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Abstract

Publication of results is an elementary part of scientific work. Started in in 17*" century with the tradi-
tional scientific publications several new forms emerged in recent years, triggered by the digital revolution
and focused on increasing the data availability. These changes offer new chances for scientists and science
in general, but also imply risks, which might compromise this established institution in science.

Data can be seen as an essential foundation of science. Therefore, it is important to think about new ways
to distribute scientific data between the scientists, which are generated by the advent of the world wide
web. One way, the primary data publications, aims at the publication of raw data and their metadata
and seeks to be comparable to the traditional forms of publishing manuscripts.

This thesis will present the possible ways to publish data, which are typical in meteorological and cli-
matological sciences. Additionally, it shows, how a publication process of the primary data itself can be
included into the traditional scientific working scheme. Thereby, it will especially focus on the develop-
ment of an effective quality assurance of these publications. A fundamental part of this will be general
quality tests, which are needed to obtain estimations on the quality of datasets. These quality checks are
characterised by its parameter-driven flexibility and can be applied on a lot of different types of datasets.
Some of these checks, like a newly developed histogram test and a bayesian change point detection, are
described and undergo some sensitivity tests. In addition, the possible automatisation and application to
meteorological and climatological datasets of the tests will be investigated. All these developments will
be discussed under the aspects of a usability in data publications, an effective quality assurance system
and the possibility to generate a peer review procedure on data publications.

Zusammenfassung

Die Verdffentlichung von Resultaten ist ein elementarer Teil des wissenschaftlichen Arbeitens. Ange-
fangen im 17. Jahrhundert mit den traditionellen wissenschaftlichen Publikationen, entstanden in den
vergangenen Jahren neue Formen, die sich auf das Zugénglichmachen von Daten fokussieren und durch
die digitale Revolution gefordert wurden. Diese Verdnderungen beinhalten neue Moglichkeiten fiir Wis-
senschaftler und die Wissenschaft im Allgemeinen, aber schliessen ebenso Risiken ein, die moéglicherweise
eine etablierte Institution der Wissenschaft gefdhrden.

Daten kénnen als eine wichtige Grundlage der Wissenschaft angesehen werden. Darum ist es von grofer
Bedeutung, iiber die neuen Wege des Datenaustausches zwischen Wissenschaftlern nachzudenken, die
durch das Aufkommen des World Wide Webs entstanden sind. Ein mdoglicher Weg ist die Primérdaten
Publikation, die versucht, Publikationen von Roh- und ihren Metadaten vergleichbar zu der traditionellen
form der Veroffentlichung von Manuskripten zu gestalten.

Diese Arbeit stellt die moglichen Wege zur Publikation von Daten, welche typisch sind in der Meteo-
rologie und Klimatologie, vor und untersucht, wie sich ihr Publikationsprozess in einen traditionellen
wissenschaftlichen Arbeitsablauf einfiigt. Dabei wird besonders auf eine effektive Qualitatssicherung
dieser Publikationen eingegangen. Ein grundlegender Bestandteil sind dabei allgemeine Qualitétstests, die
bendétigt werden, um Abschétzungen iiber die Qualitdt der Datensétze zu erhalten. Diese Qualitétstests
sind charakterisiert durch ihre parametergetriebene Flexibilitdt und kénnen auf viele unterschiedliche
Typen von Daten angewendet werden. Einige dieser Tests, wie ein neuer Histogramm Test und eine
Bayessche Bruchpunktsdetektion, werden beschrieben und mehreren Sensitivitdtstests unterzogen. Es
wird ebenfalls eine mogliche Automatisierung und eine Anwendbarkeit der Tests auf meteorologische und
klimatologische Datensétze untersucht. Alle diese Entwicklungen werden unter den Gesichtspunkten einer
Nutzbarkeit in Datenpublikationen, eines effektiven Qualitéstssicherungssystems und der Moglichkeit der
Konstruktion eines Peer Review Prozesses von Datenpublikationen diskutiert.
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1 Introduction

Data are a central foundation of science. Most scientists depend on data as a basis for their theories or as
a result of their research. As a consequence, well generated and documented datasets are a highly desired
commodity among scientists although some scientists are hardly convinceable to share them. Even when
the willingness is there, the effort to generate them is very high, what results in a low number of publicly
available of these high standard datasets.

Scientific publications are for several hundred years the basic form to communicate and share results of
research. They include a documentation of the performed steps, what leads to the generation of new
knowledge, and build a basic platform for scientific credit for the authors and their career chances. High
standards have been developed, which ensure the quality of published manuscripts. One of them is peer
review, which can be seen as the "gold standard of quality control" in the modern scientific world (Drott
[2007]).

In the last two decades this well established system has been enhanced and new forms of publications
have been developed. Some of these publications tried to support the exchange of data between scientists,
which was mainly driven by the arise of the world wide web. One of these new forms is primary data
publication, which tries to bring the raw, documented data of research to the standard of the existing
traditional publications. An open point of this new form is the assurance of the quality, not only from
the technical point of view, but also concerning its content.

This thesis tries to connect the traditional and the new forms of publications and develops procedures
and methods, that help to bring both types on the same standard. Therefore, the point of view of the
scientist is needed in two different ways. On the one hand there is the data author, who wants to have an
effective system, which minimises the effort to publish data. On the other hand there is the data reuser,
who wants to have well documented and quality assured data. These two views contradict themselves,
what makes it complicate to find ways which balance them and support science in general.
Environmental sciences work with an immense variety of forms and types of data and meteorological
and climatological sciences are a good representative of this. Data may be generated at laboratories, in
field campaigns or by simulations, but the methods, which assure their quality have to work on all types
equally well. The natural way to achieve this is statistics, which is also chosen in this thesis. It will be
shown, how general statistical quality checks can be embedded into a concept, which allows to generate
effective procedures for the quality assurance. It will also be shown, how this fits into a traditional
working scheme of scientists and which types of publications cover which part of the scientific process.

A focus will be set on the development of general quality checks. Those are parameter-driven statistical
checks, which allow to estimate the quality of an immense variety of datasets. With the help of automa-
tisation techniques, it is possible to enhance their effectiveness as well as to show ways, how a peer review
of data might look like.

The outline of this thesis starts in chapter 2 with a look at the traditional publications and their devel-
opment and tasks since the 17" century. It also shows the general concept of quality assurance and their
implementation for the different types of publication. In addition, software concepts will be presented,
which assist the data author in performing the quality assurance on his/her primary data publication.
One important part of this will be general quality checks. Examples for these are presented in chapter 3.
Mainly two different types are shown, the histogram test and a change point detection, which allows to
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analyse very different types of datasets. To show the abilities of these methods and their combination,
some applications to different datasets will be shown in chapter 4. This is followed by an extensive
discussion of the shown procedures and methods in chapter 5. The latter also covers some remarks, on
how a peer review of data may look like. In the last chapter 6, a brief conclusion will be given and some
remarks on possible further investigations in the future are made.



2 Publication of environmental data

Nowadays, scientific publications are the basis of science. This statement is also valid for environmental
science, like meteorology and climatology, which depend strongly on data. At the beginning of this
chapter, in section 2.1, the importance and types of meteorological data are presented. In the following
section 2.2, history and development of traditional publications are shown. The focus is especially set
on the new types of publications, which are the main topic of this thesis. A further look is taken on
data publication, which will be introduced in section 2.3. There are two different kinds of new forms of
publications, which will be described: the data journal and primary data publication. Important factors
for these publications are the quality assurance processes, which are explained and characterised in section
2.4. The data publication process, which is described in section 2.5, was introduced at the World Data
Center for Climate (WDC-C). There, the developed software for quality assurance on metadata will be
explained in more detail. In a last section 2.6 the scientific quality assurance system for primary data
publication will be presented. This includes software solutions and concepts of documentation.

2.1 Meteorological data

Meteorological datasets can be characterised as heterogeneous, from which follows that they are a good
representative for environmental data in general. Since meteorological and climatological datasets will be
the focus of this thesis, they are introduced at this point in detail. The section starts with a motivation
of the importance of data in the meteorological and climatological sciences in section 2.1.1. In a next
step, an overview of datasets used in meteorology is given. In section 2.1.2, the datasets will be divided
into different data classes and their characterisation will be briefly discussed. In addition, the connection
between meteorological and environmental datasets in general are mentioned there. As a consequence,
the results of this thesis can be transferred to other sciences than meteorology and climatology.

2.1.1 Importance of data for meteorological and climatological sciences

Data play an important role in meteorology and climatology. Scientists in general depend on data since
knowledge is "[...] gained from empirical and modelled data and observations" (Costello [2009]). This
is also phrased by Klump et al. [2006] with: "Scientific knowledge is communicated through scientific
literature. Knowledge is ultimately derived from data." Therefore it is important, that a broader public
is able to get the data and to advance their knowledge for the society.

In the standard working procedures, data are of great importance for scientists working in the field of
meteorology and climatology. A scientist creates data by performing experiments. These can happen
outdoors in the field, in laboratories or by computer simulations (Overpeck et al. [2011]). They also use
data for analysis and create new datasets by transferring original data into new, for their field of research
more usable, forms. At the end they use the data for visualisation, to underline their scientific arguments
and to purpose new directions for the research of the future.

Nevertheless, data is not only used by scientists to generate new scientific findings. It is also used by others
to control the findings, to check whether concluded results are true or questionable. New findings and
methods offer new ways to reanalyse existing datasets and to conclude new or dismiss former results.
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Another factor, which makes data so important for scientists, is their uniqueness. It is not possible
to recreate a dataset exactly once it is lost. This is obvious for observations in nature, where the
surroundings of the measuring instruments change continuously. Not that obvious it is for measurements
in laboratories. Even performed under controlled environmental conditions, they include uncertainties,
which can not be reproduced exactly. The same is valid for computational models. Those results depend
not only on the model, input parameters and the used machine for the calculations. Even if all these
factors are equal, the results can vary from run to run. Reasons can be found in bad programming,
introduced stochastic elements or in the enhancement of efficiency by giving up bit-reproducibility as a
basic request to the calculations (Palmer [2012]).

As a consequence, archiving and access to data are essential elements to allow successful scientific re-

search.

2.1.2 Data classes in meteorology

Meteorological data consist mainly of one- or multidimensional time series. The acquiring of these
datasets can be divided into two basic parts. The first are data produced by models. Models, which
simulate weather or climate, play an integral part in meteorological and climatological science (Overpeck
et al. [2011]). A main characteristic of the resulting data are their structure. The majority of the model
data is regularly structured. In the spatial domain most of the data is available on regular grids. In
addition, in the temporal domain a lot of datasets resulting from simulation can be found with a regular
time step. These regularities have advantages for the analysis of the data. A disadvantage can be the
multidimensionality of the data. Model runs deliver several variables for every dimension in space and
time (Meehl et al. [2007]). Also Monte Carlo simulations, like ensembles, are a common tool to estimate
the uncertainties of models. In these, the initial and boundary conditions are varied to create different
realisations of the model (Lorenz [1963], Molteni et al. [1996]). Therefore, six dimensional datasets are no
more unusual. These dimensions are mostly: three dimensions in space, one in time, one for the different
meteorological parameter and the sixth for every realisation of the model. This immense amount of data
brings new challenges — not only concerning the analysis of the datasets, but also concerning storing,
visualisation and documentation.

The second class of data in meteorology are the observational data. These data have to be further divided
into two subclasses. On the one hand there are station data of permanent networks, like for example
at the national weather services. These networks are also characterised by regularity in space and time
for longer time spans. On the other hand there are measurement campaigns. The data resulting from
these campaigns have to be expected as irregular. Additional challenges are the used instruments. In
stationary networks the use of generally used, well tested and calibrated instruments can be expected.
In field campaigns, especially those, which are done for the purpose of research, instruments in an
experimental phase of development are common. This makes it especially problematic to quality assure
the resulting datasets.

These differences in meteorological data classes require general and large-scale approaches to handle, store
and analyse the data. Such a requirement is not only a burden, but also an advantage, since it allows to
generalise the methods to other fields of science. Therefore, meteorological data deliver a good test field as
a representative of environmental data. Environmental data include, beside the data on the atmosphere,
also the ones on the solid earth, ocean and the biosphere. All these sciences use similar methods and
are characterised by using time series as a common form of result for their measurement. This allows to
transfer the main results of this thesis to the above mentioned fields and their applications.
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2.2 Traditional publication process

Publications on paper, in the following called ’traditional publications’, are the basis of scientific research
today. Their role and development will be examined in this section. Hence, section 2.2.1 gives a short
historical overview of scientific publications. It shows the functionality of this tool within the scientific
process. Afterwards, the rank of these publications within a scientific working scheme is shown by means
of an idealised traditional scheme in section 2.2.2. This allows to illustrate, which working steps lead to
a publication. Followed by this, the new developments in the last years are described in section 2.2.3. At
the end the importance for the scientists of such a publication is further explained in section 2.2.4.

2.2.1 Development of scientific publications

The first scientific journals, similar to the ones today, emerged in the middle of the 17th century. The first
was named "Journal des Scavans". It included several scientific essays and was introduced in January
1665 by Denis de Sallo (Brown [1972], Benos et al. [2007]). More important for scientific work today
was the publication of the Journal "Philosophical Transactions of the Royal Society" two months later
(Philosophical Transaction Staff [1665], Kronick [1990]). It was edited by Henry Oldenburg, who is often
credited to have introduced the first modern scientific journal (Pfeiffenberger and Carlson [2011], Kronick
[1990]). At the beginning, Oldenburg as the editor was responsible for the content of the journal (Spier
[2002]). His idea was to invent a register for innovations in science (Cassella and Calvi [2010]) and to offer
scientists of these days the possibility to earn credit for their scientific results, without publishing a book
(Pfeiffenberger and Carlson [2011]). Up to these days these scientific journals fulfil four main functions:
First, the registration of whom was the first of a finding. The second function is the certification of this
claim. The third is to bring awareness of new developments in science to other scientists. The archiving
of the findings for preservation can be seen as a fourth (Cassella and Calvi [2010]).

A main part of the scientific process today, the peer review system (see also section 2.2.2), was introduced
at the Philosophical Transactions around a hundred years later.! It was adopted from the journal "Medical
Essays and Observations" which was published by the Royal Society of Edinburgh in 1731 (Benos et al.
[2007], Spier [2002]). The influence and the forms of peer review depended from then on on several
limiting conditions. The most important one is the space available for publications in the respective
journal. Editors, which have to fill their journals to get commercial success would not set the requirements
for accepting papers too high. Here, also the number of submitted papers play an important role. This
number depends again on the number of people working in science, who want to publish their findings
(Burnham [1990]). In addition, the technical progress over time plays an important role. An example is
the possibility to multiply the manuscripts (Spier [2002]). A last factor to mention here is the willingness
of an editor to give parts of the control of what will be published out of his/her hand. An example for this
is one of the leading journals in science today: Science (Fersht [2009], Deutsche Forschungsgemeinschaft
[1998]). This journal did not start to adopt some kind of peer review before the 1930s (Knoll [1990],
Burnham [1990|, Spier [2002]).

With these functionalities and their long stretched history, scientific publications are a foundation of
science today.

n a report of the Royal Society (Boulton et al. [2012]), which was published in June 2012, it was claimed, that Henry
Oldenburg also invented the peer review at the Philosophical Transactions. It was not possible to verify this claim by
other literature.
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2.2.2 Traditional scientific working scheme

In recent years the scientific publication process has changed dramatically. New forms, mainly electronic,
have emerged and changed the style of how scientists work today (Lancaster [1995]). Therefore, a devel-
opment of a traditional working scheme will be the next step. It shows how publications can be generated
by scientists. This working scheme will be used afterwards to show and explain these new forms of pub-
lications. Publishing in general is at the end of a line of several working steps. Its functionality is to
document and to present the results of the research and the work behind it. How the scientists get to
these results is not only a practical, but also a philosophical question. This section structures the possible
steps to a publication and illustrates these steps with an idealised scientific working scheme.

In the following it is assumed, that the scientist who performs the work is doing something like an
experiment, which produces data to achieve results. This is a valid assumption for a lot of scientific
publications, but does not necessarily mean that someone performs a measurement with an instrument
in the field. Alternatively, it can be a model experiment done with computers or, to take an extreme
example, a thought experiment, which might for example generate a mind map. To get a scientific
result from the experiment, two basically different forms of causality are described in the literature:
hypothetico-deductive and inductive (Williamson [2005], p. 118ff). The first bases on predictions by
hypotheses, which should be tested by an experiment (see also Popper [1934]). The second, the inductive
approach, uses a large number of observations to create a theory of the underlying mechanism, which
created these observations (see also Bacon [1620]). Of course, mixed versions of both are also possible.
These are intensively discussed by Williamson [2005] (p. 148ff).

To demonstrate the working process of a scientist, a flow chart is created, which is sketched in section
2.1. It demonstrates the basic steps from the idea of the experiment to the publication of a paper. To
prevent a restriction to one of the views mentioned above, the used idealised model of a scientific working
scheme consists of two phases of theory. The first, the pre-experimental theory, covers together with the
prediction the hypothetico-deductive view. In this theory, the scientists construct a hypothesis, which is
able to make a prediction. The aim of the experiment is now to back or falsify this prediction. In order
to be able to perform this experiment, it has to be designed by the scientist. After the experiment is
done, the data is collected and stored. In a next step follows the second theory, the post-experimental
theory, which for example covers the statistical analysis of the dataset. Afterwards, a step follows, which
is not directly done by the scientist himself/herself, since on the analysis a peer review is performed at a
journal. After passing this, the work can be published as a paper.

The process varies from case to case and depends on the types of experiment and analysis. Nevertheless,
the most experimental driven scientific processes should be able to cover with this type of idealised
working scheme. It will also be used in section 2.2.3 to demonstrate how new developments in scientific
publications can be integrated and compared to the traditional working scheme.

This will now be illustrated in more detail with an example. Assumed that a researcher wants to know
if a city produces an urban heat island effect (Giridharan et al. [2005], Oke [1973], Oke [1982]). First of
all there is the hypothesis, which can be formulated negatively or positively. In this example, a negative
formulation is used: "There exists no heat island effect in the specified city". Followed is this step by
the prediction. It could be assumed, that it is not possible to measure a temperature difference between
temperature measurement stations inside and outside the city over a defined length of measurement time.
After this prediction is established, the experiment can be designed. This ’experimental design’ covers
for example the number and placing of measurement stations, the time when they were build up, the
type of the measurement devices and their calibration procedures and a lot more. When this is finished
and the resources are available, the experiment is ready to start. The devices will or will not be placed
like planed and the measurement takes place. Outcomes will be stored as datasets, quality controlled and
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Pre-Exp.
Theory

Predictions

Experimental
Design

Post-Exp.
Theory

Analysis

Peer Review

Written
Publication

Figure 2.1: An idealised traditional scientific working sheme, which shows the steps from a pre-
experimental theory to a written publication.

enhanced with metadata. After this, the statistical analysis, like fitting regression lines of the observed
data, is carried out. A statistical hypothesis test might be performed on whether the difference of the
measured temperature between the stations in- and outside of the city is significant or not. This simple
example illustrates, that a scientific work can be well covered by this scheme.

When the authors decide, that they want to share their findings with other scientists, they may create a
publication. The arising question is, what a publication is or should be. Parsons et al. [2010] described
it as follows: "A scientific publication is fundamentally an argument consisting of a set of ideas and
expectations supported by observations and calculations that serve as evidence of its veracity."

In the traditional publication scheme follows the next step: the analysis. This phase should produce a
manuscript, which explains all steps performed before. It also discusses and concludes the theory, the
experiment and its results. In a typical structure of a paper, all steps mentioned above are described and
explained. After finishing the manuscript the scientist as an author submits it to the journal.

Journals handle the incoming manuscripts differently, but a common practice is the peer review process.
Therein an editor makes the first basic review on formalities. After this is passed, he/she choses one,
mostly two or more reviewers and transfers the manuscript to them (Campanario [1998a]). Those re-
viewers perform a review and file a report to the editor. If the editor decides, based on the reports by the
reviewers, that the manuscript is publishable without corrections or not publishable with any corrections,
the peer review process is finished at this stage (Gura [2002]). In the case, that it has to be corrected,
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for example when the reviewers have questions, the editor transfers the reports of the reviewers to the
authors. They are obliged to comment on the reviews and if necessary to correct the manuscript. The
process of reviewing, correcting and editor decision may iterate, until a final decision is made by the
editor (Benos et al. [2007], Hargens [1990]).

There are a lot of varieties of this peer review process, which are implemented differently by the journals
(Lawrence et al. [2011]). For example, the process is called blind or anonymous, if the author does not
get the information about who the reviewers are (Weller [1990]). It is called double-blind, if additionally
the reviewers are not getting any information, which might disclose the identity of the author (McNutt
et al. [1990], Campanario [1998b]).

If the decision of the editor is positive, the manuscript will be published and becomes a written publication,
also called paper. The journal publishes this paper on its platforms and other scientists are now able to
get the document and inform themselves about the performed experiment.

The here developed structure is flexible and can therefore be used for a wide variety of scientific processes,
which will be further discussed in section 5.3.1.1. Nevertheless, the working scheme experienced several
additions in the recent years, of which some will be explained in the following.

2.2.3 New developments in recent years

Since the advent of the world wide web and its possibilities, new forms of publications and additions
to the traditional publication process emerged. These changes to scientific publication and its processes
went far beyond of just making existing paper journals available in electronic form (Lancaster [1995]).
Electronic publishing started in some forms in the 1960s, but was mainly a form of distributing al-
ready existing paper publications. The first complete electronic journals started at the end of the 1970s
(Lancaster [1995]). Afterwards, the world wide web boosted the number of electronic journals so that
nowadays nearly every journal is (also) available in electronic form (Renear and Palmer [2009]).

In addition, the traditional publication process itself was reformed. For example, some changes to the peer
review process were developed. The so called 'open review’ allows scientists, who are not formally assigned
as reviewers, to comment on the manuscript (Benos et al. [2007]). The additional commentators could
either be a closed group or participants of an open discussion. The latter was institutionalised for example
by Copernicus (Poschl [2010]). They introduced discussion papers, which collect these comments and
publish them alongside the original publication (ESSD [2012b]). This is very similar to pre-publication
of manuscripts in the world wide web. A platform for pre-publications is for example ArXiv and was
founded in 1991 (Cassella and Calvi [2010]). Tt collects manuscripts, which have not passed a peer review
process yet and offers them for everyone interested (Warner [2005]).

This system works, because open access, which allows the reader to access articles without paying a fee,
becomes a common element in a modernised scientific working process. This dramatically changed the
way how scientists access articles and allows them to get amounts of information on the works of others
like never before (Meehl et al. [2007], Cassella and Calvi [2010]). There are also new journals established,
called overlay journals, which collect open accessible pre-publications of their field, perform their own
peer review process on it and publish it as a journal on their own (Cassella and Calvi [2010], Warner
[2005]).

Processes like a reformed peer review process or pre-publications, can be comprehended as a quality
assurance of the manuscript. This quality assurance is located outside the traditional peer review pro-
cess and enhances it. These measures coexist with the traditional form for the most of the published
publications.

Newer developments aim to concentrate on publishing datasets and their explanation. The so called ’data
journals” will be explained in more detail in section 2.3.3. These new forms have to be integrated into
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the working scheme, which will be done in section 2.3.4, alongside the primary data publication. Before
this will be introduced, the importance of publications for scientists should be explained.

2.2.4 Importance of publications for scientists

Publications are not only in the interest of the journals, but of course also of the scientists themselves.
It is of great importance for them to publish their findings in well-established journals (Kinne [1988]).
Those publications are used to judge the scientists’ abilities and are therefore a very important component
to build up their career (Campanario [1998a]). When scientists publish, it is not only the content and
form of the publication, which is important for them, but also the platform, where they do it. This
is for example commented by Casadevall and Fang [2009] with: "One of the fascinating aspects of the
sociology of science is that scientists prefer to publish in journals that present the greatest hurdles, which
translate into scientific prestige." Therefore, they tend to choose journals with a rigid peer review system
and the highest impact factors. This leads to a fifth function of a scientific journal, apart of registration,
certification, awareness and archiving: reward to the author (Warner [2005]).

