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Abstract

In recent years, using advanced semi-interactive data analysis algorithms such as those
from the field of data mining gained more and more importance in life science in general
and in particular in bioinformatics, genetics, medicine and biodiversity. Today, there is
a trend away from collecting and evaluating data in the context of a specific problem or
study only towards extensively collecting data from different sources in repositories which
is potentially useful for subsequent analysis, e.g. in the Gene Expression Omnibus (GEO)
repository of high throughput gene expression data. At the time the data are collected,
it is analysed in a specific context which influences the experimental design. However,
the type of analyses that the data will be used for after they have been deposited is not
known. Content and data format are focused only to the first experiment, but not to the
future re-use. Thus, complex process chains are needed for the analysis of the data. Such
process chains need to be supported by the environments that are used to setup analysis
solutions. Building specialized software for each individual problem is not a solution, as
this effort can only be carried out for huge projects running for several years. Hence, data
mining functionality was developed to toolkits, which provide data mining functionality in
form of a collection of different components. Depending on the different research questions
of the users, the solutions consist of distinct compositions of these components.

Today, existing solutions for data mining processes comprise different components that
represent different steps in the analysis process. There exist graphical or script-based
toolkits for combining such components. The data mining tools, which can serve as com-
ponents in analysis processes, are based on single computer environments, local data
sources and single users. However, analysis scenarios in medical- and bioinformatics have
to deal with multi computer environments, distributed data sources and multiple users
that have to cooperate. Users need support for integrating data mining into analysis pro-
cesses in the context of such scenarios, which lacks today. Typically, analysts working with
single computer environments face the problem of large data volumes since tools do not
address scalability and access to distributed data sources. Distributed environments such
as grid environments provide scalability and access to distributed data sources, but the
integration of existing components into such environments is complex. In addition, new
components often cannot be directly developed in distributed environments. Moreover,
in scenarios involving multiple computers, multiple distributed data sources and multiple
users, the reuse of components, scripts and analysis processes becomes more important
as more steps and configuration are necessary and thus much bigger efforts are needed to
develop and set-up a solution.

In this thesis we will introduce an approach for supporting interactive and distributed
data mining for multiple users based on infrastructure principles that allow building on
data mining components and processes that are already available instead of designing of a
completely new infrastructure, so that users can keep working with their well-known tools.
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Abstract

In order to achieve the integration of data mining into scientific data analysis processes,
this thesis proposes an stepwise approach of supporting the user in the development of
analysis solutions that include data mining.

We see our major contributions as the following: first, we propose an approach to
integrate data mining components being developed for a single processor environment into
grid environments. By this, we support users in reusing standard data mining components
with small effort. The approach is based on a metadata schema definition which is used
to grid-enable existing data mining components. Second, we describe an approach for
interactively developing data mining scripts in grid environments. The approach efficiently
supports users when it is necessary to enhance available components, to develop new
data mining components, and to compose these components. Third, building on that,
an approach for facilitating the reuse of existing data mining processes based on process
patterns is presented. It supports users in scenarios that cover different steps of the
data mining process including several components or scripts. The data mining process
patterns support the description of data mining processes at different levels of abstraction
between the CRISP model as most general and executable workflows as most concrete
representation.
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1. Introduction

This thesis introduces an approach for the integration of data mining into scientific data
analysis processes in the area of bioinformatics. The approach enables users to integrate
existing data mining components, to interactively develop new data mining scripts and
to reuse data mining processes based on these data mining components and scripts in
analysis environments that have to deal with multiple users, distributed data sources and
distributed computers.

In the following, we will motivate the need for methods for the integration of data
mining into analysis processes in bioinformatics scenarios (Section 1.1) and derive research
questions (Section 1.2). Based on that, the contributions (Section 1.3) and the structure
of this thesis (Section 1.4) will be summarized. Finally, we will present the publications
in which parts of the results of this thesis have been published (Section 1.5). This chapter
is based on [145].

1.1. Description of the Problem Area

In the following, we will describe the problem area by introducing data analysis scenarios in
bioinformatics and by presenting the main challenges that result from these scenarios. The
scenarios result from intensive collaboration with bioinformaticians in European research
projects ACGT and p-medicine, which is partially published in [145].

1.1.1. Data Analysis in Bioinformatics

In recent years, using advanced semi-interactive data analysis algorithms such as those
from the field of data mining gained increasing importance in areas such as bioinformatics,
genetics, medicine, and biodiversity [87, 145]. In the past, data has been mainly collected
in the context of a specific problem or study only. Nowadays, data from different sources
is also extensively collected in repositories potentially useful for subsequent analysis [87].
Roos states in [106] that ”GenBank [...] continues to more than double in size every year.
New technologies for assaying gene expression patterns, protein structure, protein-protein
interactions, etc., will provide even more data. How to handle these data, make sense
of them, and render them accessible to biologists working on a wide variety of problems
is the challenge facing bioinformatics”. According to Wodehouse [157], ”in the field of
bioinformatics there has been an increasing movement to develop new methods for the
analysis of collected data”. At the time the data is collected, the type of analysis that
the data later will be used for is not known. In addition, recent advances in technology
enable collecting data at more and more detailed levels [106], from organism level, organ
level, tissue level up to cellular and even sub-cellular level [87, 157]. As a consequence, a
huge amount of non-focused data from different levels of detail is available for analysis.
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In this thesis we focus on the field of bioinformatics, as it is prototypical for complex
analysis problems because of the complex data, intensive collaboration and huge amount
of domain knowledge involved in the analysis scenarios. Bioinformatics is an area in
which highly qualified people are dealing with huge amounts and different types of data.
Comprehensive metadata describing the semantics of the heterogeneous and complex data
are needed to leverage it for further research [152]. To address this issue, efforts exist for
describing the data in a comprehensive way by domain specific ontologies [23].

Bioinformaticians and biostatisticians are people who spend their days combining in-
formation from different data sources and applying different analysis methods to the in-
formation extracted from these repositories. The data sources include data from gene
annotation [125], SNPs (single-nucleotide polymorphisms) [27], medical literature [100],
public data repositories such as GEO [56], clinical databases, etc. Today, the well known
GEO repository contains more than 2700 genomic datasets with over 700.000 samples in
total from microarray and high-throughput sequence technologies. PubMed includes more
than 21 million citations for biomedical literature. Once the bioinformaticians have found
some good combinations of data sources and methods implemented as analysis processes,
they want to keep them in stock and slightly alter them later with different inputs or
methodologies. This is what we call a scenario.

Typical scenarios make use of data mining for answering research questions [109], e.g.,
finding predictive or prognostic biomarkers, defining subtypes of diseases, classifying sam-
ples by using genes, etc.

Roos states in [106] that ”computational biology is a fundamentally collaborative dis-
cipline”. In projects in the bioinformatics area, bioinformaticians are working together
with people from IT and with different collaborators like clinicians, biologists, etc. A
typical analysis scenario involves multiple users and experts from different departments or
organizations.

1.1.2. Challenges

From the discussion and collaboration with bioinformaticians results that today’s data
analysis scenarios in bioinformatics face the following challenges [145]:

Heterogeneous group of users in different locations: In today’s bioinformatics
scenarios, users working at different locations have to collaborate. Bioinformaticians of
today are from various backgrounds such as data mining, mathematics, statistics, biology,
IT development, etc. Thus, the scenarios involve a heterogeneous and distributed group
of users. Depending on their background, knowledge, and type of job, users can inter-
act with an analysis environment in a different way and use different tools. E.g., some
bioinformatics people might want to configure and run predefined workflows via simple
form-based web pages. Other users might want to design new workflows based on existing
components or reuse workflows from colleagues. Users might want to develop new com-
ponents by just writing their analysis algorithms in their own language of choice or use
software from colleagues, and might want to integrate them into the system by writing a
plug-in module for the code to run within the environment. Advanced users, e.g., might
even want to partially modify the structure of the workflow environment. When multiple
users work together at different locations and with different background, the set of tools
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used is also quite heterogeneous. However, the users typically do not have an overview
over the full system and no detailed knowledge about all parts of the system.

Large, heterogeneous and distributed data sources: Today, data is not longer
only collected and evaluated with focus on a specific problem or study, but it is more
and more reused for further studies in the bioinformatics and healthcare domain. Thus,
data from different sources is extensively collected in repositories to allow a subsequent
analysis. As not all types of analyses the data will be used for are known at the time the
data is collected, content and data format are not focused. Moreover, recent advances in
technology allow for collecting data on more detailed levels. Thus, the volume of data of a
certain type can become very large. In analysis scenarios in the context of bioinformatics
several different data and data types are involved. People with different responsibilities
and analysis questions work with different sets of data sources. The corresponding data
sources are distributed by nature. There exist a large number of public data sources and
repositories that are accessible via the internet. In addition, private data sources are
distributed across several departments of a hospital or institute, or even across different
hospitals or institutes. As a result, a huge amount of distributed and not-focused data is
available for usage. Scenarios involve an increasing number of data sources and amount
of data. Typically, bioinformatics scenarios include the development of a solution based
on a certain restricted data repository and the evaluation on public available data. The
semantic of the datasets is complex and needs to be described to allow a proper usage.
Due to the heterogeneity and complexity of the data, several domain specific ontologies
exist for the description of the semantics of the data by comprehensive metadata.

Multi computer environments: Today’s analysis scenarios have to deal with dis-
tributed and heterogeneous users as well as distributed and heterogeneous data sources.
Instead of single-computer environments or environments hosted inside a certain organiza-
tion, the scenarios involve users working with different tools and distributed data sources
managed in different systems spread over the globe. In addition, today’s data analysis
applications in bioinformatics increase in complexity and in their demand for resources.
To address this issue, solutions have to integrated into distributed environments such as
grid systems that provide secure data access for the different participating organizations
and computing resources that allow for scalability.

Complex process chains: Content and data format of the data collected in the area
of medicine and bioinformatics are not focused on a certain problem or research question,
but they continuously change to the new needs. Thus, complex process chains are needed
for the analysis of the data. Building specialized software for each analysis problem that
is going to be addressed tends to be the current solution, but this is not ideal as this effort
can only be carried out for huge projects running for several years. Thus, such process
chains need to be supported by the environments that are used to setup analysis solutions.

1.1.3. Existing Solutions

Today’s existing solutions for data mining processes consist of different components that
represent different steps in the analysis process. There exist toolkits that allow for com-
bining such components in a graphical or script-based way. Classical data mining tools
such as Weka [156], R [103] or RapidMiner [93], which can serve as components in anal-
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ysis processes, are based on single computer environments, local data sources and single
users. However, analysis scenarios in bioinformatics have to deal with multi computer
environments, distributed data sources and multiple users that have to cooperate. Users
need support for integrating data mining into analysis processes in the context of such
scenarios, which lacks today [145]. The middleware of distributed environments is com-
plex and not easy to use by bioinformaticians. Existing approaches on the integration of
existing data mining components in grid environments either demand for programming
new services for each data mining algorithm to be integrated [22, 31], for the adoption
of the data mining algorithm to fit into a certain environment [63, 54], or are limited
to algorithms from a certain data mining toolkit such as Weka [127]. Further details on
existing solutions will be presented in Chapters 3 and 4.

In addition, the reuse of existing data mining processes needs to be further supported.
The standard data mining process model CRISP [121] is not focussed on reuse. It has
been identified that CRISP lacks in the deployment phase [116], in guidance towards
implementing particular tasks of data mining methodologies [120], and in the definition
of phases important for engineering projects [89]. Reuse at implementation level is also
not sufficient, as existing workflows or processes, e.g. provided by repositories such as
myExperiment [58], are too specific for being reusable efficiently. In addition, requirements
and pre-requisites for the analysis processes are not contained in the process descriptions.
Thus, the reuse and integration of existing solutions is not often or only informally done
in practice due to a lack of formal support, which leads to a lot of unnecessary repetitive
work. Details on this will be presented in Chapter 5.

1.2. Research Questions

Based on the description of the problem area, the basic question that we are going to
address in this work is the following: How can we support users in the bioinformatics
and medical domain in data mining based data analysis in the context of heterogeneous
settings including heterogeneous user groups, heterogeneous data sources and heterogeneous
computing environments?

This general question can be further broken down to sub-questions. Grid environments
are used to address the requirements for secure, distributed and dynamic environments. A
lot of data mining components developed for single computer environments already exist,
which have to be integrated into such grid environments. However, bioinformaticians
typically do not have knowledge in grid based distributed systems. From this, we can
derive the first question:

Q1: What is a suitable integration mechanism that allows users with a lot of domain
knowledge but without knowledge on grid systems to integrate data mining components that
have been developed in single computer environments into distributed grid-based analysis
environments used for bioinformatics scenarios?

In addition to reusing existing data mining components, bioinformaticians also need
to develop new data mining components and to compose these components to address
more complex scenarios. A frequently used possibility for the development of new and for
the composition of existing data mining components are data mining scripts. Instead of
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developing these scripts in a single computer environment and integrating them afterwards,
the users need to develop them inside the distributed analysis environments to allow for
combining information from different data sources and applying different methodologies
to the information extracted from these repositories. This leads to the next question:

Q2: Is it possible to create a technical system that allows scientific users to interac-
tively develop data mining scripts consisting of one or more data mining components for
bioinformatics scenarios in distributed grid-based analysis environments?

In today’s analysis scenarios in bioinformatics, complex process chains have to be set-
up. These process chains can consist of several data mining components and scripts. The
composition of such process chains is a huge effort. Thus, the reuse of existing processes
becomes much more important. The question to be asked is:

Q3: Can we define a description for data mining processes that allows for the reuse of
existing data mining processes based on data mining components and scripts?

The goal of this work is to give answers to the questions Q1 to Q3. An overview of the
dissertation’s contributions is outlined in the next section.

1.3. Contributions

In this thesis we will introduce an approach for addressing the presented research questions
based on infrastructure principles that allow building on data mining components that are
already available, developing new data mining scripts, and reusing existing data mining
based analysis processes, so that users can keep working with their well-known tools. In
the following, the main contributions of this thesis will be summarized.

1.3.1. Integration of Existing Data Mining Components

To support users in reusing standard data mining components with small effort there is a
need for an approach to integrate data mining components being developed for a single-
computer environment into grid environments. This work contributes an approach for the
integration of data mining components into grid environments based on a metadata schema
definition. The schema, which we call Application Description Schema (ADS), is used to
grid-enable existing data mining components that can be used as atomic components, for
example as tasks in workflows. By describing an existing data mining component with the
ADS, the effort needed for deploying and executing the data mining component in a grid
environment can be reduced. In detail, the ADS is used to manage user interaction with
services of grid systems in order to grid-enable existing data mining components, to register
and search for available data mining components in the grid, to match analysis jobs with
suitable computational resources, and to dynamically create user interfaces. The approach
allows for an integration by users without deeper knowledge on the underlying system and
without any intervention on the data mining component side, and thus addresses the needs
of the community to support users in (re)using standard data mining components.
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1.3.2. Interactive Development of Data Mining Scripts

In addition to reusing components from single-computer environments, users like bioinfor-
maticians and biostatisticians typically need to develop new data mining components in
the analysis environment interactively to allow for combining information from different
data sources and for applying different methodologies to the information extracted from
these repositories. Furthermore, users need to compose data mining components to ad-
dress complex scenarios. The development of atomic components in a local environment
and frequent integration would result in inefficiencies in the development life-cycle due
to complex debugging procedures and repeated integration effort. In addition, the devel-
opment might rely on data or computing resources which are not accessible in the local
environment. Data mining scripts allow for the development of data mining components
and their composition in a way that they do not have to be treated as atomic components.
In addition, atomic components can still be used within data mining scripts. This work
contributes an approach for interactive development of data mining scripts in the context
of bioinformatics scenarios in grid environments. It allows for developing and executing
data mining scripts without the need for developing, describing and deploying atomic
components. Our approach for interactively developing data mining scripts in grid envi-
ronments is implemented in the GridR toolkit. The underlying method of GridR reduces
the complexity of integrating and executing analysis scripts in such environments. Instead
of registering each single script separately in the environment, the method is technically
based on a single grid service with complex inputs and outputs that allows for providing
the script as parameter. In addition, the method allows for interactively developing data
mining scripts in grid environments. The approach efficiently supports users when it is
necessary to enhance available or to develop new data mining scripts.

1.3.3. Data Mining Process Patterns

In today’s analysis solutions in bioinformatics, complex process chains have to be setup.
The composition of such process chains, which can include several atomic data mining
components or more complex data mining scripts, is a huge effort. Thus, the reuse of ex-
isting processes becomes much more important. However, analysis processes often cannot
be reused directly, as they are customized to a certain analysis question and the informa-
tion on how the process was set-up and which requirements have to be met for applying
the process is often not available. Thus, processes in a deployable form, e.g. executable
workflows, are not suitable for efficient reuse, as they are often too specific and too de-
tailed. Abstract process descriptions, e.g. based on CRISP, are exchangeable but need
too much effort for developing a deployable solution. This thesis contributes the concept
of Data Mining Process Patterns to describe processes in a form that better supports the
reuse of existing processes. Data Mining Process Patterns allow for facilitating the inte-
gration and reuse of data mining in analysis processes by describing the steps of a process
at different levels of abstraction. The description is based on a task hierarchy that allows
for generalizing and concreting tasks for enabling their reuse and includes the encoding
of requirements and pre-requisites inside the analysis process. The Data Mining Process
Patterns support the description of data mining processes at different levels of abstraction
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between the CRISP model as most general and executable workflows as most concrete
representation. Hence, they allow for easy reuse and integration of data mining processes.
Our approach supports users in scenarios that cover different steps of the data mining
process or involve several analysis steps.

1.4. Structure of this Dissertation

The remainder of this thesis is structured as follows: Chapter 2 introduces the field of
scientific data analysis in the area of bioinformatics and presents background information
on data mining and analysis environments. In Chapter 3 we introduce our approach
to integrate data mining components being developed for single computer environments
into grid environments. Chapter 4 presents our approach for interactively developing
data mining scripts in grid environments. In Chapter 5, we present our approach on
facilitating the reuse of existing data mining processes based on Data Mining Process
Patterns. Chapter 6 concludes.

1.5. Publications

The main contributions of this thesis have been published by the author in the following
publications:

Journals and Magazines:

• Wegener, Dennis and Sengstag, Thierry and Sfakianakis, Stelios and Rüping, Stefan
and Assi, Anthony. GridR: An R-based tool for scientific data analysis in grid
environments. Future Generation Computer Systems 25 (4), pp. 481-488, 2009.

• Stankovski, Vlado and Swain, Martin and Kravtsov, Valentin and Niessen, Thomas
and Wegener, Dennis and Röhm, Matthias and Trnkoczy, Jernej and May, Michael
and Franke, Jürgen and Schuster, Assaf and Dubitzky, Werner. Digging Deep into
the Data Mine with DataMiningGrid. IEEE Internet Computing, vol. 12, no. 6, pp.
69-76, 2008.

• Stankovski, Vlado and Swain, Martin and Kravtsov, Valentin and Niessen, Thomas
and Wegener, Dennis and Kindermann, Jörg and Dubitzky, Werner. Grid-enabling
data mining applications with DataMiningGrid: An architectural perspective. Future
Generation Computer Systems 24 (4), pp. 259-279, 2008.

• Wegener, Dennis and Rüping, Stefan. Integration and reuse of data mining in busi-
ness processes - a pattern-based approach. Int. J. Business Process Integration and
Management, vol. 5 (3), pp. 218-228, 2011.

• Rossi, Simona and Christ-Neumann, Marie-Luise and Rüping, Stefan and Buffa,
Francesca and Wegener, Dennis and McVie, Gordon and Coveney, Peter and Graf,
Norbert and Delorenzi, Mauro. p-Medicine: From data sharing and integration via
VPH models to personalized medicine. ecancermedicalscience 5(218), 2011.
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Book Chapters:

• Wegener, Dennis and May, Michael. Specification of distributed data mining work-
flows with DataMiningGrid. In: Data Mining Techniques in Grid Computing Envi-
ronments, W. Dubitzky (Editor), John Wiley & Sons, 2008.

Conferences:

• Wegener, Dennis and Sengstag, Thierry and Sfakianakis, Stelios and Rüping, Stefan
and Assi, Anthony. GridR: An R-based grid-enabled tool for data analysis in ACGT
clinico-genomic trials. In: Proceedings of the 3rd IEEE International Conference
on e-Science and Grid Computing (eScience 2007), pp. 228-235, Bangalore, India,
2007.

• Rüping, Stefan and Wegener, Dennis and Sfakianakis, Stelios and Sengstag, Thierry.
Workflows for Intelligent Monitoring Using Proxy Services. In: Healthgrid Research,
Innovation and Business Case - Proceedings of HealthGrid 2009, Solomonides, Tony,
and Hofmann-Apitius, Martin, and Freudigmann, Mathias, and Semler, Sebastian
Claudius, and Legre, Yannick, and Kratz, Mary (eds.), IOS Press, pp. 277-282,
2009.

• Wegener, Dennis and Rüping, Stefan. On Integrating Data Mining into Business
Processes. Proceedings of the 13th International Conference on Business Information
Systems (BIS 2010), Witold Abramowicz, Robert Tolksdorf (eds.), Lecture Notes in
Business Information Processing, vol. 47, pp. 183-194, Springer Berlin Heidelberg,
2010.

Workshops:

• Wegener, Dennis and May, Michael. Extensibility of Grid-Enabled Data Mining
Platforms: A Case Study. In Proceedings of the 5th International Workshop on
Data Mining Standards, Services and Platforms, San Jose, California, USA, pp.
13-22, 2007.

• Wegener, Dennis and Hecker, Dirk and Körner, Christine and May, Michael and
Mock, Michael. Parallelization of R-programs with GridR in a GPS-trajectory min-
ing application. In Proceedings of the ECML/PKDD 2008 First Ubiquitous Knowl-
edge Discovery Workshop (UKD08), Antwerp, Belgium, September, 2008.

• Wegener, Dennis and Sengstag, Thierry and Sfakianakis, Stelios and Rüping, Stefan.
Supporting parallel R code in clinical trials: a grid-based approach. In Proceedings
of the 4th IEEE ISPA 2008 Workshop on High Performance and Grid Computing in
Medicine and Biology (HiPGCoMB08), Sydney, Australia, December, 2008.

• Wegener, Dennis and Mock, Michael and Adranale, Deyaa and Wrobel, Stefan.
Toolkit-Based High-Performance Data Mining of Large Data on MapReduce Clusters.
In: Proceedings of the IEEE International Conference on Data Mining Workshops,
pp. 296-301, Miami, USA, 2009.
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• Sfakianakis, Stelios and Graf, Norbert and Hoppe, Alexander and Rüping, Stefan
and Wegener, Dennis and Koumakis, Lefteris. Building a System for Advancing
Clinico-Genomic Trials on Cancer. In: Bassiliades, N. (ed.), Proceedings of the
Biomedical Informatics and Intelligent Methods in the Support of Genomic Medicine
(BIMIINT) Workshop of the 5th IFIP Conference on Artificial Intelligence Applica-
tions & Innovations (AIAI-2009), pp. 36-47, Thessaloniki, Greece, April, 2009.

• Rüping, Stefan and Wegener, Dennis and Bremer, Philipp. Re-using Data Min-
ing Workflows. In: Proceedings of the ECML PKDD 2010 Workshop on Third-
Generation Data Mining: Towards Service-Oriented Knowledge Discovery (SoKD’10),
pp. 25-30, Barcelona, Spain, 2010.

• Wegener, Dennis and Rüping, Stefan. On Reusing Data Mining in Business Pro-
cesses - A Pattern-Based Approach. In: Business Process Management Workshops,
LNBIP 66, pp. 264-276, Springer, Heidelberg, 2011.

• Bucur, Anca and Rüping, Stefan and Sengstag, Thierry and Sfakianakis, Stelios and
Tsiknakis, Manolis and Wegener, Dennis. The ACGT project in retrospect: Lessons
learned and future outlook, Procedia Computer Science, Volume 4, Proceedings of
the International Conference on Computational Science (ICCS 2011), pp. 1119-1128,
2011.

• Wegener, Dennis and Anguita, Alberto and Rüping, Stefan. Enabling the reuse of
data mining processes in healthcare by integrating data semantics. Proceedings of the
3rd International Workshop on Knowledge Representation for Health Care (KR4HC
2011), pp. 222-235, 2011.

• Wegener, Dennis and Rossi, Simona and Buffa, Francesca and Delorenzi, Mauro and
Rüping, Stefan. Towards an Environment for Data Mining based Analysis Processes
in Bioinformatics and Personalized Medicine. BIBM Workshops 2011, pp. 570-577,
2011.
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2. Scientific Data Analysis, Data Mining
and Data Analysis Environments

The goal of this chapter is to introduce preliminaries and state-of-the-art from the field of
data mining based scientific data analysis that are necessary for comprehending the work
presented in this thesis and to discuss related prior work. First, Section 2.1 introduces
data mining and the standard data mining process model CRISP. In addition, we describe
how data mining is used in practice and we give some basic definitions. Second, Section
2.2 presents background information on data mining in the context of larger systems.
This includes the area of distributed data mining, grid computing, process modelling
and workflow environments. Third, we describe bioinformatics scenarios in more detail
in Section 2.3. Fourth, the European research projects DataMiningGrid, ACGT and p-
medicine are introduced in Section 2.4. These projects provide grid- and workflow-based
scientific data analysis environments in which the contributions of this thesis are partially
implemented. Finally, Section 2.5 wraps up.

2.1. Data Mining

In this section, we will introduce data mining and the standard data mining process CRISP
[121]. In addition, we will describe how data mining is used in practice and present basic
definitions.

2.1.1. Data Mining Problems, Goals and Methods

Fayyad [45] describes data mining as follows: Data mining, also called knowledge dis-
covery in databases (KDD), is the process of extracting (unknown) patterns from data
involving methods from artificial intelligence, machine learning and statistics. In general,
a data mining process includes several iterations of single data mining steps (algorithm
executions). The goals of the data mining process are defined by the intended use of
the system from the user perspective and can be classified into two types: verification,
where the system is limited to verifying the user’s hypothesis, and discovery, where the
system autonomously finds new patterns. The discovery goal can be further subdivided
into prediction, where the system finds patterns for predicting the future behaviour of
some entities, and description, where the system finds patterns for presentation to a user
in a human-understandable form.

A variety of data mining methods exists which help in achieving the goal of prediction
and description. For each of these methods a variety of data mining algorithms exist that
incorporate these methods. Understanding the details of certain data mining algorithms
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Outlook Temperature Humidity Windy Play

sunny hot high false no
sunny hot high true no
overcast hot high false yes
rainy mild high false yes
rainy cool normal false yes
rainy cool normal true no
overcast cool normal true yes
sunny mild high false no
sunny cool normal false yes
rainy mild normal false yes
sunny mild normal true yes
overcast mild high true yes
overcast hot normal false yes
rainy mild high true no

Table 2.1.: The weather data from [156].

is not necessary for comprehending the thesis. Thus, we refer to [156] for an updated
reference on data mining methods and algorithms.

As example for a data mining scenario we can have a look at the tiny weather dataset
from [156] that is used to illustrate data mining methods. It concerns the conditions that
are suitable for playing some unspecified game. Instances in the dataset are characterized
by the values of the attributes outlook, temperature, humidity and windy that measure
different aspects of the instance. The outcome (also called class attribute) is to whether
play or not. Examples of instances with nominal values can be seen in Table 2.1. A set of
classification rules that can be learned from this data could look as follows:

If outlook = sunny and humidity = high then play = no
If outlook = rainy and windy = true then play = no
If outlook = overcast then play = yes
If humidity = normal then play = yes
If none of the above then play = yes

The rules are meant to be interpreted in order. A decision tree for the weather data can
be seen in Figure 2.1. The rules as well as the decision tree represent a description of the
dataset in a human understandable form. In addition, these can be used to predict future
behaviour. E.g., a new data instance could look like ”Outlook=sunny, Temperature=hot,
Humidity=normal, Windy=false”. The prediction for this instance would be ”Play=yes”.

A slightly more complex example with some numeric and some missing values can be
seen in Table 2.2. As some methods only work on nominal values, some only on numerical
values, and some have problems in dealing with missing values, such data usually needs
to be preprocessed before it can be processed by a certain data mining method. The
preprocessing could, e.g., include the discretization of numerical values or the replacement
of missing values.
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Figure 2.1.: A decision tree for the weather data from [156].

Outlook Temperature Humidity Windy Play

sunny 85 85 false no
sunny 80 90 true no
overcast 83 86 false yes
rainy 70 96 ? yes
rainy 68 80 false yes
rainy 65 70 true no
overcast 64 65 true yes
sunny 72 95 false no
sunny 69 70 false yes
rainy 75 80 ? yes
sunny 75 70 true yes
overcast 72 90 true yes
overcast 81 75 false yes
rainy 71 91 true no

Table 2.2.: The weather data from [156] with some numeric attributes.

2.1.2. The Data Mining Process

A data mining process is an interactive and iterative process that involves numerous steps
with many decisions made by the data miner. The Cross Industry Standard Process for
Data Mining (CRISP) is a standard process model for data mining that depicts corre-
sponding phases of a project, their respective tasks, and relationships between these tasks
[121]. According to CRISP, the life-cycle of a data mining project consists of the following
six different phases (see Figure 2.2):

• Business Understanding - understanding the project objectives and requirements
from a business perspective and converting this knowledge into a data mining prob-
lem definition; Looking at the weather example, from the business perspective the
goal is to get information on whether to play or not to play the game. From the
data mining perspective, the goal is to describe the given data by a model which can
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also be used to make a prediction for new data instances.

• Data Understanding - getting to know the data and to identify data quality problems;
In the example, this means to look at the available data and create a data table.

• Data Preparation - construct the final dataset from the initial raw data as input for
the modelling; In the example, the data has to be pre-processed, e.g. by discretiza-
tion of numerical values and the replacement of missing values.

• Modeling - various modelling techniques are selected and applied, including the cal-
ibration of their specific settings; In the example, this means to create a set of rules
or to create a decision tree.

• Evaluation - assess how well the built model achieves the business objectives; In the
example, it has to be checked if the model is useful for deciding whether to play or
not to play the game.

• Deployment - the results of the data mining and the knowledge gained are delivered
to the user, reaching from generating a simple report up to a complex implementation
of a repeatable data mining process; In the example, this means to report the model
in human understandable form and information about its quality to the end user.

When developing the solution for a given data mining problem, the abstract CRISP
process is instantiated by concreting the abstract tasks of the phases of the CRISP process
model. The process in general is iterative, but also foresees stepping back between certain
phases to adjust some of the decisions made. From the data mining perspective, the user
is mainly involved in the phases Business Understanding and Deployment, while the other
phases are mostly performed only by the data mining expert. It has to be distinguished
between the (technical) deployment of the data mining solution as a whole, which might
be done only once for a given business process, and the deployment of new data mining
models, which might be done frequently.

At the end of the modelling step of the data mining process, the data mining model
is evaluated in order to determine its quality. Model-evaluation criteria are quantitative
statements of how well a particular data mining model meets the goals of the KDD process
[45] and the business objectives [70]. The criteria differ according to the data mining goal.
For each of the goals verification, prediction and description a number of performance
measures exist for the evaluation. In addition, techniques like cross-validation or bootstrap
[156] are applied in order to ensure the statistical validity of the evaluation. Despite these
metrics for evaluating the result of the data mining process, other important factors like
the time spent for the process, the resources that were used, etc., can be included in the
evaluation. In the evaluation phase of the data mining process, the model as well as the
way it was constructed is evaluated according to the business objectives.

2.1.3. Data Mining in Practice

Today, there exist a variety of commercial and open source data mining toolkits developed
for single computer environments. Commercial tools include SAS Enterprise Miner [77],
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Figure 2.2.: The CRISP-DM process model for data mining.

IBM SPSS [73], Oracle Data Mining [96], Microsoft SQLServer Data Mining [92], and
many others. In addition, there exist lots of common open source data analysis tools such
as Weka [156], RapidMiner [93], R [103], and many more. All these tools can be utilized
for data mining processes.

Typically, data mining processes instantiated from the CRISP process model include
common steps or tasks that are independent from the application scenario and thus can
be seen as standardizable. Thus, these steps and tasks are addressed by functionality of
data mining toolkits. This includes the following:

• Chaining: A typical data mining process spans a series of steps from data prepa-
ration to analysis and visualization that have to be executed in sequence. Chaining
is the concatenation of the execution of different algorithms in a serial manner. The
result of an algorithm execution is used by the next execution in the series.

• Looping: Looping means the repeated execution of an algorithm. The algorithm
can run on the same (or different) data or with the same (or different) parameter
settings until a condition is fulfilled.

• Branching: Branching means to let a program flow follow several parallel executions
paths from a specified point or to follow a special execution path depending on a
condition.
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• Parameter Variation and Optimization: Parameter variation means to execute
the same algorithm with different input data and different parameter settings.

• Cross-validation and optimization: The cross-validation technique is used to
evaluate the results of the data mining process. These results are often optimized
according to the results of the validation, which is a very time-consuming step. In
detail, cross-validation involves partitioning a dataset into complementary subsets,
executing the data mining algorithm on one subset (the training data), and validating
the result on the other subset (the test data). To reduce variability, the validation
is performed multiple times using different partitions. The validation results are
averaged or combined afterwards. E.g., in k-fold cross-validation, the original dataset
is randomly partitioned into k subsets. A single subset from the k subsets is used
as the test data for testing the data mining model, and the remaining k − 1 subsets
are used as training data. The cross-validation process is then repeated k times (the
folds), with each of the k subsets used exactly once as the test data.

• Data Partitioning: Data partitioning means to cut the data into different pieces
and execute the data mining algorithm on the different subsets of the data.

While setting up a solution for a data mining problem, users can try to reuse an existing
implementation of an algorithm. The choice of an available algorithm depends on the
statistical solution, the general plan aims, the type and the amount of data that needs to
be analysed. Sometimes, a step of the solution needs to be customized in order to match
the objectives. This means that the implementation of an existing algorithm needs to be
adapted or enhanced and tested. In some cases, existing solutions are not available to
pursue the project aims, so new algorithms need to be developed and implemented from
scratch.

There exist process environments that also enable the usage of data mining, e.g., the
workflow environments Taverna [72], Triana [128], Kepler [86] or Galaxy [61] in the area of
bioinformatics, and the business process management systems Activiti [6], Aris [7], Intalio
BPMS [76], jBPM [79] or YAWL [129] in the area of business processes.

In the following, we will describe Weka and R in more details. These are the underlying
data mining tools that are integrated into grid environments based on the contributions
of the Chapters 3 and 4. Information on workflow environments will be later given in
Section 2.2.3.

Weka

The Waikato Environment for Knowledge Analysis (Weka) is a popular and freely available
data mining toolkit [156]. Weka contains many well-known data mining algorithms and
can be used via GUI (see Figure 2.3), via command line or as library. In detail, the Weka
machine learning workbench provides a general-purpose environment for classification,
regression, clustering and feature selection, which are also common data mining problems
in bioinformatics research [52]. In addition to the extensive collection of machine learning
algorithms and data pre-processing methods, Weka contains graphical user interfaces for
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data exploration as well as to evaluate and compare different machine learning techniques.
Weka can be also used via command line in the following way:

java "classname" "parameters"

E.g., the following command line call starts a decision tree algorithm with the weather
dataset:

java weka.classifiers.trees.J48 -t data/weather.arff

Figure 2.3.: Screenshot of the Weka Explorer Version 3.5.5 (from wikipedia.org).

The R-Project

R [103] is a system for statistical computing and graphics published under the GNU
General Public License. It consists of a programming language and a run-time environment
and is being developed for the Unix-like, Windows and Mac families of operating systems
[71]. The R language allows branching and looping as well as modular programming using
functions. In addition, the environment supports running commands interactively in a
console or as batch programs stored in script files.

The R environment is extensible via packages. Additional modules are available for
a variety of specific purposes. The R environment provides a broad range of state of
the art statistical, graphical techniques and advanced data mining methods (including
comprehensive packages for linear and non-linear modelling, cluster analysis, prediction,
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hypothesis tests, re-sampling, survival analysis, time-series analysis, etc.), and turned out
as the de facto standard for statistical research in many applied statistics project.

In the following, we will present some details on R based on [103]. Technically, R is
an expression language with a simple syntax. When starting the R program (start of a
session) it issues a prompt ”>” when it expects input commands. Elementary commands
consist of either expressions or assignments. If an expression is given as a command, it
is evaluated, printed, and the value is lost. An assignment also evaluates an expression,
but passes the value to a variable. The result is not automatically printed. During an R
session, objects are created and stored by name. The collection of objects currently stored
is called the workspace. The workspace can be stored into and be restored from a file. A
session is terminated with the ”q()” command.

Commands can be stored in external files, e.g. ”script.R”. They can be executed at
any time in an R session with the command

> source("script.R")

R packages can be loaded by

> library("packageName")

An R function is defined by an assignment of the form

> name <- function(arg_1, arg_2, ...) expression

The expression is an R expression that uses the arguments (”arg i”) to calculate a value.
The value of the expression is the return value of the function. A call to the function looks
as follows:

name(expr_1, expr_2, ...)

Functions can depend on objects stored in the workspace. In addition, R supports script-
ing. You can run a file of R commands (”script.R”) by executing

R CMD BATCH script.R

Parameters can be passed to scripts via additional arguments on the command line:

R CMD BATCH --args arg1 arg2 script.R &

The R script is then executed as a whole in it’s own session. R output is written to stdout
and stderr and can be collected in a file, e.g. script.Rout for a script named script.R.

2.1.4. Basic Definitions

In the following, we will present the definition of data mining services, data mining com-
ponents, data mining scripts and data mining workflows.

Data mining components and data mining services encapsulate a certain functionality
and are (re)usable via (user) interfaces. Data mining services are based on web services.
A web service is a software system designed to support interoperable machine-to-machine
interaction over a network [118]. It is deployed somewhere in the network and its interface
is described in a machine-readable format.
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Definition 1 (Data Mining Service) A data mining service consists of the imple-
mentation of a data mining algorithm which is executable via a webservice interface. A
data mining service is considered as atomic, as usually only the interface of the service is
published and all details on the implementation are hidden.

Data mining components, in contrast to services, share the characteristic that the pro-
gram that implements the algorithm is locally available. In this work, we consider a data
mining component to support at least a command line interface. Data mining components
have two groups of inputs. The first group of inputs is data. The data typically shares
the characteristics of being large and not easily movable. The second group of inputs
is a number of values defining how the component’s algorithm processes the data. The
algorithms often create a model that describes the data in a certain way. The quality of
the model is determined by different performance values. The output of the component is
some information on the data.

Definition 2 (Data Mining Component) A data mining component consists of
the implementation of a data mining algorithm which is executable on a single computer
that provides a runtime environment for the component and which is used via command
line. We consider a component to be atomic, which means that is cannot easily be split
and has to be used as a whole either stand-alone, in a data mining script or in a workflow.

An example for a data mining component is the Weka jar file from the Weka toolkit,
which is executable on computers where the java environment is installed. It can be
considered as atomic, as it is not directly possible to look into and change the java code.
In fact, the Weka jar file represents a set of components, as it contains implementations
of several algorithms. Components can also be developed and composed in scripting
languages.

Definition 3 (Data Mining Script) A data mining script consists of one or more
data mining components and is based on a language that allows for scripting, which means
that it’s code is interpreted, but not compiled.

A script can include several existing (atomic) components. In addition, a script can be
used to develop new non-atomic components. Furthermore, the script itself can be used as
a whole in a workflow. An example for a data mining script is an R script, which can be
executed on computers where the R environment is installed. By the library command,
existing components are made available. New components can be developed by defining
new functions. Components can be connected inside a script.

Scripts and components can also be composed by using workflows. A workflow is basi-
cally a description of the order in which a set of services or components have to be called
with a certain input in order to solve a given task. Workflows are defined at a higher level
of abstraction than programming or scripting languages. They are more structured and
are limited in their expressiveness, but are easier to compose and to validate.

Definition 4 (Data Mining Workflow) A workflow consists of a set of technical
tasks that are connected to each other to achieve a goal. A data mining workflow ad-
dresses one of the data mining goals described in Section 2.1. The tasks of data mining
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workflows can consist of data mining components, scripts or other services. The workflow
can be specified in a workflow description language and is executable in a workflow envi-
ronment. On certain datasets the workflow is able to produce output that is related to one
of the data mining goals.

An example of a data mining workflow designed with the Weka knowledge Flow tool is
visualized in Figure 2.4. The workflow consists of loading a data file (task ArffLoader),
specifying the class attribute (task ClassAssigner), a cross validation component (task
CrossValidationFoldMaker), a decision tree component that works on the training and test
data provided by the cross validation task (task J48 ), the evaluation of the performance
values (task ClassifierPerformanceEvaluator), and the visualization of the performance
values (task TextViewer). A data mining workflow can be (part of) a solution for a
bioinformatics or analysis scenario.

Figure 2.4.: Screenshot of a Weka workflow (from [65]).

2.2. Distributed Computing and Data Mining Systems

In this section, we will introduce the field of distributed data mining and the field of grid
computing, as this type of distributed system meets the requirements of the bioinformatics
scenarios presented in Section 2.3. In addition, we give details on process modelling
and present selected workflow and process environments that are important for the work
presented in this thesis.

2.2.1. Distributed Data Mining

Distributed computing is a field of computer science that studies distributed systems [14].
A distributed system consists of multiple computers (or machines) that interact with each
other via a network to achieve a common goal. A computer program that runs in a
distributed system is called a distributed program. Distributed computing also refers to
solving computational problems by the use of distributed systems. Typically, a problem
is divided into a set of smaller independent tasks, each of which is solved by one or
more computers. Various hardware and software architectures are used for distributed
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computing and there exist several types of distributed systems, e.g. computing clusters,
grid systems, computing clouds, etc.

The field of distributed data mining deals with the problem of analysing and monitor-
ing distributed data sources by data mining technology designed for distributed systems.
There exists a huge amount of distributed data mining algorithms (we refer to [18] for an
updated reference).

For determining the performance of a distributed data mining task, which means to find
out if the task is executed in an efficient way, there exist several measures on the resources
used to solve the task. In addition to time and (disk or memory) space, in the area of
distributed computing the number of computers is another resource to consider. Often,
there is a trade-off between the running time of a task and the number of computers:
the problem can be solved faster if sub-problems can be solved on several computers in
parallel. In distributed computing, speedup refers to how much a task is faster due to
parallel processing of sub-tasks than a corresponding sequential task. We define speedup
as Sp = T1

Tp
where p is the number of processors, T1 is the execution time of the sequential

task, and Tp is the execution time of the parallel sub-tasks with p processors.

Linear or ideal speedup is obtained when Sp = p. When running an algorithm with
linear speedup, doubling the number of processors doubles the speed. As this is ideal, it
is considered very good scalability.

However, not all parallelization effort for distributed computing results in speed-up. If
a task is split into subtasks, these subtasks, the data and the results might have to be
transferred over the network. In addition, intermediate results might have to be exchanged.
Thus, there is an overhead for communication and data transfer involved which donates
to the time spent for solving the task.

Scalability is the ability of a system to handle growing amount of work in a capable
manner or its ability to be enlarged to accommodate that growth [20].

There exist several attempts to adapt common data mining tools to multi computer
environments. Among these, solutions for distributed data mining with Weka [8, 127, 28,
82, 98] and with R [85, 160, 88, 111, 16, 135, 62] have been developed. Further details will
be given in the related work sections of Chapters 3 and 4.

2.2.2. Grid Computing

Grid technology was developed to address requirements for secure, distributed and dy-
namic environments. It provides solutions for issues like data security, resource sharing,
resource brokering and standardization and supports the usage of multi-computer envi-
ronments, distributed data sources and multiple users. Forming virtual organizations in a
grid allows people to collaborate in a secure environment. Furthermore, mechanisms for
reliable file transfer and the sharing of computational and storage resources are provided.

According to [47] a grid is a system that coordinates resources that are not subject
to centralized control using standard, open, general-purpose protocols and interfaces to
deliver non-trivial qualities of service.

Grid technology evolves rapidly and this often poses challenges, such as interoperability
problems, when building applications on open source technology as the available function-
ality frequently changes. In the past, grid standardisation efforts have concentrated on
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achieving the goal to define an open framework for modelling and accessing stateful re-
sources by using Web services. The actual OASIS standard named Web Services Resource
Framework (WSRF) v. 1.2 was approved in April 2006 [3].

In the following, we will introduce the OGSA standard [46] and the Globus Toolkit [48].
The approaches which will be presented in the Chapters 3 and 4 are based on OGSA and
are evaluated in grid systems based on Globus toolkit.

