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“The main species of beauty are orderly arrangement, proportion [συµµǫτρια], and definiteness;
and these are especially manifested by the mathematical sciences. And inasmuch as it is

evident that these (I mean, e.g., orderly arrangement and definiteness) are causes of many
things, obviously they must also to some extent treat of the cause in this sense, i.e. the cause

in the sense of the Beautiful.”

Aristotle, Metaphysics, 13.1078a–b.∗

∗ Aristotle. Aristotle’s Metaphysics, ed. W. D. Ross. Oxford, Clarendon Press, 1924.
Aristotle. Aristotle in 23 Volumes, Vols. 17 & 18, translated by Hugh Tredennick. Cambridge (MA), Harvard
University Press; London, William Heinemann Ltd. 1933, 1989.
http://perseus.mpiwg-berlin.mpg.de/cgi-bin/ptext?lookup=Aristot.+Met.+13.1078a
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Abstract

Since quarks are confined inside hadrons, their properties as well as their contributions to
hadronic observables can be assessed by indirect methods only. As the strength of the strong
interaction increases with the spatial distance, the treatment of quantum chromodynamics at
low energies in general requires non-perturbative methods like dispersion relations or lattice
gauge theory. Based on the fact that the light quark masses are very small with respect to the
typical hadronic mass scales for mesons and baryons, furthermore effective field theories can
be constructed to describe low-energy properties and dynamics of hadrons perturbatively. The
present work is concerned with two particularly interesting hadronic processes that are closely
related to the light quark masses. Although distinct theoretical frameworks utilizing different
calculational techniques are applied, in both cases the investigations at hand are prerequisites
for high-precision analyses of the respective quark-mass effects.

In the first part of this thesis, we investigate higher-order isospin-breaking effects in η → 3π
decays, namely η → π0π+π− and η → 3π0, in chiral perturbation theory. By evaluating the
second-order mixed strong and electromagnetic isospin-breaking corrections, we confirm the
picture that the electromagnetic contributions are small. Therefore, η → 3π is perfectly suited
to extract isospin-breaking ratios of light quark masses via comparing theoretical predictions
with experimental results. Since for an accurate determination a detailed description of the
Dalitz plot distributions is necessary, we study the different effects of higher-order isospin
breaking in η → 3π on a more general basis. In particular, we investigate corrections to
isospin relations between both decay channels at the level of Dalitz plot parameters, showing
that the branching ratio of the two partial decay widths entails sizeable uncertainties.

In the second part, we develop a dispersive formalism and a solution strategy for a precision
determination of the leading partial waves of the πN scattering amplitude in the low-energy
region. They are specifically important to constrain the pion–nucleon σ-term, which measures
the light-quark contributions to the nucleon mass and is still a subject of discussion. Starting
from hyperbolic dispersion relations, we derive a closed system of Roy–Steiner equations that
respects analyticity, unitarity, and especially crossing symmetry. Assuming Mandelstam ana-
lyticity, we determine the maximal kinematical ranges of validity of the equations for both the
scattering process and the crossed annihilation process ππ → N̄N . To suppress the depen-
dence on the high-energy region, we also introduce subtractions into the Roy–Steiner system,
identifying the subtraction constants with πN subthreshold parameters. The S- and P -waves
of the crossed process feature prominently in dispersive analyses of the scalar nucleon form
factor that is directly linked to the σ-term and the electromagnetic nucleon form factors, re-
spectively. As a first step towards solving the full Roy–Steiner system, we study the solution
of these partial waves by using Muskhelishvili–Omnès techniques.

Due to the conceptual and methodological differences, both parts are presented in a self-
contained fashion.
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Part I

Isospin-breaking effects

in η → 3π decays†

†Most contents of this part have been published in [1–3].
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Chapter 1

Introduction

The decay η → 3π is particularly interesting because it is forbidden by isospin symmetry.
While the η meson has isospin I = 0, according to G-parity three pions (with zero total
angular momentum) can only couple to I = 1, and thus the decay can only happen via
isospin-breaking ∆I = 1 operators. In the Standard Model, there are two such sources of
isospin violation: on the one hand strong interactions (with quantum chromodynamics (QCD)
as the corresponding locally gauge invariant quantum field theory (QFT)) proportional to the
light quark mass difference δ = md −mu from

HQCD(x) = muūu(x) +mdd̄d(x) +mss̄s(x) m̂ =
md +mu

2
,

= m̂
(
ūu+ d̄d

)
(x)− δ

2

(
ūu− d̄d

)
(x) +mss̄s(x) , δ = md −mu , (1.1)

where for convenience we also define the average light quark mass m̂, and on the other hand
electromagnetic interactions (as described by quantum electrodynamics (QED)) proportional
to the electric charge squared e2 from

HQED(x) = −e
2

2

∫
d4y Dµν(x− y)T

[
jµ(x)jν(y)

]
, (1.2)

where Dµν(x − y) is the photon propagator and jµ(x) is the current density containing the
charged fields of the theory. A long time ago Sutherland and Bell showed by using soft-pion
techniques that the electromagnetic contribution at tree level is much too small to account for
the observed η → 3π decay rate, which is also known as Sutherland’s (soft-pion) theorem [4,5].
Thus, this decay is very sensitive to the non-vanishing light quark mass difference δ and
hence potentially yields a particularly clean access to the determination of quark mass ratios.
More specifically, neglecting purely electromagnetic contributions, the amplitudes for both
the charged (η → π0π+π−) and the neutral (η → 3π0) decay channel are proportional to the
inverse of the quark mass double ratio Q2,

1

Q2
=
m2

d −m2
u

m2
s − m̂2

= 2
δ

m̂

m̂2

m2
s − m̂2

, (1.3)

so that the η → 3π decay widths (charged, neutral, and total) are related to Q according to

Γη→3π ∝ 1

Q4
. (1.4)
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Moreover, as long as isospin breaking beyond leading order is neglected, both η → 3π decay
channels can be described by only one amplitude due to the ∆I = 1 selection rule. As a
consequence, the ratio of the partial widths for the neutral and the charged decay

r =
Γη→3π0

Γη→π0π+π−
(1.5)

must satisfy the inequality r ≤ 3/2 up to higher-order isospin-breaking corrections. Neglect-
ing furthermore purely electromagnetic corrections again, the (leading) Q-dependence of the
amplitude normalizations cancels in the ratio r.

In view of Sutherland’s theorem, the strong tree-level amplitude was studied using (SU(3))
current algebra and partially conserved axialvector current (PCAC) techniques [6,7], but the
(neutral) decay width turned out to be off from the contemporary experimental value by a fac-
tor of a few. Already at that time it has been argued that unitarity corrections due to (strong)
ππ final-state interaction (FSI) are the driving force behind this blatant discrepancy [8,9]. The
PCAC hypothesis and (SU(3)) current algebra were later on generalized and cast into a mod-
ern form in the framework of (SU(3)) chiral perturbation theory (ChPT) [10–12], with the
results of current algebra corresponding to the leading-order (LO, O

(
p2
)
, tree-level) ChPT

results. As one of the first applications, Gasser and Leutwyler (GL) calculated the strong
contribution at next-to-leading order (NLO, O

(
p4
)
, one-loop level) [13]. Although they ob-

served large corrections at NLO (in particular due to I = 0 S-wave ππ FSI), their value
for the (charged) decay width still differs from experiment by a factor of two.#1 Using an
extension of ChPT including virtual-photon effects [14], Baur, Kambor, and Wyler (BKW)
then studied corrections to Sutherland’s theorem by evaluating the (purely) electromagnetic
contributions in η → 3π at one-loop level, i.e. at O

(
e2p2

)
, but they found them to be very

small [15].#2 Therefore, strong corrections beyond one loop (see also [16]) were subsequently
studied using dispersive methods [17,18], unitarized ChPT [19,20], and eventually with a com-
plete calculation at next-to-next-to-leading order (NNLO, O

(
p6
)
, two-loop level) [21]; all of

them finding considerable enhancement compared to the one-loop calculation. Despite these
(and others) valiant theoretical efforts and improvements, it still seemed difficult to achieve
agreement between the theoretical description of η → 3π decays and experimental results
for the decay widths and the so-called Dalitz plot parameters of η → π0π+π− [22–25] and
η → 3π0 [26–31].#3 This is most noticeable for the case of the neutral Dalitz slope α, to
which we will refer in the following as the “α-puzzle”: ChPT basically fails in accurately re-
producing its experimental value α = −0.0315± 0.0015 [34], since the theoretical value for α
vanishes at leading O

(
p2
)

and disagrees in sign both at next-to-leading O
(
p4
)

(irrespective of
isospin-breaking corrections, as will be shown in this work) and at two-loop O

(
p6
)
, the result

at NNLO (neglecting isospin breaking beyond O(δ)) at least being compatible with negative
values within the given errors.#4 The branching ratio r, on the contrary, has turned out to

#1The experimental values for both Γη→π0π+π− and Γη→3π0 have changed considerably in time, however,
mostly due to the normalization of the total η decay width by the partial width Γη→2γ and therefore not
influencing the ratio r much. In fact, the results of [13] were in good agreement with the majority of the
then-current experimental results.

#2In the framework of SU(3) ChPT including electromagnetism as chosen for this work, the quark masses
mq ∈ {mu,md,ms} and the electric charge squared e2 are of the same chiral O

(

p2
)

, whereas 1/Q2 = O
(

p0
)

.
#3See in addition [32, 33] for the first determination of α and [32] as well as the references given in [23] for

former analyses of charged Dalitz plot parameters.
#4The rather large errors given in [21], however, are not based on the uncertainties in the bulk of the a
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be rather stable with respect to the increasing accuracy in both the experimental determina-
tions [32, 33, 35–38] (see references in [35] for older analyses) and the theoretical predictions;
even the LO prediction agrees with the current experimental world average r = 1.48±0.05 [34],
which in turn is close to the upper limit of the inequality r ≤ 3/2 stemming from the ∆I = 1
selection rule.

Based on this situation, the motivation for reconsidering the electromagnetic corrections
in η → 3π decays at one-loop chiral order as started in [39] and published in [1], hinged
on the fact that the authors of [15] neglected terms proportional to e2δ, arguing that these
are of second order in isospin breaking and therefore expected to be suppressed even further.
However, by restricting oneself to terms of the form e2m̂ and e2ms, one excludes some of
the most obvious electromagnetic effects, namely real- and virtual-photon contributions as
well as effects due to the charged-to-neutral pion mass difference (which is predominantly of
electromagnetic origin), both of which scale as e2δ. These mechanisms fundamentally affect the
analytic structure of the amplitudes in question: in the charged decay channel η → π0π+π−,
there is a Coulomb pole at the boundary of the physical region (i.e. at the π+π− threshold)
corresponding to the exchange of a (soft) virtual photon between the charged pions, while in
the neutral decay channel η → 3π0, the non-vanishing pion mass difference induces a cusp
behavior at the π+π− threshold due to the opening of an additional physical channel [40] (cf.
e.g. [41,42], see also [43,44] for overviews of various examples for threshold cusp phenomena).
In contrast, the purely electromagnetic corrections identified in [15] are all polynomials (due
to counterterms) or quasi-polynomials (due to kaon loop effects) inside the physical region.
Furthermore, Sutherland’s soft-pion theorem (assuming mu = md, i.e. purely electromagnetic
η → 3π decays) guarantees that at the so-called soft-pion point these corrections are of
O
(
e2m̂

)
only, and not O

(
e2ms

)
; hence at least in this case, in accordance with (1.3), the

relative suppression of the hitherto neglected terms at O
(
e2δ
)

(i.e. for mu 6= md) is of the
order of δ/m̂ ≈ 2/3 (since md ≈ 2mu) and therefore these contributions are not a priori
negligible. Moreover, the mixed electromagnetic and strong corrections at O

(
e2δ
)

do not
spoil the factorization of 1/Q2 for both amplitudes and thus enable a consistent application of
electromagnetic corrections in the extraction of quark mass ratios from η → 3π decays, where
for precision studies it is of course important to have all electromagnetic corrections under
sufficient control. Additional motivation for considering the electromagnetic terms at O

(
e2δ
)

arose from two specific features of the neutral decay channel, namely the cusp phenomenon
and the “α-puzzle”, as shall also be discussed in the following.

The threshold cusp in η → 3π0 encodes information on ππ (re-)scattering in principle
in much the same way as the decay K+ → π+π0π0, which at the time of [1] had recently
been established as a new means for a precision determination of the ππ S-wave scattering
lengths isospin combination a00−a20 multiplying the strength of the cusp in the π0π0 invariant
mass distribution at the π+π− threshold [45–49] (see also the more recent analysis [50]). This
difference of scattering lengths, at the same time, is predicted theoretically with tremendous
precision [51] by using dispersive methods (namely Roy equations [52,53] in combination with
ChPT [54]) and represents a core test of ChPT and our picture of chiral symmetry breaking.
However, as in the analogous decay KL → 3π0 [55], in η → 3π0 the cusp is less pronounced
than in K+ → π+π0π0 due to the relative strength of the decays into charged and neutral
final states. From an experimental point of view, η → 3π0 decays had therefore not been

priori unknown low-energy constants (LECs) appearing at O
(

p6
)

, which are estimated therein by resonance
saturation, but results solely from the chosen fitting procedure.
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competitive for a ππ scattering length determination, although from the then-upcoming high-
statistics experiments [30,56–58] at least in [58] first (however, not yet statistically significant)
indications of the cusp effect have been observed. Since the calculation of [1] is performed
at O

(
p4
)

in chiral perturbation theory, and hence includes the rescattering effect leading to
the cusp only at leading order in the quark mass expansion, it is not suited to serve for
a precision extraction of ππ scattering lengths, but rather illustrates the phenomenon. In
principle, the tailor-made theoretical framework to perform a precision analysis of threshold
cusp phenomena is (modified) non-relativistic effective field theory (NREFT), which already
then had been worked out up to two loops and including radiative corrections for η → 3π0

(along with KL → 3π0) [59–61] (see also the recent comprehensive analysis [62]). While the
NREFT framework is ideally suited to study the FSI dynamics, which are known to be crucial
for η → 3π decays, it does not allow for a prediction of physical observables without matching
to some other source of low-energy information like for instance ChPT. Actually, the ChPT
calculation of [1] is in a sense dual to a NREFT calculation, as it predicts electromagnetic
effects in those parts of the amplitude that are merely parameterized in the latter.

As far as the neutral Dalitz slope α is concerned, more robust theoretical values had been
obtained by using either dispersive techniques [17] (by construction fulfilling unitarity and thus
incorporating FSIs to all orders) or unitarization schemes like [20]. Nevertheless, the disagree-
ment between ChPT calculations for α and the experimental value remained an unsolved
problem even after the two-loop calculation [21] had been accomplished.#5 An important
shortcoming of both the usual dispersion relations and the existing two-loop calculation, how-
ever, is the neglect of higher-order isospin-breaking corrections, especially of electromagnetic
contributions entailed in the charged-to-neutral pion mass difference; in particular, it is not
yet clear how to consistently incorporate different pion masses in the dispersive machinery.
Although presently in fact, there are attempts to deal with this issue either in a new dispersive
study [63–65] or using an “analytical” dispersive approach [66, 67] (see [65] for a comparison
of the different frameworks) these analyses are not yet finished and the final and/or com-
prehensive results have not been published yet. This situation directly leads to the question
of the size of electromagnetic corrections to the ChPT value of α. In fact, also for investi-
gating the “α-puzzle” the combination of NREFT and ChPT together with isospin-breaking
considerations turns out to be the ideal tool as will be discussed below.

The evaluation of electromagnetic corrections in η → 3π decays including second-order
isospin breaking at O

(
e2δ
)

as sketched above and published in [1] constitutes the first part
of the analysis of higher-order isospin-breaking corrections in η → 3π decays presented in
this work. For the (chronological) line of argument, here we briefly anticipate the main
result of [1]: in general, our investigation confirms the picture, that the η → 3π decays are
predominantly due to isospin breaking in the strong sector and thus can be used as direct
measure for (isospin-breaking) quark mass ratios, in particular Q2. Although the effects of
O
(
e2δ
)

are comparable in size to those of O
(
e2m̂

)
analyzed in [15] and, moreover, the most

significant change between these electromagnetic corrections occurs particularly in α as a
consequence of the cusp effect in η → 3π0, the total electromagnetic corrections remain at the
percent level and thus small throughout for both η → 3π decays (as long as “trivial” isospin
breaking due to the different pion masses is accounted for in the normalization of the Dalitz

#5The remarkable agreement of the results of [20] in the framework of unitarized ChPT with experiment
(especially for the neutral slope parameter α), however, is not an unbiased prediction, since the input U(3)
LECs (differing from the respective perturbative LECs due to the coupled-channel approach) are determined
by fitting to several hadronic η and η′ decay channels, amongst them η → 3π and in particular η → 3π0.
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plot parameters).#6 In particular, the corrections at O
(
e2δ
)

that include the cusp effect are
by far too small to account for the “α-puzzle”.

As the total electromagnetic effects turned out to be small and in view of the progress in
exploring and applying the NREFT framework in particular concerning the cusp effect in η →
3π0 [71,72] as well as η′ → ηππ [73], subsequently a dedicated study of the rescattering effects
in η → 3π decays was conducted [3], wherein by matching the ChPT results at NLO (including
higher-order isospin-breaking effects) to a two-loop (modified) NREFT calculation (using the
correct empirical ππ scattering parameters for the ππ FSI) a detailed description of the Dalitz
plot distributions for both decays is obtained in reasonable agreement with experimental
findings. Since NREFT allows for the direct implementation of isospin breaking particularly
in all kinematical (i.e. mass) effects — which is much more involved in ChPT, cf. the first
part of the present work, and still unexplored in dispersive analyses — it is perfectly suited
for investigating the isospin-breaking and FSI-driven η → 3π decays. Moreover, compared
to potentially very precise but numerically intricate dispersive studies, NREFT calculations
yield transparent analytical representations. However, this work is not concerned with the
η → 3π NREFT calculation presented in [3] itself. Rather, the second part of the analysis of
the η → 3π higher-order isospin-breaking corrections to be presented in this work deals with
the inclusion of “trivial” kinematical isospin-breaking effects, the electromagnetic corrections
at O

(
e2δ
)

as derived in [1], and also second-order strong isospin-breaking contributions at
O
(
δ2
)

derived in addition to [1] in the combined NREFT+ChPT analysis of [3].
As shown in [3], especially for the “α-puzzle” it is possible to bridge the gap between the

ChPT predictions and the dispersive analyses (and moreover, even experimental findings) by
a transparent interpretation of the dispersive results of [17], which were obtained in a similar
fashion concerning the matching to ChPT at NLO: the discrepancies between ChPT even
at higher orders and experiment can be understood as a consequence of the general impor-
tance of the ππ FSIs for η → 3π decays on the one hand, and the employed value for the
ππ scattering lengths parameterizing this rescattering on the other hand. While ChPT cal-
culations at a given chiral order are always restricted to estimates of lower chiral order for
these scattering lengths due to the chiral power counting,#7 the NREFT representation allows
to use the phenomenological values, which implicitly include arbitrarily high orders in both
the chiral expansion and isospin breaking. In particular, the double rescattering graph with
ππ vertices beyond LO is responsible for at least half of the discrepancy between the NNLO
ChPT prediction for α and experiment; these effects are of O

(
p8
)

at least, but included in the
two-loop NREFT framework (as well as in dispersive analyses, however, without higher-order
isospin-breaking). Moreover, calculating both decay amplitudes at NLO in ChPT separately

#6For the neutral decay η → 3π0, the contributions to the amplitude at O
(

e2δ
)

have also been derived in [68],
which was published, however, after the completion of [39]. Concerning η → 3π0, moreover, some partial results
for electromagnetic corrections at the two-loop level O

(

p6
)

have been published: at O
(

e2δp2
)

, by considering
solely the exchange of a virtual photon between intermediate charged pions, it has been “concluded” in [69] that
this contribution be sizeable (thus criticizing the NREFT analysis [3] for neglecting it; furthermore ignoring
the solution of the “α-puzzle” presented therein), and furthermore at O

(

e2p4
)

, by calculating the contributions
from the exchange of a virtual photon inside the loop of intermediate charged kaons only, in summary it has
been “concluded” in [70] that the decay η → 3π0 be mainly driven by electromagnetic isospin breaking and
thus could not be used “to determine [quark mass ratios containing] md − mu”. However, in both cases the
“conclusions” are drawn from alarmingly incomplete two-loop calculations and are thus invalid; actually, in [69]
the authors honestly mention the possibility of cancellations with the remaining contributions at this order,
while in [70] it is even explicitly stated that the resulting amplitude is neither finite nor scale-independent.

#7For instance, a ChPT amplitude at next-to-leading O
(

p4
)

can only include the effect of one ππ rescattering
vertex at leading O

(

p2
)

.
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and including second-order isospin-breaking effects at O
(
e2δ, δ2

)
consistently, yields access to

both strong and electromagnetic isospin-breaking corrections to the ∆I = 1 relation between
the amplitudes for the charged and the neutral decay channel. More specifically, in the sec-
ond part of this work isospin-breaking corrections to the ∆I = 1 relations between leading
Dalitz plot parameters of both decay channels are derived and evaluated; in particular for the
ratio r, which is reasonably well reproduced even at LO in ChPT, the strong and electromag-
netic isospin-breaking effects are expected to be significant in comparison with higher-order
chiral corrections. Using these ∆I = 1 relations for Dalitz plot parameters, the numeri-
cal results for the Dalitz plot parameters of both decay channels within the NREFT+ChPT
framework presented in [3] indicate a tension between the recent KLOE experimental anal-
yses for η → 3π0 [30] and η → π0π+π− [25] that, however, cannot be resolved by including
isospin-breaking in η → 3π beyond leading-order as presented in this work, thus calling for
further investigations; besides the aforementioned ongoing theoretical efforts, also new exper-
imental studies have already been announced or are planned in the (near) future for both the
neutral [74–78] and the charged [76–81] decay.

This work is organized as follows: in Chap. 2 we briefly review those parts of the formalism
of ChPT and η → 3π decays that are relevant for both parts of our investigation of isospin-
breaking effects in η → 3π decays, namely the electromagnetic corrections as discussed in
Chap. 3 and the isospin-breaking corrections to the ∆I = 1 amplitude relation as presented in
Chap. 4, before we conclude with a summary and a short outlook in Chap. 4. Some technical
details are relegated to Apps. A and B.
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Chapter 2

Formalism

In this chapter, we collect the formalism and definitions that are needed for the analysis of
electromagnetic corrections to the η → π0π+π− and η → 3π0 decay amplitudes as presented
in Chap. 3 as well as for the derivation of isospin-breaking corrections concerning the ∆I = 1
relation between them as discussed in Chap. 4. Note that, unless explicitly stated otherwise,
in the following the terms LO, NLO and so forth always denote orders p2, p4 etc. of the chiral
expansion, and not orders in isospin breaking.

2.1 Chiral perturbation theory preliminaries

A particularly successful approach to describe the interactions of hadrons at low energies is
to construct an effective field theory (EFT) which encodes the infrared behavior of QCD.
Based upon the approximate chiral symmetry of LQCD, one can identify the lightest parti-
cles in the spectrum with the (pseudo-)Goldstone bosons induced by spontaneous breaking of
this symmetry, and their interactions can be written as an simultaneous expansion in small
momenta and light quark masses. The corresponding EFT for the strong interactions (of the
pseudoscalar mesons) is then chiral perturbation theory [10–12, 82]. Moreover, ChPT can be
generalized to include electromagnetic effects systematically [14] (cf. [83], see however [84]
concerning the non-uniqueness of the splitting of the Hamiltonian into QCD and QED con-
tributions). Since there are several good introductions to ChPT in the literature, see for
instance [85–90], in this section we content ourselves with briefly collecting those definitions
and results that are needed in the following.

2.1.1 Chiral perturbation theory with virtual photons

The mesonic Goldstone boson fields are usually collected in the field U according to#1

U = exp
iφ

F0
, φ =

√
2




π3√
2
+ η8√

6
π+ K+

π− − π3√
2
+ η8√

6
K0

K− K̄0 −2η8√
6


 . (2.1)

#1According to the decomposition φ =
∑8

a=1 λ
aφa in terms of the SU(3) Gell-Mann matrices λa and field

operators φa, the ChPT (phase-)convention
√
2|π±〉 = |π1〉±i |π2〉 (corresponding to the adjoint representation

of SU(2)) for the relation between the pion charge eigenstates and their Cartesian components differs from
the usual spherical convention

√
2|π±〉 = ∓|π1〉 − i |π2〉 by an overall sign for |π+〉. The flavor eigenstate |π3〉

coincides with the mass eigenstate |π0〉 only in the limit of SU(2) isospin symmetry (i.e. δ = 0), cf. Sect. 2.1.2.
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The (strong) LO effective Lagrangian invariant under chiral symmetry reads

LLO
str =

F 2
0

4

〈
(DµU)†DµU + χ†U + U †χ

〉
, (2.2)

where 〈...〉 denotes the trace in flavor space, Dµ is the covariant derivative, and the external
scalar and pseudoscalar sources s and p are conventionally combined into#2

χ = 2B0(s+ ip) , s = M+ ... , M = diag
(
mu,md,ms

)
, (2.3)

incorporating the quark mass matrix M together with the LO low-energy constant B0, which
is related (in combination with F0) to the chiral quark condensate. The LO LEC F0, on the
other hand, can be identified with the chiral limit of the pion decay constant Fπ,

Fπ = F0

{
1 + ∆Fπ

}
,

FK

Fπ
= 1 +∆F , (2.4)

where for later convenience we also define the corrections beyond O
(
p0
)

to both the relations
between F0 and Fπ as well as between the analogous kaon decay constant FK and Fπ. At
NLO, loop diagrams with vertices from the above LO Lagrangian generate infinities that can
be absorbed by a renormalization of the (strong) NLO LECs

Li = Γiλ+ Lr
i (µ) , (2.5)

which are introduced by the NLO effective Lagrangian LNLO
str given in [12]. The (scale-

dependent) constant λ contains a pole in d = 4 space-time dimensions due to dimensional
regularization (cf. (A.3)) and the coefficients Γi are also given in [12]. Correspondingly, the
renormalized LECs depend on the regularization scale µ. All physical observables, however,
are finite and scale-independent, which serves as a thorough check in explicit calculations.

Following [14], to include electromagnetism in the framework of mesonic ChPT by adding
virtual photons as additional dynamical degrees of freedom, the combined effective Lagrangian
up-to-and-including NLO can be written as

Leff = LLO
str + LLO

em + LNLO
str + LNLO

em +O
(
p6
)
, (2.6)

where the local electromagnetic interactions entail the quark charge matrix#3

Q =
e

3
diag

(
2,−1,−1

)
, (2.7)

and the radiative contributions are described by coupling the photon field Aµ to the meson
fields U via minimal substitution of the covariant derivative Dµ. The additional electromag-
netic LO effective Lagrangian then takes the form

LLO
em = −1

4
FµνFµν + ZF 4

0

〈
QUQU †〉 , (2.8)

where Fµν is the electromagnetic field strength tensor and the dimensionless LO LEC Z
determines the purely electromagnetic part of the masses of the charged mesons to leading

#2Supplementing the two diagonal Gell-Mann matrices λ3 = diag(1,−1, 0) and λ8 = 1√
3
diag(1, 1,−2) by

λ0 =
√

2/313, M can be decomposed according to M = mu+md+ms√
6

λ0 − δ
2
λ3 − ms−m̂√

3
λ8, cf. (1.1).

#3In analogy to M, also Q can be decomposed according to Q = e
2

{

λ3 + λ8
√
3

}

.
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chiral order as will be shown in Sect. 2.1.2. Note that we have omitted the gauge-fixing term.
The respective NLO Lagrangian is given in [14] and the corresponding electromagnetic LECs
are renormalized in analogy to the strong LECs via

Ki = Σiλ+Kr
i (µ) , (2.9)

with coefficients Σi also given in [14]. It shall be stressed here, that throughout this work
NLO terms proportional to e4 (i.e. second-order purely electromagnetic isospin breaking) will
be neglected, since they are numerically tiny.

2.1.2 Meson masses and π0η mixing at leading order

In principle, by expanding the LO effective Lagrangian LLO
eff = LLO

str + LLO
em in powers of φ

one can easily derive the LO meson masses. However, the flavor-neutral states π3 and η8 are
mixed due to a difference in the light quark masses md −mu = δ 6= 0 according to

B0

2

(
π3

η8

)T
(

mu +md
1√
3
(mu −md)

1√
3
(mu −md)

1
3(mu +md + 4ms)

)(
π3

η8

)
, (2.10)

which can be diagonalized by the single rotation angle

ǫ =
1

2
arctan

(√
3

2

md −mu

ms − m̂

)
=

√
3

4

md −mu

ms − m̂
+O

(
δ3
)
, (2.11)

leading to the physical meson mass eigenstates#4

(
π0

η

)
=

(
cos ǫ sin ǫ
− sin ǫ cos ǫ

)(
π3

η8

)
. (2.12)

To be explicit, the formulae for the LO meson masses and their expansions in the isospin-
breaking parameters e2 and δ up-to-and-including second order read#5

M2
η =

B0

3
(4ms +md +mu) +

B0√
3
(md −mu) tan ǫ+O

(
p4
)

(2.13)

=
2B0

3
(2ms + m̂) +

B0δ
2

4(ms − m̂)
+O

(
δ4, p4

)
,

M2
π0 = B0(md +mu)−

B0√
3
(md −mu) tan ǫ+O

(
p4
)
= 2B0m̂− B0δ

2

4(ms − m̂)
+O

(
δ4, p4

)
,

M2
π = B0(md +mu) + 2F 2

0Ze
2 +O

(
p4
)
= 2B0m̂+ 2F 2

0Ze
2 +O

(
p4
)
,

M2
K0 = B0(ms +md) +O

(
p4
)

= B0(ms + m̂) +
B0δ

2
+O

(
p4
)
,

M2
K = B0(ms +mu) + 2F 2

0Ze
2 +O

(
p4
)
= B0(ms + m̂)− B0δ

2
+ 2F 2

0Ze
2 +O

(
p4
)
,

#4Note that this description of π0η mixing via a single rotation angle is only valid at lowest chiral O
(

p2
)

[12,
91–93]. The mixing of the octet η8 and the singlet η0 to the observed mass eigenstates η and η′, on the
contrary, is encoded in the strong NLO LEC L7 [94], i.e. the heavy η′ is not a dynamical particle here.

#5These equations are of the form of the Gell-Mann–Oakes–Renner relation M2
GB ∼ B0mq [95] stating that

the squared Goldstone boson (i.e. meson) masses are given by the product of B0 (which is a measure for
the spontaneous breaking of chiral symmetry due to a non-zero chiral quark condensate) and quark masses
(breaking chiral symmetry explicitly by their non-vanishing values). The linear dependence on the quark masses
gives rise to the famous chiral logarithms logMGB .
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with Mπ and MK denoting the charged-pion and -kaon masses throughout this work. Thereby,
we can read off the charged-to-neutral meson mass differences at LO

∆M2
π =M2

π − M2
π0 = 2F 2

0Ze
2 +

B0δ
2

4(ms − m̂)
+O

(
δ4, p4

)
,

∆M2
K =M2

K −M2
K0 = 2F 2

0Ze
2 −B0δ +O

(
p4
)
, (2.14)

and it is obvious that the LO electromagnetic contributions to the charged-pion and -kaon
masses obey Dashen’s theorem [96]

(
∆M2

π

)
em

=
(
∆M2

K

)
em

+O
(
e2mq

)
. (2.15)

Furthermore, we can easily deduce the Gell-Mann–Okubo (GMO) relation [97, 98] including
higher-order isospin breaking

2M2
K + 2M2

K0 − 2M2
π +M2

π0 = 3M2
η − 4B0δ√

3
tan ǫ+O

(
p4
)
, (2.16)

which at LO in isospin breaking (i.e. neglecting the term of O
(
δ2
)
) is fulfilled in nature to a

few percent accuracy (≈ 7% w.r.t. 3M2
η ) and whose dimensionless discrepancy is defined as

∆GMO =
2M2

K + 2M2
K0 − 2M2

π +M2
π0 − 3M2

η

M2
η −M2

π0

= −4 sin2ǫ+O
(
p2
)
. (2.17)

In turn, to replace quark masses and the electromagnetic LEC Z by physical meson masses
one may use the relations

2B0ms =M2
K +M2

K0 −M2
π +O

(
p4
)
=

1

2

(
3M2

η −M2
π0

)
+O

(
δ2, p4

)
, (2.18)

2B0m̂ =
1

4

[
3
(
M2

η +M2
π0

)
− 2
(
M2

K +M2
K0 −M2

π

)]
+O

(
p4
)
=M2

π0 +O
(
δ2, p4

)
,

2F 2
0Ze

2 = −1

4

[
3
(
M2

η +M2
π0

)
− 2
(
M2

K +M2
K0 +M2

π

)]
+O

(
p4
)
= ∆M2

π +O
(
δ2, p4

)
.

2.1.3 Quark mass ratios

The results of the previous section for the LO meson masses allow to form quark mass ratios
determined entirely in terms of observable meson masses,#6 namely Weinberg’s ratios [99]

mu

md
≈ 2M2

π0 −M2
K0 +M2

K −M2
π

M2
K0 −M2

K +M2
π

≈ 0.56 ,

ms

md
≈ M2

K0 +M2
K −M2

π

M2
K0 −M2

K +M2
π

≈ 20.2 ,

⇒ ms

m̂
= 2

ms

md

[
1 +

mu

md

]−1

≈ M2
K0 +M2

K −M2
π

M2
π0

≈ 25.9 , (2.19)

#6In any effective Lagrangian approach as e.g. ChPT, only ratios of quark masses can be determined. Using
a mass-independent renormalization scheme like MS, the quark masses are renormalized multiplicatively, so
that their dependence on the renormalization scale cancels in quark mass ratios. Moreover, the corresponding
(and a priori unknown) LEC, i.e. here B0, also cancels. Note that by construction the quark masses in ChPT
are the same as those in QCD.
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which are, however, subject to substantial higher-order corrections.#7 Other frequently used
ratios (see for example [91]) are the single ratio

R =
ms − m̂

md −mu
⇒ ǫ =

√
3

4R
+O

(
δ3
)
, (2.20)

that represents the ratio of SU(3) flavor and SU(2) (strong) isospin breaking and naturally
appears in the mixing angle ǫ (2.11) and its expansion in md − mu, as well as the closely
related double ratio (cf. (1.3))

Q2 =
m2

s − m̂2

m2
d −m2

u

=
ms − m̂

md −mu

ms + m̂

md +mu
=
R

2

{
1 +

ms

m̂

}
. (2.21)

The latter one is preferable, however, since it is particularly stable with respect to strong
higher-order corrections [12],

Q2 =
M2

K −M2
π(

M2
K0 −M2

K

)
str

M2
K

M2
π

{
1 +O

(
m2

q , δ, e
2
)}

, (2.22)

and furthermore at leading order it is invariant under a shift in the quark masses of the form
mu → mu + const × mdms and cyclic for md and ms [104].#8 Moreover, neglecting a tiny
term proportional to (m̂/ms)

2, Q represents the major semi-axis of Leutwyler’s ellipse [105]
relating Weinberg’s ratios (2.19),

(
mu

md

)2

+
1

Q2

(
ms

md

)2

= 1 +
1

Q2

(
m̂

md

)2

≈ 1 , (2.23)

since the inverse of the double ratio itself can be written as (cf. (1.3))

1

Q2
= 2

δ

m̂

(
m̂

ms

)2
[
1−

(
m̂

ms

)2
]−1

= 2
δ

m̂

(
m̂

ms

)2
{
1 +O

((
m̂

ms

)2
)}

. (2.24)

As the ratio ms/m̂ is accurately known from lattice QCD whereas the ratio mu/md is rather
poorly known, cf. [100], a precise determination of Q2 would also lead to an accurate value of

mu

md
=

[
4Q2 −

(ms

m̂

)2
+ 1

] [
4Q2 +

(ms

m̂

)2
− 1

]−1

. (2.25)

Using Dashen’s theorem (2.15) in order to correct (2.22) for the missing electromagnetic
kaon mass contributions, i.e. using (M2

K −M2
K0)em = (M2

π −M2
π0)em, the double ratio Q2 can

#7While the numerical values in (2.19) correspond to inserting the physical meson masses, averaging three-
flavor lattice QCD results (in the MS scheme and fixing the running scale at 2GeV) yields mu

md
= 0.47± 0.04

and ms

m̂
= 27.4 ± 0.4 [100]; see also [101, 102]. For the single ratio R, the values in (2.19) lead to R ≈ 44.1

whereas [100] quotes R = 36.6±3.8; from (2.11) thus follows in both cases ǫ ≈ 1×10−2, which is in agreement
with more sophisticated determinations as e.g. [103] (considering both strong and electromagnetic isospin
breaking). In view of δ

m̂
≈ 2

3
not being small (in contrast to e2 ≈ 4π

137
≈ 1

10
), however, it should be noted that

(SU(2)) isospin is a good symmetry because the terms proportional to δ are usually chirally suppressed.
#8These shifts can be compensated by a redefinition of the quark condensate and certain LECs (up to

corrections at chiral O
(

p8
)

) and thus lead to the well-known Kaplan–Manohar ambiguity [104]: since these
unobservable shifts allow one to move freely on Leutwyler’s ellipse (2.23), additional input (e.g. quark mass
ratios from baryon mass splittings) is needed in order to extract Weinberg’s quark mass ratios (2.19) therefrom
(in a given scheme and at a given scale).
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be calculated at LO yielding a numerical value of QD ≈ 24.2, which is in accordance with the
LO values of the quark mass ratios (2.19). However, Dashen’s theorem is subject to potentially
large higher-order corrections, see e.g. [106–108], and different models [109–113] yield a range
1 .

(
M2

K −M2
K0

)
em
/
(
M2

π −M2
π0

)
em

. 2.5, which leads to a rather large uncertainty in the
numerical value of Q of QD ≈ 24.2 & Q & 20.6, whereas the recent three-flavor lattice QCD
average Q = 22.8 ± 1.2 from [100] (see also references therein) agrees remarkably well with
the results Q = 22.8± 0.4 [114] and Q = 23.1± 0.7 [66] based on KLOE data as well as with
the dispersive finding Q = 22.7± 0.8 [18].

Due to Sutherland’s theorem [4], the dependence of the decay η → 3π on the light quark
mass difference md−mu is much less prone to be obscured by electromagnetic effects. As will
be shown in the next section, the decay amplitudes can be written (at leading chiral order even
exactly) in terms of Q2, and hence an accurate study of this decay can lead to an independent
determination of the quark mass ratios. The consideration of higher-order isospin-breaking
effects (in particular the re-evaluation of electromagnetic corrections) presented in this work
thus allows for an increased precision in this determination.

2.2 η → 3π basics

In this section, we discuss some basic properties of η → 3π decays, mostly in terms of the
decay amplitudes for both the charged and the neutral channel of η → 3π,

out

〈
π0π+π−

∣∣η
〉
in
= i (2π)4δ(4)(pη − pcout)Ac(s, t, u) ,

out

〈
3π0
∣∣η
〉
in
= i (2π)4δ(4)(pη − pnout)An(s, t, u) . (2.26)

These amplitudes are needed in the following at next-to-leading chiral O
(
p4
)

and including
isospin breaking up to O

(
e2, e2δ, δ2

)
, which upon neglecting numerically tiny terms at O

(
e4
)

also corresponds to isospin breaking at next-to-leading order. Since they have been derived
in full detail — considering isospin breaking only up to O

(
e2, e2δ, δ

)
, however — already

in [39] (and published as part of [1]), neither their derivation nor their explicit forms shall
be reproduced here; only the LO amplitudes (which are valid also up-to-and-including O

(
δ2
)

without any changes) are stated explicitly, as this will prove valuable for illustrative reasons.
The discussion of the changes at NLO, however, that are necessary to render the amplitudes
given in [1] also valid at O

(
δ2
)

is relegated to App. A. For the explicit derivation of the
amplitudes we thus refer to [1]; even more details of the calculation are given in [39].

In the following, we first specify our kinematical conventions and then give both LO
amplitudes. Subsequently, we discuss the important relation between the charged and the
neutral decay amplitude, which is based on the ∆I = 1 selection rule for η → 3π decays.
Finally, the standard parameterizations for the Dalitz plot distributions of both amplitude
squares are discussed with emphasis on “trivial” kinematical isospin breaking.

2.2.1 Kinematics

For the generic η → 3π decay

η(pη) → π1(p1) + π2(p2) + π3(p3) ,

out

〈
π1π2π3

∣∣η
〉
in
= i (2π)4δ(4)(pη − pout)A(s1, s2, s3) , (2.27)
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the on-shell (p2 =M2) kinematics are given by (with ijk as cyclic permutations of 123)

si = (pη − pi)
2 = (pj + pk)

2 , p0i =
M2

η +M2
i − si

2Mη
, Ti = p0i −Mi ,

3s0 = s1 + s2 + s3 , pout = p1 + p2 + p3 , Q̃ = T1 + T2 + T3 , (2.28)

where Ti denotes the kinetic energy of the respective pion in the η rest frame and Q̃ is the
excess energy of the reaction. Taking the first (i.e. always neutral) pion as the odd one, so
that the corresponding generic two-by-two scattering amplitude is given by out〈π2π3|η π1〉in=
out〈π2π3|η π0〉in, the kinematical variables si can be identified with the usual Mandelstam
variables via#9

s1 = s , s2 = t , s3 = u . (2.29)

Since they are related by 3s0, only two of them are independent; thus we can choose to work
with e.g. s and t or s and t − u ∝ cos θs (as t + u = 3s0 − s is a function of s again), where
θs = ∠(p2,p3) denotes the angle between the 3-momenta of the two non-odd pions. In fact,
defining

λab(s) = λ
(
s,M2

a ,M
2
b

)
=
[
s− (Ma −Mb)

2
][
s− (Ma +Mb)

2
]

(2.30)

based on the fully symmetric Källén function λ(a, b, c) = a2 + b2 + c2 − 2(ab+ bc+ ca), and

σa(s) =
λ
1/2
aa (s)

s
=

√
1− 4M2

a

s
(2.31)

for the case of equal masses, we can write

t(s, θs) =
1

2

{
3s0−s+λ1/2ηπ0(s)λ

1/2
23 (s)

cos θs
s

}
, u(s, θs) =

1

2

{
3s0−s−λ1/2ηπ0(s)λ

1/2
23 (s)

cos θs
s

}
.

(2.32)
Specifically, for the charged decay the corresponding Mandelstam variables#10

s = (pη − pπ0)2 , t = (pη − pπ+)2 , u = (pη − pπ−)2 , (2.33)

are related by
3sc0 = s+ t+ u =M2

η +M2
π0 + 2M2

π , (2.34)

whereas the Mandelstam variables for the neutral decay read

s = (pη − pπ0
1
)2 , t = (pη − pπ0

2
)2 , u = (pη − pπ0

3
)2 , (2.35)

and obey the relation

3sn0 = s+ t+ u =M2
η + 3M2

π0 = 3sc0 − 2∆M2
π . (2.36)

#9Note that these conventions are in line with [1] but differ from [3], where the third pion is the odd one (cf.
Fig. 2.1). While this does not affect the amplitudes in terms of s, t, and u, however, there is also a difference
concerning the pion charge eigenstates between the usual ChPT convention applied in [1] and the spherical
convention (which corresponds to the Condon–Shortley phase convention) used in other theoretical frameworks
like e.g. [3,66], see #1: the additional sign for the π+ wave function in the latter convention leads to an overall
sign for the charged amplitude, whereas the neutral amplitude remains unchanged.
#10In order to ease the notation, we refrain from adding superscript indices c and n to the Mandelstam
variables s, t, and u for the charged and neutral decay, respectively, although they differ by definition.
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pη

pπ0

pπ+

pπ−

η

π
−

π
+

π
0

pη

pπ
0
1

pπ
0
2

pπ
0
3

η

π
0
3

π
0
2

π
0
1

Figure 2.1: Leading-order diagrams for the charged (left) and neutral (right) decay.

For given s, the limits of the corresponding physical region are given by cos θs = ±1, so that
the charged and neutral η → 3π decay widths can be calculated via

Γc/n =
Sc/n

256π3M3
η

s
c/n
+∫

s
c/n
−

ds

t
c/n
+ (s)∫

t
c/n
− (s)

dt
∣∣Ac/n

(
s, t, u(s, t)

)∣∣2 , (2.37)

where the s-integration boundaries read

sc− = 4M2
π , sn− = 4M2

π0 , sc+ = sn+ = (Mη −Mπ0)2 , (2.38)

and the s-dependent limits for the t-integration are given by

tc±(s) =
1

2

{
3sc0 − s± σπ(s)λ

1/2
ηπ0(s)

}
, tn±(s) =

1

2

{
3sn0 − s± σπ0(s)λ

1/2
ηπ0(s)

}
. (2.39)

The symmetry factor Sn = 1/3! for the neutral decay accounts for the indistinguishable three
neutral pions in order to avoid multiple counting of phase space; accordingly Sc = 1.

2.2.2 Amplitudes at leading order

At leading chiral O
(
p2
)

one only has to compute one tree graph each for the charged and the
neutral decay, since the fields in the lowest-order Lagrangian are already diagonalized by use
of the π0η mixing angle ǫ. The corresponding Feynman diagrams are shown in Fig. 2.1.

The charged LO amplitude is then given by

ALO
c (s) = −sin(2ǫ)(2s− t− u)

6F 2
0

− cos(2ǫ)B0(md −mu)

3
√
3F 2

0

− 2 sin(2ǫ)Ze2

3
+O

(
p4
)

(2.40)

= − B0δ

3
√
3F 2

π

{
2 cos(2ǫ)− 1 +

3(s− sc0) + 2∆M2
π

M2
η −M2

π0

}
+O

(
p4
)

= − B0δ

3
√
3F 2

π

{
1 +

3(s− sn0 )

M2
η −M2

π0

}
+O

(
δ3, p4

)

= − B0δ

3
√
3F 2

π

3s− 4M2
π0

M2
η −M2

π0

+O
(
δ3, p4

)
= −

(3M2
η +M2

π0)(3s− 4M2
π0)

Q216
√
3F 2

πM
2
π0

+O
(
δ3, p4

)
,
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where we have first inserted the mixing angle ǫ, then expanded in δ, and finally replaced (at
leading chiral order) the quark masses ms and m̂ as well as the LEC Z by physical meson
masses via (2.18) and also F0 by the pion decay constant Fπ. Note that the additional
electromagnetic term at O

(
e2δ
)

cancels the pion mass difference implicitly included in sc0.
Thus, written in terms of sn0 , the charged LO amplitude, which depends linearly on s, explicitly
displays the Adler zero#11 at 4M2

π0/3 (in terms of the neutral pion mass). Moreover, ALO
c is

completely proportional to δ ∼ 1/Q2 and by using (cf. (2.21) and (2.18))

1

Q2
= B0δ

16M2
π0

3(3M2
η +M2

π0)(M2
η −M2

π0)
+O

(
δ3, p4

)
(2.41)

we eventually arrive at the form convenient for the following discussion.
The neutral LO amplitude, on the contrary, contains neither derivatives (i.e. no dependence

on Mandelstam variables) nor electromagnetic terms at O
(
e2δ
)
,

ALO
n = − B0

9F 2
0

{√
3(md −mu)

[
2 cos(2ǫ) + cos(4ǫ)

]
− 16(ms − m̂) cos ǫ sin3ǫ

}
+O

(
p4
)

= − B0δ

3
√
3F 2

π

{
1 + 2 cos(4ǫ)

}
+O

(
p4
)

= − B0δ√
3F 2

π

+O
(
δ3, p4

)
= −

3(3M2
η +M2

π0)(M
2
η −M2

π0)

Q216
√
3F 2

πM
2
π0

+O
(
δ3, p4

)
, (2.42)

and therefore is a constant proportional to δ, which means in particular that the Dalitz slope
α (to be defined in Sect. 2.2.4) vanishes at LO, as already mentioned in Chap. 1.

Note that the LO amplitudes are closely related according to

ALO
c (s) = ALO

n

â(s)

3
+O

(
δ3, p4

)
, â(s) =

3s− 4M2
π0

M2
η −M2

π0

=
s− sA
sn0 − sA

, sA =
4M2

π0

3
. (2.43)

2.2.3 Symmetry properties and the ∆I = 1 amplitude relation

Both η → 3π decay amplitudes obey general symmetry constraints: while for the charged
decay invariance under charge conjugation for both strong and electromagnetic interactions
implies that the amplitude Ac(s, t, u) is symmetric under the exchange of t and u (cf. (2.33)),

Ac(s, t, u) = Ac(s, u, t) ⇒ Ac(s, t− u) = Ac(s, u− t) , (2.44)

the amplitude An(s, t, u) for the neutral decay has to be symmetric under exchange of all
pions and thus all Mandelstam variables due to Bose symmetry,

An(s, t, u) = Sn

{
An(s, t, u) + permutations

}
. (2.45)

Moreover, the charged and neutral amplitudes can be related at leading order in isospin
breaking due to the ∆I = 1 selection rule, as already mentioned in Chap. 1 and as will be
shown below. Prior to that, however, it is worthwhile to examine the isospin-violating nature
of the η → 3π decays carefully.

#11Adler zeros are kinematical points, where hadronic amplitudes with a soft pion (i.e. with vanishing 4-
momentum) in the final state go to zero due to a chiral SU(2) ⊗ SU(2) soft-pion theorem [115, 116], cf. the
discussion of Sutherland’s soft-pion theorem in Sect. 3.3.
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The most concise argumentation considers G-conjugation, which is defined as product of
charge conjugation C and a rotation by π around the 2-axis of isospin space, i.e. G = Ce−iπI2

with e−iπI2 |I, I3〉 = (−1)I−I3 |I,−I3〉. Thus, the neutral isosinglet η has positive G-parity,
G|η〉 = |η〉. Since G-parity is a multiplicative quantum number, from G|π〉 = −|π〉 for the
isotriplet π#12 it follows G|3π〉 = −|3π〉, so that G-parity is not conserved in η → 3π decays.
In turn, the definition of G-conjugation together with invariance under charge conjugation
then yields the selection rule ∆I = 1 for the total isospin.

However, G-parity is a rather subtle combined quantity: in view of the famous Gell-
Mann–Nishijima formula Q = I3 +Y/2, which relates the electromagnetic charge to the third
component of the isospin and the hypercharge Y = B+S+ . . . containing the baryon number
B and all other flavor quantum numbers like for instance the strangeness S, it can be viewed
as a generalization of C-parity for neutral particles (or systems) to isomultiplets with zero
average electromagnetic charge. The latter constraint is a direct consequence of the fact that
G-invariance is strictly valid only for strong interactions in the limit of isospin conservation and
thus explicitly broken by electromagnetic interactions. Even though the concept of G-parity
can be generalized to some extent (e.g. for neutral antiparticle–particle systems), basically it
is designed to explain several phenomenological observations in hadron physics by attributing
pertinent G-eigenvalues to the particles (without leading to obvious contradictions, at least)
rather than being based on first principles. As a result, it always needs to be supplemented
by additional, more fundamental symmetry constraints, since e.g. the (hypothetical) decays
of the neutral isosinglet ω with negative G-parity into either 3π+ or 3π0 would be perfectly
allowed by G-invariance, but are of course forbidden by conservation of charge and total
isospin, respectively. Therefore, a reasoning for the isospin breaking in η → 3π in terms of
the underlying symmetries might be desirable, although (besides being more extensive) this
requires some caution, as there are several misconceptions floating around in the literature.

The basic idea is to show that the η → 3π decays would be forbidden in the case of isospin
conservation: working in the spherical (i.e. charge) basis of the pions where I3 = 1, 0,−1
corresponds to π+, π0, π−, respectively, the (hypothetical) 3π final state with total isospin
I = 0 (as product of single-particle states |π〉, cf. the multiplicativity of G-parity) is totally
antisymmetric with respect to permutations of the three pions, as can be seen either by
explicitly constructing the 3π isosinglet or from general group-theoretical considerations (see
for instance [117]). Thus, only the combination π0π+π− is allowed (in agreement with charge
conservation); moreover, already the Clebsch–Gordan coefficient for the coupling of two pions
to the antisymmetric 2π isotriplet (which is the only possibility to subsequently generate the
antisymmetric 3π isosinglet) equals zero for π0π0,#13 so that the η → 3π0 amplitude vanishes.
Due to Bose statistics/symmetry the total (i.e. combined isospin/flavor- and space-) 3π wave

#12In fact, the negative G-parity of the pion isotriplet (transforming like a vector in isospin space) can be
used as the defining property of G-parity, which can therefore be interpreted as parity operation in isospin
space. While this naturally agrees with the ChPT convention (i.e. the adjoint representation of SU(2)), as in
the 3-dimensional Cartesian isospin basis C = diag(1,−1, 1) and exp(−iπI2) = diag(−1, 1,−1) yield G = −13,
the additional sign for the spherical convention is compensated by adopting C|π±〉 = −|π∓〉 in contrast to
C|π〉 = +|π̄〉. In both cases, however, the charge eigenstates are just linear combinations of the Cartesian/flavor
eigenstates, cf. #1 and the Gell-Mann–Nishijima relation Q = I3 + Y/2.
#13The corresponding Clebsch–Gordan coefficient 〈11, 00|11, 10〉 vanishes due to the general symmetry relation
〈j1j2,m1m2|j1j2, JM〉 = (−1)J−(j1+j2)〈j2j1,m2m1|j2j1, JM〉, cf. e.g. [34]. For the same reason also the decays
ρ0 → 2π0 and ω → 3π0 are forbidden by isospin symmetry. In fact, these decays (as well as ω → 2π0 and
ω → ηπ0) are also forbidden by C-invariance, since both ρ0 and ω are vector particles with negative C-parity
(JPC = 1−−) whereas C|π0〉 = +|π0〉.
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function (in terms of single-particle states like for the isospin part) must be fully symmetric and
thus the spatial part needs to be totally antisymmetric as well.#14 Choosing the momentum-
space representation for the latter, the amplitude for the purely bosonic process η → π0π+π−

thus inherits the total spatial antisymmetry under exchange of the momenta of the three pions.
Invariance under charge conjugation, however, implies that the amplitude has to be symmetric
with respect to interchanging the momenta of the charged pions, cf. (2.44), thereby ruling out
a non-vanishing amplitude also for η → π0π+π−.

The sources for both strong and electromagnetic isospin breaking were already given in
Chap. 1, and in App. B it will be explicitly argued that both (1.1) and (1.2) indeed comprise
the ∆I = 1 operators that are necessary due to the ∆I = 1 selection rule for η → 3π;
moreover, it turns out that these operators, like the pions themselves, transform as isovectors.
Since the η is an isoscalar, the combination of such ∆I = 1 operators acting on the initial state
|η〉 also transforms in analogy to a pion state |π〉. Based on this observation, due to crossing
symmetry and neglecting any further isospin breaking, the isospin structure of the generic
η → 3π amplitude is similar to that of the ππ scattering amplitude, as will also be shown in
App. B. Therefore, all results for the latter arising from the isospin structure may easily be
transferred to the former. Besides the isospin decomposition of the η → 3π amplitude, which
is frequently used in the literature but not needed in this work, this entails the well-known
∆I = 1 relation between the charged and the neutral amplitude

An(s, t, u) = Ac(s, t, u) +Ac(t, u, s) +Ac(u, s, t) +O
(
e4, e2δ, δ2

)
, (2.46)

which we will call ∆I = 1 amplitude relation in the following and which in turn is pivotal for
the analysis of (higher-order) isospin-breaking effects in η → 3π decays in Chap. 4; its rigorous
derivation is also relegated to App. B. Using the spherical convention instead (cf. #9) as done
in particular in [3], the charged amplitude and thereby the ∆I = 1 amplitude relation pick
up a relative sign. In the case of ππ scattering, where the amplitudes do not necessarily carry
isospin-breaking prefactors, the corresponding relation is already broken at O

(
e2m̂

)
, see [118].

In all calculations of both η → 3π decay channels performed in ChPT so far [13, 15, 21]
(see also [66, 119]), actually only the amplitude for the charged decay has been calculated
explicitly, whereas the neutral one is just deduced by using the relation (2.46), i.e. these
calculations are conducted only at leading order in isospin breaking. The fact that (2.46) is
not valid in general for isospin breaking beyond leading order, is most easily seen by the fact
that e.g. photon loop contributions obviously do not respect this relation. Nevertheless, at
leading chiral O

(
p2
)

(where no such photon loops occur), the relation (2.46) is even fulfilled
at O

(
e2δ, δ2

)
by the LO amplitudes (2.40) and (2.42) if the neutral relation (2.36) is used for

all Mandelstam variables, cf. (2.43):

â(s)+ â(t)+ â(u) = 3
sc0 − sA
sn0 − sA

⇒ ALO
c (s)+ALO

c (t)+ALO
c (u)

(2.36)
=

3ALO
n

1 + 2 cos(2ǫ)
+O

(
p4
)
.

(2.47)

#14Note that, for a three-particle system, this does not necessarily imply (−1)L = −1 and thus L > 0 for
the total angular momentum due to Bose symmetry so that the decay would be forbidden by conservation
of angular momentum, since it is possible to construct totally antisymmetric 3π spatial wave functions with
L = 0 but non-zero relative angular momenta between pairs of pions and these 2π states and the respective
third pion; the conclusion would be true, however, in the case of a two-particle system. Furthermore, note
that in the case of a antiboson–boson state with relative angular momentum L charge conjugation yields
C|b̄b〉 = (−1)L|b̄b〉 leading to an additional minus sign for odd values of L. Therefore, the reasoning does not
rely on angular momentum considerations at all.
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At next-to-leading chiral O
(
p4
)

and including isospin breaking at O
(
e2δ, δ2

)
, however, the

amplitude for the neutral decay channel has to be calculated separately (as is proven by
explicitly calculating the non-vanishing corrections to (2.46); cf. (2.49) below and Chap. 4).

From the general symmetry properties (2.44) and (2.45) together with the explicit LO
formulae (2.40) and (2.42), one can deduce that the NLO amplitudes may be decomposed as

ANLO
c (s, t, u) = Aconst

c + Ãc(s) + Āc(s, t) + Āc(s, u) +O
(
p6
)
,

ANLO
n (s, t, u) = Aconst

n + Ãn(s) + Ãn(t) + Ãn(u) +O
(
p6
)
, (2.48)

which is particularly useful for the neutral decay amplitude, where the whole kinematical
dependence is contained in the fully crossing symmetric rescattering contributions. These
terms (especially the I = 0 ππ final-state interactions) are very important and yield about half
of the total NLO corrections for η → 3π [13]. Furthermore, loops with on-shell intermediate
particles (in the s-, t-, or u-channel) give rise to non-vanishing imaginary contributions at
O
(
p4
)
. The occurring kaon loops, either in the form of tadpole graphs or as K̄K rescattering

diagrams, are important for the expansions in isospin-breaking parameters e2 (or ∆M2
π) and δ

(cf. the illustrative case of the LO amplitudes in Sect. 2.2.2): the kaon loop contributions entail
terms without an isospin-breaking prefactor that, however, can always be collected in the form
of implicitly isospin-breaking charged-to-neutral differences of kaon loop functions as will be
discussed in App. A.2. By expanding the masses inside the loop functions in terms of the
charged-to-neutral kaon mass difference ∆M2

K and using (2.14), the isospin-breaking effects of
these kaon loop differences can be derived explicitly (cf. (A.11)), although for the discussion of
higher-order contributions, namely at O

(
δ2
)
, it is favorable to avoid these expansions unless

it is necessary for the calculation to make the (leading orders in) isospin breaking explicit. In
general, we do not expand any loop functions, so that all cuts, even outside the physical region,
remain at their exact places; the exceptions to this rule, however, are charged-to-neutral loop
differences of pions and kaons at even higher orders in isospin breaking like O

(
e4, e2δ2, δ3

)
. Of

course, we have checked that our amplitudes ANLO
c/n , which go beyond LO in isospin breaking by

considering contributions at O
(
e2δ
)

in [1] and additionally at O
(
δ2
)

in [3], obey the ∆I = 1
amplitude relation for strong and electromagnetic LO isospin breaking at O(δ) and O

(
e2
)

and also reduce to the (charged) NLO amplitudes given in [13] and [15], respectively; the
corresponding neutral amplitudes then agree by construction.

As pointed out above, the NLO amplitudes (2.48) beyond leading order in isospin breaking
do not obey the ∆I = 1 selection rule (2.46). However, it is not a priori clear how to
consistently write down or to define the terms violating this rule, since the charged-to-neutral
pion mass difference ∆M2

π = O
(
e2
)

affects even the relation between the Mandelstam variables
in the two channels at O

(
e2δ
)

(as 3sc0 − 3sn0 = 2∆M2
π ; cf. (2.36) and Sect. 2.2.4). Just for the

purpose of illustration, we show here the part of the deviation at O
(
e2δ
)

proportional to the
various low-energy constants, using s+ t+ u = 3sn0 :

ANLO
n

∣∣∣
LEC

−
[
ANLO

c (s, t, u) +ANLO
c (t, u, s) +ANLO

c (u, s, t)
]LEC

=
3M2

η +M2
π0√

3Q2F 2
πM

2
π0

{
∆M2

π

(
M2

η − 3M2
π0

)L3

F 2
π

+ e2
[
3

4

(
M2

η +M2
π0

)
(Kr

3 −Kr
4/2)−M2

ηK
r
6 +

3

2

(
3M2

η −M2
π0

)(
Kr

10 +Kr
11

)]}

= O
(
e2δ
)
. (2.49)
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The higher-order isospin-breaking corrections to the ∆I = 1 amplitude relation will be dis-
cussed in detail in Chap. 4.

2.2.4 Dalitz plot distributions and the branching ratio

For comparison with experimental analyses of η → 3π decays, the squared absolute value
of the pertinent amplitude is conventionally expanded as a polynomial around the center of
the so-called Dalitz plot [120,121] in terms of the corresponding symmetrized (cf. the general
symmetry properties (2.44) and (2.45)) and dimensionless coordinates. Based on the generic
η → 3π kinematics (2.28), we therefore define the convenient abbreviations

Q̃c =Mη −Mπ0 − 2Mπ , Q̃n =Mη − 3Mπ0 , R̃c/n =
2Mη

3
Q̃c/n ,

τ =
R̃n − R̃c

R̃c

=
Q̃n − Q̃c

Q̃c

=
2(Mπ −Mπ0)

Q̃c

=
2Mη

Mπ +Mπ0

sc0 − sn0
R̃c

= 6.86× 10−2 . (2.50)

For the charged decay channel one conventionally uses

x =
√
3
Tπ+ − Tπ−

Q̃c

=
u− t√
3R̃c

, (2.51)

y =
3Tπ0

Q̃c

− 1 =
(Mη −Mπ0)2 − s

R̃c

− 1 =
sc0 − s

R̃c

+ τ

{
1− Mπ +Mπ0

2Mη

}
=
sn0 − s

R̃c

+ τ ,

while for the fully symmetric neutral decay channel one introduces polar coordinates at the
center of the Dalitz plot via

z =
2

3

3∑

i=1

[
3Ti

Q̃n

− 1

]2
=

2

3

3∑

i=1

[
si − sn0
R̃n

]2
=

2

3

3∑

i=1

[
s2i − (sn0 )

2

R̃2
n

]
= x2n + y2n ,

xn =
√
z cosϕ , yn =

√
z sinϕ . (2.52)

It is important to note that the definitions of xn and yn agree with those of x and y only
for Mπ = Mπ0 , which is, loosely speaking, sometimes referred to as the “isospin limit” for
the isospin-breaking η → 3π decays (i.e. neglecting isospin-breaking corrections due to the
charged-to-neutral pion mass difference ∆M2

π = O
(
e2, δ2

)
beyond the leading strong or elec-

tromagnetic effects taken into account, cf. e.g. [13,15,21,66]). Experimental data is then fitted
to the standard parameterizations of the Dalitz plot distributions for the amplitude squares

∣∣Ac(x, y)
∣∣2 =

∣∣Nc

∣∣2
{
1 + ay + by2 + dx2 + fy3 + gyx2 + . . .

}
,

∣∣An(z, ϕ)
∣∣2 =

∣∣Nn

∣∣2
{
1 + 2αz + 2βz3/2 sin(3ϕ) + 2γz2 + . . .

}
, (2.53)

where |Nc|2 and |Nn|2 are the normalizations and {a, b, d, f, g, . . . } and {α, β, γ, . . . } are the
Dalitz plot parameters describing the energy dependence of the observable squares of the
charged and the neutral decay amplitude, respectively. Note that for the charged channel odd
terms in x are forbidden by charge conjugation symmetry (2.44), while for the neutral channel
according to Bose symmetry (2.45) the linear combination of Mandelstam variables must be
fully symmetric and is thus just constant due to s+t+u = 3sn0 , so that any dependence on it can
be absorbed in the normalization. For the latter, moreover, the term proportional to sin(3ϕ)
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Figure 2.2: Boundaries of the physical regions for the η → 3π decays η → π0π+π− (full/red),
η → 3π0 (dashed/blue), and η → π0π+π− with an average pion mass M2

π = (M2
π0 + 2M2

π)/3
(dotted/magenta). Also shown are the lines with t = u for both the charged and the neutral
decay as well as the thresholds at 4M2

π in all three kinematical channels (dashed-dotted/black).

explicitly reflects the threefold angular symmetry, which also follows from An(s, t, u) being
fully symmetric in s, t, and u, whereas the accompanying factor z3/2 ensures the expected cubic
dependence on the Mandelstam variables; the relation z3/2 sin(3ϕ) = −y3n+3ynx

2
n then reveals

the close analogy to the charged parameterization. Therefore, the neutral parameterization
exhibits an “accidental” rotational symmetry only upon neglecting terms of O

(
z3/2

)
. Of the

parameters beyond quadratic order in (x(n), y(n)) for both decays, only the cubic parameters
for η → π0π+π− have been measured so far (by the KLOE collaboration [25]) and solely f has
been found to differ from zero with statistical significance. Nevertheless, besides the upcoming
new analyses of the charged parameters, in view of future very-high-statistics measurements
for η → 3π0 (cf. Chap. 1 each), also a determination of β and probably even γ might not be
beyond the realm of possibility.

By using Mπ = Mπ0 and thus Q̃n = Q̃c, however, one neglects “trivial” but sizeable
isospin breaking in the normalizations of the Dalitz plot variables for the charged and the
neutral channel that — depending on the choice of the isospin limit of the pion mass — are at
worst due to (Mη − 2Mπ −Mπ0)/(Mη − 3Mπ0) = 0.94 and (Mη − 3Mπ0)/(Mη − 3Mπ) = 1.11,
respectively. In particular, a theoretical prediction for the (negative) neutral slope α is lowered
in absolute value by about 22% if the charged-pion mass is used. Taking Mπ 6= Mπ0 into
account, in turn, it is important to take care of the precise definition of the center of the Dalitz
plot for the charged decay, since the point s = t = u = sc0 does not completely coincide with

the point x = y = 0 (where all kinetic energies Ti are equal): s = t = u = s
c/n
0 corresponds

to xn = yn = 0 for the neutral decay, but x = 0 and y = 5.14 × 10−2 for the charged
decay [16]. Note that, like for the charged LO amplitude (2.40), the implicit contribution
from ∆M2

π may be canceled in (2.51) by using sn0 in lieu of sc0 (which furthermore turns out
to be favorable for analyzing higher isospin-breaking corrections to the ∆I = 1 amplitude
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relation in Chap. 4). Moreover, the different pion masses affect the kinematical boundaries of
the η → 3π Dalitz plots (i.e. of the physical regions) as depicted in Fig. 2.2: in addition to the
charged and the neutral decay phase spaces (cf. Sect. 2.2.1) we have also drawn the allowed
phase space for the decay η → π0π+π− using an average pion mass M2

π = (M2
π0 +2M2

π)/3, so

that s+ t+u =M2
η +3M2

π = 3sc0 is exactly reproduced and the corresponding average excess

energy Qc = Mη − 3M2
π

1/2 is a reasonably good approximation of Q̃c as (Qc − Q̃c)/Q̃c =
−4 × 10−4. This approximation is sometimes (e.g. [21, 66]) used in the literature, since at
leading order in isospin breaking it is, strictly speaking, not possible to consistently account
for the different pion masses in both η → 3π decays (featuring at O

(
e2δ
)
, cf. the discussion

preceding (2.49)), although sizeable deviations at the border of the charged Dalitz plot are
clearly visible. For later convenience, in Fig. 2.2 we furthermore indicate the threshold for
the production of two charged pions in all three kinematical channels s, t, and u as a vertical,
horizontal, and diagonal dashed line, respectively, as well as the lines with t = u (separating

each the maximal and minimal limits tc/n+ and t
c/n
− of (2.39), respectively). Concerning the

derivation of the decay amplitudes in ChPT (cf. Sect. 2.2.2 and App. A.2), in order to obtain
an unambiguous and explicit ordering of the isospin-breaking parameters δ and e2 (or, up
to higher-order corrections, 1/Q2 and ∆M2

π) together with a minimal set of different meson
masses squared (using the GMO relation (2.16)), we choose the neutral pion mass Mπ0 and
the η mass Mη, since at leading chiral order these masses, in contrast to all other pseudoscalar
meson masses, comprise neither strong nor electromagnetic corrections at leading order in
isospin breaking, cf. (2.13). In addition to this reasoning and besides the previously observed
cancellations of isospin-breaking contributions due to ∆M2

π in (2.40) and (2.51) by using sn0 for
both decays, this choice is also motivated by the fact the these masses correspond to (most of)
the asymptotic states in the processes under investigation; furthermore they feature naturally
in the next-to-leading order π0η mixing (see [1]) as well as in the soft-pion considerations in
Sect. 3.3.#15 Consequently, for comparison with results for η → 3π at leading order in isospin
breaking, we define the isospin limit of the pion mass to coincide with the neutral-pion mass.

In view of these important “trivial” kinematical isospin breaking effects, especially for the
neutral-to-charged ratio r (1.5) of partial decay widths Γn/c (2.37), it is remarkable how well
the approximate relation r ≤ 3/2 — and in particular its limiting case r = 3/2 — is actually
fulfilled: this approximation arises from the ∆I = 1 amplitude relation (2.46), i.e. at LO in
isospin breaking, if one applies the “isospin limit” Mπ =Mπ0 also to the integrations over the
whole phase spaces, which we abbreviate here by

∫
dΠn/c (excluding symmetry factors Sn/c)

r =
Γn

Γc
= Sn

∫
dΠn

∣∣An(s, t, u)
∣∣2

∫
dΠc

∣∣Ac(s, t, u)
∣∣2 ≤ 1

3!

∫
dΠn

(
3
∣∣Ac(s, t, u)

∣∣)2
∫

dΠc

∣∣Ac(s, t, u)
∣∣2 ≈ 32

3!

∫
dΠc

∣∣Ac(s, t, u)
∣∣2

∫
dΠc

∣∣Ac(s, t, u)
∣∣2 =

3

2
,

(2.54)
so a sizeable deterioration is to be expected due to neglecting the different phase space bound-
aries as shown in Fig. 2.2.#16 For the real case Mπ 6= Mπ0 , in fact, the roughly 12% smaller

#15For the latter, this choice also represents the best possible separation of (strong) SU(3) isospin breaking
due to 1 ≫ m̂/ms ≈ 4%, cf. (2.19) as well as (2.24) and (2.41).
#16First, it is important to note that the 2-dimensional neutral phase space integration is symmetric in s,
t, and u. The inequality then follows by using the triangle inequality for the modulus |An(s, t, u)| written in
terms of the charged amplitude via (2.46) and subsequently employing Hölder’s inequality in order to split the
integrals over the six “kinematically mixed” products of amplitude moduli like e.g. 2|Ac(s, t, u)||Ac(t, u, s)|, so
that each integral yields the same contribution by virtue of the crossing-invariant phase space. If the charged
amplitude is independent of the Mandelstam variables, the inequality turns into an equality, of course.
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charged phase space accidentally balances to a large extent the overestimation corresponding
to the upper limit of the inequality, since the experimental average r = 1.48±0.05 [34] is rather
close to 3/2. Taking into account the correct phase spaces, the LO amplitudes of Sect. 2.2.2
yield a value of rLO = 1.509, which is even above (and accidentally very close to) the upper
limit of the inequality r ≤ 3/2,#17 whereas the NLO amplitudes (which will be discussed in
Chap. 3; here, we consider the isospin-symmetric (GL) versions of the NLO amplitudes, cf.
Tab. 3.3 in Sect. 3.4.3) yield rNLO = 1.442 in agreement with rNLO = 1.43± 0.03 of [13]. This
corresponds to a relative change of more than 4% between LO and NLO and thus illuminates
the importance of different (non-linear) functional dependences of the amplitude squares on
Mandelstam variables that are merely estimated in (2.54). When going from NLO to NNLO,
on the contrary, the fact that r increases by less than 1% [21],#18 indicates that the higher
chiral orders affect the normalizations of the η → 3π amplitudes (which mostly cancel in the
ratio r up to combinatorial factors due to the ∆I = 1 amplitude relation) rather than the
shapes of the Dalitz distributions. Besides these purely kinematical effects of isospin breaking,
however, there are also higher-order corrections to r stemming from respective corrections to
the ∆I = 1 amplitude relation itself that due to the modulus always increase the value of r
and thus do not spoil the estimation in (2.54). As the isospin-breaking normalization by the
quark mass double ratio Q2, which mainly drives the η → 3π decays, cancels already in the
ratio of amplitudes (except for purely electromagnetic contributions, cf. (1.4)), and in view of
the rather sizeable changes between O

(
p2
)

and O
(
p4
)

on the one hand and the fact that at LO
the ∆I = 1 amplitude relation (2.46) is accidentally valid even beyond LO in isospin-breaking
on the other hand, r is expected to be particularly sensitive on higher-order isospin-breaking
effects at NLO (which will be discussed in Chap. 4).

