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IV 

Morphological reflectors and molecular predictors of preimplantation 

developmental competence in bovine oocytes and embryos 

 

The efficiency of in vitro production (IVP) of bovine embryos still remains low, 

reaching blastocyst rates between 25 and 35 %. Accordingly, the necessity to define 

reliable predictors for developmental competence is indispensible. Up to now most 

morphological and molecular markers are subjective and partly invasive and thus 

relatively inaccurately. Therefore, the aim of the first experiment of the present 

approach was to evaluate the effect of structural changes in zona pellucidas’ (ZP) 

morphology during in maturation on developmental competence using polarized light 

microscopy. Structural changes in terms of number and size of pores were displayed by 

the Scanning electron microscopy and determined quantitatively in zona pellucida 

birefringence (ZPB). Immature oocytes classified as high presumble quality oocytes 

exhibited highest values for birefringence, and in vivo matured oocytes showed the 

lowest values for birefringence compared to their in vitro matured counterparts. These 

results implicate, that decreasing values for ZPB during maturation are typical for high 

developmental competence. In the second study of the present thesis, the transcriptome 

profile of one blastomere of a bovine 2-cell stage embryo was directly correlated with 

the developmental potential of the corresponding sister blastomere. Analyses using 

microarray technology revealed specific molecular fingerprints for blastomeres whose 

sister blastomere developed to the blastocyst stage in contrast to those blastomeres 

whose sister blastomeres stopped cleaving after separation or were blocked before 

embryonic genome activation (EGA). Pathway analyses uncovered, that differentially 

regulated genes (DEG) were mostly involved in oxidative phosphorilation, oxidative 

stress response and antioxidant activity. Five candidate genes, namely, NDUFS1, 

MAPK14, CAT, PRDX1 and PRDX6, which are known to act as either direct or indirect 

scavengers of reactive oxygen species (ROS), were selected and their expression levels 

were further characterized using two independent models for developmental 

competence. Furthermore, ROS staining revealed high ROS accumulations in late 

cleaved or rather developmentally incompetent 2-cell stage embryos, compared to low 

ROS levels in early cleaved and therefore presumable highly competent 2-cell stage 

embryos. Taken together, noninvasive morphological criteria predicting subsequent 

developmental competence of matured bovine oocytes were identified in this work. 

Moreover, a direct correlation between molecular mechanisms and the individual 

developmental competence, which was found to be already determined in the 2-cell 

stage, could be detected.  
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Untersuchungen boviner Eizellen und Embryonen auf morphologischer und 

molekularer Ebene zur Identifizierung von entwicklungsrelevanten Markern 

In Anbetracht der relativ geringen Effizienz der in vitro Produktion (IVP) boviner 

Embryonen mit Blastozystenraten von 25 bis 35 %, ist es unverzichtbar, zuverlässige 

Prädiktoren für das Entwicklungspotential von Eizellen und Embryonen zu definieren. 

Bis heute sind die meisten morphologischen und molekularen Qualitätsparameter 

subjektiv und von invasiver Natur. Daher war es das Ziel in der ersten Studie der 

vorliegenden Arbeit, strukturelle Veränderungen in der Zona pellucida (ZP) während 

der in vitro Maturation (IVM) mit Hilfe der Polarisationslichtmikroskopie quantitativ 

zu erfassen und mit dem Entwicklungspotential zu korrelieren. Strukturelle 

Änderungen bezogen auf Anzahl und Größe der Poren in der ZP zeigten sich bei der 

Analyse mittels eines Rasterelektronenmikroskops und spiegelten sich in der 

Doppellichtbrechungsintensität der Zona pellucida (ZPB) quantitativ wieder. Immature 

Eizellen, die als qualitativ sehr gut eingestuft wurden, zeigten die höchsten Werte für 

die ZPB, wohingegen die in vivo maturierten Eizellen im Vergleich zu den in vitro 

maturierten die niedrigsten Werte aufwiesen. Diese Ergebnisse implizieren, dass 

abnehmende Werte für die ZPB während der Maturation als Pärdiktor für hohe 

Eizellqualität genutzt werden können. Zusammenfassend konnte gezeigt werden, dass 

die Polarisationslichtmikroskopie als nicht invasisver Prädiktor für das 

Entwicklungspotential genutzt werden kann. In der zweiten Studie der vorliegenden 

Arbeit wurde eine direkte Korrelation zwischen dem Transkriptionsprofil einer 

Blastomere eines bovinen Zweizellers zum Entwicklungspotential der 

korrespondierenden Schwesterblastomere hergestellt. Beim Vergleich mittels 

Mikroarraytechnologie wurden spezifische molekulare Fingerabdrücke für 

Blastomeren ermittelt, deren Schwesterblastomeren sich zur Blastozyste entwickelten 

im Gegensatz zu denen, deren Schwesterblastomeren sich nicht weiter teilten oder vor 

der embryonalen Genomaktivierung (EGA) geblockt wurden. Nach Analyse der durch 

die differentiell regulierten Transkripte betroffenen Stoffwechselwege zeigte sich, dass 

diese Gene hauptsächlich in oxidative Phosphorilierung, oxidative Stressantwort und 

antioxidative Aktivität involviert waren. Die Expremierung der daraus selektierten 

Kandidatengene NDUFS1, MAPK14, CAT, PRDX1 und PRDX6, deren direkte und 

indirekte Funktionen bei der Eliminierung von freien Radikalen bekannt ist, wurde an 

Hand von zwei unabhängigen Kompetenzmodellen weiter charakterisiert. Des 

Weiteren zeigte Färbung, dass spät geteilte Zweizeller mit einem geringeren 

Entwicklungspotential sehr hohe Anreicherungen an freien Radikalen aufwiesen im 

Gegensatz zu früh geteilten Zweizellern mit einem hohen Entwicklungspotential, die 

nur niedrige Anreicherungen zeigten. Schlussfolgernd konnte gezeigt werden, dass 

spezifische molekulare Mechanismen direkt mit dem Entwicklungspotential korrelieren 

und es bereits im Zweizeller determinieren.  
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1.1 Introduction  

The majority of in vitro produced bovine embryos is used for fundamental research, to 

understand the whole process of preimplantation embryo development and to examine 

aberrant developmental processes, related to fertility problems in cattle (reviewed by 

Lonergan and Fair 2008). Economically considered, in vitro production (IVP) is a 

promising tool for bypassing infertility in bovine caused by ovulation and fertilization 

failure, early embryonic death and other causes (Royal et al. 2000). In comparison to in 

vivo produced embryos in vitro produced embryos are known to exhibit developmental 

retardation following maturation, fertilization and culture. (Farin et al. 2006; Greve and 

Callesen 2005; Gutierrez-Adan et al. 2004; Khurana and Niemann 2000; van Soom et 

al. 1997; Wright and Bondioli 1981). On morphological and molecular levels, several 

differences between in vivo and in vitro produced embryos have been described so far, 

which are mainly believed to be induced by maturational and culture environment, but 

also by breed, oocyte quality and follicular environment. (Holm et al. 1998; Lonergan 

et al. 2006; Lopes et al. 2007; Thompson 1997; Wrenzycki et al. 2005).  

 

1.1.2 In vitro production and developmental competence of bovine embryos 

Although, IVP is an established method for about 35 years, there are two limiting 

factors in the current in vitro production systems; on the one hand blastocyst rates are 

still restricted to 25 – 35 % and on the other hand the blastocysts are of poor quality 

compared to in vivo derived ones. Recently, it was described that in vitro matured and 

in vitro fertilized embryos, which were transferred to sheep oviducts could improve 

their quality in terms of cryotolerance, to a level which is similar to that of totally in 

vivo produced embryos. (Enright et al. 2000; Rizos et al. 2002a; Rizos et al. 2002b). 

Correspondingly, in vivo matured and fertilized embryos resulted in very low 

cryotolerance preserved at blastocyst stage, when they were transferred to an in vitro 

culture system at zygote stage. 

In contrast, no influence on blastocyst yield was observed by in vivo culture of 

presumptive zygotes which were transferred to the oviduct. They resulted in similar 

blastocyst rates like the in vitro control group, implicating that blastocysts quality is 

dependent on post-fertilisation culture conditions and blastocyst rates are determined 

by prefertilization environment (Hendriksen et al. 2000). Therefore, the success of in 

vitro production depends on the starting material, whose intrinsic quality represents the 
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basis for the embryonic developmental competence, which seems to be fixed in the 

oocyte (Lonergan et al. 1999). Although developmental capacity improved during the 

last decades due to advanced in vitro systems, in vitro produced blastocysts differ 

significantly from their in vivo derived counterparts on morphological levels like 

colour of the blastomeres, the extent of compaction, timing of blastocyst formation and 

expansion and diameter of the embryo at hatching  (reviewed by van Soom et al. 2003). 

They differ on the subcellular level including dissolution of nucleoli and mitochondrial 

activity (Torner et al. 2008) and on molecular levels (Knijn et al. 2005; McHughes et 

al. 2009). There is evidence to suggest that there should be a huge repertory of markers 

to select developmentally competent oocytes and embryos, in detail those vitro 

embryos with greatest affinity to in vivo derived embryos representing the golden 

standard embryos. Albeit, most available tools are restricted in their applicability; 

evaluations of morphological assessment depend mostly on subjective perception and 

molecular analyses are invasive techniques, avoiding subsequent development. 

Additionally, many analyses are carried out on pooled groups of oocytes and embryos, 

raising difficulties in interpretation on an individual basis (reviewed by Lonergan and 

Fair 2008). As mentioned above, the limiting factor of in vitro development could be 

the intrinsic quality of the matured oocyte, which is determined by the proportion of 

oocytes developing to the blastocyst stage (Lonergan et al. 2003). Nevertheless, factors 

influencing oocytes developmental competence in vivo have been described in the past, 

like, age of the donors (Salamone et al. 2001), parity, genetic ability for milk and body 

condition score (Snijders et al. 2000) as well as level of protein feeding (Sinclair et al. 

2000) and the season (Al-Katanani et al. 2002). 

 

1.1.3 Effect of maturational environment on developmental competence of bovine 

oocytes 

Investigations during the last years, postulated that in vivo matured oocytes derived by 

ovum pick up (OPU) are more competent than their in vitro matured counterparts, 

implicating a higher intrinsic quality of in vivo matured oocytes (Merton et al. 2003). 

Characterization of oocytes’ developmental competence  is based on 5 major levels 

including, the ability to resume meiosis, to cleave following fertilization, to develop to 

blastocyst stage, to induce pregnancy, to bring it to term and to develop to term in good 

health (reviewed by Sirard et al. 2006). 
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The oocytes’ quality is acquired during folliculogenesis, growth phase and finally 

during maturation period. In vitro maturation of immature oocytes does not fully 

resemble this process, resulting in reduced developmental competence (Krisher 2004). 

It is well known, that a greater proportion of in vivo matured oocytes reach the 

blastocyst stage than those matured in vitro (Greve et al. 1987; McCaffrey et al. 1991; 

van Soom et al. 1992). Developmental competence is acquired through several 

mechanisms during folliculogenesis, which are necessary for an accurate maturation. 

During the acquirement of developmental capacity the oocyte passes several important 

processes including germinal vesicle breakdown (GVBD) and reaching metaphase I 

and II (Fair et al. 1995). Within maturational process, which is divided into nuclear and 

cytoplasmic maturation, the oocytes grow and undergo remodelling on cellular and 

molecular levels to comply all requirements for subsequent development (Sirard et al. 

2006). In our in vitro production systems, the oocytes are collected from ovaries 

obtained from local slaughterhouses, implicating a wide variety of the oocytes in origin 

e.g. follicular wave or stage of estrus cycle. These oocytes are usually in different 

stages of atresia or in different phases of growth (Farin et al. 2006). Generally, the 

majority of oocytes would never have undergone maturation process in vivo, where the 

dominant follicle acquires more LH receptors than the subordinates, allowing further 

growth within low FSH levels and increasing LH levels. As the FSH level is indirectly 

reduced by the dominant follicle, it deprives essential growth factors for subordinate 

follicles, leading to their regression (Ginther et al. 2000; Mihm et al. 2008). 

Furthermore, our in vitro systems cannot fully mimic, in vivo like maturational 

conditions, which could harm temporal interaction processes during maturation in the 

cytoplasm and nucleus. De Loos et al. 1992 reported that at the cytoplasmic level some 

processes were found to be deficient in in vitro maturation e.g., retardation in  forming 

of an organelle free cortex, change of association between endoplasmatic reticulum and 

lipid is delayed, and small clusters of cortical granules still be present. While 

evaluation of maturation on the cytoplasmic level still remains difficult, the score of 

nuclear maturation has turned out as a parameter for success of an in vitro system (de 

Loos et al. 1992). It was shown, that a higher proportion of oocytes extruding the first 

polar body between 16 and 20 hours of maturation reach the blastocyst stage than those 

extruding their first polar body at a later date (van der Westerlaken et al. 1994). 

Although 90% of in vitro matured oocytes extrude their first polarbody and accomplish 
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nuclear maturation, the cytoplasmic maturation is considerably affected (de Loos et al. 

1992; De Loos et al. 1994; Hyttel et al. 1986), as indicated by the fact, that only one 

third of oocytes develop to the blastocyst stage in vitro. 

 

1.1.4 Morphological markers for oocytes developmental competence 

Several morphological and cellular markers have been introduced, that aimed to select 

competent and “in vivo like” oocytes. One very common criteria is morphology, with 

respect to the colour of the cytoplasm and the constitution of cumulus cells, which was 

defined by Wurth and Kruip 1992, namely I) presence of a clear and compact cumulus 

and translucent ooplasm, II) dark and compact cumulus and dark ooplasm, and III) dark 

and expanded cumulus and dark ooplasm. Indeed, the reliability of these 

morphological, on subjectivity based, quality assessments is complicated by the high 

heterogeneity of in vitro matured oocytes and in vitro produced embryos, implicating 

the need for markers, independent of subjective evaluation. Otoi et al. 1997 reported 

that the developmental competence is related to the oocytes diameter: an increasing 

diameter goes along with increasing blastocyst rates.   Furthermore, growth status, 

based on Glucose- 6- phosphate dehydrogenase activity (G6PD), being high in growing 

and nearly absent in fully grown oocytes, has turned out to be a reliable tool for 

developmental competence. A higher proportion of oocytes, which completed their 

growth phase, developed to the blastocyst stage compared to their growing 

counterparts. Brilliant cresyl blue (BCB) staining is a method to visualize the growth 

status of an oocyte. High G6PD activity in growing oocytes, brakes down the dye and  

turn the blue colour into colourless (BCB-), whereas fully grown oocytes without 

G6PD activity stay blue (BCB+) (Pujol et al. 2004; Alm et al. 2005; Bhojwani et al. 

2007). This method allows a reliable classification into competent and incompetent 

oocytes, not depending on subjectivity like the COCs morphology does. However, up 

to now, the sustainable effect on the oocytes has not been clarified.  

Therefore, the introduction of polarized light microscopy in 1997 opened a new 

window for assessment of oocytes quality. This was the first method, which quantified 

the developmental competence numerical, by measuring the intensity of birefringence 

of the zona pellucida (Keefe et al. 1997). These measurements are based on the 

characteristics of the vibrating light rays created by polarized light. If these light rays 

pass through orderly arranged filamentous, they are retarded or double refracted, 
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measured as the so called birefringence intensity, which can be quantified by special 

software (Montag et al. 2008; Rama Raju et al. 2007). In human it has turned out to be 

a feasible method to predict pregnancy outcome almost certainly. Oocytes displaying 

higher birefringence had significantly higher developmental and pregnancy rates than 

oocytes with low values for birefringence (Montag et al. 2008) Contrasting, in bovine it 

has been shown, that the developmentally competent zygotes exhibit lower values for 

birefringence, than incompetent ones (Koester et al. 2011). However, the effect of 

maturational environment on zona pellucidas birefringence and its implications for 

developmental competence in the bovine has not been shown yet.  

During in vivo maturation the zona pellucida penetrated by cytoplasm appendices of 

corona radiata cells, which are closely connected to the plasmamembrane. This leads to 

homogenous porous surface of the zona pellucida. In contrast, after in vitro maturation 

the surface was shown to be nearly poreless, assuming an insufficient contact between 

corona radiate cells and zona pellucida (Macchiarelli et al. 1992; Suzuki et al. 1994). 

Furthermore, it has been reported, that the duration of maturation has crucial impacts 

on the function and constitution of the zona pelludica. If maturation time is extended to 

28 hours and or even longer, the polyspermy rate increases drastically, implicating the 

loss of zona pellucidas property to harden as thereby block polyspermy after 

fertilization (Chian et al. 1992). These differences in zona pellucida properties, caused 

by maturational environment, might be causative for aberrant subsequent in vitro 

development of bovine IVP embryos. Therefore in chapter 2 the effect of maturational 

environment on zona pelludia properties was investigated, implicating the hypothesis 

whether the zona pellucida reflects a suitable maturational environment and in 

succession can serve as a predictor for developmental competence. 

 

1.1.5 Molecular markers for developmental competence 

Beside several morphological criteria for selection of developmentally competent 

oocytes and embryos, there are also criteria based on the gene expression and 

transcriptome analyses. It is well accepted, that the ability of an oocyte to develop into 

a viable embryo depends not only on its morphological appearance but also on the 

accumulation of specific information and molecules such as RNA, protein or imprinted 

genes during oogenesis (reviewed by Eichenlaub-Ritter and Peschke 2002). During the 

last years more and more studies analyzed the molecular level, to discover genes which 
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are involved in early embryonic development and whose expression is indispensible for 

preimplantation development (Corcoran et al. 2007; Knijn et al. 2005; Sagirkaya et al. 

2006; Tesfaye et al. 2003). 

Three major steps within preimplantation development, namely, first cleavage division, 

embryonic genome activation (EGA) and blastocyst formation, requiring well- 

orchestrated expression of maternal or embryonic derived genes have been reported 

(Kidder 1992). Until embryonic genome activation, which occurs at the 8- to 16- cell 

stage in bovine, early development is regulated by maternal mRNA (Telford et al. 

1990). During its growth phase mRNA is transcribed and stored in the oocytes, to 

support maturation, fertilisation and early development to the point when the genome 

of the embryo is activated (Donnison and Pfeffer 2004). These stored maternal mRNA 

sustain the initial cell cycles of the early embryonic development. Bovine embryos, 

treated with α-amanitin, which acts as an RNA polymerase II inhibitor, develop until 

the 8- cell stage, indicating, that embryonic development until EGA is mostly 

dependent on maternal transcripts (Memili and First 2000).  Concerning the storage of 

RNA for further use in later stages, posttranscriptional control like poly- and 

deadenylation play crucial roles for the establishment of RNA machinery (Richter 

1999). Polyadenylation is responsible for the elongation of poly (A) tails which are 

necessary to induce transcription. Deadenylated transcripts with short poly (A) tails are 

stabilized and stored until recruitment for translation (Brevini et al. 2007; Eichenlaub-

Ritter and Peschke 2002). In fact, not a single gene was found to determine 

developmental competence, but an interaction between several genes involved in 

different pathways and biological processes like the regulation of transcription, 

posttranslational modification of proteins, cell cycle regulation, response to stress and 

growth factor and cell signalling (reviewed by Wrenzycki et al. 2005). Thus, 

identification of differentially regulated genes is essential to understand the critical 

events that occur during the period of early preimplantation development (Khurana and 

Niemann 2000). It has been shown during the last years that mRNA expression patterns 

correlate with other quality markers. For example, follicle size, stage of follicular 

growth and meiotic maturation, maturational environment, COCs quality and time of 

first cleavage are phenotypic measurable parameters of proven value for indication of 

developmental competence which are strongly correlated to differences in the 
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expression of developmentally important transcripts (reviewed by Wrenzycki et al. 

2007).  

 

1.1.6 Limiting factors for molecular analyses 

Although, numerous studies deal with gene expression pattern during early 

preimplantation development, describing explicitly how IVP embryos differ from in 

vivo derived embryos, the interpretation of such data remains difficult, due to the 

invasive nature of gene expression analyses (reviewed by Lonergan and Fair 2008). 

This is the main disadvantage of the gene expression studies. The lineage between gene 

expression profile and given developmental capacity of the embryo to a subsequent 

stage is missing.  

Usually, oocytes and embryos are classified based on competence models, like cumulus 

morphology or time of first cleavage, to detect transcripts related to developmental 

competence. However, these studies only display a group effect avoiding the analyses 

of individual embryos. For instance, early cleaving embryos are more competent to 

develop to the blastocyst then their later cleaving counterparts and show different 

expression levels of developmentally important genes than their later cleaving 

counterparts (Dode et al. 2006; Fair et al. 2004; Mourot et al. 2006), but not all early 

cleaving embryos develop to the blastocyst stage. Furthermore, it is mostly accepted 

that in vivo derived blastocyst, differ phenotypically and genetically from in vitro 

derived blastocyst (Corcoran et al. 2006; Corcoran et al. 2007; McHughes et al. 2009; 

Mohan et al. 2004; Tesfaye et al. 2004), but not all in vivo blastocysts induce 

pregnancy and result in calf delivery. Therefore, there is basic necessity to establish 

study designs for analyses of gene expression profiles directly related to the individual 

developmental competence of preimplantation embryos. 

