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 Abstract  V 

Integration of genome wide association and expression profiling for investigating 

water holding capacity traits in a Duroc × Pietrain resource population 

Water holding capacity (WHC) is an important quality criterion for the consumers and the meat 

processing industries. Therefore, the aim of this study was to investigate WHC traits in the Duroc × 

Pietrain resource population (DuPi) using genome-wide association and genetical genomics 

approaches. 

In the first step, 169 F2 DuPi animals were genotyped using the porcine 60K SNP chip and four 

meat quality traits (drip loss, pH1, pH24 and pH decline) were used to investigate the genetic 

background of WHC. 49, 40, 9 and 33 significant SNP were observed (P < 0.001) for drip loss, 

pH1, pH24 and pH decline in loin, respectively. Analyses revealed 14 functional candidate genes 

significantly associated with drip loss. 26, 7 and 22 candidate genes were identified for pH1, pH24 

and pH decline, respectively. The genes NELL1 and SOX6 located on SSC2 were significantly 

associated with drip loss and showed more than 3 point-mutations each with high linkage 

disequilibrium. The proportion of explained phenotypic variance ranged between 4.4 % and 8.43 % 

for identified SNP of all four traits.  

In the second step, WHC was characterized by drip loss measured in M. longissimus dorsi. 

Performing expression analyses of transcriptional profiles for 132 F2 DuPi animals revealed 1228 

genes, which were significantly correlated with drip loss. A hyper geometric gene set enrichment 

test was performed and glycolysis/glyconeogenesis, pentose phosphate pathway and pyruvat 

metabolism were identified as most promising pathways. For 267 selected transcripts, eQTL 

analyses revealed 1541 significant associations in total. Because of positional accordance of the 

gene underlying transcript and the eQTL location, it was possible to identify 8 eQTL that could be 

assumed as cis-regulated. Comparing the results of gene set enrichment and the eQTL detection 

tests, molecular networks and potential candidate genes, which seem to play key roles in the 

expression of WHC, were detected.  

In conclusion, applying a genome wide association analysis using the 60K porcine SNP panel 

allowed to investigate the genetic background of WHC traits in this study. Combing the genome-

wide association analysis with the genetical genomics approach supports to identify WHC trait-

associated SNP and to understand the biology of complex traits. 



VI  Abstract   

Integration von genomweiten Assoziations- und Expressionsanalysen zur 
Untersuchung von Merkmalen des Wasserbindevermögens in einer Duroc × Piétrain 

Ressourcenpopulation 

Wasserbindungsvermögen (WHC) ist ein wichtiges Qualitätskriterium für die Verbraucher und die 

Fleischverarbeitungsindustrie. Das Ziel dieser Studie war es daher, die Merkmale des 

Wasserbindungsvermögens in der Duroc × Piétrain Ressourcenpopulation (DuPi) mit Hilfe der 

genomweiten Assoziations- sowie Ansätzen des „Genetical Genomics“ zu untersuchen. 

Im ersten Teil der Studie wurden 169 F2 DuPi Tier mittels des 60K Schweine SNP Chips 

genotypisiert und 4 Fleischqualitätsmerkmale (Tropfsaft, pH1, pH24 und pH Verlauf) erfasst, um 

den genetischen Hintergrund des Wasserbindevermögens zu untersuchen. Für das Merkmal 

Tropfsaftverlust im Kotelett wurden 49 signifikante SNP (P < 0.001) identifiziert, für pH1 40 SNP, 

für pH24 9 SNP sowie für den pH Verlauf 33 SNP. Die Analyse ergab 14 funktionelle 

Kandidatengene, die signifikant mit Tropfsaftverlust assoziiert waren. Für pH1, pH24 und den pH 

Verlauf wurden jeweils 26, 7 und 22 Kandidatengene identifiziert. Die Gene NELL1 und SOX6, 

die signifikant mit dem Tropfsaftverlust assoziiert waren, befanden sich auf Chromosom 2 und 

zeigten mehr als 3 Punktmutationen, die sich in einem hohen Kopplungsungleichgewicht 

zueinander befanden, Der Anteil der erklärten phänotypischen Varianz durch einzelne SNP lag 

zwischen 4,4 und 8,43 % für alle 4 Merkmale. 

Im zweiten Teil dieser Studie wurde WHC durch den Tropfsaftverlust, der im M. longissimus dorsi 

gemessen wurde, charakterisiert. Mittels einer Expressionsanalyse der Transkriptionsprofile von 

132 F2 DuPi Tieren wurden 1228 Gene gefunden, die mit dem Tropfsaftverlust signifikant 

korreliert waren. Ein hypergeometrischer „Gene set enrichment“ Test wurde durchgeführt und der 

Glykolyse/Glykoneogenese, der Pentose Phosphat Pathway sowie der Pyruvat Metabolismus als 

viel versprechenste Pathways identifiziert. Eine eQTL Analyse wurde mit 267 ausgewählten 

Transkripten durchgeführt, die insgesamt 1542 signifikante Assoziationen ergaben. Auf Grund der 

positionellen Übereinstimmung zwischen dem Gen, das dem Transkript zu Grunde lag, und dem 

eQTL, konnten 8 mögliche cis eQTL identifiziert werden. Durch den Vergleich der „Gene set 

enrichment“ und der eQTL Studie konnten molekulare Netzwerke sowie potenzielle 

Kandidatengene, die während der Ausprägung des WHC eine Schlüsselrolle spielen, entdeckt 

werden. 

Schlussfolgernd lässt sich sagen, dass in dieser Studie durch die Anwendung der genomweiten 

Assoziationsanalyse mittels des 60K Schweine SNP Chip eine Untersuchung des genetischen 

Hintergrunds der WHC Merkmale möglich wurde. Durch die Kombination der genomweiten 

Assoziationsanalyse und dem „Genetical Genomics“ Ansatz konnten WHC Merkmal-Assoziierte 

SNP identifiziert und Einblicke in die Biologie der komplexen Merkmale gewonnen werden. 
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Chapter 1 General introduction 



2 General introduction   

1.1 Complex traits 

The term “complex trait” refers to any phenotype that does not exhibit classical Mendelian 

recessive or dominant inheritance associated to a single gene locus. In general, complexities 

occure when the simple correspondence between genotype and phenotype breaks down, either 

because same genotype can result in different phenotypes or different genotypes can result in 

the same phenotype (Figure 1) (Lander and Schork 1994). Different factors such as specific 

modifier genes, the genetic background, epigenetic mechanisms, stochastic effects in 

morphogenesis and influences of the environment as could caused this phenotypic variation 

(Wolf 1997). Often, it is impossible to find a genetic marker that shows perfect co-segregation 

with a complex trait. The reasons for this can be reduce to a few basic problems like 

incomplete penetrance and phenocopy, genetic heterogeneity, high frequency of causing allele 

and other transmission factors (Wolf 1997). 

 

 

Figure 1: Complex traits: different genotypes result in the same phenotype (modified 

from Wolf 1997) 

 

Many economically important traits in livestock are characterized by a complex 

inheritance (Andersson 2007; Andersson and Georges 2004). A chromosomal region that 

contains one or more genes, which influence a multifactorial (complex) trait is known as 

quantitative trait loci (QTL) (Andersson 2001; Mackay 2001). The challenge with complex 

traits lies not in detecting QTL, but in discovering the genes that underlie them (Andersson 

and Georges 2004). Identifying genes with varying expression linked to a variation in the 

QTL will help to decipher underlying processes. However, these variations do not identify 
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the genes controlling the trait but provide informations about the molecular background, 

which is involved (Rothschild 2004). 

Pork is one of the most widely consumed meats worldwide and meat quality is one of the 

most frequently investigated complex traits in swine research (Lobjois et al. 2008). Many 

QTL for meat quality traits have already been identified in different intercrosses 

(Rothschild 2004). However, only a few genes, explaining the major proportion of the 

phenotypic variance, have been already identified for meat quality such as malignant 

hyperthermia (ryanodine receptor 1, RYR1) (Fujii et al. 1991) and glycogen content in 

skeletal muscle (protein kinase, AMP-activated, gamma 3 non-catalytic subunit, PRKAG3) 

(Milan et al. 2000).  

 

 

Figure 2: Approaches for mapping and positional cloning of QTL in domestic animals 

(Andersson and Georges 2004). 

 

The identification of genes and mutations that underlie the QTL is problematic for several 

reasons. First, it remains difficult to determine the exact chromosomal location of a QTL. 

Second, most QTL have a small phenotypic effect, so the mutations that cause them are 

difficult to distinguish from neutral polymorphisms. Another factor that complicates the 
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identification of QTL mutations is that a good proportion of these mutations are regulatory. 

And the ability to evaluate functionally important mutations in non coding regions is 

poorly developed (Andersson and Georges 2004). So, it is clear that decoding the genetic 

basis of complex traits presents a analytical challenge. For this reasons, the system in 

which we have more power to detect QTL and the mutation that underlie them are of 

particular interest (Andersson and Georges 2004). Because of the less genetic 

heterogeneity within breeds due to the limited population size domestic animals are such a 

system (Andersson 2001; Nezer et al. 2003). The availibility of dense marker maps such as 

single nucleotide polymorphism (SNP) chips open up the possibility for a new approach 

for QTL detection and allow potential of using domestic animals for decoding the genetic 

basis of complex traits (Figure 2) (Andersson and Georges 2004).  

 

 

1.2 Meat quality traits 

1.2.1 Muscle composition and post mortem conversation into meat 

Muscle is composed of approximately 75 % water. The other main components include 

protein (nearly 20 %), lipids (approximately 5 %), carbohydrates (nearly 1 %) and vitamins 

as well as minerals (round about 1 %). In fact, nearly 85 % of the water in muscle is held 

within the myofibrils and the cell membrane (sarcolemma) and between the muscle cells 

and muscle bundles (Huff-Lonergan and Lonergan 2005; Offer and Cousins 1992; Offer 

and Knight 1988). 

During the post mortem conversion of muscle to meat, many changes occur, including:  

1. A gradual depletion of available energy  

2. A shift from aerobic to anaerobic metabolism favouring the production of lactic acid, 

resulting in the pH of the tissue declining from near neutrality to 5.4 -5.8  

3. A rise in the ionic strength, because of the inability of ATP dependent calcium, 

sodium, and potassium pumps to function  

4. An increasing inability of the cell to maintain reducing conditions (Huff-Lonergan and 

Lonergan 1999; Huff-Lonergan and Lonergan 2005; Huff-Lonergan et al. 1996). 

Once pH has reached the isoelectric point, positive and negative electrical charge on the 

proteins are equal. These positive and negative groups within the protein attract each other 
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and cause a space reduction within the myofibrils (Huff-Lonergan and Lonergan 2005). 

Additionally, rapid pH decline is leading to an ultimate pH (pH at 24 h) while muscle is 

still warm. This results in denaturation of many proteins including those involved in 

binding of cellular water (Huff-Lonergan and Lonergan 2005). This it is accompanied by 

leakage of muscle cells and loss of water, ions and proteins (Greaser 2001; Offer and 

Knight 1988). There is also a variation of fluid released from the muscle during conversion 

of muscle to meat, which are caused by various environmental effects for example stress 

prior to slaughtering and different genotypes (Greaser 2001). 

 

 

Figure 3: Determination of post mortem pH-value 

 

1.2.2 The role of water holding capacity in meat quality 

Water holding capacity (WHC) develops as a result of early post-mortem biochemical and 

biophysical processes that occur in muscle (Huff-Lonergan and Lonergan 2005). 

Therefore, WHC is the capacity of meat to retain its water during application of external 

forces (Hamm 1985), which is an important quality criterion for the meat processing 

industries and the consumers. WHC affects the financial output, nutritional value, sensorial 

and technological properties of porcine meat. WHC can be predicted by measuring drip 
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loss using gravitational techniques. Drip loss is a fluid consisting of water and protein 

expelled from the meat surface without any mechanical force other than gravity (Offer and 

Knight 1988). The highest drip loss is often found in pale, soft and exudative (PSE) meat 

from pigs that have inherited a mutation on the ryanodine receptor / calcium release 

channel (RYR1) gene (Fujii et al. 1991). With the help of a commercial test for this 

mutation, the German pig production has mostly eliminated this mutation in pig 

populations used for fattening (Tholen et al. 2005; ZDS 2006). However there are other 

factors that cause PSE meat for example the short term stress before slaughter, which 

causes a rapid pH decline, protein denaturation and higher drip loss (Rosenvold and 

Andersen 2003). Another observed meat quality is reddish, soft and exudative (RSE) meat, 

which is an untypical deviation and probably a mild form occurrence of PSE (Fischer 

2007; Kauffman et al. 1993). RSE reveals the colour of red, firm and nonexudative (RFN) 

pork but the exudation of PSE meat (van Laack and Kauffman 1999). The risk for RSE is 

increased by a high glycolytic potential as well as by a low ultimate pH value (van Laack 

and Kauffman 1999). 

 

Figure 4: Drip loss shown in different meat qualities. Good meat quality: low drip loss; 

bad meat quality (pale, soft, exudative (PSE) meat): high drip loss 
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1.2.3 The genetic basis of water holding capacity 

Drip loss is genetically and phenotypically correlated with early pH (pH1) (rG = -0.91 and 

rP = -0.67, respectively) and late pH (pH24) (rG = -0.72 and rP = -0.51, respectively) in loin 

(Borchers et al. 2007). Heritability estimates for water holding capacity traits are low: pH1 

(h2 = 0.14), pH24 (h2 = 0.20) and drip loss (h2 = 0.14) (Borchers et al. 2007). The 

presented heritabilities and correlation estimations are an indication of a polygenic 

background that is possibly involved in the expression of the examined traits. The 

identification of genes that regulate meat quality traits will assist in efficient meat 

production and facilitate the resolution of existing production problems or so-called 

marker-assisted selection (MAS) (Brunner et al. 2012). Both candidate gene and QTL 

mapping strategies have been used in domestic animals for the discovery of genetic 

markers suitable for MAS (Rothschild et al. 2007).  

Until now, 6397 QTL covering 578 phenotypic traits were identified and submitted into 

pig QTLdb (www.animalgenome.org). In total, 1072 QTL were identified for drip loss, 

pH1, pH24 and pH decline in loin in different pig populations (www.animalgenome.org, 

release 11, June 2013) (Hu et al. 2010). These QTL were mostly identified via genome 

scanning based on linkage analysis and microsatellite genotyping.  

In order to identify chromosomal regions, which were influenced by drip loss the 

quantitative trait loci (QTL) approach was used in many different studies. Liu et al. (2007) 

found 24 significant and 47 suggestive QTL for meat quality traits and carcass composition 

traits in a F2 Duroc × Pietrain resource population. For drip loss several QTL on SSC2, 

SSC3, SSC5 and SSC18 were identified. In the study of Edwards et al. (2008), 94 QTL 

regions for meat quality were observed in another F2 Duroc × Pietrain resource population, 

but only a QTL on SSC9 was detected for drip loss. The QTL on SSC2 and SSC5 (Liu et 

al. 2007) as well as the QTL on SSC9 (Edwards et al. 2008) were identified in the study of 

Thomsen et al. (2004), where a Berkshire × Yorkshire population was used. Consequently, 

by using low density of microsatellite markers, QTL are often mapped to a large interval of 

20 centimorgans (cM) or more. Only a few causative mutations, which are called 

quantitative trait nucleotides (QTN), have been identified based on results of complex 

traits in pigs via QTL fine mapping analysis (Ren et al. 2011; Van Laere et al. 2003). 

Applying a genome wide association analyses by using the current 60K porcine SNP panel 

provides more dense genotypic markers than microsatellite markers which helps to 
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improve accuracy in finding the exact QTL locations and candidate genes for complex 

traits (Luo et al. 2012b). 

 

 

1.3 Genome-wide association studies (GWAS) 

Genome wide association studies (GWAS) are defined as studies in which a dense array of 

genetic markers, which capture a substantial proportion of common variation in genome 

sequence, is typed in a set of DNA samples that are informative for a trait of interest. The 

aim is to map the effects for  a trait of interest through the detection of association between 

genotype frequency and trait status (McCarthy et al. 2008). For genotyping commercial 

“SNP chips”, exist for cattle (777,000 SNP; Illumina Bovine HD BeadChip), dogs 

(170,000 SNP, Illumina Canine HD BeadChip), sheep (56,000 SNP, Illumina Ovine 50K 

BeadChip), horse (54,602 SNP, Illumina Equine 50K BeadChip) and pig (64,232 SNP, 

Illumina Porcine 60K BeadChip). For chicken a 600K SNP chip (580,961SNP, Axiom® 

Genome-Wide Chicken Genotyping Array, Affymetrix) is designed. Nevertheless, the 

chips for domestic animals contain less SNP than the Human SNP chip with more than 1 

million SNP (www.illumina.com, Illumina, Inc., San Diego, USA, www.affymetrix.com, 

Affymetrix, Santa Clara, USA). 

The basic design of a GWAS is that a sample of individuals are recorded for a trait of 

interest and characterized for a genome-wide panel of markers in order to detect statistical 

associations between the trait and any of the markers. The design parameters include the 

choice and number of individuals and markers. Most commonly, the GWAS data are 

analyzed by the examination of one single nucleotide polymorphism (SNP) at a time using 

simple linear models. The genomic sequence is available for human, mouse, rat and several 

domestic species, which is a requirement to establish SNP chips (Goddard and Hayes 

2009). A typical GWAS could be divided in 5 parts.  

1. At first, the number of individuals used in the study must be determined because the 

number of individuals applied for GWAS depends on the size of the effects that one 

wishes to detect. The crucial parameter is the proportion of the variance explained by 

the SNP. This parameter combines the allele frequency with the mean difference 

between the SNP genotypes (Goddard and Hayes 2009). Therefore, the number of 

individuals depends on the number for which both genotypes and phenotypes have 
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been directly measured. In domestic animals studies, the number can be reduced by 

using animals that have been progeny tested so that the mean of the progeny can be 

used instead of their own phenotypic value (Goddard and Hayes 2009).  

2. Secondly, the number of SNP, which have to be analyzed, should be calculated. Due to 

the fact that the number of SNP applied, depends on the distance over which linkage 

disequilibrium (LD) exists. Which means the non-random allocation of alleles at 

nearby variants to individual chromosome as a result of recent mutation, genetic drift 

or selection, manifest as correlations between genotypes at closely linked markers 

(Goddard and Hayes 2009; McCarthy et al. 2008). If the SNP are too far apart from 

each other, a QTL may not be in an acceptable LD with the markers and could not be 

detected. Therefore, increasing the SNP density will increase the power to detect QTL 

(Goddard and Hayes 2009). However, the distribution of the marker effects shows that 

most SNP have small effects (contribute random noise), whereas markers in regions in 

which the causative mutations lies have much larger effects. Although the markers 

with the largest associated effects from a genomic analysis may not perfectly track the 

causative mutation, they are potentially useful tools to identify the chromosomal 

region (Cole et al. 2009). 

3. Subsequently the source of bias in livestock studies has to be considered. An important 

source of false positive associations is admixture in the sample of individuals used, 

which means that a population or sample of individuals derived from more than one 

breed and that have not undergone random mating (Goddard and Hayes 2009). One of 

the biggest problem would be if a sample consists of a mixture of breeds. Another 

form of admixture is the relationships among the animals, because livestock are 

usually bred in half-sib families (cattle) or full-sib families (pig). Therefore, 

relationships among animals in the sample cause LD between loci even if they are 

unlinked (Goddard and Hayes 2009).  