Finally, we wish to comment on the validity of the polynomial expansion (2.53) in particular
for the neutral decay channel. The boundary of the Dalitz plot for η → 3π0 in terms of the
symmetrized coordinates xn and yn follows from the maximal and minimal values (cf. (2.39))

xn+(yn) =
1√
3R̃n

σπ0

(
sn(yn)

)
λ
1/2
ηπ0

(
sn(yn)

)
= −xn−(yn) , sn(yn) = sn0 − R̃nyn , (2.55)

within the limits yn± = yn(s
n
∓) and is shown in Fig. 2.3. The dotted lines denote the three

symmetry axes at ϕ ∈ {π/6, π/2, 5π/6}, which can easily be seen from yn ∝ s − sn0 defining
one of the three symmetry axes and the others being located symmetrically around the xn ∝
(u − sn0 ) − (t − sn0 ) axis; hence, the three kinematical points with z = 1 = −yn− correspond
to one of the pions being at rest and the other two being emitted back-to-back. The dotted
circle depicts the beginning of the rapid decrease of pure phase space for radii

√
z > yn+ =

#17This value agrees with rLO = 1.51 as given in [13]. However, in contrast to a statement made in [21], the
LO result for r when neglecting the phase space differences is not exactly 1.5, but 1.405 = 0.931 rLO (using
∫

dΠn). This deviation is smaller than the 12% phase space effect, since the amplitudes are squared inside the
integrals. Especially in this context it is interesting to note that

∫

dΠnyn(s) = 0, which would yield — upon
erroneously not squaring the amplitudes — a value of exactly 1.5, since the normalized charged LO amplitude
â(s) = (s− sA)/(s

n
0 − sA) = 1− yn(s)/yn(sA) obeys â(s) + â(t) + â(u) = 3 for s+ t+ u = 3sn0 (cf. (2.47), in

concordance with considering the neutral phase space). This property of the neutral Dalitz plot distribution
follows from the neutral phase space being totally symmetric in all Mandelstam variables together with the
peculiar crossing property of â(s) (which in turn derives from its linear dependence on s, t, and u) and reflects
its accidental rotational symmetry at LO that is not preserved at higher orders in contrast to the generally
expected threefold angular symmetry, see (2.53). In analogy, the property

∫

dΠc/nx(n)(s) = 0 for both the
charged and the neutral distribution corresponds to the t ↔ u symmetry for both decays.
#18Note that [21] uses the average pion mass M2

π and a slightly different value of Mη, affecting the numerically
value of both Γn/c and in particular r at any chiral order.
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Figure 2.3: Boundary of the η → 3π0 Dalitz plot. Dotted: symmetry axes and biggest enclosed
circle. Dashed: cusps at si = 4M2

π and corresponding circle. Arrows indicate specific z values.
See main text for details.

yn(4M
2
π0) = 0.870 =

√
0.756. This deviation from the circular shape due to the relativistic

kinematics also affects the angular weighting in the integration over the physically allowed
ranges of ϕ in order to arrive at the radial distribution dΓn/dz; since on the one hand sin(3ϕ)
is odd in ϕ and thus vanishes upon integration over the full range ϕ ∈ [0, 2π), but on the
other hand ϕ = 0 does not coincide with one of the symmetry axes, the term proportional to
β cancels in the radial distribution only inside the dotted circle. Accordingly, in [3] both the
(yet unmeasured) higher-order neutral Dalitz plot parameters β and γ are predicted to be very
small, but different from zero. It is important to note that the cusps due to π+π− → π0π0 final
state rescattering occur at si = 4M2

π and not at a single z value (see also Fig. 2.2); the smallest
and the largest values of z crossing the cusp lines (z = 0.598 and z = 0.882, respectively)
are indicated at the corresponding arrows (cf. the discussion in [122]).#19 Therefore, the
polynomial representation for the neutral Dalitz plot distribution (2.53) is only valid for

√
z <

yn(4M
2
π) = 0.773 =

√
0.598, i.e. inside the dashed circle. The importance of Mπ 6= Mπ0

especially at the “trivial” kinematical level is also nicely illustrated by the relative size of the
annulus between the two circles compared to the total neutral phase space (which is rather
small for both η → 3π decays, cf. the excess energy Q̃ = Mη − 3Mπ ≈ Mπ, compared to e.g.
η′ → 3π, where Q̃ =Mη′ − 3Mπ ≈Mη; see for instance [123] for a graphical demonstration).

#19Due to the total symmetry of the neutral amplitude under exchanges of pions, it actually suffices to consider
a sixth of the neutral Dalitz plot, e.g. the region between the arrows for z = 1 and z = 0.598 (i.e. ϕ ∈ [π/6, π/2])
shown in Fig. 2.3, since all events can be mapped into it by a proper choice of the outgoing momenta, cf. the
symmetry factor Sn = 1/6 in (2.37). Moreover, when considering the differential distribution dΓn/ds (i.e. the
neutral decay spectrum w.r.t. to the invariant mass s of the non-odd pair π0

2π
0
3), this procedure increases the

number of neutral pion pairs in the vicinity of the cusp region by a factor of 3, see for instance [61].
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Chapter 3

Electromagnetic corrections

in η → 3π decays∗

As discussed in Chap. 1, in this chapter we investigate the electromagnetic corrections in
both η → π0π+π− and η → 3π0 decays at next-to-leading chiral O

(
p4
)

and including second-
order isospin breaking at O

(
e2δ
)
. However, in order to avoid overlap with [39] (wherein the

corresponding amplitudes have been derived), here we reproduce neither the derivation of
these decay amplitudes nor their explicit forms as both published in [1]. In the following
we rather present the further analytical improvements and results beyond [39], namely the
rigorous treatment of real-photon radiation (i.e. bremsstrahlung) together with the subtraction
of the corresponding universal soft-photon corrections (enabling the matching to experimental
analyses) in the soft-photon approximation on the one hand and analyzing the corrections to
Sutherland’s soft-pion theorem [4, 5] for the electromagnetic corrections on the other hand,
as well as the numerical results published in [1]. Nevertheless, the needed loop functions are
given explicitly in App. A.1 for convenience. We want to stress here again, that all results
(analytical and numerical) presented in this chapter are solely based on the decay amplitudes
at O

(
e2, e2δ, δ, p4

)
— i.e. without terms at O

(
δ2
)
, cf. Sect. 2.2 — in accordance with [1].

3.1 Real-photon radiation

For the charged decay at next-to-leading chiral O
(
p4
)

photon loops occur. More specifically,
in addition to the self-energy contributions to the NLO propagators of the charged pions, there
are vertex corrections due to the coupling of a virtual photon at the meson vertex and one
of the charged pions as well as triangle diagram contributions describing the exchange of a
virtual photon in the final state between the charged pions. These virtual-photon contributions
typically entail infrared (IR) divergences that we keep track of by introducing a finite photon
mass mγ ; alternatively one might use dimensional regularization also in the infrared.#1 The
self-energy of the charged pions contributes to both the corresponding IR-finite mass and IR-
divergent wave-function renormalization, while the two instantiations of the vertex correction
diagram yield the same IR-finite contribution Aπγ

c (s) to the charged amplitude (cf. [1] for

∗Most contents of this chapter have been published in [1, 2].
#1Either way, there are no photon tadpole contributions ∆γ (cf. e.g. (A.2) for mγ → 0); see also Sect. 4.2.
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Figure 3.1: Real-photon radiation diagram.

details). The triangle diagram contribution

Aππγ
c (s) =

e2(3M2
η +M2

π0)

Q216
√
3F 2

πM
2
π0

{
(3s− 4M2

π0)

[
2(s− 2M2

π)G(s) + Jππ(s) + 2
∆π

M2
π

− 1

8π2

]

+ (s− 2M2
π)

[
3
∆π

M2
π

− 1

4π2

]}
+O

(
e2δ2, p6

)
(3.1)

contains the triangle loop function G(s) (given in (A.9)), which has some interesting features:
both the real and the imaginary part are IR-divergent; while the IR divergence in the real part
is canceled against bremsstrahlung contributions, the imaginary part can be resummed in the
IR-divergent Coulomb phase. Furthermore, G(s) is finite in the ultraviolet, but it contains a
kinematical singularity at the threshold s = sc− = 4M2

π (i.e. σπ = 0, cf. (2.31)), the Coulomb
pole. From (3.1) one can infer that its contribution to the full NLO amplitude is given by

Apole
c = ALO

c e2
1 + σ2π
16σπ

. (3.2)

Note that the prefactor of the triangle loop function and hence the Coulomb pole is propor-
tional to the charged LO amplitude (2.40).

In general, infrared divergences due to virtual-photon radiation are canceled by the in-
clusion of real-photon radiation — so-called bremsstrahlung as depicted in Fig. 3.1 — on the
cross-section level. For this purpose, we utilize the soft-photon approximation, which amounts
to neglecting the real-photon momentum in the overall energy and momentum conservation.
The results for general n-body decays with the radiation of one additional real photon of
maximum energy Emax can be found e.g. in [124], which also uses a finite photon mass as a
regulator; radiative corrections for the largely analogous decay KL → π0π+π− in the frame-
work of ChPT are discussed in [125]. Adapting the results of [124] to η → π0π+π−γ yields an
effective bremsstrahlung contribution to the amplitude squared of the form

∣∣Ac

∣∣2 e
2

2π2

[
log

mγ

2Emax

{
1− 1 + σ2π

2σπ
log

1 + σπ
1− σπ

}
+ F (s, t, u)

]
. (3.3)

Here, the maximum photon energy Emax (in the η rest frame) is given by

Emax = min
{
Ekin, Ecut

}
, Ekin =

M2
η −

(
Mπ0 +

√
s
)2

2Mη
, (3.4)

where Ekin is the maximal kinematically allowed limit, and the value of the photon cutoff
energy Ecut is set to a typical detector resolution. This kinematical constraint leads to a
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logarithmic divergence at the upper limit s = sc+ = (Mη −Mπ0)2, signaling that very close
to the boundary of the phase space the O

(
e2
)

approximation (i.e. the assumption of only one
soft photon being radiated) becomes unreliable. The function F (s, t, u) is given by

F (s, t, u) = f(1) + f(−1)−
1∫

−1

dz
1 + σ2π
1− z2σ2π

f(z) ,

f(z) =
1 + zν

4ω(z)
log

1 + zν + ω(z)

1 + zν − ω(z)
, ω(z) =

√
κ2 + 2zν + z2(ς2 + ν2) ,

ν =
t− u

s+M2
η −M2

π0

, κ =

√
ληπ0

s+M2
η −M2

π0

, ς =
2Mη

√
s σπ

s+M2
η −M2

π0

, (3.5)

and represents contributions that are finite in the limit mγ → 0.
Computing the charged amplitude squared and collecting the IR-divergent parts consis-

tently with respect to both the chiral order and the power counting in e2 we obtain

−
∣∣Ac

∣∣2 e
2

2π2
log

mγ

Mπ

{
1− 1 + σ2π

2σπ
log

1 + σπ
1− σπ

}
, (3.6)

so that by comparing (3.3) and (3.6) it is clear that the inclusion of real-photon radiation
indeed cancels the IR divergences.

We have been intentionally vague above about the amplitude Ac to be inserted in (3.3)
and (3.6). As a matter of principle, our calculation is only fully consistent for the lowest-
order amplitude ALO

c to be multiplied with electromagnetic corrections factors. However, as
is conventionally done in ChPT calculations, we only chirally expand the amplitudes to a
specific chiral order and we do not re-expand their squares. This way, even when disregarding
numerically tiny terms of O

(
e4
)
, we do include interference terms of radiative corrections

with strong loop corrections. As a consequence, in order to achieve the cancellation of all IR
divergences, the bremsstrahlung terms in (3.3) need to be included with the prefactor

∣∣Ac

∣∣2 → ALO
c

{
ALO

c + ReANLO
c

∣∣
e=0

}
. (3.7)

3.2 Subtraction of universal soft-photon corrections

The kinematical singularities in the radiative corrections both at s = 4M2
π for (3.2) and at

s = (Mη −Mπ0)2 for (3.3) are part of the so-called universal (soft-photon) corrections that
can even be resummed to all orders in the fine structure constant [124, 126, 127]. In order
to perform a meaningful fit of the Dalitz plot distribution (cf. the discussion in Sect. 2.2.4),
these universal corrections are usually already applied in the analysis of the experimental
data. Thus, in order to enable the matching (or application) of the electromagnetic correc-
tions under consideration to experimental analyses, we also need to account for the universal
corrections in the soft-photon approximation by subtracting the corresponding parts of our
charged amplitude (square) in the following way before predicting experimental observables:

• The both infrared and kinematically divergent imaginary part of the triangle loop func-
tion G(s) can be resummed to the (divergent) Coulomb phase. As an overall phase
factor is unobservable, ImG(s) is omitted.
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• We subtract the Coulomb pole, whose leading approximation is given in (3.2).

• Furthermore, we subtract the e2 logEmax singularity of (3.3) in the form

∣∣Ac

∣∣2 e
2

2π2
log

Mη

2Emax

{
1− 1 + σ2π

2σπ
log

1 + σπ
1− σπ

}
, (3.8)

which is the O
(
e2
)

approximation of the resummed correction factor, see [124,127].

In this manner, we obtain a charged amplitude square free of kinematical singularities. In
particular, ReG(s)|no pole contains only even powers of σπ and is hence analytic in s, cf. (A.9).

Nevertheless, in order to illustrate the size of the various corrections, it is useful to plot
(real and imaginary parts of) amplitudes in Sect. 3.4.1, although, as already discussed in
Sect. 3.1, in principle they cannot be made IR-finite in a consistent way. However, we can
remedy this problem by hand using the replacement

mγ →Mη (3.9)

in the charged decay amplitude in order to mimic the net effect of both adding bremsstrahlung
and subtracting universal corrections, compare (3.3), (3.6), and (3.8).#2 Of course, this does
not take into account the finite contributions F (s, t, u), which can only be added at the level of
squared amplitudes. Furthermore, in Sect. 3.4.1 we retain the threshold divergences (Coulomb
pole and phase) for illustrative reasons.

3.3 Corrections to Sutherland’s soft-pion theorem

As a final analytic result concerning the electromagnetic corrections at O
(
e2δ
)
, we want

to comment on Sutherland’s soft-pion theorem [4, 5]. Explicitly, this theorem (assuming
mu = md) states that for the limit of one of the three pions to be soft, the (electromag-
netic) amplitude for η → 3π is expected to vanish, i.e.

lim
pi→0

(
A(s1, s2, s3)

)
em

= O
(
e2p2i

)
= O

(
e2M2

i

)
, (3.10)

where Mi is understood to denote the (off-shell) mass Mi(pi) = (p2i )
1/2 that for vanishing

4-momentum pi also goes to zero. Generalizing the on-shell kinematics (2.28) accordingly,
from pi → 0 immediately follows si = M2

η and p0i = |pi| = Ti = 0, which explains the notion
of πi being soft. Conventionally choosing for convenience the odd pion π1 (corresponding to
a π0 for both decays, cf. [5]) and using the conservation of 4-momentum in the η rest frame,
in addition to s1 = M2

η we can infer p02 = p03 = Mη/2 and thus s2 = s3 = (M2
2 +M2

3 )/2
so that s1 + s2 + s3 = M2

η + M2
2 + M2

3 6= 3s0 for p1 → 0 or M1 → 0 (i.e. Mπ0 → 0 for
the charged decay if Mπ 6= Mπ0 is considered).#3 In general, soft-pion theorems are solely
based on symmetry principles and independent of a specific Lagrangian; e.g. both Sutherland’s
theorem and Adler’s theorem on amplitude zeros [115,116] have been developed prior to QCD
or ChPT. From a modern point of view, however, soft-pion theorems are naturally valid in

#2Strictly speaking, however, mγ is supposed to be small in contrast to Mη.
#3Hence, also for the definition of these η → 3π soft-pion points in the Mandelstam plane at least in principle

care needs to be taken as soon as one allows for different pion masses, cf. the discussions in Sects. 2.2.3 and 2.2.4.
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the limit of chiral SU(2) ⊗ SU(2) symmetry, where all pions are massless and soft, and the
corrections are then given as higher chiral orders in powers of p2 =M2

(π0).
#4

Accordingly, and also in order to compare with the result of [15],#5 here we simply define

the soft-pion points for both η → 3π decays via s = 3s
c/n
0 and t = u = 0, respectively

(thus preserving s + t + u = 3s
c/n
0 ), followed by splitting off ∆M2

π and then taking the limit
Mπ0 → 0. To be more specific, the corrections to the soft-pion theorem (3.10) can therefore be
calculated by simultaneously performing the following expansions of both amplitudes (which
entail in particular expansions of the corresponding loop functions or directly of their charged-
to-neutral differences, cf. (A.11), in the pertinent kinematical regime):

• expansion in all Mandelstam variables around the corresponding soft-pion point,#6

• expansion in powers of isospin-breaking parameters (rewriting Mπ, MK0 , and MK in
terms of Mπ0 and Mη via the GMO formula (2.16) and consistently neglecting both
higher chiral and isospin-breaking orders),

• expansion inMπ0 around the soft-pion limitMπ0 = 0 (effectively expanding inM2
π0/M

2
η ).

Alternatively, at a given chiral order, one may work in terms of quark masses and simul-
taneously expand in isospin-breaking parameters and the average light quark mass m̂ (thus
effectively expanding in m̂/ms as well as δ/ms and e2/ms) by using e.g. at leading chiral order

M2
π0

M2
η

=
3

2

m̂

ms
+O

((
m̂

ms

)2

,

(
δ

ms

)2

, p2

)
. (3.11)

For illustration purposes, we give the particularly important example (cf. (A.11) and (A.7))

J̄K0K0

(
3sc0
)
=

1

8π2

{
1−

√
2 arctan

1√
2

}
+

1

24π2

{
1− 3√

2
arctan

1√
2

}[
B0δ

M2
η

− 3
∆M2

π

M2
η

]

+O
(
m̂

ms
, e2δ, δ2

)
, (3.12)

which furthermore demonstrates the fact that also 3sc0 = 3sn0 + 2∆M2
π generates electromag-

netic contributions.
#4As an instructive example consider the Adler zeros: in the two-flavor chiral limit, it can be shown (by

using PCAC) that the η → 3π amplitude goes to zero for vanishing 4-momentum of a charged pion; i.e.
for pπ+ → 0 or pπ− → 0 the charged amplitude develops the two Adler zeros at t = M2

η + O
(

M2
π0

)

and
u = s = O

(

M2
π0

)

or u = M2
η + O

(

M2
π0

)

and s = t = O
(

M2
π0

)

, respectively. These zeros are related by
crossing and due to the t ↔ u symmetry of the charged amplitude they can be combined as sA = O

(

M2
π0

)

and (t − u)2A = (M2
η + O

(

M2
π0

)

)2. By virtue of the SU(2) ⊗ SU(2) symmetry, both these positions and the
corresponding zeros Ac(sA, (t − u)A) = O

(

M2
π0

)

are protected from being of O
(

M2
η

)

and are thus small. At

leading chiral order, from (2.40) one can read off s
(LO)
A = 4M2

π0/3 (and thus (t−u)2A = (M2
η −M2

π0)
2, yielding

in fact a line of zeros in the Mandelstam plane), whereas at NLO one usually takes the zero of ReAc as
approximation for the Adler zero.

#5In [15], both s = M2
η + 3M2

π = 3s0 and t = u = 0 as well as s = M2
η and t = u = 0 are stated for the

η → 3π soft-pion point, which, however, is (self-)consistent only if all pion masses are sent to zero.
#6Technically, due to our definition of the soft-pion point, one can first replace both t and u by (3s

c/n
0 − s)/2

(thereby ensuring t = u) and then needs to expand in s around 3s
c/n
0 only. Note that for the charged channel

one has to be be careful when expanding the “divergent” parts of the amplitude proportional to 1/t and 1/u,
which also contain loop functions leading to powers of t and u upon expansion.
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As shown in [15] (also assuming mu = md), at chiral O
(
p4
)

the correction of O
(
e2mq

)
at

the soft-pion point s = 3s0 and t = u = 0 for η → 3π indeed scales as e2m̂, and not as e2ms.
Explicitly, we find for the purely electromagnetic amplitudes (i.e. neglecting terms of O

(
e2δ
)
,

denoted by BKW) for both decays in this approximation

ABKW
c

SP
=

2B0m̂√
3F 2

π

{
5∆M2

π

16π2F 2
π

(
1−

√
2 arctan

1√
2

)

+
4e2

3

[
3(Kr

3 −Kr
4/2)− (Kr

5 +Kr
6) + (Kr

9 +Kr
10)
]}

+O
(
e2m̂

m̂

ms

)
, (3.13)

ABKW
n

SP
=

2B0m̂√
3F 2

π

{
∆M2

π

16π2F 2
π

(
1−

√
2 arctan

1√
2

)

+
4e2

3

[
3(Kr

3 −Kr
4/2)− (Kr

5 +Kr
6) + (Kr

9 +Kr
10)
]}

+O
(
e2m̂

m̂

ms

)
, (3.14)

where
SP
= denotes the evaluation at the soft-pion point and the Kr

i are to be evaluated at
the scale µ = MK0 , which has been chosen here just for convenience. For comparison, the
additional terms at O

(
e2δ
)

(denoted by DKM) are found to be (again at µ =MK0)

ADKM
c

SP
= − 2B0δ√

3F 2
π

{
∆M2

π

M2
η

[
1 +

4

3

(
∆GMO +∆F +

M2
η

F 2
π

L3

)

+
M2

η

16π2F 2
π

(
2

3
log

Mπ0

MK0

− 9

2
log

4

3
+ 5 +

7

4
√
2
arctan

1√
2
+ 2πi

)]

− e2

8π2

[(
1 + 2 log

Mπ0

Mη
+ πi

)
log

mγ

Mη

− log2
Mπ0

Mη
− π2

3
+

9

4
+
π

4
i+ log

Mπ0

MK0

+
1

4
log

4

3

]

− 4e2

3

[
(Kr

1 +Kr
2)−

7

2
(Kr

3 −Kr
4/2) + (Kr

5 +Kr
6)− (Kr

9 − 2Kr
10 − 3Kr

11)

]}

+O
(
e2δ

m̂

ms

)
, (3.15)

ADKM
n

SP
= − 2B0δ√

3F 2
π

{
∆M2

π

M2
η

[
8

3
∆F +

M2
η

16π2F 2
π

(
log

Mπ0

MK0

+ 2 log
4

3
+ 3 +

1

4
√
2
arctan

1√
2
− πi

)]

− 4e2

3

[
3

16π2
+ (Kr

1+K
r
2)− 5(Kr

3−Kr
4/2) + (Kr

5 +Kr
6)− (Kr

9 − 5Kr
10 − 6Kr

11)

]}

+O
(
e2δ

m̂

ms

)
. (3.16)

The comparison of (3.13)–(3.16) demonstrates explicitly that terms of O
(
e2δ
)

are rela-
tively suppressed only by δ/m̂ ≈ 2/3 and not by another small isospin-violating parameter.
Furthermore, only the terms in (3.15) and (3.16) entail chiral logarithms; the chiral logarithms
squared in (3.15) are due to the expansion of the triangle loop function G(s) of (A.9) around
the soft-pion point (note that G(s) only occurs with the prefactor e2δ and that the subtraction
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of universal corrections would only be meaningful at the level of squared amplitudes):

G
(
3sc0
)
= − 1

8π2M2
η

{
π2

3
+ log2

Mπ0

Mη
− log

mγ

Mη

[
2 log

Mπ0

Mη
+ πi

]}
+O

(
m̂

ms
, e2, δ

)
. (3.17)

3.4 Numerical results

In this section, we present the numerical results for the charged and the neutral decay as
published in [1], based on the corresponding NLO amplitudes at O

(
δ, e2, e2δ

)
given therein#7

and the numerical input collected in App. A.3. Note that for all numerical evaluations, the
isospin-breaking kaon loop differences are not expanded (cf. Sect. 2.2.3) and for strong isospin
breaking only the parameter Q is employed.

As already mentioned in Chap. 1, throughout this chapter we focus on the electromagnetic
contributions to η → 3π decays and do not aim at a particularly reliable representation of the
purely strong amplitude, since it is well known that one has to go beyond one-loop order to
obtain a valid representation of the latter [17–21]. The O(δ) part in our calculation corresponds
precisely to the one-loop representation of [13], which thus serves as a useful reference point to
quantify the different electromagnetic corrections in the following. For this purpose, we only
consider uncertainties in these electromagnetic contributions and disregard higher-order strong
corrections: since the electromagnetic low-energy constants Kr

i are not very well known, we
regard their input (and not unknown corrections of higher order in the chiral expansion) as
the dominant source of uncertainty; see App. A.3 for a description of how we vary the Kr

i .
However, for some numbers, which marked by an asterisk in the following, we are forced to
deviate from our standard procedure to estimate the errors; the respective details are also
relegated to App. A.3. All error bands in this section refer to this variation.

3.4.1 Amplitudes

In the following, we compare the results for the one-loop amplitudes of O(δ) (henceforth de-
noted by GL) [13], those with effects of O

(
e2
)

added (BKW) [15], and the results of the present
investigation up-to-and-including effects of O

(
e2δ
)

(DKM). The GL and BKW amplitudes are
also evaluated with our prescription of the isospin limit (i.e. using the neutral pion mass, cf.
the discussion in Sect. 2.2.4) as well as with our choice of numerical input (cf. App. A.3) in
order to facilitate comparison with the higher-order DKM corrections. For illustration pur-
poses, in this section we plot the amplitudes along the lines t = u (i.e. x(n) = 0), which thus
have also been drawn in Fig. 2.2.#8

In Fig. 3.2 we separately display the real and the imaginary parts of the charged GL,
BKW, and DKM decay amplitudes. The infrared divergences in the amplitude are cured by
hand according to (3.9), whereas the kinematical singularities at s = 4M2

π are retained here for

#7We refrain from repeating this numerical analysis with the amplitudes amended by the contributions at
O
(

δ2
)

(cf. Sect. 2.2), since these additional terms are never enhanced compared to δ/ms w.r.t. the leading
O(δ) terms, as discussed in App. A.2. Therefore, we expect the second-order strong effects for η → 3π
decays to be numerically negligible (cf. #7 in Sect. 2.1.3), in particular w.r.t. the uncertainties concerning
the electromagnetic corrections. Moreover, in Chap. 4 we will argue that the contributions at O

(

δ2
)

to the
higher-order isospin-breaking corrections in η → 3π decays — cast into a form that is particularly useful in
combination with other theoretical approaches yielding more robust representations of the amplitudes like e.g.
(modified) NREFT — drop out entirely.

#8Note that for additionally s = s
c/n
0 (i.e. t = u = 0), this corresponds to the respective soft-pion point.
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Figure 3.2: Real and imaginary parts of the charged amplitudes GL (dashed/black), BKW
(dot-dashed/blue), and DKM (full/red) for t = u. The inserts show the region close to the
two-pion thresholds. The line widths in the real part indicate the error bands due to a variation
of the electromagnetic LECs. The vertical lines show the limits of the physical region.

illustration. By our choice of the isospin limit for the pion mass, the threshold cusp in the GL
amplitude is artificially removed from the physical threshold energy to s = 4M2

π0 . According
to (2.40) the leading-order charged decay amplitude is linear in s, which also dominates the
energy dependence at NLO. The additional BKW contributions are purely real for both decay
channels, as no pion rescattering diagrams contribute at that particular order and thus the
imaginary parts of GL and BKW coincide with each other for both decays. Furthermore, all
imaginary parts are independent of any low-energy constants and are therefore plotted without
an error range. Since it is hard to identify cusps or the Coulomb pole in plots over the full
kinematically allowed range, Fig. 3.2 also contains inserts where we show the amplitudes close
to the two-pion thresholds. Here, the expected features in the amplitudes are clearly visible:
the π0π0 cusp at 4M2

π0 outside the physical region as well as the Coulomb pole and phase
divergence at the π+π− threshold.

The numerical results for the neutral GL, BKW, and DKM decay amplitudes are shown
in an analogous way in Fig. 3.3. The vertical dotted lines indicate the physical region in s for
t = u for the neutral decay, hence the lower bound is now at the π0π0 threshold. The leading-
order decay amplitude for η → 3π0 is constant, see (2.42), and also at NLO the dependence on
s is weak. Figure 3.3 shows that the size of the additional contributions in DKM is comparable
to or even larger than those in BKW. We find the expected cusp at the energy of the π+π−

threshold inside the physical region, although the overall variation is very small. As for the
comparable decay KL → 3π0, the strength of the cusp might be rather small for a very precise
determination and an extraction of ππ scattering lengths thereby. However, we wish to point
out that the cusp strength, which is proportional to the combination of scattering lengths
a00 − a20 parameterizing the ππ FSIs as already mentioned in Chap. 1, is underestimated
here: while the present one-loop ChPT calculation corresponds to the leading-order value
(a00 − a20)

LO = 9M2
π/(32πF

2
π ) = 0.205 [128],#9 the matching of the Roy equations solution to

#9To be more precise, the cusp strength in our calculation is determined by the leading-order scattering
length for π+π− → π0π0 including isospin breaking, which is given by (sc− −M2

π0)/(32πF
2
π ) = (a0

0 − a2
0)

LO ×
{1+∆M2

π/(3M
2
π)} [118], increasing the isospin-symmetric value by about 2%. Note that for historical reasons
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Figure 3.3: Real and imaginary parts of the neutral amplitudes GL (dashed/black), BKW
(dot-dashed/blue), and DKM (full/red) for t = u. The hatched regions denote the error
bands due to a variation of the electromagnetic LECs. The vertical lines show the limits of
the physical region.

the next-to-next-to-leading chiral representation yields (a00−a20)NNLO = 0.265± 0.004 [51,54],
thereby increasing the cusp strength considerably. Furthermore, the cusp in η → 3π0 is
considerably less pronounced than in K+ → π+π0π0, much as in KL → 3π0 [60]. For these
two reasons, we refrain from displaying the decay spectra dΓ/ds, which would be the preferred
observable for an extraction of ππ scattering lengths.

From Figs. 3.2 and 3.3 we can conclude that the relative sizes of the electromagnetic cor-
rections in the BKW and DKM amplitudes with respect to the strong GL result are of compa-
rable size, and thus the BKW estimate of the electromagnetic effects, neglecting mu 6= md, is
not a very accurate representation. However, the conclusion that the overall electromagnetic
contributions remain rather small is still valid.

3.4.2 Dalitz plot parameters

As discussed in Sect. 2.2.4, in principle the Dalitz plot parameters are defined by expanding
the squared absolute values of both decay amplitudes around the “center” of the corresponding
Dalitz plot according to the standard parameterizations (2.53). Here, however, we fit these
Dalitz plot distributions to discretized grids (of roughly 200×200 points) of squared amplitudes
over the whole physical region (by using a uniform weighting of the thereby generated “data”
points), since such a fitting procedure is usually employed in experimental analyses. In order
to quantify the fit quality for the GL, BKW, and DKM amplitudes, we normalize a fictitious
χ2 to 1 for the GL amplitudes and only regard the relative changes, with the electromagnetic
effects switched on successively. The errors on the corrections to the various Dalitz plot
parameters are estimated by again varying the electromagnetic low-energy constants Kr

i as
described in App. A.3. Since the resulting errors are always larger than the fit errors on the
extracted parameters, we can safely neglect the latter.

the isospin limit of the scattering lengths is defined in terms of the charged-pion mass, however, not affecting
this relative increase.
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|Nc|2 a b

GL 0.0325 −1.279 0.396

BKW −0.0004± 0.0003 −0.008± 0.001 +0.006± 0.001

= (−1.1± 0.9)% = (+0.6± 0.1)% = (+1.4± 0.2)%

DKM −0.0008± 0.0002∗ −0.009± 0.005 +0.006± 0.003

= (−2.4± 0.7∗)% = (+0.7± 0.4)% = (+1.5± 0.7)%

d f g χ2/ ndf

0.0744 0.0126 −0.0586 ≡ 1

+0.0011± 0.0004 −0.0003± 0.0001 −0.0010± 0.0003 1.03

= (+1.5± 0.5)% = (−2.2± 0.4)% = (+1.7± 0.6)%

+0.0033± 0.0003∗ +0.0001± 0.0001 −0.0038± 0.0009∗ 1.63

= (+4.4± 0.4∗)% = (+0.5± 0.6)% = (+6.4± 1.5∗)%

Table 3.1: Normalization and Dalitz plot parameters for η → π0π+π− for the GL [13],
BKW [15], and DKM (present work) amplitudes. All electromagnetic corrections are given
as shifts (both absolute and relative) with respect to the strong result (GL). The asterisk
indicates a non-standard error estimation. See main text for details.

The fit results for the normalization and the Dalitz plot parameters a–g of the charged
decay channel are shown in Tab. 3.1 for the GL, BKW, and DKM amplitudes, where we quote
the successive electromagnetic corrections corresponding to BKW and DKM both as shifts
of absolute size and as relative shifts in percent with respect to the strong one-loop result
GL [13]. Note that the universal radiative corrections producing kinematical singularities
have been subtracted in the DKM amplitude according to the prescription given in Sect. 3.2.
In general, Tab. 3.1 shows that electromagnetic corrections affect the Dalitz plot parameters
at the percent level; in most cases, the errors given are of the same order as the central shifts.
The normalization tends to get reduced compared to the purely strong amplitude, while the
various slope parameters a–g are slightly increased in magnitude. The relative shifts in d and
g are more sizeable than especially in a and b for the reason that the strong contribution to
the x-dependent Dalitz plot parameters is suppressed to next-to-leading order in the chiral
expansion (as is obvious from the purely s-dependent tree-level amplitude (2.40)). While the
overall effects are still very small, we note that, throughout, the corrections of O

(
e2
)

do not
represent a valid estimate of the dominant electromagnetic corrections, as those of O

(
e2δ
)

are
of the same order of magnitude — sometimes with the same sign, sometimes both effects tend
to cancel. The quality of the polynomial Dalitz plot fit is comparable throughout.

A few comments concerning the cubic Dalitz plot parameters f and g are in order. In
general, f is highly correlated with a in the fits. In the electromagnetic corrections, we observe
that the influence of the low-energy constants on f and g is rather small, which is obvious
from the fact that the counterterms only lead to terms constant and linear in s; we therefore
do not consider the electromagnetic shifts thus obtained very reliable. In particular, all errors
due to the Kr

i in the parameters d, f , and g are only indirectly induced by the variation in the
normalization and by the implicit inclusion of higher-order effects in the squared amplitude.



Section 3.4: Numerical results 37

|Nn|2 102 × α χ2/ ndf

GL 0.269 1.27 ≡ 1

BKW −0.003± 0.002 +0.05± 0.01 0.99

= (−1.1± 0.9)% = (+3.7± 0.5)%

DKM −0.009± 0.005 −0.002± 0.01 6.20

= (−3.3± 1.8)% = (−0.2± 1.0)%

DKM(cusp) −0.009± 0.005 +0.06± 0.01 0.35

= (−3.3± 1.8)% = (+5.0± 1.1)%

Table 3.2: Normalization and Dalitz plot parameters for η → 3π0 for the GL [13], BKW [15],
and DKM (present work) amplitudes. The results for the latter are also shown with the fit
of the Dalitz plot region restricted as to exclude the cusps at the charged-pion thresholds
(DKM(cusp)). All electromagnetic corrections are given as shifts (both absolute and relative)
with respect to the strong result (GL). See main text for details.

Note that, without subtracting the kinematical singularities due to universal corrections (cf.
Sect. 3.2), in particular the fit results for f become nonsensical.

We now turn to the neutral channel η → 3π0. The results for the normalization and the
Dalitz plot parameter α are collected in Tab. 3.2. Here, in addition to the results using the GL,
BKW, and DKM amplitudes, we also discuss a variant of our result taking into account that
the DKM amplitude displays features incompatible with a simple polynomial fit — namely
the cusps at the charged-pion thresholds: by DKM(cusp) we denote a fit to the part of the
Dalitz plot with z < 0.598 chosen such that the border region from the cusp outward is
excluded and a polynomial representation of the Dalitz plot distribution is actually valid, cf.
Sect. 2.2.4. In general, the corrections of O

(
e2δ
)

are even bigger than those of O
(
e2
)

and the
uncertainties due to the Kr

i are on the 1%-level throughout. As for the charged decay channel,
the normalization is reduced by electromagnetic corrections by a few percent. Concerning the
slope α, the cusp effect leads to the single biggest modification of any Dalitz plot parameter:
trying to fit the cusp with the polynomial parameterization reduces α by 4% (compare DKM
to BKW in Tab. 3.2), while excluding the cusp region increases it again by more than 5%. The
latter shift is in qualitative agreement with the findings in [68], where α is determined from
the curvature at the center of the Dalitz plot. The significance of this non-analytic structure is
also reflected in the fit quality as quantified by the χ2/ ndf values given in Tab. 3.2: with the
cusp included, the fit becomes worse by a factor of 6 (DKM), while excluding it makes it even
better than the fit of the GL distribution (DKM(cusp)); of course, this is not surprising, as in
fact the parameterizations (2.53) are defined as expansions of the squared amplitudes around
the respective “center” of the corresponding Dalitz plot, i.e. around z = 0 for the neutral decay.
Taking into account that the cusp strength is underestimated by about 30% as discussed in
Sect. 3.4.1, these numbers should be scaled accordingly. However, the cusp effect is by far too
weak to contribute significantly to an explanation of the long-standing sign discrepancy for α
between ChPT calculations and experimental determinations, as we had already anticipated
in the discussion of the “α-puzzle” in Chap. 1.
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Figure 3.4: η → 3π0 Dalitz plot distribution corresponding to the full NLO amplitude (DKM),
including the cusp structures at the π+π− thresholds. Here, x ≡ xn and y ≡ yn.

The η → 3π0 Dalitz plot is displayed graphically in Fig. 3.4 for our central result, i.e. the
complete one-loop amplitude including electromagnetic corrections up to O

(
e2δ
)

(DKM). The
cusp structures at the π+π− thresholds are clearly visible, demonstrating that decay spectra
with respect to s, t, and u are most sensitive to the cusp effect, not with respect to the radial
coordinate z (as discussed in Sect. 2.2.4, see Fig. 2.3).

3.4.3 Decay widths, branching ratio, and quark mass double ratio

The results for the charged and neutral decay widths calculated according to (2.37) are shown
in Tab. 3.3. The strong widths calculated at one loop underestimate the experimental values
significantly, so again, the electromagnetic corrections are given as relative corrections to the
strong result (GL). For the charged decay, the width is reduced moderately by about 2%.
In addition, we also show a variant of the DKM amplitude (denoted by DKM(uc)) where
the universal corrections are not subtracted, i.e. the Coulomb pole at sc− and the kinematical
bremsstrahlung singularity at sc+ are included; in this case, the reduction of the width is only
about 1%. In the neutral channel, the shifts in the width are completely dominated by the
corrections to the normalization of the amplitude, cf. Tab. 3.2. The total corrections up-to-
and-including O

(
e2δ
)

are about a factor of 3 larger than those estimated by BKW, and the
total reduction of the neutral width by electromagnetic effects is in good agreement with the
one found in [68].

From these widths one can determine the η → 3π branching ratio r = Γn/Γc already
defined in (1.5) at the different orders in isospin breaking. The resulting electromagnetic
corrections are also given in Tab. 3.3. For the BKW corrections, the ratio is nearly constant
compared to the strong result (GL), as both widths are shifted by almost the same amount.
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Γc Γn r = Γn/Γc

ΓGL 154.5 eV 222.8 eV rGL 1.442

∆ΓBKW (−1.5± 1.3) eV (−2.5 ± 2.0) eV ∆rBKW −0.002± 0.018

= (−1.0± 0.9)% = (−1.1 ± 0.9)% = (−0.1± 1.2)%

∆ΓDKM (−2.9± 0.7∗) eV (−7.3 ± 4.0) eV ∆rDKM −0.020± 0.028∗

= (−1.9± 0.5∗)% = (−3.3 ± 1.8)% = (−1.4± 1.9∗)%

∆ΓDKM(uc) (−1.5± 0.7∗) eV ∆rDKM(uc) −0.033± 0.028∗

= (−1.0± 0.5∗)% = (−2.3± 1.9∗)%

Table 3.3: Decay widths Γc/n for the charged and neutral decay channel and branching ratio
r = Γn/Γc. The electromagnetic corrections for the BKW and DKM amplitudes are expressed
relative to the strong GL result. The asterisk indicates a non-standard error estimation.
DKM(uc) denotes the DKM amplitude without subtraction of the universal corrections.

η → π0π+π− η → 3π0

∆QBKW (+0.24± 0.22)% (+0.28± 0.22)%

∆QDKM (+0.48± 0.12∗)% (+0.84± 0.46)%

∆QDKM(uc) (+0.24± 0.12∗)%

Table 3.4: Electromagnetic corrections to the extraction of the quark mass double ratio Q2

for both the charged and neutral decay channel. See main text for details.

Including all radiative corrections (DKM), r is reduced by 1.4%, with an uncertainty of about
the same size. Without subtraction of the universal corrections, the effect on r is somewhat
larger, about 2.3%.

Finally, as anticipated in Chap. 1, we can read off the corrections for the quark mass
double ratio Q2 from the relation (1.4), although, strictly speaking, this relation does not hold
for the purely electromagnetic terms of O

(
e2m̂

)
, i.e. the BKW contributions and higher-order

corrections like those at O
(
e4
)
. Given the smallness of the electromagnetic corrections and

the size of the uncertainties, however, the additional error in factorizing Q−2 in the complete
amplitude can be safely neglected. The resulting shifts in Q as collected in Tab. 3.4 are
to be interpreted in the following way: extracted naively according to (1.4), Q would be
shifted compared to the purely strong value according to Tab. 3.4, i.e. generally increased.
Therefore, the opposite shift has to be applied in order to purify the extraction of Q via (1.4)
by comparing a calculated width (e.g. at NLO and assuming Dashen’s theorem to be valid)
with a real measurement (necessarily including electromagnetic effects) according to

Γc/n =

(
QD

Q

)4

ΓD
c/n . (3.18)

The electromagnetic corrections in Tab. 3.4 are below half a percent for the charged channel,
while in the neutral channel applying the electromagnetic corrections reduces Q by about 1%.
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Chapter 4

Isospin-breaking corrections

to the ∆I = 1 amplitude relation∗∗

As outlined in Chap. 1, the main motivation for the study to be presented in the follow-
ing was to recast the results of [1] for the electromagnetic corrections in η → 3π decays in
ChPT at NLO as presented in Chap. 3 in such a way that they can readily be combined
with other theoretical frameworks, which yield a more robust description of the η → 3π de-
cays by accounting for the important ππ FSIs more comprehensively than it is feasible in
ChPT. In particular, the goal was to make contact with the (modified) NREFT calculation
at two-loop-order, which was finally conducted in [3]. However, some of the isospin-breaking
effects considered in [1] can be incorporated equally well or even much better in the NREFT
framework employed in [3], namely “trivial” kinematical isospin-breaking effects as discussed
in Sect. 2.2.4 (i.e. normalization issues and the use of physical meson masses inside the loop
functions) on the one hand, and the possibility to use phenomenological values for the ππ
scattering lengths parameterizing the ππ rescattering (which is the key to solve the “α-puzzle”
as explained in Chap. 1, cf. also the comment on the cusp strength in Sect. 3.4.1) on the other
hand. Nevertheless, the normalization of the η → 3π amplitudes needs to be fixed by other
means in order to make predictions for physical observables (which is also true for the ongo-
ing dispersive analyses [63, 67]), since it is proportional (up to small purely electromagnetic
contributions) to unobservable quark masses in form of the strong isospin-breaking difference
δ = md − mu. The missing information on the quark masses is then usually introduced to
the framework by matching to ChPT at some order, and in the case at hand the (modified)
NREFT framework is matched to ChPT at NLO. Thus, for combined analyses of both the
charged and the neutral decay, it is particularly important to have the isospin-breaking correc-
tions for the normalizations under control — especially when the ∆I = 1 amplitude relation
shall be used. We want to stress again that this work is not concerned with the NREFT
calculation itself, but rather with the “non-trivial” higher-order isospin-breaking contributions
to the ChPT amplitudes as well as with their matching to NREFT in order to achieve the
combined NREFT+ChPT framework as presented in [3].

More specifically, this chapter deals with isospin-breaking corrections to the ∆I = 1 rela-
tion (2.46) between the amplitudes for η → π0π+π− and η → 3π0, which is usually employed
in combined analyses of both η → 3π decay channels. As this relation is strictly valid at
leading order in strong (O(δ)) or electromagnetic (O

(
e2
)
) isospin breaking, for investigating

∗∗Most contents of this chapter have been published in [3].
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corrections to it, one needs to calculate both amplitudes independently and including higher-
order isospin-breaking effects. According to the discussion in Sect. 2.2.3, at chiral O

(
p4
)

in
addition to the mixed strong and electromagnetic effects at O

(
e2δ
)

(as considered Chap. 3)
also second-order strong effects at O

(
δ2
)

must be taken into account, whereas the numeri-
cally tiny second-order electromagnetic terms at O

(
e4
)

are neglected throughout. Therefore,
a re-inspection of the derivation of both η → 3π NLO amplitudes (as published in [1]) con-
cerning potential additional contributions at O

(
δ2
)

is necessary. While the details of this
re-consideration are relegated to App. A, here we briefly summarize the main findings: fortu-
nately, as already indicated in [1], the main sources for such terms are charged-to-neutral dif-
ferences of kaon loop functions (whose higher-order contributions were not considered therein
because they are not predominantly of electromagnetic origin, cf. (A.11)), so that for this
purpose only few changes need to be applied to the amplitudes of [1].#1 However, a thor-
ough derivation of the amplitudes including second-order isospin breaking (except for terms
at O

(
e4
)
) raises an additional issue with the meson decay constants that was not foreseen

in [1]; for details we refer to App. A.2.
Besides the obvious question how strongly the ∆I = 1 amplitude relation is violated at

second order in isospin breaking, the basic idea for the following is to formulate these higher-
order isospin corrections in a way they can easily be employed in a framework allowing for
a reliable comparison with phenomenology. In general, the ideal level for matching between
experimental analyses on the one side and theoretical descriptions on the other side is pro-
vided by the Dalitz plot distributions themselves or, to a somewhat lesser extent, by their
expansions and parameters as introduced explicitly in Sect. 2.2.4 (cf. (2.53), but see also the
discussion on the validity of a polynomial representation for η → 3π0 therein). Thus, after
first explaining how the ∆I = 1 amplitude relation (2.46) can be understood consistently at
second-order in isospin breaking at all, in the following we derive the corresponding ∆I = 1
relations including isospin-breaking corrections between the lowest Dalitz plot parameters
of both decays, namely for the normalizations and the leading slopes. Subsequently, these
corrections are worked out analytically based on the enhanced one-loop ChPT amplitude as
explained above, and finally, they are evaluated numerically with regard to the application
within the combined NREFT+ChPT framework as discussed above and in Chap. 1 (i.e. as
published in [3]).

We anticipate here that, according to the scheme explained in the following sections, the
higher-order isospin-breaking corrections to the ∆I = 1 relation for the Dalitz plot normaliza-
tions are going to be of chiral O

(
p4
)

(i.e. without contributions from the tree-level amplitudes)
and therefore small. Accidentally, it turns out that for both the corrections to the ∆I = 1
relations between the normalizations and between the lowest Dalitz plot slopes the contribu-
tions stemming from O

(
δ2
)

cancel completely; even more, due to the convenient form they
are eventually given in, these corrections are of purely electromagnetic origin. This is then
(besides the decreasing relative numerical importance of higher-order isospin-breaking effects
in general) the reason why also from an analytical point of view we regard a re-evaluation
of the numerical analysis of [1] with the enhanced amplitudes to be irrelevant, cf. #7 in
Sect. 3.4.

#1By not replacing the kaon masses inside the loop functions (i.e. not expanding the loop functions around
the neutral kaon mass) in the derivation of the amplitudes of [1], the corresponding higher-order isospin-
breaking effects are implicitly included, which substantially eases the derivation of the O

(

δ2
)

contributions
(by explicitly expanding the isospin-breaking kaon loop differences as discussed in App. A.2).
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4.1 ∆I = 1 relations for Dalitz plot parameters

The goal of this section is to rewrite the second-order isospin-breaking corrections to the
∆I = 1 relation (2.46) between the amplitudes for the neutral and the charged decay at chiral
O
(
p4
)

and up-to-and-including O
(
e2, e2δ, δ2

)
in isospin breaking in terms of corrections for

relations between neutral and charged Dalitz plot parameters, which are defined via expan-
sions of the amplitude squares according to (2.53). In particular, we will derive a relation
for the normalizations Nc/n as well as a relation concerning the neutral slope α. For this
purpose, it is important to recall that the symmetry properties of the Dalitz plot distributions
|Ac/n(x(n), y(n))|2 in terms of Dalitz plot coordinates x(n) and y(n) as discussed in Sect. 2.2.4
are mere consequences of the general symmetries of the corresponding amplitudes Ac/n(s, t, u)
in terms of Mandelstam variables as examined in Sect. 2.2.3 and thus must also be valid for
the expansions of these amplitudes.

However, as argued at the end of Sect. 2.2.3, beyond first order in isospin breaking it is not
a priori clear how to appropriately relate the Mandelstam variables for the two decay channels
(due to contributions from sc0 − sn0 ∝ ∆M2

π = O
(
e2
)
, cf. the discussion preceding (2.49)),

which in turn is necessary for the expansion around a common “center” of the Dalitz plot as
a prerequisite for relating the Dalitz plot expansions of both channels: whereas the ∆I = 1
relation (2.46) unambiguously yields the neutral amplitude in terms of the charged one but
not the other way round, which suggest using the neutral relation (2.36) for the Mandelstam
variables according to the asymptotic particles being η and 3π0 for the neutral decay, the
question of consistency arises, as already in the derivation of the charged amplitude the Man-
delstam variables have been replaced via the charged relation (2.34). It was also mentioned
already in Sect. 2.2.3 that by using the neutral prescription the LO amplitudes accidentally
obey the ∆I = 1 relation even at second-order in isospin breaking, so that all corrections to
it are necessarily of chiral O

(
p4
)

and therefore small — provided this consistency problem
can be solved. The crucial point now is the fact that the charged amplitude only depends
on s and the difference t − u, which together with the following observations motivates an
expansion of both amplitudes around the kinematical point s = sn0 and t = u (i.e. preserving

s+ t+ u = 3s
c/n
0 ):

• This common “center” of the Dalitz plot corresponds to s = t = u = sn0 or xn = yn =√
z = 0 for the neutral channel, but to s = sn0 and t = u = sn0 + ∆M2

π or x = 0 and
y = τ 6= 0 in the charged case, cf. (2.51); moreover it corresponds to a physical point for
both decays in contrast to e.g. s = t = u = sn0 for the charged decay.

• This expansion scheme respects the general symmetry properties (2.44) and (2.45). In
particular for the charged amplitude, expanding in t − u ensures that any shift in the
identical expansion point for t and u away from the expansion point for s cancels at
the level of Mandelstam variables (in terms of which the ∆I = 1 amplitude relation is
actually formulated) irrespective of whether (2.34) or (2.36) is used, thus solving the
consistency problem. At the level of Dalitz plot coordinates x(n) and y(n), however, we
then have to take care of effects stemming from y 6= 0 at the “center”.

• Furthermore, this expansion scheme is also in line with our convention for the isospin
limit of the pion mass to coincide with Mπ0 (leading to an unambiguous ordering in
isospin-breaking parameters) as motivated in Sect. 2.2.4 and employed in [1]; cf. the
partially similar expansion scheme applied in Sect. 3.3.
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• Written in terms of s− sn0 , the implicit contributions of ∆M2
π cancel completely in the

charged LO amplitude (2.40) (so that the corrections to the ∆I = 1 relation between
the normalizations Nc/n are of O

(
p4
)

as anticipated), whereas in the charged Dalitz plot
coordinates (2.51) (i.e. the expansion variables of the standard parameterization (2.53))
they cancel up to normalization-related effects due to τ ∝ R̃n − R̃c.

Thereby, the neutral relation (2.36) can be used consistently for all Mandelstam variables
in the ∆I = 1 amplitude relation (2.46), after the amplitudes have been expanded according
to this scheme. However, we also need to expand in τ in order to disentangle the “trivial”
kinematical isospin-breaking effects due to the definition of this specific “center” for both
Dalitz plots from the “non-trivial” isospin-breaking effects entailed in the amplitudes. For this
purpose, we define the abbreviations

s̃ = (s− sn0 ) , t̃ = (t− sn0 ) , ũ = (u− sn0 ) , (4.1)

so that by additionally expanding in τ the amplitudes thereby take the form

Ac(s, t, u) = Ñc

{
1 + ãs̃+ b̃s̃2 + d̃(t− u)2 + f̃ s̃3 + g̃s̃(t− u)2 + . . .

}

= Nc

{
1 + āy + b̄y2 + d̄x2 + f̄y3 + ḡyx2 + · · ·+O

(
τ2
)}

,

An(s, t, u) = Nn

{
1 + α̃

[
s̃2 + t̃2 + ũ2

]
+ β̃

[
s̃3 + t̃3 + ũ3

]
+ γ̃
[
s̃4 + t̃4 + ũ4

]
+ . . .

}

= Nn

{
1 + ᾱz + β̄ z3/2 sin(3ϕ)︸ ︷︷ ︸

−y3n+3ynx2
n

+γ̄z2 + . . .
}
, (4.2)

where the relations between the different sets of expansion parameters for both amplitudes up-
to-and-including first order in τ are given by (for Mπ =Mπ0 and thus τ = 0, we reproduce the
results derived in [21]; note that we do not need to explicitly expand the overall normalization
factors according to R̃c = R̃n/(1 + τ))

Nc = Ñc × N̄c , N̄c = 1 + τR̃cã , ā = −R̃c
ã+ 2τR̃cb̃

N̄c
,

b̄ = R̃2
c

b̃+ 3τR̃cf̃

N̄c
, d̄ = 3R̃2

c

d̃+ τR̃cg̃

N̄c
, f̄ = −R̃3

c

f̃

N̄c
, ḡ = −3R̃3

c

g̃

N̄c
,

ᾱ =
3

2
R̃2

nα̃ , β̄ =
3

4
R̃3

nβ̃ , γ̄ =
9

8
R̃4

nγ̃ . (4.3)

Here, the factor N̄c with the leading contribution originating from the linear slope ã reflects
our definition of a common “center” for both Dalitz plots, and the corrections to f̄ and ḡ would
entail higher-order parameters. The relations between these amplitude expansion parameters
and the usual Dalitz plot parameters of the amplitude squares as defined in (2.53) are then
easily shown to be

a = 2Re ā , b = |ā|2 + 2Re b̄ , d = 2Re d̄ ,

f = 2Re
{
āb̄∗ + f̄

}
, g = 2Re

{
ād̄∗ + ḡ

}
,

α = Re ᾱ , β = Re β̄ , γ = Re γ̄ . (4.4)
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By virtue of the ∆I = 1 amplitude relation (2.46) we thus can write

An(s, t, u) = 3Ñc

{
1 +

1

3

(
b̃+ 3d̃

)[
s̃2 + t̃2 + ũ2

]
+

1

3

(
f̃ − 3g̃

)[
s̃3 + t̃3 + ũ3

]
+ . . .

}

+O
(
e4, e2δ, δ2

)
, (4.5)

so that by comparison with (4.2) we can immediately read off the corresponding ∆I = 1
relations at leading-order in isospin-breaking between the normalizations and the leading slope
parameters of the amplitudes, namely#2

Nn = 3Ñc , α̃ =
1

3

(
b̃+ 3d̃

)
, β̃ =

1

3

(
f̃ − 3g̃

)
. (4.6)

The generic (i.e. strong and electromagnetic) higher-order isospin-breaking corrections to these
lowest ∆I = 1 amplitude parameter relations, which we will call ∆I = 1 Dalitz relations in
the following, can then be written as#3

∆Ñ = Nn − 3Ñc ⇒ Nn = 3
Nc

N̄c

{
1 +

∆Ñ
Nn

+O
((

∆Ñ
Nn

)2
)}

,

∆α̃ = α̃− 1

3

(
b̃+ 3d̃

)
⇒ ∆α = Re∆ᾱ =

3

2
R̃2

nRe∆α̃ , (4.7)

where we refrain from explicitly introducing the analogous corrections ∆β̃ and ∆β , since β is
even not yet measured at all.

Using (4.3) and (4.4), from (4.6) one can also derive relations between the usual (real)
Dalitz plot parameters, which in general, however, additionally entail contributions from the
imaginary parts of the complex amplitude expansion parameters that are not observable di-
rectly. Nevertheless, neglecting all higher-order isospin-breaking corrections except for the
normalization, the corresponding relation for the neutral slope α can be written as an in-
equality containing only the usual Dalitz plot parameters according to (reducing to the result
of [21], if moreover Q̃n = Q̃c is used)

α =
Q̃2

n

4Q̃2
c

{
b− |ā|2 + d

}
=

Q̃2
n

4Q̃2
c

{
b− a2

4
+ d

}
−
(
Q̃n

2Q̃c

Im ā

)2

≤ Q̃2
n

4Q̃2
c

{
b− a2

4
+ d

}
. (4.8)

Here, the equality only holds for Im ā = 0, which is the case at leading chiral O
(
p2
)

(where ā is
the only non-vanishing η → 3π amplitude expansion parameter in (4.2), see also #2) and thus
resembles the current algebra prediction b = a2/4, which also follows directly from (4.4). In
order to derive the corrections at O(τ), we denote the parameters at O

(
τ0
)

(i.e. for instance
those in (4.8)) by the subscript “iso” and use the replacements at LO in isospin breaking that

#2Of course, there is no relation at linear order in Mandelstam variables due to the symmetry (2.45) of the
neutral amplitude, cf. the discussion after (2.53). While the relation between the normalizations follows at LO
already, the leading slope for the charged channel at LO reads ã = 3/(M2

η −M2
π0) = 1/(sn0 − sA), cf. (2.43).

#3Using the spherical convention instead leads to an additional sign in the ∆I = 1 amplitude relation (2.46).
However, this sign only affects the relation between the normalizations in (4.6), whereas the relations between
the higher parameters (in particular the one for the neutral slope) remain unchanged. Furthermore, this change
of horses does not alter the sign of the correction ∆Ñ in (4.7), if the changeover is made by explicitly adapting
the sign in front of the charged normalization, as done in [3].
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result from (4.3) and (4.4) (keeping |ā|2 = a2/4 + (Im ā)2 just as abbreviation),

āiso = ā+ τ
(
2b̄− ā2

)
⇒ aiso = a+ τ

(
2b− a2

)
, Im aiso = Im a+ τ

[
2 Im b̄− a Im ā

]
,

b̄iso = b̄+ τ
(
3f̄ − āb̄

)
⇒ biso = b+ τ

(
3f − ab

)
,

Im biso = Im b+
τ

2

[
6 Im f̄ − a Im b̄−

(
b− |ā|2

)
Im ā

]
,

d̄iso = d̄+ τ
(
ḡ − ād̄

)
⇒ diso = d+ τ

(
g − ad

)
,

Im diso = Im d+
τ

2

[
2 Im ḡ − a Im d̄− d Im ā

]
. (4.9)

Thereby, the relation (4.8) — upon neglecting O
(
τ2
)

as well as ∆α — takes the form

α =
1

4

{
b− |ā|2 + d+ τ

[
2(1− a)

(
b− |ā|2 + d

)
+ ad− 4 Im ā Im b̄+ 3f + g

]}

=
Q̃2

n

4Q̃2
c

{
b− |ā|2 + d− τ

[
2a

(
b− |ā|2 + d

2

)
+ 4 Im ā Im b̄− 3f − g

]}

=
Q̃2

n

4Q̃2
c

{
b− a2

4
+ d− τ

[
2a

(
b− a2

4
+
d

2

)
− 3f − g

]}
−
(
Q̃n

2Q̃c

{
Im ā+ τ

[
2 Im b̄− a Im ā

]})2

≤ Q̃2
n

4Q̃2
c

{
b− a2

4
+ d− τ

[
2a

(
b− a2

4
+
d

2

)
− 3f − g

]}
, (4.10)

where in the first line we have also expanded the overall normalization Q̃n/Q̃c = 1 + τ for
illustration. It is important to note that the inequalities (4.8) and (4.10) are strictly valid
at the respective orders in isospin breaking. Therefore, Dalitz plot parameter values from
theoretical determinations without higher-order isospin-breaking contributions must obey the
inequality (4.8), i.e. in particular the results of ChPT at any chiral order regardless of the
“α-puzzle” already discussed in Chap. 1. Accordingly, one may easily check that in fact all sets
of NLO parameter values given in Tabs. 3.1 and 3.2 indeed fulfill both inequalities — irrespec-
tive of the different small electromagnetic corrections, independent of the normalization factor
Q̃2

n/Q̃
2
c amplifying the RHS of (4.8) by about 14%, and also even for using the largest value

of α in Tab. 3.2 (which better represents the definition via an expansion at the “center” of the
Dalitz plot rather than fitting the Dalitz plot parameterization to the whole phase space, cf.
Sect. 3.4.3).#4 Throughout, similar to the normalization prefactor, the additional terms at
O(τ) in (4.10) turn out to loosen the constraint by increasing the RHS with respect to (4.8).
Including second-order isospin-breaking corrections consistently by moreover accounting for
∆α in (4.10), also experimentally determined Dalitz plot parameter values are expected to
(approximately) fulfill the corresponding equation. As thoroughly discussed in [3], the imag-
inary parts of the amplitude expansion parameters (in particular Im ā), which are generated
by ππ FSIs on the one hand but also depend on the usual Dalitz plot parameters on the other
hand, can be replaced in (4.10) (and (4.8)) using information on ππ scattering as input for
the NREFT framework in order to obtain relations between experimentally observable Dalitz

#4Note that an unfortunate misprint in the (first) preprint version of the two-loop ChPT analysis [21]
(neglecting isospin-breaking corrections beyond O(δ) and using the average pion mass M2

π) has been corrected
in the published version: the inequality symbol in the relation corresponding to (4.8) was erroneously twisted.
The statement made in [21] that all sets of Dalitz plot parameters given therein be in agreement with the
(corrected) relation, however, is not true (any more): whereas the LO results are fine, neither the results at
NLO nor those at NNLO obey the correct inequality.
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plot parameters only. As the numerical investigations of [3] shall not be reproduced here, we
only want to mention that the analysis in [3] shows a significant tension between the most
recent KLOE neutral [30] and charged [25] Dalitz plot parameters, which has been verified
subsequently by [66] and is still unresolved.

Finally, in analogy to (4.8) we give the relation for β at LO in isospin breaking except for
the overall normalization (for Q̃n = Q̃c recovering the result of cf. [66]),

β =

(
Q̃n

2Q̃c

)3{
g − f +

a

2

(
b− |ā|2 − d

)
+ 2 Im ā

(
Im b̄− Im d̄

)}

= α
Q̃n

2Q̃c

a

2
+

(
Q̃n

2Q̃c

)3{
g − f − ad+ 2 Im ā

(
Im b̄− Im d̄

)}
, (4.11)

where the term depending on imaginary parts, however, cannot readily be estimated in order
to derive a physically observable inequality in analogy to (4.8), although in principle also Im d̄
can be replaced along the lines of [3] as mentioned above. Furthermore, the analog of (4.10)
may easily be deduced using the replacements of (4.9).

4.2 Isospin-breaking corrections to the ∆I = 1 Dalitz relations

In this section, we explicitly derive the higher-order isospin-breaking corrections ∆Ñ and ∆α̃

to the lowest ∆I = 1 Dalitz relations defined in (4.7) by expanding both NLO η → 3π decay
amplitudes of [1] — amended by the second-order strong isospin-breaking effects as explained
in App. A.2 — around s = sn0 and t = u according to (4.2) as motivated and explained in the
previous section. As before, numerically tiny terms of O

(
e4
)

are neglected throughout.
With the application of these results in combination with the NREFT framework in mind,

we first briefly comment on the matching procedure between (modified) NREFT and ChPT
in [3] (more details can be found e.g. in [62]). The employed NREFT framework is based on
expanding in both a formal non-relativistic parameter (in effect expanding in pion 3-momenta
and kinetic energies in the η rest frame) and the phenomenologically small effective range
parameters for ππ (re-)scattering perturbatively with respect to a consistent power counting
scheme, thus yielding a Lagrangian framework. Accordingly, the ππ FSIs, which already in the
low-energy region above threshold lead to imaginary contributions to the amplitudes by virtue
of unitarity cuts, are explicitly accounted for, while all other (meson) loop effects — namely
kaon loops, loops involving η, tadpoles, and self-energy contributions — are parameterized by
effective couplings; in fact, the term “non-relativistic” only refers to this subsumption of effects
due to inelastic thresholds outside the physical decay region into point-like effective coupling
constants, whereas inside the physical region the expressions are fully covariant and exhibit the
correct non-analytic low-energy behavior. Comparing the NREFT tree-level amplitudes (i.e.
the polynomial parts of the NREFT representations) with the amplitude expansions (4.2), one
can derive matching relations for the tree-level couplings in terms of the amplitude expansion
parameters. This then allows for matching to ChPT at the “center” of the Dalitz plot via
the respective expansions of the ChPT amplitudes at NLO, which in turn contain all the
loop effects merely parameterized by the NREFT. For this purpose, however, the following
additional steps have to be taken into account on the ChPT side:

• The (non-analytic) imaginary parts due to pion loops in the ChPT and the NREFT
amplitudes are identical and by choosing an appropriate matching procedure as explained
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in [3] (effectively fixing the NREFT ππ rescattering parameters at their current algebra
values) they drop out in the matching relations and can thus be omitted here.

• For the radiative corrections due to real and virtual photons, we have to match the
(amended) ChPT result of [1] to the corresponding non-relativistic representation, which
is analogous to [61] (for K → 3π). As a result, both the Coulomb pole and phase have to
be subtracted from the chiral representation at the amplitude level (cf. the subtraction
of universal (soft-photon) corrections as discussed in Sect. 3.2) and no bremsstrahlung
contributions are to included at the level of amplitude squares; the finite photon mass
mγ , which was introduced in [1] as regulator for the IR divergences, has to be replaced
according to mγ →Mπ/

√
e so that log(m2

γ/M
2
π) → −1.

Here, some remarks concerning the cancellation of IR divergences are in order: as discussed
in Sect. 3.1, in ChPT calculations of e.g. cross sections, the IR divergences, which arise at
the amplitude level from virtual-photon corrections and can be tamed by using either a finite
photon mass as IR regulator or dimensional regularization also in the IR, cancel with corre-
sponding divergences from real-photon radiation (bremsstrahlung) at the level of amplitude
squares. Assuming the subtraction of universal corrections (cf. Sect. 3.2) to be applied already
on the experimental side as done in [3], however, the explicit inclusion of bremsstrahlung is
not necessary when matching ChPT to the (modified) non-relativistic framework, since the
virtual-photon diagrams in both theories exhibit the same IR behavior and thus contain the
same IR divergences, see [61] (the physical reason for this cancellation being of course the
identical IR behavior of both theories). While the present work (as well as the ChPT calcula-
tions of virtual-photon contributions in ππ scattering [118,129] that also go into the analysis
of [3]) uses a finite photon mass mγ , according to [61] NREFT calculations are simplified
considerably if the threshold expansion is applied on the basis of dimensional regularization
(at the expense, however, of complicating the identification of IR singularities). By comparing
the explicit result for the triangle loop function G(s) as given in (A.9) with the one stated
in [61] one can infer that the transition between both regularization schemes can be made by
replacing#5

log
m2

γ

M2
π

→ −32π2λIR − 1 + log
µ2IR
M2

π

. (4.12)

Since both theories are IR-complete, both the infrared divergences λIR and the dependence
on the corresponding scale µIR must ultimately cancel already at the amplitude level and can
hence be omitted in this matching prescription on the ChPT side, rendering the relations we
are aiming for (as well as the matching relations to ππ scattering given in [3]) IR-finite and
independent of the IR scale. Thus, for the NREFT-related calculation of ∆Ñ and ∆α̃, we
can simply apply log(m2

γ/M
2
π) → −1 as already stated above in G(s) of (A.9) as well as in

the charged NLO tree-like amplitude (A.17) (which contains the IR-divergent charged-pion
wave-function renormalization, cf. App. A.2).

As the following expansion of the amplitudes in particular involves rather lengthy ex-
pansions (up to third order) of the various loop functions, it is useful to apply the discussed
modifications before expanding: according to the generic formulae for the loop functions given
in App. A.1, the respective forms for the case at hand of the two-pion loop function (e.g. for

#5Note that the definitions of G(s) differ by an overall sign. Furthermore, in [3] the IR scale µIR was not
mentioned explicitly in this matching prescription; however, alike the IR singularity λIR it cancels anyway.
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π+π−) and the triangle loop function are given by (with σπ ∈ (0, 1) in the physical decay
region and Spence’s function Li as defined in (A.10))

J̃ππ(s) = Re J̄ππ(s) =
1

16π2

{
2− σπ log

1 + σπ
1− σπ

}
,

G̃(s) =M2
π ReG(s)

∣∣∣
no pole

dim. reg.
=

1− σ2π
64π2 σπ

{
Li

1− σπ
1 + σπ

− Li
1 + σπ
1− σπ

+ log
1 + σπ
1− σπ

}
, (4.13)

where for later convenience the representation of the triangle loop function is rescaled by a
factor of M2

π (or, upon neglecting relative corrections of O
(
e2
)
, by M2

π0). The other occurring
two-meson loop functions just follow from reducing the general forms stated in App. A.1 to
the kinematical regime s ≈ sn0 (and thus t = u = (3s

c/n
0 − s)/2 ≈ sn0 ) with

4M2
π0 < 4M2

π < sn0 =
M2

η

3
+M2

π0 < (Mη −Mπ0)2 < 4M2
K < 4M2

K0 , (4.14)

which corresponds to the expansion at the common “center” of the Dalitz plot as discussed in
the previous section, and are thus all real. Hence, when matching to NREFT, the corrections
∆Ñ and ∆α̃ are going to be real, whereas without this matching prescription they would be
complex. More specifically, the calculational scheme consists of two simultaneous expansions
up-to-and-including second order for both amplitudes:

• the expansion in Mandelstam variables around the common “center” of the Dalitz plot
at s = sn0 and t = u in order to determine the normalizations and amplitude expansion
parameters according to (4.2),#6

• and the expansion in isospin-breaking parameters according to the unambiguous ordering
scheme discussed in Sect. 2.2.4 (again, neglecting terms of O

(
e4
)
), where in particular

the t- and u-channel loop functions in the charged amplitude require an additional
expansion in the argument t = u = sn0 +∆M2

π .