The career perspectives of scientists are not the only important factor, since publishing helps also them to
enhance their abilities. For example, they can benefit of good reviewers, who help them to find mistakes
in their work or clarify their findings (Casati et al. [2010]).

The other part of importance for scientists is getting knowledge of the works performed by other scientists.
It enables them to build their work upon others findings. They are also able to leave some of the
responsibility for the cited findings to other scientists (Costello [2009]). This makes it simpler for the
scientists to concentrate on their own work. As a consequence, they do not have to put too much efforts
in results, which are already found by others, but are necessary as a basis for their own research.

All these arguments show, that scientists accept high effort for publishing, if they see, that they profit
from it. This should be kept in mind, when high requirements for publishing data are requested from the
scientists. The procedures for this data publication are explained in the upcoming section.

2.3 Data publication

Apart from describing research in written form in journals, the publication of the foundation of the
research plays an important part in science today. In this section, the publication of primary data and
its actual developments will be described. It starts in section 2.3.1 with an explanation, why primary
data publication is so important for the communication in science and for the scientist themselves. In the
following section 2.3.2 the actual situation of data publishing will be described. It shows especially the
role and ideas of funding agencies in this process. Afterwards, data journals, which are one new emerging
form of publication in recent years, will be presented in section 2.3.3. In a last section 2.3.4, the other
new form of publishing data, the primary data publication, is discussed. In addition, at this point both
types are included into the scientific working scheme, which was introduced in section 2.2.2.

2.3.1 Importance of primary data publication

An essential question on primary data publication is the following: Why should a scientist publish his/her
research data? The simplest answer is, that the general public or at least other scientists in the field, can
work with the data. The general importance of data for the scientists was already emphasised in section
2.1.1.

Especially smaller research projects depend on a well-established data publication infrastructure. First of
all, the money by the funding agencies for these projects is limited, so that they need to rely on sources
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of data by others to perform their own research. This would be simpler to perform, if these projects had
the opportunity to cite data, which they are able to trust. Trusting the data is essential for seeing an
alternative in 'using data of others’ in contrast to 'producing everything on their own’. Secondly, when it
comes to archiving the data, which the scientists produced in these smaller projects, it is common, that
their budget for making the data available in useful forms to others is also limited (Heidorn [2008]). This
may lead to the problem, that the data is effectively lost after the end of the project, in case that no
archiving is performed at all (Klump et al. [2006]).

For all scientists there is additionally the problem of long time archiving. When scientists decide, that
data might not be useful for them anymore, they might delete it (Klump et al. [2006]). Nevertheless, this
does not mean, that this data is useless for other scientists (Heidorn [2008], Guralnick et al. [2009], AGU
Council [2009]). Tt is also important that data, which is used to postulate theories is saved for the future,
because else the fundamental scientific "principle of replicability" (Heidorn [2008]) might be threatened
(Strebel et al. [1998]).

Therefore, it is essential for effective and reliable science to preserve data, and make them accessible for
others. This is not a new discovery, but rather a basic scientific procedure (Schofield et al. [2009], AGU
Council [2009], Kinne [1988]).

Publishing data, even if the infrastructure is available and simple to use for the scientist, still needs a
lot of effort. What are his/her benefits for doing it? It can and should be peer-recognition (Costello
[2009], Toronto International Data Release Workshop Authors [2009]), which is traditionally expressed in
science by citations of the work by others. To generate those citations, the datasets themselves have to
be citable. The natural way to achieve this is to use data publication and bring this to a similar standard
like journals already have (Costello [2009], Klump et al. [2006]). Obviously, this needs more effort by the
publishing scientists than simply putting the raw data on a server and connect it to the internet (Strebel
et al. [1998]).

Apart from this, concerns that published datasets will not be cited like articles in journals, are still present
(Costello [2009]). Therefore, the question arises if this is really a threat and what reasons exist to believe,
that citing datasets in traditional publications will be a common tool in the future. If a dataset is cited
at all, depends of course highly on its individual relevancy, quality and the documentation. Additionally,
there is the necessity of a general change in the "sociology of science" (Heidorn [2008]). This can be
supported for example by the pressure of funding agencies, which want more scientific results to be
generated from their money spent on costly experiments (Toronto International Data Release Workshop
Authors [2009]). For example, the directorate for geosciences of the National Science Foundation (NSF)
calls for establishing data citation "[...] as the rule rather than the exception" (Killeen [2012]).

Should more scientists use and cite existing datasets, prepared by others, investments in those experiments
would deliver more scientific output. There is also a study, performed in astronomy literature, that
indicates that authors, who cite datasets, earn a higher citation rate for their own paper (Henneken and
Accomazzi [2011]). These examples show, that a change in sociology of scientists might be possible in the
future. The importance of data availability and publishing shown in this section leads to the conclusion
that special forms of publications, which focus solely on data, might be justifiable. In the next section,
the actual situation in this field will be further described.

2.3.2 Situation of data publishing today

By speaking of the future and possibilities of primary data publication, it is important to to take a look
at the current situation. The problem, that too little amounts of data are well archived and accessible
for others is recognised. Research organisations like the American Geophysical Union (AGU) ask their
members to making data available (AGU Council [2009]). The funding agency Deutsche Forschungsge-
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meinschaft (DFG) recommends in their "Proposals for Safeguarding Good Scientific Practice": "Primary
data as the basis for publications shall be securely stored for ten years in a durable form in the institu-
tion of their origin." (Deutsche Forschungsgemeinschaft [1998], p. 55). A current development at funding
agencies can be observed at the National Science Foundation (NSF) in the United States. In January
2011, they added to their recommendations, that for granting a proposal a data management plan has to
be included. This covers "Plans for data management and sharing of the products of research, including
preservation, documentation, and sharing of data, samples, physical collections, curriculum materials
and other related research and education products [...]" (National Science Foundation [2011], chapter
I1.C.2.d.1). Recently, also the Research Councils of the United Kingdom emphasised in their modification
of their "Policies on Access to Research Outputs" in July 2012, that researchers, who are funded by these
institutions, have to include "[...]Ja statement on how the underlying research materials — such as data,
samples or models — can be accessed." in their publications (Research Councils UK [2012]).

Apart from these recommendations there are strong reasons, why data is actually not shared. For example,
governmental interests, like making commercial receipts from the financed research, are at stake (Overpeck
et al. [2011]). Other problems can be found in the scientists themselves. Having well prepared data is
a big advantage for them. They may have problems to share the data with their probable opponents,
fearing to compromise their career chances (Schofield et al. [2009]). As a result, even big campaigns, like
the International Polar Year 2007/2008, struggle with the lack of data availability (Carlson [2011]).

To overcome these difficulties, there are many initiatives, which are mostly based on rewarding or force
to store and publish data. Many journals for example ask their authors to make data available on request
(Hrynaszkiewicz et al. [2010]). The same is valid for scientists, who are funded by the governments of
the United Kingdom or the United States (Jubb [2012]). A major contribution to tackle these problems
are the fundings of the world data centres, which will be explained in more detail in section 2.5.1.

To get more insight into the current situation a look at a poll of the journal Science will be taken in the
following (Science Staff [2011]). The survey on 1700 scientists indicated, that around eighty percent of
the respondents think, that they were not funded enough to curate their data. The same poll shows, that
half of the responding scientists save their research data in their own lab, which is far from ideal in terms
of long time archiving the data. Another interesting point of this survey is, that half of the respondents
use data from archival databases only rarely for their own research.

This all leads to the view, that the problems around data archiving, using and publishing in science are
recognised and addressed by major representers of the scientific communities. Nevertheless, it shows also
that there is still much work to do in this field in times ahead. Examples for such work are data journals,
which will be presented in the upcoming section.

2.3.3 Data journals

Institutionalised data publishing in journals is available for scientists for several years. The main way
to distribute the data is supplement data to a written publication, which was published in a scientific
journal. In this case, an author uses available storage provided by the journal and stores additional data
to it. This data is normally also part of the peer review process of the article that it is appended to. A
limitation of this way of publication of stored data is given by the fact, that the data should only underline
the argumentation of the article (Lawrence et al. [2011]). Therefore, new ways of publication emerged in
recent years. Important developments are data journals, which will be discussed in the following.

Data journals are journals, which are specialised on presenting datasets, their retrieval and preparation
(AGU Publications Committee [1993]). The focus is set on the dataset itself, which is described in detail
by the authors of the data. An example for this new generation of journals is "Earth System Science
Data" (ESSD). It was created in 2008 by Hans Pfeiffenberger and David Carlson and is published by
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Copernicus. In the publication process, ESSD wants to form an independent publication, which coexists
alongside the traditional paper. Therefore, it includes a quality assurance, which consists of an associated
discussion paper and a peer review process like the traditional publications (ESSD [2012b]). The only
difference is, that it does not reflect the whole traditional scientific process, like it was described in section
2.2.2. It omits the argumentation around a pre-experimental and post-experimental theory and focuses
on the experimental design itself. As a consequence, it aims to get cited by a traditional publication to
round up the detailed documentation of the whole scientific process (Pfeiffenberger and Carlson [2011]).
An advantage is, that users of the data are able to direct their citation at the dataset itself instead of
taking reference to a paper with a different focus. Additionally, a performed quality assurance, which
might be described in the data paper, gives the dataset an additional value and therefore for the author
of the paper himself/herself. Disadvantages can be found in the fact, that these papers need additional
effort by the authors of the data. Like explained before, it is hoped, that invested effort increases their
credibility. It is also possible, that the data journal focuses completely on the experimental design, what
would not help a data user to correctly access and analyse the data. The format of the short analysis is
a free form text just like a traditional paper. This might be of concern for search and retrieve, because
it is still discussed, if standardised metadata are better than free form texts for delivering search results
in literature databases (Kostoff [2010], Beall [2008], Hemminger et al. [2007]).

A part of the data journal process, which is used by the ESSD, is the data storage at a data reposi-
tory (Pfeiffenberger and Carlson [2011]). An enhancement of this pure storage functionality of a data
repository, the primary data publication, will be explained in the next section.

2.3.4 Primary data publication

In this section, the difference between the storage functionality of a data journal and the primary data
publication will be emphasised. Therefore, the traditional publication process, which was shown in figure
2.1 is enhanced. The scheme with this enhancement is presented in figure 2.2. In blue, the elements
of the traditional publication process, which were already described in section 2.2.2, are shown. The
elements in red show the processes, that were included since the advent of the world wide web. The
new processes include the quality assurance step for the traditional publication, which was described in
section 2.2.3. Data journals, which were introduced in section 2.3.3, build a new branch of publication.
It is similarly structured like the traditional publication. The main difference is, that it does not include
a full analysis of the scientific problem. It rather focuses primarily on the experimental design of the
experiment. Therefore, the analysis step, which produces the manuscript, is described here as ’short
analysis’. The other elements in this branch are equal to the traditional publication, which includes the
possibility of quality assurance.

The primary data publication is shown in green. It consists generally of two parts: a section of the
data itself and the data on the data, the metadata. Both need different quality assurances, which are
particularly described in section 2.4.2. The quality assurance on metadata is marked as "QA/QC", which
stands for quality assurance and quality control. The reason will be discussed in section 5.3.1.3. When
this quality assurance step is done the data is published. A detailed look at figure 2.2 shows, that when
only the green elements are included in the process description of the data publication, one element is
missing. The peer review process, which is included in the data journal and the traditional publication
process is not defined for primary data publication yet. Therefore, due to the reason of symmetry the
element of peer review is included in black. How a peer review process for primary data publication
might look like, will be discussed in section 5.3.4.

The difference of the three types of publication cannot only be found in the different forms, but also in
the different parts of the publication process that they cover. Besides the data, which are an integral
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part of this type of publication, the primary data publication covers information on the experiment.
This information is stored in the metadata, which will be explained in more detail in section 2.5.5. Data
journals cover additionally the experimental design and cite the basic dataset. This dataset can either just
be stored at a data repository or be published as a primary data publication before. The whole scientific
process is only described in the traditional form of publication. It is possible, that this major form of
scientific publication cites a data journal or a primary data publication. Important parts within the
process of the three forms of publication are the quality assurance steps, which will be further explained

in the next section.

2.4 Quality assurance in the data publication processes

The quality of published entities is crucial for their reusers. Therefore, quality assurance measures
have to be defined and implemented into the publication process, which will be demonstrated in this
section. It starts with a brief overview in section 2.4.1, on the question, what data quality is. After this,
section 2.4.2 explains the properties of the quality assurance processes for the different publication types.
Therefore, three different types of quality assurance are defined and explained. Finally, in section 2.4.3,
the importance of the quality assurance process is further examined.

2.4.1 What is data quality?

The term data quality is often used, but hard to define. A definition for general databases is given by
Wang and Strong [1996], who define data quality "... as data that are fit for use by data consumers". In
their study they determine by survey 179 attributes, that contribute to data quality. After the reduction
to 118 attributes by refining the survey method, Wang and Strong [1996] group the attributes in four
groups: Intrinsic, contextual, representational and accessibility data quality. These cover not only the
quality of the data values itself, even when this is mostly associated with data quality (Fox et al. [1994]).
Under this point of view data quality also accounts for attributes, which cover the whole generating and
archiving process of the data.

In connection to scientific data generation this means, that the data quality has to consider also the
"instrumentation, observing practices, data handling and processing procedures, archiving and dissem-
ination" (Guttman and Quayle [1990]). Therefore, quality assurance in data publication has to be set
on a broad basis to achieve a result, which leads to an acceptable standard for the data reusers. As a
consequence, in this thesis, data quality is therefore not only understood as quality of the data values,
but additionally as well documented in all the parts, that were mentioned above. This is reflected in the
quality assurance, which will be proposed in the next section.

2.4.2 Different types of quality assurance

In section 2.3.4 four different quality assurance elements were mentioned. The types of quality assurance of
a data journal and the traditional publication are similar, since both consist of a free form text. Therefore,
three different types of quality assurance have to be performed, if all three branches of publication ought
to be passed with an experiment.

In the following, the three types will be characterised. The different elements are shown in the figures 2.3
to 2.5. All three types are divided into three different phases that are represented by colours: collecting
the information in green, controlling the information in blue and documenting the quality assurance in
red.

The first type of quality assurance to be discussed will be the one of the traditional publication and the
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Figure 2.3: Workflow of a proposed scientific quality assurance on methods. Green elements are part
of the collecting, blue of the controlling and red of the documenting part of this quality
assurance.

data journal. They can both be characterised as free form texts, which follows a recommended form.
Still, it has no generally standardised and fixed form. For simplicity, the practical elements of analysis
in the traditional publication and short analysis of the data journal are handled as parts of the quality
assurance as well. An idealised quality assurance process for this is shown in figure 2.3. It begins with the
collection of the information and the production of a manuscript for the analysis or short analysis. When
this is done, it can be submitted to a journal. These collecting steps can also be seen as a part of the
analysis itself. The following controlling step can be, for example, the production of a discussion paper
or a pre-publication, as it was explained in section 2.2.3. It is also possible, that this step includes a first
technical control of an employee of the journal, which is not part of the proper peer review. After having
finished this controlling step, the performed steps are documented by including them to a database. It
is also possible to make this database entry publicly available, for example on the website of the journal
or in form of additional information of the paper. This is part of the freedom the scientific journal has.
Some further remarks on this flexibility are given in section 5.3.1.2.

As a second form the quality assurance of the metadata, as part of a primary data publication is shown
in figure 2.4. Metadata can be characterised as mixed type, highly standardised information. It starts
with the collection of the metadata. This can either be done by asking a scientist to report the necessary
information or by extracting it from the dataset directly. The latter might be possible, if the data format
of the dataset consists of data and metadata. An example for those formats is netCDF (Eaton et al.
[2011]). After collecting or extracting this information it might be necessary to complete the metadata. An
example for this completion is given in section 2.5.4, when the web-based software Atarrabi is described.
After completing the set of metadata, a technical check of the entered information is necessary to make
sure, that this information can be included into the database. In a the first step, this is done by an
automatic validation. In a second step it is useful, if a human, here called publication agent, rechecks
the inclusion to correct obvious errors. These may occur due to misunderstandings of the standardised
format, in which metadata have to be compiled. When these corrections are finished, the information is
included into a database.

The third type of quality assurance is the quality assurance of the data itself. The corresponding idealised
process is shown in figure 2.5. At first data have to be collected. Should a data centre be the storing
location, the scientists have to upload the data to it. The data centre stores the information into their
database, which includes a first quality measure, because the data have to fit into the database. Now,
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Figure 2.4: Workflow of a proposed scientific quality assurance on metadata. Green elements are part
of the collecting, blue of the controlling and red of the documenting part of this quality
assurance.

two types of control are applied to the data. The first is the quality assurance, which checks, whether the
content of the data is correct. This is called ’Scientific Quality Assurance’ (SQA). Since the development
of such a SQA will form the main part of this thesis, it is explained in detail in section 2.6. The results
of the ’SQA on data’ are used to enhance the metadata in a documenting step. When this has been
completed, a technical check on the data is performed, which is called "Technical Quality Assurance’
(TQA). When everything is finished, the additional information is appended to the data in the database
and the quality assurance on data is completed.

The three types of quality assurances are all necessary, when a dataset shall be quality assured in a
trustworthy way. All three show technical and scientific parts and can therefore be divided into a technical
quality assurance and a scientific quality assurance. The SQA and the TQA on data were explained above.
The SQA on metadata is given by the inclusion of the publication agent, the TQA in the technical
validation. In a data journal, the quality assurance is performed on the methods of the experiment.
Therefore, the steps are called 'SQA and TQA on methods’ in the following. The SQA on methods can
be defined as the possible discussion paper, which can be generated within the quality assurance. The
TQA on methods can be found in the submitting step to the journal, when the journal checks, whether
the free form text fulfils the technical requirements of the journal.

After having separated the quality assurance into the three different types, the question arises, why a
scientist and a data centre or journal should invest the efforts to perform a proper quality assurance.
This question will be answered in the next section.

2.4.3 Why is quality assurance so important?

Especially in climate science, which strongly builds on data as its foundation, quality assured data are of
high importance (Overpeck et al. [2011], Ducré-Robitaille et al. [2003]). Without this data it is impossible
to perform an accepted science. In the context of data publishing, quality assurance of data adds value
to the dataset (Costello [2009]). This is achieved by offering additional information to a reuser of the
data, about whether the dataset fits his/her needs. This allows him/her to optimise his/her scientific
workflow.

In environmental sciences the necessity to perform quality assurances on data is recognised for a long
time. For example in meteorology this has led to a lot of specialised tests (Wan et al. [2007], Blakeslee
and Rumble Jr. [2003]). Nevertheless, testing data and especially measurement data on its quality is
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Figure 2.5: Workflow of a proposed scientific quality assurance on data. Green elements are part of the
collecting, blue of the controlling and red of the documenting part of this quality assurance.

difficult (Hgjstrup [1993]). Data publication is a new challenge to this task, since data reusers are not
necessarily of the same field that the data originates from (Lide [2007]). For them, it is much harder to
decide, whether a dataset has a quality that is sufficient to use it in the aimed application. Therefore, a
well performed quality assurance is inevitable.

2.5 Data publication at the WDC for Climate

Primary data publication is located at data centres. Therefore, the data centres’ functionality and
procedures are explained in this section, with the World Data Center for Climate (WDC-C) used as an
example. The system of world data centres is introduced briefly at the beginning in section 2.5.1. Apart
from the location, where the data is stored, it is important how the data can be found in the world
wide web. One option for this are identifiers, which are presented in section 2.5.2. In the following the
publication process which was developed in the project "Publikation Umweltdaten" is shown in section
2.5.3. One of the developments are a web-based software tool for the SQA on metadata, called Atarrabi.
An overview on this software is given in section 2.5.4. Some information about the metadata itself and
their functionality will be given at the end in section 2.5.5.

2.5.1 World data centers

World data centres were originally founded by the International Council of Scientific Unions (ICSU)
in context of the International Geophysical Year (IGY) 1957/1958 (Ruttenberg and Rishbeth [1994]).
They exist in several fields of earth sciences and their task is to offer a possibility to collect data from
one specified field of research interest. This system was not considered effective anymore in times of a
"modern international science" and was therefore transformed to a World Data System (Carlson [2011]).
The corresponding data centres store datasets indefinitely and allow scientists around the world to access
the data (AGU Publications Committee [1993]).

One of the World Data Centres is the "World Data Center for Climate" (WDC-C) in Hamburg. It was
established in 2003 and bases on the technological foundation of the German Climate Computer Centre
(Deutsches Klimarechenzentrum, DKRZ). It collects earth system data and sets its focus on data of
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climate modelling experiments (Toussaint et al. [2007]). The installed database, called CERA-2 (Climate
and Environmental Data Retrieval and Archiving), is used to archive data and to attach additional data
to it (Lautenschlager et al. [1998]). In recent years it started to publish primary data. A necessary tool
are data handles, which are a topic of the next section.

2.5.2 Referencing data

Archiving data is only the first step of making them available to a broader public. Besides webpages
that offer additional information about a dataset, the data have to be reachable in a simple way. A very
important instrument, especially for citing the dataset in the literature, are identifiers.

The WDC-C acts as a publication agency for Digital Object Identifier (DOI) (Paskin [2005]). Identifiers
are used to make a digital object citable through the assignment of a unique code. By searching this code
in a search engine, a web user is able to get directly to a landing page of the dataset (Paskin [2005]).
The DOI system was established in 1998 and used by a high number of publishers and data centres
(Duerr et al. [2011]). It is not only possible to register DOIs for datasets, but for every available digital
document. Hence, they are also used to cite traditional papers and are implemented by aan immense
number of journals as a standard identifier. The WDC-C registers the DOI at a non-profit organisation
named DataCite, which serves as a global registration agency (Brase [2009], Lawrence et al. [2011]).
With these attributes the DOI is a useful tool to find and cite datasets, and is part of the publication
process of the WDC-C. The modelling of this process will be described in the upcoming section.

Publication
Agent

Scientist

Figure 2.6: Data publication process at the World Data Center of Climate (WDC-C). It starts with the
data availability in the WDC-C long term storage and afterwards goes clockwise through the
steps, which end with sending the information of the publication to DataCite. It described
the role and task of the publication agent (red) and of the publishing scientist (green) by the
inner circles.
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2.5.3 Modelling the publication process

Within the project "Publikation Umweltdaten" ("Publication of Environmental Data") funded by Deutsche
Forschungsgemeinschaft (DFG) the primary data publication process at the WDC-C was enhanced. A
basic aim was the inclusion of a quality assurance for data and metadata. To achieve this, the process
for data publication was modelled and the tasks of the data centre and the publishing scientists were
described in detail (Hense and Quadt [2011]).

The structure of the process is shown in figure 2.6. It shows the process steps in the blue circle, which
begins at the top. The starting point of the publication is, that the data is stored at the WDC-C in its long
term archive. At the WDC-C, the publication of a specific dataset is in the responsibility of a publication
agent. He/She acts as the contact person for the scientist. The working steps, to be performed by the
publication agent are indicated by the red inner circle. The steps to be performed by the publishing
scientist are shown by the green circle. The specific tasks are added to these inner circles.

The first step is initiated by the publication agent after the WDC-C has decided to publish a specific
dataset. He/She starts the workflow by granting the technical permission. This includes an invitation to
perform a scientific quality assurance on the data and metadata to the publishing scientist. The scientist
starts with the SQA on metadata, for which he/she uses a web-based workflow system called *Atarrabi’.
This will be presented in the next section (2.5.4). In this workflow the scientist is asked to perform the
SQA on data and document it within Atarrabi. When the scientist finishes the SQA, the publication
agent controls the entered information. The representative of the WDC-C also decides, if the information
given in the SQA fulfils the requirements. If not, the publication agent helps the publishing scientist to
ensure the needed quality of the SQA.

When the SQA is accepted, the publication agent initiates the technical quality assurance. Should the
datasets pass these tests, all information necessary for the data publication is collected. Afterwards, it
is send to DataCite, which offers the DOI, in a standardised form. There, the information is used to
create the link between the DOI and the storage at the data centre. Then the publication process of the
datasets is finished.