4. Afterwards the design of the GWA study has to be chosen. There are five different 

approaches (case-control, cohort, trio, family-based association and DNA pooling), 

which can be used for GWAS (Table1) (McCarthy et al. 2008; Pearson and Manolio 

2008). The most frequently used study design is the case-control design, in which 

allele frequencies of individuals with the trait of interest are compared to those in a 

comparison group. These studies are often easier and less expensive to conduct than 

studies using other designs such as a family-based association study. Therefore, many 
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studies use multistage designs to reduce the number of false positives while 

minimizing the number of genome-wide scans in order to keep the statistical power 

(Hirschhorn and Daly 2005).  

5. After selection of individuals with the trait of interest and a suitable comparison group, 

the DNA isolation is performed in order to genotype theses individuals. Subsequently 

a quality control of the genotyping data has to be performed to ensure high quality of 

the data. Therefore, association between SNP, which passed the quality thresholds and 

the trait of interests, has to be calculated using GWAS approaches. At least a 

replication of identified associations in an independent population or examination of 

functional background should be performed (Pearson and Manolio 2008). 
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1.3.1 GWAS performed for Mendelian traits 

Spontaneous mutants in domestic animals provided insights into genotype-phenotype 

correlations, which are relevant for biomedical research (Patterson et al. 1988), because of 

the strong phenotypic selection or specific behavioural and morphological traits. One 

consequence of the breeding programs used to propagate lineages with such strong 

phenotypic homogeneity is the increased incidence of disease (Graw 2003; Verma and 

FitzPatrick 2007). In dogs, Karlsson et al. (2007) observed the mutations in the gene 

Microphthalmia-associated transcription factor 1 (MITF) causing white spotting using 

nine solid Boxers and ten white Boxers. Another recent study is the identification of the 

dominant mutation causing the hair ridge in Rhodesian and Thai Ridgeback dogs 

(Andersson 2009; Salmon Hillbertz et al. 2007). The mutation is a 133 kb duplication that 

includes three fibroblast growth factor genes (FGF3, FGF4 and FGF19), oral cancer over 

expressed 1 (ORAOV1) gene and 3’ part of CCDND1 observed by GWAS using 10 cases 

and 10 controls (Salmon Hillbertz et al. 2007). In the study of Karyadi et al. (2013) a copy 

number variant (CNV) at the KIT ligand (KITLG) locus was observed causing squamous 

cell carcinoma of the digit (SCCD) in Standard Poodles (STPOs) using GWAS with 31 

cases and 34 controls. In a second GWAS, they compared 24 black and 24 light coloured 

STPOs, Karyadi et al.(2013) suggested that a compensatory mutation within the 

melanocortin 1 receptor (MC1R) locus likely protects lighted coloured STPOs from 

disease. These findings highlight how studies of breed-limited diseases are useful for 

disentangling multigene disorders. Additionally, dogs are diagnosed with nearly all of the 

same cancers in human (Merlo et al. 2008), and the underlying pathology and treatment 

response is typically the same as for human (Dorn 1976), suggesting that canine cancer 

genetic studies are a useful way to advance the understandings in human disease (Cadieu 

and Ostrander 2007; Karyadi et al. 2013; Khanna et al. 2006; Ostrander 2012). 

 

1.3.1.1 GWAS performed in livestock animals for Mendelian traits 

Strong inbreeding in the livestock population increased the risk of the occurrence of 

genetic diseases. The most common mode of transmission of genetic defects is 

monogenetic autosomal recessive inheritance. Progenies with recessive defects are 

typically the consequence of inbreeding. Recessive genetic diseases become apparent 

many years after the initial mutation event (Charlier et al. 2008; Drögemüller et al. 2011). 
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In cattle, most of the known recessive defects became apparent 5 to 10 generations after 

the founder animal, which corresponds to the time when female and male descendants of 

the original carrier are mated. During the latent phase, the deleterious allele might have 

been widely spread throughout the population explaining sudden outbreaks with many 

affected animals appearing simultaneously (Charlier et al. 2008; Drögemüller et al. 2011). 

Charlier et al. (2008) identified the causal mutations and the molecular basis for congenital 

muscular dystony (CMD) type 1 and 2 in Belgian Blue cattle and ichthyosis fetalis (IF) in 

Italian Chianina cattle using GWAS. To map the gene ATPase, Ca2+ transporting, cardiac 

muscle, fast twitch 1 (ATP2A1) causing CMD1 they used 12cases and 14 controls of 

Belgian Blue cattle. The gene Solute carrier family 6, member 5 (SLC6A5) was identified 

in 7 cases compared with 24 controls of Belgian Blue cattle causing CMD2 (Charlier et al. 

2008). ATP-binding cassette, sub-family A (ABC19), member 12 (ABCA12) was observed 

in 3 cases and 9 controls of Italian Chianina cattle determining IF (Charlier et al. 2008). In 

the study of Drögemüller et al. (2011) an unusual splicing defect in the Mitofusin 2 

(MFN2) gene is significantly associated with bovine progressive degenerative 

myeloencephalopathy (weaver syndrome) in Tyrolean Grey Cattle. 

In Texel sheep a missense mutation in the gene Paired-like homeodomain 3 (PITX3) was 

associated with Microphthalmia using 23 cases and 23 controls in GWAS (Becker et al. 

2010). 

In pig, there are very few studies dealing with hereditary defects. However, most of these 

traits have a polygenetic background, for example the inverted teat defect with several 

QTL and their positional candidate genes on SCC3, 4, 6 and 11 (Jonas et al. 2008). 

Therefore, the identification of the causal mutation is very difficult. 

These studies were particularly efficient because of the low Ne in livestock. If animals are 

suffering from a fatal, recessive disorder and are homozygous for a large chromosomal 

segment containing the causative gene, allows the detection of the causative gene using 

lower number of animals and moderately dense markers. For complex traits much larger 

numbers of animals is needed to detect the causative genes (Goddard and Hayes 2009). 

 

1.3.2 Investigating quantitative traits using GWAS 

For quantitative traits the results generally indicate many mutations, suggesting that each 

individual mutation has a small effect (Goddard and Hayes 2009). In human, Levy et al. 
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(2007) identified in the Framingham Heart Study 100K Project with 4464 people 7 SNP 

significantly associated with blood-pressure and 5 SNP associated with arterial-stiffness. In 

the study of Hazra et al. (2008), 3 SNP of the gene fucosyltransferase 2 (FUT2) were 

significantly associated with the plasma vitamin B12 level in 1658 women and 1059 

independent replications from the Nurses’ Health Study. Measures of obesity, weight and 

body mass index were significantly associated with 29 variants including these close to the 

fat mass and obesity associated (FTO), melanocortin 4 receptor (MC4R), brain-derived 

neurotrophic factor (BDNF) and SH2B adaptor protein 1 (SH2B1) genes in 25342 

Icelanders (Thorleifsson et al. 2009). O’Seaghdha et al. (2010) observed common variants 

in the calcium-sensing receptor (CASR) gene in a large meta-analysis of GWAS of serum 

calcium levels, including data from 20611 individuals of European ancestry.30 SNP were 

associated with serum uric acid in island population of the Adriatic coasts of Croatia 

(Karns et al. 2012). Ali et al.(2013) identified five candidate genes (TCF7L2, HHEX, IDE, 

ENPP1 and FTO) significantly associated with type 2 diabetes (T2D) in three unrelated 

Indian populations. Additionally, Pueyo et al. (2013) observed genetic variants in the 

surfactant protein-D (SP-D), which were also significantly associated with insulin 

resistance and T2D. 

 

1.3.2.1 Investigating quantitative traits in livestock using GWAS 

In livestock, Kolbehdari et al. (2008) identified 196 significant SNP affecting 

conformation and functional traits in Canadian Holstein dairy cattle. In the same 

population, 144 SNP were associated with production, functional and reproduction traits 

(Daetwyler et al. 2008). Lillehammer et al. (2009) found significant SNP for a genotype × 

environment interaction for milk yield at the level of herd production in Australian 

Holstein dairy cattle. In Angus cattle several regions on the chromosomes 2, 12, 13 and 21 

were identified causing infectious bovine keratoconjunctivitis (IBK) (Kizilkaya et al. 

2013).  

A GWAS in chickens reported 21 SNP related to 19 genes, which were significantly 

associated with resistance to Salmonella enterica colonization (Goddard and Hayes 2009; 

Hasenstein et al. 2008). In another study in chickens several SNP were identified, which 

were associated with the resistance to Campylobacter jejuni (Connell et al. 2013).  



 Chapter 1  15 

In pig, several GWA studies were performed, conducted for quantitative traits in pigs such 

as meat quality (Duijvesteijn et al. 2010; Luo et al. 2012b; Ponsuksili et al. 2011; Ramos et 

al. 2011), reproduction (Onteru et al. 2011; Uimari et al. 2011), immune traits (Luo et al. 

2012a; Wang et al. 2012), growth with soundness (Fan et al. 2011) and feed conversion 

ratio (FCR) (Sahana et al. 2013). For example, in the study of Duijvesteijn et al. (2010) 

987 pigs divergent for androstenone levels in fat tissue in a commercial Duroc-based sire 

line were genotyped. The association analysis revealed 37 SNP on sus scrofa chromosome 

(SSC) 1 and 6 significantly associated with androstenone. Among them, the 5 most 

significant SNP explained together 13.7% of the genetic variance in androstenone. On 

SSC6, a larger region of 10 Mb was shown to be associated with androstenone covering 

several candidate genes (cytochrome P450 A19 (CYP2A19), sulfotransferases SULT2A1 

and SULT2B and hydroxysteroid-dehydrogenases (HSD17B14)) potentially involved in 

the synthesis and metabolism of androgens (Duijvesteijn et al. 2010).  

However, the distribution of marker effects showed that most SNP had small effects, 

which could be described as random noise, whereas markers in regions harbouring genes 

with causative mutations had much larger effects. Although the markers with the largest 

associated effects from genomic analysis might not track perfectly the causative mutations, 

they were potentially useful tools for identifying chromosomal regions (Cole et al. 2009). 

Therefore, fine mapping techniques such as RNA sequencing are needed for further 

investigating the possible candidate genes. 

 

 

1.4 Genetical Genomics 

A genome scan is the most general approach to identify genomic regions showing 

quantitative trait loci (QTL). Such QTL regions are generally large and can contain 

thousands of genes. Most of them are candidate loci for the trait (Wayne and McIntyre 

2002). Quantitative expression studies such as microarray technology, can indicate 

regulatory variation in genes for complex traits (Wayne and McIntyre 2002). By 

combining QTL mapping and microarray analyses, it is possible to identify regulatory 

networks underlying the quantitative trait of interest and localize genomic variation, the so-

called genetical genomics approach (Jansen 2003; Jansen and Nap 2001). Furthermore, 

QTL analyses of expression levels of gene identify genomic regions, which are likely to 
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contain at least one causal gene with the regulatory effect on the expression level, termed 

expression QTL (eQTL). The use of eQTL analyses has been demonstrated as a promising 

tool for narrowing the gap between detected phenotypic QTL regions and confirmed 

causative variations for the pig species (Rothschild et al. 2007; Steibel et al. 2011). 

Detected eQTL can be classified into a locus, which is located close to a gene (cis-

regulation) or distant from the gene (trans regulation) (Jansen and Nap 2001). 

Differentially expressed genes, where eQTL mapping indicates cis-regulation, are more 

likely to represent the “cause”, for example the genetic background of the trait of interest. 

Whereas differential expressed genes revealing trans-regulation represents the “effect”, for 

example pathways that are affected by causal variation (Wimmers et al. 2010). The largest 

and most significant reported eQTL are often cis-regulated. However, some trans-

regulated eQTL seem to control expression in several or many genes spread across the 

genome. These findings provide general information on the organization of the control of 

expression (Haley and de Koning 2006). 

The key advantage of eQTL mapping is that it connects variation at the level of RNA 

expression to vary at the level of DNA. Only latter provides versatile tools for breeding 

whereas the first reveals information on the biology of a trait and directs to new candidate 

genes. In summary, integration of information on QTL for a trait of interest in breeding 

with analyses of trait correlated expression and with mapping of eQTL for the 

corresponding trait-dependent-regulated  genes facilitates the identification of genes and 

pathways with cumulative evidence of their involvement in the biology of the traits of 

interest and enable to built priority lists of candidate genes (Ponsuksili et al. 2010; 

Wimmers et al. 2010) 

However, there are also some issues that limit of the use of genetical genomics approach, 

in particular the resolution of the genetic maps that is depending on the number of markers 

and animals used, the structure of the population used and artefacts caused by the limited 

sensitivity and specificity of microarray experiments (Ponsuksili et al. 2010; Verdugo et al. 

2010). 

 

1.4.1 Genetical genomic approaches applied to complex traits in human 

A number of eQTL studies have been published to date on a variety of tissues and cells 

(Kabakchiev and Silverberg 2013). Some of these include monocytes (Zeller et al. 2010), 



 Chapter 1  17 

liver tissue (Schadt et al. 2008) and brain tissue (Gibbs et al. 2010). At least 3 public 

databases accessed the significant results reported in a few published papers. Combining 

these data is challenging, not only because scientists investigate eQTL analysis with 

different statistical frameworks, but also because experimental techniques vary 

considerably (Kabakchiev and Silverberg 2013). In most instances, microarray technology 

is used to measure gene expression, but RNA sequencing techniques are more and more 

applied (Babak et al. 2010; Lalonde et al. 2011; Majewski and Pastinen 2011; Pickrell et 

al. 2010). Further comparison across studies is difficult because genotyping platforms by 

different manufacturers, or across variations of the same platform, provide dissimilar 

coverage of genetic markers. Nevertheless, at least 30 % of eQTL appear to be stable 

between tissues and cell types (Kabakchiev and Silverberg 2013). However, some eQTL 

seem to be tissue specific and it is important to identify these. Furthermore, for the 

majority of disorders that affects a single organ or a limited number of tissues, eQTL have 

a specific effect on the phenotype and could be undetectable at a different anatomic 

location. Additionally, some eQTL in multiple tissues such as blood, liver and skeletal 

muscles have been shown an opposite allelic effect depending on the cell type (Figure 5) 

(Fu et al. 2012). 

 

Figure 5: Molecular model of tissue dependent cis-regulation with opposite allelic 

direction (modified from Fu et al. 2012) 

 

Thus far, four genome-wide eQTL studies have been performed using human livers, where 

many liver eQTL have been found to be reproducible and a proportion of these could be 

specific for liver transcripts (Glubb et al. 2012). Schadt et al. (2008) identified 1350 cis-
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regulated and 242 trans-regulated eQTL in post mortem tissues and resection from donor 

livers of Caucasians. Additionally, Schroder et al. (2011) observed 1179 cis and 47 trans 

eQTL in normal tissues resection during surgery for liver cancer in Caucasians. The 

highest number of eQTL (7902 cis-regulated and 785 trans-regulated) in Caucasian were 

found in the study of Greenawalt et al. (2011). In the study of Innocenti et al. (2011) 1787 

cis and 353 trans eQTL were observed in post mortem tissue and resections from donor 

livers of European Americans and African Americans. 

In the study of Stranger et al. (2012) 5691 eQTL were identified in different human 

populations like Asians, European-admixed and African subpopulations. Li et al. (2013) 

found 1359 eQTL significantly associated with breast cancer, whereas 689 (50.7 %) genes 

were cis-regulated and 670 (49.3 %) trans genes. Three significant cis associations 

mapping to breast cancer risk loci were identified at chromosome 2 (insulin-like growth 

factor binding protein 5 (IGFBP5)), 5 (SET domain containing 9 (C5orf35)) and16 (TOX 

high mobility group box family member 3 (TOX3)). They also observed three trans 

associations at chromosome 6 (estrogen receptor 1 (ESR1)), 9 (Kruppel-like factor 4 

(KLF4)) and 8 (myelocytomatosis oncogene (MYC)). These findings provide a more 

comprehensive picture of gene expression determinants in breast cancer as well as insights 

into the underlying biology of breast cancer risk loci (Li et al. 2013). 

 

1.4.2 The importance of genetical genomics in livestock 

The genetics underlying production traits has been studied and exploited for genetic 

improvement of livestock through selective breeding for decades. For many traits, regions 

of the genome that affect these traits have been identified and in some cases even the 

molecular polymorphism underlying the QTL has been identified (Andersson and Georges 

2004; de Koning et al. 2005). A combination of proven approaches in QTL detection and 

emerging technologies in gene transcription analysis can provide a fast track for 

unravelling the genetic network underlying differences in production traits (de Koning et 

al. 2005). However, the genetical genomic approach in livestock was only used in chicken 

and pig and was not so common like in human. In cattle, until now no genetical genomics 

studies were performed. One reason might be the population structure, because it is not 

possible to build recombinant inbred lines for livestock species (de Koning et al. 2005) and 

there are also no reciprocal backcrosses (F2 population) in cattle. 
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In chicken, Le Mingon et al. (2009) identified three candidate genes 3-hydroxy-3 hethyl-

glutaryl-CoA synthase 1 (HGMCS1), transcription factor 3 (TCF3) and sal-like 4 (SALL4) 

in the QTL region on chromosome 5 for abdominal fatness. Le Bihan-Duval et al. (2011) 

observed the candidate gene beta-carotene 15, 15'-monooxygenase (BCMO1) as cis- 

regulated for chicken breast meat colour. These findings indicated that higher expression 

of BCMO1 gene was linked with lower meat yellowness (Le Bihan-Duval et al. 2011). In 

the study of Ka et al. (2013) the carnitine palmitoyltransferase 1B (CPT1B) expression 

was found to be influenced by a cis-acting eQTL in muscle of two chicken lines selected 

for high and low body weight. The increased expression in hypothalamus and reduced 

expression in muscle is consistent with an increased food intake in the HWS line and at the 

same time reduced fatty acid oxidation in muscle yielding a net accumulation of energy 

intake and storage (Ka et al. 2013). 

