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1. Summary 

The chemokine receptor CXCR3 and its corresponding ligands CXCL9, CXCL10 and 

CXCL11 are well known to be involved in the trafficking and migration of activated CD4+ 

Th1 T cells, CD8+ T cells and NK cells during inflammation. Because of the high levels of 

CXCR3 expression on Th1 and NK cells, this chemokine receptor is used as a prototypical 

marker for these cells. Functional existence of CXCR3 has also been demonstrated on 

resident cells of the CNS, although the relevance of CXCR3 for CNS immune and non-

immune functions is only scarcely defined. The CXCR3 ligands CXCL9, CXCL10 and 

CXCL11 are induced in a vast variety of inflammatory CNS diseases with a variable degree of 

immune cell infiltration, but recently these ligands have also been shown to be induced in 

neurodegenerative diseases without significant infiltration of immune cells. Taken together, 

the available data argues for a diverse and complex role of CXCR3 in neuroinflammatory 

diseases, which is beyond simple immune cell attraction. Furthermore, the impact of CXCR3 

in neurodegenerative diseases is almost undiscovered. 

To further examine the functional role of CXCR3 in CNS disease models, we genetically 

deleted the CXCR3 receptor in specific CNS disease models. We first focused on the impact 

of CXCR3 on a highly inflammatory, Th1 cell-mediated immune response in the CNS 

induced by the CNS-specific production of IL-12 in transgenic mice (GF-IL12 model, 

Chapter 1). Secondly and in contrast to the first model, we examined the role of CXCR3 

signaling in a neurodegenerative disease using transgenic mice co-expressing two human 

Alzheimer’s disease (AD) mutations (APPsw/PS1∆E9, short APP/PS1 model, Chapter 2) with 

only minor inflammatory features.  

GF-IL12 mice develop ataxia due to severe cerebellar inflammation, but have little overt 

ocular pathology. In GF-IL12 mice deficient for CXCR3 (termed GF-IL12/CXCR3KO) the 

incidence of ataxia was drastically reduced, but surprisingly all mice developed cataract and 

severe inflammatory destruction of the eyes. Histological examination revealed only minimal 

cerebellar inflammation in the majority of GF-IL12/CXCR3KO mice, but severe retinal 

disorganization, loss of photoreceptors and lens destruction of the eyes. The number of 

CD3+, CD11b+ and NK 1.1+ cells were reduced in the cerebellum, but highly increased in 

the eyes of GF-IL12/CXCR3KO compared to GF-IL12 mice. In addition, high levels of 

various transcripts of proinflammatory cytokines were found in the cerebellum of GF-IL12 

and the eye of GF-IL12/CXCR3KO mice. These findings demonstrate key, but paradoxical 
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functions for CXCR3 in IL-12-induced immune pathology in the CNS, promoting 

inflammation in the brain yet restricting it in the eye. From this experiment we conclude that 

CXCR3 can have both striking protective and harmful functions in CNS and ocular 

inflammation and that this effect does not only depend on the trigger as suggested by 

previous studies but likely also on the micro-milieu of the affected organ. 

Early chemokine induction has been described in chronic neurodegenerative diseases such as 

AD. Descriptive studies in brain tissue from AD patients and the according animal models 

revealed high levels of the chemokine CXCL10, suggesting an important pathogenetic role of 

this chemokine and the corresponding receptor CXCR3. To further elucidate the role of 

CXCR3 in a less inflammatory CNS disease model, we analyzed CXCR3-competent 

APP/PS1 transgenic mice (APP/PS1) and CXCR3-deficient APP/PS1 transgenic mice 

(APP/PS1/CXCR3-/-) for Aβ-deposition, APP-processing and inflammatory gene 

transcription. Furthermore, microglial phagocytosis assays were used to analyze the impact of 

CXCR3 on the microglial phagocytosis of Aβ. We found a strongly reduced plaque burden 

and Aβ peptide-levels APP/PS1/CXCR3-/- compared to APP/PS1 mice. An alternative 

morphological activation and diminished accumulation of microglia was detected in 

APP/PS1/CXCR3-/- mice and after cortical injection of Aβ into CXCR3-/- mice. CXCR3 

deficiency led to a reduction of proinflammatory cytokine RNA levels like TNF-α and IL-1β 

in APP/PS1 brain tissue. In vitro, CXCR3-/- and CXCR3 antagonist treated microglia showed 

enhanced phagocytosis of Aβ. Taken together, we identified CXCR3 as a critical factor 

modulating the development of the microglial response and thereby the progression of the 

Alzheimer’s like pathology observed in APP/PS1 mice.  

The presented studies highlight the potent but also complex functional properties of CXCR3 

in both, highly inflammatory and neurodegenerative CNS-disease models. CXCR3 appears 

to be a novel and promising therapeutic target for AD but our data further underline the 

functional complexity and unpredictability of this chemokine system in CNS diseases. Until 

then, therapeutic targeting of CXCR3 has to be proceeded with caution. 
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2. Zusammenfassung 

Im Rahmen von Entzündungsreaktionen sind der Chemokinrezeptor CXCR3 und die 

CXCR3-Liganden CXCL9, CXCL10 und CXCL11 maßgeblich an der Steuerung und 

Migration von aktivierten CD4+ Th1 T Zellen, CD8+ T  Zellen und NK Zellen beteiligt. 

CXCR3 ist der typisches Markermolekül für Th1 und NK Zellen. Die funktionelle 

Expression von CXCR3 ist auch auf Zellen des ZNS nachgewiesen worden, wobei der 

Einfluss dieses Rezeptorsystems auf immunologische und nicht-immunologische Prozesse 

im ZNS noch unzureichend geklärt ist. Im ZNS werden die Liganden CXCL9, CXCL10 und 

CXCL11 in einer Vielzahl von inflammatorischen Erkrankungen mit variabler 

Immunzellinfiltration induziert. In der Übersicht diverser Studien zu entzündlichen 

Erkrankungen des ZNS zeigt sich eine komplexe Rolle des CXCR3 Rezeptorsystems, welche 

jenseits einfacher Zellrekrutierung liegt. Vergleichend dazu ist der Einfluss des Rezeptors auf 

den Verlauf neurodegenerativer Erkrankungen ohne signifikante Immunzellinfiltration bisher 

nahezu ungeklärt. 

Um die Rolle von CXCR3 besser definieren zu können, wurde der Rezeptor in zwei ZNS 

Erkrankungsmodellen durch genetischen Knockout deletiert. Der erste Teil der Arbeit 

fokussiert sich auf eine hochentzündliche, Th1-gesteuerte Immunantwort, die durch die 

ZNS-spezifische Expression von IL-12 in transgenen Mäusen vermittelt wird (GF-IL12 

Modell, Chapter 1).  

Im Gegensatz zum ersten Modell, wurde im zweiten Modell die Rolle von CXCR3 in einer 

neurodegenerativen Erkrankung  mit entzündlichen Prozessen, jedoch ohne signifikante 

Immunzellinfiltration analysiert (APP/PS1 Modell, Chapter 2). Das hierzu verwendete 

transgene Mausmodell basiert auf der Koexpression zweier humaner Alzheimer-Mutationen 

(APPsw/PS1∆E9, kurz APP/PS1). 

GF-IL12 Mäuse entwickeln eine progrediente Ataxie, infolge einer starken zerebellären 

Entzündungsreaktion, jedoch ohne pathologische Veränderungen des Auges. Bei GF-IL12 

Mäusen mit CXCR3-Defizienz (GF-IL12/CXCR3KO) kommt es zu einer drastisch 

verringerten Inzidenz der Ataxie, aber zu einer frühen Bildung von Katarakten, begleitet von 

einer starken Entzündungsreaktion, welche bis hin zur Atrophie des Auges führt. 

Histologische Untersuchungen der GF-IL12/CXCR3KO Mäuse belegen eine zum Großteil 

sehr milde zerebelläre Entzündung, jedoch die Disorganisation der Zellschichten der Retina 

konkomitierend mit dem Verlust der Photorezeptor-Zellschicht und der Zerstörung der 
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Linse. Im Vergleich zu GF-IL12 Mäusen zeigen GF-IL12/CXCR3KO Tiere eine reduzierte 

Anzahl von CD3+, CD11b+ und NK 1.1+ Zellen im Zerebellum, jedoch stark erhöhte 

Populationen dieser Zellen im Auge. Weiterhin wurde die Erhöhung von Zytokin/Chemokin 

Transkripten im Zerebellum von GF-IL12 und in den Augen von GF-IL12/CXCR3KO 

Mäusen detektiert. Die vorliegende Arbeit weist auf eine Schlüsselfunktion von CXCR3 in 

der IL-12 induzierten ZNS-Pathologie hin, welche gewebespezifisch eine Entzündung im 

Zerebellum fördern, jedoch im Auge unterdrücken kann.  

Die Induktion von Chemokinen im frühen Stadium von ZNS-Pathologien ist ein 

Charakteristikum von chronisch neurodegenerativen Erkrankungen, wie der Alzheimer-

Erkrankung (AD). In der Vergangenheit wurde in einer Reihe von deskriptiven Studien die 

Induktion von CXCL10 im Hirngewebe von AD-Patienten und in AD-Maus-Modellen 

dokumentiert, jedoch nicht funktionell untersucht. 

In der zweiten Studie (Chapter 2) wurden APP/PS1 und CXCR3-defiziente APP/PS1 

(APP/PS1/CXCR3-/-) Mäuse gezüchtet und auf β-Amyloid-(Aβ)-Plaquelast, APP-

Prozessierung und Transkription proinflammatorischer Gene untersucht. Weiterhin wurde 

der Einfluss des CXCR3 Rezeptors auf die Phagozytose von Aβ durch Mikroglia untersucht.  

Es zeigte sich, dass APP/PS1/CXCR3-/- Mäuse eine stark reduzierte Plaquelast, sowie eine 

reduzierte Menge an löslichen und unlöslichen Aβ-Peptiden aufweisen. Zudem ließ sich eine 

differentielle morphologische Aktivierung und verringerte Akkumulation von Mikroglia in 

APP/PS1/CXCR3-/- Tieren, sowie in CXCR3-/- Mäusen nach intrazerebraler Aβ-Injektion 

beobachten. Des Weiteren verringert CXCR3-Defizienz im APP/PS1-Model die 

Genexpression von proinflammatorischen Zytokinen wie TNF-α und IL-1β.  In vitro 

kultivierte, primäre CXCR3-/- Mikroglia phagozytieren signifikant mehr fibrilläres Aβ, was 

sich darüber hinaus auch in WT Mikroglia nach blockieren des CXCR3 Rezeptors 

beobachten lässt. Zusammenfassend lässt sich sagen, dass CXCR3 eine wichtige Funktion in 

der Entwicklung der Alzheimer-ähnlichen Krankheit im APP/PS1 Model hat.  

Die vorliegenden Modelle für hoch entzündliche und degenerative neurologische 

Erkrankungen geben Einsicht in potente, aber komplexe Funktionen des CXCR3 

Rezeptorsystems. CXCR3 moduliert nicht nur die Verteilung und Aktivierung von 

infiltrierenden Immunzellen, sondern auch von residenten Immunzellen des ZNS. 
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3. General introduction 

3.1 The brain: an organ with distinctive immunological features 

Studies addressing the interaction of the nervous and the immune system have to consider 

the special properties of the unique immune-modulating milieu of the nervous system. 25 

years ago, the idea that the central nervous system (CNS) and the immune system could 

dynamically interact was considered very unlikely because it was believed that the CNS 

environment is immunosuppressive. This assumption was based on the observation that 

tissue grafts are able to survive within the brain for a long period (Geyer et al., 1985; Head 

and Griffin, 1985).  

The immune-modulating milieu differs in between particular regions of the CNS. The CNS 

is organized into different compartments: the parenchyma, the ventricles containing choroid 

plexus and cerebrospinal fluid (CSF), and the meninges. Robust proinflammatory T cell 

responses to grafted tissue and pathogens are often triggered within the non-parenchymal 

sites of the CNS: the ventricles, the meninges, and the subarachnoid spaces (Murphy and 

Sturm, 1923; Mason et al., 1986; Matyszak and Perry, 1996; Perry, 1998). The ability of these 

sites to host a typical peripheral immune response suggests that the ventricular and 

subarachnoid CSF may function as sites of immune surveillance. Consistent with this, 

cellular infiltrates that accumulate within the meningeal membranes have been observed to 

arrange structures resembling secondary lymphoid structures (Serafini et al., 2004), while 

infiltrates within the parenchyma do not exhibit the features of lymphoid neogenesis 

(Holman et al., 2011). Recently, it has been shown that CD4+ T cells are restimulated within 

the subarachnoid space by encountering MHCII+ antigen presenting cells prior to the onset 

of inflammation in a murine model of autoimmune inflammation of the CNS. This 

observation further supports the concept of the subarachnoid space and meninges as a site of 

immunological surveillance (Kivisäkk et al., 2009; Holman et al., 2011). 

Apart from these areas, there is a high threshold for initiating leukocyte responses within the 

CNS parenchyma. Different factors are accountable: firstly, the presence of the blood-brain 

barrier (BBB) that inhibits or at least controls T cell entry into the CNS, thus impending T 

cell encounter with CNS antigens; secondly, the absence of a traditional lymphatic system 

that communicate CNS with regional lymph nodes (CNS can drain antigens by alternate 

routes such as the physiological CSF circulation into the blood and via some cranial and 
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spinal nerves roots into the lymph); and third, the inability of microglia, the resident 

macrophages of the CNS, to present mature antigen to T cells (Romo-González et al., n.d.; 

Carson et al., 2006; Galea et al., 2007). 

During inflammation, different molecules allow leukocytes to interact with endothelial cell 

barriers and gain access to parenchymal tissues. The sequential process of cellular rolling, 

adhesion and diapedesis is mediated and guided by the combined expression of chemokines 

(e.g. CCL19, CCL21, CCL2, CCL4 and CCL5) and chemokine receptors (e.g. CCR1, CCR2 

and CCR5) (Cinamon et al., 2001; Adamson et al., 2002; Alon and Feigelson, 2002; Johnston 

and Butcher, 2002), adhesion molecules (e.g. CAMs, selectins and integrins) (Ley, 1996; 

Johnston and Butcher, 2002; Ley et al., 2007; Holman et al., 2011) and lipid chemoattractant 

receptors (e.g. BLT1). Once leukocyte mediated inflammation of the parenchym is 

established, resident cells of the CNS, like activated microglia and astrocytes can participate in 

orchestrating the invading immune cells by the production of various factors. The underlying 

molecular and cellular mechanisms governing inflammation are not completely understood, 

but one essential group of molecules for both the recruitment and activation of infiltrating 

and resident immune cells in the CNS are chemokines.  

3.2 Introduction to chemokines and chemokine receptors  

Chemokines are a family of cytokines with chemoattractive properties. Due to their 

similarities in molecular structure and their common potential to induce chemotaxis of a 

variety of cell types, they where categorized separately from other cytokines (Rollins, 1997). 

The family of chemokines are currently divided into 2 major subclasses, which are named 

CC- and CXC-chemokines (Zlotnik and Yoshie, 2000; Bacon, 2001). The CXC chemokines 

are characterized by the interposition of a single amino acid (X) between their first two 

cysteine residues. This CXC subfamily can be subclassified into two other groups, depending 

on the presence or absence of the sequence motif glutamic acid– leucine–arginine (ELR) near 

the N-terminus. In addition, three additional molecules are also regarded as chemokines. 

These are CX3CL1, with three interventing amino acids between the first cysteines (Bazan et 

al., 1997), and XCL1 and XCL2 (Stievano et al., 2004), which lack two out of four canonical 

cysteines. To date, the official nomenclature accounts for almost 50 human chemokines. In 

parallel to this nomenclature, many chemokines can generally be classified into two 

functional groups. The first group represents the homeostatic chemokines, which are 

constitutively expressed and generally involved in lymphoid organ development and 
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maintenance, as well as immune-surveillance cell trafficking. The second group are 

inflammation related chemokines, which are induced by stimuli such as pathogens (Luster, 

2002; Werling and Jungi, 2003; Pasare and Medzhitov, 2004) or proinflammatory cytokines 

(e.g. IFN-γ, IL-1 or TNF-α). These chemokines are involved in the mobilization and 

guidance of effector cells to sites of inflammation (Luster et al., 1985; Aloisi et al., 1992; Cole 

et al., 1998; Mantovani, 1999).  

Secreted chemokines mediate their biological activity through G-protein-coupled cell-surface 

receptors (GPCRs; Dohlman et al., 1991). These receptors are named according to their 

subfamily classification and generally share common structural features, which include a 

polypeptide backbone that loops seven times across the plasma membrane to form three 

intracellular and three extracellular loops. The human chemokine receptor system at present 

consists of 19 different GPCRs and represents the most diverse class of cell-surface receptors. 

The expression of chemokine receptors is heterogeneous and not restricted to hematopoietic 

cells. Some chemokine receptors are widely expressed, whereas others are restricted to certain 

specific cells, by specific activation or differentiation states (Luster, 1998). Notably, most 

chemokine receptors are promiscuous, which means that an individual chemokine receptor 

can bind several different chemokines, and conversely, individual chemokines can often bind 

to several different receptors. The chemokine binding to a particular receptor is determined 

by its receptor affinity, which varies significantly between ligands but does not necessarily 

translate into functional potency (D’amico et al., 2000).  

Successful activation of chemokine receptors is induced by the initial recognition between 

chemokines and their receptors at exposed loops between the β-strands of the chemokine fold 

and the chemokine receptor extracellular domains. Secondly, the N-terminal region of the 

chemokine initiates the activation of the receptor, which is followed by the internalization of 

the complex regions. G proteins are then activated, driving dissociation of their heterotrimers 

into α and βγ subunits. Intracellular effectors of signal-transduction include MAPK- 

associated, CREB-activated and PLC pathways. Downstream, increased Ca2+ mobilization 

results in the activation of proteinkinase C and many other kinases, like serine/threonine- and 

thyrosine-kinases (Mellado et al., 2001). This activates multiple cellular responses, such as 

adhesion, polarization and chemotaxis (Asensio and Campbell, 1999; Cardona et al., 2008).  

Furthermore, chemokine receptor activation and signaling is also controlled by 

desensitization (Mellado et al., 2001; Vroon et al., 2006). Desensitization implies a multistep 

process and a plethora of proteins, including G-protein-coupled receptor kinases (GRKs) and 
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β-arrestins. The process begins with the phosphorylation of the chemokine receptor C-

terminal tail by GRKs, which increases the receptor affinity for β-arrestin proteins. The 

binding of β-arrestins to chemokine receptors prevents any other interaction between the 

receptor and G proteins. Afterwards, the GRK–β-arrestin complex promotes the 

internalization of the complete chemokine receptor into vesicular compartments for 

degradation or recycling (Savarin-Vuaillat and Ransohoff, 2007; Malik and Marchese, 2010; 

Fox et al., 2011).  

Finally, chemokine receptors can also modulate their ligand-induced signaling cascades by 

receptor dimerization. The current view is that chemokine receptor homo-and heterodimers 

are constitutively formed and ligand binding stabilizes or reorganizes pre-existing complexes 

(Salanga et al., 2009; Thelen et al., 2010; Bennett et al., 2011). Importantly, dimerization 

impacts on the cell’s biological response to chemokine exposure. Cross-talk within 

homomers or heteromers enables regulation of chemokine receptors in response to stimuli 

other than their own ligands. This process, is known to occur within all types of GPCR 

dimers (Terrillon and Bouvier, 2004; Bennett et al., 2011). 

Besides mediating essential signals, “decoy” receptors, like the Duffy antigen receptor for 

chemokines (DARC), D6 and CCX-CKR (Haraldsen and Rot, 2006) are able to sequester 

chemokines without mediating signal transduction. DARC binds with high affinity at least 11 

“inflammatory” CXC- and CC-chemokines, D6 binds at least 9 “inflammatory” CC-

chemokines and CCX-CKR only the “homeostatic” ones: CCL19 and CCL21, CCL25, as 

well as CXCL13 (Gosling et al., 2000). These non-signaling receptors can efficiently 

internalize specific chemokines and thereby control their bioavailability at local level or in the 

blood stream (Patterson et al., 2002; Lee et al., 2003).  

The complexity of the chemokine system and the principal potential to regulate the signaling 

of the receptors and ligands at different levels explain why researchers are interested in these 

molecules, but sometimes nominate it as “chemokinese” or “pandora’s box”(Rot and von 

Andrian, 2004; Karin, 2010) 

 

3.3 Chemokines and chemokine receptors in the healthy brain, in CNS inflammation and 

neurodegenerative disorders 

Chemokines are produced during various physiological and pathological processes in the 

CNS (Asensio and Campbell, 1999; Bacon and Harrison, 2000; Rebenko-Moll et al., 2006). 
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Because of their involvement in diverse neuroinflammatory diseases, interest in chemokines 

and chemokine receptors in the CNS has been rapidly increasing over the last decade. As 

previously mentioned, chemokines can be differentiated into constitutively expressed or 

inducible chemokines.  

In general, constitutively expressed chemokine receptors and chemokine ligands represent 

nonredundant key regulators of developmental and homoeostatic processes of the CNS. 

Studies, aimed to clarify the physiological function of chemokines in the brain, have reported 

that chemokines can influence the neuronal migration in brain development (Bolin et al., 

1998; Klein et al., 1999; Lazarini et al., 2000; Zhu et al., 2002; Vilz et al., 2005), cell 

proliferation (Robinson et al., 1998; Bajetto et al., 2001; Bakhiet et al., 2001; Hatori et al., 

2002; Rezaie et al., 2002; Krathwohl and Kaiser, 2004) and the synaptic transmission 

(Giovannelli et al., 1998; Limatola et al., 2000; Stievano et al., 2004; Bertollini et al., 2006). 