Further details of the technical implementation of this model are given in (Quadt et al. [2012]). One
integral part, the software Atarrabi, is presented in the following section.

2.5.4 Atarrabi

Atarrabi is a web-based software system. It helps the publishing scientists to perform a scientific quality
assurance on metadata. To achieve this, Atarrabi uses a workflow based approach, which divides the
different themes of the scientific quality assurance in separate steps:

e General information on the experiment

e Contact information for the authors of the experiment
e Contact information for the leading author

e Contributing institutions

e Relations to other publications

e Spatial and temporal coverage of the experiment

e Information on the used instruments

Quality of the data
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Each step consists of a dedicated view. In each view the publishing scientist is asked to enter the
demanded information, which is divided into two kinds: required and optional. The required information
is necessary to get the DOI for the publication of the dataset. Additional information, which is marked
as optional, ought to motivate the scientist to give a better documentation on his/her dataset.

An important aim of Atarrabi is to assist the publishing author in creating a good documentation.
Therefore, several quality measures are implemented into the software. The first explained at this point
are lists of values. These lists preselect information for the scientist, if possible. For example contact
information for authors are loaded, if available, automatically from the CERA2 database. Therefore, the
scientist just has to edit this information, which is not already in the database or out of date. Another
quality measure is the visualisation of spatial information on interactive maps. This shows the user of the
software another representation of the entered coordinates. It results in a much simpler way for him /her
to see possible errors in his/her entered information in this field. The same is achieved by the validation
on technical aspects on every entered information.

The next quality measure are extensive help texts. These texts include detailed information on what is
required in which field. They also inform the user about what happens with his/her information. This
should prevent the scientist from misunderstanding the instructions and also motivates him/her to invest
more effort in giving a documentation on his/her datasets, which is as good as possible. It also helps to
give the scientist a deeper insight into the underlying processes, what increases the transparency of the
process (see also section 5.3.2).

A last measure to enhance the quality of the documentation are integrated contact possibilities. These
should simplify the communication between the publishing scientist and the publication agent. The latter
has an administration panel, which helps him/her to follow the edits by the scientist and intervene if
necessary.

Of particular interest for this thesis is the last point of the enumeration above: Quality of the data. This
view connects the SQA on metadata with the SQA on data. In figure 2.7 it is shown how this view is
designed in the Atarrabi version 2.1. Next to the navigation on the left hand side there is the main box
named "Quality approval for gop7". In this case gop7 is the name of the actual project, whose data
quality should be documented in this view. It starts with a brief explanation for the publishing scientist,

1

which can be enlarged by clicking the link text "More...". Below this introduction, the user has the
opportunity to decide between a simple and an advanced view. The second is designed just like the first,
but enables the user to perform the following steps not only for the whole experiment, but also for every
individual dataset. In the simple view five steps are shown. The first is the selection of the data level,
which is explained in more detail in section 2.6.2. If the user selects a quality level for the experiment,
the dedicated description is shown in the second line. In a third point the author gives an approval that
he/she is respounsible for the quality of the datasets. The fourth line is a textfield, in which the publishing
scientist has to enter some comments on the performed quality checks. In a last point the user can upload
some files to underline the comments, that he/she had given before. For that, standardised formats like
reports in the Portable Document Format (PDF) can be used. It is also a possible interface for uploading
results of the SQA on data described in section 2.6.3. By pressing the button 'continue’ the user finishes
this view.

Afterwards, the publishing scientist is able to examine a summary of all given information in the workflow
process. By accepting this summary the publication agent is informed and controls all entered informa-
tion. When he/she accepts, the SQA for data and metadata ends. Atarrabi itself is a useful tool, because
the input of this information has to be done by submitting an Extendable Markup Language (XML) file
before its introduction. With the included quality measures it helps to get a better result of the SQA on
metadata.
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A connection point between the SQA on data and metadata is described from a more theoretical point
of view in section 2.6. In the next section follow some remarks on the metadata, which are stored in this

process.
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Figure 2.7: Screenshot of the data quality view of the software Atarrabi (version 2.1).

2.5.5 Metadata

Metadata are an important addition to the primary data. They are defined as "data about data" (Peterson
et al. [1998]) or "information which makes data useful" (Bretherton and Singley [1994]). The information,
which should be stored in the metadata depends on the reuser of the data. Bretherton and Singley
[1994] described the different meanings of metadata for scientists from different fields. For example, a
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computer scientist understands under the term metadata "physical level information", like for example file
names. Nevertheless, with the term metadata physicists would associate information, which is necessary
to understand the content of the primary data. This could be for example the used instruments of the
experiment, in which the dataset was generated.

That well compiled metadata are important, was stated for example by the AGU Council [2009]: "Because
datasets are often later used for purposes other than those for which they were collected, accurate,
complete, and, when possible, standardized metadata are as important as the data themselves."

In data publishing, metadata are especially important even when it is hard to find the balance between
too much needed effort and usable information for a data reuser (Lawrence et al. [2011]). As a basic
convention for metadata DublinCore can be used (Lawrence et al. [2011], Weibel [1997]). This defines
a collection of required and optional entries for a set of metadata. For the publication of environmental
data a lot of metadata can be generated and stored. An example is the author of the data. The first
question is: Who has to be named as an author of the data? Parsons et al. [2010] defined data author
with: "Authors are those who put the intellectual effort into collecting and preparing the data". For the
people who fulfil this requirement, a name for registering the DOI is required. Nevertheless, it might be
of interest for a data centre to ask for more details to a person, like the institution these people belong to,
a contact address, phone numbers etc. As a consequence, it is hard to define a limit on which information
is necessary and should be asked from the publishing scientists.

Within the project of "Publikation Umweltdaten" a basic set was defined, which covers the themes shown
as steps within Atarrabi in section 2.5.4. This basic set was enriched by additional optional information.
To prevent a user from filling out entries, which can be generated by already known information of the data
centre, he/she is assisted by the software. When he/she enters a name, the database of the data centre
will check, if it is an already known person. If so, additional information will be filled in automatically,
which the user just has to control and accept. With such measures the time, which is needed by the user
and data centre staff to produce consistent and correct metadata, is clearly reduced.

2.6 Scientific quality assurance of primary data

After having explained the environment and necessity of a scientific quality assurance on data this section
will show, how such a process can look like. It starts in section 2.6.1 with a definition on what an SQA
on data is and which recommendation follows for the processes involved. Afterwards, section 2.6.2 shows
the importance and possibilities of a well performed documentation of an SQA on data. To assist a user
with the performance and documentation of the process, a proof of concept implementation of a software
is shown in section 2.6.3. This software bases on quality tests on data. To be able to develop these, the
basis is laid in the following. It starts with reasons for errors in datasets in meteorology in section 2.6.4.
These have consequences for the resulting datasets, what is explained in section 2.6.5. Based on that,
the necessity of generalised tests is briefly discussed in section 2.6.6. Before tests can be developed, it is
necessary to think about the evaluation of the results. Since a lot of tests lead to a lot of results, which
have to be effectively evaluated, a quality evaluation model is explained in the last section 2.6.7. From
this model, some prerequisites follow for the tests in the upcoming chapter 3, which then describes and
develops some general quality checks.

2.6.1 What is primary data scientific quality assurance?

The starting point in this section is the question on what a primary data scientific quality assurance is.
It will be explained, which tasks it should handle and which basic problems it should solve.
The basic characteristic of the SQA on data should be test-based. This means, that if a scientist performs
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the SQA on data he/she ought use, for example statistical, tests to check the data quality. This is
necessary, because it simplifies the reconstruction and documentation of the performed process. These
tests provide results, which then have to be interpreted by the user. If tests provide indications for
suspicious data within the dataset, the publishing scientist should comment on this and try to explain
the reasons for their existence. The main aim is to give an indication to the data reuser if he/she can
use the dataset for his/her purpose. It should also give him /her a starting point for the search of errors,
if the data behave strange in the reusers own analysis.

To fulfil these aims, it is necessary that within the quality assurance process the data are not changed
themselves. This is different to other systems that follow more the idea of a quality control. In these
systems a change to the data itself is a basic aim, what gives a more accurate representation of the
measured truth. This is discussed in more detail in section 5.3.1.3. Keeping the original datasets is
important, what was also stated by You and Hubbard [2006]. This statement does not mean, that
corrected datasets can not be published at all. It just states, that the process to perform the test
of quality within the publication process should not apply such corrections. If a publishing scientist
wants to publish corrected datasets he/she has to deliver the data centre these corrected datasets as new
publication entities, which then have to go through the quality assurance step again.?

Another problem, which has to be solved by the quality assurance system is the handling of immense
amounts of data. A usual approach would be to only look at a subsample of the dataset and then extrap-
olate the results. Since it is the aim to generate confidence of the quality statement to the whole dataset,
all data have to be checked. Quality checks themselves only control a subset of a dataset, sometimes
handle every datum individually (Hubbard et al. [2005]). This means, that finding a quality statement
on the whole dataset can be a complicated task. As a consequence, there is a need of mechanisms to
allow the publishing scientist to perform this type of SQA as convenient as possible. A way to achieve
this is the automatisation of quality checks (Gronell and Wijffels [2008], Guttman and Quayle [1990]),
which will be thematised in section 2.6.7.

The presented basic structure of a scientific quality assurance on data allows to generate a transparent
and comprehensible information for data reusers. This allows to help scientists to use and to interpret
the data correctly.

2.6.2 Documenting quality assurance on data

For the scientific quality assurance of data three basic things are necessary to implement: roles for
documentation, quality checks and automatisation algorithms. All this will be explained in the upcoming
sections.

The first component is the documentation of the quality assurance, whose importance is mentioned for
example by Overpeck et al. [2011]. In their opinion, the used quality control procedures should be
communicated like changes of the instruments or "spatial or temporal sampling uncertainties". With
the detailed documentation of the quality assurance, it is also possible to evaluate the used methods
afterwards like it is for example done by Durre et al. [2008].

The concept of documentation is shown in figure 2.8. It starts on the top with the data, which is used
in the following to perform the quality tests on it. In a next step follows the documentation. This is
also test-wise and created with the aim to make it possible to reproduce every test separately. Therefore,
several components have to be stored for every performed test. The first is a name of the test, which
can be used for simple identification. A detailed description about what the test is actually doing and
testing for, will help interested data reusers to understand the behaviour and the aim of the test. Another

2The corrected dataset can also be published alongside the uncorrected data as an additional variable within a new dataset.
Nevertheless, this dataset have to pass again the quality assurance as a new publication entity.
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Figure 2.8: Workflow of the scientific quality assurance on data.

important information to store is the used algorithm of the test. This could be the code or a reference
to a publication underlying the test.

With this information, it should be possible to exactly reproduce the performed check, if the data is
available. The reason for the importance of the algorithm lies in the problem, that small deviations in
the construction of the test might lead to different results. As it is shown in section 2.6.6, the tests are
mostly constructed in a way, that they are controlled by only a low number of parameters.

Since these parameters are also necessary for a possible repetition of the exact check, they have to be
stored as well. The next component is an optional documentation of the results of the check. If the test
can be reproduced by the information given for the algorithm and parameters, it is not necessary to store
the results. Nevertheless, if for example the computational time to perform a check is high, it might be
recommendable to document it anyhow. Examples for types of results are given in section 2.6.3. More
important to document is a comment on the results. With this component, the intention of the quality
check becomes clear and a data reuser learns, how he/she should interpret the results. This is necessary,
because the occurrence of a quality check with bad results does not mean that the dataset itself is of bad
quality. If parameters are chosen in a way, that it is hardly possible for a dataset to pass it, the data
reuser has to be informed.

All these documentation steps are then used to enhance the metadata, together with additional informa-
tion. An example for this additional information is the data level of a dataset. Data levels were used for
example in the First GARP Global Experiment (FGGE) for observational datasets (U.S. FGGE Project
Office Staff [1978]) and are of common use for satellite products (WMO [2012]). They indicate the level
of processing and the extent of the performed quality assurance on the data. For observational data
at the WDC-C the definitions of the Global Ocean Data Assimilation Experiment (GODAE) are used
(GODAE [2007]). Those levels range from 0 for raw instrument data to level 4 for highly processed data.
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Added are an a, b or ¢ for a low, medium or high action of the quality control, that was performed on
the datasets. Therefore, a dataset with level 2b consists of geophysical variables, which was subject to
some action of quality control.

Another additional information, that could enhance the metadata is an approval. This approval consists
of a small text, which states who approved the quality assurance results. In the simplest form this is
"approved by author", which indicates, that the publishing scientist is responsible. In the future it could
be "peer reviewed" as well, if the datasets undergo a peer review process of data.

All the above described information is added to the metadata. A possible way is an interface within the
SQA on metadata just like it is done in Atarrabi (section 2.5.4).

This information is necessary to replicate the performed tests and to estimate their influence on the
work for a data reuser. Nevertheless, it is a lot of effort for a scientist to perform such a detailed
documentation. Therefore, it is necessary to assist him, for example with software solutions. An example
for such a software is shown in the next section. It does not only perform tests, but also gives information
for a documentation of the performed quality assurance steps.

2.6.3 Implementation of the quality assurance toolkit (qat)

As it was shown in section 2.5.4 in the project "Publikation Umweltdaten" with Atarrabi a software was
developed for the SQA on metadata. Since for data publication an SQA on data has to be performed as
well, there is also a need to develop a software for this. It will be presented in this section.

A prerequisite by the staff of the data centre, the German Climate Computer Center (DKRZ), was that
they do not have to perform necessary calculations within the SQA on data on their own resources.
As a consequence, the concept of this type of SQA includes, that the author has to perform the SQA
on data on his/her own resources. This is achieved by the provision of an extension package for the
statistical programming language R (R Development Core Team [2011]). In this section, the structure of
this package will be explained. Other topics are the precautions for the connection between the package
and Atarrabi.

The package is named Quality Assurance Toolkit (qat) (Diisterhus [2011]). It is constructed as a proof
of concept implementation and focuses on a high flexibility to make it a usable tool for data analysis. It
also gives the possibility to include new developed methods for data publication in a simple way. The
basic structure is shown in figure 2.9. It consists of twelve modules in four vertical levels. Each module
contains several functions to provide the needed functionality. The structure allows the processing of
a workflow of tests, what helps the user to perform a quality assurance on a larger number of datasets
effectively.

The first module on the left hand side is the reading module. Its function is defined in two ways. At first,
it should read the datasets to be controlled. As an example file format, netCDF files are used. They
allow to store several variables into one file. The metadata of the file contain information to uniquely
identify each variable in the file, what can be used to distinguish between the information in the storing
procedures in the writing module. The second functionality is the reading of the workflow setup. For
this an XML scheme is used, which contains information, like parameters, for the tests, that should be
performed. For the upcoming steps the dataset, which ought to be controlled, has to be divided into
logical entities. This is in its simplest form a one or more dimensional time series. In the following, those
time series will be called measurement vector (even though this could also be a field). The information,
which is given to the next process steps by the reading module is a measurement vector and a dedicated
workflow description.

The next part of the package is controlled by a moderator module. This module calls the processes, which
perform the tests (analyse), produce plots of the results (plot) and prepare the results for storing (save).
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Figure 2.9: Structure of the software package quality assurance toolkit (qat).

The three vertical levels below the moderator are equally structured for all three process types. The first
level is the workflow level. This level uses the given workflow, defined by the XML scheme. Its task is
to call a different function for each test at the second level. These functions are named calling functions.
The main task of the second level is to call, if necessary, different functions for the third level. Reasons
for using different functions on the lowest level can be several types of parameters, that request different
functions. This concept can also be used to call different functions for measurement vectors with different
dimensionality.

A typical processing of a quality check starts with the analysis. The workflow is processed and for every
test the calling- and function level is used to get a result for every workflow step. Additionally, the XML
of the workflow is enhanced with information on name, description and algorithm. The results of the
tests are collected separately.

After having finished all tests, the results are used to start the plot process. Here, the two lower levels,
which produce the plots, are called as well. In this proof of concept version, these plots are stored in the
Portable Network Graphics (PNG) format.

In a last step, the results and the enhanced XML of the workflow are used to prepare the storing of all
results. They produce an output, which merges information for the documentation and the results of the
performed checks.

The last module is the writing module. It writes the information generated in the main process into
files. The first is the enhanced XML file of the workflow, which now includes information on the name,
description and algorithm of the performed tests. It also processes the information generated within the
’save’ process to produce an output, which consists of the documentation like the XML, but also of the
results of the tests. This is stored in the netCDF format, for which an adapted definition was created.
With this structure, it is possible to perform a quality check for one measurement vector. If several
measurement vectors are part of one dataset, the process has to be repeated for each of them. A
useful identifier to separate the results of the different measurement vectors is, apart of the filename,
the identification, which was already mentioned above. In the case, that a numerical numeration exists
within the file, a number of the variable can be used as well.

The produced files, the enhanced workflow in XML, the documented test results in netCDF and the
produced plots in png can then be used within the interface in the SQA on metadata. In case of the
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software Atarrabi it is the file upload in the quality view (section 2.5.4).

The structure shown here can be expanded, like it will be proposed in section 5.2.1. It is also formulated
in general, so that it can be used as a basic procedure description to implement such a software in other
environments. This is proposed in section 5.3.3.2. In the following section, the basis for the quality checks
is determined by giving indications, for which sources of errors have to be covered.

2.6.4 Reasons for errors in data

The environment of the quality assurance is set by the software explained for the SQA on metadata in
section 2.5.4 and for the SQA on Data in section 2.6.3. The next step is to find quality checks, that can
be used in the analysis process of qat. Therein, it is important to be aware of the typical sources for the
errors, that should be detected within the dataset.

The possible reasons for errors obviously depend on the type of experiment, the used instruments and
the processing of the data. These sources have to be analysed in detail for every performed experiment
and can therefore not be generalised. Nevertheless, some sources are common and well described in the
literature.

Durre et al. [2010] described the sources of errors for the Global Historical Climatology Network (GHCN)
with "...variety of measurement, recording, digitisation, transmission, and processing problems". Kunkel
et al. [2005] used a more hierarchical structuring of the sources of errors in the Cooperative Observer Net-
work (COOP), which consists of three classes. The first, described by "observer errors", cover problems
with the functionality of the instruments, the reading and the documenting of the observed parameters.
With the second class, "station discontinuity", the problems in datasets are introduced by "...changes in
instrumentation /shields, observing practices, changes in station location, and exposure." Those errors are
common in climatological datasets. The third class, "digitization errors", discusses identifier problems of
stations or measured parameters and "...keying errors in individual values". In homogenisation of surface
wind observation by Jiménez et al. [2010], problems of recalibrating instruments, change of sensors, or
spatial and temporal inhomogeneities of the observation are mentioned as problems.

All these sources deliver anomalies in the dataset, which have to be detected statistically. These statistical
types of anomalies in data are explained in the upcoming section.

2.6.5 Types of errors in data

As a consequence of the possible errors discussed in the last section, the focus of this section lays on
the consequences for the datasets, that have to be analysed. Since in meteorological and climatological
sciences most datasets consist of time series (see also section 2.1.2), this section will focus on time series
analysis.

Classification of the different types of errors is given by Gandin [1988|. He divides them into three basic
categories: "Random, systematic, and rough errors". Random errors are the inherent uncertainties of
measurements, since measurements are just an approximation of the real physical parameters. They are
statistically characterised by their distribution, with a mean at zero.

Errors with a non-zero mean are classified as systematic errors. Just like the random errors the sys-
tematic errors are persistent in the time series throughout the measurement, when the procedure of the
experiment is not changed. The last type are the rough errors, sometimes also called gross or large errors
(Zahumensky [2007]), which are non-persistent in time. A prominent candidate for gross errors are out-
liers. A fourth type described by Gandin [1988] are micrometeorological, also called representativeness
errors (Zahumensky [2007]). They are introduced into the results by small perturbations of the mea-
surement environment and are therefore hardly distinguishable from random errors. As a consequence,
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Gandin [1988] defines random errors as a combination of the original random error of the observation
itself and the micrometeorological errors.

In quality control, the target of the used procedures is to detect and/or reduce systematic and rough
errors. Typical rough errors are outliers and missing data. Systematic errors are for example changes
in the measured statistical moments of the data, like mean or variance, or introduced trends. Also the
possibility of different rounding of the data can be an indicator for an error within the dataset. When
these errors occur within a dataset under control, it will in the following be described as an inconsistency.
Searching for these systematic errors, when their inclusion occurs outside the time series under control, is
only possible with more information. This is for example done in homogenisation, where a lot of methods
use reference stations to detect these errors (Easterling and Peterson [1995]).

Testing for the above described errors can either be done with very specified tests on the datasets or by
general quality checks. The use of the latter will be motivated in the next section.

2.6.6 The need for general quality tests

Testing meteorological time series for errors is a common task for meteorologists. For that, a lot of
quality checks exist in the field of meteorology and climatology. At first glance, most of them seem to be
very specialised in terms of their field of application. An example is the quality control of radio sondes,
which are a common application for quality control tests (Wan et al. [2007]). Gandin [1988] used checks,
that base on the hydrostatic approximation. Information of this approximation is used to define limits
for temperatures dependent on the height of the measurement and the temperature at the base level.
Looking at this in detail shows, that it is basically a simple limit check with dynamical limits (see also
section 3.1.1). The only additional effort that is necessary, is the transformation of the data to the limits
to be checked.

This example illustrates, that most of the quality checks can be led back to simpler, more general
quality tests. The reduction of checks to such general quality tests is of great importance. First of all,
they simplify the understanding of quality tests for data reusers. In a working environment like data
publication this is crucial. Only, if it is possible for a user of the data to understand the used tests,
he/she will be able to estimate, if the data is usable for him/her. Furthermore, it helps a user to trust
the quality estimation and as a consequence the data as well.

Another advantage can be found in the documentation of quality checks. In this phase of a quality
assurance, it is sometimes very complicate to transfer the information on what has been done to check
the quality to a simple understandable form. By the modification of general tests it becomes possible for
the controller of the quality to make this documentation in a standardised form.

A third advantage is the possibility of a simpler reprogramming of the quality tests. This can be done
for example by the data reuser to reperform the quality check with a slightly different set of the test
driving parameters. It also helps to use a standardised code in data centres, which works with a good
performance on the existent computer architecture (see also section 5.3.3).

All this only works, if quality tests are standardised. Doing this standardisation for so many variables in
a lot of different environments separately, is a nearly impossible task. Therefore, it is required to collect,
to develop and to use general tests, which can be modified by changing the test driving parameters.
Additionally to the tests, there have to be automatisation algorithms, that help to evaluate the outcome
of the checks. Such a procedure is proposed in the next section.
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2.6.7 Primary data quality evaluation

In this section a procedure is described, which allows to evaluate the quality in the case of the use of
several quality checks. That such procedures are necessary, is described for example by Gandin [1988].
In his "Complex Quality Control (CQC)" he uses several different types of quality tests, but as a "main
principle" he requires that "no decision is to be made until all available QC methods have been applied
to the data under consideration".

The quality evaluation procedure discussed here bases on two assumptions. First, that the tests used
in this framework are able to deliver a probability that a dataset passes the test. How this is achieved
depends on the type of the tests. Possibilities for fulfilling these requirements can be found in section
5.2.2. The second assumption is the existence of an expert, who is able to evaluate the performance of the
dataset in a test and who is able to make a connection between the results of a test and a reference for
the quality of the data. Both assumptions are not simple to achieve. Especially the second assumption
needs further discussion, that can be found in section 5.2.2.