Together, these expansions then lead to derivatives up to third order of loop functions, which,
however, can be rewritten in terms of the original loop functions themselves. Since the calcu-
lation of the necessary derivatives is tedious but straightforward, here, we only give one simple
example based on (4.13),

d
ds
G̃(s) = − 1

M2
π

(
1− σ2π
4σ2π

)2{
2σ2π

1 + σ2π
1− σ2π

G̃(s) + J̃ππ(s)−
2 + σ2π
16π2

}
. (4.15)

When taking neutral-to-charged differences in order to derive the corrections ∆Ñ and
∆α̃ via (4.7), corresponding differences of loop functions occur (in addition to the kaon loop

#6On a rather technical note, we keep t = u (corresponding to the common part of the symmetries of both
amplitudes) fixed during the expansions by replacing both t and u in both amplitudes by s, sn0 , and ∆M2

π

via (2.34) or (2.36), respectively, so that we are effectively left with one kinematical expansion only (i.e. in s̃
around 0).
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function differences (A.11) without isospin-breaking prefactors mentioned before), e.g.#7

Jηπ(s)− Jηπ0(s) = −∆M2
π

M2
η

λ̃−1
ηπ0

{(
s

M2
η

+ 1− ρ

)[
J̄ηπ0(s)− 1

16π2

]
−

s
M2

η
− 1 + ρ

1− ρ

log ρ

16π2

}

+O
((

∆M2
π

)2
, p2
)
,

J̄ηπ0(s) =
1

32π2



2 +

(
1− ρ

s
M2

η

− 1 + ρ

1− ρ

)
log ρ−

λ̃
1/2
ηπ0

s
M2

η

log

s
M2

η
− 1− ρ+ λ̃

1/2
ηπ0

s
M2

η
− 1− ρ− λ̃

1/2
ηπ0





λ̃ηπ0

(
s

M2
η

)
=
ληπ0(s)

M4
η

=

[
s

M2
η

−
(
1−√

ρ
)2
][

s

M2
η

−
(
1 +

√
ρ
)2
]
, ρ =

M2
π0

M2
η

,

(4.16)

where for convenience we have defined the dimensionless and numerically small ratio ρ ≈ 1/16.
Now, we also expand all charged-to-neutral mass differences inside the loop functions and omit
any higher-order isospin-breaking corrections,#8 since besides yielding more compact formulae
in general this is particularly useful in the case of ∆Ñ : once all isospin-breaking effects are
unambiguously disentangled and made explicit by these expansions, the corrections to relations
stemming from the ∆I = 1 amplitude relation, which is valid at LO in isospin breaking, are
necessarily of NLO in isospin breaking, i.e. of O

(
e2δ, δ2

)
; due to the accidental validity of the

∆I = 1 amplitude relation at leading chiral O
(
p2
)

also for these terms, the correction ∆Ñ is of
O
(
p4
)
. As by neglecting terms of O

(
e4
)

throughout the calculation moreover ∆Ñ ∝ δ, we can
thus conveniently factor out the (real) neutral leading-order normalization N LO

n = ALO
n ∝ δ,

cf. (2.42), and quote the result as the ratio ∆Ñ /Nn below. In a similar fashion, the neglect of
purely electromagnetic second-order terms proportional to e4 allows for easily dividing by the
(real) LO normalizations in the derivation of the amplitude expansion parameters α̃, b̃, and d̃
that are needed for ∆α̃, which is of O

(
p−2
)
. Explicitly, we thereby find#9

∆Ñ
Nn

= e2
{
2(1− 3ρ)

3ρ
G̃(sn0 ) + J̃π0π0(sn0 ) +

3

16π2

(
log

M2
π0

µ2
− 1

)

− 4

3(1− ρ)

[
3(1 + ρ)(Kr

3 −Kr
4/2)− 4Kr

6 + 6(3− ρ)(Kr
10 +Kr

11)
]}

+
∆M2

π

3(1− ρ)F 2
π

{
29− 111ρ− 9ρ2 + 27ρ3

8(1 + 3ρ)
J̄K0K0(sn0 ) +

3ρ(1 + 22ρ+ 9ρ2)

(1− 9ρ)(1 + 3ρ)
J̄ηπ0(sn0 )

− 7 + 21ρ− 495ρ2 + 243ρ3

(1− 9ρ)(1 + 3ρ)
J̃π0π0(sn0 )− 32L3 +

8(3− ρ)

1− ρ

F 2
π

M2
η

∆F

+
1

16π2

[
6(3− 2ρ) log

M2
π0

µ2
+

2(1 + 2ρ− ρ2)

1− ρ
log

3 + ρ

4ρ
− 3(3− 26ρ− ρ2)

(1− 9ρ)(1− ρ)
log ρ

+
53− 357ρ+ 351ρ2 + 81ρ3

4(1− 9ρ)

]}
+O

(
e2p2

)
, (4.17)

#7Unfortunately, the formula for J̄ηπ(s) given in [3] contains a typographical error, cf. J̄ηπ0(s) in (4.16).
#8In particular, we do not need to use the unphysical loop function ∆3ηπ0 introduced in App. A.2 any longer.
#9In [3], the ratio ρ as well as the results for ∆Ñ /Nn and ∆α̃ are given in terms of the charged pion mass, the

difference being of O
(

e4
)

anyway. Furthermore, therein and here we only state the dominant errors, whereas
the whole omitted terms are given by O

(

e2δ, δ2, p4
)

and O
(

e2δ, δ2, p0
)

, respectively.
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which of course comprises the terms proportional to the (finite) strong LEC L3 or any of the
electromagnetic LECs already stated in (2.49), as well as

∆α̃ =
e2

(1− 9ρ)2(1− ρ)(1 + 3ρ)2
3

M4
η

{
7− 102ρ− 504ρ2 + 1926ρ3 − 3375ρ4

32π2(1− 9ρ)

+ 12ρ(1 + 63ρ2)G̃(sn0 )−
1− 14ρ− 138ρ2 + 234ρ3 − 1107ρ4

1− 9ρ
J̃π0π0(sn0 )

}

+
∆M2

π

(1− ρ)(1 + 3ρ)2F 2
π

3

M4
η

{
3(3 + ρ)(957− 5240ρ− 1398ρ2 − 288ρ3 + 81ρ4)

4096(1 + 3ρ)
J̄K0K0(sn0 )

+
ρ2(221− 3612ρ+ 32022ρ2 − 32076ρ3 − 2187ρ4)

8(1− 9ρ)3(1 + 3ρ)
J̄ηπ0(sn0 )

− 3ρ(3− 124ρ+ 1794ρ2 − 7596ρ3 + 9315ρ4)

(1− 9ρ)3(1 + 3ρ)
J̃π0π0(sn0 )

− 1

128π2(1− 9ρ)3

[
ρ2(37 + 237ρ− 2025ρ2 + 3159ρ3)

1− ρ
log ρ

− 1

256

(
243− 39737ρ+ 540471ρ2 − 729333ρ3 + 3630825ρ4 − 1810107ρ5

+ 85293ρ6 + 59049ρ7
)]}

+O
(
e2p−2

)
, (4.18)

which in turn is free of LECs at this chiral order, being a pure loop effect and thus a pre-
diction in terms of well-known parameters only. First of all, both results (4.17) and (4.18)
are divergence-free and independent of the scale µ. While the scale-independence of ∆α̃ is
explicitly seen, that of ∆Ñ /Nn can be checked by using the scale-dependence of the electro-
magnetic LECs Kr

i as given in App. A.3. Furthermore, as already anticipated before, these
corrections turn out to be completely of electromagnetic origin (up to corrections from O

(
δ3
)

at the amplitude level), i.e. they are not affected by taking into account the additional terms
of O

(
δ2
)

in the amplitudes as explained in App. A.2. Note that in both cases we have made
extensive use of the Gell-Mann–Okubo relation (2.16) to simplify the results (4.17) and (4.18),
thereby neglecting higher-order terms in the isospin-breaking parameters e2 and δ.

For the numerical evaluation we employ the same numerical input as in Chap. 3, which
is collected in App. A.3. The uncertainties in the electromagnetic LECs completely dominate
the error on ∆Ñ /Nn, in particular in comparison with the alterations induced by using the
charged pion mass instead and/or rewriting the mass of the η in terms of pion and kaon
masses via the GMO relation. For ∆α̃, being independent of any LECs at NLO, we quote
an uncertainty solely due to these different schemes for the evaluation of the meson masses;
however, we consider the error thus obtained rather underestimated. In total, we find

∆Ñ
Nn

= (−0.7± 1.5)% , ∆α̃ = (0.035± 0.003)GeV−4 ⇒ ∆α = (1.4± 0.1)× 10−4 .

(4.19)
We want to stress again that these are the numerical results in the form pertinent for (and
used in) the NREFT+ChPT analysis [3], i.e. including the modifications described above,
which in particular affect the loop functions and their expansions, leading to ∆α̃ being real
so that ∆α = ∆ᾱ = (3/2)R̃2

n∆α̃. Therefore, these numbers cannot easily be compared to
the numerical ChPT results presented in Sect. 3.4 (irrespective of the additional analytical
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difference of O
(
δ2
)

at the amplitude level). In view of the small central values for both
corrections, however, we refrain from repeating the calculation without the NREFT-motivated
changes, which would in particular involve more cumbersome expansions of the two-pion and
the triangle loop functions leading to complex numerical results.

Let us first discuss the correction ∆α. When matching to ChPT at NLO without taking
second-order isospin-breaking fully into account, the result for α in terms of the charged slopes
according to (4.10) is too small even if the “trivial” kinematical effects of isospin breaking and
all isospin-breaking contributions of higher charged slopes are included (cf. the discussion
in the previous section); the amount ∆α of this discrepancy, however, is numerically tiny in
comparison with the differences between the ChPT results up to two-loop order and experiment
(i.e. the “α-puzzle”): compared to the experimental world average of α = −0.0315 ± 0.0015
(i.e. ±5%) [34], it corresponds to an effect of less than half a percent and thus is very small
even for an isospin-breaking correction.#10 By thoroughly accounting for the ππ FSIs in the
two-loop (modified) NREFT formalism, the NREFT+ChPT analysis [3] including this tiny
correction yields α = −0.025 ± 0.005 (also corresponding to an relative uncertainty of ±5%,
whereas the included correction ∆α amounts to a relative effect of about 0.6%), which is in
(marginal) agreement with the experimental value and thus finally solves the “α-puzzle”.

The situation is quite different, however, as far as the correction ∆Ñ /Nn between the
normalizations is concerned. As already discussed in Chap. 1, in contrast to the individual
partial decay widths Γn/c, the neutral-to-charged ratio r of these partial widths turns out
to be relatively stable with respect to the chiral order, one reason being the fact that the
quark-mass-dependent normalization as a major source of uncertainties in the determination
of the decay widths drops out up to the correction ∆Ñ /Nn (in the “isospin limit” Mπ =Mπ0

of η → 3π decays). Since the widths are proportional to the squared absolute values of the
normalizations, according to (4.7) the normalization correction ∆Ñ /Nn gives rise (in this
limit) to a correction factor of approximately [1+2∆Ñ /Nn] for the ratio r so that the central
value of ∆Ñ /Nn leads to a decrease of r by about 1.4%. This correction is also included
in the final result r = 1.40 ± 0.01(ππ) ± 0.04(∆Ñ ) of [3], which is in agreement with the
experimental findings (see below) and moreover shows that for r the total uncertainty in the
NREFT+ChPT framework is dominated by the uncertainty in ∆Ñ /Nn as the error induced by
the parameterization of ππ rescattering (for the two-loop NREFT representation) is very small.
In this context, however, it is remarkable that with r = 1.432± 0.026 (fit) and r = 1.48± 0.05
(average) two rather different “experimental” values are given by [34]. In fact, the impact of
the uncertainty in ∆Ñ /Nn on the ratio r is one of the key results here: while e.g. in [66] a value
of r = 1.475± 0.015 (i.e. ±1%, resembling rNNLO = 1.47 of [21] due to matching to two-loop
ChPT) is reported and the authors claim that this result be stable against isospin-breaking
corrections, the present analysis on the contrary shows that — based on the present knowledge
of low-energy strong and electromagnetic interactions — any calculation of r inevitably entails
an uncertainty in r of about 2% to 3%. Admittedly, one might argue that for the numerical
evaluation of ∆Ñ /Nn one should divide by the NLO value of the neutral normalization rather
than only by the LO one as analytically done here due to the chiral power counting; according
to ΓLO

c ≈ 66 eV and ΓNLO
c ≈ 160 eV (both evaluated at Q = QD as employed in the present

work) the numerical result for ∆Ñ /Nn would then be divided by a factor of
√

160/66 ≈ 1.5 so

#10It is interesting to note that calculating the parameter α̃ itself with errors in analogy to those of ∆α̃ yields
α̃ = (4.3 ± 0.2)GeV−4 so that numerically the relative correction amounts to ∆α̃/α̃ = (0.8 ± 0.1)%; thus the
correction to α̃ induced by ∆α̃ is largely counterbalanced by the effect of ∆Ñ /Nn in total, cf. (4.5).
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that the rescaled relative error of ∆Ñ /Nn is about 1%, leading to an uncertainty in r of 2% at
least.#11 Nevertheless, we prefer the more conservative error estimate, which is consistent with
the chiral power counting for the relative correction ∆Ñ /Nn. A comparison with the averaged
experimental error then shows that presently both experiment and theory can determine r
with a precision of about ±3% only. In view of the differences between the “experimental”
values as well as between the results of distinct theoretical frameworks like e.g. [3] and [66]
on the one hand and the relative changes between predictions of ChPT at different orders
(while going from LO to NLO yields a decrease of about 4%, the additional effects at NNLO
amount to an increase of less than 1%, as discussed in Sect. 2.2.4) this uncertainty proves to
be substantial.

#11According to (3.18), using a 5% smaller Q-value leads to about 20% larger results for Γc/n in ChPT
calculations, e.g. ΓNLO

c ≈ 197 eV for Q = 22.8 (cf. the discussion in Sect. 2.1.3), being somewhat closer to
experimental findings. Of course, such a relative shift does not affect the rescaling of ∆Ñ /Nn.
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Chapter 5

Conclusion

In the first part of this work, we have re-evaluated the electromagnetic contributions to η → 3π
decays at next-to-leading O

(
p4
)

in ChPT, thus calculating the corrections to Sutherland’s the-
orem [4, 5] and extending an earlier analysis [15], which neglected terms of O

(
e2δ
)
. Terms

of this order, however, contain essential non-analytic structures affecting the Dalitz plot dis-
tribution, in particular real- and virtual-photon corrections in η → π0π+π− as well as the
cusps due to π+π− intermediate states in the ππ FSIs for η → 3π0; furthermore, the terms at
O
(
e2δ
)

are of second order in isospin breaking and hence violate the ∆I = 1 relation between
the charged and the neutral decay amplitude that is usually employed in combined analyses
of both η → 3π decay channels. At the soft-pion point, we have explicitly shown that these
additional terms are not suppressed by an additional small isospin-breaking parameter, but
only by a factor of δ/m̂ ≈ 2/3. Numerically, we have calculated the respective corrections to
the various Dalitz plot parameters, the partial decay widths Γn/c, and thereby the branching
ratio r; moreover, we derived the resulting correction for an extraction of the quark mass
double ratio Q2. In order to facilitate comparison with experimental results or application to
experimental studies, for the charged decay both bremsstrahlung and the subtraction of uni-
versal corrections have explicitly been taken into account (in the soft-photon approximation),
since in experimental analyses these effects are inevitable or usually applied, respectively. Al-
though the effects at O

(
e2δ
)

are of the same size as those at O
(
e2m̂

)
analyzed in [15], the

total electromagnetic corrections remain small (i.e. at the percent level) throughout, provided
that “trivial” kinematical isospin breaking due to the charged-to-neutral pion mass difference
is accounted for. The most significant changes occur in the η → 3π0 Dalitz plot slope α, which
is slightly more affected by the presence of the cusps than the other parameters. However, the
cusp effect is by far not sufficient to explain the sign discrepancy between chiral predictions
and experimental results (i.e. the “α-puzzle”), as especially in this case the purely electromag-
netic and the mixed strong and electromagnetic contributions almost cancel. Nevertheless, the
results can serve as electromagnetic correction factors in precision studies of η → 3π decays
and in particular for the determination of the quark mass double ratio Q2.

In [3], we subsequently bridged the gap between ChPT and phenomenology (as well as
dispersive analyses) by using the (modified) NREFT formalism: at two-loop accuracy and
with the correct empirical ππ scattering parameters for the FSIs, we obtained a reasonable
approximation to the full dispersive resummation of rescattering effects, so that by matching
to ChPT at O

(
p4
)

we found a transparent interpretation of the dispersive results obtained in
a similar fashion [17] and thus eventually solved the long-standing “α-puzzle”. In the second
part of this work, concretely, we have discussed how the electromagnetic corrections derived
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in [1] (together with additional second-order strong isospin breaking at O
(
δ2
)
) can be included

in the NREFT calculation of [3]. Although the non-relativistic framework itself provides ac-
cess to investigating most of the isospin-breaking effects even beyond leading order, due to
the necessary matching to ChPT the results of the first part of this work are complemen-
tary to the NREFT machinery, as they predict the polynomial terms and their higher-order
isospin-breaking corrections in the NREFT amplitudes. After explaining how to amend the
ChPT amplitudes at NLO as given in [1] by including also the terms at O

(
δ2
)
, we have thor-

oughly investigated the effect of “trivial” kinematical isospin breaking in the expansion of the
amplitudes that correspond to the usual parameterizations of the Dalitz plot distributions,
where special care needs to be taken of the definition of the “center” of the charged Dalitz
plot. Starting from the well-known and usually employed ∆I = 1 amplitude relation between
the neutral and the charged amplitude, we have then derived (in a self-consistent fashion) re-
lations between the amplitude expansion parameters and therefrom between the usual Dalitz
plot parameters on the one hand as well as the respective isospin-breaking corrections to these
relations on the other hand. Based on the (amended) ChPT amplitudes at NLO, we have
analytically calculated the corrections to both the relations between the normalizations and
between the parameters at quadratic order in Mandelstam variables (i.e. concerning the neu-
tral slope α) in the form needed for the combined NREFT+ChPT framework; remarkably,
both corrections turn out to be purely electromagnetic effects. The numerical evaluation of
these “non-trivial” isospin-breaking contributions has shown that the relative effect on the
normalization and on α is both of the order of 1%. Thereby, in [3] we were able to conclude
in summary that, apart from the important “trivial” kinematical effects mentioned before,
higher-order isospin-breaking corrections to the η → 3π Dalitz plot parameters are very small.
However, as far as the ratio r of the partial decay widths is concerned, we have demonstrated
that any current theoretical analysis necessarily entails an relative error on r of about 3%.

A future improvement on the theoretical side would be to combine the NREFT+ChPT
analysis of [3] with dispersive techniques, for instance with the upcoming dispersive analy-
sis [64,65]: as already indicated in Chap. 1, in combined dispersive analyses for both η → 3π
decay channels, which are in principle well suited for extracting e.g. the Dalitz plot param-
eters as they entail elastic ππ rescattering to all orders by construction, it is at least very
difficult (if possible at all) to accommodate the different pion masses. Therefore, it would be
extremely useful to match the dispersive machinery to the non-relativistic representation in
order to obtain a reliable description of the whole physical Dalitz plot, since the latter allows
to implement higher-order isospin breaking comprising in particular the non-analytic cusp
effect near the boundaries of the η → 3π0 Dalitz plot. More specifically, the NREFT+ChPT
representation can be used in a two-step procedure to first “purify” experimental data from
isospin-breaking effects in order to produce isospin-symmetric input for a subsequent disper-
sive analysis. This combination should then provide the best-possible representation of the
η → 3π decay amplitude also for a precision extraction of the quark mass double ratio Q2.

On the experimental side, of course, new high-statistics measurements of both η → π0π+π−

and η → 3π0 (preferably combined in order to reduce systematic uncertainties) are called for:
since for the charged decay channel only one modern determination of Dalitz plot parameters
exists up to now [25], new precise experimental information should allow to settle the contro-
versy concerning the internal consistency of the KLOE results on the Dalitz plot parameters,
i.e. the tension between the direct experimental determination of α [30] and a determina-
tion in terms of the charged parameters based on the ∆I = 1 amplitude relation including
second-order isospin-breaking corrections as discussed in the present work. In principle, a
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similar analysis is also possible for the higher-order Dalitz plot parameters that have not been
measured yet, e.g. in particular the neutral higher slope β (which is not influenced by O

(
p6
)

LECs). This together with the cusp effect, which starts to show up in current experimental
analyses, justifies also an investigation of the neutral decay channel; the combination of both
channels, finally, would then be able to yield a more robust and precise value for the branching
ratio r. Fortunately, for both processes new experimental studies are in progress, upcoming,
or at least envisaged [74–81].

Due to the fact that the standard polynomial Dalitz plot parameterizations are not able
to account for non-analytic effects like the cusps in η → 3π0, a matching/comparison between
experiment and theory on the level of the Dalitz plot distributions themselves will be strongly
favorable (especially for the future theoretical high-precision program mentioned above), as
soon as the respective data are provided by experiments.
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Appendix A

η → 3π decay amplitudes

at next-to-leading order

As already mentioned in Sect. 2.2, in this appendix, we do not explicitly state the complete
formulae for the η → 3π decay amplitudes at next-to-leading chiral O

(
p4
)

and considering
isospin breaking up-to-and-including O

(
e2, e2δ, δ2

)
, but rather discuss in detail the changes

that need to be applied to the amplitudes as given in [1] in order to include also second-order
strong isospin breaking at O

(
δ2
)
. Note that, upon neglecting numerically tiny terms of O

(
e4
)
,

the amended amplitudes are thus valid at next-to-leading order both in the chiral expansion
and in isospin breaking. Prior to that for convenience, we collect the basic loop functions
needed in this work, whereas after this investigation of the additional contributions at O

(
δ2
)
,

we specify the numerical input used throughout the numerical evaluations.

A.1 Loop functions

The basic meson loop functions are defined by#1

∆a =
1

i

∫
ddk

(2π)d
1

M2
a − k2

,

Jab(s) = Jba(s) =
1

i

∫
ddk

(2π)d
1[

M2
a − k2

][
M2

b − (k − q)2
] , s = q2 . (A.1)

The tadpole “function” ∆a (in terms of the number of dimensions d and the renormalization
scale µ) is given by

∆a = 2M2
a

{
λ+

1

16π2
log

Ma

µ

}
, (A.2)

with the scale-dependent constant λ containing the part that is divergent in d− 4,

λ =
µd−4

16π2

{
1

d− 4
− 1

2

(
log(4π) + Γ′(1) + 1

)}
, (A.3)

where −Γ′(1) = γE ≈ 0.5772 is the Euler–Mascheroni constant. The symmetric two-point
loop function Jab(s) can be split up according to

Jab(s) = J̄ab(s) + Jab(0) , Jab(0) = −2λ− 2kab , (A.4)

#1All propagators are to be understood in the causal form −i/(M2 − k2 − iε) with ε → 0.
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with the scale-dependent constant (“function”) kab and the scale-independent function J̄ab(s),

kab =
1

16π2∆ab

{
M2

a log
Ma

µ
−M2

b log
Mb

µ

}
,

J̄ab(s) = − 1

16π2

{(
∆ab

s
− Σab

∆ab

)
log

Ma

Mb
− 1

+

√
λab
s

[
1

2
log

s− Σab +
√
λab

s− Σab −
√
λab

− πi θ
(
s− (Ma +Mb)

2
)]
θ
(
λab
)

+

√−λab
s

[
arctan

∆ab + s√−λab
− arctan

∆ab − s√−λab

]
θ
(
−λab

)}
, (A.5)

where besides λab(s) of (2.30) and the usual Heaviside function θ(x) we used the abbreviations

Σab =M2
a +M2

b , ∆ab =M2
a −M2

b . (A.6)

In the case of equal masses M2
a =M2

b , the above relations simplify to (cf. (2.31))

kaa =
1

16π2

(
log

Ma

µ
+

1

2

)
,

J̄aa(s) = − 1

16π2

{
− 2 + σa log

σa + 1

σa − 1
θ(−s) + σa

[
log

1 + σa
1− σa

− πi

]
θ
(
s− 4M2

a

)

+ 2
√
−σ2a arccot

√
−σ2a θ

(
−σ2a

)}
. (A.7)

The triangle loop function G(s) corresponding to the loop integral involving two charged-
pion propagators and one virtual-photon propagator (introducing a finite photon mass here),

1

i

∫
ddk

(2π)d
1[

M2
π − (k + qa)2

][
M2

π − (k − qb)2
][
k2 −m2

γ

] , (A.8)

evaluated in the relevant kinematical region s > 4M2
π above the ππ threshold (i.e. σπ ∈ (0, 1))

and up to corrections at O
(
m2

γ

)
, can be written as#2

G(s) = − 1

8π2 sσπ

{
π2

3
+ Li

2σπ
1 + σπ

+
1

4
log2

1− σπ
1 + σπ

− 1

2
log

m2
γ

sσ2π

[
log

1− σπ
1 + σπ

+ πi

]}
(A.9)

= − 1

16π2 sσπ

{
π2 + Li

1 + σπ
1− σπ

− Li
1− σπ
1 + σπ

+ πi log
4σ2π

1− σ2π
+ log

m2
γ

M2
π

[
log

1 + σπ
1− σπ

− πi

]}

using either the usual dilogarithm Li2 or Spence’s function Li (cf. e.g. [130]) according to

Li(z) = −
z∫

1

dt
log t

t− 1
= Li2(1− z) , Li2(z) = −

1∫

0

dt
log(1− zt)

t
. (A.10)

In the second representation of G(s) given in (A.9), the real part of the Coulomb pole, i.e.
the kinematical divergence at the ππ threshold (where σπ = 0), resides solely in the term pro-
portional to π2; furthermore, it is convenient for the comparison of different IR regularization
schemes as discussed in Sects. 3.1 and 4.2.

#2Note that the result in [118] contains a typographical error and uses a different sign convention for Li.
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A.2 Amplitudes at second order in isospin breaking

In order to derive the additional contributions at O
(
δ2
)
, in principle one needs to reconsider

all contributions to the charged and the neutral NLO amplitudes as given in [1]. However,
based on the important observation that the LO amplitudes (2.40) and (2.42) are valid up
to corrections of O

(
δ3
)
, already in [1] it was pointed out that corrections at second-order

in strong isospin breaking are to be expected solely from expanding the implicitly isospin-
breaking charged-to-neutral kaon loop differences (mentioned already in Sect. 2.2.3) in terms
of the isospin-breaking parameters as needed in order to achieve an explicit and unambiguous
disentanglement of strong and electromagnetic isospin breaking up to the desired orders (at a
given chiral order), cf. Sects. 2.2.2 and 2.2.4. According to the generic meson loop functions
given in App. A.1, the expansions of the kaon loop function differences for the tadpole functions
∆K −∆K0 and the two-point functions JKK − JK0K0 read (cf. (A.2) and (A.5))

∆K −∆K0 = ∆M2
K

[
∆K0

M2
K0

+
1

16π2

]
+

(
∆M2

K

)2

32π2M2
K0

+O
(
e2δ2, δ3, p4

)
,

JKK(s)− JK0K0(s) = −2
∆M2

K

s− 4M2
K0

[
J̄K0K0(s)− 1

8π2

]

− 2

[
∆M2

K

s− 4M2
K0

]2 [
J̄K0K0(s) +

s− 8M2
K0

32π2M2
K0

]
+O

(
e2δ2, δ3, p2

)
, (A.11)

where the charged-to-neutral kaon mass difference ∆M2
K is understood to be evaluated at

leading chiral order via (2.14). Since the terms of O
(
δ2
)

are not of electromagnetic origin,
they have been disregarded in the analysis of [1]; nevertheless, it was noted therein that their
suppression with respect to the leading isospin-breaking terms is never enhanced compared to
∆M2

K/M
2
K0 . We want to stress again, however, that in general we do not expand in charged-

to-neutral mass differences (or, effectively, replace masses) inside loop functions, unless this is
inevitable like in Sect. 4.2. Thereby, using the physical meson masses, all cuts (even outside
the physical region) remain at their exact places, which is important for instance for the
cusp effect in η → 3π0, see Sect. 2.2.4; furthermore, no implicit higher-order isospin-breaking
effects are neglected without need in numerical evaluations. Moreover, as already indicated
in Sect. 2.2.3, especially for the kaon loop differences it is favorable not to perform these
expansions until it is necessary: besides yielding shorter formulae, most of the amplitude
contributions given in [1] are therefore also valid at O

(
δ2
)
. Unfortunately, it turned out that

the full amplitudes of [1] are neither finite nor scale-independent at this particular second
order in strong isospin breaking. Therefore, a thorough re-analysis of all contributions was
necessary, which eventually revealed an inconsistency concerning the definition of the isospin
limit for the meson decay constants in ChPT at NLO to be discussed below.

Accordingly, we initially collect all parts of the η → π0π+π− and η → 3π0 amplitudes
that — in the explicit form they are given in [1] — are also valid up-to-and-including O

(
δ2
)

in Tab. A.1, where we also indicate the terms containing differences of kaon loop functions
without isospin-breaking prefactors.#3 Here, we merely skip through these contributions very
cursorily; for the precise definitions of these quantities as well as their relations to the full

#3Of course, in analogy also differences of pion loop functions contain both electromagnetic and strong
isospin-breaking effects, cf. (2.14), which are, however, beyond the accuracy we are concerned with, since these
differences are always accompanied by isospin-breaking prefactors.



62 Appendix A: η → 3π decay amplitudes at next-to-leading order

quantity valid up to +O
(
e4, . . .

)
∆K −∆K0 JKK − JK0K0

Zη, Zπ0 +O
(
e2δ, δ2, p4

)

Zπ +O
(
δ2, p4

)

∆M , ∆Z +O
(
e2δ, δ2, p6

)

∆Q +O
(
e2δ, δ2, p4

)

ǫ4, Zπ0η +O
(
e2δ2, δ3, p4

)
×

ALO
π0η +O

(
δ2, p4

)

Act
c/n +O

(
e2δ2, δ3, p6

)

∆GMO +O
(
δ2, p4

)

Atad
c/n +O

(
e2δ2, δ3, p6

)
×

As
c, Astu

n +O
(
e2δ2, δ3, p6

)
× ×

At
π0π, At

K0K +O
(
e2δ2, δ3, p6

)

At
ηπ +O

(
δ3, p6

)

Aπγ
c , Aππγ

c +O
(
e2δ2, p6

)

Table A.1: Validity of the NLO contributions to the η → 3π decay amplitudes as given
in [1]. Marks denote contributions of corresponding kaon loop function differences without
isospin-breaking prefactors. See main text for details.

amplitudes we refer to [1]: first of all, there are no O(δ) contributions to the NLO wave
function renormalization Z-factors (following from the full/dressed NLO propagators, the
implicit π0η mixing contained in Zπ being of higher order in isospin breaking) that multiply
the LO amplitudes (2.40) and (2.42), which in turn are already proportional to δ. Similarly,
the NLO renormalization corrections ∆M , ∆Z , and ∆Q to the LO amplitudes (due to the
replacement of quarks masses and the LO electromagnetic LEC Z by meson masses), which
hence also carry a prefactor of δ, do not entail terms at O(δ). The quantities ǫ4 and Zπ0η that
multiply the isospin-conserving leading-order amplitudes

ALO
π0η ∈

{
ALO

π0→π0π+π− ,ALO
η→ηπ+π− ,ALO

π0→3π0 ,ALO
η→η2π0

}
(A.12)

in order to account for π0η mixing at next-to-leading chiral order, in contrast, do not contain
purely strong O

(
δ2
)

terms except those already implicitly included via the kaon tadpole differ-
ence. The counter-term contributions Act

c/n (corresponding to tree graphs with NLO vertices
and thereby introducing NLO strong and electromagnetic LECs) give rise only to higher-order
corrections,#4 and the Gell-Mann–Okubo correction ∆GMO defined in (2.17), which is used
to eliminate the dependence on some strong LECs in the previously addressed parts and thus
goes always along with some isospin-breaking prefactor, does not yield additional corrections
at O(δ). The remaining loop contributions can be divided into purely mesonic diagrams and

#4The counter-term contributions Act
c/n are given explicitly only in [39] but not in [1], since they are fully

included in the total NLO tree-like amplitudes Atree
c/n as defined and explained in [1], cf. (A.17) and (A.19).
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loops involving virtual photons, which in any case do not lead to effects at O
(
δ2
)

beyond
those comprised in kaon loop differences: while Atad

c corresponds to summing up all pertinent
diagrams with a meson tadpole at the (LO) vertex, for the rescattering contributions (denoted
by Mandelstam variables as superscripts) we employ the respective symmetry properties of
the amplitudes as discussed in Sect. 2.2.3, so that we can identify Astu

n = Ãn for the fully
symmetric neutral amplitude, compare (2.48), whereas for the t↔ u symmetric charged decay
one needs to consider the s-channel and one of the other two kinematical channels, e.g. the
t-channel (again, there is no implicit π0η mixing for At

ηπ at this order in isospin breaking, cf.
Zπ), separately.#5 Finally, the photon loop contributions Aπγ

c and Aππγ
c , which have already

been discussed in Sect. 3.1, are necessarily proportional to e2 at least.

Now, we are prepared to discuss the necessary changes at O
(
δ2
)

that are not simply
accounted for by just expanding the kaon loop function differences up to this order as discussed
above. Obviously, we still need to consider those contributions to the full amplitudes that
are not listed in Tab. A.1, namely the NLO renormalization corrections to the meson decay
constants, i.e. ∆Fπ and ∆F as defined in (2.4), which enter the full tree-like amplitudes Atree

c/n .
As it turns out, special care needs to be taken of these quantities: while ∆Fπ is needed in
order to renormalize the replacement of the bare Goldstone boson decay constant F0 by the
pion decay constant Fπ in the LO amplitudes, the correction ∆F to the ratio of the kaon
and the pion decay constants is introduced to eliminate further LECs.#6 Consequently, both
quantities always carry a prefactor of δ. As the physical value of Fπ (Fπ = 92.2MeV [131], cf.
Sect. A.3) has been extracted from decays of charged pions with electromagnetic corrections
already taken into account (and in analogy for FK , see also [132] and [93]), we use the charged-
pion decay constant in the absence of electromagnetism, so that in [1] the relation of Fπ to
F0 is as given in Ref. [12] (where electromagnetic corrections are neglected as well) for the
isospin limit; accordingly, we also use the correction ∆F without isospin breaking as given
therein. More specifically, in [12] these quantities are defined to be isospin-symmetric at the
level of quark masses, i.e. using only m̂ andms, whereas the tadpole loop contributions to them
are written therein in terms of meson masses for convenience. Neglecting terms proportional
to e2 or δ, according to (2.13) one can easily identify at leading chiral order M2

π = 2B0m̂
and M2

K = B0(ms + m̂) both for the charged meson masses and the meson masses in the
isospin limit, when replacing these quark-mass isospin-symmetric meson masses inside the loop
functions by physical meson masses. If one were to neglect only electromagnetic corrections
at LO, the charged pion mass is fine, whereas for the kaons only the average mass excludes
strong corrections. However, as soon as such corrections to the meson masses are considered
as in [1], one is forced to use the neutral masses (cf. the discussion of or conventions for the
isospin limit and the ordering scheme in isospin-breaking parameters in Sect.2.2.3), which in
turn lead to strong effects at O

(
δ2
)

and O(δ) for the pions and the kaons, respectively. While
these effects, in combination with the prefactor of δ mentioned above, are beyond the scope
of [1], this prescription for the kaon tadpoles contained in ∆Fπ and ∆F affects the amplitudes
at O

(
δ2
)
: in fact, without the following amendment, both amplitudes are neither finite nor

independent of the renormalization scale at this order.

#5When comparing to (2.48), note that in the case of the charged amplitude also the total NLO tree-like
amplitude Atree

c (A.17) contains kinematical dependences.
#6Both L7 and L8 can be eliminated simultaneously in terms of ∆GMO, while L5 can be replaced by ∆F ;

the dependences on K7 and K8 are already canceled by the NLO renormalization corrections ∆M and ∆Z .
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According to the relation (cf. (2.18))

B0(ms + m̂) =
1

8

[
3
(
M2

η +M2
π0

)
+ 2
(
M2

K +M2
K0 −M2

π

)]
+O

(
p4
)

=
1

2

[
M2

K +M2
K0 − 2F 2

0Ze
2
]
+O

(
p4
)

=
1

4

[
3M2

η +M2
π0

]
+O

(
δ2, p4

)
, (A.13)

these effects at O
(
δ2
)

— spuriously introduced in [1] — can be avoided by using the (however
unphysical) tadpole function (cf. (A.2))

∆K0 → ∆3ηπ0 = ∆a

∣∣∣
4M2

a=3M2
η+M2

π0

, (A.14)

which is isospin-symmetric and finite at O(δ), in the definitions of ∆Fπ and ∆F instead of
∆K0 as used in [1]. Thereby, contrary to [1] we have to use

∆Fπ =
1

F 2
π

{
6(M2

η +M2
π0)L4 + 4M2

π0L5 −∆π0 − ∆3ηπ0

2

}
+O

(
e2, δ2, p4

)
,

∆F =
1

F 2
π

{
3(M2

η −M2
π0)L5 +

1

8

[
5∆π0 − 3∆η − 2∆3ηπ0

]}
+O

(
e2, δ2, p4

)
, (A.15)

leading to slightly modified NLO tree-like amplitudes Atree
c/n , which are stated explicitly in

the two following sections. Of course, we have explicitly verified that the correspondingly
modified full NLO amplitudes ANLO

c/n (see [1] for the precise definitions) are both finite and

scale-independent also at O
(
δ2
)
.

A.2.1 η → π0π+π− decay amplitude

In comparison with the formula for the total NLO tree-like amplitude Atree
c as given as equa-

tion (A.22) in [1], applying the corrections to include all contributions at O
(
δ2
)

as discussed
in the previous section amounts to changing the seventh line according to

(11M2
η − 3M2

π0)
∆K

2
+ (5M2

η + 7M2
π0)

∆K0

2

=
1

2
(3M2

η − 5M2
π0)(∆K −∆K0) + (4M2

η +M2
π0)(∆K +∆K0)

→ 1

2
(3M2

η − 5M2
π0)(∆K +∆K0 − 2∆3ηπ0) + (4M2

η +M2
π0)(∆K +∆K0)

=
1

2
(11M2

η − 3M2
π0)(∆K +∆K0)− (3M2

η − 5M2
π0)∆3ηπ0 . (A.16)

Moreover, the tadpole function ∆3ηπ0 enters in lines 10 and 17 both via ∆K0 → ∆3ηπ0 .
Although the latter changes only affect even higher orders in isospin breaking, so that one
could also just keep the original ∆K0 up to corrections of O

(
e2δ2

)
, we use ∆3ηπ0 throughout

for the sake of clarity.
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The full formula for the charged decay then reads

Atree
c =

∆K −∆K0

6
√
3F 4

π

[
(3s− 4M2

π0)2M
2
η

M2
η −M2

π0

− (2M2
η −M2

π0)

]

+
e2(3s− 4M2

π0)4M
2
π0

9
√
3F 2

π (M
2
η −M2

π0)

[
3(K3 −K4/2)− (K5 +K6) + (K9 +K10)

]

− 1

Q22
√
3F 2

πM
2
π0

{

× (3s− 4M2
π0)

[
3M2

η +M2
π0

8
+
M2

η

2
∆GMO +

(3M2
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2
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π6M
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η
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∆F

+
1

24F 2
π
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η +M2
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η − 3M2
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η +M2
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η −M2
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+
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2
η
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π0)

[
15M2

η +M2
π0

64π2
− 3M2

η

∆K −∆π

M2
η −M2

π0

+
3M2

η +M2
π0

3

(
3

64π2
log

m2
γ

M2
π

+
3

4

∆π

M2
π

+ (K1 +K2) +K5 −
M2

π0

3

3(K3 −K4/2)− (K5 +K6) + (K9 +K10)

M2
η −M2

π0

)

−
(
2M2

η − M2
π0

3

)
(K3 −K4/2)−M2

η (K9 − 5K10 − 6K11)

]

+ e2(3M2
η +M2

π0)

[
M2

π0

16π2
− 2M2

π0

∆K −∆π

M2
η −M2

π0

+
3

4
∆π +

3

2
(M2

η −M2
π0)(K3 −K4/2)

− M2
π0

3
K5 −M2

ηK6 + 3(M2
η +M2

π0)(K10 +K11)

]}
+O

(
e2δ2, δ3, p6

)
. (A.17)
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A.2.2 η → 3π0 decay amplitude

For the neutral decay in analogy, the amplitude Atree
n given as equation (A.25) in [1] needs to

be modified in the sixth line according to

(∆K −∆K0) → (∆K +∆K0 − 2∆3ηπ0) . (A.18)

Together with the related optional (higher-order) change ∆K0 → ∆3ηπ0 in line 10, the complete
formula takes the form

Atree
n =

(∆K −∆K0)M2
π0

2
√
3F 4

π

+
e24M2

π0

3
√
3F 2

π

[
3(K3 −K4/2)− (K5 +K6) + (K9 +K10)

]

− 1

Q22
√
3F 2

πM
2
π0

{

× (3M2
η +M2

π0)

[
3

8
(M2

η −M2
π0) +M2

π0∆F

+
1

32F 2
π (M

2
η −M2

π0)

(
(∆π −∆π0)3

27M6
η − 47M4

ηM
2
π0 + 69M2

ηM
4
π0 + 15M6

π0

3M2
η +M2

π0

− 2
51M6

η − 199M4
ηM

2
π0 − 51M2

ηM
4
π0 + 7M6

π0

3M2
η +M2

π0

∆η − (3M4
η − 19M4

π0)(∆π +∆π0)

− 4(M2
η −M2

π0)(3M
2
η − 5M2

π0)∆3ηπ0 + 2(9M4
η − 36M2

ηM
2
π0 − 5M4

π0)(∆K +∆K0)

)

− e2

3

(
3(M2

η −M2
π0)(K1 +K2)− 6(M2

η +M2
π0)(K3 −K4/2)

+ (3M2
η +M2

π0)(K5 +K6)− 7M2
π0(K9 +K10)

)]

+ (3M4
η − 9M2

ηM
2
π0 − 2M4

π0)

[
∆GMO

2

+
∆M2

π

M2
η −M2

π0

(
2∆F +

1

4F 2
π

{
4(∆K −∆π) + 2∆3ηπ0 − 5∆π0 + 3∆η

})

+ e2
(
3
∆K −∆π

M2
η −M2

π0

− 3

16π2
+ 3(K3 −K4/2) + (K9 − 5K10 − 6K11)

)]}

+O
(
e2δ2, δ3, p6

)
. (A.19)

A.3 Numerical input

Here, we give the input data as used for the numerical evaluation of the η → 3π decay
amplitudes both in Chap. 3 (excluding O

(
δ2
)
) and Chap. 4 (including O

(
δ2
)
).

For the meson masses and decay constants we employ the values given in Tab. A.2,#7

where for the kaon decay constant in fact we use FK = 1.193Fπ relying on Standard Model
#7Note the change of Mη in comparison with older values; in particular Mη = 547.3MeV is used in [21].
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p π0 π K K0 η

Mp [MeV] 134.98 139.57 493.68 497.61 547.85

Fp [MeV] 92.2 110.0∗

Table A.2: Meson masses and decay constants according to [131]. See main text for details.

i 1 2 3 4 5 6 9 10 11

103 ×Kr
i −2.7 0.7 2.7 1.4 11.6 2.8 0∗ 4.0 1.3

4× Σi 3 4Z −3 8Z −9 6Z −1 1 + 6Z 1/2

Table A.3: Electromagnetic LECs at NLO and scaling coefficients. See main text for details.

electroweak couplings [133] (also being in agreement with recent three-flavor lattice QCD
averages [100–102]). The electric charge and the quark mass double ratio are evaluated using

e2 =
4π

137.036
, Q = 24.2 ≈ QD , (A.20)

and the photon cutoff energy Ecut is set to a typical detector resolution of 10MeV. For the only
strong LEC not expressed in terms of physical observables, we use the (finite) value [134]#8

L3 = −3.5× 10−3 . (A.21)

As we concentrate on the electromagnetic corrections in this article, we do not consider uncer-
tainties for L3. For the remaining next-to-leading order electromagnetic low-energy constants
Kr

i , we rely on the estimates in [112, 113, 136] (cf. [137] and see also [110, 138] for further al-
ternatives; for the recent status of lattice QCD(+QED) results on strong and electromagnetic
LECs see [100]) using the Feynman gauge and given at the scale µ = Mρ = 0.770GeV as
collected in Tab. A.3.#9 Since no number for Kr

9 is offered, we use Kr
9 = 0 according to the

earlier evaluation [137].
The uncertainties in the Kr

i are difficult to assess, but they are the dominant sources of
uncertainties for the electromagnetic corrections. Hence, we adopt the following procedure:
since the values of the renormalized LECs at two different scales are related by

Kr
i (µ2) = Kr

i (µ1) +
Σi

16π2
ln
µ1
µ2

, (A.22)

it appears natural to use correlated errors due to a variation of scale according to

Kr
i → Kr

i ±
Σi

16π2
, (A.23)

where the respective coefficients according to [14] are also displayed in Tab. A.3. This pro-
cedure has the advantage that the resulting error estimate is invariant under a redefinition

#8Note that a recent global fit of all Lr
i including resonance estimates for the strong LECs at two-loop order

yields 103 × L3 = −3.04 ± 0.43 [135], whereas lattice QCD yields results only for those Lr
i (or combinations

thereof) that depend on quark masses, i.e. not for L3.
#9Unfortunately, the value for Kr

5 was not given in [1].
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of the effective electromagnetic NLO Lagrangian, in contrast to a more naive uncorrelated
variation of all Kr

i according to Kr
i ± 1/16π2. However, in some cases (most notably for the

normalization of the DKM amplitude for η → π0π+π−), an accidental cancellation between
the various Σi when applying (A.23) leads to an unrealistically small error. In those cases, we
have replaced the Σi by 1 in (A.23) and marked the corresponding errors, thus obtained in a
non-standard way, by an asterisk in Tables 3.1, 3.3, and 3.4.



69

Appendix B

Derivation of the

∆I = 1 amplitude relation

In this appendix, we derive the important ∆I = 1 amplitude relation (2.46) by explicitly
proving the corresponding necessary statements made in Sect. 2.2.3 (cf. [13, 139,140]).

To begin with, we explicitly demonstrate that the sources for both strong and electro-
magnetic isospin breaking as given in Chap. 1 comprise the necessary ∆I = 1 operators. For
this purpose, let us recall the fact that the pions transform like (iso-)vectors under isospin
rotations; more specifically, in the Cartesian basis πk 7→ Rkaπa with R ∈ O(3) (i.e. under the
representation D1 of SU(2)).

The strong isospin-breaking operator from HQCD = q̄Mq in (1.1) entails the difference
(ūu−d̄d) = q̄λ3q, where M denotes the quark mass matrix defined in (2.3), λ3 = diag(1,−1, 0)
is the third Gell-Mann matrix, and q = (u, d, s)T collects the light and strange quark field
operators. The latter transform as q 7→ Uq with U ∈ SU(3), so that q̄λnq 7→ q̄U †λnUq. For
pure u–d isospin rotations, i.e. λn = diag(τn, 0) with Pauli matrices τn for n ∈ {1, 2, 3} and
U = diag(V, 1) with V ∈ SU(2), one has

(
U †λnU

)†
= U †λnU = diag

(
Ṽ , 0

)
= R̃ndλd , (B.1)

where Ṽ ∈ SU(2), tr Ṽ = 0, d ∈ {1, 2, 3}, and some real 3× 3 coefficient matrix R̃, since the
Gell-Mann (Pauli) matrices form a basis of the traceless SU(3) (SU(2)) matrices. From

tr
{
U †λkUU †λlU

}
= tr

{
λkλl

}
= 2δkl , (B.2)

which is valid for all λa with a ∈ {1, 2, . . . , 8}, on the one hand and

tr
{
U †λkUU †λlU

}
= tr

{
R̃kmλmR̃lnλn

}
= R̃kmR̃ln2δmn = 2(R̃R̃T )kl (B.3)

on the other hand, one can conclude that R̃R̃T = 1 and hence R̃ ∈ O(3), too. Thus, these
pure isospin rotations can be uniformly described by a matrix R ∈ O(3) both for the pions and
the light quarks, i.e. the operator q̄λnq transforms exactly as a pion, q̄λnq 7→ Rndq̄λdq, and
carries the quantum numbers I = 1 and I3 = 0 (the latter following from q̄q being neutral,
cf. the Gell-Mann–Nishijima formula Q = I3 + Y/2 discussed in Sect. 2.2.3). Accordingly, it
generates transitions between states with ∆I = 1 and ∆I3 = 0, thus violating the conservation
of the total isospin but conserving its third component (i.e. the electromagnetic charge).
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The electromagnetic isospin-breaking operator corresponding to HQED in (1.2), in turn,
comprises a virtual-photon propagator and two electromagnetic currents, which in terms of
the quark field operators and the quark charge matrix defined in (2.7) read jµ = q̄Qe γµq,
thus also containing the difference q̄λ3q. Furthermore, according to the Gell-Mann–Nishijima
formula these currents can be decomposed into an isovector component j3µ and an isoscalar
component jYµ as jµ = j3µ + jYµ /2. Since the product jµjν is even under charge conjugation,
only the interference term (j3µj

Y
ν + jYµ j

3
ν) (corresponding to I = 1) carries the proper G-parity

of −1. Moreover, from charge conservation it is clear that it must have I3 = 0, so that again
∆I = 1 and ∆I3 = 0.

Therefore, we can conclude that for both strong and electromagnetic leading-order isospin
breaking the corresponding operator transforms as an isovector like the pions and is neutral,
which means that it carries the isospin component index 3 (referring to the Cartesian basis).
Since the pion states in the charge basis and the Cartesian basis are simply linear combinations
of each other, see #1 of Chap. 2, we can generically write (cf. (2.27))

i (2π)4δ(4)(pη − pout)Aklm(s1, s2, s3) =
〈
πk1π

l
2π

m
3

∣∣η
〉
=
〈
πk1π

l
2π

m
3

∣∣Ô n=3
e2,δ

∣∣η
〉
+O

(
e4, e2δ, δ2

)
,

(B.4)
where the three outgoing pions have to be in a state with total I = 1 and I3 = 0. Neglecting
isospin-breaking corrections beyond the leading order already contained in Ô n=3

e2,δ , we have

invariance under isospin rotations,#1

Aklm,n = i (2π)4δ(4)(pη−pout)Aklm,n(s1, s2, s3) =
〈
πk1π

l
2π

m
3

∣∣Ô n
e2,δ

∣∣η
〉
= RkaRlbRmcRndAabc,d .

(B.5)
Defining row vectors of the rotation matrix R via wa = Rka, xb = Rlb, yc = Rmc, and
zd = Rnd depending on the isospin indices k, l,m, n ∈ {1, 2, 3} (thus at least two of the four
vectors w,x,y, z are identical), the previous equation can be rewritten as

f(w,x,y, z) = waxbyczdAabc,d . (B.6)

Another rotation by R then amounts to the inverse rotation RT acting on each of the four
argument vectors,

f(w,x,y, z) 7→ waxbyczdRaoRbpRcqRdrAopq,r =
(
RTw

)o(
RTx

)p(
RTy

)q(
RT z

)r
Aopq,r

= f
(
RTw, RTx, RTy, RT z

)
, (B.7)

and since f is required to be invariant under such rotations, it can only depend on scalar
products of these vectors. As f depends linearly on all of its arguments, moreover, we can
decompose it according to

f(w,x,y, z) = (z ·w)(x · y)A1 + (z · x)(w · y)A2 + (z · y)(w · x)A3 , (B.8)

where the scalar products reduce to e.g.

(z ·w)(x · y) =
(
RndRkd

)(
RlbRmb

)
=
(
RRT

)nk(
RRT

)lm
= δnkδlm (B.9)

and in analogy for the others, so that

Aklm,n = δnkδlmA1 + δnlδmkA2 + δnmδklA3 . (B.10)

#1In principle, the following relations with general n also apply to ππ scattering.
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With the definitions Ai = i (2π)4δ(4)(pη − pout)Ai (cf. (B.5)) we therefore have

〈
πk1 (p1)π

l
2(p2)π

m
3 (p3)

∣∣Ô n
e2,δ

∣∣η(pη)
〉
= i (2π)4δ(4)

(
pη − (p1 + p2 + p3)

)
(B.11)

×
[
δnkδlmA1(s1, s2, s3) + δnlδmkA2(s1, s2, s3) + δnmδklA3(s1, s2, s3)

]
.

From the invariance of the full amplitude Aklm,n(s1, s2, s3) under permutations of the outgoing
pions we can conclude for each pion πi with i ∈ {1, 2, 3} by simultaneously interchanging both
the isospin indices and the 4-momenta of the other two pions (thus also interchanging the
respective Mandelstam variables), that Ai is invariant under this operation whereas the other
two amplitudes are interchanged, e.g. for i = 1

l ↔ m and p2 ↔ p3 (s2 ↔ s3) ⇒ A1(s1, s2, s3) = A1(s1, s3, s2) and

A2(s1, s2, s3) = A3(s1, s3, s2) (B.12)

and in analogy for the cyclic permutations of 123. Combining these relations yields

Aklm,n(s1, s2, s3) = δnkδlmA1(s1, s2, s3)+δ
nlδmkA1(s2, s3, s1)+δ

nmδklA1(s3, s1, s2) , (B.13)

resembling the structure of the ππ scattering amplitude for general n, and for the special case
n = 3 corresponding to η → 3π we can read off (cf. (B.4))

A311(s1, s2, s3) = A322(s1, s2, s3) = A1(s1, s2, s3) +O
(
e4, e2δ, δ2

)
,

A333(s1, s2, s3) = A1(s1, s2, s3) +A1(s2, s3, s1) +A1(s3, s1, s2) +O
(
e4, e2δ, δ2

)
. (B.14)

With |π0〉 = |π3〉 (up to isospin breaking corrections, cf. Sect. 2.1.2 and #1 of Chap. 2) and

∣∣π±
〉
=

1√
2

{∣∣π1
〉
± i
∣∣π2
〉}

⇒
∣∣π0
〉∣∣π+

〉∣∣π−
〉
=

1

2

∣∣π3
〉{∣∣π1

〉∣∣π1
〉
+
∣∣π2
〉∣∣π2

〉}
(B.15)

leading to the identifications#2

An(s1, s2, s3) = A333(s1, s2, s3) , A1(s1, s2, s3) = Ac(s1, s2, s3) , (B.16)

we thus can eventually infer the ∆I = 1 amplitude relation (2.46).

#2Using the spherical convention (i.e. the Condon–Shortley phase convention), on the contrary, the additional
sign for |π+〉 yields A1(s1, s2, s3) = −Ac(s1, s2, s3) and thus an overall sign on the RHS of the ∆I = 1 amplitude
relation (2.46).
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Part II

Roy–Steiner equations

for πN scattering‡

‡Most contents of this part have been published in [141].
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Chapter 6

Introduction

Pion–nucleon (πN) scattering is one of the most basic and fundamental processes in hadron
physics. On the theoretical side it serves as the prototype reaction of meson–baryon scattering,
and on the experimental side its good accessibility has enabled the collection of a large data
basis. Consequently, a cornucopia of methods (e.g. dispersion relations, resonance models,
quark models, and chiral perturbation theory (ChPT), just to name a few) have been utilized
in a multitude of investigations for many decades. Nevertheless, the πN scattering amplitude
is still not known to sufficient precision in the low-energy region.#1 This imbalance is most
evident in the scalar-isoscalar sector, which features the so-called pion–nucleon σ-term σπN ,
whose value is a measure of the light quark contribution to the nucleon mass (and it can
also be related to its strange-quark contribution), see e.g. the classical paper [146]. To be
specific, σπN is defined as the value of the nucleon form factor σ(t) of the scalar quark current
m̂(ūu+ d̄d), which is thus also called the scalar form factor of the nucleon, at zero momentum
transfer t and hence explicitly reads

σπN = σ(0) , m̂ =
mu +md

2
,

σ(t) =
1

2m

〈
N(p′)

∣∣m̂(ūu+ d̄d)
∣∣N(p)

〉
, t = (p′ − p)2 , (6.1)

where m̂ denotes the average light quark mass and m the nucleon mass. Besides its piv-
otal role in accounting for quark-mass effects in low-energy hadron physics, the πN σ-term
has also gained renewed interest as it parameterizes the spin-independent cross section for
possible dark matter candidates scattering off nuclei [147, 148] (for a recent review cf. [149]).
In principle, lattice quantum chromodynamics (QCD) would be the method of choice to pin
down σπN via a precise ab initio calculation — however, a direct computation of the scalar
form factor necessarily involves contributions from quark-line disconnected diagrams (that
feature importantly in isoscalar quantities in general) which is not yet under sufficient control.
Similarly, the indirect extraction of the σ-term from the derivative of the nucleon mass is
still hampered with systematic uncertainties related to the chiral extrapolations utilized, see
e.g. [150]. Therefore, in this work we follow an alternative approach, namely setting up the
powerful, dispersive machinery of Roy–Steiner (RS) equations, that will ultimately allow for
a precise determination of the πN scattering amplitude in the low-energy region.

#1The exceptions, however, are the S-wave scattering lengths, which can be extracted with high precision
from the beautiful data on pionic hydrogen and pionic deuterium, see [142–145].
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Roy–Steiner equations, more specifically, are coupled integral equations for partial-wave
amplitudes (partial waves) interrelated by crossing symmetry and unitarity relations, that
are based on hyperbolic dispersion relations (HDRs), a particular kind of dispersion relations
along hyperbolae in the Mandelstam plane. Generally, dispersion relations are a widely used
tool that is built upon very general principles, such as Lorentz invariance, unitarity, crossing
symmetry, and analyticity (the latter being closely related to causality). There are multiple
uses of dispersion relations — they can be used for instance to stabilize extrapolation of
experimental data to threshold and allow for a continuation into unphysical regions, as it is e.g.
required for the extrapolation of the πN scattering amplitude to the so-called Cheng–Dashen
point [151], which in turn is crucial for the extraction of the σ-term. Unitarity constraints,
as a matter of principle, can most conveniently be formulated in terms of partial waves.
Combining the dispersive concepts with the formalism of partial-wave decomposition leads to
the framework of partial-wave dispersion relations (PWDRs), which together with unitarity
constraints allows to study processes at low energies with high precision. We just mention a
few examples. The most prominent example is of course pion–pion (ππ) scattering, which is
intimately linked to the spontaneous and explicit chiral symmetry breaking in QCD. Moreover,
the pion–pion system, is special as all three channels are identical (i.e. ππ → ππ). Roy
equations [52] are the appropriate PWDRs (based on so-called fixed-t dispersion relations),
that make explicit use of the full crossing symmetry. They have been extensively studied in the
last years [53,152–156], leading to a determination of the fundamental ππ scattering amplitude
at low energies with unprecedented precision. The crossing properties are different, however,
for the simplest scattering process in QCD involving strange quarks, namely pion–kaon (πK)
scattering, where only two channels are identical and one needs to account for both πK →
πK and ππ → K̄K. Generally, processes involving non-identical particles (so that crossing
symmetry intertwines different physical processes) cannot be tackled using conventional Roy
equations. For this reason, a combination of fixed-t and hyperbolic dispersion relations was
used in [157,158] to construct PWDRs for all channels of πK scattering, which are also referred
to as Roy–Steiner equations. As far as crossing symmetry and isospin quantum numbers are
concerned, the pion–kaon system is similar to the pion–nucleon case considered here: crossing
symmetry relates the s-/u-channel (πN → πN) and the t-channel (ππ → N̄N) amplitudes,
with the s-channel amplitudes being relevant e.g. for σ-term physics, while the t-channel
amplitudes feature prominently in the dispersive analysis of the nucleon form factors. In this
work, however, we solely consider HDRs, an approach that has already proven useful in the
recent construction of RS equations for γγ → ππ [159].

In the low-energy region, the pion–nucleon amplitude is well represented by its projections
onto the lowest partial waves, i.e. its S- and P -waves projections, in each channel. Due to the
spin of the nucleon, in this approximation one has six partial waves in the s- and u-channel,
commonly denoted as f±0+(s), f

±
1+(s), and f±1−(s), where the superscript I = ± refers to the

isospin, l ∈ {0, 1} in the subscript to the orbital angular momentum, and the ± to the total
angular momentum j = l ± 1/2. Similarly, there are three t-channel S- and P -waves, called
f0+(t) and f1±(t), where the superscript refers to total angular momentum J and the subscript
+/− to parallel/antiparallel antinucleon–nucleon helicities, such that there is one wave with
even and two with odd isospin due to Bose symmetry. It was pointed out in [160] how to
generalize the Roy equations for ππ scattering to these nine lowest partial waves of the πN
system based on fixed-t dispersion relations. Here, we follow a somewhat different path by
utilizing hyperbolic dispersion relations as pioneered by Hite and Steiner a long time ago [161].
The main advantage of HDRs is that they combine the s- and the t-channel (i.e. all three)
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physical regions, which is obviously not true for e.g. usual fixed-t dispersion relations. This
is most important, since it is known that a reliable continuation to the subthreshold region
in dispersion theory can only be made by using input information also from the t-channel,
cf. e.g. [162–165]. Furthermore, the knowledge of the absorptive (i.e. imaginary) parts in the
hyperbolic dispersion relations is needed only in regions where the corresponding partial-wave
expansions converge, and HDRs are considered the best choice fulfilling these requirements
that yields still manageable angular kernels without introducing kinematical cuts into the
amplitudes [161]. In addition, the underlying hyperbolic relation (s − a)(u − a) = b (with
a and b real-valued parameters) also explicitly respects the s ↔ u crossing symmetry of the
πN amplitude. Moreover, examining the domain of validity of the dispersion relations based
on the assumption of Mandelstam analyticity, better convergence properties can be achieved
with HDRs due to the tunable parameters a and b. Last but not least, HDRs are found to be
especially powerful for determining the σ-term [162].

Another important issue is the possibility to subtract dispersion relations. This can be
advantageous for various reasons: first, in some cases the asymptotic behavior of the inte-
grand is such that subtractions have to be performed to ensure convergence of the dispersive
integral. Similarly, if the high-energy behavior is not known, it can be subsumed in sub-
traction constants, which are a priori unknown. In some cases, these subtraction constants
can be related to phenomenology or the parameters of a low-energy effective field theory like
e.g. ChPT. Second, one can even introduce subtractions that are not necessarily required by
the asymptotic behavior in order to lessen the dependence on high-energy input, however,
at the expense of introducing the corresponding subtraction polynomials. Third, subtracting
the dispersion relations is especially useful in the πN case, since subtracting at the so-called
subthreshold point allows for a relation to the subthreshold expansion (the subtraction con-
stants can be identified with the subthreshold parameters in this case) and is convenient for
the continuation to the Cheng–Dashen point. Additionally, such subtractions are particularly
well suited for the t-channel subproblem to be discussed later on. In what follows, we will
consider unsubtracted as well as subtracted versions of the RS equations.

The derivation of the (subtracted) RS equations for the πN system is given by a series
of steps: first, one expands the s-/t-channel absorptive parts of the (subtracted) HDRs in
s-/t-channel partial waves, respectively. Second, one projects the full, partial-wave-expanded
HDRs onto both s- and t-channel partial waves, resulting in a closed system of coupled integral
equations in the form of partial-wave hyperbolic dispersion relations (PWHDRs) for both
channels — the RS equations. The corresponding subset of the RS equations for either the
s-channel partial waves f Il±(s) or the t-channel partial waves fJ±(t) together with the according
unitarity relation then constitutes what we will refer to as the s- and t-channel part of the
RS system in the following, respectively. The closed system of RS equations exhibits the
following general structure: it features the nucleon-pole-term (i.e. Born-term) contributions,
integrals over the imaginary parts of the s-(and u-)channel as well as integrals over t-channel
absorptive parts, both from the corresponding threshold to infinity.#2 The generic properties
of the equations are then determined by the integral kernels, that result from the original
HDR kernels via this successive partial-wave expansion and projection scheme. In particular,
these kernel functions automatically incorporate the analytic properties expected for general
PWDRs: in the equation for each partial wave, the corresponding kernels for the given channel

#2In fact, the t-channel integrals start at the ππ threshold rather than at the N̄N threshold, i.e. below the
physical region of ππ → N̄N , which has important consequences for the t-channel part of the RS system.
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Figure 6.1: Recoupling structure of the s- and t-channel partial waves in the Roy–Steiner
system for πN scattering. Left: s-channel, integral kernels only. Center: s-channel, integral
kernels and unitarity relations. Right: t-channel, independent of unitarity relations. See main
text for details.

consist of the self-coupling, singular Cauchy kernel corresponding to the right-hand cut and an
analytic remainder involving in addition the coupling to (at least in principle) all other partial
waves of the given channel, while the coupling to the partial waves of the other channel is
always analytic. The remainder (together with these crossed-channel terms) contains all left-
hand-cut contributions for the channel at hand, especially the contributions from all higher
partial waves (i.e. those partial waves not taken into account dynamically) usually called
driving terms. The recoupling structure of the partial waves of a particular channel as encoded
in the integral kernels turns out to be quite different for s- and t-channel, see Fig. 6.1: while
in the s-channel (left) basically all partial waves are coupled with each other (only the even
and odd isospin states I = + and I = − are not intertwined by the kernels), for the t-channel
(right) the recoupling scheme is much simpler, since Bose symmetry enforces the separation
of partial waves with even and odd J (corresponding in our case to t-channel isospin states
It = 0 and It = 1, respectively, which in turn relate to I = + and It = 1). Moreover, only
higher partial waves contribute to lower ones (thereby qualifying the recoupling scheme also
as an ordering scheme), and the fJ+(t) do not affect the fJ−(t). However, the interrelation
of the partial waves of a given channel is not only determined by the integral kernels but
also by the corresponding unitarity relations. In fact, the s-channel unitarity relations are
diagonal only in the s-channel isospin basis Is ∈ {1/2, 3/2} and thus they mix up the I = ±
states yielding the complicated (though symmetric) scheme displayed in Fig. 6.1 (center).#3

Fortunately, for the t-channel the unitarity relations are diagonal already for the fJ±(t) so that
the recoupling structure shown in Fig. 6.1 (right) is also valid for the complete t-channel part
of the RS system, which will enable us to recast the t-channel subproblem into the form of a
Muskhelishvili–Omnès (MO) problem [166, 167]. Once the t-channel MO problem is solved,
the remaining s-channel RS equations take the form of Roy-type equations, so that known
results concerning existence and uniqueness of solutions [168,169] may be transferred as well.

Next, we will outline the strategy to solve the (subtracted) RS system as depicted in
Fig. 6.2: generally, in both the s- and t-channel part of the RS system one actually solves
the equations in the low-energy region (not necessarily physical) and for the lowest partial
waves only, while the amplitudes in the high-energy region as well as higher partial waves are
needed as input. The separation between both energy regions occurs at the so-called matching
points sm and tm in the s- and t-channel, respectively. Here, we generically introduce ld and
Jd to specify the partial waves that are taken into account dynamically (i.e. those with l ≤ ld

#3Working in the Is isospin basis, conversely, the kernels couple Is = 1/2 and Is = 3/2 states leading to
effectively the same recoupling structure.
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Figure 6.2: Flowchart of the solution strategy for the Roy–Steiner system for πN scattering.
Double arrows denote iteration (third step). See main text for details.

and J ≤ Jd are solved for). In practice, also the sums over all partial waves in the high-
energy regions need to be truncated at some maximal values of l and J . Alternatively, in
the asymptotic regions the amplitudes may not be decomposed into partial waves but rather
modeled by Regge theory. While the s-channel partial waves are needed as input only in the
physical region, where they are well known, the t-channel partial waves are needed already
above the ππ threshold and thus far in the unphysical region. Thus, one first solves the t-
channel part of the (subtracted) RS system by solving the corresponding MO problem for the
lowest, less well determined t-channel partial waves using the better known s-channel partial
waves and ππ phase shifts as input (along with starting values for the πN coupling constant
as well as the pertinent subtraction constants that enter the subtracted HDRs as parameters)
in order to arrive at reasonable solutions for t-channel partial waves as a starting point. Then,
one uses these t-channel MO solutions to solve the s-channel part, thereby determining new
values for the constants at hand. Subsequently, the preceding steps are iterated until self-
consistency of the partial wave solutions and the according parameters is reached and the
results have converged. Eventually, the final aim of solving the full (subtracted) RS system
for pion–nucleon scattering is a precise determination of the lowest partial waves for both
channels in the low-energy region as well as the pertinent low-energy parameters, such as the
πN coupling constant and the subthreshold parameters, and to provide reliable theoretical
errors for the fundamental πN scattering amplitude for the first time.#4

Due to the complexity of the full problem, we will not yet solve the whole set of RS
equations in this work, but concentrate on the t-channel part of the RS system as a first step.
The solution of this t-channel subproblem is interesting by itself, as it features in the dispersive
analysis of the nucleon electromagnetic form factors as well as the scalar form factor, which

#4Note that in principle the RS framework furthermore allows for systematic improvements, e.g. by solving
for higher partial waves, introducing more subtractions, or incorporating more information on inelasticities.



80 Chapter 6: Introduction

is, in turn, essential for the extraction of the σ-term. At present, in the unphysical region
only the KH80 solution [170, 171] (which is by now more than thirty years old) has been
used. It is, however, well-known that this solution does not include more recent and precise
data and that the πN coupling constant used there differs significantly from more modern
determinations. Furthermore, no analysis of the theoretical uncertainties is performed (apart
from an iteration uncertainty, cf. Sect. 15.2.2), which is an absolute requirement for any
modern theoretical investigation. In fact, it has even been pointed out that the KH80 analysis
seems to suffer from internal inconsistencies [162,165,172]. Finally, a consistent set of partial-
wave amplitudes for all channels is especially important as far as the σ-term determination is
concerned.#5 Therefore, a new t-channel solution is needed as a first step for solving the full,
closed system of coupled PWHDRs.

Our solution strategy for the t-channel MO equations follows [158], however, there is a
major difference between ππ → K̄K and ππ → N̄N as far as inelasticities in the unitarity
relation are concerned, since the pseudophysical region in the πN case is much larger due to
the large nucleon mass. In both cases, the first non-negligible contribution besides ππ inter-
mediate states originate from K̄K, which play an important role for the S-wave in view of the
occurrence of the f0(980) resonance. For ππ → K̄K the inelasticities can simply be accounted
for by using phase-shift solutions for the corresponding partial waves, while physical input for
ππ → N̄N is only available above the two-nucleon threshold. In this work we will content
ourselves with the single-channel approximation of the MO problem. Although we derive a
generalized (single-channel) MO formalism with a finite matching point to include also inelastic
effects, it turns out that for P -, D-, and higher partial waves even the additional approxima-
tion of elasticity (beyond ππ) yields reasonable results, while the S-wave turns out to require
a full solution of the underlying two-channel Omnès problem, which is discussed in [173].

This work is organized as follows: in Chap. 7 we specify our basic conventions and review
the specific HDRs for the Lorentz-invariant amplitudes of πN scattering. The explicit deriva-
tion of the s- and t-channel RS equations is then described in full detail in Chaps. 8 and 9,
respectively. In Chap. 10 we determine the range of convergence of the RS equations, while
Chap. 11 contains a discussion of the treatment of the asymptotic regions in the dispersion
integrals. In Chap. 12 we derive the partial-wave unitarity relations for both the s- and t-
channel and collect the previous results to state the complete RS system of πN scattering.
Subsequently, we explain how the t-channel part of the RS system can be cast into the form
of a MO problem by virtue of the threshold behavior of the t-channel partial waves. Chap. 13
deals with the issue of introducing pertinent subtractions to the RS system and thereby the
t-channel MO problem. Subtracting at and expanding around the subthreshold point leads to
sum rules for the corresponding subthreshold parameters as well as once- and twice-subtracted
HDRs, based on which the pertinent analytic results of the previous chapters are also extended
to the once- and twice-subtracted cases. In Chap. 14 we derive the generalized (single-channel)
MO formalism with both non-vanishing inelasticities and a finite matching point. Chap. 15
is dedicated to the explicit solution of the t-channel MO problem: first, we derive the explicit
analytical solutions for the lowest t-channel partial waves. Then we collect all necessary input
and discuss the numerical results, including their application to nucleon form factors. Finally,
we conclude this work by summarizing the results and giving a short outlook in Chap. 16.

