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Abstract

In this thesis we discuss two aspects of branes relevant to high-energy phenomenology. First, we
consider a single D6-brane wrapping a special Lagrangian cycle and the background space compactified
in a Calabi-Yau orientifold the conditions needed to obtain a four-dimensional N = 1 supersymmetric
theory. We calculate the bosonic part of the effective action by performing a Kaluza-Klein reduction of
the brane seven-dimensional action, and obtain the A" = 1 characteristic data. To discuss the moduli, we
first fix the moduli from deformations of the background Calabi-Yau and study the D-brane deformation
moduli space. We next allow for Calabi-Yau deformations, and show that the moduli space for complex
structure deformations is corrected by the fields living on the D6-brane. We also calculate the scalar
potential from D- and F-terms generated from brane and background configurations that would break
the supersymmetry condition. We then, via Mirror Symmetry, relate the spectrum obtained in our work
to the spectrum in Type IIB effective theory with D3- D5- and D7-branes, and we propose a Kihler
potential for the moduli space of brane deformations in Type IIB theories. In the second part of the
thesis we discuss effects of brane intersections when the string coupling can become strong, and we
work in the framework of F-theory. After reviewing the basics of F-theory constructions and a particular
SU(5) model already discussed in the literature, we construct a model which contains a point of Eg
singularity, and curves of Fg singularity. By explictly resolving the space, we show that the resolution
requires the introduction of higher dimensional fibers, and argue how we can circunvent this problem
for the Ejg curve, leading to the expected resolution that generate an Eg group, while at the Eg point we
cannot make the resolution lead to an expected Eyg structure.
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Chapter 1

Introduction

The quest for understanding Nature’s mysteries have always played an important role in humankind.
All around the world, since the most remote times, societies have tried to create explanations for why
the world is as it is, either for practical technological purposes that could in principle favor societies
to survive and flourish, either to satisfy an innate curiosity, and understand the broader picture of the
Universe and our role as humans and part of the Cosmos. Much have changed since the ancient Greek
philosophy, the Chinese schools of logic, the Persian medicine academies, the Aztec metaphysics and
the Roman theology, but the desire for understanding the Universe still nowadays perseveres just as, or
even more, strongly.

What often come with this ceaselessly search for answers are shifts in paradigms. Much more than
just curiosities restricted to academic circles, these scientific shifts have cultural an social impact. An-
cient cosmology saw, understandingly, a very limited picture of what is out there. Humankind discussed
for millenia whether the Sun or the Earth would be the center of all things. The view of an Earth or the
Sun as the (physical and philosophical) center of the whole Universe might now seem even ridiculous
to most people. Our cosmology has advanced at such a fast pace, that took us from the first evidence for
other galaxies outside the Milky Way by Hubble (the man) to the fascinating and breathtaking pictures
by Hubble (the telescope) that showed us a countless number of galaxies of which our humble Milky
Way seems to play no distinguishable role. We can now discuss the evolution and fate of the Universe as
a whole, with new concepts that would probably be unimaginable some centuries ago. Down to Earth,
the study of the basic constituents of matter also gave astonishingly new perspectives. In a little more
than one century we changed dramatically our understanding of particles and forces, and often had to
abandon our intuition when dealing with phenomena in the subatomic world. All these investigations are
backed up by measurements with always increasing precision and based over a powerful mathematical
background.

Together with the quest for understanding often comes a quest for simplicity and unification of
phenomena in fewer fundamental ingredients. An idea present in different ancient cultures is that the
universe could be described by a handful of basic “elements”. with one of the best known examples
being the four platonic elements. Moving fast forward in time, after the stablishment of the scientific
method and the investigations of nature by what we now know as physical sciences, the probably greatest
episodes in physics were the unification of earthly and heavenly mechanics in Newton’s Principia, the
unification of electricity and magnetism under Maxwell’s theory, the unification of space, time and
gravity via General Relativity and more recently the unification of particle physics under the elegant
Standard Model of particles. Important to say is that unification comes often as much more than an
obsession for elegance, but rather as a necessity when the existing theories become inconsistent by
themselves or with phenomena. Today probably one of the most fascinating explorations in physics is
String Theory, that tries to unify the two main pillars of fundamental physics, Quantum Theory and
General Relativity. This proposal to describe everything as subsets of a single theory can seem too
utopic and audacious, but there are in fact practical reasons for why such a pursuit is not only desired,
but needed. Additionally, if String Theory is indeed correct, it will be a huge change to the way we
understand particles, interactions, spacetime and even our Universe itself!

At the moment, this is a panorama on the status of fundamental physics: Quantum Field Theory
(QFT) is the framework to describe the phenomena in small length scales, in which particles are point



excitations of fields in spacetime. The Standard Model of particle physics is a QFT that has been
extremely successful to explain with great detail what goes on in particle accelerators. It postulates as
building blocks for matter three families of chiral fermions with two quarks and two leptons in each, each
family being a heavier copy of the other. The vast majority of all the matter we see belongs to the first
family, but the more massive particles from the other families can be produced in high energy collisions,
but decay fast into the lighter “cousins”. The fundamental forces of nature (outside gravity), namely
strong nuclear, weak nuclear and electromagnetic forces are described by the bosonic spin one particles,
respectively the gluons, W and Z bosons and the photon. As gravity is too weak when compared to
the other forces, in the energy scales relevant to “earthly” particle physics the gravitational interaction
can be safely neglected. The forces in the Standard Model arrange themselves elegantly as a gauge
theory SU(3) x SU(2) x U(1) under which the fermions are singlets or transform in the fundamental
representation. The electroweak SU(2) x U (1) is spontaneously broken into the electromagnetic U (1)
and the massive (short range) weak force via a Higgs mechanism, under which the scalar Higgs field,
charged under SU (2), acquires a vacuum expectation value, giving a mass to the gauge bosons of SU(2),
breaking the symmetry. A surprising fact was that the Standard Model predicted correctly the existence
of the top and bottom quark, the W and Z bosons and the gluon with amazing precision! It also predicts
the existence of a remaining massive boson, the Higgs boson, and it is still the only piece of the Standard
Model yet to be found. Recently however the ATLAS and the CMS collaboration at the LHC just claimed
the discovery of a boson with a mass compatible with the predicted for the Higgs, ~ 125 GeV [1,12]. If
its properties match with the predicted Higgs boson, this will show once more the strength of theoretical
physics.

Leaving the micro-domain, we have General Relativity, a classical (that is, non-quantum) theory to
describe phenomena when the masses and distances are large, i.e. when the gravitational interaction be-
comes relevant, and it has passed through a large number of experimental tests that makes it extremely
difficult to challenge. The standard model of cosmology, called the Lambda-CDM model, assumes
General Relativity as a framework and describes the evolution and fate of the Universe and what is in it.
It has also been extremely successful in describing the formation of structures, the accelerated expan-
sion of the universe, barionic formation, the cosmic microwave background and many other observed
features. The model postulates a small cosmological constant in the general relativity equations, that
could be described by a vacuum energy, now called dark energy. It also includes cold dark matter, some
hypothetical non—relativistic[] matter that does not interact electromagnetically and is therefore invisible
directly, to account for the discrepancy between the seen matter in the universe and the necessary to
match the observational data.

Quantum Theory and General Relativity are unfortunately not compatible. When one tries to de-
scribe General Relativity as a quantum field theory described by a spin two graviton (the quantized
spacetime metric) problems emerge. The standard quantization of the theory, unlike what happens to the
other forces, leads to a non-renormalizable theory, and one has to try other non-orthodox approaches.
A quantum theory for gravity would be crucial when we want to describe situations of a high mass in
small volumes, as it is expected to happen for example in the center of black-holes or at the Big-Bang
singularity, or when we want to describe quantum particles in strong gravitational fields, as for example
to try to describe the Hawking radiation of black holes. Also,the Standard Model has no particle which
matches the criteria for cold dark matter, and the vacuum energy density calculated from the standard
model is way much higher than the dark energy density. One could then expect that the Standard Model
holds as long as we stay in a domain below the Planck energy scale ~ 10'? GeV, where the gravity
coupling is much smaller than the other couplings of the theory. However, even way below the Planck
scale there are problems appearing in the Standard Model indicating that it might have to be modified
already around or above the TeV energy.

! Proposals with hot and warm dark matter (where particles move at relativistic speeds) also exist, but are not as popular as
cold dark matter



One of these problems is the hierarchy problem, that comes when one calculates the quantum correc-
tions from loop amplitudes to the mass of the Higgs boson. If we introduce a cuttoff scale A to indicate
the limit up to which we expect the Standard model to hold, already at one-loop the correction to the
Higgs mass squared goes as A2, while all the corrections to other massive particles go as In(A%/m?),
where m is the mass of the particle involved in the loop correction (for the Higgs boson, the main con-
tribution comes from the mass of the tau lepton). This implies that to a A close to the Planck scale
the logarithmic term contributes to a factor comparable to the mass of the particle or one maybe two
orders of magnitude higher, while the Higgs mass correction runs to absurd values, and we need a strong
fine-tuning to bring it back to the ~ 100 GeV scaleE]

1.1 A novel symmetry and more unification

One way to address the Higgs mass problem is to introduce a new symmetry, supersymmetry, trans-
forming fermions into bosons (and vice-versa), such that they would always appear in pairs of same
mass. As a fermion loop caries opposite signal to a bosonic loop, the corrections to the Higgs could be
cancelled. Of course, the bosons and fermions we see in nature do not have same mass superpartners, SO
supersymmetry must be broken, and approximately restored at at a scale ~ 1 TeV to solve the hierarchy
problem. The same loop cancellations between supersymmetric partners can bring the vacuum energy
contributing to the cosmological constant to a dramatic lower value. And since adding supersymmetry
to the Standard Model adds a bunch of unseen massive particles, we have good candidates for dark mat-
ter. Experiments around the world are looking for signals from supersymmetric particles, and one hopes
that the high energies and luminosities of the LHC give some hint on the existence of supersymmetric
particles.

There is still another feature of the Standard Model that might indicate new physics below the Planck
Scale, besides supersymmetry. When one calculates the quantum corrections to the gauge couplings,
they run to large energies in such a way that they almost meet in Standard Model at an energy scale,
and actually converge in the minimal supersymmetric version of the Standard Model (within the pre-
cision boundaries). Together with the fact that the fermions in the Standard Model arrange themselves
nicely in families, one can formulate a Grand Unified Theory (GUT) in which the various particles in-
side a single family are actually different states of a single particle multiplet, and the gauge bosons are
the remaining massless bosons after the breaking of a larger symmetry. The first proposal for such a
unification of all the fundamental (except gravity) interactions was done by Georgi and Glashow [4]],
still inside non-supersymmetric theories, the SU (5) Minimal GUT. Without supersymmetry however a
precise calculation shows that the gauge couplings only almost unify. In the supersymmetric version of
SU(5) [54/6] the couplings do unify, but the new particles and couplings from the supersymmetric sector
introduced the (unwanted) possibility of a proton decay. Although this idea might seem uncomfortable,
there is still room for it, since the prediction for the decay time of the proton is within the actual experi-
mental bounds. This problem can be completely avoided however if one introduces discrete symmetries
to create selection rules for the allowed interactions.

Thus, Supersymmetry provides a solution to the hierarchy problem of the Higgs, has candidates
for dark matter and favors a unification of all the quantum interactions in a single force. Besides, the
introduction of a totally new symmetry, different from any other up now, is a fascinating possibility
to explore. There is however still a problem. Supersymmetry might provide answers to many open
questions, but it says nothing about the unification with General Relativity. When one tries to merge
supersymmetry with general relativity one gets supergravity, that is however non-renormalizable. So

2 Additionally, the running of the Higgs self-interaction at high energies (~ 10'* GeV or higher) might make the coupling
negative, thus turning the value of ~ 125 GeV a metastable state of the Higgs, from which it might decay to a much larger
value [3]]. Other problems of the standard model not necessarily related to the Higgs include for example the strong CP problem
or the neutrino masses and oscillations.



some other approach is still needed to describe the interplay between both frameworks. For an extensive
review on supersymmetry, supergravity and their implications to particle physics we refer the reader
to [7]].

1.2 String Theory joins the game

String Theory [8}|9] is an alternative proposal that leads to a quantized theory for gravity, which replaces
the point particle by a tiny (up to now beyond experimental detectability) one-dimensional object, that
can be either open or closed. It contains in its spectrum the graviton, the quantized excitation of the
background spacetime metric, and it reproduces the Einstein’s gravity equations not from equations
of motion, but only from requiring the theory to be anomaly-free. Anomaly cancellations imply the
background spacetime to be ten dimensional. Supersymmetry is also a requirement of String theory
to get rid of unwanted tachyons in the spectrum. There is just one type of interaction, the joining and
splitting of strings. The bad divergences of usual quantum theories arising from the point-like nature
of the interactions are now absent present, since the interactions are now smeared out in a smooth
worldsheet wiped by the interacting strings.

There are actually five consistent ways of quantizing the superstring that leads to a tachyon-free
spectrum, or five Superstring theories, Type IIA, Type IIB, Type I SO(32), Heterotic Es x Eg and
Heterotic SO(32). The n-point amplitudes for string scatterings can be calculated and identified to the
n-point amplitudes of effective supersymmetric quantum field theories as we use the string length as a
small expansion parameter. In the limit of the String length going to zero, the effective theories are the
Type IIA, Type IIB and Type I Supergravity theories in ten dimensions. So the non-renormalizability of
supergravities theories are not a problem anymore, since they are just low energy effective actions. In
Sting Theory the gauge groups are described by extra degrees of freedom at the end points of the open
strings, or from the extra bosonic degrees of freedom appearing in the heterotic closed string. Type ITIA
and IIB however have the apparent problem of containing in the spectrum only closed strings and with
possibility to include gauge degrees of freedom. So for a long time the attempts to describe the Standard
Model as a limit of string theory were performed with Type I and heterotic strings. In particular the large
Es x Ey is favorable for embedding a wide variety of extensions of the Standard Model, in particular
Grand Unified Theories.

To arise at four dimensions, one has to perform a suitable compactification of the space, a general-
ization of the Kaluza-Klein reduction. If additionally we want a minimal amount of supersymmetry in
the effective four-dimensional description, we have to compactify on a manifold with SU (3) holonomy,
a Calabi-Yau manifold. The effective theory therefore can also be expanded in a parameter of the order
of the volume that will encode the Kaluza-Klein tower of states. In heterotic compactifications, in order
to obtain a correct four dimensional coupling constant of gravity the string length and the length of the
compactification manifold must be the order he Planck scale. Also, the length of the strings should be the
order of the Planck lengtlﬂ Phenomenology from heterotic strings are often referred to as fop-bottom
approach, in the sense that we construct the theory in a consistent internal space and extract the physical
information of it. Often in compactified theories the size of the internal manifold is related to the cou-
pling constants and the topological data of the manifold to the spectrum of the theory, i.e. for example
the number of families, charges and spin of the fields. A concise review on the heterotic construction of
the (supersymmetric) Standard Model can be found for example in [11]] and references therein.

Heterotic constructions were unfortunately not perfect. As one of the issues, one can cite the moduli
stabilization problem. In string compactifications usually (as was the case for heterotic compactifi-

3this can be avoided in large-volume compactification scenarios where the ten-dimensional Planck length can be made
much smaller than the four-dimensional one via the relation Mff] ~ M ﬂJVOI while the Standard Model is located in a small
subregion of the compactification space [|10].



cationg*) there are many moduli, massless scalar fields often related to particular deformations of the
internal geometry that are not restricted by a potential, meaning that these fields can acquire any vacuum
expectation value (vev) in a continuous. In other words, the geometry can be deformed with no imped-
iment in a continuous way. This continuous space of possible deformations of the geometry define a
manifold, the moduli space, that although extremely interesting from the theoretical and mathematical
point of view, is phenomenologically undesired since the values for the physical couplings are related to
the geometry, and thus a Universe with unfixed couplings would be incompatible with reality.

1.2.1 A Brane New World

The status of string theory changed dramatically in the mid 90’s with the discovery of Dp-Branes in Type
II theories, p-dimensional objects on which open strings end [[15]]. This has broadened the possibilities
to construct interesting phenomenological actions in String Theory, since one could form a stack of N
D-branes on top of each other, and the open strings would be in the adjoint representation of an SU (V)
group (or Sp(2N) or SO(2N) in orientifold compactifications), and their effective action described by a
Super-Yang-Mills theory. Branes could intersect at some angle, and at the intersection of a stack of IV D-
branes with a stack of M D-Branes, open strings would be in the bi-fundamental representation (IN, M),
thus providing an elegant way of introducing barionic representations geometrically. Additionally, Type
II theory with Branes contained a good variety of field-strength fluxes, topological solutions to the field
strength that have become the main mechanism in the string theory literature to stabilize the moduli,
give a chiral mass spectrum and induce breakings of the gauge groups.

In the last two decades there have been a huge number of papers written on the realization of four
dimensional quantum field theories from Type II string theories with D-branes, reproducing Standard
Model-like scenarios or extensions of it (as mentioned, the literature is extensive, so we just cite some
early representatives [16H18]] and the reviews [[19521]]). Brane model constructions are often referred to
as bottom-up, since one starts by specifying the local geometry (the configurations and intersections of
branes at subregions of the compactification space), in opposition to the global constructions of heterotic
strings.

Additionally, String Theory with D-branes have also become an interesting framework to study gen-
eral properties of supersymmetric theories, such as phase transitions and non-perturbative corrections.
D-brane constructions also provided a framework to compute the black-hole entropy [22[], now one of the
strongest theoretical evidences in favor of string theory. Type II strings with D-branes also supported a
novel interpretation of gravity via holography (starting from the Maldacena conjecture [23|] and the vast
subsequent literature on AdS/CFT and related topics). Alternatively to these and many other physical
applications, string theory has also contributed to pure mathematics, as for example in the computation
of rational curves of the quintic manifold using string theory arguments [24].

Brane-world scenarios also brought a fascinating contribution to cosmology. Since the Standard
Model is localized in the internal space at some crossing of branes (or branes at a singularities, as
in [25]), the Universe as we see it could be just a tiny fraction of the whole. Matter representations away
from the Standard Model region could account for dark sectors of the spectrum, connected to our world
only via loop corrections, and the dynamical nature of branes could be behind cosmological episodes
like the inflation epoch or even the Big Bang, also offering predictions to precision measurements of
astronomical data (for a review, [26]]).

Although much is known from the spectrum and the basic theory which branes give rise to, detailed
calculations have shown non-trivial interactions between fields, that could in principle contribute to ef-
fects on our real world physics. As one example, one can cite the kinetic mixings between different U (1)
gauge bosons that often appear in brane compactifications [27,[28]]. Such mixing could in principle be

“More recently many solutions to the moduli stabilization problem in heterotic strings have been proposed. As recent
examples, we can cite the case for orbifold compactifications in [[12] and for more general compactifications [|13}|14].



detected in experiments, as for example the “light through walls” setups [29]], where the electromagnetic
photon could become a non-Standard Model boson (a “hidden photon”, or for massive invisible U(1)s,
Z-prime bosons) that could go through a barrier, mix back into a photon and be detected at the other
side of the barrier. The non-detection of such phenomena impose limits on the coupling of the mixing,
and therefore to the properties of the internal geometry. Also, many phenomenological examples treat
the branes as fixed in the internal geometry, but this is not general, since the branes can be moved and
deformed. These deformations can in some cases contribute to new loop couplings between the fields
on the branes, as well as to generate potentials that break supersymmetry. Detailed calculations can also
give explicit values for the cosmological constant, and in models with supersymmetry breaking with
gravity or gauge mediation (in which there are two brane sectors, the Standard Model and a hidden sec-
tor that breaks Supersymmetry spontaneously) a more precise calculation is also important to understand
quantitatively and not only qualitatively the induced masses after the breaking of supersymmetry. One
of the focus of this thesis is to work explicitly the action for a single D-brane, and perform a careful
analysis of the four dimensional field theory on it.

1.2.2 Getting stronger

The many different quantized string constructions Type IIA, Type IIB, Type I and the heterotics might
seem incompatible with the idea of a single unifying theory. However an exciting consequence of
String Theory is the existence of many dualities relating the various formulations [[30]]. It has also been
postulated the existence of an eleven-dimensional theory, called M-theory, that has M2- and M5-Branes
as the fundamental objects and reduce to eleven-dimensional supergravity in the low-energy limit [31]].
From what it is known of M-theory, there are strong indications that it reproduces all the string theories
in particular compactification limits or after a sequence of dualities. The most straightforward relation
is between Type IIA and M-theory, in which it has been shown that eleven dimensional supergravity
compactified on a circle reduces to Type IIA supergravity as the radius of the circle becomes tiny, and
the various D-branes would be then compactification of the M-branes or special purely geometrical
non-trivial solutions. M-theory would be then the strong-coupling “lift” of Type IIA, with the IIA
string coupling given by the radius of the compactified eleventh dimension. Until this moment however
only the supergravity limit of M-theory and the effective descriptions of single M2 and M5 branes are
known [32]. Actions for the worldvolume of multiple M2- and M5-branes are still being proposed (for
example in [33]]).

The D-branes in Type IIB also obey a special type of duality that relates strong and weak string
coupling. This duality acts on fields as an SL(2,Z) symmetry, that is also the symmetry group lattice
of a torus. The axio-dilaton, a combination of the string coupling with the Ramond-Ramond axion,
would transform under this duality in the same way as the complex structure of a torus. This symmetry
also implies the introduction of new non-perturbative objects, (p,q)-branes, around which the theory
suffers a monodromy, described by the SL(2,7Z) group. All those facts induced string theorists to
search for another theory with an underlying torus structure that could reduce to Type IIB in some limit.
This hypothetical theory received the name F-theory [34]. Additionally, F-theory compactified on an
elliptically fibered K'3 manifold was inferred to be dual to Heterotic string compactified on a torus,
strengthening the web of string dualities known. Finally, F-theory can also be seen as a T-dual picture
of M-theory, in the same way as Type IIB is T-dual to Type IIA string theory. This comes from the fact
that a special compactification limit of M-theory with a T-dualization leads to Type IIB theory with the
desired underlying torus structure. And like M-theory, F-theory has no fundamental description. Even
worse, there is no known low-energy action, as there is supergravity for M-theory. One could then ask
oneself if it is really a physical theory, or just a nice mathematical way of seeing things. Independently
on the answer, one can work with it. And for the moment, that is enough.

It is important to point out the geometrization that occurs as one moves from perturbative to strong
coupling. The description of a D6 brane in M-theory is via a purely geometrical object, a generalization
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of the Kaluza-Klein monopole that is a non-trivial solution to the supergravity equations. When we T-
dualize to F-theory, the lift of the D6-brane becomes an elliptically fibered divisor, with a singular fiber.
But if we remain in perturbation theory, the D6-Branes are T-dual to D7-branes. That is, in F-theory the
strongly coupled equivalents of the D7-branes become entirely part of the geometry.

F-theory has many other interesting features. String-theoretically, being a strong coupling regime
of Type IIB, one can learn more about the non-perturbative effects of strings, branes and fluxes. The
interplay among Type IIB string <> M-Theory <+ Heterotic string under F-theory allow us to alternate
among the available tools on each framework, with which we can obtain results beyond the perturbation
theory. On the Heterotic side, one can use F/M-theory to solve the moduli problem described earlier, as
we can incorporate fluxes. Also, one can explore the geometrical realizations of elements from heterotic
theory, and use heterotic strings to understand better M- and F-theory.

Phenomenologically, the non-perturbative nature of F-theory allows for the realization of exceptional
groups over the seven-branes, extending the previous possibilities SU(N), SO(2N) and Sp(2N). This
is crucial specially when constructing realizations of GUT models, since in previous perturbative brane
constructions some of the couplings could not be realized. As a particular famous example, In SU(5)
GUTs localized on a brane, the coupling between the matter representations 10 10 5 was known to be
obtained only via instantons. This however is the coupling necessary to couple the top-quark to the
Higgs in SU(5) models [35]], so it is quite undesirable that the most massive fermion would receive
its mass from highly suppressed correctionﬂ In GUTs constructed from F-theory, or simply called
F-theory GUTs, such couplings are generated naturally, as in the intersection of branes the theory can
become strongly coupled. F-theory as a non-perturbative lift of Type IIB was known since the end of the
’90s, but the tools for constructing such GUT models with exceptional groups are very recent [36-38]],
and triggered a renewed interest in F-theory.

We could resume the standard constructions of F-theory GUTs in the following items:

o Start with an elliptically fibered Calabi-Yau fourfold that contains a divisor on the base over which
the fiber becomes singular. The Calabi-Yau condition is the requirement for supersymmetry in
four dimensions.

e One can analyse the gauge group on top of this divisor either by the Heterotic duality as an unbro-
ken subgroup of FEj, either by using explicit algebraic or toric geometry to resolve the singularity
and wrap M2 branes on the resolved fiber reproducing vector multiplets transforming in the adjoint
of the corresponding group.

e One can turn on M-theory fluxes on the brane to break the GUT gauge group down to smaller
groups (like the Standard Model groups).

e Atcurves on the base the singularity worsens, and the associated gauge group enhances, giving rise
to matter curve representations. In Type IIB picture, these curves correspond to the intersection
between two stack of seven-branes, reproducing bi-fundamental representations.

e From the M-theory perspective, one can localize the G4 flux along the resolved curve, and make
the matter representation chiral.

e The geometric localization of matter on curves allow a natural way to generate or suppress certain
matter couplings in particular models, as they would simply correspond to intersecting or non-
intersecting curves, respectively.

e The number of matter curves and their intersections can be encoded in the specifications of the
fibration defining the topological data of the Calabi-Yau.

>The couplings might have the right hierarchical structure in flipped SU (5) models [35].
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It is important to point out the mixed local/global features of F-theory GUTs. First, the local realization
of gauge groups as a singular elliptic fiber works only for non-Abelian groups. U(1)s in F-theory GUTs
are generally massive (via coupling with the axion), and thus are only unbroken when they satisfy some
global criteria [39-41]]. Also, the fluxes (used for chirality or GUT breaking) must also obey some
global restrictions to preserve the Calabi-Yau condition (and supersymmetry), and the local description
of matter curves is not enough to give the full picture. The good thing about F-theory constructions is
that one can explore the F-theory/Heterotic duality to obtain global informations. For a very incomplete
list of examles of F-theory GUT constructions we refer to [42-47]] and references there cited.