In pig, Lobjois et al. (2008) identified 63 differentially expressed genes on SSC 1, 2, 3, 4, 

5, 6, 7, 9, 11, 12, 13, 14, 15, 17 and 18 for different ranges of Warner-Bratzler shear force 

(WBSF) in a commercial F2 population. In the study of Ponsuksili et al. (2008b) found 789 

differentially expressed genes between high and low drip loss in a Duroc × Pietrain 

resource population. 10 genes vitronectin (VTN), alpha-1-microglobulin/bikunin precursor 

(AMBP), serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 

1 (SERPINA1), cytochrome P450, family 2, subfamily C (CYP2C), cytochrome P450, 

family 3, subfamily A (CYP3A), TYRO protein tyrosine kinase binding protein (TYROBP), 

AHNAK nucleoprotein (AHNAK), insulin-like growth factor 2 (IGF2), zyxin (ZYX)  were 

selected for validation (Ponsuksili et al. 2008b). In the same population 104 eQTL 

significantly associated with water holding capacity were revealed with 96 trans acting 

eQTL and 8 cis- acting eQTL (Ponsuksili et al. 2008a). The eight candidate genes with cis 

eQTL were located on SSC2, 3, 4 and 6 (Ponsuksili et al. 2008a). In a third study, a 

principle component analysis was used to identify 85 candidate genes exhibiting cis eQTL, 

which were associated with different meat quality traits such as drip loss, pH1, ph24 and 

meat colour (Ponsuksili et al. 2010). Steibel et al. (2011) revealed 62 eQTL and 3 gene 

networks enriched with genes involved in lipid metabolism, DNA replication and cell 

cycle regulation in loin muscle tissue of Duroc × Pietrain F2 population. 2 candidate genes 

(aldo-keto reductase 7A2 (AKR7A2) and thioredoxin domain containing 12 (TXNDC12)), 

which were part of the lipid metabolism, were located on SSC6 (Steibel et al. 2011). In the 

study of Cánovas et al. (2012), 396 trans-regulated and 59 cis-regulated eQTL were 
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observed in the Gluteus Medius muscle in purebred Duroc population, whereas 11 eQTL 

hotspots were mapped on SSC1, 3, 5, 6, 7, 12 and 18. 

When comparing the studies using genetical genomics approach in human and livestock, 

the percentage of cis- and trans-regulated eQTL were different between the species. In 

human the proportion of cis eQTL ranged between 83 % and 96 % (Greenawalt et al. 2011; 

Innocenti et al. 2011; Schadt et al. 2008; Schroder et al. 2011). In contrast, in livestock the 

proportion of cis-regulated eQTL ranged between 10 % and 13 % (Cánovas et al. 2012; 

Ponsuksili et al. 2008a; Ponsuksili et al. 2010). However, considerable heterogeneity of cis 

eQTL effects is possible between different tissues: A recent study reported that the 

proportion of heritability due to gene expression attributable to cis-regulation differs 

between tissues (37 %in blood and 24 % in adipose tissue) (Price et al. 2011). By 

comparing the overlap of significant cis eQTL at a predefined threshold, estimates on the 

tissue dependence of cis eQTL were between 30 % (liver, adipose tissue) and 70 % - 80 % 

(fibroblasts, T cells, lymphoblastoid cell lines) (Dimas et al. 2009; Emilsson et al. 2008; 

Gerrits et al. 2009; Heap et al. 2009). 

 

 

1.5 Genetical genomics approach using GWAS 

Over the last few years, GWAS were used in identifying numerous loci related to complex 

traits (Kabakchiev and Silverberg 2013). Since the first GWAS paper was published in 

2005, linking age-related macular degeneration to SNP in the complement factor H (CFH) 

gene (Klein et al. 2005), the field of genetic research has seen a proliferation in the 

application of this approach. The catalogue of published GWAS, curate by the National 

Institute of Health, list more than 1200 studies spanning more than 600 phenotypic traits 

(Kabakchiev and Silverberg 2013). These include diverse disorders such as asthma 

(Moffatt et al. 2007), autism (Wang et al. 2009) and Parkinson’s disease (Maraganore et 

al. 2005). Also quantitative traits like body weight (Thorleifsson et al. 2009) and blood 

pressure (Levy et al. 2007) could be found. In these situations, QTL analysis has been 

applied successfully in correlating levels of a trait of interest with genotype. Possibly the 

most natural trait to be associated with variations in the genome is the immediate product 

of the transcribed genes: messenger RNA (mRNA). Such approaches combine 2 genome-
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wide technologies together for a system biology treatment of physiologic problems 

(Kabakchiev and Silverberg 2013).  

The core hypothesis behind eQTL analysis is that polymorphic sites in the genome, such as 

SNP, could have tangible effect on gene regulation by altering the coding or promoter 

sequences of genes, their splicing junctions, or other regulatory elements. All of these 

regions affect the rate at which genes are transcribed, which isoforms are preferentially 

expressed and how stable the final mRNA product is. Thus, SNP, which were suspected to 

affect gene expression (eSNP) could be tested with associative statistics (Figure 5) 

(Kabakchiev and Silverberg 2013). 

 

 

Figure 6: Combining genome-wide association studies with the genetical genomics 

approach (modified from Powell et al. 2012) 

 

A comprehensive analysis of the GWAS data spanning many different published studies 

indicated that trait-associated loci, especially those pertaining to complex phenotypes, were 

enriched for being eQTL as well (Kabakchiev and Silverberg 2013; Nicolae et al. 2010). 

Nicolae et al. (2010) estimated in their study that approximately 17 % of Crohn’s disease 

associated SNP could be eQTL in lymphoblastoid cell lines. Gaffney et al. (2012) observed 

in their study that in about 80 % of significant eQTL there is at least an additional SNP. 

For schizophrenia, Kim et al. (2012) identified four candidate genes 5-hydroxytryptamine 

(serotonin) receptor 2A, G protein-coupled (HTR2A), plexin A2 (PLXNA2), serine 

racemase (SRR) and transcription factor 4 (TCF4), which were significantly  associated 
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with cis SNP in at least one brain region of prefrontal cortex, hippocampus, temporal 

cortex, thalamus and cerebellum. In the study of Kabakchiev and Silverberg (2013) 15 % 

of the SNP associated with the intestinal tissue could be cis- regulated eQTL and only 2 

SNP seemed to be trans regulated eQTL. For autism, Cheng et al. (2013) identified 12 

SNP near the gene sema domain, seven thrombospondin repeats (type 1 and type 1-like), 

transmembrane domain (TM) and short cytoplasmic domain, (semaphorin) 5A (SEMA5A) 

as cis eQTL and 920 SNP as trans-regulated, which could be divided in 245 eQTL cluster.  

In livestock, until now only two recent studies in pig are known combining genome-wide 

association studies with a genetical genomics approach. In the study of Ponsuksili et al. 

(2011), 150 crossbred pigs (Pietrain × (German Large White × German Landrace)) were 

used to identify 448 cis eQTL corresponded to 71 genes and 3297 trans eQTL were related 

to 408 genes associated with fatness traits. In another recent study of Ponsuksili et al. 

(2012), 207 muscle- and 150 liver samples of pigs from a commercial crossbred Pietrain × 

(German Large White × German Landrace) were analyzed. In muscle, 2001 cis and 1663 

trans eQTL corresponding to 593 genes correlated with plasma cortisol level. In liver, 

1019 cis eQTL and4873 trans eQTL were found, corresponding to 116 and 927 genes, 

respectively. However, in muscle a higher proportion of cis eQTL was observed 

(Ponsuksili et al. 2012). 
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1.6 Scope of the study 

The Bonner Duroc × Pietrain resource population (DuPi) is well established for 

investigating quantitative traits such as carcass or meat quality. In the studies of Liu et al. 

(2007; 2008) QTL analyses in585 F2 DuPi animals were performed revealing 137 QTL for 

35 traits of growth, carcass composition and meat quality. Especially for drip loss, pH1 and 

pH24 in loin 11 QTL were found on SSC 1, 2, 3, 4, 5, 6, 7, 15 and 18 (Liu et al. 2007; Liu 

et al. 2008). For these QTL analyses 106 microsatellites, which were spread across the 18 

autosomes and spanned 1987 Kosambi cM, were used. 

Furthermore, Ponsuksili et al. (2008a) selected out of 585 F2 DuPi pigs 74 animals based 

on their phenotype of drip loss and pH 24. Gene expression profiles in Musculus 

longissimus dorsi were obtained using microarray technology. The relationship between 

the phenotype and the gene expression profiles was determined using the Pearson 

correlation coefficient. Additionally, based on approaches of ‘genetical genomic’, 

expression QTL (eQTL) were detected to characterize the candidate genes as cis- or trans- 

regulated (Ponsuksili et al. 2008a). 104 eQTL significantly associated with water holding 

capacity were identified with 96 trans acting eQTL and 8 cis acting eQTL. The eight 

candidate genes, which were cis- regulated, were located on SSC2, 3, 4 and 6 (Ponsuksili 

et al. 2008a). 

The aim of this complementary study was to investigate water-holding capacity in the 

DuPi population using a genome-wide association technique. In the first part (Chapter 2), a 

genome-wide association analysis was performed using the 60K SNP chip of Illumina. 

QTL regions and their promising candidate genes were identified and their explained 

phenotypic variance were calculated. In the second part (Chapter 3), candidate genes 

related to drip loss were observed by (1) analyzing the correlation of drip loss and 

transcript abundance and (2) combining genome-wide expression profiling and genotyping. 
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2.1 Abstract 

Background: Low water-holding capacity (WHC) results in a fluid consisting of water 

and protein expelled from the meat surface, so-called drip loss. It has a low heritability and 

is influenced by many different genes in the genome. Although several candidate genes 

have been identified with other methods such as QTL, many more genes influencing the 

trait of interest are present in the pig genome. The genome-wide association (GWA) 

approach allows dissecting the genome and finding polymorphisms with influence on the 

observed phenotypic variation. Therefore, the aim of this study was to identify candidate 

genes related to WHC by performing a GWA study using the Illumina 60K porcine SNP 

chip. One hundred sixty nine F2 animals of a Duroc × Pietrain (DuPi) resource population 

were genotyped and four meat quality traits (drip loss, pH1, pH24 and pH decline) were 

used to investigate the genetic background of WHC. 

Results: 49 significant SNP were observed (P < 0.01) for drip loss, 40 SNP for pH1, 9 

SNP for pH24 and 33 SNP for pH decline in loin. In order to clarify the annotation and 

function of each SNP the Biomart software was used. Analyses revealed 14 putative 

functional candidate genes significantly associated with drip loss. Twenty-six, 7 and 22 

candidate genes were identified for pH1, pH24 and pH decline, respectively. The genes 

NELL1 and SOX6 located on SSC2 were significantly associated with drip loss and 

showed more than 3 point-mutations each with high linkage disequilibrium. The proportion 

of explained phenotypic variance for all four traits ranged between 4.4 % and 8.43 %. 

Conclusion: Applying a genome wide association analysis using the 60K porcine SNP 

panel allowed investigating the genetic background of WHC traits in this study. Several 

regions in the genome were identified affecting drip loss, pH1, pH24 and pH decline in the 

DuPi population. 

 

Keywords: pig, Illumina 60K SNP chip, water-holding capacity, drip loss, pH traits 



 Chapter 2 27 

2.2 Background 

Water holding capacity (WHC), i.e. the capacity of meat to retain its water during 

application of external forces (Hamm 1985), is an important quality criterion for the meat 

processing industries and the consumers. WHC affects the financial output, nutritional 

value, sensorial and technological properties of porcine meat. During the post-mortem 

conversion of muscle to meat, lactic acid produced in the tissue leading to a reduction in 

pH of the meat (Huff-Lonergan and Lonergan 2005). Once pH has reached the isoelectric 

point, positive and negative electrical charge on the proteins are equal. These positive and 

negative groups within the protein attracted each other and cause a space reduction within 

the myofibrils (Huff-Lonergan and Lonergan 2005). Additionally, rapid pH decline 

resulting in ultimate pH (pH at 24 h) while muscle is still warm results in denaturation of 

many proteins including those involve in binding of cellular water (Huff-Lonergan and 

Lonergan 2005). Consequently, a fluid consisting of water and protein expelled from the 

meat surface without any mechanical force other than gravity, the so called drip loss (Offer 

and Knight 1988). WHC can be predicted by measuring drip loss using gravitational 

techniques. Drip loss is genetically and phenotypically correlated with early pH in loin 

(pH1) (rG = -0.91 and rP = -0.67, respectively) and late pH in loin (pH24) (rG = -0.72 and rP 

= -0.51, respectively) (Borchers et al. 2007). Heritability estimates for water holding 

capacity traits were low: pH1 (h2 = 0.14), pH24 (h2 = 0.20) and drip loss (h2 = 0.14) 

(Borchers et al. 2007). The presented heritability and correlation estimations are an 

indication of a polygenic background that is possibly involved in the expression of the 

examined traits. The identification of genes that regulate meat quality traits will assist in 

efficient meat production and facilitate the resolution of existing production problems or 

so-called marker-assisted selection (MAS) (Brunner et al. 2012). Both candidate gene and 

QTL mapping strategies have been used in domestic animals for the discovery of genetic 

markers suitable for MAS (Rothschild et al. 2007).  

Until now, 6818 QTL covering 585 phenotypic traits were identified and submitted into 

pig QTLdb. In total, 1040 QTL were identified for drip loss, pH1, pH24 and pH decline in 

loin in different pig populations (www.animalgenome.org, Release 17, July 2012) (Hu et 

al. 2010). These QTL were mostly identified via genome scanning based on linkage 

analysis and microsatellite genotyping.  

Liu et al. (2007; 2008) found 11 QTL for drip loss and pH values in loin muscle in the 

Duroc × Pietrain F2 resource population by using different statistical models. In another 
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Duroc and Pietrain F2 resource population 9 drip loss and pH value QTL were identified on 

different porcine chromosomes (Edwards et al. 2008). Consequently, by using low density 

of microsatellite markers, QTL are often mapped to a large interval of 20 centimorgans 

(cM) or more. Only a few causative mutations, which are called quantitative trait 

nucleotides (QTN), have been identified based on results for complex traits in pigs via 

QTL fine mapping analysis (Ren et al. 2011; Van Laere et al. 2003). Applying a genome 

wide association analyses by using current 60K porcine SNP panel provides more dense 

genotypic markers than microsatellite markers which helps to improve accuracy in finding 

the exact QTL locations and candidate genes for complex traits (Luo et al. 2012b).  

Although, there are several GWA studies, conducted for quantitative traits in pigs such as 

meat quality (Duijvesteijn et al. 2010; Luo et al. 2012b; Ponsuksili et al. 2011; Ramos et al. 

2011), reproduction (Uimari et al. 2011), immune genetic (Luo et al. 2012a; Wang et al. 

2012) and growth with soundness (Fan et al. 2011), no study was devoted to water-holding 

capacity related traits in pigs. Therefore, the aim of this study was to identify candidate 

genes related to WHC by performing a whole genome association analyses by using 60K 

porcine SNP chip genotyping. To the best of our knowledge, this is the first study, which 

shows functional mutations, related to drip loss and pH traits in pigs. 

 

 

2.3 Results 

In this study, the F2 DuPi animals were used to perform GWAS for water-holding capacity. 

Descriptive statistics for the phenotypes as means, standard deviations, minimum and 

maximum values of the traits measured the current experiment were given in table 2. The 

animals were slaughtered at an average of 183.7 days and with an average carcass weight 

of 86 kg. The mean of drip loss was 2.01 %, and the average values of pH1, pH24 and pH 

decline were 6.54, 5.52 and 1.02, respectively. Further details of the animals and the 

phenotype recoding can be found in Materials and Methods as well as in Liu et al (2007; 

2008). 

The GWA analyses were performed using PLINK software (Purcell et al. 2007). The 

analyses were based on the family-based association tests for quantitative traits (QFAM) 

approach in order to avoid population stratification. Quality control was applied using 

PLINK and R software. The following criteria for quality control were chosen: call rate of 
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95 %, minor allele frequency (MAF) > 5 % and missing rate per SNP 2 %. In total, 49 SNP 

were found to be significantly (p < 0.001) associated with drip loss, 29 SNP with pH1, 8 

SNP with pH24 and 29 SNP with pH decline. The 49 SNP associated with drip loss were 

located at several regions on the genome, especially on SSC2, SSC12 and SSC17 (Figure 

7). These significant SNP were further annotated to ENSEMBL database using Biomart (R 

– package) and 14 candidate genes associated with drip loss were identified (Durinck et al. 

2012). Among these candidates, three genes NEL-like 1 (NELL1), sex determining region 

Y-box 6 (SOX6) and protein tyrosine phosphatase, receptor type, A (PTPRA) showed high 

number of significant SNP (8, 4 and 3, respectively) (Table 3). The phenotypic variance 

explained by a single SNP varied between 4.4 % and 5.87 % with a standard error of 0.14 

and 0.24 (Table 3). Whereas NELL1, SOX6 and PTPRA showed a phenotypic variance of 

5.54 %, 4.53 % and 5.87 % with standard errors of 0.23, 0.14 and 0.14, respectively 

(Table2). The additive effects for the significant SNP were also calculated and ranged from 

-0.53 to 0.71 (Table 3). For pH1, 25 candidate genes were found across the whole genome. 

Furthermore, out of 25 genes 12 were identified on SSC1 and SSC6 (Table 4). The 

phenotypic variance explained by a single SNP varied between 5.63 % and 8.76 % with a 

standard error ranged from 0.12 – 0.02 (Table 4). The additive effects for pH1 varied 

between -0.11 and 0.92 (Table 4). Twenty-two genes were identified for pH decline, which 

were spread all over the genome, especially on SSC1 and SSC7 (Figure 10 and Table6). 

The phenotypic variance explained by pH decline ranged from 5.63 % to 8.10 % with the 

standard error of 0.02 to 0.04 while the additive effects of pH decline varied between -0.15 

and 0.09. The SNP of gene family with sequence similarity 65, member B (FAMB65B), 

located on SSC7 were significantly associated with pH1 as well as with pH decline. The 

explained phenotypic variance of FAMB65B for pH1 and pH decline ranged between 5.63 

% (0.02) and 6.17 % (0.02), respectively. The additive effect of FAMB65B showed the 

same trend for both pH1 (-0.05) and pH decline (-0.06). For pH24, seven genes were 

located mainly on SSC7 and SSC13 (Figure 9; Table 5). The phenotypic variance 

explained by a single SNP varied from 5.63 % to 6.80% with a standard error ranged from 

0.01 to 0.02 (Table 5). The additive effects of pH24 ranged from 0.04 to 0.07 (Table 5). 

Furthermore, the avian v-ets erythroblastosis virus E23 oncogene homolog 1 (ETS1) 

located on SSC9 and significantly associated with pH24, revealed biological important 

functions related to WHC. This gene showed a phenotypic variance of 6.1 % with a 

standard error of 0.01 and the additive effect was 0.05. 
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Two genes SH3 and multiple ankyrin repeat domains 1 (SHANK1) and neuroblastoma 

amplified sequence (NBAS) were found to be pleiotropic for pH1 and drip loss traits 

(Table 3 and Table 4). For pH1 and pH decline traits eight pleiotropic loci were detected: 

estrogen receptor 1 (ESR1), exonuclease 3'-5' domain containing 1 (EXD1), asparagine-

linked glycosylation 14 homolog (ALG14), carboxypeptidase A6 (CPA6), cytidine 

monophospho-N-acetylneuraminic acid hydroxylase, pseudogene (CMAHP), FAM65B, a 

disintegrin-like and metallopeptidase (reprolysin type) with thrombospondin type 1 motif, 

3 (ADAMTS3) and matrix metallopeptidase 13 (MMP13) (Table 4 and Table 6).  

Linkage disequilibrium (LD) was calculated for two regions on SSC2 using Haploview 

(Barrett et al. 2005). The regions of SSC2 have been chosen for further investigations 

because these regions contained 12 markers associated significantly with drip loss in the F2 

population (Table 3). The construction of the haplotype blocks followed the criterions of 

Gabriel et al. (2002) (Figure 11 and Figure 12). In figure 11A, the LD of the first region 

including 4 haplotype blocks between 40.6 Mb and 41.5 Mb was identified. The largest 

block (Block3) containing 8 SNP belonged to NELL1 gene, which was significantly 

associated with drip loss and showed a very high LD of r2 = 1 (Figure 11A and Table 3). 