Should both approaches be valid, the procedure can be set up to calculate a quantity ), which will be
later used to identify the quality of the dataset. The quantity ) depends on the measured observation
O, which represents the values of the dataset. It also depends on the real value of the measured quantity,
which is the unknown truth 7. An occurring problem is, that observations only approximate the truth
due to limitations of the used instruments (Gandin [1988]). As a consequence, it is necessary to introduce
a measurement operator Mo, which transforms the truth 7' to an observable value. To get information
on the quantity @, tests should be used. Especially generalised tests depend on their driving parameters
f. They are used to minimise the effort to reprogramm quality tests in order to adjust them to new
fields of applications. Examples are the minimum and maximum limits in a test on limits, which will
be explained in the description of the LIM-test in section 3.1.1. Here, it is important, that the test is
completely defined by the set of parameters §. With the use of the marginalisation theorem the following
equation can be calculated:

p(QlO, Mo(T)) = / p(Ql6.0, Mo(T)) p (60, Mo(T)) do. 21)
0

The other information to be used is the a priori knowledge of experts about the data, given as the
property I. To introduce I into the second term of the equation above the marginalisation theorem is
used again:

p(QIO, Mo (T)) = / p(Ql6.0. Mo(T)) / p(6]1,0, Mo(T)) p (110, Mp(T)) dId6.  (2.2)
0 I

Both the parameter sets 6 and the information of the experts I are discrete and therefore a discretisation
is appropriate:

P (QO, Mo(T)) = ZP(Q|91',O,MO(T)) Zp(inj’OaMO(T))p(Ij|OvMO(T))~ (2.3)

As a consequence, the final equation consists of four probabilities, which are interpreted in the following.
On the left hand side the probability for the quantity @ is given, if the observation and the modified
truth are known. If () is defined as a good quality of the observations, then this term can be identified as
the probability for a good quality of the dataset. On the right hand side the first term is the probability
p(Q|0;,0, Mo (T)). The latter can be identified as a test, since it gives a probability for a good quality
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Figure 2.10: Workflow diagram of the quality evaluation process. Green are the elements, which are only
influenced by the expert knowledge, red the elements only influenced by the data and blue
the elements, which are influenced by both.

of the dataset, dependent on the parameters of the test 6, the observations O and the modified truth
Mo(T). The other two terms are the prior information. The second term on the right hand side is the
prior of the parameter set in dependence of the knowledge of the expert, among others. It is a weighting
of the used set of parameters. The third term p (I;|O, Mo(T)) is the prior information of the observation
by the expert.

The advantages and disadvantages of this statistical model will be discussed in section 5.2.2. In a next
step, a technical implementation of this framework will be demonstrated. To illustrate the process, a
structural diagram is shown in figure 2.10. It shows an acyclic directed graph (Pearl [2000], p. 12), which
is valid for a set of parameters as well as information by an expert. By implementing the use of more
parameter sets or several experts, it has to be modified to a cyclic graph. Nevertheless, in this case the
process steps are the same. The additional measures, which have to be performed in such a case, are also
explained in the following.

The basis of the process shown in figure 2.10 are the data, indicated in red on the upper left and the expert
know-how in green on the right. The process starts with the expert, who has to deliver three things. As
a basis for the tests he/she has to define the parameter sets. For every parameter, two additional pieces
of information have to be given. First the general prior. It consists of a function, which delivers a prior
for every possible outcome of the test with the parameter set. By definition, the outcome and the prior
of the test should be ranged each between 0 and 1. Secondly, a weighting factor for the parameter set
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should be given. In the case of more than one parameter set, the weighting factor can be used to give
priority to a certain parameter set. If more than one expert takes part in this process, it can also be
used to weight the influence of each scientist on the quality estimate according their expected knowledge
about the dataset. To obtain appropriate results, the weightings of all used parameter sets within the
quality evaluation should sum up to 1.

With these three pieces of information the testing procedure starts. First, the data is tested by the
quality check, what delivers a probability for succeeding the test. Afterwards, this probability is used to
get the dedicated prior from the general prior. This is, by definition, a value between 0 and 1 and named
adjusted prior. By multiplying this adjusted prior with the weighting, the weighting prior is formed. In
a last step the weighting prior is multiplied with the probability of the test, what delivers the quality
estimate of the data for a test with the given parameter sets.

For more than one set of parameters all quality estimates of all parameters are summed up to get the
resulting quality estimation for the dataset as it is shown in equation 2.3. This is by definition of all used
components of this procedure a value in the range from 0 to 1. According to the definition of @, a good
quality is achieved with high values of the quality estimation.

To get a full quality estimation, in theory all possible tests with all possible parameters and all possible
knowledge of the experts have to be performed with a dataset. Since this is impossible, the quality
estimation is just an approximation of the real quality estimation of the dataset. It is also highly
subjective, especially due to the fact, that the expert does not only define the parameters, but also the
prior and the weighting. Therefore, this process has to be comprehensively discussed, what will be take
place in section 5.2.2.

The part that still has to be defined are the quality tests. This follows in the upcoming chapter 3.






3 Methods

In the last chapter, the general framework of a scientific working process within data publication was
presented and the necessity to develop quality tests for general data was emphasised. Those tests should be
driven by parameters and be applicable to a wide range of datasets. Since most datasets in meteorological
and climatological science consist of one- or multidimensional time series, this chapter will focus on time
series analysis.

The first tests will deal with the ones described by Meek and Hatfield [1994] in section 3.1. These are
simple tests, which are designed for the application to one dimensional time series. The basic tests will
be enhanced with some modifications to make them a general tool for quality tests in even more fields of
applications. The second test group are tests working on statistical moments and parameters, which are
presented in section 3.2. With these tests it is possible to look at the developments of their underlying
distributions. Both groups of tests are introduced briefly in this chapter, since they are simple examples
for general testing methods of data. They are also used in some applications in chapter 4.

A more detailed analysis will be performed on the next two types of tests, which are more complex. A
special test, which works with histograms as the estimation of the distribution of the dataset and their
development, will be introduced in section 3.3. There, several sensitivity test will show how the test
might be applicable to general datasets. In section 3.4, a probabilistic change point detection system
will be presented, which was developed by Dose and Menzel [2004]. Here, sensitivity tests are used and
comparisons to other change point detection systems are performed. In the last section 3.5, the histogram
test and the change point detection will be combined. The results of this combination will also be used
in some sensitivity tests. The presented tests will be utilised for some applications in chapter 4.

3.1 Methods by Meek & Hatfield

The prototypes of general tests were put into a framework by Meek and Hatfield [1994]. They formulate
three simple test types, which are used in a lot of applications before and after their publication. These
test types are a test on limits (LIM), a test on the rate of change (ROC), and a test on no changing
values of the data (NOC). All three basic types of tests are in common use at data centres to search
for errors in datasets (Hubbard et al. [2005], Durre et al. [2010], Reek et al. [1992]). They are also part
of the recommendations by the "World Meteorological Organization" (WMO) for the quality control of
automatic weather stations (Zahumensky [2007]). This section presents the three types and shows, which
enhancements can be used to make this general test applicable for a wide range of applications.

3.1.1 LIM-test

The test on limits of the data checks every data point on whether it exceeds a predefined range of values.
The basic procedure described by Meek and Hatfield [1994] used fixed limits for the whole dataset. This
is named as "LIM static" in this thesis and can be phrased as:

fi = (xi > ama:r) \% (xi < amin)- (31)

33
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In this formulation f; is a flag vector and V the logical disjunction. If the data value x; is greater in value
than the maximum limit @,,,, or lower than the minimum limit a,,;,, the value is flagged in the flag
vector (true and false or 1 and 0). If one of the two limits is not set by the scientist, it will be interpreted
as 0o or —oo, respectively. After checking the whole vector, the flag vector f; can be evaluated.

In the basic configuration of this test the limits @, and a.,q, are determined by the performing scientist.
In a first enhancement this can directly be calculated from the dataset. This "LIM sigma" test uses the
standard deviation to define the limits and was used by Hubbard et al. [2005]. To generalise this basic
idea it can be formulated with a factor of the standard deviation s, that an outlier is maximally allowed
to deviate from the mean. This leads to the following form:

fi= (x> po + 802) V(2 < pg — 504). (3.2)

Here, again the f; is the resulting flagvector. p, and o, are the mean and standard deviations of the
whole dataset X, respectively.

A third type presented here is called "LIM dynamic", which does not use a fixed limit for the whole
dataset, but a dynamic. This can be formulated as

fi - (1'1 > amaac,i) V (xz < amin,i)~ (33)

In this case, for every element of X, both a maximum and a minimum limit, are defined separately. With
this definition, the test can account for diurnal or annular cycles within the dataset.

Technically not a fourth type, but also a possible enhancement for testing, is the modification of the data
vector X before the test. This can be introduced to all tests by using a modification function A and
replace all z; by A(z;). An example was already described in section 2.6.6.

3.1.2 ROC-test

The second type of tests by Meek and Hatfield [1994] are tests on the rate of change. In this case the
difference between two consecutive elements of the vector is checked concerning limits. For a test with
static limits, this can be phrased as:

fi=(zi — zix1) > amaz) V (25 — Tig1) < Gmin)- (3.4)

Like for the LIM test, f; is the resulting flag vector, x; are the values of the dataset to be checked,
and dpaz and G, are the maximum and minimum limits, respectively. In case of dynamic limits, two
vectors have to be defined by the performing scientist. This can be phrased as:

fi= (i — 2ix1) > tmazi) V (2 — Tit1) < Qmin,i)- (3.5)

The modification of the differences x; — ;41 with a modifying function A as it was shown for the LIM
tests is of course also possible for the ROC tests.

3.1.3 NOC-test

As a third type of test, Meek and Hatfield [1994] proposed a check on whether data does not change for
more than a predefined number of values. This can be formulated as follows:

fi = (LUZ =Xi—1 = ... = l‘i,nmazfl). (36)
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It can be used to detect errors of the instrument, if it does not react to the environment anymore.

A useful enhancement for this test is a check on whether a certain number of consecutive error values
are included in the dataset. These error values depend on the way the data is stored and read in by the
software. Typical values are for example —9999 or not a number (NaN).3

The here presented tests will be used in an application in section 4.4.

3.2 Tests on statistical parameters

A usual approach to evaluate data is to make use of information on the statistical distribution of the
data under consideration. Mainly statistical moments, like mean or variance (Tsay [1988]) or even higher
ones (Vickers and Mahrt [1997]), are calculated and interpreted. This is also a usual way for change
point models to analyse moments of data and in homogenisation as well. In this section several, different
forms of quality checks, which base on information about the distribution of the data will be explained.
Its focus is set to approaches, that use information on statistical parameters of a data vector. Since the
procedures presented here will mainly be used for comparison to the method presented in section 3.3,
examples are not given at this point. This will be done in an application in section 4.2, together with the
tests.

This section begins with an overview on statistical parameters like moments and specific percentiles in
section 3.2.1. Afterwards, four different tests based on this concept will be presented. These are the
division of the dataset with a block window in section 3.2.2 and a sliding window in section 3.2.3. In
the following, the method of trimmed moments in section 3.2.4 and in section 3.2.5 the bootstrapping of

moments are shown.

3.2.1 Overview

In this section, information of the distributions from statistical parameters are used to perform quality
checks. The parameters used for these tests can be divided into two main groups: the statistical moments
and the parameters depending on quantiles.

The first group are the moments, both the standard and the centralised. If fx(x) is the probability
density function (pdf), their definition is given by

i = /;kax(x)dx (3.7)
for the standard kth moment and
fek = / (zF — ) fx(z)dx (3.8)

for the centralised kth moment (Von Storch and Zwiers [1999], p. 32). With this it is possible to define
for example the mean (k = 1), variance (k = 2), skewness (k = 3) and kurtosis (k = 4). For the mean, the
standard and the centralised version is the same, for the higher moments exist two different versions.

The second group consists of the percentiles of the distribution. With the cumulative distribution function

30f course other enhancements would not only concentrate on consecutive values, but check whether the number of any
values exceeds a critical limit. This would be especially useful for the number of error values in a dataset.
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cdf) Fx(z) the p-quantile z,, is defined by (Von Storch and Zwiers [1999], p.31
P
Fx (zp) = p. (3.9)

In this context, the 0.5-quantile, also called median, indicates the value, where half of the values of the
dataset are higher and the other half are lower. The 0.05- and 0.95-quantile deliver information about
the values at the upper and lower tails of the distribution of the measurement vector. Besides this, other
percentiles, like the 0.25- and 0.75-percentiles, might deliver useful information about the behaviour of
the distribution of the vector.

For a proper analysis it is therefore necessary to take a look at several parameters, which lead to several
plots and have to be evaluated. In section 4.2 an application will be shown, where this analysis can be
simplified by the combination with other methods. The methods in the next sections specify the database
for which these parameters are calculated. By comparing different databases for these calculations, it is
possible to detect inhomogeneities within the dataset.

3.2.2 Block window

A first approach to calculate and visualise changes in the statistical parameters is the use of a block
window. The dataset is divided into sections with a given length, specified by a parameter mpoc,. In each
block the parameters are calculated separately. This delivers a result vector for every statistical parameter.
Their length depend on the parameter myp;,.; and on the handling of the potentially incomplete block at
the end of the dataset. If the first block starts with the first element of the vector under investigation,
the last block will only exist, if it has myp;ocr elements. In other words it exists only, if the modulo of the
vector and the parameter mypocr is 0. Otherwise, the parameter of this last block can only be computed
from a smaller number of elements. This might influence the results and therefore it is in some cases
recommendable to leave the incomplete block out of the analysis in this type of test.

A usual application of a block-wise calculation of the statistical parameters in meteorology is the control
of a time series, which includes diurnal or annual cycles. In these cases it is useful to choose sizes of
a block, which include whole cycles and exclude incomplete blocks, to get a good representation of the
dataset.

3.2.3 Sliding window

A similar approach to the block window is the use of a sliding window. Here, for the first section
with length mg;qe, the statistical parameters are calculated. Afterwards, the window is shifted forward
iteratively, one element to another, and with each step the calculations are performed again. The result
is a vector for every calculated statistical moment. They have a length of the original vector minus the
parameter of the length of a section mgyq. plus 1.

An advancement of this type of calculation window is the possibility to detect inhomogeneities with a
precision of one element. In contrast to the block-wise method, the incomplete block at the end of the
dataset is does not occur here. Nevertheless, the advice to cover included cycles within the dataset
completely by a window stays in place. A consequence of applying this method is, that the number of
calculations of the statistical parameters, which have to be performed, raise enormously. Furthermore,
the results of the investigated sections are not independent, when the windows overlap.
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3.2.4 Trimmed moments

Trimmed moments are only applicable to statistical parameters, which do not depend on percentiles.
In a first step, the dataset is sorted by value and the parameters are calculated for the whole dataset.
Afterwards, the dataset is divided into 100 blocks with equal length. In every step one block at the
maximum and one at the minimum of the values is removed and the parameters are calculated again for
the now trimmed vector. This is done until the last two percents around the median of the vector are left.
As a result, a vector with a length of 49 elements is generated for every calculated statistical parameter.
The test is parameterless, since all facts necessary to perform it are known, if the measurement vector
is given. By searching for breaks in the generated vectors, it is possible to get information on outliers
within the datasets.

3.2.5 Bootstrapped moments

Bootstrapping, first introduced by Bradley Efron in 1979, is a method to estimate unknown distributions
of data by resampling (Efron and Tibshirani [1993], p. 56). In order to use it for the estimation of the
distribution of a statistical parameter, a vector with the length of the original vector is generated. It is
a realisation of the same empirical distribution as the original dataset.® From the result, the statistical
parameters are calculated and stored. This procedure is repeated with the number of repetitions, which
is defined by a parameter rp,,;. A possible way to use this procedure in a test, is to check the whole
vector. If the results for a parameter have a large spread over the performed repetitions, it might be
an indication of problems within the dataset. For example, if a large uncertainty is estimated for the
quantiles at the tails, this can be an indication for outliers at the end of the distribution.

3.3 Histogram test

The histogram test is a new test to detect inhomogeneities in datasets and is described in Diisterhus and
Hense [2012]. It does not only take the statistical parameters into account, but the whole distribution at
once. This section will start with an explanation of the general methodology of the test in section 3.3.1.
Therein, the necessity for distance measures of histograms will be emphasised. The five measures used
in this thesis are presented and their calculation and characteristics are explained in section 3.3.2. To
demonstrate the functionality, some sensitivity tests follow at the end in section 3.3.3. These tests show
for example the performance of the recognition of shifts in the mean and variance within standardised
vectors.

3.3.1 Methodology of the histogram test

The aim of the histogram test is to detect inconsistencies within a dataset. Therefore, the dataset will
be divided into blocks with size s;, which for one dimensional vectors is similar to the block window,
described in section 3.2.5. In a next step every block is compared to every other block. This is done
by comparing their normalised histograms, which are an estimation for the probability density function
of the data within each block. The used number of bins of these histograms are defined as n,. These
bins are uniformly distributed between the maximum and minimum of both blocks, which are actually
compared. The difference between two of these histograms is measured with distance measures, that will

4Especially for smaller datasets this might lead to errors, since the number of elements in each block varies. Reason for
this is, that in most cases the length of the original vector cannot exactly be divided by 100. Therefore, it is possible
that each package removed from the vector, has more or less elements than 1% of the original vector length.
5Technically this is done by a sampling with replacement from the original data vector.
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be shown in the next section. The comparison of the histograms delivers one value for each comparison,
that is afterwards stored in a result matrix. When the result matrix is filled, it is possible to detect
inconsistencies within the dataset by looking for patterns in the matrix.

3.3.2 Distance measures for histograms

A usual field of application for the comparison of histograms is image retrieval (Rubner et al. [2001]).
There, mostly multidimensional histograms are used and compared. In the application here, measures
for one dimensional normalised histograms are required. Those are defined as f € R™ and g € R™. In
the following, five difference measures are shown: Kullback-Leibler Divergence (KLD), Jenson-Shannon
Divergence (JSD), Earth Mover’s Distance (EMD), Root Mean Square (RMS) and Mean Square (MS).

3.3.2.1 Kullback-Leibler Divergence

The Kullback-Leibler Divergence was introduced by Solomon Kullback and Richard Leibler in their paper
in 1951 (Kullback and Leibler [1951]). The definition used of the divergence in this thesis was given by
Lin [1991]:

f(s)
9(z;)

The Kullback-Leibler Divergence Dy, uses a bin-wise comparison of the histogram and is no metric in

Dir (fllg) = Z () - log, (3.10)

the mathematical sense. Reason for this is the asymmetry of the divergence and that it does not obey
the triangle inequality. The KLD is usually only defined, if both histograms have the same support, what
means that both are positive definite for the same bins. This is especially required for the histogram g,
because otherwise the denominator in the logarithm functions would become 0. To prevent this, prior
information will fill all bins. The prior estimation, named a,, is a uniform distribution on the whole
domain of f and g. The value is added to every bin of both histograms before the comparison takes place.
If h; is a bin of the resulting histogram, the used equation is the following:

R (3.11)

Sp+np - ap

Here a; are the number of observations in the bin ¢ and s, the total number of observations of the
histogram. To define the prior a, in more detail and make it scalable with the size of the blocks, the

dependence is defined as follows:
1

af'Sb.

ap = (3.12)

The factor ay has to be calibrated to the application. An example is given in section 3.3.3.2. Due to
the introduction of this prior, the Kullback-Leibler Divergence is also defined, if f and g do not have the
same support.

3.3.2.2 Jenson-Shannon Divergence

One disadvantage of the Kulback-Leibler Divergence is its asymmetry. This property was overcome by a
symmetrisation of the KLD, which is known as the Jenson-Shannon Divergence (JSD). It is defined by
Endres and Schindelin [2003] as:

Dys(fllg) = %DKL <f H; (f +9)> + %DKL <9 H; (f+9)> : (3.13)
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Like the KLD, it is positive definite, but does not obey the triangle inequality. To become a metric, the
root of D g has to be taken (Fuglede and Topsge [2004]).

3.3.2.3 Earth Mover’s Distance

The Earth Mover’s distance (EMD) was developed by Rubner et al. [1998]. Unlike the other measures
under consideration in this section, the EMD does not perform a bin-wise comparison of the two his-
tograms. It is rather a solution to a transportation problem. The EMD is the minimised work required
to transform one probability distribution to another (Levina and Bickel [2001]). The formulation for
one-dimensional histograms can be given as (Rabin et al. [2008]):

ny

D (fllg) = o= D |Fx(a:) = G ). (3.14)

i=1

The measure compares the two cumulative distribution functions (cdf) of f and g, F and G, at every
bin. It can be seen as the L1-Wasserstein metric (del Barrio et al. [1999], Levina and Bickel [2001]) and
without the normalisation factor of ny, it complies with the match distance (Werman et al. [1985]). Unlike
KLD and JSD, EMD is a metric in the mathematical sense (Rubner et al. [2000]).

3.3.2.4 Root Mean Square and Mean Square

The Mean Square (MS) and the Root Mean Square (RMS) measure is used as a reference in this thesis.
The mean square is defined as:

1 &
Dus (fllg) = P Z (f(z:) = g(:))”, (3.15)
i=1
and the root mean square Dgysg is given by:
AL 3
Drus (fllg) = - (Z (f(x) — 9(%))2) : (3.16)
i=1

3.3.3 Sensitivity tests of the histogram test

In this section, some sensitivity studies demonstrate the functionality of the histogram test. It starts
with the development of an evaluation method, that is used in the sensitivity tests explained in section
3.3.3.1. The first test is the determination of the prior information a, and the value a, which defines the
first in equation 3.12. This is necessary for the calculation of KLLD and JSD. Afterwards, the detection
quality of the different distance measures for level (section 3.3.3.3) and variance (section 3.3.3.4) shifts
are evaluated and compared.

3.3.3.1 Evaluation method for the sensitivity tests

As a result, the method delivers a matrix, which includes the measured differences of the histograms. If
the data is inconsistent and the distance measure is able to deliver indications for these inconsistencies,
patterns will be detectable in the resulting matrix. A problem is to evaluate this detection in a way, that
allows the performance of useful sensitivity studies.

The setup of all sensitivity studies for the histogram test is similar. It starts with a standard normal
distributed vector of two thousand elements. This vector is divided into two parts. The first half is used
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Figure 3.1: Example for the application of the histogram test with the distance measure EMD on a stan-
dard normal distributed vector with an included step at the middle of 0.4 standard deviations.

as it is, while the second gets some modifications. These modifications will consist of a rounding to the
first digit in section 3.3.3.2, an added value in section 3.3.3.3 and a multiplied value in section 3.3.3.4.
In a next step, the method is applied to this vector with the different distance measures. The result is a
matrix for each used distance measure, that will be analysed afterwards.

The evaluation of this result matrices is based on the knowledge of the structure of these matrices. An
example for such a result matrix is shown in figure 3.1. It shows the result of the histogram test with
the EMD distance measure. The tested vector consists of normal distributed values, where in the second
half a value of 0.4 standard deviations is added. The used parameters are a size of blocks of s, = 100
and a number of bins of n; = 65. The reason for the choice of the latter parameter will be explained
in the next section. On the axes the number of blocks are shown, while each element in the matrix
represents the measured distance between the histograms of the dedicated blocks. On the diagonal, each
block is compared to itself. Therefore, both histograms, used in the comparison are the same, and as a
consequence the distance between them is 0. Apart from this is a pattern recognisable, that divides the
matrix obviously into four parts. On the upper left, the comparison of the first half with itself is shown.
Since for this part the underlying distribution of the vector under analysis is the same, the measured
distance is relatively low. The same holds for the lower right part, where the blocks of the second half
of the vector are compared to themselves. The two other parts in the upper right and the lower left,
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consist of higher values. Here, the first half is compared to the second half of the vector, where both of
the underlying distributions have a different mean.
To recognise the pattern, it is useful to know the difference between the parts with the relatively high
values and the parts with the relatively low values. Both types contain some variance, so it would not be
helpful to just compare the mean of the values of each region. Therefore, additionally to the mean, the
standard deviation of both sections is used for the evaluation. The mean of the section with the relatively
low values, is named fisqme, as the same underlying distribution is used. The same reason holds for the
mean of the region with the relatively high values, which is named pq;fr, because different underlying
distributions are used here. The standard deviations are named likewise osame and og;pr. Values in
the matrix, which are equal to zero will not be included into the calculation of the means and standard
deviations.
To calculate the difference between two sections, the value x4 is computed, which fulfils the following
equation:

Hsame T Tsd * Tsame = [diff T Tsd " Odiff- (3.17)

The consequence is, that xs4 measures the difference in standard deviations of both regions. The resulting
equation for x4 can be obtained with the use of some algebra:

Kdiff — Msame

(3.18)
Odiff + Tsame

Tsd =

The quantity zsq is a measure to distinguish the two regions and is therefore appropriate to evaluate the
detection quality of the methods.

