Kristallisation, phasenreine Darstellung und Charakterisierung teils polymorpher ternärer Chloride zweiwertiger Metallkationen

Dissertation

zur

Erlangung des Doktorgrades (Dr. rer. nat.)

der

Mathematisch-Naturwissenschaftlichen Fakultät

der

Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

Rainhard Müller aus Bonn

Bonn, Juli 2012

Angefertigt m it Genehm igung der Mathematis ch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn

1. Gutachter: Prof. Dr. Johannes Beck

2. Gutachter: Prof. Dr. Robert Glaum

Tag der Promotion: 07.11.2012

Erscheinungsjahr: 2013

Meinen Eltern

Inhaltsverzeichnis

1 Einleit	ung	1
1.1 Z	iel der Arbeit	5
2 Präpara	ative Methoden	6
2.1 D	ie modifizierte Schlenk-Technik	6
2.2 A	rbeiten im Handschuhkasten	7
2.3 R	eaktionen und Kristallzüchtung in der Schmelze	
2.4 K	ristallzüchtung über chemischen Gasphasentransport	
3 Unters	uchungsmethoden	9
3.1 R 3.1.1 2.1.2	öntgenographische Methoden Röntgenographische Untersuchungen an Einkristallen	
3.1.2 3.2 D	ifferenzkalorimetrische Untersuchungen	10
3.3 M	lagnetochemische Untersuchungen	
4 Ausgar	ngsverbindungen	12
4.1 K 4.1.1 4.1.2 4.1.3	äufliche Chemikalien Aluminiumtrichlorid AlCl ₃ Galliumtrichlorid GaCl ₃ Vanadiumtrichlorid VCl ₃	
4.2 E 4.2.1 4.2.2	ntwässerung käuflicher Metalldichloride $MCl_2 \times nH_2O$ Trocknung von Metalldichlorid-Hydraten mit Thionylchorid Entwässerung im HCl-Strom an der Chlorierungsanlage	
4.3 R 4.3.1 4.3.2 4.3.3	einigung von Metallen für Synproportionierungsreaktionen . Vanadium Chrom Eisen	17 17 17 17
4.4 S 4.4.1 4.4.2 4.4.3	ynthese nicht-käuflicher, wasserfreier Metallchloride Vanadiumdichlorid VCl ₂ Chromdichlorid CrCl ₂	
4.4.3 1 1 1	Eisentrichlorid FeCl ₃	

5 Synthese	e der Tetrachloroaluminate und -gallate zweiwertiger	
Metallkati	onen	21
5.1 Synth 5.1.1 Syr	eseparameter zur Bildung der Tetrachloroaluminate	
5.1.2	Reaktionen in einer Aluminiumchloridschmelze mit anschließendem Absublimieren des AlCl ₃ -Überschusses	
5.1.3	Reaktionen mit anschließender Überführung des Produktes über die G	Gasphase
5.1.4	Darstellung von Ti[AlCl ₄] ₂ – Redox- bzw. Thermitreaktion	
5.2 Synth	eseparameter zur Bildung der Tetrachlorogallate	
6 Struktur	beschreibung der Tetrachloroaluminate und -gallate.	27
6.1 Metal	latome in (verzerrt) oktaedrischer Koordinationssphäre	
6.1.1 Str	ukturtypen mit strangartiger Polyederverknüpfung	
γ-Ti[AlC	1 ₂ -1 yp 1 ₄] ₂ -Typ:	
Cr[AlCl ₄] ₂ -Typ:	
Pd[GaCl 6.1.2	4]2-Typ: Strukturtypen mit schichtartiger Polyederverknünfung	
Mg[GaC	l ₄] ₂ -Typ:	
Cr[GaCl	4]2-Typ:	
Diskussio	n der Strukturtypen der $M[TCl_4]_2$ mit KZ (M^{2+}) = 6	77
6.2 Stru	ukturtypen mit KZ (M^{2+}) > 6	
β-Sr[GaC	Cl4]2-Typ:	
α-Sr[GaC	Cl ₄] ₂ -Typ:	88
7 Gruppen	theoretische Betrachtungen	94
7.1 Ableit	rung des V[AlCl ₄] ₂ -Strukturtyps	
7.2 Ab	leitung des γ-Ti[AlCl ₄] ₂ -Strukturtyps	
7.3 Ab	leitung des Cr[AlCl ₄] ₂ -Strukturtyps	
7.4 Ab	leitung der Strukturtypen von Pd[GaCl ₄] ₂ und Cr[GaCl ₄] ₂	
7.5 Ab	leitung des Strukturtyps von α-Mn[GaCl ₄] ₂	106
7.6 Ab	leitung der Strukturtypen von α - und β -Sr[GaCl ₄] ₂	
8 Zusamm	enfassung und Ausblick	112
Literatury	erzeichnis	116

Anhan	g	
	Pulverdiffraktogramme, Indizierungstabellen, Datenblätter d analyse, Abbildungen der asymmetrischen Einheiten, Atomla Temperaturfaktoren, Bindungslängen und -winkel	er Einkristall- agen, anisotrope
A.1	V[AlCl ₄] ₂ :	
A.2	Mn[AlCl ₄] ₂ :	
A.3	Fe[AlCl ₄] ₂ :	
A.4	Ni[AlCl ₄] ₂ :	
A.5	V[GaCl ₄] ₂ :	
A.6	β -Mn[GaCl ₄] ₂ :	
A.7	Fe[GaCl ₄] ₂ :	
A.8	Co[GaCl ₄] ₂ :	
A.9	Ni[GaCl ₄] ₂ :	
A.10	γ-Ti[AlCl ₄] ₂ :	
A.11	Cr[AlCl ₄] ₂ :	
A.12	$Pd[GaCl_4]_2$:	
A.13	$Mg[GaCl_4]_2$:	
A.14	α -Mn[GaCl ₄] ₂ :	
A.15	Cr[GaCl ₄] ₂ :	
A.16	α -Sr[GaCl ₄] ₂ :	
A.17	Ba[GaCl ₄] ₂ :	
A.18	Sn[GaCl ₄] ₂ :	
A.19	Pb[AlCl ₄] ₂ :	
A.20	Pb[GaCl ₄] ₂ :	
A.21	β -Sr[GaCl ₄] ₂ :	

Abbildungsverzeichnis

Abbildung 1.1: Strukturausschnitt aus Co[AlCl ₄] ₂ , links ein einzelner Strang, rechts die Aufsicht auf die hexagonale Stabpackung [6]
Abbildung 2.1: Schematische Zeichnung der Vollglasschutzgasanlage
Abbildung 4.1: Aufbau der Chlorierungsanlage in schematischer Darstellung
Abbildung 6.1: Erweiterte asymmetrische Einheit der Struktur von V[AlCl ₄] ₂ . Die thermischen Schwingungsellipsoide entsprechen einer Aufenthaltswahrscheinlichkeit der Atome von 70 %
Abbildung 6.2: Ausschnitt aus der Struktur von V[AlCl ₄] ₂ . Dargestellt ist ein Segment aus den eindimensional infiniten Stränge (V[AlCl ₄] ₂) _n , die entlang [001] verlaufen
erkennen
V[AlCl ₄] ₂ . Der monokline Winkel von 92,37 ° bewirkt eine seitliche Verschiebung der Schichten zu einer Stapelfolge ABA'B'
Abbildung 6.5: Die Struktur von V[AlCl ₄] ₂ mit Blick auf die <i>a-b</i> -Ebene. In dieser Blickrichtung zeigt sich die Besetzung von einem Viertel der Oktaederlücken mit Vanadiumatomen, die grauen Polyeder stellen unbesetzte Oktaederlücken dar
Polyeder stellen unbesetzte Tetraederlücken dar
Abbildung 6.8: Erweiterte asymmetrische Einheit der Struktur von γ -Ti[AlCl ₄] ₂ . Die thermischen Schwingungsellipsoide entsprechen einer Aufenthaltswahrscheinlichkeit der
Atome von 70 %
Abbildung 6.11: Projektion der Struktur von γ -Ti[AlCl ₄] ₂ entlang der <i>c</i> -Achse. Die Chloratome bilden eine hexagonal-dichteste Schichtpackung mit der Stapelfolge ABAB 41 Abbildung 6.12: Projektion der Struktur von γ -Ti[AlCl ₄] ₂ entlang der <i>c</i> -Achse. Die Besetzung der Oktaederlücken erfolgt in allen Zwischenschichten der hexagonal-dichten
Chloratompackung, die besetzten Positionen sind in a -, b - und c -Richtung jeweils um $\frac{1}{2}$ verschoben
Blickrichtung zeigt sich die Besetzung von einem Achtel der Oktaederlücken mit Vanadiumatomen, die grauen Polyeder stellen unbesetzte Oktaederlücken dar
Besetzung von einem Achtel der Tetraederlücken mit Aluminiumatomen, die grauen Polyeder stellen unbesetzte Tetraederlücken dar

Abbildung 6.15: Die Projektion der Struktur von y-Ti[AlCl₄]₂ entlang der c-Achse zeigt die gemischte Gesamtlückenbesetzung in den Zwischenschichten der hexagonal-dichten Packung Abbildung 6.16: Quadratisch-planare Koordinationssphäre des Cr²⁺-Ions in der Struktur von Cr[AlCl₄]₂, die Jahn-Teller-Verzerrung am Chromkation erweckt den Eindruck von molekularen Einheiten von Cr[AlCl₄]₂. Die thermischen Schwingungsellipsoide entsprechen Abbildung 6.17: Ausschnitt aus der Struktur von Cr[AlCl₄]₂. Die Koordinationssphäre am Cr^{2+} -Kation ist um die axialen Positionen erweitert, die eine Verknüpfung zu weiteren Cr[AlCl₄]₂-Molekülen bewirken. Die Al-Atome weichen erheblich von ihrer Idealposition auf Abbildung 6.18: Ausschnitt aus der Struktur von Cr[AlCl₄]₂. Dargestellt ist ein Segment aus Abbildung 6.19: Projektion der Struktur von Cr[AlCl₄]₂ entlang der b-Achse. Gezeigt wird das Fischgrätenmuster in der hexagonalen Stabpackung der eindimensional-infiniten Stränge. Abbildung 6.20: Projektion der Struktur von Cr[AlCl₄]₂ entlang der *a*-Achse. Hier zeigt sich eine schwache wellenförmige Verzerrung der hexagonal-dichtesten Packung von Cl-Atomen. Abbildung 6.21: Ausschnitt aus der Struktur von Cr[AlCl₄]₂ mit Blick auf die *b*-*c*-Ebene. Gezeigt wird die geordnete Besetzung von Tetraederlücken in jeder Zwischenschicht der hexagonal-dichtesten Packung von Chloratomen, entsprechend der Ausbreitungsrichtung Abbildung 6.22: Gesamtbesetzung der Oktaeder- und Tetraeder-Lücken in der hexagonaldichtesten Packung von Chloratomen in der Kristallstruktur von Cr[AlCl₄]₂......50 Abbildung 6.23: Die Struktur von Cr[AlCl₄]₂ mit Blick auf die *a*-*c*-Ebene. In dieser Blickrichtung zeigt sich die Besetzung von einem Achtel der Oktaederlücken mit Abbildung 6.24: Die Struktur von Cr[AlCl₄]₂ mit Blick auf die *b*-*c*-Ebene. Gezeigt wird die Besetzung von einem Achtel der pro Zwischenschicht verfügbaren 32 Tetraederlücken mit **Abbildung 6.25:** Quadratisch-planare Koordinationssphäre des Pd²⁺-Ions in der Struktur von $Pd[AlCl_4]_2$, die 4d⁸-Konfiguration am Palladiumkation führt zur Bildung von molekularen Pd[GaCl₄]₂-Einheiten. Die thermischen Schwingungsellipsoide entsprechen einer Abbildung 6.26: Ausschnitt aus der Struktur von Pd[GaCl₄]₂. Die langen Pd-Cl4-Kontakte ergänzen die quadratische Koordination am Pd-Atom zu einem extrem gestreckten Oktaeder. Die Galliumatome weichen nur wenig von Ihrer Idealposition auf der durch die quadratisch Abbildung 6.27: Ausschnitt aus der Struktur von Pd[AlCl₄]₂ mit Blick in die *b*-*c*-Ebene. Dargestellt ist ein Segment aus den eindimensional infiniten Stränge (Pd[AlCl₄]₂)_n, die Abbildung 6.28: Projektion der Struktur von Pd[AlCl₄]₂ entlang der *a*-Achse. Gezeigt wird das Fischgrätenmuster in der hexagonalen Stabpackung der eindimensional-infiniten Stränge. 56 Abbildung 6.29: Projektion der Struktur von Pd[AlCl₄]₂ entlang der *c*-Achse. Hier zeigt sich die starke wellenförmige Verzerrung der hexagonal-dichtesten Packung von Cl-Atomen. Die Abbildung 6.30: Ausschnitt aus der Struktur von Pd[AlCl₄]₂ mit Blick auf die *a-b*-Ebene. Gezeigt wird die geordnete Besetzung von Tetraederlücken in jeder zweiten Zwischenschicht

der hexagonal-dichtesten Packung von Chloratomen, entsprechend der Ausbreitungsrichtung [100] der eindimensional-infiniten Stränge
Abbildung 6.31: Gesamtbesetzung der Oktaeder- und Tetraeder-Lücken in der hexagonal-
dichtesten Packung von Chloratomen in der Kristallstruktur von Pd[AlCl_]
Abbildung 6 32: Die Struktur von Pd[A]CL ₂ mit Blick auf die <i>b</i> - <i>c</i> -Ebene. In dieser
Blickrichtung zeigt sich die Besetzung von einem Viertel der Oktaederlücken mit
Palladiumatomen, die grauen Polyader stellen unbesetzte Oktaederlücken dar
Abbildung 6 22. Die Struktur von Dd[A1C1] mit Dliek auf die h. a Ebane. Gezeigt wird die
Abbindung 0.55. Die Struktur von Fu[AIC14]2 mit Dick auf die 0-c-Ebene. Gezeigt wird die Desetzung von einem Viertel der pro Zwigehengehieht verfügheren 16 Tetroederlücken mit
Calliumateman, die grouen Delugden stellen unbegetete Tetras derlijsken der
Gainumatomen, die grauen Polyeder stellen undesetzte Tetraederlucken dar
Abbildung 6.34: Erweiterte asymmetrische Einneit der Struktur von MgJGaCl ₄ J ₂ . Die
thermischen Schwingungsellipsolde entsprechen einer Aufenthaltswahrscheinlichkeit der
Atome von $/0\%$
Abbildung 6.35: Erweiterter Ausschnitt aus der Struktur von Mg[GaCl ₄] ₂ . Es liegen
zweidimensional ausgedehnte Schichten in der a - c -Ebene vor
Abbildung 6.36: Verzahnung der wellenförmigen Schichten in der Struktur von Mg[GaCl ₄] ₂
mit Blick in Richtung [001]
Abbildung 6.37: Die Projektion der Struktur von Mg[GaCl ₄] ₂ entlang der <i>b</i> -Achse zeigt die
hexagonal-dichteste Schichtpackung von Chloratomen. Der monokline Winkel von 92,37 °
bewirkt eine seitliche Verschiebung der Schichten zu einer Stapelfolge ABA'B'
Abbildung 6.38: Projektion der Struktur von Mg[GaCl ₄] ₂ entlang der <i>b</i> -Achse. Die Mg-
Atome sind in Oktaederlücken jeder Zwischenschicht lokalisiert
Abbildung 6.39: Die Struktur von Mg[GaCl ₄] ₂ mit Blick auf die <i>a</i> - <i>c</i> -Ebene. Gezeigt wird die
Besetzung von einem Achtel der Tetraederlücken mit Galliumatomen, die grauen Polyeder
stellen unbesetzte Tetraederlücken dar
Abbildung 6.40: Ausschnitte aus der Struktur von Mg[GaCl ₄] ₂ . Links wird mit Blick entlang
der <i>b</i> -Achse die Gesamtbesetzung der Oktaeder- und Tetraederlücken in der hexagonal-
dichtesten Packung von Chloratomen gezeigt. Die rechte Ansicht zeigt mit Blick entlang der
<i>a</i> -Achse, dass die wellenförmige Polyederverknüpfung zu einem seitlichen Versatz in <i>b</i> -
Richtung führt
Abbildung 6.41: Die Struktur von Mg[GaCl ₄] ₂ mit Blick in Richtung [101]. Hier zeigt sich
die Besetzung von einem Achtel der Oktaederlücken mit Magnesiumatomen, die grauen
Polveder stellen unbesetzte Oktaederlücken dar
Abbildung 6.42: Die Struktur von Mg[GaCl ₄] ₂ mit Blick in Richtung [101]. Gezeigt wird die
Besetzung zweier der pro Zwischenschicht verfügbaren 16 Tetraederlücken mit
Galliumatomen die grauen Polveder stellen unbesetzte Tetraederlücken dar 68
Abbildung 6.43: Ausschnitt aus der Struktur von Mg[GaCl ₄], mit Blick entlang der <i>b</i> -Achse
Die Schnittnunkte der gestrichelten Linien stellen mögliche alternative Besetzungsplätze für
oktaedrisch koordinierte Kationen dar
Abbildung 6 44: Ouadratisch-planare Koordinationssphäre des Cr^{2+} -Jons in der Struktur von
$\alpha_{\rm Cr}[GaC]_{\rm L}$ Die Struktur ist aus Cr[GaCl_b_Molekülen aufgebaut. Die thermischen
Schwingungsellinsoide enterrechen einer Aufenthaltswehrscheinlichkeit der Atome von 70
0/ 70
Abbildung 6 45: Ausschnitt aus der Struktur von Cr[CaCl.]. Die Koerdinationsenhöre am
Abbindung 0.45. Ausschnitt aus der Struktur von Ch[OaCi4] ₂ . Die Koordinationssphare and Cr^{2+} Kation ist um die existen Desitionen erweitert, die eine Verknünfung zu weiteren
Cr [AlCl.]. Molakülan hawirkan Dia Ga Atama waiahan arhahlish yan ihran Idaalmasitian auf
der durch C11/C12/C111/C12/ gelegten Ehene eh
Abbildung 6.46. Envoitante Veerdingtiongenhäng an Cr[CoCl] Melabril und Verbrüchen
Abbindung 0.40: Erweiterte Koordinationssphäre am Cr[GaCl4]2-Molekul und Verknupfung
zu weneren molekularen Ennenen in der Struktur von $Cr[GaCl_4]_2$
ADDituding 0.47: verknupplung der $Cr[GaCl_4]_2$ -iviolekule zu zweidimensionalen Schichten in
der Struktur von $Cr[GaCl_4]_2$

Abbildung 6.48: Vergleich der Molekülschichtung in Cr[GaCl₄]₂ und Pd[GaCl₄]₂......74 Abbildung 6.49: Projektion der Struktur von Cr[GaCl₄]₂ entlang der *a*-Achse. Die Cr-Atome sind in Oktaederlücken jeder zweiten Zwischenschicht der hexagonal-dichtesten Packung von Abbildung 6.50: Ausschnitt der Struktur von Cr[GaCl₄]₂, links mit Blick entlang der a-Achse, rechts entlang der b-Achse. Die Besetzung der Tetraederlücken in den verbleibenden Zwischenschichten der hexagonal-dichtesten Packung von Cl-Atomen führt zu zweidimensional-ausgedehnten Polyederschichten, die jedoch, wie rechts gezeigt, keinen Abbildung 6.51: Die Struktur von Cr[GaCl₄]₂ mit Blick in Richtung [001]. Hier zeigt sich die Besetzung von einem Viertel der Oktaederlücken jeder zweiten Zwischenschicht mit Cr-Abbildung 6.52: Die Struktur von Cr[GaCl₄]₂ mit Blick in Richtung [001]. Gezeigt wird die Besetzung zweier der pro Zwischenschicht verfügbaren 8 Tetraederlücken mit Abbildung 6.53: Mögliche Kontaktstellen zwischen den Strängen der hexagonalen Stabpackung in den Strukturen der *M*[*T*Cl₄]₂-Familie. Links werden Verknüpfungen zwischen Abbildung 6.54: Ergebnis der kalorimetrischen Messung an Strontiumtetrachlorogallat...... 81 Abbildung 6.55: Ausschnitt aus der asymmetrischen Einheit der Struktur von β -Sr[GaCl₄]₂. Gezeigt ist die Koordination des Sr-Ions durch Cl-Atome der umgebenden [GaCl₄]⁻Ionen. Die Beugungsdaten wurden bei einer Temperatur von 140 °C erfasst. Die thermischen Schwingungsellipsoide entsprechen einer Aufenthaltswahrscheinlichkeit der Atome von 70 **Abbildung 6.56:** Koordinationsfigur des [SrCl₈]-Polyeders in der Struktur von β -Sr[GaCl₄]₂. Abbildung 6.57: Erweiterte asymmetrische Einheit in der Struktur von β -Sr[GaCl₄]₂. Die Abbildung 6.58: Vereinfachte Darstellung der tetraedrischen Sr-Ga-Netzwerke in der Struktur von β -Sr[GaCl₄]₂, ineinander überführt durch das zentral gelegene **Abbildung 6.59:** Beschreibung der [SrCl₉]-Polyeder in der Struktur von α -Sr[GaCl₄]₂ als einfach überdachtes quadratisches Antiprisma oder als dreifach überdachtes trigonales Prisma. In der linken Ansicht stellt die gestrichelte Sr-Cl-Bindung den langen Kontakt zum Abbildung 6.60: Erweiterte asymmetrische Einheit der Struktur von α -Sr[GaCl₄]₂. Die thermischen Schwingungsellipsoide entsprechen einer Aufenthaltswahrscheinlichkeit der Abbildung 6.61: Zwei symmetrieäquivalente Tetraedernetzwerkteile in der Struktur von α -Abbildung 6.62: Vereinfachte Darstellung der tetraedrischen Sr-Ga-Netzwerke in der Struktur von α -Sr[GaCl₄]₂, ineinander überführt durch das zentral gelegene Inversionszentrum. Diese Betrachtung erlaubt den Vergleich mit der Struktur des Cuprits, die Galliumatome liegen auf Kupferpositionen, die Strontiumatome auf Sauerstoffpositionen...93 Abbildung 7.1: Ableitung der idealisierten Struktur einer Verbindung des Formeltyps

Abbildung 7.2: Ableitung der Struktur von $V[AlCl_4]_2$ aus einer hypothetischen Struktur in der Raumgruppe <i>Cmcm</i> und Vergleich der berechneten mit den tatsächlichen
Atomkoordinaten
Abbildung 7.3: Ableitung des <i>y</i> -Ti[AlCl ₄] ₂ -Strukturtyps aus dem gemeinsamen
Ausgangspunkt Cmcm und Vergleich der berechneten mit den tatsächlichen
Atomkoordinaten
Abbildung 7.4: Symmetriezusammenhang zwischen den einzelnen Phasen des Systems
Ti/Al/Cl
Abbildung 7.5: Ableitung des Cr[AlCl ₄] ₂ -Strukturtyps aus dem gemeinsamen
Ausgangspunkt <i>Cmcm</i> und Vergleich der berechneten mit den tatsächlichen
Atomkoordinaten
Abbildung 7.6: Ableitung der Strukturtypen von Pd[GaCl ₄] ₂ und Cr[GaCl ₄] ₂ aus dem
gemeinsamen Ausgangspunkt <i>Cmcm</i> und Vergleich der berechneten mit den tatsächlichen
Atomkoordinaten
Abbildung 7.7: Ableitung des Strukturtyps von α -Mn[GaCl ₄] ₂ aus der hexagonal-dichten
Packung von Chloratomen mit vollständiger Lückenbesetzung und Vergleich der berechneten mit den tatsächlichen Atomkoordinaten
Abbildung 7.8: Ableitung der Strukturtypen von α - und β -Sr[GaCl ₄] ₂ vom Cuprit (Cu ₂ O) als
Aristotyp dieser Verbindungsklasse und Vergleich der berechneten mit den tatsächlichen
Atompositionen
-

Abbildung 8.1: Übersicht der in dieser Arbeit aufgeklärten Strukturtypen der $M[TCl_4]_2$ mit $KZ(M^{2^+}) = 6$ sowie die literaturbekannten Vertreter (grau unterlegt) dieser Substanzklasse.112

Tabellenverzeichnis

Tabelle 4.1: Liste der verwendeten, kommerziell erhältlichen Chemikalien und der jeweilige Anbieter. 1	n 2
Tabelle 5.1: Reaktionsparameter zur Darstellung der $M[AlCl_4]_2$ aus $AlCl_3$ -Schmelzen.2 Tabelle 5.2: Reaktionsparameter zur Bildung der leichter flüchtigen $M[AlCl_4]_2$.2 Tabelle 5.3: Abscheidungstemperaturen der drei Phasen von Ti[AlCl_4]_2.2 Tabelle 5.4: Reaktionsparameter zur Bildung der $M[GaCl_4]_2$ aus $GaCl_3$ -Schmelzen.2	2 3 4 6
Tabelle 6.1: Gitterparameter der isotyp zu V[AlCl ₄] ₂ kristallisierenden Verbindungen.2Tabelle 6.2: Koordinaten, Wyckoff-Lagen und isotrope Auslenkungsparameter der Atome in der Elementarzelle von V[AlCl ₄] ₂ .3Tabelle 6.3: Bindungslängen und -winkel in der asymmetrischen Einheit von V[AlCl ₄] ₂ .3Tabelle 6.4: Koordinaten, Wyckoff-Lagen und isotrope Auslenkungsparameter der Atome in der Elementarzelle von γ-Ti[AlCl ₄] ₂ .3Tabelle 6.5: Bindungslängen und -winkel in der asymmetrischen Einheit von γ-Ti[AlCl ₄] ₂ .3Tabelle 6.5: Bindungslängen und -winkel in der asymmetrischen Einheit von γ-Ti[AlCl ₄] ₂ .3Tabelle 6.6: Koordinaten, Wyckoff-Lagen und isotrope Auslenkungsparameter der Atome in der Elementarzelle von Cr[AlCl ₄] ₂ .4Tabelle 6.7: Bindungslängen und -winkel in der asymmetrischen Einheit von Cr[AlCl ₄] ₂	9 0 1 0 9 1 5 7 1 3 5 1
oTabelle 6.12: Koordinaten, Wyckoff-Lagen und isotrope Auslenkungsparameter der Atomein der Elementarzelle von Cr[GaCl ₄] ₂ .7Tabelle 6.13: Bindungslängen und -winkel in der asymmetrischen Einheit von Cr[GaCl ₄] ₂ .7Tabelle 6.13: Bindungslängen und -winkel in der asymmetrischen Einheit von Cr[GaCl ₄] ₂ .7Tabelle 6.14: Ionenradien der M^{2+} -Ionen der $3d$ -Elemente in oktaedrischer Koordination7Tabelle 6.15: Entwicklung der Zellvolumina der $M[TCl_4]_2$ bei Raumtemperatur.7Tabelle 6.16: Cl-Cl-Abstände zwischen den Strängen der hexagonalen Stabpackung inVerbindungen des Typs $M[AlCl_4]_2$ und $M[GaCl_4]_2$.7Tabelle 6.17: Koordinaten, Wyckoff-Lagen und isotrope Auslenkungsparameter der Atomein der Elementarzelle von β -Sr[GaCl ₄] ₂ .8Tabelle 6.18: Bindungslängen und -winkel in der asymmetrischen Einheit von β -Sr[GaCl ₄] ₂ .8Tabelle 6.19: Koordinaten, Wyckoff-Lagen und isotrope Auslenkungsparameter der Atomein der Elementarzelle von α -Sr[GaCl ₄] ₂ .8Tabelle 6.19: Koordinaten, Wyckoff-Lagen und isotrope Auslenkungsparameter der Atomein der Elementarzelle von α -Sr[GaCl ₄] ₂ .8Tabelle 6.20: Bindungslängen und -winkel in der asymmetrischen Einheit von α -Sr[GaCl ₄] ₂ .9	 3 1 3 7 7 8 4 6 9 0

1 Einleitung

Die Chemie binärer kristalliner Feststoffe, sowohl natürlich vorkommender als auch im Labor dargestellter, bietet eine große Bandbreite an strukturellen und physikalischen Eigenschaften dieser Verbindungen. Allein die Vielzahl an Strukturtypen des Verbindungstyps *M*Cl₂, also binärer Chloride zweiwertiger Metallkationen, ist erstaunlich und bis heute wahrscheinlich noch nicht vollständig erfasst. Ausgehend von den Motiven der hexagonal- und kubischdichten Packung von Chloratomen mit geordneter Besetzung der Oktaeder- und/oder Tetraederlücken lässt sich unter der Annahme einer unendlichen Variierbarkeit der Stapelfolgen eine beliebige Vielzahl an Strukturtypen erdenken.

Der Übergang von den binären zu ternären Chloriden zweiwertiger Metallkationen (d.h. unter Einbringen einer zweiten Kationensorte, welche ein möglichst kompaktes Komplexanion bildet) gewährt Einblicke in die Einflussnahme dieser zusätzlichen Elemente auf die Eigenschaften der Metallkationen. Als Reaktionspartner für Lewis-Säure-Base-Reaktionen dienen hier in erster Linie die Triele T = Aluminium und Gallium, die als Kationen in chloridischer Umgebung aufgrund ihrer hohen Lewis-Acidität stabile komplexe Anionen ausbilden: das Tetrachloroaluminat-Ion [AlCl₄]⁻ bzw. das Tetrachlorogallat-Ion [GaCl₄]⁻. Die strukturelle und redoxchemische Stabilität dieser Ionen erlaubt eine Betrachtung der Zielverbindungen als "quasibinäre" Chloride.

Die Existenz der Übergangsmetalltetrachloroaluminate und -gallate fand erstmals Erwähnung in Untersuchungen zum chemischen Gasphasentransport. Schäfer et. al. haben in eingehenden Untersuchungen die Zusammensetzung und die Partialdrücke auftretender beim Metallen Gasphasenmoleküle Transport von und Metallchloriden mit Aluminiumtrichlorid und Galliumtrichlorid untersucht. In Hinsicht auf Dichloride der Übergangsmetalle wurde spezielles Augenmerk auf drei Spezies von Gasphasenkomplexen gerichtet, welche wiederholt auftraten: $MCl[AlCl_4]$, $M[AlCl_4]_2$ und $M[AlCl_4][Al_2Cl_7]$ $(=MAl_3Cl_{11})$. Die Annahme eines $[Al_2Cl_7]^-$ -Ions als Ligand in Gasphasenkomplexen basierte auf der Stabilisierung desselben durch einen Chelateffekt, da die negative Ladung im Heptachlorodialuminat besser delokalisiert werden könne als im kleinen [AlCl₄]⁻-Ion [1]. Jedoch konnte dieses Ion in Festkörperreaktionen bisher nur selten isoliert werden, so zum Beispiel in $Te_4[Al_2Cl_7]_2$ [2].

Die Bildung und Zersetzung dieser Moleküle spielt in Abhängigkeit des AlCl₃/GaCl₃-Partialdrucks und der Reaktionstemperatur eine entscheidende Rolle beim chemischen Transport der Chloride zweiwertiger Metallkationen. *Harald Schäfer* schuf mit einer Vielzahl von Veröffentlichungen die Grundlage der chemischen Transportreaktionen zweiwertiger (Übergangs-) Metallchloride mit Lewissäuren wie Aluminiumtrichlorid (AlCl₃), Galliumtrichlorid (GaCl₃) oder Eisentrichlorid (FeCl₃) als Transportmittel. Seit Mitte der 70er Jahre des 20. Jahrhunderts untersuchten er und seine Mitarbeiter eine Vielzahl an Reaktionen, die über die Bildung von gasförmigen Komplexen zur Reinigung und Kristallisation der eingesetzten Chloride führten.

Besonders zu nennen sind hier die Untersuchungen der Transportgleichgewichte von CoCl₂, NiCl₂ und CuCl₂ mit AlCl₃ und GaCl₃ **[3]** sowie die Arbeiten zu den Übergangsmetallen Eisen, Cobalt und Nickel **[4]**, die unter Zusatz von Galliumtrichlorid erst zum jeweiligen Dichlorid oxidiert und dann mit GaCl₃ in die Gasphase gebracht wurden.

Auch die entsprechenden Gasphasenkomplexe des Palladiumchlorids [5] und des Vanadiumchlorids [1] wurden in ausführlichen Arbeiten beschrieben.

Die Isolierung in fester Phase und eine erste strukturchemische Charakterisierung eines Übergangsmetalltetrachloroaluminats gelang *Ibers* 1962 **[6]** mit der Synthese und Kristallisation von Co[AlCl₄]₂. Die Kristallstruktur von Cobalt(II)-tetrachloroaluminat enthält [CoCl₆]-Oktaeder, die über je zwei [AlCl₄]-Tetraeder miteinander zu infiniten Strängen verknüpft werden und sich zu einer hexagonalen Stabpackung zusammenlagern (Abb. 1.1).

Abbildung 1.1: Strukturausschnitt aus Co[AlCl₄]₂, links ein einzelner Strang, rechts die Aufsicht auf die hexagonale Stabpackung [6].

Die Beschreibung der Kristallstruktur dieser Verbindung basierend auf einer hexagonaldichten Packung von Chloratomen mit geordneter Oktaeder- und Tetraederlückenbesetzung gilt als erster Baustein in einer wachsenden Reihe von Strukturmerkmalen, die zur detaillierten Charakterisierung dieser Substanzen herangezogen werden können. Die Darstellung aus AlCl₃-haltigen Schmelzen bildete die präparative Grundlage für die Untersuchung weiterer ternärer Chloride dieser Verbindungsklasse. *Belt* und *Scott* **[7]** charakterisierten 1964 die Schmelzen und Kristallisate der Systeme $MCl_2/AlCl_3$ (M = Erdalkalimetalle/V/Cr/Mn/Fe/Co/Ni/Cu/Cd/Pd/Sn/Pb). Übereinstimmungen in den pulverdiffraktometrischen Reflexprofilen führten zu der Annahme, dass für M = Mg, V, Cr, Mn und Fe Verbindungen der Zusammensetzung $M[AlCl_4]_2$ gebilden werden, welche isotyp zu Co[AlCl_4]_2 kristallisieren oder zumindest sehr enge strukturelle Verwandtschaft zeigen sollten. Bereits in diesen Arbeiten wurde festgestellt, dass das System CdCl_2/AlCl_3 wohl auch zu einem 1:2-Verbindungstyp führt, die Indizierung des Pulverdiffraktogramms allerdings nicht mit den Parametern des Co[AlCl_4]_2 gelingt. Auch anhand der Ionenradien von Cd²⁺ und Co²⁺ (1.09 bzw. 0.885 Å, jeweils in oktaedrischer Umgebung, Co²⁺ im zu erwartenden high-spin-Komplex **[8]**) wurde darauf geschlossen, dass sich zwischen den Verbindungen entscheidende Unterschiede im Packungsaufbau der Kristallstrukturen zeigen müssten. Die strukturelle Charakterisierung von Cd[AlCl_4]_2 durch *Staffel* und *Meyer* 1987 **[9]** bestätigte diese Annahme.

1970 steuerten Brynestad, Yakel und Smith [10] in einer kurzen Veröffentlichung die Gitterparameter von Ni[AlCl₄]₂ bei, jedoch ohne von phasenreiner Darstellung oder weiteren Untersuchungen zu berichten. Nickel bildet in der Reihe der 3*d*-Metalle das kleinste M^{2+} -Kation in oktaedrischer Koordinationssphäre und zeigt somit die geringste Tendenz zur Verbindungsbildung mit den Lewis-sauren Chloriden AlCl₃ bzw. GaCl₃. Dieser Umstand zeigt sich auch in der geringen Löslichkeit von NiCl₂ in AlCl₃- bzw. GaCl₃-Schmelzen. Neben dem Beitrag der betreffenden Ionenradien lassen sich anhand der Ligandenfeldtheorie weitere deutliche Unterschiede zwischen den beteiligten Metallkationen aufzeigen, besonders in Bezug auf die Besetzung der Orbitale in Abhängigkeit der Elektronenkonfiguration und zu highbzw. low-spin-Komplexe in chloridischer Umgebung (die erwartender spektrochemische Reihe sagt z.B. für Ni²⁺ d^8 -hs-, für Pd²⁺ d^8 -ls-Komplexe voraus). Diese können teilweise den Verzerrungsgrad der zu bildenden MCl6-Oktaeder erklären und lassen Unterschiede in der Besetzung der Lücken der Chloridionenpackungen sowie in der Art der Vernetzung der Polyeder erwarten.

Obwohl bereits im Verlauf der 70er- und 80er- Jahre des vergangenen Jahrhunderts Transportuntersuchungen an vielen Systemen der Klasse $MCl_2/AlCl_3$, $MCl_2/GaCl_3$ und $MCl_2/FeCl_3$ durchgeführt wurden, konnten doch bisher neben Co[AlCl_4]_2 [6] und Cd[AlCl_4]_2 [9] nur drei weitere Tetrachloroaluminate (Pd[AlCl_4]_2 [11], Cu[AlCl_4]_2 [12] und α/β -Ti[AlCl_4]_2 [13,14,15]) von Übergangsmetallen in fester Phase isoliert und charakterisiert werden. Die phasenreine Darstellung und Charakterisierung von Vanadium(II)- tetrachloroaluminat im Rahmen der dieser Dissertation vorangegangenen Diplomarbeit [16] stellte den ersten Schritt zur Vervollständigung der Reihe der M[AlCl₄]₂ dar.

Im Rahmen der entsprechenden Systeme *M*Cl₂/GaCl₃ wurde ausführlich bisher nur über Cu[GaCl₄]₂ **[17,18]** berichtet. *Staffel* und *Meyer* berichteten unter Angabe der Gitterkonstanten und der Aussage, die Pulverdiffraktogramme wiesen Ähnlichkeiten auf, dass Cadmium(II)-tetrachlorogallat isotyp zu Cd[AlCl₄]₂ monoklin in der Raumgruppe *Pa* kristallisiere. Aufgrund der bis dahin bereits gefundenen strukturellen Vielfalt dieser Verbindungsklassen und der getroffenen Voraussagen über zu erwartende Isotypie einiger Verbindungen ist es erstaunlich, dass auf diesem Gebiet keine weiteren Erkenntnisse veröffentlicht wurden. Entsprechende Experimente zu Reaktionen zweiwertiger Übergangsmetallchloride in Funktion als Lewis-Säure (z.B. in Kombination mit Alkalimetallchloriden), in deren Verlauf eine Vielzahl struktureller Variationen und chemischer Zusammensetzungen gefunden wurde, wurden dagegen in großer Anzahl durchgeführt **[19-22]**.

Erheblich erweitert wurde der Kenntnisstand über Tetrachloroaluminate zweiwertiger Kationen durch Arbeiten von Justnes et. al. [23] sowie von Stegmueller [24]. Die Charakterisierung der Erdalkalitetrachloroaluminate Mg[AlCl₄]₂, Ca[AlCl₄]₂ sowie oP-, tIund mP-Sr[AlCl₄]₂ und Ba[AlCl₄]₂ ergaben wertvolle Einblicke in das strukturchemische Verhalten von AlCl₃ in Reaktion mit weniger Lewis-sauren Metalldichloriden. Besonders die ausführliche Beschreibung des polymorphen Systems SrCl₂/AlCl₃ gibt Anlass zu der sich bei der Darstellung und Charakterisierung Vermutung, dass weiterer Tetrachloroaluminate $M[AlCl_4]_2$ und vor allem der entsprechenden Tetrachlorogallate M[GaCl₄]₂ interessante strukturchemische Erkenntnisse auch aus polymorphen Systemen gewinnen lassen können. Diese könnten auch zu besserem Verständnis der Einstufung der Lewis-Acidität der behandelten Verbindungen führen und künftig Aussagen über zu erwartende Reaktionsverläufe erlauben.

1.1 Ziel der Arbeit

Ziel dieser Arbeit war es, durch phasenreine Darstellung der bisher nicht synthetisierten Tetrachloroaluminate und -gallate zweiwertiger Metallkationen einen tieferen Einblick in die Chemie von Lewis-Säure-Base-Addukten in Form ternärer Chloride zu gewinnen. Die Strukturvielfalt, bedingt durch die Konfiguration der Valenzelektronen der verwendeten Metallkationen und den Verlauf ihrer Ionenradien, gibt Anlass zu der Erwartung, durch Variation dieser Faktoren und der Lewis-Acidität der beteiligten Komponenten weitere interessante Verbindungen und Strukturtypen erhalten zu können. Die Zusammensetzung der Gasphasenkomplexe in chemischen Transportexperimenten wirft die Frage auf, ob in Tetrachloroaluminaten in fester Phase variierende Verknüpfungsmuster oder andere Komplexanionen als $[AlCl_4]^-$ bzw. $[GaCl_4]^-$ auftreten, also z.B. Verbindungen der Zusammensetzung $MCl[AlCl_4]$ oder $M[AlCl_4][Al_2Cl_7]$.

Alle bisher in fester Phase charakterisierten Verbindungen der Systeme MCl₂/TCl₃ (T = Al/Ga), in denen M oktaedrisch koordiniert ist, lassen sich strukturell von einer hexagonal dichten Packung von Chloratomen mit geordneter Besetzung der Oktaeder- und Tetraederlücken beschreiben. Je nach bevorzugter Koordinationssphäre des M^{II} -Kations sind die Schichten dieser Kugelpackung teilweise erheblich verzerrt, dennoch bleibt das Motiv erhalten. Im Verlauf dieser Arbeit sollte bestimmt werden, ob auch andere Motive, insbesondere das einer kubisch-dichten Kugelpackung (welches vielen Metalldichloriden realisiert werden. Weiterhin sollten die zugrunde liegt) gruppentheoretischen Zusammenhänge der Strukturtypen der dargestellten Verbindungen mit ihren Aristotypen erarbeitet werden, um die Symmetriebeziehungen und die Unterschiede der Lückenbesetzung zu verdeutlichen.

Das Auftreten polymorpher Systeme wie beim Titan(II)-tetrachloroaluminat, die Charakterisierung der unterschiedlichen Modifikationen und die Betrachtung der gruppentheoretischen Zusammenhänge der einzelnen Phasen sollen in Verbindung mit kalorimetrischen Untersuchungen wichtige Informationen über den Charakter der Phasenübergänge liefern.

5

2 Präparative Methoden

2.1 Die modifizierte Schlenk-Technik

Zur Handhabung luft- und feuchtigkeitsempfindlicher Substanzen wurde eine Schutzgasanlage verwendet, die es einerseits ermöglichte, durch konstanten Gasgegenstrom Stoffe im offenen System unter einem Argonpolster handzuhaben, und andererseits über Schliffverbindungen angeschlossene Glasapparaturen zu evakuieren (s. Abb. 2.1). Über die entsprechenden Ventile können jeweils Argon oder das benötigte Vakuum abgegriffen werden.

Abbildung 2.1: Schematische Zeichnung der Vollglasschutzgasanlage.

Das Vakuum wird durch eine zweistufige Drehschieberölpumpe (RD4, Fa. Vacuubrand, Wertheim) erzeugt, welche mit einer Saugleistung von 4 m³/h ein Endvakuum von 10⁻³ mbar erreicht. Sie ist über einen Metallbalgenschlauch an die ansonsten völlig aus Duran-Glas gefertigte Schutzgasanlage angeschlossen. Die Druckmessung erfolgt im Bereich von 10⁻³ bis 10³ mbar über ein Thermovac TM-20-Manometer (Fa. Leyboldt Vakuum, Köln).

Das Schutzgas (Argon 4.6, \geq 99.996 %, O₂ \leq 6 ppm, N₂ \leq 20 ppm, H₂O \leq 5 ppm, Fa. Praxair, Hattingen) wird vor Eintritt in die Schutzgasanlage sorgfältig gereinigt: es durchläuft eine Anordnung von vier Trockentürmen, die mit Blaugel, Kaliumhydroxid-Plätzchen, Molekularsieb (300 pm, Fa. Riedel De Haen) und Phosphorpentoxid auf Trägermaterial (Sicapent, Fa. Merck) gefüllt sind. Durch diesen Reinigungsschritt werden Anteile von Wasser, sauren und basischen Gasen und organischen Bestandteilen im Schutzgas auf ein Minimum reduziert. Da an dieser Stelle jedoch noch Anteile an Sauerstoff, Stickstoff und anderen Gasen enthalten sein können, wird das Argon bei 650-700 °C über Titanschwamm geleitet. So können letzte Verunreinigungen durch Nitrid-, Oxid-, Hydrid- und Carbid-Bildung reduktiv entfernt werden.

Den Trockentürmen ist ein Siliconöl-Blasenzähler und dem Titanofen ein Quecksilbermanometer vorgeschaltet, welches gleichzeitig als Überdruckventil dient.

Die Präparation von Eduktgemischen wird in Schlenkrohren mit seitlichen Abgriffen vorgenommen, welche über Schliffverbindungen an die Schutzgasanlage angeschlossen werden. An diese Schlenkrohre können sowohl Reaktionsampullen als auch Glaskapillaren angesetzt werden, die für anschließende röntgenographische Untersuchungen abgeschmolzen werden können. Jegliche verwendete Glasapparatur wird vor Benutzung im Feinvakuum auf Dichtigkeit überprüft und mehrfach mit Hilfe eines Teclubrenners ausgeheizt.

2.2 Arbeiten im Handschuhkasten

Als Alternative zur Arbeit an der Schutzgasanlage bietet sich der Handschuhkasten an, in dem unter Schutzgasatmosphäre Substanzen z. B. für stöchiometrische Ansätze eingewogen werden können oder die Präparation von Einkristallen für die Röntgenstrukturanalyse vorgenommen wird. Auch besteht hier die Möglichkeit, unter inerten Bedingungen Polyethylen- oder Kaliumbromidpresslinge von luftempfindlichen Substanzen herzustellen.

Verwendet wurden zwei Handschuhkästen:

a) zur Selektion und Präparation von Einkristallen: LabMaster 130, Fa. MBRAUN, ausgestattet mit einer Sartorius-BP615-Waage und einem Leica MZ6-Mikroskop mit stufenloser, bis zu vierzigfacher Vergrößerung und

b) zur Präparation von IR-Presslingen: MB 150-GI, Fa. MBRAUN, ausgestattet mit einer Mettler-Toledo-AE240-Waage und einer IR-Presse der Fa. Perkin-Elmer.

Die Schutzgasqualität innerhalb der Handschuhkästen wird durch ständige Umwälzung über eine Gasreinigung aufrechterhalten. Sauerstoff wird an einem Kupferkontakt reduziert, Wasser durch Molekularsieb (400 pm) aus der Atmosphäre entfernt. Wasser- und Sauerstoffgehalt werden über Gasanalysatoren überwacht ($H_2O \le 1$ ppm, $O_2 \le 1$ ppm).

2.3 Reaktionen und Kristallzüchtung in der Schmelze

Die Darstellung einkristalliner Produkte gelang häufig erfolgreich aus einer langsam erkaltenden Schmelze des Eduktgemisches in einem Überschuss an AlCl₃ bzw. GaCl₃. Die Proben wurden nach Abschmelzen unter Feinvakuum bei Temperaturen von ca. 200 °C so lange isotherm getempert, bis eine größtmögliche Homogenität der Schmelze erreicht war. Anschließend wurde die Reaktionsampulle langsam abgekühlt, in der Regel auf ca. 100 °C. Daraufhin wurde die der erstarrten Schmelze gegenüberliegende Seite auf Raumtemperatur gebracht, um die Sublimation des Überschusses an AlCl₃ bzw. GaCl₃ an diese Stelle zu erleichtern. Aufgrund des hohen Dampfdrucks der Trieltrichloride gelang dies im Temperaturgradienten 100 °C \rightarrow RT innerhalb weniger Stunden. Bei Reaktionen mit GaCl₃ kann das Absublimieren des Überschusses sogar bei ca. 60 °C vorgenommen werden.

Trat bei diesem Vorgang eine teilweise Sublimation des Produktes ein, so wurden Reste von AlCl₃ bzw. GaCl₃ abschließend bei 40 °C erneut von dem Produkt entfernt. Dieser zusätzliche Schritt war besonders bei den eher molekular aufgebauten Verbindungen vonnöten, da diese einen deutlich höheren Dampfdruck aufweisen als solche mit höherem Vernetzungsgrad.

2.4 Kristallzüchtung über chemischen Gasphasentransport

Führte die Reaktionsführung durch isothermes Aufschmelzen der Edukte in einem Überschuß an TCl_3 nicht zur phasenreinen Bildung zumindest zum Teil einkristalliner Proben, so konnte bei vielen Verbindungen durch chemischen Gasphasentransport eine deutlich höhere Ausbeute an reinem Produkt erzielt werden. Zu diesem Zweck wurde das Produkt mit einem Überschuss an TCl_3 in Form der von *Schäfer* diskutierten Komplexzusammensetzungen in die Gasphase überführt und bei höheren Temperaturen in Form des $M[TCl_4]_2$ abgeschieden.

3 Untersuchungsmethoden

3.1 Röntgenographische Methoden

3.1.1 Röntgenographische Untersuchungen an Einkristallen

Strukturbestimmungen an Einkristallen wurden mit einem ĸ-CCD-Vierkreisdiffraktometer (Fa. Enraf-Nonius, Delft, Niederlande) durchgeführt. Dieses war mit einer Röntgenröhre mit Molybdän-Anode ausgestattet, deren emittierte Strahlung an einem Graphiteinkristall zu Mo- $K\alpha$ -Strahlung (λ = 71.069 pm) monochromatisiert wurde. Die Detektion der gebeugten Röntgenstrahlung erfolgte über einen CCD-Flächendetektor (CCD = charge coupled device) mit einem Durchmesser von 95 mm. Die Datensammlung während der Röntgenstrukturanalyse wurde mit dem Programm COLLECT [25] durchgeführt, die Zellbestimmung mit HKL-SCALEPACK [26]. Zur Datenreduktion diente HKL-DENZO[26]. Absorptionskorrektur, Strukturlösung und Strukturverfeinerung wurden mit den in WinGX [27] enthaltenen Programmen durchgeführt, unter anderem mit SHELXS-97 [28] (zur Strukturlösung) und SHELXL-97 [28] (zur Strukturverfeinerung). Zur Visualisierung der Kristallstrukturen wurde das Programm DIAMOND3 [29] herangezogen.

Die röntgenographischen Messungen konnten in verschiedenen Temperaturbereichen durchgeführt werden. Die Wahl der Messtemperatur erfolgte in Abhängigkeit von der Stabilität der zu untersuchenden Kristalle gegenüber den zur Präparation verwendeten Fetten oder Klebern. Im Normalfall werden Kristalle luft- oder feuchtigkeitsempfindlicher Substanzen im Handschuhkasten mit etwas Schlifffett auf der Spitze einer 0,1 mm-Kapillare befestigt und in eine Kapillare mit $\emptyset = 0,3$ mm geschoben. Dort dient das Fett zum Ankleben des Kristalls an der Glaswand der Kapillare, welche vorher gründlich gereinigt und von Restfeuchtigkeit befreit wurde. Anschließend wird diese an einem glühenden Tantaldraht abgeschmolzen und aus dem Handschuhkasten entnommen.

Zur Kontrolle des visuellen Eindrucks, der zur Auswahl des vermutlichen Einkristalls führte, wurden anschließend kurz mit weißer Röntgenstrahlung belichtete LAUE-Aufnahmen der Kristalle angefertigt. Diese Art der Bestrahlung hat zur Folge, dass die oben genannte Bragg'sche Reflexionsbedingung gleichzeitig für mehrere Wellenlängen und somit auch für unterschiedliche Netzebenenscharen erfüllt werden kann. Die so gewonnen Diffraktogramme dienten zur Beurteilung der Streukraft und Reflexschärfe der vermessenen Kristalle. Solche mit zufrieden stellenden Beugungsbildern wurden anschließend zur Strukturaufklärung am κ -CCD-Diffraktometer verwendet. Sofern ein Produkt deutliche Instabilität gegenüber dem verwendeten Schlifffett zeigte, wie das ausnahmslos bei den dargestellten Tetrachlorogallaten der Fall war, wurden diese nicht wie oben beschrieben in Kapillaren eingeschmolzen sondern unter perfluoriertem Öl [*Fomblin*, Ausimont] selektiert. Dieses ist in der Lage, den entsprechenden Kristall ausreichend lange Zeit vor zersetzenden Luft- und Feuchtigkeitseinflüssen zu schützen und zeigt unter Kühlung eine so hohe Viskosität, dass der Kristall während der Messung auf der Spitze des Probenträgers in einem solchen Öltropfen keine Positionsänderung erfährt.

Der Probenträger, welcher den betreffenden Kristall hält, wurde während dieser Messungen mit gasförmigem Stickstoff auf 115-125 K gekühlt. Aufgrund dieser tiefen Temperaturen zeigten die Messdaten naturgemäß eine deutliche Abweichung in den Gitterkonstanten im Vergleich zu Messungen bei Raumtemperatur. Die Verfeinerung der Gitterparameter anhand pulverdiffraktometrischer Messergebnisse der phasenreinen Substanzen bei Raumtemperatur erlaubte jedoch die Korrektur dieser temperaturbedingten Abweichungen.

3.1.2 Röntgenpulveruntersuchungen

Die Präparation von luftempfindlichen Substanzen für die Pulverdiffraktometrie erfolgte an der Schutzgasanlage, an der diese in fein gepulverter Form aus einem Schlenk-Rohr in Glaskapillaren von 0,1 bzw. 0,3 mm Durchmesser überführt und unter Argon abgeschmolzen wurden.

Verwendet wurde zum einen ein automatisches Pulverdiffraktometer StadiP (Fa. Stoe & Cie, Darmstadt) und zum anderen das BRUKER-AXS-D8. Beide waren mit einer Röntgenröhre (Fa. Siemens) mit Kupfer-Anode ausgestattet, deren emittierte Strahlung mit Hilfe eines nachgeschalteten Germanium-Monochromators auf die Cu-K_{α 1}-Emissionslinie der Wellenlänge $\lambda = 154.051$ pm monochromatisiert wurde.

Die Detektion der gebeugten Röntgenstrahlung erfolgte im Falle des Stadi P über einen gebogenen ortsempfindlichen Detektor mit einem Winkelbereich von $2\theta = 40$ ° mit einer Auflösung von 0.06 °. Das BRUKER-D8-Pulverdiffraktometer ist mit einem linearen Detektor (MBRAUN-D5000) mit einem Winkelbereich von 2.5 ° und einer Auflösung von 0.007 ° ausgestattet.

Die Steuerung der Geräte und die Auswertung der Daten erfolgte über das Programmpaket WinXPow **[30]** (StadiP) bzw. XRD-Commander **[31]** und EVA **[32]** (BRUKER-D8). Die Messungen erfolgten durchweg im Debey-Scherrer-Modus sowie mit kontinuierlicher Drehung des Probenröhrchens, um so möglichst viele der feinen Kristallite in Positionen für konstruktive Interferenz der gebeugten Röntgenstrahlen zu bringen. Der Vergleich mit bekannten Substanzen zur Identifizierung oder Reinheitskontrolle wird durch Datenbanken wie zum Beispiel JCPDS **[33]** oder ICSD **[34]** ermöglicht.

Die Indizierung der Pulverdiffraktogramme erfolgte nach Winkel- und Nullpunktskorrektur mithilfe eines Siliciumstandards ebenfalls mit Hilfe des Programmpakets WinXPow, speziell unter Anwendung von RawDataHandling und IndexAndRefine.

3.2 Differenzkalorimetrische Untersuchungen

Zur Untersuchung der Produkte auf mögliche Phasenübergänge und ihre Schmelz- bzw. Zersetzungspunkte/-bereiche wurde ein "differential scanning calorimeter" DSC 204 F1 *Phoenix* der Fa. Netzsch (Selb) genutzt. Die Präparation erfolgte unter Schutzgas im Handschuhkasten. Hier wurde die entsprechende Substanz in einen Aluminiumtiegel eingefüllt und mit einem Deckel des gleichen Materials kalt verschweißt. Durch Vergleich der Temperatur des Tiegels mit einem leeren Referenztiegel kann die aufgenommene Wärmeleistung der Substanz bestimmt werden. Die Probenkammer wurde während der Messung von Stickstoffgas durchströmt. Das Gerät bietet auch die Möglichkeit einer Tieftemperaturmessung durch Kühlung mit flüssigem Stickstoff.

3.3 Magnetochemische Untersuchungen

Zur Untersuchung der elektronischen Konfiguration mithilfe der magnetischen Suszeptibilität der Übergangsmetall-Zentren wurde eine Faraday-Comparatorwaage genutzt. Die Probenpräparation erfolgte in Quarzkapillaren ($\emptyset = 2,0 \text{ mm}$, Wandstärke = 0,01 mm, $1 \approx 10$ mm), in die die betreffende Substanz unter Argon eingeschmolzen wurde. Die magnetische Wägung erfolgte über eine Ultramikrowaage des Typs S3D-S der Firma Sartorius (Göttingen), deren Auflösung 0,1 µg mit einer Standardabweichung von 0,1-0,3 µg betrug. Die Messungen konnten über einen Temperaturbereich von 300 nach 5 K geführt werden. Die Probenkühlung erfolgte über einen modifizierten Helium-Verdampfer-Kryostaten der Firma Leyboldt (Köln). Der mit Gradienten-Polschuhen ausgestattete Magnet des Typs B-E15-B8 wurde über ein Netzteil B-MNC5 der Firma Bruker betrieben. Die der Probenkammer erfolgte Temperaturkontrolle innerhalb über einen Cernox-Temperaturfühler und einen Controller der Firma LakeShore.

Zur Charakterisierung von Cr[AlCl₄]₂ wurde ein MPMS SQUID Magnetometer (Quantum Design) genutzt, die Messung erfolgte bei Feldstärken von 1 und 3 Tesla im Temperaturbereich von 2 bis 330 K.

11

4 Ausgangsverbindungen

4.1 Käufliche Chemikalien

Tabelle 4.1: Liste der verwendeten, kommerziell erhältlichen Chemikalien und der jeweiligen Anbieter.

Metalle:

Chrom (Pulver)	Sigma-Aldrich		
Titan (Pulver)	Merck		
Vanadium (Pulver)	Sigma-Aldrich		

Metalldichloride:

Bariumchlorid-Dihydrat	Riedel-de Haën
Bleichlorid	Riedel-de Haën
Chrom(III)-chlorid	Merck
Cobalt(II)-chlorid-Hexahydrat	Merck
Magnesiumchlorid	Fluka
Mangan(II)-chlorid-Tetrahydrat	Fluka
Nickel(II)-chlorid-Hexahydrat	Merck
Palladium(II)-chlorid	Merck
Strontiumchlorid	Merck
Zinn(II)-chlorid-Dihydrat	Merck

Metalltrichloride:

Aluminiumchlorid	Merck
Gallium(III)-chlorid	Sigma-Aldrich
Vanadium(III)-chlorid	Merck

Sonstige:

Eisen(III)-nitrat-Nonahydrat	Merck
Thionylchlorid	Merck

4.1.1 Aluminiumtrichlorid AlCl₃

Verwendet wurde Aluminiumtrichlorid (wasserfrei, sublimiert, ≥ 98 %), das zweimal bei 125 °C sublimiert wurde. Zur reduktiven Entfernung enthaltener Anteile von FeCl_x (x = 2-3), erkennbar an der gelblichen Verfärbung des AlCl₃, wurden ca. 5 Gew.-% elementaren Aluminiums zu der Sublimation zugesetzt. Gleichung 4.1 beschreibt eine mögliche Reduktionsreaktion:

$$FeCl_3 + Al \rightarrow Fe + AlCl_3$$
 (GI 4.1)

Das resultierende farblose Produkt wies in pulverdiffraktometrischen Untersuchungen keine Fremdreflexe auf. Ein qualitativer Eisennachweis mit Kaliumrhodanid-Lösung fiel negativ aus.

4.1.2 Galliumtrichlorid GaCl₃

Käuflich erworbenes Galliumtrichlorid (wasserfrei, Kügelchen, 99.99%) wies in pulverdiffraktometrischen Untersuchungen keine Fremdreflexe auf. Auf eine weitere Sublimation wurde verzichtet, um aufgrund der extremen Hygroskopizität des GaCl₃ zu befürchtende Verunreinigungen zu umgehen.

4.1.3 Vanadiumtrichlorid VCl₃

Käuflich erworbenes Vanadiumtrichlorid (wasserfrei, ≥ 99 %) wies in pulverdiffraktometrischen Untersuchungen keine Fremdreflexe auf. Um Reaktionen mit Luftsauerstoff und -feuchtigkeit zu vermeiden, wurde VCl₃ unter Schutzgas portioniert und unter Argon in einzelne Ampullen eingeschmolzen.

4.2 Entwässerung käuflicher Metalldichloride $MCl_2 \times nH_2O$

4.2.1 Trocknung von Metalldichlorid-Hydraten mit Thionylchorid

Eine Möglichkeit, Hydrate der Chloride der Erdalkali- und Übergangsmetalle sowie der Tetrele Zinn und Blei zu entwässern besteht darin, diese mit Thionylchlorid (SOCl₂) unter Rückfluss zu erhitzen. Entsprechend der Reaktionsgleichung

$$H_2O + SOCl_{2(l)} \rightarrow SO_{2(g)} + 2HCl_{(g)}$$
 (Gl. 4.2)

wurde Hydratwasser in Form gasförmiger Produkte entfernt. Nach Abschluss der Reaktion wurde der Überschuss an Thionylchlorid über eine Destillationsbrücke unter vermindertem Druck abdestilliert. Zuletzt wurde das Produkt bei 50 °C im Feinvakuum getrocknet.

Das für diese Reaktionen eingesetzte Thionylchlorid wurde vor Beginn der Entwässerung zweifach destilliert (Sdp. 75,3 °C). Die gesamte Apparatur wurde im Grobvakuum ausgeheizt und anschließend ausschließlich unter Argon-Schutzgasatmosphäre betrieben.

Trotz dieser Maßnahmen waren die entwässerten Metalldichloride häufig verunreinigt, vermutlich durch schwefelhaltige Rückstände des SOCl₂. Dieser Umstand führte in einigen weiterführenden Reaktionen zu zähflüssigen Nebenprodukten. Aus diesen Gründen wurde nach Installation der im Folgenden beschriebenen Chlorierungsanlage auf die Entwässerung mit Thionylchlorid verzichtet.