Additionally, in the block 3, the SNP MARC0075421 was not in LD (r2 = 0.06) with any 

other SNP in this region (Figure 11A). This might be due to the wrong position of the SNP 

because of a mistake in the build10 assembly of ENSEMBL pig genome database (Ramos 

et al. 2011). In this animal population (DuPi), all the significant SNP of block 3 were 

presented in 4 haplotypes (Figure 11B). The second region was located between 45.6 Mb 

and 46.6 Mb containing 2 LD blocks (Figure 12A). The four significant SNP, which were 

related the candidate gene SOX6, were found in the second haplotype block and showed a 

high LD with r2 = 0.98 (Figure 12A and Table 3). In the second block there was also a SNP 

MARC0054900, which was not in LD (r2 = 0.18) with the other SNP in this region (Figure 

12A) like the SNP in block 3 (Figure 11A). Furthermore, the second block including the 

SNP, which were significantly associated with drip loss, showed 4 different haplotypes in 

the F2 population (Figure 12B).  
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2.4 Discussion 

2.4.1 Filtering of SNP data  

Quality control of the SNP was based on the call rate, MAF and pedigree errors. 

Deviations from Hardy-Weinberg equilibrium (HWE) were not considered in the quality 

control step, because the HWE is underpowered to detect genotyping errors (Cox and Kraft 

2006). Because of a high degree of relationship within the F2 crosses (full sib and half sib 

families) two discordant full sibs of each family were selected showing extreme values of 

drip loss (see Table 2). A deviation from HWE could be expected due to the discordant 

allele frequencies in the parental breeds. Similarly in the studies of Duijvesteijn et al. 

(2010) and Ponsuksili et al. (2011) the HWE for controlling pedigree errors was also not 

considered.  

 

2.4.2 QTL-areas 

In this study 9 QTL on six different porcine chromosomes were significantly associated 

with drip loss. Some of the identified QTL have been already reported in the DuPi 

population. Liu et al. (2007; 2008) identified QTL on SSC2, SSC3 and SSC6 related to 

drip loss in the same DuPi population. Because of the repeated detection of these QTL, it 

can be assumed that they play an important role in the expression of drip loss. We 

identified two QTL on SSC2 which were located in the confidence interval of the QTL 

identified by Liu et al. (2007) and have been described in other cross bred populations as 

well (Kim et al. 2005; Liu et al. 2007; Thomsen et al. 2004; van Wijk et al. 2006). For 14 

detected QTL affecting pH-traits, only two of these QTL located on SSC1 and SSC7 have 

been reported earlier in the DuPi population (Liu et al. 2007; Liu et al. 2008). In the recent 

analysis, the QTL on SSC1 was found for pH1 and pH decline traits, however, Liu et al. 

(2007) identified a significant QTL for pH24 in loin. Vidal et al. (2006) identified a QTL 

for pH1 on SSC1 in a non-inbred maternal Landrace line. Additionally an epistatic QTL 

study in the DuPi population revealed several epistatic QTL pairs associated with meat 

quality traits in the same region (Grosse-Brinkhaus et al. 2010). Four QTL on SSC2, 3, 8 

and 13 for pH1 were identified considering epistasis (Grosse-Brinkhaus et al. 2010). In our 

study, it was possible to identify these epistatic QTL independently from a second QTL, 

because of the high number of genetic markers provided by the SNP chips.  
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Until now, we discussed only QTL, which have been described once in the DuPi 

populations (Liu et al. 2007; Liu et al. 2008). In general, 17 of the identified QTL have 

been detected in other pig populations, whereas six QTL are presumably novel positions 

and not mentioned in the pig QTLdb before (Hu et al. 2010). 

A QTL on SSC15 affecting drip loss has been identified by Bertram et al. (2000) in a 

commercial Danish pig population. Markljung et al. (2008) found a QTL on SSC16 for 

drip loss in a Hampshire × Finnish Landrace cross. The position on SSC17, explaining 5 % 

of the phenotypic variance, has been described in the DuPi population and in different 

commercial breeds related to candidate genes (Wimmers et al. 2007). Edwards et al. 

(2008) investigated also a Duroc × Pietrain resource population and detected a QTL for 

pH1 on SSC3, which explained 6.27 % of the phenotypic variance. Yue et al. (2003) 

detected a QTL on SSC6 for pH1 and on SSC7 for pH24 in crosses of Meishan, Pietrain 

and European Wild Boar. In our analyses these QTL were characterized by SNP belonging 

to 7 different genes on SSC6 and 3 genes on SSC7. Evidently, more than one gene leads to 

the QTL effect and Yue et al. (2003) reported large confidence interval in the same 

regions.  

On SSC8 and SSC11 QTL for pH1 were found in a Duroc × Berlin Miniature pig 

population, located close the QTL detected in our study (Wimmers et al. 2006). For pH24 

two additional QTL regions on SSC9 were determined in this study which were also found 

in the studies of de Koning et al. (2001) and Ponsuksili et al. (2005). Putative QTL for pH 

decline on SSC4, 7 and 9 were found in a White Duroc × Erhualian cross (Duan et al. 

2009) and confirmed our observations. QTL regions on SSC4, 7, 9 and 10 for pH1 and on 

SSC1 and on SSC5 for pH decline were not mentioned in a research article, which was 

submitted to pig QTLdb previously. They could be assumed novel for WHC traits (Table 4 

and Table 6; Figure 8 and Figure 10). 

 

2.4.3 Candidate genes 

In summary 69 candidate genes containing 131 SNP were identified for the four WHC 

traits. Four genes were chosen for further discussion because of their biological importance 

related to WHC, high linkage between the particular SNP as well as multiple detection of 

the same gene in different traits.  
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For drip loss, two major QTL regions of interest were detected containing possible 

candidate genes (Table 3). The regions on SSC2 showed a high number of significant SNP 

which were linked with the two candidate genes NELL1 and SOX6. Both regions showed 

high LD between the SNP of the two candidate genes, which may be cause of assembled 

inheritance of SNP. This means for both regions each haplotype block explains a part of 

the effect of the whole region but due to the high LD between the SNP they capture the 

same variation. Therefore, both areas remain relevant for the determination of drip loss. 

NELL1 is a thrombospondin 1 like protein that is strongly expressed in neuronal tissue of 

human and mice (Kuroda and Tanizawa 1999). Kuroda and Tanizawa. (1999) identified 

NELL1 in their study as a protein kinase C (PKC) interacting protein, which is a calcium / 

phospholipid dependent protein kinase with specific physiological function in various 

cellular activities like cell growth, differentiation and positive regulation of actin filament 

polymerization by interacting with their own target proteins. Thus NELL1 seemed to 

influence the muscle contraction indirectly via PKC which inhibits the myogenesis 

(Vaidya et al. 1991). SOX6 was identified on SSC2 as a second important QTL with 

higher LD. SOX6 is a member of the evolutionarily highly conserved SOX transcription 

factor family and is expressed in various cell types. It is implicated in the regulation of 

more than one gene especially in the skeletal muscle (Connor et al. 1995; Hagiwara et al. 

2005). In the studies of Hagiwara et al. (2005; 2007). SOX6 was required for normal 

development and / or function of the skeletal muscle in human and mice. SOX6 protein 

was expressed as well in slow muscle fibres as in fast muscle fiber types. However, in the 

absence of SOX6 transcription factor, the expression of fast skeletal isoforms genes, 

including myosin heavy chain and troponin genes became distorted. Furthermore, SOX6 

regulated both sarcomeric and calcium regulatory components that contributes to the 

contractile properties of slow myofibres (Quiat et al. 2011). Wimmers et al. (2006) 

described in their study that drip loss at cellular level was associated with high proportion 

of fast twitch glycolytic muscle fibres, low vascularisation and reduced mitochondrial 

activity. Therefore, SOX6 seemed to be a good candidate gene for drip loss. 

In addition, seven genes were identified for pH1 and pH decline and two related to drip 

loss and pH1. It can be assumed that pleitropy are important for the relationship between 

the traits. Out of the nine pleiotropic genes, one gene (FAM65B) will be discussed further 

because of its impact in the expression of WHC. On SSC 7, the candidate gene family with 

sequence similarity 65, member B (FAM65B) also known as C6orf32 was identified, 
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which was significantly associated with both pH1 and pH decline and seemed to have a 

pleiotropic background. C6orf32 is up regulated during muscle cell differentiation and 

myofiber repair (Cerletti et al. 2006). Yoon et al. (2007) described in their study that the 

down regulation of the C6orf32 expression in vitro resulted with decreased muscle cell 

differentiation and fusion. The authors suggest that C6orf32 also play an important role in 

cytoskeletal rearrangement during fusion of myoblast into multinucleated myotubes (Yoon 

et al. 2007). Myoblast fusion is important not only for skeletal muscle formation during 

development, but also for postnatal muscle growth and regeneration of skeletal muscle. 

Myoblast fusion follows an ordered set of cellular events, including elongation, cell 

migration recognition/adhesion and membrane fusion (Pavlath 2010). The ratios of 

different fiber types vary in the diverse muscles depending on developmental stage and 

muscle function (Brocks et al. 2000). Change in fiber type composition can resulted in 

higher proportion of glycolytic fibres and increase in fiber diameter in pigs (Brocks et al. 

2000). At the cellular level, high proportion of glycolytic muscle fibres, large fiber 

diameters, low vascularisation and reduced mitochondrial activity are associated with 

reduced water-holding capacity (Wimmers et al. 2006).  

For late pH in loin, only one gene (ETS1) out of seven showed a biological function 

related with WHC. The avian v-ets erythroblastosis virus E23 oncogene homolog 1 (ETS1) 

gene is located on SSC9 ETS1 proto-oncoprotein is a member of the ETS family of 

transcription factors that share a unique DNA binding domain. It is expressed in various 

cell types like endothelial cells, vascular smooth muscle cells, skeletal muscle cells and 

epithelial cells and had both normal and pathological functions (Dittmer 2003). ETS1 is 

involved in immune / defence response of cytokines and oxidative stress in skeletal 

muscle, because it is a key mediator of extracellular signal induced activation (Baron et al. 

2011). The term oxidative stress is frequently used to define only a ‘pathological’ 

condition in which the production of reactive oxygen species (ROS) (Brigelius-Flohe 

2009) which act also as important signalling molecules in muscle contraction and 

adaptation (Musaro et al. 2010). 

An increase in ROS production has been demonstrated under osmotic cell swelling, muscle 

contraction, anoxia, and sepsis, which may cause pH decline and drip loss formation in the 

skeletal muscle (Ortenblad et al. 2003). 
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2.4.4 Additive effects and explained phenotypic variance 

The additive effects as well as the proportion of explained phenotypic variance were 

calculated for drip loss, pH1, pH24 and pH decline via PLINK software. The calculated 

additive effects and the explained phenotypic variance for drip loss were quiet high in 

comparison to other QTL studies done in the same pig population (Edwards et al. 2008; 

Liu et al. 2007). In the study of Liu et al. (2007) the additive effect for drip loss on SSC2 

was -0.18 and the proportion of explained phenotypic variance was 3.75 %. In this study, 

the additive effects for NELL1 and SOX6 on SSC2 were estimated 0.71 and -0.41 

respectively. The phenotypic variance explained by NELL1 was 5.54 % and by SOX6 4.53 

%. The additive effects calculated for pH1 (-0.11 to 0.09) were less than for drip loss, but 

in the studies of Liu et al. (2007), Edwards et al. (2008) and Wimmers et al. (2006) the 

additive effects were nearly in the same size (-0.04, -0.06 and 0.04, respectively). 

However, the explained phenotypic variance of pH1 was higher (5.63 % to 8.73 %) than in 

the studies of Liu et al. (2007) (5.4 %) and Wimmers et al. (2006) (1.6 %). For pH24, the 

additive effects in the study of Liu et al.(2007) (-0.04 to 0.05) showed the same trend as in 

this study (0.07 - -0.04), but in the study of Wimmers et al. (2006) the additive effects as 

well as the proportion of phenotypic variance were less (-0.03 to -0.02, 1.3 % to 1.8%, 

respectively). The calculated additive effects for pH decline (-0.15 to 0.09) were higher 

than in the study of Edwards et al.(2008) (-0.06 to 0.07). Reasons for the higher proportion 

of explained phenotypic variance could be the fine mapping approach of the SNP chips and 

the higher specificity that the other QTL studies used microsatellites, which were only 

partly spread across the genome. 

In this study, the size of the SNP effects for the pH traits were small, whereas markers in 

regions in which causative mutations lie have much larger effects, like the SNP, which are 

significantly associated with drip loss. However, the markers with the largest associated 

effects from a genomic analysis may not track perfectly the causative mutations; on the 

other hand, they are potentially useful tools for identifying chromosomal regions 

associated with trait (Cole et al. 2009). 
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2.5 Conclusion 

Applying a genome wide association analysis using the 60K porcine SNP panel allowed 

investigating the genetic background of WHC traits in this study. Several regions in the 

genome were identified affecting drip loss, pH1, pH24 and pH decline in the DuPi 

population. Especially, two regions of SSC2 showed high LD and were clustered in two 

spans of 0.5 Mb. In these clusters, only two genes were located NELL1 and SOX6, which 

were associated with drip loss. Most of the candidate genes were functionally related to 

WHC traits. However, there are several genes, which were not involved in the expression 

of muscle properties. It can be assumed that these genes have high LD to candidate genes, 

which were not covered by the SNP chip. Nevertheless, it could be also possible that the 

significant SNP associated with these traits were annotated in the wrong chromosomal 

region, which means that the candidate genes are possibly not the right ones. In general, 

further fine mapping and next generation sequencing technologies are requested to identify 

the causative mutations of the underlying QTL regions. Validations of candidate SNP are 

warranted in other pig populations to prove their role in meat quality traits. 

 

 

2.6 Materials and Methods 

2.6.1 Animals and phenotypic traits 

In this study, 214 animals of a reciprocal cross of the Duroc (Du) and Pietrain (Pi) breeds 

were used. These animals consisted of 169 F2, 39 F1 and 9 parental (P) animals, which 

came from 59 full and half sib families. The F1 generation was produced by mating Duroc 

boars to Pietrain sows and Pietrain boars to Duroc sows. The F1 animals were reciprocally 

crossed to produce the F2 generation. All F2 animals were kept and performance tested at 

the Frankenforst experimental farm of the University of Bonn. The phenotypes were 

recorded in a commercial slaughterhouse according to the rules of German performance 

stations (ZDS, 2003) 

In total, 4 meat quality traits (drip loss, pH1, pH24 and pH decline) were analyzed. Drip 

loss was determined using the bag method of Honikel (1987). Therefore, the samples from 

Musculus longissimus dorsi were collected 24 h post mortem (p.m.), weighted and 

wrapped in plastic bag. After storage for 48 hours at 4 C the samples were re-weighted and 

drip loss were calculated as a percentage of weight loss based on the start weight of a 
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sample. Muscle pH were measured at two different time points after slaughtering using 

star-series equipment (Rudolf Mathaeus Company, Germany). pH1 was measured between 

spinous processes of the 13.-14. thoracic vertebra after 45 minutes p.m. pH24 was 

measured at the same position 24 hours later. pH decline was calculated by subtracting 

pH1 from pH24. 

 

2.6.2 Sample preparation, genome-wide genotyping and quality control 

DNA were extracted from M. longissimus dorsi using Genomic DNA Purification Kit of 

Fermentas Life Science. DNA concentration was measured using NanoDrop ND-8000 

(Thermo-Scientific) and concentration was adjusted to 100 ng/µl by using double distilled 

RNase and DNase free water. Illumina bead array technology (Porcine SNP 60K Bead 

Chip) was used for genotyping the samples (Illumina, Inc., San Diego, CA) in accordance 

with the protocol for SNP Infinium HD assay (http://Illumina.com). At first 200 ng DNA 

was used for genome-wide amplification and fragmentation. After hybridization to the 

62,163 locus-specific 50mers, the DNA was covalently linked to the beads, which were 

distributed on the surface of the microarray. Single-base extension of the oligos on the 

BeadChip was implemented using the captured DNA as template, absorbing detectable 

labels on the Bead Chip. The Illumina iScan detected the signals of each wavelength and 

converted them to intensity data. In order to normalize the intensity data for each SNP and 

to specify a cluster position and a genotype, the GenomeStudio software (Illumina, Inc., 

San Diego, USA) was used. A quality score for each genotype was generated. Because of 

missing phenotype information, the P and F1 generation were excluded from further 

analyses. In the final step, 169 F2 samples were used for the genome-wide association 

analyses. The quality of the data was measured using PLINK software (Purcell et al. 

2007). For the quality control, following measurement parameters were chosen: samples 

with a call rate less than 95 %; markers with a low minor allele frequency (MAF) < 5 % 

and SNP with a missing rate of more than 2 % were removed. After the quality check of 

the data, 153 animals as well as 46.964 SNP remained in the data set. 

 

2.6.3 Genome-wide association analyses (GWA) 

For the genome-wide association study, the phenotype data were corrected for 

environmental effects by using a general linear model (R-software). The model used 
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following fixed effects: gender (n = 2), slaughterhouse (n = 2) and slaughter season (6 

seasons in 3 years) as well as the co-variables age at slaughtering and slaughter weight. 

The genome-wide association analyses was conducted with PLINK software, which is 

based on the family association tests for quantitative traits (QFAM) and performed 

permutation techniques to account for the dependence between related animals. The 

within-sib-ship test of QFAM is robust for population stratification. Nominal scores were 

permuted to receive an empirical p-value while obtaining familial correlation between 

phenotype and genotype. The permutation procedure applied by QFAM corrected for 

relatedness within families and was performed 1,000,000 times. Genetic effects and the 

proportion of explained phenotypic variance were also calculated using PLINK (Purcell et 

al. 2007). 

Significant SNP (p < 0.001) were annotated using tools of Biomart (R-software) based on 

porcine Ensembl database (build 10.2). Additionally, based on gene ontology (GO) 

information the functions of the candidate genes were investigated. SNP, which were not 

annotated, were characterized using orthologous human-porcine genes. 

Linkage disequilibrium (LD) between SNP was calculated on all the animals of the GWA 

study using Haploview version 4.2 (Barrett et al. 2005) and the LD blocks were defined by 

the criteria of Gabriel et al. (2002). 
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Figure 7: Association between drip loss and 46,964 SNP across autosomes with a 

threshold of p < 0.001. 

 

 

 

 

Figure 8: Association between pH1 and 46,964 SNP across autosomes with a threshold 

of p < 0.001. 
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Figure 9: Association between pH24 and 46,964 SNP across autosomes with a 

threshold of p < 0.001. 

 

 

 

 

Figure 10: Association between pH decline and 46,964 SNP across autosomes with a 

threshold of p < 0.001. 
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Figure 11: Linkage disequilibrium plot for the region 40.6 Mb and 41.5 Mb on SSC2. 

(A) The values in the boxes are pair wise SNP correlations (r2) and the colour shows the 

degree of correlation. (B) Haplotypes of all SNP from the LD block. Each line represents a 

haplotype and the frequency of them in the population is given at the end of the line. 