A remark is necessary about which regions are used for the calculation of zs4. Since the aim is to detect
patterns, it is useful to compare the lower left to the lower right section. For symmetric distance measures
this is equivalent the combination of the upper right to the lower right part. For the asymmetric measures
this is not the case. The only asymmetric measure under consideration here is KLD. Therefore, when the
KLD is compared to the other measures, the highest value of x4 of the comparison of the lower left to the
lower right and the upper right to the lower right is used. The method will be used in order to evaluate
the modified vectors in the upcoming sections. The first modification is a rounding in the dataset.

3.3.3.2 Determination of the prior a,,

The aim of this section is to determine a useful value for a; in the prior a, in equation 3.12. Therefore,
the calculation of the histogram test with the KLD and JSD distance measures are performed with a
variation of the value ay. The setup of this test uses eleven values for ay, which are distributed on a
logarithmic scale between 0.5 and 10000. Additionally, the number of bins n;, used to perform these tests,
is varied in the range of 2 to 201. The used test vectors are constructed the way it was described above
(section 3.3.3.1), with the application of a rounding to the first digit as a modification of the second half
of the test vectors. For each combination, the resulting matrices are evaluated by calculating x4 of the
lower left and lower right section. The procedure is repeated with one hundred different test vectors.

The mean of the 100 vectors is shown as a result in figure 3.2. The upper plot shows the results for the
KLD, in the lower for the JSD. On the x-axis the number of bins n;, is shown, on the y-axis the factor a;.
The resulting 44 are presented in steps of 0.5 for each combination in colours from blue for low values to
red for high values. In both figures, the structure of the results is similar. The main variation is caused
by the number of bins of the histograms n;. The choice of a higher n; leads to a higher value for x,4. For
the variation in ay, it is possible to conclude, that for values higher than a; = 100, no real changes are
recognisable for the here chosen number of bins. An appropriate value of x4 can be chosen with x4 = 1
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Figure 3.2: Sensitivity test of the histogram test with the distance measures KLD (top) and JSD (bottom)
for rounding in data. On the x-axis the number of bins n; is given, on the y-axis the prior
ay. Shown is the evaluation measure x4, averaged over 100 vectors.
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Figure 3.3: Sensitivity test of the histogram test for the five distance measures on detecting a shift in
mean in standard normal distributed test vectors. On the x-axis the shift in the mean at the
middle of the vector is measured in standard deviations ys4 and on the y-axis the evaluation
of the result matrices is shown in x,4. Results are averaged over 100 vectors, with the mean
indicated by the horizontal line and the standard deviation indicated by the grey shadings
behind the line.

for detecting a pattern. Therefore, an appropriate number of bins is around n;, = 65 in both cases. This
value for ny is used for all sensitivity tests and measures in the following. Further discussion and the
interpretation can be found in section 5.1.1.1. In the next section, the modification of the underlying
distribution of the vectors is a shift in the mean.

3.3.3.3 Shift in mean

The task of the next sensitivity test is to look for the distance measure that best detects level shifts
within a dataset. Therefore, a value named y,4 is multiplied with the standard deviation of the original
vector and added to the second half of the test vector. The quantity ysq is varied in the range of 0 and
5. On each test vector and each added value the histogram test with all distance measures is performed.
The results are shown in figure 3.3. On the x-axis the ysq and on the y-axis the distinguishing measure
Tsq 18 shown. The mean of one hundred test vectors for each distance measure is included as a line, the
standard deviation as a grey shading behind.
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Figure 3.4: Sensitivity test of the histogram test for the five distance measures on detecting a shift in
variance in standard normal distributed test vectors. On the x-axis the shift in the variance at
the middle of the vector is measured in factors of standard deviations ysq and on the y-axis the
evaluation of the result matrices is shown in xs4. Results are averaged over 100 vectors, with
the mean indicated by the line and the standard deviation is indicated by the grey shadings
behind the line.

For low ys4, the results of the five methods split up into two groups. One of these groups only comprises the
results of the EMD (blue) and increases much faster than the results for the other methods. The increase
is nearly linear until 1.2 standard deviations. Afterwards, the slope decreases. The other methods, with
a lower slope than the EMD, split up at a level shift of around ysq = 2.5 standard deviations. The
KLD (dark green) and JSD (cyan) increase further, while the MS (orange) and RMS (dark red) increase
at a lower rate. For the detection of small steps in the test vectors, the EMD shows the best results.
The vertical line, indicating the detection limit at xsq = 1, is reached by the EMD at around ysq = 0.4
standard deviations. The other methods reach this limit at about ysq = 0.9. The difference between the
two possibilities to evaluate KLD is only minor.

3.3.3.4 Shift in variance

As a last sensitivity test in this section, a shift in variance with a similar setup to the shift in mean is
shown. The only change is applied to the term with the ys4. This quantity is like before multiplied to
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the standard deviation, but then, instead of an addition, multiplied to the second half of the test vectors.
The histogram test with the different measures is applied again to one hundred of such vectors, with the
results presented in figure 3.4. Just like in figure 3.3, the ysq can be found on the x-axis and the xs4 on
the y-axis. The mean of the one hundred different test vectors for each distance measure is marked with
a line. The colours are the same as those used in the last section. The standard deviation for the results
of each method is shown again with the grey shading behind the line of the mean.

For a small increase in variance in the second half of the vector, the rise of the EMD delivers again the
highest w44 results. It reaches the detection limit of z5q = 1 at around ysq = 1.5. When the variance
is decreased and therefore a ysq lower than 1 is used, the EMD reaches again the detection limit first
at around ysq = 0.7. The other methods have, for an increasing variance factor ys4, a nearly linear
raise. Their slopes vary, but all methods reach the detection limit between ysq = 1.9 and ysq = 2.4. For
decreasing the variance, JSD, MS and RMS behave similarly and reach the detection limit at around
ysqa = 0.5. KLD reaches it at y;¢g = 0.2. The KLD shown here is one of two options, that behave best for
increasing the variance. The other option behaves better for a decreased variance, but much worse for
an increased one. Consequences of the choice of the variance are discussed further in section 5.1.1.1.

3.4 change point test

In this section, a change point detection method will be introduced. The method is able to deliver
probabilities on whether change points can be found in a time series. In section 3.4.1, it starts with an
overview on change point detection methods. In the next section 3.4.2, the main change point detection
method used here is explained. It was developed by Dose and Menzel [2004] and allows to regress
different models to a dataset and to compare them by an estimation of their probability. An additional
aim is to show different types of models, which can be regressed to datasets by the use of this method.
In a next step, some sensitivity tests are performed with the change point detection method and its
modifications in section 3.4.3. The results demonstrate the possible applications of the method and show
which modifications are of practical use. Afterwards, the change point detection method by Dose &
Menzel is compared to other methods in section 3.4.4. As a basis, the methods and tests, described by
Ducré-Robitaille et al. [2003], are used. This section helps to classify the results delivered by the method
of Dose & Menzel.

3.4.1 Overview

Change point tests and detection methods are common tools in statistical data analysis and are developed
for many different purposes (see also for example Page [1955], Hinkley [1969], Hawkins [1977]). In the
meteorological and climatological sciences they are mainly used in the field of homogenisation, where
inconsistencies in time series are detected and corrected. For the detection exists an immense amount of
different methods, of which some are presented in an inter-comparison study in section 3.4.4.1. Most of
them regress the data and evaluate this regression in order to decide, whether a change point is found.
If it is found, the method determines its location. In addition, also other methods, frequentist and
bayesian, exist (Moreno et al. [2005]). Due to their large number they cannot be discussed here in detail.
An overview of those used in homogenisation is given by the WMO in their "Guidelines on Climate
Metadata and Homogenization" (Aguilar et al. [2003]). A prominent method, which is missing in the
following inter-comparison study, is Caussinus and Mestre [2004]. They work with a penalised likelihood
method and were not considered by Ducré-Robitaille et al. [2003]. Not discussed here are methods, that
detect multiple change points, since most methods are developed to detect only one. Further explanations
on this topic will be given in section 5.1.2.2.
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In this thesis, the method developed by Dose & Menzel will be used and modified extensively, what will
be described in the following section.

3.4.2 The method of Dose & Menzel

The change point detection method developed by Volker Dose and Annette Menzel was first presented in a
publication in 2004. The statistical model was introduced and applied to find change points and trends in
phenological data (Dose and Menzel [2004]). These studies, which used datasets up to one hundred data
points, were extended to different phenological data and then used up to six hundred points in Menzel and
Dose [2005]. In Dose and Menzel [2006] the method was also applied to seasonal averaged temperature
data. Further studies in phenology, that base on this method were mainly compiled by Christoph Schleip,
who performed intensive phenological studies for his PhD-Thesis under the supervision of Annette Menzel
(Schleip [2009], Schleip et al. [2008], Schleip et al. [2009a], Schleip et al. [2009b]). Volker Dose used a
similar method, based on the Poisson distribution, to fit change point models to hurricane data of the
Carribean (Dose [2009]).

This section starts with a description of the model in section 3.4.2.1. Here, the equations and the basic
framework for the method are given. The following section 3.4.2.2 explains the models, proposed by
Dose and Menzel. In a last step, modifications of these models are presented and compared in section
3.4.2.3.

3.4.2.1 Theory of the method

The theory described in this section is based on the description in Dose and Menzel [2004]. In general,
this method aims to fit a model described by the matrix A and functionals f to the data J: which is
available at timepoints Z. This can be written as

d—Af=¢ (3.19)

The error of the fit is described by €, which is assumed to have a normal distribution with an expectation
value of zero and a variance 0%, (N (0,0par)). To calculate the likelihood of the data under the condition
of the described model with given A and &, the following equation holds:

-

(T, A, I) = / (. T ooml@, A Ts)dfdopa. (3.20)

Additionally to the background information, which will later be introduced in A, some information, which
is described by Dose and Menzel [2004] as "general conditional background" is introduced here as Ig.
By using the product rule, this evolves to

— —

p(d]E, A, Ip) = / pldl@, opar. f. A, I)p(f, opu|@, A, Ip)d fdopar. (3.21)

The second probability under the integral, p( f, opm|Z, A, I), does not depend on & and A. Therefore
it is possible to split this term up to:

p(f.opalZ A Ig) = p(f,opu|IB) (3.22)
=p(flopar. In)p(opm|Ip). (3.23)
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With the assumption, that f does not depend on the standard deviation opys, there is now the necessity
for two independent priors for both of them. For f a weakly informative prior is chosen with the
introduction of the volume of a k-dimensional hypersphere Vs with a radius ~:

. I (&2) 1
p(flv.k, 1) = " (\/QE)k = V) (3.24)

Both, v and k, are taken from the general background Ip and I' represents the gamma function. k is
later chosen in dependence of the model, which is fitted to the data. An example, how k can be chosen,
will be given in the next section 3.4.2.2. The influence of the parameter v will be further analysed in
section 3.4.3.

For the standard deviation opjs, an uninformative prior is chosen with a normalised form of the Jeffreys’

prior (Berger [1985], p. 88):
1 1

- 2lnﬁ ODM

plopmlB, 1) (3.25)

Dose and Menzel [2004] chose the parameter § under the restriction % < opm < B. To guarantee that

condition, 3 is chosen in the methods presented here as follows:

(3.26)

5= opm +1, ifopy >1
B 1+ L ifopy <1

opm’

The second distribution in equation 3.21 is under the above mentioned assumptions for the error € given
by:

N
- S 1 1 e m - o
p(d|Z,0pu, f,A, I :() exp(—d—Ade—Af>. 3.27
(d = (e 5oz (= A1) (T A]) (3.21)
This equation can be transformed by introducing a matrix Q and the residual R to
1 N 1
diz, opu, A Ig) = ——) exp—=—— ((f = f0)TQ(f - fa +R>. 3.28
Pz, opar, A, Tn) (O_DM m) p( 3z (F=R)'QU= 7o)+ R) (3.28)

This transformation is later used to determine Q and R.

The aim is now to determine the probability p(cﬂf, A, T), which is given by equation 3.21. Therefore,
Dose and Menzel [2004] performed the integration of equation 3.21 in two steps. The first is the integral
over f, which leads to:

N o0
- 1\?2 1 1 1 1 R 2702
dzg, a0 =(—) ——— [ dopy—— SR DM 3.29
pldl ) <27"> Vs (k,v) 21n50/ JDMUDM Thum eXP( 2‘7123M) VdetQ (3.29)

-

Solving the remaining integral with respect to opas, leads to the equation for the probability p(d|Z, A, I)

N—-2
. 1 1 1 1\ 1 T(%¥:2)
p(d|Z, A, T) = §mm (W) N—2 * (3.30)

given by:

The parameter IV describes the number of elements of the time series d.
To calculate this probability, it is necessary to specify the determinant of @ and the residual R. Dose and
Menzel [2004] estimate both in dependence of A and d. For further steps, the singular value decomposition
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(Von Storch and Zwiers [1999], p. 415) of A is used:

A=Y NV (3.31)

The determination of Q and R is resulting from a comparison of coefficients of the transformation in
equation 3.28. As a consequence, the following equation can be defined:

Q=ATA. (3.32)
With the use of equation 3.31, it is possible to determine the determinant of Q:
det Q = TIx\;. (3.33)

The residual R can be determined by

R=d" (HZA;J?,J?,?) d. (3.34)
k

Since both Q and R depend on A, the latter has to be specified in the following. It will be shown, that
with the variation of the composition of A, it becomes possible to deliver an immense variety of different
models, which can be evaluated by equation 3.30. Some examples are presented in the following, starting
with those, that were used by Dose and Menzel [2004| themselves.

3.4.2.2 Different model types by Dose and Menzel

In Dose and Menzel [2004] the evaluation method to decide whether a time series is best fitted by a
constant, linear or one change point model is developed. The constant model tries to minimise the error
of the following model equation:

d; — f = €. (3.35)

To transfer this into the form given by equation 3.19, the matrix A simplifies to a vector of ones with the
length of the data vector d:
Ac = (1);. (3.36)

Another model usable is the linear model. Here, the model includes the opportunity of a trend. The
basing model equation is given by

£ T; — X1

di— AN "0 gy = e (3.37)
TN — I TN — T1

It uses the start and the end values (f; and fyn) of the functional, which ought to be regressed to the
data. These values are weighted with the time elements z;, that vary between the starting point x; and
endpoint zy.

To set up the matrix A, the latter is divided into two parts, expressed by two columns:

AL—(<I‘N$1’> 7<$1I1)>. (3.38)
IN — 1/, IN — 21/,

The last model, which is explained in full by Dose and Menzel [2004], is a generalisation of the linear
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Table 3.1: Values for k for different models. n.p, describe the number of change points.

model to a change point model. This model is defined by

d; — fkw _ fk_HM =, (3.39)
Tht1 — Tk Tk+1 — Tk

with ) < z; < x41. Like before, this equation can be transformed to matrix notation, which leads to a
Acpp. Since this procedure delivers large matrices, it will be shown graphically in comparison to other
models in the next section. Additionally, the parameter k in equation 3.24 has to be set differently for
all these models. Examples used by Dose and Menzel [2004] are given in table 3.1.
To evaluate, which model is the most probable, Dose and Menzel [2004] compared the different models
by normalising the probabilities of each model. This can be calculated by the following equation:

(3.40)

Here, A; describes one model, for example the change point model A¢pp. It is compared to other models,
which are all included in the set 7. This might be set for example to J = {A¢, A, Acgp}. Therefore,
equation 3.40 calculates the relative probability of one model given a pre-defined set of models, including
itself. This probability is used throughout the upcoming sections to compare different models. In the
most cases, only the constant and change point model are compared. The only exception is the sensitivity
test in section 3.4.3.1, where the linear model will be investigated as well.

A consequence of the change point model definition in equation 3.39 is, that two sections of the fitted
model are always connected in one point. For some applications this might be useful, like Menzel and
Dose [2005] and Dose and Menzel [2006] have shown. Nevertheless, for using this method in quality
assurance applications, it is preferable to have a possibility to detect an instant step in the data. To
achieve this, the change point model has to be modified, what is shown in the next section.

3.4.2.3 Modified model types
In the modification, a standard linear model equation is used, which leads to

di —ap —bp—2—TE ¢, (3.41)
T(k4+1) — Tk

with 2 < 2; < xp4+1. This model uses an intercept a; and a slope by at every change point. The latter
is multiplied with a quotient of time stamps, that start with zero at the beginning of the section. This
implies, that only the intercept gives information on the value at this point. At the end of the section, this
quotient becomes one, before the next section starts again by a point fully explained by the next intercept
ak+1- This delivers the asked possibility to have two independent sections in the model equation. The
matrix Ao g py for the change point model, based on the equation 3.41, will be shown graphically at the
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Figure 3.5: Matrices A for the different change point models of Dose-Menzel. On the left the matrix
of the flat model, in the middle of the normal model and on the right of the matrix of the
original model is shown. Colours range from zero (dark blue) to one (dark red).

end of this section. With this concept, it is also possible to modify the constant and the linear model.
While the constant model is defined by
di — a = €5, (342>

and the matrix Ao, is the same as Ao defined in equation 3.36, the linear model needs more modifications.
Here, the model equation is given by

di—a—b——"1 —¢,. (3.43)

Apm = ((1%- : (“)) . (3.44)

Sensitivity tests and a comparison of both sets of models are shown in section 3.4.3.

This leads to a matrix

As a third variant of the change point model, a version named ’flat model’ will be used. It is similar to
the modified change point model in equation 3.41, but sets the slope parameters by to zero. This implies
the model equation

di — Q) = €4, (345)
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Figure 3.6: Application of the method of Dose-Menzel with the three different change point models to
an artificial time series. The flat model is shown in red, the normal model in green and the
original model in blue.

with z; < ; < py1. This model uses two or more constant sections to fit to the data.

In figure 3.5 the three matrices (Acgpy on the left, Acypy, in the middle, Acyp on the right) are
compared. The values are taken from the intervall between zero in blue and one in dark red. They all
show the situation for an estimated breakpoint at position 25 of a measurement vector with a size of 50.
Therefore, they all have 50 rows. The flat model has only two columns for one breakpoint, the other
two models four. The first column of Acypy shows entries with one up to the position of the estimated
breakpoint, and zero afterwards. For the second columns it is the other way round. The matrix Acygpm,
for the model given by the model equation 3.41 has four columns, which can be divided into two groups.
Both groups consist of a constant value in the first part, which is filled with the value one up to the
estimated breakpoint and zero afterwards. The second part is an increasing value from the beginning to
the end of the section. The latter is marked by the boarder and the breakpoint. The last matrix, with
the original model of Dose and Menzel consists of four columns that can be subdivided into two groups
as well. The second part of each group is equal to its counterpart in the matrix Acgyp,,. The first part
is a decreasing value from one to zero, whereas the second part increases.

To show the differences between the three model types, resulting from the matrices, an example is shown
in figure 3.6. The three models are applied to an artificial time series with an included step. All three
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models detect the change point at the same position. The blue line represents the original model (dm/o)
by Dose and Menzel. Here, the intercept and slope are regressed to the data within both sections, which
are connected in one point. The same is regressed for the normal model (dm/n) with Acgpy,, which is
shown in green. The difference to the original model is, that the two sections are not necessarily connected
at the change point. With the flat model (dm), shown in red, only the intercept is regressed and the two
sections are not connected. After having presented the method and the different model, some sensitivity
tests will show their abilities in the next section.

3.4.3 Sensitivity Tests and examples

In the following, some sensitivity test will demonstrate the advantages and disadvantages of the method
by Dose and Menzel. Additionally, the influence of the different versions of the change point model, which
were defined by the equations 3.39 for the original, 3.41 for the normal and 3.45 for the flat model, will
be demonstrated.

This section consists of four sensitivity tests. The first in section 3.4.3.1 compares the constant, linear
and one change point model for the three different formulations. The focus is set on the dependence on
v, which is the parameter of the prior in equation 3.24. In the following section 3.4.3.2, the dependence
of the step detection is compared to the position and size of a step, which is included into a vector.
Similar is the content of the next section 3.4.3.3. Here, the parameter v and the size of the step are the
varying parameters. In a last test in section 3.4.3.4, the parameter v will be set for the following checks.
The justification of this parameter depends on the probability that a step is detected in a homogeneous
dataset.

The sensitivity tests are applied to artificial time series. They are chosen according to Ducré-Robitaille
et al. [2003], what will be the basis for the inter-comparison of the Dose-Menzel method to other methods
used in homogenisation. Their choice is an autoregressive process, which is from the statistical point of

"

view (autoregression and variance) similar "...to those observed in the annual mean temperatures." The

generating AR(1)-model is defined by:
X; = 0.1X;_1 +N(0,1). (3.46)

In this case, X; are the elements of a test vector and N is a normal distribution with the parameters
mean and variance. The length of the selected vectors is 100 elements. It describes a normal distributed
time series with an autocorrelation of 0.1. Additional tests with standard normal and gamma distributed
time series will be shown in the inter-comparison tests in the sections 3.4.4 and 3.5.

3.4.3.1 Change point model comparison

The first sensitivity test investigates the behaviour of the three models for different values of 7, when
they are applied to homogeneous data vectors. Homogeneous data means in this test, that the test is
performed on time series generated by the process described in equation 3.46, without any artificially
introduced steps. In the test 1000 vectors are used, of which each consisting of one hundred data points.
The three models are applied to the vectors and the results, with the parameter + varying between 1 and
40 are shown in figure 3.7.

Figure 3.7 consists of three identically structured plots. The upper one shows the results for the flat,
the middle one for the normal and the lower one for the original model. On the x-axis the parameter
7 is shown, on the y-axis the probability of each model. Each plot presents the averaged percentages
of the change point model in green, the linear model in red and the constant model in blue. The
standard deviation is marked as grey shadings behind the lines. Since only those three models are tested,



Chapter 3. Methods 53

a)

1.0

— const
= linear
- = 1chp

0.8

p_flat
06

04

0.2
1

0.0

0 10 20 30 40
gamma
e
o
= const
= linear
‘; 1 = 1chp
e
E o
2
PO
s
o
o
‘“*“—_
e |
e T T T T T
0 10 20 30 40
gamma
e
-
= const
= linear
g -1 — 1ichp
@
E =]
oI
2 <
2 A
o~
3 A
-_——
e 4
° T T I T I
0 10 20 30 40
gamma

Figure 3.7: Application of the three types of models of the Dose-Menzel method to 1000 homogeneous
vectors for varying . The x-axis illustrates the v, the y-axis the probability of the methods.
Relative probabilities for the flat model (top), normal model (middle) and original model
(bottom) for the three used models constant (blue), linear (red) and change point (green)
are averaged over the 1000 vectors. Grey shadings behind the lines indicate the standard
deviations.
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the probabilities sum up to one for every v and formulation. The behaviour is similar for all three
formulations: For low v the change point model overtops the two others with a share of more than 60%.
This changes, when the constant model gains more and more percentages, while the change point model
declines. The linear model has only a low share for all v, but is superior to the change point model for
higher values of v. The difference between the three formulations can be seen in the value of ~y, where
the turning points happen. While it is very similar to the normal and original model, the difference to
the flat model is more visible.

The next tests use non-homogeneous test vectors with included artificial steps.

3.4.3.2 Position versus step

An important factor of a change point detection method is the dependence of the detection limit on the
position of the step. The ideal case would be, that this limit is independent of the position of the step
within the dataset. To demonstrate the performance of the three different methods in this sense, all
were applied to one thousand different test vectors generated by equation 3.46 with a length of 100 data
points. Each of these vectors is modified by the inclusion of artificial steps. These steps vary between 0
and 3 standard deviations and are included sequentially between all elements in the dataset.

The results of these tests are shown in figure 3.8. The upper left subfigure presents the result for the flat
model (equation 3.45), the upper right for the modified model (equation 3.41) and the lower left for the
original model by Dose and Menzel (equation 3.39). In each plot the percentage, where a breakpoint is
detected with more than 95% probability, is plotted. These results are presented for the margin of the
step and the first position, which is influenced by the step.