Open Grid Services Architecture (OGSA)

The Open Grid Services Architecture (OGSA) [49, 46], being sustained by the Global Grid
Forum (GGF), describes a reference architecture for a service-oriented grid computing
environment. This architecture addresses the need for standardization by defining a set
of core capabilities and behaviours for grid systems.

OGSA provides a logical 3-tiered view of distributed environments realized by the use
of grid systems [36] (see Figure 2.5). The bottom layer (fabric) includes different types
of base resources that are virtualized through web-services. These base resources are
supported by some underlying entities or artifacts that may be physical or logical, and
that have relevance outside of the OGSA context. Examples of physical entities include
CPUs, memory, and disks. Examples of logical artifacts include licenses, contents, and
OS processes [46].

The middle layer (middleware) represents a higher level of virtualization and logical
abstraction. This layer is defining a wide variety of capabilities that are relevant to OGSA
grids. These capabilities are provided by services, which build the grid middleware. In
detail, the following capabilities (or categories of services) are defined to develop grids [36]:
Infrastructure Services, Data Services, Resource Management Services, Execution Man-
agement Services, Security Services, Self Management Services, Optimization Services,
and Information Services.

The top layer (applications) includes applications and other entities that use the OGSA
capabilities to realize user- and domain-oriented functions and processes. These functions
and processes make use of the grid middleware to undertake their activities.

Definition 5 (Grid middleware) Grid middleware is a collection of services accord-
ing to the middleware layer of OGSA implemented as grid services.

Definition 6 (Grid based system) A grid based system is a distributed system that
is designed and implemented based on the grid reference architecture OGSA.

The following list describes the capabilities and services that are important in the con-
text of this thesis in more details:

• Information Services. Grid environments are typically not designed for a certain
application context. The components to be run in the system can differ from each
other and can change over time dynamically. Thus, grid environments provide a
registry of currently available services and components that can be used within the
grid environment. New services and components have to be registered to become
part of the grid environment.
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Figure 2.5.: Open Grid Service Architecture (based on [36]).

• Data Services. Grid environments provide data services for secure and reliable
data transfer.

• Application Services & User Interfaces. The components to be run on the
grid need to be configured and started by the users. Thus, grid environments typi-
cally include user interfaces for end users which are often workflow based. Services
and components can be configured and parametrised by these user interfaces before
execution.

• Resource and Execution Management Services. Computing and storage re-
sources in the grid environment can change over time dynamically. Thus, grid en-
vironments must provide manageability for execution of user-defined work (jobs)
throughout their lifetime. Functions such as scheduling, job control and exception
handling of jobs must be supported when the job is distributed over a great number
of heterogeneous resources [46]. Job descriptions are used to describe the execution
specific requirements of a job that is to be executed on the grid in order to map
submitted jobs onto available hard- and software resources in the grid environment.

• Self-Management Services. Users need to track and analyse the executions of
their components and the resources used. Grid environments include monitoring
and analysis functionality that allow for the monitoring and analysis of the jobs that
are executed in the grid environment, the usage of resources and the occurrence of
errors and faults.
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Globus Toolkit

The Globus Toolkit [48] is an open source software tool-kit used for building grids de-
veloped by the Globus Alliance. Version 4 of the tool-kit (GT4), which forms the basis
for some of the implementations presented in this thesis, represents a web service based
realization of a grid. The Globus Toolkit is an implementation of the standards Open
Grid Services Architecture (OGSA) and Web Services Resource Framework (WSRF). In
addition, the Globus Toolkit includes service implementations to provide:

• Resource management: Grid Resource Allocation & Management Protocol (GRAM)

• Information Services: Monitoring and Discovery Service (MDS)

• Security Services: Grid Security Infrastructure (GSI)

• Data Movement and Management: Global Access to Secondary Storage (GASS) and
GridFTP

The Globus Toolkit can be considered as a standard reference for a state-of-the-art
grid middleware. GT4 can be connected to computing clusters, e.g. to the Condor batch
processing system [130]. Condor is a cluster management system for computing-intensive
jobs, providing mechanisms for queuing, scheduling and resource management. Jobs can
be submitted to the Condor system as independent tasks. Condor places them in a queue
and decides upon a policy when and where to run the tasks.

2.2.3. Process Modelling and Workflow Environments

Workflow environments including workflow designers and enacting systems are a popular
technology in business and e-science alike to flexibly define and enact complex data pro-
cessing tasks (see also Section 2.1.3). Driven by specific applications, a large collection of
scientific workflow systems have been prototyped in the past, e.g. Taverna [72], Triana
[128], Kepler [86] or Galaxy [61]. There also exist distributed workflow management sys-
tems that are integrated with grid computing environments, such as SWIMS [41]. The
next generation of workflow systems are marked by workflow repositories such as myEx-
periment [58] or workflow sharing functionality, which tackle the problem of organizing
workflows by offering the research community the possibility to publish, exchange and
discuss individual workflows. In the area of business process management (BPM), there
also exist a lot of environments for managing business processes and workflows, e.g. com-
mercial and open source systems such as Activiti [6], Aris [7], Intalio BPMS [76], jBPM
[79], YAWL [129], and many more.

A conceptual basis for process and workflow technology is provided by the concept of
workflow patterns [117]. Such workflow patterns represent simple patterns for modelling
certain structures in processes and workflows. According to [15], process patterns have
many advantages: processes in BPM systems serve as both the specification and the source
code. The modelled processes become the solutions deployed and provide a simple com-
munication tool between end-users, business analysts, developers and the management.
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In the context of the process and workflow systems mentioned above, several languages
and notations for describing, modelling and visualizing processes emerged, e.g. XPDL
[33], BPEL [4], YAWL [129], BPMN [153], and many others.

In the following, we will describe success factors for process modelling, the modelling
notation BPMN which will be used for visualising process in this thesis, and the Triana
system as prototypical workflow environment.

Success Factors for Process Modelling

Modelling processes and designing executable workflows usually is done to replace manual,
semi-automatic or inefficient processes that have been used before. According to Hammer
and Champy [66], process reengineering is ”the fundamental rethinking and radical re-
design of (business) processes to achieve dramatic improvements in critical, contemporary
measures of performance”. There exist several metrics from the area of business process
reengineering (BPR) [17], which aim at measuring efficiency and effectiveness of an ex-
isting business. In literature, BPR is often evaluated according to a set of dimensions in
the effects of redesign measures, e.g. time, cost, quality and flexibility [104], cost, quality,
service and speed [66] or cycle time, cost, quality, asset utilization and revenue generated
[91]. Ideally, a redesign or modification of a process decreases the time required to handle
incidents, it decreases the required cost of executing the process, it improves the quality
of the service that is delivered and it improves the ability of the process to react flexible to
variation [17]. However, a property of such an evaluation is that trade-off effects become
visible, which means that in general, improving upon one dimension may have a weakening
effect on another (see Figure 2.6).

Figure 2.6.: Dimensions in the effects of process (re)design (based on [104]).

BPMN

Business Process Model and Notation (BPMN), previously known as Business Process
Modeling Notation, is a graphical representation for specifying business processes in a
business process model [153]. BPMN is a standard for business process modelling main-
tained by the Object Management Group (OMG). The graphical notation for specifying
business processes is based on a flowcharting technique. The data mining patterns, which
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Figure 2.7.: BPMN overview.

will be described in Chapter 5, are visualized using BPMN. In detail, the modelling in
BPMN is based on a small set of graphical elements from the following categories [154]:

• Flow Objects are the main describing elements that represent Events, Activities
and Gateways. An Event is something that happens in the course of the process
and affects the flow of the process. There are three types of Events, based on when
they affect the process flow: Start, Intermediate, and End. Events are visualized as
circles with open centres to allow internal markers to differentiate different triggers
or results. An Activity represents work that is performed in the process and can
be atomic or non-atomic. Activities are visualized by a rounded-corner rectangle.
A Gateway is used to control the divergence and convergence of the process flow
and determines decisions, forking, merging, and joining of paths. Gateways are
represented by the diamond shape with internal markers to indicate the type of
behaviour control.

• Connecting Objects are used for connecting the Flow Objects. Connecting Ob-
jects represent Sequence Flow, Message Flow and Associations. A Sequence Flow
is used to show the order (the sequence) of the activities in a process. Sequence
Flows are visualized by a solid line with an arrowhead. A Message Flow is used to
show the flow of messages between two separate process participants that send and
receive them. Message Flows are visualized by a dashed line with an arrowhead. An
Association is used to associate data, text, and other Artifacts with flow objects and
to show the inputs and outputs of activities. Associations are visualized by a dotted
line with an arrowhead.
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• Swim lanes are used as visual mechanism of organising and categorising activities.
A Pool consists of different Lanes, a lane holds the Flow Objects, Connecting Objects
and Artifacts. Two separate Pools represent two different process participants.

• Artifacts represent Data Objects, Groups and Annotations. Data Objects are used
to show how data is required or produced by activities and are connected to activities
through Associations. Groups are visualized by a rounded corner rectangle drawn
with a dashed line. Grouping can be used for documentation or analysis purposes,
but does not affect the Sequence Flow. Annotations are a mechanism for a creator
of the diagram to provide additional text information for the reader.

Figure 2.7 gives an overview over the core BPMN elements. In Figure 2.8 we can see
an example of a process modelled in BPMN. The start of the process is modelled by the
Start Event. After the process starts, two tasks are performed for receiving and checking
an order, which are modelled by two Activities. After that, a Gateway visualizes that
there is a decision on whether the order is valid. The X in the Gateway further specifies
that it is an XOR-gateway, which means that the sequence flow can follow only one way.
If the order is valid, it is processed and closed. If not, the order is rejected. Finally, the
process ends, which is modelled by the End Event.

Figure 2.8.: Example of a Process modelled in BPMN.

Triana

Triana [128], a Java-based application distributed under the Cardiff Triana Project Soft-
ware License (based on the Apache Software License Version 1.1), has been developed at
Cardiff University as part of the GridLab [1] and GridOneD [2] projects. Triana consists of
two distinct components: a graphical workflow editor for visual composition of workflows
and a workflow manager (also known as ’engine’) for executing workflows.

In a Triana workflow, any atomic operation is represented by a separate workflow unit.
A workflow unit is supposed to be a light-weight component that is concerned with the
correct progression of the workflow, but it does not implement the operation itself. The
actual operation may take the form of a web service or a WSRF-compliant service. The
Web Services Resource Framework (WSRF) is a family of OASIS-published specifications
for web services [3]. The unit, however, implements the required logic for setting the
necessary properties for execution, and for passing input data to the service. It may
contain classes for visualization of the results of the conducted operation and may pass the
output data to the next unit in the workflow. The properties of each unit can be modified
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by using a control dialogue box. The input and output data of a unit are represented by
simple or complex data types.

In the GUI, workflow units can be packed into folders in a tree-like structure. A workflow
is created by selecting and dragging units from the folders and dropping them onto a
workspace. The workflow developer can connect units, which means that the output of
one operation can be used as input to the next operation in the workflow. By doing so, it
is possible to compose workflows of arbitrary complexity.

Triana is capable of discovering and binding to web services and WSRF-compatible
services. When binding to a WSRF-service, each of its public methods are displayed as a
single unit. Triana provides two units, WSTypeGen and WSTypeViewer, which process
the WSDL file of the service, dynamically render the respective input and output fields
and create request (i.e. input) and response (i.e. output) data types.

Workflows are executed by the workflow manager residing either on the user’s client
machine or on a dedicated manager machine in a grid environment. For this purpose the
Triana workflow editor produces a Java object representing the visual workflow, which is
then executed by the manager. The manager can be launched on any machine where an
appropriate Java Virtual Machine (JVM) is installed. Although the execution is performed
on a single machine, the tasks can be distributed, while using the execution machine as
central synchronization manager. Triana’s workflow manager is completely independent
of the Triana workflow editor; it is self-contained and needs no additional software in order
to execute pre-defined workflows.

Figure 2.9 shows a screenshot of the Triana environment. The DataMiningGrid Ap-
plication Description Schema, which will be described in Chapter 3, is developed in a
workflow environment which is based on Triana.

Figure 2.9.: Screenshot of the Triana environment (from trianacode.org)
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2.3. Bioinformatics Scenarios

In this section, we will give an introduction into bioinformatics and describe some of the
user groups, techniques and the data sources and repositories that are typically involved
in bioinformatics scenarios. Furthermore, we describe data mining tools used in bioinfor-
matics scenarios and present a concrete scenario as example.

2.3.1. Introduction to Bioinformatics

Bioinformatics is a big field of research that is conceptualizing biology in terms of macro-
molecules and applying information technology techniques from applied maths, computer
science, and statistics to understand and organize the information associated with these
molecules [87]. Several years of work by the scientific community, and in particular the
bioinformatics community, have generated resources for data storage and standardization
processes for data re-use so that a large quantity of previously collected genomic data is
now available from public repositories and can be re-used for further analyses. In fact, it
is now a general requirement that published genomic studies deposit their data in public
databases so that analyses can be reproduced and/or data reused for further analyses [94].
Alongside this, tools have been generated that allow the analysis of such datasets. Many of
these tools are open source and shared amongst the bioinformatics community. Although
the type of data and type of analyses are continuously changing as the research in these
areas is fast moving, some processes are starting to be of general interest, more frequently
reproduced and they would benefit from standardization and reproducibility [145]. An
example for this is the meta-analysis of gene expression datasets. From an abstract point
of view, such a process includes data acquisition from different data sources, the prepro-
cessing of these data, and a repeatedly performed analysis step based on merged data.
The general schema of a meta-analysis process is visualized in Figure 2.10.

Typical research questions in bioinformatics are, e.g., finding predictive or prognostic
biomarkers, defining subtypes of diseases, classifying samples by using genes, etc. In order
to answer such questions, bioinformaticians, statisticians, medics and biologists combine
different heterogeneous data sources from private or public repositories, and they develop
and apply different analysis methods to the information extracted from the repositories and
interpret the results until they have found good combinations of data sources and analysis
methods. This process can be short or long, straightforward or complex, depending on the
nature of the data and questions. According to [145], this is what we will call a scenario.
As there exist a lot of complex interrelations among the data involved, a lot of domain
knowledge is needed for setting up processes for such scenarios. Furthermore, there is a
need for well-defined components for the processes, as it is usually too complex to develop
all components needed for a scenario from scratch.

When composing a solution to an analysis problem, bioinformaticians mainly work
together with biologists and clinicians to provide the best possible solution to the project
questions. The solution is typically composed of different components in form of scripts or
workflows (see also Section 2.1.4). Many of them are recycled from previous solutions and
often need to be adapted. The choice of an available component depends on the general
aims, the type and the amount of data that needs to be analysed. Although components
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Figure 2.10.: Abstract process for meta-analysis of gene expression datasets (from [145]).

can be re-used, parameters often need to be revised and set properly to address the planned
solution. Sometimes, a step of the solution needs to be customized in order to match the
objectives, after that it needs to be integrated into the process and needs to be fully tested.
In some cases, existing components are not available to pursue the project aims, so new
components need to be developed and implemented from scratch.

Bioinformatics employs a wide range of techniques from maths, computer science and
statistics, including sequence alignment, database design, data mining, prediction of pro-
tein structure and function, gene finding, expression data clustering, which are applied to
heterogeneous data sources [87].

The implementation of bioinformatics scenarios is typically done with tools chosen as
most appropriate by the bioinformaticians. Due to the various backgrounds, there is a
quite heterogeneous set of tools and languages in use. Thus, analysis processes can be
very different, depending of the type of data, the technology used, the tools used, the aim
of the study, etc. Some common steps among processes for the analysis in the biomedical
field are, e.g., data quality control, data normalization, data filtering, data visualization,
and finding differentially expressed entities. Methods used for these steps are, e.g., local
regression for normalization, grouping similar genes or samples together using k-means
or hierarchical clustering for finding differentially expressed genes, and the Kaplan-Meier
method for survival analysis.

The common procedure for data analysis for scenarios from bioinformatics can be de-
scribed in an abstract way as follows [145]:
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• Design of the experiment with the collaborators involved, and understanding of the
methods and data needed.

• Based on the research question, data of different types is acquired from data repos-
itories.

• Based on the research question, the methods are gathered.

• If method and data are ready available the process can start, otherwise more collec-
tion, development or implementation is needed and the process is temporarily halted
until new data or tools are available.

• For each data of a certain type there is a pre-processing done.

• The data is merged.

• The analysis is performed.

• The results are discussed with the collaborators.

• The whole process can be iterated if new hypotheses are generated.

Analysis processes involve both manual and automated steps. Results of the analysis
processes have to be interpreted to use them, e.g., for support to the clinical decision
making process [99, 110]. The steps included in the common data analysis procedure are
covered by the CRISP process model described in Section 2.1.2.

Many scenarios are based on privacy sensitive data from private or in-house data reposi-
tories. Often, this data cannot be moved due to the privacy policies and security directives.
This means that the data might be inherently distributed. In other cases, the size of the
data demands for distribution. An example of a scenario will be later given in Section
2.3.5.

2.3.2. User Groups

Bioinformatics is a collaborative discipline [106]. Bioinformaticians of today are highly
qualified and specialized people from various backgrounds such as data-mining, math-
ematics, statistics, biology, IT development, etc. A typical analysis scenario involves
multiple users and experts from different departments or organizations. Bioinformaticians
are often working together with different collaborators [145]:

• IT people usually support bioinformaticians by providing and helping with the
needed computational power, network infrastructure and data sharing.

• Clinicians are often a key point for patients information access and for the design
and planning of the clinical part of the experiment.

• Pharmaceuticals Companies are might be interested in discoveries that have a com-
mercial potential at the end of the research project.
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• Statisticians and Data Miners can provide help on designing the study and correctly
analysing the data.

• Biologists can provide help on designing the experiment and correctly interpreting
the data. They can also be key people for managing the clinical samples.

2.3.3. Data Sources

Bioinformatics is an area in which analysis scenarios include huge amounts and different
types of data [140]. Analyses in bioinformatics predominantly focus on three types of large
datasets available in molecular biology: macromolecular structures, genome sequences, and
the results of functional genomics experiments such as expression data [87].

Recent advances in technology enable collecting data at more and more detailed levels
[106], from organism level, organ level, tissue level up to cellular and even sub-cellular
level [87, 157]. In detail, we can distinguish several abstraction levels in multi-cellular
organisms [145]:

• Organism level: an organism is the biological system in its wholeness, typically
including a group of organs. Organism level related data is the clinical data, which
usually comes from a hospital database manager.

• Organ level: an organ is a group of tissues that together perform a complex func-
tion. Organ level related data usually comes from a pathologist.

• Tissue level: tissues are groups of similar cells specialized for a single function.
Tissue level data usually comes from a pathologist.

• Cellular level: in a multi-cellular organism such as a human, different types of
cells perform different tasks. Cellular level related data usually is organized by a lab
manager;

• Sub-cellular level: data at the sub-cellular level is composed by the structures
that compose the cells. Usually, a data analyst can retrieve this data by performing
ontologies analyses.

Additional information, e.g., includes the content of scientific papers. The main type of
data for the scenarios presented in this thesis is microarray data. A DNA microarray (also
known as gene chip) is a collection of microscopic DNA spots attached to a solid surface
(see Figure 2.11). DNA microarrays are used, e.g., to measure the expression levels of
large numbers of genes simultaneously. Several complementary technologies for measuring
gene expression have evolved [67]. Examples for such so called platforms are Affymetrix
[74] and Illumina [75].

Data from different sources is extensively collected in repositories potentially useful
for subsequent analysis [106, 87, 157]. The number of such repositories has dramatically
grown in the last fifteen years [53]. Some of these repositories are publicly available. Com-
mon public data sources include background information and literature, e.g. provided by
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Figure 2.11.: Microarray Experiment (from [155]).

PubMed [100], or genomic and clinical data, e.g. provided by GEO [56] and ArrayEx-
press [13]. Private repositories are restricted in access and it is not always possible to
copy the data due to privacy issues.

Comprehensive metadata describing the semantics of the heterogeneous and complex
data are needed to leverage it for further research [152]. To address this issue, efforts
exist for describing the data in a comprehensive way by domain specific ontologies [23].
Ontologies are, according to the definition given by Gruber, the specification of a concep-
tualization [131]. An ontology describes a domain or area of knowledge in a formal manner,
understandable by both humans and machines, by providing consistent taxonomies of the
concepts that belong to a domain, as well as the relations among those concepts. Ontolo-
gies have been employed to support the integration and selection of data.

When using heterogeneous data in analysis processes there is a need to normalize and
homogenize the heterogeneous data [140]. Different data repositories adopt different stan-
dards, interfaces and data models, which hinder seamless data access. This is especially
true for the free public access databases, private repositories with limited access, or even
unstructured sources in the biomedical domain. Thus, a lot of background knowledge is
needed for the data understanding and data preparation phase. As a result, great effort
has been put into the development of systems that provide automatic uniform and homo-
geneous access to such sources - the so called semantic mediation systems [140]. Semantic
mediation systems must deal with syntactic and semantic heterogeneities. The former
refer to those due to differences in the interface to the data source, the language, and
the data model. They are usually tackled by specific software modules wrapping the data
source and translating the syntactic functionalities. The latter, in contrast, refer to dif-
ferences in the schemas employed and data codification. These are handled by adopting
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unified vocabularies or taxonomies that cover the domain of the sources being integrated.

Semantic mediation systems are able to work on distributed data repositories. However,
efficiency and performance becomes an issue, as it has been shown that the process of
translating queries for accessing the different databases is an NP-hard problem [64]. To
deal with this, a compromise between efficiency and functionality must often be adopted.

2.3.4. Data Mining Tools in Bioinformatics

Although data mining methods have become integral part of biomedical research, stan-
dard data mining toolkits such as Weka [156] do not fully support the handling of raw
biomedical data. The BioWeka project [57] extends Weka by various input formats for
bioinformatics data and bioinformatics methods to allow users to easily combine them
with Weka’s classification, clustering, validation and visualization facilities on a single
platform.

R [103] turned out to be one of the de-facto standards for data analysis in bioinfor-
matics. In particular the associated project BioConductor [55] addresses the needs of the
biomedical and biostatisticians community by providing R packages to analyse data issued
from new technologies appearing in the biology laboratory. Bioconductor is an open source
software project to provide tools for the analysis and comprehension of high-throughput
genomic data and is based primarily on the R programming language. Numerous methods
available as R/BioConductor packages and considered experimental a few years ago have
been stabilized and became accepted standard in the analysis of high-throughput genomic
data [150].

Bioconductor has advanced facilities for the analysis of microarray platforms like Affy-
metrix [74] and Illumina [75] and for expression arrays. In addition, it provides interfaces
to community resources such as GEO [56] or ArrayExpress [13].

Bioinformatics tools can be also made available as web services. E.g., BioMOBY [19]
is a well-known registry of web services used in bioinformatics. It allows interoperability
between biological data hosts and analytical services by annotating services with terms
taken from standard ontologies.

Furthermore, there exist efforts for enhancing service discovery [107] and pipelining of
compatible services [80] as well as user interfaces that provide integrated access to many
types of web services repositories with different protocols for resource description and
invocation [90].

However, in this thesis we focus on data mining components and data mining scripts as
defined in Section 2.1.4 rather than on web services which provide individual functionality.
In principle, the functionality provided by a web service can be wrapped into a component
by adding a command line based web service client. The other way around, a component
can be wrapped into a web service by exposing its interface via web service operations.

2.3.5. Example Scenario

Genomic data is often analysed in the context of a clinical retrospective study, in some
rare so far but increasing number of cases this can be a clinical trial or an intervention
study [94]. The analysis of this class of data involves a variety of data ranging from
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genomic, transcriptomic, proteomic data to imaging data. In addition, clinical and demo-
graphics data include attributes such as age, gender, tumour location, tumour diameter,
tumour grade, tumor stage, histology, pathology attributes, nodal invasion, etc. The exact
attributes for clinical data vary depending on the study or trial, and specific disease.

One scenario of the p-medicine project [97] describes a statistical analysis of tumour
samples with associated gene expression data and clinical features [94, 112]. This analysis
is a semi-standardized procedure which is usually performed by statisticians and bioin-
formaticians using several tools. In the scenario, cancer samples are analysed to identify
gene signatures which may indicate whether a tumour is malignant or not, or whether the
tumour will metastasise or not.

The aim of this scenario is to provide evidence that could assist in clinical decisions in
the future. The patient is the focus and patient data are dealt with specifically. Although
there is no mechanism to feed the results back to the single patients the results will
increase the information about the disease and long term it will contribute to new and
better treatment solutions. The scenario has the following inputs and outputs:

• Input: cancer probes for ’Uveal melanoma’ in the Affymetrix HG-U133 Plus 2 for-
mat (set of CEL files, a single file is named like GSM550624.cel). Each file rep-
resents one tumour related to one patient and is anonymous. The files can be re-
trieved from ftp://ftp.ncbi.nih.gov/pub/geo/DATA/SeriesMatrix/GSE22138/

or http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22138/ .

• Input: Clinical Data as csv tables (e.g., named like GSE22138 clin.csv). These can
be used to attach personal data to the anonymous cel file. The following clinical
and personal properties are available: tissue, age, sex, eye (right, left), tumour
location, tumour diameter (mm), tumour thickness (mm), tumour cell type, retinal
detachment, extrascleral extension chromosome 3 status, months to the end point
of metastasis.

• Output: Heatmaps, survival statistics, Kaplan-Meier plots and tests.

The scenario includes a manual preparatory part. The input data needs to be read,
normalized and controlled. After the data is saved into a ’local workspace’, the data needs
to be manually examined by an expert. There are several reasons why the microarray
data has to be normalized, among them are the following:

• The array is divided in regions and several of them can have a systematic higher
(lower) intensity and background compared to others.

• Scratches on the glass.

• Presence of dirty zones.

• Undetectable spots (intensity lower than the background).

Quality control plots are used to detect if there are discrepancies between samples, e.g.,
if the samples belong to two or more different batches (batch effect). A degradation plot,
an intensity-density plot and a box plot are used to check if one or more samples have
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a behaviour (outliers) that differs from the others (the main group). In particular, the
box plot should be performed before and after normalization. The normalization process
usually allows minimizing both the random and batch effects. After the data is verified as
’clear’, the main analysis process can start. First step is to find the differentially expressed
genes between classed of samples. The result can then be visualized by a volcano plot or
by an heatmap (see Figure 2.12). The Heatmap for example, is a method to visualize omic
data and helps identify patterns of activity or expression with respect to clinical groups,
for example patients with or without metastatic disease. The Heatmap visualization and
interpretation is followed by a survival analysis where Cox regression is used, a risk index is
generated and patient subgroups are visualized using the Kaplan-Meier plot, which shows
the probability for survival of subsets of patients, for example those that are predicted as
being at high risk and those that are predicted as low risk for a malignancy. Figure 2.12
shows some plots and results from the scenario.

Figure 2.12.: Overview on scenario plots and results. From the left upper panel: un-
normalized samples box plot, normalized samples box plot, intensity/den-
sity plot, survival analysis (Kaplan-Meier plot, metastases free survival),
Heatmap (shows the regulation of the differentially expressed genes), Vol-
cano plot (genes displayed in blue are those that are differentially expressed
between the categories ’detach’ and ’non-detach’).
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2.4. DataMiningGrid, ACGT and p-medicine

Parts of the results of this thesis were achieved in the context of the European research
projects DataMiningGrid [35], ACGT [34] and p-medicine [97]. These projects included
the development of grid- and workflow-based environments supporting data mining. In the
following, the projects will be introduced briefly. The approaches which will be presented
in the Chapters 3, 4 and 5 are implemented and evaluated in the context of the analysis
environments of these projects.

2.4.1. The DataMiningGrid Project

The DataMiningGrid project [35], which was supported by the European Commission un-
der FP6 grant No. IST-2004-004475, was a large-scale effort which aimed at developing a
system that brings WSRF-compliant grid computing technology to users and developers
of data mining applications. The output of the DataMiningGrid project is the DataMin-
ingGrid system.

A challenge of DataMiningGrid was to develop an environment suitable for executing
data analysis and knowledge discovery tasks in a wide range of different application sectors,
including the automotive, biological and medical, environmental and ICT sectors [123].
Based on a detailed analysis of the diverse requirements of these applications, generic
technology for grid-based data mining was developed in the DataMiningGrid project.

Existing grid technology already provided a diverse set of generic tools, but due to
the generality the available functionality partially lacked to specifically support advanced
data mining use-cases. In the DataMiningGrid project, enhancements to open source grid
middleware were developed in order to provide the specialised data mining functionality
required by the use-cases. This included functionality for tasks such as component dis-
covery, data manipulation, resource brokering, and component execution. The result is a
grid-based system including all the generic functionality of its middleware and additional
features that support the development and execution of complex data mining scenarios.

The contribution of Chapter 3 is implemented in the DataMiningGrid system. The
technical architecture of the DataMiningGrid system will be described in more details in
Section 3.4.1.

2.4.2. The ACGT Project

The Advancing Clinico-Genomic Clinical Trials on Cancer (ACGT) project [34], which
was partially funded by the European Commission under the project identifier FP6-2005-
IST-026996, aimed at providing an open environment for supporting clinical trials and
related research through the use of grid-enabled tools and infrastructure.

With the accelerating development of high-throughput technologies in the domain of
biomedical research and of their use in the context of clinical trials, hospitals and clinical
research centres are facing new needs in terms of data storage and analysis [149]. E.g., in
the context of microarray analysis of a tumour biopsy the data for a single patientincludes
10’000s to 100’000s of gene-expression values summarizing up-to millions of microarray
features [150]. New technologies based on imaging, genome sequencing and proteomics
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are pushing even further the needs for data processing in the clinical research. The ACGT
project aimed at addressing the analysis of such complex data sets by developing appropri-
ate data exploitation approaches, integrating the know-how acquired in many independent
fields into a powerful environment that physicians can easily and safely use, for the bene-
fit of the patients [149]. Several initiatives with a similar goal started worldwide, among
which NCI’s caBIG (Cancer Biomedical Informatics Grid) [25] in the USA and CancerGrid
in the UK [134].

The ACGT project aimed at providing an IT infrastructure supporting the manage-
ment of clinical trials (e.g. patient follow-up), as well as the data mining involved in the
translational research that often occurs in parallel. It is in relation to the latter aspect of
the project that the need for a high-performance environment supporting the R language
(see Section 2.1.3) and the vast collection of already existing biostatistics algorithms was
recognized. The contribution of Chapter 4 is implemented in the ACGT system. The
technical architecture of the ACGT system will be described in more details in Section
4.7. Furthermore, parts of the case study in Chapter 5 are based on the ACGT project

In ACGT, the problem of describing the content and semantics of heterogeneous data
was addressed in the following way (summarized from [140]): The semantic mediation
layer included in ACGT is designed to allow end users and client applications performing
integrated queries against a set of heterogeneous biomedical databases. The ACGT Mas-
ter Ontology was specifically designed within the ACGT environment to serve as unified
schema of this mediation layer [23]. This ontology acts as database schema for performing
integrated queries to a set of underlying databases. The main component of the layer - the
semantic mediator - accepts queries in SPARQL [5], thus sticking to the most widespread
standard for querying of resources in the web. Employing a self-designed mapping archi-
tecture, the mediator is able to detect which data sources are needed to solve a query
and generate the queries for such sources. At this level, the mediator delegates on the
database access wrappers, which hide the syntactic peculiarities of each database by of-
fering SPARQL access to all of them. The mediator is then able to collect all sub-results
and combine them in a single result-set that is returned back to the user.

The ACGT Query Editor is a web-based graphical tool designed to allow simple and
intuitive access to the semantic mediator. SPARQL is the most widespread query language
for RDF-based databases, but requires certain degree of technical knowledge to be able
to construct queries with it. The aim of the ACGT semantic mediation layer was to offer
integrated querying services to clinicians and biostatisticians who would presumably lack
advanced technical background. The goal of the Query Editor was to allow such users to
take advantage of the querying capabilities. The tool guides the user in the construction
of SPARQL queries. The user simply needs to click on the elements which he wants to
retrieve, and then select which restrictions (if any) should be included.

By the use of an ontology to describe the underlying data, differences in terminology,
data representation and structure could thus be (to a certain degree) easily tackled. In
addition, the use of an ontology offers additional interesting features. The mediator takes
advantage of the hierarchical organization of the information in the ontology to offer
functionalities such as testing if a query has a translation to a specific dataset. The
Query Editor also manages the information of the ontology so that the user can build
more complex queries with ease. For example, the Query Editor is able to generate
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ontology views which encapsulate several source views at the same time, thus giving the
user the possibility to build queries that retrieve and integrate data from all sources.
Semantic mediation techniques will be used for specifying data requirements for data
mining processes in Section 5.6.

2.4.3. The p-medicine Project

The project p-medicine - ”From data sharing and integration via VPH models to personal-
ized medicine” - is a 4-year Integrated Project co-funded under the European Community’s
7th Framework Programme (FP7/2007-2013) under grant agreement No. 270089 [97]. It
aims at developing new tools, IT infrastructure and VPH models to accelerate personalized
medicine for the benefit of the patient.

The p-medicine consortium is creating a ”biomedical platform to facilitate the trans-
lation from current practice to predictive, personalized, preventive, participatory and
psycho-cognitive medicine by integrating VPH models, clinical practice, imaging and omics
data” [109]. The project includes multi-level data collection within clinico-genomic tri-
als and interdisciplinary analysis by clinicians, molecular biologists and other specialists
involved in life science, as this is mandatory to further improve the outcome of cancer
patients’ treatment. It will allow for merging research results of biomolecular findings,
imaging studies, scientific literature and clinical data from patients.

The main part of the engineering of the requirements, the example scenario presented
in Section 2.3.5 and parts of the case study in Chapter 5 are based on the p-medicine
project.

2.5. Wrap-up

In this chapter we have introduced the preliminaries and state-of-the-art and prior work
from the field of data mining and scientific data analysis. In detail, we introduced data
mining and the standard data mining process model CRISP. In addition, we described
how data mining is used in practice and gave some basic definitions. In the area of
bioinformatics, data mining is used in the context of larger systems. Thus, subsequently we
presented background information on the area of distributed data mining, grid computing,
process modelling and workflow environments. After that, we gave an introduction into
bioinformatics including user groups, data sources and tools, and presented a clinical trial
scenario as example of a scenario in bioinformatics. Finally, we introduced the European
research projects DataMiningGrid, ACGT and p-medicine, in which the contributions of
this thesis are partially implemented.
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3. Integration of Existing Data Mining
Components into Grid-based Systems

The goal of this chapter is to introduce an approach for the integration of existing data
mining components into distributed systems based on grid middleware. For many anal-
ysis purposes there already exist available data mining components which can be reused
for setting up data mining processes. However, such available components need to be
integrated into grid-based analysis environments used in the medical and bioinformatics
domain. But, today’s grid-based analysis environments are complex in handling in terms
of user interaction, resource management, and service discovery, which makes the integra-
tion of data mining components into such environments a complex task. Thus, there is an
approach needed for the integration and reuse of state-of-the-art data mining components
by users without deeper knowledge on the underlying grid middleware and without inter-
vention on the component side. In the following, we present an approach that allows for
an integration of atomic components into grid environments based on a metadata schema.
The approach addresses the needs of the community to setup data mining processes by
reusing available data mining components.

This chapter first introduces the requirements for the integration method in Section 3.1.
Second, related work is presented in Section 3.2. Subsequently, we present our approach
for integrating data mining components that have been developed in a single computer
environment into distributed systems based on grid middleware in Section 3.3. The process
of integrating components into grid-based systems is also called grid-enabling data mining
components. Our approach is based on a meta-data schema definition, the Application
Description Schema (ADS), and associated services. The schema is used to manage user
interaction with system components of the grid system in order to grid-enable existing data
mining components, to register and search for data mining components, to match requests
for the execution of data mining components with suitable computational resources, and to
dynamically create user interfaces. Section 3.4 provides case studies that demonstrate the
applicability of our approach. We show that it is possible to implement the architecture
of our approach in the grid environment of the DataMiningGrid project, that it is possible
to create an user interface which is easy to use by users who do not have knowledge on
grid technology, and that our approach supports standard data mining components and
data mining scenarios in general. Finally, Section 3.5 wraps up. This chapter is mainly
based on [123, 124, 142, 143].
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3.1. Requirements

In this chapter, we focus on supporting the user in reusing standard data mining com-
ponents that are developed for single processor environments, e.g. provided by the Weka
data mining toolkit [156] or R [103] (see also Section 2.1.3), in a grid-based system with
small effort by an approach on grid-enabling these data mining components.

In the following, we assume that the analysis scenario of the user can be addressed by
reusing and correctly composing available data mining components. Thus, we do not focus
on the development of new data mining components, but on an efficient development of
new data mining processes in grid-based distributed systems based on existing data mining
components.

The amount of electronically available data for bioinformatics scenarios is increasing over
time. The fact that the data is not focussed on a specific research question necessitates
complex process chains for analysing the data. Resulting from that, the reuse of existing
components is needed for efficiently setting up analysis solutions. Hence, the complexity
of analysis solutions is increasing, and so does their demand for computational and storage
resources.

Scenarios in bioinformatics involve data from different hospitals and corresponding re-
search organizations (see Section 2.3). Thus, the data is inherently distributed. Re-
searchers in different organizations are collaborating when working on analysis scenarios
based on these data. Typically, the data includes detailed information on patients. Thus,
the data are privacy sensitive.

Grid technology [49, 50] is used to address the needs of the bioinformatics scenarios for
providing an environment for handling distributed, privacy sensitive data that can be used
in analysis processes (see also Section 2.2.2).

From the characteristics of bioinformatics scenarios, data mining and grid-based systems
several requirements can be derived for the method for integrating and reusing data mining
components in grid-based systems. Basing on the requirements engineering in the context
of the DataMiningGrid project [123], the following requirements have to be met from the
point of view of an bioinformatician that is developing a solution for a bioinformatics
scenario:

• Reuse by users themselves: As there exists a huge amount of data mining com-
ponents for very different purposes, it is not feasible to integrate all components in
advance. Thus, it should be an easy task for users to integrate and reuse components
by himself.

• Reuse without component modification: The users should be able to integrate
existing data mining components with little or no intervention in existing code of the
component, as they might have no knowledge on the implementation of a component,
as they might not be able to further develop atomic components at all or as the code
of the component might be unavailable.

• Extensibility without platform modification: It should not be necessary to
programmatically modify the grid system, neither on the server nor on the client
side, to integrate a new data mining component.
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• Transparency: The details of the underlying technology of the grid system should
be hidden from the users, since they usually do not have expertise in distributed
systems.

Data mining processes include data intensive and complex tasks that require many
computational resources and a lot of domain knowledge. From CRISP [121], which was
already described in Section 2.1.2, results that a lot of very different data mining processes
exist in the form of iterative, complex workflows. Such workflows are, e.g., published at
repositories such as myExperiment [58]. Thus, the following requirements have to be met
[123]:

• Generality of the extensibility mechanism: The integration method should
cover a variety of different data mining components and should support a wide range
of data mining processes. Thus, it has to support the common steps of data mining
processes that can be seen as standardizable as described in Section 2.1.3: chaining,
looping, branching, parameter variation (parameter sweep), cross-validation, and
data partitioning.

• Efficiency: Data mining components should be able to run in an efficient way in the
grid system, based on batch job execution and parallel processing of the standard
tasks parameter sweep and cross-validation (see Section 2.1.3) to save execution time.
This also requires shipping of data, which means to send the data to the machine
where the data mining component is executed, and shipping of components, which
means to send the component to the machine where the data it operates on is located.
In addition, the integration into the grid environment should introduce only little
overhead.

Shipping of data is important in cases where either the full data set is partitioned to
facilitate distributed computation (e.g. for k-NN, where objects are assigned to the class
most common amongst its k nearest neighbours [156]), or where the same source data set
is moved to different machines and repeatedly analysed (e.g. for ensemble learning, where
different data mining components are executed and the results are combined afterwards).
Shipping components to the location of the data for execution helps to save data transfer
time. This is one of the major options in setting up a distributed data mining process. It is
required when, as it is often the case, no pre-configured pool of machines is available that
already has the data mining functionality installed. The option to ship components to
data allows for flexibility in the selection of machines and reduces the overhead in setting
up the data mining environment. It is especially important when the data naturally exists
in a distributed manner and it is not possible to merge it. This may be the case when
data sets are too large to be transferred without significant overhead or when, e.g., security
policies prevent the data to be moved.

3.2. Related Work

In recent years, a number of environments for grid-enabling data mining tools have been
described. The importance of extensibility for data mining platforms has already been
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argued in [158]. Today, there exist a lot of systems which are capable of distributed data
mining. While in [123] a general comparison of a variety of systems has been done, we
focus on grid-based system that are related to OGSA here.

GridMiner [22] is designed to support data mining and online-analytical processing
(OLAP) in distributed computing environments. The system is based on a service ori-
ented architecture (SOA) supporting OGSA grid services and OGSA-DAI database access.
GridMiner implements a number of common data mining algorithms, including parallel
versions. In the GridMiner system, each data mining component is integrated by wrapping
it by a single OGSA-based grid service. This means that for each data mining component
to be integrated there is a need for developing a new service. Thus, the approach does
not fully support the reuse by the users themselves, as the integration of components in
terms of creating new grid services is complex for users. Furthermore, the approach does
not support extensibility without component modification, as the components have to be
developed into grid services.

The Federated Analysis Environment for Heterogeneous Intelligent Mining [8] (FAE-
HIM) implements a toolkit for grid-based data mining. It consists of grid services for data
mining and a workflow engine for service composition. Based on algorithms taken from
Weka, the grid services split into the types classification, clustering and association rules.
The services are not limited to algorithms from Weka, but for each data mining component
or set of components a new service has to be developed. Thus, similar to GridMiner, the
approach does not fully support the reuse by the users themselves, as the integration of
components in terms of creating new grid services is complex for users. In addition, the
approach does not foresee that the components can be executed as grid jobs, which limits
the ability for efficient execution.

Weka4WS [127] is a framework for supporting distributed data mining on grid envi-
ronments, designed by using the Web Service Resource Framework (WSRF) to achieve
integration and interoperability with standard grid environments. The Weka4WS system
is based on the data mining toolkit Weka. A single web service interface is used to provide
access to the data mining algorithms implemented in Weka. Thus, the extensibility of the
system is restricted to algorithms that are contained in the Weka toolkit, which constraints
the generality. Similar to FAEHIM, the approach does not foresee that the components
can be executed as grid jobs, which limits the ability for efficient execution.

Knowledge Grid (K-Grid) [26] is a service-oriented framework that has been designed
to provide grid-based data mining tools and services. The system facilitates data mining
in distributed grid systems and related tasks such as data management and knowledge
representation. The system architecture is organized in different layers: The Core K-
Grid Services handle the publication and discovery of data sources, data mining and
visualization tools, and mining results as well as the management of abstract execution
plans that describe complex data mining processes. The High-level K-Grid Services are
responsible for searching resources, the mapping of resource requests from the execution
plans to the available resources in the grid, and the task execution. The Knowledge
Directory Service (KDS) is responsible for maintaining the descriptions of components
that can be used in the Knowledge Grid. The description of components is based on
XML documents, which are stored in a Knowledge Metadata Repository (KMR). The
metadata about data mining components includes information about the implemented
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task (e.g., classification, clustering, regression), complexity of the used algorithm, location
of executables and manuals, syntax for running the program, and format of input data
and results. From the technical point of view, the approach for describing and using
pre-existing components is similar to our approach. However, in K-Grid the integration
is focused only on components that are installed on computers that are part of K-Grid,
which limits the generality of the approach. It does not support the reuse by the users
themselves, as the components need to be installed by administrators on the machines
attached to the grid first.

Discovery Net [9] provides a service-oriented computing model for knowledge discovery,
focused on scientific discovery from high-throughput data generated in life science, geo-
hazard and environmental domains that allows to access and use third party data analysis
software and data sources. Based on Globus Toolkit, the system provides services to de-
clare the properties of analysis tools and data stores, to integrate various data sources
(e.g. SQL-Databases, OGSA-DAI sources etc.), to discover and compose Knowledge Dis-
covery Services, to integrate data from different data sources using XML, and to deploy
knowledge discovery processes as new services. In Discovery Net, components are defined
as encapsulated code, which can be bound to a resource or resource-free. Resource-free
means that the execution engine decides where to execute the component, whereas bound
means that it can only be executed on a certain computing resource. An XML schema
called Discovery Process Markup Language (DPML) is provided for describing processes
including data mining components. The description of a data mining component includes
information on input and output types, parameters, constraints (e.g. range of validity,
discrete set of possible values, optional or required) and registration information such as
category, keywords and description [38]. However, each component has to be made avail-
able via a separate service, which makes it complex for users to reuse the components
by themselves in grid service development. In addition, support for the parallelization of
cross validation and parameter sweeps is not supported by the description schema, which
limits the ability for efficient execution.