#5According to [163], the best method for extracting the sigma term from scattering data is to use partial-
wave analyses with strong dispersive constraints and subsequently perform an analytic continuation from
the s-channel physical region to the Cheng–Dashen point (preferably along different paths), evaluating the
important nearby left-hand cut contributions via t-channel partial waves.
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Chapter 7

Preliminaries

7.1 Kinematics

In general, we take the s-channel reaction to be a + b → c + d and the t-channel reaction to
be a + c̄ → b̄ + d (or equivalently b̄ + d → a + c̄ due to time reversal invariance of strong
interactions) with the usual Mandelstam variables

s = (pa + pb)
2 = (pc + pd)

2 ,

t = (pa − pc)
2 = (pd − pb)

2 ,

u = (pa − pd)
2 = (pc − pb)

2 , (7.1)

which are interrelated by the sum of all masses according to

s+ t+ u = m2
a +m2

b +m2
c +m2

d = Σ . (7.2)

Hence, unless stated otherwise, u is always to be understood as a function of s and t via

u(s, t) = Σ− s− t . (7.3)

The cosines of the center-of-mass-system (CMS) scattering angles for s- and t-channel read

zs = cos θs =
1

νs

{
(t− u) +

(m2
a −m2

b)(m
2
c −m2

d)

s

}
, (7.4)

zt = cos θt =
1

νt

{
(s− u) +

(m2
a −m2

c)(m
2
b −m2

d)

t

}
, (7.5)

with the definitions
νs = 4pfsp

i
s , νt = 4pft p

i
t , (7.6)

where pi = |pi| and pf = |pf | are the magnitudes of the corresponding initial and final CMS
3-momenta. Note that for translating a+ b→ c+ d into a Feynman diagram, we use the non-
cyclic convention (pictorially: a

b×c
d, with time going rightwards) yielding (7.1) in order to stick

to the usual πN conventions of [171] rather than using the cyclic convention (pictorially: a
b×d

c)
which leads to symmetric kinematical relations for the s-, t-, and u-channel and is therefore
sometimes used in the literature. The cyclic convention is especially favorable when all four
particles are identical like e.g. in the case of ππ scattering. It leads for example to a minus
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sign in front of the mass term for zs in (7.4) (cf. [174]) but also to different isospin crossing
matrices (compare [174] with [52], see also Sect. 7.2). The non-cyclic convention, on the other
hand, is well-suited for s↔ u crossing symmetric situations like e.g. πN scattering, with t = 0
corresponding to an undeflected pion (i.e. forward scattering) in both the s- and u-channel
and thus zs(t = 0) = 1 = zu(t = 0) rather than zs(t = 0) = 1 = −zu(t = 0) for the cyclic
convention (cf. [174]). The physical regions for the s-, t-, and u-channel reactions are restricted
to kinematical regions yielding a non-negative value of the Kibble function [175]

Φ = stu− Σ2(φss+ φtt+ φuu) =
s

4
ν2s (1− z2s ) =

t

4
ν2t (1− z2t ) , (7.7)

where the three coefficients are given by

Σ3φs = (m2
am

2
b −m2

cm
2
d)(m

2
a +m2

b −m2
c −m2

d) ,

Σ3φt = (m2
am

2
c −m2

bm
2
d)(m

2
a +m2

c −m2
b −m2

d) ,

Σ3φu = (m2
am

2
d −m2

bm
2
c)(m

2
a +m2

d −m2
b −m2

c) . (7.8)

Furthermore, based on the totally symmetric Källén function

λ(a, b, c) = a2 + b2 + c2 − 2(ab+ bc+ ca) , (7.9)

we can define the generic kinematical function

λPQ
x = λ

(
x,M2

P ,M
2
Q

)
=
[
x− (MP −MQ)

2
][
x− (MP +MQ)

2
]
, (7.10)

and for equal masses

σPx = σ
(
x,M2

P

)
=

√
λPP
x

x
=

√
1− 4M2

P

x
. (7.11)

In the case of πN scattering, we havema = mc =Mπ for the pion andmb = md = mN = m
for the nucleon and introduce the general definitions#1

Σ = 2(m2 +M2
π) = 2s0 , ν(s, t) =

s− u

4m
=

2s+ t− Σ

4m
=

2(s− s0) + t

4m
,

W 2 = s , νB(t) = −s+ u− 2m2

4m
=
t− 2M2

π

4m
= ν(s = m2, t) , (7.12)

with W as the total CMS energy, as well as the abbreviation

λx = λπNx = λ
(
x,m2,M2

π

)
=
[
x− s−

][
x− s+

]
, s± =W 2

± = (m±Mπ)
2 , (7.13)

where W− and W+ denote the pseudothreshold and threshold energies, respectively. Note
that we will always use the masses of [176], where the isospin limit is defined via the charged
particles, i.e. Mπ ≡ Mπ± for the pion mass and m ≡ mp for the nucleon mass (later also
MK ≡MK± for the kaon mass). Further related useful definitions and relations read

Σ± = m2±M2
π , Σ+ = s0 , Σ− =W+W− , Σ2

− = s+s− , Σ = s++s− = 2s0 .
(7.14)

#1For more on πN kinematics and for πN conventions in general we refer to [171]. Note that the convention
for ν therein and which we have adopted here differs from the choice ν = s− u of e.g. [161].
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For the elastic s-channel reaction πN → πN with CMS momentum pfs = q = pis, CMS
total energy W , and CMS nucleon energy E the kinematics above threshold (i.e. for s ≥ s+)
are given by

νs(s) = 4q2 = s− Σ+
Σ2
−
s

, q(s) =

√
λs
4s

,

zs(s, t) = 1− s+ u− Σ

2q2
= 1 +

t

2q2
, E(±W ) = ±

√
m2 + q2 =

s+Σ−
2(±W )

= ±E(W ) . (7.15)

For the t-channel reaction ππ → N̄N (or equivalently N̄N → ππ) with CMS momenta
pit = qt (pions) and pft = pt (nucleons) the kinematics above threshold (i.e. for t ≥ 4m2 = tN )
simplify to

νt(t) = 4ptqt , qt(t) =

√
t

4
−M2

π =

√
t

2
σπt = +iq− ,

zt(s, t) =
s− u

νt
=

2s+ t− Σ

4ptqt
=
mν

ptqt
, pt(t) =

√
t

4
−m2 =

√
t

2
σNt = +ip− , (7.16)

where below the corresponding two-particle thresholds tπ and tN one has to use the quantities

q−(t) =

√
M2

π − t

4
≥ 0 ∀ t ≤ tπ = 4M2

π , p−(t) =

√
m2 − t

4
≥ 0 ∀ t ≤ tN = 4m2 ,

(7.17)
whose phases are constrained in general to ptqt = −p−q− and fixed here by convention. In
order to be able to write down relation that are valid in all kinematical ranges we can use the
general, always real but potentially negative quantities

q2t (t) =
t− tπ
4

= −q2−(t) , p2t (t) =
t− tN

4
= −p2−(t) , (7.18)

from which roots in the corresponding regimes may be taken.
The Kibble function Φ describing the boundaries between physical (real) and unphysical

(imaginary) CMS scattering angles simplifies for πN scattering to

Φ

t
= su− Σ2

− = 4sq2(1 + zs) = 4p2t q
2
t (1− z2t ) , (7.19)

such that the boundaries are given by

Φ = −s
[
u− (Σ− s)

][
u− Σ2

−
s

]

=
t

4

[
t−

(
Σ− 2

√
(2mν)2 − Σ2

−
)][

t−
(
Σ+ 2

√
(2mν)2 − Σ2

−
)]

= 0 , (7.20)

and the corresponding physical regions are shown in Fig. 7.1, which also clearly shows the
s↔ u crossing symmetry.

The four Lorentz-invariant amplitudes A±(s, t) and B±(s, t) describing πN scattering in
the isospin limit, as well as the related amplitudes D±(s, t) convenient for low-energy theorems
are defined in (7.22). These amplitudes are real inside the Mandelstam subthreshold triangle
defined by the lines s = s+, u = s+, and t = tπ, i.e. below the thresholds for the physical s- and
u-channel reactions and below the ππ scattering threshold, including in particular the small
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Figure 7.1: Physical regions for s-, t-, and u-channel reactions of πN scattering (shaded) and
subthreshold triangle (dot-dashed) enclosing subthreshold lens.

on-mass-shell (on-shell) but unphysical lens-shaped low-energy region close to (ν = 0, t = 0)
(so-called subthreshold lens, cf. Fig. 7.1) especially important for πN scattering low-energy
theorems.#2

The analytic structure of the invariant amplitudes governs the analytic structure of both
the s- and t-channel partial-wave amplitudes, for details we refer to [171] and references therein.
Here, we only mention the different analytic structures of the s-channel πN scattering invariant
amplitudes (in the complex s-plane)

• right-hand cut (RHC):
physical s-channel cut along s ≥ s+,

• nucleon pole:
at s = m2 from s-channel nucleon-exchange pole term 1/(s−m2),

• crossed cut:
along s ≤ s− as combination of u-channel cut s ≤ s− and t-channel cut s ≤ −Σ−,

• left-hand cut (LHC):
collective name for all cuts in the unphysical region, i.e. for Re {s} < s+.

#2Note that t ≤ 0 is necessary for both the s- and u-channel reaction to be physical as can be easily seen for
the s-channel from t = −2q2(1− zs) with q ≥ 0 and |zs| ≤ 1 (and due to s ↔ u crossing symmetry in analogy
for the u-channel). Thus, for the u-channel reaction from u ≥ s+ follows s ≤ s−. Demanding both s ≥ s+ and
u ≥ s+ yields t ≤ −4mMπ = s− − s+.
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In addition, the mapping between the complex s- and q2-planes involves a circular cut in
the complex s-plane at |s| = Σ− = s(+)s(−), where s(+)(q

2) and s(−)(q
2) are the two solutions

s(±)(q
2) = 2q2 +Σ+ ± 2

√
(q2 +m2)(q2 +M2

π) (7.21)

for a given q2 (note the cut for −m2 ≤ q2 ≤ −M2
π) with s(+)(0) = s+ and s(−)(0) = s−. This

circular cut becomes relevant once amplitudes are considered as functions of q2 rather than
s, e.g. for the partial waves. The additional analytic structures of the s-channel partial-wave
amplitudes due to the partial-wave projection are#3

• kinematical cuts:
for s ≤ 0 from terms depending on W =

√
s in the partial-wave projection formula,

• short nucleon cut:#4

along Σ2
−/m

2 ≤ s ≤ m2 + 2M2
π from evaluating the u-channel nucleon-exchange pole

term 1/(u(s, zs)−m2) for zs = ±1,

• circular-cut contributions:
due to t-channel exchange of particles with mass mt ≥ 2Mπ, i.e. from evaluating
1/(t(s, zs)−m2

t ) for zs = ±1 and m2
t = tπ,

• crossed-cut contributions for s ≤ 0 and singularities at s = 0:
from the partial-wave projection of the aforementioned u- and t-channel exchanges.

Finally, some kinematical points of specific interest for low-energy πN scattering are (see
for instance [171] and [179])

• (s-channel) threshold point at (s = s+, t = 0, u = s−) ≡ (ν =Mπ, νB = −M2
π/(2m)):

expansion point for the threshold expansion yielding e.g. the scattering lengths,

• Cheng–Dashen point at (s = u = m2, t = 2M2
π) ≡ (ν = 0, νB = 0):

pivotal for pion–nucleon σ-term physics, since the Born-term-subtracted amplitude#5

D̄+(ν = 0, t = 2M2
π) = A+(ν = 0, t = 2M2

π) − g2/m is related to σπN by a low-energy
theorem [151,160,180–182],#6

• (s-channel) subthreshold point at (s = u = s0, t = 0) ≡ (ν = 0, νB = −M2
π/(2m)):

expansion point for the subthreshold expansion yielding the subthreshold parameters (cf.
Sect. 13.1); w.r.t. corresponding soft-pion theorems also called Adler–Weisberger [180,
183, 184] or “anti Cheng–Dashen” [115, 116, 151, 185] point, the latter due to the phe-
nomenological observation D̄+(ν = 0, t = 0) ≈ −D̄+(ν = 0, t = 2M2

π) which is also in
line with assuming both pions to be soft.#7

#3In [177] it was shown how to construct PWDRs solely via the singularity structure in the complex s-plane.
#4Actually, there are two short nucleon cuts as discussed in the appendix of [178]. The second one, however,

is situated on an unphysical sheet.
#5For the invariant amplitudes, a bar usually denotes the subtraction of the corresponding pseudovector

Born term, while a tilde denotes the subtraction of the pertinent pseudoscalar Born term.
#6Note that since zCD

s = zs(m
2, 2M2

π) = −M2
π/(4m

2 −M2
π) ≈ −5.56× 10−3 is close to zero, the amplitudes

at the Cheng–Dashen point are dominated by the (s-channel) S-wave.
#7The general definition νB(t, q

2
i , q

2
f ) = (t − q2i − q2f )/(4m) with 4-momenta qi and qf for the pion in the

initial and final state, respectively, reduces for the on-shell case νB(t,M
2
π ,M

2
π) = νB(t) to (7.12), while e.g.

the case of two soft pions (i.e. qi → 0 and qf → 0) yields νB = t/(4m). Thus, the preferable choice of variables
in the low-energy region, which is independent of soft-pion considerations, is (ν, t), see also [185].
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7.2 Isospin structure

The most general Lorentz-invariant and parity-conserving T -matrix element for the process
πa(q)+N(p) → πb(q′)+N(p′) with isospin indices a and b is given in terms of Lorentz-invariant
amplitudes A, B, and D according to (in the conventions of [171])

T ba
fi (s, t) =

1

2
{τ b, τa}T+

fi(s, t) +
1

2
[τ b, τa]T−

fi(s, t) = δbaT+
fi(s, t) + iǫbacτ

cT−
fi(s, t) ,

T I
fi(s, t) = ūf (p

′)
{
AI(s, t) +

/q′ + /q

2
BI(s, t)

}
ui(p) = ūf (p

′)
{
DI(s, t)− [/q′, /q]

4m
BI(s, t)

}
ui(p) ,

DI(s, t) = AI(s, t) + ν(s, t)BI(s, t) , I ∈ {+,−} , (7.22)

where we have introduced the isospin index I = +/− for the part that is even/odd under
interchange of a and b and the normalization is fixed via the spin-averaged CMS differential
cross section (see also the discussion in Sect. 7.3)

dσ̄IπN→πN

dΩ
=

1

2

∑

f,i

∣∣∣∣
T I
fi

8πW

∣∣∣∣
2

. (7.23)

Furthermore, the πN scattering amplitudes A have definite crossing properties under inter-
change of s and u for fixed t, i.e. under change of sign of ν, such that one can work with
amplitudes according to

Ã =

{
A = Aev if A(ν, t) = +A(−ν, t) ,
A
ν = Aod

ν if A(ν, t) = −A(−ν, t) ,
(7.24)

which are even functions of ν and thus free of kinematical square root branch cuts in the
complex t-plane originating from νt. The invariant amplitudes A and B are then related to
Aev/od via

Aev(ν
2, t) =

{
A+(ν2, t) ,

B−(ν2, t) ,
Aod(ν, t) =

{
A−(ν, t) ,

B+(ν, t) ,
(7.25)

where the isospin even and odd parts have definite parity under pion-crossing

A±(ν, t) = ±A±(−ν, t) , B±(ν, t) = ∓B±(−ν, t) , (7.26)

which is why the isospin index I ∈ {+,−} will be called crossing index, too. Therefore, the
amplitudes AI and BI can be written as linear combinations

A± =
1

2
(A− ±A+) for A ∈ {A,B} (7.27)

of the amplitudes for the accurately measurable reactions with a proton as target particle

A± = A(π±p→ π±p) , A0 = A(π−p→ π0n) . (7.28)

Due to isospin invariance and by virtue of the Wigner–Eckart theorem (here the special case
for tensors of rank zero)

〈I, I3|A|I ′, I ′3〉 = AIδII′δI3I′3 , (7.29)
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where I =
√
I2 denotes the total isospin and I3 = (I)3 its third component, the amplitudes

of all ten πN scattering reactions can be written in terms of only two independent matrix
elements with total s-channel isospin index Is ∈ {1/2, 3/2}. In agreement with [171] (i.e. using
the usual Condon–Shortley phase convention for the Clebsch–Gordan coefficients [176], but the
non-cyclic kinematical convention according to Sect. 7.1) we assign the isospin-doublets of both
the nucleons and antinucleons according to the fundamental (2-dimensional) representation of
the Lie-algebra of SU(2)

|p〉 =
∣∣∣∣
1

2
,
1

2

〉
, |n〉 =

∣∣∣∣
1

2
,−1

2

〉
, |n̄〉 =

∣∣∣∣
1

2
,
1

2

〉
, |p̄〉 =

∣∣∣∣
1

2
,−1

2

〉
, (7.30)

and the isospin-triplet of the pions (i.e. their charge/spherical#8 eigenstates) according to

|π+〉 = |1, 1〉 , |π0〉 = |1, 0〉 , |π−〉 = |1,−1〉 , (7.31)

which leads to the following properties under charge conjugation C

C|p〉 = |p̄〉 , C|n〉 = −|n̄〉 , C|π±〉 = −|π∓〉 , C|π0〉 = |π0〉 . (7.32)

Thus, the relations between the spherical and the Cartesian components of the pion-multiplet
are given by

|π±〉 = ∓ 1√
2
(|π1〉 ± i|π2〉) , |π0〉 = |π3〉 . (7.33)

Note that the standard ChPT conventions for the pions

|π±〉 = 1√
2
(|π1〉 ± i|π2〉) , |π0〉 = |π3〉 , (7.34)

which follow from the alternative assignment

|π+〉 = −|1, 1〉 , |π0〉 = |1, 0〉 , |π−〉 = |1,−1〉 ⇒ C|π〉 = |π̄〉 , (7.35)

corresponding to the adjoint (3-dimensional) representation of the Lie-algebra of SU(2), differ
by an additional sign for the |π+〉 wave function from the spherical convention which we will
adopt in the following. By decomposing the initial and final isospin states of the πN system
into linear combinations of eigenstates |Is, (Is)3〉 in the spherical convention, e.g.

|π+p〉 =
∣∣∣∣
3

2
,
3

2

〉
, |π−p〉 =

√
1

3

∣∣∣∣
3

2
,−1

2

〉
−
√

2

3

∣∣∣∣
1

2
,−1

2

〉
,

|π0n〉 =
√

2

3

∣∣∣∣
3

2
,−1

2

〉
+

√
1

3

∣∣∣∣
1

2
,−1

2

〉
, (7.36)

we can readily obtain the relations between the πN isospin amplitudes

A+ = A(π+p→ π+p) = A(π−n→ π−n) = A+ −A− = A3/2 ,

A− = A(π−p→ π−p) = A(π+n→ π+n) = A+ +A− =
1

3
(2A1/2 +A3/2) ,

A0 = A(π−p→ π0n) = A(π+n→ π0p) = −
√
2A− = −

√
2

3
(A1/2 −A3/2) ,

A(π0p→ π0p) = A(π0n→ π0n) = A+ =
1

3
(A1/2 + 2A3/2) ,

A+ + 2A− = A1/2 . (7.37)

#8The Lie-algebras of SU(2) and SO(3) are isomorphic.
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From these we can infer the so-called isospin triangle relation

A+ −A− =
√
2A0 , (7.38)

and the relations for the isospin even/odd amplitudes with I = +/− and the amplitudes in
the s-channel isospin basis Is ∈ {1/2, 3/2} can be summarized in matrix notation as

(
A+

A−

)
= Cνs

(
A1/2

A3/2

)
,

(
A1/2

A3/2

)
= Csν

(
A+

A−

)
, Cνs =

1

3
Csν =

1

3

(
1 2
1 −1

)
.

(7.39)
The s-channel isospin amplitudes with Is ∈ {1/2, 3/2} and the corresponding u-channel isospin
amplitudes with Iu ∈ {1/2 = N, 3/2 = ∆} can be shown to obey the s ↔ u crossing isospin
relations (cf. [174])
(
A1/2

A3/2

)
= Csu

(
AN

A∆

)
,

(
AN

A∆

)
= Cus

(
A1/2

A3/2

)
, Csu = Cus =

1

3

(
−1 4
2 1

)
, (7.40)

and combining this with (7.39) yields
(
A+

A−

)
= Cνu

(
AN

A∆

)
, Cνu = CνsCsu =

1

3

(
1 2

−1 1

)
, Cuν = C−1

νu =

(
1 −2
1 1

)
.

(7.41)
For the t-channel reactions, the |N̄N〉 isospin states are superpositions of the four states

|It = 1, (It)3〉 and |It = 0, 0〉

|n̄p〉 = |1, 1〉 , |p̄p〉 = 1√
2

(
|1, 0〉 − |0, 0〉

)
,

|p̄n〉 = |1,−1〉 , |n̄n〉 = 1√
2

(
|1, 0〉+ |0, 0〉

)
, (7.42)

from which follows#9

|1, 0〉 = 1√
2

(
|n̄n〉+ |p̄p〉

)
, |0, 0〉 = 1√

2

(
|n̄n〉 − |p̄p〉

)
, (7.43)

whereas the decomposition of the |ππ〉 isospin states reads

|π+π0〉 = 1√
2

(
|2, 1〉+ |1, 1〉

)
, |π+π−〉 = 1√

6
|2, 0〉+ 1√

2
|1, 0〉+ 1√

3
|0, 0〉 ,

|π−π0〉 = 1√
2

(
|2,−1〉 − |1,−1〉

)
, |π0π0〉 =

√
2

3
|2, 0〉 − 1√

3
|0, 0〉 , (7.44)

but since N̄N only couples to It = 0 and It = 1, the It = 2 terms do not contribute here and
we are left with a symmetric isosinglet

|0, 0〉 = 1√
3

(
|π+π−〉+ |π−π+〉 − |π0π0〉

)
, (7.45)

#9Note that (7.42) and (7.43) are in perfect agreement with the usual Clebsch–Gordan coefficients [176], but
differ from [171] where different conventions are used in these and corresponding equations. In particular, the
analog of (7.48) in [171] seems to (exceptionally) follow the cyclic kinematical convention. Nevertheless, all
other relations, especially the crossing matrix (7.49) and the important relations (7.50), are identical.
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and an antisymmetric isotriplet

|1, 1〉 = 1√
2

(
|π+π0〉 − |π0π+〉

)
, |1, 0〉 = 1√

2

(
|π+π−〉 − |π−π+〉

)
,

|1,−1〉 = 1√
2

(
|π0π−〉 − |π−π0〉

)
. (7.46)

By strictly using the non-cyclic kinematical convention together with the properties under
charge conjugation (7.32) we can get the t-channel amplitudes from the s-channel ones via
crossing

A± = −A(p̄p→ π±π∓) , A0 = A(π+n→ π0p) = −A(n̄p→ π+π0) = A(n̄p→ π0π+) ,
(7.47)

which together with the s-channel isospin relations (7.37) on the one hand and the t-channel
isospin decompositions above on the other hand yields the following relations for the reactions
with a proton as target particle

A(p̄p→ π+π−) = −A+ = −A+ +A− = −A3/2 = − 1√
6
A0 +

1

2
A1 ,

A(p̄p→ π−π+) = −A− = −A+ −A− = −1

3
(2A1/2 +A3/2) = − 1√

6
A0 − 1

2
A1 ,

A(n̄p→ π+π0) = −A0 =
√
2A− =

√
2

3
(A1/2 −A3/2) =

1√
2
A1 ,

A(p̄p→ π0π0) =
1

2
(A+ +A−) = A+ =

1

3
(A1/2 + 2A3/2) =

1√
6
A0 . (7.48)

Thereby we can easily deduce the s↔ t crossing isospin relations (cf. [174])

(
A1/2

A3/2

)
= Cst

(
A0

A1

)
, Cst =

(
1√
6

1
1√
6

−1
2

)
,

(
A0

A1

)
= Cts

(
A1/2

A3/2

)
, Cts =

2

3

(√
6
2

√
6

1 −1

)
, (7.49)

and the fact that A+ and A− have well-defined quantum number It = 0 and It = 1, respec-
tively,

(
A+

A−

)
= Cνt

(
A0

A1

)
, Cνt = CνsCst =

(
1√
6

0

0 1
2

)
, Ctν = C−1

νt =

(√
6 0
0 2

)
. (7.50)

Combining charge conjugation C with a rotation by π around the 2-axis of isospin space

e±iπI2 |I, I3〉 = (−1)I−I3 |I,−I3〉 , (7.51)

one can define G-conjugation as (again in the conventions of [171])

G = Ce−iπI2 , (7.52)

which leads to
G|π〉 = −|π〉 ⇒ G|ππ〉 = |ππ〉 , (7.53)
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and hence the antinucleon–nucleon initial state in the reaction N̄N → ππ that we are inter-
ested in has to be an eigenstate#10 of G with eigenvalue (G-parity) +1, i.e. it can only couple
to states with an even number of pions. The result for charge conjugation of an antifermion–
fermion or antiboson–boson pair

C|f̄f〉 = (−1)L+S |f̄f〉 , C|b̄b〉 = (−1)L|b̄b〉 , (7.54)

together with (7.51) yields
G|N̄N〉 = (−1)J+It |N̄N〉 , (7.55)

from which we can conclude that for reactions with a two-pion final state (i.e. G = +1) only
the combinations (J even, It = 0) and (J odd, It = 1) are allowed. The same combinations
arise from the symmetry properties of the isosinglet (7.45) and the isotriplet (7.46) due to the
fact that the exchange of two pions in an orbital state with total angular momentum J = L
yields a factor of (−1)J . According to (7.50) this leads to the following selection rules for
the partial wave decomposition of the t-channel amplitudes: the partial-wave expansion of
the amplitudes AI=+/− or AIt=0/1 contains only partial waves with even/odd J , respectively,
and the transition between the two sets of amplitudes involves the isospin crossing coefficients
cJ = 1/

√
6 and cJ = 1/2 with

cJ =

{
1√
6

if J is even ,
1
2 if J is odd .

(7.56)

7.3 Unitarity and partial-wave amplitudes

In this section we will combine the principle of unitarity with the general helicity partial-wave
formalism in order to consolidate the ground on which the partial-wave unitarity relations for
πN scattering will be derived later on (cf. Sect. 12.1).#11 Especially for the additional inelastic
contributions to the so-called extended t-channel unitarity relation it will prove essential to
take care of the prefactors due to kinematics and indistinguishability of particles accompanying
the partial-wave amplitudes.#12

From the unitarity of the S-matrix

S†S = 1 , S = 1+ iT ⇒ T − T † = iT †T , (7.57)

by taking matrix elements and inserting a complete set of intermediate states one can easily
obtain the general unitarity relation

〈f |T |i〉 − 〈f |T †|i〉 = i
∑

{j}

∫
dΠ(j)

nj
〈f |T †|j〉〈j|T |i〉 , (7.58)

where dΠ(j)
nj denotes the nj-particle Lorentz-invariant phase space (LIPS) for intermediate

state j which in the case of nj identical intermediate particles implicitly includes an additional

#10Only isospin multiplets with vanishing mean electromagnetic charge Q̄ = 0 (i.e. Ī3 = 0) are eigenstates of
G-conjugation.
#11Besides [171] for πN specifics, a good point of reference for general scattering conventions as well as the
partial-wave formalism is [186].
#12Potentially along with additional factors as following e.g. from isospin considerations, see for instance (7.56)
and Sect. 12.1.
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symmetry factor 1/S(j)
nj = 1/nj ! in order to avoid multiple counting in the phase space integral.

From 4-momentum conservation

〈f |T |i〉 = (2π)4δ(4)(Σpf − Σpi)Tfi , (7.59)

one can immediately infer the generalized optical theorem for the invariant amplitudes Tfi

Tfi − T ∗
if = i

∑

{j}

∫
dΠ(j)

nj
(2π)4δ(4)(Σpj − Σpi)T

∗
jfTji , (7.60)

where overall 4-momentum conservation δ(4)(Σpf −Σpi) is implicitly imposed. If the process
is invariant under time reversal, as it is the case for strong interactions, (7.60) takes the form

2i ImTfi = i
∑

{j}

∫
dΠ(j)

nj
(2π)4δ(4)(Σpj − Σpi)T

∗
fjTji . (7.61)

Under the additional assumption of hermitian analyticity of the S-matrix (i.e. that the
amplitudes Tfi obey the Schwarz reflection principle T ∗

fi(s) = Tfi(s
∗) and are real on part of

the real axis; this property is therefore also called real analyticity in the literature) it follows

DiscTfi(s) = lim
ǫ→0

[
Tfi(s+ iǫ)− Tfi(s− iǫ)

]
= i lim

ǫ→0

[
ImTfi(s+ iǫ)− ImTfi(s− iǫ)

]

= 2i lim
ǫ→0

ImTfi(s+ iǫ) , (7.62)

which corresponds to the physical limit for the s-channel process (defined as usual as approach-
ing the physical cut from above in the complex plane; the dependence on t being suppressed
here).#13 Hence, (7.61) can also be proven in the framework of perturbation theory to all
orders via the Cutkosky cutting rules [187,188].

We are interested in two-by-two scattering a + b → c + d for the case that only two-
particle on-shell intermediate states j1 + j2 contribute to the sum in (7.58). Thus we need
the integration over the intermediate two-particle LIPS and the corresponding intermediate
4-momentum conservation.#14 In the CMS the momenta are given by |pa| = |pb| = |pi| = pi
for the initial and |p1| = |p2| = |pj | = pj for the intermediate particles and the energies
(pP )

0 = EP obey Ea + Eb =
√
s = E1 + E2. The CMS result of this integration, which is

valid for both elastic pi = pj and inelastic pi 6= pj two-particle intermediate contributions to
two-by-two scattering unitarity, then reads
∫

dΠ(j)
2 (2π)4δ(4)(p1 + p2 − pa − pb)

=
1

S
(j)
2

∫
d4p1d4p2
(2π)4(2π)4

δ(p21 −m2
1)2πθ(E1)δ(p

2
2 −m2

2)2πθ(E2)(2π)
4δ(4)(p1 + p2 − pa − pb)

=
1

S
(j)
2

∫
d3p1d3p2

2E1(2π)32E2(2π)3
(2π)4δ(4)(p1 + p2 − pa − pb) =

1

S
(j)
2

1

8π

2pj√
s

∫
dΩj

4π
, (7.63)

#13In general, the matrix elements are functions of the components of the external 4-momenta, but due to
4-momentum conservation, Lorentz invariance, and the on-mass-shell condition for the external particles the
Lorentz-invariant amplitudes for n external lines depend on (3n− 10) invariant variables only (cf. [174]). For
two-by-two scattering with 4 external lines this reduces to e.g. two of the three Mandelstam variables: Tfi(s, t).
#14The integration runs over physically distinguishable configurations only. Hence, for nj identical particles,

one must either restrict the integration to nonequivalent configurations or divide by the symmetry factor S
(j)
nj

after integrating over all sets of momenta. We will always use the latter convention as it is favorable for
performing the angular integrations.
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where the CMS quantities for the on-shell intermediate state are given by

pj =
λ1/2(s,m2

1,m
2
2)

2
√
s

> 0 , E1 =
s+m2

1 −m2
2

2
√
s

> 0 , E2 =
s+m2

2 −m2
1

2
√
s

> 0 ,

(7.64)
and the 4-momentum states are normalized according to

〈p′|p〉 = 2Ep(2π)
3δ(3)(p′ − p) (7.65)

for both bosons and fermions, which corresponds to the following normalization of spinors

ūr(p)us(p) = 2mδrs , v̄r(p)vs(p) = −2mδrs . (7.66)

Hence, with one particular intermediate state j the optical theorem (7.61) takes the form

ImTfi =
1

S
(j)
2

1

16π

2pj√
s

∫
dΩj

4π
T ∗
fjTji , (7.67)

where for equal masses mj = m1 = m2 the kinematical phase space factor simplifies to

2pj√
s
=
λ1/2(s,m2

j ,m
2
j )

s
=

√

1−
4m2

j

s
= σ(s,m2

j ) = σjs . (7.68)

The differential cross section for two-by-two scattering a+ b→ c+ d is given by

dσfi =
1

2Ea2Eb|va − vb|
dΠ(f)

2 (2π)4δ(4)(pc + pd − pa − pb)
∣∣Tfi

∣∣2 , (7.69)

where the invariant amplitude Tfi is dimensionless and the final-state two-particle LIPS dΠ(f)
2

is completely analogous to (7.63) (with particles c+ d instead of j1+ j2 and thus replacing pj

by pf with |pc| = |pd| = |pf | = pf ). The preceding flux factor, that is related to the relative
velocity |va − vb| and thus frame-dependent, reads in the CMS

1

2Ea2Eb|va − vb|
=

1

4
√
(pa · pb)2 −m2

am
2
b

=
1

4pi
√
s
, pi =

λ1/2(s,m2
a,m

2
b)

2
√
s

, (7.70)

This leads to the usual CMS-form of the differential cross section (assuming here the particles
c and d to be distinguishable; pf = pi for elastic scattering)#15

dσfi
dΩ

=
pfpi
π

dσfi
dt

=
pf
pi

∣∣Tfi
∣∣2

64π2s
=
pf
pi

∣∣∣∣
Tfi

8π
√
s

∣∣∣∣
2

. (7.71)

Including the spin sP for all involved particles, the general spin-averaged differential cross
section reads

dσ̄fi
dΩ

=
1

(2sa + 1)(2sb + 1)

∑

sc,sd;sa,sb

∣∣∣∣
√
pf
pi

T sc,sd;sa,sb
fi

8π
√
s

∣∣∣∣
2

. (7.72)

#15From the generalized optical theorem (7.60) for the case f = i one can infer the usual optical theorem
relating the imaginary part of the invariant amplitude to the total cross section for the initial state i going to
any possible final state, which is the reason for the imaginary part of the invariant amplitude also being called
absorptive part. For a+ b → c+ d this situation corresponds to forward scattering (i.e. t = 0) and from (7.67)
and (7.71) one may easily reproduce the usual form σtot

i (s) = λ1/2(s,m2
a,m

2
b) ImTii(s, t = 0).
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Now consider the problem of partial wave decomposition in the presence of spin. The
T operator for two-by-two scattering can be diagonalized by using the eigenstates of total
angular momentum J as basis, which can be achieved most easily in the CMS via the helicity
formalism [189]. With λP denoting the helicity of the corresponding particle, one can take
the T -matrix elements in the basis of single particle momenta and helicities

〈pc, pd;λc, λd|T (s)|pa, pb;λa, λb〉 = (2π)4δ(4)(pc + pd − pa − pb)T
λc,λd;λa,λb
fi (s, t) , (7.73)

and with respect to our normalization of 4-momentum states (7.65) and by applying the
respective phase space integration (7.63), these matrix elements and thereby the differential
cross section for a specific reaction can be written in terms of states of relative motion in the
CMS for both incoming and outgoing particle pairs (cf. (7.72) and [189])

T λc,λd;λa,λb
fi (s, t) =

(4π)2
√
s

√
pfpi

〈θ, ϕ;λc, λd|T (s)|θ0, ϕ0;λa, λb〉 ,

dσλc,λd;λa,λb
fi (s)

dΩ
=

∣∣∣∣
2π

pi
〈θ, ϕ;λc, λd|T (s)|0, 0;λa, λb〉

∣∣∣∣
2

=

∣∣∣∣∣

√
pf
pi

T λc,λd;λa,λb
fi (s, t)

8π
√
s

∣∣∣∣∣

2

, (7.74)

where the z-axis is chosen along the incident momentum pa (i.e. θ0 = 0 and w.l.o.g. one can
also choose ϕ0 = 0) and θ, ϕ are the polar angles of pc in this frame. These new matrix
elements then can be expanded in partial waves of the T -matrix in the helicity basis

〈θ, ϕ;λc, λd|T (s)|0, 0;λa, λb〉=
√
SfSi

4π

∑

J

(2J + 1)〈λc, λd|T J(s)|λa, λb〉DJ ∗
λa−λb,λc−λd

(ϕ, θ,−ϕ) ,

〈λc, λd|T J(s)|λa, λb〉= T J
λc,λd;λa,λb

(s) , (7.75)

where Dj ∗
mm′(ϕ, θ,−ϕ) = ei(m−m′)ϕdjmm′(θ) are the Wigner functions#16 and we have added

explicit symmetry factors Si and Sf to the partial-wave expansion of [189] in order to take
care of identical particles in the initial and final state. The sum runs over integer/half-integer
values of J for an even/odd number of half-integer spins present in the initial or final state
and the scattering plane is conventionally fixed at ϕ = 0 (cf. e.g. [171]). Due to the invariance
of strong interactions under time reversal and parity these helicity partial waves obey the
symmetry properties

T J
λa,λb;λc,λd

(s) = T J
λc,λd;λa,λb

(s) = T J
−λc,−λd;−λa,−λb

(s) . (7.76)

Writing for a generic two-by-two reaction ab→ cd
[
SJ
{λ}(s)

]
ab→cd

= SJ
λc,λd;λa,λb

(s) = δλa,λcδλb,λd
+ iT J

λc,λd;λa,λb
(s) = 1{λ} + i

[
T J
{λ}(s)

]
ab→cd

,
(7.77)

where the unity operator has to be removed for inelastic reactions, one obtains for the differ-
ential cross section (cf. (7.72), (7.74), and (7.75))

M{λ}
ab→cd =

√
SfSi

2pi

∑

J

(
2J + 1

)[
T J
{λ}(s)

]
ab→cd

dJ{λ}(θ) ,

dσ{λ}ab→cd

dΩ
=
∣∣∣M{λ}

ab→cd

∣∣∣
2
,

dσ̄ab→cd

dΩ
=

1

(2sa + 1)(2sb + 1)

∑

{λ}

∣∣∣∣M
{λ}
ab→cd

∣∣∣∣
2

. (7.78)

#16A very good reference on Wigner functions and a comparison of the different conventions used in the
literature is given in [190].
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This normalization ensures that no symmetry factors occur in the elastic unitarity relations
for the partial waves (cf. e.g. (7.81)), since they always cancel with the symmetry factor
implicitly included in (7.58).#17 We will consider explicitly the example of ππ → ππ with K̄K
and N̄N intermediate states in Sect. 12.1. Expanding already the single particle momentum
matrix elements (7.73), which reproduces the standard normalizations for spinless processes
and πN → πN , the partial-wave expansion reads

T λc,λd;λa,λb
fi (s, t) =

√
SfSi16π

∑

J

(2J + 1)T̃ J
λc,λd;λa,λb

(s)dJλa−λb,λc−λd
(θ) . (7.79)

In the case of spinless particles, with dJ00(θ) = PJ(cos θ) and J = l the expansion simplifies to

Tfi(s, t) =
√
SfSi16π

∞∑

J=0

(2J + 1)T̃ J
fi(s)PJ(cos θ) . (7.80)

For elastic scattering ab→ ab (hence Si = Sf and pi = pf = p), below the inelastic threshold
only the initial two-body channel contributes to the sum over physical intermediate states
in (7.58) and the partial-wave expansion (7.79) together with the angular integration (7.63)
and time reversal invariance (7.76) leads to the general elastic unitarity relation for the cor-
responding partial waves

T̃ J(s)− T̃ J †(s) = 2i Im T̃ J(s) = 2i
2p√
s
T̃ J †(s)T̃ J(s) , (7.81)

where T̃ J(s) is a (2sa+1)(2sb+1)×(2sa+1)(2sb+1) matrix in helicity space and all potential
symmetry factors cancel. If the particles are spinless or if the matrix T̃ J(s) is diagonal in some
appropriate basis (as it is e.g. for πN → πN in the isospin basis Is ∈ {1/2, 3/2}), we arrive at

Im T̃ J
fi(s) =

2p√
s

∣∣T̃ J
fi(s)

∣∣2 , (7.82)

which is solved by a parameterization of T̃ J
fi(s) via the real phase shift δJfi(s)

T̃ J
fi(s) =

√
s

2p
sin δJfi(s)e

iδJfi(s) , (7.83)

where (7.82) and (7.83) are valid for each diagonal element T̃ J
fi(s) of T̃ J(s). For s above

the lowest inelastic threshold sinel these equations have to be modified by introducing real
inelasticities 0 ≤ ηJfi(s) ≤ 1 via

T̃ J
fi(s) =

√
s

2p

ηJfi(s)e
2iδJfi(s) − 1

2i
, Im T̃ J

fi(s) =
2p√
s

∣∣T̃ J
fi(s)

∣∣2 +
√
s

8p

[
1−

(
ηJfi(s)

)2]
, (7.84)

with ηJfi(s) < 1 for s > sinel due to additional intermediate states contributing in (7.58).
These partial waves are then related to the diagonal elements of the corresponding S-matrix
according to

SJ
fi(s) = ηJfi(s)e

2iδJfi(s) = 1 + i
4p√
s
T̃ J
fi(s) . (7.85)

Note the kinematical factor between the T̃ J
fi and the T -matrix partial waves (7.77).

#17Note that in addition no symmetry factors occur in the relation between the differential cross section and
the squared matrix element.
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7.4 Hyperbolic dispersion relations

There are several excellent general introductions to S-matrix theory and dispersion theory#18

available in the literature, see for instance [174, 192–197]. Even specific processes are exten-
sively studied in the literature: see e.g. [174, 196, 198] for the simple and thus pedagogical
case of ππ scattering, [174, 196, 197] for πN scattering, and [199] particularly for ππ → N̄N .
Hence, before reviewing the formalism for the particular case at hand, i.e. hyperbolic disper-
sion relations for πN scattering, we will content ourselves with a very brief synopsis of the
basic underlying ideas in the following (see [191] for the corresponding references)

S-matrix theory started to become popular in the late 1950s#19 as a program for (dynam-
ically) determining the S-matrix for strong interactions by starting from very general first
principles and assumptions, since at that time strong interactions were thought to become
uncontrollably strong at short distances in (local) quantum field theory (QFT). For this pur-
pose also observations of (quantum) field theory and perturbation theory were generalized to
postulates (e.g. that imaginary parts of scattering amplitudes correspond to the propagation
of on-mass-shell intermediate states). With the advent of QCD and especially asymptotic free-
dom in the early to mid 1970s, however, the interest in the S-matrix program waned rapidly,
although it should be stressed that there is no contradiction whatsoever between QFT/QCD
and S-matrix theory. In fact, the latter can generally be thought of as an on-mass-shell field
theory and many of its concepts and assumptions are frequently used hitherto.#20 Besides fur-
ther symmetry principles of the specific scattering process under consideration (e.g. isospin),
the foundations of S-matrix theory are given by the postulates of

• Lorentz invariance,

• unitarity,

• crossing symmetry,

• and “maximal” hermitian analyticity

for the S-matrix and thus the Lorentz-invariant scattering amplitudes. While unitarity, which
amounts to nothing else but probability conservation, can easily be implemented in the formal-
ism (in particular for partial-wave amplitudes, cf. Sect. 7.3), it is difficult to precisely formulate

#18Although these two terms are frequently used in a synonymical way in the literature, in fact they comprise
a variety of conceptually rather different theories and theoretical programs, which, however, share a good deal
of the calculational (i.e. especially dispersive) techniques. An excellent overview on both the differences and
overlaps of the miscellaneous specific theoretical approaches during the historical development of the general
field is given in [191], which thereby proves valuable as literature survey. For the sake of simplicity, however,
we will generically use the term S-matrix theory in the following. Moreover, [191] is concerned with the
interrelation and the (at least historical) rivalry between S-matrix theory and (local) quantum field theory as
a case study for a philosophical discussion (though being fairly technical at the same time) on the construction
and, in particular, the selection of theories in modern physics.
#19Its roots can be traced back to Heisenberg in the 1930s, though.
#20A very good example for the strong interrelation between these two different theoretical approaches is the
Lehmann–Symanzik–Zimmermann (LSZ) formalism of causal asymptotic field theory as a means of implement-
ing the general principles of S-matrix theory. Moreover, together with the more speculative concept of duality
(i.e. that any hadronic scattering amplitude may be considered either as the sum of direct-channel resonances
or as the sum of crossed-channel Regge exchanges), S-matrix theory lead to the bootstrap model for strong
interactions (or even the notion of nuclear democracy), which was the starting point for the development of
modern string theory.



96 Chapter 7: Preliminaries

the assumption of so-called “maximal” hermitian analyticity, which is linked to the physical
principle of causality and is crucial for the possibility of analytic continuation and thus for the
validity of dispersion relations. More specifically, it is assumed that the S-matrix elements
for a given channel of a scattering process are functions that are analytic (actually: hermitian
analytic, cf. Sect. 7.3) in the corresponding (squared CMS) energy except for those singularity
structures that are enforced by the other principles, namely particle poles (corresponding to
the exchange of stable particles, as motivated by leading-order perturbation theory) and uni-
tarity (i.e. physical) cuts as well as crossed-channel cuts (as already mentioned in Sect. 7.1),
hence the term “maximal” (hermitian) analyticity. In principle, there are rigorous derivations
of analyticity properties of scattering amplitudes based on quantum field theoretical micro-
causality, however, such proofs are straightforward only for the forward scattering of massless
particles; for e.g. πN elastic scattering analyticity in s is only proven at fixed (physical) mo-
mentum transfer t for a limited range of t [200] (see also [201] for a review of rigorous proofs
of analyticity properties). In the most optimistic scenario of the S-matrix program, these
fundamental principles — together with suitable asymptotic boundary conditions needed for
the convergence of the dispersion relations — would be sufficient to (uniquely) specify the
scattering amplitudes. After these general remarks, we now will turn to the case at hand.

For invariant amplitudes with definite s↔ u crossing properties (for fixed t, i.e. (ν, t) are
the “natural” variables) like πN scattering, it was shown in [161] (and references therein) that
the requirements that the parameterizations of the integration paths in the dispersive integrals
correspond to curves in the Mandelstam plane so that

• the curves pass through both the direct and all crossed channels
(enabling the lowest partial waves to catch most of the important contributions),

• the curves do not enter the double spectral regions
(ensuring the convergence of the partial-wave expansions/projections, cf. Chap.10),

• the parameterization does not introduce kinematical cuts into the invariant amplitudes,

• and the resulting integral kernels are reasonably simple

inevitably lead to equilateral hyperbolae in the (s, u) Mandelstam plane with hyperbola pa-
rameter b and asymptotes s = a and u = a,

(s− a)(u− a) = b . (7.86)

To be specific, considering t as the independent variable and ν = (s−u)/(4m) to be a function
of t and the curve parameters yields the relation (the linearity in b being a consequence of the
last of the above requirements)

t = g(s; a)b+ h(s; a) , g(s; a) = − 1

s− a
, h(s; a) = Σ− s− a , (7.87)

from which besides (7.86) also follows

s(t; a, b) =
1

2

(
Σ− t+ 4mν(t; a, b)

)
, ν(t; a, b) =

1

4m

√
(t− Σ+ 2a)2 − 4b ,

u(t; a, b) =
1

2

(
Σ− t− 4mν(t; a, b)

)
, t(±)(ν; a, b) = Σ− 2a± 2

√
(2mν)2 + b , (7.88)
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defining two hyperbola branches in the real (s, u) Mandelstam plane.#21

Under the assumption that no subtractions are necessary (cf. Chap. 11), one may thus
straightforwardly write down generic HDRs for ν-even invariant amplitudes as functions of
(t; a, b) (cf. (7.24), hence no kinematical square root cuts are introduced by ν(t; a, b)) according
to

Aev(t; a, b) = AB
ev(t; a, b) +

1

π

t̃th∫

−∞

dt′
ImAev(t

′; a, b)
t′ − t

+
1

π

∞∫

tth

dt′
ImAev(t

′; a, b)
t′ − t

,

Aod
ν (t; a, b) =

AB
od
ν (t; a, b) +

1

π

t̃th∫

−∞

dt′
Im Aod

ν (t′; a, b)
t′ − t

+
1

π

∞∫

tth

dt′
Im Aod

ν (t′; a, b)
t′ − t

, (7.89)

where AB denotes possible Born term contributions and the dispersive integrals represent
the crossed-channel (now: s-/u-channel) and direct-channel (now: t-channel) contributions,
respectively. Accordingly, the RHC starts at the physical threshold tth, while the finite branch
point of the LHC t̃th is a function of the corresponding crossed-channel threshold sth. More-
over, the physical t-channel limit is defined in the complex-t plane as approaching the RHC
from above (i.e. replacing t→ t+ iǫ and taking the limit ǫ→ 0) while due to s ∝ −t the LHC
needs to be approached from below. Applying Cauchy’s theorem as usual in the derivation of
dispersion relations — i.e. integrating over a full circle with radius r in the complex-t plane
circumventing both cuts by ±ǫc and taking the limits ǫc → 0 (hermitian analyticity relating
the discontinuities along the cuts with the pertinent imaginary parts, cf. (7.62)) as well as
r → ∞ (assuming the contributions of the arcs to vanish due to the asymptotic behavior of
the amplitude) — then leads to the HDRs as given above.#22

It turns out advantageous, however, to replace the dependence on b by dependences on a
and the Mandelstam variables. To this end, one rewrites b as a function of s and t for a given
value of a,

b(s, t; a) = (s− a)(Σ− s− t− a) , (7.90)

and hence for given s and a one considers a family of hyperbolae wherein all members are
uniquely defined by t. Effectively, this replacement amounts to introducing the variables s
and s′ outside and inside the integrals, respectively. Due to the hyperbolic parameterization
both the unprimed external kinematics (s, t, u) and the primed internal kinematics (s′, t′, u′)
are related by

(s− a)(u− a) = b = (s′ − a)(u′ − a) , s+ t+ u = Σ = s′ + t′ + u′ , (7.91)

where u(s, t) and u′(s′, t′) are only used for convenience and symmetry reasons. Repeatedly
using the linearity of t in b (cf. (7.87), in analogy for the primed Mandelstam variables) yields

dt′

ds′
=

d
ds′
[
g(s′; a)b+ h(s′; a)

]
⇒ dt′

t′ − t
=

ds′

s′ − a

b− (s′ − a)2

−b+ (s′ − a)(Σ− s′ − a− t)

= ds′
[

1

s′ − s
+

1

s′ − u
− 1

s′ − a

]
, (7.92)

#21Note that an equilateral hyperbolic parameterization is ideally suited to fulfill the first of the above
requirements also in view of the hyperbolic boundaries of the physical regions, cf. (7.20) and Fig. 7.1 for the
specific case of πN scattering.
#22Note that the order of limits is important in the derivation of dispersion relations: the physical limit ǫ → 0
is well-defined only after the contour limit ǫc → 0.
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so that by taking care of the sign conventions for the physical limits one can recast the first
HDR of (7.89) in the explicitly s↔ u crossing symmetric form

Aev(s, t; a) = AB
ev(s, t; a) +

1

π

∞∫

sth

ds′
[

1

s′ − s
+

1

s′ − u
− 1

s′ − a

]
ImAev(s

′, t′; a)

+
1

π

∞∫

tth

dt′
ImAev(s

′, t′; a)
t′ − t

, (7.93)

where under the integrals one has to use

t′(s′, s, t; a) = g(s′; a)b(s, t; a) + h(s′; a) ,

s′(t′, s, t; a) =
1

2

[
Σ− t′ +

√
(t′ − Σ+ 2a)2 − 4b(s, t; a)

]
, (7.94)

respectively. By eliminating b one in particular simply recovers ν(s, t) = (s− u)/(4m) and in
analogy ν(s′, t′) = (s′ − u′)/(4m), which both are obviously real and thus can be factorized
out of the pertinent imaginary parts in (7.89). Thereby, defining the convenient abbreviation

ν ′(s′, t′) = ν(s′, t′) =
2s′ + t′ − Σ

4m
, (7.95)

and noting that
ν

ν ′

[
1

s′ − s
+

1

s′ − u
− 1

s′ − a

]
=

1

s′ − s
− 1

s′ − u
, (7.96)

the second HDR of (7.89) eventually can be rewritten in analogy as

Aod(s, t; a) = AB
od(s, t; a)+

1

π

∞∫

sth

ds′
[

1

s′ − s
− 1

s′ − u

]
ImAod(s

′, t′; a)+
1

π

∞∫

tth

dt′
ImAod(s

′, t′; a)
t′ − t

.

(7.97)
For πN scattering, the corresponding HDRs for the Lorentz-invariant amplitudes thus

read [161]

A+(s, t; a) =
1

π

∞∫

s+

ds′
[

1

s′ − s
+

1

s′ − u
− 1

s′ − a

]
ImA+(s′, t′) +

1

π

∞∫

tπ

dt′
ImA+(s′, t′)

t′ − t
,

A−(s, t; a) =
1

π

∞∫

s+

ds′
[

1

s′ − s
− 1

s′ − u

]
ImA−(s′, t′) +

1

π

∞∫

tπ

dt′
ν

ν ′
ImA−(s′, t′)

t′ − t
,

B+(s, t; a) = N+(s, t) +
1

π

∞∫

s+

ds′
[

1

s′ − s
− 1

s′ − u

]
ImB+(s′, t′) +

1

π

∞∫

tπ

dt′
ν

ν ′
ImB+(s′, t′)

t′ − t
,

B−(s, t; a) = N−(s, t; a)+
1

π

∞∫

s+

ds′
[

1

s′ − s
+

1

s′ − u
− 1

s′ − a

]
ImB−(s′, t′)+

1

π

∞∫

tπ

dt′
ImB−(s′, t′)

t′ − t
.

(7.98)
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Here, only the amplitudes B± contain Born term contributions N± due to the nucleon poles
given by (cf. [171] for N̄±, i.e. the Born contributions without the term depending on a)#23

N+(s, t) = N̄+(s, t) , N̄+(s, t) = g2
[

1

m2 − s
− 1

m2 − u

]
=
g2

m

ν

ν2B − ν2
,

N−(s, t; a) = N̄−(s, t)− g2

m2 − a
, N̄−(s, t) = g2

[
1

m2 − s
+

1

m2 − u

]
=
g2

m

νB
ν2B − ν2

,

(7.99)

where the usual pseudoscalar πN coupling constant g and thereby the pseudovector πN cou-
pling constant f are given by#24

g2

4π
=

4m2f2

M2
π

≈ 13.7 . (7.100)

In order to express the integrands in terms of the corresponding CMS scattering angles ac-
cording to

X(s′, z′s) = X(s′, t′)
∣∣∣
t′=t′(s′,z′s)

, X(t′, z′t) = X(s′, t′)
∣∣∣
s′=s′(t′,z′t)

, X ∈
{
A±, B±} ,

(7.101)
we define

z′s(s
′, t′) = zs(s

′, t′) = 1 +
t′

2q′2
, q′(s′) = q(s′) , (7.102)

z′t(s
′, t′) = zt(s

′, t′) =
mν ′

p′tq
′
t

, p′t(t
′) = pt(t

′) = ip′−(t
′) , q′t(t

′) = qt(t
′) = iq′−(t

′) ,

which leads to the relations

t′(s′, z′s) = −2q′2(1− z′s) , z′s(s
′, s, t; a) = 1− 1

2q′2

[
s′ − Σ+ a+

b(s, t; a)

s′ − a

]
,

s′(t′, z′t) =
1

2
(Σ− t′ + 4p′tq

′
tz

′
t) , z′t(t

′, s, t; a) =
1

4p′tq
′
t

√
(t′ − Σ+ 2a)2 − 4b(s, t; a) .

(7.103)

Note that b is linearly related to z′s for the s-channel, but only to z′2t for the t-channel, which
will have important consequences in Chap. 10, where it will be shown that the HDRs (7.98)
incorporate contributions from the direct channel as well as from the crossed channels, but
not from double spectral regions, provided the parameters are chosen appropriately. Further-
more, starting from the defined ν-parity (7.26) of the amplitudes A± and B± due to crossing

#23The form of these nucleon pole terms easily follows from Cauchy’s theorem via algebraic manipulations
along the same lines as discussed for the integral contributions.
#24Note that [171] quotes a value of 14.28 based on [202]. For more information on conventions as well as the
historical evolution of the value see [144,145,203,204].
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symmetry together with (7.99) as special case for s′ = m2 of the relations

1

s′ − s
+

1

s′ − u
=

2s′ − (s+ u)

(s′ − s)(s′ − u)
=

2(s′ −m2) + 4mνB

(s′ −m2)
{
(s′ −m2) + 4mνB

}
+ 4m2(ν2B − ν2)

= 4
2s′ − Σ+ t

(2s′ − Σ+ t)2 − (4mν)2
=

2(s′ − s0) + t

(s′ − s0 +
t
2)

2 − 4p2t q
2
t z

2
t

,

1

s′ − s
− 1

s′ − u
=

s− u

(s′ − s)(s′ − u)
=

4mν

(s′ −m2)
{
(s′ −m2) + 4mνB

}
+ 4m2(ν2B − ν2)

= 4
4mν

(2s′ − Σ+ t)2 − (4mν)2
=

4ptqtzt

(s′ − s0 +
t
2)

2 − 4p2t q
2
t z

2
t

, (7.104)

one can easily check also for the dispersive integral representations in (7.98) that A+ and B−

are indeed functions of ν2, while A− and B+ are completely proportional to ν

A−(s, t; a)
4mν

=
1

π

∞∫

s+

ds′
ImA−(s′, z′s)
(s′ − s)(s′ − u)

+
1

π

∞∫

tπ

dt′
ImA−(t′, z′t)
4p′tq

′
tz

′
t(t

′ − t)
,

B+(s, t; a)

4mν
=

g2

(m2 − s)(m2 − u)
+

1

π

∞∫

s+

ds′
ImB+(s′, z′s)
(s′ − s)(s′ − u)

+
1

π

∞∫

tπ

dt′
ImB+(t′, z′t)
4p′tq

′
tz

′
t(t

′ − t)
,

(7.105)

which will be used in Chap. 13. Note that since 4p′tq
′
tz

′
t = 4mν ′ = s′ − u′ = 2(s′ − s0) −

2q′2(1− z′s) is always real, one may rewrite the HDRs (7.105) in terms of reduced amplitudes
A−(s′, t′)/ν ′ = A−

ν′ (ν
′2, t′) and B+(s′, t′)/ν ′ = B+

ν′ (ν
′2, t′) that are even in ν ′ according to

A−
ν (ν2, t; a) =

2

π

∞∫

s+

ds′
(s′ − s0 +

t′
2 ) Im

[
A−
ν′ (ν

′2, t′)
]

(s′ − s0 +
t
2)

2 − 4m2ν2
+

1

π

∞∫

tπ

dt′
Im
[
A−
ν′ (ν

′2, t′)
]

t′ − t
,

B+

ν (ν2, t; a) =
g2

m

1

ν2B − ν2
+

2

π

∞∫

s+

ds′
(s′ − s0 +

t′
2 ) Im

[
B+

ν′ (ν
′2, t′)

]

(s′ − s0 +
t
2)

2 − 4m2ν2
+

1

π

∞∫

tπ

dt′
Im
[
B+

ν′ (ν
′2, t′)

]

t′ − t
,

(7.106)

yielding, however, more involved angular kernels for the s-channel integrals.#25

In contrast, for usual fixed-t dispersion relations external and internal kinematics are
related by

t = t′ , s+ t+ u = Σ = s′ + t′ + u′ . (7.107)

It is remarkable that the HDRs have the simple form of (7.98) and (7.99), which by neglecting
the terms depending on a (or equivalently for |a| → ∞) reduce to the usual fixed-t dispersion
relations [205] (cf. [171] for the standard notation), provided, however, that the t-channel
integrals are discarded. Moreover, the hyperbolae then reduce to fixed-t lines, and thus we
will refer to the limit |a| → ∞ as “fixed-t limit” in the following.#26

#25While for the t-channel integrals the kernels simplify and reduce to Cauchy-type kernels like for A+ and
B−, for the s-channel integrals the expansion into partial waves is complicated by the fact that ν′ mixes the
powers of z′s.
#26As explained in Sect. 10.2, only the limit a → −∞ is compatible with range-of-convergence considerations.
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Chapter 8

Partial-wave projection

for the s-channel amplitudes

In this chapter, for the sake of completeness and convenience, we will collect some results
of [161] and references therein [206–208] for the PWDRs for the s-channel partial waves derived
from the HDRs (7.98), that we will need in the following as part of the full Roy–Steiner
system.#1

The s-channel partial-wave amplitudes are conventionally denoted by f Il±(W ) with isospin
(i.e. crossing) index I ∈ {+,−} and total angular momentum j = l±1/2 = l± ≥ 1/2, whereby
the orbital angular momentum can take the values l ≥ 0 for j = l+ and l ≥ 1 for j = l−.
They obey the MacDowell symmetry relation [209] in the complex W -plane

f Il+(W ) = −f I(l+1)−(−W ) ∀ l ≥ 0 , (8.1)

due to which only half of the W -plane is actually needed (corresponding to the full s = (±W )2-
plane), or which can be used the other way round to derive the partial waves with j = l−
from the ones with j = l+ via W → −W

f Il−(W ) = −f I(l−1)+(−W ) ∀ l ≥ 1 . (8.2)

As will be shown in the following, expanding the absorptive parts into s-channel and t-channel
partial-wave amplitudes, respectively, and projecting onto the s-channel partial waves yields
the result

f Il+(W ) = N I
l+(W )

+
1

π

∞∫

W+

dW ′
∞∑

l′=0

{
KI

ll′(W,W
′) Im f Il′+(W

′) +KI
ll′(W,−W ′) Im f I(l′+1)−(W

′)
}

+
1

π

∞∫

tπ

dt′
∑

J

{
GlJ(W, t

′) Im fJ+(t
′) +HlJ(W, t

′) Im fJ−(t
′)
}

= −f I(l+1)−(−W ) ∀ l ≥ 0 . (8.3)

#1Correcting several typographical errors, adjusting the conventions, and partially extending the presentation
in [161,206–208] at the same time.
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Here, N I
l±(W ) represent the contributions due to the nucleon pole terms in the amplitudes B±

as given in (7.98). Each s-channel partial wave f Il±(W ) is coupled to the absorptive parts of
all other s-channel partial waves via the kernels KI

ll′(W,W
′), which contain the usual Cauchy

kernel responsible for the physical cut and an analytically known remainder (denoted by dots
below) containing only left-hand cut contributions

KI
ll′(W,W

′) =
δll′

W ′ −W
+ . . . ∀ l, l′ ≥ 0 , (8.4)

as well as to the absorptive parts of the t-channel partial waves fJ±(t) via the kernels GlJ(W, t
′)

and HlJ(W, t
′), where the lower index ± denotes parallel(+) or antiparallel(−) antinucleon–

nucleon helicity and the total (t-channel) angular momentum J can take the values J ≥ 0 or
J ≥ 1, respectively. Due to Bose statistics (i.e. crossing symmetry), the summations over J
in (8.3) run over even/odd values of J for the crossing even/odd partial waves (upper index
I = +/−), respectively, as explained in Sect. 7.2. Hence, the useful definitions

ǫI =

{
ǫ+ = +1 ,

ǫ− = −1 ,
ǫ̃± =

1± ǫI

2
, ǫ̃+ =

{
1 ,

0 ,
ǫ̃− =

{
0 ,

1 ,
for

{
I = + or J even ,

I = − or J odd ,
(8.5)

can be identified in this case with

ǫI
.
= (−1)J , ǫ̃±

.
=

1± (−1)J

2
. (8.6)

In the following, the different contributions to (8.3) will be discussed in detail along the lines
of [161].

8.1 Nucleon exchange

Using a shorthand notation for the zs-projections of the invariant amplitudes

XI
l (s) =

1∫

−1

dzs Pl(zs)X
I(s, t)

∣∣∣
t=t(s,zs)=−2q2(1−zs)

for X ∈ {A,B} , (8.7)

the well-known s-channel partial-wave projection formula, which is the source of the MacDow-
ell symmetry relation (8.1), reads [210]

f Il±(W ) =
1

16πW

{
(E +m)

[
AI

l (s) + (W −m)BI
l (s)

]

+ (E −m)
[
−AI

l±1(s) + (W +m)BI
l±1(s)

]}

=
1

16πW

{
(E(W ) +m)

[
AI

l (s) + (W −m)BI
l (s)

]}

− 1

16π(−W )

{
(E(−W ) +m)

[
AI

l±1(s) + (−W −m)BI
l±1(s)

]}
. (8.8)
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Projecting the HDR Born terms N I(s, t) of (7.99) onto s-channel partial waves leads to ac-
cordingly symmetric nucleon pole contributions

N I
l+(W ) =

g2

16πW

{
(E +m)(W −m)

[
ǫI
Ql(y)

q2
+ 2δl0

(
1

m2 − s
− ǫ̃−
m2 − a

)]

+ (E −m)(W +m)

[
ǫI
Ql+1(y)

q2

]}

= −N I
(l+1)−(−W ) ∀ l ≥ 0 , (8.9)

which by defining the abbreviation#2

N̄ I
l±(W ) =

g2

16πW

{
(E +m)(W −m)

[
ǫI
Ql(y)

q2
+

2δl0
m2 − s

]

+ (E −m)(W +m)

[
ǫI
Ql±1(y)

q2
+

2δl±1,0

m2 − s

]}
(8.10)

for later convenience can also be written in the form

N+
l+(W ) = N̄+

l+, N−
l+(W ) = N̄−

l+ − g2

4π

(E +m)(W −m)

2W

δl0
m2 − a

∀ l ≥ 0 ,

N+
l−(W ) = N̄+

l−, N−
l−(W ) = N̄−

l− − g2

4π

(E −m)(W +m)

2W

δl1
m2 − a

∀ l ≥ 1 , (8.11)

and where we have defined (xs(s, s′) will be introduced in (8.31))

y(s) = 1− s+m2 − Σ

2q2
= zs(s, t(s, u = m2)) = xs(s, s

′ = m2) , (8.12)

and Ql(z) denote the Legendre functions of the second kind.
The Ql(z) obey a recursion relation similar to the one for the usual Legendre polynomials

Pl(z) (for l ≥ 0)

(l + 1)Pl+1(z) + lPl−1(z) = (2l + 1)zPl(z) ,

(l + 1)Ql+1(z) + lQl−1(z) = (2l + 1)zQl(z)− δl0 , (8.13)

which, together with Ql = Pl = 0 for l < 0, leads in particular to (cf. (8.66) for the general
formula)

Q1(z) = P1(z)Q0(z)−1 , Q2(z) = P2(z)Q0(z)−
3

2
z , Q3(z) = P3(z)Q0(z)−

5z2

2
+

2

3
.

(8.14)
From the Neumann integral representation for general complex argument z (cf. [211])

Ql(z) =
1

2

1∫

−1

dx
Pl(x)

z − x
= (−1)l+1Ql(−z) , (8.15)

#2Of course, also this form of the nucleon pole terms obeys the MacDowell symmetry relation (8.1), since
the term proportional to δl+1,0 or δl0 vanishes for N̄ I

l± as a consequence of l starting at 0 or 1, respectively.
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which leads to a cut along the real axis for −1 ≤ x ≤ 1, the boundary values on the upper
and lower rim of the cut (i.e. for z = y ± iǫ with real y and |y| ≤ 1) can be obtained by use
of the symbolic principal value formula

1

x− (y ± iǫ)
= Px

1

x− y
± iπδ(x− y) , (8.16)

where Px denotes the principal value integral over x. Thus one obtains for general real
argument y

Ql(y ± iǫ) = QP
l (y)∓ i

π

2
Pl(y) θ(1− y2) , (8.17)

and particularly for the lowest function

Q0(y ± iǫ) =
1

2

1∫

−1

dx
y − x± iǫ

=
1

2
log

∣∣∣∣
1 + y

1− y

∣∣∣∣∓ i
π

2
θ(1− y2) . (8.18)

From the form of QP
0 (y) for real y

QP
0 (y) =

1

2
log

∣∣∣∣
1 + y

1− y

∣∣∣∣ =
{

1
2 log

1+y
1−y = Artanh y for |y| < 1 ,

1
2 log

y+1
y−1 = Arcoth y for |y| > 1 ,

(8.19)

we can perform the analytic continuation for purely imaginary argument z = iy with e.g. y > 1

Q0(iy) =
1

2
log

iy + 1

iy − 1
=

1

2
log

1 + iy

1− iy
− i

π

2
= i
(
arctan y − π

2

)
= −Q0(−iy) , (8.20)

by choosing the cut of log z as usual along −∞ ≤ z ≤ 0 and taking the main branches for
the phase arg z ∈ (−π, π] as well as for arctan y ∈ (−π/2, π/2]. Thereby one can infer that
Ql(iy) is imaginary/real for l even/odd, respectively. For general complex argument z with
non-vanishing real part we may thus write

Q0(z) =
1

2
log

1 + z

1− z
− i

π

2

{
θ(Im z)− θ(−Im z)

}
, log

1 + z

1− z
= log

∣∣∣∣
1 + z

1− z

∣∣∣∣+ i arg
1 + z

1− z
.

(8.21)
Functions with l ≥ 1 may then be obtained via either the recursion relation (8.13) or the
reduction formula (8.66).

8.2 s- and u-channel exchange

By introducing a convenient matrix notation via

AI =

(
AI

BI

)
, f Il =

(
f Il+
f I(l+1)−

)
, (8.22)

the crossing properties of the even and odd invariant amplitude combinations (7.26) read

AI(ν, t) = ǫIσ3 A
I(−ν, t) , σ3 =

(
1 0
0 −1

)
. (8.23)
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While the s-channel partial-wave projection (8.8) can be rewritten as

f Il (W ) =

1∫

−1

dzs R
l(W, zs)A

I(s, t)
∣∣∣
t=t(s,zs)

, (8.24)

where the projection kernel matrix is given by

Rl(W, zs) =

(
R1

l,l+1 R2
l,l+1

R1
l+1,l R2

l+1,l

)
, (8.25)

R1
kn(W, zs) =

1

16πW

{
(E +m)Pk(zs)− (E −m)Pn(zs)

}
= −R1

nk(−W, zs) ,

R2
kn(W, zs) =

1

16πW

{
(E +m)(W −m)Pk(zs) + (E −m)(W +m)Pn(zs)

}
= −R2

nk(−W, zs) ,

the s-channel partial-wave expansion, i.e. the inversion of (8.24), takes the form [205]

AI(s, t)
∣∣∣
t=t(s,zs)

=
∞∑

l=0

Sl(W, zs)f
I
l (W ) , (8.26)

with the expansion kernel matrix

Sl(W, zs) =

(
S1
l+1,l −S1

l,l+1

S2
l+1,l −S2

l,l+1

)
,

S1
kn(W, zs) = 4π

{
W +m

E +m
P ′
k(zs) +

W −m

E −m
P ′
n(zs)

}
= −S1

nk(−W, zs) ,

S2
kn(W, zs) = 4π

{
1

E +m
P ′
k(zs)−

1

E −m
P ′
n(zs)

}
= −S2

nk(−W, zs) . (8.27)

In accordance with the matrix form of the MacDowell symmetry relation (8.1)

f Il (W ) = −σ1f
I
l (−W ) , σ1 =

(
0 1
1 0

)
, (8.28)

these kernels obey the symmetry relations

Rl(W, zs) = −σ1R
l(−W, zs) , Sl(W, zs) = −Sl(−W, zs)σ1 . (8.29)

With the definitions (7.102) the s- and u-channel terms of the HDRs (7.98) thus can be cast
into the matrix form

AI(s, t)
∣∣∣
s+u

t=t(s,zs)=−2q2(1−zs)
=

1

π

∞∫

s+

ds′ hI
s[s, s

′; zs] ImAI(s′, t′)
∣∣∣
t′=t′(s′,z′s)=−2q′2(1−z′s)

, (8.30)

where the HDR kernel matrix hI
s is given by

hI
s(s, s

′; zs) = h1σ0 − ǫIh2σ3 , σ0 = 12 =

(
1 0
0 1

)
, xs(s, s

′) = 1− s+ s′ − Σ

2q2
,

h1(s, s
′) =

1

s′ − s
− 1

2

1

s′ − a
, h2(s, s

′; zs) =
1

2q2
1

xs − zs
+

1

2

1

s′ − a
, (8.31)
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and [s, s′; zs] denotes that the whole integrand is to be understood as a function of these
variables, which can be achieved by use of

z′s(s, s
′; zs) = αzs + β , α(s, s′) =

q2

q′2
s− a

s′ − a
, β(s, s′) = 1− α− s′ − s

s′ − a

s+ s′ − Σ

2q′2
.