4.2.2 Entwässerung im HCl-Strom an der Chlorierungsanlage

Eine wesentlich effektivere Methode zur Trocknung der Metallchloride bietet die thermische Entwässerung im HCl-Strom. Für diese Arbeiten wurde eigens eine Vollglasschutzgasanlage so modifiziert, dass Substanzen in einer Quarzglasröhre bei Temperaturen bis 1100 °C mit unterschiedlichen Gasen umspült werden können. So bieten sich außerdem die Möglichkeiten, Metalle im argongetragenen Cl₂-Strom zu chlorieren oder im H₂-Strom zu reduzieren. Abb. 4.1 zeigt eine schematische Zeichnung der Chlorierungsanlage, Abb. 4.2 gibt eine fotographische Aufnahme wider.

Abbildung 4.1: Aufbau der Chlorierungsanlage in schematischer Darstellung.

Abbildung 4.2: Fotographische Aufnahme der Chlorierungsanlage.

Über die Anschlüsse **A**, **B** und **C** können Druckgasflaschen mit Chlorwasserstoff, Chlorgas oder Wasserstoff angeschlossen werden. Den Anschlüssen nachgeschaltet sind mit konz. Schwefelsäure gefüllte Blasenzähler zur Kontrolle des Gasflusses, welche im Falle der HClund Cl₂-Zuleitung in mit Phosphorpentoxid (*Sicapent*[©], Fa. Merck, Darmstadt) befüllte Trockentürme münden. Das Wasserstoffgas wird vor Einbringen in das Reaktionssystem keiner weiteren Trocknung unterzogen, da Reduktionsreaktionen bei Temperaturen um 1000 °C dies nicht erfordern. Mithilfe einer Drehschieberölpumpe mit nachgeschalteter Kühlfalle **D** (N_{2 (*l*)}) kann die komplette Anlage auf einen Restdruck von 1×10^{-3} mbar evakuiert werden. Dies bietet zum einen die Möglichkeit, nach erfolgter Reaktion die Zuleitungen der korrosiven Gase bis zum Flaschenventil zu entleeren und anschließend mit Argon zu fluten, um die Druckminderventile zu schonen. Weiterhin kann so vermieden werden, dass sich bei verschiedenen, unmittelbar nacheinander ausgeführten Reaktionsschritten die zugeleiteten Gase vermischen, was vor allem bei Wasserstoff und Chlorgas streng beachtet werden muss.

Die Aufreinigung des als Schutzgas verwendeten Argons erfolgt über vier in Reihe geschaltete Trockentürme, befüllt mit Orange-Gel, Molsieb (Porengröße 300 pm), Kaliumhydroxid-Plätzchen und Phosphorpentoxid (entsprechend der allgemeinen Argonaufreinigung, siehe Kap. 2.1). Auch an dieser Anlage wird das Schutzgas anschließend bei ca. 650 °C über Titanschwamm E geleitet.

Im Falle einer anstehenden Chlorierung können im U-Rohr F mit Hilfe eines Ethanol-Trockeneisgemisches bis zu 30 ml flüssiges Chlorgas einkondensiert werden. Diese Menge reicht im Allgemeinen aus, um mehrere Gramm eines gewünschten Metallchlorids zu erzeugen. Während der Reaktion lässt man das flüssige Chlor langsam verdampfen und trägt es in einem leichten Argonstrom über die in G vorgelegte Substanz. Dieses Verfahren trägt ebenfalls zur Schonung des Druckminderventils an der Chlorflasche bei, da nach erfolgtem Einkondensieren der benötigten Menge Chlor die Zuleitung entleert werden kann.

Die zu behandelnde Substanz wird für gewöhnlich in einem Quarz- oder Korund-Schiffchen in einem ca. 80 cm langen Quarzrohr vorgelegt, welches in einem Klappofen G auf bis zu 1100 °C erhitzt werden kann. Bei flüchtigen Produkten, wozu viele Metallchloride gehören, bietet sich ein Duranglasrohr mit mehreren Einschnürungen an, zwischen denen das sublimierte oder transportierte Produkt anschließend direkt in Ampullenform abgeschmolzen werden kann. Da viele Chlorierungsreaktionen schon bei relativ moderaten Temperaturen ablaufen, ist die Verwendung dieser Glassorte auch kein technisches Problem.

Abschließend können Überschüsse an Chlor- oder Chlorwasserstoffgas in zwei Waschflaschen **H** neutralisiert werden. Im Falle von Chlor sind diese mit einer Kaliumhydroxid/Wasserstoffperoxid-Lösung befüllt, was zur Disproportionierung und anschließenden Reduktion des Chlors führt:

$$Cl_2 + 2KOH + H_2O_2 \rightarrow 2Cl^- + 2K^+ + O_2 + H_2O$$
 (Gl. 4.3)

Austretendes HCl-Gas wird mit Kaliumhydroxidlösung neutralisiert.

Nutzt man die Anlage zur Reduktion mit Wasserstoffgas wird dieses im Anschluss durch eine enge Quarzkapillare, befüllt mit Kupferwolle zur Vermeidung eines Flammenrückschlags, in die Flamme eines TECLU-Brenners geblasen und verbrannt.

4.3 Reinigung von Metallen für Synproportionierungsreaktionen

4.3.1 Vanadium

Zur Entfernung oxidischer Verunreinigungen wurde metallisches Vanadium in Form von Pulver oder Stücken in einem Quarzschiffchen in den Reaktionsraum der Chlorierungsanlage gebracht. Die Reduktion im Wasserstoffstrom nach Gleichung 4.4 wurde über 4 h bei 900 °C durchgeführt.

$$VO_x + xH_2 \rightarrow V + xH_2O$$
 (Gl. 4.4)

Pulverdiffraktometrische Untersuchungen zeigten anschließend keine Reflexe oxidischer Verunreinigungen. Pulverförmige Proben eignen sich wesentlich besser für anschließende Umsetzungen. Größere Metallstücke, welche kaum mechanisch zu zerkleinern sind, erwiesen sich in Festkörperreaktionen aufgrund der geringen Oberfläche als äußerst reaktionsträge.

4.3.2 Chrom

Entsprechend 4.3.1 wurde pulverförmiges, metallisches Chrom für 5 h bei 950 °C nach Gleichung 4.5 im Wasserstoffstrom reduziert.

$$CrO_x + xH_2 \rightarrow Cr + xH_2O$$
 (Gl. 4.5)

Pulverdiffraktometrische Untersuchungen des Produktes zeigten keine Reflexe oxidischer Verunreinigungen. Die anschließende Reaktion zur Darstellung von Chromdichlorid wird in Abschnitt 4.4.2 beschrieben.

4.3.3 Eisen

Zur Darstellung reinen, pulverförmigen Eisenmetalls wurden 15 g Eisen(III)-nitrat (Fe(NO₃)₃) in 50 ml verdünnter Salpetersäure gelöst und kurz erwärmt. Nach Verdünnung der Lösung erfolgte die Neutralisation mit Urotropin ((CH)₄(NH₂)₆) bis zu einem *pH*-Wert von ca. 5.5, was die Fällung des Eisens als Eisenhydroxid "Fe(OH)₃ bzw. FeOOH×H₂O" bewirkte. Nach Filtration und gründlichem Auswaschen des Bodenkörpers mit destilliertem Wasser wurde das Eisenhydroxid für 12 h bei 110 °C getrocknet. Anschließend wurde es an der Chlorierungsanlage in einem Quarzschiffchen über 6 h unter Temperatursteigerung von 100 auf 500 °C im Wasserstoffstrom zu elementarem Eisen reduziert:

$$2Fe(OH)_3 + 2H_2 \rightarrow 2Fe + 6H_2O$$
 (Gl. 4.6)

Pulverdiffraktometrische Untersuchungen des Produktes zeigten keine Reflexe oxidischer Verunreinigungen. Ein Teil des so dargestellten Rein-Eisens wurde im Anschluss gemäß

$$2Fe + 3Cl_2 \xrightarrow{\Delta T} 2FeCl_3$$
 (Gl. 4.7)

bei 320 °C in einem mit Einschnürungen versehenen Duranglasrohr im argongetragenen Chlorstrom zu FeCl₃ umgesetzt. Das entstandene flüchtige Eisentrichlorid konnte so direkt in der zweiten Kammer des Reaktionsrohres eingeschmolzen und zur Aufreinigung sublimiert werden (siehe Kap. 4.4.3). Die abschließende Synproportionierungsreaktion zur Darstellung von Eisendichlorid wird in Abschnitt 4.4.2 beschrieben.

4.4 Synthese nicht-käuflicher, wasserfreier Metallchloride

4.4.1 Vanadiumdichlorid VCl₂

Anhand der Literaturangaben von *Ehrlich* und *Seifert* **[35]** soll VCl₂ durch thermische Disproportionierung von VCl₃ dargestellt werden:

$$2VCl_{3(s)} \xrightarrow{\Delta T} VCl_{2(s)} + VCl_{4(l)}$$
 (Gl. 4.8).

Diese Reaktion verläuft quantitativ bei ca. 850 °C, hat jedoch den entscheidenden Nachteil, dass das bei diesen Temperaturen gasförmige VCl₄ äußerst schwer abzufangen und von Verunreinigungen z.B. durch Schlifffettrückstände freizuhalten ist. Zu diesem Zweck müsste die Reaktion in einer Vollglasschutzgasanlage mit nachgeschalteter Kühlfalle ohne Schliffverbindungen durchgeführt werden.

Dieser nachteilbehaftete Syntheseweg konnte anhand folgender Beobachtung während des Aufheizens modifiziert werden: VCl₃ spaltet im Bereich von 550-625 °C thermisch induziert ein Äquivalent Chlor ab, entsprechend der Reaktion

$$2VCl_{3(s)} \xrightarrow{625^{\circ}C} 2VCl_{2(s)} + Cl_{2(g)}$$
(Gl. 4.9).

Durch mehrstündiges Tempern bei 625 °C im leichten Argonstrom wurde reines, kristallines, olivgrünes VCl₂ erhalten, welches im Pulverdiffraktogramm keine Fremdreflexe aufwies und auch keine visuell erkennbaren farblichen Rückstände von VCl₃ enthielt.

4.4.2 Chromdichlorid CrCl₂

Zur Darstellung von phasenreinem Chromdichlorid wird eine Verknüpfung von Synproportionierung und chemischem Transport genutzt. Durch die Festkörperreaktion

$$Cr + 2CrCl_3 \xrightarrow{220^{\circ}C} 3CrCl_2$$
 (Gl. 4.10)

wird $CrCl_2$ erzeugt, welches mit AlCl₃ in die Gasphase gebracht wird. Durch Anlegen eines Temperaturgradienten von $220 \rightarrow 260$ °C wird in der heißen Zone durch thermische Zersetzung phasenreines $CrCl_2$ erhalten, das im Pulverdiffraktogramm keine Fremdreflexe zeigt. Zu beachten ist hierbei, dass die Quellenseite der Ampulle nach beendeter Reaktion zuerst abgekühlt wird, um die Rekombination von $CrCl_2$ und AlCl₃ zu vermeiden und das Aluminiumchlorid auf der Eduktseite abzufangen.

4.4.3 Eisentrichlorid FeCl₃

Wasserfreies Eisentrichlorid wird durch Chlorierung des wie in 4.3.3 dargestellten Eisenpulvers an der Chlorierungsanlage erhalten. Hierzu werden ca. 5 g Eisenpulver in einem Quarz- oder Korundschiffchen in einem ca. 70 cm langen Duranrohr mit zwei Verjüngungen vorgelegt. Im U-Rohr der Anlage werden mithilfe eines Ethanol-Trockeneis-Kühlbads ca. 25 ml flüssigen Chlors einkondensiert. Dieses wird durch langsames Verdunsten im leichten Argonstrom über das Eisenpulver geleitet, wobei eine Temperatur von 320 °C eingestellt wird. Die erste Verjüngung des Reaktionsrohrs liegt dabei noch im Ofenbereich, die zweite am Ende, so dass das entstehende gasförmige Eisentrichlorid zwischen den Einschnürungen kondensieren kann, ohne diese zu blockieren. Durch diese Reaktionsführung liegt das FeCl₃ anschließend durch Abschmelzen der Verjüngungen unter Vakuum direkt in einer Sublimationsampulle vor. Dieser abschließende Reinigungsschritt wird in einem von $150 \circ C \rightarrow RT$ durchgeführt. In pulverdiffraktometrischen Temperaturgefälle Untersuchungen zeigten sich anschließend keine Fremdreflexe.

4.4.4 Eisendichlorid FeCl₂

Analog zur Darstellung von CrCl2 wird entsprechend der Reaktion

$$Fe + 2FeCl_3 \xrightarrow{200^{\circ}C} 3FeCl_2$$
 (Gl. 4.11)

Eisen(II)-chlorid erzeugt und mit AlCl₃ über einen Temperaturgradienten von 200 nach 250 °C transportiert. Die bei 200 °C entstehenden Gasphasenkomplexe FeAl₂Cl₈ bzw. FeAl₃Cl₁₁ **[36]** werden in der heißen Ampullenseite thermisch zu FeCl₂ und AlCl₃ zersetzt, wonach letzteres wieder als Transportmittel zur Verfügung steht. Auch bei dieser Transportreaktion ist zu beachten, dass die Quellenseite abschließend zuerst auf Raumtemperatur gebracht wird, um das AlCl₃ hier abzuscheiden. Das erhaltene Eisen(II)-chlorid wies im Pulverdiffraktogramm keine Fremdreflexe auf.

5 Synthese der Tetrachloroaluminate und -gallate zweiwertiger Metallkationen

5.1 Syntheseparameter zur Bildung der Tetrachloroaluminate

5.1.1 Synthesewege

Die Synthese der Tetrachloroaluminate zweiwertiger Metallkationen gelang entsprechend der Reaktionsgleichung 5.1 über zwei Wege:

$$MCl_2 + 2AlCl_3 \xrightarrow{\Delta T} M[AlCl_4]_2$$
 (Gl. 5.1)

Einerseits konnten viele der Produkte durch Kristallisation aus einer Aluminiumchloridschmelze erhalten werden, wobei dieses in erheblichem Überschuss eingesetzt und im Anschluss an die Reaktion von den schwerer flüchtigen Zielsubstanzen absublimiert wurde (Kap. 5.1.2). Zum anderen gelangen aufgrund des hohen Dampfdruckes des Aluminiumchlorids auch Synthesen unterhalb dessen Schmelztemperatur, was jedoch erheblich längere Reaktionszeiten mit sich brachte und nur in Ausnahmefällen Anwendung fand, so z.B. bei der Bildung relativ leicht flüchtiger Produkte (Kap. 5.1.3).

Einige der Produkte konnten durch Sublimation bzw. Gasphasentransport gereinigt werden. Teilweise wurde durch diese Methoden auch die Qualität der erhaltenen Kristalle erheblich verbessert.

Wie in Kap. 2 beschrieben wurden zur Vorbereitung der Reaktionsgemische an der Schutzgasanlage im Feinvakuum Schlenkrohre mit aufgesetzten Borosilikatampullen bis zur Druckkonstanz ausgeheizt. In die Schlenkrohre wurden anschließend im Argongegenstrom die Edukte AlCl₃ und *M*Cl₂ eingefüllt, die Substanzmengen wurden durch Rückwiegen der Vorratsampullen ermittelt. Mit einem ausgeheizten und im Argongegenstrom abgekühlten Glaspistill wurden die Substanzen innig miteinander vermengt und anschließend in die entsprechende Ampulle überführt.

Zur Erleichterung des Abschmelzens unter Vakuum wurden die Ampullen zuvor mit einer Verjüngung versehen, um unkontrolliertes Zusammenziehen der Glaswand während des Schmelzvorgangs zu vermeiden. Nach dem Abschmelzen wurde die Schmelzstelle in der leuchtenden Brennerflamme getempert, um Spannungen im Glas durch zu schnelles Abkühlen zu minimieren. Die Abmessungen der Reaktionsampullen betrugen in der Regel: $\emptyset = 10$ mm, Wandstärke = 1 mm, Länge = 120-150 mm. Ausnahmen hiervon sind markiert und werden im Anschluss an die untenstehenden Übersichtstabellen erläutert.

5.1.2 Reaktionen in einer Aluminiumchloridschmelze mit anschließendem Absublimieren des AlCl₃-Überschusses

Zur Darstellung einkristalliner Produkte der Zusammensetzung M[AlCl₄]₂ aus Aluminiumchloridschmelzen wurden die Edukte im Verhältnis MCl₂: AlCl₃ = 1 : 3-4 eingesetzt, in Abhängigkeit von der Löslichkeit des jeweiligen Metalldichlorids in der AlCl₃-Schmelze. Diese kann gut visuell abgeschätzt werden, anhand der Homogenität und Farbigkeit der Schmelze sowie der Menge des ungelösten MCl₂.

In Fällen schlechter Löslichkeit wurden anschließend Versuche zur Erhöhung der Reaktionsgeschwindigkeit durch Überführen der Produkte in die Gasphase und anschließende Abscheidung an kälteren Stellen der Reaktionsampullen unternommen. Das wichtigste Beispiel hierfür ist die Bildungsreaktion von Ni[AlCl₄]₂ [**37**]. NiCl₂ zeigt unter den behandelten Metalldichloriden mit Abstand die schlechteste Löslichkeit in geschmolzenem Aluminiumchlorid. Das entsprechende Tetrachloroaluminat konnte bei den zum Aufschmelzen erforderlichen 200-210 °C nicht isoliert werden, sondern wurde durch Abscheidung in einem Temperaturgradienten als einkristallines Produkt erhalten. Die hierzu entwickelten Reaktionsparameter werden im Kapitel 5.1.3 beschrieben.

Tabelle 5.1 gibt eine Übersicht über die Reaktionsparameter zur Darstellung der $M[AlCl_4]_2$ aus Aluminiumchloridschmelzen. Die Reaktionsampullen wurden nach der angegebenen Reaktionsdauer mit 5-10 °/h abgekühlt, was in der Regel zur Bildung phasenreiner Produkte führte. Der Überschuss an Aluminiumchlorid wurde im Anschluss an die jeweilige Reaktion in einem Temperaturgradienten von 70 °C \rightarrow RT absublimiert.

Summen- formel	Einwaa Stoffmen <i>M</i> o	age /mg ge /mmol Cl ₂	Einwaa Stoffmen Al	age /mg ge /mmol Cl ₃	Stoffmengen- verhältnis <i>M</i> Cl ₂ :AlCl ₃	T /°C	Reaktions- dauer /d
V[AlCl ₄] ₂	138,2	1,134	516,7	3,875	1:3,42	200-210	5
Cr[AlCl ₄] ₂	204,4	1,663	712,4	5,343	1:3,21	190-200	3
Mn[AlCl ₄] ₂	153,8	1,222	532,4	4,218	1:3,45	200-210	3
Fe[AlCl ₄] ₂	158,4	1,249	608,3	4,562	1:3,89	200-210	4
Sn[AlCl ₄] ₂	246,4	1,299	602,7	4,520	1:3,47	200-210	4
Pb[AlCl ₄] ₂	302,7	1,088	546,2	4,096	1:3,76	200-210	5

Tabelle 5.1: Reaktionsparameter zur Darstellung der *M*[AlCl₄]₂ aus AlCl₃-Schmelzen.

5.1.3 Reaktionen mit anschließender Überführung des Produktes über die Gasphase

Die Synthese von Tetrachloroaluminaten zweiwertiger Metallkationen durch Überführung der Zielverbindung über die Gasphase wurde vornehmlich bei Verbindungen eingesetzt, bei deren Bildung es zur Beobachtung von flüchtigen Produkten kam. Hier sind insbesondere Ni[AlCl₄]₂ und Cr[AlCl₄] zu nennen, aber auch V[AlCl₄]₂ und Fe[AlCl₄]₂ weisen bei den gewählten Reaktionstemperaturen einen deutlichen Dampfdruck auf. Bei diesen und einigen anderen Tetrachloroaluminaten wurden Versuche zur Synthese unter Temperaturgradienten unternommen, vornehmlich um die Qualität des Einkristallwachstums zu verbessern. In diesen Reaktionen wurde Aluminiumchlorid nur in sehr geringem Überschuss eingesetzt, was zur Folge hatte, dass trotz der relativ hohen Temperaturen (annähernd) kein Schmelzvorgang zu beobachten war, sondern das überschüssige AlCl₃ vornehmlich gasförmig vorlag. Die Quellenseite der Reaktionsampullen konnte auch unterhalb der Schmelztemperatur von Aluminiumtrichlorid, d.h. bei 170-180 °C gehalten werden. Diese Art der Reaktionsführung bedingte erheblich längere Reaktionszeiten und wurde nicht weiter verfolgt, da keine Verbesserung in der Kristallqualität erkennbar war.

Tabelle 5.2 gibt eine Übersicht über die Reaktionsbedingungen der Synthesen, die unter Temperaturgradienten durchgeführt wurden. Anschließend an die jeweils angegebene Reaktionsdauer wurden die Produkte durch vorsichtiges Absublimieren der geringen Mengen an überschüssigem AlCl₃ gereinigt.

Summen- formel	Einwaage /mg Stoffmenge /mmol <i>M</i> Cl ₂		Einwaage /mg Stoffmenge /mmol AlCl ₃		Stoffmengen- verhältnis <i>M</i> Cl ₂ :AlCl ₃	T /°C	Reaktions- dauer /d
V[AlCl ₄] ₂	124,3	1,020	298,8	2,241	1:2,20	$230 \rightarrow 200$	8
Cr[AlCl ₄] ₂	138,7	1,128	332,8	2,496	1:2,21	$200 \rightarrow 120$	5
Fe[AlCl ₄] ₂	144,2	1,138	345,8	2,594	1:2,28	$230 \rightarrow 200$	8
Ni[AlCl ₄] ₂	72,3	0,558	174,8	1,311	1:2,35	$200 \rightarrow 80$	6

Tabelle 5.2: Reaktionsparameter zur Bildung der leichter flüchtigen *M*[AlCl₄]₂.
5.1.4 Darstellung von Ti[AlCl₄]₂ – Redox- bzw. Thermitreaktion

Die wichtigste Ausnahme von den oben genannten Darstellungsmöglichkeiten bildet die Reaktion zu den unterschiedlichen Modifikationen des Titan(II)-tetrachloroaluminats. Die direkte Darstellung dieser Phasen aus den Edukten TiCl₂ und AlCl₃ gelingt nicht. Titandichlorid weist als einziges der verwendeten Metalldichloride eine dunkelgraue bis schwarze Farbe auf, hervorgerufen durch hohe metallische Bindungsanteile im TiCl₂. Diese verhindern auch nach thermischer Zersetzung des Produktes eine Rückreaktion:

$$Ti[AlCl_4]_2 \to TiCl_2 + 2AlCl_3 \qquad (Gl. 5.2)$$

Titan stellt nach Berechnungen von *P. Schmitt* **[38]** eines der wenigen Metalle dar, die bei erhöhten Temperaturen von Aluminiumtrichlorid zum entsprechenden Dichlorid oxidiert werden können:

$$3Ti + 8AlCl_3 \rightarrow 3Ti[AlCl_4]_2 + 2Al \qquad (Gl.5.3)$$

Zur Synthese des γ -Ti[AlCl₄]₂ wurden 72,1 mg (1,506 mmol) Titan und 592,4 mg (4,443 mmol) Aluminiumchlorid unter Ar-Schutzgas in einem Schlenkrohr innig miteinander vermengt und in eine Reaktionsampulle mit den Abmessungen $\emptyset = 20$ mm, Wandstärke = 1,5 mm, Länge = 400 mm gefüllt. Die Oxidation des Titans erfolgt schon ab 200 °C (Quellseite). Die Abscheidungstemperaturen der drei unterschiedlichen Phasen liegen zwischen 225 und 240 °C, somit findet hier ein exothermer Gasphasentransport statt.

Bezeichnung der Phase	Abscheidungstemperatur /°C	Reaktionsdauer /d
α-Ti[AlCl ₄] ₂	225	7
β -Ti[AlCl ₄] ₂	230-235	8
γ -Ti[AlCl ₄] ₂	240	10

Tabelle 5.3: Abscheidungstemperaturen der drei Phasen von Ti[AlCl₄]₂.

Durch Einstellen der oben genannten Senkentemperaturen konnte die jeweils gewünschte Phase einzeln abgeschieden werden. Hierbei war zu beobachten, dass die Bildung der γ -Phase mit Abstand die geringste Ausbeute aufwies. Kalorimetrische Messungen zeigten, dass die Abscheidungstemperatur von γ -Ti[AlCl₄]₂ mit 240 °C nur knapp unter der Zersetzungstemperatur der Titantetrachloroaluminate (245-250 °C) liegt. Daher war bei der Bildungsreaktion der γ -Phase stets ein deutlicher Anteil von schwarzem TiCl₂ auf der Senkenseite der Ampulle zu beobachten, das Produkt fiel nur in Form einzelner Kristalle an.

5.2 Syntheseparameter zur Bildung der Tetrachlorogallate

Die Synthese der Tetrachlorogallate zweiwertiger Metallkationen gelang ausnahmslos aus Galliumtrichloridschmelzen. Der Umstand, dass GaCl₃ im Feinvakuum schon bei 40 °C sublimierbar ist, erleichterte die Reinigung der bei ausreichender Reaktionsdauer phasenrein anfallenden Produkte erheblich.

Ähnlich einigen Tetrachloroaluminaten neigen auch mehrere der $M[GaCl_4]_2$ zum Übergang in die Gasphase. Insbesondere für M = Ni, V, Fe und Cr schieden sich die Produkte teilweise in Form sehr gut gewachsener Einkristalle an kälteren Stellen der Reaktionsampullen ab. Diese waren hervorragend für die Strukturaufklärung mittels Röntgendiffraktometrie geeignet.

Die Probenvorbereitung wurde entsprechend den Tetrachloroaluminaten in Schlenkrohren mit aufgesetzten Borosilikatampullen durchgeführt. Aufgrund des hohen Dampfdrucks des Galliumtrichlorids wurde die Apparatur während des Abschmelzens im Feinvakuum mit einem Hahn verschlossen, um Verfälschung der Einwaage sowie Verunreinigung der Schutzgasanlage zu minimieren.

Die Abmessungen der Reaktionsampullen betrugen wie bei der Synthese der Tetrachloroaluminate: $\emptyset = 10$ mm, Wandstärke = 1 mm, Länge = 120-150 mm.

Tabelle 5.4 gibt eine Übersicht über die Reaktionsparameter zur Darstellung der $M[GaCl_4]_2$ aus GaCl₃-Schmelzen. Im Anschluss an die angegebenen Reaktionszeiten wurden die Ampullen mit 5-10 °/h abgekühlt. Abschließend wurde der Überschuss an GaCl₃ unter einem Temperaturgradienten von 50 °C \rightarrow RT absublimiert.

Summen-	Einwa: Stoffmen	age /mg ge /mmol	Einwaa Stoffmen	age /mg ge /mmol	Stoffmengen -verhältnis	T	Reaktions-
formel	M	Cl ₂	GaCl ₃		MCl ₂ :GaCl ₃	/°C	dauer /d
V[GaCl ₄] ₂	179,12	1,47	917,38	5,21	1:3,54	190	3
α -Cr[GaCl ₄] ₂	199,11	1,62	1031,83	5,86	1:3,62	200	7
α -Mn[GaCl ₄] ₂	181,22	1,44	952,59	5,41	1:3,76	200	5
β -Mn[GaCl ₄] ₂	201,36	1,60	795,88	4,52	1:2,83	220	5
Fe[GaCl ₄] ₂	157,18	1,24	618,04	3,51	1:2,83	195	3
Co[GaCl ₄] ₂	176,58	1,36	758,90	4,31	1:3,17	190	3
Ni[GaCl ₄] ₂	152,94	1,18	600,43	3,41	1:2,89	180	6
Pd[GaCl ₄] ₂	246,49	1,39	709,60	4,03	1:2,90	190	3
Mg[GaCl ₄] ₂	83,79	0,88	552,89	3,14	1:3,57	195	5
Ca[GaCl ₄] ₂	129,83	1,17	672,63	3,82	1:3,26	190	7
Sr[GaCl ₄] ₂	304,38	1,92	1132,19	6,43	1:3,35	190	4
Ba[GaCl ₄] ₂	274,88	1,32	919,14	5,27	1:3,95	200	4
Sn[GaCl ₄] ₂	307,18	1,62	982,53	5,58	1:3,44	200	4
Pb[GaCl ₄] ₂	584,03	2,10	1052,96	5,98	1:2,85	200	3

Tabelle 5.4: Reaktionsparameter zur Bildung der *M*[GaCl₄]₂ aus GaCl₃-Schmelzen.

6 Strukturbeschreibung der Tetrachloroaluminate und -gallate

6.1 Metallatome in (verzerrt) oktaedrischer Koordinationssphäre

Im Folgenden werden die Kristallstrukturtypen der im Verlauf dieser Arbeit dargestellten Tetrachloroaluminate bzw. -gallate beschrieben, deren M^{2+} -Ionen in (verzerrt) oktaedrischer Koordination vorliegen. Dabei wird ersichtlich, dass sämtlichen strangartig aufgebauten Verbindungen einige gemeinsame Aufbauprinzipien zugrunde liegen:

- das Prinzip einer hexagonal dichten Chloridionenpackung mit geordneter Besetzung je eines Achtels der Oktaeder- und Tetraederlücken mit M^{2+} bzw. T^{3+} -Ionen,
- die Ausbildung von [*M*Cl₆]-Oktaedern, koordiniert von vier [AlCl₄]-Tetraedern, davon zwei über gemeinsame Kanten und zwei über eine Ecke mit dem Oktaeder verknüpft,
- die Bildung von infiniten Polyedersträngen senkrecht zu den Schichten der hexagonalen Chloridionenpackung,
- die Anordnung dieser Polyederstränge in Form einer hexagonalen Stabpackung.

Anschließend an die eigentliche Strukturbeschreibung und das Nachvollziehen der oben genannten Kriterien werden für jeden Strukturtyp die relevanten Unterschiede in der Erfüllung dieser Punkte aufgezeigt und verglichen:

- erfolgt die Besetzung der Oktaeder- und Tetraederlücken gemischt oder nach Schichten getrennt?
- in welcher Anordnung erfolgt die Vernetzung der Oktaeder durch die [AlCl₄]-Tetraeder (*cis/trans*-Stellung der Eckenverknüpfungen)?
- wie sind die einzelnen Stränge in der hexagonalen Stabpackung angeordnet?
- wie wirkt sich der Grad der Verzerrung der [*M*Cl₆]-Oktaeder auf die Anordnung der Stränge aus?

Den schichtartig aufgebauten Verbindungen liegt ebenfalls das Motiv einer hexagonal-dichten Packung von Chloridionen zugrunde. Bei der Beschreibung ihrer Kristallstrukturen werden einige der oben genannten Kriterien aufgegriffen, wie z. B. die Besetzung der Lücken in den Zwischenschichten der Chloridionenpackung und die Art der Vernetzung der Oktaeder. Besonderes Augenmerk wird auf die Lage der Polyederschichten in Bezug auf die Ausrichtung der hexagonalen Anionenpackung in Zusammenhang mit der gemischten/ alternierenden Besetzung der Oktaeder- und Tetraederlücken gelegt.

6.1.1 Strukturtypen mit strangartiger Polyederverknüpfung

Im ersten Teil dieses Kapitels werden die Kristallstrukturen der $M[AlCl_4]_2$ bzw. $M[GaCl_4]_2$ mit strangförmiger Polyederverknüpfung beschrieben, entsprechend dem Verlauf zunehmender Verzerrung von der ideal-oktaedrischen Koordination [MCl_6] des zentralen Metallatoms. Strukturchemisch lassen sie sich in drei Gruppen einteilen:

- Metallatome in schwach verzerrt oktaedrischer Umgebung,
- solche in oktaedrischer Koordination, die einer Jahn-Teller-Verzerrung unterworfen sind, jedoch der lange *M*-Cl-Kontakt noch deutlich im Bereich der Summe der van-der-Waals-Radien liegt, und
- Palladiumtetrachlorogallat bzw. -aluminat, in denen die Pd-Atome aufgrund ihrer *d*⁸-Konfiguration quadratisch-planar koordiniert vorliegen.

Der wachsende Grad der Verzerrung der [*M*Cl₆]-Oktaeder geht einher mit zunehmend molekularem Charakter der Verbindungen, der sich auch in der Sublimierbarkeit der betreffenden Produkte niederschlägt.

V[AlCl₄]₂-Typ:

Exemplarisch für den ersten Typ von Verbindungen mit strangartiger Verknüpfung, in denen die zweiwertigen Kationen oktaedrisch koordiniert sind, wird im Folgenden am Beispiel von Vanadium(II)-tetrachloroaluminat [16] die Kristallstruktur dieser Substanzklasse beschrieben. Es stellt den ersten im Verlauf dieser Arbeit gefundenen Vertreter einer Gruppe von Übergangsmetalltetrachloroaluminaten und -gallaten dar, in denen die Koordinationssphäre der zweiwertigen Zentralatome nicht durch Ligandenfeld-bedingte Einflüsse verzerrt wird.

V[AlCl₄]₂ kristallisiert monoklin in der Raumgruppe *I* 2/*c* (N \ge 15) mit den Gitterparametern a = 12,846(3), b = 7,7634(18) und c = 11,635(2) Å. Der monokline Winkel β liegt bei 92,376(10) °, das Zellvolumen *V* beträgt 1159,3(6) Å³. In der Elementarzelle sind Z = 4 Formeleinheiten enthalten.

Vanadium(II)-tetrachloroaluminat und die isotyp kristallisierenden Verbindungen (Tab. 6.1) bilden somit den bereits von *Ibers* bestimmten Strukturtyp des Co[AlCl₄]₂ **[6]** aus.

Summen-	x/a	v/b	7/0	ß	$V/Å^3$
formel	<i>x</i> / <i>u</i>	yı b	4/C	μ	V /A
Mn[AlCl ₄] ₂	12,8649(20)	7,9120(15)	11,6479(17)	92,222(10)	1148,7(5)
Fe[AlCl ₄] ₂	12,8468(20)	7,8027(14)	11,5737(13)	92,223(8)	1159,3(4)
Ni[AlCl ₄] ₂	12,7667(17)	7,7079(14)	11,4691(17)	92,111(10)	1127,8(4)
V[GaCl ₄] ₂	12,839(4)	7,7643(21)	11,703(3)	92,068(21)	1152,4(8)
β -Mn[GaCl ₄] ₂	12,8895(22)	7,7927(23)	11,7217(18)	91,867(11)	1176,7(6)
Fe[GaCl ₄] ₂	12,849(5)	7,7122(22)	11,651(3)	91,906(19)	1153,9(8)
Co[GaCl ₄] ₂	12,8158(24)	7,6660(21)	11,613(3)	91,876(14)	1140,3(6)
Ni[GaCl ₄] ₂	12,6847(7)	7,5773(3)	11,5434(5)	91,778(4)	1108,97(23)

Tabelle 6.1: Gitterparameter der isotyp zu V[AlCl₄]₂ kristallisierenden Verbindungen.

Die Darstellung der hier aufgeführten Verbindungen gelang ausnahmslos phasenrein, was die Verfeinerung der Gitterparameter aus Röntgenpulverdaten erlaubte. Die Pulverdiffraktogramme samt Indizierung, Datenblätter, Atomkoordinaten, Auslenkungsparameter sowie Bindungslängen und -winkel der isotyp zu V[AlCl₄]₂ kristallisierenden Verbindungen finden sich im Anhang (A1-A9).

Die Vanadiumatome (d^3 -Konfiguration) sind oktaedrisch von sechs Chloratomen umgeben. Diese gehören zu vier kristallographisch äquivalenten Tetrachloroaluminationen. Von diesen koordinieren je zwei zweizähnig und zwei einzähnig an *cis*-ständige Ecken des Oktaeders (Abb. 6.1). Die Benennung der Atome in dieser Darstellung gilt für alle in diesem Strukturtyp kristallisierenden Verbindungen, deren Atomkoordinaten und Bindungsparameter in diesem Kapitel oder im Anhang genannt werden.

Abbildung 6.1: Erweiterte asymmetrische Einheit der Struktur von V[AlCl₄]₂. Die thermischen Schwingungsellipsoide entsprechen einer Aufenthaltswahrscheinlichkeit der Atome von 70 %.

Tabelle 6.2 zeigt die Koordinaten, Wyckoff-Lagen und isotropen Auslenkungsparameter der Atome in der Elementarzelle von V[AlCl₄]₂. Die Wyckoff-Lage *4e* des Vanadiumatoms mit der Lagesymmetrie 2 entspricht einer Position auf der zweizähligen Achse in *b*-Richtung der monoklinen Zelle. Die Koeffizienten der anisotropen Temperaturfaktoren finden sich im Anhang A1 wieder.

Atom	Wyckoff	Symmetrie	x/a	<i>y/b</i>	z/c	U _{eq}
V	4e	2	0	0,00409(9)	1⁄4	0,03069(19)
Al	8f	1	0,08860(8)	0,25110(12)	0,55352(7)	0,03254(23)
Cl1	8f	1	0,16001(8)	0,47891(11)	0,60907(8)	0,04840(24)
Cl2	8f	1	0,15762(7)	0,02194(10)	0,63187(6)	0,03835(20)
C13	8f	1	0,08760(7)	0,23940(10)	0,36841(6)	0,03844(20)
Cl4	<u>8f</u>	1	-0,06787(7)	0,22438(10)	0,61490(6)	0,03760(20)

 Tabelle 6.2: Koordinaten, Wyckoff-Lagen und isotrope Auslenkungsparameter der Atome in der Elementarzelle von V[AlCl₄]₂.

Je zwei dieser leicht verzerrten Tetraeder verknüpfen die $[VCl_6]$ -Oktaeder miteinander zu eindimensional-infiniten Strängen entlang [001]. Das Vanadiumatom liegt auf einer Lage der Symmetrie 2 (2-zählige Achse in *b*-Richtung), die drei kristallographisch unterschiedlichen Vanadium-Chlor-Abstände weichen nur geringfügig voneinander ab.

Abbildung 6.2: Ausschnitt aus der Struktur von V[AlCl₄]₂. Dargestellt ist ein Segment aus den eindimensional infiniten Stränge (V[AlCl₄]₂)_n, die entlang [001] verlaufen.

 Bindungslängen und -winkel in der asymmetrischen Einheit von V[AlCl₄]₂.

 Bindungspaar
 Bindungspaar

 Bindungspaar
 Bindungspaar

Bindungspaar	Bindungslange / A	Bindungspaar	Bindungslange / A
V-C12	2,5014(8)	Al-Cl1	2,0832(13)
V-C13	2,5250(9)	Al-Cl2	2,1719(12)
V-Cl4	2,5033(9)	Al-Cl3	2,1556(11)
		Al-Cl4	2,1701(13)

Atomverknüpfung	Bindungswinkel /°	Atomverknüpfung	Bindungswinkel /°
C12-V-C13	96,38(3)	Cl1-Al-Cl2	113,49(6)
C12-V-C14	82,32(3)	Cl1-Al-Cl3	109,29(5)
C13-V-C14	91,97(3)	Cl1-Al-Cl4	112,39(6)
Cl2-V-Cl2'	170,73(5)	Cl2-Al-Cl3	111,75(5)
Cl3-V-Cl4'	172,50(3)	Cl2-Al-Cl4	98,69(5)
Cl4-V-Cl3'	172,50(3)	Cl3-Al-Cl4	110,93(5)

Tabelle 6.3 gibt eine Aufstellung der in der asymmetrischen Einheit relevanten Bindungslängen und -winkel wieder. Die Abweichungen des Cl2-V-Cl4-Winkels von 90 ° lassen sich durch die Kation-Kation-Abstoßung zwischen den Vanadium- und Aluminium-Ionen an den verbrückenden Kanten der Polyeder erklären. Diese führt hier zu einer Verringerung des interatomaren Winkels. Weitere den Oktaeder verzerrende Effekte werden an dieser Stelle weder erwartet noch beobachtet.

Innerhalb der Tetrachloroaluminationen treten koordinationsbedingt Abweichungen von der Symmetrie eines idealen Tetraeders auf. Die Al-Cl-Abstände zu den an das Vanadiumatom koordinierenden Chloratomen Cl2-4 sind erheblich größer als derjenige zum endständigen Chloratom Cl1. Aus oben genanntem Grund ist der Cl2-Al-Cl4-Winkel zwischen den Kanten-Chloratomen erheblich geringer als im idealen Tetraeder.

Die von den [VCl₆]-Oktaedern und [AlCl₄]-Tetraedern gebildeten Stränge lagern sich in der Kristallstruktur von V[AlCl₄]₂ parallel ausgerichtet zu einer hexagonalen Stabpackung zusammen (Abb. 6.3). Dieser Umstand spiegelt sich auch im nadelförmigen Habitus der Kristalle von V[AlCl₄]₂ und dem Umstand, dass diese bei mechanischer Beanspruchung leicht entlang der Nadelachse aufspleissen, wider. Die Stränge unterliegen einer geringen seitlichen Verzahnung, die kürzesten Abstände zwischen zwei Chloratomen liegen mit 3,64 Å im Bereich der Summe der Van-der-Waals-Radien. Jedoch wird durch die in *c*-Richtung übereinander liegenden Chloratome eine gewisse Verzahnung der Stränge in *b*-Richtung ausgebildet.

Abbildung 6.3: Die Struktur von V[AlCl₄]₂ in einer Projektion entlang der *c*-Achse. Aus dieser Blickrichtung ist die hexagonale Stabpackung der Polyederstränge deutlich zu erkennen.

Alternativ zur Beschreibung der direkten Bindungssituation lässt sich die Kristallstruktur von V[AlCl₄]₂ als hexagonal-dichte Packung von Chloratomen mit geordneter Teilbesetzung der Oktaeder- und Tetraederlücken durch Vanadium- und Aluminiumatome auffassen.

Abb. 6.4 zeigt die Schichtung der Chloratome in der Elementarzelle von V[AlCl₄]₂ mit Blick parallel zur *a-b*-Ebene. Hier wird ersichtlich, dass Schichtstapelung durch den von 90° abweichenden monoklinen Winkel leicht seitlich versetzt ist. Die Schichtfolge ist somit als ABA'B' zu beschreiben. Die Schichten der pseudohexagonalen Packung von Chloratomen liegen senkrecht zur Ausbreitungsrichtung der eindimensionalen Polyederstränge, also parallel zur *a-b*-Ebene der Elementarzelle.

Abbildung 6.4: Hexagonal-dichteste Schichtpackung von Chloratomen in der Struktur von V[AlCl₄]₂. Der monokline Winkel von 92,37 ° bewirkt eine seitliche Verschiebung der Schichten zu einer Stapelfolge ABA'B'.

In der Struktur von V[AlCl₄]₂ sind zwischen den Schichten von Chloratomen alternierend Oktaeder- und Tetraederlücken besetzt. Die Vanadiumatome liegen in jeder zweiten Zwischenschicht in ¹/₄ der Oktaederlücken (Abb. 6.5). Die halbtransparenten grauen Polyeder entsprechen den unbesetzten Oktaederlücken, somit sind von insgesamt acht vorhandenen Lücken einer Zwischenschicht zwei mit V-Atomen besetzt. Sieht man von der seitlichen Verschiebung durch den monoklinen Winkel ab, liegen die V-Atome in den Oktaederlücken der übernächsten Zwischenschicht deckungsgleich über den oben genannten. Dieser Umstand ergibt sich zwingend aus dem eindimensional ausgerichteten Aufbau der Kristallstruktur.

Abbildung 6.5: Die Struktur von V[AlCl₄]₂ mit Blick auf die *a-b*-Ebene. In dieser Blickrichtung zeigt sich die Besetzung von einem Viertel der Oktaederlücken mit Vanadiumatomen, die grauen Polyeder stellen unbesetzte Oktaederlücken dar.

Die Aluminiumatome besetzen in den verbleibenden Zwischenschichten ein Viertel der Tetraederlücken (Abb. 6.6). Hier entsprechen die halbtransparenten Polyeder den unbesetzten Tetraederlücken, somit sind von 16 vorhandenen Lücken vier mit Al-Atomen besetzt. Durch den Positionswechsel der [AlCl₄]-Tetraederpaare um die Achsen, die durch die zentralen Vanadiumatome parallel zu [001] gebildet werden, nehmen die Al-Atome erst in der vierten Zwischenschicht der Chloridionenpackung wieder deckungsgleiche Positionen ein.

Abbildung 6.6: Die Struktur von V[AlCl₄]₂ mit Blick auf die *a-b*-Ebene. Gezeigt wird die Besetzung von einem Viertel der Tetraederlücken mit Aluminiumatomen, die grauen Polyeder stellen unbesetzte Tetraederlücken dar.

Aus der unterschiedlichen Stellung der [AlCl₄]-Tetraeder zwischen den Schichten AB' bzw. A'B resultiert die im Vergleich zu den im Weiteren beschriebenen Strukturtypen verdoppelte Länge der Strangachse Abb. 6.7 zeigt die Gesamtbesetzung der Oktaeder- und Tetraederlücken in der Elementarzelle von V[AlCl₄]₂. Die alternierende Besetzung der entsprechenden Lücken der Zwischenschichten ergibt sich aus der Tatsache, dass die einzelnen Polyederstränge in *c*-Richtung der Elementarzelle nicht gegeneinander verschoben sind.

Abbildung 6.7: Projektion der Struktur von V[AlCl₄]₂ entlang der *b*-Achse. Die Gesamtbesetzung der Oktaeder- und Tetraederlücken in der pseudohexagonalen Schichtpackung von Chloratomen erfolgt streng nach Zwischenschichten getrennt.

Als Variante der hexagonal-dichtesten Kugelpackung mit geordneter Lückenbesetzung lässt sich die Kristallstruktur von V[AlCl₄]₂ durch eine gruppentheoretische Ableitung von der hexagonal-dichtesten Chloridionenpackung mit Oktaeder- und Tetraederlücken mithilfe eines Symmetriestammbaums nach Bärnighausen [**39**] beschreiben. Durch sukzessive Aufweitung der Struktur des Aristotypen, den damit einhergehenden Symmetrieabbau und die teilweise Besetzung der entstehenden Lückenpositionen lässt sich die kristallographische Gruppe-Untergruppe-Beziehung der beiden Strukturtypen problemlos nachvollziehen.

Die Schritte der strukturellen Ableitung sowie die Zusammenhänge zu verwandten Strukturtypen der Substanzklasse $M^{II}[TCl_4]_2$ werden in Kapitel 7 beschrieben und diskutiert.

<u>y-Ti[AlCl₄]₂-Typ:</u>

Der zweite im Rahmen dieser Arbeit gefundene Strukturtyp, in dem das Metallkation im $[MCl_6]$ -Oktaeder keinen nennenswerten Ligandenfeld-bedingten Verzerrungen unterworfen ist, stellt das γ -Ti[AlCl_4]₂ als dritte Modifikation von Titan(II)-tetrachloroaluminat dar. Es kann, wie in Kap. 5.1.4 beschrieben, nicht direkt aus den Edukten TiCl₂ und AlCl₃ erhalten werden, da diese Reaktion durch die Metall-Metall-Wechselwirkungen im TiCl₂ verhindert wird. Die unterschiedlichen Phasen von Ti[AlCl_4]₂ können nur durch eine Thermitreaktion zwischen elementarem Titan und Aluminiumchlorid unter einem Temperaturgradienten von 200 \rightarrow 225-240 °C synthetisiert werden. Die Abscheidungstemperatur der γ -Phase liegt mit 240 °C, wie DSC-Messungen bestätigten, sehr knapp unterhalb der Zersetzungstemperatur der Titantetrachloroaluminate von 245 °C. Somit ist hier von einer Hochtemperaturphase im System Ti/Al/Cl zu sprechen, die nur in einem sehr schmalen Temperaturfenster zu isolieren ist. Dieser Umstand erklärt auch, dass bisher lediglich sehr geringe Mengen in Form weniger Kristalle dargestellt werden konnten.

γ-Ti[AlCl₄]₂ kristallisiert orthorhombisch in der Raumgruppe *Pnnm* (№ 58) mit den Gitterparametern a = 5,9643(4), b = 12,2470(11), c = 8,1690(7) Å. Das Zellvolumen beträgt V = 596,70 Å³, in der Elementarzelle sind Z = 2 Formeleinheiten enthalten.

Die Titanatome (d^2 -Konfiguration) sind oktaedrisch von sechs Chloratomen umgeben. Diese gehören zu vier kristallographisch äquivalenten Tetrachloroaluminationen, von denen je zwei zweizähnig koordinieren, während zwei einzähnig an *trans*-ständige Ecken des Oktaeders (Abb. 6.8) gebunden sind. Diese Anordnung der [AlCl₄]-Tetraeder wurde bisher bei keinem anderen Strukturtyp mit strangartiger Polyederverknüpfung beobachtet. Je zwei dieser leicht verzerrten Tetraeder verknüpfen die [TiCl₆]-Oktaeder miteinander zu eindimensional-infiniten Strängen entlang [100] (Abb. 6.9).

Abbildung 6.8: Erweiterte asymmetrische Einheit der Struktur von γ-Ti[AlCl₄]₂. Die thermischen Schwingungsellipsoide entsprechen einer Aufenthaltswahrscheinlichkeit der Atome von 70 %.

Abbildung 6.9: Ausschnitt aus der Struktur von γ-Ti[AlCl₄]₂. Dargestellt ist ein Segment aus den eindimensional infiniten Stränge (Ti[AlCl₄]₂)_n, die entlang [100] verlaufen.

Tabelle 6.4 zeigt die Koordinaten, Wyckoff-Lagen und isotropen Auslenkungsparameter der Atome in der Elementarzelle von γ -Ti[AlCl₄]₂. Die Wyckoff-Lage 2b des Titanatoms mit der Lagesymmetrie 2/m entspricht einer Position auf dem Schnittpunkt der zweizähligen Achse in c-Richtung mit der entsprechenden Spiegelebene in der *a-b*-Ebene der Elementarzelle. Das Aluminiumatom befindet sich auf der speziellen Lage 4g mit der Symmetrie m, ebenso wie die Chloratome 1 und 3. Einzig Cl2 nimmt eine allgemeine Lage ein. Die Koeffizienten der anisotropen Temperaturfaktoren finden sich im Anhang A10. Tabelle 6.5 gibt eine Aufstellung der in der asymmetrischen Einheit relevanten Bindungslängen und -winkel wieder.

Tabelle 6.4: Koordinaten, Wyckoff-Lagen und isotrope Auslenkungsparameter der Atome in der Elementarzelle von γ-Ti[AlCl₄]₂.

Atom	Wyckoff	Symmetrie	x/a	<i>y/b</i>	z/c	U _{eq}
Ti	2b	2/m	0	0	1/2	0,03829(30)
Al	4g	т	0,60023(19)	0,18771(11)	1/2	0,03936(34)
Cl1	4g	т	0,23882(15)	0,17588(9)	1/2	0,04685(32)
Cl2	8h	1	0,73710(11)	0,09544(6)	0,29711(9)	0,04478(25)
C13	4g	т	0,70250(19)	0,35023(10)	1/2	0,05709(35)

Tabelle 6.5: Bindungslängen und -winkel in der asymmetrischen Einheit von γ-Ti[AlCl₄]₂.

Bindungspaar	Bindungslänge /Å	Bindungspaar	Bindungslänge /Å
Ti-Cl1	2,5824(11)	Al-Cl1	2,1605(14)
Ti-Cl2	2,5635(7)	Al-Cl2	2,1658(11)
		Al-Cl3	2,0817(17)

Atomverknüpfung	Bindungswinkel /°	Atomverknüpfung	Bindungswinkel /°
Cl1-Ti-Cl2	92,46(2)	Cl1-Al-Cl2	109,94(5)
Cl1-Ti-Cl2"	87,54(2)	Cl1-Al-Cl2'	109,94(5)
Cl2-Ti-Cl2'	80,56(3)	Cl1-Al-Cl3	110,88(7)
Cl1-Ti-Cl1'	180,00(0)	Cl2-Al-Cl3	112,86(5)
Cl2-Ti-Cl2"	180,00(4)	Cl2'-Al-Cl3	112,86(5)
Cl2'-Ti-Cl2"	180,00(2)	Cl2-Al-Cl2'	99,87(6)

Entsprechend der Argumentation bezüglich der Struktur von V[AlCl₄]₂ lassen sich auch im Aufbau der [TiCl₆]-Oktaeder die Abweichungen von der idealen Oktaedergeometrie durch repulsive Kation-Kation-Wechselwirkungen erklären, welche den mit 80,56 ° besonders engen Winkel zwischen Cl2-Ti-Cl2' ebenso wie den Cl2-Al-Cl2'-Winkel im [AlCl₄]-Tetraeder bewirken. Der aufgrund der d^2 -Konfiguration des Ti²⁺-Kations auftretende Jahn-Teller-Effekt liefert wie in vergleichbaren Verbindungen wie z.B. TiAl₂Br₈ [40] oder Na₂TiCl₄ [41] nur einen minimalen Beitrag zur Verzerrung der [TiCl₆]-Oktaeder.

Die [AlCl₄]-Tetraeder weisen ähnliche Unterschiede in den Bindungslängen und -winkeln auf wie diejenigen der V[AlCl₄]₂-Struktur. Auch hier ist der Abstand des Al-Atoms zum terminalen Cl-Atom Cl3 im Vergleich zu den verbrückenden Cl-Atomen Cl1/Cl2 erheblich verringert, und der Winkel Cl2-Al-Cl2' mit 99,87 ° wie schon oben angedeutet sehr klein.

Die Verknüpfung an *trans*-ständige Kanten der [TiCl₆]-Oktaeder führt zu deckungsgleich übereinanderliegend gestapelten [AlCl₄]-Tetraedern, im Gegensatz zu der alternierend versetzten Anordnung in der Strangstruktur von V[AlCl₄]₂.

Äquivalent zu der Anordnung in der Struktur von V[AlCl₄]₂ lagern sich die eindimensional infiniten Stränge in γ -Ti[AlCl₄]₂ parallel zu einer hexagonalen Stabpackung an (Abb. 6.11). Jedoch ist der nadelförmige Habitus der Kristalle erheblich weniger ausgeprägt als bei V[AlCl₄]₂, er ist eher als kompakt und quaderförmig zu beschreiben. Die Stränge sind in diesem Strukturtyp nicht seitlich ineinander geschoben, der kürzeste Chlor-Chlor-Abstand von 3,70 Å lässt nur auf schwache Van-der-Waals-Wechselwirkungen schließen und es tritt keine Verzahnung der Stränge auf.

Abbildung 6.10: Die Polyederstränge in der Struktur von γ-Ti[AlCl₄]₂ sind im Motiv einer hexagonalen Stabpackung ohne seitliche Verzahnung angeordnet.

Auch die *gamma*-Phase von Ti[AlCl₄]₂ lässt sich als hexagonal-dichteste Kugelpackung von Chloratomen mit geordneter Lückenbesetzung durch Titan- und Aluminiumatome beschreiben. Da γ -Ti[AlCl₄]₂ orthorhombisch kristallisiert, ist hier eine hexagonale Schichtbildung ABAB ohne seitliche Verschiebung, wie sie in der monoklinen Struktur von V[AlCl₄]₂ vorliegt, zu erkennen. Abb. 6.11 zeigt einen Ausschnitt der Struktur mit über die Grenzen der Elementarzelle erweiterter Chloratomumgebung. Die Schichten der Chloratompackung liegen senkrecht zur Ausbreitungsrichtung [100] der eindimensional infiniten Stränge, durch die orthorhombische Zellmetrik sind diese nicht wie in V[AlCl₄]₂ seitlich gegeneinander verschoben.

Abbildung 6.11: Projektion der Struktur von γ-Ti[AlCl₄]₂ entlang der *c*-Achse. Die Chloratome bilden eine hexagonal-dichteste Schichtpackung mit der Stapelfolge ABAB.

Die Kristallstruktur von γ -Ti[AlCl₄]₂ ist das erste Beispiel in der Reihe der strangartig aufgebauten $M^{II}[TCl_4]_2$, in welchem die Besetzung der Lücken in den Zwischenschichten der Packung von Chloratomen nicht separat erfolgt und bildet somit einen völlig neuen Strukturtyp. Die Stränge in der Kristallstruktur von γ -Ti[AlCl₄]₂ sind zu den in *b*- und *c*-Richtung um eine halbe Translationsperiode verschobenen Nachbarn ebenfalls um $\frac{1}{2}$ in Richtung [100] verschoben. Daraus resultiert mit Blick parallel zu den Schichten von Chloratomen eine zick-zack-förmige Besetzung der Zwischenschichten. Abb. 6.12 zeigt die anteilige Besetzung der Oktaederlücken mit Titanatomen.

Abbildung 6.12: Projektion der Struktur von γ-Ti[AlCl₄]₂ entlang der *c*-Achse. Die Besetzung der Oktaederlücken erfolgt in allen Zwischenschichten der hexagonal-dichten Chloratompackung, die besetzten Positionen sind in *a*-, *b*- und *c*-Richtung jeweils um ½ verschoben.

Die Titanatome besetzen in jeder Zwischenschicht ein Achtel der Oktaederlücken (Abb. 6.13). Verbunden mit der oben erwähnten translatorischen Versetzung der Stränge, die einen der Hauptunterschiede der Struktur von γ -Ti[AlCl₄]₂ im Vergleich zu der des V[AlCl₄]₂ ausmacht, werden insgesamt in der Zelle zwei der vorhandenen sechzehn Oktaederlücken besetzt.

Abbildung 6.13: Die Struktur von γ-Ti[AlCl₄]₂ mit Blick auf die *b-c*-Ebene. In dieser Blickrichtung zeigt sich die Besetzung von einem Achtel der Oktaederlücken mit Vanadiumatomen, die grauen Polyeder stellen unbesetzte Oktaederlücken dar.

Entsprechend besetzen die Al-Atome in jeder Zwischenschicht 1/8 der vorhandenen Tetraederlücken, was zu einer Gesamtbesetzung von vier der vorhandenen 32 Tetraederlücken führt (Abb. 6.14).

Abbildung 6.14: Die Struktur von γ-Ti[AlCl₄]₂ mit Blick auf die *b-c*-Ebene. Gezeigt wird die Besetzung von einem Achtel der Tetraederlücken mit Aluminiumatomen, die grauen Polyeder stellen unbesetzte Tetraederlücken dar.

Die Aluminiumatome besetzen entsprechend der strangartigen Verknüpfung der Polyeder diejenigen Tetraederlücken, die in der Ausbreitungsrichtung der Stränge [100] zwischen den durch Ti-Atome besetzten Oktaederlücken liegen (Abb. 6.15).

Abbildung 6.15: Die Projektion der Struktur von γ -Ti[AlCl₄]₂ entlang der *c*-Achse zeigt die gemischte Gesamtlückenbesetzung in den Zwischenschichten der hexagonal-dichten Packung von Chloratomen.

<u>Cr[AlCl₄]₂-Typ:</u>

Den dritten Strukturtyp mit strangartiger Polyederverknüpfung bildet das Chrom(II)tetrachloroaluminat [42]. In diesem neuen Strukturtyp erfährt die Koordinationssphäre am Zentralkation in der Klasse der $M^{II}[TCl_4]_2$ -Verbindungen eine deutliche ligendenfeld-bedingte Verzerrung. Die $3d^4$ -Konfiguration der Valenzelektronen am Chromatom lässt eine Streckung oder Stauchung der oktaedrischen Umgebung erwarten, bedingt durch den Jahn-Teller-Effekt. Chrom(II)-tetrachloroaluminat kristallisiert orthorhombisch in der Raumgruppe $Pca2_1$ ($N \ge 29$) mit den Gitterparametern a = 15,1138(3), b = 6,0471(1) und c = 13,0176(3) Å. Das Zellvolumen V beträgt 1189,74(4) Å³, in der Elemantarzelle sind Z = 4 Formeleinheiten enthalten.

Die Chromatome sind leicht verzerrt quadratisch-planar von vier Chloratomen umgeben. Diese gehören zu zwei kristallographisch unterschiedlichen Tetrachloroaluminat-ionen, die jeweils eine gemeinsame Kante mit dem [CrCl₄]-Quadrat ausbilden. Die je zwei verbleibenden Chloratome der [AlCl₄]-Tetraeder bilden keine Bindung zu weiteren Atomen aus, somit formt eine Formeleinheit auf den ersten Blick ein abgeschlossenes Molekül. Abb. 6.16 zeigt die asymmetrische Einheit von Cr[AlCl₄]₂.

Abbildung 6.16: Quadratisch-planare Koordinationssphäre des Cr²⁺-Ions in der Struktur von Cr[AlCl₄]₂, die Jahn-Teller-Verzerrung am Chromkation erweckt den Eindruck von molekularen Einheiten von Cr[AlCl₄]₂. Die thermischen Schwingungsellipsoide entsprechen einer Aufenthaltswahrscheinlichkeit der Atome von 70 %.

Tabelle 6.6 zeigt die Koordinaten, Wyckoff-Lagen und isotropen Auslenkungsparameter der Atome in der Elementarzelle von Cr[AlCl₄]₂. Sämtliche Atome befinden sich auf allgemeinen Lagen. Trotz der orthorhombischen Zellmetrik unterliegen die Atome in diesem Strukturtyp den bisher geringsten symmetriebedingten Restriktionen, hervorgerufen durch die Verkippung der [AlCl₄]-Tetraeder und die Neigung der *z*-Achse der [CrCl₆]-Bipyramide. Die Koeffizienten der anisotropen Temperaturfaktoren finden sich im Anhang A11 wieder.

Atom	Wychoff	Symmetrie	r/a	v/h	7/0	I
Atom	VV YCKUII	Symmetric	λ/u	y/U	2/L	Ueq
Cr	4a	1	0,37402(4)	0,24462(9)	0,49921(12)	0,03577(12)
Al1	4a	1	0,24080(6)	-0,12205(14)	0,59168(13)	0,0332(3)
Cl1	4a	1	0,36444(9)	0,01679(15)	0,65124(11)	0,0420(4)
C13	4a	1	0,25391(8)	0,01715(13)	0,43720(13)	0,0396(4)
Cl5	4a	1	0,24589(7)	-0,47147(12)	0,58950(13)	0,0440(4)
Cl7	4a	1	0,13000(10)	-0,00127(16)	0,66824(17)	0,0512(5)
Al2	4a	1	0,50746(6)	0,61019(14)	0,40696(13)	0,0328(3)
Cl2	4a	1	0,38392(9)	0,47144(15)	0,34673(11)	0,0413(4)
Cl4	4a	1	0,49382(8)	0,47313(15)	0,56232(12)	0,0383(4)
Cl6	4a	1	0,50283(7)	0,95906(13)	0,40922(13)	0,0446(3)
C18	4a	1	0,61739(11)	0,48641(16)	0,33109(19)	0,0549(5)

Tabelle 6.6: Koordinaten, Wyckoff-Lagen und isotrope Auslenkungsparameter der Atome in der Elementarzelle von Cr[AlCl4]₂.

