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1. Introduction 

1. Introduction 

 

1.1 Basics 

1.1.1 Voltammetry techniques 

 Voltammetry became one of the most important methods used for studying of the 

electrode processes such as adsorption/desorption and the rate of electron transfer.  It includes 

a family of techniques with the common characteristics that the potential of the working 

electrode is controlled (typically with a potentiostat) and the current flowing through the 

electrode is measured. 

1.1.1.1 Potentiodynamic technique (cyclic voltammetry) 

 In this technique, the electrode potential is ramped between two limits, usually chosen 

in aqueous electrolyte to lie between hydrogen and oxygen evolution, to remove any 

impurities either by oxidation or reduction [1]. The applied potential is usually generated with 

a function generator and controlled by the potentiostat. A triangular potential sweep is applied 

to the working electrode as shown in Fig. 1-1, the electrode potential is varied linearly with 

time (t) with a sweep rate (ν = dE/dt). The applied sweep rate can vary from few mVs-1 to 

1000 Vs-1. The current (I) vs. potential (E), equivalent to (I) vs. (t), is recorded. The sweep is 

started at a potential where no electrochemical reaction occurs (E0) to the final potential (Ef) 

and returns back to (E0) with a constant sweep rate.  
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Figure 1-1 Typical potential-time wave form during cyclic voltammetry. 
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1. Introduction 

 Assuming the presence of the redox couple (R/O), in which (R) is oxidized to (O) and 

loses (z) electrons, for this couple, a non-Faradaic current will flow in the beginning of the 

potential sweep however, once the electrode potential reaches the standard formal potential of 

the couple (E0'), the oxidation starts with a flow of a Faradaic current. With increasing the 

potential, the concentration of R, [R] decreases at the electrode surface while that of O, [O] 

increases. The oxidation current decreases due to depletion of the species (R) at the interface 

after the mass transfer rate reaches its maximum [2]. An oxidation peak will appear in the 

current-potential (I-E) curve as a result of the above process. Reversing the sweep direction, 

i.e. (O) will gain (z) electrons and reduce to (R), a cathodic current will flow. The final I-E 

curve is called cyclic voltammogram (CV). 

For such a completely reversible reaction, both [R] and [O] are adjusted to a ratio 

according to Nernst equation: 

R

Oo

a

a

zF

RT
EE ln'              (1-1) 

Taking R = 8.314 JK-1mol-1, T = 298 K and F = 96500 C mol-1, equation (1-1) can be written 

as: 

R

Oo

a

a

z
EE log

059.0'            (1-2) 

For reversible systems, the following can be obtained: 

i.  jp,a / jp,c = 1, independent of the sweep rate, switching potential or diffusion coefficients.  

ii. The separation of peak potential (Ep,a – Ep,c) always close to 2.3RT/zF = 59/z mV at 25ºC 

and slightly depends on switching potential.  

iii. The peak current is proportional to u . 

 
If the species (O) is adsorbed at the electrode ( ) and a linear sweep at 

rate (v) is applied, the current density (j) will be given by: 

  zeOO ad

u
E

Γ

t

E

E

Γ

t

Γ

zF

j OOO 





















          (1-3) 

Here, ΓO is the amount of (O) adsorbed at time (t) per unit area of the electrode. The 

dependence of ΓO on the potential and the concentration of O- is described by an appropriate 

adsorption isotherm. Using the Langmuir adsorption isotherm, a symmetric shape of the I-E 

curve will be obtained (cf. Fig. 1-2) with the following characteristics: 
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1. Introduction 

i. Ep,a = Ep,c.  

ii. The peak current is directly proportional to u. 

iii. The total charge under the I-E curve is independent of u and equal to the charge required 

for the full reduction or oxidation of the adsorbed layer. The total width at half-height of 

the peak is 90.6/z mV at 25ºC. 
I 
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Figure 1-2 Typical CV for the oxidation and reduction of an adsorbed species assuming 

Langmuir adsorption. Adapted from ref. [3].  

1.1.1.2 Potentiostatic technique (chronoamperometry)  

 In this technique, the current is measured as a function of time after application of a 

potential step perturbation. If the potential is stepped from E0 (or E1), where no current flows, 

to Ef (or E2) where the current is limited by diffusion (cf. Fig. 1-3), the current flows will obey 

the well known Cottrell equation [2, 4]. In contrast to the steady state conditions, the current 

decreases with the time due to the decrease of the concentration gradient. The method is 

usually used to determine the diffusion coefficient [5].  

 

E 

Figure 1-3 (a) potential-time waveform, (b) change in concentration profiles as time 

progresses and (c) the resulting current-time curve (current transient). Adopted from ref. [2].   

 



1. Introduction 

1.1.1.3 AC voltammetry 

As shown in Fig. 1-4, in ac voltammetry, a small sinusoidal ac voltage (uac) is 

superimposed to the dc voltage (udc) upon the potential sweep or potential step experiments. 

The phase sensitive detector (Lock-in amplifier) is usually used to extract and display the in-

phase current response as a function of potential [6]. Here, the generated ac current is 

recorded at the same frequency (f) of the ac potential. 

 

Figure 1-4 Schematic diagram of an ac voltammetry experiment. Adopted from ref. [2]. 

In general, the Lock-in amplifier multiplies the input signal by the reference signal 

then integrates it over a specific time. As a result, a dc signal will be produced and the 

contribution of any signal which has not the same frequency as the reference signal is 

attenuated to zero. In the Lock-in technique, care must be taken to calibrate the signal, 

because Lock-in amplifiers generally detect only the root-mean-square (RMS) signal of the 

operating frequency. For sinusoidal modulation, this would introduce a factor of 2 between 

the lock-in amplifier output and the peak amplitude of the signal.  

 
1.1.2 Electrochemical impedance spectroscopy (EIS) 

 When an ac voltage of a small amplitude is applied to the working electrode, an ac 

current is obtained. The cell will act as impedance (Z) opposing the current flow. The 

characterization of the electrochemical system by measuring (Z) over a range of frequencies 

(f) is named as electrochemical impedance spectroscopy. 

The impedance response can be described by: 

Z = Zre + jZim                       (1-4) 
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Where Zre and Zim are the real and imaginary parts of Z respectively and j = 1  

n be written as: In polar form (cf. Fig. 1-5), (Z) ca

jeZZ  or )          (1-5) sin(cos jZZ 

Here, 



22 )()( imre ZZZ  and )arctan(
re

im

Z

Z
   

Z
im

IZ
I s

in
 

IZI cos  Z
re

Z 



IZI

 

Figure 1-5 Relationships among complex impedance (Z), magnitude IZI  and phase angle (φ). 

The reciprocal of the impedance (Z) is the admittance (Y) hence; je
Z

Y 
1

 .The admittance 

(Y) is a vector with a magnitude of (1/Z) and a phase angle equal to that of (Z), but with 

opposite sign.  

Impedance spectra are often displayed in two different ways; Bode plot, in which 

Zlog  and φ are both displayed versus log f, and Nyquist plot, in w maginary part of 

 

hich the i

the impedance, Zim is plotted versus the real one, Zre (cf. Fig. 1-6) 

 

 

 

 

igure 1-6 Simulated impedance spectra, (A) Bode plot and (B) Nyquist plot for the 

quivalent circuit in (A). The curves were calculated assuming, R1 = 10 Ω, R2 = 100 Ω and C 
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1. Introduction 

1.1.3 Charge transfer coefficient and Tafel slope 

 For any type of electrode reaction, the rate constant can be expressed as: 

k = A' exp [-(ΔH‡-TΔS‡)/RT] = A' exp [-ΔG‡/RT]          (1-6)  

tropy and free energy respectively 

nd A' 

in a change (αcx) in the activation energy. Hence, for 

          (1-8) 

Where, ΔH‡, ΔS‡ and ΔG‡ are the activation enthalpy, en

a is the pre-exponential factor. 

 Fig. 1-7 represents the effect of a potential change on the standard free energies of 

activation for oxidation and reduction. Assuming the reduction of (O) to (R), a change (x) in 

the free energy of (O) will result 

reduction: 

zFEGG cocc  
,           (1-7) 

And for oxidation, 

GG   zFEaoaa 
,

 

Figure 1-7 Effect of change on applied electrode potential on the reduction of (O) to (R). 

adopted from ref. [7].  

Here, α is a measure of the slope of the energy profile in the transitio te zone. It is called 

as to surmount during charge transfer, with respect to the 

net current density at the electrode would be given by: 

n sta

charge transfer coefficient (symmetry factor) and gives the ratio of the change of the height of 

the energy barrier the electron h

change of electrode potential. The values of αa and αc = 1-αa can vary between 0 and 1, but 

often they are around 0.5 which means that the activated complex is exactly halfway between 

reactants and products on the reaction coordinate. α = 0 implies no influence of the electrode 

potential change on the barrier height and α = 1 implies that the change of electrode potential 

causes an exactly equal change of barrier height.  

 If the concentration of (O) and (R) outside the double layer were [O] and [R], then the 
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    )/exp()/exp( '' RTGOFARTGRFAjjj ccaaaa
          (1-9) 

Substituting equations (1-7) and (1-8) into (1-9) and introducing the parameter of exchange 

urrent

 known Butler-Volmer equation: 

c  density (j0), which equals to ja or jc when the net current is zero, the deviation of the 

potential from its equilibrium value is given by the well


)exp()exp(0 RTRT

jj                  (1-10) 

At high overpotential, i.e. 

 


zFzF ca 

 >118 mV at 25ºC, equation (1-10) can be written as: 

jbaj
zF

RTRT 3.23.2
j

zF ac

logloglog 0 


                 (1-11) 

The above equation is called Tafel equation and (b) is the Tafel slope from which αa can be 

ra V dec-1. The 

exchange current density (j0) can be obtained by extrapolating the  vs. log j lin

interception at η = 0.      

 range (the ac amplitude) when a small sinusoidal ac voltage is 

ction. Then: 

obtained at constant tempe ture, i.e. at 298 K, if z = 1, α = 0.5, then b = 118 m

 η e and take the 

 
1.2 Potential modulation technique 

The potential dependence of the electrochemical reaction rate (α') can be determined in 

a very narrow potential

superimposed during the electrochemical rea

buiEi ac

The Tafel slope of the reaction is then given by: 

ii

E

i ac 111ln








, 

F

RTE

i 'ln 



       


              (1-12) 

Here, 
acuE
acii




 

Hence,  
dcac

re

iF
                   (1-13) ac

u

iRT
'  

he real p t of the ac current is chosen since it represents the Faradaic processes occur 

on the surface whereas the imaginary part is due to the capacitive processes. 

or the oxidation of sorbe  spec s (CO ) formed from CO-saturated solution or 

from methanol, the current (i) can be expressed as a function of potential (E) and of adsorbate 

           (1-14) 

Here, t ar

F  ad d ie ad

coverage (θCO and θOH) as follows: 

θ))(1(E)f(θzFki COapp  ,         
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where, 

θ = θCO + θOH).  

Taking the logarithm on both sides of equation (1-14) and diffe ntiation with

RTFE
oapp ekEk /'

)(  is the apparent rate constant depending on E, z is the number of 

electron transferred in the reaction, α' is the apparent charge transfer coefficient and f(θ) is the 

function of the fractional coverage (

re  respect to E 

gives: 

E

θ))(f(θ

E

(E)k

E

i

iE

i COapp















 1lnln1ln

                (1-15) 

Here, 
RT

FEkapp
')(ln 




 
E

If a small ac voltage uac = uA sin (ωt) is superimposed during the electrochemical reaction 

then  
E

θ))(1lnf(θCO




 can be ignored when the relative changes of θCO and θOH are negligible 

c period; i.e. durin an ac period (≈ 30 ms), for a total CO oxidation charge density of 
-2 -2

passed will be negligible. Only under these experimental conditions, the above approximation 

t conditions, a reliable determination of the Tafel slope (b) (in the apparent transfer 

coeffic

S is a technique used to characterize sub-monolayer amounts of adsorbate 

lly, Brunckenstein and Gadde [9] were the first to determine the gaseous 

e the system. 

in an a g 

350 µC cm  and an assumed high current density of ca. 300 µA cm , the total charge density 

holds. 

A reliable determination of the Tafel slope from a Tafel plot E(lni) requires the 

presence of a constant slope that extends over an order of magnitude of the current. However, 

Wang et al. [8] reported recently that for the oxidation of CO at different Pt surfaces under 

stagnan

ient α' = 2.3RT/bF) is possible as shown above by potential modulation. Such a 

potential modulation method requires only kapp to be constant during the sampling time (one 

ac period).  

1.3 Differential electrochemical mass spectrometry (DEMS) technique and 

DEMS cells 

 DEM

species formed at the working electrode. It combines the electrochemical methods with the 

mass spectrometry (on-line analysis of the volatile products and intermediates).  

 Historica

electrochemical reaction products. The method was later improved by Wolter and Heitbaum 

[10, 11] by reducing the delay time of detection. Using a turbomolecular pump helped to 

decrease the delay time and to pump out the residual gases and solvents insid
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Thus, to distinguish the technique from product sampling, i.e. integrating approaches, the 

method was called differential.  

 As reported before in [12] and the references cited therein, significant improvements 

of the DEMS cells were achieved during the last decades. A thin layer cell has been used for 

smooth and single crystal massive electrodes [13-15]. Another development of the thin layer 

cell is to the dual thin layer flow through cell in combination with quartz crystal microbalance 

uration 

r mas

 

 

 

 

 

which was introduced by Baltruschat and co-workers [16]. In this cell, the Faradaic reactions, 

which have to be performed under continuous flow of the electrolyte, are better suited because 

of the rapid depletion of the reactants in the thin layer cell. (Details about the dual thin layer 

flow through cell together with the construction of DEMS will be given in chapter 2). 

 The aforementioned flow through cell could be used for single crystals without 

hanging meniscus arrangement or for high surface area electrodes (e.g. supported 

nanoparticles) [17]. Using a pinhole as the gas inlet, located at the hemispherical end of a 

glass tube covered by Teflon film, Kita et al. [18] applied a hanging meniscus config

fo sive electrodes. Similarly, Koper et al. [19] developed on-line mass spectrometric cell 

based on a small inlet Teflon tip applied for bead single crystals. This cell was not working 

under flow conditions and the delay time was long. Recently, Abd-El-Latif et al. [20] 

introduced a new DEMS cell design applicable for different bead single crystal sizes 

(diameter of 2-3 mm). They have used it in the usual arrangement of the single crystals 

(hanging meniscus) under flow through conditions.       
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1.4 Introduction to fuel cells 

.4.1 History 

ins when Sir William Grove invented the first fuel cell in 

1839 [5, 21], it took 120 years until NASA demonstrated some of his work in providing 

power during space flight [22]. Grove’s experiment based on two Pt electrodes embedded 

inside two separate glass tubes and then placing these in dilut

shown in the left part of Fig. 1-8. An electric current is the

causes the electrolysis of water. The resulting oxygen and

two glass tube. He detected a small electric current when

amperometer.  

 

Figure 1-8 Schematic representation of the Grove fuel cell. Adopted from ref. [5]. 

.4.2 Importance 

Fuel cells act as an alternative to fossil fuels and diminish poisonous emission to the 

tmosphere. They have higher theoretical electrical efficiencies comparing to heat engines 

[21, 23]. Fuel cell systems are characterized by low noise and low environmental pollution. 

he combination between fuel cells and other renewable energy sources such as wind, water 

ls 

out producing any pollutants (only 

1

 The history of fuel cells beg

 a e sulfuric acid solution, as 

n passed through the electrodes and 

 hydrogen are accumulated in the 

 replacing the power supply by an 

 

 

 

 

1

 

a

T

and sun might be an option for future power generation.  

1.4.3 Fundamenta

 A fuel cell is similar to a battery but does not need to be recharged; a battery gets 

recharged by using electricity which is then stored in a closed system, whereas a fuel cell uses 

an external supply of fuel which needs to be continuously replenished. It transforms directly 

the heat of combustion of a fuel (hydrogen, natural gas, methanol, ethanol, hydrocarbons, etc.) 

into electricity. The fuel is oxidized at the anode, with
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water and/or carbon dioxide are emitted to the atmosphere), whereas the oxidant (oxygen 

 air) is reduced at the cathode. from Fig. 1-9 shows the principle of H2/O2 fuel cell which 

involves the production of water and heat.  

 

Figure 1-9 H2/O2 fuel cell. From: http://en.wikipedia.org/wiki/Fuel_cells (14.11.2012; 12:36 

PM).  

 
1.4.4 Types  

 Fuel cells are often classified according to the electrolyte used inside the cell. An 

exception is the direct alcohol fuel cell (DAFC) in which alcohol is directly fed to the anode. 

ature fuel cells. Table 1-1 (adopted from ref. [23, 24]) summarizes the well known 

ifferent types of fuel cells including different cell reactions and applications.  

Another classification is according to the operating temperature. Thus, there are low and high 

temper

d
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.4.5 Fuels  

Examples for fuels that can be directly used within fuel cell stacks are hydrogen and 

ethanol and ethanol. The use of hydrogen is limited by the difficulties and 

sport and handling. As an alternative to hydrogen, liquid fuels 
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alcohols such as m

risks associated with its tran

such as methanol and ethanol are used in the direct alcohol fuel cells (DAFCs). In addition to 

the ease of transport, they have higher energy density. The disadvantage of using alcohols as a 
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fuel especially in low temperature DAFCs is the poor kinetics of their electrocatalytic 

oxidation which results in a low fuel cell efficiency. 

1.4.6 The catalyst layer  

 For the electrooxidation of the fuel at the anode and electroreduction of the oxidant at 

ong the catalytic important metals such as Ni, Rh, Pd, 

el cell catalyst known. Polycrystalline Pt and Pt single crystals (bare 

r mod

is work were done either with bare Pt or with Pt 

face, only the crystal symmetry of Pt, which 

crystallize in the face centered cubic (fcc) will be discussed. 

nd point defects, such as atomic 

Figure 1-10  ref. 

[25].   

 

the cathode, a catalyst is required. Am

Ir,...., etc, Pt is the best fu

o ified by foreign metal) were used in this thesis as a catalyst for the investigation of the 

anodic reactions as methanol and ethanol oxidation, cathodic reactions (oxygen reduction) and 

the oxidation of the catalyst poison (COad). 

 
1.5 Structure of clean catalyst surface 

 Since all experiments presented in th

modified by foreign metal deposited at its sur

 Metal surfaces are heterogeneous and polycrystalline at the atomic scale. Single crystal 

surfaces are found to consist of a mixture of flat regions (terraces) and defects. Two types of 

defects may present; line defects, such as steps and kinks a

vacancies and adatoms (cf. Fig. 1-10).   

 

Model of the real solid surfaces with different surface sites. Adopted from
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1.5.1 Low-Miller-index-planes 

 An ideal crystal is built by infinite repetition of an identical structure unit in three 

imensions. The crystal structure can be described in terms of its unit cell which is composed 

s. The unit cell is given by its lattice parameters, which are 

the length of the cell edges and the angles between them, while the position of the atoms 

cell. If one or more of the indices is zero, this means that the planes do not 

tersec

d

of a single atom or a group of atom

inside the unit cell are described by the set of atomic positions (xi, yi, zi) measured from a 

lattice point.  

 Miller indices are vectors and atomic planes in a crystal lattice can be described by a 

three value Miller index notation (hkl). They denote a plane that intercepts the three points 

a1/h, a2/k and a3/l. Miller indices are proportional to the reverse of the intercepts of the plane 

with the unit 

in t that axis i.e. the intercept is at infinity. The ideal structure of the low-Miller-index 

planes (100), (110) and (111) of the fcc systems are shown in Fig. 1-11 with a square, 

rectangular and hexagonal arrangement of the surface atoms respectively.  

 

Figure 1-11 Unreconstructed surfaces of the fcc crystal surfaces where a0 is the crystal lattice 

constant, a and b are the unit cell vectors and h is the distance between the first and the second 

layer. Adopted from ref. [25].  
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Low Miller index surfaces are thermodynamically favored because of the high packing 

density of the atoms. They have low surface free energy, high symmetries and relative 

stabilities [26], although reconstruction (change in configuration of the surface atoms with 

respect

iller indices. These 

planes have smaller atomically smooth terraces separated by steps or kinks, depending on the 

rface structures that can be obtained by cutting 

 to the bulk to minimize surface energy) and relaxation (small interlayer spacing 

changes relative to the ideal bulk lattice of the metal surfaces) can occur.  

1.5.2 High-Miller-index stepped surfaces 

 Single crystals can also be aligned and cut with respect to higher M

orientation. Fig. 1-12 illustrates the various su

and positioning an fcc crystal along different directions, such plot known as stereographic 

triangle. At the corners of the plot are the three low-index surfaces (111), (100) and (110). 

The three sidelines of the triangle are [ 011 ], [001] and [ 101 ] crystallographic zones with 

planes exhibit terrace-step structure.   

 

Figure 1-12 Unit stereographic triangle of fcc single-crystal surfaces and their corresponding 

surface atomic arrangements. Adopted from ref. [27]. 

common nomenclature systems for stepped crystals. In this system, stepped surface is written 

 Pt(s

 Several notation systems [26] were developed to express the geometry of the surface 

in terms of simple low-Miller-index vectors. Lang or step notation [28] is one of the most 

as ) [n(hkl) × m(h'k'l')] where (hkl) and (h'k'l') are the Miller indices assigned to terrace 

and step respectively; n and m are the number of atoms across the terrace and the step 
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respectively. As shown by Furuya et al. [29, 30] the features of the hydrogen desorption 

varied regularly with Miller indices (cf. Fig. 1-13). Each voltammogram acts as a finger print 

for the studied plane. 

 

Figure 1-13 CVs for different low and higher Miller indices Pt surfaces in 0.5 M H2SO4 at a 

scan rate of 50 mV s-1. Adopted from ref. [29].    

oving organic contaminates in 

 Single crystals can be prepared by several ways such as UHV (by sputtering and 

annealing), vacuum evaporation and the most famous flame annealing and cooling technique 

by Clavilier et al. [31-34]. This method is very effective for rem

the presence of oxygen. The cooling can be carried out in inert atmosphere (Ar or N2) or in 

the presence of a reductive gas as H2 or CO. 
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1.6 Catalyst modification by deposition of foreign metals 

.6.1 Basics of metal deposition 

y the deposition of a 

foreign metal. When the deposition potential of metal (M) on a foreign substrate (S) is more 

otential for the deposition of bulk metal predicted from the 

rpness and narrowness of the UPD peaks is strongly 

anisms [36, 38] were found for the nucleation and growth of a 

metal deposit layer (M) on a foreign substrate (S): 

ms with each other is stronger than that with the 

sub

cannot take place at underpotentials. This 

1

 The catalytic properties of the Pt catalyst can be modified b

positive than the thermodynamic p

Nernst equation, underpotential deposition (UPD) occurs [35, 36]. Thermodynamically, the 

origin of such behavior is that the chemical potential of the metal in the monolayer (µML) is 

lower than that of bulk metal ( 0
M ) [1].  

 The structure and number of UPD peaks are strongly dependent on the 

crystallographic orientation of the substrate and the density of surface defects. 

Experimentally, it was found that the sha

increased when the polycrystalline Pt substrates are replaced by single crystals. It has been 

found that the difference in work functions between the substrate and the bulk adsorbate (ΔΦ) 

related with the underpotential shift, (ΔEp = EUPD-EB) [37], where, EUPD is the potential of the 

most positive UPD desorption peak and EB is the thermodynamic potential for the bulk 

deposition of the adsorbate.  

1.6.2 Initial stages of metal deposition 

 Several general mech

i.  If the interaction between the adato

strate, i.e. ΨM-M > ΨM-S, where Ψ is the binding energy, 3D-islands and clusters are 

formed from the beginning. Obviously, this 

mechanism is named as Volmer-Weber (VW) or 3D-island growth (cf. Fig. 1-14, a). 

 

Figure 1-14 The three different growth modes of adatom (M) on a substrate (S). Adopted 

from ref. [38]. 
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ii. If the binding energy ΨM-S > ΨM-M, the adatom can be deposited at underpotential on the 

substrate with two sub cases: 

 With a considerable misfit in the lattice structure of (M) and (S), Stranski-

Krastanov (SK) growth mode (cf. Fig. 1-14, b) is formed: A complete 2D 

monolayer with internal strain (compression or expansion) will be formed 

 a negligible crystallographic misfit, a commensurate monolayer is formed. 

der-Merwe (FM) growth mode (cf. Fig. 1-14, c). 

 

1.6.3 Ways of action of co-catalysts 

 

co atalytic activities of the catalyst alone 

with that for a catalyst modified with some other foreign metals as Ru, Sn, Bi, As, etc during 

the oxidation of CO

for

cata

ing to the bifunctional mechanism. Fig. 1-15 

ing the oxidation of CO and methanol.  

followed by unstrained 3D islands above it. 

 With

Subsequent layers are also epitaxic and deposited layer-by-layer. The deposition 

follows the Frank-van-

In order to overcome the poisoning (deactivation) of the catalyst layer in the fuel cell, 

nsiderable interest has been devoted to compare the c

ad (main Pt catalyst poison) and other small organic molecules such as 

maldehyde, methanol and ethanol. The enhanced catalytic activity of such modified 

lysts is usually ascribed to three different ways: a geometric (ensemble) effect, an 

electronic (ligand) effect and an effect accord

shows an example of these effects dur

 

Figure 1-15 Three different ways for the action of the co-catalysts (dark spheres). Adopted 

from ref. [39].  

 The adsorption process requires the presence of an ensemble of more than one active 

atom. In case of methanol, for instance, it is generally accepted that an ensemble of at least 

three adjacent Pt atoms are necessary for the accommodation of one methanol molecule [40]. 

This is the reason for the inactivity of PtSn surfaces towards methanol oxidation and also for 

the fact that PtRu alloys with a low Ru content are the best catalyst for methanol oxidation. 
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 An enhancement of the catalytic activity is believed to occur for the oxidation of 

adsorbed CO at Ru modified Pt surfaces by the bifunctional mechanism. According to this 

mechanism, COad will react with an adsorbed oxygen species (such as OH- or activated water) 

which adsorbed preferentially on Ru at lower potentials than at pure Pt. 

 In case of the ligand effect, the electronic properties of the substrate are modified by 

the adatom. In such modification, the strength of interaction with the adatom (adsorption 

 is ascribed to the modification of the electronic properties of the substrate 

he 

e surface is changed 

energy of the substrate) is modified or the activation energy is decreased. The origin of such 

electronic effect

due to the presence of the second component [41, 42] (pure electronic or ligand effect) or due 

to lateral strain of the adsorbate layer on the primary active metal, causing a broadening and 

lowering or narrowing and increase of the energy of the surface d-band of the primary metal 

[43]. 

 An important part of the interaction energy is that between the adsorbate states and t

substrate d-states. Whereas the metal sp-bands are broad and structureless, d-bands are 

narrow. Small changes can change the d-states and their interaction with the adsorbate states 

significantly [38, 43]. If the lattice parameter of the adlayer is different from that of the 

surface of the bulk metal, the extent of the M-M bonding within th

(surface strain), this is followed by a shift in the d-band center. If the electronic interaction 

between the surface adatom and the substrate is large, the location of the d-band center is also 

affected by the ligand effect [44]. The average energy of the d-band (εd) is shifted upward or 

downward depending on whether the d-band becomes narrower or wider due to coupling of 

strain and ligand effects to maintain a constant d-band filling (cf. Fig. 1-16). Hence, when the 

combined effects result in a narrower d-band, its average energy increases and if the effects 

result in a wider d-band, its average energy decreases.  

 

Figure 1-16 Illustration of the coupling between the bandwidth and d-band center for a band 

with a fixed number of d-electrons. Adopted from ref. [44]. 

  19



1. Introduction 

1.7 Fuel cells electrocatalysis 

1.7.1 Electrocatalytic oxidation of CO    

 Adsorbed CO at the anode catalyst of the low temperature fuel cells is the main reason 

of their low efficiency because it blocks the active sites available for the adsorption of more 

reactants. The Pt anodic catalyst of the H2/O2 fuel cell can be easily deactivated in the 

presence of traces of CO (10-100 ppm) [22]. In the DMFCs, COad acts as poisoning 

intermediate which formed during the oxidation of methanol as studied before [45]. In both 

types of cells, it is necessary to oxidize COad at low overpotential which is the aim of many 

ongoing studies. 

 The electrocatalytic oxidation of CO has been studied at different Pt surfaces including 

t room temperature, PtRu alloy 

best CO-tolerant anode catalyst [64]. In this alloy, a good 

son of the high catalytic activity which is either 

ctronic effect as mentioned above.  

Pt(Poly) [46-50], low-Miller-index Pt single crystals [51-58] and stepped Pt(hkl) bare or 

modified by a second metal as alloy or adatom [59-63]. A

having Ru content (10-40 %) are the 

distribution of Pt and Ru atoms is the rea

explained by bifunctional mechanism or ele

 The mechanism of CO oxidation and the assignment of the rate determining step (rds) 

have been widely studied. It is generally believed that the oxidation of CO at platinum occurs 

via the Langmuir-Hinshelwood (LH) mechanism [65] with two main reaction steps: 

(i) Adsorption of oxygen species (typically OHad or activated water) with a rate constant of k1 

for the forward reaction and k-1 for the backward. 