3.3. Integration of Data Mining Components

In this section, we will present our approach on grid-enabling data mining components
and describe which architecture is needed to fulfil the requirements from Section 3.1.
We assume that the data mining component to be reused and integrated into the grid
environment is a component according to the definition from Section 2.1.4. The approach
for the integration of data mining components is based on a meta-data schema definition,
which is called Application Description Schema (ADS), and associated services. The
schema is used to manage user interaction with components of the grid environment to
grid-enable existing data mining components, to register and search for components on
the grid, to match jobs with suitable computational resources, and to dynamically create
user interfaces. The process of grid-enabling data mining components is supported by
a web based procedure providing a user interface for end users. By our approach we
address the requirements on the integration and reuse of data mining components in grid
environments.
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In the following, we introduce the architecture of our approach. Subsequently, we present
the details of the Application Description Schema. Finally, the processes for registering
and for executing data mining components will be presented.

3.3.1. Layered Architecture

The Open Grid Services Architecture (OGSA) [46], presented in Section 2.2.2, describes a
reference architecture for a service-oriented grid computing environment. This architecture
represents a blueprint for grid-based systems. Thus, our method for integrating data
mining components into grid-based systems has to build on the grid reference architecture.

As it is required to allow for the reuse of data mining components without the need to
modify the component, our approach for the integration needs to be able to directly reuse
the executable files of the components. From the requirement for reuse without platform
modification results that there should be no need for extending the grid middleware by new
services or to add new client components for integrating and executing new data mining
components. Thus, our approach needs to base on a generic mechanism for the integration
at the level of the grid middleware and needs to allow for generic client components. In
addition, the details of the grid middleware should be hidden from the user to achieve
transparency. To address these issues, we foresee a registry for data mining components
based on meta-data and client components that can build dynamic GUIs based on that
meta-data. OGSA based grid environments provide Information Services, which allow for
service and resource discovery. Thus, the component registry of our approach can build
upon the OGSA Information Services. The client user interfaces are part of the application
layer of OGSA and can build on available middleware services. In our approach, the client
components are designed to create GUIs dynamically and to allow the specification of data
inputs, parameters and the configuration of the data mining components.

In addition, it is required that the data mining components can be executed in the
grid environment in an efficient way. From this results that there is a need for batch
execution of data mining components including the possibility to transfer the data or
the data mining component to certain computational resources in the grid. Services for
Resource and Execution Management, Data Management and Monitoring are provided
by OGSA. Thus, the execution of data mining components in the grid can build upon the
Execution Management Services of OGSA, which provide job management functionality
for job execution on grid resources managed by the Resource Management services. Data
files can be transferred by the Data Services of OGSA anyway. As our data mining
components are based on executable files and not on individual grid services, they can be
also transferred with the same mechanisms.

The architecture of our approach can be described as a layered architecture with 3
layers: The fabric layer, the middleware layer and the application layer (see Figure 3.1).
The bottom layer (fabric) consists of the infrastructure services, providing computational
resources and software resources. This includes the executable files and associated libraries
of the components, the input and output data as well a the machines where the executions
take place.

The middle layer (middleware) includes the services provided by the grid middleware
foreseen by the grid middleware layer of OGSA (as described in Section 2.2.2). The
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important OGSA services for our approach are the following: The Information Ser-
vices, to make components searchable in the registry mechanisms; the Data Services,
to transfer executable files, associated libraries and input and output files; the Resource
& Execution Management Services, to execute components on grid resources; the
Self-Management Services (Monitoring & Analysis), to monitor and analyse the
executions.

In the top layer (application), there exist client components which interface with the
grid middleware services and provide user interfaces for the end users. The client compo-
nents include the application enabler, which is used to grid-enable existing data mining
components, and a set of clients to execute the grid-enabled components in the grid en-
vironment. The latter allow for searching components in the grid registry (Explorer), for
specifying the execution details such as parameters and inputs (Control), for starting and
monitoring the execution (Execution) and for viewing provenance information about the
execution (Provenance).

When grid-enabling data mining components, a detailed description of the components is
needed for the integration with the core components of OGSA. This information represents
meta-data of the component. In our approach, the handling of this information is based
on describing the data mining component by meta-data in a single schema that includes
the necessary information: the Application Description Schema (ADS). The interfaces
between the client components in the application layer and the services in the middleware
layer are based on the ADS. Details on the ADS meta-data description schema will be
presented in the next section.

Figure 3.1.: Architecture for grid-enabling data mining components.
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3.3.2. The Application Description Schema

In our approach, the information about the data mining components needed by the mid-
dleware services of OGSA to allow for integration and execution in the grid environment
are maintained by a single meta-data schema. The schema forms the basis for interactions
and information exchange with the grid middleware. Figure 3.2 visualizes this idea. The
schema includes a common part, which could be used for describing any command line
component independent from the application domain, and a data mining specific part. By
this, our approach can be adapted to other domains by reusing the common part of the
schema and just exchanging the data mining related part.

Figure 3.2.: The Application Description Schema (ADS) for interaction and information
exchange between grid middleware services of OGSA.

For registering and executing data mining components in the grid environment, there
is information needed for the following OSGA services:

• Information Services. There is a need for information on the grid-enabled data
mining components in order to make them searchable in the registry mechanisms
provided by the information services of the grid middleware. This includes informa-
tion that allows for searching and finding the new data mining component in the
grid registry, such as name, domain, and description.

• Data Services. There is a need for uploading executable data mining components
and their inputs and the transfer of the outputs by the data services of the grid
middleware. Thus, there is information needed on the location of the executable file
of the component as well as the input and output files.

• User Interfaces or Workflow Environment. There is a need for (dynamic)
user interfaces that allow the specification of data inputs, parameters and the con-
figuration of the data mining components as part of the application layer of the

48



3.3. Integration of Data Mining Components

grid middleware. Thus, there is a need for detailed information on the parameters,
options, inputs and outputs of the component.

• Resource & Execution Management Services. There is a need for specifying
information for executing the data mining components to enable a correct execution
by the grid middleware. This includes information on the system requirements of the
data mining component such as the runtime environment and the required memory.
In addition, the information on inputs and parameters of the component is needed
here also.

• Self-Management Services (Monitoring & Analysis). There is a need for stor-
ing detailed information on the execution of the data mining component including
inputs, parameters, outputs and execution and monitoring information for analysis
and reuse.

Similar to the approaches presented in [26, 9] we use XML to define the ADS metadata
schema for describing the executable data mining component in order to define how it is
used with the system.

The ADS descriptions include general information about the data mining component
(e.g., metadata like a name and a textual description), execution information (e.g. the
executable file, programming language and required libraries), application information
(e.g. the number and type of the component’s options and data in- and outputs and the
minimum resource requirements) and data mining specific information (such as technique
and CRISP phase), which have to be specified when grid enabling the component.

Before executing the component, users have to specify additional information that is
needed for the execution such as the values for the parameters, the in- and output files or
directories or the execution machine if the component is to be shipped to a certain machine.
Thus, each grid-enabled data mining component refers to a particular instance of the ADS,
which are passed, at different levels of specification, between the system components to
manage interaction. After the execution of a component, provenance information can be
collected about the execution in the grid.

In the following, we will present the details of the ADS definition. Please see the Section
A.1 of the Appendix for a complete XML schema definition of the ADS.

Main Schema

As visualized in Figure 3.2, the ADS is divided into different parts: the common part,
the data mining part and the provenance part. Below we summarize the structure and
content of the ADS. The common part of the ADS describes aspects that are common to
all components enabled to run on the grid. It captures component-relevant information
that falls into three major categories: generalInformation, executionInformation and ap-
plicationInformation. The data mining part describes information that specifically relates
to data mining components and captured in the category dataminingInformation. Fur-
thermore, provenance information can be collected in the category provenanceInformation.
The reason for this segmentation is that the grid services are depending on different kinds
of information (see also Figure 3.3).
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Figure 3.3.: The different parts of the ADS address the need for information for different
grid services.

The ADS schema definition consists of the definition of the ApplicationDescriptionType,
a single application element of the type ApplicationDescriptionType, and a single prove-
nanceInformation element of the type ProvenanceType (see Listing 3.1 and also Section
A.1.1 in the Appendix). The ApplicationDescriptionType is defined as a complexType
consisting of a sequence of 4 elements. These elements are the following: generalInforma-
tion, dataminingInformation, executionInformation and applicationInformation. Details
on these elements will be presented in the following.

Listing 3.1: Main Part

<xsd:complexType name="ApplicationDescriptionType">

<xsd:sequence>

<xsd:element name="generalInformation"

type="com:GeneralInformationType" />

<xsd:element name="executionInformation"

type="com:ExecutionType" />

<xsd:element name="applicationInformation"

type="com:ApplicationinformationType" />

<xsd:element name="dataminingInformation"

type="dm:DataMiningType" />

</xsd:sequence>

</xsd:complexType>

<xsd:element name="application"

type="app:ApplicationDescriptionType" />

<xsd:element name="provenanceInfo" type="prov:ProvenanceType" />
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generalInformation

The generalInformation part specifies different general aspects of the component which will
be useful for different purposes (searching for components, provenance, administration).
The generalInformation element is of the type GeneralInformationType, which is defined
as a complexType consisting of several elements and attributes (see Section A.1.2 in the
Appendix for details) and covers the following information:

• shortDescription - a short description of the component.

• long description - a long description of the component.

• comment - a comment about the component.

• id - a unique id that identifies the component.

• vendor - the vendor of the component.

• swVersion - the software version of the component.

• codeVersion - the source code version of the component.

• build - the build version of the component.

• uploadDate - the date when the component was uploaded.

dataminingInformation

The dataminingInformation part of the ADS describes information that is specific to
the data mining aspect of the component, which is used for the registration information
needed by the Information Services of the grid middleware. This information is used
to facilitate the discovery of data mining components and data mining-aware resource
brokering. The dataminingInformation element is of the type DataMiningType, which
is defined as a complexType consisting of several attributes (see Section A.1.3 in the
Appendix for details). In detail, this includes the following information:

• applicationDomain - a description of the domain (e.g. Data Mining).

• applicationGroup - the software suite the component is part of (e.g. Weka).

• applicationName - the name of the data mining component (e.g. IBK).

• functionalArea - the data mining method or methodology the component employs
(e.g. classification).

• technique - the data mining algorithm used by the component (e.g. KNN).

• CrispDMphase - the CRISP phase [121] the component is used for (e.g. Modeling).

51



3. Integration of Existing Data Mining Components into Grid-based Systems

executionInformation

The executionInformation part contains information relevant to the execution of the com-
ponent, which is used for the job descriptions needed by the Execution Management
services of the grid middleware. The executionInformation element is of the type Execu-
tionType, which is defined as a complexType consisting of several elements and attributes
(see Section A.1.2 in the Appendix for details). In detail, this information includes the:

• execution environment - the execution environment (e.g. java, bash-shell or python),
including information on the executable file(s) and the commands and arguments
used at start-up.

• requiredLibrary - specifies if there are additional libraries needed for executing the
component.

• stage-in - specifies if additional files need to be staged-in.

• remoteSubdirectory - specifies if the files have to be staged-in into a certain remote
subdirectory.

applicationInformation

The applicationInformation part is by far the most comprehensive one. It provides con-
figuration information of the component such as options, parameters, inputs and outputs,
which is used for the job descriptions needed by the Execution Management services and
the creation of the user interfaces for specifying the execution details. The applicationIn-
formation element is defined as a complexType consisting of several elements (see Section
A.1.1 in the Appendix). In detail, this information includes the:

• options - options or parameters used when the data mining algorithm implemented
by the executable file is executed. All options or parameters are typed and can be
optional (a default may or may not exist and may be overwritten by the user) and
hidden (an option transparent to the user).

• dataInputs - data input slots are used to describe the component’s input data, i.e.,
data types (file or directory), transfer protocols permissible for particular data, phys-
ical location of data, and other descriptors (e.g. whether data input is optional or
mandatory).

• dataOutputs - data output slots are used to describe the component’s output data.

• hostEnvironmentVariables - environment variables that need to be set at the execu-
tion machine before executing the component.

• requirements - the requirements section of the ADS captures the component’s system
requirements. This information is processed by the Execution Management Services
of the grid middleware and used to match components to computing resources. Typ-
ical entries include requirements for memory, disk space, the type of WSGRAM job
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manager specifying the way of executing the job by the middleware (Fork for execu-
tion on the machine that runs the grid middleware or Condor for submitting the job
to a Condor cluster [130]), optional user-defined IP addresses of execution machines,
operating systems and processor architectures (e.g., Motorola PowerPC, Intel i386
and higher).

• parameterLoops - parameter loops for executing iterations over loop counters. The
loop element is used for sweeps or iterations over a user-defined interval with a fixed
step size.

• parameterLists - parameter lists for executing iterations over a list of values (e.g.
parameters or inputs). The list element facilitates a sweep over a list of numeric
or nominal values. Such a list may either be provided explicitly by the user, or
generated automatically by the system if a repeated execution with a list of different
values is required.

provenanceInformation

The provenanceInformation part is used for storing information about the executed com-
ponent and details on the execution. Based on this information, the users can track the
executions and analyse errors in the specification of the executions The provenanceInfor-
mation is defined as a single element (see also Section A.1.4 in the Appendix). In detail,
this includes the following information:

• submissionTime - the time when the job was submitted.

• completionTime - the time when the job was completed.

• schedulerStatus - the status of the scheduler after job completion.

• resultsLocation - the location of the results of the job.

• jobsStatus - the status of the job after completion.

• gramsStatus - the status of the resource manager after job completion.

3.3.3. Process of Registering and Executing Data Mining Components

Bioinformaticians who want to grid-enable their data mining components have to describe
the components according to the ADS. This means that they have to create an instance of
the ADS for their component. Instances of the ADS are XML documents at various levels
of specification, which are passed among system components. The documents can differ in
the specification of the values for the options, inputs, requirements, etc. For an execution,
the ADS instance must be fully specified. This means that all non-optional values have
to be set. The ADS is expressive enough to accommodate data mining components from
a wide range of platforms, technologies, application domains, and sectors, and has been
tested with eight different application domains [124]. Code listing 3.2 gives an abstract
example. Detailed examples will be given as part of the case studies presented in Section
3.4.
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Listing 3.2: An ADS instance (as pseudo code)

<?xml version="1.0"?>

<app:application ...>

<generalInformation ...>

<longDescription>...</longDescription>

<comment .../>

</generalInformation>

<dataminingInformation .../>

<executionInformation>

<javaExecution ...>

<interpreterArguments>...</interpreterArguments>

<applicationRunFile.../>

</javaExecution>

</executionInformation>

<applicationInformation>

<options .../>

<dataInputs .../>

<dataOutputs .../>

<requirements>

<minMemory .../>

<operatingSystem .../>

<architecture ...>

<value>...</value>

</architecture>

</requirements>

</applicationInformation>

</app:application>

The Application Enabler, which is part of the architecture described in Section 3.3.1,
is a tool that is used to create an ADS instance for a given data mining component. The
process of grid-enabling data mining components is as follows:

1. ADS instance. Based on the ADS, the different types of information needed for
a successful integration of the component in the grid are collected and formalized.
The result is an instance of the ADS specifically created for the component.

2. Registration. After it’s creation, the ADS instance is stored via the Information
Services of the grid middleware in the grid registry and the executable is trans-
ferred to a storage component attached to the grid via the data services of the grid
middleware.

Figure 3.4 visualizes the idea on how to grid-enable data mining components. An
implementation of the Application Enabler as web application in the DataMiningGrid
system will be described in Section 3.4.2.

When the component is successfully registered, it is ready to be found and executed.
The tools for the execution of grid-enabled data mining components consist of the client
tools Explorer, Control, Execution and Provenance (see Section 3.3.1).
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Figure 3.4.: Reusing data mining components by registering them in the grid environment
with the help of the ADS.

In the following, we will describe how the ADS interacts with the grid system compo-
nents on the execution of a data mining component. Figure 3.5 visualizes the interactions.

1. Search. With the Explorer tool the user searches the grid registry for the registered
data mining component to execute by specifying search terms for metadata fields of
the ADS. The Explorer tool accesses the Information Services of the grid middleware
to search for information on the registered components based on the metadata from
the ADS instances. By selecting a component, the respective instance of the ADS
is fetched from the registry and is transferred to the Explorer tool. From there, it
can be passed to the next tool (Control tool). Note that the ADS instance is not
necessarily fully specified at this stage.

2. Parameters. The Control tool dynamically creates a GUI for specifying the options,
inputs and requirements of the data mining component based on the information
from the ADS instance. If the ADS instance is fully specified, which means that all
of the necessary parameters are set, it can be passed to the Execution tool. If it is not
yet fully specified, the user specifies the parameters and data input for the selected
data mining component via a user interface. In addition, file- or parameter-sweeps
can be configured. The ADS instance is now fully specified and is prepared for the
execution with the grid middleware.

3. Execution & Monitoring. The execution tool is responsible for transforming the
ADS instance into a format that can be passed to the Resource and Execution Man-
agement Services of the grid middleware. According to the specified requirements
and parameters, the job is scheduled and executed on the hardware resources on the
grid. During the execution, the job status can be monitored via the Execution tool,
which represents a client for the execution services of the grid middleware. When
the execution is finished, further information about the execution are added to the
ADS instance as provenance information. This information can be visualized by the
Provenance tool.
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4. Provenance. After execution, the ADS instance and other relevant information
on the execution can be inspected and stored as provenance information for a later
analysis via a user interface by the Provenance tool.

An implementation of these tools as extensions to the Triana workflow environment in
the DataMiningGrid system will be presented in Section 3.4.1.

Figure 3.5.: Executing a grid-enabled data mining component with the help of the ADS
in the grid environment.

3.4. Case Study DataMiningGrid

In this section we will present case studies that demonstrate the applicability of our ap-
proach for the integration of existing data mining components into grid environments. In
the first case study in Section 3.4.1 we show that it is possible to implement the archi-
tecture of our approach in the context of the DataMiningGrid project. In Section 3.4.2,
the second case study demonstrates that it is possible to create an user interface for grid-
enabling data mining components based on the ADS which is easy to use by users who
do not have knowledge on grid technology. In the third case study, we show that our
approach is applicable for the integration of standard data mining components into grid
environments in Section 3.4.3. The forth case study demonstrates that our approach also
supports data mining scenarios based on the grid-enabled components in Section 3.4.4.
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3.4.1. Implementation in the DataMiningGrid System

The DataMiningGrid system [123] was developed in the context of the DataMiningGrid
project [35] (see also Section 2.4). The sourcecode of the DataMiningGrid system is
partially available at sourceforge1. In this case study, we show how our approach on inte-
grating data mining components into grid-based systems is implemented in the DataMin-
ingGrid system. The case study is based on [123, 143].

The DataMiningGrid system is based on two important distributed computing stan-
dards: the Open Grid Service Architecture (OGSA [46]) and the Web Services Resource
Framework (WSRF [3]). The layers of the DataMiningGrid architecture split up into the
Software and Hardware Resources Layer, the Globus Toolkit 4 Layer, the DataMiningGrid
High-Level Services, and the DataMiningGrid Client Components. Figure 3.6 depicts the
DataMiningGrid system architecture. Generally, components in higher layers use the com-
ponents from lower layers. The bottom layer is the software and hardware resources layer,
which refers to the fabric layer of OGSA. The Globus Toolkit 4 layer includes some of the
system’s core grid middleware components and refers to the middleware layer of OGSA.
The high-level services layer shows components providing central DataMiningGrid service.
It refers to the application layer of OSGA but does not include client components. The
Application Clients layer depicts the client-side components of the DataMiningGrid sys-
tem and refers to the application layer of OGSA. The DataMiningGrid system is based on
the ADS as described in Section 3.3. Please see the Appendix A.1 for the detailed XML
schema definition of the ADS for the DataMiningGrid system.

In the following, we describe how our approach is implemented in the layered architec-
ture of the DataMiningGrid system.

Software and Hardware Resources Layer.

Software resources in the DataMiningGrid system include data resources, such as database
and file systems, and data mining components. Typical hardware resources include pro-
cessing units, storage devices, and computer clusters. The executable files of the data
mining components that are grid-enabled by our approach are included in this layer. The
destination of the upload of an executable file is one of the machines of the fabric layer
that provides file storage resources via GridFTP. The execution of the components take
place on machines or clusters providing computation capabilities.

Globus Toolkit 4 Layer.

The Globus Toolkit 4 (GT4) layer of the DataMiningGrid architecture provides core grid
middleware functionality. GT4 [48] is an open source toolkit for building grid systems
provided by the Globus Alliance, which meets the requirements of OGSA and implements
the WSRF (see also Section 2.2.2).

The Monitoring and Discovery System 4 (MDS4) of GT4 is essentially a system for
storing and searching dynamically changing distributed XML documents that describe the
grid’s software and hardware resources and their status. It implements the Information

1http://sourceforge.net/projects/datamininggrid/
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Figure 3.6.: The DataMiningGrid system architecture (based on [123]).

Services of OGSA and is used to store and retrieve the XML-based ADS instances of the
grid-enabled data mining components.

The data management components of GT4 include grid file transfer functionality (Grid-
FTP, Reliable File Transfer) and data services (OGSA-DAI) [12]. The GT4 data access
and integration tools (OGSA-DAI components) provide grid-enabled access to files, rela-
tional databases, and XML databases. The GT4 data management and access components
implement the Data Services of OGSA and are used to transfer the data mining compo-
nents including their inputs and outputs.

The execution management tools of GT4 handle the initiation, monitoring, manage-
ment, and coordination of remote computations. GT4 is used as a front-end to either
single machines or computational clusters, but it does not implement a global scheduling
functionality per se. GT4 provides a web service version of the Grid Resource Allocation
and Management (WSGRAM) interface, which is responsible for either the job’s execution
on the local single machine running the GT4 middleware or for forwarding and controlling
the execution via a local cluster manager such as Condor [130]. The GT4 WSGRAM
component implements the Execution Management services of OGSA and is used to ex-
ecute data mining components on matching computational resources based on the job
descriptions generated from the ADS instances.
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DataMiningGrid High-Level Services.

In the DataMiningGrid system, a job refers to the execution of a grid-enabled data mining
component that needs data files as input and appropriate computing resources to be
executed. The DataMiningGrid resource broker service is based on the GridBus resource
broker [138], which was modified to adhere to the WSRF standard. Based on a fully
specified ADS instance describing the job to be executed, the resource broker determines
the list of available hardware resources from all administrative domains. From that list, it
determines the best matching resources according to user requests and the requirements of
the data mining component, creates a job description for GT4 from the ADS instance, and
then submits the job to the WSGRAM of the selected sites. In particular, the submission
process includes data and data mining component staging and setting up environmental
variables. Afterwards, the resource broker monitors jobs and performs data stage-out and
clean-up tasks when a job completes.

The DataMiningGrid information services are designed to support the discovery, char-
acterization, and monitoring of various resources and services. These services create a
registry via the underlying MDS4 to keep records of grid-enabled software resources and
to provide information on other resources (e.g. available clusters, storage and CPU capac-
ity or operating systems). The registry managed by the information services include the
ADS instances of the grid-enabled data mining components. Users can search the registry
for software resources. The resource broker also requires the registry to plan, allocate, and
perform job execution.

DataMiningGrid Client Components.

The client components of the DataMiningGrid system split up into the Application Enabler
web application and the workflow environment. The Application Enabler is a client for
the creation and registration of ADS based component descriptions and the upload of
the executable file of the component in order to integrate the component into the grid
environment. It will be described later in Section 3.4.2.

The workflow environment is based on Triana [32, 128] (see also Section 2.2.3) and is
designed to facilitate fine-grained user control of data mining components. It supports
flexible workflow composition, parameter settings, input and output data flows, and so
on. Triana was extended by workflow components which allow access to and interaction
with the DataMiningGrid grid environment, especially for executing grid-enabled data
mining components.

A component inside a Triana workflow is called unit. In the user interface, the Triana
units are grouped in a tree-like structure. The units are split into several subgroups
referring to their functionality, e.g., data mining components, data resources, execution,
provenance and security. Figure 3.7 gives an overview of the user interface.

A workflow can be constructed by using the standard units provided by Triana and the
DataMiningGrid extensions. By using and combining these units, workflows performing
many different operations can be defined. A typical workflow for executing a single grid-
enabled data mining component consists of four different groups of units for component
exploration, data selection, component control and execution.
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Figure 3.7.: The GUI of the extended Triana Workflow Editor and Manager — this figure
shows the tree-like structure of units containing the DataMiningGrid exten-
sions, a graphical workflow and the GUI of the DataMiningGrid units Appli-
cationExplorer, ParameterControl and GridExplorer (from [143]).

The following workflow units are related to our approach:

• ApplicationExplorer: The unit ApplicationExplorer is used to browse the grid
wide registry for selecting grid-enabled data mining components.

• LoadDescription: Instead of browsing the grid registry and selecting an application
description, this unit loads an application description directly based on a unique
identifier.

• GridURI: This unit specifies the URI of the file in the grid which is used as input
file for the selected data mining component.

• ParameterControl: This unit is used for the specification of the component’s
parameters, which are in detail the options, in- and outputs and requirements. In
addition, parameter sweeps can be specified.

• Execution: The execution unit is used for specifying the component’s output di-
rectory and the execution of the component itself.
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• Provenance: The provenance unit shows provenance information about the com-
ponent’s execution. This is information about the runtime, the machines used, etc.
The provenance information can be stored in an XML-file which is later used for
analysis and the generation of runtime figures.

• GridExplorer: The grid explorer is used for browsing the component’s result di-
rectory, which contains the component’s output file as well as the standard out and
the standard err.

The following functionality is available via Triana and the DataMiningGrid extensions
[32, 122, 128, 143]:

• Chaining - Tasks can be concatenated inside a Triana workflow.

• Looping - Triana contains a Loop unit that controls repeated execution of a sub-
workflow [122, 128]. Additionally, it provides a loop-functionality when grouping
units.

• Branching - Triana provides the functionality of workflow branching based on con-
ditions or without conditions.

• Shipping Algorithms - The DataMiningGrid system allows to ship data mining
components to machines attached as computational resources. Via the information
services, which publish the ADS-based information on the components, the source
location of the component’s executable file is accessible. The executable file is then
transferred to the execution machine chosen by the resource broker on each compo-
nent execution. It is also possible to specify a certain machine for the execution in
the ADS instance used for the execution via the ParameterControl unit. This might
be useful if the data cannot be moved for some reasons.

• Shipping Data - Each time a component is executed in the DataMiningGrid envi-
ronment, the input data for the component is transferred to a local work directory
on the execution machine. If the data mining component processing the data cannot
be moved, e.g., for copyright reasons, the machine where the data is located can be
specified as execution machine.

• Parameter Variation - The DataMiningGrid system provides the possibility of
using parameter sweeps, which means that a loop (for numeric values) or a list (for
any data type) can be specified for each option of a data mining component. In
addition, it provides a loop for the input files or directories (see Figure 3.8 for an
excerpt of the GUI). By this, it is possible to submit several of jobs at the same
time.

• Parallelisation - The DataMiningGrid system supports the parallel execution of
data mining components at the same time via the execution management services
of the grid middleware, e.g., by performing a parameter sweep. The jobs are then
executed independently on the execution machines. In addition, Triana supports the
parallel execution of workflow branches. The parallelisation of a single data mining
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component is not in the scope of this chapter. However, if the component itself
supports parallelisation which is compatible with the resources of the fabric layer,
e.g. a computing cluster, the component can be executed in parallel.

Figure 3.8.: Parameter sweep — parameter loops and lists can be specified in the GUI
(from [143]).

3.4.2. User Interface for the Integration

This case study shows that it is possible to collect the information specified in the ADS in
an easy and user friendly way, thus allowing users without knowledge in grid technology
to grid-enable data mining components. It is based on [139]. In detail, the study describes
how to use the DataMiningGrid Application Enabler web interface as a user-friendly way
of writing instances of the Application Description Schema. The Application Enabler [139]
is a tool which supports the creation and registration of the description and the upload
of the executable of the component in order to integrate the component into the grid
environment.

Using the ADS, users can create detailed descriptions of their data mining component.
This assures on the one hand, that the component will run successfully, and on the other
hand, that users have a better chance to find the component in the grid. Providing the
description will always rely on the component developer or end-user, someone not really
acquainted with the DataMiningGrid system. Thus, the manual creation of such a complex
description is presumably error-prone. To avoid erroneous or incomplete descriptions and
still rely on the component developer or end-user to create his own component description,
we decided to provide a web application.

This web application hides XML-syntax from the user and serves him as a tool which
supports the creation of the description and uploads the executable of the component.
After upload to the grid, the component description will be registered in the grid registry.
By this, it is published in the environment and can be found and used by other users.

The Application Enabler consists of several form-based web pages, leading the user
through the whole process of creating and uploading his data mining component. For this
purpose, the parts that have to be specified are divided into several functional parts:

1. General Information

2. Execution Information

3. Input Data

4. Output Data
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5. Requirements

6. Upload

Each of these steps is presented to the user as a single jsp-web-page, in which specifica-
tions can be made.

General Information

Figure 3.9.: DM Application Enabler - General Information (from [139]).

The first page displayed to the user when creating a new component description is the
”General Information” page (Figure 3.9). On this page he can describe basic things about
his component, like its name, its version and some description. This information is mainly
used to present the component to other users in the grid.

Execution Information

The second page (Figure 3.10) is essential for the execution of the data mining component.
The user can describe his executable and its options here. He can choose from four different
execution types (Java, Python, BashShell, C), specify interpreter commands and give all
the options his data mining component is capable of handling. Very important for a new
user is that each option is described by a short tool-tip, so users can learn about the
meaning of different options.

63



3. Integration of Existing Data Mining Components into Grid-based Systems

Figure 3.10.: DM Application Enabler - Execution Information (from [139]).

Figure 3.11.: DM Application Enabler - Input Data (from [139]).

Input Data and Output Data

These two pages (Figure 3.11 and 3.12) are very similar, as they both describe the data
the component works with. Both input and output data share similar properties, like a
label, data type, flag and tool-tip. The only differences are the stage-in/stage-out flags
and a flag called ”providedWithAlgorithm”. Stage-in for input data means that the data
will have to be shipped to the execution machine before the execution can start. Stage-
out means shipping the specified data to a storage server, from which the user of the
workflow, who doesn’t know about the execution machine, can late obtain the results.
The flag ”providedWithAlgorithm” allows the user to upload and assign input data which
is then pre-set when later using the data mining component in a workflow.
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Figure 3.12.: DM Application Enabler - Output Data (from [139]).

Requirements

Figure 3.13.: DM Application Enabler - Requirements (from [139]).

After all of the internal conditions for the executable are specified, the user can indicate
external conditions, like required environment variables or requirements applying to the
execution machine (Figure 3.13). This information is especially important for the resource
broker, which uses it to find the most adequate machine for execution and assures a correct
environment for the component to run in.

Upload

Finally after having specified the necessary information, the files belonging to the data
mining component can be uploaded (Figure 3.14). The only file that has to be uploaded
commonly is the executable file. Other files are optional, unless the user specified them
before. If he used the ”providedWithAlgorithm” flag for some input data, he has to upload
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Figure 3.14.: DM Application Enabler - Upload (from [139]).

it to be able to create a valid description. Additionally he can upload required libraries
the executable file depends on. These files will be copied to the execution machine before
execution and are accessible to the executable file there.

Confirmation

When the user has specified all obligatory form-fields, uploaded the required files and
clicked ”Generate Description”, an Application Description according the Application De-
scription Schema will be created (Figure 3.15). For each new component, a folder will be
created on the server. This folder will include all of the uploaded files as well as the ADS
instance itself. From this folder it can be published in the grid registry.

3.4.3. Grid-enabling Weka

This case study describes the grid-enabling and execution of data mining components
based on our approach presented in Section 3.3. It is based on [142, 139]. We use the
Weka data mining toolkit (see Section 2.1.3) for our case study, as it represents a standard
toolkit in the area of data mining. It includes a wide range of data mining components
which cover the data mining methods presented in Section 2.1. The following subsections
will introduce the Weka algorithms which are going to be grid-enabled as data mining
components and the process of grid enabling them.

Weka

Weka [156] is a comprehensive data mining toolkit written in Java. It is available as
Open Source and is in widespread use especially in the academic community. It includes
components for pre-processing, classification, regression, clustering, feature selection and
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Figure 3.15.: DM Application Enabler - Confirmation (from [139]).

visualization. Weka is equipped with a set of user interfaces, but the individual components
can also be executed via command-line. We use Weka 3.5.5 in our experiments.

In our case study, we focus on a regression problem. We use the following Weka algo-
rithms for our experiments:

• K-Nearest Neighbours classifier (IBK): K-Nearest-Neighbours (kNN) [156] is
a well-known, simple yet powerful method both for classification and regression. For
predicting an unknown instance the k nearest instances according to some distance
function are selected and, for regression, the target value is calculated using some
possibly distance-weighted mean of the nearest neighbours. Crucial parameters are
the correct choice of the distance function, the weighting function and the number
of neighbours.

• Locally Weighted Learning (LWL): Locally Weighted Learning [156] is an in-
stance-based algorithm that assigns weights to instances according to the distance
to the test instance. This is similar to kNN, but not limited to a fixed number of
neighbours. LWL performs a linear or non-linear regression on the weighted data,
using the weighted instances.

• M5P: M5P [156] is a tree-based algorithm. In contrast to a regression tree, which
uses the mean value in the leafs of a tree for prediction, a linear model is fitted for
each leaf.
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Process of grid enabling

The user’s component to be integrated into the grid environment has to be compliant to
the definition of a component from Section 2.1.4. In our case, the jar file of the Weka
distribution is the executable file for all Weka components to grid-enable.

In order to make the three components IBK, LWL and M5P available in the grid, we
have to follow the procedure of grid-enabling them and create the application description
files. These files are instances of the ADS and contain the following description for each
component: The information in the element dataminingInformation is data mining spe-
cific metadata about the component like the component’s name (which is the algorithms
name) the group (Weka), the application domain (Data Mining), and the CRISP phase
(Modelling). The element generalInformation contains further metadata such as version,
id, a description, the upload date and so on. In the execution element we have to specify
execution type (java), the main class (e.g. weka.classifiers.lazy.IBk), interpreter arguments
(e.g. the maximum java heap size -Xmx1000m) and the component’s executable file (path
to the jar file). The element applicationInformation contains information about the op-
tions of the component (which are the options which can be specified in the Weka GUI)
as well as the class attribute to predict. Each of these options is specified by data type,
default value, a tool-tip, the flag, a label shown in the GUI, etc. Additionally it specifies
the data input, which is a single file in the ARFF format, and the data output, which
is a text file containing the textual output Weka creates. The last step is to upload the
executable file and the application description files to the grid. Once the component is
grid-enabled, it appears in the grid wide component registry.

Examples of the ADS instances for the Weka components IBK, LWL and M5P can be
found in the Appendix (Section A.2).

Example Workflow

Figure 3.16.: Weka Workflow (from [142]).

In the DataMiningGrid system, Triana workflows are used to specify data mining pro-
cesses. A workflow for running a grid-enabled Weka component consists, e.g., of the
following units (see Figure 3.16):

• ApplicationExplorer

• GridURI

• ParameterControl

• Execution
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• Provenance

• GridExplorer

When the workflow is started in Triana, the following steps are executed:

• Step1: The GUI of the ApplicationExplorer Unit is shown (see Figure 3.17), which
allows to search the grid registry for a data mining component.

• Step2: The GUI of the GridURI unit is shown (see Figure 3.18), which allows the
user to specify the URI of the file in the grid to be used as input.

• Step3: In the ParameterControl unit (see Figure 3.19), the user is able to specify
the parameters of the component.

• Step4: During execution, the Execution unit (see Figure 3.20) shows information
on the execution of the job in the grid.

• Step5: In the GUI of the Provenance unit (see Figure 3.21), the user can access
information and statistics on the execution of the component.

• Step6: The GUI of the GridExplorer unit (see Figure 3.22) allows the user to browse
the result directory of the executed job.

Figure 3.17.: ApplicationExplorer Triana Unit (from [139]).
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Figure 3.18.: The GridURI Triana Unit (from [139]).

Figure 3.19.: ParameterControl Triana Unit (from [139]).

Figure 3.20.: Execution Triana Unit with 8 jobs executing (from [139]).

Runtime Experiments

In the following we will present different runtime experiments based on the grid-enabled
Weka algorithms. We show two experiments with the execution of a single component
with different parameter settings.

The workflow which is set up for running one of the Weka components is the one already
shown in Figure 3.16. As described in the previous section, it consists of the six units
LoadDescription, GridURI, ParameterControl, Execution, Provenance and GridExplorer.

In the following we describe the settings during the execution of the workflow for the
Weka components. When starting the workflow, the data mining components to execute
are selected. After that, the workflow passes on to the ParameterControl unit, where
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Figure 3.21.: Provenance Triana Unit displaying general information (from [139]).

Figure 3.22.: GridExplorer Triana Unit (from [139]).

the component’s parameters and options can be specified (e.g., it is specified that each
job shall perform 10 fold cross-validation). We want to execute jobs which run the same
component with different parameter settings, so we have to select the options on which
we will perform the sweep. At the Options panel of the ParameterControl unit we can
set the details for the sweep by choosing either a list or a loop for the parameter (as
already shown in Figure 3.8). Out of these settings the system generates a (multi-)job
description. Additionally we have to specify the component’s data input. This is done by
selecting the URI which was passed from the GridURI unit in the input data drop down
box at the Data mappings tab. We used the dataset House(16L) from a database which
was designed on the basis of data provided by US Census Bureau and is concerned with
predicting the median price of houses in the region based on demographic composition
and a state of housing market in the region. The dataset, which was taken from the UCI
Machine Learning Repository [51], contains 22784 examples and 17 continuous attributes.
This size of data is justified because we are mainly interested in measurements of the
overhead caused by grid computing in the DataMiningGrid environment which becomes
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Number of Machines 1 2 3 4 5 6
Max number of jobs per Machine 10 5 4 3 2 2

Table 3.1.: Job distribution for the M5P experiment.

clearer when using smaller datasets.

The next step of the workflow is the Execution unit, which submits the jobs to the
resource broker. The jobs will be executed, and after all jobs are finished the Provenance
unit and the GridExplorer show the provenance information about the execution and the
result directory.

The test environment on which the jobs will be executed contains 2 GT4 GRAMs (Intel
Pentium 4 2.40GHz, 2GB memory) and 6 Condor machines (AMD Opteron 244 1.80GHz,
4GB memory). For the evaluation we will vary the number of machines and/or the number
of jobs and we will look at and compare the runtime.

Experiment M5P During the M5P experiment we submit jobs to the grid which execute
the Weka M5P algorithm with different parameter settings. The execution mode is Condor,
which means that all jobs are submitted to the Condor pool which are connected to the
GRAMs. In this experiment we will have a fixed number of jobs and we will vary the
number of machines in the grid. We generate 10 jobs in total by using a list for the option
BuildRegressionTree (true/false) and a loop for the option MinNumInstances (from 2 to
10 step 2). These jobs will be submitted to 1 to 6 machines. Figure 3.23 visualizes the
results of the M5P experiments. The graph shows the relation of the number of machines
in the grid and the runtime of all 10 jobs. As expected, in general the runtime decreases
the more machines the grid contains until the number of machines in the grid reaches the
number of jobs. The jobs are distributed equally to the Condor machines. Table 3.1 shows
the maximum number of jobs which one of the machines has to compute (e.g. 10 jobs on
3 machines, so 2 machines take 3 jobs and one takes 4). This explains why there is no
decrease in total runtime from 5 to 6 machines.

Figure 3.23.: M5P results. Results in logscale (from [142]).
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Experiment IBK In the IBK experiment we will submit jobs to the grid which execute
the Weka IBK algorithm. We make different experiment series, each on a different kind
of machine/pool, which are compared afterwards. The jobs are generated by varying the
parameter k (from 1 to maximum 16) so that we have up to 16 jobs in total. These jobs
will run a) in fork mode on the Globus machine, b) on a single machine inside the Condor
pool and c) on the whole grid (which consists of 6 Condor machines). In each experiment
series we have a fixed number of machines and we will vary the number of jobs. The result
(Figure 3.24) is as expected. At a) and b) the jobs are all executed on a single machine, the
fork execution on the Globus machine has worse performance than the Condor machine.
The runtime increases linear, but the Condor execution seems to be faster. This looks
confusing, because the submission from the Globus machine to Condor should take some
time so that the Condor execution should definitely take longer. The reason for this result
is that the Globus machine has older hardware. When executing the jobs c) on 6 Condor
machines, the runtime also increases linear, but in comparison to the Condor execution
on a single machine the runtime decreases by a factor about 6.

Figure 3.24.: IBK results (from [142]).

3.4.4. Grid-enabling Standardizable Parts of Data Mining Scenarios

Instead of focussing on single data mining components, we now focus on common data
mining scenarios in this case study. The study is based on [143]. Typical data mining
scenarios include common steps or tasks that are independent from the application scenario
and thus can be seen as standardizable (see Section 2.1.3). In the following, we will describe
how such scenarios are supported by our approach presented in Section 3.3.

In detail, the following 3 generic and very common data mining scenarios that can be
performed with the help of our approach on grid-enabling components in the context of
the DataMiningGrid system are presented:

1. Enhancing scalability by data partitioning.

2. Comparing classifier performance.

3. Parameter optimization.
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Partitioning Data Classifier Comparison Parameter Optimization
Chaining yes yes yes
Looping no no no
Branching no yes (InputURI and OutputFiles) no
Shipping Algorithms (yes) (yes) (yes)
Shipping Data yes (yes) (yes)
Parameter Variation yes (InputFiles) no yes (Options)
Parallelisation yes (Jobs) yes (Components) yes (Jobs)

Table 3.2.: Operations of data mining scenarios.

Each of these scenarios can build on a broad class of data mining components. Therefore,
our approach and its implementation in the DataMiningGrid emerge not as a specialist
solution, but as a general solution for enhancing the scalability of a large number of data
mining scenarios.

To support the scenarios described above, we have to extend the DataMiningGrid en-
vironment by grid enabling a set of new components. In detail, this case study is based
on the grid-enabled Weka components from Section 3.4.3 as well as a number of helper-
components (e.g. responsible for input file and result processing), which can be grid-
enabled in the same way.

The scenarios are realized as Triana workflows in the DataMiningGrid system. Table 3.2
shows which workflow operations are needed to run the scenarios in the grid environment.

Partitioning Data

This section describes an experiment based on partitioning the data based on the k-NN
algorithm which was grid-enabled in Section 3.4.3. The data are automatically partitioned
and distributed to different machines to increase scalability. This scenario is applicable
for all data mining components that are able to compute results on a subset of the data.

The scenario for this case study is the following: A large amount of data is to be
analysed. The large data set is not processed on a single machine, but is split into several
smaller data sets. These smaller data sets are distributed and analysed in parallel in the
grid environment. The results of the analysis are combined afterwards.

In the partitioning data scenario there is a need for two additional components that
process the input and output of the k-NN component in order to split the input file into
several small files and to combine the results after the k-NN algorithm executions are
completed. Thus, in addition to the grid-enabled k-NN Weka component, two helper
components for input file splitting and result aggregation are used.

In total, three sub-workflows have to be executed. In principle, the workflow consists
of 3 sub-workflows similar to the workflow of the simple experiments which are connected
and executed in parallel. Each is based on the same units. The sub-workflows use the same
input data and an additional Transfer unit which is responsible for copying the result files
to a single directory. The first sub-workflow takes the large input file and splits it into a
user-defined number of partitions. The second one is the execution of the k-NN algorithm.
A file sweep is used, which results in a separate execution of the k-NN algorithm for each
of the partitions in parallel. The distribution of files to the machines for the computation
is done transparently to the user. The final step is to combine the results of the different
executions. Figure 3.25 visualizes the workflow for the scenario.
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This example demonstrates that by our approach a computationally intensive data min-
ing task can be decomposed into simpler sub-tasks by partitioning the data and analysing
them in parallel on different machines. In this case, the original component does not need
to be modified.

Figure 3.25.: Workflow for partitioning data.

