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Nomenclature

I'(t)

v

Ik .= D(tx)
N(t)

Ni := N (tg)
Vk

ur

S1, 82
X(t781,82)
FS(t)
r(t, 81, 82)

> _ 9
ot~ ot

time

Family of oriented surfaces

Normal to the surface T'(t)

Surface at time ¢y,

Neighborhood of the surface T'(¢)
Neighborhood of the surface I'*

Normal to the surface I'*

Velocity of material point

Local parametric variables of the surface T'(t)
Local parameterization of the surface I'(¢)
Free surface

Local parameterization of the free surface F'S(t)
Normal to the free surface FS(t)

Velocity of a material point on the free surface
Non scaled thin-film height

Scaled thin-film height

Vertical lenght scale

Horizontal lenght scale

Non scaled curvature tensor of the surface I'(t)
Scaled curvature tensor of the surface I'(¢)
Trace of K (Mean curvature of the surface I'(t))
Trace of K?

Trace of K3

Non scaled surface gradient
Scaled surface gradient

Material derivative

Projection operator onto the free surface tangent plane
in the direction of the surface normal v

Peclet number

Non scaled free surface gradient

Scaled free surface gradient

Scaled surface divergence (Laplace-Beltrami operator)
Non scaled free surface mean curvature

Scaled free surface mean curvature

Equilibrium concentration of surfactant

Surfactant concentration in the maximum packing limit
Surfactant coverage

Universal gas constant

Absolute temperature in Kelvin

Surfactant concentration on the free-surface



Nomenclature

vi

B,

O/

¢ = AH3

n=H=1eH’K + L2H® (K? — Ks)

Surface tension of the clean surface (II = 0)
Dimensionless velocity of the fluid particle on FS(t)
Relative velocity of the fluid particle at the free surface
Velocity of a substrate material point

Surface tension
Unit gravity vector

Dimensionless Hamaker constant
Bond number

Inverse capillary number

Disjoining pressure

Fluid density above the substrate T'(t)



General introduction

In the present thesis, we are devoted to the design and analysis of finite volume schemes for time-
dependent partial differential equations (PDEs) on evolving surfaces as well as the modeling and
simulation of surfactant driven thin film flow on moving curved surfaces; thus our work is divided
into two main parts. The first part “Finite volume method on evolving surfaces” discusses two fi-
nite volume schemes for the simulation of time-dependent convection-diffusion and reaction problem
while the second part “Modeling and simulation of surfactant driven thin-film flow on moving sur-
faces” deals with a reduced model for a coupled free boundary problem from fluid dynamics and its
simulation via the schemes defined in the first part.

The finite volume method has become one of the most popular simulation tools for PDEs during the
last two decades. The method has been extensively studied mathematically and has been applied
to complicated problems and to challenging situations such as simulation on strong anisotropic and
nonconformal meshes. We refer to the symposium reports Finite Volumes for Complex Applications
I-VI for the advances in the field. The main attractions of the method reside in its local conservation
properties, its ability to be applied on general meshes, the good adaptation to convection dominated
problems and the fact that it is relatively easy to implement. Unfortunately, the application of finite
volume method for direct simulation of PDEs on curved surfaces is less understood and is a recent
field of investigation. So far, only few research works have been devoted to this issue. Let us point
out for example [19] where the authors discuss a finite volume formulation for diffusion problems on
spherical domains. Here the authors formulate a finite volume scheme on logically rectangular grids
based on a local parameterization of the sphere. This work is later extended in [18] to convection-
diffusion-reaction problems on surfaces having curved or spherical domains. We would also like
to mention [33, 76, 34] where the authors successively study the finite volume method for diffu-
sion problem on the sphere, then on general surfaces and later the fourth orther partial differential
equation on general surfaces. In these works, the curved surface is approximated by Voronoi meshes
which are based on a particularly good triangulation of the surfaces; the vertices of the triangulation
being bounded to the surface. Similar to these works, existing paper that come to our knowledge
discussing finite volume on surfaces rely on particular polygonization of the substrate (surface) and
for those treating diffusion problems, they concentrate on isotropic diffusion. In the first part of the
present work, we discuss two finite volume methods for the simulation of PDEs on curved surfaces
among which one is devoted to the simulation on general polygonal approximation of surfaces. The
first method (Chapter I) has been already published in STAM Journal of Numerical Analysis [86].
It extends a finite volume method by Eymard, Gallouét, and Herbin in [45] on evolving curved
surfaces. We consider the parabolic problem

uw+uVr-v—Vp- (DVFU) =g on F(t), (01)

a sequence of triangular surfaces approximating the time-dependent curved surface T'(t) at different
time steps with nodes living on the respective smooth surfaces, and derive a finite volumes scheme
based on the two points flux approximation discussed in [45]. By @ = %u(t,x(t)) we denote the
(advective) material derivative of the scalar density u, Vr - v the surface divergence of the vector
field v, Vru the surface gradient of u, g a source term, and D a symmetric and elliptic diffusion
tensor on the tangent bundle of T'(¢). We assume a Lagrangian representation of the surface where
the approximated surface at a time step tx41 is obtained by evolving the node of the approximated
surface at the previous time step t; with the surface velocity, and study the Eulerian evolution of
u on the evolving triangular representation of I'(t). The triangular surfaces are assumed to be so
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General introduction

close to the respective curved surfaces that the orthogonal projection of meshes on the respective
continuous surfaces define an evolving curved mesh. Then our finite volume scheme is derived
by approximating the integral of (0.1) on the path of each evolving curved cell using the Leibniz
integral formula for the parabolic part and the divergence theorem on curved surfaces for the space
integration of the diffusive part. An implicit discrete time integration is considered for both diffusive
and source terms. The derived scheme is implicit, stable and convergent. We also extend the scheme
to the convection-diffusion and reaction problem

U+ uVyp-v—Vp-(DViu) + Vi - (wu) = g(u) on T =T(t), (0.2)

where w is an additional tangential velocity on the surface, which transports the density u along the
moving interface I'(t) and the reaction term g now depends on u. We discretize the additional ad-
vection term using the first order upwinding procedure similar to the one used on flat surfaces. The
advantage here is that we work on the surface without any attempt to use a particular parameteriza-
tion of the surface, nor computing any geometric feature of the surface; thus the method is suitable
for any curved surface. The limits of the method resides on the choice of triangles center points
where the unknowns are located. In fact, these points have to satisfy a particular perpendicularity
condition introduced on each cell by the tensor D~' which can be satisfied for strong anisotropic
tensors only if care has been taken during the construction of the mesh. Also, in real world ap-
plications, many meshes are generated either from scanning devices or from meshing tools and are
not necessarily triangular. Furthermore such processes are error prone and the obtained meshes are
rarely satisfactory; thus they most often go through a remeshing machinery for optimization which
increases the error on the vertices coordinates. In the context of moving surfaces, we will also notice
that for surfaces described implicitly through PDEs as for interface flows, meshes automatically
contain error from their numerical computation. Thus, a more rigorous analysis of schemes designed
for direct simulation of PDEs on surfaces should take into account such uncertainty. These lacks are
taken into account in Chapter II where we derive a new finite volume scheme for general polygonal
surfaces based on a proper reconstruction of the gradient of u around vertices of the mesh. Here we
subdivide our finite volume cells into subcells attached to vertices and assume a linear reconstruction
of our function u on subcells; thus constant gradient reconstruction on subcells. The gradient re-
construction on subcells incorporates already the flux continuity through edges, and the integration
mentioned above gives the finite volume scheme. We introduce for (0.2) a second order upwinding
based on our gradient reconstruction. In fact after we have constructed the gradient on the subcells,
we define using the minmod procedure, a new piecewise constant gradient of minimum norm that
approximates the gradient of the w on cells. The values on edges are then chosen using the Taylor
formula and the upwinding procedure. The obtained finite volume is suitable for discretization on
any evolving curved surface. No surface parameterization is needed, nor any geometric quantity.

In the second part, we first model in Chapter III the coupled surfactant driven thin film flow on
an evolving surface using lubrication approximation. A thin film flowing on an evolving curved
surface is considered, on top of which a layer of surfactant diffuses. Such a system is present in
the mammalian lungs. The thin film is represented by the lining while the surfactant is represented
by lipid monolayers. The surfactant plays an important role in the respiratory system. During the
expiration phase for example, it lowers the surface tension to prevent the surface to collapse and also
facilitate the inspiration. A lack of surfactant would require a lot of energy to reopen the alveoli and
alow the ventilation. Let us mention too that often, the lung of prematurely born infants cannot
produce enough surfactant to regulate the respiratory system; this leads to the so called respiratory
distress syndrome (RDS) often cured by surfactant replacement therapy (SRT) which consists of
installing the surfactant in the trachea of the patient where the substance is transported in the
large airways. We refere to [15, 63, 66, 78] for more reading in the topic of lung surfactant. Thin
films occur also in engineering (aircraft de-icing films), in geology (lava) amongst other. In order
to describe the evolution of such a fluid, we rewrite the momentum incompressible Navier-Stokes
equation in a curvilinear coordinate system attached to the substrate using some basic tensor cal-
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culus. This operation leads to the expression of the velocity component of the fluid particle tangent
to the substrate as an ordinary differential equation of its height, that we later solve using power
series at the lubrication approximation order (O(e?)); the quantity e represents the ratio between
the substrate tangential length scale and the height scale and is assumed to be very small. The final
equation which expresses the height’s evolution of the film is obtained by rewriting the conservation
of mass in the curvilinear coordinate system using the derived equation of the velocity component
parallel to the substrate. We chose a surfactant diffusion equation model adopted by Stone in [113]
to describe the evolution of the surfactant on the free surface interface. Previous work in this domain
include the work of Roy, Roberts and Simpson in [107], which models the thin film on static curved
surface using center manifold theory and computer algebra. Howell in [67], models thin film on
evolving curved surfaces. In fact, he is only able to derived equations specific to particular phases
of the evolution corresponding to the status of the surface. The most recent work in the domain is
probably the work of Uwe Fermum, who in his PhD thesis [48] derived an equation describing the
evolution of the film density on the evolving curved surface using a weak formulation. Our model
here coincides with the model in [107] on fixed surfaces and is more precise than the model in [67]
when applicable. Finally in Chapter IV we extend our finite volume method described in Chapter 11
for the simulation of the fourth order system of degenerated equations obtained here. In particular
we combine the operator splitting procedure adopted in [62], the convection splitting procedure in
[57] with our finite volume methodology to derive a conservative and less dissipative scheme for
the simulation of a fourth order problem. The surfactant equation is transformed to a convection
diffusion equation on a ghost free surface displacing only in the normal direction, and an appropriate
projection of the scheme in Chapter II on the free surface ensures it discretization. To the best of
our knowledge, there is no work treating this simulation in the literature. We end the thesis with
a concluding remark. Let us mention that in order to keep the chapters self-contained, we will be
repeating some important notions.
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1 A convergent finite volume scheme for
diffusion on evolving surfaces

1.1 Introduction

In many applications in material science, biology and geometric modeling, evolution problems do
not reside on a flat Euclidean domain but on a curved hypersurface. Frequently, this surface is itself
evolving in time driven by some velocity field. In general, the induced transport is not normal to the
surface but incorporates a tangential motion of the geometry and thus a corresponding tangential
advection process on the evolving surface. In [37] Dziuk and Elliot proposed a finite element scheme
for the numerical simulation of diffusion processes on such evolving surfaces. In this chapter, we
pick up the finite volume methodology introduced by Eymard, Gallouét, and Herbin in [45] on fixed
Euclidean domains and discuss a generalization in case of transport and diffusion processes on curved
and evolving surfaces. The general motivation for a finite volume formulation is the potential of a
further extension to coupled diffusion and dominating nonlinear advection models. Here, we restrict
to linear transport.

Applications of the considered model are the diffusion of densities on biological membranes or
reaction diffusion equations for texture generation on surfaces [120]. Frequently, partial differential
equations on the surface are coupled to the evolution of the geometry itself. Examples are the
spreading of thin liquid films or coatings on surfaces [107], transport and diffusion of a surfactant
on interfaces in multiphase flow 73], surfactant driven thin film flow [60] on the enclosed surface
of lung alveoli coupled with the expansion or contraction of the alveoli, and diffusion induced grain
boundary motion [17]. In this chapter, we assume the evolution of the surface to be given a priori
and study the finite volume discretization of diffusion on the resulting family of evolving surfaces
as a model problem. The evolving surfaces are discretized by simplicial meshes, where grid nodes
are assumed to be transported along motion trajectories of the underlying flow field. The approach
applies to evolving polygonal curves and triangulated surfaces. In the presentation we focus on the
case of moving two-dimensional surfaces. Finite volume methods on curved geometries have been
discussed recently in [19, 33], but to the best of our knowledge they have so far not been analyzed
on evolving surfaces.

An alternative approach would be to consider a level set representation via an evolving level set
function. In this case, projections of the derivatives onto the embedded tangent space provide a
mechanism for computing geometric differential operators [10] on fixed level set surfaces. Finite
elements in this context are discussed in [16], a narrow band approach with a very thin fitted mesh
is presented in [30], and in [56] an improved approximation of tangential differential operators is
presented. Furthermore, in [38] a finite element level set method is introduced for the solution of
parabolic PDEs on a family of evolving implicit surfaces.

Our finite volume method is closely related to the finite element approach by Dziuk and Elliott
[37]. They consider a moving triangulation, where the nodes are propagating with the actual motion
velocity, which effectively leads to space time finite element basis functions similar to the Eulerian-
Lagrangian localized adjoint method (ELLAM) approach [65]. We consider as well a family of
triangulated surfaces with nodes located on motion trajectories where the triangles are treated as
finite volume cells. The resulting scheme immediately incorporates mass conservation. An overview
on computational approaches which use moving meshes to solve PDEs is given in [89]. Here, the
moving mesh reflects the Eulerian coordinates underlying the evolution problem but on a fixed



1 A convergent finite volume scheme for diffusion on evolving surfaces

computational domain.

The chapter is organized as follows. In Section 1.2, the mathematical model is discussed, and
in Section 1.3 we derive the finite volume scheme on simplicial grids. Discrete a priori estimates
consistently formulated in terms of the evolving geometry are established in Section 1.4. In Section
1.5 we state and prove the main convergence result. Finally, Section 1.6 discusses an operator
splitting scheme for the coupling of diffusive and advective transport so far not encoded in the
surface motion itself, and in Section 1.7 numerical results are presented.

1.2 Mathematical model

We consider a family of compact, smooth, and oriented hypersurfaces I'(t) ¢ R™ (n = 2, 3) for
t € [0,maz] generated by an evolution ® : [0,%,4:] x T® — R” defined on a reference surface I'
with ®@(¢,T°) = I'(t). Let us assume that I'’ is C® smooth and that ® € C*([0,n4z], C3(Ig)). For
simplicity we assume the reference surface I'° to coincide with the initial surface I'(0) (cf. Figure
1.5).

We denote by v = 0;® the velocity of material points and assume the decomposition v = v,V +vap
into a scalar normal velocity v, in direction of the surface normal v and a tangential velocity viqp.
The evolution of a conservative material quantity u with w(¢,-) : I'(¢) — R, which is propagated
with the surface and simultaneously undergoes a linear diffusion on the surface, is governed by the
parabolic equation

U + uVp-v — Voo (DViu) = g onT =TI(¢), (1.1)

where @ = Lu(t,z(t)) is the (advective) material derivative of u, Vy. - v the surface divergence
of the vector field v, Vru the surface gradient of the scalar field u, g a source term with g(¢,-) :
I'(t) —» R, and D is a diffusion tensor on the tangent bundle. Here we assume a symmetric,
uniformly coercive C? diffusion tensor field on whole R™ to be given, whose restriction on the
tangent plane is then effectively incorporated in the model. With a slight misuse of notation, we
denote this global tensor field also by D. Furthermore, we impose an initial condition u(0,-) = ug
at time 0. Let us assume that the mappings (¢, z) — u(t, ®(¢,z)), v(t, ®(t,z)), and g(t, ®(¢,z)) are
CL([0, tmaz], C3(T0)), C°([0, tmaz], C3(To)), and C([0,tmaz], C*(To)) regular, respectively. For
the ease of presentation we restrict here to the case of a closed surface without boundary. Our
results can easily be generalized to surfaces with boundary, on which we either impose a Dirichlet or
Neumann boundary condition. For a discussion of existence, uniqueness, and regularity of solutions
we refer to [37] and the references therein.

1.3 Derivation of the finite volume scheme

For the ease of presentation, we restrict ourselves to the case of two-dimensional surfaces in R3. A
generalization of the numerical analysis presented here is straightforward. We consider a sequence
of regular surface triangulations interpolating I'(ty) for tx = k7 and kpuuT = timaee (cf. Dziuk and
Elliott [37] for the same setup with respect to a finite element discretization). Here, h indicates the
maximal diameter of a triangle on the whole sequence of triangulations, 7 is the time step size, and
k is the index of a time step. All triangulations share the same grid topology, and given the set of
vertices x? on the initial triangular surface '}, the vertices of Ffl lie on motion trajectories. Thus,
they are evaluated based on the flux function ®, ie., z;(t;) = ®(tx,29) (cf. Figure 1.1). Single
closed triangles or edges of the topological grid I';, are denoted by S and o, respectively. Upper
indices denote the explicit geometric realization at the corresponding time step.

Thus, a closed triangle of the triangulated surface geometry I'f is denoted by S*. We assume that
the triangulations '} are regular; i.e., there exist constants ¢, C' > 0 such that ch? < mf < Ch?
for all S and all k, where m¥ denotes the area of S*. As in the Euclidean case discussed in [45],
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Figure 1.1: Sequence of triangulations I"g interpolating a fourfold symmetric object in its evolution.

we also assume that for all time steps t;, where k = 0,...kmqz, and all simplices S* < I‘ﬁ there
exists a point X% € S*¥ and for each edge o < 0S* a point X* € o* such that the vector X£ Xa; is
perpendicular to o with respect to the scalar product induced by the inverse of the diffusion tensor

on the triangle S* at the point X*, i.e.,
(D(X5) " (X§ = X5)-V =0, (1.2)

where V is a vector parallel to the edge o*. Furthermore, we assume that these points can be
chosen such that for two adjacent simplices S* and L* the corresponding points on the common
edge 0% = S*¥ A L¥ coincide (cf. Figure 1.2). The point X&' at the following time step need not be
the consistently transported point X g under the flow ®. It will turn out that for the error analysis
the later stated condition (1.16) is sufficient. This allows us to choose the points X% in a way that
fulfills these requirements without changing the grid topology between time steps, as described in the
paragraph after equation (1.16). For a later comparison of discrete quantities on the triangulation Fﬁ

Figure 1.2: A sketch of the local configuration of points X g, X% and X* on two adjacent simplices
S* and L*, which in general do not lie in the same plane.

and continuous quantities on I'(t;) we define a lifting operator from I'} onto I'(#;) via the orthogonal
projection P* onto I'(3) in direction of the surface normal v of I'(tz). For sufficiently small A this
projection is uniquely defined and smooth; we also assume it to be bijective. By S'F := PFSF we
define the projection of a triangle S¥ on I'(¢;) and by SF(t) := ®(¢, @ 1(tx, S'*)) the temporal
evolution of S“*, which we will take into account for ¢ € [tg,x,1]. Furthermore, we can estimate the
relative change of area of triangles by m]g“ = mg(l + O(T)) for all simplices S* and all k& because
of the smoothness of the flux function ®.

Based on these notational preliminaries, we can now derive a suitable finite volume discretization.

Thus, let us integrate (1.1) on {(¢,z) |t € [tg,txs1], z € SH*(t)}:
tht1
f f g da dt ~ TmETIGET (1.3)
tg Sbk(t)

where GET = g(ty11, PP+ XET). Using the Leibniz formula % SSlvk(t) u da = SSl’k(t) u+uVr-v da
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(cf. [37]), we obtain for the material derivative
trt1
4[ f U+ uVp-vdadt J uda—f u da
128 Stk (t) Stk (tgy1) Stk (ty)

~  mE  u(tyer, PRPIIXETY) — mbu(ty, PRXE) . (1.4)
Next, integrating the elliptic term again over the temporal evolution of a lifted triangular patch
and applying Gauss’s theorem we derive the following approximation:

tht1 -
J J PV dade = J J DVF“'”ﬁSWo di dt (1.5)
i tr oSl (
k+1yk 1U(tk+1,Pk+1X’€+1)—u(tk+17Pk+1Xk+1)
T Z met )\sﬁr g ’
ocdS Slo—

where npgi.x (4 is the unit outer conormal on 0S"*(t) tangential to I'(t), o*** an edge of S¥*1, mk+?

the length of o*+1 d’gﬁl = | X & — X5, and /\I;‘;l = HDZL’: ’gﬁl |. The discrete diffusion tensor
is defined by Dg‘tl = (PkH) D(XE+) P§+1, where PSJrl is the orthogonal projection onto the

plane given by S**1 and n’gral is the unit outer conormal to S**! on the edge o. Indeed, the orthog-

onality assumption (1.2) implies that (X5+1 — Xé“) is parallel to Dgﬁlngﬁl Hence, Vru-nagir ()

. . . ) kL ket , k1 yoht1
can consistently be approximated by the difference quotient )\g‘fjl ultis, P d)kﬁ(t"“? s )
Sl
. . P T :
Alternatively, one could introduce a diffusion tensor DE™ = (P&™1)" D(XEM) P& on trian-

gles and modify (1.2) and the definition of A T accordingly. We will comment on this alternative
approach in the context of the convergence analysis in Section 1.5.2.

Now we introduce discrete degrees of freedom U¥ and U¥ for u(P*X%) and u(P*XE), respectively.
The values U § are the actual degrees of freedom; they will be compiled into a function U” that is
constant on each cell S* and is an element of the discrete solution space V¥ which is defined in (1.8)
below. The U¥ are only auxiliary degrees of freedom; cf. (1.6). Then the discrete counterpart of the
continuous flux balance

J‘ (DV U)|Sl k(t) ’I’Lﬁsl k(t) da = _J (D )|LL k’(t) TLﬁLl k(t) da
SUROALUA (D) SUROALUA (D)

on SY%(t) n LY*(t) for two adjacent simplices S¥ and L* is given by

k+1 k+1 k+1 k+1
k+1 UO’ U k+1 _ mk+1U U k+1
g dk+1 S‘ [ea dk+1 LlU
S|o L|o

for the edge o® = S* n L*. Let us emphasize that this flux balance holds independently of the tilt
of S¥ and L* at o*. Hence, we can cancel out the degrees of freedom

k+1 k+1
Uk+1 _ (J.S'Jr dL\o')\S\cr U i dS\O')\L|¢7 (1 6)
7 dk Nk o+ odl AR '
Lic”S|o Sle”*L|o

on edges and based on the approximations for the parabolic term in (1.4) and the elliptic term in
(1.5), we finally obtain the finite volume scheme

Uk+1 Uk+1

k 1y7k+1 k+1 k+1 k+1 ~k+1
SRUET - mbUS — 1 Y mETIMET s mheFLGRFL, (1.7)
océsS S|L
Ne Nk gk
Sle”*L|o *S|L k k
where M¥ = i = dbk o+ db, .
E \k E S|L S| L|o
dL|a')\S|o' + dS\UAL\U



1.3 Derivation of the finite volume scheme

k+1
Ug™™ for

This requires the solution of a linear system of equations for the cellwise solution values
k=0,...kmne — 1 and for given initial data U2 at time ¢y = 0.

REMARK. Different from the finite volume method on Euclidean domains in [45], all coefficients
depend on the geometric evolution and thus in particular change in time. A comparison of the
discrete and continuous solution requires a mapping from the sequence of triangulations {Fﬁ} onto

the continuous family of surfaces {I'(f)}+e[0,¢,0.1-

Figure 1.3: On the left an isotropic mesh for a torus is shown together with a zoom in with indicated
points X g on the triangles and X* on edges. On the right an anisotropic mesh corre-
sponding to an anisotropic diffusion tensor D = diag (%, 1,1) is rendered together with

the corresponding zoom. One observes in the blow up of the anisotropic mesh geometry

a transition from the strongly anisotropic regime close to the center plane of the torus

on the right and the more isotropic mesh on the left.

Figure 1.3 shows two different triangulations of a (rotating) torus (cf. Figure 1.7, 1.8, and 1.9
below for corresponding numerical results). In the first case the underlying diffusion is isotropic;
hence an isotropic mesh is used for the simulation of the evolution problem. In the second case
an anisotropic diffusion tensor D = diag(%, 1,1) is taken into account. To enable the definition of
consistent triangle nodes X% and edge nodes X%, an anisotropic mesh has been generated. Even
though D is constant on R33, the induced tangential diffusivity varies on the surface. This variation
is properly reflected by the generated mesh. We refer to Section 1.7 for some remarks on the mesh
generation.

Let us associate with the components U § on the simplices S* of the triangulation Ffl a piecewise

constant function U* with U*|g. = UE, and let
VF = {Uk:I‘Z—ﬂR U"|gx = const VSkCI‘ﬁ} (1.8)
be the space of these functions on F’,j. Analogously, we denote by G* the corresponding piecewise

constant function with G¥|gx = G%. On the function space V¥, we can define a discrete energy
seminorm based on a weighted sum of squared difference quotients.

Definition 1.3.1 (Discrete energy seminorm) For U* € V¥ we define

k
o=SnL dS\L

NN
[0* ], :=< D mﬁM’;u) . (L9)



1 A convergent finite volume scheme for diffusion on evolving surfaces

Before we prove suitable a priori estimates, let us verify the existence and uniqueness of the discrete
solution.

Proposition 1.3.2 The discrete problem (1.7) has a unique solution.

Proof The system (1.7) has a unique solution U**! if the kernel of the corresponding linear operator
is trivial. To prove this, we assume U*¥ = 0 and G¥*! = 0 in (1.7); then multiply each equation
by the the corresponding Ut for the triangle S¥+' < T¥™!. Summing up over all simplices and
taking into account the symmetry of the second term in (1.7) with respect to the two simplices S*
and L* intersecting at the edge o**1 = §**1 A L*+1 we obtain

||Uk+1”]L2(Fk+1) + 'rHUkJrIHI e =0,

from which U**! = 0 follows immediately.

O

Indeed, Proposition 1.3.2 is a direct consequence of Theorem 1.4.1 to be proved in the next section.

1.4 A priori estimates

In what follows we will prove discrete counterparts of continuous a priori estimates. They are related
to the discrete energy estimates given in [45] in the case of finite volume methods on fixed Euclidean
domains.

Theorem 1.4.1 (Discrete L*(IL?), L?(H'!) energy estimate) Let {U*};_; ... be the discrete

solution of (1.7) for given discrete initial data U° € V). Then there exists a constant C depending
solely on tpq, such that

,_pax IIU'“HU re) + Z TIU*IE e < (IIUOLZ roy +7 Z ”Gk]L?> : (1.10)
yevmax k: 1

Proof As in the proof of Proposition 1.3.2, we multiply (1.7) by Ug“ for every cell S* € T} and
sum over all S¥ € I'¥ to obtain (again using the symmetry of the second term in (1.7))

k+1 k+1\2
Z <m1§+1 (U§+1)2 SUSUk+1> g Z mk+1Mk+1(UL —Us )

k+1
s o=SnL dS\L
= 7y mEtGETUETY, (1.11)
s
which leads to
||Uk+1\\i2(rﬁ+1 + T||Ule+1H1 i+

k 2
k mg k+1 k41 k+1
< U La(rg) max (m;§+1> 1T ey + TNGT e @iy U e oy -



1.4 A priori estimates

k

Then, by Young’s inequality and the estimate max; maxg ‘% - 1‘ < C'7, one obtains
S

||U B

1 k2 k+1)2
< 5 W0y + S rIUM,

W || TR (1.12)

L2(TF*) I

1 k+1)2
(F;cl+1) + iTHG ||L2(Fﬁ+l

)

and b, = |G*|? one can deduce from

Using the notation aj, = |U* ||L2(p;i)7

”I%Z(Ffb)
ar < agp_1 + Ctag + 7bg that

r<(1=Cr) Yap_ 1 +7b) <--- < (1= C1)F(ag +7’Zb

e () )

is bounded from above by 2e€** for sufficiently small 7, we immediately get the desired bound for

|U*2

Since

LZ(N)
”UkH]L2(Fk) < 2€Ctk (UO” (Fo +7 Z ”GJ]IP) :
Jj=1

We sum (1.12) over k = 0,... ke — 1 and compensate the terms ||Uk\\i2(rk) on the right hand
h

side for k = 1,... kypae — 1 with those on the left, and using the already established estimate for the

L? norm gives the bound for 3 e T|U*|? k-

O

Theorem 1.4.2 (Discrete H'(L?), L*(H') energy estimate) Let {U*}s— 1, .. be the discrete

yer-Rmaz

solution of (1.11) with given initial data U°. Then there exist a constant C' such that

Konar
k
> rlofu Hm(rk) + _max

k=1 yee-Rmaz

km(lT
wamq+vmw+TZWﬁMmJ,am>

k=1

k k—1 . . . .
where O U* := % is defined as a difference quotient in time.

Proof We multiply (1.7) by 07 U**! for every triangle S* € 1"7,3; and sum over all simplices to obtain

2
Uk+1 _ Uk
k+1 S S
2
Uk+1 Uk+1 Uk+1 Uk+1
k
+ 5 mptt M (ds+L1 <W - T (U5 - UL)

o=SnL S|L S|L

k k
_ Z k+1) Uk (USH — Ug) + sz]§+lG’§+1 (USH — U’éc) )
T T
S



1 A convergent finite volume scheme for diffusion on evolving surfaces

Using the notation

Uk-U i v [ USTE - UE
ag‘IL =/ s|Lmk/Vl’c ( Sdk L) , bgth= vV mgtt <S - )

S|L

. dk‘ k+1AA§+1

c : _—

SIL K+l ok Ak
dS‘L M

this can be written as
k+1 k1) k+1 .k Kk
72 (05" + X (asw) ~ QgL CS|LOS|L
L

o=8n
k [imk+1
S krrkpk+1 k+1 k+1ph+1
= Z ( P 1) \/MsUsbs +TZ G§ bg

A/ mE, S

Noting that

: Ly (Y2 (e52)" ()
k k k k k k k
(aSTLl) - asTLlcs|La5|L Z5 (( sﬁ) - (05|L) ) +(1—cg) 5

and

S (o) =10y S 05) = U s
S

o=SnL

we apply Cauchy’s inequality and Young’s inequality, and we finally obtain

107 UM R gy + IO e = S 10V
<OT (UM 2 s + 0P s

o (10 + 1GH () 107 U ey ) (1:14)

k+l
Here, we have taken into account that |1 — Cg‘\ﬂ < Ctand |1 — 7251 S < C1. Next, as in
7

Theorem 1.4.1 we apply Young’s inequality, sum over all time steps and obtaln

kmas

T A 17k 2 k L o2
3% (5197 Uy + 10y~ 0y

Kmaz

<57 20 (0 4 10 g 410 oy + 16 ) - 119

Finally, an application of Theorem 1.4.1 leads us to the desired estimate.
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1.5 Convergence

1.5 Convergence

In this section we will prove an error estimate for the finite volume solution U* € VF. At first,
we have to state how to compare a discrete solution defined on the sequence of triangulations FZ
and the continuous solution defined on the evolving family of smooth surfaces I'(t). Here, we will
take into account the lifting operator from the discrete surfaces Fﬁ onto the continuous surfaces
['(tx) already introduced in Section 1.3. As for the error analysis of a finite element approach in
[37], we use a pull back from the continuous surface onto a corresponding triangulation to compare
the continuous solution u(t) at time #; with the discrete solution U* = Y4 U§ x,, where x_,
indicates the characteristic function of the triangle S*. In explicit, we consider the pull back of the
continuous solution u at time ¢; under this lift u='(tx, X&) := u (tx, P*(XE)) and investigate the
error u ! (tk, X fé) -U § at the cell nodes X § as the value of a piecewise constant error function on
the associated cells S*.

Obviously, the consistency of the scheme depends on the behavior of the mesh during the evolution
and a proper, in particular, time coherent choice of the nodes X § Let us assume that

|TRR+L(XE) - XETY < Ohr, (1.16)

where TH +1(X%) denotes the point on S¥*! with the same barycentric coordinates on S**+1 as the
node X% on S*. (cf. (1.19) below). This condition is obviously true for X% being the orthocenter
of S*, which is admissible for D = Id on acute meshes. In case of an anisotropic diffusivity or
nonacute meshes, one chooses nodes X é? close to the barycenters in the least square sense, given the
orthogonality relation (1.2). Algorithmically, a mesh optimization strategy enables a corresponding
choice of nodes (cf. Section 1.7).

Finally, the following convergence theorem holds.

Theorem 1.5.1 (Error estimate) Suppose that the assumptions listed in Section 1.2 and 1.8 and
in (1.16) hold, and define the piecewise constant error functional on FE fork=1,.. knax

EF = (u™ (te, X&) — UE) X,
S

measuring the defect between the pull back u='(ty,-) of the continuous solution u(ty,-) of (1.1) at
time t, and the finite volume solution U* of (1.7). Thus, the error function E* is actually an
element of the same space Vi of piecewise constant functions on T'¥ as the discrete solutions U*;
cf. (1.8). Furthermore, let us assume that ”EO”L?(F;“) < Ch. Then the error estimate

kmaa

_jnax HEk”]iz(Ff) +7 Z ||Ek||fpﬁ <C(h+7)? (1.17)
' k=1

—4--FMmazx

holds for a constant C' depending on the reqularity assumptions and the time t,,q;.

This error estimate is a generalization of the estimate given in [45], where the same type of first
order convergence with respect to the time step size and the grid size are established for a finite
volume scheme on a fixed planar domain. As usual in the context of finite volume schemes, the
convergence proof is based on consistency estimates for the difference terms in the discrete scheme
(1.7). In the context of evolving surfaces considered here, these consistency errors significantly rely
on geometric approximation estimates. Thus, Section 1.5.1 we first investigate a set of relevant
geometric estimates. Afterwards, in Section 1.5.2 these estimates will be used to establish suitable
consistency results. Finally, the actual convergence result is established in Section 1.5.3.

11



1 A convergent finite volume scheme for diffusion on evolving surfaces

1.5.1 Geometric approximation estimates

In this paragraph, we first extend the definition of the projection P* to a time continuous operator
P(t,-) which, for each t € [0, tmas], Projects points orthogonally onto T'(t) (cf. Figure 1.5.1). This
operator is well defined in a neighborhood of T'(¢).

@(tap0)

Figure 1.4: In a sketch we depict here a fan of evolving triangles, the transported vertices ®(¢, po),
®(t,p1), and ®(t, p2) of one specific moving triangle S*(¢), and the projection P(t, X (t))
of a point X (t) in S*(t) onto I'(¢).

We denote by pg, pi, p2 the vertices of a triangle S*, and we consider &y(z), & (2), & () the
barycentric coordinates of a point  on S*; i.e., x = & (x)po + &1(z)p1 + E2(x)p2 and &o(z) + & (x) +
& (x) = 1. Furthermore, let us now introduce the time continuous lift

Tr(t, ) SP— SHE(),  ze— UR(t2) = ®(t, @7 (1, PR (2))) (1.18)

and the discrete surface evolution
2
YRt S — Sk(t), z+—s Z & ()R (L, py), (1.19)
i=0

which will be used to go back and forth between evolving domains I'(¢) and the evolving discrete

surface I'j,(t), where S¥(t) is the triangle generated via the motion of the vertices p of S* along the

trajectories ®(-,p) and I';(¢) the time continuous triangular surface consisting of these simplices.
Let us remark that Y**+1(XE) in condition (1.16) equals Y*(ty 11, X%). Figure 1.5.1 depicts a

(p_l(tk:a )
-—

]_'\k
v

(D(tk+17 )

Figure 1.5: A single triangle and the nearby surface patch are shown in the initial configuration and
at two consecutive time steps.

12



1.5 Convergence

sketch of the involved geometric configuration. It is also important to notice here that the smoothness
of these functions depends only on the regularity of ®(,-).

We now introduce an estimate for the distance between the continuous surface and the triangula-
tion and for the ratio between cell areas and their lifted counterparts.

Lemma 1.5.2 Let d(t,z) be the signed distance from a point x to the surface T'(t), taking to be

positive in the direction of the surface normal v, and let mgk denote the measure of the lifted

triangle SU*, mLF the measure of the lifted edge o'*. Then the estimates

I,k L,k
m mg

sup || d(t,-) e (r, )< Ch?, sup [1 — —5-| < Ch?, sup |1 — —2—| < Ch?
0<t <tmas k,S mg k,o Mg

hold for a constant C depending only on the reqularity assumptions.

Proof Notice that the function d(t,-) is zero at vertices of the triangulation. Thus the piece-
wise affine Lagrangian interpolation of d(t,:) vanishes, and the first estimate immediately fol-
lows from standard interpolation estimates. Using the smoothness of d and the fact that, be-
cause of the regularity of the mesh, the normal direction on each triangle differs from the normals
to the respective curved triangle only to the order h, we deduce from Vpd(t,-) = 0 on I'()
that |Vgryd(t, )|L=,@) < Ch, where Vgr(,)d(t,-) is the component of Vd(t,-) tangential to
Sk(t). For the second estimate, we fix a triangle S¥ and assume without any restriction that
Sk < {(£,0) | € € R?}. Furthermore, we extend the projection P* onto a neighborhood of S* in the
following way:

wat(&? C) = (57 0) + (C —d (tka (57 O))) vd" (tka (57 O)) .

Obviously, P*., = P* on S*. From |d (t,(£,0))] < Ch? and |Vgrd (L, (£,0))] < Ch, we deduce
that
| |det (DPE

ext

where DP¥ | denotes the Jacobian of P¥ ,. Hence, taking into account that the third column of the

Jacobian 0.PF,,(€,0) = VdT (t, (£,0)) has length 1 and is normal to I'(t) at P¥(£,0), we observe

exrt

that |det (DPE,,(£,0)) | controls the transformation of area under the projection P* from S* to S'*,
which proves the claim.

The third estimate follows along the same line as the second estimate based on a straightforward
adaptation of the argument.

O

Next, we control the area defect between a transported lifted versus a lifted transported triangle.

Lemma 1.5.3 For each triangle S* on F],?L and all z in S* the estimate
|P(t, TRt z)) — \I/k(t,x)| < Crh?

holds for a constant C' depending only the regularity assumptions. Furthermore, for the symmetric
difference between SUF(ty.1) and SHEYY with AAB := (A\B) u (B\A) one obtains

H™ L (SYF (1) ASYFTY) < CThmlit

where H"™! is the (n — 1)-dimensional Hausdorff measure of the considered continuous surface
difference.

13



1 A convergent finite volume scheme for diffusion on evolving surfaces

Proof At first, we notice that the function W* (¢, -) defined in (1.18) parametrizes the lifted and then
transported triangle SY%(¢) over S* and P(t, Y*(t,-)) with Y*(¢,-) defined in (1.19) parametrizes
the transported and then lifted triangle P(¢, S¥(¢)) over S*. These two functions share the same
Lagrangian interpolation Y*(¢,-) for any ¢, which implies the estimate

for every x € S¥. Here, 5(t) is a non negative and smooth function in time. From S“*(t;) = S*

one deduces that (3(-) can be chosen such that 3(t) < C|t — t;| holds. Furthermore, CTh? is also

a bound for the maximum norm of the displacement function P(¢, Y*(¢,-)) — U*(¢,-) on edges o*.

Thus, taking into account that hm! < C’m’f;, we obtain as a direct consequence the second claim.

O

Based on this estimate, we immediately obtain the following corollary.

Corollary 1.5.4 For any triangle S* on T'¥ and any Lipschitz continuous function w(t,-) defined
on T'(t) one obtains

<Cr hmngr1

J w(tpt1, ) da—f w(tg+1,z)da
SEE(tht1)

Slk+1

for a constant C' depending only on the reqularity assumptions.

1.5.2 Consistency estimates

Next, with these geometric preliminaries at hand, we are able to derive a priori bounds for various
consistency errors in conjunction with the finite volume approximation (1.7) of the continuous evo-
lution (1.1).

Lemma 1.5.5 Let S* be a triangle in TF and t € [t tr+1]. Then for
Ri(SH0) = | Vi (OVrgut.) da
Shk(t)
_J V(i) * (Dvr(tkﬂ)u(ﬁ’“rl7 )) da
ShF(thgr)

we obtain the estimate |Ry (SY*(t))| < C7 (1 + C h?)mEtt,

Proof We recall that Vipgyu(t,z) = Vu(t,z) — (Vu(t,z) - v(t,x)) v(t,x), where u®*(t,-) is
a constant extension of u(t,-) in the normal direction v(t,-) of I'(¢). Any continuous and differen-
tiable vector field v(t,-) on I'(t) can be extended in the same way for each component. Then we
obtain for the surface divergence of v(t,-) at a point z on I'(f) the representation Vp - v(t,a) =
tr ((Id — v(t, ) @ v(t,z)) Vo (t,z)) . Thus, we deduce from our regularity assumptions in Section

1.2 that the function (¢, z) — V- (DVreu(t, )) is Lipschitz in the time and space variable. This

observation allows us to estimate |R1 (Sl’k(t) )| by C ng’kﬂ. Finally, taking into account Lemma

1.5.2 we obtain the postulated estimate.