H2O + * OHad + H+ + e-

                                                                                               (1-16) 

(ii) Oxidation of CO  in presence of OH  to CO  with a rate constant k   ad ad 2 2

COad + OHad CO2 + H  + 2* + e
                                                                                               (1-17) 

Different values have been reported in literature for the Tafel slope, leading to 

different assignment of the rds in the above reaction sequence [66, 67]. A reason for differing 

Tafel slopes could be a potential dependent slope which is due to potential dependent rds. 

Such potential dependent Tafel slopes are difficult to be determined experimentally, because a 

reliable determination of the Tafel slope requires a constant Tafel plot over about an order of 

magnitude of the current. As reported recently by Wang et al. [8], a reliable determ

+  -

ination of 

l 

slope is possible according to: 

the Tafel slope b (or the apparent transfer coefficient α' = 2.3RT/bF) is possible by 

superimposing an ac voltage to the dc voltage either in the potential step experiments or 

during CV even for the adsorbate. Thus, a direct, quasi continuous determination of Tafe
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In agreement with Monte Ca lo simula  

 around 1.5 at low 

potentials to values around 0.5 at high potentials and thus an increase of the Tafel slope from 

40 mV

btained before under stagnant conditions.   

1.7.2 Electrocatalytic oxidation of methanol 

Oad and soluble intermediates 

(HCOO

, 86] and stepped 

les [81, 90-94]. The validity of the parallel 

smooth Pt(Poly) has been proved recently by 

Wang 

r tion by Koper et al. [68], Wang et al. [8] thus

found a transition of the apparent transfer coefficient (α') from values

 dec-1 to 120 mV dec-1 during the oxidation of pre-adsorbed CO at Pt(Poly) under 

stagnant conditions. The transition occurs when k1+k2>>k-1 and then reaction (1-16) would be 

the rate determining step [3, 8]. Using a pressure modulation technique, Wang et al. 

determined the volume of activation for COad oxidation at low potentials and concluded that 

the transition state is highly charged ([H+···O···CO]), supporting the conclusion that at low 

potentials the first step (reaction 1-16) is in equilibrium [69].  

Under flow through conditions, I investigated the oxidation of pre-adsorbed CO at 

Pt(Poly) in the dual thin layer flow through cell. The apparent charge transfer coefficient (α') 

and the corresponding Tafel slopes have been calculated (cf. chapter 5, part 5.2.2) and the 

results were compared to that o

The use of methanol as a fuel in the direct methanol fuel cells (DMFCs) is appealing 

[64, 70-73] because of the ease of handling, storage and transport in addition to its high 

energy density [50, 74]. However, the performance of such cell is still limited due to the 

continuous poisoning of the catalyst layer with methanol decomposition product (COad) [64, 

71, 75-77].  

 The dual pathway mechanism for methanol electrooxidation at platinum surfaces 

,originally suggested by Bagotzky et al. [78] and later by Parsons et al. [72], became the most 

reliable and accepted mechanism. According to this mechanism, after oxidative adsorption of 

bulk methanol at platinum surface forming (CHxOH)ad, C  

H and HCHO) are formed simultaneously [70] (indirect and direct pathway, 

respectively).   

Methanol electrooxidation has been studied at different platinum surfaces including 

polycrystalline [75, 79-84], platinum single crystals (basal planes [85

surfaces [70, 74, 79, 87-89]) and at nanopartic

pathway mechanism for methanol oxidation at 

et al. [79] and Abd-El-Latif et al. [80] as studied by DEMS. They found that CO2 

current efficiencies and the extent of COad poisoning are independent of the convection. CO2 
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can be formed through the indirect pathway while its formation through the direct pathway is 

negligible due to the short residence time available for the reacting species as a result of 

strong convection. Only in absence of convection or at rough/porous electrodes (e.g., 

ement with the results of Wang et al. [81]. 

idation. Shin and Korzeniewski et 

al. [88]

anol oxidation.  

nanoparticles), the dissolved intermediates can be further oxidized to CO2 due to their longer 

residence time in the vicinity of the electrode and the desorption – readsorption reaction as 

suggested before [81, 90, 91, 93, 95]. They studied also the effect of methanol concentration 

and adsorption potentials and found that CO2 current efficiencies increase with decreasing 

concentration and increasing potential whereas that of methylformate showed the opposite 

behavior in agre

By monitoring the mass fractions of CO2 (m/z = 44) and methylformate (m/z = 60), 

Housmann et al. [85] found an increase in the maximum activity towards methanol oxidation 

at the platinum basal planes in the order Pt(111)<Pt(110)<Pt(100) which was different from 

findings by Herrero et al. [86] who studied the oxidation of methanol at the same surfaces by 

cyclic voltammetry and chronoamperometry and reported a different order: 

Pt(111)<Pt(100)<Pt(110). The authors attributed the difference to the differences in the 

electrode pre-treatment and cleanliness when they compared the maximum current density of 

the hydrogen adsorption/desorption peaks. They also claimed that the Pt(110) surface used by 

Herrero et al. was more disordered and consists mostly of (1×2) reconstructed surface which 

is more active toward CO oxidation [96].  

The effect of step density on the oxidation of methanol has been also investigated. 

Wang et al. [87] compared the oxidation of methanol at smooth Pt(Poly), Pt(111) and Pt(332) 

electrodes and they found that methanol oxidation is enhanced with increasing step density 

without an appreciable increase of CO2 current efficiency, hence they concluded that the 

defect sites enhance both parallel pathways of methanol ox

 suggested that an increase of the step density catalyzes methanol decomposition and 

the methanolic CO formation is inhibited on Pt(111) at the potential of the hydrogen 

adsorption. Tripkovic and Popovic et al. [89] reported that the initial surface activity for 

methanol oxidation on stepped electrodes decreases with increasing step density whereas 

Housmans et al. [74] found that the overall oxidation rate of methanol increases with 

increasing step density. Recently, Grozovski et al. [70] investigated the role of surface 

structure in methanol oxidation mechanism as studied by pulsed voltammetry under stagnant 

conditions. According to their measurements, the presence of (111) and (100) steps, both on 

(100) and (111) terraces respectively does not increase activity of these surfaces, while (110) 

steps do improve the activity towards meth
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Ru electrodeposited on platinum or alloyed with platinum leads to better catalysts 

towards methanol electrooxidation than pure platinum [22, 87, 90, 94, 97-100]. Ru enhances 

not only the oxidation rate of adsorbed CO, but also the adsorption of methanol. The action of 

Ru as an alloy or adlayer during the oxidation of methanol has been ascribed to: (a) 

bifunctional mechanism, where Ru sites act as the center generating oxygen containing 

species at low potentials and thus facilitates the rates of adsorption and oxidation of Pt-CO 

intermediate [87, 90] and (b) an electronic or ligand effect leading a reduced Pt-CO bond 

strength facilitating oxidation of the COad [41-43, 59] on one hand to; on the other hand, an 

increase in the dehydrogenation/adsorption rate has to be ascribed to this ligand effect. 

Moreover, the geometric effect also has to be considered: 3-4 adjacent platinum sites are 

necessary for methanol adsorption [71], and therefore, when the surface Ru concentration is 

too high, the rate decreases again. 

Whatever the methanol oxidation pathway is, the dehydrogenation process (either C-H 

or O-H bond cleavage) seems to be the rate determining step (rds) [70, 86, 101, 102]. 

However, Jusys and Behm [92] concluded from the low kinetic H/D isotope effect that the 

oxidati

ition on low Miller indices Pt surfaces [101]. In this study, 

it was 

the reaction 

on of adsorbed CO formed from methanol is rather the rds. Thus, to investigate the 

reaction mechanism and the effect of different parameters on the reaction kinetics, direct 

measurement of the decomposition rate (methanol to adsorbed CO) is important.  

Housmans et al. [74] studied the oxidation of methanol at Pt(111), Pt(554) and Pt(553) 

in 0.5 M H2SO4 by cyclic voltammetry and chronoamperometry under stagnant conditions. 

According to their measurements, the overall methanol oxidation rate increases with 

increasing step density thus, they concluded that the steps catalyzes the decomposition of 

methanol, i.e. methanol decomposition products are preferably adsorbed at the steps. 

Moreover, by comparing the chronoamperometric data, they found that surfaces with higher 

step density show a faster decrease of the current. A combination of chronoampermetry, fast 

scan cyclic voltammetry and theoretical methods was used in another study to investigate the 

mechanism of methanol decompos

shown that the potential where the methanol adsorption product (COad) is stable, the 

decomposition proceeds through a pure dehydrogenation reaction and the dual pathway 

mechanism is then independent of the electrode-substrate surface structure. However, the 

potential at which methanol decomposition products are other than COad depends on the 

surface structure. Depending on the model chosen, it was also found that the simulated rate 

constant can differ by orders of magnitudes [103, 104]. Thus to investigate 
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mechan

parallel pathway mechanism. In chapter 3, I also 

studied

o discussed.  

ism and the effect of different parameters on the reaction kinetics, direct measurement 

of the decomposition rates is important.   

The rate of methanol adsorption at carbon supported platinum and smooth Pt(Poly) has 

been compared under flow through conditions as studied by DEMS [90]. In this previous 

study, 0.1 M methanol prepared in 0.5 M H2SO4 supporting electrolyte was adsorbed at 

smooth Pt(Poly) for different time at 0.5 V. The methanol adsorption rate calculated from the 

COad coverages achieved after ca. 5 s of adsorption was 0.06 MLs-1 whereas that for platinum 

nanoparticels was 0.04 MLs-1. However, the values of the rate achieved after shorter 

adsorption times were not determined. Based on the relation between COad coverage and the 

IR band intensities, the kinetics of the indirect pathway of methanol oxidation has been 

studied recently by Liao et al. using in situ FTIR coupled with a thin-layer flow cell [105]. 

According to their measurements, for the oxidation of 2 M methanol prepared in 0.1 M HClO4 

at Pt film deposited at Si prism, the maximum rate of methanol dehydrogenation to COad at 

0.6 V is 0.4 molecule site-1 s-1 which was 100 times higher than that for the oxidation of COad 

formed from methanol.  

In previous works [75, 79-81, 87, 90] our DEMS results proved that methanol 

oxidation at platinum proceeds via the 

 the oxidation of methanol at Pt(331) stepped single crystal electrode with and without 

Ru step decoration. The aim is to investigate the effect Ru step decoration on the oxidation of 

methanol at this surface which has only three platinum atom wide terrace.   I also studied the 

effect of methanol concentration, convection and degree of COad poisoning on the current 

efficiencies of both CO2 and methylformate at Pt(331) electrode. The results were compared 

to the values of methanol adsorption rates obtained at the same electrode under flow through 

conditions.             

My work in chapter 3 aims also at investigation of the rate of methanol adsorption at 

short times when it interacts with the CO-free platinum (adsorption time ≤ 1 s), at smooth 

Pt(Poly) and platinum stepped single crystals, which will have the advantage of following up 

the fast poisoning rate of such reaction more accurately. At platinum stepped single crystals, 

the effect of adsorption potential, step density and Ru step decoration on the methanol 

adsorption rate will be als

Applying the potential modulation technique, my work in chapter 5 aims at 

determining the potential dependence (α') of the oxidation of bulk methanol and methanol 

adsorption product at Pt(Poly) electrode under convection conditions. The corresponding 

Tafel slopes have been calculated and compared to the slopes obtained by normal methods 
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(cf. chapter 5, part 5.2.3). The rate determining step of the reaction has been assigned 

according to the results of α' and Tafel slopes.  

1.7.3 Electrocatalytic oxidation of ethanol 

The use of ethanol as a fuel in the direct alcohol fuel cells has the advantage that it 

can be 

atalyst that can help in complete oxidation at low 

overpo

tion of ethanol at different surfaces using 

different techniques. Kutz et al. [115] recently studied the electrooxidation of ethanol at 

y generation (BB-SFG) spectroscopy and 

electro

produced from bio-renewable sources; competition with production of food is avoided 

if it is produced from cellulose [106, 107]. Compared to methanol, ethanol is less toxic, easy 

to be stored and has a high theoretical energy content of 8 kWh kg-1 corresponding to 12 

electrons per molecule for its total oxidation to carbon dioxide [108]. The main disadvantage 

of ethanol comes from the difficulty to cleave the C-C bond. Therefore, the main challenge in 

ethanol electrocatalysis is to find a c

tential. It is well known in literature [45, 109-112] that there are two oxidation 

pathways for ethanol; the first pathway via dissolved intermediates (acetaldehyde and acetic 

acid or acetate) that decreases the efficiency of the system and act as pollutants, the second 

pathway is the oxidation via the formation of adsorbed intermediates as CO and CHx 

fragments [113, 114] which poison the platinum surface. 

 Many authors studied the electrooxida

Pt(poly) with broad band sum-frequenc

chemistry. They found the formation of acetate adsorbate and co-adsorbed sulphuric 

acid anions during ethanol oxidation. In both sulphuric as well as perchloric acid solutions, 

surface-adsorbed CO on a top sites of platinum and acetate intermediates were observed, 

whereas CO molecules on bridge sites and sulphuric acid anions were found only in 

sulphuric acid. Schmiemann et al. reported the formation of COad and CHx,ad species at 

Pt(Poly) as studied by DEMS [113]. Recently, Lai et al. confirmed the formation of these 

adsorbed species using SERS [116]. Using in situ ATR-FTIRS flow cell, Heinen et al. [117] 

reported the presence of both COad and adsorbed acetyl species on the platinum surface 

during the adsorption of ethanol, the latter species are then decomposed to COad and CHx,ad 

when scanning the potential to the Hupd region. They observed also adsorbed acetate at 

potentials of COad oxidation and it was in a fast adsorption/desorption equilibrium with acetic 

acid in the solution. 

Using a mixture of perchloric and sulphuric acids as supporting electrolyte, Abd El 

Latif et al. [109] found the production of acetaldehyde as the only product of ethanol 

electrooxidation at Pt(Poly) using DEMS. As found by in situ FTIRS and/or DEMS, the 
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production of acetaldehyde and acetic acid exceeded that of CO2 when ethanol was oxidized 

at carbon supported platinum alloy catalysts [112] or binary catalysts as PtRu/C, Pt3Sn/C 

[118-120].  

 The electrooxidation of ethanol on platinum single crystal surfaces has been a subject 

of interest to many authors. Iwasita et al. [121] reported, form FTIR spectroscopic studies 

that CO2 and the soluble products (acetaldehyde and acetic acid) are formed during ethanol 

oxidation on Pt(111), Pt(110) and Pt(100). Weaver et al. [45] and Korzeniewski et al. [122] 

reported that ethanol undergoes primarily four-electron oxidation to acetic acid on Pt(111) 

and surfaces vicinal to the (111) plane. As step density increases, the formation of acetic acid 

on the surfaces vicinal to (111) plane decreases [123]. According to DEMS results [109], 

acetaldehyde is formed above 0.6 V as the only product of ethanol oxidation on Pt(19,1,1) 

where a simple dehydrogenation reaction takes place, the formation of other products 

howeve

 the first report on the co-catalytic effect of Pb on formic acid oxidation [125], it 

l. reported 

r require the presence of step sites and (111) terraces. For different platinum stepped 

single crystals with different (111) terraces width, Colmati et al. [124] found that there was 

no significant improvement of the activity towards ethanol oxidation for surfaces vicinal to 

(100) steps when compared to that vicinal to (110). This was attributed to a very small 

amount of CO adsorbed on those surfaces leading to very small oxidation currents. 

 After

has been shown that also modification of the electrode surface with adatoms such as Sn [62, 

126-130], Ru [90, 131], Bi [132, 133], As [134, 135] etc, can enhance the catalytic properties 

of platinum electrode. Many authors [119, 136] reported the catalytic activity of Pt3Sn/C 

catalyst for ethanol oxidation with different techniques. In general, the anticipated but 

unproven reason behind the strong catalytic activity was the ease of C-C bond breaking at 

sufficiently low overpotential. The deposition of Sn on Pt(111) was also studied by cyclic 

voltammetry (CV) and scanning tunnelling microscopy (STM) [137]. According to this study, 

adsorbed Sn was not directly observed by STM due to its high mobility except when 

coadsorbed with Cu, CO or sulphate anions. In that case, Sn segregated in observable 2D 

islands implying a repulsive interaction with these species. Sn not only facilitates the 

oxidation of weakly adsorbed CO at low potentials due to electronic effect but also produces 

weakly adsorbed CO states at the surface due to the electronic repulsion between Sn atoms 

and CO molecules. Step decoration of stepped single crystals vicinal to (111) by Sn leads to a 

better distribution and much enhanced activity [60, 127]. Recently, Del Colle et a

the catalytic effect of Sn adsorbed at Pt(s)[n(111)×(111)] surfaces during the oxidation of 

ethanol as studied by voltammetry, chronoamperometry and FTIR [138]. They found that Sn 
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partially covering (111) steps can promote the C-C bond breaking and the oxidation of the 

resulting COad as well as the oxidation of ethanol to acetic acid.   

 It is the aim of my work in chapter 4 to analyse in detail the contributions of the 

possible reaction products, in particular CO2, to the overall current. In order to model the 

conditions of continuous oxidation in a fuel cell, the continuous mass transfer to the electrode 

surface is necessary. Therefore, our mass spectrometric measurements using the thin layer 

flow through cell is much better suited than the typical FTIR measurements under stagnant 

conditions.  

However, such a quantitative determination is not trivial and a careful analysis of the 

convection behaviour is necessary. In the dual thin layer flow through cell, the collection 

efficiency is dependent on the flow rate [12]. At low flow rates (< 1 µLs-1), a homogeneous 

distribution of the species formed in the electrochemistry compartment during their transfer 

through the capillaries (complete mixing) occurs before entering to the detection 

compartment due to a sufficiently long residence time leading to actual current efficiency 

values. At higher flow rates, however, incomplete mixing occurs due to shorter residence 

times in the capillaries before entering the detection compartment. The product concentration 

at the entrance in the vicinity of the Teflon membrane will be higher than the average. Since 

 the 

dation on platinum) and acetaldehyde have similar transfer characteristics and 

diffusio

in usual calibration experiment the concentration at the entrance of the detection 

compartment is homogeneous, this leads to current efficiencies which are too high. 

 Therefore, I present a simple method for the correction of the current efficiencies due 

to incomplete mixing. Oxidation of i-propanol at Pt(Poly) was performed under the same 

experimental conditions as that of ethanol in 0.5 M H2SO4. Acetone (the only product of i-

propanol oxi

n coefficients [139]. The calculated acetone current efficiencies at each flow rate 

were used to correct the apparent current efficiency values in each case.    

The electrochemical behaviour of the secondary C3 alcohol was investigated before 

[140]. From FTIR spectra, it was concluded before that there is no absorption band due to an 

adsorbed CO species [141]. As a general agreement in all of the previous literature, the 

cleavage of C-C bonds is negligible during the adsorption of i-propanol or acetone on 

Pt(Poly) [142, 143].    

 I also investigated the oxidation of ethanol on platinum single crystals before and after 

deposition of Sn. The aim is a semi-quantitative analysis of the volatile product and an 

estimate of the current efficiencies for soluble intermediate of ethanol oxidation at Sn 

modified electrodes.  
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1.7.4 Electrocatalytic reduction of oxygen 

 In the proton-exchange membrane fuel cell (PEMFC), the main problem that arises at 

the cathode is the voltage drop due to sluggish ORR kinetics. Far from equilibrium potential 

(1.2 V), the limiting state-of-the-art operating potential is 0.7 V [144]. This is due to strong 

inhibition of the cathodic ORR, resulting in high overpotentials and therefore, significant 

deterioration in the energy conversion efficiency of the cell [145]. The difficulty stems from 

the exceptionally strong 

4

roblowa et al. [151] scheme for ORR still the most effective scheme 

de production as an intermediate and/or a combination 

(O=O) bond (498 kJ mol-1). Thus, activation of this bond is typically 

kinetically slow [146]. Several studies have been performed to find the best catalyst for ORR 

at poly- or single crystal platinum surfaces. Currently the best cathode catalysts are platinum 

or alloys of platinum with Co or Ni [147-150] in 0.1 M HClO . 

The modified W

that describe the complicated ORR pathway at a metal surface [152](cf. Fig. 1-17). It can be 

summarized as follows: Oxygen can be reduced directly to water without the production of 

hydrogen peroxide through the direct 4-electron pathway or through a series 2-electron 

pathway involves hydrogen peroxi

between these two pathways. 

O2 O2,ad H2O2,ad H2O

H2O2  

Figure 1-17 The purposed scheme for oxygen reduction reaction. 

The ORR proceeds on platinum via a direct 4-electron pathway with a small amount 

ca. 1 %

 upon platinum coordination followed by reaction with H+, 

namely dissociative mechanism [156, 157].  

 of H2O2 formed at low overpotentials (0.1 – 0.4 V) [153]. On other electrodes, for 

instant, gold, ORR proceeds via a 2-electron pathway at low overpotentials in acidic medium. 

However, in alkaline medium Au(100) exhibit 4-electron pathway for ORR [146, 154, 155]. 

On platinum, O2 binds to the metal surface and then transforms to superoxide following the 

first electron transfer with a possible coupled proton transfer, namely associative mechanism. 

Oxygen can also dissociates
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ORR has been studied before at polycrystalline platinum [158, 159], Pt/C 

nanoparticles [152, 160-163] and platinum single crystals [152, 164-168]. Markovic et al. 

[169] studied the ORR at platinum low index single crystal surfaces in perchloric acid 

solutions in a hanging meniscus rotating ring disk technique. By comparing the half-wave 

potentials, the ORR activity was at Pt(110) > Pt(111) > Pt(100). In sulphuric acid, however, 

the order of the activity increased in the sequence Pt(110) > Pt(100) > Pt(111) [167] and the 

differences in the activity was attributed to the structural sensitivity to the bisulphate 

adsorption and

At polycrystalline platinum, low index platinum single crystals and platinum alloys 

[159, 1

ygen (O )  including the protonation of the O  

molecu

 its inhibiting effect.    

69], a Tafel slope of (-RT/F = -60 mV dec-1) has been reported at high potentials and 

high coverage by adsorbed oxygenated species. The adsorbed intermediates are in quasi 

equilibrium and their surface concentration varies linearly with potential and pH according to 

Temkin isotherm. At low potentials and low coverage, however, a Tafel slope of (-2RT/F = -

120 mV dec-1) has been detected and the Langmuir isotherm explains the variation of the 

adsorbate surface concentration. Antoine et al. studied the kinetics and mechanism of ORR on 

Pt nanoparticles inside Nafion [161]. In all cases, the rate determining step was assigned to be 

the first electron addition to the adsorbed ox 2 ad 2

le [71, 153].   

As an application of the potential modulation method described in chapter 5, my work 

in chapter 6 aims at investigation of the kinetics of ORR at Pt(Poly) under convection 

conditions. Also the apparent transfer coefficient and the corresponding Tafel slope have been 

calculated. Tafel slopes obtained from ac voltammetry method were compared to that 

obtained by normal methods and the rds of the reaction has been assigned. 
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 2. Materials, methods and instruments  

 

 
This chapter provides a description of different materials, methods and instruments 

used in the present thesis. The first part gives an overview of the chemicals and cleanliness of 

the glassware in addition to a description of the cleaning and preparation procedures of the 

platinum single crystal electrodes. The second part describes different electrochemical 

techniques which were used here. Finally, the last part describes the electrochemical 

instrumentation especially, the construction of the dual thin layer flow through cell and the 

procedures of DEMS calibration.   

 
2.1 Chemicals, cleanliness and electrodes 

2.1.1 Chemicals 

All solutions were prepared using Millipore-Q® water with a specific resistance of 

18.2 MΩ cm and TOC < 3 ppb. Highly pure argon was used for deaeration of solutions prior 

to each experiment. Tables 2-1 and 2-2 summarize the gases, chemicals and working 

electrodes used in this thesis.  

 
Table 2-1 List of chemicals and gases  

Name Formula Company Purity  
Acetaldehyde CH3CHO Fluka > 99.5 % 
Acetone CH3COCH3 Aldrich 99.9 % 
Ammonium solution NH3 / H2O ChemSolute 25 % p.a. 
Argon Ar Praxair 99.999 % 
Carbon monoxide CO Praxair 99.997 % 
Chromium(VI) oxide CrO3 Merck puriss. p.a. 
Ethanol C2H5OH Merck 99.9 % 
Hydrogen H2 Air Liquide 99.999 % 
Hydrogen peroxide H2O2 Merck 30 % 
i-propanol CH3CHOHCH3 Aldrich 99.9 % 
Methanol CH3OH Merck 99.9 % 
Methylformate HCOOCH3 Merck 97 % 
Nitric acid HNO3 VWR AnalaR 65 % 
Oxygen O2 Air Liquide 99.9995 % 
Potassium hydroxide KOH Aldrich Semiconductor grade 
Ruthenium (III) chloride RuCl3 Aldrich 99.98 % 
Sulfuric acid H2SO4 Merck Suprapure, 95-97 % 
Tin (II) sulphate SnSO4 Acros 99 % 
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Table 2-2 List of working electrodes  

Crystals and Lang notation Company Diameter Zone Miller indices 

Polycrystalline platinum (Pt(Poly)) Metal crystals 1 cm ‐‐  ‐‐ 
Pt(100) Metal crystals  1 cm  ‐‐  ‐‐ 
Pt(331) = Pt(s)[3(111)×(111)] ≡  
Pt(s)[2(111)×(110)]   

Metal crystals 
& oxides 

Pt(332) = Pt(s)[6(111)×(111)] ≡  
Pt(s)[5(111)×(110)]  

Goodfellow 
1 cm [1 1 0]  Pt(n,n,n-2) 

Pt(11,1,1) = Pt(s)[6(100)×(111)]  Metal crystals 
& oxides 

Pt(311) = Pt(s)[2(100)×(111)] ≡ 
Pt(s)[2(111)×(100)] 

Metal crystals 
& oxides 

1 cm [01 1 ]  Pt(2n-1,1,1) 

 n is the number of terrace atoms  
 
2.1.2 Cleanliness of solutions and glassware 

Careful cleaning processes have been performed prior to each experiment due to the 

sensitivity of platinum surfaces (especially single crystals) towards impurities such as organic 

compounds or strongly adsorbing anions which can be easily adsorbed at platinum. All 

glassware was first cleaned overnight in 5 M KOH solution to remove possible anions and/or 

organic contaminations. Cationic compounds and/or metal residues can be removed by 

soaking the glassware in chromic acid bath overnight (640 ml conc. H2SO4 + 360 ml H2O + 

21.4 gm CrO3). Afterwards, all cleaning parts were rinsed by Millipore-water. Due to the 

carcinogenic and toxic properties of the hexavalent chromium compounds, cleaning in a water 

steam system for at least four hours was an alternative.  

As supporting electrolyte, 0.5 M sulfuric acid has been used in all cases because the 

hydrogen adsorption peaks are sharper and more prominent in the presence of sulfate anions; 

this help in the control of cleanliness and surface structure. To test the cleanliness of the 

electrolyte, glassware and electrochemical cells, the adsorption test has been performed as 

follows: in the supporting electrolyte, the potential applied to Pt(Poly) was cycled between 

0.05 and 1.5 V at a sweep rate of 50 mVs-1. After the CV reached stable shape, the potential 

was stopped in the beginning of the double layer region i.e. at about +0.35 V (where no 

hydrogen or oxygen adsorption/desorption takes place) for 3 minutes, then the potential sweep 

was started again. If the CVs before and after the potential hold were the same (cf. Fig. 2-1), 

then the system and the solutions are clean enough and if not, the electrochemical cell and the 

glassware were cleaned again and a fresh electrolyte was prepared. 
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Figure 2-1 Typical CV recorded in the DEMS cell for Pt(Poly) during the adsorption test in 

0.5 M H2SO4. Sweep rate = 50 mVs-1. Electrolyte flow rate = 5 µLs-1.  

 
Not only the cleanliness of the system has been checked by adsorption test but also, 

the active (real) surface area of the Pt(Poly) electrode and consequently its roughness factor 

can be calculated by under-potential deposition of hydrogen (HUPD), assuming 210 µC cm-2 

for the total charge in the hydrogen adsorption region (0.05-0.35 V) after subtraction of the 

double layer charging current [1].  

2210 
Ccm

Q
A H

real 
,                                                                                                            (2-1) 

where, QH is the total charge of hydrogen desorbed from platinum surface. 

Knowing the geometric surface area of Pt(Poly) electrode Ageom = πr2, the roughness 

factor can be calculated as follows: 

geom

real

A

A
factor Roughness                                                                                  (2-2)                         

2.1.3 Single crystal electrodes 

2.1.3.1 Chemical cleaning 

  Due to the impurities contained in the single crystal electrodes, chemical cleaning was 

necessary especially when the crystal is new. The crystal was first immersed in conc. HNO3 

then in a mixture of NH3/H2O2 (1:1) each for 5 min followed by roughening and annealing 

(see below). This procedure repeated several times until the characteristic CV was obtained. 
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2.1.3.2 Roughening and annealing 

 The electrochemical cleaning of the single crystals was done by sweeping the potential 

from 0.05 to 1.5 V (roughening) in a normal H-cell containing the supporting electrolyte until 

the CV is stable (cf. Fig. 2-2). 