One prominent chemokine receptor system constitutively expressed in most cells of the brain 

represents CXCR4/CXCL12 (Jazin et al., 1997; Lavi et al., 1997; Bajetto et al., 1999; McGrath 

et al., 1999; Tham et al., 2001, 2001; van der Meer et al., 2001; Banisadr et al., 2002, 2003; 

Tissir et al., 2004). Evidences implicate that CXCR4 signaling is required for the migration of 

several types of neural cells including neuronal precursor cells from the external germinal 

layer (Zhu et al., 2002), cortical neuronal progenitors (Lazarini et al., 2000), cerebellar granule 

neurons (Ma et al., 1998; Klein et al., 1999; Vilz et al., 2005) and dentate gyrus granular 

neurons (Bagri et al., 2002). In the mature CNS, CXCL12 modulates neurotransmission, 

neurotoxicity and neuroglial interactions (Li and Ransohoff, 2008). Additional chemokine–

receptor networks involving CXCL8/CXCR2 and also CCL2/CCR2, more prominent for its 

role in brain inflammation and injury, have also nonredundant functions in physiologic 

processes, including neurogenesis, neuroprotection, and neurotransmission (Meng et al., 

1999; Rezaie et al., 2002; Semple et al., 2010). CXCR7 represents another chemokine 

receptor expressed on embryonic cells during the early development of CNS (Burns et al., 

2006). CXCR7 is suspicious to be not directly involved in neurogenesis, but to modulate 

CXCR4 function (Zou et al., 1998; Sierro et al., 2007; Sánchez-Alcañiz et al., 2011) because 

of its potential to bind CXCL12, whereas signaling pathways triggered by binding of CXCL12 

remain controversial (Burns et al., 2006; Proost et al., 2007; Sierro et al., 2007; Mazzinghi et 

al., 2008; Wang et al., 2008). 
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The above described constitutive chemokine receptor systems give a brief impression of their 

impact on development and homoeostasis of the brain, whereas their specific functional 

interplay during physiological processes is still not well defined. 

In addition to their functional properties under physiological conditions, chemokines are 

intimately involved in the pathogenesis of disease states of the CNS, in particular in 

neuroinflammatory diseases (Rot and von Andrian, 2004; Engelhardt and Ransohoff, 2005; 

Charo and Ransohoff, 2006a; Rebenko-Moll et al., 2006). A plethora of immune and resident 

CNS cells can produce both chemokines and chemokine receptors during 

neuroinflammation, thereby modulating the local inflammatory milieu. These cells include 

granulocytes, lymphocytes, monocytes but also resident neurons, endothelial cells and in 

particular microglia and astrocytes (Charo and Ransohoff, 2006a; Savarin-Vuaillat and 

Ransohoff, 2007). Chemokines produced in response to pathogens typically are ligands of 

CCR1, CCR2, CCR3, CCR5, CXCR2, and CXCR3 (Taub et al., 1993; Dorf et al., 2000; Lee 

et al., 2002; Ambrosini and Aloisi, 2004; Cartier et al., 2005; de Haas et al., 2007; Farina et al., 

2007). Chemokines are involved in both pathogen-driven and autoimmune CNS 

inflammatory but also in neurodegenerative diseases. In the following section, the role of key 

inducible chemokine systems during CNS diseases will be dissected. 

During acute viral infection of the CNS, astrocytes and microglia are the primary source of 

chemokines following infection with a wide range of neurotropic viruses, including the JHM 

strain of mouse hepatitis virus (JHMV), lymphocytic choriomeningitis virus (LCMV), 

Theiler’s murine encephalitis virus (TMEV), herpes simplex virus 1 (HSV1), and human 

immunodeficiency virus (HIV) (Lane et al., 1998; Aravalli et al., 2005; Christensen et al., 

2009; So and Kim, 2009; Lim and Murphy, 2011). Neurons are also capable of secreting 

chemokines during HIV and West Nile virus (WNV) infection (van Marle et al., 2004; Klein 

et al., 2005), while endothelial cells express chemokines during simian immunodeficiency 

virus-induced encephalitis (Sasseville et al., 1996). After viral infection of the CNS, activated 

and/or virally infected astrocytes, microglia, and endothelial cells secrete chemokines that 

attract myeloid cells to the CNS. One of the earliest cells to respond to viral infection, 

neutrophils are recruited into the CNS by virtue of CXCR2 responding to ligands expressed 

within the CNS (e.g., CXCL1) (Hosking et al., 2009). Beside these cells, monocytes are also 

attracted into the CNS via the chemokine CCL5 and its receptor CCR5(Glass et al., 2001, 

2005; So and Kim, 2009). Neutrophils and monocytes participate in the degradation of the 

BBB, in part through the release of the matrix metalloproteinase MMP-9, and therefore 
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ensure successive infiltration of virus-specific lymphocytes into the CNS. During the acute 

stage of disease, astrocytes, microglia, neurons, and endothelial cells continue to secrete 

chemokines, serving to attract activated T lymphocytes, NK cells, and monocytes into the 

CNS. CD8+ and CD4+ T lymphocytes bearing the receptor CXCR3 and/or CCR5 are 

attracted by the chemokines CXCL10 and CCL5, respectively, and mediate viral control 

through direct cytolytic activity and/or cytokine secretion (Asensio and Campbell, 1997; Lane 

et al., 1998; Liu et al., 2001; Trifilo and Lane, 2003; Glass et al., 2004, 2005; Trifilo et al., 2004; 

Zhang et al., 2008; Hosking and Lane, 2010). CXCL12 may sequester T lymphocytes within 

the perivascular space and regulate penetration of the parenchyma, thus inhibiting efficient 

viral clearance (McCandless et al., 2008; Hosking and Lane, 2010).  

As outlined a simplified picture has developed that indicates that chemokines and their 

receptors are intimately involved in generation of effective host responses to viral infections 

within the CNS, by influencing T lymphocyte, NK cell and monocyte trafficking and 

activation.  

Multiple sclerosis (MS) is the most common autoimmune disorder of the CNS leading to 

severe inflammation, demyelination and axonal damage of the CNS. The pathogenesis of MS 

have been widely investigated in descriptive human studies or the experimental autoimmune 

encephalomyelitis (EAE), an animal model of MS, which recapitulates the basic disease 

mechanisms (Gold et al., 2000; Lassmann, 2010). Perivascular infiltrates of T cells, B-cells 

and monocytes/macrophages are a prominent histological feature of  MS lesions (Lucchinetti 

et al., 1998). Many proinflammatory cytokines, including IL-1β (Dinarello, 2009), TNF 

family members (Ware, 2005) and IL-17 (Kebir et al., 2007) induce chemokines, that might 

contribute to the recruitment of leukocytes into the vascular cuffs of MS and EAE lesions 

(Opdenakker and Van Damme, 2011). The chemokines in acute and chronic MS lesions 

include CCL2, CCL3, CCL4, CCL5 CCL7 and CCL8, localized within the lesion center and 

suggest a potential role of these chemokines in the inflammatory events (Sørensen et al., 

1999; Trebst and Ransohoff, 2001). All receptors, CCR1, CCR2, CCR3, CCR5 and CCR8 

were detected on macrophages and activated microglia within chronic active MS lesions, 

those which also contain the highest levels of ligands for these receptors (Balashov et al., 

1999; Simpson et al., 2000a). Furthermore, studies suggests that the expression of CCR5 and 

CXCR3 by T lymphocytes and CX3CR1 by NK cells is associated with disease activity of MS 

(Balashov et al., 1999; Infante-Duarte et al., 2005). Finally, there is evidence that both 

CXCL10 and CXCL9 may play a role in MS pathogenesis (Simpson et al., 2000b). Both have 
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been detected in actively demyelinating lesions, predominantly expressed by macrophages 

within the plaques and by reactive astrocytes in the surrounding parenchyma  and their 

cognate receptor, CXCR3, was detected on T cells and astrocytes within the plaques 

(Balashov et al., 1999; Simpson et al., 2000b). A lot of information has been provided by EAE 

studies. Using monophasic or relapsing EAE models, functional roles for CXCL1, CXCL10, 

CCR1, and CCR2 were characterized during the acute phase; CCL2, CCR2, CCL20, and 

CCR6 were associated with relapses (Ubogu et al., 2006; Savarin-Vuaillat and Ransohoff, 

2007).  

During Alzheimer’s disease (AD) chronic microglia activation in regions associated with 

Aβ deposition is a prominent feature. Although this neurodegenerative disease exhibits no 

significant immune cell infiltration of the brain, descriptive studies have demonstrated the 

presence of chemokines and their receptors in AD tissues. An early induction of different 

chemokines in AD like CCL2, CXCL10 and CXCL8 in serum, CSF and brain tissue has 

been described (Galimberti et al., 2003, 2006; Corrêa et al., 2011). CXCR3 was detected on 

neurons, and its ligand CXCL10, was shown to be increased in astrocytes (Xia et al., 2000). 

Like CXCR3, CXCR2 was shown to be expressed on neurons, with its expression strongly 

upregulated in senile plaques (Xia and Hyman, 2002). Furthermore, CCL2 was found in 

senile plaques and reactive microglia of AD brain tissues (Ishizuka et al., 1997). Additional 

descriptive studies revealed elevated expression of CCR3 and CCR5 on reactive microglia, 

associated with amyloid deposits and CCR5 ligand (CCL3 and CCL4) induction in neurons 

and a subpopulation of reactive astrocytes (Xia et al., 1998).  

In summary, it is likely that the production of chemokines plays a role in the recruitment and 

accumulation of astrocytes and microglia in senile plaques. More recent studies also implicate 

a relevant impact of chemokine receptors like CCR2, CCR5 and CX3CR1 on the functional 

polarization of microglia and possibly of astrocytes in different mouse models of AD (Lee et 

al., 2002, 2009; El Khoury et al., 2007; Fuhrmann et al., 2010; Liu et al., 2010). These 

receptors are already established to modulate detrimental but also neuroprotective 

phenotypes of microglia. Related to M1/M2 polarization of peripheral macrophages 

(Mantovani et al., 2004) there is conclusive data that argue for similar polarization of 

microglia with distinct functional properties and characteristic chemokine profiles (Durafourt 

et al., 2012).   

However, in  neuroinflammatory and neurodegenerative disorders diverse cell types can be 

induced to produce a wide range of chemokines, which induce chemotaxis, tissue 



General introduction           13 

extravasation and in some instances modulate the functional properties of different resident 

cells and leukocytes (Sallusto et al., 1998; Tanuma et al., 2006; Farina et al., 2007; Subileau et 

al., 2009; Fuller et al., 2010; Graeber, 2010). The exact mechanisms and the interplay of the 

different chemokines molecules and receptors are still not very good defined. Important to 

keep in mind is the fact that the chemokines are not only active during disease states. Besides 

their important role in the developing brain, in the mature CNS a lot of physiological 

responses are regulated by chemokines and their receptors. Because chemokines display 

pleiotropic functions, blocking one chemokine receptor to treat neurological disease could 

present unexpected results.  

3.4 The function of the CXCR3 chemokine system in neurological disorders and 

corresponding animal models  

CXCR3 is, like all chemokine receptors, a seven–transmembrane GPCR that can be 

differentially activated by CXCL9, CXCL10 and CXCL11 (Loetscher et al., 1998; Weng et al., 

1998; Proost et al., 2001; Colvin et al., 2004, 2006)(Figure 1 A). The CXCR3 ligands can 

activate the Ras/ERK, Src, and the PI3K/Akt pathway, thereby modulating critical cellular 

functions, most notably integrin activation, cytoskeletal changes, suppression of angiogenesis 

and chemotactic migration (Strieter et al., 1995, 2005; Loetscher et al., 1998; Zlotnik and 

Yoshie, 2000; Bonacchi et al., 2001). Only the Th1 subset of CD4+ cells and NK cells express 

CXCR3 at high levels (Kim et al., 2001b) and therefore, CXCR3 is established as surface 

marker of these celltypes. Moreover, studies argue for functional existence of CXCR3 on 

other cells of the leukocytes lineage and resident cells of the CNS. These cells include 

monocytes and macrophages (Luster and Leder, 1993; Taub et al., 1993; Luster et al., 1995), 

microglia (Biber et al., 2002; Rappert et al., 2004; de Jong et al., 2008a), astrocytes (Biber et 

al., 2002; Flynn, 2003) and neurons (Xia et al., 2000), whereas its biological function on these 

cells widely remains to be discovered (Figure 1 B).  

CXCL9, CXCL10 and CXCL11 as the receptor itself are mainly induced and regulated by 

IFN-γ (Luster et al., 1985; Ferber et al., 1996; Cole et al., 1998), moreover induction of in 

particular CXCL10 has been detected in response to IFN-β, TNF-α, IL-1β, FasL and TLR 

ligands (Majumder et al., 1998; Lee et al., 2000; Ghersa et al., 2002; Loos et al., 2006; Choi et 

al., 2011). IFN-γ is the most potent of these inducers, being capable of inducing the genes for 

all three chemokines (Luster et al., 1985; Farber, 1990; Farrar and Schreiber, 1993; Cole et al., 

1998). The production of IFN-γ itself is largely restricted to activated T cells and NK-cells 
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(Farrar and Schreiber, 1993). The induction of CXCL9, CXCL10 and CXCL11 occurs almost 

frequently in humans and rodents during the course of cell-mediated immune responses 

evoked in a variety of pathologic states including infection, allograft rejection and 

autoimmunity (Hancock et al., 2000; Simpson et al., 2000b; Garcia-Lopez et al., 2001; Patel et 

al., 2001; Widney et al., 2005; Hofer et al., 2008; Miu et al., 2008). In this regard it should be 

noted that C57BL/6 mice have a deletion in the mRNA coding sequence for CXCL11 (NCBI 

Accession: NT_109320, AK040051.1 and AK050012.1, unpublished observation) and are 

considered to be functionally deficient for CXCL11.  

However, CXCL11 also shows a number of functional differences from CXCL10 and 

CXCL9, it has significantly higher receptor binding affinity and is a more potent 

chemoattractant than CXCL10 or CXCL9 (Booth et al., 2004). Moreover,  CXCL9, CXCL10 

and CXCL11 have also been reported to display differences in the tissue expression patterns 

during immunoinflammatory responses (Mach et al., 1999; Flier et al., 2001; Goddard et al., 

2001; Zhao et al., 2002) hinting at the likelihood that functional specialization exists within 

this chemokine family (Müller et al., 2010). Studies in mice with gene-targeted disruption of 

the CXCL9 or CXCL10 genes confirm the non-redundant function of these chemokines in a 

variety of immunoinflammatory disease states (Kakimi et al., 2001; Menke et al., 2008; Zhai 

et al., 2008). Even at the level of the same target T cell population the actions of the individual 

CXCR3 ligands can differ. Thus, while all three chemokines bind and activate CXCR3 

(Loetscher et al., 1996, 2001; Cole et al., 1998) this requires different essential intracellular 

domains of CXCR3 (Xanthou et al., 2003; Colvin et al., 2004, 2006; Dagan-Berger et al., 

2006)(Figure 1 A). Consequently, CXCL9, CXCL10 and CXCL11 can differentially regulate 

the properties of target cells which further increases the individual functional potential of 

these chemokines. 

The complexity of the CXCR3 chemokine subgroup in humans is increased further by the 

presence of splicing variants of the CXCR3 receptor, which differ in their binding profile for 

the ligands (Lasagni et al., 2003; Ehlert et al., 2004; Petrai et al., 2008). These splicing variants 

have not been found in rodents pointing to possible differences in function between humans 

and rodents. Additional complexity occurs due to the promiscuous interaction of both the 

CXCR3 receptor and its ligands with other chemokines (e.g. CCL21) and their receptors (e.g. 

CXCR4) (Soto et al., 1998; Jenh et al., 1999; Van Coillie et al., 1999; Rappert et al., 2002; 

Dijkstra et al., 2004; Petkovic et al., 2004; de Jong et al., 2008a; Mueller et al., 2008; Müller et 

al., 2010). 
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However, initially, in vitro chemotaxis assays confirmed that CXCL9, CXCL10 and CXCL11 

can promote the chemotaxis of activated T cells and NK cells (Luster and Ravetch, 1987; 

Farber, 1997). In vivo, a T cell recruiting role for CXCR3 was convincingly suggested in 

rodent cardiac allograft rejection experiments, which focused on CXCR3 and CCR5 and 

their respective ligands as key mediators of strong alloresponses (Hancock et al., 2000).  

Concerning the role of CXCR3 and its ligands in CNS diseases a vast variety of neurological 

diseases and their corresponding animal models were characterized over the last decades 

(summarized in Table 2). In the following some specific examples of clinical and 

experimental neuroimmune diseases are presented to highlight recent concepts and issues on 

the functional significance of the CXCR3 chemokine system. 
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     B CD4+ and CD8+ T cells NK 
cells, B cells, monocytes 

microglia astrocytes neurons oligo-            
dendrocytes 

CXCR3 
protein 

(human/murine;               
Biber et al., 2002)                            
(human; Flynn, 2003)                              
(murine; de Jong et al., 2008) 

(human/murine; 
Biber et al., 
2002)             
(human; Flynn, 
2003) 

(murine; 
Xia et al., 
2000) 

(human; 
Omari et al., 
2005) 

CXCR3    
mediated  
chemotaxis 

(rat/human;                     
Cross and Woodroofe, 1999) 
(human/murine;                
Biber et al., 2002)        
(human; Flynn, 2003)                       

(human/murine; 
Biber et al., 
2002) 

- - 

CXCR3    
mediated 
Ca2+   
mobilization 

(human/murine;              
Biber et al., 2002) 

(human/murine; 
Biber et al., 
2002) 

- - 

CXCR3    
mediated 
ERK1/2 
pathway      
activation 

(murine; Luster and Leder, 1993) 
(human; Taub et al., 1993)       
(human; Loetscher et al., 1996, 
1998)                                         
(human/murine; Farber, 1997)                  
(human; Sallusto et al., 1998)                  
(human; Bonecchi et al., 1998)                                 
(human; Qin et al., 1998)                                         
(murine; Lu et al., 1999)                                      
(human; Yamamoto et al., 2000)                                                                                     
(human; Kim et al., 2001a)  
(murine; Hauser et al., 2002) 
(human; Thomas et al., 2003)                            
(human; Smit et al., 2003) 

Reviews: 

(Liu et al., 2005; Müller et al., 2010; 
Groom and Luster, 2011) 

- - 
(murine;  
Xia et al., 
2000) 

- 

Figure 1: Amino acid sequences of human CXCL9, CXCL10, CXCL11 and CXCR3 with highlighted 
essential sequences for binding and differential activation (A). List of studies supply data on 
(functional) CXCR3 expression on leukocytes and resident cells of the CNS (B). The basic 
information to create hCXCR3 and CXCR3-ligand structure schematics were taken from published 
studies (Colvin et al., 2004, 2006) and from the NCBI protein database (hCXCL9, Accession: 
AAH95396.1; hCXCL10, Accession: AAH10954 and hCXCL11, Accession: AAH05292.1).  
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As introduced above, MS is a chronic demyelinating and neuroinflammatory disorder of the 

CNS that leads to serious disability in a significant number of affected patients. MS is a 

heterogeneous disorder of still unknown pathogenesis (Lassmann, 2008; Weiner, 2009). 

However, in relapsing-remitting MS, current evidence implicates the involvement of a cell-

mediated autoimmune process in which CD4+ and CD8+ T cells autoreactive to myelin 

proteins infiltrate the white matter and co-ordinate an inflammatory response that leads to 

demyelination and oligodendrocyte loss and concomitant neurodegeneration (Steinman, 

1996; Gran et al., 2004; Lassmann and Ransohoff, 2004). As discussed above CXCR3 ligands 

has key functions in promoting T cell trafficking in cell-mediated immunity. Therefore it is 

reasonable to believe that these chemokines also would have a crucial role in the pathogenesis 

of MS. This possibility led to a number of descriptive studies that have explored the 

relationship of CXCR3 and its ligands in the pathogenesis of MS (Table 1 B, Müller et al., 

2010).  

Activated T cells, entering the CNS or already have crossed the BBB in MS are shown to be 

CXCR3+ (Balashov et al., 1999; Simpson et al., 2000b; Kivisäkk et al., 2002). Both CXCL9 

and CXCL10 were found to be increased in CSF from MS patients (Sørensen et al., 1999) 

while CXCL10 was localized to astrocytes present in active but not inactive demyelinating 

lesions (Balashov et al., 1999). Sorensen et al. examined post mortem tissue from MS patients 

and found CXCL10 protein in astrocytes around perivascular accumulations of CXCR3+ 

lymphocytes and in active demyelinating plaques (Sørensen et al., 2002). It was proposed that 

CXCL10 is important to attract T cells from the CSF into the perivascular space from which 

they have access to the CNS parenchyma. Available functional data for the role of CXCR3 

ligands in EAE is conflicting, the results from the CXCR3-deficient mice reveal that CXCR3 

is not required for the recruitment of immune cells to the CNS and signaling through this 

receptor may actually mediate protection by limiting leukocyte spread and consequent 

immunemediated tissue injury (Müller et al., 2007, 2010). Furthermore, the idea that CXCR3 

signaling does not provide a major stimulus for the recruitment of effector T cells to the 

CNS in EAE gains indirect support from two additional studies. First, although CXCR3 was 

found to be a marker for memory CD4+ T cells capable of migrating through the BBB in 

vitro, this receptor was dispensable for the transendothelial cell migration of these cells 

(Callahan et al., 2004). Second, transgenic mice with astrocyte-targeted production of 

CXCL10 exhibit only modest CNS accumulation of CXCR3+ T cells that are localized to the 



General introduction           18 

meningeal and ventricular regions-despite the parenchymal production of the chemokine 

(Boztug et al., 2002). 

Although the available functional data for the role of CXCR3 and CXCR3 ligands in EAE is 

conflicting, the results from the CXCR3-deficient mice demonstrate that CXCR3 is not 

required for the recruitment of immune cells to the CNS and signaling through this receptor 

may actually mediate protection by limiting leukocyte spread and consequent 

immunemediated tissue injury (Müller et al., 2010).  

During the pathogenesis of fatal murine cerebral malaria (FMCM), there is, similar to EAE,  

a cell-specific pattern of expression of CXCL9 and CXCL10. Thus, CXCL9 RNA is found in 

microglia (Miu et al., 2008), while CXCL10 protein and RNA are localized to neurons 

(Campanella et al., 2008) and astrocytes (Miu et al., 2008). The majority of mice deficient in 

CXCR3 were found to be protected from FMCM, and this protection was associated with a 

reduction in the number of CD8+ T cells in brain vessels. Adoptive transfer of CD8+ T cells 

from C57BL/6 mice with FMCM abrogated this protection in CXCR3- deficient mice (Miu 

et al., 2008). These data demonstrate that CXCR3 on CD8+ T cells is required for T cell 

recruitment into the brain and development of FMCM and suggest that the CXCR3 ligands 

CXCL9 and CXCL10 play distinct, nonredundant roles in the pathogenesis of this disease 

(Müller et al., 2010). 