Die durch den Jahn-Teller-Effekt elongierten Koordinationsstellen in z-Richtung (nach der Ligandenfeldtheorie) am Cr^{2+} -Ion werden durch weitere zwei Chloridionen besetzt. Diese vervollständigen die Koordinationsfigur um das Cr-Atom zu einer deutlich gestreckten, quadratischen Bipyramide. Diese Cr-Cl-Kontakte liegen mit 2,843 bzw. 2,854 Å unter der Summe der Van-der-Waals-Radien (\approx 3,0 Å) und zeigen somit bindenden Charakter.

Die Abbildungen 6.17 und 6.18 zeigen in zwei Schritten die Erweiterung der Koordinationssphäre am Chromatom. Oben wird die vervollständigte erste Sphäre beschrieben. Die *z*-Achse (gestrichelte Bindung), gebildet durch Cl5-Cr-Cl6, steht in Relation zur quadratischen Ebene um nur 2,47 ° verkippt, jedoch weicht die Position der Aluminiumatome mit einem Abstand von 0,391 Å erheblich von der Ebene durch die vier Chloratome im [CrCl]₄-Quadrat ab.

Unten wird gezeigt, dass Berücksichtigung der längeren Cr-Cl-Kontakte zu einer strangartigen Verknüpfung der Cr[AlCl₄]₂-Moleküle in Richtung [010] führt. Die Aufweitung

der Cr-Cl-Abstände in *z*-Position bedingt eine deutliche Verzerrung der einander gegenüberliegenden Dreiecksflächen (Cl1-Cl3-Cl6 bzw. Cl2-Cl4-Cl5) der [CrCl₆]-Oktaeder, die wie in den zuvor beschriebenen Strukturtypen in den Schichten der hexagonal-dichten Chloratompackung liegen.

Abbildung 6.17: Ausschnitt aus der Struktur von Cr[AlCl₄]₂. Die Koordinationssphäre am Cr²⁺-Kation ist um die axialen Positionen erweitert, die eine Verknüpfung zu weiteren Cr[AlCl₄]₂-Molekülen bewirken. Die Al-Atome weichen erheblich von ihrer Idealposition auf der durch Cl1-Cl4 gelegten Ebene ab.

Abbildung 6.18: Ausschnitt aus der Struktur von Cr[AlCl₄]₂. Dargestellt ist ein Segment aus den eindimensional infiniten Stränge (Cr[AlCl₄]₂)_n, die entlang [010] verlaufen.

Tabelle 6.7 gibt eine Aufstellung der in der asymmetrischen Einheit relevanten Bindungslängen und -winkel wieder.

Bindungspaar	Bindungslänge /Å	Bindungspaar	Bindungslänge /Å
Cr-Cl1	2,4158(20)	Al1-Cl1	2,1905(16)
Cr-Cl2	2,4174(19)	A11-C13	2,1890(30)
Cr-Cl3	2,4164(13)	A11-C15	2,1146(11)
Cr-Cl4	2,4213(13)	A11-C17	2,0811(20)
Cr-Cl5	2,8425(14)	A12-C12	2,1921(16)
Cr-Cl6	2,8537(14)	A12-C14	2,1954(30)
		A12-C16	2,1110(12)
		A12-C18	2,0727(30)

Atomverknüpfung	Bindungswinkel /°	Atomverknüpfung	Bindungswinkel /°
Cl1-Cr-Cl2	179,78(8)	Cl1-Al1-Cl3	95,77(7)
Cl1-Cr-Cl3	84,49(5)	Cl1-Al1-Cl5	110,90(6)
Cl1-Cr-Cl4	95,30(7)	Cl1-Al1-Cl7	112,49(10)
Cl1-Cr-Cl5	87,98(6)	Cl3-Al1-Cl5	111,63(9)
Cl1-Cr-Cl6	91,84(6)	Cl3-Al1-Cl7	112,20(9)
Cl2-Cr-Cl3	95,46(7)	Cl5-Al1-Cl7	112,73(7)
Cl2-Cr-Cl4	84,75(5)		
Cl2-Cr-Cl5	92,23(7)	Cl2-Al2-Cl4	96,03(7)
Cl2-Cr-Cl6	84,94(5)	Cl2-Al2-Cl6	111,05(6)
Cl3-Cr-Cl4	179,63(10)	C12-A12-C18	111,973()
Cl3-Cr-Cl5	88,29(9)	C14-A12-C16	111,18(8)
Cl3-Cr-Cl6	91,77(8)	C14-A12-C18	112,20(9)
Cl4-Cr-Cl5	91,40(7)	C16-A12-C18	113,21(7)
Cl4-Cr-Cl6	88,54(8)		
Cl5-Cr-Cl6	179,10(6)		

Auch in der Kristallstruktur von Cr[AlCl₄]₂ lassen sich die von 90 ° abweichenden Cl-Cr-Cl-Winkel im [CrCl₆]-Oktaeder zwanglos durch repulsive Kation-Kation-Wechselwirkungen zwischen den Chrom- und Aluminiumionen erklären. Die betreffenden Cl-Cl-Kanten im [CrCl₄]-Quadrat sind mit 3,249 bzw. 3,261 Å (Cl1-Cl3 bzw. Cl2-Cl4) sind erheblich kürzer als die verbleibenden mit 3,575 und 3,577 Å (Cl1-Cl4 bzw. Cl2-Cl3). Abb. 6.19 beschreibt die Anordnung der eindimensional-infiniten Stränge in der Kristallstruktur von Cr[AlCl₄]₂. Diese bilden erneut eine hexagonale Stabpackung aus, jedoch mit schichtweiser Versetzung der Strangausrichtung (vgl. die parallele Anordnung der Stränge in V[AlCl₄]₂ und γ -Ti[AlCl₄]₂). Wie in der Kristallstruktur von γ -Ti[AlCl₄]₂ erfahren die Stränge untereinander keine Verzahnung, was neben dem annähernd molekularen Aufbau der Verbindung ein weiterer Grund für die gute Sublimierbarkeit des Cr[AlCl₄]₂ ist.

Abbildung 6.19: Projektion der Struktur von Cr[AlCl₄]₂ entlang der *b*-Achse. Gezeigt wird das Fischgrätenmuster in der hexagonalen Stabpackung der eindimensional-infiniten Stränge.

Trotz der durch die erhebliche Streckung der [CrCl₆]-Oktaeder bedingten Verzerrung der einander gegenüberliegenden Dreiecksflächen gelingt die Beschreibung dieses Strukturtyps anhand einer hexagonal-dichten Kugelpackung mit geordneter Besetzung der Oktaederlücken mit Chrom- und der Tetraederplätze mit Aluminiumatomen. Abb. 6.20 zeigt die seitliche Ansicht der Packung von Chloratomen mit Blick in Richtung [100] mit Besetzung der betreffenden Oktaederlücken durch Chromatome. Die beiden zu unterscheidenden Schichten von Cl-Atomen sind in dieser und den folgenden Abbildungen hell- bzw. dunkelgrau eingefärbt. Da Cr[AlCl₄]₂ orthorhombisch kristallisiert sind die Schichten der Kugelpackung wiederum nicht wie im Fall des V[AlCl₄]₂-Typs durch einen monoklinen Winkel seitlich gegeneinander verschoben. Hier tritt wie in γ -Ti[AlCl₄]₂ das Bild gemischter Lückenbesetzung auf: es werden in jeder Zwischenschicht Oktaeder- und Tetraederlücken besetzt.

Abbildung 6.20: Projektion der Struktur von Cr[AlCl₄]₂ entlang der *a*-Achse. Hier zeigt sich eine schwache wellenförmige Verzerrung der hexagonal-dichtesten Packung von Cl-Atomen. Die Cr-Atome sind in Oktaederlücken jeder Zwischenschicht lokalisiert.

Abb. 6.21 zeigt ergänzend die Besetzung der Tetraederlücken. Die Aluminiumatome besetzen ebenfalls in jeder Zwischenschicht Tetraederplätze.

Abbildung 6.21: Ausschnitt aus der Struktur von Cr[AlCl₄]₂ mit Blick auf die *b-c*-Ebene. Gezeigt wird die geordnete Besetzung von Tetraederlücken in jeder Zwischenschicht der hexagonal-dichtesten Packung von Chloratomen, entsprechend der Ausbreitungsrichtung [010] der eindimensional-infiniten Stränge.

Die Gesamtbesetzung der Lücken wird in Abb. 6.22 gezeigt. Die Chromatome besetzen in jeder Zwischenschicht 1/8 der Oktaederlücken, die Aluminiumatome sind ebenfalls in jeder Zwischenschicht auf 1/8 der Tetraederplätze lokalisiert. Zur Erleichterung der Ansicht sind die Bindungen innerhalb der [CrCl₆]-Oktaeder gestrichelt gezeichnet.

In den folgenden Abbildungen 6.23 und 6.24 wird exemplarisch an einer Zwischenschicht die Besetzung der Oktaeder- und Tetraederplätze verdeutlicht.

Abbildung 6.22: Gesamtbesetzung der Oktaeder- und Tetraeder-Lücken in der hexagonal-dichtesten Packung von Chloratomen in der Kristallstruktur von Cr[AlCl₄]₂.

Abbildung 6.23: Die Struktur von Cr[AlCl₄]₂ mit Blick auf die *a-c*-Ebene. In dieser Blickrichtung zeigt sich die Besetzung von einem Achtel der Oktaederlücken mit Chromatomen, die grauen Polyeder stellen unbesetzte Oktaederlücken dar.

Abbildung 6.24: Die Struktur von Cr[AlCl₄]₂ mit Blick auf die *b-c*-Ebene. Gezeigt wird die Besetzung von einem Achtel der pro Zwischenschicht verfügbaren 32 Tetraederlücken mit Aluminiumatomen, die grauen Polyeder stellen unbesetzte Tetraederlücken dar.

Pd[GaCl₄]₂-Typ:

Zum Abschluss der Behandlung der Strukturtypen mit strangartiger Polyederverknüpfung wird hier das Palladium(II)-tetrachlorogallat beschrieben. Im Vergleich zu den bisher vorgestellten Strukturtypen von V[AlCl₄]₂, γ -Ti[AlCl₄]₂ sowie Cr[AlCl₄]₂ weist im Pd[GaCl₄]₂-Typ das Palladiumkation als 4d⁸-konfiguriertes Zentralteilchen eine ausgeprägte Neigung zu quadratisch-planarer Koordination auf, in welcher die Valenzelektronen in der low-spin-Konfiguration zu erwarten sind. In Pd[GaCl₄]₂ zeigt das M^{2+} -Kation mit Abstand die stärkste Abweichung von der oktaedrischen Koordination der strangartig aufgebauten Strukturtypen der $M^{II}[TCl_4]_2$.

Palladium(II)-tetrachlorogallat kristallisiert monoklin in der Raumgruppe $P2_1/c$ (No 14) mit den Gitterparametern a = 6,6870(4), b = 7,2622(3) und c = 12,6471(7) Å. Der monokline Winkel β liegt bei 95,984(4) °, das Zellvolumen V beträgt 610,83 Å³. In der Elementarzelle sind Z = 2 Formeleinheiten enthalten. Es bildet somit den gleichen Strukturtyp aus wie das von *Schäfer* beschriebene Pd[AlCl₄]₂ [11].

Die Palladiumatome sind quadratisch-planar von vier Chloratomen umgeben. Diese gehören zu zwei kristallographisch äquivalenten Tetrachlorogallationen, die jeweils eine gemeinsame Kante mit dem [PdCl₄]-Quadrat ausbilden. Die jeweils zwei verbleibenden Chloratome der [GaCl₄]-Tetraeder bilden keine Bindung zu weiteren Atomen aus, somit bildet eine Formeleinheit auf den ersten Blick ein abgeschlossenes Molekül. Abb. 6.25 zeigt die erweiterte asymmetrische Einheit von Pd[GaCl₄]₂.

Abbildung 6.25: Quadratisch-planare Koordinationssphäre des Pd²⁺-Ions in der Struktur von Pd[AlCl₄]₂, die 4d⁸-Konfiguration am Palladiumkation führt zur Bildung von molekularen Pd[GaCl₄]₂-Einheiten. Die thermischen Schwingungsellipsoide entsprechen einer Aufenthaltswahrscheinlichkeit der Atome von 70 %.

Tabelle 6.8 zeigt die Koordinaten, Wyckoff-Lagen und isotropen Auslenkungsparameter der Atome in der Elementarzelle von Pd[GaCl₄]₂. Die Wyckoff-Lage *2a* des Palladiumatoms mit der Lagesymmetrie -1 entspricht einer Position auf dem Inversionszentrum der Elementarzelle. Die Chloratome befinden sich sämtlich auf allgemeinen Lagen. Die Koeffizienten der anisotropen Temperaturfaktoren finden sich im Anhang A12 wieder.

Atom	Wyckoff	Symmetrie	x/a	y/b	z/c	U _{eq}
Pd	2a	-1	0	0	0	0,02715(16)
Ga	4e	1	0,33881(6)	-0,29187(6)	0,10300(3)	0,02881(16)
Cl1	4e	1	0,12803(15)	-0,27887(13)	-0,04899(8)	0,03375(24)
Cl2	4e	1	0,22358(15)	-0,01469(13)	0,15241(8)	0,03634(25)
C13	4e	1	0,26319(17)	-0,49639(14)	0,21082(9)	0,04196(28)
Cl4	4e	1	0,64115(14)	-0,28749(15)	0,06588(9)	0,04021(27)

Tabelle 6.8: Koordinaten, Wyckoff-Lagen und isotrope Auslenkungsparameter der Atome in der Elementarzelle von Pd[GaCl₄]₂.

Ähnlich wie in der Kristallstruktur von Cr[AlCl₄]₂ findet man auf den *z*-Positionen der Koordinationssphäre am Pd²⁺-Kation zwei weitere Cl-Atome. Diese vervollständigen die Koordinationsfigur um das Pd-Atom zu einem extrem gestreckten, verzerrten Oktaeder. Die Pd-Cl-Kontakte sind mit 3,351 Å lediglich als Koordinationsstellen aufgrund elektrostatischer Wechselwirkungen zu beschreiben (die Summe der van-der-Waals-Radien beträgt 3.4 Å), die Position der Nachbarmoleküle ergibt sich aus deren Packung.

Die Abbildungen 6.26 und 6.27 zeigen in zwei Schritten die Erweiterung der Koordinationssphäre am Palladiumatom. Zuerst wird die vervollständigte erste Sphäre beschrieben. Die *z*-Achse (gestrichelte Bindung), gebildet durch Cl4-Pd-Cl4, steht in Relation zur quadratischen Ebene um 15.3 ° verkippt, woran die Verkippung um die Ga-Pd-Ga-Achse mit 1,1 ° einen sehr geringen Anteil hat. Die Galliumatome weichen mit einem Abstand von 0,054 Å nur geringfügig von ihrer Idealposition auf der durch Cl1/Cl2/Cl1'/Cl2' gelegten Ebene ab.

Unten wird gezeigt, dass das Einbeziehen der langen Pd-Cl-Kontakte zu einer strangartigen Verknüpfung der Pd[GaCl₄]₂-Moleküle in Richtung [100] führt. Die starke Streckung der so gebildeten [PdCl₆]-Einheiten bedingt eine erhebliche Verzerrung der einander gegenüberliegenden Dreiecksflächen (Cl1-Cl2-Cl4) der [PdCl₆]-Oktaeder.

Abbildung 6.26: Ausschnitt aus der Struktur von Pd[GaCl₄]₂. Die langen Pd-Cl4-Kontakte ergänzen die quadratische Koordination am Pd-Atom zu einem extrem gestreckten Oktaeder. Die Galliumatome weichen nur wenig von Ihrer Idealposition auf der durch die quadratisch angeordneten Cl-Atome gelegten Ebene ab.

Abbildung 6.27: Ausschnitt aus der Struktur von Pd[AlCl₄]₂ mit Blick in die *b-c*-Ebene. Dargestellt ist ein Segment aus den eindimensional infiniten Stränge (Pd[AlCl₄]₂)_n, die entlang [100] verlaufen.

Die *trans*-ständige Anordnung der gemeinsamen Kanten zwischen [PdCl₄]-Quadrat und [GaCl₄]-Tetraedern führen zu deckungsgleicher Anordnung der Tetraeder, wie schon in Cr[AlCl₄]₂ beobachtet. Tabelle 6.9 gibt eine Aufstellung der in der asymmetrischen Einheit relevanten Bindungslängen und -winkel wieder.

Bindungspaar	Bindungspaar Bindungslänge /Å		Bindungslänge /Å
Pd-Cl1	2,3085(9)	Ga-Cl1	2,2640(10)
Pd-Cl2	2,3154(10)	Ga-Cl2	2,2664(10)
Pd-Cl4	3,3509(1)	Ga-Cl3	2,1131(11)
		Ga-Cl4	2,1229(10)
		Gu OIT	2,1229(10)

Tabelle 6.9: Bindungslängen und -winkel in der asymmetrischen Einheit von Pd[GaCl₄]₂.

Atomverknüpfung	Bindungswinkel /°	Atomverknüpfung	Bindungswinkel /°
Cl1-Pd-Cl2	87,57(3)	Cl1-Ga-Cl2	89,86(4)
Cl1-Pd-Cl2'	92,43(3)	Cl1-Ga-Cl3	114,05(4)
Cl1-Pd-Cl4	100,639(1)	Cl1-Ga-Cl4	109,54(4)
Cl1-Pd-Cl1'	180,00	Cl2-Ga-Cl3	109,59(5)
Cl2-Pd-Cl4	79,553(1)	Cl2-Ga-Cl4	113,99(4)
		Cl3-Ga-Cl4	116,79(5)

Abb. 6.28 zeigt die Anordnung der Stränge in der Kristallstruktur von Pd[GaCl₄]₂ mit Blick in Richtung [100]. Äquivalent zum Cr[AlCl₄]₂-Typ lagern sich die Stränge zu einer hexagonalen Stabpackung zusammen, deren parallel ausgeordnete Schichten nach Art eines Fischgrätenmusters gegeneinander versetzt sind.

Abbildung 6.28: Projektion der Struktur von Pd[AlCl₄]₂ entlang der *a*-Achse. Gezeigt wird das Fischgrätenmuster in der hexagonalen Stabpackung der eindimensional-infiniten Stränge.

Wie oben erwähnt führt die gestreckte Form der [PdCl₆]-Oktaeder zur einer Verzerrung der Dreiecksflächen, die in den zuvor beschriebenen Strukturtypen die Schichten der hexagonaldichten Packung von Chloratomen bilden. Dennoch lässt sich die Kristallstruktur von Pd[GaCl₄]₂ mithilfe einer solchen hexagonal-dichten Kugelpackung mit geordneter Besetzung der verzerrten Oktaederlücken mit Palladium- und der Tetraederlücken mit Galliumatomen beschreiben. Abb. 6.29 zeigt die seitliche Ansicht der Packung von Chloratomen mit Besetzung der Pd-Plätze in jeder zweiten Zwischenschicht. Hier lässt sich die erhebliche Verzerrung der Schichten zu einem wellenförmigen Muster erkennen. Die beiden verschiedenen Schichten von Cl-Atomen sind zur Unterscheidung hell- bzw. dunkelgrau eingefärbt.

Abbildung 6.29: Projektion der Struktur von Pd[AlCl₄]₂ entlang der *c*-Achse. Hier zeigt sich die starke wellenförmige Verzerrung der hexagonal-dichtesten Packung von Cl-Atomen. Die Pd-Atome sind in Oktaederlücken jeder zweiten Zwischenschicht lokalisiert.

Die Besetzung mit Galliumatomen erfolgt, wie Abb. 6.30 zeigt, in den verbleibenden Zwischenschichten der Chloratompackung, also alternierend zu den Palladiumatomen. Die Tetraederform der [GaCl₄]-Polyeder ist wesentlich besser erhalten als die der Oktaederlücken, hier passt sich der Aufbau der hexagonal-dichten Packung deutlich den lokalen Erfordernissen der Pd²⁺- und Ga³⁺-Kationen an.

Abbildung 6.30: Ausschnitt aus der Struktur von Pd[AlCl₄]₂ mit Blick auf die *a-b*-Ebene. Gezeigt wird die geordnete Besetzung von Tetraederlücken in jeder zweiten Zwischenschicht der hexagonal-dichtesten Packung von Chloratomen, entsprechend der Ausbreitungsrichtung [100] der eindimensional-infiniten Stränge.

Die Gesamtbesetzung der Lücken zeigt Abb. 6.31. Die Pd-Atome besetzen in jeder zweiten Zwischenschicht ein Viertel der Oktaederlücken, in den verbleibenden Zwischenschichten wird ebenfalls ein Viertel der Tetraederlücken mit Ga-Atomen gefüllt. In den darauf folgenden Abbildungen 6.32 und 6.33 wird für jede Art von Zwischenschichtbesetzung die anteilige Besetzung mit Metallatomen erläutert.

Abbildung 6.31: Gesamtbesetzung der Oktaeder- und Tetraeder-Lücken in der hexagonal-dichtesten Packung von Chloratomen in der Kristallstruktur von Pd[AlCl₄]₂.

Abbildung 6.32: Die Struktur von Pd[AlCl₄]₂ mit Blick auf die *b-c*-Ebene. In dieser Blickrichtung zeigt sich die Besetzung von einem Viertel der Oktaederlücken mit Palladiumatomen, die grauen Polyeder stellen unbesetzte Oktaederlücken dar.

Abbildung 6.33: Die Struktur von Pd[AlCl₄]₂ mit Blick auf die *b-c*-Ebene. Gezeigt wird die Besetzung von einem Viertel der pro Zwischenschicht verfügbaren 16 Tetraederlücken mit Galliumatomen, die grauen Polyeder stellen unbesetzte Tetraederlücken dar.
6.1.2 Strukturtypen mit schichtartiger Polyederverknüpfung

Mg[GaCl₄]₂-Typ:

Der erste Strukturtyp der Klasse der $M[TCl_4]_2$ mit schichtartiger Polyederverknüpfung wird hier am Beispiel von Magnesiumtetrachlorogallat vorgestellt, α -Mn[GaCl_4]_2 kristallisiert isotyp. Mg²⁺ als Kation mit Edelgas- bzw. Mn²⁺ mit sphärischer d^5 -hs-Koordination stellen Zentralteilchen dar, deren Koordinationsssphären nicht durch Ligandenfeld-bedingte Einflüsse verzerrt werden. Der Ionenradius von Mg²⁺ in oktaedrischer Koordination (0,86 Å) fügt sich zwischen Co²⁺ (0,885 Å) und Ni²⁺ (0,83 Å) nahtlos in die Reihe der hier betrachteten zweiwertigen Kationen ein, während das Mn²⁺-Ion mit 0,97 Å etwas größer ist.

Magnesiumtetrachlorogallat kristallisiert monoklin in der nicht-zentrosymmetrischen Raumgruppe *Pa* (No 7) mit den Gitterparametern a = 12,5962(2), b = 6,4581(1) und c = 6,9447(1) Å. Der monokline Winkel β liegt bei 92,909(1) °, das Zellvolumen *V* beträgt 564,21 Å³. In der Elementarzelle sind Z = 2 Formeleinheiten enthalten. Mg[GaCl₄]₂ bildet den vom Cd[AlCl₄]₂ [**9**] bekannten Strukturtyp aus.

 α -Mangan(II)-tetrachlorogallat kristallisiert isotyp zu Mg[GaCl₄]₂ mit den Gitterparametern a = 12,7405(10), b = 6,5402(4) und c = 7,0063(5) Å. Der monokline Winkel β liegt bei 93,047(5) °, das Zellvolumen beträgt 582,98(10) Å³ (weitere Strukturdaten im Anhang A14).

Die Magnesiumionen sind oktaedrisch von sechs Chloratomen umgeben. Diese gehören zu vier Tetrachlorogallatanionen, von denen jeweils zwei kristallographisch äquivalent sind. Sie bilden mit dem [MgCl₆]-Oktaeder zwei gemeinsame Kanten sowie Verknüpfungen über zwei *cis*-ständige Ecken des Oktaeders aus. Die Koordination der ersten Sphäre entspricht somit der des V[AlCl₄]₂-Typs. Abb. 6.34 zeigt die erweiterte asymmetrische Einheit der Struktur von Mg[GaCl₄]₂. Die Benennung der Atome in dieser Darstellung gilt für alle in diesem Strukturtyp kristallisierenden Verbindungen, deren Atomkoordinaten und Bindungsparameter in diesem Kapitel oder im Anhang genannt werden.

Abbildung 6.34: Erweiterte asymmetrische Einheit der Struktur von Mg]GaCl₄]₂. Die thermischen Schwingungsellipsoide entsprechen einer Aufenthaltswahrscheinlichkeit der Atome von 70 %.

Tabelle 6.10 zeigt die Koordinaten, Wyckoff-Lagen und isotropen Auslenkungsparameter der Atome in der Elementarzelle von Mg[GaCl₄]₂. Die Koeffizienten der anisotropen Temperaturfaktoren finden sich im Anhang A13 wieder.

Atom	Wyckoff	Symmetrie	x/a	y/b	z/c	U _{eq}
Mg	2a	1	0,00473(7)	0,25422(12)	-0,00707(11)	0,01132(12)
Ga1	2a	1	0,54334(2)	0,92906(3)	0,55677(4)	0,01090(5)
Cl1	2a	1	0,56186(5)	0,61036(8)	0,66911(8)	0,01291(9)
Cl2	2a	1	0,44221(5)	0,92383(7)	0,28773(9)	0,01330(9)
Cl4	2a	1	0,44981(5)	0,05452(8)	0,79326(9)	0,01340(10)
C18	2a	1	0,68722(6)	0,09332(10)	0,53263(10)	0,01784(12)
Ga2	2a	1	0,74184(2)	0,57210(4)	0,15448(4)	0,01108(6)
C13	2a	1	0,58053(5)	0,43375(9)	0,15629(9)	0,01359(11)
C15	2a	1	0,19326(5)	0,11778(9)	0,04635(9)	0,01332(9)
C16	2a	1	0,32660(5)	0,42297(10)	0,42469(9)	0,01646(11)
Cl7	2a	1	0,32533(5)	0,58535(10)	0,92520(9)	0,01567(12)

Tabelle 6.10: Koordinaten, Wyckoff-Lagen und isotrope Auslenkungsparameter der Atome in der Elementarzelle von Mg[GaCl₄]₂.

Abb. 6.34 zeigt, dass an jedem [GaCl₄]-Tetraeder ein Chloratom eine terminale Position einnimmt (Cl6 an Ga2 und Cl8 an Ga1). Somit verknüpft jeder dieser Tetraeder zwei [MgCl₆]-Einheiten, und zwar über eine Ecke und eine Kante. Jedoch werden auf diese Art die Oktaeder nicht wie bisher durch je zwei benachbarte Tetraeder zu einem eindimensional ausgedehnten Strang verbunden, sondern eine [MgCl₆]-Einheit wird über die vier angrenzenden [GaCl₄]-Tetraeder mit vier weiteren Oktaedern verknüpft. Somit ergibt sich eine Vernetzung zu Schichten in der *a-c*-Ebene der Elementarzelle. Abb. 6.35 zeigt einen erweiterten Strukturausschnitt des Mg[GaCl₄]₂. Die Verknüpfung zeigt ein quadratisches Muster der benachbarten [MgCl₆]-Oktaeder.

Abbildung 6.35: Erweiterter Ausschnitt aus der Struktur von Mg[GaCl₄]₂. Es liegen zweidimensional ausgedehnte Schichten in der *a*-*c*-Ebene vor.

Mit Blick in Richtung [001] der Elementarzelle wird deutlich, dass die Schichten einer starken Wellung unterliegen. Die Polyederschichten greifen wie gestapelte Wellbleche ineinander. Dieser Umstand führt zu erheblich höherer mechanischer Stabilität der Kristalle im Vergleich zu den strangartig aufgebauten Strukturtypen, deren Kristalle leicht entlang der Strangrichtung spaltbar sind. Abb. 6.36 zeigt das Ineinandergreifen der Schichten in der Kristallstruktur von Mg[GaCl₄]₂.

Abbildung 6.36: Verzahnung der wellenförmigen Schichten in der Struktur von Mg[GaCl₄]₂ mit Blick in Richtung [001].

Tabelle 6.11 gibt eine Aufstellung der relevanten Bindungslängen und -winkel wieder.

Tabelle 6. 11: Bindungslängen und -winkel in der asymmetrischen Einheit von Mg[GaCl ₄] ₂ .							
Bindungspaar	Bindungslänge /Å	Bindungspaar	Bindungslänge /Å				
Mg-Cl1	2,5503(10)	Ga1-Cl1	2,2093(6)				
Mg-Cl2	2,5094(10)	Ga1-Cl2	2,2075(7)				
Mg-Cl3	2,4798(9)	Ga1-Cl4	2,2223(7)				
Mg-Cl4	2,5059(9)	Ga1-Cl8	2,1139(8)				
Mg-Cl5	2,5425(10)	Ga2-Cl3	2,2203(7)				
Mg-Cl7	2,5087(11)	Ga2-C15	2,2142(6)				
		Ga2-Cl6	2,1116(7)				
		Ga2-Cl7	2,2012(8)				

Atomverknüpfung	Bindungswinkel /°	Atomverknüpfung	Bindungswinkel /°
Cl1-Mg-Cl3	90,31(3)	Cl1-Ga1-Cl2	109,31(2)
Cl1-Mg-Cl4	82,37(3)	Cl1-Ga1-Cl4	97,42(3)
Cl1-Mg-Cl5	86,80(3)	Cl1-Ga1-Cl8	114,83(3)
Cl1-Mg-Cl7	89,13(3)	Cl2-Ga1-Cl4	109,04(3)
Cl1-Mg-Cl2	172,22(4)	Cl2-Ga1-Cl8	113,63(3)
Cl2-Mg-Cl3	97,39(3)	Cl4-Ga1-Cl8	111,37(3)
Cl2-Mg-Cl4	89,86(3)		
Cl2-Mg-Cl5	92,96(3)	Cl3-Ga2-Cl5	97,40(3)
Cl2-Mg-Cl7	91,45(4)	Cl3-Ga2-Cl6	115,00(3)
Cl3-Mg-Cl5	83,10(3)	Cl3-Ga2-Cl7	106,81(3)
Cl3-Mg-Cl7	94,15(3)	Cl5-Ga2-Cl6	113,97(3)
Cl3-Mg-Cl4	171,42(4)	Cl5-Ga2-Cl7	107,84(3)
Cl4-Mg-Cl5	91,98(3)	Cl6-Ga2-Cl7	114,28(3)
Cl4-Mg-Cl7	90,23(4)		
Cl5-Mg-Cl7	175,07(4)		

Die Abweichung von 90 ° in den Cl-Mg-Cl-Bindungswinkeln lassen sich zwanglos durch die wechselnden Ecken- und Kantenverknüpfungen zu den benachbarten [GaCl₄]-Tetraedern erklären. Durch repulsive Wechselwirkungen zwischen den Mg²⁺- und den Ga³⁺-Ionen werden die Winkel Cl1-Mg-Cl4 bzw. Cl3-Mg-Cl5 mit 82,37(3) ° bzw. 83,10(4) ° deutlich verkleinert. Ebenso verringern sich die entsprechenden interatomaren Winkel innerhalb der [GaCl₄]-Tetraeder an den Kanten Cl1-Ga1-Cl4 bzw. Cl3-Ga2-Cl5 auf 97,42(3) ° bzw. 97,40(3) °.

Die Bindungslängen zwischen den Galliumatomen und dem jeweils terminal gebundenen Chloratom liegen mit 2,1139(8) Å (Ga1-Cl8) und 2,1116(7) Å (Ga2-Cl6) deutlich unterhalb der Werte der verbrückenden Ga-Cl-Kontakte mit durchschnittlich 2,20-2,22 Å. Aus den bisher gezeigten Abbildungen wird nicht ersichtlich, ob die Kristallstruktur von Magnesiumtetrachlorogallat auch durch eine Packung der Chloridionen mit geordneter Lückenbesetzung zu beschreiben ist, so wie dies bei den schon beschriebenen Strukturtypen der Fall ist. Die wellenförmige Schichtung der verknüpften Polyeder lässt aus keiner der bisher gewählten Blickrichtungen eine solch regelmäßige Packung der Chloratome erwarten, obwohl auch dieser Strukturtyp aus regelmäßig angeordneten Oktaedern und Tetraedern aufgebaut ist.

Wählt man die vom Aufbau der Polyederschichten abweichende Blickrichtung [010] mit Blick auf die *a-c*-Ebene der Elementarzelle, so zeigt sich, dass sehr wohl eine regelmäßig angeordnete Schichtung der Chloratome vorliegt, welche jedoch im Vergleich mit den bisher beschriebenen Strukturtypen nicht senkrecht zu einer der kristallographischen Achsen steht. Abb. 6.37 zeigt die Lage und Schichtfolge der hexagonalen Packung in der Struktur von Mg[GaCl₄]₂.

Abbildung 6.37: Die Projektion der Struktur von Mg[GaCl₄]₂ entlang der *b*-Achse zeigt die hexagonaldichteste Schichtpackung von Chloratomen. Der monokline Winkel von 92,37 ° bewirkt eine seitliche Verschiebung der Schichten zu einer Stapelfolge ABA'B'.

Abb. 6.38 zeigt die Besetzung der Oktaederplätze in den Zwischenschichten der Packung von Cl-Atomen. Hier zeigt sich, dass ein Teil dieser Lücken in jeder Zwischenschicht mit Magnesiumatomen besetzt wird.

Abbildung 6.38: Projektion der Struktur von Mg[GaCl₄]₂ entlang der *b*-Achse. Die Mg-Atome sind in Oktaederlücken jeder Zwischenschicht lokalisiert.

Die Besetzung der Tetraederlücken in der hexagonal-dichten Packung von Chloratomen wird in Abb.6.39 gezeigt. Hier wird ersichtlich, dass auch die Galliumatome auf Tetraederplätzen in allen Zwischenschichten lokalisiert sind.

Abb. 6.40 zeigt links die Gesamtbesetzung der Lücken in der Kristallstruktur von $Mg[GaCl_4]_2$. In der rechten Ansicht ist der Blickwinkel auf die Schichten der hexagonaldichten Packung von Chloratomen um 90° gedreht und es wird nur eine Einzelne der wellenförmigen Polyederschichten dargestellt. Diese Perspektive zeigt, dass die Schichten zick-zack-förmig zwei Lagen der hexagonal-dichten Packung einnehmen, im linken Bild durch Versatz in der Tiefe, rechts durch seitliches Abwechseln der Polyederanordnung erkennbar (vgl. die Anordnung der Schichten im ebenfalls schichtartig aufgebauten Cr[GaCl_4]_2 in Abb. 6.50).

Abbildung 6.40: Ausschnitte aus der Struktur von Mg[GaCl₄]₂. Links wird mit Blick entlang der *b*-Achse die Gesamtbesetzung der Oktaeder- und Tetraederlücken in der hexagonal-dichtesten Packung von Chloratomen gezeigt. Die rechte Ansicht zeigt mit Blick entlang der *a*-Achse, dass die wellenförmige Polyederverknüpfung zu einem seitlichen Versatz in *b*-Richtung führt.

Abb. 6.41 zeigt an einem ausgewählten Schichtpaar der hexagonal-dichten Packung von Chloratomen, dass in der Kristallstruktur von Mg[GaCl₄]₂ die Magnesiumatome in jeder Zwischenschicht 1/8 der Oktaederlücken besetzen.

Abbildung 6.41: Die Struktur von Mg[GaCl₄]₂ mit Blick in Richtung [101]. Hier zeigt sich die Besetzung von einem Achtel der Oktaederlücken mit Magnesiumatomen, die grauen Polyeder stellen unbesetzte Oktaederlücken dar.

Die Tetraederlückenbesetzung mit Galliumatomen erfolgt wie oben erläutert ebenfalls in jeder Zwischenschicht der Packung von Cl-Atomen. Abb. 6.42 zeigt die Ga-Atome auf ebenfalls einem Achtel der freien Tetraederplätze.

Abbildung 6.42: Die Struktur von Mg[GaCl₄]₂ mit Blick in Richtung [101]. Gezeigt wird die Besetzung zweier der pro Zwischenschicht verfügbaren 16 Tetraederlücken mit Galliumatomen, die grauen Polyeder stellen unbesetzte Tetraederlücken dar.

Das Besetzungsmuster der Oktaederplätze (Abb. 6.38) ließe als strukturelle Alternative erwarten, dass die benachbarten [MgCl₆]-Polyeder entlang der *a*- oder *b*-Achse zu eindimensional-infiniten Strängen verknüpft werden könnten. Die Anordnung der besetzten Tetraederlücken (Abb. 6.39) deutet ebenfalls einige interessante Verknüpfungsmöglichkeiten der Polyeder an. Als Beispiel wären die in Abb. 6.43 durch gestrichelte Bindungen markierten Oktaederplätze zu nennen. Die Besetzung dieser Positionen mit Metallkationen würde zu einer Flächenverknüpfung der [*M*Cl₆]-Oktaeder und er der [*T*Cl₄]-Tetraeder führen. Dieses Strukturmotiv konnte bisher in fester Phase nicht beobachtet werden, obwohl solche Komplexzusammensetzungen in Untersuchungen zum chemischen Transport anhand spektroskopischer Messungen postuliert wurden. Auch bei den schwächer geladenen Alkalimetallkationen, die in Tetrachloroaluminaten aufgrund der kleineren Ladung geringere repulsive Wechselwirkungen zwischen den Metallkationen zeigen, wurde diese Art der Polyederverknüpfung nicht ausgebildet.

Abbildung 6.43: Ausschnitt aus der Struktur von Mg[GaCl₄]₂ mit Blick entlang der *b*-Achse. Die Schnittpunkte der gestrichelten Linien stellen mögliche alternative Besetzungsplätze für oktaedrisch koordinierte Kationen dar.

Die Reaktion zwischen Mangandichlorid und Galliumtrichlorid führte als einzige zu einem dimorphen System, in dem sowohl ein strangartiger als auch ein schichtartiger Strukturtyp existiert. α -Mn[GaCl₄]₂ kristallisiert isotyp zu Mg[GaCl₄]₂ in wellenförmigen Schichten, die Hochtemperaturphase β -Mn[GaCl₄]₂ nimmt wie in Abschnitt 6.1.1 beschrieben den Strukturtyp des Vanadium(II)-Tetrachlorogallats an. Der gruppentheoretischen Ableitungen beider Strukturtypen werden in Kap. 7 erläutert.

Cr[GaCl₄]₂-Typ:

Den zweiten Strukturtyp mit schichtartiger Verknüpfung der Polyeder innerhalb der Klasse der $M[TCl_4]_2$ bildet das Chrom(II)-tetrachlorogallat. Die einzige Phase im System Cr/Ga/Cl, die anhand röntgenographischer Untersuchungen an Einkristallen charakterisiert werden konnte wird hier als α -Cr[GaCl₄]₂ bezeichnet. Diese konnte jedoch bisher nicht phasenrein dargestellt werden, zusätzliche Reflexe in pulverdiffraktometrischen Ergebnissen geben Anlass zu der Vermutung, dass auch in diesem System eine zweite Phase existiert, welche jedoch bisher nicht isoliert bzw. charakterisiert werden konnte.

 α -Cr[GaCl₄]₂ kristallisiert monoklin in der Raumgruppe $P2_1/c$ (No 14) mit den Gitterparametern a = 6,4638(3), b = 7,4369(3) und c = 12,1630(4) Å. Der monokline Winkel β liegt bei 91,741(3) °, das Zellvolumen V beträgt 584,41 Å³. In der Elementarzelle sind Z = 2 Formeleinheiten enthalten. Anhand der in Tab. 6.12 wiedergegebenen Atomlagen wird ersichtlich, dass α -Cr[GaCl₄]₂ isotyp zu Cu[AlCl₄]₂ [12] kristallisiert.

Die Chromatome sind in erster Sphäre quadratisch-planar von vier Chloratomen umgeben. Diese gehören zu zwei kristallographisch äquivalenten Tetrachlorogallationen, die jeweils eine gemeinsame Kante mit dem [CrCl₄]-Quadrat ausbilden. Die je zwei verbleibenden Chloratome an den [GaCl₄]-Tetraedern bilden in erster Sphäre keine Bindungen zu weiteren Atomen aus, somit kann eine Formeleinheit Cr[GaCl₄]₂, äquivalent zu Cr[AlCl₄]₂, auf den ersten Blick als abgeschlossenes Molekül aufgefasst werden (Abb. 6.44).

Abbildung 6.44: Quadratisch-planare Koordinationssphäre des Cr²⁺-Ions in der Struktur von α-Cr[GaCl₄]₂. Die Struktur ist aus Cr[GaCl₄]₂-Molekülen aufgebaut. Die thermischen Schwingungsellipsoide entsprechen einer Aufenthaltswahrscheinlichkeit der Atome von 70 %.

Tabelle 6.12 zeigt die Koordinaten, Wyckoff-Lagen und isotropen Auslenkungsparameter der Atome in der Elementarzelle von Cr[GaCl₄]₂. Die Wyckoff-Lage 2*a* des Chromatoms mit der Lagesymmetrie $\overline{1}$ entspricht einer Position auf dem Inversionszentrum der Elementarzelle. Die Chloratome befinden sich sämtlich auf allgemeinen Lagen. Die Koeffizienten der anisotropen Temperaturfaktoren finden sich im Anhang A15 wieder.

Atom	Wyckoff	Symmetrie	x/a	y/b	z/c	Ueq
Cr	2a	-1	0	0	0	0,01576(12)
Ga	4e	1	0,19089(4)	0,72859(3)	0,18773(2)	0,01591(9)
Cl1	4e	1	0,87393(9)	0,75486(6)	0,10924(4)	0,01828(12)
Cl2	4e	1	0,31126(8)	-0,01632(7)	0,11461(4)	0,01952(12)
C13	4e	1	0,17193(9)	0,76294(7)	0,36320(4)	0,02075(13)
Cl4	<i>4e</i>	1	0,35212(9)	0,49965(7)	0,13372(5)	0,02515(13)

Tabelle 6.12: Koordinaten, Wyckoff-Lagen und isotrope Auslenkungsparameter der Atome in der Elementarzelle von Cr[GaCl₄]₂.

Wie in der Kristallstruktur von Cr[AlCl₄]₂ wird das [CrCl₄]-Quadrat durch zwei weitere Chloratome zu einer durch den Jahn-Teller-Effekt deutlich gestreckten, quadratischen Bipyramide ergänzt. Die axialen Positionen sind mit Cr-Cl3-Abständen von 2,81 Å (vgl. 2,84 Å in Cr[AlCl₄]₂) ebenfalls deutlich unterhalb der Summe der Van-der-Waals-Radien (\approx 3,0 Å) angesiedelt.

Die Abbildungen 6.45 und 6.46 zeigen in zwei Schritten die Erweiterung der Koordinationssphäre am Chromatom. Zuerst wird die vervollständigte erste Sphäre unter Ausbildung einer quadratischen Bipyramide beschrieben.

Abbildung 6.45: Ausschnitt aus der Struktur von Cr[GaCl₄]₂. Die Koordinationssphäre am Cr²⁺-Kation ist um die axialen Positionen erweitert, die eine Verknüpfung zu weiteren Cr[AlCl₄]₂-Molekülen bewirken. Die Ga-Atome weichen erheblich von ihrer Idealposition auf der durch Cl1/Cl2/Cl1'/Cl2' gelegten Ebene ab.

Die Achse Cl3-Cr-Cl3 ist mit 3,4 ° (2,5 ° in Cr[AlCl₄]₂) nur einer sehr geringen Verkippung unterworfen, aber die Galliumatome weichen mit jeweils 0,348 Å erheblich aus durch die Atome Cl1/Cl2/Cl1'/Cl2' gelegten Ebene des Moleküls heraus.

Durch die langen Cr-Cl-Kontakte kommt es zusätzlich zu einer seitlichen Erweiterung der Molekülsphäre der Cr[GaCl₄]₂-Einheiten (Abb. 6.47). Sämtliche Verknüpfungen mit Nachbarmolekülen werden über Cl3 gebildet, Cl4 nimmt eine terminale Position ein.

Abbildung 6.46: Erweiterte Koordinationssphäre am Cr[GaCl₄]₂-Molekül und Verknüpfung zu weiteren molekularen Einheiten in der Struktur von Cr[GaCl₄]₂.

Hier zeigt sich einer der entscheidenden Unterschiede zur Kristallstruktur des Palladium(II)tetrachlorogallats: trotz gleichen Raumgruppentyps, ähnlicher Gitterparameter und in erster Näherung molekularem Aufbau werden in der Struktur des Cr[GaCl₄]₂ durch die Verknüpfung zu vier statt zwei weiteren Molekülen keine eindimensional-infiniten Stränge sondern zweidimensional ausgedehnte Schichten (Abb. 6.47) gebildet. Die unterschiedliche Besetzung der Lücken in der hexagonal-dichten Chloridionenpackung wird auch aus dem gemeinsamen Symmetriestammbaum (Kap. 7.4) deutlich.

Tabelle 6.13 gibt eine Aufstellung der in der asymmetrischen Einheit relevanten Bindungslängen und -winkel wieder.

Abbildung 6.47: Verknüpfung der Cr[GaCl₄]₂-Moleküle zu zweidimensionalen Schichten in der Struktur von Cr[GaCl₄]₂.

Tabelle 6.13: Bind	ungslänger	n und -v	vinkel in	der asymmetrisch	en Einheit von Cr[GaCl ₄] ₂ .
			, •		

Bindungspaar	Bindungslänge /Å	Bindungspaar	Bindungslänge /Å
Cr-Cl1	2,4123(5)	Ga-Cl1	2,2423(6)
Cr-Cl2	2,4156(5)	Ga-Cl2	2,2444(5)
Cr-Cl3	2,8178(1)	Ga-Cl3	2,1567(6)
		Ga-Cl4	2,1115(6)
Atomverknüpfung	Bindungswinkel /°	Atomverknüpfung	Bindungswinkel /°
Cl1-Cr-Cl2	86,19(2)	Cl1-Ga-Cl2	94,64(2)
Cl1-Cr-Cl3	93,056(1)	Cl1-Ga-Cl3	109,41(2)
Cl1-Cr-Cl3 Cl2-Cr-Cl3	93,056(1) 91,756(1)	Cl1-Ga-Cl3 Cl1-Ga-Cl4	109,41(2) 113,02(2)
Cl1-Cr-Cl3 Cl2-Cr-Cl3 Cl1-Cr-Cl1'	93,056(1) 91,756(1) 180,00	Cl1-Ga-Cl3 Cl1-Ga-Cl4 Cl2-Ga-Cl3	109,41(2) 113,02(2) 108,83(2)
Cl1-Cr-Cl3 Cl2-Cr-Cl3 Cl1-Cr-Cl1' Cl2-Cr-Cl2'	93,056(1) 91,756(1) 180,00 180,00	Cl1-Ga-Cl3 Cl1-Ga-Cl4 Cl2-Ga-Cl3 Cl2-Ga-Cl4	109,41(2) 113,02(2) 108,83(2) 112,21(2)
Cl1-Cr-Cl3 Cl2-Cr-Cl3 Cl1-Cr-Cl1' Cl2-Cr-Cl2'	93,056(1) 91,756(1) 180,00 180,00	Cl1-Ga-Cl3 Cl1-Ga-Cl4 Cl2-Ga-Cl3 Cl2-Ga-Cl4 Cl3-Ga-Cl4	109,41(2) 113,02(2) 108,83(2) 112,21(2) 116,54(2)

Die Winkel zwischen den kantenbildenden Chloratomen und den entsprechenden benachbarten Kationen sind wie in den zuvor beschriebenen Strukturtypen durch repulsive Kation-Kation-Wechselwirkungen unter 90 ° verringert. Diese Kantenlängen sind mit 3,298 Å erheblich kürzer als die verbleibenden 3,525 Å.

Ein weiterer struktureller Unterschied zeigt sich in der fischgrätenförmigen Anordnung der Moleküle. Abb. 6.48 zeigt links die Schichtung in der Kristallstruktur von Cr[GaCl₄]₂, rechts zur Erinnerung die in Pd[GaCl₄]₂. Zusätzlich zur Neigung der Ga-Ga-Achse relativ zur *b-c*-Ebene sind die Moleküle in Cr[GaCl₄]₂ entlang dieser Achse verdreht.

Abbildung 6.48: Vergleich der Molekülschichtung in Cr[GaCl₄]₂ und Pd[GaCl₄]₂.

Die Kristallstruktur von Chrom(II)-tetrachlorogallat lässt sich ebenfalls durch eine hexagonaldichte Packung von Chloratomen mit geordneter Lückenbesetzung beschreiben. Abbildung 6.49 zeigt den Aufbau der Chloratomschichten (hell- und dunkelgrau), die eingezeichneten Chromatome besetzen Oktaederplätze in jeder zweiten Zwischenschicht, wobei die Koordination durch die langen Cr-Cl-Kontakte gestreckt wird, was zu einer leichten Wellung der Chloratomschichten führt.

Abbildung 6.49: Projektion der Struktur von Cr[GaCl₄]₂ entlang der *a*-Achse. Die Cr-Atome sind in Oktaederlücken jeder zweiten Zwischenschicht der hexagonal-dichtesten Packung von Chloratomen lokalisiert.

In den verbleibenden Zwischenschichten wird ein Teil der Tetraederlücken durch Galliumatome besetzt. Wie aus Abb. 6.50 ersichtlich wird, führt die Besetzung der Tetraederplätze direkt zur Verknüpfung eines Moleküls mit seinen vier direkten Nachbarn. Dies wiederum hat die Schichtbildung in der *b-c*-Ebene zur Folge.

Abbildung 6.50: Ausschnitt der Struktur von Cr[GaCl₄]₂, links mit Blick entlang der *a*-Achse, rechts entlang der *b*-Achse. Die Besetzung der Tetraederlücken in den verbleibenden Zwischenschichten der hexagonal-dichtesten Packung von Cl-Atomen führt zu zweidimensional-ausgedehnten Polyederschichten, die jedoch, wie rechts gezeigt, keinen Versatz in der Tiefe zeigen (vgl. Mg[GaCl₄]₂.

Die Abbildungen 6.51 und 6.52 zeigen die anteilige Besetzung der Oktaeder- und Tetraederlücken mit Chrom- bzw. Galliumatomen. Die einbezogenen Kationen sind mit gestrichelten Bindungen zu ihren Chlorliganden gekennzeichnet. Die Cr-Atome sind in jeder zweiten Zwischenschicht auf einem Viertel der Oktaederplätze lokalisiert, die Ga-Atome besetzen in den verbleibenden Zwischenschichten zwei der acht zur Verfügung stehenden Tetraederplätze.

Abbildung 6.51: Die Struktur von Cr[GaCl₄]₂ mit Blick in Richtung [001]. Hier zeigt sich die Besetzung von einem Viertel der Oktaederlücken jeder zweiten Zwischenschicht mit Cr-Atomen, die grauen Polyeder stellen unbesetzte Oktaederlücken dar.

Abbildung 6.52: Die Struktur von Cr[GaCl₄]₂ mit Blick in Richtung [001]. Gezeigt wird die Besetzung zweier der pro Zwischenschicht verfügbaren 8 Tetraederlücken mit Galliumatomen, die grauen Polyeder stellen unbesetzte Tetraederlücken dar.

Diskussion der Strukturtypen der $M[TCl_4]_2$ mit KZ (M^{2+}) = 6

Der von *Ibers* [6] erstmals gefundene Strukturtyp des Cobalt(II)-tetrachloroaluminats, in welchem [CoCl₆]-Oktaeder und [AlCl₄]-Tetraeder zu infiniten Strängen verknüpft sind, die sich in Form einer hexagonalen Stabpackung anordnen, wurde im Verlauf dieser Arbeiten für eine ganze Reihe von Verbindungen gefunden. Entsprechend dem Verlauf der Ionenradien [43] (Tab. 6.14) zeigt sich hier ein sehr regelmäßiger Gang in den Zellvolumina der entsprechenden Verbindungen, die in Tabelle 6.15 zusammengestellt sind.

Tabelle 6.14: Ionenradien der M^{2+} -Ionen der 3d-Elemente in oktaedrischer Koordination [36] Ti² V^{2+} Mn² Fe² Co² Ni² Cu²⁺ Zn^{2+} Kation Cr^2 Ionenradius /Å 1.00 0.93 0,94 0,970 0.92 0,885 0,83 0,87 0,88 (hs, KZ = 6)

Verbindung	Ionenradius M ²⁺ /pm	Zellvolumen V/Å ³	Verbindung	Ionenradius M ²⁺ /pm	Zellvolumen V/Å ³
Ni[AlCl ₄] ₂	83	1127,8	Ni[GaCl ₄] ₂	83	1108,9
Co[AlCl ₄] ₂	88,5	1140,85	Co[GaCl ₄] ₂	88,5	1140,3
Fe[AlCl ₄] ₂	92	1159,3	Fe[GaCl ₄] ₂	92	1153,9
V[AlCl ₄] ₂	93	1159,3	V[GaCl ₄] ₂	93	1152,4
Mn[AlCl ₄] ₂	97	1184,7	β -Mn[GaCl ₄] ₂	97	1177,9
β -Ti[AlCl ₄] ₂	100	1177,2			

Tabelle 6.15: Entwicklung der Zellvolumina der *M*[*T*Cl₄]₂ bei Raumtemperatur.

Erstaunlich hierbei ist, dass die Volumenwerte der Tetrachlorogallate deutlich kleiner sind als diejenigen der Tetrachloroaluminate, obwohl das Ga^{3+} -Ion in tetraedrischer Koordinationssphäre mit 61 pm erheblich größer ist als das Al³⁺-Ion mit 53 pm. Diese Entwicklung lässt darauf schließen, dass das Galliumkation aufgrund seiner höheren Elektronegativität eine stärkere Lewissäure als das Al-Kation darstellt und somit seine Chlorliganden stärker an sich bindet.

Eine Auswirkung dieses Umstands ist der erheblich geringere Abstand zwischen den einzelnen Strängen der hexagonalen Stabpackung in den entsprechenden Tetrachlorogallaten. Die stärkere Bindung der Chloridionen an die Galliumkationen lässt einen höheren Annäherungsgrad der Stränge untereinander zu, die letztlich die geringeren Zellvolumina erklärt. Tabelle 6.16 gibt eine Aufstellung dieser Abstände wieder, wobei der erste Wert für den Kontakt zwischen zwei parallel angeordneten, der zweite für die Schrägbeziehung zweier benachbarter Stränge steht (siehe Abb. 6.53).

$\mathbf{I} \mathbf{y} \mathbf{p} \mathbf{s} \mathbf{M} [\mathbf{A} \mathbf{C} \mathbf{I}_{4}]_{2} \mathbf{u} \mathbf{n} \mathbf{d} \mathbf{M} [\mathbf{G} \mathbf{a} \mathbf{C} \mathbf{I}_{4}]_{2}.$						
Verbindung	<i>d</i> parallele Stränge /pm	<i>d</i> versetzte Stränge /pm	Verbindung	<i>d</i> parallele Stränge /pm	<i>d</i> versetzte Stränge /pm	
Ni[AlCl ₄] ₂	3,612	3,728	Ni[GaCl ₄] ₂	3,605	3,688	
Co[AlCl ₄] ₂	3,589	3,730	Co[GaCl ₄] ₂	3,613	3,681	
Fe[AlCl ₄] ₂	3,632	3,743	Fe[GaCl ₄] ₂	3,630	3,705	
V[AlCl ₄] ₂	3,640	3,741	V[GaCl ₄] ₂	3,652	3,714	
Mn[AlCl ₄] ₂						

Tabelle 6.16: Cl-Cl-Abstände zwischen den Strängen der hexagonalen Stabpackung in Verbindungen des Typs *M*[AlCl₄]₂ und *M*[GaCl₄]₂.

Abbildung 6.53: Mögliche Kontaktstellen zwischen den Strängen der hexagonalen Stabpackung in den Strukturen der $M[TCl_4]_2$ -Familie. Links werden Verknüpfungen zwischen seitlich versetzten Strängen gezeigt, rechts zwischen parallel angeordneten.

Mit der Darstellung von γ -Titan(II)- und Chrom(II)-tetrachloroaluminat konnten erstmals Vertreter dieser Verbindungsklasse mit strangartiger Verknüpfung der Polyeder dargestellt werden, in welchen die Lücken zwischen den Schichten der hexagonal dichten Kugelpackung gemischt mit M^{2+} - und Al³⁺- Ionen besetzt werden. Diese Besetzung war bisher nur vom schichtartig aufgebauten Cd[AlCl₄]₂ [9] bekannt, dessen Strukturtyp auch von den Verbindungen Mg[GaCl₄]₂ und α -Mn[GaCl₄]₂ ausgebildet wird. Das ebenfalls schichtartig aufgebaute Cr[GaCl₄]₂ wiederum zeigt eine streng getrennte Lückenbesetzung.

Der Strukturtyp des Mg[GaCl₄]₂ wird augenscheinlich vor allem in solchen $M[TCl_4]_2$ ausgebildet, in denen das Kation eine kugelsymmetrische Valenzelektronenkonfiguration ausweist (Mg²⁺ / Mn²⁺ / Cd²⁺). Allerdings bildet das Mangan(II)-tetrachloroaluminat hier eine Ausnahme, es zeigt wie oben beschrieben strangartige Polyederverknüpfung. Somit lässt sich anhand der "Ionenform" des *M*-Kations bisher keine verlässliche Voraussage treffen, wie das betreffende Tetrachloroaluminat oder -gallat aufgebaut ist. Die Abweichungen von der ideal oktaedrischen Koordination der M^{2+} -Kationen lässt sich nicht wie bei den d⁴-, d⁸- und d⁹konfigurierten Metallionen auf den Jahn-Teller-Effekt zurückführen, sondern ist der KationKation-Abstoßung an den gemeinsamen Kanten der [*M*Cl₆]-Oktaeder und [*T*Cl₄]-Tetraeder geschuldet.

Ein wesentlich deutlicherer Zusammenhang besteht hingegen zwischen der Anordnung der Polyederstränge in der jeweiligen hexagonalen Stabpackung und der Sublimier- bzw. Transportierbarkeit einer Verbindung. Dieses Kriterium geht einher mit dem molekularen Charakter der Verbindungen, vor allem derjenigen, in denen die [MCl_6]-Oktaeder einer Jahn-Teller-Verzerrung unterworfen sind und die aufgrund der langen M-Cl-Kontakte in z-Position in dieser Richtung deutlich schwächere bindende Wechselwirkungen erfahren (vgl. Cr[AlCl_4]_2 / Pd[GaCl_4]_2).

Die Bestimmung der magnetischen Suszeptibilitäten von V[AlCl₄]₂ [**16**] und Cr[AlCl₄]₂ [**42**] zeigt für beide Verbindungen isolierte Metallzentren, die keiner magnetischen Kopplung unterliegen. Die Verknüpfung der [MCl₆]-Oktaeder über [TCl₄]-Tetraeder bewirkt also eine Isolierung der Übergangsmetallionen voneinander.

Vanadium(II)-tetrachloroaluminat weist mit einem magnetischen Moment von 3,88 μ_B pro Vanadiumatom den erwarteten spin-only-Paramagnetismus für ein d^3 -Ion (3,87 μ_B) auf. Die negative Weiss'sche Konstante von $\theta = -9(1)$ K deutet möglicherweise auf schwache antiferromagnetische Wechselwirkungen bei sehr tiefen Temperaturen hin. Weitere Untersuchungen hinsichtlich eines Übergangs in eine antiferromagnetische Phase stehen noch aus.

Chrom(II)-tetrachloroaluminat zeigt im Bereich oberhalb 25 K Curie-Weiss-Verhalten mit einem magnetischen Moment von 4,70 μ_B , was gegenüber dem berechnten spin-only-Wert von 4,9 μ_B leicht verringert ist. Unterhalb dieser Temperatur nimmt das magnetische Moment stark ab. Der Grund hierfür ist wahrscheinlich in der dem Jahn-Teller-Effekt geschuldeten Verzerrung des Oktaeders zu suchen, die eine Aufspaltung des Grundterms 5E_g in die Terme ${}^5A_{1g}$ und ${}^5B_{1g}$ bewirkt und Spin-Bahn-Kopplung mit höheren Termen [44] erlaubt. Daraus resultiert eine Temperaturabhängigkeit des magnetischen Moments.

Aufgrund des allen Strukturtypen dieser Verbindungsklasse gemeinsamen Verknüpfungsprinzips, beruhend auf abwechselnder Anordnung von $[MCl_6]$ -Oktaedern und $[TCl_4]$ -Tetraedern, werden auch in den anderen Verbindungen, deren Metallzentren ungepaarte Elektronen aufweisen, keine magnetischen Wechselwirkungen erwartet.

79

6.2 Strukturtypen mit KZ $(M^{2^+}) > 6$

In diesem Abschnitt werden die im Rahmen dieser Arbeit dargestellten Strukturtypen derjenigen $M[TCl_4]_2$ beschrieben, deren M^{2+} -Kationen deutlich größere Ionenradien als die bisher betrachteten aufweisen (M = Sr, Ba, Sn, Pb). Die Reihe der Tetrachloroaluminate der Erdalkalimetalle wurde bereits in den 80er/90er Jahren des letzten Jahrhunderts dargestellt und charakterisiert, jedoch wurden keine Versuche publiziert, die Dichloride dieser Metalle mit weiteren dreiwertigen Lewis-Säuren wie Galliumtrichlorid oder Eisentrichlorid umzusetzen.