O
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1.5 Convergence

Lemma 1.5.6 For the edge o* between two adjacent triangles S* and L* the term

/ch:
Ro (SHF|LEF) = J (DVr(yulte, ) - pogir dl —
obk S\L

(u ' (te, XT) —u ' (te, X§))

with otk = Sk A LR obeys the estimated |’R2 (Sl’k|Ll’k)| < OmFh.

Proof At first, we split the error term R, (Slvk|Ll*k) into corresponding consistency errors on
the two adjacent triangles S* and LF, taking into account the flux condition at the edge o'¥, the

e AR gk
definition of M¥ = % and the identity d§|L = dg‘a + d]zlg. In fact, we obtain

Lie"Sle T9S16 M L]0

k kK mk k
dS|L U)\S‘a' )\L|(7

k k k dk
Ry (Sl,k|Ll,k) _ mo Mg < S|o Ry (Sl,k|0_l,k) Lo Ry (Ll,k|0_l,k)> 7

where

-l ky _ .=l
Ro (Sl’k|0'l’k) = f (DVF(tk)u(tkv )) “Hpglk dl — Y (tk7X ) Y (tk7XS)

ma
k
olik ds\g

N, (1.20)

Next, we estimate these error terms separately and obtain

Ra (S4[oh*) =

f (DY ey ults. ) - fagis — [(DViuayt) - fagin] (Pltx, X5))) dl

+ ([(PVrw) - Hogi#] (P (tkaXfi)) [(Dvr(m ) - togir] (t, X5)) mg*
+[(Dvr<tk)u ) Nas”“] tr, X5) (mg* —mg)

+ ([ DVr, ppgir] (th, X5) = [(DVF ") -u’é\g] (tk,X§)> my

+ ([ (DV (1yu~ us‘o_] (te, X&) — [(Dvsku ) -ulg‘o] (tk,X§)> mk

-1 k - k
w (b, X72) — ™t (tn, X&)
+ (VS"U (tk:aX ) (DS|0/’LS\J) - dF 5 H D§'|ng|a || m
Slo

Taking into account our regularity assumption from Section 1.2, Lemma 1.5.2, and the fact that
Dg\ausw is imposed to be parallel to Xng by (1.2) — indeed, even (D’C MS\U/||DS|J/J’S|0H) =
(XEk - XS)/dS‘U) we finally observe that each term can be estimated from above by CmEh for a
constant C', which depends only on the regularity assumptions. This proves the claim.

O

The proof can be easily adapted to the case where the discrete diffusion tensor is defined on
triangles as mentioned in section 1.3.

Lemma 1.5.7 For a cell S* and the residual error term

Rg(Sl’k|Sl’k+1) = f uda—f uda
StF(tk1) SR (ty)

= (" (b, X§TT) —mg T (t X5))

one obtains the estimate |R3 (Sl’k|5l’k+1)| < CThngrl.
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1 A convergent finite volume scheme for diffusion on evolving surfaces

Proof At first, let us recall that W¥(¢,.), T*(¢,-), and P (tgt1, Y*(tk+1,-)) parametrize S“*(t),
Sk(t), and SHF+1 over the triangle S¥. Via standard quadrature error estimates and due to the
regularity assumptions on ® and u given in Section 1.2, we obtain for the smooth quadrature error
function

Q= | o M) 0 = (e P T X (840)

the estimate |Q(t) — Q(tx)| < B(t) hH™ 1 (S"k(t)), where f is a smooth, non negative function in
time. From Q(t) — Q(tx) = 0 we deduce that 5(t) < C'|t — t;| (cf. also the proof of Lemma 1.5.3).

Based on an analogous argument we obtain for the continuity modulus of Q(t) := SP (t,5%(t da, —
Ssk(t) da that

Qltri1) — Q(tx) < CTh* m§.
Making use of our notation we observe that the left hand side equals (mlSkH mh) — (mlsk mk).

We now split the residual into

Ry (PSP = Q(tre1) — Q(tr)
b, Pltes, T (b, X5) (H7 (85 (tr41) =)
+ (wthr1, Ptesr, Yo (tisr, X§))) — (tk+1anH)) g
+u (g, XET) [(mfg’kﬂ - m’é“) - ( - m’é)]
+ (u*l(tkH,X’;“) —u (g, Y (i1, Xs))) (mfsk - ms)
k

(0 (b, T (b, X5)) = ! (b1, X5)) (" = )

Finally, applying the above estimates, (1.16), Lemmas 1.5.2 and 1.5.3, we get

|R3 (Sl’k|Sl’k+1)| C (7‘ hZm k“ + Thms + Thmk+1 + 7 h? mgﬂ +7h3 mg + 7 h? mg)

<
kl
< Crhmit.

Lemma 1.5.8 For a cell S* and the residual error term
trk+1
Ra (Sl”“|Sl’kJr1 J f gdadt — Tm’f;“g_l (t]ngl, Xg“)
t 1, k(t)

one achicves the estimate |Ry (SUR|SUE+Y)| < C7(1 + h)ymbEt! .

Proof We expand the residual by
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1.5 Convergence

tht1
Ra (Sl’k|5l’k+l) = L (.Ll . g(t,z)da — L‘l o )g(tk+17 ) da) de
k J (et

+7 (J 9(tks1, ) da — J g(tkt1,x) da)
Stk (tpsr) Stk+1

+7 <J g(tkt1,2)da — g_l(tk+1, Xlsc+1) mgk+1>
Sl k+1
+7 (mgk-&-l _ ml§+1) 0 (tr, X5,
Now we use a standard quadrature estimate, Lemmas 1.5.2 and 1.5.3, and Corollary 1.5.4, which
yields

C(r?H 1SV (tgyr)) + 7 hkar1 +Thmk+1 + 7 h? ’”1)
Cr(r + h)ym*.

|R4 (Sl,k|Sl,k+1)| <
<

1.5.3 Proof of Theorem 1.5.1

As in Section 1.2 (cf. (1.3), (1.4), and (1.5)), let us consider the following trianglewise flux formu-
lation of the continuous problem (1.1):

tht1 tht1
J u da — J u da — J J DVru “naguk(y dl dt = J J gdadt.
SUk (tpg1) SUk(ty) te 2SLk( te  JSLE(E)

From this equation we subtract the discrete counterpart (1.7)

Uk:+1 Uk?+1

k+1 k+1 krrk k+1 k+1 _ k+1~k+1
U mSUS—T Z me Mo’ T =TMmg GS
ocdS S|L

and multiply this with E’“Jrl =u~! (thrl, X’g“) — U’S“H. Hence, we obtain
2
RS (Sl,k|5l,k+1) E§-+1 + m’éﬂ (E§'+1) _ ngg-‘rlEg

tht1
_ ( + R, (Sl,k(t)) dt) Ef;“ - Z Ry (Sl,k+1|Ll,k+1) Eé“
t

k occdS

mEFIMERL 1y k1 Lk|Qlk+1y ph+1
(BM+ = B EEF 2 R, (Shk|SIEHL) gl

-7 dk+1
occéS S|L

Now we sum over all simplices and obtain
E+1 [ pk+1)2 k+1 k+1y2 _ k pak+1 ok
SImE(EET) 1 )] yy (B} — BGHY)? = mEEST ES
S o=SnL S|L S

_Z ( Sl k|Sl kJrl f R Sl k( )) R4 (Sl,k|Sl,k+1) )E§+1

k+1Mk+1

_H_Z Z Ro Sl,k+1|Ll,k+1) Eg-&-l.
S occeéS
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1 A convergent finite volume scheme for diffusion on evolving surfaces

Observing that Ry (SUFTHLEAHL) = —Ry (LEFH1S5E+D) the last term on the right hand side can
be rewritten and estimated as follows:

k1
Z Ry (Sl,k+1|Lz,k+1) dS\L W(Bf“ — Eg“)

E+1 g k+1 Iy
o=SnL mg Ma' dSTL

) dk-{-l 2
S|L
< < Z Ry (Sl,k+1|Ll,k+1) | ) HEkH”l,FfL“

k+1 k+1
o=SnL me' Mo

2

<C (E m’g+1h2) [ES41, pin < CRHP U ER)
S

Here, we have used Lemma 1.5.6 and the estimate mF*'h < CmE™! for o c 3S. Now we take into
account the consistency results from Corollary 1.5.4, Lemmas 1.5.5, 1.5.7 and 1.5.8, apply Young’s
inequality and Cauchy’s inequality and achieve the estimate

k412 k12
B 2, gy + IR

Lkt Lk 1 m§ k|2
< §||E ”V(F'i“) + §HE I ey + 5 maxmax |1 — mk I

+C(Th+72(1+Ch?) + (7 + h))H" 1 (Th+1)3 ||E’“+1||]L2(F§+1)

+CThH"Y(Tk+1)z |E¥*, pess.

k
Based on our assumption that the triangulation is advected in time, we can estimate ‘1 — ":Zil <
C 7. Again applying Young’s inequality to the last two terms on the right hand side we get i
n— 1 1
C(rh+7*1+Ch*) +7(r+h)H 1(F’Z+1) 3 5||Elc+1H]LZ(F;CL+1)
< Cr|EFH? Hiz(r’““) +Cr(T + h)2’)-[n71(rl}cl+1) ’
h
1 C?h?
Cth H"fl(]_—‘ﬁ"'l)i HEkJrl Hl i < %HEkJrl”? . + T . anl(l—\z,+1) )
" h " h
Hence, taking into account that H”’l(I‘ﬁH) is uniformly bounded we obtain the estimate
T
(=D, ey + SIER i < (14O B R + Cr(r+h) (121)

At first, we skip the second term on the left hand side, use the inequality % < (14 ¢7) for

sufficiently small time step 7 and a constant ¢ > 0, and obtain via iteration (cf. also the proof of
Theorem 1.4.1)

||E’”1H[2L2(FE+1) < (U4 en)|BM ey + Crlr + h)?
k

< S @ en)HE R oy + Y T(L ) T (T + h)?
i=1

< (1B Raqry + 11 (7 1))

This implies the first claim of the theorem:
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1.6 Coupled reaction diffusion and advection model

k)2 2
pomax |E ”L%Fﬁ) <C(r+h)%

Finally, taking into account this estimate and summing over k = 0, ... kpqr — 1 in (1.21) we obtain
also the claimed estimate for the discrete H'-norm of the error:

S IR <Cr )2
E=1,..kmas

1.6 Coupled reaction diffusion and advection model

In what follows, we will generalize our finite volume approach by considering a source term g which
depends on the solution and an additional tangential advection term V. - (wu). Here, w is an
additional tangential transport velocity on the surface, which transports the density u along the
moving interface I' instead of just passively advecting it with the interface. We assume the mapping
(t,z) = w(t,®(t,z)) to be in C([0,tmaz], C'(To)). Furthermore, we suppose g to be Lipschitz
continuous. An extension to a reaction term which also explicitly depends on time and position is
straightforward. Hence, we investigate the evolution problem

U+ uVr-v =V (DVrw) + Vi - (wu) = g(u) onT =T(¢). (1.22)

In what follows, let us consider an appropriate discretization for both terms. For the reaction term,
we consider the time-explicit approximation

41
j 4[ g(u(t,z))dadt ~ TmEg(u(ty, PFXE)) (1.23)
tr Stk (t)

and then replace u(ty, P*(X%)) by U¥ in the actual numerical scheme. Furthermore, we take into
account an upwind discretization of the additional transport term to ensure robustness also in a
regime where the transport induced by w dominates the diffusion. Here, we confine to a classical first
order upwind discretization. Thus, on each edge o* = S* A LF of a triangle S* facing to the adjacent
triangle L* we define an averaged outward pointing conormal nlg‘L = |nes —ner| ™ (nos —ner). In
particular ng‘L = _”]Z\S holds. If n§'|L ~w ™ (ty, X¥) = 0, the upwind direction is pointing inward
and we define u* (¢, X*) := u=!(ty, XE), otherwise u™ (¢, X*) := u=!(t, X¥). Once the upwind
direction is identified, we take into account the classical approach by Engquist and Osher [43] and
obtain the approximation

Lkt
J Vr - (wu)dadt ~ 7 Z ml (nk g - w™ (te, X5)) . u™ (te, X2). (1.24)
t

o
ko JSUE(L) ocoS

Finally, we again replace u~!(t;, X%) by the discrete nodal values U% and denote these by U¥*. For
the sake of completeness let us resume the following resulting scheme:

i i A k X Uk+1 _ k+1
+1 +1 +1 +1~¥L S
mg US _msUS = T Z mg MG’ 7dk+1
ocoS S|L
k k k k -1 k k
+rmgg(Ug) — 7 Z my (nle -w (tk,XU)) Uk, (1.25)
ocdS
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1 A convergent finite volume scheme for diffusion on evolving surfaces

Obviously, due to the fully explicit discretization of the additional terms, Proposition 1.3.2 still
applies and guarantees the existence and uniqueness of a discrete solution. Furthermore, the con-
vergence result can be adapted, and the error estimate postulated in Theorem 1.5.1 holds. To see
this, let us first consider the nonlinear source term g(u) and estimate

trh+1
L J’Slk z))dadt — Tmkg(UE)

< [ wa sttt da— [ gtultn.0)da) dt

b ([, otutn.a)) da = eg(u- (e X5) a4 7 (o = gt (1 XE)
+rm§ (gu (te, X§)) — 9(US))
< C (TQH”_l(Sl’k) + Thm]fg + Thzm]f; + CLip(g)ngEg) ,

where Cr;,(g) denotes the Lipschitz constant of g. In the proof of Theorem 1.5.1 we already have
treated terms identical to the first three on the right hand side. For the last term, we obtain after
multiplication with the nodal error Eg“ and a summation over all cells S,

mk 2
Crip(g)T Y, mEESEE™ < Cri(g)T max (mkil IE* L2 o, o |E* 2o ey
S S

< O (HEkHH%Z)(Fh(tk)) + HEk+1”i2(Fh(tk+l))) '

Taking into account these additional error terms, the estimate (1.21) remains unaltered. Next, we
investigate the error due to the additional advection term and rewrite

tit1
,[ Vr - (wu)dadt — 7 Z my I;,S'wfl(tkaXc]f)) U§’+
t

k SbE(t) ocdS

tet1
= J Vr - (wu)dadt — 7| Vr - (wu)da
¢

K Slk() Slk‘

+ Z TR5 Slk|le)+ f(Slk|le:)Ek+)
ocds
o=SnL

where Ry (S"F|LY*) = §_ wnogir - wu dl — mEw™ (), X%) - ,uglLu"’(tk,X[’f) is an edge residual,
F (SURILER) = mbw! (ty, XE) - ,uglL is a flux term on the edge o' = SU*F A LVF and ENF =
u™ (tg, XF) — UF+ is a piecewise constant upwind error function on the discrete surface I'f. The
first term in the above error representation can again be estimates by C72H"'(S“*). From
|ut (te, X¥) — u=(ty,, XF)| < Ch, we deduce by similar arguments as in the proof of Lemma
1.5.6 that [R5 (S“*|L"F)| < Chmk. Furthermore, the antisymmetry relations Rs (S“*|LLF) =
—Rs (LY*|S) and F (S*F|LEF) = —F (L'F|S%%) hold (cf. the same relation for Ry (SU*|LEF)).
After multiplication with the nodal error Eg“ and summation over all cells S we obtain

TZ ZS Slk|le)+ ]:'(Slk|le) Ek+)E§r+1
o=SnL
<7 Z R5 Sl k|Ll k) (Ek+1 E/Z+1) +F (Sl,k|Ll,k) E§,+(El§+1 _ Ef+1))
o=SnL
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1.7 Numerical results

dk‘+1 1
2 S|L 2
<r(( 3 (R (SME™) + 7 (SHL0) B P ) B
o=SnL o o
1
<Cr(hHr ThE 4+ () mE(BED) )BT

o=SnL
T\ pk+12 2 k2
< Z||E + ”LFi” +CTth*+CT|E H]LQ(FZ)'

Here, we have applied the straightforward estimate |E** | 2rx) < C|E*|2(rry and Young’s in-

equality. Again, taking into account these error terms due to the added advection in the original

error estimate (1.21), solely the constant in front of the term HEk“Hf e+ on the left hand side of
s

(1.21) is slightly reduced.
Thus, both the explicit discretization of a nonlinear reaction term and the upwind discretization

of the additional tangential advection still allow us to establish the error estimate postulated in
Theorem 1.5.1.

1.7 Numerical results

To numerically simulate the evolution problem (1.1), we first have to setup a family of triangular
meshes, which are consistent with the assumption made above. We generate these meshes based on
an implicit description of the underlying initial surface and apply an adaptive polygonization method
proposed by de Aratjo and Jorge in [29, 28|. This method polygonizes implicit surfaces along an
evolving front with triangles whose sizes are adapted to the local radius of curvature. Afterward,
using a technique similar to the one developed by Persson in [99] we modify triangles to ensure
the orthogonality condition (1.2). We refer also to [36] for a computational approach to anisotropic
centroidal Voronoi meshes. Already in Figures 1.1 and 1.3 we have depicted a corresponding family
of meshes.

As a first example, we consider a family of expanding and collapsing spheres with radius r(t) =
1 + sin®(7t), and a function u(t,0,\) = T%(t)exp (—6 Sé T%(T)d7'> - sin(26) cos(A), where 6 is the
inclination and A is the azimuth. The function u solves (1.1) on this family of spheres for D = Id
and g = 0. We compute the numerical solution on successively refined surface triangulations on the
time interval [0, 1]. Table 1.1 presents the different grids and the errors in the discrete L* (L?) norm

and discrete energy seminorm (1.9), respectively. Indeed, the observed error decay is consistent with
the convergence result in Theorem 1.5.1.

norm of the error
h(0) max h(t) ]L‘x‘(]LQ) ]L’“‘(Hl)
te[0,1]
0.2129 0.4257 | 32.941-10"* | 22.999-103
0.1069 0.2138 8.036-10~* 8.348 - 1073
0.0535 0.1070 1.764 - 10~* 2.950-1073
0.0268 0.0536 0.423-10~* 1.047-1073

Table 1.1: On the left, the different triangulations used for the convergence test are depicted. The
table on the right displays the numerical error on these grids in two different norms when
compared to the explicit solution. The time discretization was chosen as 7 = 1/32000 « h?
in all four computations.
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1 A convergent finite volume scheme for diffusion on evolving surfaces

Next, we consider on the same geometry the advection vector
w(t,z) = (0, 0, 30) — (v(¢t,x) - (0, 0, 30)) v(t,x) with v(¢,x) being the normal to the surface I'(t),
and the source term
g(t,0,\) = 2¢(t) (—sin(20) cos(A)(w(t, z) - v(t, x)) + cos(26) cos(N) (w - eg) —cos(#)sin(A) (w - ey)),
where eg = (cos(0) cos(N), cos(d) sin()), —sin(f)), ex = ( —sin(A), cos(}), 0), and
c(t) = T%(t) exp (—6 Sé T%(T)dT) . The function u(t,0,\) = T%(t) exp (—6 Sé %dr) - 8in(20) cos(N)
now solves (1.22). In fact w has been chosen to be at the limit of the CFL condition on the finest grid,
characterizing the strength of the advection. Table 1.2 presents the errors in the discrete L*(IL?)
norm and discrete energy seminorm (1.9), using the same triangulations as above. The observed
error decay is again consistent with the convergence result in Theorem 1.5.1. In fact, even though
the solution — and thus its interpolation properties — are identical to the previous example, we see a
reduced order of convergence due to the transport part of the equation. In general, we could improve
the order of convergence by using a higher order slope limiting and replacing condition (1.16) by

ITEEN(XE) — X§TH < ORPr

norm of the error
h(0) max h(t) ]L"L‘(]LQ) L”(Hl)
te[0,1]
0.2129 0.4257 | 25.53-102 | 11.615- 10~
0.1069 0.2138 | 14.26 - 102 7.089 - 10"
0.0535 0.1070 7.61-1072 3.985. 1071
0.0268 0.0536 | 3.95-10"2 | 2.125-107!

Table 1.2: The table displays the numerical error when compared to the explicit solution in the
advection dominated setting on the same grids as in Table 1.1. The time discretization
was chosen as 7 = 1/32000 « h? in all four computations.

Figure 1.6 shows the finite volume solution for the heat equation without source term. In the
first row the sphere expands with constant velocity in normal direction and initial data have local
support, while in the second row the sphere expands into an ellipsoid and initial data are constant.
Furthermore, we have computed isotropic and anisotropic diffusion on a rotating torus with zero
initial data and time constant or time periodic source term, respectively. Figures 1.7 and 1.8
demonstrate the different joint effects of transport and isotropic diffusion, similar to Figures 2
and 3 in [38]. In Figure 1.9 we consider the same problem as in Figure 1.8 except that this time
the underlying is diffusion tensor is anisotropic; i.e., we have chosen the tensor

1

5 00
D= 0 1 0

0 0 1

in R332 whose restriction on the tangent bundle is considered as the diffusion in (1.1). The underlying
grids have already been rendered in Figure 1.3. Finally, we combine the diffusion process on evolving
surfaces with an additional (gravity-type) advection term. As evolving geometry, we have selected
one with an initial fourfold symmetry undergoing a transition to the sphere (cf. Figure 1.1 for a
corresponding triangular mesh, which is further refined for the actual computation). The advection
direction is the projection of a downward pointing gravity vector along the symmetry line on the
tangent plane. Figure 1.10 shows the results on the evolving geometry, whereas Figure 1.11 allows
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1.7 Numerical results

Figure 1.6:

In the top row the heat equation (D = Id) is solved on an expanding sphere for initial

data with local support on a relatively coarse evolving grid consisting of 956 triangles.
The density is color coded from blue to red at different time steps. In the bottom row, an
anisotropic expansion and later reverse contraction of a sphere with constant initial data
computed on an evolving surface are depicted. Here a significantly finer discretization
consisting of 18462 triangles is taken into account. Again we plot the density at different
time steps. One clearly observes an inhomogeneous density with maxima on the less
stretched poles during the expansion phase followed by an advective concentration of
density close to the symmetry plane during the contraction phase.

Figure 1.7:

The solution of the isotropic heat equation is computed on a torus with smaller radius
1 and larger radius 4. The torus is triangulated with 21852 triangles and 10926 points,
and it rotates around its center twice during the evolution process. As initial data,
we consider ug = 0 and take into account a source term g with local support inside
a geodesic ball of radius 0.5. The source term is considered to be time independent.
The surface velocity implies a transport which together with the source term and the
isotropic diffusion lead to the observed trace-type solution pattern.

a comparison of the same evolution law on a fixed surface. One clearly notices the impact of the
surface evolution on the diffusion and advection process caused by the temporal variation of the
angle of attack of the gravity force.
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1 A convergent finite volume scheme for diffusion on evolving surfaces

Figure 1.8: A similar computation as in Figure 1.7 has been performed, but with a pulsating source g
with 10 pulses during a complete rotation of the torus. The source is located at a slightly
different position, and in order to pronounce the effect of the dynamics, the color scale

is logarithmic.

Figure 1.9: As in Figure 1.8, diffusion on a rotating torus with a pulsating source is investigated.
This time the diffusion is anisotropic with a smaller diffusion coefficient in the direction
perpendicular to the torus’ center plane. Again the color scale is logarithmic. The
different diffusion lengths in the different directions can be clearly observed in the shape
and distance of the isolines at later times and further away from the source.

Figure 1.10: The evolution of a density governed by a diffusion and advection process on an evolving
geometry with a localized source term is shown at different time steps. The underlying
grid consists of 21960 triangles and 10982 vertices.
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1.7 Numerical results

Figure 1.11: As in Figure 1.10, the evolution of a density under diffusion and advection by gravity
is investigated. This time the underlying geometry is fixed.

25



1 A convergent finite volume scheme for diffusion on evolving surfaces
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2 A stable and convergent O-method for
general moving hypersurfaces

2.1 Introduction

In Chapter I, we have defined a consistent and convergent finite volume scheme for the simulation
of diffusion and advection processes on moving surfaces. Although the proposed scheme is stable
and convergent, it is subject to strong constraints on the mesh, namely the orthogonality condition
which is related to the diffusion tensor. This makes the mesh used in the algorithm problem-
dependent and it becomes difficult to couple interdependent phenomena involving many spatially
varying anisotropic diffusion tensors on the same mesh. Also, even on fixed surfaces, it would be
difficult using this algorithm to simulate problems with time and space dependent diffusion tensors
when variations on eigenvectors of diffusion tensors become important as time evolves. In this case
one is obliged to remesh the substrate often as needed. This might introduce some inaccuracy in the
result depending on the remeshing method and the approximation method used to reallocate values
on cells. In the last two decades, researchers have invested a lot of effort in developing finite volume
schemes for anisotropic diffusion problems on unstructured meshes which tackle the best these issues.
Unfortunately, focus has been put on planar 2-dimensional and on 3-dimensional problems. We refer
to the benchmark parts of [47] and [49], Proceedings of Finite Volumes for Complex Applications V
and VI, for the state of art on research in this domain. Nevertheless, the methods developed in the
context of finite volumes rely on a suitable approximation of fluxes across edges of control volumes.
One constructs fluxes either using only the two unknowns across interfaces or a set of unknowns
around edges. The first strategy is referred to as the two-point flux approximation method while
the second is known as the multi-point flux approximation method. The method defined in Chapter
I is an example of the two-point flux approximation method on curved surfaces and one will find
in [45] a more extended description and analysis of the method applied on various problems on flat
surfaces. As already said above, it is unfortunately very restrictive in terms of meshes and problems
on which it can be applied. The multi-point flux approximation is the up-to-date strategy in the
finite volume simulation and is much more flexible. It can be divided into two main groups:

e The Discrete Duality Finite Volumes: In this class of methods, one interplays simultaneously be-
tween two meshes; the primal mesh and the dual mesh. The computation is done here on the two
nested meshes and the degrees of freedom include the center points of the primal mesh as well as its
vertices which are in fact the center points of the dual mesh. We refer to [32, 64, 77, 94] for more
insight in the methodology.

e The Mixed or Hybrid Finite Volumes: Here, the degrees of freedom are maintained at the cell
centers and one explicitly constructs the gradient operators using different strategies: O-Method
[1, 85, 87], L-Method [1], scheme using stabilization and hybrid interfaces [46], finite element strat-
egy [2], least square reconstruction [96] among others.

Since most of these schemes use properties valid only in Cartesian geometry, they cannot be di-
rectly transferred to curved surfaces. Also, the fact that a general curved geometry can only be
approximated requires a special treatment of schemes on curved surfaces since one should combine
the accuracy of the geometric approximation and the accuracy of the scheme. Nevertheless, the
methodology in [2] has been analyzed on curved surfaces in [34, 76]. We should also mention the
finite volume approach on logically rectangular grids studied in [19] for diffusion and advection in
circular and spherical domains. As in these few papers, the few works devoted to finite volumes
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2 A stable and convergent O-method for general moving hypersurfaces

on curved surfaces encountered in the literature rely either on a good triangulation of the domain
or on a special partitioning of the curved geometry; this restricts their domain of application. In
this chapter, we present a finite volume type O-method for general polygonal meshes on curved and
moving surfaces. Our method is close to the ones developed by Le Potier in [85] and K. Lipnikov,
M. Shashkov and I. Yotov in [87]. Similar to these authors, we first partition each cell of the given
discrete domain into subcells attached to cells vertices; this implies a partition of each edge into
two subedges and a virtually refined domain where the subcells are effectively the new cells and are
grouped around vertices. Next around each vertex, we construct an approximate constant gradient
of our solution on surrounding subcells using surrounding cell center unknowns and the continuity
of fluxes on subedges. We also take into account worse situations that can occur when the diffusion
coeflicients become almost degenerate, by using a suitable minimization process which controls the
norm of the chosen solution gradients around vertices. These gradients are latter included properly
in the flux formulation of the diffusion operator to obtain its discretization. Finally, we use the
approximate gradients issued from the identity operator on surfaces to construct a slope limited
gradient of the solution function on each control volume. These last gradients approximation are
used to develop a second order upwind scheme for the advection part of our model equation. Since
the stencil of our slope limited gradients remains unchanged during the process, we experimentally
have a second order space convergence of the whole scheme. We should mention that our method is
identical to the methods developed in [85, 87| for diffusion on flat surfaces and to the method dis-
cussed in [76] for diffusion on curved surfaces when applied with the same parameters, but the scope
of meshes that we can handle in that case is wider. Nevertheless, we would like to emphasize that
we primarily deal with moving curved surfaces. This includes surfaces whose evolution is implicitly
defined through partial differential equations and surfaces whose evolution is explicitly given among
others. Let us also mention that this method can be reduced to the method discussed in Chapter I
for appropriate meshes designed for this purpose. In the following, we explicitly introduce the model
problem discussed in this chapter, next we present the method and give a possible implementation
algorithm. Furthermore, we prove some stability results and the convergence of the scheme and fi-
nally we present some numerical results to validate the theory. For the purpose of self containment,
we will reproduce some proofs from Chapter 1.

2.2 Problem setting

We consider a family of compact hypersurfaces I'(t) < R" (n = 2,3,--) for t € [0,tmnas] gen-
erated by a time-dependent function ® : [0,#,4:] x [V — R™ defined on a reference frame I'°
with ®(¢,T0) = I'(t). We assume that ®(¢,-) is the restriction of a function that we abusively call
®(t,-) : No =N(0) — N(t), where Ny and N (t) are respectively neighborhoods of I'Y and T'(¢) in
R™. We also take I'’ to be C?* smooth and ® € C! ([0, tmas], C* (Np)). For simplicity, we assume
the reference surface I'’ to coincide with the initial surface I'(0). We denote by v = 0;® the velocity
of material points and assume the decomposition v = v,v + v,,, into a scalar normal velocity v,, in
the direction of the surface normal v and a tangential velocity v,,,. The evolution of a conservative
material quantity v with u(¢,-) : I'(t) — R, which is propagated with the surface and at the same
time, undergoes a linear diffusion on the surface, is governed by the parabolic equation

u+uVr-v—Vr: (DVru) = g on I'(t), (2.1)

where u = %u(t, x(t)) is the (advective) material derivative of u, V- v the surface divergence of the
vector field v, Vpu the surface gradient of the scalar field u, g a source term with g(¢,-) : I'(t) — R
and D the diffusion tensor on the tangent bundle. Here we assume a symmetric, uniformly coercive
C? diffusion tensor field on whole R™ to be given, whose restriction on the tangent plane is then ef-
fectively incorporated in the model. With slight misuse of notation, we denote this global tensor also
by D. Furthermore, we impose an initial condition u(0,-) = ug at time ¢ = 0. Since we have already
introduced the subject in Chapter I in a relative simple setup, we will treat in this chapter a more
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2.3 Surface approximation

general case of surfaces with boundary. Surfaces without boundary fall into this setup since they are
merely surfaces with empty boundary. Then in case of surfaces with nonempty boundary, we impose
a Dirichlet boundary condition. We will nevertheless mention how more general boundary conditions
can be included in the algorithm. We assume that the mappings (¢, z) — u (¢, (¢, z)), v(t, P (¢, z))
and g(t, ®(t,2)) are CL ([0, timar], C* (1)), € ([0, tmas], (CP)*), and C ([0, tynaa], C1(T0)),
respectively. For the discussion on existence, uniqueness and regularity, we refer to [37] and refer-
ences therein.

2.3 Surface approximation
We introduce in this part a more general notion of surface approximation.

Definition 2.3.1 (Cell, cell center and vertices) Let (D), Dy, , D, ) and Xs be (ns + 1) distinct
points in R3. We call cell S the closed fan of triangles Sy = [Xs,pi,pj] (j = (4 mod ng)+1)
where Xg is the shared vertex. The point Xg is called cell center or center point and the points D,
the vertices of the cell and are not necessarily coplanar. Figure 2.1 shows an example of a cell.

P2

ps

Figure 2.1: Cell S made of subtriangles Sy; ;13-

In the following, we adopt the notation j = ¢ + 1 for the cyclic addition (j = (¢ mod ng) + 1) if
there is no confusion.

Definition 2.3.2 (Admissible cell)

Let S be a cell, Xg its center point and p, (i = 1,--- ,ng) its ng vertices. For a given vertex
p; we denote by vs, ..\, = XsP; A XspP; /| XsD; A Xsp; | the oriented normal of the triangle
[Xs,D;,D;41] if the triangle has a nonzero measure and we define a pseudo-normal to the cell by
vg = (Zl Xsp; A Xgpiﬂ) /12 Xsp; A Xsp; 1. We will then call the cell admissible if for any i,

m andre {1,2,--- ng}, | Xsp;| < maxy,,

DDyl and vs,, ..., - vs > 0 for well defined normals.

Remark 2.3.3 The vector vg depends only on the vertices and not on Xg. In factV r e {1,2,-- ,ng}
—_— = —_— = .y .y
vs 1= (Zl Xsp; A Xspi+1) S22 Xsp; A XsDiiqll) = (Zz D.Di A prpiJrl) /(1 22 P, D; A DD -

Definition 2.3.4 (admissible polygonal surface)

We define an admissible polygonal surface as a union of admissible cells which form a partition of a
C° surface T'y,. Also, the normals vs, and vs, of two different cells S;, S; < T'y, with S; 0 S; # &,
must satisfy vs, - vs, > 0. We refer to Figure 2.2 for an exzample of admissible mesh (polygonal

surface). The index h in Ty, represents the maximum distance between two points in a given cell
S c Fh.
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2 A stable and convergent O-method for general moving hypersurfaces

Figure 2.2: Admissible polygonal surface

In the sequel, we assume for surfaces with nonempty boundary a piecewise C2 boundary. In that
case, we assume I'’ to be part of a larger surface g — A with the same properties as I'°, and which
is transformed by the map ®(-,-) to Q(¢,-) as time evolves. We also denote by C a generic constant.

Definition 2.3.5 ((m,h)—polygonal approximation of a surface)

We will say that the polygonal surface T'Y) is an (m,h) — approzimation (m > 2) of the surface T° if
and only if T is admissible and there exists a neighborhood N o := {x | d(x, Q) = infpeq, |[PZ] < &}
(6 < Ch2) of Qo o I'° which satisfies the following conditions:

i) T9 < Niyo.

ii) The perpendicular lines to Qo at two different points do not intersect within N .
ii1) The orthogonal projection P of I') onto Qq is a bijection between I') and its image.
i) The orthogonal projection of any cell of T') onto Qq intersects T'°.

v) There exists T%,,,  T° and TY,, o I'° satisfying I2,,, =« PI'Y < TY,, € Qo (cf. Figure 2.3) and

Tes
m(T2,\I%,.;) < Ch? where m(-) represents the (n — 1) — dimensional Hausdorff measure.

vi) Let us denote by Paro : x — y = argmin d(x, 0T'°) the map that projects points orthogonally on
the boundary oT° of T°. This map should be well defined in a neighborhood of 0I'° containing
(9 \I,.,), and its restriction on P(OTY) should be bijective. Furthermore, we assume that
the reverse image of a vertex of I'® onto P(0L'Y) is the projection of a vertex of T') onto T'Y,,
(cf. Figure 2.3).

vii) For two different vertices p; and p; of the same cell S, we have Ch < ||1Tp;\| < h.

viii) For any cell S, there exists a point pg € S and a vector _b)s such that the trace on S of the
cylinder with principal azis (Dg, ?5) and the radius Ch do not intersect the boundary of S.

iz) The distance between a vertex and its projection on T',, is less than Ch™.
Remark 2.3.6 In the above definition,
e v) expresses the convergence of PTY toward T° as h tends to 0.
e i), iii) and v) ensure the convergence of the discrete surface I‘% toward T° as h tends to 0.

e i) will allow for an extension of functions defined on the reference surface I'° onto a narrow
band around T'° which includes I’?L.
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2.4 Derivation of the finite volume scheme

0
Prrest

0
P'Fe.rt

P(ory)

Pary(Po1) = P(1)  Par,(P(p2)) = P(po)

ext

(green line), 0I'% (hidden behind the surface), dP(I'?) (gray line), oI'%,, (inner brown

rest
line) and OI'%,, (outer brown line).

Figure 2.3: Representation of T < Qq, IV, P(I'?), TY,,, and 'Y, delimited respectively by oI

e vii) ensures the nondegeneracy of sides while viii) ensures the nondegeneracy of cells. For
usual triangular meshes, viii) is expressed as C1th? < mg < Coh? V S F% where Cy, Co are
some fized constants and mg is the (n — 1) — dimensional measure of S.

e iv) ensures that there is no unnecessary cell.

e iz) allows us to see that the best paraboloid that can be fitted to a closed set of points will
be an m — order approximation of the original surface. In fact, if some intrinsic properties
have to be computed, we will need a good approximation of vertices. This is for example the
case in the fourth example considered in this chapter where we have to discretize an additional
advection term which involves the curvature tensor. To evaluate the curvature tensor at cen-
ter points, the best method in the literature to do such a computation at a desired order on
a parametric surface is the least square fitting. Of course the consistency of the fitting is at
most the consistency of points used which should be m > 3 in this case. Furthermore, this
general setting is much closer to the real world application than considering vertices bound to
the original surface. Most often, the movement of surfaces are described by another partial
differential equation; the mean curvature flow considered in the fourth example of this chap-
ter is an illustration. Another example is the two phase flow problem presented in Chapter
1V; the Surfactant spreads on top of a thin film which at the same time evolves on a moving
surface. In this last case, there is no way to tackle the exact position of free surface points;
hence the importance of introducing some inaccuracy on points used to approzimate the surface.

2.4 Derivation of the finite volume scheme

2.4.1 General setting

We consider a family of admissible polygonal surfaces {Fﬁ}kzo,..., Emas, With F’,fb approximating
I(ty) € QF c N(tg) for tp = kT and kpae™ = timae. Here QF := Q(ty) = ®(tx, Q) is a sequence
of two dimensional surfaces as defined above in Section 2.3 and, as in Chapter I, h denotes the
maximum diameter of a cell on the whole family of polygonizations, 7 the time step size and k the
index of a time step. Successive polygonizations share the same grid topology and given the set of
vertices p;? on the polygonal surface 1"’,2, the vertices of I‘i“ lie on motion trajectories; thus they are

evaluated based on the flux function &, i.e., f“ = (tk+1, o1 (p;?, tk)) Upper indices denote the

time steps and foot indices “ j 7 are vertex indices. Let us for the moment merely assume the center
points being chosen at each time step such that the discrete surfaces remain uniformly admissible
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2 A stable and convergent O-method for general moving hypersurfaces

(2, h)—polygonizations of the original surfaces; i.e., the constants in Definition 2.3.5 remain the
same for all time steps. In Section 2.5, we will give more detail precisions on their choice. Next, at
each time step tz, we consider a virtual subdivision of each cell S* into ng subcells (virtual cells)
S;;i (i =1,---,ng) which share the common vertex X§ as depicted on Figure 2.4. We recall that ng

k
2

p:

k
p11/2

Q
=

et

P
\ o%xjéﬁ
k
5 k
g 9p13/2
Figure 2.4: Subdivision of cell S* into polygonal subcells S% and subedges 0§1,1 Jo = [q}’;h1 /2,p’f],
0}’:173/2 = [q§173/2,p’f] induced by S¥ around p}.

denotes the number of vertices of the cell S*. This subdivision, as we can notice again on Figure 2.4,
induces a partition of each edge o = [P}, p},,] < 0S* into two subedges off | |, := [qy ;5. P;]
k — [k k1. gk — ok — gk k
and O pigr,m+1/2 *= [qpi+1,m+1/27pi+1]’ Qpii—1/2 = Dpiyyme1y2 = Sp, N Spi+1 N [Py Digpql, [ and m
are subindices used to reference the cell S¥ around the vertices pf and p¥, ;| respectively. We will
come back on how these indices are built in Section 2.4.2. We furthermore assume that two virtual
cells S]’,fi and L’;i of two different cells S* and L*, which have the vertex pf in common, share
either a common subedge or the only vertex p¥ as depicted on Figure 2.5. For later comparison

b

Figure 2.5: Cells and subcells around a vertex.

of discrete quantities on polygonal surfaces F’fL and continuous surfaces I'* = T'(¢;,), we first extend
functions defined on I'* or '} in their neighborhood N (t). The resulting functions still bear their
original names and will be understood from the context. A function u(ty,-) defined on I'* is then
extended by requiring Vu(ty,-) - Vd(-,T*) = 0; d(-,T*) being a signed distance function from T'*.
This means in other words that, given a point x € N (¢;), the extended function u(t, ) is constant
along the shortest line segment from z to the surface I'*. The restriction of this new function
on I'¥ will be denoted u~'(t,-) or shortly u="*. On the other hand, the extension of a function
up(ty, ) defined on T'¥ is done in two steps. We first extend as constant along the normal v to
PE(TF); P*(-) being the orthogonal projection operator onto 2F. The resulting function, still called
up(tk, -), is finally extended by requirering Vuy, (¢, -) - Vd(-, P*(I'¥)) = 0. The restriction of the final
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2.4 Derivation of the finite volume scheme

extended function on T'* will be termed wu!, (tx, ) or simply u!"* and the operation which transforms
up(t, ) to ul (tg,-) will be called “lift ” operator. These extension operations are by definition
well defined in a neighborhood of T'(t;) in which I'} lies, thus the lift operator is well defined. We
will also refer to the orthogonal projection as a lift operator; and therefore lift operators will be
understood from the context. We denote by S"* := P*S* the orthogonal projection of S* onto QF,
by SUE(t) = ® (t, o1 (tk, Sl’k)) the temporal evolution of S“* and by mlg the area of S¥. We should
mention here that the symbol “[” written as upper index is meant for the “lift” operator; therefore
k will literally mean lift of 2* onto the surface QF. Along the same line, we will call Sy l, k PkS k

the orthogonal projection of Sk onto QF. So defined, the subcells Sl k form a curved mesh on SHk, K

The key of our approach will be to define on these subcells a reasonable approximation of the surface
gradient operators Vyu, and deduce a suitable approximation of V. - (Dr»Vyu) in the cells S*. Our
algorithm can be identified as a hybrid algorithm between mixed finite volume and the usual finite
volume procedure. The mixed finite volume defines fluxes or even v = DV u as unknowns which
have to be found together with the solution u. This often leads to a system of equations that has to
be stabilized via some restriction on meshes and some appropriate techniques. In our case we define

an approximate gradient Viu of Viu(tg,-) as a piecewise constant gradient {V’;, (s S)u} < on

subcells {S}’,fi }p, 5 J(p;, S) being the local index of subcell S;’ji around p;. The construction of Vu
is done locally around vertices P, via a proper use of the flux continuity condition on subedges as
will be explained below. This procedure leads to a local system of equations which in some worse
case senario (very bad mesh and highly anisotropic tensor) is underdetermined. In that case, a
suitable minimization procedure is used to stabilize the system which is thereafter partially solved
and introduced into the global system of equations that represents (2.1) to obtain a cell center
scheme. The procedure of restricting oneself around vertices to construct subfluxes in the finite
volume procedure has already been used in [1, 85, 87| for finite volumes on flat surfaces. Restricting
to that case, the method developed in [85] is a particular case of the present one. In fact, it looses
consistency for polygonal meshes having very deformed quadrangles or nonconvex starshaped cells
(flat version of admissible cells which are not convex), while the present method produces good
results in those cases. Let us now introduce the construction of the piecewise gradient operator.