The possibility to describe in a globally consistent way matter curves reproducing interesting spec-
trum and Yukawa interactions has led many to try to reproduce more than just the spectrum and the
gauge groups, but also open questions in the Standard Model like the neutrino mixings and the hier-
archy for the lepton masses. The flavor hierarchy was explored in [48],/49]], while the neutrino masses
in [50,/51]. In order to solve both problems at the same time one has to consider the matter represen-
tations intersecting at a point that would enhance to an Eg singularity (that is, a singular fiber whose
associated gauge group after the resolution is an Fyg group). Kaluza-Klein excited states can couple to
the matter representations, and are integrated out when we move below the GUT scale. Allowing extra
U (1) symmetries in the setup at high energies, the charges of the fields under these U(1)s can generate
quark hierarchies in Froggatt-Nielsen models [52]] (or reviews in supersymmetric models [[53}54]),

The idea of Froggatt-Nielsen works as follows: Close to the Planck scale there is an extra U(1)
under which a scalar flavon field S is charged. There are additionally massive fields G; that have the
same Standard Model quantum numbers as the quarks. These fields appear naturally in Strings/F-theory
compactifications as the Kaluza-Klein excitations of the massless quarks (before the Higgs acquires a
vev). By assigning correct charges to the Standard Model fields under the extra U (1), the Lagrangian
terms for the Yukawa couplings must be U (1) invariant, and some couplings of massless quarks to the
Higgs are not generated at the classical level. When the flavon acquires a vev (.S) the U(1) is broken, and
in the low energy theory we can integrate out the fields GG;. This generates an effective coupling between
the quarks and the Higgs with a coupling constant ((.S) /M¢,)™, where n is some integer related to the
U (1) charge of the quarks. The interesting thing about this mechanism is that to generate large hierarchy
between quarks we just need a very small hierarchy between (S) and M, that can be both close to the
Planck scale. For example, with ({S)/M¢,) ~ 0.2 = € and choosing the right charges under U(1) one
can generate charge hierarchies of the form m, : me:my ~ € : et : land mg : mg : my ~ € : €2 : 1,
consistent with the experimental data.

Recently a problem with the construction of GUTs in F-theory was found out. It was worked out
explicitly that the relation between the gauge group from the broken Ey in the heterotic side and the
M-theory interpretation via M2 branes in the adjoint of the group works fine at the GUT brane (divisor
on the base), but might fail at the matter curves and Yukawa points [55]]. In view of this fact, and with
the phenomenological interest for flavor behind, we can try to construct explicitly some geometry to
reproduce an Eg point. Having an explicitly resolved geometry we can than proceed to calculate the
allowed interactions at the Yukawa point, and that could in principle lead to non-obvious interactions
between the matter representations. Besides, there are not many explicit examples for less generic
fibers with stronger singularities, and such constructions might help understanding even better the non-
perturbative effects of F-theory.

1.3 Outline

This thesis has two main parts. Both deal with aspects of brane physics. The first part focus on per-
turbative Type IIA theory, where we study the four dimensional physics of a D-brane in a particular
setup, while the second part we introduce the lift to the hypotetical non-perturbative descriptions of
Type 1I string theories, namely M- and F-theory, and we also discuss how to realize matter representa-
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tiosn and Yukawa couplings in F-theory models, and we discuss some tipically non-perturbative effects,
not present in perturbative Type II picture with D-branes.

In the second chapter we will review the basics on supersymmetric theories. We will give a stronger
focus on N/ = 1 theories, as they are the most phenomenologically interesting. Since the remaining
of the thesis will be focused on local descriptions of Brane actions and F-theory fibrations, we are not
concerned with couplings to gravity. For that reason, we skip a discussion on supergravity.

In chapter [3| we present a calculation for the effective four dimensional theory of a single D6-brane
in a Calabi-Yau orientifold, that fills the entire spacetime in a way that it preserves supersymmetry.
We analyse the fields living on the brane from a four dimensional perspective, as well as the fields
corresponding to deformations of the internal space and of the brane. Some of these deformations
might break supersymmetry, and we find the conditions that leave it unbroken. The supersymmetric
deformations in the absence of fluxes allow the brane to be deformed continuously, with no impediment.
These continuous deformations form a moduli space, that has some specific geometrical properties that
we describe. We also present corrections to the gauge coupling functions coming from the deformations
and fluxes, and show how kinetic mixings between different U(1)s are generated. The results could be
used in explicit phenomenological scenarios constructed from brane intersections, and the U (1) mixings
we calculated have been used in a nice description of the possible hidden photons appearing in different
string constructions [56].

In chapter[d we review M and F-theory, and present some tools needed for engineering Grand Unified
Theories. Finally, in chapter |5 we first review the resolution for an SU(5) model with an enhancement
to an Fg Yukawa point [55]] and review the analysis of the matter curves and Yukawa couplings [57].
Then, using the spectral cover formalism imported from heterotic string, we construct a model that has
a point with a singularity of the Ej type, that we resolve explictly. The resolution cannot be performed
in the same way as in [55]], and we have to introduce new structure on the base. We analyse the possible
implications of it, but up to this moment there are some unanswered questions, that still require attention.
We plan to address the problems in an upcoming work.
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Chapter 2

Supersymmetric Theories

Supersymmetry (SUSY) has become one of the main lines of thought in contemporary high-energy
particle physics, and also in quantum field theories arising from or motivated by (super)string theory. In
this chapter we review the background needed on supersymmetric theories that will be most relevant to
the subsequent discussion along this thesis. For a longer discussion on supersymmetric theories we refer
the readers to the main references used to write this chapter, [58-61].

First we construct the SUSY algebra for A/ independent supersymmetries. Then we focus on the
particular case of N' = 1, i.e. minimal supersymmetry, and just the fact that we want a theory which
is invariant under SUSY transformations imposes some conditions on the moduli space (the space of
expectation values for the scalar fields in the theory, that classically correspond to minima of the poten-
tial). The most general four dimensional supersymmetric action without the inclusion of gravity can be
written in a most simple form, described in section[2.5] This is the form pursued later in chapter 3] when
we compactify type IIA supergravity and the D6-brane action (ten- and seven-dimensional, respectively)
into a four-dimensional theory with an unbroken N' = 1 SUSY.

2.1 The SUSY Algebra

Supersymmetry is, up to this date, the only known unitary extension of the Poincaré spacetime sym-
metry (outside internal symmetries), and is generated by spinorial operators Qé, that together with the
momentum P*, the generator of spacetime translations, obey

{QéngB} = 2agﬁ.PHd§ 2.1.1)
[P/L’Qé] = [PManA] = 0
{Qé?@?} = eaﬁXAB-

Here we use the Weyl spinor convention for the indices (« = 1,2 and & = 1,2), u are spacetime
indices and A, B denote the number of independent supersymmetries A = 1...A we can start with.
The supersymmetry algebra (2.1.1)) contains a central charge described by the antisymmetric X AB that
appears only in A/ = 2 or higher.

From the fact that the SUSY generators (), commute with P,, we can construct representations of
the SUSY algebra (multiplets) from representations of the Casimir P?, and therefore each component
inside a supersymmetric representation will have the same mass. Taking the trace over the representa-
tion, one can also show that the number of bosonic and fermionic states of a supersymmetric multiplet
is the same.

Massless representations

We first look at a massless supersymmetric representation. We can perform a spatial rotation (that
commutes with the SUSY algebra) to put the state in the frame where P, = (—F, 0,0, F), so

{ ﬁ,QBB} —9 <26E 8) 54, (2.1.2)
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We introduce the fermionic creation and annihilation operators

a’ = —=Qf, () =—=0Q7 (2.1.3)

xf f

that obey the Clifford algebra
{aA, (aB)T} = 54, 2.1.4)

The irreducible representation is constructed as usually is done with a Clifford algebra, by starting with
some ground state |€2) that is annihilated by every annihilation operator a”* and act with the creation
operators as many times as possible. In this case there is just one fermionic operator for each A =
1,...,/N, so the SUSY representation consists simply in

1Q),  (a™M)TQ), (@®)1(P)TQ),..., ()T (@®T... (a™)T|Q). (2.1.5)

The (a)! operator transforms as a spinor (0,1/2), and therefore when acting on |Q) it increases the
helicity by 1/2. Thus, if the state |€2) has helicity A, the state

1
Vn!

will carry a helicity A + %n The highest spin state in (2.1.5]) will therefore carry A + %N helicity. The
full representation will have a number of components given by the power set of the NV creation operators,
2NV, The multiplet is in general not CPT invariant, since CPT takes A to —\. So, to have a CPT invariant
representation we must add by hand the opposite helicity states to the spectrum. The only situations
where the multiplet (2.1.5)) is already CPT invariant is when the helicity of |Q2) is A = —N/4.

(@) (@) (o)1) (2.1.6)

Massive Representations and BPS states

For a massive state, we can work in a frame where P* = (M, 0,0,0). Then (2.1.1)) becomes
A A A
{ 4, QBB} — 205, 57 Q2.1.7)

We introduce fermionic creation and annihilation operators (a)t = (2M)~Y/2Q44 and
a = (2M)~1/2QA, that obey the usual Clifford algebra

{ad (@)1} = dlog, {ad af} = {(ad) ()T} =0. 2.1.8)

We construct the representation in the usual manner. There are 2\ creation operators, the 2 coming from
the two spinorial components for a Weyl spinor. For a non-degenerate vacuum, the SUSY multiplet is
22N dimensional. If we instead start with a “vacuum” that is a spin j multiplet, the dimension of the
representation will be then 22V (27 +1).

For the case of a single supersymmetry, N” = 1, the states obtained from any massive ground state
are

1
), al|), ab|Q), ﬁaia;ym. (2.1.9)
Now consider a state with total spin j and component along the direction 3 of the spin m = —j, (—j +
1),...,(j — 1), 4. The spinorial operator (a,)' has the following commutation property with the spin
operator S5 = %03

T 1 T
ap _
[Sg, (aé)] =5 (_QQ . (2.1.10)
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Thus, for a state with a particular spin component js,

, 1 . , 1 .
SWw@=<m+2>dmm &@m»=<h—2>dmy @.1.11)
In total, the irreducible representation (2.1.9) from a ground state |j3) will consist then of states with
spin (4, 7 + 1/2, j — 1/2, 7). For the particular case when |(2) has 0-spin, the representation under the
supersymmetry algebra corresponds to two spin zero fields and the two components of a Weyl spinor
(with spin 1/2 and —1/2). The spin zero field iaJ{ ag |2) corresponds to a pseudoscalar, since the parity

V2
operator interchanges aI and ag, but from the anticommutation relation
1 1
—ala}|Q) = ———alal|0). (2.1.12)

V2 V2

For N > 1, however, there might be even smaller massive representations than the 22 (25 + 1)
dimensional ones, since now we have an extra parameter in our algebra, the central charges X 45,

{Q4,Q8} = eapX*5. 2.1.13)

For simplicity, we consider the case N = 2. As the matrix X5 has to be antisymmetric, we can write
XAB = X12 = 7 We then define the operators

1 1
ta =5 |Qh +eas (@], ba =35 [Qh —as(@)' (2.1.14)

and using (2.1.1) we can write the anticommutation relations
{aa,ag} = 505(2M + Z), {ba, bTﬁ} = 5a5(2M — Z). (2.1.15)

So, for a normalized state with mass M and central charge Z |M, Z), (M, Z|M, Z) = 1, and using the
fact that the states constructed via bJ&|M , Z) or by| M, Z) also have norm > 0, we have,

(M, Z| {ba,bg} M, Z) = 6ag(2M — Z) > 0, (2.1.16)

thus,
Z <2M. (2.1.17)

This is called the Bogomol’ny-Prasad-Sommerfield (BPS) bound. In the particular case when the bound
is saturated, Z = 2M, the operators b, and bL project the state to a zero norm state. So, they do not
play a role when constructing the full SUSY multiplet for a BPS-saturated state (or simply, a BPS state).
We can alternatively say that the state is invariant under half the supersymmetries. The supersymmetric
representation is then constructed by acting only with aL on a ground state, and therefore has dimension
4(24 + 1) for N = 2. An analogous result holds in general for NV > 1, but there is one supercharge Z,,
for each pair of supercharges, n = 1,..., N/2, and the dimension of BPS states is oN (27 + 1) instead
of 22V (25 4 1) for the non-BPS states. The multiplet constructed from a BPS state is often called a short
multiplet, in opposition to the long multiplet constructed from ags and bLs. For higher supersymmetric
theories, N > 2, the number of central charges is bigger and we can have more possibilities for the BPS
bounds. For example, in N = 4 there are two independent supercharges, Z; and Z», and a state with
M = Zy < Zs is transformed only by 3/4s of the total number of independent supercharges, and is
called a quarter-BPS state.

In chapter [3| we will start with ten-dimensional supergravity with two supercharges (' = 2) and
add to it a six-(spatial)-dimensional object, a D6-brane. In general, a single object localized in space
breaks spacial translation, and also supersymmetry. There are however configurations for the brane in
which it is invariant under the action of half the supercharges, breaking the other half. The brane, at
these configurations, is a BPS object. The effective theory on such brane is thus A" = 1 supersymmetric.
In chapter 3] this will be precisely the situation we will deal with.
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Superspace

To work with supersymmetric field theory, it is more convenient to redefine the SUSY generators by
introducing grassmanian variables Gf and 9&4 (using the standard notation from the literature, as in [58]])
such that (2.1.7) is replaced by the Lie algebra

(04Q,05Q] = 200"0P,6"7.

A summation over the spinorial indices is understood. The grassmanian variables Hf together with the
usual spacetime coordinates x* define the superspace, the stardard framework of supersymmetric field
theories.

The supersymmetry transformation maps fields of a given spin into fields with different spins. It
is possible however to define superfields as a combination of fields covariant under the SUSY trans-
formations, such that the supersymmetry transformation of a superfield is still a superfield of the same
kind.

A representation for the SUSY generators in the rigid (that is, with global supersymmetry) N' = 1
superspace is _

Qo = 0y — iagaéﬁaﬂ, Qo = 0o — 167013, 0,, (2.1.18)

that act on superfields. We can also construct a covariant derivative that anticommutes with the SUSY
generators

Dy =04 Do =0a+i0" 070, Da=—0a—i0°0},0. (2.1.19)

A superfield is in general not an irreducible representation of the supersymmetry algebra. From the
fact that the covariant derivative commute with the supersymmetry generators, given a general superfield
we can construct a smaller representation by imposing some constrain using the covariant derivatives.
This explicit construction of the irreducible representations of superfields may not be directly related
to the multiplets constructed from the SUSY algebra. The reason is that the superfields in general do
not obey the mass-shell condition. Only after we impose the equations of motion we can relate the
irreducible superfield to the 22N dimensional multiplets from the one-particle representations discussed
earlier.

We will in the following briefly describe the relevant superfields we shall be concerned with through-
out this thesis.

2.2 N = 1 Superfields

The first superfield we are interested in is the chiral multiplet ®, defined by the constraint Ds® = 0. To
construct explicitly such a field, it is convenient to introduce a translated bosonic coordinate

y* =zt + iha"e, 2.2.1)

that obeys Dgy* = 0. Everywhere summations as fo*0 = 0“05 BH_B are understood. As D also
satisfies Dy0° = 0, every combination of y and @ is chiral. So, the most general chiral superfield we
can construct is (with factors added to match the literature)

D(y,0) = d(y) + V20u(y) + 00F (y), 2.2.2)

where ¢ and F' are complex scalar fields and v, is a left-handed Weyl spinor. Expanding v,

l

®(x,0,0) = ¢p(x) + V20(x) + 00F () + +i00"00,¢(x) + NG

(00)0,:4) ()" i@@éémgb(x).
(2.2.3)
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Analogously one can define an antichiral field from D,®" = 0, and repeat the same steps, using jj =
x# — 1000 instead of y.
The most general renormalizable Lagrangian containing only 7 = 1...NV chiral superfields is

L= / 409" 4 / d20W (®) + / d2oW (®T), (2.2.4)
where W (®) = \; &'+ %mij D' PJ % Gijr @1 DI ®F is the superpotential, and we have used the shorthand
notation d*4 = d9ad9ad9_6d55 and d?6 = df,df. in components,

oW (¢)
d¢

The field F' is not dynamical, and can be removed from the action by the equations of motion F™* =
OW /0O¢. When this is done, the Lagrangian becomes

L = —itho"yh — 0,0 "¢ + F*F — ml-j%¢id)j + gijrb I oF + <F + h.c.) . (2.2.5)

1 . . o
L = =0 Oy — 06" 06 — my sV + g6 — V(ELF), (22.6)

where V = F*F = |0W/d¢|? is known as the F-term potential. As was stated in advance, the removal
of F’ via the equations of motion leaves us with the complex scalar ¢ plus the Weyl fermion ¢, thus 2+ 2
degrees of freedom, as expected for the lowest spin multiplet mentioned in the previous section.

We next want to construct supersymmetric gauge theories, and therefore we need a superfield that
contains real vector fields. We start by defining a general superfield that obeys a reality condition

v =vt.

Since for our discussion the full form of the general expression for V' is not relevant it is enough to say
that, as inferred by the name, this multiplet contains a real vector field v,,,

V(z,0,0) D> —05"0v,(x) + ... (2.2.7)

and therefore receives the name of vector superfield. Notice that we can also define a hermitian combi-
nation from any chiral field ®,
P + o,

that contains a term (2.2.3)) )
O + & 5 if0"00,(¢ + ¢*). (2.2.8)

Comparing to (2.2.7), it is then natural to construct a supersymmetric version of a gauge transformation
with a chiral field A,
V =V +i(A+ AT, (2.2.9)

that reproduces the usual vector gauge transformation
Ay — Ay +0u(0+ 9"). (2.2.10)
By choosing a convenient A one can put the vector superfield in the Wess-Zumino gauge,
V = —00"GA, (x) + i0007(x) — i06A(x) + %999@(,@). 22.11)
A(z) is the gaugino spinor and D(z) is the D-term. This form, although much simpler, has no manifest

supersymmetry. It is also worth to point out that under the transformation (2.2.9) the components A(z)
and D(x) are gauge invariant.
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The supersymmetric version of the field strength for the vector superfield is defined as

W, = —%DDDQV, (2.2.12)

and it is straightforward to show that it is a chiral superfield (D 4 W, = 0) and gauge invariant. Similarly,

we can also define an antichiral W, = — iDDDd V. Explicitly, in terms of the translated coordinate y,
W, reads, in the Wess-Zumino gauge,

Wi = —ida(y) + 0uD(y) — %(a“a”@)a(ﬁuAl,(y) _0,Au(y)) + 0009 Ny),  (2.2.13)

that contains only the gauge invariant terms \, D and the “usual” vector field strength F,, = 9,4, —
0, A,.
The super-Yang-Mills Lagrangian for Abelian gauge fields in the superspace reads

1 .
Loy = i < / d2OW W, + / d29wawd> , (2.2.14)

that in components translates to, up to total derivatives,
1 - 1
Loym = =3 F" Fu —ida" A + §D2. (2.2.15)

At this stage, the field D is a non-dynamical free field, but when we couple this gauge theory to matter,
it will play a role in generating a (D-term) scalar potential.

The generalization to non-Abelian theories works by introducing a trace over the adjoint representa-
tion in the action above, and by generalizing the gauge transformation

eV —e iA eVezA

. W= e MW, (2.2.16)

where A = T%A, and V = V, T are now matrices in the adjoint representation with the matrix genera-
tors 7.

We next want to include chiral superfields charged under a gauge group. In non-supersymmetric
theories, we would just add to the Yang-Mills action an action for the charged matter, with the kinetic
terms modified, to include covariant derivatives under the new gauge bundle. Here the strategy is the
same, and with the kinetic term replaced by

D — pleV P,

where now the superfield V' should be expanded in the representation under which ® transforms. Notice
that the kinetic term ®'® — ®fe" ® induces a coupling of the D-term with the scalar fields ¢* D¢, and
similarly as the F-ferm, after eliminating D from the action one has a contribution of the form (after
introduction of the gauge coupling g)

1

Vb=
D 292

2

D? = £ (8,6 (22.17)

The scalar potential arises therefore from either self-interactions of the scalar components of the
chiral fields giving rise to F-terms or via the interaction of the same scalar components with the gauge
fields of the theory, generating D-terms. F- and D-term potentials are key elements in supersymmetric
theories, since the mechanisms for breaking supersymmetry (and therefore establishing contact with our
real universe) rely on building potentials that induce vacuum expectation values to the scalar components
and spontaneously break supersymmetry. Alternatively, knowing the scalar potential of some theory and
requiring the theory to remain supersymmetric may lead to restrictions on the allowed scalar fields of
the theory, as in chapter 3|
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2.3 The moduli space for N = 1 SUSY Theories

Often the scalar potential can be minimized not by single vacuum expectation values for the scalar
fields, but by a continuous set. Since the scalar fields are also differentiable, this set of minima define
a manifold called the moduli space. One interesting and very general result on the geometry of moduli
spaces of supersymmetric theories is that, if we require N' = 1 supersymmetry to be preserved, the
moduli space of every supersymmetric theory, renormalizable or not, has to be a Kihler space [|59]]. This
argument is briefly reviewed here.

We start with the most general form for a supersymmetric Lagrangian, not necessarily renormaliz-
able, with only chiral superfields ¢

L= /d40K(<I>, d) + /d29W(c1>) + /d2§W(q>), (2.3.1)
where K (®,®) and W (®) are the Kihler potential and the Superpotential, respectively. One can see
that this Lagrangian is invariant under a (anti-)holomorphic transformation of the Kéhler potential,

K(®,®) = K(®,®) 4+ F(®) + F(P), (2.3.2)

called a Kdhler transformation. When expanded in components, only the Kéhler potential contributes
to a kinetic term to the scalar components,
K
Loty

LD do'dd’. (2.3.3)

This term is the Lagrangian for a non-linear sigma model and can be seen as the line element of a
manifold

ds® = gizd¢'dd’, (2.3.4)
with the metric of the manifold given by
0’K
7= — 235
9ij D510 ( )

If we require the kinetic term to come with the correct sign, we expect the metric to be positive definite,
and to be nonsingular. Also, from the reality of the Lagrangian (2.3.1)) the Kihler potential is hermitian,
and so is the metric. A positive definite, nonsingular metric, that can be written as defines a
Kdhler metric. A manifold which admits a Kihler metric is a Kdhler manifold. Also notice that from
(2.3.2) the Kéhler potential does not define the metric completely, but only up to a (anti-)holomorphic
translation.

It is instructive to see this statement in terms of the Kdhler form, defined as,

J =igizde’ A dg’. (2.3.6)

If the metric is written as (2.3.5)), this implies that the Kéhler form is closed, since

_ _-8917 7 i K, 087 5 yy Tk
Al = —iggldy ndg' nddt + i Elds ndd nds (2.3.7)
PK - , PK
aragiom s N0 N e ea
— 0,

dét A dd’ A doF

where in the last step we used the symmetry of the derivatives and the antisymmetry of the wedge
product. We then present an alternative definition of a Kihler manifold:
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Definition: A manifold is called Kihler the (1,1)-form J associated to the metric (i.e., the Kdhler
form) is closed.

When the moduli manifold is compact, J cannot be exact, since the volume volume form of a
compact n-complex dimensional Kihler manifold is proportional to J", and J = da globally would
imply a vanishing volume integral. Thus, in any compact Kéhler manifold X, J is an element of the
cohomology H!(X)

2.4 Super Yang-Mills Action

As was discussed in section [2.2] the supersymmetric version of a field-strength for a vector field is given
by the chiral superfield W, and the supersymmetric gauge transformation parameterized by the chiral
superfield A is

Wo — e A W,e. (2.4.1)

The most obvious way to construct a gauge invariant supersymmetric Lagrangian that reproduces the
kinetic term for a vector field is via [ d?6 tr W, W . However, such a term in the Lagrangian is not real,

1

1
/d29trWaWa =tr | Fu " =

1 W FM — i oV + %DQ : (2.4.2)
where FHV = eMPoE .

One way to construct a hermitian version of the vector superfield Lagrangian is to simply add the
term WYWy, as was done in section This definition however removes the topological theta term
b Wﬁ' #¥_ To construct a real version of the field strength Lagrangian that includes the gauge coupling g
as well as a correct topological theta term, we introduce the complexified gauge coupling

Oyvy  4Ami
T =

—+ — 243
Sra (243)

where 0y j; is the topological theta term, and define the Lagrangian (with the right coefficients adjusted),

1 9 1 1 . < 1 9 Oy mr ~
& Im [/d Ot tr WO‘WQ] = ? tr {4FWF’W — A"V A + §D } ~ 592 tr F,, M. (2.4.4)

By including charged chiral fields, one can write a more general kinetic term that replaces the con-
stant coupling function 7 with an holomorphic function of the chiral fields f(®)

LD Siﬂlm [ / d*0f(®) tr WaWa] : (2.4.5)

f(®) is called the gauge kinetic coupling function. In four dimensional effective actions arising from
compactifying ten dimensional string theory theories, the coupling function for vector fields often de-
pends on the fields that characterize the geometry of the compactification (internal) space.

In the particular configuration explored in chapter 3| the gauge fields are all Abelian, but there is still
the possibility for mixings between different U (1) fields,

1
£ 8—Im [/ d?0fap(®) tr WeAWE || (2.4.6)
T

where A, B label the vector field. A non-diagonal f4p matrix leads to kinetic mixings of different
U(1) vector bosons, that in turn may have interesting phenomenological consequences (for example,
see [62,63]], where they explore the possibility of “Hidden Photons”, massive vector bosons coupling to
the Standard Model photon via kinetic mixing).
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2.5 N =1 action and renormalization

We conclude this chapter by writing the bosonic part of a most general N/ = 1 supersymmetric action
in four dimensions in differential forms notation,

S = / (gii(éf), &) D' A *DFGI + Re(fop) F* A F + Im(fop) F* A F® = Vip — VD) . @250

The quantities that define the theory, i.e. the characteristic data, are the spectrum (specified by the chiral
and the vector multiplets), the superpotential that defines

Vi = giz(¢, ¢) DiW DIW, (2.5.2)

the D-term potential Vp (that carries information on the charges of the scalars via the gauge groups, and
how this can change the vacuum), the Kihler potential that locally specifies the metric

0?K

sa (2.5.3)

9i7 =
and the gauge coupling function f, that usually is holomorphic on the chiral fields.