(8.32)
By expanding the absorptive part of the s- and u-channel HDR terms given in (8.30) into
s-channel partial waves via (8.26) and projecting out s-channel partial waves again by means
of (8.24), we arrive at the PWDRs

f Il (W )
∣∣∣
s+u

=
1

π

∞∫

W+

dW ′
∞∑

l′=0

Kll′,I(W,W ′) Im f Il′(W
′) , (8.33)

where the s- and u-channel kernel matrix is defined by

Kll′,I(W,W ′) = 2W ′
1∫

−1

dzs R
l(W, zs)h

I
s[W,W

′; zs]Sl′(W ′, z′s) . (8.34)

Due to the symmetry relations

− σ1K
ll′,I(−W,W ′) = Kll′,I(W,W ′) = Kll′,I(W,−W ′)σ1 , (8.35)

that follow from the relations (8.29), the s- and u-channel kernel matrix can be written with
only one kernel function according to

Kll′,I(W,W ′) =
(

KI
ll′(W,W

′) KI
ll′(W,−W ′)

−KI
ll′(−W,W ′) −KI

ll′(−W,−W ′)

)
,

KI
ll′(W,W

′) = 2W ′
1∫

−1

dzs
{
Rl(W, zs)h

I
s[W,W

′; zs]Sl′(W ′, z′s)
}
1,1

, (8.36)

where the subscript denotes the 1, 1-th element of the matrix in the curly brackets. The
PWDRs (8.33) then take the form already stated in (8.3)

f Il+(W )
∣∣∣
s+u

=
1

π

∞∫

W+

dW ′
∞∑

l′=0

{
KI

ll′(W,W
′) Im f Il′+(W

′) +KI
ll′(W,−W ′) Im f I(l′+1)−(W

′)
}

= −f I(l+1)−(−W )
∣∣∣
s+u

. (8.37)

Defining the structure

ϕ
[
akn
∣∣b(W,W ′)

]
=
W ′

W

{
b(W,−W ′)akn + b(W,W ′)ak,n+1

+ b(−W,−W ′)ak+1,n + b(−W,W ′)ak+1,n+1

}
, (8.38)
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where akn(s, s′) is to be understood as a function invariant under sign changes in W and W ′,
and introducing the kinematical abbreviations

δ(W,W ′) =
E +m

E′ +m

[
W ′ +W

]
, E′(W ′) = E(W ′) ,

̺(W,W ′) =
E +m

E′ +m

[
W ′ −W + 2m

]
,

κ
I(W,W ′) =

1

2

[
δ(W,W ′) + ǫI̺(W,W ′)

]
=
E +m

E′ +m

[
ǫ̃+(W

′ +m) + ǫ̃−(W −m)
]
, (8.39)

as well as the angular kernels

Ull′(s, s
′) =

1

2

1∫

−1

dzs Pl(zs)P
′
l′(z

′
s) , Vll′(s, s

′) =
1

2

1∫

−1

dzs
Pl(zs)P

′
l′(z

′
s)

xs − zs
, (8.40)

the general s- and u-channel kernel function can be written as

KI
ll′(W,W

′) = h1ϕ
[
Ull′
∣∣δ(W,W ′)

]
− ǫI

2
ϕ

[
Vll′

q2
+

Ull′

s′ − a

∣∣∣∣̺(W,W ′)
]

=
ϕ
[
Ull′
∣∣δ(W,W ′)

]

s′ − s
− ǫI

ϕ
[
Vll′
∣∣̺(W,W ′)

]

2q2
− ϕ

[
Ull′
∣∣κI(W,W ′)

]

s′ − a
. (8.41)

Since ϕ[akn|b(W,W ′)] encodes the MacDowell symmetry (8.1) for both pairs (k,W ) and
(n,W ′), we can decompose it in two ways

ϕ
[
akn
∣∣b(W,W ′)

]
= ϕ1

[
akn
∣∣b(W,W ′)

]
− ϕ1

[
ak+1,n

∣∣b(−W,W ′)
]
,

= ϕ2

[
akn
∣∣b(W,W ′)

]
− ϕ2

[
ak,n+1

∣∣b(W,−W ′)
]
,

ϕ1

[
akn
∣∣b(W,W ′)

]
=
W ′

W

{
b(W,−W ′)akn + b(W,W ′)ak,n+1

}
,

ϕ2

[
akn
∣∣b(W,W ′)

]
=
W ′

W

{
b(W,−W ′)akn + b(−W,−W ′)ak+1,n

}
, (8.42)

and with the definitions

KI,i
ll′ (W,W

′) =
ϕi

[
Ull′
∣∣δ(W,W ′)

]

s′ − s
− ǫI

ϕi

[
Vll′
∣∣̺(W,W ′)

]

2q2
− ϕi

[
Ull′
∣∣κI(W,W ′)

]

s′ − a
i ∈ {1, 2} ,

(8.43)
the kernels exhibit the following interrelations

KI
ll′(W,W

′) = KI,1
ll′ (W,W

′)−KI,1
l+1,l′(−W,W ′) = KI,2

ll′ (W,W
′)−KI,2

l,l′+1(W,−W ′) , (8.44)

that may be used to write down explicit expressions of the kernels in a compact form. However,
for numerical evaluations a different prescription is preferable. The part of (8.41) that contains
the s-channel cut can be decomposed according to

ϕ
[
Ull′
∣∣δ(W,W ′)

]

s′ − s
=
γll′(W,W

′)
W ′ −W

+
1

W ′ +W

W ′

W

{
E +m

E′ −m
Ull′ −

E −m

E′ +m
Ul+1,l′+1

}
,

γll′(W,W
′) =

W ′

W

{
E +m

E′ +m
Ul,l′+1 −

E −m

E′ −m
Ul+1,l′

}
. (8.45)
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Using the identity

1∫

−1

dz P ′
l′(z)

[
Pl±1(z)− zPl(z)

]
=

2δll′

2l + 1

{
−l
l + 1

}
, (8.46)

we can easily calculate its residue at the pole W ′ =W (where α = 1, β = 0, and thus z′s = zs)

Res

[
γll′(W,W

′)
W ′ −W

,W ′ =W

]
= γll′(W,W ) = Ul,l′+1(s, s)− Ul+1,l′(s, s) = δll′ , (8.47)

which together with the decompositions

Ull′(W,W
′) = Ull′(W,W ) + (W ′ −W )Ūll′(W,W

′) ,

W ′

W

E ±m

E′ ±m
=
s′

s

(W ±W+)(W ±W−)
(W ′ ±W+)(W ′ ±W−)

= 1 + (W ′ −W )c± ,

c±(W,W ′) =
(W ′ +W )Σ− ± 2mW ′W

2W ′(E′ ±m)s
=

(W ′ +W )W+W− ±W ′W (W+ +W−)
(W ′ ±W+)(W ′ ±W−)s

= −c∓(−W,−W ′) , (8.48)

leads us to the alternative form of the kernels KI
ll′(W,W

′)

KI
ll′(W,W

′) =
δll′

W ′ −W
+ K̄I

ll′(W,W
′) ,

K̄I
ll′(W,W

′) = Ūl,l′+1(W,W
′)− Ūl+1,l′(W,W

′) + c+Ul,l′+1 − c−Ul+1,l′

+
1

W ′ +W

W ′

W

{
E +m

E′ −m
Ull′ −

E −m

E′ +m
Ul+1,l′+1

}

− ǫI
ϕ
[
Vll′
∣∣̺(W,W ′)

]

2q2
− ϕ

[
Ull′
∣∣κI(W,W ′)

]

s′ − a
, (8.49)

where the first term is the usual Cauchy kernel for the s-channel cut (contributing only for
l = l′) and the kernels K̄I

ll′(W,W
′) contain only the left-hand cut. In order to derive explicit

expressions for the angular kernels Ull′(W =
√
s,W ′ =

√
s′) from (8.40) and subsequently

their regular parts Ūll′(W,W
′) from (8.48), we use the following expansion (cf. [211])

Pl(zs) =
l∑

λ=0

alλx
λ , alλ =

(−1)λ(l + λ)!

(λ!)2(l − λ)!
, x =

1− zs
2

, (8.50)

and hence

P ′
l′(z

′
s) = −1

2

l′−1∑

λ′=0

(λ′ + 1)al
′
λ′+1x

′λ′
, x′ =

1− z′s
2

= ω + αx ,

ω(s, s′) =
1− (α+ β)

2
=
s′ − s

s′ − a

s′ + s− Σ

4q′2
, (8.51)

together with the binomial theorem and the Saalschütz identity (cf. [211])

l∑

λ=0

alλ
µ+ λ+ 1

= (−1)l
(µ!)2

(µ− l)!(µ+ l + 1)!
(µ ≥ l) , (8.52)
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to arrive at the general expression for the angular kernel Ull′

Ull′(s, s
′) =

(−1)l+1

2

l′−1∑

λ′=l

(λ′ + 1)al
′
λ′+1

λ′∑

µ=l

(
λ′

µ

)
(µ!)2

(µ− l)!(µ+ l + 1)!
ωλ′−µαµ . (8.53)

These kernels show the following asymptotic behavior

Ull′ ∼ q2l for q → 0 , Ull′ ∼ q′−2l′+2 for q′ → 0 , Ull′ ∼ q′−4l for q′ → ∞ ,
(8.54)

and, in particular, the lowest kernels are given by (note that Ul0 = 0 and Ul1 = δl0)

Ull′ = 0 for l′ ≤ l , Ul,l+1 = αl , Ul,l+2 = (2l + 3)βαl ,

Ul,l+3 =
αl

2

{
(2l + 5)

[
α2 + (2l + 3)β2

]
− (2l + 3)

}
. (8.55)

From (8.53) and (8.40) we can easily deduce for W ′ =W

Ull′(W,W ) =
l′−1∑

λ′=l

uλ
′

ll′ =

{
0 for l′ ≤ l or l′ − l even ,

1 for l′ − l odd ,

uλ
′

ll′ =
(−1)l+λ′

(l′ + λ′ + 1)!

2(λ′ + 1)(l′ − λ′ − 1)!(λ′ − l)!(l + λ′ + 1)!
, (8.56)

which again yields Ul,l′+1(W,W )− Ul+1,l′(W,W ) = δll′ . By defining

q2

q′2
= 1 + (W ′ −W )d1 , d1(W,W

′) =
W ′ +W

4q′2

[
Σ2
−
ss′

− 1

]
,

s− a

s′ − a
= 1 + (W ′ −W )d2 , d2(W,W

′) = −W
′ +W

s′ − a
, (8.57)

we can rewrite the powers of α according to (note that b0 = 0)

αµ = 1 + (W ′ −W )bµ ,

bµ(W,W
′) =

µ−1∑

k=0

(
µ

k + 1

)
(W ′ −W )k

{
dk+1
1

(
s− a

s′ − a

)µ

+ dk+1
2

}

=
W ′ +W

s′ − a

µ−1∑

k=0

(
µ

k + 1

)(
s′ − s

s′ − a

)k

×
{(

s− a

4q′2

[
Σ2
−
ss′

− 1

])k+1(
s− a

s′ − a

)µ−(k+1)

+ (−1)k+1

}
, (8.58)

which together with the definitions

ω = (W ′ −W )ω̄ , ω̄(W,W ′) =
W ′ +W

s′ − a

s+ s′ − Σ

4q′2
,

Ũll′(W,W
′) =

(−1)l+1

2

l′−1∑

λ′=l

(λ′ + 1)al
′
λ′+1

λ′−1∑

µ=l

(
λ′

µ

)
(µ!)2

(µ− l)!(µ+ l + 1)!
ωλ′−1−µαµ , (8.59)
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allows us to give the explicit form of the “regular part” Ūll′ of the angular kernel Ull′ as

Ūll′(W,W
′) =

l′−1∑

λ′=l

uλ
′

ll′bλ′ + ω̄Ũll′ , (8.60)

from which we can easily obtain the lowest Ūll′ (note that Ūl0 = 0 = Ūl1)

Ūll′ = 0 for l′ ≤ l , Ūl,l+1 = bl , Ūl,l+2 = −(2l + 3)
{
bl+1 − bl + 2ω̄αl

}
,

Ūl,l+3 = (2l + 5)(2l + 3)

{
(l + 2)

[
bl+2

2l + 3
+

bl
2l + 5

]
− bl+1 − ω̄αl(1− α+ β)

}
. (8.61)

The angular kernels Vll′ can be expressed by the kernels Ull′ as follows: from the integral
representation of Ull′ (8.40) we can deduce that

P ′
l′(z

′
s) =

l′−1∑

n=0

(2n+ 1)Unl′Pn(zs) , (8.62)

and inserting this into the integral representation of Vll′ (8.40) yields

Vll′ =
l′−1∑

n=0

(2n+ 1)Unl′




1

2

1∫

−1

dzs
Pn(zs)Pl(zs)

xs − zs



 . (8.63)

By using the identity

1

2

1∫

−1

dx
Pn(x)Pl(x)

z − x
= Pn(z)Ql(z) for n ≤ l , (8.64)

we can write (note that the sum vanishes for l′ ≤ l + 1)

Vll′ = Ql(xs)P
′
l′(x

′
s)−

l′−1∑

n=l+1

(2n+ 1)Unl′
{
Pn(xs)Ql(xs)− Pl(xs)Qn(xs)

}
,

x′s(s, s
′) = αxs + β = 1− s′ + s− Σ

2q′2
= xs(s

′, s) , (8.65)

and with the aid of Wl−1(z), which is a polynomial of degree l − 1 in z defined by (cf. [211])

Ql(z) = Q0(z)Pl(z)−Wl−1(z) , W−1 = 0 , (8.66)

leading to the integral representation

Wl−1(z) =
1

2

1∫

−1

dx
Pl(z)− Pl(x)

z − x
, (8.67)

the angular kernels Vll′ take the general form

Vll′(s, s
′) = Ql(xs)P

′
l′(x

′
s)− V̄ll′ ,

V̄ll′(s, s
′) =

l′−1∑

n=l+1

(2n+ 1)Unl′
{
Pl(xs)Wn−1(xs)− Pn(xs)Wl−1(xs)

}
. (8.68)
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The V̄ll′ only contribute for l′ ≥ l + 2

V̄ll′ = 0 for l′ ≤ l + 1 , (8.69)

and we can immediately read off

Vl0 = 0 , Vl1 = Ql(xs) , V0l′ = Q0(xs)P
′
l′(x

′
s)−

l′−1∑

n=1

(2n+ 1)Unl′Wn−1(xs) , (8.70)

where the second equation can also be seen directly by comparing (8.40) with (8.15). Further-
more one easily obtains the asymptotic behavior

Vll′ ∼ q2l+2 for q → 0 , Vll′ ∼ q′−2l′+2 for q′ → 0 , Vll′ ∼ q′−2l−2 for q′ → ∞ .
(8.71)

From (8.67) or from Christoffel’s formula for l ≥ 1 (cf. [211])

Wl−1(z) =

⌊
l−1
2

⌋
∑

λ=0

2(l − λ)− (2λ+ 1)

(l − λ)(2λ+ 1)
Pl−(2λ+1)(z) ,

⌊
l − 1

2

⌋
=

{
l
2 − 1 for l ≥ 2 even ,
l−1
2 for l ≥ 1 odd ,

(8.72)
both yielding (also in agreement with (8.14) and (8.66)) besides W−1 = 0

W0 = 1 , W1(z) =
3

2
z , W2(z) =

5

2
z2 − 2

3
, (8.73)

where it is useful to note that Wl(z) like Pl(z) contains only even/odd powers of z for l
even/odd, respectively, we can immediately deduce the non-vanishing angular kernels Ull′ ,
Ūll′ , and Vll′ for l′ ≤ 3

Ul1 = δl0 , Ul2 = αδl1 + 3βδl0 , Ul3 = α2δl2 + 5αβδl1 +
1

2

{
5[α2 + 3β2]− 3

}
δl0 ,

Ūl2 = b1δl1 − 3
{
b1 + 2ω̄

}
δl0 ,

Ūl3 = b2δl2 + 5
{
b1 − b2 − 2ω̄α

}
δl1 − 5

{
3b1 − 2b2 + 3ω̄(1− α+ β)

}
δl0 ,

Vl1 = Ql(xs) , Vl2 = 3x′sQl(xs)− 3αδl0 ,

Vl3 = P ′
3(x

′
s)Ql(xs)−

5

2
α2δl1 −

15

2
α
{
αxs + 2β

}
δl0 , (8.74)

needed for the kernels KI
ll′(W,W

′) for all combinations (l ≥ 0, l′ ≤ 2) according to (8.49)

KI
l0(W,W

′) =
{

1

W ′ −W
+ c+ − W ′

W

κ
I(W,W ′)
s′ − a

}
δl0

− ǫI

2q2
W ′

W

{
̺(W,W ′)Ql(xs) + ̺(−W,W ′)Ql+1(xs)

}
,

KI
l1(W,W

′) =
{

1

W ′ −W
+ b1 + αc+

}
δl1 +

{
1

W ′ +W

W ′

W

(
E +m

E′ −m
− α

E −m

E′ +m

)

− 3
[
b1 + 2ω̄ − βc+

]}
δl0 −

ǫI

2q2
W ′

W

{[
3x′s̺(W,W

′) + ̺(W,−W ′)
]
Ql(xs)

+
[
3x′s̺(−W,W ′) + ̺(−W,−W ′)

]
Ql+1(xs)− 3α̺(W,W ′)δl0

}
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− 1

s′ − a

W ′

W

{
ακI(W,W ′)δl1

+
[
3βκI(W,W ′) + κ

I(W,−W ′) + ακI(−W,W ′)
]
δl0

}
,

KI
l2(W,W

′) =
{

1

W ′ −W
+ b2 + α2c+

}
δl2 +

{
α

W ′ +W

W ′

W

(
E +m

E′ −m
− α

E −m

E′ +m

)

+ 5
[
b1 − b2 − α(2ω̄ − βc+)

]}
δl1 +

{
β

W ′ +W

W ′

W

(
3
E +m

E′ −m
− 5α

E −m

E′ +m

)

− 2(8b1 − 5b2)− 15ω̄(1− α+ β) +
1

2
(5[α2 + 3β2]− 3)c+ − αc−

}
δl0

− ǫI

2q2
W ′

W

{
− α

[
15
{α
2
xs + β

}
̺(W,W ′) + 3̺(W,−W ′) +

5

2
α̺(−W,W ′)

]
δl0

− 5

2
α2̺(W,W ′)δl1 +

[
P ′
3(x

′
s)̺(W,W

′) + 3x′s̺(W,−W ′)
]
Ql(xs)

+
[
P ′
3(x

′
s)̺(−W,W ′) + 3x′s̺(−W,−W ′)

]
Ql+1(xs)

}

− 1

s′ − a

W ′

W

{
α2

κ
I(W,W ′)δl2

+ α
[
5βκI(W,W ′) + κ

I(W,−W ′) + ακI(−W,W ′)
]
δl1

+
[1
2
(5[α2 + 3β2]− 3)κI(W,W ′) + 3βκI(W,−W ′)

+ 5αβκI(−W,W ′) + ακI(−W,−W ′)
]
δl0

}
. (8.75)

From KI
l0(W,W

′) in the form according to (8.41)

KI
l0(W,W

′) =
1

2W

W ′

E′ +m

{
(E +m)

[
(W +W ′)

2δl0
s′ − s

+ ǫI(W −W ′ − 2m)
Ql(xs)

q2

]

+ ǫI(E −m)(W +W ′ + 2m)
Ql+1(xs)

q2

− (E +m)
[
ǫ̃+(W

′ +m) + ǫ̃−(W −m)
] 2δl0
s′ − a

}
, (8.76)

we can deduce that the nucleon pole terms (8.9) are reproduced by

N I
l+(W ) = −f2KI

l0(W,−W ′ = m) = −N I
(l+1)−(−W ) ∀ l ≥ 0 . (8.77)

The explicit formulae for the additional non-vanishing angular kernels Ull′ , Ūll′ , and Vll′ for
(l ≤ 2, 4 ≤ l′ ≤ 6) needed for calculating the additional higher kernels KI

ll′ for (l ≤ 1, 3 ≤ l′ ≤
5) via (8.49) are displayed in App. C.1. Furthermore, we give the asymptotic behavior of the
general kernel function KI

ll′(W,W
′), which can be inferred from the asymptotic behavior of

the angular kernels (8.54) and (8.71),

for q → 0 KI
ll′(W,W

′) ∼ q2l , KI
ll′(−W,W ′) ∼ q2l+2 ,

for q′ → 0 KI
ll′(W,W

′) ∼ q′−2l′ , KI
ll′(W,−W ′) ∼ q−2l′−2 ,

for q′ → ∞ KI
ll′(W,W

′) ∼ q′−2l−1 , (8.78)
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in agreement with the MacDowell symmetry relation (8.1). Alternatively, for q → 0 and
q′ → ∞ one could also use the expansion

Ql(xs) =

( −2q2

s+ s′ − Σ

)l+1

+O
(( −2q2

s+ s′ − Σ

)l+2
)

for
1

xs − 1
=

−2q2

s+ s′ − Σ
→ 0 , (8.79)

which easily follows from the integral representation (8.15) together with the orthogonality
of the Pl(z), while (xs − 1)−1 → −2q2/(s − s−) 6= 0 for q′ → 0. Either this expansion with
y(s) = xs(s, s

′ = m2) or the relation (8.77) can then be used to derive the asymptotic behavior
of the nucleon pole terms

N I
l+(W ) ∼ N I

(l+1)−(−W ) ∼ q2l for q → 0 . (8.80)

8.3 t-channel exchange

With definitions (7.102) and relations (7.103) the t-channel terms of the HDRs (7.98) can be
written as

AI(s, t)
∣∣∣
t

t=t(s,zs)
=

1

π

∞∫

tπ

dt′ hI
t [s, t

′; zs] ImAI(s′, t′)
∣∣∣
s′=s′(t′,z′t)

, (8.81)

where the HDR kernel matrix hI
t is given by

hI
t (s, t

′; zs) =
1

2q2
1

xt − zs

(
λI1 0
0 λI2

)
, xt(s, t

′) = 1 +
t′

2q2
= zs(s, t

′) ,

λIn(s, t
′; zs) =

( ν
ν ′

) 1+(−1)nǫI

2
(with x0 ≡ 1 ∀ x) , (8.82)

and the integrand is to be understood as a function of [s, t′; zs] by using

z′t(s, t
′; zs) =

mν ′

p′tq
′
t

=
√
γzs + δ , γ(s, t′) =

q2(s− a)

2p′2t q
′2
t

, (8.83)

δ(s, t′) =
(t′ − Σ+ 2a)2 − 4(s− a)(2q2 +Σ− s− a)

16p′2t q
′2
t

.

The t-channel partial-wave expansions of the invariant amplitudes read [212]

AI(s′, t′)
∣∣∣
s′=s′(t′,z′t)

= −4π

p′2t

∑

J

(2J + 1)(p′tq
′
t)
J

{
PJ(z

′
t)f

J
+(t

′)− m√
J(J + 1)

z′tP
′
J(z

′
t)f

J
−(t

′)

}
,

BI(s′, t′)
∣∣∣
s′=s′(t′,z′t)

= 4π
∑

J

2J + 1√
J(J + 1)

(p′tq
′
t)
J−1P ′

J(z
′
t)f

J
−(t

′) , (8.84)

where it is crucial that the sums only run over even J for I = + and odd J for I = − due to
Bose symmetry. Taken literally, the form (8.84) of the partial-wave expansions is only valid
for t′ ≥ tN since below the two-particle thresholds tN and tπ the CMS momenta p′t of the
nucleons and q′t of the pions become purely imaginary and one has to use p′− and q′− instead,
respectively (cf. (7.17) and [171]). Particularly, in the unphysical range t′ ∈ [tπ, tN ) — that
we are interested in as the low-energy part of the integration range t′ ∈ [tπ,∞) — we have
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q′t ∈ R but p′t, z
′
t ∈ iR. However, the squares p′2t and q′2t are always real (albeit not necessarily

positive, cf. (7.18)) and since the combination p′tq
′
tz

′
t = mν ′ = m(2s′ + t′ − Σ) is always real

as well, so is z′2t . Due to the fact that the Legendre polynomials and their derivatives have
definite parity PJ(−z) = (−1)JPJ(z) and P ′

J(−z) = (−1)J−1P ′
J(z) (i.e. they contain solely

even/odd powers for J even/odd (for PJ) or odd/even (for P ′
J), respectively), a closer look

at the expansions (8.84) shows that in all cases only powers of the real combinations p′tq
′
tz

′
t

and additional factors of powers of the likewise real squares p′2t and q′2t appear. Therefore, we
can symbolically use these formulae for all kinematical ranges and factor out powers of the
real squared momenta whenever necessary in order to form explicitly real quantities. This
is especially important in view of these expansions being applied to the imaginary parts of
the invariant amplitudes, which themselves have to be real, of course. By introducing the
t-channel partial-wave amplitudes into the matrix notation via#3

fJ =

(
fJ+
fJ−

)
, (8.85)

the expansions (8.84) can be rewritten as

AI(s′, t′)
∣∣∣
s′=s′(t′,z′t)

=
∑

J

TJ(t′, z′t)f
J(t′) , (8.86)

where the expansion kernel matrix is given by

TJ(t′, z′t) = ζJ

(
uJ vJ
0 wJ

)
, ζJ(t

′) = 4π(2J + 1)(p′tq
′
t)
J−1 ,

uJ(t
′, z′t) = − q

′
t

p′t
PJ(z

′
t) , vJ(t

′, z′t) =
m√

J(J + 1)

q′t
p′t
z′tP

′
J(z

′
t) ,

wJ(t
′, z′t) =

1√
J(J + 1)

P ′
J(z

′
t) . (8.87)

As the sum only runs over even J for I = + and odd J for I = − and thus the full information
on the crossing properties is already contained in the index J , we can redefine

λIn(s, t
′; zs) = λJn(s, t

′; zs) =
( ν
ν ′

) 1+(−1)n+J

2
(with x0 ≡ 1 ∀ x) , (8.88)

and omit the index I in favor of J in the following. If we expand the imaginary part of the t-
channel HDR terms in (8.81) into t-channel partial waves via (8.86) and project out s-channel
partial waves again by use of (8.24), we can obtain the following PWDRs

f Il (W )
∣∣∣
t
=

1

π

∞∫

tπ

dt′
∑

J

GlJ(W, t′) Im fJ(t′) , (8.89)

where the t-channel kernel matrix is defined by

GlJ(W, t′) =

1∫

−1

dzs R
l(W, zs)h

I
t [s, t

′; zs]TJ(t′, z′t) . (8.90)

#3In order to accommodate the fact that there is no f0
− to the matrix notation, we define f0

− ≡ 0 and in the
following all corresponding quantities (e.g. integral kernels) are also understood to vanish.
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Due to the symmetry relation

GlJ(−W, t′) = −σ1G
lJ(W, t′) , (8.91)

which follows from (8.29) and is in accordance with the MacDowell symmetry (8.28), the
t-channel kernel matrix can be expressed by two kernel functions

GlJ(W, t′) =
(

GlJ(W, t
′) HlJ(W, t

′)
−GlJ(−W, t′) −HlJ(−W, t′)

)
, (8.92)

where in accordance with f0− ≡ 0 for the matrix notation we set Hl0 ≡ 0, and the PW-
DRs (8.89) take the form already given in (8.3)

f Il+(W )
∣∣∣
t
=

1

π

∞∫

tπ

dt′
∑

J

{
GlJ(W, t

′) Im fJ+(t
′) +HlJ(W, t

′) Im fJ−(t
′)
}

= −f I(l+1)−(−W )
∣∣∣
t
. (8.93)

With the definitions

ψ
[
akn
∣∣d(W )

]
= d(W )akn + d(−W )ak+1,n , ηJ(W, t

′) =
2J + 1

4Wq2
(p′tq

′
t)
J

p′2t
, (8.94)

and by introducing the angular kernels

AlJ(s, t
′) =

1

2

1∫

−1

dzs λ
J
1

Pl(zs)PJ(z
′
t)

xt − zs
, BlJ(s, t

′) =
1

2

1∫

−1

dzs λ
J
2

Pl(zs)P
′
J(z

′
t)

xt − zs
,

ClJ(s, t
′) =

1

2

1∫

−1

dzs λ
J
1

Pl(zs)z
′
tP

′
J(z

′
t)

xt − zs
= JAlJ +Bl,J−1 , (8.95)

we can write the kernel functions as

GlJ(W, t
′) = −ηJψ

[
AlJ

∣∣E +m
]

∀ J ≥ 0 ,

HlJ(W, t
′) =

ηJ√
J(J + 1)

{
p′t
q′t
ψ
[
BlJ

∣∣(W −m)(E +m)
]
+mψ

[
ClJ

∣∣E +m
]}

∀ J ≥ 1 .

(8.96)

If we use the decomposition

ν

ν ′
1

xt − zs
=
µ1
z′t

+
µ2
z′t

1

xt − zs
, µ1(s, t

′) = − q2

2p′tq
′
t

, µ2(s, t
′) =

2s+ t′ − Σ

4p′tq
′
t

, (8.97)

we get for the angular kernels for even J

AlJ(s, t
′) =

1

2

1∫

−1

dzs
Pl(zs)PJ(z

′
t)

xt − zs
,

BlJ(s, t
′) =

µ1
2

1∫

−1

dzs Pl(zs)
P ′
J(z

′
t)

z′t
+
µ2
2

1∫

−1

dzs
Pl(zs)P

′
J(z

′
t)/z

′
t

xt − zs
, (8.98)
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and for odd J

AlJ(s, t
′) =

µ1
2

1∫

−1

dzs Pl(zs)
PJ(z

′
t)

z′t
+
µ2
2

1∫

−1

dzs
Pl(zs)PJ(z

′
t)/z

′
t

xt − zs
,

BlJ(s, t
′) =

1

2

1∫

−1

dzs
Pl(zs)P

′
J(z

′
t)

xt − zs
, (8.99)

from which we can infer that only even powers of z′t occur and hence a square-root dependence
on zs is avoided. We now can work out the kernel functions explicitly, here given for all
combinations (l ≥ 0, J ≤ 2) (remember Hl0 ≡ 0)

Gl0(W, t
′) = − 1

4Wq2p′2t

{
(E +m)Ql(xt)− (E −m)Ql+1(xt)

}
,

Gl1(W, t
′) =

3

4

{
(2s+ t′ − Σ)Gl0(W, t

′) +
E +m

2Wp′2t
δl0

}
,

Hl1(W, t
′) =

1√
2

{
3

4
Zl(W, t

′)−mGl1(W, t
′)
}
,

Gl2(W, t
′) =

5

16

{[
6s(s+ t′ − Σ) + (t′ − Σ)2 + 2Σ2

−
]
Gl0(W, t

′) + 3
(E +m)(s− a)

Wp′2t
δl0

}
,

Hl2(W, t
′) =

15

16
√
6

{
(2s+ t′ − Σ)Zl(W, t

′)−m
[
4s(s+ t′ − Σ) + (t′ − Σ)2

]
Gl0(W, t

′)

− 2
E +m

W

[
m(s− a)

p′2t
+W −m

]
δl0

}
, (8.100)

where we have defined

Zl(W, t
′) =

1

Wq2

{
(E +m)(W −m)Ql(xt) + (E −m)(W +m)Ql+1(xt)

}
. (8.101)

From the expansion (cf. (8.79))

Ql(xt) =

(
2q2

t′

)l+1

+O
((

2q2

t′

)l+2
)

for
1

xt − 1
=

2q2

t′
→ 0 , (8.102)

we can finally deduce the asymptotic behavior of the non-vanishing general kernel func-
tions (8.96)

for q → 0 GlJ(W, t
′) ∼ HlJ(W, t

′) ∼ q2l , GlJ(−W, t′) ∼ HlJ(−W, t′) ∼ q2l+2 ,

for q′t → 0 GlJ(W, t
′) ∼ HlJ(W, t

′) ∼ 1 ,

for p′t → 0 GlJ(W, t
′) ∼ HlJ(W, t

′) ∼ p′−2
t ,

for t′ → ∞ GlJ(W, t
′) ∼ HlJ(W, t

′) ∼ t′J−l−2 , (8.103)

in accordance with the MacDowell symmetry relation (8.1).
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Chapter 9

Partial-wave projection

for the t-channel amplitudes

For a complete system of Roy–Steiner equations (cf. [52,158]) we will need the analog of (8.3)
for the t-channel partial-wave amplitudes fJ±(t),

fJ+(t) = ÑJ
+(t) +

1

π

∞∫

W+

dW ′
∞∑

l=0

{
G̃Jl(t,W

′) Im f Il+(W
′) + G̃Jl(t,−W ′) Im f I(l+1)−(W

′)
}

+
1

π

∞∫

tπ

dt′
∑

J ′

{
K̃1

JJ ′(t, t′) Im fJ
′

+ (t′) + K̃2
JJ ′(t, t′) Im fJ

′
− (t′)

}
∀ J ≥ 0 ,

fJ−(t) = ÑJ
−(t) +

1

π

∞∫

W+

dW ′
∞∑

l=0

{
H̃Jl(t,W

′) Im f Il+(W
′) + H̃Jl(t,−W ′) Im f I(l+1)−(W

′)
}

+
1

π

∞∫

tπ

dt′
∑

J ′
K̃3

JJ ′(t, t′) Im fJ
′

− (t′) ∀ J ≥ 1 , (9.1)

where I = +/− if J is even/odd and the sum over J ′ runs over even/odd values of J ′ if J is
even/odd (cf. Sect. 7.2). As for the s-channel case, the kernels for the corresponding t-channel
partial waves can be split into the self-coupling Cauchy kernel and well-defined remainders

K̃1
JJ ′(t, t′) =

δJJ ′

t′ − t
+. . . ∀ J, J ′ ≥ 0 , K̃3

JJ ′(t, t′) =
δJJ ′

t′ − t
+. . . ∀ J, J ′ ≥ 1 , (9.2)

but, in contrast to the s-channel case, only higher t-channel partial waves can couple to lower
ones, since K̃1,2,3

JJ ′ (t, t′) = 0 for all J ′ < J , which will be a key ingredient in reducing the
t-channel part (9.1) of the RS system to a MO problem in Sect. 12.3. Note furthermore that
the fJ− receive no contributions from the fJ+. By virtue of crossing symmetry it is possible
to use only half the interval in the cosine of the t-channel CMS scattering angle since s ↔ u
corresponds to ν ↔ −ν and hence to zt ↔ −zt. If we introduce a matrix notation and define
the zt-projections of the invariant amplitudes in analogy to the s-channel

AI
J(t) =

(
AI

J(t)
BI

J(t)

)
=

1∫

−1

dzt PJ(zt)A
I(s, t)

∣∣∣
s=s(t,zt)

, (9.3)
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we can easily show by using the crossing properties (8.23) that

AI
J(t) = 2

1∫

0

dzt PJ(zt)
1

2

{
1+ (−1)JǫIσ3

}
AI(t, zt) , (9.4)

which leads to the following projections for even J (cf. [212])

A−
J = B+

J = 0 , A+
J (t) = 2

1∫

0

dzt PJ(zt)A
+(t, zt) , B−

J (t) = 2

1∫

0

dzt PJ(zt)B
−(t, zt) ,

(9.5)
and for odd J

A+
J = B−

J = 0 , A−
J (t) = 2

1∫

0

dzt PJ(zt)A
−(t, zt) , B+

J (t) = 2

1∫

0

dzt PJ(zt)B
+(t, zt) ,

(9.6)
where the integrands of the non-vanishing integrals are effectively functions of z2t ∝ ν2. Even
though for πN scattering using only 0 ≤ zt ≤ 1 rather than −1 ≤ zt ≤ 1 is not as powerful
as for the fully s ↔ t ↔ u crossing symmetric case of ππ scattering [52], it is important to
note that from both possible ranges of zt it follows that the argument z2t of the integrands is
evaluated in the range 0 ≤ z2t ≤ 1. Actually, we will never constrain the t-channel scattering
angle zt to be positive, which will be important in Chap. 10. In the following, the different
contributions to (9.1) will be discussed.

9.1 Nucleon exchange

Due to (9.4) the t-channel partial-wave projection, i.e. the inversion of (8.84), can be written
as (cf. [212])

fJ+(t) = − 1

4π

1∫

0

dzt PJ(zt)

{
p2t

(ptqt)J
AI(s, t)

∣∣∣
s=s(t,zt)

− m

(ptqt)J−1
ztB

I(s, t)
∣∣∣
s=s(t,zt)

}
∀ J ≥ 0 ,

fJ−(t) =
1

4π

√
J(J + 1)

2J + 1

1

(ptqt)J−1

1∫

0

dzt
[
PJ−1(zt)− PJ+1(zt)

]
BI(s, t)

∣∣∣
s=s(t,zt)

∀ J ≥ 1 ,

(9.7)

where I = +/− if J is even/odd, such that the integrands are always functions of the squared
angle z2t , f

0
− ≡ 0 can be used to render the lower formula valid for J = 0, and also these

formulae are valid literally only for t ≥ tN though we can use them symbolically for all
kinematical cases, cf. the discussion following (8.84). In order to carry out these projection
integrals we rewrite s and u as functions of t and zt via

s(t, zt) =
1

2
(Σ− t+ 4ptqtzt) , u(t, zt) =

1

2
(Σ− t− 4ptqtzt) , (9.8)
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which allows us to cast the nucleon pole terms of the HDRs (7.98) into the form
{

1

m2 − s
± 1

m2 − u
− 1± 1

2(m2 − a)

}∣∣∣∣
[t;zt]

=
1

2ptqt

{
1

ỹ − zt
∓ 1

(−ỹ)− zt

}
− 1± 1

2(m2 − a)
, (9.9)

where the upper/lower sign corresponds to even/odd J (i.e. to I = +/−)#1 and we have
defined in analogy to (8.12) (x̃t(t, s′) will be defined in (9.22))

ỹ(t) =
t− 2M2

π

4ptqt
=
mνB
ptqt

= zt(s = m2, t) = x̃t(t, s
′ = m2) . (9.10)

By defining in analogy to the Legendre polynomials of the second kind

Q̃l(z) =
1

2

1∫

0

dx
Pl(x)

z − x
, (9.11)

from which we can deduce (cf. (8.15))

Q̃l(z) + (−1)l+1Q̃l(−z) = Ql(z) , (9.12)

and by noting that the orthonormality of the Legendre polynomials yields

1± 1

2

1∫

0

dz PJ(z)Pl=2m(z) =
δJl

2l + 1
=

1∓ 1

2

1∫

0

dz PJ(z)Pl=2n+1(z) ∀ J, l(m,n ∈ N0) ,

(9.13)
the nucleon pole terms of the PWDRs (9.1) can be written as (in analogy to (8.9))

ÑJ
+(t) =

g2

4π
m

{
ỹQJ(ỹ)

(ptqt)J
− δJ0 −

1

3

δJ1
m2 − a

}
∀ J ≥ 0 ,

ÑJ
−(t) =

g2

4π

√
J(J + 1)

2J + 1

{
QJ−1(ỹ)−QJ+1(ỹ)

(ptqt)J
− δJ1
m2 − a

}
∀ J ≥ 1 , (9.14)

which for later convenience may be expressed as (in analogy to (8.10))

ÑJ
+(t) = N̂J

+(t)−
g2

4π

m

3

δJ1
m2 − a

, N̂J
+(t) =

g2

4π
m

{
ỹQJ(ỹ)

(ptqt)J
− δJ0

}
, ∀ J ≥ 0 ,

ÑJ
−(t) = N̂J

−(t)−
g2

4π

√
2

3

δJ1
m2 − a

, N̂J
−(t) =

g2

4π

√
J(J + 1)

2J + 1

QJ−1(ỹ)−QJ+1(ỹ)

(ptqt)J
, ∀ J ≥ 1 ,

(9.15)

and where we set in agreement with f0− ≡ 0 and the above formula Ñ0
− = N̂0

− ≡ 0. Note that
for t ∈ (tπ, tN ) due to pt ∈ iR also ỹ ∈ iR and hence we need the analytic continuations of
Ql(z) as discussed in Sect. 8.1. However, the pole term projections (9.14), (9.15) are real for
all t above the logarithmic branch point singularity at tπ− (M2

π/m)2 ≈ 3.98M2
π of the nucleon

cut (which is the left-hand cut for ỹ(t)2 ≤ 1 along the real axis due to the zt-projection of the

#1Alternatively, one may use prefactors containing either (−1)J or ǫI and ǫ̃± here and in the following for
the distinction of the two cases, cf. (8.6).
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nucleon pole terms), since ỹ/(ptqt) and the squares p2t and ỹ2 are always real and thus we can
rewrite the projections solely in terms of real quantities due to the defined parity (8.15) of the
QJ(ỹ). Finally, we comment on the asymptotic behavior for ptqt → 0, particularly including
the vicinity of the aforementioned logarithmic singularity. The ostensible poles in (9.14) are
canceled by the asymptotics of QJ(ỹ) for ỹ → ∞. In this limit, we may abort the series
representation of Ql(z) valid for |z| > 1 (cf. [211])

Ql(z) =
√
π
Γ(l + 1)

Γ
(
2l+3
2

) (2z)−(l+1)F

(
l + 1

2
,
l + 2

2
;
2l + 3

2
; z−2

)

=
2l(l!)2

(2l + 1)!
z−(l+1)

{
1 +

(l + 1)(l + 2)

2(2l + 3)
z−2

[
1 +

(l + 3)(l + 4)

4(2l + 5)
z−2

{
1 + . . .

}]}
, (9.16)

which is based on the hypergeometric series F (a, b; c; z) and where Γ(z) denotes the usual
gamma function, after the first term and obtain the leading contributions

ÑJ
+(t) =

g2

4π

J !

(2J + 1)!!
m

{(
4

t− 2M2
π

)J

− δJ0 −
δJ1

m2 − a

}
+O(p2t q

2
t ) ∀ J ≥ 0 ,

ÑJ
−(t) =

g2

4π

J !

(2J + 1)!!

√
J + 1

J

{(
4

t− 2M2
π

)J

− δJ1
m2 − a

}
+O(p2t q

2
t ) ∀ J ≥ 1 . (9.17)

In particular, it follows that the leading contribution to Ñ0
+ vanishes, so that Ñ0

+ even involves
zeros for ptqt → 0. However, higher orders need to be taken into account in the approxima-
tions (9.17) (which can easily be done in a recursive fashion as indicated in (9.16)) in order to
obtain precise numerical results in particular for qt → 0, since the pole terms vary rapidly in
the vicinity of tπ. Note that (9.14) and (9.17) reduce to the results given in [171] (cf. also [213]
for (9.14)), if the terms containing the hyperbola parameter a (that only contribute for J = 1
anyway) are dropped.

9.2 s- and u-channel exchange

We may rewrite the t-channel partial-wave projection (9.7) in matrix form as

fJ(t) =

1∫

0

dzt T̃
J(t, zt)A

I(s, t)
∣∣∣
s=s(t,zt)

, (9.18)

where the projection kernel is given by

T̃J(t, zt) = ζ̃J

(
ũJ ṽJ
0 w̃J

)
, ζ̃J(t) =

1

4π(ptqt)J−1
,

ũJ(t, zt) = −pt
qt
PJ(zt) , ṽJ(t, zt) = mztPJ(zt) ,

w̃J(t, zt) =

√
J(J + 1)

2J + 1

[
PJ−1(zt)− PJ+1(zt)

]
. (9.19)

For the following, we need the matrix form of both s- and u-channel HDR terms (7.98)
according to

AI(s, t)
∣∣∣
s+u

s=s(t,zt)
=

1

π

∞∫

s+

ds′ hI
s[t, s

′; zt] ImAI(s′, t′)
∣∣∣
t′=t′(s′,z′s)

, (9.20)
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where the kernel matrix hI
s is given in (8.31) and [t, s′; zt] denotes that the whole integrand is

to be understood as a function of these variables, which can be done by using (9.8) and thus
{
h1 ∓ h2

}∣∣∣
[t,s′;zt]

=

{
1

s′ − s
± 1

s′ − u
− 1± 1

2(s′ − a)

}∣∣∣∣
[t,s′;zt]

=
1

2ptqt

{
1

x̃t − zt
∓ 1

(−x̃t)− zt

}
− 1± 1

2(s′ − a)
, (9.21)

where the upper/lower sign corresponds to even/odd J and we have defined in analogy to (8.31)

x̃t(t, s
′) =

t+ 2s′ − Σ

4ptqt
= zt(s

′, t) . (9.22)

According to (8.83), the relation between z′s and zt in (9.20) is given by#2

z′s(t, s
′; zt) =

z2t − δ̃

γ̃
, γ̃(t, s′) =

q′2(s′ − a)

2p2t q
2
t

= γ(s′, t) , (9.23)

δ̃(t, s′) =
(t− Σ+ 2a)2 − 4(s′ − a)(2q′2 +Σ− s′ − a)

16p2t q
2
t

= δ(s′, t) .

Expanding the absorptive parts of (9.20) into s-channel partial waves via (8.26) and projecting
onto t-channel partial waves using (9.18) leads us to the PWDRs for the t-channel partial waves

fJ(t)
∣∣∣
s+u

=
1

π

∞∫

W+

dW ′
∞∑

l=0

G̃Jl(t,W ′) Im f Il (W
′) , (9.24)

with the kernel matrix

G̃Jl(t,W ′) = 2W ′
1∫

0

dzt T̃
J(t, zt)h

I
s[t,W

′; z′s]S
l(W ′, z′s) . (9.25)

As a remnant of the MacDowell symmetry, (8.29) induces the symmetry property

G̃Jl(t,−W ′) = G̃Jl(t,W ′)σ1 , (9.26)

such that the parameterization with two kernel functions

G̃Jl(t,W ′) =
(
G̃Jl(t,W

′) G̃Jl(t,−W ′)
H̃Jl(t,W

′) H̃Jl(t,−W ′)

)
(9.27)

is justified, where again according to f0− ≡ 0 we set H̃0l ≡ 0 for the matrix notation. This
reproduces the s- and u-channel part of (9.1)

fJ+(t)
∣∣∣
s+u

=
1

π

∞∫

W+

dW ′
∞∑

l=0

{
G̃Jl(t,W

′) Im f Il+(W
′) + G̃Jl(t,−W ′) Im f I(l+1)−(W

′)
}

∀ J ≥ 0 ,

fJ−(t)
∣∣∣
s+u

=
1

π

∞∫

W+

dW ′
∞∑

l=0

{
H̃Jl(t,W

′) Im f Il+(W
′) + H̃Jl(t,−W ′) Im f I(l+1)−(W

′)
}

∀ J ≥ 1 .

(9.28)

#2Note that δ̃(t, s′) depends linearly on a (i.e. δ̃ = O(a)), which will be important when considering |a| → ∞.
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If we introduce the abbreviations (cf. (8.94))

ψ̃
[
akn
∣∣d(W ′)

]
= d(W ′)ak,n+1 + d(−W ′)akn , η̃J(t,W

′) =
2W ′

(ptqt)J−1
, (9.29)

we find for the kernel functions (in agreement with H̃0l ≡ 0)

G̃Jl(t,W
′) = η̃J

{
−pt
qt
ψ̃

[
ÃJl

∣∣∣∣
W ′ +m

E′ +m

]
+mψ̃

[
B̃Jl

∣∣∣∣
1

E′ +m

]}
∀ J ≥ 0 ,

H̃Jl(t,W
′) = η̃J

√
J(J + 1)

2J + 1
ψ̃

[
C̃Jl

∣∣∣∣
1

E′ +m

]
∀ J ≥ 1 , (9.30)

where the angular kernels are given by

ÃJl(t, s
′) =

1∫

0

dzt PJ(zt)
{
h1 ∓ h2

}
P ′
l (z

′
s)
∣∣∣
[t,s′;zt]

,

B̃Jl(t, s
′) =

1∫

0

dzt PJ(zt)zt

{
h1 ± h2

}
P ′
l (z

′
s)
∣∣∣
[t,s′;zt]

,

C̃Jl(t, s
′) =

1∫

0

dzt
[
PJ−1(zt)− PJ+1(zt)

]{
h1 ± h2

}
P ′
l (z

′
s)
∣∣∣
[t,s′;zt]

= ÃJ−1,l − ÃJ+1,l . (9.31)

Decomposing these angular kernels according to

ÃJl(t, s
′) =

1

ptqt
P ′
l (z̃s)QJ(x̃t)− ĀJl(t, s

′) , B̃Jl(t, s
′) =

1

ptqt
P ′
l (z̃s)x̃tQJ(x̃t)− B̄Jl(t, s

′) ,

C̃Jl(t, s
′) =

1

ptqt
P ′
l (z̃s)

[
QJ−1(x̃t)−QJ+1(x̃t)

]
− C̄Jl(t, s

′) , (9.32)

with the real quantity

z̃s(t, s
′) =

x̃2t − δ̃

γ̃
= 1 +

t

2q′2
= zs(s

′, t) (9.33)

and polynomial parts defined by

ĀJl(t, s
′) =

1

2

1∫

−1

dzt PJ(zt)

{
1

ptqt

P ′
l (z̃s)− P ′

l (z
′
s)

x̃t − zt
+

1± 1

2(s′ − a)
P ′
l (z

′
s)

}
,

B̄Jl(t, s
′) =

1

2

1∫

−1

dzt PJ(zt)

{
1

ptqt

x̃tP
′
l (z̃s)− ztP

′
l (z

′
s)

x̃t − zt
+

1∓ 1

2(s′ − a)
ztP

′
l (z

′
s)

}
,

C̄Jl(t, s
′) =

1

2

1∫

−1

dzt
[
PJ−1(zt)− PJ+1(zt)

]{ 1

ptqt

P ′
l (z̃s)− P ′

l (z
′
s)

x̃t − zt
+

1∓ 1

2(s′ − a)
P ′
l (z

′
s)

}

= ĀJ−1,l − ĀJ+1,l , (9.34)
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the kernels G̃Jl and H̃Jl may be written in a recursive fashion

G̃Jl(t,W
′) = ḠJl(t,W

′)− ḠJ,l−1(t,−W ′) , ḠJ,−1 = 0 ∀ J ≥ 0 , (9.35)

H̃Jl(t,W
′) = H̄Jl(t,W

′)− H̄J,l−1(t,−W ′) , H̄J,−1 = 0 ∀ J ≥ 1 ,

ḠJl(t,W
′) =

η̃J
E′ +m

{
P ′
l+1(z̃s)

ptqt

[
−pt
qt
(W ′ +m) +mx̃t

]
QJ(x̃t)

+
pt
qt
(W ′ +m)ĀJ,l+1 −mB̄J,l+1

}

=
2W ′

E′ +m

{
P ′
l+1(z̃s)

[
m

x̃t
ptqt

− W ′ +m

q2t

]
QJ(x̃t)

(ptqt)J−1

+
W ′ +m

q2t

ĀJ,l+1

(ptqt)J−2
−m

B̄J,l+1

(ptqt)J−1

}
,

H̄Jl(t,W
′) =

η̃J
E′ +m

√
J(J + 1)

2J + 1

{
P ′
l+1(z̃s)

ptqt

[
QJ−1(x̃t)−QJ+1(x̃t)

]
− C̄J,l+1

}

=
2W ′

E′ +m

√
J(J + 1)

2J + 1

{
P ′
l+1(z̃s)

QJ−1(x̃t)−QJ+1(x̃t)

(ptqt)J
− ĀJ−1,l+1 − ĀJ+1,l+1

(ptqt)J−1

}
,

keeping C̄J,l just for convenience. Note that since x̃t/(ptqt) and the squares p2t and x̃2t are
always real, ĀJl is real/imaginary for J even/odd and the other way round for B̄Jl and C̄Jl.
Therefore, we can conclude that the functions ḠJl, H̄Jl and hence the kernels G̃Jl, H̃Jl are
real for t > tπ− (M2

π/m)2, cf. the discussion following (9.15). The kernels for all combinations
(J ≥ 0, l ≤ 2) read explicitly

G̃J0(t,W
′) =

η̃J
E′ +m

{
1

ptqt

([
− pt
qt
(W ′ +m) +mx̃t

]
QJ(x̃t)−mδJ0

)

+
pt
qt

W ′ +m

s′ − a
δJ0 −

m

3

δJ1
s′ − a

}
,

H̃J0(t,W
′) =

η̃J
E′ +m

√
J(J + 1)

2J + 1

{
1

ptqt

[
QJ−1(x̃t)−QJ+1(x̃t)

]
− δJ1
s′ − a

}
,

G̃J1(t,W
′) = −G̃J0(t,−W ′) +

η̃J
E′ +m

{
3z̃s
ptqt

([
− pt
qt
(W ′ +m) +mx̃t

]
QJ(x̃t)−mδJ0

)

+
W ′ +m

γ̃

pt
qt

[
1

ptqt

{
δJ1 + 3x̃tδJ0

}
+

1

s′ − a

{2
5
δJ2 +

(
1− 3δ̃

)
δJ0

}]

− m

γ̃

[
1

ptqt

{2
5
δJ2 + x̃tδJ1 + δJ0

}
+

1

s′ − a

{ 6

35
δJ3 +

(3
5
− δ̃
)
δJ1

}]}

= ḠJ1(t,W
′)− G̃J0(t,−W ′) ,

H̃J1(t,W
′) = −H̃J0(t,−W ′) +

η̃J
E′ +m

√
J(J + 1)

2J + 1

{
3z̃s
ptqt

[
QJ−1(x̃t)−QJ+1(x̃t)

]

− 1

γ̃

[
1

ptqt

{
δJ2 + 3x̃tδJ1

}
+

1

s′ − a

{2
5
δJ3 + 3

(1
5
− δ̃
)
δJ1

}]}

= H̄J1(t,W
′)− H̃J0(t,−W ′) ,
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G̃J2(t,W
′) = −ḠJ1(t,−W ′) +

η̃J
E′ +m

{
P ′
3(z̃s)

ptqt

([
− pt
qt
(W ′ +m) +mx̃t

]
QJ(x̃t)−mδJ0

)

+
W ′ +m

γ̃2
pt
qt

[
1

ptqt

{
3

7
δJ3 + x̃tδJ2 +

5

2

(3
5
+ x̃2t − 2δ̃

)
δJ1

+
15

2
x̃t

(1
3
+ x̃2t − 2δ̃

)
δJ0

}

+
1

s′ − a

{
4

21
δJ4 + 2

(3
7
− δ̃
)
δJ2 +

15

2

(1− γ̃2

5
− 2

3
δ̃ + δ̃2

)
δJ0

}]

− m

γ̃2

[
1

ptqt

{
4

21
δJ4 +

3

7
x̃tδJ3 +

(6
7
+ x̃2t − 2δ̃

)
δJ2

+
5

2

(3
5
+ x̃2t − 2δ̃

)(
x̃tδJ1 + δJ0

)}

+
1

s′ − a

{
20

231
δJ5 +

3

7

(10
9

− 2δ̃
)
δJ3 +

5

2

(3
7
− 6

5
δ̃ + δ̃2 − γ̃2

5

)
δJ1

}]}

= ḠJ2(t,W
′)− ḠJ1(t,−W ′) ,

H̃J2(t,W
′) = −H̄J1(t,−W ′) +

η̃J
E′ +m

√
J(J + 1)

2J + 1

{
P ′
3(z̃s)

ptqt

[
QJ−1(x̃t)−QJ+1(x̃t)

]

− 1

γ̃2

[
1

ptqt

{
3

7
δJ4 + x̃tδJ3 +

5

2

(3
7
+ x̃2t − 2δ̃

)
δJ2 +

15

2
x̃t

(1
5
+ x̃2t − 2δ̃

)
δJ1

}

+
1

s′ − a

{ 4

21
δJ5 + 2

(1
3
− δ̃
)
δJ3 +

3

2

(3
7
− 2δ̃ + 5δ̃2 − γ̃2

)
δJ1

}]}

= H̄J2(t,W
′)− H̄J1(t,−W ′) . (9.36)

The explicit formulae for the polynomial parts ĀJl, B̄Jl, and C̄J,l for (J ≤ 2, l ≤ 6) needed for
calculating these kernels and furthermore the additional kernels G̃Jl and H̃Jl for (J ≤ 2, 3 ≤
l ≤ 5) via (9.35) are given in the App. C.2.#3 As a check of our calculation we can reproduce
the nucleon pole terms (9.14) by (cf. (8.77))

ÑJ
+(t) = −f2G̃J0(t,−W ′ = m) ∀ J ≥ 0 , ÑJ

−(t) = −f2H̃J0(t,−W ′ = m) ∀ J ≥ 1 .
(9.37)

The asymptotic behavior of the general kernel functions (9.30) can be deduced to be

for ptqt → 0 G̃Jl(t,W
′) ∼ H̃Jl(t,W

′) ∼ 1 ,

for q′ → 0 G̃Jl(t,W
′) ∼ H̃Jl(t,W

′) ∼ q′−2l , G̃Jl(t,−W ′) ∼ H̃Jl(t,−W ′) ∼ q′−2l−2 ,

for q′ → ∞ G̃Jl(t,W
′) ∼ H̃Jl(t,W

′) ∼ q′−2J . (9.38)

In particular, these kernels are finite for ptqt → 0 and their precise form in this limit may be
worked out in close analogy to the discussion of the pole terms in Sect. 9.1 based on (9.35).
Note that both (9.37) and (9.38) obey the MacDowell symmetry relation (8.1), as they should.

#3Note that for |a| → ∞, of all polynomial parts only the B̄0l do not vanish completely and hence f0
+ receives

polynomial contributions from the kernels G̃0l. These remaining contributions, however, are just those that
cancel with the leading terms of the S-wave pole terms (9.14), cf. the discussion following (9.17) as well as the
explicit kernels (9.36).
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9.3 t-channel exchange

We need the t-channel HDR terms (8.81) in the form

AI(s, t)
∣∣∣
t

s=s(t,zt)
=

1

π

∞∫

tπ

dt′ hI
t [t, t

′; zt] ImAI(s′, t′)
∣∣∣
s′=s′(t′,z′t)

, (9.39)

where the kernel matrix hI
t is given in (8.82) and the integrand can be written as a function

of the variables [t, t′; zt] by noting that

1

2q2
1

xt − zs

∣∣∣∣
[t,t′;zt]

=
1

t′ − t
,

ν

ν ′

∣∣∣∣
[t,t′;zt]

=
ptqt
p′tq

′
t

zt
z′t
, (9.40)

and that z′t and zt are related by (cf. (8.32))

z′t(t, t
′; zt) =

√
α̃z2t + β̃ , α̃(t, t′) =

p2t q
2
t

p′2t q
′2
t

, β̃(t, t′) =
t′ − t

16p′2t q
′2
t

(t+t′−2Σ+4a) . (9.41)

Expanding the absorptive part of (9.39) into t-channel partial waves using (8.86) and pro-
jecting onto t-channel partial waves again via (9.18), we obtain the following PWDRs for the
t-channel partial waves

fJ(t)
∣∣∣
t
=

1

π

∞∫

tπ

dt′
∑

J ′
K̃JJ ′

(t, t′) Im fJ
′
(t′) , (9.42)

where the summation runs over even/odd values of J ′ for even/odd values of J , accordingly,
and the kernel matrix is defined by

K̃JJ ′
(t, t′) =

1∫

0

dzt T̃
J(t, zt)h

I
t [t, t

′; zt]TJ ′
(t′, z′t) . (9.43)

Calculating this kernel matrix shows that it can be written with three kernel functions as

K̃JJ ′
(t, t′) =

(
K̃1

JJ ′(t, t′) K̃2
JJ ′(t, t′)

0 K̃3
JJ ′(t, t′)

)
=

ζJJ ′

t′ − t

(
uJJ ′(t, t′) vJJ ′(t, t′)

0 wJJ ′(t, t′)

)
,

ζJJ ′(t, t′) = (2J ′ + 1)
(p′tq

′
t)
J ′−1

(ptqt)J−1
, (9.44)

where we have defined different angular kernels for even J and J ′

uJJ ′ =
ptq

′
t

qtp′t

1∫

0

dzt PJ(zt)PJ ′(z′t) ,

vJJ ′ =
m√

J ′(J ′ + 1)

pt
qtp′tq

′
t

1∫

0

dzt PJ(zt)
{
q2t z

2
t − q′2t z

′2
t

}P ′
J ′(z′t)
z′t

,

wJJ ′ =
1

2J + 1

√
J(J + 1)

J ′(J ′ + 1)

ptqt
p′tq

′
t

1∫

0

dzt
{
PJ−1(zt)− PJ+1(zt)

}
zt
P ′
J ′(z′t)
z′t

, (9.45)



126 Chapter 9: Partial-wave projection for the t-channel amplitudes

and for odd J and J ′

uJJ ′ =
p2t
p′2t

1∫

0

dzt PJ(zt)zt
PJ ′(z′t)
z′t

,

vJJ ′ =
m√

J ′(J ′ + 1)

{
1− p2t

p′2t

} 1∫

0

dzt PJ(zt)ztP
′
J ′(z′t) ,

wJJ ′ =
1

2J + 1

√
J(J + 1)

J ′(J ′ + 1)

1∫

0

dzt
{
PJ−1(zt)− PJ+1(zt)

}
P ′
J ′(z′t) . (9.46)

In this way, we recover the form of the t-channel part given in (9.1)

fJ+(t)
∣∣∣
t
=

1

π

∞∫

tπ

dt′
∑

J ′

{
K̃1

JJ ′(t, t′) Im fJ
′

+ (t′) + K̃2
JJ ′(t, t′) Im fJ

′
− (t′)

}
∀ J ≥ 0 ,

fJ−(t)
∣∣∣
t
=

1

π

∞∫

tπ

dt′
∑

J ′
K̃3

JJ ′(t, t′) Im fJ
′

− (t′) ∀ J ≥ 1 , (9.47)

and according to f0− ≡ 0 we set K̃3
0J ′ ≡ 0 ≡ K̃2

J0 .
From the projection integrals (9.45) and (9.46) together with the definitions (9.41) and

1− p2t
p′2t

=
t′ − t

4p′2t
, q2t z

2
t − q′2t z

′2
t =

t′ − t

4p′2t

{
4q2t z

2
t −

1

4
(t+ t′ − 2Σ + 4a)

}
, (9.48)

one can see that the off-diagonal term vJJ ′ is proportional to t′ − t, as it should be. Note
also that only even powers of z′t and zt occur in the projection integrals. Therefore the kernel
functions K̃1

JJ ′ , K̃2
JJ ′ , and K̃3

JJ ′ are always real, since the prefactors contain only even powers
of momenta. The integrals can be performed with the help of (cf. [211])

Pl(z) =

l
2∑

λ=0

aev
λlz

2λ , Pl(z) =

l−1
2∑

λ=0

aod
λl z

2λ+1 , (9.49)

for even and odd values of l, respectively, where

aev
λl =

(−1)λ+
l
2 (2λ+ l − 1)!

2l−1
(

l
2 − λ

)
!
(
λ+ l

2 − 1
)
!(2λ)!

, aod
λl =

(−1)λ+
l−1
2 (2λ+ l)!

2l−1
(
l−1
2 − λ

)
!
(
λ+ l−1

2

)
!(2λ+ 1)!

,

(9.50)
which also follow from reordering the expansion

Pl(z) =
1

2l

⌊
l
2

⌋
∑

λ=0

(−1)λ(2l − 2λ)!

λ!(l − λ)!(l − 2λ)!
zl−2λ ,

⌊
l

2

⌋
=

{
l
2 for even l ,
l−1
2 for odd l .

(9.51)
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In this way, the required non-vanishing integrals may be written for even J and J ′ as

1∫

0

dzt PJ(zt)PJ ′(z′t) =

J′
2∑

λ′=J
2

aev
λ′J ′

λ′∑

µ=J
2

(
λ′
µ

)
α̃µβ̃λ

′−µãev
Jµ ,

1∫

0

dzt PJ(zt)
{
q2t z

2
t − q′2t z

′2
t

}P ′
J ′(z′t)
z′t

=

J′
2∑

λ′=max{J
2
,1}

2λ′aev
λ′J ′

×
{
q2t

λ′−1∑

µ=max{J
2
−1,0}

(
λ′−1
µ

)
α̃µβ̃λ

′−1−µãev
J,µ+1 − q′2t

λ′∑

µ=J
2

(
λ′
µ

)
α̃µβ̃λ

′−µãev
Jµ

}
,

1∫

0

dzt
{
PJ−1(zt)− PJ+1(zt)

}
zt
P ′
J ′(z′t)
z′t

= −
J′
2∑

λ′=J
2
+1

2λ′aev
λ′J ′

λ′−1∑

µ=J
2

(
λ′−1
µ

)
α̃µβ̃λ

′−1−µãod
J+1,µ+1

+

J′
2∑

λ′=max{J
2
,1}

2λ′aev
λ′J ′

λ′−1∑

µ=max{J
2
−1,0}

(
λ′−1
µ

)
α̃µβ̃λ

′−1−µãod
J−1,µ+1 , (9.52)

and for odd J and J ′ as

1∫

0

dzt PJ(zt)zt
PJ ′(z′t)
z′t

=

J′−1
2∑

λ′=J−1
2

aod
λ′J ′

λ′∑

µ=J−1
2

(
λ′
µ

)
α̃µβ̃λ

′−µãod
J,µ+1 ,

1∫

0

dzt PJ(zt)ztP
′
J ′(z′t) =

J′−1
2∑

λ′=J−1
2

(2λ′ + 1)aod
λ′J ′

λ′∑

µ=J−1
2

(
λ′
µ

)
α̃µβ̃λ

′−µãod
J,µ+1 ,

1∫

0

dzt
{
PJ−1(zt)− PJ+1(zt)

}
P ′
J ′(z′t) =

J′−1
2∑

λ′=J−1
2

(2λ′ + 1)aod
λ′J ′

λ′∑

µ=J−1
2

(
λ′
µ

)
α̃µβ̃λ

′−µãev
J−1,µ

−
J′−1

2∑

λ′=J+1
2

(2λ′ + 1)aod
λ′J ′

λ′∑

µ=J+1
2

(
λ′
µ

)
α̃µβ̃λ

′−µãev
J+1,µ ,

(9.53)

with the definitions (for even and odd values of J , respectively)#4

ãev
Jµ =

J
2∑

λ=0

aev
λJ

2(µ+ λ) + 1
= 2J

(
µ+ J

2

)
!(2µ)!(

µ− J
2

)
!(2µ+ J + 1)!

=
(2µ)!

(2µ− J)!!(2µ+ 1 + J)!!

(
µ ≥ J

2

)
,

ãod
Jµ =

J−1
2∑

λ=0

aod
λJ

2(µ+ λ) + 1
= 2J

(
µ+ J−1

2

)
!(2µ− 1)!(

µ− J+1
2

)
!(2µ+ J)!

=
(2µ− 1)!

(2µ− 1− J)!!(2µ+ J)!!

(
µ ≥ J−1

2

)
.

(9.54)

#4These identities are similar to the Saalschütz formula (8.52) employed in [206]. Note that (−1)!! = 0!! = 1.



128 Chapter 9: Partial-wave projection for the t-channel amplitudes

We can conclude that the following kernels vanish (in addition to K̃3
0J ′ ≡ 0 ≡ K̃2

J0)

K̃JJ ′
(t, t′) = 0 ∀ J ′ < J , (9.55)

and by using the identities

(2J + 1)aev
J
2
,J
ãev
J,J

2

= 1 , Jaev
J
2
,J
ãod
J−1,J

2

= 1 for even J ,

(2J + 1)aod
J−1
2

,J
ãod
J,J+1

2

= 1 , Jaod
J−1
2

,J
ãev
J−1,J−1

2

= 1 for odd J , (9.56)

it follows that the non-vanishing kernels for J ′ = J take the form

K̃1
JJ(t, t

′) =
p2t
p′2t

1

t′ − t
=

1

t′ − t
− 1

t′ − tN
=
t

t′
1

t′ − t
− tN

t′
1

t′ − tN
∀ J ≥ 0 ,

K̃2
JJ(t, t

′) =

√
J

J + 1

m

4p′2t
=

√
J

J + 1

m

t′ − tN
∀ J ≥ 1 ,

K̃3
JJ(t, t

′) =
1

t′ − t
∀ J ≥ 1 , (9.57)

from which one can immediately read off the relation (valid for all J)

K̃2
JJ(t, t

′) = m

√
J

J + 1

{
K̃3

JJ(t, t
′)− K̃1

JJ(t, t
′)
}
. (9.58)

This together with

K̃1
02(t, t

′) =
5

16

p2t
p′2t

{
t+ t′ − 2Σ + 6a

}
, K̃1

13(t, t
′) =

7

48

p2t
p′2t

{
t+ t′ − 2Σ + 10a

}
,

K̃2
02(t, t

′) =
5m

16
√
6

p2t
p′2t

{
4q2t − 3(t+ t′ − 2Σ + 4a)

}
,

K̃2
13(t, t

′) =
7m

64
√
3

1

p′2t

{
8p2t q

2
t + (t′ − t)(t+ t′ − 2Σ + 5a)

}
,

K̃3
13(t, t

′) =
7

8
√
6

{
t+ t′ − 2Σ + 5a

}
(9.59)

completes the calculation of the t-channel kernels with (J ≤ 3, J ′ ≤ 3). Finally, from (9.52)
and (9.53) we may infer the asymptotic behavior of the non-vanishing kernels

for pt → 0 K̃1
JJ ′(t, t′) ∼ p2t , K̃2

JJ ′(t, t′) ∼ K̃3
JJ ′(t, t′) ∼ 1 ,

for qt → 0 K̃1
JJ ′(t, t′) ∼ K̃2

JJ ′(t, t′) ∼ K̃3
JJ ′(t, t′) ∼ 1 ,

for t→ ∞ K̃1
JJ ′(t, t′) ∼ K̃2

JJ ′(t, t′) ∼ tJ
′−J , K̃3

JJ ′(t, t′) ∼ tJ
′−J−1 ,

for p′t → 0 K̃1
JJ ′(t, t′) ∼ K̃2

JJ ′(t, t′) ∼ p′−2
t , K̃3

JJ ′(t, t′) ∼ 1 ,

for q′t → 0 K̃1
JJ ′(t, t′) ∼ K̃2

JJ ′(t, t′) ∼ K̃3
JJ ′(t, t′) ∼ 1 ,

for t′ → ∞ K̃1
JJ ′(t, t′) ∼ t′J

′−J−2 , K̃2
JJ ′(t, t′) ∼ K̃3

JJ ′(t, t′) ∼ t′J
′−J−1 .
(9.60)

Note that the self-coupling kernels K̃1
JJ and K̃3

JJ in (9.57) are independent of the value of J
and that the kernel K̃2

02(t, t
′) exceptionally has better convergence properties

K̃2
02(t, t

′) ∼ p2t for pt → 0 , K̃2
02(t, t

′) ∼ 1 for t′ → ∞ . (9.61)
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Chapter 10

Ranges of convergence

There are three aspects of convergence in the Roy–Steiner PWHDR system constructed in
Chaps. 8 and 9: first, the question of convergence of the integrals in the high-energy regime
is linked to the number of necessary subtractions of the dispersion relations, which will be
discussed in Chap. 13; for the rest of this chapter we may thus work as if no subtractions
were necessary. Moreover, for the full system of RS equations to be valid, the convergence
of both the pertinent partial-wave expansion of the (s- and t-channel) imaginary parts inside
the integrals and the s- and t-channel partial-wave projection of the full HDR equations needs
to be shown. Analyzing these two constraints (based on the Mandelstam representation of
the invariant scattering amplitudes) will yield the ranges of convergence in s and t for (8.3)
and (9.1), respectively, whereby the free hyperbola parameter a can actually be tuned in
order to obtain the largest possible domain of validity. For the s-channel part (8.3) of the RS
system the combined analysis of s- and t-channel constraints will lead to an optimal value of
the hyperbola parameter a and a corresponding range of convergence in s of (cf. Sect. 10.3)

a = −23.19M2
π ⇒ s ∈

[
s+ = 59.64M2

π , 97.30M
2
π

]

⇔ W ∈
[
W+ = 1.08GeV, 1.38GeV

]
, (10.1)

while for the t-channel part (9.1) we will find (cf. Sect. 10.4)

a = −2.71M2
π ⇒ t ∈

[
tπ = 4M2

π , 205.45M
2
π

]

⇔
√
t ∈

[√
tπ = 0.28GeV, 2.00GeV

]
. (10.2)

Note that different choices of a for the s- and t-channel partial-wave projections are perfectly
well justified, as we may start from different sets of HDRs, respectively. However, the choice of
a is not only crucial for the ranges of convergence, but also influences the high-energy behavior
of the imaginary parts as estimated by Regge asymptotics (cf. Chap. 11).