0.0 0.5 1.0 1.5

-0.1

0.0

0.1
I 

/ m
A

E / V vs. RHE  

Figure 2-2 Typical CV recorded in the H-cell during roughening of Pt(311) in 0.5 M H2SO4. 

Sweep rate = 50 mVs-1. 

 
After roughening, the stepped single crystals were prepared according the method of 

Clavilier [2]: annealing was achieved by heating the crystal over a butane flame; after it 

turned to a faint red color, it was left over the flame for about 30 s and then transferred into 

the conventional H-cell, where it was allowed to cool down to room temperature over 

Millipore-Q water for about 4 min in an atmosphere of H2/Ar mixture [3]. The crystal was 

then transferred with a droplet of water, to protect it from contamination, to another H-cell 

containing the supporting electrolyte where it kept in contact with the supporting electrolyte 

deaerated with highly pure argon (99.999 %) in a hanging meniscus configuration. The 

quality of the single crystal surface after preparation was checked by recording the CV in the 

potential range of 0.05 to 0.85 V. The potential should not exceed 0.9 V, because at higher 

potentials, roughening starts and the adsorbed oxygen destroys the single crystal structure and 

the arrangement of the Pt atoms at the surface. The crystal was then (or after deposition of Ru 

or Sn) transferred quickly to the DEMS cell while being protected by a droplet of electrolyte. 

Before DEMS measurement, the cleanliness of the electrode and the integrity of the single 

crystal structure was checked by recording the CV between 0.05 - 0.85 V in the DEMS cell 

(cf. Fig. 2-3). In general, the CVs in both cells showed almost similar features, this fact 

demonstrates the quality of the transfer and the cleanliness of DEMS cell. The small 
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difference in the shape of the CVs in both cells is partially due to electrolyte flow and 

transport of evolved hydrogen away from the electrode surface [4] but mainly due to high iR 

drop in the DEMS cell with a high electrolyte resistance [5, 6]. 
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Figure 2-3 Typical characteristic CV for Pt(311) in 0.5 M H2SO4 at 50 mVs-1 (A) in H-cell, 

(B) in the dual thin layer flow through cell (DEMS cell). 

 
2.1.4 Reversible hydrogen electrode (RHE) 

 A reversible hydrogen electrode (RHE) [7] as shown in Fig. 2-4 was used as a 

reference electrode in this thesis. For its preparation, the electrode was first rinsed with 

Millipore-Q water and the supporting electrolyte (0.5 M H2SO4) was removed and then filled 

again simply by using water suction pump. Afterwards, another Pt wire was dipped into the 

supporting electrolyte and a potential difference of about 1.6 V was applied between the Pt 

wire (anode) and the RHE electrode (cathode). H2 is generated by electrolysis at the cathode 

to partially fill the bulb. This process should be repeated at least three times to ensure the 

purity of the H2. Finally, the bulb was half-filled with H2 so that the Pt wire has contact with 

both H2 gas and the electrolyte.  

 

Figure 2-4 Construction of the reversible hydrogen electrode. Adopted from ref. [8]. 
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2.2 Electrochemical techniques 

2.2.1 Potentiodynamic technique  

 Potentiodynamic alcohol oxidation presented in this thesis was done according to the 

potential program shown in Fig. 2-5 as follows: first the potential was held at 0.05 V (the 

potential at which alcohol do not yet adsorb [9, 10]) in the supporting electrolyte, which was 

then exchanged by a supporting electrolyte containing alcohol. Afterwards, the potential was 

swept in the anodic direction at 10 mVs-1 for three cycles. In case of Ru and Sn-free platinum 

single crystal electrodes, three cycles were recorded with an upper potential limit of 0.85 V 

followed by potential stop for less than 1 min at 0.05 V; then, further sweeps were recorded 

with an upper potential limit of 1.5 V. In case of Ru or Sn modified single crystals, the upper 

potential limit was 0.8 V and 0.6 V respectively because the oxidation of these adatoms starts 

at higher potentials as will be shown in chapters 3 and 4. 

E
 / 

V
 v

s.
 R

H
E

t / s

0.05

0.85

1.5

SE SE + alcohol

 

Figure 2-5 The potential program used in the potentiodynamic alcohol oxidation.   

 

2.2.2 Potentiostatic technique  

2.2.2.1 Potentiostatic alcohol oxidation 

In another set of experiments, after exchanging the supporting electrolyte for the 

methanol solution at 0.05 V as shown above, the potential was stepped to various positive 

potentials to record the current transients during methanol potentiostatic oxidation (cf. 

chapters 3 and 4). 
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2.2.2.2 Formation and oxidation of alcohol adsorbate 

For the formation of the alcohol adsorption product, the potential program shown in 

Fig. 2-6 was applied; the potential was first held at 0.05 V (E0, the potential at which alcohol 

does not yet adsorb, cf. chapters 3 and 4) in the base electrolyte, which was then replaced by 

alcohol containing solution under potential control. Afterwards, the potential was stepped to 

more positive potential, Eads, at which alcohol could adsorbs, for 2 min, t2. Then, the potential 

was stepped back to 0.05 V, E0. After replacing the alcohol containing solution with an 

alcohol free solution, which takes ca. 5 minutes, t3, the potential was swept in the anodic 

direction; t4 to oxidize the alcohol adsorbate (COads) potentiodynamically or stepped to 

various positive potentials to oxidize it in a series of potentiostatic experiments. 

SE
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Figure 2-6 The potential program used in the formation and oxidation of alcohol adsorbate. 

 
2.2.2.3 Potentiostatic CO oxidation 

 CO was adsorbed at a constant electrode potential of 0.06 V by replacing the 

supporting electrolyte (0.5 M H2SO4) solution with the same solution saturated with CO (ca. 

10-3 M) which last for ca. 3 min. After the formation of a CO monolayer, the solution was 

exchanged for pure supporting electrolyte under potential control (E = 0.06 V) to maintain the 

CO free solution. The adsorbed CO was then either oxidized in a series of potential step 

experiments in which the potential was stepped from 0.06 V to higher oxidation potentials or 

by sweeping the potential to more positive values (shown later).  
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2.2.3 Deposition of Ru or Sn sub-monolayer at platinum stepped single crystals 

2.2.3.1 Electrochemical deposition of Ru 

 A solution of 0.02 M RuCl3
 + 0.5 M H2SO4 was prepared as a stock solution. By 

dilution, a solution of 5 mM RuCl3
 + 0.5 M H2SO4 is freshly prepared before each deposition 

experiment. In the H-cell, after preparation of the single crystal electrode, it was transferred to 

another cell containing the above deposition solution. After ensuring potential control at 0.35 

V, the electrode was kept in contact with the electrolyte in a hanging meniscus configuration 

at 0.4 or 0.6 V for 5 min. The amount of Ru deposited on the surface depends on the applied 

potential according to ref. [11] as shown in Fig. 2-7.  

 

Figure 2-7 Ru coverage determined by XPS as a function of deposition potential for Pt(Poly) 

(squares) and Pt(111) (triangles). The inset shows the XPS spectra (Ru 3p3/2 emission) of Ru-

modified Pt(111) at various deposition potentials. The dotted line in the insert indicates the 

value of 461.4 eV. Adopted from ref. [11].  

The Ru coverage at platinum stepped single crystals with (111) steps and (111) 

terraces can be calculated as follows: 

H
s

Ru
s

H
sstep

Ru Q

QQ
θ


             (2-3)     

 

H
Ts

Ru
s

H
sTs

Ru Q

QQ
θ



 
                       (2-4) 
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Here, is the Ru coverage at Pt step sites, is the Ru coverage at Pt (steps + terraces), 

only as long as the steps are decorated, is the charge of hydrogen desorbed from free Pt 

step sites, is the charge of hydrogen desorbed from free Pt step and terrace sites and 

is the charge of hydrogen desorbed from Ru deposited at Pt step sites. 

step
Ru Ts

Ru


H
sQ

H
TsQ 

Ru
sQ

 
2.2.3.2 Diffusion controlled deposition of Sn 

Diffusion controlled deposition of Sn at platinum stepped single crystals was done as 

follows: after preparation of the single crystal electrode, it was transferred to another cell 

containing freshly prepared 2×10-5 M SnSO4 + 0.5 M H2SO4 (to avoid the autocatalytic 

oxidation of Sn+2 to Sn+4 by dissolved oxygen [12]). The potential is controlled at 0.35 V and 

then cycled in the range of 0.05 – 0.6 V vs. RHE. Under such conditions, the deposition of Sn 

is a slow, mass transfer-controlled process. The surface concentration of the adatom increases 

progressively with time; from the shape of the voltammertric profile, we can monitor the 

increase of the surface coverage.    

By the help of a CO oxidation experiment at the Sn modified platinum electrode (cf. 

chapter 4, part 4.2.2.1), assuming that CO only adsorbs at the free Pt sites, the relative Sn 

coverage is given by: 

COSn θ1θ                          (2-5) 

 Coverage of adsorbed CO formed either from CO saturated electrolyte or from 

alcohol was calculated from the amount of CO2 formed during the oxidation in the supporting 

electrolyte: 

HCOCO /                                                                                                                        (2-6) 

                                                                                                      
Then θCO is given by: 
 

max
CO

HCO
max
CO

CO
CO

/ΓΓ
θ




 ,                      (2-7) 

where,  is the CO coverage compared to  which is the maximum CO coverage 

obtained from CO saturated solution (0.5 M H2SO4) at clean Pt electrode ≈ 0.6, ΓCO is the 

surface concentration in mol cm-2 of adsorbed CO, ΓH represents the number of active sites 

per surface area as determined from the charge of adsorbed hydrogen in the characteristic CV 

in the supporting electrolyte.  

COθ max
CO
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The relative Sn coverage at the surface can be also obtained simply by comparing the 

charge of the hydrogen adsorption before and after Sn deposition at the platinum surface [13-

15]. 

H
o

H
Sn

H
o

Sn Q

QQ
θ


 ,                        (2-8) 

where,  is the total charge of hydrogen desorbed from platinum surface and  is the 

total charge of hydrogen desorbed from Sn-modified platinum surface.  

H
oQ H

SnQ

 
2.3 Electrochemical instrumentation 

2.3.1 Data collection 

2.3.1.1 In DEMS measurements 

 Computers with integrated A/D converter boards were used for data collection. For 

detection of the Faradaic current, a computer operated under DOS system was used with 

Potmadash software developed in our group. For detection of the ion current during mass 

spectrometric measurements, a computer operated under WIN98 system was used with a 

QuadstarTM 422-software (Pfeiffer-Vacuum GmbH), which makes it possible to detect the ion 

current for each m/z separately. A home-made potentiostat, function and potential step 

generators were used for recording the data. 

 
2.3.1.2 In AC and EIS measurements 

A computer operated under WIN2000 system with a measuring board, data acquisition 

card and LabView software from National Instruments® was used. A potentiostat, model 273 

A (EG&G, Princeton Applied Research) is employed for I-E measurements. A lock-in 

amplifier, type 5210 (EG&G), combined with the potentiostat, was used for the ac 

voltammetry measurements to generate the ac voltage and to record the phase sensitive ac 

signal. In EIS measurements, Solartron SI 1260 Impedance/Gain-Phase analyzer was used for 

recording impedance spectrum and zPlot-zView® software from Scribner Associates was used 

for the evaluation of the impedance spectrum and for data fitting. Origin 7.0 software 

(OriginLab®) and Excel 2010 (Microsoft®) were used for data evaluation. 
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2.3.2 Electrochemical cells 

2.3.2.1 The conventional electrochemical H-cell 

 In a normal voltammetry experiment, e.g. preparation of the single crystals, and 

deposition of metals, the conventional three electrode cell (H-cell) was used (cf. Fig. 2-8). In 

this cell the reference electrode, immersed in the supporting electrolyte, is connected to the 

cell body with a Luggin capillary while separated to some extent with a grounded glass 

stopcock so that electroactive species such as metal ions cannot diffuse to the reference 

electrode compartment. On the cell body, there are several ports serving as a gas inlet, gas 

outlet and solution inlet. The working electrode was kept in contact with the electrolyte in a 

hanging meniscus configuration. A platinum sheet immersed in the supporting electrolyte 

served as the counter electrode, which is separated by a fritted glass disk from the main part of 

the cell.  

 

Working electrode (WE) 

Reference electrode (RE) 
Counter electrode (CE) 

Glass frit 
Lugging capillary Stopcock 

Electrolyte outlet stopcock 

Figure 2-8 The conventional electrochemical H-cell. Adopted from ref. [4]. 

 
2.3.2.2 The dual thin layer flow through cell  

For all of the Faradaic reactions which have to be performed under a continuous flow 

of the electrolyte, the dual thin layer flow through cell has been used. The construction of the 

cell is shown in Fig. 2-9 and described also in ref. [5]: The electrolyte first flows through a 

thin layer compartment (electrochemistry compartment) containing the working electrode 

placed directly on a four Teflon ring spacer (Gore-Tex®) with a thickness of ca. 50 µm, mean 

pore size of 0.02 µm, inner diameter of 6 mm a porosity of 50 % which leaves an electrolyte 

layer thickness of 200 µm. Through six capillaries, each one has a diameter of ca. 0.5 mm, the 
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electrolyte then flows to the second thin layer (detection compartment). In this compartment, a 

porous Teflon membrane from the same company was supported on a stainless steel frit and 

served as the interface between the electrolyte and the vacuum.  

 
(A)  

 

  

 

 (B)
 

 

 

 

 

 

 

 

 

 

 
Figure 2-9 Sketch for the dual thin-layer flow through cell (Kel F) (1) Kel-F support; (2) 

Kalrez; (3) disc working electrode; (4), (5) Teflon gasket; (6) porous Teflon membrane; (7) 

stainless steel frit; (8) stainless steel connection to MS; (9) capillaries for flushing with Ar; 

(10) inlet-outlet capillaries; (11) connecting capillaries. (A) Side view of Kel-F body of the 

cell, (B) Top view of the cell. 

 
Under continuous flow of the electrolyte, products were transported from the working 

electrode surface to the mass spectrometer by convection. Only the volatile ones can 

evaporate through the porous Teflon membrane into the vacuum system of the mass 

spectrometer. Different flow rates of the electrolyte were adjusted by a peristaltic pump at 

outlet of the cell. The reference electrode was a reversible hydrogen electrode (RHE) 

connected to the electrolyte inlet. Two Pt wires were used as counter electrodes with different 

applied resistances (100 kΩ and 1100 Ω) in the inlet and outlet respectively to optimize the 

current distribution and decrease the ohmic resistance. This cell was fixed over a metal holder 

and only the electrochemistry compartment was used in case of ac voltammetry and EIS 
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measurements or connected to the differential electrochemical mass spectrometry (DEMS) 

through a valve as will be shown in the next section and the two compartments were used. 

 
2.3.3 DEMS setup and calibration 

2.3.3.1 DEMS setup 

 The dual thin layer flow through cell was connected to the quadruple mass 

spectrometer (Balzer QMG-422) via a valve at position 1 as shown in Fig. 2-10. The produced 

volatile species during the electrochemical reaction will evaporate through the hydrophobic 

porous Teflon membrane to the mass spectrometer where the m/z ratio of different species can 

be known.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-10 Schematic representation of a typical experimental DEMS setup; (1) 

electrochemical cell, (2) MS connection to the electrochemical cell, (3) connection to the 

calibration leak, (4) turbomolecular pump, (5) rotary pump, (6) ion source, (7) quadruple rods, 

(8) turbomolecular pump, (9) rotary pump, (10) secondary electron multiplier. Adopted from 

refs. [4, 5].  

 
2.3.3.2 Calibration of DEMS by the oxidation of pre-adsorbed CO 

Using a known electrochemical reaction with a current efficiency of 100 %, e.g. the 

oxidation of pre-adsorbed CO to CO2 at Pt(Poly) surface [16], DEMS can be calibrated. 

Under flow conditions, simply after ensuring the cleanliness of the platinum surface by 

cycling the potential from 0.05 to 1.5 V in the dual thin layer cell at a sweep rate 50 mVs-1, 
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the potential range was kept constant at 0.06 V and about 2 ml of CO saturated supporting 

electrolyte (≈ 10-3 M) was injected into the cell from inlet to form a monolayer of CO at the Pt 

surface. Afterwards, a fresh electrolyte is introduced to the cell to remove the excess (bulk) 

CO and the potential was swept in the anodic direction at a sweep rate = 10 mVs-1. As shown 

in Fig. 2-11, the hydrogen desorption peaks disappeared in the first cycle where the surface 

was blocked with adsorbed CO molecules. The onset of CO oxidation starts at about 0.4 V 

and the current efficiency was about 80 % after background subtraction. The total Faradaic 

charge was corrected by a factor of 0.8 corresponding to 20 % of non- Faradaic remaining 

charges (assigned to adsorption of anions like sulfate, bisulfate, hydroxides…etc) at the Pt 

surface [17-19].  
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Figure 2-11 The Faradaic current (IF) and the mass spectrometric ionic current (I44) recorded 

simultaneously during the electrooxidation of pre-adsorbed CO at smooth Pt(Poly) electrode 

in 0.5 M H2SO4 at sweep rate of 10 mVs-1 and electrolyte flow rate of 5 µLs-1. Number 1 and 

2 indicate the first and second cycles respectively. 

 
Both faradaic charges ( ) and ionic charge for the formation of m/z = 44 ( ) 

were used to calculate the calibration constant (K*) according to the following equation: 

total
fQ 44

iQ

total
f

44
i*

0.8Q

zQ
K                         (2-8) 
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Here, z is the number of electron transferred during the oxidation of one CO mo

= 2 electrons. 

lecule to CO2 

 
2.3.3.3 Approximate calibration for acetaldehyde, acetone and methylformate 
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Figure 2-12 The linear relationship between the concentration of acetaldehyde (C29) and the 

ionic current (I29) recorded at different electrolyte flow rate. Inset: the flow rate dependence 

of 0.1-5 mM were prepared and the ionic signal 

of m/z

 is defined from: 

on acetaldehyde calibration constant ( oK 29 ).  

Calibration for acetaldehyde, acetone and methylformate was done as follows: 

different concentrations of them in the range 

 = 29 (acetaldehyde), m/z = 58 (acetone) or m/z = 60 (methylformate) was monitored 

for each concentration at 2, 5 and 10 µLs-1. As shown in Fig. 2-12, the slope of the linear 

relationship of the ionic current (Ix) vs. the concentration (Cx) gives the calibration constants 

for acetaldehyde ( oK 29 ) (or acetone ( oK58 ) and methylformate ( oK60 )) times the flow rate 

dependent collection efficiency of the dual thin layer cell (f2) and the electrolyte flow rate (u) 

[5]: 

x
o
xx CuKfI 2                                                                    (2-9) 

Here, o
xK

dtxx

dn
KI o  with xuCf

dt 2

dn
 which is the incoming flow of the 

species  mol s-1. At very low flow rate (< 1 µLs-1), the residence time will be long enough 

e Teflon m

 x in

for the species to reach to th embrane and in this case, oK x   u1 i.e. no diffusion 
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limitation. However, at higher flow rates, o
xK   u0.3 suggesting diffusion limitation to the 

Teflon membrane [5] (cf. inset in Fig. 2-12). 

 Following the above procedures, the actu

. W

al current efficiencies will be only obtained at 

ery lo

ler, D. A. J. Rand, and R oods, Journal of Electroanalytical Chemistry 
29

v w flow rate (u < 1 µLs-1) i.e. in case of complete mixing of the species before entering 

the detection compartment. At high flow rates, however, the product concentration at the 

entrance in the vicinity of the Teflon membrane will be higher than the average. Since in the 

usual calibration experiment the concentration at the entrance of the detection compartment is 

homogeneous, this leads to apparent current efficiencies which are too high. A correction for 

that will be described in chapter 4. 
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3. Electrocatalytic oxidation and adsorption rate of methanol 

3. Electrocatalytic oxidation and adsorption rate of methanol 

 

3.1 Introduction 

The first part of this chapter includes the electrocatalytic oxidation of CO as well as 

methanol at Pt(331) stepped single crystal electrode in the dual thin layer flow through cell as 

studied by DEMS. The effect of flow rate, methanol concentration, potential and Ru step 

decoration on the obtained CO2 and methylformate current efficiencies during the oxidation of 

methanol has been investigated. 

Crucial for the use in fuel cells is the complete oxidation to CO2 which can be 

achieved if the reactants first adsorb at the electrode surface along the reaction path with 

adsorbed CO as an intermediate. Therefore, in the second part of this chapter I determined the 

methanol adsorption rates at different Pt surfaces including smooth Pt(Poly), Pt(332), Pt(331),  

Ru step decorated Pt(331), Pt(100) and Pt(11,1,1) electrodes. The effects of different 

parameters such as methanol concentration, adsorption potentials, step density and Ru step 

decoration on the obtained values of adsorption rate have been examined. Finally, the 

oxidation of methanol adsorption product formed at smooth Pt(Poly), Ru/Pt(331), Pt(100) and 

Pt(11,1,1) at different adsorption potentials or times was investigated and the shape of the 

adsorbate oxidation was discussed.   

 

   

 

 

 

 

 

 

 

 

  53



3. Electrocatalytic oxidation and adsorption rate of methanol 

3.2 Results and discussion 

3.2.1 Electrooxidation of pre-adsorbed CO at Ru/Pt(331) single crystal electrodes  
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Figure 3-1 (A) CV of Pt(331) electrode before and after Ru deposition in 0.5 M H2SO4 

solution. Scan rate: 50 mVs-1. Ru0.2/Pt(331): θRu = 50 % of steps, 20 % of the step + terrace 

and Ru0.4/Pt(331): θRu = 90 % of steps, 40 % of the step + terrace.  (B) Model for Ru step 

decoration at Pt(331) electrode adopted from ref. [1], the numbers imply step site (1) and 

terrace site (2). 

 
Fig. 3-1 shows typical CV of Pt(331) in 0.5 M H2SO4 solution before and after 

deposition of Ru. For bare Pt(331), the sharp peak at 0.1 V is attributed to hydrogen 

adsorption/desorption at the (111) step sites, whereas the broad region between 0.05 and 0.35 

V is due to hydrogen adsorption at terrace sites. The signal between 0.35 and 0.85 V is 

ascribed to anions (sulphate/bisulphate) adsorption at terrace sites [2, 3]. The high current in 

the double layer region (0.35-0.85 V) at Ru modified surface is due to OH adsorption at Ru 

atoms [4]. Ru deposition leads to partial or complete suppression of the Pt(331) step sites, 

whereas terrace sites remain not affected which imply step decoration in accordance with 

references [5-7].  
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Figure 3-2 The Faradaic current (IF) and the mass spectrometric ionic current (I44) recorded 

simultaneously during the oxidation of pre-adsorbed CO at Pt(331) and Ru step decorated 

Pt(331) electrode with different Ru coverage in 0.5 M H2SO4 at 10 mVs-1 and 5 µLs-1. 

After preparation of the single crystals, they were then (or after deposition of Ru) 

transferred to the DEMS cell, in which they were cleaned by adsorption and subsequent 

oxidation of CO. The Faradaic current (IF) and the mass spectrometric ionic current (I44) 

recorded simultaneously during the oxidation of adsorbed CO at Ru free and Ru step 

decorated Pt(331) are shown in Fig. 3-2. At bare Pt(331), the pre-peak of COad oxidation starts 

at 0.2 V whereas the main peak was located at 0.63 V. At Ru0.2/Pt(331) (i.e. Ru half coverage 

of the step sites), the main peak was shifted to lower potential (0.43 V) with the appearance of 

a new peak (or shoulder) at 0.53 V. In this case, the main peak overlaps with the pre-peak. At 

Ru0.4/Pt(331) (i.e. Ru complete coverage of the step sites), the main peak was also shifted to 
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0.46 V without a s ns are in 

agreem modified Pt(332), 

Pt(331) in a mixture of 0. acetted Pt(332) in 

0.5 M H2SO4 [6-8]

 

 

econd peak at more positive potential. All of the above observatio

ent with the previous literature for CO oxidation at free and Ru

1 M H2SO4 + 0.5 M HClO4 [1], at Pt(665) and 

. 

 

 

f

 

igure 3-3 Influence of Ru step decoration on adsorption enthalpy of COad with respect to the 

reaction coordinate. Adopted from ref. [9]. 

 
As explained before by Baltruschat and coworkers for Pt(665) and Pt(332)fac, the 

f Ru, the adsorption enthalpy for Pt atoms in the 

eighborhood of Ru is increased. This effect extends over at least four rows of atoms. In case 

 

   

G 

 

 

 

 

 

F

 

presence of two different oxidation peaks for COad is due to different adsorption enthalpies 

(cf. Fig. 3-3). Due to the electronic effect o

n

of Pt(665), about 1/3 of terrace sites are not affected and the diffusion of CO from these sites 

to the step sites is slowed down by the higher adsorption enthalpy of these sites. Therefore, 

the oxidation peak at low potential is due to the oxidation of COad
 molecules directly 

influenced by the electronic effect of Ru. The second peak at more positive potential is 

ascribed to the oxidation of CO adsorbed at a large distance to Ru and affected only by the 

bifunctional effect of Ru.  

When the steps are almost completely covered by Ru (in case of Ru0.4/Pt(331)), CO 

can adsorb only at Ru or close to Ru. All COad are affected by the bifunctional and the 

electronic effects of the Ru atoms at the steps. 
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3.2.2 E

 

lectrooxidation of methanol at platinum single crystal electrodes  

3.2.2.1 Potentiodynamic measurements at Ru/Pt(331)
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Figure 3-4 The Faradaic currents (IF) and the mass spectrometric ionic currents for m/z = 44 

(CO2) and m/z = 60 (HCOOCH3) recorded simultaneously during the potentiodynamic 

oxidation of methanol at smooth Pt(331) in 0.5 M H2SO4 solution + 0.1 M (black) and 0.01 M 

(red) methanol. Dotted line: CV in the supporting electrolyte. Scan rate: 10 mVs-1. Electrolyte 

flow rate: 2 µLs-1. Two cycles are shown. Inset: Expanded view of the Faradaic currents 

during the first and second anodic sweep in 0.1 M methanol. Arrows indicate the direction of 

sweep.  
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To investigate the effect of Ru step decoration on the oxidation of methanol at Pt(331) 

electrode, one should compare that to the behavior at bare surface. Therefore, the same 

reaction at bare Pt(331) will be first discussed. Fig. 3-4 shows the potentiodynamic oxidation 

of two different methanol concentrations (0.1 M and 0.01 M) in 0.5 M H2SO4 at Pt(331) 

electro c currents (IF) are recorded simultaneously with the mass spectrometric 

ionic c

both methanol concentrations similar to 

de. The Faradai

urrents for m/z = 44 (CO2) and m/z = 60 (HCOOCH3) in case of 0.1 M methanol or 

only m/z = 44 in case of 0.01 M methanol, where in the later the amount of methylformate 

was too low to be detected. The inset of Fig. 3-4 shows that the hydrogen desorption peaks are 

still visible in the first cycle where methanol is irreversibly adsorbed only at potentials above 

0.1 V after replacing the supporting electrolyte by methanol containing solution giving rise to 

a shoulder around 0.5 V. Similar to Pt(Poly) [4, 10], this shoulder is not parallel by a signal 

for CO2 (m/z = 44), but is due to the oxidative adsorption of methanol according to: (CH3OH 

→ COad + 4H+ + 4e-). Small hysteresis between the positive- and negative-going sweeps is 

due to small amount of COad being formed at low potentials as suggested before [11]. In the 

positive going scan the oxidation starts at ca. 0.5 V, as indicated by the onset of CO2 and 

methylformate formation. Afterwards, the Faradaic currents start to increase sharply during 

the anodic sweep leading to an oxidation peaks at 0.72 V and 0.7 V for 0.1 M and 0.01 M 

methanol respectively. Although the surface is free from CO, currents significantly decrease 

above 0.7 V mainly due to adsorption of water and anions [11-13]. During the negative going 

scan, an oxidation peak is observed at 0.7 V for both concentrations followed by a decrease in 

the current below 0.7 V; this might be due to decrease of surface activity with decreasing 

potential and/or strong accumulation of COad at the surface at low potentials [11]. In case of 

0.1 M methanol, the anodic and cathodic oxidation peaks for m/z = 44 located at 0.82 and 

0.68 V respectively whereas those for 0.01 M methanol are at 0.76 and 0.65 V. This shift in 

the ionic peak potentials with respect to those of the Faradaic ones are due to the delay time in 

the dual thin layer flow through cell (ca. 5 seconds at 2 µLs-1). Methylformate is detected at 

0.1 M methanol at approximately the same ionic peak potentials as CO2. Increasing methanol 

concentration leads to a significant increase in both Faradaic and ionic currents due to higher 

adsorption rate at higher concentration (shown later). 