In general, the parameters of quantum field theories run with the energy scale, and the tracking
of the running of all the couplings can become an annoyance as we change the scale we are working
with. Supersymmetric theories however have powerful renormalization theorems that make things much
easier and controlled.

It is possible to show via explicit loop calculations using supergraphs [64] that the superpotential is
not renormalized in perturbation theory. There is also an alternative beautiful argument [65]] that, mo-
tivated by string theory in which the coupling “constants” are actually dynamical fields, they consider
the couplings of A/ = 1 theories as background chiral fields with the same dimensions as the constants
they are replacing. Then, they analise global symmetries that were explictly broken when the couplings
were set to a fixed value, and that are restored when the couplings vev vanish. These broken global sym-
metries induce selection rules that tells what are the allowed corrections for the superpotential coming
from loop contributions, leading to the conclusion that perturbatively the superpotential is given by its
tree-level form. Corrections are however allowed non-perturbatively via instantons.

The (complexified) gauge coupling function (2.4.3)) of super Yang-Mills is also constrained by N =
1 supersymmetry. It can be shown [66] that it has perturbative couplings only at one-loop (calculated
from the 3-function), but non-perturbative corrections are present via instantons.

One of the main reasons behind the existence of such (non-)renormalization theorems for the super-
potential and the gauge coupling come from the fact that these quantities are holomorphic/chiral, that
strongly restricts the type of corrections allowed.

The Kihler potential, on the other hand, is not holomorphic, and there are no general N' = 1
results to infer restrictions on its loop corrections. However, in Calabi-Yau compactifications of effective
actions of supersymmetry, the Kihler potential describing the complex structure deformations for type
IIB theories gets no quantum corrections, that is, its classical description is exact! On the other hand, the
Kihler potential that describes Kéhler deformations (variations of the Kéhler form) gets no perturbative
corrections, only via (stringy) instantons. Mirror Symmetry maps both moduli spaces into one another,
and therefore gives the powerful result [67] that the classical information of the one tells about the
non-perturbative corrections of the other!

In the next chapter we study one particular scenario in the framework of (low energy) string theory,
and one of the pursuits is to write the bosonic action in the standard form (2.3.1)), and identify the N' = 1
characteristic data.
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Chapter 3

Brane Effective Actions

In this chapter we start reviewing the effective action for ten-dimensional Type IIA supergravity when
compactified to four dimensions. We choose the compactification space to be a six-dimensional Calabi-
Yau manifold, an SU (3) holonomy space in which a covariantly constant spinor can be globally defined,
and each one of the two supercharges of d = 10 Type IIA theory has a component unbroken by the
compactification. The Calabi-Yau compactification of Type IIA thus preserves 2 supercharges, so we
obtain an N/ = 2 supersymmetric theory in four dimensions.

To further reduce the supersymmetries of the four dimensional action to the more phenomenolog-
ically interesting A/ = 1 we introduce on the Calabi-Yau threefold a discrete involution together with
a reversing of the string orientation that projects out half of the degrees of freedom, and leaves just a
symmetric combination of the two supercharges unbroken. The fixed point of the involution defines an
Orientifold plane, and in the Type IIA case a O6-plane.

We next introduce a single D6-brane that fills completely the four dimensional spacetime and wraps
a three-cycle in the Calabi-Yau space. To have unbroken supersymmetry in four dimensions, the three-
cycle wrapped by the brane must be of a special kind, called special Lagrangian. The action of the
D6-Brane is divided in two sectors: 1) the sector corresponding to fields living on the brane that come
from open strings attached to the brane and generate super Yang-Mills fields and moduli from the brane
deformations, 2) the Chern-Simons sector, that arises from the interaction between open and closed
strings, respectively brane and bulk fields, and gives information on topological data and (“electric” and
“magnetic” Ramond-Ramond charges of the D-brane).

The reduction to four dimensions leads to an A/ = 1 supersymmetric theory of the form presented in
section [2.5] and we find the characteristic data, together with the conditions on the brane deformations
for unbroken supersymmetry. We also calculate corrections to the gauge coupling functions coming
from mixings between the different gauge fields from different origins (open or closed strings), as well
as corrections to the moduli space when we allow deformations of the Calabi-Yau manifold together
with brane deformations.

Finally, we map via Mirror Symmetry [68]] the moduli space for the D6-branes to the moduli space of
D3-, D5- and D7-branes in the mirror type I[IB geometry. We use the description of Mirror Symmetry de-
scribed in [69]], in which the Calabi-Yau is treated as a three-torus fibration over a three-(real)dimensional
base, and Mirror Symmetry is simply T-duality along the three dimensions of the torus.

3.1 Calabi Yau compactification

To define our setup we start from ten dimensional type IIA supergravity, one of the two possible max-
imally supersymmetric gravity theories in ten dimensions, that arises from the low-energy effective
description of (closed) Type IIA string theory (the second is Type IIB supergravity), and its bosonic
field content consists of the NS-NS dilaton ¢, the metric g,,,,, the two-form Bélo) and the R-R one- and
three-forms C and C's. The bosonic part of the action reads [9]]

1

1 1
Sira = / SR 51— 2dgl0 A xdgMO — 2o Y ) G.11)

13 11 1
_L1 50000000 g0 562(15(10>G4(110) A GO _ §B§10) NG A GO,
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with the field strengths
" =aB{”, ¢ =act", F") =ac§” - A H{Y. (3.1.2)

We next compactify the theory from ten to four dimensions, by requiring our ten dimensional space to
be of the form M>! x Y3, where M>! stands for a Minkowski four-dimensional spacetime and Y3 is
a Calabi-Yau threefold, that we will often refer as the infernal space. This compactification leads to an
N = 2 action in four dimensions.
The metric splits thus in
ds? = N dxtdz” + gijdyidyj, (3.1.3)

with 7, and g;; respectively a Minkowski and a Calabi-Yau metric.

The field content above splits in an internal and a 4d-spacetime part. As the internal space is com-
pact, the field might become an infinite tower of Kaluza-Klein states. Usually in realistic compactifica-
tion models we assume the compactification length scale to be small enough so that the Kaluza-Klein
states are still beyond the energy scale of accelerators (otherwise we would have seen them already). A
common compactification scale is around the GUT scale 1016GeVEI (although interesting phenomenol-
ogy can also be obtained from Large Volume scenarios [71,/72]]). The Kaluza-Klein states then are
mostly irrelevant to the low-energy physics and we can consider only the massless modes. Additionally,
the number of massless modes can be directly related to the number of independent harmonic forms on
the internal space, and therefore to the cohomology of Y.

Zero mode deformations of the metric have three contributions, either coming from only spacetime
deformations, only deformations of the Calabi-Yau space, or mixed deformations of the form dg,; or
0g,z. The massless deformation modes could be decomposed in a basis of harmonic one-forms of the
Calabi-Yau. However, a consequence of SU (3) holonomy is the non-existence of harmonic one-forms
in a Calabi-Yau manifold.

The Calabi-Yau deformations in turn can be decomposed in complex structure and Kéhler defor-
mations, arising respectively from deformations of the globally defined holomorphic 3-form 2 of the
Calabi-Yau and from deformations of the Kihler form J = igijdzi A dz’. In four dimensions, these
deformations correspond to scalar fields, that locally define a moduli space of the splitted form

M x Mks

Both factors are special Kéihler manifolds. This type of manifold appear in general N" = 2 supergravity
actions in four dimensions, and are defined as an n dimensional Hodge-Kihler manifol in which
a Kihler potential can be defined from a holomorphic section 2 € I'(SV ® £, M) (where SV is a
simpletic vector bundle of rank 2n + 2 and £ a line bundle with ¢; (£) = [J]) as

K=—-In(QQ), with (Q)8;Q) =0, (3.1.4)

where (Q|Q2) is a symplectic inner product defined from the standard symplectic basis of SV. Expanding
2 in the symplectic basis such that

F-

i L
0= <Z> . K=-mi(2l5-21F). (3.1.5)
J/ i, j=01,..n

For the Calabi-Yau compactification, it turns out that the moduli spaces for the complex structure
and Kihler deformations are precisely of such form [73}/74], as we will briefly describe (for a more

'A nice review on the energy scales involved in string phenomenology can be found in [[70]
? that is, a Kéhler manifold M with a line bundle £ such that ¢; (£) = [J], where [J] is the cohomology class of the Kihler
form J.
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detailed discussion, see [73L(75H77]]). The deformations of complex structure all lie inside the H (1,2) (Y)
cohomology, and can be expanded in a basis of (1,2) harmonic forms x g, with K =1,..., h(12) The
moduli space is an h(1:?)-dimensional manifold with coordinates g,

Jy xx A XL

ds? = Grrdg®dgt, with Gyp = ona

(3.1.6)

where (2 is the globally defined holomorphic (3,0)-form of the Calabi-Yau. It can also be shown that the
metric G -7, can be written in terms of the Kéhler potential

GKE:(%, K =—In <z/yQ/\Q> (3.1.7)
The complex structure deformations can also be described in terms of the deformation of 2(q) via
OgreSUq) = X + QO K. (3.1.8)
The deformed holomorphic 3-form can be expanded in a complete basis of H3(Y"), of dimension
dim H3(Y) = h30 4 p(12 1 gD 4 p03) = 9 4 9p(1:2) (3.1.9)

using that in a Calabi-Yau h(mm) = p(m) apd B30 = p(%3) = 1. One can introduce a symplectic
basis of H*(Y), (v, B%), that satisﬁe

/akA*ﬁﬁ:/ﬁﬁA*akzag K, L=0,. . °»02, (3.1.10)
Y Y

and expand the new holomorphic 3-form in this basis, by introducing the dual homology basis (AK ,Bj)
of $H3(Y') and defining the periods

ZK:/AQ:/Q/\BK, ]-"i:/ Q:/Q/\%, 3.1.11)
AK Y B} Y

we can write the deformed ) as

Qq) = ZX (g)ag — F(9)B. (3.1.12)

The F are not independent functions, but rather depend on Z K and can be expressed as the derivative
of a holomorphic prepotential F(Z),
Fi =0z 7. (3.1.13)

The expansion in the symplectic basis allows us to define a symplectic product and together with (3.1.8))
and reproduce (3.1.4). Notice also that (q) is defined up to a rescaling Q — Qe "9, since
that translates into a Kihler transformation of K“* leaving the metric GG -7 unchanged. The rescaling
defines a complex line bundle on the Calabi-Yau. The rescaling allow us to fix one of the ZXs, and
in a particular patc}ﬂ where Z0 # 0 choose Z° = 1, and define ¢/ = Z!/Z°, making explicit the
dependence on the moduli space coordinates ¢’. With this redefinition, the Kihler potential can be put
in the form

K® = —ni|Z° [2(f = f) = (O f + O /)(d™ = %)], with F=(2°°f  (3.1.14)

3the hat indicates that the index runs from 0 instead of 1.
*1f Z° vanishes on this patch, just redefine another Z” that is non-vanishing as the new Z°.
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The moduli space of Kihler structure deformations on the other hand is described by real fields v,
from the expansion of the Kihler form J = v4w4. It does however get complexified by combining
with the moduli b from the expansion of the two-form B = bAw, via J. = B + iJ, and defining
t4 = b4 + v, The complexified Kihler moduli ¢* also can be written as the second derivative of a
Kihler potential,

82Kks

G B — <~ 1-~—5)
AP grAarB

K* = _In (é/cABc(t—ﬂA(t—f)B(t—f)C), (3.1.15)
where K 4pc is the triple intersection f wa A wp A we, with the w4 are basis elements for H 11 (Y).
The Kihler potential can be re-expressed in terms of a holomorphic prepotential f(¢) as in (3.1.14),

Kb = —mi[2(f = f) = (Opaf + Opa f)(t* — )], where f= —%ICABCtAtBtC. (3.1.16)

It is important to point out that since the Kihler potential is described in terms of a chiral prepotential,
it is also protected from perturbative loop corrections, receiving corrections only non-perturbatively.

We will not explore the complete N' = 2 effective action, since we are interested in the N' = 1
reduced case by the action of an Orientifold. For the reader who wants to read more on the N' = 2
action of type IIA, we suggest [78},79] or the review in [80].

3.2 Type IIA Orientifold Compactification

We now introduce an orientifold projection on the Calabi-Yau, O,
O = (-1)frQ,o* (3.2.1)

where €, is the world-sheet parity reversal, Iy, is the space-time fermion number in the left-moving
sector, and o is an anti-holomorphic and isometric involution of the compact Calabi-Yau manifold Y. If
we require the projection Y/O to preserve N' = 1 supersymmetry, this implies [81,82]

ot J=—J, o*Q = %90, (3.2.2)

where 6 is some real phase.

The four-dimensional scalars, vectors, two- and three-forms will arise in the expansions of the ten-
dimensional fields into harmonic forms of Y which have to transform in a specified way under the
orientifold parity to yield modes which remain in the orientifolded N' = 1 spectrum. More specifically,
the ten-dimensional metric and the dilaton are invariant under the action of o while the NS-NS B-field
transforms as 0* By = —Bj. The R-R fields C1, C3, C5, C7 remain in the orientifold spectrum if they
obey 0*C), = (—1)+1)/2 C). The R-R fields are however not all independent, as they obey an electric-
magnetic duality,

Gpi1 = (=1)PTD/2 510 Gg (3.2.3)
where

Gy =dCy Gp_u,_l = de — H3 A Cp_g , Hs =dBs . (3.2.4)

with Gpy1,p = 1...9. One can use a democratic formulation of Type II supergravity [83] instead of the
usual form (3.1.1)) describe(ﬂ in section The bosonic kinetic terms of the ten-dimensional action are
then given by

9
S((il?rz = — / %R *10 1 + %Hg A x10H3 + Z %Gp+1 VAN *10Gp+1 . (3.2.5)
p=1

>We are also omitting the superscript (10) to avoid a dirty notation.
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As the self duality condition of G5, the duality conditions (3.2.3)) do not arise from the equations of
motion and have to be imposed by hand. When coupling the bulk supergravity to a D-brane it turns out
to be useful to also introduce another basis A, of g-forms with a redefined duality relation

A= A= PA>"C,,  dAg= (1) P(xpdA), (3.2.6)
q p

where the ‘B-twisted” Hodge star is given by xp = e =52 %1 P2,

To perform the Kaluza-Klein expansion of the closed string fields we first decompose the de Rham
cohomologies as even (denoted H (Y"))and odd (denoted H" (Y")) cohomologies under the involution
ag,

HMY) = H'(Y) ® H*(Y). (3.2.7)
From (3.2.2), we see that .J is odd under the involution, and therefore can be expanded in a basis {w, }
of H (_1’1)(Y). The same happens for surviving components of the B> field, so the complexified holo-

morphic two-form J. decomposes in a basis of H @b (Y),
Jo =By +iJ = (b + iv") wy = t%wq , (3.2.8)

where a = 1,..., h"Y) Tabels a basis wq of H2(Y). We thus find the same complex structure as in

the underlying N = 2 theory described in section [3.1| with the dimension of the Kihler moduli space
truncated from h(D) to BV

To describe the three-form €2, we first notice that H>(Y") splits as H3 (Y)H? (Y'). Each component
has dimension dim H% (Y) = h(1:?) 4 1. It is possible to write a symplectic basis (cy, 3*) that span

H i and (o, B¥) that span H3 . The intersections of the basis elements are

/ o A B = 6L, / e AP =60, (3.2.9)
Y Y
and zero for all the others. We again split

O =ZFay, + 2 ay — B — Fupt (3.2.10)

We introduce a complex ‘compensator’ C' oc e~ ¢, as given in (3.2.16)), that absorbs the phase of the
orientifold action on {2 and contains the dilaton. Under the orientifold projection, we can easily see that

Im(CZ*%) = Re(CF,) =0, Re(CZ*)=Im(CFy)=0. (3.2.11)

Thus,
CQ = Re(CZ¥)ay, — i Im(CZY) oy — Re(CFy) B — i Im(CFy,) 5. (3.2.12)

We then define a complexified three-form (2. that contains the degrees of freedom arising from the
complex structure moduli, the dilaton as well as the scalars from the R-R forms. We combine these as

Q. = 2Re(CQ) 4+ iCy = N'* oy, — T4 5>, (3.2.13)

where k = 1,...,n_,A = 1,...,ny label a basis (o, 8*) of H3(Y,R). Here C5° is the part R-R
three-form which is also a three-form on the Calabi-Yau manifold Y and hence descents to scalars in
four dimensions. We considered only the real part of C(2, since the imaginary part is redundant, and is
connected to the real part via a Legendre transform (see the Appendix in [82]).

From the orientifold projection condition for the Ramond-Ramond fields o*C), = ( —1)+D/ 2C,,
we can also expand C5° in the basis of H;O’r(Y, R), C5¢ = &Fay + £,8*. We thus find the explicit
expressions

N® =2Re(CX*) +ick | T, =2Re(CFy)+ ik . (3.2.14)
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Note that the split of the 2(>')) + 1 basis elements of H3 (Y, R) into n_ elements ay, and n elements
(* does depend on the point in the complex structure moduli space on which one evaluates CS2. In
fact, at the large complex structure point the precise split will determine whether this type IIA set-up
is dual to an orientifold with O3/07 planes or O5/09 planes as we will discuss in detail in section [3.6]
It is important to point out, that the complex coordinates (N, T}) are the correct complex scalars in
the A/ = 1 chiral multiplets in the absence of D6-branes, but will receive corrections upon introducing
dynamical D6-branes.

It is also interesting to note that the correct chiral coordinates now depend explicitly on F), while in
the V' = 2 case the coordinates were only Z/, and the metric was encoded in a prepotential. This new
fact is a consequence of the breakdown to A/ = 1, and the moduli space is not anymore special Kihler,
although some structure of it can still be seen.

Before discussing the open string spectrum let us comment further on the complex function C' ap-
pearing in (3.2.13). Since the orientifold projection is an anti-holomorphic involution the complex struc-
ture deformations will be real. In fact, C has a phase factor e "* and is defined to compensate rescalings
of ) such that C'S) has a fixed normalization

e?CANCA=LINTNJ. (3.2.15)

It is convenient to introduce the four-dimensional dilaton D by setting e 2P = 2%V, where V =
% [y J A J A J is the string-frame volume of the Calabi-Yau space. The compensator field is then given

by
C = e P0KS/2 = =0=i0y1/2,K/2 (3.2.16)

where K = —In[—i [QAQ].
Let us note that the R-R three-form in general also leads to U (1) vectors in four space-time dimen-

sions via the expansion
C3% = A% ANwq, (3.2.17)

where w, is a basis of H i(Y, R). Their holomorphic gauge coupling function f,s has also been deter-
mined in ref. [82]]. Denoting by K.z, = fY wWa N\ wg A W, the intersection form of two elements of
H?(Y,R) with one element of H% (Y, R) one finds that f,g = iKagat®

3.3 The inclusion of a D6-brane

We have discussed up to now the degrees of freedom for the field theory on the bulk. In the string theory
framework, the bulk theory consists of fields coming from closed strings. We next include a D6-brane in
our setup. In subsection [3.3.1|we describe the conditions for unbroken supersymmetry and the spectrum
coming from the massless modes of open strings attached to the brane. These modes decompose into
longitudinal or normal modes to the brane, with the former corresponding to U(1) vector fields living
on the brane and the latter to modes that describe the geometrical deformations of the brane.

The deformations can be along the flat directions of the potential, preserving supersymmetry, or
the brane can be deformed into configurations that are not anymore supersymmetric. The latter case
contribute to a non-vanishing scalar potential, that we describe in subsection [3.3.2]

We conclude this section in [3.3.4] when we write the D6-brane action compactified to four dimen-
sions. The result will not be yet in the standard N' = 1 form (2.5.1). The identification of the N" = 1
characteristic data will be discussed in the next sections, [3.4]and[3.5]

3.3.1 Open string sector: supersymmetric D6-branes

We want to include D6-branes in the background configuration such that they preserve the same super-
symmetry as the O6-planes which arise as the fix-point set of the involution ¢. In fact, since o is an
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anti-holomorphic involution the O6-planes wrap special Lagrangian cycles satisfying
J|O6-plane =0 ) Im(CQ)|O6-plane =0. (331)

Let us consider a single D6-brane wrapped on a three-cycle L in Y. We will consider the simple case
where L is mapped under the orientifold map to a three-cycle L' = o (L) which is in a different co-
homology class and does not intersect LE] For this situation the pair of the D6-brane and its image
D6-brane is merely an auxiliary description of a single smooth D6-brane wrapping a cycle in the orien-
tifold Y/ O. Note that the number of D6-branes is restricted by tadpole cancellation. In cohomology one
has to satisfyiz]
D L+ L] =4[Log] , (3.3.2)
D6
where the sum is over all D6-branes present in the compactification and Log is the fix-point set of the
involution indicating the location of the O6-plane.
Supersymmetry implies that the D6-brane has to wrap a calibrated (i.e. minimal volume) cycle.
These calibration conditions have been determined in [85]], and they imply that the D6-brane must wrap
a special Lagrangian submanifold Ly C Y,

Jl, =0,  Im(CQ)|, =0,  2Re(CQ)|z, = e *volz, (3.3.3)

where volr, = +/t*ged3¢ is the induced volume form on L. Note that the first condition in (3:3.3)
implies that Lq is Lagrangian, while the second condition makes it special Lagrangian. We fixed the
coefficient, in particular the phase of Cf2, such that the same supersymmetry is preserved as for the
orientifold planes (3.3.1). The third equation is simply the calibration condition. Finally, we note that it
was also shown in [86] that in a supersymmetric background one has

Fpg — Ba|r, =0, (3.3.4)

where Fpyg is the field strength of the U (1) gauge field A living on the D6-brane. In the following we
will always denote the background special Lagrangian cycle wrapped by a supersymmetric D6-brane by
Ly.

For a fixed background complex and Kéhler structure we can discuss supersymmetric deformations
of the D6-branes. In fact, the deformations of L preserving the special Lagrangian conditions
were studied by McLean [[87]]. When we deform a compact special Lagrangian cycle Lg to L, passing
through a continuous family of cycles (not necessarily special Lagrangian), we can associate the defor-
mation to a vector field 7 normal to L (as figure[3.1]in page[35). The deformation is however performed
only through special lagrangian cycles if and only if the one-form defined as 6, = n_.J is harmonic. In
other words, non-harmonic 6,, will correspond to deformations breaking the special Lagrangian condi-
tions, and therefore breaking supersymmetry. This restriction to harmonic forms reduces the infinite di-
mensional space of maps from L to L,, to a deformation space of dimension b'(Lo) = dim H' (Lo, R).
Furthermore, there are no obstructions to extending an infinitesimal deformation to a finite deformation.
The tangent space to such deformations can be identified through the cohomology class of the harmonic
form with H(Lg, R). We can thus write a basis of harmonic one-forms 6; on L as

0; = si2J |1y 5 x0; = —2¢%5, . Im(CQ)|r,, i=1,...,b'(Lo), (3.3.5)

where s; is a basis of the real special Lagrangian normal deformations. Let us recall the derivation of
the expression for x6; [88|]. We do this more generally, by determining the Hodge-dual of a one form

SThis is a non-generic situation for a three-cycle in a six-dimensional manifold. Generically D6-branes on three-cycles will
intersect in points. At these intersections matter fields can be localized and have to be included in the reduction.

"This condition will be modified in the presence of NS-NS background flux H3 and the Romans mass parameter m° with
an additional term proportional to m° H3 (see, e.g. , ref. [84]).
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a = (X1J)|r, for some X € TY|r,. Note that the vector dual to « by raising the index with the
induced metric is /X where I is the complex structure on Y. Hence one checks

* (XoJ)|n, = (IX)avolg, . (3.3.6)
However, on Lg the volume form is identical to 2e?Re(CS2) by (3:3.3). This implies
% (X2J)|L, = 2¢®(IX _Re(CQ))|1, = —2?(X Im(CN))|, (3.3.7)

where the minus sign arises from evaluating I on the (3, 0)-form €2, (1.X).Q = i X Q.

We have just introduced the general supersymmetric deformation encoded by b*(Lg) scalars 7° aris-
ing in the expansion 6, = n'0; of the harmonic form 6,. The n’(z) will be real scalar fields in the
four-dimensional effective theory depending on the four space-time coordinates z. Let us next discuss
the degrees of freedom due to U(1) Wilson lines arising from non-trivial one-cycles on the D6-brane
world-volume. Later on we will show that these real scalars will complexify the 7’, that is, the super-
symmetric chiral coordinates will be a combination of brane deformations and Wilson line scalars. The
latter arise in the expansion of the U (1) gauge boson Apg on the D6-brane as

Apg = A+d' a; , (3.3.8)

where A is a U(1) gauge field and the a(z) are b'(Lg) real scalars in four dimensions. The forms &;
provide a basis of H!(Lg). Note that in general the U(1) field strength Fpg = dApg can additionally
admit a background flux (Fpg) = fpg in H?(Lo,Z), which can be trivial or non-trivial in H?(Y,R).
Since we will focus on the kinetic terms in the following we will set fpg = 0 for most of the discussion.
Note that Fpg naturally combines with the NS—NS B-field into the combination Fpg — t* Bs.

To summarize, one finds as massless variations around a supersymmetric vacuum h(_l’l) +hZD 41
chiral multiplets from the bulk and b'(Lg) chiral multiplets (n°, a’) from the D6-brane. The precise
organization of these fields into V' = 1 complex coordinates is postponed to section [3.4]

3.3.2 General deformations of D6-branes

So far we have discussed the supersymmetric background D6-brane and its also supersymmetric defor-
mations. However, in general Ly admits an infinite set of deformations which will render the deformed
D6-brane non-supersymmetric. These deformations will be included in the following and shown to be
obstructed by a scalar potential. In order to do that, one recalls that the string-frame world-volume action
for the D6-brane takes the form [89,89]]

S = —/ d"¢e~?+/—det (1* (910 + B2) — Fpg) +/ 3" (O A e (B (33,9
Wi Wr 4 odd

The first term of (3.3.9), the Dirac-Born-Infeld (DBI) action, can be understood very roughly as
the stringy generalization of the action of an object wiping a seven dimensional worldvolume. A free-
moving point particle, for example, has a Lagrangian £ = /—.*g, where the integral is along a world
line. ¢ is the pull back of the ambient metric to the world line (or for the case of the brane, the world-
volume). The movement of the brane wiping the worldvolume is described by open strings with mo-
mentum normal to the brane, thus obeying Dirichlet boundary conditions along its momentum. Open
strings are also responsible for introducing a U (1) gauge field along the brane, coming from strings with
Neumann boundary conditions, i.e., moving freely along the brane tangent directions.