In dieser Arbeit wurden neben den Tetrachlorogallaten der oktaedrisch koordinierten M^{2+} (Kap. 6.1) auch diejenigen der oben genannten Elemente synthetisiert und charakterisiert

Die beiden innerhalb dieser Gruppe auftretenden Strukturtypen der $M[TCl_4]_2$ werden im Anschluss an die Beschreibung der Phasenanalyse und Strukturaufklärung am Beispiel der α und β -Phase des Strontiumtetrachlorogallats beschrieben.

In Kapitel 5.2 wurde die Synthesetemperatur von Sr[GaCl₄]₂ mit 190 °C angegeben. Bei dieser Temperatur entsteht nach Abkühlen der Reaktionsampulle phasenrein α-Sr[GaCl₄]₂, was durch Röntgenpulveruntersuchungen belegt ist. Demnach stellt die α-Komponente die thermodynamisch stabile Phase des Systems Sr/Ga/Cl dar. Anhand der Tatsache, dass das entsprechende Strontiumtetrachloroaluminat von *Stegmueller* [24] in drei polymorphen Phasen dargestellt werden konnte, lag die Vermutung nahe, dass auch das Tetrachlorogallat mehrere Phasen ausbilden könnte. Zur Verifizierung dieser Vermutung wurden mit Sr[GaCl₄]₂ kalorimetrische Experimente mithilfe der in Kap. 3.3 beschriebenen DSC vorgenommen. Im Zuge dieser Untersuchung ergab sich, dass bei thermischer Behandlung von Strontiumtetrachlorogallat im Bereich zwischen Raumtemperatur und 225 °C drei endotherme Signale auftreten, die auf Phasenübergänge hindeuten. Abb. 6.53 zeigt das Ergebnis der kalorimetrischen Messung. Auf der x-Achse ist die Temperatur in °C des Systems aufgetragen, auf der y-Achse das DSC-Signal in mW/mg. Die untere Kurve beschreibt den Aufheizmodus der Messung, die obere stellt die Abkühlkurve dar. Die Heizbzw. Abkühlrate betrug jeweils 10 K/min.

Abbildung 6.54: Ergebnis der kalorimetrischen Messung an Strontiumtetrachlorogallat.

In der Aufheizkurve sind drei Signale (I-III) erkennbar, in den Temperaturbereichen von 126-140 °C, 195-210 °C und bei ca. 225 °C. Die beiden Signale V und VI sind in der Abkühlkurve nicht voneinander zu trennen, sie erstrecken sich über den Bereich von 125-90 °C, wobei das Ende des Signals aufgrund seines flachen Auslaufs kaum genau bestimmt werden kann. Deutlich ist jedoch die mit $\Delta T \approx 80$ ° sehr große Hysterese der Signale II und V/VI, während Signal I im Abkühlmodus nur um wenige Grad zu tieferen Temperaturen zu V/VI hin verschoben ist. Das deutlich kleinere Signal III bei 225 °C ist in der Abkühlkurve sozusagen gar nicht verschoben, was auch aufgrund des geringen Energiegehalts auf einen Phasenübergang zweiter Ordnung hindeutet, also einen reversiblen Übergang mit sehr geringen Änderungen der Kristallstruktur.

Die hier erhaltenen Temperaturbereiche der einzelnen Phasen gaben die Rahmenbedingungen für die Strategie der weiteren Strukturaufklärung vor. Nachdem die Kristallstruktur der thermodynamisch stabilen *alpha*-Phase mithilfe einer standardisierten Tieftemperaturmessung unter hochviskosem Öl aufgeklärt werden konnte, mussten für Messungen bei Normalbedingungen oder höheren Temperaturen auf differenziertere Präparationsmöglichkeiten zurückgegriffen werden. Ein Einkristall geeigneter Größe wurde im Handschuhkasten unter Schutzgas in einer verjüngten Glaskapillare ($\emptyset = 0,3$ mm) so verkantet eingebracht, dass er sich auf dem Diffraktometer bei jeglicher Rotation des Goniometerkopfes nicht bewegte. Auf diese Weise konnte vermieden werden, dass das ansonsten bei dieser Art der Kristallpräparation verwendete Schlifffett den Kristall angreifen konnte oder dieser bei Erweichen des Fetts seine Position in der Kapillare änderte. Nach kurzem Abgleich der Zellparameter bei Raumtemperatur, um Qualität und Phase des Einkristalls zu bestätigen, wurde die Kapillare mithilfe einer aufgesetzten Heizeinrichtung aufgeheizt. Nun wurden im Bereich von 120-150 °C in Schritten von 5 ° *phi-chi*-scans durchgeführt, um eine ideale Temperatur zu finden, bei der die Gitterkonstanten möglichst geringen Schwankungen unterworfen waren. Nach Beurteilung der Präzessionsaufnahmen wurde bei 140 °C ein kompletter Datensatz aufgenommen und prozessiert. Diese Daten führten zur Aufklärung der ersten Hochtemperaturphase des Strontiumtetrachlorogallats, β -Sr[GaCl₄]₂.

Wie oben beschrieben unterliegt der erste Phasenübergang des Strontiumtetrachlorogallats einer deutlichen Hysterese, was auf einen Phasenübergang erster Ordnung hindeutet. Solche Übergänge sind in der Regel mit einer sprunghaften Änderung der Struktur und des Volumens verbunden und führen normalerweise zur Degeneration von Einkristallen zu pulverförmigen Proben. Umso erstaunlicher ist, dass im Falle des Übergangs von der *alpha-* zur *beta-*Phase des Sr[GaCl₄]₂ auch oberhalb der Umwandlungstemperatur ein Einkristall vorlag, aus dem ein vollständiger Datensatz erhalten werden konnte.

Die während der Heizmessung in den Präzessionsaufnahmen erkennbaren Ansätze von Pulverbeugungsringen deuten darauf hin, dass die Messung bei 140 °C evtl. zu nah an der Umwandlungstemperatur durchgeführt wurde. Einkristalluntersuchungen bei höheren Temperaturen stehen noch aus, dabei kann auch geklärt werden, ob die Pulverbeugungsringe ihre Ursache auch in der Zerstörung der Einkristalle haben. Auch sollten Untersuchungen mit Hilfe von Hochtemperaturpulverdiffraktometrie bei der Aufklärung weiterer Hochtemperaturphasen hilfreich sein.

Im Folgenden wird zuerst die Kristallstruktur der ersten Hochtemperaturphase β -Sr[GaCl₄]₂ beschrieben, da diese die strukturelle Grundlage für die α -Phase liefert. Letztere ergibt sich, wie auch die gruppentheoretischen Betrachtungen in Kap. 7.6 zeigen, durch Symmetrieabbau aus der β -Phase, der mit einer leichten Verdrehung der Polyeder einhergeht.

<u>β-Sr[GaCl4]2-Typ:</u>

Die erste Hochtemperaturphase im System Sr/Ga/Cl, benannt als β -Strontiumtetrachlorogallat, wurde strukturell wie oben beschrieben anhand röntgendiffraktometrischer Daten an einem auf 140 °C geheizten Einkristall charakterisiert. Obwohl es sich bei der Kristallstruktur von β -Sr[GaCl₄]₂ um einen wesentlich höhersymmetrischen Strukturtyp als den der α -Phase handelt, werden aufgrund der thermisch zugeführten Energie erheblich größere Schwankungen in den Gitterkonstanten, thermischen Auslenkungsparametern sowie Atomkoordinaten, -abständen und -winkeln beobachtet. Abb. 6.55 zeigt einen Ausschnitt der erweiterten asymmetrischen Einheit zur Veranschaulichung der erhöhten Energie in der Struktur von β -Sr[GaCl₄]₂. In den folgenden Graphiken werden ausschließlich isotrope Darstellungen gezeigt, da die Abbildungen der Kristallstruktur sonst zu unübersichtlich würden.

Abbildung 6.55: Ausschnitt aus der asymmetrischen Einheit der Struktur von β-Sr[GaCl₄]₂. Gezeigt ist die Koordination des Sr-Ions durch Cl-Atome der umgebenden [GaCl₄]⁻-Ionen. Die Beugungsdaten wurden bei einer Temperatur von 140 °C erfasst. Die thermischen Schwingungsellipsoide entsprechen einer Aufenthaltswahrscheinlichkeit der Atome von 70 %.

β-Strontiumtetrachlorogallat kristallisiert tetragonal in der Raumgruppe $I4_1/acd$ (№ 142) mit den Gitterkonstanten a = b = 11,4829(8) und c = 20,8074(15). Das Zellvolumen beträgt V = 2743,60 Å³, in der Elementarzelle sind Z = 8 Formeleinheiten enthalten. Es kristallisiert isotyp zu tI-Sr[AlCl₄]₂ [24]. Tabelle 6.17 zeigt die Koordinaten, Wyckoff-Lagen und isotropen Auslenkungsparameter der Atome in der Elementarzelle von β -Sr[GaCl₄]₂. Die Wyckoff-Lage *8b* des Strontiumatoms mit der Lagesymmetrie 2.22 entspricht einer Position auf dem Schnittpunkt der Spiegelebenen der Elementarzelle. Das Galliumatom liegt auf der Lage *16e* mit der Symmetrie 2 auf einer zweizähligen Achse in *b*-Richtung. Die Chloratome befinden sich sämtlich auf allgemeinen Lagen. Die Koeffizienten der anisotropen Temperaturfaktoren finden sich im Anhang A21 wieder.

Tabelle 6.17: Koordinaten, Wyckoff-Lagen und isotrope Auslenkungsparameter der Atome in der Elementarzelle von β -Sr[GaCl₄]₂.

Atom	Wyckoff	Symmetrie	x/a	y/b	z/c	U _{eq}
Sr	8b	2.22	0	0,25	0,125	0,08058(42)
Ga	16e	2	0,25	0,28746	0	0,09454(46)
Cl1	32g	1	0,09357(28)	0,038928(27)	0,01245(16)	0,16368(141)
Cl2	32g	1	0,25027(24)	0,18217(31)	0,08521(12)	0,14542(110)

Die Strontiumatome sind in Form eines verzerrten quadratischen Antiprismas von acht Chloratomen umgeben. Diese gehören zu vier kristallographisch äquivalenten Tetrachlorogallationen, welche jeweils eine gemeinsame Kante mit dem [SrCl₈]-Polyeder ausbilden. Abb. 6.56 zeigt die Koordinationssphäre am Sr-Atom.

Abbildung 6.56: Koordinationsfigur des [SrCl₈]-Polyeders in der Struktur von β -Sr[GaCl₄]₂.

Die vier koordinierenden [GaCl₄]-Ionen wirken verknüpfend zu vier weiteren [SrCl₈]-Polyedern, was mit Sr²⁺ als Zentralkation ohne bevorzugte Koordinationsrichtung zu tetraededrischer Ausbreitung führt. Abb. 6.57 zeigt die erweiterte asymmetrische Einheit von β -Sr[GaCl₄]₂.

Abbildung 6.57: Erweiterte asymmetrische Einheit in der Struktur von β-Sr[GaCl₄]₂. Die Atome sind als Kugeln von willkürlich gewähltem Radius dargestellt.

Tabelle 6.18 gibt eine Aufstellung der in der asymmetrischen Einheit relevanten Bindungslängen und -winkel wieder. Die Wiedergabe der Cl-Sr-Cl-Winkel bietet sich an dieser Stelle nicht an, abgesehen von den Werten derjenigen Cl-Atome, die eine gemeinsame Kante von [SrCl₈]- und [GaCl₄]-Polyeder ausbilden. Stattdessen wird auf die Winkel Ga-Sr-Ga eingegangen, da diese deutlich mehr Relevanz für die tetraedrische Ausbreitung der Polyederverknüpfung zeigt.

Bindungspaar	Bindungslänge /Å	Bindungspaar	Bindungslänge /Å
Sr-Cl1	3,0326(1)	Ga-Cl1	2,1588(26)
Sr-Cl2	3,0905(2)	Ga-Cl2	2,1460(24)
Atomverknüpfung	Bindungswinkel /°	Atomverknüpfung	Bindungswinkel /°
Cl1-Sr-Cl2	66,206(1)	Cl1-Ga-Cl1'	111,42(20)
Ga-Sr-Ga'	96,278(1)	Cl1-Ga-Cl2	101,96(10)
Ga-Sr-Ga"	127,437(1)	Cl1-Ga-Cl2'	113,77(14)
Ga-Sr-Ga'''	106,425(1)	Cl1'-Ga-Cl2	113,77(14)
Ga'-Sr-Ga"	106,425(1)	Cl1'-Ga-Cl2'	101,96(10)
Ga'-Sr-Ga'''	127,437(1)	Cl2-Ga-Cl2'	111,42(20)
Ga"-Sr-Ga"'	96,278(1)		

Taballa (19, Dindungalängan und winkal in das agummatsiashan Einhait von & Su[CaCl]

Wählt man eine reduzierte Darstellung der Struktur ohne Chloratome, so gelangt man zu einem Tetraedernetzwerk aus Strontium- und Galliumatomen. Durch das Inversionszentrum wird ein entsprechender Sr-Ga-Tetraeder verdoppelt, was zu einem zweiten Netzwerk führt, welches das erste durchdringt. Der mit 7,75 Å relativ große Abstand zwischen den Sr-Atomen und die mit mind. 3,4 Å oberhalb der Summe der Van-der-Waals-Radien liegenden Cl-Cl-Kontakte deuten auf einen schwachen Kontakt zwischen den Netzwerkteilen hin.

Aufgrund dieser Umstände kann das Cuprit (Cu₂O) als Strukturvorbild für das Verknüpfungsmuster dieser Kristallstruktur herangezogen werden. Die Positionen der linear koordinierten Kupferatome werden hier von den Galliumatomen eingenommen, die tetraedrisch koordinierten Sauerstoffatome werden in β -Sr[GaCl₄]₂ von Strontiumatomen besetzt. Abb. 6.58 zeigt die reduzierte Darstellung der tetraederförmig aufgebauten Netzwerkstränge. Durch den großen Abstand der Sr-Ga-Tetraedernetzwerke werden die Winkel zwischen den Sr-Sr-Achsen der einzelnen Tetraeder mit 95,646 bzw. 116,796 ° nur geringfügig gestaucht, es wirken nur schwache repulsive Wechselwirkungen zwischen den Chloridionen benachbarter symmetrieäquivalenter Netzwerkteile.

Abbildung 6.58: Vereinfachte Darstellung der tetraedrischen Sr-Ga-Netzwerke in der Struktur von β -Sr[GaCl₄]₂, ineinander überführt durch das zentral gelegene Inversionszentrum.

Die strukturelle Verwandtschaft des β -Sr[GaCl₄]₂ zum Cuprit als Aristotyp dieser Strukturfamilie lässt sich über gruppentheoretische Zusammenhänge zwischen den einzelnen Raumgruppen nachvollziehen. Der Weg der Symmetriereduktion wird in Kap 7.6 dargelegt.

<u>α-Sr[GaCl₄]₂-Typ:</u>

Aus den oben beschriebenen Strukturmotiven des β -Strontiumtetrachlorogallats kann die α -Phase anhand der Annäherung der Tetraedernetzwerke und der daraus resultierenden Stauchung der Sr-Ga-Tetraeder beschrieben werden.

 α -Strontiumtetrachlorogallat kristallisiert orthorhombisch in der Raumgruppe *Pbca* (№ 61) mit den Gitterparametern a = 20,3248(2), b = 12,2385(1) und c = 10,1897(1) Å. Das Zellvolumen *V* beträgt 2534,64 Å³, in der Elementarzelle sind *Z* = 8 Formeleinheiten enthalten.

Isotyp zu dieser Verbindung kristallisieren Ba[GaCl₄]₂, Sn[GaCl₄]₂, Pb[AlCl₄]₂ und Pb[GaCl₄]₂, deren Gitterparameter, Atomlagen sowie Bindungslängen und -winkel sich im Anhang A16-20 finden.

Die Strontiumatome sind von neun Chloratomen umgeben. Die Koordinationsfigur kann entweder als einfach überdachtes quadratisches Antiprisma oder als dreifach überdachtes trigonales Prisma beschrieben werden. Abb. 6.59 zeigt die möglichen Darstellungen des [SrCl₉]-Polyeders.

Abbildung 6.59: Beschreibung der [SrCl₉]-Polyeder in der Struktur von α-Sr[GaCl₄]₂ als einfach überdachtes quadratisches Antiprisma oder als dreifach überdachtes trigonales Prisma. In der linken Ansicht stellt die gestrichelte Sr-Cl-Bindung den langen Kontakt zum benachbarten Sr-Cl-Polyder dar.

Acht der neun Chloratome am Sr-Atom bilden jeweils paarweise eine gemeinsame Kante zu einem angrenzenden [GaCl₄]-Tetraeder aus. Der neunte Sr-Cl-Kontakt ist mit 3,261 Å (im Vergleich zu 2,96-3,18 Å) mit Abstand der Längste in der Koordinationssphäre am Strontiumatom. Dieser bildet zusätzlich zu den genannten vier Kanten eine Eckenverknüpfung zu einem fünften [GaCl₄]-Ion.

Die Tetrachlorogallationen belegen zwei kristallographisch unterschiedliche Lagen. Abb. 6.60 zeigt die erweiterte asymmetrische Einheit der Struktur von α -Sr[GaCl₄]₂.

Abbildung 6.60: Erweiterte asymmetrische Einheit der Struktur von α-Sr[GaCl₄]₂. Die thermischen Schwingungsellipsoide entsprechen einer Aufenthaltswahrscheinlichkeit der Atome von 70 %.

Tabelle 6.16 zeigt die Koordinaten, Wyckoff-Lagen und isotropen Auslenkungsparameter der Atome in der Elementarzelle von α -Sr[GaCl₄]₂. Sämtliche Atome befinden sich auf allgemeinen Lagen. Die Koeffizienten der anisotropen Temperaturfaktoren finden sich im Anhang A16 wieder.

Atom	Wyckoff	Symmetrie	x/a	y/b	z/c	U _{eq}
Sr	8c	1	0,88800(1)	0,53036(1)	0,34867(2)	0,01312(4)
Gal	8c	1	0,74550(1)	0,47037(1)	0,11412(2)	0,01435(5)
Ga2	8c	1	0,50478(1)	0,27091(2)	0,22762(2)	0,01375(5)
Cl1	8c	1	0,73610(3)	0,35631(4)	-0,04857(5)	0,02123(10)
Cl2	8c	1	0,50075(2)	0,37206(4)	0,04733(5)	0,01722(9)
C13	8c	1	0,60017(2)	0,28320(4)	0,32057(5)	0,01913(10)
Cl4	8c	1	0,49316(2)	0,09843(4)	0,18336(5)	0,01767(9)
C15	8c	1	0,42492(3)	0,34092(4)	0,34016(5)	0,02001(10)
Cl6	8c	1	0,76799(2)	0,38411(4)	0,29533(5)	0,01869(9)
Cl7	8c	1	0,65125(2)	0,55596(5)	0,11493(5)	0,02183(10)
C18	8c	1	0,82658(2)	0,58571(4)	0,09345(5)	0,01967(10)

Tabelle 6.19: Koordinaten, Wyckoff-Lagen und isotrope Auslenkungsparameter der Atome in der Elementarzelle von α-Sr[GaCl₄]₂.

Tabelle 6.20 gibt eine Aufstellung der in der asymmetrischen Einheit relevanten Bindungslängen und -winkel wieder. Die Benennung der Atome in dieser Darstellung gilt für alle in diesem Strukturtyp kristallisierenden Verbindungen, deren Atomkoordinaten und Bindungsparameter in diesem Kapitel oder im Anhang genannt werden.

Tabelle 6.20: Bin	dungslängen und -winkel in d	ler asymmetrischen Einh	eit von α-Sr[GaCl ₄] ₂ .
Bindungspaar	Bindungslänge /Å	Bindungspaar	Bindungslänge /Å
Sr-Cl1	3,0632(5)	Ga1-Cl1	2,1756(5)
Sr-Cl2	3,1825(5)	Ga1-Cl6	2,1754(5)
Sr-Cl3	3,1169(5)	Ga1-Cl7	2,1833(5)
Sr-Cl4	3,0604(5)	Ga1-Cl8	2,1800(5)
Sr-Cl5	3,1049(5)		
Sr-Cl6	3,0740(5)	Ga2-Cl2	2,2168(5)
Sr-Cl7	3,0188(5)	Ga2-Cl3	2,1631(5)
Sr-Cl8	2,9632(5)	Ga2-Cl4	2,1715(5)
Sr-Cl2'	3,2612(5)	Ga2-Cl5	2,1641(5)

Atomverknüpfung	Bindungswinkel /°	Atomverknüpfung	Bindungswinkel /°
Cl1-Sr-Cl2	139,01(1)	Cl1-Ga1-Cl6	110,72(2)
Cl1-Sr-Cl2'	101,12(1)	Cl1-Ga1-Cl7	103,51(2)
Cl1-Sr-Cl3	69,23(1)	Cl1-Ga1-Cl8	114,09(2)
Cl1-Sr-Cl4	135,63(1)	Cl6-Ga1-Cl7	114,45(2)
Cl1-Sr-Cl5	138,50(2)	Cl6-Ga1-Cl8	103,73(2)
Cl1-Sr-Cl6	70,77(1)	Cl7-Ga1-Cl8	110,67(2)
Cl1-Sr-Cl7	68,51(1)	Cl2-Ga2-Cl3	110,92(2)
Cl1-Sr-Cl8	81,35(2)	Cl2-Ga2-Cl4	111,51(2)
Cl2-Sr-Cl2'	61,12(1)	Cl2-Ga2-Cl5	100,98(2)
Cl2-Sr-Cl3	125,41(1)	Cl3-Ga2-Cl4	104,84(2)
Cl2-Sr-Cl4	77,33(1)	Cl3-Ga2-Cl5	114,38(2)
Cl2-Sr-Cl5	65,02(1)	Cl4-Ga2-Cl5	114,42(2)
Cl2-Sr-Cl6	106,01(1)		
Cl2-Sr-Cl7	71,22(1)	Sr-Cl ₁₋₈ -Ga ₁₋₂	91,96-98,54
Cl2-Sr-Cl8	137,29(1)	Sr-Cl2'-Ga2'	133,89

Cl2'-Sr-Cl3	68,90(1)		
C12'-Sr-C14	72,23(1)	Cl4-Sr-Cl5	70,82(1)
C12'-Sr-C15	119,38(2)	Cl4-Sr-Cl6	133,43(1)
Cl2'-Sr-Cl6	150,82(2)	Cl4-Sr-Cl7	142,99(2)
Cl2'-Sr-Cl7	75,73(2)	Cl4-Sr-Cl8	77,71(1)
C12'-Sr-C18	138,86(2)	Cl5-Sr-Cl6	69,35(1)
Cl3-Sr-Cl4	67,56(1)	Cl5-Sr-Cl7	111,07(2)
Cl3-Sr-Cl5	131,74(2)	Cl5-Sr-Cl8	74,25(1)
Cl3-Sr-Cl6	128,53(1)	Cl6-Sr-Cl7	75,25(1)
Cl3-Sr-Cl7	116,77(2)	Cl6-Sr-Cl8	69,12(1)
Cl3-Sr-Cl8	74,03(1)	Cl7-Sr-Cl8	139,23(2)

Die α -Phase des Sr[GaCl₄]₂ zeigt als einzige polynäre chloridische Verbindung von Strontium bei Normalbedingungen (vor allem Normaldruck) eine Koordinationszahl von 9. Das einzige bisher bekannte Beispiel hierfür ist die von *H.P. Beck* 1979 dargestellte Hochdruckmodifikation des SrCl₂, in welcher ähnlich enge Cl-Sr-Cl-Winkel vorliegen, jedoch auch deutlich kürzere Sr-Cl-Bindungslängen.

Der oben beschriebene neunte Sr-Cl-Kontakt führt zu einer engeren Verzahnung der Tetradernetzwerke, als dies in der β -Phase der Fall ist. Er wird durch das Ineinanderschieben der Tetraeder hervorgerufen, welches die Abnahme des Sr-Sr-Abstands von 7,74 Å in der β -Phase auf 5,55 Å in α -Sr[GaCl₄]₂ bewirkt. Durch diese Annäherung werden die einander zugewandten Dreiecksflächen der Sr-Ga-Tetraeder erwartungsgemäß durch repulsive Wechselwirkungen voneinander wegbewegt, was eine deutliche Stauchung der Tetraeder mit sich bringt.

Wie in der β -Phase werden die Tetraedernetzwerke durch ein Inversionszentrum aufeinander abgebildet. Abb. 6.61 zeigt das Ineinandergreifen der Netzwerke durch den zusätzlichen neunten Sr-Cl-Kontakt.

Abbildung 6.61: Zwei symmetrieäquivalente Tetraedernetzwerkteile in der Struktur von α-Sr[GaCl₄]₂ greifen nach Art zweier Zahnräder ineinander.

Nimmt man wiederum aus dieser Darstellung die Chloratome heraus, so gelangt man zu zwei tetraederförmig aufgebauten Molekülteilen, bestehend aus Strontium- und Galliumatomen. Die beiden Teilnetzwerke durchdringen sich gegenseitig, sind jedoch über den langen Sr-Cl-Kontakt nur schwach miteinander verknüpft. Auf die Weise gelangt man äquivalent zur β -Phase zur Beschreibung der Kristallstruktur von α -Sr[GaCl₄]₂ als eine Form des Cuprit-Typs (Cu₂O), jedoch mit deutlich gestauchter Form der Sr-Ga-Tetraeder. Wie in β -Sr[GaCl₄]₂ werden Positionen der linear koordinierten Kupferatome den Galliumatomen eingenommen, die tetraedrisch koordinierten Sauerstoffatome werden von Strontiumatomen besetzt. Abb. 6.61 zeigt die auf Sr- und Ga-Positionen reduzierte Darstellung der Tetraedernetzwerke, in der auch die Abflachung der einander zugewandten Dreiecksflächen der Sr-Ga-Tetraeder deutlich wird.

Die strukturelle Verwandtschaft des α -Sr[GaCl₄]₂ zum Cuprit als Aristotyp dieser Strukturfamilie lässt sich wie bei der β -Phase über gruppentheoretische Zusammenhänge zwischen den einzelnen Raumgruppen nachvollziehen. Die Erläuterung dieser Ableitung wird ebenfalls in Kap 7.6 gegeben.

Abbildung 6.62: Vereinfachte Darstellung der tetraedrischen Sr-Ga-Netzwerke in der Struktur von α-Sr[GaCl₄]₂, ineinander überführt durch das zentral gelegene Inversionszentrum. Diese Betrachtung erlaubt den Vergleich mit der Struktur des Cuprits, die Galliumatome liegen auf Kupferpositionen, die Strontiumatome auf Sauerstoffpositionen.

7 Gruppentheoretische Betrachtungen

In Kapitel 6 wurden für die im Verlauf dieser Arbeit dargestellten Strukturtypen die Zusammenhänge zu höhersymmetrischen Aristotypen beschrieben. So konnten sämtliche Kristallstrukturen der Verbindungen, in denen das zweiwertige Metallkation in (verzerrt) oktaedrischer Koordination vorliegt, durch das Modell einer hexagonal-dichten Kugelpackung von Chloratomen mit geordneter Besetzung jeweils eines Achtels der Oktaeder- und Tetraederlücken beschrieben werden. Diejenigen Verbindungen, in denen das Metallkation in Koordinationszahlen größer sechs vorliegt, wurden durch Reduktion der Struktur auf die Positionen der M^{2+} - und der T^{3+} -Ionen als Strukturvariante des Cuprit-Typs beschrieben, aufgebaut durch zwei einander durchdringende Netzwerke von MT_4 -Tetraedern.

In diesem Kapitel werden die gruppentheoretischen Symmetriezusammenhänge zwischen den entsprechenden Aristotypen und den Kristallstrukturen der dargestellten Verbindungen verfolgt und erläutert. Mit Hilfe der *International Tables for Crystallography, Vol. A* **[45]** werden Symmetriestammbäume nach Bärnighausen **[39]** und Müller **[46]** aufgestellt, die den Übergang von einem Aristotypen hinab zum entsprechenden Strukturtyp der synthetisierten Verbindung beschreiben. Die *International Tables* geben Möglichkeiten vor, durch Symmetrieabbau aus höher- in niedersymmetrische Raumgruppen zu gelangen, wobei auf evtl. notwendige Zellumstellung und Ursprungsverschiebung zu achten ist.

Um die Beschreibung der Symmetriereduktion zu vervollständigen, müssen im Anschluss an die Klassifikation und Aufstellung der einzelnen Schritte die erzeugten Wyckoff-Lagen jeder Zielraumgruppe und ihre theoretischen Atomkoordinaten mit den besetzten Lagen in den dargestellten Verbindungstypen verglichen werden. Die Grundlage für diese Überprüfung liefern die *International Tables for Crystallography Vol. A1* [47]. In diesem Band sind für jeden möglichen Schritt der Symmetriereduktion die Veränderungen in den Wyckoff-Lagen sowie evtl. vorzunehmende Ursprungsverschiebungen beschrieben.

Durch Kombination der dort beschriebenen Schritte werden aus den Koordinatentripeln der kristallographischen Lagen im Aristotyp alle theoretisch möglichen Atompositionen in der Zielraumgruppe erzeugt und so mit der Besetzung der realen Koordinaten vergleichbar.

Der erste Abschnitt dieses Kapitels beschreibt die Symmetriestammbäume der Verbindungstypen, in denen das M^{2+} -Kation (verzerrt) oktaedrisch von Chloratomen umgeben ist. Diese besitzen als gemeinsamen Ausgangspunkt den orthorhombischen Raumgruppentyp Cmcm (Nº 63), welcher direkt vom Strukturtyp der hexagonal dichtesten Packung von Chloratomen mit den Lagen der Oktaeder- und Tetraederlücken (P6₃/mmc (№ 194)), abgeleitet werden kann. Dies erfordert als Zwischenschritt einen isomorphen Übergang vom Index 4, in welchem die a- und b-Achse der hexagonalen Zelle verdoppelt werden. Die Umstellung von der hexagonalen in die orthorhombische Zelle erfolgt über einen translationengleichen Übergang vom Index 3 unter Wegfall der 3- bzw. 6-zähligen Achsen. Durch Achstransformation mit [a' = a, b' = a+2b, c' = c] wird das rechtwinklige Kristallsystem erzeugt. Diese beiden Schritte, die zu dem gemeinsamen Ausgangspunkt der folgenden Symmetriezweige des Stammbaums führen, sind in Abb. 7.1 gezeigt. Die jeweils erste Zeile jeder Tabelle gibt das Elementsymbol ($M = allg. M^{2+}$ -Kation), die zugehörige Wyckoff-Lage sowie die Lagesymmetrie an. Der Buchstabe vor der Wyckoff-Lage bezeichnet die Rolle, die diese Lage im Modell der hexagonal-dichten Packung einnimmt (O = Oktaederlücke, T = Tetraederlücke, P = Packungsteilchen). In der zweiten Zeile sind die entsprechenden berechneten Koordinatentripel wiedergegeben.

Die folgenden Symmetriereduktionsschritte zu den entsprechenden Raumgruppen der dargestellten Verbindungen werden ausgehend von der Raumgruppe *Cmcm* ($\mathbb{N}_{\mathbb{P}}$ 63) beschrieben. In dieser wird eine idealisierte Struktur postuliert, die die notwendige Diversifizierung der Lagen der *M*- und *T*-Kationen aufweist. Somit stellt dieser Zwischenschritt einen untergeordneten Aristotypen für die folgenden Strukturableitungen dar. Die einzige Ausnahme stellt die Ableitung zum Strukturtyp des α -Mangantetrachlorogallats bzw. des Mg[GaCl₄]₂ dar, dieser wird im Anschluss beschrieben. In der Symmetriereduktion zu diesem Strukturtyps wird der oben beschriebene isomorphe Übergang *i4* nicht durchgeführt

Entgegen der Empfehlung von *Bärnighausen* und *Müller* gilt für die Symmetriestammbäume in diesem Kapitel, dass die jeweiligen Zwischenschritte in der Standardaufstellung der betreffenden Raumgruppen gewählt werden. Dies erfordert einige zusätzliche Transformationsschritte, welche aber mit Hilfe des Programms *Powder Cell* [48] leicht zu berechnen sind und zu einer besseren Übersicht in den Aufstellungen der Raumgruppen führen.

Die grau unterlegten Felder in den Tabellen kennzeichnen Wyckoff-Lagen, die in den folgenden Schritten nicht mehr besetzt und somit nicht weiter verfolgt werden.

95
Oktaederlücken durch M-Atome und der Tetraederlücken durch T-Atome. Diese hypothetische Struktur Abbildung 7.1: Ableitung der idealisierten Struktur einer Verbindung des Formeltyps $M_2T_4Cl_2$ unter der Annahme einer unverzerrten hexagonal-dichtesten Kugelpackung der Cl-Atome und Besetzung der wird dadurch zum Aristotyp, von dem sich die in dieser Arbeit dargestellten Substanzen des Formeltyps

*MT*₂Cl₈ mit *M* in oktaedrischer Koordination ableiten lassen.

7.1 Ableitung des V[AlCl₄]₂-Strukturtyps

Abb. 7.2 zeigt die erforderlichen Schritte der Symmetriereduktion, die zum Strukturtyp des $V[AlCl_4]_2$ führen. Ausgehend von dem oben beschriebenen Ausgangspunkt *Cmcm* ($N_{\rm D}$ 63) wird durch einen translationengleichen Übergang vom Index 2 und die anschließende Achstransformation [a' = b, b' = -a, c' = c] die Raumgruppe C2/m ($N_{\rm D}$ 12) erreicht. Aus dieser gelangt man über einen klassengleichen Übergang vom Index 2 unter Verdopplung der *c*-Achse mit [a' = a, b' = b, c' = 2c] in die Raumgruppe I2/c ($N_{\rm D}$ 15). Die nicht-konventionelle Zellaufstellung ist wie in Kap. 6 beschrieben der Wahl des monoklinen Winkels β nahe 90 ° und der Lage der Schichten der Packung von Chloratomen in der *a-b*-Ebene geschuldet, deren Schichtbeschreibung in der Standardaufstellung C2/c mit einem monoklinen Winkel nahe 130 ° sehr versetzt erfolgen müsste.

In der vierten Tabelle von Abb. 7.2 erfolgt der Vergleich der berechneten mit den realen Koordinatentripeln in Vanadium(II)-tetrachloroaluminat. Die in Klammern angegebenen Zahlen neben den Übergangspfeilen führen zu den nebenstehend aufgeführten symmetrieäquivalenten Koordinatenaufstellungen.

Hier wird ersichtlich, dass in diesem Strukturtyp, in dem die Kationen nur leichten koordinationsbedingten Verzerrungen unterliegen, die theoretischen mit den tatsächlichen Atompositionen äußerst gut übereinstimmen. Dieser Strukturtyp ist ein sehr gutes Beispiel für das von *Laves* **[49,50]** und *Bärnighausen* **[51]** formulierte Symmetrieprinzip: selbst die durch repulsive Kation-Kation-Wechselwirkungen bedingten Verzerrungen der idealen Polyeder-symmetrien in V[AlCl₄]₂ bewirken nur äußerst geringe Abweichungen der Atomlagen von der Idealsymmetrie.

Die Koordinaten der Atome in den isotyp zu V[AlCl₄]₂ kristallisierenden Verbindungen sind hier aus Gründen der Übersichtlichkeit nicht aufgeführt, sie unterscheiden sich nur marginal von den oben genannten (siehe Anhang).

 $V[AlCl_4]_2$

Abbildung 7.2: Ableitung der Struktur von V[AlCl₄]₂ aus einer hypothetischen Struktur in der Raumgruppe *Cmcm* und Vergleich der berechneten mit den tatsächlichen Atomkoordinaten.

7.2 Ableitung des γ -Ti[AlCl₄]₂-Strukturtyps

Abb. 7.3 zeigt den Zweig der Symmetriereduktion, der zum Strukturtyp des γ -Titan(II)tetrachloroaluminats führt. Die Ableitung dieses Typs gelingt vom Ausgangspunkt *Cmcm* in nur einem Schritt: über einen klassengleichen Übergang vom Index 2 unter Verlust der Zentrierung und anschließende Achstransformation mit [a' = c, b' = b, c' = -a] wird die orthorhombische Raumgruppe *Pnnm* (No 58) erreicht.

Die Abweichung in den Positionen der Chloratome im Vergleich zu den theoretisch berechneten Koordinatentripeln ist durch die leichte Verkippung der [AlCl₄]-Tetraeder relativ zu den Schichten der hexagonalen Packung zu erklären.

Abb. 7.4 zeigt einen erweiterten Symmetriestammbaum, welcher alle drei Phasen des Systems Ti/Al/Cl zeigt. Die α - und β -Phase wurden von Justness, Rytter und Andresen[13] sowie *Troyanov*[14,15] in den Raumgruppen $P2_1/c$ (No 14) bzw. I2/c (No 15) beschrieben. Die Zellparameter der α -Phase liegen sehr nahe an den Werten für ein rechtwinkliges Kristallsystem, so dass evtl. eine orthorhombische Aufstellung in der Raumgruppe Pca2₁ (No 29) gewählt werden könnte. Diese Vermutung wurde im Rahmen dieser Arbeit nicht überprüft, die orthorhombische Variante ist jedoch in Abb. 7.4 als denkbare Alternative mit aufgeführt. Sie zeigt große Ähnlichkeit mit dem Cr[AlCl₄]₂-Strukturtyp. Unabhängig davon, welche Aufstellung für die α -Phase gewählt wird, ist aus dem Stammbaum ersichtlich, dass keiner der Phasenübergänge $[\alpha \rightarrow \beta / \beta \rightarrow \gamma / \alpha \rightarrow \gamma]$ über eine direkte Gruppe-Untergruppe-Beziehung zu beschreiben ist. Nach Bärnighausen muss es sich bei solchen Übergängen um Phasenumwandlungen erster Ordnung handeln, d.h. die unterschiedlichen Modifikationen sind im Festkörper nicht oder nur äußerst langsam ineinander überführbar und die Phasenübergänge gehen stets mit großer Hysterese einher. So könnte man bei einer röntgenographischen Strukturanalyse einen Einkristall der α -Phase zwar auf dem Diffraktometer bis in den Bereich der Bildungstemperatur einer der höheren Phasen erwärmen, dies würde jedoch nicht zur spontanen Umwandlung in die gewünschte Modifikation führen. Da sich die verschiedenen Phasen vom Aufbau her stark unterscheiden würde eine beginnende Phasenumwandlung zum Verlust der Struktur des Einkristalls führen oder sogar zum Zerfall der Verbindung (vermutlich zu TiCl₂ und AlCl₃).

Dieser Umstand deckt sich mit der Beobachtung, dass die einzelnen Phasen nur durch Variation der Abscheidungstemperatur direkt aus der Gasphase erhalten werden können und dass in kalorimetrischen Untersuchungen keine messbaren Signale auftraten.

 γ -Ti[AlCl₄]₂

$(63) C 2/m 2/c 2_1/m$	Ti <i>O</i> : 4 <i>a</i> 2/ <i>m</i>	Ti <i>O</i> : 4b 2/m	Ti <i>O</i> : 8 <i>d</i> -1	Al <i>T</i> : 8 <i>m</i> .	8f T: . m	Al : 8f T	Al : 16 <i>h</i> 1	Cl <i>P</i> : 4 <i>c</i> <i>m</i> 2 <i>m</i>	Cl P: 4c m 2 m	Cl P: 8g m
 k2 a, b, c	0 0 0	0 1/2 0	1/4 1/4 0	0 0,66 0,87:	66 0,8 50 0,3	0 0, 333 0, 750 0,	2500 4166 8750	0 0,6666 1/4	0 0,1666 1/4	0,2500 0,4166 1/4
transform c, b, -a										
(58) Pnnm		Ti O: 2b 2/m	Ti O: 2d 2/m	Al <i>T</i> : 4g m	Al <i>T</i> : 4g	Cl P: 42	c g P: 4 n	l lg P: m	Cl : 8h 1	
		0 0 1/2	1/2 0 1/2	0,1250 0,3333 0	0 0,625 0,666 0	0 0,250 0,660 0	00 0,25 56 0,16 0	00 0,2 66 0,9 0,7	2500 9166 7500	
						(2)	(1)	ļ	(3)	
				Ti O: 2b 2/m	Al T: 4g m	Cl1 P: 4g m	Cl3 P: 4g m	Cl2 P: 81 1	n (1	1): x+1/2, -y- 2):-v+1/2, -v-
		th Pos	eor. sition	0 0 1/2	0,6250 0,1666 1/2	0,2500 0,1666 1/2	0,7500 0,3333 1/2	0,750 0,083 0,250	00 (3 300	3):-x, -y, -z
		Ko ir Ti[A	pord. $\gamma - \frac{1}{1} \gamma - \frac{1}{2} \frac{1}{2}$	0 0 1/2	0,6002 0,1877 1/2	0,2388 0,1759 1/2	0,7025 0,3502 1/2	0,737 0,095 0,297	/1 54 /1	

Abbildung 7.3: Ableitung des γ-Ti[AlCl₄]₂-Strukturtyps aus dem gemeinsamen Ausgangspunkt *Cmcm* und Vergleich der berechneten mit den tatsächlichen Atomkoordinaten.

-1/2, 1/2 +1/2, 1/2

Abbildung 7.4: Symmetriezusammenhang zwischen den einzelnen Phasen des Systems Ti/Al/Cl.

7.3 Ableitung des Cr[AlCl₄]₂-Strukturtyps

Abb. 7.5 zeigt den Zweig der Symmetriereduktion, der zum Strukturtyp des Chrom(II)tetrachloroaluminats führt. Ausgehend von der Raumgruppe *Cmcm* erreicht man durch einen klassengleichen Übergang vom Index 2 und anschließende Achstransformation nach [a' = b, b' = c, c' = a] unter Verlust der Zentrierung die orthorhombische Raumgruppe *Pnma* (N \ge 62). Ein translationengleicher Übergang vom Index 2 mit Transformation nach [a' = b, b' = c, c' = a] führt in die Raumgruppe *Pmc2*₁ (N \ge 26). Den abschließenden Schritt stellt ein klassengleicher Übergang vom Index 2 unter Verdopplung der *b*-Achse und Achstransformation nach [a' = b, b' = a, c' = -c] dar. Dieser führt in die Zielraumgruppe *Pca2*₁ (N \ge 29).

In der letzten Zeile der abschließenden Tabelle sind wiederum die tatsächlichen Positionen der Atome in der Kristallstruktur von Cr[AlCl₄]₂ wiedergegeben. Während die Koordinaten der Chrom- und Aluminiumatome sehr gut mit den berechneten übereinstimmen, treten bei den Werten der Chloratome teilweise recht deutliche Abweichungen auf. Diese werden durch die durch den Jahn-Teller-Effekt verursachte Streckung des [CrCl₆]-Oktaeders verursacht und sind auch in der Seitenansicht der hexagonal-dichten Packung (Abb. 6.20) anhand der wellenförmigen Verzerrung der Schichten zu beobachten

Abbildung 7.5: Ableitung des Cr[AlCl4]₂-Strukturtyps aus dem gemeinsamen Ausgangspunkt *Cmcm* und Vergleich der berechneten mit den tatsächlichen Atomkoordinaten.

 $Cr[AlCl_4]_2$

7.4 Ableitung der Strukturtypen von Pd[GaCl₄]₂ und Cr[GaCl₄]₂

Abb. 7.5 zeigt den Zweig der Symmetriereduktion, der zu den Strukturtypen des Chrom(II)-tetrachlorogallats Palladium(II)-tetrachlorogallats und des führt. Beide kristallisieren in der monoklinen Raumgruppe $P 2_1/c$, sind jedoch strukturell deutlich voneinander zu unterscheiden. Erweitert man wie in Kap. 6 beschrieben die Koordinationssphäre über die "normalen" Bindungslängen M-Cl hinaus auf eine pseudooktaedrische Umgebung, bilden die Polyeder in Pd[GaCl₄]₂ eindimensional-infinite Stränge, während sie in Cr[GaCl₄]₂ zu Schichten verknüpft werden. Aufgrund der de facto quadratisch-planaren Koordination des Palladium-Kations und der durch den Jahn-Teller-Effekt deutlich gestreckt-oktaedrischen Umgebung des Chrom-Kations sind bei den Chloratomen deutliche Abweichungen der Atomkoordinaten von den theoretischen Positionen zu erwarten.

Der erste Schritt der Symmetriereduktion geht mit einem translationengleichen Übergang vom Index 2 und anschließender Achstransformation mit [a' = b, b' = -a, c' = c] einher, der in die Raumgruppe C 2/m (No 12) führt. Aus dieser lassen sich durch einen klassengleichen Übergang vom Index 2 (unter Verlust der Gitterzentrierung) mit Umstellung der Achsen nach [a' = c, b' = -b, c' = a] die theoretischen Koordinatentripel in der Raumgruppe P 2₁/c (No 14) berechnen.

In beiden Strukturtypen treten aufgrund der oben genannten verzerrenden Einflüsse erhebliche Abweichungen in den Positionen derjenigen Atome auf, die sich auf den allgemeinen Lagen 4e befinden.

Die im letzten Schritt gezeigte Aufspaltung der besetzten Lagen, vor allem der Galliumpositionen, spiegelt die oben genannten Unterschiede der beiden Strukturtypen wider. Die Besetzung unterschiedlicher kristallographischer Kationenlagen in grundsätzlich gleichen Anionengittern wurde an einem ähnlichen Beispiel von *Stegmueller* [24] bei den Verbindungen *tI*-Sr[AlCl₄]₂ und Yb[AlCl₄]₂ beobachtet, wo die Sr²⁺- bzw. Yb²⁺-Kationen in der Raumgruppe $I 4_1/a c d$ verschiedene Lagen (*8b / 8a*) besetzen.

Abbildung 7.6: Ableitung der Strukturtypen von Pd[GaCl₄]₂ und Cr[GaCl₄]₂ aus dem gemeinsamen Ausgangspunkt *Cmcm* und Vergleich der berechneten mit den tatsächlichen Atomkoordinaten.

(1): -x, y+1/2, -z+1/2

(2): -x, -y, -z

(3): x, -y+1/2, z+1/2

7.5 Ableitung des Strukturtyps von α -Mn[GaCl₄]₂

Die Ableitung des α -Mn[GaCl₄]₂-Strukturtyps aus der hexagonal-dichten Packung ist aufgrund des Wegfalls fast aller Symmetrieelemente sehr kompliziert. Die Zielraumgruppe *Pc* besitzt als einziges verbleibendes Symmetrieelement eine *c*-Gleitspiegelebene senkrecht zur *b*-Achse. Anhand der gewählten Ausgangszellparameter in der Raumgruppe *P6₃/mmc* wird das Zellvolumen von α -Mn[GaCl₄]₂ über einen klassengleichen oder isomorphen Übergang vom Index 2 erreicht. Daher kann der bisher genutzte Weg der Verdopplung der *a*- und *b*-Achse in der Raumgruppe *P6₃/mmc* (*i4*, *2a*, *2b*, *c* / vgl. Abb. 7.1) nicht beschritten werden. Ausgehend von den für alle Ableitungen gültigen Gitterparametern des Aristotyps *P6₃/m 2/m 2/c* (*a* = *b* = 3,75 Å, *c* = 5,9 Å) wären in der abgeleiteten theoretischen Zellaufstellung die *a*- und *b*-Achse miteinander vertauscht, deshalb muss ein anderer Weg der Strukturableitung (Abb. 7.7) gewählt werden.

Ausgehend von der Raumgruppe P6₃/mmc mit oben genannten Zellparametern wird direkt ein translationengleicher Übergang vom Index 2 in die Raumgruppe *Cmcm* vorgenommen. Durch einen weiteren translationengleichen Übergang vom Index 2 gelangt man in die Raumgruppe C2/c (№ 15), welche durch einen klassengleichen Übergang vom Index 2 unter Verlust der Zentrierung in die Raumgruppe P2/n (No 13) überführt wird. An dieser Stelle erfordert die oben beschriebene Vertauschung zweier Achsen eine Umstellung der Zelle aus der (annähernd) rechtwinkligen in eine spitzwinklige Aufstellung, unter Transformation der n- in eine c-Gleitspiegelebene. Die Versetzung der zweizähligen Achsen wird durch die Transformation nach [a' = a, b' = b, c' = 3a+c] erreicht. Das erforderliche Zellvolumen für die Zielverbindung wird nun durch zweimalige Verdopplung der a-Achse, also zwei isomorphe Übergänge vom Index 2 nach [a' = 2a, b' = b, c' = c], erhalten. Der folgende translationengleiche Übergang vom Index 2 führt in die Zielraumgruppe Pc (№ 7), jedoch in spitzwinkliger Aufstellung mit $\beta \approx 155^{\circ}$. Der abschließende Vergleich mit den Atompositionen im annähernd rechtwinkligen ($\beta = 92,9^{\circ}$) α -Mn[GaCl₄]₂ gelingt erst nach Umstellung nach [a' = a, b' = -b, c' = -a-c] und anschließender Invertierung zweier Achsen mit [a' = a, b' = -b, c' = -c]. Die Positionen der Atomen werden in *a*- und *c*-Richtung so verschoben, dass das Metallatom auf (0,00/0,25/0,00) platziert ist, in Übereinstimmung mit den gewählten Koordinatentripeln in der Strukturlösung.

Die abschließende Tabelle zeigt den Vergleich mit den Atompositionen in den isotyp kristallisierenden Verbindungen α -Mn[GaCl₄]₂ und Mg[GaCl₄]₂. Hier wird ersichtlich, dass in beiden Kristallstrukturen nur geringfügige koordinationsbedingte Abweichungen von den theoretischen Positionen auftreten. Somit lässt sich feststellen, dass die Bildung der gewellten Polyederschichten, deren Richtung nicht mit der Stapelung der Schichten der hexagonaldichten Packung von Chloratomen korreliert, keinen nennenswerten verzerrenden Einfluss auf die Atompositionen ausübt.

Abbildung 7.7: Ableitung des Strukturtyps von α-Mn[GaCl₄]₂ aus der hexagonal-dichten Packung von Chloratomen mit vollständiger Lückenbesetzung und Vergleich der berechneten mit den tatsächlichen Atomkoordinaten.

7.6 Ableitung der Strukturtypen von α - und β -Sr[GaCl₄]₂

Die Rückführung der Strukturtypen der in dieser Arbeit dargestellten Phasen des Systems Sr/Ga/Cl auf den Cuprit-Typ gelingt wie in Kap. 6.2 beschrieben durch Reduzierung der Kristallstrukturen auf die Positionen der Sr²⁺- und Ga³⁺-Ionen. Entsprechend der Koordination der Kupfer- und Sauerstoffatome in Cu₂O sind die Strontiumatome verzerrt tetraedrisch von Galliumatomen umgeben, diese wiederum sind annähernd linear von zwei Sr-Atomen koordiniert. Ausgehend von der Besetzung der Wyckoff-Lagen 2a (Sr auf 0 0 0) und 4b (Ga auf ¹/₄ ¹/₄) in der Raumgruppe $P 4_2/n \overline{3} 2/m$ (No 224) führt wie in Abb. 7.8 gezeigt ein klassengleicher Übergang vom Index 2 in die Raumgruppe $F 4_1/d \overline{3} 2/c$ (No 228), wobei alle drei Achsen einer Verdopplung unterzogen werden: [a' = 2a, b' = 2b, c' = 2c]. Ein translationengleicher Übergang vom Index 3 nach $[a' = \frac{1}{2}(a-b), b' = \frac{1}{2}(a+b), c' = c]$ führt in die Raumgruppe der (ersten) Hochtemperaturmodifikation β -Sr[GaCl₄]₂, $I 4_1/a 2/c 2/d$ (No 142). In der rechts stehenden Tabelle ist die nach Ursprungsverschiebung um [0,1/4,-1/8] sehr gute Übereinstimmung der theoretischen mit den tatsächlichen Atompositionen aufgezeigt, lediglich in der *y*-Position der Galliumlage zeigt sich eine geringfügige Abweichung, welche der nicht-idealen Form der [SrGa_4]-Tetraeder geschuldet ist.

Die weitere Symmetriereduktion führt über einen translationengleichen Übergang vom Index 2 in die Raumgruppe $I \ 2_1/b \ 2_1/c \ 2_1/a$ (No 73), unter Ursprungsverschiebung nach [0,1/4,-1/8]. Den abschließenden Schritt bildet ein klassengleicher Übergang vom Index 2 mit anschließender Achstransformation nach [a' = c, b' = a, c' = b], der in die Zielraumgruppe $P \ 2_1/b \ 2_1/c \ 2_1/a$ (No 61) führt. In der unteren Tabelle ist der Vergleich der theoretischen Positionen der Strontium- und Galliumlagen mit den Koordinatentripeln der Kristallstruktur von α -Sr[GaCl₄]₂ wiedergegeben. Aufgrund der wesentlich stärkeren Verzerrung der [SrGa₄]-Tetraeder ist hier auch die Abweichung in den Atompositionen viel deutlicher als in der höhersymmetrischen β -Phase. Die Koordinaten der isotyp kristallisierenden Verbindungen sind hier aus Gründen der Übersichtlichkeit nicht mit aufgeführt, finden sich jedoch im Anhang.

Abbildung 7.8: Ableitung der Strukturtypen von α - und β -Sr[GaCl₄]₂ vom Cuprit (Cu₂O) als Aristotyp dieser Verbindungsklasse und Vergleich der berechneten mit den tatsächlichen Atompositionen.

8 Zusammenfassung und Ausblick

Im Verlauf dieser Arbeit konnten sämtliche fehlenden Vertreter der Verbindungsklasse M^{II} [AlCl₄]₂ sowie die lückenlose Reihe der entsprechenden Tetrachlorogallate M^{II} [GaCl₄]₂ dargestellt werden. Alle Verbindungen konnten anhand von Einkristallen strukturell charakterisiert werden. Die Synthesen führten bis auf wenige Ausnahmen zu phasenreinen Produkten. Während die Mehrzahl der Verbindungen, in denen M^{2+} oktaedrisch koordiniert ist, den von Co[AlCl₄]₂ [**6**] bekannten Strukturtyp ausbildet, konnten mit erfolgreicher Synthese von Cr[AlCl₄]₂ [**42**] und γ -Ti[AlCl₄]₂ zwei grundlegend neue, strangartig aufgebaute Strukturtypen aufgeklärt werden. Abb. 8.1 zeigt eine Übersicht der synthetisierten Tetrachloroaluminate bzw. -gallate mit KZ (M^{2+}) = 6. Grau unterlegte Summenformeln stehen für die literaturbekannten Verbindungen dieser Substanzklasse, die Trennlinien zeigen die Grenzen zwischen Strang- und Schichtstrukturen sowie zwischen unverzerrt kristallisierenden Verbindungen und solchen auf, in denen die Elektronenkonfiguration am M^{2+} -Ion Abweichungen von der oktaedrischen Koordination bewirkt.

Abbildung 8.1: Übersicht der in dieser Arbeit aufgeklärten Strukturtypen der $M[TCl_4]_2$ mit $KZ(M^{2+}) = 6$ sowie die literaturbekannten Vertreter (grau unterlegt) dieser Substanzklasse.

Die Darstellung der Substanzen aus Schmelzen der beteiligten Lewissäuren AlCl₃ und GaCl₃ erwies sich als ebenso erfolgreich wie die Züchtung einkristalliner Proben durch Sublimation oder chemischen Gasphasentransport der Produkte. Mithilfe dieser Methoden konnten selbst schwer fassbare Verbindungen wie Nickel(II)-tetrachloroaluminat dargestellt und charakterisiert werden, obwohl NiCl₂ aufgrund der hohen Lewis-Acidität des kleinen Ni^{II}-Kations innerhalb der Reihe der *3d*-Elemente die geringste Tendenz zur Verbindungsbildung mit Lewis-Säuren zeigt.

Allen Verbindungen mit strangartiger Polyederverknüpfung ist die Schichtung einer hexagonal-dichtesten Chloridionenpackung senkrecht zur Ausbreitungsrichtung der Stränge gemeinsam. Während jedoch im V[AlCl₄]₂-Typ und in Pd[GaCl₄]₂ die Besetzung der Zwischenschichten mit M^{2+} in Oktaeder- und T^{3+} in Tetraederlücken streng separat erfolgt, werden in Cr[AlCl₄]₂ und der γ -Phase von Ti[AlCl₄]₂ in jeder Zwischenschicht sowohl Oktaeder- als auch Tetraederlücken besetzt. Diese gemischte Besetzung führt in den hexagonalen Stabpackungen der Verbindungen zu einem abwechselnden Versatz der Stränge um eine halbe Translationslänge in Strangrichtung.

In der Ausbildung der schichtartig aufgebauten Strukturtypen zeigt sich abgesehen von der gravierenden Verzerrung der Oktaeder am d^4 -konfigurierten Cr²⁺-Ion ein weiterer wichtiger Unterschied: in Cr[GaCl₄]₂ besetzen die Polyederschichten, deren Ausbreitung senkrecht zur Schichtung der hexagonal-dichten Chloridionenpackung verläuft, jeweils nur eine Lage in Richtung [100] (vgl. Abb. 6.50). In Mg[GaCl₄]₂ besetzen die Polyederschichten aufgrund ihrer deutlichen Wellenform in der Tiefe (Richtung [010]) zwei hintereinander liegende Lagen der hexagonal-dichten Packung (siehe Abb. 6.40). Auch die oben erwähnte Besetzung der Oktaeder- und Tetraederlücken erfolgt in unterschiedlicher Weise: Cr[GaCl₄]₂ zeigt separate Lückenbesetzung, in der Struktur von Mg[GaCl₄]₂ werden in allen Zwischenschichten Mg²⁺- und Ga³⁺-Ionen eingebaut.

Für alle Verbindungen, in denen das zweiwertige Metallkation (verzerrt) oktaedrisch koordiniert ist, gilt jedoch nach wie vor, dass sie sich strukturell von der hexagonal-dichtesten Packung ableiten lassen. Ungeklärt bleibt an dieser Stelle, warum es keine Beispiele für ein anderes zugrunde liegendes Strukturmuster gibt.

Die gruppentheoretischen Zusammenhänge aus gemeinsamen Aristotypen konnten in Kap. 7 für alle Strukturtypen bestimmt werden. Hierbei zeigt sich, dass auch in Strukturtypen, in denen die Koordinationssphäre am M^{2+} deutlich von der oktaedrischen Idealform abweicht (M = Cr, Cu, Pd), die Lageparameter der Metallkationen sehr gut mit den berechneten Werten übereinstimmen, während sich die Koordinaten der Chloridionen den Anforderungen der Elektronenkonfiguration der Kationen anpassen, was wiederum die Wellenform der Schichten der Chloridionenpackung bewirkt.

Für die in dieser Arbeit charakterisierten Verbindungen, in denen das M^{2+} -Kation von mehr als sechs Chloridionen koordiniert ist (M = Sr, Ba, Sn, Pb), treten trotz aller Größenunterschiede nur zwei unterschiedliche Strukturtypen auf, hier vertreten durch α - und β -Strontiumtetrachlorogallat. Diese wurden auch von *Stegmueller* [24] für Ba[AlCl₄]₂ und Sr[AlCl₄]₂ gefunden. α -Sr[GaCl₄]₂ stellt in dieser Substanzklasse ein besonderes Beispiel dar, ist es doch die einzige bekannte Verbindung, in der Strontium bei Normalbedingungen in chloridischer Umgebung eine Koordinationszahl von neun aufweist.

Die Kristallstrukturen der Verbindungen, in denen die M^{2+} -Ionen eine Koordinationszahl von 8 bzw. 9 zeigen, lassen sich durch Vereinfachung der Struktur auf die Positionen der Metallatome auf den Strukturtyp des Cuprits (Cu₂O, $P 4_2/n -3 2/m$, N 224) zurückführen (siehe Abb. 7.8). Die Unterschiede zwischen berechneten und tatsächlichen Atomkoordinaten lassen sich zwanglos durch die nicht ideal-tetraedrische Koordination der M^{2+} -Ionen sowie den Grad der Annäherung der beiden Tetraedernetzwerke erklären. Die Bandbreite der MCl-Bindungslängen in den einzelnen Verbindungen liefert einen weiteren Beitrag zur Verzerrung der Strukturen, da sie eine unterschiedlich starke Abweichung von der Idealform der beteiligten Polyeder hervorruft.

Besonders hervorzuheben ist der Umstand, dass es sich bei der thermisch induzierten Umwandlung von der *alpha*- in die *beta*-Phase von Sr[GaCl₄]₂ um einen Phasenübergang erster Ordnung handelt, der nicht wie erwartet den Zerfall des vermessenen Einkristalls in ein kristallines Pulver zur Folge hatte. So konnte nach Rekristallisation die röntgenographische Einkristallstrukturbestimmung der Hochtemperaturphase problemlos durchgeführt werden. Die Hysterese des kalorimetrischen Signals dieser Phasenumwandlung sowie die Tatsache, dass zwischen den Strukturen der beiden Phasen kein direkter Gruppe-Untergruppe-Bezug besteht, hätten erwarten lassen, dass Einkristalle von Strontiumtetrachlorogallat diesen Phasenübergang nicht unbeschadet überstehen würden.

Im Vorfeld dieser Arbeiten waren in der Klasse der $M[TCl_4]_2$ -Verbindungen, also quasibinärer Chloride zweiwertiger Metallkationen, nur wenige Verbindungen in fester Phase strukturell charakterisiert (in Abb. 8.1 grau dargestellt). Die eingehenden Untersuchungen an Gasphasenkomplexen der Zusammensetzung $M^{II}T^{III}Cl_5$, $M^{II}T^{III}_2Cl_8$ oder $M^{II}T^{III}_3Cl_{11}$ im Rahmen der Experimente zum chemischen Gasphasentransport von Metallen und ihren Chloriden ließen erahnen, dass die spektroskopisch nachgewiesenen Verbindungen auch in fester Phase existent sein könnten. Jedoch zeigte sich, dass die Metallchloride in Verbindung mit AlCl₃ oder GaCl₃ nur einen Formeltyp annehmen, nämlich $M[TCl_4]_2$. Somit scheint diese Zusammensetzung bei Kombination der MCl_2 mit derart starken Lewissäuren die stabilste zu sein. Der Übergang zum weicheren Eisen(III)-chlorid zeigte in Verbindung mit Chloriden der Erdalkalimetalle oder der schweren Elemente der 4. Hauptgruppe Tendenz zur Bildung chlorreicherer Phasen, so z.B. des PbCl[FeCl₄] **[52]**. Die Fortführung der Reaktionsreihe zur Kombination der MCl_2 mit Lewissäuren wie z. B. FeCl₃ oder MoCl₂ sollte zu einer besseren Einschätzung der Acidität saurer Chloride führen. Weiterhin könnten Verbindungen, in denen Aluminium bzw. Gallium in den [TCl_4]-Tetraedern durch Kationen mit freien Valenzelektronen ersetzt sind, interessante magnetische Eigenschaften zeigen, die bisher nicht zu beobachten waren.