 Three cycles with an upper potential limit of 1.5 V have been recorded simultaneously 

with the corresponding ionic currents during the oxidation of 0.1 M and 0.01 M methanol at 

Pt(331) electrode as shown in Fig. 3-5. The first cycle of this series starts with a smooth 

surface, while during the next ones, the surface is being roughened. Here, the hydrogen 

desorption peaks are still visible in the first cycle for 
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s  surface (cf. inset of Fig. 3-5). Similar results of the same reaction at Pt(Poly) were 

also reported by Wang et al. [14]. The onset of oxidation is about 0.5 V during the positive 

going scan followed by two anodic oxidation peaks; the first one is at 0.73 V or 0.7 V for 0.1 

M and 0.01 M respectively and the second one is parallel to the oxygen region. During the 

negative going scan, an oxidation peak is observed at 0.66 V in both cases. Abd-El-Latif et al. 

[1] found the increase of both Faradaic and ionic currents after roughening by about 25 % 

when they performed the oxidation of 0.01 M methanol at Pt(331) using a mixture of 0.5 M 

HClO4 + 0.1 M H2SO4 as a supporting electrolyte. In the present work, using 0.5 M H2SO4 as 

a supporting electrolyte on one hand, has the advantage of sharper peaks in the hydrogen 

region but on the other hand, high concentration of sulfate reduces the reactivity of the 

platinum surface due to its high adsorpitivity [4]. The later is the reason for non significant 

increase of the oxidation current after roughening observed here for both methanol 

concentrations. 

 

mooth
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Figure 3-5 The Faradaic currents (IF) and the mass spectrometric ionic currents for m/z = 44 

(CO2) and m/z = 60 (HCOOCH3) recorded simultaneously during the potentiodynamic 

oxidation of methanol at roughened Pt(331) in 0.5 M H2SO4 solution + 0.1 M (black) and 0.01 

M (red) methanol. Dotted line: CV in the supporting electrolyte. Scan rate: 10 mVs-1. 

Electrolyte flow rate: 2 µLs-1. Two cycles are shown. Inset: Expanded view of the Faradaic 

currents during the first and second anodic sweep in 0.1 M methanol. Arrows indicate the 

direction of sweep.  

 
The Faradaic current (IF) is the sum of the corresponding currents of many products: 

CO2, formic acid, formaldehyde and methylformate. The CO2 current efficiency (A44) was 

calculated as follows: 

F
*

CO
44 .IK

A 
6.I

2                         (3-1) 
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Where, 6 is the number of electrons transferred during the oxidation of one methanol 

molecule,  is the ionic signal of m/z = 44. 
2COI

The apparent methylformate current efficiency, which differs from the true current 

efficiency, due to incomplete mixing in the dual thin layer cell, is given by:  

F

Fapp

I

I
A

60

60                                       (3-2) 

Here,  

o
602

6060
F Kf

zFI
I                                    (3-3) 

This difference is smaller at low flow rates. Because of the low values of A60, I did not 

perform any correction. 

 
The current efficiencies with respect to CO2 and methylformate for different methanol 

concentrations at three different flow rates calculated at the anodic peak potential are shown 

in Table 3-1. The current efficiency with respect to CO2 is independent of the flow rate 

whereas with increasing flow rate the apparent current efficiency with respect to 

methylformate increases due to incomplete mixing in the dual thin layer flow through cell 

[15]. Low values of CO2 current efficiencies indicate that a large amount of other products 

(HCHO and HCOOH) are formed in all conditions. With increasing methanol concentration, 

the current efficiency for CO2 decreases [16]. As reported in ref. [16], the oxidation path via 

adsorbed CO is not much dependent on concentration but depends on the oxidation rate of 

COad whereas the second reaction path via dissolved intermediate is largely depends on 

concentration; therefore, with increasing methanol concentration the second oxidation path 

becomes predominant. Under convection conditions, a large amount of intermediate is formed 

and then transported away from the electrode surface without reaction, this results in a low 

CO2 current efficiency. After roughening, the current efficiencies for both CO2 and 

methylformate were in the same range where the presence of defects promotes the oxidation 

of methanol via the two pathways simultaneously [17].  
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Table 3-1 Current efficiencies with respect to CO2 and methylformate during the 

electrooxidation of 0.1 M and 0.01 M methanol at smooth (s) and roughened (r) Pt(331) 

surfaces. 

0.1 M methanol 
0.01 M 

methanol 
u / µLs-1  

Cycle 
No. A44 % 

(s) 
A60 % 

(s) 
A44 % 

(r) 
A60 % 

(r) 
A44 % 

(s) 
A44 % 

(r) 

2 
1 
2 
3 

22 
21 
21 

0.15 
0.18 
0.16 

22 
19 
19 

0.17 
0.2 
0.14 

30 
29 
22 

31 
27 
27 

5 
1 
2 
3 

20 
20 
19 

0.34 
0.33 
0.31 

22 
19 
18 

0.35 
0.34 
0.29 

35 
33 
34 

34 
29 
29 

10 
1 
2 
3 

18 
17 
17 

0.45 
0.46 
0.48 

18 
16 
16 

0.44 
0.46 
0.31 

34 
32 
32 

35 
29 
29 

 
Wang et al. [4] investigated the effect of surface structure during the oxidation of 

methanol at Pt(111) and Pt(332) electrodes in 0.5 M H2SO4 under flow through conditions. 

According to their measurements, although the Faradaic current increases with increasing step 

density, the current efficiency for CO2 formation was approximately the same (ca. 25 %). This 

is now further proven when performing the oxidation at Pt(331) electrode. Again, though the 

Faradaic current is higher at Pt(331) as compared to Pt(332), the CO2 current efficiencies are 

in the same range. This implies that the (110) steps catalyze the oxidation of methanol not 

only via adsorbed CO but also via HCHO and HCOOH as reported before [14, 16] and that 

the rate determining step is common for both paths.  

The Faradaic currents as well as the ionic currents of m/z = 44 and m/z = 60 are 

recorded simultaneously during the oxidation of 0.1 M methanol + 0.5 M H2SO4 solution at 

Ru half or complete step decorated smooth Pt(331) together with the first and second 

extension of the sweep to 1.5 V as shown in Fig. 3-6 A and B respectively. The general 

characteristic of the CV and the mass spectrometric CV (MSCV) remain the same like bare 

Pt(331) as explained above. The catalytic activity towards methanol oxidation decreases with 

increasing Ru coverage at the steps implying that methanol is preferentially adsorbed and 

oxidized at the steps. Increase blocking of the steps with increasing Ru coverage leads to a 

decrease in the overall catalytic activity due to the lack of free Pt step sites. At least three 

adjacent platinum atoms are required for the decomposition of methanol to adsorbed CO on 

Pt(111) as reported by Cuesta et al. [18]. Step decoration with Ru leads to a shift of the onset 

  62



3. Electrocatalytic oxidation and adsorption rate of methanol 

of oxidation by about 0.1 V to the negative direction in both smooth and roughened surfaces 

due to electronic and bifunctional effects [4].  

As depicted in Fig. 3-6 B, slow dissolution of Ru up on extension of the sweep to more 

positive potential (roughening) leads to a shift in the onset of oxidation to less positive 

potential. Both the Faradaic and ionic currents increase in the second cycle compared to the 

first one (i.e. when the surface is still smooth).  Not only the currents have increased after 

roughening but also the CO2 current efficiency, this increase reaches its maximum in case of 

40 % Ru coverage on the surface (cf. Table 3-2). This enhancement of the catalytic activity 

has been found before for PtRu/C [19] and Pt(Poly) [17] and it was attributed to the formation 

of platinum-rich surface by dissolving some Ru atoms. 
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Figure 3-6 The Faradaic currents (IF) and the ionic currents for m/z = 44 and m/z = 60 

recorded simultaneously during the potentiodynamic oxidation of methanol at Ru modified 

smooth Pt(331) (A) (only the first cycle is shown) and roughened (B) (the first cycle and the 

second cycle ''dotted line'' are shown) in 0.1 M methanol + 0.5 M H2SO4 solution. The CV and 

MSCV recorded at bare Pt(331) are also shown for comparison. Scan rate: 10 mVs-1. 

Electrolyte flow rate: 5 µLs-1. Arrows indicate the direction of the sweep.   
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Table 3-2 Current efficiencies with respect to CO2 and methylformate during the 

electrooxidation of 0.01 M and 0.1 M methanol at Ru step decorated smooth (s) and 

roughened (r) Pt(331) electrodes. 

Surface Ru0.2/Pt(331) Ru0.4/Pt(331) 

0.1 M methanol 
0.01 M 

methanol
0.1 M methanol 

0.01 M 
methanol 

u /  
µLs-1 

Cycle 
no. 

A44 
% 
(s) 

A60

% 
(s) 

A44 
% 
(r) 

A60 
% 
(r) 

A44 
% 
(s) 

A44 
% 
(r) 

A44 
% 
(s) 

A60

% 
(s) 

A44 
% 
(r) 

A60 
% 
(r) 

A44 
% 
(s) 

A44 
% 
(r) 

1 18 0.15 19 0.16 27 29 16 0.26 15 0.27 23 24 

2 17 0.15 19 0.15 26 31 15 0.2 30 0.15 25 37 2 

3 17 0.14 17 0.15 26 25 15 0.21 23 0.14 25 28 
1 16 0.3 16 0.3 25 25 13 0.53 14 0.55 21 20 
2 16 0.3 15 0.25 25 28 13 0.28 41 0.32 20 23 5 
3 16 0.3 15 0.25 25 23 12 0.3 30 0.26 20 16 
1 15 0.46 16 0.45 27 27 13 0.91 13 1 20 19 
2 15 0.48 17 0.5 26 30 13 1 32 0.51 20 22 10 

3 14 0.4 16 0.37 26 22 12 0.52 27 0.36 19 15 
  

The results of CO2 and methylformate current efficiencies calculated at different flow 

rates for 0.1 M and 0.01 M methanol at the anodic oxidation peak for Pt(331)/Ru0.2 and 

Pt(331)/Ru0.4 are summarized in Table 3-2. As at bare Pt(331), the current efficiency with 

respect to CO2 decreases with increasing methanol concentration whereas it is independent of 

the flow rate. Due to incomplete mixing in the dual thin layer cell, the apparent current 

efficiency with respect to methylformate increases with increasing flow rate of the electrolyte. 

With increasing Ru coverage at the step sites of Pt(331), CO2 current efficiency decreases in 

agreement with literature [1]. The results in ref. [1] and also here are different from the results 

of Wang et al. at Ru0.2/Pt(332) electrode [17]; there, even with complete Ru step decoration, 

the current efficiency for CO2 increases from 25 % to 46 %. In case of Ru0.2/Pt(331), ca. 4 free 

Pt rows are still available for methanol adsorption and oxidation. Here, however, Ru modified 

Pt(331) has a 1.5 atoms wide free terrace leading to much lower CO2 current efficiencies 

because this atomic ensemble is not sufficient for methanol adsorption and oxidation [20, 21]. 

Therefore, here, the formation of soluble intermediates (HCHO and HCOOH) through the 

non-CO-pathway exceeds the CO pathway. Step decoration with Ru leads to faster adsorption 

(shown later) but no increase in the Faradaic current or CO2 current efficiency at high 

potentials. In this case one could expect the change of the rate determining step from the 
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oxidative removal of COad to the formation of COad at the steps where there is no 

corresponding increase in the COad oxidation current with increasing Ru coverage. 

 
3.2.2.2 Potentiostatic measurements 

To start the reaction at un-poisoned surface at constant potential, a series of potential 

step experiments were done first at bare Pt(331) and compared afterwards to the Ru modified 

Pt(331). To do so, after checking the cleanliness of the electrode by CV, the potential is 

stepped from 0.05 V (where the methanol containing solution is introduced to the cell) to 

different adsorption potentials from 0.5 to 0.8 V for 0.1 M and 0.01 M methanol as shown in 

Fig. 3-7 A and B respectively. The Faradaic current transients are recorded simultaneously 

with the ionic current transients in all cases. For both concentrations, at 0.5 and 0.6 V the 

current is constant after 10 s, whereas at higher potentials the current decreases over the whole 

oxidation period due to deactivation of the platinum surface caused by slow adsorption of OH 

or O at potentials higher than 0.7 V. A similar behavior has been observed before with smooth 

Pt(Poly) and platinum single crystal electrodes [4, 22-24].  
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Figure 3-7 The Faradaic current transients (IF) and the mass spectrometric ionic current 

transients for m/z = 44 and m/z = 60 recorded simultaneously during 2 min of methanol 

potentiostatic oxidation of methanol at smooth Pt(331) in 0.5 M H2SO4 solution + (A) 0.1 M 

and (B) 0.01 M methanol after the step of the potential from 0.05 V to different potentials.  
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Table 3-3 shows the current efficiencies with respect to both CO2 and methylformate 

or only CO2 during the potentiostatic oxidation of methanol at smooth Pt(331) for different 

step potentials, methanol concentration and flow rates. At 0.1 M methanol, the current 

efficiency with respect to CO2 increases with increasing potential due to faster oxidation of 

methanol adsorbate (COad). At 0.01 M methanol, however, the same behavior is observed 

only until 0.7 V and then CO2 current efficiency decreases at 0.8 V.  

With increasing methanol concentration, CO2 current efficiency decreases in a good 

agreement with the results of the potentiodynamic experiments shown above. A similar 

behavior was observed before in case of Pt(Poly) electrode [16, 24]. CO  increases with 

increasing methanol concentration while it decreases in all cases with increasing adsorption 

potential due to the increased rate of adsorbate oxidation. CO  is independent of the flow rate; 

formation of CO from soluble intermediates is therefore negligible. If it was not, more CO 

adsorbate would be formed at lower flow rates due to longer residence times [24]. An 

adsorbate coverage of less than 2 % is calculated at 0.8 V for 0.01 M and of ca. 5 % for 0.1 M. 

Hence, lowering of concentration leads to lower adsorbate coverage and thus consequently 

lower methanol oxidation current transients and CO2 current efficiencies observed at 0.8 V 

(cf. Fig. 3-7 B and Table 3-3).  

 The coverage of COad as well as CO2 current efficiency are not affected by increasing 

flow rate of the electrolyte, both confirms the parallel pathway mechanism. The apparent 

methylformate current efficiency increases with increasing convection due to incomplete 

mixing in the dual thin layer flow through cell [15] which corroborates with results of the 

potentiodynamic oxidation shown above. With increasing potential, CO2 current efficiencies 

increase whereas that of methylformate decreases as reported before [16, 19, 23-25]. 
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Table 3-3 Current efficiencies with respect to CO2 and methylformate during the potentiostatic 

oxidation of methanol at Pt(331) together with the corresponding CO coverages at different 

applied potentials, methanol concentration and flow rates. 

0.1 M Methanol 
0.01 M 

Methanol u /  
µLs-1 

Ead / V 
vs. 

RHE A44 % A60 % %CO  A44 % %CO  

0.5 7 0.45 17 10 15 
0.6 18 0.4 13 23 7 
0.7 23 0.21 6.5 27 2 

2 

0.8 27 0.13 4.5 18 1.5 
0.5 10 0.87 22 15 18.5 
0.6 16 0.45 15 20 6.5 
0.7 21 0.4 6 30 3 

5 

0.8 26 0.34 3 17 1.7 
0.5 13 2.3 21 20 11.5 
0.6 16 0.6 12.5 22 5 
0.7 19 0.55 4.5 28 1.3 

10 

0.8 22 0.4 1.5 16 0.5 
 

The effect of Ru step decoration was also studied during the potentiostatic oxidation of 

methanol at Ru half or completely step decorated Pt(331) electrode using two different 

methanol concentrations as shown in Fig. 3-8 (A-D). The Faradaic current and the ionic 

current transients of m/z = 44 and m/z = 60 (in case of 0.1 M methanol) or only m/z = 44 (in 

case of 0.01 M methanol) were also recorded simultaneously similar to bare Pt(331). At the 

Ru/Pt(331) surface an oxidation current transient is already detectable at 0.4 V, i.e. lower by 

0.1 V than at the bare surface in accordance with the results of the potentiodynamic 

measurements. The lowering of the methanol oxidation current transients increases in the 

following order: Ru0.4/Pt(331) > Ru0.2/Pt(331) > Pt(331) and the reason for inhibition is that 

methanol is preferably adsorbed and oxidized at steps; hence, when blocking them by Ru, i.e., 

only one row of Pt in the terrace will be available, the oxidation current is largely inhibited 

due to absence of the contiguous adsorption sites.         
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Figure 3-8 The Faradaic current transients (IF) and the mass spectrometric ionic current 

transients for m/z = 44 and m/z = 60 recorded simultaneously during 2 min of potentiostatic 

oxidation of 0.1 M and 0.01 M methanol at Ru0.2/Pt(331) (A, B)  and Ru0.4/Pt(331) (C, D) 

respectively after the step of the potential from 0.05 V to different potentials. 



3. Electrocatalytic oxidation and adsorption rate of methanol 

The current efficiencies for CO2 and methylformate produced during the oxidation of 

methanol at Ru/Pt(331) electrode are also calculated and summarized in Table 3-4. At 

Ru0.2/Pt(331) and Ru0.4/Pt(331), the current efficiencies with respect to CO2 are higher than 

bare Pt(331) at low potentials (< 0.7 V) and then decrease at 0.7 V. Ru promotes methanol 

oxidation at low potentials by the electronic effect (high methanol adsorption rate (shown 

later) and higher CO , compare Tables 3-3 and 3-4). At high potentials, however, the co-

catalytic activity decreases due to the transformation of an active Ru hydrous oxide to an 

inactive anhydrous oxide as reported before [4]. Complete blocking of the platinum step sites 

at high Ru coverage (40 %) shifts the oxidation reaction to the non-CO-pathway in agreement 

with the results of the potentiodynamic experiments shown above. This means that the free 

step sites are most important for methanol adsorption and oxidation and the decrease of the 

COad coverage is accompanied by a decrease in the CO2 current efficiencies and the formation 

of high amount of soluble intermediates.  

 
Table 3-4 Current efficiencies with respect to CO2 and methylformate during the potentiostatic 

oxidation of methanol at Ru step decorated Pt(331) together with the corresponding CO 

coverages at different applied potentials, methanol concentration and flow rates. 

Surface Ru0.2/Pt(331) Ru0.4/Pt(331) 

0.1 M methanol
0.01 M 

methanol 
0.1 M methanol 

0.01 M 
methanol u /  

µLs-1 

Ead / V 
vs. 

RHE 
A44 
% 

A60 
% 

CO
% 

A44 
% 

CO
% 

A44 
% 

A60 
% 

CO
% 

A44 
% 

CO
% 

0.4 13 0.63 31 20 25 10 0.53 20 15 14 
0.5 20 0.5 24 25 20 12 0.42 11 13 3.5 
0.6 25 0.4 14 30 8.5 15 0.36 5 20 2 

2 

0.7 20 0.25 8 24 4 12 0.37 4 18 1 
0.4 18 0.9 28 22 23 8.5 0.75 19 10 12.5 
0.5 25 0.8 22 30 10 19 1.24 10 15 3 
0.6 30 0.5 11 35 4 22 0.55 3.5 28 1 

5 

0.7 22 0.3 5 30 1.2 13 0.78 2.5 20 0.7 
0.4 13 1.4 24 18 18 8 2 15.6 12 13.5 
0.5 23 1.3 13 29 10.5 14 1.4 6 16 4 
0.6 27 1.2 7 33 3.5 18 0.93 2.5 22 3 

10 

0.7 20 0.4 3 30 0.8 10 0.85 1.5 19 1.5 
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3.2.3 Methanol adsorption rate at platinum single crystal electrodes 
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Figure 3-9 Variation of the relative coverage of methanol adsorbate ( CO ) with adsorption 

potential at different platinum single crystal electrodes. The adsorption of methanol was 

carried out for 2 min in 0.1 M CH3OH + 0.5 M H2SO4 solution. Results at Pt(Poly) are also 

shown for comparison. Inset: The Faradaic current transients recorded during the adsorption 

of methanol at 0.45 V for Pt(331) and Pt(332), and at 0.3 V for Pt(100) and Pt(11,1,1) for 2 

min. 

 
In order to investigate the potential dependence of the maximum CO coverage formed 

during methanol adsorption at Pt(331), Pt(100) and Pt(11,1,1) electrodes, a number of 

potential step experiments were performed starting from clean surface (at 0.05 V) to different 

adsorption potentials. As depicted in Fig. 3-9, at low potentials the limiting coverage of 

methanol adsorbate increases with increasing adsorption potentials, and at high potentials 

(above 0.45 V, at Pt(331) and above 0.3 V, at both Pt(100) and Pt(11,1,1)), it decreases again 

where the oxidation of methanol adsorbate occurs at these potentials. Therefore, the coverages 

obtained at 0.45 V (ca. 31 %, for Pt(331)) and at 0.3 V (ca. 16 %, for Pt(100) and ca. 13 %, 

for Pt(11,1,1)) are the steady state coverage during methanol adsorbate oxidation at these 

surfaces compared to a coverage of 50 % obtained at 0.5 V for Pt(Poly). Lanova et al. also 

reported a coverage of 56 % [8, 26] whereas a coverage of 30 % was reported by Wang et al. 
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[17]. At Pt(332), a coverage of 17 % was obtained at 0.45 V in agreement with a value of 15 

% obtained before in literature [17] at 0.35 V.   

The influence of adsorption time and adsorption potential on the relative coverage of 

methanol adsorbate were investigated at Pt(331) and Pt(332) as shown in Fig. 3-10. At both 

electrodes, at Ead = 0.45 V, the maximum adsorption time, where I got the saturation 

coverage, is 2 min. It is obvious that, depending on the adsorption potential the saturation time 

will change. At Ead = 0.35 V, i.e. lower than the saturation potential, the maximum coverage is 

obtained after 5 min of adsorption. On the other hand, at Ead = 0.65 V, i.e. higher than the 

saturation potential, the maximum coverage is obtained after 5 s.     
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Figure 3-10 Effect of adsorption time on the relative coverage of methanol adsorbate ( CO ), 

at smooth Pt(331) and Pt(332) electrodes. Adsorption of methanol was carried out in 0.1 M 

CH3OH + 0.5 M H2SO4 solution at 0.35 V (squares), 0.45 V (triangles) and 0.65 V (cycles) 

for Pt(331) and at 0.45 V (stars) for Pt(332). 

 
Appropriate rates of methanol adsorption are calculated from the slope of the line 

taken at coverages achieved after short adsorption times (≤ 1 s). The results are shown in 

Table 3-5 together with the maximum adsorption coverage,  of methanol adsorbate at 

each surface. At Pt(331), the methanol adsorption rate is 10 fold higher when increasing the 

potential from 0.35 to 0.45 V corresponding to a Tafel slope of approximately 100 mV dec-1. 

%max
CO

Whereas the methanol adsorption rates increases with adsorption potential the 

maximum saturation coverage decreases above 0.5 V: at the potential of adsorption also 
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oxidation occurs and hence results in a decrease of the steady state coverage. Both the 

adsorption rate and maximum saturation coverage decreases with decreasing step density from 

Pt(331) to Pt(332). This indicates that Pt(331) is more active for methanol adsorbate 

adsorption and oxidation and methanol adsorbate is preferably formed and oxidized on the 

steps.   

 
Table 3-5 The rates of methanol adsorption (determined for = 1 s) and the maximum 

adsorption coverages at different platinum surfaces for different adsorption potentials 

min
adt

Surface 
Ead / V 

vs. RHE 
rads / MLs-1 %max

CO  

0.35 0.003 22.5 
0.45 0.03 31 Pt(331) 
0.65 0.06 12 

Pt(332) 0.45 0.01 17.5 
Ru0.2/Pt(331) 0.03 37 
Ru0.4/Pt(331) 

0.35 
0.04 19 

Pt(100) 2.2 16 
Pt(11,1,1) 

0.3 
1.8 13 

0.3 0.083 44.7 
Pt(Poly) 

0.4 0.19 n.d. 
            n.d.: not determined 

 

As depicted in Table 3-5, step decoration with Ru have a significant effect on both the 

adsorption rate of methanol as well as . A comparison between the relative coverage of 

methanol for bare Pt(331) and Ru step decorated Pt(331) with different Ru coverage on the 

surface is shown in Fig. 3-11. With increasing Ru coverage, the rate of methanol adsorption 

increases due to electronic effect of Ru; where the electronic properties of the substrate (Pt 

atom) are modified by the second component (Ru adatom) either by modification of the 

adsorption enthalpy of COad or lowering of the activation energy [7, 27-29]. 

%max
CO

On the other hand, the steady state saturation coverage of methanol adsorbate is also 

affected by Ru step decoration. Up to 20 % of Ru on the surface, the saturation coverage is 

increased from 22.5 to 37 % however with increasing Ru coverage to 40 % the coverage 

decreases to 19 %. 3-4 contiguous platinum sites are necessary for methanol adsorption as 

reported before [21]. In case of 20 % Ru on the surface (i.e. ca. 50 % Ru on the steps) the 

COad coverage increases due to electronic effect of Ru atoms on the platinum sites in the 

vicinity of them. At short distances (40 % Ru on the surface corresponding to ca. 90 % on the 
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steps) a repulsive interaction between Ru adatom and the adsorbed CO molecules leads to a 

decrease of the CO coverage at these surfaces. Also in this case, only one row Pt atoms will 

be only available for methanol adsorption and this also lead to a decrease of the coverage.    
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Figure 3-11 Effect of Ru step decoration on the relative coverage of methanol adsorbate 

( CO ). Adsorption of methanol was carried out in 0.1 M CH3OH + 0.5 M H2SO4 solution at 

0.35 V for 2 min on bare Pt(331) (squares), Ru0.2/Pt(331) (triangles) and Ru0.4/Pt(331) 

(cycles). 

  
The rate of methanol adsorption was also determined at Pt(100) and Pt(11,1,1) 

electrodes (cf. Fig. 3-12). As depicted in Table 3-5, unlike Pt(331) and Pt(332) electrodes, at 

these surfaces, an increasing step density leads to a decrease in the rate of methanol 

adsorption implying that at these surfaces methanol adsorption is not preferred at step sites. 

The surface with limited number of terrace sites (Pt(11,1,1)), due to the presence of step edge 

has the lower adsorption rate as well as lower steady state coverage comparing to Pt(100) with 

infinite number of terrace sites. Moreover, the saturation coverage is achieved after 10 s at 

Pt(100) compared to 1 min at Pt(11,1,1) implying a very fast poisoning rate at Pt(100) 

electrode in consistence with the results of Xu et al. [30] who reported a decrease in the CO2 

current efficiency during methanol oxidation at Pt(100), Pt(15,1,1) and Pt(711) by increasing 

step density and attributed that to the geometric ensemble effect. 
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Figure 3-12 Effect of adsorption time on relative coverage of methanol adsorbate ( CO ), at 

Pt(100) (squares) and Pt(11,1,1) (triangles) electrodes. Adsorption of methanol was carried 

out in 0.1 M CH3OH + 0.5 M H2SO4 solution at 0.3 V for 2 min. 

 
3.2.4 Methanol adsorption rate at smooth Pt(Poly) electrode 

For a smooth Pt(Poly) electrode, the methanol adsorption rates were also determined at 

shorter adsorption times using two different methanol concentrations (0.1 M and 0.01 M). 

Measuring the rate at shorter time has the advantage of following up the fast poisoning rate of 

such reaction more accurately. To do so, after cleaning the electrode by cyclic voltammetry in 

the supporting electrolyte, the potential was stopped at 0.05 V, where the methanol containing 

solution was introduced to the cell then, the potential was stepped to 0.3, 0.4, 0.5 and 0.6 V 

(in case of 0.1 M methanol, cf. Fig. 3-13 A) or to 0.4, 0.5 and 0.6 V (in case of 0.01 M) where 

methanol is allowed to adsorb for different adsorption time (tad ≤ 5 s). The Faradaic current 

and the mass spectrometric ion current for m/z = 44 (CO2) were recorded simultaneously. 

Obviously, from the current transients, the oxidation of methanol adsorbate is only started at 

0.5 V.  

After 5 s, the potential was stepped back to 0.05 V to perform another electrolyte 

exchange. The Faradaic current and the mass spectrometric ion current of m/z = 44 (CO2) 

during the oxidation of methanol adsorption product formed after potential step experiments 

at different applied potentials for tad = 5 s are shown in Fig. 3-13 B. With decreasing coverage, 

the oxidation peak shifts to more negative potentials whereas the onsets of all oxidation peaks 
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ts for m/z = 44 recorded simultaneously during the adsorption of methanol at smooth 

M H2SO4 solution + 0.1 M methanol after the step of the potential from 0.05 V 

to 0.3 

overlap, demonstrates zero ord reaction with respect to the coverage in accordance with  e

literature [26].  