All three methods show, that their detection limit varies with the position of the step. For the modified
and the flat model the behaviour does not depend on whether a step is included at the beginning or at
the end of the dataset. The first 20 to 25 elements from the border of the dataset, the detection limit
shows a strong decrease. Afterwards, the detection limit flattens for the inner steps. The original model
by Dose and Menzel behaves similar. Nevertheless, with steps at the end of the vector the detection limit
decreases much quicker than in the other methods. The difference in the results gets most obvious with
a look at those positions and steps, where the methods detect inhomogeneities for at least 95% of the
vectors under consideration. While the flat and the modified model are able to detect inhomogeneities
up to the 96th position at a step of three standard deviations, it is much worse for the original method.
The latter is only able to detect inhomogeneities for up to the 86th position. Since the minimum length
of a linear section is chosen with three elements for all three methods, the modified and the flat models
detect inhomogeneities for big steps at the borders of the datasets very well.

To investigate the optimal detection limit in the mid section of the vectors, the lower left plot in figure
3.8 compares the percentage of homogeneities for a fixed position and all used step sizes for all three
methods. Therefore, the mean over the vectors is used, wherein the 50th element is the first data point,
which is artificially modified with the step. The results with the flat model are shown in blue, with the
modified model in green and with the original model in red.

All three lines rise steadily from smaller to bigger steps. They reach the five percent detection level of
inhomogeneities at steps between 0.2 and 0.4 standard deviations and the 95-percent level between 1.2
and 1.4. For the flat model slightly better results than the other two approaches can be seen. The reason
is that the detection limit is up to 0.1 standard deviations lower for the flat model. It is important here,
to take into consideration, that the 7 is 10 for all three models. As a consequence, it is impossible to
say, whether the detection limit for the flat model is really better. In a next step, the behaviour of the
different models, in respect to the variation of the parameter ~, applied to inhomogeneous datasets will
be investigated.
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Figure 3.8: Sensitivity test on the dependence of the detection limit on the position and size of a step
for the three modifications of Dose-Menzel. In the subfigures a-c, the x-axis indicates the
position where the step is included and the y-axis illustrates the size of the step. Shown are
the percentage of inhomogeneous vectors of 1000 vectors of the flat model (subfigure a), the
normal model (subfigure b) and the original model (subfigure c¢). Subfigure d shows a cross
section for the 50th position of the vectors. On the x-axis the step size is shown, on the y-axis
the percentage of detected inhomogeneities.

3.4.3.3 v versus step

The layout and the test settings of figure 3.9 are similar to the ones of figure 3.8. For this sensitivity test
again one thousand different vectors, generated by the process described in equation 3.46, are investigated
with the help of the three different models. In the upper left the results for the flat model can be found,
in the upper right the ones for the modified model and in the lower right the ones for the original model
by Dose and Menzel. The percentage of detected inhomogeneous datasets is shown on the x-axis for a
variation of 7 in the range of 1 and 40. On the y-axis the artificial steps at position 50, ranging between
0 and 3 standard deviations, are shown. Just like before inhomogeneity is assumed, when at any position
the change point model has a 95%-probability level of superiority over the constant model.

All three show an increase of the detection limit with a rising «. Additionally, all models show a similar
rising of the slope, which is huger for smaller values of v and more flatten for higher.

To further investigate the behaviour of the models the fourth plot in the lower left of figure 3.9 is used. It



56 Chapter 3. Methods

flat modified
a) b)
[=] o
o -
w w
o o
= [=)
o~ o~
o § ©
7] - 7] -
S S
u T3]
= s
[=) o
= S
10 20 30 40 10 20 30 40
gamma
0.0 . 0.2 y 0.6 0.8 R 1.0
original Cross section
<)
<
« " — flat
v ] —— modified
(3] b .,
e —— original
=} @
~ g
g - 2
7] - =
2 5]
- =
0 3
s 2
o —
(=} T I
10 20 30 40 30 40
gamma gamma

Figure 3.9: Sensitivity test on the dependence of the detection limit on the parameter v and size of a
step for the three modifications of Dose-Menzel. In the subfigures a-c, the x-axis indicate the
~v and the y-axis the size of the step. Shown are the percentage of inhomogeneous vectors of
1000 vectors of the flat model (subfigure a), the normal model (subfigure b) and the original
model (subfigure ¢). Subfigure d shows a cross section for a step of 0.5 standard deviations of
the three former subfigures. On the x-axis, the step size is shown, on the y-axis the percentage
of detected inhomogeneities.

contains a cross section, which shows the results for varying + at a constant step with margin 0.5 standard
deviations. This is obviously the transition zone of detection in the other three plots. The results from
the flat model are shown in blue, with the modified model in green and with the original model in red.
It is obvious, that the probability to detect an inhomogeneous dataset is declines for all three models
with higher v. For low v up to about 20, the flat model has the highest probability of detecting a step,
while the modified and the original model deliver similar results. For higher v, the original model counts
slightly the most detected inhomogeneous datasets.

The dependence on + for the detection limit demonstrates, that this factor is a parameter, that can be
used to justify the sensibility of the method. It also shows, that the detection of steps in the order of 1
to 1.3 standard deviations is possible. The flat version is the model with the lowest detection limits for
most of the tested v ranges. Especially the original method shows a flatter result, with higher detection
limits for low v and lower for higher ~.
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Figure 3.10: Justification of v for the flat model with a 95% threshold. On the x-axis, the parameter ~
is shown, on the y-axis, the percentage of inhomogeneities of 100000 homogeneous vectors.
The black line indicates the mean, gray the standard deviations around the mean. The gray
shadings behind the lines show the results for 100 packages of 1000 vectors. Subplots show
the lower deviation of the 5% (top) and 1% (bottom) significance level.

3.4.3.4 Justification of

To justify the value of v for the following comparison tests, a last sensitivity test is shown here. The three
models test 100000 different homogeneous vectors generated by equation 3.46. The aim is to choose a =,
where the false positive rate is below a given threshold chosen here as 5%. The settings for the parameters
are given like before: the smallest acceptable linear section is assumed by three elements (m = 3). A
vector is assumed to be inhomogeneous, when the probability of a step at any position is more than 95%.
The results of the 100000 vectors are split into one hundred packages of one thousand vectors each. The
results of each package are averaged in order to demonstrate the uncertainty of the obtained significance
levels.

In figures 3.10 to 3.12 the results for the three formulations are shown. Each figure shows the mean
percentage of of all 100000 vectors as a black line. The grey lines indicate the standard deviation of
the one hundred packages around the mean. The shaded lines in the background show each result of
the packages separately. In the upper small figure on the right a focus is set on the five percent level of
detected inhomogeneities, in the lower the focus is set on the one percent.
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Figure 3.11: Justification of v for the normal model with a 95% threshold. On the x-axis, the parameter
~ is shown, on the y-axis, the percentage of inhomogeneities of 100000 homogeneous vectors.
The black line indicates the mean, gray the standard deviations around the mean. The gray
shadings behind the lines show the results for 100 packages of 1000 vectors. Subplots show
the lower deviation of the 5% (top) and 1% (bottom) significance level.

In figure 3.10 the result of the flat model is shown. It shows a steady decline for increasing - for the
mean of the false positives. Also, the scattering of the results of the separate packages decreases. The
threshold of 5% is reached by this formulation for v > 5. For the lower threshold of 1% a v > 12 is
needed. The results for the normal method shown in figure 3.11 are structured similar, but reach the
threshold for higher values of «v. The 5% threshold is reached for v > 11 and the 1% threshold for v > 32.
Only slightly different to the normal method is the result for the original model, which is shown in figure
3.12. Here, the mean falls below the thresholds with v > 11 for the 5% mark and with v > 21 for the
value of 1%.

For the comparison test in the following section 3.4.4 the highest values of « are used, which fall short
of the specified threshold. The same tests can be performed with different thresholds within the Dose
& Menzel methods. Here, the results with a threshold of 95% are shown in the figures 3.10 to 3.12. In
addition, the thresholds of 99% and 50% are used. For those, the same tests are performed and the 7 is
calibrated. Since the 7 may exceed the maximal tested v = 40, the maximal chosen value of v is set to
40. For the threshold of 50% this might lead to a mis-calibration, but since the effect is minor it can be
neglected. The results for the ~ for all three threshold with a false alarm rate of 5% are shown in table
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Figure 3.12: Justification of v for the original model with a 95% threshold. On the x-axis, the parameter
v is shown, on the y-axis, the percentage of inhomogeneities of 100000 homogeneous vectors.
The black line indicates the mean, gray the standard deviations around the mean. The gray
shadings behind the lines show the results for 100 packages of 1000 vectors. Subplots show
the lower deviation of the 5% (top) and 1% (bottom) significance level.

3.2.

3.4.4 Inter-comparison Tests

In section 3.4.2 the method by Dose and Menzel, its modifications and the setting of the parameters
was described. They are now compared to other established change point detection methods in an inter-
comparison study. For meteorological data, an immense amount of change point methods exists and
some literature on the comparison of those methods has become available in recent years (e.g. Easterling
and Peterson [1995], Peterson et al. [1998], Ducré-Robitaille et al. [2003], Rodionov [2004]|, DeGaetano
[2006] and Reeves et al. [2007]). Applications of the change point detection methods can be found in
homogenisation of temperature or precipitation time series, where the results of the detection methods
are used to correct the data. For this field, Venema et al. [2012] delivers an inter-comparison study for
monthly temperature series.

A problem for comparisons of change point methods is to find a common basis, because the detection
methods are designed for different applications (Reeves et al. [2007]). To prevent problems with a different
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Table 3.2: Values for « for different models for a given threshold.

basis for the different tests, for the following comparison only methods from one study, Ducré-Robitaille
et al. [2003], are used. They have chosen six different methods, wherein two methods are used in two
different modifications. These eight procedures evaluate a time series, from now on called original se-
ries, with length IV for a change point at position mcpp. Seven of them depend on a reference series.
These reference series are common in the homogenisation environment, and are commonly defined as
homogeneous time series, with the expectation of a high correlation to the original series (Peterson and
Easterling [1994]).

In section 3.4.4.1, the methods, to which the Dose and Menzel procedures are compared, will be intro-
duced. Afterwards, the test vectors as the basis of the here performed experiments, are described in
section 3.4.4.2. With these vectors, two tests are performed in the following. A test with homogeneous
datasets will be shown in section 3.4.4.3. A further test, that also comprises non-homogenous datasets
follows in section 3.4.4.4.

3.4.4.1 Methods

The methods used in the inter-comparison tests were collected and described by Ducré-Robitaille et al.
[2003]. They are listed together with their original source in table 3.3. In the following, these eight change
point checks are described in detail.

a) TPR Two Phase Regression (TPR) was presented by Easterling and Peterson [1995]. The method
uses a difference series, which is calculated from the difference between the original and a single reference
series. In a first step, a linear regression model is fitted to this difference series. To estimate the goodness
of fit the residual sum of squares between the difference series and the linear model (RSSrpryo) is
calculated. A second step is used to take every datapoint of the difference series (mcnp,) and to fit two
regression models: One to the data before and the other to the data after the selected datapoint mp.
For this, two phase regression model, the residual sum of square is calculated separately for both section
and summed up (RSS7pr,1(Mmenp)). To estimate the significance of a step at mepy, the F-distributed
test statistic by Solow [1987] is used:

(RSSTPR,O — RSSTPR,l(mchp)) ' (N - 4)
3-RSStpr.1(Menp)

Urprmen, = . (3.47)

The parameters for the F-distribution, that are used to estimate the significance of an inhomogeneity at
position m.p,, are the degrees of freedom given with 3 and NV — 4.

b) MLR Multilinear Regression (MLR) was developed by Vincent [1998]. It uses two regression models
with autocorrelated errors e;. The first is given by the following model equation, which comprises the

original series xiy and a reference series ;. :

Torigy — @ + CTref,i + €. (348)
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Table 3.3: Procedures used in comparison to the Dose-Menzel method.

Two phase regression Easterling and Peterson [1995]

Multi linear regression Vincent [1998]

Standard normal homogeneity test without trend | Alexandersson [1986]

Standard normal homogeneity test with trend Alexandersson and Moberg [1997]
Sequential testing for equality of means Gullett et al. [1990]

Wilcox rank sum Karl and Williams Jr. [1987]
Bayes method without reference Ouarda et al. [1999],

Perreault et al. [1999]
and Perreault et al. [2000]
Bayes method with reference Ouarda et al. [1999],
Perreault et al. [1999]
and Perreault et al. [2000]

The autocorrelation in the error e; is realised by:
e; = pei—1 +N(0,0?%). (3.49)

Ducré-Robitaille et al. [2003] set p to 0.08. To estimate, if the original series is homogeneous, the Durbin-
Watson test (Durbin and Watson [1950]) is used. It calculates the parameter Dpy with the equation:

N
> (e —eim1)?
Dpw=232 _— (3.50)

N
> e
i=1

Limits for the significance of Dpy are given in Durbin and Watson [1951].
If the series is estimated as inhomogeneous, a second model will be fitted to the data for every possible
change point mgpp. It uses the model equation

Lorig,g — @ + bHiZmChp + Cref,i + €4, (351)
with
1, ) 2 Mmeh
Li>men, = , ! (3.52)
0, ©<mehp-

For all fitted regressions, the residual sum of squares is calculated. The RSS of the second (RSSarrr,1(menp))
are compared with the RSS of the first model (RSSwyrr,0). The significance of the step is estimated by
the following F-distributed test statistic:

(RSSnLro — RSSyLra(Mmenp)) - (N —3)

UMLR,mchp = (N — 2) K (N — 3) R RSSMLR,I(mchp) . (353)

The parameters of the F-distribution are given by 1 and N-3.

¢) SNHT The standard normal homogeneity test was developed by Hans Alexandersson. The original
specification does not test for possible linear trends in the data (Alexandersson [1986]). It tests for every
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possible change point mepy, if

USon,mchp = Tnchpzlzmch,p2 + (N - mchp)z(mchp+1):N2 (354>

exceeds a critical value. Therein, mz describes the mean of the difference series between the original
and the reference series for the values before the possible change point. The same applies to Z,_, -n for
the values after mcp,.

A modified procedure was presented by Alexandersson and Moberg [1997] and includes a test for linear
trends. Therefore, two positions are searched, that define the start (as) and the end point (a.) of the
section with a linear trend. The test value in this situation is defined by

USwT,mchp - - a‘sN%wTJ + 2as,UJSwT,121:m,chp - /L%wTJSSwT,e - ,UQSngSSwT,s
+ 2,U/SwT,1SSwT,ze + 2//u‘SwT.,QSSwT,zs - 2/~LSwT,1,U/SwT,ZSSwT,se
- (N - ae)ﬂ%wT@ + 2(N — @e) LSwT 2% (mony +1):N - (3.55)

The expressions for pgwr1, tswr2, Sswr,ss SswT,es SSwT,ses SSwT,zs, and Ssyr e are given in the
appendix in section A.2.1.

The critical values for Uswor,m,,, and UswT,m.,,, are estimated in Alexandersson [1986] and Alexanders-
son and Moberg [1997]. They are "practically equal" (Alexandersson and Moberg [1997]). Therefore the
values are taken from Alexandersson and Moberg [1997] and are interpolated to get the critical values
for different N (see also the appendix in section A.2.2).

d) ST Sequential testing for equality of means by Gullett et al. [1990] uses the t-test

_ RA(menp—N2)menp — A(menp+1):(mepp+Nat1)

ST,mChp 0-2 0-2
(mepp—N2)imepp + (mepptD)i(mepp+Na+1)
N1 N2

for every potential mcpn,. N1 and Ny are a defined number of points before and after m., and are set to

5. Z(menp—Na)imeny 80 Z(m, 51 (o, + Not 1) are the mean on the difference series between the original
and the reference series over the specified number of points before and after the potential step at mp.
O (menp—Na)imenp A Ty 41):(men,+No+1), are the standard deviations of the same sections.
Ducré-Robitaille et al. [2003] define with 5.8 a different threshold for the critical value of significance of
an inhomogeneity than the normal t-statistics (2.3 for « = 0.05). The values can be achieved by a change
in the degrees of freedom of the student-t distribution from 3 to 1.1.

e) WRS Karl and Williams Jr. [1987] used a method to verify steps in time series, when metadata
indicates them. It bases on the Wilcox Rank Sum (WRS) and with the modifications performed by
Ducré-Robitaille et al. [2003], it is possible to use it in order to find the most probable step in a time
series. First, the indices of the difference series between original and reference series are ranked by their
values. The number of points before a possible step m.p), is called N; and Nj afterwards. The ranks
of the indices before and after the step are summed up separately (Swgrs1 and Swrs,2) and the lower
of both is indicated by Swrs,,. The corresponding length of the section is described by N,. Now, the
value

Swrs,e +0.5 — w

Uwrs =
Mehp N1 No(N+1)
Y 12

(3.56)
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is calculated for every change point mcpp. U RS,men, €an be approximated by a standard normal distri-
bution (Ducré-Robitaille et al. [2003]), so the significance of a step can be estimated.

f) Bayes A Bayesian method is provided by Ouarda et al. [1999], Perreault et al. [1999] and Perreault
et al. [2000]. Like Ducré-Robitaille et al. [2003], it is used on two different types of data: firstly on the
original series itself and secondly on the difference series of the original and a reference series. The series
under investigation, with length N, is divided into a section before a possible change point m.p, and
after. In a first part, the probability of a position of a possible step m.p, is calculated by

N
mchp(N — Mchp

N-—-2

5 S o)~ (357)

plmanghe) = (

with

N

Mehp -1
SBay (mchp) = Z (xz - xl:mchp)Q + Z (xi - x(mchp+1):N <Z —Z1:N ) . (358)
i=1

i:mchp“!‘l

Tlimenys T(meny+1):N and Ti;n are the averages of the stated sections.
To decide, whether a series is homogeneous, it is necessary to calculate the probability of the size of a
step (J) at a given potential change point:

_N-—1
(N — 2)_0.5 ’5 - (Qf(mch +1):N — Llimep, )| :
p (8|menp, xi) = — [ 1+ 2 - . (3.59)
' Tmen, (0B (3, 577) (N =2)a7,,,,(9)
B is the beta function and is given by
L))
B = ——= th I'(z) = (x — 1)L .
(z,9) Tty ™ () = (z—1) (3.60)
The variance is estimated by
N
NSBa mch
m 0) = L p . 3.61
o chp( ) mchp(N mchp _2 ; 931N ( )

To decide, if a step is significantly different from 0, and as a consequence inhomogeneous, ¢; and §,, are
determined for a given significance level a by the following equation:

Oy

p(6 <d<d,) = /p(§|mchp,xi) ddo=1-—a. (3.62)
o1

The series is considered to be inhomogeneous if 0 ¢ [d;, 0]

3.4.4.2 Basics of Inter-comparison experiments

In the following, some experiments will compare the methods of Dose & Menzel, its modifications and
those described in Ducré-Robitaille et al. [2003]. The testing procedures used for this thesis also originate
from Ducré-Robitaille et al. [2003]. In general, two tests are performed. The first check works on
homogeneous time series. Here, the aim is to control the false alarm rate. In a second check, homogeneous
and inhomogeneous datasets are controlled. In this case, the aim is to check the performance of every
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Table 3.4: Properties of Dose and Menzel methods used in the sensitivity tests.

flat yes 95%
flat yes 99%
flat yes 50%
normal yes 95%
normal yes 99%
normal yes 50%
original yes 95%
original yes 99%
original yes 50%
flat no 95%
flat no 99%
flat no 50%
normal no 95%
normal no 99%
normal no 50%
original no 95%
original no 99%
original no 50%

method on detecting change points. At first, the test vectors used in both tests are described.

For the following tests, three different types of test vectors are used, each of which consists of 100 elements.
The first was introduced by Ducré-Robitaille et al. [2003] and describes an autoregressive process, which
was already defined in equation 3.46. Therefore, it is a standard normal distributed vector with an
autocorrelation of 0.1. Ducré-Robitaille et al. [2003] also defined a dedicated reference series Y, based on

the original vector:
Y; =1.5X; +0.1Y;_1 + N(0,1). (3.63)

The normal distribution N is again given as shown in equation 3.46, with the first parameter indicating
the mean and the second the standard deviation.
The second test vector is standard normal distributed, without any autocorrelation. The original series
is defined by:

X; =N(0,1). (3.64)

The dedicated reference series is chosen in a way, that the difference to the original series is also a normal
distributed vector, but has a much smaller standard deviation:

Y: = X; + N(0,0.1). (3.65)
As a third test vector, a gamma distributed time series is chosen. It is defined as:
X:=G(2,1). (3.66)

The function G is the gamma distribution, wherein the first parameter defines the scale and the second
the shape. Here, also the reference series is chosen in a way, that the difference series still have similar

characteristics:
Y, = X; +G(2,0.1). (3.67)
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Figure 3.13: Application of the modifications of the Dose-Menzel method on homogeneous test vectors.
On the x-axis the methods are shown, on the y-axis the percentage of detected inhomo-
geneities. Three different types of test vectors are used: autoregressive (red), normal dis-
tributed (green) and gamma distributed (blue). The marks indicate the value over 1000 test
vectors, the bar behind it the uncertainty estimated by bootstrapping with 1000 samples.

All three types of original and reference series are used in the following tests to demonstrate the influence

of the basic distribution of the data on the outcome of the tests.

3.4.4.3 Test on homogeneous datasets

The first test is one on homogeneous datasets. The testing procedure used here was also applied by Ducré-
Robitaille et al. [2003]. Unlike there, the focus here is not set on the height of the detected step, but
on their existence. Therefore, 1000 vectors of each type are tested with each of the methods. Those are
the eight methods, described by Ducré-Robitaille et al. [2003] and several combinations of the method of
Dose & Menzel and its modifications. These combinations are collected together with their abbreviations
in table 3.4. The abbreviations for the methods described in section 3.4.4.1 were already given in table
3.3.

The results of these tests are shown in the figures 3.13 and 3.14. The first, figure 3.13, will be used to
describe the general structure of the plots, which will follow in a similar layout in this section and the
next ones. The aim of the plot is to show the results of the different modifications of the Dose-Menzel
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Figure 3.14: Inter-comparison test of several change point detection methods applied to homogeneous
test vectors. On the x-axis the methods are shown, on the y-axis the percentage of detected
inhomogeneities. Three different types of test vectors are used: autoregressive (red), nor-
mal distributed (green) and gamma distributed (blue). The marks indicate the value over
1000 test vectors, the bar behind it the uncertainty estimated by bootstrapping with 1000
samples. Black lines indicate the results for the autoregressive test vectors calculated by
Ducré-Robitaille et al. [2003].

methods. On the x-axis, the names of the methods are shown. The y-axis describes the number of
detected inhomogeneous datasets in percent of the number of tested test vectors. For each method, the
results are presented within a white or grey vertical stripe. In this, three markers with underlying bars are
shown for each method. In red are the results of the autoregressive test vectors, in green the ones of the
normal distributed test vectors and in blue are the results of the gamma distributed test vectors shown.
The mark is the result for the 1000 vectors, while the bar shows the uncertainties as a bootstrapped
estimation with 1000 samples (see also section 3.2.5).

A closer examination of the results of the different modifications of the change point detection procedure
by Dose & Menzel shows, that their results are similar. The methods using a reference series can be found
in the left half, without a reference series on the right. The three methods with different thresholds for a
basic method are grouped together. For the autoregressive process in red all results are between 2.7 and
6.8%. The calibration of the methods has been performed on the autoregressive time series without using
a reference series. Those results are in the range of 2.7 and 4.3%. This shows that the calibration has
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worked with an acceptable performance. For the results with the reference series, the inhomogeneities
are a few percentages higher than without. The tests with the normal distributed test vectors deliver
smaller percentages for all cases. While the methods without the use of a reference series detect some
inhomogeneities, the others do not. A reason for this behaviour can be seen in the smaller variance of
the time series under control for the methods with a reference series. The values for the methods with
reference series for the normal distributed vectors range between 0.1 and 0.3% and without between 1.7
and 2.4%. The gamma distributed test vectors show a heterogeneous behaviour. For the methods with
reference series the results are in the range of 1.1 and 3.2%. This means, that they are between the
two other types of test vectors. Without the reference series, the gamma distributed vectors deliver the
highest chance for the detection of inhomogeneities. Especially the original method by Dose & Menzel
delivers high values up to 21%. Reasons can be found partly in the calibration procedure, which sets
the maximal possible value v to 40, even when higher values would be necessary. Nevertheless, only the
method with the 50% threshold is influenced by this restriction. Still, the results of the original model
with no reference series show, that they have to be taken with care in the following.