A method offering a solution to avoid measurements of group effects and allow to 

correlate transcriptome profiles with developmental potential directly, has been 

conducted in our laboratory, by analysing the gene expression of biopsies of in vitro 

produced blastocyst prior embryo transfer to recipients (El-Sayed et al. 2006). These 

analyses revealed several clusters of genes to be differentially regulated between 

biopsies derived from blastocysts that resulted in no pregnancy, resorption or calf 

delivery. Biopsies resulting in calf delivery were enriched in transcripts, necessary for 

growth factor, signal transduction and implantation, whereas, biopsies from embryos, 
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that were resorbed or resulted in no pregnancy showed a higher abundance for 

transcripts related to protein phosphorylation, plasma membrane and glucose 

metabolism, inflammatory cytokines and inhibitors of implantation. A similar 

experiment, using in vivo derived blastocyst instead of in vitro produced ones, was 

conducted in 2011 (Ghanem et al. 2011). Interestingly, a similar gene expression 

pattern was observed between in vivo and in vitro derived blastocyst resulting in calf 

delivery. Typical trends of expression for 21 genes could be related to developmental 

incompetence (Ghanem et al. 2011).These studies were the first, which directly 

correlated transcriptome profiles with pregnancy outcomes on the individual basis 

avoiding the group effect as a source of error. However, studies performing embryo 

transfer (ET) are enormously complex, requiring high technical skills and housing 

recipient herd. To circumvent this and to investigate molecular mechanisms involved in 

the early preimplantation phase related to developmental competence of individual 

embryos, the technique of taking embryo biopsies was transferred to the 2- cell stage. 

Several studies dealing with the development of individual blastomeres of 2-cell stage 

embryos in different species have been conducted during the past decade. It has been 

shown, that both blastomeres of a 2-cell stage embryo are totipotent and develop to the 

blastocyst stage independently (Dang-Nguyen et al. 2011; Katayama et al. 2010; 

Tagawa et al. 2008). But there are contradicting opinions and results concerning the 

cell fate after the first cleavage division, implicating either a determination of inner cell 

mass (ICM) and trophectoderm (TE) or undifferentiated cells which contribute to ICM 

and TE at the same proportion. The group of Magdalena Zernicka-Goetz postulated 

that the polarity of the 2- cell embryos predicts the embryonic and abembryonic axis of 

the blastocyst and that the fate of blastomeres is already different (Plusa et al. 2005; 

Zernicka-Goetz 2011; Zernicka-Goetz 2002; Zernicka-Goetz 2004). This is in line with 

several observations, demonstrating, that cell-cell contact after second cleavage seems 

to be the key factor in determining whether a cell adopts a TE or ICM fate (Niwa et al. 

2005; Piotrowska et al. 2001). Indeed, in absence of cell-cell contacts due to second 

cleavage we suggest that singled sister blastomeres in our study not yet established 

polarity and did not show lineage pre-patterning in the separated blastomeres as it has 

reported recently (Lorthongpanich et al. 2012). Since both separated blastomeres of a 

2- cell embryo are still able to develop to term and to produce identical twins (Hancock 

1954; Ozil et al. 1982; Seike et al. 1989; Tagawa et al. 2008) evidencing pluripotency, 
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we believe that separated sister blastomeres establish lineage pre-patterning as a 

consequence of polarity through subsequent cleavages one cell cycle later. Recently it 

was published, that both blastomeres of a murine 2-cell stage embryo are genetically 

identical (Roberts et al. 2011; VerMilyea et al. 2011), implicating that one blastomere 

is the reflection of its sister blastomere and can be used as a molecular predictor of the 

individual developmental competence of the corresponding sister blastomere. 

 

1.2 Scope of the thesis 

Taken together, the present work proves the hypothesis that developmental capacity is 

fixed at a high degree after the first cleavage division. To proof this, two different 

experiments were conducted on morphological as well as on molecular level.  

 

 

1. Analyses of the correlation between oocytes’ morphology and maturational 

environment as well as subsequent developmental competence. 

 

 2. Identification of typical transcriptomic fingerprints predicting individual 

developmental competence. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 1 – General overview 

 

11 

1.3 Material and methods objective 1 

 

To achieve the objectives of this thesis several materials and methods were conducted. 

Detailed descriptions of material and methods as well as specifics of media 

composition and quantity can be found in Chapter 2. The most important techniques 

are described here. 

 

1.3.1 Collection of in vivo matured oocytes by Ovum pick up (OPU) 

The first ultrasound-guided transvaginal ovum pick up (OPU) in the cow was reported 

in 1988 (Pieterse et al. 1988) and conducted on non stimulated animals. This technique 

allows the recovery of in vivo matured oocytes for in vitro fertilisation and culture, to 

produce several embryos from one individual cow. The introduction of 

superstimulation prior to OPU delivered the advantages that more follicles could be 

aspirated and more oocytes retrieve (Pieterse et al. 1991; Stubbings et al. 1990). There 

are several protocols for superstimulation procedure. In the present thesis a pre-

synchronization prior to superstimulation was conducted. Therefore, donor heifers were 

injected with Prostaglandine (PGF2α) twice within eleven days, to regress the Corpus 

Luteum, which induces the completion of lutealphase, implicating the beginning of a 

new follicular phase or oestrus cycle. After each PGF2α injection the administration of 

Gonadotropin Releasing Hormone (GnRH) was performed, to receive a higher 

homogeneity of the follicle state. This allows a more precise forecasting of oestrus on 

the one hand and a higher probability of synchronized LH- peak on the other hand. 

Twelve days after the last GnRH injection, the treatment with follicle stimulating 

hormone (FSH) started. All together, eight consecutive FSH injections over four days 

in decreasing doses were given, to induce the growth of multiple follicles. The 

regression of the existing Corpus Luteum is induced by two PGF2α injections. Another 

GnRH treatment triggers endogenous LH secretion, which in turn induces ovulation. 

Therefore, the OPU of MII- Oocytes has to be conducted 16 – 20 h after the last GnRH 

treatment.  

In the present approach OPU was conducted endoscopically by U. Besenfelder, who 

developed this technique. 

Prior to OPU the donor heifers have to be restrained and an epidural anaesthesia has to 

be administered. Than a tocar set consisting of a universal metal tube and an atraumatic 
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mandrin was placed in the caudodorsal area of fornix vaginae. After replacement of the 

mandrin by a sharp tocar, the tocar set was inserted through the vaginal wall into the 

peritoneal cavity. Finally, the sharp tocar was removed and a shaft bearing the 

endoscope and the punctation line, consisting of a single lumen needle connected to 50 

ml Falcon tube was inserted.  The whole system is connected to a vacuum pump, 

creating a constant flow rate of 16 to 20 ml/min. The ovary is manually placed in the 

right position and all follicles of each ovary aspirated by vacuum pressure, stored at 

body temperature and finally poured into a square grid dish from where the oocytes 

were taken out under a stereomicroscope. The OPU procedure has turned out be an 

efficient method to receive in vivo matured, high quality oocytes, which were used as a 

control group for high developmental competence.  

 

1.3.2 In vitro production of bovine embryos 

The in vitro production of bovine embryos is divided into three steps: in vitro 

maturation (IVM), in vitro fertilization (IVF) and in vitro culture (IVC). 

Prior to IVM the Cumulus- Oocyte- Complexes (COCs) are recovered from ovaries 

obtained from the local slaughterhouse. Therefore, antral follicles (2 to 8mm in 

diameter) were aspirated using an 18-gauge needle attached to a 5 ml syringe. The 

follicular fluid containing COCs is collected in a 50ml conical tube. Under 

stereomicroscope the COCs are collected and transferred to modified tissue culture 

medium, which is amongst others supplemented with Hepes, acting as a buffer to 

maintain the pH value under normal CO2 and O2 conditions, and with gentamycin to 

avoid bacterial-and fungal contaminations. After three washing steps groups of 50 

COCs are transferred to a four well dish containing 400µl maturation media, modified 

Parker Media (MPM), supplemented with oestrus cow serum as a protein source and 

FSH, to promote nuclear and cytoplasmic maturation (exact composition and quantity 

can be found in chapter 2 and 3). The media is covered with mineral oil and the four 

well dish with embryos incubated for 22 hours at 38.7°C in 5% CO2 in air with highest 

humidity.  

Prior to IVF the frozen and thawed sperm has to undergo a swim-up procedure to 

separate the vital sperms from dead sperm and cryoprotectives. This procedure is a 

period of preparation that normally occurs in the female genital tract and takes place in 

vitro in capacitation media, which additionally induces capacitation, an initial sperm 
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membrane alteration by supplementation of Heparin. After 50 minutes motile sperms 

are taken from the supernatant and centrifuged, to collect them in a pellet. After 

resolving the pellet the sperm is transferred to fertilization media in which the oocytes 

have transferred before. Additionally to Heparin, fertilization media is supplemented 

with hypotaurin and epinephrin to induce the acrosome reaction, the fusion of the 

plasma membrane and the acrosomal membrane (for exact media composition and 

quantity see material and methods chapter 2 and 3). During fertilization oocytes and 

sperm are incubated at 38.7°C in 5% CO2 in air with highest humidity. Following 18 

hours of in vitro fertilization, cumulus cells of consumptive fertilized oocytes are 

removed by 2 minutes vortexing and groups of 50 oocytes are transferred to     400 µl 

culture media, namely Charles Rosenkrans (CR1aa) media, supplemented with oestrus 

cow serum as a protein source as well as with basal medium Eagle (BME) and  

minimum essential medium (MEM) for maintenance with essential and non- essential 

amino acids. Additionally, the amino acids are supposed to act as energy substrates, pH 

regulators and as pool for de novo protein synthesis (Rosekrans and First 1994). The 

culture media is covered with mineral oil and incubated for eight days at 38.7°C in 5% 

CO2 in air with highest humidity.  

 

1.3.3 Zona pellucida live imaging 

In detail, individual measuring of immature oocytes, in vivo and in vitro matured 

oocytes as well as of growing (BCB-) and fully grown (BCB+) oocytes was done non-

invasively with a Leica DM IRB inverted microscope, a circular polarization filter and 

liquid crystal analyzer optics. The birefringence analysis including autocalibration was 

fully controlled by a polarization imaging software module (OCTAX Polar Aide) 

implemented in an imaging software system (OCTAX Eyeware). 

The OCTAX PolarAIDE system performs polarization microscopy imaging, which 

produces an image indicating the special distribution of the retardance in the zona 

pellucida. The birefringence image obtained is dominated by the inner zona layer, 

whose radial birefringence intensity is of interest for zona scoring. The image 

processing on the birefringence image extracted several birefringence intensity profiles 

(n>20) across the inner zona layer. For each of the profiles, i.e. along the entire zona 

layer, the thickness of the inner layer (WT) and a cumulated birefringence value (CV) 

over the inner zona layer were calculated. These values (which were computed for each 
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intensity profile, i.e. over the entire cell's circumference) were averaged and resulted in 

the values CV-Mean (mean intensity of birefringence) and WT-Mean (mean thickness 

of the inner layer of the zona pellucida).  

 

1.3.4 Experimental design 

Altogether, four successive experiments were conducted: 

 

1. To evaluate COCs quality and the effect of maturational environment on zona 

pellucidas structure, immature oocytes were classified according to their COCs 

morphology into quality 1 (Q1, presence of a clear and compact cumulus cells 

with more than three layers), quality 2 (Q2, compact cumulus with two or three 

layers) and quality 3 (Q3, oocytes with one or fewer layer of cumulus) before 

cumulus removal as well as in vivo and vitro matured oocytes were analyses by 

scanning electron microscopy (SEM). 

2. The effect of COCs quality and maturational environment on developmental 

competence after in vitro fertilization was investigated 

3. Effect of COCs morphology and maturational environment on zona pellucida 

birefringence of immature and matured bovine oocytes. 

4. Effect of initial growth status on zona pellucida birefringence. 
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1.4 Material and methods objective 2 

 

To achieve the objectives of this thesis several materials and methods were conducted. 

Detailed descriptions of material and methods as well as specifics of media 

composition and quantity can be found in Chapter 3. The most important techniques 

are described here. 

 

1.4.1 Bisection of 2-cell stage embryos and individual culture 

After the standard in vitro maturation and fertilization of COCs derived from ovaries 

collected at the local slaughterhouse, in vitro culture of presumptive zygotes in groups 

of 50 was conducted as described for Objective 1. For culture Charles Rosenkrans 

(CR1aa) media was used as described above. 28 to 30 hours post insemination (hpi)    

2-cell stage embryos were collected and immediately placed in phosphate buffered 

saline supplemented with 0,5% protease, an enzyme that catabolises proteins by 

hydrolysis of peptide bonds, like those which can be found in the zona pellucida of 

mammalian oocytes and embryos. After two minutes the zona pelludcida is removed 

and the zona free 2-cell stage embryos were carefully transferred to tissue culture 

medium (TCM199), which stops the protease reaction. Three washing steps were 

conducted and finally single zona free 2-cell stage embryos were transferred to one 

well with CR1aa and pipetted gently with a narrow glass pipette. Due to the 

movements the blastomeres separate from each other.    

In a preliminary experiment both blastomeres were cultured in an individual culture 

system based on the Well of the Well (WoW) system described by (Vajta et al. 2000). 

WoWs are prepared manually by drilling 16 small holes into the bottom of 4 wells of a 

five well culture dish. The holes are cylindrical in shape (0.7mm depth and 0.7mm in 

diameter). The wells were washed with CR1aa and after equilibration single 

blastomeres were cultured individually until day 8. The aim of this experiment was to 

find out, whether both blastomeres of a 2-cell stage embryos have the same 

developmental potential and in which proportion they develop to the blastocyst stage. 

In the main experiment, blastomeres were separated and one blastomere was cultured 

individually, while the counterpart was snap frozen in liquid nitrogen. In this process 

the single blastomere is placed in a lockable plastic tube and carefully soaked in liquid 

nitrogen, which conserves the RNA from degradation. Finally tubes were stored          
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in -80°C until usage. On day three and day eight of culture, cleavage and blastocyst 

rates of the individual cultured blastomeres were counted. According to development, 

the frozen and stored counterparts were pooled into three groups. The first group were 

those whose counterparts did not cleave any further after separation (2CB), the second 

group were those whose counterparts stopped cleaving before embryonic genome 

activation (8CB) and the reference group were those blastomeres whose counterparts 

developed to the blastocyst stage (BL). 

 

1.4.2 RNA isolation, amplification and microarray hybridization  

Prior to RNA isolation the tubes containing single blastomeres where thawed and 

centrifuged to ensure, that the sample is on the bottom of the tube and finally pooled in 

groups of fifteen according to the development of the corresponding sister blastomere 

as described above.  

For RNA isolation the PicoPureTM RNA Isolation Kit (Arcturs, Munich, Germany) was 

used. Genomic DNA contamination was removed by performing on column DNA 

digestion using RNase-free DNase (Qiagen GmbH, Hilden, Germany). Quantity and 

quality of the extracted total RNA was verified on a 2100 Bioanalyzer (Agilent 

Technologies Inc, CA, USA). Due to the relatively low amounts of isolated RNA, two 

rounds of amplification were considered to be necessary to receive an adequate amount 

of RNA for microarray analysis. The RiboAmp® HS kit incorporates a T7 polymerase 

promoter into a double-stranded complementary DNA (cDNA), from which antisense 

RNA (aRNA) is transcribed. Two rounds of amplification enables to produce 106 – fold 

the amount of input RNA content. After amplification procedure 2µg of aRNA from 

each sample were conjugated with either Cy-3 or Cy-5 dyes using ULS Fluorescent 

labelling kit for Agilent arrays (Kreatech Diagnostics, Amsterdam, Netherlands). 

Samples from the three pools (biological replicates) of each group were hybridized on 

EmbryoGENE  bovine microarray (Made by Agilent 4 x 44k) using a dye-swap design 

(technical replicates) and placed in a hybridisation chamber at 65°C for 17 hours. In the 

next step the microarray slides were washed for 1 min in gene expression wash buffer 1 

(room temperature), 3 min in gene expression wash buffer 2 (42°C), 10 sec in 100% 

acetonitrile (room temperature) and 30 sec in stabilization and drying solution 

(Agilent), to remove the non-specific bindings of the spots. 
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Thereafter, the slides were scanned using the GenePix Pro Scanner. Raw data were 

corrected by background subtraction, and then normalized within and between each 

array (Loess and quantile, respectively). Statistical comparison between the groups was 

done with the Limma algorithm. Genes were considered to be differentially expressed 

at a foldchange >1.5 with adjusted P-value of < 0.05 using the Benjamini and 

Hochberg false discovery rate method (FDR < 0.1). 

1.4.3 Quantitative real time PCR  

During the last years real-time PCR has turned out as the method of choice for accurate 

and sensitive quantification of messenger RNA (mRNA). For array validation three 

independent biological replicates of the three groups (2CB, 4CB and BL) were used. 

For verification with the independent model of early and late cleaved 2-cell stage 

embryos, cDNA was synthesized using oligo dT (23) primers to detect the 

polyadenylated or rather active forms of the transcripts with a poly A tail of 23 or more 

nucleotides and random oligomers, which bind to all transcripts irrespectively of the 

poly A tail length.  

For the analyses in the present study, absolute quantification, the so called standard 

curve method was used. The quantity of the unknown sample is interpolated from a 

range of standards of known quantity. For standard curve construction, a serial dilution 

of a template with a known concentration is produced, serving as a standard for the 

unknown test samples. A serial dilution of 101 – 109 copy numbers of molecules for 

each of the selected genes was prepared from plasmid DNA. As an internal control and 

housekeeping gene GAPDH was used.   

In each run the cDNA sample, the serial dilution of plasmid standards and a non-

template control (NTC) was loaded to the 96 well plates.  The real time PCR analyses 

were performed in a 20 µl reaction volume containing iTaq SYBR Green Super mix in 

ABI PRISM® 7000 instrument (Applied Biosystems). Melting curve analyses were 

constructed to verify the presence of gene specific peak and the absence of primer 

dimer. Final quantitative analysis was carried out using the relative standard curve 

method and results were reported as the relative expression after normalization of the 

transcript amount relative to GAPDH. 
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1.4.4  Experimental design 

Several sub experiments were conducted, to investigate: 

 

1. whether both sister blastomeres of 2-cell stage embryos have the same 

developmental competence. 

2. whether the gene expression profile of 2-stage blastomeres is directly related to 

the individual developmental competence of the corresponding sister 

blastomeres. 

3. the transcript abundance of selected candidate genes in terms of random and 

polyadenylization in an independent competence model.  

4. the accumulation of reactive oxygen species (ROS) in competent and 

incompetent bovine 2-cell stage embryos. 

5. the effect of different environmental oxygen tensions on developmental 

competence and transcript abundance of selected candidate genes. 

6. transcript abundance of candidate genes in single sister blastomeres. 

7. the localization of selected proteins in competent and incompetent bovine 2-cell 

stage embryos. 
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1.5 Results 

 

The most important results are summarized here briefly. Detailed explanations can be 

found in the respective chapters.  

 

1.5.1 Influence of COCs morphology, maturational environment and growth 

status on Zona pellucida birefringence 

In the first experiment (Chapter 2) oocytes with different maturational origin and 

growth status were quantitatively analysed by polarized light microscopy with respect 

to developmental competence.   

Prior to polarized light microscopic measurements blastocyst rates were counted to 

evaluate developmental competence. Briefly, in vivo matured oocytes had significantly 

higher blastocyst rates than their in vitro derived counterparts (39.1% vs. 21.6%) and 

quality 1 COCs reached significantly higher blastocyst rates than quality 3 COCs 

(27.7% vs. 16.9%). 

The first parameter measured by polarized light microscopy is the mean birefringence 

of zona pellucida (CV-Mean). In vivo matured (MII) oocytes had significantly lower 

values for birefringence then in vitro matured oocytes (16.54 ± 2.41 vs. 20.76 ± 2.69). 

A similar proportion was observed according to the COCs quality of in vitro matured 

oocytes; good quality oocytes showed a significant lower birefringence than those 

classified as bad quality oocytes (20.23 ± 2.69 vs. 21.75 ± 3.56). Regarding the second 

parameter measured by polarized light microscope, the thickness of the inner layer 

(WT- Mean), the same decreasing trend from in vitro matured to in vivo matured and 

from quality 1 to quality 3 was observed. In vivo matured oocytes had a WT- Mean of 

10.72 ± 1.48 whereas the overall in vitro matured oocytes had a WT-Mean of 12.39 ± 

2.19. Shortly summarized, high quality matured oocytes have significantly lower 

values for birefringence and thickness of the inner layer than low quality oocytes. 

Concerning immature oocytes (GV), the lowest values for birefringence and thickness 

of the inner layer were observed for quality 3 oocytes, implicating a high birefringence 

value (20.95 ± 3.79 vs. 18.03 ± 2.85) and a thicker inner layer (11.44 value 1.92 vs. 

10.55 value 1.73) in quality 1 oocytes. In a next step, the results of immature and 

matured oocytes were correlated, showing that the trend from immature to matured 

oocytes in terms of birefringence and thickness of the inner layer were significantly 



Chapter 1 – General overview 

 

20 

different regarding maturational environment and COCs quality. In vivo maturation 

leads to a decrease in birefringence and thickness, whereas the in vitro maturation 

shows an increasing trend for birefringence and thickness. Regarding the COCs quality, 

the decreasing trend of in vivo maturation could be observed for good quality oocytes 

(shown in Figure 3 of Chapter 1). Finally, the influence of the oocytes growth status, 

namely G6PDH activity, on zona pellucida properties was evaluated. Briefly, fully 

grown oocytes had significantly lower values for birefringence (18.83 ± 3.5 vs. 20.37 ± 

4.49) and thickness of the inner layer (10.84 ± 1.95 vs. 11.77 ± 2.35) than their still 

growing counterparts as well as significantly higher blastocyst rates (32% vs. 11.5%). 

