21.184 21.479 20.858 20.980 21.299

32.317 32.070 32.219 32.317 32.056 32.061 31.909

33.062 32.740 32.930 33.062 32.702 32.744 32.461

C5H12 30.231 29.850 30.045 30.231 29.795 29.840 29.736

C6H6 11.935 11.365 — 11.935 10.871 11.371 11.643

cyclo-C6H12 20.846 19.873 — 20.846 19.663 19.847 20.131

37.343 37.206 — 37.343 37.208 37.198 36.671

13C

CH4 197.459 201.811 199.510 197.459 202.184 202.526 197.130

C2H4 71.723 85.995 85.889 71.722 88.249 88.654 74.094

C2H6 193.182 196.188 194.708 193.183 196.758 197.082 189.071

C3H8 185.695 187.877 187.026 185.696 188.589 188.897 180.609

195.838 197.181 196.734 195.838 198.052 198.336 188.802

C5H12 177.725 178.560 178.803 177.726 179.488 179.774 171.156

213.590 211.985 213.240 213.590 213.250 213.467 202.175

C6H6 80.665 92.510 — 80.665 95.726 96.081 82.095

cyclo-C6H12 189.819 189.915 — 189.819 190.892 191.163 181.396

Table 4.9.: Error statistics for isotropic chemical shielding tensors compared to MP2 and to CCSD. Errors are
given in [ppm].

CFOUR ORCA

MP2 RI-MP2 RI-B2PLYP

=m/=m <e/=m =m/=m

SVP

1H

Mean Deviation (MP2 reference) −0.1151 −0.0039

Mean Absolute Deviation (MP2 reference) 0.1227 0.0097

Mean Deviation (CCSD reference) −0.1509 −0.2143 −0.1544 −0.3013

Mean Absolute Deviation (CCSD reference) 0.1509 0.2143 0.1544 0.3293
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Continued.

CFOUR ORCA

MP2 RI-MP2 RI-B2PLYP

=m/=m <e/=m =m/=m

13C

Mean Deviation (MP2 reference) 1.1764 1.4004

Mean Absolute Deviation (MP2 reference) 1.1764 1.4004

Mean Deviation (CCSD reference) −0.0679 0.9020 1.1281 −8.3443

Mean Absolute Deviation (CCSD reference) 0.7736 1.0066 1.1504 8.3443

TZVP

1H

Mean Deviation (MP2 reference) −0.1237 −0.0076

Mean Absolute Deviation (MP2 reference) 0.1241 0.0120

Mean Deviation (CCSD reference) −0.1576 −0.2340 −0.1644 −0.2201

Mean Absolute Deviation (CCSD reference) 0.1576 0.2340 0.1644 0.2530

13C

Mean Deviation (MP2 reference) 1.2407 1.5509

Mean Absolute Deviation (MP2 reference) 1.2407 1.5509

Mean Deviation (CCSD reference) 0.5267 1.8322 1.5229 −7.5533

Mean Absolute Deviation (CCSD reference) 0.9547 1.8322 1.5229 7.5533
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5. Results

5.1. Comparison of Two Efficient Approximate Hartree-Fock

Approaches

5.1.1. Introduction

Non-hybrid density functional theory can be very efficiently implemented in quantum chemical and solid

state computer codes due to the fact that only local potentials enter the Kohn-Sham operator. This

allows for the very efficient calculation of the two-electron Coulomb contributions by the ’Resolution of

the Identity’ [22,37], Fourier transform [87] or pseudospectral [40] techniques. For the calculation of the

exchange-correlation contributions efficient numerical integration techniques have been devised. [44, 88]

Any other quantum chemical method requires the calculation of the nonlocal Hartree-Fock (HF) exchange

term. Despite the fact that this term is inherently linear scaling [89, 90], the effort to evaluate it often

dominates the computational effort in calculations on medium sized molecules (30-100 atoms) that form

the subject of most contemporary quantum chemical investigations. Hence, it is necessary to develop

efficient exact or approximate techniques to compute the HF exchange contributions.

In a recent paper, Weigend and co-workers [91] have compared the performance of the RI approximation

for the computation of the Coulomb and exchange parts [92] with that of the Cholesky decomposition

technique. [93,94] The two techniques are closely related. In the RI approach one introduces an auxiliary

basis set that needs to be optimized in some way while in the Cholesky decomposition technique the

significant part of the orbital product space is determined. The 3-index electron-electron repulsion integrals

that characterize the RI approach or the 3-index Cholesky vectors that result from the decomposition are

then employed to construct approximations to the Coulomb and exchange contributions of the HF or KS

matrices. Depending on the cut-off for the Cholesky decomposition, almost arbitrarily accurate results

can be obtained. In the RI technique there always remains an, albeit smooth, basis set incompleteness

error. It could be shown that at a given target accuracy of better than 1 Millihartree (mEh) for the total

energy of a medium sized molecule the RI approach is more efficient than the Cholesky decomposition

technique. [91] In this section, the efficiency of the RI-JK algorithm proposed and discussed by Weigend

and co-workers [91] is compared to the recently developed RIJCOSX approximation [39], which has been

already discussed in detail in section 2.7. The focus is set to the comparison of the efficiency as well as

the strengths and weaknesses of the RI-JK and RIJCOSX techniques.

5.1.2. Methods

The relevant equations for the RI-JK and RIJCOSX techniques as implemented in the ORCA program [25]

are briefly recalled for the sake of completness. Our RI-JK implementation is essentially identical to the

one proposed by Weigend et al. [91] and greatly improves upon an early attempt to achieve an efficient
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RI-JK approximation. [95] The two-electron part of the closed-shell Fock matrix is given by,

Gµν = Jµν −
1

2
Kµν =

∑
κτ

Pκτ

(
(µν|κτ)− 1

2
(µκ|ντ)

)
(5.1)

=
∑
κτ

Pκτ (µν|κτ)−
∑
i

(µi |νi). (5.2)

Eq. 5.1 is used in the formulation of the RIJCOSX approximation while the simplicity of the HF-density

matrix (Pµν = 2
∑

i cµicνi ) leads to eq. 5.2 that is exploited in the RI-JK approach. Introducing an

auxiliary basis set {ηK}, the Coulomb term is computed via the standard RI-J sequence as,

gK =
∑
µν

Pµν(µν|K ) (5.3)

dK =
∑
L

V−1
KL gL (5.4)

JRI−J
µν ≈

∑
K

dK (µν|K ) (5.5)

(µν|K ) =

∫
µ(r1)ν(r1)r−1

12 K (r2)dr1dr2 (5.6)

VKL =

∫
K (r1)r−1

12 L(r2)dr1dr2. (5.7)

In the RIJCOSX approximation the Split-RI-J [30] sequence is employed. In RI-JK, the calculation of the

exchange matrix proceeds as, [92]

XK
µi =

∑
ν

cνi (µν|K ) (5.8)

Y K
µi =

∑
L

V
−1/2

KL X L
µi (5.9)

KRI−JK
µν ≈

∑
iK

Y K
µi Y

K
νi . (5.10)

If properly organized all three steps can be done as matrix multiplications making use of the extremely

high efficiency of the basic linear algebra subroutine (BLAS) level 3 library functions that are available for

all modern computers. Since the memory requirements for the intermediate quantities scale cubically with

molecular size it will often be necessary to perform the calculation in batches and generate the 3-index

integrals repeatedly.

Formally, the calculation of the Coulomb term scales as O(N3) and that of the RI-JK exchange term as

O(N4). Prescreening of negligible 3-index integrals reduces the Coulomb term to O(N2) while sparsity is

not exploited in the RI-JK exchange approximation which remains at O(N4) scaling. The requirements

for the auxiliary basis sets are modest for the Coulomb part but more stringent for the exchange part.

Ahlrichs, Weigend and co-workers have developed suitable basis sets for either Coulomb alone [28,96,97]

or simultaneous Coulomb and exchange fitting. [92, 98] The COSX approximation to the exchange term

is written as the following sequence, [39]

KCOSX
µν ≈

∑
g

RµgGνg (5.11)

Rµg = w
1
2
g ϕµ(rg ) (5.12)

Fτg = (PR)τg (5.13)
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(a) (gly)2 (b) (gly)4 (c) (gly)8

Figure 5.1.: Glycine chains.

Aντ (rg ) =

∫
ϕν(r)ϕτ (r)

|r − rg |
dr (5.14)

Gνg =
∑
τ

FτgAντ (rg ). (5.15)

With proper thresholding the formal scaling of this procedure is O(N) but due to the relatively slow

decay of the density matrix elements one typically observes quadratic scaling in practice. [39] A detailed

consideration of the RIJCOSX approximation is given in section 2.7.

5.1.3. Results

In order to compare the efficiency of the RI-JK and RIJCOSX approximations calculations were carried out

with a number of basis sets on glycine helices (gly)2, (gly)4 and (gly)8 shown in Fig. 5.1. Our conclusions

are independent of this choice. The orbital basis sets of the Karlsruhe group were used [28, 92, 96, 97].

The def2-TZVP(-df) basis was constructed by replacing the 2d1f polarization part for the main group

elements by the 1d polarization functions of the older TZVP basis set. While this basis set is not

recommended [99], there are still many calculations being done with basis sets of this size and quality.

The ’def2’ Coulomb fitting bases ’/J’ have been used for RIJCOSX and the ’/JK’ Coulomb and exchange

auxiliary bases for RI-JK. After completion of the work, we became aware of new fitting basis sets that

would reduce the cost for RI-JK calculations further by 20-30% for the largest basis sets. [98] Calculations

were carried out on a single CPU of a MacPro 3.1, operating system OS X 10.5, 2 quad-core Intel XEON

3.0 GHZ CPUs that have 12 MB level 2 cache. For the COSX approximation the default grids described

in Ref. [39] were used except for the def2-QZVPP calculations where a slightly larger grid was employed

as discussed previously. [39] All calculations were carried out with a development version of the ORCA

program (version 2.7.0). [25]

The results collected in Table 5.1 show some interesting features:

1. The absolute error of the two methods is similar and both reproduce the canonical results within

the chemical accuracy of ∼1 kcal/mol. Interestingly, both methods show the largest errors for the

smallest basis set (def2-SVP). However, the error of the RI-JK approximation is always positive while

that of the RIJCOSX approximation can have either sign. The error of the RI-JK approximation is

therefore seen to be more smooth and energy differences will be slightly more accurate. However,

both methods yield errors that are smaller than the typical uncertainties in computational chemistry

applications that are due to errors in the structures, the treatment of the environment, the intrinsic

errors in density functionals or the basis set incompleteness errors.
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Table 5.1.: Comparison of RI-JK and RIJCOSX for RHF calculations on glycine chains. Total wall clock times
are given in [min] and the error in the final energies is listed in [mEh].

molecule Basis NBasis TWall SpeedUpRI−JK ErrorRI−JK SpeedUpRIJCOSX ErrorRIJCOSX

(gly)2 def2-SVP 166 1.8 2.4 0.4 1.5 −0.6

def2-TZVP(-df) 219 5.3 4.5 0.2 2.6 −0.4

def2-TZVPP 391 42.9 7.9 0.3 4.9 −0.2

def2-QZVPP 753 464.3 9.1 0.3 4.5 0.5

(gly)4 def2-SVP 308 10.2 1.8 0.8 2.2 −1.1

def2-TZVP(-df) 407 32.0 2.8 0.5 3.4 −0.5

def2-TZVPP 723 232.8 5.1 0.5 5.8 −0.1

def2-QZVPP 1389 2684.1 5.8 0.6 6.6 0.9

(gly)8 def2-SVP 592 57.2 1.0 1.5 2.9 −1.7

def2-TZVP(-df) 783 208.4 2.3 0.9 5.6 −0.8

def2-TZVPP 1387 1379.6 5.0 1.0 9.7 −0.1

def2-QZVPP 2661 12262.7 6.2 1.2 8.4 1.4

2. Both approximations perform best for large and accurate basis sets. As discussed earlier [39], this is

related to the much better scaling of the both approximations with the highest angular momentum

in the basis set. In the standard calculation of four index integrals this scaling is 16/9L10 + · · ·
for the Davidson algorithm. [100] In the case of RI-JK this reduces to 2/9L9 + · · · due to the

3-index nature of the electron-electron repulsion integrals. In COSX the scaling is even reduced to

O(L6). [39]

3. For the small (gly)2 molecule, the RI-JK approximation is more efficient than RIJCOSX, for (gly)4

the performance of both approximations is comparable while for (gly)8 RIJCOSX performs better.

This result is, of course, not unexpected due to the less favorable scaling of RI-JK compared to

RIJCOSX. However, low-order scaling variants of RI-JK can and have been developed. [101]

4. This behavior is typical and not affected by the choice of glycine chains as the test systems. For

example, for cholesterol a more or less 2 dimensional molecule the times required for RI-JK and

RIJCOSX for a RHF calculation with the def2-TZVP basis set (74 atoms, 1144 basis functions)

require 16900 sec (RI-JK) and 7300 sec (RIJCOSX), in line with the (gly)n results. The total

energies differ by only 0.3 mEh.

5.1.4. Discussion

In this section the efficiency of the RI-JK and RIJCOSX approximations to the calculation of the Fock

matrix was examined and illustrated by some test calculations. The comparison reveals that both ap-

proximations are efficient and accurate while their performance is overall comparable. For large-scale

calculations on smaller molecules RI-JK is probably preferable while RIJCOSX is the method of choice

for larger molecules. Several points are noted:

1. RI-JK achieves its efficiency through the formulation of the density matrix in the MO basis. This

implies that for other exchange-type matrices, for example those that arise in electric and magnetic
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linear response calculations, the approximation is less beneficially employed. In this respect RIJ-

COSX, that is formulated entirely in the AO basis, is the more general technique for simultaneously

approximating Coulomb and exchange-type contributions.

2. For spin unrestricted calculations the cost of the RI-JK method doubles since the rate limiting

step is the first contraction of the MO coefficients with the 3-index integrals. This is not true for

the COSX approximation where the rate limiting step is the calculation of the integrals which is

independent on the number of spin cases.

3. Energy derivatives are more readily and more efficiently formulated in the RIJCOSX approximation

compared to RI-JK. [39, 43]

4. RI-JK requires much more main memory than RIJCOSX due to the structure of the intermediate

quantities. Thus, if memory becomes limiting many passes through the integral list may be necessary

in RI-JK with concomitant penalties in the overall performance. However, this is not much of an

issue if about 4 GB of main memory are available.

5. Since RI-JK is dominated by matrix multiplications it will strongly benefit from the latest hardware

developments where matrix operations can be extremely efficiently performed on graphics cards.

This will further increase the attractiveness of RI-JK.

In summary, both, the RI-JK and RIJCOSX approximations are attractive tools in quantum chemistry.

Their efficiency, accuracy, robustness and availability could be proven.

5.2. Efficient Structure Optimization with Second-Order

Many-Body Perturbation Theory: The RIJCOSX-MP2

Method

5.2.1. Introduction

In the last two decades many attempts have been undertaken in the improvement of the quality and effi-

ciency of MP2 calculations. On the one hand, empirical parameters have been determined to individually

scale the parallel and antiparallel spin components in MP2 theory, e.g. Grimme’s ’spin-component scaled’

MP2 (SCS-MP2 [102,103]) or the simplified approach of Head-Gordon et al. ’scaled opposite-spin’ MP2

(SOS-MP2 [58, 104, 105]) that also leads to reduced computational scaling from O(N5) to O(N4). On

the other hand the development of double-hybrid functionals has introduced semi-local dynamic corre-

lation effects by adding a perturbative second-order correction in the framework of density functional

theory. [1, 49]

Substantial progress to improve the efficiency of MP2 calculations was made by Almlöf and Saebøby

introducing an integral direct MP2 algorithm to avoid storage of O(N4) intermediates. [106] Further

modifications to the original algorithm have been reported by Head-Gordon and Pople [107] as well as

by Ahlrichs. [108] Probably, the most efficient semi-direct Ansatz without avoiding the storage of O(N4)

quantities on disk, was proposed by Pulay and co-workers [109–112], who presented very large MP2 calcu-

lations with more than 2000 basis functions. [113] A linear scaling integral direct MP2 code based on the

Laplace transformation technique introduced by Almlöf [114] and discussed by various authors [115–117]

has been developed by Ochsenfeld and co-workers. [118–121] Amongst others Werner, Schütz and co-

workers have developed efficient approximate linear scaling approaches [122–126] which employed the
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correlation domain concept of Pulay and Saebø. [127–129]

The most popular approximation used in combination with the MP2 method is the ’Resolution of the

Identity’ (RI) approximation, in which products of orbitals are expanded in an auxiliary basis set. [20]

The RI-MP2 method was first reported by Feyereisen et al. [21] and was based on the results of Vahtras,

Feyereisen and Almlöf who showed that the RI technique performs best in the Coulomb metric. [22] The

outstanding performance of the RI-MP2 method is indisputable. The speedup of one to two orders of

magnitude for large basis sets in comparison to the canonical result with errors in energies usually smaller

than 0.1 mEh/atom demonstrates the impressive efficiency of the RI-MP2 method.

The first derivation and implementation of the MP2 gradient was reported by Pople at the end of the

1970s. [11] Direct and semi-direct variants of the MP2 gradient implementation have been developed by

Frisch, Head-Gordon and Pople more than ten years later. [130,131] Ahlrichs implemented a modification

of the semi-direct MP2 gradient with reduced disk storage requirements and the exploit of nonabelian

point group symmetry in the well-known MPGRAD program that is part of the TuboMole program

suite. [108]

Weigend and Häser demonstrated the efficient use of the ’Resolution of the Identity’ approximation in

MP2 gradient calculations. [52] Further refinement was made by Head-Gordon and co-workers who first

presented the restricted open shell MP2 gradient within the RI approximation [132] and later on proposed

a more efficient RI-MP2 gradient algorithm by utilizing a semi-direct batching approach. [133] Analytic

derivatives associated with the recently developed double-hybrid functionals have been reported by Neese,

Schwabe and Grimme [49], who also demonstrated the efficient application of the RI approximation to

the incorporated MP2 correction.

Like any other wave function based electron correlation theory, the basis set requirements for MP2 calcu-

lations are much more stringent than for SCF calculations. Hence, in order to obtain results that properly

reflect the intrinsic accuracy of the MP2 method rather than basis set incompleteness artifacts one needs

to employ at least a triple-ζ basis with at least two or three sets of polarization functions. [134] However,

in order to obtain truly converged results much larger basis sets are necessary. Fortunately, basis set

extrapolation techniques are known that allow one to extrapolate to the MP2 basis set limit. However,

the preferred level for a reliable extrapolation still involves triple- and quadruple-ζ basis sets. In this case,

traditional SCF and MP2 calculations become very expensive and highly time consuming. Thus, it is de-

sirable to search for algorithms that perform efficiently with such extended basis sets for at least medium

sized molecules that are described by 500–2000 basis functions. In this respect, the RI-MP2 method is

a great achievement since it performs much better than the standard MP2 algorithms for extended basis

sets. In fact, in calculations with extended basis sets the SCF calculation, despite its more favorable com-

putational scaling, usually strongly dominates over the RI-MP2 step in terms of execution time. Neese

and co-workers have recently shown, that great speedups by up to an order of magnitude can be obtained

with negligible loss of accuracy, if the SCF step is performed in an approximate way that involves the RI

approximation for the Coulomb integrals, while performing a semi-analytic integration of the exchange

term in the HF equations. [39] This concept can be easily adopted for RI-MP2 energy calculations, since

the employed approximations to the HF equations do not enter the familiar calculation of the RI-MP2

energy correction. The semi-numeric algorithm used to approximate the exchange term is called ’chain

of spheres’ (COSX), hence, this algorithm is termed RIJCOSX-MP2. It could be demonstrated, that the

computational savings immediatly carry over to the case of double-hybrid density functional theory that

inherits from RI-MP2 the significant basis set dependence. The working equations for the RIJCOSX-MP2

gradient have been already derived in Section 2.7.
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5.2.2. Calculations

Computational Details

All calculations were performed with a development version of the ORCA program package. [25] The split-

valence ((def2-)SV [85]), triple-ζ valence ((def2-)TZV [68]) and quadruple-ζ valence ((def2-)QZV [135])

basis sets developed by the Karlsruhe group together with the appropriate polarization functions from the

TurboMole library were used throughout. [64] In order to obtain optimum results, different auxiliary basis

sets should be used for the approximation of the Coulomb term [97] (/J in ORCA notation) and the MP2

energy [32–34, 136] (/C in ORCA notation). Alternatively, the larger Coulomb plus exchange [98] (/JK

in ORCA notation) auxiliary basis sets can be used for the entire calculation, although the MP2 energies

obtained with these fitting bases are noticeable inferior to the ones obtained with the C-bases. Neverthe-

less, the non-completeness errors in the RI approximation are so smooth that the choice of the auxiliary

basis set does play a minor role for chemical applications and an unbalanced or erroneous behaviour was

never observed with any of the tested auxiliary basis sets.

Calculations labeled RI-MP2 used the RI [22] approximation only for the calculation of the MP2 cor-

rection. In RIJ-DX-MP2 calculations exact analytic integration of the exchange contribution and the RI

approximation [38,137] for the Coulomb terms in combination with conventional RI-MP2 were employed.

The label RIJCOSX-MP2 refers to a RI-MP2 calculation where the COSX approximation [39] in conjunc-

tion with Split-RI-J (in the SCF part) and the standard RI approximation (in the MP2 part) was employed.

In RIJCOSX-MP2 calculations the default SCF grids [39] were used to obtain the HF energy. For the

calculation of the response operator (eq. 2.217) and for the solution of the z-vector equations (eq. 2.221)

a Lebedev-50 angular integration grid with an integration accuracy of 3.34 has been determined to be

sufficient in extended test calculations. However, for the calculation of the derivatives of the basis func-

tions on the grid (eq. 2.227), a large Lebedev-302 angular grid with a radial integration accuracy of 4.34

is required to prevent the buildup of numerical noise. The double-hybrid density functional calculations

have been performed with the B2PLYP functional developed by Grimme. [1]

Total energies were generally converged to 10−8 Eh. To benchmark the optimized structures, energy

convergence tolerances of 10−10 Eh and tight optimization criteria were enforced. The Frozen-Core ap-

proximation [138] was employed throughout, and the time savings compared to the all-electron treatment

are about ∼10% for the RIJCOSX-MP2 treatment, determined on the example of the D-glucose molecule

in combination with the TZVPP or QZVP basis set. Calculations were carried out on Quad-Core AMD

Opteron(tm) 2.2 GHz CPUs with 512 KB level 2 cache and 16 GB RAM.

5.2.3. Results

In this section, the RIJCOSX-MP2 method is benchmarked against the conventional MP2 as well as the

RI-MP2 method in terms of accuracy and efficiency. In order to not mix up the different approximations

employed, an overview of the abbreviations used, is given in Table 5.2. Whenever the original or conven-

tional MP2 method is mentioned, no approximations are involved. For RI-, RIJ-DX- and RIJCOSX-MP2,

the MP2 energy correction is identically calculated applying the RI approximation.
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Table 5.2.: Overview of the different approximations employed for the SCF and MP2 parts. Indices ’J’ and ’K’
refer to the Coulomb and Exchange contributions, respectively, ’RI’ indicates the original ’Resolution
of the Identity’ approximation and ’COSX’ denotes the semi-numeric exchange treatment.

approximations

SCF MP2

separable non-separable

methods Coulomb exchange correction gradient gradient

MP2 energy exact exact exact — —

MP2 gradient exact exact exact exact exact

RI-MP2 energy exact exact RI — —

RI-MP2 gradient exact exact RI exact RI

RIJ-DX-MP2 energy RI exact RI — —

RIJ-DX-MP2 gradient RI exact RI J-RI/K-exact RI

RIJCOSX-MP2 energy Split-RI-J COSX RI — —

RIJCOSX-MP2 gradient Split-RI-J COSX RI J-RI/K-COSX RI

Efficiency and Accuracy of RIJCOSX-MP2 Energy Calculations

In order to demonstrate the efficiency and accuracy of the RIJCOSX approximation for MP2 energy

calculations, we have calculated single point energies of seven medium sized molecules consisting of

15–57 atoms, employing two large basis sets with up to ∼1200 basis functions. The speedups listed in

Table 5.3 are classified in terms of speedups in the SCF calculation and in the evaluation of the MP2

correction. Due to the fact that neither the RIJ-DX nor the RIJCOSX approximation has any influence on

the calculation of the RI-MP2 energy correction, the speedups displayed in the last column of Table 5.3

are identical for RI, RIJ-DX and RIJCOSX. The speedups for the evaluation of the MP2 correction in

terms of the RI approximation range from ∼18.5–33.5, which again demonstrates the high efficiency of

the density fitting technique.

Whereas the RIJ-DX treatment represents generally no improvement over the original RI approximation,

the benefit in computation time for the RIJCOSX approximation originates from the immense speedup

during the SCF calculation. The Hartree-Fock equations in the RIJCOSX framework are solved about

∼4–11 times faster compared to the approximation-free RHF method. Since MP2 energy calculations

are strongly dominated by the solution of the HF equations, the overall speedup, that can be achieved

with several approximations corresponds roughly to the speedup obtained in the SCF iterations (∼1–2

for RIJ-DX, ∼5–14 for RIJCOSX). The speedups in the SCF module are considerably lower, than the

speedups reported in Ref. [39]. This is due to the fact that the integral generation package of ORCA

was recently replaced with the LIBINT package designed by Valeev and Ferman that is inherently more

efficient, in particular for high angular momentum basis functions. [139] Hence, the favorable scaling of the

COSX approximation with respect to higher angular momenta becomes less pronounced than previously

reported. In general, the speedups obtained with the RIJCOSX approximation during the SCF iterations

decrease by roughly a factor of 4 for the TZVPP basis set, and by a factor of ∼6 for the QZVP basis

set (cf. speedup for the menthol molecule in QZVP basis: with LIBINT package – 11.6, without LIBINT

package – 61.2).

The speedups listed in Table 5.3 concerning the MP2 energy correction obtained with the RI approximation

compared to the conventional MP2 correction generally decrease with larger basis sets. This is caused

by the higher angular momenta in the auxiliary basis set and the associated generation of the 3-index
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Table 5.3.: Efficiency and accuracy of the RIJ-DX and RIJCOSX algorithms for MP2 energy calculations on
medium size molecules with different basis sets. The speedup refers to the ratio of wall clock times
of the SCF module or the RI-MP2 module (RI-MP2) required to finish one energy calculation. The
speedups are given relative to the original MP2 method without any approximations. The deviation
of the single point energies to the MP2 reference is denoted ∆ERI, ∆ERIJ−DX and ∆ERIJCOSX in
[kcal/mol].

molecule NAtoms Basis NBasis ∆E SpeedUp SCF SpeedUp

RI RIJ-DX RIJCOSX RIJ-DX RIJCOSX RI-MP2

adenine 15 TZVPP 150 0.1 −0.1 0.7 1.0 3.9 29.8

QZVP 220 0.1 −0.1 1.1 1.0 6.9 18.7

beclometahsone 57 TZVPP 1277 0.4 −0.1 0.8 1.1 7.7 20.2

D-glucose 24 TZVPP 540 0.2 −0.2 0.0 1.1 4.5 26.3

QZVP 1044 0.1 −0.3 0.8 1.1 7.9 21.6

dibenzo-crown-18-6 50 TZVPP 1142 0.3 −0.3 0.6 1.3 6.1 18.5

epinephrine 26 TZVPP 585 0.2 −0.2 0.5 1.1 4.4 27.2

QZVP 1131 0.1 −0.3 1.3 1.0 7.7 24.2

menthol 31 TZVPP 621 0.2 −0.1 0.2 1.2 5.8 33.5

QZVP 1227 0.1 −0.2 1.6 1.1 11.4 29.2

tyrosine 24 TZVPP 557 0.2 −0.1 0.6 1.1 4.9 26.0

QZVP 1071 0.1 −0.2 1.4 1.1 7.4 22.9

integrals in the atomic orbital basis. Replacing the QZVP/C auxbasis by the smaller TZVPP/C auxbasis

set, i.e. reducing the highest angular momentum from ’h’ to ’g’, yields roughly a speedup of ∼35 in the

RI-MP2 module compared to conventional MP2 for the adenine molecule in a QZVP orbital basis.