Literaturverzeichnis

- [1] A. Anundskås, H.A. Øye, J. Inorg. Nucl. Chem. 1975, 37, 1609.
- [2] T.W. Couch, D.A. Lokken, J.D. Corbett, *Inorg. Chem.* 1972, *11*, 357.
- [3] H. Schäfer, J. Nowitzki, Z. Anorg. Allg. Chem. 1979, 457, 13.
- [4] H. Schäfer, J. Nowitzki, Z. Anorg. Allg. Chem. 1977, 435, 49.
- [5] G.N. Papatheodorou, J. Physic. Chem. 1973, 77, 472.
- [6] J.A. Ibers, Acta Cryst. 1962, 15, 967.
- [7] R.F. Belt, H.Scott, Inorg. Chem. 1964, Vol. 3, No. 12,1785.
- [8] A.F. Hollemann, E. Wiberg, *Lehrbuch der anorganischen Chemie*, 101. Auflage, Walter de Gruyter, Berlin, **1995**.
- [9] T. Staffel, G. Meyer, Z. Anorg. Allg. Chem. 1987, 548, 45.
- [10] J. Brynestad, H.L. Yakel, G.P. Smith, Inorg. Chem. 1970, 9, 686.
- [11] W. Lenhard, H. Schäfer, H.U. Huerter, B. Krebs, Z. Anorg. Allg. Chem. 1981, 482, 19.
- [12] H. Schäfer, M. Binnewies, R. Laumann, H. Wächter, Z. Anorg. Allg. Chem. 1980, 461, 31.
- [13] A. Justnes, E. Rytter, A.F. Andresen, *Polyhedron* 1982, *Vol. 1, No. 4*, 393.
- [14] S.I. Troyanov, Vestnik. Mosk. Univ. Ser. 2 1991, 32, 50.
- [15] S.I. Troyanov, Z. Neorg. Khim. 1992, 37, 266.
- [16] U. Keßler, R. Müller, Z. Anorg. Allg. Chem. 2007, 633, 1423.
- [17] C. Verries-Peylhard, Comptes Rendus Hebdomadaires des Seances de l'Academie des Sciences, Serie C, Sciences Chimiques **1982**, 295, 171.
- [18] N. Kitajima, H. Shimanouchi, Y. Ono, Y. Sasada, *Bull. Chem. Soc. Jpn.* 1982, 55, 2064.
- [19] W.J. Vermin, G.C. Verschoor, D.J.W. Ijdo, Acta Crystallogr. 1976, B32, 3325-3328.
- [20] R.W. Rasmussen, T.K. Larsen, H. Soling, Acta Chem. Skand. 1969, 23, 2055-2060.
- [21] C.J.J. van Loon, D.J.W. Ijdo, Acta Crystallogr. 1975, B31, 770-773.
- [22] J. Goodyear, D.J. Kennedy, Acta Crystallogr. 1973, B29, 2677-2680.
- [23] M.A. Einarsrud, H. Justnes, E. Rytter, H.A. Oye, *Polyhedron* 1987, 6, 975.
- [24] P. Stegmueller, *Dissertation*, Universität Karlsruhe 1997.
- [25] Fa. Nonius, COLLECT, Nonius BV, Delft, 1999.
- [26] Z. Otwinowski, W. Minor, *Methods in Enzymology* 1997, 276, 307-326.
- [27] L.J. Farrugia, *J.Appl. Crystallogr.* 1999,32, 837.Version 1.64.05, L.J. Farrugia, Department of Chemistry, University of Glasgow.
- [28] G.M. Sheldrick, SHELX-97, *Programs for Crystal Structure Analysis*, Universität Göttingen, **1998**.
- [29] K. Brandenburg, DIAMOND, Version 3.0d, Crystal Impact GbR, Bonn, 1997-2005.

[30] Programmpaket Fa. Stoe & Cie, XPOW, Version 1.05, Darmstadt, 1999

index and refine:	WinXPOW-INDEX, Version 1.09
theoretical pattern:	WinXPOW-THEO, Version 1.11
graphics:	WinXPOW-GRAPHIC, Version 1.08
rawdata handling:	WinXPOW-RAWDAT, Version 1.07
pattern fitting:	WinXPOW-FIT, Version 1.18

- [31] XRD-Commander, Version 2.3, Bruker-AXS GmbH, 2000.
- [32] EVA Application, Version 7.0.0.1, Socabin, **1996-2001**.
- [33] International Centre for Diffraction Data, *PCPDFWIN*, Ver. 2.02, Philadelphia, **1999**.
- [34] Fachinformationszentrum Karlsruhe, *ICSD Inorganic Crystal Structure Database*, **2009**.
- [35] P. Ehrlich, H.-J. Seifert, Z. Anorg. Allgem. Chem. 1959, 301, 282.
- [36] H. Schäfer, J. Nowitzki, J. Less-Common Met. 1978, 61, 47.
- [37] U. Keßler, R. Müller, Z. Naturforsch. 2007, 62b, 1052.
- [38] P. Schmidt, *Habilitation*, TU Dresden, 2007.
- [39] H. Bärnighausen, MATCH, Communications in Mathematical Chemistry 1980, 9, 388.
- [40] R. Laumanns, H. Schäfer, Z. Anorg. Allg. Chem. 1986, 543, 63.
- [41] D.J. Hinz, T. Dedecke, W. Urland, G. Meyer, Z. Anorg. Allg. Chem. 1994, 620, 801.
- [42] R. Müller, G. Vajenine, U. Keßler, Z. Naturforsch. 2007, 62b, 625.
- [43] R.D. Shannon "Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalkogenides" *Acta. Crystallogr.* **1976**, *A32*, 751.
- [44] H. Lueken, *Magnetochemie*, Teubner, Stuttgart, **1999**, 250.
- [45] *Internationel Tables for Crystallography*, Vol. A, 5. Edition, T. Hahn, 2005, Springer, Dordrecht, Niederlande.
- [46] U. Müller, Z. Anorg. Allg. Chem. 2004, 630, 1519.
- [47] *Internationel Tables for Crystallography*, *Vol. A1*, 1. Edition, H. Wondratschek, U. Müller, 2004, Springer, Dordrecht, Niederlande.
- [48] W. Kraus, G. Nolze, *PowderCell für Windows*, Version 2.4, **2000** BAM Berlin.
- [49] F. Lawes, "Crystal Structure and Atomic Size", *Theory of Alloy Phases, Amer. Soc. for Metals*, Cleveland 1956, 124.
- [50] F. Laves, "Phase Stability in Metals and Alloys", *McGraw-Hill*, New York 1967.
- [51] H. Bärnighausen, MATCH, Communications in Mathematical Chemistry 1980, 9, 139.
- [52] U. Keßler, in Vorbereitung.

Anhang

Verzeichnis der Abbildungen im Anhang

Abbildung A.1: Pulverdiffraktogramm von V[AlCl ₄] ₂ , unterlegt mit den aus Einkristalldat	ten
berechneten Reflexpositionen.	124
Abbildung A.2: Pulverdiffraktogramm von Mn[AlCl ₄] ₂ , unterlegt mit den aus	
Einkristalldaten berechneten Reflexpositionen.	127
Abbildung A.3: Erweiterte asymmetrische Einheit in der Struktur von Mn[AlCl ₄] ₂ . Die	
thermischen Schwingungsellipsoide entsprechen einer Aufenthaltswahrscheinlichkeit der	
Atome von 70 %	127
Abbildung A.4: Pulverdiffraktogramm von Fe[AlCl ₄] ₂ , unterlegt mit den aus Einkristallda barachneten Paflexpositionen	iten
Abbildung A 5. Erweiterte asummetrische Einheit in der Struktur von Ee[A1C1]. Die	131
thermischen Schwingungsellingeide enterreehen einer Aufentheltswehrscheinlichkeit der	
Atoma van 70.%	121
Atome von $/0\%$	131
Abbildung A.6: Pulverdiffraktogramm von Ni[AlCl4] ₂ , unterlegt mit den aus Einkristalida	iten
berechneten Reflexpositionen.	136
Abbildung A./: Erweiterte asymmetrische Einheit in der Struktur von Ni[AlCl4] ₂ . Die	
thermischen Schwingungsellipsoide entsprechen einer Aufenthaltswahrscheinlichkeit der	
Atome von 70 %	136
Abbildung A.8: Pulverdiffraktogramm von V[GaCl ₄] ₂ , unterlegt mit den aus Einkristallda	.ten
berechneten Reflexpositionen.	140
Abbildung A.9: Erweiterte asymmetrische Einheit in der Struktur von V[GaCl ₄] ₂ . Die	
thermischen Schwingungsellipsoide entsprechen einer Aufenthaltswahrscheinlichkeit der	
Atome von 70 %	140
Abbildung A.10: Pulverdiffraktogramm von β -Mn[GaCl ₄] ₂ , unterlegt mit den aus	
Einkristalldaten von Mn[AlCl ₄] ₂ berechneten Reflexpositionen, da β -Mn[GaCl ₄] ₂ nicht in	
einkristalliner Form isoliert werden konnte.	144
Abbildung A.11: Pulverdiffraktogramm von Fe[GaCl ₄] ₂ , unterlegt mit den aus	
Einkristalldaten berechneten Reflexpositionen.	147
Abbildung A.12: erweiterte asymmetrische Einheit in der Struktur von Fe[GaCl ₄] ₂ . Die	
thermischen Schwingungsellipsoide entsprechen einer Aufenthaltswahrscheinlichkeit der	
Atome von 70 %	149
Abbildung A.13: Pulverdiffraktogramm von Co[GaCl ₄] ₂ , unterlegt mit den aus	
Einkristalldaten berechneten Reflexpositionen.	152
Abbildung A.14: erweiterte asymmetrische Einheit von Co[GaCl ₄] ₂ . Die thermischen	
Schwingungsellipsoide entsprechen einer Aufenthaltswahrscheinlichkeit der Atome von 70	0
%	154
Abbildung A.15: erweiterte asymmetrische Einheit in der Struktur von Ni[GaCl ₄] ₂ . Die	-
thermischen Schwingungsellipsoide entsprechen einer Aufenthaltswahrscheinlichkeit der	
Atome von 70 %	157
Abbildung A.16: Pulverdiffraktogramm von Cr[AlCl ₄], unterlegt mit den aus	101
Einkristalldaten berechneten Reflexpositionen	162
Abbildung A 17 . Pulverdiffraktogramm von Pd[GaCl.], unterlegt mit den aus	104
Finkristalldaten berechneten Reflexnositionen	167
Abbildung A 18 . Pulverdiffraktogramm von <i>a</i> -Mn[GaCl.], unterlegt mit den aus	107
Finkristalldaten berechneten Reflevnositionen	174
Emkristandaten bereemeten Kenexpositionen.	1/4

Abbildung A.19: erweiterte asymmetrische Einheit in der Struktur von α -Mn[GaCl ₄] ₂ . Die thermischen Schwingungsellipsoide entsprechen einer Aufenthaltswahrscheinlichkeit der	e
Atome von 70 %	176
Abbildung A.20: Pulverdiffraktogramm von Cr[GaCl ₄] ₂ unterlegt mit den aus	170
Einkristalldaten berechneten Reflexpositionen	181
Abbildung A.21: Pulverdiffraktogramm von α -Sr[GaCl ₄] ₂ , unterlegt mit den aus Einkristalldaten berechneten Reflexpositionen	187
Abbildung A.22: erweiterte asymmetrische Einheit in der Struktur von Ba[GaCl ₄] ₂ . Die	107
thermischen Schwingungsellipsoide entsprechen einer Aufenthaltswahrscheinlichkeit der Atome von 70 %	190
Abbildung A.23: erweiterte asymmetrische Einheit in der Struktur von Sn[GaCl ₄] ₂ . Die	
thermischen Schwingungsellipsoide entsprechen einer Aufenthaltswahrscheinlichkeit der	
Atome von 70 %	194
Abbildung A.24: erweiterte asymmetrische Einheit in der Struktur von Pb[AlCl ₄] ₂ . Die thermischen Schwingungsellipsoide entsprechen einer Aufenthaltswahrscheinlichkeit der	
Atome von 70 %	200
Abbildung A.25: Pulverdiffraktogramm von Pb[GaCl ₄] ₂ , unterlegt mit den aus	
Einkristalldaten berechneten Reflexpositionen	207
Abbildung A.26: erweiterte asymmetrische Einheit in der Struktur von Pb[GaCl ₄] ₂ . Die thermischen Schwingungsellipsoide entsprechen einer Aufenthaltswahrscheinlichkeit der	
Atome von 70 %	209

Verzeichnis der Tabellen im Anhang

Tabelle A.1: Liste der indizierten Reflexe des Pulverdiffraktogramms von V[AlCl ₄] ₂	. 123
Tabelle A.2: Anisotrope Auslenkungsparameter der Atome in V[AlCl ₄] ₂ .	. 124
Tabelle A.3: Datenblatt von V[AlCl ₄] ₂ , Gitterparameter anhand von Röntgenpulverdaten	
verfeinert.	. 125
Tabelle A.4: Liste der indizierten Reflexe des Pulverdiffraktogramms von Mn[AlCl ₄] ₂	. 126
Tabelle A.5: Datenblatt von Mn[AlCl4]2, Gitterparameter anhand von Röntgenpulverdaten	n
verteinert.	. 128
Tabelle A.6: Koordinaten, Wyckoff-Lagen und isotrope Auslenkungsparameter der Atom	120
aer Elementarzelle von Min[AlCl4]2.	129
Tabelle A. 7: Anisotrope Austenkungsparameter der Atome in Min[AIC14] ₂	. 129
Tabelle A.o. Bindungstängen und -winker in der asymmetrischen Einnen von Min[AlCi4]2	2. 120
Tabelle A 9. Liste der indizierten Reflexe des Pulverdiffraktogramms von Fe[A]C].	130
Tabelle A 10: Datenblatt von Fe[AlCl_] ₂ Gitternarameter anhand von Röntgennulverdate	n 150
verfeinert	132
Tabelle A.11: Koordinaten. Wyckoff-Lagen und isotrope Auslenkungsparameter der Ator	me
in der Elementarzelle von Fe[AlCl ₄] ₂	. 133
Tabelle A.12: Anisotrope Auslenkungsparameter der Atome in Fe[AlCl ₄] ₂	. 133
Tabelle A.13: Bindungslängen und -winkel in der asymmetrischen Einheit von Fe[AlCl ₄]	2.
	. 133
Tabelle A.14: Liste der indizierten Reflexe des Pulverdiffraktogramms von Ni[AlCl ₄] ₂	. 134
Tabelle A.15: Datenblatt von Ni[AlCl ₄] ₂ , Gitterparameter anhand von Röntgenpulverdate	n
verfeinert	. 137
Tabelle A.16: Koordinaten, Wyckoff-Lagen und isotrope Auslenkungsparameter der Ator	me
in der Elementarzelle von Ni[AlCl ₄] ₂	. 138
Tabelle A.17: Anisotrope Auslenkungsparameter der Atome in $Ni[AlCl_4]_2$ Ni[AlCl_4]_2	. 138
Tabelle A.18: Bindungslängen und -winkel in der asymmetrischen Einheit von Ni[AlCl4];	2.
	138
Tabelle A.19: Liste der indizierten Kellexe des Pulverdillfraktogramms von v [GaCl4] ₂	. 139
Tabelle A.20: Datenblatt von v [GaCl4] ₂ , Gitterparameter annand von Kontgenpulverdater	n 1/1
Tabelle A 21 . Koordinaten Wyckoff-Lagen und isotrope Auslenkungsparameter der Ator	. 141 me
in der Elementarzelle von V[GaCl ₄] ₂	142
Tabelle A.22: Anisotrope Auslenkungsparameter der Atome in V[GaCl ₄] ₂	142
Tabelle A.23: Bindungslängen und -winkel in der asymmetrischen Einheit von V[GaCl ₄] ₂).).
	. 142
Tabelle A.24: Liste der indizierten Reflexe des Pulverdiffraktogramms von β -Mn[GaCl ₄]	2.
	. 143
Tabelle A.25: Datenblatt von β -Mn[GaCl ₄] ₂ , Parameter der Indizierung der	
Röntgenpulverdaten.	. 145
Tabelle A.26: Koordinaten, Wyckoff-Lagen und isotrope Auslenkungsparameter der Ator	me
in der Elementarzelle von β -Mn[GaCl ₄] ₂ , berechnet anhand einer Rietveldanpassung der	
Röntgenpulverdaten.	145
Tabelle A.27: Liste der indizierten Reflexe des Pulverdiffraktogramms von $Fe[GaCl_4]_2$. 146
Tabelle A.28: Datenblatt von Fe[GaCl ₄] ₂ , Gitterparameter anhand von Röntgenpulverdate	n
Verteinert	. 148
in der Elementerzelle von EelCeCl 1	ine
Taballa A 30: Anisotrona Auglankungsnaramatar dar Atama in Es[CaC1]	149
rabene A.su; Amsonope Austenkungsparameter der Atome in Fe[GaUt4]2.	. 149

Tabelle A.31: Bindungslängen und -winkel in der asymmetrischen Einheit von Fe[GaCl4	$[]_2.$
Tabelle A.32: Liste der indizierten Reflexe des Pulverdiffraktogramms von Co[GaCl ₄] ₂ . Tabelle A.33: Datenblatt von Co[GaCl ₄] ₂ , Gitterparameter anhand von Röntgenpulverda verfeinert	150 151 ten
Tabelle A.34: Koordinaten, Wyckoff-Lagen und isotrope Auslenkungsparameter der Atc in der Elementarzelle von Co[GaCl ₄] ₂ .	155 ome 154
Tabelle A.35: Anisotrope Auslenkungsparameter der Atome in Co[GaCl ₄] ₂	154
Tabelle A.36: Bindungslängen und -winkel in der asymmetrischen Einheit von Co[GaCl.	4]2. 155
Tabelle A.37: Datenblatt von Ni[GaCl4]2, Röntgenpulverdaten stehen noch aus	156
Tabelle A.38: Koordinaten, Wyckoff-Lagen und isotrope Auslenkungsparameter der Ato in der Elementarzelle von Ni[GaCl4]2	ome 157
Tabelle A.39: Anisotrope Auslenkungsparameter der Atome in Ni[GaCl ₄] ₂	157
Tabelle A.40: Bindungslängen und -winkel in der asymmetrischen Einheit von Ni[GaCl4	4]2.
Taballa A 41: Datanblatt von a Ti[A]CL], mangals Substanzmanga kannta kaina	158
Vorfoinerung der Gitterneremeter aus Pöntgennulverdeten vorgenommen werden	150
Taballa A 12: Anisotrone Auslenkungsparameter der Atome in a Ti[AlCl.].	160
Tabelle A. 43 . Liste der indizierten Reflexe des Pulverdiffraktogramms von Cr[AlCl.].	161
Tabelle A.43 : Dister der mulzierten Kenexe des Fulverdiffraktögramms von Cr[AlCl ₄] ₂ Tabelle A.44 : Datenblatt von Cr[AlCl ₄] ₂ , Gitterparameter anhand von Röntgenpulverdate	en
Taballa A 45. Anisatrona Austanlaunganaramatar dar Atama in Cr[A1C1] [25]	164
Tabelle A.45: Allisouope Ausienkungspalainetei dei Atome in CI[AIC14] ₂ [55]	. 104
Tabelle A.40: Liste der malzierten Kenexe des Pulverdiffraktogramms von Pa[GaCi _{4]2} Tabelle A.47: Datenblatt von Pd[GaCl ₄] ₂ , Gitterparameter anhand von Röntgenpulverdat	ten
verfeinert.	168
Tabelle A.48: Anisotrope Auslenkungsparameter der Atome in Pd[GaCl ₄] ₂ .	169
Tabelle A.49: Datenblatt von Mg[GaCl ₄] ₂ , mangels Substanzmenge konnten die	
Gitterparameter nicht aus Röntgenpulverdaten verfeinert werden.	170
Tabelle A.50: Anisotrope Auslenkungsparameter der Atome in Mg[GaCl ₄]2	171
Tabelle A.51: Liste der indizierten Reflexe des Pulverdiffraktogramms von α -Mn[GaCl ₄]	$]_{2}$.
Tabelle A.52: Datenblatt von α -Mn[GaCl ₄] ₂ , Gitterparameter anhand von Böntgenpulverdaten verfeinert	172
Taballa A 53: Koordinatan Wyakoff Lagan und isotrona Auslankungsparamatar dar Ata	173
in der Elementarzelle von α -Mn[GaCl ₄] ₂	176
Tabelle A.54: Anisotrope Auslenkungsparameter der Atome in α -Mn[GaCl ₄] ₂	177
Tabelle A.55: Bindungslangen und -winkel in der asymmetrischen Einheit von α - Mn[GaCl4]	177
Tabelle A 56 . Liste der indizierten Reflexe des Pulverdiffraktogramms von Cr[GaCl_]	179
Tabelle A 57: Anisotrone Auslenkungsparameter der Atome in Cr[GaCl4] ₂	181
Tabelle A 58: Datenblatt von Cr[GaCl_]. Gitterparameter anhand von Röntgennulverdat	101 en
verfeinert	182
Tabelle A 59: Liste der indizierten Reflexe des Pulverdiffraktooramms von a-Sr[GaCl-la	104
Datenbereich auf $2A_{max} = 61^{\circ}$ beschränkt	, 183
Tabelle A 60 . Anisotrone Auslenkungsnarameter der Atome in α -Sr[GaCl.]	187
Tabelle A.61: Datenblatt von α -Sr[GaCl ₄] ₂ . Gitternarameter anhand von Röntgennulverd	aten
verfeinert.	188
Labelle A.02: Datendiatt von Ba[GaUl4] ₂ , mangels Substanzmenge konnte keine Verfeinerung der Gitterparameter aus Röntgenpulverdaten vorgenommen werden	190
vertemerung der Onterparameter aus Kontgenpurverdaten vorgenommen werden	107

Tabelle A.63: Koordinaten, Wyckoff-Lagen und isotrope Auslenkungsparameter der in der Elementarzelle von Ba[GaCl ₄] ₂ .	[•] Atome
Tabelle A.64: Anisotrope Auslenkungsparameter der Atome in Ba[GaCl ₄]2	191
Tabelle A.65: Bindungslängen und -winkel in der asymmetrischen Einheit von Ba[G	$aCl_4]_2.$
Tabelle A 66 . Datenblatt von Sn[GaCl.], mangels Substanzmenge konnte keine	
Verfeinerung der Gitternarameter aus Röntgennulverdaten vorgenommen werden	193
Tabelle A 67 Koordinaten Wyckoff I agen und isotrone Auslenkungsnarameter der	· Δtome
in der Elementarzelle von Sn[GaCl.]	194
Tabelle A 68 . Anisotrope Auslenkungsparameter der Atome in Sn[GaCl_]	195
Tabelle A.69: Bindungslängen und -winkel in der asymmetrischen Einheit von Sn[G	aCl ₄] ₂ .
Tabelle A.70: Liste der indizierten Reflexe des Pulverdiffraktogramms von Pb[AlCl ₄ Tabelle A.71: Datenblatt von Pb[AlCl ₄] ₂ , Gitterparameter anhand von Röntgenpulve verfeinert	1)3 4]2 197 rdaten 199
Tabelle A.72: Koordinaten Wyckoff-Lagen und isotrope Auslenkungsparameter der	· Atome
in der Elementarzelle von Pb[AlCl ₄] ₂ .	200
Tabelle A.73: Anisotrope Auslenkungsparameter der Atome in Pb[AlCl ₄] ₂	
Tabelle A.74: Bindungslängen und -winkel in der asymmetrischen Einheit von Pb[A	$[1Cl_4]_{2}$.
Tabelle A.75: Liste der indizierten Reflexe des Pulverdiffraktogramms von Pb[GaCl	4]2,
Datenbereich auf $2\theta_{\text{max}} = 55^{\circ}$ beschränkt	
Tabelle A. 76: Aus Pulverdaten verfeinerte Gitterkonstanten von Pb[GaCl ₄] ₂ .	
Tabelle A.77: Datenblatt von Pb[GaCl ₄] ₂ .	
Tabelle A.78: Koordinaten, Wyckoff-Lagen und isotrope Auslenkungsparameter der	Atome
in der Elementarzelle von Pb[GaCl ₄] ₂	
Tabelle A.79: Anisotrope Auslenkungsparameter der Atome in Pb[GaCl ₄] ₂	
Tabelle A.80: Bindungslängen und -winkel in der asymmetrischen Einheit von Pb[G	$aCl_4]_2.$
Tabelle A.81: Datenblatt von β -Sr[GaCl ₄] ₂	
Tabelle A.82: Anisotrope Auslenkungsparameter der Atome in β -Sr[GaCl ₄] ₂	

A.1 $V[AlCl_4]_2$:

Taben	e A.I.Liste de	r muizierten r	tenexe des run	verunn aktogra		AIC14]2.
<i>2θ</i> [beob.]	h k l	<i>2θ</i> [berech.]	beobberech.	rel. Intensität	d [beob.]	d [berech.]
13,305	1 1 0	13,314	-0,0087	39,5	6,6490	6,6447
13,775	$2 \ 0 \ 0$	13,785	-0,0100	62,7	6,4236	6,4190
19,250	-2 1 1	19,253	-0,0036	10,8	4,6071	4,6063
19,705	2 1 1	19,707	-0,0021	16,6	4,5017	4,5012
20,054	-1 1 2	20,057	-0,0028	13,6	4,4242	4,4236
20,492	1 1 2	20,493	-0,0015	8,5	4,3306	4,3303
21,014	2 0 2	21,018	-0,0037	8,1	4,2241	4,2234
23,722	3 1 0	23,720	0,0015	6,3	3,7477	3,7480
25,661	0 1 3	25,661	0,0002	8,5	3,4687	3,4688
26,807	2 2 0	26,812	-0,0050	15,6	3,3230	3,3224
27,597	0 2 2	27,600	-0,0036	8,5	3,2297	3,2293
27,775	4 0 0	27,774	0,0015	18,6	3,2093	3,2095
	-3 1 2	27,823	-0,0479	-	-	3,2039
28,772	-2 1 3	28,773	-0,0016	1,9	3,1004	3,1003
,	3 1 2	28,781	-0.0092	,	,	3.0995
30.708	-2 2 2	30.679	0.0291	32.0	2,9092	2.9119
	0 0 4	30.723	-0.0154	,-	_,, ., _	2.9078
31 254	-4 0 2	31 242	0.0121	100.0	2,8596	2,8607
	2. 2. 2.	31,267	-0.0132	,-	_,	2,8584
32,387	4 0 2	32,390	-0.0026	64	2 7621	2,7619
33 270	-2 0 4	33,267	0.0034	2.1	2,6908	2,6910
33,900	1 1 4	33,888	0.0119	2,6	2,6422	2,6431
36,282	4 2 0	36,285	-0.0026	0.9	2,4740	2,4738
36,202	5 1 0	36 840	0.0036	0,9	2,1710	2,1738
38 470	-3 1 4	38,456	0.0144	14	2,3382	2,3390
38 795	1 3 2	38 804	-0.0094	2.4	2,3194	2,3188
39.483	-5 1 2	39.482	0.0008	1.9	2.2805	2.2806
	3 2 3	39.503	-0.0202	- ,-	_,_ • • •	2.2794
39 900	3 1 4	39 893	0.0071	1.0	2,2576	2,2580
40.466	0 1 5	40.446	0.0203	1.2	2.2273	2.2284
40 760	-2, 2, 4	40 763	-0.0033	5 5	2 2120	2,2118
40.983	-4 0 4	40.974	0.0085	6.4	2.2004	2.2009
41 687	2 2 4	41 682	0.0053	11.2	2 1649	2,1651
42.801	4 0 4	42.788	0.0128	2.9	2.1111	2.1117
44 042	-2 3 3	44 019	0.0231	1.0	2,0544	2,0555
,•	3 3 2	44.024	0.0178	-,•	_,	2.0552
44 469	-6 0 2	44 470	-0.0005	36	2,0357	2,0357
44 694	2 3 3	44 668	0.0258	0.9	2,0260	2,0271
45 860	4 3 1	45 870	-0.0105	17	1 9771	1 9767
46.754	0 4 0	46.752	0.0018	7.8	1.9414	1.9415
47.711	-5 1 4	47.688	0.0226	2.8	1.9046	1.9055
.,,, = =	1 3 4	47.724	-0.0129	_,•	-,,	1.9042
	-5 2 3	47.760	-0.0492			1.9028
48,553	6 2 0	48.542	0.0116	19.7	1.8736	1.8740
	-1 1 6	48.602	-0.0491	,-	-,	1.8718
49.025	2 4 0	48.977	0.0474	3.0	1.8566	1.8583
-,	4 2 4	49.068	-0.0432	-,-	,	1.8551
52.876	0 3 5	52.872	0.0037	1.4	1.7301	1.7302
53.046	-7 1 2	53.011	0.0351	1.3	1.7250	1.7260
,~ .~	5 3 2	53.044	0.0021	,-	,	1.7250
	-1 4 3	53,059	-0,0131			1,7246

Tabelle A.1:Liste der indizierten Reflexe des Pulverdiffraktogramms von V[AlCl4]

54,230	-4 0 6	54,208	0,0221	7,6	1,6901	1,6907
	-2 2 6	54,225	0,0058			1,6902
	6 0 4	54,226	0,0040			1,6902
55,340	2 2 6	55,336	0,0039	4,0	1,6588	1,6589
	2 3 5	55,376	-0,0359			1,6578
56,443	4 0 6	56,417	0,0260	2,2	1,6290	1,6296
56,996	0 4 4	56,989	0,0072	1,1	1,6144	1,6146
57,351	-4 4 2	57,306	0,0444	3,0	1,6053	1,6064
	8 0 0	57,372	-0,0216			1,6048
58,575	-6 1 5	58,560	0,0155	1,1	1,5746	1,5750
	-2 4 4	58,582	-0,0065			1,5745
59,655	6 2 4	59,611	0,0443	2,6	1,5487	1,5497
	-7 1 4	59,626	0,0285			1,5494
	5 2 5	59,638	0,0172			1,5491
	8 1 1	59,639	0,0158			1,5491
60,418	8 0 2	60,428	-0,0093	1,4	1,5309	1,5307
	5 4 1	60,457	-0,0388			1,5300
63,946	0 0 8	63,987	-0,0405	1,6	1,4547	1,4539

Abbildung A.1: Pulverdiffraktogramm von V[AlCl₄]₂, unterlegt mit den aus Einkristalldaten berechneten Reflexpositionen.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
V	0,03738(37)	0,03377(37)	0,02094(33)	0,00000	0,00150(27)	0,00000
Al	0,03900(55)	0,03452(47)	0,02410(45)	0,00089(34)	0,00104(36)	-0,00156(39)
Cl1	0,05824(58)	0,04404(47)	0,04263(46)	-0,000655(35)	-0,00156(38)	-0,01189(41)
Cl2	0,03960(44)	0,04496(44)	0,03079(38)	0,00481(30)	0,00494(30)	0,00706(35)
C13	0,05277(51)	0,03931(40)	0,02317(35)	-0,00005(28)	0,00058(30)	-0,00683(34)
Cl4	0,03686(42)	0,04352(43)	0,03238(40)	0,00621(30)	0,00073(30)	0,00444(33)

Tabelle A.2: Anisotrope Auslenkungsparameter der Atome in V[AlCl₄]₂.

I abelle A.3: Datenblatt von V [AlCl ₄] ₂ , Gitterparamet	er annand von Rontgenpulverdaten verfeinert.
Summenformel	VAl ₂ Cl ₈
Kristallsystem	monoklin
Raumgruppe	<i>I</i> 1 2/ <i>c</i> 1; Nr. 15
Gitterkonstanten	a = 12,849(4) Å
[aus Pulverdaten verfeinert]	b = 7,7658(20) Å
	c = 11,6411(24) Å
	$\beta = 92,381(15)$ °
Zellvolumen V	1160,6(7) Å ³
Zahl der Formeleinheiten Z	4
Dichte (berechnet) ρ_x	2,225 g/cm ³
Diffraktometer	Nonius Kappa-CCD
Strahlung, λ	Mo-K α , λ = 71,073 pm
Absorptionskoeffizient μ	2,79 cm ⁻¹
Temperatur	293 K
Meßbereich	$3,07 \le \theta \le 30,10$
gemessene Reflexe	$-18 \le h \le 18$
	$-10 \le k \le 10$
	$-16 \le l \le 16$
Anzahl der gemessenen Reflexe	19314
Anzahl symmetrieunabhängiger Reflexe	1709
Anzahl der Reflexe mit $F_{\rm o} > 4\sigma (F_{\rm o})$	1259
Zahl der verfeinerten Parameter	51
Verhältnis Reflexe / Parameter	33,50
F (0 0 0)	740
R _{int}	0,0885
R_{σ}	0,0350
<i>R</i> [alle F_{o}]; <i>R</i> [$F_{o} > 4\sigma$ (F_{o})]	0,0638; 0,0399
$wR(F^2)$ [Wichtung*]	0,0985
Goodness-of-Fit (GooF)	1,072
Restelektronendichte (max,/min, ρ)	$0,37/-0,54 \text{ e/Å}^3$; Mittelwert = 0,00

VIAICE **C**:4 dat c. •

* Wichtung:

$$w = \frac{1}{\left[\sigma^2 (F_0)^2 + (0.0351 \cdot P)^2 + 2.73 \cdot P\right]}$$

mit
$$P = \frac{[\max(F_0^2, 0) + 2 \cdot F_c^2]}{3}$$

A.2 Mn[AlCl₄]₂:

Tabelle A.4: Liste der indizierten Reflexe des Pulverdiffraktogramms von Mn[AlCl ₄] ₂ .						
<i>2θ</i> [beob.]	h k l	<i>2θ</i> [berech.]	beobberech.	rel. Intensität	<i>d</i> [beob.]	d [berech.]
13,128	1 1 0	13,129	-0,0009	78,2	6,7385	6,738
13,534	0 1 1	13,521	0,0129	8,9	6,5371	6,5433
13,769	2 0 0	13,766	0,003	100	6,4263	6,4276
19,125	-2 1 1	19,128	-0,0027	18	4,6368	4,6362
19,552	2 1 1	19,554	-0,0022	24,7	4,5367	4,5362
19,937	-1 1 2	19,94	-0,0028	18,3	4,4498	4,4492
20,348	1 1 2	20,349	-0,0007	12	4,3608	4,3606
20,966	2 0 2	20,969	-0,0031	10,7	4,2338	4,2332
23,594	3 1 0	23,593	0,0011	14,6	3,7678	3,768
25,55	0 1 3	25,551	-0,0014	14,3	3,4836	3,4834
26,43	2 2 0	26,434	-0,0042	32,5	3,3696	3,369
27,223	0 2 2	27,236	-0,0125	12,2	3,2731	3,2716
27,739	4 0 0	27,736	0,0036	39,2	3,2134	3,2138
	-3 1 2	27,741	-0,0014			3,2133
28,691	-2 1 3	28,697	-0,0068	3,9	3,109	3,1083
30,358	-2 2 2	30,36	-0,0025	17,7	2,942	2,9417
30,709	-4 1 1	30,701	0,0087	31,2	2,9091	2,9099
	0 0 4	30,701	0,0079			2,9098
30,908	2 2 2	30,913	-0,0057	92	2,8908	2,8903
31,24	-4 0 2	31,242	-0,0024	63,1	2,8609	2,8607
	4 1 1	31,248	-0,0088			2,8601
32,316	4 0 2	32,313	0,0033	8,6	2,768	2,7683
33,276	1 2 3	33,248	0,0276	4	2,6903	2,6925
	-1 1 4	33,263	0,0127			2,6913
	-2 0 4	33,276	-0,0004			2,6903
33,773	1 1 4	33,774	-0,0004	4,1	2,6518	2,6518
35,969	4 2 0	35,975	-0,0065	2,8	2,4949	2,4944
36,759	5 1 0	36,725	0,0346	2,5	2,443	2,4452
38,188	-3 2 3	38,165	0,0227	1,8	2,3548	2,3562
	1 3 2	38,193	-0,0055			2,3545
40,497	5 1 2	40,507	-0,0098	6,1	2,2257	2,2252
	-2 2 4	40,518	-0,0204			2,2246
40,995	-4 0 4	40,994	0,0009	6	2,1998	2,1999
41,373	0 3 3	41,363	0,0107	10,6	2,1806	2,1811
	2 2 4	41,378	-0,0046			2,1803
42,695	4 0 4	42,684	0,0103	3,3	2,1161	2,1166
44,144	-6 1 1	44,155	-0,0116	2,5	2,0499	2,0494
44,449	-6 0 2	44,453	-0,0046	4,6	2,0366	2,0364
45,298	4 3 1	45,31	-0,0125	4,1	2,0003	1,9998
45,829	0 4 0	45,839	-0,0096	20,9	1,9784	1,978
48,115	2 4 0	48,091	0,0242	2,8	1,8896	1,8905
48,272	6 2 0	48,268	0,0047	33,7	1,8838	1,884
48,741	-4 1 5	48,742	-0,0011	3,6	1,8668	1,8667
	4 2 4	48,756	-0,0144			1,8663
49,48	5 3 0	49,469	0,011	1,9	1,8406	1,841
	-3 2 5	49,476	0,0041			1,8407
52,385	0 3 5	52,383	0,0017	2	1,7452	1,7452
54,041	-2 2 6	54,023	0,0183	5,7	1,6955	1,6961
55,051	2 2 6	55,061	-0,0105	3,5	1,6668	1,6665

56,064	-3 4 3	56,031	0,0326	1,6	1,6391	1,6399
	6 3 1	56,054	0,0097			1,6393
56,291	4 0 6	56,291	0,0003	3,1	1,633	1,633
56,519	0 1 7	56,509	0,0099	2,6	1,6269	1,6272
	-4 4 2	56,519	0,0006			1,6269
59,419	-4 2 6	59,425	-0,0056	2,3	1,5543	1,5541
60,287	8 0 2	60,295	-0,0084	1,4	1,534	1,5338

Abbildung A.2: Pulverdiffraktogramm von Mn[AlCl₄]₂, unterlegt mit den aus Einkristalldaten berechneten Reflexpositionen.

Abbildung A.3: Erweiterte asymmetrische Einheit in der Struktur von Mn[AlCl₄]₂. Die thermischen Schwingungsellipsoide entsprechen einer Aufenthaltswahrscheinlichkeit der Atome von 70 %.

Summenformel	MnAl ₂ Cl ₈
Kristallsystem	monoklin
Raumgruppe	<i>I</i> 1 2/ <i>c</i> 1; Nr. 15
Gitterkonstanten	a = 12.8649 (20) Å
[aus Pulverdaten verfeinert]	b = 7.9120 (15) Å
	c = 11.6479 (17) Å
	$\beta = 92.222 (10)$ °
Zellvolumen V	1184.7 (5) Å ³
Zahl der Formeleinheiten Z	4
Dichte (berechnet) ρ_x	2,195 g/cm ³
Diffraktometer	Nonius Kappa-CCD
Strahlung, λ	Mo-K α , λ = 71.073 pm
Absorptionskoeffizient μ	30,0 cm ⁻¹
Temperatur	293 K
Messbereich θ_{max}	35,00
gemessene Reflexe	$-20 \le h \le 20$
	$-12 \le k \le 12$
	$-18 \le l \le 18$
Anzahl der gemessenen Reflexe	24605
Anzahl symmetrieunabhängiger Reflexe	1386
Anzahl der Reflexe mit $F_{o} > 4\sigma (F_{o})$	951
Zahl der verfeinerten Parameter	52
Verhältnis Reflexe / Parameter	26,65
F (0 0 0)	748
$R_{\rm int}$	0,0622
R_{σ}	0,0309
<i>R</i> [alle <i>F</i> _o]; <i>R</i> [<i>F</i> _o > 4 σ (<i>F</i> _o)]	0,0611; 0,0300
$wR(F^2)$ [Wichtung*]	0,0589
Goodness-of-Fit (GooF)	1,102
Restelektronendichte (max./min. ρ)	$0,35 / -0,34 e/Å^3$; Mittelwert = 0.00

C:4 11 . ъ.

* Wichtung:

$$w = \frac{1}{\left[\sigma^2 (F_0)^2 + (0.0351 \cdot P)^2 + 2.73 \cdot P\right]} \quad \text{mit } P = \frac{\left[\max(F_0^2, 0) + 2 \cdot F_c^2\right]}{3}$$

Atom	Wyckoff	Symmetrie	x/a	y/b	z/c	U _{eq}
Mn	4e	2	0	0,01218(272)	1/4	0,03026(154)
Al	8f	1	0,08929(7)	0,25354(11)	0,55353(6)	0,02913(19)
Cl1	8f	1	0,15773(6)	0,48014(68)	0,61020(6)	0,04897(80)
Cl2	8f	1	0,16042(5)	0,03086(16)	0,63176(5)	0,03670(37)
C13	8f	1	0,09242()	0,24074(30)	0,36878(15)	0,03597(33)
Cl4	8f	1	-0,06699(14)	0,22298(31)	0,61064(17)	0,03754(34)

Tabelle A.6: Koordinaten, Wyckoff-Lagen und isotrope Auslenkungsparameter der Atome in der Elementarzelle von Mn[AlCl₄]₂.

Tabelle A.7: Anisotrope Auslenkungsparameter der Atome in Mn[AlCl_{4]2}.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Mn	0,03710(26)	0,03435(462)	0,01953(19)	0,00000	0,00378(16)	0,00000
Al	0,03328(42)	0,03445(45)	0,01963(35)	0,00091(31)	0,00071(29)	-0,00198(34)
Cl1	0,05681(41)	0,05121(235)	0,03869(30)	-0,00783(63)	-0,00077(27)	-0,01679(100)
Cl2	0,03509(30)	0,04761(111)	0,02774(25)	0,00706(31)	0,00549(21)	0,00963(33)
C13	0,04619(102)	0,04134(55)	0,02028(53)	0,00004(41)	0,00006(50)	-0,00776(69)
Cl4	0,02984(66)	0,04889(84)	0,03400(81)	0,00944(61)	0,00265(42)	0,00496(52)

Tabelle A.8: Bindungslängen und -winkel in der asymmetrischen Einheit von Mn[AlCl₄]₂.

Bindungspaar	Bindungslänge /Å	Bindungspaar	Bindungslänge /Å
Mn-Cl2	2,5509(30)	Al-Cl1	2,0953(48)
Mn-Cl3	2,5459(155)	Al-Cl2	2,1719(14)
Mn-Cl4	2,5964(156)	Al-Cl3	2,1567(19)
		Al-Cl4	2,1584(18)

Atomverknüpfung	Bindungswinkel /°	Atomverknüpfung	Bindungswinkel /°
Cl2-Mn-Cl3	99,96(34)	Cl1-Al-Cl2	113,47(9)
Cl2-Mn-Cl4	79,79(35)	Cl1-Al-Cl3	109,31(8)
Cl3-Mn-Cl4	91,92(3)	Cl1-Al-Cl4	112,64(8)
Cl2-Mn-Cl2'	164,64(96)	Cl2-Al-Cl3	110,89(8)
Cl3-Mn-Cl4'	170,77(6)	Cl2-Al-Cl4	99,37(7)
Cl4-Mn-Cl3'	170,77(6)	Cl3-Al-Cl4	110,89(11)

A.3 Fe[AlCl₄]₂:

					von refateta	2.
2θ [beob.]	hkl	<i>2θ</i> [berech.]	beobberech.	rel. Intensität	d [beob.]	d [berech.]
13,269	$1 \ 1 \ 0$	13,268	0,0004	66	6,6674	6,6677
13,779	2 0 0	13,785	-0,0067	69,2	6,4217	6,4186
19,253	-2 1 1	19,253	-0,0001	12,9	4,6063	4,6063
19,68	2 1 1	19,68	0,0003	20,2	4,5074	4,5074
20,107	-1 1 2	20,106	0,0004	22,5	4,4127	4,4127
20,516	1 1 2	20,516	0	13,8	4,3256	4,3256
21,057	2 0 2	21,057	-0,0001	11,5	4,2156	4,2156
23,696	3 1 0	23,695	0,0011	8,8	3,7517	3,7519
25,755	0 1 3	25,756	-0,0007	14,9	3,4563	3,4562
26,722	2 2 0	26,718	0,0035	20,5	3,3334	3,3338
27,559	0 2 2	27,558	0,001	13	3,234	3,2341
27,782	4 0 0	27,776	0,0059	18,3	3,2086	3,2093
28,885	-2 1 3	28,888	-0,0027	2,6	3,0885	3,0882
30,66	-2 2 2	30,659	0,0006	17,3	2,9137	2,9137
30,903	0 0 4	30,903	-0,0001	33,6	2,8913	2,8912
31,217	2 2 2	31,212	0,0047	100	2,8629	2,8633
31,326	-4 0 2	31,323	0,0032	48,7	2,8532	2,8534
32,396	4 0 2	32,4	-0,0038	6,6	2,7613	2,761
33,467	-2 0 4	33,468	-0,0016	4,3	2,6754	2,6753
34.023	1 1 4	34.018	0.0054	4.5	2.6329	2.6333
38.664	1 3 2	38.681	-0.0168	5	2.3269	2.3259
39.522	-5 1 2	39.539	-0.0171	2.5	2.2783	2,2774
39,973	4 2 2	39,972	0.0014	2.4	2,2536	2,2537
0,,,,,	3 1 4	39,978	-0.0048	_,.	2,2000	2 2534
40 644	5 1 2	40,643	0.0012	35	2.218	2 218
,	0 1 5	40.651	-0.0069	5,0	_,_ 10	2 2176
40 871	-2 2 4	40 868	0.0031	62	2 2062	2,2170
41 168	-4 0 4	41 172	-0.0038	8.9	2,2002	2,2001
41 731	2 2 4	41 729	0.002	15.5	2,191	2,1500
41,751	4 0 4	41,72	-0.0081	3.8	2,1027	2,1028
42,805	3 3 2	13.0	-0,0081	5,8 1 9	2,1082	2,1078
43,702	602	45,5	0,0018	5.8	2,0000	2,0007
44,555	-0 0 2	44,545	0,0108	5,0 2 2	2,0319	2,0324
45,755	4 3 1	45,755	0,0037	2,2	1,9621	1,9823
16 522	0 0 2	45,740	-0,0087	12.7	1 0505	1,9017
40,323	6 2 0	40,318	0,0036	12,7	1,9303	1,9307
40,492	0 2 0	40,407	0,0040	25,2	1,8738	1,8/39
49,037	-4 1 5	49,014	0,0227	4,1	1,8502	1,857
49,804	-3 2 3	49,856	0,0076	2,3	1,8273	1,8270
	5 3 0	49,869	-0,0048			1,8272
50.565	206	49,884	-0,0204		1 5000	1,8266
52,567	-3 1 6	52,595	-0,0285	1,4	1,7396	1,7387
52,956	5 3 2	52,926	0,0295	3	1,7277	1,7286
	035	52,933	0,0229			1,7284
	0 2 6	52,943	0,0128			1,7281
54,212	3 1 6	54,189	0,0233	2,2	1,6906	1,6913
54,47	-2 2 6	54,461	0,0086	11,2	1,6832	1,6834
55,502	2 2 6	55,503	-0,0009	5,6	1,6543	1,6543
59,68	5 2 5	59,69	-0,0105	3,1	1,5481	1,5478
60,392	1 3 6	60.381	0.011	1.9	1.5315	1.5318

Tabelle A. 9: Liste der indizierten Reflexe des Pulverdiffraktogramms von Fe[AlCl₄]₂.

	8 0 2	60,416	-0,0239			1,531
61,682	6 3 3	61,686	-0,0036	1,7	1,5026	1,5025
64,392	0 0 8	64,396	-0,0039	2,1	1,4457	1,4456

Abbildung A.4: Pulverdiffraktogramm von Fe[AlCl₄]₂, unterlegt mit den aus Einkristalldaten berechneten Reflexpositionen.

Abbildung A.5: Erweiterte asymmetrische Einheit in der Struktur von Fe[AlCl₄]₂. Die thermischen Schwingungsellipsoide entsprechen einer Aufenthaltswahrscheinlichkeit der Atome von 70 %.
Summenformel	FeAl ₂ Cl ₈
Kristallsystem	monoklin
Raumgruppe	<i>I</i> 1 2/ <i>c</i> 1; Nr. 15
Gitterkonstanten	<i>a</i> = 12,8468 (20) Å
[aus Pulverdaten verfeinert]	<i>b</i> = 7,8027 (14) Å
	c = 11,5737 (13) Å
	$\beta = 92,223$ (8) °
Zellvolumen V	1159,3 (4) Å ³
Zahl der Formeleinheiten Z	4
Dichte (berechnet) ρ_x	2,252 g/cm ³
Diffraktometer	Nonius Kappa-CCD
Strahlung, λ	Mo-K α , λ = 71,073 pm
Absorptionskoeffizient μ	$32,3 \text{ cm}^{-1}$
Temperatur	293 K
Messbereich θ_{max}	35,01
gemessene Reflexe	$-20 \le h \le 20$
	$-12 \le k \le 12$
	$-18 \le l \le 17$
Anzahl der gemessenen Reflexe	23948
Anzahl symmetrieunabhängiger Reflexe	2557
Anzahl der Reflexe mit $F_{o} > 4\sigma (F_{o})$	1764
Zahl der verfeinerten Parameter	52
Verhältnis Reflexe / Parameter	49,17
F (0 0 0)	752
$R_{\rm int}$	0,1012
R_{σ}	0,0694
R [alle F_o]; R [$F_o > 4\sigma$ (F_o)]	0,1555; 0,0941
$wR(F^2)$ [Wichtung*]	0,1172
Goodness-of-Fit (GooF)	1,321
Restelektronendichte (max./min. ρ)	$0,63/-0,63 \text{ e}/\text{Å}^3$; Mittelwert = 0,00

TAICI datan .f.: **T** - 1 . 11 1 C:44 1

$$w = \frac{1}{\left[\sigma^2 (F_0)^2 + (0,0182 \cdot P)^2 + 8,22 \cdot P\right]}$$

mit
$$P = \frac{[\max(F_0^2, 0) + 2 \cdot F_c^2]}{3}$$

Atom	Wyckoff	Symmetrie	x/a	y/b	z/c	U _{eq}
Fe	4e	2	0	0,00492(12)	1/4	0,02744(21)
Al	8f	1	0,08858(10)	0,25057(18)	0,55327(9)	0,02693(27)
Cl1	8f	1	0,15877(11)	0,47775(16)	0,60855(10)	0,04316(30)
Cl2	8f	1	0,15751(8)	0,02359(15)	0,63263(8)	0,03293(25)
Cl3	8f	1	0,08926(9)	0,23692(15)	0,36672(8)	0,03308(24)
Cl4	8f	1	-0,06800(8)	0,22307(15)	0,61354(8)	0,03247(25)

Tabelle A.11: Koordinaten, Wyckoff-Lagen und isotrope Auslenkungsparameter der Atome in der Elementarzelle von Fe[AlCl₄]₂.

 Tabelle A.12: Anisotrope Auslenkungsparameter der Atome in Fe[AlCl₄]2.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Fe	0,03211(45)	0,03387(47)	0,01651(33)	0,00000(0)	0,00337(29)	0,00000(0)
Al	0,03119(65)	0,03270(65)	0,01689(47)	-0,00044(48)	0,00096(42)	-0,00247(56)
Cl1	0,05227(72)	0,04127(65)	0,03573(54)	-0,00639(49)	-0,00076(48)	-0,01215(58)
Cl2	0,03280(52)	0,04239(61)	0,02390(41)	0,00666(41)	0,00502(36)	0,00836(48)
C13	0,04463(59)	0,03780(56)	0,01685(35)	0,00027(38)	0,00149(35)	-0,00762(49)
Cl4	0,02905(50)	0,04191(62)	0,02660(44)	0,00693(42)	0,00309(36)	0,00366(45)

Tabelle A.13: Bindungslängen und -winkel in der asymmetrischen Einheit von Fe[AlCl₄]₂.

Bindungspaar	Bindungslänge /Å	Bindungspaar	Bindungslänge /Å
Fe-Cl2	2,4913(10)	Al-Cl1	2,0789(18)
Fe –Cl3	2,5100(13)	Al-Cl2	2,1689(17)
Fe –Cl4	2,5141(12)	Al-Cl3	2,1641(14)
		Al-Cl4	2,1654(16)

Atomverknüpfung	Bindungswinkel /°	Atomverknüpfung	Bindungswinkel /°
Cl2- Fe -Cl3	97,71(4)	Cl1-Al-Cl2	113,64(7)
Cl2- Fe -Cl4	82,14(4)	Cl1-Al-Cl3	109,33(7)
Cl3- Fe -Cl4	91,81(4)	Cl1-Al-Cl4	112,48(8)
Cl2- Fe -Cl2'	169,75(7)	Cl2-Al-Cl3	111,45(7)
Cl3- Fe -Cl4'	171,68(3)	Cl2-Al-Cl4	98,70(6)
Cl4- Fe -Cl3'	171,68(3)	Cl3-Al-Cl4	110,92(7)

A.4 Ni[AlCl₄]₂:

1 at	Jelle A.14. Lis	te del muiziert	en Keneze des	5 I UIVEI UIIII ak	logramms vo	II M[AIC14]2.
<i>2θ</i> [beob.]	h k l	<i>2θ</i> [berech.]	beobberech.	rel. Intensität	<i>d</i> [beob.]	d [berech.]
13,405	1 1 0	13,41	-0,0052	82,4	6,5999	6,5973
13,865	0 1 1	13,834	0,0303	97,3	6,3821	6,3961
	2 0 0	13,871	-0,0068			6,379
15,213		nicht indiziert		1	5,8194	
19,433	-2 1 1	19,434	-0,0011	10,1	4,5641	4,5638
19,838	2 1 1	19,842	-0,0041	16	4,4719	4,4709
20,312	-1 1 2	20,316	-0,0039	19,3	4,3686	4,3678
20,703	1 1 2	20,707	-0,0033	10,6	4,2868	4,2862
21,2	2 0 2	21,202	-0,002	11,1	4,1874	4,187
23,878	3 1 0	23,878	-0,0007	10,7	3,7237	3,7235
26,008	0 1 3	26,01	-0,0019	9,1	3,4233	3,423
27,005	2 2 0	27,009	-0,0033	22,6	3,2991	3,2987
27,909	0 2 2	27,875	0,0334	13,7	3,1943	3,198
27,955	4 0 0	27,951	0,0036	14,8	3,1891	3,1895
28,134	-3 1 2	28,133	0,0013	1,6	3,1692	3,1694
29,169	-2 1 3	29,174	-0,005	1,1	3,0591	3,0586
29,42		nicht indiziert		1,5	3,0336	
30,993	-2 2 2	30,997	-0,0043	14,2	2,8831	2,8827
31,192	0 0 4	31,19	0,0021	22,7	2,8651	2,8653
31,54	2 2 2	31,525	0,0149	100	2,8343	2,8356
	-4 0 2	31,571	-0,031			2,8316
	4 1 1	31,576	-0,0362			2,8312
32,607	4 0 2	32,603	0,0041	6,8	2,744	2,7443
33,793	-2 0 4	33,791	0,0025	3,5	2,6503	2,6505
34,333	1 1 4	34,33	0,0024	3,6	2,6099	2,6101
36,518	4 2 0	36,539	-0,0209	0,9	2,4585	2,4572
37,884	-4 1 3	37,885	-0,0018	1,1	2,373	2,3729
39,112	1 3 2	39,14	-0,028	4,4	2,3013	2,2997
	0 2 4	39,144	-0,0325			2,2994
39,865	3 2 3	39,844	0,0214	3,3	2,2595	2,2607
	-5 1 2	39,862	0,0033			2,2597
40,305	3 1 4	40,298	0,007	2,3	2,2359	2,2362
	4 2 2	40,312	-0,0072			2,2355
41,019	3 3 0	41,008	0,0103	2,8	2,1986	2,1991
	0 1 5	41,047	-0,0278			2,1972
41,309	-2 2 4	41,307	0,002	4,9	2,1838	2,1839
41,554	-4 0 4	41,551	0,0033	9,2	2,1715	2,1717
42,132	2 2 4	42,131	0,0011	11,9	2,143	2,1431
43,179	4 0 4	43,178	0,0012	3,3	2,0935	2,0935
44,373	3 3 2	44,366	0,0071	1,5	2,0399	2,0402
44,886	-6 0 2	44,882	0,0046	5,1	2,0177	2,0179
45,076	2 3 3	45,076	0,0009	1,5	2,0097	2,0097
46,196	4 3 1	46,199	-0,0034	2	1,9635	1,9634
47,116	0 4 0	47,124	-0,008	12,4	1,9273	1,927
48,272	1 3 4	48,241	0,0317	4,7	1,8838	1,885
	-5 2 3	48,28	-0,0076			1,8835
	-5 1 4	48,305	-0,0326			1,8826
48,889	6 2 0	48,881	0,0083	27,3	1,8615	1,8618
49,485	-4 1 5	49,498	-0,0131	4,7	1,8405	1,84
	4 2 4	49 508	-0.0238			1 8396

Tabelle A.14: Liste der indizierten Reflexe des Pulverdiffraktogramms von Ni[AlCl4]2.

50,348	2 0 6	50,325	0,0239	2,2	1,8109	1,8117
	5 3 0	50,36	-0,0118			1,8105
	-3 2 5	50,387	-0,0382			1,8096
53,094		nicht indiziert		0,9	1,7235	
53,505	-7 1 2	53,487	0,0183	2,8	1,7112	1,7118
	0 2 6	53,496	0,0093			1,7115
	0 3 5	53,531	-0,0262			1,7105
54,676	6 0 4	54,646	0,0303	2,5	1,6773	1,6782
	3 1 6	54,66	0,0155			1,6778
	7 1 2	54,672	0,0044			1,6775
55,059	-2 2 6	55,048	0,011	8,6	1,6666	1,6669
	-4 0 6	55,077	-0,0183			1,6661
55,68	4 4 0	55,684	-0,0036	0,9	1,6494	1,6493
56,048	2 2 6	56,045	0,0031	3,7	1,6395	1,6396
	-7 2 1	56,083	-0,0343			1,6386
57,066	4 0 6	57,059	0,0068	3,7	1,6126	1,6128
57,803	8 0 0	57,766	0,0376	3	1,5938	1,5948
	-4 4 2	57,832	-0,0286			1,5931
58,184	-6 2 4	58,168	0,016	1,2	1,5843	1,5847
	-5 2 5	58,202	-0,0182			1,5838
59,369	-6 1 5	59,36	0,0084	1,3	1,5555	1,5557
	-8 1 1	59,392	-0,0238			1,5549
60,08	6 2 4	60,084	-0,0039	2,1	1,5387	1,5387
60,474	1 5 0	60,439	0,0348	2,2	1,5297	1,5305
	-4 2 6	60,49	-0,0163			1,5293
60,827	8 0 2	60,812	0,0147	3	1,5216	1,522
	-6 3 3	60,842	-0,0158			1,5213
62,43	7 3 0	62,421	0,0089	1,9	1,4864	1,4865
63,039	8 2 0	63,033	0,0059	1,9	1,4735	1,4736
63,905	-3 3 6	63,886	0,0188	1,1	1,4555	1,4559
64,625	-4 4 4	64,61	0,0149	1,2	1,4411	1,4414
65,08	0 0 8	65,05	0,0295	1,3	1,4321	1,4327
65,923	-8 0 4	65,923	0,0002	0,9	1,4158	1,4158
	5 4 3	65,929	-0,0065			1,4157
	8 2 2	65,935	-0,0116			1,4156
66,451	-1 1 8	66,463	-0,0119	0,9	1,4058	1,4056
	3 2 7	66,468	-0,0169			1,4055
67,094	1 1 8	67,059	0,0348	0,8	1,3939	1,3945
	9 1 0	67,079	0,0151			1,3942
	-6 4 2	67,109	-0,015			1,3936
70,084	2 3 7	70,121	-0,0373	0,4	1,3416	1,341
73,26	-5 5 2	73,249	0,0107	0,3	1,2911	1,2912
	-6 4 4	73,277	-0,0173			1,2908

Abbildung A.6: Pulverdiffraktogramm von Ni[AlCl₄]₂, unterlegt mit den aus Einkristalldaten berechneten Reflexpositionen.

Abbildung A.7: Erweiterte asymmetrische Einheit in der Struktur von Ni[AlCl₄]₂. Die thermischen Schwingungsellipsoide entsprechen einer Aufenthaltswahrscheinlichkeit der Atome von 70 %.