The reader not interested in the rather technical details of the derivation of the above
results may skip this chapter without harm for the following discussion.#1

#1Note however that particularly in this case the devil is in the details: unfortunately, in the literature there
are numerous errors floating around and especially the existing partial results for πN scattering are incomplete,
not properly published and/or even totally inaccessible.
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Figure 10.1: General box graph.

10.1 Boundaries of the double spectral regions

The following analysis is performed in the spirit of [158, 159,171].#2 The basic assumption is
that the T -matrix element (and hence the invariant scattering amplitudes {A(s, t), B(s, t)} ∝
T (s, t)/(16π)) fulfills Mandelstam analyticity [215], i.e. that it can be represented in terms of
double spectral density functions ρsu, ρtu, and ρst according to#3

T (s, t) =
1

π2

∫∫
ds′du′

ρsu(s
′, u′)

(s′ − s)(u′ − u)
+

1

π2

∫∫
dt′du′

ρtu(t
′, u′)

(t′ − t)(u′ − u)

+
1

π2

∫∫
ds′dt′

ρst(s
′, t′)

(s′ − s)(t′ − t)
, (10.3)

where the integration ranges are determined by the regions in the Mandelstam plane where
the double spectral densities have support, which will be called double spectral regions in
the following and whose boundaries will be the central objects of the following discussion. In
order to study the consequences of unitarity in the 2-intermediate-particle approximation, we
consider the general box graph displayed in Fig. 10.1 as a unitarity diagram, i.e. with on-shell
intermediate particles. The discontinuities of the associated scalar box loop integral (in the
non-cyclic conventions of [188] and with generic coupling g)

TB(s, t) =
g4

i

∫
d4k

(2π)4
1(

(p1 + k)2 −m2
2

) (
(p1 − p3 + k)2 −m2

4

) (
(p2 − k)2 −m2

1

) (
k2 −m2

3

)

(10.4)

#2Note that the authors of [158] corrected their results for the boundaries of the double spectral regions
in [214].

#3With respect to the discussion of the analyticity postulate of S-matrix theory in Sect. 7.4, this amounts to
the additional assumption of analyticity also in the second (i.e. angular) Mandelstam variable; see e.g. [206] for
the enlargement of the analyticity domain for πN scattering by assuming Mandelstam analyticity (compared
to the analyticity domain axiomatically proven in [200]). Moreover, starting from dispersion relations along
hyperbolas (in contrast to fixed-t lines) has proven successful in enlarging the domain of validity even further
for Roy-type equations for ππ scattering, cf. [198, 216]. At any rate, Mandelstam analyticity can be justified
in the framework of perturbation theory [215, 217, 218]. While for ππ scattering the validity of the Mandel-
stam representation can even be shown rigorously in a finite domain [219, 220], for πN scattering (involving
unequal masses and spin) at least the uniqueness of amplitudes satisfying this representation is ensured by the
MacDowell symmetry [221,222].
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can be calculated from the corresponding 2-particle form of the unitarity relation (7.61) (see
e.g. [174, 175, 217]) or by using the Cutkosky cutting rules (as it was done already in the
original work [187]#4). The integral gives rise to the s-channel imaginary part (cf. (7.62))

Ims TB(s, t) =
Discs TB(s, t)

2i
= lim

ǫ→0

TB(s+ iǫ, t)− TB(s− iǫ, t)

2i

=
g4

16π

2s
√
λ
(
s,m2

1,m
2
2

)
√
D

log
ac− bd cos θs +

√
D

ac− bd cos θs −
√
D
θ
(
s− (m1 +m2)

2
)
, (10.5)

where (cf. (7.4) for the s-channel scattering angle)#5

D = (ac− bd cos θs)
2 −

(
a2 − b2

)(
c2 − d2

)
,

a = s2 − s
(
p21 + p22 +m2

1 +m2
2 − 2m2

3

)
−
(
m2

1 −m2
2

)(
p21 − p22

)
,

c = s2 − s
(
p23 + p24 +m2

1 +m2
2 − 2m2

4

)
−
(
m2

1 −m2
2

)(
p23 − p24

)
,

b =
√
λ
(
s,m2

1,m
2
2

)√
λ
(
s, p21, p

2
2

)
, d =

√
λ
(
s,m2

1,m
2
2

)√
λ
(
s, p23, p

2
4

)
,

cos θs =
s√

λ
(
s, p21, p

2
2

)√
λ
(
s, p23, p

2
4

)

{
t− u+

(
p21 − p22

)(
p23 − p24

)

s

}
. (10.6)

The corresponding double spectral density is then given by#6

ρst(s, t) =
Disct Discs TB(s, t)

(2i)2
= lim

ǫ→0

Ims TB(s, t+ iǫ)− Ims TB(s, t− iǫ)

2i

=
g4

8

2s
√
λ
(
s,m2

1,m
2
2

)
√
D

θ
(
s− (m1 +m2)

2
)
θ
(
t− (m3 +m4)

2
)
θ(D) , (10.7)

such that θ(D) provides the non-trivial constraints on the support of ρst(s, t) we were looking
for. The boundaries (of the support) of the three double spectral densities of the full am-
plitude are determined by the corresponding lowest-lying intermediate states in the general
box diagram and the explicit diagrams are depicted in Fig. 10.2 (remember that 3π states
are forbidden by G-parity). The inelastic (referring to the intermediate state of the s-channel
process) diagram (I) and the elastic diagram (II) yield the boundary of the support of ρst, from
which due to s ↔ u crossing symmetry directly follows the result for ρut, while the “twisted”
u-channel diagrams (III) and (IV) are relevant for calculating the boundary of the support of

#4As shown already in [223], the general result for the box graph in [187] lacks a factor of 2.
#5The kinematical abbreviations a and b defined here are not to be confused with the hyperbola parameters.
#6Note that both the result quoted in [188] and the original result for general masses of [217] for the

imaginary part of the box integral (10.5) contain typographical errors. Remarkably, in both cases the same
factor of 1/4 is missing. For the resulting double spectral density (10.7) then [217] consequently lacks the
factor of 1/4, while [188] is now off by a factor of 1/2. Our result, however, agrees with [160] and [174] (the
latter unfortunately containing some typographical errors in the derivation). Noting in addition the missing
factor of 2 in [187] as discussed in [223] (wherein also at least some of the errors in [217] are mentioned), we
therefore fully agree with the authors of [199] (besides correcting the result for the corresponding unitarity
integral of [215], they discuss similar errors in further references) in stating that (p. 152) “there seem to be

many possibilities of errors in this seemingly innocuous integral.” Interestingly, this statement is in line with
a comment in [188] in the same context (p. 309): “The analysis of complex singularities is indeed...complex!”
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Figure 10.2: Box graphs constraining the boundaries of the double spectral regions. Solid
lines denote nucleons and dashed lines denote pions. See main text for details.

ρsu. Since for all four diagrams we have d = b (the same external particles πN for in and out
state being on-shell), we can write

D = 4b2

{
cos θs ∓ 1

2

[
b2
cos θs ± 1

2
− ca

]
+

(
c∓ a

2

)2
}
, (10.8)

with the upper signs being more convenient for (I,II) (where in addition c = a) and the
lower signs being a good starting point for (III,IV), where it is important to note that the
relations (10.6) (which are valid for the s-channel process only) need to be modified by p3 ↔ p4
and accordingly t↔ u (affecting only c and cos θs).#7 This leads to (cf. the form of the double
spectral density (10.7) with corresponding couplings)

DI,II(s, t)

4s2λ
(
s,m2

1,m
2
2

) = t bI,II(s, t) ,
DIII,IV(s, u)

4s2λ
(
s,m2

1,m
2
2

) = bIII,IV(s, u) , (10.9)

with boundary functions reading (cf. [171])

bI(s, t) =
(
t− 4M2

π

)
λ
(
s,m2, 4M2

π

)
− 16M4

π

(
s+ 3Σ−

)
,

bII(s, t) =
(
t− 16M2

π

)
λ
(
s,m2,M2

π

)
− 64M4

πs , (10.10)

for the boundary of ρst and thus bI(u, t) and bII(u, t) for the boundary of ρut, as well as#8

bIII(s, u) = λ
(
u,m2,M2

π

)
λ
(
s,m2, 4M2

π

)
− 16M2

π

[
m2su− Σ2

−
(
m2 − t(s, u)

)]
,

bIV(s, u) = λ
(
s,m2,M2

π

)
λ
(
u,m2, 4M2

π

)
− 16M2

π

[
m2su− Σ2

−
(
m2 − t(s, u)

)]
, (10.11)

for the boundary of ρsu, where we only need to consider bIII(s, u) = bIV(u, s) due to s ↔ u
symmetry. Due to θ(D), the whole support of all three double spectral densities is then
given by the union of the regions allowed by the non-trivial constraints that the corresponding
boundary functions be non-negative. Furthermore, trivial constraints arise from the lower
kinematical bounds of the corresponding physical regions which are given by the asymptotes
of the boundary functions in question, e.g. for the inelastic diagram (I) we find the asymptotes
s = (m + 2Mπ)

2 and t = (2Mπ)
2 = tπ and for the elastic diagram (II) we obtain s =

(m+Mπ)
2 = s+ and t = (4Mπ)

2.

#7Using the corresponding “untwisted” versions of diagrams (III,IV), this reduces to t ↔ u in cos θs.
#8Note that the results for the πN double spectral region boundary functions bIII and bIV given in the original

work [218] are incomplete, while the formulae in e.g. [171,212] are correct.
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Therefore, by defining the following abbreviations for the solutions of the implicit equations

bI(s, t)
!
= 0 ⇒ t = TI(s) , s = SI(t) ,

bII(s, t)
!
= 0 ⇒ t = TII(s) , s = SII(t) ,

bIII(s, u)
!
= 0 ⇒ u = UIII(s) , s = SIII(u) , (10.12)

the combined boundaries of the double spectral regions are given by

Tst(s) = min{TI(s), TII(s)} , Tut(u) = Tst(u) ,

Sst(t) = min{SI(t), SII(t)} , Uut(t) = Sst(t) ,

Ssu(u) = min{SIII(s), UIII(s)} , Usu(s) = Ssu(s) , (10.13)

where taking the minimum is to be understood as limited by the physical constraints for the
corresponding reaction to actually happen. To be specific, the boundary of the support of e.g.
ρst is described by

Tst(s) = min{TI(s), TII(s)} =

{
TII(s) for s+ < s < (m+ 2Mπ)

2 ,

min{TI(s), TII(s)} for (m+ 2Mπ)
2 < s ,

(10.14)

with the functions

TI(s) =
4M2

π

(
s−m2 − 2M2

π

)2

λ
(
s,m2, 4M2

π

) > 4M2
π ∀ s > (m+ 2Mπ)

2 ,

TII(s) =
16M2

π

(
s− Σ−

)2

λ
(
s,m2,M2

π

) > 16M2
π ∀ s > s+ , (10.15)

again limited by the physical constraints, such that by definition Tst(s) > tπ for s > s+.
Eventually, the boundaries of all three double spectral regions are shown in Fig. 10.3. The
asymptotes of ρst are s = s+ and t = tπ and hence those of ρut are u = s+ and t = tπ, while
the symmetric asymptotes of ρsu are s = s+ and u = s+.

10.2 Lehmann ellipse constraints

The boundaries of the double spectral regions limit the range of validity of the hyperbolic
dispersion relations in two ways:

1. The partial-wave expansions of the imaginary parts inside the HDR integrals (inter-
nal/primed kinematics) in the unphysical regions for both s- and t-channel partial
waves converge only for CMS scattering angle cosines z′ within the corresponding large
Lehmann ellipses [188,224]. These ellipses are the largest ellipses in the complex z′-plane
centered at the origin with foci at z′ = ±1 that do not reach into any double spectral
region.

2. For a given value of the parameter a the hyperbolae (s− a)(u− a) = b with asymptotes
s = a and u = a must not enter any double spectral region for all values of the parameter
b which are necessary for the partial-wave projections of the full HDR equations (exter-
nal/unprimed kinematics) in given kinematical ranges. Trivial geometrical constraints
on a arise already from the asymptotes of the double spectral regions.
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Figure 10.3: Double spectral regions for πN scattering (shaded) and boundaries of ρst and
ρut reflected in the corresponding scattering angle (dot-dashed).

In this section we will show how the (large) Lehmann ellipse constraint can be translated
for a given a into a constraint on b each for both the expansions in s- and t-channel partial
waves. For any allowed fixed a, the allowed values of b are those fulfilling both of the above
requirements and the (limited) freedom in the choice of a in the construction of the HDRs
can be used in order to optimize the convergence properties of the PWHDRs. In the two
subsequent sections we will investigate numerically how these limits on b (for given a) yield
the ranges of convergence of the full Roy–Steiner system via the restrictions that are necessary
for both the projections onto s- and t-channel partial waves to converge.

For the partial-wave expansion of the s-channel contributions the Lehmann ellipse con-
straint states that the expansion converges for angles z′s(s

′, t′) = 1 + 2s′t′/λs′ (cf. (7.102))
inside the ellipse

(Re z′s)
2

A2
s

+
(Im z′s)

2

B2
s

= 1 , A2
s −B2

s = 1 , (10.16)

with foci at z′s = ±1 (corresponding to the physical constraint −1 ≤ z′s ≤ 1), so that semimajor
and semiminor axis As and Bs are related as given above. Since for given t′ the angle z′s is
always real in the integration range s′ > s+, the maximal value of z′s for given s′ not entering
the support of ρst follows from the corresponding maximally allowed value of t′ (according
to (10.14) for the internal (primed) variables) and thus reads

zmax
s′ (s′) = 1 +

2s′

λs′
Tst(s

′) = As ∀ s′ > s+ . (10.17)

From the geometrical condition −As ≤ z′s ≤ As then follows

− zmax
s′ ≤ z′s ≤ zmax

s′ ∀ s′ > s+ , (10.18)
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and the lower bound due to this reflection in z′s is actually stronger than the restrictions
imposed by ρsu as shown by the dot-dashed line in Fig. 10.3, where the z′s-reflected boundary
of the support of ρst for ν > 0 is given by

u
(
s, t
(
s,−zs

(
s, t = Tst(s)

)))
=

Σ2
−
s

+ Tst(s) , (10.19)

with the asymptote u = tπ for s → ∞ due to Tst(s). Furthermore, due to s ↔ u symmetry
ρut yields exactly the same constraints as ρst (including the z′u-reflected boundary for ν < 0)
and hence we only need to consider the latter.#9 The possible values of t′ for given s′ are then
restricted by (cf. [171])

− λs′

s′
− Tst(s

′) ≤ t′ ≤ Tst(s
′) ∀ s′ > s+ . (10.20)

Via the linear relation (7.90) for the internal kinematics this range for t′ can be translated
into a range of allowed values of b(s′, t′; a) for given a according to (cf. (10.19))

b−s (s
′, a) ≤ b ≤ b+s (s

′, a) ∀ s′ > s+ > a ,

b−s (s
′, a) = (s′ − a)

(
Σ− s′ − Tst(s

′)− a
)
,

b+s (s
′, a) = (s′ − a)

(
Σ− s′ +

λs′

s′
+ Tst(s

′)− a
)
= (s′ − a)

{
Σ2
−
s′

+ Tst(s
′)− a

}
, (10.21)

where we have used that from the asymptotes s = s+ and u = s+ of the double spectral regions
it is geometrically clear from Fig. 10.3 that the allowed values of the hyperbola’s asymptotic
parameter a are trivially limited to a < s+ (independent of b) and hence here we have s′ > a
for all s′ > s+. By invoking the asymptotes s = tπ and u = tπ of the z′-reflected boundaries
of ρst and ρut (cf. (10.19)) we can deduce that the allowed range of a is actually geometrically
limited by a < tπ, which is the reason why the “fixed-t limit” |a| → ∞ effectively reduces to
a→ −∞.#10 Now, we may define the highest lower and the lowest upper bound

b̃−s (a) = max
s′>s+

b−s (s
′, a) , b̃+s (a) = min

s′>s+
b+s (s

′, a) , (10.22)

as the maximum/minimum value of b−/+
s (s′, a) within the integration range s′ > s+, which

then finally determines the allowed values of b for given a by

b̃−s (a) ≤ b ≤ b̃+s (a) ∀ s′ > s+ > a , (10.23)

for the s-channel parts of the HDRs.
The Lehmann ellipse constraint for the partial-wave expansion of the t-channel contribu-

tions limits the convergence of the expansion to angles z′t(s
′, t′) = mν ′/(p′tq

′
t) (cf. (7.102))

inside an ellipse similar to (10.16) centered at the origin with foci at z′t = ±1, i.e.

(Re z′t)
2

A2
t

+
(Im z′t)

2

B2
t

= 1 , A2
t −B2

t = 1 . (10.24)

#9Note that both the s- and u-channel physical regions fit well in between ρst, ρut, and their reflected
boundaries, cf. Fig. 7.1.
#10One can easily read off the range of convergence for fixed-t dispersion relations from Fig. 10.3 by considering
lines of constant t, yielding −25.81M2

π ≤ t ≤ tπ in order not to enter the double spectral regions or the reflected
boundaries.
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The argument for the t-channel contributions is more intricate, since inside the integration
range t′ > tπ the angle z′t becomes purely imaginary for tπ < t′ < tN and hence no relations
similar to (10.18) are possible. However, as the relation between z′t and b is non-linear anyway
(cf. (7.103))

z′2t =
(t′ − Σ+ 2a)2 − 4b(s′, t′; a)

16p′2t q
′2
t

, (10.25)

where all squares are real but not necessarily positive, we are interested in the resulting
Lehmann ellipse constraint for z′2t . By squaring equation (10.24) for general complex z′t we
arrive at (

Re {z′2t } − 1
2

)2

Ã2
t

+

(
Im {z′2t }

)2

B̃2
t

= 1 , (10.26)

corresponding to an ellipse in the complex z′2t -plane shifted to the right by (A2
t −B2

t )/2 = 1/2.
Hence, it is centered at (1/2, 0) with the semimajor and semiminor axes given by

Ãt =
A2

t +B2
t

2
= A2

t −
1

2
, B̃t = AtBt = At

√
A2

t − 1 , (10.27)

such that the foci are at 1/2∓
√
Ã2

t − B̃2
t = 1/2∓1/2 (corresponding to the physical constraint

0 ≤ z′2t ≤ 1). Since for t′ > tπ we have z′2t = Re {z′2t }, the geometrical condition 1/2 − Ãt ≤
z′2t ≤ 1/2 + Ãt leads to the analog of (10.18)

1−A2
t = −B2

t ≤ z′2t ≤ A2
t , (10.28)

where it is important to note that on the right hand side the relation between z′t and At is
not fixed due to the squares, while the reflection bound on the left hand side again turns
out to be more restrictive than the corresponding bound due to ρsu and hence we only have
to look at the boundaries of the support of ρst again. For the following it turns out to be
advantageous to rewrite the boundary functions bI,II(s, t) of (10.10) in terms of (ν, t) since the
quantity ν(zt, t) = ptqtzt/m is always real

bI(ν, t) =
(
t− 4M2

π

){1
4

(
t− 4mν + 6M2

π

)2 − 16m2M2
π

}
+ 8M4

π

{
t− 4mν − Σ− 6Σ−

}
!
= 0 ,

bII(ν, t) =
(
t− 16M2

π

){1
4

(
t− 4mν

)2 − 4m2M2
π

}
+ 32M4

π

{
t− 4mν − Σ

}
!
= 0 . (10.29)

Solving these implicit quadratic equations for ν(t) yields the physical solutions (i.e. limited
by the physical constraints and thus real, cf. [171])

νI(t) =

(
t− 2M2

π

)(
t+ 4M2

π

)
+ 8Mπ

√
t
√(

t− 4M2
π

)
m2 +M4

π

4m
(
t− 4M2

π

) > 0 ∀ t > 4M2
π = tπ ,

νII(t) =

(
t− 8Mπ

)2
+ 4Mπ

√
t
√(

t− 16M2
π

)
m2 + 16M4

π

4m
(
t− 16M2

π

) > 0 ∀ t > 16M2
π = 4tπ , (10.30)

where each sign of the root is fixed by zt(ν, t) = mν/(ptqt) ∝ +ν and therefore zmax
t =

+mνmax/(ptqt) in the physical t-channel region t > 4m2 = tN . Defining the (positive) com-
bined upper bound on ν according to

Nst(t) = min{νI(t), νII(t)} =

{
νI(t) for tπ < t < 4tπ ,

min{νI(t), νII(t)} for 4tπ < t ,
(10.31)
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and resorting to the geometrical constraints of the original t-channel Lehmann ellipse (10.24)
for z′t, the maximally allowed value of the real angle z′t = Re z′t for given t′ > tN not entering
the support of ρst is given by

zmax
t′ (t′) =

m

p′tq
′
t

Nst(t
′) = At ∀ t′ > tN , (10.32)

and thus (10.28) leads in this case to

1− m2

p′2t q
′2
t

Nst(t
′)2 ≤ z′2t ≤ m2

p′2t q
′2
t

Nst(t
′)2 ∀ t′ > tN . (10.33)

In contrast, for tπ < t′ < tN we have p′t = ip′− with real p′−. Accordingly, for the purely
imaginary angle z′t = i Im z′t it follows from (10.24)

∣∣Im z′t(t
′)
∣∣ =

∣∣∣∣−
mν ′

p′−q
′
t

∣∣∣∣ ≤
m

p′−q
′
t

Nst(t
′) = Bt ⇒ B2

t = − m2

p′2t q
′2
t

Nst(t
′)2 ∀ tπ < t′ < tN ,

(10.34)
which plugged into (10.28) yields

m2

p′2t q
′2
t

Nst(t
′)2 ≤ z′2t ≤ 1− m2

p′2t q
′2
t

Nst(t
′)2 ∀ tπ < t′ < tN . (10.35)

However, from both (10.33) with p′2t > 0 for all t′ > tN and (10.35) with p′2t < 0 for all
tπ < t′ < tN we arrive at the same constraints on ν ′2 for given t′ > tπ (cf. [171])

p′2t q
′2
t

m2
−Nst(t

′)2 ≤ ν ′2 ≤ Nst(t
′)2 ∀ t′ > tπ . (10.36)

By virtue of the linear relation (cf. (7.88))

16m2ν ′2 = (t′ − Σ+ 2a)2 − 4b , (10.37)

this range for ν ′2 can then be translated into a range for b(ν ′2, t′; a) according to

b−t (t
′, a) ≤ b ≤ b+t (t

′, a) ∀ t′ > tπ > a , (10.38)

b−t (t
′, a) =

1

4
(t′ − Σ+ 2a)2 − 4m2Nst(t

′)2 ,

b+t (t
′, a) =

1

4
(t′ − Σ+ 2a)2 − 4p′2t q

′2
t + 4m2Nst(t

′)2 = (t′ − Σ)a+ a2 +Σ2
− + 4m2Nst(t

′)2 ,

where we have included the geometrical constraint on a as discussed below equation (10.21).
Defining again the highest lower and the lowest upper bound

b̃−t (a) = max
t′>tπ

b−t (t
′, a) , b̃+t (a) = min

t′>tπ
b+t (t

′, a) , (10.39)

as the maximum/minimum value of b−/+
t (s′, a) within the integration range t′ > tπ, we can

finally give the range of allowed values of b for given a by

b̃−t (a) ≤ b ≤ b̃+t (a) ∀ t′ > tπ > a , (10.40)

for the t-channel parts of the HDRs.
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10.3 s-channel partial-wave projection

As mentioned before, it turns out that the constraints due to ρut and ρsu are equal to or weaker
than the restrictions due to ρst. Therefore we only need to consider the corresponding con-
straints for the s-channel partial-wave projection of both the s-channel partial-wave-expanded
and the t-channel partial-wave-expanded HDR parts. However, the strategy to find the op-
timal value of a and the corresponding range of convergence in s is the same in both cases:
from the Lehmann ellipse constraint it follows that all allowed values of b must obey#11

b̃−s,t(a) ≤ b ≤ b̃+s,t(a) , (10.41)

for all s′ > s+ and t′ > tπ, i.e. within the corresponding integration ranges, respectively. The
limits −1 ≤ zs ≤ 1 of the scattering angle for the physical s-channel reaction (i.e. s > s+)
translates to

− 4q2 = −λs
s

≤ t ≤ 0 ∀ s > s+ , (10.42)

and hence for given a < s+ < s the bounds on b due to the s-channel partial-wave projection
are given by (cf. (10.21))

bmin
s (s, a) ≤ b ≤ bmax

s (s, a) ∀ s > s+ > a ,

bmin
s (s, a) = (s− a)(Σ− s− a) ,

bmax
s (s, a) = (s− a)

(
Σ− s+

λs
s

− a
)
= (s− a)

{
Σ2
−
s

− a

}
. (10.43)

The maximally allowed value of s for given a, smax
s,t (a), is then the largest value of s such that

for given a both bmin
s (s, a) and bmax

s (s, a) lie within the ranges
[
b̃−s,t(a), b̃

+
s,t(a)

]
, respectively.

Equating the boundary values of b from both the s- and t-channel partial-wave expansions
and the s-channel partial-wave projection yields

bmin
s (s, a)

!
= b̃−s,t(a) ⇒ s = s−s,t(a) ,

bmax
s (s, a)

!
= b̃+s,t(a) ⇒ s = s+s,t(a) , (10.44)

where s−s,t and s+s,t denote the corresponding maximal solutions for given a, leads to two
equations for the two wanted unknowns s̃max

s,t and ãss,t defined by

s̃max
s,t = max

a<s+
smax
s,t (a) = smax

s,t (ãss,t) . (10.45)

Explicitly, they follow from equating the maximal solutions

s−s,t(a)
!
= s+s,t(a) ⇒ a = ãss,t , s−s,t(ã

s
s,t) = s+s,t(ã

s
s,t) = s̃max

s,t ,

s±s,t(a) = max
{
s
±(−)
s,t (a), s

±(+)
s,t (a)

}
,

s
−(±)
s,t (a) =

Σ

2
±
√(

Σ

2
− a

)2

− b̃−s,t(a) ,

s
+(±)
s,t (a) =

1

2a

{[
a2 +Σ2

− − b̃+s,t(a)
]
±
√[

a2 +Σ2
− − b̃+s,t(a)

]2
− 4a2Σ2

−

}
, (10.46)

#11Note that the lower bounds coincide: b̃−s (a) = b̃−t (a) for all a < s+.
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Figure 10.4: Allowed ranges of b for s-channel partial-wave projection with a = ãst =
−23.19M2

π for s-channel (left) and t-channel (right) partial-wave expansion. Horizontal lines
correspond to b̃−t (a) = 2202M4

π (solid) and b̃+t (a) = 5212M4
π (dashed).

where for s > s+ > Σ/2 we have s−s,t = s
−(+)
s,t and for in addition e.g. a < 0 we have

s+s,t = s
+(−)
s,t . The maximum value of the two other (i.e. minimal) solutions for ãs,t then yields

the highest lower bound on s and thus we can write

s̃min
s,t = max

{
s+, s

−(−)
s,t (ãss,t), s

+(+)
s,t (ãss,t)

}
for s > s+ and a < 0 . (10.47)

For the s-channel parts, solving the equations numerically for all allowed a < s+ leads
to the following optimal value of a and corresponding range of convergence in s > s+ =
59.64M2

π = (1.08GeV)2

ãss = −128.30M2
π , s+<s<s̃

max
s = 106.09M2

π , b̃−s (ã
s
s) = 26860M4

π , b̃+s (ã
s
s) = 34388M4

π ,
(10.48)

in agreement with the unpublished App. E of [161].#12

For the t-channel parts, this procedure results in

ãst = −23.19M2
π , s+ < s < s̃max

t = 97.30M2
π , b̃−t (ã

s
t ) = 2202M4

π , b̃+t (ã
s
t ) = 5212M4

π .
(10.49)

In fact, it turns out that the s-channel constraints are weaker than the t-channel ones,
which can also be deduced from Fig. 10.4, where the situation for ãst = −23.19M2

π is shown:
for this a the range of b limited by b̃−t (ã

s
t ) and b̃+t (ã

s
t ) for the t-channel partial-wave expansion

also lies within the allowed range of b for the s-channel partial-wave expansion and hence
for the range of s given in (10.49) this range of b covers the interval

[
bmin
s (s, ãst ), b

max
s (s, ãst )

]

that is needed for the s-channel partial-wave projection. By construction, the resulting fam-
ily of hyperbolae does cross neither any double spectral region nor their z′-reflected bound-
aries as depicted in Fig. 10.6(left), and thus (10.49) corresponding to W̃max =

√
s̃max =√

97.30Mπ = 1.38GeV constitutes the result for the s-channel partial-wave projection, in
agreement with [171].#13

#12App. E of [161] deals with finding the optimal values for the s-channel partial-wave projection of the
s-channel partial-wave-expanded absorptive parts of the HDRs only and follows a similar scheme. The quoted
results are s̃max

s & 105M2
π for ãs

s ≈ −117M2
π .

#13As combined result for both s- and t-channel contributions, the numbers s̃max = 97M2
π for ãs = −23M2

π
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10.4 t-channel partial-wave projection

The relation between the range of b permitted by the Lehmann ellipse constraint (10.41) and
the corresponding range of convergence in t for the projection of the HDR equations onto
t-channel partial waves for given a is most easily established on the basis of the squared
t-channel scattering angle z2t , which must cover the range

0 ≤ z2t (t, a, b) =
(t− Σ+ 2a)2 − 4b

16p2t q
2
t

=
(t− Σ+ 2a)2 − 4b

(t− tπ)(t− tN )
≤ 1 , (10.50)

for both the s-channel and t-channel partial-wave-expanded parts, since (as discussed after the
t-channel partial-wave projection formulae (9.7)) the integrands are always functions of the
real square z2t even between the thresholds tπ and tN and furthermore 0 ≤ z2t ≤ 1 is not only a
necessary condition for 0 ≤ zt ≤ 1 but also equivalent to −1 ≤ zt ≤ 1, which in turn is already
sufficient to perform the partial-wave projections in our case (cf. the discussion in Chap. 9).
Therefore, the range (10.50) of z2t constitutes the necessary and sufficient condition not only
for the physical region t > tN but for all kinematical regions. Obviously, for tπ < t < tN and
given a, z2t can only be non-negative for b non-negative and large enough. Translating (10.50)
into ranges for b while taking care of the signs of p2t and q2t in the different kinematical regions
yields (cf. (10.38))

bmin
t (t, a) ≤ b ≤ bmax

t (t, a) ∀ tπ < t < tN ,

bmax
t (t, a) ≤ b ≤ bmin

t (t, a) ∀ t > tN (or t < tπ) ,

bmin
t (t, a) =

1

4
(t− Σ+ 2a)2 ≥ 0 ,

bmax
t (t, a) =

1

4
(t− Σ+ 2a)2 − 4p2t q

2
t = (t− Σ)a+ a2 +Σ2

− , (10.51)

where the superscripts min/max refer to both the (at least partially) unphysical kinematical
range t > tπ needed in our Roy–Steiner system as well as the corresponding min/max values
0/1 of z2t . Solving these equations for t yields (cf. t(±)(ν = 0; a, b) of (7.88))

t
(±)
0 (a, bmin

t ) = Σ− 2a± 2
√
bmin
t , t1(a, b

max
t ) = Σ− a+

1

a

[
bmax
t − Σ2

−
]
, (10.52)

and the range of convergence in t for given a is the kinematical range in which all values
between bmin

t (t, a) and bmax
t (t, a) are covered by both intervals [b̃−s,t(a), b̃

+
s,t(a)]. Between the

thresholds (i.e. for tπ < t < tN ) this amounts to the conditions b̃−s,t(a) ≤ bmin
t (t, a) and

bmax
t (t, a) ≤ b̃+s,t(a), while below or above the thresholds (i.e. for t < tπ or tN < t) we have

b̃−s,t(a) ≤ bmax
t (t, a) and bmin

t (t, a) ≤ b̃+s,t(a).
#14 Equivalently, we can demand that for given

a the band 0 ≤ z2t (t, a, b) ≤ 1 must be fully covered by the area between z2t (t, a, b̃
−
s,t(a)) and

z2t (t, a, b̃
+
s,t(a)) in order to determine the range of validity in t. The situation that results

from using the set (10.49) of optimal parameters for the s-channel partial-wave projection

are quoted in [171] without further explanation and giving only a vague reference for these numerical values,
which is most probably meant to be [225]. However, roughly the same numbers are also given more recently
in [165].
#14Accordingly, at the thresholds the respective min/max values are identical: bmin

t (tπ, a) = bmax
t (tπ, a) =

(

a− Σ−
)2 ≥ 0 and bmin

t (tN , a) = bmax
t (tN , a) =

(

a+Σ−
)2 ≥ 0.
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Figure 10.5: Ranges of convergence in t for t-channel partial-wave projection from full coverage
(shaded area) of the physical band 0 ≤ z2t ≤ 1 for a = ãst = −23.19M2

π (left) and a = ãts,t =
−2.71M2

π (right). Vertical lines indicate thresholds tπ and tN .

derived in the previous section is shown in Fig. 10.5(left): the t-channel projection is then
valid for −5.63M2

π < t < 44.92M2
π (denoted by the shaded area of coverage) and the reason

for this rather low upper bound on t is that the curve for b̃−t = 2202M4
π changes sign between

the thresholds and thus enters the critical band 0 ≤ z2t ≤ 1 which is hence no longer fully
covered by the allowed area. Indeed, the range of convergence can be significantly improved
if z2t (t, a, b̃

−
s,t(a)) ≤ 0 (and of course also z2t (t, a, b̃

+
s,t(a)) ≥ 1) for all t between the thresholds.

From (10.50) it is clear that for t ∈ (tπ, tN ) we have z2t (t, a, b) ≤ 0 if and only if b ≤ (t− Σ+
2a)2/4, such that the curves for the lower limits b̃−s,t(a) of b will be tangent to the zero axis

provided that b̃−s,t(a) = 0. Solving this numerically yields

b̃−s (a) = b̃−t (a)
!
= 0 ⇒ a = ãts,t = −2.71M2

π , (10.53)

which is unambiguous since it turns out that b̃−s,t(a) > 0 for a < ãts,t as well as b̃−s,t(a) < 0 for
ãts,t < a < s+ (where we have used the numerical equality of the lower bounds for both s- and

t-channel partial-wave expansion). Furthermore, the curves for b̃+s,t(a) start to enter the critical
band due to change of sign at tN for a > 2.58M2

π and a > 9.17M2
π , respectively (however,

the geometrical constraint a < tπ is partially tighter anyway). Thus ãts,t is the smallest value
of a such that the critical band is fully covered between the thresholds which is shown in
Fig. 10.5(right). From this figure and equation (10.52) it is clear that in this case we can
deduce the corresponding upper and lower bounds tmin

s,t (a) and tmax
s,t (a) on t by the intercepts

t
(±)
0 (a, b̃+s,t(a)) of z2t (t, a, b̃

+
s,t(a)) with the zero axis below and above the thresholds, respectively.

Since moreover both tmax
s,t (a) = t

(+)
0 (a, b̃+s,t(a)) are strictly decreasing in the allowed ranges of

a, the minimal allowed value a = ãts,t is also the optimal one yielding t̃min
s,t = t

(−)
0 (ãts,t, b̃

+
s,t(ã

t
s,t))

and t̃max
s,t = t

(+)
0 (ãts,t, b̃

+
s,t(ã

t
s,t)). This procedure results in

b̃+s (ã
t
s,t) = 2897M4

π ⇒ −9.84M2
π ≤ t ≤ 205.45M2

π ,

b̃+t (ã
t
s,t) = 3509M4

π ⇒ −20.67M2
π ≤ t ≤ 216.28M2

π , (10.54)

where the s-channel Lehmann ellipse constraint proves slightly more restrictive.
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Figure 10.6: Double spectral regions and limiting hyperbolae for s- and t-channel partial-wave
projection. Left: for a = ãst = −23.19M2

π with b̃−t (a) = 2202M4
π (solid) and b̃+t (a) = 5212M4

π

(dashed). Right: for a= ãts,t=−2.71M2
π with b̃−s,t(a)=0 (solid) and b̃+s (a)=2897M4

π (dashed).

Therefore the final result for the t-channel partial-wave projection reads

ãts,t = −2.71M2
π , tπ < t < t̃max

s = 205.45M2
π , b̃−s,t(ã

t
s,t) = 0 , b̃+s (ã

t
s,t) = 2897M4

π ,
(10.55)

which corresponds to
√
t̃max =

√
205.45Mπ = 2.00GeV. Again, ascertaining that the resulting

family of hyperbolae does enter neither any double spectral region nor their z′-reflected bound-
aries, which is shown in Fig. 10.6(right), completes the derivation of the final result (10.55)
for the t-channel partial-wave projection. Note that for each set of hyperbola parameters a
and b only the “positive” branch of the hyperbola connecting the physical regions for the s-
and u-channel (cf. Fig 7.1) is shown in Fig. 10.6; the corresponding “negative” branch yields
the connection with the physical t-channel regions, however, not giving rise to any further
constraints. It is interesting to note that the domain of validity in t is much bigger as the
one in s, which is reflected by the possibility to use only the positive half 0 ≤ zt ≤ 1 of the
range of the scattering angle due to Bose symmetry in the t-channel; in particular the range
of convergence connects the physical regions for the s- and u-channel reactions, where t ≤ 0,
with the t-channel physical region t ≥ tN .

The complicated interplay between a, b̃±s,t(a), and z2t (t, a, b) in the different kinematical
regions is the reason why it is not possible to treat the t-channel projection in analogy to
the s-channel projection in the previous section: equating again the corresponding boundary
values of b from both the s- and t-channel partial-wave expansions and the t-channel partial-
wave projection and subsequently equating the corresponding maximal solutions in order to
obtain t̃max

s,t as the maximal upper limit on t for t > tN leads to entering or even crossing the
critical band between the thresholds.



143

Chapter 11

Asymptotic regions and Regge theory

The asymptotic s- and t-channel contributions of the HDRs (7.98) to the invariant amplitudes
are defined by splitting the corresponding integration ranges s+ ≤ s′ ≤ ∞ and tπ ≤ t′ ≤ ∞ at
some appropriate values sa = W 2

a and ta, respectively, which yields the following asymptotic
contributions

A+
∣∣
asym

(s, t) =
1

π

∞∫

sa

ds′
[

1

s′ − s
+

1

s′ − u
− 1

s′ − a

]
ImA+(s′, z′s) +

1

π

∞∫

ta

dt′
ImA+(t′, z′t)

t′ − t
,

A−∣∣
asym

(s, t) =
1

π

∞∫

sa

ds′
[

1

s′ − s
− 1

s′ − u

]
ImA−(s′, z′s) +

1

π

∞∫

ta

dt′
s− u

s′ − u′
ImA−(t′, z′t)

t′ − t
,

B+
∣∣
asym

(s, t) =
1

π

∞∫

sa

ds′
[

1

s′ − s
− 1

s′ − u

]
ImB+(s′, z′s) +

1

π

∞∫

ta

dt′
s− u

s′ − u′
ImB+(t′, z′t)

t′ − t
,

B−∣∣
asym

(s, t) =
1

π

∞∫

sa

ds′
[

1

s′ − s
+

1

s′ − u
− 1

s′ − a

]
ImB−(s′, z′s) +

1

π

∞∫

ta

dt′
ImB−(t′, z′t)

t′ − t
,

(11.1)

and the remaining non-asymptotic parts are given by the corresponding integrals over s+ ≤
s′ ≤ sa and tπ ≤ t′ ≤ ta, respectively, plus the nucleon pole terms N I(s, t) for the amplitudes
BI(s, t). The internal (primed) kinematics are given by (cf. Sect. 7.4 and especially (7.88))

s′(t′; a, b) =
1

2

(
Σ− t′ +

√
(t′ − Σ+ 2a)2 − 4b

)
, t′(s′; a, b) = − b

s′ − a
+Σ− s′ − a ,

u′(t′; a, b) =
1

2

(
Σ− t′ −

√
(t′ − Σ+ 2a)2 − 4b

)
, (11.2)

where the parameter b is fixed by the external (unprimed) kinematics as

(s− a)(Σ− s− t− a) = b = (s′ − a)(u′ − a) , (11.3)

such that

s′(u′; a, b) =
b

u′ − a
+ a , u′(s′; a, b) =

b

s′ − a
+ a . (11.4)
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Thus (for given a and finite b), for the s-channel integrals we need the asymptotic behavior
in the limit

s′ → ∞ ⇒ t′ → −∞ , u′ → a , (11.5)

while in the t-channel integrals the asymptotic behavior is determined by

t′ → ∞ ⇒ u′ → −∞ , s′ → a . (11.6)

From (11.1) the asymptotic parts of the s- and t-channel partial waves may then be deduced
by the projection formulae (8.24) and (9.18) as

f Il+
∣∣
asym

(W ) =

1∫

−1

dzs
{
R1

l,l+1(W, zs) A
I
∣∣
asym

(W, zs) +R2
l,l+1(W, zs) B

I
∣∣
asym

(W, zs)
}
,

f I(l+1)−

∣∣∣
asym

(W ) =

1∫

−1

dzs
{
R1

l+1,l(W, zs) A
I
∣∣
asym

(W, zs) +R2
l+1,l(W, zs) B

I
∣∣
asym

(W, zs)
}
,

fJ+
∣∣
asym

(t) = ζ̃J(t)

1∫

0

dzt
{
ũJ(t, zt) A

I
∣∣
asym

(t, zt) + ṽJ(t, zt) B
I
∣∣
asym

(t, zt)
}
,

fJ−
∣∣
asym

(t) = ζ̃J(t)

1∫

0

dzt w̃J(t, zt) B
I
∣∣
asym

(t, zt) , (11.7)

where for the t-channel partial waves we have again I = +/− for even/odd J . Note that for
these asymptotic contributions we do not expand the absorptive parts inside the integrals but
take into account the high-energy behavior of the full invariant amplitudes as given by Regge
theory [226]. Therefore, also for the driving terms (i.e. all contributions of the sums of the
higher partial waves that are not treated dynamically, cf. [53, 158], as well as the asymptotic
contributions of the lowest partial waves that are accounted for explicitly in solving the RS
system) the integration ranges are limited by sa and ta in order to avoid double counting of
the asymptotic regions. This procedure follows [53, 158], motivated by the observations that,
first, for higher and higher energies one would be forced to explicitly use higher and higher
partial waves as well in order to ensure the validity of the partial-wave expansion, and second,
no available information in the asymptotic regime is lost without need. For the s-channel, in
Sect. 15.2 we will explicitly demonstrate the matching of truncated sums of the lowest partial
waves for l ≤ 3, l ≤ 4, and l ≤ 5 below Wa to the Regge model (cf. Sect. 11.1) above Wa.

In the following, for both channels the contributions from the asymptotic regions will be
discussed in the framework of Regge theory; for a general introduction see e.g. [227].

11.1 s-channel asymptotics

First of all, contributions from t-channel Regge trajectories, i.e. the leading Pomeron (It = 0)

trajectory αP (t
′) ≈ α

(0)
P = 1 (roughly independent of t′ but with exponential residue function

βP (t
′) = σP exp bP t′

2 , where σP represents the asymptotic total cross section value for ππ
scattering and bP is the width of the diffraction peak, cf. [53, 158]) as well as the ρ (It = 1)
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and f (It = 0) trajectories αρ(t
′) = α

(0)
ρ + α

(1)
ρ t′ (and αf (t

′) in analogy) should be negligible,
since due to (11.5) for s′ → ∞ they will behave as

ImA(s′, t′) ∼ βP (t
′)s′αP (t′) ∼ e

bP t′
2 s′ ∼ e−s′s′ ,

ImA(s′, t′) ∼ βρ(t
′)s′αρ(t′) ∼ s′α

(0)
ρ +t′α(1)

ρ ∼ s′−s′ , (11.8)

leading to an exponential suppression.
Let us briefly review the u-channel exchange contributions to the s-channel reactions of

backward πN scattering as discussed in [228]. The invariant amplitudes can be parameterized
according to (cf. also [171])

A(s′, u′) =
∑

i

βAi (u
′)ζi(u′)

Γ
(
αi(u′)− 1

2

)
(
s′

sR

)αi(u
′)− 1

2

, B(s′, u′) =
∑

i

βBi (u′)ζi(u′)

Γ
(
αi(u′)− 1

2

)
(
s′

sR

)αi(u
′)− 1

2

,

(11.9)

where both sums run over the four trajectories i ∈ {Nα, Nγ ,∆δ,∆β} and the Regge propaga-
tors ζi(u′) are given by

ζi(u
′) =

1 + Si exp
(
− iπ

[
αi(u

′)− 1
2

])

sin
(
π
[
αi(u′)− 1

2

]) . (11.10)

Besides the scaling factor sR = 1GeV2, the following Regge residues βA/B
i (u′) and Regge

trajectories αi(u
′) are employed

βAi (u
′) = ai + biu

′ , βBi (u′) = ci + diu
′ , αi(u

′) = α
(0)
i + α′u′ , (11.11)

i.e. both the residues and the trajectories are linearly parameterized and for the latter an
identical slope α(1)

i = α′ is used for all i. The signature Si = (−1)Ji−
1
2 of the trajectory

i is positive for Nα and ∆β and negative for Nγ and ∆δ. Since Im ζi(u
′) = −Si, we may

conclude that the imaginary parts of the invariant amplitudes in the u-channel isospin basis
Iu ∈ {1/2 = N, 3/2 = ∆} can be written as

ImAN (s′, u′) =
∑

i∈{Nα,Nγ}
β̃Ai (u

′)
(
s′

sR

)αi(u
′)− 1

2

,

ImA∆(s′, u′) =
∑

i∈{∆δ ,∆β}
β̃Ai (u

′)
(
s′

sR

)αi(u
′)− 1

2

, (11.12)

with the abbreviations

β̃Ai (u
′) = − Siβ

A
i (u

′)

Γ
(
αi(u′)− 1

2

) , (11.13)

and analogously for the B amplitudes. Using now the isospin crossing relations (7.41), we
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Nα Nγ ∆δ ∆β

a [GeV−1] −60.68 47.22 −75.15 1419.99

b [GeV−3] 326.52 −215.84 −138.75 3052.84

c [GeV−2] 546.40 −101.11 64.16 −192.64

d [GeV−4] 307.42 −128.04 86.77 −695.81

α(0) −0.36 −0.62 0.03 −2.65

α′ [GeV−2] 0.908

Table 11.1: Regge model parameter values for backward πN scattering as given in [228].

finally obtain the absorptive parts

ImA+(s′, u′(s′, t′)) = +
1

3

∑

i∈{Nα,Nγ}
β̃Ai (u

′)
(
s′

sR

)αi(u
′)− 1

2

+
2

3

∑

i∈{∆δ ,∆β}
β̃Ai (u

′)
(
s′

sR

)αi(u
′)− 1

2

,

ImA−(s′, u′(s′, t′)) = −1

3

∑

i∈{Nα,Nγ}
β̃Ai (u

′)
(
s′

sR

)αi(u
′)− 1

2

+
1

3

∑

i∈{∆δ ,∆β}
β̃Ai (u

′)
(
s′

sR

)αi(u
′)− 1

2

,

ImB+(s′, u′(s′, t′)) = +
1

3

∑

i∈{Nα,Nγ}
β̃Bi (u′)

(
s′

sR

)αi(u
′)− 1

2

+
2

3

∑

i∈{∆δ ,∆β}
β̃Bi (u′)

(
s′

sR

)αi(u
′)− 1

2

,

ImB−(s′, u′(s′, t′)) = −1

3

∑

i∈{Nα,Nγ}
β̃Bi (u′)

(
s′

sR

)αi(u
′)− 1

2

+
1

3

∑

i∈{∆δ ,∆β}
β̃Bi (u′)

(
s′

sR

)αi(u
′)− 1

2

,

(11.14)

where the dependence on (s′, t′) can be translated into dependences on (s′, z′s) for the s-channel
integrals and (t′, z′t) for the t-channel integrals via (7.103). For convenience we also give the
numerical values of [228] for the 21 real parameters in Tab. 11.1.

As a byproduct, we can use these relations to infer the high-energy behavior of the HDR
s-channel integrals: from the trajectory parameters given in Tab. 11.1 it follows that the high-
energy tail of the integrals will be governed by the ∆δ trajectory. Explicitly, for u′ → a the
integrands for A+ and B− will behave as

s′−1s′α∆δ
(a)− 1

2 = s′α
′a−1.47 =

{
s′−1.88 for a = −23.19M2

π ,

s′−1.52 for a = −2.71M2
π ,

(11.15)

whereas the integrands for A− and B+ fall off faster by one power in s′ (cf. (11.1) and (7.104)).
We thus conclude that the s-channel part of the (unsubtracted) HDRs (7.98) converges in
principle for a < 26.57M2

π . Note that in order to investigate the behavior of these asymptotic
contributions in the “fixed-t limit” a → −∞ (as discussed in Sect. 10.2) it is important to
take the limits in the correct order, since u′ → a only after s′ → ∞. Since αi(u

′) − 1
2 < −1

for sufficiently large and negative a, the s-channel Regge contributions vanish in the limit
s′ → ∞ for such values of a. As will be shown in Sect. 15.3, these asymptotic contributions
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are numerically small for the optimal value of a (and a reasonable choice of sa) and thus they
can be safely neglected for a → −∞, regardless of the pathological behavior of the Regge
model due to the gamma function in this case.

11.2 t-channel asymptotics

Similarly to the previous section one could use Regge theory to describe the t-channel asymp-
totic region. However, the significance of these contributions in view of the corresponding
low-energy region differs strongly from the s-channel: while contributing crucially to the dis-
persive integrals, the whole pseudophysical region tπ ≤ t ≤ tN cannot be constrained from ex-
periment, but requires an analytic continuation. Within our system of Roy–Steiner equations
this task naturally takes the form of a Muskhelishvili–Omnès problem, as will be explained in
Chaps. 12 and 14. The solution of these equations becomes rather involved once other interme-
diate states than ππ are energetically allowed and start to produce significant inelastic effects,
which happens roughly around 1GeV (especially K̄K states above

√
tK = 0.99GeV for e.g.

J = 0, cf. Sect. 12.1). In view of the ensuing uncertainty of the t-channel partial waves even far
below the N̄N threshold

√
tN = 1.88GeV, it is clear that the inclusion of physical phase-shift

solutions above tN — and even more so the modeling of the high-energy region — will be of
little practical relevance (see also the discussion in Sect. 15.2.4). Moreover, in Chap. 13 we
will derive a subtracted system of Roy–Steiner equations by introducing subtractions that are
especially useful in order to suppress the dependence of our low-energy t-channel partial-wave
solutions on input at higher energies, where these uncertainties become substantial. Finally
, it will be shown explicitly in Sect. 15.3 that already the s-channel Regge contributions are
numerically immaterial (in particular if subtractions are performed), which provides evidence
that also the high-energy region in the t-channel can be safely ignored. Therefore, we will not
consider the t-channel asymptotic region any further.
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Chapter 12

Roy–Steiner system for πN scattering

In this chapter we first elaborate on the unitarity relations for the s- and especially the t-
channel. Then, we collect the results for the partial wave hyperbolic dispersion relations of
the previous Chaps. 8 and 9 in order to state the full Roy–Steiner system for πN scattering.
Finally, we use the threshold behavior of the t-channel partial waves fJ±(t) in order to cast the
t-channel part of the Roy–Steiner system in the form of a Muskhelishvili–Omnès problem.

12.1 Partial-wave unitarity relations

The reduced s-channel partial-wave amplitudes f Il±(W ) in the s-channel isospin basis Is ∈
{1/2, 3/2} are conventionally normalized according to (cf. (7.84) and e.g. [160, 171,174])

f Isl±(W ) =
1

q

[
SIs
l±(W )

]
πN→πN

− 1

2i
=

1

q

ηIsl±(W )e2iδ
Is
l±(W ) − 1

2i

W<Winel=
sin δIsl±(W )

q
eiδ

Is
l±(W ) ,

(12.1)
where for the elastic form we have used the fact that the lowest inelastic intermediate state
is ππN and thus ηIsl±(W ) = 1 below the inelastic threshold Winel =W+ +Mπ. The s-channel
partial wave unitarity relation corresponding to the normalization given above reads in its
general form (i.e. including potential inelastic contributions to the imaginary parts, cf. (7.84))
as well as its elastic form (by considering πN intermediate states only, but including the
possibility of charge exchange)

Im f Isl±(W ) = q
∣∣f Isl±(W )

∣∣2 θ
(
W −W+

)
+

1−
(
ηIsl±(W )

)2

4q
θ
(
W −Winel

)

W<Winel= q
∣∣f Isl±(W )

∣∣2 θ
(
W −W+

)
, (12.2)

leading to the branch cut for W > W+.
For the (necessarily inelastic) t-channel partial wave unitarity relations one needs the

dimensionless partial-wave amplitudes tItJ (t) of elastic ππ scattering. They are conventionally
defined from the dimensionless isospin amplitudes of ππ → ππ via (given here as t-channel
process in the isospin limit, i.e. with threshold energy 2Mπ =

√
tπ, t-channel isospin It ∈

{0, 1, 2}, total angular momentum J = l, and symmetry factors
√
SfSi = 2 for identical
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pions, cf. (7.80) and [53,160])

T It(s, t) = 32π
∞∑

J=0

(2J + 1)tItJ (t)PJ(cos θ
ππ) , (12.3)

that are normalized according to

dσItππ→ππ

dΩ
=

∣∣∣∣
T It(s, t)

8π
√
t

∣∣∣∣
2

. (12.4)

The corresponding elastic unitarity relation then takes the form (considering only ππ inter-
mediate states, cf. (7.82))

Im tItJ (t) = σπt
∣∣tItJ (t)

∣∣2 θ
(
t− tπ

)
, σπt =

2qt√
t
=

√
1− tπ

t
, (12.5)

and hence the partial waves can be parameterized as

tItJ (t) =
1

σπt

[
SIt
J (t)

]
ππ→ππ

− 1

2i
=

1

σπt

ηItJ (t)e2iδ
It
J (t) − 1

2i

η
It
J (t)=1
=

sin δItJ (t)

σπt
eiδ

It
J (t) . (12.6)

The reduced t-channel πN partial-wave amplitudes fJ±(t) are related to πN helicity amplitudes
Fλ̄λ(s, t) and dimensionless partial waves F J

±(t) via (cf. (7.78) and [171,212])

F++(s, t) = F−−(s, t) =
4π

√
t

qt

∞∑

J=0

(2J + 1)F J
+(t)PJ(cos θt) ,

F+−(s, t) = −F−+(s, t) =
4π

√
t

qt

∞∑

J=1

2J + 1√
J(J + 1)

F J
−(t) sin θtP

′
J(cos θt) ,

F J
+(t) =

qt
pt
(ptqt)

J 2√
t
fJ+(t) , F J

−(t) =
qt
pt
(ptqt)

JfJ−(t) , (12.7)

and they are normalized according to

dσ̄ππ→N̄N

dΩ
=
pt
qt

∑

λ̄,λ

∣∣∣∣
Fλ̄λ(s, t)

8π
√
t

∣∣∣∣
2

=
2pt
qt

{∣∣∣∣
F++(s, t)

8π
√
t

∣∣∣∣
2

+

∣∣∣∣
F+−(s, t)

8π
√
t

∣∣∣∣
2
}

=
4p2t
q2t

dσ̄N̄N→ππ

dΩ
.

(12.8)
The general formulae (12.7) and (12.8) are also valid for isospin even/odd parts F I

λ̄λ
(s, t)

with crossing index I = +/− and J even/odd, accordingly. Note that when referring to the
t-channel isospin basis It ∈ {0, 1} like in the following, the isospin crossing coefficients cJ
of (7.56) need to be included.

In general, the t-channel partial waves may be parameterized as

fJ±(t) =
∣∣fJ±(t)

∣∣eiϕJ (t) = Re fJ±(t) + i Im fJ±(t) . (12.9)

By considering now only ππ intermediate states in the region t < (4Mπ)
2 (which is elastic w.r.t.

ππ scattering but unphysical w.r.t. the πN t-channel) in the general unitarity relation (7.58)
for N̄N → ππ, the fJ±(t) can be shown to obey the “elastic” t-channel unitarity relation

Im fJ±(t) = σπt
(
tItJ (t)

)∗
fJ±(t) θ

(
t− tπ

)
∀ t ∈ [tπ, 16M

2
π) , (12.10)
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where the coefficients cJ cancel and which leads to the branch cut for t > tπ. Since the
imaginary part Im fJ±(t) itself must be real, from (12.10) together with (12.6) and (12.9) one
can immediately infer

fJ±(t) =
∣∣fJ±(t)

∣∣eiδ
It
J (t) ∀ t ∈ [tπ, 16M

2
π) , (12.11)

i.e. the phases of the t-channel partial waves fJ±(t) are given by the phases of the ππ partial
waves tItJ (t) modulo π (by convention we choose the phases to coincide exactly), which is also
known as Watson’s final-state-interaction theorem [229].

Despite the fact that this theorem is valid rigorously only for a rather limited range in
t, it is common practice to assume that further inelastic contributions due to 4π and other
intermediate states can safely be ignored for t . 40M2

π ≈ 0.78GeV2 in general (see e.g. [171]
or [182]). However, as demonstrated in [230] in the context of the scalar pion form factor,
for the S-wave this is certainly only true below the threshold tK = 4M2

K ≈ 0.97GeV2 for the
production of K̄K intermediate states. While for the P -waves inelasticities effectively start to
set in already around the πω threshold at 0.85GeV2, although nevertheless the ππ scattering
P -wave inelasticity remains small at least for energies below 1GeV, for the D-waves we do not
expect sizable deviations from elasticity in this energy range, since the ππ scattering D-wave
is approximately elastic for even higher energies. Thus, for t < tK we will neglect everything
except the 2π intermediate states in the following; especially Watson’s theorem (12.11) is
taken to be valid.

It is crucial to note that (12.10) is invariant under rescaling of fJ±(t) with real factors,
whereas elastic unitarity relations as (12.2) (for W < Winel) and (12.5) are always nonlinear
in the corresponding partial wave. Hence, fixing the normalization of all different partial
waves that are needed in extended t-channel unitarity relations (i.e. allowing for additional
intermediate states) in a consistent manner can only be done with resort to the corresponding
elastic reactions, as we will now demonstrate for a system of coupled-channel equations with
π, K and N degrees of freedom. Writing T11 = Tππ→ππ, T12 = TK̄K→ππ, T13 = TN̄N→ππ etc.
for the T -matrix elements and using the invariance of strong interactions under time reversal,
the general unitarity relation reads in terms of matrix elements

S∗
fjSji = δfi , Sfi = δfi + iTfi = δif + iTif = Sif . (12.12)

In particular, one can read off the extended elastic unitarity relation for ππ → ππ and the
extended unitarity relation for N̄N → ππ with ππ, K̄K, and N̄N intermediate states

δ11 = 1 = |S11|2 + |S12|2 + |S13|2 , δ13 = 0 = S∗
11S13 + S∗

12S23 + S∗
13S33 , (12.13)

and thus, by dropping the N̄N intermediate states in the second relation since we are finally
interested in the extended t-channel unitarity relation of πN scattering in the region below
the N̄N threshold, we get

2 ImT11 = |T11|2 + |T12|2 + |T13|2 , 2 ImT13 = T ∗
11T13 + T ∗

12T23 . (12.14)

Introducing now the reduced t-channel partial waves gItJ (t) of πK scattering (also given
here as t-channel process with isospin It = 0/1 corresponding to J = l even/odd due to Bose
symmetry in ππ, symmetry factors

√
SfSi =

√
2, and the partial waves being defined from
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dimensionless isospin amplitudes, cf. (7.80) and [158])

GIt(s, t) = 16π
√
2

∞∑

J=0

(2J + 1)(ktqt)
JgItJ (t)PJ(cos θ

πK
t ) , kt =

√
t

4
−M2

K =

√
t

2
σKt ,

(12.15)
the first relation of (12.14) may be decomposed in partial waves and performing the angular
integrations of the phase space integrals (7.63) leads to#1

2 · 32π Im tItJ (t) =
1

2

1

8π

2qt√
t

∣∣∣32π tItJ (t)
∣∣∣
2
θ
(
t− tπ

)
+

1

8π

2kt√
t

∣∣∣16π
√
2 (qtkt)

JgItJ (t)
∣∣∣
2
θ
(
t− tK

)

+
2

8π

2pt√
t

1

c2J

{∣∣∣∣
4π

√
t

qt
F J
+(t)

∣∣∣∣
2

+

∣∣∣∣
4π

√
t

qt
F J
−(t)

∣∣∣∣
2
}
θ
(
t− tN

)
, (12.16)

where the symmetry factor for the ππ intermediate state as well as all four different helicities of
the N̄N states together with the isospin crossing coefficients cJ have been taken into account,
such that the partial wave unitarity relation for ππ scattering (as t-channel process with ππ,
K̄K and N̄N intermediate states) takes the form

Im tItJ (t) = σπt
∣∣tItJ (t)

∣∣2 θ
(
t− tπ

)
+ (ktqt)

2JσKt
∣∣gItJ (t)

∣∣2 θ
(
t− tK

)

+
t

16q2t

σNt
c2J

{∣∣F J
+(t)

∣∣2 +
∣∣F J

−(t)
∣∣2
}
θ
(
t− tN

)
. (12.17)

For t < tK (or if It + J equals an odd number) this reproduces the elastic unitarity relation
for ππ scattering (12.5), which corresponds to the relation (cf. (12.6))

[
SIt
J (t)

]
ππ→ππ

= 1 + i
4qt√
t
tItJ (t) θ

(
t− tπ

)
. (12.18)

Comparing (12.17) with the elastic unitarity relation for the partial waves (cf. (12.13))

∣∣∣
[
SIt
J (t)

]
ππ→ππ

∣∣∣
2
+
∣∣∣
[
SIt
J (t)

]
ππ→K̄K

∣∣∣
2
+ 2

{∣∣∣
[
SJ
+(t)

]It
ππ→N̄N

∣∣∣
2
+
∣∣∣
[
SJ
−(t)

]It
ππ→N̄N

∣∣∣
2
}

= 1 ,

(12.19)
for the cases t < tN and t ≥ tN successively, then allows to fix the normalizations of the
partial wave S-matrix elements of the inelastic channels (both in the natural t-channel isospin
basis It ∈ {0, 1}) to#2

[
SIt
J (t)

]
ππ→K̄K

= i
4(ktqt)

J+ 1
2√

t
gItJ (t) θ

(
t−tK

)
,

[
SJ
±(t)

]It
ππ→N̄N

=
i

cJ
√
2

√
pt
qt
F J
±(t) θ

(
t−tN

)
.

(12.20)

#1Note that here Sfi, Tfi denote matrix elements and not the corresponding invariant amplitudes, cf. (7.59),
such that the product of matrix elements is to be understood as an integration over the corresponding interme-
diate LIPS (respecting 4-momentum conservation and including potential symmetry factors) when rewriting
these relations in terms of invariant amplitudes, cf. (7.61).

#2Note that our symmetric normalization of the helicity partial waves (7.78) together with (12.7) and (12.8)

leads to an additional factor of 1/
√
2 to

[

SJ
±(t)

]It

ππ→N̄N
in comparison with [171] or [212], where one should

read in addition
[

SJ
±(t)

]

ππ→N̄N
≡ cJ

[

SJ
±(t)

]It

ππ→N̄N
.
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Inserting these S-matrix elements into (7.78) indeed reproduces the correctly normalized dif-
ferential cross sections

dσIt
ππ→K̄K

dΩ
=
kt
qt

∣∣∣∣
GIt(s, t)

8π
√
t

∣∣∣∣
2

, (12.21)

and (12.8), respectively. Furthermore, from the unitarity bound of the t-channel partial wave
S matrix of πN scattering only (cf. (12.19)) together with its explicit form (12.20) and the
relations (12.7) to the corresponding partial waves fJ± we can deduce that the partial waves
fall off asymptotically at least as fast as (cf. [171])

fJ+(t) ∼ t−J+ 1
2 , fJ−(t) ∼ t−J , for t→ ∞ , (12.22)

i.e. fJ±(t) → 0 for t→ ∞ by unitarity at least for all J > 0; this asymptotic vanishing is usually
assumed to hold for the S-wave as well. By virtue of similar considerations, the normalization
of the remaining partial waves in the second relation of (12.14) can be fixed. We can introduce
the reduced t-channel partial waves hJ±(t) of KN scattering in analogy to the πN case via
dimensionless helicity amplitudes (cf. (12.7) and [231,232])

H++(s, t) =
4π

√
t

kt

∞∑

J=0

(2J + 1)HJ
+(t)PJ(cos θ

KN
t ) , HJ

+(t) =
kt
pt
(ptkt)

J 2√
t
hJ+(t) ,

H+−(s, t) =
4π

√
t

kt

∞∑

J=1

2J + 1√
J(J + 1)

HJ
−(t) sin θ

KN
t P ′

J(cos θ
KN
t ) , HJ

−(t) =
kt
pt
(ptkt)

JhJ−(t) ,

(12.23)

where it is important to note that here in contrast to πN scattering also the combinations
It = 0 with odd J and It = 1 with even J are allowed due to lack of Bose symmetry in K̄K.
In order not to bloat the notation we refrain from using an additional index for It and in the
following e.g. hJ=even/odd

± is always to be understood as h(J=even/odd,It=0/1)
± , respectively, and

not h(J=odd/even,It=0/1)
± , since only the former can couple to the t-channel process ππ → N̄N .

The normalization is fixed by

dσ̄KK̄→N̄N

dΩ
=
pt
kt

∑

λ̄,λ

∣∣∣∣
Hλ̄λ(s, t)

8π
√
t

∣∣∣∣
2

=
2pt
kt

{∣∣∣∣
H++(s, t)

8π
√
t

∣∣∣∣
2

+

∣∣∣∣
H+−(s, t)

8π
√
t

∣∣∣∣
2
}

=
4p2t
k2t

dσ̄N̄N→KK̄

dΩ
,

(12.24)
so that the dimensionless partial-wave amplitudes HJ

±(t) are related to the diagonal elements
of the corresponding S-matrix according to

[
SJ
±(t)

]It
KK̄→N̄N

=
i

cKN
J

√
pt
kt
HJ

±(t) θ
(
t− tN

)
, cKN

J =
1

2
∀ J . (12.25)

Simply plugging the partial wave matrix elements into the partial-wave projection of the second
relation of (12.14) for either parallel or antiparallel antinucleon–nucleon helicities yields

2

cJ

√
pt
2qt

ImF J
±(t) =

4qt√
t

(
tItJ (t)

)∗ 1

cJ

√
pt
2qt

F J
±(t) θ

(
t− tπ

)

+
4(ktqt)

J+ 1
2√

t

(
gItJ (t)

)∗
2

√
pt
kt
HJ

±(t) θ
(
t− tK

)
, (12.26)
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and hence the result for the extended t-channel unitarity relation for the t-channel partial
waves fJ±(t), which extends (12.10) for K̄K intermediate states (but still neglecting heavier
intermediate states), reads

Im fJ±(t) = σπt
(
tItJ (t)

)∗
fJ±(t) θ

(
t− tπ

)
+ 2cJ

√
2 k2Jt σKt

(
gItJ (t)

)∗
hJ±(t) θ

(
t− tK

)
. (12.27)

Finally, we can use (12.19) to derive the inelasticities ηItJ (t) of the ππ scattering ampli-
tude that are consistent with (12.27). Below the N̄N threshold, inserting (12.6) and (12.20)
into (12.19) leads to

ηItJ (t) =

√
1− 4σπt σ

K
t (ktqt)2J

∣∣gItJ (t)
∣∣2 θ
(
t− tK

)
. (12.28)

12.2 Partial-wave hyperbolic dispersion relations

In order to use unitarity relations of the diagonal form (12.2) for the s-channel partial waves,
we have to work in the s-channel isospin basis Is ∈ {1/2, 3/2} rather than in the isospin
even/odd basis I = +/− (as proposed in [160]), and therefore in analogy to (7.39) we define
(
X1/2

X3/2

)
= Csν

(
X+

X−

)
,

(
X+

X−

)
= Cνs

(
X1/2

X3/2

)
, for X ∈ {fl±, Nl±,Kll′} , (12.29)

and the abbreviation

K
1/2+3/2
ll′ (W,W ′) = K

1/2
ll′ (W,W ′) +K

3/2
ll′ (W,W ′) = 2K+

ll′(W,W
′) +K−

ll′(W,W
′) . (12.30)

The full closed Roy–Steiner system of PWDRs for both s- and t-channel partial waves in the
corresponding isospin bases Is ∈ {1/2, 3/2} and It ∈ {0, 1} that follows from rewriting (8.3)
and (9.1) reads (here, all sums run over both even and odd values and the formulae for the
f I(l+1)− are given explicitly for convenience)

f
1/2
l+ (W ) = N

1/2
l+ (W )

+
1

π

∞∫

W+

dW ′
∞∑

l′=0

1

3

{
K

1/2
ll′ (W,W ′) Im f

1/2
l′+ (W ′) + 2K

3/2
ll′ (W,W ′) Im f

3/2
l′+ (W ′)

+K
1/2
ll′ (W,−W ′) Im f

1/2
(l′+1)−(W

′) + 2K
3/2
ll′ (W,−W ′) Im f

3/2
(l′+1)−(W

′)
}

+
1

π

∞∫

tπ

dt′
∞∑

J=0

(
3− (−1)J

)

2

{
GlJ(W, t

′) Im fJ+(t
′) +HlJ(W, t

′) Im fJ−(t
′)
}
,

f
3/2
l+ (W ) = N

3/2
l+ (W )

+
1

π

∞∫

W+

dW ′
∞∑

l′=0

1

3

{
K

3/2
ll′ (W,W ′) Im f

1/2
l′+ (W ′) +K

1/2+3/2
ll′ (W,W ′) Im f

3/2
l′+ (W ′)

+K
3/2
ll′ (W,−W ′) Im f

1/2
(l′+1)−(W

′) +K
1/2+3/2
ll′ (W,−W ′) Im f

3/2
(l′+1)−(W

′)
}

+
1

π

∞∫

tπ

dt′
∞∑

J=0

(−1)J
{
GlJ(W, t

′) Im fJ+(t
′) +HlJ(W, t

′) Im fJ−(t
′)
}
,
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f
1/2
(l+1)−(W ) = N

1/2
(l+1)−(W )

− 1

π

∞∫

W+

dW ′
∞∑

l′=0

1

3

{
K

1/2
ll′ (−W,W ′) Im f

1/2
l′+ (W ′) + 2K

3/2
ll′ (−W,W ′) Im f

3/2
l′+ (W ′)

+K
1/2
ll′ (−W,−W ′) Im f

1/2
(l′+1)−(W

′) + 2K
3/2
ll′ (−W,−W ′) Im f

3/2
(l′+1)−(W

′)
}

− 1

π

∞∫

tπ

dt′
∞∑

J=0

(
3− (−1)J

)

2

{
GlJ(−W, t′) Im fJ+(t

′) +HlJ(−W, t′) Im fJ−(t
′)
}
,

f
3/2
(l+1)−(W ) = N

3/2
(l+1)−(W )

− 1

π

∞∫

W+

dW ′
∞∑

l′=0

1

3

{
K

3/2
ll′ (−W,W ′) Im f

1/2
l′+ (W ′)+K1/2+3/2

ll′ (−W,W ′) Im f
3/2
l′+ (W ′)

+K
3/2
ll′ (−W,−W ′) Im f

1/2
(l′+1)−(W

′) +K
1/2+3/2
ll′ (−W,−W ′) Im f

3/2
(l′+1)−(W

′)
}

− 1

π

∞∫

tπ

dt′
∞∑

J=0

(−1)J
{
GlJ(−W, t′) Im fJ+(t

′) +HlJ(−W, t′) Im fJ−(t
′)
}
, (12.31)

together with

fJ+(t) = ÑJ
+(t) +

1

π

∞∫

W+

dW ′
∞∑

l=0

1

3

{
G̃Jl(t,W

′)
[
Im f

1/2
l+ (W ′) +

1 + 3(−1)J

2
Im f

3/2
l+ (W ′)

]

+ G̃Jl(t,−W ′)
[
Im f

1/2
(l+1)−(W

′) +
1 + 3(−1)J

2
Im f

3/2
(l+1)−(W

′)
]}

+
1

π

∞∫

tπ

dt′
∞∑

J ′=J

1+(−1)J+J ′

2

{
K̃1

JJ ′(t, t′) Im fJ
′

+ (t′) + K̃2
JJ ′(t, t′) Im fJ

′
− (t′)

}
∀ J ≥ 0 ,

fJ−(t) = ÑJ
−(t) +

1

π

∞∫

W+

dW ′
∞∑

l=0

1

3

{
H̃Jl(t,W

′)
[
Im f

1/2
l+ (W ′) +

1 + 3(−1)J

2
Im f

3/2
l+ (W ′)

]

+ H̃Jl(t,−W ′)
[
Im f

1/2
(l+1)−(W

′) +
1 + 3(−1)J

2
Im f

3/2
(l+1)−(W

′)
]}

+
1

π

∞∫

tπ

dt′
∞∑

J ′=J

1 + (−1)J+J ′

2
K̃3

JJ ′(t, t′) Im fJ
′

− (t′) ∀ J ≥ 1 . (12.32)

Note that in the above t-channel part (12.32) the sums over J ′ are limited to J ′ ≥ J due
to (9.55). The preceding explicit equations illustrate the fact that (as already mentioned in
Chap. 6) the unitarity-diagonal isospin states Is = 1/2 and Is = 3/2 are, however, coupled by
the integral kernels. Conversely, working in the isospin even/odd basis I = +/−, the isospin
states are mixed up by unitarity but not in the dispersion relations. Thus, the effective
recoupling structure shown in Fig. 6.1 (center) arises independent of the chosen isospin basis.
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12.3 The t-channel: from Roy–Steiner to Muskhelishvili–Omnès

12.3.1 Threshold behavior of the t-channel partial waves

The asymptotic behavior of fJ±(t) for pt → 0 and qt → 0 (which is equivalent to t→ tN = 4m2

and t→ tπ = 4M2
π , respectively) can be derived directly from the partial-wave projection (9.7).