Classifier Comparison Scenario

A typical task in data mining is to asses the performance of several classifiers on the
same data-set. It is often not clear in advance which one will perform best, so the data
miner has to carry out a number of experiments. In this scenario, a number of different
data mining algorithms are applied to the same data set, and their predictive performance
is compared. Both the data and the components that implement the algorithms are
automatically distributed to different machines. Comparing classifier performance is a
basic and often very time-consuming task, especially when many algorithms have to be
compared and the data set is large. Performing the evaluation on a grid speeds up the
evaluation, since the evaluation can be done in parallel.

The experiment consists of the execution of multiple components on the same data.
The following Weka algorithms (learners) are used: M5P, IBK, and LWL (see also Section
3.4.3).

In order to compute an overall result of the learning experiment, the results of the
different algorithm executions have to be combined. This is done, similar to the Data
Partitioning scenario, with the help of another grid-enabled helper component.

In this experiment, three component executions of the learning algorithms are per-
formed, each consisting of the selection of the data mining component, the control of the
component parameters (all operate on the same input data) and the execution. After the
learning tasks are completed, the last component combines the results of the learners to
an overall result. Figure 3.26 visualizes the workflow of this scenario.

This example demonstrates that by our approach a computationally intensive data
mining task can be decomposed into parallel sub-tasks by executing them in parallel
workflow branches and combining the results afterwards.
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Figure 3.26.: Workflow for classifier comparison.

Parameter Optimization

A further typical scenario in data mining is parameter optimization. Some algorithms
have a rich set of options to be set, and selection of an option can have a high impact
on the performance of the algorithm. In many cases the best setting has to be found ex-
perimentally by systematically exploring various settings, which is a very time-consuming
task.

In the scenario, both the data mining components that implement the algorithms and
the data are automatically distributed. A parameter optimization experiment consists of
different runs of the same algorithm on the same input data but with different parameter
settings. For the parameters which are to be optimized, a range of values is used. Each
change of a parameter value results in a separate run of the algorithm. The best com-
bination of parameters is found by comparing and evaluating the results of the different
runs.

Our experiment consists of the execution of the Weka LWL component for the param-
eter optimization task. The parameter optimization was performed for four parameters.
Similar to the scenarios presented above, there was a need for a helper component in
the Parameter Optimization scenario, which was responsible for combining the results
of the different component executions in order to compute the result of the parameter
optimization.

In the experiment, a single execution of the LWL component on the input data is per-
formed. For this run a parameter sweep, specified at the parameter control, is used for the
parameter to optimize. The parameter control component (as already visualized Figure
3.8) saves the user a lot of time in specifying the tasks, since the individual jobs are gen-
erated automatically. Depending on the number of possible values for the four parameters
to be optimized, a huge amount jobs is generated. After the parameter optimization task
is completed, the results are transferred into a single directory and the result files were
collected and evaluated for processing the overall result of the experiment. Figure 3.27
visualizes the workflow of this scenario.

This example demonstrates that by our approach a set of computationally intensive
data mining tasks can be specified easily with a simple workflow and that the tasks can
be executed as jobs in parallel in the grid environment.
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Figure 3.27.: Workflow for parameter optimization.

3.4.5. Discussion

In the first case study (Section 3.4.1) we have shown that it is possible to implement the
architecture of our approach, based on the ADS, in the DataMiningGrid system.

In the case study on the Application Enabler (Section 3.4.2), we presented an imple-
mentation of the tool for grid-enabling data mining components based on a web based
GUI. By this it was shown that users are able to integrate and reuse components easily.
They do not need deep grid knowledge or know how in parallel processing to integrate
and execute their own data mining components in a grid environment. The details of
the underlying grid technology are hidden. The implementation of our approach in the
DataMiningGrid system addresses the users’ needs by providing a mechanism for the reuse
that makes it possible to grid-enable their favourite component without writing any code,
by simply providing metadata that can be specified via a web page.

In the case study on grid-enabling Weka (Section 3.4.3) we have shown how data mining
components from the Weka toolkit, which was developed for a single computer environ-
ment, can be integrated into a grid environment. In detail, we integrated the Weka
components IBK, LWL and M5P into the DataMiningGrid system. By this case study it
was shown that common data mining components can be integrated and reused without
modification of the component or the grid system. We gave an evaluation by experiments
which showed that the requirements were met. The system is capable of handling even
more complex scenarios, e.g. where algorithms or the data should not be moved. There
is no need for the integration of new workflow operations or of new grid services. Because
the scenarios can be adapted to run in the DataMiningGrid grid environment, the users of
data mining benefit from all the advantages the grid technology provides, among them an
user-friendly set up of experiments, a decrease in runtime or other benefits like a massive
storage volume, and an integrated security concept. The evaluation of the different sce-
narios emphasizes the easy set up and submission of data mining tasks. As the runtime
analysis shows, the flexibility of the system does not result in a big performance overhead.
The runtime of the experiments depend on the speed and the number of available ma-
chines. Grid-enabled components in the DataMiningGrid system can reach a very good
scalability.

The study on data mining scenarios (Section 3.4.4) demonstrated that the capability
of our approach in the context of the DataMiningGrid system, extended by new grid-
enabled components, is sufficient to carry out a variety of data mining scenarios. In
detail, we presented how to setup scenarios for data partitioning, classifier comparison and
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parameter optimization based on grid-enabled components. Additional helper components
were needed just for splitting a large data set in to pieces, gathering results, or performing
a simple vote.

The potential of using grid technology for data mining consists in the fact that it are
simple distribution schemes that seem to give the biggest benefits in terms of performance.
Our approach and its implementation in the DataMiningGrid system emerge not as a
specialist technology, but as a general solution for integrating data mining components
into grid environments. The system is user friendly in a way that a data miner is able to
use the system - from the inclusion of new data mining components to their execution in
the context of complex experiments - without any specific knowledge of the system details.

3.5. Wrap-up

In this chapter we presented an approach for the integration of existing data mining com-
ponents into OGSA-based grid environments. The approach allows for integrating data
mining components that have been developed as executable files in a single computer
environment into grid environments. It is based on the Application Description Schema
(ADS), which is an XML-based metadata schema that is used to manage user interaction
with grid system components, and associated client-side components, which provide user
interfaces and use the ADS for information exchange. The schema allows to grid-enable
existing data mining components, to register and search for available data mining com-
ponents on the grid, to match requests for job executions with suitable computational
resources, and to dynamically create user interfaces. We have shown that it is possible to
cover all information necessary for the execution of data mining components in OGSA-
based grid environments with a single XML schema and that it is possible to create a
technical system for the execution of data mining components based on data exchange
via the XML schema. Our approach allows for the reuse of a wide range of components
existing in the field of data mining and addresses the requirements for reuse without com-
ponent or platform modification, for transparency of the grid technology, for generality
and for efficiency. We implemented and evaluated our approach in the DataMiningGrid
system based on GT4 grid services and extensions to the Triana workflow environment.

In addition to reusing existing data mining components, users need to compose and
to develop new data mining components. In the next chapter, we will present an ap-
proach for flexible and interactive development of data mining scripts, which allow for the
development and composition of data mining components.
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The goal of this chapter is to introduce an approach for flexible and interactive devel-
opment of data mining scripts in grid-based systems. In the medical domain, users like
bioinformaticians and biostatisticians typically interactively design and set-up their anal-
ysis solutions by combining information from different data sources and applying different
methodologies to the information extracted from these data sources. In addition to reusing
existing data mining components, which was discussed in Chapter 3, users need to develop
new data mining components. Furthermore, users need to compose data mining compo-
nents to address complex scenarios. However, users want to stick to their well known tools
and do not have detailed knowledge on grid-based systems. The development of atomic
components in a local environment and frequent integration into a grid environment would
result in inefficiencies in the development life-cycle due to complex debugging procedures
and repeated integration effort. In addition, the development might rely on data or com-
puting resources which are not accessible in the local environment. Data mining scripts
allow for the development of data mining components and their composition in a way that
the components do not have to be treated as atomic components. In addition, atomic
components can still be used within data mining scripts.

Thus, there is a need for an approach that allows for flexibly and interactively develop-
ing data mining scripts in grid-based systems that addressed the needs of bioinformatics
users. In this chapter, we will present an approach on supporting the development of
data mining based analysis processes by the integration of script-based data mining com-
ponents into grid environments. Instead of developing a data mining script in a local
environment and integrating it into a grid environment afterwards, the goal is to allow
for an interactive development directly in the grid environment. Our approach is based
on the idea of handling data mining algorithms, implemented as script-based data mining
components, as parameter for a generic service. The service allows for the integration into
grid environments and parallelization by automatically adding additional code snippets to
the data mining scripts. In addition, we present how data mining scripts can be developed
interactively using a bioinformatics tool at client side. By this, we address the need of
the community to support users in enhancing and developing new data mining scripts in
grid-based systems.

This chapter first introduces the requirements for the approach on flexible and interac-
tive development of data mining scripts in grid-based systems in Section 4.1. Section 4.2
presents the layered architecture of our approach. Related work is provided in Section 4.3.
Subsequently, this chapter presents our approach for supporting users in the development
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of data mining scripts. First, we present how to reduce the complexity of integrating and
executing data mining scripts in grid environments in Section 4.4. Instead of registering
each single script separately, our method is technically based on a single grid service with
complex inputs and outputs that allows for providing a data mining algorithm imple-
mented as script as parameter. Second, we describe how to allow interactive development
of data mining scripts directly in the grid environment in Section 4.5. In Section 4.6 we
introduce parallelization to our approach. Then, Section 4.7 presents how our method is
implemented into the ACGT system. Section 4.8 provides case studies that demonstrate
the applicability of our approach for the integration and interactive development of data
mining scripts and for basic script parallelization. Finally, Section 4.9 wraps up. This
chapter is mainly based on [115, 119, 141, 149, 150, 151].

4.1. Requirements

In this section, we present the requirements of the biomedical community for flexible and
interactive development of data mining scripts (see Section 2.1.4) in grid-based systems
(see Section 2.2.2). In addition to reusing existing data mining components, which was
discussed in Chapter 3, users need to enhance and adapt data mining scripts that already
have been integrated into a grid environment as well as to develop new data mining scripts
in such grid environments for setting up their analysis processes.

The way how bioinformaticians work in general was already described in Section 2.3. In
the context of the ACGT project [34], a lot of effort has been performed on analysing the
way how bioinformaticians work and on collecting requirements from bioinformaticians
[132]. In detail, requirements have been collected by a scenario driven approach from
interviews with users, from questionnaires, and from discussions with experts. Thus, from
the bioinformatics users point of view, the following requirements have to be met [145, 132]:

Support of standard tools. Bioinformaticians and biostatisticians want to keep
working with their well known tools to avoid the effort of changing the development
environment and to be able to reuse their existing components and scripts [145, 132].
Thus, new scripts have to be developed based on the same tools and environments. R
[103] (see also Section 2.1.3) turned out to be one of the de-facto standards for data
analysis in bioinformatics. The R environment provides a broad range of state-of-the-
art statistical and graphical techniques and advanced data mining methods (including
comprehensive packages for linear and non-linear modelling, cluster analysis, prediction,
hypothesis tests, resampling, survival analysis, time-series analysis, etc.), and is easily
extensible. In particular, the associated project BioConductor [55] (see also Section 2.3.4)
addresses the needs of the biomedical and biostatisticians community by very quickly
providing R packages to analyse data issued from new technologies appearing in the biology
laboratory. Numerous methods available as R/BioConductor packages and considered
experimental a few years ago have been stabilized and became accepted standard in the
analysis of high-throughput genomic data. Thus, integrating R/BioConductor in a grid-
based data-analysis environment would address the needs of the community.

Quick & easy extensibility. The requirement for extensibility is very important in
the context of grid-enabled data mining [119]. Especially, in order to keep track with
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new scientific developments, it is crucial to be able to quickly integrate new data mining
components and scripts into data analysis processes. Thus, there is a need for extensibil-
ity mechanisms that allow for using new data mining scripts without complex and time
consuming integration procedures.

Interactive development. Instead of developing new scripts in a local environment
and integrating these in a grid environment afterwards, users want to develop new scripts
directly in the grid environment [145]. The reason for this is that they want to avoid
the effort for frequent re-integration, which might be necessary when scripts are under
development. In addition, the full set of data and adequate computing resources might
be not available in a local environment. What is needed is an approach for interactive
development of data mining scripts within the grid environment.

In addition, the following requirements, which have been already defined for our method
on integrating data mining components into grid-based systems in Chapter 3, have to be
met:

• Extensibility without platform modification: It should not be necessary to
programmatically modify the grid system, neither on the server nor on the client
side, to integrate a new data mining component or script.

• Transparency: The detailed aspects of the underlying technology of the grid system
should be hidden from the developers, since they usually do not have expertise in
distributed systems.

• Efficiency: Data mining components and scripts should be able to run in an efficient
way in the grid system, based on batch job execution and the parallelization of
the standard tasks parameter sweep and cross-validation (see Section 2.1.3) to save
execution time and on the possibility of shipping components and scripts to the
location of the data for execution to save data transfer time.

4.2. Layered Architecture

As described in Section 2.2.2, the Open Grid Services Architecture (OGSA) [46] represents
a reference architecture for a service-oriented grid computing environment. It is used
to address requirements such as data security, resource sharing, resource brokering and
standardization and supports multi-computer environments, distributed data sources and
multiple users.

OGSA is specified as a layered architecture. Each layer provides a certain set of func-
tionalities, based on several services it includes. The functionality provided by lower layers
can be used in the upper layers to provide new functionality at a higher level of abstraction.

According to OGSA, a grid computing environment consists of a fabric layer, a middle-
ware layer and an application layer. The fabric layer includes different types of physical or
logical resources that are virtualized through web-services, e.g., CPUs, memory, and disks,
or licenses, contents, and OS processes. The middleware layer represents a higher level of
virtualization and logical abstraction and defines the main capabilities of the grid environ-
ment. The functionality in this layer is defined by Infrastructure Services, Data Services,

81



4. Flexible and Interactive Development of Data Mining Scripts in Grid-based Systems

Resource Management Services, Execution Management Services, Security Services, Self
Management Services, and Information Services, which form the grid middleware. The
application layer includes applications and other entities that use the OGSA capabilities
to realize user- and domain-oriented functions and processes.

The architecture of our approach has to address the requirements presented in Section
4.1. From the requirement for supporting standard tools results that our approach needs
to support R as basis for data mining scripts so that Bioconductor packages are also
supported. This means that R has to be provided as resource in the fabric layer, that
functionality for specifying and executing jobs for R scripts needs to be provided and that
the client components providing the user interfaces also need to be based on R.

The demand for extensibility results in the following technical implications: It should
not be necessary to developing further middleware or application layer services when
executing a new data mining script in the grid environment. In addition, the components
of the architecture should allow for quick and easy extensibility without the need for a
separate process for adding new data mining scripts.

Due to the need for transparency, the complexity of the grid middleware needs to be
hidden by providing a service in a higher layer which combines middleware functionality.

The middleware layer provides functionality for efficient resource and execution man-
agement by its Resource Management and Execution Management services. Similar to
our solution presented in Chapter 3, these can be utilized to address the requirement for
efficiency. Thus, a service of the architecture that makes use of this functionality has to
be located in a layer above the middleware layer.

From the requirement for flexibility results that there is a need for an architectural
component that provides the functionality of executing data mining scripts which can be
specified and triggered in a flexible way via client components providing a user interface,
such as a workflow environment or a programming language environment.

The demand for interactivity means that for the client components providing the user
interfaces we have to focus on script-based languages such as R, which also provide a
console interface for working with an interactive command line.

Resulting from that, our approach on flexible and interactive development of data mining
scripts in grid environments is based on two new architectural components [151]: a generic
service (GridR service), which is able to execute R-based scripts in the grid environment,
and an extension of the R environment as client side component that makes use of the
generic service (GridR client). The architectural components that realize our approach
are located in the application layer, as they have to make extensive use of the middleware
services provided by the middleware layer of OGSA. The architecture of our approach is
designed as follows: The GridR service and the GridR client correspond to the application
layer of OGSA. We further split the application layer into two separate layers (high-level
services and clients), as the GridR client is based on the GridR service, but the GridR
service can be reused in other client components. The high-level services layer contains
server-side services, which are built on top of the services provided by the grid middleware
to enable domain-oriented functionality. The client layer consists of the client components
that provide user interfaces for the services of the high-level services layer. Figure 4.1
visualizes our approach. Thus, the GridR service is a high-level grid service which extends
the grid environment by providing the functionality of executing R-based data mining
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scripts in the grid environment, based on several services of the OGSA middleware layer.
On the client side, the R environment is extended by the GridR client in form of an R
package (see also Section 2.1.3). It allows for executing R-based data mining scripts via
the GridR service in the grid environment from an R environment on a local computer on
client side. Details on the GridR service will be given in Section 4.4 and on the GridR
client in 4.5.

Figure 4.1.: The GridR approach: Generic high-level grid service and client side extension
to R.

4.3. Related Work

Analytical services in the grid have been the focus of work in various previous projects. In
Section 3.2 we presented a number of systems related to data mining in grid environments.
Some of these systems, e.g. Knowledge Grid [26] or Discovery Net [9], would be also able
to execute R-based data mining scripts in the grid. However, as already described all these
systems have drawbacks regarding our requirements.

In the following, we will now focus on attempts to integrate R with distributed envi-
ronments. In [55] a short overview over support for concurrent computation in R is given.
Support for concurrent computations in R is provided by packages such as rpvm [85],
rmpi [160] and snow (Simple Network Of Workstations) [111]. Rpmv and rmpi provide
wrappers to the parallel programming packages parallel virtual machine (PVM) [102] and
message-passing interface (MPI) [95] respectively. These approaches require explicit or-
chestration of message passing in the parallel execution of R scripts and are only suitable
for closely-coupled homogeneous environments. In contrast to the message-passing inter-
face (MPI) [95] or the parallel virtual machine (PVM) [102], the snow package provides a
higher level of abstraction that is independent of the communication technology.
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Some rudimentary support for building client-server applications that use R on the
server side has been offered by toolkits like Rserve [135] or Rweb [16], but these efforts
do not offer a seamless integration with grid technology. In comparison to the efforts
described above our approach tries to capitalize on the advantages offered by the grid in
terms of computing power and storage for the secure and scalable execution of R scripts
with minimal changes to their code and no restrictions on the tasks performed.

sabreR [62] is an R package that offers a remote, web service based interface to the
SABRE system. SABRE is designed to model recurrent events for a collection of indi-
viduals or cases and many other types of repeated measures, and has been extended to
run on parallel processors. The differences to our approach are mainly the applicability
of sabreR to communicate only with the SABRE backend rather than providing a generic
interface for running all kind of R scripts and also the degree of the exploitation of the
grid infrastructure. In particular the parallel server side of SABRE requires a high perfor-
mance computer (HPC) to be in place and preconfigured, while GridR tasks are submitted
as grid jobs, which results in a gain of additional flexibility in terms of scheduling and
execution.

While remote computing clusters made available by grid technology are mostly used for
the submission of independent computations, parallel computations can either be defined
at the client layer or have to be implemented explicitly by the use of parallel programming
libraries such as MPICH-G2 [81] or Ibis for Java [136]. Both solutions are not transparent
to the user. As a consequence, in most cases computing clusters made accessible by grid
technology are not considered as ”parallel machines”. pR [88] supports a fully transparent
and automatic parallelization of R code based on MPI. However, in contrast to GridR, pR
as well as the other efforts discussed in this paragraph do not offer a seamless integration
with grid technology.

4.4. Developing Data Mining Scripts based on Treating
Algorithms as Parameters

In the following, we will present the details on the high-level services layer of the layered
architecture described in Section 4.2 and the GridR service as part of this layer. The high-
level services layer sits on top of the middleware layer of the architecture. Its components
make use of the functionality provided by the middleware layer. The high-level services
layer itself provides functionality for client components of the client layer, which is located
above the high-level services layer.

In the high-level services layer, the functionality needed for executing R-based data
mining scripts in the grid environment to address the requirements of the bioinformat-
ics community is provided by the GridR service. In detail, the functionality consists of
executing R-based data mining scripts and R functions on a certain set of input data.
Executions can be specified by client components in the clients layer. The execution is
based on the functionality provided by the services of the middleware layer to make use
of grid resources. Figure 4.2 visualizes the architecture of the GridR service approach.

The functionality is achieved by extending the grid environment by a single generic
service that accepts complex inputs, which allows for providing the R-based data mining
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Figure 4.2.: The architecture of the GridR service approach.

scripts as input for the service. Instead of deploying many individual services with few
simple parameters for each script, a single service with complex inputs including the script
as parameter is used. Figure 4.3 visualizes this idea. In the following, we will present the
functionality, interfaces and the detailed architecture of the GridR service.

Figure 4.3.: The GridR service approach: single complex service with complex inputs in-
stead of many services with few simple inputs.

4.4.1. Functionality, Interface and Operations

The GridR service is realized as a grid-based web service that provides the functionality of
executing R scripts and R functions on given input files in the grid environment. In order
to expose its functionality for the upper layers in the architecture, the interface of the
GridR service includes the operations executeRScript, executeRFunction and getResult:
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• executeRScript: this operation provides the functionality of executing an R script,
passed as parameter, in the grid environment. References to the input data are also
given as parameter. It would be also possible to pass a reference to a repository
which holds the R code instead of passing the R code directly. This would allow
for sharing of data mining components, as e.g. supported by myExperiment.org [58]
for workflows. However, this would not affect the architecture and realization of
the GridR service, as there would be only a simple additional step of resolving the
reference for retrieving the script code.

• executeRFunction: this operation allows for the execution of an R function in the
grid environment, based on an R workspace from an R session on client side and
input files provided as references via parameters.

• getResult: this operation is used for the retrieval of the results of R script and R
function executions.

Table 4.1 presents the details on the operations of the GridR service and its parameters.

4.4.2. GridR Service Architecture

In the following, we will describe the details of the architecture of the GridR service. The
requirements described in Section 4.1 have impact on the layered architecture (see Section
4.2) as well as on the detailed architecture of the GridR service. The requirement for easy
and quick extensibility as well as for flexibility can be addressed by passing the R based
data mining components as a parameter to the generic GridR service instead of designing
them as separate services in the grid environment. As the data mining components have
to be executed on resources of the grid environment and as there is a demand for effi-
cient execution, the execution has to be managed via the Resource, Execution and Data
Management services of the grid middleware. In addition, the R environment has to be
installed on the machines which will execute the R functions remotely, as part of the fabric
layer of OGSA. Transparency can be achieved by hiding the details of the middleware ser-
vices and just providing a service that aggregates the functionality of the grid middleware
and provides a simple interface at a higher level of abstraction.

Thus, we design the GridR service as a high-level service, which is based on the Resource
Management, Execution Management, Data Management and Information services of the
grid middleware as defined by OGSA. Most of the middleware services required by the
GridR service are provided, e.g., by the Globus Toolkit 4 (GT4, see also Section 2.2.2). In
addition, the need for resource brokering in the grid (job scheduling and mapping of job
to resources) based on the services foreseen by OGSA are, e.g., provided by tools such as
Gridge [101] or GridBus Resource Broker [138].

In detail, it is necessary to ensure that the following requirements are met in order
to allow for the execution of the R-based data mining scripts in an OGSA based grid
environment:

• the input files of the data mining script have to be available at the machine where
the script is to be executed
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operation name executeRScript

description runs an R script on the grid
param rCodeToExecute the R code to be executed
param inputReferences the references of the input files (optional)
param outputNames the names of the output files that shall remain after the

execution (one is required as minimum).
param executionMachine the IP or DNS name of a certain machine where the

script is to be executed (optional)
returns GridR job ID (later used for fetching the result)

operation name executeRFunction

description runs an R function on the grid
param inputReferences the references to the input files. At least two references

have to be provided, one for the file containing the R
Code and one for the file containing the R workspace

param outputNames the names of the output files that shall remain after the
execution.The values have to contain at least the name
of the result file that the function creates.

param executionMachine the IP or DNS name of a certain machine where the
script is to be executed (optional)

returns GridR job ID (later used for fetching the result)

operation name getResult

description gets the result (references to output files) of an R execu-
tion on the grid

param gridrID the ID of the GridR execution from that the results are
to be fetched

returns the references to the output files; null if result is not yet
computed

Table 4.1.: Operations of the GridR service.
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• the data mining script has to be available on the machine where the script is to be
executed and the script needs to have the information on how to access its input
files

• the runtime environment for the data mining script has to be available on the exe-
cution machine

• the information on how to start-up the script has to be available so that the execution
on the execution machine can be started

• the result files have to be available after the execution

Figure 4.4.: Details of the GridR service: R code Transformator, Data Manager and Job
Description Generator

To address these requirements, the GridR service is internally structured into the com-
ponents R-code Transformer, Data Manager, Job Description Generator, and Monitor.
Figure 4.4 visualizes the details of the GridR service, its internal components and the
services of the OGSA architecture it depends on. In the following, we will describe the
details of the internal components.

R-code Transformer: The R-code transformer is responsible for enabling the grid
integration by adding code snippets to the script code to be processed. It attaches addi-
tional code sections to the R code for the handling of the input and output files. Figure
4.5 visualizes this idea. Code Listing 4.1 presents some code excerpt as example.

Data Manager: The Data Manager is responsible for handling the transfer of the
input and output files as well as the transfer of the code of the script. It interfaces with
the Data Management services of the grid middleware layer.
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Job Description Generator: The Job Description Generator is responsible for cre-
ating the description on how the script has to be executed by the Resource and Execution
Management services of the grid middleware. The job description generator submits the
job via the grid middleware. As result, it gets a unique job ID which can later be used for
querying the status of the job.

Monitor: The monitor is responsible for checking the status of the execution. With
the help of the unique job ID it can get the status information from the grid middleware
services. Once the execution is finished, it holds references to the result files.

Figure 4.5.: Adding code snippets to the algorithm.

Listing 4.1: Example: R code attached to the script header for unzipping input files, load-
ing data and passing the names of the input files to the script.

# handling of GridR input data

inputs <- c("inputfile1.csv","inputfile2.zip")

gridr.input <- list()

for(n in inputs){

splits <- strsplit(n,".",fixed=TRUE)[[1]]

if(length(splits) >= 2){

suffix <- splits[length(splits)]

}

if(suffix == "csv"){

gridr.input[[length(gridr.input)+1]] <- read.csv(n)

}

else if(suffix == "zip"){

paste("unzip -o ", n )

system(paste("unzip -o ", n ))

gridr.input[[length(gridr.input)+1]] <- n

}

else{

gridr.input[[length(gridr.input)+1]] <- n

}

}
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In addition, R needs to be available as Resource in the fabric layer. This is necessary, as
the R execution environment is needed for executing the R scripts and functions. This also
holds for the extensions to the R environment in form of R packages such as Bioconductor
(see Section 2.3.4). The Information services of the grid middleware need to be configured
so that they include the information on the R environment and the installed packages
when exposing the capabilities of the execution machines attached to the fabric layer.
This information can then be used for matching job requests to available resources by the
resource brokering components of the grid middleware.

In the following, we present details on how the components and services interact during
the execution of R scripts and functions.

4.4.3. Execution of Scripts and Functions

The GridR service provides an asynchronous way of executing R scripts and functions in
the grid. The process of the execution of R scripts and functions with the GridR service
is visualized in Figure 4.6.

Figure 4.6.: Process of execution with the GridR service.

In detail, the process of executing an R script is realized as follows: The GridR service
is called by a component from the client layer. The following steps are executed after the
service call to the operation rScriptExecution:

• A unique GridR job ID is created for identifying and referencing the execution.

• An asynchronous server side process is started on the machine where the GridR
service is deployed.

• The GridR job ID is returned as result of the service call.

The server side process consists of the following steps:
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• The R-code Transformer transforms the R script’s code provided as parameter by
attaching a header for the handling of the input and output files.

• The R-code Transformer parses the script for R libraries needed for processing it,
specified by the library(..) command of R.

• The Data Manager creates a local file containing the transformed R code.

• The Data Manager creates a directory in the grid storage via the Data Management
service of the grid middleware.

• The Data Manager uploads the code file to the grid storage.

• The Data Manager creates references for the output files in the grid storage via the
Data Management service, which can be used for retrieving the outputs after the
execution finishes. This includes the reference to the R logging file ”.Rout”.

• The Job Manager creates a job description for the Execution Management services
of the grid middleware. In detail, this includes the following specifications:

– set the requirements for R libraries as constraint (for Information services).

– set application to run to ”R” including optional information on the actual R
version as constraint (for Information services).

– set the executable to ”R CMD BATCH”.

– set R code file name as argument.

– set input file references as files to stage in.

– set output file references as files to stage out. This includes the R logging file
name.

• The Job Manager submits the job to the Execution Management service of the grid
middleware. The resulting job ID can be later used for querying the status of the
job.

The Execution Management service performs the following steps:

• It maps the job including its requirements to available machines based on the infor-
mation provided by the Information services of the grid middleware.

• It submits the job for execution on an execution machine in the grid.

On the execution machine, the following process is executed:

• Stage-in: during the stage-in phase of the job, the input files are transferred from
grid storage to a local working directory on the execution machine according to the
job description.
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• Execution: In the execution phase, R is started in batch mode according to the
command R CMD BATCH with the R code file as parameter, as specified in the job
description. By the script header, the input files are mapped to the inputs needed
by the R script and the output files are named so that they match with the job
description.

• Stage-out: When the execution finished, during the stage-out phase of the job the
output files, including the log file, are transferred to the grid storage according to
the job description.

For retrieving the result of an execution, a client can perform a service call to the
operation getResult :

• by the GridR job ID, connect to the GridR server process that manages the execu-
tion.

• by job ID, query the Execution Management service for the job status.

• depending on the status of the job, return information on the job’s status, on errors
or return references to the output files.

For executing an R function, the process is similar to the process of executing R scripts
described above. The only differences for a service call to the operation rFunctionExecution
are the following specifications of input and output files:

• input file: a file with R code, which is read, transformed, and then stored in the grid
storage. The code includes a command for reading the workspace file.

• input file: a file containing parameters needed for the function to execute, prior
stored as R workspace file in an R session on client side.

• output file: a workspace file containing the output parameter of the function, later
read as R workspace file in an R session on client side.

Summing up, the GridR service is part of the high-level services layer, and is based on
services of the grid middle-ware layer of OGSA. It enables the use of R as a data mining
component by a service which can be seamlessly integrated with the other data access and
data analysis services, e.g. in a workflow.

4.5. Developing Data Mining Scripts by Interactive and Rapid
Prototyping

In Section 4.4, we described the high-level services layer of the architecture presented in
Section 4.2 and its component GridR service. Now, we focus on the client layer. The
client layer sits on top of the high-level services layer and includes client side components
providing user interfaces for services in the lower layer. Such clients are, e.g., components
of workflow environments or programming language components. Here, we will focus on a
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Figure 4.7.: GridR client architecture.

certain client component - the GridR client - which is part of our approach on interactive
development of data mining scripts in the grid.

The GridR client provides the functionality of submitting the execution of R scripts and
R functions from an R session on a client side machine to the GridR service, thus allowing
for an execution in the grid environment.

The GridR client is structured into the GridR R package, which represents an extension
to the R environment, and a Java-based client to the GridR service, which is attached to
the R package. Figure 4.7 depicts the GridR client in the architecture of our approach.
The R package includes a set of functions which make the GridR client’s functionality
available for the users. These functions are bound to a Java-based client for the GridR
web service. The R to Java communication is performed via the RJava package [105].

The GridR client is used as an interactive tool and programming language interface for
accessing grid resources and in particular for the remote execution of R code in the grid.
More specifically, the task of executing R scripts and functions is submitted via the GridR
service as a job to a remote machine in a grid environment by interactively calling the
respective functions from an R session.

4.5.1. GridR Client Architecture

The R package part of the GridR client is internally structured around the components
”RemoteExecution” and ”Locking”. The RemoteExecution component is responsible for
the execution of R code as a job in the grid environment by transforming the R code to
execute into a set of files and submitting it for execution to the GridR service (see Section
4.4) via a Java-based web service client.

The GridR service is responsible for creating a job description file in the respective job
description language and for submitting the job to the Resource Management service of
the grid. During this process, the Locking component takes care of the consistency of files
and variables in the R session. Figure 4.8 visualizes the detailed architecture of the GridR
client.
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Figure 4.8.: Details of the GridR client: RemoteExecution and Locking.

In practice grid access is performed through the call of predefined R functions collected
in an R package. The client side components are based on usual R functions (see Table
4.2 and Table 4.3), so no changes in the core R implementation are necessary.

Name Action

grid.apply Performs a remote execution of R func-
tions; waits (callback) or sets a lock
(grid.lock).

grid.check Checks if the internal structure contains
all variables and functions to execute a
function f remotely. If not, the missing
variables are returned.

grid.consistency Checks if the internal structure has errors
or if there are local files without a running
job.

grid.init Initialization of the grid environment.
grid.isLocked Checks if a variable has a lock.

Table 4.2.: Public functions of the GridR client.

The functions are based on the following R functionalities:

• callbacks - functions that are executed automatically by R after the user has issued
a command (this is used when checking for results).

• active bindings - a variable is replaced by a function call which is handling the locking
system and allows working interactively with that variable. When the variable is
read, the predefined function is called and returns the value associated to the variable
(or an error code if the variable is locked). When a value is assigned to the variable,
the function is called with the value as parameter for storage in an internal structure.
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Name Action

grid.callback Performs a callback.
grid.waitForAll Performs grid.callback for all jobs.
grid.readLock Read-lock a variable.
grid.writeLock Write-lock a variable.
grid.unLock Removes the lock from grid variable.
grid.unlockAll Unlocking of all grid variables.
grid.catchObjectNotFoundError Error handling by parsing of error

messages.

Table 4.3.: Internal functions of the GridR client.

• parsing of script and error code - checking for missing values, variables and functions
in the code which is executed remotely as well as for errors in the result objects.

Thus, users can make use of the functionality of execution in the grid environment in
a transparent way by passing the functions to be executed in the grid as input to one of
those predefined functions (grid.apply) in their local code. Figure 4.9 shows the execution
of a simple sum function with the GridR client. Details on the steps of execution are
described in the following section.

Figure 4.9.: Simple GridR Client Code Example.

4.5.2. Process of Execution

As described in Section 2.1.3, the difference between a script and a function execution is
as follows: an R script can be executed stand alone, which means that it does not depend
on objects from an active R session. During the execution of a script, a new R session is
created, which is closed after the execution finished. R scripts might only depend on input
files that have to be accessible from the script’s code. In contrast, R functions depend on
the workspace of an active R session. This means, as the computation of the R function is
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supposed to be performed on a different machine than the client machine where the user’s
R session is running, that the workspace has to be made available for reuse on the remote
execution machine in the grid.

Figure 4.10.: Steps of executing an R function with the GridR client.

In the following the process of executing a single R function in a grid environment is
described. Figure 4.10 visualizes the steps of executing an R function with the GridR
client.

• Function loading. The GridR client functions are loaded from the GridR package
into the workspace of the R client.

• Grid initialization. The grid environment is initialized by calling the function
grid.init. This function sets the configuration for the GridR service (service location).
To avoid the specification of settings on each submission, a configuration file can be
used to pre-configure the settings.

• Code writing. The R code which is to be executed in the grid is written and
wrapped as single R function in the local R environment.

• Grid submission. The grid.apply function is called, which launches the process
of submission. At first, the function to be executed in the grid and the needed pa-
rameters are written into a file (uniqueID-fx). Then, the R script which is executed
on the machines of the fabric layer of the grid environment on job startup is gen-
erated (uniqueID-RemoteScript.R). Next, an R file is created, which specifies the
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”workflow” which is performed on the client side (uniqueID-LocalScript.R). After
that, the R client executes this script, which results in connecting to the GridR
service. During the GridR stage-in phase, all files needed for the job submission
(uniqueID-fx and uniqueID-RemoteScript.R) are uploaded to the grid and a grid
job is generated via the GridR service. The grid Execution Management services
then take care of staging-in files to the execution machine, launching the processing
and managing the handling of the results. During the remote execution, the created
R script (uniqueID-RemoteScript.R) is executed on the remote machine, which reads
the parameters and the function from uniqueID-fx, executes y=f(x) and writes the
result or any errors into a result file (uniqueID-y.dat).

• Waiting for result. There are two ways of waiting for the result, a blocking one
and a non-blocking one (specified by wait=TRUE or FALSE). While the remote
execution is active and the R client waits for result (by checking if the file y.dat is
created), the variable y is locked, or - if the blocking mode is used - the R session
on client side is blocked until the result is available.

• Result processing. When the result file (uniqueID-y.dat) was created on the re-
mote machine, it is, together with the other result files, transferred back to the client
during the stage-out phase. In the GridR client, this file is loaded. The exit status
is checked and - if the job was successful - the value is assigned to y and the variable
is unlocked.

The execution of a script is more simple than the execution of a function, as there
is no need to transfer the objects of the workspace on which the function depends. This
means that there is no need for the file uniqueID-fx containing the function and workspace
objects.

4.6. Parallel Processing

In this section, we introduce parallelization to our approach for flexible and interactive
development of data mining scripts. The need for parallelization of R scripts results from
the requirements collected in Section 4.1. As the architecture of our approach is structured
into different layers, parallelization can be introduced in different ways, depending on what
kind of functionality the certain layers provide (see also Figure 4.11):

1. Parallelization in the client layer. The GridR client can submit several script
or function executions in parallel to the GridR service.

2. Parallelization in the high-level service layer. If the grid middleware provides
services that allow for batch job submission, the GridR service can submit jobs for
parallel execution.

3. Parallelization in the fabric layer. If resources such as cluster management
systems are part of in the fabric layer, these can be used for executing jobs in
parallel by the GridR client from within an R script or function.
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Figure 4.11.: Parallelization introduced in different layers of the architecture.

In the following, we first present how parallelization can be enabled in the high-level
services layer (2) by extending the code transformation and job description generation
mechanisms of the GridR service. Second, we introduce parallelization into the GridR
client, which allows for parallelization in the client layer (1) as well as in the fabric layer
(3).

4.6.1. Parallelization with the GridR Service

Figure 4.12.: Parallelization with the GridR service.

The motivation for the parallelization of R code is that a large set of advanced bio-
statistics tasks are computationally very intensive but have a structure which is trivially
parallelizable, e.g. there are elements of calculations in R scripts that can be run indepen-
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dently of each other. Developers of R scripts are ultimately best placed to know which
parts of the script can benefit from parallelization.

The parallelization with the GridR service is visualized in Figure 4.12. The GridR
service can split the script into parallel or non-parallel sections that are or are not to be run
in parallel as grid jobs with the same approach on automatically adding or transforming
code snippets of the script that is provided as parameter, as described in the previous
section. Figure 4.13 visualizes this idea.

Figure 4.13.: Splitting the script code and adding code snippets.

Hence, the R script is no longer executed as a whole by a single grid job. Instead, it
is executed as a specified number of sub-tasks resulting from splitting the original code
into the respective number of smaller parallel and non-parallel sections. The individual
script sections use files to interface with the previous or subsequent sections. The parallel
GridR service thus attaches a header and/or a footer to each section for interfacing with
other parts of the script, in a similar way as for the handling of input and output of
the non-parallel version of the GridR service as described in Section 4.4.2. Headers and
footers are responsible for loading data as R objects from the files that are staged-in to
the execution machines and storing the data as R objects to the files that are staged-out
from the execution machines.

In detail, the following code snippets are created for non-parallel sections:

• Header - loads the full workspace saved by the previous non-parallel section and the
output object stored by the previous parallel sections

• Footer - saves the full workspace for the following non-parallel section and the objects
needed as input by the following parallel sections.

For parallel sections, the following snippets are created:

• Header - loads the objects stored by the previous non-parallel section and the index
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variable specifying the iteration number, which allows users to take iteration-specific
actions.

• Footer - saves the output objects for the following non-parallel section.

Technically, the GridR service translates the parallelization information into a complex
job description representing the workflow to be executed and submits it as job to the
Resource Management services. For data transfer performance reasons, all non-parallel
parts of the script can be executed on the same machine, which means that only the subsets
of R objects required to perform the parallel sections have to actually be transferred to
other machines for computation.

However, the sections of the code that can be computed in parallel have to be marked
in a way that the information that is needed for the GridR service to set-up a parallel
execution is fully specified. The developer of a parallel GridR script is offered a ”directive”-
like mechanism for the annotation of the parts of the script that can run in parallel. With
the help of these annotations, the information needed can be specified.

Internally, a preprocessing component of the GridR service parses the script for ex-
tracting the user specified annotated information needed for the submission of grid jobs
through the Resource Management services. This information includes the specification
of the inputs (including functions if they are user defined) and outputs of the parallel sec-
tions and of an index variable which can be used to identify specific parallel computations.
In addition, the degree of parallelization (the number of parallel tasks) and two pointers
marking where parallel sections of the code start and end are also determined during the
preprocessing phase. In order to avoid having a different code version for standalone and
GridR parallel execution of the script, the directives needed to parse the R code and make
a parallelized version of it are passed to GridR as R comments.

The number of iterations has to be known before execution. This number is used to
spawn a corresponding number of grid jobs, each executing a single computation. This
mechanism is illustrated with the example in Code Listing 4.2, which shows the generation
of 3 parallel jobs that compute a single iteration of the for-loop each.

Listing 4.2: Example of a parallel GridR script.

double <- function (x) {2*x}

add <- function(a,b) {a+b}

x=1

result1=double(x)

result2<-list()

#GRIDR-PARALLEL-START; index=i; degree=3; input=result1,result2,add;

skipNextLines=1

for (i in 1:3) {

result2[i] = add(result1,i)

}
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#GRIDR-PARALLEL-END; output=result2; skipPrevLines=1

result3=0

for (i in 1:length(result2)) {

result3=result3 +result2[[i]]

}

The script is split into 3 sections including headers and footers. Code Listing 4.3 shows
the first non-parallel section, Listing 4.4 the parallel section, and Listing 4.5 the final
non-parallel section.

Listing 4.3: First non-parallel section of the parallel GridR script.

# GridR script code section 0

double <- function (x) {2*x}

add <- function(a,b) {a+b}

x=1

result1=double(x)

result2<-list()

# GridR section 0 footer code

save.image("codeSection_0_workspace.RData")

save(result1,result2,add,

file="codeSection_0_outputForParallelSection_1.RData")

Listing 4.4: Parallel section of the parallel GridR script.

# GridR section 1 header code

load(file="codeSection_0_outputForParallelSection_1.RData")

# GridR script code parallel section 1

result2[i] = add(result1,i)

# GridR section 1 footer code

save(result2,file="codeSection_1-0_outputForNonParallelSection_2.RData")

# 1-0, 1-1 and 1-2 for 3 parallel jobs

Listing 4.5: Last non-parallel section of the parallel GridR script.

# GridR section 2 header code

load("codeSection_0_workspace.RData")

result2_tmp <- list()

load(file="codeSection_1-0_outputForNonParallelSection_2.RData")

result2_tmp[[1]] = result2[[1]]

load(file="codeSection_1-1_outputForNonParallelSection_2.RData")
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result2_tmp[[2]] = result2[[2]]

load(file="codeSection_1-2_outputForNonParallelSection_2.RData")

result2_tmp[[3]] = result2[[3]]

result2[[1]] = result2_tmp[[1]]

result2[[2]] = result2_tmp[[2]]

result2[[3]] = result2_tmp[[3]]

# GridR script code section 2

result3=0

for (i in 1:length(result2)) {

result3=result3 +result2[[i]]

}

4.6.2. Parallelization with the GridR Client

The GridR R package allows for client-side parallelization as well as for server-side paral-
lelization, which will be both presented in the following sections.

Client side parallelization

Figure 4.14.: Parallelization with the GridR client on client side.

Parallelism can be expressed in the code at the client layer in GridR. The client side par-
allelization with the GridR client is visualized in Figure 4.14. It provides the functionality
of submitting R code packaged in a function as a job for execution in a grid environment.
The jobs are submitted in the background to the GridR service, which forwards them to
the Resource Management service. The Resource Management service is then responsible
for executing them in parallel.