A moving DO-brane is a relativistic point particle with three-dimensional velocity ¢ and has a kinetic
Lagrangian given in Minkowski space by

|

Lop = mc*([1 — = (3.3.10)
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In the T-dual picture, when Dirichlet and Neumann boundary conditions are exchanged, the DO-brane
becomes a D1-brane with a U (1) field along the T-dualized direction. Just as the DO-brane had a velocity
bounded by v < 1, the D1-brane also has a bounded electromagnetic field, described by the Born-Infeld

actio
Ly = by\/1 — (E2)/b?, (3.3.11)

where b is the bound (\E |) < b. The argument can be repeated for a D-brane of any dimension, and in
more general spacetime backgrounds, leading to the Born-Infeld action

Spr = / V= det(gmn + Fon), (3.3.12)

This Lagrangian however is not completely gauge invariant. In the string worldsheet action, There is a
gauge transformation given by

6B/,Ll/ = ,uCI/ - ay@m 5A,u = _Cp, (3313)

under which F},,, is not gauge invariant, but the combination By + F' is. Therefore, the correct gauge
invariant action for a Dp-brane is

Sppr = _/ dPige?\/—det (1* (g10 + B2) — F). (3.3.14)
14%

p+1

The second term in is the Chern Simons action, that gives information on the Ramond-
Ramond charge of the D-brane. U (1) fields on the brane also couple to RR fields, and as before, gauge
invariance imply the appearance of Bs.

In this subsection we calculate the scalar potential that arises when we study general deformations
of special Lagrangian cycles, as was performed in [87]]. The scalar potential corresponds thus to the
obstruction for the deformed cycle to be special Lagrangian, and therefore supersymmetric. This scalar
potential will appear in the reduction of the first term in (3.3.9) (the spacetime geometry term). In section
[3.5] we show how this scalar potential descends from a superpotential, as required in supersymmetric
theories.

Exponential map and normal coordinate expansion

A general fluctuation of Ly to a nearby three-cycle L, is described by real sections 7 of the normal
bundle N L. Clearly, the space of such sections is infinite dimensional as is the space of all L,. We can
understand the deformation of L to a neighboring L,, as a diffeomorphism mapping each point p on Lg
with a normal vector 7)(p) to a point in L, through a geodesics, given by the exponential map exp, (p).
We can construct then a vector field 7 for the deformations living in the normal vector bundle of Lj. We
should also know how to describe the pullback of a bulk field onto L,,. In particular, we will be very
interested in the pull back of the forms J and Im(CS2) that give us information on whether the cycle it
is pulled back to is special Lagrangian or not, as in (3.3.3).
We then define the pullback of the exponential map exp,,

Ey(v) = exp,(VlL,) » (3.3.15)

where 7 € NLg, and v € QP(Y") are p-forms on Y. E, pulls back v from L, to a p-form E, () €
QP (Lo) on Lo.

8 Initially this proposal was made to try to solve the divergent electromagnetic field problem in classical electrodynamics
[90,91]]. The electric field of a point charge would not be infinite, and in the limit b — oo the Lagrangian gives the classical
Maxwell theory.
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It was shown in [87] that the pullback £, (J) and E, (CQ) are exact forms on L(ﬂ that is, it is
possible to find a 1-form fi; and a 2-form fi3 such that

E,(J) =dj, E,(Im(CQ)) = djs . (3.3.16)

In order to study special Lagrangian deformations as in section [3.3.1{ one thus has to consider the space
of deformations 7, such that £, (J) = 0 and £, (Im(C$2)) = 0 [87], that is, ;1 and po have to be
closed forms for the mapping between special lagrangian cycles.

We can find easily explicit expressions for the deformations of JJ and Im(C<?) in the particular case
of small (first order) deformations. We introduce a real parameter ¢ to the deformation such that, for
small deformations, E7 () := 0¢Ey(7)|t=0. A straightforward computation shows that for any closed
for v on Y one has

dy=0: Ep(y) = Ly(VLe = d(nay)lr, - (3.3.17)

Here we have used the standard formula for the Lie derivative on a form £,y = d(ny) + nad~y. Note
that (3.3.17) immediately implies that

Ej(J)=db,,  E,(Im(CQ))=—2e"dx0,. (3.3.18)

where 0,) = n.J|r, and we have again used the fact that 6, = 2e%n_ImCQ|, as in (3.3.3). One can
proceed with the expansion of the exponential map and determine the full normal coordinate expansion.
In particular, for a p-form one finds the small ¢ expansion

Ey(C,) = %[Cil_.i,, Yt (nnancil.,,ip - pvimnc}m.@ (3.3.19)
+ %# : (n”ﬁn(nmﬁm&l..‘ip)pviln"n’”@mcmg,,,ip — @thnvhnmcnmismip
+ %Riilmnnnmcj@,_ip) + O(t3) ] dfil A dfip.

Such normal coordinate expansions have been used for D-branes of different dimensions, for example,
in refs. [27,(92,93]].

The scalar potential for Lagrangian deformations

We can use the procedure above to describe how the volume form changes as we move from L to Ly,.
At any L, we define the volume functional

V(L) :/df’)ge—%/det(ﬁg) :/6_¢V01L . (3.3.20)
L L

The pullback ¢ is the same one described in the D-brane action, (3.3.9), that pulls the metric on the
Calabi-Yau manifold onto the cycle L. Equation (3.3.20) is the geometrical part of the DBI action after
compactification, that will lead to a scalar potential in four dimensions. This scalar potential will act as
en obstruction to deformations of the brane that break the special Lagrangian condition, and therefore
supersymmetry.

The idea will be to introduce again the real parameter ¢ and calculate the deformation of V' (L,)). If
the deformation is small, we can expand around Ly,

dv 1 ,d*V
V(Ly) =V(Lo) + tE(Lo) + 5t W(LO) +.... (3.3.21)

°This can be deduced from the fact that J and Im(C2) are closed and since Lo and L, are in the same cohomology class,
one has in cohomology that [E;,(7)] = [v]z,]-
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Also, the special Lagrangian manifold Lg is by definition a calibrated manifold, that is, among all the
manifolds in the same cohomology class, the calibrated ones are the ones with the minimal volume.
That is, when deforming Ly, since it is a minimum of volume, the first derivative dV/dt evaluated on
Ly vanishes. So the first contribution to 6V comes from the second derivative in (3.3.21)), that we will
calculate in the following.

The first case we will consider is when L, is still Lagrangian, but not necessarily special. This
implies that 8,, = 7..J is still closed, but the volume form now also has a contribution from the imaginary
part of 2. Actually, as the brane can also have a phase fpg(€) different from the phase of the orientifold
plane and dependent on the coordinates on the brane, we also define a compensator for the brane Cpg
with which we can write

67¢V01Ln = 2CD69|L77 5 with CDb(E) = |C‘67MD6(£) . (3-3-22)

‘We can then calculate the first derivative of the volume,

d 4 .
%(eﬂlﬁﬂ@m voly) = (£,|C|9Q)|L = e 6 (idfpg A navoly, +d(navolr) (3.3.23)
where again £, is the Lie derivative, £, (y) = dnoy + nady + ... for any form v, and we used the
fact that voly, is a closed form. As we will at the end evaluate this expressions on Ly where we had
%0, = 12 Im(CQ), we can call already

navoly, = id * 0y, (3.3.24)

that agrees with the usual result since at Ly the normal vector field 7 is normal to vol;, ~ 2Re C(2,
so 2 Re CQ vanishes there. Additionally, we can write the last term on as *d(nuvoly,) voly,
where we used that, on the L cycle, the hodge dual * imples 1 = vol;,. We then calculate the derivative
in the left-hand side of (3.3.23)), and match imaginary and real terms,

%9]}6 = —d*@n , %VO]L = —dfpg N\ *0,, , (3.3.25)
Note that a particularly interesting case is when 6, = dfipg, since in this case the second equation
ensures that the volume of L is decreasing along this direction. In fact, this normal vector precisely
parameterizes the directions to L in which its volume is most efficiently decreasing. This vector is known
as mean curvature vector. Such Lagrangian mean curvature flows have been discussed intensively in the
mathematical literature (see, e.g., refs. [94,95]], and references therein).
We now proceed to calculate the second derivative from (3.3.25) and evaluate at ¢ = 0, where

L(t =0) = Ly,

d d? "

7 voly, |¢=0 =0, p7e] voly, [i=o = (dd*0,) N x0,, . (3.3.26)
In this computation it is crucial to use the fact that at ¢ = 0 one has 6pg(0) = 6o is constant on Ly.
This immediately implies the vanishing of the first derivative of voly, using (3.3.23). To evaluate the
second derivative both equations (3.3.23) have to be applied successively. Finally, we can use (3.3.26)
to evaluate the lowest order scalar potential for a Lagrangian brane on L(t) as

d2 _
N (L) emo = ¢ /

pTo d % Oy A xd % 0, = 4e? / d(naImCQ) A xd(nadmCQ),  (3.3.27)
Lo

Lo

where V' is the volume functional (3.3.20). As we will show later on, this term provides a scalar potential
which corresponds to a D-term in the four-dimensional N = 1 effective theory for the D6-brane.
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The scalar potential for general deformations

Before turning to the details of the Kaluza-Klein reduction let us recall that one can extend the analysis
to deformations 7 for which L(¢) is no longer Lagrangian. In this case dn.J does not necessarily vanish
and is not generally possible. However, one can still evaluate the second derivative of the
volume of L(t) at the point t = 0 as [87]

d2

aVLwlo=c? [

d(naJ) A xd(naJ) + 4e¢’/ d(naImCQ) A *d(naImCQ) . (3.3.28)
Lo

Lo
The new term depending on d(7..J) is the obstruction for L(t) to be Lagrangian. In the four-dimensional

N = 1 effective theory for the D6-brane this term can be obtained as one of the F-term contributions
from a superpotential which we determine in section [3.5

The scalar potential including the B-field

So far we have discussed the scalar potential without the inclusion of the NS-NS B-field of Type IIA
string theory and the brane field strength Fpg. To compute the leading order potential including Fpg we
note that only the part F of Fpg contributes to the potential which has indices on the internal three-cycle
wrapped by the brane. We perform a Taylor expansion of the Dirac-Born-Infeld action using

Vdet(A + B) = \/det(A) [1 + 1Tr( ) 4 L ([Tr(arlszs)}? - 2Tr([9r1%]2)) +. } (3.3.29)

for small fluctuations ‘B and invertible 2. The matrix 8 we want to identify with the normal coordinate
expansion of By — F' in (3.3.9), while 2 is the background metric of the Calabi-Yau space restricted to
L. Recall that the normal coordinate expansion Ey,(B2) was given in (3.3.19). One notes that the first
term in the expansion (3.3.29) is canceled by tadpole cancellation of the D6-branes with the O6-planes in
the background. Moreover, the second and third term in (3.3.29) do not contribute to the potential since
20 is symmetric while B is anti-symmetric. Evaluating the remaining term Tr([2~!8]?) and adding the

result (3.3.28)) one finds

VSE = e¢/L [d % 0y A sd % Oy + dby A xdy + (F — By — dOF) A<(F — By — df)})] , (3.3.30)
0

which is still expressed in the ten-dimensional string frame. Here we have introduced the abbreviation
0F =n.Bs|L, (3.3.31)

which is the B-field analog of 6,, = n.J|,,. This concludes the computation of the scalar potential from
the Dirac-Born-Infeld action. In a next step we want to introduce a Kaluza-Klein basis and determine
the complete leading order effective action including the kinetic terms.

3.3.3 A Kaluza-Klein basis

In performing a Kaluza-Klein reduction of the D6-brane action to four spacetime dimensions we would
like to include all massive modes corresponding to arbitrary deformations of Lg to L;,. This means that
we include sections sy of N L which yield one-forms in the contraction with J

Or =sr2J|, € QY (Lo). (3.3.32)

For a compact Ly it is possible to label these one-forms by indices I = 1,..., 00 by considering the
Kaluza-Klein eigenmodes of the Laplacian A,,. In this case the zero modes A, 6; = 0 are precisely the
harmonic forms 6; introduced in (3.3.5). However, the basis adopted to Ay, is not always useful, since
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it explicitly depends on the metric inherited form the ambient Calabi-Yau manifold. In the following
we will therefore work with a general countable basis of Q'(Lg), and later use the induced metric to
interpret the final expressions after performing the reduction. In general we will always demand that the
one-forms 6 are finite in the L?-metric

9(5«5)=/ anxs, (3.3.33)
Lo

where &, 8 € Q'(Ly).
Let us now turn to the discussion of the U(1) gauge field on the D6-brane. It admits the general
expansion

Aps = A hy+dlar, (3.3.34)

where hj € C°°(Lg) is a basis of functions on Lo and &y € Q!(Ly) is a basis of one-forms on Lq. Here
again a countable basis can be chosen due to the compactness of L. Note that the field-strength of Apg
is given by

Fos=F' hy— A’ Ndhy+da' Néy+ F F =da'dar + fos, (3.3.35)

where fpg € H 2(LO7 Z) is a background flux of Fpg on Lg. The terms dh; and dd; arise due to the
fact that the functions / ; need not to be constant on Ly and the one-forms & need not to be closed.

We thus find that an infinite tower of scalars a! which are coefficients of exact forms are actually
gauged by the gauge fields A7 for which dh; # 0. Moreover, scalars a! arising in the expansion in
non-closed forms appear without four-dimensional derivative in the expansion (3.3.33). To see this, we
introduce a special basis adopted to the metric induced on Lg. More precisely, via the Hodge decompo-
sition each one-form & can be uniquely decomposed into a harmonic form, an exact form dh; and an
co-exact form d*4y on L as

Gy = phéy; + dhy + d*4p (3.3.36)

where @&; are the b'(Lg) harmonic forms introduced in (3.3.8). We thus pick a basis of the space of
exact forms Q! (Lg) denoted by dh; and a basis d*v; of the space €2}, .,(Lo) which are exact with
respect to d*. By appropriate redefinition we can introduce scalars a! parameterizing the expansion in
dhy. Denoting the coefficients of the non-closed forms d*~; by a’, and the coefficients of the harmonic

forms by a’ the expansion (3.3.33)) reads

Fpe = Flhr+da Aaj+Dal Adhy+da' Ad*yr + F (3.3.37)
D! = da' — AT, F=a'dd* v + foe -
From this we conclude that precisely the scalars ! are gauged by A’. Since the four-dimensional
effective theory is an /' = 1 supersymmetric theory one infers that there will be D-terms induced due to
these gaugings Da’, while F-terms are induced due to F'. We will determine the D-term in section
and check that it matches the moment map analysis of ref. [96].

3.3.4 The four-dimensional effective action

We can now determine the kinetic terms for the chiral multiplets of the D6-brane coupled to the bulk
supergravity. Since the bulk action has been Kaluza-Klein reduced on the orientifold background in
ref. [82] we will focus on the reduction of the D6-brane action (3.3.9). The contributions entirely due to
bulk fields are later included in the determination of the ' = 1 characteristic data.
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Dirac-Born-Infeld action

Let us start by considering the Kaluza-Klein reduction of the first term in (3.3.9), i.e. the Dirac-Born-
Infeld action. We expand the determinant in (3.3.9) to quadratic order in the fluctuations around the
supersymmetric background. These are precisely the fluctuations of the embedding ¢ of L parameterized
by the fields n° of (3.3.3)) and the Wilson line scalars a’ introduced in (3:3-8). The normal coordinate
expansions of the ten-dimensional metric on the D6-brane world-volume is given to leading order by

L*g10 = (eZDUW + 9(Oun, 8,,77)) dzt - dx” + (1" g+ 6(t" g))mnd€™ - dE™ (3.3.38)

where gy, is the induced metric on L, and 6(¢t*g),y, is the metric variation induced by the variation of
the background Kihler and complex structure. Note that the four-dimensional metric 7, is rescaled to
the four-dimensional Einstein frameETI One first performs the Taylor expansion of the determinant while

using (3.3.38). Inserting the result together with Fpg given in (3.3.37) into the first part of (3.3.9) we
obtain the four-dimensional action

Sl(;gI = - / %Refrj,] FIAxF7 + e2Dgij da’ A xda’ + €2DGIJ da' A xda’
+e2PGr; Dal A xDa’ + e2PGrydn' A xdn’ + Vppr « 1, (3.3.39)

in the four-dimensional Einstein frame. The covariant derivative Da! was introduced in and
indicates the gauging of the infinite tower of scalars al. The potential term Vppy depends on the defor-
mations 6(¢*g) s of the calibration conditions (3.3.3) induced by the variation of the induced metric on
L,, which we computed in (3.3.28). Moreover, one obtains an additional term depending on the modes
violating the background condition Fpg — B2|r, = 0 as in (3.3.30). Explicitly we find
e * * e’ i B ~ B
Vb1 = V7 /Lo d”* 0y Nxd 0,7+W /Lo (al0,7/\>|sal9n+(F—BQ—aZG77 )A*(F — By —db,, )) , (3.3.40)

where F is defined in (3.3.37). In the following we will discuss the metric functions appearing in the
kinetic terms of (3.3.39).

The first term in (3.3.39) is the kinetic term for the UU(1) gauge bosons A’. The gauge coupling
function is thus given to leading order by

R,efr]J_/ QRC(CQ)h]hJ, (3.3.41)
Lo

where the volume of L has been replaced using (3.3.3). Note that Re f; ;7 admits a simple geometrical
interpretation as L?-metric on the space of functions on Ly. More generally, without introducing a
specific basis and restricting to a special Lagrangian one writes for two functions h, h on L

Ref.(h,h)|; = e—¢/ h A xh, (3.3.42)
L
which readily reduces to (3.3.53)) on L. = L using *1 = voly, and (3.3.3).
The second, third and fourth term in (3.3.39) are the kinetic terms for the Wilson line moduli
a’,a’,a’, where the later appear with the covariant derivative Da! = da’ + A’ as introduced in (3.3.37)).
The appearing metrics take the form

Gij = 2e7%G(ay, & ), Gry = e 0G(d* v, d*vyy) Grs = 3 °G(dhr,dhy), (3.3.43)

10Recall that the four-dimensional metric in the Einstein frame 7 is related to the string frame metric n°F vian = e=2P 55%.
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Figure 3.1: A diagrammatic representation of the original cycle Ly wrapped by the brane,
and its deformation until L, the C4 chain bounded by L¢ and L,,, and the vector
field 1 normal to L.

where G is the L?-metric defined in (3:3.33)), and &, dh! and d*~; are the one-form basis introduced in
(3.3.37). The fifth term in (3.3.39) contains the field space metric for the deformations 7’ and is of the
form

Q\]J = / g(sI, SJ)RC(CQ) = %e“f’g(@[,&]) . (3.3.44)
Lo

where 01 are the one-forms on Ly introduced in (3.3.32). Let us comment on the derivation of the second
identity in (3.3.44). Here we first have to use the fact that g(s;, s;) = J(si, I'sj) = (Isj).0;, where J is
the Kéhler form and I is the complex structure on Y. Next we deduce from J A Re(CQ2) = 0 that we
can move the Is; to obtain §; A (Is;) ReCS2. However, since C2 is a (3, 0)-form one deduces using

2(Isj)ReCQ = —25,; .Im(CQ) = e % 0; , (3.3.45)

and the identity (3.3.5) the second equality in (3.3.44)).

This completes our reduction of the Dirac-Born-Infeld action. Let us stress that the reduction so far
only included the leading order terms. In order to fully extract the A' = 1 characteristic data, however,
we will need to match also higher order terms. It turns out that an efficient strategy to proceed is to
include these by using supersymmetry and a careful study of the the Chern-Simons action. We will turn
to the Kaluza-Klein reduction of this part of the D-brane action in the following.

Chern-Simons action

Let us now turn to the dimensional reduction of the Chern-Simons part of the D6-brane action. In
the reduction one can again perform a normal coordinate expansion of the form-fields appearing in the
action. However, we will take here a somewhat different route and parameterize the normal variations
by introducing a four-chain C4 which contains the three-cycle L;, in its boundary

9Cy = L, — Lo , (3.3.46)

as in figure 3.1 where Ly is the reference three-cycle, the supersymmetric background cycle.
We consider the Chern-Simons action containing the R-R forms Cs5, C5 and C7 given by

Scs = / o "B A (C3 + C5 + C7) + SE&. (3.3.47)
W7
Here Wéo) = M3 x Lo,
Sel = / d[e" P2 N (C5 4+ C5+ CF)] (3.3.48)
Ws
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and W = M3 x C, such that W; C OWjs. This is in a similar spirit as the constructions in [97]).
To perform the Kaluza-Klein reduction of (3.3.48)) we consider the expansion of .4, the wedge product
between the R-R forms and the B-field introduced in (3.2.6)), as

Yo ePAC, = (o — &8N+ (A% Awa + Ag AG”) (3.3.49)
p=3,5,7,9

+(Cyp Ay — CENBR) +(CY+ C§ Awy + C3 NG+ C3 Avoly) .

In (3:3:49), (v, B*) is a basis of H? (Y, R), w,, w, are basis of H2(Y,R), H2 (Y, R), and @, & are a
basis of H1(Y,R), H1(Y,R). Here we introduced the four-dimensional two-forms (C3, C7) which are
dual to the scalars (£, 3 A), already introduced in (3.2.14). The vectors A“ have been already introduced
in (3.2.17), and A, are their four-dimensional duals. Moreover, the Kaluza-Klein expansion (3.3.49)
also contains the four-dimensional three-forms (C3,C¢,C3, C3) which are non-dynamical, but will
crucially contribute to the scalar potential as in ref. [93].

Note also that the fields defined in (3.3.49) are not the expansions from the R-R forms alone, but in
general combine with the NS-NS two-form Bs. Denoting by a hat"the fields which arise in the expansion
of the R-R forms alone, one finds, for example, that

vectors: A% = A« , A, = Aa — AP b*Ksaa

A A . 3.3.50
3-forms:  CY=CY, Cy=C5+ 9", etc. ( )

Bs-corrected: {

where A%, C'go and A, C‘g denote the space-time vector bosons and three-forms coming from the ex-
pansion of C3 and Cj, respectively. In contrast, the scalars and two-forms in (3.3.49) have no mixing
with the B-field such that

no By-correction: scalars: (€%, €y) 2-forms:  (C3,C3) . (3.3.51)

As discussed in more detail in section [3.6]the situation is precisely reversed under mirror symmetry. In
fact, using the results on the side without B9 corrections mirror symmetry can be used to compute the
corrected couplings.

The Chern Simons action is dimensionally reduced by inserting (3.3.49) into (3.3.48). Focusing on
the couplings of A% and (C3, C’,%) in favor over their duals, one finds

S& = / Nmfery FIAF — (615dC) — 85dCE) A A (3.3.52)
—(Z;rdCy — IFdC?) Ada! + Lonix + L3 .

The first term is the theta term of the gauge theory on the D6-brane, with Im f, 77 = [ Lo C5°hrhy that
combines with (3.3.41) to form

Re fi 15 = / (2 RC(CQ) + ’chc) hrhy = / Qchihyg, (3.3.53)
Lo LO

where we have used the definition for €. in (3.2.13). Ly« in (3.3.52)) corresponds to the mixing of the
brane and bulk gauge bosons

Luix = (a7 Ay ja +T(1ya) dA* AN FT 4 TGy dAa NFT (3.3.54)
and L3 is the term which depends on the three-form field strengths as

L3 =dCY (3a’a’ Ary+a’Ty) +dC§ (o’ Aja +Ta) +dC3 T . (3.3.55)

""One could also include the couplings to A, and (£, 13 ). In this case one has to analyze also the bulk action keeping all
forms and their duals as in ref. [83]].
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In order to display the remaining couplings appearing in this action we first define the integral
Z(&, o) between a one-form & on L, and a three-form a on Y, as well as the integral 7 (3, w) between
a two-form B on L; and a two-form w on Y. To do that we again extend the forms defined on Ly to the
chain C, such that they are constant along the normal directions of L, in Y. We define

(&, ) —/ ana, TJBw = [ Brw. (3.3.56)
Ca Cs
Furthermore, we will also need a pairing d between a function h on L¢ and three-form « on Y, as well
as a pairing A between a one-form « on L and a two-form on Y. Hence, we set

shio) = [ hatZ@ha) A0 = [ aABEIE).  B3ST

Note that these latter definitions include terms supported on L which are non-vanishing even in the limit
of vanishing normal displacement 7. This redefinition is necessary since Z and J vanish for a vanishing
normal displacement. In fact, we can expand (3.3.56) to first order in 7 for small normal displacement
in 0C4 = L, — Lg and obtain

I(d,a):/ aAnsa +...,  JBw = BAnw +.., (3.3.58)
LQ LO

which has a leading term linear in 7.
Having introduced the pairings we can display the couplings in (3.3.52)), (3.3.54) and (3.3.53)). Let
us start with the couplings in (3.3.52)) obtained as

Iy =ZI(ar,an) , I = I(ar, B%) oy = 0(hr, an) , o =6(hy, 8. (33.59)

Furthermore, in the mixed term L,x, given in (3.3.54), for the gauge bosons one finds
Aryja = A(h1by,wa) , L(1ya = I (h1fp6,wa) j(c}) = / hro® . (3.3.60)
Cq

Finally, we introduce the coefficients in (3.3.53)) as
Ajo = A&y, wa) L'y = J(fp6,wa) » (3.3.61)

for couplings between the ambient space two-forms w, and forms & and fpg on the D6-brane. The
remaining couplings are

AIJZ/ arNday, fJ:/ &y A foe ja:/ w0 . (3.3.62)
Lo Lo (&

It is not hard to interpret the different terms appearing in the action (3.3.52). The second term
proportional to (57,dC3 — 6’fdé’,%) A Al'is a Green-Schwarz term which indicates that the scalar fields
(€%, £,) dual to the two-forms (CZ, C3) are gauged by the D6-brane vector fields AZ. In fact, upon
elimination of (C?, C3) one finds the covariant derivative

DeF = dgk 4 sk AT DE\ = déy + S AL, (3.3.63)

We will show in section [3.5]that these gaugings induce the corresponding D-terms in Vpp; as expected
from a supersymmetric theory.