 

 

 

 

 

 

 
 
Figure 3-13 (A) The Faradaic current transients (IF) and the mass spectrometric ionic current 

transien

Pt(Poly) in 0.5 

V, 0.4 V, 0.5 V and 0.6 V, tad = 5 s (B) Oxidation of the methanol adsorption product, 

scan rate: 10 mVs-1 and electrolyte flow rate: 5 µLs-1. 

  
According to equation (2-6), the relative coverage of methanol adsorbate ( CO ) was 

calculated from the integrated charge of CO2 and plotted against adsorption time for 0.1 M 

and 0.01 M methanol (Fig. 3-15 A and B respectively). For both concentrations, methanol 

adsorption is very fast at short time, i.e. when the majority of the surface is free. The 

appropriate initial rate of adsorption (dθ/dt at tad = 0) is therefore calculated at a coverage 

achieve

 saturation coverages 31 %, in case of 0.1 M methanol and 21 %, in case of 

0.01 M was achieved after 2 s. The steady state coverage obtained at 0.6 V is lower than 56 % 
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d after short adsorption time (tad ≤ 1 s) which were different and obviously more 

reliable than those reported before in literature [26] because here the initial rate calculated 

from the slope at shorter adsorption times.    

After 5 s, saturation coverage was not yet achieved at potentials ≤ 0.5 V (cf. Fig. 3-14 

C). At 0.6 V, the
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where at this potential, a part of the adsorbate is already oxidized to CO2 (cf. m/z = 44 signal 

in Fig. 3-13 B).  
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Figure 3-14 Variation of the relative coverage of methanol adsorbate ( CO ) with methanol 

concentration (A), (C) 0.1 M and (B) 0.01 M, adsorption time and adsorption potentials (0.3 

V, 0.4 

er concentration. As the adsorption potential increases, the rate of methanol 

adsorption also increases in accordance with literature [31-35]. The later is explained by the 

potential-dependent Tafel slope according to Tafel equation and then the ate sh uld in

V, 0.5 V and 0.6 V) at smooth Pt(Poly) electrode. (C) Results of the same experiment 

but with longer adsorption times adopted from ref. [8] are shown for comparison. 

 
As depicted in Table 3-6, methanol adsorption rate increases with increasing methanol 

concentration since the amount of the reacting species reach the surface of the electrode are 

higher at high

 r o crease 

according to:  

E/bαzFη/RT
ads keke

dθ
r      

0tdt 

Here, Tafel slope (b) = 2.3RT/αzF wher

        (3-4)       

e, α is the transfer coefficient and z is the number of 

electron transferred in the rds. 
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Table 3-6 The rates of methanol adsorption at smooth Pt(Poly) for different adsorption 

potentials and methanol concentrations. 

s / MLs-rad
1 E  

RHE 
0.1 M  

Methanol 
0.01 M  

Methanol 

ad/V
vs. 

0.3 0.1 n.d. 
0.4 0.26 0.08 
0.5 0.7 0.2 
0.6 1 0.35 

                                             n.d.: not determined 

  
The logarithm of the adsorption rates as a function of adsorption potentials is plotted in 

Fig. 3-15. Tafel slopes of 237 and 250 mV dec-1 are obtained in case of 0.1 M and 0.01 M 

methanol respectively which is higher than the usual slope of 118 mV dec-1 predicted from the 

Tafel equation for an rds involving one electron transfer with a transfer coefficient of ca. 0.5. 

A slope of approximately 100 mV dec-1 was obtained above at the Pt(331) single crystal 

electrode. Different Tafel slopes might be due to a different potential dependence of the rate 

due to different surface structure.  Recently, Shao et al. reported a Tafel slope of 440±30 mV 

dec-1 for the dehydrogenation of 2 M methanol at platinum film deposited at Silicon prism as 

studied by ATR-FTIR spectroscopy under flow conditions [31]. In their calculations, they 

consider the slope of the line from 0.3 up to 0.7 V. In fact, at potentials ≥ 0.6 V, the oxidation 

of methanol adsorbate will start. In Fig. 3-15, however, I consider only the slope until E < 0.6 

V. Evaluating their data for low coverages and low potentials, also a Tafel slope of ca. 200 

mV dec-1 is obtained. According to their measurements, the reasons for the unusual slopes are: 

(i) the rds for methanol dehydrogenation is the heterolytic break of C-H bond associated with 

one electron transfer but with small apparent transfer coefficient (α = 0.13) i.e. only a small 

amount of the interfacial potential difference is contributed to the reduction of the activation 

barrier for the rds in agreement with DFT calculations [36, 37] (ii) the rds is the homolytic 

splitting of C-H bond followed by a fast discharge of Had; i.e. no charge transfer is involved in 

the rds.  
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Figure 3-15 Tafel plots of the methanol adsorption rate as a function of adsorption potentials 

at smooth Pt(Poly). Black squares (0.1 M methanol) and blue squares (0.01 M methanol).   

 

3.2.5 Oxidation of methanol adsorption product 

In the following, the stripping peaks of the methanol adsorption products obtained in 

the previous experiments (cf. Fig. 3-16 and 3-17) shall be explained in detail. The 

disappearance of the hydrogen desorption peaks in the first anodic cycle is due to blocking of 

the platinum sites with adsorbed methanol.  

As shown above in Fig. 3-13 B, with decreasing coverage, the oxidation peak shifts to 

more negative potentials whereas the onsets of all oxidation peaks overlap demonstrating a 

zero order reaction with respect to the coverage. In ref. [26], the authors attributed that to the 

presence of special active sites to which COad diffuses. As shown in Fig. 3-16 A, different 

from the shape of methanol adsorbate stripping peaks at Pt(Poly), both the onset potential and 

the peak potential shift in the anodic direction with decreasing methanol adsorbate coverage. 

On Pt(331), the same result is also obtained when varying the coverage by adsorption of 

methanol at different adsorption times (cf. Fig. 3-16 B). Here, as reported before for the same 

reaction at Ru modified Pt(Poly) [26], it is hardly to imagine a reason for a reaction order 

higher than 1; rather, the behavior signifies the presence of different adsorption sites with 

different adsorption enthalpies. Pt(331) is a surface with a 2 Pt atoms narrow terrace and one 

monoatomic Pt step. At low coverage, the sites leading to the most stable adsorbate (step 

sites) are populated, at higher coverage those with high positive adsorption enthalpies (terrace 
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sites) are also populated and the onset of oxidation and the peak potentials are shifted to lower 

values. 

As depicted in Fig. 3-16 (C, D), at Ru0.2/Pt(331) electrode, the onset potential of 

methanol adsorbate oxidation was shifted by ca. 0.1 V to the negative direction when 

compared to bare Pt(331). Again, this is due to the electronic and bifunctional effects of Ru 

[4]. Both the onset potential and the peak potential of methanol adsorbate oxidation were also 

shifted to more positive potential with decreasing coverage. This behavior was reported before 

for Ru modified Pt(Poly) and platinum nanoparticles electrodes [26] and also on Ru modified 

platinum single crystals [6, 7] when the oxidation of CO at these surfaces results in a distinct 

two oxidation peaks at different potentials. Two different methanol adsorbate (COad) 

oxidation peaks can be also visible in Fig. 3-16 (C, D) at Ru0.2/Pt(331) electrode. The 

interpretation for that is, as pointed out above, the presence of two different adsorption sites 

with two different adsorption enthalpies; at low methanol adsorbate coverage, the oxidation 

will occur at potentials similar to bare Pt(331) because the adsorbate will be populated at the 

most stable sites away from Ru. At high adsorbate coverage, Pt sites in the close vicinity of 

Ru will be also populated and the oxidation of COad formed at these sites results in a shift in 

both the onset potential and the peak potential to the negative direction.  

At Ru0.4/Pt(331), the same shift (by ca. 0.1 V to the negative direction) is observed (cf. 

Fig. 3-16 (E, F)) similar to Ru0.2/Pt(331), but without the two distinct methanol adsorbate 

oxidation peaks; rather, a very broad oxidation peak is observed. Here, as pointed out above, 

for the oxidation of pre-adsorbed CO at Ru0.4/Pt(331) electrode, the concept of two different 

adsorption sites is no more valid when the steps are almost completely blocked by Ru. Similar 

to CO adsorbed from CO saturated electrolyte, COad formed from methanol can only adsorbed 

at the uncovered terrace sites (one row of Pt) and on Ru. These molecules, however, are still 

affected by the bifunctional effect of Ru atoms at the steps, hence, methanol adsorbate 

oxidation peaks were also shifted to more negative potentials compared to bare surface.    

The oxidation of methanol adsorption product at Pt(100) and Pt(11,1,1) electrodes at 

different adsorption potentials and times is shown in Fig. 3-17 (A, B) and (C, D) respectively. 

Both the onset potential and the peak potential of methanol adsorbate oxidation shift to more 

positive values with increasing adsorption potential. Here, it seems that different adsorption 

potentials lead to methanol adsorption at different sites (defects or terrace sites). At potentials 

≤ 0.3 V, methanol adsorption occurs at most active sites and then the adsorbate formed at 

those sites will be oxidized at low potentials. However, at potentials > 0.3 V, simultaneous 
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oxidation during adsorption occurs and only methanol adsorbate formed at stable sites 

survives and oxidized at more positive potentials. 
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Figure 3-16 The Faradaic currents (IF) and the mass spectrometric ionic currents for m/z = 

44 recorded simultaneously during the electrooxidation of methanol adsorbate after step of 

the potential from 0.05 V to different adsorption potentials or times (Estep = 0.35 V) at 

Pt(331) (A, B), Ru0.2/Pt(331) (C, D) and Ru0.4/Pt(331) (E, F) respectively in 0.1 M 

methanol + 0.5 M H2SO4 solution. Scan rate: 10 mVs-1. Electrolyte flow rate: 5 µLs-1.  
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Figure 3-17 The Faradaic currents (IF) and the mass spectrometric ionic currents for m/z = 44 

recorded simultaneously during the electrooxidation of methanol adsorbate after step of the 

potential from 0.05 V to different adsorption potentials or times (Estep = 0.3 V) at Pt(100) (A, 

B) and Pt(11,1,1) (C, D) respectively in 0.1 M methanol + 0.5 M H2SO4 solution. Scan rate: 

10 mVs-1. Electrolyte flow rate: 5 µLs-1. 
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3.3 Conclusions 

In the present chapter, the effect of Ru step decoration during the potentiodynamic and 

potentiostatic oxidation of methanol at Pt(331) single crystal electrode has been studied and 

compared to the same reaction at bare surface. Also, the effect of methanol concentration, 

flow rate and potential on the obtained CO2 and methylformate current efficiencies was 

investigated. At Ru/Pt(331) electrodes with different Ru coverages at the steps (from 0 to 40 

%), CO2 current efficiencies and the degree of surface poisoning with COad are independent of 

flow rate; both confirm the parallel pathway mechanism for the electrooxidation of methanol 

at platinum electrode. CO2 current efficiencies decrease with increasing methanol 

concentration and increase with increasing potential, whereas that of methylformate shows the 

reverse trend. Ru electrodeposited at Pt(331) step sites promotes the adsorption and oxidation 

of COad formed from methanol at low potentials according to electronic and bifunctional 

mechanisms. At high potentials, however, Ru loses its co-catalytic activity. Complete 

blocking of the platinum step sites with Ru shifts the oxidation to the indirect pathway (non-

CO-pathway) and thus results in low CO2 current efficiencies. It leads also to inhibition of 

methanol oxidation due to blocking of the most platinum active sites necessary to the first step 

of methanol adsorption and oxidation.  

Some methanol adsorption rates obtained during methanol adsorption at smooth 

Pt(Poly) and platinum stepped single crystals have been presented. At Pt(Poly), the adsorption 

rate increases with increasing methanol concentration and adsorption potentials. A Tafel slope 

between 237 mV dec-1 (in case of 0.1 M methanol) and 250 mV dec-1 (in case of 0.01 M 

methanol) obtained here at potentials < 0.6 V is more reliable than the values of ca. 400 mV 

dec-1 reported before in literature [31] where the Tafel slope at a potential ≥ 0.6 V  was 

calculated during the dehydrogenation of 2 M methanol and where the oxidation of  methanol 

adsorbate already starts. At Pt(331) and Pt(332) electrodes, methanol adsorption rate is 

doubled with doubled step density, higher with higher Ru coverage and increases by a factor 

of 10 per 0.1 V (Tafel slope of ca. 100 mV dec-1). I attributed the difference in the adsorption 

rates and consequently the difference in potential dependence of the rate to the difference in 

surface structure. Increasing the step density from Pt(100) to Pt(11,1,1) however, leads to a 

decrease in the steady state coverage and the methanol adsorption rate due to the geometric 

ensemble effect . 

 The stripping peaks during the oxidation of the methanol adsorption product formed at 

Pt(Poly), Ru/Pt(331), Pt(100) and Pt(11,1,1) electrodes were also compared. At Pt(Poly), with 
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decreasing coverage, the methanol adsorbate oxidation peaks shifts to more negative 

potentials whereas, the onsets of all peaks overlaps, signifying a zero order reaction with 

respect to the coverage. The zero order kinetics of methanol adsorbate oxidation at Pt(Poly) 

was attributed before [26] to the presence of special active sites (defects) to which the COad 

diffuses. Further improvements of such interpretation will be mentioned in chapter 5, part 

5.2.4 of this thesis. Different from the behavior of methanol adsorbate oxidation at Pt(Poly), at 

Ru/Pt(331), with decreasing coverage, both the onset potential and the peak potential of 

methanol oxidation were shifted to more positive values. Such behavior was rather attributed 

to the presence of different adsorption sites with different adsorption enthalpies. Similar to 

Ru/Pt(331) electrodes, at Pt(100) and Pt(11,1,1), the shift was also observed. Here, different 

adsorption sites are rather due to different adsorption potentials; at low potentials (E ≤ 0.6 V), 

only the most active sites are populated by methanol adsorbate (COad) and thus the adsorbate 

formed at those sites will be oxidized at low potentials. At high potentials, however, the 

simultaneous oxidation/adsorption reaction will occur and only COad at stable sites survives 

and then oxidized at high potentials.  
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4. Electrocatalytic oxidation of ethanol 
 

4. Electrocatalytic oxidation of ethanol 
 
 

4.1 Introduction 

  
Due to the difficulties and risks associated with the transport and handling of 

hydrogen, the direct use of alcohols as a fuel in fuel cells is an alternative. Comparing to 

methanol, ethanol can be produced easily from biomass, is less toxic, easy to be stored and 

has a higher mass energy density. In this chapter, using the dual thin layer flow through cell, I 

investigated the electrooxidation of ethanol at Pt(Poly), smooth, roughened and Sn modified 

Pt(11,1,1), Pt(311) single crystal electrodes by on-line differential electrochemical mass 

spectroscopy (DEMS). In addition to the current efficiency of CO2, that of acetaldehyde was 

determined as a function of flow rate. The aim is to analyze in detail the contribution of the 

possible reaction products, in particular CO2, to the overall current and to investigate the 

effect of single crystal surface modification with Sn during the oxidation of ethanol. At high 

flow rates, the apparent acetaldehyde current efficiencies are too high due to incomplete 

mixing in the dual thin layer flow through cell. To obtain reliable values of acetaldehyde 

current efficiencies, I present here a new calibration procedure based on the oxidation of i-

propanol at Pt(Poly) under the same experimental conditions to that of ethanol. Assuming a 

product (acetone) current efficiency of 100 %, the true acetaldehyde current efficiencies can 

be calculated.   

 

4.2 Results and discussion 

4.2.1 Electrooxidation of ethanol at smooth Pt(Poly) 

4.2.1.1 Potentiodynamic measurements 
  

The potentiodynamic oxidation of 0.01 M ethanol in 0.5 M H2SO4 supporting 

electrolyte at smooth Pt(Poly) is shown in Fig. 4-1A, it includes the Faradaic current (IF) and 

the ion currents for m/z = 44 (CO2 + CH3CHO) and m/z = 29 (acetaldehyde) for ethanol 

oxidation. The appearance of the hydrogen desorption peaks in the first anodic sweep is due to 

the fact that ethanol does not adsorb at 0.05 V, the potential at which ethanol containing 

solution is replacing the supporting electrolyte (cf. Fig. 4-1B).  
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Figure 4-1 (A) Potentiodynamic oxidation of 0.01 M ethanol + 0.5 M H2SO4 solutions at 

smooth Pt(Poly). The Faradaic current (IF) was recorded simultaneously with the ionic 

currents at sweep rate = 10 mVs-1 and electrolyte flow rate = 5 µLs-1. For comparison, the CV 

recorded in pure supporting electrolyte (red line) is shown. (B) Enlarged view of IF in the 

hydrogen region. (C) Three potential cycles in ethanol containing solution up to 0.3 V. 

  
The charge observed at 0.25 V in the first positive going sweep of ethanol oxidation is 

due to hydrogen desorption and alcohol oxidative adsorption [1]. Afterwards, three different 

oxidation peaks were observed at 0.7 V, 0.8 V and the third peak in the oxygen region at 1.3 
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V [2-4]. Heinen et al. reported recently the same behaviour during the oxidation of ethanol at 

a thin platinum film as studied by ATR-FTIRS [5]. According to their measurements, the 

onset of the formation of linearly bonded CO coincides with this peak at 0.25 V; therefore, 

this current is due to the oxidation of ethanol to acetaldehyde which then decomposes to COad 

and CHx,ad fragments. The increase in the oxidation current corresponds indeed to the 

formation of acetaldehyde at these low potentials (cf. Fig 4-1A, m/z = 29) whereas the 

h are only oxidized at higher 

potenti

 alcohols are adsorbed in 

cycles which was 

not visible in m/z = 29, and therefore is an indication for CO2 production.  

adsorbed acetyl species are hardly detected by IR [5].  

 After complete desorption of adsorbed oxygen during the cathodic going sweep, an 

oxidation peak at 0.65 V in addition to a reduction peak at 0.15 V were observed. The 

hydrogen desorption charges during the second anodic sweep are completely suppressed due 

to complete blocking of the platinum surface by ethanol adsorbed intermediates formed in the 

preceding cathodic sweep. Because of these adsorbates, whic

al, the oxidation current was lower in the second cycle. 

The nature of the ethanol reduction peak at 0.15 V was not discussed before. This 

peak does not correspond to either of the hydrogen adsorption peaks. In order to check 

whether it is related to the oxidation peak at 0.25 V, in an additional experiment, a CV 

between 0.05 V and 0.3 V was recorded (cf. Fig. 4-1C). The reduction peak is still visible, 

but smaller than the anodic peak. Both anodic and cathodic peaks decrease from cycle to 

cycle, obviously, due to the aforementioned formation of adsorbed CO and CHx fragments. 

After an electrolyte exchange at 0.3 V and potential cycles down to -0.1 V and then to +1.5 

V, the formation of methane and an oxidation peak for adsorbed CO were detected 

respectively (cf. Fig. 4-2). I have to conclude that the process leading to the anodic peak at 

0.25 V is partially reversible. A possibility is the reversible formation of weakly adsorbed 

ethoxy species (-OCH2CH3), which is either further oxidized to acetyl [5] or, in the cathodic 

sweep, desorbs as ethanol. Such ethoxy species are formed when

UHV [6]; they are also presumably formed at Au electrodes [7].    

 During all anodic cycles for ethanol oxidation, the mass spectrometric ion currents of 

m/z = 29 were similar to the Faradaic currents. Therefore, acetaldehyde seems to be produced 

over the whole potential range independent of the applied potential [4] but the ion current of 

m/z = 44 showed an additional shoulder at 0.7 V in the second and third 
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Figure 4-2 The formation of methane and CO2 from adsorbates (formed at smooth Pt(Poly) 

during potential sweep between 0.05 and 0.3 V in ethanol containing solution) while 

sweeping the potential to -0.1 V and then to 1.5 V in 0.5 M H2SO4 after an electrolyte 

exchange at 0.3 V. Sweep rate = 10 mV s-1 and electrolyte flow rate = 5 µL s-1.  

 

4.2.1.2 Potentiostatic measurements 

More important than the potential sweep experiments are the potential step ones, in 

which each potential step starts with a clean surface. A series of potential step experiments in 

0.01 M ethanol was done in 0.5 M H2SO4. The potential was stepped from 0.05 V to different 

adsorption potentials (0.5-0.8 V) during which ethanol was allowed to adsorb for two minutes 

as shown in Fig. 4-3A. The Faradaic and ionic current transients were recorded 

simultaneously in each case. They increase with increasing potentials up to 0.7 V and then 

decrease at 0.8 V due to surface deactivation by adsorbed oxygen species at high potentials. In 

all transients the oxidation current was high in the beginning and then it decreases with time 

due to deactivation of the platinum surface by accumulation of the adsorbed intermediates that 

block the platinum active sites. After recording current transients, an electrolyte exchange 
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with the supporting electrolyte was performed at 0.05 V and the potential was swept in the 

positive direction (cf. Fig. 4-3B). CO2 was formed at a potential where usually COad is 

oxidized. With increasing potential of the step, the COad oxidation peak decreases since at 

such high potentials ethanol adsorbate oxidation already starts. 

 
 
 

 

 

 

 

 

 

 

 

 

Figure 4-3 (A) Potentiostatic oxidation of 0.01 M ethanol + 0.5 M H2SO4 solution at smooth 

Pt(Poly) and different potential steps. (B) Oxidation of ethanol adsorbate formed previously in 

(A). The Faradaic currents (IF) were recorded simultaneously with the ionic currents in each 

case with electrolyte flow rate = 5 µLs-1, in (B) sweep rate = 10 mVs-1. 

 
As shown above and demonstrated earlier [8], COad is mainly formed from α-carbon 

atom of ethanol, whereas a CHx,ad species is mainly formed from the β-carbon atom; which 

depending on potential is slowly oxidized to COad as well or (at low potentials) desorbed as 

CH4. Therefore, there is no ''ideal'' potential for the electrolyte exchange, i.e. a potential at 

which the adsorption reaction is not proceeding any further and at which the adsorbate is 

stable. In the experiment of Fig. 4-2, the reaction continues at the potential of the electrolyte 

exchange. Therefore, I choose 0.05 V for this electrolyte exchange: Here, the adsorption 

reaction is stopped, COad is stable, but any adsorbed CHx-fragment might desorb.     
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 The coverage of COad decreases with increasing the adsorption potential due to an 

increase of the oxidation rate of ethanol adsorption product. As depicted in Table 4-1, the 

calculated coverages hardly depend on the flow rate of the electrolyte, demonstrating that the 

adsorption reaction is not diffusion limited and that the adsorption of acetaldehyde formed as 

an intermediate is also negligible under these conditions. In principle, at a low flow rate, an 

intermediate has a higher chance to reabsorb.   

 
Calculation of carbon dioxide current efficiency (  

2COA )

 For the oxidation of ethanol the Faradaic current is given by the sum of the oxidation 

ratio of the various products: 

etcIIIII OCOCHCHCH
F

COOHCH
F

CHOCH
F

CO
FF  ......323332               (4-1) 

 The ionic current corresponds only to the formation of CO2 ( ) is given by the 

difference between the total recorded ionic current of m/z = 44 ( ) and the contribution 

of acetaldehyde ionic current (0.55 ): 

2
44
COI

cordedI Re
44

CHOI 29

CHOcordedCO III 29
Re
4444 55.02             (4-2) 

Hence, is given by: 
2COA

F

CO

F

CO
F

CO IK

I

I

I
A

*
44

22

2

6 
              (4-3) 

Here, 6 is the number of electron transferred per one carbon atom during the complete 

oxidation of ethanol to CO2 and K* is the calibration constant calculated from CO calibration 

experiment (cf. chapter 2, part 2.3.3.2). 

 
Calculation of the true acetaldehyde current efficiency (A29) 

Due to incomplete mixing occurs in the dual thin layer cell at high flow rate, as 

pointed out before in chapter 1, part 1.7.3, the experimental current efficiencies of 

acetaldehyde will be too high if calibration is simply achieved by an electrolyte with a known 

product concentration. To find out the reliable current efficiencies, the oxidation of 0.05 M i-

propanol in 0.5 M H2SO4 at smooth Pt(Poly) was done (cf. Fig. 4-4A) under identical 

experimental conditions to that of ethanol for which the Faradaic current efficiency is 100 %; 

the product (acetone) has a similar diffusion coefficient and volatility as acetaldehyde.  
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Figure 4-4 (A) Potentiodynamic and (B) Potentiostatic oxidation of 0.05 M i-propanol + 0.5 

M H2SO4 solution at smooth Pt(Poly). The Faradaic currents were recorded simultaneously 

with the ionic currents in each case at flow rate = 5 µLs-1, sweep rate = 10 mVs-1 (in A). For 

comparison, the CV recorded in pure supporting electrolyte is shown in (A) (red line).   

 
During the positive going sweep, the broad oxidation peak at 0.6 V starts at 0.35 V 

was followed by another peak in the oxygen region at 1.3 V [9] while an oxidation peak at 

0.58 V was observed during the negative going sweep after complete electroreduction of 

platinum oxides. No ionic currents corresponds to the formation of CO2 (m/z = 44) was 

detected during i-propanol oxidation rather, acetone (m/z = 58) was the only detected ionic 

current in agreement with references [9-11]. The Faradaic and ionic currents transients 

recorded at 0.6 V and 0.8 V for i-propanol oxidation as shown in Fig. 4-4B were less steeper 

at 0.6 V and almost constant with time at 0.8 V when compared to the corresponding 

transients recorded at the same potentials in case of ethanol oxidation (cf. Fig. 4-3A). This is 

obviously due to much higher degree of surface poisoning with adsorption products 

(including COad) in case of ethanol while acetone is formed as the main adsorbate in case of 

i-propanol.    
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As mentioned in chapter 2, the slope of the linear relationship between the ionic 

current (Ix) and the concentration (Cx) gives the calibration constants for acetaldehyde or 

acetone times the flow rate dependent collection efficiency (f2) of the detection compartment 

and the flow rate of the electrolyte (u) [12] according to: 

x
o
xx CuKfI 2             (4-4) 

In the limiting case of very low flow rate, f2 = 1 and in the calibration experiment Ix is 

proportional to u. At high flow rates, also f2 depends on u. Here, x = 29 (acetaldehyde), 58 

(acetone), Ix is the ionic current of x species, f2 is the collection efficiency of the detection 

compartment and Cx is the concentration of x species, is defined from: o
xK

dt

dn
KI o

xx  with 

xuCf
dt

dn
2 which is the incoming flow of the species x in mol s-1. 

In an electrochemical experiment, the concentration Cx in the detection compartment is 

determined by the product formation rate in the electrochemical compartment: 

zFu

AI
C F

x                                         (4-5) 

 
Here, IF is the Faradaic current, A is the current efficiency, z is the number of electrons 

transferred and F is the Faraday’s constant. 

This, however, is the average concentration which only identical to the concentration 

at the surface of the Teflon membrane (which determines the flow into the mass spectrometer 

and thus the ion current) if a complete mixing occurs in the electrolyte before it enters the 

detection compartment (this is only the case at flow rates below 1 µLs-1 [13, 14]). At higher 

flow rates, the concentration close to the Teflon membrane is higher than the average due to 

laminar flow and incomplete mixing in the electrolyte.  

In case of complete mixing, the transfer efficiency N (the ratio of the species entering 

the mass spectrometer ( xuCf
dt

dn
2 ) to the amount of species formed at the electrode (IFA/zF) 

is identical to the collection efficiency f2 of the detection compartment (ratio of the number of 

species entering the mass spectrometer to the amount entering the detection compartment). 

In that case,  

A/zFIKfA/zFu)(IuKfI F
o
xF

o
xx 22  ,                                                                                 (4-6) 

and calibration as described before holds (cf. chapter 2, part 2.3.3.3); the current efficiency is 

given by: 
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F
o
x

x

IKf

zFI
A

2

  

At high flow rate, the residence times in the connecting capillaries is not sufficient for a 

complete mixing or inter diffusion to occur, and therefore: 

A/zFINKI F
o
xx  , with N>f2                                                                                                 (4-7) 

Or 
F

o
x

xtrue

INK

zFI
A   

Whereas in that case, app

F
o
x

x A
IKf

zFI


2

> = A trueA

In order to determine the ratio between N and f2, we used the electrooxidation of i-

propanol to acetone, which is occurring with a current efficiency of 100 %: For similar 

species, in which the nearly diffusion limited rate of evaporation into the mass spectrometer is 

similar, the ratio of the transfer efficiency to the collection efficiency will be similar:  

deacetaldehy
2

deacetaldehy

acetone
2

acetone

f

N

f

N
                                  (4-8) 

The calibration experiment with a solution of acetone gives  according to equation (4-

4): 

oKf 582

uC

I
Kf

58

a
58o

582            (4-9) 

aI58  is the ionic current of acetone recoded during acetone calibration. 

Electrooxidation of i-propanol leads to a value of  according to equation (4-7): oacetone KN 58

F

b
58o

58
acetone

I

zFI
KN                     (4-10) 

bI58  is the ionic current of acetone produced during i-propanol oxidation.  