2.4.2 The discrete gradient operator

Let us first consider a vertex p,. We locally reorder the cells S ]’?, the subcells S}’,fh ; and the subedges

a}’;i i1/ counterclockwise around the normal at p,. The subedges are reordered in a way that
a;fi_j_l /2 and 0’ j+1/2 are subedges of the cell S’C and the subcell Sk . We also locally rename by

; the center pomt of S7. k. We refer to Figure 2 4 and Figure 2.5 for the illustration of this setup.

Next we define on each subedge ok

ij—1/2 the virtual point X ] 1/2 and on each subcell S;I;i,jv we

k _ vk k whi

define the covariant vectors epi gli—1/2 Xpi’jil/2 Xp.j and ep RIS Xpi Y pm which
1 k. k .

are used to define the local approximate tangent plane T)j; ; := Span epujljfl /29 €y ili+1/2 to points

of the subcell Sl’_k .. We also define on T’? . the contravariant (dual) basis (u l;_ Jli-1/2> u’;i ,j\j+1/2) such

g k
that e 5112 " My gii—1/z = b G glimyjz " Hpelivnz = O G glgrrje My gli—yz = 0, and
Cpiglit1/2 Ppsilit1)2 = = 1. Figure 2.6 illustrates this setup. Using this dual system of vectors, we

define for a continuous and derivable scalar function u(t,-) on I'*, constant gradients V ;u which

approximate Vu(tg,-)|gt.» , restrictions of Vu(t,-) on SL’_kj N Tk,
Piri [y
k o k k k k k k
Voot = (U g=1/2 7 Upm’) Hp, jlj—1/2 T (Um,j+1/2 - Upi,j) Fpijli+1/2 (22)
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2 A stable and convergent O-method for general moving hypersurfaces

Tangent plane T}’fl ;

k
n' .
= Pugli+1/2
+
=
S

Figure 2.6: Approximate tangent plane T}  to S;’fj.

k k k
where Upi’j71/27 Upi,j+1/2’ Upi,j’

w (0 PR
boundary of I'¥, u (tk,’Pk(Xk)) will be taken to be the value of u at the closest point of I'* to
PF(XF¥). The definition of our piecewise constant gradient will be completed if we give the explicit
expression of the virtual unknowns szi io1/20 For this purpose, let us introduce without proof the
following proposition.

are appropriate approximations of (tk, PF(X ;fi i1 /2)) ,

)) and w (t, P*(X) ;)) respectively. In this notation, if a point X* is on the

Proposition 2.4.1 Let Q2 be an open and bounded set in T'(t), made up of two disjoint open sets
Q1 and Qg which share a curved segment o' := 0Q, N 0y as border. Let v be a tangential vector
function which is C' on Q1 and Qa. v has a weak tangential divergence in 1.2(Q) if and only if its
normal component through o' is continuous.

The prerequisites in this proposition can also be weakened by assuming v being H' on Q; and Q.
In that case, the continuity in the conclusion becomes a continuity almost everywhere.
Also, for a line segment o* < T'¥ we define

ob =y =2 —d(x,Tt)Vd (z,T(t)),z € o*}.

It is worth mentioning here that o“* can be different from P*(c*) in some cases. For example,
considering the line segment % := [Py, P5] on Figure 2.3, ol is the blue curve joining P(p,) and
P(p,). Let us now consider a subcell SEF - of a cell S;’k. We approximate the diffusion tensor D in

Pisi
Lk
(2.1) on S, by

D e (l-ik, 0k ( Dds;"“) (10, @k ).

Tk
m(S;") Jsik

koo ok k k k : k
where v ;- (epi,j|j+1/2 A epi’j|j71/2) /||epi)j‘j+1/2 A epi,j|j71/2H is the normal to T} ; that we

take as the approximation of the oriented normal v to S;l,’fj. We also approximate the unit outer

! l
Lk k Lk k k k
normal . = ; 1 ) = . s n L
conormals to Tpii—1/2 (Opi,rl/Q) and Tpij+1/2 (Um,J+1/2> by Mpijli-1/2 @ d Mpigli+1/2

. k . . k k
respectively. These are vectors of 7)) ; which are respectively normal to T i1/2 and O it1)2 (cf.

Figure 2.6) and which point outward from the projection in the direction of v of Szl)’fj onto T’ zi-,j'

34



2.4 Derivation of the finite volume scheme

k

Finally, we approximate ml Ci1/2 the measure of a the measure of o*

iJ—1/27 pi,j—1/2 pij—1/2
Since DVru has a weak dlvergence in L2(T), we apply a discrete version of Proposition 2.4.1 on
subcells surrounding vertices pf; Namely,

by mF

k k k k k _
My, 5— 1/2Dp77] 1vpl =1 Ty, 1= 1/2+mp = 1/2DP1,JVP1JU npi,jlj—1/2_0 (2.3)

for the subedge o* Rewriting the system of equations given by (2.3) around p¥ in the matrix

. Pij—1/2°
form gives
Efrk  _ nrk Trk
Mpi Upi,U - Npi U;Dz" (2'4)

where (7;,“1
k

(Mpi)jd'—l
k k k k _ k k k

(M) ;01 = Mo irisolilioz (V)i =M1 ioaimaye + Api—s/ali—1-1/2)»
k k k k . ;

(V) i = M2 jli-12 + Apyjaagallj-1y2), and O elsewhere; with

Pi
k k k _ .k
Dyiitpeili-1/2 Apogvifelili-i/2z = Mpoli-1/2

T 7k .— ([T kAT : k k
p1,1/2’ p 372 0) > Up, o= (Up, 1, Up. 5,-++) ", and the entries of M and Ny are

k k _ k k k
My, o126 gosp2itli—tyz My =M, 12, jo1gi—1/2 + X, jli—1/2),
m,

3

k _ ok Nk k
Apidli—1/2 = T, jli—1/2 Dy, jHpijli+1/20

Mpoi—1i2lilir2 =M glis1j2 Dol jlio1/2: Nowali/z = Tpglisisz " Dot glisije:
If p¥ is a boundary poizlt, makingNuse of thg Dirichlet boundary condition, we rewrite (2.4) using
the same notation M;fiUk = NIIZU;; with U;fh = (Uk 32 ’U;Ifhnpid/z)T’

(751_ = (Uk 1/2,U;fi,1,-- U;f“nm U:i,n,,i+1/2)T' np, denotes the number of cells around pf and
Uﬁhl/2 = u(tk,Pk(X;f“l/Q)), Uzianpﬁl/? = u(ty, PP(XE +1/2)) at the boundary. The matrix

PisNp,;
M, k is then a square matrix whose dimension is the number of subedges around pk on which we
have unknowns while the matrix NV, k is a square matrix for interior vertices (vertices which do not
belong to the boundary) and a rectangular matrix for boundary vertices. We should mention here
that for consistency reasons, the subedge points X k Li—1/2 should be chosen in such a way that the

o k
angle 9pi,j = <I(Xp,.,j71/2 X Xp J+1/2)

threshold angle 6 during the entire process. This condition also leads to the invertibility of MI?L when

between eF and e is always greater than a
Pijli+1/2 pi,jli—1/2 yS 8

the diffusion tensors D’;m involved in the system are uniformly elliptic on corresponding tangent
plane, with the elliptic constant far from 0, and the incident angles at pf acute and far from 0 and

7w (0 << <I(Xp 12 pr ;fl j71/2) << ). In that case, equation (2.4) will be transformed to

ok = (ME)T NETE (2.5)

pi,o Di

; Lk . . . . .
If there exist a subcell Sp’i ; In which D’;i ; 1s almost one dimensional, for example

1 0 0
koo _ k
Dy, ;= (ld— V ®zxp ) 8 g 0| (Id— V ®1/p ), @ =1/10000, M can become noninvertible
a

if the mesh is not aligned with the anisotropy and the virtual points Xp j—1/2 @S well as the center

points X f chosen consequently. Simulation of strong anisotropic flow on such a general moving mesh
will often encounter this problem if we did not take care from the beginning by trying to produce
an adequate mesh near to what has been described in Chapter I for the triangular case. By doing
so, we limit a lot the possibilities of the actual scheme. Then if M;fi is singular, we will first make

sure that the choice of the virtual points on subedges guarantees that the range of Nzi: is a subset
of the range of M;”'i; ie Im(NZ’fi) c Im(M;fi). Thereafter, we choose (7'1’,“1,,0 as the solution of (2.4)
whose the induced discrete gradient around pf has the minimum H}-norm. The problem of finding
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2 A stable and convergent O-method for general moving hypersurfaces

UI? - is then stated numerically as follows:

Find Uf , in Bl i= {VF 1= (VE 1o ViE gy )T I MEVE = NETE | such that
2 (2.6)

)

Sk k k k 7k k
Upio = afgmlfkl Zmpl H[ ii—1/2 7 Upi,j] Hp, jlj—1/2 T [Vpi,jﬂ/z Upi,j] “pi,j\j+1/2‘
V.

Py

where m’;“ j= m(S;fi j) approximates m(SZl;fj). One easily verifies that this problem is equivalent

to the following least square problem

Find 0%, in B85, = V), o= (V1o Vi gy 0TI MEVE = NEDS } such that

-1 2
Tk _ . E trk k k 17k
Upmff = argmin Bpi Vpi,t‘f ( Bpi) C;Df, UIh

Vk k
Vpi WUEBPi

)

where 4 /BE_is the square root of the symmetric positive definite matrix BI’ji (ie. /Br y/BE =
defined by
k k k 2 k k 2
(Bpi)j,j = mpi,jfluﬂpuj—llj—l/?H + mpz‘,jHMmJ\j—l/QH ’
k
(Bpi)j.ﬂ,j

and C’;i the matrix defined by

k _ .k K Lk .
(Bpi)j7j+1 = My s ,gli-1/2 " Fps,jli+1/20

k _ k k 2 k k
(C)is = ™Mb (H”pi,ﬂj—l/z” +Mj|j—1/2'ﬂpi,j\j+1/2)’

k _ k k 2 k k
(Co)jny = Mo (H”pu‘\jﬂ/?” +“j\j71/2'ﬂpi,j\j+1/2>'

Our aim here is not to solve this least square problem at this stage but to build a relation between
the solution Ué“ - and the cell center values U k. Lars Eldén discussed the solution of this class
of problems extenswely in [41] and it turns out that this problem has a unique solution if the

intersection of the null space of , /B’;i and the null space of M. k, is the null vector. This is the case

here since 4 /B’;i is invertible. The use of the new variable Wzﬂi, =4 /Bk Vp“ <4 /Bf;_ ' Ck Uk

pi~pi
reduces the problem to

Find W) , in BF = {17 = (1/1)“1/2,1/;73/2,...)T|
- ~ ~ ~ 2
M;fi (4 /B’;i) p“ Bk ol 10’;) UZ’,‘;} such that W;’Z,o = argmlrkl V;Jki,a
LEBE
From the solution of this last problem, one easily deduces the solution to the original problem
Frk _ k 77k
U, ,» = Coef, Uy, (2.7)

Dpi Di Di Di Di

—1 ¥ -1
<M1’fi (4 /B}’g’i ) ) is the Moore-Penrose inverse of Mpi (4 /B’;i )] . We recall that the Moore-

Penrose inverse of a matrix A is the unique matrix AT that satisfies
AATA = A, ATAAT = AT,
(AAT)" = AAT, (ATA)" = ATA;

where Coef}, = (/B )_1 <M§L_ ( Bk:)_l)T (V5 = (BE) T G ) + (BE) T CE(28)

36



2.4 Derivation of the finite volume scheme

tr () being the trace operator. The Moore-Penrose inverse coincides with the usual inverse of an
invertible matrix; thus (2.5) is recovered in (2.7) and we can consider the least square problem as
being the problem to be solve to find the virtual unknowns. We refer to [20, 24, 27, 40, 41, 79,
102, 116] for details on the general topic of generalized inverse of matrices. Let us remark that
the sum of line element of the matrix Coef];i is 1, i.e Coef];i 1,, =1,,, where 1, := (1,1,---)"

1,0 := (1,1,---)T are respectively vector of ones with the same length as 17’“ and (7’“ »-In fact,
1,. o is the unique solution of the above least square problem for C~f k . Therefore U L j+1/2 can

be seen as a barycenter of the values Uk Such an idea to mtroduce the barycenter of values at cell
centers to approximate values on edges in the finite volume context was already used by Eymard,
Gallouét and Herbin in [46]. Unfortunately, due to the random choice of the barycentric coefficients,
their resulting fluxes were poorly approximated, did not respect the flux continuity in the usual
sense of finite volume methods and therefore needed extra treatment to guarantee good accuracy
of the simulation result. This is a reason of our special treatment of virtual unknowns. Also, by
minimizing the gradient, we try to avoid extra extrema on edges which would cause oscillations while
keeping the consistency of the approximations. This enforces the monotonicity whenever possible.
On the other hand, (2.2), (2.7) and (2.8) define a special quadrature rule to construct the gradient
of a function on subcells around a vertex pf knowing the surrounding cell center values. In one
dimension, this is exactly the usual finite volume procedure. One can easily extend the procedure
to three dimensions.

Remark 2.4.2

a) Let us point out some trivial setup on triangular meshes.
i) First we assume the center points at the isobarycenter of triangles and subcells constructed
such that the edges are divided ea:actely in the maiddle. We assume the virtual subedge points
k .
Xy, j-1/2 being placed such that Ipt X o1l = (2/3)m j71/2 (cf. Figure 2.7); then (2.7)
reduces to (2.5).

k
Xpl,S/Q

k
4p,,3/2

Figure 2.7: Subdivision of triangle cell using isobarycenter and the middle of edges.

ii) Secondly, we assume the setup defined in Chapter I; namely, the center points Xé? and the

. % k I T T
subcells are constructed such that the boundary points @, ;5 onoy .y 5 with 15 @y, j—1/2 =

) . . -1
m];i,j—l/z satisfy the orthogonality conditions (D’; e 1) (lefuj 1 q’;“j 1/2)-]7’4C qZ’f“j 12 =0

—1
and (D];i,j) (X p“j quj 1/2) pr qu 12 =10 (cf. Figure 2.8). If we choose Xp i =
ql;i,jfl/w (2.7) reduces to (2.5). Here, (2.3) links the virtual unknown Upi,rl/2 only to the
thus the local matrices M;fi

cells unknowns U;fi j—1 and U]fj . across the subedge o*
are diagonal.
iit) We could also define Dlqu' ; as being constant around vertices p?; for instance

DZHJ_D; = (1/Zm )ZJ Ddsy; ;-
j

Pij—1/2)
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2 A stable and convergent O-method for general moving hypersurfaces

Figure 2.8: A sketch of the local configuration of center points and subedge points satisfying the
orthogonality condition. The two neighboring cells are not always coplanar.

e., The summation is done on subcells around PF. Let us restrict ourselves to triangular
meshes on flat surfaces. We consider the dual mesh obtained by first joining the center points
of triangles sharing a common edge secondly join the middle of triangle edges o® that belong
to the mesh boundary (o < OTF) to the center of the coresponding triangles. This setup is
depicted on Figure 2.9. We adopt the vertices of the previous mesh as the center points of this
new mesh. Each interior vertex of the dual mesh is surrounded by exactly three subcells and

Figure 2.9: A sketch of a triangular mesh (delimited by thin line) and its dual (delimited by thick
line).

(2.7) reduces to (2.5) since there is only one way to build a gradient from three noncolinear
points.

b) If we had to treat the case of Neumann boundary condition or mized boundary condition (Dirichlet-
Neumann) then for any subedge O’k c l’"ﬁw only one type of boundary condition should be defined

on op . We obtain (2.4) by addmg extra equations to (2.3) which correspond to the realization

of the Neumann boundary condition at corresponding subedge virtual points.

Based on these preliminaries, we can now introduce the finite volume discretization.

2.4.3 Finite Volumes discretization
Let us integrate (2.1) on {(¢, z)|t € [tk tks1], 2 € SV (t) N T(t)}, where SUF(t) := ®(t, @1 (t), SVF)).

41
J f gdadt ~ TmhHGht (2.9)
te  JSLEDAT()

where G?’l =g (t,’Pk“XéH). As in Chapter I, the use of the Leibniz formula leads to the
following approximation of the material derivative

41
J f (4 4+ uVrov) dadt J uda—f uda
tr lk t)ﬁF Sl‘k’(tk+1)ﬁp(tk+1) Sl’k(tk)ﬁr(tk)

~ mETUET - miUE, (2.10)
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2.4 Derivation of the finite volume scheme

where we recall that the discrete quantities U’§ and Ug“ approximate u (tk, PEX g) and

U (tk+1, PEH1IX lg:“), respectively. Integrating the elliptic term again over the temporal evolution of
a lifted cell and applying the Gauss’ theorem, leads to the following approximation

te+1 tit1
J f Vp - (DVru) dadt = J f (DVru) - ng(siryar@))dl dt
Sbk(t)AT (¢ t, A(ShE(t)NT(¢))

E+1 K k+1 okl
~ Z ( pi,J (pi,S)— 1/2DP77 (Pivs)van(m,S)u Mpi T (pi,S)|T (pi,S)—1/2
plecSk
k+1 k k+1 okl
+ mPiJ(PuS)H/?DPiJ(Pias)vpuj(phs)u npi7J(pi,S)\J(pi7S)+1/2)' (2.11)

where na(sl k(#)I'(t)) 18 the unit outer conormal to the curved boundary @ (S"*(t) n T'(t)) of

(SBk(t) N T(t)). We recall that J(p;, S*) denotes the local number of the cell S* around p¥. Com-
bining (2 2), (2.9), (2.10) and (2.11) gives the finite volume scheme

k+177k+1 krrk
mS US _msUS

k+1 k+1 k+1 k+1
-7 Z [mm,ﬂpi,S)—l/z (Upi,y<pi,s>—1/2 - Upi,J(pi,s>) A (p5,9)|T (p2,5) 172

+
?r'
© 4+
—

(Uk+1 _ Uk+1 ))\k
My T (0i,9)—1/2 \Yps, T (0s,9)+1/2 pi,J (pi,S) ) “pi, T (0:,9)+1/2|T (p:,S)| T (pi,S)—1/2

k+1 k+1 k+1 k+1
+ My T (pi,S)+1/2 (Upi,J(;Di,S)*l/Q - UPnJ(piﬁ)) )\Pi,J(Pi’5)71/2|‘7(10i75)\J(pi,S)Jrl/?
k+1 k+1 k+1 k+1
My TSy (Upi,J(m,smm Uo7 (v s>) Api,y<pi75>u(m,5>+1/2]
= rmkrlghtL (2.12)

where the subedge virtual unknowns U j(p“ )=1/2 and U] j(p“ )11/2 are given by equation (2.7)
in terms of cells unknowns U kel T(pi.S)" The system of equations (2.12) is completely determined by

the initial data U2 := u(t, PO(X 2)). Let us now associate to cells unknowns and subedges virtual
unknowns the piecewise constant functions U* defined on Fﬁ with Uklg = U ’§, and U(EF defined

on oI'f with U% | = Upl 1/27 U8F| 1 = Uzlfunpﬁlﬂ for any boundary vertex p, and its
surrounding boundary subedges O’ 12 and Up g, +1/2° We denote by
VE = {U":T} >R|V SF T}, UNgr = const} (2.13)
Vi = {U;?F $ 0T > R |V pi € 0%, Uffor | = const, Ugl,x e const} (2.14)

the sets of such functions. (2.2) can be considered as a quadrature rule that builds an approximate
gradient of a continuous function on I'* out of its projection (representant) in V¥ U V.. We wish to
build a seminorm on V. For this sake, we first denote by

1
ko L k k k Lk
Pe = T 2 (mpi,J(pi,s>71/2Dp1-,J(pi,S>Vpi,3<pi,s>“ M T (0 ST (96,5)~1/2
pi€ASE

k k k k
+ mpmj(pi,S)+1/2D;0717\7(Pi,S)vpmj(pias)u.np17\7(27i,5)|~7(1)1175)+1/2) (215)

the approximation of SSl=k(tk)mF(tk) Vr - (DVru) da. We thereafter multiply each equation of (2.15)

by the corresponding cell center value —U g, and each equation of (2.3) by the corresponding subedge
virtual unknown U Li—1/2° Finally, we sum the resulting equations over all cells and subedges and
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2 A stable and convergent O-method for general moving hypersurfaces

obtain
—2msUEDE = 3 ) |( [ pirT (pi,S%)+1/2 Ug)’(Ufi,J(p,:,sk)—l/z—Ug)]
Sk Sk pkesk

T
pi,Sk),sym [(Uz})ci,J(pq:,S’“)+1/2 - Ug)’ (Uz’fi,J(pi,Sk)—l/Q - Ug)] (2.16)

Q¢
- Z ( 1,1/2U11/2 Di, 1VpZ1U n’;,m/z

pheork

k k k k k
mP? sMpy +1/2 Up“np +1/2 Dpi sMpy Vpl sMp, u nphnp,; ‘npi +1/2) )

_l’_
k T 3
where Qp T (pi,S*),sym ( pinT (piS*) T (Qpi,J(pi,S’“)) )/2 with

(@ 700,50 )11 M, 7 (01,551 1/2X 500 (1 51T (pis5) 12
(@ 7ip0.5n )12 M (01.5)~1/2 00,7 (51 5 +1/21 (91, 54)1 T (pe,54)—1/2
(@hr05) = M 75941280 70,81 PLT 058 T 154412
(@ g5 )22 M (01,5 +1/2 00,7 (1 ST (1 54) 4172

We rewrite (2.16) in a matrix form using (2.7) as follows

~ T ~
k k k _ k k k k k k k k
- ZmS US DS = Z (Um) Apz' U:Di - Z (mpi’l/Q Upi,1/2 Dpulvpulu “Mpi101/2
Sk

pielk pkeelk

k

k k k k
+ mph”m +1/2 Upiv”m +1/2 Dpi’npi Vp“npi u- npivnm [np; +1/2> ’ (217)

where A’;i is defined by:
A’;i = A’;iyc — A’;i_’gCOef’;i with Ak . being a diagonal matrix and Ap
nonzero elements are given by

- @& sparse matrix whose

k o L k k k
(Apicdid = My i1 imaye + A5 swsegli-1/2)

k k k
+ mpi,j+1/2()\pi,j|j+1/2 + /\pi,jfl/le\jH/?)’

(A, 0)5d

k .. o k k k k
(Apio)iger = My 5 Ay ivamljli—1/2 T M, 1722, 14172

k k k k
My i=1/22p; jli—1/2 T Mope 1/22p, 5 —1/2151+1/2>

for interior points. For boundary points,

E ._ Ak k - k
Ay o= Ay . — Ay ,Coef ) with A7 being a sparse square matrix and Ap a sparse rectangular

Pi,C o
matrix whose nonzero elements are glven by
k o k k
(Api,c)l,l = mpi,l/Q )\pi,l‘l/27
k . k k k
(Ap, )12 = =y 10 (A, 112 T Ap, 320111/2)
k e k k k k
(Ap,-,c)ll = _(mpi,l/Q /\pi,1|1/2 +my, 30 >\pi,1/2|1|3/2)’
Eoy.o ._ k k k
(A5 c)sd = My A gli—e T Apgrzlili-z)

k k k .
+ oy e A g2 T A oy2liee) VI =230, £ 1

k N k k k
(Api,c)np,iJrl,npiJrZ = (mpi,npi—l/Q )\pi,npl.+1/2|npi [np, —1/2 + mpi,npi+1/2 )‘pi,npl. |npi+1/2)’
k N .k k k
(Apivc)npi+2’npi+l T mp'iv"p11+1/2 (Apia"m_l/m”m‘"m"'lp + )\Piv"m|”m+1/2)’
k - k k
(Ap,i,c)npi +2,np,+2 = mpi,npi+1/2 /\pi,npi|npi+1/27
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2.4 Derivation of the finite volume scheme

k .k k
(Ap: o)1 =My 12 A, s
k R k k k k
(Ap..0)21 = My Apagaliije T My, a0 A 13/
k e k k k k
(Ap; 0)i+2,] =My 1 Al T g2 Ape i 1y211 4172
k i . R k k k k R - _
(Ap,0)j+2.+1 = My jo1je Apgaijelili—2 T a2 Apjliriyes VI =120y =2,
k e k k k k
(APMU)”M +1mp, =1 T mpi,npifl/Q Api,nm [np, —1/2 + mpi,npi+1/2 /\pi,npifl/mnpi [np, +1/2>

(Aﬁi,g)npi +2,np, —1 _m’;i,npi+1/2 )‘l;,;,npi —1/2|nyp, |np; +1/2

Since Coefl;i is not defined for n,, =1, A’;i = A’;i’c in that case.

The submatrices A satisfy A% 1, = 0,,, where 1, := (1,1,---)" and 0, := (0,0,---)". This is
due to the minimization procedure introduced in the interpolation of the virtual values on subedges.
The procedure forces the system to pick the solution of minimum gradient norm. Let us also
remark that if the submatrices A% + (1, ® 1,,)/np, are positive semi-definite for all vertices,

~, \ T ~
Dpiert (U;) Ak UF defines a seminorm on Vi U V5. Also, if the submatrices A% +(1,, ®1,,)/ny,
i h i i i i i i i

are strictly positive definite for all vertices, Zpiel"; (ﬁ§i>TA’;i [j']f will define a norm on Vf u {Ovakr},
where OV(;_CF = (0,0,---,0) is the zero element of V&.. Since the submatrices A];i basically depend
on the choice of the subedges virtual points and the discrete cell tensor D’;i’j around pf , wWe can
assume the virtual points being chosen such that the submatrices A’;i + (1,, ®1,,)/n,p, are strictly
positive definite as the diffusion tensors are supposed to be strictly positive definite. Although this
assumption is reasonable, it is not useful to require its realization for all the vertices. In case a highly
anisotropic tensor is involved in the computation and the mesh very distorted too, the condition
might not be satisfied. We will then weaken the assumption by introducing a slight modification of
the algorithm. Let us assume the center points being chosen in advance.

Definition 2.4.3 (Regular vertex and uniformly regular vertez)
We will say that a vertex pf 1s reqular if the following is satisfied:

i) It is possible to choose the virtual subcells S;fi j and the subedge virtual points Xz]; =172 around
PF such that Ak + (1, ® 1,,,)/ny, is strictly elliptic,

ii) If p¥ is an interior vertez, then it is surrounded by at least three cells.

Any vertex which does not fulfill these requirements will be called nonregular.
A vertex will be called uniformly regular if it is regular for any time step k.

Definition 2.4.4 (Regular polygonisation and uniformly regular polygonisation)

We will say that an admissible polygonal surface T'¥ is reqular if any of its nonregular vertex is
surrounded by reqular vertices.

Ffl will be called uniformly reqular if it is regular and any of its regular vertex is uniformly regular.

In the sequel we assume our polygonal surfaces to be uniformly regular. We now introduce a slight
modification of the scheme. For any nonregular vertex p,, we assume that the surrounding subcells
have zero measure; which means that the subedges agi’jfl /2 around pf have zero measure. Thus
there is no equation written around that vertex. We will also assume the submatrices

Ak +(1,,®1,,)/np, to be uniformly strictly elliptic for all regular points (i.e. 3 a > 0| ¥ p¥, V UL,
(U]i_)T (AF +(1,, ®1,,)/np,) UY. = U} |?). The resulting scheme remains the same, except that
the summation over vertices will be done over regular vertices. From now on, any summation over
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2 A stable and convergent O-method for general moving hypersurfaces

vertices will simply mean summation over regular vertices unless specified otherwise. A straight-
forward example of meshes needing this setup can be found on Figure 2.5, when we consider the
dual mesh to our primary mesh. Let us mention here that the dual mesh of a primal mesh is the
mesh whose cells are the union of virtual subcells around vertices and center points the vertices of

the primal mesh. Here the points q’;i j—1/2 ON edges which limit the virtual subcells of the primal

mesh (cf. Figure 2.4) are nonregular vertices of the dual mesh and therefore will be subject to this
treatment. We then define a discrete energy seminorm on V}’f v V!fp.

Definition 2.4.5 (Discrete H} seminorm) For U € V* and Uk, € V., we define
k2 SE) gk
[0F12 e = 3 (OF) AL, O (2.18)
Pi
We also define the discrete L2 norm as follows

Definition 2.4.6 (Discrete .2 norm) For U* € V¥ we define
2
||Uk“n%2(r1;) = ng (US) (2.19)
s

Proposition 2.4.7 (Ezistence and uniqueness) The discrete problem (2.12) has a unique solution.

Proof The system (2.12) has a unique solution U* € V* if the kernel of the corresponding linear
operator is trivial. To prove this, we consider the homogeneous system obtained by assuming

Uk =0, G* = 0 and the homogeneous Dirichlet boundary condition Uflf 1 = 0. Next, we multiply

each equation of (2.12) by the corresponding cell center unknown U g“ and sum over all cells. Taking
into account (2.17), we obtain

”UkH“]i?(Fﬁ) + T”UkHHiF’; =0,

from which U**1 = 0 follows.

2.4.4 Maximum principle

Let us consider around each uniformly regular vertex p’;, the matrix W’; whose entries are defined
by

k — ok k k k
(WE), 5 7= My o1 o1y + M, a1 1 papslan 2
k — ok k k k
(Wh.) 5501 7= M gmap X szigiionge + 7, jeap X
and 0 elsewhere. We also consider the column vector e, ; of length the number of columns of Coef ’;1

with components (e, ;);:=1 and 0 elsewhere (i.e. e, j:=(0,---,0,1,0,---,0) ") and the augmented
matrix of coefficients ACoef ’; defined by ACoefﬁj = Coeff,'l if pf is an interior uniformly regular

point. For boundary points, ACoefl;i = [(epi’l)T; Coef];i; (epiynwﬂ)T] , concatenation of the

vector (epiﬁl)—r, the matrix Coef’];7 and the vector (ep, n, +1) -

Proposition 2.4.8 IfV S, U2 > 0 and at any time step t, (U(L“F) =>0Va, G’g >0V S, and the

%

matrices W’TfiACoefgi are positive ((W;fiACoef’;i)l =0V i,j), then U§ >0V Ek VS

)
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2.4 Derivation of the finite volume scheme

Proof Let us first assume the uniformly regular vertices p, of a given cell S being numbered by
s(p,). We define for the cell S the column vectors eg ; of length the number of subcells on S, with
components (eg ;);:= 1 and 0 elsewhere (i.e. eg;:= (0,---,0,1,0,-- -,O)T). The system (2.12) can
be rewritten as

mEFUET —mbUE =7 Y (esagy) (WEH ACoefy ) (UL - Uk1,,)
queﬁsk
= rmhHGET (2.20)

Let us assume that U% > 0V S*, the minimum of U**! (ming UET?) is reached in a cell ST, and
that U’strl :=ming USTT < 0; then (2.20) cannot be satisfied for the cell S5 since all components
of the vector (UF+! — U’g“lpi) are nonnegative. Hence, we conclude that UL > 0.

O

This proposition will be of great importance in the next paragraph, especially when one of our aim
will be to satisfy the maximum principle.

2.4.5 Implementation

Let us first consider the setups defined for triangular meshes in Remark 2.4.2 a) part ) and 4). For
these setups, the submatrices Q’;i ; defined for equation (2.16) are symmetric and strictly positive
definite; thus the vertices pf are uniformly regular. Hence the scheme works for any triangular mesh
as long as cells do not degenerate. Restricting to the flat case and using the setup in Remark 2.4.2 a)
part i), the present scheme coincides exactly with the scheme proposed by K. Lipnikov, M. Shashkov
and I. Yotov in [87] and as already said, is identical to the one presented by Le Potier in [85]. We
should also mention that for the setup presented in Remark 2.4.2 a) part i), we obtain exactly
the scheme presented in Chapter I; moreover, the hypotheses of Proposition 2.4.8 are satisfied and
the resulting matrix is a M —matrix. This last property is not evident for all meshes. We can
nevertheless enforce it whenever possible. This will be one of our goals when trying to build on a
given mesh, a setup on which the present scheme can be applied. Next, we consider a dual mesh of a
triangular mesh. As defined above, this is constructed from the primal mesh and its virtual subcells
by grouping the virtual subcells around each vertex pf to form the cells of the dual mesh. We refer
again to Figure 2.9 for an example of a triangular dual mesh in a flat case. We should nevertheless
mention that in the curved case, virtual subcells around the vertices are not coplanar. For these
meshes, virtual subcells of primal meshes are also considered as virtual subcells of dual meshes. As
already mentioned in Remark 2.4.2 a) part iii), each new vertex X fé, center of the triangle S*, is
surrounded by exactly three virtual subcells and therefore the construction of the gradient does not
need any regularization. Also, the points X g are uniformly regular points; consequently, any mesh
which is the dual of a triangular mesh is suitable for the scheme. If we restrict ourselves to fixed
surfaces, this last setup gives exactly the scheme presented by Lili Ju and Qiang Du in [76] when the
diffusion tensor is taken to be constant on triangles. As already reported there, if the triangles edge
/ that limit the subcells are taken to be the middle of triangles edges and the diffusion
tensor taken to be constant on triangles, the resulting matrix is a symmetric M —matrix. In some
cases it can be advantageous to use the dual mesh since one can reduce the number of variables.

Except in the trivial case of triangular meshes where one has some trivial choices of discrete points,
we do need a good algorithm which always delivers the discrete points in such a way that the surface
remains a uniformly regular polygonisation and the angle condition in Section 2.4.2 satisfied for
appropriate virtual points X k io1/2 around vertices. Also, for some problems, especially in the field
of chemistry, one needs to have additionally the maximum principle satisfied by the scheme. We
give in the sequel an algorithm to construct the discrete points such that the maximum principle is
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2 A stable and convergent O-method for general moving hypersurfaces

satisfied if possible. To begin with, we chose the center points in such a way that the surface of our
cell is minimal. This is done by minimizing for each cell S* the energy functional

Eg= > [ (X =pF) A (0F, -0 I?

i=l:ng

over X. This energy is in fact the sum of the square measure of the triangles [X,pF, pfﬂ]; p¥ and
pf 1 being two consecutive vertices of S k. The resulting X ’g = argmin ycps Eg guarantees the status
of admissible cell to S* and when the vertices are coplanar, X is the isobarycenter for triangular
cells, rectangular cells and regular polygonal cells. Next, we define the edge points X* that limit
the subcells on cell’s boundary o as the mid point of o; but if an interior vertex pf is surrounded by
less than three cells, then all the points X* around the given vertex are set to pi.“. We refer to Figure
2.10 for more illustration. We shall now fix the subedge virtual points. From Proposition 2.4.8,

Figure 2.10: Representation of edge points X c’fj and center points in cells.

the scheme will satisfy the maximum principle if the submatrices W;HACoefk *1 defined around
uniformly regular points are positive. To enforce this, we find the virtual points by minimizing the
energy

.
BE =t [(WIIZHACoef’;:rl —aly,s® 11,1,) (W;“ACoef’;jl —aly,s® 1,,i) ]

under the constraints that Ak_ + (1,, ®1,,)/ny, is strictly elliptic and the angles
9’“ = <I(Xk pij—1/2 Xk X]];“Jﬂ/z) between the covariant vectors eX peoglit1/2 AN nd ep Jjlj—1/2 re greater
than a threshold angle 0 as requested in Section 2.4.2. Here, « 1s a positive constant and 1,, ¢ =
(1,1,---)" is a vector of ones with length n,,. This process tries to pull the coefficients of the
submatrices WZI,‘;HACoef’;:rl near « as possible. Finally, if the symmetric property of the global
matrix is important, one can impose it here by setting the symmetry of the submatrices Q’;m- as a
constraint in this last minimization problem.

2.5 A priori estimates

We will now give the discrete counterparts of continuous a-priori estimates. They obviously depend
on the behavior of the mesh during the evolution and a proper, in particular time coherent choice of
center points X§, subedge points X} ; , , and edge points XJ. Let us assume that the center points
X% describe a time continuous C! curve y(t, X2) (i.e. X&(t) := v(t,y~(tx, X%))) during the time
evolution. The algorithm described in Section 2.4.5 provides such a curve. We refer to [103, 112]
for reading about the regularity of the solution of parametric minimization problems. One can also
imagine X% being transported by ® (i.e. X&(t) := ®(t,® (5, X£))); of course, with the resulting
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2.5 A priori estimates

XE(t) satisfying the necessary condition for the scheme to be applied. Let us identify a point  on
the triangle [X§, pF, p¥ ;] © S* by its barycentric coordinates 5§ (x), 3§ ;(x), 8%, (x) with respect
to X%, pF, and pF | respectively (i.e. z = BE(z)XE + ﬁ’gvl(x)pf + 3% ;41 (2)P¥, ). We construct the
following map that transforms the cells during the time evolution:

Tt ) 85— R @ a(t) = B5(2) X§(0) + B8 ((2)py (D) + 05,51 (0)PF4 (1), (2:21)

where pF(t) := ®(t, @1 (tg, pF). We also assume

; ki k41,

||Tk(tk+1’Xj+1/2)_Xjr1/2|| < Chr (2.22)
k1 k

my iias = Myl < ChT (2.23)

These conditions are obviously satisfied for the setups described in Section 2.4.5. Thanks to the

k
conditions above, one easily establishes that max; maxg ‘% — 1‘ < C7, and the 2—norm
S

(Ak+1 )1/2 (Ak )T (Ak+1 )1/2 _ ((AkJrl )1/2)T (Alc+1 )1/2

Pi,sym Ppi,sym pi,sym Pi,sym Pi,sym

< CT.
2

Theorem 2.5.1 (Discrete L™ (L?),L2(H") energy estimate) . Let {U*}x=1,... k... be the discrete
solution of (2.12) for a given discrete initial data U° € V,? and the homogenous boundary condi-
tion {U(%“F}kzly... k = 0, then there exists a constant C depending solely on ty,q. such that

sRmax

kmam kTYl(l(E
Cmax UM + Y TIUME e < C (HUO@(Fg) Y G%(r;»;)). (2.24)
v kmax el k=1

Proof As in the proof of Proposition 2.4.7, we multiply each equation of (2.12) by the corresponding
cell center value unknown U ]g.“ and sum up the resulting equations. Thanks to (2.17), we obtain

O (st (UE) = mSUSUEY) + UM = Y mET S UEY, (229)
S

NN
S

k
and using Young’s inequality and the estimate max; maxg ‘mn,:il — 1‘ < C'7, one obtains
S

1 k+12 k+12
SITFH ey + U

[— C kg2 Lo k12
< §”U HLz(r;cl)"‘gT”U ”]LZ(FIZ‘Fl +§T||G H]L2(FZ+1 (2.26)

)
The rest follows exactly as in the proof of Theorem 4.1 in Chapter I.