 

1.5.2 Association of bovine 2-cell stage blastomere transcriptome profile with the 

individual developmental potential of the sister blastomere 

The aim of the second experiment (Chapter 3) was to find a significant transcriptome 

profile and to detect candidate genes which are directly related to the developmental 

competence.  

Prior to gene expression analyses, developmental synchrony was confirmed, by 

separating both blastomeres of a 2-cell stage embryo followed by an individual culture. 

The results show, that there is a high synchrony in development, implicating, when the 

given blastomere develops to the blastocyst, 94% of corresponding sister blastomeres 

develop to the blastocyst as well. Accordingly, if one blastomere did not cleave any 

further after separation a proportion of 70% of the sister blastomeres did also not 

cleave any more. For gene expression analyses a unique custom microarray (Agilent) 

containing 42,242 oligo probes was used. 

The differences in gene expression were uncovered between blastomeres whose 

counterparts developed to the blastocyst stage, as the control group and those whose 

sister blastomere either stopped cleaving after separation or cleaved until embryonic 

genome activation. In the first comparison (BL vs. 2CB) 632 genes were differentially 

regulated of which 298 were upregulated in blastomeres whose counterparts developed 

to the blastocyst stage and 334 downregulated. Considering the second comparison (BL 

vs. 8CB), we found 150 genes to be differentially expressed. 61 genes were 

upregulated in blastomeres whose sister blastomeres developed to the blastocyst stage 

and 89 were downregulated. 
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Considering, transcriptome analyses, we found 632 genes to be differentially regulated 

between BL and 2CB, 150 between BL and 8CB and 77 were found to be commonly 

differentially regulated between both incompetent groups and the competent group, 28 

of them were upregulated and 39 downregulated. These gene lists were uploaded to 

two different gene ontology softwares. For biological processes and molecular 

functions the DAVID software was used and for pathway analyses Ingenuity Pathway 

Analyses (IPA) software was used.  

Genes which were differentially regulated between BL and 2CB were mainly involved 

in biological processes like: cellular protein and macromolecule process, translation, 

transcription, protein localization and transport, cell cycle and cellular response to 

stress as well as in pathways like: protein ubiquitination pathway, estrogen receptor 

signalling, protein kinase A signalling, molecular mechanism of cancer, oxidative 

phosphorylation and NRF2- mediated oxidative stress response. Focusing on the 

commonly differentially regulated genes, molecular functions like peroxidase activity, 

oxidoreductase activity acting on peroxide as acceptor, antioxidant activity, structural 

constituent of ribosome, translation initiation factor activity and protein dimerization 

activity, were manly affected by DEGs. Concerning the most affected biological 

processes were, ribosome biogenesis, transcription, cell cycle, translation, regulation of 

oxidative stress and cellular respiration and oxidative phosphorylation. Finally, IPA 

analyses revealed, nucleotide excision repair pathway, methane metabolism, 

mitochondrial dysfunction, p38 MAPK signalling, oxidative phosphorylation and 

NRF2- mediated oxidative stress response as mainly affected. Hence, homogenous 

results of these cluster analyses for all groups were detected, implicating a strong 

relation to molecular functions and pathways related to oxidative stress response and 

oxidative phosphorylation. Therefore, out of these clusters five candidate genes, 

namely NDUFS1, MAPK14, CAT, PRDX1 and PRDX6 were selected for further 

validation and verification. Real time PCR results showed the expression of eight genes 

to be in agreement with the array results (p < 0.05). Additionally, two genes (PRDX1, 

PRDX6) showed the correct expression pattern (without statistical significance) and 

one gene (KRT8) did not show differences with real time PCR validation. (Figure 4, 

Chapter 3). For further verification an independent competence model was chosen as 

described in detail in chapter 3.  
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Briefly, 2-cell stage embryos were collected according to the time of first cleavage 

after fertilization (hpi, hours post insemination), which has been demonstrated to be a 

reliable marker for developmental potential. A significantly higher proportion of 

zygotes cleaving before 30 hpi develop to the blastocyst stage compared to those 

cleaving 36 hpi or later.  

The expression levels of our five selected candidate genes showed a significant higher 

abundance in early cleaving embryos compared to their later cleaving counterparts. 

Furthermore, the amount of reactive oxygen species (ROS) were lower in early 

cleaving embryos, which is in line with the transcript abundance of the candidate 

genes, acting as direct and indirect ROS scavengers. 
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Abstract   

In the present study, we aimed to analyse structural changes during in vitro maturation 

of the bovine zona pellucida (ZP) by scanning electron microscopy (SEM) as well as 

whether these changes are reflected by zona pellucida birefringence (ZPB). Here we 

show that alterations during in vitro maturation invasively analysed by SEM are 

reflected in ZPB. In vivo matured oocytes displayed significantly lower birefringence 

parameters and significantly higher blastocyst rates compared to in vitro derived 

oocytes (39.1% vs. 21.6%). The same was observed for in vitro matured oocytes with 

cumulus oocytes complex (COC) quality grade 1 (Q1) compared to Q3-COC’s with 

respect to zona birefringence and developmental capacity. Immature oocytes with Q1-

COC displayed higher ZPB values and a higher developmental capacity to the 

blastocyst stage (27.7% vs. 16.9%) compared to immature Q3-COC’s. Considering in 

vitro matured oocytes, only those with Q1 COC grade showed a trend for ZPB similar 

to in vivo matured oocytes. Therefore, a decreasing trend for ZPB during in vitro 

maturation seems to be typical for high quality oocytes and successful cytoplasmic 

maturation. In accordance, fully grown immature oocytes reached significant higher 

blastocystrates (32.0% vs. 11.5%) and lower ZPB values compared to still growing 

ones. 

In conclusion, we successfully evaluated the applicability of zona imaging to bovine 

oocytes: Alterations during in vitro maturation invasively analysed by scanning 

electron microscopy were reflected in the birefringence of the zona pellucida of bovine 

oocytes affecting developmental capacity at the same value. Therefore, ZPB 

measurement by live zona imaging has got potential to become a new tool to assess 

correctness of in vitro maturation and to predict developmental competence. 

   

Key words: bovine oocyte, in vitro maturation, environment, zona pellucida 

birefringence 
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Introduction 

Developmental competence of bovine in vitro produced embryos remains significantly 

lower compared to their in vivo derived counterparts. Despite intensive research a large 

proportion of bovine oocytes fail to develop to the blastocyst stage following 

maturation, fertilisation and in vitro culture (Farin and Farin 1995). It is generally 

accepted that oocyte quality is a key factor for optimizing the efficiency of 

reproductive techniques in farm animals as well as for human assisted reproductive 

technologies (Coticchio et al. 2004; Sirard et al. 2006; Telfer and McLaughlin 2007; 

van Soom et al. 2007; Wang and Sun 2007). Therefore, identification of credible 

predictors for developmental competence of bovine oocytes for in vitro production is 

indispensible.  A variety of cellular and subcellular parameters have been investigated 

whether they are related to developmental competence, such as gene expression pattern 

(Wrenzycki et al. 2007), mitochondrial status (Stojkovic et al. 2001), calcium stores 

and calcium current activity (Boni et al. 2002), apoptotic index (Yuan et al. 2005), gene 

expression profiles in cumulus cells (Assidi et al. 2008; Tesfaye et al. 2009) and factors 

present in the follicular fluid (Nicholas et al. 2005; Sinclair et al. 2008; van Soom et al. 

2007). Unfortunately, these techniques are often complex, time-consuming and most 

importantly invasive, which excludes further development of oocyte. Therefore, non-

invasive criteria to evaluate potent oocytes based on morphology were evaluated during 

the last decade including homogeneity of ooplasm, thickness and diameter of oocytes 

as well as compactness of surrounding cumulus layers (Blondin and Sirard 1995; 

Nagano et al. 2006; Santos et al. 2008). However, the predictive value of these 

morphological characteristics evaluated by light microscopy is discussed controversial, 

due to subjectivity and inaccuracy (Lonergan 2007; Nagy 2008; Wang and Sun 2007).  

The intrinsic quality of an oocyte, which is acquired during folliculogenesis, relying on 

vascularisation, oxygen content and cumulus cell characteristics, is a great factor 

affecting subsequent development of an embryo (Corn et al. 2005; Van Blerkom et al. 

1997). Thereby, any negative effect during folliculogenesis will harm the oocyte, 

resulting in substantial morphological alterations like discoloration (Esfandiari et al. 

2006), shape anomaly (Ebner et al. 2008), zona splitting (Shen et al. 2008) or changes 

of its three-dimensional structure. 

It has been reported that the mean difference in thickness between zona pellucida from 

human conception cycles and failed ones was approximately 1 µm (Shen et al. 2005), a 
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value, however, which is beyond the limit of verifiability of most systems designed for 

measuring cells. In contrast to light microscopic analysis of bovine oocytes, scanning 

electron microscopic (SEM) analysis of bovine oocytes has already identified clear 

relationships between oocyte morphology and developmental competence: Using SEM, 

the structure of the ZP in human oocytes matured in vitro is seen as a large 

multilayered network resembling a sponge, whereas in immature and atretic oocytes 

the ZP has a compact and smooth surface (Familiari et al. 2006). Santos et al. (2008) 

reported that the number of pores on the ZP surface varies with the quality of the 

oocyte. Furthermore, significant differences in the thickness of the ZP were ascertained 

between species, varying from 5µm in mouse to 27µm in bovine (Dunbar et al. 1994) 

as well as between in vitro and in vivo embryogenesis  (Michelmann et al. 2007).  

Recent investigations revealed that matured bovine oocytes with high quality cumulus 

oocyte complex (COC), classified by stereomicroscope, had significantly smaller zona 

pore diameters compared to those of low quality (Santos et al. 2008). However, 

application of SEM does not allow further development of the analysed oocytes 

because of its invasive nature.  

In contrast, the introduction of polarization light microscopy opens a new window for 

non-invasive assessment of morphological zona pellucida properties, recently. Zona 

pellucida imaging at the metaphase-II stage of oocyte’s was established successfully as 

a predictive marker for human oocyte quality in several studies (Ebner et al 2010.; 

Madaschi et al. 2009; Montag et al. 2008; Rama Raju et al. 2007).  

Although oocyte maturation remains a poorly understood process, the follicle can be 

considered as the reproductive unit of the ovary. Initiation of germinal vesicle 

breakdown and completion of the nuclear changes are leading to extrusion of the first 

polarbody and arranging the second metaphase plate (Lin and Hwang 2006). The 

formation of a metaphase-II stage oocytes is closely linked to completion of nuclear 

changes, but neither to the oocytes molecular and structural maturity nor to the 

developmental competence (Trounson et al. 2001). Any factor affecting follicular 

recruitment and growth, may influence the secretion of cumulus cells and oocytes (Qi 

et al. 2002). Hence, physiology of folliculogenesis (Pelletier et al. 2004) and quality of 

in vitro culture might affect the texture of the zona pellucida. Coincidentally, 

characteristics and appearance of the ZP may reflect the history of folliculogenesis   



Chapter 2 – Bovine oocyte birefringence 

 

27 

(Qi et al. 2002) as marker of correct folliculogenesis and normal oocyte maturation and 

predictor for subsequent developmental competence. 

Previous studies speculated that properties of the zona layers might reflect the history 

of human oocyte cytoplasmic maturation (Liu et al. 2003) whereupon, the ZPB from 

germinal vesicle (GV) stage oocytes showed a significantly decreasing trend to MII-

stage oocytes (Cheng et al. 2010). In accordance, a higher percentage of high 

birefringence oocytes was observed in human oocytes being in prophase I compared to 

metaphase I stage. Interestingly, the percentages of high birefringence oocytes did not 

change when comparing oocytes before and after in vitro maturation for both prophase 

I and metaphase I oocytes (de Almeida Ferreira Braga et al. 2010). If zona pellucida 

birefringence indeed correlates with developmental competence that would imply that 

developmental competence is already fixed before in vitro maturation. That in turn 

would suggest that a better selection of oocytes rather than improving in vitro 

maturation conditions is necessary to improve overall in vitro developmental rates. 

However, all published studies focused on human ARTs so far and it remains an open 

question if these results could be transferred to the bovine.  

Taking into account, that oocytes are usually of unknown origin with inhomogeneous 

developmental competence in bovine IVP, any correlation between zona pellucida 

characteristics with age of donor, follicular origin, maturational stage as well as 

maturation environment could be fruitful to select more homogenous groups of oocytes 

bearing higher developmental competence. However, the relationship between oocyte 

cytoplasmic maturation and ZP birefringence in the bovine is still inexplicit.  

The aim of this study was therefore to evaluate the applicability of zona imaging to 

bovine oocytes. Therefore we analyzed subpopulations of bovine oocytes bearing 

variable prospective developmental competence, classified according to their 

environment of maturation (in vivo vs. in vitro), their cumulus cell investment and their 

G6PDH-activity with respect to zona pellucida properties and their developmental 

competence, simultaneously. As an invasive technique, we analysed the zona pellucida 

of in vivo and in vitro derived oocytes by scanning electron microscopy to visualize 

alterations of the morphological structure before and after maturation related to 

developmental competence. Using polarisation light microscopy as non-invasive 

technique, we consequently aimed to find out whether these structural changes are also 

reflected in the zona birefringence. 
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Material and Methods 

Oocyte collection 

Bovine ovaries were obtained from a local slaughterhouse and transported in warm 

(30-35°C) physiological saline solution within 1-3 hours. Antral follicles (2 to 8 mm in 

diameter) were aspirated using an 18-gauge needle attached to a 10 ml syringe and 

collected into a 50 mL conical tube. COCs with evenly granulated oocyte cytoplasm 

surrounded by more than three compact layers of cumulus cells, were selected and 

transferred to modified tissue culture medium (TCM199, Sigma, Taufkirchen, 

Germany) supplemented with 4.4 mM Hepes,        33.9 mM NaCHO3, 2 mM pyruvate, 

2.9 mM calciumlactate, 55 µgml−1 gentamycin and 12% heat-inactivated oestrus cow 

serum (OCS). 

Assessment of the Cumulus Oocyte Complex (COC) quality 

The assessment of the COC morphology was performed as following: Briefly, oocytes 

with presence of clear and compact cumulus cells with more than three layers were 

allocated to quality 1 (Q1), oocytes with a compacted cumulus with two or three layers 

were classified as quality 2 (Q2) and oocytes with one ore less layers of cumulus cells 

were judged as quality 3 (Q3). 

Assessment of Glucos-6-Phosphate-Dehydrogenase (G6PDH) -activity   

We performed the brilliant cresyl blue (BCB) stain to separate oocytes undergoing 

growth and those that have completed their growth phase as described in our previous 

study (Ghanem et al. 2007). Briefly, immature oocytes with high quality COC’s (Q1) 

were subjected to 26 µM BCB (B-5388, Sigma–Alderich) diluted in mDPBS for 90 

min at 38.5 °C in humidified air atmosphere. After washing, stained COCs were 

examined under a stereomicroscope and categorised into two groups according to their 

cytoplasma staining: oocytes with any degree of blue colouration in the cytoplasm 

(BCB+) were classified into low Glucose-6-Phosphate-Dehygrogenase activity group 

representing fully grown immature oocytes, and oocytes without visual blue 

colouration (BCB-) were classified into high Glucose-6-Phosphate-Dehygrogenase 

activity group representing still growing immature oocytes. 

In vitro maturation 

COCs washed and incubated (in groups of 50) in 400 ml of maturation medium that 

consisted of TCM-199 (M-2154; Sigma) with Earle salts buffered with 4.43 mM 

HEPES (H-9136; Sigma) and 33.9 mM sodium bicarbonate (S-5761; Sigma) 
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supplemented with 12% oestrous calf serum (OCS), 0.5 mM L-glutamine, 0.2 mM 

pyruvate, 50 mg/ml gentamycin sulphate and 10 µl/ml FSH (Folltropin, Vetrepharm, 

Canada) in four well dishes (Nunc, Roskilde, Denmark). The maturation medium was 

covered with mineral oil (Sigma-Aldrich) and was pre-incubated under the maturation 

conditions for a minimum of 1 h (38.7 °C, 5% CO2 in air with maximum humidity) and 

then incubated for 22 h after oocytes were added.      

In vitro fertilization and in vitro culture 

After maturation COCs were co-incubated with sperm (2 × 106 spermatozoa/ml) in a 

fertilization medium consisting of Fert-TALP medium supplemented with 10 mM 

sodium lactate, 1 mM sodium pyruvate, 6 mg/ml BSA, 1 µg/mL heparin, 10 µM 

hypotaurine, 20 µM penicillamine, and 2 µM epinephrine) at 38.7°C in 5% CO2 in air. 

Eighteen hours after insemination (18 hpi), the presumable zygotes were denuded from 

cumulus cells. Nearly fifty cumulus-free presumptive zygotes were washed three times 

in  CR1aa supplemented with 12% heat inactivated oestrous cow serum (OCS) and 

then cultured in 400 µl of the same medium in four well dishes (Nunc, Roskilde, 

Denmark) under mineral oil at 38.7°C in 5% CO2 in humidified air.  

Collection of in vivo matured Oocytes 

Pre-synchronization was performed by i.m. administration of 500 µg cloprostenol 

(PGF2α, Estrumate®; Essex Tierarznei, Munich, Germany) twice within 11 days. Two 

days after each of the PGF2α treatments animals received 10 µg GnRH (Receptal®; 

Intervet, Boxmeer, the Netherlands). Twelve days after the last GnRH injection heifers 

received the first of eight consecutive FSH-injections over 4 days in decreasing doses 

(in total 300–400 mg FSH equivalent according to body weight; Stimufol, University 

of Liege, Belgium). Two PGF2α treatments were performed 58 and 72 h after the 

initial FSH. Finally, 40 h after the first PGF2α application, 10 µg GnRH were given to 

each animal. Endoscopic guided follicle aspiration to collect in vivo matured MII-

Oocytes was performed 16-20 h after GnRH administration. After restraining the 

recipients, administering 5 ml of a 2% lidocaine-solution (Xylanest purum1, Richter 

Pharma,Wels, Austria) for epidural anesthesia and disinfecting the vulva (Octenisept1, 

Schϋlke/Mayer, Vienna, Austria), a trocar set consisting of an universal metal tube 

(12.5 mm x 52 cm, Storz, Vienna, Austria) and an atraumatic mandrin was placed 

caudodorsal of the fornix vaginae. The mandrin was replaced by a sharp trocar and the 

trocar set was inserted through the vaginal wall into the peritoneal cavity. The trocar 
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was replaced by a shaft bearing the endoscope (5.5 mm 08 forward Hopkins 

endoscope, Storz, Vienna, Austria) and the punctation line. The site was illuminated by 

a fiberoptic cold light (250 W, Storz, Austria) and visualized with a camera (Telecam 

PAL-Endovision, Storz, Vienna, Austria) connected to a monitor. The aspiration line 

consisted of a single lumen needle (diameter: 17 G; length: 70 cm; William Cook 

Europe GmbH, Mönchengladbach, Germany) connected to a 50-ml Falcon tube by 

100-cm Teflon tubing. Vacuum pressure was provided by a regulated vacuum pump 

(V-MAR-5000; Cook) and adjusted to create a flow rate of 16 to 20 ml per min. The 

collection medium consisted of  Hepes buffered TCM supplemented with 50 mg/l 

gentamicin (Sigma, St. Louis, MO), 60 mg/l heparin (Sigma) and 1% fetal calf serum 

(FCS; Biochrom, Berlin, Germany).  

After bringing the ovary into the right position by transrectal manipulation the 

aspiration line was advanced to puncture the ovarian follicle. The follicular contents of 

all follicles of each heifer were aspirated individually and kept at 39°C in thermos. 

Finally, the follicular fluid contents were poured into a square grid dish to facilitate 

finding of oocytes under a stereomicroscope. 

Preparation of oocytes for scanning electron microscopy (SEM) 

For scanning electron microscopy analysis oocytes were placed in fixation medium 

composed by 2,5% glutaraldehyde for one hour and washed afterwards three times in 

0,1M  sodium cacodylate in each case 10 minutes, before a two hours fixation in 2% 

osmiumtetroxide solution. After repeating the washing step, the samples were 

dehydrated by plunging them into ethyl alcohol at different concentrations (50-100%) 

and acetone. Following dehydration the samples were dried in a critical-point-dryer 

(Polaron, Watford; Great Britain). After drying they were coated with 30-nm gold by a 

Blazers sputtering device (Blazer, Liechtenstein). SEM observations were conducted 

with ESEM XL 30 FEG, FEI (Philips, Eindhoven, Netherlands) in the institute for 

pathology RWTH Aachen.  

Live zona imaging   

Live zona imaging of individual oocytes was performed non-invasively on a Leica DM 

IRB inverted microscope equipped with ×10, ×20 and ×40 Hoffmann interference 

optics, ×20 and ×40 stain-free objectives, a circular polarization filter and liquid crystal 

analyser optics. The birefringence analysis including autocalibration was fully 
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controlled by a polarization imaging software module (OCTAX ICSI Guard™, 

OCTAX Microscience GmbH, Altdorf, Germany) implemented in an imaging software 

system (OCTAX Eyeware™). In detail, the image processing on the birefringence 

image (Figure 1B&D) extracted several birefringence intensity profiles (n>20) across 

the inner zona layer. For each of the profiles, i.e. along the entire zona layer, a 

cumulated birefringence value (CV-Mean) and the average thickness of the inner zona 

layer (WT-Mean) was calculated. These values (which were computed for each 

intensity profile, i.e. over the entire cell’s circumference) were averaged and resulted in 

the values   CV-Mean and WT-Mean. As plastic dishes interfere with polarized light, 

glass bottom dishes (WillCo, Amsterdam, Netherlands) were used for examination. 