 Chapter 2 43 

 

 

Figure 12: Linkage disequilibrium plot for the region 45.7 Mb and 46.6 Mb on SSC2. 

(A) The values in the boxes are pair wise SNP correlations (r2) and the colour shows the 

degree of correlation. (B) Haplotypes of all SNP from the LD block. Each line represents a 

haplotype and the frequency of them in the population is given at the end of the line. 
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Table 2: Phenotypic traits 

Trait N mean SD min max 

Slaughter age (days) 169 183.7 17.117 150 236 

Slaughter weight (kg) 169 86 6.043 71.85 104.2 

Drip loss (%) 169 2.011 1.384 0.4 5.3 

pH1 h p.m. 169 5.518 0.118 5.3 6.06 

pH24 h p.m. 169 6.538 0.022 5.89 7.01 

pH decline 169 1.02 0.232 0.04 1.49 
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3.1 Abstract 

In this study lean meat water holding capacity (WHC) of a Duroc × Pietrain (DuPi) 

resource population with corresponding genotypes and transcriptomes were investigated 

using the approaches of genetical genomics. WHC was characterized by drip loss 

measured in M. longissimus dorsi. The 60K Illumina SNP chips identified genotypes of 

169 F2 DuPi animals. Whole genome transcriptomes of muscle samples were available for 

132 F2 animals using the Affymetrix 24K Genechip Porcine Genome Array. Performing 

genome-wide associations studies (GWAS) of transcriptional profiles, which are correlated 

with phenotypes allows elucidating cis- and trans-regulation. Expression levels of 1228 

genes were significantly correlated with drip loss and were further analyzed for enrichment 

of functional annotation groups as defined by Gene Ontology and KEGG pathways. A 

hyper geometric gene set enrichment test was performed and revealed glycolysis/ 

glyconeogenesis, pentose phosphate pathway and pyruvat metabolism as the most 

promising pathways. For 267 selected transcripts, eQTL analyses was performed and 

revealed 1541 significant associations in total. Because of positional accordance of the 

gene-underlying transcript and the eQTL location, it was possible to identify 8 eQTL that 

can be assumed as cis-regulated. Comparing the results of gene set enrichment and the 

eQTL detection tests, molecular networks and potential candidate genes, which seemed to 

play key roles in the expression of WHC, were detected. The α-1-microglobulin / bikunin 

precursor (AMBP) gene was assumed to be cis-regulated and was part of the gycolyse 

metabolism. This approach supports to identify trait-associated SNP and to understand the 

biology of complex traits. 
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3.2 Introduction 

Water holding capacity (WHC), i.e. the capacity of meat to retain its water during 

application of external forces (Hamm 1985) is an important quality criterion for the meat 

processing industries and the consumers. WHC can be predicted by measuring drip loss, 

which is a fluid consisting of water and protein expelled from the meat surface without any 

mechanical force other than gravity and is influenced by shrinkage of the myofibrils, pH 

value and temperature post mortem (Offer and Knight 1988). 

The structural components and the biological processes of WHC and its associated traits 

have been extensively investigated (Greaser 2001; Huff-Lonergan and Lonergan 2005, 

2007; Huff Lonergan et al. 2010; Offer and Cousins 1992; Rosenvold and Andersen 2003). 

However, the genetic mechanisms underlying in WHC during the conversion of muscle to 

meat are not fully understood. The presented heritability for drip loss in different breeds 

varied between h2 = 0.01 and 0.31 depending on the different measurement methods (e.g. 

Borchers et al. 2007; Ciobanu et al. 2011) and demonstrate the complexity of this trait. 

A genome scan is the most general approach to identify genomic regions showing 

quantitative trait loci (QTL), classically for complex phenotypic characteristics. Such QTL 

regions are generally large and contain thousands of putative genes, which are all candidate 

loci for the trait (Wayne and McIntyre 2002). Until now, 6397 QTL covering 578 

phenotypic traits were identified and submitted into pig QTLdb [www.animalgenome.org, 

Release April 12, 2013]. In total, 953 QTL were identified for drip loss in loin in different 

pig populations (Hu et al. 2010). These QTL were mostly identified via genome scan based 

on linkage analyses and microsatellite genotyping. Liu et al. (2007; 2008) found 7 QTL for 

drip loss (Sus scrofa chromosome (SSC) 2, 3, 4, 5, 6, 18) in loin muscle in the Duroc × 

Pietrain (DuPi) F2 resource population via applying different statistical methods.  

Quantitative expression studies such as microarray technology, can indicate regulatory 

variation in genes for complex traits (Wayne and McIntyre 2002). By combining QTL 

mapping and microarray analyses, it is possible to identify regulatory networks underlying 

the quantitative trait of interest and localizing genomic variation, the so-called genetical 

genomics approach (Jansen 2003; Jansen and Nap 2001). Furthermore, a QTL analysis of 

expression levels of gene identifies genomic regions, which are likely to contain at least 

one causal gene with a regulatory effect on the expression level, termed expression QTL 

(eQTL). The use of eQTL analyses has been demonstrated as a promising tool for 
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narrowing the gap between detected phenotype related QTL regions and confirmed 

causative variations for the pig species (Rothschild et al. 2007; Steibel et al. 2011). 

Detected eQTL can be classified into a locus, which is located close to a gene (cis-

regulation) or distant from the gene (trans-regulation) (Jansen and Nap 2001). Differential 

expressed genes, where eQTL mapping indicates cis-regulation, are more likely to 

represent the “cause”, for example the genetic background of the trait of interest. Whereas 

differential expressed genes revealing trans-regulation represents the “effect”, for example 

pathways that are affected by causal variation (Wimmers et al. 2010). The largest and most 

significant reported eQTL are often cis-regulated. However, some trans-regulated eQTL 

seem to control expression in several or many genes spread across the genome. These 

findings provide general information on the organization of the control of expression 

(Haley and de Koning 2006). 

Previous results showed eight cis-regulated eQTL significantly associated with drip loss, 

which were located on SSC 2, 3, 4 and 6. Additionally, eight candidate genes were 

identified from these results (Ponsuksili et al. 2008a). Lobjois et al. (2008) showed in their 

study that from 63 genes associated with the Warner-Bratzler shear force only 22 were 

mapped in the pig genome and 12 were located in the areas previously associated with 

tenderness (SSC2, 6 and 13). In the study of Steibel et al. (2011) expression profiles from 

loin muscle tissue were combined with linkage analyses of 124 microsatellites showing 62 

eQTL including 22 cis- regulated eQTL. As shown in these studies, differences in gene 

expression can be used in reverse genetic studies to generate well-defined hypotheses 

regarding downstream effects on molecular, cellular and functional networks, and finally at 

the phenotype level (Ciobanu et al. 2011). However, genetical genomic studies are rarely 

applied to investigate the complex genetic structure and gene regulation of drip loss in 

pigs. Therefore, the aim of this study was to identify candidate genes related to drip loss by 

(1) analyzing the correlation of drip loss and transcript abundance and (2) combining 

genome-wide gene expression profiling and genotyping. 
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3.3 Materials and methods 

3.3.1 Animals and phenotypic traits  

In this study, 214 animals of a reciprocal cross of the Duroc and Pietrain breeds were used. 

These animals consisted of 169 F2, 39 F1 and 9 parental (P) animals, which came from 59 

full and half sib families. All F2 DuPi animals were kept and performance tested at the 

Frankenforst experimental farm of the University of Bonn. The phenotypes were recorded 

in a commercial slaughterhouse according to the rules of German performance stations 

(ZDS 2003). Further information can be found in the study of Liu et al. (2007). 

Drip loss was measured using the bag method of Honikel (1986). Therefore, the samples 

from M. longissimus dorsi were collected 24 h post mortem (p.m.), weighted and wrapped 

in plastic bag. After storage for 48 hours at 4 °C the samples were re-weighted and drip 

loss were calculated as a percentage of weight loss based on the start weight of a sample.  

 

3.3.2 Sample preparation, genome-wide genotyping and quality control 

DNA was extracted from M. longissimus dorsi using Genomic DNA Purification Kit of 

Fermentas Life Science. DNA concentration was measured using NanoDrop ND-8000 

(Thermo-Scientific) and concentration was adjusted to 100 ng/µl by using double distilled 

RNase and DNase free water. Illumina bead array technology (Porcine SNP 60K Bead 

Chip) was used for genotyping the samples (Illumina, Inc., San Diego, CA) in accordance 

with the protocol for SNP Infinium HD assay (http://Illumina.com). At first 200 ng DNA 

was used for genome-wide amplification and fragmentation. After hybridization to the 

62163 locus-specific 50mers, the DNA was covalently linked to the beads, which were 

distributed on the surface of the microarray. Single-base extension of the oligos on the 

BeadChip was implemented using the captured DNA as template, absorbing detectable 

labels on the Bead Chip. The Illumina iScan detected the signals of each wavelength and 

converted them to intensity data. In order to normalize the intensity data for each SNP and 

to specify a cluster position and a genotype, the GenomeStudio software (Illumina, Inc., 

San Diego, USA) was used. A quality score for each genotype was generated. Because of 

missing phenotype information, the P and F1 generation were excluded from further 

analyses. In the final step, 169 F2 samples were used for the genome-wide association 

analyses. The quality of the data was measured using PLINK software (Purcell et al. 2007). 

For the quality control following measurement, parameters were chosen: samples with a 
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call rate less than 95 %; markers with a low minor allele frequency (MAF) < 5 % and SNP 

with a missing rate of more than 2 % were removed. After the quality check of the data, 

153 animals as well as 46964 SNP remained in the data set. 

 

3.3.3 Whole-genome expression profiling 

Gene expression profiling of the M. longissimus dorsi was conducted with 100 out of the 

169 F2 animals. In brief, total RNA of the loin was isolated using TRI Reagent (Sigma, 

Taufkirchen, Germany) according to the manufacture’s protocol. The RNA was cleaned up 

using the RNeasy Kit (Quiagen, Hilden, Germany). RNA concentration was measured 

using NanoDrop ND-8000 (Thermo-Scientific). The integrity and the absence of 

contamination was check using the Agilent RNA 6000 Nano Kit (Agilent Technologies, 

Waghäusel - Wiesental, Germany). According to Affymetrix protocols, 500 ng of total 

RNA were reversely transcribed into cDNA, transcribed into cRNA and labelled using the 

Affymetrix One Cycle Synthesis and Labelling Kit (Affymetrix, UK) to prepare antisense 

biotinylated RNA targets. Muscle expression pattern were assessed using GeneChip 

Porcine Genome Array (Affymetrix) which contains 23937 probe sets that interrogate 

23256 transcripts in pig, which represents 20201 genes. Preparation of target products, 

hybridization and scanning using the GeneChip scanner 3000 were performed according to 

Affymetrix protocols using 5 µg of total RNA to prepare antisense biotinylated RNA. The 

quality of hybridization was assessed in all samples following the manufacturer's 

recommendations. Data were analysed with Affymetrix GCOS 1.1.1 software using global 

scaling to a target signal of 500. 

 

3.3.4 Microarray data processing 

In order to increase the number of muscle transcriptome data, additional arrays from 

previous investigations were added. To combine these two data sets, it was necessary to 

remove outliers and correct for the significant batch effect (Oldham et al. 2008). The whole 

microarray processing is described in Supplementary Methods (Appendix). After 

microarray processing 132 F2 DuPi animals were left for further investigation. 
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3.3.5 Correlation between traits and expression levels 

Individual phenotypes of drip loss and expression levels were adjusted for systematic 

effects using a general linear model (glm) of R-software (www.r-project.org). The linear 

model contained as fixed effects “gender”, “season” and “place of slaughter” and as 

covariable “age of slaughter” and “weight of slaughter”. Following, Pearson correlation 

coefficient were calculated using the residuals of the expression intensities and the trait 

drip loss. Genes that showed a significant correlation (P ≤ 0.05) were further analyzed. 

 

3.3.6 Gene set enrichment and pathway analyses 

The array contained 23937 probe sets, which represented 12307 UniGene (annotation from 

November 2012) to measure the global transcripts. The Porcine Genome Array annotation 

available from NetAffx™ Analyses Centre (Porcine.na30.annot.csv) was used. Additional 

and updated annotation was obtained from the Ensemble database, using the biomaRt 

package (version 2.14.0) in R (www.r-project.org). In total 8059 probes were able to be 

assigned to the group Biological Processes (BP), 8179 probes to Cellular Components 

(CC) and 8867 probes to Molecular Functions (MF) of the Gene Ontology (GO; 

http://www.geneontology.org/) database.  

A hyper geometric gene set enrichment test (GOstats package version 2.24.0) was 

performed based on the clusters identified in correlation analyses. Overrepresentation of 

gene sets defined by the particular groups of BP, CC or MF in the GO database or the 

Kyoto Encyclopedia of Genes and Genomes database (KEGG; 

http://www.genome.jp/kegg/) was tested using Fisher's exact test. For this test, only the 

significant genes, which were annotated, with an Entrez gene ID were included. When a 

gene had a duplicate on the array, only a single gene ID was used. A gene-set was 

considered significant if P ≤ 0.05. 

 

3.3.7 Genome-wide association analyses (GWA) 

For the genome-wide association study, the gene expression values were corrected for 

environmental effects by using a glm of R-software. The model contained the same effects 

used for the correlation analyses. 
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The genome-wide association analyses was conducted with PLINK software, which is 

based on the family association tests for quantitative traits (QFAM) and performed 

permutation techniques to account for the dependence between related animals. The 

within-sib-ship test of QFAM is robust for population stratification. Nominal scores were 

permuted to receive an empirical p-value while obtaining familial correlation between 

phenotype and genotype. The permutation procedure applied by QFAM corrected for 

relatedness within families and was performed 100,000 times. Genetic effects and the 

proportion of explained variance were also calculated using PLINK (Purcell et al. 2007). 

Additionally, a false discovery rate (FDR) ≤ 0.1 were used in order to correct for multiple 

testing (Benjamini and Hochberg 1995). 

 

 

3.4 Results 

Expression profiling and eQTL analyses were performed on 132 animals of the DuPi 

population with 100 animals of our study and 32 animals from previous studies (Ponsuksili 

et al. 2008a; Ponsuksili et al. 2010). The animals were chosen because of a high degree of 

relationship within the F2 crosses and extreme values of drip loss. The animals were 

slaughtered at an average of 183.7 days with an average carcass weight of 86 kg. The mean 

of drip loss was 2.0 % with a minimum of 0.4 % and a maximum of 5.3 %. Using 

Affymetrix Porcine Genome Array 24123 expression measurements were performed from 

each M. longissimus dorsi RNA samples of the 132 F2 animals and were corrected for the 

batch effects using “ComBat”(Johnson et al. 2007). The preselected data were further 

analyzed with the hybrid algorithm of PLIER (AffymetrixTechnicalNote 2005) resulting in 

20733 probe sets. Pearson correlation was calculated for each 20733 probe sets and the 

drip loss phenotypes. A total of 1228 transcripts were significantly correlated with drip loss 

(P ≤ 0.05), with 406 negative and 822 positive correlated genes. 

 

3.4.1 Biological pathways associated with drip loss 

We tested the list of significantly positive and negative correlated genes (P ≤ 0.05) for 

enrichment in functional annotation groups in the Kyoto Encyclopedia of Genes and 

Genomes (KEGG) (Kanehisa and Goto 2000) and Gene Ontology (GO) databases. This 
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dataset was represented by 1227 probe sets, which represent 688 annotated genes. Eight 

significant KEGG pathways (P ≤ 0.05) including “Glycolysis/Glyconeogenesis”, “Pentose 

phosphate pathway” and “Pyruvat metabolism” for all genes significantly associated with 

drip loss were found (Table A2). For the negative correlated genes 19 significant KEGG 

pathways were observed, which were mostly disease pathways (Table 7). Additionally, 10 

significant KEGG pathways were identified for positive correlated genes (Table 8). 

 GO analyses were divided in three parts: BP, CC and MF. For the biological processes, 

114 GO categories of genes with significant expression levels were found, whereas the GO 

categories “Hexose catabolic process”, “Primary metabolic process”, “Gluconeogenesis”, 

”Glycolysis”, “Monosaccharide biosynthetic process”, “Protein modification process”, 

“Cellular metabolic process”, “Cellular carbohydrate catabolic processes” and 

“Carbohydrate catabolic process” showed most of the genes with a significant association 

of drip loss (Table A3). 

For the genes, which were negatively correlated with drip loss, 235 GO terms were 

identified compared to the genes positively correlated with drip loss with 129 GO terms. 

For the cellular components, only 28 GO categories were observed for all significantly 

associated genes (Table A4). The positive and negative correlated genes revealed 45 GO 

terms mainly consisting of intracellular components and 21 GO terms representing 

extracellular components, respectively. 

The molecular functions indicated 46 GO categories for all significant associated genes, 

whereas four GO terms “Phosphorylase activity”, “Oxidoreductase activity, acting on the 

aldehyde or oxo group of donors”, “Fructose 1, 6-bisphosphate 1-phosphatase activity” and 

“Catalytic activity” showed the genes, which were significantly associated with drip loss 

(Table A5). For the genes, which were positively correlated with drip los 77 GO categories 

were identified compared to the genes negatively correlated with drip loss with 58 GO 

terms.  

 

3.4.2 Whole-genome association analyses for transcripts correlated with drip loss 

(eQTL) 

A total of 246 genes, which were highly correlated with drip loss (P ≤ 0.01) were selected 

for eQTL analyses. Additionally, 21 genes were selected from the gene set enrichment 

analyses because of their functional role in the development of drip loss and were added 
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for eQTL analyses. In total, 46946 SNP were tested for association to each of the 267 

expression transcripts significantly associated with drip loss. The analyses revealed for 30 

transcripts 1451 eQTL with a nominal P-value less than 0.0001 and a genome-wide FDR 

value of 0.1. The average value for each transcript was 50 eQTL with a minimum of one 

eQTL per transcript and a maximum of 943 eQTL per transcript. Four transcripts had only 

one eQTL (Table 9). Their calculated correlations with drip loss ranged between -0.25 and 

0.30. From these 1451 eQTL, 466 eQTL were located on the same chromosome like the 

transcripts. In this study, only 8 eQTL were assumed as potentially cis-regulated, because 

they were located close to the transcript (Table 10). Their explained variance ranged from 

10 % up to 30 %. The neuralized homolog (Drosophila) (NEURL) gene revealed two 

potential cis eQTL, which were located within the gene. The gene TPI1 which is located 

on SSC5 showed the highest significance (P < 2.58E-07) on SSC12. 

 

 

3.5 Discussion 

3.5.1 Trait dependent expression analyses 

The association between the quantitative trait drip loss and the gene expression was 

analyzed using the Pearson correlation. This approach was similarly used in many studies 

like Qackenbush (2001), Kraft et al. (2003) and Ponsuksili et al. (2008a). In the study of 

Kraft et al. (2003), a within-family correlation analyses was utilized to remove the effect of 

family stratification. In contrast, we used a general linear model to correct both drip loss 

phenotype and expression levels for environmental effects in the correlation analyses. In 

the further analyses, we used the family approach of PLINK (Purcell et al. 2007) to avoid 

the family stratification. For the pathway and GO term analyses, we considered correlation 

significant at P < 0.05 like the studies of Blalock et al. (2004) and Ponsuksili et al. (2008a).  