Hence, 
a

F

b

acetone

acteone

I

uC

I

zFI

f

N

58

5858

2

                  (4-11) 

The current efficiency for the oxidation of ethanol to acetaldehyde is then given by: 

F
o
29

deacetaldehy
29

F
o
29

deacetaldehy
2acetone

2

acetone
29

29 IKN

zFI

IKf
f

N

zFI
A                 (4-12) 

Whereas the apparent acetaldehyde current efficiency is given by: 
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F
o
292

29app
29 IKf

zFI
A  ,                   (4-13) 

and that for i-propanol to acetone: 

F
o
582

58app
58 IKf

zFI
A                                (4-14) 

The correction factor is then: 

app
582

deacetaldehy

app
29

29

A

1

f

N

A

A
 ,                             (4-15) 

since I assume that A58 = 100 %. 

 
Apparent current efficiencies for acetone of 171 % at 2 µLs-1, 290 % at 5 µLs-1 and 

400 % at 10 µLs-1 calculated after the potentiostatic i-propanol oxidation at Pt(Poly) 

electrode at 0.6 V (peak potential in the CV, Fig. 4-4A) were used to calculate the true 

acetaldehyde current efficiencies at each flow rate for polycrystalline as shown in Table 4-1 

and at single crystal platinum electrodes as will be shown later.  

 Table 4-1 summarizes the values of current efficiencies with respect to CO2 ( A ) 

and acetaldehyde (A29 %) calculated during the potentiodynamic and potentiostatic oxidation 

of ethanol at smooth Pt(Poly), together with the coverage of ethanol adsorbate calculated 

using equation (2-6). In general, there was no production of CO2 but the small CO2 current 

efficiencies in the second cycle at 0.7 V may be due to the oxidation of adsorbed 

intermediates (accompanied by C-C bond splitting) during the first cathodic sweep as 

mentioned above. In the potentiostatic experiments, there was no production of CO2. This is 

in agreement with a previous study [4], where d6-ethanol was used to better distinguish 

between the formation of CO2 and acetaldehyde. The corrected current efficiencies of 

acetaldehyde are around 100 %, therefore, I concluded that under convection conditions, 

acetaldehyde is the only ethanol oxidation product at Pt(Poly) and the amount of acetic acid 

is negligible. 

%2CO

 The low current efficiency values for CO2 seem to be at variance with results obtained 

by FTIR [5, 15, 16]. For such a comparison, however, the different conditions have to be 

taken into account: Typically, in FTIR measurements a thin (1 µm), stagnant electrolyte layer 

with dissolved ethanol is comprised between the electrode and the window. At a 

concentration of 0.1 mol L-1, the total amount of ethanol in this layer is only 10 nmol cm-2 

and therefore corresponds roughly to 10 monolayers. This means that a large part of these 

molecules can adsorb and then be oxidized to CO2. This situation is completely different in 
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our thin layer cell (thickness 200 µm) and when working under convection: the number of 

molecules reaching the surface are much larger, but only a small percentage is strongly 

adsorbed and oxidized to CO2, the larger part is oxidized via weakly adsorbed intermediates 

to acetaldehyde and acetic acid. The above results (negligible current efficiency for CO2) 

confirm that CO2 is only evolved from the strongly bound adsorbate in cyclic voltammetry, 

whereas at constant potential, the reaction to acetaldehyde and acetic acid is occurring 

continuously and no CO2 is formed. 

 
Table 4-1 Carbon dioxide and acetaldehyde current efficiencies calculated during the 

potentiodynamic and potentiostatic oxidation of ethanol at smooth Pt(Poly) at different flow 

rates and potentials together with the corresponding COad coverage for the oxidation of 

ethanol adsorbate. 

Potentiodynamic measurements Potentiostatic measurements 

1st cycle 2nd cycle u / 
µLs-1 E / V 

vs. 
RHE 2

% 
COA appA29

% 
29A

% 
2

% 
COA 29A

% 

E / V 
vs. 

RHE 
IF /mA 2COA

% 
CO

% 
29A

% 

0.55a n.d. n.d. n.d. 0 100 0.5 0.013 1.4 18 102 
0.7a 0 163 95 10 78 0.6 0.04 0 8 100 
0.8a 0 157 92 0.8 69 0.7 0.066 0 4 105 
1.3a 0 134 78 0 70 

2 

0.65c 0 147 86 0 85 
0.8 0.055 0 2 92 

0.55a n.d. n.d. n.d. 0 100 0.5 0.016 0 16 99 
0.7a 0 237 82 15 80 0.6 0.046 0 7 97 
0.8a 0.6 226 78 0 67 0.7 0.068 0 2 99 
1.3a 1.3 198 68 0 73 

5 

0.65c 0 247 85 0 82 
0.8 0.06 0 1 90 

0.55a n.d. n.d. n.d. 0 92 0.5 0.018 0.6 20 102 
0.7a 2 309 77 19 71 0.6 0.048 0 7.5 103 
0.8a 5 279 69 0.3 56 0.7 0.07 0 2.8 95 
1.3a 0.1 294 74 0.1 60 

10 

0.65c 0 281 70 0 70 
0.8 0.06 0 1.6 91 

a:  anodic   c: cathodic    ''n.d.'': not determined.       

 : Example of the apparent acetaldehyde current efficiencies.    appA29
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4.2.2 Electrooxidation at Pt(11,1,1) and Pt(311) stepped single crystal electrodes 

4.2.2.1 Electrooxidation of pre-adsorbed CO 

Effect of Sn surface modification 
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Figure 4-5 (A) CVs of Pt(11,1,1) and (B) Pt(311) before and after Sn deposition in 0.5 M 

H2SO4 solution in the conventional H-cell with sweep rate of 50 mVs-1. Inset in (B): Enlarged 

view of the CV in case of Sn0.7/Pt(311) surface. (C) and (D) Model for Sn deposition at 

Pt(11,1,1) and Pt(311) respectively, the numbered sites in (C) involve step sites (2) terrace 

sites (3) and step edge site (4). The adsorption position for hydrogen at (111) sites is indicated 

by (1). The surface unit cell is shown in (D). 

 
Fig. 4-5A and B shows the typical CVs for Pt(11,1,1) and Pt(311) electrodes 

respectively recorded in H-cell before and after deposition of Sn. The current below 0.2 V in 

the CV of clean Pt(11,1,1) is due to hydrogen adsorption at (111) step sites and the sharp peak 

at about 0.25 V is attributed to hydrogen and anion adsorption at terrace atoms adjacent to 

(111) step sites (terrace edge) [17]. This peak was followed by a small peak at 0.35 V 

attributed to the hydrogen adsorption at (100) terraces. Comparing to Pt(11,1,1), with 
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increasing step density in case of Pt(311), the peak at 0.35 V diminishes while that at 0.25 V 

and the current below 0.2 V increases [17].  

The peaks at 0.25 V and 0.35 V in the CV of Sn modified Pt(11,1,1) were partially and 

completely suppressed respectively, this is due to filling of the (100) terrace sites with Sn 

before the step sites (cf. Fig. 4-5C). Similar behavior has been observed before for Cu-UPD 

on surfaces vicinal to (100) terraces [17, 18]. Cu atoms were preferentially deposited on 

Pt(100) terrace sites in which one copper atom is coordinated by four platinum atoms due to 

square symmetry while on Pt(111) it coordinates only to three due to hexagonal symmetry. 

Interesting is the positive shift of the first peak at 0.25 V to about 0.28 V when the Sn 

coverage is in the range of 25 %, this behaviour was reported before for Pt(100) electrode 

modified with about 24 % of Sn by El-Shafei et al. [19] and also for Pt(100) modified by Cu-

UPD [17].  This might be due to the effect of Sn atoms deposited on terrace edge which can 

influence the electronic character of unoccupied sites results in the H-UPD peak shift.  

The peak at 0.25 V (Hads at (100) terrace sites) as well as the current below 0.2 V (Hads 

at (111) step sites) decreases with increasing Sn coverage at Pt(311) surface. As shown in Fig. 

4-5D, there is only one type of sites for Sn deposition; the four-fold terrace site is identical to 

the step site. This explains the simultaneous decrease of the peaks for hydrogen adsorption at 

(111) step sites and at (100) terrace sites. Again, in agreement with Sn modified Pt(11,1,1) by 

decreasing the terrace width, a small shift of the potential occurs for the first peak at 0.25 V to 

about 0.27 V after deposition of Sn. At high Sn coverage (ca. 70 %), two new reversible peaks 

were developed in the CV of Pt(311), which might be due to the adsorption/desorption of 

anions close to Sn on the step sites (cf. inset in Fig. 4-5B) [20, 21]. 

After preparation of the single crystals, they were then (or after deposition of Sn) 

transferred to the DEMS cell, in which they were cleaned by adsorption and subsequent 

oxidation of CO. The Faradaic current (IF) and the mass spectrometric ionic current (I44) 

recorded simultaneously during the oxidation of adsorbed CO at Sn free and Sn modified 

Pt(11,1,1) and Pt(311) are shown in Fig. 4-6A and B respectively. In both surfaces, a 

significant shift of the main oxidation peak and the prepeak was observed in presence of Sn, 

the shift also increases with increasing Sn coverage on the surface of Pt(311) from θSn = 0 ML 

to θSn = 0.75 ML (cf. Fig. 4-6B).  

CO oxidation in two peaks in presence of Sn has been also found before [22, 23] at Sn 

modified Pt(111) and Pt(332) single crystal electrodes. There and also here in case of Sn 

modified Pt(11,1,1) and Pt(311) electrodes, the prepeak was not only shifted negatively with 

increasing Sn coverage but also largely increased due to the change of the electronic 
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properties of Pt when Sn adsorbed. While the main peak is hardly shifted in case of Sn 

modified Pt(11,1,1), it is significantly shifted in case of Pt(311) for the case of the very high 

Sn coverage.  
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Figure 4-6 The Faradaic current (IF) and the mass spectrometric ionic current for m/z = 44 

recorded simultaneously during the oxidation of pre-adsorbed CO at Sn free and Sn modified 

Pt(11,1,1) (A) and Pt(311) (B) electrodes with different coverage in 0.5 M H2SO4 at 10 mVs-1 

and 5 µLs-1.  

 
The coverage of Sn was calculated from the charge of adsorbed hydrogen at bare and 

Sn modified surfaces according to equation (2-8); values are given in Fig. 4-6A and B. 

Whereas on Pt(11,1,1) the sum of θCO and θSn is approximately 1, as expected, this is not the 

case for Pt(311): for the surface highly covered by Sn, θSn + θCO = 0.75 + 0.9 = 1.65. The 

reason may become clear from the model in Fig. 4-5D: a full monolayer of Sn corresponds to 

complete monoatomic rows of Sn on the terraces, which are not in direct contact to each 

other. Deposition of further Sn in the underpotential region could in principle be possible, but 

would be energetically much less favourable, because such Sn atoms would only coordinate 

to 2 instead of 5 Pt atoms. In ref. [24], it was shown that one Sn atom suppresses the 

adsorption of 3 hydrogen atoms. Therefore, it is not astonishing that the relatively open ad-

lattice shown in Fig. 4-5D leads to a suppression of 70 % of the hydrogen adsorption charge 
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(or a coverage of terraces by complete rows of Sn leads to a complete suppression of 

hydrogen adsorption).  

In the above model, complete coverage of Sn corresponds to a surface concentration 

of Sn of ΓSn = 1/(S.NA) = 1.44 nmol cm-2, (with, S = d2 (n-1/2)), whereas from the hydrogen 

adsorption charge (QH = 275 µC cm-2), the number of adsorption sites is calculated to be ΓH = 

2.85 nmol cm-2. (Here, S is the area of the surface unit cell, d is the the atomic diameter, n is 

the number of atomic rows per terrace and NA is the Avogadro’s number = 6.022 × 1023 mol-

1) [17]. The theoretical density of adsorption sites is ΓH = 2.88 nmol cm-2, assuming 2 

adsorption sites per unit cell. Now assuming that CO can adsorb at all sites between the 

atomic rows of Sn, a coverage of ΓCO = 1.44 nmol cm-2 is calculated corresponding to CO = 

0.5 ML or θCO = 0.83 ML for a surface fully covered by Sn as stated above. Therefore, a CO 

coverage of θ = 0.9 ML for a Sn coverage of 0.75 ML is completely reasonable.   

 
4.2.2.2 Electrooxidation of ethanol 

Effect of surface structure 

The potentiodynamic oxidation of 0.01 M ethanol at smooth Pt(11,1,1) and Pt(311) 

electrodes is shown in Fig. 4-7A and B respectively. The Faradaic current (IF) was recorded 

simultaneously with the ionic currents of m/z = 44 and m/z = 29 in all cases. Similar to 

Pt(Poly), also at these surfaces ethanol does not adsorb at 0.05 V therefore the hydrogen 

desorption peak was still visible in the first cycle. This has been examined in an independent 

experiment by checking the coverage of ethanol adsorbate after stopping the potential at 0.05 

V for 2 min followed by electrolyte exchange and sweeping the potential to more positive 

values.  

For Pt(11,1,1), the peak at 0.32 V in the first positive going sweep was larger than in 

the supporting electrolyte; thus the corresponding change is again not only due to hydrogen 

desorption but also due to the oxidative adsorption of ethanol (cf. inset of Fig. 4-7A). A small 

oxidation current of ca. 7 µA leading to the formation of acetaldehyde was visible already at 

0.4 V and might have to be ascribed to the oxidation of ethanol at defects. The current 

increases rapidly at 0.7 V until its maximum at 0.75 V and then decreases again. In the reverse 

sweep the cathodic peak was centred at about 0.7 V where it gets its maximum value. Due to 

poisoning of the surface with adsorbed intermediates during the first sweep, the oxidation 

currents decrease in the second and third cycles.  
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Figure 4-7 Potentiodynamic oxidation of 0.01 M ethanol + 0.5 M H2SO4 solutions at smooth 

Pt(11,1,1) (A) and smooth Pt(311) (B). The Faradaic current was recorded simultaneously 

with the ionic currents in each case with a sweep rate = 10 mVs-1 and electrolyte flow rate = 5 

µLs-1. Inset in (A): Enlarged view of IF in the hydrogen region. For comparison, the CV 

recorded in the supporting electrolyte is shown (red lines). 

  
At smooth Pt(311), the onset oxidation potential is 0.5 V, similar to surfaces vicinal to 

the (111) plane (but different from Pt(11,1,1) where it is 0.7 V) [4, 25]. Both the Faradaic and 

ionic currents at the peak were lower than that for Pt(11,1,1). Colmati et al. [26] reported the 

low activity behaviour of Pt(211) towards ethanol oxidation compared to Pt(533) and 

Pt(17,15,15) electrodes. According to their measurements under stagnant conditions, with 

increasing the (100) steps vicinal to (111) terraces, a decrease in the Faradaic current was 

observed. By the help of FTIR, they ascribed the small hysteresis between the positive and 

negative going sweep to a small amount of CO being accumulated at these surfaces.       

When extending the sweep above 0.85 V, the deactivation of the surface due to oxygen 

adsorption above 0.9 V was observed for both surfaces as shown in Fig. 4-8A and B, followed 

by a broad peak at 1.3 V. At Pt(11,1,1), during the negative going sweep, an oxidation peak 
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was observed at 0.65 V. Surface poisoning by the adsorbed intermediates formed in the 

preceding cathodic sweep suppresses the hydrogen desorption peaks in the subsequent anodic 

sweeps. In the second and third cycles, the oxidation rate and consequently the current 

increase due to introduction of defects into the surface. Only after roughening, as observed 

before for Pt(19,1,1) [4], a small oxidation current becomes visible around 0.5 V which is due 

to acetaldehyde formation.  

Only at Pt(311) in the first cycle, the onset of oxygen adsorption was paralleled by an 

additional peak in the Faradaic and ionic currents at 0.94 V. Comparing the shape and the 

height of this peak in the Faradaic current to the ionic currents suggests the formation of some 

acetic acid at this potential. Previous results indicate that the (111) plane is very active in the 

formation of acetic acid and it can be detected above 0.4 V [27]. During the cathodic sweep, 

an oxidation peak was present at 0.6 V. In the second and third sweeps, the hydrogen 

desorption peaks were also suppressed. The onset oxidation potential decreases and the 

oxidation rate increases due to surface roughening. In addition to the three oxidation peaks 

observed in the first cycle, another new peak develops in the subsequent cycles located at 

about 0.77 V.  

Carbon dioxide and acetaldehyde current efficiencies calculated during the 

potentiodynamic oxidation of ethanol at smooth and roughened Pt(11,1,1) and Pt(311) 

electrodes are listed in Table 4-2. The presented current efficiency values are either calculated 

at the peak potentials or from the integrated Faradaic and ionic charges during the positive 

going sweep; integration limits (smooth surface, 0.4-0.85 V) and (roughened surface, 0.4-1 V, 

to avoid the contribution from the charge of oxygen adsorption above 1 V). For comparison, 

current efficiencies calculated from the integration of the whole cycle are also presented.  

At smooth and roughened Pt(11,1,1), the steep increase of the Faradaic current at 0.7 

V makes the comparison of the ionic currents difficult due to the long time constant of the ion 

detection (3-5 seconds). More reliable current efficiencies are then the ones calculated from 

the integrated charge. From these results, it is clear that the main ethanol oxidation product is 

acetaldehyde in accordance with the same reaction at Pt(19,1,1) [4].  

Different from Pt(11,1,1) and similar to Pt(poly), CO2 is produced at Pt(311) electrode 

as depicted in Table 4-2. Here, the recorded ionic current of m/z = 44 (CO2 + CH3CHO) was 

higher than that due to the contribution of acetaldehyde to m/z = 44 (= 0.55 I29) and hence 

CO2 is being formed. It is worth mentioning that after roughening, CO2 current efficiencies 

were higher due to the increase of surface defects (compare values at 0.7 V in Table 4-2). 
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Since the current efficiency for CO2 and acetaldehyde do not add to 100 %, acetic acid is also 

produced at smooth and roughened Pt(311) electrode. 

0.2

 

 

 

 

 
Figure 4-8 Potentiodynamic oxidation of 0.01 M ethanol + 0.5 M H2SO4 solutions on 

Pt(11,1,1) (A) and Pt(311) (B) with an upper potential limit of 1.5 V. The Faradaic current 

was recorded simultaneously with the ionic currents in each case with a sweep rate = 10 mVs-

1 and electrolyte flow rate = 5 µLs-1. For comparison, the CV recorded in the supporting 

electrolyte is shown (red lines). 
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Table 4-2 Carbon dioxide and acetaldehyde current efficiencies calculated during the 

potentiodynamic oxidation of ethanol on smooth (s) and roughened (r) Pt(11,1,1) and Pt(311) 

at different peak potentials or from the oxidation charge at 5 µLs-1. 

Surface 
Cycle 

no.  

E / V 
vs. 

RHE 

p
COA

2
 

% 

app,pA29  

% 

pA29  

% 

a
COA

2
 

% 

q
COA

2
 

% 

aA29  

% 

qA29  

% 

1 0.85 0 296 102 0 0 102 107 
2 0.84 0 296 102 0 0 96 109 s-Pt(11,1,1) 
3 0.85 0 294 101 0 0 105 98 

0.85 0 315 108 
1 

1.3 0 277 96 
0 n.d. 105 n.d. 

0.55 0 295 102 
0.75 n.d. n.d. n.d. 2 
1.3 n.d. n.d. n.d. 

0 n.d. 107 n.d. 

0.55 0 298 103 
0.75 n.d. n.d. n.d. 

r-Pt(11,1,1) 

3 
1.3 n.d. n.d. n.d. 

0 n.d. 108 n.d. 

0.7 0 200 69 
1 

0.74 0 214 74 
1.5 0 86 82 

0.7 11 159 55 
2 

0.74 3 182 63 
4 0 67 69 

0.7 10 151 52 

s-Pt(311) 

3 
0.74 7 174 60 

3 0 65 55 

0.7 0 220 76 
0.74 0 232 80 
0.77 0 217 75 
0.94 0 174 60 

1 

1.3 0 176 61 

0.7 n.d. 88 n.d. 

0.7 14 145 50 
0.74 4 153 53 
0.77 9 162 56 
0.94 0 140 48 

2 

1.3 0 168 58 

3 n.d. 68 n.d. 

0.7 19 145 50 
0.74 6 153 53 
0.77 8 159 55 
0.94 0 156 54 

r-Pt(311) 

3 

1.3 0 168 58 

3 n.d. 70 n.d. 

pA qA, and  are the current efficiencies calculated at the peak potentials, from the 

integration of the whole anodic cycle or the whole cycle respectively. 

aA

          ''n.d.'': not determined 
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Figure 4-9 (A) Potentiostatic oxidation of 0.01 M ethanol + 0.5 M H2SO4 solutions on 

smooth Pt(311) at different step potentials, the potential was stepped from 0.05 V to different 

potentials (0.4-0.6 V). (B) The Faradaic and ionic current recorded in 0.5 M H2SO4 during the 

oxidation of ethanol adsorbate at smooth Pt(311) after each potential step experiment. In (B): 

sweep rate = 10 mVs-1, electrolyte flow rate = 5 µLs-1 and inset is an expanded view of the 

Faradaic current in the ethanol adsorbate oxidation region.  

 
In order to check whether in the CV CO2 is only due to the oxidation of ethanol 

adsorption product which had been formed in the preceding cathodic sweeps or is really due 

to bulk oxidation of ethanol, I performed additional potential step experiments (cf. Fig. 4-9A). 

The Faradaic and ionic current transients increase with increasing potential. As a general trend 

for all of the potential step experiments, was always zero (cf. Table 4-3) which proves 

that CO2 in the potentiodynamic experiments was formed from the oxidation of ethanol 

adsorbate species. It is worth mentioning that COad coverage calculated at Pt(311) surface is 

lower than that for Pt(Poly) at the same potential (compare 

2COA

CO  in Tables 4-1 and 4-3). As 

mentioned above, formation of a small amount of CO at Pt(211) has been found before from 

IR spectra [26]. Here however, DEMS allowed us also to determine the amount of steady state 
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coverage of COad. Again, acetaldehyde current efficiencies in the range of 50-70 % imply the 

formation of some amount of acetic acid.  

  It is well known that Pt(311) surface is in the turning point of (2n-1,1,1) series; it can 

be designated as Pt(s)[2(100)×(111)] or Pt(s)[2(111)×(100)]. The terrace-step model is no 

longer valid when the terraces are very short. The terrace atoms are affected by the change in 

the electronic properties caused by the presence of the steps leading to a unique behavior [26]. 

At Pt(111) under stagnant conditions, it has been found that acetic acid is the main product of 

ethanol oxidation and acetaldehyde is the secondary one [27]. Recently, the formation of 

acetic acid on roughened Pt(332) at E < 0.8 V was concluded under flow conditions from the 

comparison between the Faradaic current due to acetaldehyde formation and the total Faradaic 

current [4]. Hence, similar to Pt(111) and surfaces vicinal to (111) plane, the formation of 

acetic acid at Pt(311) was observed.  

 As shown in Fig. 4-9B, the oxidation of ethanol adsorption product is done after 

electrolyte exchange with a solution free from ethanol. Again, CO2 was formed at a potential 

where usually COad is oxidized and the corresponding coverage decrease with increasing the 

adsorption potential due to increase of their oxidation rate. During the oxidation of ethanol 

adsorption product formed at 0.4 V, a new peak emerges at 0.33 V in the first positive going 

sweep and then disappears in the next ones. This peak might be due to anion adsorption on 

sites adjacent to CO adsorbed on steps. A similar peak was observed during the stripping of 

Cu at Pt(11,1,1) electrode. It has been also observed during copper deposition at 

Pt(s)[n(111)×(110)] surfaces and it was ascribed also to anion adsorption on sites adjacent to 

copper adsorbed on steps (cf. ref. [17] and the references cited therein). Alternatively, partial 

coverage of some sites by CO changes the adsorption energy for hydrogen adsorbed at sites 

remaining uncovered by CO.      

 
Table 4-3 Carbon dioxide and acetaldehyde current efficiencies for the potentiostatic 

oxidation of ethanol on smooth Pt(311) electrode at 5 µLs-1 and different step potentials 

together with the corresponding COad coverage for the oxidation of ethanol adsorbate. 

E / V 
vs. 

RHE 
IF/mA

2COA % %CO 29A % 

0.4 0.008 n.d. 10 n.d. 
0.5 0.013 0 7 52 
0.55 0.016 0 2 53 
0.6 0.02 0 0.8 71 
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Effect of Sn surface modification 
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Figure 4-10 Potentiodynamic oxidation of 0.01 M ethanol + 0.5 M H2SO4 solutions on Sn 

modified (A) Pt(11,1,1) and (B) Pt(311) electrodes. The Faradaic currents recorded 

simultaneously with the ionic currents in each case with sweep rate = 10 mVs-1, electrolyte 

flow rate = 5 µLs-1. For comparison, the CV recorded in case of bare electrodes is shown. 

Arrows indicate the direction of sweep. Numbers between brackets indicate the first and 

second cycles in case of Sn0.7/Pt(311) electrode.  

 
The potentiodynamic oxidation of ethanol on Sn modified stepped single crystals is 

shown in Fig. 4-10A and B for Pt(11,1,1) and Pt(311) respectively. The Sn modified 

Pt(11,1,1) electrode was less active toward ethanol oxidation than bare Pt(11,1,1). Both 

Faradaic and ionic currents were inhibited in presence of Sn. The oxidation current of about 7 

µA starting at 0.4 V was not affected by the presence of Sn; this is an indication that this 

current is due to the oxidation of adsorbed ethanol molecules on the nearly uncovered defect 

sites where Sn is preferentially deposited at terraces.  

Sn0.25/Pt(11,1,1)

 

 

I F
 / 

m
A

-0.02

0.00

0.02

0.04

0

5

10

0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

 Pt(311)
 

(A

m/z = 44

 

 

44
 / 

pA

)

 

Sn0.3/Pt(311)

 Sn0.7/Pt(311)

 

 

 

I F
 / 

m
A

(B)

(1)

(2)

 

 

 

I 44
 / 

pA

m/z = 44

(1)

(2)

I

m/z = 29

 

I 29
 / 

pA

E / V vs. RHE

 

m/z = 29

 

 
I 29

 / 
pA

E / V vs. RHE

(1)

(2)

 108



4. Electrocatalytic oxidation of ethanol 
 

For Sn modified Pt(311), a significant shift of the onset potential of oxidation to much 

lower potentials was observed. At higher potentials (0.6 V), the current decreases again 

because at such high potentials Sn is oxidized [23, 28] (compare cycles 1 and 2 in case of 

Sn0.7/Pt(311) electrode, Fig. 4-10B). At Sn0.7/Pt(311) surface, the shift in the onset potential of 

ethanol oxidation is highest comparing to Sn0.3/Pt(311) or bare Pt(311). Also, only at 

Sn0.7/Pt(311), the current increase in the anodic scan occurs at lower potentials than the 

current decrease in the cathodic sweep. The Faradaic current is increased at low potentials 

much more than the ionic currents. This implies qualitatively that acetic acid is being 

produced (See also acetaldehyde current efficiencies in Table 4-4). 

The effect of Sn modification on ethanol oxidation was also studied using bead Pt 

crystals for various surface orientations (notably Pt(100), Pt(110), Pt(111), Pt(11,1,1), 

Pt(311), Pt(976) and kinked Pt) and different Sn surface coverages in 0.1 M ethanol solution. 

Of all these surfaces, Pt(311) modified with 70 % to 100 % Sn was the one with the lowest 

onset potential. This is most likely due to the fact that for adsorbed metal atoms there is only 

one kind of ad-atom position on this surface, and only monoatomic rows are possible. On 

other faces, in particular Pt(11,1,1), 2D islands may form on the terraces since step decoration 

is not favored. 

Table 4-4 presents a comparison of the current efficiencies with respect to CO2 and 

acetaldehyde calculated for bare and Sn modified Pt(11,1,1) and Pt(311) surfaces either at the 

peak potentials or from the oxidation charge. Surface modification with Sn hardly affects the 

product distribution or the current efficiencies comparing to bare surfaces.  

In order to check the steady state oxidation products, I performed the potential step 

experiment as shown in Fig. 4-11, in which the potential was stepped from 0.05 V to different 

oxidation potentials (0.4-0.6 V). Both Faradaic and ionic current transients increase for 0.4 

and 0.5 V and then decrease at 0.55 and 0.6 V due to the dissolution of Sn. Here, comparing 

to bare Pt(311), a signal for both m/z = 44 and m/z = 29 can be detected at 0.4 V (cf. Fig. 4-9 

and 4-11).   
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Table 4-4 Carbon dioxide and acetaldehyde current efficiencies calculated during the 

potentiodynamic oxidation of ethanol on Sn modified smooth Pt(11,1,1) and Pt(311) 

electrodes at different peak potentials or from the oxidation charge at 5 µLs-1.  

Surface 
Cycle 

no. 

E / V 
vs. 