Denuded oocytes were separated in 4 µl drops of HEPES-modified tissue culture 

medium and imaged at 200x magnification. Each drop was covered with mineral oil; 

screening in groups of 10 did not last longer than two minutes.  

 

 

 

Figure 1: Imaging of  matured in vivo derived metaphase II stage oocyte by conventional  
lightmicroscopy (A) and by polarized light microscopy (B). Similarly,  images C and D show in vitro 
derived metaphase II oocytes. 

A B 

C D 
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Statistical analysis 

Allocation of oocytes into different morphological groups according to their zona 

characteristics analyzed by scanning electron microscopy and developmental rates of 

embryos generated by in vitro fertilization were analyses by χ2-test. Analysis of 

variance (ANOVA, two tailed t-test) was performed for comparison of mean values of 

zona pellucida evaluation. Differences of p < 0.05 were considered statistically 

significant. 

Experimental Design 

In the present work we performed 4 subsequent experiments: In the first experiment we 

recapitulated the correlation of the maturational environment (in vivo vs. in vitro) and 

the COC’s quality (Quality 1-3) on the bovine zona pellucida structure measured by 

scanning electron microscopy (SEM). In the second experiment, we analyzed the effect 

of the maturational environment and the COC quality on the subsequent in vitro 

developmental competence after in vitro fertilization. In experiment 3, we aimed to 

check whether maturational environment and COC quality are reflected in the bovine 

zona pellucida structure of GV- and metaphase II stage oocytes analyzed by zona 

pellucida birefringence (ZPB). Finally, in the 4th experiment we compared zona 

pellucida characteristics measured by ZPB and subsequent developmental competence 

of immature bovine oocytes classified according to their G6PDH-activity as proven 

indicator for subsequent developmental competence.   

 

Results 

Experiment 1: Effect of maturational environment and COC quality on bovine 

zona pellucida structure measured by SEM 

A total of 21 bovine GV-stage oocytes were analyzed by scanning electron microscopy 

(SEM). All GV-stage oocytes from Q1+Q2 (n=15) and Q3 (n=6) COC’s showed a 

porous zona pellucida. Considering oocytes of COC quality grade 1+2, a total of 10 

(66.6%) displayed a typical fine meshed reticular pore structure (Figure 2A) whereas 

the zona of 5 oocytes (33.3%) showed an irregular appearing pore structure (Figure 

2B). Oocytes of COC quality grade 3 showed a tendency for a higher proportion of 

irregular appearing pore structure (66.7%) as shown in TABLE 1.  A significantly 

(p<0.05) lower proportion of metaphase-II oocytes showed a porous zona structure 
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compared to GV-stage oocytes (31.3% vs. 100%) irrespective of COC quality with 

100% of them showing typical fine meshed reticular pores. A significantly higher 

proportion of in vivo matured oocytes displayed a porous zona structure with typical 

fine meshed reticular pores (Figure 2C) compared to in vitro matured oocytes       

(31.3% vs. 100%) as presented in TABLE 1. Likewise, significantly more in vitro 

derived MII oocytes showed an imporous structure (68.8% vs. 0%, Figure 2C). Pores 

with irregular structure were only observed in immature oocytes. 

 

Table 1: Effect of maturational environment and COC quality grade on bovine zona 

pellucida structure measured by scanning electron microscopy             

           

       Structure of pores 

   imporous porous typical irregular 

Oocyte 

group 
quality n n (%) n (%) n (%) n (%) 

GV Q1+Q2 15 0 0.0% 15 100.0% 10 66.7% 5 33.3% 

GV Q3 6 0 0.0% 6 100.0% 2 33.3% 4 66.7% 

  21 0 0.0% a 21 100.0% a  12 57.1% 9 42.9% 

           

Vitro MII Q1+Q2 8 5 62.5% 3 37.5% 3 100.0% 0 0.0% 

Vitro MII Q3 8 6 75.0% 2 25.0% 2 100.0% 0 0.0% 

  16 11 68.8%b 5 31.3% b 5 100.0% 0 0.0% 

           

Vivo MII total 6 0 0.0% a 6 100.0% a  6 100.0% 0 0.0% 

Values with different superscripts within columns differ significantly (p < 0.05) 
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Figure 2: Representative zona pellucida SEM microphotographs of oocytes at different stages of 
maturity.       (A) porous surface with a typical pore structure of an immature GV stage oocyte, (B) 
porous surface with an irregular degraded emerging pore structure of an immature GV stage oocytes, (C) 
poreless surface of an in vitro matured metaphase II oocyte and (D) porous surface with a reticular fine-
meshed pore structure of an in vivo matured metaphase II oocyte. All pictures are 15000x magnification. 

 

 

Experiment 2: Effect of maturational environment and COC quality on in vitro 

developmental competence of bovine oocytes  

When 438 oocytes were fertilized in vitro, in vivo matured bovine oocytes (n=68) 

reached a similar cleavage rate compared to in vitro matured oocytes (n=370, 76.5% 

vs. 74.3%). Significantly, more in vivo matured oocytes reached the blastocyst stage 

compared to in vitro matured oocytes (39.1% vs. 21.6%) as shown in Table 2. 

Considering in vitro matured oocytes of different COC qualities, quality 1 grade COC’s 

reached a significant higher cleavage rate compared to quality 2 and 3 grade COC’s 

(82.5% vs. 71.6% vs. 68.5%), respectively, as well as higher subsequent blastocyst 

rates (27.7% vs. 20.0% vs. 16.9%, respectively, Table 2).   

 

 

A B 

C D 
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Table 2: Effect of maturational environment and COC quality grade on in vitro 

developmental competence of bovine oocytes 

   Cleavagerate Blastocystrate 

Oocyte 

group
 

quality n n (%) n (%) 

Vitro MII Q1 126 104 (82.5) a 35 (27.7)b 

Vitro MII Q2 120 86 (71.6) b 24 (20.0) a 

Vitro MII Q3 124 85 (68.5)b 21 (16.9) a 

  370 275 (74.3) ab 80 (21.6) a 

Vivo MII  68 52 (76.5) ab 27 (39.1) c 

Values with different superscripts within columns differ significantly (p < 0.05) 

 

 

Experiment 3: Effect of maturational environment and COC quality on bovine 

zona pellucida structure of immature and matured oocytes measured by ZPB 

The mean birefringence (CV-Mean) of in vivo matured oocytes (n= 21) was 

significantly lower (p<0.05) compared to their in vitro counterparts (n=247; 16.54 ± 

2.41 vs. 20.76 ± 2.69). Within different COC qualities of vitro matured oocytes a 

significant lower birefringence was observed for COC quality 1 (n=79) compared to 

quality 3 (n=77; 20.23 ± 2.69 vs. 21.75 ± 3.56) as presented in Table 3. Accordingly, 

the thickness of the inner layer (WT-Mean) of in vivo matured oocytes was 

significantly thinner compared to in vitro derived oocytes (10.72  ± 1.48 vs. 12.39 ± 

2.19). With respect to COC’s quality, oocytes from quality 1 COC’s displayed a 

significantly thinner inner zona layer compared to oocytes of quality 3 COC’s (12.3 ± 

1.50 vs. 12.95 ± 2.19) as shown in Table 3.     
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Table 3: Effect of maturational environment and COC quality grade on zona 

pellucida birefringence of bovine MII stage oocytes measured by polarised light 

microscopy.   

   
CV-Mean WT-Mean 

Oocyte group quality
 

n Mean ± SD Mean ± SD 

Vitro MII Q1 79 20.23 ± 2.69 A 12.03 ± 1.50 A 

Vitro MII Q2 91 20.39 ± 3.54 AB 12.22 ± 1.98 A 

Vitro MII Q3 77 21.75 ± 3.56 B 12.95 ± 2.19 B 

Vitro MII total 247 20.76 ± 3.02
 a

 12.39 ± 1.91
 a

 

     

Vivo MII total
 

21 16.54 ± 2,41
 b

 10.72 
 
± 1.48

b
 

Values with different superscripts within columns differ significantly (a:b; A:B:C; p < 0.05) 

 

When we analyzed the zona birefringence and thickness of the inner zona layer of 

immature oocytes, significant differences for both parameters were observed between 

oocytes of different COC quality (Q1-Q3). The mean birefringence (CV-Mean) 

significantly decreased from COC quality 1 to COC quality 3 (20.95 ± 3.79 vs. 19.44 ± 

2.91 vs. 18.03 ± 2.85), respectively (Table 4). The thickness of the inner zona layer 

(WT-Mean) showed the same trend considering COC quality 1 to COC quality 3 

(11.44 ± 1.92 vs. 10.79  ± 1.54 vs. 10.55  ± 1.73; p<0.01,  respectively, Table 4).   

 

 

Table 4: Effect of COC quality grade of bovine GV stage oocytes on zona 

pellucida birefringence measured with polarised light microscopy.   

   
CV-Mean WT-Mean 

Oocyte group quality
 

n Mean ± SD Mean ± SD 

GV Q1 79 20.95 
± 3.79 a 11.44 ± 1.92 a 

GV Q2 85 19.44 ± 2.91 b 10.97 ± 1.54 ab 

GV Q3 77 18.03 ± 2.85 c 10.55 ± 1.73 b 

Values with different superscripts within columns differ significantly (p < 0.05) 
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Putting the results of the immature (Table 4) and the matured oocytes (Table 3) into 

relation, the trend from GV-  to MII-stage in terms of zona birefringence (CV-Mean) 

and thickness of the inner zona layer (WT-Mean) were significantly different (p<0.05) 

between different  maturational environments and individual COC qualities as 

presented in Figure 3. In vivo maturation leads to a decrease in ZPB whereas in vitro 

maturation overall increases birefringence (Figure 3A). With respect to COC quality, 

only oocytes of high quality COC’s (Q1) follow the trend of in vivo matured oocytes 

whereas oocytes of quality 2 and 3 COC’s increased in birefringence (CV-Mean, 

Figure 3B). In vivo maturation also lead to a decrease in the thickness of the inner zona 

layer in contrast to the average of in vitro matured oocytes (Figure 3C). More in detail, 

oocytes of all individual COC qualities increased in thickness of the inner zona layer, 

however, quality 3 COC’s increased strongest and quality 1 COC’s most moderate 

(Figure 3D). 
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Figure 3: Dynamics from GV stage to MII in terms of zona birefringence (CV-Mean) and thickness of 
the inner zona layer (WT-Mean) with respect to maturational environment and COC’s quality. (A) In vivo 
maturation leads to a decrease in ZPB whereas in vitro maturation overall increases birefringence. (B)  
With respect to COC quality, only oocytes of high quality COC’s (Q1) follow the trend of in vivo 
matured oocytes whereas oocytes of Q1 and Q2 COC’s increase in birefringence. (C) In vitro maturation 
also leads to a decrease in the thickness of the inner zona layer in contrast to the average of in vitro 
matured oocytes. (D) Oocytes of all individual COC qualities increased in thickness of the inner zona 
layer, however, quality 3 COC’s increased the most and quality 1 COC’s  the least.  
 
 
 

Experiment 4: Effect of G6PDH-activity of immature bovine oocytes on in vitro 

developmental competence and zona pellucida structure measured by ZPB   

Immature Oocytes with low G6PDH-activity (BCB+) reached a significant higher 

cleavage rate  compared to oocytes with low G6PDH-activity (BCB-, 75.5% vs. 

65.1%) as well as a significantly higher blastocyst rates (32.0% vs. 11.5%) as presented 

in Table 5.  
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Values with different superscripts within columns differ significantly (p < 0.05) 

 

Concurrently, the mean birefringence of oocytes with high G6PDH-activity and the 

thickness of the inner layer was significantly lower (p<0.05) compared to oocytes with 

low G6PDH-activity (18.83 ± 3.50 vs. 20.37 ± 4.49 and (10.84 ± 1.95 vs. 11.77 ± 2.35, 

respectively, Table 6).  

 

Values with different superscripts within columns differ significantly (p < 0.05) 

 

 

 

 

 

 

 

 

 

Table 5: Effect of G6PDH-activity of immature bovine oocytes on subsequent in 

vitro developmental competence   

   
Cleavagerate Blastocystrate 

G6PDH -

activity
 

Growth status 

 

n
 

 

n 

 

(%) 

 

n 

 

(%) 

low (fully grown) 416 314 (75.5) a 133 (32.0) a 

high (still growing) 358 233 (65.1) b 41 (11.5) c 

average (ordinary) 197 145 (73.6) a 47 (23.9) b 

Table 6: Effect of G6PDH-activity of immature bovine oocytes on zona pellucida 

birefringence measured with polarised light microscopy.   

   CV-Mean WT-Mean 

G6PDH -

activity
 

Growth status 

 

n Mean ± SD Mean ± SD 

low (fully grown) 105 18.83 ± 3.50 a 10.84 ± 1.95 a 

high (still growing) 98 20.37 ± 4.49 b 11.77 ± 2.35 b 
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Discussion 

The characteristics of the ZP have been proposed to reflect the developmental 

competence of follicles and oocytes in human (Qi et al. 2002). Moreover, it is known 

that during follicular development in secondary follicles, the developing oocyte and 

follicular cells secrete the zona pellucida surrounding the plasma membrane of 

mammalian eggs (Dunbar et al. 1994).  

This implies that any harm to the oocyte or to the surrounding cumulus cells caused by 

suboptimal conditions within the follicle at time of growth or maturation could alter the 

secretion and patterning of the extracellular coat (Shen et al. 2005). In other words, ZP 

properties could function as a marker of correct folliculogenesis and oocyte maturation. 

Studies performing scanning electron microscopy (SEM) reported that the number of 

ZP pores on the surface varies with oocyte quality (Assidi et al. 2008), with high 

quality oocytes having a greater number of pores than low quality oocytes in the 

bovine. With the aim to recapitulate the results of Santos et al. (2008) and the more to 

analyze whether zona characteristics are affected by maturational environment we 

compared the zona characteristics of in vivo and in vitro derived MII-stage oocytes. In 

the present study, we observed differences in zona characteristics analysed by scanning 

electron microscopy between immature oocytes with cumulus cell investments of 

different qualities, oocytes of different maturational stages and MII- stage oocytes 

matured either in vivo or in vitro environments. The COC’s quality of immature 

oocytes correlates with morphological structures of the Zona pellucida. A higher 

proportion of good quality COC’s (Q1-2) had a typical fine meshed pore structure 

whereas COC’s of lower quality (Q3) were found to exhibit an irregular degraded 

emerging structure at higher proportions. That is inline with recent findings showing 

that COC quality affects zona characteristics (Santos et al. 2008). That study reported a 

strong and negative correlation between COC’s quality and pores’ diameter, including 

a high number of pores with a significantly smaller size for quality 1 oocytes compared 

to those of low quality (Santos et al. 2008). Additionally, that study showed that the 

amount of pores and the meshed structure of the outer surface alter drastically during in 

vitro maturation. In accordance to Suzuki et al. (1994) we observed alterations in the 

surface structure as a result of in vitro maturation to such an extent that the zona of all 

immature oocytes was found to be porous whereas only 31% of in vitro matured 

oocytes were porous. However, all in vitro matured porous oocytes exhibited a typical 
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wide meshed, fibrous network with deep pores whereas 43% of all immature porous 

oocytes showed an irregular pore structure. In contrast, all in vivo matured oocytes 

showed a homogenous structure with a typical reticular, fine-meshed surface with a 

very high amount of small pores in our study. This is inline with observations of Santos 

et al. (2008) who reported that in vitro maturation affects zona characteristics. 

Moreover, strong differences between the morphology of in vivo and in vitro matured 

oocytes were observed in porcine oocytes recently. In vivo matured porcine oocytes 

showed a fine-meshed and rough surface with a high amount of pores, whereas the in 

vitro matured oocytes had a smooth and tight surface (Funahashi et al. 2000). Taken 

together, all immature oocytes were found to be porous with only one third of them 

showing a regular pore structure. After in vitro maturation, the zona of only one third 

of all oocytes were found to be porous, however, all of them are being of typical 

structure. Thus, we suggest that irregular pores of immature oocytes disappear during 

maturation. Macchiarelli et al. (1992) suspected that the pores are generated through 

penetration of cytoplasm appendages of corona radiata cells, which are in contact with 

the plasma membrane. Hence, explanations for the alterations during in vitro 

maturation could be due to an inadequate contact with corona radiata cells, less distinct 

penetration or an early retraction of cytoplasm appendages in a proportion of oocytes, 

which may lead to a nearly pore less surface. Only one third of all oocytes entering 

maturation resulted in matured oocytes with regular pores. Interestingly that is very 

similar to the rate of development to the blastocyst stage usually obtained after in vitro 

fertilisation (Rizos et al. 2002b). Having that in mind, we speculate that a certain 

proportion of oocytes are entering our in vitro maturation system, which are not 

suitable for maturation because of insufficient contact to surrounding cumulus cells. 

Our results also confirm that the maturational environments as well as morphological 

features of the COC’s are usefull as predictors for subsequent developmental 

competence. In vivo matured oocytes reached significant higher blastocyst rates 

compared to in vitro matured oocytes and high quality COC’s reached higher rates 

compared to lower quality COC’s. Whereas high quality COC’s reached significant 

higher cleavage rates compared to low quality COC’s no differences in term of 

cleavage rate were obtained between in vivo and in vitro matured oocytes.  

These outcomes are completely comparable to those of an other study in which also no 

difference in cleavage rate between in vivo and in vitro matured groups but significant 
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differences in the blastocyst yield were reported (Rizos et al. 2002b). However, 

although zona characteristics correlate with developmental competence, it has not been 

possible to introduce this invasive technique to identify oocytes of superior 

developmental competence into lab routine because it completely damages the oocytes. 

To circumvent this problem we therefore aimed to test whether zona properties 

predictive for developmental competence could be evaluated through zona pellucida 

birefringence (ZPB) measurement, a new technique which has recently been introduced 

into human ART (Montag et al. 2008; Rama Raju et al. 2007; Shen et al. 2005). 

Likewise, our study shows that during maturation the structural changes visualized by 

SEM are reflected in the zona pellucida birefringence (ZPB). To our knowledge, the 

present study is the first, which analyses the environmental influence on Zona 

properties of bovine oocytes by polarized light microscopy. In addition, a direct 

comparison between SEM and ZPB has not been reported so far.   

When comparing the ZPB of immature oocytes of different COC quality grades, 

COC’s of high quality grade reached significant higher values compared to oocytes 

from COC’s of lower quality. The higher birefringence is correlated to the thicker 

internal layer of the Zona pellucida (Kilani et al. 2006). Therefore, immature oocytes 

from high quality COC’s have resulted in higher birefringence values and higher 

developmental competence at the same value. These results are inline with recent 

studies performed in human reproduction in which a positive correlation between 

thicker inner layers and high birefringence scores on the one side and higher 

developmental potential and a higher development to term on the other side were 

reported (Ebner et al 2010.; Madaschi et al. 2009; Montag et al. 2008; Rama Raju et al. 

2007). In contrast, we observed a lower birefringence for in vivo matured vs. in vitro 

matured oocytes and matured oocytes of high quality COC’s had significant lower 

values compared to their lower quality counterparts. Due to the higher developmental 

competence of in vivo matured oocytes, a thinner inner layer could be interpreted as 

being predictive for better developmental potential. This is in accordance with a recent 

study which reported that low mean values for zona birefringence parameters were 

related to superior zygote quality and subsequently led to better preimplantation 

development following artificial activation or IVF (Koester et al. 2011).  

However, these results are not in agreement with a recent study performed in human in 

which a positive correlation between a thicker inner layer and better developmental 
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potential in human oocytes was reported (Rama Raju et al. 2007). Analysing the ZPB 

measurements of immature oocytes compared to matured ones, we found a strong 

decreasing trend from GV stage oocytes to in vivo matured oocytes. Within the groups 

of all in vitro matured oocytes only oocytes with high quality COC (Q1) showed a 

comparable trend for birefringence whereas oocytes from COC’s of lower quality as 

well as in vitro matured oocytes showed an increasing trend. An explanation 

considering both observations could be that high ZPB values in immature oocytes are 

an indicator for high quality of immature oocytes and a decrease in ZPB during the 

process of maturation could be an indicator for successful maturation. Likewise a 

resent study in human reproduction cycles showed MI oocytes yielded a higher 

percentage of high-birefringence oocytes compared to MII stage oocytes, indicating 

that zona birefringence decreases as oocyte nuclear maturation takes place (de Almeida 

Ferreira Braga et al. 2010). These outcomes are comparable with those of Cheng et al. 

(2010) who analysed the birefringence of human oocytes during IVF cycles. Similar to 

our results a decreasing trend regarding zona parameters from GV stage to MII was 

reported (Bhojwani et al. 2007). The positive correlation between decreasing zona 

thickness and mean birefringence demonstrated for the in vivo matured oocytes is 

corresponding with results reported previously (Shen et al. 2005).  

Thus, our results clearly show that maturational environment as well as quality of the 

cumulus cell investment of immature oocytes affects developmental competence as 

well as zona properties at the same value. However, although classification of oocyte 

quality by morphological characteristics could provide valuable information for the 

preselection of oocytes with higher developmental competence, this kind of method is 

not pretty precise. Therefore, we aimed to investigate if ZPB parameters as indicator 

for subsequent developmental competence of immature oocytes could be related to 

Glucose-6-Phosphate-Dehydrogenase (G6PDH) - activity, representing a molecular 

and subcellular predictor for oocyte quality of proven value (Pujol et al. 2004); (Alm et 

al. 2005; Bhojwani et al. 2007). In the present study, we observed significant 

differences between immature oocytes with contrasting G6PDH-activities. Our 

experiments confirmed a higher developmental competence of oocytes with low 

G6PDH-activity compared to oocytes with low activity in terms of cleavage rate and 

blastocyst rate. This is inline with observations in various species reporting different 

molecular and subcellular characteristics of oocytes due to contrasting G6PDH-
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activities (Ghanem et al. 2007; Torner et al. 2008) as well as different developmental 

capacities including pig (El Shourbagy et al. 2006; Roca et al. 1998; Wongsrikeao et al. 