Lymphocytic choriomeningitis (LCM) is mediated by anti-viral CD8+ cytotoxic T cells and is 

characterized by localized breakdown of the BBB that results in convulsive seizures and 

death. Based on these observations it was proposed that parenchymal infiltration by cytotoxic 

T cells contributes to the lethality associated with LCM. During LCM, the majority of CD8+ 

T cells in the CSF express CXCR3 (Christensen et al., 2004, 2006; de Lemos et al., 2005) 

whereas CXCL9 and CXCL10 protein and RNA transcripts are present in the CNS 

parenchyma (Hofer et al., 2008). In CXCL10-deficient mice, the numbers of infiltrating T 

cells were reduced despite increased CXCL9 levels. This finding suggests that CXCL10 is the 

dominant CXCR3 effector ligand responsible for parenchymal positioning of cytotoxic T 

cells in the host response to infection with the LCMV-Traub strain. Consequently, the 

survival rate of CXCL10- and CXCR3-deficient mice are increased following LCMV-Traub 

infection (Christensen et al., 2004, 2006) this was not found in CXCR3-deficient mice 

following infection with LCMV-Armstrong strain (Hofer et al., 2008). In contrast to infection 

with LCMV-Traub, no differences were seen in the number of T cells infiltrating the 

parenchyma of CXCR3-deficient mice infected with LCMV-Armstrong. The findings 
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possibly indicate for variable CXCR3 functions, dependent on distinct strain dependent 

virulence used in these two virus models (Müller et al., 2010).  

To study critical aspects of the immunopathology of HSV encephalitis, mouse models of 

herpes simplex virus CNS infections were established using corneal or intranasal methods of 

infectious. CXCL9 and CXCL10 are one of the earliest genes upregulated during HSV 

infection of the CNS (Wickham et al., 2005; Carr and Tomanek, 2006). Studies demonstrate 

that during the course of HSV encephalitis CXCR3-deficient mice mice have a lower 

mortality despite higher viral loads. The lower mortality was associated with a reduced CNS 

infiltration of NK cells (Wickham et al., 2005). This argues for a role of CXCR3 in 

modulating the immune response towards a more efficient anti-viral response but also 

towards an immune response that is more harmful to the host. A conflicting finding in 

CXCL10-deficient mice is the fact that these animals also have a higher HSV virus titer in the 

CNS during infection but in contrast to CXCR3-deficient mice, have a higher mortality. NK 

cell infiltration of the CNS was shown to be reduced in both CXCR3- and CXCL10-

deficient mice but mobilization of CD8+ T cells was impaired in only CXCL10-deficient 

mice while CD8+ T cell mobilization was not impaired in CXCR3 / CXCL10 double-

deficient mice, these observations arguing against the involvement of an alternative CXCL10-

receptor (Wuest and Carr, 2008). Due to inconsistency in the findings it is difficult to draw 

durable conclusions here. However, it would seem that CXCR3 signaling is involved in the 

recruitment of NK-cells to the CNS in HSV encephalitis and contributes to the anti-HSV 

host response since loss of this capacity results in higher levels of virus in the CNS (Müller et 

al., 2010). 

Transmissible spongiform encephalopathies or prion infections of the CNS cause a 

progressive and ultimately lethal degeneration of neuronal tissue, but the underlying 

pathomechanisms are still elusive (Prusiner, 1998; Chesebro, 1999; Rezaie and Lantos, 2001; 

Weissmann, 2004; Riemer et al., 2008). However, a significant increase in trafficking of T 

cells into prion-infected brain tissue has never been reported. Instead, activation of astrocytes 

and microglia precedes neuronal death and is a general hallmark of this neurodegenerative 

protein misfolding disease (Williams et al., 1994, 1997; Riemer et al., 2000; Farina et al., 

2007). In mouse models, induction of CXCL9 (Schultz et al., 2004) and CXCL10 (Riemer et 

al., 2000) is also documented at the early, asymptomatic stages of scrapie infection and is 

sustained at high levels until the end. Significantly prolonged survival times but accelerated 

accumulation of prion protein (PrPSc) was detected in CXCR3-deficient mice compared to 
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WT controls during scrapie infection (Riemer et al., 2008). These findings were correlated 

with reduced microglia activation, attenuated induction of proinflammatory genes but an 

increase in the accumulation of astrocytes in CXCR3-deficient mice. Furthermore, CXCR3 

appears not be involved in directing monocyte migration across the BBB in the terminal stage 

of prion infections (Priller et al., 2006; Riemer et al., 2008). This study argues for a role of 

CXCR3 in modulating microglia towards a proinflammatory phenotype and possibly 

enhanced phagocytic function, which ultimately could be reasonable for the upregulation of 

PrPSc and enhanced astocytic activation in CXCR3-deficient mice. 

Neurodegenerative Alzheimer’s disease is also associated with an accumulation of misfolded 

protein and a correlating activation of microglial and astrocytes. AD brain tissue analysis 

currently supplies only limited data about the expression pattern of CXCR3 and CXCL10. 

However, studies argue for CXCL10+ periplaque astrocytes and CXCR3+ neurons in AD 

tissue (Xia et al., 2000), whereas nothing is know about their role in the pathogenesis of this 

disease.  

Taken together, the summarized studies outline the early induction of CXCR3 and CXCR3 

ligands in a vast variety of neurological disorders. However, the conflicting data from studies 

in many animal models outline that our knowledge of the CXCR3 chemokine system is still 

limited. 
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Table 1: Descriptive studies concerning CXCR3 ligand production in human CNS diseases (Müller et al., 

2010) 

Disease Chemokine Observation Reference 

Bacterial 
meningitis 

CXCL10 CXCL10 is increased in CSF 
(Giunti et al., 
2003) 

CXCL10, 
CXCL11  

CXCL10 increased in CSF, detection of 

CXCL11 in CSF 
(Lepej et al., 
2005) 

Neuroborreliosis 

CXCL11 CXCL11 in CSF 
(Rupprecht et 
al., 2005) 

African 
Trypanosomiasis 

CXCL10 CXCL10 is increased in CSF 
(Amin et al., 
2009) 

Viral meningitis 
CXCL9, 
CXCL10 

High levelsof CXCL10 but minimal levels of 
CXCL9 in CSF 

(Lahrtz et al., 
1997) 

CXCL10 CXCL10 increased in CSF 
(Kolb et al., 
1999) 

HIV infection 

CXCL10 
Correlation between CXCL10 level and virus 
load/white blood cell count in CSF 

(Cinque et al., 
2005) 

CXCL9 
No CXCL9 expression in HIV infected brain 
tissue 

(Wesselingh et 
al., 1993) HIV-associated 

dementia 
CXCL10 CXCL10 expressed in astrocytes 

(Sanders et al., 
1998) 

CXCL9, 
CXCL10 

CXCL9 and CXCL10 increased in CSF; 
Astrocytic CXCL10 expression 

(Sørensen et al., 
1999) 

CXCL10 
CXCL10 expressed in astro-cytes of active 
plaques 

(Balashov et al., 
1999) 

CXCL9, 
CXCL10 

Detection of both CXCL9 and CXCL10 
protein in demyelinating lesions 

(Simpson et al., 
2000b) 

CXCL10 
astrocytic CXCL10 ex-pression around peri-
vascular CXCR3+ infiltrates 

(Sørensen et al., 
2002) 

Multiple sclerosis 

CXCL9, 
CXCL10, 
CXCL11 

CXCR3 ligands are upregulated under IFN-β 
treatment 

(Cepok et al., 
2009) 

Optic neuritis CXCL10 CXCL10 but not CXCL9 or CXCL11 
(Sørensen et al., 
2004) 

Neuro-Behçet CXCL10 
CXCL10 levels in CSF higher than in non-
inflammatory controls and MS 

(Saruhan-
Direskeneli et 
al., 2003) 

Alzheimer’s disease CXCL10 CXCL10 in plaque associated astrocytes 
(Xia et al., 
2000) 
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3.5 Interleukin-12: key inducer of cell-mediated immunity  

Interleukin-12 (IL-12), a heterodimeric cytokine, consisting of a p35 and p40 subunit, is a key 

regulator of cellular immunity in both innate and adaptive immune response (Hendrzak and 

Brunda, 1995; Gately et al., 1998; Trinchieri, 1998). It induces the differentiation of T cells 

from a Th0 to a Th1 phenotype, which is a prominent immune response in the CNS (Cher 

and Mosmann, 1987; Trinchieri, 1993). Principal sources of IL-12 are activated macrophages, 

which secrete the cytokine in response to many microbial stimuli. Many cells appear to 

synthesize the IL-12p35 subunit, but only the mononuclear phagocytes and dendritic cells 

produce the p40 component and therefore the biological active cytokine. Secreted IL-12 

stimulates the differentiation of CD4+ helper T lymphocytes into IFN-γ producing T cells, 

which is the key cytokine of Th1 cells. Furthermore IL-12 enhances the cytolytic function of 

activated NK cells and CD8+ cytolytic T lymphocytes (CTLs). Subsequently, IFN-γ activates 

macrophages and results in an enhanced capability of killing incorporated microbes. 

A transgenic model with an astrocyte targeted expression of IL-12 was established to clarify 

the impact of IL-12 on CNS inflammation (GF-IL12 mice, (Pagenstecher et al., 2000) Using 

this model it was demonstrated that astrocyte specific expression (GF-IL12 mice) is a 

sufficient trigger to induce Th1-type immune response in the CNS (Pagenstecher et al., 

2000). The expression of IL-12 in astrocytes causes a spontaneous inflammatory CNS 

disorder, which is characterized by leukocyte infiltration, tissue destruction, calcification, 

hypomyelination, and up-regulation of proinflammatory cytokines (TNF-α, IL-1α, IL-1β, 

and IFN-γ) at the sites of transgene expression. An additional study dissected the impact of 

infiltrating lymphocytes and IFN-γ as mediators of disease in GF-IL12 mice (Hofer et al., 

2004). It was demonstrated that IFN-γ secreting mature lymphocytes are responsible for the 

disease of GF-IL12 mice using an IFN-γ-deficient model (GF-IL12/IFN-γ-/-). They found 

that none of the GF-IL12/IFN-γ-/- mice developed spontaneous neurological disorder and 

histological showed no increased infiltration by mononuclear cells compared with WT mice. 

These findings clearly demonstrate that in GF-IL12 mice activation and retention of 

functional lymphocytes in the CNS is crucial for the spontaneous development of disease and 

that IFN-γ is a pivotal mediator in the pathogenesis of the disorder. Gf.IL12 mice are an 

excellent model to study Th1 mediated inflammation of the CNS and its consequences. 
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3.6 Alzheimer’s disease and the AD mouse model APP/PS1 

Alzheimer’s disease (AD) is the most common cause of dementia in the elderly, with a 

prevalence of 5% after 65 years of age,  the fourth most common cause of death in western 

industrialized nations, and one of the major contributors to the global burden of disease 

(WHO, 2000). The disease is clinically characterized by a progressive cognitive impairment 

often accompanied by psychobehavioural disturbances and language impairment. The two 

major classical neuropathologic hallmarks of AD are extracellular beta-amyloid (Aβ) plaques 

and intracellular neurofibrillary tangles (NFTs) (Lovestone and McLoughlin, 2002; Selkoe, 

2004). The development of extracellular senile plaques is associated with hypertrophic 

astrocytes, activated microglia cells, and various other typical features of inflammatory 

processes. Etiologically, AD is heterogeneous, most AD cases are sporadic (90%), the early 

onset familial AD can be caused by mutations in APP, γ-secretases holoenzyme (including 

PSI, PS2, Nicastrin, Aph-1, and Pen-2) or β-secretases (BACE1) (Francis et al., 2002; De 

Strooper, 2003). By definition, genes that code for amyloid precursor protein (APP) and the 

APP processing proteolytic enzymes β- and γ-secretases (Checler, 1995) are good candidates 

for manipulation; therefore, to date, a multitude of genetically modified mouse strains exist 

that attempt to dissolve specific parts of the amyloid pathway. Many of the initial attempts to 

generate transgenic mice using APP with the familial AD mutations did not lead to an AD-

specific phenotype. The low expression levels of mutated APP in brain might have been 

insufficient to trigger AD-like pathogenesis during the short life span of mice (Bornemann 

and Staufenbiel, 2000). Besides these “Aβ-transgenic” approaches, transgenic mouse models 

that overexpress human wild-type tau and/or mutated forms of human tau known to be 

associated with frontotemporal dementia and Parkinson's syndrome have been generated (Lee 

et al., 2001; Brandt et al., 2005). These models simulate aspects of neurofibrillary pathology, 

particularly hyperphosphorylation of microtubule-associated protein tau that is believed to be 

an early event in the pathway that leads from soluble to insoluble and filamentous tau protein 

(Kenessey and Yen, 1993). The neurofibrillary pathology has often been incriminated as the 

direct cause of neuronal death. Tangles left in the extracellular space after the death of the 

neurons that contained them are a direct proof of the neuronal death caused by or at least 

associated with the NFTs (Braak and Braak, 1991).  

However, diverse transgenic strains expressing mutated human genes associated with familial 

forms of AD offered good models to study the etiology, progression and therapeutic 
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modulation for AD. A recently developed and available AD model is the APPswe/PS1dE9 

model expressing both APPswe and PS1dE9 transgenes. This model was generated by the 

insertion of the two transgenes of APPswe (mouse/human chimeric APP695 harboring the 

Swedish mutation (KM594/5N)) and PS1dE9 (exon 9-deleted PS1) driven by a single mouse 

PrP promoter element at a single locus (Jankowsky et al., 2001). This model displays several 

pathological characteristics of AD, like progressive accumulation of cerebral amyloid plaques 

that is accompanied with clustering reactive microglia and astrocytes concentrated around 

amyloid plaques (Jankowsky et al., 2004; Garcia-Alloza et al., 2006; Ruan et al., 2009). Once 

activated, microglia and astrocytes release a variety of cytokines, chemokines and free radical 

oxygen species which might contribute to neuronal dysfunction and death (Sastre et al., 2006; 

Li et al., 2011). In the APP/PS1 model as well as in brains of AD patients an induction of 

various of proinflammatory mediators like TNF-α, IL-1β, IL-6, MCP-1, CXCL10, Aβ 

degrading enzymes, prostanoids, complement proteins, and free radicals have been 

demonstrated (Akiyama et al., 2000; Hoozemans et al., 2006; Ruan et al., 2009; Malm et al., 

2012).  The exact function and interplay of the different mediators induced in both AD and 

AD-like pathology is still inadequately explored. At least microgliosis and astrocytosis 

associated neuroinflammation in AD is one interesting aspect of this disease, which can 

critically influence the course of the disease and the APP/PS1 model offers a potential 

possibility to understand diverse inflammatory signaling pathways modulating innate 

immunity during this devastating disease (Malm et al., 2012). 



General introduction           25 

3.7 The objective of the presented studies 

As discussed above, recent functional studies demonstrated a potent but diverse role of 

CXCR3 in various experimental disease models. In particular, the role of CXCR3 in 

neurological diseases is not well defined.  

To further clarify the function of CXCR3 in neurological diseases, effects of CXCR3 

deficiency was characterized in two very different mouse disease models. The described GF-

IL12 transgenic mice was applied to characterize the impact of CXCR3 in IL-12 induced 

neuroinflammation, a Th1 and NK cell driven immune response. In contrast to this severe 

neuroinflammatory model, we examined the impact of CXCR3 in a model of 

neurodegeneration. Therefore, we generated and used CXCR3-deficient APP/PS1 mice, 

which develop an Alzheimer-like pathology without significant influx of systemic immune 

cells into the CNS. In both models, the clinical course, histopathological features and the 

expression of key inflammatory molecules was assessed to determine the role of CXCR3.  

The results of both studies were compared to draw conclusions concerning general functional 

features of CXCR3 in neurological diseases and specific functions in inflammatory or 

degenerative diseases. 
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Chapter 1 

4. CXCR3 in IL-12-induced cell-mediated immunity in the CNS 

Published in “The American Journal of Pathology”: Krauthausen M, Carter S, Zimmermann 
J, Sarris M, Wakefield D, Heneka MT, Campbell IL, Müller M: Opposing roles for CXCR3 
signaling in CNS versus ocular inflammation mediated by the astrocyte-targeted production 
of IL-12: Am J Pathol. 2011 Nov;179(5):2346-59. Epub 2011 Sep 15. 
http://dx.doi.org/10.1016/j.ajpath.2011.07.041 
 

4.1 Introduction 

Innate and adaptive immune responses play a crucial role in protecting the nervous system 

from dangerous pathogens. However, this is a two-edged sword as an excessive host immune 

response can cause more harm than good (Rivest, 2009). The understanding of the 

pathogenetic mechanisms leading to immune-mediated tissue damage during the course of 

pathogen driven diseases like bacterial meningitis and herpes encephalitis (Conrady et al., 

2010) or autoimmune disease such as multiple sclerosis (Gandhi et al., 2010) is important to 

develop novel treatment strategies to prevent detrimental effects of the immune response.  

Chemokines, chemotactic cytokines, are key molecules in orchestrating innate and adaptive 

immune responses (Charo and Ransohoff, 2006a). Chemokines are highly upregulated in 

nearly all neuroinflammatory disorders examined. However, the precise functional properties 

of these multifunctional and promiscuitive molecules remain somewhat unclear (Cardona et 

al., 2008). The chemokines CXCL9, CXCL11 and in particular CXCL10 are highly induced 

in various neuroinflammatory disorders (Müller et al., 2010). They share a common 

chemokine receptor, which is CXCR3. CXCR3 is mainly found on activated CD4+ and 

CD8+ T cells but also on NK cells, monocytes and dendritic cells (Cella et al., 1999; Biber et 

al., 2002; Rappert et al., 2004; Liu et al., 2005). CXCR3 is differentially activated by CXCL9, 

CXCL10 and CXCL11 (Loetscher et al., 1998; Weng et al., 1998). The ligands and the 

receptor itself are mainly induced and regulated by IFN-γ (Luster et al., 1985; Ferber et al., 

1996; Cole et al., 1998). Only Th1 but not Th2 cells express CXCR3 at high levels (Kim et 

al., 2001b) and therefore, CXCR3 is a typical marker of Th1 cells (Loetscher et al., 1996). 

Descriptive studies initially pointed towards a key role of CXCR3 and its ligands in 

promoting the influx of activated T cells into the CNS (Balashov et al., 1999; Kivisäkk et al., 

2002; Sørensen et al., 2002). However, functional studies using gene-deficient mice or 
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blocking antibodies revealed a much more complex functional profile of this chemokine 

system (Fife et al., 2001; Narumi et al., 2002; Klein, 2004) which strongly depends on the 

pathogenesis of the disease model examined. In EAE, CXCR3 surprisingly has a protective 

effect, which is demonstrated by a more severe and chronic disease in CXCR3-deficient mice 

(Müller et al., 2007). 

However, EAE has a very complex pathogenesis, which is not, as previously assumed, a 

mainly Th1 driven autoimmune reaction. Different T cell subsets, viz. Th1, Th17 and Tregs 

have an impact during different stages of the disease and to understand these functions is 

currently an important issue in neuroimmunology.  

To further clarify the functional relevance of CXCR3 in neuroinflammation, we examined 

the type 1 cell-mediated CNS inflammation in mice with a CNS restricted transgenic 

expression of the IL-12 gene (Pagenstecher et al., 2000). Interleukin-12 (IL-12) is an 

important regulator of cellular immunity in both innate and adaptive immune responses. IL-

12 activates NK cells, CD8+ and CD4+ T cells in which IL-12 induces differentiation from a 

Th0 to a Th1 phenotype (Balashov et al., 1999; Kivisäkk et al., 2002). Furthermore it 

increases the proliferation of T cells and NK cells and stimulates the production of numerous 

immune effector molecules, in particular IFN-γ. As IFN-γ induces the production of IL-12, 

the IL-12/IFN-γ cytokine system serves as a positive feedback mechanism, which initiates and 

maintains immune responses.  GF-IL12 mice express the IL-12 gene under the control of an 

astrocyte (glial fibrillary acidic protein; GFAP) promoter and develop a severe 

neuroinflammatory response via induction of IFN-γ. In this transgenic mouse model, 

activated T cells and their production of IFN-γ are critical to the development IL-12-driven 

CNS-inflammation (Hofer et al., 2004) and the high expression of IFN-γ inducible 

chemokines like CXCL9 or CXCL10 suggest an additional important role for these 

molecules. Here we asked whether CXCR3 is a critical molecule for the induction and course 

of IL-12-induced neuroinflammation. To address this question, we studied the impact of 

CXCR3 deficiency in transgenic mice with chronic CNS-restricted production of IL-12. 
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4.2 Material and methods 

Animals 

CXCR3-deficient (CXCR3KO) mice (originally kindly provided by Drs. Bao Lu and Craig 

Gerard, Children's Hospital and Harvard Medical School, Boston, MA) have been described 

previously (Hancock et al., 2000). The mice where backcrossed at least eight generations onto 

the C57BL/6 strain. CXCR3-deficient mice displayed no clinical and histological 

abnormalities when compared to wild type (WT) mice. 

Transgenic mice expressing both subunits of the IL-12 heterodimer (p35/p40) under the 

transcriptional control of the astrocyte-specific GFAP promoter (GF-IL12 mice) were 

described previously (Pagenstecher et al., 2000). To obtain CXCR3-deficient GF-IL12 mice 

(GF-IL12/CXCR3KO) heterozygous GF-IL12 mice on a C57BL/6 background were 

successively crossed with CXCR3KO mice. Animals were kept under pathogen free 

conditions in the Zentrale Tierexperimentelle Einrichtung (ZTE) animal facility of the University 

Hospital Münster and in the Blackburn facility of the University of Sydney (Sydney, 

Australia). All procedures were approved by the veterinary office of the Bezirksregierung 

Münster (Germany) and of the Sydney Animal Care and Ethics Committee (Australia).  

Clinical assessment of mice 

The GF-IL12/CXCR3KO, GF-IL12, CXCR3KO and WT mice were clinically evaluated over 

a period of 36 weeks at least twice a week. The clinical scores for ataxia were assessed for each 

animal according to a previously established protocol (Quintana et al., 2009). Ataxia signs 

were scored using a cumulative scale of four points, giving one point to each of these four 

physical signs: splayed legs, dragging weight on the trunk rather than on the legs, wobbling 

and falling from side to side. A second score was applied to assess the severity of the ocular 

phenotype: 1 = monocular cataract; 2 = binocular cataract; 3 = monocular cataract and 

monocular phthisis bulbi; 4 = binocular phthisis bulbi.  
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Tissue processing for histology 

The tissue for analysis (histology, immunohistochemistry and molecular biology) was 

obtained from 8 and 24 week old mice of each genotype (WT, CXCR3KO, GF-

IL12/CXCR3KO, GF-IL12). Immediately after euthanasia, the brain and eyes were removed 

and half of the brain (cut along the sagittal midline) and an eye were fixed overnight in PBS-

buffered 4% paraformaldehyde at 4 °C, washed in PBS and subsequently embedded in 

paraffin. Sections (8 µm) were prepared from paraffin-embedded tissue. 

For immunohistochemistry on cryosections, tissue was embedded with Tissue Tek® (Sakura 

Finetek, Staufen, Germany). Sections (8 µm) were prepared and five cerebelli/eyes of each 

genotype were analyzed. 