X

O

Theorem 2.5.2 (Discrete H'(IL?), L™ (H") energy estimate) . Let us assume the submatrices A’;i
around regular vertices to be symmetric. We also consider {U*}x—1 ... k..., the discrete solution of
(2.12) for given discrete initial data U° € V,? and the homogenous boundary condition

{Ugr}kzly.“ Emas = 0, then there exists a constant C' depending solely on t,,q, such that

k7naz
k k
O I By, max U2
k:l v — 4 s'vmax v
kmax
< c<||U°i2<rg>+||U°|ipg+f > G’“nim), (2.27)
k=1

k k—1 . . . . .
where 0fU* = % is defined as a difference quotient in time.
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2 A stable and convergent O-method for general moving hypersurfaces

Proof We multiply each equation of (2.12) by the corresponding cell center difference quotient
value 0] U ]5.“ = 0] U**1|g, each equation of (2.3) by the corresponding subedge difference quotient

ykt+1 (Uk ) 2) ’ ’
value —2udtl2 A ridt2) Cwhere the values (Ui,j+1/2) , components of the vector (U;fi,ﬂ) , are
interpolation of the components of UI’Z_ on subedges 0'];_+j1 +1/2 around pf“ through formula (2.7)

~ ! ~
(i.e. (Uzi,o) = Coef];:rlUlfi). Next, we sum the resulting equations over all cells and subedges to
obtain

i Z - <Uk1k> +Z (Uk+1) Ag;&-lﬁk+1 _ (ﬁ§i+1)TA];j'1[7k

Sk+1

Uk:+1

k41 k

LS k1 k1 Ug Us

= 2 4+ 7Y MG 22
- Es S S

T

Z (m — m’gH) Uk
S

(2.28)

Since the matrices A’;i (k=0,1,2,---) are symmetric and have the same kernel,
12\ f 1/2
A=A ((an)") ()"

where (A’;i)l/2 is the symmetric matrix satisfying A’;i = (A];i)l/2 (A’;i)l/2 . Now, applying Young’s
inequality to equation (2.28) gives

2
Uk‘+1 _ Uk‘
r Z ml;+1 ( S - S + HUkJFl”irZ“

Sk+1

| p—— 1 St | gkl [ gk \T gkl k41
< §HU HI,F’Z + §Zk (UZH ) Api (A;Dz) Api U
p;
Uk+1 _ Uk Uk-‘rl Uk
k-+1 yks S k41 k+1 S
+ZZ )U. ST +7'st G pu :
o S

Taking into account that
k41 ( gk T qk+1 k+1
APL' (qu) Api B Api

1/2 1/2 ¥ 1/2 172\t 1/2 1/2
= s ) () - () () g

i
the 2—norm | (45+1)"% (45)" (45" = ((45)"7) (45 <07, and
2

k "nk+l
s 1‘ Y 5 < C7, we deduce the inequalit
‘mk+1 N q y

1

TiHatTUkHHQ ||Uk+1H1 okt < HUk”l rk + *T (HUkH” i + ||Ukak + HGkHHFkH)

Finally, summing over all time steps and using Theorem 2.5.1 gives the desired result.
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2.6 Convergence

In this section, we prove an error estimate for the finite volume solution U* € VF. At first, we have
to state how to compare a discrete solution defined on the sequence of polygonizations I'f and a
continuous solution defined on the evolving family of smooth surfaces I'(¢). Here, we will take into
account the lifting operator from the discrete surfaces Fﬁ onto the continuous surfaces I'(¢;) already
introduced in Section 2.4.1. As for the error analysis in Chapter I, we use the pull back from the
continuous surface onto a corresponding polygonization to compare the continuous solution u(t) at
time ¢;, with the discrete solution U* = Y S Ukx g+ where ygr is the characteristic function of the cell
S*. To be explicit, we consider the pull back u~!(t;, X%) of the continuous solution u at time ¢; and
investigate the error u~!(tg, Xé) — U’g at the cell node Xg. As already mentioned, the consistency
of the scheme depends on the proper choice of center points, edge points and the behavior of the
mesh during the evolution; therefore we assume (2.22), (2.23) and the following extra condition on
X’§ and Xgi,j‘}’l/Q :

A3 There exists C > 0 and 6 €]0,7/2] such that for two consecutive vertices p¥, p¥_, of

any cell S*

1) if m([X&, p¥,pF,,]) # 0, then there exist three points ¥ |, af ,, zF 5 in the inter-

section of the convex hull of S* and the plane generated by the points {X%, p¥, pfﬂ}

satisfying |z a2k | = Ch, |ak 2k 5| = Ch and 0 < <(x}, jak o @) jah 5) <7 0.

Here <I(x’;i’1:c];i,2, x’;iﬁlx’;iyg) represents the oriented angle between the vectors fl;i,ﬂ];i,z
k _k ;

and z,, 2, 3, taken around the axis

Tk Eopk
(Xspi A XsDiyq)-
2) there exists three points y;fhb y]’;i,Q, y§i73 in the intersection of the convex hull of
Sk and the plane generated by the points (X§>X.’;(pi,5)+1/2’X.l;(pi,S)—lﬂ) satisfying

Iy, 19p.2] = Cha lyg 1y, sl = Ch, and 0 < <y, 19y, 20U, 1Yp,3) < 7 — 0. As above,

<(yf yk ok yh ts the oriented angle bet the vectors y* |y* d
Yp; 1Yp; 25 Yps 1Yps 3) Tepresents the oriented angle between the vectors y, v, o an
—_

E E vk E vk
Yp, 1Yp, 3 taken around (XSXJ(MS)H/2 A XSXJ(pi,S)71/2)'

We recall that J(p;, S) is the local index of the cell S* around the vertex p¥. We also assume that

0 < <I(X’§Xf“7(p“5)+1/2,X§X§(pi7s)_1/2) < 7 —0, and for closed cells S* intersecting the boundary

dT}, and any edge unknown z = X% gorz=X5 o ,inStndly, |X§—a| = Ch.

pi,S)+1/

We shall precise here that the assumption A3 part 1) aims at having cells whose surfaces approximate
correctly (in the sense of Lemma 2.6.2) the surface of their lifted counterparts. If the vertices of
Sk are coplanar, this assumption is true for any star-shaped point z = X é? € S* (point whose any
line connection to a vertex of S¥ is entirely in S*); but in general, on curved surface meshes, one
must pay a careful attention. On the other hand, A3 part 2) will guaranty the consistency of the
approximations of surface normals and gradient operators. We refer to Section 2.4.5, for an example
of an algorithm enabling the choice of nodes X ’§ and the subedge virtual points X zlji Je1/20

Finally, the following convergence theorem holds:

Theorem 2.6.1 (Error estimate). Suppose that the assumptions listed from Section 2.4 hold and
define the piecewise constant error functional on F’fL fork=1,-- kmnas

E* = (u™ (th, X*) = U§) xs
Sk

measuring the pull back u'(t,-) of the continuous solution u(ty,-) of (2.1) at time t and the finite
volume solution U € Vi of (2.12). Furthermore, let us assume that ||E0||]L2(F2) < Ch, then the
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2 A stable and convergent O-method for general moving hypersurfaces

error estimate

kmaz
L max B s o+ 3 ||Ek||irﬁ <C(h+7)? (2.29)
v ma k=1

holds for a constant C depending on the regularity assumptions and the time t,,q..

This error estimate generalizes the error estimate given in Chapter I. As already mentioned there,
it depends on the consistency estimates of different terms which rely on geometric estimates; thus
the proof of this theorem will follow the same procedure. The main difference here is that cells are
not necessarily triangular and vertices are not necessarily bound to the surface, but we will always
reformulate the results in order to use the gains of Chapter 1. In what follows, we first establish
the relevant geometric estimates, then prove the consistency of the scheme and finally establish the
convergence result.

2.6.1 Geometric approximation estimates

Let us first extend the definition of P¥ into a time continuous operator P(t,-) which for each time
t € [0, tmaz], pProjects points orthogonally onto I'(¢). This operator is well defined in a neighborhood
of T'(t). We also introduce the time continuous lift operator

Tkt )88 — SUE@t), 2 — Rt z) = B(t, &L (1, PF(2))) (2.30)

which helps to follow the transported lifted cell S4*(t) := W¥(t, S*). We then introduce an estimate
for the distance between the continuous surface and the polygonization and for the ratio between
cell areas and their lifted counterparts.

Lemma 2.6.2 Let d(t,x) be the signed distance from a point x to the surface Q(t) taken to be
positive in the direction of the surface normal v, T'y(t) an (m,h) — approximation of T'(t) < Q(t),

and let mlslk denote the measure of the lifted cell SW*, m;ﬁij/Q the measure of the lifted subedge

k- .
O itl/2 The estimates
Lk mb*
me g
2 S 2 pi,j+1/2 2
sup  |d(t, )L, @) < Ch7, sup [1 — —~| < Ch~, sup (1 — —=—=| < Ch
0<t<tmax k,S mS i, 7, k mp¢,j+1/2

hold for a constant C' depending only on the reqularity assumptions. Let us also consider the planes
generated by the center point X%, and the vertices pf, pfﬂ of Sk: and the plane T;’Z,S

k ; ; k k
generated by X¢& and the virtual points Xpi o1/ and Xpi,j+1/

C depending only on the regularity assumptions such that

k
Ts{i,i+1}
o around pF. There exists a constant

max |V d(ty,z)| < Ch and max IV 1 Sd(tk,x)|\<Ch.
zeS Pi»

zeSk S{iyi+1}

{i,i+1} PisJ

We recall that SF

{i,it1y is the triangle [XE pk,pF ] and SSM is the virtual subcell of S* containing
p;-

Proof First notice that d(t,) is a C? function. Let us consider a cell S¥(¢) := Y (¢, S*) with center
X§(t) and vertices W*(¢,pf), a point & = 3§(x) X§(t) + 68 ; () U*(t, pF) + 8§ ;11 (x)OF (¢, P, ) where
BE(z), ﬁg’i(x), and ﬁg’i+1($) are barycentric coordinates of z with respect to XE(t), U*(¢,pF), and
Wk (t, pk ',1) respectively. The Taylor expression of d(t,-) at each vertex y of the triangle

[XE(t), UF(t, pF), Uk(t, p¥, ;)] can be expressed in terms of d(t,z) as

d(t,y) = d(t, ) + (y — ) - Vd(t,z) + O(ly — =[?).
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2.6 Convergence

Finally, multiplying each of these equations by the corresponding barycentric coefficients and sum-
ming up all the equations, one obtains that d(t,z) = O(h?) since the barycentric coefficients are
bounded and we have assumed that T'y(t) is an (m, h)—polygonization of I'(¢). Next, the points

zF e TS{ and y;f 4 € Tk s (j €11,2,3}) provided by assumption A3 satisfy

PisJ i+1}
IV 7 d(ty, zf, ;)| < Ch and Hlec p d(tr,yf. 1)| < Ch. Since these points are in the convex hull
{i,i+1}

of S one concludes that maxgr Hka d(tg,x)| < Ch and maxgr ||Vpr Sd(tk,x)H <Ch
2,2 i Pi.J Pis

11+}

where we recall that S{Z i1y 1s the trlangle [XE, pk.pk ]

For the second estimate, we consider the triangle S E‘; i1} and assume without any restriction that

S@ i1y © (&0 € R?}. As in the proof of Lemma 1.5.2, we define PX, in a neighborhood of

S{m+1} as follows
PE(E Q) = (£0) + (¢ —d(ty, (£0))Vd" (t, (€,0)).

Obviously, P, = P* on Sfi it and from the results above, we deduce that

ext —

||det(DPE,,(€,0))] — 1| < CR?,
where DPF , is the Jacobian of P¥,,. We can clearly see that |det DPext( ))| controls the trans-

formation of the area under the projection P* from S{l i+1y tO S{Z i1y = Pk(Sk (i, z+1})' since the

third column of the Jacobian d;Pk,,(&,0) = VdT (t, (€, O)) has length 1 and is normal to I'({;) at

Pk(¢,0). The claim is therefore proven since the subcells Shk as well as S fz ;+1y form a partition

{i,i+1}
of S“* and S*, respectively.

The third estimate is obtained via an adaptation of arguments of the second estimate.

O

Let us also give the following lemma which states the consistency of the approximation of conormals
to curved boundaries.

Lemma 2.6.3 Let p¥ and p¥. | be two consecutive vertices of a cell S*, X% its center and a’;i o172
the subedge around pl satisfying ap 12 C [p z+1] We also consider Ui),ik:jfl/Z the coresponding

curved boundary on T'(ty) and X Li—1/20 Xk the subedge points of S* around pf. Finally, we

Pi,j+1/2

assume X* then the conormal to 0;’,’“].71/2 outward from SY* A T* is given by

ok
pii—1/2 € Tp,j—1/27

nhk k
M li— 1/2( ) = T, ili—1/2 + €(z)

. (P Pry =Py
where ny, jijap = (lp’{lp’“ " ) / ‘ P, T
|e()| <Ch.

/\V and e(x) is a vector satisfying

Proof We will distinguish the case where 0’“ +1/2 is a boundary subedge (o c Jr¥) and

Oy iv1/a € \OTE).
c JI'f. We define the following map

k
Piyj+1/2

k
the case where O it1/2

Let us consider the first case where o” .
pi,j+1/2

is an interior subedge (

& k
k . ok Dit1 —D;
Nsiv1: T:=pPp +

ATy YT Wg,i\”l(l") =T - d(tk,iﬂ)VdT(tk,I)
Py — D7

— d(P* (), T*)Vd" (P*(x), "),

49



2 A stable and convergent O-method for general moving hypersurfaces

where a € [0,[|p¥,, — p¥[]. Since this map transforms o* . .. to al’,k; , a tangent vector to
i+1 i Pi,j—1/2 pij—1/2
;’fjfl /2 is given by
k k k k
k k Dix,i —Pi T Divi — D T
@8,ii+1(N8,ii41(2) = T = | VA (e, ) - 5 | Vd (fk, )
S s Ipfs — Pl IPEs — pFl
Pipy —PF
— d(tg,2) V(Vd" (ty,z)) —H
( )Hpﬁl—pﬂ
p’? —p’?
Vd" (PF(x),T%) - p o | VT (PR (), TF)
|71 = p7ll
pr . —pk
d(P* (), T*) V (Vd" (P*(2),T") o =—
iy — P

for points  where ng i+t has enough regularity. Since 77’; it is regular enough almost everywhere
and referring to the assumption (v) and (vi) on the surface approximation in Definition 2.3.5 as well
as to Lemma 2.6.2, one concludes that

pﬁ-l - pf
|5,y — D

where €1(z) is a vector satisfying [e;(z)| < Ch. Next, one deduces from the last two inequalities of
Lemma 2.6.2 that

k k
ws,i|i+1(ns,i|i+1($)) = + €1(z),

k &
k Dit1 —D;
R <= e BT
Pl pk = pFl

and the normal v(n¥% i|z‘+1(x)) to the surface I'* at n¥ Z.‘Z.Jrl(az:) is given by

V(ng,i\i+1('r)) = Vg,i,j+€2(33)a

Lk

where e5(z) is a vector satisfying |e2(x)|| < Ch. Finally, one deduces that the unit normal to O jil)2

outward from S“* ~ T'* is given by

wg,i|i+1(n§‘,i\i+1(x)) A V(W?iuﬂ(m)) = n’;i,j\j_yz + e(z).

where €(z) is a vector satisfying |e(z)|| < Ch.
For the second case, 1% iji+1(+) is merely P(:) and the above proof remains valid.

O

Next we control the area defect between the transported lifted versus a lifted transported cell.

Lemma 2.6.4 For each cell S¥ on I‘Z, and all x in S*, the estimate
|P(t, T (8, 2)) — (¢, 2)| < CTh?

holds for a constant C' depending only on the regularity assumptions. Furthermore, for the symmetric
difference between S“* and SHF1, one obtains

anl(Sl,k(thrl)ASl,kJrl) < CThmg+1

where H" () represents the (n—1)- dimensional Hausdorff measure. We recall that the symmetric

difference between two sets A and B is defined by AAB = (A\B) u (B\A).
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2.6 Convergence

Proof The proof here is identical to the proof of Lemma 1.5.3 in Chapter I, up to minor modifications
due to the fact that vertices are not bound to the surface and the cells are nontriangular. In fact,
as in that Lemma, we first notice that the function W*(¢,-) defined in (2.30) parameterizes the
lifted and then transported cell S“*(¢) over S*, and P(t, Y*(t,-)) with Y*(¢,-) defined in (2.21)
parameterizes the transported and then lifted cell P(t, S*(t)) over S*. Next, one uses the Taylor
expansion of respective functions at vertices of triangles Slkl +1 considered as neighboring points of
a point z € S, ,,, and in the same way as in the proof of Lemma 2.6.2, one obtains

IP(t, T*(t, 2)) — U (t,z)| < B(t)R*.

Here ((-) is a nonnegative and smooth function in time. As in Lemma 1.5.3 in Chapter I, one
deduces from S'*(t;) = S“* that 3(-) can be chosen such that 3(t) < C |t — t;| holds. This result
shows that the maximum norm of the displacement P(¢, Y*(t,-)) — W(¢,-) on the boundary o* is
CTh?. The second claim is then obvious.

O

Based on this estimate, we immediately obtain the following corollary already formulated for the
triangular mesh in Chapter I (Corollary 5.4):

Corollary 2.6.5 For any cell S* on T and any Lipschitz continuous function w(t,-) defined on
['(t) one obtains

w(tgs1,a)da — J w(tg+1,a)da| < CThmET?
Sl’k+1ﬁF(tk+1)

JS"”“(tk+1)f’1“(751c+1)

for a constant C' depending only on the reqularity assumptions.

2.6.2 Consistency estimates.

With these geometric preliminaries at hand, we are now able to derive a-priori bounds for various
consistency errors in conjunction with the finite volume approximation (2.12) of the continuous
evolution (2.1). Let us first reformulate Lemma 1.5.5 of Chapter I in this context.

Lemma 2.6.6 Let S* be a cell in I‘Z and t € [tg, tr+1], then for
Rl(Sl’k(t) nT#) = f Vr(t) : (DVF(t)u(L -))da
SLE(£)AT(t)

- f VF(tk+1) . (va(tk+1)u(tk+1v '))da
Sl”k+1ﬁr(tk+1)

we obtain the estimate |[R1(S"*(t) nT(t))| < CT(1 + Chymf*t.

This Lemma is proved along the same line as Lemma 1.5.5 via an adaptation of arguments. Next,
we have the following result.

Lemma 2.6.7 Let the subedge Uﬁ;’fjﬂ/g
k

and S;’“jﬂ or, with a slight misuse of notation, the intersection between S;’fj and the boundary
0 (PE(IF) A T*) of PH(TF) n ¥ the term

be the intersection between two adjacent subcells S;’fj

Ro(SE Sk )= (DVr(t,w) bk (tg,x)dx

pi,j 1~ pi,j+1 Lk pirj+1/2
Tpii+1/2

= My (“(tk’Pk(Xi:juﬂ)) - “(tkjpk(Xz]fm))) Npali 172

My, /2 (“(%Pk(X;i,j—w)) - “(tkﬂpk(Xgm))) Apvi=1/2lil+1/2
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2 A stable and convergent O-method for general moving hypersurfaces

l

where n kjﬂ/z(t,€7 -} is the function describing the outward pointing unit conormal of S;’fj on the

subedge a 12 and the other terms are defined in Section 2.4.2, obeys the estimate
Sk

|R2 pi,z‘+1)| S Cmf(s)ﬂ/zh-

Pist

Proof Asin Lemma 2.6.6, we consider the continuous extension of u(t, -), still called u(¢,-). Next,
we write the surface gradient of u(ty,+) at a point x on S;’fj N T* as follows:

k k
Vrru(x) = Vu = VT;;‘Su(x) + (Vu(z) vy, 5) vy, s
: _ k k k k
Since VTp’i.‘s“(x) = (VT;‘;,S " ili-1/2) M g1z T (VT;Z.,S "€ ilit1/2) M, gl 112 A0d

v(z) = zlji,S + 39, (tg, x)h with [9,(tg, z)| < C on Sll)’fj n T* we obtain using the Taylor expansion,
Definition 2.3.5 and assumption A3.2 that

Vrrsu(z) ( (thX ii— 1/2) (tk’X§i7.j)) M];i,jljflﬂ
* (“(tk, Xy, je1y2) — ulte, Xz’fi,j)) Hpoalisifz — €t @),

where €(tg,x) is a three dimensional vector satisfying |e(tg,x)|| < Ch. Thus, using the regularity
assumptions on D, Lemma 2.6.3 and assumption A3.2 we obtain

Lk Lk k k k
Jz . (DVpeu)-n o pde =My g (u(tk’Xpm—l/Z) - u(tk’X”i’j)) Api.i=1/21ili+1/2
Pi,J+1/2
k k k k
T My, g1y (u(tk’XPi,j+1/2) - u(tk’XPiJ)) Apisdli+1/2
O(my, ;11 /9h)- (2.31)

We now need to prove that the approximation of the subedge values u(tk,X . /2) are O(h?)
consistent. To this end, we apply the continuous version of Proposition 2.4.1 on the above relation
which gives

MUy . = Ny Uy + w1, (2.32)

= T o= T :
where U;fm = (u(tk,X]’;i’l/Q),u(tk,X;ﬁ/Q), ) , U;fi = (u(tk,X;fi,l),u(tk,XZ’fi’z),---) and vy is

a vector satisfying ||v1| < Ch?. Also, the H! —norm of the continuous solution reads

ZJH |Vreul?da Zf

2
+ (u(tk,X;’jH/Q) — u(tk,X;fi,j)) /‘I;i,jljﬂ/? + e(tk,w)H dx

k k k
tk’ Xpi,j—l/Q) o u(tk’ Xpivj)) Hp,jli—1/2

r\Fk

The continuous setup of problem (2.6) is formulated as

Find Uf , in Bl i= {Vk o i= (V1o Vi yjae )| MEVE ;= NJE TS + 01} such that

Ppio pi, o pi

=k _ . k Pk k
U:DMT = argmin ZJ Lk [sz‘,jfl/Q Upuj] Fpijli—1/2
S»F ATk
i Pisd

k k .
Vpuoegw J

2
k rrk k
+ [Vpi,j+1/2 - Um,j] Ppigli+1z T e(tk’x)H dx
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which in a simplified setup reads

Find U} , in B} := {Vpﬁp = (Vki’l/z,Vp]j’g/Q, )T MEVE = NEU) —i—vl} such that

pi, o p pi, 0
-1
k 1k Pk k 77k
Bpi V;Di,ff - ( Bpi) (Clh U;Di + U2)

since the error €(t,z) is assumed to be known. vs is a vector satisfying |vs| < Ch?. Following the
same procedure as in Section 2.4.2, one obtains

2
0k, — argmi
pio = AIgmin

ViE -E€BE.

=k _ k 7k
Upo = CoefpiUpi + v3,

—1 —1 ¥ _ —
where v3 = (4 /B]’;i ) (M;fi (4 /B]’;i ) ) (Ul — le (B;f) 11)2) + (B]’,fi) ! ve. It is clear that

|vs| < Ch2. We have just proven that a perturbation on the equation leads to a consistent solution.
It is left to prove that the solution is also consistent with the expected data (values of functions at
virtual points). In the flat case, this is evident since the reconstruction of affine functions using this
method is exact if the tensor D is constant on ujSIZ)’fj N Tk and O(h?) consistent in general. In the
curved case we consider the closest plane to the center points around p,. There exists hg such that this
plane is included in N (t;) for any h < hg. Next we project on the defined plane, in the direction of
the surface normal v, the whole geometrical setup represented around p, and adopt the new subcells
as discrete subcells. Let us consider the function f(x) = u(t, X)+(Vrru(ty, XT))-(z—X¥) defined
in a neighborhood of U S;l;’ik,j n T'* whose restriction on I'* is considered for the reconstruction. The
above problem posed on the new discrete subcells gives an O(h?) consistent value of f at projected
virtual points; These values are in an O(h?) neighborhood of the values of f at the corresponding
surface points. Also, due to the consistency of the geometric approximation, the newly stated
problem can be stated as the above problem with an O(h?) perturbation of the right hand side
which means that the solution is evidently the solution of problem (2.6) with an uncertainty of
O(h?). This concludes that the right values of a continuous function is in an O(h?) neighborhood
of the value proposed by this reconstruction’s method. Now, including this result in equation (2.31)
gives the desired estimate.

O

Finally, Lemma 1.5.7 and Lemma 1.5.8 of Chapter I are also satisfied in this context and they can
be respectively reformulated as follows

Lemma 2.6.8 For a cell S* and the residual error term
Ry (SHF|SLRHL) = J uda —J uda
SUK (4 1) ATk+1 SUE () ATk
(m& u™ (b1, X§71) — mbu™ (8, X§))
one obtains the estimate [R3(S“F|SHF+H1)| < CrhmiTL.

Lemma 2.6.9 For a cell S* and the residual error term

k

1
Ra (Sl’k|Sl’k+1) = Jt Ll s g(t,a) dadt — rmbEtg™ (tkH,X]gH)
k mn

one achieves the estimate |Ry (SUF|SUFHY)| < Cr(r + h)ymAt .
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2 A stable and convergent O-method for general moving hypersurfaces

2.6.3 Proof of Theorem 2.6.1

As in Section 2.4.3 (cf. (2.9), (2.10) and (2.11)), let us consider the following cellwise flux formulation
of the continuous problem (2.1):

tht1 th+1
J uda—f uda— J J DVr@yu-pasik dldt = J J gdadt.
SUk ()41 ) ATk+1 Slk ATk te (SUF(£) AT () te SULE(t)AT(L)

From this equation we subtract the discrete counterpart (2.12)

k+lUk+l mk Uk

svs
_ k+1 k+1 _ k41 k+1
T Z [ My T (pi,5)—1/2 (Upiyj(pus)—l/? Upuj(pus)) /\PuJ(Pi,S)lJ(puS)—l/?
p;ECSK
k41 kt1 rrk4l ket
T My T nS)—1/2 (U;Di,J(;Di,S)+1/2 Upi,5<pi,s>) Ao 7 (0 8)+1/207 (51 ST (p1,S)—1/2
k+1 k+1 _ rrk+1
+ My T (p1,5)+1/2 (Upri7s7(11ri,5')—1/2 UP%J(Mﬁ)) /\ij(m75)—1/2|J(Pi75)\3(pi7s)+1/2
k+1 k+1 k+1 k+1
+ My T (pi,S)+1/2 (Upi,J(pi,S)+1/2 Upl,J(pu )) )\Pi’J(pi’S)‘j(Pi:S)+l/2:|
= TmlgﬂGlgH.

and multiply this with EkJrl =u! (tk:+17 X§+1) — U§+1 to obtain

tet1

'R,g(Sl’k|Sl’k+1)E§+1 _ (J
th

k+1 gh+1 k+1 k+1 k+1
-7 i Z [ (SPL T (pi,S) | T (pis S)+1) + RQ(SPL T(pi,S) Spi,J(pi,S)—l)] EpiJ(pi,S)
pi+ e Sk+1

+ o (mkt(BET)? —mEESERT)

R1(SVE(t) A F(t))dt) EEtt

_ k+1 k+1 k41 k+1 k+1
T Z [mpi,J(pi,S)+1/2 (Epi,J(pi,S)+1/2 Epi,J(pi,S)) B e T (00,9) T (00,8)1T (p0,5) 4172
k+1 x
ph e Sk+1

k41 k1 k1 k+1 k+1
T T, S)+1/2 <Epi,7(pi,s)—l/2 Epl J(puS)) Ezn I (pi,S) )\puJ(m75)—1/2\«7(Pi»5)|7(m75)+1/2
I Eh+1 _ pht k+1 k+1

pi,J (pi,S)—1/2 pi,J (pi,S)+1/2 pi,J (pi,S) i, J (pi,S) “pi, T (0i,S)+1/2|T (p:,5)|T (pi,S)—1/2

k+1 k+1 k+1 k+1 k+1
oMy Ts) 1/ (Epi,ﬂpi,@fl/z - EmJ(pi,S)) B 7 (w:8) pi,J<pi,s>|J<pi,s>71/2]
= Ry (Sl,k|Sl,k+1) E§+l, (233)

— -1 k+1 k+1,i k4 }
where EF* J(phs) 12 = (u (tk+1an,1/2) — Uj71/2) and EFt J(p S)+1/2 is defined analogously.
We recall that the summation is always done on regular vertices (cf. Definition 2.4.3). Next, we

substract from the flux continuity equation on subedges between neighboring sub-cell St k}}p S
1Lk+1

Pi,j(l)ms)-‘rl

) and

DVru 1,k+1 . 1, k+ dl

1,k+1 ( r ) |Spt T(pi, S)(t) 'u.‘s J(p S)(t)
p; J(pi,S)+1/2

+ DVru k41 k41 dl=0
L1 ( s S e THESIE L ®) ’

Tpi T (p;.8)+1/2
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2.6 Convergence

its discrete counterpart
M 7 (pe5) 12 [(Uf,}(p“ 412~ Ulpn.s >) N w517 01.5) 172
+ (szf}msm/z - Uﬁ}m,a) /\l;j.lfzpus)—l/?w(m,5)|~7(pi75)+1/2]
+ m];:;(pms)ﬂ/? [(UZI)C:}(%SH?'/? UkJ(;?l;S)H) ];:;Epi,S)+2|‘7(pi75)+1\‘7(m,3)
+ (U§+}<p sy+12 = Ulrip/'s)+ )*l;}m >+1\J<m,s>] =0.

. k+1 :
Furthermore, we multiply the result by TEP T (ps,S)+1/2 and obtain

k41 k41 kel k41 k41
T 7 (p1,5) 412 ( pird (9i,S) +1/2 Epi,J(pmS)) B T (00,8)+1/2 Moo T (91,81 (pr,5)+1/2
k1 k41 kel k1 k41
AT 7 05) 4172 (Epi,\7<pi,s>—1/2 Em,a<pi,s>) B 7 (00,8)41/2 Moo T (91,8) /21T (p1,8)| T (0:,5) +1/2
k+1 k+1 k+1 k+1 k+1
T My T (pi,5)+1/2 ( pi,J (pi,S)+1/2 Epi,J(PhS)Jrl) EPiyJ(Pi7S)+1/2 )\Pi’J(PuS)JFl\j(Pi,S)Jrl/? (2:34)

k+1 k+1 okl k+1 k+1
T T (i,9)+1/2 (Epi,ﬂm,sns/z B s >+1) B (00,9412 Moo (50 S)43/217 (b S) 4117 (pi,8) 4172

kt1 k1 k+1 k+1 _
7 R2(S70,.9) |97 (01594 By 7 (1,5) 1172 TR2(Sp T (01,8)+1] pL,J(m,S))Epi,J(p,:,s)+1/2 =0
Now, summing up (2.33) and (2.34) respectively over all cells and subedges leads to

IE* 5

st EX Ek+1 +ZR4 (Sl,k|sl,k+1) Eg+1 _ERS(Sl,k|Sl,k+l)Eg+l
s s 5

Z (f“l R1(S" () F(t))dt) i

S k

Et1 k+1 k41 k41
=YY (RS s ISE s ) (B s = Batsns)

Sk+1 pl_c+lesk+1

k+1 k+1 k+1 k+1
+ RS, 70,557 (0i,9)-1) (Em,J(pi,m—l/z - EmJ(mS))] :

k+1 H

(k1) +7|E 1,rk

+

Let us denote by E;’,f = (2 sk Ey, ]) /np, the mean value of E;fi,j around p¥. The last term on
the right hand side can be ertten as follows

. K+ k+1 k+1 k+1
Z = - Z Z [R2(S T (pi,S )|Spi7.7(;0i,s)+1) (Epuj(pus)-‘rl/Q_Epi,j(pi,s)>

SR+ gt
k+1 k1 k+1 _ pk+l
+ (Spuj(piys)| pi,](pi,s)*l) (Epiyj(pi,s)*l/Q EPi,J(pmS))]

= -7 Z Z [R2(SII)€“\7(P1 )|S§:;17(piys)+1).

SEH1 phtleght

k+1 k k+1 k
' ((EpiJ(m,S)H/? - Ept) (Ep J(pi,S) Epi))
k+ k+1 k+1 k k+1 k
t R (SPZJ(Pz )|Spm7(pi,5)—1) ((Epmj(m,s)—l/? —E,) - (EpL,J(pu s) EP))]
T
k+1 k pk+1\T Pk+1 k+1
= -7 2 ((R2;z|‘7) COefpi - (,R’?,JZF?L) ) (Epi+ _E;Di+ 11’1')’ (235)
k+1 Fk+1
where 7@5;3‘0 is the vector with components (Rg;l )j = ( k+1(5’k+1| )+ Rk+1(5k |Sk+1))
R5 1! is the vector with components (RkH) = (RETH(SEHSML ) + Rk+1(5k+1| *11)) and

95



2 A stable and convergent O-method for general moving hypersurfaces

E’chl = (E;“:ll, E;fgl, .- ) Of course we have to readjust these vectors around boundary points

accordlng to the boundary condition in the similar way as in Section 2.4.4. Next we introduce the
local gradient operator in expression 2.35 and derive the following estimate

_ T _ N
Z = -7 Z ((RSI}}U) Coef;ﬁq, - (Rg:;zl) > (E;E:rl - E;::rllpi)
k+lel—wk+1

-1

- % (R et~ @) (VAT e tm )

k1 opkt1
p; €l

<\/Al}§z+l + (11%' ® ]‘Pi)/npi> (Ezlj:rl - Egl)c:rllpi)

_ T _ T _
( 5 ((RE,) coeth, ~ (REDT) (A5 + (1 @1,0/m)

k+1 k+1
p; €l

-1/2
_ T _ T _
((RE31,) " oot - (RS )) ( S A§f1E§f1>
p?+1€1—‘2+1

since AFF'1, =0-1, and (1pi)TAIZ§i+1 =0- (1pi)T. Finally, using Lemma 2.6.7, the estimate
h? < Omkith, the fact that the number of cell’s vertices is uniformly bounded and the submatrices
ARt 4+ (1, ®1,,)/np, are uniformly elliptic, we obtain

N

—1/2

1/2
VA $ TC ( Z m}§+1h2> ”Engl”LFZH S TCh (Hnil(rf;rl))l/z HES‘JAHLFZH'

Sk+1

Now, we take into account the consistency results from Lemma 2.6.6, Lemma 2.6.8, Lemma 2.6.9,
apply Young’s and Cauchy’s inequality and achieve the result

HEk+1”L2 Flc+1 + T“Ek+1“1 Fk+1

YA\

1
B s, + 5 1 ey + 5 mas |1 = | gy

mg

+ O (r(r+h) +Th+ (L4 CR)) (N TS) 2 B e

1/2

+ Cth (anl(rﬁ+l)) HEkJrlHl}F:'Fl'

Based on the fact that the center points Xg describe a C! continuous curve Xg(t) := ~(t, Xg), one
< Cr as already mentioned in Section 2.5. Again, applying Young’s

k
easily proves that ‘1 — k—ﬂ

inequality to the last two terms on the right side gives
C (7_(7_ + h) +7h + 7_2(1 + Oh)) (anl(l"ZJrl)) 1/2 ||Ek+1HIL2(FZ+1)

<

X

SIS

. c
T(r+ h)*HH IR + S| EME, ph

2 )
C Th2Hn l(Fk+1) “Ek+l ”

1 Fk+1

—1 k41 Y2 ) k1
Crh (H* HT3h) 7| B ”LFZH <
Now, taking into account that 'H”fl(I‘ﬁH) is uniformly bounded, we obtain the estimate

T 1 e
(1= OB Py e + SIS s < (4 On) 1B By + Orlr 4 PH (T, (2.36)

)

56



2.7 Coupled reaction diffusion and advection model

Next, we first skip the second term on the left hand side, use the inequality % < (1 4+ er) for
sufficiently small 7 and a constant ¢ > 0 and obtain via iteration

||Ek+1||iz(r,§+1) < (1+ CT)”EkH]?ﬂ(FZ) + C7(T + h)?
...... )
< U+ er) "B Rape) +C D (1 +er)' 7l r(r + h)?
i=1
< Ce™ (1 + h)?
since || E°

||E2(F2) < Ch. This implies the first claim of the theorem

k|2 9
_max By < C(T+R)%

Finally, taking into account this estimate and summing over k = 1, -+ ke, in (2.36), we also
obtain the claim for the discrete Hj —norm of the error

Z THEkHHiF,;“ < C(t+h)2
k=1, kmax

Remark 2.6.10 [t is worth mentioning here that the exact solution of Equation 2.7 did not inter-
vene in the actual development; thus Theorem 2.5.1, Theorem 2.5.2 and Theorem 2.6.1 remain valid
even when Equation 2.7 is not satisfied. In that case the solution will not be locally conservative
in the usual sense of finite volumes anymore. This situation was already reported in [46] where
they also use barycentric coefficients to approximate solution values on edges. An advantage of our
approach is that we reduce the residual of the mentioned equation in a way to avoid any undesirable
oscillation on the solution. Nevertheless, we have not found any experimental evidence where this
situation happens but, we have also not deeply studied the local matrices to be able to know whether
this worst case scenario is even plausible.