2006), goat (Rodriguez-Gonzalez et al. 2003; Urdaneta et al. 2003), mouse (Mangia 

and Epstein 1975; Wu et al. 2007), buffalo (Manjunatha et al. 2007) and cattle (Alm et 

al. 2005; Bhojwani et al. 2007; Pujol et al. 2004). At the same value, immature oocytes 

with low G6PDH-activity exhibited a lower birefringence and a thinner inner layer 

compared to their counterparts with high G6PDH-activity. That result seems to conflict 

with the results of experiments 1-3, which brought us to the suggestion that higher ZPB 

values for immature oocytes are predictive for high developmental capacity. Indeed, 

immature oocytes showing low G6PDH-activity are correlated with higher 

developmental competence and lower ZPB values compared to immature oocytes with 

low G6PDH-activity. However, we have to keep in mind that immature oocytes with 

low G6PDH-activity are presumed to have completed their growth phase whereas 

oocytes with high activity are presumed to undergo still growth (Cheng et al. 2010). 

Torner et al. (2008) reported a higher proportion of oocytes with low G6PDH- activity 

being in progressed diakinesis stage whereas immature oocytes with high G6PDH-

activity are with higher probability retarded in diplonte stage. Thus, on a hypothetic 

time line, growing oocytes (high G6PDH-activity) are developmentally retarded 

compared to ordinary immature oocytes and thereby might be less suitable for in vitro 

maturation as analyzed in experiment 3. Lower development capacity and higher ZPB 

scores approved the trend for ZPB during maturation by time, as observed in 

experiment 1-3, nicely. Concurrently, oocytes having completed their growth phase 

(lower G6PDH-activity) are developmentally progressed compared to ordinary 

immature oocytes. Therefore, results of experiment 4 are fitting well rather than being 

conflictive. Collectively, classifications of immature oocytes by COC morphology and 

G6PDH-activity are not comparable since oocytes are at different growth stages.  

Taken together, in vivo matured M-II oocytes reached higher subsequent 

developmental competence and lower ZPB values compared to in vitro derived M-II 

oocytes. Considering in vitro matured oocytes, MII oocytes derived from high quality 

COC’s classified according to cumulus investment, reached a higher developmental 

competence as well as lower ZPB values compared to those of lower quality COC’s. 

Likewise, immature oocytes derived from high quality COC’s reached higher 

developmental competence as well as higher ZPB values compared to immature 
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oocytes of lower quality COC’s. In accordance, fully-grown immature oocytes reached 

higher developmental competence and lower ZPB scores compared to growing oocytes. 

In summary, we suggest a decreasing trend for ZPB during in vitro maturation to be 

typical for high quality oocytes. To our knowledge, this is the first work correlating 

zona pellucida birefringence of bovine oocytes with different environmental 

backgrounds as well as developmental competence. Moreover, by correlating ZPB with 

G6PDH-activity representing a molecular predictor of oocyte quality, we broke a 

limitation of similar studies about ZPB in human oocytes enlightening a link between 

molecular characteristics, zona pellucida properties and developmental capacity. 

In conclusion, we successfully evaluated the applicability of Zona imaging to bovine 

oocytes: Alterations during in vitro maturation invasively analysed by scanning 

electron microscopy were reflected in the birefringence of the zona pellucida. Our 

results show that maturational environment and quality of immature oocytes classified 

by COC’s investment and G6PDH-activity correlate with developmental competence 

and ZPB at the same value. Therefore, the polarized light microscopy is a useful tool 

offering some opportunities to improve selection of competent oocytes in assisted 

reproduction. However, further studies are necessary to improve the power of this 

promising new technique. 
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Abstract 

To date, gene expression profiles of bovine preimplantation embryos have only been 

indirectly related to developmental potential due to the invasive nature of such 

procedures. This study sought to find a direct correlation between transcriptome 

fingerprint of blastomeres of bovine 2-cell stage embryos with developmental 

competence of the corresponding sister blastomeres. Isolated blastomeres were 

classified according to the sister blastomeres development into three groups: two 

groups displayed developmental incompetency, including those blastomeres whose 

corresponding sister blastomeres either stopped cleaving after separation (2CB) or 

blocked after two additional cleavages before embryonic genome activation (8CB). As 

a third group, competent blastomeres were defined as those whose sister blastomeres 

developed to the blastocyst stage (BL). As a result, developmental capacity of 

corresponding sister blastomeres was highly similar. Microarray analysis revealed 77 

genes to be commonly differentially regulated between competent and incompetent as 

well as blocked blastomeres. Clustering of differentially expressed genes according to 

molecular functions and pathways revealed antioxidant activity, NRF2- mediated 

oxidative stress response and oxidative phosphorylation to be the main ontologies 

affected. Expression levels of selected candidate genes were further characterized in an 

independent model for developmental competence based on the time of first cleavage 

post fertilization (hpi). Moreover, overall results of this study were confirmed by 

higher developmental rates and more beneficial expression of CAT and PRDX1 when 

cultured in a rather anti-oxidative environment. These results will help to understand 

molecular mechanisms defining developmental destination of individual bovine 

preimplantation embryos. 

 

 

Key words: blastomere separation, gene expression profile, oxidative stress 
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Introduction 

Deviant expression of developmentally important genes has been implicated as a 

causative factor of embryonic death during preimplantation development (reviewed by 

Lonergan et al. 2006). Several studies have been published during the last decade 

(Brevini et al. 2002; Dode et al. 2006; Lonergan et al. 1999) dealing with 

transcriptomic changes during the first cell cycles with the aim of detecting candidate 

genes related to developmental competence. However, transcriptome analysis by its 

nature is an invasive technique and precludes further embryonic development. 

Therefore, indirect correlation of gene expression between groups of embryos with 

contrasting developmental rates rather than directly with individual embryo 

development limits the value of gene expression studies. To circumvent this problem 

and to enable analysis of developmental competence and gene expression profile of the 

same embryo in parallel, recently we have performed an experiment in which 

blastocysts were biopsied before transfer to recipients to correlate transcriptome profile 

of the biopsy with pregnancy establishment (El-Sayed et al. 2006; Ghanem et al. 2011). 

A typical genetic signature for in vivo and in vitro derived preimplantation embryos 

developing to term compared to those lacking the ability to establish pregnancy was 

detected. In these studies we raised the question whether developmental competence at 

the blastocyst stage is a consequence of post fertilization culture environment or is due 

to the intrinsic quality of oocytes and thereby preimplantation embryo competence is 

predefined much earlier than the blastocyst stage. Since it has already been 

demonstrated that early cleaving embryos are more likely to develop to the blastocyst 

than their later cleaving counterparts, accompanied by higher abundance of 

developmentally related genes (Brevini et al. 2002; Dode et al. 2006; Fair et al. 2004; 

Lonergan et al. 1999), we assume that determination of developmental competence 

could be defined already in 2-cell stage embryos. However, direct evidence for that 

hypothesis is lacking. 

To fill this research gap, we modified the technique of taking an embryo biopsy from 

the very early preimplantation embryo by separating sister blastomeres of bovine 2-cell 

stage embryos, allowing the correlation of the transcriptome in one blastomere with the 

developmental capacity of the sister blastomere. This approach should be 

accomplishable since early blastomeres are assumed to be totipotent and thereby 

undifferentiated allowing the embryo to regulate its development in order to overcome 
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failures in its organization such as cell loss. Direct evidence for totipotency is provided 

by the fact that an isolated blastomere has the ability to develop to term (reviewed by 

Edwards and Beard 1997). In addition, both blastomeres derived from a bisected 2-cell 

stage embryo retained a considerable degree of similarity, both in terms of cell number 

and rate of progression to blastocyst during their development (Katayama et al. 2010). 

Actually, single bovine blastomeres reach the blastocyst stage at about the same speed 

as control embryos, despite having two-thirds of the normal number of cells 

(unpublished from the authors' lab). Similarly, a recent study  in bovine describes high 

synchrony in development of sister blastomeres to the blastocyst stage, to induce 

pregnancy and to develop to term (Tagawa et al. 2008). In addition to developmental 

fate, murine 2-cell stage blastomeres have been shown to differ very marginally in their 

transcriptome fingerprint. Although transcriptome asymmetry within mouse zygotes 

has been shown, no difference could be detected between early embryonic sister 

blastomeres, suggesting that any transcriptomic pre-patterning might not be detectable 

or even non-existing (Roberts et al. 2011; VerMilyea et al.2011). The more, sister 

blastomeres of bovine 2-cell stage embryos should display even higher similarities than 

in mice since major genome activation starts at a later developmental stage (Memili 

and First 2000). 

Therefore, the aim of the present study was to evaluate the transcriptomic signatures of 

blastomeres of bovine 2-cell stage embryos and to relate this to subsequent 

developmental competence of sister blastomeres to the blastocyst stage. Moreover, we 

aimed to identify molecular functions and pathways to explain developmental 

competence enabling us to select developmentally important candidate genes as 

markers of developmental capacity in early bovine 2-cell stage embryos.  

 

Materials and Methods 

Oocyte collection 

Bovine ovaries were obtained from a local slaughterhouse and transported to the 

laboratory in warm (30-35°C) physiological saline solution within 1-3 hours of 

slaughter. Antral follicles (2 to 8 mm in diameter) were aspirated using an 18-gauge 

needle attached to a 10 ml syringe and collected into a 50 ml conical tube. Cumulus 

oocyte complexes (COCs) with evenly granulated oocyte cytoplasm surrounded by 

more than three compact layers of cumulus cells, were selected and incubated (in 
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groups of 50) in 400 ml of maturation medium that consisted of TCM-199 (M-2154; 

Sigma) with Earle salts buffered with 4.43 mM HEPES (H-9136; Sigma) and 33.9 mM 

sodium bicarbonate (S-5761; Sigma) supplemented with 12% oestrus cow serum 

(OCS), 0.5 mM L-glutamine, 0.2 mM pyruvate, 50 mg/ml gentamycin sulphate and 10 

µl/ml FSH (Folltropin, Vetrepharm, Canada) in four well dishes (Nunc, Roskilde, 

Denmark). Maturation medium was covered with mineral oil (Sigma-Aldrich) and was 

pre-incubated under maturation conditions for a minimum of 1 h (38.7 °C, 5% CO2 in 

air with maximum humidity) and then incubated for 22 h after oocytes were added.       

In vitro embryo production until 2-cell stage   

Following maturation, COCs were co-incubated with sperm (2 × 106 spermatozoa/ml) 

in fertilization medium consisting of Fert-TALP medium supplemented with 10 mM 

sodium lactate, 1 mM sodium pyruvate, 6 mg/ml BSA, 1 µg/mL heparin, 10 µM 

hypotaurine, 20 µM penicillamine, and 2 µM epinephrine at 38.7°C in 5% CO2 in air. 

Eighteen hours after insemination (18 hpi), presumable zygotes were denuded of 

cumulus cells and washed three times in CR1aa (Rosenkrans et al. 1993) supplemented 

with 12% heat inactivated oestrus cow serum (OCS). Thereafter, embryos were 

cultured in 400 µl of CR1aa medium in four well dishes (Nunc, Roskilde, Denmark) in 

groups of 50 under mineral oil at 38.7°C in 5% CO2 in humidified air until the 2-cell 

stage. 

Bisection of 2-cell stage embryos 

Separation of sister blastomeres in 2-cell stage embryos was conducted 28 to 30 hours 

after onset of IVF. First, the zona pellucida was removed by exposure of embryos to 

0.25% Pronase (Sigma) in Dulbecco's phosphate-buffered saline (DPBS, GIBCO BRL) 

for 1–2 min, followed by gentle pipetting with a tapered Pasteur pipette. Secondly, 

sister blastomeres were separated by gentle pipetting in CR1aa medium.  

In vitro embryo culture beyond the 2-cell stage  

Bisected embryos were cultured individually in small wells (WoW’s) until day 8 as 

described previously (Hoelker et al. 2009). Briefly, we prepared WoW’s into the 

bottom of 5-well culture dishes (Fa. Minitüb, Germany) by using an industrial borer 

(ULTRA HSSE/Co Bohrer, DIN 1899, Nr. 186, Fa Baer Ultra Präzisionswerkzeuge 

GmbH, Weinheim). A total of 16 small holes were bored in a 4 × 4 cluster in each well. 

The holes were cylindrical in shape (0.7 mm depth and 0.7 mm diameter) with a 

slightly rounded bottom. Bored WoW’s were cleaned by washing three times with 
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CR1aa culture medium. Then each well was overlaid with 400 µl CR1aa medium under 

mineral oil. After equilibration, one single blastomere and/ or embryo was placed in 

each WoW and were cultured at 38.7°C in 5% CO2 in humidified air until day 8.  

Comparing the developmental competence of corresponding sister blastomeres 

Corresponding blastomeres derived from bisected 2-cell stage embryos were placed 

individually into the WoW culture system. Subsequent cleavage and development to 

blastocyst stage were evaluated at day 3 and 8, respectively. Subsequent development 

of separated blastomeres was classified as I.) no further cleavage (2CB), II.) one 

additional cleavage (4CB), III.) those which additionally cleaved two times to the 4-

cell embryo but did not reach blastocyst stage (8CB) and IV.) those which reached 

blastocyst stage (BL).   

Assessment of individual developmental competence by blastomere biopsy  

Single blastomeres derived from bisected 2-cell stage embryos were placed 

individually into the WoW culture system while the corresponding sister blastomere 

was frozen stored individually. Subsequent cleavage and development to blastocyst 

stage were evaluated at day 3 and 8, respectively. Frozen stored blastomeres were 

pooled according to subsequent development of their corresponding sister blastomeres 

into one of three groups: I.) corresponding sister blastomeres did not cleave further 

after bisection (2-cell block, 2CB), II.) corresponding sister blastomeres stopped 

development after 2 additional rounds of cell cleavage at the 4-cell stage following 

bisection (8-cell block, 8CB) and III.) corresponding sister blastomeres developed to 

blastocyst stage (BL). An overview of this main experiment is presented in Figure 1. 

Embryos that cleaved once after bisection (4-cell block, 4CB) or 3 times (16-cell block, 

16-CB) or those which stopped development at morula stage were not included in this 

experiment. 
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Snap freezing 

Blastocyst 
(BL) 

Blocked before 
EGA (8CB) 

No further cleave. 

(2CB) 

Sampling according to sister blastomere 
development 

Blastomere bisection  Individual culture Sister blastomere development 

 

Figure 1: Experimental design: Single blastomeres derived from bisected 2-cell stage embryos were 
placed individually into the WoW culture system while the corresponding sister blastomere was frozen 
stored individually. Frozen stored blastomeres were pooled according to subsequent development of 
their corresponding sister blastomeres into three groups: I.) the corresponding sister blastomeres did not 
cleave anymore after bisection (2-cell block, 2CB), II.) the corresponding sister blastomeres stopped 
development after 2 additional rounds of cell-cleavage as 4-cell embryo following bisection (8-cell 
block, 8CB) and III.) the corresponding sister blastomeres developed to blastocyst stage (BL) 

 

Further characterization of candidate genes using an independent model    

Presumptive zygotes were examined at 27, 30, 32, 34, 36, 40 and 42 hours post 

insemination (hpi) for cleavage. Embryos, which cleaved before 32 hpi were 

considered to be developmentally competent whereas embryos cleaving later than 36 

hpi were considered to be less competent as shown before (Brevini et al. 2002; Dode et 

al. 2006; Fair et al. 2004; Lonergan et al. 1999). In 4 replicates, freshly cleaved 

embryos were collected, washed 3 times in DPBS and placed in screw cap tubes 

(Axygen, California USA) followed by snap freezing in liquid nitrogen. Subsequently, 

frozen 2-cell stage embryos were pooled according to their time of first cleavage into 

two groups: I.) early cleavage, cleavage < 30 hpi and II.) late cleavage, cleavage >36 

hpi.  

Embryo culture under different oxygen tensions  

Presumptive zygotes were transferred to CR1aa culture media and were cultured in 

groups of approximately 50 under 5% oxygen tension compared to 20% oxygen 

tension. Blastocyst rates were counted on day 7, 8 and 9. Secondly, 2-cell stage 
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embryos (3 pools each containing 20 embryos) derived from the contrasting oxygen 

tensions were collected 30 hours after fertilization for measuring the transcript 

abundance of CAT and PRDX1 using RT real time PCR. 

Staining of Reactive Oxygen Species   

Intracellular ROS was visualized using the fluorescent probe 6-carboxy- 2’,7’-

dichlorodihydrofluorescin diacetate (H2DCFDA). The stock solution was diluted in 

PBS  to a working concentration of 5µM. 2-cell stage embryos were selected according 

to the time of first cleavage (hpi) as described above, washed twice in PBS and placed 

in a 4 Well dish containing 400µl of 5 µM H2DCFDA. After 20 minutes incubation in 

the dark at 37°C, the embryos were washed twice in PBS and imaged immediately 

under Leica DM IRB inverted microscope with fluorescence filter.  

RNA Isolation and Amplification  

For further global gene expression analysis by array technology samples were prepared 

from 2CB, 8CB and BL pools (3 pools each containing 15 blastomeres). Total RNA 

isolation was performed using the PicoPureTM RNA Isolation Kit (Arcturs, Munich, 

Germany) according to the manufacturer's instruction. RNA integrity was evaluated 

using the Agilent 2100 Bioanalyzer with RNA 6000 Nano LabChip® Kit (Agilent 

Technologies Inc., CA, USA). Briefly, two rounds of RNA amplified transcription 

were carried out using Arcturus RiboAmp HS reagents (Molecular Devices, Sunnyvale, 

CA. USA) as described by (Somers et al. 2006). Likewise, pools of 2-cell stage 

embryos cultured under high and low oxygen tensions by RT real time PCR for 

quantification of CAT and PRDX1 were amplified in the same way. 

For evaluation of transcript abundance of selected candidate genes in early and late 

cleaved bovine embryos, 8 pools each containing 60 embryos were sampled both for 

early and late cleaved embryos. Of these, 4 replicates were amplified using random 

hexamers (Promega) for reverse transcription to assess abundance of all transcripts 

whereas 4 replicates were amplified using oligo(dT)23 primers (Promega) for reverse 

transcription to assess abundance of poly-A-tailed transcripts. Amplified RNA were 

assessed using the Nanodrop 8000 spectrophotometer (Biotechnology GMBH, 

Erlangen, Germany).  
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Reverse Transcription on AmpliGrid Chips for comparative Single-blastomere 

qPCR 

Corresponding blastomeres of 2-cell stage embryos were transferred in 1µl PBS onto 

an AmpliGrid AG480F slide (Advalytix, Munich, Germany), a glass chip with a 

surface structure for specific positioning of 48 discrete reaction sites. The blastomeres 

were air-dried followed by genomic DNA digestions using 0.1µl gDNA Wipeout 

Buffer (Qiagen, Hilden, Germany) (7-fold) diluted in 0.6 µl RNAse free water. Each 

reaction site was overlaid with 5µl sealing solution (Advalytix) and incubated at 42°C 

for 2 minutes using AmpliSpeed ASD100D cycler (Advalytix). For reverse 

transcription 2.3µl master mix solution containing 0.15µl Quantiscript reverse 

transcriptase, 0.6µl Quantiscript RT buffer (5-fold) and 0.27µl gene-specific RT- 

primer mix (3-plex: GAPDH, CAT, PRDX, 0.09µl of 10µM primer each) and 1.28 µl 

RNAse free water. The RT reaction was performed for 60 minutes at 42°C followed by 

3 min at 95°C. Prior to quantitative PCR, cDNA was diluted 1:7 with PCR grade water. 

Real time PCR was performed as described above using 2µl cDNA per well. 

Global Gene Expression Analysis 

Amplified RNA samples of three pools per group (technical replicates) each consisting 

of 15 blastomeres (biological replicates) group were hybridized on EmbryoGENE’s 

bovine microarray (made by Agilent 4 x 44k) using a two colour-dye-swap design Cy3 

and Cy5 as described previously (Robert et al. 2011). After 17 hours of hybridization at 

65°C, the microarray slides were washed first for 3 minutes in gene expression wash 

buffer (42°C), secondly for 10 seconds in 100% acetonitrile (RT) and 30 seconds in 

stabilization and drying solution (Agilent). The slides were scanned using the GenePix 

pro scanner. Data were submitted to a background correction, a Loess within array 

normalization, a quantile between array normalization, and statistically analyzed using 

linear models for microarray data analysis (LIMMA). Genes were considered 

differentially expressed at a fold-change >1.5 with adjusted P-value of <0.05 using the 

Benjamini and Hochberg false discovery rate method (FDR < 0.1). All analyses were 

performed using R and limma package. Normalized data were submitted to Gene 

Expression Omnibus (GEO) under series (GSE37986). A list of differential expressed 

genes (DEG’s) was uploaded to DAVID software to group molecular functions into 

clusters. Ingenuity Pathway Analysis (IPA) software was used to identify relationships 

between the genes of interest and to uncover common pathways. 
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Validation of array results and further characterization of candidates by real time 

PCR 

To validate microarray results, eleven genes were selected for further analysis by real-

time PCR (ATF1, BSG, MAPK14, CAT, NDUFS1, TEAD1, SYCP3, PRDX1, PRDX6, 

KRT8, SFRS12) as presented in Table 1. Moreover, for further characterization, 5 

validated candidate genes were selected to test their expression in an independent 

model for developmental competence by real-time PCR (NDUFS1, MAPK14, CAT, 

PRDX1, and PRDX6). Quantitative analysis of cDNA samples was performed using 

StepOnePlus™ real time PCR system (Applied Biosystems, Foster City, CA, USA). 