Routine histology and (fluorescence)-immunohistochemistry 

Paraffin-embedded sections were stained with H&E and Luxol fast blue for routine 

histological analysis and myelin evaluation. For immunohistochemistry, sections were 

rehydrated in graded ethanol series after deparaffination in xylene and some were pretreated 

with proteinase K digestion. Slides were then incubated for 1h at room temperature with 

primary Abs (primary Abs and corresponding protocols for immunohistochemistry are 

summarized in Table 2). After washing in PBS, a biotinylated secondary Ab (Axxora, Lörrach, 

Germany; 1/200) and HRP-coupled streptavidin (Axxora; 1/200) was used. The signal was 

visualized by NovaRED color reagent (Axxora), according to the manufacturer’s instructions. 

Conventional and immunofluorescence-stained sections were examined under a DM4000B 

bright field and fluorescence microscope (Leica, Wetzlar, Germany). Bright field images and 

monochrome fluorescent images were acquired using a Leica DFC480 camera and Leica 

Firecam 1.7.1 software (Leica). The acquired monochrome fluorescence signals were merged 

using SPOT Advanced 4.5 software (Diagnostic Instruments, Sterling, MI) or “cell^P” 

imaging software (Olympus Soft Imaging Solutions, Münster, Germany).  

To allow clear discrimination of IHC signal and the pigment layer of the eye, and to detect 

epitopes which are not preserved in paraffin embedded tissue, fluorescent 

immunohistochemistry on cryo-embedded sections was performed (Table 2). After washing 

in PBS OD594 and OD488 fluorescence-conjugated secondary Ab (Invitrogen, Darmstadt, 

Germany; 1/200) was used to visualize the primary Ab. Sections were mounted and 

counterstained with DAPI (Sigma-Aldrich, Munich, Germany). 
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Table 2. Antibody and lectin reagents used for immunohistochemistry 

 

Antibody/Lectin (source) 

 

Specificity 

 

Paraffin 

Sections 

(dilution) 

 

Cryo 

Sections   

(dilution) 

Polyclonal rabbit anti-human CD3 

(Dako, Hamburg, Germany) 
T cell 1/200 1/200 

Biotin-conjugated tomato lectin,       

L. esculentum 

(Axxora, Lörrach, Germany ) 

Microglia/ 

macrophages, 

endothelial cells 

1/50 - 

Monoclonal mouse anti -human 

GFAP (Dako) 

Glial fibrillary acidic 

protein 
- 1/200 

Polyclonal rabbit anti-Laminin reactive 

with human and mouse Laminin                                                     

(Sigma-Aldrich, Munich, Germany) 

Basal lamina - 1/50 

Polyclonal rabbit anti-Iba1 reactive 

with human, mouse and rat Iba1                                                       

(Wako Chemicals, Neuss, Germany) 

Microglia and 

macrophages 
- 1/500 

 

RNase protection assays 

The brain and eyes were collected as described above and snap frozen in liquid nitrogen. Total 

RNA was isolated using Trizol (Sigma-Aldrich). RNase protection assays were performed as 

described previously (Ousman and Campbell, 2005). Five µg of total RNA were used for each 

sample and hybridized with the following probes: CXCL9, TGF-β, IL1β, IFN-γ, IL-12p40, 

CCL5 and the RPL32–4A gene (Dudov and Perry, 1984) that served as an internal loading 

control. For autoradiography, Biomax films (Eastman-Kodak, Rochester, NY) were exposed 

for various periods of time and scanned using a ScanJet 4C (Hewlett-Packard Co., Palo Alto, 

CA). 
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Cytokine and chemokine mRNA determination by qRT-PCR 

Total RNA (3 µg) was reverse-transcribed into cDNA using SuperScript III Reverse 

Transcriptase (Invitrogen). Real-time quantitative PCR assays were performed using 

SYBRgreen. The composition of the reaction mixture was as follows: 1 µL of cDNA 

corresponding to 300 ng of total RNA, 100 nM of each primer, 2×SYBR Green PCR Master 

Mix (Applied Biosystems, Darmstadt, Germany) in a total volume of 25 µL. Samples were 

analyzed simultaneously for GAPDH mRNA as the internal control. The mRNA levels for 

each target were normalized to mRNA levels of GAPDH and expressed relative to that of 

nontransgenic C57BL/6J mice. Each sample was assayed in duplicate. Primer sequences used 

to amplify the GAPDH, IFN-γ, IL-17, CXCL10, TNF-α, VEGF-A, LYVE1 and IL-10 cDNA 

were:  GAPDH sense 5'-TCACCAGGGCTGCCATTTGC-3' and GAPDH anti-sense 5'-

GACTCCACGACATACTC AGC-3', IFN-γ sense 5'-CAG CAA CAG CAA GGC GAA A-3' 

and IFN-γ anti-sense 5'-GCT GGA TTC CGG CAA CAG-3', IL-17 sense 5'-AAG GCA 

GCA GCG ATC ATC C-3' and IL-17 anti-sense 5'- GGA ACG GTT GAG GTA GTC TGA 

G-3', CXCL10 sense 5'-GAC GGT CCG CTG TTC T-3' and CXCL10 anti-sense 5'-GCT 

TCC CTA TGG CCC TCAT T-3', TNF-α sense 5'-ATG AGA AGT TCC CAA ATG 

GCC-3' and TNF-α anti-sense 5'-ACG TGG GCT ACA GGC TTG TC-3', VEGF-A sense 

5'-TTA CTG CTG TAC CTC CAC C-3' and VEGF-A anti-sense 5'-ACA GGA CGG CTT 

GAA GAT G-3', LYVE1 sense 5'-TCC AAC ACG GGG TAA AAT GT-3' and  LYVE1 anti-

sense 5'-CCT CCA GCC AAA AGT TCA AA-3' IL-10 sense 5'-TGT CAA ATT CAT TCA 

TGG CCT-3' and IL-10 anti-sense 5'-ATC GAT TTC TCC CCT GTG AA-3'.  

Flow cytometry analyses of cerebellar and ocular leukocytes 

Cerebelli and eyes from WT, CXCR3KO, GF-IL12 and GF-IL12/CXCR3KO (n=3) animals 

were excised and placed into ice-cold PBS buffer solution. The tissue was cut into small 

pieces and digested for 30 minutes in PBS with collagenase I (0.05 g/ml; Roche Diagnostics, 

Mannheim, Germany) first and following DNase I (100 µg/ml; Sigma-Aldrich) digestion for 

30 min at 37°C in a humidified atmosphere of 5% CO2. The eye homogenates were 

differentially digested by a combination of collagenase D (1 mg/ml; Roche) and DNase I (100 

µg/ml, Sigma-Aldrich) for 30 min. Digestion was stopped with 10% FCS. A pellet was 

obtained after 10 minutes centrifugation at 340xg. Digested samples were resuspended in 
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PBS and disrupted/homogenized using needle (0.6x25) and a syringe (5 ml) before passing 

through a 70 µm cell strainer (BD Biosciences, Heidelberg, Germany). After pelleting 

homogenates were dissolved in 30% percoll (Amersham Pharmacia Biotech, Braunschweig, 

Germany). Subsequently, the 30% percoll homogenate mix was layered over 70% Percoll. 

Leukocytes were collected from the 30%/70% interface after a 800xg centrifugation step for 

25 minutes at room temperature. The collected cells were washed in PBS, and blocked with 

CD16/CD32 (Fc block; BD Biosciences) antibody. Isolated leukocytes were incubated with 

fluorochrome-conjugated antibodies (eBioscience, Frankfurt/Main, Germany) to detect 

CD3e (clone 145-2C11, PerCP-Cy5.5), CD4 (clone RM4-5, FITC), CD8a (clone  53-6.7, 

APC-eFluor 780), CD11b (clone M1/70, APC), CD11c (clone N418, PE-Cy7), CD25 (clone 

PC61.5, APC), CD45 (clone 30-F11, FITC), Ly6G (clone RB6-8C5, PerCP-Cy5.5), B220 

(clone RA3-6B2, APC-eFluor 780) and NK 1/1 (clone PK136, PE-Cy7). Intracellular staining 

for FoxP3 (PE) was done using the Mouse Regulatory T Cell Staining Kit (w/ PE Foxp3, 

clone FJK-16s, FITC CD4, APC CD25; eBioscience) according to the manufacturers 

instructions. After washing, bound Ab was detected using a BD FACSCanto II (BD 

Biosciences), and the acquired data were analyzed using the flow cytometry software, FlowJo 

(TreeStar, San Carlos, CA). 

Protein lysates and western blot 

Tissue was homogenized using a Precellys 24 tissue homogenizer (Bertin Technologies, 

Saint-Quentin-en-Yvelines Cedex, France) in lysis buffer (25 mM Tris-HCl (pH 7.4), 150 

mM NaCl, 1% NP-40, 1mM EDTA, 1mM EGTA, 1% NaDOC, 0.1% SDS, 2mM ortho-

vanadate, 30 mM NaF,  50 mM Na pyrophosphate, 2 mM PMSF) modified with  freshly 

supplemented protease inhibitor mix (Sigma-Aldrich). Samples were centrifuged at 14000 

rpm for 15 min and supernatants were taken. The protein concentrations were determined 

using the BCA Protein Assay Kit (Pierce, Rockford, IL). Protein lysates (50 µg) were 

separated by 10 % SDS-PAGE gel using NuPAGE® MES SDS running buffer (Invitrogen) at 

150 V. PageRuler Prestained Protein Ladder (Fermentas, St. Leon-Rot, Germany) was used as 

standard. Proteins were transferred to 0.2 µm nitrocellulose membranes (Whatman, Dassel, 

Germany). Membranes were blocked for 30 min in TBST containing 5% skim milk. 

Immunoblotting were performed using anti-phosphorylated (Y693)-STAT4 antibody 

(Invitrogen), anti-STAT4 (Santa Cruz, Heidelberg, Germany) antibody and antibody CP06 

(Oncogene Science, Cambridge, MA) detecting α-tubulin followed by incubation with the 
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appropriate horseradish-peroxidase conjugated secondary antibodies (Jackson 

ImmunoResearch, Newmarket, UK). Immunoreactivity was detected by chemiluminescence 

reaction (Millipore, Schwalbach, Germany) and luminescence intensities were analyzed using 

Chemidoc XRS imaging system (BioRad, Munich, Germany). With the Quantity One 

(BioRad) program bands density were determined for each lane and the intensity ratio for the 

detected proteins were calculated to α-tubulin. 
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4.3 Results 

CXCR3-deficient GF-IL12 mice only rarely develop ataxia but always develop a destructive ocular 

phenotype  

To determine whether the clinical course of IL-12-driven CNS-inflammation was altered in 

the absence of CXCR3 signaling, the physical status of a cohort of 13 GF-IL12 and 23 GF-

IL12/CXCR3KO mice was observed for 36 weeks (Fig. 2 A). As described previously 

(Pagenstecher et al., 2000; Hofer et al., 2004). GF-IL12 mice developed a progressive ataxia at 

the age of 9-12 weeks. First clinical signs at that time-point were belly dragging and the 

splaying of legs and resulted in 85% of GF-IL12 mice in an ataxia score of one. At the same 

time point, only 9% of GF-IL12/CXCR3KO displayed any signs of ataxia. Progression of the 

ataxia in GF-IL12 mice could be observed resulting in an ataxia score three or four in 92% of 

the animals at 36 weeks. In contrast, only the GF-IL12/CXCR3KO mice (9%, 2/23), which 

displayed signs of ataxia at 12 weeks further progressed and developed severe ataxia at 36 

weeks (GF-IL12/CXCR3KOsick). The remaining 91% of GF-IL12/CXCR3KO mice 

developed no signs of ataxia, demonstrating a strongly reduced incidence of the atactic 

phenotype in GF-IL12/CXCR3KO mice compared to GF-IL12 mice (***, p<0.005).  

Unexpectedly, all GF-IL12/CXCR3KO mice (n=23) developed mono- or bin-ocular 

cataracts during the first four weeks of life, (ocular score 1-2, Fig. 2 B). In contrast, only 15% 

(2/13) of the GF-IL12 mice developed a very mild opacity of the lens (ocular score 1), which 

we did not observe in either WT or CXCR3KO controls. After 24 weeks all GF-

IL12/CXCR3KO developed a bulbar atrophy (phthisis bulbi) and severe cataracts (ocular 

score 3-4, Fig. 2 B) ultimately leading to blindness in these mice. None of the GF-IL12 mice 

developed these severe symptoms. The early lens opacity observed in some GF-IL12 animals 

(6/13) resolved in 66% of these animals and in the remaining animals, the ocular phenotype 

did not progress any further.  
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Figure 2: Progression of clinical ataxia (A) and the severity of ocular phenotype (B) in GF-IL12 
(n=13) and GF-IL12/CXCR3KO (n=23) mice over 36 weeks. Ataxic signs were scored using 
accumulative scale of 4 points, giving 1 point to each of these four physical signs: splayed legs, 
dragging weight on the trunk rather than on the legs, wobbling and falling from side to side. The 
ocular score was applied to assess the severity of the ocular phenotype: 1 = monocular cataract; 2 = 
binocular cataract; 3 = monocular cataract and monocular phthisis bulbi; 4 = binocular phthisis 
bulbi. While GF-IL12 mice developed severe ataxia over 24 weeks (black dots), most of the GF-
IL12/CXCR3KO mice did not display signs of ataxia (circled dots). A few of the GF-IL12/CXCR3KO 
animals (GF-IL12/CXCR3KOsick; red dots) developed scores of ataxia comparable to GF-IL12 mice 
until 24 weeks. Surprisingly, during the first four weeks all GF-IL12/CXCR3KO mice developed a 
progressive disease of the eyes, ultimately leading to binocular bulbar atrophy after 36 weeks. The 
ocular phenotype of GF-IL12 mice at that age reached a maximum ocular score of one. *, p < 0.05; 
***, p < 0.005, mean ± SEM.  
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Less severe cerebellar histopathology correlates with the attenuated clinical phenotype of CXCR3-deficient 

GF-IL12 mice 

To correlate the clinical differences observed in GF-IL12 versus GF-IL12/CXCR3KO mice 

with histopathological findings, we used routine histology and immunohistochemistry to 

examine WT, CXCR3KO, GF-IL12, non-atactic GF-IL12/CXCR3KO and atactic GF-

IL12/CXCR3KOsick mice at the age of 24 weeks. Non of the WT or CXCR3KO animals 

showed any histopathological changes in routine histology. However, extensive tissue 

destruction, calcifications and mononuclear cell accumulation in the parenchyma and 

meninges was observed in the brain of GF-IL12 mice and was consistent with previous 

reports (Pagenstecher et al., 2000; Hofer et al., 2004). Furthermore, widespread 

demyelination and spongiosis predominantly of the cerebellar white matter was observed 

(Fig. 3; GF-IL12, LFB)(Pagenstecher et al., 2000; Hofer et al., 2004) In contrast, non-atactic 

GF-IL12/CXCR3KO mice had only minimal histological alterations without demyelination 

and calcifications (Fig. 3; GF-IL12/CXCR3KO, LFB). Only the few GF-IL12/CXCR3KOsick 

mice with signs of ataxia (9% of all GF-IL12/CXCR3KO mice) displayed perivascular cell 

clustering and demyelination, without calcifications. However, these pathological changes did 

not reach the level of severity observed in CXCR3-competent GF-IL12 mice (Fig. 3; GF-

IL12, LFB). To further characterize the histopathological differences, we examined 

accumulation and distribution of T cells (CD3) and microglia/macrophages (lectin) by 

immunohistochemistry. In CXCR3-competent GF-IL12 mice, T cells were found in a 

perivascular position and throughout the parenchyma (Fig. 3; GF-IL12, CD3). Activated 

microglia /macrophages were found in the parenchyma and correlated well with tissue 

destruction and demyelination after 24 weeks (Fig. 3; GF-IL12, Lectin). In contrast at this 

timepoint 91% of GF-IL12/CXCR3KO mice had only slightly increased numbers of CD3+ T 

cells, which were most often localized in a parenchymal perivascular position and not in the 

subarachnoidal space (Fig. 3; GF-IL12/CXCR3KO, CD3). T cells accompanying activated 

microglia/ macrophages were drastically reduced in non-atactic CXCR3-deficient GF-IL12 

mice (Fig. 3; GF-IL12/CXCR3KO, Lectin). Only clinically affected GF-IL12/CXCR3KOsick 

mice showed perivascular infiltrates consisting of T cells surrounded by activated 

microglia/macrophages localized to the white matter of the cerebellum (Fig. 3; GF-

IL12/CXCR3KOsick, CD3, Lectin). These findings demonstrate that the less severe phenotype 

in GF-IL12/CXCR3KO mice is associated with a marked decrease in cerebellar inflammation.
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Figure 3: Histological alterations in the cerebellum of GF-IL12 and GF-IL12/CXCR3KO mice at 24 
weeks of age. Colocalization of LFB routine histology, T cells (CD3) and microglia/macrophages 
(tomato lectin). Extensive cell loss in the granule layer (GF-IL12, LFB), white matter calcifications 
(GF-IL12, LFB, arrowhead) and demyelination was detectable in all GF-IL12 animals. In contrast, 
most GF-IL12/CXCR3KO mice had non or only minimal histopathological alterations (GF-
IL12/CXCR3KO, LFB). A few GF-IL12/CXCR3KO mice with moderate signs of ataxia displayed 
histopathological alterations (GF-IL12/CXCR3KOsick, LFB), which did not reach the level of tissue 
disruption in GF-IL12 mice. Meningeal and perivascular (GF-IL12, GF-IL12/CXCR3KO, GF-
IL12/CXCR3KOsick, LFB) infiltrates were drastically reduced in GF-IL12/CXCR3KO mice compared 
to GF-IL12 mice. Widespread distribution and perivascular accumulation of T cells (GF-IL12, GF-
IL12/CXCR3KOsick, CD3) are accompanied by diffuse microglia/macrophage activation in the white 
matter (GF-IL12, GF-IL12/CXCR3KOsick, Lectin) of GF-IL12 mice. Most GF-IL12/CXCR3KO 
displayed only minor T cell infiltration and less activated microglia/macrophages (GF-
IL12/CXCR3KO, CD3). Original magnifications, 20 x. Bar, 250 µm (overview of cerebellum) and 100 
µm (meningeal/vascular focus). 
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The cerebellar cytokine profile correlates with the histopathology and the clinical outcome in GF-IL12 and 

GF-IL12/CXCR3KO mice.  

We wanted to determine if the different cerebral disease phenotypes in GF-IL12/CXCR3KO 

and GF-IL12 were linked with a specific cytokine RNA pattern. Therefore, the mRNA 

transcripts of key inflammatory cytokine and chemokine genes in the cerebellum of GF-IL12 

vs. GF-IL12/CXCR3KO mice were determined by RNase protection assay (Fig. 4 A).  

In the cerebellum of WT and CXCR3KO mice, only TGF-β could be detected unequivocally. 

Consistent with the clinical ataxia and the described histopathological features, induction of 

all examined cytokine and chemokine genes was prominent in GF-IL12 mice at 24 weeks 

(Fig. 4 A; GF-IL12). In GF-IL12/CXCR3KO mice with a clinical score of 0-1 only and 

without prominent histological damage, only low levels of CXCL9, IL-1, CXCL10 and CCL5 

could be detected. In the GF-IL12/CXCR3KOsick mice we observed a similar pattern to GF-

IL12 mice with an induction of CXCL9, IL-1, CXCL10 and CCL5. However, the RNA level 

for IFN-γ as well for CXCL9 and CXCL10 were considerably lower. As IFN-γ is a key 

cytokine in this model, we additionally measured RNA levels of IFN-γ by quantitative PCR 

and found significantly higher levels in GF-IL12 mice (**, p=0.0015, 4397 fold increase ± 

804) compared to GF-IL12/CXCR3KO mice (782 fold increase ± 227) (Fig. 4 B). Within the 

GF-IL12/CXCR3KO group, the animals with clinical symptoms (GF-IL12/CXCR3KOsick, 

red dots) did have the highest levels of IFN-γ RNA. To evaluate a possible induction of Th17 

subset effector cells in parallel to the predominant Th1 driven immune response observed in 

this model, we examined the level of IL-17 transcripts in both GF-IL12 and GF-

IL12/CXCR3KO cerebelli (Fig. 4 B). The IL-17 transcript levels in GF-IL12, GF-

IL12/CXCR3KO and GF-IL12/CXCR3KOsick mice were unaltered compared to WT-

animals. In summary, the RNA levels of various inflammatory cytokines correlated well with 

the clinical and histopathological observations. The IFN-γ RNA level was markedly reduced, 

even in GF-IL12/CXCR3KOsick mice with clinical symptoms. 
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CXCR3 and CCR5 mRNA expression in GF-IL12-mediated cerebellar inflammation 

CCL5 and CCR5 are, like CXCR3 and its ligands, involved in the trafficking of type 1 

immune cells (Loetscher et al., 1996; Schrum et al., 1996; Sallusto et al., 1998). The RPA 

results revealed a prominent upregulation of CCL5 in clinically affected GF-

IL12/CXCR3KOsick but not in unaffected GF-IL12/CXCR3KO mice. To determine if CCL5 

might compensate for the lack of CXCR3, we further examined and compared cerebellar 

CXCR3 and CCR5 RNA levels by qRT-PCR in GF-IL12, unaffected GF-IL12/CXCR3KO 

and clinically affected GF-IL12/CXCR3KOsick mice. The mRNA levels for each transcript 

were normalized to the mRNA levels of GAPDH and correlated with the level of control 

mice. We found increased levels of CXCR3 (10.67 fold increase ± 2.460) and CCR5 (7.733 

fold increase ± 1.330) transcripts suggesting a functional role of both CXCR3+ and CCR5+ 

cells. Significantly lower levels of CCR5 transcripts were found in unaffected GF-

IL12/CXCR3KO animals (**, p<0.01, 2.5 fold increase ± 0.8). In clinically affected GF-

IL12/CXCR3KOsick mice, we found CCR5 RNA at a level (8.6 fold increase ± 1.3) 

comparable to the findings in GF-IL12 mice (Fig. 4 B). The high level of CCL5 and CCR5 in 

GF-IL12/CXCR3KOsick mice but not in clinically unaffected GF-IL12/CXCR3KO mice 

could argue for a compensation of the CXCR3 deficiency by CCR5 in GF-

IL12/CXCR3KOsick mice. 
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Figure 4: The mRNA expression pattern of selected cytokine and chemokines in the cerebellum of 
GF-IL12, GF-IL12/CXCR3KO and controls detected by RPA (A) Total RNA was isolated from the 
cerebellum of mice and 5 µg was used for analysis by RPA. The level of L32 was used as loading 
control. An overall increase of proinflammatory cytokine and chemokine transcripts was found in GF-
IL12 and GF-IL12/CXCR3KOsick mice with the exception of a low IFN-γ level in GF-
IL12/CXCR3KOsick mice. QRT-PCR was performed to further determine the level of IFN-γ mRNA 
in the cerebellum of aged GF-IL12 (n=6) and GF-IL12/CXCR3KO (n=6) mice (B). Compared with 
GF-IL12, the GF-IL12/CXCR3KO mice had significantly lower levels of IFN-γ RNA transcripts at 24 
weeks of age. Further RNA analysis revealed high levels of cerebellar CXCR3 and CCR5 transcripts 
in GF-IL12 animals after 24 weeks (B). In contrast only the diseased GF-IL12/CXCR3KOsick mice 
(red dots) revealed elevated levels of CCR5 receptor transcripts in the cerebellum. For statistical 
significance, ** p < 0.01, mean ± SEM. 