2.7 Coupled reaction diffusion and advection model

In this part, we wish to extend our method to the more general case of reaction diffusion and advec-
tion problems. We then consider a source term g which depends on the solution and an additional
tangential advection term V.- (wu). Here, w is an additional tangential transport velocity on the sur-
face, which transports the density u along the moving interface I' instead of just passively advecting
it with the interface. We assume the mapping (¢, z) — w(t, ®(¢,x)) to be in C1([0, tnaz], CH(To)).
Furthermore, we suppose ¢ to be Lipschitz continuous. An extension to a reaction term which
also explicitly depends on time and position is straightforward. Hence, we investigate the evolution
problem

U4+ uVe-v =V (DViu) + Vi - (wu) = g(u) onT =T(¢). (2.37)

In what follows, let us consider an appropriate discretization for both terms. For the reaction term,
we consider the time explicit approximation

th41
f f g(u(t,z))dadt ~ 7m% g(u(ty, PEXE)) (2.38)
ty Sk (t)n(t)

and then replace u(ty, P*(X%)) by U¥ in the actual numerical scheme. Furthermore, we take into ac-
count an upwind discretization of the additional transport term to ensure robustness also in a regime
where the transport induced by w dominates the diffusion. Different from Chapter I, we introduce
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2 A stable and convergent O-method for general moving hypersurfaces

here a second order slope limiting upwind discretization derived from the above described method.
Thus, since the solution u of problem 2.37 is H! on I'(t) and Vr@u has a weak divergence, we use
the procedure described in Section 2.4.2 to construct the subgradients V’;i TsS)Y of u around the

vertices pf. In this last procedure, we keep the center points obtained for the discretization of the
diffusion operator while the virtual subedge points might vary. Let us now consider a cell S*, the

pseudo unit normal ef ¢ i= (g (0 = P5) A Py = D)) /| Spress (0 = D5) A (0 = )| of
¥, the vectors ¢k ¢ = (Pl ~ XK) — (Pt — X5) -k ) ) /B — X5) — (9 — X%) ek o) ek o]
and €5 g 1= e5 gAef 5. We define Vu 1= ((V§u) - ef g) ef s+((Viu) - €5 5) e5 s+ ((Viu) - €5 5) €5 s,
the slope limited gradient on S* as follows: V j =1,2,3

(Vu) - efs = sign ((V’Sl,a(phsw) ' ‘f?,s) min, et

(Voo o)) 6?5‘
if sign ((V’;i,j(pi’s)u) -e§)5> = const Y p;,

(Vhu) - 6?,5 =0 else.
This gradient reconstruction is similar to the minmod gradient reconstruction method (cf. [8, 55,
100]). Let us now consider an edge 0¥ common boundary of two cells S* and L* (i.e. o% = S¥n L¥).

k boi i ; k koo k k ok 1) k k
We assume o being delimited by the points pi and py,, (i.e. 0% = [p7, Dy, ,]); we call S 5, ) g
the respective subcells of S¥ and L* around p¥ and Sgul,m’ S£i+17m—1 the respective subcells of S*

and L* around p¥, ;. We refer to Figure 2.11 for the illustration of this setup.

k _ k _ k
Xk=xk =Xk

k
XI’/H m—1/2 X\\?’

k .
Pij—1/2

k
Xy

Figure 2.11: Subcells across the edge o% = [pf,pfﬂ] and virtual points around p¥ and pfﬂ.

k k k k
Mpiili+1/2 s mim—1/2""p; g+11i+1/2 " Moy m—1|m—1/2

We also denote by ngl L= ng’g = the average unit

n s +n -n . . -n
p;sdli+1/2 pism|m—1/2 pid+1i+1/2 Pi,mfl\m*1/2”

k 4 pk

- ph
outward pointing conormal vectors of S¥ on ¢* and by p’; = % the middle of o*. Here
nlg’a = —n’z’a holds. We will later denote by nfgkg (a) the unit conormal at a € o'"* pointing out-

ward from S“*. Now if ngg ~w(ty, p’;) > 0, the upwind direction is pointing inward and we define
ut (s, pF) = w (b, XE)+(VEw) - (pF —XE), otherwise u™ (¢, pF) := u ™! (tx, XF)+(VEu)-(ph - X7}).
If o* is a boundary segment, the average unit outward pointing conormal of S* on ¢* is defined by

k
"piili+1/2 T mim—1/2

nk, = In this case too, if n ,-w(ty, pk) = 0, the upwind direction is point-

T L N
ing inward and we define u* (t, %) 1= u=!(t, X&)+ (VEw) - (pk — XE), but u* (t, pr) == u ! (t, pF)
if nga ~w(ty, p’;) < 0. Once, the upwind direction is identified, we take into account the classical
approach by Engquist and Osher [43] and obtain the approximation:

tht1
f f Vr - (wu)dadt =~ 7 Z mh (n, - w (tr, pE)) wt (. pE). (2.39)
t,  JSLE(L)AT(L) '

okcoSk
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2.7 Coupled reaction diffusion and advection model

Finally, we again replace u~!(t;, X%) by the discrete nodal values U% and denote the edge values
ut(t,p¥) by UF*. For the sake of completeness let us resume the resulting scheme:

mEFUE — mb U

_ k+1 k+1 k+1 k+1
T Z [ My, T (pi,S)—1/2 (UpiJ(m,S)flﬂ Up T (pi,S) ) )‘puJ(pu ST (pi,S)—1/2
p;EOSk

k+1 k+1 _ [kt k+
+ mmﬂwmﬂ%ﬂ<%%ﬂmﬁﬂﬂ2 %m(mﬂDAmJ@z%HﬂU@mmﬂm£%U2
k+1 k+1 k+1 k?+1
+ mmJ@MﬂHQ<Qmﬂmﬁ%U2 %Jm,) DisT (9i,8)—1/21T (pi,8)|T (pi,S)+1/2
k+1 k+1 k+1 k+1
Ty I, S>+1/2 (U T wis)+1/2 ~ Up, )A 8)17(pi.8 >+1/2]
+ 7 Z (n§,o - w™ (t, PE)) U;r
ockcoSk
= 7m§g(Us). (2.40)

Obviously, due to the fully explicit discretization of the additional terms, Proposition 2.4.7 still
applies and guarantees existence and uniqueness of a discrete solution. Furthermore, the convergence
result can be adapted and the error estimate postulated in Theorem 2.6.1 holds. To see this, let us

first consider the nonlinear source term g(u) and the following estimate already presented in Chapter
I for the triangular mesh;

tht1
J ,[ g(u(t,x))dadt—Tm’fgg(U’S“)
te  JSLRH)AT()

= _L’;’““fsm(t)\r(t) g(u(t,z))da + J;t’“J“l(LW(t) g(u(t,z))da — J‘SM g(u(ty, :z:))da> dt

k

+7 <Ll . g(tx, z)da — Lz,k g(u(tzﬁXg))da) + T (mlS’C — m’g) g(U(tk,Xg))

+rm& (g7 (ultr, X§)) — g(US))
< C(Thm’fg + T2H”_1(Sl’k) + Thmg + 7 h? m]fq + C'Lip(g)TmlgwEfé)7

where Cpr;,(g) denotes the Lipschitz constant of g. In the proof of Theorem 2.6.1 we already have
treated terms identical to the first four on the right hand side. For the last term we obtain after
multiplication with the nodal error Eg“ and summation over all cells S

k 2
m
CLip(g)TngEgE]g’Jrl < CLz‘p(g)ngX (mki) ”EkHHﬂ(rh(tk))||Ek+1H1L2(Fh(tk))
S S

< C7 (I ey + 1B ey -

Taking into account these additional error terms the estimate (2.36) remains unaltered. Next, we
investigate the error due to the additional advection term and rewrite

th41
J J - (wu)dadt — 1 2 MUS w (thXg)) Uyt
Slk(t)mF

okcoSk

tht1
J J ~(wu)dadt — Tf Vr - (wu)da
e JSLk( mF(t) Stk AD(ty)

Z (TRs (SUFILVF) 4+ 77 (SVFILYF) ERTY,
:igﬁiik
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2 A stable and convergent O-method for general moving hypersurfaces

where R (SHF[LEF) = . nlska cwu dl —mEw = (t, pk) - nlg}auJ’(tk,p’;) is an edge residual,

F (SUF|LYR) = mEw! (ty, pk) -nlg,g a flux term on the edge % = Sb* A LbF and

EbT = ut(tg,p¥) — UET a piecewise constant upwind error function on the discrete surface
Fﬁ. For the sake of consistency in the notation, we have assumed here as in the following any
curved boundary segment ¢'* being the intersection of a curved cell S“* — T'* and the curved
cell LbF .= gb* of measure 0. In this case, the cell’s center value as well as any error comming
from LY* are taken to be 0 and the subedges values are known from the boundary condition.
Now the first term in the above error representation can again be estimated by C 72H"~1(SLF).
From |u™(t, pk) — u™!(tx, p¥)| < C h?, we deduce by similar arguments as in the proof of Lemma
2.6.7 that |Rs (S"F|LPF) | < C'hmf. Furthermore, the antisymmetry relations Rs (SUF|LEF) =
—Rs (LY*|SVF) and F (SU*|LVF) = —F (LY*|SYF) hold. After multiplication with the nodal error
E&™ and summation over all cells S we obtain

T D, (R (SUHILHF) 47 F (U LVR) ERY) B
S

akcosk
ok=sk~Lk

r S [Re (SUHILMF) + F (SUFLNF) BEH] (BT — BEHY
ok=SknLk
_ T - _ T -
T Z (nglh) (Egj_l _Eilgj_llpi) + (Ré,pl) (E;jj_l _Egj_llpi)’

phery

Z

where 7€’g,pi and RE p; are vectors with entries
Rk o (mF —k Lk | glk Lk | ql.k
(RS5.); 1= (Mg 51/, 5 172) <R5 (Spi,ﬂspi,jfl) +Rs (Spi,ﬂspi,jﬂ)) and

ik — k —k Lk | olk k,+ T Lk | gl.k k,+ _
(R&Pi)j = (m ivjfl/Q/mm,jfl/?) (‘7: (Spi’j|spi1j71) Eoyl o TF (Spi,j|Spi»j+1) Eg 1) ) TESPEC

tively; m’;“j_l/z being the length of the entire edge o containing 01;;,j—1/2 and Eﬁ;jﬁm = Bk

Using similar arguments as in the proof of Theorem 2.6.1 and the definition of upwind values on
edges, one deduces that

1/2 1/2

Z < v Y (RE,) (A7 1 0L)/m) RE, || X (B AR B

prerk prerk
1/2 1/2

_ T 1 = — T —

+7 Z (ng,:ﬁz) (A];j_l+(1pl®1p1)/np1) Ré)vpi Z (E}I;j_l) AI;:_IE}I;fl
p?EFﬁ pfel“ﬁ
1
< m(w-%rm% +( (RE,)RE,) ) [EF 1y g
pierﬁ

$ ‘Ek+1H?,Ff+1 +0Th2 +CT||EkH]i2(FIfL) .

-
7
Again, taking into account these error terms due to the added advection in the original error esti-
mate (2.36) solely the constant in front of the term ||E]”1HiF,ZJr1 on the left hand side of (2.36) is

slightly reduced. Thus, both the explicit discretization of a nonlinear reaction term and the upwind
discretization of the additional tangential advection still allow us to establish the error estimate
postulated in Theorem 2.6.1.

2.8 Numerical results

In this paragraph, we present several simulation results. To begin with, we consider the time evolv-
ing parametric surface I'(¢) described by the evolution of the material point
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2.8 Numerical results

M(t,z,y) = (x,y,h(t,z,y)) T, where (z,y) € [-0.6, 0.6] x [—0.5, 0.5], h(t,z,y) = 22 f1(t) + > fa(t)
with fi(t) = sin(7t/tmaz)? sin(27t /timas) and fo(t) = sin(mt/tmax)? cos(27mt/tmaz); tmasz being the
maximum time. We define on I'(¢) the surface tangential matrix

2 2 4 2

+4f1(t)% + 9/2(t)?

the tangential vector w(t, z,y) := 10e1(t, z,y), where e; (¢, z,y) := (1,0,2zf1(t))T,
ea(t,z,y) == (0,1,3y%f2(t))" are tangential vectors of T'(¢t) and puy(t), pa(t) their corresponding
contravariant counterparts defined through the four equations e (¢, z,y) - u1(t, x,y) = 1, e1(¢, x,y) -
ua(t,z,y) =0, ea(t,z,y) - p1(t,z,y) = 0 and ex(t, x,y) - ua(t, x,y) = 1. We approximate on succes-
sive refined polygonal meshes (cf. Figure 2.12), the solution u := h(t,z,y) + 0.5 of Problem 2.37
for D := (Dy + Dy )/2, w defined above and g computed from the data. The Dirichlet boundary
condition is considered. On Figure 2.12 we present the successively refined polygonal surfaces used

5 0
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820 polygons, 508 points. 3292 polygons, 1959 points. 13240 polygons, 7765 points.

Figure 2.12: Successively refined polygonal mesh used for the convergence test. At each refined
step, sizes of cells are divided into 2.

for this simulation test case. At each refined step, edges of the previous step have been divided into
two. The computation is done for ¢ € [0, 1] and we present in Figure 2.13 a sequence of frames from
the simulation result. Here, as in the sequel, color shading range from blue to red representing min-
imum to maximum values. Finally, in Table 2.1, we display the errors in the discrete L* (IL?) norm
and discrete energy seminorm (2.18), respectively. Indeed, the observed error decay is consistent
with the convergence result in Theorem 2.6.1.

Figure 2.13: Solution of the first simulation at different time steps.

Next, we compute a second example using the same successive initial surfaces and compare the
result to the result of the refined surface. We consider the evolution of the surface material point
described by M(t,z,y) = (z,y, h(t,z,y))T, where h(t,z,y) = (f(t)/4.5) 312, B(i) exp (—a(i)) with
F(t) = (sin(rt — 7/2) + 1)/2 and a(i) = [(z — P(i,1)*/2V (i, 1)?)] + [y - P(i,2)2/(2V (i 2)?)].
The variables P, V' and [ are defined by

P_3224 8§ 12 18 21 O 814108T/24
“\3 6 16 16 16 12 21 24 24 5 8 2 ’

T
3

2 2 1.5 2 2
3 4 4

4 4 2 3 2 3
V= 5 4 23 2 3 15 15 2) /?4and
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2 A stable and convergent O-method for general moving hypersurfaces

norm of the error
tg[lg’rh h(t) t(rEIE(E))J,)l(] h(t) L*(L2) L (H*)
0.0294 0.1168 | 91.617-107° | 14.8-1073
0.0119 0.0595 | 21.269 - 105 5.3-1073
0.0041 0.0302 5.768 - 105 2.0-1073

Table 2.1: The table displays the numerical error on grids presented in Figure 2.12 in two different
norms, when compared to the explicit solution. The time discretization was chosen as
7 = 1/30000 in all three computations.

B=@B5 4 4 2 6 5 3 175 4 —25 -3 —2) /6.

For t = 1, f(t) = 1 and we recover the surface presented on Figure 2.2; therefore the evolution
considered here is obtained by continuously scaling the height of the given surface by f(¢) as time
evolves. We also consider the advection vector w, tangential component of wy = —50(0,0,1)" and
the source term g(t) = (1 — f(¢))(1.5exp(—a1) + exp(—a2) + exp(—ag)), where

ap = | M(t,x,y) — (3/6,4/6,0)72/(0.0352), an := |M(t,z,y) — (18/24,12/24,0)"|?/(0.035%), and
az = |M(t,z,y) — (1/6,4/6,0)"|?/(0.035%). The function g(¢) defines three localized sources (cf.
Figure 2.14) whose density reduces as time evolves and vanishes at the end of the process. We de-
pict on Figure 2.14 a sequence frame from the simulation result of problem 2.37 with homogeneous
Dirichlet boundary condition in the time intervale [0, 1]; isolines are also drawn. We can clearly no-
tice the dominance of the diffusion at the beginning of the process and progressively the dominance
of the advection.

3 <

Figure 2.14: The evolution of a density under diffusion and advection by gravity is investigated.

The results have been compared to the solution obtained on the refined mesh in L* (L?) norm and
discrete energy seminorm (2.18), respectively. The result is reported in Table 2.2. Comparing these

norm of the error
min h(t) | max h(t) L% | L>(H")

te[0,1] te[0,1]
0.0294 0.1382 | 4.85-107* | 5.4-1073
0.0119 0.0722 | 1.28-10~* | 1.9-1073

Table 2.2: The table displays the numerical error of the solution on the first two grids of Figure 2.12
in two different norms, when compared to the solution of the last grid (refined grid). The
time discretization was chosen as 7 = 1/60000 in all three computations.

results to the simulation results of Chapter I, we notice the improvement in the spatial convergence

which is O(h?) for the L*(L?) norm. This is due to the use of barycenter of cells as presented in
Section 2.4.5 and the slope limiting procedure introduced in Section 2.7.
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2.8 Numerical results

As third example, we consider the fixed triangulated geometry of an elephant as presented in Figure
2.15 and solve Problem 2.1 in the time interval [0, 1], with the diffusion tensor D being the tangen-

25 0 0
tial component of the tensor Dy := | 0 0.1 0 ]; the X —direction points to the right and the
0 0 0.001

Z—direction points up. Five sources are put in the (Y, Z)—plane around the front legs as can be
noticed on the second picture of Figure 2.15 (two at the elephant front side, two at the elephant back
side and one at symmetric upper point). We present on Figure 2.15 a sequence of frames from this
simulation. One effectively observes a rapid diffusion in the X —direction and a very slow diffusion
in the Z—direction.

At

Figure 2.15: Strong anisotropic diffusion of a density on a fixed elephant geometry. The polygonal
mesh is made up of 83840 triangles and 41916 points.

Now in our fourth example, we consider a diffusion advection problem which involves the curva-
ture tensor. In fact, we consider the advection vector w = 13 (Id — 0.0015(K1d + 4 K)) (0,0,1) T,
where K is the curvature tensor of the considered surface and K := tr (K) (trace of K) is the mean
curvature. We also consider a source term g made up of three localized sources as depicted on the
first pictures of Figure 2.16 and Figure 2.17. The intensity of the source is a decreasing function
in time t € [0, 1] which vanishes at the end of the process. First we consider an evolution by mean
curvature flow dM (¢, s1,s2)/0t = (K/30)v(t, s1,s2), where M (t, s1,52) is the material point of the
surface, v(t, s1, $2) the normal at M(t, s1, s2) and s, s some parameters used to locally parame-
terize the surface. Here, we use an adaptive time step 75+ = min(1/(K5 + 1078),1312)/10.2, where
K& := tr ((K*)?) is the trace of the squared curvature tensor (K?2) at the time step ¢, and [ the
smallest length of the polygons sides. Noticing that (Vrz) = (0,0,1)" (z being the third spatial
coordinate), we evaluate K and K at cell centers using a weighted least square fitting and then use
the procedure described in Section 2.4.2 to compute the flux of the advection vector on subedges
while the flux on entire edges is obtained by summing the flux on subedges as for the diffusion
operator. There is no need to compute conormal vectors anymore and our slope limiting procedure
is applied using these fluxes. Since the evaluation of the curvature can only be consistent if one has
a (3, h)-approximation of the surface, we solve the mean curvature flow equation for nodal points
using a semi-implicit scheme. Figure 2.16 presents a sequence of frames from this simulation. Due to
the advection process which is dominant where the tangential component of (0,0,1) is pronounced,
the density would try to concentrate where the Z—coordinate of the material points presents a lo-
cal maximum; but due to the smoothening process,the local maxima of the Z—coordinate tends to
disappear and the density moves and concentrates at the point of heighest Z—coordinate.

Next the same simulation is done on the fixed initial surface. We effectively notice the concentation
of density at points of local maximum on the Z—coordinate due to the advection process. Figure
2.17 presents a sequence of the result of this simulation.

Examples of practical use of reaction diffusion equations include texture generation [120, 123] and bi-
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2 A stable and convergent O-method for general moving hypersurfaces

e 2o 2o B T

Figure 2.16: Evolution of a density under diffusion and advection on a surface moving by mean
curvature. The initial polygonal surface is made up of 26848 triangles and 13426 points.

g Lo LM

Figure 2.17: Evolution of a density under diffusion and advection on a fixed surface.

ological pattern formation [7, 88, 119]. In these fields, one uses a system of coupled reaction-diffusion
equations introduced by A. Turing in 1952 [119] to explain the formation of patterns on animals.
He assumed the existence of two kinds of morphogenes diffusing on a surface and interacting with
each other and showed that the presence of diffusion could drive a system instability leading to the
formation of spatial patterns by the morphogenes distribution. Here we consider the Turing system

Z—? = c6Aru+ au(l —r0v%) +v(1 — rou)
‘2_: = §Aru+ Bu(l + %uv) +u(y + rav)

presented by R. A. Barrio et al. in [7] and describing the interaction between two morphogenes u
and v. The coefficient ¢ is the ratio of diffusion coefficients, § is a parameter that can be viewed
either as a relative strength of the diffusion compared to the interaction terms or the measure of
length scale and «, 3, 7, r1, r2 are some coeflicients. We refer to [7] for how these coefficients are
chosen to generate particular patterns. We should nevertheless mention that cubic interaction favors
stripes and quadratic interaction produces spot patterns. We simulate this system on the closed
triangulated surface using the coefficients provided in [19] for the simulation on a sphere. As in this
reference, we chose as initial condition for v and v random values between —1/2 and 1/2. Figure
2.18 and Figure 2.19 show some sequence of the simulation result of the solution u which leads to
the striped pattern and the spotted pattern respectively.

Figure 2.18: Striped pattern formation from the Turing system.
0 =0.0021, ¢ = 0.516, r; = 3.5, r, =0, « = 0.899, 5 = —0.91, v = —a.
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2.8 Numerical results

p p 9 o9

Figure 2.19: Dotted pattern formation from the Turing system.
6 = 0.0045, ¢ = 0.516, 11 = 0.02, r; = 0.2, « = 0.899, 8 = —0.91, v = —a.
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3 Modeling of surfactant driven thin-film
flow on moving surfaces

3.1 Introduction

Thin liquid films are ubiquitous in nature and technology and therefore, understanding their me-
chanics is very useful in many applications. As reported in [98], they appear in geology as gravity
currents underwater or as lava flows [69, 70], in biophysics as membranes, as lining of mammalian
lungs [58, 74], as tear films in the eyes ([75, 91, 90, 110, 124] and references therein), etc. They also
occur in Langmuir films [50] and in foam dynamics [13, 44, 111, 122, 125]. In engineering, thin-films
serve in heat and mass transfer processes to limit fluxes and to protect surfaces [3]. Applications in
this area include flow behavior of paints and other surface coatings, chemical and nuclear reactor
design. However, the common and probably the simplest thin-film encountered in everyday live
is the flow of a droplet down an inclined plane. At this basic level one observes that the velocity
component parallel to the plane is much larger than the perpendicular component. Considering
an incompressible fluid, this main characteristic leads to the consideration that the ratio e = H/L
between the vertical length scale H and the tangential length scale £ is very small (¢ << 1). This
useful remark is usually exploited to reduce the level of complexity of the original free boundary
problem modeled by the Navier-Stokes equations. Therefore, one commonly does a model reduction
using lubrication approximation (long-wave approximation) due to Orchard [97], or applies center
manifold theory [105]. Discussions of this issue can be found in [80, 82, 95, 98]. There, gravity
driven thin-film flow on uniformly smooth planar substrates is discussed and the general equation
modeling the fluid with a clean interface (without any contaminant such as the surfactant (surface
active agent)) is derived. The general nondimensional equation derived by considering a no-slip
condition on the substrate-fluid interface, gravity g and constant surface tension - reads

oH 1 3 3 3

i —gvr . (H Vi(CyKrs) + BoH g0, + H eBOg,,VrH) , (3.1)
where Vi represents the surface nabla operator, H the height of the film and Kps = ArH the free
surface mean curvature with Ap being the Laplace-Beltrami operator. B, is the Bond number,
C is the inverse capillary number, g¢,., the tangential component of the unit gravity vector g and
gy = ¢ - v with v denoting the unit normal to the substrate. Unfortunately, this equation is not
suitable for a partially wetted surface since it shows that a nonintegrable singularity is developed
at the contact line junction (Substrate-Fluid-Air line junction). This prevents any fluid particle at
the contact line to move. Moreover, for any particle at the contact line, the limit of the velocity
along the moving free surface (Fluid-Air interface) is nonzero [11, 68, 42| while we have set the
velocity on the substrate to zero (no-slip boundary condition). This makes the velocity field being
multi-valued at the contact line and therefore not well defined. This paradox is probably due to
the lack of introducing the surface chemistry into the hydrodynamic model; therefore, researchers
agree to add additional effects on the microscopic length scale. The slip boundary condition and a
precursor layer are then commonly used in the literature [12, 31, 81, 95| to overcome the problem.
It is also common to add some disjoining pressure such as van der Waals forces to control dewetting
processes. The general equation obtained by considering these effects is

‘2—': = —Vp- [(;Hd + H261> [Vi (¢ + C"vKrs) + BoGran + €Bog, ViH] |, (3.2)
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3 Modeling of surfactant driven thin-film flow on moving surfaces

where ¢ is the disjoining pressure and  is the slip coefficient. These equations were first generalized
to curved surfaces by Schwartz and Weidner in 1994 [109]. They mainly concentrated on the curve
case and the effect of curvature on the flow of thin-films driven by surface tension. They proved
for example that short wavelength irregularities are quickly levelled by surface tension forces while
long term evolution of the flow is primarily determined by the curvature of the substrate. They also
extrapolated their results to two dimensional hypersurfaces. Later on, careful analysis of thin-film
flow on curved surfaces were undertaken in [72, 93, 98, 107, 115, 121] but the most general and
unified model is probably the one developed by Roy, Roberts and Simpson in [107]. We also refer to
these references for more precise development in this area. Roy, Roberts and Simpson considered a
general curved surface with a bounded curvature, defined a curvilinear coordinate system attached
to the substrate and used center manifold theory to derive an equation describing the movement
of the free surface (Fluid-Air interface) in terms of surface variables and derivatives. The effects
considered in their results are gravity and constant surface tension and the resulting equation using
a proper scaling of variables reads

on 1 2 1
il gvr (nH ViKrs §€H (KId = K) VK
— %BO [H?’gm — eH? (/c Id + ;K> + eHsgVVFH] , (3.3)

where Id is the identity matrix, K the substrate’s curvature tensor, I := tr K the mean curvature,
n:=H—eKH + $e*(K? — K3) (K3 := tr (K?)) is the fluid density above the substrate and Kyg :=
K +e(ICoH + ArH) is the free surface mean curvature. As we will see in the next chapter, such setting
is suitable for numerical simulations on parametric surfaces. The stability of the resulting equation
follows from the theory of center manifolds. We refer to [21, 25, 106] for further reading on the
application of center manifold theory for the construction of low dimensional systems.
In real world applications, the fluids considered above contain almost always chemicals. The most
common is the surfactant. This substance, distributed on top of a thin liquid support, will cause
spontaneous and fast spreading when it creates region of lower surface tension than the supporting
fluid [92]. In fact it reduces the surface tension which gives rise to Marangoni effect due to the
gradient in the surface tension. This main property justifies its presence in the mammalian lung;
by reducing the surface tension when the alveoli are compressed during expiration for example,
it prevents alveoli to collapse [63, 108]. The surfactant also imparts an effective elasticity to the
interface and can be used on fluids to suppress motion characterized by nonzero surface divergence.
This last remark has been used for centuries by spear-fishermen, who poured oil on the water to
increase their ability to see their prey and by sailors, who would do similarly in an attempt to calm
troubled sea. It is then interesting to incorporate the effect of surfactant in the study of thin-film
flow. This results in the coupling of two partial differential equations. The basic equation used to
model the evolution of nonsoluble surfactant reads

oIl 1

-t (VFS : (HUFS)) = P, AFSH7 (3.4)

ot

where Vg is the free surface nabla operator, Arg the free surface Laplace-Beltrami operator, IT
the surfactant concentration, v,s the velocity of the free surface particle and P, the Peclet number.
This equation is often rewritten in terms of substrate variables using lubrication approximation. For
flat surfaces, the equation obtained considering van der Waals forces and no gravity for example is

oH 1 1
5 = 5 Vr (V) = Ve (PVe(=6 + C9Kr)) (3.5)
A o 9 (V) ~ LV (I, (=0 + CyKre) + g 11 (3.6)
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3.2 Problem setting

where K5 := ApH represents as above the free surface mean curvature, ¢ := AH™3 is the disjoining
pressure of the van der Waals force and A is the nondimensional Hamaker constant. The relation
between II and 7 is given by the Langmuir equation of state and one of its linearized version using
a proper scaling is v = 1 — II. One might also consider a soluble surfactant. We refer to [53, 98|
and references therein for further reading on the topic. In the present work, we follow the path of
Roy Roberts and Simpson in [107] and Howel in [67] to derive a general thin-film equation driven by
surfactant on a moving surface. In fact, considering a general curvilinear coodinate system attached
to the substrate and evolving in time, we use basic notions of tensor calculus to derive a general
equation. This method provides a very simple way to reason as in the case of flat surfaces. The whole
complexity of curved surfaces is hidden in the differential operators used. In fact, a simplification of
the momentum equation of the Navier-Stokes equations using lubrication approximation will lead
us as in the flat case to a system of ordinary differential equations (ODEs) along the vertical line for
the determination of the component of the relative velocity tangent to the substrate. This system
of ODEs will be solved at the given order of the lubrication approximation (O(e?)) using power
series and the result will be incorporated in the conservation of mass equation to obtain an equation
describing the free surface profile. The method provides the same results as the one obtained by Roy,
Roberts and Simpson in [107] using computer algebra to find the center manifold of the Navier-Stokes
equation in this case. We will not apply the lubrication approximation to the surfactant equation
since we aim in the next chapter to use a direct discretization of this equation using a variant of the
interface tracking method. Howell studied already the evolution of surface-tension driven thin-film
flow but used too much simplification and focused essentially on special cases. In fact, he assume the
term e/C to be of order O(e€) and neglected all terms of that order in the lubrication approximation
process. He also could only derive equations corresponding to special behavior of the curvature of
the substrate during the evolution; Equations corresponding to transition phase between the states
he studied are not presented in his work. Ida and Miksis modeled the surfactant driven thin-film
in [72] using the surface described by the mid height as the reference surface. This might also be
considered as moving surface since the motion of the fluid is transferred to the reference surface.
Unfortunately, in this case the motion of the reference does not influence the behavior of the thin-
film. The most recent work in the domain is the work of Uwe Fermum, who in his PhD thesis [48]
used the weak formulation to model surfactant driven thin-film flow on evolving surfaces. The rest
of the chapter is organized as follow: We formulate the problem in Section 3.2. In Section 3.3 we
introduce the differential geometry ingredients used and the basic tensor calculus needed. Finally,
in Section 3.4, we derive the coupled surfactant and thin-film equations.

3.2 Problem setting

We consider a family of compact, smooth and oriented hypersurfaces I'(t) < R"™ (n = 2,3) for
t € [0,tmaz] generated by a flux function @ : [0, tmaz] x Ty — R™ defined on a reference surface
[, =I'(0) with T'(t) = ®(t,T,). We also assume our initial surface I, to be at least C® smooth and
® € C([0, tinaz], C°(Ty)). We denote by vy = ;@ the velocity of material points and assume its
decomposition Ur = Ur ¥ + Ur 1., into a scalar velocity or, in the direction of the surface normal v
and a tangential velocity vr ;.

Let us consider a thin, vicious and incompressible liquid film bounded from below by the substrate
I'(t) and from above by the air as depicted in Figure 3.1. We assume the presence of an insoluble
surfactant with concentration IT at the free surface F'S (Fluid-Air interface) and the influence of a
body force f on the flow of the fluid. The body force f models the sum of external forces such as
gravity g and Van der Waals forces among others. Of course the surface undergoes its movement
while the fluid dynamics is taking place and the surfactant is spreading at the same time on the free
surface. A typical example of such a setup is the modeling of the flow of a surfactant driven thin-film
flow on the human lung. During the respiration phases (inspiration and expiration) the lung expands
and compresses while the thin-film flows. The spreading of the surfactant on the thin-film helps to
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3 Modeling of surfactant driven thin-film flow on moving surfaces

Figure 3.1: Representation of the substrate I' at the time instants 0 (left) and ¢ (right).

regularize the process. We refer to [66] for more information on this topic.
We model the evolution of the surfactant concentration by the time-dependant convection-diffusion
equation

o — o _

it (Vis (IItps)) = Vs (DpsViesll) on the free surface F'S (3.7)
derived by Stone in [113]. Here V.5 represents the tangential nabla operator at the free surface and
D, the surface diffusivity tensor (matrix). The diffusivity tensor is often taken as D, = ¢ld where
¢ is a constant. This setup assumes an isotropic diffusion of the surfactant on the free surface but in
general the diffusivity depends on the fluid viscosity, the fluid constituents and many other external
factors. In that case, a full tensor D, is the suitable way to model anisotropic behavior. Thus, Dy
will be considered to be a full three dimensional elliptic tensor whose restriction to the free surface
tangent bundle is the tangential operator incorporated in the model. Since the surfactant spreads
only on the free surface, we close the system by imposing the Neumann boundary condition

(DFstsﬁ) . anS =0 (3.8)

at the contact line (Substrate-Fluid-Air). n’  represents the free surface outer unit conormal.
The flow of the thin-film at its turn is governed by the incompressible Navier-Stokes equations

(3.9)
= +VP—f, (3.10)

where v is the fluid particle velocity, p is the fluid viscosity, p is the fluid density, P is the pressure
and f is the sum of body forces applied to a fluid particle as said above. We associate to these
equations the following boundary conditions:

a) On the substrate-fluid interface I'(t), we consider the no-penetration boundary condition
(0F — Ur) - v = 0 and the friction slip condition u ﬁ;u]t(m = (0 (Ur — Ur) where the slip tensor

[ is a three dimensional elliptic tensor whose restriction to the substrate tangent bundle is
the tangential tensor incorporated in the model [4, 84], T'» := (Vﬁf + (Vo,) T) is the stress

tensor, and ﬁ;u] . is the tangential component of T,v.

ta
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3.3 Geometry setting

b) On the fluid-air interface F'S (free surface), we consider the kinematic boundary condition
which states that the fluid particles follow the free surface. We also impose that the shear
stress on F'S is balanced by the free surface tangential gradient of the surface tension #;

I [TFVFS] = Vo7 The index “FS, tan” refers to the free surface tangent plane.

FS,tan

c) Finally we consider the Laplace-Young law on F'S which states that the jump of the normal
stress is propqrtional to the mean curvature of F'S, i.e., [— (]5 — ]50) Vps + ,uTFVF,S] Vps =
AK s where Py is the ambient pressure (atmospheric pressure in the air phase) and K,s the
curvature of the free surface.

The problem is completely modeled by the knowledge of the equation of state which links the surface
tension 74 and the surfactant concentration I7. Many equations of states exist in the literature but
the most popular is probably the nonlinear Langmuir equation of states [26, 83, 101, 127]

¥ =70+ RT, ,In(1 —I1/I1,,) (3.11)

that we adopt here. 7o denotes the surface tension of a clean film (I = 0), R the universal
gas constant, T, the absolute (Kelvin) temperature and [T, the surfactant concentration in the
maximum packing limit. IT., exists because each molecule occupies a finite surface area and therefore
limits the maximum possible surface concentration.

As usual, the mathematical study of the properties of a physical process needs first a
nondimensionalization and a proper scaling of variables. In addition in the context of fluid mechanics,
the choice of reference frames is very important. A good choice simplifies the work and facilitates
the analysis of the problem. In our case, we will simultaneously use a laboratory frame and a moving
frame attached to the substrate. In what follows, we will define the coordinate system, introduce
the scaling procedure and present the essential parts of tensor theory needed for an appropriate
description of this problem.

3.3 Geometry setting

3.3.1 Coordinate system

Let us consider a neighborhood €, < Ty of a point P, € 'y and follow the evolution of Q(%) :=
®(t,9,). We assume €2, to be parameterized by X(5) = X(0,5), 5 = (51, 52), and consequently
X(t,5) := ®(t, X (5)) parameterizes Q(). (Q,, X(£,-)) can be seen as a chart of an atlas describing
0X(t,5) 0X(t,5)

031 ’ 035 >
of the tangent plane at P(t) := ®(¢, P,) to be direct and we define v (¢, P(t)) = v(¢,5) := pu1(t,3) A
pa(t, 8) ur(t,8) A pa(t, 5)| the unit normal of I'(f) at P(f). So defined, we assume that during the
entire process, lines normal to the substrate do not intersect within the film. This condition is
fulfilled if and only if the matrix (Id — H(Z, 5)K (£, 3)) is strictly positive definite; H(Z, 5) being the
distance along v(t, P()) from P(f) to the free surface and K (%, ) being the Weingarten map at
P(t). Then, it is clear that any fluid particle at the point M on the axis [P(%),v (¢, P(t))) can be

the geometric properties of I'(¢). We assume the basis (u1(Z, 5), pa(t, 3)) =

uniquely represented by 7(¢,5,5) = X(t,3) + gv(t, 5), where § = |[P({)M]|, i.e., 0 < g < H(35). It
therefore appears that the appropriate way to describe the dynamic of the above stated problem is
to use a curvilinear coordinate system. Before we continue, let us mention here that the functions
used in this chapter will be time and space dependent unless specified otherwise; thus we will be
omitting variables whenever there is no possible misunderstanding.

Definition 3.3.1 Fort =0, let N, = N (0) € R*"! be a small open neighborhood of T, in which the
lines normal to the substrate do not intersect and assume that this includes the domain F occupied
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3 Modeling of surfactant driven thin-film flow on moving surfaces

by the fluid. The map

J\/’O N Rn+1
x > v(x) a unit vector normal to Ty such that
Ja €Ty, v(z) is the normal to Ty at a,
x=a+ (Tad-v)v and [z, a] € N,

is well defined. We also define N'(t) := {#(t,5,y) = X(£,5) + yv(t,5) / X(0,5) + yv(0, 5) € Ny} and
assume that the lines normal to T'(t) do not intersect within N'(t). At each point M with coordinates

7(t,8,9) = X(1,5) + gv(t,s) we define the natural basis as follows

131 (t,S,y) = 6751( » S, Y = (Id_yK(t75)) H1 (ta S)a
_ or _ _

t2 (1,5,9) = Foy t,59) = (Id—gK(ts))ps(t,35),
_ or _ _

ts (£,5,5) = aé(my) = v(L3).

We recall that Vv(t,s) = —K(,5).

3.3.2 Nondimensionalization/scaling and basic tensor calculus

In the context of thin-film flow, the representation of the fluid particle presents two characteristic
lengths scales: a reference length £ measured along the substrate in the direction of the main flow
and a reference thickness H of the fluid above the substrate T'(f). We also scale the time by 7. The
nondimensional variables are then related to their dimensional counterparts which are written with
overbar by:

5 = Ls where s = (s1,82) (i.e 5 = Ls1, 52 = Ls2), § = Hy, t = Tt, X(£,3) = LX(t,5),
7(t,5,9y) = Lr(t,s,y). The last relation gives r(t,s,y) = X(t,s) + eyv(t,s) where ¢ = H/L is
assumed to be very small compared to 1 (¢ << 1) and y becomes an O(1) variable. We should
emphasize that, so defined, the dimensional surface coordinates §; and S, must have the length’s
dimension, so that care should be taken when the natural parameterization involves an angle. For
example, for a flow on a circular cylinder of radius R,, a natural choice is 5; = 6, the cylindrical
polar coordinate, but the correct dimensional coordinate is the arc-length 57 = R,0.

These definitions lead to % = ‘;i and % = % With a slight misuse of notation, we de-
fine i (t,s) = (’:i and po(t, 3)7:= ::;«)i According to the context, one will distinguish them from
wui(t, 5) == ;;i and uso(t,3) := ?g We can nevertheless notice that u1(t,5) = u1(t,s) and ps(t,5) =

ua(t, s); thus v(t, 5) = v(t, s).
Again, with a slight misuse of notation, we define the corresponding curvilinear coodinate system
to the nondimensional flow as follow:

or

t1 (tv s,y) = (9781 (tv Say) = (Id - EyK(t, S)) 1251 (tv 5)
or

t2tsy) = oo (hsy) = (= @K(ts)m (t5)
0

t3 (L, s,y) = a—;(t,s,y) = w(ts),

where K is the nondimensional Weingarten map at P (t). From the definition of the shape operator
(Weingarten map), it is easy to see that K = (1/£)K. This remark allows us to see that

t1 (
ta (

W W
NSRS

) = 4 (t,s,y)
)

t,
t_v ) = t2 (t787y

b
b
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3.3 Geometry setting

With a misuse of notation, we define the dual basis of the basis (u1(%, 5), p2(, 5), v(%,5)) ,
(pa (2, s), uz(t s), (t s)), (ti(t,5,9), t2(t,5,9), ts(t 5:9)) (t1(t,8}/) tz(t S7y)’ t3(t, s, y)) respec-
tively by (u'(£,5), p?(%,5), v(£,3)) , (u'(t,s), p?(t,5), v(t,s)), (t'(#5,9), £*(,5,9), t*(1,5.9)),
(t'(t,s,9), (1, 5,), t°(t,5,y)) such that
qu(* 5) - :uj( 5) = 61 :u'i(tvs) : ,LLj(t,S) = 5;'7 (4,7 =1,2)

and ti({7§7y)'tj({7§ag) :6;" ti(tasvy)'tj(tvsay) :5_;7 (Zvj = 1a 2a 3)

(5; is the Kronecker-Delta symbol, i.e., (5;- = 1if ¢ = j and 0 in other cases. It is clear that
(/il(t_v 5), /LQ(Zv 5), V({v 5)) = (/il(tv s), M2(t7 s), v(t, 5)) :
Let us define
Ry(t,s,y) = (1d = eyK (t,5)) ™, (3.12)
then (t'(£,5,9), *(£,5,9), *(£,5,9) = (t'(t.sy), £(t,s,y), (1/)v(t, s))

= (Ry(t.s,)u'(t,5), Ry(t,s,9)12 (L, s), (1/e)v(t,s)) .

We refer to Figure 3.2 for the illustration of these vectors.

Definition 3.3.2 Let us call (ey, ea, e3) the canonical basis of R3. For any scalar function n, de-
fined on N (t), we define its nonscaled gradient by

(3.13)

Let us call To(y,t) the parallel surface to Q(t) that intersects the axis (P(t), v(51, 82,t)) at M. The
dimensional tangential gradients to T'(t) and T'q(y,t) are respectively given by:

N2 on 1 01
Vin = — — 3.14
Nl e (3.14)
= 677 67}
and VFQ(Q,{)n = 651 + 652 (315)
In the same way, we define the nondimensional gradient by
577 nl on o, 03
\Y% = —t"+ —t 3.16
n (951 + 089 + 0y ( )
and the nondimensional surface gradients by
on 1, 0n 4
Vin = — — 3.17
Xl et g vl (3.17)
0 0
and Vi on = a—ltl + a—s’lt? (3.18)

(3.12), (8.13) to (8.18) give the following relation to the above defined operator:
— 1

1
VFQ(@»{)T] = vaﬂ(y,t)n ZRyVFT]
= 1 1 on
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3 Modeling of surfactant driven thin-film flow on moving surfaces

Tangent pla

Figure 3.2: Representation of natural basis (u1,u2), (f1,t2), and the corresponding dual basis
(ut, u?), (t1,¢?), at P and M at time ¢.

We wish to define the gradient of a vector field in the natural coordinate.

Definition 3.3.3 Let us consider a vector field ( = Cion + (v defined on N(t), where ¢, = (- v.
The nonscaled gradient of  is the three dimensional second order tensor
2 ac

© i, 0¢
V¢ = Zl 5 O + 70 (3.19)

and the nonscaled surface gradient is defined by

2 2 2
v C— acta" % aCtan 4 ﬁy i
Ve = i=1 05i o i§1 ( 05i V) ven igl “ 05i o (3:20)
Their scale counterparts read
2
B aC ,  10¢
V({ = i:163i®t +€ay®1/, (3.21)
2 2 2
_ aCtan i aCta i ov i
and Vi( = i=1a—si®ﬂ _1';1( 95, V)V@M +i§1CV68i®M’ (3.22)

respectively.

Note 3.3.4 It can be noticed that these definitions give the surface derivative tensor of (. Some
authors [14] explicitly write

V¢ = (Id-vevr)V{(Id—vev)
for the nonscaled tangential gradient and
Vit = (Id=v®v)V{(Ild—rv®v)

for the scaled tangential gradient. Since our function is defined not just on the surface T' (as it is the
case in [14]), but in a small domain around the surface, this definition can lead to some confusion
while computing the tangential gradient at a point which isn’t on the surface. We therefore prefer
the full tensorial expression.