The third term in proportional to da’ will be of importance for the derivation of the Kihler
potential and complex coordinates on the A/ = 1 field space. Upon elimination of (C,%, é@) it induces
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a mixing of the kinetic terms of a! = (a’,a!) and (€%, €,). More precisely, one finds the modified
four-dimensional kinetic terms

LE = G VER AxVE + GMVE N +VE, + 26 VEF A xVE, (3.3.64)
where the modified derivatives V are defined by
Vek = DeF + Thda!  and  VE, = DEy\ + Ipndal, (3.3.65)

with the metric G given as in the closed string case,
G = éeQD/ ap ANxq GM = %eZD/ BAAxBE G,f‘ = —% eZD/ aAxB> . (3.3.66)
Y Y Y

Note that the form of the metric G for V&* and Vf A closely resembles the form of the metric G;; for
the scalars a’ as seen from (3.3.39) and (3.3.43). We will exploit this observation in the detailed study
of the moduli space geometry later on. This similarity only occurs in the N' = 1 orientifold for which
the field space metric is Kihler. In the underlying NV = 2 set-ups the moduli space containing the R-R
scalars is a quaternionic manifold.

The Lyix is a kinetic mixing term between the U (1) from the brane with the vector field from the
Cs expansion. This term will be important in the derivation of the gauge coupling function in section
3.4

The term L3 given by contains the four-dimensional three-forms which arise in the expan-
sion of C3, (5, C7. Very similar to the analysis in ref. [93]] they will be crucial to complete the scalar
potential contributions in Vpgpy to supersymmetric F-terms which can be obtained from a superpoten-
tial. To find the scalar potential from the three-form potential one has to eliminate the forms dCY, dC3
and dC§ from the complete four-dimensional effective action. In particular, in addition to £3 one also
has to include the reduction of the ten-dimensional kinetic term in (3.2.5). The resulting action for the
three-forms will be given in terms of the matrix \; 5 defined as

_l]CabcbabbbC %/CBabbabb ) Y < 1 +4Gabbabb —4Gpyb° >

NAB:( DCaah™®  “Kapab® —4Gaab"  4Gap

(3.3.67)

where A = {0,a,a}, and one has to use Kypo = Kagy = 0. Using these definitions we find after
rescaling to the Einstein frame that

S = / LD (ImA) L8 (A3 — Ny dC5) A +(dCS — Ny dCS) + L5, (3.3.68)

where C4 = (CY,C%) and C2 = (C3,C3), and L3 is the D-brane coupling defined in (3.3.55). As
in ref. [93]] we next dualize ng ,dC% and dC’g , dC’S’ into flux scalars ey, e,, m®, mY. In ref. [98] the
interpretation of these scalars as quantized fluxes has been provided. They also arise as background
values of the field strengths 5 = m%w,, Fiy = e,0® and Fg = eg voly as their expansions into harmonic
forms on Y. In addition there is Romans mass parameter Fy = Gg = mP. After dualization of the three-
forms on finds the scalar potential

Vaucpos = g€ P (ImN) T4 (& — Naam®) A #(& — Njgm?) (3.3.69)
where

&g = eo+§/ FAF+§/ F Adlay, (3.3.70)
Cy Lo

€q = ea+/ l*:'/\wa +/ aIdIAwa,
Cy Lo

ma _ m“—l—/&)a, ’ﬁ’LOZmO
Ca



The additional terms in the definitions arise precisely because of the term L3 form the D6-
brane. Luckily, apart from these shifts, the closed string moduli dependence of the potential (3.3.69)
agrees with the analog expression found in ref. [82]], and we will thus be able to integrate it into a
superpotential without much effort.

Restriction of the brane action to harmonic modes

To conclude our reduction of the D6-brane action let us also give the result which is obtained by restrict-
ing to harmonic forms. This corresponds to a truncation of the Kaluza-Klein tower of the brane fields
to include only the lightest states. The resulting action will be useful in the next section when analyzing
the moduli space. The Kaluza-Klein Ansatz for the D6-brane field strength, eqn. (3.3.37), simplifies to

Fpg = F +da’ A &; + foe - (3.3.71)

This implies that the DBI action reduces to
S](;gl = — / %Refr FAxF 4+ eQDgij da’ A xda’ + 62D@j dni A *dnj , (3.3.72)

with the metric G;; being the same as in (3.3.43), and @j the restriction of (3.3.44) to supersymmetric
deformations (i.e., harmonic one-forms ;). The gauge coupling function (3.3.53) simplifies to

Re f; = / 2Re(CQ) (3.3.73)
Lo

as we restrict hy to the only harmonic function, the constant function which we normalized to 1. We did
not include the scalar potential Vpp; since it vanishes when restricting to the harmonic subset of forms,
as we will show in section

The truncation of the Chern-Simons action to the harmonic modes is

S& = / Hmf, FAF — (85xdC3 — 6"dC3) N A — (Tix dC3 — TF dC?) A dd (3.3.74)
+(a?Ajo +To)dA* AN F + J*dAo AN F +dC§(a’ Ajo + 1) +dC2 T + dCS (a'T;) |
with couplings
5y = / ay, o= gk Iy = / & Nay,  IF= / a AB*, (33.75)
Lo Lo Ca Cy

Aig = /di/\wA, Fa= | fosAwa, A={a,a}, fi:/ a; A fpe
Lo C4 Lo

and J4 = le, @* as defined in (3:3.62). One realizes that the couplings (Jy, %) and A4, T'; are
constants, while the couplings (Z;, If) and I' 4 depend on the brane deformations through the chain C,.

Let us take a closer look at the three-form couplings coming from L3 (3.3.53), after the reduction
given simply by dC§ (a/Ajq + ') + dC3 J + dCY (af T; in (3:3.74). We can expand the C; chain
around the L cycle to see the explicit dependence on the brane deformations. Just as in (3.3.58)), we
obtain, up to first order in the open fields,

[,3de§/ (ajdj/\wa+77jsj4waAfD6)—1—ng3’/ njsjmudcg/ aa; A fpe. (3.3.76)
Lo Lo Lo

Note that this implies that L3 is non-vanishing also in the case we restrict to harmonic forms only.
However, note that describes a coupling between the open and closed sector. In fact, the scalar
potential arising from is obtained as an F-term potential when varying the superpotential
with respect to the closed string fields ¢*, as we will describe in section 3.5
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3.4 The open-closed moduli space and the Hitchin functionals

In this section we discuss the geometry of the moduli space of the bulk sector and brane sector in more
detail. In the first part, section(3.4.1] we assume that the open moduli are frozen and discuss the geometry
of the moduli space M@ of the dilaton and the real complex structure deformations following [82]. In
section we discuss the moduli space of special Lagrangian deformations 7 following the work
of Hitchin [[88,[99]]. This description will be slightly extended by including the NS-NS B-field. The
open moduli space has finite dimension b (Lg) and can be encoded by the variation of harmonic one- or
two-forms on L.

In the complete set-up, with varying open and closed modes, the definition of being special La-
grangian crucially depends on both the Kihler as well as the complex structure moduli of Y. In fact, the
normal vectors s; used in order to define the one-forms 6; = s;1J need to be chosen such that 6; is har-
monic. This notion changes when varying the complex and Kihler structure of Y. Nevertheless, if such
a change does not alter the topology of Y and L, one expects to find a new embedding map ¢ which
makes L, supersymmetric in Y and posses also b'(Lo) special Lagrangian deformations. This suggests
to view the full moduli space as fibration of the open string moduli space M(g over the closed string
moduli space M(Ic( X MQ, where /\/lg is the space spanned by the complexified Kéhler deformations.
In section [3.4.3|we will explore the local geometry of this full moduli space in more detail. Note that we
are still dealing with only a finite set of deformations. In the absence of background fluxes these remain
massless due to the vanishing of the scalar potential.

In section [3.4.4] we also analyze the gauge coupling function and the kinetic mixing for the brane
and bulk U (1) gauge fields. In particular, we comment on its holomorphicity properties.

3.4.1 The orientifold moduli space

We start discussing the moduli space coming from the four dimensional dilaton D and the complex struc-

ture deformations, described by the scalars ¢*. We will review how the complex structure deformations

combine with the scalar part of the three form C3, and justify our inclusion of 2. as the complexified

complex structure that gives rise to the “correct” chiral fields of the theory. Here we will follow [82].
The moduli space for the dilaton and complex structure deformations is described by

1G =dD-dD + K d¢* - dg" , (3.4.1)

where K%; is the metric restricted to the deformations preserving the orientifold constraint (3.2.2). We
will argue now how this moduli space can be encoded in the complexified ., (3.2.13),

Q. = 2Re(CQ) +iC5F = N* oy — T, B, @213)
where N'* and T} were defined in (3.2.14)
N'* =2Re(CX*)+ie%, T, =2Re(CFy)+i&,. (3214)
Here we have introduced the convenient notation for the periods of €2,
UF = 2Re(CX*), and Uy =2Re(CFy). (3.4.2)

Importing the Kihler function from the underlying N = 2 theory, the metric in (3.4.1)) can be obtained
as the second derivative with respect to U of the function [[82]]

K9(V) = —21n i / CONTQ| = —210g [2] . (343)
Y
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Calculating the metric explictly,
K9
- OUKQUL

where the metrics are the same as in (3.3.66)

dUS - dUY = Gy dU* - dU' + G** dU), - dU,, + 2G2 dU* - AU, . (3.4.4)

G = éew/ aphxap,  GM = ;621:)/ BANBE, G = —%ew/ aAxp* . (3:3:66)
y Y Y

Alternatively to the direct calculation from a truncation of the A/ = 2 moduli space, one can calculate
the above metrics as in [100]] via the techniques introduced by Hitchin [[101] The metrics in (3.3.66)
were the metrics obtained from the kinetic terms of real scalars {¢¥, £} coming from compactifying
Cs,

Cs=Eap + 680 +..., (3.4.5)

thus we can combine the real fields {¢¥, £,} with {U*, U,} in the chiral fields {N'*, T} }, (3.2.14). We
can also see that the imaginary part of C§) appears as the first derivative of K<,

1 K@
2 QUk

1K@ 2D A 1A
3 a0, = —2¢ Im(CX ):V . (3.4.6)

=22 Im(CF) =V,

That is, {V}, V*} appear as a dual coordinates to {U*, U, } and can be alternated via a Legendre trans-
form in the action.

Note that originally ./\/lg was found as the ' = 1 field-space obtained by truncating the underling
quaternionic geometry spanned by the ' = 2 hypermultiplets. Each hypermultiplet has been truncated
to a single A = 1 chiral multiplet such that M has half the real dimension of the quaternionic space.
But M@ can also be viewed as a Lagrangian submanifold of an auxiliary vector space [28]], similarly to
what will be done in the next section [3.4.2] for the moduli space of brane deformations.

Let us conclude the discussion of the moduli space M@ x M by presenting yet another way to
motivate its geometrical structures. In an orientifold compactification it is well-known that the orien-
tifold planes, located on the fix-points of the involution o, are not dynamical and hence do not posses
moduli at weak string coupling. Hence, all deformations in M© x M need to preserve the embedding
of the fix-planes and thus the conditions (3.3.1)). Also the real complex structure and Kihler structure
deformations chosen such that Im(C$2) and J remain elements of H2 (Y, R) and H? (Y, R) ensure that
these forms vanishes on the fix-point locus of ¢. In the discussion of the D6-brane moduli space we will
turn the story around and consider the variations of the D-brane embedding maps ¢ which preserve the
conditions (3.3.3) for fixed closed string fields.

3.4.2 The moduli space of D6-branes on special Lagrangian submanifolds

In the following we will discuss the moduli space of a supersymmetric D6-brane wrapped on a special
Lagrangian cycle on a Calabi-Yau manifold Y with fixed complex and Ké&hler structure following [88),
99]]. At the end of this subsection we propose a simple modification to include the B-field.

The geometry of the moduli space of special Lagrangian submanifolds

To begin with, recall that the space of deformations taking a three-dimensional submanifold Lg into
another L,, is infinite dimensional if no restrictions are imposed. We have seen however that there is
a preferable subset of deformations that lie in the flat directions of the scalar potential, while all the
others contribute to the scalar potential thus breaking supersymmetry. He have also seen that the fields
corresponding to special Lagrangian (thus supersymmetric) deformations correspond to real massless
scalar fields in the effective action, with the number of fields given by b'(Lg), while the remaining
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(infinite) fields that correspond to non-special Lagrangian deformations are massive in the compactified
theory.

In this section we explore further the finite dimensional space corresponding to deformations that
preserve the special Lagrangian conditions, described by the harmonic one-forms 7'0; = n's;J on
Lg. Here s; is an element of the basis of normal vectors parameterizing a deformation through special
Lagrangian submanifolds, and J is the fixed background Kihler form which vanishes on Lg. The Hodge
dual to 6; on Lo can be obtained as contraction of Im(C2) with s; as given in (3.3.43), e % 0; =
—2s;Im(C<). The variations of the #; and *; are analyzed by expanding these forms in a basis &; of
H'(Lg) and 5" of H?(Lg) respectively,

91’ = )\z dj N %€_¢ * 91 = :uji Bj s (347)
where )\g (1) and p;;(n) define the periods of §; and e~ x 6;. Explicitly they are given by

)\z :/ siad A Bj , Wij = —/ stIm(CQ) AT (3.4.8)
LO LO

Note that we have introduced an additional factor of the dilaton, which is constant for a fixed background,
but will later allow us to make contact to the metrics found in section Since J and Im(CQQ) are
closed, one shows that there exist functions (u*, v;) such that [99]

Ou' _ i )
oni I onl

In fact, (u’, v;) are the analogs of (U, Vi) for the orientifold moduli space (3.4.6).

Let us point out that the harmonic one-forms 6, can be constructed on each L, obtained by a super-
symmetric deformation of Ly [99]. Generalizing we can pull back 9;7 from L, to Lg using the
exponential map E introduced in section[3.3.2] Following the strategy of section [3.3.4| we can then use
the chain C4 to write

X =0, ; JAB, fiji = —Opi ; ImCQ A &; . (3.4.10)
4 4

which at linear order reproduces (3.4.7) on Ly. Inserting (3.4.10) into (3.4.9) this provides us with a
chain integral expression for the coordinates (u’, v;).
To obtain the differential geometrical structure on M, we introduce an embedding F,,

F,: M, — VxV* V=HYLR), V*=H*L,R), (3.4.11)
where V'« is a dual vector space of V. We can construct a symplectic structure tv on the product V' x V*
that actson a,b € V and @/, ' € V* by [99]
w((a,a), (b,V)) =d (b) —b(a), da'(b)= / a Nb. (3.4.12)
L

When pulled back to M,, the symplectic form to is zero, Ff(rw) = 0, the equivalent statement of
J|L, = 0, thus M, is special Lagrangian inside. We can show that, following [99]]. We can act the
pullback on two objects 7 and 77 in M,

Fy(w)(n',n”) = vo(Fo(n'), Fo()). (3.4.13)
Using the definition (3.4.T1)) and (3.4.12),
Ey () (', 1) = N g — N i (3.4.14)
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But from the fact that J A Im(CQ) = 0, we can contract with two vectors s; and s; and using that
Jlr, = Im(CQ)|, = 0 and the definitions 0; = s;..J, e=? % 0; = —2s;,Im(C) together with the
identities we show that the right-hand side of is zero. Thus, F*(ro = 0.

We can also define a natural metric tensor in V' x V* as

a((a,b'), (a, b)) =b'(a), (3.4.15)
that we can similarly pullback to M, and obtain a natural metric for the moduli space,
(Ero)idn'diy = Gy dy' - dip = Gyj du’ - du? (3.4.16)
where G;; and @j are given in and (3.3.44),

Gy = Lo %Glana;), Gy = / osr,57)Re(CQ) = Le9G(07,0,) . (3.4.17)
Lo

It is straightforward to evaluate the metrics in terms of the periods )\g and p;; using (3.4.7) and (3.4.9)
as

Gij =i N5, Gig = e A5 (3.4.18)

From the fact that M, is a Lagrangian submanifold one finds that it can be locally represented by a
single function K, with v; = K, /0u’. This is the direct analog of (3.4.6).

As in the case of the orientifold moduli space, we next have to define a complexification of M,
to obtain the space M(g. Let us first consider the case of vanishing B-field. Since the metric g,j in
the coordinates v’ agrees with the metric for the Wilson line moduli a®, found in (3.3.39), one defines
complex coordinates ¢* on M as

no B-field: (' = +id’, (3.4.19)
and identifies K, (¢ + ¢) as a Kihler potential such that

K, ?K,
Gij = oo = 4 5eas (3.4.20)

The metric G;; on MC satisfies an important additional property. In fact, it turns out that MY is actually

a non-compact Calabi-Yau manifold with non-vanishing holomorphic b* (Lg)-form Q= dCY AL AdC ot
with constant length with respect to the Kihler form on M [99].

Open coordinates with B-field

So far we have analyzed in this subsection the open moduli space for vanishing By and fpg. We want
to generalize this in the following. To include the B-field we note from (3.4.10) and (3.4.9) that v’ can
be written by using the four-chain in (3.3.46) as

uiz/ JABi:/ naJ AR+, (3.4.21)
Cy Lo

where we have also given the 1 expansion for small fluctuations around Lg. One can now replace J
in (3.4.21) by —iJ. = J — 1By as used for the closed coordinates in (3.2.8). This leads us to modify

(13.4.19) as
¢t =l +iat, ul = —i / J. A B (3.4.22)
Ca

Note that u’, is the complexification of u’ with a B-field correction which can be absorbed by a shift of
a’. This implies that (3.4.20) remains to be valid.
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In the definition (3.4.22)) we have used the chain C4 with boundaries Ly and L,. It is desirable
to introduce a similar extension which allows to include the gauge field. To do that we introduce an
extension Fpg = d.Apg of the gauge connection A pg to the chain C4 such that

Apg|L, = Abg » Apg|r, = Adg —a'ar, (3.4.23)

where & and A%6 have been transported trivially from L to L,, along the geodesic given by 7. Here
A%G is a background gauge bundle on Ly which for fixed Bo allows to satisfy the supersymmetry con-
ditions on Lg. In other words, for a constant By along the chain, Fpg might satisfy the supersymmetry
conditions on L but violate the supersymmetry conditions on L,, due to non-trivial Wilson line scalars
a’. Importantly this prescription can also be used for 7 — 0. In this case, one does not deform L but
changes the gauge connection by modifying the Wilson line scalar a’ on a fixed brane. The imaginary
part of the N' = 1 coordinates arising from the gauge connection Apg can now be also written as a chain
integral fc4 Fbe A Bt Thus, we find that the (" are given by the elegant expression

("= —i/ (Je — Fpe) A" . (3.4.24)
Cy

At leading order in the n-expansion the complex coordinates ¢’ are encoded by a one-form A, on L
with expansion A
A, = —inad. +iApg = Cldi R (3.4.25)

into a basis &; of H(Lg,Z). Let us close by noting that (3.4.24) naturally includes a possible D6-brane
flux. It would be interesting to evaluate all expressions found below including this flux. However, we
will keep fpg = 0 in most of the computations.

3.4.3 The open-closed Kiihler potential and N = 1 coordinates

In the following we determine the A/ = 1 data for the kinetic terms of the four-dimensional effective
action by specifying the N/ = 1 complex coordinates, the Kihler potential and the gauge coupling
function for the U(1) gauge theory on the D6-brane. We will do this by only including a finite set
of deformations specified in the last two subsections. Note that these deformations will be obstructed
by a scalar potential, since one always needs to impose the supersymmetry conditions for the
deformed D6-brane which depend on both the open as well as closed moduli. One thus expects that only
a space of complex dimension smaller than $63(Y") + hEL(Y') + b1 (Lo) can be studied as a true open-
closed moduli space which is classically un-obstructed by a scalar potential in the absence of background
fluxes. This can be also understood by noting that Type IIA compactifications with D6-branes will admit
an M-theory embedding as a compactification on a Go-manifold [98}[102,[103]]. The finite number of
massless deformations of this manifold will incorporate the subset of the closed and open deformations
of section [3.4.1)and [3.4.2] which are flat directions of the supersymmetry conditions (3.3.3).

Let us start by noting that the D6-brane degrees of freedom are still encoded by the complex coor-
dinates ¢* which have been introduced in and (3.4.22). From the closed string sector we find
the complexified Kihler structure deformations ¢* introduced in (3.2.8). As we will check later on, the
definition of the remaining closed string complex coordinates is corrected by a functional depending on
the open coordinates (*. More precisely, they arrange very elegantly as

NE=U* — 20y, (2P K,) +ick, T\ =Uy— 20 (?PK,) + i€y, (3.4.26)

where the real scalars (£¥,€)) arise in the expansion (3.2.13), and we recall that U* = 2Re(CX*¥),
Uy = 2Re(CFy) as well as Vi, = 2e2PIm(CF), VA = —2e*PIm(CX?) are periods of CS. In
summary, we can simply write

C =l +iat, ME=UF -20y, (?PK,) + itk , (3.4.27)

44



where ¢X = (¢F,€)) and the abbreviations UK = (U*,Uy) and Vi = (Vj, V?) are as in (3.4.0).
The real function K, is now dependent on both u® as well as UK (or rather V). To see this, note that
e?x0; = 2s;.Im(CN) as introduced in (3.3.5), clearly depends on Im(C?). Performing the -expansion
of K, around 17 = 0 one finds

— 20y, (e*PK,) — Oy, (2P Gij) lp=ouied + ..., (3.4.28)

= 1/ di/\sl_nﬁk( Bj/\sl_:J> 1uiuj+... ,
2 Lo Lo

as we derive in detail in appendix Together with a similar expression for Oy x (e2D K,), replacing
B* — a,, one can use to derive the leading order effective action. In order to do that, we also
need to specify the Kéhler potential, to which we will turn next. Realize that as a trivial check of
one recovers the bulk A/ = 1 coordinates (N'*, T}) given in (3:2.14) if K, = 0.

To encode the leading order D6-brane effective action found in (3.3.39) and (3.3.52)), we finally need
to specify the Kihler potential. It is given by

— 1
K=KS4+ K= _1n [g/ JAJA J} —2In [z/ CQACQ} e = etV (3429)
Y Y
Note that K has to be evaluated in terms of the A" = 1 coordinates (3.4.26) and thus only depends on
¢+ ¢ M% + M and t* — £*. This can be done explicitly for the first term K** since

K(t,1) = —In [ (t — )" (t — D)t — )] , (3.4.30)

where KCupe = fY wq N wp A w, are the triple intersection numbers. It corresponds to the volume of
the Calabi-Yau manifold Y and will be corrected by perturbative and non-perturbative string worldsheet
contributions. For the second term K it is in general hard to find an explicit expression in terms of
the A/ = 1 coordinates. However, we are nevertheless able to check that the general kinetic terms
determined by the derivatives of '@ match the leading order terms found by dimensional reduction.

Let us summarize the derivatives of the Kihler potential K©. We note that the derivatives with
respect to the closed string moduli N*, T} take the same form as in 3.4.6), Oys K = Vi, On, K = V.
However, (V}, V) now depend implicitly on the open string coordinates ¢* through the evaluation of the
closed string expressions in terms of the A" = 1 coordinates (3.4.26)), i.e. one has to view Vi (u’, UF).
The derivatives with respect to ¢* will be postponed to section In summary one finds that

K; = e?Pu; K, =2e*PIm(CF,) , K* = —22PIm(CX?) . (3.4.31)

where K; = 0K /9(', K, = 0K /ON* and K, = 0K /9T). Also the Kihler metric can be evaluated
explicitly. One finds for the derivatives with respect to (N*, T, ¢?) that

Ky = G, Ky = GM™ | Ky = Gy, (3.4.32)

Ky = PGy +IfGriIy, Ky =I/Gu, Ky =TI/G},
where G, = (G, G, Gg) was given in (3.3.66), and T = (If,IM) are the derivatives

2K 2K
ZZ-’“:a T\ = g
oV, 0¢ VA

In appendix we will check these expressions by an explicit computation, and match these data with
the leading order effective action obtained in section [3.3]

Let us comment on the special form of the Kéhler metric (3.4.32). It can be directly inferred by
making use of the invariance of the kinetic terms under the shift symmetries

(3.4.33)

NFE — NF 4 AR Ty — T\ +iAy, (3.4.34)
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for arbitrary constants (A*, Ay). If such shift symmetries exist in the full four-dimensional effective
action one can replace the chiral multiplets N* and T) by linear multiplets (Vj, CZ) and (V*,C3), as
described in more details in appendix - Here Vi = (V4, V?) are the scalars dual to (ReN*, ReT})
given in (3:4.31) and (C7, C3) are two-forms dual to the scalars from C3. The chiral multiplets and
linear multiplets are connected by a Legendre transform, and the new real function encoding the kinetic
terms of the multiplets is given by

KWV,(+() = K(V)=Vi(NF+ N - VN +T)) (3.4.35)
B 0(e?P K,)

where we have inserted and used that V,U* + VAU, = €?P [CQ A CQ = 1 to obtain the
constant term —4. The key point to notice is that in this dual picture all quantities are functions of Vi, (*.
In particular, this implies that now K(V) = —2In(e™2P) = —2In(i [ CQ A CQ) is independent of
¢%, and all equalities found for the moduli space of special Lagrangian cycles of section can be
directly applied. Since the linear multiplet picture is just an equivalent dual description one can equally
express the kinetic terms in the chiral multiplet picture in terms of the derivatives of K. Let us denote
by KKL = = Ovy GVLK and by K its inverse. Similarly, we denote by KX and K cici the remaining

second derivatives with respect to * and V. The expression for the kinetic terms then has the form

L = —(Kug + KE Kk K ) d¢ A xd{? + Kgp, (dReM™ A xdReM* + d¢™ A +d¢”)
—2 Ky Kk (dReMK A kdu? + dgR A xda?) (3.4.36)

This is pre01se1y the form of the Kéhler metric and it remains to check that indeed K kL = Gkr,
K cici = e? gz] and K CK = IK . For the leadlng order actions found in section this is done in
appendix [A.T] Note that the form of the metric (3.4.36) is also inherited if only a potent1al term breaks
the shift-symmetries (3.4.34).

Let us make a brief comment on the appearance of the term dReM ! A xdu’. This term corresponds
to a kinetic mixing between complex structure and brane deformations, and would be expected to appear
in higher order expansions of the Dirac-Born-Infeld action. In this section however it was obtained by
simply analyzing the N = 1 characteristic data and the moduli space.