Cerebellar leukocyte recruitment in GF-IL12/CXCR3KO mice is reduced early and associated with lower 

levels of IFN-γ mRNA 

To further examine the clinical and histopathological differences observed at a late timepoint, 

we performed flow cytofluorometric analysis from cerebellar cell suspensions at the age of 

eight weeks when both GF-IL12 versus GF-IL12/CXCR3KO mice did not show any clinical 

symptoms (Fig. 5 A). At that timepoint, the total number of CD45+ leukocytes were already 

increased in GF-IL12 mice compared with GF-IL12/CXCR3KO animals (243250 cells ± 

62268 cells in GF-IL12 vs. 102067 cells ± 20972 cells in GF-IL12/CXCR3KO) (Fig. 5 A). 

However, the relative proportion of T cell subsets (CD4+ vs. CD8+ T cells) remained similar 

between the two strains of transgenic mice (66.4 ± 13.3% vs. 21.7 ± 0.4% in GF-IL12 and 

59.1 ± 9.2 vs. 29.2 ± 6.5% in GF-IL12/CXCR3KO). Further characterization of the CD45+ 

cells revealed an increase of CD45+/NK-1.1+ cells in GF-IL12 compared to GF-
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IL12/CXCR3KO mice (15.2 ± 4.9% in GF-IL12 vs. 6.7 ± 4.0% in GF-IL12/CXCR3KO) 

resulting in a more than 5-fold increase in the absolute cell counts in GF-IL12 cerebellum. 

An approximate 4-fold increase in CD45+/CD11b+ macrophages isolated from GF-IL12 

transgenic animals could be observed over that found in GF-IL12/CXCR3KO mice, but with 

similar frequency of CD45+/CD11b+ cells (21.8 ± 12.5% in GF-IL12 vs. 13.4 ± 2.5% in GF-

IL12/CXCR3KO). Furthermore, qRT-PCR revealed significantly higher IFN-γ transcript 

level in the cerebellum of GF-IL12 mice than in GF-IL12/CXCR3KO animals (Fig. 5 B). In 

summary, cellular infiltrates and IFN-γ RNA level are increased early in GF-IL12 mice 

compared with GF-IL12/CXCR3KO animals, arguing for an early role of CXCR3 in 

cerebellar leukocyte accumulation and IFN-γ induction in the GF-IL12 mice. 

 

 

Figure 5:  Flow cytometric analysis of leukocyte subsets in the cerebellum of GF-IL12 and GF-
IL12/CXCR3KO mice at the age of 8 weeks (A). Cerebellar tissue leukocytes were isolated and 
analyzed as described in the Materials and Methods. A strong decrease of CD4+, Nk 1/1+ and CD45+ / 
CD11b+ cells was found in GF-IL12/CXCR3KO mice compared with GF-IL12 animals. Low level of 
IFN-γ transcripts (qRT-PCR detection) at this early time point correlated with FACS analysis findings 
of diminished counts of NK- and T cells found in cerebellar tissue of GF-IL12/CXCR3KO compared 
to GF-IL12 animals (B).  
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CXCR3KO mice developed a progressive and destructive inflammation of the eyes, ultimately leading to 

bulbar atrophy and blindness. 

Macroscopic examination of the eyes of GF-IL12/CXCR3KO mice revealed a severe ocular 

atrophy (phthisis bulbi) at 24 weeks (Fig. 6 M). None of the GF-IL12 mice developed this 

ocular phenotype (Fig. 6 I), eyes from GF-IL12 mice were indistinguishable to WT or 

CXCR3KO mice at that time-point (Fig. 6 A, E). 

To further examine the histopathology of the eye phenotype, we performed routine 

histological staining at 4, 8 and 24 weeks of age and immunohistochemistry at 8 weeks. The 

eyes of all genotypes were examined (each n=6). Routine H&E staining at 4 weeks revealed 

that non of the genotypes displayed any pathological alterations, which ruled out 

developmental abnormalities (Fig. 6 B, F, J, N). At the age of 8 weeks, lens damage and 

changes in the retinal architecture with injury or elimination of photoreceptors inner and 

outer segments was found in GF-IL12/CXCR3KO mice (Fig. 6 O). At 24 weeks, GF-

IL12/CXCR3KO mice displayed a severe retinopathy, a disrupted pigment epithelium and 

destruction of the lens architecture (Fig. 6 P). In contrast, GF-IL12 animals did not display 

any major histopathological alterations of the eye at 8 or 24 weeks (Fig. 6 K, L), neither did 

the WT or CXCR3 control mice (Fig. 6 C, D, G, H).  
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Figure 6: Progressive postnatal ocular inflammation of GF-IL12/CXCR3KO ultimately leading to 
bulbar atrophy and destruction. Macroscopic ocular phenotype from WT, CXCR3KO, GF-IL12 and 
GF-IL12/CXCR3KO mice at the age 24 weeks (A, E, I, M) and. H&E stained ocular sections at the age 
of 4, 8, and 24 weeks (B-D, F-H, J-L, N-P). Sections of the eyes at the age of 4 weeks appeared 
normal (B, F, J, N) in all genotypes, thereby ruling out developmental abnormalities in the mutant 
strains. At 8 weeks of age disorganization and loss of photoreceptors in the retina of CXCR3-deficient 
GF-IL12 mice and with cellular infiltrates in the peripheral cornea, iris, and ciliary body and pigment 
loaded cells in the anterior chamber (O). After 24 weeks of age the whole structure of the retinal 
layers and the lens were disrupted or destroyed in the eyes of GF-IL12/CXCR3KO mice (P). WT, 
CXCR3KO and GF-IL12 mouse eye/retina without alterations observable in the overview of all ages 
(B-D, F-H, J-L).  
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Using immunofluorescence staining of sagittal horizontal sections of eyes we further 

characterized the histopathological features of the ocular destruction in GF-IL12/CXCR3KO 

mice at 8 weeks of age. We found high counts of CD3+ T cells throughout the eye (204 ± 23 

/section of the eye; n=5 sections) but in particular an accumulation in the ganglion cell layer 

of the retina (Fig. 7 M). At this stage T cell accumulation was closely associated with Iba1+ 

microglia/macrophages infiltration of the retinal ganglion cell layer, widely found in 

proximity to the retinal pigment epithelium (Fig. 7 O) and anterior chamber (data not 

shown). GF-IL12 mice had only minor ocular CD3+ T cell accumulation (Fig. 7 I; <10 ± 6 

/section of the eye; n=8 sections). At 8 weeks we found Iba1+ microglia/macrophages in the 

GF-IL12 ganglion cell layer and in between the inner and outer nuclear layer of retina (Fig. 7 

K). No Iba1+ cells were observable in the intact layer where one can find the inner and outer 

segments of rod and cone photoreceptors. Staining of the vasculature with laminin revealed 

an increased amount of vessels in the inner plexiform and the granule layers of GF-

IL12/CXCR3KO mice but not GF-IL12 mice (Fig. 7 L, P). In addition, Mueller cells, the 

retinal astrocytes, were found highly activated in terms of morphology and GFAP levels in 

GF-IL12/CXCR3KO mice (Fig. 7 N). Non of the examined WT and CXCR3KO eyes 

showed any histopathological features in respect to CD3 (Fig. 7 A, E), GFAP (Fig. 7 B, F), 

Iba1 (Fig. 7 C, G) or Laminin (Fig. 7 D, H) immunohistochemistry.  
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Figure 7: Combined immunofluorescence-staining for T cells (CD3) /phase contrast microscopy (A, 
E, I, M) and single immunofluorescence staining of the retina of examined genotypes (B-D, F-H, J-L, 
N-P); GFAP to detect Müller cells; Iba-1 to detect microglia/macrophages; Laminin to detect blood-
vessels on serial sections. GF-IL12/CXCR3KO but not GF-IL12 mice at 8 weeks revealed massive 
CD3+ T cell accumulation and destruction of the retinal architecture (V, vitreous; GC, ganglion cell 
layer; INL, inner nuclear layer; ONL, outer nuclear layer; R, rod & cones outer segments) with loss of 
the photoreceptors inner and outer segments (I, M). In contrast to only minor changes in the eyes 
from GF-IL12 mice, pathological neovascularization in the inner plexiform layer and the granule layer 
(L, P; Lam) was observed in the retina of GF-IL12/CXCR3KO mice. Retinal microglia/macrophages 
were detectable in GF-IL12 and GF-IL12/CXCR3KO, but Iba1 positive cells within the photoreceptor 
layer were only detected in the GF-IL12/CXCR3KO genotype (K, O; Iba-1). In addition, Müller cells 
in GF-IL12/CXCR3KO mice were highly activated in terms of morphology and GFAP-protein level 
(J, N; GFAP). Nuclear counterstaining with DAPI (blue signal). Bar, 50 µm (A, C- E, G-I, K-M, O, 
P), 25 µm (B, F, J, N). 
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Increase of specific leukocyte subsets in the eyes of GF-IL12/CXCR3KO  

To characterize the composition and numbers of immune cells infiltrating the eyes of GF-

IL12/CXCR3KO and GF-IL12 animals at eight weeks, flow cytometric analysis was 

performed (Fig. 8 A). Corresponding with the histological findings of high numbers of CD3+ 

cells in the eyes of GF-IL12/CXCR3KO mice, an increase in CD3+CD4+ and CD3+CD8+ T 

cells was observed by FACS compared to the GF-IL12 genotype (5299 ± 93 CD4+ T cells 

and 1606 ± 319 CD8+ T cells in GF-IL12/CXCR3KO vs. 1224 ± 232 CD4+ T cells and 257 

± 176 CD8+ T cells in GF-IL12). Furthermore, the number and relative proportion of 

Ly6G+ neutrophil granulocytes was found to be markedly elevated in GF-IL12/CXR3KO 

compared to the GF-IL12 eyes (4.6 ± 0.3% in GF-IL12 vs. 20.7 ± 3.2 in GF-

IL12/CXCR3KO). However, the percentage of CD4+ (79.0 ± 15.0% in GF-IL12 vs. 74.5 ± 

1.3% in GF-IL12/CXCR3KO), CD8+ (16.6 ± 11.3% in GF-IL12 vs. 22.6 ± 4.5%), NK-1.1+ 

(6.6 ± 3.0 in GF-IL12 vs. 9.2 ± 0.8 in GF-IL12/CXCR3KO) and CD11b+ (13.6 ± 0.0% in 

GF-IL12 vs. 14.2 ± 4.7% in GF-Il12/CXCR3KO) cells remained similar between the two 

strains. 

These findings further demonstrate the inflammatory response in the ocular phenotype 

observed in GFIL12/CXCR3KO mice. When comparing the cerebellar leukocyte subsets (Fig. 

5 A) with the ocular leukocyte subsets (Fig. 8 A) of individual mice, we could not detect any 

relation between the amount of specific inflammatory cell population in these organs (data 

not shown). 
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Figure 8: Ocular leukocyte infiltration is related to the induction of various inflammatory gene 
transcripts in GF-IL12/CXCR3KO mice. Markedly increased accumulation of various leukocyte 
subsets in the eyes of GF-IL12/CXCRKO mice at the age of 8 weeks (A). Ocular leukocytes were 
isolated and analyzed by cytometry as described in Materials and Methods. Ocular cell counts of 
CD4+, CD8+, CD45+ CD11b+, CD45+ Ly6G+, CD4+ FoxP3+, and CD19+ B220+ cell 
populations in GF-IL12 and GF-IL12/CXCR3KO mice. Increased levels of cytokine and chemokine 
gene transcripts in the eyes of GF-IL12/CXCR3KO compared with GF-IL12 mice (B). Real-time 
quantitative PCR was performed to determine the ocular gene expression level of various 
proinflammatory transcripts in GF-IL12 and GF-IL12/CXCR3KO mice (C). IFN-γ transcript analysis 
in the eyes and cerebelli of individual animals (D, each symbol represents eyes or cerebelli of one 
analyzed animal). For statistical significance, *P <0.05; **P<0.01, mean±SEM. 
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Induction of inflammation-related genes in the eyes of GF-IL12/CXCR3KO mice 

To examine the RNA levels of key inflammatory cytokines in the eye of GF-IL12 vs. GF-

IL12/CXCR3KO mice, we performed RNase protection assay with total RNA from all 

analyzed genotypes (Fig. 8 B). Correlating with the histopathologic changes and 

inflammatory cells accumulated in the eye at 8 weeks, we found highly increased RNA levels 

of all examined cytokines, including IFN-γ, CXCL9, CXCL10 and CCL5 (Fig. 8 B).  

To further characterize the ocular inflammatory response in GF-IL12/CXCR3KO mice, we 

used qRT-PCR to confirm the RPA results and to compare RNA levels from selected key 

cytokines, chemokines (IL-12p40/35, IFN-γ, CXCL10, IL-17, TNF-α and IL-10) or 

angiogenesis and lymphangiogenesis markers (VEGF-A  and LYVE1) from the eyes of 8 week 

old animals (Fig. 8 C). Fold increase was calculated with respect to expression of the 

respective target in the CXCR3KO and WT mice. No significant differences were detected 

between CXCR3KO and WT mice.  

We found significantly higher IFN-γ mRNA levels in the eyes GF-IL12/CXCR3KO (**, 

p<0.01; 59.0 ± 8.3) vs. GF-IL12 (14.0 ± 2.7) mice (Fig. 8 C). However, analysis of the 

cerebellum and eyes of individual mice at 8 weeks revealed no correlation between cerebellar 

and ocular IFN-γ mRNA levels (Fig. 8 D). The IFN-γ-inducible chemokine CXCL10 

mRNA was induced in eyes of GF-IL12/CXCR3KO (24.2 ± 14.9) vs. GF-IL12 (5.0 ± 3.1) 

mice. However, similar to the cerebellum (see above) no significant induction of IL-17 

mRNA was found in the eyes of any genotypes. Next, the eyes mRNA level for the 

proinflammatory cytokine TNF-α, was found significantly increased in GF-IL12/CXCR3KO 

mice (*, p<0.05; 6.3 ± 2.0) vs. GF-IL12 (1.1 ± 0.6) mice. Because of the extensive 

vascularization observed in the eyes of GF-IL12/CXCR3KO mice, we examined the 

expression of the vascular endothelial growth factor (VEGF) gene. VEGF induces 

microvascular permeability and plays a central role in both angiogenesis and vasculogenesis 

(Malecaze et al., 1994). VEGF-A RNA was found at significantly higher levels in the eye of 

GF-IL12/CXCR3KO (*, p<0.05; 2.3 ± 0.3) vs. GF-IL12 (1.0 ± 0.2) (n=3, mean ± SEM; 

Fig. 8 C) mice. To further evaluate whether increased vessel formation was also accompanied 

by an increase in lymphangiogenesis in the eye, we examined LYVE1 transcripts as a 

lymphatic endothelial cell marker but did not find any significant difference between GF-

IL12/CXCR3KO and GF-IL12 mice. In summary, the expression of inflammatory genes is 

highly upregulated in the eyes of GF-IL12/CXCR3KO mice compared to GF-IL12 mice, 
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which further provides evidence for an inflammatory driven pathogenesis leading to the 

severe destruction of eyes in GF-IL12/CXCR3KO mice. 

STAT4 phosphorylation is reduced in the cerebellum, but increased in the eyes of GF-IL12/CXCR3KO 

mice and correlates with IL12rb1 mRNA quantification.  

To evaluate possible differences in the cerebellar and ocular tissue response to IL-12, we 

examined the RNA levels of IL12rb1 by quantitative PCR and STAT4 phosphorylation using 

immunoblot detection (Fig. 9 A-F). Corresponding with the described inflammatory 

response, we observed higher RNA levels of IL12rb1 in cerebelli of GF-IL12 mice compared 

with GF-IL12/CXCR3KO mice. Conversely, ocular IL12rb1 was higher in GF-

IL12/CXCR3KO mice compared with GF-IL12 mice (Fig. 9 C,F).  

Densitometric analysis of immunoblots (Fig. 9 A, B, D, and E) revealed significantly higher 

protein levels of total and phosphorylated STAT4 protein levels in the cerebelli of GF-IL12 

mice versus GF-IL12/CXCR3KO mice (total STAT4, 1.65 ± 0.08 versus 0.96 ± 0.06; 

phosphorylated STAT4, 0.81 ± 0.07 versus 0.27 ± 0.02; Fig. 9 A and B). The opposite was 

observed in the examined eyes: lower levels of total and phosphorylated STAT4 were found 

in the eyes of GF-IL12 mice compared with GFIL12/CXCR3KO mice (total STAT4, 1.94 ± 

0.14 versus 2.76 ± 0.06; phosphorylated STAT4, 0.91 ± 0.09 versus 1.97 ± 0.02; Fig. 9 D and 

E). 
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Figure 9: Reduced total STAT4 protein level, STAT4-phosphorylation and IL12rb1 transcripts in GF-
IL12/CXCR3KO cerebelli, but increased levels of STAT4, phosphorylated STAT4 and IL12rb1 
transcripts in GF-IL12/CXCR3KO eyes. Immunoblot (A, D) and densitometric analysis (B, E) of the 
cerebellar and ocular STAT4 and phospho-STAT4 level in GF-IL12 and GF-IL12/CXCR3KO mice 
was performed as described in Material and Methods section. For statistical significance **, p < 0.01, 
mean ± SEM.  



Chapter 1           51 

4.4 Discussion 

CXCR3 and its ligands CXCL9, CXCL10 and CXCL11 are implicated in the pathogenesis of 

many neuroinflammatory diseases (Sørensen et al., 2002; Lepej et al., 2005; Rupprecht et al., 

2005). However, functional studies examining the role of CXCR3 and its ligands in 

neuroinflammatory disease models have led to conflicting results without clearly defining the 

role of the CXCR3 chemokine system in inflammatory CNS diseases (Tsunoda et al., 2004; 

Müller et al., 2010). In particular, studies in EAE did not reveal the expected disease-

promoting effect of CXCR3 but rather protective and disease limiting functions (Liu et al., 

2006; Müller et al., 2007). Here, we examined the role of CXCR3 in a less complex type 1 

cell-mediated model of spontaneous CNS-inflammation in transgenic mice with astrocyte-

targeted production of IL-12. Within the CNS of these mice with CXCR3-deficiency, we 

observed a markedly attenuated inflammatory response, which corresponded with the well 

characterized impact of the CXCR3 chemokine system on the migration and attraction of 

type 1 immune cells (Gao et al., 2003; Xie et al., 2003). However and unexpectedly, these 

same animals a developed very severe inflammatory disease of the eyes, demonstrating that 

the effect of CXCR3 in neuroinflammation is not only dependent on the underlying cause 

but also is strongly influenced by the site of the inflammation.  

Neuroinflammation in GF-IL12 transgenic mice is well characterized. Astrocytic IL-12 

activates CD4+ and CD8+ T cells and NK cells which produce proinflammatory cytokines 

including IFN-γ and the CXCR3 ligands CXCL9 and CXCL10 (Gately et al., 1998). An IFN-

γ-dependent immune response further increases the local accumulation of activated immune 

cells and mediates the tissue damage of the CNS (Komatsu et al., 1996; Wenner et al., 1996; 

Binder and Griffin, 2001; Chesler and Reiss, 2002). Phenotypically these GF-IL12 transgenic 

mice develop a severe cerebellitis and correspondingly a progressive ataxia (Pagenstecher et 

al., 2000). However, the majority of GF-IL12/CXCR3KO mice did not develop a clinical 

phenotype and had only minor histopathological alterations of the cerebellum. This finding 

argues for a strong disease-promoting function of the CXCR3 chemokine system in IL-12 

induced neuroinflammation in the GFAP-IL12 model and is in contrast to previous findings 

in EAE, where CXCR3 has a disease limiting function independent of the recruitment of 

effector T cells to the CNS (Liu et al., 2006; Müller et al., 2007).  

The gross reduction of leukocytes in the parenchyma and subarachnoid space of GF-

IL12/CXCR3KO mice provides evidence for a functional role of CXCR3 in mediating the 
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leukocyte accumulation in the CNS as a result of IL-12 overproduction. However, CXCR3-

deficiency did not completely prevent cerebellar inflammation in all GF-IL12/CXCR3KO 

mice. A low percentage of GF-IL12/CXCR3KO mice did develop clinical signs of ataxia and 

histopathological alterations, which still were less prominent than observed in CXCR3 

competent GF-IL12 mice. As CCL5 and CCR5 are highly upregulated in GF-

IL12/CXCR3KOsick mice, this chemokine system may possibly have compensated for the 

CXCR3 deficiency in GF-IL12/CXCR3KO mice that develop clinical signs.  

To define early differences between GF-IL12 and GF-IL12/CXCR3KO mice in the 

inflammatory response, we examined animals of each genotype at the age of eight weeks, 

where clinical signs were not yet observable. FACS analysis revealed substantial differences in 

the amount and composition of immune cells in cerebelli from GF-IL12 and GF-

IL12/CXCR3KO mice at that early time-point. We did not only observe a difference in T cell 

subsets but also a marked reduction of CD11b+ microglia / macrophages and NK cells in GF-

IL12/CXCR3KO mice. This finding demonstrates that CXCR3 is not only involved in the 

accumulation of T cells in this model, but also, directly or indirectly, in the accumulation of 

macrophages and NK cells at an early time point. The observation that CXCR3 and its 

ligands modulate the CNS accumulation of a variety of immune cells, and not only T cells, is 

further supported by previous observations in transgenic mice with chronic astrocyte-targeted 

production of the CXCR3 ligand CXCL10. These mice develop subarachnoidal cellular 

infiltrates consisting not only of T cells but also of macrophages and neutrophils (Boztug et 

al., 2002). 