In order to control the problem of multiple testing, a genome wide Bonferroni correction 

may result in high false negatives (Han et al. 2009). Thus instead of a genome wide 

Bonferroni correction, which might be overly conservative, we set a more relaxed 

threshold using a correction following Benjamini and Hochberg with a FDR < 0.10 

(Benjamini and Hochberg 1995). Since Storey and Tibshirani (2003) propose an adaptation 

of the false discovery rate (FDR) targeted at genome-wide experiments to provide a better 

balance between statistical stringency and power to detect true effects. However, for some 



 Chapter 3  63 

genes even this method seems to be too stringent, e.g. for the gene solute carrier family 37, 

member 4 (SLC37A4). This gene is located in a region on SSC 9 and showed eQTL on 

SSC 18 where several promising candidate gene influencing drip loss are discussed 

(Jennen et al. 2007).  

 

3.5.2 Gene set enrichment of significant correlated genes with drip loss 

The genetic background of WHC during the conversion of muscle to meat is not yet 

completely understood. One possible explanation for these variation obtained in the 

structure of the muscle itself (Huff-Lonergan and Lonergan 2005). In this study, transcript 

level of muscle at slaughter were correlated with drip loss after slaughter in order to find 

biological processes, which are relevant in the development of drip loss. Functional 

annotation analyses are essentially based on the extrapolation of pathway information and 

gene ontology data of the pig (Ponsuksili et al. 2008a). In our study, changes were 

observed in the genomic regulations of different cellular pathways, which were correlated 

with drip loss. The genes positively correlating with drip loss were genes of the group 

belonging to the energy metabolism (Table 8), the same results were observed in the GO 

term analyses. For example, glycolytic metabolism is a process characteristic of skeletal 

muscle (Hamill et al. 2012). Each muscle consists of three main fibre types, slow-twitch 

oxidative, fast-twitch oxido-glycolytic and fast-twitch glycolytic fibres (Peter et al. 1972). 

The fast-twitch glycolytic fibres are associated with drip loss, low vascularisation, reduced 

mitochondrial activity and higher glycogen content (Wimmers et al. 2006). The negative 

correlated transcripts were enriched mostly in disease pathways same results were found in 

GO analyses. 

Taken together, analyses of trait correlated expression revealed that the complex 

relationships between biological processes taking place in skeletal muscle and meat quality 

like drip loss are driven by the energy reserves in the muscle and their metabolisation 

(Ponsuksili et al. 2008a). 

 

3.5.3 Candidate genes for drip loss and their regulation patterns 

Drip loss is a complex trait, which is genetically controlled by many different genes. With 

the growing knowledge of genome sequences and gene annotation, the eQTL analyses give 

insight into the architecture of regulatory networks (Ponsuksili et al. 2010). 8 eQTL of 7 
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transcripts were observed as putative cis-regulated following the criteria used in the study 

of Ponsuksili et al. (2011). In our study, 24 % of the significantly associated transcripts 

were cis-regulated and 76 % were trans-regulated. This proportion of cis-regulated genes 

is higher in comparison to the studies of Ponsuksili et al. (2008a; 2011; 2010) where 10 % 

of all transcripts were cis-regulated.  

The cis-regulated genes are of great interest, because the underlying genes are expected to 

harbour the genetic variants that influence their own expression level and influence the 

physiological traits of interest (Göring et al. 2007). 

For example, the polypeptide α-1-microglobulin / bikunin precursor (AMBP), which was 

located on SSC1, was already known to be involved in the formation of drip loss (Cinar et 

al. 2012; Ponsuksili et al. 2008b) and was also found to be significantly associated with 

drip loss in our study (Figure 13). AMBP is the precursor of Bikunin, which plays an 

important role in the stabilization of the extra cellular matrix (Tyagi et al. 2002). 

Additionally AMBP is important for cell growth, development, metabolism, immune 

response and the level of intracellular calcium (Grewal et al. 2005). The extracellular 

matrix is reported to influence meat quality (Velleman 2000), because signal transduction 

from the extracellular matrix to the myoblast plays a significant role in muscle formation 

and growth (Velleman 2002). Furthermore the extracellular matrix consist of proteins 

including collagens and proteogycans, which are contributed to increase the WHC in tissue 

(Velleman 2002). In the studies of Ponsuksili et al. (2008a; 2008b), AMBP was 

differentially expressed in pig muscles with high vs. low drip loss and low vs. high pH. 

These results were confirmed in the study of Cinar et al. (2012). AMBP is mapped on 

SSC1 where QTL for meat quality traits are reported in different pig breeds and crosses 

(Hu et al. 2010). In contrast to our results, Cinar et al. (2012) identified AMBP as trans-

regulated. One reason might be that in the present study a higher number of genetic 

markers were used. However, this high number of genetic markers may not track perfectly 

the causative mutations but they are potentially useful tools for identifying chromosomal 

regions associated with the trait (Cole et al. 2009). The functions of the other potential cis-

regulated genes (Table 10) were not yet understood in porcine skeletal muscle. 

Many loci are trans-acting modulators of gene expression (Jansen and Nap 2004) and are 

also of great interest because these genes are likely to play a role in explaining trait 

variation (Wang and Nettleton 2006). For example, the gene Insulin -like growth factor 2 

(IGF2) located on SSC2 (Figure 14), which was also found to be differentially expressed in 
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pigs with high and low drip loss (Ponsuksili et al. 2008b) and the gene triosephosphate 

isomerase1 (TPI1) located on SSC5 (Figure 15). 

IGF2 promotes growth and plays a role in regulating proliferation, differentiation and 

apoptosis of cells in many different tissues, such as skeletal muscle (Pavelic et al. 2002; 

van Wyk and Smith 1999). The IGF2 gene is imprinted in most mammalian tissues and is 

exclusively expressed from the paternal allele (Jeon et al. 1999; Nezer et al. 1999). 

Additionally, IGF2 is involved in the myogenesis and controls primarily the muscle mass 

and fat deposition (Jeon et al. 1999; Nezer et al. 1999). It is responsible of 15-30 % of the 

phenotypic variation in muscle mass (Van Laere et al. 2003). 

TPI1 gene is a glycolysis enzyme, which play an important role in energy generation for 

muscle cells (Solem et al. 2008). In the study of Kwasiborski et al.(2008) a protein 

analyses was performed and TPI1 was positively correlated with drip loss in a Large White 

population. The same results (r = 0.27 with P < 0.001) was found in our study using the 

DuPi population. 

In this study, the presumable trans-regulated gene solute carrier family 37, member 4 

(SLC37A4), which is located on SSC 9 is a promising candidate gene for drip loss but 

failed the FDR level of 0.1 (Figure 16). SLC37A4 also known as glucose-6-phosphate 

transporter (G6PT) is expressed in several tissues like heart, brain and skeletal muscle (Lin 

et al. 2000). G6PT translocates glucose-6-phosphate (G6P), the product of gluconeogenesis 

and glycogenolysis, from the cytoplasm to the lumen of the endoplasmatic reticulum (ER) 

(Arion et al. 1980). Inside the ER, G6Pase catalyzes the conversion of G6P to glucose. 

Therefore, G6PT and G6Pase work in both in the glucose homeostasis (Lin et al. 2000). 

G6PT plays a role in the antioxidant protection, because a defective G6P transport leads to 

an increase of reactive oxygen species (ROS) (Leuzzi et al. 2003), which act also as 

important signalling molecules in muscle contraction and adaptation (Musaro et al. 2010). 

An increase in ROS production has been demonstrated under osmotic cell swelling, muscle 

contraction, anoxia, and sepsis, which may cause pH decline and drip loss formation in the 

skeletal muscle (Ortenblad et al. 2003). 
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3.6 Conclusion 

Mapping quantitative traits and unravelling transcriptional control are challenging, when 

applied to one phenotype at a time. In studies of typical quantitative porcine traits like 

WHC, strong effects are rarely found. Here we have coupled genomic technologies for 

expression profiling with genome-wide genetic mapping using SNP markers, and shown 

that specific chromosomal regions contain functional candidate genes. These approaches 

and results allowed to investigate and to dissect the genetic contribution to natural 

variation in porcine gene expression. Beside known and already confirmed genes, 

additional candidate genes, located in promising regions were identified. These promising 

candidate genes need further validation in other pig populations and the gene regulation 

networks have to be closer investigation. 
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Figure 13: eQTL of polypeptide α-1-microglobulin / bikunin precursor (AMBP) across 

the autosomes associate with drip loss and is located on SSC 1 (position: 

285708391 – 285725500, ensembl build 10.2) 

 

 

 

 

Figure 14: eQTL of gene Insulin -like growth factor 2 (IGF2) across the autosomes 

associate with drip loss and is located on SSC 2 (position: 2107672 – 

2107381, ensembl built 10.2) but showed most significant eQTL on SSC 10 

and 12 

 



68        A genetical genomics approach reveals new candidate genes for drip loss   

 

 

Figure 15: eQTL of gene triosephosphate isomerase1 (TPI1) across the autosomes 

associate with drip loss and is located on SSC 5 (position: 66274876 – 

66278367, ensembl built 10.2) but showed most significant eQTL on SSC 12 

 

 

 

 

Figure 16: eQTL of gene solute carrier family 37, member 4 (SLC37A4) across the 

autosomes associate with drip loss and is located on SSC 9 (position: 

51282372-51287727, ensembl built 10.2) 
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Table 7: Significant KEGG identifiers detected based on negative correlated transcripts 

with drip loss 

KEGGID  P value Odds Ratio Exp Count Count (Size) Term 

4650 0.0043 5.2191 1.0893 5 (66) 
Natural killer cell 

mediated cytotoxicity 

4920 0.0055 4.8926 1.1554 5 (70) 
Adipocytokine signalling 

pathway 

5160 0.0057 4.0985 1.6505 6 (100) Hepatitis C 

4660 0.0083 4.4085 1.2709 5 (77) 
T cell receptor signalling 

pathway 

5220 0.0115 5.0224 0.8913 4 (54) 
Chronic myeloid 

leukaemia 

4012 0.0123 4.9226 0.9078 4 (55) ErbB signalling pathway 

4115 0.0194 4.2459 1.0398 4 (63) p53 signalling pathway 

4380 0.0227 3.3566 1.6340 5 (99) Osteoclast differentiation 

5213 0.0257 5.1639 0.6437 3 (39) Endometrial cancer 

5214 0.0274 5.0230 0.6602 3 (40) Glioma 

4662 0.0293 4.8895 0.6767 3 (41) 
B cell receptor signalling 

pathway 

4370 0.0293 4.8895 0.6767 3 (41) VEGF signalling pathway 

4610 0.0342 3.5168 1.2379 4 (75) 
Complement and 

coagulation cascades 

5221 0.0372 4.4190 0.7427 3 (45) Acute myeloid leukaemia 

4940 0.0393 4.3151 0.7592 3 (46) Type I diabetes mellitus 

5215 0.0419 3.2810 1.3204 4 (80) Prostate cancer 

600 0.0421 6.8051 0.3301 2 (20) Sphingolipid metabolism 

650 0.0421 6.8051 0.3301 2 (20) Butanate metabolism 

4010 0.0445 2.4945 2.6078 6 (158) 
MAPK signalling 

pathway 

A hyper geometric gene set test was performed based on negative correlated transcripts with drip loss. Over 

representation of gene sets defined by the KEGG database was tested using Fisher’s exact test. The gene set 

was considered significant if P < 0.05 
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Table 8: Significant KEGG identifiers detected based on positive correlated transcripts 

with drip loss 

KEGGID  P value Odds Ratio Exp Count Count (Size) Term 

4120 0.0002 3.8293 3.6610 12 (102) Ubiquitin mediated 
proteolysis 

10 0.0003 6.5513 1.3280 7 (37) Glycolysis / 
Gluconeogenesis 

620 0.0058 4.9405 1.1844 5 (33) Pyruvat metabolism 

3040 0.0068 2.7345 4.0558 10 (113) Spliceosome 

4130 0.0096 5.5038 0.8614 4 (24) SNARE interactions in 
vesicular transport 

310 0.0236 4.0691 1.1127 4 (31) Lysine degradation 

4115 0.0243 2.9112 2.2612 6 (63) p53 signalling pathway 

30 0.0330 4.8240 0.7178 3 (20) Pentose phosphate 
pathway 

230 0.0335 2.2907 3.7687 8 (105) Purine metabolism 

4720 0.0385 3.4286 1.2921 4 (36) Long-term potentiation 

A hyper geometric gene set test was performed based on positive correlated transcripts with drip loss. Over 

representation of gene sets defined by the KEGG database was tested using Fisher’s exact test. The gene set 

was considered significant if P < 0.05 
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Table 9: Transcripts with their number of potential cis- and trans-regulated eQTL and 

their correlation coefficient  

Probe set id Gene name Chromosome1 
Estimated 

correlation2 
Number of 

eQTL 

Ssc.11793.1.A1_at ZNF79 1 0.255** 1 

Ssc.1801.2.S1_at FNBP1 1 -0.251** 1 

Ssc.18261.1.S1_at PSTPIP2 1 0.275*** 45 

Ssc.1894.1.S1_at AMBP 1 -0.178* 4 

Ssc.19564.1.S1_at PCDH9 1 0.242** 943 

Ssc.3339.1.S1_at BCKDHB 1 0.252** 15 

Ssc.16250.1.S2_at IL1RN 2 -0.228** 5 

Ssc.20525.1.S1_at IGF2 2 -0.194* 14 

Ssc.30674.1.S1_at PTBP1 2 0.242** 12 

Ssc.11624.1.A1_at ATL2 3 0.239** 10 

Ssc.14375.1.A1_at RRM2B 4 0.223** 11 

Ssc.1589.1.A1_at JTB 4 0.235** 37 

Ssc.1297.1.S1_at TPI1 5 0.267** 17 

Ssc.15905.1.A1_at GDF11 5 0.240** 11 

Ssc.16770.1.S1_at EMG1 5 0.237** 59 

Ssc.14396.1.S1_at TAF12 6 0.226** 22 

Ssc.8727.1.A1_at RPRD1A 6 0.255** 21 

Ssc.30641.1.S1_at ATP5L 9 0.249** 10 

Ssc.10209.1.A1_at CHURC1 10 0.232** 12 

Ssc.21622.1.A1_at FBP2 10 0.172* 1 

Ssc.3766.1.S1_at RAB18 10 0.222** 4 

Ssc.6339.1.A1_at DHTKD1 10 0.230** 1 

Ssc.7225.1.A1_at BAG1 10 0.245** 7 

Ssc.7523.1.A1_at PHB 12 0.307*** 5 
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Table 9 continued: 

Probe set id Gene name Chromosome1 
Estimated 

correlation2 
Number of 

eQTL 

Ssc.11661.1.A1_at PPP1CC 14 0.210* 46 

Ssc.17499.1.S1_at NEURL 14 0.244** 86 

Ssc.30435.1.A1_at BAG3 14 0.273*** 38 

Ssc.1473.1.S1_at SMARCD3 18 0.227** 3 

Ssc.7292.1.S1_at NA 18 0.234** 10 

1 Number of Sus scrofa chromosomes where the gene is located 

2The potential candidate genes with their number of significant transcripts and their calculated correlation 

coefficient of Pearson with the phenotypic trait drip loss. *: P < 0.05, **: P < 0.01, ***: P < 0.001 
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Table 10: Potential cis-regulated eQTL and their explained variance 

 

1Sus scrofa chromosome; 2Candidate genes with their potential cis-regulated eQTL, their explained variance 
and the calculated P-Value. *: FDR < 0.1, **: FDR < 0.05, ***: FDR < 0.01; 3Gene expression variation 
explained by the associated SNP 
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The impact of water-holding capacity traits and their biological background were 

investigated in a Duroc × Pietrain resource population. It was possible to identify several 

chromosomal regions and their potential candidate genes significantly associated with 

WHC using GWAS and genetical genomics approaches. In this study 9 QTL on six 

different porcine chromosomes (SSC2, 3, 6, 12, 15, 16 and 17) were significantly 

associated with drip loss.  

In GWAS, until now the prediction of the total genetic values considers mainly additive 

effects (Meuwissen et al. 2001). However, numerous epistatic QTL pairs and dominance 

effects influencing meat quality traits such as WHC are identified, indicating that the 

genomic control of meat quality is a complex process involving numerous QTL as well as 

a complex network of gene interactions (Carlborg and Haley 2004; Duthie et al. 2010). 

Therefore, a successful implementation of epistatic effects leads to an increased squared 

coefficient of determination (Hu et al. 2011). Nevertheless, in our study, it was possible to 

identify epistatic QTL regions on SSC2, 3, 8 and 13 for pH1, which have been reported 

earlier in our population considering epistatic effects (Grosse-Brinkhaus et al. 2010) 

independently from a second QTL, because of the high number of genetic markers 

provided by the SNP chips. In the studies of Liu et al. (2007; 2008) and Edwards et al. 

(2008) dominance effects play in addition to additive effects an important role. However, 

in this study, dominance effects were not detected using GWAS like in other GWAS 

studies (Duijvesteijn et al. 2010; Ramos et al. 2011). 

The additive effects as well as the proportion of explained phenotypic variance were 

calculated for drip loss, pH1, pH24 and pH decline via PLINK software. The calculated 

additive effects and the explained phenotypic variance for drip loss were quiet high in 

comparison to other QTL studies done in the same pig population (2.4.4) (Edwards et al. 

2008; Liu et al. 2007). Reasons for the higher proportion of explained phenotypic variance 

could be the marker density of the SNP chips and the higher specificity in comparison 

other QTL studies using microsatellites, which were only partly spread across the genome. 

In this study, the size of the SNP effects for the pH traits were small, whereas markers in 

regions in which causative mutations lie have much larger effects, like the SNP, which are 

significantly associated with drip loss. However, the markers with the largest associated 

effects from a genomic analysis may not track perfectly the causative mutations; on the 

other hand, they are potentially useful tools for identifying chromosomal regions 

associated with traits (Cole et al. 2009). 
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Another reason for the small size of the SNP effects calculated for pH traits might be the 

population size of 169 animals. It has been shown that QTL mapping in small populations 

confound the effects of QTL with statistical artefacts caused by sampling. Therefore, the 

genetics of complex traits should be studied in large populations (Beavis 1994, 1998). 

Additionally, almost all QTL mapping procedures can detect QTL with large effects, but 

not all can detect QTL with intermediated and small effects. However, quantitative traits 

are defined as traits controlled primarily by intermediate and small effects (Xu 2003). 

Especially in GWAS, the number of animals depends on the size of the effects that one 

wishes to detect. The crucial parameter is the proportion of the variance explained by the 

SNP this parameter combines the allele frequency with the mean difference between the 

SNP genotypes (Goddard and Hayes 2009). In practice, some SNP explain more than 4 

%of the genetic variance, and so a smaller experiment would be sufficient but, in fact, most 

SNP associated with complex traits explain less than 4 % of the genetic variance, and so 

over 1800 animals are required (Goddard and Hayes 2009; Visscher 2008).  