The cDNA synthesized of samples were subjected to real-time PCR using GAPDH 

primer to test for any variation in the expression of this internal control gene. Standard 

curves were generated for both target and internal control genes using serial dilution of 

plasmid DNA (101–109 molecules). The PCR was performed in a 20 µl reaction 

volume containing iTaq SYBR Green Supermix with ROX (Bio-Rad Laboratories, 

Munich, Germany), the cDNA samples and the specific forward and reverse primer in 

StepOnePlus™ real time PCR system (Applied Biosystem). The thermal cycling 

parameter was set as 95°C for 3 min, 40 cycles of 95°C for 15 s and 60°C for 1 min. 

After the end of the last cycle, dissociation curve was generated by starting the 

fluorescence acquisition at 60°C and taking measurements every 7 s interval until the 

temperature reached 95°C. Final quantitative analysis was done using the relative 

standard curve method and results were reported as the relative expression or n-fold 

difference to the calibrator after normalization of the transcript amount relative to the 

endogenous control (Tesfaye et al. 2004). In case of singe Cell PCR quantitative 

analysis was done using the comparative cycle threshold method (CT) and results were 

reported as the relative expression to the endogenous control. Statistical analysis of the 

expression values was carried out using the student's t-test. 
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Table 1: Details of primers used for real-time PCR quantitative analysis 

Gene Accession 

number 

Primer sequences Annealing 

temperature 

(°C) 

Product size 

(bp) 

GAPDH NM_001034034            F:acccagaagactgtggatgg  
R:acgcctgcttcaccacctt  

57 247 

ATF1 NM_001075289 F: gacagcataggctcctcaca 
R: gcaatggcaatgtactgtcc 

50 200 

MAPK14 NM_001102174 F: cagccgacataattcacagg 
R: cattatgcatcccactgacc 

50 212 

CAT NM_001035386 F: agccagaagagaaaccctca 
R: ctgcctctccatttgcatta 

53 190 

NDUFS1 NM_174820 F: ttagcaaatcacccactgga 
R: tgcctgtagttcccaaatca 

55 204 

TEAD1 XM_002693050 F: tctggccaggaatgatacaa 
R: gaagtttggttgtgccaatg 

55 183 

SYCP3 NM_001040588 F: gttcagaggaggatgccatt 
R: ggttttgagagaagccttgg 

53 194 

PRDX1 NM_174431 F: atgccagatggtcagttcaa 
R: gccaggtgacagaagtgaga 

53 197 

PRDX6 NM_174643 F: actcatggggcattctcttc 
R: gcaaggtcccgattcttatc 

53 241 

KRT8 NM_001033610 F: aatttgcctccttcatcgac 
R: ttccagcttcagcttctcct  

53 185 

BSG NM_001075371 F: aggccagtactcctgcatct 
R: tcgcttccttgtaccacag 

55 186 

 

 

Protein Localization by Immunofluorescence 

After collection of early-cleaving, late-cleaving and uncleaved 2-cell stage embryos, 

samples were fixed in 4% paraformaldehyde in PBS (pH 7.4) for one hour. The fixed 

samples were permeabilized in 0.5% (vol/vol) Triton-X100 (Sigma) in PBS and 

blocked in 3% (wt/vol) BSA (Roche Diagnostics) in PBS. This was followed by a 1 

hour incubation in primary antibody Catalase Rabbit anti- Bovine Polyclonal Antibody 

(LifeSpan BioScience Eching, Germany), Rabbit Polyclonal antibody to Peroxredoxin 

1 (Acris Antibodys, Herford Germany) (2–10mg/l) at 39°C and by exposure to 

secondary antiserum Alexa Flour 568 goat anti-rabbit IgG-FITC (Santa Cruz 

Biotechnology, Santa Cruz, CA)  for 1hour at 39°C . Samples were placed in PBS in a 

Micro Slide (Lakeside Microscope Accessoirs, Monee, IL) and covered with a glass 

slide before being visualized on an ApoTome microscope (Carl Zeiss MicroImaging). 
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Results 

Comparing the developmental competence of corresponding sister blastomeres   

When corresponding blastomeres derived from bisection of a total of 128 bovine 2-Cell 

stage embryos were cultured individually, with highest probability none of the 

separated blastomeres reached the blastocyst stage (84.3%). Considering development 

to the blastocyst stage as bimorphic phenotype, development of corresponding sister 

blastomeres were different in only 3.1% of all bisected 2-Cell stage embryos with only 

one blastomere reaching the blastocyst stage. In contrast, the proportion of observations 

in which both blastomeres reached the blastocyst stage was 12.5 % resulting in a 

cumulative probability of 15.6 % (12.5% + 3.1%) that at least one blastomere 

developed to the blastocyst stage as shown in  

More in detail, when a given blastomere derived from a bisected 2-Cell stage embryos 

did not cleave after separation a proportion of  70% of the corresponding sister 

blastomeres also did not cleave anymore (2-cell block, 2CB) and no sister blastomere 

reached the blastocyst stage (Figure 2). In case the given blastomere cleaved exactly 

once again to a 2-cell embryo (4-cell block, 4CB), 64% of the corresponding sister 

blastomeres stopped development exactly at the same stage whereas 19 % even did not 

cleave and 17 % progressed to the 4-cell embryo (8-cell block, 8CB) without reaching 

the blastocyst stage. When the given blastomere developed beyond the 4-cell embryo 

(8-cell block, 8CB) without reaching the blastocyst stage (BL), a majority of 80 % of 

corresponding sister blastomeres developed equally. Likewise, when the given 

blastomere reached the blastocyst stage (BL) nearly all corresponding sister 

blastomeres developed in parallel (94%) as presented in Figure 2. Overall, correlation 

of sister blastomeres developmental capacity was high (y = 0.87 x + 0.38, R2= 0.73).     
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Figure 2: Developmental synchrony of corresponding bovine sister blastomeres    
Proportion of sister blastomeres that developed to certain developmental stages (y-axis, 2CB = 2-cell 
block, 4CB = 4-cell block, 8CB = 8-cell block, BL = Blastocyst) based on developmental classification 
of the given blastomere (x-axis). When the given blastomere developed to 2-cell stage, 70 % of the 
corresponding sister blastomeres also stopped development at 2-cell stage. Likewise, when the given 
blastomere developed to the blastocyst stage 94 % of sister blastomeres also reached the blastocyst stage. 
 

 

Microarray Results 

The EmbryoGENE Microarray analysis revealed a total of 632 genes to be 

differentially regulated between those blastomeres whose sister blastomeres reached 

the blastocyst stage (BL) and those which did not cleave at all following separation 

(fold change ≥ 1.5, P≤ 0.05, FDR≤ 0.1). Of these, 298 genes were up regulated and 334 

down regulated in BL group compared to 2CB group. Similarly, 150 genes were 

differentially regulated between BL group and those whose sister blastomeres stopped 

cleaving before embryonic genome activation (8CB) group of which 61 genes were up 

regulated and 89 genes were down regulated (fold change ≥ 1.5, P≤ 0.05, FDR≤ 0.1). 

Taken together, we found 77 genes (including 20 novel transcripts) to be commonly 
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differentially expressed in 2CB and 8CB groups compared to BL group as summarized 

in Figure 3A. Of these, 29 genes were up regulated and 48 genes down regulated 

(Supplemental Table 1). Moreover, we found 73 genes to be differential expressed 

exclusively in 8CB vs. BL group. Of these, 32 genes were upregulated and 41 genes 

were down regulated (Supplemental Table 2). 

Molecular functions and pathway analysis 

DAVID software clustered most affected molecular functions in BL vs. 8CB (n=150), 

namely transition metal ion binding, oxidoreductase activity, acting on peroxide as 

acceptor, peroxidase activity, antioxidant activity. Additionally differentially regulated 

genes were involved in the following biological processes: oxygen and reactive oxygen 

species metabolic process, negative regulation of molecular function, hydrogen 

peroxide catabolic process, cellular response to hydrogen peroxide, hydrogen peroxide 

metabolic process, response to hydrogen peroxide and cellular response to reactive 

oxygen species. Clustering of commonly differentially regulated genes (2CB vs. BL 

and 8CB vs. BL, n=77) uncovered oxidoreductase, peroxidase and antioxidant activity 

as most important biological functions affected by these genes (Figure 3C) whereas 

genes exclusively differentially expressed in 8CB vs. BL groups (n=73) uncovered 

cellular response to stress, regulation of cell proliferation and translation as most 

important biological functions affected by these genes (Figure 3D).  
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Figure 3: Differential regulated genes between blastomeres with contrasting developmental 

capacity   

(A) Heatmaps of differentially regulated genes between 2CB and BL groups as well as 8CB and BL 
groups indicate 632 and 150 differential expressed genes. (B) The Venn-Diagram presents 77 genes to be 
differentially expressed in common for 2CB vs. BL groups and 8CB vs. BL groups. In contrast, 555 
genes were differentially expressed exclusively in 2CB vs. BL groups and 73 genes are exclusively 
differentially expressed in 8CB vs. BL groups. (C.) Biological functions like oxidoreductase activity, 
peroxidase activity and antioxidant activity were affected with highest relevance (P-Value) by commonly 
differentially regulated genes (D.) Biological functions like cellular response to stress and regulation of 
cell proliferation were affected with highest relevance (P-Value) by genes exclusively differentially 
regulated in 8CB vs. BL groups. 

2CB vs. BL 8CB vs. BL 
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Moreover, differentially expressed genes were uploaded to Ingenuity Pathway analysis 

(IPA) uncovering 15 pathways in 2CB vs. BL including Protein ubiquitination 

pathway, Protein kinase A signalling and Molecular mechanisms of cancer, to be 

affected by the highest numbers of molecules (18, 16 and 16). Additionally, oxidative 

phosphorylation and NRF2 mediated stress response were significantly affected by 

differentially expressed genes (Supplemental figure 1A). IPA of genes differentially 

regulated in 8CB vs. BL groups   (Table 2) uncovered 8 pathways including NRF2 

mediated stress response        (Supplemental figure 1B). 
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Table 2: List of differentially regulated genes involved in pathways related to oxidative stress 

 
Probe name Gene Symbol Description  Fold Change 

 
Oxidative Phosphorylation in BL vs. 2CB 

EMBV3_14488 NDUFS1 NADH dehydrogenase (ubiquinone) Fe-S protein 1, 75kDa (NADH-coenzyme Q reductase) 2,05 

EMBV3_35406 SDHD succinate dehydrogenase complex, subunit D, integral membrane protein 1,60 

EMBV3_12008 NDUFC1 NADH dehydrogenase (ubiquinone) 1, subcomplex unknown, 1, 6kDa 1,58 

EMBV3_07268 NDUFB9 NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 9, 22kDa -1,58 

EMBV3_36497 ATP6V1B2 ATPase, H+ transporting, lysosomal 56/58kDa, V1 subunit B2 -1,58 

EMBV3_37271 ATP6V0D1 ATP6DV ATPase, H+ transporting, lysosomal 38kDa, V0 subunit d1 -1,61 

EMBV3_34010 ATP6V0C PLP ATPase, H+ transporting, lysosomal 16kDa, V0 subunit c -1,62 

EMBV3_17878 COX6A1 cytochrome c oxidase subunit VIa polypeptide 1 -1,62 

EMBV3_33704 NDUFS8 NADH dehydrogenase (ubiquinone) Fe-S protein 8, 23kDa (NADH-coenzyme Q reductase) -1,63 
 
NRF2 mediated oxidative stress response in BL vs. 2CB 

EMBV3_36537 MAP3K7 mitogen-activated protein kinase kinase kinase 7 2,01 

EMBV3_03149 MAPK14 mitogen-activated protein kinase 14 1,95 

EMBV3_30827 UBE2E3 ubiquitin-conjugating enzyme E2E 3 (UBC4/5 homolog, yeast) 1,57 

EMBV3_24218 CAT catalase 1,53 

EMBV3_20364 GSTM3 glutathione S-transferase mu 3 (brain) -1,52 

EMBV3_21587 JUND jun D proto-oncogene -1,59 

EMBV3_39906 AKR1A1 aldo-keto reductase family 1, member A1 (aldehyde reductase) -1,69 

EMBV3_10622 MRAS muscle RAS oncogene homolog -1,85 

EMBV3_00987 DNAJB5 DnaJ (Hsp40) homolog, subfamily B, member 5 -1,99 

EMBV3_28741 PRDX6 KIAA0106 peroxiredoxin 6 -2,24 
 
NRF2 mediated oxidative stress response in BL vs. 8CB 

EMBV3_24218 CAT catalase 1,73 

EMBV3_40942 PRDX1 peroxiredoxin 1 1,57 

EMBV3_03401 PRDX6 KIAA0106 peroxiredoxin 6 -1,59 

EMBV3_00664 DNAJB12 DnaJ (Hsp40) homolog, subfamily B, member 12 -1,69 

EMBV3_00987 DNAJB5 DnaJ (Hsp40) homolog, subfamily B, member 5 -1,95 

(Fold Change ≥ 1.5, p≤ 0.05, FDR≤ 0.1)
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Array data validation by real time PCR 

Eleven genes (ATF1, BSG, CAT, KRT8, MAPK14, NDUFS1, PRDX1, PRDX6, 

SFRS12, SYCP3, and TEAD1) were selected and quantified in three independent 

samples of 2CB, 8CB and BL groups. PCR results showed the expression of eight 

genes to be in agreement with the array results (p < 0.05). Additionally, two genes 

(PRDX1, PRDX6) showed the correct expression pattern (without statistical 

significance) and one gene (KRT8) did not show differences with real time PCR 

validation (Figure 4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Confirmation of genes related to developmental capacity by RT real-time PCR   

Three replicates with pools of 15 blastomeres each were analyzed. The amount of mRNA represents the 
Mean ± SD of each transcript, corrected with GAPDH as a housekeeping gene. (Columns with * differ 
significantly p<0.05). Overall, RT real time PCR results confirmed  
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Further characterization of selected candidates in an independent competence 

model 

In order to investigate whether the expression of some of the candidate genes is 

associated with embryo competency, we used an independent competence model 

considering the time of first cleavage of 2-cell stage embryos, i.e. early cleaved 

(competent) vs.  late cleaved (incompetent). 

For this, we selected 5 candidate genes (NDUFS1, MAPK14, CAT, PRDX1 and 

PRDX6) involved in oxidoreductase, peroxidase and antioxidant activity as well as in 

oxidative stress response - and oxidative phosphorylation pathways. In order to 

differentiate between the active and dormant forms of these transcripts, candidates 

were analyzed using cDNA synthesized from either random or oligo (dt) primers. 

Using random primed cDNA all genes were found to be more abundant in early 

cleaved embryos compared to the late cleaved ones except NDUFS1 and CAT. 

However using oligo (dt) primed cDNA all genes showed significantly higher 

abundance in early cleaved embryos compared to the late cleaved ones. (Figure 5) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Effect of time of first cleavage post insemination on abundance of selected candidate 

genes: Abundance of selected candidate genes with respect to random forms (black bars) and 
polyadenylated forms (white bars) comparing early and late cleaved embryos (< 30 vs. >36 hours post 
insemination. Columns with different superscripts differ significantly p<0.05) 
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Detection of Reactive Oxygen Species (ROS) 

The detection of Reactive Oxygen Species (ROS) after staining with H2DCFDA 

revealed relatively low levels of ROS in early cleaving embryos (<30 hpi), higher 

amounts of ROS in late cleaving embryos (>36 hpi) and highest ROS levels in embryos 

which reached cleavage very late i.e. 42 hpi as indicated by Figure 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Effect of time of first cleavage post insemination on levels of Reactive oxygen species  

Representative pictures revealing lower levels of Reactive oxygen species in early cleaved embryos (B) 
compared to late cleaved embryos (D) with highest levels observed in uncleaved embryos (F). The left 
side presents the same groups of early cleaved embryos (A), late cleaved embryos (B) and uncleaved 
embryos (E) without fluorescence in light field. 
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Developmental competence and expression levels of CAT and PRDX1 according to 

environmental oxygen tension 

Culturing of embryos in an oxygen tension of 5% representing a rather anti-oxidative 

environment resulted in significantly higher blastocyst rates compared to those 

embryos which were cultured under 20% oxygen (37.72% vs. 21.01%) representing a 

rather pro-oxidative environment (Table 3). 

 

Table 3: Developmental rates of presumptive zygotes cultured under two different 

oxygen tensions, 5% O2 and 20% O2 

 

  Cleavagerate Blastocystrate 

d7 

Blastocystrate 

d8 

Blastocystrate 

d9 

Oxygen 

Tension 

n n (%) n (%) n (%) n (%) 

5 % O2 517 409 79.11 123 23.79 a 174 33.65 a 195 37.72 

a 
20 % O2 533 423 79.36 56 10.51 b 84 15.76 b 112 21.01 

b 
Values with different superscripts within columns differ significantly p<0.05 

 
 

Considering the transcript abundance in 2-cell stage embryos of CAT we found a 

significantly higher abundance in those embryos cultured under 5% oxygen tension 

compared to 20%, the same trend was observed for PRDX1 (Figure 7). 

 

 

 

 

 

 

 

 

 

Figure 7: Effect of oxygen tension at culture on relative expression of CAT and PRDX1 in 2-Cell 

embryos  

Embryos cultured under rather anti-oxidative conditions (5% O2, black bars) showed significantly higher 
expression of CAT and PRDX1 compared to embryos cultured under rather pro-oxidative conditions 
(20% O2, white bars). Columns with different superscripts differ high significantly p<0.01 
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Comparative expression of candidate Genes in single sister blastomeres 

To find out whether the selected candidate genes CAT and PRDX1 are expressed at 

comparable levels in both sister blastomeres of a 2-cell stage embryo a single 

blastomere RT real time PCR was conducted. When analyzing the corresponding sister 

blastomeres of 12 bisected bovine 2-Cell stage embryos, the results revealed that there 

were no significant differences in expression levels of CAT and PRDX1 between the 

corresponding blastomeres (Figure 8).  

Figure 8: Comparative expression of CAT and PRDX1 in bovine sister blastomeres.  Analysis of a 
total of 12 pairs of sister blastomeres derived by separation of bovine 2-Cell embryos (No 1-12) analyzed 
by single blastomere RT real time PCR revealed high similarity without any significant difference in 
gene expression abundance. 
 

 

 

Protein Localization by Immunofluorescence 

Considering early and late cleaved bovine embryos, higher amounts of CAT protein 

was observed in early cleaved bovine embryos compared to late cleaved embryos. 

Similarly, late cleaved embryos showed relatively higher amounts of CAT protein 

compared to embryos that did not cleave until 42 hpi. No clear difference could be 

observed between early and late cleaved embryos in protein expression of PRDX1 

gene. In contrast, expression of PRDX1 protein was much higher in uncleaved embryos 

compared to early and late cleaved embryos as presented in Figure 9.   
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Figure 9: Protein localization of CAT and PRDX1 in bovine 2-Cell embryos  
Representative immunoflourescence pictures of CAT (A-C) and PRDX1 (D-F) in early cleaved embryos (A+D), late cleaved embryos (B+E) and uncleaved embryos 
(C+F)
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Discussion 

During the last decade, several approaches analyzing transcriptome signatures related 

to developmental competence of bovine oocytes and embryos have been conducted 

(Corcoran et al. 2007; Donnison and Pfeffer 2004; Lonergan et al. 2003; Pfeffer et al. 

2007; Sagirkaya et al. 2006). The biggest disadvantage of traditional transcriptome 

analyses is that only average expression characteristics of pools of embryos classified 

in groups with higher and lower developmental rates due to environmental (McHughes 

et al. 2009; Mohan et al. 2004; Niemann and Wrenzycki 2000), morphological (van 

Soom et al. 2003) or sub cellular characteristics (Torner et al. 2008) could be 

correlated. Efforts have been made to establish a correlation between developmental 

competence of a single preimplantation embryo and its gene expression characteristics 

by taking a biopsy of a blastocyst, subsequently transferring the blastocyst to a 

recipient animal and recording pregnancy rate and retrospectively pooling biopsy 

samples for transcriptome analysis on the basis of pregnancy outcome (El-Sayed et al. 