Surprisingly, all GF-IL12/CXCR3KO mice developed a severe and progressive ocular 

phenotype with severe chorioretinitis. In GF-IL12 mice, only mild lens opacities were 

observed in 50% of the animals. As judged from histology, prominent T cell and neutrophil 

accumulation in the eyes of GF-IL12/CXCR3KO resulted in a severe disruption of the 

internal structures of the eye and the loss of the photoreceptor outer segments. FACS analysis 

revealed a substantial accumulation of both CD4+ and CD8+ T cells, in particular CD4+ T 

cell, NK cells, CD11b+ and neutrophils. Although the total number of T cells was drastically 

increased, we did not detect an increase of FoxP3+ regulatory T cells, suggesting a role for 

CXCR3 in directing and accumulating regulatory T cells into the eye. Proinflammatory 

cytokines like IFN-γ, TNF-α and VEGF were highly upregulated in the eyes of GF-

IL12/CXCR3KO mice, which further underlines the inflammatory nature of the ocular 

phenotype. A similar ocular pathology was observed in a previous study examining a 
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transgenic mouse line using the rhodopsin promoter to direct the expression of IFN-γ to 

photoreceptor cells (rhoγ mice) (Geiger and Sarvetnick, 1996). This assumption is supported 

by the increased levels of phosphorylated STAT4 in the eyes of GF-IL12/CXCR3KO mice. It 

is therefore likely that the ocular pathology is driven by the production IFN-γ from IL-12 

activated T cells or NK cells. Because GF-IL12 animals do not develop a severe ocular 

phenotype and have only slightly increased levels of IFN-γ, it is likely that CXCR3 is, 

indirectly or directly, restricting the activation of immune cells by IL-12, which in turn 

prevents the inflammatory cascade ultimately leading to the accumulation of leukocytes and 

the ocular destruction observed in GF-IL12/CXCR3KO mice. 

This finding is contrary to other experimental studies, which suggest that CXCR3 increases 

the production of IFN-γ by T cells in the CNS (Christensen et al., 2004; Liu et al., 2006). An 

approach to explain the different impact of CXCR3 deficiency for the brain and the eye could 

be differences in the local immune milieu. It is known that the eye has an immune-

suppressive milieu in which factors like high constitutional levels of TGF-β and the 

induction of high levels of IL-10 during an immune response are able to prevent a potentially 

harmful Th1 response (D’Orazio and Niederkorn, 1998). Although the brain also displays 

some properties of a so called immune privileged micro-milieu, milieu-differences between 

brain and eye could contribute to the different functional properties of CXCR3 leading to 

enhanced ocular but attenuated cerebellar inflammation in our model (Galea et al., 2007). 

Future in-vitro studies examining the functional properties of CXCR3+ immune cells in the 

presence or absence of a specific cytokine milieu including TGF-β and IL-10 could further 

help to clarify our observations.  

The ocular inflammation in GF-IL12/CXCR3KO mice was accompanied by increased vessel 

formation in the retina. The finding of neovascularization in the retina points toward an 

angiostatic role of CXCR3 and its ligands in ocular inflammation, which has been described 

for CXCR3 in many other models of inflammation (Petrai et al., 2008). Retinal 

neovascularization is not a feature commonly observed in animal models of ocular 

inflammation (Geiger and Sarvetnick, 1996). We therefore suggest that the observed 

neovascularization is likely linked to the CXCR3 deficiency in our model.  

Our data delineate that CXCR3 is important to initiate and maintain an IL-12 driven 

inflammation in the brain. CXCR3 deficiency drastically reduces the incidence of IL-12-

induced inflammation of the cerebellum. However, the protective effect of CXCR3 

deficiency in IL-12 driven inflammation is not as complete as previously observed for IFN-γ 
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deficiency (Hofer et al., 2004). Some GF-IL12 animals did develop cerebral inflammation 

despite CXCR3 deficiency. This observation suggests that other molecules may compensate 

for the loss of CXCR3 and mediate the IL-12-induced inflammation even in the absence of 

CXCR3. Our data suggest that CCL5 and the corresponding receptor CCR5 might be 

candidates in this role as we found high levels of both CCL5 and CCR5 RNA in affected GF-

IL12/CXCR3KO mice.  

However, in contrast to the cerebellar effects, CXCR3 deficiency led to a destructive 

inflammatory phenotype of the eyes, arguing for a protective role of CXCR3 in IL-12-

induced ocular inflammation and for micro-millieu dependent functional properties of 

CXCR3, which remain to be further defined by future studies. Our data support the 

perspective that CXCR3 can have both striking protective and harmful functions in CNS and 

ocular inflammation and that this effect does not only depend on the trigger as suggested by 

previous studies but likely also on the micro-millieu of the affected organ. CXCR3 is a 

potential therapeutic target but our data further underline the functional complexity of this 

chemokine system, which has to be better defined in future studies. Until then, our findings 

caution against the therapeutic targeting of CXCR3 (Müller et al., 2010).  
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Chapter 2 

5. CXCR3 in Alzheimer’s-like pathology 

Submitted to “The Journal of Clinical Investigation”: Krauthausen M, Kummer MP, 
Zimmermann J, Terwel D, Heneka MT, Müller M: The chemokine receptor CXCR3 is 
critical for the Alzheimer-like plaque formation in transgenic APP/PS1 mice.  
 

5.1 Introduction  

Alzheimer’s disease (AD) is a neurodegenerative brain disorder with deposition of beta-

amyloid plaques, predominantly in hippocampal and cortical regions (Katzman and Saitoh, 

1991; Mattson, 2004). 

Periplaque activation of microglia and astrocytes as well as the induction of proinflammatory 

molecules suggest a pathogenetic role of  inflammation in this disease (Heneka et al., 2010; 

Parpura et al., 2012). Microglia are resident CNS cells with immune modulatory and 

phagocytic capabilities (Perry and Gordon, 1988; Lawson et al., 1992). Recent studies indicate 

that the microglial state of activation can determine if these cells have a protective or 

detrimental functional role in AD (Koenigsknecht-Talboo and Landreth, 2005; Shie et al., 

2005; Yamamoto et al., 2005; Town et al., 2008; Krause and Müller, 2010; Reed-Geaghan et 

al., 2010). Microglia can induce reactive oxygen species, secrete proinflammatory cytokines 

and additional neurotoxic factors, which contribute to the pathology of AD (Wyss-Coray and 

Mucke, 2002; Heneka et al., 2010; Parpura et al., 2012). But microglia can also release Aβ 

degrading enzymes and express scavenger receptors, which can mediate Aβ phagocytosis 

(Paresce et al., 1996; Weldon et al., 1998; Koenigsknecht and Landreth, 2004). There is 

compelling evidence that microglial cells can modulate the pathological course of AD, 

whereas the exact role of microglia in AD remains to be elucidated. 

Chemokines are cytokines, which orchestrate the innate and adaptive immune responses and 

are found to be highly induced in a vast variety of neuroinflammatory disorders (Charo and 

Ransohoff, 2006b). The non-ELR CXC chemokines CXCL9, CXCL11 and in particular 

CXCL10 are prominent members of these molecules (Müller et al., 2010). They share the 

receptor CXCR3 (Loetscher et al., 1996; Weng et al., 1998), that is expressed on T cells and 

NK cells but also on resident CNS cells (Sallusto and Lanzavecchia, 2000; Biber et al., 2002; 

Flynn, 2003; Rappert et al., 2004; de Jong et al., 2008b). CXCR3 can be differentially activated 



Chapter 2      56 

by CXCL9, CXCL10 and CXCL11 (Loetscher et al., 1998; Weng et al., 1998). IFN-γ and 

TNF-α are major inducers and regulators of both CXCR3 and CXCR3-ligands (Luster et al., 

1985; Cole et al., 1998; Carter et al., 2007; Zhang et al., 2010; Choi et al., 2011).  

Current studies in experimental AD models have demonstrated that chemokine receptor 

systems like CCR5 (Lee et al., 2009), CCR2 (El Khoury et al., 2007; Kiyota et al., 2009; 

Semple et al., 2010) and CX3CR1 (Fuhrmann et al., 2010; Lee et al., 2010; Liu et al., 2010) 

can modulate the disease course by influencing microglial function, accumulation and 

clustering (El Khoury et al., 2007; Fuhrmann et al., 2010; Lee et al., 2010; Liu et al., 2010).  

Concerning the role of the CXCR3 chemokine system in AD, it has been demonstrated that 

there is a positive correlation between cerebrospinal fluid CXCL10 levels and cognitive 

impairment in AD patients (Galimberti et al., 2003, 2006). Moreover, CXCL10 was found to 

be expressed in astrocytes of AD brains (Xia et al., 2000). Furthermore, CXCL10 was 

detected in close proximity to Aβ plaques in a corresponding AD mouse model (Duan et al., 

2008).  

To characterize the role of the CXCR3 chemokine system in the course of this degenerative 

disease model, we now examined the impact of genetic CXCR3-deficiency in APP/PS1 

transgenic mice. 
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5.2 Material and methods 

Animals 

CXCR3-deficient (CXCR3-/-) mice (originally provided by Drs. Bao Lu and Craig 

Gerard, Children's Hospital and Harvard Medical School, Boston, MA) have been described 

previously (Hancock et al., 2000). The mice where backcrossed at least eight generations to 

the C57BL/6 strain. CXCR3-deficient mice displayed no clinical and histological 

abnormalities when compared to C57BL/6J (WT) mice. 

APP/PS1 double transgenic mice (B6C3-Tg (APPswe, PSEN1dE9) 85Dbo/J, The Jackson 

Laboratory) expressing a chimeric mouse/human amyloid precursor protein 

(Mo/HuAPP695swe; APP) and a mutant human presenilin 1 (PS1-dE9; PS1) protein were 

used (Jankowsky et al., 2001). The animals were hemizygous or littermate control mice and 

had been backcrossed for at least eight generations onto the C57BL/6 strain. To obtain 

CXCR3-deficient mice with a transgenic expression of APP/PS1 (APP/PS1/CXCR3-/-) 

heterozygous APP/PS1 mice were successively crossed with CXCR3-/- mice and subsequently 

intercrossed. Only male mice were studied in order to avoid the possible influence of gender 

on amyloid plaque formation and inflammation in AD (Candore et al., 2006; Casadesus et al., 

2006). Animals were kept under pathogen free conditions and handling was performed on the 

declaration of Helsinki and approved by local ethical committees. 

Immunohistochemistry and thioflavin-S staining 

5 and 8 months old mice of each examined genotype (WT, CXCR3-/-, APP/PS1, 

APP/PS1/CXCR3-/-) were anesthetized with isoflurane and transcardially perfused with ice 

cold PBS. Immediately after euthanasia, the brains were removed and half of a brain (cut 

along the sagittal midline) was fixed over night in PBS-buffered 4% paraformaldehyde at 4 

°C, then washed in PBS. The fixed brains were serially sectioned at 40 µm with a vibratome 

(Leica, Nussloch, Germany). Sections were blocked with 5% BSA in PBST and 

immunolabeled with antibodies against Iba1, MHC-II, CD11b, CD68, GFAP or Aβ, (Table 

3) followed by incubation with Alexa Fluor® 488 or Alexa Fluor® 594-conjugated secondary 

antibodies (Invitrogen, Darmstadt, Germany). A double staining protocol was used for 

combined plaque staining by thioflavin-S and microglial immunostaining. For that purpose 

free floating sections were stained for 10 min with 0.015% Thio-S in 50% ethanol, washed in 
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50% ethanol and water before entering the immunostaining protocol. Finally, sections were 

mounted on HistoBond (VWR International, Darmstadt, Germany) slides, dried and 

coverslipped with Fluorescent mounting medium (Dako) containing 0,1% DAPI (Sigma-

Aldrich, Munich, Germany). The percent area occupied by thioflavine-S positive area or Aβ-

immunoreactive plaques was used to estimate amyloid load (5 sections of the frontal cortex 

and hippocampus/ animal). Fluorescence microscopy was done with an Olympus BX61 

microscope using identical exposure times. Images were processed and analyzed with Cell^P 

(Olympus Soft Imaging Solutions, Münster, Germany) using identical threshold values. The 

percent of stained area of the ROIs was generated using analySIS 3.2 (Olympus).  

Table 3. Summary of antibodies used for immunohistochemistry  

 

Antibody (source) 

 

Specificity 

Vibratome 
Sections 
(dilution) 

Polyclonal rabbit anti-Iba1 reactive with human, 
mouse and rat Iba1                                                       

(Wako Chemicals, Neuss, Germany) 

Microglia and 
macrophages 

1/500 

Polyclonal rabbit anti-mouse MHC II 

(Dianova, Hamburg, Germany) 
APC, Dendritc cells 1/500 

Monoclonal rat anti-mouse Integrin αM 
[CD11b], 

(Millipore, Schwalbach, Germany) 

Microglia/ 
macrophages 

1/400 

Monoclonal rat anti- mouse CD68, 

(Serotec, Düsseldorf, Germany) 

Microglia/ 
macrophages 

1/1000 

Polyclonal rabbit anti -human GFAP 

(Dako, Hamburg, Germany) 

Glial fibrillary acidic 
protein 

1/1000 

Polyclonal rabbit antiserum 2964 (Heneka et al., 
2005; Wahle et al., 2006) against fibrillar Aβ1-42 

Aβ1-42 1/1000 

Monoclonal mouse anti-human Aβ1-16 (Jäger et al., 
2009) 

Aβ1-16 1/600 

 



Chapter 2      59 

Tissue processing for protein extraction 

The tissue for protein analysis was obtained from 5 and 8 months old male mice of each 

examined genotype (WT, CXCR3-/-, APP/PS1, APP/PS1/CXCR3-/-). Snap frozen brain 

hemispheres were homogenized in ice cold modified PBS (1 mM EDTA, 1 mM EGTA, 

3 µl/ml protease inhibitor mix, pH 7.4) using an UltraTurax T8 homogenizer (IKA 

Labortechnik, Staufen, Germany). Homogenates were extracted in RIPA-buffer (25 mM 

Tris–HCl pH 7.5, 150 mM NaCl, 1% NP40, 0.5% NaDOC, 0.1% SDS), centrifuged at 

20,000 × g for 15 min/4°C and the remaining pellet containing insoluble Aβ was 

subsequently solubilized in SDS-buffer (2% SDS, 25 mM Tris–HCl, pH 7.4). After pulsed 

sonication for 15 sec RIPA and SDS fractions protein concentrations were determined using 

the BCA Protein Assay Kit (Thermo scientific, Schwerte, Germany). 

APP processing and amyloid-β detection 

Proteins were separated using a 4–12% NuPAGE gel (Invitrogen) with NuPage® MES SDS 

running buffer (Invitrogen) at 150 V. PageRuler Prestained Protein Ladder (Fermentas, St. 

Leon-Rot, Germany) was used as standard. Proteins were transferred to 0.2 µm nitrocellulose 

membranes. Membranes were boiled in water for 5 min and blocked for 30 min in TBST 

containing 5% skim milk. Immunoblotting was performed using antibody CT-15 raised 

against the C terminus of APP (Martin et al., 1991) (Chemicon, Temecula, CA; 1:2000) and 

antibody CP06 detecting α-tubulin (1:2000, clone DM1A, Millipore, Schwalbach, Germany) 

followed by incubation with the appropriate horseradish-peroxidase (HRP) conjugated 

secondary antibodies. Immunoreactivity was detected by chemiluminescence reaction 

(Millipore) and luminescence intensities were analyzed using Chemidoc XRS imaging system 

(Biorad, Munich, Germany). With the Quantity One (BioRad) program, the density of bands 

was determined for each lane and the intensity ratio for the detected proteins were 

normalized to α-tubulin. Each gel contained a non-transgenic WT and CXCR3-/- brain extract 

as controls. HoloAPP signal of APP/PS1 and APP/PS1/CXCR3-/- for each sample was given 

relative to the endogenous APP of the corresponding control. Graphpad Prism (Graph Pad 

Software, San Diego, CA) software statistical program was then utilized for statistical analysis.  
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Aβ  ELISA 

Aβ peptides levels were quantified by human Aβ1-40 and Aβ1-42 ELISA kits (The Genetics 

Company, Schlieren, Switzerland) according to the manufacturer’s protocol. Both RIPA and 

SDS fractions were analyzed for Aβ1-40 and Aβ1-42 peptides. Samples were analyzed in 

duplicates. The results were tabulated as mean±SEM and compared using and statistically 

compared using an unpaired student’s t-test.  

Cytokine and mRNA determination by qRT-PCR 

Total RNA was isolated and purified from aliquots of homogenized brain samples using 

Trizol reagent (Sigma-Aldrich). RNA quantity was determined spectrophotometrically using 

a NanoDrop 1000 (Peqlab, Erlangen, Germany). 3 µg of total RNA was reverse-transcribed 

into cDNA by using SuperScript III Reverse Transcriptase (Invitrogen). Real-time 

quantitative PCR assays were performed on a StepOnePlus Real-Time PCR System (Applied 

Biosystems, Darmstadt, Germany) using PowerSYBRgreen (Applied Biosystems). The 

composition of the reaction mixture was as follows: 1 µL of cDNA corresponding to 40 ng of 

total RNA, 100 nM of each primer, 2×PowerSYBR Green PCR Master Mix (Applied 

Biosystems) in a total volume of 25 µL. The used primer sequences are listed in Table 4. 

Samples were analyzed simultaneously for GAPDH mRNA as the internal control. Each 

sample was assayed in duplicate, normalized to GAPDH and expressed relative to that of 

nontransgenic C57BL/6J mice. Data were determined as mRNA fold of change ± SEM. 



Chapter 2      61 

Table 4. List of oligonucleotide sequences used for qRT-PCR 

 

Gene 
Name 

 

Forward sequence 

 

Reverse sequence 

Gapdh 5’- TCACCAGGGCTGCCATTTGC-3’ 5’-GACTCCACGACATACTCAGC-3’ 

Cd68 5’-ATCCCCACCTGTCTCTCTCA-3’ 5’-ACCGCCATGTAGTCCAGGTA-3’ 

Itgam 5’-GTTTGTTGAAGGCATTTCCC-3’ 5’-ATTCGGTGATCCCTTGGATT-3’ 

Cxcr3 5’-AATGCCACCCATTGCCAGTAC-3’ 5’-AGCAGTAGGCCATGACCAGAAG-3’ 

Cxcl9 5’-GCCATGAAGTCCGCTGTTCT-3’ 5’-GGGTTCCTCGAACTCCACACT-3’ 

Cxcl10 5'-GACGGTCCGCTGCAACTG-3' 5'-GCTTCCCTATGGCCCTCATT-3' 

Fasl 5’-TTAAATGGGCCACACTCCTC-3’ 5’-ACTCCGTGAGTTCACCAACC-3’ 

Il1b 5’-GGTCAAAGGTTTGGAAGCAG-3’ 5’-TGTGAAATGCCACCTTTTGA-3’ 

Ifng 5'-CAGCAACAGCAAGGCGAAA-3' 5'-GCTGGATTCCGGCAACAG-3' 

Ccl2 5’-TGGCTCAGCCAGATGCAGT-3’ 5’-TTGGGATCATCTTGCTGGTG-3’ 

Ccl5 5’-CAAGTGCTCCAATCTTGCAGTC-3’ 5’-TTCTCTGGGTTGGCACACAC-3’ 

II6 5’-ACCAGAGGAAATTTTCAATAGGC-3’ 5’-TGATGCACTTGCAGAAAACA-3’ 

Tnf 5'-ATGAGAAGTTCCCAAATGGCC-3' 5'-ACGTGGGCTACAGGCTTGTC -3' 

Retrieval of primary mouse microglia and astrocytes 

Cortical murine microglia was prepared of pups at postnatal day one as previously described 

(Hanisch et al., 2004). Briefly, meninges of isolated brains were removed mechanically and 

cells were dissociated by trituration and cultured in high glucose (4.5 mg/ml) DMEM (Gibco 

BRL, Eggenstein, Germany), supplemented with 10% fetal calf serum (PAN Biotech, 

Aidenbach, Germany) and 1% penicillin/streptomycin (PAA, Cölbe, Germany) for up to 14 

days. Microglia cells were harvested by shake-off. The detached microglia containing medium 

was collected and the isolated microglia were reseeded and allow to settle for 1h.  

Primary astrocyte cultures were obtained from microglial/astrocytic co-culture maintained for 

a minimum of 7 days to generate a confluent glial culture. Prior to trypsinization, 

contaminating microglial cells were separated by repeated mechanical agitation and removed 

by subsequent washing in Hank's Balanced Salt Solution (PAA). Astrocytic monolayers were 

then dislodged from flasks by trypsinization (0.25% trypsin in HBSS and 1 mM EDTA). 

Cells were seeded in Ø 9 cm dishes plates (1 × 105 cells/well) and grown for 7 days until 
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confluent prior to stimulation. Culture purity was determined by double-labeling 

immunohistochemistry for GFAP (1:1000, Dako) and CD11b (1:500, Serotec) to identify 

astrocytes (>95%) and microglia (<5%), respectively.  

Microglia and astrocytes were stimulated with either unlabeled aggregated 0.7 µM Aβ1-42 

(Peptide Speciality Laboratories, Heidelberg, Germany), LPS (100 ng/ml, Sigma-Aldrich, 

from Escherichia coli 0127:B8) or mouse recombinant TNF-α (10 ng/ml, Roche Diagnostics, 

Mannheim, Germany) in low-serum DMEM (1 % FBS). Three separate cultures were 

stimulated, such that data represents the mean of three independent experiments. Additional 

astrocytes were incubated in medium to serve as unstimulated controls. Supernatant was 

collected after stimulation for 4h, 12h or 20 h and stored at -80°C until analysis, whilst cells 

were washed in PBS and scraped for collection with 1X RIPA containing protease inhibitor 

cocktail (Sigma-Aldrich). 

Microglial phagocytosis of FAM-labeled Aβ1-42 

Primary microglia (PMG) were seeded on cover glasses and incubated with 0,7 µM of fibrillar 

FAM-labeled Aβ1-42 (FAM-Aβ) (AnaSpec, San Jose, CA). Fibrillar FAM-Aβ was generated 

using NaOH treated peptide lyophilizate after incubation in acetat buffer to initiate 

aggregation (Teplow, 2006). Microglia cells were washed with PBST, fixed with 4% PFA and 

stained with rat polyclonal anti-CD68 (1:500; Serotec) after FAM-Aβ incubation period of 

one hour. Secondary detection antibody was conjugated to Alexa Fluor® 594 (Invitrogen). 