The deviation in total single point energies introduced by the different approximations is on the same

order of magnitude with absolute errors amounting to 0.1–0.4 kcal/mol with RI and RIJ-DX. The error

for the RIJ-DX approximation is overall negative, which results from the well-known variational nature of

Coulomb energy by the RI approximation. [28,38,137] The error in total single point energies introduced

by the RIJCOSX approximation is about one order of magnitude larger than what is obtained with RIJ-

DX and is overall positive. The errors are larger for the extended QZVP basis set, which has also been

reported for the RIJCOSX-HF energy in Ref. [39]. These errors can be reduced by applying a larger

Lebedev final grid.

Accuracy of the RIJCOSX-MP2 Gradient

In order to prove the accuracy of the geometries predicted with the RI, RIJ-DX and RIJCOSX approxima-

tions in restricted MP2 (RMP2) calculations, we performed structure optimizations on some representative

medium sized molecules (Fig. 5.2).

In Table 5.4 deviations of the structural parameters relative to the original MP2 method are collected.

The RIJ-DX approximation introduces no noticeable error compared to the original RI-MP2 method. The

deviations introduced by the ’Resolution of the Identity’ approximation are in average less than or equal

to 0.01 pm in bond distances and 0.005 degrees in bond angles. The maximum absolute errors are 0.03

pm in bond lengths and 0.02 degrees in bond angles. The RIJCOSX approximation introduces deviations,

which are about one order of magnitude larger. Bond distances deviate by about 0.1 pm from their parent

values, whereas bond angles differ typically by less than 0.2 degrees. The largest error in bond lengths is
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1 2 3

4 5 6

Figure 5.2.: Systems used for testing the accuracy of geometry optimizations (1=Captopril, 2=Epinephrine,
3=Menthol, 4=Tryptophane, 5=Adenine, 6=D-Glucose).

up to 0.4 pm, the corresponding error in bond angles is 0.7 degrees. The mean absolute deviations for

the RIJCOSX-MP2 method are in the same range observed previously for the RIJCOSX-HF method. [39]

The deviations of the final total energies from the canonical values remain below 2 kcal/mol, and are

significantly smaller when compared to the RI-MP2 method (<1 kcal/mol).

Table 5.4.: Statistical analysis of errors in the optimized geometries of molecules 1-6 from the RI, RIJ-DX and
RIJCOSX approximations compared to the parent RMP2 method. Errors are given relative to the
parent MP2 method. All calculations were done with the TZVP basis set (distances in pm, angles in
degrees).a ∣∣∣∆mean

distances

∣∣∣ ∣∣∣∆mean absolute
distances

∣∣∣ ∣∣∣∆max
distances

∣∣∣ ∣∣∣∆mean
angles

∣∣∣ ∣∣∣∆mean absolute
angles

∣∣∣ ∣∣∣∆max
angles

∣∣∣
1 RI-MP2 −0.011 0.011 0.020 −0.001 0.003 0.020

RIJ-DX-MP2 −0.013 0.013 0.020 −0.001 0.004 0.020

RIJCOSX-MP2 −0.001 0.102 0.400 −0.005 0.145 0.400

2 RI-MP2 −0.007 0.007 0.020 0.001 0.002 0.020

RIJ-DX-MP2 −0.008 0.008 0.030 0.000 0.002 0.010

RIJCOSX-MP2 −0.031 0.075 0.170 −0.014 0.139 0.380

3 RI-MP2 −0.012 0.012 0.020 0.000 0.001 0.010

RIJ-DX-MP2 −0.013 0.013 0.030 0.000 0.002 0.010

RIJCOSX-MP2 −0.036 0.077 0.240 −0.001 0.133 0.400

4 RI-MP2 −0.004 0.004 0.020 0.000 0.002 0.010

RIJ-DX-MP2 −0.005 0.006 0.020 0.000 0.005 0.010

RIJCOSX-MP2 −0.001 0.075 0.220 0.001 0.164 0.730

5 RI-MP2 −0.004 0.004 0.020 0.003 0.004 0.020

RIJ-DX-MP2 −0.004 0.004 0.020 0.003 0.004 0.020

RIJCOSX-MP2 −0.031 0.044 0.130 0.015 0.073 0.280

aN(distances) for molecules 1-6=30.26.31.38.16.23, N(angles) for molecules 1-6=56.42.61.46.24.28. Errors in fi-
nal total energies are for RI=0.7.0.3.0.9.0.3.0.1.0.2 kcal/mol, RIJ-DX=0.5.0.2.0.7.0.1.−0.1.0.1 kcal/mol, RIJ-
COSX=0.6.0.9.1.6.0.8.0.4.0.4 kcal/mol.
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Continued.∣∣∣∆mean
distances

∣∣∣ ∣∣∣∆mean absolute
distances

∣∣∣ ∣∣∣∆max
distances

∣∣∣ ∣∣∣∆mean
angles

∣∣∣ ∣∣∣∆mean absolute
angles

∣∣∣ ∣∣∣∆max
angles

∣∣∣
6 RI-MP2 −0.006 0.006 0.020 0.000 0.002 0.010

RIJ-DX-MP2 −0.007 0.007 0.020 0.000 0.002 0.010

RIJCOSX-MP2 −0.011 0.086 0.310 0.004 0.106 0.360

Efficiency of the RIJCOSX-MP2 Method

In Table 5.5 and Table 5.6 the efficiency of the RIJ-DX-MP2 and RIJCOSX-MP2 methods is demonstrated

compared to the original MP2 as well as to the already very efficient RI-MP2 method.

The speedups listed in Table 5.5 show the efficiency of the RI, RIJ-DX and RIJCOSX approximations

for 13 medium sized molecules for three different basis sets with up to ∼620 basis functions. The RIJ-

DX approximation shows speedups up to a factor of 2.4 in the gradient calculations, but represents no

major improvement over the original RI approximation. In general, the speedup becomes noticeable for

∼200 basis functions. The speedups tend to become more remarkable with larger basis sets, but the

enhancements are almost not observable.

The RIJCOSX approximation shows only minor speedups for the smallest employed basis set SV(P). For

the smallest molecules in our test suite the RIJCOSX approximation even slows down the MP2 gradient

calculations. For the next larger basis set TZVP, the RIJCOSX approximation accelerates the calculations

by a factor of ∼3 for molecules with around 300 basis functions. The speedup increases noticeably with

basis set and system size. In the case of the menthol molecule a factor of ∼7.5 in computation time

is gained, if the RIJCOSX approximation is applied. For comparison, the speedup reduces to ∼4 when

RI-MP2 serves as reference.

The deviation of the gradient norm shows a deviation for RIJCOSX-MP2, which is naturally somewhat

larger than for the RIJ-DX approximation, but as has been shown in the previous subsection, this has

almost no influence on the resulting structures.

Table 5.5.: Efficiency of the RIJ-DX and RIJCOSX algorithms for MP2 calculations on medium sized molecules
with different basis sets. The speedup refers to the ratio of total wall clock times required to finish
one gradient calculation. The speedups are given relative to the original MP2 method without any
approximations. The deviation of the gradient norm w.r.t. the MP2 reference is denoted ∆RIJ−DX

and ∆RIJCOSX in [Eh/bohr].

molecule NAtoms Basis NBasis ∆RIJ−DX ∆RIJCOSX SpeedUp

RI RIJ-DX RIJCOSX

adenine 15 SV(P) 150 −0.0001 −0.0009 1.3 1.3 1.3

TZVP 220 −0.0001 −0.0004 1.4 1.4 2.3

TZVPP 380 0.0001 −0.0009 1.3 1.3 4.1

cysteine 14 SV(P) 116 −0.0002 −0.0010 1.2 1.2 0.8

TZVP 178 −0.0002 −0.0013 1.2 1.4 1.7

TZVPP 318 0.0000 −0.0011 1.4 1.4 3.7

cytosine 13 SV(P) 122 −0.0001 −0.0017 1.2 1.2 1.1

TZVP 182 −0.0002 −0.0015 1.2 1.4 1.8

TZVPP 318 0.0001 −0.0016 1.2 1.3 3.6
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Continued.

molecule NAtoms Basis NBasis ∆RIJ−DX ∆RIJCOSX SpeedUp

RI RIJ-DX RIJCOSX

D-glucose 24 SV(P) 192 0.0004 −0.0001 1.5 1.5 1.2

TZVP 300 0.0004 0.0002 1.6 1.8 2.8

TZVPP 540 −0.0002 −0.0002 1.6 2.0 5.6

epinephrine 26 SV(P) 208 0.0000 0.0000 1.4 1.4 1.3

TZVP 325 0.0002 0.0014 1.6 1.9 3.0

TZVPP 585 0.0000 0.0011 1.7 1.9 5.6

ferrocene 21 SV(P) 184 −0.0002 −0.0008 1.2 1.3 1.6

TZVP 283 −0.0005 −0.0012 1.3 1.3 3.0

TZVPP 490 0.0002 −0.0009 1.3 1.7 5.3

glycine 10 SV(P) 80 −0.0002 −0.0007 1.2 1.0 0.7

TZVP 125 −0.0003 −0.0002 1.2 1.1 1.1

TZVPP 225 0.0000 0.0000 1.3 1.2 2.8

guanine 16 SV(P) 164 0.0000 −0.0015 1.4 1.3 1.5

TZVP 239 0.0000 −0.0017 1.4 1.5 2.5

TZVPP 411 0.0001 −0.0014 1.3 1.4 4.4

histidine 20 SV(P) 172 −0.0003 −0.0003 1.4 1.3 1.2

TZVP 263 −0.0003 −0.0002 1.5 1.7 2.6

TZVPP 467 0.0000 0.0001 1.6 1.8 5.1

menthol 31 SV(P) 194 0.0002 0.0003 1.3 1.6 1.0

TZVP 329 0.0003 0.0000 1.6 1.8 2.9

TZVPP 621 0.0002 −0.0001 1.9 2.4 7.5

nitroglycerine 17 SV(P) 178 0.0001 −0.0005 1.4 1.4 1.3

TZVP 258 0.0001 −0.0002 1.5 1.7 2.9

TZVPP 442 0.0001 −0.0004 1.5 1.7 5.2

thymine 15 SV(P) 138 0.0000 −0.0008 1.2 1.1 1.0

TZVP 207 0.0000 −0.0011 1.4 1.4 2.0

TZVPP 363 0.0001 −0.0012 1.4 1.5 4.3

tyrosine 24 SV(P) 204 −0.0003 −0.0006 1.6 1.6 1.3

TZVP 313 −0.0002 −0.0006 1.5 1.7 3.0

TZVPP 557 0.0000 −0.0005 1.6 1.9 5.8

In Table 5.6 the speedup of the RIJ-DX and RIJCOSX approximations to the MP2 gradient is related to

the very efficient RI-MP2 gradient. Therefore, we studied 24 molecules in the range of 10–86 atoms with

∼100-1900 basis functions. The speedup obtained with the RIJ-DX-MP2 method compared to RI-MP2

is about a factor of ∼1.2. The inclusion of the SCF wall clock time has almost no consequence on the

overall speedup.

For the smallest basis set in our test set SV(P) the speedup for the RIJCOSX approximation in the MP2

module is almost negligible, and the inclusion of the SCF wall clock times has no influence on the entire

performance. The speedup of the RIJCOSX approximation becomes more observable for the triple-ζ basis

set TZVP and for molecules with ≥300 basis functions (∼1.5–2.3).

For the TZVPP basis set the speedup varies from a factor of 2 to 3 for the MP2 module, and even reaches a

factor of 4.2 for the morphin molecule when the SCF calculation is taken into account. Excellent speedups
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are obtained with the more extended QZVP basis set. Speedups of a factor ∼4.5–6 are obtained for the

MP2 module and even a factor of 9.2 is achieved for the NiTrenNCS2 molecule when the SCF wall clock

time is included in the comparison. This behaviour has to be expected, due to the favourable scaling of

the RIJCOSX approximation with respect to higher angular momenta.

In order to verify the quality of the calculated gradients, we also listed the errors in the norm of the MP2
gradient in Table 5.6.

Table 5.6.: Efficiency of the RIJ-DX and RIJCOSX algorithms for RI-MP2 calculations on medium sized molecules
with different basis sets. The speedup refers to the ratio of wall clock times of either the RI-MP2
module (RI-MP2) or the total wall clock time (total) required to finish one gradient calculation. The
deviation of the gradient norm w.r.t. the RI-MP2 reference is denoted ∆RIJ−DX and ∆RIJCOSX in
[Eh/bohr].

molecule NAtoms Basis NBasis ∆RIJ−DX ∆RIJCOSX SpeedUp SpeedUp

(RIJ-DX) (RIJCOSX)

RI-MP2 total RI-MP2 total

adenine 15 SV(P) 150 0.0000 −0.0009 1.0 1.0 1.0 1.0

TZVP 220 0.0000 −0.0004 1.1 1.0 1.5 1.7

TZVPP 380 0.0001 −0.0009 1.0 1.0 2.9 3.1

QZVP 720 0.0001 −0.0010 1.1 1.1 5.9 6.3

beclometahsone 57 SV(P) 454 0.0004 0.0007 1.2 1.2 1.1 1.3

TZVP 709 0.0003 0.0004 1.3 1.4 2.0 2.5

TZVPP 1277 0.0000 0.0001 1.2 1.3 2.4 3.3

captopril 30 SV(P) 220 0.0002 0.0008 1.1 1.1 0.8 0.9

TZVP 352 0.0001 0.0005 1.3 1.3 1.6 2.0

TZVPP 644 0.0002 0.0006 1.2 1.2 2.9 3.4

QZVP 1264 0.0002 0.0005 1.4 1.4 4.9 6.2

cholesterole 74 SV(P) 484 0.0004 0.0001 1.1 1.1 1.0 1.1

TZVP 808 0.0003 −0.0004 1.4 1.4 1.7 2.2

TZVPP 1512 0.0002 −0.0001 1.4 1.4 2.1 2.9

CO-heme 86 SV(P) 782 0.0000 −0.0001 1.2 1.2 1.1 1.3

TZVP 1180 0.0000 −0.0002 1.2 1.3 1.6 2.2

cysteine 14 SV(P) 116 −0.0002 −0.0009 1.0 1.0 0.6 0.7

TZVP 178 −0.0002 −0.0013 1.2 1.2 1.2 1.3

TZVPP 318 0.0000 −0.0011 1.0 1.0 2.6 2.7

QZVP 622 0.0000 −0.0010 1.2 1.2 5.1 5.5

cytosine 13 SV(P) 122 −0.0001 −0.0016 1.0 1.0 0.8 0.9

TZVP 182 −0.0002 −0.0014 1.1 1.2 1.4 1.5

TZVPP 318 0.0001 −0.0016 1.0 1.0 2.7 2.9

QZVP 606 0.0001 −0.0016 1.1 1.1 5.6 6.0

D-glucose 24 SV(P) 192 0.0003 −0.0002 1.0 1.0 0.8 0.8

TZVP 300 0.0003 0.0001 1.1 1.1 1.4 1.7

TZVPP 540 −0.0002 −0.0002 1.3 1.3 3.1 3.6

QZVP 1044 0.0000 −0.0002 1.4 1.3 4.5 5.5

dibenzo-crown-18-6 50 SV(P) 412 −0.0001 0.0000 1.2 1.2 1.0 1.1

TZVP 638 0.0003 0.0001 1.3 1.3 1.6 2.0

TZVPP 1142 0.0002 0.0000 1.3 1.3 2.1 2.7
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Continued.

molecule NAtoms Basis NBasis ∆RIJ−DX ∆RIJCOSX SpeedUp SpeedUp

(RIJ-DX) (RIJCOSX)

RI-MP2 total RI-MP2 total

epinephrine 26 SV(P) 208 −0.0001 0.0000 1.1 1.0 0.9 0.9

TZVP 325 0.0002 0.0014 1.2 1.2 1.5 1.8

TZVPP 585 0.0000 0.0011 1.1 1.1 2.7 3.4

QZVP 1131 0.0000 0.0008 1.4 1.4 5.2 6.7

ferrocene 21 SV(P) 184 −0.0001 −0.0007 1.1 1.1 1.4 1.3

TZVP 283 −0.0005 −0.0012 1.1 1.0 2.0 2.4

TZVPP 490 0.0003 −0.0009 1.0 1.3 3.5 4.0

QZVP 954 0.0003 −0.0020 1.0 1.0 4.5 5.7

flutamide 30 SV(P) 288 0.0004 0.0016 1.1 1.1 1.0 1.1

TZVP 427 0.0001 0.0014 1.2 1.2 1.6 2.0

TZVPP 743 0.0000 0.0013 1.1 1.1 2.5 3.0

QZVP 1413 0.0000 0.0013 1.4 1.4 4.5 5.8

glycine 10 SV(P) 80 −0.0002 −0.0007 0.8 0.9 0.5 0.6

TZVP 125 −0.0002 −0.0002 1.0 0.9 0.9 0.9

TZVPP 225 0.0000 0.0000 1.0 0.9 2.2 2.2

QZVP 435 0.0000 −0.0003 1.1 1.0 4.6 4.7

guanine 16 SV(P) 164 0.0001 −0.0013 0.9 0.9 1.0 1.1

TZVP 239 0.0001 −0.0015 1.1 1.1 1.6 1.8

TZVPP 411 0.0001 −0.0013 1.0 1.0 3.1 3.3

QZVP 777 0.0001 −0.0017 1.2 1.2 5.9 6.6

histidine 20 SV(P) 172 −0.0002 −0.0002 0.9 0.9 0.8 0.9

TZVP 263 −0.0002 −0.0001 1.1 1.1 1.4 1.7

TZVPP 467 0.0001 0.0001 1.2 1.1 2.8 3.2

QZVP 897 0.0000 0.0001 1.3 1.2 5.3 6.2

menthol 31 SV(P) 194 0.0001 0.0002 1.2 1.2 0.6 0.7

TZVP 329 0.0003 0.0000 1.3 1.1 1.5 1.8

TZVPP 621 0.0001 −0.0002 1.3 1.2 3.2 3.9

QZVP 1227 0.0000 0.0001 1.4 1.4 5.3 7.3

morphin 40 SV(P) 332 0.0001 0.0002 1.2 1.2 1.3 1.4

TZVP 513 0.0001 0.0005 1.3 1.2 2.3 2.9

TZVPP 917 0.0001 0.0008 1.3 1.3 3.1 4.2

QZVP 1767 0.0001 0.0004 1.3 1.3 5.1 7.0

NiTrenNCS2 35 SV(P) 292 0.0000 0.0006 1.1 1.1 1.3 1.5

TZVP 451 0.0001 0.0005 1.1 1.4 1.7 2.6

TZVPP 794 0.0000 0.0002 1.3 1.3 2.9 4.0

QZVP 1562 0.0000 0.0005 1.4 1.4 5.1 9.2

nitroglycerine 17 SV(P) 178 0.0001 −0.0005 1.1 1.0 0.9 0.9

TZVP 258 0.0001 −0.0002 1.1 1.1 1.7 1.9

TZVPP 442 0.0001 −0.0004 1.1 1.1 3.0 3.4

QZVP 834 0.0001 −0.0003 1.3 1.2 4.8 5.6
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Continued.

molecule NAtoms Basis NBasis ∆RIJ−DX ∆RIJCOSX SpeedUp SpeedUp

(RIJ-DX) (RIJCOSX)

RI-MP2 total RI-MP2 total

penicilin 42 SV(P) 376 0.0000 0.0007 1.1 1.1 1.1 1.2

TZVP 567 0.0001 −0.0002 1.2 1.2 1.6 1.9

TZVPP 999 0.0001 0.0010 1.3 1.3 2.3 2.9

QZVP 1921 0.0001 0.0007 1.5 1.5 3.6 4.7

tetracycline 56 SV(P) 496 0.0001 0.0019 1.2 1.2 1.2 1.4

TZVP 752 0.0001 0.0022 1.2 1.3 1.8 2.2

TZVPP 1328 0.0000 0.0019 1.2 1.3 2.2 2.9

thymine 15 SV(P) 138 0.0000 −0.0007 0.9 0.9 0.8 0.8

TZVP 207 0.0001 −0.0011 1.0 1.0 1.3 1.5

TZVPP 363 0.0001 −0.0012 1.1 1.1 2.2 2.9

QZVP 693 0.0001 −0.0014 1.1 1.1 5.3 5.8

tryptophane 27 SV(P) 234 −0.0002 0.0000 1.1 1.1 1.0 1.1

TZVP 357 −0.0002 −0.0001 1.1 1.1 1.6 2.0

TZVPP 633 0.0001 0.0001 1.2 1.2 2.9 3.6

QZVP 1215 0.0001 0.0000 1.4 1.4 5.2 6.7

tyrosine 24 SV(P) 204 −0.0003 −0.0006 1.0 1.0 0.8 0.9

TZVP 313 −0.0002 −0.0006 1.1 1.1 1.7 1.9

TZVPP 557 0.0000 −0.0004 1.1 1.1 3.1 3.6

QZVP 1071 0.0000 −0.0003 1.3 1.3 4.8 5.9

In Table 5.7 the speedups introduced by the RIJ-DX and RIJCOSX approximations in double-hybrid
functional calculations for four representative molecules are listed. The speedups with respect to the con-
ventional RI treatment are almost identical to the pure MP2 case. Thus, the speedups of the investigated
approximations are comparably efficient for double-hybrid functional calculations.

Table 5.7.: Efficiency of the RIJ-DX and RIJCOSX algorithms for RI-B2PLYP calculations on medium sized
molecules with different basis sets. The speedup refers to the ratio of wall clock times of either
the RI-MP2 module (RI-MP2) or the total wall clock time (total) required to finish one gradient
calculation. The deviation of the gradient norm w.r.t. the RI-B2PLYP reference is denoted ∆RIJ−DX

and ∆RIJCOSX in [Eh/bohr].

molecule NAtoms Basis NBasis ∆RIJ−DX ∆RIJCOSX SpeedUp SpeedUp

(RIJ-DX) (RIJCOSX)

RI-MP2 total RI-MP2 total

beclometahsone 57 SV(P) 454 0.0006 0.0006 1.2 1.2 1.5 1.6

TZVP 709 0.0004 0.0002 1.2 1.3 1.9 2.3

TZVPP 1277 0.0000 0.0000 1.3 1.3 2.3 2.8

dibenzo-crown-18-6 50 SV(P) 412 −0.0001 0.0000 1.2 1.2 1.4 1.3

TZVP 638 0.0003 0.0002 1.3 1.3 1.7 1.9

TZVPP 1142 0.0002 0.0000 1.3 1.3 2.1 2.4

morphin 40 SV(P) 332 0.0003 0.0003 1.2 1.2 1.8 1.7

TZVP 513 0.0001 0.0003 1.3 1.3 2.7 2.9

TZVPP 917 0.0001 0.0004 1.3 1.2 3.4 3.9

QZVP 1767 0.0001 0.0002 1.5 1.4 5.4 6.3
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Continued.

molecule NAtoms Basis NBasis ∆RIJ−DX ∆RIJCOSX SpeedUp SpeedUp

(RIJ-DX) (RIJCOSX)

RI-MP2 total RI-MP2 total

tetracycline 56 SV(P) 496 0.0002 0.0011 1.2 1.2 1.5 1.5

TZVP 752 0.0002 0.0011 1.2 1.2 1.7 2.0

TZVPP 1328 0.0000 0.0009 1.3 1.3 2.0 2.4

Timing Analysis of the RIJCOSX-MP2 Method

A detailed analysis of the timings for the different parts of the MP2 gradient is presented in this subsection.

For the comparison of the original MP2 with the RIJCOSX-MP2 method, the menthol molecule in a

TZVPP basis serves as an example. The calculation of one MP2 gradient takes about ∼18 hours. The

time spent in the the MP2 module is ∼14 hours (80% of the total wall clock time).

A detailed analysis of the different components of the MP2 gradient is given in Table 5.8. The integral

transformation in the original MP2 method corresponds to a 3/4 transformation of AO integrals to the

MO basis, and is besides the calculation of separable and non-separable gradient contributions the most

time consuming step. The evaluation of the internal part of the unrelaxed density matrix D(internal) is

more expensive than in the RI-MP2 variants, due to the generation of the required integrals containing

one Frozen-Core index on the fly. The formation of the 3-external part of the Lagrangian L(3-ext),

eq. 2.215 is also more costly in terms of computation time, due to the large AO↔MO transformations.

The calculation of the non-separable and separable gradient, is done simultaneously in the original MP2

code and the time determining step is the calculation of the derivative of the two-electron repulsion

integrals.

The situation changes drastically when going to the RI-MP2 variants. The time required for the integral

transformation is negligible, since in RI-MP2 methods only 3-index integrals are needed, which can be

calculated very efficiently. The formation of the exchange integrals becomes somewhat more expensive,

due to the larger matrix multiplications, but the effect on the overall timing is insignificant. The evaluation

of D(internal) is more effcient, due to prestored Frozen-Core integrals and the 3-external part of the

Lagrangian only requires the transformation of one virtual index. The calculation of the separable gradient

is done analogously to the parent MP2 method, but the non-separable part is very efficiently calculated

employing 3- and 2-index derivative integrals, eq. 2.228.

The speedup achieved with the RIJ-DX approximation results from the more efficient calculation of the

response-type operators, and as a consequence, the accelerated solution of the z-vector equations. The

separable gradient profits from the application of the RI approximation to the Coulomb contribution,

whereas the non-separable gradient saves computation time through storage of the 3-index 2-particle

density and the use of large BLAS level 2 operations.

The RIJCOSX approximation introduces a highly efficient treatment of the exchange-type contributions

to the MP2 gradient. The calculation of the response-type operators, eq. 2.217, and the solution of

the z-vector equations is highly dominated by the formation of the exchange-type contributions. The

employment of the RIJCOSX approximation speeds the calculation of these contributions up by a factor

of ∼7–8. A speedup of ∼2 is gained by exploiting the efficient calculation of the basis function derivatives

on the grid, as ingredient to the separable gradient.
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Table 5.8.: Timings in [s] of the individual contributions to the MP2 gradient depending on the employed ap-
proximation obtained for the menthol molecule (31 atoms) in a TZVPP basis set.