The following code example demonstrates a cross-validation task that is computed in
parallel:
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library(GridR)

grid.init()

X <- as.data.frame(array(rnorm(300),c(100,3)))

Y <- X[,1]+X[,2]-2*X[,3]+rnorm(nrow(X))

YX <- cbind(Y,X)

n_folds=10

err <-0

vars=paste("tmp",1:n_folds,sep="")

for(i in 1:n_folds) {

grid.apply(vars[i],cv_single_fold,i,n_folds,X,Y,YX, wait=FALSE)

}

grid.waitForResult(vars)

for(i in 1:n_folds) {

err <- err+get(vars[i])

}

err=err/n_folds

cv_single_fold <- function(i,n_fold,X,Y,YX) {

n <- nrow(X)

YXtrain <- YX[which(1:n %% n_fold != i-1),]

YXtest <- YX[which(1:n %% n_fold == i-1),]

m <- lm(Y~V1+V2+V3,YXtrain)

p <- predict.lm(m,YXtest)

err <- mean((p-YXtest[,1])^2)

return(err)

}

Figure 4.15 visualizes the approach of client side parallelization with the example. Par-
allelization is achieved by generating a number of jobs at the client side, submitting them
via the GridR service to a resource management system and processing them on the ex-
ecution machines in parallel. In detail, on the client side an R script is executed that
submits a number of jobs (the execution of a single cross-validation fold inside a for-loop)
via the GridR service to the Resource Management service, which then are executed, e.g.
by the GT4 grid middleware or the Condor cluster management system. The jobs run in
parallel in the execution environment and compute the same R function (with different
parameter settings).

Server side parallelization

In addition to client side parallelization, as described in the previous section, the GridR
client allows for server side parallelization. The server side parallelization with the GridR
client is visualized in Figure 4.16. Instead of submitting a number of independent tasks
that are computed in parallel, a single job is submitted that is processed as parallel job. As
in a sequential execution, the client just submits an R script calc() containing the algorithm
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Figure 4.15.: Example of GridR client side parallelization with the GridR package.

Figure 4.16.: Parallelization with the GridR client on server side.

that performs the analysis as a single job, but wrapped by another function wrap(). In
addition, this function also has a parameter indicating the desired parallelization degree
that has to be specified. The script containing the wrapper function which is executed on
the server side is responsible for the generation of sub-jobs as well as the result aggregation.
Generation of sub-jobs means that from the execution process on the server side another
job-submission process is started. This can be achieved easily by instantiating the GridR
client on the server side. This instance of the GridR client submits a number of sub-jobs
to a resource management system which process the actual computation tasks on the
execution machines.
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With this approach of instantiating the GridR client on the server side, where the server
takes the role of a client during the processing of jobs, users are enabled to set up complex
parallel processes flexibly by even involving different resource management systems or
environments (grid, cluster) as well as to make use of recursion. With this approach it
is still possible to modify the R script specifying the algorithm independently from the
parallelization because the latter is packaged into a separate wrapper function. It would be
even possible to set up a collection of predefined wrapper scripts for some tasks (e.g. result
aggregation) which would allow combining wrappers with different algorithms depending
on the scenario.

Figure 4.17 visualizes the approach of server side parallelization as an example of sub-
mitting a single job from the client side to the grid and submitting a number of parallel
sub-jobs from the grid execution environment to a cluster. Instead of generating a num-
ber of jobs at the client side, the client submits just a single job via the GridR service
to the Resource Management service, e.g. the GT4 grid middleware. In the execution
environment, the job is processed and executes the wrapper function, which internally
starts launching a number of sub-jobs that are computed in parallel to another resource
manager, e.g. the Condor cluster management system. By this, the functionality for
client side parallelization can be used on server side in the execution environment even in
a recursive way.

Figure 4.17.: Example of GridR server side parallelization with the GridR service.

4.6.3. Discussion

We have introduced parallelization into 3 different layers of the architecture. The deci-
sion on which layer to chose for the parallelization of a given scenario depends on the
configuration and structure of the grid environment and the requirements of the scenario.
Parallelization in the high-level service layer can be specified by adding annotations to
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the R code to parallelize. However, the degree of the parallelization has to be known
in advance, which might not always be possible for a given scenario. Parallelization in
the client layer is achieved by applying functions with the GridR client, but this results
in more communication between the client and the grid environment. Thus, the perfor-
mance of the system might be reduced. If the application of functions with the GridR
client is wrapped in an R script executed at server side, parallelization can be moved to
the fabric layer. However, this is not possible if the grid jobs are executed independently
in an isolated environment, which might be the case for highly secured grid systems.

4.7. Reference Implementation in ACGT

In this section, we show how the presented architecture of our approach on flexible and
interactive development of data mining scripts is applied in practice. The Advancing
Clinico-Genomic Clinical Trials on Cancer (ACGT) project [34], which was presented
in Section 2.4.2, aimed at providing an open environment for supporting clinical trials
and related research through the use of grid-enabled tools and infrastructure. The ACGT
system [133, 150] serves as an example for a complex distributed data analysis environment
in the medical domain that is designed according to OGSA (see Section 2.2.2). Our
approach has been implemented in the context of the ACGT project. In the following,
we will give an overview over the technical architecture of the ACGT system and describe
how the GridR service and the GridR client have been integrated.

4.7.1. ACGT Technical Architecture

The ACGT project [34] aimed at addressing the requirements and needs of the biomedical
community by providing a secured, integrated data management and data mining envi-
ronment in support of large multi-centric clinical trials. The ACGT system represents a
complex architecture supporting clinical trials based on grid technology.

From the technological point of view, ACGT offers a modular environment in which new
data processing and data mining services can be integrated as plug-ins as they become
available. ACGT also provides a framework for semantic integration of data sources (e.g.,
clinical databases) and data mining tools, through the use of a specifically developed
ontology and of a semantic mediator. In the ACGT framework various elements of the
data mining environment can be integrated into complex analysis pipelines through the
ACGT workflow editor and enactor, itself embedded in a user-friendly web portal.

In terms of the technology infrastructure the ACGT platform is based on the following
state-of-the-art technologies and standards: Service Oriented Architectures, the Grid and
the Semantic Web.

The ACGT requirements in terms of data management, efficient utilization of compu-
tational resources, and security are matched by the adoption of a grid infrastructure. The
adopted architecture builds upon the grid fabric and it is further enhanced by the deploy-
ment of web services and semantic web technologies. These technologies, although initially
separated, are currently converging in a complementary way and the ACGT platform is
a case which demonstrates the feasibility and the added-value of such a convergence and
integration.
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Figure 4.18.: The ACGT layered architecture (based on [150]).

The OGSA-based architecture that was adopted for ACGT is shown in greater details in
Figure 4.18. A layered approach has been followed for providing different levels of abstrac-
tion and a classification of functionality into groups of homologous software entities [133].
In this approach the security services and components are pervasive throughout ACGT
in order to facilitate user management, trust bindings and access-rights management and
enforcement. The grid and domain-specific security mechanism used ensure the proper
implementation of security requirements like pseudonymization and anonymization.

Apart from the security requirements, the grid infrastructure and other services are
located in the first two layers: the Common Grid Layer and the Advanced Grid Middleware
Layer (bottom of Figure 4.18). In particular the Grid Authorization Service (GAS) is
the central entity for managing access authorization rules in the context of a Virtual
Organization.

The middle layer consists of the Bioinformatics and Knowledge Discovery Services.
These services are the ”workhorse” of ACGT and the corresponding layer is where the
majority of ACGT specific services lie. The set of services that have been developed in
this context can be roughly classified as follows:

• Data access services. These services are responsible for the retrieval of data shared
in the context of a clinical trial. This category includes the Data Wrappers which are
adapters for existing clinical and imaging databases exposing database contents to
other ACGT components, Microarray services that provide access to BASE reposi-
tories [42], and finally Semantic Mediator Services that offer uniform access to dis-
tributed and heterogeneous clinical and biomedical databases.
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• Services for the Semantics-aware use of the platform. In this category, the Ontology
Services provide a conceptualization of the domain, by the mean of the Master
Ontology for Cancer [23], and for constructing complex queries for the Mediator
Services based on the SPARQL query language [5].

• Service Enactment, which includes the basic grid mechanisms used for the submission
and execution of jobs in the grid, and the higher-level Workflow Enactment Services
that support the management and execution of complex biomedical workflows.

• Metadata Repository services, which ensure the persistence and proper management
of the metadata description of the services available to the users.

• Data Analysis and Knowledge Discovery Services, which are a number of data
mining and knowledge discovery tools and services that fulfil the data analysis re-
quirements of ACGT, with GridR [151] as one of the most prominent tools. The
approaches presented in this chapter are part of the Knowledge Discovery Services
and their integration into the overall architecture.

Figure 4.19.: The ACGT Portal.
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The upper layer is where the user-accessed services, such as the portal and the visu-
alization tools, reside. The portal is the main entry point for ACGT (shown in Figure
4.19). The majority of the tasks a user needs to do in the context of a clinical trial, such
as the analysis of biological data, execution of services, enactment of published workflows,
training and learning activities, etc., are supported by the ACGT portal and its portlets.
Through the portal the users are able to design new scientific workflows that combine
data retrieval and data analysis tasks in order to implement a scenario. These activities
are supported by the ACGT workflow editor (shown in Figure 4.20), a web-based drawing
and workflow designing tool. The workflow editor provides a graphical browser which
facilitates the discovery of the existing ACGT services and their composition. The ACGT
workflow editor is an example of the ”Software as a Service” approach, eliminating the
need to install and run the application on the users’ desktop machines, and also featuring
better integration with the grid and Service Oriented Architecture of the platform (e.g.
the server side execution of the workflows, a central repository of all the workflows to
better support sharing, etc.). Users can develop complex analysis pipelines by intercon-
necting services registered in the metadata repository, and store them as new services for
later reuse.

Figure 4.20.: The ACGT Workflow Editor.

4.7.2. Integration of GridR into the ACGT Grid Environment

GridR [151] is an analysis tool based on the statistical environment R that allows using
the collection of methodologies available as R packages in a grid environment. The aim
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of GridR in ACGT is to provide a powerful framework for the analysis of clinico-genomic
trials involving large amount of data (e.g. microarray-based clinical trials). In ACGT
GridR plays a dual role: On one hand it can be used interactively, giving the users access
to the ACGT environment, on the other hand it is deployed as a data-analysis service
exposing a web service interface for the execution of scripts incorporated in scientific
processes and workflows. Thus, scripts can be used as atomic components in processes,
which will be addressed in Chapter 5.

GridR in ACGT consists of the GridR service, the GridR client and the GridR R
environment. The GridR R environment is basically a standard R environment with some
additional packages installed, which is installed on the machines which will execute the R
functions remotely.

The GridR client is provided as an R programming language interface that supports
the access to services of the ACGT environment. This means that R users and developers
have access to distributed resources in a transparent fashion, the complexity of the grid
being hidden from the user. The sourcecode of the GridR client is partially published at
the official R package repository CRAN1 [37].

In the ACGT platform, the GridR service is implemented as a GSI-secured grid service
based on the Globus Toolkit 4 libraries [48] and on the Gridge Toolkit [101]. In detail, the
GridR service includes clients to the Gridge Data Management System (DMS, a virtual
file system for data organization in grid environments), and to the Gridge Grid Resource
Management System (GRMS, which is responsible for grid resource management and
scheduling of grid jobs). The interface to the DMS is based on files. This implies that
all input and output data have to be passed to and from GridR by physical files. As
described in Section 4.4.2, the GridR service attaches a header to each script which makes
the contents of input files accessible in the R session on the execution machine and holds
information on the output file or directory names that the user can use to export data
from the session.

Figure 4.21 presents details on the architecture presented in Section 4.4.2 in the context
of the ACGT system.

R scripts can be integrated into workflows by using the GridR service, hence giving
the possibility to perform highly complex and flexible analyses. At the workflow level
the GridR service is considered as a single service that accepts very complex inputs -
algorithms specified by R scripts. Thus, the GridR service can be used as task in ACGT
workflows designed with the ACGT workflow editor. Upon enactment of such workflow
tasks, the details and the complexity of the mechanisms involved in the execution are
hidden from the user.

For the discovery of GridR scripts, the GridR service is integrated with a metadata
repository. The scripts can be described by metadata that can be registered in the meta-
data repository (Repo) in order to publish the script in the analysis environment. This
includes mainly information on the input and output parameters of the script, which are
handled in the header and footer snippets that are attached to the script, as well as the
script code itself. The description of individual scripts can be used to provide a convenient
way of searching and reusing scripts that are developed with our method.

1http://cran.r-project.org/web/packages/GridR/index.html
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Figure 4.21.: The GridR service architecture in ACGT.

The R scripts are considered as another kind of reusable entities that are shared between
the ACGT users and that are discoverable on the basis of their metadata descriptions,
e.g. the algorithm they implement, the data types of their inputs, their quality properties
(e.g. performance), etc.

The workflow depicted on Figure 4.22 is an example of a specialized workflow which
interfaces two GridR scripts with a number of data sources (specifically: a set of mediator
queries to and a set of static files) to produce the various types outputs, e.g. plots and
matrices.

4.8. Case Studies

In this section we will present case studies that demonstrate the applicability of our ap-
proach in practice. In detail, we show a data analysis scenario from bioinformatics im-
plemented with GridR and a scenario from an industrial application that is parallelized
using GridR.

4.8.1. Integration of Scripts and Interactive Development - The Farmer
Scenario

The scenario used in this case study is an example of a use case of the bioinformatics
community. It demonstrates the GridR package and shows that a state-of-the-art scenario
can be implemented with our approach presented in Sections 4.4 and 4.5. This case study
is based on [150].
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Figure 4.22.: A complex genomics data analysis workflow, represented inside the workflow
editor portlet. (Two of the elements of the workflow, ”datapreparation”
and ”dataanalysis”, are GridR scripts.) The tree explorer on the left of the
picture allows the user to select services registered in the metadata repository
and to add them to the workflow.

The Farmer Scenario

In order to illustrate the working principles of GridR in terms of integration into the grid
environment in an interactive way, we have selected the article by Farmer et al. [44], a
simple clinical research project available from the literature and for which all data were
available online at the GEO repository [56] (series accession number GSE1561). This also
provides a validation of GridR in a realistic usage.

In the Farmer scenario, microarray data (Affymetrix U133A gene expression microar-
rays) obtained from breast cancer tumour samples of 49 patients are used to associate
subtypes of breast cancer to patterns of gene expression and molecular signatures. R and
BioConductor [55] packages are used to load, normalize and analyse the data. The present
work is validated by showing that the results of the original paper can be reproduced using
GridR.

The validation of GridR actually implements only a subset of the analysis steps pre-
sented in the original article, namely the principal component analysis (PCA). However,
additional steps related to the quality control of the arrays are shown, which were not
presented in the original paper.
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Figure 4.23.: Farmer scenario plots (from [150]).

The given scenario can be described from the technical point of view as follows: A
researcher wants to perform interactive, grid-enabled data mining in the R environment.
On his local machine (client) he develops algorithms using R as user interface, which he
wishes to use on a clinical data set.

In clinical context, the data sets to be analysed are usually so large (about 800MB in
the present scenario with a small number of patients) that a transfer to the client might
be ineffective or not possible. Besides, execution machines in the grid environment might
have bigger computational power than client machines. It is thus often more efficient to
just ship the algorithm to the execution machine (the best being if the execution machine
is the machine where the data is located in order to minimize transfer time), execute it
remotely on this machine and transfer the results back to the client. This is the strategy
implicitly implemented in GridR.

The Experiment based on GridR

As described above, the implementation of GridR is validated on the basis of the Farmer
scenario by implementing some typical analysis steps of a microarray experiment [150].
In the present case, R was used in conjunction with the BioConductor packages affy,
affyPLM and marray, which are specialized packages for microarray analysis, to build
the individual components of validation. Besides loading the expression data matrix and
associated clinical data, those components contribute in:

113



4. Flexible and Interactive Development of Data Mining Scripts in Grid-based Systems

Figure 4.24.: Function Execution in the Farmer scenario (job submission: (1) type com-
mands in the interactive R session, (2) execution on a machine in the grid is
started).

• Producing figures required for the quality control of the chips.

• Producing ”MvA plots” to obtain an overall view of the fraction of differentially
expressed genes.

• Using a variance filter to pick unique probeset per gene and performing a principal
component analysis to verify that samples with similar subtypes group together.

• Extracting symbols of genes most correlated to molecular markers relevant to the
analysis (androgen receptor, AR, and estrogen receptor, ESR1).

The analysis steps are wrapped into functions for remote execution with GridR. Techni-
cally, the evaluation for computing the scenario with GridR in the ACGT testbed involves
the GridR client at client side, the GridR service, a GRMS-Server installation from the
Gridge toolkit [101] on a central machine in the grid environment that is responsible for
resource management and orchestration of the execution machines, GT4-based execution
machines, and the GridR R environment as well as the packages needed for the specific
scenario installed on the execution machines. Figure 4.23 shows the plots related to those
steps; in particular the plot illustrating the PCA is seen to be identical to that in [44].
Figure 4.24 visualizes how the function execution is submitted from an interactive R ses-
sion as job for execution in the grid, and Figure 4.25 shows how the results are transferred
back to the client session.
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Figure 4.25.: Function Execution in the Farmer scenario (result transfer: (3) execution on
a machine in the grid is finished, (4) get results in the interactive R session).

The present scenario is a proof of concept by performing a shipping of the algorithm.
The infrastructure accessible to GridR may render executable R scripts that may not be
executable on typical workstations. For instance, the normalization of microarray sets
with a few hundreds of chips may require up to several tens of gigabytes of memory.
This one-time procedure is typically performed on a single specialized server in the grid
environment.

Summary

In the biomedical and biostatisticians community R is widely used and turned out as de
facto standard. GridR, as one of the important analysis tools in the ACGT environment,
enables users to run experiments in the grid and profit from the grid enabled environment
for R. The presented case study showed the execution of R-based data mining scripts in
the context of a state-of-the-art analysis scenario from bioinformatics. It becomes clear
that the availability of GridR will be of great use to clinicians and clinical-data analysts
interested in computationally intensive data mining, such as resampling techniques, full
cross-validation of classifiers or meta-analyses.

The benefits for the users are twofold, based on the duality of using the R as a client
tool and executing the R scripts on the grid. Firstly, the R environment is a popular
tool among biostatisticians and the scientific community at large. Providing R with a
simple way to access the resources made available in the context of ACGT is beneficial
for the scientists actively using of the infrastructure. Secondly, the grid-enabling of the R
execution layer ensures that the analysis tasks are executed in an efficient and secure way,
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relieving the client side of heavy computational load and of the need to download all the
input data sets.

This case study showed that it is possible to execute a typical bioinformatics scenario
in the grid. With the Farmer scenario were able to prove that our approach supports the
quick and easy execution of scripts based on the standard tool R in an interactive way.
In addition, we showed that no modification on the grid environment was necessary to
execute the scenario and that the details of the underlying technology were hidden.

4.8.2. Supporting Basic Script Parallelization - An Industrial Case Study

The scenario used in the script parallelization case study is based on an industrial appli-
cation in the area of mobility mining. The application shares common components with
bioinformatics scenarios, e.g. the Kaplan-Meier survival analysis, and has a demand for
parallelization. The scenario shows how our approach of parallelizing R scripts with the
GridR client (see Section 4.5) can be implemented in an industrial application. This case
study is based on [141].

We apply the parallelization in a GPS-trajectory mining scenario that computes the
reach and gross contacts of outdoor poster advertisement campaigns based on GPS-tracks
of a set of test persons. Reach is defined as the percentage of a population exposed to
a campaign within a certain period of time (e.g., a week). Gross contacts are the total
number of contacts a campaign achieves. Both measures serve as common currency for
comparing the performance of campaigns in the advertisement business. The scenario
provides the foundation for price calculations for all outdoor advertisement throughout
Germany and demands for scalability. In our case study users are enabled to execute
parallel R scripts. The execution is mapped transparently to the execution environment
in such a way that neither the user nor the R-programmer of the data mining script is
affected.

In the following, we will present details on the GPS-trajectory mining scenario, the
parallelization of the scenario with GridR and the experimental results.

Scenario

In Germany, the outdoor advertisement industry records a yearly turnover of more than
800 million Euro. The Arbeitsgemeinschaft Media-Analyse e.V. (ag.ma) - a joint indus-
try committee of around 250 principal companies of the advertising and media industry in
Germany - authorized the AGMA project, which provides the foundation for price calcula-
tions in outdoor advertisement throughout Germany. In 2006/07 the ag.ma commissioned
a nationwide survey about mobile behaviour and appointed Fraunhofer IAIS to calculate
the reach and gross contacts of poster networks [43].

Figure 4.26 on the left shows a campaign of 321 billboards on arterial roads in Cologne.
The right hand side displays the development of reach over a period of seven days. Reach is
a time-dependent measure about the publicity of a poster network. It states the percentage
of people which see at least one poster of the campaign within a given period of time, e.g.
one week. The campaign reaches about 50 percent of the Cologne population on the first
day, after one week about 90 percent of the population have seen a poster of the campaign.

116



4.8. Case Studies

Figure 4.26.: Reach of a poster network in Cologne (from [141]).

The basic input data of the AGMA application are trajectories and poster information.
Nationwide, the daily movements of about 30,000 people have been surveyed using GPS
technology and telephone interviews. This data amounts to about 21 million tuples where
each tuple represents a section of a trajectory which has been mapped to the street net-
work. Poster information indicating geographic location, type and visibility is available
for approximately 230,000 posters. In order to determine reach and gross contacts, the
intersections of a given poster network and the trajectory data have to be calculated.
However, the number of test persons is rather small compared to the whole population
of Germany and the trajectories do not span the full street network. Therefore, we in-
troduce variance to the data by performing a geographically restricted simulation of the
trajectories. The resulting simulated trajectories serve as basis for the computation of
reach and gross contacts. However, the trajectories suffer from in-completeness in terms
of missing measurements due to defective GPS devices or the forgetfulness of test person,
which easily interrupt the series of measurement days. These deficiencies are treated in
the modelling step by applying the Kaplan-Meier survival analysis technique [11]. Details
of the analysis technique itself are not subject of this work. A detailed documentation of
the study is already available at the ag.ma website (in German).

The scenario is implemented using the statistical software R [103], as R directly sup-
ports statistical analysis including the Kaplan-Meier method. At the beginning, the script
retrieves input data by triggering several database queries that read a (random) network
of posters and the test persons’ movement data. Afterwards, a 100-fold simulation of
trajectories is performed, and reach and gross contacts are calculated. In previous tests,
we determined a number of 100 simulations to achieve stable results. Finally, the results
are stored in a text file.

In addition to calculations regarding a particular poster campaign, the advertising in-
dustry is also interested in mean network ratings. This requires the repeated execution
of the script with randomly selected poster campaigns of specified size, and subsequent
averaging of results. Depending on the size of the poster network, stable results can be
achieved by using 30-100 repetitions.
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The input parameters allow for a variety of combinations. For instance, the geographic
location of a poster network can span from a single city up to combinations of cities to
federal states or whole Germany. Also, the target population can vary. For instance, it is
interesting to know the amount of contacts contributed by people living in the surround-
ing area of a large city. Other parameters are the size of the campaign and the poster
type. Depending on parametrization, the execution time to calculate reach and gross con-
tacts of a single campaign varies between several minutes and a few days. Thereby, the
main influence factors are the number of target test persons and the size of the poster
network. Clearly, the large number of parametrizations prohibits advance computation of
all possible settings, so that computations must be performed on demand. This requires
an execution in reasonable time, which applies in particular to mean computations, where
30-100 repetitions of a setting must be executed. Therefore, scalability plays a crucial role
in the application.

Parallelization with the GridR client

The scenario we selected for experimental evaluation calculates mean network ratings for
a (rather small) number of poster types and network sizes in 12 cities, amounting to a
total of 92 parametrizations. Each parametrization was repeated 100 times for averaging.
If computed on a stand-alone machine, the expected runtime of the experiment would
amount to about one year. For being able to compute the scenario at all, the application
has to be speeded up by the parallelization of subtasks of the application’s algorithm. In
our scenario, the algorithm can be parallelized in theory because it contains a loop with
independent steps based on randomly fetched data. But, it is not directly obvious if a
parallelization will improve the runtime in practice because the data is stored in a central
database which could be a bottleneck.

In the following, we present a way of how to make use of parallel computation using
the GridR client. As described in Section 4.6, parallelism can be expressed at different
layers in GridR. We chose server side parallelization with the GridR client, as we want
the scenario to be computed on a computing cluster in the infrastructure layer. R code
packaged in a function or script is submitted for execution in the distributed environment.
In detail, the jobs are submitted in the background to a resource management system via
the GridR service. The jobs are then executed, e.g., on a Condor cluster [130], which can
process them in parallel.

The application scenario is as follows (visualized in Figure 4.27): The GridR client
contacts the Resource Management services of a distributed grid environment via the
GridR service and submits jobs (computing the reach of poster networks). The jobs
consist of the execution of a wrapper script and are processed on the dedicated execution
machines. In our application scenario, the wrapper script submits n subtasks to a Condor
cluster, each taking the analysis script for computing the reach as input. These subtasks
compute the AGMA scenario in parallel. They draw a random sample of posters along with
the trajectory data from a central database and compute the poster reach. The wrapper
script waits for the appearance of all results and then averages them. In the AGMA
scenario, averaging of n=100 parallel runs varying the poster network was required to
achieve the desired stability in the result.
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Figure 4.27.: Parallelization in the AGMA Scenario with the GridR client.

Summarizing, GridR together with the presented technique of parallelization enables
users to submit a single job that is automatically split up in a number of parallel tasks
on the server side. As an advantage, the code that is executed on the client side becomes
smaller as there is no need for result checking and result aggregation on the client side.
Furthermore, communication overhead is reduced because the splitting into parallel tasks
and the result aggregation are performed on the cluster side. Consequently, performance
is increased as computing clusters as, e.g., a Condor pool, are specially setup for allowing
high speed communication between the execution machines.

Experiments

We conducted artificial experiments with a reduced computational load and real-world
experiments to evaluate our system. The goal of the artificial experiments was to test
whether it is useful to parallelize the application at all, having in mind that each parallel
task has to get the trajectory data from the central database, thus inducing a parallel load
on the database server. The big real-world application then delivered the data proving
the feasibility of our system by computing the reach of 92 poster campaigns in 12 German
cities.

The setup of our experiments was as follows: The experiments were processed on a PC
cluster managed by Condor. In total, the cluster consists of 30 AMD Opteron 2.2 GHz
machines running Condor on Linux. Each machine holds 2 CPUs, 8 GB memory and two
local HDDs with 120 GB. The database machine is a Intel Dual Core 2x2.6 GHz with 4 GB
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Simulation loop size k: 1 20 40 60 80 100

Computation time: 143 799 1496 2197 2897 3569
Database access: 75.5% 12.1% 6.5% 4.4% 3% 2.7%

Table 4.4.: Local execution of a task with varying simulation loop size k (in seconds).

# parallel tasks n: 5 10 20 30 40 50 60

Cluster runtime: 140 150 330 320 450 540 320
Summarized runtime: 625 1251 2502 3754 5005 6257 7508
Speed-up: 4.4 8.3 7.5 11.7 11.7 11.6 23.4

Table 4.5.: Parallel execution of n tasks with 75.5% database access (in seconds).

memory, 2x250 GB HDD (1 x System-HDD, 1 x DB-HDD), running Oracle 10.2 on Linux.
All machines are connected by a 1GBit network connection. Throughout the experiments
it could not be guaranteed that all resources of the pool were free and accessible for the
full period of computation.

Artificial experiment. Each of the parallel tasks first draws the trajectory data and
randomly chosen posters from the central database server and then locally computes the
reach of the poster campaigns. As all parallel tasks compete in the database access, the
ratio between the time needed for the database access and the local computation has a
direct effect on the expected speed-up in a parallelization. We conducted experiments in
which the size k of the inner simulation loop of the local computation was varied from 1 to
100, with 100 being required in the real-world experiment. The results are shown in Table
4.4. The chosen task computed the reach of a poster campaign with 321 posters, retrieving
from the database the trajectories collected by 535 persons over a week in Cologne (about
430,000 street segments, roughly 7 MB). As we can see from Table 4.4, even if the database
access takes 75.5% in the (hypothetical) worst-case of minimal local computation (k=1),
only 2.7% of the computation time are spent with the access to the database system in
the parameter setting required for the real world application (k=100), thus giving a high
chance for achieving speed-up in parallelization.

Based on this positive result, we conducted an experiment to find out whether the central
database server was a bottleneck in the parallel execution. We studied the hypothetical
worst case in which 75.5% of the computation time was spent on data-base access (k=1)
and varied the number n of parallel executions for different poster networks. The results
are shown in Table 4.5. Table 4.5 depicts the results in the case in which n parallel tasks
are started simultaneously and actually access the data at the same time. The cluster
runtime denotes the job computation time on the cluster, the summarized runtime is the
sum of the execution times of the individual tasks, and the speed-up is defined by the ratio
between the summarized and the cluster runtime. The computation was parametrized with
k=1 to let each local task spend 75.5% of the time with the database access. Given these
conditions, the results are promising: the database system did not dramatically slow down
the parallel executions. In the real-world application, the percentage of database usage
is 2.7% only and the parallel runs are much more interleaved. The artificial experiments
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Poster
type

Advertising
pressure

# Poster # Test
persons

Average run-
time per task

Summarized
runtime

Cluster run-
time

Speed-up

CLP normal 740 533 8326 832566 21488 39
BB high 483 533 4619 461939 20104 23
BB medium 321 533 3482 348169 8315 42
BB low 241 533 2832 283218 7751 37
C high 161 533 3353 335288 12069 28
C medium 121 533 2751 275071 9092 30
C low 97 533 2362 236245 10641 22
ML normal 102 533 1712 171173 8243 21

Table 4.6.: Parametrization and results showing runtimes (in seconds) and speed-up for
the computation of values for the city of Cologne - 8 jobs with 100 tasks.

correspond to the campaign depicted in line 3 of Table 4.6, in which we achieved a much
higher speed-up.

Real world experiment. We tested the runtime behaviour for the computation of
average campaign ratings in 12 cities. In each city, poster networks of the type column
(C), billboard (BB), city light poster (CLP) or mega light (ML) were drawn respecting
different campaign sizes. Each parametrization was averaged over a group of 100 tasks,
amounting to 9200 tasks in total. Table 4.6 shows an excerpt of the job parametrizations
and execution times for the city of Cologne.

As stated earlier, the runtime of a task depends upon the number of test persons avail-
able for the city and the size of the campaign, which is derived from the advertising
pressure. Thus, the scenario provides a variety of input data. Figure 4.28 left shows the
average task runtime depending linearly on the volume of input data, which is defined as
the number of test persons multiplied by the number of posters.

Figure 4.28 right displays the relationship between the sum of individual task runtimes
and the total runtime on the cluster for all 92 jobs. On average, we obtained a speed-up
of 45, which is a plausible result for the execution of 100 tasks on a cluster of 60 CPUs.
On evaluation of the results, we detected four anomalous jobs (marked with triangles in
Figure 4.28 right). These did not terminate properly because some of their tasks failed.
The extreme outlier on the top left results most likely from external jobs, which competed
for cluster and database resources.

Figure 4.28.: left: Runtime behaviour vs. input volume; right: Cluster runtime vs. sum
of individual job runtime.
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Summary

In this case study we have applied techniques for the parallelization of R-scripts in grid
environments using GridR as described in Section 4.6. The considered application enables
marketing departments from all over Germany to compute the reach of out-door poster
campaigns based on trajectories of test persons. As the R-based computation of the reach
requires substantial computational efforts, the application requires access to a pool of
execution machines that executes the analysis tasks and holds the data. With GridR, we
enabled the parallel execution of R scripts. Using this technique in our application, a client
can submit and initiate parallel computations of R scripts. In the considered application,
we managed to compute the complete scenario of 12 cities in a few days compared to the
hypothetical sequential execution time of roughly a year.

The case study showed that it is possible to execute R scripts efficiently with GridR
and that our approach is applicable to other domains than bioinformatics.

4.9. Wrap-up

In this chapter we have presented an approach for flexible and interactive development of
data mining scripts in grid-based analysis environments. The approach is based on a grid
service with complex inputs and outputs that allows for providing data mining algorithms
implemented as scripts as parameters (the GridR service). It reduces the complexity of
integrating and executing data mining scripts in grid environments, as it does not require
the registration of each individual script separately in the grid registry. In addition, we
presented an extension to the R environment that allows for interactively developing data
mining script including the development and composition of data mining components (the
GridR client). Users are enabled to interactively develop data mining scripts directly in
the grid environment. Furthermore, we presented how parallelization can be introduced
into our approach. Several case studies showed that the approach solves problems in
practice, that is supports complex scenarios, and that it is generalizable to other settings
in industry.

Data mining components and scripts are usually part of larger processes, realized as
executable workflows. In the next chapter, we present an approach on supporting the
reuse of existing data mining processes including components and scripts.
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The goal of this chapter is to introduce an approach for the reuse of existing data min-
ing based analysis processes in bioinformatics scenarios. Data mining components and
data mining scripts, which have been discussed in Chapters 3 and 4, are usually parts of
larger analysis processes. These are typically realized in the form of executable workflows.
In contrast to data mining scripts, which already enable users to compose components,
workflows provide a higher level of abstraction than a scripting language, which reduces
complexity for users when composing components and scripts.

Reuse of analysis processes becomes much more important in the area of bioinformatics
due to complex process chains that have to be set-up for today’s analysis solutions. How-
ever, the support for reusing existing data mining based analysis processes lacks today.
On the one hand, deployed executable workflows often cannot be reused directly, as they
are customized to a certain scenario and as the information on how the workflow was
set-up and on which requirements have to be met for executing the workflow is often not
available. Although workflows are already shared and reused in the area of bioinformatics,
Goderis et al. identified ”barriers that keep people from effectively processing the available
workflow knowledge” [60], e.g. bottlenecks in knowledge acquisition about workflows. On
the other hand, abstract process descriptions, e.g. based on the standard data mining pro-
cess model CRISP [121], are reusable but require a lot of effort for creating an executable
workflow out of this information. Thus, the reuse and integration of existing solutions is
not often or only informally done in practice due to a lack of support and bottlenecks to
reuse [60], which leads to a lot of unnecessary repetitive work.

In this chapter, we focus on the reuse of existing processes including its components
rather than on workflow planning or on recommending components and workflows for
reuse. This means that we assume that the process and the components that are going to
be reused are known.

In the following we present our approach on supporting the reuse of existing data mining
processes by formally encoding both technical and high-level semantics of these processes
in so called data mining process patterns. Data mining process patterns facilitate the
integration and reuse of data mining in analysis processes by providing a description of
a process at a level of abstraction between the CRISP model as most abstract process
and an executable workflow as most concrete process. The pattern approach is based
on encoding requirements and prerequisites inside the process and a task hierarchy that
allows for generalizing and concreting tasks for the creation and application of process
patterns.

This chapter first motivates the need for a new approach on reusing data mining pro-
cesses in Section 5.1. Second, it introduces the requirements for supporting the reuse of
existing data mining processes in Section 5.2. Third, we present related work in Section
5.3. Fourth, Section 5.4 describes how to modify the CRISP model to focus on the special
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case of reuse of existing solutions. Then, Section 5.5 introduces our approach on reusing
analysis processes based on data mining process patterns. We present how data mining
processes can be abstracted to data mining process patterns and how data mining patterns
can be specialized in order to reuse them for a certain analysis problem. Subsequently, we
present how the pattern concept can be used for modelling data requirements in Section
5.6. After that, we present three case studies. In Section 5.7 we evaluate the concept of
data mining process patterns in the context of a bioinformatics scenario. In Section 5.8
we present how to create a pattern describing the general process of meta-analysis from a
multi-center multi-platform scenario. In Section 5.9 we show how to integrate data mining
process patterns into business processes. Finally, Section 5.10 summarizes and wraps-up.
This chapter is mainly based on [114, 140, 146, 147, 148].

5.1. Motivation

Currently, existing data mining processes can be reused at different levels. An abstract
level of reuse is passing through a new CRISP process while being inspired by existing
solutions (e.g. by personal experience or reading respective documentation and scientific
papers), while the reuse at implementation level (e.g. by copy-and-paste of existing code
from scripts and excerpts of workflows) is a concrete level of reuse. In this section we
argue that there is a need for an approach in-between.

The first approach (abstract level) for reuse is following a new CRISP process (see also
Section 2.1.2) based on information and outcomes of an existing CRISP process. CRISP
describes in an abstract way how data mining processes are performed and guides in
instantiating this abstract process for a given problem by a breakdown from generic to
specialized tasks.

It is known that the CRISP model lacks in the deployment phase [116] and misses phases
important for engineering projects [89]. Based on experience in software engineering, [89]
proposes a model for data mining engineering that includes engineering-related phases
which are missing in CRISP. They identify the open issue that available process models
specify what to do, but not how to do it. [120] also identifies the lack of guidance towards
implementing particular tasks of data mining methodologies and introduces a framework
for the implementation of the business understanding phase of data mining projects. In
addition, it was detected that many redundancies and inefficiencies exists when following
the CRISP model in parallel to approaches that work on already modelled processes, as
e.g. in the field of Business Process Management (BPM) [146].

Summing up, the approach of following CRISP does not suffice, as it is often too general.
There is no support to create executable workflows from a CRISP process - the user has
to follow all CRISP phases and concretion steps.

The second approach (concrete level) is to utilize reuse at implementation level. Data
mining processes can be reused by making use of available data mining workflows. There
exist several frameworks and tools for the development, composition, deployment and
execution of workflows based on data mining components and scripts, e.g. RapidMiner
[93] and Weka [156] in the area of data mining, Taverna [72], Triana [32], Kepler [86] and
Galaxy [61] in the area of scientific workflows or jBPM [79] and YAWL [129] in the area
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of business processes (see also Section 2.2.3). However, deployed executable workflows
are often too specific and too detailed for being reusable efficiently. The workflow tasks,
which include data mining components and scripts, are fully specified and parametrized
so that they are directly executable by a workflow engine. In contrast, the information
on the requirements and prerequisites that have to be met in order to process these tasks
as well as interdependencies between the tasks are not or only implicitly encoded in the
workflow. What is left to be answered is how to describe the processes implemented as
workflows in a way that allows for an efficient reuse.

For example, in an analysis of a large set of real-world data mining workflows [21, 114]
we detected that the changes of a workflow during the lifetime of a data mining project are
made to the same extend at the preprocessing and at the modelling part, which implies
that understanding and representing the semantics of the data is a very important step.
The changes for the preprocessing part consisted to 50% and for the modelling part to
75% of manual parameter optimizations. The challenge is to reuse such kinds of manual
fine-tuning. A data mining process is a complex process that requires a lot of manual
optimizations and is not always transferable due to the dependency to the data. A copy-
and-paste approach, by taking over the data mining part from another analysis process,
will only work if the analysis process into which the data mining is integrated has exactly
the same properties as the original one. What is needed is a way to specify tasks of the
process at the correct level of abstraction for enabling reuse.

In the area of data mining there exist approaches on supporting the design of workflows
by ontologies which describe the workflow objects, e.g. data, meta data or components
[69, 137]. In the area of business processes, several workflow patterns have been identified
that describe the control-flow of workflows [117] (see also Section 2.2.3). In the area of
scientific and bioinformatics workflows, there exist efforts in describing workflows based
on different levels of abstraction [159, 29] and on supporting reuse by enhancing workflow
discovery [59]. In our approach we propose to combine parts of these concepts, providing
process patterns that allow for the description of tasks at different levels of abstraction
and include support of ontologies for describing data.

As visualized in Figure 5.1, the approach should support the description of the process
at different levels of abstraction between the CRISP model as most general representation
and executable workflows and code as most concrete representation. For doing so, we will
introduce the concept of data mining process patterns and a meta-process that describes
the steps needed for applying these process patterns.

5.2. Requirements

In many cases data mining processes could in principle be reused without the need for
detailed technical knowledge. However, in practice the reuse is too complicated or not
efficiently supported.

We aim at supporting reuse in an easy way. However, the exact meaning of easy depends
on the capabilities of the users, as reuse of different parts of a process presupposes different
kinds of previous knowledge. This includes, e.g., knowledge about the details of a compo-
nent, knowledge on the composition of components in a script or in a workflow, domain
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Figure 5.1.: Different strategies of reusing data mining.

knowledge about the data, or knowledge about the integration into higher processes.
We focus on users with a lot of domain knowledge in bioinformatics, but less technical

knowledge. Motivated by the way how bioinformaticians work (as described in Section
2.3), we categorize the technical knowledge according to the kinds of changes that are
needed to reuse a process. In detail, we distinguish the ability to

• use a component: the execution and parametrization of components are usually
supported by user interfaces, e.g. in a graphical way or via command line.

• develop a component: the development of new components needs expertise in
programming and software development and is supported by development environ-
ments.

• use a script: the execution and parametrization of scripts needs expertise in script-
ing languages, which are usually supported by command line interfaces.

• develop a script: the development of new scripts which can include components
needs expertise in scripting languages, which are usually supported by environments
for text based script composition.

• use a workflow: the execution and parametrization of workflows are supported by
GUI based workflow environments.

• develop a workflow: the development of new workflows which can include compo-
nents and scripts needs expertise in workflow composition which is usually supported
by drag-and-drop based workflow environments.

User groups are defined by their capabilities, e.g. it might be the case that clinical
end-users are only able to develop workflows but cannot develop scripts or components
due to missing expertise in scripting and programming.
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The goal that we want to achieve is to define a description for data mining processes
that allows for the reuse of these processes including data mining components and scripts.
The processes can vary from general processes as described by CRISP as most abstract
processes up to executable workflows as most concrete processes. Thus, tasks may only be
reusable at a level of abstraction that requires manual work to process or further specify
them. In addition, tasks may only be reusable under certain assumptions. Thus, the
prerequisites for reusing them need to be covered by the process description. All in all,
the method for the description needs to fulfil the following requirements:

1. it has to allow the description of processes at different levels of abstraction between
the CRISP model as most general representation and executable workflows as most
concrete representation.

2. it has to cover the description of the prerequisites that have to be met in order to
execute the process.

3. it has to include the description of manual tasks that need to be performed for
executing the process (e.g., manual quality checks based on plots).

4. it has to cover actions required by the user to specialize abstract tasks (e.g., parametriza-
tion, the creation of a sub-workflow, etc.).

5. if it is in principle possible to reuse a process by generalizing a certain task or set
of tasks, it should be possible to describe this information in a way that allows for
easy reuse with as few previous knowledge as possible.

Our approach to address these requirements is to define data mining process patterns
that describe processes including pre-requirements at different levels of abstraction and
to define a meta-process that allows end-users without deep knowledge in data mining to
reuse data mining processes based on these patterns.

5.3. Related Work

In the area of workflow and process modelling, there exist the two main fields of scientific
workflows and of business processes. Today, data mining is part of processes and workflows
in many business and scientific application domains, and in particular in bioinformatics
and healthcare. Scientific workflows are used, e.g., for prevention, diagnosis, therapy,
prognosis, etc., but also for other problems in healthcare such as resource planning or
fraud detection [78].

Data mining processes are implemented in various ways, as stand alone software, in
toolkits, as workflows, etc. (see also Section 2.1.3). Processes involving data mining
introduce additional dependencies among tasks as well as a combination of automated
and manual tasks [70]. The standard data mining process model CRISP represents the
underlying abstract process model for many data mining processes (see also Section 2.1.2).
Modern process frameworks provide great support for flexible design, deployment and
management of workflows. However, data mining needs a lot of domain knowledge and
thus is difficult to handle for non-experts.
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In the area of bioinformatics, setting up and executing scientific data analysis processes
that include data mining as described in Section 2.3 require a lot of manual work. Typ-
ically, such processes consist of a phase involving mainly manual tasks - including data
search and access, data understanding and data preparation, and a semi-automatic analy-
sis phase based on scripts or workflows - including further preprocessing, data fusion and
the actual analysis.

Often, bioinformatics processes are modelled in form of executable workflows in differ-
ent workflow environments. These environments are mainly based on data-flow oriented
workflow languages. Existing environments for scientific data analysis processes are, e.g.,
Taverna [72], Triana [32], Kepler [86] or Galaxy [61] (see also Section 2.2.3). The workflow
environments allow for modelling the steps of executable workflows, but lack in providing
the encoding of requirements or (manual) tasks at different levels of abstraction, which is
important for reuse.

In the area of scientific workflows it is often distinguished between abstract and concrete
workflows [39]: ”Abstract workflows capture a layer of process description that abstracts
away from the tasks and behaviour of a concrete workflow.” In [29] the authors introduce
another level of abstraction above the abstract workflows - the conceptual level. A concep-
tual workflow aims at capturing the user intentions when designing a process. In addition,
they define the concept of patterns as reusable fragments that are woven into the pro-
cess dynamically when specializing conceptual or abstract workflows. In [159] the authors
present a hierarchical workflow structure representation that contains four levels of repre-
sentation: abstract workflow, concrete workflow, optimal workflow and workflow instance.
The advantages they see are that users with different levels of experience might create
workflows at these different levels, that (semi) automatic transformation of workflows is
enabled and that (partial) reuse of workflows is defined at different levels of abstraction.
However, both approaches do not specifically address the encoding of requirements and
manual tasks.