The second figure 3.14 has a similar structure. Here, the methods described by Ducré-Robitaille et al.
[2003] are compared to the main methods from Dose & Menzel. The black lines for the first methods on
the left indicate the results obtained by Ducré-Robitaille et al. [2003] in their analysis of the autoregressive
process. Since the results of the methods are very heterogeneous, they are described separately. The
first method on the left is the Two-Phase Regression (TPR) by Easterling and Peterson [1995]. It shows
a high number of inconsistencies. The value for the autoregressive process determined here is at 34.5%.
This result is in comparison to the value by Ducré-Robitaille et al. [2003] too low. Nevertheless, it is in
the correct order, where the uncertainties of the bootstrap show, that it is only slightly out of range. The
results for the normal and gamma distributed vectors are in the order of 20% (17.4% and 22.9%), what is
lower than the autoregressive process, but still high. For the Multi Linear Regression (MLR), the results
for the autoregressive process are by far too high (16.5 instead of 3.6%) in comparison to the results by
Ducré-Robitaille et al. [2003]. The results for the normal and gamma distributed vectors are around 5%
(5.1 and 6.8%).

The results for both of the SNHT methods are similar. Both deliver for the autoregressive process results
at around 3% (2.7% and 3.1%). This is in the order of the 5%, what was the aim of the calibration by
Ducré-Robitaille et al. [2003]. Still, they have much higher values (8.6% and 13.3%) as a result. For the
normal and gamma distributed values, the results are very low in all cases. The ST method delivers for
all three cases low values between 1.0 and 2.0 %. The original value by Ducré-Robitaille et al. [2003] is a
little bit higher (4.9%). Also higher than the results in the experiments performed here are the results of
the paper for the WRS method. In all cases, the results show a relatively high outcome. While Ducré-
Robitaille et al. [2003] deliver a result of 56.3%, the autoregressive results are at 50.9% here. Normal
and gamma distributed vectors are only slightly lower (47.0 and 45.7%). For the Bayesian methods,
the results are very different. The result without a reference delivers a match between the results of
Ducré-Robitaille et al. [2003] and the experiments performed here (7.2% to 6.8%). Contrastingly, the
results with the use of the reference series are completely different. For the Bayes method with reference
Ducré-Robitaille et al. [2003] determined the number of time series classified as inhomogeneous with 0.8%,
while the autoregressive process delivers here 31.8% as a result. The results for the normal and gamma
distributed vectors are even worse with 98.0% and 93.5%. For the Bayes method without a reference
the result for the normal distributed vector is also in the range of acceptance with 4.4%. The gamma
distributed vector leads to hardly any detected inhomogeneities (0.1%).

In an overview it can be said, that most of the reprogrammed methods deliver results, which are at least
in the same order like Ducré-Robitaille et al. [2003]. Obvious exceptions are the MLR and the Bayes with
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Table 3.5: Properties of Dose and Menzel methods used in the sensitivity tests.

inhomogeneous
homogeneous

reference methods. Problems with those methods are briefly discussed in section 5.1.2.3. In comparison
to the methods of Dose & Menzel, both SNHT methods, ST and Bayes without a reference series deliver
similar results at around 5% for the autoregressive process.

In the next section, time series with included inconsistencies will be evaluated by all the above explained
methods.

3.4.4.4 Detection of change points

The second test was also performed in a similar way by Ducré-Robitaille et al. [2003]. In this case,
25000 test vectors of each type of test vectors, described in section 3.4.4.2, are tested. The additional
modification, which is applied to a time series, is the inclusion of steps. To include them, the explained
algorithm is used in the following.
First, an element of the following exponential distribution £ is sampled, where the parameter indicates
the rate, which is set to 0.05:

Atpos = £(0.05). (3.68)

If the value for At,,s is greater or equal to 10, a step will be included at the At,,s-position after the
last included step. If no step is included into the time series, it is the At,,s-position, where the step is
included. If Atp,, is lower than ten, a redraw takes place. Should a step be included at a position higher
than 100, no additional step is added to the time series anymore. The size of the step is determined by
the sampling of a standard normal distribution:

Abgrep = N(0,1). (3.69)

If the absolute value of d4p is in the range of 0.5 to 2, the step is included with this size at the given
position. If not, the draw is repeated until a sufficient value is available. With these modifications, the
test vectors are then checked by the methods. At this point, it is necessary to mention, that for the three
types of vectors the same modifications take place.

The results of the methods, which are applied recursively to the datasets (see also section 5.1.2.2), deliver
information about where the position of a change point is expected. In a first step of the analysis, the
methods only use the information, if a step was detected or not by a method on a given test vector. With
the knowledge about that and the information on the really included step modifications to the vector, it
is possible to set up a contingency table. The one used is shown in table 3.5. The null hypothesis used,
is that the tested vector is inhomogeneous.

To evaluate the contingency table, several scores are available in the literature. In the following, three
different scores will be used. The first is the log odds ratio (Stephenson [2000]). It can be calculated by
the following equation:

ad
SIOR =In <bc> . (3.70)
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Figure 3.15: Log odds ratio of the application of the modifications of the Dose-Menzel method on ho-
mogeneous and inhomogeneous test vectors. On the x-axis the methods are shown, on the
y-axis the log odds ratio. Three different types of test vectors are used: autoregressive (red),
normal distributed (green) and gamma distributed (blue). The marks indicate the mean of
25000 test vectors, the bar behind it the uncertainty estimated by bootstrapping with 1000

samples.

The odds ratio shows, how much better the model is in contrast to a random forecast. If both are

independent, the odds ratio will become one and therefore the log odds ratio zero (Stephenson [2000]).
As a second score, the Heidke Skill Score (HSS) (Heidke [1926]) is used, which is defined by:

B 2(ad — be)
1SS = X et d) + (a L D)+ d) (3.71)

This score evaluates the number of hits (a) and correct rejections (d) and standardise them. The

standardisation is constructed in a way, that a model which classifies the time series perfectly would lead
to a Syss of 1. Generally, Syss can take the values between 1 and -1. It was also used by Menne and

Williams Jr. [2005] to evaluate different change point detection methods.
The third method used is the calculation of the entropy. The equation can be defined by (Vigneron

[2006]):
Spnt =~ pilogy | (3.72)
P Zp]

J
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Figure 3.16: Log odds ratio of the inter-comparison of the modifications of the Dose-Menzel method and
the methods described by Ducré-Robitaille et al. [2003] on homogeneous and inhomogeneous
test vectors. On the x-axis the methods are shown, on the y-axis the log odds ratio. Three
different types of test vectors are used: autoregressive (red), normal distributed (green) and
gamma distributed (blue). The marks indicate the mean of 25000 test vectors, the bar
behind it the uncertainty estimated by bootstrapping with 1000 samples.

The theoretical limits for Sgy,:, under the precondition that 0log,(0) = 0, are 0 and 2. The lower
boundary indicates, that all weight is given to only one field of the contingency table. Reaching the
upper boundary means, that all four entries are filled equally. In the following test, the lower limit is
shifted upwards, due to the here given number of homogeneous (42,2%) and inhomogeneous (57,8%) test

series. As a result, the lower theoretical limit is given by 0.983.

a) Log odds ratio At first, a look at the results of the log odds ratio will be taken. The analysis of
this score starts with the different modifications of the method by Dose & Menzel, which are shown in
figure 3.15. Like all the following figures in this section, it is similarly structured to figure 3.13, that was
described in the last section 3.4.4.3. On the y-axis the log odds ratio is shown. Equally to the results
for the tests on homogeneity, the main difference can be found in this plot for the methods, which use
a reference series (right half) and those which do not (left half). For each type of test, the results are
similar. The methods that use a reference series have a log odds ratio of around 6 for the autoregressive
test vectors. For the normal and gamma distributed vectors ratio can only be calculated for the flat
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Figure 3.17: Heidke Skill Score of the application of the modifications of the Dose-Menzel method on
homogeneous and inhomogeneous test vectors. On the x-axis the methods are shown, on the
y-axis the Heidke Skill Score. Three different types of test vectors are used: autoregressive
(red), normal distributed (green) and gamma distributed (blue). The marks indicate the
mean of 25000 test vectors, the bar behind it the uncertainty estimated by bootstrapping

with 1000 samples.

model. Still, the uncertainties are also very high. This indicates, that the contingency table is not filled
adequately for any of those applications. As a consequence, even the high values for the flat models
cannot be used as a statement for a well performing model. For the methods without a reference series
the results are lower, but the contingency table has enough entries in all fields. Here, the autoregressive
test vectors deliver a log odds ratio of around 4, for the normal distributed ones of around 5 and for the
gamma distributed vectors of around 3. This shows that the methods with reference, have results with
higher values than those without a reference. Furthermore, these values are clearly higher than 0.

In a second step, the main modifications of Dose & Menzel are compared to the results described by Ducré-
Robitaille et al. [2003]. On a first glance, several methods have the same problem with underdetermined
contingency tables for the normal and gamma distributed test vectors, like the Dose-Menzel methods
with reference. MLR, both SNHT modifications and ST show a high uncertainty for these test vectors as
well. Therefore, the focus will be set on the time series, that are produced by the autoregressive process.
Here, the highest values from the methods by Ducré-Robitaille et al. [2003] have comparable results to
the modifications with a reference series from Dose & Menzel. From the first, both SNHT methods have
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Figure 3.18: Heidke Skill Score of the inter-comparison of the modifications of the Dose-Menzel method
and the methods described by Ducré-Robitaille et al. [2003] on homogeneous and inhomo-
geneous test vectors. On the x-axis the methods are shown, on the y-axis the Heidke Skill
Score. Three different types of test vectors are used: autoregressive (red), normal distributed
(green) and gamma distributed (blue). The marks indicate the mean of 25000 test vectors,
the bar behind it the uncertainty estimated by bootstrapping with 1000 samples.

results of 5.6 and 5.2, respectively. Like mentioned before, the latter reaches values between 6.1 and 6.3.
From the other methods, only the Bayes methods with and without a reference series and TPR, with a
log odds ratio of 4.7, 3.6 and 3.5, are in the range of the Dose-Menzel methods without a reference. The

others show lower scores.

b) Heidke Skill Score In a next step, similar plots like for the other scores are shown for the Heidke
Skill Score (HSS). At first, the different modifications of Dose-Menzel are investigated, what is shown
in figure 3.17. Here, the HSS is shown on the y-axis, while the rest of the plot is structured similarly
to figure 3.15. The plots show similar results as well. The main difference can be found between the
methods, which use a reference series and those that do not. For the methods with a reference series
the results of normal and gamma distributed test vectors are above 0.97, while they are at around 0.89
for the autoregressive test vectors. The methods that do not use a reference series have results of the
autoregressive and normal types of test vectors grouped together at around 0.7. The gamma distributed
vectors deliver lower results at around 0.5. The uncertainties are low for all cases, but they are higher
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Figure 3.19: Entropy of the application of the modifications of the Dose-Menzel method on homogeneous
and inhomogeneous test vectors. On the x-axis the methods are shown, on the y-axis the
entropy. Three different types of test vectors are used: autoregressive (red), normal dis-
tributed (green) and gamma distributed (blue). The marks indicate the mean of 25000 test
vectors, the bar behind it the uncertainty estimated by bootstrapping with 1000 samples.

for those, which do not use a reference series than for those, which do.

In the case of the comparison of the methods described by Ducré-Robitaille et al. [2003] and the main
modifications of Dose and Menzel the results, shown in figure 3.18, are more heterogeneous. Comparable
results to the reference series using methods of Dose and Menzel are only reached by the two modifications
of SNHT. ST has results on the same level as the SNHT methods for normal and gamma distributed
vectors, but the autoregressive test vectors deliver results of only 0.17. The Bayes method without
reference delivers similar results like the comparable methods of Dose and Menzel. TPR and MLR have
high results for the normal and gamma distributed test vectors, while the autoregressive process shows
results on the same level as the Dose-Menzel methods without reference series. WRS and Bayes with
reference are hardly getting high scores at all. Only the latter shows values for the autoregressive process,

which are compatible with the Dose-Menzel methods without reference series.

¢) Entropy Finally, a look will be taken at the results of the entropy measure, which is given by equation
3.72. The comparison of the different modifications of the Dose-Menzel method is shown in figure 3.19.
The results are again split between modifications using a reference series and the ones without. The
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Figure 3.20: Entropy of the inter-comparison of the modifications of the Dose-Menzel method and the
methods described by Ducré-Robitaille et al. [2003] on homogeneous and inhomogeneous test
vectors. On the x-axis the methods are shown, on the y-axis the entropy. Three different
types of test vectors are used: autoregressive (red), normal distributed (green) and gamma
distributed (blue). The marks indicate the mean of 25000 test vectors, the bar behind it the

uncertainty estimated by bootstrapping with 1000 samples.

lower results deliver the methods that depend on a reference series. Here, especially the results of the
normal and the gamma distributed test vectors for the flat model are low. This indicates that a clear
decision is made by these methods in these cases. A look at the underlying contingency tables (is shown
in the tables A.2 and A.3 in the appendix) shows, that these models deliver only in a few cases a false
result. This was also suggested by the results of the log odds ratio and HSS. The other models using a
reference series do not show any results for the normal and gamma distributed test vectors. This is due
to the fact, that they deliver in one case, here for the inhomogeneous series, a perfect result. Would this
be taken into account, the results for these methods for those vectors would be on a comparable level to
the ones of the flat model. For the test vectors generated by an autoregressive process, the results for
these modifications are at around 1.29. The methods using no reference series on the right hand side of
the plot, have higher values for the entropy for all test vectors. This means, that their hit rate is lower
and/or their false alarm rate is higher.

Figure 3.20 shows the results of the models described by Ducré-Robitaille et al. [2003] and the main
modifications of Dose and Menzel. Here, the previous results are reaffirmed. The only methods, which
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Figure 3.21: Normalised deviation of the position of the steps in the application of the modifications of
the Dose-Menzel method on homogeneous and inhomogeneous test vectors. On the x-axis
the methods are shown, on the y-axis the normalised deviation. Three different types of test
vectors are used: autoregressive (red), normal distributed (green) and gamma distributed
(blue). The marks indicate the mean of 25000 test vectors, the bar behind it the uncertainty

estimated by bootstrapping with 1000 samples.

deliver similar results to the Dose-Menzel methods with reference series are the two modifications of
SNHT. Similar to the methods without reference series, are the results of the WRS and Bayes without
reference series. All the other results of the shown methods can be found in between. Remarkable is the
fact, that the TPR and MLR have also empty entries in their contingency tables, which was seen for their
results of the log odds ratio as well. Both deliver perfect results for the detection of inhomogeneities for
the gamma distributed test vectors, while the TPR does the same for the normal distributed.

d) Position of the steps The second part of the analysis will investigate the correct positioning of the
steps. Therefore, the detected steps are compared with the true steps, which are included into the time
series. To estimate the difference between these two pieces of information they will each be transferred
to a cumulative distribution function (cdf). Its creation starts with setting up a vector with the length
of the controlled time series. For every position of this vector the number of detected steps up to this
position will be included into the vector. By the division of the whole vector by the number of detected

steps of the corresponding vector, it is normalised to the cdf.
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Figure 3.22: Normalised deviation of the position of the steps in the inter-comparison of the modifications
of the Dose-Menzel method and the methods described by Ducré-Robitaille et al. [2003] on
homogeneous and inhomogeneous test vectors. On the x-axis the methods are shown, on the
y-axis the normalised deviation. Three different types of test vectors are used: autoregressive
(red), normal distributed (green) and gamma distributed (blue). The marks indicate the
mean of 25000 test vectors, the bar behind it the uncertainty estimated by bootstrapping
with 1000 samples.

The two resulting cdfs are compared by calculating the equation of the Earth Mover’s Distance (equation
3.14). In this case, the number of blocks is given by the number of elements of the vector, which is here
np = 100. Apart from this factor of normalisation, it is the same as the divergence of the Continuous
Ranked Probability Score (CRPS) (Gneiting and Raftery [2007]). For only one breakpoint the calculation
is equivalent to the standard CRPS (Hersbach [2000]).

The results for the modifications of Dose-Menzel are shown in figure 3.21 and for the comparison of their
main modifications with the models described by Ducré-Robitaille et al. [2003] can be found in figure 3.22.
The plot has the same layout like the plot before, with the normalised deviation shown on the y-axis.
Illustrated are the results for the mean over 25000 realisations. The orientation of the y-axis is chosen
such that lower values mean, that the set steps are closer to the original included steps. The normalised
deviations for the modifications of Dose and Menzel in figure 3.21 are again divided into the methods
using a reference series and those, which do not. For the first, the results of the normal and gamma
distributed vectors are much lower than the results for the vectors with the autoregressive process. For
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Table 3.6: Properties of Dose and Menzel methods combined with the histogram test used in the sensi-
tivity tests.

flat yes 95% KLD
flat yes 95% JSD
flat yes 95% MS
flat yes 95% RMS
flat yes 95% EMD
normal yes 95% KLD
normal yes 95% JSD
normal yes 95% MS
normal yes 95% RMS
normal yes 95% EMD
original yes 95% KLD
original yes 95% JSD
original yes 95% MS
original yes 95% RMS
original yes 95% EMD
flat no 95% KLD
flat no 95% KLD
flat no 95% MS
flat no 95% RMS
flat no 95% EMD
normal no 95% KLD
normal no 95% JSD
normal no 95% MS
normal no 95% RMS
normal no 95% EMD
original no 95% KLD
original no 95% JSD
original no 95% MS
original no 95% RMS
original no 95% EMD

the latter, the results are generally much higher, but here, the vectors resulting from the autoregressive
process and the normal distributed vectors are lower than for the gamma distributed vectors.

Of more importance are the results of the comparison to the methods described by Ducré-Robitaille et al.
[2003], shown in figure 3.22. The main conclusion from this plot is, that the results of the modifications
of Dose-Menzel using a reference series are in the same order of the methods with the best performance
by Ducré-Robitaille et al. [2003]. This is reached by the SNHT in its two modifications. Also, the ST
shows low results for the normal and gamma distributed vectors, but much worse for the autoregressive
process. Other methods like TPR and MLR show results with a similar behaviour. WRS and the two
Bayes modifications are in the same order like the Dose-Menzel modifications without a reference series.
Further discussion on the results in this section is given in section 5.1.2.4.
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3.5 Combination

In the last section, the method of Dose & Menzel was introduced and modified. Some sensitivity tests
were performed and at the end, the method was compared to other change point detection methods. As a
next step, it will be used in different applications in the next chapter 4. In this section, some preparations
for these applications will be made. It will be explained, how to combine the test of Dose & Menzel with
the histogram test introduced in section 3.3.

The basic strategy is to extract a one-dimensional time series from the result of a histogram test. The
resulting matrix for controlled time series consists of rows and columns for each temporal block, which
show the comparisons to the other blocks. For this test, one of these rows or columns is used, that is a
one-dimensional time series. As a consequence, from this time series it is possible to determine, how the
chosen block compares to all other blocks. Resulting from that, it becomes possible to find inconsistencies
within the dataset. For observational data it is a good choice to take the last existing row or column,
which might indicate the latest observation. In this case, it is normally best known how the involving
instruments behave and which problems are introduced into the measurement process. For simplicity,
only the newest row is used in the following tests. The difference between choosing a row or column
would only be a problem for asymmetric measures like the KLD, what was explained in section 3.3.3.1.
In this section, only shifts in mean will be analysed. In section 3.3.3.3 it was described, that the difference
with the KLD for such a shift is not high enough within the results, that this would be a problem for the
following comparison tests. Therefore, the KLD can be used like the other distance measures, without
the introduction of a bias by taking the wrong choice on which parts of the result matrix the evaluation
take place.

The two tests, that will be performed again, are the homogeneity test from section 3.4.4.3 and the step
detection test from section 3.4.4.4. The used test vectors have a length of 100 elements. For the histogram
test, this is a very short time series, as it divides the series into blocks and estimates with a histogram for
each a probability density function. To detect inconsistencies here, a size of block s, = 5 is used. This
means, that the pdf has to be estimated from only five elements. The other parameters are chosen like
before, the number of bins is n, = 65 and the prior information used for the KLD and JSD is ay = 100.
The extracted time series is the last available row of the result matrix. In this case the last element of
the time series is a comparison of the block with itself. This was excluded in the analysis and therefore
the time series has a length of 19 blocks. It is then analysed with the modifications of Dose & Menzel.
In the following tests, all combinations of used measures in the histogram tests and basic modifications
of Dose & Menzel are calculated and compared.

3.5.1 Test on homogeneous datasets

The procedure for this test was described in section 3.4.4.3. In the same section, the structure of figure
3.23, which shows the results of this test, was explained. The x-axis shows the different methods, the y-
axis the percentage of inhomogeneities. Used abbreviations for the here introduced methods are described
in table 3.6. Abbreviations for the basic modifications of Dose & Menzel were already included in table
3.4. Methods that use a reference series subtract the reference series from the original series before the
histogram test is applied.

The plot shows the thirty combined methods alongside the six basic modifications. At first sight, mainly
the methods using the Kullback-Leibler Divergence deliver a high number of inconsistent time series for
the homogeneous time series. Especially for the normal model, where intercept and slope is regressed
within the change point detection of Dose and Menzel, the results are high. The other methods do not
deliver inhomogeneities for the flat model with and without reference series. This is different to the
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Figure 3.23: Testing homogeneous datasets with the modifications of the Dose-Menzel method on results
of the histogram test. On the x-axis the methods are shown, on the y-axis the percentage
of detected inhomogeneities. Three different types of test vectors are used: autoregressive
(red), normal distributed (green) and gamma distributed (blue). The marks indicate the
value over 1000 test vectors, the bar behind it the uncertainty estimated by bootstrapping
with 1000 samples.

case, where the Dose & Menzel method is applied to the same series without using the histogram test.
There, the methods reach between 0.2 and 4.0%, respectively. For the normal model, again only the
KLD method deliver higher results than the original modification. The others are more or less in the
same order as the autoregressive process for the basic modification. Remarkable is the absence of big
differences between the three types of test vectors for the methods using a histogram test in this case.
For the original methods by Dose & Menzel the results are very heterogeneous. Here, mainly the KLD
and EMD deliver high results of around 7.5 to 13 %. The others are mainly in the same range like the
original modifications. Here, also the differences between the different types of test vectors are low for a
given method.

Summarising the results of this figure leads to the following conclusion. Except the KLD, the main
measures deliver similar numbers of as inconsistent classified time series like the original modification.
Remarkable is, that the difference between the different types of test vectors is lower than for the original
modification without using the histogram test.
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Figure 3.24: Log odds ratio of the application of the modifications of the Dose-Menzel method in combina-

tion with the results of the histogram test on homogeneous and inhomogeneous test vectors.
On the x-axis the methods are shown, on the y-axis the log odds ratio. Three different
types of test vectors are used: autoregressive (red), normal distributed (green) and gamma
distributed (blue). The marks indicate the mean of 25000 test vectors, the bar behind it the
uncertainty estimated by bootstrapping with 1000 samples.

3.5.2 Detection of change points

The results for the test on inhomogeneous data is shown in the figures 3.24 to 3.26 and include again the
results for the log odds ratio, Heidke Skill Score and entropy.

a) Log oddsratio Figure 3.24 shows the results for the log odds ratio. The plot has the same structure
like the last shown figure. On a first glance, the outcome for the different methods seem to be very
heterogeneous and complicate. Therefore, the results for each of the six basic modifications will be
discussed separately.