Gradient Components MP2 RI-MP2 RIJ-DX-MP2 RIJCOSX-MP2

Integral Transformation 18061 133 129 136

Kij (a,b) 65 145 144 148

Tij (a,b) 27 17 16 17

D(virtual) 60 61 60 60

D(internal) 1537 124 117 122

W(virtual) 120 121 119 121

W(internal) 191 217 194 201

L(3-ext) 1510 260 250 257

L(3-int) 16 6 6 6

R(D) 1170 1209 949 146

R(z) 1209 1213 969 148

z-vector solution 5410 5497 4062 773

Separable Gradient (S) 10918 8937 3733

Non-separable Gradient (NS) 582 325 327

Gradient (S + NS) 20290 11500 9262 4060

Total Time 49689 20732 16533 6460

Parallelization

The separable COSX-MP2 gradient, eq. 2.227, is parallelized over batches of grid points. A reasonable

load balancing is achieved by distributing the batches of grid points over the processors such, that all

processors work on all parts of the molecular system to nearly the same extent. A single gather operation

is then performed at the end of the COSX integration loop, in order to keep the communication overhead

negligible. The same strategy has been followed for the parallel exchange treatment in the SCF module.

In Fig. 5.3 the efficiency of the parallel implementation is demonstrated for a medium sized molecule

(dibenzo-crown-18-6/QZVP, 50 atoms, 2202 basis functions). The scaling behaviour is excellent for up

to 16 processors, although the example is not really large. However, the evaluation of the basis function

derivatives on the grid requires the large Lebedev-302 angular grid with an integration accuracy of 4.34,

which yields about 185000 grid points that are divided among the processors. Some of the plotted

speedups in Fig. 5.3 seem to be better than the linear speedup, which is mainly due to the inaccuracy in

the time measurement, since no statistics have been performed.

The parallelization of the entire MP2 gradient module, presented in Fig. 5.4, is less efficient, than that

for the separable COSX-MP2 gradient contribution. However, up to at least 10 processors reasonable

speedups are achieved. The reason for the apparent stagnation of the speedup with 12 processors, is the

poor scaling of the 3-external part to the MP2 Lagrangian and of the separable gradient calculated in

the RI approximation with the number of processors employed. The speedup of the evaluation of the

3-external Lagrangian contribution achieves a factor 4.4 speedup for 10 processors and decreases to a

factor of 3.8 for 12 and 16 processors. A similar situation is found for the separable gradient calculated

within the RI approximation. Although not rate determining, the speedup amounts to only a factor of

∼3. The scaling of the internal part of the energy weighted density matrix is also reduced to a factor of

10 for 16 processors. All three contributions together determine 30% of the total wall clock time needed
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Figure 5.3.: Parallelization efficiency of the COSX gradient algorithm with Dibenzo-crown-18-6/QZVP as exam-
ple. Plotted is the wall clock time required for formation of the entire separable COSX-MP2 gradient
relative to the time taken for the same operation by a single process.

for the calculation on 16 processors. Furthermore, some smaller parts of the parallel MP2 gradient do

not scale ideally with the number of used processors. Taken together, these factors are responsible for

the worsened scaling starting with 10–12 employed processors.

5.2.4. Application

In order to demonstrate the high efficiency of the RIJCOSX-MP2 approach geometry optimizations on

DNA base tetramers are presented. The nomenclature is shown in Fig. 5.5 and the timings for the

structure optimizations with a TZVPP basis set and tight convergence criteria are listed in Table 5.9.

The time required for one optimization step for a closed-shell system with ∼1500 basis functions and

∼2000 and ∼3500 auxiliary basis functions, respectively, takes about 10 hours on 8 CPUs. These timings

impressively confirm the outstanding efficiency of the RIJCOSX-MP2 method.

Figure 5.5.: Stacked DNA base pairs (GCTA), (G) Guanine, (C) Cytosine, (T) Thymine, (A) Adenine.
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Figure 5.4.: Parallelization efficiency of the MP2 gradient algorithm with Dibenzo-crown-18-6/QZVP as example.
Plotted is the wall clock time required for formation of the entire COSX-MP2 gradient relative to
the time taken for the same operation by a single process.

Table 5.9.: Total wall clock times for gradient calculations on 8 CPUs of DNA base pairs with the RIJCOSX-
MP2/TZVPP method.

Molecule NAtoms NBasis NAuxBasisJ NAuxBasisC NCycles Time

1 Opt Step total

GCTA 59 1472 2093 3518 20 9h 30m 7d 21h 12m

GCCG 58 1458 2082 3488 39 9h 42m 15d 21h 16m

ATTA 60 1486 2104 3548 21 11h 10m 9d 19h 05m

5.2.5. Discussion

In the present section, the applicability of the semi-numeric exchange treatment via the COSX ap-

proximation to the exchange-type contributions of the MP2 gradient has been presented. The entire

RIJCOSX-MP2 gradient algorithm fulfills all important requirements necessitated by a reliable approxi-

mate method. The optimized structures show only negligible deviations from the MP2 structures. The

RIJCOSX-MP2 gradient is efficient with observed speedups in wall-clock times of ∼7–7.5 for the TZVPP

basis set compared to conventional MP2 regarding one gradient calculation (including the SCF time).

RIJCOSX-MP2 versus RI-MP2 yields also speedups of ∼5–9 for one entire energy and gradient calculation

with the QZVP basis. The speedups obtained in pure MP2 calculations are immediately carried over to

the case of double-hybrid density functional theory.
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The RIJCOSX-MP2 method is generally applicable and does neither depend on the molecular system nor

on the chosen basis set. The program is parallelized and scales reasonably well with the number of used

processors but some more work is required before efficient large scale parallelization on many processors

is achieved. Nevertheless, an application of the RIJCOSX-MP2 method to the geometry optimizations of

DNA base tetramers with ∼1500 basis functions could be presented. Overall, we believe that the present

development adds to the applicability of MP2-type methods such as MP2, SCS-MP2 or double-hybrid

density functional theory in large-scale chemical applications.

5.3. Correlated ab initio Spin Densities for Larger Molecules: The

Orbital-Optimized Spin-Component-Scaled MP2 Method

5.3.1. Introduction

The calculation of the hyperfine structure in electron paramagnetic resonance (EPR) spectra and its high

resolution variants such as electron-nuclear double resonance (ENDOR) or hyperfine sublevel correlation

spectroscopy (HYSCORE) has been recognized to be a difficult field for theoretical chemistry. Unlike the

electron density, that is positive everywhere in space, the spin density is a strongly structured function

that can be either positive or negative. This has been realized already by the pioneers of EPR spec-

troscopy that have referred to the phenomenon as ’spin polarization’. Classical examples are the aromatic

protons of benzylic radicals or the proton hyperfine couplings (hfcs) of CH3 that are known to be neg-

ative. McConnel has given an intuitively appealing valence bond interpretation of the spin polarization

phenomenon. [140] However, it is difficult to implement valence bond theory rigorously in terms of ab

initio wave functions. In Hartree-Fock (HF) theory, the spin polarization arises in a rather natural way

in the unrestricted HF variant (UHF). However, once calculations with large basis sets became feasible

it quickly became clear that the UHF prediction of hyperfine couplings is very poor. Typically, spin po-

larization contributions are too large by about a factor of three. This has been analyzed in some detail

by Hameka [141] and Chipman. [142] Thus, the calculation of accurate first principles spin densities re-

quires the incorporation of a substantial amount of dynamic correlation. The simplest correlation method,

second-order Møller-Plesset perturbation theory (MP2), is known to be insufficient and often provides

somewhat erratic results when applied to open-shell systems. Provided that basis sets with sufficient

flexibility in the core region and adequate polarization functions to cover dynamic correlation are used

(e.g. Ref. [143]) the quadratic configuration interaction with single and double excitations (QCISD) or

the more rigorous coupled cluster theory with single- and double excitations (CCSD) are known to pro-

vide essentially satisfactory results. [144–150] However, these methods involve iterative steps with O(N6)

scaling with respect to system size. Thus, their routine application to larger molecules is presently not

possible.

Density functional theory (DFT), often provides much better results than UHF theory [143,151] and there

are many successful applications of DFT to the calculation of EPR hyperfine coupling constants (hfccs).

Among the multitude of functionals that could be used, the ’gold standard’ B3LYP functional provides

good results for organic radicals. [147] For transition metal nuclei all functionals have difficulties since

they underestimate the core level spin polarization. [152, 153] This can to some extent be compensated

by mixing more HF exchange into hybrid density functionals. This is, however, not a satisfactory solution

to the problem since the optimum mixing depends strongly on the investigated system. In a previous

study it was found that among the standard functionals, the meta-generalized gradient approximation
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based hybrid functional TPSSh [154] provides the best results for transition metal complexes. [155] Other

problem cases for DFT include strongly delocalized radicals where the self-interaction error strongly

deteriorates the results. [156, 157]

In a recent study, we have investigated the behavior of the new class of double-hybrid density functionals

(DHDFs) that have shown in many fields their high potential. [1] In general, excellent results have been

obtained for hyperfine couplings with the B2PLYP functional [155], provided that the calculations are

based on the relaxed density approach [155], that arises naturally in analytic gradient theory of correlated

wave function theories. [12,49,158,159] However, even B2PLYP was found to suffer to some extent from

the unstable MP2 component despite the fact that it was found to be greatly superior to MP2 itself.

Despite all recent progress, we feel that it would be desirable to have an affordable wave function based ab

initio method available that reliably provides results of essentially QCISD or CCSD quality. Most recently,

it was shown that the results of MP2 for open-shell molecules can be greatly improved in accuracy

and stability if the orbitals are optimized alongside with the double excitation amplitudes. [160, 161]

This orbital optimization is based on the well-known Hylleraas functional [24] that has been shown by

Saebøand Pulay to lead to an orbital-invariant formulation of MP2 theory. [26] The method has been

dubbed OO-MP2 and was further improved by combining it with the concepts of spin-component scaling

(SCS-MP2) [102] thus leading to OO-SCS-MP2. The variant with spin-opposite scaling MP2 (SOS-MP2)

has been explored by Head-Gordon and co-workers. [104] The computational effort of OO-SCS-MP2 is

best characterized as an iterative O(N5) process that is substantially cheaper than QCISD or CCSD but

also considerably more expensive than MP2. However, if the OO-SCS-MP2 method is combined with

the resolution of the identity (RI) approximation [22], it is applicable in reasonable computation times to

at least medium sized molecules of contemporary chemical interest that are far too large for QCISD and

CCSD to be applicable.

In this section, the performance of the OO-(SCS-)MP2 method for the calculation of hfccs has been

investigated. Following a brief description of the theory, the OO-MP2 and OO-SCS-MP2 methods are

benchmarked against the results of CCSD and CCSD(T) calculations. The applicability to larger molecules

is demonstrated in the final part of the section.

5.3.2. Theory

The theory of the orbital optimized MP2 method has been reviewed in detail in Section 2.9.3. The

basic idea is to minimize an extended Hylleraas functional with regard to the MO coefficients as well as

to the MP2 double excitation amplitudes. Due to the variational nature of the orbital optimized MP2

Ansatz, the first derivative of the OO-MP2 energy w.r.t. an arbitrary perturbation λ, corresponds to the

expectation value of hλ, if the OO-MP2 equations have converged, eq. 5.16.

∂EOO

∂λ
=
∑
pq

Dpqhλpq (5.16)

In a spin-unrestricted scheme, the total electron density and the spin density matrices are obtained as

the sum and difference of the spin-up and spin-down densities respectively. Thus, the isotropic (c) and
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dipolar (d) parts of the hyperfine coupling tensor are calculated as,

A
(A;c)
kl = δkl

8π

3

PA

2S

∑
µν

DOO(α−β)
µν 〈ϕµ|δ(RA)|ϕν〉 (5.17)

A
(A;d)
kl =

PA

2S

∑
µν

DOO(α−β)
µν 〈ϕµ|r−5

A (r 2
Aδkl − 3rA;k rA;l |ϕν〉. (5.18)

Where D
OO(α−β)
µν is the orbital optimized MP2 spin density matrix, S denotes the total spin and PA is

an atom specific constant, defined in eq. 5.19.

5.3.3. Computational Details

In order to benchmark the performance of the OO-SCS-RI-MP2 and OO-RI-MP2 methods, hyperfine

coupling constants (hfccs) of a series of small radicals and transition metal complexes have been calculated.

To avoid complicated issues like basis set convergence (that is very slow for singular properties like the

isotropic hfccs), vibrational averaging or matrix effects, we choose to initially calibrate the OO-MP2

methods relative to a higher level method, specifically CCSD(T) [162].

All MP2 and DFT calculations were carried out with a development version of the ORCA program

package. [25] The application of the ’Resolution of the Identity’ approximation [22] in terms of the Split-

RI-J algorithm [30] is indicated with the prefix ’RI’. The Coupled Cluster calculations were performed

with the ACES II (now CFour) program suite. [163] All electrons were correlated throughout the study.

The small radicals were optimized on the CCSD(T) level [162] employing Dunning’s cc-pVTZ basis

set. [65] In the case of the OH, NO and NH2 radicals experimental structures were used. The structures

of the transition metal complexes were taken from Ref. [164].

Barone’s triple-ζ EPR-III [165] basis set was employed for the calculation of the hyperfine coupling

constants, except for the elements Al, S, Cl, and Si, for which Kutzelniggs IGLO-III [166] basis set was

used. For the element Mg a modified TZVPP basis set which has been decontracted in the s-part was

employed. [98] A triply polarized basis set with additional flexibility in the core region (CP(PPP)) was

applied for the transition metal atoms. [167]

In preliminary studies comparing RI-MP2 to conventional MP2 it was ensured that the auxiliary basis

sets used in the present study lead to an error of ≤1 MHz in the calculated hfccs. The decontracted

def2-TZVPP/JK auxiliary basis set of Weigend and co-workers [92] was found suitable to reach this level

of accuracy.

All energies were converged to 10−9 Eh and the convergence criteria for the orbital gradient was chosen

10−3.

The PA factor in eqs. 5.17 and 5.18 is the product of the electronic and nuclear g-values and Bohr

magnetons, respectively, and specific for each atom type.

PA = gegNβeβN (5.19)

The nuclear g-values employed for the calculation of the hfccs were taken from Ref. [168], and are listed

in Table 5.10.
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Table 5.10.: gN values and PA factors employed for the calculation of hfccs.

atom gN PA [MHz/au3]

1H 5.5856912 533.5514

11B 1.7924240 171.2143

13C 1.4048200 134.1900

14N 0.4037607 38.5677

17O −0.7575160 −72.3588

19F 5.2577320 502.2244

25Mg −0.3421800 −32.6854

27Al 1.4566010 139.1361

29Si −1.1106000 −106.0857

33S 0.4291100 40.9891

35Cl 0.5479157 52.3375

5.3.4. Numerical Results

Throughout the following subsection A
(A)
11 , A

(A)
22 and A

(A)
33 denote the diagonal elements of the total

hyperfine coupling tensor, A(A;c) indicates the isotropic Fermi contact contribution to the hfc tensor and

the anisotropic spin dipolar contributions are assigned by A
(A;d)
11 , A

(A;d)
22 and A

(A;d)
33 .

Atoms

In Table 5.11 the isotropic and anisotropic hfccs for the first row main group elements B−F are listed.

Denoting the principal values of the anisotropic hfc tensor 2b,−b,−b, only b is reported. The CCSD(T)

results presented in Table 5.11 serve as reference. For these systems the effect of the perturbative triples

correction is negligible and the CCSD results are very close to CCSD(T). The RI-MP2 method tends to

slightly underestimate the isotropic hfc contribution but performs surprisingly good for atomic hfccs.

Both orbital optimized MP2 methods yield excellent results. They tend to slightly overestimate the hfc

contributions in absolute value with OO-RI-MP2 performing marginally better than its spin-component

scaled variant. As expected, the errors in the anisotropic hfccs tend to be smaller than the error in the

isotropic contributions. Orbital optimization yields almost no improvement for the atomic hfccs compared

to conventional MP2.

Compared to CCSD(T), the B2PLYP double-hybrid functional performs reasonably well but certainly worse

than the OO-MP2 methods for the dipolar contribution to the hfccs. For the Fermi contact interaction,

the results of B2PLYP relative to CCSD(T) are of limited quality. However, relative to the experimental

numbers B2PLYP is the most accurate of the tested approaches. This is likely a fortuitous result as basis

sets far from the limit are used in this study.
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Table 5.11.: Calculated hfccs in [MHz] of first row main group elements.

atom method

RI-MP2 OO-RI-MP2 OO-SCS-RI-MP2 B2PLYP CCSD CCSD(T) Expt.

11B A(A;d) 56.1 56.1 55.9 58.7 55.1 55.1

A(A;c) −2.4 2.6 2.7 17.1 3.7 4.2 11.6a/18.7b

13C A(A;d) −47.7 −47.7 −47.5 −49.0 −47.4 −47.3

A(A;c) 8.4 12.7 13.7 24.3 10.9 11.3 (21.4)c/(22.5)a

14N A(A;d) 0.0 0.0 0.0 0.0 0.0 0.0

A(A;c) 7.5 8.7 9.5 11.4 7.8 7.9 10.4d

17O A(A;d) 72.7 72.6 72.6 74.2 72.4 72.4

A(A;c) −23.6 −25.9 −28.5 −31.0 −24.5 −24.5 34.5e

19F A(A;d) 1588.9 1588.5 1587.1 1608.8 1581.2 1580.3

A(A;c) 243.9 259.3 284.6 278.5 247.2 245.8 301.7e

Radicals

In Tables 5.12 and 5.13 the hyperfine coupling constants for a variety of small radicals are listed.

Table 5.12.: Hyperfine coupling constants in [MHz] for a variety of small S=1/2 systems.

〈S2〉 A
(A)
11 A

(A)
22 A

(A)
33 A(A;c) A

(A;d)
11 A

(A;d)
22 A

(A;d)
33

2BO 0.799945 11B RI-MP2 973.2 973.2 1067.4 1004.6 −31.4 −31.4 62.8

11B SCS-RI-MP2 945.8 945.8 1050.5 980.7 −34.9 −34.9 69.8

0.758740 11B OO-RI-MP2 977.3 977.3 1055.4 1003.3 −26.0 −26.0 52.0

0.755607 11B OO-SCS-RI-MP2 971.7 971.7 1053.2 998.9 −27.2 −27.2 54.3

11B B2PLYP 1033.7 1033.7 1116.9 1061.4 −27.7 −27.7 55.5

11B CCSD 1016.3 1016.3 1090.9 1041.1 −24.9 −24.9 49.7

11B CCSD(T) 978.9 978.9 1057.3 1005.0 −26.1 −26.1 52.3

Expt [174] 998 998 1079 1025 −27 −27 54

17O RI-MP2 −93.1 −69.5 −69.5 −77.4 −15.8 7.9 7.9

17O SCS-RI-MP2 −95.1 −86.8 −86.8 −89.6 −5.6 2.8 2.8

17O OO-RI-MP2 −55.4 9.9 9.9 −11.9 −43.5 21.8 21.8

17O OO-SCS-RI-MP2 −50.1 11.3 11.3 −9.2 −40.9 20.5 20.5

17O B2PLYP −55.7 5.5 5.5 −14.9 −40.8 20.4 20.4

17O CCSD −55.3 9.7 9.7 −12.0 −43.4 21.7 21.7

17O CCSD(T) −54.3 5.1 5.1 −14.7 −39.6 19.8 19.8

2BS 0.855236 11B RI-MP2 730.4 730.4 844.0 768.3 −37.8 −37.8 75.7

11B SCS-RI-MP2 675.1 675.1 802.0 717.4 −42.3 −42.3 84.6

0.771530 11B OO-RI-MP2 769.4 769.4 858.5 799.1 −29.7 −29.7 59.4

0.763958 11B OO-SCS-RI-MP2 746.5 746.5 840.2 777.7 −31.2 −31.2 62.5

11B B2PLYP 785.7 785.7 883.9 818.4 −32.8 −32.8 65.5

11B CCSD 767.0 767.0 852.3 795.5 −28.4 −28.4 56.9

11B CCSD(T) 737.2 737.2 826.1 766.8 −29.6 −29.6 59.3

Expt [175] 796

33S RI-MP2 29.0 29.0 60.0 39.3 −10.3 −10.3 20.6

aRef. [169]
bRef. [170]
cRef. [171]
dRef. [172]
eRef. [173]
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Continued.

〈S2〉 A
(A)
11 A

(A)
22 A

(A)
33 A(A;c) A

(A;d)
11 A

(A;d)
22 A

(A;d)
33

33S SCS-RI-MP2 37.2 37.2 55.6 43.3 −6.1 −6.1 12.2

33S OO-RI-MP2 −14.2 −14.2 51.2 7.6 −21.8 −21.8 43.6

33S OO-SCS-RI-MP2 −17.3 −17.3 45.2 3.5 −20.8 −20.8 41.6

33S B2PLYP −16.0 −16.0 47.6 5.2 −21.2 −21.2 42.4

33S CCSD −19.1 −19.1 47.7 3.2 −22.3 −22.3 44.5

33S CCSD(T) −13.1 −13.1 47.1 7.0 −20.1 −20.1 40.1

2CN 1.159620 13C RI-MP2 485.4 485.4 740.7 570.5 −85.1 −85.1 170.2

13C SCS-RI-MP2 445.0 445.0 712.6 534.2 −89.2 −89.2 178.4

0.754597 13C OO-RI-MP2 434.7 434.7 601.0 490.2 −55.4 −55.4 110.8

0.754714 13C OO-SCS-RI-MP2 435.2 435.2 603.2 491.2 −56.0 −56.0 112.0

13C B2PLYP 343.3 343.3 555.5 414.1 −70.7 −70.7 141.5

13C CCSD 602.4 602.4 761.4 655.4 −53.0 −53.0 106.0

13C CCSD(T) 499.4 499.4 669.5 556.1 −56.7 −56.7 113.5

Expt [176] 543 543 678 588 −45 −45 90

14N RI-MP2 1.7 1.7 30.2 11.2 −9.5 −9.5 18.9

14N SCS-RI-MP2 5.6 5.6 31.5 14.2 −8.6 −8.6 17.3

14N OO-RI-MP2 −13.8 −13.8 46.8 6.4 −20.2 −20.2 40.4

14N OO-SCS-RI-MP2 −20.1 −20.1 39.9 −0.1 −20.0 −20.0 40.0

14N B2PLYP −44.1 −44.1 14.0 −24.7 −19.3 −19.3 38.7

14N CCSD −39.8 −39.8 19.7 −20.0 −19.8 −19.8 39.7

14N CCSD(T) −37.4 −37.4 20.0 −18.3 −19.1 −19.1 38.3

Expt [176] −28 −28 27 −13 −15 −15 30

2CO+ 0.960189 13C RI-MP2 1331.1 1331.1 1583.7 1415.3 −84.2 −84.2 168.4

13C SCS-RI-MP2 1275.5 1275.5 1549.5 1366.8 −91.4 −91.4 182.7

0.761082 13C OO-RI-MP2 1413.0 1413.0 1566.3 1464.1 −51.1 −51.1 102.2

0.758066 13C OO-SCS-RI-MP2 1411.0 1411.0 1569.0 1463.6 −52.7 −52.7 105.3

13C B2PLYP 1497.5 1497.5 1662.7 1552.6 −55.1 −55.1 110.1

13C CCSD 1538.2 1538.2 1675.2 1583.9 −45.7 −45.7 91.3

13C CCSD(T) 1460.9 1460.9 1611.6 1511.1 −50.3 −50.3 100.5

Expt [177] 1524 1524 1671 1573 −49 −49 98

17O RI-MP2 −103.6 −103.6 −85.1 −97.4 −6.2 −6.2 12.3

17O SCS-RI-MP2 −113.3 −113.3 −77.3 −101.3 −12.0 −12.0 24.0

17O OO-RI-MP2 −57.8 55.6 55.6 17.8 −75.6 37.8 37.8

17O OO-SCS-RI-MP2 −48.6 60.2 60.2 23.9 −72.5 36.3 36.3

17O B2PLYP −45.9 56.3 56.3 22.2 −68.1 34.1 34.1

17O CCSD −55.5 59.2 59.2 21.0 −76.5 38.3 38.3

17O CCSD(T) −49.2 51.8 51.8 18.1 −67.3 33.7 33.7

Expt [177] −47 52 52 19 −66 33 33

2NO 0.797337 14N RI-MP2 −205.6 −23.1 60.1 −56.2 −149.4 33.1 116.3

14N SCS-RI-MP2 −200.1 −22.2 63.3 −53.0 −147.1 30.8 116.3

0.752023 14N OO-RI-MP2 −18.3 −17.2 88.4 17.6 −36.0 −34.8 70.8

0.752677 14N OO-SCS-RI-MP2 −15.5 −12.6 93.3 21.8 −37.2 −34.3 71.6

14N B2PLYP −16.9 −16.7 96.4 20.9 −37.8 −37.7 75.4

14N CCSD −16.7 −12.9 97.3 22.6 −39.3 −35.5 74.8

14N CCSD(T) −23.1 −18.0 92.3 17.1 −40.2 −35.0 75.2

Expt [168] 22

17O RI-MP2 −630.1 −288.7 19.7 −299.7 −330.4 11.0 319.4

17O SCS-RI-MP2 −622.2 −289.4 13.5 −299.4 −322.9 10.0 312.9

17O OO-RI-MP2 −155.7 34.7 43.0 −26.0 −129.7 60.7 69.0

17O OO-SCS-RI-MP2 −162.9 25.6 36.2 −33.7 −129.2 59.3 69.9

17O B2PLYP −167.6 31.2 35.8 −33.6 −134.0 64.7 69.3

17O CCSD −168.3 23.5 38.8 −35.4 −133.0 58.9 74.1

17O CCSD(T) −169.6 11.5 26.9 −43.7 −125.9 55.2 70.6
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Continued.