2006; Salilew-Wondim et al 2010.; Gahnem et al. 2011). These studies clearly 

indicated that developmental competence of bovine blastocysts is associated with 

distinct gene expression signatures. However, these studies also raised the question of 

whether developmental competence is modulated by post fertilization culture 

environment or is due to intrinsic quality of oocytes used for fertilization and 

subsequent culture. To answer that question, the present work went some steps 

backwards on the temporal axis of preimplantation development to determine if 

transcriptome characteristics of bovine 2-cell stage embryos were related to subsequent 

in vitro developmental competence. The main strategy of our approach was to bisect 2-

cell stage embryos which allows both to follow the developmental capacity of one 

blastomere and to analyze the transcriptome profile of the corresponding sister 

blastomere. In a preliminary experiment, we evaluated the developmental potential of 

intact (control) 2-cell embryos, zona-free 2-cell embryos and individual blastomeres 

derived from 2-cell embryos (Supplemental Table 3). No significant difference was 

observed in blastocyst rate between 2-cell stage embryos cultured with or without the 

zona pellucida. Although separated blastomeres developed at lower rates to the 

blastocyst stage compared to the other two groups, developmental rates were still 

sufficient for our strategy. Indeed, in our study we discovered an overall correlation 

coefficient of 73 % in terms of in vitro development of bisected bovine sister 
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blastomeres. Considering development to the blastocyst stage as bimorphic phenotype, 

corresponding blastomeres derived from a bisected 2-cell stage embryo developed 

differently with a probability of only 3.1%. Moreover, when a given blastomere 

developed to the blastocyst stage, the corresponding counterpart reached also the 

blastocyst stage with a probability of 94 %. These results indicate that developmental 

capacity of both blastomeres of a bovine 2-cell stage embryo is highly similar which is 

in accordance with previous studies in mouse (Chroscicka et al. 2004; Katayama et 

al.2010) and pig (Dang-Nguyen et al. 2011). However, it has been reported that murine 

2-cell-stage blastomeres show biased differences in their fate (Piotrowska et al. 2001; 

Zernicka-Goetz 2005) whereas a study of Roberts et al. 2011 showed that both 

blastomeres of murine 2-cell stage embryos are similar in their individual 

transcriptomic fingerprint. That could be explained by the finding that the orientation 

of the first cleavage is generally thought to be meridional, along the animal-vegal axis, 

with the animal pole marked by the second polar body (Gardner 1997). A result of that 

is transcriptome asymmetry within blastomeres, but not between the first embryonic 

sister blastomeres both showing the same gradient similar to that of the former zygote 

(VerMilyea et al. 2011). In line with that, it has been demonstrated that developmental 

bias depends on the pattern of the second equatorial cleavage divisions (Piotrowska-

Nitsche and Zernicka-Goetz 2005) resulting in molecular heterogeneities between 

blastomeres evident as early as at the 4- and 8-cell stages (Torres-Padilla et al. 2007) 

especially with respect to Oct4 kinetics (Plachta et al. 2011). These reports are 

supported by studies that demonstrated that one of the 2-cell blastomeres (the earlier to 

divide) contributes significantly more cells to the ICM (Piotrowska et al. 2001) because 

earlier dividing blastomeres generate more cellular contacts (Niwa et al. 2005) which 

are required to maintain Oct4 expression levels in embryonic blastomeres 

(Lorthongpanich et al. 2012). Consequently, cell-cell contact after second cleavage 

seems to be the key factor in determining whether a cell adopts a TE or ICM fate. Vice 

versa, in absence of cell-cell contacts due to second cleavage we suggest that singled 

sister blastomeres in our study not yet established polarity and did not show lineage 

pre-patterning in the separated blastomeres as it has reported recently (Lorthongpanich 

et al. 2012). Since both separated blastomeres of a 2-Cell embryo are still able to 

develop to term and to produce identical twins (Hancock 1954; Ozil et al. 1982; Seike 

et al. 1989; Tagawa et al. 2008) evidencing pluripotency, we believe that separated 
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sister blastomeres establish lineage pre-patterning as a consequence of polarity through 

subsequent cleavages one cell cycle later.  

According to our main experimental design, we thus defined pools of blastomeres with 

high developmental competence which developed to the blastocyst stage (BL) and 

blastomeres with low developmental competence which stopped cleavage before 

embryonic genome activation (8-Cell stage, 8CB). Although, these embryos appear 

phenotypically as 4-cell embryos, they are determined as 8- cell stage embryos, taking 

into account that they are rather in the fourth cell cycle. Moreover we classified one 

group of blastomeres with very poor developmental competence which failed to cleave 

after separation and thereby blocked development in 2-cell stage (2CB). This 

developmentally high incompetent group was set up to enable identification of genes 

commonly differential expressed in blastomeres of very poor developmental 

competence (2CB) as well as in blastomeres which were able to cleave some round 

without reaching blastocyst stage (8CB). That approached allowed us to exclude genes 

which are differentially expressed exclusively in the 2CB group since we suggested 

that  failure of second cleavage after separation could have been induced through 

mechanical damage in that case.  

Our results revealed differences at the molecular level for those blastomeres whose 

counterparts developed to the blastocyst stage (BL group) compared to those with 

lower developmental competence (2CB and 8CB groups). This is in line with our 

previous results where biopsies from in vitro derived (El-Sayed et al. 2006) and in vivo 

derived (Gahnem et al. 2011) blastocysts were taken. Global transcriptome analysis 

revealed 632 differentially regulated genes between BL group and 2CB group and 150 

differentially regulated genes between BL group and 8CB group. Cluster analyses of 

DEGs between BL and 8CB showed a clear trend towards molecular functions and 

biological processes related to the cells’ response to oxidative stress, including 

oxidoreductase activity, acting on peroxide as acceptor, peroxidase activity, antioxidant 

activity and oxygen and reactive oxygen species metabolic process, negative regulation 

of molecular function, hydrogen peroxide catabolic process, cellular response to 

hydrogen peroxide, hydrogen peroxide metabolic process, response to hydrogen 

peroxide and cellular response to reactive oxygen species. A total of 77 transcripts 

were commonly differentially regulated. Interestingly, all 77 transcripts showed the 

same expression trend. Functional analysis of those genes again unraveled their 
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predominant involvement in NRF2- mediated oxidative stress response and oxidative 

phosphorylation (OXPHOS) pathways and biological functions including 

oxidoreductase-, peroxidise- and antioxidant- activity. This led us suggest, that those 

functions and processes described above are mainly responsible for developmental 

competence. Accordingly, we selected several candidate genes based on these findings 

as well as some genes by random and successfully validated array results using 

quantitative real time PCR.  

Several studies have evidenced the negative impact of oxidative stress and Reactive 

Oxygen Species (ROS) on preimplantation embryonic development (Bain et al. 2011; 

Guerin et al. 2001; Johnson and Nasr-Esfahani 1994). Even marginal elevated levels of 

ROS can interrupt maturation and early embryonic development (Harvey et al. 2002; 

Liu et al. 2000; Van Blerkom 2011) and certain amounts of ROS are considered to be 

important to regulate various cell functions including programmed cell death (Harvey 

et al. 2002; Rhee 2006). Elevated levels of ROS have been reported to be a 

consequence of weak culture environments (Goto et al. 1993), but ROS is also 

produced by the embryo itself within the respiratory chain (reviewed by Guerin et al. 

2001). Balance of ROS production and ROS scavenging, described as reduction-

oxidation (REDOX) state is suggested to play an important role for optimal growth 

response (Burdon 1996). Taken together, we hypothesized that expression of genes 

involved in ROS generation as well as in ROS scavenging correlated with subsequent 

in vitro developmental competence. To proof our hypothesis, we therefore aimed to 

further characterize candidate gene expression in an independent model.  

Bovine 2-cell stage embryos were classified based on the time of first cleavage post 

insemination (hpi) which has been shown to be a reliable predictor for developmental 

competence in a variety of mammalian species. It is widely accepted that a greater 

proportion of early cleaving bovine embryos develop to the blastocyst stage compared 

to those cleaving later, which was also accompanied by differences in relative 

abundance of developmentally related genes (Brevini et al. 2002; Dode et al. 2006; Fair 

et al. 2004; Lonergan et al. 2000). Consequently, we evaluated gene expression of our 

candidates related to OXPHOS (NDUFS1) and oxidative stress response (MAPK14, 

CAT, PRDX1, PRDX6) in competent (early cleaved) embryos as a model for high 

developmental competence as well as in incompetent (late cleaved) embryos as a 

model for low developmental competence in terms of general expression of candidate 
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genes as well as polyadenylated forms. It is generally accepted that the early embryo is 

dependent on maternally-inherited transcripts accumulated during oogenesis (Betts and 

Madan 2008) with variable translational activity of mRNAs due to the proportion of 

polyadenylated forms. Post-transcriptional regulation mechanisms regulate the activity 

of maternal inherited transcripts, by shortening the polyA tail for further storage and to 

protect the transcripts from degradation. With respect to detect active forms of 

transcripts, real time PCR using oligo dt (23) primers was conducted in the present 

approach. Considering polyadenylated forms, a significantly higher expression was 

observed in early cleaving embryos compared to late cleaving embryos with respect to 

all characterized genes. Accordingly, NDUFS1 expression was significantly 

upregulated in blastomeres with the ability to develop to the blastocyst stage compared 

to those that did not cleave at all after blastomere separation. Previous studies reported 

NDUFS1 as one of the most important subunits of the NADH:ubiquinone 

oxidoreductase mitochondrial complex I, which is described as the largest complex of 

the OXPHOS system (Brandt 2006) regulating energy metabolism (Finel 1998) and 

producing superoxide (Koopman et al. 2010). Similarly, our results confirmed that 

MAPK14, also known as p38, to be significantly up-regulated in early cleaved embryos 

compared to late cleaved ones both in terms of random and polyadenylated forms. 

MAPK14 itself was detected to be activated by ROS (Matsuzawa and Ichijo 2008), 

activates antioxidant enzymes like CAT (Gutierrez-Uzquiza et al.2012) and indirectly 

regulates oxidative stress response by modulating the expression of antioxidant 

enzymes including NRF2 (Limon-Pacheco et al. 2007; Niture et al. 2010; Pi et al. 

2008; Zipper and Mulcahy 2000). In parallel to elevated MAPK14, we found active 

ROS scavengers CAT and PRDX1 to be up-regulated in early cleaved 2-cell embryos 

compared to their later cleaved counterparts. Again, this is inline with our results 

obtained in developmentally competent bisected blastomeres. CAT and PRDX1 

eliminate destructive hydrogen peroxide (H2O2) from the embryo to assure viability of 

embryos (Leyens et al. 2003; Orsi and Leese 2001) and thereby acting in sequence in 

order to reduce H2O2. Under low H2O2 concentrations, PRDX1 scavenges more 

efficiently due to its higher affinity towards H2O2 whereas under high H2O2 

concentrations CAT scavenges more efficiently (Neumann et al. 2009). Like NDUFS1, 

PRDX1 and CAT are located in the mitochondrial membrane and considerable higher 

expression of all three in developmentally more competent early cleaved embryos may 
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be correlated with higher numbers of mitochondria reported to be symmetrically 

segregated in both blastomeres of the 2-cell stage embryo (Tarazona et al. 2006). It is 

well known that aberrant levels of maternally-inherited mitochondrial DNA (mtDNA) 

are associated with lower developmental competence (Cummins 2002; Spikings et al. 

2007). Likewise, in insulin-resistant mice, a low number of mtDNA in MII oocytes 

accompanied by oxidative stress causes disruption of ATP biosynthesis resulting in 

poor oocyte quality and adverse embryonic development (Thouas et al. 2004). Finally, 

PRDX6 was found to be significantly upregulated in analysis of random and oligo (dt) 

primed cDNAs in early cleaving embryos compared to late cleaving ones, being in 

conflict with a slightly lower expression (without significance) in blastomeres with 

high developmental competence. However, it has been noticed that PRDX6 is 

expressed with decreasing abundance from immature oocytes to 8-cell stage embryos 

without expression from 16-cell stage to morula and an increase again in blastocyst 

stage (Leyens et al. 2004). Taking that in mind, lower expression in competent 

blastomeres could indicate that these embryos are one step ahead on the temporal axis 

of embryonic development compared to developmentally less competent blastomeres. 

Likewise, lower expression of PRDX6 in late cleaving embryos could be explained by 

being farther from the time point of fertilization than their early cleaving counterparts. 

In this regard, abundance of PRDX6 could be interpreted as reflector for developmental 

speed rather than for direct viability. 

Consequently, we aimed to confirm whether expression of genes involved in ROS 

generation as well as in ROS scavenging fits with levels of ROS in bovine 2-cell stage 

embryos. ROS staining revealed considerable lower ROS levels in early cleaved 

embryos compared to late cleaved embryos with highest levels in those embryos which 

did not cleave. Additionally, analysis of mitochondrial activity during preimplantation 

development of bovine embryos revealed a significantly higher activity in early cleaved 

2-Cell stage embryos compared to their later cleaving counterparts (Tarazona et al. 

2006). The amount of mitochondria regulate ROS levels, whereas impaired 

mitochondria have been reported to produce more ROS (Ou et al. 2012) implicating 

low ROS levels being a reliable marker for developmental competence (Bain et al. 

2011) which is inline with our results in terms of NDUFS1 and PRDX1 gene 

expression in competent embryos. Taken together, we were able to confirm that 

expression of genes involved in ROS generation as well as in ROS scavenging 
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coincidentally correlates with ROS levels and developmental capacity in bovine 2-cell 

stage embryos.  

Thus, culture in presence of anti-oxidants may give rise to and a better gene profile 

resulting in better developmental competence whereas culture in pro-oxidants may 

induce a worse gene profile and lower development. To confirm that, we investigated 

the transcript abundance of the active ROS scavengers CAT and PRDX1 in embryos 

cultured under high oxygen tension (20% O2) representing a rather pro-oxidant 

environment compared to culture in low oxygen tension (5% O2) representing a rather 

anti-oxidant environment. As a result, blastocyst rate was significantly higher when 

embryos were cultured in 5% O2 compared to 20% O2 being inline with recent 

publications (Guerin et al. 2001; Takahashi et al. 2000). Additionally, we identified 

higher levels of CAT and PRDX1 in 2- cell stage embryos cultured in rather anti-

oxidant environments (5% O2). These results are also in accordance with findings of 

Correa et al. who detected higher levels of CAT and three other transcripts related to 

oxidative stress response, in blastocysts cultured under 5% O2 compared to those 

cultured under 20% O2 (Correa et al. 2008). Thus, the more anti-oxidant environment 

resulted in a better gene expression profile of the active ROS scavengers CAT and 

PRDX1 as well as in higher developmental competence supporting the overall findings 

of this study. 

To confirm the validity of our experimental approach as well as our conclusions, prior 

to protein localization we checked at which degree corresponding sister blastomeres are 

actually representative for each other in terms of CAT and PRDX1 expression. In 

agreement with studies mentioned above which reported that both sister blastomeres 

have similar transcriptome profiles (Roberts et al. 2011; VerMilyea et al. 2011), we 

confirmed by single blastomere PCR that both sister blastomeres of a bisected bovine 

2-Cell stage embryo show indeed highly similar expression of CAT and PRDX1. That 

is in great accordance to a very recent study reporting that singled sister blastomeres 

have not established polarity and do not show lineage pre-patterning (Lorthongpanich 

et al. 2012).    

Finally, results of the localization of CAT and PRDX1 protein in early and late 

cleaving bovine embryos showed that the amount of CAT protein was in line with its 

relative expression levels in early -, late - a non cleaved embryos. Accordingly, we 

found marginally higher amounts of PRDX1 protein in early cleaved embryos 
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compared to late cleaved ones being in agreement with PRDX1 gene expression results. 

Surprisingly, higher levels were detected in those embryos, which did not cleave until 

42 hpi which did not reflect gene expression abundance in non cleaved embryos. 

However, that may be explained by the fact that extreme levels of H2O2 leads to 

oligomerization of PRDX1 (Jang et al. 2004) and activation of Mammalian Ste20-like 

kinase 1 (MST1) inducing apoptosis (Morinaka et al. 2012). 

In conclusion, this is the first study highlighting the potential of using blastomeres at 

the 2-cell stage for transcriptome analysis to correlate with the developmental fate of 

sister blastomeres. We were able to show that the developmental capacity of the sister 

blastomeres derived from a bisected bovine 2-cell embryo are highly similar. 

Consequently, results established distinct molecular fingerprints, which could be 

related to developmental potential and arrest. In particular, pathways and molecular 

functions including oxidative phosphorylation and oxidative stress response which are 

applicable involved preimplantation development were identified. Based on this, 

candidate genes were selected and further confirmed by characterization in an 

independent model for developmental competence being in agreement with ROS levels 

of bovine 2-cell stage embryos supporting their value, implicating that the balance of 

ROS production and scavenging is decisive for preimplantation development in vitro. 

Moreover, these results were confirmed by culture of bovine embryos in different 

oxygen tensions resulting in higher developmental rates and more beneficial expression 

of CAT and PRDX1 when cultured in rather anti-oxidative environments. Altogether, 

we suggest, that this method could be adapted as a model for genomic selection of 

embryos in future breeding programs as well for preimplantation genetic diagnostics 

(PGD) in human reproductive medicine. 
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Supplemental data 

Table S1: Genes commonly differentially expressed in BL vs. 2CB and BL vs. 8CB 

Probe Name Gene Name Description foldchange 

EMBV3_40561 DIRC2 disrupted in renal carcinoma 2 2,07 

EMBV3_33958 MGC133632 hypothetical protein LOC614279 1,75 

EMBV3_17950 BRP44L brain protein 44-like 1,73 

EMBV3_24218 CAT Catalase 1,73 

EMBV3_09660 KDR flk-1 kinase insert domain receptor (a type III receptor tyrosine kinase) 1,71 

EMBV3_40207 NPTN Neuroplastin 1,70 

EMBV3_25638 EPCAM TACSTD1 epithelial cell adhesion molecule 1,68 

EMBV3_11919 PSD2 pleckstrin and Sec7 domain containing 2 1,66 

EMBV3_43666 HBXIP hepatitis B virus x interacting protein 1,64 

EMBV3_25866 DCLRE1A DNA cross-link repair 1A (PSO2 homolog, S. cerevisiae) 1,63 

EMBV3_30040 LOC100138864 
similar to Eukaryotic initiation factor 4A-II (ATP-dependent RNA helicase eIF4A-2) (eIF4A-
II) (eIF-4A-II) 

1,61 

EMBV3_14488 NDUFS1 
NADH dehydrogenase (ubiquinone) Fe-S protein 1, 75kDa (NADH-coenzyme Q 
reductase) 

1,61 

EMBV3_14611 ATF1 activating transcription factor 1 1,60 

EMBV3_12725 WDR11 PHIP WD repeat domain 11 1,59 

EMBV3_35924 LEPROT leptin receptor overlapping transcript 1,58 

EMBV3_34731 SYCP3 synaptonemal complex protein 3 1,58 

EMBV3_17165 ANGEL2 angel homolog 2 (Drosophila) 1,57 

EMBV3_34635 CCT5 chaperonin containing TCP1, subunit 5 (epsilon) 1,57 

EMBV3_28109 COX16 MGC137677 COX16 cytochrome c oxidase assembly homolog (S. cerevisiae) 1,57 

EMBV3_14240 DONSON downstream neighbor of SON 1,55 

EMBV3_28693 LOC100336519 FIP1L1 protein-like 1,55 

EMBV3_15239 ZNF280B zinc finger protein 280B 1,55 

EMBV3_29105 LOC534360 similar to poliovirus receptor-related 3 1,54 

EMBV3_36580 RWDD4A RWD domain containing 4A 1,54 

EMBV3_09584 COMMD8 COMM domain containing 8 1,53 

EMBV3_23296 KLRAQ1 MGC151568 KLRAQ motif containing 1 1,53 

EMBV3_24891 NDFIP2 Nedd4 family interacting protein 2 1,53 

EMBV3_13360 TMEM209 transmembrane protein 209 1,53 
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EMBV3_33765 BANP BTG3 associated nuclear protein 1,52 

EMBV3_34010 ATP6V0C PLP ATPase, H+ transporting, lysosomal 16kDa, V0 subunit c -1,52 

EMBV3_30424 LOC100316905 nucleoplasmin 2 -1,52 

EMBV3_30676 PSENEN presenilin enhancer 2 homolog (C. elegans) -1,52 

EMBV3_02632 WIBG within bgcn homolog (Drosophila) -1,53 

EMBV3_40039 AURKB STK12 aurora kinase B -1,54 

EMBV3_22837 MAD2L2 MAD2 mitotic arrest deficient-like 2 (yeast) -1,55 

EMBV3_36642 C5H12orf45 MGC133846 chromosome 12 open reading frame 45 ortholog -1,56 

EMBV3_25759 DDOST dolichyl-diphosphooligosaccharide-protein glycosyltransferase -1,56 

EMBV3_29618 RTF1 Rtf1, Paf1/RNA polymerase II complex component, homolog (S. cerevisiae) -1,56 

EMBV3_13440 SRRM2 serine/arginine repetitive matrix 2 -1,56 

EMBV3_17375 C1orf35 chromosome 1 open reading frame 35 -1,57 

EMBV3_19544 GTF2H5 general transcription factor IIH, polypeptide 5 -1,57 

EMBV3_21021 RTF1 Rtf1, Paf1/RNA polymerase II complex component, homolog (S. cerevisiae) -1,57 

EMBV3_43620 LOC534065 similar to erythroid differentiation-related factor 1 -1,58 

EMBV3_07103 NOP56 NOL5A NOP56 ribonucleoprotein homolog (yeast) -1,58 

EMBV3_27964 EIF4E eukaryotic translation initiation factor 4E -1,59 

EMBV3_03401 PRDX6 KIAA0106 peroxiredoxin 6 -1,59 

EMBV3_17388 SRRM2 serine/arginine repetitive matrix 2 -1,59 

EMBV3_20195 LOC100337332 splicing factor, arginine/serine-rich 12-like -1,60 

EMBV3_19931 ADAMTSL5 ADAMTS-like 5 -1,61 

EMBV3_43173 CCDC106 coiled-coil domain containing 106 -1,61 

EMBV3_41957 ZNF804B zinc finger protein 804B -1,61 

EMBV3_40631 EIF4E eukaryotic translation initiation factor 4E -1,62 

EMBV3_09407 POLR2J POLR2J2 polymerase (RNA) II (DNA directed) polypeptide J, 13.3kDa -1,64 