In the second study, eQTL for drip loss were identified on several chromosomal regions 

(SSC1, 2, 3, 4, 5, 6, 9, 10, 12, 14 and 18), whereas 8 eQTL of 7 transcripts were observed 

as cis-regulated and found on SSC1, 4, 5, 10 and 14. The eQTL on SSC1, 2, 3, 4, 6, and 18 

validated the results of Ponsuksili et al. (2008a; 2008b). These eQTL seemed to play an 

important role in the development of drip loss. In contrast the eQTL on SSC5, 9, 10, 12 

and 14 were presumably novel. This could be due to the fact of the combination of the 

different techniques such as GWAS and genetical genomics. 

The recent study is based on 132 F2 DuPi animals. In comparison to other published 

studies in livestock (Le Mignon et al. 2009; Liaubet et al. 2011; Ponsuksili et al. 2008a; 

Ponsuksili et al. 2008b; Ponsuksili et al. 2010) the number of animals used in this study is 

quite high or in the same range (Ponsuksili et al. 2011; Steibel et al. 2011). However, the 

number of animals used for eQTL studies are still too small in comparison to QTL studies 

and providing less power to detect individual eQTL, because of the higher costs (de 

Koning et al. 2005; Haley and de Koning 2006). That implies a minimum population size 

of 200 F2 to detect major QTL effects, while an experiment of 400 animals gives good 

statistics to detect also smaller effects. Therefore, by combining the two methods GWAS 

and genetical genomics the power could be increased, because of the marker density of 

both chips. 
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With the development of high-throughput sequencing and genotyping technologies, the 

numbers of markers collected in genetic association studies is growing rapidly, increasing 

the importance of methods for correcting for multiple hypotheses testing (Han et al. 2009). 

While the Bonferroni correction provides the simplest way to correct for multiple testing 

by assuming independence between markers, permutation testing is widely considered the 

golden standard for accurately correcting for multiple testing (Westfall and Young 1993). 

However, the Bonferroni correction ignores correlation between markers due to linkage 

equilibrium and leads to an overly conservative correction of false positives, which is 

exacerbated as the marker density increases and affects the statistical power (Han et al. 

2009). Therefore, a correction for multiple testing was not performed in the first study 

because of high linkage disequilibrium of the SNP on SSC2 significantly associated with 

the candidate genes NELL1 and SOX6. These QTL have been identified earlier in the 

DuPi population. Liu et al. (2007; 2008) identified QTL on SSC2, SSC3 and SSC6 related 

to drip loss. Because of the repeated detection of these QTL, it can be assumed that they 

play an important role in the expression of drip loss. In the second study, instead of a 

genome wide Bonferroni correction, which might be overly conservative, a more reluctant 

threshold using a correction following Benjamini and Hochberg (1995) with a FDR < 0.10 

was set. Since Storey and Tibshirani (2003) propose an adaptation of the false discovery 

rate (FDR) targeted at genome-wide experiments to provide a better balance between 

statistical stringency and power to detect true effects. However, for some genes even this 

method seems to be too stringent, e.g. for the gene solute carrier family 37, member 4 

(SLC37A4). This gene is located in a region on SSC 9 and showed eQTL on SSC 18 where 

several promising candidate gene influencing drip loss are discussed (Jennen et al. 2007).  

Mapping quantitative traits and unravelling transcriptional control are challenging, when 

applied to one phenotype at a time. In studies of typical quantitative porcine traits like 

WHC, strong effects are rarely found. At first, applying a genome wide association study 

using the 60K porcine SNP panel allowed investigating the genetic background of WHC 

traits. Several regions in the genome were identified affecting drip loss, pH1, pH24 and pH 

decline in the DuPi population. Especially, two regions of SSC2 showed high LD and were 

clustered in two spans of 0.5 Mb. In these clusters, only two genes were located NELL1 

and SOX6, which were associated with drip loss. Most of the candidate genes were 

functionally related to WHC traits. However, there are several genes, which were not 

involved in the expression of muscle properties. It can be assumed that these genes have 
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high LD to candidate genes, which were not covered by the SNP chip. Nevertheless, it 

could be also possible that the significant SNP associated with these traits were annotated 

in the wrong chromosomal region, which means that the candidate genes are possibly not 

the right ones. In the second step, genomic technologies for expression profiling with 

genome-wide genetic mapping using SNP markers were coupled, and shown that specific 

chromosomal regions contain functional candidate genes. These approaches and results 

allowed to investigate and to dissect the genetic contribution to natural variation in porcine 

gene expression. Beside known and already confirmed genes like AMBP and IGF2, 

additional candidate genes (TPI1 and SLC37A4), located in promising regions were 

identified. (Ponsuksili et al. 2010). 7 of 29 transcripts were observed as putative cis-

regulated following the criteria used in the study of Ponsuksili et al. (2011). Therefore, 24 

% of the significantly associated transcripts were cis-regulated and 76 % were trans-

regulated.  

In the studies of Christensen (2003) and Otto et al. (2004) it was shown that the proportion 

of drip loss varies between the different measurement positions in M. long. dorsi. Drip loss 

decreased from caudal end to the cranial end of the M. long. dorsi. In other muscle groups 

such variations in drip loss could also be observed. Therefore, it could be helpful to 

validate the results of this study in other muscle such as Musculus semimembranosus in 

order to characterize trait specific mutations.  

The validation and confirmation of the recent results in other pig populations is 

indispensable. The candidate genes AMBP and IGF2 have been already validated (Cinar et 

al. 2012; Ponsuksili et al. 2008b) and might be promising for a marker-assisted selection of 

WHC traits. 

In general, further fine mapping and next generation sequencing technologies are requested 

to identify the causative mutations of the underlying QTL regions (Cole et al. 2009). 

Validations of candidate genes are warranted in other pig populations to prove their role in 

meat quality traits and the gene regulation networks have to be closer investigated. 

Additionally, proteomic profiling of WHC traits in loin could be used to identify 

metabolites and biological background of WHC. 
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Water holding capacity (WHC), i.e. the capacity of meat to retain its water during 

application of external forces (Hamm 1985) is an important quality criterion for the meat 

processing industries and the consumers. The structure and the biological processes of 

WHC and its associated traits have been extensively investigated (Greaser 2001; Huff-

Lonergan and Lonergan 2005, 2007; Huff Lonergan et al. 2010; Offer and Cousins 1992; 

Rosenvold and Andersen 2003). However, the genetic mechanisms underlying in WHC 

during the conversion of muscle to meat are not fully understood. 

Therefore, two studies were performed to investigate WHC traits in the DuPi population. 

The aim of the first study was to detect QTL regions and promising candidate genes for 

WHC traits using a genome-wide association approach. The proportion of explained 

phenotypic variance determined the importance of the identified QTL regions. In the 

second part, the correlation between drip loss and the expression level was calculated and 

the biological background of WHC was observed. 

In the first step, 169 F2 DuPi animals were genotyped and four meat quality traits (drip 

loss, pH1, pH24 and pH decline) were used to investigate the genetic background of WHC. 

49 significant SNP were observed (P < 0.001) for drip loss, 40 SNP for pH1, 9 SNP for 

pH24 and 33 SNP for pH decline in loin. Analyses revealed 14 putative functional 

candidate genes significantly associated with drip loss. 26, 7 and 22 candidate genes were 

identified for pH1, pH24 and pH decline, respectively. The genes NELL1 and SOX6 

located on SSC2 were significantly associated with drip loss and showed more than 3 

point-mutations each with high linkage disequilibrium. The proportion of explained 

phenotypic variance ranged between 4.4 % and 8.43 % for identified SNP of all four traits. 

Applying a genome wide association analysis using the 60K porcine SNP panel allowed 

investigating the genetic background of WHC traits. Several regions in the genome were 

identified affecting drip loss, pH1, pH24 and pH decline in the DuPi population. In 

GWAS, the most natural trait to be associated with the variation in the genome should be 

the product of the transcribed genes (mRNA). Such an approach combines GWAS with 

genetical genomics for investigating the biological background of the complex traits such 

as WHC. 

Therefore, in the second step, WHC was characterized by drip loss measured in M. 

longissimus dorsi. Performing genome wide associations studies (GWAS) of 

transcriptional profiles for 132 F2 DuPi animals, which were correlated with phenotypes 

allows elucidating cis- and trans-regulation. Expression levels of 1228 genes were 
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significantly correlated with drip loss and were further analyzed for enrichment of 

functional annotation groups as defined by gene ontology and KEGG pathways. A hyper 

geometric gene set enrichment test was performed and revealed 

glycolysis/glyconeogenesis, pentose phosphate pathway and pyruvat metabolism as most 

promising pathways. For 267 selected transcripts eQTL analyses was performed and 

revealed 1541 significant associations in total. Because of positional accordance of the 

gene underlying transcript and the eQTL location, it was possible to identify 8 eQTL that 

can be assumed to be cis-regulated. Comparing the results of gene set enrichment and the 

eQTL detection tests molecular networks and potential candidate genes, which seem to 

play key roles in the expression of WHC, were detected. The α-1-microglobulin / bikunin 

precursor (AMBP) gene was assumed to be cis-regulated, is part of the gycolyse 

metabolism, and has been identified in previous studies. 

In conclusion, applying a genome wide association analysis using the 60K porcine SNP 

panel allowed investigating the genetic background of WHC traits in this study. Several 

regions in the genome were identified affecting drip loss, pH1, pH24 and pH decline in the 

DuPi population. Combing the genome-wide association analysis with the genetical 

genomics approach supports to identify trait-associated SNP and to understand the biology 

of complex traits. In this study, several promising candidate genes (NELL1, SOX6 and 

AMBP) could be identified affecting WHC. However, further investigations such as RNA 

deep sequencing will still needed to validate the results of this study. 
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Method supplement for Chapter 3:  

A genetical genomics approach reveals new candidates and confirms known candidate 

genes for drip loss in a porcine resource population 

 

Hanna Heidt, Mehmet Ulas Cinar, Jasim Uddin, Christian Looft, Heinz Jüngst, Dawit 

Tesfaye, Ernst Tholen, Astrid Becker, Andreas Zimmer, Karl Schellander and Christine 

Große-Brinkhaus 

 

Here we present additional details on the microarray data pre-processing steps performed 

prior to the analysis of co-expression between transcripts and the phenotype drip loss as 

well as the GWAS using gene expression abundance. The pre-processing steps follow the 

description of Oldham et al. (2008).  

In order to increase the number of microarray samples, previous obtained data were added 

to the 100 muscle expression profiles generated in this study. In order to combine these 

two datasets, first outliers of each had to be removed. In a second step the jointed data was 

corrected for a batch effect. Gene expression analysis, especially in the case of correlation 

calculations, is particular sensitive to the presence of outlier samples and systematic biases 

in microarray data (FULLER et al. 2007; OLDHAM  et al. 2008). 

It was not necessary to scale both datasets to the same average intensity, because both 

datasets were scaled to a target signal of 500. Expression values were generated for each 

data set in R using the “expresso” function of the “affy” package (GENTLEMAN et al. 2004, 

www.bioconductor.org) with “mas” settings and no normalization. 

The main statistical criteria for the identification of potential outlying samples was the 

inter-array correlation (IAC), which was defined as the Pearson correlation coefficient of 

the expression levels for a given pair of microarrays. In general, samples with an average 

IAC < 2.0 standard deviations below the mean IAC for the dataset were removed. Samples 

were also hierarchically clustered using average linkage and 1-IAC as a distance metric to 

identify outliers. This process was repeated for each dataset until no outliers were evident. 

In general this approach was described as an unbiased method for the identification and 

removal of samples with aberrant gene expression levels (OLDHAM  et al. 2008).  
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In the following parts the different steps of the outlier removal of each dataset and the 

correction of the batch effect are described. An overview how many samples were left after 

each step is given in table A1. 

 

 

Table A1: Overview of the number of expression profile samples used in this study 

 

Arrays 

no. samples 

before pre-

processing 

no. samples  

after pre- 

processing 

after take out 

duplicate 

animals 

SNP data 

available for 

no array 

Dataset 1 

(study data) 

Porcine 

Genome 

Array 

100 97 93 93 

Dataset2 

(Ponsuksili et 

al. 2008a) 

Porcine 

Genome 

Array 

74 72 64 39 

 

The outlier removal was performed for dataset 1 that contained before the analysis 100 

samples. In a first step the distribution of the IACs of dataset 1 was examined (Figure A1). 

It can be seen that the distribution is not normal distributed and has a long tail on the left. 

This indicates the presence of outliers. 
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Figure A1: Histogram of IAC of dataset 1 before outlier removal 
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Figure A2: Cluster dendrogram of raw samples, before outlier removal (dataset 1) 

 

The hierarchical clustering (average linkage) using the 1-IAC as a distance metric 

confirmed possible outliers (Figure A2). The samples are labelled from 1 to 100. There are 

three clear outliers at left (41, 82 and 66). An additional way to visualize outliers is to 

calculate the mean IAC for each array and investigate this distribution. In figure 3 one can 
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see that the three outliers depicted above are the same outliers identified in the initial 

dendrogram. 

 

Figure A3: Plot of the number of samples deviated from the mean IAC (dataset A1) 

 

There three outliers are removed and a new IAC matrix is calculated. The distribution of 

IACs is not anymore strong right shifted and the mean IACs have improved (Figure A4). 

In addition, the hierarchical cluster dendrogram does not reveal any outliers (Figure A5). 
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Figure A4: Histogram of AIC of dataset 1 after outlier removal 
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Figure A5: Cluster dendrogram after removal of the outliers (dataset 1) 
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The same procedures for outlier detection and removal were performed for dataset 2 

comprising the expression profiles from an earlier study (Ponsuksili et al. 2008a). Before 

the analysis dataset 2 contained 74 samples. 

 

 

Figure A6: Histogram of AIC of dataset 2 before outlier removal 
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Comparable to dataset 1, dataset 2 also showed a long tail on the left of the distribution 

(Figure A6). In the hierarchical cluster dendrogram two possible outliers were detected 

(DRIP_114_G5 und DRIP26pHhigh (Figure A7). 

 

Figure A7: Cluster dendrogram of raw samples, before outlier removal (dataset 2) 
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The same result revealed the plot of the mean IACs (Figure A8). These two outliers were 

removed and the distribution and the mean IAC improved (Figure A9). At this point no 

clear outliers were detectable in the final hierarchical cluster dendrogram (Figure A10). 

 

Figure A8: Plot of the number of samples deviated from the mean IAC (dataset 2) 
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Figure A9: Histogram of AIC of dataset 1 after outlier removal 
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Figure A10: Cluster dendrogram after removal of the outliers (dataset 2) 
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Normalization and correction of the batch effect 

Following outlier removal, quantile normalization was performed for each dataset using 

the function “plier ” in R (AFFYMETRIX INC.). 

Average linkage hierarchical clustering using 1-IAC as a distance metric revealed that 

most samples clustered by study, indicating the presence of significant batch effects 

between the two datasets (Figure A11). To correct for the batch effects, additional 

normalization was performed using the R package “Combat” (Johnson et al. 2007, 

http://statistics.byu.edu/johnson/ComBat/). Normalization procedures do not adjust the 

data for batch effects, so when combining batches of data, particular batches that contain 

large batch-to-batch variation, normalization is not sufficient for adjusting for batch effects 

and other procedures must be applied. Each dataset was assigning a single batch number. 

ComBat successfully eliminated batch effects in each dataset as evidenced by hierarchical 

clustering and significant improvement of mean IAC. 
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Figure A11: Cluster dendrogram after normalization, before batch correction (red circle 

dataset 1 and green circle dataset 2). 
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After correcting for the batch effect, the hierarchical cluster dendrogram revealed one 

homogeneous dataset (Figure A12). In a last step, 12 additional samples were removed 

because these belonged to the same animals.  

 

 

Figure A12: Cluster dendrogram after batch correction.  
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Table A2: Significant KEGG identifiers detected based on significantly correlated 

transcripts with drip loss 

KEGGID  P value Odds Ratio Exp Count Count (Size) Term 

10 0.0005 5.1552 1.9387 8 (37) Glycolysis / Gluconeogenesis 

4115 0.0014 3.5392 3.3010 10 (63) p53 signalling pathway 

4120 0.0023 2.7558 5.3445 13 (102) Ubiquitin mediated proteolysis 

30 0.0183 4.5931 1.0479 4 (20) Pentose phosphate pathway 

4650 0.0207 2.5568 3.4582 8 (66) Natural killer cell mediated 

cytotoxicity 

620 0.0269 3.2866 1.7291 5 (33) Pyruvat metabolism 

4130 0.0341 3.6704 1.2575 4 (24) SNARE interactions in vesicular 

transport 

5322 0.0437 2.1746 3.9822 8 (76) Systemic lupus erythematosus 

 

A hyperactive geometric gene set test was performed based on significantly correlated 

transcripts with drip loss. Over representation of gene sets defined by the KEGG database 

was tested using Fisher’s exact test. The gene set was considered significant if P < 0.05 

 



120 Appendix   

Table A3: Significant GO Term identifiers for the biological processes (BP) detected 

based on significantly correlated transcripts with drip loss 

GOBPID P value Odds Ratio Exp Count Count (Size) Term 

GO:0009438 0.00001 Inf 0.22781 4 (4) methylglyoxal metabolic 
process 

GO:0017014 0.00004 14.35539 0.74037 6 (13) protein nitrosylation 

GO:0035606 0.00012 16.71779 0.56952 5 (10) peptidyl-cysteine S-
trans-nitrosylation 

GO:0018198 0.00016 10.04508 0.91123 6 (16) peptidyl-cysteine 
modification 

GO:0019320 0.00019 3.47941 4.67005 14 (82) hexose catabolic process 

GO:0044238 0.00025 1.42179 313.86142 350 (5511) primary metabolic 
process 

GO:0006094 0.00026 4.11709 3.18930 11 (56) gluconeogenesis 

GO:0006096 0.00035 3.95634 3.29135 11 (58) glycolysis 

GO:0046364 0.00036 3.94093 3.30320 11 (58) monosaccharide 
biosynthetic process 

GO:0070367 0.00070 49.97352 0.22781 3 (4) negative regulation of 
hepatocyte 

differentiation 

GO:0060999 0.00070 49.97352 0.22781 3 (4) positive regulation of 
dendritic spine 
development 

GO:0060359 0.00109 8.35378 0.85428 5 (15) response to ammonium 
ion 

GO:0016458 0.00115 3.97602 2.67674 9 (47) gene silencing 

GO:0030422 0.00168 24.98371 0.28476 3 (5) production of siRNA 
involved in RNA 

interference 

GO:0036211 0.00312 1.36388 94.71086 119 (1663) protein modification 
process 

GO:0001833 0.00323 16.65377 0.34171 3 (6) inner cell mass cell 
proliferation 

GO:0021957 0.00324 Inf 0.11390 2 (2) corticospinal tract 
morphogenesis 
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Table A3 continued: 

GOBPID P value Odds Ratio Exp Count Count (Size) Term 

GO:0030091 0.00324 Inf 0.11390 2 (2) protein repair 

GO:0006513 0.00351 4.77693 1.53770 6 (27) protein 
monoubiquitination 

GO:0021955 0.00356 8.33878 0.68342 4 (12) central nervous system 
neuron axonogenesis 