Furthermore, a microglial Aβ phagocytosis reader assay was applied as described previously 

(Fleisher-Berkovich et al., 2010) . Briefly, 5 x 104 cells/well were seeded and incubated with 

0,7 µM fibrillar FAM-Aβ for 1 h. Afterwards the medium was removed and extracellular 

FAM-Aβ fluorescence signal was quenched with trypan blue. Fluorescence intensity was 

measured at 485 nm excitation/535 nm emission using a fluorescence plate reader (Infinite 

200M, Tecan, Crailsheim, Germany). To compensate different cell counts, results were 

normalized with the Hoechst Dye 33342 (Sigma-Aldrich) nuclear stain signal. To evaluate the 

influence of CXCR3 ligands on microglial phagocytosis, recombinant mouse CXCL9 or 

CXCL10 (250 ng/ml, R&D systems, Wiesbaden, Germany) was applied 30 min following 

FAM-Aβ incubation. In additional experiments, a CXCR3 antagonist (30-300 nM, 12o, 

(Hayes et al., 2008) was added 30 min prior to the phagocytosis experiment to block the 

chemokine receptor. 
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Detection of cytokine proteins in culture supernatant 

Commercially-available mouse Quantikine Immunoassays (R&D Systems) were used to 

quantify the production of the chemokines CXCL9 and CXCL10 in culture supernatants. For 

the detection of TNF-α, the ELISA Ready-Set-Go!Kit (eBioscience, Frankfurt, Germany) 

were applied. Each sample was measured in duplicate. 

Intracerebral injection of fibrillar Aβ 

Six- to eight-months old CXCR3-/- (n=5) and WT (n=5) mice were anesthetized with 

ketamine/xylazine (30 mg/kg/4 mg/kg) and immobilized using a stereotactic device. A 0.5-

mm burr hole was drilled in the skull, and 1 µl of fibrillar Aβ1-42 solution was injected 

intracortically into the right hemisphere (anteroposterior –2.5, lateral 2.0 at 1.0 mm (cortex 

relative to the bregma) at a rate of 1 µl/min using a 5 µl Hamilton syringe as described 

previously (Kummer et al., 2011). Control animals received buffer solution into the right 

hemisphere, accordingly. Mice were sacrificed 48 hours after injection and prepared for 

histology as previously described. 30 µm thick horizontal brain sections including the needle 

track were immunostained with the primary antibodies against for Iba1 and IC16 or CD68 

and fAβ antiserum 2964 as listed in Table 3. The antibody binding was detected with Alexa 

dye-conjugated secondary antibodies. Sections were analyzed using a BX61 microscope 

equipped with a confocal disk scanning unit (Olympus). Image stacks were deconvoluted 

using Cell^P (Olympus). Iba1-positive microglia within multiple 10 µm z-stacks of the 

needle track were counted and examined for the presence of intralysosomal fAβ1-42. Analysis 

of microglia phagocytosis of fAβ content within CD68+ microglial lysosoms was performed 

using NIH ImageJ software. Microglial bodies were identified in z-projections from confocal 

images. For the quantification of intralysosomal fAβ, a region of interest (ROI) was drawn 

around the CD68+ area and the mean fluorescence intensity values were obtained from the 

resulting area after subtraction of CD68+ microglia regions. Aβ+ deposit that was not located 

inside microglia was considered to be in the extracellular space. For the determination of the 

mean lysosomal perimeter within microglia in proximity to the fAβ injection site ≥587 

CD68+ lysosoms in WT and CXCR3-/- were analyzed. The RGB fluorescence intensity 

profile plot was also obtained using NIH ImageJ. The results were tabulated as mean±SEM 

and compared using an unpaired t-test.  
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5.3 Results 

Decreased Aβ deposition and Aβ level in CXCR3-deficient APP/PS1 mice 

 

The APP/PS1 transgenic model exhibits a progressive increase in plaque burden between the 

age of four and twelve months (Jankowsky et al., 2001).  

We examined APP/PS1 and APP/PS1/CXCR3-/- animals within the early stage of Aβ 

deposition at 5 months and at the stage of compact and diffuse plaque burden at 8 months, 

prominent in APP/PS1 mice. We observed a widespread distribution of Aβ plaques stained 

with ThioS throughout the hippocampus and cerebral cortex of male APP/PS1 mice at 8 

months as described previously (Fig. 10 A). In contrast to APP/PS1 mice, APP/PS1/CXCR3-/- 

mice revealed a strong reduction in Aβ plaque burden in both regions at the age of eight 

months (Fig. 10 A). Quantification of ThioS+ area (%) in cerebral cortex and hippocampus 

(Fig. 10 B) revealed a highly significant reduction of Aβ plaques in APP/PS1/CXCR3-/- 

animals compared to APP/PS1 mice at both five (cerebral cortex, APP/PS1: 0.074 ± 0.009% 

vs. APP/PS1/CXCR3-/-: 0.020 ± 0.002%, p<0.001; hippocampus, APP/PS1: 0.047 ± 0.008% 

vs. APP/PS1/CXCR3-/-: 0.004 ± 0.001%, ###p< 0.0005) and eight (cerebral cortex, APP/PS1: 

0.589 ± 0.082% vs. APP/PS1/CXCR3-/-: 0.047 ± 0.007%, ***p<0.0005; hippocampus, 

APP/PS1: 0.634 ± 0.145% vs. APP/PS1/CXCR3-/-: 0.044 ± 0.011%, ###p<0.0005) months of 

age.  

Concerning Aβ protein-levels of the brain, we could also demonstrate a significant lower 

Aβ1-42 level (Aβ1-40: 15.6 ± 0.2 pg/mg, Aβ1-42: 7.8 ± 0.8 ng/mg) in the insoluble SDS 

fraction of five months old APP/PS1/CXCR3-/- mice brain when compared to APP/PS1 mice 

(Aβ1-40: 26.2 ± 6.3 pg/mg, Aβ1-42: 49.4 ± 8.3 ng/mg; ##p<0.001 for Aβ1-42; Fig. 10 C). 

Correlating with the strong decrease in ThioS+ plaque deposition after eight months, we 

found a five-fold reduction of Aβ level (Aβ1-40: 32.8 ± 4.7 ng/mg, Aβ1-42: 31.6 ± 1.8 

ng/mg) in APP/PS1/CXCR3-/- when compared to APP/PS1 mice (Aβ1-40: 166.0 ± 41.0; 

Aβ1-42: 113.5 ± 36.2 ng/mg; ***p<0.001 for Aβ1-40; #p<0.05 for Aβ1-42; Fig. 10 D). No 

significant difference in soluble RIPA fraction could be observed at five months between the 

two genotypes. However, in eight months old APP/PS1/CXCR3-/- mice the Aβ peptide level 

(Aβ1-40: 127.8 ± 4.2 pg/mg, Aβ1-42: 59.8 ± 3.5 pg/mg) was significantly reduced compared 
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to Aβ concentration in APP/PS1 mice brain (Aβ1-40: 85.4 ± 4.2 pg/mg, Aβ1-42: 47.4 ± 2.1 

pg/mg; ***p<0.0001 for Aβ1-40; #p=0.01 for Aβ1-42; Fig. 10 D).  

In summary, CXCR3-deficiency reduces significantly the amyloid plaque deposition and 

Aβ1-42/Aβ1-40-levels in the APP/PS1 AD mouse model.  
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Figure 10: CXCR3 deficiency leads to a strong reduction of Aβ-deposition in APP/PS1 mice. At 8 
month sagittal brain sections of APP/PS1 and APP/PS1/CXCR3-/- male mice were stained with 
Thioflavine S (ThioS) to detect dense-core Aβ deposition (A). Widespread Aβ deposition is visible in 
hippocampal and cortical regions in APP/PS1 mice, by contrast APP/PS1/CXCR3-/- mice exhibit a 
strong reduction of Alzheimer’s-like plaques in both brain regions (A). Quantification of ThioS+ area 
in the frontal cortex and hippocampus of all animals demonstrate a significant reduction in Aβ 
deposition in 5- and 8 month old APP/PS1/CXCR3-/- compared to APP/PS1 mice (B; ###, ***p < 
0.0005; unpaired t-test; n=5; 16-20 sections, mean±SEM). ELISA measurement of Aβ1-40 and Aβ1-
42 peptides at 5- and 8 months documents a significant reduction in the insoluble SDS-fraction of the 
brain extract compared to APP/PS1 mice (C, #p < 0.05, **p = 0.001, ***p < 0.001, unpaired t-test, 
n=5-8, mean±SEM). At 5 months no significant differences in the composition of both soluble 
peptides could be demonstrate between the two genotypes (D, 5 mo), whereas at 8 months the 
concentration of Aβ1-40 and Aβ1-42 are significantly lower in APP/PS1/CXCR3-/- mice (D, 8 mo, *p 
= 0.01; ***p < 0.0001; unpaired t-test; n=5-8, mean±SEM). Immunoblot analysis using a c-
terminus detecting anti-holo-APP antibody (CT15) indicates no significant effect of CXCR3 
deficiency on APP-processing in APP/PS1 mice at 5 months (E). Densitometric analysis of 
holo-APP, α-CTFs and β-CTFs levels reveals no significant differences after normalization 
to β-tubulin (F, unpaired t-test, mean±SEM). 
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CXCR3 deficiency does not alter APP processing in APP/PS1/CXCR3-/- mice 

To examine the influence of CXCR3 on neuronal APP processing as a cause for a reduced 

plaque load, we determined the protein level of holo-APP and APP cleavage products β-CTF 

and α-CTF in WT, CXCR3-/-, APP/PS1 and APP/PS1/CXCR3-/- mice by western blot 

analysis. As expected control WT and CXCR3-/- samples showed a weak band of endogenous 

APP and weak signal for α- and β-CTF cleavage fragments (Fig. 10 E). We found no 

significant differences in normalized band intensity of holo-APP between APP/PS1 and 

APP/PS1/CXCR3-/- animals (APP/PS1: 2.1 ± 0.3 vs. APP/PS1/CXCR3-/-: 1.9 ± 0.2 

normalized band intensity; Fig 10 F). Furthermore, no significant differences in the levels of 

β-CTF (APP/PS1: 0.3 ± 0.0 vs. APP/PS1/CXCR3-/-: 0.3 ± 0.0 normalized band intensity) 

and α-CTF (APP/PS1: 0.3 ± 0.0 vs. APP/PS1/CXCR3-/-: 0.2 ± 0.0 normalized band 

intensity; Fig. 10 F) were detectable reflecting a lack of alteration of the APP processing by 

CXCR3-deficiency. 

CXCR3 modulates the in vivo phenotype of microglia and astrocytes in APP/PS1 transgenic mice 

To elucidate the impact of CXCR3-/- microglia on the morphological phenotype of microglia 

in APP/PS1 mouse model, we characterized periplaque accumulation and morphological 

activation of microglia. Using combined Aβ-plaque staining with ThioS and Iba1 

immunofluroescent labeling of microglia, we specifically detected Aβ-plaque associated 

microglia/macrophages in the brains of APP/PS1 and APP/PS1/CXCR3-/- mice.  

The strong periplaque microglial association to Aβ-plaques, documented in APP/PS1 brains 

(Fig. 11 D) was substantially decreased in CXCR3-deficient APP/PS1 mice (Fig. 11 D). 

Independent of size or region of the detected plaques, we observed a strongly reduced, almost 

abrogated clustering microglia around plaques in APP/PS1/CXCR3-/- mice. At eight months 

of age in APP/PS1 animals MHCII positive cells were found to be in proximity to clusters of 

Iba1-positve microglia. At that time point only few MHC-II positive microglial cells were 

detected in APP/PS1/CXCR3-/- male mice. Concurrent with the immunohistochemical 

staining of activated microglia in APP/PS1 mice, CD11b and CD68 transcript quantification 

outlined a significant increase in APP/PS1 mice. Both microglial marker in APP/PS./CXCR3-

/- mice remained at WT control level (CD11b in APP/PS1: 1.7 ± 0.2 vs. 1.1 ± 0.0 folds 
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increase in APP/PS1/CXCR3-/-; **p<0.01 and CD68 in APP/PS1: 3.8 ± 0.7 vs. 1.2 ± 0.1 

folds increase in APP/PS1/CXCR3-/-; **p<0.01; Fig. 11 C). 

Double staining for GFAP and ThioS demonstrated in APP/PS1 mice that most amyloid 

plaques were surrounded by astrocytes, which appear activated by morphological criteria (Fig. 

11 E). Some scattered activated astrocytes were not associated with amyloid plaques, however, 

correlating with the substantial reduction of Aβ-plaques, we could also observe a markedly 

reduction of GFAP immunoreactivity in APP/PS1/CXCR3-/- brain using 

immunofluorescence and immuno blotting (Fig. 11 E, F).  

In summary CXCR3-deficiency strongly reduces microglial activation and clustering in 

proximity to Aβ-plaques stained by ThioS. Moreover, morphologically activated astrocytes 

were strongly reduced in APP/PS1/CXCR3-/- compared to APP/PS1 brain.  
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Figure 11: CXCR3 deficiency strongly reduces the level of inflammatory transcripts, 
plaqueassociated microglial accumulation and the periplaque activation of astrocytes in APP/PS1 mice. 
Quantitative real-time PCR revealed reduced expression of CXCR3 ligands (A), inflammatory 
cytokines/chemokines (B) and selective microglial markers (C) in APP/PS1/CXCR3-/- brains. RNA 
transcripts were normalized to GAPDH and expressed relative to that of age matched WT controls (*p 
< 0.05, **p < 0.01, ***p < 0.0001; unpaired t-test; n=5-8, mean±SEM). Sagittal brain sections of 
age-matched APP/PS1 and APP/PS1/CXCR3-/- mice were immunostained with the microglial 
marker Iba1 and densecore Aβ plaques were visualized using Thioflavine S (ThioS, D). A markedly 
reduction of microglial accumulation around Aβ deposition is visible in APP/PS1/CXCR3-/- 
compared to the periplaque clustering of Iba1+ microglia in APP/PS1 brain (D, insets). Combined 
staining for Aβ plaques and an astrocytic marker reports a substantial reduction of GFAP+ astrocytes 
in APP/PS1/CXCR3-/- mice compared to the strong immunoreactivity of the Aβ plaques ringed 
astrocytes in APP/PS1 mice (E, scale bar=250 µm). Western blots of RIPA brain extracts probed with 
antibodies to GFAP revealed reduced GFAP-levels in APP/PS1/CXCR3-/- mice compared to 
APP/PS1 transcripts in APP/PS1/CXCR3-/- mice (F). 
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CXCR3 and the corresponding ligands CXCL9 and CXCL10 are induced in APP/PS1 transgenic mice 

 

To correlate the histological findings of altered microglial activation with RNA transcripts for 

the CXCR3 and its ligands CXCL9 and CXCL10, we performed quantitative PCR analysis 

from eight months old APP/PS1 and APP/PS1/CXCR3-/- total brain RNA. We first could 

demonstrate an induction of CXCR3 transcripts in APP/PS1 mice (7.2 ± 3.0 fold increase) 

relative to WT controls (Fig. 11 A). Furthermore analysis of CXCR3 ligand transcripts 

revealed elevated levels for CXCL9 (5.8 ± 4.2 fold increase) and in particular for CXCL10 

(36.7 ± 10.5 fold increase) in APP/PS1 mice (Fig. 11 A).   

Proinflammatory cytokines are attenuated in CXCR3-deficient APP/PS1 mice 

In APP/PS1/CXCR3-/- mice we found the levels of proinflammatory TNF-α (APP/PS1: 4.1 ± 

0.5 fold increase vs. APP/PS1/CXCR3-/-: 1.6 ± 0.3 fold increase; **p<0.002), IL-1β 

(APP/PS1: 4.2 ± 1.2 fold increase vs. APP/PS1/CXCR3-/-: 1.3 ± 0.5 fold increase,; *p<0.03) 

and the death receptor pathway associated ligand FasL to be significantly down-regulated 

(APP/PS1: 7.2 ± 1.1 fold increase vs. APP/PS1/CXCR3-/-: 2.3 ± 0.7 increase; *p<0.02) 

compared to APP/PS1 mice (Fig. 11 B).  

Moreover, we detected slightly elevated levels of mRNA for CCL2, CCL5, IL-6 and IFN-γ 

without finding significant differences among APP/PS1 and APP/PS1/CXCR3-/- genotype 

relative to WT controls. In summary the presented data demonstrate that CXCR3-deficiency 

reduces the expression of distinct transcripts associated with microglial activation in APP/PS1 

mice and suggests a possible alternative inflammatory milieu in APP/PS1/CXCR3-/- mice. 

Fibrillar Aβ stimulates microglia to produce TNF-α and CXCL10, while TNF-α but not Aβ induces 

CXCL10 production by astrocytes.  

To determine the cellular source of TNF-α and CXCL10 in response to fibrillar Aβ1-42 

(Aβ), primary microglia and astrocytes were stimulated with Aβ and TNF-α. LPS stimulated 

cultures served as positive controls. We analyzed the supernatants of 4h, 12h and 20h 

stimulated cultures and detected microglial/astrocytic secreted TNF-α and CXCL10 via 

ELISA (schematic diagram, Fig. 12 A).  

Aβ stimulation of primary microglia led to a significant induction of TNF-α after 12h (105.0 

± 14.0 pg/ml) and 20h (264.0 ± 4.0 pg/ml), compared to unstimulated controls (52.8 ± 20.4 

pg/ml after 12h, 180.0 ± 4.0 pg/ml after 20h; **p < 0.005, Fig. 12 B). 
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In contrast, primary astrocytes displayed only a minimal TNF-α production in response to 

Aβ stimulation at the examined time points (Aβ, 8h: 0.1 ± 0.1 pg/ml vs. control, 8h: 0.4 ± 0.2 

pg/ml; Aβ,12h: 3.5 ± 0.1 pg/ml vs. control, 12h: 0.4 ± 0.2 pg/ml; Aβ, 20h: 4.2 ± 0.4 pg/ml vs. 

control, 20h: 1.9 ± 0.1 pg/ml; Fig. 12 C).  

In addition, we determined the microglial synthesis of CXCL10 in response to Aβ. The 

detected levels of secreted CXCL10 were found significant higher to untreated controls over 

all 3 time points (*p < 0.05, **p < 0.005; Fig. 12 D). Moreover, Aβ induces CXCL10 as 

strong as LPS after 12h and 24h (LPS, 12h: 433.5 ± 89.5 pg/ml vs. Aβ, 12h: 390.0 ± 84.0 

pg/ml; LPS, 24h: 409.5 ± 33.5 pg/ml vs. Aβ, 24h: 491.0 ± 91.0 pg/ml). 

Furthermore, astrocytic CXCL10 production after Aβ or TNF-α stimulation were observed. 

In contrast to the robust induction of TNF-α by Aβ-stimulated microglia, we did not detect a 

relevant production of CXCL10 by Aβ-stimulated astrocytes. However, when stimulating 

primary astrocytes with TNF-α, we observed a stronger CXCL10 induction than observed by 

LPS stimulation (Fig.12 E, LPS, 12h: 2178.0 ± 13.0 pg/ml vs. Aβ, 12h: 2258.0 ± 15.0 pg/ml; 

LPS, 24h: 2316.0 ± 61.5 pg/ml vs. Aβ, 24h: 2739.0 ± 586.0 pg/ml).  

Taken together, primary microglia are potent sources of TNF-α and CXCL10 after Aβ 

stimulation. Astrocytes are not directly responsive to Aβ, but can significantly contribute 

to the production of CXCL10 after being stimulated with TNF-α.  



Chapter 2      72 

 

Figure 12: Effect of fibrillar Aβ on the induction of microglial and astrocytic TNF-α and CXCL10 
secretion. Primary microglia and astrocytes were prepared from primary co-culture of newborn WT 
mice as described in Material and Methods. After stimulation with 0,7 µM of fibrillar Aβ or 100 ng/ml 
LPS (10 ng/ml TNF-α) for 4, 12 and 20h primary culture supernatants were analyzed for the level of 
secreted TNF-α and CXCL10 using ELISA (schematic diagram, A). A significant induction of TNF-α 
is demonstrated after 12h of fAβ stimulation of microglia culture (B), whereas no TNF-α induction 
could be determined in astrocytes after fAβ treatment over all analyzed timepoints (C). Microglial 
treatment with fAβ induced an equal strong secretion of CXCL10 after 12h and 20h like the LPS 
stimulus (D). Primary astrocytes did not respond to Aβ with enhanced CXCL10 secretion compared 
to nontreated controls across the time course. Contrary, administration of TNF-α strongly stimulates 
astrocytes to produce CXCL10 after 4h on (E, *p<0.05, **p<0.01, ***p<0.001, unpaired t-test; 2-3 
experiments; mean±SEM). 
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CXCR3 signaling reduces the Aβ-phagocytosis of FAM-Aβ uptake of primary microglia but increases the 

production of TNF-α after FAM-Aβ treatment 

To examine the impact of CXCR3 on microglial phagocytosis of fAβ, we quantified FAM-Aβ 

uptake in WT and CXCR3-/- primary microglia. Using quantitative imaging of FAM-Aβ+ 

particles in CD68+ microglia cells (Fig. 13 A) we found an over 30% higher capacity of 

CXCR3-/- microglia (area/cell = 60.7 ± 7.6 µm2) to uptake FAM-Aβ than WT microglia 

(area/cell = 82.1 ± 7.2 µm2, *p<0.05, Fig. 13 B). To further elucidate if CXCR3 signaling is 

able to conversely reduce the phagocytic capacity of WT microglia, we pretreated the 

microglial cells with CXCL9 or CXCL10 and then examined the phagocytosis capacity for 

FAM-Aβ. Both CXCL9 and CXCL10 pretreatment reduced the phagocytic capacity of WT-

microglia significantly (1.03 ± 0.04 of unstimulated control vs. 0.62 ± 0.13 of CXCL9 

pretreatment and 0.52 ± 0.08 of CXCL10 pretreatment, normalized phagocytosis ± SEM; 

Fig. 13 B), whereas no effect was observed in pretreated microglia from CXCR3-deficient 

mice (1.47 ± 0.07 of unstimulated control vs. 1.39 ± 0.09 of CXCL9 pretreatment and 1.50 

± 0.06 of CXCL10 pretreatment, normalized phagocytosis ± SEM; Fig. 13 B). Preincubation 

with the CXCR3 antagonist before initiating the phagocytosis assay led to increased fAβ 

phagocytosis in CXCR3 at the level of CXCR3-/- microglia (Fig. 13 D).  

To examine the influence of CXCR3 on the production of proinflammatory cytokines during 

Aβ-stimulation, we analyzed the culture supernatants from WT and CXCR3-/- microglia after 

the incubation with FAM-Aβ. The FAM-Aβ incubated WT cells were found to secret a 10-

fold higher level of TNF-α (220.4 ± 10.5 pg/ml) than CXCR3-deficient cells (19.1 ± 1.7 

pg/ml, ***p < 0.0001, Fig. 13 C). In addition, we detected a lower baseline level of TNF-α 

secretion in control CXCR3-/- (5.9 ± 3.8 pg/ml) compared to control WT cells (46.1 ± 14.4 

pg/ml, Fig. 13 C).  