〈S2〉 A
(A)
11 A

(A)
22 A

(A)
33 A(A;c) A

(A;d)
11 A

(A;d)
22 A

(A;d)
33

2OH 0.756733 17O RI-MP2 −321.9 98.5 98.7 −41.6 −280.4 140.1 140.3

17O SCS-RI-MP2 −322.1 98.9 100.6 −40.9 −281.2 139.8 141.4

0.753177 17O OO-RI-MP2 −326.5 92.5 93.7 −46.8 −279.7 139.3 140.5

0.753094 17O OO-SCS-RI-MP2 −327.0 93.3 93.5 −46.7 −280.3 140.0 140.2

17O B2PLYP −337.5 89.7 91.0 −52.3 −285.2 142.0 143.2

17O CCSD −324.2 92.9 94.5 −45.6 −278.6 138.5 140.1

17O CCSD(T) −322.8 93.8 95.4 −44.5 −278.2 138.3 139.9

Expt [178] −51

1H RI-MP2 −142.1 −87.0 18.9 −70.1 −72.1 −16.9 88.9

1H SCS-RI-MP2 −133.2 −78.4 26.6 −61.7 −71.5 −16.7 88.3

1H OO-RI-MP2 −150.2 −95.1 13.2 −77.4 −72.8 −17.7 90.5

1H OO-SCS-RI-MP2 −144.0 −89.2 18.9 −71.4 −72.6 −17.8 90.3

1H B2PLYP −142.0 −87.9 19.2 −70.3 −71.8 −17.7 89.5

1H CCSD −148.1 −93.5 15.1 −75.5 −72.6 −18.0 90.6

1H CCSD(T) −145.6 −91.1 16.8 −73.3 −72.3 −17.8 90.1

Expt [178] ∼ −69

2MgF 0.750477 25Mg RI-MP2 −308.1 −296.5 −296.5 −300.4 −7.8 3.9 3.9

25Mg SCS-RI-MP2 −303.2 −291.5 −291.5 −295.4 −7.8 3.9 3.9

0.751211 25Mg OO-RI-MP2 −306.8 −295.2 −295.2 −299.0 −7.8 3.9 3.9

0.751017 25Mg OO-SCS-RI-MP2 −301.7 −290.0 −290.0 −293.9 −7.8 3.9 3.9

25Mg B2PLYP −324.7 −312.7 −312.7 −316.7 −8.0 4.0 4.0

25Mg CCSD −306.8 −295.2 −295.2 −299.0 −7.8 3.9 3.9

25Mg CCSD(T) −305.3 −293.7 −293.7 −297.6 −7.8 3.9 3.9

Expt [179] −349 −331 −331 −337 −12 6 6

19F RI-MP2 116.2 116.2 302.8 178.4 −62.2 −62.2 124.4

19F SCS-RI-MP2 108.9 108.9 291.8 169.9 −61.0 −61.0 121.9

19F OO-RI-MP2 118.1 118.1 313.7 183.3 −65.2 −65.2 130.4

19F OO-SCS-RI-MP2 105.0 105.0 295.7 168.6 −63.6 −63.6 127.1

19F B2PLYP 127.1 127.1 367.6 207.3 −80.2 −80.2 160.3

19F CCSD 123.7 123.7 309.3 185.6 −61.8 −61.8 123.7

19F CCSD(T) 120.6 120.6 315.6 185.6 −65.0 −65.0 130.0

Expt [180] 143 143 332 206 −63 −63 126

2AlO 0.808358 27Al RI-MP2 −135.8 −135.8 85.4 −62.1 −73.7 −73.7 147.5

27Al SCS-RI-MP2 −155.0 −155.0 52.2 −85.9 −69.1 −69.1 138.1

0.762247 27Al OO-RI-MP2 1034.1 1034.1 1181.9 1083.4 −49.2 −49.2 98.5

0.765396 27Al OO-SCS-RI-MP2 970.3 970.3 1118.2 1019.6 −49.3 −49.3 98.6

27Al B2PLYP 922.1 922.1 1094.6 979.6 −57.5 −57.5 115.0

27Al CCSD 425.3 425.3 596.7 482.4 −57.2 −57.2 114.3

27Al CCSD(T) 509.1 509.1 677.8 565.3 −56.2 −56.2 112.4

Expt [181] 713 713 872 766 −53 −53 106

17O RI-MP2 0.7 188.7 188.7 126.0 −125.3 62.7 62.7

17O SCS-RI-MP2 −42.5 182.7 182.7 107.6 −150.1 75.1 75.1

17O OO-RI-MP2 −89.3 41.8 41.8 −1.9 −87.4 43.7 43.7

17O OO-SCS-RI-MP2 −86.5 53.0 53.0 6.5 −93.0 46.5 46.5

17O B2PLYP −70.0 62.9 62.9 18.6 −88.6 44.3 44.3

17O CCSD −109.5 82.0 82.0 18.1 −127.7 63.8 63.8

17O CCSD(T) −98.5 78.2 78.2 19.3 −117.8 58.9 58.9

2HCO 0.765630 1H RI-MP2 366.1 376.5 401.6 381.4 −15.3 −4.9 20.2

1H SCS-RI-MP2 363.6 373.7 400.1 379.1 −15.5 −5.5 21.0

0.752927 1H OO-RI-MP2 352.9 361.0 390.9 368.2 −15.4 −7.3 22.6

0.753275 1H OO-SCS-RI-MP2 350.1 358.0 389.0 365.7 −15.6 −7.7 23.3

1H B2PLYP 366.1 374.2 404.6 381.7 −15.5 −7.4 23.0

1H CCSD 372.6 391.8 400.8 388.4 −15.8 3.4 12.4
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Continued.

〈S2〉 A
(A)
11 A

(A)
22 A

(A)
33 A(A;c) A

(A;d)
11 A

(A;d)
22 A

(A;d)
33

1H CCSD(T) 374.6 393.8 402.4 390.3 −15.7 3.5 12.1

Expt [182] ∼377 ∼377 ∼343 354 −9 −9 25

– 381

17O RI-MP2 −152.4 −24.6 5.3 −57.3 −95.2 32.6 62.5

17O SCS-RI-MP2 −153.6 −21.7 3.2 −57.4 −96.3 35.6 60.6

17O OO-RI-MP2 −136.6 7.5 17.0 −37.4 −99.2 44.9 54.3

17O OO-SCS-RI-MP2 −140.3 4.8 15.7 −40.0 −100.4 44.7 55.6

17O B2PLYP −147.8 9.7 17.4 −40.2 −107.6 50.0 57.6

17O CCSD −144.6 −1.8 16.1 −43.4 −101.2 41.6 59.5

17O CCSD(T) −141.7 −0.6 13.5 −42.9 −98.7 42.3 56.4

13C RI-MP2 289.4 301.2 429.8 340.1 −50.7 −38.9 89.7

13C SCS-RI-MP2 300.3 308.0 439.1 349.1 −48.9 −41.1 90.0

13C OO-RI-MP2 325.9 332.9 456.4 371.7 −45.9 −38.8 84.7

13C OO-SCS-RI-MP2 332.3 342.2 465.3 379.9 −47.6 −37.7 85.4

13C B2PLYP 338.5 345.2 476.0 386.6 −48.0 −41.4 89.4

13C CCSD 284.5 291.2 342.7 306.1 −21.6 −15.0 36.6

13C CCSD(T) 278.3 286.0 336.2 300.2 −21.9 −14.2 36.0

Expt [182] ∼337 ∼353 ∼437 365 −39 −12 50

– 377 – −48 – −24 – 72

2H2CO 0.785332 13C RI-MP2 −109.2 −86.2 −81.7 −92.4 −16.8 6.2 10.7

13C SCS-RI-MP2 −80.2 −65.8 −59.5 −68.5 −11.7 2.7 9.0

0.755748 13C OO-RI-MP2 −137.7 −113.6 −99.6 −117.0 −20.8 3.4 17.4

0.754596 13C OO-SCS-RI-MP2 −112.6 −91.6 −84.6 −96.2 −16.3 4.7 11.7

13C B2PLYP −117.9 −89.0 −85.7 −97.5 −20.4 8.5 11.8

13C CCSD −119.5 −88.9 −88.6 −99.0 −20.5 10.1 10.4

13C CCSD(T) −114.7 −87.9 −84.9 −95.9 −18.9 7.9 11.0

Expt [183] −124 −105 −99 −109 −15 4 10

17O RI-MP2 −316.8 89.1 98.9 −42.9 −273.9 132.1 141.8

17O SCS-RI-MP2 −320.4 101.8 108.0 −36.9 −283.5 138.7 144.8

17O OO-RI-MP2 −285.3 56.4 75.4 −51.2 −234.1 107.5 126.6

17O OO-SCS-RI-MP2 −305.0 62.6 76.0 −55.5 −249.6 118.1 131.5

17O B2PLYP −316.4 61.0 84.3 −57.0 −259.4 118.1 141.3

17O CCSD −318.1 50.0 79.3 −62.9 −255.1 112.9 142.2

17O CCSD(T) −310.3 56.1 78.6 −58.5 −251.8 114.6 137.2

1H RI-MP2 272.5 274.9 297.9 281.8 −9.3 −6.9 16.2

1H SCS-RI-MP2 243.3 245.3 269.9 252.8 −9.5 −7.6 17.1

1H OO-RI-MP2 355.2 357.3 387.6 366.7 −11.5 −9.4 20.9

1H OO-SCS-RI-MP2 315.1 317.2 345.6 326.0 −10.8 −8.8 19.6

1H B2PLYP 313.7 316.3 341.4 323.8 −10.1 −7.5 17.6

1H CCSD 276.7 292.0 313.7 294.1 −17.4 −2.1 19.5

1H CCSD(T) 286.5 303.6 326.3 305.5 −19.0 −1.8 20.9

Expt [183] 363 376 377 372 −9 4 5

2H2O+ 0.761586 1H RI-MP2 −118.3 −88.4 6.3 −66.8 −51.5 −21.6 73.1

1H SCS-RI-MP2 −109.2 −79.5 14.2 −58.2 −51.0 −21.3 72.4

0.754418 1H OO-RI-MP2 −137.5 −107.6 −9.3 −84.8 −52.7 −22.8 75.5

0.754004 1H OO-SCS-RI-MP2 −132.5 −102.9 −4.7 −80.0 −52.5 −22.9 75.4

1H B2PLYP −131.7 −102.4 −4.8 −79.6 −52.0 −22.8 74.8

1H CCSD −174.4 −78.5 5.2 −82.6 −91.8 4.0 87.8

1H CCSD(T) −170.4 −75.0 8.2 −79.1 −91.3 4.0 87.3

Expt [178] −73

17O RI-MP2 −366.5 84.4 88.0 −64.7 −301.8 149.1 152.7

17O SCS-RI-MP2 −363.8 91.1 93.4 −59.8 −304.0 150.9 153.2

17O OO-RI-MP2 −375.7 70.0 75.1 −76.9 −298.8 146.9 152.0
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〈S2〉 A
(A)
11 A

(A)
22 A

(A)
33 A(A;c) A

(A;d)
11 A

(A;d)
22 A

(A;d)
33

17O OO-SCS-RI-MP2 −374.2 74.2 78.3 −73.9 −300.3 148.1 152.2

17O B2PLYP −383.1 72.6 77.5 −77.7 −305.5 150.2 155.2

17O CCSD −375.1 68.8 73.9 −77.5 −297.6 146.2 151.4

17O CCSD(T) −372.6 71.0 75.9 −75.2 −297.4 146.2 151.1

Expt [178] −83

2CH3 0.761614 13C RI-MP2 −18.2 −18.2 211.5 58.4 −76.6 −76.6 153.1

13C SCS-RI-MP2 −33.7 −33.7 197.6 43.4 −77.1 −77.1 154.2

0.754306 13C OO-RI-MP2 −4.8 −4.8 224.4 71.6 −76.4 −76.4 152.8

0.753550 13C OO-SCS-RI-MP2 −15.1 −15.1 215.1 61.6 −76.8 −76.8 153.5

13C B2PLYP 5.2 5.3 241.4 84.0 −78.8 −78.7 157.5

13C CCSD −3.5 −3.5 225.6 72.8 −76.4 −76.4 152.8

13C CCSD(T) −7.2 −7.2 221.6 69.1 −76.2 −76.2 152.5

Expt [184, 185] 13 13 198 75 ∼ − 62 ∼ − 62 ∼ 123

1H RI-MP2 −111.2 −68.8 −33.9 −71.3 −39.9 2.5 37.4

1H SCS-RI-MP2 −95.5 −53.1 −20.4 −56.3 −39.2 3.3 35.9

1H OO-RI-MP2 −118.1 −75.9 −39.0 −77.7 −40.4 1.8 38.7

1H OO-SCS-RI-MP2 −105.6 −63.5 −28.0 −65.7 −39.9 2.3 37.7

1H B2PLYP −109.5 −67.9 −31.0 −69.5 −40.0 1.6 38.4

1H aCCSD −124.4 −66.8 −29.5 −73.6 −50.8 6.8 44.0

1H aCCSD(T) −121.4 −64.1 −27.2 −70.9 −50.5 6.8 43.8

Expt [184, 185] −105 −69 −35 −70 −35 1 35

2SiH3 0.769857 29Si RI-MP2 −390.6 −111.9 −111.9 −204.8 −185.8 92.9 92.9

29Si SCS-RI-MP2 −351.0 −70.7 −70.7 −164.1 −186.9 93.5 93.5

0.764049 29Si OO-RI-MP2 −402.6 −125.0 −125.0 −217.5 −185.0 92.5 92.5

0.761726 29Si OO-SCS-RI-MP2 −373.3 −94.8 −94.8 −187.6 −185.7 92.8 92.8

29Si B2PLYP −386.7 −96.0 −96.0 −192.9 −193.8 96.9 96.9

29Si CCSD −401.5 −124.0 −124.0 −216.5 −185.0 92.5 92.5

29Si CCSD(T) −393.1 −116.3 −116.3 −208.6 −184.5 92.3 92.3

1H RI-MP2 −86.7 −67.8 −64.2 −72.9 −13.8 5.1 8.7

1H SCS-RI-MP2 −68.2 −49.3 −46.2 −54.6 −13.6 5.3 8.4

1H OO-RI-MP2 −93.0 −74.0 −70.0 −79.0 −14.0 5.0 9.0

1H OO-SCS-RI-MP2 −78.8 −59.9 −56.1 −65.0 −13.8 5.0 8.8

1H B2PLYP −77.8 −59.2 −54.9 −64.0 −13.8 4.8 9.0

1H aCCSD −86.8 −66.4 −59.0 −70.7 −16.1 4.3 11.8

1H aCCSD(T) −83.3 −63.0 −55.6 −67.3 −16.0 4.3 11.7

2C3H5
b 0.833312 13C RI-MP2 −47.4 −24.7 −14.4 −28.9 −18.6 4.1 14.4

13C SCS-RI-MP2 −42.2 −18.2 −8.5 −23.0 −19.2 4.8 14.5

0.760583 13C OO-RI-MP2 −64.0 −42.8 −31.3 −46.0 −18.0 3.2 14.7

0.760700 13C OO-SCS-RI-MP2 −60.8 −38.4 −27.1 −42.1 −18.7 3.7 15.0

13C B2PLYP −61.8 −36.9 −25.2 −41.3 −20.5 4.4 16.1

Expt [186] −48

13C RI-MP2 −32.4 −30.9 107.8 14.8 −47.3 −45.8 93.0

13C SCS-RI-MP2 −40.7 −39.4 100.8 6.9 −47.6 −46.3 93.9

13C OO-RI-MP2 −13.9 −12.3 125.1 32.9 −46.9 −45.3 92.1

13C OO-SCS-RI-MP2 −18.3 −16.9 121.6 28.8 −47.1 −45.7 92.9

13C B2PLYP −8.8 −7.2 136.4 40.1 −48.9 −47.3 96.2

Expt [186] 61

1H RI-MP2 −14.5 −4.0 −3.4 −7.3 −7.2 3.3 3.9

1H SCS-RI-MP2 −20.6 −10.1 −8.7 −13.1 −7.5 3.0 4.5

1H OO-RI-MP2 1.0 9.5 11.6 7.4 −6.4 2.2 4.2

1H OO-SCS-RI-MP2 −1.1 7.8 9.7 5.5 −6.5 2.3 4.2

aDipolar contributions are averaged over the three corresponding atoms.
bCCSD and CCSD(T) calculations were not feasible.
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〈S2〉 A
(A)
11 A

(A)
22 A

(A)
33 A(A;c) A

(A;d)
11 A

(A;d)
22 A

(A;d)
33

1H B2PLYP 3.0 11.6 14.2 9.6 −6.6 2.0 4.6

Expt [186] 12

1H RI-MP2 −60.2 −34.7 −14.3 −36.4 −23.8 1.7 22.1

1H SCS-RI-MP2 −49.9 −24.5 −5.4 −26.6 −23.3 2.1 21.2

1H OO-RI-MP2 −71.2 −45.8 −23.1 −46.7 −24.5 0.9 23.6

1H OO-SCS-RI-MP2 −64.6 −39.2 −17.1 −40.3 −24.3 1.1 23.2

1H B2PLYP −68.7 −43.3 −20.3 −44.1 −24.6 0.8 23.8

Expt [186] −41

1H RI-MP2 −51.5 −31.6 −10.6 −31.2 −20.2 −0.4 20.7

1H SCS-RI-MP2 −41.1 −21.3 −1.6 −21.3 −19.8 −0.0 19.8

1H OO-RI-MP2 −62.2 −42.3 −19.1 −41.2 −21.0 −1.1 22.1

1H OO-SCS-RI-MP2 −55.5 −35.7 −13.1 −34.8 −20.7 −0.9 21.7

1H B2PLYP −60.0 −40.2 −16.7 −39.0 −21.0 −1.2 22.3

Expt [186] −39

2O2H 0.762838 17O RI-MP2 −315.7 60.1 76.0 −59.9 −255.9 120.0 135.9

17O SCS-RI-MP2 −325.7 57.1 74.3 −64.8 −261.0 121.9 139.1

0.752418 17O OO-RI-MP2 −276.2 58.0 60.8 −52.5 −223.7 110.5 113.3

0.752900 17O OO-SCS-RI-MP2 −296.8 51.0 52.6 −64.4 −232.4 115.4 117.0

17O B2PLYP −301.5 59.3 63.0 −59.7 −241.7 119.0 122.7

17O CCSD −310.1 58.5 59.0 −64.2 −245.9 122.7 123.2

17O CCSD(T) −299.7 58.9 60.4 −60.1 −239.5 119.0 120.5

17O RI-MP2 −146.8 −0.2 7.3 −46.6 −100.2 46.3 53.9

17O SCS-RI-MP2 −141.3 −7.9 3.2 −48.7 −92.7 40.8 51.8

17O OO-RI-MP2 −139.7 22.0 27.9 −29.9 −109.7 52.0 57.8

17O OO-SCS-RI-MP2 −145.4 7.0 13.0 −41.8 −103.6 48.8 54.8

17O B2PLYP −147.7 15.7 20.7 −37.1 −110.6 52.8 57.8

17O CCSD −133.4 9.2 15.3 −36.3 −97.1 45.5 51.6

17O CCSD(T) −136.6 12.6 16.9 −35.7 −100.9 48.3 52.6

1H RI-MP2 −56.8 −49.8 1.9 −34.9 −21.9 −14.9 36.8

1H SCS-RI-MP2 −53.1 −47.3 2.4 −32.6 −20.4 −14.6 35.0

1H OO-RI-MP2 −53.5 −41.7 5.2 −30.0 −23.5 −11.7 35.2

1H OO-SCS-RI-MP2 −50.0 −39.6 5.2 −28.1 −21.8 −11.5 33.3

1H B2PLYP −51.3 −42.0 6.6 −28.9 −22.4 −13.1 35.5

1H CCSD −39.8 −34.4 −8.8 −27.7 −12.2 −6.8 18.9

1H CCSD(T) −40.5 −36.3 −7.8 −28.2 −12.3 −8.1 20.4

Expt [168] −11 −8 20

2CO−2 0.763529 17O RI-MP2 −148.3 −65.0 −55.6 −89.6 −58.6 24.7 34.0

17O SCS-RI-MP2 −147.1 −61.4 −53.2 −87.3 −59.9 25.9 34.0

0.753048 17O OO-RI-MP2 −158.2 −81.7 −74.4 −104.7 −53.4 23.0 30.4

0.753120 17O OO-SCS-RI-MP2 −155.0 −74.4 −67.3 −98.9 −56.1 24.5 31.6

17O B2PLYP −157.3 −67.2 −60.6 −95.0 −62.3 27.9 34.4

17O CCSD −156.3 −64.3 −52.1 −90.9 −65.4 26.6 38.8

17O CCSD(T) −157.9 −68.8 −57.0 −94.6 −63.4 25.8 37.6

13C RI-MP2 303.2 311.3 407.5 340.6 −37.5 −29.4 66.8

13C SCS-RI-MP2 298.2 306.6 407.2 337.3 −39.1 −30.7 69.8

13C OO-RI-MP2 274.7 278.7 360.9 304.8 −30.1 −26.1 56.1

13C OO-SCS-RI-MP2 278.2 284.0 372.3 311.5 −33.3 −27.5 60.8

13C B2PLYP 297.2 303.3 403.4 334.6 −37.5 −31.3 68.8

13C CCSD 290.1 298.5 406.4 331.7 −41.6 −33.1 74.8

13C CCSD(T) 275.4 282.5 380.6 312.9 −37.4 −30.4 67.8

2NH2 0.759428 14N RI-MP2 −18.8 −18.3 109.2 24.0 −42.8 −42.3 85.1

14N SCS-RI-MP2 −21.3 −21.0 107.6 21.8 −43.0 −42.8 85.8

0.753988 14N OO-RI-MP2 −15.2 −14.5 112.5 27.6 −42.8 −42.1 84.9
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〈S2〉 A
(A)
11 A

(A)
22 A

(A)
33 A(A;c) A

(A;d)
11 A

(A;d)
22 A

(A;d)
33

0.753602 14N OO-SCS-RI-MP2 −16.8 −16.3 111.5 26.1 −42.9 −42.5 85.4

14N B2PLYP −12.7 −11.8 118.6 31.4 −44.0 −43.2 87.2

14N CCSD −15.8 −15.0 111.6 26.9 −42.7 −42.0 84.7

14N CCSD(T) −16.7 −16.0 110.4 25.9 −42.6 −41.9 84.5

Expt [186, 187] −17 −15 116 28 −45 −43 88

1H RI-MP2 −120.3 −70.3 −3.4 −64.7 −55.7 −5.6 61.3

1H SCS-RI-MP2 −107.0 −57.1 7.6 −52.2 −54.8 −5.0 59.8

1H OO-RI-MP2 −128.5 −78.7 −9.1 −72.1 −56.4 −6.6 63.0

1H OO-SCS-RI-MP2 −118.6 −69.1 −0.6 −62.8 −55.9 −6.3 62.1

1H B2PLYP −120.3 −71.3 −2.3 −64.6 −55.7 −6.7 62.3

1H CCSD −155.3 −63.4 9.8 −69.6 −85.6 6.2 79.4

1H CCSD(T) −152.7 −61.3 11.5 −67.5 −85.2 6.2 79.0

Expt [186, 187] −123 −72 −1 −67 −56 −5 66

2NO2 0.770946 14N RI-MP2 129.5 131.9 182.0 147.8 −18.3 −15.8 34.2

14N SCS-RI-MP2 132.4 139.2 189.1 153.6 −21.2 −14.4 35.5

0.751284 14N OO-RI-MP2 130.6 131.3 177.8 146.6 −16.0 −15.3 31.2

0.752347 14N OO-SCS-RI-MP2 134.4 139.4 186.9 153.5 −19.2 −14.2 33.3

14N B2PLYP 127.9 130.7 187.2 148.6 −20.7 −17.9 38.6

14N CCSD 121.6 126.2 187.3 145.0 −23.5 −18.8 42.3

14N CCSD(T) 122.9 126.7 183.3 144.3 −21.4 −17.6 39.0

Expt [182] 131 138 190 153 −22 −15 37

17O RI-MP2 −166.0 −17.3 −10.9 −64.7 −101.3 47.4 53.8

17O SCS-RI-MP2 −164.5 −14.5 −4.6 −61.2 −103.3 46.7 56.6

17O OO-RI-MP2 −177.6 −33.6 −27.7 −79.7 −98.0 46.0 52.0

17O OO-SCS-RI-MP2 −176.0 −28.7 −21.8 −75.5 −100.5 46.8 53.7

17O B2PLYP −171.5 −11.1 −7.4 −63.3 −108.1 52.2 56.0

17O CCSD −169.1 −6.4 1.5 −58.0 −111.1 51.6 59.5

17O CCSD(T) −171.6 −13.6 −5.1 −63.4 −108.2 49.9 58.3

Expt [182] ∼ −160 ∼ −7 ∼5 −47 −106 47 59

– −61

2NF2 0.764471 14N RI-MP2 −7.2 −3.8 144.8 44.6 −51.8 −48.4 100.2

14N SCS-RI-MP2 −7.2 −3.5 147.1 45.5 −52.7 −49.0 101.6

0.753535 14N OO-RI-MP2 −3.8 −1.3 136.6 43.8 −47.7 −45.1 92.8

0.753792 14N OO-SCS-RI-MP2 −1.0 1.9 143.1 48.0 −49.0 −46.1 95.1

14N B2PLYP −1.4 1.7 147.5 49.3 −50.7 −47.5 98.2

14N CCSD −1.0 1.8 147.1 49.3 −50.3 −47.5 97.8

14N CCSD(T) −4.3 −1.7 140.5 44.8 −49.1 −46.6 95.7

19F RI-MP2 −61.5 −4.0 616.1 183.5 −245.1 −187.5 432.6

19F SCS-RI-MP2 −58.7 40.1 595.7 192.4 −251.1 −152.3 403.4

19F OO-RI-MP2 −128.1 −90.5 626.1 135.8 −263.9 −226.3 490.2

19F OO-SCS-RI-MP2 −71.6 −50.1 631.5 169.9 −241.5 −220.1 461.6

19F B2PLYP −90.6 −65.2 653.6 165.9 −256.5 −231.2 487.7

19F CCSD −91.9 −22.1 612.2 166.1 −258.0 −188.2 446.2

19F CCSD(T) −97.8 −48.1 617.7 157.3 −255.1 −205.4 460.4

2NF+
3 0.784752 14N RI-MP2 −34.3 −34.3 121.3 17.5 −51.9 −51.9 103.7

14N SCS-RI-MP2 −40.2 −40.2 117.7 12.4 −52.6 −52.6 105.3

0.754225 14N OO-RI-MP2 33.1 33.1 170.6 78.9 −45.8 −45.8 91.7

0.754666 14N OO-SCS-RI-MP2 40.5 40.5 182.2 87.8 −47.2 −47.2 94.4

14N B2PLYP 31.5 31.5 176.6 79.8 −48.4 −48.4 96.7

14N CCSD 53.6 53.6 201.5 102.9 −49.3 −49.3 98.6

14N CCSD(T) 42.7 42.7 186.5 90.6 −47.9 −47.9 95.9

Expt [168] 276

19F RI-MP2 −134.6 −75.3 659.4 149.8 −284.4 −225.2 509.5
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〈S2〉 A
(A)
11 A

(A)
22 A

(A)
33 A(A;c) A

(A;d)
11 A

(A;d)
22 A

(A;d)
33

19F SCS-RI-MP2 −145.3 −53.0 629.4 143.7 −289.0 −196.7 485.7

19F OO-RI-MP2 −77.8 25.5 814.9 254.2 −332.0 −228.7 560.7

19F OO-SCS-RI-MP2 −24.8 59.4 831.0 288.6 −313.3 −229.1 542.5

19F B2PLYP −82.0 20.7 836.4 258.4 −340.4 −237.7 578.0

19F aCCSD −24.3 129.2 853.7 319.6 −343.8 −190.4 534.2

19F aCCSD(T) −41.4 76.2 825.9 286.9 −328.3 −210.6 539.0

Expt [168] 468

2O−3 0.788861 17O RI-MP2 −39.9 174.2 180.8 105.0 −144.9 69.1 75.8

17O SCS-RI-MP2 −87.5 160.3 163.1 78.6 −166.1 81.7 84.5

0.751039 17O OO-RI-MP2 −184.7 10.8 14.9 −53.0 −131.7 63.8 67.9

0.753723 17O OO-SCS-RI-MP2 −238.9 −29.4 −21.3 −96.6 −142.4 67.1 75.3

17O B2PLYP −205.0 20.5 24.1 −53.4 −151.5 74.0 77.6

17O CCSD −251.8 1.1 5.3 −81.8 −170.0 82.9 87.0

17O CCSD(T) −229.4 7.0 10.9 −70.5 −158.9 77.5 81.4

17O RI-MP2 −109.9 60.1 115.5 21.9 −131.8 38.2 93.6

17O SCS-RI-MP2 −100.4 48.0 114.1 20.6 −121.0 27.4 93.5

17O OO-RI-MP2 −105.9 30.0 33.7 −14.1 −91.8 44.1 47.8

17O OO-SCS-RI-MP2 −128.7 4.2 19.3 −35.0 −93.7 39.3 54.4

17O B2PLYP −131.5 27.3 29.6 −24.9 −106.7 52.2 54.5

17O CCSD −136.3 12.6 17.8 −35.3 −101.0 48.0 53.1

17O CCSD(T) −129.7 19.6 21.5 −29.5 −100.2 49.1 51.0

2ClO2
b 0.788737 17O RI-MP2 −111.4 44.9 49.3 −5.7 −105.7 50.6 55.1

17O SCS-RI-MP2 −121.0 36.4 44.1 −13.5 −107.5 49.9 57.6

0.751049 17O OO-RI-MP2 −120.4 35.6 37.4 −15.8 −104.6 51.4 53.2

0.757835 17O OO-SCS-RI-MP2 −141.7 13.3 26.7 −33.9 −107.8 47.2 60.6

17O B2PLYP −143.8 33.0 33.3 −25.8 −118.0 58.8 59.1

25Cl RI-MP2 −45.6 −44.0 169.0 26.5 −72.1 −70.4 142.5

25Cl SCS-RI-MP2 −10.2 −6.6 213.3 65.5 −75.7 −72.1 147.8

25Cl OO-RI-MP2 −38.7 −36.0 155.0 26.8 −65.4 −62.8 128.2

25Cl OO-SCS-RI-MP2 2.6 7.7 205.7 72.0 −69.4 −64.3 133.7

35Cl B2PLYP −43.8 −39.6 176.1 30.9 −74.7 −70.5 145.2

Expt [168] −83 −77 46

Table 5.13.: Hyperfine coupling constants in [MHz] for a variety of small S>1/2 systems.