In [10] the authors propose a framework for the reuse of scientific workflows, which are
also based on reusable process patterns that include abstract tasks. However, their work
focuses rather on technical tasks like copying, job execution and monitoring than on data
mining specific tasks.

In the context of business processes, there exist huge efforts in research and implemen-
tation of business process management (BPM). These efforts result in lots of methods
and approaches for process modelling, process instantiation, process execution, etc., and
various implementations of business process management systems. Modern SOA-based
Business Process Management (BPM) environments, e.g. based on standards like BPEL
[4] and BPMN [153], provide flexible and user friendly environments and tools for design-
ing, deploying and managing business applications. BPM principles, methods and tools
support the creation and management of business processes by graphical modelling, (au-
tomatic) transformation into executable workflows, easy deployment and easy inclusion of
external services. Common among a majority of such BPM systems is that processes are
modelled in a control-flow based modelling language.

In [117] a set of workflow patterns describing the control-flow perspective of workflow
systems is defined. According to Atwood [15], such patterns have plenty of advantages:
BPM processes serve as both the specification and the source code. The modelled processes
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become the solutions deployed and provide a simple communication tool between end-
users, business analysts, developers and the management. Workflow patterns provide
a proven and simple technique to shorten the learning curve and improve productivity
and quality of the processes designed as they are simple to understand, learn and apply
immediately.

Given that these powerful BPM environments and the CRISP model exist, one could
assume that it is very straightforward to efficiently reuse data mining processes. However,
in practice still many redundancies and inefficiencies exist [146].

In [83] the authors outline how a system can be built that supports users in the design
of data mining workflows out of distributed services for data understanding, data integra-
tion, data preparation, data mining, evaluation and deployment. The support they aim
at includes checking the correctness of workflows, workflow completion as well as storage,
retrieval, adaptation and repair of previous workflows. The authors present a data mining
ontology (DMO), in which all services including their inputs, outputs, preconditions and
postconditions are described. They propose to build a support system based on the DMO,
which would also allow for meta-learning for algorithm selection [69]. Based on the ontol-
ogy from [69], workflow templates have been defined [84] that can mix executable tasks
and tasks that need to be refined into sub-workflows. The workflow templates contain only
tasks that are described by concepts at the upper level of the ontology. Such ontologies
represent a good way for describing tasks and components that are part of workflows, but
lack in covering the description of manual steps and actions that need to be performed
to abstract and specialize tasks. The workflow templates are useful for describing auto-
mated workflows and allow, in combination with the ontology, for precondition checks for
individual tasks, but do not cover manual tasks that need to be performed for executing
the process.

Enabling the reuse of existing solutions for similar scenarios has the potential of mak-
ing the development of analysis process much more efficient. In principle, processes are
reusable in different scenarios, just by performing changes on certain components of them.
But, it is not obvious how to exactly do this, as this knowledge is typically not formal-
ized. Thus, data mining can only be reused efficiently and successfully in this context if
the user is supported during the task of constructing and reusing processes. Data mining
based analysis processes in bioinformatics need to be described in a meaningful way. For
doing so, it is necessary to know which characteristics and parts of the process have to be
described and which have not.

5.4. Analysis of the CRISP Model for Reuse

In the following, we will describe the CRISP phases and tasks in detail and present how
these differ in the case of reusing existing solutions compared to executing CRISP from
scratch. Depending on the aims of the tasks of the individual CRISP phases, the tasks
are either considered to be part of a data mining process pattern if they are reusable,
considered to be part of the meta-process if if they are related to following the procedure of
reusing a data mining process, or considered to be obsolete for reuse. Figure 5.2 visualizes
the mapping of the CRISP tasks.
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Figure 5.2.: Mapping CRISP tasks to data mining process patterns and the meta-process.

In the following, we give details on the generic CRISP tasks (based on [30]) and their
mapping to the process patterns and the meta-process:

• Phase Business Understanding
This phase focuses on understanding the project objectives and requirements from a
business perspective, converting this knowledge into a data mining problem definition
and a preliminary plan to achieve the objectives.

– Determine Business Objectives: The task Determine Business Objectives is a
general task that sets the goal of the overall process. Business Objective means
here answering the research question of the bioinformatics scenario. We arrange
this task at the start of the meta-process, as it provides the information needed
for the choice of a process pattern.

– Assess Situation: The task Assess Situation involves the set-up of an inventory
of resources, a collection of requirements, assumptions, etc. In our scenario, this
task does not apply as the important information is already available through
the existing process.

– Determine Data Mining Goals: We transform the task Determine Data Mining
Goals into a task that checks if the data mining goal is matching and arrange
it at the beginning of the data mining process pattern, as the data mining goal
is already specified in a data mining pattern.

– Produce Project Plan: The task Produce Project Plan is outside of the scope,
as the project plan is following the procedure for the reuse.
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• Phase Data Understanding
This phase is based on an initial data collection and includes activities in order to get
familiar with the data, to identify data quality problems and to discover first insights
into the data. The description of data and data requirements will be discussed in
detail later in Section 5.6.

– Collect Initial Data, Describe Data and Explore Data: The tasks Collect Initial
Data, Describe Data and Explore Data are considered as obsolete as we assume
the data to be available through the modelled analysis process.

– Verify Data Quality : The task Verify Data Quality is mapped to a task at the
pattern level.

• Phase Data Preparation
This phase includes the activities to construct the final dataset from the initial raw
data, which can then be fed into the modelling tools. Data preparation tasks include,
e.g., table, record and attribute selection as well as transformation and cleaning of
data. They are likely to be performed multiple times and not in any prescribed order.

– Select Data, Clean Data, Construct Data, Integrate Data, Format Data: These
tasks are all preprocessing tasks at the pattern level.

• Phase Modeling
This phase deals with selecting and applying various modelling techniques including
the calibration of their parameters to optimal values. Typically, there exist several
techniques for the same data mining problem with different specific requirements
on the form of the data. Therefore, stepping back to the data preparation phase is
often necessary.

– Select Modelling Technique, Generate Test Design, Build Model, Assess Model :
These tasks are part of the patterns.

• Phase Evaluation
This phase involves evaluating the outcome of the modeling phase, the built models
that appear to have high quality from a data analysis perspective, from the business
perspective. It leads to a decision on the use of the data mining results.

– Evaluate Results: The task Evaluate Results involves a matching with the
business objectives. Thus, we arrange this task at the meta-process.

– Review Process: The task Review Process is implicitly contained in loops of
the meta-process (changing the specification of tasks of a data mining pattern
or choosing another pattern).

– Determine Next Steps: The task Determine Next Steps does not apply as the
next steps are defined by the meta-process.

• Phase Deployment
This phase deals with organizing and presenting the knowledge gained in a way that
the customer can use it, e.g. by applying models within an organization’s decision

131



5. Data Mining Process Patterns

making process. In addition to the data mining expert, the customer or end-user
responsible for the higher processes is involved in this phase.

– Plan Deployment : The planning of the deployment by the task Plan Deploy-
ment does not apply, as in our context the deployment is always an executable
process. Thus, we transform it into a task for deploying the process which is
arranged at the level of the meta-process.

– Plan Monitoring and Maintenance: The task Plan Monitoring and Maintenance
does not apply as well, as monitoring and maintenance are handled by the
process environments anyway.

– Produce Final Report, Review Project : The tasks Produce Final Report and
Review Project are outside of the scope, as we are not interested in such a kind
of deployment.

Figure 5.3 visualizes the mapping of the generic CRISP tasks.

Figure 5.3.: Mapping of the CRISP tasks. White tasks are part of patterns, blue tasks are
mapped to the meta process, red tasks are obsolete.
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5.5. Data Mining Process Patterns for Data Mining based
Analysis Processes

Currently, approaches on describing data mining based bioinformatics processes have cer-
tain lacks in supporting the requirements for reuse presented in Section 5.2. To fulfil
these requirements, an approach is needed that addresses the characteristics of data min-
ing processes as described by CRISP, allows for describing abstract processes, executable
workflows and abstractions in-between, and covers the description of requirements, pre-
requisites and manual tasks.

We aim at an approach for supporting the reuse of existing data mining based analysis
processes that have proven to be successful, and hence want to develop a formal and
concrete definition of the steps that are involved in the data mining process and of the
steps that are necessary to reuse it in new analysis processes. Thus, we focus on the reuse
rather than on the data mining problem itself and consider a solution for the data mining
problem to be available.

We propose to provide an approach inspired by the workflow pattern concept from [117]
for the reuse of data mining processes - process patterns that represent templates for
different data mining problems. These process patterns have to include the definition,
description and requirements of the data mining process, but are independent of the
application scenario. In addition to the workflow templates presented in [84], the process
patterns include also the description of manual tasks and of actions required by the user
to specialize abstract tasks. The goal of these data mining process patterns is to provide
a flexible representation for different levels of generality.

For the abstraction of data mining based analysis processes, as it is also proposed by [29]
and [159], it is necessary to analyse which parts of such processes can be reused and if it
makes sense to reuse them. We consider the generic CRISP model as basis for this analysis.
Our approach splits up into two main steps: the abstraction of existing analysis processes
from a given scenario to create data mining process patterns, and the specialization of
data mining process patterns to executable analysis processes for new scenarios.

In this section, we will introduce our approach on the reuse of existing data mining
based analysis processes. First, the concept of data mining process patterns is presented
in Section 5.5.1. Second, Section 5.5.2 gives details on the abstraction of process patterns
from workflows and how executable workflows can be created from process patterns by
the specialization of tasks.

5.5.1. Definition of Data Mining Process Patterns

In the following, we will present our approach for the specification of data mining process
patterns at different levels of generality.

The CRISP methodology includes a four-level breakdown, which describes the instanti-
ation of the CRISP process model in order to get a CRISP process (see Figure 5.4). The
6 CRISP phases consist of several generic tasks which cover all possible data mining
applications. Out of these tasks, specialized tasks are created which specify specific ac-
tions for a certain situation. Finally, the process instances represent a record of actions
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and decisions of an actual data mining engagement. This top-down approach is a manual
process which is not automated.

Figure 5.4.: Four level breakdown of CRISP (based on [30]).

In the context of the CRISP breakdown, an executable data mining workflow (as defined
in Section 2.1.4) is a process instance that includes automated steps only. This means,
that for existing workflows there is only information available at the process instance
level. Information from the higher levels is either lost or only implicitly contained in the
modelled workflow. However, we need to take into account that reuse may in some cases
only be possible at certain level. E.g., on the one hand tasks like checking pre-requirements
could only be formalized as manual tasks, but on the other hand there could be a detailed
data mining workflow available where only some parameters for the modelling need to be
specified, which is already formalized and only needs to be a little adapted. Thus, parts
of the existing processes need to be abstracted in order to reuse it. Such an abstraction
has to be done at different levels.

In the following, we will define tasks and task levels.

Definition 7 (Task) A task is a named element. A set of tasks is a finite set of named
elements.

A task represents a step of a process and can be visualized by a Core Flow Object
Activity or Gateway as defined by BPMN (see also Section 2.2.3).

We will define data mining process patterns in a way that the CRISP breakdown is
partially pre-defined, where some of the tasks could be defined on a detailed level (process
instance), but others at higher levels (specialized or generic). Thus, in order to allow for
a description of processes that support reuse at the level of the general CRISP model,
of executable workflows, and of abstractions in-between, we define the following different
levels of granularity for tasks:
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Definition 8 (Task Levels)

• executable level: A task is described at the executable level if there exists a descrip-
tion of the task that allows to execute it automatically. Tasks at the executable level
consist of a mapping to an existing component and a set of already specified inputs.
The inputs can be either directly defined in the configuration of the component, pro-
vided by results of previous tasks or provided as inputs for the overall process. A task
at the executable level is called executable task.

• configurable level: A task is described at the configurable level if there exists a
description of the task that specifies a mapping to an existing component and a set of
configurable inputs that are needed by the component. The tasks have to be processed
manually in terms of specifying the missing input. A task at the configurable level is
called configurable task.

• structural level: A task is described at the structural level if there exists a de-
scription of the task in form of a graph G = (V,E) comprising a set V of sub-tasks
together with a set E of directed edges, which are 2-element subsets of V , and a tex-
tual description on how to further specialize the sub-task(s). A task at the structural
level is called structural task.

• conceptual level: A task is described at the conceptual level if there only exists a
textual description of the task. A task at the conceptual level is called conceptual
task.

Figure 5.5 describes how we visualize the different levels. Conceptual tasks consists of a
textual description that includes information on how to further specialize the task. E.g.,
if a task of a process is not reusable, it needs to be replaced such that the process becomes
reusable. Thus, there might be a need to develop a new atomic data mining component or
a data mining script to be able to reuse the process. The description of such tasks refers
to the conceptual level. In addition, prerequisites for the process and manual tasks, e.g.
a task for checking if the plots as results of an analysis are satisfying, can be described by
conceptual tasks. The user needs to manually process such conceptual tasks.

Structural tasks consists of a partially formalized description that pre-structures the
task by a graph of sub-tasks and gives information on how to further specialize the task.
Tasks for organizing components, for developing or adapting a workflow or for developing
scripts from available existing components are described at the structural level. E.g., a
data preprocessing task which consists of the two steps normalization and filtering, but
the components for these steps are not yet specified, is a structural task. Structural tasks
have to be processed manually by the user.

Configurable tasks are already bound to an existing component, but cannot be executed
as there is further input needed. Tasks for parametrization of existing component, scripts
or workflows, are configurable tasks. E.g., a data fusion task which needs the identifiers
for the records of two tables to join provided as parameters is a configurable task.

Executable tasks can be directly executed, which means that they can be used to de-
scribe the tasks of an executable workflow. Tasks for executing components, scripts and
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workflow are described at the executable level. No user interaction is needed for processing
these tasks. E.g., a task for executing an analysis that is fully specified by an R script is
an executable task.

Figure 5.5.: Visualization of tasks levels.

Tasks from the different levels from Definition 8 can be specialized to tasks from lower
levels in the following way:

Definition 9 (Specialized)

• A structural task is specialized from a conceptual task if the textual description of the
conceptual task is manually processed, a graph of connected sub-tasks is generated
and a new textual description on what is necessary to further specialize the structural
task is created.

• A configurable task is specialized from a conceptual task if the textual description
of the conceptual task is manually processed, a component is created or an existing
component is selected, and a set of inputs is created that need to be configured.

• An executable task is specialized from a conceptual task if the textual description
of the conceptual task is manually processed, a component is created or an existing
component is selected, and the inputs for the component are provided.

• A configurable task is specialized from a structural task if the textual description
of the structural task is manually processed, a component is created or an existing
component is selected for the sub-task the configurable task refers to, and a set of
inputs is created that need to be configured.

• An executable is specialized from a structural task if the textual description of the
structural task is manually processed, a component is created or an existing compo-
nent is selected for the sub-task the configurable task refers to, and the inputs for the
component are provided.

• An executable task is specialized from a conceptual task if the inputs for the compo-
nent of the task are provided.
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Thus, the task levels represent a hierarchy of tasks, where the executable tasks are
described at the most detailed level and the conceptual tasks are described at the most
general level. E.g., a Clean Data task could be specified as human task (conceptual task),
as component that deletes records with missing values (executable task) or replaces them
by a user defined value (configurable task), or as separate data mining process for the
prediction of missing values (structural task).

It depends on the knowledge and capabilities of the bioinformaticians, at which level
they are able to perform manual tasks for the reuse. The different levels of tasks are
technically supported by different kinds of tools:

• Conceptual tasks for the development of data mining components are supported by
software development environments.

• Conceptual and structural tasks for the development and composition of components
in the context of data mining scripts are supported by scripting environments.

• Structural tasks for the composition of components and scripts, and the development
and adoption of workflows are supported by workflow environments.

• Configurable tasks for specifying parameters of components, scripts or workflows are
supported by the components itself, the scripting or workflow environments, or by
additional systems such as a web site that guides through the parametrization.

• Executable tasks that specify the usage of components, scripts and workflows are
supported by the runtime environments necessary for components, by the scripting
environments or workflow environments.

As described above, conceptual tasks can also include the description of requirements
and preconditions. Encoding the requirements and preconditions allows a faster identifi-
cation of problems related to (re)using the data mining process. We distinguish between
requirements that need to be met in order to reuse a process pattern (which are checked
once) and requirements that are needed to execute the analysis process (which are checked
at each execution of the process). When specializing conceptual tasks describing require-
ments, the former are omitted after the process pattern has been selected, while the latter
are specialized to executable tasks that check the requirements. In Section 5.6, we will
describe how to deal with data requirements in detail.

Next, we will define a task graph as a set of tasks that are connected to each other.

Definition 10 (Task Graph) A task graph is a directed graph G = (V,E) comprising
a set V of vertices together with a set E of directed edges, which are 2-element subsets of
V . The vertices consist of tasks.

In BPMN, the edges of a task graph can be visualized by the Connecting Element
Sequence Flow, such that a task graph can be visualized as a BPMN process. In Section
5.4 we described which tasks of the CRISP process are mapped to the process pattern
level. From these tasks we can construct a CRISP task-graph visualized in Figure 5.6.

Based on the definition of a task graph, we can now define what it means that a task
graph is specialized from another task graph.
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Figure 5.6.: The CRISP task graph.

Definition 11 (Specialized Graph) A task graph Gs is specialized from a task graph
G, if Gs can be constructed from G by either

• replacing a task of G by a specialized task, or

• replacing a structural task of G by a task graph which contains only tasks from the
configurable or executable level, or

• following a finite sequence of the steps as described above.

Now, we can give the definition of data mining process patterns.

Definition 12 (Data Mining Process Pattern) The CRISP task graph is a data
mining process pattern. Every specialization of this process pattern for an application
according to Definition 11 is also a data mining process pattern.

Definition 13 (Executable Data Mining Process Pattern) An executable data
mining process pattern is a pattern whose tasks are specified to the executable level.

An executable data mining process pattern contains enough information to transform
it into an executable process in a process environment. Further graphical elements from
BPMN can be used for defining process patterns in more details. Figure 5.7 presents an
example of a process pattern modelled in BPMN, based on the adapted CRISP process
from Section 5.4 as most general pattern (see Section 2.2.3 for details on BPMN). The
generic CRISP tasks are visualized as tasks in a pattern that splits up into a pool for
manual tasks including checking of requirements, and two pools for model building and
model application that could be executed automatically. The process is meant to be
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Figure 5.7.: A general pattern modelled in BPMN based on a CRISP process.

executed for new data records individually and starts with a task for checking the data
mining goal in the requirements pool (which could be, e.g., prediction based on supervised
learning). Then, the data quality of the new data record is checked. After that, the
data record is sent as input to the model apply pool. First, it is checked if the model to
apply already exists. If not, the sub-process of the model apply pool ends and the process
continues in the requirements pool. If the model exists, the data record is preprocessed.
After that, the model is applied to the data record. Finally, the result is transmitted and
the process continues in the requirements pool. The next task is to send labelled data as
input for the model building pool. There, it is decided whether to (re)build the model.
E.g., there could exist a rule which decides to (re)build a model if 100 new labelled data
records have been sent. If the model is not build, the process ends. If it has to be build,
the data is preprocessed, and the model is build and evaluated. If the quality of the model
is sufficient, the model is deployed and the process ends. If it is not sufficient, the process
steps back to the preprocessing task.

The presented pattern was described on a very abstract level. Examples of a more
concrete data mining process patterns will be given later in Sections 5.7, 5.8 and 5.9.

5.5.2. Reuse with Data Mining Process Patterns

Data mining process patterns are designed to support the reuse of data mining processes.
Figure 5.8 gives an example of how the reuse of data mining processes is supported. User
A holds a workflow that solves a certain analysis problem. To support the reuse, he creates
a data mining process pattern from his workflow. This is done by abstracting tasks that
are not reusable directly according to the task hierarchy and to model the assumptions
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and prerequisites. As he is the only one who knows all assumptions and details of his
workflow, he is the right person to perform the abstraction. Other users do not have
detailed knowledge on this, so it is harder for them to collect the correct assumptions
and to abstract the tasks. User B, who wants to reuse the solution of user A, takes the
pattern, checks the prerequisites and assumptions, and creates a workflow by specializing
the abstract tasks according to his specific needs.

Figure 5.8.: Procedure of reuse with data mining process patterns.

In the following, we will give details on creating process patterns (responsibility of user
A) and how to apply process patterns (responsibility of user B).

Creating Process Patterns

Data mining process patterns are created by abstracting parts of an existing data mining
workflow. Similar to the specialization presented in Section 5.5.1, the abstraction is done
according to the presented task hierarchy. Executable tasks are abstracted to configurable
tasks by explicitly modelling the parameters of the underlying component, script or service,
e.g. the number of clusters for a clustering component. This means that the task is
reusable, but the parametrization is not. Abstraction to a structural task is done by
defining the order of tasks in the process while leaving out information about the details
of the tasks. E.g., it can be modelled that a quality control task is necessary before a
clustering task, or that a data normalization task has to be performed at a certain step
of the process, but the actual tasks are not bound to any components, scripts or services.
This means that the connection and order of the tasks are reusable, but the components,
scripts or services not. An abstraction to a conceptual tasks is done by textually describing
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Task User Level Integration Level

use component configurable or executable -
develop component conceptual configurable
use script configurable or executable -
develop script conceptual or structural configurable
use workflow configurable or executable -
develop workflow structural structural

Table 5.1.: Task levels from user’s and technical point of view.

what needs to be done at a certain step in the process, but components, scripts or services
including their connections are not reusable. E.g., a component could be usable just for a
certain data type.

We can argue that the choice of the different levels of the task hierarchy presented in
Section 5.5.1 makes sense if we map those to the capabilities of users described in Section
5.2. We distinguish between the user’s point of view and the point of view from the
technical integration of new developed components, scripts and workflows. Tasks that
involve using existing components, scripts and workflows are always configurable tasks if
they are parametrized, or executable tasks if the parameters are already specified. For
the development of components, scripts or workflows, this is different. Although the task
for creating a component is at the conceptual level, from the technical point of view the
integration of the component is a configurable task, as the component needs to be described
by metadata passed as parameter to a service that grid-enables the component (see our
contribution from Section 3.3). This is similar for scripts. The task for creating a script
is at conceptual or structural level, but from the technical point of view of integrating the
script it is a configurable task, as the script can be passed as parameter to a single service
(see our contribution from Section 4.4). Thus, by the solutions presented in Chapters 3
and 4 the complexity of the integration is kept at a low level and requires less knowledge
from the users. The development of workflows remains at structural level. Table 5.1
presents the task levels from the user’s and from the technical point of view.

Process patterns can also be created based on information from a data mining paper
[148]. Data mining solutions are often worked off when creating a publication about the
solution. This work could be used for the process of generating a data mining process
pattern. Papers on data mining solutions consist of a lot of information on requirements,
approaches, related work, literature, examples, configurations, pseudo-code, results, sum-
maries, etc. Within this, typically a lot of information is included which can be used for
creating a data mining process pattern. Information that is not useful for the creation
of a process pattern has to be ignored. This includes, e.g., information on related work,
literature and examples, as this information is related to other patterns. In addition, sum-
maries and other redundancies have to be left out, as the process patterns follow a more
formal, structured approach. Experiments and results are also not important for creating
a process pattern, as the process pattern is only focused on the process of the data mining
solution. The remaining parts of the paper, which hold the information useful for the
pattern, can be transformed into tasks of the data mining process pattern depending on
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their relation to the CRISP phases as well as how precise they are described with respect
to the process pattern. Hence, the structure of a data mining process pattern is based
on the information contained in the paper and on the level of abstraction in which it is
presented. Figure 5.9 visualizes the approach.

Figure 5.9.: Mapping the information of a paper to the generic CRISP pattern.

The approach of creating a process pattern out of information contained in a data mining
paper can be summarized as follows:

• Remove information on related work, literature, examples, results, summaries and
other redundancies.

• Transform descriptions of tasks and requirements as regards content into conceptual
tasks.

• Transform detailed descriptions of tasks and requirements, instructions and config-
urations into structural or configurable tasks.

• Transform code and pseudo code into structural, configurable or executable tasks.

• Use figures and use-case diagrams for the arrangement of structural tasks, e.g. lanes,
pools and groups of tasks.

Examples of process patterns will be given in Sections 5.7, 5.8 and 5.9.

Applying Process Patterns

In the previous paragraph, we presented details on the abstraction of data mining based
analysis processes for a given problem to data mining process patterns. Now, we focus on
the specialization of data mining process patterns to new analysis processes.

We describe the steps needed to use a pattern for a given analysis process in a meta-
process for applying process patterns. Figure 5.10 visualizes the meta-process and its
steps. In detail, the process consists of the following steps:
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Figure 5.10.: The meta-process for applying a process pattern.

• Determine Business Objectives: The first task is to define the business objectives of
the application.

• Select Pattern with matching Data Mining Goal: After that, a data mining pattern
with a data mining goal is selected that addresses these business objectives.

• Specify pattern tasks to the lowest level: The tasks of the selected pattern are spec-
ified to the executable level according to the task hierarchy. The concretion of a
process pattern is not unique and it is not guaranteed that the concretion of a pat-
tern to the executable level is always possible. As the process pattern becomes more
specialized by each concretion, it possible to either specify all tasks to the executable
level or to detect that it is not possible to specify all tasks to this level in finite steps.

• is pattern specified as executable?: If it is observed that the process pattern cannot
be specified as executable (all tasks are described at executable level), the meta-
process steps back to the task of choosing a new process pattern. If the process
pattern is executable, the meta-process steps on.

• Deploy process pattern into a process: Assuming that an adequate process envi-
ronment exists, the process pattern is deployed into an executable process. As the
pattern is described as executable, it includes the necessary information for creating
an executable process or workflow. However, it is not guaranteed that the process or
workflow is really executable in the execution environment, as checks for correctness
of components, connections of components, types etc. are not possible beforehand.

• Run process: The process is executed in the process environment and performs the
analysis. The result is either the result of the analysis or an error.

• is the result ok?: If the result is verified as satisfying by the user, the meta-process
is finished. If it is not satisfying or if an error occurred, the meta-process steps back
to the task of finding a new specification.

The meta-process of applying a process pattern has a set of data mining process patterns
as input and an executable process as output. Although the individual steps of the meta-

143



5. Data Mining Process Patterns

process can be completed in finite steps, it is not guaranteed that the meta-process ends,
as the concretion of pattern tasks can result in various solutions.

The steps of the meta-process still include a lot of manual work. However, tool-based
support for applying process patterns is possible and might be implemented in the future.
Such tools would guide the user through the steps of selecting patterns and specifying
their tasks, helping to handle the different abstraction levels of the task hierarchy and to
interface with data mining tools.

5.6. Data Requirements in Data Mining Process Patterns

The concept of data mining process patterns presented in Section 5.5.1 allows for the
description of data mining processes at different levels of abstraction and covers, in addition
to the description of the steps necessary for executing the data mining solution, also the
description of requirements and preconditions that need to be fulfilled to apply the data
mining pattern to a new problem setting.

In Section 5.5 we presented the task hierarchy, which included tasks at the conceptual
level for the description of requirements. However, tasks at the conceptual level include
a lot of manual work. It would be beneficial to describe tasks at lower levels to better
support the users in reuse. In the following, we focus on the important special case of
data requirements. We show that in this case we can transform conceptual tasks into
configurable tasks if there is additional information available on the data in form of an
ontology. Thus, we can further extend the support provided by the patterns by making
use of external knowledge.

In the context of data mining, the main question that arises is if the data that is available
throughout the analysis process makes sense for the data mining process pattern. For
example, we could have a specific service S that executes a data mining component in a
process pattern. Then, we could include a conceptual task in the pattern that states as
text that the input must be of a specific format. This would allow to reuse S, given that
the preconditions from the textual description of the conceptual task for the precondition
check are met. For an application domain with well structured data it can be shown that
this problem can be addressed by combining the concept of data mining process patterns
with the concept of semantic mediation of data sources [140].

Data mining process patterns only enable the specification of requirements in general,
but do not specifically address requirements and prerequisites to data. As described in
Section 2.3, ontologies can help to model data. There exist numerous ontologies mod-
elling specific areas of the biomedical domain. For example, Gene Ontology (GO) pro-
vides ”structured, controlled vocabularies and classifications that cover several domains of
molecular and cellular biology” [68]. The Foundational Model of Anatomy (FMA) ontol-
ogy contains a model of the human body system from the molecular to the macroscopic
levels [108]. The ACGT Master Ontology (MO) represents the domain of cancer and
related clinical trials [23]. Thus, the data can be described by ontologies at the concep-
tual level. Such ontologies can be used for efforts on data integration based on semantic
mediation components to provide uniform access to datasets [140]. Semantic mediation
components can be used for querying data based on an ontology at the configurable and
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executable level. By this, the integration of heterogeneous data sources can be facilitated.
Since the data mining process patterns need to include semantic preconditions about

data, we propose to implement those semantic preconditions with queries to a semantic
mediation component. This means to combine the concept of semantic mediation of data
sources with the concept of data mining process patterns to support the reuse of data min-
ing based analysis workflows in the areas of medicine and bioinformatics. The basic idea is
that both data mining process patterns and semantic mediation components are based on
a translation of a high-level, semantically rich representation of the workflow and the data
to the actual executable code and input data. By combining these two approaches, both
data and the data analysis can be formally represented at a higher level of abstraction
while guiding the user in a stepwise concretion of the data description and pattern to an
executable workflow (see Figure 5.11). We are not interested in the implementation of
a semantic mediation component in particular, but in the idea of translating between a
higher-level, semantically rich query language and an actual dataset or database. Fur-
thermore, there already exist semantic mediation components, e.g., the ACGT semantic
mediator [140] (see also Sections 2.4.2 and 4.7).

Figure 5.11.: Mapping high level knowledge about clinical data analysis to concrete solu-
tions.

In the following, we will describe our approach on data semantic enriched data mining
process patterns. We aim at data semantic aware data mining process patterns which rep-
resent patterns with data preconditions. These support the formalization of the description
of the data input for a process pattern. The aim of this approach is to further support
the reuse of analysis processes and thus to speed-up the development of new solutions.
We focus on semantic rather than on syntactic issues. In detail, we extend the concept
of data mining process patterns and the task hierarchy by tasks that describe data and
data preconditions. These tasks can be realized as querying components in the pattern for
checking data requirements or for data access based on the underlying semantics. By this
we bind knowledge about medical data, as defined by medical ontologies, together with
knowledge about medical data analysis, as formalized by data mining process patterns.
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First, we will describe which data requirements in data analysis processes we want to
address. Then, we will introduce our approach for describing data semantics via medical
ontologies. Finally, we give an example on how our approach can be applied in a scenario
in bioinformatics.

5.6.1. Data Requirements in Data Analysis Processes

When we describe the pre-condition for checking whether a certain data mining approach
can be applied, it is very important to be able to describe for which data this approach
makes sense. Therefore, we want to be able to automatically check if a dataset fulfils some
pre-condition or not (and if it does, of course we then want to access the data later). So,
assuming there is a single dataset and 100 possible process patterns. The goal is to be
able to automatically filter out those process patterns that can be applied to the data in
the first place. In particular, we need not only to describe the syntactic format (e.g. ”only
numbers”), but also we would like to be able to describe the content (e.g. ”this approach
makes only sense for gene expressions”).

Figure 5.12.: Example of a data mining process for analysis tasks with preconditions in
bioinformatics from [140]. The processing tasks are mapped to executable
scripts based on the R environment.

Typically, workflows including data mining components can only work on specific data.
Figure 5.12 presents an example of a data mining process which was developed based
on scenarios from the ACGT project [34]. In addition, there are assumptions made on
the data when applying a workflow. Thus, the key point is that we want to allow for
the formalization and automatic testing of requirements. For data mining tasks we can
characterize the type of data requirements and pre-conditions into semantic and syntactic.
In our work, we focus on the semantic part. However, when using tools like an ontology
based semantic mediator to query data sources in practice, the problem of syntactic re-
quirements is already partially solved [140]. These are some examples for semantic and
syntactic preconditions:

• semantic: the values for attribute x represent gene expressions.
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Such requirements are addressed by using a medical ontology. Since ontologies arrange
classes in a hierarchy, it would be feasible to check whether a class C inherits from the
class gene expression.

• syntactic: all attributes have to be numeric, the label attribute has to be binary,
missing values are not allowed for attribute x.

Such requirements are addressed by the underlying database schema of the ontology or
could be formulated inside a SPARQL query [5]. When selecting an attribute of a class of
the ontology, the data type is automatically defined by the underlying schema. Missing
values could be addressed by a filter in the corresponding query.

5.6.2. Describing Data Semantics as Query Tasks

Basically, our idea is that - assuming we have a way to perform semantic queries - we
could replace a pre-condition such as ”the data needs to contain information about blood
pressure” by a formal query that returns a non-empty result. By this, we use the semantic
description of the data as a bridge between the high-level description of the content that
we need and a low-level description of the actual data.

We assume that we work on relational data in table format. We further assume that
there is an ontology O available for describing the domain specific semantics of datasets.
In detail, this means that the semantics of a dataset are described correctly if each column
of our data table is mapped to a concept of the ontology.

In Section 5.5.1 we introduced our task hierarchy. In the context of data requirements,
the most specialized task for describing data is a task that is automatically executable
and returns a non-empty dataset. The most general task is a task that only describes in
natural language how the data has to look like to be able to apply the analysis. At a level
in-between, there can be tasks specified which do not define a concrete dataset, but make
use of concepts from an ontology. These could, e.g., describe the columns of a data table.
Such tasks are more general, if the used concepts from the ontology are more general,
and more concrete if more concrete concepts are used. From the description based on an
ontology, a query can be generated that can be executed against some data source with
the help of a semantic mediation component.

Definition 14 (Data Precondition Task) A data precondition task t for data de-
scribed by an ontology O is defined by a query q, which is specified according to the ontology
O. A data precondition task is defined as fulfilled if the semantic mediation component re-
turns a non-empty result on task execution. The query tasks are executable tasks for an
existing semantic mediation component. They are arranged in a hierarchy as follows:
query task a is more general than query task b, if the concepts of the ontology used within
the query of a are more general than the ones of b. Query task a is more specific than
query task b, if the concepts of the ontology used within the query of a are more specific
than the ones of b.

Using an ontology and a component for semantic mediation, queries can be written
and can be translated and executed against some data source. In a data mining process
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pattern, such queries can be modelled as query tasks based on already existing components
for semantic mediation and query editing.

Definition 15 (Semantic Enriched Data Mining Process Pattern) We define a
semantic enriched data mining process pattern as a data mining process pattern
from Definition 12 that includes query tasks from Definition 14.

A data mining process pattern for a certain analysis task can be applied to a given
dataset if all tasks of the pattern can be specified to the executable level, including the
data requirement tasks. The latter have to be specified to an executable query that returns
a non-empty result.

Generalizability of data requirements means to define the set of all datasets for which
the analysis workflow is generalizable. Requirements that are specified as query tasks
based on an ontology can be generalized by going up in the hierarchy of the ontology. The
process of creating a process pattern from a specific workflow including data precondition
tasks is extended by the following step:

• Generalization of requirements: Generalize the query of the data precondition
task in a way that it matches to the data mining tasks formally (same data types)
and as regards content (makes still sense to apply the DM to the data).

Users could be supported by tools which enable the creation of executable workflows
from process patterns, e.g. a semantic mediator or a query generator, and which allow for
the development of process patterns from a specific workflow, e.g. an ontology browser
for navigating through the concepts of an ontology. In the ACGT project [34] (see also
Section 2.4.2) the ACGT Semantic Mediator offers a uniform query interface to an array
of underlying data sources. In the end, the end-user ”sees” a new database with a new
schema (the ACGT Master Ontology [23]) which covers the domain of the sources. He
can submit queries in terms of this global schema. The query language chosen for the
Semantic Mediator was SPARQL [5], which is a standard for querying RDF resources.

5.6.3. Example

In the following we present a scenario for the demonstration of our approach. The scenario
provides evidence in the sense that it is possible to describe meaningful requirements by
our approach.

The scenario consists of a workflow designed to work on a given dataset (dataset ’A’)
available through a semantic mediation component. The workflow contains queries that
retrieve and analyse data from the dataset (see Figure 5.13, all tasks are specified to
the executable level). In this case, the dataset contains data about mammary carcinomas
(diameter, ER status and nodal status of the carcinoma of each patient). A second dataset
(dataset ’B’), also available through the semantic mediation component, contains the same
type of data for sarcomas (another class of neoplasm). This scenario shows how it is
possible to automatically check the suitability of using the existing workflow with the new
dataset by using the semantic mediation component functionalities and having an ontology
as database schema.

148



5.6. Data Requirements in Data Mining Process Patterns

Figure 5.13.: A process with a query task.

Figure 5.14.: Part of the ontology mapped to the schema of a dataset. Incoming queries
containing this view will have translation to the dataset, and therefore will
retrieve data contained in it.

The data which is accessible in each dataset depends on the mappings defined for that
source. These mappings express in a formal manner pairs of views (in case of RDF models,
paths composed by classes and relations) which have the same meaning. This way the
semantic mediation component is able to correctly translate incoming queries in terms of
the ontology into queries that can be answered by each data source. For our example,
dataset ’A’ is mapped to views in the ontology which express data of mammary carcinomas
of patients. Figure 5.14 shows these views.

The query defined for the existing workflow includes these views, so when the workflow
is executed the mammary carcinoma data is correctly retrieved. In fact, the query does
not contain the exact previous view, but a generalization of it. The MammaryCarcinoma
class in the mapped view is substituted for the Neoplasm class in the query. Mamma-
ryCarcinoma inherits from Neoplasm, therefore the mapped view effectively answers the
query in the workflow. This process of generalization is what allows the reuse of workflows
in a broader spectrum of datasets than it was designed for. Indeed, dataset ’B’ is mapped
to a view in the ontology which relates patients with data about their sarcomas. Just
like with dataset ’A’, the semantic mediation component is able to detect the inheritance
relation between the views. The data in dataset ’B’ will be used to answer to the query in
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Figure 5.15.: Mappings for both datasets inherit from the query contained in the workflow.
This generalization process, and the subsequent concretion carried out in
the semantic mediation component allows automatically checking if another
dataset is compatible with the workflow.

the workflow. Figure 5.15 illustrates this situation. The generalized pattern is visualized
in Figure 5.16.

In fact, the semantic mediation component offers the possibility of checking whether a
given query has a translation to a specific dataset. This is of course independent of whether
the dataset contains any actual data, or is empty. The semantic mediation component
allows verifying the possibility of using an existing workflow with different datasets, even
when such sources have not been loaded with data yet. The only prerequisite is to have
the dataset mapped to the ontology. Thus, by the approach of defining data requirements
as query tasks to the semantic mediation component in the process pattern, the reuse of
workflows is facilitated.

Figure 5.16.: Generalized pattern.
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5.7. Case Study Process Pattern of a Clinical Trial Scenario

In this section we present a case study for the data mining process pattern approach
based on the clinical trial scenario presented in Section 2.3.5. We will show how to create
a process pattern from a data mining script by extracting configurable tasks and how to
specialize the process pattern to create a workflow.

5.7.1. The Clinical Trial Scenario

The scenario presented in Section 2.3.5 deals with the analysis of tumour samples with
associated gene expression data and clinical features [94, 112]. In the scenario, cancer
samples are analysed to find gene signatures which may indicate whether a tumour is
malignant or not, and whether the tumour will metastasise or not. The original scenario
has been implemented as R scripts in the context of the p-medicine project [94, 112]. In
detail, the scenario consists of 6 parts, which could be considered as individual components:

1. Prepare Experiment - import and normalization of genomic data.

2. Quality Control - generation of plots for quality control before and after normaliza-
tion.

3. Build Environment Structure - generation of data structure including clinical data
for the analysis.

4. Find Differentially Expressed Genes - finding the differentially expressed genes and
generation of the volcano plot and heatmaps.

5. Create Risk Index - generation of a risk-index for the survival analysis.

6. Survival Analysis - generation of Kaplan-Meier plots for survival analysis based on
the risk index.

For more details on the scenario we refer to Section 2.3.5. Please see Section A.3.1 in
the Appendix for the original R code of the scenario.

5.7.2. Process Pattern of the Scenario

The first step of creating the process pattern is to identify the individual components
which have to be described by tasks in the process pattern. In our case, we split the
scenario into 9 R scripts. The code that covers the import and the normalization of
the genomic data is represented by the Prepare Experiment group including the tasks
ReadExperimentData and NormalizeData. The code that deals with the generation of the
3 plots for checking the data quality is represented by the Quality Control group including
the tasks QC Degradation, QC Intensities and QC LogIntensity vs. Density. The code
that covers the import of the clinical data and the creation of the data structure for
the analysis is represented by the BuildEnvironmentStructure task. The code for finding
the differentially expressed genes, creating the heatmaps, the risk index and the survival
analysis are also represented by the respective tasks FindDifferentiallyExpressedGenes,
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CreateRiskIndex and SurvivalAnalysis. Figure 5.17 visualizes the identification of the
components in the script.

The code of the individual components is not directly reusable, as it is part of a stand-
alone R script. The components, which should be reusable as individual R scripts, have
to be abstracted to the configurable level to allow for reuse. However, this can be solved
by adding headers and footers to the R scripts. The headers are responsible for loading
the R libraries needed for each of the split script, which was done once at the beginning of
the original script. Furthermore, the headers and footers take care of the data exchange
between the split scripts by storing and loading the data of the R workspace. In addition
to the headers and footers, it is necessary to specify parameters for the directories where
the input data can be read from and where the output data has to be stored to in order
to allow for reuse. By this, the components are transformed into configurable tasks. The
parameters that have to be configurable are basically the folders in which the input data for
the individual components reside and where the results should be written to. The only part
that is at conceptual level is the processing of the decision on the quality control, as this
has to be performed manually anyway. In the original scenario this was done manually by
the bioinformatician. Figure 5.18 visualizes the process pattern of the scenario in BPMN.
Please see Section A.3.2 in the Appendix for the R code of the components.

Figure 5.17.: Identification of components and groups of components in the script.
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Figure 5.18.: The process pattern of the scenario visualized in BPMN. The components
have been transformed into process pattern tasks.

5.7.3. Taverna Implementation

The process pattern created in the previous section can be specialized to create an exe-
cutable workflow. In our case study, the scenario is implemented as workflow in Taverna
[72]. In detail, the overall workflow consists of 6 nested workflows that are connected to
each other. The nested workflows represent the tasks and groups of tasks of the process
pattern. The complete workflow is depicted in Figure 5.19 for an overview and in Figures
5.20, 5.21 and 5.22 in more details. The R scripts representing the components are at-
tached via the R-plugin of Taverna which allows for the execution of R scripts within a
Taverna workflow. These are visualized in dark blue in the figures.

The process starts with the first nested workflow Prepare Experiment. It has two input
parameters that are passed from the workflow input fields: the path to the input data and
a path to which the output is written. The latter is passed to all other nested workflows
and R tasks in the workflow, thus making the tasks to executable tasks. Inside the nested
workflow two R scripts are executed: ReadExperimentData and NormalizeData. In the
R script ReadExperimentData, the datasets, which are based on affymetrix arrays, are
read in and imported into variables. The data is accessible under a path that has to be
specified as input parameter. In the NormalizeData script, the data is normalized. The
result returned from the nested workflow is the path where the results are stored. The
pink tasks in the workflow are fields containing further information on the execution and
completion of the R-scripts. The nested workflow Quality Control consists of 3 R scripts,
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Figure 5.19.: Scenario implemented in Taverna (overview). The tasks and task groups of
the process pattern are deployed into nested workflows and workflow tasks
in Taverna. Further details can be seen in Figure 5.20 (Part 1), Figure 5.21
(Part 2) and Figure 5.22 (Part 3).

which check the quality of the imported and normalized data. The results are plots which
have to be manually interpreted by the user.

After the completion of the quality control step, the user is asked if the the workflow is
to be continued or not via an input field in the UI. This represents the conceptual task of
the process pattern.