3.4.4 Gauge coupling functions and kinetic mixing for finite deformations

Having discussed the kinetic terms for the scalars in the N = 1 effective theory we will now turn to
an analysis of the kinetic terms for the U (1) vectors fields. We have shown in section in the case
one focuses on harmonic modes in the reduction that the spectrum contains a D6-brane U (1) vector A

as well as h(j’” bulk U(1) vectors A“. The leading gauge coupling function for the brane U (1) was
derived in section [3.3.4]and given by

fr= / (2Re(CQ) +iC3) = 6N — 5 Ty, (3.4.37)
Lo

where 5, = [ Lo Yk and 6 = i) Lo (. However, as we have discussed in sectlon | the inclusion of

the open moduli forces us to introduce the modified complex coordinates N*, T given in (3.4.26). In
order to obtain a holomorphic gauge coupling function it is expected that (3.4.37) is modified to

f =00 NF — 5Ty . (3.4.38)

The modifications in (3.4.38)) did not appear in our leading order dimensional reduction, but are expected
to arise a higher order in the brane deformations. As we will see shortly open moduli corrections to f; are
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also obtained after a careful treatment of the two dual bulk gauge fields A®, A, introduced in (3.3.50).
Recall that the gauge coupling function for the bulk R-R U (1) vectors A“ is simply given by [82]

faﬁ = Z/ Wa Nwpg A wg ¢ = i/Caﬁata = —1 7015 . (3.4.39)
Y

where N, is the complex matrix already introduced in (3.3.67). Clearly, f,zs is holomorphic in the
complex fields t®. Since the ¢* are not corrected by the open moduli one expects the result (3.4.39) to
remain valid also in the leading order reduction with a D6-brane. We will show in the following that this
is indeed the case. More interestingly, we find that there are further corrections depending on the open
moduli and D6-brane fluxes which induce a kinetic mixing of the brane and bulk U(1) gauge fields.

Let us now turn to a more careful analysis of the gauge coupling functions including the brane
moduli. In order to do that we summarize the action for all vector fields including the dual A) introduced
in (3.3.50). The mixing terms proportional to dA* A F and d A, A F have appeared in the reduction of the
Chern-Simons action in (3.3.74). The brane couplings have to be taken into account when eliminating
A, in favor of A% by using vector-vector duality in four dimensions as enforced by (3.2.3)). A detailed
calculation can be found in appendix [A.3] which uses a procedure similar to the one of ref. [27]. Here
we just present the results. The action obtained after a careful elimination of A) is

S — / IRefodA% A *F + MmfodA% A F + LImN, 5d A™ A xd AP
+1ReN,5dA* N dAP + iRefeor F A +F + SImfoeF A F

where the gauge coupling function f, encoding the kinetic mixing between bulk and brane U(1)’s is
given by
fo = —4(iNup TP +ial Ajo +iTs) , (3.4.40)

and the corrected gauge coupling function fco, for the brane U(1) is
feor = fo + A(INop T +ia? Ajs +1i05)T" . (3.4.41)

The coefficient functions are given by J¢ = fc4 0% Ajo = |, Lo @ Awa and Ty = fC4 wa N fpe as
introduced in section Recall that A, is independent of the moduli, while JB. T, depend on the
brane deformations through the chain Cy.

To study the holomorphicity properties of the gauge couplings we discuss f, and f.o in turn. One
notes that the first term in (3.4.40) can be rewritten as

iNpp T = / iNpp0® = / (J—iB) ANwsg =ul Ajg, (3.4.42)
C4 C4
where we have used (3.4.22) to obtain the factor u?. Using this expression it is straightforward to rewrite
the gauge coupling f, in the absence of brane fluxes as
fo=—4C N5, (3.4.43)

which is clearly holomorphic on the open moduli ¢* = u’ + ia’. It would be interesting to extend these
arguments to include the D6-brane flux fpg.

Let us now turn to the analysis of the corrected gauge coupling function fgo, of the brane U(1).
Using (3.4.41) and (3.4.40) one sees that it can be written as

feor = fr = faJ, (3.4.44)
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the additional term is at least of second order in the open moduli. One notes that the real part of f.o is
given by
Refeor = Refr + 4ImN,57°J” = Ref: + Ref,Ref*Refs (3.4.45)

which can be inferred from (3.4.40) and (3.4.44). This result generalizes to the space of infinite de-
formations by replacing f;. with f.;;, and f, with f,;. The expressions for these are straightforward
generalizations of (3.4.40)-(3.4.45) with the abbreviations introduced in section [3.3.4] Hence, the real
part of the gauge coupling function takes the form

~d
Ref — ( Refrr7 +Ref,Ref°Refs; Refq > 7 (3.4.46)

RefJg Refag

and can be easily inverted. This result will be important in section [3.5] when we compute the scalar
potential coming from D-terms since it involved the inverse (Re f) .

Let us close this section by making some general remarks about the holomorphicity of the gauge
coupling function feor in (3.4.44). In order to do that, one has express it in terms of the N' = 1
coordinates N*, Ty, t* and ¢’. However, recall from (3.4.26) that also the N* and T’ receive corrections
by the open deformations. In fact, we n-expand

Re(N* — N'F)6,, —Re(Ty — T3)6* = ui(_ ;/ a; Aot ak+;/ di/\maA/ BA) +...,
Lo Lo Lo Lo
(3.4.47)
where we have used (3.4.21)) and (3.4.28). To compare this result, we also n-expand (3.4.44)) to find

Refeor — Ref, = 4y /

0 N\ We / now® + ... . (3.4.48)
Lo Lo

This indicates that the result for f.., cannot be complete. In particular, it is conceivable that a contribu-
tion from the two-forms w, is missing which arises at higher order in the Kaluza-Klein reduction. This is
similar to what was found in [27,93]] for D7- and D5-branes on the type IIB side. It would be interesting
to complete this computation to higher order and determine the fully corrected gauge coupling function.
For example, one loop corrections for the gauge-coupling function were calculated for orbifold models
in [[104].

3.5 General deformations and the D- and F-term potential

In the previous section we considered D6-branes with a finite number of deformations arising from the
expansion into harmonic forms on the brane world-volume. Using harmonic modes one infers that the
scalar potential vanishes. A non-vanishing potential precisely arises for deformations which
violate the supersymmetry conditions that the three-cycle is special Lagrangian. In this section we
include such deformations into the discussion and analyze the N' = 1 encoding the geometry on the
infinite field space. We discuss the Kéhler potential and show that the scalar potential (3.3.40) indeed
arises from a D-term, induced by a gauging, and a holomorphic superpotential. In order to do that
we will keep the background geometry fixed and only consider the variations of the brane degrees of
freedom.

3.5.1 A local Kihler metric for general deformations of

In the general reduction performed in section [3.3.2] we already included a whole tower of normal
deformations of Ly as well as the whole tower of Kaluza-Klein modes in Fpg parameterizing varia-
tions around a background connection Ag. Together, these modes parameterize a neighborhood around
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(Lo, Ap) in an infinite dimensional field-space V,. We will focus on the neighborhood around a super-
symmetric Ly and mainly be concerned with the local geometrical structure of V,. In order to do that
we study the tangent space to V, at the special Lagrangian Ly with connection Ag. This tangent space
is identified with

Tig,a0)Vo = TY |, = NLoy®TLy . (3.5.1)

In this we can identify the s; introduced in as basis of sections of N L and the 57" = ¢"" |, (G&1)n
as sections of T'Lg. Note that in defining the tangent vector S; we have simply raised the tangent index
m of the one-form &; introduced in by the inverse of the induced metric g |r,. This also
means that we can identify

Tro,a0) Vo = Q' (Lo) ® Q' (Lo) (3.5.2)

which is naturally parameterized by the basis vectors §; and &y introduced in (3.3.32)) and (3.3.34).
Using the first identification in (3.5.1) the tangent space 1{z,, 4,)V, admits a natural symplectic form

1
O(X,Y) = §e_¢ / J(X,Y)|z, volr, - (3.5.3)
Lo

for X,Y € TY|r,. It was shown in [88] that the two-form ¢ on V), is actually closed. The tangent
space (3.5.1) also admits a natural complex structure I, which is the induced complex structure from
the Calabi-Yau manifold Y. At L the complex structure [ identifies T'Ly with N Ly such that complex
tangent vectors in T(r, 4,)Vo are given by

O =3%(sr—ilsy), O, =3%(si+ilsp). (3.5.4)

Since this complex structure is formally integrable, the manifold V, is Kéhler, with Kéhler form

@(0,1,051) = ;e‘¢/L g(sr,sp)volp, =iGry,  @(0.r,0.0) = @(051,0.0) =0.  (3.5.5)
0

Here we have used that J(Isy, s;) = —g(sr, s7) and the fact that L is Lagrangian such that J(s7, ;) =
—J(Isr,1s5) = 0 for normal vectors sy to Lg. This implies that G; s is a Kédhler metric, which is locally
the second derivative of a Kihler potential K, = K, (2!, /). Explicitly this means that

Gry=0.10..K, = ;e—qb/ Or A0, (3.5.6)
Lo

with the forms 6; as introduced in (3.3.32). Note that the real part of the complex coordinates 2!
are the normal vectors 177, This should be contrasted to the complex coordinates ¢? which were the
complexifications of the u’ as discussed in section
It is interesting to note that there is a natural generalization of the finite-dimensional analysis of
section[3.4.2]to the infinite dimensional deformation space. The key will be the use of the four-chain Cy
which interpolates between Ly and L,. Clearly, the natural generalization of the complex coordinates
¢*in G424 is
=i [ (o= Foa)n B (3.57)
Ca
where 3 is the infinite basis of two-forms on Ly which has been trivially extended to the chain Cj.

We have also included the field strength Fpg on C4 which is obtained from the gauge connection Apg
introduced in (3.4.23)). A natural proposal for the Kihler potential K, is given by

KO(C+§):—;/C JABI/C Im(CQ) Aéy . (3.5.8)
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This can be checked by performing an n-expansion around the supersymmetric cycle Lg. This yields
the leading term

K,(¢+¢) = _;/ spad ABL [ sgaIm(CQ) A G Py + .. (3.5.9)
Lo Lo

= 16_45/ GLABI/ *HK/\dInLnK+...
Lo Lo
= Gk ™+ ...

= %gLK<C+§)L<C+§)K+...

where here we mean by QA 1k, Gri the leading order metrics independent of 7. Here we have used
on Ly to rewrite the contraction s JIm(C(?) into the Hodge-star on L. Using (3.5.9) one sees
that (3.5.6) is satisfied. Let us stress that in general the evaluation of &, as a function of ¢ + ¢’ is non-
trivial due to the appearance of the chain C4 in both integrals of (3.5.8). It would be very interesting the
compute K, explicitly for specific orientifold examples, generalizing the superpotential computations
of [105H115]].

3.5.2 The superpotential and D-terms

Having discussed the Kihler potential determining the kinetic terms, we will now examine the scalar
potential in more detail. More precisely, we will work in a fixed background geometry by fixing Kihler
and complex structure deformations and focus on the leading scalar potential Vpp; given in (3.3.40). We
will show that Vppr splits into an F-term and a D-term piece as

Vot = Vi + Vp, (3.5.10)

with

63(25 * *

Vp = v /LO a0, N\ xd*0,, (3.5.11)

and

e’? - B = B
Vi = % i dfy N xdb, + (F — By — do;, )A*(F — By — do;, ). (3.5.12)
0

We will show momentarily that Vp = eXG!7 0:1W O, W can be obtained from a superpotential 1 and
the metric determined from K, using only the open string degrees of freedom.

To specify W we aim to define a functional which picks out deformations 7 such that L, is a
Lagrangian submanifold J|r, = 0. In section we defined a chain C4 with boundaries L, and L.
Recall also that we extended the gauge field Apg from L to Cy as in (3.4.23)), such that the extension
Fpe = dApg satisfies

Fpélr, = foé FoslL, = fos +a'dar . (3.5.13)

In the following we will again set again the D-brane flux fpg to zero. One next identifies the superpo-
tential functional
W= [ (Je— Fpe) A (Je — Fps) (3.5.14)
Ca
depending on the open string data as well as the complexified Kéhler form (3.2.8)). This is an extension of
the functional introduced in ref. [96], since we have included the B-field through the complex two-form
J.. Note that a superpotential of this form has been already discussed in [[116}/117]].
Let us briefly study the holomorphicity properties of W. Clearly, W is holomorphic with respect to
variations of the complexified Kéhler form J, parameterized by the scalars ¢* in (3.2.8). However, note

50



that one first has to express W as a function of the open fields ¢/ = u([: + ia! introduced in (3.5.7). To
check that T it is a holomorphic section in the ¢! we show that OgW = (Oyr + 10,1 )W = 0. The
derivative with respect to Wilson lines is

(Jc—fDﬁ)Aéé[+2/ d(nJJc—aJd])Ad[+... (3.5.15)

8a1W:2/ (JC—fD6)Ad1:2/
L L Lo

n 0

To evaluate the derivative with respect to u. we expand the chain integral around the special Lagrangian
cycle Lg in terms of the deformations

w

2/ 77_|JC/\(JC—F)+/ Nade A LyJe+ ... (3.5.16)
Lo Lo

= 2/ (nade) A (Je — Fpe) + / nade Nd(nade + 2&1@[) + ...
LO LO

Recalling nJ,. = Hff +i6, = iulés + ... one sees that by comparing (3.5.13) with 9, W obtained from
that the superpotential is holomorphic in ¢ = u! + ia’.

It is now straightforward to determine the F-term potential using the expression (3.5.16). The real
part of the derivative of is given by

Re@<1W22/ d@n/\dj. (3.5.17)
Lo

Note that d,, is a 2-form in L and therefore can be expanded in the infinite basis x& as df,, = e« G
The coefficients ¢! can be obtained by taking on both sides the wedge product with 7 and integrate on
L. Inverting this relation for ¢/ and taking the Hodge star one finds

xdf, = Le %4 g”/ ay A db, . (3.5.18)
Lo

We proceed analogously with the imaginary part Im J.1 W obtained from (3.5.16) and expand the two-

form (B — F + d@,’]B ) in the x& basis. The F-term potential is thus given by

Ve = *6"0.Wo. W

O oy nar G [y ndo
= a1 I J
2V Jr, Lo !
2D _ B
+—— (B—F+d¢9,?)/\dlg”/ &y A (B—F+doY)
2V Lo Lo
1 - ~
= We%/L dfy A *dfy + (B — F + dbf) A x(B — F + db}) (3.5.19)
0

which agrees with the result obtained from dimensional reduction, and reduces to the result of
McLean [87] in the limit of vanishing B field. As expected, the condition for vanishing of the potential
and therefore to preserve supersymmetry is the closedness of ;) and 03, as well as the condition (B —
F )’LO =0.

Finally, we also compute the D-term potential in (3.5.11) induced by the gaugings of the scalars a’
in and (£%,¢,) in (3:3.63). More precisely, these scalars are charged under the gauge transfor-
mations A — A’ + dA’ of the U(1) vectors A’ as

a' wal — AT, (€F,6) = (&F = oFAT &\ — onAT) (3.5.20)
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The potential arising from D-terms can be calculated by
Vp = $Ref*¥ DDy, oaD;r = K, 5XP (3.5.21)

where X IB are the Killing symmetries appearing in the covariant derivative D& = d¢k + X }‘“AI . Ex-
plicitly they take the form

X}ﬂ:/ h15k+/ dh[/\ﬁk, X])\:/ hmz;ﬁ—/ dhr A ay, . (3.5.22)
Lo Cy Lo Cy

The leading inverse gauge coupling function is simply

-1
(RefH!7 = </ hﬂzﬂRe(CQ)) . (3.5.23)
Lo
Integrating (3.5.21)) we obtain the D-terms
Dy = —2¢%P (/ hiImCQ + / dhr A Tm CQ> . (3.5.24)
Lo Cy
We can expand the chain along an infinite set of brane deformations and obtain
Dy = —2¢*P / hImCQ — 2¢%P / hrd(nimCQ) + ... | (3.5.25)
LO LO

where we have used that the functions h; are translated constantly along the chain. Now we repeat a
similar calculation as for the F-term, by expanding the three forms into *h; and noticing that on the Ly
cycle [hyxhy = e? [ hyhi2Re(CQ) = e?Ref,r;. The potential is then,
3¢
Vp = (;2/ 4ImCQAA+«ImCQ +4ImCQ A *d %0 + d*x O N\ xd * 0 . (3.5.20)
Lo

From the condition ImCQ|, = 0 only the last term survives, yielding the remaining term obtained from
dimensional reduction. The vanishing of the D-term potential, which is necessary in a supersymmetric
vacuum, happens when the two-form =0, is closed.

3.6 Mirror Symmetry with D-branes

In this final section we relate the Type ITA N = 1 characteristic data found in the previous sections
with the data for Type IIB orientifolds with space-time filling D3-, D5- and D7-branes. In order to do
that, we first review some basics of Type IIB orientifolds following [82]. To define the orientifold set-up
starting with Type IIB string theory compactified on a Calabi-Yau manifold Y, one acts with a discrete
involutive symmetry O containing worldsheet parity €2,,. In Type IIB one still is left with two options
of constructing such an involution. These correspond to the situations with O3/07 or O5/09 orientifold
planes:

01 = Qop(—)fr, ol = —Q, 03/07,
Oy = Qyop ., o5l = Q, 05/09 .
Here op is a holomorphic (instead of antiholomorphic, as in the Type IIA case) involutive symmetry

a% = 1 of the Calabi-Yau target space, and F7, is the space-time fermion number in the left-moving
sector. The subspace of fields which are invariant under the orientifold projection has to satisfy

3.6.1)

03/07 05/09
afqb = 9, o5Cy = G, o5Co = —Co, (3.6.2)
U*BgB - gé ohCy = —Cy, opCy = (o,
UB 2 — — D2, O—*B C4 = 04 s U*BC4 == _C4 )
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where the first column is identical for both involutions o 5 in (3.6.1)). The involution allows us to separate

the cohomologies into even and odd eigenspaces HP?) = H (f’Q) e H (pa)

Let us focus on the closed string sector for the moment. Locally the truncated moduli space of Type
IIB orientifolds can then be written as a direct product

ME x MG (3.6.3)

Here M% is a Kéhler manifold and spanned by the dilaton, the Kihler structure deformations, the NS-
NS B-field and the R-R scalars. M% is a special Kédhler manifold spanned by the complex structure
deformations of ¥ respecting the constraints (3.6.1)). In contrast, recall that in Type IIA M% is spanned
by the dilaton, the complex structure deformations and the R-R scalars, while ME is spanned by the
Kihler deformations and the NS-NS B-field. The Type IIB effective theory also contains hf’l) (h(_Q’l))
vector multiplets for orientifolds with O3/07(05/09) planes, whereas in Type IIA one as h(j’l) vector
multiplets. The number of multiplets from the closed string sector is shown in Table[3.6.1]

multiplets Ay O6 | By 03/07 | 1By 05/09
vector multiplets hsrlvl) hf’l) 2D
chiral multiplets in MK R R 21 hf’l)
chiral multiplets in MQ | A2 41 (LD 41 R 41

Table 3.6.1: Number of N = 1 multiplets of orientifold compactifications.

Applying mirror symmetry to this A/ = 1 set-up one expects that the M% space of type 1IB should
be identified with the M% moduli space of the mirror IIA, and similarly M with M%. Requiring Y
to be the mirror manifold of Y, the mirror map between the moduli spaces implies that for the different
orientifold setups

o301 : WYy =), Ay =Y,
05/09 : MYy =Py, V) =r®Yy), (3.6.4)

as well as h(2D (V) = h(11(Y) for both set-ups. The mirror mapping for closed moduli is discussed in
more detail in [82]], and will be briefly recalled below.

In the following we want to extend the mirror identification to include the leading corrections due
to the space-time filling D-branes. As we have seen, at leading order the moduli space Mﬁ remains
unchanged after the inclusion of open string moduli. This is also true for ME on the Type IIB side. In
section [3.4| we have shown that the open string moduli space of the D6-branes is fibered over the closed
string moduli space Mg. The mirror equivalent of this statement has been established in [27,/92,93|] for
./\/lg and the moduli space of D3-, D5- or D7-branes. In the reminder of this section we will therefore
focus on the discussion of the M and establish the mirror map including the open degrees of freedom.
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3.6.1 Mirror of O3/07 orientifolds

The moduli space M is obtained from the four-dimensional scalar parts of the fields J, By, C3, Cyy. To
make this more precise, we expand

By = buw,, Oy =cw, k=1,... "7, (3.6.5)
J = ’U)\(.U/\, C4:p)\(:})\, A:1,7h$71)(?)

The complex coordinates and the Kéhler potential which encode the local geometry of M% are [?]

T = Cy+ie 5, GF =cF — 7", (3.6.6)
T;\B = 67¢B%/C)\pgvpvg +ipy — i%]C)\klkal ,
and
K(r,G*, T{B) = —2In [e—2¢8 / JNJT A J] = In(etPB) | (3.6.7)
Y

Here Dp is the redefined four-dimensional dilaton. The Kéhler potential has to be evaluated as a
function of the moduli 7, G¥, T{B by solving (3.6.6) for v%, ¢ and inserting the result into (3.6.7).

The coefficients KCyp. are the intersection numbers of the basis w) of Hil(?) and w, of H"'(Y),
Kape = f wx A wp A we. Note that the above scalar fields can be also obtained from the expansion

—Re® +iY e PN Coy =it + iGrwy + TP (3.6.8)
n

which has to be evaluated by matching the parts of different form degrees on both sides. Here we have
introduced the even form
OV = ¢ 9B P2t (3.6.9)

following the notation of [[100].

Let us now recall the mirror map to the Type IIA coordinates without inclusion of the open string
degrees of freedom. The V' = 1 coordinates (N'*, T}) have been introduced in (3.2.14). Note that on
a Calabi-Yau manifold we can use the rescaling invariance of €2 to fix one of the X/ to be constant. At
large complex structure there is a special real symplectic basis of H3(Y") which is distinguished by the
logarithmic behavior of the solutions in the complex structure moduli of Y. In particular, this fixes a
pair (ayg, 3°), by demanding that X°, the fundamental period, has no logarithmic singularity. One can
use the rescaling of (2 to set the o period to a constant. Note that in the orientifold background H3(Y")
splits into H2 and H i The component chosen to eliminate the rescaling property of €2 can be either in
the positive or negative eigenspace of the orientifold projection. We will see momentarily these choices
will correspond to different orientifold set-ups on the Type IIB side.

For the 03/07 case we fix the component X% in H i(Y) We define then the special coordinates
q and the scaling parameter g4 as

r _ ReCXF »_ ImCX?
- ReCXO0’ 7 = ReCX0 "

Recall that in the underlying ' = 2 theory, the periods of  are determined by a holomorphic pre-
potential (X ). Due to the homogeneity property of 7 we can define a rescaled function f as

q g, =2ReCX". (3.6.10)

F(2CX) =i(2ReC X2 f(¢", ¢*) (3.6.11)
such that CQ can be written as

200 = g3" [lag + g"ap +ig an = A8 —i(2f — ¢ fu — A PB° — i8] . (3612
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’ HS(Y) ‘ Heven(y) ‘

ap € H3(Y) 1

ap € H3(Y) | wyp € H2(Y)
ay € H3(Y) | wy € HZ(Y)
gk e H3(Y) | & € HA(Y)
B e HI(Y) | @ € HL(Y)
B e H3(Y) V~lvoly

Table 3.6.2: The mirror mapping from the basis of H 3(Y) to the basis of even cohomologies
of the mirror Calabi-Yau Y in O3/O7 orientifold setups.

where (fy, fi) are the derivatives of f with respect to (¢*, ¢*). The coordinates (N'*, T}) become in
terms of these special coordinates

NO =gl +ie®  N*=g'¢F+ich T =g f+ibn (3.6.13)

In order to provide complete match with the Type IIB side we need an explicit expression for f) at
the large complex structure limit of the Calabi-Yau manifold Y. The results will then be identified with
the large volume results of Type IIB. In this limit the N' = 2 pre-potential is given by

1 XX/ xK

F(X) = ghrik =5 — (3.6.14)
Therefore, inserting the orientifold constraints and switching to special coordinates we find
flq) = _%K')\upq/\qqu + %%Akzq/\qkql ) (3.6.15)

such that one can readily evaluate the T)’\A using (3.6.13). Now it is straightforward to relate the Type
ITA coordinates with the ones from the Type IIB side

(=i, —iG*) < (N, N*)  and TP T4, (3.6.16)

with the matching of the cohomologies for the pair of mirror Calabi-Yau manifolds given in Table|3.6.2
In terms of the string moduli, the above relations translate into

gl =e98, ¢ = —b, =0, (3.6.17)

~ 1 1
& = —Co, b =~ + cob? = —pr+ ichszkbl — §COIC/\klbkbl .

Inclusion of D3 brane moduli

In the discussion of mirror symmetry with D-branes we first consider the setup with spacetime filling
D3 branes. The N/ = 1 characteristic data were analyzed in [92]]. The brane is a point in the internal
space Y, such that the brane deformations n are described by six scalar fields ¢! corresponding to the
possible movements in Y. These fields naturally combine into complex fields ¢¢, ¢/ with i, 7 = 1,2, 3 if
one uses the inherited complex structure of the Calabi-Yau manifold. Clearly, there are no Wilson line
moduli for D3-branes since there is no internal one-cycle on the brane. It turns out that, up to second
order in the fields, only the coordinates T /’\B are corrected by the open moduli [92]

Re Ty = ReT}" +i(wy)ij(¢0) ¢ (3.6.18)
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where the two-form (w )i; has to be evaluated at the point ¢ around which the D3-brane fluctuates.
More generally, it was argued in ref. [[118]] that the D3-brane correction to T}, can be expressed through
the Kéahler potential Ky for the Calabi-Yau metric as

ReTy =Re T3P — 00Ky (o + ¢) , (3.6.19)

where v* are the Kéhler moduli introduced in (3:6.5). To obtain (3.6.18) one expands Ky around the
point ¢g as

Ky (o + ¢) = KL + 2Re[(Ky))¢'] + Re[(Ky));0'¢7] + (K¢ )fe'd? + ... (3.6.20)

where K0, and (Ky)?, (Ky)3;, (Ky)j; are the Kahler potential and its ¢'-derivatives evaluated at ¢o.
Since the coefficients are constant, the first three terms in can be absorbed by a holomorphic
redefinition into a new Tf. Clearly, this does not change the complex structure on the AN/ = 1 moduli
space. Using (Kf/)% = —iJZQJ- = —iv*(wy)iz(¢0) one then recovers (3.6.13).