EMBV3_11515 TLCD1 TLC domain containing 1 -1,64 

EMBV3_05759 MED27 MGC134262 mediator complex subunit 27 -1,66 

EMBV3_38854 POLDIP2 polymerase (DNA-directed), delta interacting protein 2 -1,68 

EMBV3_03477 SEPW1 selenoprotein W, 1 -1,68 

EMBV3_13532 RBM42 RNA binding motif protein 42 -1,70 

EMBV3_42379 NFYC nuclear transcription factor Y, gamma -1,71 

EMBV3_22673 AP1S1 adaptor-related protein complex 1, sigma 1 subunit -1,72 

EMBV3_16114 RPS15 ribosomal protein S15 -1,72 

EMBV3_25823 TRPC4AP transient receptor potential cation channel, subfamily C, member 4 associated protein -1,72 
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EMBV3_08783 LOC616199 
similar to Aldose reductase (AR) (Aldehyde reductase) (20-alpha-hydroxysteroid 
dehydrogenase) (20-alpha-HSD) 

-1,73 

EMBV3_23913 ACCSL 1-aminocyclopropane-1-carboxylate synthase homolog (Arabidopsis)(non-functional)-like -1,75 

EMBV3_40947 LOC281370 Polyubiquitin -1,80 

EMBV3_09887 SENP3 SUMO1/sentrin/SMT3 specific peptidase 3 -1,83 

EMBV3_27192 INTS4 integrator complex subunit 4 -1,84 

EMBV3_22215 TPK1 thiamin pyrophosphokinase 1 -1,85 

EMBV3_40572 DUSP10 dual specificity phosphatase 10 -1,89 

EMBV3_27422 EIF4B eukaryotic translation initiation factor 4B -1,89 

EMBV3_02194 UBE2L3 ubiquitin-conjugating enzyme E2L 3 -1,89 

EMBV3_10127 CDK2AP2 cyclin-dependent kinase 2 associated protein 2 -1,93 

EMBV3_00987 DNAJB5 DnaJ (Hsp40) homolog, subfamily B, member 5 -1,95 

EMBV3_03600 RPL11 ribosomal protein L11 -1,97 

EMBV3_01798 BSG Basigin -1,98 

EMBV3_18490 NUDT3 nudix (nucleoside diphosphate linked moiety X)-type motif 3 -2,00 

EMBV3_40727 SFRS12 splicing factor, arginine/serine-rich 12 -2,21 
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Table S2: Genes exclusively differentially expressed in BL vs. 8CB 

Probe Name Gene Name Description foldchange 

EMBV3_16729 CXHXORF15 chromosome X open reading frame 15 ortholog 1.75 

EMBV3_31985 COPS7A COP9 constitutive photomorphogenic homolog subunit 7A (Arabidopsis) 1.73 

EMBV3_02417 CT47B1 cancer/testis antigen family 147, member B1 1.66 

EMBV3_35780 COMMD6 COMM domain containing 6 1.65 

EMBV3_19910 SETD1A SET domain containing 1A 1.65 

EMBV3_10175 ZNF292 zinc finger protein 292 1.62 

EMBV3_33763 LOC100300875 hypothetical LOC100300875 1.59 

EMBV3_40151 ZNF518B zinc finger protein 518B 1.59 

EMBV3_22539 LOC100301462 similar to cytochrome c oxidase subunit VIIb 1.58 

EMBV3_05966 OIP5 Opa interacting protein 5 1.58 

EMBV3_34923 RPS13 ribosomal protein S13 1.58 

EMBV3_13173 LOC513662 hypothetical LOC513662 1.57 

EMBV3_40942 PRDX1 peroxiredoxin 1 1.57 

EMBV3_36918 UBAC1 UBA domain containing 1 1.57 

EMBV3_30902 LOC100297586 similar to cytochrome c oxidase subunit VIIb 1.56 

EMBV3_37190 LOC100336710 N-acylneuraminate cytidylyltransferase-like 1.56 

EMBV3_37648 LOC541014 hypothetical protein LOC541014 1.55 

EMBV3_27614 RNF14 ring finger protein 14 1.55 

EMBV3_14638 NUDCD1 NudC domain containing 1 1.54 

EMBV3_36580 RWDD4A RWD domain containing 4A 1.54 

EMBV3_42254 OSBPL8 oxysterol binding protein-like 8 1.53 

EMBV3_34782 ZNF235 zinc finger protein 235 1.53 

EMBV3_25900 CCDC127 coiled-coil domain containing 127 1.52 

EMBV3_20853 CHPF chondroitin polymerizing factor 1.52 

EMBV3_11551 ES1 es1 protein 1.52 

EMBV3_39107 ID3 inhibitor of DNA binding 3, dominant negative helix-loop-helix protein 1.52 

EMBV3_26552 SYNM synemin, intermediate filament protein 1.52 

EMBV3_00633 CDO1 cysteine dioxygenase, type I -1.52 

EMBV3_10888 LOC509875 similar to Coiled-coil domain-containing protein 3 -1.52 

EMBV3_03407 FEM1B fem-1 homolog b (C. elegans) -1.53 

EMBV3_28774 PTMA prothymosin, alpha (gene sequence 28) -1.53 
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EMBV3_04805 SUMO1 SMT3 suppressor of mif two 3 homolog 1 (S. cerevisiae) -1.53 

EMBV3_24977 ANKRD17 ankyrin repeat domain 17 -1.54 

EMBV3_24417 RAVER1 ribonucleoprotein, PTB-binding 1 -1.54 

EMBV3_24753 USE1 unconventional SNARE in the ER 1 homolog (S. cerevisiae) -1.54 

EMBV3_14836 GLS2 glutaminase 2 (liver, mitochondrial) -1.55 

EMBV3_11094 ABCC8 ATP-binding cassette, sub-family C (CFTR/MRP), member 8 -1.56 

EMBV3_19900 KLF5 Kruppel-like factor 5 (intestinal) -1.56 

EMBV3_31871 RSL1D1 ribosomal L1 domain containing 1 -1.56 

EMBV3_12064 SPINT2 serine peptidase inhibitor, Kunitz type, 2 -1.56 

EMBV3_12062 CCDC92 coiled-coil domain containing 92 -1.57 

EMBV3_11558 ERLEC1 endoplasmic reticulum lectin 1 -1.57 

EMBV3_24103 FBXO8 F-box protein 8 -1.57 

EMBV3_15424 RPL18A ribosomal protein L18a -1.57 

EMBV3_17751 LOC784935 similar to Histone acetyltransferase p300 (E1A-associated protein p300) -1.58 

EMBV3_32330 Rpl3 ribosomal protein L3 -1.58 

EMBV3_17480 TFG TRK-fused gene -1.58 

EMBV3_07477 UBAP2 ubiquitin associated protein 2 -1.58 

EMBV3_10239 UBL5 ubiquitin-like 5 -1.59 

EMBV3_43253 MYL12B MRLC2 myosin, light chain 12B, regulatory -1.6 

EMBV3_28392 CDKN2D cyclin-dependent kinase inhibitor 2D (p19, inhibits CDK4) -1.63 

EMBV3_17719 ANKRD40 ankyrin repeat domain 40 -1.64 

EMBV3_18860 MTPN myotrophin -1.65 

EMBV3_43695 PITPNA phosphatidylinositol transfer protein, alpha -1.66 

EMBV3_38166 HDAC1 histone deacetylase 1 -1.67 

EMBV3_02430 MEIS2 Meis homeobox 2 -1.67 

EMBV3_29816 SCIN scinderin -1.67 

EMBV3_38854 POLDIP2 polymerase (DNA-directed), delta interacting protein 2 -1.68 

EMBV3_00953 ALDH2 aldehyde dehydrogenase 2 family (mitochondrial) -1.69 

EMBV3_00664 DNAJB12 DnaJ (Hsp40) homolog, subfamily B, member 12 -1.69 

EMBV3_00523 PDXDC1 pyridoxal-dependent decarboxylase domain containing 1 -1.7 

EMBV3_08338 CDH7 cadherin 7, type 2 -1.72 

EMBV3_33525 TMEM57 transmembrane protein 57 -1.72 

EMBV3_25905 CASR calcium-sensing receptor -1.75 

EMBV3_09138 LOC100300550 similar to cytochrome c oxidase subunit VIIb -1.77 
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EMBV3_08487 TLK2 tousled-like kinase 2 -1.77 

EMBV3_01985 ZYX zyxin -1.78 

EMBV3_32736 ATP5S ATP synthase, H+ transporting, mitochondrial F0 complex, subunit s (factor B) -1.91 

EMBV3_31733 TXNIP thioredoxin interacting protein -1.91 

EMBV3_25709 ZNF24 zinc finger protein 24 -1.91 

EMBV3_26294 LOC100294761 hypothetical LOC100294761 -1.96 

EMBV3_05230 LOC786299 similar to UL16 binding protein 3 -1.97 

EMBV3_00816 NAV1 neuron navigator 1 -2.06 
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Table S3: Developmental rates according to treatment of 2-cell stage embryos 

 2-cell stage 4-cell stage Blastocyst stage 

Group n n (%) n (%) 

2-cell stage embryo (control)  160 146 (91.3) 49 (30.6) a 

2-cell stage embryo (zona free) 176 167 (94.8) 58 (32.4) a 

2-cell stage blastomere (bisected)   208 187 (89.9) 45 (21.6) b 

Different superscripts within raws differ significantly p < 0.05 

 

 

 

 

 



 Chapter 3 - Transcriptome analyses of bovine blastomeres  

 

 

84 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S1: Pathways affected by differentially regulated genes 



     

 

 

85 

 

 

 

 

 

 

 

 

 

 

Chapter 4  General discussion  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 Chapter 4 – General discussion    

 

 

86 

The present studies aimed to detect direct and non-invasive markers for the 

developmental competence of bovine oocytes and 2-cell stage embryos on the 

morphological and molecular level. In the first set of experiments the zona pellucidas’ 

structure and morphology of in vivo and vitro matured oocytes was quantified and set 

into relation with the developmental competence, implicating measurable effects of 

maturational environment on developmental competence as well as on zona pellucida 

properties.  

The results show very clearly, that the maturational environment has strong effects on 

the further development and on the zona pellucidas’ morphology, visualized by 

scanning electron microscopy in a first sub experiment and quantified by polarized 

light microscopy in a second experiment. This is in line with Rizos et al. 2002b 

postulating that the developmental fate of the oocyte is highly related to its origin, 

implicating a significantly higher developmental potential as well as higher blastocysts 

quality for in vivo matured oocytes compared to their in vitro matured counterparts. 

Accordingly, one of the weakest points in the field of assisted reproductive technology 

are high numbers of low quality oocytes used for in vitro production. Therefore, the 

necessity to select effectively high quality oocytes, which are ‘in vivo- like’, is 

indispensible. Indeed, morphological markers for developmental competence are 

mostly invasive and rather dependent on subjective evaluation. The introduction of 

polarized light microscopy, however, opened a new window to determine the oocytes 

quality quantitatively and non- invasively. This technique takes the advantage of 

double refracting characteristics, called birefringence, of the zona pellucida (Keefe et 

al. 1997). In human several studies have shown, a strong correlation between 

birefringence and pregnancy outcome, implicating that alterations of the structure of 

the zona pellucida are reflected in the parameters measured by polarized light 

microscopy (de Almeida Ferreira Braga et al. 2010; Ebner et al. 2010; Madaschi et al. 

2009; Montag et al. 2008; Rama Raju et al. 2007). The zona pellucida is secreted by the 

developing oocyte and follicular cells during oogenesis (Dunbar et al. 1994). Shen et 

al. showed that any harm to the oocytes during its growth phase and/or maturation can 

alter the secretion or patterning of the extracellular coat (Shen et al. 2005). Thus, 

polarized light microscopy enables to quantify alterations established during maturation 

period and therefore to select in vitro matured oocytes which are similar to in vivo 

matured oocytes, precisely, as shown in the present thesis.  
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The most interesting finding in the present study was the dynamics in terms of zona 

properties from immature (GV) oocytes to either in vivo or in vitro matured oocytes 

(MII) (Figure 3, Chapter 2). In vivo maturation leads to decrease in birefringence, 

whereas the overall in vitro matured oocytes displayed an increasing trend for 

birefringence. Decrease in birefringence may result from the porous structure of the 

zona pellucida after in vivo maturation. Only those in vitro matured oocytes classified 

by COC morphology as quality 1 followed the decreasing trend. Likewise low quality 

in vitro matured oocytes had the lowest amount of pores after maturation, implicating a 

tight structure reflected in higher birefringence. Similarly, a decrease in thickness of 

the inner layer was observed during in vivo maturation, in contrast to a strong increase 

during in vitro maturation. These results were in line with those in human reproduction, 

also reporting a decreasing trend in zona parameters from GV to MII stage (Cheng et 

al. 2012). Recently, it was reported, that zona pellucida birefringence of bovine 

presumptive zygotes predicts further development (Koester et al. 2011). The results 

were in line with our measurements, correlating low zona parameters with high 

developmental competence and in the opposite to human oocytes, showing a positive 

correlation between birefringence and developmental competence (Montag et al. 2008), 

implicating species specific differences within oocytes morphology, which argues with 

the necessity to find objective and non-invasive tools as predictors for developmental 

competence and to refrain from subjective evaluation of oocytes. However, this is the 

first study, showing the differences of in vitro and in vivo matured bovine oocytes, 

related to their developmental competence in a quantitative way. Thus, we could show 

that the maturational environment affects zona pellucida properties and developmental 

competence at the same value.   

In accordance to morphological changes of zona pellucida properties taking place 

during maturation, maternally derived transcripts are synthesized and stored in the 

growing oocyte to support oocyte maturation and early embryonic development 

(Wassarman and Kinloch 1992). Therefore, a second set of experiments in this thesis 

focused on the molecular signatures, predicting high developmental competence. This 

is based on the fact that the acquisition of high developmental capacity in mammalian 

oocytes is largely dependent on RNA and protein synthesis and its storage, as well as 

an expression programme that uses the stored information and proteins in a highly 
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orchestrated manner during maturation an early development (reviewed by Eichenlaub-

Ritter and Peschke 2002).  

In contrast to most studies, using pools of embryos selected by competence models, in 

the present approach a direct correlation between the transcriptome profile and 

developmental competence could be established. Based on two recent studies, where 

biopsies of blastocysts were taken to correlate pregnancy outcome with gene 

expression profiles (El-Sayed et al. 2006; Ghanem et al. 2011), 2-cell stage embryos 

were biopsied. Preliminary, it was shown, that both blastomeres of  2-cell stage embryo 

have the ability to develop to the blastocyst stage, with an overall correlation 

coefficient of 73%, which is in line with studies in mouse (Katayama et al. 2010), 

bovine (Tagawa et al. 2008), porcine (Dang-Nguyen et al. 2011) and rhesus monkey 

(Mitalipov et al. 2002). That implicates, that one blastomere is developmentally 

representative of the other. Molecularly considered, it was shown, that both 

blastomeres of a murine 2-cell stage embryo are similar in their individual gene 

expression profile (Roberts et al. 2011), which argues for even higher similarity of 

bovine sister blastomeres, since bovine embryonic genome activation (EGA) occurs at 

the late 8-cell stage, whereas in mice EGA takes place at the 2-cell stage (Wang and 

Latham 1997). As described above, it is well accepted that the developmental 

competence is highly determined in the matured oocyte. Therefore, 2-cell stage 

embryos were used for biopsies in order to receive a representative biopsy, which 

would not have been given by taking a part of an oocytes or zygote, since an irregular 

mRNA distribution was observed within zygotes but not in blastomeres of 2-cell stage 

embryos in murine (VerMilyea et al. 2011).  

Gene expression analyses revealed a typical transcriptome profile which is strongly 

related to the developmental competence of bovine 2-cell stage embryos. In detail, 

analyses of molecular functions, biological processes and pathways showed a specific 

pattern, implicating genes related to oxidative stress response and oxidative 

phosphorylation (OXPHOS) as manly affected. This let us suggest, that those functions 

and pathways, play crucial roles for the early embryonic development. It has already 

been shown, that oxidative stress, including accumulations of reactive oxygen species 

(ROS) have negative impact on preimplantation development. Minor changes in ROS 

balance can interrupt the embryonic development and result in cell death (Bain et al. 

2011; Rhee 2006). In contrast, a certain amount of ROS is necessary for different cell 
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functions, like apoptosis, therefore the balance of ROS production and scavenging 

seems to be essential for optimal development (Burdon 1996).  

The selected candidate genes in the present approach, CAT (Orsi and Leese 2001), 

PRDX1 (Neumann et al. 2009), PRDX6 (Leyens et al. 2004) and MAPK14 (Matsuzawa 

and Ichijo 2008), are known to act as direct and indirect scavengers of ROS  and  

likewise NDUFS1, is a main control element for OXPHOS (Brandt 2006) (Detailed 

discussion about individual genes can be found in Chapter 3). In further sub 

experiments the expression levels of these genes were verified, for example in an 

independent competence model, where higher abundances of the candidate genes were 

detected in early cleaving 2-cell stage embryos, which are assumed to be 

developmentally more competent compared to their later cleaving counterparts (Dode 

et al. 2006; Fair et al. 2004; Lonergan et al. 1999). Additionally, we were able to show, 

that accumulation of ROS is negatively correlated to the expression levels of our 

candidate genes, in detail, early cleaving embryos exhibit higher levels of ROS 

scavengers and consequently low ROS accumulation within the cells. For late cleaving 

embryos lower transcript abundances and accordingly higher levels of intracellular 

ROS were detected (Figure 6, Chapter 3). This implicates, that further developmental 

competence is also predicted by ROS accumulations, which is in line with studies 

postulating negative impacts of elevated ROS levels for development (Bain et al. 2011; 

Johnson and Nasr-Esfahani 1994). To verify finally at which degree corresponding 

sister blastomeres are actually representative for each other in terms of CAT and 

PRDX1 expression, single cell PCR of sister blastomeres was conducted. The results 

were in agreement with studies mentioned above reporting that both sister blastomeres 

have similar transcriptome profiles (Roberts et al. 2011; VerMilyea et al. 2011). That is 

in great accordance with a very recent study demonstrating that singled sister 

blastomeres have not established polarity and do not show lineage pre-patterning 

(Lorthongpanich et al. 2012).     

Taken together, this is the first experimental design establishing a new method to 

obtain direct correlation between distinct molecular fingerprints and the developmental 

competence of bovine 2-cell stage embryos. Moreover, this technique could enables to 

improve breeding programs on the level of genomic selection as well for 

preimplantation genetic diagnostics (PGD) in human reproductive medicine. 
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Both studies in the present thesis were able to provide the basis for new methods to 

evaluate the developmental competence of oocytes and early embryos non-invasively 

on the morphological and molecular level. In detail, for the first time the difference in 

quality of in vivo and in vitro matured oocytes could be measured quantitatively and 

individual developmental competence of early preimplantation embryos could be 

directly correlated to the expression of developmentally important candidate genes.
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The results reveal that subsequent developmental competence is morphologically 

indicated in the matured oocyte and largely genetically determined in the bovine 2- cell 

stage embryo, as shown in the present studies of this thesis. Therefore, it suggests 

itself, that the subsequent development is highly affected by the follicular environment. 

The follicular environment depends amongst others for example on the mothers’ 

energy status. Disturbances in energy metabolism are known as one of the chief causes 

for infertility in high yielding dairy cows. Concerning energy metabolism, it has been 

shown that serum glucose levels go in parallel with follicular glucose levels, which in 

turns affects follicular growth and development (Leroy et al. 2008). 

Likewise, it is well accepted that glucose concentration during maturation determines 

the subsequent metabolism of the embryo, implicating that an adequate supply with 

glucose during maturation leads to an improved nuclear maturation and to higher 

developmental capacity (Krisher and Bavister 1998; Zheng et al. 2001). Therefore, one 

can suggest, that follicular environment affects the gene expression of the oocyte, 

which is deciding early embryonic development until the 8-cell stage, when the 

embryos genome is activated and therefore also gene expression in the first cleavage 

stages.  

In accordance, the oocyte itself has low capacity for glucose uptake (Dan-Goor et al. 

1997) (Augustin et al. 2001) hence, it is dependent on the cumulus cells to convert 

glucose to pyruvate and lactate, which can be metabolized by the oocyte (Harris et al. 

2007). High glucose levels during maturation, as existent in the in vitro maturation 

systems, were detected to increase ROS in the early embryo by affecting the 

concentrations of anti-oxidant enzymes negatively (Hashimoto et al. 2000). As 

discussed in the present thesis, oxidative phosphorylation is the predominant ATP 

production pathway, however, producing ROS as by-products, implicating that high 

energy metabolic activities during maturation increase ROS levels and decrease 

developmental competence. (Krisher and Bavister 1999; Steeves and Gardner 1999). 

Additionally, the interaction between cumulus cells and oocyte, within the growing 

follicle, is responsible for the patterning of the zona pellucida (Dunbar et al. 1994), 

implicating that zona pellucida properties are dependent on high quality oocytes as 

indicated by gene expression due to an adequate follicular environment. 

The maturational environment affects metabolic activities in the cumulus cells and 

oocytes. Marginal deviations in glucose concentration have detrimental effects on the 
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glycolysis in cumulus cells, which in turn could affect zona pellucida properties and 

might define the energy metabolism within the oocyte, which determines the later 

concentrations of ROS in the early bovine embryo.  Thus, aberrant conditions during in 

vitro maturation and also in in vivo maturation, caused by metabolic diseases in high 

yielding dairy cows, are suggested to influence zona pellucida properties which reflect 

successful maturation disturb embryonic development. As shown in the present thesis, 

early embryonic arrest is closely related to the transcriptome profile of     2-cell stage 

embryos, in detail genes related to oxidative phosphorylation and oxidative stress seem 

to decide the developmental fate, which could indicate a major role of the energy 

metabolism for proper oocyte maturation within the developing embryo.
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