Summenformel	NiAl ₂ Cl ₈
Kristallsystem	monoklin
Raumgruppe	<i>I</i> 1 2/ <i>c</i> 1; Nr. 15
Gitterkonstanten	a = 12,7667 (17) Å
[aus Pulverdaten verfeinert]	b = 7,7079 (14) Å
	c = 11,4691 (17) Å
	$\beta = 92,111 (10)$ °
Zellvolumen V	1127,8 (4) Å ³
Zahl der Formeleinheiten Z	4
Dichte (berechnet) ρ_x	2,33 g/cm ³
Diffraktometer	Nonius Kappa-CCD
Strahlung, λ	Mo-K α , λ = 71,073 pm
Absorptionskoeffizient μ	37,1 cm ⁻¹
Temperatur	293 K
Messbereich θ_{max}	24,13
gemessene Reflexe	$-14 \le h \le 14$
	$-8 \le k \le 8$
	$-13 \le l \le 13$
Anzahl der gemessenen Reflexe	17439
Anzahl symmetrieunabhängiger Reflexe	871
Anzahl der Reflexe mit $F_0 > 4\sigma (F_0)$	642
Zahl der verfeinerten Parameter	51
Verhältnis Reflexe / Parameter	17,08
F (0 0 0)	760
$R_{ m int}$	0,0945
R_{σ}	0,0454
<i>R</i> [alle <i>F</i> _o]; <i>R</i> [<i>F</i> _o > 4 σ (<i>F</i> _o)]	0,0684; 0,0437
$wR(F^2)$ [Wichtung*]	0,0859
Goodness-of-Fit (GooF)	1,117
Restelektronendichte (max./min. ρ)	$0,42 / -0,43 \text{ e/Å}^3$; Mittelwert = 0,00

-l-voudaton voufainaut Tak ~11 NEALCEL C:++ hand Dä

$$w = \frac{1}{\left[\sigma^2 (F_0)^2 + (0.0136 \cdot P)^2 + 8.74 \cdot P\right]} \quad \text{mit } P = \frac{\left[\max(F_0^2, 0) + 2 \cdot F_c^2\right]}{3}$$

Atom	Wyckoff	Symmetrie	x/a	y/b	z/c	U _{eq}
Ni	4e	2	0	-0,00009(20)	1/4	0,03227(38)
Al	8f	1	0,08625(18)	0,24783(32)	0,55250(17)	0,03284(55)
Cl1	8f	1	0,15887(17)	0,47787(29)	0,60520(17)	0,04758(56)
Cl2	8f	1	0,15394(14)	0,01738(29)	0,63489(14)	0,03802(50)
C13	8f	1	0,08531(15)	0,23213(29)	0,36456(14)	0,03821(51)
Cl4	8f	1	-0,06986(15)	0,22119(27)	0,61845(14)	0,03766(53)

 Tabelle A.16: Koordinaten, Wyckoff-Lagen und isotrope Auslenkungsparameter der Atome in der Elementarzelle von Ni[AlCl₄]₂.

Tabelle A.17: Anisotrope Auslenkungsparameter der Atome in Ni[AlCl₄]₂.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Ni	0,03680(78)	0,04045(80)	0,01958(61)	0,00000	0,00134(53)	0,00000
Al	0,03856(132)	0,03826(126)	0,02172(106)	0,00030(109)	0,00142(88)	-0,00310(125)
Cl1	0,05591(127)	0,04509(130)	0,04152(107)	-0,00471(111)	-0,00158(91)	-0,01012(124)
Cl2	0,03867(105)	0,04820(123)	0,02730(89)	0,00564(99)	0,00283(75)	0,00479(115)
C13	0,04957(116)	0,04349(120)	0,02176(85)	-0,00021(95)	-0,0026(79)	-0,00446(105)
Cl4	0,03744(110)	0,04791(135)	0,02761(94)	0,00438(97)	0,00108(80)	0,00262(103)

Tabelle A.18: Bindungslängen und -winkel in der asymmetrischen Einheit von Ni[AlCl4]2.

Bindungspaar	Bindungslänge /Å	Bindungspaar	Bindungslänge /Å
Ni-Cl2	2,4092(18)	Al-Cl1	2,0814(32)
Ni –C13	2,4523(22)	Al-Cl2	2,1661(29)
Ni-Cl4	2,4244(21)	Al-Cl3	2,1557(27)
		Al-Cl4	2,1769(31)

Atomverknüpfung	Bindungswinkel /°	Atomverknüpfung	Bindungswinkel /°
Cl2- Ni -Cl3	95,90(7)	Cl1-Al-Cl2	113,88(12)
Cl2- Ni -Cl4	84,83(7)	Cl1-Al-Cl3	108,90(12)
Cl3- Ni -Cl4	92,01(6)	Cl1-Al-Cl4	112,67(13)
Cl2- Ni -Cl2'	173,65(13)	Cl2-Al-Cl3	112,02(12)
Cl3- Ni -Cl4'	173,10(6)	Cl2-Al-Cl4	97,30(11)
Cl4- Ni -Cl3'	173,10(6)	Cl3-Al-Cl4	111,77(12)

A.5 V[GaCl₄]₂:

I abelle A	A.19: Liste de	er indizierten F	Reflexe des Pul	verdiffraktogra	amms von v	GaCl ₄] ₂ .
2θ [beob.]	h k l	<i>2θ</i> [berech.]	beobberech.	rel. Intensität	<i>d</i> [beob.]	d [berech.]
13,427	1 1 0	13,433	-0,0058	37,1	6,5889	6,5861
13,781	0 1 1	13,790	-0,0091	100,0	6,4205	6,4163
	2 0 0	13,792	-0,0111			6,4154
15,138	0 0 2	15,139	-0,0008	8,5	5,8481	5,8478
19,354	-2 1 1	19,355	-0,0012	35,2	4,5826	4,5823
19,736	2 1 1	19,746	-0,0098	56,8	4,4947	4,4924
20,121	-1 1 2	20,102	0,0191	15,8	4,4095	4,4136
	-2 0 2	20,158	-0,0366			4,4016
20,476	1 1 2	20,479	-0,0036	5,2	4,3339	4,3332
20,883	2 0 2	20,904	-0,0211	8,1	4,2504	4,2462
21,530		nicht indiziert		5,5	4,1241	
23,160	0 2 0	23,161	-0,0008	8,0	3,8373	3,8372
23,797	3 1 0	23,798	-0,0014	6,8	3,7361	3,7359
25,610	0 1 3	25,608	0,0019	20,4	3,4755	3,4758
27,054	2 2 0	27,055	-0,0015	32,7	3,2933	3,2931
27,779	0 2 2	27,786	-0,0066	44,2	3,2089	3,2082
-	4 0 0	27,790	-0,0108			3,2077
29,596	2 1 3	29,598	-0,0019	4,8	3,0159	3,0157
30,564	0 0 4	30,550	0,0139	14,4	2,9226	2,9239
30,907	-2 2 2	30,891	0,0160	13,3	2,8909	2,8924
,	-4 1 1	30,894	0,0131	,	,	2,8921
31,299	-4 0 2	31,292	0,0063	27,4	2,8556	2,8562
31,383	2 2 2	31,397	-0,0140	45,4	2,8482	2,8469
,	4 1 1	31,399	-0,0168	,	,	2,8467
33,213	-2 0 4	33,184	0,0297	6,0	2,6952	2,6976
33.753	1 1 4	33.742	0.0115	2.0	2.6533	2.6542
34.135	2 0 4	34.128	0.0077	1.7	2.6245	2.6251
36,490	4 2 0	36.480	0.0103	6.0	2.4604	2.4610
37.523	-4 1 3	37.507	0.0158	4.3	2.3950	2.3960
38.732	0 2 4	38.685	0.0469	8.6	2.3230	2,3257
	2 3 1	38,739	-0.0070	- 3 -	3	2.3225
	4 1 3	38.777	-0.0452			2,3204
39.606	-5 1 2	39.588	0.0175	1.8	2.2737	2.2747
40.291	0 1 5	40.274	0.0171	5.2	2.2366	2.2375
40.987	-4 0 4	40.976	0.0110	7.2	2.2002	2.2008
41.656	2 2 4	41.652	0.0037	13.6	2.1664	2.1666
42.227	0 3 3	42.220	0.0076	3.3	2.1384	2.1388
,,	6 0 0	42.226	0.0010	- ;-	_,	2.1385
44.546	-6 0 2	44,550	-0.0040	5.2	2.0323	2.0322
44,911	2 3 3	44,902	0.0093	4.5	2.0167	2.0170
,	6 1 1	44 908	0.0037	- ,	_,,	2,0168
46 184	1 2 5	46 176	0.0085	34	1 9640	1 9643
,	4 3 1	46.183	0.0014	-,-	-,,	1.9640
47.352	0 4 0	47.343	0.0090	16 9	1.9182	1,9186
47 869	134	47 906	-0.0370	2.1	1 8987	1 8974
48 730	6 2 0	48 708	0.0216	30.8	1,8577	1 8680
10,750	-4 1 5	48 774	-0.0439	20,0	1,0072	1 8656
53 053	035	53 004	0 0493	23	1 7248	1 7262
54 214	-2, 2, 6	54 191	0.0231	2,5 8 7	1 6905	1 6912
55 156	2 2 6	55 152	0.0035	44	1,6539	1 6640
55.831	4 4 0	55,787	0.0438	2.3	1,6453	1.6465
,~		,		-,-	,	

	-7 2 1	55,840	-0,0091			1,6451
57,863	-4 4 2	57,850	0,0127	3,0	1,5923	1,5926
59,621	-4 2 6	59,640	-0,0185	3,8	1,5495	1,5490
	2 4 4	59,642	-0,0214			1,5490
	8 1 1	59,651	-0,0300			1,5488
62,737	8 2 0	62,738	-0,0010	3,0	1,4798	1,4798
	2 5 1	62,767	-0,0301			1,4792

Abbildung A.8: Pulverdiffraktogramm von V[GaCl₄]₂, unterlegt mit den aus Einkristalldaten berechneten Reflexpositionen.

Abbildung A.9: Erweiterte asymmetrische Einheit in der Struktur von V[GaCl₄]₂. Die thermischen Schwingungsellipsoide entsprechen einer Aufenthaltswahrscheinlichkeit der Atome von 70 %.

Summenformel	VGa ₂ Cl ₈
Kristallsystem	monoklin
Raumgruppe	<i>I</i> 1 2/ <i>c</i> 1; Nr. 15
Gitterkonstanten	a = 12,839 (4) Å
[aus Pulverdaten verfeinert]	<i>b</i> = 7,7643 (21) Å
	c = 11,703 (3) Å
	$\beta = 92,068 (21)^{\circ}$
Zellvolumen V	1152,4 (8) Å ³
Zahl der Formeleinheiten Z	4
Dichte (berechnet) ρ_x	2,732 g/cm ³
Diffraktometer	Nonius Kappa-CCD
Strahlung, λ	Mo-K α , λ = 71,073 pm
Absorptionskoeffizient μ	$72,3 \text{ cm}^{-1}$
Temperatur	123 K
Messbereich θ_{max}	27,43
gemessene Reflexe	$-16 \le h \le 16$
	$-9 \le k \le 9$
	$-14 \le l \le 15$
Anzahl der gemessenen Reflexe	15228
Anzahl symmetrieunabhängiger Reflexe	1314
Anzahl der Reflexe mit $F_0 > 4\sigma (F_0)$	928
Zahl der verfeinerten Parameter	52
Verhältnis Reflexe / Parameter	25,27
F (0 0 0)	884
$R_{ m int}$	0,1473
R_{σ}	0,0551
R [alle F_o]; R [$F_o > 4\sigma$ (F_o)]	0,1183; 0,0904
$wR(F^2)$ [Wichtung*]	0,2517
Goodness-of-Fit (GooF)	1,290
Restelektronendichte (max./min. ρ)	$1,46/-1,01 \text{ e/Å}^3$; Mittelwert = 0,01

Taball VICaCUI h. А . 1. datan wa .**f**_: . C'44 Dä

$$w = \frac{1}{\left[\sigma^2(F_0)^2 + (0,0997 \cdot P)^2 + 28,76 \cdot P\right]} \quad \text{mit } P = \frac{\left[\max(F_0^2, 0) + 2 \cdot F_c^2\right]}{3}$$

		Littl	iente zene von v	104014121		
Atom	Wyckoff	Symmetrie	x/a	<i>y/b</i>	z/c	\mathbf{U}_{eq}
V	4e	2	0	0,00780(38)	1⁄4	0,03194(78)
Ga	8f	1	0,08966(11)	0,25397(19)	0,55320(11)	0,03478(56)
Cl1	8f	1	0,16312(31)	0,48629(47)	0,61088(32)	0,04762(92)
Cl2	8f	1	0,15804(26)	0,01483(43)	0,63100(27)	0,03958(82)
C13	8f	1	0,08785(28)	0,24598(43)	0,36617(26)	0,03874(79)
Cl4	8f	1	-0,06947(25)	0,22345(45)	0,61772(27)	0,03906(83)

Tabelle A.21: Koordinaten, Wyckoff-Lagen und isotrope Auslenkungsparameter der Atome in der Elementarzelle von V[GaCl₄]₂.

Tabelle A.22: Anisotrope Auslenkungsparameter der Atome in V[GaCl₄]₂.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
V	0,03890(163)	0,03639(168)	0,02083(138)	0,00000	0,00546(110)	0,00000
Ga	0,03931(88)	0,03892(90)	0,02608(80)	-0,00029(55)	0,00074(53)	-0,00204(61)
C11	0,05589(207)	0,04681(203)	0,04032(181)	-0,00653(140)	0,00405(148)	-0,01106(160)
Cl2	0,04065(165)	0,04804(190)	0,03045(155)	0,00664(129)	0,00691(118)	0,00852(140)
Cl3	0,05047(183)	0,04245(172)	0,02332(141)	-0,00064(118)	0,00165(116)	-0,00426(144)
Cl4	0,03685(166)	0,04774(193)	0,03278(160)	0,00602(127)	0,00389(118)	0,00322(137)

Tabelle A.23: Bindungslängen und -winkel in der asymmetrischen Einheit von V[GaCl4]2.

Bindungspaar	Bindungslänge /Å	Bindungspaar	Bindungslänge /Å
V –Cl2	2,5074(34)	Ga-Cl1	2,1162(37)
V –C13	2,5203(39)	Ga -Cl2	2,2159(34)
V–Cl4	2,4986(39)	Ga -Cl3	2,1887(33)
		Ga -Cl4	2,2157(35)

Atomverknüpfung	Bindungswinkel /°	Atomverknüpfung	Bindungswinkel /°
Cl2- V -Cl3	96,10(12)	Cl1- Ga -Cl2	113,63(15)
Cl2- V -Cl4	83,40(11)	Cl1- Ga -Cl3	109,35(15)
Cl3- V -Cl4	92,16(11)	Cl1- Ga -Cl4	112,73(16)
Cl2- V -Cl2'	172,06(21)	Cl2- Ga -Cl3	112,19(14)
Cl3- V -Cl4'	172,90(11)	Cl2- Ga -Cl4	97,43(13)
Cl4- V -Cl3'	172,90(11)	Cl3- Ga -Cl4	111,13(14)

A.6 β -Mn[GaCl₄]₂:

Tabelle A	24: Liste der	indizierten Re	flexe des Pulve	erdiffraktogran	nms von β-M	in[GaCl ₄] ₂ .
<i>2θ</i> [beob.]	h k l	<i>2θ</i> [berech.]	beobberech.	rel. Intensität	<i>d</i> [beob.]	d [berech.]
13,265	1 1 0	13,265	0,0002	36,3	6,6694	6,6694
13,652	0 1 1	13,632	0,0201	19	6,4808	6,4903
13,73	2 0 0	13,732	-0,0017	100	6,4442	6,4434
15,118	0 0 2	15,106	0,012	15,4	5,8556	5,8603
19,222	-2 1 1	19,219	0,0032	47	4,6136	4,6144
19,565	2 1 1	19,572	-0,0067	78,5	4,5336	4,5321
19,983	-1 1 2	19,984	-0,001	17,4	4,4397	4,4395
20,127	-2 0 2	20,132	-0,0045	11,9	4,4083	4,4073
20,317	1 1 2	20,324	-0,0068	11,2	4,3674	4,366
20,799	2 0 2	20,801	-0,0022	14,4	4,2673	4,2669
22,804	0 2 0	22,799	0,0051	7	3,8964	3,8972
23,628	3 1 0	23,63	-0,0022	7,8	3,7625	3,7621
25,482	0 1 3	25,482	-0,0004	45,1	3,4927	3,4927
26,707	2 2 0	26,711	-0,0043	25,7	3,3352	3,3347
27,458	0 2 2	27,463	-0,0046	25,8	3,2457	3,2452
27,657	4 0 0	27,666	-0,0098	33,3	3,2228	3,2217
29,411	2 1 3	29,417	-0.0058	11	3.0344	3.0338
30,488	0 0 4	30,483	0.0046	26,9	2,9297	2,9301
30,717	-4 1 1	30,735	-0.0184	7	2,9084	2,9067
31.047	2 2 2	31,054	-0.0063	62,2	2.8782	2.8776
31.215	4 1 1	31.191	0.0246	52.5	2.8631	2.8653
<i>v</i> - , <i>–</i>	-4 0 2	31,218	-0.0032		-,	2.8628
33.146	-2 0 4	33,146	0.0004	14.3	2.7005	2.7006
	-1 1 4	33.16	-0.0142	,-	-,,	2.6994
33.598	1 1 4	33,586	0.0123	5.1	2.6652	2.6662
36.135	4 2 0	36,144	-0.0092	6.2	2.4837	2.4831
37.39	-4 1 3	37.391	-0.0002	6.8	2.4032	2.4032
38 216	2 3 1	38,191	0 0248	6.4	2,3532	2,3546
39.46	-5 1 2	39,432	0.0271	3.7	2.2818	2,2833
57,10	3 1 4	39 484	-0.0246	2,,	2,2010	2,2804
40 142	0 1 5	40 138	0.0038	10 7	2 2446	2,2448
40 919	-4 0 4	40.92	-0.0018	12.2	2,2110	2,2036
41 316	2 2 4	41 325	-0.0010	25	2,203,	2,2000
44 401	2 3 3	44 373	0.028	97	2,1051	2,105
11,101	-6 0 2	44 412	-0.0111	2,1	2,0000	2,0382
45 347	-4 3 1	45 31	0.0368	17	1 9983	1 9998
45 577		nicht indiziert	0,0000	3	1 9887	1,7770
46 54	0 4 0	46 57	-0.0295	12.2	1 9498	1 9486
48 336	-1 1 6	48 288	0.0485	33.5	1 8815	1 8832
-0,550	620	40,200	-0.0107	55,5	1,0015	1 8811
48 631	1 2 4	40,547	-0,0107	10.7	1 8707	1,0011
40,051	-4 1 5	40,015	-0.0402	10,7	1,0/07	1,0717
40 111	-4 1 3	40,071	-0,0+02	57	1 8536	1,0075
47,111	206	49,100	0,0052	5,1	1,0550	1,0550
52 534	200	47,15 1 57 538	-0,0233	5	1 7406	1,0527
52,554	712	52,556	-0,0045	14 Д	1,7400	1,/404
33,70	226	53,742	0,0385	14,4	1,0775	1,0704
51 826	-2 2 0	51.87	0,0249	10.0	1 6731	1,070
54,820	2 2 0	54,82	0,0001	10,9	1,0/31	1,0755
33,77	4 0 6	55,778	-0,0078	4,2	1,047	1,0408

57,183	-4 4 2	57,135	0,0485	2,8	1,6096	1,6109
	8 0 0	57,135	0,0483			1,6109
58,491	-6 1 5	58,495	-0,0045	4	1,5767	1,5766
59,322	8 1 1	59,309	0,0124	4,3	1,5566	1,5569

Abbildung A.10: Pulverdiffraktogramm von β-Mn[GaCl₄]₂, unterlegt mit den aus Einkristalldaten von Mn[AlCl₄]₂ berechneten Reflexpositionen, da β-Mn[GaCl₄]₂ nicht in einkristalliner Form isoliert werden konnte.

Summenformel	MnGa ₂ Cl ₈
Kristallsystem	monoklin
Raumgruppe	<i>I</i> 1 2/ <i>c</i> 1; Nr. 15
Gitterkonstanten	<i>a</i> = 12,894 (3) Å
[aus Pulverdaten verfeinert]	<i>b</i> = 7,7945 (18) Å
	c = 11,7267 (22) Å
	$\beta = 91,863 (13)$ °
Zellvolumen V	1177,9 (5) Å ³
Zahl der Formeleinheiten Z	4
Diffraktometer	BRUKER D8-Advance
Strahlung, λ	Cu-K α , $\lambda = 154,051$ pm
Temperatur	298 K
Messbereich θ_{max}	45,50
Anzahl eindeutig indizierter Reflexe	34
Anzahl mehrfach indizierter Reflexe	9
Anzahl nicht indizierter Reflexe	1
F (0 0 0)	892
FOM der Pulverindizierung	69,5

|--|

Tabelle A.26: Koordinaten, Wyckoff-Lagen und isotrope Auslenkungsparameter der Atome in der Elementarzelle von β-Mn[GaCl₄]₂, berechnet anhand einer Rietveldanpassung der Röntgenpulverdaten.

Atom	Wyckoff	Symmetrie	x/a	<i>y/b</i>	z/c	\mathbf{U}_{eq}
Mn	4e	2	1/2	0,49301(96)	3/4	0,02225
Ga	8f	1	0,59071(22)	0,75772(57)	0,55436(25)	0,02225
Cl1	8f	1	0,65601(52)	0,99984(112)	0,61418(58)	0,02612
Cl2	8f	1	0,65577(59)	0,54031(109)	0,62443(55)	0,02090
C13	8f	1	0,58688(33)	0,74879(137)	0,36523(43)	0,02090
Cl4	8f	1	0,43190(40)	0,72037(120)	0,61479(43)	0,02090

A.7 Fe[GaCl₄]₂:

20 Ibach 1	1.1.27. Engle des	20 Ib succh 1	heek keyeek	vel Interette		d fb ans ab 1
20 [beob.]		20 [berecn.]	beobberech.	rei. Intensitat		<i>a</i> [berech.]
13,373		13,381	-0,0078	38,2	6,6154	6,6116
13,763	0 1 1	13,761	0,0017	97,4	6,429	6,4298
	2 0 0	13,78	-0,0174			6,4209
15,192	0 0 2	15,206	-0,0134	11,3	5,8272	5,8221
15,408		nicht indiziert		1,7	5,7461	
19,334	-2 1 1	19,341	-0,0064	37,9	4,5872	4,5857
19,693	2 1 1	19,703	-0,0097	65,4	4,5045	4,5023
20,158	-1 1 2	20,133	0,0253	19,5	4,4016	4,407
20,48	1 1 2	20,481	-0,0017	9,8	4,3331	4,3328
20,905	2 0 2	20,918	-0,0128	14,3	4,246	4,2434
21,428		nicht indiziert		2,3	4,1434	
23,055	0 2 0	23,046	0,0091	5,6	3,8546	3,8561
23,741	3 1 0	23,754	-0,0125	7,4	3,7447	3,7427
25,671	0 1 3	25,674	-0,0022	36,8	3,4674	3,4671
26,951	2 2 0	26,949	0,0017	23,2	3,3056	3,3058
27,74	0 2 2	27,726	0,0139	50,3	3,2133	3,2149
	4 0 0	27,765	-0,0254			3,2105
29,611	2 1 3	29,62	-0,0084	11	3,0144	3,0135
30,684	0 0 4	30,688	-0,0037	23,1	2,9114	2,911
30,868	-2 2 2	30,85	0,0176	9,2	2,8945	2,8961
,	-4 1 1	30.877	-0.0091	,	,	2.8936
31.323	2 2 2	31.319	0.0044	100	2.8534	2.8538
	-4 0 2	31.342	-0.0186		,	2.8518
	4 1 1	31.345	-0.022			2.8515
33,339	-1 2 3	33,3	0,0393	14,7	2,6853	2,6884
,	-2 0 4	33,343	-0,0031	,	,	2,6851
	-1 1 4	33,392	-0,0527			2,6812
33,832	1 1 4	33,829	0,0029	4	2,6473	2,6476
34,207	2 0 4	34,213	-0,0059	2,7	2,6192	2,6187
36,391	4 2 0	36,385	0,0061	4,4	2,4669	2,4673
37,583	-4 1 3	37,583	0	5,6	2,3913	2,3913
38,587	2 3 1	38,571	0,0161	6,4	2,3314	2,3323
	-3 1 4	38,595	-0,0077			2,3309
	-3 2 3	38,611	-0,0236			2,33
39,001	1 3 2	38,998	0,0033	1,7	2,3076	2,3077
39,648	-5 1 2	39,609	0,0389	2,6	2,2714	2,2735
40,432	0 1 5	40,427	0,0057	10,8	2,2291	2,2294
41,12	-4 0 4	41,126	-0,0054	12,9	2,1934	2,1931
41,662	2 2 4	41,656	0,0057	23,5	2,1661	2,1664
42,155	0 3 3	42,127	0,0284	3,1	2,1419	2,1433
	6 0 0	42,188	-0,0328			2,1403
42,466	-2 1 5	42,461	0,0047	1,9	2,1269	2,1272
43,363	2 1 5	43,35	0,0128	1,6	2,085	2,0856
44,567	-6 0 2	44,58	-0,0134	6,2	2,0314	2,0309
44,812	2 3 3	44,789	0,0231	5,1	2,0209	2,0219
	6 1 1	44,841	-0,0287			2,0197
45,671	-4 3 1	45,681	-0,0099	1,6	1,9849	1,9845
46,029	4 3 1	46,018	0,0111	3	1,9702	1,9707
46,776	0 0 6	46,771	0,0046	2	1,9405	1,9407
47,125	0 4 0	47,097	0,029	11	1,9269	1,9281
47,872	1 3 4	47,849	0,0229	3,5	1,8986	1,8995

Tabelle A.27: Liste der indizierten Reflexe des Pulverdiffraktogramms von Fe[GaCl₄]₂

	-5 1 4	47,882	-0,0094			1,8983
48,606	6 2 0	48,614	-0,0081	28,7	1,8717	1,8714
	-1 1 6	48,629	-0,0235			1,8708
48,96	-4 1 5	48,955	0,0054	10,1	1,8589	1,8591
	4 2 4	48,961	-0,0015			1,8589
49,395		nicht indiziert		4,8	1,8436	
50,7	-4 3 3	50,739	-0,039	2,1	1,7992	1,7979
	6 1 3	50,749	-0,0496			1,7975
52,439	-3 1 6	52,432	0,0063	1,8	1,7435	1,7437
	3 3 4	52,462	-0,023			1,7428
	-3 4 1	52,495	-0,0562			1,7418
53,049	0 3 5	53,014	0,0351	5,1	1,7249	1,7259
54,377	-2 2 6	54,363	0,014	16,5	1,6859	1,6863
	-4 0 6	54,377	-0,0007			1,6858
55,266	2 2 6	55,251	0,0152	8,5	1,6608	1,6612
56,134	4 0 6	56,144	-0,0102	3,8	1,6372	1,6369
57,697	-4 4 2	57,667	0,0307	3,1	1,5965	1,5973
	-5 2 5	57,678	0,0195			1,597
	-6 2 4	57,74	-0,0424			1,5954
58,872	-2 4 4	58,925	-0,0527	3,9	1,5674	1,5661
59,49	6 2 4	59,441	0,0486	3,6	1,5526	1,5537
	5 2 5	59,451	0,0391			1,5535
	2 4 4	59,488	0,0018			1,5526
59,848	-4 2 6	59,825	0,0224	2	1,5442	1,5447
	-7 1 4	59,855	-0,0077			1,544
60,218	-4 3 5	60,196	0,0224	1,7	1,5355	1,5361
	8 0 2	60,265	-0,0467			1,5345
60,511	0 5 1	60,499	0,0127	1,5	1,5288	1,5291
	-6 3 3	60,521	-0,0097			1,5286

Abbildung A.11: Pulverdiffraktogramm von Fe[GaCl₄]₂, unterlegt mit den aus Einkristalldaten berechneten Reflexpositionen.

Summenformel	FeGa ₂ Cl ₈
Kristallsystem	monoklin
Raumgruppe	<i>I</i> 1 2/ <i>c</i> 1; Nr. 15
Gitterkonstanten	a = 12,849 (5) Å
[aus Pulverdaten verfeinert]	<i>b</i> = 7,7122 (22) Å
	c = 11,651 (3) Å
	$\beta = 91,906 (19)$ °
Zellvolumen V	1153,9 (8) Å ³
Zahl der Formeleinheiten Z	4
Dichte (berechnet) ρ_x	2,791 g/cm ³
Diffraktometer	Nonius Kappa-CCD
Strahlung, λ	Mo-K α , λ = 71,073 pm
Absorptionskoeffizient μ	77,6 cm ⁻¹
Temperatur	123 K
Messbereich θ_{max}	30,06
gemessene Reflexe	$-18 \le h \le 18$
	$-10 \le k \le 10$
	$-16 \le l \le 16$
Anzahl der gemessenen Reflexe	15228
Anzahl symmetrieunabhängiger Reflexe	1669
Anzahl der Reflexe mit $F_{\rm o} > 4\sigma (F_{\rm o})$	1255
Zahl der verfeinerten Parameter	52
Verhältnis Reflexe / Parameter	32,10
F (0 0 0)	896
$R_{ m int}$	0,0625
R_{σ}	0,0331
R [alle F_o]; R [$F_o > 4\sigma$ (F_o)]	0,0455; 0,0270
$wR(F^2)$ [Wichtung*]	0,0625
Goodness-of-Fit (GooF)	1,065
Restelektronendichte (max./min. ρ)	$0,72/-0,39 \text{ e/Å}^3$; Mittelwert = 0,00

Tabelle A 28. blatt von FelGaCLL, Gitternarameter anhand von Röntgennulverdaten verfeinert D

$$w = \frac{1}{\left[\sigma^2 (F_0)^2 + (0.0259 \cdot P)^2 + 0.27 \cdot P\right]} \qquad \text{mit } P = \frac{\left[\max(F_0^2, 0) + 2 \cdot F_c^2\right]}{3}$$

Abbildung A.12: erweiterte asymmetrische Einheit in der Struktur von Fe[GaCl₄]₂. Die thermischen Schwingungsellipsoide entsprechen einer Aufenthaltswahrscheinlichkeit der Atome von 70 %.

Tabelle A.29: Koordinaten, Wyckoff-Lagen und isotrope Auslenkungsparameter der Atome in der Elementarzelle von Fe[GaCl₄]₂.

Atom	Wyckoff	Symmetrie	x/a	y/b	z/c	U _{eq}
Fe	4e	2	0	0,00948(7)	1⁄4	0,02553(14)
Ga	8f	1	0,09004(2)	0,25388(4)	0,55320(2)	0,02491(10)
Cl1	8f	1	0,16282(6)	0,48736(10)	0,61133(6)	0,03622(18)
Cl2	8f	1	0,15785(5)	0,01476(9)	0,63170(5)	0,02959(16)
C13	8f	1	0,08999(6)	0,24544(9)	0,36440(5)	0,02863(16)
Cl4	8f	1	-0,06967(6)	0,22326(9)	0,61674(5)	0,02922(17)

Tabelle A.30: Anisotrope Auslenkungsparameter der Atome in Fe[GaCl₄]₂.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Fe	0,02948(31)	0,02997(31)	0,01722(24)	0,00000	0,00183(20)	0,00000
Ga	0,02806(19)	0,02879(18)	0,01788(15)	0,00035(11)	0,00065(11)	-0,00180(12)
Cl1	0,04159(43)	0,03540(40)	0,03154(34)	-0,00501(29)	-0,00054(29)	-0,00823(33)
Cl2	0,02995(36)	0,03557(38)	0,02345(30)	0,00434(27)	0,00381(24)	0,00604(29)
Cl3	0,03638(40)	0,03217(36)	0,01734(28)	-0,00009(24)	0,00091(25)	-0,00474(29)
Cl4	0,02640(37)	0,03728(40)	0,02402(32)	0,00464(26)	0,00120(26)	0,00253(28)

Tabelle A.31: Bindungslängen und -winkel in der asymmetrischen Einheit von Fe[GaCl₄]₂.

Bindungspaar	Bindungslänge /A	Bindungspaar	Bindungslänge /Å
Fe-Cl2	2,4863(7)	Ga-Cl1	2,1175(8)
Fe-Cl3	2,5033(8)	Ga-Cl2	2,2120(7)
Fe-Cl4	2,5084(8)	Ga-Cl3	2,1987(7)
		Ga-Cl4	2,2071(8)

Atomverknüpfung	Bindungswinkel /°	Atomverknüpfung	Bindungswinkel /°
Cl2- Fe -Cl3	97,26(2)	Cl1- Ga -Cl2	113,97(3)
Cl2- Fe -Cl4	83,27(2)	Cl1- Ga -Cl3	109,27(3)
Cl3- Fe -Cl4	92,13(2)	Cl1- Ga -Cl4	112,60(3)
Cl2- Fe -Cl2'	171,43(4)	Cl2- Ga -Cl3	112,07(3)
Cl3- Fe -Cl4'	172,09(2)	Cl2- Ga -Cl4	97,34(3)
Cl4- Fe -Cl3'	172,09(2)	Cl3- Ga -Cl4	111,22(3)

A.8 Co[GaCl₄]₂:

Tabene	A.52. Liste uti	muizici ten i	utilitat uts I ui	verunn aktogra		
<i>2θ</i> [beob.]	h k l	<i>2θ</i> [berech.]	beobberech.	rel. Intensität	<i>d</i> [beob.]	d [berech.]
13,444	1 1 0	13,45	-0,0056	34,5	6,5806	6,5779
13,812	2 0 0	13,816	-0,0035	84	6,4061	6,4045
	0 1 1	13,833	-0,0204			6,3967
15,264	0 0 2	15,255	0,0085	17,8	5,8001	5,8033
19,41	-2 1 1	19,419	-0,009	34,8	4,5694	4,5673
19,775	2 1 1	19,776	-0,0014	64,2	4,4859	4,4856
20,233	-1 1 2	20,219	0,0148	21,9	4,3854	4,3885
20,565	1 1 2	20,562	0,003	12,7	4,3153	4,3159
20,979	2 0 2	20,974	0,0044	13,4	4,2312	4,2321
23,173	0 2 0	23,187	-0,0143	6,7	3,8353	3,833
23,835	3 1 0	23,836	-0,001	7,6	3,7303	3,7301
25,771	0 1 3	25,773	-0,0021	37,8	3,4542	3,4539
27,084	2 2 0	27,09	-0,0062	26,7	3,2897	3,2889
27,853	4 0 0	27,838	0,0145	52,2	3,2006	3,2022
	0 2 2	27,873	-0,0201			3,1983
29,725	2 1 3	29,72	0,005	11,9	3,0031	3,0036
30,79	0 0 4	30,79	0,0004	23,2	2,9016	2,9017
30,977	-4 1 1	30,979	-0,0017	10,3	2,8845	2,8844
	-2 2 2	31,002	-0,0253			2,8822
31,45	-4 0 2	31,437	0,0127	100	2,8422	2,8434
-	4 1 1	31,441	0,0088			2,843
	2 2 2	31,464	-0,0145			2,841
33,448	-2 0 4	33,457	-0,0085	13,9	2,6768	2,6762
,	-1 2 3	33,459	-0,011	,		2,676
33,954	1 1 4	33,949	0,0053	4,9	2,6381	2,6385
34,327	2 0 4	34,316	0,0106	3,6	2,6103	2,6111
35,711		nicht indiziert		3,8	2,5122	
36,539	4 2 0	36,535	0,004	5,5	2,4572	2,4575
37.701	-4 1 3	37.715	-0.0143	7.5	2.3841	2.3832
38,781	-3 1 4	38,737	0,0449	8	2,3201	2,3227
,	-3 2 3	38,781	0.0006		,	2.3202
	2 3 1	38,788	-0,0065			2,3197
39.22	1 3 2	39.218	0.0016	2.8	2.2952	2.2953
39,78	-5 1 2	39,739	0,0409	2,4	2,2642	2,2664
40.578	0 1 5	40.573	0.0051	11.3	2.2214	2.2217
41.247	-4 0 4	41.264	-0.0162	15.1	2.1869	2.1861
41.834	2 2 4	41.827	0.0073	29.2	2.1576	2.158
42.339	6 0 0	42.302	0.0369	3	2.133	2.1348
,,	0 3 3	42.356	-0.0171	-	_,	2.1322
42.622	-2 1 5	42.619	0.0025	1.5	2.1195	2,1197
43 472	2 1 5	43 496	-0.0238	0.8	2.08	2,0789
44 699	-6 0 2	44 713	-0.0142	8.5	2.0258	2,0251
45 007	6 1 1	44 971	0.0363	6	2,0126	2,0141
	2 3 3	45,016	-0.0094	-	_,	2.0122
45.922	-4 3 1	45,908	0.0137	1.6	1,9746	1.9752
46 234	431	46 241	-0.0068	3 1	1 962	1 9617
46 895	0 0 6	46 932	-0.0371	03	1 9359	1 9344
47 394	040	47 398	-0.0038	15.6	1 9166	1 9165
48.06	-5 1 4	48.05	0.0102	4 4	1 8916	1 892
10,00	134	48 088	-0.028	', '	1,0710	1 8906
48,791	6 2 0	48,789	0,002	38.7	1.865	1.8651

Tabelle A.32: Liste der indizierten Reflexe des Pulverdiffraktogramms von Co[GaCl4]2

	-1 1 6	48,809	-0,0175			1,8644
49,146	-4 1 5	49,134	0,0128	13	1,8523	1,8528
	4 2 4	49,142	0,0045			1,8525
49,601	2 4 0	49,611	-0,0104	4,9	1,8364	1,836
	2 0 6	49,634	-0,0331			1,8353
	5 1 4	49,64	-0,0395			1,835
50,952	-6 2 2	50,96	-0,0077	1,2	1,7908	1,7906
	-4 3 3	50,986	-0,0337			1,7897
51,36		nicht indiziert		1	1,7776	
53,284	0 3 5	53,271	0,0126	5,8	1,7178	1,7182
	-7 1 2	53,312	-0,0277			1,717
54,58	-4 0 6	54,572	0,0076	20,7	1,6801	1,6803
	-2 2 6	54,589	-0,0098			1,6798
55,481	2 2 6	55,466	0,015	10,9	1,6549	1,6553
56,331	4 0 6	56,317	0,0144	5,5	1,6319	1,6323
57,985	-6 2 4	57,966	0,0191	4,6	1,5893	1,5897
	-4 4 2	57,987	-0,002			1,5892
59,029	-6 1 5	59,012	0,0174	3,1	1,5636	1,564
59,723	8 1 1	59,742	-0,019	4,8	1,5471	1,5466
60,065	-7 1 4	60,062	0,003	2,5	1,5391	1,5392
	-4 2 6	60,072	-0,0077			1,5389
60,453	8 0 2	60,43	0,023	2,5	1,5301	1,5307
	-4 3 5	60,479	-0,0256			1,5295
62,837	2 5 1	62,847	-0,01	3,3	1,4777	1,4775
	8 2 0	62,851	-0,0141			1,4774
64,619	-4 4 4	64,622	-0,0028	3,7	1,4412	1,4411
69,98	8 3 1	69,98	0,0005	2,9	1,3433	1,3433

Abbildung A.13: Pulverdiffraktogramm von Co[GaCl₄]₂, unterlegt mit den aus Einkristalldaten berechneten Reflexpositionen.

Summenformel	CoGa ₂ Cl ₈
Kristallsystem	monoklin
Raumgruppe	<i>I</i> 1 2/ <i>c</i> 1; Nr. 15
Gitterkonstanten	a = 12,8158 (24) Å
[aus Pulverdaten verfeinert]	<i>b</i> = 7,6660 (21) Å
	c = 11,613 (3) Å
	$\beta = 91,876 (14)$ °
Zellvolumen V	1140,3 (6) Å ³
Zahl der Formeleinheiten Z	4
Dichte (berechnet) ρ_x	2,868 g/cm ³
Diffraktometer	Nonius Kappa-CCD
Strahlung, λ	Mo-K α , λ = 71,073 pm
Absorptionskoeffizient μ	81,1 cm ⁻¹
Temperatur	123 K
Messbereich θ_{max}	27,49
gemessene Reflexe	$-15 \le h \le 16$
	$-9 \le k \le 9$
	$-14 \le l \le 15$
Anzahl der gemessenen Reflexe	13238
Anzahl symmetrieunabhängiger Reflexe	1257
Anzahl der Reflexe mit $F_{\rm o} > 4\sigma (F_{\rm o})$	1078
Zahl der verfeinerten Parameter	52
Verhältnis Reflexe / Parameter	24,17
F (0 0 0)	900
R _{int}	0,0626
R_{σ}	0,0355
R [alle F_o]; R [$F_o > 4\sigma$ (F_o)]	0,0413; 0,0329
$wR(F^2)$ [Wichtung*]	0,0827
Goodness-of-Fit (GooF)	1,074
Restelektronendichte (max./min. ρ)	$0,96/-0,95 \text{ e/Å}^3$; Mittelwert = 0,00

Tabelle A.33: Datenblatt von Co[GaCl₄]₂, Gitterparameter anhand von Röntgenpulverdaten verfeinert.

$$w = \frac{1}{\left[\sigma^2(F_0)^2 + (0,0398 \cdot P)^2 + 3,46 \cdot P\right]} \qquad \text{mit } P = \frac{\left[\max(F_0^2, 0) + 2 \cdot F_c^2\right]}{3}$$

Abbildung A.14: erweiterte asymmetrische Einheit von Co[GaCl₄]₂. Die thermischen Schwingungsellipsoide entsprechen einer Aufenthaltswahrscheinlichkeit der Atome von 70 %.

Tabelle A.34: Koordinaten, Wyckoff-Lagen und isotrope Auslenkungsparameter der Atome in der
Elementarzelle von Co[GaCl ₄] ₂ .

Atom	Wyckoff	Symmetrie	x/a	y/b	z/c	U _{eq}
Со	<i>4e</i>	2	0	0,00853(9)	1⁄4	0,01725(21)
Ga	8f	1	0,08930(3)	0,25366(5)	0,55285(3)	0,01688(17)
Cl1	8f	1	0,16477(7)	0,48946(12)	0,61068(8)	0,02229(24)
Cl2	8f	1	0,15639(7)	0,01022(12)	0,63209(7)	0,01943(22)
Cl3	8f	1	0,08788(7)	0,24667(11)	0,36301(7)	0,01870(23)
Cl4	8f	1	-0,07148(7)	0,22422(12)	0,61964(7)	0,01962(23)

Tabelle A.35: Anisotrope Auslenkungsparameter der Atome in Co[GaCl₄]₂.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Co	0,01953(38)	0,02037(40)	0,01201(33)	0,00000	0,00284(25)	0,00000
Ga	0,01906(26)	0,01978(28)	0,01187(24)	0,00027(14)	0,00149(16)	-0,00065(15)
Cl1	0,02494(49)	0,02261(51)	0,01936(42)	-0,00216(35)	0,00110(34)	-0,00400(37)
Cl2	0,02006(45)	0,02288(50)	0,01548(39)	0,00190(34)	0,00250(32)	0,00273(35)
C13	0,02337(49)	0,02146(50)	0,01134(41)	-0,00030(30)	0,00176(34)	-0,00206(33)
Cl4	0,01938(46)	0,02469(48)	0,01487(42)	0,00230(33)	0,00178(33)	0,00170(35)

Tabelle A.36: Bindungslängen und -winkel in der asymmetrischen Einheit von Co[GaCl₄]₂.

Bindungspaar	Bindungslänge /A	Bindungspaar	Bindungslänge /A
Co-Cl2	2,4535(9)	Ga-Cl1	2,1241(10)
Co-Cl3	2,4743(10)	Ga-Cl2	2,2171(10)
Co-Cl4	2,4760(11)	Ga-Cl3	2,2054(9)
		Ga-Cl4	2,2198(10)

Bindungswinkel /°	Atomverknüpfung	Bindungswinkel /°
96,08(3)	Cl1- Ga -Cl2	113,73(4)
84,57(3)	Cl1- Ga -Cl3	109,00(4)
92,44(3)	Cl1- Ga -Cl4	112,65(4)
173,37(5)	Cl2- Ga -Cl3	112,71(4)
173,11(3)	Cl2- Ga -Cl4	96,76(4)
173,11(3)	Cl3- Ga -Cl4	111,64(4)
	Bindungswinkel /° 96,08(3) 84,57(3) 92,44(3) 173,37(5) 173,11(3) 173,11(3)	Bindungswinkel /°Atomverknüpfung96,08(3)Cl1- Ga -Cl284,57(3)Cl1- Ga -Cl392,44(3)Cl1- Ga -Cl4173,37(5)Cl2- Ga -Cl3173,11(3)Cl2- Ga -Cl4173,11(3)Cl3- Ga -Cl4

A.9 Ni[GaCl₄]₂:

Tabelle A.37: Datenblatt von Ni[GaCl ₄] ₂ , R	öntgenpulverdaten stehen noch aus.
Summenformel	NiGa ₂ Cl ₈
Kristallsystem	monoklin
Raumgruppe	<i>I</i> 1 2/ <i>c</i> 1; Nr. 15
Gitterkonstanten	a = 12,6847 (7) Å
[aus Pulverdaten verfeinert]	<i>b</i> = 7,5773 (3) Å
	c = 11,5434 (5) Å
	$\beta = 91,778$ (4) °
Zellvolumen V	1108,97 Å ³
Zahl der Formeleinheiten Z	4
Dichte (berechnet) ρ_x	2,885 g/cm ³
Diffraktometer	Nonius Kappa-CCD
Strahlung, λ	Mo-K α , λ = 71,073 pm
Absorptionskoeffizient μ	83,7 cm ⁻¹
Temperatur	123 K
Messbereich θ_{max}	27,43
gemessene Reflexe	$-16 \le h \le 16$
	$-9 \le k \le 9$
	$-14 \le l \le 14$
Anzahl der gemessenen Reflexe	18278
Anzahl symmetrieunabhängiger Reflexe	1261
Anzahl der Reflexe mit $F_{o} > 4\sigma (F_{o})$	872
Zahl der verfeinerten Parameter	52
Verhältnis Reflexe / Parameter	24,25
F (0 0 0)	904
R _{int}	0,0971
R_{σ}	0,0382
R [alle F_o]; R [$F_o > 4\sigma$ (F_o)]	0,0656; 0,0363
$wR(F^2)$ [Wichtung*]	0,0967
Goodness-of-Fit (GooF)	1,178
Restelektronendichte (max./min. ρ)	$1,03/-0,66 \text{ e/Å}^3$; Mittelwert = 0,00

$$w = \frac{1}{\left[\sigma^2 (F_0)^2 + (0.0328 \cdot P)^2 + 8.28 \cdot P\right]}$$

mit
$$P = \frac{[\max(F_0^2, 0) + 2 \cdot F_c^2]}{3}$$

Abbildung A.15: erweiterte asymmetrische Einheit in der Struktur von Ni[GaCl₄]₂. Die thermischen Schwingungsellipsoide entsprechen einer Aufenthaltswahrscheinlichkeit der Atome von 70 %.

Tabelle A.38: Koordinaten, Wyckoff-Lagen und isotrope Auslenkungsparameter der Atome in der
Elementarzelle von Ni[GaCl ₄] ₂ .

Atom	Wyckoff	Symmetrie	x/a	y/b	z/c	U _{eq}
Ni	4e	2	0	0,00503(17	1⁄4	0,02502(30)
Ga	8f	1	0,08767(6)	0,25108(10)	0,55200(6)	0,02597(23)
Cl1	8f	1	0,16274(14)	0,48759(26)	0,60761(14)	0,03512(40)
Cl2	8f	1	0,15447(12)	0,01011(25)	0,63423(12)	0,02912(36)
C13	8f	1	0,08642(13)	0,24045(24)	0,36189(12)	0,02840(35)
Cl4	8f	1	-0,07195(13)	0,22088(22)	0,61129(13)	0,02996(40)

Tabelle A.39: Anisotrope Auslenkungsparameter der Atome in Ni[GaCl₄]₂.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Ni	0,02776(62)	0,02955(63)	0,01780(51)	0,00000	0,00137(42)	0,00000
Ga	0,02956(39)	0,02956(39)	0,01880(34)	0,00056(31)	0,00078(24)	-0,00115(34)
Cl1	0,03973(93)	0,03427(91)	0,03129(80)	-0,00338(79)	-0,00012(69)	-0,00661(87)
Cl2	0,03007(80)	0,03436(86)	0,02310(68)	0,00404(73)	0,00371(56)	0,00511(77)
Cl3	0,03696(84)	0,03033(81)	0,01791(67)	-0,00185(68)	0,00074(56)	-0,00365(77)
Cl4	0,02877(82)	0,03842(101)	0,02268(72)	0,00351(68)	0,00062(57)	0,00258(73)

Tabelle A.40: Bindungslängen und -winkel in der asymmetrischen Einheit von Ni[GaCl₄]₂.

Bindungspaar	Bindungslänge /Å	Bindungspaar	Bindungslänge /Å
Ni-Cl2	2,4084(15)	Ga-Cl1	2,1195(20)
Ni-Cl3	2,4422(19)	Ga-Cl2	2,2144(19)
Ni-Cl4	2,4262(19)	Ga-Cl3	2,1955(15)
		Ga-Cl4	2,2118(18)

Atomverknüpfung	Bindungswinkel /°	Atomverknüpfung	Bindungswinkel /°
Cl2- Ni -Cl3	95,79(6)	Cl1- Ga -Cl2	113,89(7)
Cl2- Ni -Cl4	85,62(6)	Cl1- Ga -Cl3	108,85(7)
Cl3- Ni -Cl4	92,14(5)	Cl1- Ga -Cl4	112,68(7)
Cl2- Ni -Cl2'	174,54(11)	Cl2- Ga -Cl3	112,89(7)
Cl3- Ni -Cl4'	173,40(5)	Cl2- Ga -Cl4	95,86(6)
Cl4- Ni -Cl3'	173,40(3)	Cl3- Ga -Cl4	112,29(7)

A.10 γ-Ti[AlCl₄]₂:

Summenformel	TiAl ₂ Cl ₈
Kristallsystem	orthorhombisch
Raumgruppe	<i>P n n m</i> ; Nr. 58
Gitterkonstanten	a = 5,9643(4) Å
	b = 12,2470(11) Å
	c = 8,1690(7) Å
Zellvolumen V	596,70(8) Å ³
Zahl der Formeleinheiten Z	2
Dichte (berechnet) ρ_x	$2,145 \text{ g/cm}^3$
Diffraktometer	Nonius Kappa-CCD
Strahlung, λ	Mo-K α , λ = 71,073 pm
Absorptionskoeffizient μ	25,9 cm ⁻¹
Temperatur	293 K
Messbereich θ_{max}	27,49
gemessene Reflexe	$-7 \le h \le 7$
	$-15 \le k \le 15$
	$-9 \le l \le 10$
Anzahl der gemessenen Reflexe	9559
Anzahl symmetrieunabhängiger Reflexe	737
Anzahl der Reflexe mit $F_0 > 4\sigma (F_0)$	554
Zahl der verfeinerten Parameter	32
Verhältnis Reflexe / Parameter	23,03
F (0 0 0)	368
$R_{\rm int}$	0,0674
R_{σ}	0,0297
R [alle F_o]; R [$F_o > 4\sigma$ (F_o)]	0,0526; 0,0320
$wR(F^2)$ [Wichtung*]	0,0836
Goodness-of-Fit (GooF)	1,053
Restelektronendichte (max./min. ρ)	$0,46/-0,29 \text{ e/Å}^3$; Mittelwert = 0,01

Tabelle A.41: Datenblatt von γ-Ti[AlCl₄]₂, mangels Substanzmenge konnte keine Verfeinerung der Gitterparameter aus Röntgenpulverdaten vorgenommen werden.

$$w = \frac{1}{\left[\sigma^2 (F_0)^2 + (0,0447 \cdot P)^2 + 0,1 \cdot P\right]}$$

mit
$$P = \frac{[\max(F_0^2, 0) + 2 \cdot F_c^2]}{3}$$

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Ti	0.02319(49)	0,03984(61)	0,05184(63)	0,00000	0,00000	0,00193(41)
Al	0.02487(59)	0,04076(75)	0,05244(75)	0,00000	0,00000	-0,00103(47)
Cl1	0.02487(48)	0,04160(61)	0,07408(77)	0,00000	0,00000	-0,00074(39)
Cl2	0.03511(38)	0,05305(54)	0,04619(46)	0,00039(33)	-0,00001(29)	0,00481(30)
Cl3	0.04515(60)	0,04514(71)	0,08097(85)	0,00000	0,00000	-0,00821(48)

Tabelle A.42: Anisotrope Auslenkungsparameter der Atome in γ-Ti[AlCl₄]₂.

A.11 Cr[AlCl₄]₂:

20 [heeh]		20 Ibawash 1	hook horook	vel Intensität		d fhoreach 1
20 [beob.]	<u>n K I</u>	20 [berech.]	DeodDerech.	rei. Intensitat		
13,599	2 1 0	13,552	0,0473	100,0	6,5059	6,5285
15.044	0 2 0	13,592	0,0074	1.4	5 590	6,3093
15,844		nicht indiziert		1,4	5,589	
17,762	2 2 0	nicht indiziert	0.0041	0,9	4,9896	4.0280
17,978	2 2 0	17,982	-0,0041	49,6	4,93	4,9289
18,781	201	18,795	-0,0142	15,9	4,7212	4,7176
20,027	2 1 1	20,003	0,024	15,5	4,4302	4,4354
22	0 2 1	20,03	-0,0033		2.0(20	4,4294
23	301	22,982	0,0176	6,2	3,8638	3,8667
23,25	2 2 1	23,267	-0,0171	7,4	3,8227	3,8199
23,635	230	23,631	0,0033	15,3	3,7614	3,7619
27,279	4 2 0	27,299	-0,0198	27	3,2666	3,2643
27,389	0 4 0	27,38	0,0086	34,2	3,2537	3,2547
29,52	0 0 2	29,532	-0,0114	47,6	3,0235	3,0223
30,962	1 1 2	30,922	0,0404	4,8	2,8859	2,8896
21.00	3 3 1	30,95	0,0117			2,8869
31,09	4 2 1	31,113	-0,0233	99,2	2,8743	2,8722
31,189	0 4 1	31,185	0,0034	81,9	2,8654	2,8657
32,612	2 1 2	32,623	-0,011	5,3	2,7436	2,7427
	0 2 2	32,64	-0,0283		a (a) (a	2,7413
33,22	1 2 2	33,189	0,031	1,7	2,6947	2,6971
34,773	2 2 2	34,791	-0,0183	0,9	2,5778	2,5765
2 (2 7 2	431	34,801	-0,0278	•	• • • • •	2,5758
36,373	6 1 0	36,349	0,0239	2,8	2,468	2,4696
38,139	4 0 2	38,12	0,0183	2,8	2,3577	2,3588
	2 3 2	38,166	-0,0271			2,3561
40,656	4 2 2	40,649	0,0064	26,2	2,2174	2,2177
41,232	6 2 1	41,241	-0,009	1,4	2,1877	2,1872
43,365	2 6 0	43,356	0,0091	3,2	2,0849	2,0853
44,314	0 6 1	44,319	-0,0045	2,5	2,0424	2,0422
45,504	6 4 0	45,541	-0,0365	1	1,9917	1,9902
47,565	4 4 2	47,57	-0,0048	6,7	1,9101	1,91
	1 2 3	47,587	-0,022			1,9093
	2 5 2	47,608	-0,0428			1,9085
48,138	6 4 1	48,093	0,045	12,8	1,8887	1,8904
48,354	4 6 0	48,35	0,0034	35,9	1,8808	1,881
50,263	1 3 3	50,248	0,0143	1,5	1,8138	1,8143
50,51	2 7 0	50,5	0,0104	2,6	1,8055	1,8058
51,733	6 3 2	51,721	0,0121	0,8	1,7656	1,766
	1 7 1	51,74	-0,0069			1,7654
53,386	4 2 3	53,394	-0,0079	13,9	1,7148	1,7146
55,929	6 6 0	55,919	0,01	0,5	1,6427	1,643
57,655	4 6 2	57,679	-0,024	3,8	1,5975	1,5969
58,552	8 4 1	58,532	0,0202	2,9	1,5752	1,5757
	172	58,547	0,0045			1,5753
61,272	0 0 4	61,293	-0,0211	1,1	1,5116	1,5112
	3 7 2	61,307	-0,0353			1,5108
62,044	670	62,008	0,0358	1,3	1,4947	1,4954
	4 8 0	62,061	-0,0171			1,4943
	1 1 4	62,088	-0,044			1,4937
63,123	2 1 4	63,097	0,0264	0,7	1,4717	1,4722

Tabelle A.43: Liste der indizierten Reflexe des Pulverdiffraktogramms von Cr[AlCl₄]₂

Abbildung A.16: Pulverdiffraktogramm von Cr[AlCl₄]₂, unterlegt mit den aus Einkristalldaten berechneten Reflexpositionen.

Summenformel	CrAl ₂ Cl ₈
Kristallsystem	orthorhombisch
Raumgruppe	<i>P c a 2</i> ₁ ; Nr. 29
Gitterkonstanten	a = 15,1138(3) Å
	b = 6,0471(1) Å
	c = 13,0176(3) Å
Zellvolumen V	1189,74(4) Å ³
Zahl der Formeleinheiten Z	4
Dichte (berechnet) ρ_x	2,175 g/cm ³
Diffraktometer	Nonius Kappa-CCD
Strahlung, λ	Mo-K α , λ = 71,073 pm
Absorptionskoeffizient μ	28,46 cm ⁻¹
Temperatur	293 K
Messbereich θ_{max}	30,02
gemessene Reflexe	$-21 \le h \le 21$
	$-8 \le k \le 8$
	$-18 \le l \le 18$
Anzahl der gemessenen Reflexe	44879
Anzahl symmetrieunabhängiger Reflexe	3482
Anzahl der Reflexe mit $F_0 > 4\sigma (F_0)$	2666
Zahl der verfeinerten Parameter	102
Verhältnis Reflexe / Parameter	34,13
F (0 0 0)	744
$R_{ m int}$	0,0631
R [alle F_o]; R [$F_o > 4\sigma$ (F_o)]	0,0532; 0,0325
$wR(F^2)$ [Wichtung*]	0,0696
Goodness-of-Fit (GooF)	1,042
Restelektronendichte (max./min. ρ)	$0,43/-0,31 \text{ e/Å}^3$; Mittelwert = 0,00

.г.а.т 0

$$w = \frac{1}{\left[\sigma^2 (F_0)^2 + (0.0250 \cdot P)^2 + 0.70 \cdot P\right]} \qquad \text{mit } P = \frac{\left[\text{max}\right]}{\left[\sigma^2 (F_0)^2 + (0.0250 \cdot P)^2 + 0.70 \cdot P\right]}$$

nit
$$P = \frac{[\max(F_0^2, 0) + 2 \cdot F_c^2]}{3}$$

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Cr	0,0383(2)	0,0300(2)	0,0390(2)	-0,00812(17)	-0,0039(2)	0,00538(19)
Al1	0,0364(5)	0,0256(4)	0,0376(5)	-0,0020(4)	0,0031(4)	0,0000(5)
Cl1	0,0461(7)	0,0378(5)	0,0420(9)	-0,0096(4)	-0,0093(6)	0,0075(4)
Cl3	0,0425(7)	0,0391(4)	0,0372(9)	-0,0092(3)	-0,0054(6)	0,0028(4)
C15	0,0458(6)	0,0262(3)	0,0598(8)	-0,0010(4)	0,0059(6)	0,0003(6)
Cl7	0,0477(9)	0,0493(6)	0,0567(13)	0,0036(4)	0,0146(8)	-0,0092(4)
Al2	0,0360(6)	0,0250(4)	0,0375(6)	-0,0011(4)	-0,0025(4)	0,0003(4)
Cl2	0,0479(7)	0,0368(4)	0,0393(9)	-0,0093(4)	-0,0105(6)	0,0053(5)
Cl4	0,0410(6)	0,0383(4)	0,0355(8)	-0,0079(3)	-0,0043(6)	0,0041(4)
Cl6	0,0479(6)	0,0255(3)	0,0605(8)	-0,0015(4)	0,0047(5)	-0,0001(6)
C18	0,0547(10)	0,0454(6)	0,0646(15)	0,0056(4)	0,0207(9)	-0,0045(5)

 Tabelle A.45: Anisotrope Auslenkungsparameter der Atome in Cr[AlCl₄]₂ [35].