It should be started with the flat model, which uses a reference series and is located on the left hand
side of the plot. Obvious are the high uncertainties of all methods using the histogram test. For the
autoregressive test vectors, only the EMD measure is in an order of the original method. All others are
only around half as high. Also for the normal and gamma distributed vectors, the results are higher

for the EMD than for the ones performed with the histogram test. The difference between those two
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Figure 3.25: Heidke Skill Score of the application of the modifications of the Dose-Menzel method in

combination with the results of the histogram test on homogeneous and inhomogeneous test
vectors. On the x-axis the methods are shown, on the y-axis the Heidke Skill Score. Three
different types of test vectors are used: autoregressive (red), normal distributed (green) and
gamma distributed (blue). The marks indicate the mean of 25000 test vectors, the bar
behind it the uncertainty estimated by bootstrapping with 1000 samples.

results is for all histogram methods much lower than for the original method. For the normal method
with reference, the uncertainties are much lower. In this case, the EMD is the only method, that delivers
results comparable to the original modification. The other methods using the histogram test deliver
results for the autoregressive process of just around 1. In case of the third modification, the original
model with reference, the result of the autoregressive process is in all cases of the histogram test clearly
lower than the results of the version of the Dose & Menzel test, which is applied to the original vector.
The best is again the EMD measure. The MS measure shows a large uncertainty. In cases of the normal
and gamma distributed vector, where the original modification has not delivered any results, the EMD
performs best as well.

The methods, which do not use the reference series, deliver generally similar results to the ones using
it. For the flat model the uncertainties are also high for the methods, using the histogram test. In this
case, the EMD version delivers higher results for all types of test vectors than all other modifications,
including the original modification. For the normal model, the results are much more heterogeneous
without a reference series than with it. Here, the results for all types of test vectors are for all methods
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Figure 3.26: Entropy of the application of the modifications of the Dose-Menzel method in combination

very similar.

the original

with the results of the histogram test on homogeneous and inhomogeneous test vectors. On
the x-axis the methods are shown, on the y-axis the entropy. Three different types of test
vectors are used: autoregressive (red), normal distributed (green) and gamma distributed
(blue). The marks indicate the mean of 25000 test vectors, the bar behind it the uncertainty
estimated by bootstrapping with 1000 samples.

The EMD delivers slightly lower results than the original modification. The same holds for
model with or without the use of a reference series.

b) Heidke Skill Score The results for the Heidke Skill Score in figure 3.25 show a similar behaviour
for the different methods. It can be seen, that especially for the normal and the gamma distributed test

vectors, the

normal method of the EMD measure with the use of a reference series deliver high results

(0.971 and 0.962). Together with its equivalent for the original method this method delivers results similar

to the original methods without reference series for the autoregressive test vectors (DM /r/n/EMD: 0.697,
DM/r/o/EMD: 0.679, DM /noref: 0.694, DM /nr/n: 0.696, DM /noref/o: 0.701). For most of the methods,
the results are better for the normal and gamma distributed vectors than for the autoregressive process.

Also the difference between those two test vector types is relatively low for most methods using the

histogram test.
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c) Entropy For the entropy the results in figure 3.26 are very heterogeneous. The EMD, which per-
formed so well in the two figures before, now show values higher than 1.5 for the most methods of Dose
and Menzel. This indicates, that the methods do not deliver clear results. Reasons can be found, when
the contingency tables are further analysed (table A.1 to A.3 in the appendix). They show, that the
problems mainly occur for the inhomogeneous datasets. For the homogeneous datasets the results are
clear, what can be interpreted as a low false alarm rate on inhomogeneities. The other measures of the
histogram tests partly show a much lower entropy, but this does not necessarily have to be an indication
for a good result. It might also be possible, that a high rate of false alarm or misses can be found within
the results. A look at the results for the contingency tables in table A.1 to A.3 in the appendix underline
this interpretation for most of the histogram methods, which are not combined with the EMD.

Summarising the results of all plots leads to the conclusion, that the use of the histogram test with the
EMD leads to relatively small changes to the results compared to the original method. On the other
hand, it is not as sensitive to inhomogeneities in datasets as the original method. The other measures
deliver a much lower performance in terms of the log odds ratio and HSS. The entropy shows, that the
methods have a different detection limit than the original method. This requires a recalibration of the
method with the histogram test, in order to obtain better results. Nevertheless, it has to be kept in
mind, that the histogram test in general performs a strong data reduction. To get a precise position and
a verification of the potential steps, the breaks have to be checked again with the original method, but
this time without the combination with the histogram test. The estimation of the probability density
functions with the histograms of only five elements is also critical.

More discussion on that topic follows in section 5.1.2.4.






4 Application

In chapter 3 several checks for a quality assurance on data were presented. Additionally, some tests on
artificial datasets were performed, making use of those checks. In this chapter, the checks will be applied
to different datasets of real observations and model data. The aim is to demonstrate, how these tests can
be applied in real case situations and which further enhancements can modify them to make the tests
usable in new fields of applications. In section 4.1, the histogram test in combination with the Dose and
Menzel methods is applied to observational data. Two different measurements of wind will show that
this approach is able to detect uncertainties due to rounding effects within a dataset. Section 4.2 shows
the analysis of inconsistencies in multidimensional datasets with the help of the combined method. In
this analysis, the surface windspeed from NCEP and ERA40 reanalyses dataset is taken as an example.
In a third application in section 4.3, the combined method is used to demonstrate a parallel analysis
of a large number of datasets. It is performed by the analysis of the basic data for the HADCRUT 3
dataset. Additionally, it is shown how the resulting temperature reconstruction handles inconsistencies
in the initial datasets. In a last application, the quality evaluation is demonstrated on data of a climate
station in section 4.4. It uses the methods of Meek and Hatfield [1994] and combines their results with
assumptions on how these methods give information about the quality of the datasets.

4.1 Detection of rounding in data

The first application shown in this chapter is the application of the histogram test on a meteorological
time series, which was generated by a meteorological station operated by the German Weather National
Service (DWD) in Lindenberg (Germany) (station id: 10393 / latitude: 52° 21’ North / longitude: 14°
12’ East , elevation: 98 m). The test is performed by the evaluation of the mean wind and daily maximum
wind from this station. Both time series have been measured over twenty years, between 1991 and 2010.
They are shown in figure 4.1.

For the application of the histogram test, the different measures described in section 3.3.2 are used. The
block length is chosen as s, = 365 values and the number of bins for the histograms as n, = 65. For the
Kullback-Leibler divergence and the Jensen-Shannon divergence the prior ay is set to 100. The motivation
for the choice of the parameter s, with a length of one year is to prevent possible problems arising due
to the annual cycle. The results for four of the five measures (KLD, JSD, RMS, EMD) are shown in
the subfigures 4.2a-d and 4.3a-d. A subsample of the datasets with a focus on detected inconsistencies is
shown in the subfigures 4.2e and 4.3e.

The bin-wise comparing measures, KLD (subfigure 4.2a), JSD (4.2b) and RMS (4.2c) for the mean
wind in figure 4.2 show a pattern in the result matrix. This indicates that a change around the years
2000/2001 has occurred in the dataset. In the plot for the results of the EMD (subfigure 4.2d) are hardly
any indications for a break at this time recognisable. To show what leads to the inconsistencies in the
results of the three measures, a focused extract on the dataset for the time span between 2000 and 2002
is shown in subfigure 4.2e. Obviously, a change in the storing of the dataset happens at 1st April, 2001.
This change is indicated by the rounding of the data after this datum, which was not applied before.

In the following step, the combination of the the histogram test and the methods of Dose and Menzel

85
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Figure 4.1: Original time series of the wind speed measurements in Lindenberg between 1991 and 2010.
In the upper subfigure the mean wind and in the lower the daily maximum wind are shown.

will be demonstrated. The results for each of the five measures and regression models within the Dose
and Menzel method are shown in table 4.1. For each combination, the probability of a change point, the
position of the most probable breakpoint and the probability of a break at this breakpoint are shown.
The models used for the Dose and Menzel method are the calibrated methods with a 95% threshold. In
case that the probability of a change point is lower than 95%, the most probable year and the probability
of a change point in the corresponding year are given in brackets.

All measures, except the EMD method, show a clear indication of a break for all types of regression
models in the year 2001. For the EMD, all regression models deliver a probability for a change point,
which is lower than 40%. Nevertheless, the flat model in the year 2001 shows with 62% a small advantage
of the change point model compared to the constant model.

As a second example, the daily maximum wind for the same station is investigated. The results are
shown in figure 4.3. Again, the bin-wise working methods (KLD, JSD and RMS) show certain patterns.
These indicate a difference within the data of the years 1991, 1999 and 2000 to the other years covered by
the datasets. In contrast, the visual inspection of EMD does not show any obvious pattern. The reason
for these patterns can be seen within subfigure 4.3e, which shows a focus on the time span between July
1998 and July 2001 of the dataset. It also shows a rounding, which can be recognised between December
1998 and April 2001. Before and after this time span, the data are stored differently. For similar reasons
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Figure 4.2: Application of the histogram test with the different measures on the mean wind measured
in Lindenberg from 1991 to 2010. In the four upper figures, the result matrix for the KLD
(upper left), JSD (upper right), RMS (middle left) and EMD (middle right) are shown. In
the figure at the bottom, the time frame between January 2000 and December 2002 of the
original values is shown.
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Table 4.1: Analysis of the mean wind measured by the meteorological station in Lindenberg. Illustrated
are the results of the application of the combination of the histogram test and the different
regression models within the change point analysis by Dose and Menzel.

probablhty. of 1.000 1.000  1.000 1.000 = 0.148
change point

best candidates = 2001 2001 = 2001 2001 = (2001)

probability of "% 560 1000 | 1.000 1.000 | (0.619)
change at year
probablllty of 1.000 1.000  1.000 1.000 = 0.375
change point

best candidates = 2001 2001 = 2001 2001 = (2001)
probability of "4 550" 1 000 | 1000 1.000 | (0.294)
change at year
probability of %4 559" 1 000 1,000 1.000 | 0.022
change point

best candidates = 2001 2001 = 2001 2001 = (2001)

probability of “ 4 550 1,000 1000 1.000  (0.175)
change at year

the patterns in the results of the three measures in 1991 are generated.

In table 4.2, the results of the application of the Dose and Menzel modifications on the data of the year
2010 are shown. Obviously none of the methods is able to detect a change point within the dataset.
With around 70% probability for that a change point exists at all, the clearest indication for all types
of regression models is given by the KLD for the year 2000/2001. In the specific year, the probability is
given by a maximum of 94%. Since the KLD measure is an asymmetric measure, like in the sensitivity
tests in section 3.3.3, the best result of two possibilities is taken. All other measures are far below these
results. Most methods combined with the different measures show the highest probability of a change
point in the time span between 2000 and 2002. An exception is the EMD which shows 1994 as the best
candidate. Nevertheless, it delivers a very low probability for all modifications of Dose and Menzel for
this year.

Summarising the results of these applications leads to the conclusion, that for the detection of rounding
in data the bin-wise methods are superior to the EMD. For obvious patterns, the combination of the
histogram test with the change point detection by Dose and Menzel delivers results, which are comparable
to the visual inspection. Nevertheless, the method might have problems with more complicate patterns.
Further discussion on the reasons of this behaviour will take place in section 5.1.1.2.

4.2 Inconsistency detection of reanalysis data

This section shows a second application of the histogram test. In this case, the time series under con-
sideration do not have one, but three dimensions. The datasets, to which the methods are applied, are
reanalysis data of NCEP in section 4.2.1 and ERA40 in section 4.2.2. Investigated is the surface wind
representation within these model data.

The surface wind speed parameter in the two global reanalyses have already been investigated by several
studies. An example is the analysis of Monahan [2006], which was performed with the help of probability
density estimations. Monahan calculated the spatial distribution of different statistical moments and
compared them between the different reanalyses. In another study Yuan [2004] indicated, that especially
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Figure 4.3: Application of the histogram test with the different measures on the maximum wind measured
in Lindenberg from 1991 to 2010. In the four upper figures, the result matrix for the KLD
(upper left), JSD (upper right), RMS (middle left) and EMD (middle right) is shown. The
figure at the bottom illustrates the time frame between July 1998 and June 2001 of the original
values.
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Table 4.2: Analysis of the maximum wind measured by the meteorological station in Lindenberg. Il-
lustrated are the results of the application of the combination of the histogram test and the
different regression models within the change point analysis by Dose and Menzel.

probability of g 693 147 | 0151 0011 | 0.003
change point

best candidates = (2001)  (2001) = (2002) (2001) | (1994)

probability of

e at yeur | (0:936) | (0.476) |(0.501)  (0.042) | (0.004)
probability of =g 633 150 | 0132 0.012 | 0.003
change point

best candidates | (2000)  (1997) « (1997) (1997) = (1994)
probability of

e at vour | (O888) (0.456) | (0.384)  (0.046) | (0.018)
probability of g 2yg 969 0270 0.024 | 0.001
change point

best candidates = (2000)  (2000) = (2000)  (2001) | (1994)

probability of
change at year (0.939) (0.738) « (0.798) (0.019) = (0.011)

in the southern oceans the discrepancies between observations and current reanalyses are high. Yuan
emphasised, that this finding depends on the season and is also detectable in the monthly mean data,
where the reanalyses underestimate the strength of the winds.

4.2.1 NCEP reanalysis

The NCEP reanalysis was generated by the National Centers for Environmental Prediction (NCEP) and
the National Center for Atmospheric Research (NCAR) in the United States. Initially, it covered the
years 1957 to 1996, but was extended afterwards. The system collects several types of observational
data and after a quality control and a data assimilation, they will be processed in a numerical weather
prediction model (Kalnay et al. [1996]).

The data is stored as a three dimensional field for each variable of the reanalysis. These fields consists
of two dimensions in space and one in time. The chosen temporal resolution of the data is monthly. As
a check for inconsistencies the histogram test is used, but unlike the first application it is only applied
with the EMD measure. For the comparisons, the data have to be divided into blocks. The chosen
resolution in the temporal dimension of these blocks is one year. As a consequence, all data within one
year consisting of twelve two-dimensional fields, are used as one block. A weighting is not applied to the
data. The blocks are used to calculate the histograms and to compare each block to the other blocks
afterwards. The result matrix for this analysis is shown in figure 4.4a.

On the x- and y-axis, the years of the blocks are shown. The values indicate blue for low and red
for high differences between the histograms, measured by the EMD. At first glance, some patterns can
be recognised. The first is obviously on the upper left hand corner, between the years 1948 and 1957.
Others can be found along the diagonal and are partly more and partly less visible. Clear patterns are
also located in the years between 1976 and 1978, 1986 and 1995 and after 1996. For further analysis, the
dataset can be divided into several subparts. Therefore, the monthly two-dimensional fields are divided
into five sections on the meridional direction and the method is separately reapplied to the data of each
section. These sections are the tropics (25°S - 25°N |, subfigure 4.4b), northern mid-latitudes (25°N -
65°N, 4.4c), southern mid-latitudes (25°S - 65°S, 4.4d) and the polar regions in the northern (65°N -
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Figure 4.4: Application of the histogram test with the EMD measure to different regions of the NCEP
reanalysis surface wind speed for the years 1948 to 2010. In the upper left figure, the result
matrix for the whole dataset is shown. Furthermore, the results for the tropical region (upper
right), northern latitudes (middle left), southern latitudes (middle right), northern polar
region (lower left) and southern polar region (lower right) are presented.
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Figure 4.5: Analysis of the results of the histogram test with the EMD measure in comparison to the
year 2010 on the global NCEP reanalysis surface wind speed and application of the different
modifications of Dose and Menzel. In the upper left, the raw time series is shown. In the
upper right, the detected change points by the flat model, in the lower left those of the normal
model and in the lower right, the change points of the original model are shown.

90°N, 4.4e) and southern (65°S - 90°S, 4.4e) hemisphere. All matrices illustrate different results and
patterns, so that the inconsistencies of the whole dataset can be attributed to the different regions.

In the tropics some minor patterns are recognisable. The most apparent can be found between 1976
and 1979. The northern mid-latitudes do hardly have any patterns. At some points, the comparison
of consecutive years delivers low values, but no larger section is clearly recognisable. For the southern
mid-latitudes the results are different. In the year 1957, a strong break occurs in the dataset. Afterwards,
several smaller and larger patterns are apparent. Additionally, the year 1979 falls out of its environment of
a longer time span of consistent data between 1958 and 1984. The polar region in the northern hemisphere
is much more complex. Several minor patterns are recognisable. Additionally, the years 1967, 1978 and
1979 stand out in their environment. In the last plot for the southern polar region, the patterns are
structured clearer. Breaks can be found in 1957, 1985, 1988, 1992, 1995, 2005 and 2009.

Before the reasons for these inconsistencies will be explained, the combination of the histogram test and
the method of Dose and Menzel is used to analyse the global dataset. The change point detection method
is applied to the time series resulting from the histogram test, which includes the comparisons to the data
of the year 2010. The corresponding time series is shown in figure 4.5a. The plot has the years on the
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Figure 4.6: Global difference of the yearly mean wind speed between the years 1950 and 2010, measured
in metres per second. Positive values in red indicate higher values for windspeed in 2010,
negative values in blue indicate higher values in 1950.

x-axis and the values of EMD of the comparisons to the data of 2010 on the y-axis. In general, a trend
from higher values in the 1950s to lower values in the recent years can be recognised. The application
of the Dose and Menzel methods with the different regression models delivers three to four breakpoints
in the time series. The flat model in figure 4.5b set their three change points to 1957, 1985 and 1995.
The normal model (figure 4.5¢), that also indicates three change points, has the same except for the first,
which is set to 1951. The original model, shown figure 4.5d, has the same breakpoints as the flat model,
but adds a further one to the year 1963.

The question arises, if the detected breakpoints can be traced back to the generation of the dataset. The
first break, which attracted the attention both by visual inspection and the flat and original model, was
the break in the year 1957. This year was, together with its successor, the International Geophysical Year
(IGY). In this year "[...Jmany Antarctic stations began collecting data[...|" (Kalnay et al. [1996]). The
time before was described by Kistler et al. [2001] as: "The pre-1958 era is [...] the least reliable period,
especially for the [Southern Hemispere|, where high correlations between analysis and forecasts in 1948
are simply the result of a lack of observations, that is, the 'reanalysis’ is mostly a model forecast." The
time corresponding to the second feature between 1976 and 1978, which was not indicated by the models,
but visible in the result matrix, can be linked to the First GARP Global Experiment (FGGE), which was
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Figure 4.7: Analysis of the results of the block-wise yearly mean wind speed of the global NCEP reanalysis
and application of the different modifications of Dose and Menzel. In the upper left, the time
series is shown without applying a change point method to it. In the upper right, the detected
change points by the flat model, in the lower left those of the normal model and in the lower
right, the change points of the original model are shown.

conducted in these years. It is also visible in the number of observations used to assimilate within the

model (Bromwich and Fogt [2004]). Especially the number of used radiosondes shows crucial changes in
1957 and 1979 (Kistler et al. [2001]). Information concerning the consistency after 1996 is not available,
since the last published counts of observations for the reanalysis end in 1998 (Kistler et al. [2001]). In

this publication, it is not possible to detect an obvious change in the background data for this period.

Next, the influence of the detected changes will be pointed out. Therefore, a differential plot of the raw

data is presented in figure 4.6. The difference of the annual mean surface windspeed is plotted for the

difference between 1950 and 2010. Values in red indicate years, where the windspeed is stronger in the

year 2010. The blue ones show, where the windspeed is higher in 1950. First of all, it becomes obvious,

that larger changes occur in the southern polar region. It is also possible to recognise the continents by

higher values in the surface windspeed in 1950. The differences of the annual mean windspeed are up to

87*. Summarising, the figure 4.6 shows, that the changes within the variable surface windspeed are of

relevant size.

In section 3.2.2, a method was presented, which block-wisely investigates some statistical parameters

instead of the whole distribution. The next step is to compare the results of this approach with the ones
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Figure 4.8: Application of the histogram test with the EMD measure to the global ERA40 reanalysis of
the surface wind. The x- and y-axis show the years, the values of the matrix are the measured
differences by the EMD measure between the histograms of the years.

calculated by the histogram test. Therefore, the block-wise mean of the same dataset is analysed. The
mean is taken for every year from all data of the two-dimensional field. This delivers one value for every
year, where the results are shown in figure 4.7. Figure 4.7a shows the time series of the mean surface
wind of the NCEP reanalysis data in “*. For the whole time series an increase from around 6.3"* to 6.8
can be determined over the investigated 62 years. In the other three figures, the three main modifications
of the Dose-Menzel methods are applied to this time series. The flat model result in figure 4.7b detects
three breakpoints in the years 1957, 1985 and 1995. The same results are provided by the histogram test
using the EMD measure. Similar results are generated by the normal method, which detects the breaks
at 1951, 1986 and 1995. It is shown in figure 4.7c. The EMD equivalent shows similar results, but moved
the 1986 breakpoint to 1985. Completely different results are delivered by the original model in figure
4.7d, which does not detect any breakpoint in the mean wind.

For the flat and the normal model the results are the same or at least very similar, while for the original
model strong differences exist. At this point, it is not possible to say, which method performs better, if
differences in the results exist. All these breaks need further analysis by a data controller, who is familiar
with the exact proceedings of the creation of the dataset. Only such a person would be able to say, if the
possible physical reasons for these breaks are really represented within the dataset. In the next section,
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Figure 4.9: Analysis of the results of the histogram test with the EMD measure in comparison to the
year 2010 on the global ERA40 reanalysis surface wind speed and application of the different
modifications of Dose and Menzel. In the upper left, the raw time series is shown. In the
upper right, the detected change points by the flat model, in the lower left those of the normal
model and in the lower right the change points of the original model are shown.

the same methods will be used to investigate a similar dataset.

4.2.2 ERA40 reanalysis

The ERA40 dataset was generated under the guidance of the European Centre for Medium-Range
Weather Forecasts (ECMWF). This reanalysis covers the years 1957 to 2002. It is based on the ERA15
reanalysis, which was performed for the years 1979 to 1994 (Uppala et al. [2005]). Later on, it was
updated and here the data are used up to the year 2010. Like for the NCEP reanalysis, the assimilated
types and number of observations vary in time, so that inconsistencies have to be compensated by the

used model.
For the data of ERA40, a similar dataset like in the NCEP reanalysis will be analysed. The data is
available as a monthly two-dimensional field for the years 1958 to 2010. Here, also the histogram with

the EMD measure is applied. To determine the size of a block, the solution chosen for the NCEP reanalysis

is used again. Therefore, all the data for every year is collected from the monthly, two-dimensional fields

and the histograms are calculated. The comparisons are shown in the result matrix in figure 4.8.
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Figure 4.10: Histograms of the ERA40 reanalysis data of the years 1958 (black) and 2010 (red). On the
x-axis the wind speed categories in metres per second, on the y-axis the density of each
category is shown.

On the x- and y-axis the years corresponding to the blocks are shown. The values of the matrix are
the measured distance by the EMD between the dedicated histograms. At first glance, a pattern which
indicates a break in the data around the year 1979 can be recognised. Smaller patterns can be identified
in the two homogeneous sections, but are not as apparent as the huge break. The combination of these
results with the Dose-Menzel method are shown in figure 4.9. Subfigure 4.9a shows the comparisons of
all years with the block of 2010. Here, the time series can be divided into two sections, like the visual
inspection of the result matrix has shown. The same results, if the three main modifications of Dose-
Menzel are recursively used to detect multiple change points. Then, the flat model, shown in figure 4.9b,
indicates a break in the year 1979. The two other models (normal model in figure 4.9¢, original model in
figure 4.9d) set the breakpoint to the year 1978.

The reason for this break can be identified with the introduction of satellite data into the data assimilation
of the ERA40 reanalysis (Uppala et al. [2005]). That this change leads to changes within the ERA40
dataset, especially in the southern hemisphere, was also analysed by (Bromwich and Fogt [2004]).
Another question is the influence of the detected break to the dataset. There