If the data quality was evaluated as sufficient, the next nested workflow that is executed
is BuildEnvironment. The clinical data are read and the data structure for the analysis
is created and visualized in plots. After that, the nested workflow ClusterDiagram is
executed. It continues by finding the differentially expressed genes between established
sub-groups of samples belonging to classes of interest and produces the volcano plots
and heatmaps that provide information about which genes have an increased activity.
Subsequently, the nested workflow RiskIndex is executed. It creates a risk index that is
used for the survival analysis. Finally, the nested workflow SurvivalAnalysis is executed,
where Kaplan-Meier plots are created based on clinical features and the risk index.
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The output of the workflow is the directory containing the outputs of the R tasks and
the indication on whether the quality control was successful. The workflow furthermore
includes a clean-up task that removes intermediate results from the output directory.

Figure 5.20.: Scenario implemented in Taverna (Part 1 - PrepareExperiment and Quality-
Control).
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Figure 5.21.: Scenario implemented in Taverna (Part 2 - Conceptual task, BuildEnviron-
mentStructure and CreateClusterDiagram).

5.8. Case Study Process Pattern of a Meta Analysis Scenario

In the following, we will present a case study based on the multi-center multi-platform
(MCMP) scenario of the ACGT project [40]. The aim of the scenario is to assess the
variability in gene expression microarrays, and the reliability of the prognostic and predic-
tive profiles obtained from this technology, when the arrays are performed using different
technological platforms and at different organizations (centers). We demonstrate how the
process of the MCMP scenario can by abstracted using structural and conceptual tasks
to create a process pattern that describes the general way how bioinformaticians work in
scenarios dealing with meta analysis.
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Figure 5.22.: Scenario implemented in Taverna (Part 3 - CreateRiskIndex and Survival-
Analysis).

5.8.1. The Multi-Center Multi-Platform Scenario

Summarizing the research background of the scenario, it is assumed that biopsies are
collected from patients registered in two organizations (multi-center) and that each orga-
nization is using a different microarray platform (multi-platform), namely Affymetrix [74]
and Illumina [75], to measure genes expression in the samples. In addition, the classical
clinical parameters associated to each patient are available in relational databases. Figure
5.23 gives an overview over the scenario. All private patient data were anonymized prior
to their integration in the ACGT environment. The anonymized data is retrieved from
the databases of each organization. After that, it is preprocessed, normalized and then
combined. Based on that, the analysis is performed, e.g. to check the repeatability of
the expression signal across the platforms. A more detailed description of the underlying
study can be found in [40].

The workflow of the MCMP scenario has been implemented with the ACGT workflow
environment [24] (see Section 4.7 for details on the ACGT environment). In detail, the
scenario consists of the following:
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Figure 5.23.: Overview over the MCMP scenario.

• Inputs: Two microarray databases have been integrated into the ACGT data in-
frastructure (Center 1 with Affymetrix data and Center 2 with Illumina data). In
addition, a simple SQL database describing the mapping between patient identifiers
and Affymetrix and Illumina chip identifiers is available.

• Data Import and Normalization: The process begins by retrieving microarray
experiments that are stored as files in the grid file system and preprocessing them
in two parallel branches based on the platform used.

• Filtering and Gene Selection: A feature selection is performed in each of the
branches to extract the most informative genes. The platform mapping and data pre-
processing is done by adopting existing standards. Specifically, the probe sequences
from each platform are mapped to the NCBI RefSeq database (http://www.ncbi.
nlm.nih.gov/RefSeq/, genomic database). Probes for which a match is not found
are filtered out. A probe is considered as having a match if it perfectly matches a
RefSeq sequence and does not perfectly match any other transcript sequence with
a different gene ID (http://jura.wi.mit.edu/entrez_gene/). The common set
of matching probes between Affymetrix and Illumina is then considered for further
analyses and the full annotation is retrieved based on the RefSeq ID.

• Combined Analysis: At the final step, the results of the two parallel sub-processes
are combined in an analysis task that also uses the results returned by the Semantic
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Mediator based on the Master-Ontology-expressed query for the patients’ clinical
data. The platform comparison is based on different criteria:

1. Reliability of gene expression measurement: comparison of gene expression as
measured by Illumina and Affymetrix platforms in the 73 samples.

2. Reliability of patient classification: comparison of published gene expression
classifiers and their performance in patient classification when using the two
platforms.

3. Reliability of biological/clinical findings: comparison of biological content of
the gene expression classifiers obtained using the two platforms.

4. Feasibility of a combined-platform trial: simulation of a combined platform
study and assessment of feasibility of multi-platform studies.

Figure 5.24 visualizes a process pattern modelled in BPMN that can be abstracted
from the MCMP scenario, where the tasks for gene filtering and gene selection have been
abstracted to structural tasks (Data Filtering).

Figure 5.24.: A process pattern for the MCMP scenario.

5.8.2. Abstract Process Pattern for Bioinformatics Processes in p-medicine

As described in Section 2.3.1, there emerge processes of general interest in the area of
bioinformatics which would profit from standardization and reproducibility. In the follow-
ing we show that the pattern developed for the MCMP scenario can be further abstracted
and extended to cover the description of a general process used for many bioinformatics
scenarios - the meta analysis of public datasets.

In the following, we will focus on meta analyses of public datasets in the context of
cancer-related bioinformatics scenarios as tackled by the p-medicine project [94]. These
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analyses typically involve data coming from gene expression and some clinical or demo-
graphic data.

The genomics data can be acquired from public repositories, e.g. GEO [56]. Often, mi-
croarray data can be retrieved already pre-processed and normalized. However, database
and data format, pre-processing and normalization methods are different depending on
the database, on the time when the datasets were submitted or on the submitter of the
dataset. Thus, in meta-analyses using public datasets these steps typically need to be
re-performed so that datasets are coherent.

Clinical and demographics data are typically provided by the repositories that contain
the gene expression data, via publication in peer-review journals, or by the authors of the
datasets. This part of the data is usually less standardized due to lack of standardization
in the clinical context. E.g., there exist different names for stages of diseases in different
countries. Thus, the retrieval of clinical and demographics data can require pre-processing
which might be difficult to perform automatically.

A meta analysis process is typically performed in the following way:

• Data Acquisition step: genomic, clinical and demographic data is acquired from
different data repositories.

• Data Pre-processing step: genomic, clinical and demographic data are pre-
processed to ensure that the datasets are coherent.

• Meta-Analysis step: depending on the specific question the analysis will generally
involve calculating a statistic and its confidence limits in each dataset and summary
statistics and confidence limits across all datasets.

• Results step: The results will typically consist of a table with numeric values of
statistics and confidence limits in each datasets, and the summary statistics.

The meta analysis process is often iterative and can include various methods such as
Bootstrapping, leave-one-out, k-fold cross-validation, depending on the specific aims and
needs. The general schema of a meta analysis process is described in Section 2.3.1 (see
also Figure 2.10).

The MCMP process pattern can be transformed to a process pattern for the meta
analysis by further abstracting certain parts. The tasks for data normalization and data
filtering, which are executed for each genomic dataset, can be abstracted to a single
conceptual task for data pre-precessing for each dataset. Furthermore, the task for data
filtering and analysis can be abstracted to a single conceptual task for the meta-analysis.
Figure 2.10 visualizes a process pattern for the meta analysis scenario.

5.9. Case Study Integration of Patterns in Business Processes

In bioinformatics, the business processes that exist around the scientific analysis processes
are typically not formally modelled inside a workflow. In the following, we will present
a case study from the healthcare sector as example on how data mining process patterns
can be integrated into business processes.
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Figure 5.25.: An abstract process pattern for the meta analysis scenario in p-medicine.

5.9.1. Introduction

Motivating examples for integrating a data mining process into a business process are,
e.g., the EC-funded projects RACWeB (http://www.racweb.org/) and iWebCare [126].
RACWeB aimed at improving the Western Balkans and EU countries’ customs efficiency
and transparency in risk assessment by enhancing the identification of risk profiles through
the utilisation of data mining techniques. In iWebCare, a flexible fraud detection platform
was developed in order to ensure quality and accuracy and minimise loss of health care
funds in the Healthcare business. The basic idea behind both projects was to develop
a web service platform where participating organizations can upload datasets and semi-
automatically select an appropriate data mining process. Based on the analysis of the
business processes of participating organizations, it was possible to develop generic data
mining solutions that can be re-used in similar business processes. Because of the detailed
business process modelling it is not necessary to follow the CRISP process step by step
again a second time, as much of the relevant business knowledge is already contained in
the business process model.

We choose a fraud detection scenario from [78] as case study, as it already includes well
specified business processes as well as a data mining solution that allows for reuse. The
approach for fraud detection is based on learning similarity measures for data records and
is transferable for a generic class of fraud opportunities [113]. The application scenario is
based on detecting procurement fraud, e.g. an employee of a company placing an order
to another company which is owned by himself. This is done by computing a similarity
between employees and company owners based on several features such as name, address
or bank accounts. We do not go into more details of the data mining method, as this is
not important for understanding our process pattern approach. Basically what is needed
to apply this data mining solution to a problem is to first check if the problem is a
procurement fraud problem, second to specify which attributes to be used for the similarity,
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and third to connect the inputs and outputs of the data mining process. For all other steps
ready-to-use code is already available.

In the following, we will present how to create a process pattern from the data mining
scenario, how to integrate it into a business process and how to reuse it in another business
process.

5.9.2. Creating a Pattern

In Section 5.5.2 we presented an approach on how to create data mining process pat-
terns from papers. To demonstrate the approach, we take the paper [113] as example.
Leaving out information like related work, literature, examples, results, summaries and
other redundancies, the paper includes most of the information needed for the creation
of the pattern, e.g. several prerequisites, data requirements, process steps, configuration
information and pseudo-code. The second and third paragraph of Section 1 of the paper
cover the prerequisites that the problem addressed is procurement fraud and that it is
assumed that there is no large training dataset available. Instead, user feedback is used
for constituting a relevant similarity of employees and creditors. Section 2.1 of the paper
describes requirements on the data, e.g. the attributes of the payroll and the creditor
data. In Section 2.2 of the paper, the steps of the process that involve the user feedback
are described. Section 3 of the paper addresses a configuration issue on which of several
similarity measures to involve in the computation of the similarity function. Section 4 of
the paper presents pseudo-code on the algorithm that optimizes the overall distance mea-
sure. In addition, instructions on how to transfer a model to another dataset are given.
Finally, Section 7 of the paper contains information on how to extend the framework by
more similarity measures.

Figure 5.26.: An example on how to map the information of a paper to a process pattern
(overview). See Figure 5.27 for details on the process pattern.
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All this information can be used for the creation of the data mining process pattern.
Figure 5.26 gives an example on how the parts of the paper can be mapped: The first
paragraph can be mapped to the prerequisite tasks of the process pattern (1), which are
evaluated first when integrating the pattern into a business process. These tasks cannot
be specified more detailed as it is done in the paper. Thus, the tasks become tasks at the
conceptual level in the process pattern. The second paragraph does not hold any useful
information for the pattern. The third paragraph describes a requirement to the data and
thus can be mapped to the task of verifying the data quality (2). The figure presents
the interaction with the user in terms of manually analysing similarities and thus can be
mapped to task of sending labelled data to the model building part of the pattern (3). The
paper also contains pseudo-code. As experiments are provided as well, it can be assumed
that there is existing executable code available. Thus, in case the code is accessible, this
kind of information can be transformed into a tasks at the executable level in the process
pattern.

Figure 5.27.: An example of a data mining process pattern for procurement fraud visual-
ized with Intalio BPMS 6.0.1 [76].

Figure 5.27 shows a detailed example of a pattern for the presented approach to pro-
curement fraud detection. In the top pool Requirements the prerequisites for applying
this process pattern are modelled. This includes checking the data mining goal (procure-
ment fraud detection) and the data format as well as sending data, receiving the result
and sending labelled data. The other pools Classification and Model Building contain
the (partially already specified executable) tasks of the data mining process pattern and
the respective services. It can be seen that the process is a data mining process pattern
according to our definition from Section 5.5.1, which contains tasks of the different levels
of the task hierarchy. E.g., the task Check DM goal is supervised Fraud Detection is a
specialized task of the CRISP task Check DM goal. It is a conceptual task which describes
in textual form that the goal of the integration of the data mining solution has to be
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supervised fraud detection in order to match with the process pattern. When applying
the process pattern for the integration, the user manually processes this task. The task
Check if each attribute is based on a known data type represents the requirement for a
specific data format. The data mining solution is based on combining different similarity
measures for attributes of different data types. For each of those types, a measure has to
exist. The data is sent to the model building part of the process via the task Send supplier
and payroll data and the labels via Send labelled Data. The assignment of the similarity
measures is performed at the task Assign Similarity Measure. It is a configurable spe-
cialization of the task Train Model that can be further specialized by the user, e.g. by a
configuration file. All executable tasks, e.g. the task Train Similarity, are connected to
an underlying service.

5.9.3. Integration and Reuse

Figure 5.28.: Integration of the procurement fraud process pattern into the business pro-
cess place purchase order visualized with Intalio BPMS 6.0.1 [76].

In [78] (Section 6) a set of business processes from the health care domain is presented
which contains candidates for the integration of the fraud detection solution. We will focus
on the business process Purchase Order Inspection from the RBH scenario, which consists
of a random checking of several rules for a request for an order followed by the decision
of placing or not placing this order. According to the business objectives of the business
process, the data mining process pattern for procurement fraud detection presented in
Figure 5.27 is a candidate for the integration. Following the meta-process defined in
Section 5.5.2, the tasks of the data mining pattern have to be specified to the executable
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level and the process pattern has to be deployed into the business process. Figure 5.28
shows the result of the integration of the presented data mining process pattern into the
business process. Compared to the process pattern, the task Check DM goal disappeared
because the user took the decision that the data mining goal indeed matched and hence
removed it. The tasks for sending data and receiving the results are connected with the
tasks of the business process. The tasks Check if each attribute is based on a known data
type and Assign Similarity Measure disappeared as well, as the user manually specified
the checking and the assignment of the similarities according to his knowledge of the data
(e.g. by a parameter file). The information on the assignment is now part of the Train
Similarity task. During the integration, the pool Requirements and its tasks disappeared
at all due to the specification and deployment tasks of the meta-process.

By this somewhat simplified example we have shown how to apply a data mining process
pattern to a business process in order to get an integrated process and how manual steps
can be specified to executable tasks.

In addition, the re-usability can be demonstrated by our example. In the Find new
supplier process in [78] (Section 6), in which new suppliers are to be found for certain
purchase order requests, a similar problem has to be solved. As the data mining solution
is generic, it can be reused and integrated in both process examples easily (see Figure
5.29).

Figure 5.29.: Integration of the procurement fraud process pattern into the business pro-
cess find new supplier visualized and implemented with Intalio BPMS 6.0.1
[76].
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5.10. Evaluation & Wrap-up

In this section we will describe how our approach to reusing processes can be evaluated
according to best practices in business process redesign. In addition, we will summarize
the context of this chapter.

5.10.1. Evaluation in the Context of Business Process Redesign

By our approach for the reuse of processes we want to improve the efficiency and effective-
ness in bioinformatics scenarios. Ideally, a redesign or modification of a process decreases
the time required to handle incidents, it decreases the required cost of executing the pro-
cess, it improves the quality of the service that is delivered and it improves the ability of
the process to react flexible to variation [17]. However, a property of such an evaluation
is that trade-off effects become visible, which means that in general, improving upon one
dimension may have a weakening effect on another.

In [104], a set of best practice heuristic rules on process (re)design is evaluated according
to the metric cost, time, flexibility and quality. In the following, we give details on rules
from [104] which are related to our approach:

• Order types: ’determine whether tasks are related to the same type of order and, if
necessary, distinguish new business processes’ - If parts of business processes are not
specific for the business process they are part of, this may result in a less effective
management of this sub-process and a lower efficiency. Applying this best practice
may yield faster processing times and less cost.

In our context, the abstraction from and specialization to tasks of the executable
level according to the task hierarchy addresses this issue. If executable tasks are
not longer matching to the process, they are abstracted to configurable, structural
or conceptual tasks and then specialized into new executable tasks addressing the
needs of the process.

• Task elimination: ’eliminate unnecessary tasks from a business process’ - A task is
considered as unnecessary when it adds no value from a customer’s point of view,
e.g., control tasks that are incorporated in the process to fix problems created (or
not elevated) in earlier steps. The aim of this best practice is to increase the speed
of processing and to reduce the cost, while an important drawback may be that the
quality of the service decreases.

In our context, we intentionally go the other way around - we add tasks for checking
requirements, which increases the time and cost in the executable process. However,
the check tasks facilitate the reuse and can help to early detect problems, thus
reducing the time and cost for the reuse.

• Triage: ’consider the division of a general task into two or more alternative tasks’ or
’consider the integration of two or more alternative tasks into one general task’ and
Task composition: ’combine small tasks into composite tasks and divide large tasks
into workable smaller tasks’ - These best practice improve the quality of the business
process due to a better utilization of resources with obvious cost and time advantages.
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However, too much specialization can make processes become less flexible and less
efficient.

According to the task hierarchy these best practices can be addressed by the abstrac-
tion to and specialization from tasks at the structural level. However, the concrete
specification of tasks is up to the user, which makes it hard to make a general
statement in terms of cost, time and flexibility.

• Knock-out : ’order knock-outs in a decreasing order of effort and in an increasing
order of termination probability’ and Control addition: ’check the completeness
and correctness of incoming materials and check the output before it is send to
customers’ - Additional checks increase time and costs, but increase the quality
delivered. However, checking of conditions that must be satisfied to deliver a positive
end result in the correct order reduces the cost and time without loss in quality.

The meta-process is defined such that only patterns with a matching business ob-
jective are considered for an application. By modelling tasks for checking the data
mining goal as well as the requirements and prerequisites at the beginning of a pro-
cess pattern it can be ensured that these checks are performed at an early stage in
the process in order to stick to the best practices, thus reducing cost and time.

5.10.2. Summary

In this chapter we have presented an approach for describing data mining based analysis
processes in the context of bioinformatics in a way that facilitates reuse. Our approach is
based on CRISP and includes the definition of data mining process patterns, a hierarchy
of tasks to guide the specialization of abstract process patterns to concrete processes, and
a meta-process for applying process patterns to new problems. These data mining process
patterns allow for representing the reusable parts of a data mining process at different
levels of abstraction from the CRISP model as most abstract representation to executable
workflows as most concrete representation, thus providing a simple formal description for
the reuse and integration of data mining.

In addition, we have introduced an approach on data semantic aware data mining pro-
cess patterns. The approach is based on encoding data requirements and pre-conditions
for analysis processes that are related to the data as queries to semantically annotated
data sources inside a data mining process pattern. Using a medical ontology, semantic
information can be integrated into the data mining process patterns for formally checking
the data requirements of analysis scenarios. In our approach we combine the concept
of semantic mediation of data sources with the concept of data mining process patterns.
With our approach we support the reuse of data mining based analysis processes in the
area of medical and bioinformatics by a formal representation of data semantics and thus
speed up the development of new solutions.

We evaluated our approach in 3 case studies. In the first case study we presented how
to create and apply data mining process patterns in the context of a clinical trial scenario.
It was shown that it is possible to create a process pattern by abstracting executable tasks
of a script and to apply this pattern by specializing it into a workflow including a manual
task. The second case study dealt with the transformation of a data mining process
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pattern of a multi-center-multi-platform scenario into a process pattern for describing the
abstract process of meta analysis in bioinformatics. By this it was shown that it is possible
to describe abstract processes consisting of conceptual tasks. In the third case study we
described how data mining process patterns can be integrated into business processes in a
fraud detection scenario in the health care domain. We demonstrated how a data mining
process pattern can be created based on information from a data mining paper and how
to integrate this pattern into business processes.

Thus, it was shown that our approach meets the requirements of the users in terms of
supporting reuse of data mining based analysis processes and that it can be applied in
practice. Furthermore, we presented how our approach can be attributed to best practices
for process optimization in the context of business processes.
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6. Conclusion

This chapter presents the conclusion of this thesis. First, the main contributions of this
work will be summarized in Section 6.1. Second, Section 6.2 presents a discussion on the
limitations of the contributions.

6.1. Summary

This thesis provided several contributions for supporting users from the medical and bioin-
formatics domain in the integration of data mining into scientific data analysis processes.
In the following, the main contributions that represent the answers to the research ques-
tions formulated in Section 1.2 will be summarized:

Q1: What is a suitable integration mechanism that allows users with a lot of domain
knowledge but without knowledge on grid systems to integrate data mining components
that have been developed in single computer environments into distributed grid-based anal-
ysis environments used for bioinformatics scenarios?

In Chapter 3 we presented an approach to support users in integrating already available
data mining components into distributed grid environments. The approach is based on
describing data mining components that have been developed for single computer environ-
ments with the help of a predefined XML schema (the Application Description Schema)
in such a way that, in addition to the already available executable file of the component,
only the metadata description is needed for the integration into a distributed grid en-
vironment. By this, the procedure for the integration is facilitated for the users. The
application descriptions are used for interacting with core services of a grid system to
register and search for available data mining components on the grid, to match analysis
jobs with suitable computational resources, and to dynamically create user interfaces. The
presented approach allows for an integration of data mining components by users with-
out deeper knowledge on the underlying grid technology and without intervention on the
component side. We have shown that it is possible to cover all information necessary for
the execution of data mining components in OGSA-based grid environments with a single
XML schema and that it is possible to create a technical system for the execution of data
mining components based on data exchange via the XML schema. Our approach allows
for a web-site based procedure of grid-enabling data mining components.

We validated our approach in several case studies in the context of the DataMiningGrid
project. In the first case study it was shown that it is possible to implement the architec-
ture of our approach in the context of the DataMiningGrid project. The second case study
demonstrated that it is possible to create a user interface for grid-enabling data mining
components based on the Application Description Schema which is easy to use by users
who do not have knowledge on grid technology. In the third case study we have shown
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that our approach is applicable for the integration of standard data mining components
into grid environments by grid-enabling algorithms of the Weka data mining toolkit. The
forth case study demonstrated that our approach also supports the data mining scenarios
Data Partitioning, Classifier Comparison and Parameter Variation, which are based on
grid-enabled components.

Q2: Is it possible to create a technical system that allows scientific users to interactively
develop data mining scripts consisting of one or more data mining components for bioin-
formatics scenarios in distributed grid-based analysis environments?

In addition to reusing existing components for data mining from single computer envi-
ronments, scenarios in bioinformatics demand for developing new data mining components
and developing them further within distributed analysis environments. In Chapter 4, this
thesis presented an approach for interactive development of data mining scripts in the
context of bioinformatics scenarios in grid environments. The approach is implemented
in the GridR toolkit, consisting of the GridR service and the GridR client. The GridR
service is a single grid service with complex inputs and outputs that allows for providing
scripts as parameter instead of registering each single script as separate component in the
grid. By this, it allows for developing and executing data mining scripts based on the
scripting language R in grid environments without the need for developing, describing and
deploying atomic components, thus making the development process more efficient. In
addition, the GridR client allows for interactively developing data mining scripts in grid
environments, which allows users to use a well known tool as user interface for the grid
environment.

The presented approach was evaluated in two case studies that demonstrated the ap-
plicability of the approach in different application scenarios in the context of the ACGT
project. In detail, we demonstrated a data analysis scenario from bioinformatics imple-
mented with GridR and a scenario from an industrial application that is parallelized using
GridR.

Q3: Can we define a description for data mining processes that allows for the reuse of
existing data mining processes based on data mining components and scripts?

As today’s analysis processes of scenarios in bioinformatics include complex process
chains and due to increasing collaboration, the reuse of processes and components becomes
more important. In Chapter 5 we presented an approach for supporting the reuse of data
mining based data analysis processes based on describing the steps of these processes
at different levels of abstraction. The basic idea is to abstract tasks from a concrete
executable workflow to create a reusable process pattern. This process pattern can then
be reused by specializing it to an executable workflow for another problem. Our approach
is based on CRISP and includes the definition of data mining process patterns, a hierarchy
of tasks to guide the specialization of abstract process patterns to concrete processes, and
a meta-process for applying process patterns to new problems. The data mining process
patterns allow for the description of process tasks and requirements based on the task
hierarchy. Such process patterns represent a flexible representation for different levels
of generality of tasks in the analysis process and allow for describing processes between
the CRISP process as most abstract process and executable workflows as most concrete
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processes. The meta-process guides the user when applying a process pattern and includes
the steps for the specialization of generic tasks to executable tasks.

Our approach was evaluated in 3 case studies in the context of the projects ACGT,
p-medicine and iWebCare. In the first case study we presented how to create and apply
data mining process patterns in the context of a clinical trial scenario. It was shown that
it is possible to create a process pattern by abstracting executable tasks of a script and to
apply this pattern by specializing it into a workflow including a manual task. In the second
case study we transformed a data mining process pattern of a multi-center-multi-platform
scenario into a process pattern for describing the abstract process of meta analysis in
bioinformatics. By this it was shown that it is possible to describe abstract processes
consisting of conceptual tasks. In the third case study we described how data mining
process patterns can be integrated into business processes in a fraud detection scenario
from the health care domain. We demonstrated how a data mining process pattern can be
created based on information from a data mining paper and how to integrate this pattern
into business processes. Furthermore, we showed how our approach can be evaluated
according to best practices in business process redesign.

6.2. Discussion

In this thesis we tackled the research question on how to support users in the bioinformatics
and medical domain in data mining based data analysis in the context of heterogeneous set-
tings including heterogeneous user groups, heterogeneous data sources and heterogeneous
computing environments. Summarized, we developed tools and methods that facilitate
the use and reuse of data mining components, scripts and processes in scenarios from this
domain to answer the question stated above. By our contributions, the development of
new scenarios becomes more efficient, as these can be founded on existing components,
scripts and processes more easily.

It has been shown that the presented tools and methods help bioinformaticians in their
work. However, although we delivered important building blocks to address the problem
of supporting users as described above, there remain open issues for future work.

The challenge of heterogeneous group of users has been addressed by providing a method
for reusing data mining components that is flexible enough to support a variety of tools
used by the different users. By focussing on OGSA-based grid environments, which allow
to build secure distributed systems, the challenges of users in different locations, multi-
computer environments and distributed data sources have been addressed. The solutions
presented in Chapters 3 and 4 are focussed on OGSA-based grid computing environments.
The Application Description Schema including the associated services as well as the ar-
chitecture of the GridR service are based on the batch job processing functionality that
such environments currently provide.

However, the tools used and the distributed environments will be further developed
and new architectures and infrastructures will emerge. Thus, if these environments evolve
in future, our approaches might not longer directly match. Today, bioinformaticians are
working with a huge set of different tools ranging from data mining toolkits such as Weka
or RapidMiner and scripting environments such as R up to workflow environments such
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as Taverna or Galaxy and their workflow sharing mechanisms, and they probably will
work with lots of different analysis tools and process environments in future. Thus, the
integration of such tools, including both the reuse of the functionality of the tools and the
reuse of their user interfaces, with up-to-date distributed environments and the reuse of
the solutions developed with these tools will still remain a problem.

The direct integration of scalable distributed environments into data mining toolkits,
as described for R and grid computing environments in the context of the GridR client
in Chapter 4, can also be useful for other environments. E.g., in [144] we investigated
the integration of Weka and Hadoop, which is a system for cluster and cloud computing
environments.

The challenge of complex process chains has been addressed by providing a method
for supporting the reuse of processes based on different levels of abstraction. The data
mining process pattern approach presented in Chapter 5 provides a step into the direction
of describing processes for reuse from the perspective of the bioinformatician and the steps
that he needs to perform to reuse a process. However, there is a need for a tool that guides
through the process of reuse that can be attached to different process environments. In
addition, there is no support for deciding whether a process pattern is a good process
pattern for a given data mining problem. The question remains on how the quality of
a process pattern can be determined and how to select a process pattern from a process
pattern database. Furthermore, it has to be analysed whether the hierarchy of tasks is
adequate or if it would make sense to combine the current user focussed view on the tasks
that the user needs to perform with additional structures for domain-oriented tasks that
could be provided by the use of a task ontology. Furthermore, a detailed user study on
our approach for reusing processes would be beneficial to provide more evidence for its
usefulness.

In summary, we provided a solution based on existing technology based on methods
that allow for the reuse of existing data mining components in grid environments, for the
interactive development of data mining scripts consisting of one or more components in a
grid environment, and for the reuse of processes including data mining components and
scripts.
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A.1. Application Description Schema Source Files

In the following, we present the xsd files representing the schema definition of the DataMin-
ingGrid Application Description Schema as described in Section 3.3.2.

A.1.1. dmg application description.xsd

Listing A.1: XML schema dmg application description.xsd

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema

targetNamespace="http://www.datamininggrid.org/applicationDescription"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:app="http://www.datamininggrid.org/applicationDescription"

xmlns:com="http://www.datamininggrid.org/common"

xmlns:dm="http://www.datamininggrid.org/datamining"

xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"

jaxb:version="1.0">

<xsd:import namespace="http://www.datamininggrid.org/common"

schemaLocation="dmg_common.xsd" />

<xsd:import namespace="http://www.datamininggrid.org/datamining"

schemaLocation="dmg_data_mining.xsd" />

<xsd:annotation>

<xsd:documentation xml:lang="EN">

Schema for describing data mining applications for

the grid environment developed as part of the

project "Data Mining Tools and Services for Grid

Computing Environments" (DataMiningGrid), funded

by the European Commission (grant no.

IST-2004-004475). For more information about

this project please visit the homepage at

www.datamininggrid.org .

</xsd:documentation>

</xsd:annotation>
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<xsd:complexType name="ApplicationDescriptionType">

<xsd:sequence>

<xsd:element name="generalInformation"

type="com:GeneralInformationType" />

<xsd:element name="applicationType"

type="dm:DataMiningType" />

<xsd:element name="execution"

type="com:ExecutionType" />

<xsd:element name="applicationInformation">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="options"

type="com:OptionType"

minOccurs="0"

maxOccurs="unbounded" />

<xsd:element name="dataInputs"

type="com:DataInputType"

minOccurs="0"

maxOccurs="unbounded" />

<xsd:element

name="dataOutputs"

type="com:DataOutputType"

minOccurs="0"

maxOccurs="unbounded" />

<!-- Env variables to set on

execution machine -->

<xsd:element

name="hostEnvironmentVariables"

type="com:EnvironmentType"

minOccurs="0"

maxOccurs="unbounded" />

<!-- Requirements to meet by

excution machine -->

<xsd:element

name="requirements"

type="com:RequirementType"

minOccurs="0"

maxOccurs="1" />

<!-- Parameters defined for

creating multiple jobs

(e.g., for parameter

sweeps) -->

<xsd:element

name="parameterLoops"

type="com:ParameterLoopType"
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minOccurs="0"

maxOccurs="unbounded" />

<xsd:element

name="parameterLists"

type="com:ParameterListType"

minOccurs="0"

maxOccurs="unbounded" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

<xsd:element name="application"

type="app:ApplicationDescriptionType"/>

</xsd:schema>

A.1.2. dmg common.xsd

Listing A.2: XML schema dmg common.xsd

<xml version="1.0" encoding="UTF-8"?>

<xsd:schema targetNamespace="http://www.datamininggrid.org/common"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:com="http://www.datamininggrid.org/common"

xmlns:dm="http://www.datamininggrid.org/datamining"

version="1.0">

<xsd:complexType name="GeneralInformationType">

<xsd:sequence>

<xsd:element name="longDescription"

type="xsd:string" /> <!-- Comprehensive

discription of the algorithm -->

<xsd:element name="comment" type="xsd:string"

minOccurs="0" /> <!-- Additional comments. -->

</xsd:sequence>

<xsd:attribute name="id" type="xsd:string" use="required"

/> <!-- Globally unique ID. Will be set

automatically-->

<xsd:attribute name="vendor" type="xsd:string"

use="required" />

<xsd:attribute name="swVersion" type="xsd:string"

use="required" /> <!-- Version of the software, e.g.,

3.2-->
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<xsd:attribute name="codeVersion" type="xsd:string"

use="required" /> <!-- Version of the source code,

e.g., 2.4.15 -->

<xsd:attribute name="build" type="xsd:positiveInteger"

use="required" /><!-- Version of the build, e.g., 5234

-->

<xsd:attribute name="shortDescription" type="xsd:string"

use="required" /><!-- Three sentences at most. -->

<xsd:attribute name="uploadDate" type="xsd:date"

use="required" /> <!-- Will be set automatically -->

</xsd:complexType>

<!-- START: Loops & lists -->

<!-- Structure for creating multiple values for a single option in

a loop-like manner.

The parameter name (e.g. $X) may be referenced by option

values (e.g. -number $X), input, and output file/dir

names.

The loop is evaluated automatically by the Execution

sub-system and each iteration results in a separate

execution of the application.

Applies to numeric options only.

FILLED BY END-USER OR SYSTEM! -->

<xsd:complexType name="ParameterLoopType">

<xsd:attribute name="parameterName" type="xsd:string"

use="required" />

<xsd:attribute name="fromValue" type="xsd:string"

use="required" />

<xsd:attribute name="toValue" type="xsd:string"

use="required" />

<xsd:attribute name="step" type="xsd:string"

use="required" />

</xsd:complexType>

<!-- Structure for defining multiple values for a single option as

a list.

The parameter name (e.g. $X) may be referenced by option

values (e.g. -name $X), input, and output file/dir

names.

The list is evaluated automatically by the Execution

sub-system and each value results in a separate

execution of the application.

Applies to any option.

FILLED BY END-USER OR SYSTEM! -->

<xsd:complexType name="ParameterListType">
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<xsd:attribute name="parameterName" type="xsd:string"

use="required" />

<xsd:attribute name="values" type="com:ValueListType"

use="required" />

</xsd:complexType>

<!-- END: Loops & lists -->

<!-- Start: Options -->

<xsd:complexType name="OptionType">

<!-- Name of option to be displayed to the user on the

client -->

<xsd:attribute name="label" type="xsd:string"

use="required" />

<!-- Data type of this option. -->

<xsd:attribute name="dataType" type="com:OptionDataType"

use="required" />

<!-- Used for storing 1 to n default values. -->

<xsd:attribute name="defaultValues"

type="com:ValueListType" use="required" />

<!-- Used for storing the value specified by the user and

for defining parameter sweeps. FILLED BY END-USER OR

SYSTEM! -->

<xsd:attribute name="value" type="xsd:string"

use="optional" />

<!-- All possible values. Applies to data type LIST only

-->

<xsd:attribute name="possibleValues"

type="com:ValueListType" use="optional" />

<!-- Multiple values possible? Applies to data type LIST

only -->

<xsd:attribute name="multipleValues" type="xsd:boolean"

use="optional" />

<!-- Required for delimiting multiple values. Must be

printed to cmd line by the system. Applies only if

multipleValues=true. -->

<xsd:attribute name="delimiter" type="xsd:string"

use="optional" />

<!-- Flag to be printed to command line at startup by the

system -->

<xsd:attribute name="flag" type="xsd:string"

use="required" />

<!-- Has this option to be defined? -->

<xsd:attribute name="optional" type="xsd:boolean"

use="required" />
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<!-- Hide option from user? If set to true, defaultValues

MUST be set!-->

<xsd:attribute name="hidden" type="xsd:boolean"

use="required" />

<!-- Two short sentences at most. -->

<xsd:attribute name="toolTip" type="xsd:string"

use="required" />

</xsd:complexType>

<xsd:simpleType name="ValueListType">

<xsd:list itemType="xsd:string" />

</xsd:simpleType>

<xsd:simpleType name="OptionDataType">

<xsd:restriction base="xsd:string">

<xsd:enumeration value="int" />

<xsd:enumeration value="posint" /> <!-- Positive

integer -->

<xsd:enumeration value="float" />

<xsd:enumeration value="double" />

<xsd:enumeration value="boolean" />

<xsd:enumeration value="string" />

<xsd:enumeration value="list" /> <!-- For a limited

number of possible discrete values to select. -->

</xsd:restriction>

</xsd:simpleType>

<!-- END: Options -->

<!-- START: Input/output data -->

<!-- Files containing input data for the application. -->

<xsd:complexType name="DataInputType">

<xsd:sequence>

<!-- Used for storing value specified by the user.

FILLED BY END-USER OR SYSTEM! -->

<xsd:element name="input"

type="com:RemoteFileDirType" minOccurs="0"

maxOccurs="1" />

</xsd:sequence>

<xsd:attribute name="ioType" type="com:IOType"

use="required" />

<xsd:attribute name="label" type="xsd:string"

use="required" />

<xsd:attribute name="flag" type="xsd:string"

use="required" />
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<xsd:attribute name="toolTip" type="xsd:string"

use="required" />

<xsd:attribute name="optional" type="xsd:boolean"

use="required" /> <!-- Optional input? -->

<xsd:attribute name="hidden" type="xsd:boolean"

use="required" /> <!-- Hide from user? -->

<!-- Whether to stage in (physically copy) this input to

the execution machine. -->

<xsd:attribute name="stageIn" type="xsd:boolean"

use="optional" default="true"/>

<!-- Whether to pass the input to the appliation via

command line or just stage it in. -->

<xsd:attribute name="appendToCmdLine" type="xsd:boolean"

use="optional" default="true"/>

</xsd:complexType>

<!-- Files containing any results. -->

<xsd:complexType name="DataOutputType">

<xsd:attribute name="ioType" type="com:IOType"

use="required" />

<xsd:attribute name="label" type="xsd:string"

use="required" />

<xsd:attribute name="flag" type="xsd:string"

use="required" />

<xsd:attribute name="toolTip" type="xsd:string"

use="required" />

<xsd:attribute name="optional" type="xsd:boolean"

use="required" /> <!-- Optional output? -->

<xsd:attribute name="hidden" type="xsd:boolean"

use="required" /> <!-- Hide from user? -->

<!-- Whether to stage out this output to a save storage

server in the grid. -->

<xsd:attribute name="stageOut" type="xsd:boolean"

use="optional" default="true"/>

<!-- Used for storing the value specified by the user. May

contain references to parameters. FILLED BY END-USER OR

SYSTEM! -->

<xsd:attribute name="fileDirParameterName"

type="xsd:string" use="optional" />

<!-- Whether to pass the output to the appliation via

command line or just stage it out. -->

<xsd:attribute name="appendToCmdLine" type="xsd:boolean"

use="optional" default="true"/>

</xsd:complexType>
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<xsd:complexType name="RemoteFileDirType">

<xsd:attribute name="protocol"

type="com:RemoteProtocolType" use="required" />

<xsd:attribute name="port" type="xsd:int" use="required" />

<xsd:attribute name="host" type="xsd:string"

use="required" />

<xsd:attribute name="localPath" type="xsd:string"

use="required" />

<!-- Name of dir/file required for stage-in on

server-side. May contain references to parameters. -->

<xsd:attribute name="fileDirParameterName"

type="xsd:string" use="required" />

<xsd:attribute name="description" use="optional" />

</xsd:complexType>

<!-- Protocols for file transfers allowed in the DMG system.

Maybe enhanced with protocols ftp, http, https in later

stages of the project. -->

<xsd:simpleType name="RemoteProtocolType">

<xsd:restriction base="xsd:string">

<xsd:enumeration value="gsiftp" />

<xsd:enumeration value="http" />

</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="IOType">

<xsd:restriction base="xsd:string">

<xsd:enumeration value="Datafile" />

<xsd:enumeration value="Directory" />

<xsd:enumeration value="Parameterfile" />

</xsd:restriction>

</xsd:simpleType>

<!-- END: Input/output data -->

<!-- START: Environment -->

<!-- The environment variables to be set at the execution machine

before execution. -->

<xsd:complexType name="EnvironmentType">

<xsd:attribute name="variable" type="xsd:string"

use="required" />

<xsd:attribute name="value" type="xsd:string"

use="required" />

<xsd:attribute name="toolTip" type="xsd:string"

use="required" />

</xsd:complexType>

<!-- END: Environment -->
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<!-- START: Execution -->

<xsd:complexType name="ExecutionType">

<xsd:sequence>

<xsd:choice>

<xsd:element name="javaExecution"

type="com:JavaLanguageType" /> <!-- Java

-->

<xsd:element name="cExecution"

type="com:CLanguageType" /> <!-- C/C++

-->

<xsd:element name="unixExecution"

type="com:BashShellLanguageType" /> <!--

Bash-Shell -->

<xsd:element name="pythonExecution"

type="com:PythonLanguageType" /> <!--

Python -->

</xsd:choice>

<xsd:element name="requiredLibrary"

type="com:RemoteFileDirType" minOccurs="0"

maxOccurs="unbounded" />

</xsd:sequence>

<xsd:attribute name="stageIn" type="xsd:boolean"

use="optional" default="true"/>

<xsd:attribute name="remoteSubDirectory" type="xsd:string"

use="optional"/>

</xsd:complexType>

<xsd:complexType name="SandboxLanguageType" abstract="true">

<xsd:sequence>

<xsd:element name="interpreterArguments"

type="xsd:string" minOccurs="0"

maxOccurs="unbounded" />

<xsd:element name="applicationRunFile"

type="com:RemoteFileDirType" minOccurs="1"

maxOccurs="1" />

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="JavaLanguageType">

<xsd:complexContent>

<xsd:extension base="com:SandboxLanguageType">

<xsd:attribute name="interpreterCommand"

type="xsd:string" use="required"

fixed="java" />
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<xsd:attribute name="mainClass"

type="xsd:string" use="required" />

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="BashShellLanguageType">

<xsd:complexContent>

<xsd:extension base="com:SandboxLanguageType">

<xsd:attribute name="interpreterCommand"

type="xsd:string" use="required"

fixed="/bin/sh" />

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="PythonLanguageType">

<xsd:complexContent>

<xsd:extension base="com:SandboxLanguageType">

<xsd:attribute name="interpreterCommand"

type="xsd:string" use="required"

fixed="python" />

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="DirectlyExecutableLanguageType">

<xsd:sequence>

<xsd:element name="executable"

type="com:RemoteFileDirType" minOccurs="1"

maxOccurs="1" />

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="CLanguageType">

<xsd:complexContent>

<xsd:extension

base="com:DirectlyExecutableLanguageType" />

</xsd:complexContent>

</xsd:complexType>

<!-- END: Execution -->

<!-- START: Requirements for the resource broker -->

<xsd:complexType name="RequirementType">

<xsd:sequence>
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<xsd:element name="minMemory"

type="com:MinMemoryRequirementType"

minOccurs="0" maxOccurs="1" />

<xsd:element name="minDiskSpace"

type="com:MinDiskSpaceRequirementType"

minOccurs="0" maxOccurs="1" />

<xsd:element name="gramIPs"

type="com:GramIPRequirementType" minOccurs="0"

maxOccurs="1" />

<!-- No entry means that the application may runs

as "fork" and as "condor" job. -->

<xsd:element name="gramJobManager"

type="com:GramJobManagerRequirementType"

minOccurs="0" maxOccurs="1" />

<xsd:element name="operatingSystem"

type="com:OperatingSystemRequirementType"

minOccurs="1" maxOccurs="1" />

<xsd:element name="architecture"

type="com:ArchitectureRequirementType"

minOccurs="1" maxOccurs="1" />

<xsd:element name="maxNumberOfMachines"

type="xsd:positiveInteger" minOccurs="0"

maxOccurs="1" />

</xsd:sequence>

</xsd:complexType>

<!-- Minimum RAM -->

<xsd:complexType name="MinMemoryRequirementType">

<xsd:attribute name="label" fixed="Min memory"

type="xsd:string" use="required" />

<xsd:attribute name="value" type="xsd:string"

use="required" />

<xsd:attribute name="unit" type="com:UnitType"

use="required" />

<xsd:attribute name="toolTip" type="xsd:string"

use="optional" />

</xsd:complexType>

<!-- Minimum free disk space -->

<xsd:complexType name="MinDiskSpaceRequirementType">

<xsd:attribute name="label" fixed="Min free disk space"

type="xsd:string" use="required" />

<xsd:attribute name="value" type="xsd:string"

use="required" />

183



A. Appendix

<xsd:attribute name="unit" type="com:UnitType"

use="required" />

<xsd:attribute name="toolTip" type="xsd:string"

use="optional" />

</xsd:complexType>

<!-- List of IPs of machines with GT4 installations the

application is allowed to run on. -->

<xsd:complexType name="GramIPRequirementType">

<xsd:attribute name="label" fixed="Execution machines"

type="xsd:string" use="required" />

<xsd:attribute name="value" type="com:ValueListType"

use="required" />

<xsd:attribute name="toolTip" type="xsd:string"

use="optional" />

</xsd:complexType>

<!-- Determines how job are executed by GT4 -->

<xsd:complexType name="GramJobManagerRequirementType">

<xsd:attribute name="label" fixed="Job manager"

type="xsd:string" use="required" />

<xsd:attribute name="value" type="com:JobManagerListType"

use="required" />

<xsd:attribute name="toolTip" type="xsd:string"

use="optional" />

</xsd:complexType>

<xsd:simpleType name="UnitType">

<xsd:restriction base="xsd:string">

<xsd:enumeration value="MB" />

<xsd:enumeration value="GB" />

<xsd:enumeration value="TB" />

</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="JobManagerListType">

<xsd:list itemType="com:JobManagerType" />

</xsd:simpleType>

<xsd:simpleType name="JobManagerType">

<xsd:restriction base="xsd:string">

<xsd:enumeration value="Fork" /> <!-- Run on Gram

machine -->

<xsd:enumeration value="Condor" /> <!-- Submit jobs

further to Condor pool -->
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</xsd:restriction>

</xsd:simpleType>

<xsd:complexType name="OperatingSystemRequirementType">

<xsd:attribute name="label" fixed="Operating system"

type="xsd:string" use="required" />

<xsd:attribute name="value" type="com:OSType"

use="required" />

<xsd:attribute name="toolTip" type="xsd:string"

use="optional" />

</xsd:complexType>

<xsd:simpleType name="OSType">

<xsd:restriction base="xsd:string">

<xsd:enumeration value="ALL" />

<xsd:enumeration value="WINNT51" />

<xsd:enumeration value="LINUX" />

</xsd:restriction>

</xsd:simpleType>

<xsd:complexType name="ArchitectureRequirementType">

<xsd:sequence>

<xsd:element name="value"

type="com:ArchitectureType" minOccurs="1"

maxOccurs="2" />

</xsd:sequence>

<xsd:attribute name="label" fixed="Architecture"

type="xsd:string" use="required" />

<xsd:attribute name="toolTip" type="xsd:string"

use="optional" />

</xsd:complexType>

<xsd:simpleType name="ArchitectureType">

<xsd:restriction base="xsd:string">

<xsd:enumeration value="ALL" />

<xsd:enumeration value="INTEL" />

<xsd:enumeration value="PPC" />

<xsd:enumeration value="ITANIUM" />

</xsd:restriction>

</xsd:simpleType>

<!-- END: Requirements for the resource broker -->

<!-- Provenance information -->

<xsd:complexType name="SingleJobProvenanceType">

<xsd:sequence>
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<xsd:element name="variables"

type="com:EnvironmentType" minOccurs="0"

maxOccurs="unbounded"/>

</xsd:sequence>

<xsd:attribute name="jobId" type="xsd:string"

use="required" />

<xsd:attribute name="status" type="xsd:string"

use="required" />

<xsd:attribute name="gram" type="xsd:string"

use="optional" />

<xsd:attribute name="submissionToGRAMTime"

type="xsd:dateTime" use="required" />

<xsd:attribute name="completionTime" type="xsd:dateTime"

use="required" />

<xsd:attribute name="failureDescription" type="xsd:string"

use="required" />

</xsd:complexType>

<xsd:complexType name="SingleGramProvenanceType">

<xsd:attribute name="gram" type="xsd:string"

use="optional" />

<xsd:attribute name="doneJobs" type="xsd:long"

use="required" />

<xsd:attribute name="failedJobs" type="xsd:long"

use="required" />

<xsd:attribute name="activeJobs" type="xsd:long"

use="required" />

<xsd:attribute name="pendingJobs" type="xsd:long"

use="required" />

<xsd:attribute name="submittedJobs" type="xsd:long"

use="required" />

<xsd:attribute name="localQueueJobs" type="xsd:long"

use="required" />

<xsd:attribute name="preStageJobs" type="xsd:long"

use="required" />

<xsd:attribute name="unknownJobs" type="xsd:long"

use="required" />

<xsd:attribute name="waitingJobs" type="xsd:long"

use="required" />

<xsd:attribute name="totalJobs" type="xsd:long"

use="required" />

<xsd:attribute name="totalCPUs" type="xsd:long"

use="required" />

</xsd:complexType>

<!-- END: Provenance information -->

</xsd:schema>
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A.1.3. dmg data mining

Listing A.3: XML schema dmg data mining.xsd

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema targetNamespace="http://www.datamininggrid.org/datamining"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:dm="http://www.datamininggrid.org/datamining"

version="1.0">

<xsd:complexType name="DataMiningType">

<!-- Application domain must be fixed to data mining. -->

<xsd:attribute name="applicationDomain" type="xsd:string"

use="required" fixed="Data Mining"/>

<!-- Name of the (large-scale) application this algorithm

belongs to (e.g. Weka) -->

<xsd:attribute name="applicationGroup" type="xsd:string"

use="required" />

<!-- Name of the atomic application/algorithm. Should be

unique within an application group. -->

<xsd:attribute name="applicationName" type="xsd:string"

use="required" />

<!-- The type of problem the algorithm solves

(e.g.Regression) -->

<xsd:attribute name="functionalArea"

type="dm:FunctionalAreaType" use="required" />

<!-- The technique used by the actual algorithm (e.g.