GO:0050773 0.00512 4.36048 1.65160 6 (29) regulation of dendrite 
development 

GO:0034770 0.00541 12.48880 0.39866 3 (7) histone H4-K20 
methylation 

GO:0044237 0.00543 1.29025 310.15956 337 (5446) cellular metabolic process 

GO:0044275 0.00576 3.01732 3.36016 9 (59) cellular carbohydrate 
catabolic process 

GO:0007190 0.00658 6.66939 0.79733 4 (14) activation of adenylate 
cyclase activity 

GO:0051642 0.00829 9.98982 0.45561 3 (8) centrosome localization 

GO:0060056 0.00829 9.98982 0.45561 3 (8) mammary gland 
involution 

GO:0070570 0.00829 9.98982 0.45561 3 (8) regulation of neuron 
projection regeneration 

GO:0097061 0.00829 9.98982 0.45561 3 (8) dendritic spine 
organization 

GO:0019852 0.00858 6.06234 0.85428 4 (15) L-ascorbic acid metabolic 
process 

GO:0045862 0.00859 3.04377 2.96149 8 (52) positive regulation of 
proteolysis 

GO:0016052 0.00915 2.77597 3.60302 9 (64) carbohydrate catabolic 
process 

GO:0035988 0.00934 33.24797 0.17086 2 (3) chondrocyte proliferation 

GO:0032864 0.00934 33.24797 0.17086 2 (3) activation of Cdc42 
GTPase activity 

GO:0051081 0.00934 33.24797 0.17086 2 (3) nuclear envelope 
disassembly 
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Table A3 continued: 

GOBPID P value Odds Ratio Exp Count Count (Size) Term 

GO:0043170 0.01017 1.26110 208.81628 233 (3762) macromolecule metabolic 
process 

GO:0006333 0.01059 2.54007 4.32834 10 (76) chromatin assembly or 
disassembly 

GO:0007029 0.01093 5.55646 0.91123 4 (16) endoplasmic reticulum 
organization 

GO:0031098 0.01122 2.00987 8.54277 16 (150) stress-activated protein 
kinase signalling cascade 

GO:0010388 0.01631 7.13384 0.56952 3 (10) cullin deneddylation 

GO:0008038 0.01631 7.13384 0.56952 3 (10) neuron recognition 

GO:0018022 0.01631 7.13384 0.56952 3 (10) peptidyl-lysine methylation 

GO:0061037 0.01631 7.13384 0.56952 3 (10) negative regulation of 
cartilage development 

GO:0005980 0.01672 3.79160 1.53770 5 (27) glycogen catabolic process 

GO:0031281 0.01679 4.76152 1.02513 4 (18) positive regulation of cyclase 
activity 

GO:0051349 0.01679 4.76152 1.02513 4 (18) positive regulation of lyase 
activity 

GO:0031344 0.01788 1.93914 8.25801 15 (145) regulation of cell projection 
organization 

GO:0048619 0.01799 16.62195 0.22781 2 (4) embryonic hindgut 
morphogenesis 

GO:0015760 0.01799 16.62195 0.22781 2 (4) glucose-6-phosphate 
transport 

GO:0015748 0.01799 16.62195 0.22781 2 (4) organophosphate ester 
transport 

GO:0045820 0.01799 16.62195 0.22781 2 (4) negative regulation of 
glycolysis 

GO:0030423 0.01799 16.62195 0.22781 2 (4) targeting of mRNA for 
destruction involved in RNA 

interference 
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Table A3 continued: 

GOBPID P value Odds Ratio Exp Count Count (Size) Term 

GO:0030819 0.01943 3.62630 1.59465 5 (28) positive regulation of cAMP 
biosynthetic process 

GO:0018410 0.02034 4.44354 1.08208 4 (19) C-terminal protein amino 
acid modification 

GO:0034728 0.02105 6.29442 0.62153 3 (11) nucleosome organization 

GO:0090103 0.02149 6.24134 0.62647 3 (11) cochlea morphogenesis 

GO:0046685 0.02149 6.24134 0.62647 3 (11) response to arsenic-
containing substance 

GO:0031050 0.02149 6.24134 0.62647 3 (11) dsRNA fragmentation 

GO:0060070 0.02159 2.14343 5.52433 11 (97) canonical Wnt receptor 
signalling pathway 

GO:0006349 0.02241 3.47478 1.65160 5 (29) regulation of gene expression 
by genetic imprinting 

GO:0003407 0.02431 4.16531 1.13904 4 (20) neural retina development 

GO:0006505 0.02431 4.16531 1.13904 4 (20) GPI anchor metabolic 
process 

GO:0044257 0.02526 1.57328 17.37030 26 (305) cellular protein catabolic 
process 

GO:0030810 0.02567 3.33538 1.70855 5 (30) positive regulation of 
nucleotide biosynthetic 

process 

GO:0070979 0.02567 3.33538 1.70855 5 (30) protein K11-linked 
ubiquitination 

GO:0021795 0.02747 5.54718 0.68342 3 (12) cerebral cortex cell migration 

GO:0048557 0.02747 5.54718 0.68342 3 (12) embryonic digestive tract 
morphogenesis 

GO:0051865 0.02871 3.91981 1.19599 4 (21) protein autoubiquitination 

GO:0045761 0.02871 3.91981 1.19599 4 (21) regulation of adenylate 
cyclase activity 

GO:0072520 0.02885 11.07995 0.28476 2 (5) seminiferous tubule 
development 
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Table A3 continued: 

GOBPID P value Odds Ratio Exp Count Count (Size) Term 

GO:0030970 0.02885 11.07995 0.28476 2 (5) retrograde protein 
transport, ER to cytosol 

GO:0000185 0.02885 11.07995 0.28476 2 (5) activation of MAPKKK 
activity 

GO:0046689 0.02885 11.07995 0.28476 2 (5) response to mercury ion 

GO:0046639 0.02885 11.07995 0.28476 2 (5) negative regulation of 
alpha-beta T cell 
differentiation 

GO:0031054 0.02885 11.07995 0.28476 2 (5) pre-miRNA processing 

GO:0031122 0.02885 11.07995 0.28476 2 (5) cytoplasmic microtubule 
organization 

GO:0060575 0.02885 11.07995 0.28476 2 (5) intestinal epithelial cell 
differentiation 

GO:0006344 0.02885 11.07995 0.28476 2 (5) maintenance of 
chromatin silencing 

GO:0032042 0.02885 11.07995 0.28476 2 (5) mitochondrial DNA 
metabolic process 

GO:0030801 0.02922 3.20670 1.76551 5 (31) positive regulation of 
cyclic nucleotide 
metabolic process 

GO:0001824 0.02922 3.20670 1.76551 5 (31) blastocyst development 

GO:1900544 0.02922 3.20670 1.76551 5 (31) positive regulation of 
purine nucleotide 
metabolic process 

GO:0000096 0.02961 2.54165 3.01845 7 (53) sulfur amino acid 
metabolic process 

GO:0050821 0.03241 2.48726 3.07540 7 (54) protein stabilization 

GO:0070647 0.03242 1.47583 21.98340 31 (386) protein modification by 
small protein 

conjugation or removal 

GO:0007528 0.03424 4.99185 0.74037 3 (13) neuromuscular junction 
development 
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 Table A3 continued: 

GOBPID P value Odds Ratio Exp Count Count (Size) Term 

GO:0009057 0.03482 1.34268 40.49274 52 (711) macromolecule 
catabolic process 

GO:0006334 0.03539 2.43515 3.13235 7 (55) nucleosome assembly 

GO:0042493 0.03573 1.51692 17.93982 26 (315) response to drug 

GO:0010951 0.03584 2.04042 5.23957 10 (92) negative regulation of 
endopeptidase activity 

GO:0019941 0.03607 1.54322 16.28822 24 (286) modification-
dependent protein 
catabolic process 

GO:0070936 0.03722 2.97692 1.87941 5 (33) protein K48-linked 
ubiquitination 

GO:0007254 0.04066 1.91779 6.09384 11 (107) JNK cascade 

GO:0044267 0.04123 1.21469 109.88622 126 (1973) cellular protein 
metabolic process 

GO:0072498 0.04167 8.30894 0.34171 2 (6) embryonic skeletal 
joint development 

GO:0051597 0.04167 8.30894 0.34171 2 (6) response to 
methylmercury 

GO:0043501 0.04167 8.30894 0.34171 2 (6) skeletal muscle 
adaptation 

GO:0070389 0.04167 8.30894 0.34171 2 (6) chaperone cofactor-
dependent protein 

refolding 

GO:0000389 0.04167 8.30894 0.34171 2 (6) nuclear mRNA 3'-
splice site recognition 

GO:0060306 0.04167 8.30894 0.34171 2 (6) regulation of 
membrane 

repolarization 

GO:0060236 0.04167 8.30894 0.34171 2 (6) regulation of mitotic 
spindle organization 

GO:0046633 0.04167 8.30894 0.34171 2 (6) alpha-beta T cell 
proliferation 
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Table A3 continued: 

GOBPID P value Odds Ratio Exp Count Count (Size) Term 

GO:0006734 0.04167 8.30894 0.34171 2 (6) NADH metabolic process 

GO:0061001 0.04167 8.30894 0.34171 2 (6) regulation of dendritic spine 
morphogenesis 

GO:0042518 0.04167 8.30894 0.34171 2 (6) negative regulation of 
tyrosine phosphorylation of 

Stat3 protein 

GO:0007216 0.04167 8.30894 0.34171 2 (6) G-protein coupled glutamate 
receptor signalling pathway 

GO:0048680 0.04167 8.30894 0.34171 2 (6) positive regulation of axon 
regeneration 

GO:0050854 0.04178 4.53749 0.79733 3 (14) regulation of antigen 
receptor-mediated signalling 

pathway 

GO:0016311 0.04276 1.64951 10.82084 17 (190) dephosphorylation 

GO:0021537 0.04450 2.15532 3.98663 8 (70) telencephalon development 

GO:0048522 0.04720 1.19766 120.85174 137 (2122) positive regulation of 
cellular process 

GO:0051402 0.04814 1.85898 6.26470 11 (110) neuron apoptotic process 

GO:0031329 0.04918 1.46433 18.50934 26 (325) regulation of cellular 
catabolic process 

A hyper geometric gene set test was performed based on significantly correlated transcripts with drip loss. 

Over representation of gene sets defined by the GO database was tested using Fisher’s exact test. The gene 

set was considered significant if P < 0.05 
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Table A4: Significant GO Term identifiers for the cell components (CC) detected based 

on significantly correlated transcripts with drip loss 

GOCCID P value Odds Ratio Exp Count Count (Size) Term 

GO:0030176 0.0047 2.9073 3.8608 10 (67) 
integral to endoplasmic 
reticulum membrane 

GO:0061202 0.0086 9.8656 0.4610 3 (8) 
clathrin sculpted gamma-
aminobutyric acid transport 
vesicle membrane 

GO:0000780 0.0086 9.8656 0.4610 3 (8) 
condensed nuclear 
chromosome, centromeric 
region 

GO:0044424 0.0112 1.3465 393.7287 413 (6934) intracellular part 

GO:0031300 0.0143 2.0557 7.3182 14 (127) intrinsic to organelle membrane 

GO:0043227 0.0169 1.2330 308.2287 331 (5349) membrane-bounded organelle 

GO:0000786 0.0175 3.7443 1.5558 5 (27) nucleosome 

GO:0001741 0.0184 16.4157 0.2305 2 (4) XY body 

GO:0005736 0.0184 16.4157 0.2305 2 (4) 
DNA-directed RNA 
polymerase I complex 

GO:0005634 0.0189 1.2209 185.6056 208 (3221) nucleus 

GO:0000151 0.0290 1.9662 6.5115 12 (113) ubiquitin ligase complex 

GO:0030062 0.0295 10.9424 0.2881 2 (5) 
mitochondrial tricarboxylic acid 
cycle enzyme complex 

GO:0005954 0.0295 10.9424 0.2881 2 (5) 
calcium- and calmodulin-
dependent protein kinase 
complex 

GO:0016272 0.0295 10.9424 0.2881 2 (5) prefoldin complex 

GO:0031527 0.0295 10.9424 0.2881 2 (5) filopodium membrane 

GO:0032589 0.0298 3.8710 1.2101 4 (21) neuron projection membrane 

GO:0016581 0.0298 3.8710 1.2101 4 (21) NuRD complex 

GO:0005789 0.0340 1.5004 19.5344 28 (339) 
endoplasmic reticulum 

membrane 
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Table A4 continued: 

GOCCID P value Odds Ratio Exp Count Count (Size) Term 

GO:0005681 0.0345 1.8550 7.4334 13 (129) spliceosomal complex 

GO:0017109 0.0426 8.2058 0.3457 2 (6) 
glutamate-cysteine ligase 

complex 

GO:0005688 0.0426 8.2058 0.3457 2 (6) U6 snRNP 

GO:0000506 0.0426 8.2058 0.3457 2 (6) 

glycosylphosphatidylinositol-
N-

acetylglucosaminyltransferase 
(GPI-GnT) complex 

GO:0016442 0.0426 8.2058 0.3457 2 (6) 
RNA-induced silencing 

complex 

GO:0071565 0.0426 8.2058 0.3457 2 (6) nBAF complex 

GO:0005669 0.0430 4.4811 0.8067 3 (14) 
transcription factor TFIID 

complex 

GO:0060198 0.0430 4.4811 0.8067 3 (14) clathrin sculpted vesicle 

GO:0010008 0.0481 1.8034 7.0301 12 (122) endosome membrane 

A hyper geometric gene set test was performed based on significantly correlated transcripts with drip loss. 

Over representation of gene sets defined by the GO database was tested using Fisher’s exact test. The gene 

set was considered significant if P < 0.05 



 Chapter 7  129 

Table A5: Significant GO Term identifiers for the molecular function (MF) detected 

based on significantly correlated transcripts with drip loss 

GOMFID P value Odds Ratio Exp Count Count (Size) Term 

GO:0004365 0.0001 16.6473 0.5715 5 (10) glyceraldehyde-3-phosphate 
dehydrogenase (NAD+) 

(phosphorylating) activity 

GO:0035605 0.0001 16.6473 0.5715 5 (10) peptidyl-cysteine S-nitrosylase 
activity 

GO:0004462 0.0002 Inf 0.1715 3 (3) lactoylglutathione lyase 
activity 

GO:0004645 0.0003 22.1586 0.4001 4 (7) phosphorylase activity 

GO:0016903 0.0018 4.6685 1.8289 7 (32) oxidoreductase activity, acting 
on the aldehyde or oxo group 

of donors 

GO:0042132 0.0033 Inf 0.1143 2 (2) fructose 1,6-bisphosphate 1-
phosphatase activity 

GO:0004040 0.0033 Inf 0.1143 2 (2) amidase activity 

GO:0015152 0.0033 Inf 0.1143 2 (2) glucose-6-phosphate 
transmembrane transporter 

activity 

GO:0070012 0.0033 Inf 0.1143 2 (2) oligopeptidase activity 

GO:0004719 0.0033 Inf 0.1143 2 (2) protein-L-isoaspartate (D-
aspartate) O-methyltransferase 

activity 

GO:0048273 0.0033 Inf 0.1143 2 (2) mitogen-activated protein 
kinase p38 binding 

GO:0042799 0.0055 12.4387 0.4001 3 (7) histone methyltransferase 
activity (H4-K20 specific) 

GO:0016893 0.0067 6.6422 0.8001 4 (14) endonuclease activity, active 
with either ribo- or 

deoxyribonucleic acids and 
producing 5'-

phosphomonoesters 

GO:0003824 0.0083 1.2607 177.4927 203 (3169) catalytic activity 

GO:0016595 0.0084 9.9498 0.4572 3 (8) glutamate binding 
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Table A5 continued: 

GOMFID P value Odds Ratio Exp Count Count (Size) Term 

GO:0035256 0.0094 33.1175 0.1715 2 (3) G-protein coupled glutamate 
receptor binding 

GO:0048408 0.0094 33.1175 0.1715 2 (3) epidermal growth factor 
binding 

GO:0004525 0.0094 33.1175 0.1715 2 (3) ribonuclease III activity 

GO:0030160 0.0094 33.1175 0.1715 2 (3) GKAP/Homer scaffold 
activity 

GO:0004842 0.0098 1.9936 9.1444 17 (160) ubiquitin-protein ligase 
activity 

GO:0016874 0.0107 1.6917 16.9171 27 (296) ligase activity 

GO:0090079 0.0120 8.2905 0.5144 3 (9) translation regulator activity, 
nucleic acid binding 

GO:0016881 0.0169 1.7960 11.2232 19 (197) acid-amino acid ligase 
activity 

GO:0004521 0.0170 4.7422 1.0287 4 (18) endoribonuclease activity 

GO:0051287 0.0226 2.7085 2.8576 7 (50) NAD binding 

GO:0032947 0.0227 3.4605 1.6574 5 (29) protein complex scaffold 

GO:0048306 0.0227 3.4605 1.6574 5 (29) calcium-dependent protein 
binding 

GO:0030170 0.0248 2.9335 2.2861 6 (40) pyridoxal phosphate binding 

GO:0003725 0.0260 3.3217 1.7146 5 (30) double-stranded RNA 
binding 

GO:0004722 0.0260 3.3217 1.7146 5 (30) protein serine/threonine 
phosphatase activity 

GO:0005165 0.0277 5.5251 0.6858 3 (12) neurotrophin receptor 
binding 

GO:0019203 0.0290 11.0366 0.2858 2 (5) carbohydrate phosphatase 
activity 

GO:0010340 0.0290 11.0366 0.2858 2 (5) carboxyl-O-
methyltransferase activity 



 Chapter 7  131 

Table A5 continued: 

GOMFID P value Odds Ratio Exp Count Count (Size) Term 

GO:0017176 0.0290 11.0366 0.2858 2 (5) phosphatidylinositol N-
acetylglucosaminyltransferase 

activity 

GO:0016757 0.0305 1.8412 8.0585 14 (141) transferase activity, 
transferring glycosyl groups 

GO:0016866 0.0335 3.0749 1.8289 5 (32) intramolecular transferase 
activity 

GO:0070742 0.0346 4.9720 0.7430 3 (13) C2H2 zinc finger domain 
binding 

GO:0031014 0.0419 8.2765 0.3429 2 (6) troponin T binding 

GO:0004095 0.0419 8.2765 0.3429 2 (6) carnitine O-
palmitoyltransferase activity 

GO:0034235 0.0419 8.2765 0.3429 2 (6) GPI anchor binding 

GO:0004357 0.0419 8.2765 0.3429 2(6) glutamate-cysteine ligase 
activity 

GO:0008195 0.0419 8.2765 0.3429 2 (6) phosphatidate phosphatase 
activity 

GO:0005047 0.0419 8.2765 0.3429 2 (6) signal recognition particle 
binding 

GO:0010181 0.0422 4.5195 0.8001 3 (14) FMN binding 

GO:0005246 0.0451 3.3172 1.3717 4 (24) calcium channel regulator 
activity 

GO:0004222 0.0462 2.2815 3.3148 7 (58) metalloendopeptidase activity 

A hyper geometric gene set test was performed based on significantly correlated transcripts with drip loss. 

Over representation of gene sets defined by the GO database was tested using Fisher’s exact test. The gene 

set was considered significant if P < 0.05  
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