〈S2〉 A
(A)
11 A

(A)
22 A

(A)
33 A(A;c) A

(A;d)
11 A

(A;d)
22 A

(A;d)
33

3NH 2.016491 14N RI-MP2 −28.0 37.8 37.8 15.9 −43.8 21.9 21.9

14N SCS-RI-MP2 −29.6 37.1 37.1 14.9 −44.5 22.2 22.2

2.007690 14N OO-RI-MP2 −25.6 40.0 40.0 18.1 −43.7 21.9 21.9

2.006912 14N OO-SCS-RI-MP2 −26.5 39.7 39.7 17.7 −44.2 22.1 22.1

14N B2PLYP −23.4 44.3 44.3 21.7 −45.1 22.6 22.6

13N CCSD −26.6 38.9 38.9 17.1 −43.6 21.8 21.8

14N CCSD(T) −27.0 38.4 38.4 16.6 −43.6 21.8 21.8

Expt [168] −26 43 43 20 −46 23 23

1H RI-MP2 −98.8 −98.8 −5.5 −67.7 −31.1 −31.1 62.2

1H SCS-RI-MP2 −87.0 −87.0 4.7 −56.4 −30.6 −30.6 61.2

1H OO-RI-MP2 −103.1 −103.1 −8.6 −71.6 −31.5 −31.5 63.0

1H OO-SCS-RI-MP2 −94.2 −94.2 −0.5 −62.9 −31.2 −31.2 62.4

1H B2PLYP −91.8 −91.8 1.1 −60.8 −31.0 −31.0 62.0

aDipolar contributions are averaged over the three corresponding atoms.
bCCSD and CCSD(T) calculations were not feasible.
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〈S2〉 A
(A)
11 A

(A)
22 A

(A)
33 A(A;c) A

(A;d)
11 A

(A;d)
22 A

(A;d)
33

1H CCSD −98.9 −98.9 −4.9 −67.6 −31.4 −31.4 62.7

1H CCSD(T) −97.3 −97.3 −3.6 −66.1 −31.2 −31.2 62.4

Expt [168] −100 −100 −10 −70 −30 −30 60

3OH+ 2.014161 17O RI-MP2 −120.5 −120.5 115.0 −42.0 −78.5 −78.5 157.0

17O SCS-RI-MP2 −120.5 −120.5 116.9 −41.4 −79.1 −79.1 158.3

2.006706 17O OO-RI-MP2 −123.9 −123.9 110.5 −45.8 −78.1 −78.1 156.2

2.006180 17O OO-SCS-RI-MP2 −124.5 −124.5 111.3 −45.9 −78.6 −78.6 157.2

17O B2PLYP −127.5 −127.5 112.8 −47.4 −80.1 −80.1 160.2

17O CCSD −123.6 −123.6 110.3 −45.6 −78.0 −78.0 155.9

17O CCSD(T) −122.9 −122.9 110.9 −45.0 −77.9 −77.9 155.9

1H RI-MP2 −120.4 −120.4 9.8 −77.0 −43.4 −43.4 86.8

1H SCS-RI-MP2 −115.0 −115.0 15.0 −71.7 −43.3 −43.3 86.7

1H OO-RI-MP2 −126.1 −126.1 5.2 −82.3 −43.8 −43.8 87.5

1H OO-SCS-RI-MP2 −122.4 −122.4 8.9 −78.6 −43.8 −43.8 87.6

1H B2PLYP −116.0 −116.0 13.7 −72.8 −43.2 −43.2 86.4

1H CCSD −121.4 −121.4 9.6 −77.7 −43.7 −43.7 87.3

1H CCSD(T) −119.5 −119.5 11.1 −76.0 −43.6 −43.6 87.1

3SH+ 2.020489 33S RI-MP2 −58.2 82.6 82.6 35.6 −93.8 46.9 46.9

33S SCS-RI-MP2 −58.9 83.0 83.0 35.7 −94.6 47.3 47.3

2.007451 33S OO-RI-MP2 −53.5 88.7 88.7 41.3 −94.8 47.4 47.4

2.006436 33S OO-SCS-RI-MP2 −52.8 90.3 90.3 42.6 −95.3 47.7 47.7

33S B2PLYP −63.8 84.1 84.1 34.8 −98.6 49.3 49.3

33S CCSD −44.9 96.4 96.4 49.3 −94.2 47.1 47.1

33S CCSD(T) −43.4 97.5 97.5 50.5 −93.9 46.9 46.9

1H RI-MP2 −89.5 −89.5 −52.3 −77.1 −12.4 −12.4 24.8

1H SCS-RI-MP2 −78.5 −78.5 −41.5 −66.2 −12.3 −12.3 24.7

1H OO-RI-MP2 −83.4 −83.4 −46.5 −71.1 −12.3 −12.3 24.6

1H OO-SCS-RI-MP2 −74.9 −74.9 −38.0 −62.6 −12.3 −12.3 24.6

1H B2PLYP −67.4 −67.4 −30.8 −55.2 −12.2 −12.2 24.4

1H CCSD −77.6 −77.6 −40.9 −65.4 −12.2 −12.2 24.5

1H CCSD(T) −76.4 −76.4 −39.8 −64.2 −12.2 −12.2 24.4

3O2 2.048075 17O RI-MP2 −75.8 −75.8 55.4 −32.1 −43.7 −43.7 87.5

17O SCS-RI-MP2 −91.2 −91.2 42.0 −46.8 −44.4 −44.4 88.8

2.004177 17O OO-RI-MP2 −84.9 −84.9 46.1 −41.2 −43.7 −43.7 87.3

2.006328 17O OO-SCS-RI-MP2 −101.3 −101.3 31.8 −56.9 −44.4 −44.4 88.7

17O B2PLYP −93.3 −93.3 45.0 −47.2 −46.1 −46.1 92.2

17O CCSD −102.0 −102.0 36.7 −55.7 −46.2 −46.2 92.5

17O CCSD(T) −97.0 −97.0 39.3 −51.6 −45.4 −45.4 90.9

Expt [188] −102 −102 39 −55 −47 −47 94

3S2 2.049667 33S RI-MP2 −39.9 34.7 34.7 9.8 −49.7 24.9 24.9

33S SCS-RI-MP2 −34.4 40.5 40.5 15.5 −49.9 25.0 25.0

2.015132 33S OO-RI-MP2 −33.4 41.1 41.1 16.2 −49.6 24.8 24.8

2.018289 33S OO-SCS-RI-MP2 −27.8 47.1 47.1 22.1 −49.9 25.0 25.0

33S B2PLYP −36.2 40.9 40.9 15.2 −51.4 25.7 25.7

33S CCSD −26.7 49.8 49.8 24.3 −51.0 25.5 25.5

33S CCSD(T) −26.5 48.6 48.6 23.6 −50.1 25.1 25.1

3SO 2.054070 33S RI-MP2 −52.0 39.2 39.2 8.8 −60.8 30.4 30.4

33S SCS-RI-MP2 −44.0 48.6 48.6 17.7 −61.7 30.9 30.9

2.012992 33S OO-RI-MP2 −49.2 42.1 42.1 11.7 −60.9 30.4 30.4

2.015130 33S OO-SCS-RI-MP2 −41.5 51.2 51.2 20.3 −61.8 30.9 30.9

33S B2PLYP −50.3 43.8 43.8 12.4 −62.8 31.4 31.4

33S CCSD −42.3 52.0 52.0 20.5 −62.8 31.4 31.4

33S CCSD(T) −40.8 51.5 51.5 20.7 −61.5 30.8 30.8
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Continued.

〈S2〉 A
(A)
11 A

(A)
22 A

(A)
33 A(A;c) A

(A;d)
11 A

(A;d)
22 A

(A;d)
33

17O RI-MP2 −38.2 −38.2 48.8 −9.2 −29.0 −29.0 58.0

17O SCS-RI-MP2 −43.3 −43.3 42.8 −14.6 −28.7 −28.7 57.4

17O OO-RI-MP2 −57.3 −57.3 30.9 −27.9 −29.4 −29.4 58.8

17O OO-SCS-RI-MP2 −63.6 −63.6 23.9 −34.4 −29.2 −29.2 58.4

17O B2PLYP −65.8 −65.8 30.8 −33.6 −32.2 −32.2 64.4

17O CCSD −72.3 −72.3 21.2 −41.1 −31.2 −31.2 62.3

17O CCSD(T) −67.9 −67.9 23.9 −37.3 −30.6 −30.6 61.2

In general, the deviations from CCDS(T) that are obtained with OO-RI-MP2 and OO-SCS-RI-MP2

methods do not appear to be systematic. In fact, the orbital optimized MP2 (OO-MP2) methods do

not generally tend to either underestimate or overestimate the hfccs neither in magnitude nor in absolute

value. This behaviour is well reflected in the mean error statistics presented in Table 5.14. The mean

error of the OO-MP2 methods is close to zero and is very similar to the mean error of the CCSD method.

Table 5.14.: Error statistics in [MHz] for a variety of small S≥1/2 systems in comparison to CCSD(T) results.

A
(A)
11 A

(A)
22 A

(A)
33 A(A;c) A

(A;d)
11 A

(A;d)
22 A

(A;d)
33

Mean error RI-MP2 −24 −27 −19 −24 −1 −4 5

Mean absolute error RI-MP2 49 49 44 45 16 9 16

Mean error SCS-RI-MP2 −26 −26 −21 −24 −2 −2 4

Mean absolute error SCS-RI-MP2 55 53 47 50 16 11 18

Mean error OO-RI-MP2 3 −5 −1 −1 4 −4 0

Mean absolute error OO-RI-MP2 30 30 28 27 7 6 7

Mean error OO-SCS-RI-MP2 5 −3 −0 0 5 −4 −1

Mean absolute error OO-SCS-RI-MP2 24 23 23 21 7 5 5

Mean error B2PLYP 2 −2 6 2 0 −4 4

Mean absolute error B2PLYP 28 26 26 24 7 6 8

Mean error CCSD −4 −1 −3 −3 −2 2 0

Mean absolute error CCSD 15 17 15 16 3 3 2

Regarding the mean absolute errors, CCSD is the closest to the CCSD(T) reference data. Anyway, not

by a large margin. However, the OO-MP2 methods are only worse by about ∼10−15 MHz in the total

and isotropic hfccs. The deviations in the dipolar hfccs are small for both the CCSD and OO-MP2

methods. Interestingly, it can be seen from Table 5.14 that the spin component scaled variant of the

OO-RI-MP2 method (OO-SCS-RI-MP2) improves upon the results of the initial OO-RI-MP2 method.

Though, comparison of individual entries shows, that this improvement is not systematic.
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Table 5.15.: Error statistics in [MHz] for a variety of small S≥1/2 systems in comparison to experimental results.

A
(A)
11 A

(A)
22 A

(A)
33 A(A;c) A

(A;d)
11 A

(A;d)
22 A

(A;d)
33

Mean error RI-MP2 −51 −55 −39 −57 −2 −7 8

Mean absolute error RI-MP2 61 65 56 67 9 8 14

Mean error SCS-RI-MP2 −56 −60 −42 −60 −3 −7 9

Mean absolute error SCS-RI-MP2 72 77 61 77 9 9 14

Mean error OO-RI-MP2 −11 −17 −8 −23 1 −5 3

Mean absolute error OO-RI-MP2 40 41 36 45 7 6 9

Mean error OO-SCS-RI-MP2 −5 −6 2 −19 −2 −3 4

Mean absolute error OO-SCS-RI-MP2 30 32 31 36 4 4 7

Mean error B2PLYP −4 −3 10 −18 −4 −4 8

Mean absolute error B2PLYP 27 27 28 36 5 6 9

Mean error CCSD −23 −16 −11 −27 −5 1 4

Mean absolute error CCSD 35 31 33 37 8 5 8

Mean error CCSD(T) −25 −19 −13 −33 −5 −1 4

Mean absolute error CCSD(T) 30 28 27 39 8 5 8

In Table 5.15 we compare the results of our calculations to experiment. The scaled error statistics in

Table 5.17 displays the same overall trends. Obviously, the performance of the OO-MP2 methods is

extremely good - in fact as good as what is obtained for CCSD and even CCSD(T). This excellent

behavior should certainly be taken with a grain of salt as one is neither close to the basis set limit nor

have vibrational effects been included in the calculations.

In Table 5.16 the individual deviations with respect to the CCSD(T) results are scaled with the corre-

sponding PA factor for each element A. Due to the possibly large magnitude of the PA factor (e.g. for the

hydrogen atom PH=533.5514 MHz/au3, cf. Table 5.10), the scaling by PA offers an element independent

insight into the error statistics.

Table 5.16 shows a slight tendency for overestimation of the total and isotropic hfccs by the OO-MP2

methods, which is indicated by the overall positive mean error. The mean absolute error confirms the

slightly superior performance of CCSD, when compared to the CCSD(T) reference. Importantly, the OO-

MP2 methods reduce the errors of the MP2 method itself by a factor of 2−3 and hence they represent a

definite improvement.
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Table 5.16.: Error statistics in [au3] for a variety of small S≥1/2 systems in comparison to CCSD(T) results.

Error scaled by the corresponding element-specific factor PA [MHz/au3].

A
(A)
11 A

(A)
22 A

(A)
33 A(A;c) A

(A;d)
11 A

(A;d)
22 A

(A;d)
33

Mean error RI-MP2 −0.1440 −0.1502 −0.2197 −0.1713 0.0273 0.0211 −0.0484

Mean absolute error RI-MP2 0.5025 0.4262 0.3541 0.4108 0.1832 0.0974 0.1771

Mean error SCS-RI-MP2 −0.1316 −0.1391 −0.2166 −0.1624 0.0313 0.0237 −0.0550

Mean absolute error SCS-RI-MP2 0.5236 0.4538 0.3619 0.4329 0.1957 0.1184 0.1951

Mean error OO-RI-MP2 0.0293 0.0375 0.0609 0.0426 −0.0134 −0.0051 0.0186

Mean absolute error OO-RI-MP2 0.1792 0.1742 0.1795 0.1684 0.0557 0.0344 0.0472

Mean error OO-SCS-RI-MP2 0.0739 0.0722 0.0891 0.0784 −0.0046 −0.0064 0.0110

Mean absolute error OO-SCS-RI-MP2 0.1365 0.1508 0.1463 0.1363 0.0429 0.0325 0.0373

Mean error B2PLYP 0.0627 0.0287 0.0783 0.0566 0.0062 −0.0283 0.0220

Mean absolute error B2PLYP 0.1800 0.1605 0.1743 0.1539 0.0559 0.0433 0.0540

Mean error CCSD 0.0453 0.0352 0.0315 0.0373 0.0083 −0.0023 −0.0060

Mean absolute error CCSD 0.0818 0.0840 0.0762 0.0765 0.0230 0.0163 0.0208

Table 5.17.: Error statistics in [au3] for a variety of small S≥1/2 systems in comparison to experimental results.

Error scaled by the corresponding element-specific factor PA [MHz/au3].

A
(A)
11 A

(A)
22 A

(A)
33 A(A;c) A

(A;d)
11 A

(A;d)
22 A

(A;d)
33

Mean error RI-MP2 −0.3488 −0.2950 −0.2067 −0.4179 −0.0641 −0.0146 0.0781

Mean absolute error RI-MP2 0.4852 0.5436 0.4465 0.5444 0.0893 0.0718 0.1132

Mean error SCS-RI-MP2 −0.3622 −0.3085 −0.2276 −0.4365 −0.0616 −0.0123 0.0732

Mean absolute error SCS-RI-MP2 0.5410 0.5943 0.4488 0.5860 0.0838 0.0770 0.1083

Mean error OO-RI-MP2 −0.0259 −0.0283 0.0261 −0.1578 −0.0172 −0.0216 0.0382

Mean absolute error OO-RI-MP2 0.2755 0.2821 0.2790 0.3121 0.0484 0.0327 0.0672

Mean error OO-SCS-RI-MP2 −0.0411 −0.0402 0.0121 −0.1568 −0.0186 −0.0198 0.0377

Mean absolute error OO-SCS-RI-MP2 0.2429 0.2508 0.2572 0.2914 0.0394 0.0303 0.0594

Mean error B2PLYP −0.0449 −0.0535 0.0332 −0.1570 −0.0235 −0.0340 0.0570

Mean absolute error B2PLYP 0.2144 0.2079 0.2044 0.2753 0.0357 0.0412 0.0615

Mean error CCSD −0.1463 −0.1514 −0.1217 −0.2378 −0.0067 −0.0142 0.0203

Mean absolute error CCSD 0.2272 0.2148 0.2220 0.2861 0.0505 0.0356 0.0554

Mean error CCSD(T) −0.1859 −0.1809 −0.1480 −0.2815 −0.0143 −0.0121 0.0258

Mean absolute error CCSD(T) 0.2180 0.2117 0.2056 0.3031 0.0422 0.0302 0.0509

In order to gain more insight into the individual description of different nuclei, the scaled error statistics

are broken down into the contributions of H, C, N, O, and F atoms and compared to CCSD(T) results.

From the results in Table 5.18 it is seen that the 1H hfccs are well described by all employed MP2

methods. However, for 13C, 14N, 17O and 19F hfccs the orbital optimization leads to large improvements
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in the results. This is most clearly seen in the 14N hfccs. In the case of the 13C and 19F hfccs, the

OO-SCS-RI-MP2 method even performs almost as well as CCSD.

Table 5.18.: Mean absolute error in [au3] for H, C, N, O, and F atoms in a variety of small S≥1/2 systems

in comparison to CCSD(T) results. Error scaled by the corresponding element-specific factor PA

[MHz/au3].

A
(A)
11 A

(A)
22 A

(A)
33 A(A;c) A

(A;d)
11 A

(A;d)
22 A

(A;d)
33

1H

RI-MP2 0.0294 0.0189 0.0171 0.0135 0.0216 0.0123 0.0133

SCS-RI-MP2 0.0496 0.0280 0.0226 0.0315 0.0220 0.0123 0.0142

OO-RI-MP2 0.0379 0.0351 0.0336 0.0255 0.0208 0.0132 0.0111

OO-SCS-RI-MP2 0.0318 0.0173 0.0148 0.0113 0.0222 0.0137 0.0124

B2PLYP 0.0302 0.0179 0.0145 0.0091 0.0226 0.0138 0.0129

CCSD 0.0064 0.0066 0.0062 0.0064 0.0007 0.0003 0.0009

13C

RI-MP2 0.2474 0.2490 0.2892 0.2386 0.1163 0.1120 0.2238

SCS-RI-MP2 0.4293 0.4155 0.3528 0.3634 0.1371 0.1328 0.2570

OO-RI-MP2 0.2312 0.2376 0.3368 0.2684 0.0440 0.0444 0.0887

OO-SCS-RI-MP2 0.2247 0.2278 0.3144 0.2500 0.0448 0.0414 0.0800

B2PLYP 0.3605 0.3556 0.4326 0.3827 0.0609 0.0621 0.1214

CCSD 0.2603 0.2560 0.2427 0.2531 0.0181 0.0177 0.0311

14N

RI-MP2 1.1529 0.4874 0.4263 0.6750 0.4779 0.3177 0.2902

SCS-RI-MP2 1.1944 0.5582 0.4660 0.7283 0.4711 0.3258 0.3061

OO-RI-MP2 0.1817 0.1561 0.2209 0.1608 0.0540 0.0276 0.0811

OO-SCS-RI-MP2 0.1570 0.1589 0.1252 0.1460 0.0286 0.0262 0.0526

B2PLYP 0.1465 0.1358 0.1666 0.1494 0.0311 0.0245 0.0292

CCSD 0.0833 0.0777 0.1066 0.0852 0.0239 0.0175 0.0380

17O

RI-MP2 0.6826 0.7025 0.5474 0.6294 0.2976 0.1167 0.2851

SCS-RI-MP2 0.6256 0.6857 0.5297 0.6023 0.3047 0.1517 0.2823

OO-RI-MP2 0.1559 0.1417 0.1388 0.1343 0.1194 0.0606 0.0700

OO-SCS-RI-MP2 0.0581 0.1356 0.1157 0.0911 0.0772 0.0504 0.0478

B2PLYP 0.0851 0.0760 0.0740 0.0484 0.0729 0.0474 0.0454

CCSD 0.0704 0.0660 0.0538 0.0540 0.0470 0.0258 0.0303

19F

RI-MP2 0.1182 0.1816 0.1711 0.1562 0.0513 0.0273 0.0497

SCS-RI-MP2 0.1333 0.1911 0.2181 0.1711 0.0431 0.0505 0.0936

OO-RI-MP2 0.0572 0.0794 0.0172 0.0476 0.0096 0.0319 0.0415

OO-SCS-RI-MP2 0.0391 0.0232 0.0208 0.0156 0.0244 0.0286 0.0052

B2PLYP 0.0473 0.0688 0.0514 0.0413 0.0179 0.0490 0.0669

CCSD 0.0221 0.0710 0.0334 0.0460 0.0184 0.0327 0.0164

The OO-MP2 results are now compared to previously published hfccs, calculated with the double-hybrid

functional B2PLYP. [1] The B2PLYP functional combines the advantages of hybrid density functional
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theory with a scaled MP2 correction to account for semi-local dynamic correlation effects, and has shown

to provide excellent results for the prediction of hyperfine structure. [155] All DFT functionals failed

to predict the hfccs of the molecules CN, AlO and NF+
3 properly, and therefore these molecules were

excluded from the error statistics in Ref. [155]. However, in this paper we decided to include all molecules

in our error analysis, shown in Table 5.14. The B2PLYP mean absolute error compared to the CCSD(T)

reference in the total hfccs is ∼27 MHz, which is similar to the deviations of the OO-MP2 methods from

CCSD(T). The same is valid for the isotropic (24 MHz) and anisotropic (∼7 MHz) contributions to the

hfccs. Thus, the OO-MP2 methods are at least not inferior to B2PLYP and it might be speculated that

they could be more reliable in situations where the self-interaction error of DFT becomes important. In

comparison to the experimental results, the OO-MP2 methods even outperforms the B2PLYP functional

concerning the isotropic hfcc, with a mean absolute error of 58 MHz, whereas the errors in the total and

anisotropic hfccs remain unchanged.

The expectation value of the total spin operator is listed in the second column of Tables 5.12 and 5.13.

The spin contamination as recalled in Section 2.9.3, i.e. the deviation of 〈S2〉 from the ideal value, is in

most cases drastically reduced by the OO-MP2 methods compared to the conventional RI-MP2 methods,

that are based on UHF reference determinants. The only exception represents the MgF molecule, for

which the spin contamination in the OO-MP2 methods is slightly increased compared to the standard

MP2 methods.

The spin contamination often serves as an indicator for the quality of the underlying wave function. In the

present context, this would imply an improved wave function, due to orbital relaxation within the dynamic

correlation field. However, there is no obvious correlation between the reduced spin contamination and

improved hyperfine coupling constants. Regarding the CN molecule, where the spin contamination is

drastically reduced (RI-MP2: 0.409724, OO-RI-MP2: 0.010045), the 13C hfccs are even worse for the

OO-MP2 methods than for the conventional MP2 methods. Thus, no direct conclusion should be drawn

from the decreased spin contamination in the OO-MP2 methods.

In summary, the results assembled here show that the OO-MP2 methods can rival the already excellent

B2PLYP results for the prediction of hfccs. Importantly, the results of OO-MP2 predictions are of similar

quality than the already excellent CCSD numbers. In general, the OO-SCS-RI-MP2 method represents,

at most, a modest improvement of the parent OO-RI-MP2 method.

Transition Metal Hyperfine Coupling Constants

To investigate the description of the spin density in electronically more complicated systems, i.e. when spin

polarization effects become large, the hyperfine coupling constants of some small illustrative transition

metal compounds are analyzed. In Table 5.19 the total A(A), isotropic A(A;c) and dipolar A(A;d) hfccs

are listed for the OO-(SCS-)RI-MP2 and CCSD(T) methods as well as for the double-hybrid functional

B2PLYP, which was found to perform best under all tested functionals in Ref. [155]. Taking the CCSD(T)

results as reference shows excellent agreement with the OO-RI-MP2 hfccs. Spin-component scaling does

generally not improve the calculated hfccs. As shown in Fig. 5.6 the OO-RI-MP2 spin densities at the

metal nuclei are almost of CCSD(T) quality. The B2PLYP functional tend to overestimate the spin

density at the metal center compared to the CCSD(T) method, but agrees best with the experimental

data. This is likely fortuitous, since the basis sets employed are far from being complete.
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Figure 5.6.: Spin density ρα−βN at the metal nucleus in 2ScO, 2TiF3, 6MnO, and 7MnH normalized to the number of
unpaired electrons dependent on the method employed. The dashed lines represent the experimentally
determined spin density.

Table 5.19.: Hyperfine coupling constants in [MHz] for a variety of small transition metal compounds.