RHE 

P
COA

2
% PA29 % a

COA
2
% aA29 % 

1 0.7c 0 98 0 102 
2 0.7c 0 101 0 104 Pt(11,1,1) 
3 0.7c 0 105 0 107 
1 0.7c 0 104 0 106 
2 0.7c 0 103 0 104 Sn0.25/Pt(11,1,1) 
3 0.7c 0 97 0 103 
1 0.7 0 69 1.5 86 
2 0.7 11 55 4 67 Pt(311) 
3 0.7 10 52 3 65 
1 0.63 3 73 1 68 
2 0.7 6 65 4 65 Sn0.3/Pt(311) 
3 0.7 4 60 2 58 
1 0.5 2 63 0.8 82 
2 0.7 8 68 3.6 69 Sn0.7/Pt(311) 
3 0.7 6 57 4 61 

pA and  are the current efficiencies calculated at the peak potentials or from the 

integration of the whole anodic cycle respectively. 

aA

''c'': cathodic peak potential. 
 

The above observations imply that Sn adsorbed at the Pt(311) surface facilitates the 

adsorption and oxidation of ethanol at low potentials. This was proved by comparing the 

calculated COad coverage after the oxidation of ethanol adsorption product formed at low 

potentials (0.4 and 0.5 V) at Sn0.7/Pt(311) and Pt(311) surfaces (Tables 4-3 and 4-5). The 

coverage were higher at Sn modified Pt(311) while at potentials ≥ 0.55 V, Sn is oxidized and 

the coverage were similar to bare surface. All CO2 current efficiencies for Sn modified 

surfaces were zero and those for acetaldehyde were in the range of 50-70 %; this implies that 

the co-catalytic effect of Sn was not associated with CO2 production; rather, acetic acid as 

well as acetaldehyde are the main oxidation products.    
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Figure 4-11 Potentiostatic oxidation of 0.01 M ethanol + 0.5 M H2SO4 solutions at smooth 

Sn0.7/Pt(311) at different step potentials. The Faradaic and ionic current transients were 

recorded simultaneously with an electrolyte flow rate = 5 µLs-1. 

 
 

Table 4-5 Carbon dioxide and acetaldehyde current efficiencies for the potentiostatic 

oxidation of ethanol on Sn0.7/Pt(311) electrode at 5 µLs-1 and different step potentials. The 

corresponding COad coverage for the oxidation of ethanol adsorbate was also included.  

E / V 
vs. 

RHE 
IF/mA

2COA % %CO 29A % 

0.4 0.001 0 17 46 
0.5 0.02 0 12 60 
0.55 0.013 0 3 55 
0.6 0.013 0 1 68 
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4.3 Conclusions 

 
I have presented a detailed evaluation of the current efficiencies for CO2 and 

acetaldehyde during ethanol oxidation at polycrystalline platinum, Pt(11,1,1) and Pt(311) as 

well as the same single crystal surfaces modified by Sn. Under potentiostatic conditions, the 

amount of CO2 is negligible at all surfaces; this is particularly noticeable for the Pt(311) 

surface modified by Sn, which is particularly active as judged solely from the onset potential 

of the Faradaic current. To obtain reliable values of the current efficiency for acetaldehyde, a 

new calibration procedure had to be used: due to incomplete mixing of the electrolyte between 

electrochemical and detection compartments, experimental current efficiencies are too high if 

calibration is simply achieved by an electrolyte with a known concentration of the product. I 

corrected for this by performing additional experiments with i-propanol, for which the 

Faradaic current efficiency is 100 %; the product (acetone) has a similar diffusion coefficient 

and volatility as acetaldehyde.           

Acetaldehyde was the only product of ethanol oxidation at smooth and roughened 

Pt(11,1,1). A small oxidation current of ca. 7 µA leading to acetaldehyde formation becomes 

visible already at 0.4 V. I ascribed this current to the oxidation of ethanol at defect Pt(11,1,1) 

sites. 

At smooth and roughened Pt(311) electrode, a small amount of CO2 is observed due to 

the oxidation of the ethanol adsorption product and not due to bulk oxidation of ethanol as 

proved by a separate potential step experiments. Acetaldehyde current efficiencies are about 

50 %; I therefore attributed the rest and the difference in the shapes of CV and mass 

spectrometric CV to the formation of acetic acid similar to surfaces vicinal to (111) plane. 

Both Faradaic and ionic currents of ethanol oxidation at Sn modified Pt(11,1,1) 

electrode are inhibited in presence of Sn. At Sn modified Pt(311), the onset potential of 

ethanol oxidation is shifted negatively whereas Sn has no effect at low potentials in case of 

Pt(11,1,1) electrode. This behavior may be attributed to the easier adsorption and oxidation of 

ethanol at Sn modified Pt(311) surface. The zero current efficiency for CO2 in the potential 

step experiments proves that the effect of Sn is not associated with CO2 production; rather, 

both acetic acid and acetaldehyde are the main (only) products of oxidation. Nevertheless, 

from fundamental point of view, the large cocatalytic effect of Sn is remarkable; it may be 

due to the formation of monoatomic rows of Sn only on Pt(311), as depicted in Fig. 4-5D.      
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5. Determination of the apparent transfer coefficient of methanol oxidation by potential modulation 
technique under convection conditions 

5. Determination of the apparent transfer coefficient of methanol 

oxidation by potential modulation technique under convection conditions 

 
 
5.1 Introduction 

In this chapter, the apparent transfer coefficient for methanol oxidation and for the 

oxidation of the methanol adsorption product was determined using the recently introduced ac 

voltammetry method [1]. To ensure fast convectional transport and avoid interference with 

reaction intermediates, I used the dual thin layer flow through cell, which is typically used for 

DEMS. Potential sweep and potential step experiments have been performed at Pt(Poly), 

superimposing a small sinusoidal voltage to the normal dc voltage and the components of the 

ac current have been recorded. The potential dependence of the electrochemical reaction rate, 

described by the apparent transfer coefficient (α'), has been recorded quasi continuously as a 

function of potential or time and the corresponding Tafel slopes have been calculated. In 

control experiments, using adsorbed CO, values previously determined (cf. chapter 1, part 

1.7.1) using the H-cell were reproduced. This demonstrates that the method is applicable to 

the thin layer cell despite of the high electrolyte resistance which was subtracted by applying a 

simple mathematical correction to the ac voltage.   

 

5.2 Results and discussion 

5.2.1 Electrochemical impedance spectroscopy in the dual thin layer cell 

 In order to obtain an idea about the possibility of performing ac measurements in the 

thin layer cell, impedance spectra were recorded for bare Pt(Poly) in the dual thin layer flow 

though cell (cf. Fig. 5-1) and the R(CR) model was employed to fit the recorded values; fitting 

data are shown in Table 5-1.  
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Figure 5-1 The EIS of Pt(Poly) in 0.5 M H2SO4 at various potentials. Sweep rate = 50 mVs-1 

and electrolyte flow rate = 5 µLs-1. 

  
The shape of EIS spectra is as expected for the equivalent circuit of Fig. 5-2 except for 

low frequencies and high frequencies (> 3×103 Hz). The high electrolyte resistance and the 

bad current distribution may cause this deviation. A comparison between capacitance values 

calculated from the CV with those obtained after the fitting shows a good agreement (cf. 

Table 5-1); the reliability of the data was demonstrated by the constant electrolyte resistance 

and very high charge transfer resistance, which in pure supporting electrolyte should 

theoretically be infinite. The phase at low frequency changes from 90° to 75° at high 

potentials. This probably has to be attributed to a slow anion (hydroxide) adsorption at such 

high potentials which is not included in the simple equivalent circuit shown in Fig. 5-1. These 

data show that meaningful impedance and ac data can be obtained using the thin layer cell 

configuration in the above mentioned frequency range.    

 

 

 

 

 

Figure 5-2 Equivalent circuit used for fitting of EIS data during CO and methanol oxidation 

at Pt(Poly) in the dual thin layer cell. 

Rct

Rel

Cdl

corr
acu

o
acu
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Table 5-1 The fitting data for EIS on Pt(Poly) using R(CR) model. 

E / V vs. 
RHE 

Rel / 
Cdl / F 
from 
fitting 

Cdl / F 
from 
CV 

Rct /  

0.12 64.04 2.7×10-4 3.8×10-4 6373 
0.24 75 2×10-4 3.4×10-4 7534 
0.5 69.35 1.79×10-5 1.5×10-5 145670 
0.65 55.21 1.8×10-5 1.3×10-5 339960 
0.7 65.6 1.6×10-5 1.7×10-5 222290 
0.75 65.6 1.94×10-5 2.5×10-5 91346 
0.8 67.03 2.46×10-5 5×10-5 36919 

 

 During CO or methanol oxidation at Pt(Poly), the real part of the ac current is not 

only given by the charge transfer current and the ad/desorption of ions but also affected by 

the potential drop in the electrolyte. EIS spectra of Pt(Poly) in the dual thin layer cell showed 

an electrolyte resistance of about 65-75 Ω cm2 (cf. Fig. 5-1). This high value, which leads to 

a high iacR drop during the superimposed ac potential is due to the high resistance of the thin 

electrolyte layer and the thin capillary to the inlet as compared to the H-cell with its 

negligible electrolyte resistance of about 2 Ω cm2 as reported before [1]. Therefore, I applied 

an ac potential correction in order to subtract this resistance. Fig. 5-2 shows the simple 

equivalent circuit which I used for the correction. It consists of a resistance (Rel) representing 

the electrolyte resistance in series with a parallel combination of a capacitor (Cdl) 

representing the double layer capacitance and another resistance (Rct) which represents the 

charge transfer resistance. 

 

In the equivalent circuit shown above the corrected ac voltage is given by: 

acel
o
ac

corr
ac iRuu                                    (5-1) 

And the ac current is given by: 

c

corr
ac

ct

corr
ac

ac Z

u

R

u
i  , Rearrangement gives,

cct
corr
ac

ac

ZRu

i 11
  where, Zc = 1/jωC      (5-2) 

Equation (5-2) can also be written as: 
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Here, Yre-corr and Yre-corr are the corrected real and imaginary parts of the admittance.    

 

In chapter 1, part 1.2 it was shown that the potential dependence of the rate (α') can be 

calculated in a very narrow potential range (the ac amplitude) as follows: 

dcac

reac

iu

i

F

RT '            (5-3) 

By replacing (uac) in equation (5-3) by ( ), the corrected apparent transfer coefficient can 

be determined by: 

corr
acu

dc

re-corr
corr
acdc

ac'
corr i

Y

F

RT

ui

i

F

RT
α                   (5-4) 

And the Tafel slope is then given by: 

F

RT

i

E

corr
'ln 





           (5-5) 

 
As an appropriate ac frequency, I chose (33.5 Hz) in accordance with literature [1] in 

order to meet the requirements mentioned before in chapter 1, part 1.2; i.e. the relative 

changes of CO and OH coverage remain constant during the sampling time (one ac period, ca. 

30 ms). At ac frequencies considerably lower than 33.5 Hz, the relative changes in the 

function )1((  COf  would not be negligible, at considerably higher frequencies, the 

influence of the slow anion adsorption/desorption process discussed before by Wang et al. [1, 

2] would become too large. Moreover, the frequency should be so low that the capacitive 

current through Cdl is not too large.   
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5.2.2 Electrooxidation of CO at Pt(Poly) in the dual thin layer cell 

5.2.2.1 Potential sweep experiments 
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Figure 5-3 (A) The oxidation of adsorbed CO at Pt(Poly) in 0.5 M H2SO4. Black: dc current; 

Red: corrected real part of the admittance; Green: corrected imaginary part of the admittance; 

Dotted line: CV in CO-free electrolyte. (B) Blue: Apparent transfer coefficients (α') calculated 

from corrected ac voltage; Black: expanded view of the dc current in the CO oxidation region. 

uac = 1 mV, f = 33.5 Hz,  sweep rate = 10 mVs-1 and electrolyte flow rate = 5 µLs-1. 

 

Fig. 5-3A displays the dc current and the corrected real and imaginary parts of the 

admittance recorded during the oxidation of adsorbed CO at Pt(Poly) as a function of 

potential. A pre-peak at about 0.5 V and a main peak at about 0.73 V can be observed similar 

to those observed before [1, 3-7]. The total charge density for CO oxidation, calculated by 

integration from 0.3-0.8 V, is 351 µC cm-2 including the double layer charging [8]. 
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The corrected real part of the admittance (Yre-corr), which represents the ratio between 

the real part of the ac current and the corrected ac voltage, is expanded by a factor of (4000) 

for better comparison. Yre-corr is somewhat high in the hydrogen region (0.1-0.4 V) due to 

incomplete correction (compensation) of the high electrolyte resistance in this region A 

control experiment, in the H-cell (cf. Fig. 5-4) shows that, under the condition of low 

electrolyte resistance, the real part of the ac current is almost zero at a potential lower than 

0.45 V. Small values of Yre-corr are obtained in the region (0.4-0.6 V) i.e. below the onset of 

the main peak; afterwards, a peak at the same potential as for the dc current is observed (cf. 

Fig. 5-3A). (A further large peak at 0.9 V is due to the oxygen adsorption reaction).  
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Figure 5-4 The oxidation of adsorbed CO at Pt(Poly) in the H-cell in 0.5 M H2SO4. Sweep 

rate = 50 mVs-1. 

  
The blue lines in Fig. 5-3B show the apparent transfer coefficient calculated according 

to equation (5-4) with a correction for the ac iR drop. The value of α' after correction around 

the pre-peak at 0.5 V is 0.48 (corresponding to a Tafel slope of 123 mV dec-1) and around the 

main peak at 0.73 V is 1.4 (Tafel slope of 42 mV dec-1). Wang et al. [1] reported apparent 

transfer coefficients of 0.53 at 0.54 V for the pre-peak and 1.39 at 0.69 V for the main-peak 

when he performed the same experiment in the normal H-cell under stagnant conditions. The 

constant coefficient measured around the main peak i.e., for CO coverage between ca. 0.3 and 

0.7, is most reliable since the corresponding signal of both ac and dc current are higher than 

that at higher or lower coverage, where contributions from background may be dominating. 

(values calculated for α' are shown here for the complete potential range, although, of course, 
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they are not meaningful at potentials where the dc current is small or dominated by processes 

other than CO oxidation). What is not clear at this point is the large value of α' between 0.65 

V and 0.7 V, which is also observed before by Wang et al. [1]. This might be related to the 

initial nucleation period (formation of the first CO free sites)  

5.2.2.2 Potential step experiments 
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Figure 5-5 (A) The dc current transients, (B) corrected real part of the admittance transients    

for the oxidation of CO at Pt(Poly) at various stepped potentials in 0.5 M H2SO4. uac = 3 mV, 

f = 33.5 Hz and electrolyte flow rate = 5 µLs-1.  

  

Fig. 5-5A shows the dc current transients recorded during the oxidation of CO after potential 

steps to various potentials on Pt(Poly) in the dual thin layer flow through cell. The corrected 

real part of the admittance transients are displayed in Fig 5-5B. As a general trend, with 

increasing potential, imax increases and tmax decreases. As expected, for high step potentials 

there is no clear trend, because of the large iR drop and the inhomogeneous current 

distribution which limit the time resolution.   
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All transients in Fig. 5-5A, start with high and quickly decaying current corresponding 

to the oxidation of weakly adsorbed CO molecules. This initial current has the same origin as 

the prepeak in the CV and was identified as being due to CO oxidation by DEMS [9, 10]. 

Then the current increases rapidly due to an increased availability of free surface sites for 

oxygen/OH- adsorption according to the (LH) mechanism. 

The corrected transfer coefficients for CO oxidation at Pt(Poly) at various potentials 

are plotted separately in Fig. 5-6 (A-G) together with the plot of the real part of the corrected 

admittance transient (Yre-corr) as a function of time. For the CO oxidation at the low potential 

of 0.65 V, the apparent transfer coefficient after correction around the dc current maximum is 

calculated to be about 1.3. At relatively high potential of 0.75 V, the coefficient after 

correction is 0.5. Again, as already discussed in the context of Fig. 5-3, α' is reliable only 

when the oxidation current is large, i.e. in the vicinity of the peak of idc. 
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Figure 5-6 The corrected apparent transfer coefficient for the oxidation of pre-adsorbed CO at 

Pt(Poly) in 0.5 M H2SO4 at different potentials together with the dc and the corrected real part 

of the admittance transients, uac = 3 mV, f = 33.5 Hz and electrolyte flow rate = 5 µLs-1.  
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α' values calculated after correction at the dc current peak maximum is plotted versus 

the step potential in Fig. 5-7. The increase of α' behind the oxidation peak is an artifact caused 

by the above mentioned slow adsorption of anions (hydroxide). As a general trend, with 

increasing potential, α' decreases from values around 1.3 to about 0.5. The Tafel slope 

calculated from the corrected α' values is 45 mV dec-1 at 0.65 V, and increases to 120 mV dec-

1 at 0.75 V. These observations are in a good agreement with Wang et al. [1] except that the α' 

values after correction are ca. 10 % lower at all potentials, this is again due to the differences 

between the dual thin layer cell used in this work and the normal H-cell used by Wang et al. 
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Figure 5-7 The apparent transfer coefficient for the oxidation of pre-adsorbed CO at Pt(Poly) 

at various potentials determined in the maximum of the current transients of potential step 

experiments and calculated after correction.  

 
For comparison, the apparent transfer coefficient values were also calculated by 

plotting log tmax vs. Estep [6, 11, 12]  (tmax is the time recorded at the maximum current) or by 

plotting the peak potential in linear sweep experiments vs. the logarithm of the sweep rate [13, 

14]. The plot of log jmax vs. Estep also has been used to get the Tafel slope [6] (jmax is the 

maximum current density). The peak current density (jmax) and the time of the current 

maximum (tmax) recorded during the above potential step experiments are listed in Table 5-2. 

From the plot of log (jmax) and –log(tmax) versus the potentials, Tafel slopes can be obtained 

(cf. Fig. 5-8). A Tafel slope of 166.7 mV dec-1 was obtained for all the potential range from 

the plot of –log(tmax) versus the potential, which is in a good agreement with refs. [1] and [2]. 
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At low potentials, both plots give values of 91.72 mV dec-1 and 100 mV dec-1 respectively. At 

high potentials, the slope is much lower and not reasonable due to the change of the surface 

conditions as suggested before [2] and the high iR drop.  

 
Table 5-2 tmax and jmax for CO oxidation at Pt(Poly) at various potentials. 

E / V 
vs. 

RHE 

tmax / s -log tmax jmax / µA cm-2 log jmax α'  
corrected 

0.65 13.7 -1.13672 21.28 1.32797 1.32 
0.67 9.3 -0.96848 34.99 1.54394 1.05 
0.69 7.4 -0.86923 52.37 1.71908 0.82 
0.71 3.2 -0.50515 99.19 1.99647 0.72 
0.73 3.4 -0.53148 108.23 2.03435 0.62 
0.75 2.8 -0.44716 105.94 2.02506 0.5 
0.77 3 -0.47712 79.79 1.90195 0.5 
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Figure 5-8 Tafel slopes for CO oxidation at Pt(Poly) obtained by plotting log(jmax) vs. E (A) 

and –log(tmax) vs. E (B). 
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5.2.3 Electrooxidation of methanol at Pt(Poly) in the dual thin layer cell 

5.2.3.1 Potential sweep experiments 

 Fig. 5-9 shows the dc and ac cyclic voltammograms recorded during bulk oxidation of 

10-2 M methanol + 0.5 M H2SO4 solution at Pt(Poly) in the dual thin layer flow through cell. 

In the positive going scan the oxidation starts at 0.4 V giving rise to a shoulder due to 

oxidative adsorption of methanol [15-17]. Above 0.6 V, the Faradaic current starts to increase 

sharply during the first anodic sweep, leading to an oxidation peak at 0.75 V. During the 

negative-going scan, an oxidation peak centered at 0.72 V is observed. The methanol 

adsorbate formed during the first cathodic sweep below 0.7 V acts as a poison; therefore, in 

the subsequent anodic cycle the oxidation peak is smaller than in the first cycle. The real part 

of the corrected admittance recorded in the first and second sweep is also shown here and 

shows very small values below 0.6 V.  
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Figure 5-9 Bulk oxidation of 10-2 M methanol + 0.5 M H2SO4 solution at Pt(Poly). Black: dc 

current; Red: real part of the corrected admittance, Dotted line: CV in methanol-free 

electrolyte. Two cycles are shown. uac = 1 mV,  f = 33.5 Hz. Sweep rate = 10 mVs-1 and 

electrolyte flow rate = 5 µLs-1. 

 
The apparent transfer coefficients calculated after ac potential correction together with 

the corrected real part of the admittance during the first and second cycles of methanol bulk 

oxidation are displayed in Fig. 5-10 (A and B) for the first and the second cycles respectively. 

All Yre-corr calculated below 0.6 V are very small (almost zero) which proves the validity of 

the ac correction method. At the onset of methanol oxidation, the corrected α' values around 
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0.5 is calculated (Tafel slope of 118 mV dec-1). Contrary to the case of CO oxidation, the peak 

in the Faradaic current does not coincide with the peak in the admittance. The reason is the 

different nature of the peak: positive of the peak, the current decreases due to blocking of the 

surface with oxygen species and not due to a depletion of the reactant as for adsorbed CO.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-10 The corrected apparent transfer coefficient calculated in the first (A) and second 

(B) cycles of methanol bulk oxidation at Pt(Poly) together with the dc current and the 

corresponding real part of the corrected admittance. uac = 1 mV,  f = 33.5 Hz. Sweep rate = 10 

mVs-1 and electrolyte flow rate = 5 µLs-1. 
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5.2.3.2 Potential step experiments 

 A series of potential step experiments are also performed in the dual thin layer cell in 

the onset potential region stating form 0.63 to 0.71 V. Fig. 5-11 (A-E) shows the apparent 

transfer coefficient calculated after correction and taken during 2 minutes of methanol 

oxidation at different potentials together with the dc and real part of the ac current transients; 

α' stays essentially constant during these 2 min.  

As depicted in Fig 5-11F, α' values of 0.5 are obtained only at low potentials (0.63, 

0.65 V) in agreement with the results of the potential sweep experiments. At higher potentials, 

α' decreases and obviously, the oxidation rate constant is no longer (or less) potential 

dependant in the vicinity of the peak potential. Such a potential independent rate would be 

expected for diffusion limited processes. However, it is well known that methanol oxidation is 

not diffusion limited [18]; the oxidation current increases with increasing potential (cf. Fig. 5-

11G), the linear instead of exponential increase reflects the decreasing value of α' shown in 

Fig. 5-11F. The current decrease at potentials positive of the peak is rather caused by 

adsorption of an oxygen species that blocks the platinum active sites, which also leads to a 

reduced potential dependence of the oxidation rate. Obviously, and not astonishingly, the 

adsorption of these species occurs fast enough at high potentials to influence the adsorption of 

methanol on the time scale of the potential modulation. This situation is different from the 

case of oxidation of adsorbed CO as described above or that of methanol adsorbate oxidation 

described below; there, the current decrease positive of the oxidation peak is caused by 

decreasing coverage with CO, whereas the rate constant is increasing with potential and thus 

also the apparent transfer coefficient should remain constant.  

A transfer coefficient of 0.5 for methanol oxidation means that the first step, a C-H 

bond rupture together with a charge transfer, is the rate determining step. This is what is 

usually assumed, Tafel slope of approximately 120 mV dec-1 have been reported before in 

steady state measurements [19], but also other values had been found in literature [20, 21] as 

already discussed in chapter 1, part 1.7.2.  
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Figure 5-11 (A) The corrected apparent transfer coefficient for the oxidation of methanol at 

Pt(Poly) in 0.5 M H2SO4 at different potentials together with the dc and the corrected real part 

of the admittance transients (F) corrected α' values determined during 2 min of methanol 

oxidation at various step potentials and (G) Potential dependence of the dc current. uac = 3 

mV, f = 33.5 Hz and electrolyte flow rate = 5 µLs-1 
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Jusys and Behm et al. [22] found that the kinetic isotope effect for methanol oxidation 

is rather small and therefore concluded that not the C-H bond rupture is the rds, but the slow 

oxidation of adsorbed CO. Of course, the concept of rds is some what problematic in the case 

of surface reactions. In the usual determination of the Tafel slope in steady state 

measurements, the potential dependence of the current includes the rate of the ''direct reaction 

path'' via dissolved intermediates, which depends on the number of free sites on the surface 

and thus the coverage of adsorbed CO formed in the indirect pathway. Its steady state 

coverage depends on the rate constants of adsorption and desorption and therefore on analysis 

of the Tafel slope may be difficult. The ac voltammetry method presented here, however, has 

the advantage that the coverage within one period of the potential oscillation is constant. The 

Tafel slope (on apparent transfer coefficient) therefore directly reflects the potential 

dependence of the rate constants. Even if this method of the determination of α' cannot 

distinguish between the two reaction paths, the observed value of 0.5 strongly suggests that 

the rds is for both reactions the first reaction step.     

 
5.2.4 Electrooxidation of methanol adsorption product 
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Figure 5-12 The corrected apparent transfer coefficient for the oxidation of methanol 

adsorption product at Pt(Poly) together with the dc current and the real part of the corrected 

admittance. uac = 1 mV, f = 33.5 Hz, Estep = 0.5 V, sweep rate = 10 mVs-1 and electrolyte flow 

rate = 5 µLs-1.  
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Fig. 5-12 shows α' values (after correction) during a CV in which the adsorbate formed 

from methanol was oxidized in the supporting electrolyte as explained in chapter 2, part 

2.2.2.2. The total charge density for the potentiodynamic oxidation of CO formed from 

methanol, calculated by integration from (0.55-0.85 V), is 260 µC cm-2 including the double 

layer charging. This is only about 70 % of the oxidation charge for adsorbed CO (from CO 

gas) demonstrating the lower coverage caused by the large number of adsorption sites needed 

for the methanol dehydrogenation. α' values around 0.5 were obtained at low potential.  

α' values for the adsorbed CO formed from methanol were also determined during 

recording the current transients. To do so, after formation of the adsorbate, the electrolyte was 

exchanged for the supporting electrolyte and the potential was stepped to different potentials 

to oxidize the adsorbate. The oxidation charge densities of methanol adsorbate are almost 

constant around ca. 260 µC cm-2 and independent of potentials as shown in Table 5-3 except 

for low potentials, where a large error might occur due to the long integration time. 
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Figure 5-13 (A) The dc current transients, (B) corrected real part of the admittance transients    

for the oxidation of methanol adsorbate on Pt(Poly) at various step potentials in 0.5 M H2SO4. 

uac = 3 mV, f = 33.5 Hz,  sweep rate = 10 mVs-1, electrolyte flow rate = 5 µLs-1. Inset in A: 

The real part of the ac current transients, inset in (B): Enlarged view of the corrected real part 

of admittance transients.  
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Table 5-3 Oxidation charge densities of methanol adsorbate at different potentials. 

Estep / V Q / µC cm-2 
0.63 186 
0.65 165 
0.67 193 
0.69 261 
0.71 269 
0.73 247 
0.75 240 
0.77 256 

 

The dc current transients recorded during the oxidation of methanol adsorbate at 

various potentials at Pt(Poly) are displayed in Fig. 5-13A, while the corrected real part of the 

admittance transients are displayed in Fig 5-13B. Again, with increasing potential, imax 

increases while tmax decreases, also all transients start with a spike corresponding to the double 

layer charging current followed by the methanol adsorbate oxidation peak. In particular, at 

low potentials, the current is less peak-shaped than during the oxidation of adsorbed CO (cf. 

Fig. 5-5). This behavior was observed before [9]; it indicates a reaction order with respect to 

the adsorbate much lower than 1.   