Lemma 3.3.5 For a given vector field { = C,on + (v defined on N(t) (¢, = (- v); we have

a) Vel = £V (3.23)
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3.3 Geometry setting

b) The nonscaled gradient can be expressed as

VC = Vil Ry+v@RyVi(, + agy o
o, ;
v ~ ¢, KRy. (3.24)

¢) The nonscaled gradient is expressed in terms of tangential gradient operator as follows

© 1 1 1 0Gan
VC = ZVFCmnRy + V ®Ryv CV + - ay ®v
10c, 1
E ay 1% ® v+ ZV®RyK<tan — ZCUKRy, (325)

where Ry = R (t,5,7y) = (1d — K (¢, 5))71 and R, = R (t,s,y) = (Id — eyK (t,s,9)) .
We will now generalize the above results to a general three dimensional second order tensor.
Definition 3.3.6 Considering a second order tensor
3 . .
Z TVt ®t;,
i,j=1
the tangential component of T is the surface tensor given by
T,.. = Z Tt @t;.
i,j=1

We use the terms nonscaled and scaled tangential gradient of T', respectivey, to denote the third order
surface tensors

T
LRV ®E ®

I M"’ I M"’

o
£

T
t; ®tj®t3®t®a®,u.

Remark 3.3.7 The nonscaled and scaled tangential gradient are merely the tangential component

T
of the surface gradient Z g— ® u* and Z g— ® u, respectively.
k=1

Lemma 3.3.8 Considering a second order tensor
3 . .
T ®,
i,j=1
the expressions of the nonscaled and scaled tangential gradient of T are

2

2 2
7 _ aCZ—‘tan T 4 2 _ _
ViT = ;;::1 et —Ev@[TM @ Kt; j;[ Wt | @@ Kty — (Tv),, @ K
2 —
- Y EKm®(Tv),, op (3.26)

e
I
—_
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3 Modeling of surfactant driven thin-film flow on moving surfaces

and
oT 2 2
_ tan k L L
VT = ;;1 2s, ®OF ‘E v®[T,.,t'] ® Kt; ;[ | @V Kty — (Tv),,, ® K
2
- Y Km®((T7v),, o, (3.27)
k=1
respectively. We also have the following relation
= 1
VI = ZVFT. (3.28)

Proof In fact

2 oT 2, 0T, o (T t®y) e = (TPt
@uF = ® u* + ®u” + —®u
k=1 05, k:Z:: 05k kZI 121 kZ::1 j§1 05k
2 6(T33V®1/) &
+ Z (‘)’gk m

)V@t ® uk

(@

Z sz <atl V)V®tj®,uk
Sk

k=14,j=1

9Tm
Z ask = Z

=1

2

T
e 2
T (ag >t®1/®u + )

+ Z Z aigk‘y iU ur.

‘v =t (K,uz) we obtain the following:

l;
Using the fact that 27
S

2

Toan - Y v ] ®Kt;

i=1

0T,
Z Z t: ®t, ®tj®t®a

k=14,j=1

Qut =

T.unt’| @ v @ Kt;.

1%
bt

A direct application of derivation formulae gives

22 __0(T" _
Z Z Zn@tm@tm@tl@%@uk = —(1v),,®K,
Ibm=1k=1t=1 Sk
2 2 2 B T3j . 2 B
Z Z Z tz@tm®tM®tl®(6;®’)®u’“ = — Y Em®@T),, o4,
,m=1k= ’ k=1

2(T*ver)

=1
2 . .
and Z Lt QUR® P, @ut = 0

(3.26) is obtained by adding up the equations above. (3.27) is obtained analogously and by replacing

the derivative expressions in (3.26) with their equivalents involving derivative expression in (3.27),

one easily obtains the relation (3.28).
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3.3 Geometry setting

O

Theorem 3.3.9 Considering a second order tensor

3
DTt

i,j=1

the expression of the nonscaled gradient of T is given in terms of the nonscaled and scaled variables

as follows
vT
and
vT

+

+

Vi T...0R, +Zu® ]®uZ®K+Z ! | @ v @ ;@K
i=1 j=1
0 (Tv)

2
Y\ Y an k 7% I T k
5 OV Ot —(Iv),,, ® RgK — Y. K, ® (T7v),,, ®t

k=1
Q[Ve(T™v), |Rj+vQUv@R;K (Tv) +v®v @ RyV, [(Tv) - V]

o (T(t9))

0 ;v

TMM

=

AN

[(Tv) - V]| Kp @ v @tF = [(Tv) - v]v @ RyK + )]

j=1

0(T"(v))

o(Tv) ton g

T®V®V+V® ag

e TP

<
Il
—

(T®)),,, ®Kp; @v +

V)z/®u®u

D
=
=
=

D
< S
=

2
=V.T...®R, +£ Zu@ m,g]®uz®1<+ Z el | @V ® 11, QK

1=1 =

1 & (T 1

3 0T 100 V)“”"®l/®tk——(Tu) ® "
&sk L

tan tan

1
® RyK — - k; Kuy® (T )

1 1
vI[Ve (T ), 1R, + ZV@ vQR,K (T v)+ ZV@ v R,V [(Tv) - v]

S [(T) - 1] Ky @ v @t — % [(Tv) - v]v® R, K

T(t
Tan@t Qv — £Z tj
J j=1
2 (Tv) 1T

7 o o ®V®V+£ ®7ay ®v

1 0((T(v)) - v)
iTV@V@Z@

). ®Ku;®v

ta

where the index “tan” is meant for the tangential component.

The proof of this theorem is straightforward.
We will now give the definition of divergence in terms of tensor contraction.

Definition 3.3.10 The second order identity tensor in R? is defined by

G

3

3 3 3
Z IEOF = Y () et =Y Lot =) et

i, i,5=1 i=1 i=1
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3 Modeling of surfactant driven thin-film flow on moving surfaces

Considering a first or second order tensor T, the nonscaled divergence of T is its trace given by
V-T = VI®G.

and the tangential divergence by
Ve T = V.T&G.

Theorem 3.3.11 (Divergence of tensors)
Let us consider a vector field ¢ (first order tensor)

3
(=DCti=Cumt+Cr (G =(v).
=1

The divergence of ¢ is given in terms of nonscaled and scaled variables by

_ — = _ = 0
V ' C = VFCtanRg®G - C,,KR@@G + ai_;?
= 1 = 1 = 1 0¢,
V-¢ = ZVFQmRy@)G - Z(VKRy@)G + Loy (3.29)
Considering a second order tensor
3
T= > TVt
ij=1
the divergence of T is given in terms of nonscaled and scaled variables by
2
V-T = (ViT..®R;)®G + >, v® [T, t'| ® K (1) ®G — (Tv),,, ® ;KRG
i=1
2 _
- D Em (T, ") +v®[Ve (TTv),,,] R®C
k=1
(T, (T )
[(Tv)-v]v @ RgK®G + 7 + o v
and
_ 1 — 2 . — —
T.T = (ViT,..,®R))®G + >, v® [Tt ® K (1) ®G — (Tv),,, ® RyK®G>

< Y K ((T70),,, ) =v@[V: (T 7),,,] Ry®G>

=~ 1 (v,  o(TK)- v)
[(Tv) vy ® Ry K®G + 7 ( % + o V)

€

B
Il
—

The Laplacian of a vector field is given in terms of nonscaled and scaled variables by
V(Y = (Ve (VeliunRy) ®Ry) &G + v (tr [Vili K R]]) — K [R (Vi)
2 ],
oy

0y
v — (R%KQQM) + vtr ([ﬁF (ng{mn)] Rg)

+ vtr ([ﬁr (Rgﬁr‘Cu)] Rg) -
aQCtan a2<u

02 0y?

— Vi (GKRy) ®Ry;®G —v(, tr (K2R2)

tr (RyK) — tr (RyK) [

+
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3.3 Geometry setting

and

1

L2
1

+ vt ([Ve (R ViG] By) -
1 (0%C.. 0%, 1

+ €22 ( 0y? + o0y? V> £2 (R2K2§,M) £2tr (Ve (By K Can)] Ry)

1 —
- ﬁvr ((.KR,))®R,®G —v ﬁgy tr (K*R2).

We finally wish to give some important results which will help us to simplify the thin-film problem
presented in ((3.7) — (3.11)).

N
<
NS/

I

((vp (Veloon Ry) BR) BG + v (41 [VeCoun KR2]) — K [R2 (vrg)])

1 0Can 1 ac¢,

Lemma 3.3.12 (Divergence of a tangential vector under the integral sign)
Let ¢ = Z?:l City = Z?:l ¢* (1d — yK) p; be a tangential vector field defined in N'(t) and consider
the real functions f and § defined on T'(t) which are assumed to be sufficiently smooth. Then

g(P) g(Py _ o o o
v, j Gy = j V. Cdy + C(g(P)-Veg(P) — L (F(P)) - Ve F(P) (3.30)
f(P) f(P)

Proof We have,

g(P) ) 2 rg(P)y
f, Cdy = Zf Cdym—zf, §Cdy R
i=1 Y f(P)

f(P
[ (f( Cdyﬂ m+2j Gidg [ ]

[ (f_a’ ycdyﬂ K — Z f §Cidg [T (Fw)].

and therefore

v(

The use of the derivation formula of an integral function in one dimension and a proper identification
of terms gives

. g(P)
v, j Cdy
f(pP)

x[®
i[s

f(P)

ZF(P) 6T, - [(1d — gK) '] + (VoC) - [(1d — 5E) ']) dg

(e
(

I 1D
T |

which is what we where looking for.
U

Lemma 3.3.13 Let us consider the points P = P(t,s) € Q(t) € T'(t) and M on the axis (P, v(t,s)).
We call dTq(t, s,y) = |[t1 A ta| the surface element at M of the surface parallel to Q(t). Then

ti _ 1 ot =~_o [t \_
v (drw,s,y)) s (VF (drg(t,s,m) Ry) ©6=Vr (dw,s,y)) -0
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3 Modeling of surfactant driven thin-film flow on moving surfaces

Proof Let us define the scalar fields n;(t,s,y) = s; (i = 1,2), and n,(¢,s,y) = ey in a bounded
subdomain of N (t) containing Q(¢) and [P, M].

Vn; =t', Vn,=v and therefore V- (t'Av) =0,

t
since V - (Vf A Vg) = 0 for any scalar field f and g. We also have t* A v = —— 2 and
dl'q (ta S, y)
t
2 AV =—-—t " The remaining part is a direct application of (3.29).
dFQ (t7 S, y)

O

Remark 3.3.14 We notice using Lemma 3.3.18 that one has for any tangential vector field (,,.,

t;

VilanRy®G =V - (o = "dCa(t,s,y)

SN

@
Il
—

[V (dTo(t,5,) (Gan - 1'))]

[VF (dFQ(ta S’y) (C“"" tl))] . m

. (drfl(tvs7y)R C >:| ”/“Ll A M2H
i H/j/l A /-1/2” yEten dFQ(taSay)

Il
T

s
Il
—

<

|

We will also need some informations on the geometry of the free surface F'S. The properties of the
problem inspire the natural parameterization

Trs = X(t,3) + H(%,5) v(Z, 3)
of the free surface through the parameterization of the substrate X (f,5) and the height H(Z,3) of

the film. A tangential basis of the free surface tangent bundle is therefore given by the following
vectors:

OF s o oH oH

s o= = (Id— HK =t + —
1,Fs 051 ( )M1+a§11/ 1+6§1V

OF s __ OH oH
ps = = (Id — = — .
ta rs PEN (Id — HK) po + 5" to + 5"

We also define the unit normal to F'S by

t1,rs A2, Fs
”tl, rs A to, FS” )

Vrs
A better expression of the free surface normal is given through the computation

t1,rs ANl2,ps =11 A2 — (fltz AV — 6—521/ At
= 11 nta = Sl singes, )t = S el siner, )62
= [[t1 A to] (v — RV H)
by
_ v RVl
1+ |RVH2

Vps =
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Curvature tensor of the free surface:
Let us now consider (tLg, t2;, vrs), the dual basis of (t1, ps, b2, rss Vrs). this means

t}?s'tl,FS = 1a t}rs'tlFS 207 t}rs'l/FS 207
tos ti,ps =0, ths t2,ps =1, trs vrs =0.

‘We notice that

and a good development of this formula leads to the following lemma

Lemma 3.3.15 (Free surface mean curvature)
The free surface mean curvature Krg is given in terms of nonscaled and scaled variables by

Koo =tr (Rps) = — e (KRy) + —————— tx (Vs (RiT:H))
1+ ||RsVH|? 1+ ||RsVH|?

IR, (V) - (R RS | (REVH) - (R
1+ |RsVH|? 1+ ||RsVH|?

| R:V -H| (RWFHRNFHH)E; (RyVH) N (RZKV . H) - (Rﬁglil)
1+ ||RsVH|? A/1 4+ |RyV-H|2

o ([T (BRI ATH) - (RT:H)
1+ ||RsVH|?

IRV H|? (RaV | RaVrH]) - (RiVH)

L4 | B
and
Kis =tr (Krs) = = = tr (KR + 5 ! tr (Vy (R,V:H))
L+ @RV LT+ @[RNVHP

i ”RHVFH“ (RHVI‘H) i (RHVF“RHVFH”) + i (REKVFH) ) (RHVFH)

—3 3
£ A/1+ €| RsVH|? £ VT+ @RV AP
€3 |RyVH| (Ry V| Ry VH|) - (R, VH) N e (RIKV.H) - (R.ViH)

1+ @[RVH[? L 1+ @[RVHZ

& ([Ve (RViH)] RViH) - (RViH)

VIt ERVHE
€ |RVH|? (R V| R VeH]) - (RyV-H)
L 1+ @[RVH[?

With these preliminaries in hand, we wish to rewrite the thin-film problem in a curvilinear coordinate
system attached to the substrate.

Y

Y
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3 Modeling of surfactant driven thin-film flow on moving surfaces

3.4 Derivation of surfactant and thin-film equation

We wish here to derive the dimensionless equations describing the surfactant driven thin-film problem
stated in Section 3.2. We will particularly use lubrication approximation to reduce the complexity
of the thin-film equations. As already mention in the introduction, this technique (introduced in
1962 by Orchard [97]) aims to replace the problem by a relatively simple problem whose long term
behavior is similar to the behavior of the studied model. This is done by neglecting some relatively
nonimportant effects in the original problem. In our case, we will take, as usual advantage of the
fact that the film is thin and the ratio e = H/L between the vertical length scale and the horizontal
length scale is too small compared to 1 (¢ << 1). Therefore, we will expand the scaled version of
(3.9) and (3.10) as power series of € and consider the truncated result at lower power of € as the
simplified equation. Any term of order O(¢?) of such expansion will be neglected. This procedure
coincides with the construction of the center manifold for the thin-film equation and, consequently
the resulting equation is guaranteed to be stable. The case of stationary surface discussed in [107]
using center manifold theory offers a good example in this issue. Now, let us start by defining the
velocity and its scaling factors.

3.4.1 Velocity and its derivatives
Definition and Theorem 3.4.1 The velocity v of a fluid particle T (t,51(t), 52(t), y(%)) is given

by
~ ar _ _
Vr = E = VUr + Unr + Vg tan + VgV, (3.31)
where 0%
Up = —— 3.32
Ur of ( )
is the velocity of the substrate,
_ - 051 039
tan = (Id —9K) | —= —— 3.33
Vg, (Id-g )(at“1+at“2) (3.33)
1s the relative tangential velocity of the fluid in the moving frame attached to the substrate,
Upr = =Y (vr (O - v) + K'Dr,tan) (3'34)
is the velocity due to the rotation of the moving frame and
dy
Up, = —= 3.35
YR = (3:35)
is the scalar normal relative velocity in the direction of the substrate normal v.
Proof It is clear that
soodr 00X 0X 05 0X0s, dy v (0v0s,  Ovis
FTd T ot os ot osy ot ar Vot T Y\as, ot | 0s, 0t
_ _ = 951 652 _ov d:lj
o+ y)<6t”1+6t”2>+yat+dty (8-36)

It remains to differentiate the unit normal with respect to time. In fact,

ov

=0
ot 7 ’
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3.4 Derivation of surfactant and thin-film equation

ov 0X
which means that — is a tangential vector. Knowing that pu;, = —, we have

ot 05;
7= S(Fe)e sl ()
_ _Zl<avp. >u+2 (”(a:»“

The use of the symmetry of K leads to

w
ot

= =V (o v) = Ko (3.37)
Plugging (3.37) into (3.36) and identify the terms in (3.32), (3.33), (3.34) and (3.35) proves (3.31).

]
It is easy to see that the expression of these velocity components in terms of scaled variables are

L oX

_ B £ (381 682
UR,tan = T (Id — eyK) (atul + atln) (3.39)
Vp = —eéy (Ve (vr - v) + Kor) (3.40)
~_ Ldy
'UR,U = 6?%, (341)

L
which give U = T as the natural scaling of the velocity of the substrate and the relative tangential

velocity. Also, €U appears as the natural scaling of the scalar normal relative velocity and the
velocity due to the rotation of the moving frame. This naturally leads to the following expression
of - in terms of scaled variables

v =0 ('UF + UR,tan) +eV (UmF + UR,UV) , (3-42)
where vr, Unr, Vgian, Vg, identified in (3.38), (3.39), (3.40) and (3.41) are the scaled substrate

velocity, the scaled velocity due to the rotation of the moving frame, the scaled tangential relative
velocity and the scaled scalar normal relative velocity, respectively.

Lemma 3.4.2 Let us consider the velocity field v- as described above. The time derivative of U in
terms of nonscaled and scaled variables is given as

Aoy (0(Orean + Vmr + Vnjean)
dt ot
= (Or, +0r,) [(Vitr, + Krya,) + KRy(Up100)]
+ @ ran + Ve + Vpyran) - (Ve + Kran) | v

> + Vi (O tan + Opr + Vnan) Ry (Un 1an)
tan

= — ~ _ 0 (Ur, + Vg,
+ [(VFUF,V + K (UF + Vpr + UR,ta,n)) ' RQ(UR,mn)] v+ %V (343)
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3 Modeling of surfactant driven thin-film flow on moving surfaces

> 2
% _ % <a(’Ur,f,an + EZZIF + UR,tan))f(ln -+ %Vr (’Up,t,m + eV, r + ’UR,t,m,) ®Ry(’l)R7m")
UZ
- f ('Ur,u + G’UR,V) [(VFUF,u + KUP,mn) + KRy('UR,mn)]
U2
+ T [(Ur,tan + €V p + UR,tan) : (vrvr,u + er,tan)] v
2
+ % [(Vivr, + K (vr + €0pp + U pan)) - Ry(Vran)] v + gwm (3.44)

where Ur, = Up - v and the index “ tan” refers to the tangential part of a vector.

3.4.2 Scaled surfactant equation

We scale the surfactant concentration by the equilibrium concentration ., (IT = I1.,IT), the surface
tension by Y., (¥ = 7eq7), the surface tension of the equilibrium concentration of surfactant. We

also scale the diffusivity tensor by the constant diffusivity coefficient Dyyyp (Dps = DsyrfDrs).
Then the scaled version of the surfactant equation (3.7) reads

oIl 1 _
A + (Vies - (ITvps)) = P—VFS (DpsVpsIl) on the free surface F'S, (3.45)
e
where P, = DLS :lif is the Peclet number, Vs = LV .5 is the dimensionless tangential nabla operator

of F'S and vps = ¥ps/V is the dimensionless velocity of the fluid particle on F'S. The scaled version
of the boundary condition (3.8) at the contact line (Substrate-Fluid-Air) reads

(DFSVFSH) 'nlps =0 (3.46)

nl., being the free surface outer unit conormal. Finally, let us denote by z = % the surfactant

coverage and by E = RT%% the surfactant elasticity. The dimensionless Langmuir equation of state
obtained from equation (3.11) is then given by

1+ Eln(1—20M)
14+ FEln(l—2z)

(3.47)

In cases where E and x are small (for example, for a polymer 0.1 < E < 0.5 and x is small for dilute
surfactant coverage ), (3.47) can be approximated by

v=1+ FEz(1-1II). (3.48)

This equation has been used by early researchers [98, 114]. However, as surfactant accumulates
at the tip of a drop for example, IT gets large at the tip and this approximation fails. The linear
approximation should then be used only in reasonable cases. Although it is very easy to cope with
the linear equation and the essential physics of the surfactant is captured in the linear approximation,
we will use the nonlinear setup to avoid the mentioned above problem.

3.4.3 Model reduction for the thin-film equation using lubrication
approximation

Let us first define the nonscaled mean curvature K = tr K, the scaled mean curvature = tr K,
the Reynolds number R, = pUL/p and the Bond number B, = GH?/(1V), where G is the scale
of the gravity g (7 = Gg). We also scale the pressure P by P = pUL/H? (P = PP) and the sum
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3.4 Derivation of surfactant and thin-film equation

of body forces f by G (f = Gf). Body forces include for example gravity. Depending on the body
force considered, an appropriate scaling factor should be chosen. If we are to consider van der Waals
forces, they scale with P. We choose G as we would like to concentrate on gravity. So far, we haven’t
explicitly specified how to choose the scaling factors. This plays an important role in the lubrication
approximation process since we need a clear way to quantitatively compare effects that influence
the model. In the present model for surfactant driven thin-film modeling on evolving surfaces, for
example, we have two independent sources of velocity that act at the same time: the substrate
velocity o, and the relative velocity of the fluid vx. Since the thin-film evolution is known to be a
slow process, we might then face the situation where ||0g|/||or| is very small (|z]/||or] << 1). We
would need here to incorporate only the dominant effects coming from each source; Equation (3.44)
for example shows how these velocities appear in the acceleration of a fluid particle. Moreover, taking
the velocity scale only based on one of these velocities makes it difficult to choose an appropriate
time step for numerical computation, so that the interplay of the substrate deformation and the fluid
flow can be well resolved. However, depending on the model studied and the focus, a compromise
should be found. In the present case, we assume the velocity scale U to be based on the relative
evolution of the thin-film while the time and space derivatives of the scaled substrate velocity v, are
assumed to be of order O(1). This simply means that the norm of substrate acceleration ||0vy/dt||
and the rate of change in the substrate deformation are proportional to the rate of change in the
tangential fluid movement. Thus this setup forbides high constant rotation velocity while allowing
high constant translation velocity. We will then finally assume €>R.|0v./dt] = O(e?) as well as
ERe|0Vr1an/0t] = O(€2), ERe|0v,.,/0t] = O(e), K2 = O(€?) and 2B, = O(e?). Let us now
multiply each term of equation (3.10) by £/P.

E d’DF _ 2 a(vl",tan + 6U'mF + ’UR,tan) 2 =
Epﬁ = R, ( N -~ + € ReVr (Urian + €Vnr + Vi ian) Ry (Vi ian)
— ERe(vr, + evp,) [(Vive, + Kvr o) + KRy (Vg 1an)]
+  ERe [(Vran + €Vnp + Vpran) * (Vivr,, + Kvp )] v + 62R6WV
+ R, [(Vrvr, + K (vr + €U p + U 1an)) - Ry(Vr,ian)] Vs (3.49)
L— 10P
ZVp = P+, .
PV R,V.P + ; ayl/ (3.50)
-
- 5f = —Bofian = Bofov  (f. =V, fran=Ff—fV), (3.51)
L — — =
5/LV - (VU]:) = 62 ((vr (VF (vr,mn + €v,,r + UR,mn) Ry) ®Ry) ®G - K [Ri (VF (UF,V + EUR,V)):I)

+ v (tr [Vr (Urtam + €Vpmp + Vi tan) KR;] +tr ([Vr (RyVr (vr,, + €vg,,))] Ry))

o(vr,, + €vg,,)
— € 2 tr (R, K) — etr (R, K) [é’yR] v

— 2 (R§K2 (Uran + €Vpr + Vpan)) — € Vi ((0r, + €V,,) KR,)®R,QG

+ Evtr ([Vr (RyK (Vr,1an + €Vpr + Upian))] Ry) — v (vr,, + €vg,) tr (KQRE)

N 0% (Vr tan + €Vpp + Vpotan) N *(vr, + €vg,) Y
0y? 0y?

Next, we introduce these terms in the result of the multiplication of equation (3.10) by £/P. Noticing
that R, = Id + ey K + O(€?), the resulting equation reads
OVR, tan aZIUR,tan 62”12,,/ 10P

— i = FP K I‘P R tan v 2'
e 2 + 2 +€ P v VP + eyKV +anu Bo fran — Bof,v + O(e%)

O(Vr,ran + €Vpp + Vntan)

(3.52)
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3 Modeling of surfactant driven thin-film flow on moving surfaces

The projection of this equation on the normal direction as well as on the tangential plane leads to a
system of partial differential equations (PDEs). An approximation of these PDEs at order €2 reads

P
_ B 3.53
o eB, f (3.53)
2
e Qe OVnien G p g P B, f (3.54)

Oy 0y?

The system of PDEs (3.53) — (3.54) is a reduced system representing the momentum equation.
Taking U = €(veq/pt) as mentioned above and scaling the slip tensor 8 by u/H (8 = (1/H)B), we
approximate the boundary conditions associated to the Navier-Stokes equations up to O(e?) by

No penetration on I : Vg, =0 (3.55)

Friction slip condition on T": 61?9?& + €KV 10n = BUR tan (3.56)
Y

Share stress condition on F'S : avg’m" + €KVp 1an = (Id + eHK) Vy (3.57)
Y

Laplace-Young’s law on F'S : P =P, —C'vKps, (3.58)

where C’ = 62(’7€q /) is the inverse capillary number which represents the ratio between surface
tension and viscous forces. We differentiate C’ to the standard inverse capillary number C =
€3 (Yeq/pV). Krs = LK ps is the scaled free surface mean curvature. Its O(e?) approximation deduced
from Lemma 3.3.15 and which is effectively incorporated in this model reads

Kes = K+eHKy+AH)  (Ky = tr(K?)). (3.59)

It can be noticed that for £ = O(e) (almost flat surface), the capillary number C' is recovered in
(3.58). Also, for K = constant + O(e) (almost cylinder or spherical surface) all the surface tension
term in the pressure gradient in (3.54) become O(eC").

Remark 3.4.3 The surface tensor 8 describes the properties of the substrate. If we set § = 01d,
there is mo friction at the contact of the substrate and we are in the case of perfect slip. If the
etgenvalues of B tend to infinity, then the friction is too high on the substrate interface and therefore
prevents any movement of fluid particles at the surface contact; this is the well known “no-slip
condition” commonly applied in fluid mechanics. Unfortunately, in the context of thin-film flow,
this condition gives rise to monintegrable singularities at the triple line junction (Substrate-Fluid-
Air) [68]. This problem is overcome by assuming either a precursor layer or the slip condition
we have already introduced. In this context of lubrication approximation, the no-slip condition will
be obtain once the smallest eigenvalue of 3 is greater than 1/€?; which is equivalent to say that
£-(B) = (1/ed)|€|? for all tangential vector €. To avoid influences of the boundary conditions which
will take us away from the real world application, we must remain near the no-slip condition. A
good range is to choose 3 such that its eigenvalues lie between 1/\/e and 1/e*> which is equivalent to
say that (1//e)||€]? < &-(BE) < (1/2)|€||? for all tangential vector €. The whole model is done by
using the minimal assumption (1//€)||€]? < € - (BE).

Let us now look for the expression of vy .., in terms of e. First integrating (3.53) from the high
position y to H and using the boundary condition (3.58) gives

Ply) = PB,—Cv9Kps +eBof,(y—H). (3.60)

Secondly, we should notice the system of ordinary differential equations (ODE) (3.54) with the
boundary condition (3.56) and (3.57) can be solved using power series. We will therefore set

Vpan = Vo +yv1 + Y202 + yPvs + ytog +yPvs 4+
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3.4 Derivation of surfactant and thin-film equation

where the coefficients v; (i = 0,1, -) to be determined from the equations are vectors which do not
depend on y. The O(e?) approximation of vy ,,, reads

1 1 1 . 1
Vptan = (yH — §eyH21C —3 (y2 — eyQHlC) — 6ey3K> Id — 66y3K] Ve (C"yICFS)

[ 1 1
+ <H — 26H2’C) Id — eyHK] BV, (C’”leFs) + [Hﬁ_l + <yH — 2y2> Id] eB, f,VH

1

+ (1 —eHK)Id — eyK) g~ + <y—eyHlC+26y21C> Id] Vi
[1opn (10 1o 14

+ _2H 57 + <2yH 5Y H+6y Id| eB, V. f,

+ <yH — %eyH2IC — % (v* — ey®HK) — éey?’lC) Id — ;eyHQK] By frun

1 1
+ (Hﬂl — 5eHQﬁ*lK — 5eHQICfrl — eyHKﬂl> Bo fran- (3.61)

Finally, it remains to consider the mass conservation equation (3.9). A direct use of Theorem 3.3.11
gives the following dimensionless counterpart
— = 0vVp.,
vr(vr,mn + Vg tan T 6UmF)Ry®G - (Ur,u + E'UR,U)KRy@)G + 6; = 0. (3'62)
Let us multiply this equation by the rate of change of the surface element of the parallel surface to
I' along the normal dSr .., = [(t1 A t2) - V] [(1 A p2) - V]_l =1—-eyK+ %erQ(ICQ —Ks3). Observing
that K — ICK + 1(K? — K2)(Id — » @ v) = 0 one obtains

dSr ... (vap,m”@G - ICvr‘,,) Yy (vanmnK§G - /csz) +2y? <vamanK2§G - /cgvr,u)

— 2K (vrvr,mK%G - Ic2vr,u) — [V (Vevr, + Kvr,,)] [ey1d = €2 (K1d - K) | ®G

+ dSr s (et RyBG) + (=K + 2y (K2 = K2)) vy + S0y 2, = 0.

where /C3 is the trace of K3. The integration of this equation along the normal v of the substrate
using the no-penetration boundary condition (3.55) (vg, = 0) on I gives

n (VFUMEG - icvw) + %d—ﬁ (VFUFMI@G - /cm,u) n %EQH?’ (vrvme?@G - icgvr,u)

1 _ 1 1, _
SR (VFUFMI@G - icguw) — Ve (Vevr, + Kvran)] [26H2 Id — < eH (K1d - K)] G

H _
+ f dSq... (vrvaRy@G) dy + (dSrvuvs)], = 0, (3.63)
0

where the index H refers to the point where the given expression is evaluated and n = S(H) dSr .- dy =
H— %EHQIC-F %EQHS (K2 — K3) is the fluid density above the point P(¢, s1(t), s2(t)) on I'(t). Considering
a fluid particle M (X (¢, s1(t), s2(t)), H (t, X (¢, s1(t), s2(¢)))) in the substrate coordinate system, the
kinematic condition reads

dH  0"H & oM ds; oM
= = b= H. 64
(UR,V)|H dt at + ;1 asi at at + RHVI‘ /URﬂtana (3 6 )
0'H oH . . . . .
where — := — + VH - v.. This notation will only be used when the functions explicitly depends

on X (t,s1,s2) (i.e. H(t, X(¢,s1,s2))) to differentiate between the usual partial time derivative and
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3 Modeling of surfactant driven thin-film flow on moving surfaces

the material derivative taking by fixing the surface parametric coordinates (s1, s2). Now, combining
(3.64) and (3.30) gives

0"H H
(dSF71;a7‘UR.u)|H = dSl",'uarW + VF ‘ J [dSI‘,'uurRy (UR,tan)] dy
0

H
[ Ve St By (0 (3.65)
0
Let us introduce the following useful lemma which gives the partial derivative of the curvature with

respect to time. Its proof, which we omit here, follows the same path as the computation of the
partial derivative of the normal with respect to time.

Lemma 3.4.4 Let K = K(t,s) be the nondimensional curvature tensor of T'(t), K = tr (K) and
Ko =tr (K?) = tr (K®K); then

0K 3 Ou i
E = VF (VFUFW + er‘,tan) - ; |:K ( 657; >:| ® K
+ [K (VFvF,V + KUF,mn)] LV-—r® [K (VFUF’V + KUF’MH)]

% = V.- (Viur, + Kvptan) — tr (KVyior)

oK?

el 2KV - (Vyvr, + Kvp 40n) — 2Ktr (K'Vioy)

(9’(:2 2

= 2tr (K [V (Vrvr, + Kvran)]) — 2tr (K (VFUF)) .

This lemma leads eventually to the following formula

o'H o' 1, 1
(dsnvmﬂ)h W = W + §6H VF . (VFUF,V + er,tan) — §€H tr (KVFUF)
1
g62H3 [KVy - (Vevr, + Kvp ) — tr (K [V (Vevr, + Kvr.,)])

— Ktr (KVyeop) + tr (K2 (Veoy))]

and (3.65) becomes now

6F H H
(dSF,'um"UR,V”H = Ttn + VF ! J;) [dSFﬂN”‘Ry (Uthan)] dy - J;) VF ' [dSFﬂN”‘Ry (UR,UHL)] dy
1 2 1.9
+ §€H Vi (Vrevr, + Kvr o) — §6H tr (KVyur)

1
- §€2H3 []CVF ' (VF'UF,U + KUr,mn) —tr (K [Vr (VFUF,U + K'Ur,tan)])

— Ktr (KViop) +tr (K? (Veor))].
A proper development of this last equation using Remark 3.3.14 gives

I H H .
(dSr varVru)l, = % + V- J [(Id — ey (KId — K)) Vg ran] dy — J dSr var (RyV Vg 10n) ®Gdy
0 0

1 1 p—
+[Ve (Vevr, + Ko o) <26H2 Id — g62H3 (KId — K)) G

1 1 . 1
—§eH2tr (KVyiur) + geQH‘SICtr (KVrur) — géQHStr (K2 (VF’UF))
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3.4 Derivation of surfactant and thin-film equation

and, finally, the combination of this equation with (3.63) gives

o'n

ot

H

+ 71V - UF+VF-J [(Id—ey(KId — K)) Vg an]dy = 0,
0

where we recall that V. - v = VFUF,WL@G — Kvr .. The above equation can be summarized as

aI‘
6t +nVr-vr + Vi = 0, (3.66)
where the flux F'is given by
H
F = f (Vitan — €YKVR 1an + €YK VR 10n) dy
0

[ 1 1 1 1
- gH3 Id — §GH4 (/c Id - 2K> + (H? = eH°K) ﬁ—l] Vi (C'9Kes) + [HQﬁ‘l + §H3 Id] eB, f,VH

[ 1 2 1 1 1
+ (HId - geHQICId> G (2H2 - 36H3/c> Id + 36H3K] Vi + [2H3ﬁ_1 + gH‘* Id] B,V f,

+ éH?’ Id — éeH‘*md - 2146H4K] B fran + ((H2 — W)t = ;eH?’ﬁlK) By fran- (3.67)

In the special case where gravity § = Gg = G(¢ian + 6.V) (9, = ¢ - v) is the only body force, we can
notice that Vg, = —Kg,,,, and (3.67) becomes

1, 1 1 1
F = [Hdld —~ 7eH4 (/c - > —eH’K) B~ ] Ve (C'YKps) + [H%l + gH3 Id] eB,g, V:H
1
+ [(Hld— ZeH ICId> < - H /c) Id + 36H3K] Vi
+ 3 [HS Id — eH? (}C Id + 2K>] BoGian + ((H2 _ eH?»;c)g—l _ 6H3ﬁ—1K) BoGian- (3.68)

In case of constant surface tension -y, no-slip condition and static surface, the terms in (3.66) and
(3.68) involving Vv, A7, and v cancel out and we recover exactly the equation presented by Roy,
Roberts and Simpson in [107]. Let us now consider the dual effect of gravity and van der Waals
forces. Van der Waals forces are intermolecular forces that come into play when the film’s thickness
become very small (order of several hundreds of Angstréms (100—1000)). These forces are expressed
as potential forces often called disjoining pressure. There are many expressions for this potential in
the literature. We refer to [117] for the derivation of a more general formula which reads

4 .
= S AA
=1

where A; are coefficients determined by specific intermolecular forces brought into consideration. In
our model, we will consider the potential adopted by Ida and Miksis in [72]

¢ = AsH7, (3.69)
where A3 = A/(6mp). A is a physical constant called Hamaker constant. When A > 0, the two
interfaces (Substrate and Free Surface) attract each other and when A < 0 they repel each other.
To include this effect in the present context, we can either consider an extra body force f, = V¢
which can be taken into account in the sum of body forces f, or replace the pressure P in (3.10) by
P + ¢. In either case ¢ which is originally defined on the substrate is extended as constant along the
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3 Modeling of surfactant driven thin-film flow on moving surfaces

normal v. Also, the scaling procedure should be done carefully. Here we have scaled f by G while
¢ scales like pressure (¢ = P¢), therefore the best way to incorporate the effect is to replace P in
(3.10) by P+ ¢. This results in replacing the term €’k in the flux F in (3.67) by (—¢ +C'vKrs),
where ¢ = AH™® and A = €A/(6mpuVUH?) is the dimensionless Hamaker constant. The resulting
flux is therefore

F = [;H3 Id - %€H4 (ICId — ;K> + (H? — eH*K) ﬁ—l] Vi (=9 + C'Krs)

+

+

[H2,61 + %H?’ Id] eB,g, Vi H + [(H Id — ;eH2ICId> 671+ (;HQ — geH?’IC) Id + ;EHSK] Vi

% [H3 Id — eH* </c Id + ;Kﬂ BoGran + (H? = eH?* )31 — eH? 871 K) Bogran (3.70)

and, in this case, the relative velocity vg,,., becomes

[ 1 1 1 1
Vhotan <yH - §eyH21C -3 (y> — ey®HK) — 66y3IC) Id — 6€y3K] Vi (=6 + C'vKrs)
+ (H — ;EH2K> Id — eyHK] BV (= + C'yKrs) + [Hﬁ—l + (yH - ;y2> Id] eB,g, VH
[ 1
+ (1 = €eHK)Id — eyK) B~ + (y — eyHK + 26y2K) Id] Vy
r 1 1 1 1 1 1
H— Zy? — ZeyH?’K + —ey®HK — Ze®K ) 1d — [ eyH? — Zey®H + —ey® | K | Bog,
+ (y 2y 26y K+ 2ey K Gey IC) (ey 2ey + 66y> ]Bogm
1
+ <Hﬂ_1 — §6H2/Cﬁ_1 —eH’B'K — eyHKﬁ_1> BoGian- (3.71)
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4 Simulation of surfactant driven thin-film
flow on moving surfaces

4.1 Introduction

Fourth order partial differential equations (PDEs) appear in numerous fields of mathematics and
physics among those are image processing, surface diffusion, computer graphic, chemical coating, cell
membrane deformation and fluid dynamies [23, 35, 52, 53, 93, 98, 107]. Unfortunately, compared to
second order equations, the literature on the numeric of fourth order PDEs is almost inexistent. One
will nevertheless notice a burgeoning interest in the simulation of these equations in the last decade.
In [5, 6, 9, 62], the authors analyse numerical methods for both thin film equations and a coupled
surfactant driven thin film flow system of equations on planar surfaces. In [39, 57] the level set
approach for fourth order PDESs on curved surfaces is discussed. In this class of methods, the original
PDE stated on a curved surface modeled by a level set is first extended as a degenerated equation in
the whole space, then the new equation is solved in a narrow band near the original surface and the
solution projected on the surface. This method will eventually require a new boundary condition
on the narrow band boundary. The boundary condition must be well chosen, otherwise the final
solution will be severely affected. Most often, the obtained equation is solved using finite element
method or finite difference method which of course have very good properties on structured grid
[39, 57].

Recently, the finite volume method has been discussed in [34] for the direct simulation of a linear
fourth order PDE on curved surfaces. As already mentioned in Chapter 11, the finite volume method
remains unexplored for direct simulations of PDEs on curved surfaces in general, although it has
proven to be advantageous in number of problems such as strong advection dominant problems,
simulation on general anisotropic and unstructured meshes and problem requiring conservation of
mass. Furthermore, since curved surface meshes are unstructured by nature, the finite volume
method appears to be an interesting tool for simulation of PDEs on surfaces. In this chapter, we
extend the finite volume methodology developed in Chapter II to the computation of the coupled
surfactant driven thin film flow system of equations on a moving surface. In fact, on an evolving
substrate, the flow of a thin film on top of which a surfactant concentration spreads, is considered.
Different from [5, 6, 9], where the authors project the surfactant equation onto the substrate (planar
in their case) using lubrication approximation and discretize the coupled system of equations stated
on the same domain, we consider a surfactant equation defined on the free surface. In the context of
thin films, the height of the film parameterizes the free surface onto the substrate, thus we transform
the diffusion equation of the surfactant concentration into a convection diffusion equation onto a
virtual free surface which moves only in the direction of the substrate’s normal. In the new setup,
the surfactant concentration is advected with the fluid particle velocity tangent to the free surface.
We then combine the methodologies proposed in [62] and [57] with our finite volume methodology
described in Chapter II to discretize the model thin film problem obtained in Chapter III. Next, we
make use of the above mentioned parameterization of the free surface to project the finite volume
setup onto the free surface interface for the discretization of the surfactant equation. This process
leads to a system of nonlinear equations whose solution gives the height of the thin film as well as
the surfactant concentration at the finite volumes cell center.