A
(A)
11 A

(A)
22 A

(A)
33 A(A;c) A

(A;d)
11 A

(A;d)
22 A

(A;d)
33

2ScO OO-RI-MP2 45Sc 1778.3 1778.3 1837.8 1798.1 −19.8 −19.8 39.7

OO-SCS-RI-MP2 45Sc 1736.6 1736.6 1797.7 1757.0 −20.4 −20.4 40.7

B2PLYP 45Sc 1908.1 1908.1 1971.4 1929.2 −21.1 −21.1 42.2

CCSD(T) 45Sc 1767.8 1767.8 1840.1 1791.9 −24.1 −24.1 48.2

Expt [189] 1922 1922 1997 1947 −25 −25 50

OO-RI-MP2 17O −26.5 −26.5 −26.0 −26.3 −0.2 −0.2 0.3

OO-SCS-RI-MP2 17O −23.6 −23.6 −22.0 −23.1 −0.5 −0.5 1.1

B2PLYP 17O −24.4 −24.4 −23.7 −24.2 −0.2 −0.2 0.5

CCSD(T) 17O −24.2 −24.2 −24.0 −24.0 −0.2 −0.2 0.1

Expt [189] −20 −0.4 −0.4 0.8

2TiF3 OO-RI-MP2 47Ti −209.6 −188.8 −187.9 −195.4 −14.2 6.6 7.6

OO-SCS-RI-MP2 47Ti −192.2 −169.7 −168.3 −176.7 −15.4 7.0 8.4

B2PLYP 47Ti −205.4 −178.1 −178.1 −187.2 −18.2 9.1 9.1

CCSDa 47Ti −185.5 −163.0 −163.0 −170.5 −15.0 7.5 7.5

Expt [190] −199 −178 −178 −185 −14 7 7

OO-RI-MP2 19F −55.2 −15.8 −1.9 −24.3 −30.9 8.5 22.4

OO-SCS-RI-MP2 19F −45.0 −23.8 −1.8 −23.5 −21.5 −0.3 21.7

B2PLYP 19F −36.5 −14.4 1.8 −16.4 −20.2 1.9 18.2

CCSDa 19F −59.7 −29.2 −16.4 −35.1 −24.6 5.9 18.7

Expt [190] 8

OO-RI-MP2 19F −57.2 −17.8 −1.4 −25.5 −31.8 7.6 24.1

OO-SCS-RI-MP2 19F −46.0 −25.1 −0.1 −23.7 −22.2 −1.4 23.6

B2PLYP 19F −36.5 −14.4 1.8 −16.4 −20.2 1.9 18.2

CCSDa 19F −59.7 −29.2 −16.4 −35.1 −24.6 5.9 18.7

Expt [190] 8

aCCSD results employing a (15s11p6d)/[9s7p4d] basis set are taken from Ref. [164]
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Figure 5.7.: Numbering of the atoms in the naphthalene anion radical.

Continued.

A
(A)
11 A

(A)
22 A

(A)
33 A(A;c) A

(A;d)
11 A

(A;d)
22 A

(A;d)
33

7MnH OO-RI-MP2 55Mn 224.3 224.3 260.3 236.3 −12.0 −12.0 24.0

OO-SCS-RI-MP2 55Mn 209.1 209.1 244.1 220.8 −11.7 −11.7 23.3

B2PLYP 55Mn 261.7 261.7 294.6 272.7 −11.0 −11.0 21.9

CCSD(T)b 55Mn 230.8 230.8 268.6 243.4 −12.6 −12.6 25.2

Expt [191] 267 267 303 279 −12 −12 24

OO-RI-MP2 1H 0.2 0.2 36.0 12.1 −11.9 −11.9 23.8

OO-SCS-RI-MP2 1H 1.9 1.9 37.7 13.8 −11.9 −11.9 23.8

B2PLYP 1H 12.0 12.0 47.3 23.8 −11.8 −11.8 23.5

CCSD(T)b 1H 5.3 5.3 40.7 17.1 −11.8 −11.8 23.6

Expt [191] 21 −8 −8 16

6MnO OO-RI-MP2 55Mn 439.3 535.9 535.9 503.7 −64.4 32.2 32.2

OO-SCS-RI-MP2 55Mn 430.3 511.6 511.6 484.5 −54.2 27.1 27.1

B2PLYP 55Mn 487.9 556.2 556.2 533.4 −45.5 22.7 22.7

CCSD(T)c 55Mn 425.0 478.4 478.4 460.6 −35.6 17.8 17.8

Expt [192] 448 496 496 480 −32 16 16

OO-RI-MP2 17O −9.2 −9.2 5.3 −4.4 −4.8 −4.8 9.6

OO-SCS-RI-MP2 17O −11.3 −11.3 5.0 −5.8 −5.4 −5.4 10.9

B2PLYP 17O −14.0 −14.0 3.4 −8.2 −5.8 −5.8 11.7

CCSD(T)c 17O −16.6 −16.6 9.5 −7.9 −8.7 −8.7 17.4

Naphthalene Anion

In order to demonstrate the applicability of the OO-MP2 methods to larger molecules, we have calculated

the naphthalene anion and collected the results in Table 5.20. For these calculations an augmented

EPR-III [165] basis set was employed, which contains additional core polarization functions (2s2p1d) for

all carbon atoms. The hydrogen and carbon atoms are numbered according to Fig. 5.7. The RI-MP2

method can neither reproduce the carbon nor the hydrogen hfccs correctly. Both OO-MP2 methods

bCCSD(T) results employing a (21s15p10d3f+2s)/[15s10p6d2f] basis set are taken from Ref. [164]
cCCSD(T) results employing a (15s11p6d)/[9s7p4d] basis set are taken from Ref. [164]
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underestimate the isotropic hfccs for C2 and C5 by about 5 MHz, and overestimate the hfccs for C3 and

C4 by ∼2.5 MHz in magnitude. However, the hydrogen hfccs are in excellent agreement with experiment,

considering that no vibrational corrections are taken into account.

The carbon hfccs are best described by the B2PLYP functional and the error in the hydrogen hfccs is also

small.

Table 5.20.: Isotropic Hyperfine Coupling Constants of the Naphthalene anion in [MHz]. 〈S2〉 values for the

different methods are (0.785493).(0.865290).(0.750170).(0.750087).

atom A(A;c)

RI-MP2 OO-RI-MP2 OO-SCS-RI-MP2 RI-B2PLYP Expt.

C2 −5.33 13.68 13.87 18.21 (−)19.9 [193]

C5 −9.62 13.76 13.96 18.26

C3 −5.06 −5.69 −5.71 −3.55 −3.4 [193]

C4 2.41 −5.94 −6.01 −3.79

H7 −5.43 −14.76 −12.91 −15.27 −13.9 [194]

H10 −3.29 −14.77 −12.94 −15.28

H8 −7.61 −6.93 −5.91 −6.01 −5.1 [194]

H9 −11.55 −6.75 −5.72 −5.85

In Table 5.21 the calculated Mulliken spin populations are shown. The spin populations for the carbon

atoms differ by ∼2−4% for the OO-MP2 methods compared to the B2PLYP functional. This difference

is reflected in the corresponding isotropic hfccs. The deviations for the H7 and H10 atoms are considerably

smaller, but for H8 and H9 the spin populations vary by 4−5%. Interestingly, contrary to many qualitative

discussions, the hydrogen spin populations do not correlate well with the corresponding isotropic hfccs.

Table 5.21.: Mulliken spin populations in (%).

atom ρ(A)

OO-RI-MP2 OO-SCS-RI-MP2 RI-B2PLYP

C2 21.1 21.3 21.8

C5 21.2 21.4 21.8

C3 9.0 8.6 8.0

C4 8.7 8.3 7.8

H7 −1.8 −1.7 −1.6

H10 −1.8 −1.7 −1.6

H8 −0.9 −0.9 −0.7

H9 −0.9 −0.8 −0.6

In conclusion, the B2PLYP functional performs best for the hfccs of the naphthalene anion radical,

followed by the OO-SCS-RI-MP2 method. The RI-MP2 method fails completely for the prediction of

naphthalene anion hfccs.
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Quinone Radical Anion

An even larger example, solvated quinones, is studied in this subsection. These systems were studied

experimentally and theoretically (with the B3LYP functional) in Ref. [69]. Specifically, we recalculated

the hfccs of the p-benzosemiquinone radical anion (BQ•−) coordinated with one, two, four and 20

deuterated water molecules employing the double-hybrid functional B2PLYP as well as the OO-RI-MP2

method and its SCS-variant. The structures of BQ•− coordinated with one and two water molecules were

optimized with the TPSS meta-GGA functional [67] and a basis set of triple-ζ quality (TZVP [64, 68]).

The reference structures of Ref. [69] were used for the four and 20 water coordinated BQ•−.

For the calculation of the hfccs Barone’s EPR-III basis set [165] in combination with the def2-TZVPP/JK [92]

auxiliary basis set was employed. Furthermore, core polarization functions (2s2p1d) for first row elements

were added to the one-electron basis and the auxiliary basis set was decontracted. For the BQ•− coordi-

nated with 20 water molecules, the EPR-III basis set was only employed for all carbon atoms and for the

bridging hydrogens. A split-valence basis plus polarization functions (SVP [64, 85]) was used otherwise.

The RIJCOSX [39] approximation was applied in both OO-MP2 methods, whereas the RI approximation

was employed for the B2PLYP calculations.

The single point calculation of the BQ•− solvated with 20 D2O molecules and an orbital basis of 1890

basis functions as well as an auxiliary basis of dimension 3596 was computed on 16 processors and took

roughly 4 days to complete.

In Table 5.22 the calculated hfccs for the bridging 2H atoms are listed. The dipolar hfccs are generally

slightly underestimated in magnitude by the OO-MP2 methods and decrease with increasing number of

D2O molecules. The B2PLYP functional slightly overestimates the magnitude of the anisotropic hfccs,

but the trend with increasing solvent molecules is the same as for the OO-MP2 methods. The isotropic

hfccs are excellently predicted by the OO-RI-MP2 method as well as by the B2PLYP functional. The

SCS-variant of the OO-RI-MP2 method slightly overestimates the isotropic contribution but still yields

predictions of excellent quality. The BQ•− solvated with 20 D2O molecules represents the most realistic

model, and the calculated hfccs are in good agreement with experiment. All tested methods perform very

well in this respect with B2PLYP being perhaps the most successful method tested here.

Table 5.22.: Calculated 2H hfccs in [MHz] of BQ•− in coordination with one, two, four and 20 water (D2O)

molecules (PD=81.8989 MHz/au3). Comparison with experimental results.

method number of water molecules

one two four 20 Expt.

OO-RI-MP2 A
(A;d)
11 −0.46 −0.46 −0.44 −0.47 −0.49

A
(A;d)
22 −0.43 −0.43 −0.40 −0.41 −0.47

A
(A;d)
33 0.89 0.87 0.84 0.88 0.95

A(A;c) 0.02 0.03 0.04 0.01 0.03

OO-SCS-RI-MP2 A
(A;d)
11 −0.44 −0.44 −0.42 −0.46 −0.49

A
(A;d)
22 −0.42 −0.41 −0.39 −0.40 −0.47

A
(A;d)
33 0.86 0.85 0.82 0.86 0.95

A(A;c) 0.08 0.08 0.08 0.07 0.03

RI-B2PLYP A
(A;d)
11 −0.50 −0.50 −0.48 −0.51 −0.49

A
(A;d)
22 −0.48 −0.46 −0.44 −0.44 −0.47

A
(A;d)
33 0.98 0.96 0.92 0.95 0.95

A(A;c) 0.01 0.02 0.03 0.00 0.03
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5.3.5. Discussion

In this section, the orbital-optimized MP2 method was evaluated for the calculation of hyperfine coupling

constants. The method was benchmarked for a series of small radicals and transition metal compounds

and compared to CCSD(T) reference results. The resulting isotropic hfccs are almost of CCSD quality

but are obtained with only iterative O(N5) effort. The dipolar contribution to the hfccs are, however, less

well predicted by the OO-MP2 methods. On average, spin-component scaling improves the description

of the hfccs for small radicals, whereas the description of the spin density on transition metal nuclei could

not be enhanced. Overall, it seems to be the best choice among the wave function based methods.

Of the tested methods OO-MP2 is perhaps slightly inferior to the double-hybrid functional B2PLYP that is

also computationally more attractive. We do however, believe that it is highly useful to have a pure wave

function based methodology available that is not plagued by self-interaction problems that occasionally

can complicate calculations on radicals with extended π-systems. It is of course possible to also optimize

the orbitals in the double-hybrid DFT approach. It remains an open question whether this would improve

the results in a similar way as OO-MP2 improves upon MP2. Work in this direction is in progress.

The spin contamination in the OO-MP2 wave function is drastically reduced compared to the standard

UHF wave function. In combination with the RIJCOSX approximation the OO-RI-MP2 method becomes

applicable to fairly large systems, as demonstrated for the solvated p-benzosemiquinone radical anion

where calculations with almost 2000 basis functions have been performed.

From the extensive set of hyperfine coupling constant calculations on small radicals and transition metal

complexes it emerges that the OO-MP2 method represents a viable alternative to double-hybrid function-

als, although the computational effort for OO-MP2 is considerably higher. Nevertheless, using various

approximations discussed in this thesis, the method is still applicable to fairly large molecules.

5.4. The Orbital-Optimized RI-MP2 Gradient

5.4.1. Motivation

In the previous Section 5.3.5 the orbital optimized MP2 approach has shown to provide a reliable de-

scription of the electronic structure for a series of open-shell compounds. In the present section the

OO-MP2 gradient as example for a basis function dependent first-order property is benchmarked against

the more rigorous Coupled Cluster Singles Doubles approach. The influence of the improved description

of the electronic structure on the resulting geometrical parameters is investigated. The goal is to obtain

structures of CCSD quality at the cost of iterative MP2 theory. The working equations for the OO-MP2

gradient have been derived in Section 2.9.1.

5.4.2. Benchmark of the OO-RI-MP2 Gradient

In this section the performance of the OO-(SCS-)RI-MP2 method is benchmarked for the prediction

of geometrical parameters. Therefore, a series of small radicals shown in Fig. 5.8 with complicated

electronic structures has been optimized at the CCSD(T) [162] level and the geometrical parameters have

been compared to the OO-(SCS-)RI-MP2 methods as well as to routinely applied methods, namely DFT

(BP86 [71, 72], B3LYP [71, 195, 196]) and MBPT2. The structures have been optimized employing the

TZVPP [66, 68] basis set under tight optimization criteria with the ORCA program package [25]. The
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6 7 8 9 10
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Figure 5.8.: Benchmark set for OO-RI-MP2 gradient calculations (1=C3H5•, 2=c-C2H4NO2•, 3=H2CNO•,
4=cyclo-C3H6N•, 5=H2C2N•, 6=H2C2O+•, 7=H2CN•, 8=HCO3•, 9=n-C2H4NO2•, 10=NO2•,
11=O2H•, 12=PCl2•, 13=C3H6Cl•, 14=cyclo-C5H8•, 15=n-C3H7NO•).

energy convergence was chosen to be 10−8Eh and 10−3 for the orbital gradient. The ’Resolution of the

Identity’ [22, 37, 38] approximation was employed for the gradient corrected density functional BP86 as

well as for all MP2 variants. Since, analytic gradients for the CCSD(T) method are not yet available in

the ORCA program package, numerical gradients have been calculated.

The errors in the structural parameters compared to the CCSD(T) reference geometries are listed in

Table 5.23. The mean absolute errors in bond lengths for the gradient corrected density functional

BP86, which is known to provide reliable structures for systems with negligible dispersion interactions, is

about ∼1−1.5 pm. The only exception represents the phosphorus dichloride radical (12) whose structure

was described worse. The B3LYP hybrid density functional performs considerably better than the BP86

functional. The mean errors in bond lengths are in few cases close to zero, whereas the corresponding

mean absolute error is comparable to the OO-MP2 methods. Nevertheless, B3LYP demonstrates once

again that it benefits from an enormous error compensation, but has, just like BP86, three outliers

with mean absolute errors >1.5 pm. The maximum error in bond lengths, which is at the same time

the overall maximum error of ∼7 pm for all methods, is obtained for the formaldiminoxy radical (3).

Analogous conclusions can be drawn for the deviations in the bond angles.

The averaged mean absolute error for the RI-MP2 method is ∼1 pm, and the corresponding error range is

0.5−2.6 pm. The bond lengths are overall too short and the largest errors occur for the 1-chloro-2-propyl

radical (13). The mean absolute errors for OO-RI-MP2 are ∼1 pm as well, whereas spin-component

scaling reduces the error to ∼0.75 pm. The bond lengths of the nitrogen dioxide radical (10) are

considerably too long, but there is no consistent trend observable. The mean absolute error in the bond

angles is for all methods about 1 degree, which represents a satisfactory result. A graphical representation

of the mean absolute errors in the structural parameters is shown is Fig. 5.9. In general, it turns out that

orbital optimization has only a minor influence on the geometrical structures.
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Table 5.23.: Statistical analysis of errors in the optimized geometries of molecules 1-15 from the BP86, RI-MP2
and OO-(SCS-)RI-MP2 methods compared to the reference CCSD(T) method. Errors are given
relative to the parent MP2 method. All calculations were done with the TZVPP basis set (distances
in pm, angles in degrees).a∣∣∣∆mean

distances

∣∣∣ ∣∣∣∆mean absolute
distances

∣∣∣ ∣∣∣∆max
distances

∣∣∣ ∣∣∣∆mean
angles

∣∣∣ ∣∣∣∆mean absolute
angles

∣∣∣ ∣∣∣∆max
angles

∣∣∣
1 BP86 0.673 0.673 1.010 0.001 0.452 1.010

B3LYP −0.084 0.221 0.540 0.002 0.447 0.950

RI-MP2 −0.863 0.863 1.610 −0.000 0.047 0.070

OO-RI-MP2 −0.456 0.456 0.530 −0.000 0.100 0.200

OO-SCS-RI-MP2 −0.359 0.359 0.370 −0.001 0.050 0.100

2 BP86 0.885 1.012 2.250 0.531 0.695 2.120

B3LYP −0.006 0.411 0.910 0.770 0.966 2.300

RI-MP2 −0.504 0.531 1.520 0.433 0.729 1.650

OO-RI-MP2 0.011 0.464 0.780 0.037 0.319 0.850

OO-SCS-RI-MP2 0.029 0.284 0.560 −0.001 0.143 0.330

3 BP86 0.820 0.820 1.080 0.512 0.772 2.040

B3LYP 3.108 3.108 6.990 −5.553 5.932 22.200

RI-MP2 −1.838 1.838 4.340 1.672 1.962 6.690

OO-RI-MP2 0.277 0.683 1.400 0.390 0.830 1.560

OO-SCS-RI-MP2 0.207 0.572 1.360 0.262 0.602 1.050

4 BP86 0.659 0.677 1.150 0.027 0.375 1.170

B3LYP −0.019 0.251 0.540 0.031 0.232 0.680

RI-MP2 −0.709 0.709 1.120 −0.004 0.066 0.250

OO-RI-MP2 −0.617 0.617 1.030 −0.003 0.094 0.290

OO-SCS-RI-MP2 −0.373 0.373 0.450 −0.005 0.041 0.110

5 BP86 0.387 1.148 1.520 0.000 0.687 1.030

B3LYP −0.413 0.612 1.760 0.000 0.580 0.870

RI-MP2 −0.817 1.438 3.170 0.000 0.360 0.540

OO-RI-MP2 0.027 0.633 1.320 −0.003 0.137 0.210

OO-SCS-RI-MP2 0.058 0.448 0.830 0.003 0.077 0.110

6 BP86 0.450 1.320 1.740 −0.003 1.377 2.070

B3LYP −0.367 0.717 1.980 0.000 1.180 1.770

RI-MP2 −0.425 0.525 0.820 0.000 0.040 0.060

OO-RI-MP2 −0.065 0.760 1.390 0.000 0.253 0.380

OO-SCS-RI-MP2 −0.075 0.500 0.850 0.000 0.133 0.200

7 BP86 0.860 1.033 1.420 0.003 0.943 1.410

B3LYP −0.050 0.610 0.990 0.000 0.560 0.840

RI-MP2 −1.563 1.563 3.790 −0.003 0.010 0.010

OO-RI-MP2 −0.213 0.213 0.270 −0.003 0.203 0.310

OO-SCS-RI-MP2 −0.197 0.257 0.340 0.003 0.010 0.010

8 BP86 1.185 1.185 2.150 0.137 1.372 2.470

B3LYP 0.098 0.893 1.600 0.320 1.630 2.620

RI-MP2 −0.257 0.257 0.500 −0.040 0.155 0.210

OO-RI-MP2 0.802 0.802 2.030 −0.155 1.350 2.390

OO-SCS-RI-MP2 0.537 0.747 1.880 −0.122 1.283 2.310

aN(distances) for molecules 1-15=7.8.4.10.4.4.3.4.8.2.2.2.9.13.10, N(angles) for molecules 1-15=9.10.4.19.3.3.3.4.11.1.1.1.15.24.16.
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Continued.∣∣∣∆mean
distances

∣∣∣ ∣∣∣∆mean absolute
distances

∣∣∣ ∣∣∣∆max
distances

∣∣∣ ∣∣∣∆mean
angles

∣∣∣ ∣∣∣∆mean absolute
angles

∣∣∣ ∣∣∣∆max
angles

∣∣∣
9 BP86 0.925 1.077 1.380 −0.018 0.482 1.750

B3LYP 0.063 0.330 0.780 0.154 0.452 1.310

RI-MP2 −0.464 0.476 0.930 0.025 0.125 0.440

OO-RI-MP2 −0.170 0.562 1.090 −0.055 0.263 0.860

OO-SCS-RI-MP2 −0.067 0.348 0.500 −0.017 0.128 0.360

10 BP86 1.005 1.005 1.010 −0.410 0.410 0.410

B3LYP −0.465 0.465 0.470 0.060 0.060 0.060

RI-MP2 0.050 0.050 0.060 −0.040 0.040 0.040

OO-RI-MP2 3.495 3.495 3.500 −0.720 0.720 0.720

OO-SCS-RI-MP2 2.225 2.225 2.230 −0.420 0.420 0.420

11 BP86 1.495 1.495 1.910 1.160 1.160 1.160

B3LYP 0.235 0.455 0.690 1.500 1.500 1.500

RI-MP2 −1.270 1.270 2.480 0.590 0.590 0.590

OO-RI-MP2 1.150 1.150 1.950 −1.420 1.420 1.420

OO-SCS-RI-MP2 0.895 0.895 1.590 −1.050 1.050 1.050

12 BP86 3.645 3.645 3.670 1.320 1.320 1.320

B3LYP 3.085 3.085 3.110 0.960 0.960 0.960

RI-MP2 −1.550 1.550 1.550 −0.230 0.230 0.230

OO-RI-MP2 −1.100 1.100 1.100 0.030 0.030 0.030

OO-SCS-RI-MP2 −0.430 0.430 0.430 −0.020 0.020 0.020

13 BP86 −0.997 1.650 5.250 −0.014 1.206 2.710

B3LYP −1.634 1.841 5.450 −0.009 1.167 2.630

RI-MP2 −2.630 2.630 5.910 0.006 0.849 1.900

OO-RI-MP2 −2.532 2.532 5.940 0.004 0.867 1.890

OO-SCS-RI-MP2 −2.278 2.278 5.370 0.005 0.919 2.060

14 BP86 0.622 0.800 1.290 0.055 0.398 1.470

B3LYP 0.012 0.298 0.480 0.046 0.325 1.040

RI-MP2 −0.695 0.695 0.950 −0.020 0.063 0.170

OO-RI-MP2 −0.609 0.609 0.990 −0.011 0.102 0.280

OO-SCS-RI-MP2 −0.380 0.380 0.430 −0.016 0.033 0.070

15 BP86 0.349 1.311 3.920 0.358 1.889 6.320

B3LYP 0.020 0.240 0.940 0.036 0.966 2.630

RI-MP2 −0.561 0.561 0.810 −0.055 0.504 1.700

OO-RI-MP2 −0.602 1.116 3.740 0.203 1.520 3.670

OO-SCS-RI-MP2 −0.260 0.416 0.780 0.046 0.131 0.780

Timings

The timings for an illustrative gradient calculation with the OO-RI-MP2 method on the example of the

adenine-thymine base pair, shown in Fig. 5.10, are listed in Table 5.24. Ahlrichs’ TZV [63] basis set

augmented by Pople’s 2p and 2d polarization functions [10, 197, 198] for first and second row elements,

respectively, has been chosen. The energy convergence criteria was chosen to be 10−7 Eh and the

threshold for the orbital gradient was 10−3.
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(a) Mean absolute errors in bond lengths for molecules 1-15.
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(b) Mean absolute error in bond angles for molecules 1-15.

Figure 5.9.: Graphical representation of the mean absolute errors in the structural parameters.
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Figure 5.10.: Adenine-Thymine (AT) base pair (30 atoms).

The timings presented in Table 5.24 nicley reflect the iterative nature of the OO-RI-MP2 method. The

time required for the solution of the SCF equations is saved, and is replaced by the cost of an iterative

solution of the OO-MP2 equations. The calculation of the OO-RI-MP2 gradient takes ∼3.5 times as

long as the evaluation of the RI-MP2 gradient. The time-consuming solution of the z-vector equations,

required for the calculation of the RI-MP2 relaxed density, is replaced by the much cheaper DIIS step.

The evaluation of the gradient is identical for both methods. The RIJCOSX approximation applied to the

OO-RI-MP2 method (OO-RIJCOSX-MP2) accelerates the formation of the Fock matrix and the response-

type matrix significantly. The calculation of the separable gradient also profits from the semi-numeric

exchange gradient treatment, eq. 2.227. Overall, the RIJCOSX approximation yields a speedup of ∼1.2

compared to the parent OO-RI-MP2 method. Further speedup in the solution of the OO-MP2 equations

can be obtained by an incremental Fock matrix formation, which is not implemented at the moment.

Table 5.24.: Timings in [s] for one gradient calculation of the AT base pair in a TZV(2d,2p) basis set (555 basis
functions).

Gradient Components RI-MP2 OO-RI-MP2 OO-RIJCOSX-MP2

Solution of SCF eqs. 4464.2 — —

(12 cycles)

Fock matrix construction — 4015.4 3396.8

Integral Transformation 84.9 1297.3 1204.5

Kij (a,b) 485.8 6876.5 6849.8

Tij (a,b) 21.1 339.0 333.9

D(virtual) 206.6 2931.0 2896.7

D(internal) 116.7 2089.9 2060.2

W(virtual) 412.8 5863.6 5782.4

W(internal) 313.9 4784.6 4718.4

Γ′Pai 478.4 6762.3 6715.7

L(3-ext) 97.2 1511.0 1408.3

L(3-int) 3.0 57.8 49.1

R(D) 330.5 4848.4 708.5

R(z) 330.3 — —

z-vector solution 2184.6 — —

DIIS step — 15.4 11.3

Solution of OO-MP2 eqs. — 42148.2 36873.4

(13 cycles) (13 cycles)

Separable Gradient (S) 2791.5 2791.1 540.1

Non-separable Gradient (NS) 243.3 707.1 759.7
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Gradient Components RI-MP2 OO-RI-MP2 OO-RIJCOSX-MP2

Gradient (S + NS) 3034.8 3498.2 1299.8

Total Time 12622.3 45657.3 38190.7

5.4.3. Conclusions

In the present section the performance of the OO-(SCS-)RI-MP2 method is benchmarked for gradient

calculations. The relaxed density required for the calculation of the conventional MP2 gradient is ob-

tained by minimizing an extended Hylleraas functional in the OO-MP2 approach. At convergence, the

relaxed density matrix and the one obtained as an expectation value over the first-order wave function

become identical. The calculation of the OO-MP2 gradient is of the same computational effort as the

conventional MP2 gradient, once the OO-MP2 calculation has converged. In general, the OO-RI-MP2

gradient calculation takes about 3−5 times longer than the conventional RI-MP2 calculation, strongly

depending on the convergence of the OO-MP2 equations. The mean absolute error in the geometrical

parameters amounts to ∼1 pm and ∼1 degree for bond lengths and angles, respectively, compared to

CCSD(T) results. Spin-component scaling reduces the error in the bond lengths to ∼0.75 pm. Therefore,

the OO-SCS-RI-MP2 structures are superior to the geometries obtained with conventional DFT methods.

Nevertheless, the high computational effort of the OO-MP2 methods make them only routinely applicable

for medium sized molecules with basis sets of at most triple-ζ quality.