Since AI(t, zt) and BI(t, zt) have definite symmetry properties under s↔ u and since s−u =
4mν = 4ptqtzt, we can write down the expansions

AI(t, zt) =
∑

J ′
(ptqt)

J ′
PJ ′(zt)aJ ′(t) , BI(t, zt) =

∑

J ′
(ptqt)

J ′
PJ ′(zt)bJ ′(t) , (12.33)

where only even/odd values of J ′ contribute according to the symmetry properties of AI and
BI (i.e. even J ′ for A+, B− and odd J ′ for A−, B+). Let us first consider the limit pt → 0,
i.e. the behavior of fJ±(t) at the t-channel threshold tN . As far as the leading asymptotic
behavior is concerned, the functions aJ ′(t) and bJ ′(t) can be evaluated at t = tN and will thus
be considered as constant coefficients in the following. Inserting these expansions into (9.7)
(where J even/odd corresponds to I = +/−), we find for J = 0 that

f0+(t→ tN ) = O(p2t ) (12.34)

at the physical threshold, while for J ≥ 1 we obtain

fJ+(t→ tN ) =
mbJ−1

8π

1∫

−1

dztPJ(zt)ztPJ−1(zt) +O(p2t ) =
mbJ−1

8π

J

2J + 1

2

2J − 1
+O(p2t ) ,

fJ−(t→ tN ) =
bJ−1

8π

√
J(J + 1)

2J + 1

1∫

−1

dztPJ−1(zt)PJ−1(zt) +O(p2t )

=
bJ−1

8π

√
J(J + 1)

2J + 1

2

2J − 1
+O(p2t ) , (12.35)

such that
fJ+(t→ tN ) = O(1) , fJ−(t→ tN ) = O(1) , ∀ J ≥ 1 . (12.36)

However, the linear combination

ΓJ(t) = m

√
J

J + 1
fJ−(t)− fJ+(t) ∀ J ≥ 1 , (12.37)

which with f0− ≡ 0 can also be generalized for the case J = 0 and which for J = 1 is closely
related to the dispersive representation of the nucleon form factor, vanishes at threshold
(cf. [171,213,233])

ΓJ(t→ tN ) = O(p2t ) ∀ J ≥ 1 . (12.38)

The same reasoning may be applied to the limit qt → 0 as well, but as AI contributes at
the same order as BI in the expansion of fJ+(t), no relation between the threshold values of
different amplitudes may be inferred for qt → 0:

fJ+(t→ tπ) = O(1) ∀ J ≥ 0 , fJ−(t→ tπ) = O(1) ∀ J ≥ 1 . (12.39)
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In fact, the properties of fJ±(t) at the t-channel threshold are crucial to ensure convergence
in the Roy–Steiner equations. From the partial-wave expansion (8.84) we can easily derive
the leading contributions to the invariant amplitudes (given explicitly for J ≤ 2)

A+(ν, t)

4π
= −f

0
+(t)

p2t
+

15

2
(mν)2

Γ2(t)

p2t
+

5

2
q2t f

2
+(t) + . . . ,

B+(ν, t)

4π
=

15√
6
mνf2−(t) + . . . ,

A−(ν, t)
4π

= 3mν
Γ1(t)

p2t
+ . . . ,

B−(ν, t)
4π

=
3√
2
f1−(t) + . . . ,

(12.40)

demonstrating how the threshold behavior (12.34) and (12.38) ensures that the partial-wave
expansion does not introduce spurious kinematical poles at pt → 0 into the expansion of
the invariant amplitudes (as it must be) and thereby into the HDRs (7.98). To illustrate
the consequences of this point, we briefly comment on the several places in our Roy–Steiner
system (8.3) and (9.1) where the threshold behavior of fJ±(t) features:

1. Although GlJ(W, t
′) and HlJ(W, t

′) diverge as p′−2
t for t′ → tN according to (8.103), the

relation

Res
[
HlJ(W, t

′), t′ = tN

]
= −m

√
J

J + 1
Res

[
GlJ(W, t

′), t′ = tN

]
(12.41)

together with (12.34) and (12.38) ensures that the corresponding integrals in (8.3) are
well defined. We have checked that the explicit expressions in (8.100) fulfill this equation.

2. The p′−2
t divergence (9.60) of K̃1

JJ ′(t, t′) and K̃2
JJ ′(t, t′) for t′ → tN cancels in (9.1)

provided that

Res
[
K̃2

JJ ′(t, t′), t′ = tN

]
= −m

√
J ′

J ′ + 1
Res

[
K̃1

JJ ′(t, t′), t′ = tN

]
. (12.42)

This relation can easily be verified for the kernels given in (9.57) and (9.59), cf. (9.58).

3. Based on the asymptotic forms (9.17) of the pole-term projections ÑJ
±(t), one may check

their threshold behavior to be analogous to (12.34) and (12.38). Note that in this special
case the relations hold for qt → 0 as well, since AI does not contribute to the pole terms:

Ñ0
+(ptqt → 0) = O(p2t q

2
t ) ,

m

√
J

J + 1
ÑJ

−(ptqt → 0)− ÑJ
+(ptqt → 0) = O(p2t q

2
t ) ∀ J ≥ 1 . (12.43)

12.3.2 Muskhelishvili–Omnès problem for the t-channel partial waves

Using the properties of the kernel functions for t-channel exchange as given in Sect. 9.3 together
with the threshold behavior of the partial waves as discussed in Sect. 12.3.1, we can rewrite
the t-channel part (9.1) (i.e. working in the I ∈ {+,−} s-channel isospin basis again for the
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sake of brevity) of the (unsubtracted) Roy–Steiner system as

f0+(t) = ∆0
+(t)−

1

π

∞∫

tπ

dt′
Im f0+(t

′)
t′ − tN

+
1

π

∞∫

tπ

dt′
Im f0+(t

′)
t′ − t

,

fJ+(t) = ∆J
+(t) +

1

π

∞∫

tπ

dt′
m
√

J
J+1 Im fJ−(t

′)− Im fJ+(t
′)

t′ − tN
+

1

π

∞∫

tπ

dt′
Im fJ+(t

′)
t′ − t

∀ J ≥ 1 ,

fJ−(t) = ∆J
−(t) +

1

π

∞∫

tπ

dt′
Im fJ−(t

′)
t′ − t

∀ J ≥ 1 , (12.44)

where we have defined the abbreviations

∆J
±(t) = ÑJ

±(t) + ∆̄J
±(t) ,

∆̄J
+(t) =

1

π

∞∫

W+

dW ′
∞∑

l=0

{
G̃Jl(t,W

′) Im f Il+(W
′) + G̃Jl(t,−W ′) Im f I(l+1)−(W

′)
}

+
1

π

∞∫

tπ

dt′
∞∑

J ′=J+2

1 + (−1)J+J ′

2

{
K̃1

JJ ′(t, t′) Im fJ
′

+ (t′) + K̃2
JJ ′(t, t′) Im fJ

′
− (t′)

}
∀ J ≥ 0 ,

∆̄J
−(t) =

1

π

∞∫

W+

dW ′
∞∑

l=0

{
H̃Jl(t,W

′) Im f Il+(W
′) + H̃Jl(t,−W ′) Im f I(l+1)−(W

′)
}

+
1

π

∞∫

tπ

dt′
∞∑

J ′=J+2

1 + (−1)J+J ′

2
K̃3

JJ ′(t, t′) Im fJ
′

− (t′) ∀ J ≥ 1 , (12.45)

for the inhomogeneities ∆J
±(t), which besides the t-channel projections ÑJ

±(t) of the nucleon
pole terms contain the coupling to (in principle) all s-channel partial waves as well as to the
higher t-channel partial waves. Note that ∆J

±(t) only contains the left-hand cut and therefore
it is real for all t ≥ tπ. By virtue of (12.37) and the analogous definition

∆J
Γ(t) = m

√
J

J + 1
∆J

−(t)−∆J
+(t) , (12.46)

the equations (12.44) can be cast into the form of a Muskhelishvili–Omnès problem for f0+(t),
fJ−(t), and ΓJ(t)

f0+(t) = ∆0
+(t) +

t− tN
π

∞∫

tπ

dt′
Im f0+(t

′)
(t′ − tN )(t′ − t)

,

ΓJ(t) = ∆J
Γ(t) +

t− tN
π

∞∫

tπ

dt′
ImΓJ(t′)

(t′ − tN )(t′ − t)
∀ J ≥ 1 ,

fJ−(t) = ∆J
−(t) +

1

π

∞∫

tπ

dt′
Im fJ−(t

′)
t′ − t

∀ J ≥ 1 , (12.47)
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where for f0+(t) and ΓJ(t) combining the integrals effectively yields one subtraction at the
threshold tN and the additional roots at t′ = tN in the denominators get canceled by the
threshold behavior of the numerators. The solution for fJ+(t) can then easily be recovered
via (12.37).

How these equations (or their subtracted analogs derived in Sect. 13.6) can be used to
determine f0+(t), f

1
±(t) and f2±(t) with the help of Muskhelishvili–Omnès techniques will be

described in the following (cf. Chaps. 13, 14, and 15). Note, however, that such an easy
rewriting scheme is not possible for the s-channel part (8.3) of the Roy–Steiner PWHDRs,
since in the corresponding s-channel integrals also 0 ≤ l′ ≤ l contribute.
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Chapter 13

Subtracted Roy–Steiner system

for πN scattering

The Froissart–Martin bound [234–236] (see also [174]) limits the number of subtractions nec-
essary for the convergence of the integrals in the high-energy regime to 2, since the total cross
section does not increase faster than log2 s for s → ∞.#1 The influence of the high-energy
contributions to dispersion integrals may be reduced by means of suitable subtractions for
the trade-off of introducing corresponding subtraction polynomials with subtraction constants
that are a priori unknown. For the Muskhelishvili–Omnès integrals in (12.47) subtracting in
t at subtraction points below tπ with the additional constraint s = u in order to preserve
crossing symmetry is favorable. A particularly useful choice is the subthreshold expansion,
which amounts to subtracting in t at zero: first, it is very convenient for extrapolating to
the Cheng–Dashen point in order to elaborate on the πN σ-term σπN (cf. Sect. 7.1); second,
subtracting at the subthreshold point facilitates matching to ChPT, which is expected to work
best in the subthreshold region.#2 To this end, we first briefly review the subthreshold ex-
pansion of the scattering amplitudes and then discuss its application in order to write down
both the once- and twice-subtracted form of the hyperbolic dispersion relations (7.98).

13.1 Subthreshold expansion

The subthreshold expansion refers to the expansion of Born-subtracted amplitudes around the
subthreshold point (s = u = s0, t = 0) = (ν = 0, t = 0) (cf. Sect. 7.1), where the nucleon pole
terms are subtracted since they are rapidly varying in this kinematical region. Subtracting
the pseudovector Born terms (indicated by bars) yields

Ā+(s, t) = A+(s, t)− g2

m
, B̄+(s, t) = B+(s, t)− N̄+(s, t) ,

Ā−(s, t) = A−(s, t) , B̄−(s, t) = B−(s, t)− N̄−(s, t) +
g2

2m2
, (13.1)

#1While the original Froissart bound assumes validity of the Mandelstam representation for the scattering
amplitude, the result of Martin is based on somewhat less restrictive assumptions.

#2For the application of heavy-baryon ChPT to πN scattering in the subthreshold region see [237]. Con-
versely, analyticity and unitarity are used in [238] to stabilize the extrapolation of πN partial waves derived
from ChPT amplitudes in the subthreshold region into the physical region, thus enabling the determination of
the chiral parameters by matching to experimental information in terms of s-channel phase shifts.
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while for the pseudoscalar Born-subtracted (indicated by tildes) amplitudes Ã± and B̃± the
terms −g2/m and +g2/2m2 need to be dropped (cf. 7.99). Due to the crossing symmetry
of the amplitudes (7.26) (similarly for HDRs (7.98), (7.105)) one can write the subthreshold
expansion generically for crossing-even amplitudes as (cf. (7.105) as well as [171])

X(ν, t) =
∑

m,n

xmn

(
ν2
)m
tn , X∈

{
Ā+, Ã+,

Ā−

ν
,
Ã−

ν
,
B̄+

ν
,
B̃+

ν
, B̄−, B̃−, D̄+, D̃+,

D̄−

ν
,
D̃−

ν

}
,

(13.2)
and thus explicitly for the pseudovector Born-subtracted amplitudes as

Ā+(ν, t) =
∞∑

m,n=0

a+mnν
2mtn , B̄+(ν, t) =

∞∑

m,n=0

b+mnν
2m+1tn ,

Ā−(ν, t) =
∞∑

m,n=0

a−mnν
2m+1tn , B̄−(ν, t) =

∞∑

m,n=0

b−mnν
2mtn , (13.3)

where the corresponding subthreshold parameters of the amplitudes D̄± = Ā± + νB̄± are
related by

d+mn = a+mn + b+m−1,n , d−mn = a−mn + b−mn . (13.4)

Note that due to b+−1,n = 0 in particular

d+0n = a+0n . (13.5)

From the expansions (cf. (7.104))

1

s′ − s
− 1

s′ − u
=

4mν

(s′ − s0)2
+O

(
ν3, νt

)
,

1

s′ − s
+

1

s′ − u
=

2

s′ − s0
− t

(s′ − s0)2
+O

(
ν2, ν2t, t2

)
, (13.6)

one then can read off the subthreshold expansions of the Born-unsubtracted amplitudes up to
and including first order in ν and t#3

A+(ν, t) =
g2

m
+ d+00 + d+01t+O

(
ν2, ν2t, t2

)
,

A−(ν, t) = νa−00 +O
(
ν3, νt

)
, B+(ν, t) = g2

4mν

(m2 − s0)2
+ νb+00 +O

(
ν3, νt

)
,

B−(ν, t) = g2
[

2

m2 − s0
− t

(m2 − s0)2

]
− g2

2m2
+ b−00 + b−01t+O

(
ν2, ν2t, t2

)
. (13.7)

13.2 Sum rules for the subthreshold parameters

In the following we will briefly explain how over-subtracting dispersion relations yields sum
rules for the one-dimensional case (cf. for instance [174]) before deriving sum rules for the
subthreshold parameters from the HDRs (7.98) at hand.

#3Note that for B− the factor in square brackets is not proportional to νB .
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Starting from a supposedly convergent dispersion relation (i.e. no subtractions necessary)

f(s) =
1

π

s2∫

s1

ds′
Im f(s′)
s′ − s

, (13.8)

we can utilize the general relation

1

s′ − s
=

n−1∑

i=0

(s− s0)
i

(s′ − s0)i+1
+

(s− s0)
n

(s′ − s0)n
1

s′ − s
∀ n ≥ 0 , (13.9)

which directly follows from the formula for a partial sum of the geometric series, in order to de-
rive the form of the n-times over-subtracted dispersion relation with identical fixed subtraction
point s0 for all subtractions#4

f(s) =
n−1∑

i=0

ci(s− s0)
i +

(s− s0)
n

π

s2∫

s1

ds′

(s′ − s0)n
Im f(s′)
s′ − s

, (13.10)

where the n subtraction constants, which are the coefficients ci of the subtraction polynomial
of order n− 1 in (s− s0), are given by

ci =
1

π

s2∫

s1

ds′
Im f(s′)

(s′ − s0)i+1
=

1

i!

[(
d
ds

)i

f(s)

]

s=s0

. (13.11)

The first equality for the ci represents the convergent sum rules that the subtraction con-
stants due to over-subtracting must obey, while the second equality, which can be inferred
by differentiating both sides of the subtracted dispersion relation i times and evaluating at
the subtraction point s = s0 for all values of i, can be used to derive the explicit form of the
sum rules. However, there are no sum rules for subtraction constants that are necessary for
convergence reasons, which are thus a priori unknown.

Generalizing the above now to the two-dimensional case and noting that subtracting at the
points s0 = Σ/2 < s+ and t0 = 0 < tπ corresponds to the subthreshold expansion around (ν =
0, t = 0) allows for the determination of sum rules for the subthreshold parameters. Matching
the expansions (13.7) to the corresponding expansions of the HDRs (7.98) (or (7.105)) by
equating the coefficients, where in addition to (13.6) we have

1

t′ − t
=

1

t′

{
1 +

t

t′
+O

(
t2
)}

, (13.12)

and it is crucial to keep track of all implicit dependences in the expansions, together with
introducing the abbreviation

h0(s
′) =

2

s′ − s0
− 1

s′ − a
, (13.13)

#4If the subtraction point is chosen away from the cut of f(s) such that Im f(s0) = 0 (e.g. s0 < s1), the
subtracted dispersion relation can also be written as unsubtracted dispersion relation for a subtracted function,
i.e. (f(s)− f(s0))/(s− s0) for n = 1.
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then yields the following sum rules for the lowest subthreshold parameters

d+00 = −g
2

m
+

1

π

∞∫

s+

ds′ h0(s′)
[
ImA+(s′, z′s)

]
(0,0)

+
1

π

∞∫

tπ

dt′

t′
[
ImA+(t′, z′t)

]
(0,0)

,

b−00 =
g2

2m2
− g2

m2 − a
+

1

π

∞∫

s+

ds′ h0(s′)
[
ImB−(s′, z′s)

]
(0,0)

+
1

π

∞∫

tπ

dt′

t′
[
ImB−(t′, z′t)

]
(0,0)

,

d+01 =
1

π

∞∫

s+

ds′
{
h0(s

′)
[
∂tImA+(s′, z′s)

]
(0,0)

−
[ImA+(s′, z′s)](0,0)

(s′ − s0)2

}

+
1

π

∞∫

tπ

dt′

t′

{
[
∂tImA+(t′, z′t)

]
(0,0)

+
1

t′
[
ImA+(t′, z′t)

]
(0,0)

}
,

b−01 =
1

π

∞∫

s+

ds′
{
h0(s

′)
[
∂tImB−(s′, z′s)

]
(0,0)

−
[ImB−(s′, z′s)](0,0)

(s′ − s0)2

}

+
1

π

∞∫

tπ

dt′

t′

{
[
∂tImB−(t′, z′t)

]
(0,0)

+
1

t′
[
ImB−(t′, z′t)

]
(0,0)

}
,

a−00
4m

=
1

π

∞∫

s+

ds′
[ImA−(s′, z′s)](0,0)

(s′ − s0)2
+

1

π

∞∫

tπ

dt′

t′

[
ImA−(t′, z′t)

4p′tq
′
tz

′
t

]

(0,0)

,

b+00
4m

=
1

π

∞∫

s+

ds′
[ImB+(s′, z′s)](0,0)

(s′ − s0)2
+

1

π

∞∫

tπ

dt′

t′

[
ImB+(t′, z′t)

4p′tq
′
tz

′
t

]

(0,0)

. (13.14)

The subscript (0, 0) indicates that z′s and z′t in the s- and t-channel integrals, respectively, are
to be evaluated at (ν = 0, t = 0), which according to (7.103) and (7.90) amounts to using

[
z′s
]
(0,0)

= 1− (s′ − s0)
2

2q′2(s′ − a)
,

[
∂tz

′
s

]
(0,0)

=
s0 − a

2q′2(s′ − a)
,

[
z′2t
]
(0,0)

=
t′(t′ − 4(s0 − a))

16p′2t q
′2
t

= 1 +
t′4a− tN tπ
16p′2t q

′2
t

,
[
∂tz

′2
t

]
(0,0)

=
s0 − a

4p′2t q
′2
t

, (13.15)

where again we have used the fact that the t-channel integrands depend on the squared angle
z′2t only. Note that these sum rules as such are valid independent of the choice of a, but in
practice one will incur an a-dependence once approximations are made (such as truncation of
the partial-wave expansion, approximation of the high-energy region by Regge theory, etc.).

13.3 Subtracted hyperbolic dispersion relations

A single subtraction at (ν = 0, t = 0) only affects A+(ν, t) and B−(ν, t) since both A−(ν, t)
and B+(ν, t) are proportional to ν. Based on the unsubtracted HDRs (7.98), the explicit
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subthreshold expansions (13.7), and the corresponding sum rules (13.14), we obtain the once-
subtracted HDRs

A+(s, t; a) =
g2

m
+ d+00 +

1

π

∞∫

tπ

dt′
{

ImA+(t′, z′t)
t′ − t

−
[ImA+(t′, z′t)](0,0)

t′

}
(13.16)

+
1

π

∞∫

s+

ds′
{[

1

s′ − s
+

1

s′ − u
− 1

s′ − a

]
ImA+(s′, z′s)− h0(s

′)
[
ImA+(s′, z′s)

]
(0,0)

}
,

B−(s, t; a) = N̄−(s, t)− g2

2m2
+ b−00 +

1

π

∞∫

tπ

dt′
{

ImB−(t′, z′t)
t′ − t

−
[ImB−(t′, z′t)](0,0)

t′

}

+
1

π

∞∫

s+

ds′
{[

1

s′ − s
+

1

s′ − u
− 1

s′ − a

]
ImB−(s′, z′s)− h0(s

′)
[
ImB−(s′, z′s)

]
(0,0)

}
,

together with the unaltered equations (7.98) or (7.105) for A− and B+. Note that the de-
pendence on a of the Born term contribution N− is canceled by the sum rule (13.14) for
b−00, which is why the subtraction constants are formally included in the subtracted nu-
cleon pole terms in the following for convenience (i.e. preserving the generic form of the
HDRs (7.98)).

Similarly, a second subtraction at (ν = 0, t = 0) yields the twice-subtracted HDRs

A+(s, t; a) =
g2

m
+ d+00 + d+01t+

1

π

∞∫

tπ

dt′
{

ImA+(t′, z′t)
t′ − t

−
(
1

t′
+

t

t′2

)[
ImA+(t′, z′t)

]
(0,0)

− t

t′
[
∂tImA+(t′, z′t)

]
(0,0)

}

+
1

π

∞∫

s+

ds′
{[

1

s′ − s
+

1

s′ − u
− 1

s′ − a

]
ImA+(s′, z′s)

−
(
h0(s

′)− t

(s′ − s0)2

)[
ImA+(s′, z′s)

]
(0,0)

− h0(s
′) t
[
∂tImA+(s′, z′s)

]
(0,0)

}
,

B−(s, t; a) = N̄−(s, t)− g2

2m2
+ b−00 + b−01t+

1

π

∞∫

tπ

dt′
{

ImB−(t′, z′t)
t′ − t

−
(
1

t′
+

t

t′2

)[
ImB−(t′, z′t)

]
(0,0)

− t

t′
[
∂tImB−(t′, z′t)

]
(0,0)

}

+
1

π

∞∫

s+

ds′
{[

1

s′ − s
+

1

s′ − u
− 1

s′ − a

]
ImB−(s′, z′s)

−
(
h0(s

′)− t

(s′ − s0)2

)[
ImB−(s′, z′s)

]
(0,0)

− h0(s
′) t
[
∂tImB−(s′, z′s)

]
(0,0)

}
,
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A−(s, t; a) = a−00ν +
ν

π

∞∫

tπ

dt′
{

ImA−(t′, z′t)
ν ′(t′ − t)

−
[ImA−(t′, z′t)/ν

′](0,0)
t′

}

+
1

π

∞∫

s+

ds′
{[

1

s′ − s
− 1

s′ − u

]
ImA−(s′, z′s)−

4mν [ImA−(s′, z′s)](0,0)
(s′ − s0)2

}
,

B+(s, t; a) = N̄+(s, t) + b+00ν +
ν

π

∞∫

tπ

dt′
{

ImB+(t′, z′t)
ν ′(t′ − t)

−
[ImB+(t′, z′t)/ν

′](0,0)
t′

}

+
1

π

∞∫

s+

ds′
{[

1

s′ − s
− 1

s′ − u

]
ImB+(s′, z′s)−

4mν [ImB+(s′, z′s)](0,0)
(s′ − s0)2

}
,

(13.17)

where A− and B+ can also be written as (cf. (7.105))

A−(s, t; a)
4mν

=
a−00
4m

+
1

π

∞∫

tπ

dt′
{

ImA−(t′, z′t)
4p′tq

′
tz

′
t(t

′ − t)
− 1

t′

[
ImA−(t′, z′t)

4p′tq
′
tz

′
t

]

(0,0)

}

+
1

π

∞∫

s+

ds′
{

ImA−(s′, z′s)
(s′ − s)(s′ − u)

−
[ImA−(s′, z′s)](0,0)

(s′ − s0)2

}
,

B+(s, t; a)

4mν
=

g2

(m2 − s)(m2 − u)
+
b+00
4m

+
1

π

∞∫

tπ

dt′
{

ImB+(t′, z′t)
4p′tq

′
tz

′
t(t

′ − t)
− 1

t′

[
ImB+(t′, z′t)

4p′tq
′
tz

′
t

]

(0,0)

}

+
1

π

∞∫

s+

ds′
{

ImB+(s′, z′s)
(s′ − s)(s′ − u)

−
[ImB+(s′, z′s)](0,0)

(s′ − s0)2

}
. (13.18)

These subtractions require modification of the nucleon pole term projections and the kernel
functions for both the s- and t-channel contributions calculated in Chaps. 8 and 9 as well as
the asymptotic contributions given in Chap. 11. The differences on the right hand side of
the once-/twice-subtracted HDRs (13.16)/(13.17) (or (13.18)) compared to the unsubtracted
HDRs (7.98) (or (7.105)) are the sources for corresponding additional contributions which will
be derived in the subsequent sections. We will give the explicit formulae for both the once- and
twice-subtracted case for convenience. Furthermore, some results will be given in the general
n-times subtracted form, where n ∈ {0, 1, 2} such that n = 0 denotes the unsubtracted case.#5

#5For the sake of simplicity, throughout this work we have chosen to count the number of subtractions
according to the simultaneous expansion around s0 and t0 = 0, i.e. to expand in terms of Mandelstam variables
directly. Alternatively, one may work with crossing-even amplitudes solely and expand around ν2

0 = 0 and
t0 simultaneously (note that ν2 − ν2

0 ∝ (ν − ν0) and that both ν2 and t are of O(GeV2)); the numbering of
subtractions would then be in line with the indices of the subthreshold parameters (cf. (13.2); see, however,
also the comment on (7.106)). Another possible counting (i.e. ordering) scheme derives from the observation
that A± = O(GeV−1) and B± = O(GeV−2), which means that the B± amplitudes are relatively suppressed
by one order in energy (and thus the reduced amplitude B+/ν already by two orders): One may define
the successive steps of the (subthreshold) expansion procedure via the (negative) orders of energy of the
corresponding (subthreshold) expansion parameters in order to consistently account for the relative importance
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13.4 Subtracted asymptotics

First, we show how to incorporate the effects due to the subtractions into the Regge prescrip-
tion of the asymptotic parts (i.e. for s′ > sa and t′ > ta, cf. (11.1)) of the corresponding
subtracted HDRs (13.16) and (13.17). However, according to Sect. 11.2 all asymptotic t-
channel contributions can be neglected.

For the high-energy tail s′ > sa of the s-channel integrals, according to Sect. 11.1 the
absorptive parts may generically be written as sums of Regge trajectory contributions

ImXIu(s′, u′(s′, t′)) =
∑

i

β̃Xi (u′)
(
s′

sR

)αi(u
′)− 1

2

for X ∈ {A,B} , (13.19)

with summands of the generic form (i.e. dropping the indices X and i for the time being)

β̃(u′) = − Sβ(u′)
Γ
(
α(u′)− 1

2

) , β(u′) = β(0) + β(1)u′ , α(u′) = α(0) + α′u′ . (13.20)

While the evaluation of the Regge contributions is straightforward in the un- and once-
subtracted case, for two subtractions one furthermore needs the derivative

[
∂t

{
β̃(u′)

(
s′

sR

)α(u′)− 1
2

}]

(0,0)

=
[
∂tt

′]
(0,0)


 S
Γ
(
α
(
u′(s′, t′)

)
− 1

2

)
(
s′

sR

)α
(
u′(s′,t′)

)
− 1

2




(0,0)

×
[
β(1)+ α′β

(
u′(s′, t′)

){
log

s′

sR
−Ψ

(
α
(
u′(s′, t′)

)
− 1

2

)}]

(0,0)

,

(13.21)

where Ψ(z) denotes the digamma function, which is defined as the logarithmic derivative of
the gamma function

Ψ(z) =
d
dz

log Γ(z) =
Γ′(z)
Γ(z)

. (13.22)

To this end, one may use u′(s′, t′) = Σ− s′ − t′ and (cf. (13.15))

[
t′
]
(0,0)

= −(s′ − s0)
2

s′ − a
,

[
∂tt

′]
(0,0)

=
s0 − a

s′ − a
. (13.23)

After utilizing the crossing relations in order to rewrite the Regge contributions in the I ∈
{+,−} isospin basis and expressing t′ as well as the corresponding kernel functions in terms

of the successive terms in the subtraction polynomials on the full T -matrix element (which in turn is the
fundamental quantity for the partial-wave expansion, cf. Sect. 7.3); in this scheme the “first subtraction”
corresponds to expanding only A+ up to d+00 = O(GeV−1), the “second subtraction” at O(GeV−2) comprises
a−
00 = d−00−b−00 as well as b−00, and so forth. In contrast to the chosen counting scheme, besides d+01 = O(GeV−3)

this ordering would in particular suggest to account for a+
10 = d+10−b+00 = O(GeV−3) instead of b−01 = d−01−a−

01 =
O(GeV−4) at the next subtraction level (cf. (13.7) and Tab. 15.1). Note that this ordering automatically ensures
the possibility to choose between working with a±

mn and d±mn via (13.4), i.e. the expansion is independent of the
decomposition of the T -matrix element into different sets of invariant amplitudes. Therefore, using both a+

10

and b−01 as well as in addition a−
01 (which is consistent with subtracting A± at least partially once more often

than B±, cf. also the discussion in [160]) would be the natural choice for extending the chosen subtraction
scheme (allowing for d+10 and d−01), while furthermore accounting for a−

10 = d−10 − b−10 and b−10 would complete
the O(GeV−4).
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of (s′, z′s), we can perform the partial-wave projections of the s-channel contributions onto
both s- and t-channel partial waves according to (11.7), where again the implicit kinematical
dependences have to be taken into account accordingly.

In the following we will demonstrate the projection onto the lowest t-channel partial waves
with J ≤ 2 explicitly. The n-times subtracted versions of (11.7) immediately lead to

f0+
∣∣n-sub

asym
(t) =

1

4π

1∫

0

dzt p
2
t

{
−A+

∣∣n-sub

asym
(t, zt) + 4mq2t z

2
t

B+|n-sub
asym (t, zt)

4ptqtzt

}
,

f1+
∣∣n-sub

asym
(t) =

1

4π

1∫

0

dzt z
2
t

{
− 4p2t

A−|n-sub
asym (t, zt)

4ptqtzt
+mB−∣∣n-sub

asym
(t, zt)

}
,

f1−
∣∣n-sub

asym
(t) =

1

4π

1∫

0

dzt
1− z2t√

2
B−∣∣n-sub

asym
(t, zt) ,

f2+
∣∣n-sub

asym
(t) =

1

4π

1∫

0

dzt
3z2t − 1

2q2t

{
−A+

∣∣n-sub

asym
(t, zt) + 4mq2t z

2
t

B+|n-sub
asym (t, zt)

4ptqtzt

}
,

f2−
∣∣n-sub

asym
(t) =

1

4π

1∫

0

dzt 2
√
6 z2t

(
1− z2t

)B+|n-sub
asym (t, zt)

4ptqtzt
, (13.24)

again written in terms of quantities that are always real since 4ptqtzt = 4mν. Here, the asymp-
totic s-channel contributions to the invariant amplitudes for e.g. the twice-subtracted case read
(i.e. as functions of (t, zt), cf. (7.104) for the kernel functions and (9.23) for z′s(t, s

′; zt))

A+
∣∣2-sub

s-asym
(t, zt) =

1

π

∞∫

sa

ds′
{[

2(s′ − s0) + t

(s′ − s0 +
t
2)

2 − 4p2t q
2
t z

2
t

− 1

s′ − a

]
ImA+(s′, z′s)

−
(
h0(s

′)− t

(s′ − s0)2

)[
ImA+(s′, z′s)

]
(0,0)

− h0(s
′) t
[
∂tImA+(s′, z′s)

]
(0,0)

}
,

A−∣∣2-sub

s-asym
(t, zt)

4ptqtzt
=

1

π

∞∫

sa

ds′
{

ImA−(s′, z′s)
(s′ − s0 +

t
2)

2 − 4p2t q
2
t z

2
t

−
[ImA−(s′, z′s)](0,0)

(s′ − s0)2

}
, (13.25)

and analogously for B−(t, zt) and B+(t, zt)/(4ptqtzt). For the evaluation of the imaginary
parts in the integrands of (13.25) in the Regge model as discussed above, it is convenient to
directly use

t′(s′, t, zt) = (s′ − a)− 2(s′ − s0)−
(a− s0 +

t
2)

2 − 4p2t q
2
t z

2
t

s′ − a
. (13.26)

Note that again only real squares of momenta and zt occur and hence these formulae are
valid in all kinematical regions. Furthermore, by rewriting the general t-channel partial-wave
projections (9.7) for both even and odd J in terms of real quantities (i.e. ν-even amplitudes
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and squares of momenta as well as squares of zt) as above, the partial waves exhibit ostensible
poles at tπ for all J ≥ 2 and additionally at tN for all J ≥ 3, while from the discussion of their
threshold behavior in Sect. 12.3.1 we know that these poles are immaterial. The reason for
this behavior can be understood by first noting that for ptqt → 0 the asymptotic (s-channel)
contributions (13.25) no longer depend on zt. The orthogonality of the Legendre polynomials
PJ(zt) for even J ≥ 2 and odd J ≥ 3 then balances the poles and leads to the expected
finite (but non-vanishing) values of the partial waves at both the pseudothreshold tπ and the
threshold tN (cf. the explicit case for f2+(t) in (13.24)).

13.5 Subtracted kernels: t-channel partial-wave projection

Here, we give the modifications of the nucleon pole term projections and the kernel functions
calculated in Chap. 9, that are required by the subtractions performed in Sect. 13.3. Note
that the reduction from two subtractions to only one subtraction always entails omitting all
terms proportional to δJ2 or the constants a−00 and b+00 as well as terms whose t-dependence is
trivially seen (e.g. higher subthreshold parameters).

To start with, the n-times subtracted nucleon pole term projections may be written as

ÑJ
±
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)
δJ1 , (13.27)

where for later convenience we have defined non-vanishing “corrections” also for the unsub-
tracted case (cf. (9.15))

∆N̂J
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4π

m

3
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, ∆N̂J
−
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√
2

3

δJ1
m2 − a

, (13.28)

which are constant and non-zero only for J = 1, in order to split off all terms that are either
constant or contain subthreshold parameters. Note that for both one and two subtractions
the full nucleon pole term projections fulfill the threshold relations (12.43) for pt → 0 but
no longer for qt → 0. However, the subtraction-independent parts of the pole terms N̂J

± still
fulfill the relations (12.43) for ptqt → 0.

The necessary update of the s-channel kernels G̃Jl and H̃Jl may be achieved by adding
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s

]
(0,0)

P ′′
l

( [
z′s
]
(0,0)

)}

× δJ0 +
4

3

ptqt
(s′ − s0)2

P ′
l

( [
z′s
]
(0,0)

)
δJ1
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1-sub−→ h0(s
′)P ′

l

( [
z′s
]
(0,0)

)
δJ0 ,

∆B̄Jl

∣∣2-sub
(t, s′) =

{(
h0(s

′)− t

(s′ − s0)2

)
P ′
l

( [
z′s
]
(0,0)

)
+ h0(s

′) t
[
∂tz

′
s

]
(0,0)

P ′′
l

( [
z′s
]
(0,0)

)}

× δJ1
3

+
4

3

ptqt
(s′ − s0)2

P ′
l

( [
z′s
]
(0,0)

)(
δJ0 +

2

5
δJ2

)

1-sub−→ h0(s
′)P ′

l

( [
z′s
]
(0,0)

)δJ1
3

,

∆C̄Jl

∣∣2-sub
(t, s′) =

{(
h0(s

′)− t

(s′ − s0)2

)
P ′
l

( [
z′s
]
(0,0)

)
+ h0(s

′) t
[
∂tz

′
s

]
(0,0)

P ′′
l

( [
z′s
]
(0,0)

)}

× δJ1 +
4

3

ptqt
(s′ − s0)2

P ′
l

( [
z′s
]
(0,0)

)
δJ2

1-sub−→ h0(s
′)P ′

l

( [
z′s
]
(0,0)

)
δJ1 , (13.29)

respectively, to ĀJl, B̄Jl, and C̄Jl at the pertinent places in (9.35) leading to corresponding
∆G̃Jl and ∆H̃Jl. Note that also in both the once- and twice-subtracted case ∆C̄Jl = ∆ĀJ−1,l−
∆ĀJ+1,l is still valid (for J ≥ 1, here actually ∆C̄Jl = ∆ĀJ−1,l).

The additional contributions to the t-channel kernels K̃JJ ′
(t, t′) for even J and J ′ read

∆K̃1
JJ ′
∣∣2-sub

(t, t′) = −(2J ′ + 1)(p′tq
′
t)
J ′ p2t
p′2t

1

t′

{(
1 +

t

t′

)[
PJ ′(z′t)

]
(0,0)

+ t
[
∂tPJ ′(z′t)

]
(0,0)

}
δJ0

1-sub−→ −(2J ′ + 1)(p′tq
′
t)
J ′ p2t
p′2t

1

t′
[
PJ ′(z′t)

]
(0,0)

δJ0 ,

∆K̃2
JJ ′
∣∣2-sub

(t, t′) =
2J ′ + 1√
J ′(J ′ + 1)

(p′tq
′
t)
J ′ p2t
p′2t

m

t′

{[(
1 +

t

t′

)[
z′tP

′
J ′(z′t)

]
(0,0)

+ t
[
∂t(z

′
tP

′
J ′(z′t))

]
(0,0)

]
δJ0 −

1

3

q2t
q′2t

[
P ′
J ′(z′t)
z′t

]

(0,0)

(
δJ0 +

2

5

δJ2
p2t q

2
t

)}

1-sub−→ 2J ′ + 1√
J ′(J ′ + 1)

(p′tq
′
t)
J ′ p2t
p′2t

m

t′
[
z′tP

′
J ′(z′t)

]
(0,0)

δJ0 ,

∆K̃3
JJ ′
∣∣2-sub

(t, t′) = − 2J ′ + 1√
J ′(J ′ + 1)

(p′tq
′
t)
J ′−2

√
6

15

1

t′

[
P ′
J ′(z′t)
z′t

]

(0,0)

δJ2
1-sub−→ 0 , (13.30)

while for odd J and J ′ one finds

∆K̃1
JJ ′
∣∣2-sub

(t, t′) = −(2J ′ + 1)(p′tq
′
t)
J ′−1 p

2
t

p′2t

1

t′

[
PJ ′(z′t)
z′t

]

(0,0)

δJ1
3

1-sub−→ 0 ,

∆K̃2
JJ ′
∣∣2-sub

(t, t′) = − 2J ′ + 1√
J ′(J ′ + 1)

(p′tq
′
t)
J ′−1m

t′

{(
1− p2t

p′2t
+
t

t′

)[
P ′
J ′(z′t)

]
(0,0)

+ t
[
∂tP

′
J ′(z′t)

]
(0,0)

}
δJ1
3
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(p′tq
′
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t′
[
P ′
J ′(z′t)

]
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3

,

∆K̃3
JJ ′
∣∣2-sub

(t, t′) = − 2J ′ + 1√
J ′(J ′ + 1)

(p′tq
′
t)
J ′−1

√
2

t′

{(
1 +

t

t′

)[
P ′
J ′(z′t)

]
(0,0)
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+ t
[
∂tP

′
J ′(z′t)

]
(0,0)

}
δJ1
3

1-sub−→ − 2J ′ + 1√
J ′(J ′ + 1)

(p′tq
′
t)
J ′−1

√
2

t′
[
P ′
J ′(z′t)

]
(0,0)

δJ1
3

. (13.31)

Furthermore, ∆K̃JJ ′
= 0 for J > 2 or J ′ < J , the latter being in agreement with (9.55). In

all cases only even powers of z′t and the primed momenta occur, so that the additional kernel
terms are always real. Here, we refrain from explicitly expanding the Legendre polynomials
using (9.49) as in Sect. 9.3, but only give one example to demonstrate this point (for even J ′):

[
∂t(z

′
tP

′
J ′(z′t))

]
(0,0)

= 2
[
∂tz

′2
t

]
(0,0)

J′
2∑

λ=1

aev
λJ ′λ2

[
z′2t
]λ−1

(0,0)
. (13.32)

The general relation (cf. (9.58))

∆K̃2
JJ ′(t, t′)
m

=

√
J

J + 1
∆K̃3

JJ ′(t, t′)−
√

J ′

J ′ + 1
∆K̃1

JJ ′

∣∣∣
PJ′ (z′t)→

z′t
J′ P ′

J′ (z
′
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(t, t′)

+
2(J + 2) + 1√

(J + 2)((J + 2) + 1)
p2t q

2
t∆K̃

3
J+2,J ′(t, t′) , (13.33)

together with the explicit non-vanishing kernel contributions for 0 ≤ J ′ ≤ 3 given by
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1
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(
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t′

)
1-sub−→ − p2t

p′2t

1

t′
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∣∣2-sub
(t, t′) = −15

32

p2t
p′2t

{
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∣∣2-sub
(t, t′) = −35

96

p2t
p′2t

{
t′ − 4(s0 − a)− 48p′2t q

′2
t

5t′

}
,
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∣∣2-sub
(t, t′) = − m√
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1
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√
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√
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√
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, (13.34)
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where we have also indicated the reductions for the case of one subtraction, ensures the
threshold behavior (12.42) also for the additional terms. Further simplifications can be made
by using

t+ t′ − 4(s0 − a) = 4(p′2t + q2t + a) or
16p′2t q

′2
t

t′
= t′ − 4s0 +

tN tπ
t′

, (13.35)

and for later convenience we also give the explicit complete forms of all those subtracted
kernels with 0 ≤ J ′ ≤ 3 that differ from their unsubtracted form (cf. (9.57) for K̃JJ):
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t
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=
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(
tN + tπ
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√
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√
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. (13.36)

still obeying the threshold-behavior relation (12.42). Note that at the level of two subtractions
all these kernels are independent of a (which is, however, not true for only one subtraction
and J ≥ 3 or without subtracting), and that the exceptionally safe behavior of K̃2

02(t, t
′) at

tN (cf. (9.61)) is preserved irrespective of the number of subtractions:

K̃2
02

∣∣n-sub
(t→ tN , t

′) = O(p2t ) ∀ n ≥ 0 . (13.37)
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13.6 Subtracted t-channel Muskhelishvili–Omnès problem

Now, using the subtracted kernels and pole terms as derived in the previous section leads to
the subtracted analogs of the unsubtracted t-channel Muskhelishvili–Omnès problem (12.44),
which we will state explicitly in the following for J ≤ 2 (remember that the equations for
J ≥ 3 are unaltered for up to two subtractions). For one subtraction we can write

f0+(t) = ∆0
+

∣∣1-sub
(t)− t

π

∞∫

tπ

dt′
Im f0+(t

′)
t′(t′ − tN )

+
t

π

∞∫
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dt′
Im f0+(t
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t′(t′ − t)

,

f1+(t) = ∆1
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∣∣1-sub
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∞∫
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dt′
m√
2
Im f1−(t
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π

∞∫
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dt′
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∣∣1-sub

(t) +
t

π

∞∫

tπ

dt′
Im f1−(t
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,
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1

π

∞∫
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m
√

2
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+

1

π

∞∫
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,
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−
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(t) +
1

π

∞∫

tπ

dt′
Im f2−(t

′)
t′ − t

, (13.38)

while two subtractions yield

f0+(t) = ∆0
+

∣∣2-sub
(t)− t2

π
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π
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∞∫
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Im f1+(t

′)
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∣∣2-sub
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∞∫
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m
√
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′)− Im f2+(t
′)
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+
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π

∞∫

tπ

dt′
Im f2+(t
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(t) +
t

π

∞∫
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Im f2−(t
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, (13.39)

where it is important to note that S- and D-waves are coupled, as ∆0
+ contains contributions

from J = 2 according to (12.45). While the integrands containing the Cauchy kernel in (13.38)
and (13.39) for J = 0 and J = 1 clearly show the corresponding number of subtractions
at t0 = 0, for J = 2 there is always one subtraction less or no subtraction at all. Note
that the integrands containing linear combinations of the partial waves are proportional to
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tN/t
′ (if affected by the subtractions at all), which results in a suppressed internal high-

energy dependence inside the integral due to division by t′ without an increased external
high-energy dependence due to multiplication with tN rather than t as for a usual subtraction
at zero.

The un- (12.44), once- (13.38) and twice-subtracted (13.39) equations are of the original
form of the (subtracted) Muskhelishvili–Omnès problem with integrals of the absorptive parts
times the Cauchy kernel, if the remaining t-independent integrals (which may, however, come
with t-dependent prefactors) are absorbed into a redefinition of the inhomogeneities ∆J

±(t)
(cf. (14.1)). This problem is well defined due to the threshold behavior of the partial waves at
t = tN . However, the price for taking advantage of the convergence properties of the integrals
this way is that reasonable approximations for the starting values for the partial waves are
needed as input, since the solutions can only be found iteratively.

Therefore, we prefer to utilize the threshold behavior of the partial waves and use the linear
combinations ΓJ(t) in order to rewrite the equations in analogy to (12.47), i.e. to modify the
original form of the (subtracted) Muskhelishvili–Omnès problem in a well-defined manner.
The general n-times subtracted (with n ∈ {0, 1, 2}) versions of the Muskhelishvili–Omnès
equations (12.47) for all J then read

f0+(t) = ∆0
+

∣∣n-sub
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π
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dt′
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∞∫
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π
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∀ J ≥ 1 , (13.40)

where the Heaviside step function is to be understood in its right-continuous form, i.e. θ(0) = 1.
Again, the equations for f0+(t) and ΓJ(t) exhibit one additional subtraction at tN , such that
the combined number of subtractions for all J ≥ 0 can be given as (n− J + 1)θ(n− J). For
convenience, we also state the explicit formulae for J ∈ {1, 2} for both one subtraction

Γ1(t) = ∆1
Γ

∣∣1-sub
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π
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, (13.41)
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and two subtractions
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, (13.42)

as well as the terms in ∆0
+(t) that couple the D- to the S-waves:
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∣∣0-sub
(t) = − 5

16

t− tN
π

∞∫

tπ

dt′
{[
t′ + t− (tN + tπ) + 6a

] ImΓ2(t′)
t′ − tN

+
m√
6
Im f2−(t

′)
}
+ . . . ,

∆0
+

∣∣1-sub
(t) = − 5

16

t− tN
π

∞∫

tπ

dt′

t′

{[
t′t+

tN tπ
2

]
ImΓ2(t′)
t′ − tN

+ tπ
m√
6
Im f2−(t

′)
}
+ . . . ,

∆0
+

∣∣2-sub
(t) = − 5

16

t− tN
π

∞∫

tπ

dt′

t′2

{
1

2

[
(t′ + t)tN tπ − t′t(tN + tπ)

] ImΓ2(t′)
t′ − tN

+ ttπ
m√
6
Im f2−(t

′)
}

+ . . . , (13.43)

which converge for t′ → tN due to the threshold behavior of Γ2 and vanish for t→ tN due to
the exceptional behavior of the (n-times subtracted) kernel K̃2

02 (cf. (9.61) and (13.37)); the
respective remainder denoted by dots above is then given by

. . .
.
= Ñ0

+

∣∣n-sub
(t) (13.44)

+
1

π

∞∫

W+

dW ′
∞∑

l=0

{
G̃0l

∣∣n-sub
(t,W ′) Im f+l+(W

′) + G̃0l

∣∣n-sub
(t,−W ′) Im f+(l+1)−(W

′)
}

+
1

π

∞∫

tπ

dt′
∞∑

J ′=4

1 + (−1)J
′

2

{
K̃1

0J ′
∣∣n-sub

(t, t′) Im fJ
′

+ (t′) + K̃2
0J ′
∣∣n-sub

(t, t′) Im fJ
′

− (t′)
}
.

Note that this D- to S-wave coupling becomes independent of a by subtracting once or twice,
while the corresponding F - to P -wave coupling also depends on a in the once-subtracted case
(cf. (13.36)).

13.7 Subtracted kernels: s-channel partial-wave projection

Finally, we summarize the changes that are necessary if the subtracted versions of the hyper-
bolic dispersion relations are used for the s-channel projection as well.
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The modified pole terms are given by

N I
l+

∣∣n-sub
(W ) = N̄ I

l+(W ) + ∆N̄ I
l+

∣∣n-sub
(W ) = −N I

(l+1)−
∣∣n-sub

(−W ) ,

∆N̄+
l+

∣∣2-sub
(W ) =

δl0
16πW

{
(E +m)

[
2

(
g2

m
+ d+00 − 2q2d+01

)
+ (W −m)

(
s− s0 − q2

)b+00
m

]

− (E −m)
q2

3

(
4d+01 − (W +m)

b+00
m

)}

+
δl1

16πW
(E +m)

q2

3

(
4d+01 + (W −m)

b+00
m

)

1-sub−→ δl0
8πW

(E +m)

(
g2

m
+ d+00

)
,

∆N̄−
l+

∣∣2-sub
(W ) =

δl0
16πW

{
(E +m)

[(
s− s0 − q2

)a−00
m

+ 2(W −m)

(
− g2

2m2
+ b−00 − 2q2b−01

)]

− (E −m)
q2

3

(
a−00
m

− 4(W +m)b−01

)}

+
δl1

16πW
(E +m)

q2

3

(
a−00
m

+ 4(W −m)b−01

)

1-sub−→ δl0
8πW

(E +m)(W −m)

(
− g2

2m2
+ b−00

)
, (13.45)

where in analogy to the t-channel projection we have defined unsubtracted “corrections”
(cf. (8.11))

∆N̄ I
l+

∣∣0-sub
(W ) = −ǫ̃−

g2

4π

(E +m)(W −m)

2W

δl0
m2 − a

= −∆N̄ I
(l+1)−

∣∣0-sub
(−W ) . (13.46)

The additional s-channel kernel contributions obeying the MacDowell symmetry (8.1) in
both (W, l) and (W ′, l′) can be written for all (l ≥ 0, l′ ≥ 0) in the symmetric form

∆KI
ll′(W,W

′) = ∆̂K
I

ll′(W,W
′)− ∆̂K

I

l,l′−1(W,−W ′)

+ ∆̃K
I

ll′(W,W
′)− ∆̃K

I

l,l′−1(W,−W ′)

+
1

3

{
∆̃K

I

ll′(−W,W ′)− ∆̃K
I

l,l′−1(−W,−W ′)

− ∆̃K
I

l−1,l′(W,W
′) + ∆̃K

I

l−1,l′−1(W,−W ′)
}
,

∆̂K
I

ll′
∣∣2-sub

(W,W ′) = −W
′

W

{
κ
I(W,W ′)h0(s′) + κ

−I(W,W ′)
2(s− s0)

(s′ − s0)2

}
P ′
l′+1

( [
z′s
]
(0,0)

)
δl0

= −W
′

W

{
δ(W,W ′)(s′ + s− 2s0) + ǫIρ(W,W ′)(s′ − s)

(s′ − s0)2

− κ
I(W,W ′)
s′ − a

}
P ′
l′+1

( [
z′s
]
(0,0)

)
δl0

1-sub−→ −W
′

W
κ
I(W,W ′)h0(s′)P ′

l′+1

( [
z′s
]
(0,0)

)
δl0 ,
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∆̃K
I

ll′
∣∣2-sub

(W,W ′) = −W
′

W
2q2
{
ǫIρ(W,W ′)
(s′ − s0)2

P ′
l′+1

( [
z′s
]
(0,0)

)

− κ
I(W,W ′)h0(s′)

[
∂tz

′
s

]
(0,0)

P ′′
l′+1

( [
z′s
]
(0,0)

)}
δl0

1-sub−→ 0 , (13.47)

where we have used that ǫ±I = ±ǫI . Note that for l′ = 0 the term proportional to (s′ − a)−1

cancels against the corresponding term in KI
l0(W,W

′) of (8.75) like for the nucleon pole terms
(cf. the relation (8.77)).

The additional contributions to GlJ and HlJ may be written as

∆GlJ(W, t
′) = ∆̂GlJ(W, t

′)− ∆̂Gl+1,J(−W, t′) ∀ (l ≥ 0, J ≥ 0) ,

∆HlJ(W, t
′) = ∆̂H lJ(W, t

′)− ∆̂H l+1,J(−W, t′) ∀ (l ≥ 0, J ≥ 1) , (13.48)

where for even J

∆̂GlJ

∣∣2-sub
(W, t′) =

E +m

2W
(2J + 1)

(p′tq
′
t)
J

t′p′2t

{
[
PJ(z

′
t)
]
(0,0)

δl0

− 2q2
(
1

t′
[
PJ(z

′
t)
]
(0,0)

+
[
∂tPJ(z

′
t)
]
(0,0)

)(
δl0 −

δl1
3

)}

1-sub−→ E +m

2W
(2J + 1)

(p′tq
′
t)
J

t′p′2t

[
PJ(z

′
t)
]
(0,0)

δl0 ,

∆̂H lJ

∣∣2-sub
(W, t′) = −E +m

2W

2J + 1√
J(J + 1)

(p′tq
′
t)
J

t′p′2t

{(
W −m

2q′2t
(s− s0)

[
P ′
J(z

′
t)

z′t

]

(0,0)

+m
[
z′tP

′
J(z

′
t)
]
(0,0)

)
δl0 − 2q2

(
W −m

4q′2t

[
P ′
J(z

′
t)

z′t

]

(0,0)

+m

[
1

t′
[
z′tP

′
J(z

′
t)
]
(0,0)

+
[
∂t(z

′
tP

′
J(z

′
t))
]
(0,0)

])(
δl0 −

δl1
3

)}

1-sub−→ −E +m

2W

2J + 1√
J(J + 1)

(p′tq
′
t)
J

t′p′2t
m
[
z′tP

′
J(z

′
t)
]
(0,0)

δl0 , (13.49)

and for odd J

∆̂GlJ

∣∣2-sub
(W, t′) =

E +m

2W
(2J + 1)

(p′tq
′
t)
J−1

t′p′2t

1

2

[
PJ(z

′
t)

z′t

]

(0,0)

{
(
s− s0 − q2

)
δl0 + q2

δl1
3

}
1-sub−→ 0 ,

∆̂H lJ

∣∣2-sub
(W, t′) = −E +m

2W

2J + 1√
J(J + 1)

(p′tq
′
t)
J−1

t′p′2t

{(
p′2t (W −m) +

m

2
(s− s0)

)

×
[
P ′
J(z

′
t)
]
(0,0)

δl0 − 2q2
(
m

4

[
P ′
J(z

′
t)
]
(0,0)

+ p′2t (W −m)

[
1

t′
[
P ′
J(z

′
t)
]
(0,0)

+
[
∂tP

′
J(z

′
t)
]
(0,0)

])(
δl0 −

δl1
3

)}

1-sub−→ −E +m

2W

2J + 1√
J(J + 1)

(p′tq
′
t)
J−1

t′
(W −m)

[
P ′
J(z

′
t)
]
(0,0)

δl0 . (13.50)

Note that again only even powers of momenta and z′t occur.
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Chapter 14

Generalized

Muskhelishvili–Omnès problem

In the following, we will assume to know the πN partial waves fJ±(t) above the matching point
(i.e for t ≥ tm) as well as the phases and inelasticity parameters of the ππ partial waves tItJ (t)
for 4M2

π = tπ ≤ t ≤ tm and both the πK and KN partial waves gItJ (t) and hJ±(t), respectively,
for 4M2

K = tK ≤ t ≤ tm. Note that the hJ±(t) are the most critical ones, as they are needed
in the unphysical region requiring an analytic continuation.

Under these assumptions, we have to solve equations that are of the Muskhelishvili–Omnès
type [166,167]

f(t) = ∆(t) +
1

π

tm∫

tπ

dt′
T (t′)∗f(t′) + σ(t′)

t′ − t
+

1

π

∞∫

tm

dt′
Im f(t′)
t′ − t

(14.1)

for f(t) in the range tπ ≤ t ≤ tm, where the physical values of the integrals are obtained in the
limit t → t + iǫ and the discontinuity of f(t) across the right hand cut is given by unitarity
(cf. hermitian analyticity (7.62) and the extended t-channel unitarity relation (12.27))

Disc f(t)
2i

= Im f(t) = T (t)∗f(t) θ
(
t− tπ

)
+ σ(t) . (14.2)

Here, σ(t) ∝ θ(t − tσ) denotes all additional inelastic contributions due to additional in-
termediate channels that open at the corresponding threshold energies (like especially K̄K
intermediate states for t ≥ tK in (12.27)), the inhomogeneity ∆(t) contains potential left-hand
cut contributions to f(t) and is real for tπ ≤ t, and the amplitude T (t) is given by

T (t) =
η(t)e2iδ(t) − 1

2i
, 0 ≤ η(t) ≤ 1 , 1− η(t) ∝ θ(t− tη) . (14.3)

For infinite matching point tm = ∞, the solution for the elastic case (i.e. η(t) = 1 and
σ(t) = 0) can be found in the original work [167], while the impact of inelastic contributions is
studied in [239, 240]. Conversely, finite-matching-point considerations for the elastic problem
are given in [158, 241]. In the following, the generalized case with both inelasticities and a
finite matching point will be considered.
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14.1 Consistency condition

The consistency condition that the imaginary part Im f(t) itself must be real involves some
powerful constraints from equation (14.2). To see this, in addition to (14.3) we write

f(t) = |f(t)|eiϕ(t) , σ(t) = |σ(t)|eiχ(t) , |σ(t)| ∝ θ(t− tσ) , (14.4)

which for t ≥ tπ (i.e. Im f(t) 6= 0 and thus |f(t)| 6= 0 and ϕ(t) 6= 0) together with the
abbreviation ϕ̃(t) = ϕ(t)− δ(t) leads to the system of equations

sinϕ(t) =
1 + η(t)

2
sin δ(t) cos ϕ̃(t) +

1− η(t)

2
cos δ(t) sin ϕ̃(t) +

|σ(t)|
|f(t)| cosχ(t) ,

0 =
1 + η(t)

2
sin δ(t) sin ϕ̃(t)− 1− η(t)

2
cos δ(t) cos ϕ̃(t) +

|σ(t)|
|f(t)| sinχ(t) , (14.5)

and thereby to

(
1−η(t)

2 sin δ(t) 1+η(t)
2 cos δ(t)

1−η(t)
2 cos δ(t) −1+η(t)

2 sin δ(t)

)(
cos ϕ̃(t)
sin ϕ̃(t)

)
=

|σ(t)|
|f(t)|

(
cosχ(t)
sinχ(t)

)
. (14.6)

First, we prove the identity of the inelastic thresholds tη and tσ from (14.6), which of course
is also necessary for or following from the consistency of the physical picture. For tπ ≤ t < tσ,
the vanishing right-hand side (RHS) requires that the determinant of the coefficient matrix
vanishes as well in order to ensure the existence of non-trivial solutions. In this way, we find

1− η(t)2

4
= 0 , (14.7)

which can only be fulfilled for η(t) = 1 and hence we must demand tη ≥ tσ. Conversely, for
tπ ≤ t < tη from η(t) = 1 follows

|σ(t)|
|f(t)|

cosχ(t)

cos δ(t)
= sin ϕ̃(t) = −|σ(t)|

|f(t)|
sinχ(t)

sin δ(t)
, (14.8)

which admits non-trivial solutions only for sin(δ(t) + χ(t)) = 0. Excluding this fine-tuning
between the phases of T (t) and σ(t), we conclude that |σ(t)| = 0 and hence tσ ≥ tη. Together
this proves that

|σ(t)| = 0 ⇔ η(t) = 1 , or tσ = tη . (14.9)

For tπ ≤ t < tσ, i.e. in the elastic region, (14.6) reduces to

cos δ(t) sin ϕ̃(t) = 0 = sin δ(t) sin ϕ̃(t) , (14.10)

and thus ϕ̃(t) = ϕ(t) − δ(t) = 0 mod π, which is just Watson’s theorem (12.11) again. For
t ≥ tσ, however, we can gain information by inverting (14.6) leading to

cos ϕ̃(t) =
2

1− η(t)

|σ(t)|
|f(t)| sin(δ(t) + χ(t)) , sin ϕ̃(t) =

2

1 + η(t)

|σ(t)|
|f(t)| cos(δ(t) + χ(t)) ,

(14.11)
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and thus (cf. e.g. [240])

ϕ(t) = δ(t) + arctan

(
1− η(t)

1 + η(t)
cot(δ(t) + χ(t))

)
mod π ,

|f(t)| = 2|σ(t)|
√(

sin(δ(t) + χ(t))

1− η(t)

)2

+

(
cos(δ(t) + χ(t))

1 + η(t)

)2

, (14.12)

both invariant under δ(t) + χ(t) → δ(t) + χ(t) + nπ with n ∈ Z0. In this way, both the phase
ϕ(t) (by additionally requiring smoothness) and the modulus |f(t)| of the complex function
f(t) are in principle completely fixed by the inelasticities in the full unitarity relation (14.2)
in the inelastic region t ≥ tσ, i.e. above the onset of the first inelastic channel. Since for
tπ ≤ t < tσ the phase is known due to Watson’s theorem, in the elastic region we only need
to solve the Muskhelishvili–Omnès problem (14.1) for the modulus |f(t)|.

14.2 Homogeneous problem

To begin with, we consider the homogeneous problem with finite matching point (i.e. without
inhomogeneity ∆(t), also neglecting the inelastic contributions σ(t)) for a function f0(t) with
Im f0(t) ∝ θ

(
t− tπ

)
θ
(
tm − t

)
(though this problem for itself is unphysical as long as tm <∞

and σ(t) is neglected)

f0(t) =
1

π

tm∫

tπ

dt′
T (t′)∗f0(t′)

t′ − t
, (14.13)

since any function f(t) solving the general problem (14.1) will then generate further solutions
by setting f(t) → f(t) + cf0(t) with c ∈ R. Writing t± = t ± iǫ and taking the difference
of (14.13) evaluated in both limits (i.e. calculating the discontinuity with the physical ampli-
tude f0(t) being identified with f0(t+)), we have (though η(t) = 1 for t < tσ, we keep the
inelasticity function η(t) in preparation for the general, inhomogeneous case in the following
section) {

f0(t+)η(t)e
−2iδ(t) − f0(t−) = 0

f0(t+)− f0(t−) = 0

}
for

{
tπ ≤ t ≤ tm
t > tm

}
, (14.14)

which is solved introducing the Omnès function Ω(t) defined by
{
Ω(t+)e

−2iδ(t) − Ω(t−) = 0
Ω(t+)− Ω(t−) = 0

}
for

{
tπ ≤ t ≤ tm
t > tm

}
, (14.15)

such that we can write

Ω(t) = exp

{
1

π

tm∫

tπ

dt′
δ(t′)
t′ − t

}
= |Ω(t)| exp

{
iδ(t)θ

(
t− tπ

)
θ
(
tm − t

)}
,

|Ω(t)| = exp

{
1

π
−
tm∫

tπ

dt′
δ(t′)
t′ − t

}
= |Ω̄(t)| |tm − t|x(t) , x(t) =

δ(t)

π
,

|Ω̄(t)| = |t− tπ|−x(t) exp

{
1

π

tm∫

tπ

dt′
δ(t′)− δ(t)

t′ − t

}
, (14.16)
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where we have analytically separated the endpoint singularities of the principal value inte-
gral such that the remaining finite integral can be evaluated without any problems. The
decomposition

f0(t) = Ω(t)Σ0(t) (14.17)

then leads to {
Σ0(t+)η(t)− Σ0(t−) = 0
Σ0(t+)− Σ0(t−) = 0

}
for

{
tπ ≤ t ≤ tm
t > tm

}
. (14.18)

The first equation may be rewritten as

1 + η(t)

2

(
Σ0(t+)− Σ0(t−)

)
− 1− η(t)

2

(
Σ0(t+) + Σ0(t−)

)
= 0 , (14.19)

where we can identify

Σ0(t+)− Σ0(t−) = 2i ImΣ0(t) , Σ0(t+) + Σ0(t−) = 2ReΣ0(t) , (14.20)

since both f0(t) and Ω(t) are hermitian analytic functions and pass this property on to Σ0(t).
As a consequence of this “reality condition” [239], both parts of (14.19) have to vanish sepa-
rately, such that

Σ0(t+)− Σ0(t−) = 0 ∀ t ≥ tπ , (14.21)

i.e. Σ0(t) has no right-hand cut, which of course was already clear from (14.18) for η(t) = 1. By
assuming the reasonable asymptotic behavior f0(t) → 0 for t→ ∞ (cf. (12.22)), which yields
Σ0(t) → 0 due to Ω(t) → 1 for a finite matching point, and by excluding essential singularities,
the only analytic structures of Σ0(t) allowed by f0(t) and Ω(t) are poles at t = tπ and t = tm.
At these endpoints, according to (14.16) and due to δ(tπ) = 0 the Omnès function behaves as
(cf. [214])

Ω(t) ∼ |t− tπ|−x(tπ) ∼ 1 for t→ tπ , Ω(t) ∼ |tm − t|x(tm) for t→ tm . (14.22)

In this way, the regularity of f0(t) excludes poles at t = tπ and restricts the order of the poles
at t = tm to

n =

⌊
δ(tm)

π

⌋
∈ N0 . (14.23)

For later use we also define

n(t) =
⌊
x(t)

⌋
, x̃(t) = x(t)− n(t) ∈ (0, 1) , x = x(tm) , x̃ = x̃(tm) , (14.24)

i.e. suppression of the argument t denotes evaluation at the matching point tm. Eventually,
we find (for t < tσ)

Σ0(t) =
Pn−1(t)

(tm − t)n
, (14.25)

where Pn−1(t) is an arbitrary real polynomial of degree n−1 that introduces n free parameters
to the Omnès problem. For n = 0 the homogeneous solution vanishes according to P−1(t) = 0
and no free parameter enters the problem.



Section 14.3: Inhomogeneous problem 183

14.3 Inhomogeneous problem

The calculation for the general case goes along the same lines. Starting with

F (t) = f(t)−∆(t) =
1

π

tm∫

tπ

dt′
T (t′)∗f(t′) + σ(t′)

t′ − t
+

1

π

∞∫

tm

dt′
Im f(t′)
t′ − t

, (14.26)

we find that
{
F (t+)η(t)e

−2iδ(t) − F (t−) = 2i
(
T (t)∗∆(t) + σ(t)

)

F (t+)− F (t−) = 2i Im f(t)

}
for

{
tπ ≤ t ≤ tm
t > tm

}
, (14.27)

which via the analogous decomposition

F (t) = Ω(t)Σ(t) (14.28)

corresponds to
{
Σ(t+)η(t)− Σ(t−) = 2i

|Ω(t)|e
iδ(t)
(
T (t)∗∆(t) + σ(t)

)

Σ(t+)− Σ(t−) = 2i
|Ω(t)| Im f(t)

}
for

{
tπ ≤ t ≤ tm
t > tm

}
. (14.29)

Rewriting the first equation as

1 + η(t)

2

(
Σ(t+)−Σ(t−)

)
− 1− η(t)

2

(
Σ(t+)+Σ(t−)

)
=

2i

|Ω(t)|e
iδ(t)
(
T (t)∗∆(t)+σ(t)

)
(14.30)

and inferring the hermitian analyticity of Σ(t) in analogy to the homogeneous case, we can
deduce from the reality condition that for tπ ≤ t ≤ tm

2i ImΣ(t) = DiscΣ(t) = Σ(t+)− Σ(t−) =
2

1 + η(t)

2i

|Ω(t)|Re
{
eiδ(t)

(
T (t)∗∆(t) + σ(t)

)}
,

(14.31)
and therefore together with (14.29) it follows

Σ(t) =
1

π

tm∫

tπ

dt′
2

1+η(t′)Re
{
eiδ(t

′)
(
T (t′)∗∆(t′) + σ(t′)

)}

|Ω(t′)|(t′ − t)
+

1

π

∞∫

tm

dt′
Im f(t′)

|Ω(t′)|(t′ − t)
. (14.32)

Using the identity (since ∆(t) is real for tπ ≤ t)

Re
{
eiδ(t)T (t)∗∆(t)

}
=

1 + η(t)

2
∆(t) sin δ(t) , (14.33)

the general solution (i.e. including the homogeneous solution) for tπ ≤ t ≤ tm then reads

f(t) = ∆(t) + Ω(t)

{
Pn−1(t)

(tm − t)n
+

1

π

tm∫

tπ

dt′
∆(t′) sin δ(t′) + 2

1+η(t′)Re
{
σ(t′)eiδ(t

′)
}

|Ω(t′)|(t′ − t)

+
1

π

∞∫

tm

dt′
Im f(t′)

|Ω(t′)|(t′ − t)

}
, (14.34)
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which for σ(t) → 0 reduces to the result quoted in [158,241] (up to the question of subtractions,
cf. Sect. 14.4). The solution (14.34) may also be written in terms of a principal value integral
for tπ ≤ t′ ≤ tm as

f(t) =

[
∆(t) cos δ(t) +

2i

1 + η(t)
Re
{
σ(t)eiδ(t)

}
+ |Ω(t)|

{
Pn−1(t)

(tm − t)n
(14.35)

+
1

π
−
tm∫

tπ

dt′
∆(t′) sin δ(t′) + 2

1+η(t′)Re
{
σ(t′)eiδ(t

′)
}

|Ω(t′)|(t′ − t)
+

1

π

∞∫

tm

dt′
Im f(t′)

|Ω(t′)|(t′ − t)

}]
eiδ(t) ,

in accordance with [167] for σ(t) → 0 and tm → ∞. Based upon the parameterizations (14.4),
we can finally decompose (14.35) into its real and imaginary part. For t < tσ (i.e. for t below
the lowest inelastic threshold and hence σ(t) = 0) no imaginary part occurs in the prefactor
and thus we can immediately read off both the phase ϕ(t) = δ(t) (in accordance with Watson’s
theorem (12.11)) and the modulus

|f(t)| = ∆(t) cos δ(t) + |Ω(t)|
{

Pn−1(t)

(tm − t)n
+

1

π

∞∫

tm

dt′
Im f(t′)

|Ω(t′)|(t′ − t)

+
1

π
−
tm∫

tπ

dt′
∆(t′) sin δ(t′) + 2|σ(t′)|

1+η(t′) cos(δ(t
′) + χ(t′))

|Ω(t′)|(t′ − t)

}
. (14.36)

For t ≥ tσ (i.e. σ(t) 6= 0), the non-trivial imaginary part in the prefactor in (14.35) is non-
zero; furthermore, the polynomial part due to the homogeneous solution vanishes. Decom-
posing (14.35) into real and imaginary parts again, inserting the resulting constraint into
the equation for the generic real part of f(t) and using the relations (14.11) for ϕ(t) − δ(t)
reproduces the result (14.12) for |f(t)|. In this sense, (14.35) is consistent with (14.12) for
t ≥ tσ. In particular, (14.35) carries no additional information that could help to pin down
|f(t)| independently of (14.12) above the inelastic threshold (i.e. for tσ ≤ t ≤ tm).