Regression Tree) -->

<xsd:attribute name="technique" type="xsd:string"

use="required" />

<!-- See below -->

<xsd:attribute name="crispDMPhase"

type="dm:CrispDMPhaseType" use="required" />

</xsd:complexType>

<xsd:simpleType name="FunctionalAreaType">

<xsd:restriction base="xsd:string">

<xsd:enumeration value="Classification" />

<xsd:enumeration value="Regression" />

<xsd:enumeration value="Clustering" />

<xsd:enumeration value="Attribute Importance" />

<xsd:enumeration value="Association" />

<xsd:enumeration value="Other" /><!-- Everything

that does not fit into above categories -->

</xsd:restriction>

</xsd:simpleType>
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<xsd:simpleType name="CrispDMPhaseType">

<xsd:restriction base="xsd:string">

<!-- Expected to appear rather sporadically -->

<xsd:enumeration value="Business Understanding" />

<!-- E.g. data exploration techniques (e.g.

univariate data plots), data quality issues,

attribute interactions, etc. -->

<xsd:enumeration value="Data Understanding" />

<!-- All preprocessing algorithms, e.g. data

integration, selection, sampling,

transformation, cleaning, etc. -->

<xsd:enumeration value="Data Preparation" />

<!-- All DM algorithms, e.g. classifiers,

differential equation solvers, etc. -->

<xsd:enumeration value="Modelling" />

<!-- All validating techniques -->

<xsd:enumeration value="Evaluation" />

<!-- E.g. monitoring and evaluation effectiveness

after deployment-->

<xsd:enumeration value="Deployment" />

</xsd:restriction>

</xsd:simpleType>

</xsd:schema>

A.1.4. dmg provenance

Listing A.4: XML schema dmg provenance.xsd

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema targetNamespace="http://www.datamininggrid.org/provenance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:app="http://www.datamininggrid.org/applicationDescription"

xmlns:com="http://www.datamininggrid.org/common"

xmlns:dm="http://www.datamininggrid.org/datamining"

xmlns:prov="http://www.datamininggrid.org/provenance"

version="1.0">

<xsd:import

namespace="http://www.datamininggrid.org/applicationDescription"

schemaLocation="dmg_application_description.xsd" />

<xsd:import namespace="http://www.datamininggrid.org/common"

schemaLocation="dmg_common.xsd" />
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<xsd:annotation>

<xsd:documentation xml:lang="EN">

Schema for describing data mining applications for

the grid environment developed as part of the

project

"Data Mining Tools and Services for Grid Computing

Environments" (DataMiningGrid), funded by the

European

Commission (grant no. IST-2004-004475). For more

information about this project please visit the

homepage at

www.datamininggrid.org .

</xsd:documentation>

</xsd:annotation>

<xsd:element name="provenance" type="prov:ProvenanceType" />

<xsd:complexType name="ProvenanceType">

<xsd:sequence>

<xsd:element name="applicationDescription"

type="app:ApplicationDescriptionType"

minOccurs="1" maxOccurs="1"/>

<xsd:element name="submissionTime"

type="xsd:dateTime" minOccurs="1" maxOccurs="1"

/>

<xsd:element name="completionTime"

type="xsd:dateTime" minOccurs="1" maxOccurs="1"

/>

<xsd:element name="schedulerStatus"

type="xsd:string" minOccurs="1" maxOccurs="1" />

<xsd:element name="resultsLocation"

type="xsd:string" minOccurs="1" maxOccurs="1" />

<xsd:element name="jobsStatus"

type="com:SingleJobProvenanceType" minOccurs="0"

maxOccurs="unbounded"/>

<xsd:element name="gramsStatus"

type="com:SingleGramProvenanceType"

minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:schema>
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A.2. Application Description Schema Instances

In the following, we present examples of instances of the Application Description Schema
for Weka components that have been grid-enabled in the context of the DataMiningGrid
project as described in Section 3.4.3.

A.2.1. Weka IBK

Listing A.5: Description of the IBK component of Weka

<app:application

xmlns:app="http://www.datamininggrid.org/applicationDescription"

xmlns:dm="http://www.datamininggrid.org/datamining"

xmlns:com="http://www.datamininggrid.org/common"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<generalInformation build="355" codeVersion="3.5.5"

id="weka_ibk"

shortDescription="Class for ..."

swVersion="3.5.5"

uploadDate="2007-05-09"

vendor="University of Waikato New Zealand">

<longDescription>Attribute selection: Set the method used to select

attributes for use in the linear regression. Available methods

are: no attribute selection, attribute selection using M5’s method

(step through the attributes removing the one with the smallest

standardised coefficient until no improvement is observed in the

estimate of the error given by the Akaike information criterion),

and a greedy selection using the Akaike information

metric.</longDescription>

<comment></comment>

</generalInformation>

<applicationType applicationName="IBK"

applicationGroup="Weka"

applicationDomain="Data Mining"

crispDMPhase="Modelling"

functionalArea="Classification"

technique="KNN"/>

<execution>

<javaExecution interpreterCommand="java"

mainClass="weka.classifiers.lazy.IBk">

<interpreterArguments>-Xmx1000m</interpreterArguments>

<applicationRunFile description="The main jar containing the main

class." host="grid2.kd-grid.ais.fraunhofer.de"

localPath="/gridapps/weka/" fileDirParameterName="weka3-5-5.jar"
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protocol="gsiftp" port="2811" />

</javaExecution>

</execution>

<applicationInformation>

<options dataType="posint"

defaultValues="1"

flag="-kNN"

hidden="false"

label="KNN"

optional="false"

toolTip="The number of neighbours to use."/>

<options dataType="boolean"

defaultValues="false"

flag="-crossValidate"

hidden="false"

label="CrossValidate"

optional="false"

toolTip="Whether hold-one-out cross-validation will be used to

select the best k value."/>

<options dataType="boolean"

defaultValues="false"

flag="-debug"

hidden="false"

label="Debug"

optional="false"

toolTip="If set to true, classifier may output additional info

to the console."/>

<options dataType="boolean"

defaultValues="false"

flag="-meanSquared"

hidden="false"

label="MeanSquared"

optional="false"

toolTip="Whether the mean squared error is used rather than

mean absolute error when doing cross-validation for

regression problems."/>

<options dataType="posint"

defaultValues="0"

flag="-windowSize"

hidden="false"

label="WindowSize"

optional="false"

toolTip="Gets the maximum number of instances allowed in the

training pool. The addition of new instances above this

value will result in old instances being removed. A value
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of 0 signifies no limit to the number of training

instances."/>

<options dataType="string"

defaultValues="price"

flag="-classAttribute"

hidden="false"

label="Class Attribute"

optional="false"

toolTip="The attribute to predict."/>

<options dataType="posint"

defaultValues="10"

flag="-cv"

hidden="false"

label="CV folds"

optional="false"

toolTip="Number of cv folds ( has to be > 1, 0 and 1 means no

cv )."/>

<!-- Hidden -->

<options dataType="string"

defaultValues="LinearNN -A weka.core.EuclideanDistance"

value="LinearNN -A weka.core.EuclideanDistance"

flag="-nearestNeighbourSearchAlgorithm"

hidden="true"

label="NearestNeighbourSearchAlgorithm"

optional="false"

toolTip="The nearest neighbour search algorithm to use

(Default: LinearNN)."/>

<!-- All possible data inputs. All printings to SDTOUT & STDERR by the

application are covered by the system automatically and thus have not

to be specified here. -->

<dataInputs flag="-train"

ioType="Datafile"

label="Training Data"

toolTip="Input files containing the training data in Weka’s

ARFF format."

optional="false"

hidden="false"

stageIn="true"

appendToCmdLine="true"/>

<!-- All possible data outputs -->

<dataOutputs flag="-result"

ioType="Datafile"

label="Result File"
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toolTip="File containing the results."

optional="false"

hidden="false"

stageOut="true"

appendToCmdLine="true"/>

<!-- Requirements for execution machines -->

<requirements>

<minMemory label="Min memory" value="512" unit="MB"

toolTip="Minimum memory of execution machine must be

larger than minimum memory required for JVM." />

<operatingSystem label="Operating system" value="ALL"/>

<architecture label="Architecture">

<value>ALL</value>

</architecture>

</requirements>

</applicationInformation>

</app:application>

A.2.2. Weka LWL

Listing A.6: Description of the LWL component of Weka

<app:application

xmlns:app="http://www.datamininggrid.org/applicationDescription"

xmlns:dm="http://www.datamininggrid.org/datamining"

xmlns:com="http://www.datamininggrid.org/common"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<generalInformation build="355" codeVersion="3.5.5"

id="weka_lwl"

shortDescription="Class for ..."

swVersion="3.5.5"

uploadDate="2007-05-09"

vendor="University of Waikato New Zealand">

<longDescription>.</longDescription>

<comment></comment>

</generalInformation>

<applicationType applicationName="LWL"

applicationGroup="Weka"

applicationDomain="Data Mining"

crispDMPhase="Modelling"

functionalArea="Classification"

technique="Locally weighted learning"/>
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<execution>

<javaExecution interpreterCommand="java"

mainClass="weka.classifiers.lazy.LWL">

<interpreterArguments>-Xmx1000m</interpreterArguments>

<applicationRunFile description="The main jar containing the main

class." host="grid2.kd-grid.ais.fraunhofer.de"

localPath="/gridapps/weka/" fileDirParameterName="weka3-5-5.jar"

protocol="gsiftp" port="2811" />

</javaExecution>

</execution>

<applicationInformation>

<options dataType="posint"

defaultValues="1"

flag="-kNN"

hidden="false"

label="KNN"

optional="false"

toolTip="How many neighbours are used to determine the width

of the weighting function ( 0 or less means all

neighbours)."/>

<options dataType="boolean"

defaultValues="false"

flag="-debug"

hidden="false"

label="Debug"

optional="false"

toolTip="If set to true, classifier may output additional info

to the console."/>

<options dataType="posint"

defaultValues="0"

flag="-weightingKernel"

hidden="false"

label="weightingKernel"

optional="false"

toolTip="Determines weighting function. [0 = Linear, 1 =

Epnechnikov,2 = Tricube, 3 = Inverse, 4 = Gaussian and 5 =

Constant. (default 0 = Linear)]"/>

<options dataType="string"

defaultValues="price"

flag="-classAttribute"

hidden="false"

label="Class Attribute"

optional="false"

toolTip="The attribute to predict."/>
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<options dataType="posint"

defaultValues="10"

flag="-cv"

hidden="false"

label="CV folds"

optional="false"

toolTip="Number of cv folds ( has to be > 1, 0 and 1 means no

cv )."/>

<!-- All possible data inputs. All printings to SDTOUT & STDERR by the

application are covered by the system automatically and thus have not

to be specified here. -->

<dataInputs flag="-train"

ioType="Datafile"

label="Training Data"

toolTip="Input files containing the training data in Weka’s

ARFF format."

optional="false"

hidden="false"

stageIn="true"

appendToCmdLine="true"/>

<!-- All possible data outputs -->

<dataOutputs flag="-result"

ioType="Datafile"

label="Result File"

toolTip="File containing the results."

optional="false"

hidden="false"

stageOut="true"

appendToCmdLine="true"/>

<!-- Requirements for execution machines -->

<requirements>

<minMemory label="Min memory" value="512" unit="MB"

toolTip="Minimum memory of execution machine must be

larger than minimum memory required for JVM." />

<operatingSystem label="Operating system" value="ALL"/>

<architecture label="Architecture">

<value>ALL</value>

</architecture>

</requirements>

</applicationInformation>

</app:application>
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A.2.3. Weka M5P

Listing A.7: Description of the M5P component of Weka

<app:application

xmlns:app="http://www.datamininggrid.org/applicationDescription"

xmlns:dm="http://www.datamininggrid.org/datamining"

xmlns:com="http://www.datamininggrid.org/common"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<generalInformation build="355" codeVersion="3.5.5"

id="weka_m5p"

shortDescription="Class for ..."

swVersion="3.5.5"

uploadDate="2007-05-09"

vendor="University of Waikato New Zealand">

<longDescription>Attribute selection: Set the method used to select

attributes for use in the linear regression. Available methods

are: no attribute selection, attribute selection using M5’s method

(step through the attributes removing the one with the smallest

standardised coefficient until no improvement is observed in the

estimate of the error given by the Akaike information criterion),

and a greedy selection using the Akaike information

metric.</longDescription>

<comment></comment>

</generalInformation>

<applicationType applicationName="M5P"

applicationGroup="Weka"

applicationDomain="Data Mining"

crispDMPhase="Modelling"

functionalArea="Classification"

technique="M5Base Tree"/>

<execution>

<javaExecution interpreterCommand="java"

mainClass="weka.classifiers.trees.M5P">

<interpreterArguments>-Xmx1000m</interpreterArguments>

<applicationRunFile description="The main jar containing the main

class." host="grid2.kd-grid.ais.fraunhofer.de"

localPath="/gridapps/weka/" fileDirParameterName="weka3-5-5.jar"

protocol="gsiftp" port="2811" />

</javaExecution>

</execution>

<applicationInformation>

<options dataType="boolean"

defaultValues="false"

flag="-buildRegressionTree"
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hidden="false"

label="BuildRegressionTree"

optional="false"

toolTip="Whether to generate a regression tree/rule instead of

a model tree/rule."/>

<options dataType="boolean"

defaultValues="false"

flag="-debug"

hidden="false"

label="Debug"

optional="false"

toolTip="If set to true, classifier may output additional info

to the console."/>

<options dataType="double"

defaultValues="4.0"

flag="-minNumInstances"

hidden="false"

label="MinNumInstances"

optional="false"

toolTip="The minimum number of instances to allow at a leaf

node."/>

<options dataType="boolean"

defaultValues="false"

flag="-saveInstances"

hidden="false"

label="SaveInstances"

optional="false"

toolTip="Whether to save instance data at each node in the

tree for visualization purposes."/>

<options dataType="boolean"

defaultValues="false"

flag="-unpruned"

hidden="false"

label="unpruned"

optional="false"

toolTip="Whether unpruned tree/rules are to be generated."/>

<options dataType="boolean"

defaultValues="false"

flag="-useUnsmoothed"

hidden="false"

label="UseUnsmoothed"

optional="false"

toolTip="Whether to use unsmoothed predictions."/>

<options dataType="string"

defaultValues="price"
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flag="-classAttribute"

hidden="false"

label="Class Attribute"

optional="false"

toolTip="The attribute to predict."/>

<options dataType="posint"

defaultValues="10"

flag="-cv"

hidden="false"

label="CV folds"

optional="false"

toolTip="Number of cv folds."/>

<!-- All possible data inputs. All printings to SDTOUT & STDERR by the

application are covered by the system automatically and thus have not

to be specified here. -->

<dataInputs flag="-train"

ioType="Datafile"

label="Training Data"

toolTip="Input files containing the training data in Weka’s

ARFF format."

optional="false"

hidden="false"

stageIn="true"

appendToCmdLine="true"/>

<!-- All possible data outputs -->

<dataOutputs flag="-result"

ioType="Datafile"

label="Result File"

toolTip="File containing the results."

optional="false"

hidden="false"

stageOut="true"

appendToCmdLine="true"/>

<!-- Requirements for execution machines -->

<requirements>

<minMemory label="Min memory" value="512" unit="MB"

toolTip="Minimum memory of execution machine must be

larger than minimum memory required for JVM." />

<operatingSystem label="Operating system" value="ALL"/>

<architecture label="Architecture">

<value>ALL</value>

</architecture>

</requirements>

</applicationInformation>

</app:application>
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A.3. R-based Bioinformatics Scenario

In this section, we present the R script code of the scenario described in Section 2.3.5,
which is part of the clinical trial case study presented in Section 5.7.

A.3.1. R Code

The code of the original R script of the clinical trial scenario is presented in the following
code listing:

Listing A.8: R code of the clinical trial scenario

setwd("/p-medicine/pmed_WP2_Data_Example/CEL")

####### LIBRARIES ###########

library(Biobase)

library(affy)

library(gcrma)

library(genefilter)

library(geneplotter)

library(annaffy)

####### READING DATA ###########

#Reading AffyBatch from CEL files

mysamples <- ReadAffy()

# Adjusting sampleNames

smpls <- sub(".CEL","", sub(paste(getwd(),"/",

sep=""),"",sampleNames(mysamples)))

sampleNames(mysamples) <- smpls

sampleNames(mysamples)

print(smpls)

setwd("/Simona/p-medicine/pmed_WP2_Data_Example")

####### NORMALIZATION ###########

esetmysamples <- rma(mysamples)

# Saving QC images

degmysamples <- AffyRNAdeg(mysamples)

anname<-"GSE22138"
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png(file=paste("Intensities", anname, ".png", sep=""))

hist(mysamples,col="blue")

dev.off()

png(file=paste("Degradation", anname, ".png", sep=""))

plotAffyRNAdeg(degmysamples)

dev.off()

png(file=paste("BoxplotUnNormal", anname, ".png", sep=""), width=700,

height=700)

par(mar=c(8,4,4,2))

boxplot(mysamples, names=sampleNames(esetmysamples),las=3,

cex.axis=0.7,outline=F)

dev.off()

png(file=paste("BoxplotNormal", anname, ".png", sep=""), width=700,

height=700)

par(mar=c(8,4,4,2))

boxplot(exprs(esetmysamples),

names=sampleNames(esetmysamples),las=3,cex.axis=0.7,outline=F)

dev.off()

####### ENVIRONMENT STRUCTURE CREATION ###########

GSE22138<-new.env()

esetm<-as.matrix(esetmysamples)

GSE22138$gex<-t(esetm)

GSE22138$clin<-read.table(file="GSE22138_clin.csv",header=T,row.names=1)

# differentially expressed genes

design <- model.matrix(~0+factor(d.mfs), data=GSE22138$clin)

colnames(design) <- c("NoMet","Met")

x<-t(GSE22138$gex[rownames(design),])

n<-ncol(x)

fit <- lmFit(x, design)

contrast.matrix <- makeContrasts(Met-NoMet, levels=design)

fit2 <- contrasts.fit(fit, contrast.matrix)
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fit2 <- eBayes(fit2)

# A list of top genes differential expressed in group2 versus group1

can be obtained from

topTable(fit2, coef=1, adjust="BH")

results <- decideTests(fit2,p.value=0.05,lfc=1)

#A Venn diagram showing numbers of genes significant in each comparison

can be obtained from

png(file="VennDiagram.png")

vennDiagram(results, main="Venn Diagram - p.value < 0.05, FC > 2")

dev.off()

pdf(file="prova_volcano.pdf")

volcanoplot(fit2, coef=1,highlight=6,main="Detach-NoDetach")

dev.off()

x<-results@.Data[abs(results@.Data[,1])==1,]

names(x)

GSE22138$gexG <- GSE22138$gex[,names(x)]

######################## Cluster diagram (with dChip colors) ###########

library(geneplotter)

row.dist <- as.dist(1 - cor(GSE22138$gexG))

col.dist <- as.dist(1 - cor(t(GSE22138$gexG)))

c2<-GSE22138$clin$d.mfs

spcol <- ifelse(as.numeric(c2) == as.numeric(c2)[1], "grey40", "grey80")

# Set color (here greys), for horizontal bar. Each color one class

hv <- heatmap(t(GSE22138$gexG), Colv=as.dendrogram(hclust(col.dist,

method="average")),

Rowv=as.dendrogram(hclust(row.dist, method="average")), keep.dendro=TRUE)

# Pearson’s Distances based heatmap

heatmap(t(GSE22138$gexG)[hv$rowInd,], Rowv = NA, labRow = " ",

Colv=reorder(hv$Colv,1:n, agglo.FUN= mean), col = dChip.colors(256),

margin = c(7,7),

ColSideColors=spcol) # with an horizontal color bar to annotate the two

groups and without gene names and gene dendrograms. To remove bar,

remove ColSideColors
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postscript(file=paste("cluster", anname, ".pdf", sep=""))

heatmap(t(GSE22138$gexG)[hv$rowInd,], Rowv = NA, labRow =

colnames(GSE22138$gexG)[hv$rowInd], Colv=reorder(hv$Colv,1:n,

agglo.FUN= mean), col = dChip.colors(256), margin = c(7,7),

ColSideColors=spcol) # with an horizontal color bar to annotate the

two groups and without gene names and gene dendrograms

dev.off()

####### CALCULATE RISK INDEX ###########

a<-intersect(topTable(fit2, coef=1,

adjust="BH")$ID[1],colnames(GSE22138$gex))

GSE22138$sigdata <- cbind( GSE22138$gex[,a] )

GSE22138$clin$ri <- apply(GSE22138$sigdata,1,function(x)

mean(x,na.rm=TRUE))

GSE22138$clin$ri.rank <-

rank(GSE22138$clin$ri)/sum(!is.na(GSE22138$clin$ri))

####### SURVIVAL ANALYSIS ###########

png(file=paste("KM_Risk", anname, ".png", sep=""), width=700, height=700)

plot(survfit(Surv(t.mfs/12,d.mfs)~factor(ri.rank>0.5),data=GSE22138$clin),

conf.int=F, xlab="Time (Years)", main="K-M (MFS) -

Risk",ylab="follow-up probability",lty = 2:3)

legend(8, .9, c("Low Risk", "High Risk"), lty = 2:3)

dev.off()

summary(coxph(Surv(t.mfs/12, d.mfs) ~ factor(ri.rank>0.5),

data=GSE22138$clin))

summary(coxph(Surv(t.mfs/12, d.mfs) ~ retinal.detachment.d,

data=GSE22138$clin))

summary(coxph(Surv(t.mfs/12, d.mfs) ~ retinal.detachment.d +

strata(gender.d), data=GSE22138$clin))

png(file=paste("KM_gender", anname, ".png", sep=""), width=700,

height=700)

plot(survfit(Surv(t.mfs/12,d.mfs)~gender.d,data=GSE22138$clin),

conf.int=F, xlab="Time (Years)", main="K-M (MFS) -
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Gender",ylab="follow-up probability",lty = 2:3)

legend(8, .9, c("Male", "Female"), lty = 2:3)

dev.off()

png(file=paste("KM_eyeside", anname, ".png", sep=""), width=700,

height=700)

plot(survfit(Surv(t.mfs/12,d.mfs)~eye.side.d,data=GSE22138$clin),

conf.int=F, xlab="Time (Years)", main="K-M (MFS) -

EyeSide",ylab="follow-up probability",lty = 2:3)

legend(8, .9, c("DX", "SX"), lty = 2:3)

dev.off()

png(file=paste("KM_retinal", anname, ".png", sep=""), width=700,

height=700)

plot(survfit(Surv(t.mfs/12,d.mfs)~retinal.detachment.d,data=GSE22138$clin),

conf.int=F, xlab="Time (Years)", main="K-M (MFS) -

RetinalDetachment",ylab="follow-up probability",lty = 2:3)

legend(8, .9, c("No Detach", "Yes Detach"), lty = 2:3)

dev.off()

save(GSE22138,mysamples,file="GSE22138.rda")

rm(list=ls())

A.3.2. R Code of Components

As part of the clinical trial case study (see Section 5.7), the R script was split into 9 different
components Read data, Normalize, QC degradations, QC intensities, QC log intensity,
Volcano and Venn, Heatmaps, Risk calculation, and Kaplan-Meier. The following code
listings present the code of the individual components:

Read data

Listing A.9: R code of the Read data component

setwd("C:/pMed_testdata")

####### LIBRARIES ###########

library(Biobase)

library(affy)

library(gcrma)

library(genefilter)

library(geneplotter)

library(annaffy)
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library(limma)

library(survival)

####### READING DATA ###########

#Reading AffyBatch from CEL files

mysamples <- ReadAffy()

# Adjusting sampleNames

smpls <- sub(".CEL","", sub(paste(getwd(),"/",

sep=""),"",sampleNames(mysamples)))

sampleNames(mysamples) <- smpls

sampleNames(mysamples)

print(smpls)

ls()

### safe workspace on R Server

save.image()

Normalize

Listing A.10: R code of the Normalize component

setwd("C:/pMed_testdata")

load(".Rdata")

ls()

library(Biobase)

library(affy)

library(gcrma)

library(genefilter)

library(geneplotter)

library(annaffy)

library(limma)

library(survival)

####### NORMALIZATION ###########

esetmysamples <- rma(mysamples)

# Saving QC images

degmysamples <- AffyRNAdeg(mysamples)

anname<-"GSE22138"
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QC degradation

Listing A.11: R code of the QC degradation component

setwd("C:/pMed_testdata")

load(".Rdata")

ls()

library(Biobase)

library(affy)

library(gcrma)

library(genefilter)

library(geneplotter)

library(annaffy)

library(limma)

library(survival)

png(plotAffyRNAdeg)

degmysamples <- AffyRNAdeg(mysamples)

summaryAffyRNAdeg(degmysamples)

write.table(degmysamples[c(2,5,6)], file="AffyRNAdeg.csv", sep=",")

plotAffyRNAdeg(degmysamples)

dev.off()

png(file=paste("Degradation", anname, ".png", sep=""))

plotAffyRNAdeg(degmysamples)

dev.off()

QC intensities:

Listing A.12: R code of the QC intensities component

setwd("C:/pMed_testdata")

load(".Rdata")

ls()

library(Biobase)

library(affy)

library(gcrma)

library(genefilter)

library(geneplotter)

library(annaffy)

library(limma)

library(survival)

png(file=paste("BoxplotUnNormal", anname, ".png", sep=""), width=700,

height=700)
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par(mar=c(8,4,4,2))

boxplot(mysamples, names=sampleNames(esetmysamples),las=3,

cex.axis=0.7,outline=F)

dev.off()

png(file=paste("BoxplotNormal", anname, ".png", sep=""), width=700,

height=700)

par(mar=c(8,4,4,2))

boxplot(exprs(esetmysamples),

names=sampleNames(esetmysamples),las=3,cex.axis=0.7,outline=F)

dev.off()

### safe workspace on R Server

save.image()

QC log intensity

Listing A.13: R code of the QC log intensity component

setwd("C:/pMed_testdata")

load(".Rdata")

ls()

library(Biobase)

library(affy)

library(gcrma)

library(genefilter)

library(geneplotter)

library(annaffy)

library(limma)

library(survival)

#png(histpng)

#hist(mysamples)

#dev.off()

png(file=paste("Intensities", anname, ".png", sep=""))

hist(mysamples,col="blue")

dev.off()
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Volcano and Venn

Listing A.14: R code of the Volcano and Venn component

setwd("C:/pMed_testdata")

load(".Rdata")

ls()

library(Biobase)

library(affy)

library(gcrma)

library(genefilter)

library(geneplotter)

library(annaffy)

library(limma)

library(survival)

GSE22138<-new.env()

esetm<-exprs(esetmysamples)

GSE22138$gex<-t(esetm)

GSE22138$clin<-read.table(file="GSE22138_clin.csv",header=T,row.names=1)

clin<-read.table(file="GSE22138_clin.csv",header=T,row.names=1)

GSE22138$clin<-clin[rownames(GSE22138$gex),]

# differentially expressed genes

design <- model.matrix(~0+factor(d.mfs), data=GSE22138$clin)

colnames(design) <- c("NoMet","Met")

x<-t(GSE22138$gex[rownames(design),])

n<-ncol(x)

fit <- lmFit(x, design)

contrast.matrix <- makeContrasts(Met-NoMet, levels=design)

fit2 <- contrasts.fit(fit, contrast.matrix)

fit2 <- eBayes(fit2)

# A list of top genes differential expressed in group2 versus group1 can

be obtained from

toptable<-topTable(fit2, coef=1, adjust="BH")

results <- decideTests(fit2,p.value=0.56,lfc=1)

#A Venn diagram showing numbers of genes significant in each comparison

can be obtained from
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png(file="VennDiagram.png")

vennDiagram(results, main="Venn Diagram - p.value (adj) < 0.56, FC > 2 -

Stat INCORRECT - JUST FOR TRAINING")

dev.off()

pdf(file="prova_volcano.pdf")

volcanoplot(fit2, coef=1,highlight=6,main="Detach-NoDetach")

dev.off()

x<-results@.Data[abs(results@.Data[,1])==1,]

result_names<-names(x)

GSE22138$gexG <- GSE22138$gex[,names(x)]

### safe workspace on R Server

save.image()

Heatmaps

Listing A.15: R code of the Heatmap component

setwd("C:/pMed_testdata")

load(".Rdata")

ls()

library(Biobase)

library(affy)

library(gcrma)

library(genefilter)

library(geneplotter)

library(annaffy)

library(limma)

library(survival)

library(geneplotter)

row.dist <- as.dist(1 - cor(GSE22138$gexG))

col.dist <- as.dist(1 - cor(t(GSE22138$gexG)))

c2<-GSE22138$clin$d.mfs

spcol <- ifelse(as.numeric(c2) == as.numeric(c2)[1], "grey40", "grey80")

# Set color (here greys), for horizontal bar. Each color one class

png(file=paste("Heatmap2", anname, ".png", sep=""))
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hv <-heatmap(t(GSE22138$gexG), Colv=as.dendrogram(hclust(col.dist,

method="average")),

Rowv=as.dendrogram(hclust(row.dist, method="average")), keep.dendro=TRUE)

# Pearson’s Distances based heatmap

dev.off()

png(file=paste("Heatmap", anname, ".png", sep=""))

heatmap(t(GSE22138$gexG)[hv$rowInd,], Rowv = NA, labRow = " ",

Colv=reorder(hv$Colv,1:n, agglo.FUN= mean), col = dChip.colors(256),

margin = c(7,7),

ColSideColors=spcol)

dev.off()

#postscript

png(file=paste("cluster", anname, ".pdf", sep=""))

heatmap(t(GSE22138$gexG)[hv$rowInd,], Rowv = NA, labRow =

colnames(GSE22138$gexG)[hv$rowInd], Colv=reorder(hv$Colv,1:n,

agglo.FUN= mean), col = dChip.colors(256), margin = c(7,7),

ColSideColors=spcol) # with an horizontal color bar to annotate the

two groups and without gene names and gene dendrograms

dev.off()

### safe workspace on R Server

save.image()

Risk calculation

Listing A.16: R code of the Risk calculation component

setwd("C:/pMed_testdata")

load(".Rdata")

library(Biobase)

library(affy)

library(gcrma)

library(genefilter)

library(geneplotter)

library(annaffy)

library(limma)

library(survival)

a<-intersect(topTable(fit2, coef=1,

adjust="BH")$ID[1],colnames(GSE22138$gex))

GSE22138$sigdata <- cbind( GSE22138$gex[,a] )
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GSE22138$clin$ri <- apply(GSE22138$sigdata,1,function(x)

mean(x,na.rm=TRUE))

GSE22138$clin$ri.rank <-

rank(GSE22138$clin$ri)/sum(!is.na(GSE22138$clin$ri))

### safe workspace on R Server

save.image()

Kaplan-Meier plots and tests

Listing A.17: R code of the Kaplan Meier component

setwd("C:/pMed_testdata")

load(".Rdata")

ls()

library(Biobase)

library(affy)

library(gcrma)

library(genefilter)

library(geneplotter)

library(annaffy)

library(limma)

library(survival)

png(file=paste("KM_Risk", anname, ".png", sep=""), width=700, height=700)

plot(survfit(Surv(t.mfs/12,d.mfs)~factor(ri.rank>0.5),data=GSE22138$clin),

conf.int=F, xlab="Time (Years)", main="K-M (MFS) -

Risk",ylab="follow-up probability",lty = 2:3)

legend(8, .9, c("Low Risk", "High Risk"), lty = 2:3)

dev.off()

summary1<-summary(coxph(Surv(t.mfs/12, d.mfs) ~ factor(ri.rank>0.5),

data=GSE22138$clin))

summary2<-summary(coxph(Surv(t.mfs/12, d.mfs) ~ retinal.detachment.d,

data=GSE22138$clin))

summary3<-summary(coxph(Surv(t.mfs/12, d.mfs) ~ retinal.detachment.d +

strata(gender.d), data=GSE22138$clin))

png(file=paste("KM_gender", anname, ".png", sep=""), width=700,

height=700)
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plot(survfit(Surv(t.mfs/12,d.mfs)~gender.d,data=GSE22138$clin),

conf.int=F, xlab="Time (Years)", main="K-M (MFS) -

Gender",ylab="follow-up probability",lty = 2:3)

legend(8, .9, c("Male", "Female"), lty = 2:3)

dev.off()

png(file=paste("KM_eyeside", anname, ".png", sep=""), width=700,

height=700)

plot(survfit(Surv(t.mfs/12,d.mfs)~eye.side.d,data=GSE22138$clin),

conf.int=F, xlab="Time (Years)", main="K-M (MFS) -

EyeSide",ylab="follow-up probability",lty = 2:3)

legend(8, .9, c("DX", "SX"), lty = 2:3)

dev.off()

png(file=paste("KM_retinal", anname, ".png", sep=""), width=700,

height=700)

plot(survfit(Surv(t.mfs/12,d.mfs)~retinal.detachment.d,data=GSE22138$clin),

conf.int=F, xlab="Time (Years)", main="K-M (MFS) -

RetinalDetachment",ylab="follow-up probability",lty = 2:3)

legend(8, .9, c("No Detach", "Yes Detach"), lty = 2:3)

dev.off()

save(GSE22138,mysamples,file="GSE22138.rda")

#rm(list=ls())
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[146] Dennis Wegener and Stefan Rüping. On Integrating Data Mining into Business
Processes. In Robert Tolksdorf Witold Abramowicz, editor, Proceedings of the 13th
International Conference on Business Information Systems (BIS 2010), volume 47 of
Lecture Notes in Business Information Processing (LNBIP), pages 183–194, Berlin,
Germany, 2010. Springer Berlin Heidelberg.
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porting Parallel R Code in Clinical Trials: A Grid-Based Approach. In Proceedings
of the IEEE International Symposium on Parallel and Distributed Processing with
Applications, ISPA 2008, Sydney, NSW, Australia, December 10-12, 2008, pages
823–828, Washington, DC, USA, 2008. IEEE Computer Society.

[150] Dennis Wegener, Thierry Sengstag, Stelios Sfakianakis, Stefan Rüping, and Anthony
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Assi. GridR: An R-based tool for scientific data analysis in grid environments. Future
Generation Comp. Syst., 25(4):481–488, 2009.

[152] Gabriele Weiler, Mathias Brochhausen, Norbert Graf, Fatima Schera, Alexander
Hoppe, and Stephan Kiefer. Ontology based data management systems for post-
genomic clinical trials within a European Grid Infrastructure for Cancer Research.
Proc. of the Annual International Conference of the IEEE Engineering in Medicine
and Biology Society. IEEE Engineering in Medicine and Biology Society., 2007:6435–
6438, 2007.

[153] S A White and D Miers. BPMN Modeling and Reference Guide: Understanding and
Using BPMN. Future Strategies Inc., 2008.

[154] Stephen A. White. Introduction to BPMN, IBM, 2004.

[155] Wikipadia. DNA microarray, http://en.wikipedia.org/wiki/DNA_microarray,
2012.

[156] Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learning Tools
and Techniques. Morgan Kaufmann Series in Data Management Systems. Morgan
Kaufmann, second edition, June 2005.

225

http://en.wikipedia.org/wiki/DNA_microarray


Bibliography

[157] P. G. Wodehouse. Bioinformatics and Pattern Recognition Come Together. Journal
of Pattern Recognition Research, 1:37–41, 2006.

[158] Stefan Wrobel, Dietrich Wettschereck, Edgar Sommer, and Werner Emde. Exten-
sibility in data mining systems. In Evangelos Simoudis, Jia W. Han, and Usama
Fayyad, editors, Proc. 2nd International Conference On Knowledge Discovery and
Data Mining, pages 214–219, Menlo Park, CA, USA, August 1996. AAAI Press.

[159] X. Xiang and G.R Madey. Improving the reuse of scientific workflows and their
byproducts. In: ICWS, pp. 792-799. IEEE Computer Society, Los Alamitos, 2007.

[160] Hao Yu. Rmpi: Interface (Wrapper) to MPI (Message-Passing Interface), http:

//cran.r-project.org/web/packages/Rmpi/Rmpi.pdf.

226

http://cran.r-project.org/web/packages/Rmpi/Rmpi.pdf
http://cran.r-project.org/web/packages/Rmpi/Rmpi.pdf

	Abstract
	Acknowledgement
	Introduction
	Description of the Problem Area
	Data Analysis in Bioinformatics
	Challenges
	Existing Solutions

	Research Questions
	Contributions
	Integration of Existing Data Mining Components
	Interactive Development of Data Mining Scripts
	Data Mining Process Patterns

	Structure of this Dissertation
	Publications

	Scientific Data Analysis, Data Mining and Data Analysis Environments
	Data Mining
	Data Mining Problems, Goals and Methods
	The Data Mining Process
	Data Mining in Practice
	Basic Definitions

	Distributed Computing and Data Mining Systems
	Distributed Data Mining
	Grid Computing
	Process Modelling and Workflow Environments

	Bioinformatics Scenarios
	Introduction to Bioinformatics
	User Groups
	Data Sources
	Data Mining Tools in Bioinformatics
	Example Scenario

	DataMiningGrid, ACGT and p-medicine
	The DataMiningGrid Project
	The ACGT Project
	The p-medicine Project

	Wrap-up

	Integration of Existing Data Mining Components into Grid-based Systems
	Requirements
	Related Work
	Integration of Data Mining Components
	Layered Architecture
	The Application Description Schema
	Process of Registering and Executing Data Mining Components

	Case Study DataMiningGrid
	Implementation in the DataMiningGrid System
	User Interface for the Integration
	Grid-enabling Weka
	Grid-enabling Standardizable Parts of Data Mining Scenarios
	Discussion

	Wrap-up

	Flexible and Interactive Development of Data Mining Scripts in Grid-based Systems
	Requirements
	Layered Architecture
	Related Work
	Developing Data Mining Scripts based on Treating Algorithms as Parameters
	Functionality, Interface and Operations
	GridR Service Architecture
	Execution of Scripts and Functions

	Developing Data Mining Scripts by Interactive and Rapid Prototyping
	GridR Client Architecture
	Process of Execution

	Parallel Processing
	Parallelization with the GridR Service
	Parallelization with the GridR Client
	Discussion

	Reference Implementation in ACGT
	ACGT Technical Architecture
	Integration of GridR into the ACGT Grid Environment

	Case Studies
	Integration of Scripts and Interactive Development - The Farmer Scenario
	Supporting Basic Script Parallelization - An Industrial Case Study

	Wrap-up

	Data Mining Process Patterns
	Motivation
	Requirements
	Related Work
	Analysis of the CRISP Model for Reuse
	Data Mining Process Patterns for Data Mining based Analysis Processes
	Definition of Data Mining Process Patterns
	Reuse with Data Mining Process Patterns

	Data Requirements in Data Mining Process Patterns
	Data Requirements in Data Analysis Processes
	Describing Data Semantics as Query Tasks
	Example

	Case Study Process Pattern of a Clinical Trial Scenario
	The Clinical Trial Scenario
	Process Pattern of the Scenario
	Taverna Implementation

	Case Study Process Pattern of a Meta Analysis Scenario
	The Multi-Center Multi-Platform Scenario
	Abstract Process Pattern for Bioinformatics Processes in p-medicine

	Case Study Integration of Patterns in Business Processes
	Introduction
	Creating a Pattern
	Integration and Reuse

	Evaluation & Wrap-up
	Evaluation in the Context of Business Process Redesign
	Summary


	Conclusion
	Summary
	Discussion

	Appendix
	Application Description Schema Source Files
	dmg_application_description.xsd
	dmg_common.xsd
	dmg_data_mining
	dmg_provenance

	Application Description Schema Instances
	Weka IBK
	Weka LWL
	Weka M5P

	R-based Bioinformatics Scenario
	R Code
	R Code of Components


	Bibliography