5.5. Calculation of RI-MP2 Second-Order Molecular Properties

5.5.1. Polarizabilities

In Table 5.25 calculated and experimental static isotropic polarizabilities for a series of small organic

compounds are listed. The theory for the calculation of static polarizabilities has been already discussed in

Section 4.1.1. The polarizabilities have been calculated with two ab initio methods, i.e. Hartree-Fock and

MP2, as well as with density functional theory employing a hybrid functional (B3LYP [71, 195, 196]) and

a double-hybrid functional (B2PLYP [1]). The ’Resolution of the Identity’ approximation was employed

throughout the calculation of the MP2 correction. [21] The structures have been optimized at the RI-

MP2/TZVP [64, 68] level. A polarized triple-ζ (TZVPP [66, 70]) and a quadruple-ζ (QZVP [66, 135])

basis set have been used for the property calculations. The energy convergence criterion was set to

10−10 Eh.

Table 5.25.: Calculated and experimental isotropic polarizabilities for a series of small organic compounds in [au].
Structures have been optimized at the RI-MP2/TZVP level.

Molecule TZVPP QZVP Expt.a

HF B3LYP RI-B2PLYP RI-MP2 HF B3LYP RI-B2PLYP RI-MP2

CH4 14.87 15.55 15.34 15.11 15.34 16.16 15.93 15.69 16.52

C2H2 20.31 20.43 20.04 19.44 21.79 22.02 21.57 20.89 23.53

C2H4 25.42 25.41 25.08 24.46 26.49 26.55 26.21 25.60 28.26

C2H6 26.31 27.58 27.25 26.92 26.82 28.32 27.95 27.58 28.52
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Molecule TZVPP QZVP Expt.a

HF B3LYP RI-B2PLYP RI-MP2 HF B3LYP RI-B2PLYP RI-MP2

C3H4 32.77 34.00 33.29 32.38 34.29 35.73 34.93 33.94 41.76

cyclo-C3H6 33.92 35.30 35.01 34.75 34.46 36.15 35.83 35.55 38.06

C3H8 37.63 39.74 39.24 38.75 38.28 40.72 40.16 39.63 39.96

1-Butyne 44.63 46.72 45.81 44.71 46.25 48.60 47.61 46.44 50.07

1-Butene 48.90 50.47 49.76 48.74 50.15 52.02 51.27 50.21 53.85

trans-2-Butene 49.06 50.95 50.13 48.96 50.20 52.39 51.54 50.35 57.36

C6H6 64.12 65.71 65.22 64.55 66.25 67.90 67.44 66.80 67.57

cyclo-C6H12 66.11 70.00 69.25 68.57 66.85 71.22 70.39 69.65 74.32

CH3OH 18.13 19.32 19.08 18.83 18.92 20.35 20.10 19.84 20.79

CH3CHO 26.34 28.33 27.98 27.53 27.28 29.61 29.21 28.71 28.87

C2H5OH 29.57 31.64 31.22 30.78 30.45 32.86 32.41 31.95 34.50

MD −4.39 −2.85 −3.35 −3.96 −3.34 −1.56 −2.09 −2.74

MAD 4.39 2.85 3.35 3.96 3.34 1.80 2.16 2.74

RMSE 4.96 3.50 4.00 4.64 4.01 2.44 2.91 3.55

All of the employed methods tend to underestimate the static polarizabilities, which is reflected in the

negative mean deviation (Table 5.25) and a mean absolute deviation, that is almost of the same mag-

nitude. Hartree-Fock performs worst for the prediction of isotropic polarizabilities and the inclusion of

dynamic correlation effects can not significantly improve the results. This is the case for both tested basis

sets and has also been reported in Ref. [199]. Both density functionals outperform the ab initio methods,

whereas the famous B3LYP demonstrates again its success when applied to simple organic compounds.

Although, the B2PLYP results deviate by ∼0.5 au compared to the B3LYP hybrid functional, the values

are still reasonable.

5.5.2. Calculation of g-tensors

In electron paramagnetic resonance spectroscopy it is common to interpret the experimental results in

terms of a spin Hamiltonian. The ESR spin Hamiltonian HESR
S describes a model spin system which

magnetic sublevels of the ground-state configuration En can be determined by solving eq. 5.20 in the

basis of electron spin functions Θn. [200, 201]

HESR
S Θn = EnΘn (5.20)

The basic spin Hamiltonian used in ESR spectroscopy is most commonly written as,

HESR
S = ~SD ~S + βe ~Bg ~S +

∑
A

~SAA~IA (5.21)

where ~S is the total electron spin, ~IA is the nuclear spin of atom A and ~B represents the magnetic field.

βe is Bohr’s magneton. The first term in eq. 5.21 refers to the electron spin-spin dipolar interaction in

systems with more than one unpaired electron. The term is known as the zero-field splitting involving the

aExperimental results were taken from Ref. [199]
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correspondent tensor. The last term in eq. 5.21 describes the interaction between electron and nuclear

spin (hyperfine interaction), which is parameterized by the hyperfine coupling tensor AA. The quantity of

interest in the actual section is the electronic g-tensor, which characterizes the electron Zeeman interaction

between the total electron spin and the magnetic field. The expansion of the total energy in terms of the

magnetic field, the total electron spin and the nuclear spins, yields,

E ( ~B, ~S, {~IA}) = E0 +
1

2

∑
κτ

STκ
∂2E

∂Sκ∂Sτ

∣∣∣∣
|S|=0

Sτ +
∑
κτ

BTκ
1

βe

∂2E

∂Bκ∂Sτ

∣∣∣∣
|B|=0,|S|=0

Sτ

+
∑
A

∑
κτ

~STκ
∂2E

∂Sκ∂IAτ

∣∣∣∣
|S|=0,|I|=0

IAτ . (5.22)

By comparing eq. 5.22 with the spin Hamiltonian in eq. 5.21, the g-tensor can be identified as second

energy derivative w.r.t. the total electron spin and the magnetic field (eq. 5.23).

gκτ =
1

βe

∂2E

∂Bκ∂Sτ

∣∣∣∣
|B|=0,|S|=0

(5.23)

The following one-electron expressions for the g-tensor can be derived by connecting the terms present in

the Breit-Pauli Hamiltonian to the parameters of the spin Hamiltonian. [201]

gκτ = geδκτ + ∆gRMCδκτ + ∆gGC
κτ + ∆gOZ/SOC

κτ (5.24)

∆gRMC = − α2

S

∑
µν

Pα−β
µν

〈
ϕµ

∣∣∣~∇2
∣∣∣ϕν〉 (5.25)

∆gGC
κτ =

1

2S

∑
µν

Pα−β
µν

〈
ϕµ

∣∣∣∣∣∑
A

ZA

r−3
A

{rArO − rA,κrO,τ}

∣∣∣∣∣ϕν
〉

(5.26)

∆gOZ/SOC
κτ = − 1

2S

∑
µν

∂Pα−β
µν

∂Bκ

〈
ϕµ

∣∣∣ĥSOC
τ

∣∣∣ϕν〉 (5.27)

The g-value of the free electron is,

ge = 2.002319304386(20) (5.28)

the second and third terms in eq. 5.24 are both first-order quantities, namely, the reduced mass correction

and the gauge correction. The cross term between the spin-orbit coupling and orbital Zeeman interactions

is a true response property. Note, that the perturbed operators are given in the form of the corresponding

one-electron operators. The SOC operator, however, is a two-electron quantity, which is approximated

here by an effective one-electron operator.

5.5.3. Numerical results for g-tensors

Table 5.26 lists the electronic g-shifts for a series of small radicals. Structures and CCSD reference data

have been taken from Ref. [202]. Calculations have been performed at Hartree-Fock, MP2 and DFT

levels of theory. In the MP2 framework g-tensors for both introduced derivative approaches analyzed

in Section 2.6 are shown (’<e/=m’ and ’=m/=m’). For the DFT calculations the hybrid functional

B3LYP [71,195,196] and the two double-hybrids B2PLYP [1] and B2K-PLYP [203] have been employed.

The B2K-PLYP functional differs from the B2PLYP functional in incorporating a higher amount of exact

exchange and MP2 correlation, respectively. Furthermore, Grimme’s dispersion correction [204] is by



5.5 Calculation of RI-MP2 Second-Order Molecular Properties 135

default added to the B2K-PLYP single point energy. The ’Resolution of the Identity’ approximation was

employed throughout the calculation of the MP2 correction. [21] All calculations were carried out using

Dunning’s aug-cc-pVTZ [65] with the corresponding auxiliary basis functions. The energy convergence

criterion was set to 10−10 Eh and a large Lebedev-770 angular grid in combination with a radial integration

accuracy of 5.650 (Grid7) has been employed in the DFT calculations. An effective one-electron spin-orbit

operator has been used in all calculations. [205, 206]

As has been pointed out in Ref. [202] the g-tensor is in contrast to the chemical shielding tensor a global

property and therefore, suffers less from the gauge-origin problem. In the following calculations the center

of electronic charge was chosen as the common gauge origin.

Table 5.26.: Comparison of HF, DFT, MP2 and CCSD results for the electronic g-shift (relative to the g-value
of the free electron) in [ppm] for various radicals.

CCSD RI-MP2 HF DFT

molecule component <e/=m =m/=m <e/=m B3LYP B2PLYP B2K-PLYP

CN (2
∑+) ∆gxx −2151 −2160 −2249 −2237 −2193 −2113 −2243

∆gzz −126 −83 −157 −81 −134 −124 −117

CO+ (2
∑+) ∆gxx −2576 −1628 −1794 −3225 −2656 −2503 −2431

∆gzz −125 −67 −216 −63 −133 −120 −113

BO (2
∑+) ∆gxx −1833 −1323 −1402 −2113 −1857 −1787 −1755

∆gzz −61 −29 −103 −27 −68 −60 −56

NH (3
∑−) ∆gxx 1451 1401 1407 1133 1363 1399 1408

∆gzz −105 −110 −105 −109 −106 −107 −108

OH+ (3
∑−) ∆gxx 4101 4006 4013 3405 3704 3879 3948

∆gzz −173 −179 −173 −178 −174 −175 −176

H2O+ (2B1) ∆gxx −188 −233 −212 −155 −188 −196 −198

∆gyy 16550 15997 16018 13123 13574 14647 15161

∆gzz 4905 4836 4856 4052 4681 4764 4783

CH3 (2A′′) ∆gxx −85 −92 −83 −84 −89 −89 −89

∆gzz 636 621 628 506 649 640 633

O2 (3
∑−

g ) ∆gxx 2853 2002 2048 3497 2677 2490 2493

∆gzz −201 −229 −187 −232 −199 −211 −215

O−3 (2B1) ∆gxx −662 453 566 −1502 −555 −551 −520

∆gyy 20276 29475 29541 23770 18429 16343 17272

∆gzz 12376 16643 16754 16102 11032 8985 9413

CO−2 (2A1) ∆gxx 914 550 571 1048 932 770 777

∆gyy −5176 −5327 −5305 −5709 −5122 −5033 −5157

∆gzz −758 −760 −730 −927 −716 −748 −762

H2CO+ (2B2) ∆gxx 6270 6730 6763 5806 5910 6085 6249

∆gyy 145 −184 −150 662 91 41 48

∆gzz 945 1805 1834 3093 24 476 904

NO2 (2A1) ∆gxx 3677 2906 2932 4278 3628 3297 3307

∆gyy −11952 −11313 −11288 −12588 −11837 −11280 −11389

∆gzz −730 −315 −278 −1195 −695 −725 −721

NF2 (2B1) ∆gxx −694 −529 −531 −1035 −667 −666 −670

∆gyy 6832 6880 6869 5768 6988 6774 6782

∆gzz 3858 3825 3821 2885 4126 3932 3864
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CCSD RI-MP2 HF DFT

molecule component <e/=m =m/=m <e/=m B3LYP B2PLYP B2K-PLYP

NF+
3 (2A′′2 ) ∆gxx −1990 −1469 −1452 −3667 −1806 −2501 −1944

∆gzz 5440 6123 6117 4020 5914 5573 5630

MD 488 491 −107 −209 −310 −225

MAD 687 688 779 297 389 298

MAD (%) 31.1 31.0 42.5 9.0 9.6 7.8

Max. Error 9199 9265 3726 2976 3933 3004

RMSE 1794 1811 1263 680 970 776

Indeed, the MP2 results reported in Table 5.26 represent a general improvement over the Hartree-Fock

results when compared to the CCSD reference. However, they are greatly inferior to the results provided

by all density functionals. The large positive mean deviation is somewhat misleading, because it is mostly

affected by the large overestimation of the g-shift in the O−3 radical. In fact, there is no general trend

observable for the RI-MP2 method. The differences in the calculated g-shifts arising from the two distinct

approaches to MP2 second derivatives are typically in the range of ≤100 ppm. This might be due to the

minor effect of orbital relaxation on the resulting g-shifts. [202]

The DFT results presented in Table 5.26 are outstanding. The astonishing good performance of the

B3LYP hybrid functional has been already analyzed in Ref. [202] and it was argued that the Hartree-Fock

exchange seems to damp the overestimation of the correlation effects. This appears also to be the case for

the double-hybrid functionals, for which the increased amount of exact exchange and MP2 correlation in

the B2K-PLYP functional yields the best g-shifts for the actual test set. Although, the root mean square

error is somewhat larger compared to B3LYP the percentage mean absolute deviation is the smallest.

Comparing B2PLYP with B2K-PLYP the latter performs only slightly better.

Table 5.27.: Comparison of HF, DFT, MP2 and experimental results for the components of the electronic g-tensor
(relative to the g-value of the free electron) in [ppt] for various transition metal radicals.

RI-MP2 HF DFT

molecule component =m/=m <e/=m B3LYP B2PLYP B2K-PLYP Expt.

2ScO ∆g⊥ 1.5 1.5 −2.9 −0.8 −0.1 0.0 −0.5

∆g‖ 0.0 0.0 0.0 0.0 0.0 0.0 −0.5

7MnH ∆g⊥ −1.9 −1.9 −1.8 −1.4 −1.7 −1.8 −1.3

∆g‖ −0.3 −0.3 −0.3 −0.1 −0.3 −0.4 0.0

6MnO ∆g⊥ −0.2 −0.2 −1.3 2.1 2.4 2.9 −7.3

∆g‖ −0.4 −0.4 −0.4 −0.3 −0.4 −0.4 0.0

7MnF ∆g⊥ −1.0 −1.0 −1.0 −0.3 −0.7 −0.8 −3.3

∆g‖ −0.4 −0.3 −0.3 −0.3 −0.4 −0.4 −0.3

2TiF3 ∆g⊥ −357.8 −357.8 −107.4 −45.7 −88.7 −121.6 −111.9,−123.7

∆g‖ −1.3 −1.3 −1.3 −1.3 −1.3 −1.3 −11.1,−3.7

2[Cu(NH3)4]2+ ∆g⊥ 142.0 142.0 94.9 42.2 65.4 83.6 47

∆g‖ 844.2 844.2 469.7 156.1 271.9 365.5 245

2[Fe(CO)5]+ ∆g⊥ 217.6 217.8 103.8 56.4 87.3 109.9 80.8

∆g‖ −88.9 −88.7 −20.3 −2.6 −7.8 −15.2 5.7
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In Table 5.27 few calculated g-shifts of small transition metal compounds are presented. The g-shifts have

been calculated employing the RIJCOSX approximation and using an accurate triply polarized basis set,

CP(PPP), for the metal nuclei. Unfortunately, for transition metal compounds there is no good test set

available. Thus, the results can be only compared to the available experimental data and Table 5.27 can

only serve as a rough estimate for the performance of RI-MP2 and DFT methods. Expectedly, the RI-MP2

g-shifts are disastrous. However, it is well-known that MP2 often fails in the description of transition

metal compounds. Both MP2 derivative approaches yield similar results, since the introduced effects are

one order of magnitude smaller than the scale in Table 5.27. The B2PLYP functional yields fairly good

results, whereas the B2K-PLYP overshoots the magnitude of the electronic g-shifts. In summary, the

double-hybrid functionals seem to be the preferred choice for the calculation of electronic g-tensors.
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6. Application

6.1. 2,3,5,6-Tetrafluorophenylnitren-4-yl and

3,4,5,6-Tetrafluorophenylnitren-2-yl: Two Ground-State

Quartet Triradicals

In this section the application of high-level quantum-mechanical methods for the characterization of

the electronic structure of two complex organic radicals is reported. The section basically consists of

a summary of two articles [207, 208] published in cooperation with the experimental group of Wolfram

Sander at the Ruhr University in Bochum. Therefore, we will focus on the computational calculations,

which have been performed.

6.1.1. Introduction

Arylnitrenes (1; see Scheme 6.2) are important reactive intermediates with triplet ground states and

large singlet triplet splittings. Convenient precursors for spectroscopic studies are the corresponding

aryl azides 2, which photochemically or thermally split off N2 to produce the nitrenes 1. The kinetics,

spectroscopy, and computational chemistry of these intermediates has recently been reviewed. [209] Under

the conditions of matrix isolation a major photochemical process that diminishes the yield of nitrenes 1

is the ring expansion to 1,2-didehydroazepines 4, via benzazirines 3 as intermediates. After many years

of intense experimental and theoretical work in this field, the mechanistic details are now well established

(see Scheme 6.2).

The introduction of a radical center into phenyl nitrenes 1 can lead to three isomeric nitreno radicals with

the radical centers in ortho, meta, and para position, respectively, cf. Fig. 6.1. The electronic structure

of these nitreno radicals is best described as a σ,σ,π-triradical with one unpaired electron located at

the nitrogen atom in the σ-plane, one at the radical center of the phenyl ring (also in the σ-plane), and

the third unpaired electron delocalized over the π-system and interacting with both unpaired σ-electrons.

Density functional calculations predict for ortho (o) and para (p) compounds high-spin quartet (Q) ground

states, while for the meta-nitrene a low-spin doublet (D) ground state is calculated. [210] For o- and p-

nitreno radicals quinoid resonance structures can be formulated, which suggest that these triradicals also

have some carbene (cyclohexadienylidene) character (see Scheme 6.1). In contrast, for the meta-isomer

no such resonance structure is possible. Since both phenyl nitrenes and cyclohexadienylidenes have robust

triplet ground states, a quartet state for o- and p-compounds is energetically favorable, since in this case

local high-spin triplet configurations at the formal nitrene and carbene centers are maintained.

A synthetic route to nitreno radicals starts from iodophenyl azides, which on photolysis in low-temperature

matrices split off N2 to give the corresponding phenyl nitrene [211] and subsequently iodine atoms to

give the nitreno radical. [212–215] However, phenyl nitrenes are photolabile [216] and easily rearrange

to azirines [211] and ketenimines, [217] and cleavage of the C-I bond to form an additional radical
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Figure 6.1.: Lewis structures of isomeric nitreno radicals with radical centers in ortho, meta and para position.

Figure 6.2.: Mechanism of the Rearrangement of Phenylnitrene 1.

center competes with these rearrangements. Thus, photolysis of matrix-isolated (argon, 10 K) phenyl

azide 2 produces mixtures of phenyl nitrene 1, azirine 3, and ketenimine 4 in photostationary equilibria,

and the yield of nitrene 1 is low (Scheme 6.2). [209] Fluorine substituents in the ortho positions of 1

decrease the tendency of these rearrangements, [218–220] and therefore ortho-fluorinated phenyl nitrenes

are obtained in higher yields under the same conditions. [209, 217, 221] The only nitreno radicals 5

that could be matrix-isolated and spectroscopically characterized are therefore those bearing ortho-fluoro

substituents. [212, 213, 215] UV photolysis of azide 6a produces nitrene 7a together with ketenimine 9a

and nitreno radical 5a (Scheme 6.3).

Although the yield of 5a is low, it could be characterized by IR and EPR spectroscopy, which also

confirmed its high-spin quartet ground state. In the photolysis mixture of azide 6b, nitrene 7b, and

its rearranged products, the isomeric azirines 8b and 8b′ and ketenimines 9b and 9b′, were identified

(Scheme 6.4). [214] The meta-nitreno radical 5b was not found, but a product of its ring opening and

re-addition of iodine, namely, allene 10, was observed. The radical center in meta position of the phenyl

nitrene results in a 1,4-diradicaloid structure that has a tendency for β-cleavage. The cleavage is even

more pronounced when two radical centers are formed in the two meta positions.

In Scheme 6.5 the photochemistry of 2-iodo-3,4,5,6-tetrafluorophenylnitren-2-yl is shown. Analog to 6a

not only the nitreno radical 5c is built upon irradiation of 6c, but a mixture of 5c together with azirine

8c, ketemine 9c and the azirinyl radical 11. 11 can be either formed by rearrangement of 5c or by loss

of an iodine atom from 8c. The nitreno radical 5c is only observed in low concentrations.

6.1.2. Electronic Structure Calculations

Theoretical background The EPR properties were calculated according to previously published meth-

ods that are implemented in the ORCA package. [25, 153, 222–231] Geometries were optimized using

the BP86 functional, [71, 72] the TZVP basis set [70] (featuring a single set of polarization func-

tions on each atom), and the ’Resolution of the Identity’ approximation with matching auxiliary basis

sets. [22, 30, 96, 232] Structures were verified to represent local minima through numeric frequency cal-
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Figure 6.3.: Photochemistry of aryl azide 6a.

Figure 6.4.: Photochemistry of aryl azide 6b.

Figure 6.5.: Photochemistry of aryl azide 6c.
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culations. Property calculations were done with the B3LYP hybrid functional [71, 196, 233], because, on

average, it has been proven to be superior to non-hybrid functionals in EPR property calculations. In

these calculations, a more extensively polarized triple-ζ basis set (TZVPP, amounting to 2d1f polarization

shells on all atoms) was used. [70] The spin-spin (SS) contribution to the zero-field splitting (ZFS) tensor

was treated in the mean-field approximation based on the Kohn-Sham determinant. The SS contribution

is given by [223, 234, 235]

D
(SS)
kl = −g 2

e

16

α2

S(2S − 1)

∑
µν

∑
κτ

{
Pα−β
µν Pα−β

κτ − Pα−β
µκ Pα−β

ντ

} 〈
µν
∣∣r−5

12

{
3r12,k r12,l − δkl r 2

12

}∣∣κτ〉 . (6.1)

Here, α is the fine structure constant (1/137 in atomic units), ge is the free-electron g-value (2.002319...),

the indices µ, ν,κ, τ refer to atomic basis functions, and Pα−β
µκ is an element of the spin-density matrix.

No approximations have been made to the two-electron spin-spin dipole integrals in eq. 6.1. As discussed

previously, [223] it is advantageous to apply an open-shell spin-restricted formalism for this quantity, in

conjunction with present-day DFT methods. We have used the spin densities from the spin-unrestricted

natural orbital determinant for this purpose, as discussed in detail in the work of Sinnecker and Neese. [223]

Second-order SOC contributions also have been treated throughout the study. Following the general

formulation, in terms of infinite sums over states, [226] a linear response treatment was recently proposed

in which the SOC contribution can be written as [224]

DSOC ;M
kl = fM(S)〈〈hSOC

k ; hSOC
l 〉〉. (6.2)

In eq. 6.2, M denotes the contributions to the SOC term (M = 0,±1) from excited states with S ′ = S±1

(where S is the total spin quantum number of the electronic state for which the ZFS tensor is computed

(S > 1/2)), fM(S) is a spin-dependent prefactor (f0 = − 1
(4S2) , f−1 = 1

[2S(2S−1)] , f+1 = 1
[2(S+1)(2S+1)] ), and

〈〈hSOC
k ; hSOC

l 〉〉 is a shortcut notation for a spin-orbit linear response function. In a DFT framework, it is

related to the derivatives of generalized spin densities, as explained in detail in Ref. [224]. This treatment

supersedes the earlier proposals for the SOC contribution to the ZFS tensor in the reports of Neese

and co-workers [236] and, in our opinion, also the work of Pederson and Khanna. [237] For alternative

approaches, see the work of Reviakine and co-workers [238]. The spin-orbit operator used in eq. 6.2

was assumed to be of the spin-orbit mean-field (SOMF) type [239] in the multicenter implementation of

Neese [230] that is equivalent to Berning et al. [240] It is believed to provide an accurate representation of

the full Breit-Pauli two-electron SOC operator. The g-tensor has been calculated according to established

procedures. [228, 230]

Electronic Structure Calculations of Q-5a The quartet ground state of Q-5a, calculated with DFT,

shows a fairly complex spin-density distribution, which involves π- as well as σ-components (Fig. 6.6).

More insight is obtained by identifying the singly occupied molecular orbitals (SOMOs) of the system.

This is most conveniently done by examining the exactly singly occupied spin unrestricted natural orbitals

transformed to a localized representation (Fig. 6.7). The analysis suggests the following interpretation:

The electronic structure of Q-5a is best described as having two parallel-spin unpaired electrons localized

on the nitrogen and one on the unsaturated carbon atom. The unpaired electron sitting in the in-plane

nitrogen ’lone pair’ is fairly well-localized and only slightly polarizes the σ-system of the ring. However, the

unpaired electron sitting in the nitrogen out-of-plane lone pair is heavily delocalized into the π-system of

the ring. Similarly, the carbon σ-lone pair is fairly delocalized into the σ-system of the ring. Schematically,

the electronic structure may therefore be best-represented by the following leading resonance structure:
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Figure 6.6.: Spin-density distribution in Q-5a. Positive values are contoured in red at the level of 0.003
e−/(Bohr3); negative values are contoured in yellow at a level of 0.002 e−/(Bohr3).

Figure 6.7.: Three singly occupied molecular orbitals of Q-5a: spin-unrestricted natural orbitals in a localized
representation; Pipek-Mezey [241] localization and B3LYP/TZVPP.

This is consistent with the notion that Q-5a is best-described as a σ,σ,π-triradical.

Ab initio calculations were performed to evaluate the extent to which Q-5a indeed has an isolated quartet

ground state. Because not all of the doublet states are properly represented by a single determinant, we

resorted to correlated multireference ab initio methods in form of the spectroscopy-oriented configuration

interaction (SORCI) approach, [242] as implemented in the ORCA package. [25, 222] Calculations were

performed on top of a state-averaged complete active space self-consistent field (SA-CASSCF) wave

function for one quartet and two doublet states with three electrons in three orbitals. This constitutes

the proper model space for answering the question raised previously. Starting orbitals were taken from

the quasi-restricted orbitals (QROs) [225] of a calculation with the BP86 function and the TZVPP basis

set (BP86/TZVPP). The active orbitals transform in the C2v point group under the b2 (in-plane nitrogen

lone-pair), b1 (out-of-plane nitrogen lone pair), and a1 (carbon σ-lone pair) irreducible representations;
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hence, the lowest quartet state of the system is designated as 1-4A2. The SORCI calculation was then

performed on top of the SA-CASSCF(3,3) solution with Tsel = 10−6Eh, Tpre = 10−4, and Tnat = 10−4

which provides essentially converged results for state energy differences. [243] The calculations indeed

predict 1-4A2 to be the lowest state, followed by the first doublet (1-2A2) at 0.26 eV (6 kcal/mol) and

the second doublet (2-2A2) at 0.95 eV (22 kcal/mol). Both low-lying doublet states are dominated by

the same (b1)1(b2)1(a1)1 configuration that also applies to the 1-4A2 ground state and correspond to the

two linearly independent spin-doublet couplings that can be formed for three unpaired electrons in three

orbitals. This result has two implications. First, it calls the spin-unrestricted Kohn-Sham solutions for the

lowest doublet state (but not for the quartet state) into question, because it is not described well by a

single determinant. Indeed, if no special care is taken, B3LYP DFT calculations predict the first doublet

state to be 0.7 eV above the ground state, which corresponds to an error of 0.5 eV (11 kcal/mol), relative

to the more-reliable multireference ab initio calculation. Second, the quartet nature of the ground state

becomes intelligible: The three SOMOs form an (accidentally) quasi-degenerate set (upon taking the

ROHF solution of the 1-4A2 state as a reference, the orbital energies are within <2 eV of each other).