We should mention that the most used technique for computation of interfacial flows remains the
interface tracking methods; we refer to [71, 127] and references therein. The actual method developed
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4 Simulation of surfactant driven thin-film flow on moving surfaces

in this chapter can be taken as a variant of this class of methods. Despite the fact that we do not
explicitly reconstruct the free surface boundary as it is usually the case in this class of methods, we
discretize our surfactant equation on a discrete ghost surface represented by the height of the thin
film at finite volumes center point. Let us also mention that the interface tracking method include
surface tracking methods [54, 118], volume tracking methods [104, 127] and moving mesh methods
[51]. Finally, the chapter is presented as follows: in 4.2 we define the method, in 4.3 we develop the
method and in 4.4 we present the numerical results for some test problems.

4.2 Problem Setting

As already mentioned in Chapter III, we consider a family of compact, smooth and oriented hyper-
surfaces I'(£) € R™ (n = 2,3) for t € [0, ta4:] generated by a flux function @ : [0, tyaz] x [0 — R?
defined on a reference surface (substrate) I'Y = I'(0) with ['(t) = ®(¢,I°). We assume ® to be the
restriction of a function also called ® : [0, t;4.] X No —> R™, where Ny = A(0) is a neighborhood
of T'? in which the lines normal to I'® do not intersect. We also assume that N'(t) = ®(¢,Np) is
a neighborhood of I'(¢) in which the lines normal to I'(¢) do not intersect. We finally assume our
initial surface 'Y to be at least C® smooth and ® € C1([0, t,n4z], C°(Np)). Considering the restric-
tion of ® onto I'°, we denote by v. = d;® the velocity of a substrate material point and assume its
decomposition vr = vr ¥ + U .., into a scalar velocity vr, in the direction of the surface normal v
and a tangential velocity vr ... It is clear from the definitions that the latter functions depend on
time and space variables. This will be the case for any function considered in this chapter and we
will be omitting the arguments unless necessary. Let us consider a thin viscous and incompressible
liquid flowing on the above described substrate I'? as it undergoes its movement as described in
Chapter III. We assume the entire fluid to be included in the domain A (¢) at any time ¢. On top of
this film (at the free surface (fluid-air interface)) a surfactant is spreading while the film is evolving.
We assume the effect of gravity and Van-der Waals forces on the system. We refer to Chapter III,
Figure 3.1, for an illustration of this setup. This phenomenon is governed by a set of PDEs derived
in Chapter III. First, the evolution of surfactant on the free surface F'S(t) is governed by

o (Ves (104)) = 2 Vi~ (Drs V), (4.1)
t Pe

where IT is the surfactant concentration on the free surface, P, is the Peclet number, Vs is the
dimensionless free surface tangential gradient operator, vyg is the dimensionless velocity of the fluid
particle on FS(t) and the free surface tangential operator D, is the surfactant diffusivity tensor.
We assume D to be the restriction on the free surface tangent bundle of a global elliptic operator in
CO([0, timaz ], CH(Nb)). The free surface velocity is defined by veps = vp—€H (Vrvr, + Kvr 10,) +Vges,
where vgrg is the relative velocity of the fluid particle at the free surface. The component

Urrs,tan = Urrs — (Vrrs - V)V Of Ugps tangent to the substrate is explicitly defined by

1 1 1
Vprsian = (2H2 Id — 66H3 (KId + K) + [H Id — eH? (21C1d + K)] ﬁ‘1> Vr (—¢ + C"vKrs)
+ [(Id —eH(KId+ K)) g~ + (H - ;eHQIC) Id] Vry + [Hﬁl + %H2 Id] eB,g, VrH
1 1 1
+ <2H2 Id — éeHS (KId + 4K) + HG ™! — eH? [2/c51 + (87K + Kﬁl)]) BoGian, (4.2)

where H is the height of the film, Id is the identity matrix in R, K is the curvature temsor of
the substrate, K := tr (K) (trace of K) is the mean curvature of the substrate and ¢ := AH >
is the disjoining pressure with A being the dimensionless Hamaker constant. If A is negative, the
substrate-fluid interface and the fluid-air interface repel each other and the parallel fluid-air interface
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4.2 Problem Setting

to the substrate persists; if A is positive these interfaces attract each other and instability occurs
(cf. [98]). By C’ we denote the inverse capillary number, B, the Bond number, g,,,, the component
of the unit gravity vector g tangent to the substrate, g, = ¢g- v, Vr the substrate gradient operator,
K rs the free surface mean curvature, 5 the substrate slip tensor, v the surface tension and ¢ = H/L
the ratio between the vertical length scale H and the horizontal length scale £. We recall that

Krs = K+e(HCy+ ApH), (4.3)

where A. is the substrate Laplace-Beltrami operator and Ky := tr (K?) the trace of K2. The
substrate slip tensor ( is assumed to be the restriction on the substate tangent bundle of a uniformally
elliptic tensor also called 3 in C°([0, tmax], C*(Np)). Only the restriction of the matrix 37! to the
substrate tangential bundle (Id — v ® v)3~!(Id — v @ v), that we again miscall 371, is included in
the model. We will assume v = v, and as mentioned in Chapter III the eigen values of (Id — v ®
v)B(1d — v @ v) will be taken between 1/y/e and 1/(€?) for the numerical simulation. We finally
recall that
1+ FEln(l —2zM)
1+ Emln(l—2)’

(4.4)

where x = % is the surfactant coverage with II., being the equilibrium concentration of surfactant

and I1.. being the surfactant concentration in the maximum packing limit. 2 will be taken between
0 and 0.5 in the numerical simulation. E = % represents the surfactant elasticity with T, being
the absolute temperature in Kelvin, 4y the surface tension of the clean surface (I = 0) and R the
universal gas constant. The initial surfactant concentration ITy = I1(0,-) on the free surface is given
and we associate to (4.1) the homogeneous Neumann boundary condition

(DpsVisIl) - nlpe = 0 (4.5)

at the boundary dFS(t) of the free surface; n! _ being the free surface outer unit conormal.
On the other hand, the thin-film evolution is modeled by

ot'n
ot +nVr-or +Vp-F = 0, (4.6)
o'y on . . L . :
where a5 = at + vr - Vpn is the material derivative of the fluid density
n=H-— %EHQIC + %eQH?’ (K? — K3) above the substrate I'(¢) and the flux function F is defined by
F = [;H3 Id — %EH‘* (;c Id — ;K> + (H* — eH*K) 5—1] Vr (—¢ + C'"7Krs)
2,1, Ly 3 2 —1 L 2 3 L3
+ |HB +§H Id | eB,g, VrH + H—§eHIC B8+ §H —geHIC Id—l—geHK Vry
1 1 . .
+ 3 [H3 Id — eH* (/c Id + 2K>] BoGran + (H* = eH* )31 — eH? 871 K) Bogoan- (4.7)

We assume the initial configuration of the interface Hy = H(0,-) being given, whereby the whole
surface is wetted. We finally consider the homogeneous Neumann boundary condition

((VrH)-nbp = 0) at the boundary oI'(t); nlpr(t) being the unit outer conormal to the substrate. The
Dirichlet boundary condition can be easily integrated in the model; of course, if the surface has no
boundary, there will be no need to specify any. The functions, operators and tensors defined here
are either explicitly or implicitly defined on the substrate I'(t) through the parametric domain; we
will be seeing them as functions defined in the domain N (¢) via an extention as constant in the
normal direction Vd(-,I'(t)), where d(-,I'(¢)) is a signed distance to the substrate I'(t).

The above mentioned problem has not yet acquired a careful analysis of existence and regularity of
a solution. Meanwile the existence of the solution of a slightly modified problem has been recently
studied by Uwe Fermum in his PhD thesis [48]. We will nevertheless assume the existence of a
sufficiently regular solution which confere a reasonable meaning to our equations.
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4 Simulation of surfactant driven thin-film flow on moving surfaces

4.3 Derivation of the scheme

4.3.1 Reformulation of the problem

As usual in the discretization of fourth order operators, we start by splitting our operator into two
second order operators (cf. [6, 34, 59, 61]). First we consider the operator P8 = —eArH to which we
associate the boundary condition (VrH) nbr = 0 on the boundary dI of the substrate I'. Next B is
taken as variable in (4.2) and (4.7); and our problem is transformed into a system of second order
equations. This is clearly the reason of the extensive development of finite volumes for second order
operators in the first two chapters. Our discretization problem will be divided into three coupled
discretization problems:

The pressure problem:

{ —eAH - P (4.8)
(VrH) - nhp = Oon ol (4.9)

The mean curvature of the free surface is redefined by Kr5 = K + eHKy — B.

The thin-film problem:

The thin-film problem is defined by (4.6) and the boundary condition [-D5V(® + C'vB)] - n5. =0
on OI"' with ©5 = [Hzﬂf1 + %H:3 (Id — SGICB’l) — %6H4 (IC Id — %K)] Here again, one should replace
Krs with its new expression in the complementary term F' defined in (4.7).

The Surfactant problem:

This problem is defined by (4.1), (4.5) and the definition of vyg in which (4.2) and (4.4) are important.

Let us group some terms appearing in the fluid velocity (4.2) and in the flux function (4.7).
D= (Id - 3eKB 1), Dy := (KId — 1K),

D5 = (Id — 3eK3" —3eﬁ 1K) Dy = (KId+ 1K), D5 := [25—1+§H3©1—§EH4@2],

D :=(C’IC+eC’HIC2)[H B+ IHD, — LeH'D,] + [Hﬂ + iHD; — 2eH°D,))

D7 = (eC YKo [H?B71 + LH* Dy — LeH'D,] + eByg, [H?B ! +§H31d])

Dg = [Id —e (K1d + 2K) 5~ 1, Dg:= (KId+ K), Dy9:= (ld— e[k +2 (87K + K5 1)]),

D11 = (KId + 4K), D19 := (Hﬁ—l + %H%g — LeH’Dy) ,

D13 1= [C" (K + eH/Cg) (H37! + 1H*D5 — LeH’Dg) + [B71 + H (Id — eDg71) — eH?K1d]]

D1y 1= [eC'yKy (HB ! + LH*D5 — LeH?Dy) + eByg, (HB ! + $H1d)].

In the sequel, we will assume € being chosen such that ©; and D3 are strictly positive definite; D5
too will be assumed strictly positive definite if H is not zero. The flux function F' defined in (4.7)
can now be rewritten as

1 1
F = —95Vr (¢ + C’v‘ﬁ) + DgVrpy + D7VrH + C/’}/ |:3H3©1 — §6H4®2 + H2ﬂ_1:| vrK
1 1 1 1
+ €eC'yH §H3©1 — gEH‘*QZ + H251] VrKs + [3H3@3 — 6§H4©4 + H251] ByGian  (4.10)

and the component of the interface fluid particle relative velocity tangent to the substrate is trans-
formed to

1 1
Vppsian = —D12Vr (¢ + CYP) + D13Vry + D1 VrH + C'y (Hﬁ_l + §H2®8 - 66H3@9> VrK
y -1, Lo 1.3 -1, Lo 1.3
+ EC ’}/H Hﬁ + iH @g - EEH @9 VF,CQ + Hﬁ + iH 910 - 6€H @11 Bogmn~

(4.11)
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4.3 Derivation of the scheme

Let us notice that (4.1) can be written as

oIl
E 4+ Vips [H('Ur —eH (VF'UF,u + KUr,tan) + ('URFS : (V - ERHVFH))V)]
1
+ Vies- [H( Id-v® (1/ - ERHVFH))URFS,mn] - ,Pist ' (DFSVFSH) = 0. (4-12)

Let us remark that the free surface normal is given by v,s = (v — eRVrH)/|v — eR,VrH| and
the operator Prg, := (Id — v ® (v — eR,VrH)) is the projection operator onto the free surface
tangent plane in the direction of the surface normal v. Thus vpg ¢ 1= (vr —€eH (Vror,, + Kvr ,,) +
(vrps - (v — eRyVH))v) is the velocity of the free surface material point M (¢, s1, s2) parameterized
by r(t,s1,82) = X(t,s1,52) + v(t, s1, s2)H(¢, 51, 82). Now, plugging (4.10) into (4.6) and (4.11) into
(4.12) gives together with (4.8) the following system of PDEs

(P = —eAH (4.13)

6F
aTn +Vr - on + Vi - [—@svp (6 + C'vP) + DVry + D7VrH

1 1 1 1
+C'y (3H3©1 - §eH‘*@2 + H251> VK + eC'+H <3H3i)1 - geH‘*z)2 + H2ﬂ1> Vs

1 - 1
+ (3%3 — e3H'D, +H2ﬂ1> ngm] =0 (4.14)

oIl
W + Vs (HUFs,pt) + Vs - I:HPFS,V

1 1
[—912VF (¢ + C"yB) + D13Vry + D14 VrH + C'y (Hﬁ_l + §H2®8 - 6€H3@9) Vrk

1 1 1 1
+€eC'AH (Hﬁ—l + 5H%g — 66H3©9> Vs + (Hﬁ—l + 5H%m — 66H3©11> Bogm”
1

\ Pev” (DpsVipsIl) = 0. (4.15)
The following boundary condition is associated to this system of PDEs:
(VeH) -nk. = 0 on oI (4.16)
[-D5Vr(¢p+ C'yB)] -nb. = 0 ondl (4.17)
(DesVisIl) - nlpe = 0 on 0FS. (4.18)

Reformulated in this way, the discretization process will be similar to the one of a convection
diffusion and reaction problem and therefore we need to properly identify the role of each term in the
concerned equations before applying the well known operator splitting commonly used in the finite
volume methodology. Thus, the discretization of the above system will depend on how the substrate
advection term Vr - (uDVrw), the free surface advection term Vg - (u(Id — vps @ Vps)DrVrw),
the surface diffusion operator Vr - (D.Vru), the free surface diffusion operator Vg« (DpsVesu),
the mixed free surface diffusion operator Vg - ((Id —vrs ®vrs)DrVru), the substrate gradient Viu
and the free surface gradient Vpsu are approximated. u represents a scalar variable, w represents
a geometric scalar variable such as K, ®; and D s represent second order tensor on the tangent
bundel of T'(t) and F'S(t), respectively. We recall that any scalar variable or tensor here is viewed as
defined in the entire domain A/ () via an extention as constant in the normal direction Vd(-,T'(t)),
where d(-,T'(t)) is a signed distance to the substrate I'(t). Let us now introduce an appropriate
geometric setting for the finite volume discretization of the system of PDEs (4.13), (4.14), (4.15).
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4 Simulation of surfactant driven thin-film flow on moving surfaces

4.3.2 Geometric setting

We will restrict our presentation to a two dimensional surface in R3. The generalization of the
numerical method presented here is straight forward. Let us consider the same setup as in Chapter
I which consist of a family of uniformally admissible polygonal surfaces {I'¥};_o .. k,..., with T
approximating I'* := I'(tg) for t, = k7 and kyeeT = tmas (cf. Figure 4.1). h represents the
maximum diameter of cells on the whole family of polygonizations, 7 the time step size and k the
index of a time step. Successive polygonizations share the same grid topology and given the set of

vertices p‘; on the initial polygonal surface 1"2, the vertices of I‘ﬁ lie on motion trajectories; thus

they are evaluated based on the flux function @, i.e., pé? = (tk,p?). Upper indices denote the
explicit geometric realization at the corresponding time step. Different from Chapter II, we assume

Figure 4.1: Sequence of polygonizations I‘Z approximating an evolving surface.

our polygonizations to be uniformly admissible (4, h)—polygonizations. This globally means that
there exists a uniform constant C such that the maximum distance between a point X on a polygonal
surface T’} and the surface T'* is less than Ch® while the maximum distance between a vertex p¥
and T* is less that Ch*. We refer to Definition 2.3.5 in Chapter II for the extensive definition of
this notion. This main assumption will allow for consistency of the fourth order operators, as well
as for the consistency of the geometric operator K, computed from the meshes using an algorithm
which combines polygonal fitting and least square method similar to the algorithm described in [22].
Let us now denote by Sb*¥ := P*¥S* the orthogonal projection of the cell S¥ c F’,i onto QF o Tk,
With a slight misuse of notation, we also denote by P& 5., the affine projection onto the free surface

FS" in the direction of the substrate normal v. Let us define S%]; = prs’ySl’k = P}%S’VS’“ the
projection of S“* and S* onto F_Sk; here, the free surface is extended continuously after the triple
line (Substrate-Fluid-Air interface) to allow for the definition of this cell near the boundary 0F'S. We
should notice that m (F_Sk\U o (SHE A F_Sk)> < Ch?; m(-) denotes the two dimensional Hausdorff
measure and S* the closure of S“*. Our finite volume scheme for the discretization of the above

mentioned problem will be based on a suitable approximation of the height H on the substrate curved
cells SU* via the discretization of (4.13) and (4.14) on the approximated surfaces I'f and a suitable

discretization of the surfactant concentration IT on the curved free surface cells S},]fg via a direct
discretization of (4.15) on Fs" using the local parametric description r(t, X (¢, s1, s2)) of the free
surface from the substrate local parameterization X (¢, s1,$2). In the same way as in Chapter II,
we subdivide cells S* into virtual subcells S}’,fi attached to vertices p¥ (cf. Chapter II, Figure 2.4)
in such a way that the edges of cells are subdivided into two subedges and the subcells 51,;1- form a
conformal mesh of 1";“1 (cf. Chapter II, Figure 2.5). Next, we denote by Szl;f =Pk S}’,fi the orthogonal
projection of the subcell S}’,fi onto QF o T'* and by S;lks’pi = 771’3371,551. = P}%S,VSZZ,;’“ the projection of
Sk and SLF onto FS" in the direction of v. Finally, as in Chapter II, our approach will be based
on defining a suitable interpolation of scalar functions u as well as the approximation of the surface
gradient operator Vru and the free surface gradient operator V psu around the vertices pf from the
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4.3 Derivation of the scheme

value of u at cell centers. We will then consider the linear interpolation presented in Chapter II
for any approximation on the substate I'* and the procedure that leads to this construction will be
reproduced on the free surface subcells using the local parameterization r(tx, X (tx, s1, s2)) of the
free surface and a proper use of Proposition 2.4.1, Chapter II.

4.3.3 Discrete gradient operators

The procedure of reconstructing the gradient operator is the same as in Chapter I up to slight modi-
fications due to the adaptation of the results to special use (surface flow or interface flow). Let us then
consider a vertex pf. As in Chapter II, we locally order the subcells S k ; around p counter clockwise
around the substrate normal v through pf and rename the center po1nts Xk S, by X pi, ;- The subedges

k ko : k k :
O i1/2 around p; inherit the same order and we assume Opi1/2 and Op, 3/2 being edge segments

of Sk .1- Here too, “j + 17 will be used in a cyclic way for closed system and therefore j +1=j +1
rnod np, in that case; n,, denotes the number of cells around p¥. We define on each subedge o*

pirj—1/2
a virtual point X 1/2 and on each subcell S’€ j» we define the covariant vectors ek ili—12 =
X]’;i o1/ Xk ;j an d ep J\J+1/2 Xi,]ﬂ/z Xp _j which are used to approximate the tangent plane

Té"ﬁ Span{ep Jlim1/20 €pi) J\y+1/2} to points of Sl k- (cf. Figure 2.6 Chapter II). Next we construct

the contravariant (dual) basis (/‘Lpi,JIJ—l/2’“piJ\J+1/2) on T © ; such that ep Jlie 1/2’Mpm\3 2 =L
=0, er 0 and ¥

k ik
pidlit1/2 Ppijli-1/2 = pdli+1/2 Moy g2 = 1o Let us define the
= {y e ['*|ly = argmind(z, %),z € O.pikj—l/Q} and the approximate normal

pidli—1/2 Fpigli+1/2
Lk
curved segments o,

i J— 1/2
ko ._ (oK k ok k : ko ; :
Z (epi,j|j+1/2 Al:pl ili— 1/2)/|| ]fl,j\j+1/2 A€y il 1/2H to points of S, ;; the approximate unit
r conormal 1 ill ken he uni I y n
outer conormals to o i1/ @ do i W be taken as the u tvectosnp Jli—1/2 & dnpuj\1+1/2

pi,j—1/2 and Up J+1/2

refer to Figure 2.6 Chapter II for this setup. Finally, given a substrate tensor D* defined such that
DkVF(tk)u has a weak surface divergence in L2 (Uj(SIl,’fj N Fk)), we define the gradient

of T zi j normal to ok respectively and pointing outward from S;fi j- We again

k k k k k
VDJH;J (UD,pL,J /2 Upuj)”pi,jljfl/? + (UD,pi,j+1/2 - Upmj)upi,jljﬂ/?’ (4.19)

where the virtual values U{; at subedge virtual points X are related to values U;; g

Pij—1/2 —1/2

at cell centers X;fi 4 by

Up ..o = Coefh, U, (4.20)

sPi 0

The vector ﬁ{%’pha = (Uk,p 1/2) U’c Dops3/20 " )T represents the subedge virtual values, the vector

ﬁ%’pi = (U{g’phl, Ué,pi,% -++)T the cell center values and the matrix Coefkp)pi is defined by

f

Coefl, , = (\/BT;)_1 (M}g’pi (\/BT;_)_1> (Nb, — Mb,, (B) " Ch)+(B) " Ch. (21)

The matrices involved here are sparse matrices whose nonzeros entries are given by
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4 Simulation of surfactant driven thin-film flow on moving surfaces

k _ k k 2 k k 2
(Bpi)j,j LU ERY [P ERTRRYS! [ s AR TP
k _ k _ ok k ok
(Bpi)jJrl,j - (sz‘)j,jﬂ = Mg P jli—1/2 " Fpili+1/2)
k _ k k 2 k ok
(C;Di)jd' = Mp (Hﬂpi,j|j71/2” T Hjl5-172 Mpi7j|j+1/2) ’
k _ k k 2 k ok
(Cpi)j+1,j = Mp (Hﬂmﬂj+1/2” TG/ /”L;l>7,7j|j+1/2) ’
k _ k k
( D,pi)j,j_l = My o1/2 Apej—s/2li—1]j-1/2)
k _ k k k
(M), = Mpimre Mg ialimisz + Apji-172);
k _ k k
(Mpp)iien = Maiio1/2 Mpiajalili—1/2
k _ k k k
(NDp) s = Maioae Mpsoapioye + Ap jospalioaioye):
k _ k k k
(Npp.); = My io1y2 Mgz A raeliioi2):
where m’;i j is the two dimensional Hausdorfl measure of S]’,fi > m’; J—1/2 the one dimensional Haus-
k
d(;rff measure of oy j_kl /2 o ) ) L
Apiili—1/2 =, jli=1/2 " Poiibpiili-1z Mpojr1/20ili=1/2 = Mpili=1/2 " Poiibp.ili+i/e
k _ .k Pk Lk k - .pEE
Apid=1/21ili+1/2 = Mpijli+1/2 " Ppiibp, jli-1/2> Apdliti/z = Tpgli+yz " Doty jlj+1/2:

S\ f
: ko _ k k k k k k k :
with Dy ;= (Id — Vpii A Vpi,j) D (X,, ;) (Id - Vi A Vpi,j) . (Mpi (4 /BE ) ) is the Moore-

-1
Penrose inverse of lefi (1 /B’;i) . We refer to Chapter II for details on the construction of these
matrices.
Now let us define Sﬁég,p“ ;= PQS’VSL’Z and assume being given a free surface tensor D¢ such
that 'D%SVF(%)U has a weak free surface divergence in L2 (Uj(Sf,;]g’p“j nFS )), the approxima-

tion of Vi, u will then require a slight modification to satisfy the Proposition 2.4.1 in Chapter
IT on the free surface. For this purpose, we introduce some geometric approximations on the free
surface. To begin with, we notice that, given a covariant basis (e, es3) of the tangent plane at
the point X (¢, s1,s2) € T'(t), the corresponding contravariant basis at the point r(¢, X (¢, s1, $2)) :=
X(t,s1,82) + v(X(t,s1,82))H(t, X(t,51,52)) € FS(t) reads

((Id — eHK)ey + €[(VrH) - e1]v, (Id — eHK)ea + €[(VrH) - e2]v) . (4.22)
Thus, if (g1, o) is the contravariant basis of (e1, es), the contravariant basis of (4.22) reads

(RHﬂl - [(RHlil) . VFS]VFS) RHHQ - [(RH/JQ) . VFS]VFS) . (4'23)
vV — ERHVFH

1+ €|R,VrH[?

Next we denote by lei:,j = H};ij = H(tk,ng) the height at the center point Xéﬁj = X;fi’j and we

We recall that R, := (Id — eHK) ™" and the free surface normal is given by vpg :=

approximate the curvature tensor at points on the subcells Sll)’fj by K(X(t,s1,82)) ~ K}’;ﬂj =

Pro, K(XE )PEs.,- The free surface tangent plane at points r(t, X (,s1, s2)) on Sé,ig)pi ; can then
be approximated by

k k k k k k k
Tesp.,s;, = Span {( Id — ety ;i Kp, j)ep jli-172 + lViap, M) - €5, 15121V 50

k k k k k k
(Id — ety Ky ), gliw1/2 T el(Viap, ;H) - epi,j\jﬂ/z]l’pi#j} »
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where V%, |~ H is determined by the formulae (4.19), (4.20) and (4.21). We conclude using (4.23)

. . . . k . k k
that the contravariant basis of the above mentioned basis of T} ., o 1 (17 . Gli—1/2 Prs s ,j\j+1/2)

defined by
k . pk k Pk, k k1
Hespogli-iz = B jtp, jii—12 = (B iy, 51i-1/2)  Vesp, Vs p,j and
k ._ ko k _ ko k ok k
Hrspogliviz = Bty gie2 = By, it j1541/2) VFs,pi,j]VFs,pi,j’
k
—eR V
k. _ .k Eoy—1 : - Id,pl
where RY . := (Id — eHj ;K )~' approximates R;' and Z/FSJ)“J. - -
\/1+e |RE W,

approximates vrg. Let us now denote by q’;i i—1/2 and q’;i i1/ the points that satlsfy

= [pk, q’;i j_1/2] and O'I; j+1/2 = [pF, q’;i j+172] (cf. Figure 2.4, Chapter II). We define the

k k
pidli—1/2 " qpi,j—l/Q pl’ p“1b+1/2 qpi7j+1/2

Lk . . &
Fpiie1/2 and T s pi J+1/2 outward from SFS’,pi,j by the respective unit vectors Mg piili—1/2 €

k k :
Tispis, and ngg i € Tps,p .5, perpendicular to

k
Tpsi— 1/2

vectors oF — pf‘ and approximate the unit conormal

to o’

k
Ql;s,p“j\jfl/Q = (Id — eH,, -Kkv -)Ql;, 12T 6[(Vkv7 H) - in’jil/z]y;f“j and

k o koopck k k k .
Ors,pijli+1/2 *= (Id GH p“])gp J+1/2 + E[(Vp“ H) - Qpi7j+1/2]ypi,j7 respectively,

and which point outward from S FS pirjt We also denote by

k o k k
Mhspegrrse = (105 siiansel + 105 o iryansel) /2
Lk
the approximation of the one dimensional Hausdorff measure of o pidt1/2
b))

Now, on subedges obF we apply a discrete version of Proposition 2.4.1 in Chapter II, namely

FS,pi,j—1/27

k k k k
Mesp,; ,j—1/2DFS,pi,jflvas,pi,jflu Nps,pij—1]j—1/2

k k k k
t Mispi-1/2PFS 05V Drs i % Mrspgli-1/2 = O (4.24)
where D?Swi’%l = (Id—vk, ® V];S)Df;S(XI’f“j)(Id — vk ®vE.) and as in formula (4.19),

k k k k k k
Viniz Despii = Unia Drs wei—172=Upi i i jti—172 Unia Dps peie1/2=Upi i Mgy jiie1j2- (4:25)

The subedge virtual values Umm Drspii—1/2 and Uffm Dispii+1/2 approximate u(t, Xp G- 1/2) and
u(ty, Xk

) respectively. The equations defined by (4.24) together with the boundary conditions

Pij+1/2
can be written in a matrix form as
k _ Atk Mk
MmiJ;aDFSJ)i U"M'%DFS,IHJ - Nmm,'DFs,Pi Upi’ (4'26)
where U* = (U* Uk -+-)T and the matrices involved here are
miz,Dps,pi,o mix 'Dps,pl,l/27 mix,Dps,pi,3/2°

sparse matrices with nonzero entries defined by

k k k
(Mmiw,DFsmi)j j—1 Mps,pij—1/2 Amiapi,jfi%/?lj*l\j*l/?’

_ k k

( m”mDFS,;Dz) = Mespij-1/2 (Ami%:"mj—”j—l/Q + )\Ih Jli— 1/2)
_ k k

( miz DFS7pl)j7]+1 = Mespij-1/2 /\miﬂﬂmi7j+1/2|j\j*1/2’
— k k k

(Nmm DFs,pz)] = Mrspij-1/2 ()‘miz,pi,jflljfl/Q + )‘Pz‘,j*3/2|j*1|j*1/2)’
_ k k k

( mix Dps,pz)],] = Mespj-1/2 ()‘miwmujlj—l/? + )‘pri,j+1/2|j|j—1/2)
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4 Simulation of surfactant driven thin-film flow on moving surfaces

with
M pi gli—1/2 = Nspogli-12 Drspiitp, jli-1/2:
)\?kﬂixvpuj+1/2\j\j—1/2 nlfc“&m,jlj—l/? ’ D’;FSvpiva’;'iaj‘j+1/2’
Mmiapod—1/20li+1/2 = Mrspili+/2” PESpilpli-1/2:
Aﬁum,pi,j|j+1/2 = ”l;s,pi,j|j+1/2 'Dg‘S,pi,jM'I;i,j\jJrl/Q‘

We should mention here that the first and the last line will be readjusted for boundary points
according to boundary condition. Here, if © = H, we have an homogeneous Neumann boundary
condition and if u is a substrate intrinsic variable such as mean curvature K for example, we have a
Dirichlet boundary condition since the values are computed from data as already mentioned. As in
Chapter II, we require the solution to guarantee the minimum substrate H' norm to V%Fs’pi’ o1
namely

Tk < pko. E . k k T k k Frk
Find Umixy’DFSJ)i’G' m Bpi {Vpu : (qu 1/2» Vpi,3/2’ e ) | Mmiw,DFs’Pz pi 0 Nmm,DFS;Pi U;Di}
such that
Pk k k k k k
Unmic,Drs pio = “}fcgﬁ Zmph; H[ pid—1/2 " Upi,j] Fpigli-1/z T [‘/}ai7j+1/2 Upi,j] Mm‘\jﬂﬂ”

Again, similar arguments as in Chapter II leads to
Uk, — Coef* U, (4.27)
miz,Dps,pi,oc miz,Dps,p; ~ Pi" ’

where the matrix Coef” is defined by

mix,Drs,pi

Coe! - 8¢

miz,Drs,pi

N T 1
+ (\/ Bl;;) (Mm” Drs;pi (\/ Bgm ) ) (NT];liI,DFsypi - Mﬁlim,DFtht (B];l) CI;;) ' (4’28)

The substrate gradient Vru is then fully approximated using (4.25) (4.30) and (4.31) to obtain a
discrete gradient whose D% Vru satisfies Proposition 2.4.1 in Chapter II as requested in this work
in the discrete setup.

Let us now have a look at a free surface gradient operator V psu, defined such that DI} sVrst has a

weak divergence in L2 (U (S FS.ps.i TSk)) Here the free surface gradient is approximated by

k ( k

_ otk o\, k k
Fs,Dps,pi,jt UFS7DFS,pi,j*1/2 Upmj)'U’FSmujU*lﬂ + (U

k k
Fs,Drs,pi,j+1/2 Um7j)uFS7Pi,j|j+1/2’
(4.29)

where the virtual values U¥ approximate the values

Fs,Drs,pi,

i1/ and UF

F$,Drs,pixj+1/2
. : =k
u(ty, Pks., }’; j—1/2) and u(tg, Prs. z]f@ j+1/2)> respectively. Following the same reasoning on F'S

as in Chapter II on I'* we obtain

~ N
UFS’DFSJ%', Coest Drs,pi Up,, (4.30)
k k T
where UFS "Drs,pi,o (UFS ,Drs,pi,1/2’ UFS,DFS7pi73/2» ) and
_ k k
CoefFS Drs.pi — (BFS,pL) CF‘S,pL

_ N T
(\/ B?‘“Syp ) (Mks Drs,pi (\/ B?’S,Pi ) > (NkS Drs,pi MkS ,Drs,pi (Biisvpz) Cf’s Pi ) . (4'31)

The matrices involved here are also sparse and the nonzero values are given by
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k k k k k

(BFs,pl)] j MEs,pi,j—1 ”“Fs,pi,jfl\jfl/2“2 T Mps pi.j ”“Fs,pi,jljflﬂHQ’
k k _ ok k k

(BFs,pz)JH,j (BFS»Pi)j,jJrl = Mps,pij Frs,pijli-1/2 " Frs,pi,jli+1/2)

rep) i

FS»Pz)]Jr])J

MF

Fs,Drs pz) i,j

k k 2 k k
Mrs.pi,j (”P‘Fs,pi,jljfl/zu +”j\j71/2'”Fs,pi,j|j+1/2)’

k k 2 k k
Mpsp;,j (Hlu‘pij|j+1/2H + B -1y2 1U‘Fs,p,;,j|j+1/2) )

k k
M pij—1/2 Mes prj—3/20j—11i—1/2>

(C
(€
(
( FS,Drs,pi
(M
(
(N7

k k
)J,j M pij—1/2 Ars pj—1j-172 + )‘Fs,pz,m 1/2);
_ k k
FS Dps,zn)mﬂ = Mpspj-1/2 )‘Fs,pi,j+1/2\j\j*1/2’
_ k k k
NEs 'DFs,pl)J,J 1 T Mpsp,j-1/2 ()\Fs,pi,j—1|j—1/2 + AFS,pi,j—3/2|j—1|j—1/2)7
_ k k k
rsDrsw) iy = Mrspoi1/2 Mespolio1/2  Nes pojei/aliio1/2)
where,
k ok ok k
Arspigli—1/2 = Npspijli-1/2 " Ppiilespoili-1/2
k ok Nk k
AFS,Piyj+1/2\j|j—1/2 = Mesp,jli-1/2 Dpiyj'u’FS,Puﬂj"rl/Q’
k ok ok k
AFS,Pi,j—1/2\1|j+1/2 = Nespjli+1/2 Dpivj’uFSvPivjlj—l/Q’
k ok ok Lk
Arspiglit1/2 = Mespigliti/2 Ppiilespjliti/2
o ko ik 1.2 k _ k 2 pk 2
and mFSp g = ( —eHp, jKp, 5 + 3¢ ( ) [(]Cp“j) (’CQ)p“j] 1+e|Rry ;v Id,pmH” p“J

is the approximation of the two dimensional Hausdorff measure of walsc pij-  The variables IC”C
and (Kg)p _j» respectively, approximate K and Ky at Pk X, k .j- With this preliminaries at hand, we
can now introduce the finite volume discretization of the coupled surfactant driven thin-film flow

(4.13)-(4.14)-(4.15)-(4.16)-(4.17)-(4.18).

4.3.4 Finite volume discretization

In this section, we derive the finite volume formulation of the above mentioned problem. This is
done by giving a discrete integration of equation (4.13) on each cell S"* N T*  a discrete integration
of equation (4.14) in the domain {(¢,a)|t € [tx,txr1],a € SY¥(t) nT(#)} and a discrete integration
of equation (4.15) in the domain {(t,a)|t € [ty,trs1],a € Skh(t) n FS(t)}. We approximate the
integration of (4.13) on the cell S“"* n T*

J Pda = —e¢ J ArHda
Stk ATk StEATE

by
mg‘pg = —emlf; D?,S’(Ida H)a (432)

where mk = m(S¥), BE = P(ty, X&) and mk D’;VS(Id, H) given through equation (4.37) below
approximates the integral Sslvkmrk ArHda. Let us now split the Van der Waals potential ¢ into an
increasing function ¢;,. and a decreasing function ¢4.. as proposed in [5, 62| (i.e. ¢ = Pinc + Pdec)-
In this simple case, ¢ = AH™3 = ¢, if A is negative and ¢ = AH™> = Py.. else. We also split the
tensor —9D7 into a positive semi definite tensor ®7 4 and a negative semidefinite tensor D7 _ (i.e
—®7 = D74+ + D7,_). For this purpose, given a scalar function u we denote by uy := (u + |u|)/2
and by u_ := (u — |u|)/2. We then define
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4 Simulation of surfactant driven thin-film flow on moving surfaces

D74 1= — (€C'y_Ko [HB71 + IH*Dy — LeH'Ds] + eByg, — [H*B~1 + LH?1d]),
Dq_ = — (eC'v4 Ko [H?B71 + IHDy — LeH'D5] + eBog, 4 [HB 1 + LHP1d])
where ¢, + = (g, + |9.])/2 and ¢, — := (g, — |9.])/2. The discretization of operators involving

Gine OF D74 (@Pgec or D7) will be implicit (explicit). A similar operation, usually called convexity
splitting has already been used to solve second and fourth order diffusion on surface (see [57, 126] and
references therein). In these papers, the authors require the splitting to be such that the matrices
®~ 4+ and D7 _ are respectively strictly positive definite and strictly negative definite tensors. This
would be achieved here by simply adding cId to ©7 ; and subtracting cId to D7 _; ¢ being a
small strictly positive constant. Let us mention that the aim in the context of their work was
to obtain a stable scheme and to avoid the implicit discretization of the nonlinear operator; thus
they would choose to have ®7 . = C'Id where C is a positive constant and ©; _ = —C'Id — D7.
Unfortunately, the advantage of doing so is not always certain as reported in [57] in the context of
solving a fourth order parabolic problem on a surface having area of very high curvatures. One needs
for such a geometry a very small time step and the computation time is even increased compared
to the fully explicit discretization of the problem. Also, the numerical viscosity introduced in the
system might be very important since, as reported again in [57], big value of C slow down the
process and the positivity is not guaranteed for problems having positive solutions. In the context
of a thin film on a moving surface, it is difficult to avoid an implicit nonlinear term. Our main
concern here is to separate diffusion from backward diffusion caused by the discretization, without
adding too much numerical viscosity in the scheme and preserve at the same time the structure
of the problem. If the surface is flat for example, the terms containing the curvatures should
dissapear so that we remain with a typical discretization on a flat surface. It is clear that a wrong
discretization of diffusion or backward diffusion will lead to instabilities. Let us remark here that the
tensors ©7  and D7, might be degenerated; this will not affect our method since the optimization
procedure used to construct the fluxes remains consistent in these cases. The integral of (4.14) on

{(t,a)|t € [tr,tre1],a € SUE() n T(¢)}

th+1 aF th+1
J J ( +nVr - vr> da dt + J J r- [=D5Vr (¢ + C'yP)| dadt
th t)AI(t) ot th SLE(t)A(t)

trt1

tk+1
-,
Shk(t mF(t)
tht+1
[

tis [ /1 1
+ J f Vr - <H3©3—6H4©4+H261> Bogm] dadt = 0
te  JSUE(D)AD() 1\3 3

is then approximated using a semi-implicit scheme as follows

+

. [Z)va + @7VFH] dadt

JSZ k( ml"(t)

I 1 1
C'~ <3H3®1 - §6H4©2 + H26‘1> vpic] da dt

eC'+H (;H?’Dl - %GH“@Q + H251) vp/cz] da dt

k+1 k  _k
773 — Mgls

+ TJ (Vi - [-D5Vr (¢ine + C'7+B)] = Vr - [D7,+ VrH]) da
Stk (tgpy )AL+

+ TJ VF . [—@5VF ((bdec + Cl’}/fqg)] da + TJ Vr . [QGVF'Y — 97,,VFH] da
SbkATk Sl.k ATk

1 1
+ Tj Vi - [C' [ HD, — —eH' Dy + H2B7 ) VK| da
Slk ATk 3 3

1 1
+ TJ, Vr - |:€C/’yH <H3©1 — ZeH'D, + H251> vF/@] da
Slk~Tk 3 3
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4.3 Derivation of the scheme

1 1
+ rf Vr- || 2HD3 — e=H*D, + H2671 ) Bygrun | da = 0. (4.33)
Sl.k ATk 3 3

The detailed discretization of the space integrals appearing here is presented below in Section 4.3.4
(Discretization of the substrate diffusion operator Dp.(Dr,u) = Vr - (DrVru)) and Section 4.3.4
(Discretization of the substrate advection operator Dr 1 (Dr,w,u) = Vr - (uDrVrw)). Finally, we
approximate the integral of (4.15)

bt o1
J J [ + Vs - (Hst,pt)] da dt
ty ShE#)AFS(t) ot

thot1
+ f f e . (H'PFSJ, [_©12VF (¢ + C/’}/&p) +D13Vry + @14V1‘H]) da dt
th sh
ti+1 1 ) 1 5
+ j J Vies* [HPFS,V [—1—0’7 <Hﬁ_1 + —H*Dg — —¢H ©9> VFIC” da dt
l,k(t)mTS 2 6
FS
e Lo 1
+ f J . [HPFS,V [7H (Hﬁ_1 + —H*Dg — —¢H ©9> VFICQH da dt
e JsbE( mFS(t) 2 6
Log L
+ f f Vs - [HPFS?V (Hﬁ1 + —H*D9 — ~eH @11> Bogm” da dt
tn JSLE()ATS(t) 2 6

tr+1
- 7J J Ves  (DpsVesIl)dadt = 0 (4.34)
Pe Ji,, SLE (1) AFS(t)
by

k+1 ITk+! k k
Z (mF&p“J(p“S) mFSvPhJ(P'iaS)HS)
ple?S’“

+ TJ Vs (IPrsy [-D12Vr (¢ + C'vB) + D13Vry + D14VrH]) dadt
Shk~AFS"

1 1
+ 7 f Vs - [HPFS V[+C'7 (Hﬁ‘l + —H*Dg — eH3©9> vplc” da dt
ghk A Fg" ? 2 6

1 1
+ eC”Tf Vs [HPFS,V [’YH (Hﬁ1 + -HDg — €H3®9> VF’C2” dadt
SUE TS 2 6
1 1
+ TJ Vs [HPFS’V (Hﬁ_1 + —H*Dq — 6H3©11> Bogm,n” da dt
s! kmFSk 2 6

771 Ve (DeeVesIDdadt = 0. (4.35)
Pe Jstk (b 1) FB(trsn)

By J(p;, S) we denote the local index of S*¥ around p, and we recall that the approximation of the

free surface virtual cell va’; i ] AFS" is given by

k — k k k E 2 k k k k
Mpspij "= (1 o eHPiJ’CPi,]’ 5 (Hprnj) [(’sz ,j) o UCQ)IHJ]) \/1 + €2||RP1 :jv Id,p; JHHQ My, 5+ The
detailed discretization of the space integral involved here is presented in Section 4.3.4 (Discretization

of the free surface mix advection operator 1)yg 2(Dps,u) = Vs - (IIDrsVru)) and Section 4.3.4
(Discretization of the free surface diffusion operator 1)ys,1(Drg, IT) = Vs - (DpsVisIl)).