A.12 Pd[GaCl₄]₂:

Tabelle	A.to. Lisic uc		enexe ues i ur	verunn aktogra	unins von i u	[GaC14]2.
2θ [beob.]	h k l	<i>2θ</i> [berech.]	beobberech.	rel. Intensität	<i>d</i> [beob.]	d [berech.]
13,363	1 0 0	13,359	0,0036	5,6	6,6206	6,6224
13,805	0 0 2	13,802	0,0028	82,5	6,4097	6,411
13,915	0 1 1	13,918	-0,0037	36	6,3593	6,3576
16,683		nicht indiziert		1	5,3096	
18,046	1 1 0	18,048	-0,0018	33,8	4,9116	4,9112
18,122	-1 0 2	18,123	-0,0018	100	4,8913	4,8908
18,383	0 1 2	18,38	0,003	61,9	4,8223	4,8231
18,785	-1 1 1	18,784	0,0008	31,2	4,7202	4,7204
19,88	1 1 1	19,878	0,0021	50,5	4,4625	4,4629
20,322	1 0 2	20,324	-0,0021	2,3	4,3665	4,3661
21,839	-1 1 2	21,837	0,0019	48,9	4,0664	4,0668
23,709	1 1 2	23,708	0,0004	14,5	3,7498	3,7498
24,094	0 1 3	24,092	0,0023	12,1	3,6907	3,691
25,283	0 2 1	25,282	0,0002	2,7	3,5198	3,5198
26,453	-1 1 3	26,451	0,0015	25	3,3667	3,3669
26,908	2 0 0	26,905	0,0033	5,3	3,3108	3,3112
27,826	0 0 4	27,809	0,0172	28,2	3,2036	3,2055
	1 2 0	27,826	0,0006			3,2036
28,047	0 2 2	28,047	0	9,5	3,1788	3,1788
28,322	-1 2 1	28,32	0,0024	4	3,1486	3,1489
28,885	-2 0 2	28,892	-0,0068	1,7	3,0885	3,0878
29,687	-2 1 1	29,689	-0,002	12	3,0068	3,0066
30,474	-1 2 2	30,478	-0,0041	23,2	2,931	2,9306
31,129	2 1 1	31,121	0,0078	2,3	2,8708	2,8715
31,418	-2 1 2	31,418	0,0003	10,9	2,845	2,8451
31,763	2 0 2	31,762	0,0018	14,9	2,8149	2,815
31,991	-1 1 4	32,011	-0,0202	1,6	2,7954	2,7937
32,18	0 2 3	32,171	0,009	1,4	2,7794	2,7802
32,35	1 0 4	32,349	0,0009	32,6	2,7652	2,7653
34,017	-1 2 3	34,015	0,002	1,4	2,6334	2,6335
34,548	-2 1 3	34,551	-0,0038	8,1	2,5941	2,5939
34,648	1 1 4	34,648	0,0001	17,3	2,5869	2,5869
35,912	1 2 3	35,911	0,0005	1,9	2,4987	2,4987
36,573	2 2 0	36,564	0,0091	1	2,455	2,4556
36,723	-2 0 4	36,721	0,0021	2,5	2,4453	2,4454
37,115	0 1 5	37,117	-0,0021	2,4	2,4204	2,4202
37,259	0 2 4	37,256	0,0031	9,8	2,4113	2,4115
37,485	0 3 1	37,486	-0,0008	24	2,3973	2,3973
38,097	-2 2 2	38,097	0	30,8	2,3602	2,3602
38,214	2 1 3	38,215	-0,0017	3,8	2,3533	2,3532
38,795	-2 1 4	38,793	0,0022	5,9	2,3193	2,3194
39,321	1 3 0	39,316	0,0053	1,3	2,2895	2,2898
39,479	0 3 2	39,48	-0,0009	1,7	2,2807	2,2807
39,678	-1 3 1	39,682	-0,0035	2,2	2,2697	2,2695
40,38	2 2 2	40,388	-0,008	2	2,2319	2,2315
40,846	3 0 0	40,847	-0,001	7,2	2,2075	2,2075
	1 2 4	40,866	-0,0208			2,2064
41,015	1 1 5	41,015	-0,0002	6,2	2,1988	2,1988
41,318	-1 3 2	41,313	0,005	13,8	2,1833	2,1836
	2 0 4	41,324	-0,006			2,183
42,602	0 3 3	42,629	-0,0271	1,9	2,1205	2,1192

43,212	2 1 4	43,211	0,0017	1,3	2,0919	2,092
43,576	-3 1 2	43,58	-0,0043	4,6	2,0753	2,0751
43,883	-2 1 5	43,882	0,0006	3,1	2,0615	2,0615
44,097	-1 3 3	44,096	0,001	9,9	2,052	2,0521
	0 1 6	44,11	-0,0139			2,0514
44,52	-2 2 4	44,522	-0,0016	3,2	2,0335	2,0334
44,872	3 0 2	44,877	-0,0048	4,3	2,0183	2,0181
45,743	-3 1 3	45,749	-0,0056	1,4	1,9819	1,9817
46,045	1 0 6	46,043	0,0017	7,8	1,9696	1,9697
46,649	3 1 2	46,648	0,0016	5,5	1,9455	1,9456
47,446	-2 3 2	47,448	-0,0027	1	1,9147	1,9146
47,932	-3 2 1	47,921	0,0112	1,7	1,8964	1,8968
	-2 0 6	47,946	-0,0142			1,8959
48,913	2 1 5	48,886	0,0271	5,9	1,8606	1,8616
	-3 1 4	48,947	-0,0336			1,8594
49,342	0 2 6	49,34	0,002	10	1,8454	1,8455
	3 2 1	49,368	-0,0265			1,8445
49,78	0 4 0	49,78	0,0005	10,9	1,8302	1,8302
	1 3 4	49,795	-0,0146			1,8297
49,952	-1 2 6	49,948	0,0032	3,9	1,8243	1,8244
50,14	3 1 3	50,14	-0,0007	3,9	1,8179	1,8179
51,38	0 1 7	51,379	0,0006	5,6	1,7769	1,7769
51,709	3 2 2	51,68	0,0292	3,3	1,7664	1,7673
	-1 1 7	51,74	-0,0315			1,7654
51,913	0 4 2	51,913	0,0002	1,6	1,7599	1,7599
52,076	-1 4 1	52,076	-0,0008	1,2	1,7548	1,7548
52,514	-1 3 5	52,482	0,0315	3,8	1,7412	1,7422
	2 3 3	52,515	-0,0012			1,7412
	1 4 1	52,534	-0,0204			1,7406
53,015	-3 1 5	53,039	-0,0234	4,3	1,7259	1,7252
53,406	-1 4 2	53,408	-0,0019	3,3	1,7142	1,7141
53,817	-3 2 4	53,82	-0,0024	10,8	1,7021	1,702
54,491	-2 2 6	54,461	0,0299	3,3	1,6826	1,6835
	3 1 4	54,486	0,0044			1,6827
	0 4 3	54,496	-0,0053			1,6825
54,733	1 3 5	54,732	0,0013	6,1	1,6757	1,6758
54,923	1 1 7	54,902	0,0205	1	1,6704	1,671
	3 2 3	54,936	-0,0139			1,67
56	-3 3 1	55,982	0,0174	1,9	1,6408	1,6413
56,822	-3 3 2	56,82	0,0024	1,5	1,619	1,619
57,056	1 4 3	57,029	0,0272	2,8	1,6129	1,6136
	-2 3 5	57,069	-0,013			1,6126
57,274	0 3 6	57,258	0,0161	2,8	1,6073	1,6077
	3 3 1	57,283	-0,0096			1,607
58,329	4 1 1	58,329	-0,0001	1,6	1,5807	1,5807
58,982	0 1 8	58,943	0,0383	1,9	1,5647	1,5657
	-1 4 4	58,948	0,0337			1,5656
59,379	3 3 2	59,38	-0,001	1,5	1,5552	1,5552
60,272	2 4 2	60,266	0,0059	2	1,5343	1,5344
60,611	4 1 2	60,61	0,0007	3,5	1,5265	1,5265
	1 4 4	60,624	-0,0133			1,5262
61,289	2 3 5	61,287	0,0016	3,2	1,5113	1,5113
	-2 0 8	61,291	-0,0022			1,5112
	-4 1 4	61,316	-0,0269			1,5107
61,413	4 2 0	61,414	-0,0007	4,6	1,5085	1,5085

62,322	-3 2 6	62,294	0,0271	3	1,4887	1,4893
62,724	4 2 1	62,702	0,0219	1,2	1,4801	1,4805
	-2 1 8	62,728	-0,0038			1,48
63,408	-1 2 8	63,405	0,0031	3,4	1,4658	1,4658
	-2 4 4	63,431	-0,0229			1,4653
	0 3 7	63,447	-0,0393			1,4649
64,906	4 2 2	64,892	0,0132	1,5	1,4355	1,4358
	-3 3 5	64,904	0,0017			1,4355
66,627	1 2 8	66,602	0,0249	2,2	1,4025	1,403
	-1 5 2	66,619	0,0076			1,4027
	2 4 4	66,627	-0,0003			1,4025
69,239	3 4 2	69,246	-0,0074	0,7	1,3559	1,3557
	-3 3 6	69,254	-0,0157			1,3556
70,136	1 4 6	70,133	0,0033	1,7	1,3407	1,3408
73,038	-2 5 3	73,01	0,0288	0,9	1,2944	1,2949
	0 4 7	73,02	0,018			1,2947
	1 5 4	73,067	-0,0285			1,294
74,551	0 5 5	74,574	-0,0232	0,4	1,2719	1,2715

Abbildung A.17: Pulverdiffraktogramm von Pd[GaCl₄]₂, unterlegt mit den aus Einkristalldaten berechneten Reflexpositionen.
Summenformel	tu von 1 ujGaCi4j2, Otter param	PdGa ₂ Cl ₈
Kristallsystem		monoklin
Raumgruppe		<i>P 2₁/c</i> ; Nr. 14
Gitterkonstante	n	a = 6,6651(5) Å
[aus Pulverdate:	n verfeinert]	b = 7,3209(5) Å
		c = 12,9048(13) Å
		$\beta = 96,493 (5)^{\circ}$
Zellvolumen V		625,65(11) Å ³
Zahl der Forme	leinheiten Z	2
Dichte (berechn	net) $\rho_{\rm x}$	2,879 g/cm ³
Diffraktometer		Nonius Kappa-CCD
Strahlung, λ		Mo-K α , λ = 71,073 pm
Absorptionskoe	effizient μ	75,3 cm ⁻¹
Temperatur		293 K
Messbereich θ_m	ax	27,52
gemessene Refl	exe	$-8 \le h \le 8$
		$-9 \le k \le 9$
		$-16 \le l \le 16$
Anzahl der gem	essenen Reflexe	15275
Anzahl symmet	rieunabhängiger Reflexe	1402
Anzahl der Refl	lexe mit $F_{\rm o} > 4\sigma (F_{\rm o})$	1165
Zahl der verfeir	nerten Parameter	53
Verhältnis Refle	exe / Parameter	26,45
F (0 0 0)		488
$R_{ m int}$		0,0652
R_{σ}		0,0267
R [alle F_0]; R [H	$F_{o} > 4\sigma (F_{o})$]	0,0408; 0,0311
$wR(F^2)$ [Wicht	ung*]	0,0788
Goodness-of-Fi	t (GooF)	1,123
Restelektronenc	lichte (max./min. p)	$1,13/-1,06 \text{ e/Å}^3$; Mittelwert = 0,00

-l----Tak all DAICACLI C:++ nhand war Dänta . .

$$w = \frac{1}{\left[\sigma^{2}(F_{0})^{2} + (0,0436 \cdot P)^{2} + 0,23 \cdot P\right]} \qquad \text{mit } P = \frac{\left[\max(F_{0}^{2},0) + 2 \cdot F_{c}^{2}\right]}{3}$$

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Pd	0,02523(23)	0,02621(24)	0,02922(26)	-0,00015(16)	-0,00096(17)	0,00257(15)
Ga	0,02453(24)	0,03003(26)	0,03158(27)	0,00218(34)	0,00165(17)	0,00232(16)
Cl1	0,03492(50)	0,03132(49)	0,03325(53)	-0,00468(38)	-0,00482(40)	0,00710(38)
Cl2	0,03717(54)	0,03583(52)	0,03377(55)	-0,00593(39)	-0,00696(43)	0,00949(39)
C13	0,04661(62)	0,04164(57)	0,03714(61)	0,00933(44)	0,00213(47)	-0,00616(45)
Cl4	0,02764(48)	0,04227(58)	0,05193(67)	-0,00839(45)	0,00995(45)	-0,00236(38)

Tabelle A.48: Anisotrope Auslenkungsparameter der Atome in Pd[GaCl₄]₂.

Summenformel	MgGa ₂ Cl ₈
Kristallsystem	monoklin
Raumgruppe	<i>P a</i> ; Nr. 7
Gitterkonstanten	a = 12,5962(2) Å
	b = 6,4581(1) Å
	c = 6,9447(1) Å
	$\beta = 92,909$ (1) °
Zellvolumen V	564,21(1) Å ³
Zahl der Formeleinheiten Z	2
Dichte (berechnet) ρ_x	$2,633 \text{ g/cm}^3$
Diffraktometer	Nonius Kappa-CCD
Strahlung, λ	Mo-K α , λ = 71,073 pm
Absorptionskoeffizient μ	66,6 cm ⁻¹
Temperatur	123 K
Messbereich θ_{max}	34,94
gemessene Reflexe	$-20 \le h \le 20$
	$-10 \le k \le 10$
	$-11 \le l \le 11$
Anzahl der gemessenen Reflexe	26239
Anzahl symmetrieunabhängiger Reflexe	4953
Anzahl der Reflexe mit $F_{o} > 4\sigma (F_{o})$	1165
Zahl der verfeinerten Parameter	102
Verhältnis Reflexe / Parameter	48,56
F (0 0 0)	420
$R_{\rm int}$	0,0423
R_{σ}	0,0281
R [alle F_o]; R [$F_o > 4\sigma$ (F_o)]	0,0262; 0,0242
$wR(F^2)$ [Wichtung*]	0,0584
Goodness-of-Fit (GooF)	1,044
Restelektronendichte (max./min. ρ)	$0,55/-0,52 \text{ e/Å}^3$; Mittelwert = 0,00

A.13 Mg[GaCl₄]₂: Tabelle A.49: Datenblatt von Mg[GaCl₄]₂, mangels Substanzmenge konnten die Gitterparameter nicht aus <u>Röntgenpulverdaten verfeinert werden</u>.

$$w = \frac{1}{\left[\sigma^2 (F_0)^2 + (0,0319 \cdot P)^2 + 0,22 \cdot P\right]}$$

mit
$$P = \frac{[\max(F_0^2, 0) + 2 \cdot F_c^2]}{3}$$

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Mg	0,01083(29)	0,01298(27)	0,01014(27)	-0,00077(22)	0,00037(22)	-0,00082(23)
Gal	0,01190(11)	0,01230(10)	0,00849(10)	0,00029(8)	0,00056(8)	-0,00067(8)
Cl1	0,01591(23)	0,01146(19)	0,01139(18)	-0,00025(16)	0,00092(16)	0,00080(17)
Cl2	0,01332(23)	0,01706(20)	0,00944(21)	-0,00123(19)	-0,00032(16)	0,00241(20)
Cl4	0,01633(26)	0,01345(18)	0,01054(20)	0,00083(17)	0,00191(18)	0,00407(18)
C18	0,01505(27)	0,02066(24)	0,01775(24)	0,00246(18)	0,00023(19)	-0,00558(20)
Ga2	0,00920(11)	0,01304(11)	0,01092(12)	0,00008(8)	-0,00019(8)	0,00149(8)
Cl3	0,01094(23)	0,01374(21)	0,01601(23)	0,00375(16)	-0,00018(19)	-0,00049(15)
Cl5	0,01197(21)	0,01274(19)	0,01503(20)	-0,00111(17)	-0,00132(15)	0,00066(17)
Cl6	0,01706(27)	0,01920(24)	0,01263(23)	-0,00020(16)	-0,00390(20)	-0,00090(17)
Cl7	0,01277(25)	0,02231(25)	0,01183(23)	0,00218(16)	-0,00029(19)	-0,00550(17)

Tabelle A.50: Anisotrope Auslenkungsparameter der Atome in Mg[GaCl₄]₂.

A.14 α -Mn[GaCl₄]₂:

2θ [beob.]	hkl	2θ [berech.]	beobberech.	rel. Intensität	d [beob.]	d [berech.]
12,641	0 0 1	12,642	-0,0009	11,8	6,9969	6,9964
13,908	$2 \ 0 \ 0$	13,91	-0,0027	21,2	6,3625	6,3613
15,219	1 1 0	15,22	-0,0008	100	5,817	5,8167
18,328	-2 0 1	18,329	-0,0013	16,6	4,8367	4,8364
18,556	0 1 1	18,556	0,0002	90,9	4,7777	4,7778
19,328	2 0 1	19,336	-0,0076	28,1	4,5886	4,5868
19,45	2 1 0	19,45	-0,0008	80,8	4,5602	4,56
19,594	-1 1 1	19,593	0,0008	19	4,527	4,5272
22,855	-2 1 1	22,851	0,0042	18,4	3,8879	3,8886
25,005	3 1 0	25,005	-0,0004	13,9	3,5583	3,5583
25,444	0 0 2	25,441	0,0025	25,9	3,4979	3,4982
27,251	0 2 0	27,249	0,0022	39,9	3,2699	3,2701
27,592	-3 1 1	27,591	0,0012	39,1	3,2303	3,2304
28,028	4 0 0	28,031	-0,0031	19,1	3,181	3,1806
28,161	1 2 0	28,153	0,0081	5,9	3,1663	3,1672
28,434	-2 0 2	28,434	0,0004	19,8	3,1365	3,1365
28,622	3 1 1	28,625	-0,003	9,7	3,1163	3,116
28.922	0 1 2	28.922	0.0005	4.8	3.0846	3.0847
29.451	-1 1 2	29.45	0.0007	17.8	3.0305	3.0305
29,766	2 0 2	29.77	-0.0038	27.6	2,9991	2,9987
30,155	0 2 1	30 142	0.0129	13.2	2,9613	2,9625
30,803	-1 2 1	30.81	-0.0072	9.2	2,9013	2,9025
31,128	1 2 1	31 126	0,0072	2,2 47	2,9001	2,0770
31,726	1 2 1	31,746	-0.0002	12.8	2,8703	2,8711
31,240	4 1 0	31,240	-0,0002	42,0	2,8005	2,8005
21,479	401	21,465	-0,0034	8 20.7	2,8390	2,8392
22,029	-2 1 2	22.92	0,0021	30,7	2,0279	2,0201
32,828	2 1 2	32,83	-0,0010	10,5	2,720	2,7238
33,043	-2 2 1	35,04	0,0047	7,9	2,7080	2,709
33,240	-4 1 1	33,241	0,0055	3,4 14.6	2,0927	2,0931
33,037		33,031	0,0039	14,0	2,0023	2,0027
34,409	4 1 1	34,408	0,0011	7,2	2,6043	2,6044
34,602	3 2 0	34,61	-0,0074	5,9	2,5902	2,5896
35,134	-3 1 2	35,135	-0,0011	1,8	2,5522	2,5521
36,796	312	36,794	0,0017	3,5	2,4406	2,4407
37,16	-4 0 2	37,15	0,0099	1,3	2,4176	2,4182
37,389	3 2 1	37,388	0,0012	3,5	2,4033	2,4033
37,62	0 2 2	37,622	-0,0027	3,5	2,3891	2,3889
37,912	5 1 0	37,911	0,0008	8,1	2,3713	2,3714
38,569	1 2 2	38,567	0,0024	5,7	2,3324	2,3326
	0 0 3	38,574	-0,0047			2,3321
39,245	4 0 2	39,251	-0,0067	4,8	2,2938	2,2934
39,487	-5 1 1	39,483	0,0031	3	2,2803	2,2805
	4 2 0	39,491	-0,0049			2,28
39,714	-4 1 2	39,708	0,0063	6,3	2,2678	2,2681
40,44	-2 0 3	40,449	-0,0089	1,8	2,2287	2,2282
40,764	5 1 1	40,744	0,0201	20	2,2117	2,2128
41,084	0 1 3	41,056	0,0272	3,3	2,1953	2,1967
41,327	-1 1 3	41,324	0,0024	11,1	2,1829	2,183
41,922	2 0 3	41,929	-0,0073	4,9	2,1533	2,1529
42.035	1 3 0	42.014	0.0205	48	2 1478	2 1488

Tabelle A.51: Liste der indizierten Reflexe des Pulverdiffraktogramms von *a*-Mn[GaCl₄]₂.

	1 1 3	42,057	-0,0221			2,1467
42,609	6 0 0	42,603	0,0056	1,8	2,1202	2,1204
42,733	-3 2 2	42,729	0,0044	3,6	2,1143	2,1145
42,842	-2 1 3	42,841	0,0005	4,9	2,1092	2,1092
43,449	0 3 1	43,442	0,007	2,8	2,0811	2,0814
43,892	2 3 0	43,864	0,028	3,8	2,0611	2,0623
	-6 0 1	43,919	-0,0267			2,0599
44,175	3 2 2	44,147	0,0286	9,7	2,0485	2,0498
	1 3 1	44,167	0,0084			2,0489
44,902	6 1 0	44,902	0,0003	1,4	2,017	2,0171
45,078	-5 1 2	45,076	0,002	4,6	2,0096	2,0097
45,305	6 0 1	45,307	-0,0015	2	2	2
46,161	-6 1 1	46,166	-0,005	3,8	1,9649	1,9647
46,493	-5 2 1	46,482	0,0108	3,3	1,9517	1,9521
47,562		nicht indiziert		3,9	1,9103	
47,87	0 2 3	47,869	0,0017	6	1,8987	1,8987
48,104	-1 2 3	48,106	-0,0016	2,2	1,89	1,8899
48,379	-3 3 1	48,369	0,0105	50,4	1,8799	1,8803
49,006	-6 0 2	48,997	0,0083	23	1,8573	1,8576
,	3 3 1	49,018	-0,012			1,8569
49,535	-1 3 2	49,546	-0,0107	1,8	1,8387	1,8383
49,977	1 3 2	49,972	0,005	1,8	1,8235	1,8237
50,726	4 3 0	50,728	-0,0022	1,3	1,7983	1,7982
-	2 2 3	50,728	-0,0022	-	-	1,7982
51,312	6 2 0	51,312	0,0006	2,1	1,7791	1,7791
51,683	4 1 3	51,702	-0,0192	1,8	1,7672	1,7666
52,46	-6 2 1	52,458	0,0021	1,6	1,7429	1,7429
53,531	522	53,517	0,0139	21	1,7105	1,7109
-	6 1 2	53,535	-0,0041		-	1,7104
	-2 0 4	53,55	-0,0196			1,7099
53,687	6 2 1	53,677	0,0102	18,2	1,7059	1,7062
	3 2 3	53,695	-0,0073			1,7057
	-5 1 3	53,699	-0,0114			1,7055
54,243	0 1 4	54,242	0,0009	25,5	1,6897	1,6897
54,632	3 3 2	54,631	0,0016	2,8	1,6786	1,6786
	7 1 1	54,631	0,0012			1,6786
55,19	-4 2 3	55,212	-0,0223	2,6	1,6629	1,6623
55,46	5 3 0	55,458	0,0029	3,4	1,6555	1,6555
56,703	1 4 0	56,717	-0,0143	2,4	1,6221	1,6217
56,973	-6 2 2	56,967	0,0059	2,7	1,615	1,6152
57,604	-7 1 2	57,597	0,007	3,7	1,5989	1,599
	5 3 1	57,61	-0,0058			1,5987
	-3 1 4	57,63	-0,0264			1,5982
58,016	7 2 0	58,01	0,0065	2,8	1,5885	1,5886
58,268	-1 4 1	58,268	-0,0005	4,2	1,5822	1,5822
58,46	1 4 1	58,459	0,0013	1,2	1,5775	1,5775
58,635	1 3 3	58,632	0,0031	3,3	1,5732	1,5732
58,819	-8 0 1	58,811	0,008	2,6	1,5687	1,5689
	-4 0 4	58,837	-0,0185			1,5682
58,968	-6 1 3	58,96	0,008	4,3	1,5651	1,5653
	-7 2 1	58,972	-0,0044			1,565
59,415	-5 2 3	59,416	-0,0005	1,4	1,5544	1,5543
59,646	-2 4 1	59,644	0,0019	1,5	1,5489	1,5489
59,807	8 1 0	59,799	0,0076	2,4	1,5451	1,5453
60,002	2 4 1	60,02	-0,0175	1	1,5405	1,5401

	35 1 5330
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,5557
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1,5332
	1,5289
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	54 1,5256
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,5256
60,768 1 2 4 60,783 -0,0143 1,6 1,52 61,086 -2 2 4 61,109 -0,0235 1,1 1,51 61,395 -3 3 61,387 0,0082 2,1 1,50 61,841 4 0 4 61,828 0,0127 1,2 1,49 62,868 -8 0 2 62,84 0,028 2,4 1,47	1,525
61,086 -2 2 4 61,109 -0,0235 1,1 1,51 61,395 -3 3 61,387 0,0082 2,1 1,50 61,841 4 0 4 61,828 0,0127 1,2 1,49 62,868 -8 0 2 62,84 0,028 2,4 1,47	29 1,5226
61,395 -3 3 61,387 0,0082 2,1 1,50 61,841 4 0 4 61,828 0,0127 1,2 1,49 62,868 -8 0 2 62,84 0,028 2,4 1,47	58 1,5153
61,841 4 0 4 61,828 0,0127 1,2 1,49 62,868 -8 0 2 62,84 0,028 2,4 1,47	39 1,5091
62,868 -8 0 2 62,84 0,028 2,4 1,47	91 1,4994
	1,4776
5 3 2 62,879 -0,0113	1,4768
64,606 -8 1 2 64,613 -0,0071 1,1 1,44	14 1,4413
64,903 -7 1 3 64,876 0,0272 1,4 1,43	56 1,4361
2 4 2 64,904 -0,001	1,4355
65,176 -4 4 1 65,151 0,0243 2 1,43	02 1,4307
8 2 0 65,178 -0,0026	1,4302
66,002 -8 2 1 65,99 0,0121 1,5 1,41	43 1,4145
-4 2 4 66,015 -0,0127	1,414
-6 3 2 66,021 -0,0187	1,4139
66,328 -3 4 2 66,319 0,0092 1,5 1,40	1,4083
66,804 0 0 5 66,802 0,0023 1,3 1,39	92 1,3993
69,148 -5 4 1 69,166 -0,018 1,4 1,35	1,3571
69,458 -2 1 5 69,451 0,0068 1 1,35	1,3522
75,007 3 4 3 74,979 0,0276 5,2 1,26	53 1,2657
76,223 -3 2 5 76,219 0,0041 2,4 1,24	31 1,2481

Abbildung A.18: Pulverdiffraktogramm von α-Mn[GaCl₄]₂, unterlegt mit den aus Einkristalldaten berechneten Reflexpositionen.

Summenformel	MnGa ₂ Cl ₈
Kristallsystem	monoklin
Raumgruppe	<i>P a</i> ; Nr. 7
Gitterkonstanten	a = 12,7405(10) Å
[aus Pulverdaten verfeinert]	b = 6,5402(4) Å
	c = 7,0063(5) Å
	$\beta = 93,047 (5)^{\circ}$
Zellvolumen V	582,98(10) Å ³
Zahl der Formeleinheiten Z	2
Dichte (berechnet) ρ_x	2,778 g/cm ³
Diffraktometer	Nonius Kappa-CCD
Strahlung, λ	Mo-K α , λ = 71,073 pm
Absorptionskoeffizient μ	75,8 cm ⁻¹
Temperatur	123 K
Messbereich θ_{max}	29,48
gemessene Reflexe	$-16 \le h \le 15$
	$-8 \le k \le 8$
	$-19 \le l \le 9$
Anzahl der gemessenen Reflexe	14810
Anzahl symmetrieunabhängiger Reflexe	2525
Anzahl der Reflexe mit $F_0 > 4\sigma (F_0)$	2498
Zahl der verfeinerten Parameter	102
Verhältnis Reflexe / Parameter	24,75
F (0 0 0)	446
R _{int}	0,0307
R_{σ}	0,0202
R [alle F_o]; R [$F_o > 4\sigma$ (F_o)]	0,0176; 0,0173
$wR(F^2)$ [Wichtung*]	0,0401
Goodness-of-Fit (GooF)	1,079
Restelektronendichte (max./min. ρ)	$0,46/-0,50 \text{ e/Å}^3$; Mittelwert = 0,00

т IC

* Wichtung: 0,0150/0,67

$$w = \frac{1}{\left[\sigma^2(F_0)^2 + (0.0150 \cdot P)^2 + 0.67 \cdot P\right]} \qquad \text{mit } P = \frac{\left[\max(F_0^2, 0) + 2 \cdot F_c^2\right]}{3}$$

Abbildung A.19: erweiterte asymmetrische Einheit in der Struktur von α-Mn[GaCl₄]₂. Die thermischen Schwingungsellipsoide entsprechen einer Aufenthaltswahrscheinlichkeit der Atome von 70 %.

		Elem	entarzene von a		,	
Atom	Wyckoff	Symmetrie	x/a	<i>y/b</i>	z/c	U _{eq}
Mn	2a	1	0,00269(4)	0,25155(7)	-0,00524(7)	0,01085(9)
Gal	2a	1	0,54328(3)	0,93328(5)	0,55773(5)	0,01065(8)
Cl1	2a	1	0,56086(6)	0,61327(11)	0,66659(11)	0,01280(14)
Cl2	2a	1	0,44187(7)	0,93179(10)	0,29107(11)	0,01267(15)
Cl4	2a	1	0,45044(7)	0,06277(11)	0,79044(12)	0,01341(16)
C18	2a	1	0,68781(7)	0,09272(13)	0,53365(13)	0,01755(16)
Ga2	2a	1	0,74126(3)	0,57059(5)	0,15487(5)	0,01067(8)
C13	2a	1	0,58116(6)	0,43157(11)	0,15844(12)	0,01335(16)
C15	2a	1	0,19487(6)	0,11761(11)	0,04877(11)	0,01291(14)
C16	2a	1	0,32692(7)	0,42804(12)	0,42239(12)	0,01611(17)
Cl7	2a	1	0,32240(7)	0,58602(13)	0,92396(12)	0,01541(17)

Tabelle A.53: Koordinaten, Wyckoff-Lagen und isotrope Auslenkungsparameter der Atome in der Elementarzelle von α-Mn[GaCl₄]₂.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Mn	0,00986(18)	0,01280(18)	0,00989(17)	-0,00087(14)	0,00046(14)	-0,00042(15)
Gal	0,01146(16)	0,01202(15)	0,00855(16)	0,00035(12)	0,00118(12)	-0,00037(12)
Cl1	0,01569(36)	0,01114(30)	0,01160(30)	0,00013(26)	0,00102(25)	0,00124(28)
Cl2	0,01240(35)	0,01661(34)	0,00889(31)	-0,00116(27)	-0,00048(25)	0,00266(27)
Cl4	0,01607(40)	0,01393(33)	0,01042(33)	0,00023(27)	0,00262(28)	0,00374(26)
C18	0,01400(38)	0,02077(35)	0,01788(36)	0,00243(28)	0,00080(27)	-0,00547(28)
Ga2	0,00889(16)	0,01266(16)	0,01042(16)	-0,00002(13)	0,00007(12)	0,00110(12)
Cl3	0,01000(37)	0,01364(32)	0,01640(36)	0,00384(25)	0,00063(28)	-0,00092(24)
C15	0,01205(31)	0,01166(30)	0,01484(34)	-0,00110(27)	-0,00120(25)	0,00038(28)
C16	0,01636(42)	0,01886(38)	0,01264(36)	-0,00067(26)	-0,00389(29)	-0,00041(27)
Cl7	0,01224(37)	0,02218(37)	0,01172(36)	0,00253(26)	-0,00013(28)	-0,00601(26)

Tabelle A.54: Anisotrope Auslenkungsparameter der Atome in α-Mn[GaCl₄]₂.

Tabelle A.55: Bindungslängen und -winkel in der asymmetrischen Einheit von α-Mn[GaCl₄]₂.

Bindungspaar	Bindungslänge /Å	Bindungspaar	Bindungslänge /Å
Mn-Cl1	2,5966(9)	Ga1-Cl1	2,2093(8)
Mn-Cl2	2,5398(9)	Ga1-Cl2	2,2084(10)
Mn-Cl3	2,5232(9)	Ga1-Cl4	2,2201(9)
Mn-Cl4	2,5494(9)	Ga1-Cl8	2,1161(10)
Mn-Cl5	2,5943(9)	Ga2-Cl3	2,2207(9)
Mn-Cl7	2,5401(10)	Ga2-C15	2,2145(8)
		Ga2-Cl6	2,1127(9)
		Ga2-Cl7	2,2041(9)

Atomverknüpfung	Bindungswinkel /°	Atomverknüpfung	Bindungswinkel /°
Cl1-Mn-Cl3	90,25(3)	Cl1-Ga1-Cl2	109,29(3)
Cl1-Mn-Cl4	81,39(3)	Cl1-Ga1-Cl4	98,50(3)
Cl1-Mn-Cl5	86,15(3)	Cl1-Ga1-Cl8	114,22(4)
Cl1-Mn-Cl7	89,03(3)	Cl2-Ga1-Cl4	108,20(4)
Cl1-Mn-Cl2	171,54(3)	Cl2-Ga1-Cl8	113,80(4)
Cl2-Mn-Cl3	97,91(3)	Cl4-Ga1-Cl8	111,67(4)
Cl2-Mn-Cl4	90,26(3)		
Cl2-Mn-Cl5	92,79(3)	Cl3-Ga2-Cl5	98,30(3)
Cl2-Mn-Cl7	92,47(4)	Cl3-Ga2-Cl6	114,82(4)
Cl3-Mn-Cl5	81,91(3)	Cl3-Ga2-Cl7	106,52(3)
Cl3-Mn-Cl7	94,76(3)	Cl5-Ga2-Cl6	114,07(3)
Cl3-Mn-Cl4	169,87(4)	Cl5-Ga2-Cl7	107,33(4)
Cl4-Mn-Cl5	91,76(3)	Cl6-Ga2-Cl7	114,32(4)
Cl4-Mn-Cl7	90,84(3)		
Cl5-Mn-Cl7	174,13(3)		

A.15 Cr[GaCl₄]₂:

Tabelle	A.JU. Liste del	muizierten	tenexe des r ui	verunn aktogra	annins von Cr	
2θ [beob.]	h k l	<i>2θ</i> [berech.]	beobberech.	rel. Intensität	<i>d</i> [beob.]	d [berech.]
13,486	1 0 0	13,487	-0,0008	86,1	6,5605	6,5601
13,863	0 1 1	13,868	-0,005	19,3	6,3831	6,3808
14,453	0 0 2	14,463	-0,0106	4,8	6,1237	6,1192
17,97	1 1 0	17,973	-0,0036	100	4,9323	4,9313
18,719	0 1 2	18,723	-0,0035	48,6	4,7365	4,7356
19,21	-1 1 1	19,203	0,0069	8,7	4,6166	4,6183
19,461	-1 0 2	19,456	0,0051	34,5	4,5575	4,5587
19,579	1 1 1	19,577	0,0019	16,5	4,5305	4,531
20,183	1 0 2	20,188	-0,0046	12,4	4,3961	4,3952
22,831	-1 1 2	22,828	0,0025	62,5	3,892	3,8924
23,455	1 1 2	23,459	-0,0047	9,1	3,7898	3,7891
23,776	0 2 0	23,78	-0,0037	7,4	3,7393	3,7388
24,841	0 1 3	24,842	-0,0017	18	3,5814	3,5812
27,167	2 0 0	27,165	0,0027	25,8	3,2797	3,2801
27,434	1 2 0	27,436	-0,0023	33,1	3,2485	3,2483
27,947	0 2 2	27,944	0,0035	33,6	3,19	3,1904
	-1 1 3	27,977	-0,0297			3,1867
29,165	0 0 4	29,164	0,0011	38,7	3,0595	3,0596
29,724	2 1 0	29,718	0,0058	5,3	3,0032	3,0038
30,401	-2 1 1	30,377	0,0235	3,3	2,9379	2,9401
-	-2 0 2	30,42	-0,0196			2,936
30,906	-1 2 2	30,907	-0,001	51,4	2,891	2,8909
31,383	2 0 2	31,386	-0,0034	54,8	2,8481	2,8478
	1 2 2	31,387	-0,0041			2,8478
31,574	0 1 4	31,57	0,0045	5,5	2,8313	2,8317
31,794	-1 0 4	31,79	0,0035	3,3	2,8123	2,8126
32,721	1 0 4	32,72	0,0014	14,2	2,7347	2,7348
	-2 1 2	32,742	-0,0214			2,7329
33.65	2 1 2	33.649	0.0011	12.8	2.6613	2.6614
34,929	1 1 4	34,905	0,0241	1.6	2,5667	2,5684
,	-1 2 3	34,969	-0.0394	,	,	2,5639
36,427	2 2 0	36,409	0,0181	7.2	2,4645	2,4657
36,766	0 3 1	36.769	-0.0029	3.8	2,4425	2,4424
38,608	1 3 0	38,611	-0,0025	4.8	2,3301	2,33
38,982	-2 2 2	38,974	0.008	5	2,3087	2.3091
	0 3 2	38,987	-0,0056		y	2,3084
39.231	-1 3 1	39.234	-0.0035	5	2,2946	2.2944
40.09	-1 2 4	40.085	0.0042	43.2	2,2474	2.2476
40.716		nicht indiziert		1.9	2.2142	,
41.032	2 0 4	41.039	-0.0069	14.7	2,1979	2,1976
41.255	-1 3 2	41.247	0.0083	11.6	2,1865	2.187
,	3 0 0	41.252	0.0034	, -	,	2.1867
42.853	2 1 4	42.858	-0.0044	3.5	2,1086	2.1084
43.071	3 1 0	43.064	0.0074	5.2	2.0985	2.0988
43.994	3 1 1	43.993	0.0008	2.6	2.0566	2.0566
44.447	3 0 2	44.469	-0.0222	11.3	2.0367	2.0357
45.151	-3 1 2	45.138	0.0126	1.7	2.0065	2.007
46.094	-1 0 6	46.078	0.016	5.8	1.9676	1.9683
,	0 1 6	46.089	0.0046	2,0	-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1,9678
46.647	-2 2 4	46.631	0.0155	7.4	1,9456	1.9462
47.028	-2 1 5	47,061	-0,033	1,7	1,9307	1,9294

Tabelle A.56: Liste der indizierten Reflexe des Pulverdiffraktogramms von Cr[GaCl4]

47,763	-1 1 6	47,743	0,0198	3,7	1,9027	1,9035
48,179	3 2 0	48,17	0,0091	31,4	1,8872	1,8876
48,689	0 4 0	48,669	0,0203	22,3	1,8686	1,8694
50,71	1 4 0	50,74	-0,0308	2,2	1,7988	1,7978
51,031	3 2 2	51,043	-0,0119	2	1,7882	1,7879
	0 4 2	51,044	-0,0133			1,7878
51,624	2 3 3	51,62	0,0045	1,4	1,7691	1,7692
51,888	-2 2 5	51,863	0,0253	3,2	1,7607	1,7615
	-2 0 6	51,87	0,0186			1,7613
	-3 1 4	51,916	-0,0279			1,7598
52,509	-1 2 6	52,498	0,0105	8,1	1,7414	1,7417
52,892	-1 4 2	52,893	-0,0006	1,6	1,7296	1,7296
53,426	-2 1 6	53,4	0,0262	19,8	1,7136	1,7144
	2 2 5	53,423	0,0027			1,7137
	1 2 6	53,43	-0,0044			1,7135
53,751	2 0 6	53,738	0,0131	7,8	1,704	1,7044
	3 1 4	53,784	-0,0323			1,703
57,5	4 1 0	57,482	0,018	3,9	1,6015	1,602
57,734	-4 1 1	57,726	0,0083	4,8	1,5956	1,5958
	0 4 4	57,748	-0,0143			1,5952
59,063	-4 1 2	59,034	0,0294	6,2	1,5628	1,5635
	2 4 2	59,064	-0,0004			1,5628
59,566	-1 2 7	59,545	0,0209	4,2	1,5508	1,5513
	2 2 6	59,564	0,0017			1,5508
59,861	-1 3 6	59,824	0,0377	2,5	1,5438	1,5447
	1 4 4	59,885	-0,024			1,5433
60,675	2 3 5	60,674	0,0011	2,4	1,5251	1,5251
	1 3 6	60,681	-0,0054			1,5249
63,271	-4 0 4	63,299	-0,0278	4,1	1,4686	1,468
64,193	1 1 8	64,186	0,0072	1,6	1,4497	1,4499
	-1 5 1	64,216	-0,0237			1,4492
64,769	-2 3 6	64,759	0,0107	3,5	1,4382	1,4384
	3 1 6	64,794	-0,0243			1,4377
65,522	4 0 4	65,499	0,0225	2	1,4235	1,4239
	2 4 4	65,501	0,021			1,4239
65,924	0 2 8	65,92	0,0048	2	1,4158	1,4159
	1 5 2	65,923	0,0009			1,4158
	-3 4 1	65,949	-0,0244			1,4153
66,408	-1 3 7	66,375	0,0329	1,8	1,4066	1,4072
	2 3 6	66,393	0,0148			1,4069
	-2 0 8	66,426	-0,0179			1,4063
68,026	3 4 2	68,035	-0,0092	2,3	1,3771	1,3769
	-1 5 3	68,053	-0,0271			1,3766

Abbildung A.20: Pulverdiffraktogramm von Cr[GaCl₄]₂, unterlegt mit den aus Einkristalldaten berechneten Reflexpositionen.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Cr	0,01896(25)	0,01389(22)	0,1431(24)	0,00299(15)	-0,00146(17)	-0,00092(17)
Ga	0,01976(15)	0,01441(13)	0,01357(14)	0,00174(7)	0,00066(9)	0,00086(8)
Cl1	0,01891(27)	0,01735(22)	0,01851(26)	0,00401(17)	-0,00042(19)	-0,00207(17)
Cl2	0,02093(26)	0,01943(23)	0,01803(25)	0,00442(17)	-0,00200(18)	-0,00412(19)
Cl3	0,02956(31)	0,01923(24)	0,01351(26)	0,00102(17)	0,00164(20)	-0,00384(19)
Cl4	0,02877(30)	0,02106(26)	0,02564(29)	-0,00352(19)	0,00108(21)	0,00717(21)

Tabelle A.57: Anisotrope Auslenkungsparameter der Atome in Cr[GaCl₄]₂.

1 400	Summenformel	CrGa ₂ Cl ₈
	Kristallsystem	monoklin
	Raumgruppe	<i>P</i> 1 2 ₁ / <i>c</i> 1; Nr. 14
	Gitterkonstanten	a = 6.5645 (10) Å
	[aus Pulverdaten verfeinert]	<i>b</i> = 7.4775 (13) Å
		c = 12.247 (3) Å
		$\beta = 92.098 (12)^{\circ}$
	Zellvolumen V	600.7 (3) Å ³
	Zahl der Formeleinheiten Z	2
	Dichte (berechnet) ρ_x	2.700 g/cm ³
	Diffraktometer	Nonius Kappa-CCD
	Strahlung, λ	Mo-K α , λ = 71.073 pm
	Absorptionskoeffizient μ	72.6 cm^{-1}
	Temperatur	123 K
	Meßbereich θ_{max}	30.04
	gemessene Reflexe	$-9 \le h \le 9$
		$-10 \le k \le 10$
		$-17 \le l \le 16$
	Anzahl der gemessenen Reflexe	12514
	Anzahl symmetrieunabhängiger Reflexe	1707
	Anzahl der Reflexe mit $F_0 > 4\sigma (F_0)$	1515
	Zahl der verfeinerten Parameter	53
	Verhältnis Reflexe / Parameter	32.20
	F (0 0 0)	444
	$R_{\rm int}$	0.0415
	R_{σ}	0.0223
	R [alle F_o]; R [$F_o > 4\sigma$ (F_o)]	0.0316; 0.0255
	$wR(F^2)$ [Wichtung*]	0.0587
	Goodness-of-Fit (GooF)	1.116
	Restelektronendichte (max./min. ρ)	$0.69/-0.79 \text{ e/Å}^3$; Mittelwert = 0.00

.... C-IC $\mathbf{\alpha}$ **C**... • • . . c. • T

$$w = \frac{1}{\left[\sigma^2 (F_0)^2 + (0.0294 \cdot P)^2 + 0.26 \cdot P\right]} \qquad \text{mit } P = \frac{\left[\max(F_0^2, 0) + 2 \cdot F_c^2\right]}{3}$$

A.16 α -Sr[GaCl₄]₂:

2θ [beob.]	h k l	<i>2θ</i> [berech.]	beobberech.	rel. Intensität	<i>d</i> [beob.]	d [berech.]
8,653	2 0 0	8,657	-0,0041	2,6	10,2106	10,2057
11,253	2 1 0	11,254	-0,0016	9,8	7,8568	7,8557
12,003	1 1 1	12,004	-0,0013	34,2	7,3676	7,3669
14,166	2 1 1	14,167	-0,0004	65,1	6,2469	6,2467
14,386	0 2 0	14,384	0,0021	23,4	6,1521	6,153
16,812	2 2 0	16,812	-0,0001	100	5,2694	5,2694
17,196	3 1 1	17,187	0,009	25,1	5,1525	5,1552
	0 0 2	17,201	-0,0053			5,1509
17,362	4 0 0	17,364	-0,002	46,5	5,1034	5,1029
17,744	1 0 2	17,745	-0,0008	5	4,9946	4,9944
18,888	2 2 1	18,901	-0,0132	0,9	4,6946	4,6913
19,286	2 0 2	19,286	-0,0003	34,9	4,5985	4,5984
20,707	4 1 1	20,706	0,0008	1,8	4,2861	4,2863
21,277	3 2 1	21,277	-0,0002	1,3	4,1726	4,1725
21,62	3 0 2	21,622	-0,0019	19,2	4,1071	4,1068
22,042		nicht indiziert		3	4,0295	
22,493	0 2 2	22,493	-0,0004	12,5	3,9497	3,9496
22,619	4 2 0	22,619	-0,0004	12,3	3,9279	3,9278
22,806	3 1 2	22,809	-0,003	15,7	3,8961	3,8956
22,915	1 2 2	22,916	-0,0006	18,3	3,8778	3,8777
23,732	1 3 1	23,731	0,0002	5,8	3,7462	3,7462
24,141	2 2 2	24,142	-0,0009	11,7	3,6836	3,6834
24,231	4 2 1	24,231	-0,0001	15	3,6702	3,6701
24,532	5 1 1	24,526	0,0057	1,3	3,6258	3,6266
	4 0 2	24,536	-0,0045	-	-	3,6251
24,922	2 3 1	24,92	0,0024	5,7	3,5699	3,5702
25,596	4 1 2	25,596	-0,0006	3	3,4775	3,4774
26,066	3 2 2	26,066	0,0002	44,5	3,4158	3,4158
26,792	3 3 1	26,791	0,001	9,9	3,3248	3,3249
27,178	6 1 0	27,174	0,0037	1,4	3,2785	3,2789
27,592	5 2 1	27,593	-0,0007	27,4	3,2302	3,2301
27,883	5 0 2	27,864	0,0199	2,5	3,1971	3,1994
	4 3 0	27,884	-0,0003			3,1971
28,553	6 1 1	28,545	0,0075	13,4	3,1237	3,1245
	4 2 2	28,556	-0,003			3,1234
28,808	5 1 2	28,81	-0,0015	41,6	3,0966	3,0964
29,199	4 3 1	29,224	-0,0254	2,6	3,056	3,0534
29,77	0 2 3	29,771	-0,0007	6,4	2,9986	2,9986
30,008	6 2 0	29,99	0,0184	29,6	2,9754	2,9772
	3 1 3	30,015	-0,0069			2,9747
30,299	0 4 1	30,296	0,0039	33,8	2,9475	2,9478
	2 4 0	30,32	-0,0202			2,9456
30,781	3 3 2	30,783	-0,002	2	2,9024	2,9022
31,06	2 2 3	31,06	-0,0001	15,7	2,877	2,877
31,247	6 2 1	31,248	-0,0008	21,1	2,8602	2,8601
31,547	2 4 1	31,566	-0,0189	9,1	2,8337	2,8321
31,570	2 4 1	31,566	0,0046	23,6	2,8317	2,8321
32,105	5 3 1	32,104	0,0009	20	2,7857	2,7858
32,337	6 1 2	32,339	-0,0022	4,2	2,7662	2,766
32,606	3 2 3	32,608	-0,0017	12,2	2,7441	2,7439

 Tabelle A.59: Liste der indizierten Reflexe des Pulverdiffraktogramms von α -Sr[GaCl₄]₂, Datenbereich auf $2\theta_{max} = 61^{\circ}$ beschränkt.

32,708	7 1 1	32,711	-0,0023	2,2	2,7357	2,7355
33,916	0 4 2	33,913	0,0033	8,1	2,641	2,6412
34,003	4 4 0	33,999	0,0034	8,9	2,6344	2,6347
34,214	1 4 2	34,204	0,0095	2,2	2,6187	2,6194
	6 3 0	34,215	-0,0018			2,6186
34,314	1 3 3	34,311	0,0029	28,8	2,6112	2,6115
34,81	0 0 4	34,806	0,0041	10,6	2,5752	2,5755
34,888	5 1 3	34,883	0,0047	10,1	2,5696	2,5699
35,08	2 4 2	35,066	0,0149	24,2	2,556	2,557
	1 0 4	35,091	-0,0105			2,5552
35,142	7 2 1	35,125	0,0168	76,5	2,5516	2,5528
	4 4 1	35,129	0,0128			2,5525
	8 0 0	35,144	-0,0029			2,5514
	2 3 3	35,171	-0,029			2,5496
35,341	6 3 1	35,339	0,0022	23,9	2,5377	2,5379
	7 0 2	35,343	-0,0025			2,5375
35,558	5 3 2	35,557	0,0004	7,4	2,5227	2,5228
35,929	8 1 0	35,917	0,012	8,1	2,4975	2,4983
	2 0 4	35,934	-0,0047			2,4972
36,112	7 1 2	36,112	-0,0003	8,6	2,4853	2,4853
36,460	3 4 2	36,462	-0,0018	40,4	2,4623	2,4622
36,996	8 1 1	36,995	0,0006	12	2,4279	2,4279
37,575	2 5 0	37,562	0,0135	10,8	2,3918	2,3926
37,837	1 5 1	37,809	0,0282	27,1	2,3758	2,3775
	0 2 4	37,838	-0,0013			2,3757
38,106	1 2 4	38,104	0,0025	10,6	2,3597	2,3598
38,539	6 3 2	38,537	0,0019	3,5	2,3341	2,3343
39,147	4 0 4	39,148	-0,001	9,7	2,2993	2,2992
39,38	8 0 2	39,378	0,0016	4,2	2,2862	2,2863
39,54	1 4 3	39,544	-0,0039	3,3	2,2773	2,2771
39,883	4 1 4	39,854	0,0292	1,6	2,2585	2,2601
	3 5 1	39,891	-0,0072			2,2581
40,46	6 4 1	40,457	0,0028	4,8	2,2277	2,2278
40,658	5 4 2	40,652	0,0058	15,7	2,2173	2,2176
	4 5 0	40,667	-0,0087			2,2168
40,748	5 3 3	40,745	0,0032	8,9	2,2126	2,2127
40,842	1 5 2	40,842	0	2,6	2,2077	2,2077
41,388	9 1 1	41,387	0,0008	15,6	2,1798	2,1799
41,602	2 5 2	41,585	0,0171	6	2,1691	2,1699
	1 3 4	41,607	-0,0049			2,1688
41,896	4 2 4	41,912	-0,016	1,8	2,1546	2,1538
42,097	5 1 4	42,094	0,0028	10,9	2,1447	2,1449
42,801	3 5 2	42,8	0,0008	3,3	2,1111	2,1111
42,941		nicht indiziert		1,8	2,1045	
43,247	7 2 3	43,244	0,0034	14,8	2,0903	2,0905
	4 4 3	43,247	0,0001			2,0903
43,343	6 4 2	43,336	0,007	5,5	2,0859	2,0863
43,621	7 4 1	43,626	-0,0044	8,9	2,0733	2,0731
44,065	6 0 4	44,065	0	5,3	2,0534	2,0534
	5 2 4	44,066	-0,0011			2,0533
44,343	10 0 0	44,344	-0,0007	2,6	2,0412	2,0411
45,032	0 6 1	45,032	-0,0007	2,5	2,0115	2,0115
	2 6 0	45,05	-0,0178			2,0108
45,493	2 1 5	45,475	0,0177	7,1	1,9922	1,993
45,923	0 4 4	45,916	0,0067	2,7	1,9745	1,9748

	1,9735
46,154 1 4 4 46,143 0,0112 7,9 1,965	52 1,9656
46,346 6 5 1 46,341 0,0053 2 1,95	1,9577
7 4 2 46,345 0,0016	1,9576
46,522 5 5 2 46,516 0,0058 4,7 1,950)5 1,9508
46,836 2 4 4 46,818 0,0176 13,6 1,938	32 1,9389
10 2 0 46,857 -0,0215	1,9373
47,051 7 0 4 47,038 0,0139 3,1 1,929	98 1,9303
8 4 1 47,067 -0,0159	1,9292
3 6 1 47,073 -0,0212	1,929
47,332 3 5 3 47,327 0,0056 5,5 1,91	9 1,9192
2 2 5 47,335 -0,0024	1,9189
47,684 0 6 2 47,689 -0,0046 2,6 1,909	57 1,9055
47,818 6 4 3 47,822 -0,0037 3,1 1,900)6 1,9005
47,903 10 0 2 47,899 0,0033 7,7 1,89	1.8976
1 6 2 47,909 -0,0061	1,8972
3 4 4 47,927 -0.0247	1,8965
48,16 4 1 5 48,161 -0.0007 2,5 1,88'	79 1,8879
48,437 3 2 5 48,435 0,0017 2,6 1,87	1,8779
48.619 4 6 1 48.614 0.005 16.6 1.87	1.8714
9 1 3 48.639 -0.0198	1,8705
49.442 7 2 4 49.445 -0.003 1 1.84	19 1.8418
4 4 4 49,448 -0.0061	1,8417
49.641 8 4 2 49.64 0.0015 4.7 1.83	5 1.8351
3 6 2 49.645 -0.0036	1,8349
50,303 10 2 2 50,276 0,0271 2,6 1,812	24 1,8133
8 0 4 50,298 0,0051	1,8126
2 3 5 50,318 -0.0144	1,8119
50.48 11 1 1 50.482 -0.0016 2.5 1.800	5 1.8064
50.632 7 4 3 50.624 0.0077 7 1.80	14 1.8017
50,774 9 4 1 50,749 0,025 1,5 1,790	57 1,7975
5 5 3 50,784 -0.01	1,7964
51,129 4 6 2 51,128 0,0017 8,8 1,78	5 1,7851
51,552 8 5 0 51,553 -0.0005 2,2 1,77	4 1,7714
51,704 7 5 2 51,699 0,0046 3,1 1,760	6 1,7667
51,838 5 2 5 51,837 0,0009 3,1 1,762	1,7623
52,032 6 6 0 52,023 0,0092 12,3 1,750	52 1,7565
52,121 1 6 3 52,091 0,0292 3,7 1,753	34 1,7543
2 5 4 52,136 -0.0157	1,7529
52,367 7 3 4 52,339 0,028 20,1 1,745	57 1,7466
11 0 2 52,366 0,001	1,7458
8 5 1 52,366 0,0005	1,7457
52,594 8 2 4 52,595 -0.0012 15 1,738	37 1,7387
52,713 2 6 3 52,709 0,0038 17.1 1,73:	51 1,7352
52,99 1 7 1 52,988 0,0025 5,5 1,720	57 1,7267
5 6 2 52,99 0,0001	1,7267
53,18 3 5 4 53,163 0,0174 12.8 1,720)9 1,7215
9 4 2 53,19 -0,0093	1,7207
53,268 9 3 3 53,265 0,0033 3,7 1.718	33 1,7184
53,511 0 4 5 53,482 0.0286 5.3 1.71	1 1.7119
1 0 6 53.516 -0.0046	1,7109
53,615 2 7 1 53,599 0.0167 10 1.70	8 1,7085
6 4 4 53.618 -0.0028	1,7079
53,729 8 4 3 53,723 0.0054 4.8 1.704	46 1,7048
3 6 3 53,728 0,0006	1,7047

53,853	12 0 0	53,855	-0,0022	14	1,701	1,701
	10 4 0	53,859	-0,0061			1,7008
54,085	1 1 6	54,072	0,0128	8,2	1,6943	1,6946
	6 2 5	54,086	-0,0015			1,6942
54,395	9 1 4	54,371	0,0235	3,7	1,6853	1,686
	12 1 0	54,409	-0,0144			1,6849
54,615	11 2 2	54,601	0,0146	20,8	1,6791	1,6795
	3 7 1	54,606	0,0093			1,6793
	5 3 5	54,64	-0,0245			1,6784
54,751	8 5 2	54,756	-0,0044	0,9	1,6752	1,6751
55,135	3 0 6	55,123	0,0119	5,2	1,6645	1,6648
	4 6 3	55,133	0,0022			1,6645
55,364	1 7 2	55,359	0,0055	10,9	1,6581	1,6583
	8 3 4	55,371	-0,0066			1,6579
55,675	3 1 6	55,669	0,0068	8	1,6496	1,6498
	7 5 3	55,675	0			1,6496
56,005	4 7 1	55,996	0,0098	3	1,6406	1,6409
	924	56,012	-0,0064			1,6405
56,21	744	56,211	-0,0007	5,6	1,6351	1,6351
56,331	2 2 6	56,309	0,0224	4,4	1,6319	1,6325
	554	56,36	-0,0288			1,6311
56,5	4 0 6	56,504	-0,0039	4,4	1,6274	1,6273
56,667	7 2 5	56,665	0,0019	7,5	1,623	1,6231
	4 4 5	56,668	-0,0009			1,623
56,829	6 3 5	56,812	0,0168	4,5	1,6188	1,6192
	12 2 1	56,818	0,0114			1,6191
	11 1 3	56,847	-0,0182			1,6183
56,967	12 0 2	56,968	-0,0015	5,1	1,6152	1,6152
	10 4 2	56,972	-0,0052			1,6151
57,292	3 2 6	57,284	0,0081	2,7	1,6068	1,607
	11 3 2	57,31	-0,0178			1,6063
57,523	12 1 2	57,502	0,0204	4	1,6009	1,6014
58,106	9 5 2	58,086	0,02	1,4	1,5862	1,5867
	10 1 4	58,102	0,0046			1,5863
58,25	5 0 6	58,248	0,0018	1,2	1,5826	1,5827
58,406	1 3 6	58,394	0,0123	5,3	1,5788	1,5791
	5 4 5	58,409	-0,0022			1,5787
58,758	11 4 1	58,75	0,0088	3,7	1,5702	1,5704
	5 1 6	58,775	-0,0163			1,5698
59,028	6 6 3	59,022	0,006	11,1	1,5636	1,5638
59,097	12 2 2	59,085	0,0117	7,1	1,562	1,5622
	6 7 0	59,105	-0,0074			1,5618
	8 4 4	59,109	-0,0116			1,5617
	3 6 4	59,113	-0,0161			1,5616
	2 5 5	59,126	-0,0291			1,5613
59,464	12 3 1	59,461	0,0028	8,8	1,5532	1,5533
	10 5 1	59,465	-0,0008			1,5532
59,545	8 2 5	59,548	-0,0039	2,2	1,5513	1,5512
60,077	3 5 5	60,072	0,0044	2,6	1,5388	1,5389
	0 8 0	60,101	-0,0246			1,5382
60,332	6 0 6	60,336	-0,0047	2,3	1,5329	1,5328
	5 2 6	60,337	-0,0055			1,5328
60,474	6 4 5	60,493	-0,0188	1,8	1,5296	1,5292
60,611	8 6 2	60,603	0,0082	3,4	1,5265	1,5267
60,858	0 8 1	60,838	0,0201	1,9	1,5209	1,5214

Abbildung A.21: Pulverdiffraktogramm von α-Sr[GaCl₄]₂, unterlegt mit den aus Einkristalldaten berechneten Reflexpositionen.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Sr	0,01212(8)	0,01396(8)	0,01327(8)	0,00087(6)	0,00024(6)	-0,00044(6)
Gal	0,01279(10)	0,01529(10)	0,01498(10)	-0,00064(8)	-0,00201(8)	-0,00068(7)
Ga2	0,01345(10)	0,01228(10)	0,01553(10)	0,01666(7)	-0,00096(8)	0,00101(7)
Cl1	0,02388(24)	0,01716(21)	0,02266(24)	-0,00599(18)	-0,00610(19)	0,00312(18)
Cl2	0,02012(21)	0,01572(20)	0,01580(20)	0,00263(16)	0,00070(17)	0,00168(16)
C13	0,01592(20)	0,01738(21)	0,02409(23)	-0,00007(18)	-0,00490(18)	-0,00057(16)
Cl4	0,01849(21)	0,01318(19)	0,02133(22)	0,00021(16)	-0,00381(17)	0,00015(16)
C15	0,01896(22)	0,01962(22)	0,02145(22)	0,00398(18)	0,00427(18)	0,00521(18)
C16	0,01879(21)	0,01958(22)	0,01770(21)	0,00417(17)	-0,00134(17)	-0,00417(17)
Cl7	0,01627(22)	0,02970(26)	0,01953(22)	-0,00617(19)	-0,00196(17)	0,00597(19)
C18	0,01943(22)	0,02144(23)	0,01813(22)	0,00627(18)	-0,00491(18)	-0,00693(18)

Tabelle A.60: Anisotrope Auslenkungsparameter der Atome in α-Sr[GaCl₄]₂.

Summenformel	SrGa ₂ Cl ₈
Kristallsystem	orthorhombisch
Raumgruppe	<i>P b c a</i> ; Nr. 61
Gitterkonstanten	a = 20,4115(11) Å
[aus Pulverdaten verfeinert]	b = 12,3059(5) Å
	c = 10,3019(6) Å
Zellvolumen V	2587,7(3) Å ³
Zahl der Formeleinheiten Z	8
Dichte (berechnet) ρ_x	2,745 g/cm ³
Diffraktometer	Nonius Kappa-CCD
Strahlung, λ	Mo-K α , λ = 71,073 pm
Absorptionskoeffizient μ	83,4 cm ⁻¹
Temperatur	123 K
Messbereich θ_{max}	30,02
gemessene Reflexe	$-29 \le h \le 29$
	$-17 \le k \le 17$
	$-14 \le l \le 14$
Anzahl der gemessenen Reflexe	99279
Anzahl symmetrieunabhängiger Reflexe	3959
Anzahl der Reflexe mit $F_{o} > 4\sigma (F_{o})$	3657
Zahl der verfeinerten Parameter	101
Verhältnis Reflexe / Parameter	39,20
F (0 0 0)	2032
R _{int}	0,0752
R_{σ}	0,0178
R [alle F_o]; R [$F_o > 4\sigma$ (F_o)]	0,0232; 0,0200
$wR(F^2)$ [Wichtung*]	0,0447
Goodness-of-Fit (GooF)	1,169
Restelektronendichte (max./min. ρ)	$0,75/-1,24 \text{ e/Å}^3$; Mittelwert = 0,00

Tabelle A.61: Datenblatt von α-Sr[GaCl₄]₂, Gitterparameter anhand von Röntgenpulverdaten verfeinert.

$$w = \frac{1}{\left[\sigma^2 (F_0)^2 + (0.0112 \cdot P)^2 + 5.29 \cdot P\right]} \qquad \text{mit } P = \frac{1}{\left[\sigma^2 (F_0)^2 + (0.0112 \cdot P)^2 + 5.29 \cdot P\right]}$$

mit
$$P = \frac{[\max(F_0^2, 0) + 2 \cdot F_c^2]}{3}$$

Summenformel	BaGa ₂ Cl ₈
Kristallsystem	orthorhombisch
Raumgruppe	<i>P b c a</i> ; Nr. 61
Gitterkonstanten	a = 20,9902(2) Å
[aus Pulverdaten verfeinert]	b = 12,3925(1) Å
	c = 10,4252(1) Å
Zellvolumen V	2711,81(X) Å ³
Zahl der Formeleinheiten Z	8
Dichte (berechnet) ρ_x	2,745 g/cm ³
Diffraktometer	Nonius Kappa-CCD
Strahlung, λ	Mo-K α , λ = 71,073 pm
Absorptionskoeffizient μ	83,4 cm ⁻¹
Temperatur	123 K
Messbereich θ_{max}	30,02
gemessene Reflexe	$-29 \le h \le 29$
	$-17 \le k \le 17$
	$-14 \le l \le 14$
Anzahl der gemessenen Reflexe	99279
Anzahl symmetrieunabhängiger Reflexe	3959
Anzahl der Reflexe mit $F_{o} > 4\sigma (F_{o})$	3657
Zahl der verfeinerten Parameter	101
Verhältnis Reflexe / Parameter	39,20
F (0 0 0)	2032
$R_{ m int}$	0,0752
R_{σ}	0,0178
<i>R</i> [alle F_{o}]; <i>R</i> [$F_{o} > 4\sigma$ (F_{o})]	0,0232; 0,0200
$wR(F^2)$ [Wichtung*]	0,0447
Goodness-of-Fit (GooF)	1,169
Restelektronendichte (max./min. ρ)	$0,75/-1,24 \text{ e/Å}^3$; Mittelwert = 0,00

A.17 Ba[GaCl₄]₂: Tabelle A.62: Datenblatt von Ba[GaCl₄]₂, mangels Substanzmenge konnte keine Verfeinerung der <u>Gitterparameter aus Röntgenpulverdaten vorgenommen werden.</u>

$$w = \frac{1}{\left[\sigma^2 (F_0)^2 + (0,0112 \cdot P)^2 + 5,29 \cdot P\right]}$$

mit
$$P = \frac{[\max(F_0^2, 0) + 2 \cdot F_c^2]}{3}$$

Abbildung A.22: erweiterte asymmetrische Einheit in der Struktur von Ba[GaCl₄]₂. Die thermischen Schwingungsellipsoide entsprechen einer Aufenthaltswahrscheinlichkeit der Atome von 70 %.