14.4 Subtractions

Recalling (14.16) and (14.24), however, we note that for x > 1 the integrals of (14.36) in the
present form do not converge. In order to ensure integrability for t′ → tm suitable subtractions
need to be performed. Let us begin with the case 1 < x < 2, i.e. n = 1. The identity

1

t′ − t
=

1

tm − t

{
1 +

tm − t′

t′ − t

}
=

1

tm − t

{
tm
t′

+
t

t′
tm − t′

t′ − t

}
(14.37)

leads e.g. to

∞∫

tm

dt′
Im f(t′)

|Ω(t′)|(t′ − t)
=

1

tm − t

{
tm

∞∫

tm

dt′

t′
Im f(t′)
|Ω(t′)| + t

∞∫

tm

dt′

t′
tm − t′

|Ω(t′)|
Im f(t′)
t′ − t

}
, (14.38)

where the second integral is now convergent. The first integral is still divergent, of course,
but it does not depend on t any more and can thus be absorbed into a redefinition of the
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(constant) polynomial P0 in (14.36) due to the common prefactor (tm − t)−1. Note that by
choosing the second identity of (14.37) rather than the first one we can additionally introduce
a subtraction in the usual sense (i.e. in order to lessen the dependence of the integrals on the
high-energy region), and that no more such additional subtractions are compatible with this
redefinition procedure. For higher values of x this subtraction and redefinition prescription
needs to be iterated, whereby all n parameters contained in the polynomial receive corre-
sponding contributions. Applying this reasoning to both integrals of (14.36) for general x and
using the highest number of subtractions allowed by the degree of the polynomial, the result
for t ≤ tσ ≤ tm is given by#1

|f(t)| = ∆(t) cos δ(t) +
|Ω(t)|

(tm − t)n

{
Pn−1(t) +

tn

π

∞∫

tm

dt′

t′n
(tm − t′)n

|Ω(t′)|
Im f(t′)
t′ − t

+
tn

π
−
tm∫

tπ

dt′

t′n
(tm − t′)n

|Ω(t′)|
∆(t′) sin δ(t′) + 2|σ(t′)|

1+η(t′) cos(δ(t
′) + χ(t′))

t′ − t

}
. (14.39)

In order to reduce the influence of the high-energy contributions on the Omnès integrals,
subtractions may also be introduced already right from the beginning (14.1) by rewriting e.g.

∞∫

tπ

dt′
Im f(t′)
t′ − t

=

∞∫

tπ

dt′
Im f(t′)

t′
+ t

∞∫

tπ

dt′

t′
Im f(t′)
t′ − t

(14.40)

and absorbing terms like the first one into a redefinition of ∆(t) at the cost of increasing
the dependence of the solution of the Omnès problem on the starting value for f(t) and
thus potentially deteriorating its convergence properties when iterating the problem, cf. the
discussion in Sect. 13.6. After l such subtractions, the analog of (14.39) becomes (t ≤ tσ ≤ tm)

|f(t)| = ∆(t) cos δ(t) +
tl|Ω(t)|
(tm − t)n

{
Pn−1(t) +

tn

π

∞∫

tm

dt′

t′n+l

(tm − t′)n

|Ω(t′)|
Im f(t′)
t′ − t

+
tn

π
−
tm∫

tπ

dt′

t′n+l

(tm − t′)n

|Ω(t′)|
∆(t′) sin δ(t′) + 2|σ(t′)|

1+η(t′) cos(δ(t
′) + χ(t′))

t′ − t

}

= ∆(t) cos δ(t) + tl(tm − t)x̃(t)|Ω̄(t)|
{
Pn−1(t) +

(−t)n
π

∞∫

tm

dt′

t′n+l

Im f(t′)
(t′ − tm)x̃(t′)|Ω̄(t′)|(t′ − t)

+
tn

π
−
tm∫

tπ

dt′

t′n+l

∆(t′) sin δ(t′) + 2|σ(t′)|
1+η(t′) cos(δ(t

′) + χ(t′))

(tm − t′)x̃(t′)|Ω̄(t′)|(t′ − t)

}
. (14.41)

This constitutes our final general result and e.g. for l = 1 and n ∈ {0, 1} it reduces to the
results quoted in [158] (for σ(t) → 0, cf. (14.34)).

#1Of course, less subtractions can always be achieved by a suitable redefinition of the polynomial.
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Note that for a finite matching point#2 the use of subtracted Omnès functions involves no
conceptual changes, since e.g. for one subtraction at zero the decomposition

Ω̃(t) = exp

{
t

π

tm∫

tπ

dt′

t′
δ(t′)
t′ − t

}
= exp

{
− 1

π

tm∫

tπ

dt′
δ(t′)
t′

}
Ω(t) (14.42)

shows that the difference is just a multiplicative and t-independent constant that cancels
in (14.41) between Omnès functions in the numerator and denominator (up to a redefinition
of the polynomial). More generally, each l-times subtracted Omnès function

Ω(l)(t) = exp

{[ l∏

i=1

(t− ti)

]
1

π

tm∫

tπ

dt′
[ l∏

i=1

(t′ − ti)

]−1 δ(t′)
t′ − t

}
(14.43)

with subtraction points ti < tπ also fulfills the defining property (14.15) of the general Omnès
function and obeys the same behavior at the endpoints of integration for t→ tπ and t→ tm.
However, the asymptotic behavior for t→ ∞ is given by Ω(0)(t) = Ω(t) → 1, Ω(1)(t) → const
and Ω(l≥2)(t) → 0, which is most easily seen for identical subtraction points ti = t0 for all i
using (13.9).

14.5 Numerical treatment

The asymptotic behavior of the Omnès function |Ω(t)| for t → tm requires some care in the
numerical evaluation of the integrals in (14.41). Since by construction x̃ < 1, the corresponding
singularities for t′ → tm are integrable. However, this cusp generates large contributions to
the integral and a fully numerical treatment would require a very careful distribution of mesh
points in order to catch the effect. In the following, we will demonstrate how these endpoint
singularities can be separated analytically (cf. the appendix of [158]). For the sake of simplicity,
we discuss here only the case of n = l = 0 and vanishing inelasticities, which already displays
all relevant features; the generalization is then straightforward. To this end, we split the
integrals close to the matching point tm and approximate |Ω(t)| by its asymptotic form in the
proximity of tm

|Ω(t ≈ tm)| ≈ |Ω̄(tm)| |tm − t|x . (14.44)

For τ → 0+, we may thus rewrite the integrals above the matching point as

∞∫

tm

dt′
Im f(t′)

|Ω(t′)|(t′ − t)
=

∞∫

tm+τ

dt′
Im f(t′)

|Ω(t′)|(t′ − t)
+

Im f(tm)

|Ω̄(tm)|

tm+τ∫

tm

dt′

|tm − t′|x(t′ − t)

=

∞∫

tm+τ

dt′
Im f(t′)

|Ω(t′)|(t′ − t)
+

Im f(tm)

|Ω̄(tm)|(tm − t)x
I+(t) , (14.45)

#2For tm → ∞ the subtraction is of course needed to ensure the convergence of the integral (for the usual
assumptions on the behavior of the phase, e.g. limt→∞ δ(t) = π). Furthermore, one subtraction at zero
normalizes the Omnès function to unity: Ω̃(0) = 1.
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and similarly below the matching point either for tπ ≤ t < tm − τ (whence 0 < τ̃(t) < 1) as

−
tm∫

tπ

dt′
∆(t′) sin δ(t′)
|Ω(t′)|(t′ − t)

=

tm−τ∫

tπ

dt′

t′ − t

(
∆(t′) sin δ(t′)

|Ω(t′)| − ∆(t) sin δ(t)

|Ω(t)|

)

+
∆(t) sin δ(t)

|Ω(t)| log
tm − τ − t

t− tπ
+

∆(tm) sin δ(tm)

|Ω̄(tm)|(tm − t)x
I−(t) , (14.46)

where it is important to note that the log-term equals zero for t = tπ since the phase vanishes
at the ππ threshold, or for tm − τ ≤ t ≤ tm (whence τ̃(t) ≥ 1) as

−
tm∫

tπ

dt′
∆(t′) sin δ(t′)
|Ω(t′)|(t′ − t)

=

tm−τ∫

tπ

dt′

t′ − t

∆(t′) sin δ(t′)
|Ω(t′)| +

∆(tm) sin δ(tm)

|Ω̄(tm)|(tm − t)x
Ĩ−(t) , (14.47)

where the substitution v(t′) = (t′ − tm)/(tm − t) leads to the integrals (with x ∈ (0, 1))

I±(t) =

τ̃(t)∫

0

dv
vx(1± v)

=
τ̃(t)1−x

1− x
∓

τ̃(t)∫

0

dv
v1−x

1± v
, τ̃(t) =

τ

tm − t
,

Ĩ−(t) = −
τ̃(t)∫

0

dv
vx(1− v)

= − log |τ̃(t)− 1|+ τ̃(t)1−x

1− x
+

τ̃(t)∫

0

dv
v1−x − 1

1− v
. (14.48)

Separating the singularities as shown above, the remaining integrals can be solved by using
standard integration routines. For sufficiently small τ (i.e. if τ is of the same order of magni-
tude as the discretization error of the integration routine), the above approximations are well
justified and this procedure allows for a stable numerical evaluation of the Omnès integrals.

14.6 Continuity at the matching point

The continuity of the Omnès solution f(t) at the matching point tm (i.e. t → tm from be-
low for fixed small but non-zero τ) is analytically ensured by the asymptotic forms of the
corresponding integrals of (14.48) (with 0 < x < 1, cf. the appendix of [158])

I+(tm) =

∞∫

0

dv
vx(1 + v)

=
π

sinπx
= π cosecπx ,

Ĩ−(tm) = −
∞∫

0

dv
vx(1− v)

= −π cosπx
sinπx

= −π cotπx , (14.49)

that can be proven by relying on Cauchy’s theorem and taking appropriate combinations of
different paths in the complex plane.#3 Taking equation (14.36) in the limit t → tm from

#3These results agree with those quoted in [158]. Though not essential here, it is interesting to note that
both π cosecπx and π cotπx are meromorphic in the entire complex x-plane with single poles at all integers
n ∈ Z0 with residues (−1)n and 1, respectively. Furthermore, we can identify π cosecπx = Γ(1−x)Γ(x) due to
Euler’s reflection formula for the usual gamma function, while the reflection formula for the digamma function
Ψ(x) defined in (13.22) reads π cotπx = Ψ(1−x)−Ψ(x). Due to their nice properties these functions are often
used in the Sommerfeld–Watson transform in order to rewrite the sum of an infinite sequence as a contour
integral, e.g. in the derivation of Regge theory (see for instance [174]).
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below, plugging in these asymptotic forms of the integrals and using x = δ(tm)/π indeed
reduces the RHS to |f(tm)|. This analytical equality may also be used as a check of the
numerical evaluation.

However, the continuity of the first and higher derivatives is not ensured in a similar man-
ner. Since the solution must not depend on the value of the matching point, an unphysical cusp
or non-smooth behavior of the modulus of the solution at the matching point only indicates
that the input in terms of the absorptive part is not precise enough or even physically inconsis-
tent (so-called “non-analytic input”, cf. [168,169]); moreover, the physical condition of a smooth
behavior at the matching point ensures the uniqueness of the solution [168].#4 Physically con-
sistent input given, this smoothness constraint may be used in order to tune/estimate/fit the
subtraction constants (i.e. subthreshold parameters, cf. e.g. [158]).

#4Furthermore, in [169] it is shown that also a matching point in the inelastic region admits a unique non-cusp
solution provided that the inelasticity parameter η is known and sufficiently smooth.
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Chapter 15

Solving the t-channel

Muskhelishvili–Omnès problem

In this chapter the solution of the Muskhelishvili–Omnès problem for the lowest t-channel
partial waves fJ±(t) with J ∈ {0, 1, 2} will be discussed. First, the explicit analytical solutions
will be stated. Then, the numerical input needed will be collected. Finally, the numerical
results will be discussed.

15.1 Explicit analytical solutions

Here, we will give the explicit solutions for the n-times subtracted t-channel Muskhelishvili–
Omnès problem (13.40) using the general results of Chap. 14. The crucial ingredient for
the following discussion is Watson’s theorem (12.11), which states that below the onset of
inelasticities the phases ϕJ

±(t) = δJ(t) of the t-channel partial waves fJ±(t) are given by the
corresponding ππ scattering phases δItJ (t) with It ∈ {0, 1}, i.e. explicitly for J ∈ {0, 1, 2}#1

ϕ0
+(t) = δ00(t) = δ0(t) , ϕ1

±(t) = δ11(t) = δ1(t) , ϕ2
±(t) = δ02(t) = δ2(t) , ∀ t ∈ [tπ, tσ) .

(15.1)
These identities enter the solutions at two places: first, in this kinematical region we can use
the same Omnès function ΩJ for both fJ± and thus also for the linear combination ΓJ . Second,
in this range of t the linear relation (12.37) is also valid for the moduli such that after solving
for
∣∣ΓJ
∣∣ we can recover

∣∣fJ+(t)
∣∣ = m

√
J

J + 1

∣∣fJ−(t)
∣∣−
∣∣ΓJ(t)

∣∣ ∀ t ∈ [tπ, tσ) . (15.2)

Using once-subtracted (at t0 = 0) Omnès functions in the finite matching point prescription,
i.e. the integrals converge also in the limit tm → ∞ for phases constant or smoothly ap-
proaching π above tm and the Omnès functions themselves are normalized to unity at t = 0
(cf. (14.16) and (14.42)),

ΩJ(t) = exp

{
t

π

tm∫

tπ

dt′

t′
δJ(t

′)
t′ − t

}
=
∣∣ΩJ(t)

∣∣ exp
{
iδJ(t)θ

(
t− tπ

)
θ
(
tm − t

)}
, ΩJ(0) = 1 ,

#1Though possible in principle, for the sake of simplicity we refrain from introducing J-dependent inelastic
thresholds tJσ here (cf. the discussion in Sect. 12.1) as well as J-dependent matching points tJm (cf. Sect. 15.3.3).
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∣∣ΩJ(t)
∣∣ =

∣∣∣∣1−
t

tm

∣∣∣∣
xJ (t)

∣∣∣∣
t

tπ
− 1

∣∣∣∣
−xJ (t)

exp

{
t

π

tm∫

tπ

dt′

t′
δJ(t

′)− δJ(t)

t′ − t

}
, xJ(t) =

δJ(t)

π
,

(15.3)

the general n-times subtracted (with n ∈ {0, 1, 2}) solutions of (13.40) for t ∈ [tπ, tm] and
for tm < tσ and ⌊δJ(tm)/π⌋ = 0 (i.e. neglecting inelasticities and no occurrence of polynomial
terms) read

f0+(t) = ∆0
+

∣∣n-sub
(t) + Ω0(t)

tn(t− tN )

π

{ tm∫

tπ

dt′
∆0

+

∣∣n-sub
(t′) sin δ0(t′)

t′n(t′ − tN )|Ω0(t′)|(t′ − t)

+

∞∫

tm

dt′
Im f0+(t

′)
t′n(t′ − tN )|Ω0(t′)|(t′ − t)

}
,

ΓJ(t) = ∆J
Γ

∣∣n-sub
(t) + ΩJ(t)

t(n−J)θ(n−J)(t− tN )

π

{ tm∫

tπ

dt′
∆J

Γ

∣∣n-sub
(t′) sin δJ(t′)

t′(n−J)θ(n−J)(t′ − tN )|ΩJ(t′)|(t′ − t)

+

∞∫

tm

dt′
ImΓJ(t′)

t′(n−J)θ(n−J)(t′ − tN )|ΩJ(t′)|(t′ − t)

}
∀ J ≥ 1 ,

fJ−(t) = ∆J
−
∣∣n-sub

(t) + ΩJ(t)
t(n−J+1)θ(n−J)

π

{ tm∫

tπ

dt′
∆J

−
∣∣n-sub

(t′) sin δJ(t′)

t′(n−J+1)θ(n−J)|ΩJ(t′)|(t′ − t)

+

∞∫

tm

dt′
Im fJ−(t

′)

t′(n−J+1)θ(n−J)|ΩJ(t′)|(t′ − t)

}
∀ J ≥ 1 . (15.4)

Expanding these solutions about t = 0 and matching them to the original problem (13.40), as
well as enforcing the correct threshold behavior for pt → 0, shows that the solutions indeed
take the form of (15.4), i.e. no additional terms proportional to the corresponding lowest

powers of t are generated by expanding (15.4), e.g. for f0+(t)−∆0
+

∣∣2-sub
(t) we have

t2(t− tN )

t′ − t
= Ω0(t)

t2(t− tN )

t′ − t
+O

(
t3
)
. (15.5)

Now, we can use the spectral representations of the inverse of the Omnès functions in the
un-, once- and twice-subtracted form

Ω−1
J (t) =

1

ΩJ(t)
=

1

π

tm∫

tπ

dt′
ImΩ−1

J (t′)
t′ − t

= − 1

π

tm∫

tπ

dt′
sin δJ(t

′)
|ΩJ(t′)|(t′ − t)

= 1− t

π

tm∫

tπ

dt′
sin δJ(t

′)
t′|ΩJ(t′)|(t′ − t)

= 1− t Ω̇J(0)−
t2

π

tm∫

tπ

dt′
sin δJ(t

′)
t′2|ΩJ(t′)|(t′ − t)

, (15.6)
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using the derivative of the Omnès function#2

Ω̇J(0) =
d
dt

ΩJ(t)

∣∣∣∣
t=0

=
1

π

tm∫

tπ

dt′
δJ(t

′)
t′2

, (15.7)

in order to explicitly perform the integrals over terms that are either constant or come with
appropriate factors of t′ or p′2t , i.e. all terms involving the subthreshold parameters as well
as the term proportional to δJ1/(m

2 − a) for the unsubtracted case. For this purpose we
define ∆̃J

±(t) via removing all constant or subthreshold-parameter contributions from the
inhomogeneities ∆J

±(t) (cf. (12.45) and (13.27))

∆̃J
±
∣∣n-sub

(t) = ∆J
±
∣∣n-sub

(t)−∆N̂J
±
∣∣n-sub

(t) = N̂J
±(t) + ∆̄J

±
∣∣n-sub

(t) , (15.8)

and thereby we obtain

f0+(t) = ∆̃0
+

∣∣n-sub
(t) + Ω0(t)

t− tN
π

{
χ0
+

∣∣n-sub
(t)

+ tn

[ tm∫

tπ

dt′
∆̃0

+

∣∣n-sub
(t′) sin δ0(t′)

t′n(t′ − tN )|Ω0(t′)|(t′ − t)
+

∞∫

tm

dt′
Im f0+(t

′)
t′n(t′ − tN )|Ω0(t′)|(t′ − t)

]}
,

ΓJ(t) = ∆̃J
Γ

∣∣n-sub
(t) + ΩJ(t)

t− tN
π

{
χJ
Γ

∣∣n-sub
(t)

+ t(n−J)θ(n−J)

[ tm∫

tπ

dt′
∆̃J

Γ

∣∣n-sub
(t′) sin δJ(t′)

t′(n−J)θ(n−J)(t′ − tN )|ΩJ(t′)|(t′ − t)

+

∞∫

tm

dt′
ImΓJ(t′)

t′(n−J)θ(n−J)(t′ − tN )|ΩJ(t′)|(t′ − t)

]}
∀ J ≥ 1 ,

fJ−(t) = ∆̃J
−
∣∣n-sub

(t) + ΩJ(t)
1

π

{
χJ
−
∣∣n-sub

(t)

+ t(n−J+1)θ(n−J)

[ tm∫

tπ

dt′
∆̃J

−
∣∣n-sub

(t′) sin δJ(t′)

t′(n−J+1)θ(n−J)|ΩJ(t′)|(t′ − t)

+

∞∫

tm

dt′
Im fJ−(t

′)

t′(n−J+1)θ(n−J)|ΩJ(t′)|(t′ − t)

]}
∀ J ≥ 1 , (15.9)

with

χ0
+

∣∣2-sub
(t) = − 1

16

{[
g2

m
+ d+00 + tπ

b+00
12

](
1− t Ω̇0(0)

)
+

[
d+01 −

b+00
12

]
t

}
,

1-sub−→ − 1

16

[
g2

m
+ d+00

]
0-sub−→ 0 ,

#2Note that for tm → ∞ (and neglecting inelasticities in the single-channel approximation) this quantity is
closely related to the pion vector (charge) radius for J = 1: limtm→∞ Ω̇1 = 1

6
〈r2〉Vπ .
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χJ
Γ

∣∣2-sub
(t) =

1

12

a−00
4m

δJ1
1-sub−→ 0

0-sub−→ 0 ,

χJ
−
∣∣2-sub

(t) =

√
2

12

{[
− g2

2m2
+ b−00

](
1− t Ω̇1(0)

)
+ b−01t

}
δJ1 +

√
6

15

b+00
4m

δJ2

1-sub−→
√
2

12

[
− g2

2m2
+ b−00

]
δJ1

0-sub−→ 0 . (15.10)

Note that also in the unsubtracted case the explicit dependence on a cancels.#3

Finally, due to Watson’s theorem (12.11) we can separate the unknown moduli from the
known ππ phases for t < tσ and solve the MO problem for the moduli directly

∣∣f0+(t)
∣∣ = ∆̃0

+

∣∣n-sub
(t) cos δ0(t) + (t− tN )

|Ω0(t)|
π

{
χJ
0

∣∣n-sub
(t)

+ tn

[
−
tm∫

tπ

dt′
∆̃0

+

∣∣n-sub
(t′) sin δ0(t′)

t′n(t′ − tN )|Ω0(t′)|(t′ − t)
+

∞∫

tm

dt′
Im f0+(t

′)
t′n(t′ − tN )|Ω0(t′)|(t′ − t)

]}
,

∣∣ΓJ(t)
∣∣ = ∆̃J

Γ

∣∣n-sub
(t) cos δJ(t) + (t− tN )

|ΩJ(t)|
π

{
χJ
Γ

∣∣n-sub
(t)

+ t(n−J)θ(n−J)

[
−
tm∫

tπ

dt′
∆̃J

Γ

∣∣n-sub
(t′) sin δJ(t′)

t′(n−J)θ(n−J)(t′ − tN )|ΩJ(t′)|(t′ − t)

+

∞∫

tm

dt′
ImΓJ(t′)

t′(n−J)θ(n−J)(t′ − tN )|ΩJ(t′)|(t′ − t)

]}
∀ J ≥ 1 ,

∣∣fJ−(t)
∣∣ = ∆̃J

−
∣∣n-sub

(t) cos δJ(t) +
|ΩJ(t)|
π

{
χJ
−
∣∣n-sub

(t)

+ t(n−J+1)θ(n−J)

[
−
tm∫

tπ

dt′
∆̃J

−
∣∣n-sub

(t′) sin δJ(t′)

t′(n−J+1)θ(n−J)|ΩJ(t′)|(t′ − t)

+

∞∫

tm

dt′
Im fJ−(t

′)

t′(n−J+1)θ(n−J)|ΩJ(t′)|(t′ − t)

]}
∀ J ≥ 1 . (15.11)

On the one hand, the subtraction-independent pole terms N̂J
± are real for t ≥ tπ−(M2

π/m)2

and grow rapidly with J for t in the vicinity of tπ, as discussed in Sect. 9.1. On the other

#3Actually, this has to be the case: e.g. the constant term proportional to (m2 − a)−1 in the nucleon pole
terms (7.99), which was introduced to the dispersion relations via the hyperbolic kinematical relations and
which can be thought of as a contribution of the contour integral from the circle with infinite radius (i.e.
for |t| → ∞), leads to constant pole-term contributions to the partial waves (cf. (9.15) and (13.28)). These
(unphysical) contributions do not vanish asymptotically, generate an unphysical behavior on a, and thus they
must cancel in any (physical) solution. Hence, the dispersion integrals for the unsubtracted case both for
the Omnès solution and the spectral representation of the Omnès function are strictly speaking not correct:
there should be contributions from the contour at infinity. However, this problem can be solved most easily
by removing all “dangerous” parts of the inhomogeneities via (15.6), which ensures that all these potential
contributions from the contour at infinity cancel.
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hand, in the elastic region the phases δJ are given by the corresponding ππ scattering phases
such that δJ(tπ) = 0 and thus Im fJ±(tπ) = 0. Since furthermore phenomenologically the
ππ phases grow slower for higher J , we expect the partial waves fJ± (and thereby also their
moduli |fJ±|) to be increasingly dominated by the pole terms for increasing J and t → tπ.
However, we do not solve for fJ+ directly but for the linear combinations ΓJ , for which in
turn the pole-term contributions N̂J

± cancel at tπ, cf. Sect. 13.5. The pole-term domination
of |fJ+| enters when calculating these parallel helicity moduli from the solutions for the |ΓJ |
and the (pole-term dominated) antiparallel helicity moduli |fJ−| via (15.2), where in addition
the relative importance of the latter increases with J due to the factor

√
J/(J + 1). For |fJ+|

both the pole-term domination and the dependence on |fJ−| will be explicitly demonstrated in
Sect. 15.3.

15.2 Numerical input

In this section we will discuss all numerical input that is needed to solve the t-channel
Muskhelishvili–Omnès problem (15.11) as given in Sect. 15.1.

15.2.1 ππ phases and Omnès functions

We use the (preliminary) ππ scattering phase shifts δItJ (t) of [154,155] for J ∈ {0, 1, 2} with It ∈
{0, 1} (and It even/odd for J even/odd) which are constructed for

√
t ∈ [2Mπ, 1.15GeV].#4

We reconstruct the phase shifts from the real and imaginary parts of the corresponding ππ
scattering partial waves according to (cf. (12.6))

δItJ (t) =
1

2

{
arctan

2σπt Re tItJ (t)

1− 2σπt Im tItJ (t)
mod π

}
η
It
J (t)=1
= arcsin

√
σπt Im tItJ (t) mod π ,

(15.12)
using the fact that the inelasticity is proportional to the real part of the partial wave. Further-
more, we ensure both the vanishing at threshold δItJ (tπ) = 0 as well as the correct square-root-
power behavior above threshold by matching the phase shifts at and above tπ to Schenk-like
parameterizations [53,243]

tan δItJ (t) = σπt q
2J
t

{
AIt

J +BIt
J q

2
t + CIt

J q
4
t +DIt

J q
6
t

} tπ − rItJ
t− rItJ

, (15.13)

where the parameters rItJ denotes the point where the corresponding phase shift passes through
π/2 (i.e. the squared mass of the first resonance). Therefore, δ00 is linear, δ11 cubic, and δ02
quintic in σπt .#5 Furthermore, the Schenk parameters may be related to the coefficients of the
threshold expansion

Re tItJ (t) = q2Jt

{
aItJ + bItJ q

2
t + cItJ q

4
t + dItJ q

6
t +O(q8t )

}
, (15.14)

#4For ππ scattering the validity of the Roy equations can be shown rigorously for tπ ≤ t ≤ 60M2
π based

on axiomatic field theory [52]. Assuming Mandelstam analyticity, this range can be extended to tπ ≤ t ≤
68M2

π [242], which corresponds to 2Mπ ≤
√
t ≤ 1.15GeV by reasoning along the lines of Chap. 10.

#5Here, we restrict ourselves to matching up to and including cubic powers of σπ
t . While without this

matching particularly the S-wave Omnès function Ω0 exhibits an unphysical and sizable dint upwards just
above tπ, matching up to and including also the fifth power of σπ

t (as leading contribution for the D-waves)
does not lead to significant changes.
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Figure 15.1: Moduli |ΩJ | of the lowest once-subtracted finite-matching-point Omnès functions
for

√
tm = 0.98GeV.

since in the elastic region (cf. (12.6))

Re tItJ (t) = cot δItJ (t) Im tItJ (t) =
1

σπt

tan δItJ (t)

1 + tan2 δItJ (t)
, (15.15)

such that e.g. for the scattering lengths aItJ and the effective ranges/volumes/etc. bItJ we get

aItJ = AIt
J , bItJ = BIt

J +
4

rItJ − tπ
AIt

J + δJ0
4

tπ

(
AIt

J

)3
. (15.16)

In Fig. 15.1 we show the moduli |ΩJ | of the resulting once-subtracted finite-matching-
point Omnès functions according to (15.3) for J ∈ {0, 1, 2}, where the choice

√
tm = 0.98GeV

ensures that xJ(t) ∈ (0, 1) and hence nJ = ⌊xJ(tm)⌋ = 0 for t ∈ [tπ, tm]. Therefore all
functions are normalized to unity at t = 0, finite for all t, and vanish at t = tm due to
the finite-matching-point prefactor |tm − t|xJ (t). Furthermore, for J = 0 the Omnès function
exhibits a cusp (i.e. a discontinuity of the derivative) at the physical ππ threshold tπ and
decreases approximately linearly over a wide range in t, for J = 1 it is fully dominated by the
ρ(770) peak, and for J = 2 it is almost flat (equaling 1 again roughly at the end of the KH80
energy range at 0.88GeV and dropping rapidly above).#6

Using instead the parameterization of the ππ phases as given in [153] for the numerical
evaluations in Sect. 15.3 leads to deviations in these Omnès functions and thereby the solutions
of the Muskhelishvili–Omnès problem (15.11) which are much smaller, however, than the
effects of the alterations described there.#7

#6Note that by construction these Omnès functions describe the contributions of the so-called two-pion
continuum to the t-channel partial waves (assuming elastic ππ scattering). In fact, the importance of the
two-pion continuum for the nucleon structure (i.e. the nucleon form factors, cf. Sect. 15.3.4) especially for the
P -wave has lead to the prediction of the ρ-resonance [244].

#7As stated in [171], the Karlsruhe–Helsinki dispersive partial-wave analyses KH78 and KH80 (see Sect. 15.2.2
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15.2.2 Remarks on existing πN partial-wave analyses

Before summarizing the input from πN partial-wave analyses that will be used in the following,
some general remarks are in order: first of all, we will use the time-honored Karlsruhe-Helsinki
dispersive partial-wave analysis KH80 [170, 171] both as input for s-channel partial waves as
well as subthreshold parameters and as reference for our MO t-channel partial-wave solu-
tions, since KH80 is still the only consistent analysis for all the partial waves and parameters
entailed in our Roy–Steiner framework. KH80 is based on πN → πN data only (besides
isospin invariance) and uses Pietarinen’s expansion method [246] in combination with confor-
mal mapping techniques, aided in particular by fixed-t analyticity.#8 Its solutions for both
channels are given as tables in [171], wherein (p. 10) also an iteration uncertainty of about
3 % is stated for the given results of the iterative KH80 procedure.#9 Since the KH80 partial-
wave solutions exhibit sizable fluctuations, many efforts have been undertaken to improve
the KH80 analysis. In [248], for instance, two different approaches to remove these fluctua-
tions are advertised: on the one hand the subsequent Karlsruhe analysis KA84 [250] and on
the other hand the πN s-channel PWHDRs proposed by [161] (mentioning work in progress,
which is most probably contained in [225]). While KA84 indeed improves on KH80 espe-
cially for higher partial waves by using a modified PWDR framework and thereby smoothing
KH80, unfortunately no consistent subthreshold parameters are derived in this framework.#10

Moreover, according to [162, 165, 172] the KH80 analysis seems to suffer from internal in-
consistencies (as well as KA84), hinting at possible issues with its analytic properties in the
low-energy regime.#11Concerning HDRs on the other hand, in particular the pivotal role of
the t-channel input for the reliability of the s-channel solutions of the PWHDRs of [161] is
emphasized in [165]. Also for the continuously updated VPI/GWU(SAID) s-channel analyses,
see e.g. [204, 252–254], at most the πN coupling constant and small subsets of the necessary
subthreshold parameters are determined. For the t-channel partial waves in the unphysical
region t ∈ [tπ, tN ], there also exists an unpublished solution [213] extending the KH80 energy
range

√
t ∈ [2Mπ,

√
40Mπ = 0.88GeV] to roughly 1GeV. While this solution is compatible

with KH80 within the aforementioned range, it seems to suffer from internal inconsistencies
for higher energies.#12 For the t-channel partial waves in the physical region t ≥ tN , how-
ever, there exists a partial-wave analysis [255], which at least in principle could be used as

for more details) use as input the ππ phase shifts of [245], which are based on Roy-equation fits. In principle,
the differences between these phase shifts and the recent results [153–155] are sources of discrepancies between
the KH80 results and the solutions of the MO problem. However, this point is of minor importance for the
results discussed in Sect. 15.3.

#8In general, analyticity constraints are necessary to get rid of ambiguities in πN partial-wave analyses,
cf. [247]. Interestingly, the importance of a new and complete partial-wave analysis of πN scattering with
hyperbolic analyticity constraints (in order to account for the t-channel properly) especially for determining
σπN was already pointed out a long time ago [162].

#9In [171], the results for the t-channel partial waves are quoted as KH78 solution, but according to [163]
these tables are actually calculated from the KH80 s-channel solutions. Thus we will speak of the t-channel
partial waves in [171] as KH80 solution as well. In general, KH80 is an update of KH78 including more
recent data and particularly improved fixed-t analyticity constraints. Note, however, that according to [248]
in particular the KH80 t-channel P -wave solutions as given in [249] are slightly wrong (there, notably, the
t-channel partial wave solutions are given up to

√
t ≤

√
60Mπ = 1.08GeV), whereas the results in [171] (given

for
√
t ≤

√
40Mπ = 0.88GeV) are correct.

#10For a comparison of KH80 with KA84 (and for an improvement of the formalism outlined in [206]), see [251].
#11For instance, “indications for some fairly large systematic errors of unknown origin” in both KH80 and
KA84 are found in [172] (p. 178) when inspecting the πN S-wave scattering lengths.
#12There are e.g. rather obvious outliers (corresponding to unphysical jumps) in the phases.
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Figure 15.2: Matching of the s-channel absorptive parts between KH80 partial-wave contri-
butions for l ≤ 3, l ≤ 4, and l ≤ 5 and the πN backward scattering Regge model [228].

input.#13 Finally, a partial update of the KH80 analysis including new data and using more
computational power was reported in [259], but so far only results for forward πN scattering
have been published [260].

15.2.3 s-channel partial waves

We use the KH80 solution for the s-channel partial waves from [254] for W+ ≤ W ≤ Wa =
2.5GeV.#14 On the one hand, this is roughly the same energy range as for the GWU “current
solution” [254],#15 so that we are able to compare between KH80 and GWU solutions as
input. However, the effect of taking the current GWU solution instead as input for the t-
channel Omnès problem (i.e. on the corresponding inhomogeneities ∆̃J

±) turns out to be much

#13Note also previous work on N̄N → ππ: in particular, in [256] the πN invariant amplitudes are determined
in the t-channel physical region by using (parametric) HDRs in order to be able to incorporate empirical
information on the s-channel reaction. These results are then used as constraints in an analysis of the t-
channel partial waves of πN scattering in [257] (for an energy-dependent update of this analysis see [258]).
#14Note that this corresponds to a slightly “smoothed” version of the original KH80 solution. We have checked,
however, that both the effect of this smoothing of KH80 as well as the deviations induced by reading in the
data for either KH80 or GWU solution from [254] in different energy steps (e.g. 2MeV instead of 5MeV,
yielding effects especially close to threshold, but with smaller steps leading to an even more noisy behavior of
the partial waves and thus the invariant amplitudes) are at least as small as the difference between KH80 and
GWU solutions themselves.
#15While W ≤ 2.458GeV is stated for the solution SP06 [204], e.g. the update [253] already gives W ≤ 2.6GeV.
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smaller than the effects discussed in Sect. 15.3 and is hence neglected in the following. On the
other hand, at Wa = 2.5GeV a reasonable transition from the truncated sum of partial waves
below Wa to the Regge model for the full invariant amplitudes above Wa can be achieved
as we will demonstrate now (cf. Chap. 11). Summing up all partial waves with l ≤ 5 would
entail all 4-star resonances of [176], but of both 4-star resonances with l = 5, N(2220) as
H1,9 and ∆(2420) as H3,11 (spectroscopic notation: l2Is,2j), especially the latter one is mostly
out of this energy range due to its broad width of roughly 700MeV. Hence we expect the
best agreement with the Regge model [228], which is based on differential cross section and
polarization data for πN backward scattering with W ≥ 3GeV as discussed in Sect. 11.1, for
l ≤ 4 and a scattering angle of zs = −1 corresponding to backward scattering. Since deviations
between summing up contributions for l ≤ 3, l ≤ 4 and l ≤ 5 start to show up around 1.5GeV
and we are interested in the matching to the Regge model at the end of the GWU range of
validity around 2.5GeV, only this region is shown in Fig. 15.2 (in the spirit of [158]).#16 Note
that only l ≤ 4 yields the correct sign compared to the Regge contribution in all four cases.
Moreover, it turns out that for l ≤ 5 the agreement is even worse than for l ≤ 3. Hence, in the
following all higher partial waves with l ≥ 5 will be neglected below Wa. The higher kernel
functions that are needed to account for these higher s-channel partial waves in both the s-
and t-channel driving terms are collected in Apps. C.1 and C.2, respectively.

15.2.4 t-channel partial waves

Although it is tempting to employ direct experimental information in terms of the existing
t-channel partial-wave analysis [255] as input above the physical threshold tN , one would
first need to fully account for the pseudophysical range tπ ≤ t ≤ tN . However, as already
mentioned before (cf. Sects. 11.2 and 12.1), there are significant inelastic contributions to the
lowest partial waves already far below tN (starting roughly around

√
tN/2). In principle, there

are several ways how inelasticities may be accommodated in a single-channel description of
the t-channel MO problem. Since the general situation is similar for all of the lowest partial
waves, in the following we will exemplarily discuss the S-wave f0+ (being the most important
and also the most “problematic” partial wave at the same time), for which the assumption
of elastic unitarity breaks down as soon as the K̄K channel opens, manifesting itself in the
appearance of the f0(980) resonance.

First, inelastic contributions could be included directly in the solution of the MO equations
using the formalism developed in Chap. 14, provided, however, that the inelasticities are
sufficiently well known. The importance of this precondition becomes particularly obvious
in view of the fact that above the onset of inelasticities the solutions are (in principle) fully
determined by the (complete) inelasticities as discussed in Sects. 14.1 and 14.3. However, in
the case of f0+ this method would in particular require knowledge of the K̄K → N̄N S-wave,
but it is unclear how reliable input for this partial wave can be obtained independently from
the present approach.

Second, one could retain a rather low matching point tm, but try to model the energy
region above tm by means of a resonance description in order to establish a more meaningful
matching condition. This strategy proved quite successful in γγ → ππ [159], where the
input above the matching point is dominated by the f2(1270). However, in the case of the
f0(980) this strategy is subject to several difficulties: its pole position is very close to the

#16Note that the absorptive parts ImA± exhibit pronounced peaks at W+ +Mπ (cf. Sect. 10.1). Of course,
all imaginary parts are zero at the threshold W+.
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two-kaon threshold, such that the subtle interplay between the ππ and K̄K channels can
certainly not be approximated by a simple Breit–Wigner (BW) description. To circumvent
this problem, one would be compelled to further decrease the matching point and include the
f0(980) dynamics by hand using a Flatté-like parameterization [261] (see also e.g. [262]), which
is a modified relativistic version of the BW differential mass distribution. However, while the
f0ππ coupling constant has been thoroughly investigated [263] based on the recent dispersive
analysis [153] (which yields phases that are basically consistent with the phases of [154,155]),
the f0NN coupling constant is only very poorly known, with different meson-exchange models
disagreeing significantly on the strength of the coupling and the continuation to the physical
pole [264–267].

We conclude that including the f0(980) in our approach reliably as well as extending the
energy range of our representation for f0+ beyond the two-kaon threshold will require a full
solution of the underlying two-channel Omnès problem [173], whereas in this work we will
content ourselves with the single-channel approximation.

Within the single-channel formalism, we thus can solve the MO problem for the lowest
t-channel partial waves consistently in the elastic region only.#17 Since furthermore iteration
with the s-channel RS solutions (for which in turn accurate MO solutions are needed as input)
as well as a consistent determination of the πN coupling and the subthreshold parameters is
necessary to finally arrive at precise quantitative results for the partial waves of both channels,
here we will only give qualitative results for the t-channel partial waves by comparing with
KH80. Hence, in the following all t-channel absorptive parts above tm are neglected (i.e. set
to zero) and consequently also all t-channel Regge contributions are omitted (since tm < ta;
cf. the discussion of the t-channel asymptotics in Sect. 11.2).#18 Finally, also all higher partial
waves with J ≥ 3 are neglected.

15.2.5 Subthreshold parameters

To precisely determine the subthreshold parameters is not an easy task, since there simply is
no experimental data available to analyze the t-dependence of the amplitudes close to t = 0
and thus means of analytic continuation or extrapolation are needed. Accordingly, in the
literature there are only a few determinations of all parameters that enter the subtracted
Roy–Steiner system. The KH80 results (cf. [171], wherein the error estimates are quoted to be
“based on deviations from the internal consistency” and the total uncertainty to be “somewhat
larger” (p. 275)) and all more recent dispersion theoretical analyses that we are aware of are
collected in Tab. 15.1 (cf. [160]). Note that there are several determinations of only some of
these parameters, which are therefore not listed in Tab. 15.1.#19

In [164] the subthreshold parameters are determined by means of interior dispersion re-
lations together with fixed-t dispersion relations and by using as input the s-channel partial
waves of both KA84 [250] and VPI/SP98 [252] (see also [272]) as well as the t-channel partial

#17Basically, the reconstruction of the partial waves above the matching point up to tN via either inelasticities
or resonance models fails to yield meaningful results in view of the deficient present knowledge of both the
corresponding inelasticities and the couplings of ππ and N̄N to the pertinent resonances. Loosely speaking,
the physical region turns out to be too far away from the onset of inelasticities in order to sufficiently constrain
and thereby aid the reconstruction of the input absorptive parts in the range t ∈ [tm, tN ].
#18Note that otherwise one would have to avoid double counting of the asymptotic regions of the t-channel
partial waves in the MO problem.
#19E.g. d+00 = −1.30/Mπ and d+01 = 1.27/M3

π [252] as well as the same d+00 but d+01 = 1.19/M3
π [268] based on

the VPI/SP98 solution [252], or d+00 = (−1.20± 0.03)/Mπ and d−00 = a−
00 + b−00 = (1.41± 0.05)/M2

π in [260].
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KH80 St(KA84) St(SP98) Oa(KH80) Oa(SP98) Fe

d+00 [M−1
π ] −1.46± 0.10 −1.39± 0.02 −1.32± 0.02 −1.46± 0.04 −1.29± 0.02 −1.58

d+01 [M−3
π ] 1.14± 0.02 1.14± 0.01 1.15± 0.02 1.15± 0.11 1.23± 0.04 1.36

a−00 [M−2
π ] −8.83± 0.10 −8.82± 0.04 −8.97± 0.01 −9.26± 0.17 −8.92± 0.07 −8.47

b+00 [M−3
π ] −3.54± 0.06 −3.49± 0.03 −3.48± 0.02 −3.56± 0.10 −3.42± 0.04 −7.90

b−00 [M−2
π ] 10.36± 0.10 10.35± 0.02 10.45± 0.01 10.84± 0.18 10.37± 0.08 10.34

b−01 [M−4
π ] 0.24± 0.01 0.22± 0.01 0.24± 0.01 0.26± 0.22 0.26± 0.10 0.14

Table 15.1: Subthreshold parameter values as given by KH80/Höhler [171], Stahov [164],
Oades [269,270], and Fettes (heavy-baryon ChPT, KA84) [271]. See main text for details.

waves of KH80 (and those of [213] in the consistent energy range).#20 In contrast, finite-
contour dispersion relations are used in [269] to derive subthreshold parameter values — again
for both KH80 and VPI/SP98 input (amongst others).#21 The subthreshold parameters are
the standard expansion parameters for the Lorentz-invariant amplitudes, but neither these
amplitudes nor the kinematical variables ν and t are “natural” for heavy-baryon ChPT and
hence these values are not very satisfactory, cf. [270]. However, for comparison we also state
the corresponding values for a third-order calculation [271,273] as given in [271] (Fit 1 therein
corresponding to KA84); note that according to [271,274] some of the parameter values even
deteriorate when calculated up to fourth order.

As can be seen already from the deviations between the different determinations of sub-
threshold parameters in Tab. 15.1, the errors on the central values are in general unrealistically
small (i.e. only statistical “fit errors” for specific input in a given framework, thus neglecting
systematic errors). Hence we can conclude that there is no precise and consistent determina-
tion of the subthreshold parameters including realistic errors.

Since we want to compare our MO results with the KH80 solutions, for consistency we use
the KH80 subthreshold parameters as given in Tab. 15.1 as well as the outdated KH80 πN
pseudoscalar coupling value of 14.28 instead of the new value of 13.7 as given in (7.100).#22

15.3 Numerical results

The numerical results that will be presented in this section are to be understood as a qualita-
tive “KH80 consistency check” in order to show that the t-channel RS-MO machinery works,
and as a first step towards a numerical analysis of the full Roy–Steiner system. In particular,
by variation of either the coupling or the subthreshold parameters we can alter the results

#20These are most probably the “new” subthreshold parameters mentioned in [247], where no explicit reference
is given unfortunately.
#21Note that some of the results of [269] are corrected in [270], where also a modified version of the finite-
contour dispersion relations together with conformal mapping techniques is applied (it is mentioned therein
that the subthreshold parameters do not change substantially). Since the applied fitting procedure does not
respect the exact analytic equality of the parameters d+0n and a+

0n (cf. (13.5)), however, the (corrected) values
agree only within the given errors, but not exactly.
#22Note that the πN coupling and the subthreshold parameters are related, as the difference d−00 − g2/(2m)
is given by an integral over a total cross section, cf. [160].
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Figure 15.3: Contributions to the unsubtracted S-wave MO inhomogeneity ∆̃0
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. See

main text for details.

significantly, since these variations produce the most sizable effects on the MO solutions com-
pared to the other variations that will be discussed in the following. However, it is by no
means clear a priori what the parameter values or their errors are, and only a self-consistent
determination of all parameters and partial waves in a second step will allow for reliable quan-
titative results. Therefore, the necessary first task in this program is to check our method and
the internal consistency of the KH80 results by using KH80 input as described in Sect. 15.2
and comparing our t-channel MO results with those of KH80. Moreover, we will investigate
different systematic effects on the (subtracted) MO solutions |fJ±|, which should prove valuable
for the solution of the full system: after discussing exemplarily the importance of the differ-
ent contributions to the MO inhomogeneities ∆̃J

±(t), we will also discuss both the connection
to the “fixed-t limit”#23 and the effect of changing the matching point tm. Except for the
a→ −∞ results, we will always use the optimal hyperbola parameter value of a = −2.71M2

π

as obtained in Sect. 10.4.

15.3.1 Contributions to the inhomogeneities

In Figs. 15.3, 15.4, and 15.5 we show the different contributions to the MO inhomogeneities
∆̃J

±(t) exemplarily for ∆̃0
+ for the un-, once-, and twice-subtracted case, respectively, from the

ππ threshold tπ up to 1.15GeV, also showing the upper limit of the KH80 solution as well as
the K̄K threshold tK as the uppermost limit of approximate elasticity for J = 0. We choose
the S-wave for the following reasons: for J = 0 the nucleon pole term is zero at tπ and does
not dominate all other contributions like it does for the higher partial waves; additionally,
for the S-wave we can also show the coupling of the D-wave as leading contribution for the

#23Accordingly, the s-channel integral of the HDRs reduces to the fixed-t result, cf. Sect. 7.4 a → −∞.
However, even in this limit the HDRs contain additional information as compared to fixed-t dispersion relations,
since those do not provide equations for the t-channel partial waves in the first place.
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coupling of higher partial waves. The pole term N̂0
+ is independent of both the number of

subtractions and a and thus serves as reference in all three plots (double-dashed). The s-
channel contributions are shown separately for the sum of all partial waves with l ≤ 4 in the
range W ∈ [W+,Wa] (dashed) and the Regge contributions of the full invariant amplitudes for
W > Wa (dot-dashed). Even in the unsubtracted case both the s-channel Regge as well as the
t-channel D-wave contributions (dotted) are very small and almost negligible in comparison
to the other parts. From this it is also clear that the coupling of higher t-channel partial waves
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(e.g. F -wave contributions to P -waves) can be completely omitted. The solid line denotes the
sum of all these contributions and we have checked for J ∈ {0, 1, 2} and n ∈ {0, 1, 2} that the
expected threshold behavior according to (12.34) and (12.38) (as for the corresponding partial
waves) is indeed fulfilled. While all results are given for the optimal value of a unless stated
otherwise, for comparison we also show the non-Regge s-channel contributions in the “fixed-t
limit” a→ −∞. Since this is a very drastic alteration (the Roy–Steiner system is not strictly
valid in this case as will be explained below), the difference of this contributions for the two
a values gives a very ample bound on the dependence on a. While the Regge contributions
vanish for a→ −∞ as discussed in Sect. 11.1, the D-wave coupling is not even well defined for
a→ −∞ in this framework as can be seen from the explicit a-dependence in the unsubtracted
case leading to an infinite contribution, cf. (13.43). By comparing the three plots it is clearly
seen that in the once-subtracted case all contributions except the pole term are suppressed,
while in the twice-subtracted case an additional t-dependence is introduced such that they are
strongly suppressed at tπ but at least the s-channel partial-wave contributions are comparable
to the pole term around 0.75GeV. For small t, the differences between the two a values are
also suppressed by each subtraction as expected.

15.3.2 Comparison with KH80

We will compare our un-, once-, and twice-subtracted MO solutions for |fJ±(t)| with J ∈
{0, 1, 2} for t ∈ [tπ, tm] with the KH80 results given as tables in [171]. Note that for J ≥ 2 the
un- and once-subtracted solutions coincide. The a-dependence (which is fully contained in ∆̃J

±)
can be used as a crude measure for the systematic uncertainties due to neglecting t-channel
input above tm (i.e. “non-analytic” input), since the physical result must be independent of
a.#24 Thus, for the five lowest t-channel partial waves we show our “KH80 consistency MO
solution” for the un-, once-, and twice-subtracted case, each for both the optimal value of
a and a → −∞ in Figs. 15.6, 15.7 and 15.8. Here, we have chosen to use the same value
of

√
tm = 0.98GeV for all considered partial waves, which in principle is not necessary; the

effect of varying tm will be explicitly investigated in Sect. 15.3.3. As discussed in Sects. 15.2.1
and 15.2.4, this choice is mainly motivated by the S-wave, since its phase is just below π at this
energy (reaching π around the K̄K threshold

√
tK = 2MK = 0.987GeV), so that no additional

subtractions are necessary in the MO scheme, and furthermore at least for this partial wave the
approximation of elasticity is severely broken for energies slightly above this matching point.
In general, neglecting any t-channel input above the matching point as argued in Sect. 15.2.4
forces the MO solutions to go to zero at the matching point, i.e. |fJ±(tm)| = 0, according to
the matching condition discussed in Sect. 14.6. Nevertheless, even for the S-wave we expect
reasonable agreement with KH80 for this choice of tm, since both KH80 and [213] suggest that
the modulus |f0+| has a minimum or even an approximate zero between 0.9GeV and

√
tK .#25

#24Numerically, we have checked that the limit a → −∞ can be safely approximated by a = −106 [GeV].
#25Note that despite neglecting (almost) all input absorptive parts above tm, |f(tm)| may be fixed by hand
to any (positive) finite value by using the second term on the RHS of (14.45) (containing the integral I+(t)
for tm ≤ t < tm + τ , i.e. the asymptotic input contribution for t → tm from above) and tuning Im f(tm)
appropriately (given the phase δ(tm)), e.g. in order to estimate the numerical importance of input above tm
for the MO solutions. Unfortunately, this kind of input is obviously quite “non-analytic” for sizable non-zero
|f(tm)| and hence produces a strong cusp at tm (cf. Sect 14.6) thereby deteriorating the solutions already far
below tm. For this reason, the agreement between KH80 and the MO solutions becomes even worse in general
when using a lower value

√
tm =

√
40Mπ = 0.88GeV and taking the last data points of the corresponding

KH80 partial-wave results in order to fix |fJ
±(40M

2
π)|. Ironically, a “smooth” matching to neglecting any input
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Figure 15.6: MO solutions for the S-wave. See main text for details.

In general, the solutions are fixed on both ends of the solution interval [tπ, tm]: on the
right due to the input above tm as discussed before and on the left due to the pole term, which
becomes larger and thus more dominating with increasing J . Therefore the differences be-
tween the n-subtracted solutions and also the different a values decrease close to tπ. As they
furthermore agree very well with the KH80 solution in the respective pole-term-dominated
regions, we only show the remaining regions. Since the D-wave coupling for the unsubtracted
case depends on a, this contribution is omitted for the a → −∞ limit (thus the solutions for
the two a values do not coincide at tπ). Obviously, a negative modulus (i.e. the unsubtracted
|f0+| for optimal a and the once-subtracted |f1+| for a → −∞) only indicates that too much
input information is missing in this particular case in order to yield a reasonable solution —
a problem that can be cured by subtractions. The general pattern is as expected: the effect
of varying a is suppressed by both the subtraction procedure and higher J . Furthermore,
the agreement with the KH80 solution is strongly aided by subtracting. This is clear since
each subtraction power on the one hand suppresses the lacking input above tm and on the
other hand introduces additional consistent information via the subthreshold parameters as
subtraction constants. Hence, the twice-subtracted solution for optimal a is our central “con-
sistency result”. The S-wave shows a nice convergence behavior in n, but around 0.8GeV it
starts to deviate from KH80, which is not surprising as the f0(980) is expected to have an
important impact (cf. Sect. 15.2.4).#26 As far as the P -waves are concerned, the numerical
results confirm the analytic expectation that |f1+| is much less well determined or constrained
than |f1−|: basically, the MO equations for |f1+| effectively contain one low-energy subtraction

above tm could be achieved especially for the S-wave (and also for the linear combinations ΓJ , but not for fJ
−)

for the unfeasible high value tm = tN at the physical threshold (due to the threshold behavior explained in
Sect. 12.3.1) — just from where on input information is actually available.
#26Interestingly, we can find reasonable agreement with the unpublished (and partially inconsistent) result
of [213] also for energies above the KH80 range by introducing the f0(980) resonance even via a (too) simple
BW ansatz and adjusting by hand the f0NN coupling constant accordingly. Small changes in this basically
unknown coupling, however, lead to huge effects on the MO solution.
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Figure 15.7: MO solutions for the P -waves.

less. Moreover, in the necessary intermediate step of solving the MO problem for |Γ1| the
pole-term contributions N̂J

± cancel at tπ (as discussed in Sect. 13.5) as for the S-wave and
thus the solution for |f1+| is less pole-term dominated and hence more sensitive to the values of
the subthreshold parameters. Furthermore, the uncertainties of |f1−| propagate into |f1+| when
calculating the latter from |Γ1| via (15.2). All this then leads to a rather slow convergence
behavior in n for fixed a as well as the loss of the expected convergence pattern in n of the
differences between the two a values (note especially the crossing of the unsubtracted solutions
for different a values and the negative once-subtracted modulus). However, our central twice-
subtracted result for |f1+| agrees rather well with KH80 especially in the ρ(770) peak, even
though our result for |f1−| (which enters |f1+|) seems to be systematically smaller than KH80.
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Figure 15.8: MO solutions for the D-waves. For J ≥ 2 one subtraction has no effect.

Since this underestimation might be due to forcing the solution to go to zero at tm, we will
investigate the effect of using a higher value for tm below. Nevertheless, the a→ −∞ variant
of the twice-subtracted solution for |f1−| agrees well with KH80 in the ρ peak (though the
agreement with KH80 becomes worse for |f1−| in this limit). The D-wave results are systemat-
ically smaller than KH80 and the change from one (or equivalently zero) to two subtractions
towards KH80 is roughly one third of this discrepancy and furthermore approximately of the
same absolute size for both partial waves, which is probably due to calculating |f2+| by using
the result for |f2−| together with the fact that χJ

Γ = 0 for all J 6= 1. For both |f2+| and |f2−| the
accordance with KH80 (which is based on fixed-t dispersion relations) in the “fixed-t limit”
a→ −∞ is striking, the effect of varying a being much larger than the effect of subtractions.
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Figure 15.9: MO solutions for the P -waves with
√
tm = 1.1GeV. See main text for details.

15.3.3 Variation of the matching point

Up to now we have used the S-wave-motivated value
√
tm = 0.98GeV for all considered par-

tial waves. The effect of changing
√
tm to 1.1GeV is shown in Figs. 15.9 and 15.10 for the

un-, once-, and twice-subtracted solutions for J ∈ {1, 2}. Again, for J ≥ 2 the un- and
once-subtracted solution coincide. For J = 1 it is generally assumed that 4π contributions
can safely be neglected up to the πω threshold around 0.92GeV; however, the ππ scattering
P -wave inelasticity is small even above that energy and hence the impact of neglecting it (for
both values of tm) should be smaller than the effect of changing tm. For J = 2 no substantial
deviations from elasticity are expected, since the ππ scattering D-wave is essentially elastic
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Figure 15.10: MO solutions for the D-waves with
√
tm = 1.1GeV. For J ≥ 2 one subtraction

has no effect.

in this energy range. The P -wave solutions exhibit the expected behavior: the differences
between the two matching point values become smaller with each subtraction, but the con-
vergence behavior in n is again less good for |f1+|, where a higher value of tm does not lead
to a better agreement with KH80, while for |f1−| already one subtraction in combination with
the higher matching point yields description of the KH80 solution, which is even better than
the twice-subtracted version for a → −∞ discussed before. Therefore we conclude that on
the one hand the KH80 solution for |f1−| can be reproduced well with a higher matching point
already in the once-subtracted case, but on the other hand the KH80 solution for |f1+| calls for
a second subtraction and is hard to be accommodated in our MO scheme for energies above
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roughly 0.8GeV. The D-wave solutions, however, are hardly affected at all in the KH80 energy
range by changing tm. As discussed in Sect. 15.1, they are expected to be dominated by the
pole terms N̂2

±, which for comparison are also shown in Fig. 15.10. While for |f2−| the KH80
solution indeed agrees rather well with the pole term itself throughout the whole KH80 energy
range, for |f2+| there are “sizable” (w.r.t. the scale) deviations between KH80 and the pole term
in this region, which again fits the picture that the partial wave with parallel helicity is both
analytically and numerically less well constrained. Together with Fig. 15.8 we can conclude
that in the limit a → −∞ for |f2−| the net effect of adding the dispersive integrals to the
pole term is very small, while for |f2+| the corresponding dispersive contributions (which thus
are not mainly induced by |f2−| in this limit) are crucial for the agreement with KH80. For
optimal a (and independent from the choice of tm), though, these contributions deteriorate
the agreement with KH80 (with respect to the pole term) for |f2−|, whereas improving the
agreement for |f2+|; in this case the corrections to |f2+| are effectively due to |f2−|.

15.3.4 Application to nucleon form factors

The t-channel partial waves considered in the previous sections are not only an integral part
of any closed system of dispersion relations for πN scattering fully consistent with crossing
symmetry, but also an essential ingredient to dispersive analyses of nucleon form factors. The
contributions to the isovector spectral functions by two-pion intermediate states#27 in the case
of the dimensionless electromagnetic Sachs form factors read [233] (cf. [275] as well as [171]
for precise definitions and [276,277] for recent applications)

ImG v
E (t) =

q3t
m
√
t

(
F V
π (t)

)∗
f1+(t) θ

(
t− tπ

)
, ImG v

M (t) =
q3t√
2t

(
F V
π (t)

)∗
f1−(t) θ

(
t− tπ

)
,

(15.17)
which due to the threshold behavior (12.38) of the t-channel partial waves obey

ImG v
E (t→ tN )− ImG v

M (t→ tN ) = O(p2t ) , (15.18)

while the imaginary part of the scalar form factor is determined by [278]

Imσ(t) = − 3qt

4p2t
√
t

(
FS
π (t)

)∗
f0+(t) θ

(
t− tπ

)
=
σπt
2

3

tN − t

(
FS
π (t)

)∗
f0+(t) θ

(
t− tπ

)
, (15.19)

with the scalar and vector pion form factor FS
π (t) and F V

π (t), respectively.#28 In the case of
the scalar form factors the approximation by ππ intermediate states breaks down as soon as
the two-kaon threshold opens, and effects from K̄K intermediate states are known to be im-
portant for a dispersive description of FS

π (t) [230,279]. In contrast, the two-pion contribution
dominates in the vector channel, where inelasticities set in more smoothly. It is thus instruc-
tive to investigate the impact of our results for |f1±(t)| on the spectral functions of the Sachs

#27G-parity dictates that intermediate states of an even (odd) number of pions only contribute to the isovector
(isoscalar) spectral functions; cf. Sect. 7.2.
#28The relations (15.17) and (15.19) can be derived by explicitly calculating the corresponding pion loop
integrals in terms of the πN T -matrix elements (7.22) in the t-channel CMS (i.e. effectively considering T−

for the vector form factors and T+ for the scalar one); imposing current conservation as usual, the tensor
decompositions of the resulting integrals over invariant amplitudes A± and B± (which are either even or odd
in zt) then automatically lead to explicit t-channel partial-wave projections according to (9.7) for P - and
S-waves, respectively.
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form factors. To illustrate the corresponding effects we approximate the vector pion form
factor by a simple twice-subtracted Omnès representation (cf. [280] and references therein as
well as (15.3))

F V
π (t) = exp

{
〈r2〉Vπ
6

t+
t2

π

∞∫

tπ

dt′

t′2
δ1(t

′)
t′ − t

}
=
∣∣F V

π (t)
∣∣ exp

{
iδ1(t)θ

(
t− tπ

)}
, F V

π (0) = 1 ,

∣∣F V
π (t)

∣∣ =
∣∣∣∣
t

tπ
− 1

∣∣∣∣
−x1(t)

exp

{
t

[〈r2〉Vπ
6

− x1(t)

tπ

]
+ t2

∞∫

tπ

dt′

t′2
x1(t

′)− x1(t)

t′ − t

}
, (15.20)

where the normalization ensures charge conservation (i.e. the constant part of the subtraction
polynomial is fixed to zero) and Watson’s theorem is fulfilled by construction, so that the
phases in (15.17) cancel in the approximation of elasticity#29

ImG v
E (t) =

σπt
8

t− tπ
m

∣∣F V
π (t)

∣∣ ∣∣f1+(t)
∣∣ θ
(
t− tπ

)
,

ImG v
M (t) =

σπt
8

t− tπ√
2

∣∣F V
π (t)

∣∣ ∣∣f1−(t)
∣∣ θ
(
t− tπ

)
. (15.21)

For the mean square pion vector (or charge) radius we use 〈r2〉Vπ = 0.435 fm2 in accordance
with [281] in order to ensure a decent description of form-factor data. However, the precise
value of 〈r2〉Vπ is immaterial in the present context, since we merely wish to convey how
the uncertainties in |f1±| propagate into the spectral functions. Moreover, for the infinite-
matching-point Omnès representation (15.20) in principle we need the phase δ1 also in the
high-energy regime. Since the numerical impact of the explicit assumption for the asymptotic
behavior of the phase is suppressed by two subtractions, for our purpose of illustration we
choose to simply keep the phase constant above 1.15GeV.#30 The results for the once- and
twice-subtracted versions of |f1±| (the latter also for the “fixed-t limit” and a higher matching
point value) together with the comparison to KH80 are depicted in Fig. 15.11.

As expected from the discussion in Sects. 15.3.2 and 15.3.3, the relative uncertainty in
ImG v

E is much larger than in ImG v
M , which is a result of the effectively lower number of

subtractions in the calculation of |f1+| and its enhanced subthreshold-parameter dependence.
However, since ImG v

M is much larger than ImG v
E , the absolute deviations between the indi-

vidual curves are actually of comparable size in both cases. We conclude that a new determi-
nation of the subthreshold parameters from a full solution of our Roy–Steiner system should
lead to improved central values and associated uncertainties for the two-pion contribution to
the spectral functions of both form factors.

#29Strictly speaking, using any representation that goes beyond the two-pion approximation would be incon-
sistent unless the corresponding inelasticities are accounted for in the determination of f1

± and the unitarity
relation (15.17) as well, as exemplified by the breakdown of Watson’s theorem and the spectral functions
becoming complex.
#30For instance, smoothly leading δ1 to π at t = ∞ using e.g. δ1(t) = π − c

t−d
(with c and d adjusted for a

smooth matching at 1.15GeV) instead does not lead to notable effects.
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E (t) and ImG v

M (t).
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Chapter 16

Conclusion

In this work we have derived a closed system of Roy–Steiner equations (i.e. partial-wave hy-
perbolic dispersion relations respecting analyticity, unitarity, and crossing symmetry) for πN
scattering and analytically calculated all kernel functions for the lowest s- and especially the
t-channel partial waves. Furthermore, we have constructed the corresponding unitarity rela-
tions in detail — including in particular inelastic contributions from K̄K intermediate states
in the t-channel reaction — and thereby completed the Roy–Steiner system for πN scattering.
To pin down the optimal value of the free hyperbola parameter a, assuming Mandelstam ana-
lyticity we have analyzed the domain of validity of the full system and determined a for both
the s- and t-channel equations such that the corresponding range of convergence is maximized.
We have accounted for the asymptotic contributions explicitly (in the s-channel) by means
of a Regge model and found them to be numerically small. Subsequently, we have used the
threshold behavior of the t-channel partial waves in order to cast the t-channel part of the
Roy–Steiner system into the form of a Muskhelishvili–Omnès problem with a finite matching
point. Furthermore, we have introduced subtractions at the subthreshold point in order to
suppress the dependence on the high-energy region and derived the corresponding once- and
twice-subtracted versions of our Roy–Steiner system and thereby the accordingly subtracted
Muskhelishvili–Omnès equations. For this purpose, starting from the hyperbolic dispersion
relations for πN scattering we have derived sum rules for the pertinent subtraction constants
(i.e. subthreshold parameters) and calculated all necessary corrections to the kernel functions
for both channels as well as the subtracted asymptotic contributions (which by subtracting, of
course, get numerically immaterial). Moreover, we have developed a general (single-channel)
Muskhelishvili–Omnès formalism that combines both the concepts of a finite matching point
and the inclusion of inelasticities. However, the present knowledge of the pertinent couplings
and partial waves is not sufficient to account for inelastic effects (particularly K̄K intermedi-
ate states) in this framework especially for the t-channel S-wave, while for the P - and higher
partial waves already the elastic approximation yields reasonable results.

As a first step in solving the full Roy–Steiner system, we have then numerically solved
the un-, once, and twice-subtracted Muskhelishvili–Omnès equations for the t-channel partial
waves in the single-channel approximation (i.e. neglecting inelasticities). We have assessed the
numerical importance of different input contributions for the Muskhelishvili–Omnès problem
(in particular via the Muskhelishvili–Omnès inhomogeneities) by examining the behavior of
the Muskhelishvili–Omnès solutions for the lowest t-channel partial waves (J ∈ {0, 1, 2})
with respect to varying both the input and/or the framework in many ways, including their
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sensitivity to the ππ phase shifts, the number of subtractions (n ∈ {0, 1, 2}), variation of
the finite matching point tm, and taking the hyperbola parameter a to −∞ (to some extent
emulating fixed-t dispersion relations). In general, we have found consistency with the KH80
solutions and thereby confirmed the (approximate) self-consistency of the KH80 results for the
s- and t-channel partial waves, the subthreshold parameters, and the (outdated) πN coupling
constant — although there is clearly room for improvement on the KH80 analysis, especially
regarding the analysis of the theoretical uncertainties. However, our analysis has shown that
the structure of the equations renders the t-channel partial waves fJ+ systematically less well
determined than their counterparts fJ− both due to an enhanced sensitivity to the subtraction
constants and an effectively lower number of subtractions. Finally, we have briefly discussed
some consequences for nucleon form factors, in particular our analysis gives a first indication
where the largest uncertainties in the spectral functions are to be expected.

The next step in the solution of our system of Roy–Steiner equations is the incorporation
of K̄K intermediate states in a full two-channel Muskhelishvili–Omnès treatment of the t-
channel S-wave, which has immediate consequences for the scalar form factor of the nucleon
(and thereby also for the extraction of the πN σ-term) as discussed separately in [173] (which is
not a part of this work). Having then thoroughly solved the t-channel part of the Roy–Steiner
system also for the S-wave, the s-channel equations are solvable with techniques similar to
those employed in the context of ππ Roy equations, and finally the iteration of the full system
should determine the lowest partial waves as well as the subtraction parameters (as discussed
in Chap. 6, cf. Fig. 6.2). We are confident that the framework proposed in this work eventually
will allow for a reliable extrapolation to the Cheng–Dashen point and thus for an accurate
determination of the πN σ-term.
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Appendix C

Higher kernels

for the s-channel driving terms

According to the general solution strategy for the full Roy–Steiner system as outlined in
Chap. 6, only the lowest partial waves of both channels are solved for, namely those with
l ≤ ld and J ≤ Jd, while the contributions of higher partial waves (i.e. the corresponding
higher resonances) are collected as input in the respective driving terms. In the following,
the higher kernel functions that are needed to incorporate higher s-channel partial waves as
discussed in Sect. 15.2.3 are given.

C.1 s-channel partial-wave projection

Here, we display the explicit form of the additional angular kernels Ull′ , Ūll′ , and Vll′ for
(l ≤ 2, 4 ≤ l′ ≤ 6) that are required for calculating the additional higher kernels KI

ll′ for
(l ≤ 1, 3 ≤ l′ ≤ 5) via (8.49). From (8.53) we obtain

U04 =
5

2
β
{
7α2 + 7β2 − 3

}
, U14 =

1

2
α
{
7α2 + 35β2 − 5

}
, U24 = 7α2β , (C.1)

U05 =
1

8

{
15− 70

(
α2 + 3β2

)
+ 63

(
α4 + 5β4 + 10α2β2

)}
,

U15 =
7

2
αβ
{
9α2 + 15β2 − 5

}
, U25 =

1

2
α2
{
9α2 + 63β2 − 7

}
,

U06 =
21

8
β
{
5− 30

(
α2 + β2

)
+ 11

(
3α4 + 3β4 + 10α2β2

)}
,

U16 =
1

8
α
{
35− 126

(
α2 + 5β2

)
+ 33

(
3α4 + 35β4 + 42α2β2

)}
,

U26 =
3

2
α2β

{
33α2 + 77β2 − 21

}
,

and (8.60) yields

Ū04 = −5
{
7b3 − 14b2 + 9b1 + ω̄

[
4− 14α(1− α) + 7β(1− α+ β)

]}
, (C.2)

Ū14 = 21b3 − 35b2 + 15b1 − 35ω̄α(1− α+ β) , Ū24 = −7
{
b3 − b2 + 2ω̄α2

}
,

Ū05 = 7
{
18b4 − 5(9b3 − 8b2 + 3b1)−

15

4
ω̄(1− α+ β)

[
(1− 3α)2 + 3β2

]}
,
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Ū15 = −7
{
12b4 − 27b3 + 20b2 − 5b1 + ω̄α

[
2(5− 15α+ 12α2) + 15β(1− α+ β)

]}
,
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21

4
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,

where we refrain from spelling out explicitly the form of bµ(W,W ′) for higher values of µ, as
these functions follow directly from their definition (8.58). From (8.68) follows

V̄04 =
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6
α
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, (C.3)
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.

C.2 t-channel partial-wave projection

The explicit forms of the polynomial parts ĀJl, B̄Jl and C̄J,l from (9.34) for (J ≤ 2, l ≤ 6)
that are needed in order to calculate the kernels G̃Jl and H̃Jl for (J ≤ 2, l ≤ 5) via (9.35) read
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,
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}
,

B̄21 = 0 , B̄22 =
1

ptqt

2

5γ̃
, B̄23 =

1

ptqt

1
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{
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6
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}
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,
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,
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1

s′ − a
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,
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