Let us now turn to the discussion of mirror symmetry. We aim to match the corrected coordinates
Tf as well as the un-corrected G* and 7 with the Type IIA side. This implies that we must have up to

quadratic order in the brane moduli that

205 (2PAK,) = OpKp(do+¢) =2 —i(wy)5¢'¢! (3.6.21)
(9\/0 (CQDAKO) = 6Vk (62DAK0) = 0 s

where the == indicates that one has to apply the transformation which identifies (3.6.19) and (3.6.18).
Using the fact that VA = —e2PBe=?By?, as inferred from (3.6.12), the identification (3.6.21) implies

Ko(¢,¢) = 3 PP Ky . (3.6.22)

The number of open moduli must coincide, so the number of brane deformations on the Type IIB must
equal the number of brane and Wilson line moduli on the Type IIA side. Since this number is given
by the number of non-trivial one-cycles in Lo, we must have b'(Lg) = 3. However, recall that the
open moduli space in Type ITA has shift symmetries, Im(* — Im(* + ¢, for constants ¢!. These are
not manifested in the Type IIB side for a general K, since the Calabi-Yau metric has no continuous
symmetries. As we recall below, this can be attributed to the fact that instanton contributions break these
symmetries and are not included in this leading order identification.

Before commenting on the corrections to the mirror construction let us make contact to the chain
integral form of the Kéhler potential as given in (3.3.8)). For a D3-brane we simply have to introduce a
one-chain C; which starts at ¢ and ends at the point in Y to which the D3-brane has moved. We also
introduce a basis of complex normal vectors s; to the point ¢ and dual (1, 0)-forms 3?1) such that

siasy = 0] . (3.6.23)
Note that the index 7, j are counting here the number of such normal vectors. In case we only include the
massless modes, one has ¢, 7 = 1, ..., 3. The complex structure of s; and 321) is induced by the complex

structure of Y, and hence depends on the complex structure moduli. In fact one can use the no-where
vanishing (3, 0)-form 2 on Y and introduce a bi-vector s’ such that 8?1) = 57,0 To propose a form for

K, one trivially extended s;, 5' to the chain C; and writes

K,=1te 98 / siad / 5.Q+ce.. (3.6.24)
C1 C1
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This form of K, is very suggestive and yields upon expanding the chain integral the desired leading order
expression (3.6.18). Moreover, we will see in the following that a generalization of this K, also arises
for D7-brane, and one can generally write in O3/O7 orientifolds for the deformations of a D(p+3)-brane

def __ 4
K _4/
C

P

sI_nlmfbev/ s Q+ce. . (3.6.25)
+1 Cpt+1

where ®°V has been introduced in (3.6.9), and Cp41 is a (p + 1)-chain which ends on the internal parts
of the D-branes and its reference cycle. Moreover, sy is an appropriate basis of complex normal vectors
and s’ are their duals as we discuss below.

Before giving a more careful treatment of the other D-brane configurations let us first comment
on a more intuitive understanding of mirror symmetry which we will apply below. It was argued by
Strominger, Yau and Zaslow [69] that the Calabi-Yau manifold Y can be viewed as a three-torus fibration
with singular fibers. This manifold can be endowed with a semi-flat metric. In a local patch avoiding
possible singular points the metric of the Calabi-Yau manifold can be written as

ds? = gap(0)da®di® + 29 (@) da’da® + gi;(@)da'da’ i,a=1,2,3, (3.6.26)

where &’ are the coordinates on the 7 fiber and 4® of the base. Since the coefficient functions in (3.6.26)
are independent of @’ the shift symmetry is now manifest. In fact, introducing complex coordinates as in
the Type ITA setting a Kihler metric in can be obtained from a Kihler potential Ky () which
is independent of a’. The argument for the existence of such a T3-fibration with a metric of the form
away from singularities proceeds precisely via mirror symmetry of a pointlike D-brane on Y
which is mapped to a D-brane which wraps a three-torus [69]. Having found a T3-fibration in the Type
IIB set-up one can equally use T-duality along all 7"3-directions to analyze the setting. Since T-duality
exchanges Neumann and Dirichlet boundary conditions, it exchanges the dimensionality of the brane for
each wrapped cycle that is T-dualized. Starting with a D3-brane on such a fibered Calabi-Yau manifold,
T-duality on the fiber will turn the brane into a D6-brane wrapping the 73-fiber. The D6-brane then has
bY(Ly) = 3 deformation moduli in the direction of the base, and there are also b'(Lg) = 3 Wilson line
moduli will be along the torus.

In the following it will be more important that we can use the SYZ-picture also for D7- and D5-
branes present in a Type IIB reduction. Clearly, both types of branes will map to D6-branes under
mirror symmetry. Away from the singular fibers one can obtain a clearer picture of the wrappings of the
D6-branes as indicated in Table 3.6.31

D6 | D3 || D6 | D7 || D6 | D5
X X X
T X X X
X X X
Base X X
X X X X

Table 3.6.3: It is summarized how mirror symmetry acts on different brane configurations.
The table shows the six dimensions of the Calabi-Yau manifold, split into base
and fiber. x indicate the directions wrapped by each brane. Mirror symmetry
acts as T-duality on all directions of the 7-fiber. It exchanges Dirichlet and
Neumann boundary conditions, while it does not act on the base. Different
wrappings of a D6-brane correspond to different branes in the Type IIB side.
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Inclusion of D7 brane moduli

Let us now discuss mirror symmetry for the D7-brane case. The effective action for a pair of moving D7-
branes was computed in [27]. In this setup, the brane wraps a four-cycle SV while its orientifold image
wraps a non-intersecting S(?). One can view the whole configuration as a single D7-brane wrapping a
divisor Sy = S + S(), Brane deformations and Wilson line moduli can be expanded in terms of

X = xYsa+xtsg,  A=1,... %Y s,), (3.6.27)
= aly +aly; I=1,...,8%s,),

where s 4 and ~; are complex normal vectors to S(1) and (0,1)-formson S (1), respectively. The complex
type of s4 and 77 is induced by the complex structure of Y. Moreover, one can use the holomorphic
(3,0)-form €2 on Y to map the s4 to (2,0)-forms S4 = s4. on S, The restriction to the odd
cohomology comes from the fact that as the normal bundle of S is even and the holomorphic 3-form
Q) is odd under the orientifold action, the contraction S4 = s4.2 is odd. Also, the tangent bundle on
S, is anti-invariant under the orientifold action, and therefore the Wilson moduli must be in H* (S).
The four-dimensional fields are thus the h(_Q’O) + h(_o’l)
conjugates.

Including the open string degrees of freedom, the chiral coordinates (7, G, T/’\B ) are shifted to [27]

complex scalars x“ and a’, and their complex

S = 74 [,ABXAXB, GF = & —rbF (3.6.28)
T = 3 9Kt +ipy — igKaub"G' +iCyrya’a’ .

The coupling functions £ 45 and C, ;7 for the basis of brane deformations and Wilson line moduli on
the four-cycle are given by

ff/Q/\Q Sy

Since the closed moduli are the same, we proceed in the same way as we did for the closed and the
D3-brane cases, identifying the coordinates as (3.6.16). Analogously to the D3-brane case, we expand
up to second order in the open moduli and match both theories by

Ay (€*P2Gy )i = iCypjala Ay (€*PAGy 5 )il = iL a5 %P, A, (e2PAG ) ui? =0,
(3.6.30)
where we have indicated that as in the D3-brane case one will need to make the shift symmetry manifest
before finding complete match. Crucially one has to split the Type IIA coordinates into two sets ¢! and
¢4 and identify
o, Ayt (3.6.31)

One notes that Wilson line moduli and brane deformations do not mix on the Type IIB side which seems
to be in contrast to the general form on the Type IIA side. We will argue later how this splitting can be
understood from the SYZ-picture of mirror symmetry.

As already suggested in (3.6.25) one expects that the open corrections to the N' = 1 coordinates can
again be given in terms of chain integrals. Let us first give the expression for K, which encodes upon
differentiation with respect to V*, Vi, V, the corrections in Ty, N°, N*. Explicitly, we propose

K,=1i / s4.Im @EV/ FAANQ+ L [ For Ay AIm®” | For Ay 4ee,  (3.632)
C5 C5 cs C5
where ®°V is given in (3.6.9). Here we have used a five-chain C5 ending on the D7-brane and a reference

four-cycles S9r. Note that similar to the D6-brane case we have to introduce a dual basis s4 and s4. To
do that we use the fact that no-where vanishing (3, 0)-form €2 provides an identification

Q: NS; = TSLATS:, (3.6.33)
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of normal vectors with two-forms of S;. Hence, in the Type IIB setting we adopt this basis to the
complex structure by demanding that s 4 is a complex normal vector in H{ (NS ) and s# is a (2,0)-

form in H*" (S4) on S9. Similarly, y7 is a (0, 1)-form as introduced above and 77 is a (1, 2)-form in
g2 (59). These forms are defined to be dual and hence satisfy

/ A (spuQ) = 04, / AT =67 . (3.6.34)
s9 59
As in the D6-brane case we have to extend these forms to the chain. It is interesting to note that the

expression (3.6.32) indeed reproduces the leading order corrections after differentiating with respect to
V)\v ‘/07 Vk

3.6.2 Mirror symmetry for OS-orientifolds and D5-branes

Let us now discuss the second Type IIB set-up which is obtained by an involution with O5-planes as fix-
point set. The bulk ' = 1 coordinates of the moduli space M are given as functions of the zero-modes
in the expansion

J = vwp, Gy = Cotcuwp, k=1,...,h"0F), (3.6.35)
By, = bwy, Ci=pd, A=1,...,h00 .

Note the difference that we have used forms of different o-parity in the expansion for the R-R-fields, C'y
and C} as required for the second orientifold projection in (3.6.2). While Cj has been projected out Co
now contains a four-dimensional two-form Cs () which together with the dilaton ¢ form the bosonic
content of a linear multiplet. However, C5 can be dualized to a scalar field & and form with ¢ 5 a chiral
multiplet. The A" = 1 coordinates which span M are thus the h(11) + 1 complex fields

th = e9Byk —ick Py = Kopb’tF +ipy (3.6.36)
S = e 9BV +ih— ipb* — 1P,

Formally the Kéhler potential is the same as in the O3/0O7-case given in (3.6.7). However, it now has to
be evaluated as a function of the coordinates ¢'*, Py and S by using there explicit form (3.6.36). Similar

to (3.6.8) we can write
—Im O™ +i Y e A Cop = —t*wy, + P\ + Svoly. (3.6.37)
n

Let us turn to the discussion of the mirror Type IIA side to this construction. As explained above the
second set-up with O5-planes is obtained by choosing the three-form o for the fundamental period X°
to lie in the negative eigenspace H> (}7) Again we will perform a rescaling of € setting the coefficient
of ag to be constant. The special coordinates are then given by

B ReCXk A ImCX)\
- ImCXO0’ T = ImCcx0 "

Now the rescaled prepotential f is given by F(2CX) = —i(2ImCX°)2f(¢*,¢"). This allows us to
rewrite C) in the rescaled coordinates as

200 = g3" |d"ap +iao +igtar + B = (=2f +d fu+ LB +ifiBt] L (3639)

g, =2ImCX", q (3.6.38)

Moreover, we can use the special coordinates to write (N*, T54, T54) as
N* =gl +ict Tt =gt (-2f + k) Hi&o TV = —gitf i€ (3.6.40)
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With f in the large complex structure limit

£(@) = thumd"d q" — Srppd - (3.6.41)
this allows us to write

Tt =gy (%mmq’“q’qm - %”uxkq“qqu) +iko, T =gileaad'd" i (3.642)

The mirror mapping is then realized by
" o+ Nt and (S, Py) & (TP, T . (3.6.43)
In terms of the Kaluza-Klein modes this amounts to the identification of the closed moduli

gt =e08 ¢ =F, @ =v, (3.6.44)
€0 =h—pAb* + SKpcbb" ¢h=—c", Ex=pr — Kauc'b®.

The identification of the basis elements on the Type IIA and Type IIB side is given in Table[3.6.4]

Heven(Y)
1

W € H_%_(
wy € HE(
(

Table 3.6.4: The mirror mapping from the basis of H 3(Y) to the basis of even cohomologies
of the mirror Calabi-Yau Y in O5/09 orientifold setups.

Inclusion of D5 brane moduli

We now consider a pair of D5-branes on curves (! and X(2) which are interchanged under the orien-
tifold involution. We call the positive union of (1) and ¥(?) by ¥, = =(1) 4 %) Again we view this
as a single D5-brane on the quotient space. The open moduli for a single D5-brane [93|], corresponding
to complex brane deformations y** and Wilson line moduli a’, correct the N’ = 1 coordinates according
to

k= t/k_'_EIIZBXAXB’
Py = Kaub"t" +ipy, (3.6.45)
S = e_d’BV—I—ih—%pAb’\— %P,\b’\—i—CIjalaj.

The deformations y* are given by sections of the holomorphic normal bundle N¥ that are invariant
under the orientifold projection, and therefore the index A = 1,...,dim H?r(2+, NX.). The Wilson
line moduli ! are in the tangent bundle of ¥, just like in the D7 brane case, and the index runs as
I1=1,..., h(_o’l) (X4 ). Here we have introduced the couplings

Elle:_i/ SAJEBJ(,Dk’ C[J:i/ Y1 N5 (3.6.46)
oy oy
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The Kihler potential now has to be evaluated as a function of t*, Py, S as well as the open coordinates
x* and a'.

In order to discuss mirror symmetry to the D6-brane set-up we again compare the form of the N' = 1
coordinates. Expanding to second order in the open corrections we find

— 0y, (e2PAG uud = £ZBXA>_<B, Oy (2PAG ) uid = Cryatal,  —0ya(e*PAG utu? = 0.

(3.6.47)
More interestingly, we can also directly compare the open Kéhler potential K,. To do that, we give a
chain integral expression for the D5-brane case. We introduce a the three-chain C3 ending on a reference
cycle 23_ and the two-cycle to which the brane has moved. The open Kihler potential then takes the
form

Ko=—1% / sa_Re <I>eV/ 40— 1 [ Fos Ay ARed [ Fps Ay +ece,  (3.648)
C3 Cs C3 Cs
where @V is given in (3.6.9). Note that this expression has a similar structure as (3.6.32). However, due
to the lower dimensionality of the chain the four-form part of Re ¢V is picked up in the first term of
(3.6.48), while the zero-form part of Re ®¢¥ contributes in the second term of (3.6.48)). In the case of a
D5-brane the (3, 0)-form Q on Y provides a map

Q: N, ®NZ, - TY, (3.6.49)

taking two normal vectors to a one-form on X, . This allows us to introduce a basis s4 of H Urel @

ﬁi) which is dual to the normal vectors s 4. Hence, the - in (3.6.48) indicates that the vector part of
s4 is inserted, while the form part of s* is wedged with Q. We also introduce complex one-forms -’
on Eer which are dual to the (0, 1)-forms ~y; used in the expansion determining the complex Wilson line
scalars a!. Explicitly, the s, ¥/ have to satisfy on the reference EQF that

/ 54058 - Q=68 / v Ay =6, (3.6.50)
=0 29

+ +

As in the D6-brane case the basis forms and vectors have to be extended trivially to the chain Cs to
evaluate the open Kihler potential (3.6.48). One can now check that the expansion (3.6.48)) leads upon
differentiation with respect to Vi, V9 V* the leading order corrections in (3.6.45).

3.6.3 General remarks on the structure of the couplings

In this subsection we address the question if there is a simple way to understand the mappings of (3.6.47),
(3.6.21)) and (3.6.30) using the SYZ-picture of mirror symmetry. For example for D5-branes the
(Ov, (e2PAGy;), Oy, (e2PAG,5)) correct the coordinates ¥ and S by brane deformations and Wilson
line moduli as demanded by the mirror identification (3.6.47). In contrast, the coordinates P do not
receive any contributions from open moduli and hence Oy (e2P4 G'i;) has to vanish in the D6-brane
set-up mirror dual to a D5-brane. To analyze this question in the SYZ-picture, first let us look at the
gauge coupling functions. In the limit of vanishing open string moduli they are given by the analogous
to the D6-brane gauge coupling function fpg = N* [ ay, — T [; B,

fopz =1, fos = tz/ Wy , for = Ts/ o, (3.6.51)
R s

+

where ¥, (S4) is the curve(divisor) wrapped by the D5(D7)-brane, and they are obtained from a basis
of homology by

[Y4] =n* 2] , Yr € Hf (Y) and (3.6.52)
[S1] = nA[SY], Sre Hi(Y).
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Therefore the forms appearing in (3.6.51)) are, in terms of the cohomology basis, ws = n*w; and
&% = nyot.

From the four internal dimensions the D7-brane wraps, locally two of them are along the T3-fiber
and the other two on the base, as seen from table @ The mirror D6-brane, on the other hand, wraps
one dimension on T3-fiber and two dimensions on the base. It is also inferred from the gauge coupling
function of the D7-brane (3.6.51) that & sits on the brane, therefore having two “legs” on the 3-Torus
and two on the base. We define thus the notation &* : (bbtt), where b and ¢ correspond to base and
torus components. Table shows that @* on the Type IIB side is mapped on the Type IIA side to
B*. Therefore, from table | since 3 must sit on the mirror D6-brane, it should satisfy 8 : (bbt).
> must be dual to a on the Calab1 Yau manifold Y, thus a, : (btt). A similar analysis can be done for
the D5 and D3-Branes, from where we obtain oy, : (btt), 8 : (bbt), 3° : (bbb) and a : (ttt).

One can now analyze the open moduli corrections to the N =1 chiral coordinates from the metric
derivatives 8\/09”, Oy, QU and Oyx QU As a simple example we consider the D3-brane case. We can
rewrite the corrections in terms of the normal deformations 1’

Re(N'O — NO) = Oy, (eQDA@j)ninj = ;/ g Ao Bk Anad . (3.6.53)

Lo Lo
Since the brane wraps the three-torus, both integrands in (3.6.53) must be of the form (¢¢t). The normal
directions of this D6-brane are all on the base, so 745" : 0. (bb), making the first integral vanish. Therefore
there is no correction to N’° = 47 coming from dy; Qw, as was already seen in (3.6.21). By repeating
the analysis to Oyx gij and Oy, @j one shows that only the latter can be non-vanishing, and analysing in
the same fashion the corrections for the D5 and the D7 cases we obtain the same relations as
and (3.6.30).

One can realize then that brane deformations with normal direction 7 along one cycle of the 3-torus
on the Type IIA side are mapped to Wilson line moduli along the T-dual cycle on the Type IIB side,
while brane deformations along the base are mapped to brane deformations on the Type IIB side, also
along the base. In the opposite direction, brane deformations on the Type IIB side along the 3-torus are
mapped to Wilson line moduli along the dual cycle on the Type IIA side.

We conclude this section by summarizing the results here obtained. It was a known result [87]
how some deformations of a calibrated special lagrangian manifold can break the special lagrangian
conditions. This can be encoded in a scalar potential, that give obstructions to these conditions. The same
potential can be obtained from explicit calculation of the Dirac-Born-Infeld of a D6-brane wrapping a
special lagrangian manifold.

The reduction of the action describes a four-dimensional N' = 1 supersymmetric theory, from which
we identified the characteristic data. The deformations of the brane are described by real fields, but they
naturally complexify with the Wilson line moduli to form a chiral multiplet. When we introduce closed
string modes, these chiral fields correct the moduli of complex structure deformations.

At the end, we mapped the field content using Mirror Symmetry in view of the SYZ conjecture. We
also proposed a Kéhler potential to describe the brane moduli space in type IIB theory, inspired by the
Kihler potential we obtained for the D6-brane moduli.
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Chapter 4

M and F Theory: non-perturbative descrip-
tions

In the previous chapter we have seen how one arises at a standard A/ = 1 four-dimensional action from
spacetime filling D-branes, when we compactify part of the ten-dimensional space in a three complex-
dimensional Calabi-Yau orientifold. Models with intersecting branes in fact correspond to a great part of
the strings phenomenology literature. However, one can point out that in the previous chapter we did not
treat the whole story since we fixed a small background value for the dilaton (the string coupling) such
that we could trust the perturbation string theory description. But in general this cannot be expected to
work, since the dilaton is a dynamical field and not just a free parameter of the theory. It is important
then to explore the domain of strong coupling, not only as a theoretical curiosity, but as a theoretical
necessity.

In the last two decades much effort has been put in constructing strong coupling descriptions for
string theory. We will dedicate this chapter to review the basics on two such constructions, M- and
F-theory.

4.1 Type IIA as a limit of M-theory

In the mid 90’s [31,119] it was proposed that there should be a theory that contains Type IIA string theory
as a particular limit, and this hypothetical theory received the name of M-Theory. Although M-Theory
does not yet have a fundamental perturbative description, it is postulated that M-theory has an effective
description described by eleven dimensional supergravity, the maximally supersymmetric gravity theory
known. When one compactifies eleven dimensional supergravity on a circle of radius R1;, one arises
at Type IIA supergravity with the vacuum expectation value for the dilaton being the compactification
radius Rj; in Planck length units. So, sending the string coupling to infinity corresponds to the circle
decompactification.

Eleven dimensional supergravity contains solitonic solutions that couple electrically and magnet-
ically to the three-form potential A3. These solutions are extremal black-branes of two and five di-
mensions. The extremal black-hole condition can be translated to a BPS condition, and leads to the
conclusion that such objects are stable even away from the low energy limit. These objects are the M2
and M5 branes of M-Theory, up to now believed to be the only fundamental objects of this theory.

When compactified to ten dimensions the M2- and M5-branes become respectively to the D2 and
NS5 Branes of Type IIA, and if one of the dimensions of the M2- and M5-Branes wrap the compacti-
fication circle they lead respectively to the fundamental superstrinﬂ and the D4 Brane . The DO brane
however does not come from a compactified M-brane, but rather from the first Kaluza-Klein (KK) exci-
tation of the graviton multiplet. Its mass is given by 1/R, where R is the radius of the compactification
circle.

The massless condition for the 11-dimensional graviton reads

—ppt=M2=0, i=0,..,911L 4.1.1)

'the relation between the supermembrane in supergravity and the superstring appeared in a much earlier work by Duff in
1987 [120]
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Note that to agree with the usual notation of the literature, we skip the index 10. When compactified
along the 11th direction on a circle of radius R, the quantization of the momentum along the compact
dimension implies

2
— pup! — prptt = —pup! — <]}\2[> =0, w=0,..09. 4.1.2)
The first KK excited state has mass 1/R. From the dimensional reduction of the eleven-dimensional
action, one can identify the radius compactification circle in terms of the 11d and 10d gravitational
coupling constant, and in turn relate it to the string coupling. It turns out that the radius R (in string
length units) is precisely the inverse of the string coupling constant g;. Therefore the mass of the first
excited KK mode agrees with the expected mass of a DO brane, Mpy = gs.

The D6-brane is the “magnetic” dual of the DO-brane, so one might expect that it also has a ge-
ometrical origin. Indeed, the D6-brane comes from a eleven-dimensional Kaluza-Klein monopole, a
topological defect solution of eleven-dimensional supergravity that is the magnetic dual of the Kaluza-
Klein excitation.

This solution is just the eleven-dimensional version of the five-dimensional Kaluza-Klein monopole
[121] that we briefly review here. Five-dimensional Einstein’s equations has as a possible solution

ds? = —dt* + ds2y, (4.1.3)
where the Taub NUT metric [[122]
1
dsity = V(r)(dr? 4 r2d%) + o5 (dy + Rsin®(0/2)d)°, (4.14)
where dy is a periodic direction and
V(r)=1+4 R/2r. (4.1.5)

From the Kaluza-Klein Ansatz, we can identify the Kaluza-Klein one-form A = Rsin?(6/2)d¢, and
from it calculate the magnetic field around the origin,

B=-VV =V x A (4.1.6)

One can also calculate the electric field, £ = 0; A = 0, so the Taub-NUT solution is purely magnetically
charged, a magnetic monopole.

One can extend this solution by adding six transverse flat directions, reproducing then an extended
six-dimensional object inside the eleven-dimensional theory. Thus, Type IIA supergravity is consistently
described as eleven dimensional supergravity compactified on a circle when the radius of compactifica-
tion (and therefore the Type IIA string coupling g5 774 is very small. The string coupling is given by the
background value of the dilaton, g, = e?. If we allow the dilaton value to depend on the spacetime co-
ordinates, the lift to M-theory corresponds to replace the circle compactification of radius R by a circle
fibration over ten-dimensions, where R(z) now vary over the ten dimensional space.

Type IIB string theory can be obtained from Type IIA string theory via T-duality, so it is also a
particular limit of M-theory. Type I, SO(32) Heterotic and Eg x Eg Heterotic superstring theories can
also be described as limits of the same underlying eleven dimensional theory [123]|124]]. M-theory then
is the hypothetical eleven-dimensional theory that has as fundamental objects M2- and M5-branes and
under particular limits it reduces to all the known supersymmetric string theory constructions.

4.2 F-Theory from M-theory
Low Energy Type IIB also has an hypotetical strong coupling limit construction, named F-theory [34].

In this section we will briefly review its formulation and the necessary background for the remaining of
this thesis. We will follow mainly [125H127]].
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Figure 4.1: The fundamental domain of 7.

The motivations for F-theory may be traced to the SL(2,Z) symmetry of Type IIB supergravity. In
Type 1IB string theory, the RR fields are all even forms CY,, (in contrast with the odd forms of Type 11A).
Also, the axionic Cy form joins with the dilaton e~% and we define the chiral axio-dilaton field

7 =Co+ie?. 4.2.1)
The effective action is
1 1 1 1
S§}(l]3) = /23 *1— Zdéf? N *dp — ZH?’ N xHs — ZewFl A *Fy (4.2.2)

1 1 1
—16¢F3 A xFy — §F5 N xFy — 104 A Hs A F3,
Hy = dBs, F)=dCy, Fq+1 :qu—Cq_Q/\Hg,

This action can be rewritten in the more convenient form

— 1 - ~ 1
G3 AN xG3 — —=F5 AN xF5 — —Cy N\ Hg A F3,
mrT 8 4

1 1 1
sU0 /R 1— ———dr Axdr —
1B 2 T 2T YT T a1
) 1 1
Gs = dCy — THs, F:dC4—§CQ/\H3+§BQ/\dCQ, 4.2.3)

that can be easily shown to be invariant under the SL(2, R) transformation

, at +0b
frng _— — :1 L.
e L L @24

HY\  (d ¢\ (H
() = 2 (F)
The SL(2,R) is a symmetry of the classical theory. Once we include D(—1)-instantons (that come with
factors ~ €2™7) the SL(2,R) symmetry is reduced to an SL(2,Z).