α' values calculated during the oxidation of methanol adsorption product at different 

potentials are shown in Fig. 5-14 (A-H) together with the dc and the real part of the corrected 

admittance as a function of time. As can be seen in Fig. 5-15, the apparent transfer coefficient 

values taken at the oxidation peak maximum are around 0.5. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  132



5. Determination of the apparent transfer coefficient of methanol oxidation by potential modulation 
technique under convection conditions 

0 10 20 30
0.0

0.5

1.0

1.5

2.0

0

2

4

6

8

10

 t / s

 


'

 

 
Y

re
-c

or
r / 


-1
I 

/ µ
A

 , 

 I
dc

Estep = 0.63 V(A)

 ' corrected

 Y
re-corr

 (X104)

 

 

0

5

10

15

20

0 10 20 30
0.0

0.5

1.0

1.5

2.0
 

 I 
/ µ

A
 , 

Y
re

-c
or

r / 


-1

 I
dc


'  ' corrected

 t / s

(B) E
step

 = 0.65 V

 

 Y
re-corr

 (X104)

 

0 10 20 30
0

5

10

15

20

0.0

0.5

1.0

1.5

2.0

 I
 / 

µ
A

 , 
Y

re
-c

or
r / 


-1
 

 I
dc

 

 t / s

 ' corrected


'

 

 Y
re-corr

 (X104)

E
step

 = 0.67 V(C)

 

0 10 20 30
0

10

20

30

0.0

0.5

1.0

1.5

2.0

 t / s

 I
 / 

µ
A

 , 
Y

re
-c

or
r / 


-1

 I
dc

E
step

 = 0.69 V(D)

 
'  ' corrected  

 Y
re-corr

 (X104)

 

0

10

20

30

0 10 20 30
0.0

0.5

1.0

1.5

2.0

 t / s

 
 Y

re
-c

or
r / 


-1
I 

/ µ
A

 ,

 I
dc

'

 ' corrected

 

 Y
re-corr

 (X104)

(E) E
step

 = 0.71 V

 

0 5 10 15 20
0

10

20

30

40

50

0.0

0.5

1.0

1.5

2.0

 I
 / 

µ
A

 , 
Y

re
-c

or
r / 


-1

 t / s

 I
dc

Estep = 0.73 V(F)

 

 Y
re-corr

 (X104)

 ' corrected
'

 

0 5 10 15 20
0

20

40

60

0.0

0.5

1.0

1.5

2.0

 
'

 t / s

 I
 / 

µ
A

 , 
Y

re
-c

or
r / 


-1

 I
dc

 ' corrected

 

 Y
re-corr

 (X104)

E
step

 = 0.75 V(G)

 

0 5 10 15 20
0

20

40

60

80

0.0

0.5

1.0

1.5

2.0

 I
 / 

µ
A

 , 
Y

re
-c

or
r / 


-1

 I
dc

E
step

 = 0.77 V(H)
 

 ' corrected


'

 

 Y
re-corr

 (X104)

 t / s

Figure 5-14 The corrected apparent transfer coefficient for the oxidation of methanol 

adsorbate at different potentials together with the dc and the corrected real part of the 

admittance transients in 0.5 M H2SO4, uac = 3 mV, f = 33.5 Hz and electrolyte flow rate = 5 

µLs-1.  
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Figure 5-15 The apparent transfer coefficient for the oxidation of methanol adsorbate at 

Pt(Poly) at various potentials determined in the maximum of the current transients of potential 

step experiments and calculated after correction.  

 
Tafel slope obtained according to the traditional methods are plotted in Fig. 5-16 using 

the values depicted in Table 5-4. From the plot of log(jmax) vs. E, Tafel slopes of 73 mV dec-1 

at low potentials and 128 mV dec-1 at high potentials were calculated, whereas from the plot 

of –log(tmax) vs. E, a Tafel slope of 116 mV dec-1 was obtained at low potentials up to 0.7 V. 

At potentials higher than 0.71 V, tmax
 is not anymore decreasing with potential because of the 

high electrolyte resistance, but remains almost constant and hence the slope is not reasonable. 

I believe that the ac voltammetric determination of the Tafel slope (and transfer coefficient) is 

much more reliable, because not only the current and time of the maximum of the transient is 

used.  

Table 5-4 tmax and jmax for the oxidation of methanol adsorbate at Pt(Poly) at various 

potentials. 

E / V vs. 
RHE 

tmax / s -log tmax jmax / µA cm-2 log jmax α'  
corrected 

0.63 8.41 -0.9248 8.62 0.93551 0.42 
0.65 5.51 -0.74115 16.61 1.22037 0.48 
0.67 3.41 -0.53275 29.96 1.47654 0.32 
0.69 2.3 -0.36173 57.6 1.76042 0.7 
0.71 1.8 -0.25527 105.97 2.02518 0.76 
0.73 1.82 -0.26007 151.45 2.18027 0.65 
0.75 1.7 -0.23045 200.5 2.30211 0.54 
0.77 1.8 -0.25527 242.76 2.38518 0.44 
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Figure 5-16 Tafel slopes for the oxidation of methanol adsorbate at Pt(Poly) measured by 

plotting –log(tmax) vs. E (A) and log(jmax) vs. E (B). 

 
It is astonishing that the transfer coefficient for adsorbed CO formed from methanol 

differs from that observed for adsorbed CO (from CO gas): At all potentials, α' = 0.5, which 

means that at all potentials the first reaction step (formation of adsorbed OH) is rate 

determining. In reference [9], it has been already pointed out that, contrary to CO adsorbed 

from CO gas, the adsorbate formed from methanol is oxidized with a reaction order of zero 

with respect to the coverage. The reason for the different behavior might be the lower 

coverage of CO formed from methanol. However, in Fig. 5-3B and Fig. 5-6A it is obvious 

that α' is nearly constant and larger than 1 far below half coverage. According to reference [9], 

the 0th reaction order originates from the fact that oxidation occurs only at particularly active 
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sites (kinks and dislocations) to which the CO molecules diffuse. OH adsorption at such sites 

would then be the rate determining step, in accordance with α' = 0.5. 

A possible explanation for the different behavior of CO adsorbed from dissolved CO 

gas could be a slow surface diffusion of adsorbed CO. In the case of extremely slow diffusion, 

oxidation would proceed according to a nucleation and growth model. Then, the distribution 

of the CO molecules and the structure of the adsorbate layer would be different for a partially 

oxidized COad layer (non homogeneous distribution of CO molecules) and the adsorbate 

formed from methanol. However, many papers compared the theoretical transients, obtained 

from Monte Carlo simulations for slow and fast surface diffusion, with experimental 

transients and the common conclusion was that CO diffusion on Pt is fast contrary to CO on 

Rh [10, 23-26]. Therefore, at this point, I cannot give a clear reason for this difference and 

more experiments are needed.   

 
5.3 Conclusions 

The ac voltammetry method has the advantage that the transfer coefficient can be 

determined at a single potential; a wide range of potentials with a constant Tafel slope is 

therefore not necessary. Moreover, the accurate determination is also possible for reactions of 

adsorbates. The high electrolyte resistance in the dual thin layer cell can be subtracted by 

applying a simple mathematical ac voltage correction. This correction has been applied during 

the determination of α' in the potential sweep and potential step oxidation of pre-adsorbed CO 

and methanol as well as bulk methanol oxidation at smooth Pt(Poly) electrode. As a control 

experiment and to test the validity of the correction method presented here, the oxidation of 

pre-adsorbed CO at Pt(Poly) performed previously in the H-cell was repeated here in the dual 

thin layer cell under flow through conditions. α'corr and the corresponding Tafel slope obtained 

during the potential sweep and potential step experiments are in accordance with the results 

obtained before under stagnant conditions and negligible electrolyte resistance of 2 Ω cm2 [1]. 

A transition of α'corr from values around 1.5 at low potentials to 0.5 at high potentials was 

confirmed in the thin layer cell. All of the above proves the validity of the ac voltage 

correction presented here. 

During the oxidation of methanol from the bulk at Pt(Poly), a typical α'corr value of 0.5 

(Tafel slope = 118 mV dec-1) has been calculated at the onset potential of methanol bulk 

oxidation (ca. 0.6 V) demonstrating that the first charge transfer (according to CH3OH → 

CH2OH + H+ + e-) is the rate determining step. Similar results were obtained in potential step 
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experiments in methanol containing electrolyte. During the oxidation of methanol, it is 

important to work under convection control (with a fast removal of intermediates from the 

interface), because otherwise the intermediates react further and their reaction cannot be 

separated from the reaction under study i.e. the oxidation of methanol itself. Previous 

determination of the Tafel slope often had been done in the absence of convection; that could 

be a further reason for differing results. Of course, in my measurement I cannot distinguish 

the two parallel reaction paths. Since the value determined according to the method presented 

here is not influenced by the potential dependence of adsorbate coverage, it is more reliable.  

During the potential sweep or potential step oxidation of pre-adsorbed methanol 

(methanol adsorption product), α' value of 0.5±0.2 (Tafel slope 85-118 mV dec-1) was 

obtained both at low and at high potentials. This is clearly different from the case of pre-

adsorbed CO; and demonstrates the difference nature of an adsorbate layer from COgas and 

methanol in solution.      
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6. Application of the potential modulation method to study the oxygen 

reduction reaction 

 
 
6.1 Introduction 

 
The oxygen reduction reaction (ORR) has been studied in the dual thin layer flow 

through cell at Pt(Poly) in 0.5 M H2SO4 at different flow rates. As an application of the 

potential modulation method described in chapter 5, also here, the apparent charge transfer 

coefficient (α') and the corresponding Tafel slope for the ORR has been calculated and 

compared to the Tafel slopes obtained from the normal method. In addition to the correction 

of the high electrolyte resistance in the dual thin layer cell, the contribution from other 

adsorption processes presented by the adsorption resistance has been also subtracted. The 

effect of increasing convection on the obtained α' and Tafel slopes has been examined.  

 

6.2 Results and discussion 

6.2.1 Steady state oxygen reduction at Pt(Poly) in the dual thin layer cell 

Fig. 6-1 shows the steady-state CVs for the ORR at three different flow rates (5, 25 

and 50 µLs-1) in 0.5 M H2SO4. The onset of ORR was around 0.95 V in all cases, which is the 

same potential region for platinum oxide formation [1], afterwards, the reduction current 

increases with increasing overpotential. A diffusion-mass transport mixed control current 

region is observed in the range (0.75-1.1 V) followed by a constant diffusion limited current 

region at potentials lower than 0.75 V typical to the ORR at platinum in acidic medium [2, 3]. 

As expected, a small hysteresis in the reduction currents was observed in the negative and 

positive-going sweeps which was attributed to the sluggish activity of the platinum oxide 

surfaces towards ORR as compared to the surface of platinum after complete reduction of the 

oxides [4]. I will therefore present and later analyze only the positive going sweeps. With 

increasing flow rate (convection), the values of the reduction currents increase, consequently 

more reactive species were transported from the bulk of the solution to the surface of the 

electrode and hence leading to higher current values. The mass transport limited ORR current 

at 0.2 V was plotted versus the cube root of the flow rate (cf. inset in Fig. 6-1). As it is well 

known for flow cell measurements [5, 6], the mass transport limited current decay with the 

cube root of the flow rate underlining that this relation is also valid here.     
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Figure 6-1 Steady-state CVs for oxygen reduction at Pt(Poly) in 0.5 M H2SO4 at different 

flow rates in the dual thin layer cell. Sweep rate: 10 mVs-1. Arrows indicate the direction of 

the sweep. Inset: the mass transport limited ORR current at 0.2 V as a function of the cube 

root of the electrolyte flow rate in the dual thin layer flow through cell. 

 
6.2.2 Apparent transfer coefficient for ORR and the negative Tafel slope 

As shown in chapter 5, the high electrolyte resistance in the dual thin layer flow 

through cell obtained from impedance spectra has to be subtracted because it leads to high 

iacR potential drop during the superimposed ac potential. To do so, an ac potential correction 

was applied. 

The apparent transfer coefficient after correction is given by: 

dc

corrre'
corr i

Y

F

RT
)(α 1                                                                  (6-1) 

Here, the subscript (1) indicates that only Rel was subtracted according to equation (5-1) to 

correct α'. 

In reality, the adsorption resistance (Rad) contributes to the real part of the admittance  

in the total measured potential difference. In order to exclude the contribution of Rad, the 

corrected real part of the admittance (Yre-corr) was calculated (as explained in chapter 5, part 

5.2.1) in the supporting electrolyte saturated with argon giving ( Ar
corrreY  ) and with oxygen 
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giving ( 2O
corrreY  ). The difference gives the real part of the admittance corresponding to the 

ORR without the contribution from other adsorption processes according to: 

Ar
corrre

O
corrre

ORR
corrre YYY   2            (6-2) 

 
The apparent transfer coefficient corresponding only to ORR is then given by: 

 
dc

ORR
corrre'

corr i

Y

F

RT
)(α 2           (6-3) 

Here, the subscript (2) signifies that α' was corrected for of Rel and Rad. 

 
 The well known Butler-Volmer equation was used to describe the kinetics of an 

activation-controlled reaction such as ORR [7]: 

)e(eii ηzF/RTαηzF/RTα
o

ca             (6-4) 

At high overpotential for ORR, equation (6-4) can be written as: 

RTzF
o

ceii /            (6-5) 

The Tafel slope (b) of the reaction is then given with a negative sign by:    


1

ln











zF

RT

zF

RT

i

E

cdc

                     (6-6) 

For a single electron transfer, the activation barrier is symmetric with β is very close to 0.5 at 

25°C and a negative Tafel slope of -120 mV dec-1. 
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Figure 6-2 Impedance spectra of ORR at Pt(Poly) in the dual thin layer cell. Electrolyte flow 

rate: 5 µLs-1. 
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Figure 6-3 Equivalent circuit used for fitting of EIS data during ORR at Pt(Poly) in the dual 

thin layer cell. 

 
Fig. 6-2 shows the impedance spectra of Pt(Poly) in an oxygen saturated supporting 

electrolyte at different potentials. (Note that: all impedance spectra were recorded in the 

positive going sweep, i.e. after switching the sweep to the anodic direction) to ensure 

complete reduction of surface oxides as shown above. The equivalent circuit shown in Fig. 6-

3 was used for fitting of the EIS spectra (0.1 Hz - 2×103 Hz) and the results are listed in Table 

6-1. It consists of a resistance (Rel) for the electrolyte resistance in series with a parallel 

combination of a capacitance (Cdl) for the double layer capacitance, another resistance (Rct) 

for the charge transfer resistance and a resistance (Rad) for the adsorption resistance which 

itself in series with a capacitor (Cad) for adsorption capacitance.  

As depicted in Fig. 6-2, at high frequencies (> 50 Hz), the impedance is simply 

represented by a series combination of Rel and Cdl. At low frequencies (≤ 50 Hz), however, 

the equivalent circuit in Fig. 6-3 holds, which includes the charge transfer resistance (Rct) 

responsible for the determination of the oxygen reduction rate at Pt surface. For that reason, in 

all of the ac measurements presented here, I chose (3, 5 and 10 Hz) as appropriate 

frequencies.  

 The shape of the spectra was as expected for such equivalent circuit except at high 

frequencies (> 103 Hz). The reason is again the high iR drop and the bad current distribution 

in the thin layer cell. At potentials higher than 0.85 V, platinum oxide acts as a poison which 

inhibits the rate of ORR significantly (cf. Fig. 6-3, at 0.9 V). In addition to ORR represented 

by Rct, adsorption of species other than oxygen occurs at Pt surface with an adsorption 

resistance (Rad) and capacitance (Cad) as depicted in Table 6-1. An electrolyte resistance in the 

Rct

Rel

Cdl

Rad
Cad

corr
acu

o
acu
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range 55-60 Ω cm2 is obtained which leads to high iacR drop during the superimposed ac 

voltage (as shown in chapter 5) and should be subtracted. 

Table 6-1 Fitting data for impedance spectra of ORR at Pt(Poly). 

E / V vs. 
RHE 

Rel / Ω Rad / Ω Rct / Ω Cdl / F Cad / F 

0.6 54.3 779.8 1585 1.17×10-5 1.6×10-4 
0.65 54.6 590.7 1524 1.52×10-5 2×10-4 
0.7 55.2 512 959 1.7×10-5 3.2×10-4 
0.75 54.1 546 625 2.23×10-5 4.6×10-4 
0.8 56.5 960 533 3.04×10-5 3.2×10-4 
0.85 57.3 1135 827 3.6×10-5 4.5×10-5 

0.9 57.4 1603 3372 3.1×10-5 2.7×10-5 
0.9 Ar-Sat. 52.2 2063 56456 3.12×10-5 2.6×10-5 

      

Comparing the fitting data at 0.9 V in case of Ar and O2 saturated supporting 

electrolyte shows that here, as pointed out before in chapter 5, part 5.2.1, a reliable impedance 

and ac data can be obtained in the dual thin layer cell also in case of ORR; whereas Rad , Cdl 

and Cad did not changes, Rct in case of Ar saturated supporting electrolyte is ca. 10 times 

larger than in O2
 saturated one. This is not astonishing because this resistance should 

theoretically be infinite in pure supporting electrolyte. Also the higher time constant of the RC 

element in case of 0.9 V (Ar- saturated supporting electrolyte), corresponding to a frequency 

of 20 Hz, show that at a high frequency the current passes through the RadCad elements in the 

equivalent circuit shown above, while at lower frequencies, it passes through the Rct. 

Therefore, the ac voltammetry measurements should be done at such low frequencies.  

 Fig. 6-4 show the positive going sweep of the potential for the ORR at Pt(Poly) in 

oxygen saturated 0.5 M H2SO4 at different flow rates, 5, 25 and 50 µLs-1. The reason behind 

selection of the positive going sweeps is again that the platinum surface is much more active 

after completely removing of oxides in the negative going sweeps. Underpotential deposited 

hydrogen (HUPD) and oxide formation processes are taking place during the measurement of 

the ORR and their contributions are superimposed on the ORR curve [8]. It is obvious 

therefore to correct for the capacitive current from adsorption processes while keeping the 

sweep rate high enough to minimize the effect of impurities.  

For comparison, the real part of the corrected admittance corrected by subtraction of 

Rel (Yre-corr (1)) or by subtraction of Rel and Rad (Yre-corr (2)) is also displayed. The real part of 

the corrected admittance recorded in the supporting electrolyte, in oxygen saturated 

supporting electrolyte and the difference were also shown in Fig. 6-4 (A)'. The difference in 

the corrected real part of the admittance can be calculated using equation (6-2), which gives 
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the portion of the admittance after correction for the adsorption processes, especially that of 

OH- adsorption at potentials higher than 0.8 V.  

 After correction for Rel and Rad as explained above, at 3, 5 and 10 Hz, the area of 

interest for studying the ORR (0.8-0.9 V) exhibits a fairly constant apparent transfer 

coefficient (α') where the current is kinetically limited. In this region, (-(1-α) = ca. -0.5, i.e. α 

= 0.5) corresponding to a Tafel slope of -120 mV dec-1. At potentials lower than 0.8 V, α' 

decreases with potential; obviously where the current is not kinetically rather diffusion 

limited. At potentials higher than 0.9 V, the ORR current is too low anyway due to the 

formation of platinum oxides and α' significantly increases with potential.  
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Figure 6-4 (A-C), (D-F) and (G-I), the apparent transfer coefficient after correction (blue), the 

dc currents (black) and the real part of the corrected admittance (Yre-corr) (red) recorded during 

ORR at Pt(Poly) in 0.5 M H2SO4 with sweep rate = 10 mVs-1, electrolyte flow rates = 5 µLs-1, 

25 µLs-1 and 50 µLs-1, uac = 1 mV and f = 3, 5 and 10 Hz respectively. (A)', the real part of the 

corrected admittance in the Ar saturated supporting electrolyte (black), in O2 saturated 

supporting electrolyte (red) and the difference (blue) at 5 µLs-1 and 3 Hz is shown as an 

example.  

 
For comparison, the data extracted from the steady-state voltammogarms for ORR at 

Pt(Poly) were used to draw Tafel plot at different flow rates. At low potentials, the Tafel slope 

was around -120 mV dec-1 and at high potentials it was around -60 mV dec-1, independent of 

the flow rate and in agreement with previous literature for ORR at platinum in acidic medium 

[9-12]. The change in the Tafel slope was attributed to the potential-dependent coverage of 

surface oxides that inhibit the adsorption of oxygen and intermediates as suggested previously 

[13]. It is well known that the low Tafel slope is due to ORR at platinum surface covered with 

oxides while the large slope is due to the same process at clean platinum surface [12]. 

Damjanovic et al. [14] reported that the change in the adsorption state of oxygen from 

Temkin-type to Langmuir-type due to the reduction of the surface oxides was the reason for 
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the change in the Tafel slope. A Tafel slope of -120 mV dec-1 with α' = 0.5 at all flow rates 

suggests that the first electron transfer to oxygen during ORR is the rate determining step as 

purposed before [12, 15, 16].  

The difference between the Tafel slope obtained from ac voltammetry method (-120 

mV dec-1) at high potential region and that obtained from normal method (-60 mV dec-1) is 

due to the fact that in case of ac voltammetry the coverage within one ac period is constant 

and the Tafel slope or the apparent transfer coefficient directly reflects the potential 

dependence of the reaction rate, i.e. the current is only a function of potential: 

RTF
o

cezFki /            (6-8) 

Then a Tafel slope of -120 mV dec-1 is obtained. 

In the usual determination of the Tafel slope, the potential dependence of the rate is 

affected by the coverage since it is not constant and changed with changing the potential, i.e. 

depends on the number of free active sites (1-θ) and hence, 

 )1(/    RTF
o

cezFki            (6-9)   

This then leads to a non constant Tafel slope, which is decreasing with current density.   
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Figure 6-5 Tafel plots for ORR at Pt(Poly) electrode in 0.5 M H2SO4 at different flow rates. 
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6.3 Conclusions 

The ORR has been studied in the dual thin layer flow through cell at Pt(Poly) electrode 

in 0.5 M H2SO4 at different flow rates. The potential modulation technique has been applied 

using three different frequencies. The high electrolyte resistance as well as the adsorption 

resistance has been subtracted giving a final admittance values correspond only to the ORR 

process. Apparent transfer coefficient values around -0.5 (Tafel slope = -120 mV dec-1) were 

calculated in all cases independent of the frequency or the flow rate. Two different Tafel 

regions have been observed from the plot of log IjD.jI/IjD-jI versus E; low Tafel slope (around 

-60 mV dec-1) at high potential and high Tafel slope (around -120 mV dec-1) at low potential 

in accordance with other previous investigations. The contradiction between the Tafel slopes 

calculated from ac voltammetry method and that from usual method at high potential is due to 

the influence of the coverage on the potential dependence of the rate in case of the usual 

method where the coverage is always changing with potential while in the ac voltammetry 

method the coverage is constant during the potential oscillation. From the above observation, 

at Pt(Poly), the first electron transfer to oxygen is the rate determining step. 
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7. Summary and outlook 

The main challenge in the area of fuel cell research is to find a good catalyst that 

helps in complete oxidation of the fuel at the anode and reduction of the oxygen at the 

cathode at a low overpotential which consequently would give rise to the maximum cell 

efficiency. However, for the direct methanol fuel cell (DMFC) operating at low temperature, 

the main problem that arises at the anode is its poisoning (deactivation) due to the 

accumulation of the fuel adsorption product (COad) which can only be oxidized at high 

potentials (> 0.7 V). For low temperature direct ethanol fuel cells (DEFCs), the main problem 

that arises at the anode, beside its poisoning by ethanol adsorption products (COad and 

CHx,ad), is the incomplete ethanol oxidation due to the difficulty of (C-C) bond breaking. In 

the previous types of fuel cells, a sluggish ORR kinetics was observed at the cathode which 

results in a large voltage drop. Such behavior is due to strong inhibition of the cathodic ORR, 

resulting in high overpotentials and therefore, significant deterioration in the energy 

conversion efficiency of the cell. The slow kinetic behavior stems from the difficulty of 

(O=O) bond breaking. 

In order to model the conditions of continuous oxidation/reduction in a fuel cell, the 

continuous mass transfer to the electrode surface is necessary. Therefore, mass spectrometry 

and ac voltammetry measurements presented here were done using the thin layer flow 

through cell. This thesis aims at a determination of the rate constant of single reaction steps 

during the oxidation of CO, methanol and ethanol at different platinum surfaces. Towards 

that aim, I investigated the electrocatalytic oxidation and adsorption rate of methanol (chapter 

3) and the electrocatalytic oxidation of ethanol (chapter 4) at different Pt surfaces, using 

DEMS. In chapter 5, the potential dependence of the bulk and adsorbed methanol oxidation 

reaction rate (presented by the apparent transfer coefficient, α') and the corresponding Tafel 

slope of the reaction have been determined under convection conditions using a potential 

modulation ac voltammetry technique. Finally, as an application of the method presented in 

chapter 5, my work in chapter 6 aims at the determination of the apparent transfer coefficient 

and Tafel slope of the ORR at Pt(Poly) electrode. 

The electrooxidation of methanol proceeds via the dual pathway mechanism. The first 

pathway (named ''indirect pathway'') involves the dehydrogenation of methanol to adsorbed 

CO followed by its oxidation to CO2. The second pathway (named ''direct pathway'') involves 

the formation of dissolved intermediates as HCHO and HCOOH which are transported away 

from the electrode surface by convection. CO2 current efficiencies and the degree of surface 
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poisoning with COad have been shown to be independent of the electrolyte flow rate; both 

confirm the parallel pathway mechanism.  

As shown above, since COad is the main poison of the anode catalyst layer in the 

direct alcohol fuel cell, it is better to catalytically oxidize it at a low overpotential. In the 

present thesis, it has been shown that Ru electrodeposited at Pt is better catalyst than pure Pt. 

It promotes the oxidation of COad at low potentials according to bifunctional and electronic 

mechanisms, at high potentials, however, Ru losses its co-catalytic activity. On such 

bimetallic surfaces, Ru is preferentially adsorbed at steps. Complete blocking of the Pt step 

sites with Ru shifts the oxidation to the direct pathway (non-CO-pathway) and thus results in 

low CO2 current efficiency. It leads also to the inhibition of the methanol oxidation current 

due to the blocking of the most active Pt step sites necessary for methanol adsorption and 

oxidation.  

Methanol adsorption rates have been determined: at Pt(Poly), the adsorption rate 

increases with increasing methanol concentration and adsorption potentials. At Pt(331) and 

Pt(332) electrodes, methanol adsorption rate was doubled with double step density, higher 

with higher Ru coverage and increase by a factor of 10 per 0.1 V. Increasing step density 

however lead to a decrease in methanol adsorption rate from 2.2 MLs-1 at Pt(100) to only 1.8 

MLs-1 at Pt(11,1,1) due to the geometric ensemble effect and the much smaller activity of 

(111) sites as compared to (100) sites.  

A detailed evaluation of the CO2 and acetaldehyde current efficiencies during ethanol 

oxidation at Pt(Poly), Pt(11,1,1) and Pt(311) as well as the same single crystal surface 

modified with Sn has been investigated. Under flow through conditions, during the 

potentiostatic ethanol oxidation, the amount of CO2 is negligible. There is no further 

oxidation of the soluble product at the surface and acetaldehyde is the main oxidation product 

(current efficiency close to 100 %). At a Pt(311) electrode, a small amount of CO2 is 

observed due to the oxidation of the ethanol adsorption product and not due to the oxidation 

of bulk ethanol as proved by a separate potential step experiments. Acetic acid in addition to 

acetaldehyde (current efficiency of ca. 50 %) are the main oxidation products. The onset of 

ethanol oxidation at Sn modified Pt(311) electrode is shifted negatively by 0.2 V. This shift is 

not associated with CO2 production; rather acetaldehyde and acetic acid are the main 

oxidation products. 

At the above surfaces, the experimentally determined acetaldehyde current 

efficiencies are too high if calibration is simply achieved by an electrolyte with a known 

concentration of the product due to incomplete mixing in the dual thin layer flow through 
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cell. By performing other experiments with i-propanol, I determined a correction factor for 

that: In that case, the product (acetone) with a faradaic current efficiency of 100 % has a 

similar diffusion coefficient and volatility as acetaldehyde.  

The apparent transfer coefficient (α') and consequently the corresponding Tafel slopes 

were determined quasi continuously as a function of potential or time (i.e. in the CV or in the 

potentiostatic experiments) for the oxidation of pre-adsorbed CO, and methanol as well as 

bulk methanol at Pt(Poly) electrode under convection conditions. This method involves a 

sinusoidal modulation of the potential and simultaneous recording of the ac and the dc 

current. This method has the advantage that the transfer coefficient can be determined at a 

single potential; a wide range of potentials with a constant Tafel slope is therefore not 

necessary. In control experiments, using adsorbed CO, values previously determined using the 

H-cell were reproduced. This demonstrates that the method is applicable to the thin layer cell 

despite of the high electrolyte resistance which was subtracted by applying a simple ac 

mathematical ac voltage correction. Contrary to the case of the oxidation of adsorbed CO, 

where the transfer coefficient varies from about 1.5 at low potentials to 0.5 at high potentials 

due to a change of the rate determining step, the apparent transfer coefficient for the methanol 

adsorption product is around 0.5 (Tafel slope of 118 mV dec-1) at all potentials, suggesting 

that at all potentials the first reaction step, the adsorption of OH, is the rate determining step 

and not in equilibrium.  

As an application of the above mentioned ac voltammetry method, the apparent 

transfer coefficient and the Tafel slope have been also determined for the ORR at Pt(Poly) 

electrode under convection conditions. In addition to the high electrolyte resistance, also a 

correction for the adsorption resistance was performed. Apparent cathodic transfer coefficient 

of ca. 0.5 (Tafel slope of ca. –120 mV dec-1) were calculated in all cases independent of the 

frequency and the electrolyte flow rate. This suggests that, at Pt(Poly) the first electron 

transfer to oxygen is the rate determining step.  

 
For future work, the following experiments would be most interesting: 

1. Determination of the apparent transfer coefficient for ORR for some other ORR catalysts, 

e.g., metal oxide based catalysts. 

2. Electrocatalytic oxidation of methanol on Sn modified surfaces vicinal to (100) plane, e.g., 

Pt(11,1,1) and Pt(311) in order to examine what would be the effect of Sn on the current 

efficiency for CO2 during methanol oxidation.  
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3. Electrooxidation of CO at Ag modified Pt(311) electrodes whereas Ag is much stable 

adatom at Pt electrode. In this respect, it would be interesting to check what would be the 

behavior of adsorbed CO at these surfaces, where CO molecules could adsorb and what 

would be the effect of Ag on the CO coverage at the surface.  
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