	1	Elemen	tar Zene von Bu	Ga 814121		
Atom	Wyckoff	Symmetrie	x/a	<i>y/b</i>	z/c	U _{eq}
Ba	8c	1	0,88814(1)	0,53151(1)	0,35425(1)	0,01454(4)
Gal	8c	1	0,74626(1)	0,46888(1)	0,11732(3)	0,01721(6)
Ga2	8c	1	0,50445(1)	0,27230(2)	0,22692(3)	0,01626(6)
Cl1	8c	1	0,73686(3)	0,35456(5)	-0,04026(6)	0,02452(13)
Cl2	8c	1	0,50049(3)	0,36842(5)	0,04735(6)	0,01940(11)
C13	8c	1	0,59750(3)	0,28925(5)	0,31469(7)	0,02311(13)
Cl4	8c	1	0,49166(3)	0,00235(5)	0,18432(6)	0,02158(12)
C15	8c	1	0,42748(3)	0,33989(5)	0,33922(6)	0,02362(13)
C16	8c	1	0,76731(3)	0,38302(5)	0,29437(6)	0,02220(12)
Cl7	8c	1	0,65598(3)	0,55605(6)	0,12474(6)	0,02653(14)
C18	8c	1	0,82485(3)	0,58156(5)	0,09004(6)	0,02512(13)

Tabelle A.63: Koordinaten, Wyckoff-Lagen und isotrope Auslenkungsparameter der Atome in der Elementarzelle von Ba[GaCl₄]₂.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Ва	0,01365(7)	0,01583(7)	0,01414(7)	0,00036(5)	-0,00002(5)	-0,00052(5)
Gal	0,01618(13)	0,01830(13)	0,01713(13)	-0,00100(10)	-0,00293(10)	-0,00048(10)
Ga2	0,01619(12)	0,01509(12)	0,01751(13)	0,00239(9)	-0,00030(10)	0,00089(9)
Cl1	0,02683(31)	0,02115(27)	0,02558(32)	-0,00768(23)	-0,00685(24)	0,00577(23)
Cl2	0,02291(28)	0,01829(25)	0,01699(27)	0,00354(20)	0,00370(21)	0,00241(21)
Cl3	0,01961(28)	0,01902(26)	0,03070(33)	0,00110(24)	-0,00608(24)	-0,00213(21)
Cl4	0,02277(28)	0,01604(25)	0,02593(30)	0,00086(22)	-0,00636(23)	-0,00081(21)
C15	0,02428(30)	0,02528(29)	0,02129(29)	0,00636(23)	0,00633(23)	0,00713(23)
Cl6	0,02275(29)	0,02393(28)	0,01993(29)	0,00556(22)	-0,00265(22)	-0,00625(22)
Cl7	0,02157(30)	0,03456(33)	0,02346(31)	-0,00963(26)	-0,00374(24)	0,00821(25)
C18	0,02549(31)	0,02781(30)	0,02205(30)	0,00938(24)	-0,00705(24)	-0,00938(24)

Tabelle A.64: Anisotrope Auslenkungsparameter der Atome in Ba[GaCl₄]₂.

Tabelle A.65: Bindungslängen und -winkel in der asymmetrischen Einheit von Ba[GaCl₄]₂.

Bindungspaar	Bindungslänge /Å	Bindungspaar	Bindungslänge /Å
Ba-Cl1	3,1761(6)	Ga1-Cl1	2,1783(7)
Ba-Cl2	3,2709(6)	Ga1-Cl6	2,1758(7)
Ba-Cl3	3,2346(6)	Ga1-Cl7	2,1826(7)
Ba-Cl4	3,2055(6)	Ga1-Cl8	2,1799(7)
Ba-Cl5	3,2232(6)		
Ba-Cl6	3,1952(6)	Ga2-Cl2	2,2205(6)
Ba-Cl7	3,1602(7)	Ga2-Cl3	2,1670(7)
Ba-Cl8	3,1204(6)	Ga2-Cl4	2,1691(6)
Ba-Cl2'	3,3250(6)	Ga2-C15	2,1640(7)

Atomverknüpfung	Bindungswinkel /°	Atomverknüpfung	Bindungswinkel /°
Cl1-Ba-Cl2	139,61(2)	Cl1-Ga1-Cl6	109,88(3)
Cl1-Ba-Cl2'	101,85(2)	Cl1-Ga1-Cl7	105,66(3)
Cl1-Ba-Cl3	71,47(2)	Cl1-Ga1-Cl8	112,75(3)
Cl1-Ba-Cl4	136,05(2)	Cl6-Ga1-Cl7	112,85(3)
Cl1-Ba-Cl5	139,10(2)	Cl6-Ga1-Cl8	105,68(3)
Cl1-Ba-Cl6	70,60(2)	Cl7-Ga1-Cl8	110,16(3)
Cl1-Ba-Cl7	66,52(2)	Cl2-Ga2-Cl3	109,74(3)
Cl1-Ba-Cl8	82,27(2)	Cl2-Ga2-Cl4	110,10(3)
Cl2-Ba-Cl2'	62,21(1)	Cl2-Ga2-Cl5	102,74(2)
Cl2-Ba-Cl3	125,66(2)	Cl3-Ga2-Cl4	106,99(3)
Cl2-Ba-Cl4	77,00(2)	Cl3-Ga2-Cl5	114,01(3)
Cl2-Ba-Cl5	63,66(1)	Cl4-Ga2-Cl5	113,21(3)
Cl2-Ba-Cl6	106,12(2)		
Cl2-Ba-Cl7	73,70(2)	Ba-Cl ₁₋₈ -Ga ₁₋₂	92,41-97,92
Cl2-Ba-Cl8	134,96(2)	Ba-Cl2'-Ga2'	133,17
Cl2'-Ba-Cl3	68,11(2)		
Cl2'-Ba-Cl4	71,28(2)	Cl4-Ba-Cl5	69,78(2)
Cl2'-Ba-Cl5	118,27(2)	Cl4-Ba-Cl6	132,42(2)
Cl2'-Ba-Cl6	153,03(2)	Cl4-Ba-Cl7	144,87(2)
Cl2'-Ba-Cl7	78,10(2)	Cl4-Ba-Cl8	78,05(2)
Cl2'-Ba-Cl8	139,43(2)	Cl5-Ba-Cl6	69,93(2)
Cl3-Ba-Cl4	65,53(2)	Cl5-Ba-Cl7	112,36(2)
Cl3-Ba-Cl5	128,60(2)	Cl5-Ba-Cl8	72,73(2)
Cl3-Ba-Cl6	128,15(2)	Cl6-Ba-Cl7	75,16(2)
Cl3-Ba-Cl7	116,77(2)	Cl6-Ba-Cl8	66,76(2)
Cl3-Ba-Cl8	74,39(2)	Cl7-Ba-Cl8	136,98(2)

A.18 Sn[GaCl₄]₂:

Tabelle A.66: Datenblatt von Sn[GaCl4]2, mangels Substanzmenge konnte keine Verfeinerung der Gitterparameter aus Röntgenpulverdaten vorgenommen werden.

Summenformel	SnGa ₂ Cl ₈
Kristallsystem	orthorhombisch
Raumgruppe	<i>P b c a</i> ; Nr. 61
Gitterkonstanten	a = 20,2081(3) Å
[aus Pulverdaten verfeinert]	b = 12,1428(2) Å
	c = 10,1702(1) Å
Zellvolumen V	2495,59(X) Å ³
Zahl der Formeleinheiten Z	8
Dichte (berechnet) ρ_x	2,884 g/cm ³
Diffraktometer	Nonius Kappa-CCD
Strahlung, λ	Mo-K α , λ = 71,073 pm
Absorptionskoeffizient μ	79,3 cm ⁻¹
Temperatur	123 K
Messbereich θ_{max}	30,01
gemessene Reflexe	$-28 \le h \le 28$
	$-17 \le k \le 17$
	$-14 \le l \le 14$
Anzahl der gemessenen Reflexe	47325
Anzahl symmetrieunabhängiger Reflexe	3644
Anzahl der Reflexe mit $F_{o} > 4\sigma (F_{o})$	3441
Zahl der verfeinerten Parameter	101
Verhältnis Reflexe / Parameter	36,08
F (0 0 0)	1984
$R_{\rm int}$	0,0496
R_{σ}	0,0183
R [alle F_o]; R [$F_o > 4\sigma$ (F_o)]	0,0207; 0,0187
$wR(F^2)$ [Wichtung*]	0,0414
Goodness-of-Fit (GooF)	1,147
Restelektronendichte (max./min. ρ)	$0,55/-0,61 \text{ e/Å}^3$; Mittelwert = 0,00

$$w = \frac{1}{\left[\sigma^2 (F_0)^2 + (0,0096 \cdot P)^2 + 3,73 \cdot P\right]}$$

mit
$$P = \frac{[\max(F_0^2, 0) + 2 \cdot F_c^2]}{3}$$

Abbildung A.23: erweiterte asymmetrische Einheit in der Struktur von Sn[GaCl₄]₂. Die thermischen Schwingungsellipsoide entsprechen einer Aufenthaltswahrscheinlichkeit der Atome von 70 %.

	11/ 1 00			0401412.	,	
Atom	Wyckoff	Symmetrie	x/a	<i>y/b</i>	z/c	U _{eq}
Sn	8c	1	0,88665(1)	0,52422(1)	0,32404(1)	0,01735(5)
Gal	8c	1	0,74306(1)	0,47028(2)	0,11233(2)	0,01566(6)
Ga2	8c	1	0,50667(1)	0,27104(2)	0,22027(2)	0,01436(5)
C11	8c	1	0,73569(3)	0,35618(4)	-0,05031(6)	0,02477(11)
Cl2	8c	1	0,50038(3)	0,36916(4)	0,04168(5)	0,01949(10)
C13	8c	1	0,60260(3)	0,28318(4)	0,31292(5)	0,02119(10)
Cl4	8c	1	0,49378(3)	0,09558(4)	0,18032(5)	0,01797(10)
C15	8c	1	0,42639(3)	0,34004(4)	0,33951(5)	0,01885(10)
C16	8c	1	0,76973(3)	0,38411(4)	0,29380(5)	0,01945(10)
Cl7	8c	1	0,65416(3)	0,56629(5)	0,11902(6)	0,02616(12)
C18	8c	1	0,83047(3)	0,58052(4)	0,09177(5)	0,01999(10)

Tabelle A.67: Koordinaten, Wyckoff-Lagen und isotrope Auslenkungsparameter der Atome in der Elementarzelle von Sn[GaCl₄]₂.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Sn	0,01615(8)	0,01956(8)	0,01635(8)	0,00167(5)	-0,00215(5)	-0,00072(5)
Gal	0,01356(11)	0,01618(11)	0,01723(11)	-0,00108(8)	-0,00276(8)	-0,00027(8)
Ga2	0,01410(10)	0,01265(11)	0,01635(11)	0,00103(8)	-0,00104(8)	0,00142(8)
Cl1	0,03052(28)	0,01853(23)	0,02525(26)	-0,00702(19)	-0,00723(21)	0,00193(20)
Cl2	0,02505(25)	0,01669(22)	0,01674(22)	0,00323(17)	0,00061(18)	0,00180(18)
Cl3	0,01580(22)	0,02096(24)	0,02682(26)	-0,00083(19)	-0,00540(19)	-0,00045(18)
Cl4	0,01858(23)	0,01312(21)	0,02222(24)	-0,00068(17)	-0,00317(18)	0,00060(17)
Cl5	0,01877(23)	0,01717(22)	0,02063(23)	0,00371(17)	0,00412(18)	0,00420(18)
Cl6	0,01851(23)	0,02051(23)	0,01934(23)	0,00478(18)	-0,00078(18)	-0,00435(18)
Cl7	0,01785(25)	0,03328(30)	0,02734(28)	-0,00450(22)	-0,00204(20)	0,00869(21)
C18	0,01920(23)	0,02141(24)	0,01937(23)	0,00692(18)	-0,00510(18)	-0,00575(19)

Tabelle A.68: Anisotrope Auslenkungsparameter der Atome in Sn[GaCl₄]₂.

Tabelle A.69: Bindungslängen und -winkel in der asymmetrischen Einheit von Sn[GaCl₄]₂.

Bindungspaar	Bindungslänge /Å	Bindungspaar	Bindungslänge /Å
Sn-Cl1	3,1394(5)	Ga1-Cl1	2,1628(6)
Sn-Cl2	3,2700(5)	Ga1-Cl6	2,1890(5)
Sn-Cl3	3,1540(5)	Ga1-Cl7	2,1427(6)
Sn-Cl4	2,9540(5)	Ga1-Cl8	2,2262(5)
Sn-Cl5	2,9006(5)		
Sn-Cl6	2,9277(5)	Ga2-Cl2	2,1759(5)
Sn-Cl7	3,2997(5)	Ga2-Cl3	2,1604(6)
Sn-Cl8	2,7085(5)	Ga2-Cl4	2,1846(5)
Sn-Cl2'	3,4333(5)	Ga2-Cl5	2,1920(5)

Atomverknüpfung	Bindungswinkel /°	Atomverknüpfung	Bindungswinkel /°
Cl1-Sn-Cl2	130,54(2)	Cl1-Ga1-Cl6	110,83(2)
Cl1-Sn-Cl2'	94,98(2)	Cl1-Ga1-Cl7	108,37(2)
Cl1-Sn-Cl3	66,90(2)	Cl1-Ga1-Cl8	111,59(2)
Cl1-Sn-Cl4	135,23(2)	Cl6-Ga1-Cl7	116,09(2)
Cl1-Sn-Cl5	143,92(2)	Cl6-Ga1-Cl8	99,86(2)
Cl1-Sn-Cl6	71,10(2)	Cl7-Ga1-Cl8	109,94(2)
Cl1-Sn-Cl7	65,62(2)	Cl2-Ga2-Cl3	112,28(2)
Cl1-Sn-Cl8	84,73(2)	Cl2-Ga2-Cl4	111,83(2)
Cl2-Sn-Cl2'	58,70(1)	Cl2-Ga2-Cl5	102,08(2)
Cl2-Sn-Cl3	122,72(2)	Cl3-Ga2-Cl4	104,75(2)
Cl2-Sn-Cl4	78,50(2)	Cl3-Ga2-Cl5	113,37(2)
Cl2-Sn-Cl5	66,48(1)	Cl4-Ga2-Cl5	112,79(2)
Cl2-Sn-Cl6	106,05(2)		
Cl2-Sn-Cl7	66,68(2)	Sn-Cl ₁₋₈ -Ga ₁₋₂	89,97-100,51
Cl2-Sn-Cl8	143,53(2)	Sn-Cl2'-Ga2'	134,90
Cl2'-Sn-Cl3	66,51(2)		
Cl2'-Sn-Cl4	70,40(2)	Cl4-Sn-Cl5	73,50(2)
Cl2'-Sn-Cl5	118,45(2)	Cl4-Sn-Cl6	141,14(2)
Cl2'-Sn-Cl6	145,43(2)	Cl4-Sn-Cl7	138,76(2)
Cl2'-Sn-Cl7	72,88(2)	Cl4-Sn-Cl8	80,63(2)
Cl2'-Sn-Cl8	138,23(2)	Cl5-Sn-Cl6	73,45(2)
Cl3-Sn-Cl4	68,50(2)	Cl5-Sn-Cl7	109,50(2)
Cl3-Sn-Cl5	136,81(2)	Cl5-Sn-Cl8	79,08(2)
Cl3-Sn-Cl6	129,14(2)	Cl6-Sn-Cl7	72,56(2)
Cl3-Sn-Cl7	112,45(2)	Cl6-Sn-Cl8	73,55(2)
Cl3-Sn-Cl8	75,28(2)	Cl7-Sn-Cl8	140,56(2)

A.19 Pb[AlCl₄]₂:

I abelle A	A. / U. Liste ue		tenexe des 1 di	ver unn aktogra	ammis von i u	[AIC14]2.
<i>2θ</i> [beob.]	h k l	<i>2θ</i> [berech.]	beobberech.	rel. Intensität	<i>d</i> [beob.]	d [berech.]
8,733	2 0 0	8,729	0,0044	1,6	10,1169	10,122
11,344	2 1 0	11,348	-0,0034	5,1	7,7936	7,7912
12,021	1 1 1	12,025	-0,0039	28,3	7,3563	7,3539
14,216	2 1 1	14,218	-0,0022	100	6,2253	6,2244
14,499	0 2 0	14,503	-0,0046	26,8	6,1044	6,1025
16,859	0 2 1	16,853	0,0061	1	5,2547	5,2566
16,951	2 2 0	16,952	-0,0005	6	5,2263	5,2261
17,119	0 0 2	17,123	-0,0038	12,9	5,1754	5,1743
17,274	3 1 1	17,275	-0,0014	5,5	5,1295	5,1291
17,448		nicht indiziert		1,4	5,0785	
17,522	4 0 0	17,509	0,0124	1,9	5,0574	5,061
17,68	1 0 2	17,678	0,0023	3,2	5,0125	5,0131
19,006	2 2 1	19,009	-0,0025	0,5	4,6656	4,665
19,12	1 1 2	19,124	-0,0035	1,2	4,638	4,6372
19,249	2 0 2	19,25	-0,0005	5,7	4,6073	4,6072
20,586	2 1 2	20,589	-0,0029	0,7	4,3109	4,3103
20,827	4 1 1	20,833	-0,0064	2,1	4,2617	4,2604
21,625	3 0 2	21,625	-0,0007	10,5	4,1062	4,1061
22,5	0 2 2	22,511	-0,0106	0,6	3,9484	3,9466
22,815	4 2 0	22,809	0,0056	24,8	3,8947	3,8956
	3 1 2	22,832	-0,0173			3,8918
22,941	1 2 2	22,94	0,0003	1,3	3,8736	3,8736
23,297		nicht indiziert		0,6	3,8151	
23,545	2 3 0	23,549	-0,0043	2,3	3,7755	3,7748
23,89	1 3 1	23,89	-0,0006	4,9	3,7218	3,7217
24,204	2 2 2	24,185	0,0182	0,3	3,6742	3,677
24,397	4 2 1	24,395	0,0019	5,8	3,6456	3,6458
24,586	4 0 2	24,585	0,0005	5,3	3,618	3,618
24,699	5 1 1	24,693	0,0055	4,1	3,6017	3,6025
24,86		nicht indiziert		0,9	3,5787	
25,089	2 3 1	25,091	-0,0017	17	3,5465	3,5463
25,669	4 1 2	25,66	0,0082	0,9	3,4677	3,4688
26,138	3 2 2	26,137	0,0009	20,4	3,4066	3,4067
26,371	6 0 0	26,395	-0,0235	1,1	3,3769	3,374
26,983	3 3 1	26,981	0,0018	4,3	3,3018	3,302
27,2	1 1 3	27,201	-0,0014	6,1	3,2759	3,2757
27,402	6 1 0	27,404	-0,002	1,4	3,2523	3,252
27,795	5 2 1	27,79	0,0042	5,2	3,2071	3,2076
28,656	4 2 2	28,661	-0,0051	3,8	3,1127	3,1122
28,755	6 1 1	28,753	0,0026	13,8	3,1022	3,1024
28,918	5 1 2	28,918	0,0003	10,9	3,0851	3,0851
29,437	4 3 1	29,438	-0,001	1,3	3,0318	3,0317
29,736	0 2 3	29,727	0,0093	2,1	3,002	3,003
29,973	3 1 3	29,975	-0,0024	19,6	2,9788	2,9786
30,255	6 2 0	30,244	0,0112	0,3	2,9517	2,9527
30,52	0 4 1	30,52	0	16,8	2,9267	2,9267
30,916	3 3 2	30,917	-0,0011	3,1	2,8901	2,89
31,038	2 2 3	31,039	-0,0008	8,4	2,879	2,8789
31,485	6 2 1	31,482	0,0034	3,9	2,8391	2,8394
31 634	6 0 2	31 633	0.0011	4	2 8261	2 8262

Tabelle A.70: Liste der indizierten Reflexe des Pulverdiffraktogramms von Pb[AlCl₄]₂.

	5	2	2	31,634	-0,0004			2,8261
31,798	2	4	1	31,803	-0,0046	3,8	2,8119	2,8115
32,213	4	1	3	32,224	-0,0106	0,9	2,7766	2,7757
32,349	5	3	1	32,347	0,0019	10,1	2,7653	2,7654
32,498	6	1	2	32,492	0,0055	2,8	2,7529	2,7534
32,613	3	2	3	32,612	0,0009	6,7	2,7435	2,7436
32,955	7	1	1	32,959	-0,0042	1,6	2,7158	2,7155
33,105	4	3	2	33,108	-0.0027	0.1	2.7038	2,7036
33.34	3	4	1	33.344	-0.0031	1.2	2.6853	2.685
34 085	0	4	2	34 085	0 0004	3.8	2,6283	2 6283
34 298	4	4	0	34 29	0.0088	21.4	2,6124	2,6131
34 353	1	3	3	34 343	0,0096	15.3	2,6084	2,6091
51,555	1	4	2	34 38	-0.027	10,0	2,0001	2,0051
34 501	6	3	0	34 507	-0.0064	19	2 5975	2,0001
34,653	0	0	4	34 644	0.0091	2	2,5975	2,5971
34,033	5	1	- 2	34,044	0,0032	23 5	2,5668	2,567
54,928	1	1	5 1	34,924	0,0032	23,5	2,5008	2,567
25.076	1	0	4	54,955 night indiziort	-0,0073	0.7	2 5562	2,3003
25,070	n	4	\mathbf{r}		0.0055	0,7	2,5505	2 5 4 2 0
35,237	2	4	1	35,232	0,0033	1,9	2,5455	2,3439
55,419	1	2	1	35,397	0,0221	20	2,3323	2,3338
	4	4	1	35,401	0,018			2,5335
25 522	8	0	0	35,445	-0,0261	12.0	2 5252	2,5305
35,522	1	0	2	35,533	-0,0107	12,9	2,5252	2,5244
35,613	6	3	1	35,613	0	14,8	2,519	2,519
35,745	1	1	4	35,724	0,021		2,5099	2,5113
	5	3	2	35,749	-0,0041		0.470	2,5096
36,313	1	1	2	36,311	0,0018	1,6	2,472	2,4721
36,659	3	3	3	36,63	0,0288	15,5	2,4494	2,4513
	3	4	2	36,664	-0,0058			2,4491
37,187	3	0	4	37,19	-0,0026	4,7	2,4158	2,4157
37,288	8	1	1	37,286	0,0028	6,6	2,4095	2,4097
37,733	0	2	4	37,737	-0,0032	4,1	2,3821	2,3819
37,884	2	5	0	37,885	-0,0002	7,2	2,373	2,373
	5	4	1	37,902	-0,018			2,3719
38,009	6	1	3	37,996	0,013	7,5	2,3655	2,3663
	1	2	4	38,007	0,0019			2,3656
38,485	8	2	0	38,482	0,0031	4,1	2,3373	2,3375
38,565	7	2	2	38,564	0,0019	7,9	2,3326	2,3327
	4	4	2	38,567	-0,0019			2,3325
38,773	6	3	2	38,764	0,0086	2	2,3206	2,3211
38,9	2	5	1	38,907	-0,0067	2,4	2,3133	2,3129
39,071	4	0	4	39,071	0,0006	3,5	2,3036	2,3036
39,525				nicht indiziert		0,9	2,2782	
39,646	1	4	3	39,655	-0,0083	4,2	2,2715	2,271
39,806	4	1	4	39,789	0,0162	1,4	2,2627	2,2636
	6	4	0	39,8	0,006			2,2631
40,112	3	2	4	40,113	-0,0014	3,6	2,2462	2,2461
40,215	3	5	1	40,209	0,0053	0,8	2,2407	2,241

Summenformel	PbAl ₂ Cl ₈
Kristallsystem	orthorhombisch
Raumgruppe	<i>P b c a</i> ; Nr. 61
Gitterkonstanten	a = 20,2440(12) Å
[aus Pulverdaten verfeinert]	b = 12,2049(7) Å
	c = 10,3485(6) Å
Zellvolumen V	2556,88(19) Å ³
Zahl der Formeleinheiten Z	8
Dichte (berechnet) ρ_x	2,826 g/cm ³
Diffraktometer	Nonius Kappa-CCD
Strahlung, λ	Mo-K α , λ = 71,073 pm
Absorptionskoeffizient μ	149.3 cm^{-1}
Temperatur	298 K
Messbereich θ_{max}	25,02
gemessene Reflexe	$-24 \le h \le 24$
	$-14 \le k \le 14$
	$-12 \le l \le 12$
Anzahl der gemessenen Reflexe	43668
Anzahl symmetrieunabhängiger Reflexe	2256
Anzahl der Reflexe mit $F_{\rm o} > 4\sigma (F_{\rm o})$	1367
Zahl der verfeinerten Parameter	101
Verhältnis Reflexe / Parameter	22,34
F (0 0 0)	1952
$R_{ m int}$	0,2368
R_{σ}	0,0700
<i>R</i> [alle F_{o}]; <i>R</i> [$F_{o} > 4\sigma$ (F_{o})]	0,1038; 0,0458
$wR(F^2)$ [Wichtung*]	0,0923
Goodness-of-Fit (GooF)	1,065
Restelektronendichte (max./min. ρ)	$1,03/-1,02 \text{ e}/\text{Å}^3$; Mittelwert = 0,00

. n . T

$$w = \frac{1}{\left[\sigma^2 (F_0)^2 + (0,0187 \cdot P)^2 + 34,83 \cdot P\right]} \quad \text{mit } P = \frac{\left[\max(F_0^2, 0) + 2 \cdot F_c^2\right]}{3}$$

Abbildung A.24: erweiterte asymmetrische Einheit in der Struktur von Pb[AlCl₄]₂. Die thermischen Schwingungsellipsoide entsprechen einer Aufenthaltswahrscheinlichkeit der Atome von 70 %.

Atom	Wyckoff	Symmetrie	x/a	<i>y/b</i>	z/c	\mathbf{U}_{eq}				
Pb	8c	1	0,88582(3)	0,52794(4)	0,33011(5)	0,03972(20)				
Al1	8c	1	0,74540(21)	0,46973(39)	0,10284(40)	0,04138(103)				
Al2	8c	1	0,50504(21)	0,27098(35)	0,22100(41)	0,03707(109)				
C11	8c	1	0,73842(21)	0,35818(34)	-0,05413(40)	0,05884(116)				
C12	8c	1	0,50174(20)	0,36950(31)	0,05088(37)	0,04970(99)				
C13	8c	1	0,59934(16)	0,28069(30)	0,31154(42)	0,05128(104)				
Cl4	8c	1	0,49150(18)	0,10096(28)	0,18064(41)	0,04882(94)				
C15	8c	1	0,42797(18)	0,33666(30)	0,33705(43)	0,05278(99)				
C16	8c	1	0,76594(18)	0,38557(33)	0,27885(37)	0,04974(100)				
Cl7	8c	1	0,65581(20)	0,55969(35)	0,10282(42)	0,06219(120)				
C18	8c	1	0,82749(19)	0,58099(33)	0,08518(38)	0,05262(106)				

Tabelle A.72: Koordinaten, Wyckoff-Lagen und isotrope Auslenkungsparameter der Atome in der Elementarzelle von Pb[AlCl₄]₂.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Pb	0,03559(29)	0,04314(31)	0,04043(31)	0,00300(32)	-0,00112(32)	-0,00140(30)
Al1	0,03663(233)	0,04625(268)	0,04127(241)	-0,00416(250)	-0,00729(204)	-0,00250(240)
Al2	0,03296(223)	0,03656(248)	0,04169(277)	0,00577(206)	-0,00413(212)	-0,00026(186)
Cl1	0,06536(281)	0,05052(256)	0,06063(273)	-0,01346(211)	-0,01433(235)	0,00685(213)
Cl2	0,05978(245)	0,04492(229)	0,04441(228)	0,00689(197)	-0,00128(206)	0,00374(192)
Cl3	0,03749(216)	0,04752(217)	0,06881(280)	0,00082(203)	-0,01461(205)	-0,00106(155)
Cl4	0,04822(210)	0,03620(200)	0,06203(253)	-0,00167(210)	-0,01241(222)	-0,00129(159)
C15	0,04721(220)	0,05152(221)	0,05962(248)	0,01157(224)	0,00840(228)	0,01401(179)
Cl6	0,04496(226)	0,05531(244)	0,04894(223)	0,01111(190)	-0,00241(184)	-0,01297(186)
Cl7	0,04556(235)	0,07721(320)	0,06380(268)	-0,01479(236)	-0,00704(210)	0,01568(212)
C18	0,05002(239)	0,05732(244)	0,05052(237)	0,01874(200)	-0,01618(199)	-0,01627(196)

Tabelle A.73: Anisotrope Auslenkungsparameter der Atome in Pb[AlCl₄]₂.

Tabelle A.74: Bindungslängen und -winkel in der asymmetrischen Einheit von Pb[AlCl₄]₂.

Bindungspaar	Bindungslänge /Å	Bindungspaar	Bindungslänge /Å
Pb-Cl1	3,0726(8)	Ga1-Cl1	2,1745(8)
Pb-Cl2	3,2421(7)	Ga1-Cl6	2,1826(8)
Pb-Cl3	3,1124(7)	Ga1-Cl7	2,1640(8)
Pb-Cl4	2,0351(7)	Ga1-Cl8	2,2006(8)
Pb-Cl5	3,0382(7)		
Pb-Cl6	3,0152(7)	Ga2-Cl2	2,1949(8)
Pb-Cl7	3,1355(8)	Ga2-Cl3	2,1683(8)
Pb-Cl8	2,8509(7)	Ga2-Cl4	2,1769(8)
Pb-Cl2'	3,3435(7)	Ga2-Cl5	2,1770(8)

Atomverknüpfung	Bindungswinkel /°	Atomverknüpfung	Bindungswinkel /°
Cl1-Pb-Cl2	135,35(2)	Cl1-Ga1-Cl6	110,83(2)
Cl1-Pb-Cl2'	98,88(2)	Cl1-Ga1-Cl7	108,37(2)
C11-Pb-C13	68,75(2)	Cl1-Ga1-Cl8	111,59(2)
Cl1-Pb-Cl4	136,25(2)	Cl6-Ga1-Cl7	116,09(2)
Cl1-Pb-Cl5	140,87(2)	Cl6-Ga1-Cl8	99,86(2)
Cl1-Pb-Cl6	71,17(2)	Cl7-Ga1-Cl8	109,94(2)
Cl1-Pb-Cl7	67,67(2)	Cl2-Ga2-Cl3	112,28(2)
Cl1-Pb-Cl8	83,08(2)	Cl2-Ga2-Cl4	111,83(2)
Cl2-Pb-Cl2'	59,87(2)	Cl2-Ga2-Cl5	102,08(2)
Cl2-Pb-Cl3	124,14(2)	Cl3-Ga2-Cl4	104,75(2)
Cl2-Pb-Cl4	77,51(2)	Cl3-Ga2-Cl5	113,37(2)
Cl2-Pb-Cl5	65,42(1)	Cl4-Ga2-Cl5	112,79(2)
Cl2-Pb-Cl6	105,81(2)		
Cl2-Pb-Cl7	68,80(2)	Pb-Cl ₁₋₈ -Ga ₁₋₂	91,06-99,19
Cl2-Pb-Cl8	139,70(2)	Pb-Cl2'-Ga2'	134,31
Cl2'-Pb-Cl3	67,88(2)		
Cl2'-Pb-Cl4	71,28(2)	Cl4-Pb-Cl5	71,71(2)
Cl2'-Pb-Cl5	118,55(2)	Cl4-Pb-Cl6	136,36(2)
Cl2'-Pb-Cl6	148,64(2)	Cl4-Pb-Cl7	140,70(2)
Cl2'-Pb-Cl7	74,56(2)	Cl4-Pb-Cl8	79,05(2)
Cl2'-Pb-Cl8	138,73(2)	Cl5-Pb-Cl6	70,80(2)
Cl3-Pb-Cl4	68,13(2)	Cl5-Pb-Cl7	109,77(2)
C13-Pb-C15	133,94(2)	C15-Pb-C18	76,30(2)
C13-Pb-C16	129,56(2)	Cl6-Pb-Cl7	74,17(2)
C13-Pb-C17	115,45(2)	C16-Pb-C18	71,10(2)
Cl3-Pb-Cl8	74,84(2)	Cl7-Pb-Cl8	140,22(2)

A.20 Pb[GaCl₄]₂:

2 <i>Ө</i> [beob]	h k l	20 [herech]	heob -berech	rel Intensität	d [beob]	d [berech]
8.886	$\frac{200}{200}$	8.795	0.0913	2	9,9435	10.0465
11.498	2 1 0	11.43	0.0683	7.3	7.6896	7.7354
12.249	1 1 1	12.193	0.0558	32.6	7.2201	7.253
14.415	2 1 1	14.391	0.024	100	6.1397	6.1499
14 651	0 2 0	14 602	0.0493	30.9	6 0411	6 0614
15.7		nicht indiziert	•,• • •	4.6	5.6399	-,
15.872		nicht indiziert		1.6	5.579	
17.083	0 2 1	17.029	0.0536	26.7	5.1864	5.2026
- ,,	2 2 0	17.071	0.0119	, ,	-,	5,1899
17.445	3 1 1	17.46	-0.0146	21.9	5.0794	5.0751
· , -	0 0 2	17.48	-0.0342	<i>y-</i>	-)	5.0695
17.595	3 1 1	17.46	0.1348	3.2	5.0366	5.0751
	0 0 2	17.48	0.1152	- 1	-)	5.0695
	1 2 1	17.595	-0.0003			5.0365
	4 0 0	17.642	-0.047			5.0232
18.046	1 0 2	18.032	0.0141	4.3	4.9116	4.9155
18.44		nicht indiziert	-) -	0.6	4,8075	3
19.539	1 1 2	19.471	0.0677	11.6	4.5396	4,5552
- ,	2 0 2	19.599	-0.0597	<i>y</i> -	3	4.5259
20,963	2 1 2	20.934	0.0288	2.8	4.2343	4.2401
,	4 1 1	21,037	-0,0737	,	,	4,2196
21,881	3 0 2	21,972	-0,0909	17,2	4,0587	4,0422
22,899	0 2 2	22,85	0,0485	19	3,8806	3,8887
,	4 2 0	22,976	-0,0772		,	3,8677
23,076	4 2 0	22,976	0,1002	6,2	3,8511	3,8677
-	3 1 2	23,177	-0,1009		,	3,8346
23,653	2 3 0	23,714	-0,0607	1,9	3,7585	3,749
24,033	1 3 1	24,099	-0,0657	4,7	3,6999	3,6899
24,503	2 2 2	24,527	-0,024	8,2	3,63	3,6265
	4 2 1	24,615	-0,1123			3,6137
24,799	5 1 1	24,92	-0,1208	5,3	3,5873	3,5702
	4 0 2	24,934	-0,1348			3,5682
25,223	2 3 1	25,308	-0,0847	15,4	3,528	3,5163
25,819		nicht indiziert		3,6	3,4479	
26,35	3 2 2	26,483	-0,1323	29,3	3,3795	3,363
27,096	3 3 1	27,211	-0,1155	4,7	3,2882	3,2745
27,561	6 1 0	27,612	-0,0513	5,4	3,2338	3,2279
27,881	1 1 3	27,738	0,1437	5,8	3,1974	3,2136
28,139	5 2 1	28,034	0,1056	1,3	3,1686	3,1803
28,834	2 1 3	28,804	0,0293	18,4	3,0939	3,097
29,089	6 1 1	29,007	0,082	11,9	3,0673	3,0758
	4 2 2	29,015	0,0738			3,075
29,331	5 1 2	29,277	0,0542	2	3,0425	3,048
	0 4 0	29,448	-0,1169			3,0307
29,530	0 4 0	29,448	0,0821	1,5	3,0225	3,0307
	2 3 2	29,612	-0,0816			3,0143
30,072		nicht indiziert		1,3	2,9693	
30,291	0 2 3	30,254	0,037	17,8	2,9483	2,9518
30,627	3 1 3	30,506	0,1207	13,9	2,9167	2,928
	1 2 3	30,586	0,0406			2,9205
	0 4 1	30,767	-0,14			2,9037

L						
Tabelle A.75: Liste	der indizierten	Reflexe des	s Pulverdiffraktogramms	von Pb[GaCL]	Datenbereich auf	
I do elle I di o ellote	act maizier cen	nemene ue	s i un ei unin untegi unins	, on 1 5[Ouc14]2,	Dutember eren uur	
		20	- 55 ° hosebränkt			
21.004	1 4 1	21.005	0.0007	1.2	2.074	2 0720
--------	-------	-----------------	---------	------	--------	--------
31,094	141	31,095	-0,0007	1,2	2,8/4	2,8739
31,351	3 3 2	31,274	0,0772	3,3	2,8509	2,8578
31,534	2 2 3	31,565	-0,0312	3,6	2,8348	2,8321
31,87	6 2 1	31,752	0,1182	8,1	2,8057	2,8159
	5 2 2	32,001	-0,1312			2,7945
	6 0 2	32,005	-0,1348			2,7942
32,417		nicht indiziert		8,3	2,7596	
32,628	5 3 1	32,617	0,0112	1,3	2,7423	2,7432
	4 1 3	32,754	-0,1265			2,7319
32,907	6 1 2	32,867	0,0394	4,7	2,7197	2,7228
34,305	0 4 2	34,45	-0,145	6,7	2,6119	2,6013
34,619	4 4 0	34,536	0,0832	13,2	2,5889	2,595
	1 4 2	34,746	-0,127			2,5798
	6 3 0	34,764	-0,1448			2,5785
35,16	4 2 3	35,237	-0,0774	11,6	2,5504	2,5449
35,433	6 2 2	35,343	0,0902	26,6	2,5313	2,5376
	0 0 4	35,384	0,0495			2,5347
	5 1 3	35,458	-0,0248			2,5296
35,649	2 4 2	35,623	0,0263	15,9	2,5164	2,5182
	1 0 4	35,673	-0,0239			2,5148
	4 4 1	35,686	-0,0367			2,5139
	7 2 1	35,696	-0,0465			2,5133
	8 0 0	35,72	-0,0707			2,5116
	2 3 3	35,741	-0,0911			2,5102
35,874	2 3 3	35,741	0,1336	3,2	2,5012	2,5102
	6 3 1	35,908	-0,0336			2,4989
	7 0 2	35,924	-0,0502			2,4978
36,218	5 3 2	36,132	0,0862	1,2	2,4782	2,484
36,409	1 1 4	36,459	-0,0503	1,4	2,4657	2,4624
	8 1 0	36,505	-0,0962			2,4594
	2 0 4	36,531	-0,1219			2,4577
36,807	7 1 2	36,706	0,1019	14,4	2,4399	2,4464
37,296	3 3 3	37,158	0,138	4,6	2,409	2,4177
	2 1 4	37,301	-0,0052			2,4087
37,594	8 1 1	37,603	-0,0092	1,7	2,3906	2,3901
37,93	5 2 3	37,785	0,1448	5,1	2,3702	2,379
	3 0 4	37,923	0,0068			2,3707
38,145	2 5 0	38,153	-0,0075	6,4	2,3573	2,3569
	5 4 1	38,208	-0,0628			2,3536
38,423	1 5 1	38,405	0,0182	7,1	2,3409	2,342
	0 2 4	38,464	-0,0414			2,3385
	6 1 3	38,537	-0,1136			2,3343
38,654	6 1 3	38,537	0,1172	2,1	2,3275	2,3343
	3 1 4	38,669	-0,0155			2,3266
	1 2 4	38,734	-0,0806			2,3228
	8 2 0	38,778	-0,1242			2,3203
38,906	8 2 0	38,778	0,1278	1,5	2,313	2,3203
	4 4 2	38,959	-0,0535			2,3099
	7 2 2	38,968	-0,0626			2,3094
39,442	7 3 1	39,489	-0,0471	2,6	2,2828	2,2802
,	2 2 4	39,535	-0,0933			2,2776
39,683	2 2 4	39,535	0,148	1,8	2,2695	2,2776
· ·	4 0 4	39,802	-0,1188	,	, -	2,263
	8 2 1	39,822	-0,1394			2,2618
39,862	4 0 4	39,802	0,0598	2	2,2597	2,263

	8 2 1	39,822	0,0392			2,2618
	0 4 3	39,923	-0,0619			2,2563
40,474	4 1 4	40,519	-0,0452	1,2	2,2269	2,2245
	3 5 1	40,525	-0,0508			2,2242
41,048	2 4 3	40,962	0,0856	7,7	2,1971	2,2015
	6 4 1	41,111	-0,0635			2,1939
41,693		nicht indiziert		5,2	2,1646	
41,946	7 1 3	41,927	0,0187	3,9	2,1521	2,153
	9 1 1	42,073	-0,1276			2,1459
42,403	1 3 4	42,296	0,1075	2,4	2,1299	2,1351
	4 5 1	42,307	0,0964			2,1346
	8 3 0	42,336	0,0669			2,1332
	7 3 2	42,514	-0,1102			2,1247
43,171	2 3 4	43,041	0,1296	1,1	2,0938	2,0998
	8 3 1	43,31	-0,1386			2,0875
43,608	3 5 2	43,49	0,1177	1,8	2,0739	2,0792
43,977	4 4 3	43,956	0,0206	2,5	2,0573	2,0582
	7 2 3	43,964	0,0123			2,0579
	6 4 2	44,044	-0,0675			2,0543
	9 2 1	44,105	-0,1285			2,0516
44,384	3 3 4	44,261	0,1224	0,7	2,0394	2,0448
	9 0 2	44,297	0,0869			2,0432
	741	44,338	0,0453			2,0414
	5 5 1	44,513	-0,129			2,0338
44,661	5 5 1	44,513	0,1486	0,6	2,0274	2,0338
	5 2 4	44,805	-0,1438			2,0212
	6 0 4	44,808	-0,1465			2,0211
45,81	10 1 0	45,734	0,0757	3,7	1,9792	1,9823
	0 6 1	45,753	0,0573			1,9815
	2 6 0	45,77	0,0402			1,9808
	4 3 4	45,926	-0,1157			1,9744
46,219	5 4 3	46,099	0,1205	1,3	1,9626	1,9674
	8 3 2	46,13	0,0894			1,9662
	6 5 0	46,187	0,0322			1,9639
	2 1 5	46,246	-0,0267			1,9615
	1 5 3	46,268	-0,0486			1,9606
46,524	10 1 1	46,651	-0,1274	3	1,9505	1,9454
46,724	10 1 1	46,651	0,0733	2	1,9425	1,9454
	0 4 4	46,678	0,0459			1,9443
	2 6 1	46,686	0,0383			1,9441
46,897	922	46,888	0,0097	2,7	1,9358	1,9362
	1 4 4	46,909	-0,0121			1,9353
	8 4 0	46,947	-0,0495			1,9339
	2 5 3	46,963	-0,0658			1,9332
47,174	6 5 1	47,097	0,0775	1	1,9251	1,928
	7 4 2	47,11	0,0643			1,9275
	7 3 3	47,203	-0,0291			1,9239
	0 2 5	47,227	-0,0525			1,923
	5 5 2	47,276	-0,102			1,9211
47,383 ?	5 5 2	47,276	0,1064	2	1,9171	1,9211
	931	47,337	0,0461			1,9188
	6 2 4	47,377	0,0061			1,9173
	3 1 5	47,401	-0,0179			1,9164
	1 2 5	47,456	-0,0731			1,9143
	8 2 3	47,493	-0,1102			1,9129

48,235	3 5 3	48,105	0,1303	2,8	1,8852	1,89
	2 2 5	48,138	0,097			1,8887
48,997	4 1 5	48,982	0,0144	6,5	1,8576	1,8581
49,785	4 5 3	49,669	0,1155	1,4	1,8301	1,834
	6 5 2	49,75	0,0354			1,8313
50,009	932	49,98	0,029	1,7	1,8224	1,8234
	7 5 1	50,018	-0,009			1,8221
50,661	1 3 5	50,522	0,1394	1	1,8004	1,8051
	8 3 3	50,557	0,104			1,8039
	10 3 0	50,7	-0,0384			1,7992
	4 2 5	50,797	-0,1359			1,7959
51,009	5 1 5	50,962	0,047	2,9	1,789	1,7905
	10 2 2	51,128	-0,1191			1,7851
	8 0 4	51,158	-0,1493			1,7841
51,536	7 4 3	51,474	0,0618	1,9	1,7719	1,7739
	10 3 1	51,549	-0,0137			1,7715
	941	51,599	-0,0632			1,7699
	5 5 3	51,63	-0,094			1,7689
52,109	4 6 2	51,969	0,1406	0,6	1,7538	1,7582
	5 4 4	52,222	-0,1124			1,7502
	3 3 5	52,246	-0,1371			1,7495
52,468	1 5 4	52,376	0,0921	3	1,7426	1,7455
	8 5 0	52,41	0,0576			1,7444
	7 5 2	52,561	-0,093			1,7397
52,713	5 2 5	52,727	-0,0137	5,2	1,7351	1,7347
	0 6 3	52,742	-0,0288			1,7342
53,073	1 6 3	52,954	0,1194	2	1,7242	1,7278
	2 5 4	53,011	0,0619			1,726
	11 2 1	53,095	-0,0222			1,7235
53,583	8 2 4	53,496	0,087	3,7	1,7089	1,7115
	10 1 3	53,552	0,0311			1,7099
	2 6 3	53,584	-0,0005			1,7089
	2 7 0	53,661	-0,0772			1,7067
	6 6 1	53,705	-0,122			1,7053
	4 3 5	53,723	-0,1394			1,7048
54,004	1 7 1	53,854	0,1494	1,6	1,6966	1,701
	5 6 2	53,869	0,135			1,7006
	6 5 3	53,956	0,0479			1,698
	10 3 2	54,041	-0,0371			1,6955
	3 5 4	54,058	-0,0544			1,695
	9 4 2	54,089	-0,085			1,6942
54,179	10 3 2	54,041	0,1383	0,8	1,6915	1,6955
	3 5 4	54,058	0,121			1,695
	942	54,089	0,0904			1,6942
	933	54,173	0,0059			1,6917
	0 0 6	54,239	-0,0594			1,6898
54,429	0 4 5	54,395	0,0341	0,8	1,6844	1,6853
	1 0 6	54,446	-0,0169			1,6839
	2 7 1	54,478	-0,0486			1,683
	6 4 4	54,53	-0,1011	<u> </u>		1,6815
54,751	1 4 5	54,602	0,1495	0,5	1,6752	1,6794
	3 6 3	54,623	0,1277			1,6788
	8 4 3	54,635	0,116			1,6785
	904	54,746	0,0052			1,6754
	10 4 0	54,77	-0,0189			1,6747

Abbildung A.25: Pulverdiffraktogramm von Pb[GaCl₄]₂, unterlegt mit den aus Einkristalldaten berechneten Reflexpositionen.

Die Verfeinerung der Gitterparameter gelang aufgrund der schlechten Qualität der Pulverdiffraktogramme nur eingeschränkt:

a	20,372(6)
b	12,259(3)
С	10,274(4)
V	2565,8(16)

Tabelle A. 76: Aus Pulverdaten verfeinerte Gitterkonstanten von Pb[GaCl₄]₂.

Tabelle A.77: Datenblatt von Pb[GaCl ₄] ₂ .						
Summenformel	PbGa ₂ Cl ₈					
Kristallsystem	orthorhombisch					
Raumgruppe	<i>P b c a</i> ; Nr. 61					
Gitterkonstanten	a = 20,2975(1) Å					
[aus Pulverdaten verfeinerte	b = 12,1958(1) Å					
Werte siehe unten]	c = 10,1676(1) Å					
Zellvolumen V	2516,93 Å ³					
Zahl der Formeleinheiten Z	8					
Dichte (berechnet) ρ_x	$3,326 \text{ g/cm}^3$					
Diffraktometer	Nonius Kappa-CCD					
Strahlung, λ	Mo-K α , λ = 71,073 pm					
Absorptionskoeffizient μ	$192,4 \text{ cm}^{-1}$					
Temperatur	123 K					
Messbereich θ_{max}	30,05					
gemessene Reflexe	$-28 \le h \le 28$					
	$-17 \le k \le 17$					
	$-14 \le l \le 14$					
Anzahl der gemessenen Reflexe	102156					
Anzahl symmetrieunabhängiger Reflexe	3684					
Anzahl der Reflexe mit $F_{o} > 4\sigma (F_{o})$	3454					
Zahl der verfeinerten Parameter	101					
Verhältnis Reflexe / Parameter	36,48					
F (0 0 0)	2240					
$R_{\rm int}$	0,0591					
R_{σ}	0,0145					
R [alle F_o]; R [$F_o > 4\sigma$ (F_o)]	0,0209; 0,0183					
$wR(F^2)$ [Wichtung*]	0,0383					
Goodness-of-Fit (GooF)	1,155					
Restelektronendichte (max./min. ρ)	$0,66/-0,96 \text{ e}/\text{Å}^3$; Mittelwert = $0,00$					

* Wichtung:

$$w = \frac{1}{[\sigma^2(F_0)^2 + (0,0091 \cdot P)^2 + 7,62 \cdot P]} \qquad \text{mit } P = \frac{[\max(F_0^2, 0) + 2 \cdot F_c^2]}{3}$$

Atom	Wyckoff	Symmetrie	x/a	y/b	z/c	U _{eq}
Pb	8c	1	0,88673(1)	0,52875(1)	0,33736(1)	0,01664(4)
Gal	8c	1	0,74429(2)	0,47071(3)	0,11227(3)	0,01690(7)
Ga2	8c	1	0,50502(2)	0,27028(3)	0,22348(3)	0,01605(7)
Cl1	8c	1	0,73587(4)	0,35645(6)	-0,05105(8)	0,02404(16)
Cl2	8c	1	0,50052(4)	0,37039(6)	0,04432(7)	0,02020(14)
C13	8c	1	0,60100(4)	0,28251(6)	0,31594(8)	0,02164(15)
Cl4	8c	1	0,49279(4)	0,09663(6)	0,18040(7)	0,01974(14)
C15	8c	1	0,42538(4)	0,33927(6)	0,34064(8)	0,02147(15)
C16	8c	1	0,76848(4)	0,38366(6)	0,29350(7)	0,02080(14)
Cl7	8c	1	0,65245(4)	0,56078(7)	0,11566(8)	0,02551(16)
C18	8c	1	0,82817(4)	0,58365(6)	0,09114(7)	0,02166(15)

Tabelle A.78: Koordinaten, Wyckoff-Lagen und isotrope Auslenkungsparameter der Atome in der Elementarzelle von Pb[GaCl₄]₂.

Abbildung A.26: erweiterte asymmetrische Einheit in der Struktur von Pb[GaCl₄]₂. Die thermischen Schwingungsellipsoide entsprechen einer Aufenthaltswahrscheinlichkeit der Atome von 70 %.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Pb	0,01445(6)	0,01878(6)	0,01669(6)	0,00123(4)	-0,00039(4)	-0,00052(4)
Gal	0,01413(15)	0,01850(15)	0,01808(15)	-0,00086(12)	-0,00208(12)	-0,00040(12)
Ga2	0,01466(15)	0,01540(14)	0,01808(16)	0,00146(12)	-0,00096(12)	0,00124(11)
Cl1	0,02619(37)	0,01990(33)	0,02601(37)	-0,00661(28)	-0,00651(30)	0,00300(28)
Cl2	0,02314(35)	0,01901(31)	0,01845(32)	0,00321(26)	0,00066(27)	0,00172(26)
Cl3	0,01672(32)	0,02088(33)	0,02731(37)	-0,00034(28)	-0,00507(28)	-0,00037(26)
Cl4	0,01972(33)	0,01581(30)	0,02371(34)	0,00005(26)	-0,00370(27)	0,00026(25)
C15	0,01950(33)	0,02159(33)	0,02332(35)	0,00419(28)	0,00462(28)	0,00442(27)
Cl6	0,01930(34)	0,02262(33)	0,02048(33)	0,00438(27)	-0,00092(27)	-0,00408(27)
Cl7	0,01787(34)	0,03411(40)	0,02453(37)	-0,00602(31)	-0,00223(29)	0,00730(30)
C18	0,02025(34)	0,02456(34)	0,02016(34)	0,00656(28)	-0,00499(27)	-0,00688(28)

Tabelle A.79: Anisotrope Auslenkungsparameter der Atome in Pb[GaCl₄]₂

Tabelle A.80: Bindungslängen und -winkel in der asymmetrischen Einheit von Pb[GaCl₄]₂.

.

Bindungspaar	Bindungslänge /Å	Bindungspaar	Bindungslänge /Å
Pb-Cl1	3,0726(8)	Ga1-Cl1	2,1745(8)
Pb-Cl2	3,2421(7)	Ga1-Cl6	2,1826(8)
Pb-Cl3	3,1124(7)	Ga1-Cl7	2,1640(8)
Pb-Cl4	2,0351(7)	Ga1-Cl8	2,2006(8)
Pb-Cl5	3,0382(7)		
Pb-Cl6	3,0152(7)	Ga2-Cl2	2,1949(8)
Pb-Cl7	3,1355(8)	Ga2-Cl3	2,1683(8)
Pb-Cl8	2,8509(7)	Ga2-Cl4	2,1769(8)
Pb-Cl2'	3,3435(7)	Ga2-Cl5	2,1770(8)

Atomverknüpfung	Bindungswinkel /°	Atomverknüpfung	Bindungswinkel /°
Cl1-Pb-Cl2	135,35(2)	Cl1-Ga1-Cl6	110,83(2)
Cl1-Pb-Cl2'	98,88(2)	Cl1-Ga1-Cl7	108,37(2)
Cl1-Pb-Cl3	68,75(2)	Cl1-Ga1-Cl8	111,59(2)
Cl1-Pb-Cl4	136,25(2)	Cl6-Ga1-Cl7	116,09(2)
Cl1-Pb-Cl5	140,87(2)	Cl6-Ga1-Cl8	99,86(2)
Cl1-Pb-Cl6	71,17(2)	Cl7-Ga1-Cl8	109,94(2)
Cl1-Pb-Cl7	67,67(2)	Cl2-Ga2-Cl3	112,28(2)
Cl1-Pb-Cl8	83,08(2)	Cl2-Ga2-Cl4	111,83(2)
Cl2-Pb-Cl2'	59,87(2)	Cl2-Ga2-Cl5	102,08(2)
Cl2-Pb-Cl3	124,14(2)	Cl3-Ga2-Cl4	104,75(2)
Cl2-Pb-Cl4	77,51(2)	Cl3-Ga2-Cl5	113,37(2)
Cl2-Pb-Cl5	65,42(1)	Cl4-Ga2-Cl5	112,79(2)
Cl2-Pb-Cl6	105,81(2)		
Cl2-Pb-Cl7	68,80(2)	Pb-Cl ₁₋₈ -Ga ₁₋₂	91,06-99,19
Cl2-Pb-Cl8	139,70(2)	Pb-Cl2'-Ga2'	134,31
Cl2'-Pb-Cl3	67,88(2)		
Cl2'-Pb-Cl4	71,28(2)	Cl4-Pb-Cl5	71,71(2)
Cl2'-Pb-Cl5	118,55(2)	Cl4-Pb-Cl6	136,36(2)
Cl2'-Pb-Cl6	148,64(2)	Cl4-Pb-Cl7	140,70(2)
Cl2'-Pb-Cl7	74,56(2)	Cl4-Pb-Cl8	79,05(2)
Cl2'-Pb-Cl8	138,73(2)	Cl5-Pb-Cl6	70,80(2)
Cl3-Pb-Cl4	68,13(2)	Cl5-Pb-Cl7	109,77(2)
C13-Pb-C15	133,94(2)	C15-Pb-C18	76,30(2)
Cl3-Pb-Cl6	129,56(2)	Cl6-Pb-Cl7	74,17(2)
C13-Pb-C17	115,45(2)	C16-Pb-C18	71,10(2)
C13-Pb-C18	74,84(2)	Cl7-Pb-Cl8	140,22(2)

A.21 β -Sr[GaCl₄]₂:

Tabelle A.81: Datenblatt von β-Sr[GaCl ₄] ₂ .							
Summenformel	SrGa ₂ Cl ₈						
Kristallsystem	tetragonal						
Raumgruppe	<i>I 4₁/a c d</i> ; Nr. 142						
Gitterkonstanten	a = 11.4829(8) Å						
	c = 20.8074(15) Å						
Zellvolumen V	2743.60(X) Å ³						
Zahl der Formeleinheiten Z	8						
Dichte (berechnet) ρ_x	2.473 g/cm ³						
Diffraktometer	Nonius Kappa-CCD						
Strahlung, λ	Mo-K α , λ = 71.073 pm						
Absorptionskoeffizient μ	92.8 cm ⁻¹						
Temperatur	413 K						
Messbereich θ_{max}	27.97						
gemessene Reflexe	$-13 \le h \le 13$						
	$-14 \le k \le 15$						
	$-26 \le l \le 26$						
Anzahl der gemessenen Reflexe	18739						
Anzahl symmetrieunabhängiger Reflexe	813						
Anzahl der Reflexe mit $F_0 > 4\sigma (F_0)$	557						
Zahl der verfeinerten Parameter	27						
Verhältnis Reflexe / Parameter	30.11						
F (0 0 0)	1888						
R _{int}	0.0959						
R_{σ}	0,0387						
<i>R</i> [alle <i>F</i> _o]; <i>R</i> [<i>F</i> _o > 4 σ (<i>F</i> _o)]	0.0676; 0.0453						
$wR(F^2)$ [Wichtung*]	0.1278						
Goodness-of-Fit (GooF)	1.027						
Restelektronendichte (max./min. ρ)	0.49 /- $0.37 \text{ e}/\text{Å}^3$; Mittelwert = 0.00						

* Wichtung:

$$w = \frac{1}{\left[\sigma^2 (F_0)^2 + (0.0413 \cdot P)^2 + 15.71 \cdot P\right]} \quad \text{mit } P = \frac{\left[\max(F_0^2, 0) + 2 \cdot F_c^2\right]}{3}$$

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Sr	0,08870(56)	0,08870(56)	0,06433(63)	0,00000(0)	0,00000(0)	0,00022(67)
Ga	0,10317(86)	0,09058(80)	0,08987(76)	0,00000(0)	0,03017(63)	0,00000(0)
Cl1	0,16381(242)	0,14981(225)	0,17741(266)	0,07155(196)	0,07982(206)	0,07035(195)
Cl2	0,12547(280)	0,19946(280)	0,11133(161)	0,052991(176)	0,02790(143)	0,04235(185)

Tabelle A.82: Anisotrope Auslenkungsparameter der Atome in β-Sr[GaCl₄]₂.

Danksagung

Herrn Prof. Dr. J. Beck danke ich für die vertrauensvolle Aufnahme in seinen Arbeitskreis, die Unterstützung bei der Erstellung dieser Arbeit und seine Hilfe bei organisatorischen Fragen. Herrn Prof. Dr. R. Glaum danke ich für die Übernahme des Korreferats sowie die lange,

Herrn Prof. Dr. K. Wandelt und Herrn Prof. Dr. K. Maier möchte ich herzlich für ihre Gutachtertätigkeit danken.

Mein herzlichster Dank gilt Herrn Dr. Ulrich Keßler, für die jahrelange Unterstützung und Freundschaft und das nie enden wollende Zwiegespräch zwischen Lehrer und Schüler, nicht nur in musikalischer Hinsicht...

Weiterhin danke ich sehr herzlich:

lehrreiche Zusammenarbeit im qualitativen Praktikum.

Dr. Jörg Daniels für die Messung de Einkristalldaten, seine stete Hilfsbereitschaft und einige sehr schöne Veranstaltungen im Hause Daniels,

der Familie Weisbarth für das alltägliche Umsorgen, ihre jahrelange Freundschaft sowie die Messungen und Einarbeitung an der DSC,

Barbara Knopp und Dr. Rolf Sievers, die mich seit nunmehr 16 Jahren wohlwollend und unterstützend im Auge behalten,

Volker Bendisch und Norbert Wagner für ihre ausdauernde Beratung und die jeweiligen Messungen,

Marcel Schieweling, Jan Kretschmer, Cordt Gieseke, Claudia Fritschi, Julia Simon, Sebastian Benz und Christian Landvogt für die wirklich tolle Atmosphäre im 3. Stock, die ständig verfügbare Diskussionsbereitschaft und die langjährige Freundschaft.

Ganz besonders danke ich meinen Eltern - für alles!

Eidesstattliche Erklärung

Hiermit erkläre ich an Eides statt,

 - dass ich diese Arbeit ohne fremde Hilfe angefertigt und andere Hilfsmittel als die in der Dissertation angegebenen nicht benutzt habe; insbesondere, dass wörtlich oder sinngemäß aus Veröffentlichungen entnommene Stellen als solche kenntlich gemacht worden sind,

 dass ich mich bis zu diesem Tage noch keiner Doktorpr
üfung unterzogen habe. Ebenso hat die von mir vorgelegte Dissertation noch keiner anderen Fakult
ät oder einem ihrer Mitglieder vorgelegen,

- dass ein Dienststraf- oder Ehrengerichtsverfahren gegen mich weder geschwebt hat noch gegenwärtig schwebt.

Bonn, den 01. August 2012

Rainhard Müller