Moreover, we found CXCR3 antagonist treated WT microglia to produce significantly lower 

level of TNF-α after fAβ stimulation (18.8 ± 5.5 pg/ml, 100 nM) than stimulation without 

the CXCR3 antagonist (32.7 ± 1.1 pg/ml, 100nM, Fig. 13 E). 

In summary, CXCR3-deficiency results in an increased phagocytotic capacity of microglia 

and reduces the expression of TNF-α. Moreover, CXCL9/10-CXCR3 signaling can reduce 

the phagocytic ability in WT, but not in CXCR3-/- microglia. 
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Figure 13: CXCR3 deficiency and CXCR3-antagonism enhances the microglial phagocytosis of 
FAMAβ and reduces the production of TNF-α in vitro. Primary WT and CXCR3-/- microglia were 
incubated with or without 0.7 µM FAM-Aβ for 1 h. After washing and fixation, cells were stained for 
CD68 and visualized using Alexa 594-conjugated secondary antibody (A, Scale bar=20 µm). A 
phagocytosis reader assay of WT and CXCR3-/- microglia revealed a significant increase of FAM-Aβ 

uptake in CXCR3-/- compared to WT microglia (B). mCXCL9 and mCXCL10 (each 250 ng/ml) 
treatment of WT and CXCR3-/- microglia significantly diminished phagocytosis in WT but not in 
CXCR3-/- cells (B, ###, ***p<0.0005, unpaired ttest; 3-5 individual experiments; 
mean±SEM).Detection of TNF-α concentration in the cell supernatants after phagocytosis reader 
assay revealed a significant reduction of TNF-α secretion in Aβ stimulated CXCR3-/- compared to 
WT cells (C, ***p<0.005; unpaired t-test; mean±SEM). Functionally blocking of CXCR3 
significantly upregulated microglial phagocytosis at an equal level like observed in CXCR3-deficient 
microglia (D, CXCR3 antagonist ≥ 100nM, **p<0.05, *p<0.02, Tukey's Multiple Comparison Test; 
mean±SEM). Analysis of the TNF-α level in CXCR3-antagonist incubated WT microglia exhibit a 
reduction of TNF-α secretion below WT control level when stimulated with Aβ (E, **p<0.01, 
*p<0.05, Tukey's Multiple Comparison Test, mean±SEM). 
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Intracerebral fAβ injection reveals enhanced microglial phagocytosis and differences in clustering in 

CXCR3-/- mice compared to wild type controls  

To evaluate in a second experimental approach whether loss of CXCR3 signaling leads to an 

enhanced phagocytosis of fAβ in vivo, fibrillar Aβ1-42 was injected into the brains of WT and 

CXCR3-/- animals (Fig. 14 A). First, quantification of microglia within an 80 µm radius 

proximal to the fibrillar Aβ1-42 injection site revealed a significant reduction of microglial 

accumulation 20% in CXCR3-/- animals compared to WT mice (WT Aβ: 18.3 ± 0.9 vs. 

CXCR3-/- Aβ: 14.0 ± 0.7; Fig. 14 B). In addition, sham injection did not show any significant 

difference in respect to the total number between WT and CXCR3-/- animals (WT TRIS: 11.6 

± 0.8 vs. CXCR3-/- TRIS: 11.0 ± 0.9; Fig. 14 B). Secondly, we detected a significantly 

increased amount of intracellular fAβ in CD68+ phagolysosomes from CXCR3-/- mice 

compared with WT mice. (WT Aβ: 50.2 ± 3.1 a. u. vs. CXCR3-/- Aβ: 65.1 ± 3.6 a. u.; Fig. 14 

C, D). Notably, the microglial cells of CXCR3-/- animals exhibited a less ramified 

morphology with retracted extant branches and a more large rounded morphology with large 

Iba1 negative vacuoles (asterisks, Fig. 14 A). Further, these changes correlate with a significant 

larger size of CD68+ lysosoms in these cells. We measured the lysosomal perimeter of 

microglia in close proximity to the injected fAβ deposition and found a mean size difference 

of >30% in CXCR3-/- lysosoms compared with WT lysosoms (WT Aβ: 5.6 ± 0.1µm, n=717 

vs. CXCR3-/- Aβ: 7.4 ± 0.2 µm, n=587; Fig. 14 E). Using a RGB fluorescence intensity 

profile we confirmed the intralysosomal location of fibrillar Aβ (Fig. 14 F).    
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Figure 14: CXCR3-deficient mice show augmented microglial phagolysosomal uptake of fAβ1-42 
but reduced microglial accumulation after intracerebral Aβ injection. 6-month-old CXCR3-/- (n=5) 
and WT (n=5) mice were injected with fibrillar Aβ1-42 (A, C) or with TRIS buffer. Horizontal brain 
sections (30 µm) containing the needle track were immunostained with antibodies against Iba1 and Aβ 
(A) or CD68 and Aβ (C) to localize and quantify microglia proximal to the Aβ injection site (B) or 
intralysosomal Aβ content (D). Quantification of Iba1+ microglia cells within an 80 µm radius of Aβ 
application center shows a significant higher number in WT mice than in CXCR3-/- (B). Using 
confocal microscopy we detected large CD68+ lysosoms (red) containing fAβ immunoreactive 
content (green) in CXCR3-/- rather than in WT (C, arrowheads, scale bar=20 µm). Analysis of 
microglial CD68+ lysosoms content in CXCR3-/- mice exhibit a significant increase in Aβ 
fluorescence compared to WT mice (D, **p<0.01, unpaired t-test, mean±SEM). Furthermore, we 
observed an increase of the mean lysosomal size distribution (expressed as perimeter) within CXCR3-
/- microglia compared to WT (E, ***p<0.0001, mean±SEM, ≥580 lysosoms per genotype). 
Quantification of fluorescence intensity during confocal microscopy for CD68 (red stain and line) and 
Aβ (green stain and line) are shown next to the corresponding RGB image (C, F). Simplified 
dimensioning arrow (C, CXCR3-/-, 0-1) indicates area transected in line plot depictions (F). RGB 
intensity profile localizes peak Aβ (green) intermediate to peak CD68 (red) fluorescence intensity. 
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5.4 Discussion 

The presented study provides insight into the functional role of the CXCR3 chemokine 

system on the progression of Alzheimer’s-like pathology in the APP/PS1 AD-mouse model. 

The rationale for this experimental study was the recent detection of high levels of CXCL10 

in cerebrospinal fluid and brain tissue from AD patients and the corresponding animal 

models, suggesting a role for this chemokine and its receptor CXCR3 in AD (Xia et al., 2000; 

Galimberti et al., 2003, 2006). Here we show a strong attenuation of Aβ plaque formation and 

significantly diminished Aβ-peptides in brain tissue from CXCR3-deficient APP/PS1 mice 

arguing the first time, for a critical role for CXCR3 in the generation of AD-like pathology in 

this model. 

A growing number of studies implicate that Aβ-deposition in AD and AD-like models is 

modulated by the function and activation state of microglia and astrocytes (Wyss-Coray et al., 

2003; Koistinaho et al., 2004; Farina et al., 2007; Fuller et al., 2010). As previously 

demonstrated, resident glial cells of the brain functionally express CXCR3, but its impact on 

AD progression is not clarified (Biber et al., 2002; Flynn, 2003; Rappert et al., 2004; de Jong 

et al., 2008b).  

In APP/PS1 mice deficient for CXCR3, we found a strong modulation of microglial and 

astrocytic activation both by morphological and molecular criteria. This was independent 

from the local plaque load and was even observed around large Aβ-plaques in old animals, 

pointing towards a primary modulation of the glial response in APP/PS1/CXCR3-/- mice and 

not only less activated glia due to a generally reduced plaque load. Moreover and consistent 

with the findings in APP/PS1 model, we detected a distinct microglial phenotype and 

distribution pattern within Aβ injected CXCR3-/- mice. This demonstrates that CXCR3 is 

able to modulate the microglial state in the presence of Aβ which is in line with recent studies 

examining the role of CXCR3 in other models of neurodegeneration These studies 

demonstrated that absence of CXCR3 is associated with an attenuated microglial activation, 

reduced expression of inflammatory factors, constrained microglial recruitment (Rappert et 

al., 2004; de Jong et al., 2008b; Riemer et al., 2008; van Weering et al., 2011). 

Concerning the mechanisms, which lead to a diminished Aβ load in CXCR3-deficient 

APP/PS1 mice, we hypothesized that CXCR3-deficient microglia might be more capable in 

phagocytosing Aβ in the APP/PS1 model, contributing to the observed plaque reduction in 

APP/PS1/CXCR3-/- mice. Strikingly, we could show that in vitro, CXCR3-deficient microglia 
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have a higher phagocytic capability for fAβ than WT microglia. Conversely, CXCR3 

activation with CXCL9 or CXCL10 reduced the phagocytosis of fAβ by WT microglia but 

not by CXCR3-deficient microglial cells, providing evidence for a CXCR3-specific effect. In 

addition, treatment with a CXCR3 specific antagonist elevated phagocytosis in WT microglia. 

The observation of enhanced microglial fAβ phagocytosis and augmented lysosomal size in 

CXCR3-/- animals after intracerebral injection further demonstrate the impact of CXCR3 on 

microglial phagocytosis in our model: CXCR3 decreases the phagocytic capabilities for Aβ 

and thereby promotes the deposition of Aβ plaques in APP/PS1 mice.  

We also detected a strong reduction of proinflammatory transcripts like TNF-α, IL-1β or 

FasL in CXCR3 deficient APP/PS1 mice. TNF-α and IL-1β are known to be upregulated in 

senile plaques and dystrophic neurites in AD (Amor et al., 2010) and in an AD mouse model 

(Ruan et al., 2009). TNF-α is thought to amplify brain inflammation and cognitive 

impairment in both AD patients and AD models (Ramos et al., 2006; Tobinick et al., 2006; 

McAlpine et al., 2009; Pardridge, 2010; Frankola et al., 2011). Disregulated apoptosis has been 

implicated in several neurodegenerative disorders including AD. The key apoptosis regulator 

FasL but also IL-1β are potentially involved in both neuronal and immune cell apoptosis in 

AD and AD models (Hofmann and Tschopp, 1995; Felderhoff-Mueser et al., 2000; Ethell 

and Buhler, 2003; Su et al., 2003; Shaftel et al., 2007; Pinteaux et al., 2009). 

Therefore, the reduced levels of TNF-α, IL-1β and FasL molecules likely contribute to the 

alleviated phenotype in APP/PS1/CXCR3-/- mice.  

Our in vitro Aβ stimulation of glial cells and numerous experimental studies (Klegeris et al., 

1997; Gregersen et al., 2000; Lue et al., 2001; Hanisch, 2002) identify microglial cells as the 

main source for TNF-α. We found that CXCR3 signaling drastically increase the TNF-α 

production of microglia after fAβ-stimulation. This further corroborates that the attenuated 

disease course in CXCR3 deficiency is mediated by the modulation of microglial function. 

We also confirmed the presence and a striking induction of the receptor and ligands of the 

CXCR3 chemokine system, whereas the induction of other chemokines possibly involved in 

the pathogenesis of AD, like CCL2 (Ishizuka et al., 1997) or CCL5 (Tripathy et al., 2010) 

were much less prominent in our model. 

Because IFN-γ is a strong stimulator for the induction of CXCR3 ligands (Luster et al., 1985; 

Ferber et al., 1996; Cole et al., 1998), we examined the IFN-γ gene expression in our model 

but could not find any relevant differences between APP/PS1 and CXCR3-deficient APP/PS1 
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mice. Other factors like TNF-α and IL-1β, which are induced in our model can also induce 

CXCR3 ligands, in particular CXCL10 (Majumder et al., 1998; Choi et al., 2011). To further 

elucidate the factors, which induce CXCL10 in APP/PS1 mice, we stimulated glial cells in 

vitro with TNF-α and fAβ. Our data revealed that fAβ is a strong stimulus for both microglia 

and astrocytes to secrete CXCL10. Besides, TNF-α is also able to induce a CXCL10 secretion 

of astrocytes. In summary, this data suggests that fAβ is able to directly induce the production 

of CXCL10 by microglial cells and that proinflammatory cytokines, in particular microglial 

TNF-α, can further increase the astroglial production of CXCL10. 

As neurons are also able to functionally express CXCR3 (Coughlan et al., 2000; Xia et al., 

2000; Nelson and Gruol, 2004), these cells could principally contribute to the observed 

plaque reduction in APP/PS1/CXCR3-/- mice as well. We evaluated the impact of neuronal 

CXCR3 deficiency on the neuronal expression and processing of APPswe and found no 

significant differences in total APP and cleavage products (CTFs) levels in APP/PS1 and 

APP/PS1/CXCR3-/- brain tissue, arguing against a relevant impact of neuronal CXCR3 on the 

observed phenotypical changes. 

In summary, the presented data demonstrates for the first time the functional importance of 

the CXCR3 chemokine system during the course of AD-like pathology. We conclude that the 

direct and indirect induction of CXCL10 by fAβ and the subsequent activation of the CXCR3 

chemokine system are able to modulate the activation state of glial cells. CXCR3 activation 

reduces the phagocytotic capability of microglia for fAβ, which ultimately promotes plaque 

formation in the APP/PS1 model. CXCR3 has a key role in the progression of the AD-like 

pathology in the APP/PS1 model and should therefore be considered as a potential novel 

therapeutic target in AD. 
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6. Conclusion  

The presented studies further support the important function of the CXCR3 chemokine 

system in neuroinflammatory and neurodegenerative disease models.  

In the Th1/IFNγ driven GF-IL12 model, CXCR3 displays very diverse functions. On the one 

hand, CXCR3 strongly promotes the accumulation of tissue damaging immune cells in the 

cerebellum but on the other hand also prevents ocular inflammation. These findings 

underline that CXCR3 can have a major impact on the recruitment and activation of immune 

cells that is very likely milieu-dependent. CXCR3 can cause but also prevent inflammation of 

specific regions of the CNS. 

In contrast to the GF-IL12 model, the secondly applied APP/PS1 model is characterized by a 

chronic glial activation with induction of cytokines like TNF-α and the absence of infiltrating 

immune cells. Here we found, that CXCR3 signaling critically controls accumulation, 

clustering and activation of microglia. Ultimately, CXCR3 enhances the Alzheimer-like 

pathology in APP/PS1 mice, providing for the first time evidence that this chemokine system 

is involved, not only in severe neuroinflammation, but also in chronic neurodegeneration.  

In both models, CXCR3 not only orchestrates the distribution of resident and infiltrating 

immune cells, but also changes the local inflammatory milieu by modulating the cytokine 

patterns. In particular, CXCR3 changes the levels of proinflammatory cytokines like IFN-γ 

and TNF-α, which further intervenes with the course of the diseases. As demonstrated this 

effect directly or indirectly is also able to modulate cellular property like microglial 

phagocytosis. 

In conclusion, CXCR3 is a key molecule in neuroinflammatory and neurodegenerative 

disease models. It modulates not only the distribution and activation of infiltrating cells, but 

also of resident immune cells. Therefore the development of therapeutic approaches, 

addressing the function of CXCR3 is a reasonable and an exciting challenge for the future. 

However, with respect to the unexpected ocular inflammation observed in GF-

IL12/CXCR3KO mice, a CXCR3 specific treatment requires caution, as this receptor can 

mediate both beneficial but also harmful effects during the course of CNS diseases. 

. 
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8. Abbreviations 

°C Degree Celsius 

µ Micro (as preset to SI-units, 10
-6

) 

Ab Antibody  

AD Alzheimer’s disease 

APC Antigen presenting cell 

APC (FACS) Allophycocyanin 

APC-eFluor (FACS) Allophycocyanin coupled to eFluor® 

APP Amyloid precursor protein 

APP/PS1 Transgene containing mutant APPsw and PS1dE9  

APS  Ammonium persulfate 

AS Antisense  

Aβ Amyloid beta 

B220 B cell isoform of 220 kDa 

BBB Blood brain barrier 

BCA Bicinchoninic acid 

bp Base pair  

BSA Bovine serum albumin 

C57BL/6 C57 black 6, inbred strain of laboratory mice 

CCL Chemokine ligand with two near amino-terminal 

cysteines 

CCR Receptor for CC-chemokines 

CD Cluster of differentiation 

cDNA Complementary DNA   

CHO Chinese hamster ovary, cell line 

CNS Central nervous system 

CREB Cyclic adenosine monophosphate response element-

binding 

cRNA RNA derived from cDNA through standard RNA 

synthesis 

CSF Cerebrospinal fluid 

CTL Cytolytic T lymphocytes 

CX3CL1 Type of chemokine ligand with three near amino-

terminal cysteines, separated by one amino acid, 

represented in this name with an "X", 

CX3CR1 Receptor for CX3CL1 

CXCL Type of chemokine ligand with two near amino-

terminal cysteines, separated by one amino acid, 

represented in this name with an "X",  

CXCR Receptor for CXC-chemokines  

CXCR3KO CXCR3-deficient 

Da Dalton  

DAPI 4'-6-Diamidino-2-phenylindole 

DARC Duffy antigene receptor for chemokines 
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DMEM Dulbecco's modified eagle medium 

DNA       Deoxyribonucleic Acid 

DNase Deoxyribonuclease 

dNTP Deoxynucleotide 

DTT Dithiothreitol 

EAE Experimental Autoimmune Encephalomyelitis 

EDTA Ethylenediaminetetraacetic acid 

EGTA Ethylene glycol tetraacetic acid 

ELISA Enzyme-linked immunosorbent assay 

ELR Amino acid motif of glutamic acid-leucine-arginine 

Fa. Company  

FACS Fluorescence-activated cell sorting 

FAM-Aβ Fluorescent (FAM)-labeled β- amyloid 1-42 

FasL Fas ligand  

fAβ Fibrillar Aβ1-42 

Fig. Figure  

FITC Fluorescein isothiocyanate 

FLIPR fluorometric imaging plate reader, Ca flux assay 

FMCM Fatal murine cerebral malaria 

FoxP3 Forkhead box P3 

g  Gram  

GAPDH Glyceraldehyde 3-phosphate dehydrogenase 

GFAP Glial fibrillary acidic protein 

GF-IL12 Transgene containing both subunits of the IL-12 

heterodimer (p35/p40) under the transcriptional 

control of the astrocyte-specific GFAP promoter 

GF-

IL12/CXCR3KO 

CXCR3-deficient GF-IL12 mice 

GPCR G-protein coupled cell-surface receptor 

GRK G-protein coupled receptor kinases 

h Hour(s)  

H&E Haematoxylin and eosin 

HBSS Hank's buffered salt solution 

HIV Human immunodeficiency virus 

HPLC High performance liquid chromotography 

HRP Horseradish peroxidase enzyme 

HSV Herpes simplex virus 

Iba1 Ionized calcium binding adaptor molecule 1 

IC50 half maximal inhibitory concentration 

IFN Interferon  

IHC   Immunohistochemie 

IL Interleukin  

IL12rb1 Interleukin 12 receptor, beta 1 

ISH In situ Hybridization 

JHMV JHM strain of mouse hepatitis virus 
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l Litre  

Lam Laminin  

LCMV Lymphocytic choriomeningitis  

LFB Luxol fast blue 

LPS Lipopolysaccharide 

Ly6G Granulocyte differentiation antigen 1 

LYVE1 Lymphatic vessel endothelial hyaluronan receptor 

m Milli (as preset to SI-units, 10
-3

) 

M Mole  

MAPK Mitogen-activated protein kinases 

MES 2-(N-morpholino)ethanesulfonic acid 

MHC Major histocompatibility complex 

min Minute(s)  

MMP Matrix metallopeptidase  

mRNA Messenger Ribonucleic Acid 

MS Multiple sclerosis 

n Nano (as preset to SI-units, 10
-9

) 

NaCl Sodium chloride 

NaDOC Sodium deoxycholate 

NaF Sodium fluoride 

NK Natural killer 

NP-40 Nonyl phenoxypolyethoxylethanol 

NuPAGE Polyacrylamide gel electrophoresis 

ON Over night  

PBS Phosphate buffered saline 

PCR Polymerase chain reaction 

PE Phycoerythrin 

PE-Cy7 Tandem fluorochrome composed of phycoerythrin 

coupled to the cyanine dye Cy™7 

PerCP-Cy5.5 Tandem fluorochrome composed of peridinin 

chlorophyll protein coupled to the cyanine dye 

Cy™5.5 

PFA Paraformaldehyde 

PGE Prostaglandin E 

PK Proteinase K 

PMG Primary microglia 

PMSF Phenylmethanesulfonylfluoride 

PS1 Presenilin1  

PS2 Presenilin2  

qRT-PCR Quantitative real time polymerase chain reaction   

RAG2 Recombination activating gene 2 

rATP Ribonucleotide, adenosine triphosphate 

rCTP Ribonucleotide, cytidine triphosphate 

rGTP Ribonucleotide, guanosine triphosphate 

RIPA Radioimmunoprecipitation assay 
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RLB Radiolabeling binding assay 

RNA Ribonucleic acid 

RNA Ribonucleic acid 

RNase Ribonuclease 

RNase Ribonuclease 

RNasin Ribonuclease inhibitor 

RNasin   Ribonuclease inhibitor 

ROI Region of interest 

RPA RNase protection assay 

RPL32-4A 60S ribosomal protein L32 

rpm Rounds per minute 

RT Room temperature 

S Sense  

SDF-1 Stromal cell-derived factor-1 

SDS Sodium Dodecyl Sulfate 

sec Second(s)  

SEM Standard error of the mean 

SSPE Buffer solution containing sodium chlorid, sodium 

hydrogen phosphate and EDTA  

STAT4 Signal transducer and activator of transcription 4 

StAV488 Streptavidine, Alexa Fluor 488 conjugated 

StAV594 Streptavidine, Alexa Fluor 594 conjugated 

TBE Buffer solution containing Tris base, boric acid and 

EDTA 

TBST Tris-buffered saline and Tween 20 

TE Tris-EDTA-buffer 

TEMED N,N,N',N'-tetramethyl-ethane-1,2-diamine 

TGF-β Tumor growth factor beta 

Th0 T helper 0  

Th1 T helper 1   

Th17 T helper 17  

Th2 T helper 2  

ThioS Thioflavin-S  

TLR Toll-like receptor 

TNF Tumor necrosis factor 

Tris 2-Amino-2-(hydroxymethyl)propane-1,3-diol 

tRNA Transfer RNA 

U Units  

V Volt(s)  

v/v Volume per volume 

VEGF Vascular endothelial growth factor 

vs. versus 

w/v Weight per volume  

wks Weeks 

WNV West nile virus  
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WT Wild-type  
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