Let us now introduce the discretization of the substrate diffusion operator Vr - (DrVru). This in-
cludes AFH, Vp-[@7’+VFH], Vp-[@z_VrH], VF-[©5VF (¢mc + Cl’}q_m)], VF'[@5VF (gi)dcc + OI’}/_&B)].
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4 Simulation of surfactant driven thin-film flow on moving surfaces

Discretization of the substrate diffusion operator N.(Dr,u) = Vr - (DrVru)

We integrate the diffusion operator ID;. on the curved domain S"* ~n I'*, thus
j DF (DF, u) da = f VF . (DFVFU) da
Stk ~Tk Stk ~ATk
= f (DFVFU) 'na(sl,kmrk) dl, (436)
Stk ATF)

where 11k Arry is the unit outer conormal to the boundary (SY* A TF) of SU* ATk, An approx-
imation of (4.36) is given by

k Nk k k k k
mg L s(Dr, u) Z [mpi,ﬂpi,sm/z (Dpi,J(pi,S>VDr,p,i,J<pi,S)“) M T (9,9 T (ps,S)—~1/2

p,ieF/S’“
k k k k
+ My, T (pi,S)+1/2 (Dpuj(pus)VDI‘,PuJ(puS)u) ’ npi>j(Pi7S)J(PiaS)+l/2:| ’ (4'37)

where DIP’S(Dnu) is the value of Dr(Dr,u) at the cell center point X% and time instant ¢. The
discrete gradient operator V’“DF pi. 7 (pi,) W 18 determined by the formulae (4.19), (4.20) and (4.21).

Let us introduce Vf’f, the set of piecewise constant functions on cells,
Vi ={U":T} > R|V S¥ T}, U¥gr = const}. (4.38)

As already mentioned here, elements of this set too will be seen as defined in the entire domain
N (t;) via the extension as constant in the direction of Vd(-,I'(t;) n P*T'¥), where d(-, T'(t) n P*T'¥)
is a sign distance function to the surface I'(t;) n P*T'¥. Our solution at the time step ¢ will then
be seen as an element of this set. We wish to build a seminorm on V}’f . For this purpose, we first
multiply each equation of (4.37) by the corresponding cell center value —U ’5? and then sum the
resulting equations over all cells and use (4.20) to obtain

.
k Nk koo Sk k Sk
S mEDE (D UE = ) (Upi) A Tk (4.39)
Sk pi;€dSk
where A% = Ak — Ak Coef¥ with Ak being a diagonal matrix and A% a
Dr,pi * Dr,pi,c Dr,p;,o Dr,p; Dr,pi,c g g Dr,pi,o

sparse rectangular matrix whose nonzero elements are given by

k . o k k k
(Abrpicdii = My o1 gi—1ye T Apjeryalli-/2)

k k k
+ My i1o(Ap, ez T Api—1/20ili+1/2)

k e k k k k

(ADp i )i = My 1A, li—1/2 T M, 122, - 172054 1/20
k . o k k k k

(ADp pio)idtl = My s apA ivijagilimy2 T Moy, 122 jliv1/2:

For boundary points, the first and the last lines of these matrices will be readjusted according to
the boundary condition. The submatrices A%F’pi satisfy A%F,pilpi = 0,,, where 1,, := (1,1,---)"
and 0,, := (0,0,---)T. This is due to the minimization procedure introduced in the interpolation
of the virtual values on subedges. The procedure forces the system to pick the solution of minimum
gradient. This is particularly important at the flow front since the spatial variation in cells diffusion
tensor is important and the local system solved for the interpolation of virtual values around front
vertices can become noninvertible. Furthermore it may happen that some of the discrete diffusion
tensors in cells around a vertex are identically null (Dgi’j = 0Id); for example in the transition
region “from curved to flat region” when the diffusion tensor depends only on the curvature tensor.
In this case too, as already said, the minimization procedure allows to obtain a good interpolation of
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4.3 Derivation of the scheme

virtual unknown and therefore a consistent approximation of fluxes. Let us also remark that if the
submatrices A}, + (1,, ® 1,,)/n,p, are positive semi-definite respectively strictly positive definite
for all vertices, then the right hand side of (4.39) defines a seminorm respectively a norm when the
homogeneous Dirichlet boundary condition is considered at the boundary. We recall that n,, denotes
the number of cells around the vertex point p,. Since the submatrices ADF p; basically depend on
the choice of the subedges virtual points and the discrete cell tensor DE I'p; around pF, we assume
the virtual points being chosen such that the submatrices A%F’pi +(1,, ®1,,)/n,, are positive semi-

definite if these diffusion tensors around pf are positive semi-definite and strictly positive definite if
the diffusion tensors are strictly positive definite.

We will now introduce the discretization of substrate advection operators involving the substrate
gradient operator. These operators are of the form Ir 1 (Dr, w,v) = Vr - (uDrVrw), where u is a
power of H, Dr is a matrix which does not depend on H and w is either the surfactant concentration
IT or a geometric quantity (K, Ko or the third Cartesian coordinate z of points). Noticing that
1 _
¥ B —7)1= zﬂ VrlII, the relevant terms here are Vr - (D6Vry),
Vr - [C'y (3H*D1 — 2eH* D, + HB71) VrK], Vi - [eC'H (AHD, — JeH* D, + H2371) ViKs,
Vi [(3H*D5 — e3H' Dy + H?B71) Boguan .

Gran = —Vrz and Vpy =

Discretization of the substrate advection operator N ;(Dr,w,u) = Vr - (uDrVrw)

Here, the discretization is based on a second order upwind method similar to the one described in
Chapter II, Section 2.7. First, we define a unique slope limited gradient operator on each cell, next
we define an upwind value of u at each edge midpoint and finally we integrate 1)y 1 (Dr, w, u) using
appropriate approximation of variables. Let us start with the definition of the slope limited gradient.
Considering a cell S, we define a local R? basis made of the pseudo unit normal

elg,s = ’/g = Zipkesk ((101C —ph) A (pf+1 - k)) /I Zp;fes%c ((101C —pf) A (pi€+1 - k)) | of S, the vector
e’f,s = ((p}f - Xg) - (( Xk) €3, S) €3, S) /I (p% — Xé) - (( Xs) €3, S) 63 sl and

612“’5 : elg’s /\e’f’s; then, we define VEu := ((Vsu) e’f)s) e§’5+((VSu) 62’5) 62,S+((V u) - e’?f)s) elg’s
the slope limited gradient as follows:

k k : k k : k k
(Vsu) -ejs = sign ((Vld,pl,y(m,sw)'%ﬁ) mingee g (Vld,m,ﬂpi,sw)'ej,s‘

if sign ((V’fdmi,j(m’s)u) : 6?,5) = const ¥ p, € 0S¥,
(VEu) - efs =0 else,

for all j = 1,2, 3. Here, VIdJ] T (p1,5) is determined by the formulae (4.19), (4.20) and (4.21) using
Dr as the substrate identity tensor that we denote with a slight misuse of notation Id. Also the
induced matrices A%, p: Should be such that Ak p: T (1p, ®1,,)/ny, is strictly positive definite for
interior points and boundary points around which a Neumann boundary condition is defined. For
boundary points around which a Dirichlet boundary condition is defined, we assume A’fd’pi to be
strictly positive deﬁnite Next, we define an upwind value U;i +(Dr,w) at edge midpoints. In fact,
considering an edge o* := Sk|Lk ¥, pF.,] shared by two cells S* and L¥, we first assume j, j + 1
being respectively the 1oca1 mdex of S¥ and L* around p’.C and m, m — 1 being respectively the local
index of S* and L¥ around p¥, ; i.e. Sk = S’C Sk g1 = S{,f pm = S{,fl“, S{,fﬁh L]zi“
(cf. Figure 4.2). Also we denote by
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4 Simulation of surfactant driven thin-film flow on moving surfaces

k ko k
Xk =Xk = Xt

pir1;m—1/2

Figure 4.2: Subcells across the edge o* = [p¥, p¥ ;] and virtual points around p¥ and pf, ;.

k (T ok k k Lk
F§o(Df,@) = my s (DFp, Ve i®) il

k k k k
+ mm—1/2 (DF,pi+1,var,Pi+1’mw) ’ npi+17m\m—/2

the discrete flux from S* through o. Let us recall that for @ being the geometric quantities K, K,
or z, one can compute the value at edge virtual points; thus the interpolation for the computation of
above mentioned fluxes can be done only on interior edges using the Dirichlet boundary condition.
In case the Neumann boundary condition is known for these variable such as in the first and second
examples of Section 4.4, it is preferable to consider the last to preserve the numerical conservation
PLH P

of fluid. We now define the upwind value U(’f) +(Dr,w) at the edge midpoint p* := 5

Us +(Dr,w) := U§+ (Vgu)- (p; — X§) if  F§,(Df @) >0,
Uy +(Pr,w):= UL+ (Viu)- (ps — XI) else,
for interior edges. For boundary edges with Dirichlet boundary condition, we define
Us4(Dr,w) = Ug+(Viu) - (py — X§) if  F§,(Df,w) >0,
Uf’Jr(an) = UF  else
and for boundary edges with Neumann boundary condition, we define
Us+(Dr,@) == U§ +(Vu) - (P — X§).

By U we denote the value of u* at p*. Finally, we integrate Dy 1 (Dr, @, u) = Vr - (uDrVrw) on
the curved domain S"F N T'* as follows:

f Dr1(Dr, w, u)da f Vr - (uDrVrw)da
Sl'kﬁrk Sl'kﬁrk

J u (DFVFW) . TL(‘\(Sl,kka)dl
o(ShkATk)

S ) (w0
ok:=Sk|Lk

Let us now introduce the discretization of a free surface diffusion tensor
Dps,l(DFS7H) = Vps . (DFSVFSH)'
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4.3 Derivation of the scheme

Discretization of the free surface diffusion operator Ny 1(Drs, IT) = Vs - (DpsVisIl)

We approximate the integral of 1);g 1(Drs, IT) on the curved free surface cell SlF]; N Fisk as follows

J, R DFS,].(DFS7 H) da:f P Vs - (DFSVFSH) da
SLEAFS SLEAFS

(DFSVFSH) N

¢ (S;l; mFSk) dl

L(sgg AFS")
k k k
D s 7005412 (Vs Drs o 705 1) - Wes s, 7(00,9) 7 (pi,5)+1/2
p;ECSE

%

k k k
+ M 7009)-12(Ves Drs peg 05 1) * Mis p, 7 (00, 91T (02,8)—1720 (4.41)

k
where VFS,DFSJH,J

(pi,5)U 18 given by (4.29), (4.30), (4.31). Since VF is viewed as a set of functions
defined in the entire domain A (t;), a piecewise constant function on free surface curved cells SQ’;
can be viewed as the trace of a function from N (t;) on F'S; therefore the surfactant concentration
IT*, solution of the surfactant equation (4.15) which originally stays on the free surface will be
considered as element of V,’f. We now wish to define an H' seminorm in V’}f which will be used to
measure the trace of elements on the free surface. For this purpose, we multiply the equations (4.41)

by the corresponding free surface cell value —IT%, sum over all the cells and use (4.30) to obtain

~ T ~
k k k k
_ZHSJ”C _ Dpada ~ Z(Hpi) Ab o TR (4.42)
S SpsnFS S
where A’;S’DFS% is defined as in the Section 4.3.4 (Discretization of the substrate diffusion op-
k .
erator DF(DF’U) = Vr: (DFVFU)); A?’S,DFSJH = A];S:DFS’pi’C B Al;S,DFSgDi,UcoefFS>DF57Pi with

k . . .
b5 Dpg.pi,c DEING a diagonal matrix and A

elements are given by

k

Fs,Dps.pi,o & Sparse rectangular matrix whose nonzero

k L k k k
(AFS7DF5,[)1,,C)jaj = mFS7pi,j71/2(AFS7pi,j|jfl/2 + AFS,pi,j+1/2|j|jfl/2)

k k k
+ M 12 Nes pliti/e F Ars pej—120i5+1/2);

k . k k k k
(AFS,DFsypuU)jvj T mFS,:Di7j*1/2)\FS’Pi7j|j*1/2 + mFS,Pi,j+1/2/\FS,:Di,j*1/2|j|j+1/2’

k . - k k k k
(Ars Dpspio)idtl = Mgy i 1/2Mes poja1/20ili—1/2 + s p, j+1/2Nes i dli+1/2:

Here again, the first and the last lines of these matrices at boundary points will be adjusted accord-

ing to boundary condition. The matrix A% ,, p; 00, satisfies Ak b s 1% = 0,,. Similar as

in the above mentioned section, we assume the virtual points on subedges being chosen such that
N s Dp op T (1p, ®1p,)/ny, is positive definite for all interior vertices and all boundary vertices
around which a Neumann boundary condition is stated. For boundary vertices around which a

Dirichlet boundary condition is stated, we assume A’; s Dps.p; 10 be strictly positive definite.

Let us finally introduce the discretization of free surface mix advection operators. These opera-

tors are of the form Dps2(Drs,u) = Vs - (IIDsVru). With the knowledge that g,,, := —Vrz,
1+ Eln(1 — ) 1 . .
- d = g lude that f
v 1+ Eln(l —2) and Vpy 1+ Eln(l—2)1 —a:HVF , we conclude that D¢ is a free

surface tangential operator which might depend on the height H, the surfactant concentration I7,
the geometric variables K, IC, Ko and z. The variable u represents IT, H, IC, Ko, or z.
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4 Simulation of surfactant driven thin-film flow on moving surfaces

Discretization of the free surface mix advection operator Ny 2(Dps,u) = Vs - (IIDpsVru)

Let us first notice that the relative velocity of the free surface particle tangent to the free surface is
given by

PFS,VURFs,mn

1 1
= Prsy [—@12V1~ (¢ + C"’y‘B) +D13Vry +914VrH + OI’}/ (H/Bl + §H2@8 — 6€H3©9) VrK

1 1 1 1
+eC'~vH <Hﬁ_1 + §H2’Dg - 66H3©9> VK + <HB‘1 + 5H%w - 66H3©11) Bugm]. (4.43)

Thus we compute the fluxes induced on edges of cells by the terms of this expression (D sVru) in
the continuous manner using the appropriate gradient reconstruction and only the surfactant con-
centration I7 is advected using a second order upwind on the free surface similar to the one described
above. Let us consider a cell S and the same setup as above in the Section 4.3.4 (Discretization of
the substrate advection operator Dr 1 (Dr, w,u) = Vr - (0 DrVrw)). In the same way as before, we
define with V3, oIT := (Vi gIT) - e} s) el s+ (Vig o) - €5 g) € 5 + (Vi 1) - €5 5) €h s,

the slope limited gradient on the free surface as follows:

k
(Vidrspog s ) 63‘,5‘

if sign ((VldeS’piJ(pi,S)H) -e§)5> = const V p,; € 0S¥,
(VEigsIl) €efg =0 else,

forall j=1,2,3. By VI drspi T (p1, S)H we denote the free surface gradient of I determined using
the formulae (4 29), (4.30), (4.31) and the free surface identity tensor Ids (i.e. Dps = Idpg). Here
too, the induced matrix A%, p. are supposed to be such that Ak, pi T 1p @1y, /np, s strictly
positive for interior points and boundary points around which the Neumann boundary condition is
stated. For boundary points around which the Dirichlet boundary condition is stated, we assume

k k o k k
(VFSVSH) "6s = sign ((V IdFs,phJ(phS)H) ’ 6j,S) min presk

A’deS p; to be strictly positive. Next, we define an upwind value Hff +(DFS7 w) at edge midpoints.
For this purpose, let us consider as in the above mentioned section an edge o* := S¥|L* = [pk, p¥ 1)

shared by two cells S* and L¥. We adopt the same setup by assuming that j, j 4+ 1 respectively are
the indices of S¥ and L* around pZ and m, m —1 respectively are the indices of S¥ and L* around

k k k k _ ck k _ 7k
le, Le., Sy ;= 5p, Sp, 41 =Ly, Spiviom = Spiias Spisrm—1 = Ly, Let us denote by
k o k k Lk
F Fs,S, G’(DFS7 u) = mFS}pi,j+1/2 (DFSJ?“J (VFS,pL,] )) nFs,pi,j\j+1/2

k k k
+ mFS,pi_'.l,mfl/Q (DFS,P:'H7m(st,pi+1,mu)> 'nFS,pi_'_l,mlmfl/Q

the flux from Sf,ﬁs through UFS and define the upwind value I7, (’j +(Drs,w) at the edge midpoint
pr+p;
Prso = Prouly = Prsu ( 5 “) by
11} (Dys,) i= 115 + (Vo s1T) - | (1d = eH§ KE) (h = X5) + € (VEH) - (0 — X5)) |
1fF rs.5.0(Drs,u) >0

1% (Dps, @) :

£ (VEo D) - | (10 = HLKE)(f — XE) + e (VEH) - (05 = XE) vk | else,

for interior edges. For boundary edges on which a Dirichlet boundary condition is stated, we define
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4.3 Derivation of the scheme

11}, (Dys,) i= 115 + (Vo s11) - | (1d = eH§ KE)(ph — X5) + € (VEH) - (9 — X5)) b |
lfF Fs, SU(DFS7u) > 0
H§,+(Dps,w) = II¥  else
and for boundary edges on which a Neumann boundary condition is stated, we define
11} (Dys, ) i= 115 + (Vo sT) - [ (1d = eHS KE) (P = X5) + € (VEH) - (0 — X5)) .

By IT¥, we denote the value of IT* at P];S’yp’;. The approximation of the integral of
Dies2(Dps,u) = Vs - (IIDpsVru) on the curved cell SL‘; N ﬁk is then given by

J DFS 2(©F5‘7u) da J VFS . (H@FSVFU) da
Sl k Yok sbk ~Fg"

~ Z H Drs,w )FFSSO'(DFS7U)' (4.44)
okeaSk
Let us define the following entities of V*: 1§, := (1,1,---)7, mk = (mlgl,m’gz,---)T, HF .=

(H5’17H Soo "7 )Tv Ik = (HS17H527 B ) Kk = (Klg'lalcg‘y T )T7 ’Ck = ((K2)Sl (IC2)5'25 U )T,
77k (ngl7n§‘27"') 7+ (731,+7752,+7"')T775 = (7],56’1,7’7]5‘2,77" ) andmk (mslamsz,"‘) .
For a generic element U* := (US UL ,---)T € V* we denote by Zj:(U*) the square diagonal ma-
trix with diagonal U*. We also denote by L¥(Dr) the matrix obtained from the discretization
of the substrate diffusion operator ID.(Dr,u) = Vr - (DrVru) in Section 4.3.4 (Discretization
of the substrate diffusion operator 1).(Dr,u) = Vr - (DrVru)) by writing (4.37) for all cells in
the matrix form (i.e. (m’f;lD’li’Sl (Dp,u),m’§2D1’3752 (Dr,u),--+)T = L¥(Dr)U¥). Similarly, we de-
note by Lys »(Drs) the matrix of diffusion on the free surface obtained from the discretization of
Drs1(Dps, II) = Vs - (DpsVipsIT) in Section 4.3.4(Discretization of the free surface diffusion op-
erator Dps 1(Drs, II) = Vs - (DpsVesIl)) by writing (4.41) for all cell in the matrix form. Finally,
we denote by fr(H*, IT*) and f.s(H*, IT*) the vectors which correspond to the explicit discretization
of the substrate advection operators and the free surface advection operators respectively.

From these notation, it follows that

PF = —eZF(1/mE)LE(1d)H*, (4.45)
where 1/mf := (1/m% ,1/mf_,---) and we conclude that our problem is reduced to

Find H**! € Y+ and IT%*! € V**! such that

Ih(mlli-i_l) ,r]kJrl

TlL;j“(@g)) |Zn (1) = e T (A ) T (1 /mf ) L (1) 4+ L (27,4 [HE
9
— 7 |LE®@5) [Tn (hec/H") = €C' Tu(v5) T (1/mb) L (10) | H — L (=27, ) W
+ In(mg)n® — 7 fo(H, 1Y) (4.46)
Tu(mE) I — 7 LML (DI = T (k) 1T — 1 s (HF, IT5), (4.47)

7) Fs,h
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4 Simulation of surfactant driven thin-film flow on moving surfaces

.
where ((;bZN/Hk) = (¢566751/HI§1,¢§ec752/H§2,---) and ((bfrjcl/HkH) are defined similarly. The
system (4.46)-(4.47) can be rewritten as

Find H**! € YA+ and 175! € V¥4 such that
(Ih(mlli+1)zh(11{}+l _ %E(Hk+1)lck+1 + %62(Hk+1)2 [(ICk+1)2 _ (]CZ)kJrl])

-7 [Lﬁ“(%) |2 (5 M) = C Ty () a1 /) L (1) | + L (97,4

)HkJrl

1
— 7 [Lh®5) [T (6hee/H") = €C' Tu(E) T (1 /mb) L (1) | H = L (=272 [H*
+ Tu(mk) 0 = 7 fr(HE, 17%)
1
(Zamit) =7 SLELL(Deo) )T = T(mb) 11 = 7 fos (W, 115).

Let us denote by METL(H™ IT™) and MEL(H™, IT™) the matrices

M];-‘rl(Hm, Hm) = (Ih(mllz-&-l)z-h (1@-&-1 _ %G(Hm)’CkJrl + %EQ(Hm)Q [(Kk+1)2 _ (ICQ)kJrl])
o [Lz“(%(Hm)) [Zh (Gine(H™)/H™) — €C" Ty (3 (IT7) Ty (1l L (10)]

+ L’Z“(®7,+(Hm))D

. 1
Mies (W 1) o= (T (mf £ (H™) =7 5 LEL, (D))
where H™, IT™ are elements of V¥*1 the variables D5(H™), D7 1 (H™), Ginc(H™), mEI1(H™) are

functions of H™ and ~, (II"™) is a function of II'™. We also denote by Fp(H*, IT¥) and F,.4(H", IT%)
the vectors

FoH 1% = 7 |LED5) [T (6hee/H) = €€ Tu(5) Ta(1/mb) L (1) | B — ¥ (=7 ) | HF
+  Tu(mp)n® —7 fo(HE, 1Y)
Frs(HF, ITF) := Ty, (mE ) TP — 7 fos(HF, ITF).
The system (4.46)-(4.47) is finally written as
( Find Fp(H*, I1%) € V**+1 and IT*+1 € VE+1 which satisfies
—1
Hk+1 — (M§+1(Hk+1,nk+l)> fF(Hk,Hk)
-1
e+t = (MFS(H’““,H’“l)) Frs(HE, ITF). (4.48)
\
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4.4 Numerical results

We solve the above mentioned system using the fixed point iteration

-1
Hk+1,j — <M§+1(Hk+1’j1,nk+l’j1)> fp(Hk,Uk)

—1
TR = (MFS(HHl’j_l,Hk“’jl)) }‘FS(Hkvﬂk)’ (4.49)

HeHLO gk kL0 o ppk (4.50)

which converges for small 7. Practically we have found that the iterations converge for 7 < Ch? and
the stop criterion for our numerical examples was |H* 17 —HF 171 || 7417 — [rF+1i=1) < 10710,

Let us remind that the |H*| = N/ZS(H’g)?.

4.4 Numerical results

In this section, we present the numerical results of some simulation on triangular domain. Here, we
adopt the configuration described in Chapter II, Remark 2.4.2; Item a, Part ¢. In fact, the center
points are chosen to be the center of gravity of triangles. For a given triangle S* and a vertex pf of
Sk, the subcell S{,fi is delimited on the triangle edges incident at pf by the midpoints q’;i =172 and

q’;_ i1/ of the respective edges; j being the local index of S* around pf. Finally the edge virtual

_
points Xz]i' i1/ and X% on the subedges incident at pf are placed such that pf X]’;“M_l/2 =

pij+1/2
E ok E vk k ok . . .

(2/3) D7 @y, j—1jo and D7 Xy 10 = (2/3) D7 Q. j11/0- We refer to Figure 4.3 for the illustration

of this setup. The present setup ensures that the discretization of a substrate diffusion operator,

Figure 4.3: Subdivision of triangle cell using isobarycenter and the middle of edges.

respectively of a free surface diffusion operator, involving a strictly elliptic substrate diffusion tensor,
respectively a strictly elliptic free surface diffusion tensor, leads to local elliptic submatrices around
vertices as required for the above described algorithm in the Sections 4.3.4 (Discretization of the
substrate diffusion operator 1. (Dr, u) = Vr - (DrVru)) and 4.3.4 (Discretization of the free surface
diffusion operator Deg 1(Drs, 1) = Vs - (DrsVipsIl)). Also, if the diffusion tensors involved here
are elliptic and degenerated, the local matrices around the vertices become automatically elliptic and
degenerated, again as prescribed in the above mentioned sections. Furthermore, the matrix L¥ (Dr)
obtained from the discretization of the surface diffusion operator Vr - (DrVru) is symmetric if Dr
is symmetric and if Dr is not strongly anisotropic and the mesh not too stretched, Vr - (DrVru)
is also an M-matrix. On the free surface, we obtain the same properties for the matrix L’;S’ n(Drs)
obtained from the discretization of the free surface diffusion operator Vg - (DpsV psu) if we replace
the flux continuity condition (4.24) on free surface subedges ‘72:;”,]‘—1 Jo around pr by

k k k k
lo%s pj—11i—1/20PFsps i1V D pij—1% " Mas p, j—1]j—1/2

k k k k
+ ”QFS,p,l-,j\j—l/Q”,DFS,pi,ijps,p,;,ju Mpspsjli—1/2 = 0, (4.51)
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4 Simulation of surfactant driven thin-film flow on moving surfaces

where ||g’;37pi,j71‘j71/2|| and ||g’;37pi jlj—1/2ll defined in Section 4.3.3 represent the approximate mea-

sure of o Spij—1/2 from the subcells S;fi’ j—1 and S;fi’ ; respectively. We should mention here that the
choice of center points as center of gravity improves the consistency of the quadrature rule used for
the integration of functions. This was an aim of the algorithm proposed in Chapter IT Section 2.4.5.
Let us now introduce our simulation results. On the first example depicted on Figure 4.4 we study
the flow of a thin-film with an initial constant height H = 0.5 in the inner part of an alveolus that
we stretch and slightly change the form. At the pole of the alveolus, we place on top of the film, a
concentration of nonsoluble surfactant whose the configuration is a hat function with the maximum
value 1 at the pole. The support can be seen on Figure 4.4, second line, first picture. The surfactant
concentration is assumed to diffuse isotropically with the free surface diffusion tensor Dps = Id and
the Peclet number P, = 10*. At the substrate-fluid interface, we assume the presence of repulsive
Van der Waals forces of potential ¢ = —10~H™ and we consider a slip boundary condition with
the slip tensor 371 = eId, where ¢ = 0.00125 is effectively the ratio between the height length
scale and the horizontal length scale. We also consider the inverse capillary number C’ = 1000€2,
the Bond number B, = 40, the surfactant elasticity constant E = 0.9354, the surfactant coverage
2 = 0.6 and the time interval [0,2]. We do not take the effect of gravity into account.

Figure 4.4: Thin film and surfactant distribution on an expanding and then contracting alveolus.
The first line shows the evolution of the thin film height and the second line the evolution
of the surfactant concentration. The alveolus surface is made up of 8052 triangles and
contains 4072 points. The initial minimum and maximum diameter of triangles are 0.0043
and 0.0588, respectively and at ¢ = 1 (fourth picture of the first and second lines), the
minimum and maximum diameter of triangles are 0.0056 and 0.0933, respectively. The
small triangles are located in the region of higher curvature to resolve the geometric
features. The time step is 7 = 1/4000.

In the first line of Figure 4.4, we depict the evolution of the thin film height and on the second
line, the evolution of the surfactant concentration. The color shading ranges from blue to red
representing minimum to maximum values. This will be the same for all numerical results in this
part. We observe that the fluid is pushed from places, where the surfactant concentration is high to
places having low surfactant concentration (see figure 4.4 first line). In fact, the substrate gradient of
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4.4 Numerical results

the surface tension gives rise to Marangoni forces which dominate the advection due to the gradient
in the substrate curvature and then initiate the motion of the fluid which at its turn transports
the fluid particles along its way. Similar observations have already been made for simulation of
surfactant driven thin film flow on a line segment in [9]. On the tail of the alveolus, we observe
that the fluid moves to regions of higher curvature. At the neck of the alveolus in the first line for
example, the fluid quits the region of very height negative curvature; the flow is then driven by the
curvature. This is in adequation with the result on flow around corners presented in [107] (Example
5). Let us mention the green band near the pole on the second picture of the first line of Figure 4.4
which has a maximum diameter of two triangles and represents the bubble at the fluid front due
pressure difference between the front and the tail of the fluid. We also notice the sharp transition
from maximum values to smaller values at the fluid front which represent the sharp front interface
of the fluid. This proves that the method is less dissipative and very sharp feature, of the flow can
be resolved even on relatively coarse triangulation. This observation will be confirmed in the next
simulation results.

In a second experiment, we simulate the flow of the above described thin film in the same alveolus
which also expands and then contracts during the process. Different from Figure 4.4, where the
scaling is pronounced, we adopt a movement where the upper part of the alveolus tends to become
spherical (compare picture 1 to picture 4 of Figure 4.5 for the evolution in the expansion phase).
The surfactant concentration is removed (IT° = 0) and the surface tension is therefore constant
v = 6.9978. Figure 4.5 shows the evolution of the film height. Here the main observation is that

Figure 4.5: Thin film driven by surface tension on an expanding and then contracting alveolus.
The setup is similar to the one in first experiment (see Figure 4.4), but the alveolus
expands in a way that the upper part becomes almost spherical (picture 4).

the fluid flows toward region of higher curvature. We can clearly notice (picture 7, Figure 4.5) an
inflow at the pole which creates a region of maximum height in accordance with the flow of thin
film inside an ellipsoid presented in [107]. In comparison with the simulation above, the absence
of surfactant leaves room to the substrate gradient of the substrate’s curvature to control the flow.
Again, important features such as the local extrema at the tail of the alveolus are resolved though
the substrate discretization is not fine.

Now, in the third example (Figure 4.7), we study the flow of a gravity driven thin film through
a surfactant obstacle on an expanding and then, contracting sphere. As above, we consider the
parameters € = 0.00125, C’ = 1000€2, B, = 40 and 3! = eId. We assume the presence of repulsive
Van der Waals forces of potential ¢ = —107*8H™3. As initial film height we consider a pertubed
Gaussian function with the maximum height being 0.995 at the pole to which we add 0.005 which
represents the thickness of the initial precursor layer. The support of the Gaussian function can
be seen from above on the first picture of the first line of Figure 4.5. At the equator, we place
six localized spots of surfactant, of which three are at the front side of the sphere as can be seen
on the first picture of the second line of Figure 4.7. The rests are placed at the back side of the
sphere symmetrically to the ones in the front. We should also mention that the middle surfactant
concentration at the front and the back of the sphere are on the trajectory of the front main flow
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4 Simulation of surfactant driven thin-film flow on moving surfaces

and the back main flow, respectively. The shape of each surfactant concentration is Gaussian,
its maximum is 1.995 and its support is elliptic. Let us now consider the three band depicted
on the rescaled initial sphere on Figure 4.6, the initial surfactant concentration are respectively
centered in each band; thus their support do not intersect. The bands in fact represent the support

Figure 4.6: SCF (surfactant coefficient function).

of a piecewise linear pseudo hat function “SCF” (surfactant coefficient function) which takes the
value 3 on the ring center of each band and the value 0 outside of the bands. Let us consider
a point p = (cos(f)cos(fs), cos(0)sin(fz), cos(f1)) on the initial unit sphere; 6; and 6y being
respectively the elevation and the azimuth at p. We denote by v the normal at p and by e; :=
(—sin(f2), cos(f2),0) a unit tangent vector at p parallel to the (X,Y’) plane. We define the tensor
Dyps =B+107)(Id—v®@v—e1®e1) + (SCF(p) + 107%)e; ® €1 if p is not a pole and Dypg =
(3 +107%)(Id — v ® v) else. The free surface tangential part of D.s that we still call D is
incorporated in the model. With this setup, the surfactant concentrations diffuse in such a way
that the path of the blocs do not intersect far from the poles. We should notice that the diffusion
is almost one dimensional out of the bands of Figure 4.6. We assume the surfactant parameters
P. = 500, F = 0.9354, © = 0.48. The first line of Figure 4.7 shows the evolution of the thin film
while the second line presents the evolution of the surfactant concentration. We should mention
that the first two pictures on the first line of Figure 4.7 are seen from above and the two last
pictures on both lines are seen from a perspective of 50° below. Here we observe that the surfactant

Figure 4.7: Gravity driven thin film flowing around surfactant obstacles on an expanding and then
contracting sphere.
The sphere is made of 6426 triangles and 3215 points. The initial minimum and maximum
diameter of triangles are 0.0249 and 0.1061, respectively and at ¢ = 1 (fourth picture
of the first and second lines) they are 0.0498 and 0.2122, respectively. The time step is
7 = 1/3000 and the time interval [0, 3].
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deviates the fluid flow which goes around the concentration (see picture 3, first line, Figure 4.7).
This creates more fingering as can be seen on pictures 3-8 of the first line of Figure 4.7. While
going around the surfactant, the fluid transports surfactant particles along (see pictures 3-6, second
line, Figure 4.7) which quickly occupies the front of the film flow (see pictures 6-8, second line,
Figure 4.7). The combined effort of gravity and Marangoni forces created by the surface gradient
of the surfactant concentration accelerates the flow of the fluid front toward the south pole. When
an important amount of surfactant is gathered in the front of the film and the Marangoni forces
balancing the gravity pressure, the fluid gets accumulated just behind the surfactant as can be seen
through the comparison of pictures 7-8, first line of Figure 4.7. Following computations only confirm
this through an increase of height at the fluid front which is equivalent to the formation of drops.
Since the lubrication approximation that we used to model the flow does not take into account the
formation of drops, we had to stop the simulation.

The fourth example is devoted to the above mentioned fluid in the absence of surfactant. On Figure
4.8 we report some sequences of this simulation. The first two pictures are seen from above and the
last pictures are seen from a perspective of 50° below. Here we observed the fingering conform to

Figure 4.8: Flow of gravity driven thin film on an expanding and then contracting sphere.
The setup is the same as the one of Figure 4.7.

the simulation done in [57] example 9.2. As for other examples, one will notice the steepness of the
front which is resolved. This again confirms that the method is less dissipative.

Let us now introduce a fifth example in which we study the flow on a static bumpy sphere (Figure
4.9) of a gravity driven thin film. We consider as initial value, a localized Gaussian function which

Figure 4.9: Rescaled bumpy sphere.

has a maximum value of 1 at the north pole and whose support can be seen from above on picture
1, Figure 4.10. To this Gaussian function, we add 0.005 which represents the height of the precursor
layer. On Figure 4.10, we present some sequences of this simulation. The two first pictures are seen
from above and the last picture is seen in the perspective of 50° from below. Here the irregularity
of the surface creates a competition between advection by gravity and advection by gradient of
curvatures. This leads to the creation of fingering as can be seen on pictures 3-8.

We introduce a sixth example which deals with the gravity driven thin film on a moving plane
in the presence of surfactant. In fact, we consider the planar domain [0, 1] x [0,1] which moves
perpendicularly (in the Z-direction) to fit an area of an ellipsoid. At the end of the process, the
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Figure 4.10: Flow of gravity driven thin film on a bumpy sphere.
The bumpy sphere is made up of 9794 triangles and 4899 points. The minimum and
maximum diameter of triangles are 0.0267 and 0.1650, respectively, the time step is
T = 1/2500 and the time interval is [0, 2].

segment [0, 1] x {0} maps onto the circular equator of the ellipsoid. On this substrate, we consider the
evolution of a thin film and a surfactant concentration which have the property of the first example.
Different from other examples, we assume a nonexistence of Van der Waals interfacial forces (i.e.
¢ = 0) and we consider a partially wetted substrate. Thus we assume at the initial instant, a liquid
film of local support above which a surfactant concentration of local support too is placed. The
third picture of the first line of Figure 4.11 clearly presents the support of the film height and the
diameter of the support of the thin film is taken to be the double of the diameter of the support of the
surfactant concentration. The initial film height and the surfactant concentration are functions of
Gaussian shape with respective maximum 1.5 and 0.75 at the center of the surface. The free surface
diffusion tensor considered is Dypgs = Id if H # 0 and Dys = 01d else. The first two lines of Figure
4.11 show a sequence of the evolution of the fluid while the two last lines give the corresponding
sequence of evolution of the surfactant concentration. Similar as in the first example, the gradient
in the surfactant concentration gives rise to Marangoni forces which initiate the movement of the
fluid from regions of height surfactant concentration to regions of lower surfactant concentration.
This can be seen by looking at the crater that appears in the middle of picture 4 in the first line of
Figure 4.11. Also a competition is installed between Marangoni forces, gravity and advection due
to the gradient of curvatures. Similar to the third example above (Gravity driven thin film around
surfactant obstacle), when the gravity becomes dominant, the fluid which has been pushed in the
northern part tries to find a way around the surfactant (see picture 2-3 on the second line of Figure
4.11). On its way down, the fluid transports surfactant particles along as already reported in the
third example. Once the surfactant reaches the front, it causes the fluid to spread. This observation
was already done in [9] for simulation of a surfactant driven thin film on a planar line segment.
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4.4 Numerical results

Figure 4.11: Flow of gravity driven thin film in the presence of surfactant on a deforming plane.
The surface is made up of 9728 triangles 5009 and points. The minimum and the
maximum diameter of triangles at the initial time is 0.0088 and 0.0316, respectively,
the time step is 7 = 1/8000 and the time frame is [0, 0.75].
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4 Simulation of surfactant driven thin-film flow on moving surfaces
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Conclusion and perspectives

In this work, we have developed finite volume schemes for direct simulation of second and fourth or-
der equations on evolving curved surfaces and interfacial surfaces. We have, in particular, described
a method for computations on a very broad range of polygonal surfaces, which takes into account
the major advances in the finite volume community nowaday: computation on unstructured meshes,
computation on non conformal meshes, high order upwinding amongst others. The stability of the
methods have been proven for the second order problems and we have provided several simulation
results to support the theory. As usual in moving mesh methods, it can happen that cells degen-
erate during the evolution. One can nevertheless handle this issue by combining our method with
an appropriate mesh optimization strategy which will reposition the vertices at each time step. As
a byproduct, the gradient reconstruction method developed here can be used as an approximation
tool on the curved surface to reallocate values to cells, in case of remeshing for example. We should
also mention that the method can be extended to higher order finite volumes. In this case, quadra-
ture rules used for integration would be different, the surface approximation would be done through
polygonal fitting and the gradient reconstruction would be improved too. We plan to deal with these
issues in future work.

We have also presented a model reduction method for thin film equations using lubrication approx-
imation. Our model allows the easy incorporation of additional effects, like inertia. This model
allows also the easy coupling of interfacial flow, since the height of the film parameterizes already
the free surface on the beneath substrate. This parameterization can be used together with lubri-
cation approximation to pull back the free surface flow equation on the substrate as it has been
the case for surfactant driven thin film flow on flat surfaces, or one can take advantage of it for a
direct computation on the free surface as we have presented in this thesis. This second alternative
is suitable for computation of more complicated flows on the free surface.
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