Because the SOMOs are not well-separated spatially, the exchange interactions between the unpaired

electrons must be large. Hence, the quartet state, which features the largest exchange stabilization, must

be the ground state. These results show that, in agreement with the available experimental data, Q-5a

has a clear spin-quartet ground state and a strong preference for three unpaired electrons, even in the

low-lying doublet states.

Calculations of the EPR Parameters for Q-5a The EPR properties of Q-5a (1-4A2) were calculated

with the B3LYP hybrid functional and a reasonably large TZVPP basis set, as described in the Experi-

mental Section. The agreement between theory and experiment is very good for D, with respect to sign

and magnitude, and is still reasonable for E (see Table 6.1). The near-perfect agreement observed for

the value of D is, to some extent, certainly fortuitous; however, good agreement with the experiment is

indeed anticipated from the results of Sinnecker and Neese. [223] The decomposition of D into individual

contributions in Table 6.1 is interesting. Approximately 87% of D results from the direct spin-spin cou-

pling (DSS), and still 13% comes from the SOC contribution. Interestingly, the calculated SS contribution

is essentially local, with the largest contributions resulting from one-center integrals. Of the remaining

contributions, the two-center terms reduce the local contributions by 18%, which emphasizes the im-

portance of multicenter two-electron spin-spin integrals if quantitative agreement with the experiment is

desired. The alternative breakdown of the SS term into Coulomb and exchange contributions shows that

the latter are not negligible and possess the same sign as the Coulomb terms that are usually solely held

responsible for the SS term within a point dipole model. Indeed, the exchange terms, which, to the best

of our knowledge, have rarely been discussed in the experimental EPR literature, account for 20% of the

SS term. This means that point dipole models are not realistic in the present systems; this is, of course,

also consistent with the fact that the SS terms result from local one-center contributions, rather than

from two-center Coulomb contributions as anticipated for a point dipole model.
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Table 6.1.: Analysis of the calculated D-tensor (B3LYP/TZVPP) of Q-5a. All numbers are given in units of
[cm−1].

D E

total (calc) 0.261 0.017

experiment 0.285 0.043

spin–spin 0.226 0.024

spin–orbit 0.035 −0.007

spin–spin

1-center 0.273 0.034

2-center −0.049 −0.010

3-center 0.002 0.000

4-center 0.000 0.000

Coulomb 0.182 −0.018

exchange 0.044 0.042

spin–orbit

M = 0 (α→ α) −0.002 0.006

M = 0 (β → β) −0.001 0.006

M = + 1 (β → α) −0.001 −0.003

M = − 1 (α→ β) 0.040 −0.003

The limited SOC contributions to D are dominated by the spin-lowering spin-flip contributions, which

result from the low-lying spin doublet states. This is consistent with previous results for other systems [224,

225, 244–248] for which the SOC term represents the largest contribution to D. The SS contributions

are calculated without any spin polarization. Unfortunately, it has been found previously that inclusion of

spin polarization into the calculation of the SS term (which is technically feasible, of course) significantly

degrades the agreement with the experimental values. [223] Thus, currently, there does not seem to be

a satisfactory solution to this problem in a DFT framework.

Interestingly, the easy axis of the D-tensor does not point out of the plane but rather along the C-N

bond (Fig. 6.8). The calculated g-shifts are −86.5, 588, and 1012 ppm. The small shifts are typical

of radicals that are composed of light atoms. The orientation of the g-tensor is displayed graphically in

Fig. 6.8. Interestingly, the largest g-value — which also corresponds to the largest g-shift — is oriented

perpendicular to the molecular plane and, therefore, also occurs perpendicular to the easy axis of the

D-tensor. Nevertheless, the anisotropy in the g-tensor is sufficiently small, such that it is hardly possible

to observe it under the present experimental conditions.

Electronic Structure Calculations for Q-5c The quartet ground state of 5c, calculated with the

B3LYP functional and the TZVPP basis set, shows a fairly complex spin-density distribution (Fig. 6.9)

involving σ and π components. The spin-density distribution is very similar to that observed in 2,3,5,6-

tetrafluorophenylnitren-4-yl (Q-5a), cf. Fig. 6.6.

The three singly occupied molecular orbitals (SOMOs) of Q-5c were identified by examining the exactly

singly occupied spin-unrestricted natural orbitals transformed into a localized presentation (Fig. 6.10).

The conclusions that can be drawn from inspection of the SOMOs confirm the description of Q-5c as
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Figure 6.8.: Orientation of the D- and g-tensor of Q-5a, based on the calculations (B3LYP/TZVPP).

a σ,σ,π-triradical. The unpaired electron in the in-plane nitrogen MO is well localized and only slightly

polarizes the σ-system of the ring, whereas the unpaired electron located in the out-of-plane nitrogen MO

is heavily delocalized into the π-system of the ring. Similarly, the carbon σ-lone pair is fairly delocalized

into the σ-system of the ring.

To determine the extent to which 5c has an isolated quartet ground state, SORCI calculations were

performed on top of a state-averaged complete active space self-consistent field (SA-CASSCF) wave

function with three electrons in three orbitals. This procedure has already proven to provide essentially

converged results for state-energy differences and has also been applied in studying 5a. Quasi-restricted

orbitals from a BP86/TZVPP calculation served as starting orbitals.

The active orbitals of the Q-5c molecule transform into the Cs point group under a′ (in-plane nitrogen

MO and carbon lone pair), and a′′ (out-of-plane nitrogen MO) irreducible representations. Thus, the

lowest quartet state of the system is designated as 1-4A′′. In fact, the SORCI calculation predicts 1-4A′′

to be the lowest state, followed by the first doublet (1-2A′′) at about 0.31 eV (7 kcal/mol) and the

second doublet (2-2A′′) at about 0.81 eV (19 kcal/mol). The dominating electron configuration for both

low-lying doublet states is in agreement with 5a the (a′)1(a′)1(a′′)1 configuration, which corresponds to

the two linearly independent spin-doublet couplings.

The three SOMOs form a quasidegenerate set of MOs, with differences in orbital energies of less than 2.3

eV. Furthermore, since the SOMOs are spatially not well separated, the exchange interactions between

the unpaired electrons must be large. Thus, from both the theoretical and experimental results, it can

be concluded that 5c has a well-isolated spin-quartet ground state.

Calculations of the EPR Parameters for Q-5c Experimental and calculated EPR properties of Q-5c

are compared in Table 6.2. The agreement between experiment and theory is reasonable. As expected, the

dominant contribution to the ZFS tensor is the spin-spin (SS) interaction, which amounts to about 92%

of the total D-value. The calculated SS contribution is essentially local, with the largest contributions

resulting from one-center integrals. This was also found in the analysis of the ZFS contributions of the

2,3,5,6-tetrafluorophenylnitren-4-yl radical Q-5a.
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Figure 6.10.: Three singly occupied molecular orbitals of Q-5c: spin-unrestricted natural orbitals in a localized
representation; Pipek-Mezey [241] localization and B3LYP/TZVPP.

Figure 6.9.: Spin-density distribution in Q-5c. Positive values are contoured in green, negative values are con-
toured in blue, both at the level of 0.003 e−/(Bohr3).

Table 6.2.: Analysis of the calculated D-tensor (B3LYP/TZVPP) of Q-5c. All numbers are given in units of
[cm−1].

D E

total (calc) 0.284 0.023

experiment 0.357 0.014

spin–spin 0.262 0.022

spin–orbit 0.022 0.001

spin–spin

1-center 0.315 −0.006

2-center −0.047 0.034

3-center −0.006 −0.005

4-center 0.000 0.000

Coulomb 0.172 0.025

exchange 0.091 −0.003
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Figure 6.11.: Orientation of the D- and g-tensor of Q-5c, based on the calculations (B3LYP/TZVPP).

Continued.

D E

spin–orbit

M = 0 (α→ α) 0.006 −0.003

M = 0 (β → β) 0.010 −0.003

M = + 1 (β → α) 0.021 0.004

M = − 1 (α→ β) −0.014 0.002

The spin-orbit coupling (SOC) contribution to D is about 8%, which is slightly smaller than the corre-

sponding value in Q-5a. The SOC contribution to the D-tensor is dominated by spin-flip contributions.

Unlike in Q-5a, the two spin-lowering and spin-raising spin-flip contributions are of opposite sign and play

an important role.

The magnetic zy-plane of the D-tensor is located in the molecular plane of Q-5c, while the x-axis points

out of the plane. An analogous result was found for Q-5a. However, while in 5a the easy axis is

oriented along the C-N bond, it is rotated about 1◦ away from the axis in Q-5c, and the origin of the

D-tensor is shifted from the molecular axis defined by the C-N bond (Fig. 6.11). Because the nitreno

radical simultaneously exhibits nitrene and carbene character, the large E -value of 5a was interpreted

by geometric considerations. The dipolar field of the nitrene contribution in Q-5a points along the C-N

bond, while the carbene contribution points parallel to a hypothetical bond angle of 180◦ of the carbene

moiety, and thus its dipolar field is oriented along the y-direction of the nitrene contribution. Thus, the

nitrene and carbene contributions are perpendicular to each other, and since the nitrene character prevails

over the carbene character, the easy axis of the quartet D-tensor is still oriented parallel to the C-N bond,

and the carbene contribution to the dipolar field points along the y-direction, which results in significantly

magnetically inequivalent y- and x-directions. The large E -value can therefore be interpreted as resulting

from the carbene character of the 1-4A2 ground state.

The lower E -value of Q-5c can then be explained from analogous geometric considerations. Since the

carbene center in the aromatic ring is located in ortho position to the nitrene center, the dipolar field

of the carbene contribution is not located perpendicular to the magnetic z-axis of the nitrene center,
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and this results in a considerable contribution parallel to the z-direction of the nitrene dipolar field and

therefore to a smaller E -value of the quartet spin system compared to Q-5a. Like for Q-5a, the nitrene

character in Q-5c still prevails over the carbene character, but unlike in Q-5a there is no symmetry axis

along the C-N bond in Q-5c, and thus the easy axis of the spin system can be shifted by the influence

of the dipolar field of the carbene. Since the D-value is heavily influenced by the spin density at the spin

carrying centers, the higher D-value of Q-5c can be explained by larger spin density on its nitrene center

compared to Q-5a. The nitrene centers in Q-5c and Q-5a bear spin populations of 1.598 and 1.577,

respectively, calculated at the UB3LYP/6-311G(d,p) level of theory. The calculated g-shifts are −150,

778, and 1035 ppm. In contrast to Q-5a, the largest g value is oriented in the yz-plane of the D-tensor

(Fig. 6.11).

6.1.3. Conclusions

The EPR measurements confirm the previous assignments of the products of the matrix photolysis of

6a, based on IR spectroscopy. [212, 213] As expected, the primary photoproduct is nitrene T-7a formed

in very high yield. The splitting of the C-I bond in 7 is much less efficient and competes with the

rearrangement to 9. Nevertheless, under conditions that allow the nitreno radical 5a to be detected via

IR spectroscopy, a clear EPR signal of the quartet Q-5a can be observed. It is pleasing that the previous

assignment of the quartet state, based solely on IR spectroscopy, is now unequivocally confirmed by EPR

spectroscopy. As observed in the IR experiments, [212, 213] the yield of 5a is strongly dependent on the

matrix temperature. At 10-15 K, only traces of 5a are formed, whereas the highest yield is found if 6a

is irradiated at 4 K. Annealing at temperatures of >10 K results in the recombination of 5a with the I

atom, therefore, it was not possible to measure the Curie-Weiss behavior of 5a.

The electronic structure of Q-5a can be best-described as a σ,σ,π-triradical with one unpaired electron

located in an in-plane orbital at the N atom (σ) and one at the para-C atom of the phenyl ring (σ), while

the third unpaired electron is in an out-of-plane orbital of the N atom and is heavily delocalized into the

π-system. Because of the significant delocalization of the out-of-plane SOMO, Q-5a is expected to show

both properties of a nitrene that is linked to a phenyl radical and of a carbene (cyclohexadienylidene)

that is linked to a nitrogen-centered radical (iminyl radical), as shown in the resonance structures below.

In accordance with this qualitative picture, the natural spin population [249] is calculated to 1.55 unpaired

electrons at the N atom and to 1.21 at the para-C atom (UB3LYP/TZVPP). The value of D in nitreno

radical Q-5a (|D/hc| = 0.285) is typical for quartet-ground state nitreno radicals. [250–252] However,

the large E -value in Q-5a deserves a closer interpretation. In agreement with our calculations, Wasserman

assumed that the direction of the principal magnetic axis z of phenyl nitrenes lies parallel to the N-C

bond. [210, 253, 254] It is readily verified (e.g., by a calculation on linear 3CH2) that the dipolar field

created by two unpaired electrons in px and py orbitals indeed points along the z-direction and that

the axial symmetry of the spin distribution in such an arrangement remains untouched and leads to

|E/hc | = 0. Indeed, for carbenes, it has been reported that the z-axis lies parallel to a hypothetical 180◦
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bond angle, [255] and that the E -value consequently increases with decreasing bond angle at the carbene

center. The addition of a symmetrical π-radical in the para position, as in Ref. [252] does not change the

pseudo-cylindrical symmetry of these triradicals; the z-axis remains in the same position, and, hence, the

E -value of these quartet systems should remain zero. However, this latter assumption cannot be verified.

Our calculations demonstrate that the bulk of the E -value results from one-center contributions of the

direct spin-spin coupling interaction. This information, together with the fact that Q-5a simultaneously

exhibits nitrene and carbene character, then leads to a simple and appealing geometric interpretation of

the large value of E, in contrast to the compounds reported in Refs. [250–252], which have E -values of

zero. We assume, for Q-5a, a coordinate system where the z-axis points along the C-N bond, the x-axis

is perpendicular to the molecular plane, and the y-axis, consequently, lies in the molecular plane. In the

nitrene part of the electronic structure, the two SOMOs are comprised of px and py orbitals and their

dipolar field is consequently directed along the z-direction. For the carbene part of the 1-4A2 ground state,

the SOMOs are comprised of pz and px contributions and, consequently, the resulting dipolar field points

along the y-direction. Because the nitrene character prevails over the carbene character of Q-5a, the

main magnetic axis is still pointing along the C-N bond in the z-direction. However, the carbene character

is reflected by an enhanced dipolar field in the y-direction, which is strong enough to give significantly

magnetically inequivalent y- and x-directions. We, therefore, come to the conclusion that the nonzero

E-value in Q-5a mainly reflects the carbene character of the 1-4A2 ground state. This carbene character,

in turn, is controlled by the properties of the π-system, because the out-of-plane spin-density arises from

the conjugation of the nitrene out-of-plane SOMO and the π-system of the ring.

Finally, the fact that the D-value for Q-5a is a factor of 3 smaller than those of typical phenylnitrenes [256]

is readily explained by the prefactor 1/[S(2S − 1)] of the DSS term (vide infra), which amounts to 1

for a ground state spin of 1 and 1/3 for a ground-state spin of 3/2. Assuming an axial D-tensor, the

level splitting of 2D (in S = 3/2) versus D (in S = 1) is more similar for both multiplicities but is

still slightly smaller for the quartet system. This is explained by the partial cancellation of the carbene

and nitrene contributions to the D-value, which oppose each other along the magnetic z-direction, as

explained previously in some detail.

The photochemistry of phenyl azide 6c is quite similar to that of the previously described 6a and the

corresponding triplet phenyl nitrenes 1 are produced as primary photoproducts.

Photolysis of the product mixtures 7c, 8c and 9c yields two unusual products: nitreno radical 5c with a

high-spin quartet ground state and azirinyl radical 11. The yield of 5c is quite low, and it could only be

detected by the sensitive and selective EPR spectroscopy. The EPR spectrum of 5c could be simulated

with the ZFS parameters |D/hc |=0.357 cm−1 and |E/hc |=0.0136 cm−1. The D-value of 5c is slightly

larger than that of para-nitreno radicals such as 5a, which are in the range between 0.278 and 0.291

cm−1, while the E -value is considerably smaller than that of the para-nitreno radicals, which lie between

0.040 and 0.043 cm−1.

The classical interpretation of the ZFS parameters in terms of spin-spin interactions is that D correlates

with the distance between the unpaired electrons and E describes deviations from cylindrical symmetry.

This simplified interpretation does not take into account spin-orbit contributions, which indeed contribute

less than 10% to the ZFS parameters. The higher D-value of 5c compared to 5a correlates with a higher

spin density at the nitrogen atom in 5c. The higher E -value in the more symmetrical para-nitreno radical

5a compared to 5c is counterintuitive, but is in accordance with our model of describing nitreno radicals

as unifying properties of both nitrenes and carbenes. In 5a the dipolar field contribution of the carbene

is perpendicular to that of the nitrene moiety, whereas in 5c there is a much smaller angle between the
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dipolar field vectors of the carbene and nitrene units. Since the spin-spin interactions in nitrenes are larger

than in carbenes (the D-values of nitrenes are much larger than those of carbenes), the nitrene structure

in 5a determines the magnetic z-axis, but the carbene structure results in a large contribution in the y-

direction and thus a large E -value. In 5c the symmetry is lower and the magnetic axes are not restricted

to the Cartesian axes as in C2v -symmetrical 5a. Thus, the less symmetrical 5c has a significantly smaller

E -value than 5a. This description is in accordance with the electronic structure of a σ,σ,π-triradical.
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7. Conclusions

The accurate calculation of molecular properties for medium-sized to large chemical systems still represents

a challenge for computational chemistry. Although the formalism for the quantum chemical calculation of

second-order properties by linear response theory has been known for a long time, an efficient implemen-

tation has not been available for a long time. The goal of this thesis was to fill this gap by implementing

an efficient algorithm for the calculation of second-order properties.

The theory of second derivatives for non-variational methods, in particular second-order Møller-Plesset

(MP2) perturbation theory, has been rederived and in the case of imaginary perturbations an alternative

Ansatz has been found, that differs significantly in its working equations from the formulas proposed in

the literature. The formalism for MP2 second derivatives has been extended for the use of the popular

’Resolution of the Identity’ approximation. The recently developed RIJCOSX approximation, which has

been implemented for the calculation of RIJCOSX-MP2 geometries, has also been successfully applied to

the calculation of second-order RI-MP2 properties. The speedups observed for the RIJCOSX-MP2 second

derivatives combined with a semi-numerical treatment of the most expensive 4-external contribution to

the σ-vector compared to the conventional RI-MP2 method turned out to be very large for medium-sized

compounds with extended basis sets. A benchmark study has been performed on a static polarizability

calculation of a 16-annulene system in a quadruple-ζ basis set (NBas=1360, NBasJ=960, NBasC=2992).

The calculation could be completed in ∼17 days and represents, to our knowledge, the largest reported

RI-MP2 polarizability computation.

The efficiency of the RIJCOSX approximation has been compared to another current approach developed

by Weigend and co-workers (RI-JK). The error of the RI-JK algorithm for calculated SCF energies is seen

to be more smooth for the tested systems and for small compounds RI-JK is preferable over RIJCOSX.

However, the RIJCOSX approximation turned out to be more efficient for large systems with accurate

basis sets. In addition, energy derivatives can be more efficiently formulated in the RIJCOSX framework,

which is entirely derived in the AO basis.

Furthermore, the theory of second derivatives for the new class of double-hybrid density functionals

has been derived. The implementation has been validated and the numerical results showed a great

performance of double-hybrid functionals, in particular, for the prediction of magnetic molecular properties.

A benchmark study demonstrated that fairly large systems with a reasonable large basis set could be

handled with our present implementation.

MP2 often provides erratic results when applied to open-shell systems, transition metal complexes or

compounds with a complicated electronic structure, due to a reference wave function of poor quality.

Therefore, an alternative approach has been derived, which improves MP2 results through incorporation

of orbital relaxation effects. For this purpose the molecular orbitals are optimized alongside with the

double excitation amplitudes, based on the well-known Hylleraas functional. The orbital-optimized MP2

method has shown to improve the energetics of open-shell species and transition states. The calculated

hyperfine coupling constants are almost of CCSD quality with only iterative O(N5) effort. The formalism

has been extended to first and second derivatives.
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A related Ansatz has been propsed by Lochan and Head-Gordon [58] with their ’orbital-optimized opposite-

spin scaled second-order correlation’ (O2) method. In their energy functional the alpha-beta correlation in

the MP2 expression is empirically enlarged, while the same-spin contribution is completely neglected. This

reduces the computational cost to iterative O(N4) effort. However, the Ansatz presented in this thesis is

more general, and by applying ’spin-component scaling’ [102] the O2-approach can also be maintained.

Finally, the characterization of 2,3,5,6-Tetrafluorophenylnitren-4-yl and 3,4,5,6-Tetrafluorophenylnitren-

2-yl was an example of a successful combination of theory and application. The analysis of the singly

occupied spin-unrestricted natural orbitals could confirm the notion, that both nitreno radicals are best

described as σ,σ,π-triradicals. Multireference ab initio calculations predict well isolated 4A2 and 4A′′

ground states for the radical compounds. The calculation of the zero-field splitting tensor could provide

a detailed insight into the orientation and the individual contributions of the D-tensor It could be shown

how high-level quantum-chemical methods can help to understand and confirm experimental spectra.

Future Prospects The implemented algorithm for RI-MP2 second derivatives is for basis functions,

which do not depend on the respective perturbation. Since, computed magnetic properties strongly

depend on the chosen gauge-origin, several attempts have been made to overcome this problem. All

proposed approaches use local or distributed gauge origins. The most popular Ansatz is formulated in the

AO basis and uses local gauge origins for atomic orbitals (GIAO). In this case, the basis functions will

depend on the magnetic field. Therefore, the implemented algorithm will have to be adjusted for the use

of GIAOs and for the calculation of geometric second derivatives.

Furthermore, the actual implementation stores the σ-vector and several integral types on disc. It would

be desirable to avoid this storage for large systems and, thus, to develop an integral direct algorithm.

An efficient parallelization is scheduled for the near future as well.

The formalism for second OO-MP2 derivatives has been derived and a preliminary algorithm for the

solution of the coupled-perturbed OO-MP2 (CP-OO-MP2) equations has been presented. However, the

implementation has to be done in the near future. Although it has been pointed out in Section 3.3 that

the solution of the CP-OO-MP2 equations is of high computational effort, it would be very interesting

to investigate the effect of orbital relaxation on the calculated response properties. From our knowledge,

it would be the first implementation for second derivatives amongst such orbital-optimized methods

methods.

An alternative Ansatz is to relax the orbitals in a double-hybrid DFT approach. This has never investigated

before and it remains an open question whether this would improve the results in a similar way as OO-

MP2 improves upon MP2. If this would be the case, the orbital-optimized double-hybrid DFT approach

might become the ’new’ standard for molecular property calculations.
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A. Double Hybrid Density Functionals: A

Detailed Derivation of the Third

Functional Derivatives
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Uκbjψbψj

+ 2
∂2f

∂γαα∂γαα
~∇

2
∑
jbα

Uκbjψbψj

 ~∇ρα

+
∂2f

∂γαα∂γαβ

~∇
2
∑
jbα

Uκbjψbψj

 ~∇ρβ + ~∇ρα ~∇

2
∑
jbβ

Uκbjψbψj


+2

∂2f

∂γαα∂γββ
~∇

2
∑
jbβ

Uκbjψbψj

 ~∇ρβ

 ~∇ρD′
α
~∇(ψαa ψ

α
i ) (A.17)

D.2 =
∂

∂κ

(
∂f

∂γαβ
~∇ρD′

β
~∇
(
ψαa ψ

α
i

))

=

 ∂2f

∂γαβ∂ρα

2
∑
jbα

Uκbjψbψj

+
∂2f

∂γαβ∂ρβ

2
∑
jbβ

Uκbjψbψj

+ 2
∂2f

∂γαβ∂γαα
~∇

2
∑
jbα

Uκbjψbψj

 ~∇ρα

+
∂2f

∂γαβ∂γαβ

~∇
2
∑
jbα

Uκbjψbψj

 ~∇ρβ + ~∇ρα ~∇

2
∑
jbβ

Uκbjψbψj


+2

∂2f

∂γαβ∂γββ
~∇

2
∑
jbβ

Uκbjψbψj

 ~∇ρβ

 ~∇ρD′
β
~∇(ψαa ψ

α
i ) (A.18)

Collecting terms and summarizing yields,

A =
∑
ζ

∑
ξ

∂3f

∂ρα∂ζ∂ξ
ξUκζD′ (ψαa ψ

α
i ) +

[
∂2f

∂ρα∂γαα
γUκD′
αα +

∂2f

∂ρα∂γαβ
γUκD′
αβ +

∂2f

∂ρα∂γββ
γUκD′
ββ

]
(ψαa ψ

α
i )

(A.19)

B = 2
∑
ζ

∑
ξ

∂3f

∂γαα∂ζ∂ξ
ξUκζD′ ~∇ρα ~∇ (ψαa ψ

α
i )

+ 2

[
∂2f

∂γαα∂ρα
ρD′
α
~∇ρUκ

α +
∂2f

∂γαα∂ρβ
ρD′
β
~∇ρUκ

α +
∂2f

∂γαα∂γαα

(
γD′
αα
~∇ρUκ

α + γUκD′
αα

~∇ρα
)

+
∂2f

∂γαα∂γαβ

(
γD′
αβ
~∇ρUκ

α + γUκD′
αβ

~∇ρα
)

+
∂2f

∂γαα∂γββ

(
γD′
ββ
~∇ρUκ

α + γUκD′
ββ

~∇ρα
)]

~∇ (ψαa ψ
α
i ) (A.20)

C =
∑
ζ

∑
ξ

∂3f

∂γαβ∂ζ∂ξ
ξUκζD′ ~∇ρβ ~∇ (ψαa ψ

α
i )

+

[
∂2f

∂γαβ∂ρα
ρD′
α
~∇ρUκ

β +
∂2f

∂γαβ∂ρβ
ρD′
β
~∇ρUκ

β +
∂2f

∂γαβ∂γαα

(
γD′
αα
~∇ρUκ

β + γUκD′
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~∇ρβ
)

+
∂2f

∂γαβ∂γαβ

(
γD′
αβ
~∇ρUκ

β + γUκD′
αβ

~∇ρβ
)

+
∂2f

∂γαβ∂γββ

(
γD′
ββ
~∇ρUκ

β + γUκD′
ββ

~∇ρβ
)]

~∇ (ψαa ψ
α
i ) (A.21)

D =
∑
ζ

2
∂2f

∂γαα∂ζ
ζUκ ~∇ρD′

α
~∇ (ψαa ψ

α
i ) +

∂2f

∂γαβ∂ζ
ζUκ ~∇ρD′

β
~∇ (ψαa ψ

α
i ) . (A.22)
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[52] Weigend, F.; Häser, M. Theor. Chem. Acc. 1997, 97, 331.

[53] Pulay, P. J. Comput. Chem. 1982, 3, 556.
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