The complexified gauge coupling function 7 has thus a fundamental domain, a region F' defined in
the complex plane such that any point outside £’ can be mapped back to F' via SL(2,Z) transformations.
The fundamental domain is shown in figure

One particular choice for this transformation, namely (a, b, ¢,d) = (0, —1,1,0), corresponds to the

S duality
e® 5 e ? By—(Cy Cy— —By, (4.2.5)
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the exchange of a D1-brane (or a D-string) with a fundamental string (F-string). Both strings have the
same vibrational spectrum, and same quantum numbers, but they differ on tension (IF = e®Tp) and the
F-string is magnetically charged under By while the D-string under Cs. In general, we can expect the
existence of a (p, g)-string, with charge (p, ¢) under (B3, C'2), where under this notation a (0, 1)- and an
(1,0)-string corresponds to a F- and a D-string, respectively.

Something interesting also happens with the D7-brane, still in the perturbative regime. The D7-
brane is magnetically charged under Cy, and noticing that the space transverse to the D7-brane is two
dimensional, we can integrate the brane charge in a complex plane z, with the D7-brane at the origin.
Normalizing the charge to 1,

1= 7{ dCy, (4.2.6)

(analogous to the charge of a magnetic monopole, ¢ F'), that we can solve the residue and write a simple
solution close to z — 0,

1
T:T0+7.IHZ+..., (427)
21

plus regular terms. Circling once around the origin gives the monodromy 7 — 7 + 1, and therefore
corresponds to the SL(2, Z) transformation with (a, b, ¢, d) = (1,1,0,1). We can study the behavior of
7 far from the brane, calculated from the backreaction of the brane on the spacetime metric, described
by the warp factor B(z, z), in

ds® = —dt* + Y da} + PP dzdz, (4.2.8)

where x; are the 7 longitudinal directions to the brane. One can solve B(z, Z) in terms of 7, and conclude
that [128] the space is asymptotically flat but has a deficit angle of 7 /6.

It is interesting to point out what is so special with the seven dimensional brane, compared to lower
dimensional branes that do not introduce monodromies or asymptotic backreaction effects. This comes
from the fact that when the transversal space to the brane is of dimension d + 2 (d > 0), the solution of
(@#2.6) is of the form ® ~ r~¢, that vanishes at infinity and presents no monodromy.

In general, the 7 — 7 4+ N transformation corresponds to the existence of a stack of N D7-branes
at the perturbative level. If we move to strong coupling, the perturbative description does not hold
anymore, and we must include (p, ¢)-branes, objects of more complicated monodromies (corresponding
to more general terms of the SL(2,Z) action) on which the (p, ¢) strings can end.

Observing the SL(2, Z) transformations, one could naively guess that Type IIB arises from a twelve
dimensional theory compactified on a torus of complex structure 7, with some field strength (G4 wrapping
each cycle A or B of the torus, corresponding to F3 and Hsz. The SL(2,Z) transformations would then
be simply the modular transformations of a torus. This guess turns out to be problematic, but the idea of
a torus compactification survived in the now called F-theory.

There is up to now no fundamental description of F-theory, but there are different ways of extracting
results in the strong coupling limit of Type IIB theory. One approach is to construct F-theory as a T-
dual description of M-theory, as we will review in the following. Another explored approach is via
Heterotic/F-theory duality, in which Eg x FEg heterotic string theory compactified on a Calabi Yau
threefold can be related to F-theory compactified on a fourfold. We will however not discuss Heterotic-
F-theory duality here, but the reader may look for example in the original work by Vafa [34].

To formulate F-theory, we start from eleven dimensional M-theory compactified on a torus 7'2. More
precisely, we consider an elliptic fibration over a nine dimensional base. Locally, the prescription works
as follows [129]]:

1. As we shrink one of the cycles (say the “A-cycle”), M-theory on the torus becomes Type IIA
compactified to nine dimensions on the remaining “B-cycle”. The coupling is grrja = R4, in
string units;
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2. We shrink the B-cycle to zero, and T-dualize it. The T-dual B’-cycle will have infinite radius, thus
getting ten dimensional Type IIB, with coupling grrp = gr74/Rp = Ra/Rp = Im, as we
wanted.

It is important to notice that the F-theory limit R4, Rp — 0 is taken in a way that 7 is finite, and thus
we can move into regions outside perturbation theory.

As a more phenomenologically interesting case, we consider M-theory compactified on an ellipti-
cally fibered Calabi-Yau fourfold that corresponds thus to an effective three (1+2) dimensional theory.
After the dualization to F-theory, the B-cycle becomes a spacetime dimension, leaving us with four
spacetime dimensions, (figure £.2)). It is not obvious that this asymmetric prescription leads to four
dimensional Lorentz invariance, but the limit can be taken in a particular way that is Lorentz invari-
ant [125].

M-theory on
R12 x T2 x By F-theory
RA — 0 :
v
Type ITA on T-dualize Rp = R Type IIB on
R1’2><S}3><B3 R - 0= Rz — R1’3><B3

Figure 4.2: The steps from M-theory to Type IIB with an underlying torus structure. The
limits are taken in such a way that 7 = R4 /R is finite.

The branes in Type IIB, following this prescription, should also come from objects in M-theory. The
M2 brane wrapped on the torus becomes an F- or a D-string, and when not wrapping the torus becomes
a D3 brane. The M5 brane, depending on how it is wrapped, can correspond to D5- or NS5-branes.
The 7-branes, however, do not come from M-branes. Looking at the intermediate Type IIA theory, the
D7-branes of type IIB should come from D6-branes. The latter, as was seen in the previous section, are
purely geometrical solutions of the eleven dimensional theoryﬂ We should then expect that the 7-branes
also have a geometrical origin, as we will describe.

We start with the algebraic construction of an elliptic curve (i.e., the torus), given by the Weierstrass
function

y? = 2% + fazt + g5, 4.2.9)
where (y, x, z) € C3. More precisely, the elliptic curve is defined inside a weighted projective space P2,
with homogeneous coordinates (¥, z, z) obeying the rescaling conditions (y, z, 2) ~ (a’y, a’z, az). In
the patch where z # 0 we can use the rescaling condition to set z = 1,

=2+ frtg=(x—e1)(r—e2)(x —e3). (4.2.10)

The equation above describes a double cover of the x plane, and by writing

y=/(z—e1)(x —e)(x — e3), (4.2.11)

one can easily see that it has branch points at x = ey, e2, e3. There is also a monodromy around a circle
of infinite radius, 2 = |x|e* taking 6 from 0 to 27. We can alternatively describe this infinite circle by
identifying the infinity in the complex plane to a point, so the infinite circle is a small circle around the
infinity “point”. But C U oo ~ P!, and we can then represent the domain of y(x) as a (double cover of

The connection between the geometrical Taub-NUT spaces and D7-branes was explored for example in [130] to calculate
non-perturbative contributions coming from U (1) fluxes to the gauge-coupling function on a D7-brane.
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Figure 4.3: The 2 plane with the added point at infinity (~ P!), as one cover of the y(z)
function. The branch cuts for connects the branch points. It is also
drawn the two non-homological 1-cycles, where the dashed line indicates the
cycle passing through the second cover of y(x).

a) sphere. We have then to define the branch cuts, and we can do it as represented in figure 4.3] The
resulting manifold has then two independent 1-cycles, that we can immediately identify with the two
independent cycles of the torus.

The complex structure of the torus can be calculated from

$492
- o

where €2 is the globally defined meromorphic 1-form, and A and B are two independent one-cycles in
figure Clearly, 7 is invariant up to SL(2,Z) transformations when we consider any two combina-
tions A’ = aA + bB, B’ = cA + dB for the cycles defining (4.2.12).

The meromorphic form €2 can be obtained from the general equation

T (4.2.12)

o= L wV (4.2.13)
211 P=0 P

where P is the defining equation for the elliptic curve, P = y? — 23 — fxz* — 25, w is a meromorphic
form defined on the ambient C? (with w/P gauge invariant), w = dx A dy A dz, and V the vector fields

generating the gaugings (z,y, z) ~ (a?z, a3y, az),
0 0 0 0
V= iTi—— = 20— + 3y— —. 4.2.14
x_zm:yzQﬂ:ZBl‘i oy + yay +Z82 ( )

Inserting V', w and P into (4.2.13),

1 2xdy N dz + 3ydx N d dr ANd
0= _— LYNCEX AT ACEH AN Y, 4.2.15)
27 fp—o —y2 + a3 + fazt + g2b
Since this holds globally, we can move to the particular patch z = 1, and easily solve
1 dr ANd d d
Q= _— rhay _ 8% _ 8% (4.2.16)
27t Jp—g P OP/oy 2y

It is a known result from the mathematics literature that we can write a relation among the complex
structure 7 for the elliptic curve and the parameters f and g [128]],

_A4(24f)°

jr)=—=—x" A= 27¢° + 412, (4.2.17)
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with j(7) = e72™7 4 744 + €277 4 . that is invariant under SL(2,Z) transformation. j(7) is a
function that maps the fundamental domain of 7 into C. The A function is the discriminant of the curve,
and the elliptic curve becomes singular when A = 0. In terms of equation (4.2.11)), this happens when
two e;s coincide, and one of the cycles shrinks to zero size.

We now “promote” the elliptic curve to an elliptic fiber, by introducing a base B over which the
parameters of the elliptic curve, f and g vary. We consider a simple case where the base has just one
complex dimension represented locally by the coordinate . In K3 fibrations, for example, the base is a
CP!, a two-sphere, and f(u) and g(u) are polynomial functions of degree 12 and 8, respectively. Thus,
A will be a degree 24 polynomial, and will have generically 24 order one zeros. We choose one of these
particular zeros, namely u = u;, such that near this point u;,

1
=T In(u — u;), (4.2.18)

i)~ U — U i

again reproducing the D7-brane monodromy. In fact, this solution is defined only up to an SL(2,7Z)
transformation. When we consider more branes localized at different points u;, we cannot in general fix
T to be of the form for each brane. Not only this, but the monodromy present at one particular
point u; can change as we circle around another point u;. So, in general, identifying locally a D7-brane
(or a (p,q)-brane, with specific (p,q) values) is not something that holds globally.

There are however particular cases in which we can restore the perturbative type IIB description
globally. In the beautiful work by Sen [[131}/132] the conditions for a constant 7 with large imaginary
part (corresponding to small string coupling) are imposed, and a precise interpretation of Type IIB theory
from the F-theory perspective is worked out. So, although the D-brane + O-plane picture can indeed be
achieved, it is not a general feature, but rather a very particular subdomain of possible theories.

We also introduce a more general form for the Weierstrass function (with z = 1),

— y2 + 23 + ag + asx + azy + asz? + arry = 0. (4.2.19)

This form can be reduced back to (4.2.9) by completing the squares. To relate the new coefficients to f
and g we first define

by = a? + 4az, by = ajaz+2a4, bg = a2 + 4ag, (4.2.20)
cy = b3 — 24by, cg = —bi + 36byby — 216bg. (4.2.21)

One can then show that ) )
- = _— ¢q. 4222
f w9 561C6 ( )

and from A = 27¢? 4 4f3 one computes directly
1

A= Zb%(bgbg — b3) — 83 — 27b2 + 9babyb. (4.2.23)

This form will be used later to introduce a new section that will correspond to a particular divisor in the
base, via the Tate algorithm.

If we want our compactification to lead an effective four dimensional N' = 1 supersymmetric theory,
we must compactify on a Calabi-Yau fourfold. This imposes some conditions on the elliptic fiber, that
we review here. In a general F-theory compactification, there will be some divisors S; on the base over
which the fiber degenerates. In Type IIB theory picture, this corresponds to a D7-brane wrapping S;.
The first Chern class of such a fibration 7 : Y4 — Bs is given by [126]

0

D [Si], (4.2.24)

c1(Ya) ~ 7 (c1(Bs)) = )

7
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where 0; ~ Alg,, Alg, is the discriminant of the elliptic curve close to the divisor S;, and [S;] is the
Poincare-dual two-form to the divisor S;. We also used the common notation ¢; (X) = ¢;1(7'X), where
T X is the tangent bundle of any manifold X. If we want the fourfold to be Calabi-Yau, we must require
c1(Ys) = 0 and therefore

Za = 12¢1(Bs), (4.2.25)

that can be seen as a consequence of the tadpole cancellation of charges for D7-branes and O7-planes,
(analogous to the condition for D6-branes in Type IIA orientifold compactifications, as in our setup

(3.2,
Z N;[S;] = 4[07]. (4.2.26)

An interesting consequence of F-theory compactifications is that the base itself is not Calabi-Yau, but
only the full fourfold. As we move to the strong coupling regime of Type IIB theory, the D7-branes
induce strong backreactions in the threefold geometry, thus breaking the Calabi-Yau condition.

The Calabi-Yau condition (4.2.25) implies that the variables of the Weierstrass form must be sections
of specific bundles. Recall the first Chern class of the Canonical Line Bundle, ¢;(Kp,) = —ci(Bs).
Also, the left-hand side of is in homology equal to the full [A]. Together with the relation
A = 27¢% + 43, this implies that f and g are sections of K gj and K _36, respectively. Since the fiber
is given by the Weierstrass equation,

=2+ aft + g2b, (4.2.27)

x,y must transform as K 532 and K 533, respectively. By construction, z is the section isomorphic to the
base B3. So, if we want our elliptic fourfold to be Calabi-Yau, the sections must transform as required
above. In terms of the modified Weierstrass function (4.2.19)), a;, b; and ¢; each are sections of K 531.

In perturbative type IIB, N coinciding D7-branes give SU(N), SO(2N) or Sp(2N) groups, depending
on how the divisor wrapped by the brane behaves under the orientifold involution. In the F-theory
perspective, putting branes on top of each other leads to higher vanishing order of A in (4.2.17). When
this happens, not only the elliptic fiber degenerates, but it becomes singular, i.e., P = dP = 0, where
P is the defining function of the elliptic fiber, (4.2.9). One can then resolve the singularity, and the
resolution leads to a set of two-cycles that can be identified with the root system of some gauge group,
as we describe in more detail in the next chapter. One of the most phenomenologically interesting
consequences is that in F-theory there is the possibility of constructing gauge groups not realizable in
perturbation theory. We will describe gauge groups via F-theory compactifications in the next chapter.
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Chapter 5

Singularities in F-theory

In F-theory compatifications to four dimensions the Calabi-Yau threefold of the perturbative Type 1IB
is replaced by an elliptically fibered Calabi-Yau fourfold, and the regions on the base where the fiber
degenerates correspond to a 7-brane. The total compactification space might be seen as a fourfold inside
an ambient five dimensional manifold with a P2 fiber in which the elliptic curve is constructed. The
gauge theory living on the brane is now encoded in the kind of singularity appearing in the elliptic fiber
over the base regions where the fiber degenerates.

The way to identify the corresponding gauge group of a singularity in the elliptic fiber is by resolving
it. The resolution in general replaces the singular point by a series of P's on the fiber, that are two-cycles.
From the M-theory perspective [133/134f], each 2-cycle can be wrapped by M2-branes of different
orientations. These M2-branes are charged under the three-form Cs, that decomposes as

Cs =AY Awy,, (5.0.1)

where wy, is a two-form on the k-th P!, and each A]f is a one-form corresponding to a vector gauge boson
in the base of the fibration, and the M2-branes correspond to W bosons. When we shrink the P! to zero
size, the branes and the U (1) boson become massless, and they enhance to an unbroken SU (2). Thus,
each P! in the resolved singularity correspond to a broken SU (2), and the blow-down limit arrange each
SU(2) as the root elements of a higher order group.

The classification of the singularities for compactifications on an elliptically fibered K3 (in which
the base is the projectiveE] space P') was done by Kodaira [135L|136]. This classification identifies what
sort of singularities appear at some point (divisor) on the base, depending on the vanishing order of A,
f and g. The singularities appearing in this construction are ADE singularities, referring to the ADE
groups associated to them. The classification is summarized in table[5.0.1]

With this prescription we can construct effective gauge theories in four dimensions with the groups
described in table But to build a realistic model one also has to include matter in the spectrum,
as well as interactions among the matter representations. The matter representations are constructed
in F-theory from intersections between singularities, that in the perturbative description correspond to
7-branes colliding, and a matter representation appearing at the intersection curve. Couplings among
different matter curves happen as the matter curves intersect in points on the base, often called Yukawa
points. There is also an equivalent brane picture, in which three or more branes intersect at a point.

The matter representations must be chiral, as is our real world. One stardard way to construct chiral
representations, also imported from model building with intersecting D-branes, is to add fluxes along
the matter curve. In M-/F-theory, the only type of flux in the theory comes from the field strength G .
This at first might seem as a contradiction, since the matter curve is two-real-dimensional, while G4 is a
four-form. However, at the matter curves the singularity enhancement can be interpreted as a collapsed
two-cycle on the fiber that exists only on top of the matter curve. We can then localize the flux along the
matter curve by decomposing it as

G4 = F5 A wy, (5.0.2)

where F5 is a two-form flux and wy is the two-form dual to the collapsed two-cycle. Fluxes in general
also play an important role on the breaking of GUT gauge theories to (extensions of) the Standard

'since we are dealing only with complex projective spaces, we write simply P* instead of CP*. But it should be kept in
mind that the homogeneous coordinates are always complex.
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Type | ord(f) | ord(g) | ord(A) | j(7) | Group | Monodromy
Iy >0 >0 0 R — 1oy
11
Ll o 0 RS <0 1)
1
I, 0 0 n>1 s A1 (0 ?)
1 1
7| >1 1 2 0| — (_1 0)
0 1
mar | 1 > 2 3 1| A <1 0)
| =2 | 2 4 0 | A <_01 _11)
. 2 >3 —1 b
In > D) 3 n+6 oo Dn+4 ( 0 _1>
. 1 1
v >3 4 8 0 Eg . 0
* 0 -1
117 3 >5 9 1 Ey (1 0
| >4 5 10 0 | E (g’ 11>

Table 5.0.1: Kodaira Classification of singular fibers of an K3 elliptic fibration. Table ex-
tracted from [55}/137].

Model, and as in the example cited in chapter |3} fluxes can lead to corrections on the effective action
characteristic data and to contributions to the scalar potential, with obvious and important consequences
for phenomenology. A better understanding of the role of fluxes in F-theory model building has been an
important field of research in the late years, and as some examples of the still growing literature we can
cite [|38,/40,/130,/138-144] and references therein.

5.1 The basics on Blow-ups

Since the construction of gauge groups and representations depend on the resolved manifold as seen in
the M-theory picture, it is thus convenient to review some basics on blow-ups. We first look at simple
double point singularities inside C3 that will allow us to set the ground for singularities arising in F-
theory elliptic fibrations. A similar discusion focused on orbifold singularities appears in [[145].

5.1.1 The Blow-up of a point

In this short section, we review the blow-up of the origin point in C" [146]. We first introduce a P"~!
with homogeneous coordinates [Z1, 22, ..., Z,], and relating the original C™ coordinates z; with the pr-1
coordinates via

zi = N\Z;, (5.1.1)

with A complex. The relation (5.I.1) defines a subvariety inside C" x P"~!, and we can define a
projection 7 from the blow-up space to C" a 7 : (z;, ;) — z;.

The origin is then replaced by the condition A = 0, which implies that the coordinates z’, 3’ and
2’ can take any value obeying the homogeneity condition. Thus, 771(0) = P"~!. Outside the origin,
A # 0 and specifies a point in the P"~!. Therefore outside the origin the blow-up space is
isomorphic to C".
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5.1.2 The A, singularity

Now we want to describe the resolution of a submanifold inside C3. A simple example is the A;
singularity given by the singular point in the surface

Xa ={2*+2+22=0} CcC> (5.1.2)

It has a singular (double) point located at the origin pg : * = y = z = 0 (at this point, X4, = 0 and
dX 4, = 0). The resolution procedure consists in blowing up a P? at the singular point of the embedding
space,

r=Ag, y=M\y, z=2MAZ [&,7,Z] (5.1.3)

Replacing the coordinates in (5.1.2) with (5.1.3)), we get

N@E+924+2)=0. (5.1.4)

Notice the singularity y = x = z = 0 is now “encoded” in the condition A = 0. We artificially remove
the singularity by defining X 4,, the blow-up space of X 4,, as the proper transform of (5.1.2), that is,

Xu, ={B2+P+32=0 | [#:5:2}). (5.1.5)

The new manifold X A, 1s not singular (X 4, = 0 and dX 4, = 0 cannot be simultaneously satisfied).

We will now show that the singularity of the original curve X was replaced in the blown-up space by
a P! defined by {\ = 0} N X 4,. The equation A\ = 0 defines the exceptional divisor E in C3. To show
that E| Xa, = P!, it is convenient to perform a change of coordinates such that the defining equation can
be written in the form

Xy ={-a0+2>=0 | [a:0:2]}. (5.1.6)

Introducing the patches U, V and Z, defined respectively by @ # 0, © # 0 and Z # 0, we can use the
rescaling condition to fix & = 1 in the patch U/, and the same to V and Z. In the patch U/

b=z (5.1.7)

which fixes Z in terms of @, so locally E|;; = C. Similarly, in the patch V equation @& = 22 implies
E|y = C. At the intersection U NV the defining equation (5.1.6) implies that Z # 0. The intersection
region U NV is therefore visible in the patch Z,

U= %, (5.1.8)
U
that is precisely the transition function for the two local patches C that define a P,
5.1.3 A, Singularity
Another simple example is the singular surface defined by
X, = {22 +9?+ 22 =0} cC (5.1.9)
After blowing up a IP? at the origin as before,
Xa, ={#+7* + 223 =0} c C*> x P2 (5.1.10)

The origin was again replaced by the divisor A = 0 in the ambient space, that now restricted to the
surface X 4, corresponds to two independent curves,

C o (@) Cy : (F—ij) (5.1.11)

that intersect at the point A = z = y = 0. Thus, the blow-up of X 4, replaces the singular point by two
intersecting P's,
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Ch

A, singularity
The general A,, singularity is given by the singular locus of the surface
Xa, = {2 +2 + 2" =0} e C3. (5.1.12)
After the first blow up,
r=Mz', y=\y, z=M\2, [2:y 7] (5.1.13)

the surface might still be singular at ' = 3’ = A\; = 0. We need to blow-up again with new \;’s until
we get rid of all singularities, and the exceptional divisors will be given by restrictions of each A; = 0.
One can easily show that this leads to a chain of n P!s, as the Dynkin diagram for an SU(n + 1) group,

O-O-0-0- 0O

5.1.4 The Eg singularity

Analogously, we proceed to resolve the Eg singularity, important in F-theory model building. In this
example we come across a small resolution. The Eg singularity is described by the point {z,y, 2z} =
{0,0,0} of the surface

Xg, = {y?+23+2° =0} e C> (5.1.14)

We perform the first blow up as
Yy = apy1, T = aopx1, Zp = apZ1, (5.1.15)

with the new homogeneous coordinates
[yp = 21 @ 21] . (5.1.16)

The subscript will indicate the number of times the coordinate was blown up. From now on, we will
introduce the notation ag : [x,y, 2], corresponding to the blow up described above. After we take the
proper transform, the defining equation for the blown-up surface is

Y2+ aprd +adz) = 0. (5.1.17)

This is singular in y; = 1 = ag = 0. We perform then a sequence of blow ups. Here we just show
one particular choice of many possible resolutions, in the following order:

ao: [y, x, 2], bo:[y1,x1,a0], co:ly2,a1,b0], do:[ys,co,a2], eo:lya,cr,bi].  (5.1.18)

As said, the notation means for example that the third blow up is defined as y> = cpys, a1 = cpaz and
bop = coby, with a projective relation [y3 : ag : b1]. The proper equation of X g, after the blow ups
mentioned above is

Y2 + egcaboas(bary + dicaatz)) = 0 (5.1.19)
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There is still a singularity left, when y = eg = (bax3 + dc2a3z7) = 0. However, we do not need to
perform a P? blow up as before, since the equation is factorized. It is a binomial variety of the form
y? 4+ eoU = 0, that is a “conifold-like” equation. And just like the conifold, we can perform a small
resolution, a P! blow up instead of the P? blow up.

A conifold uv +w? = 0 can be resolved either by blowing up {u, w} or {v,w}. The two resolutions
are connected via a conifold transition, when we start with a resolved conifold, say, in {u, w}, we blow
down by shrinking the volume of the P! to zero, thus restoring the singularity, and then blow up the
coordinates {v, w}. Another way to de-singularize the conifold is to introduce a non-zero parameter in
the equation as uv + w? = ¢, deforming the conifold. The deformation and the resolution are connected
by a flop transition, sending the parameter e to zero and then blowing up a P!, or vice-versa.

In terms of the ambient space C3 with coordinates u, v, w, a small resolution defined as u = Au,
v = Av; with the projective relation [u; : v;] corresponds to replace every point on the complex plane
u = v = 0 by a P!, instead of the replacement of the origin point by a P2, described in section m

Back to (5.1.19), we perform the small resolution f : [ys, €], obtaining the smooth space defined by

Xp, :  f§?+ecba(bi® + d*ca®3%) = 0. (5.1.20)

To clean the notation, we simply omitted all the subscripts and denoted the final coordinates ¢, £ and Z
to differentiate from the original coordinates y, x and z.
The projective relations in terms of the final blown up coordinates are

[fedcby : fedcbz : Z], [fedcy: T : fedcal, (5.1.21)

[fdy: da, feb], [fey: fec:a]l, [fy:c:b], [g:e].
The exceptional divisors are obtained as before by restricting the new coordinates a,..., f to zero. The

restriction {\; = 0} N X By (Where \; = a. .. f) gives the curves from table , that intersect as the
FEs Dynkin diagram below.

@
- O-E-O-0-G-&®

The Es singularity from an elliptic fibration

In F-theory compactifications we can get an E gauge group on a divisor {w} of the base defined by the
equation w = 0 if our curve for the elliptic fiber is written as

y? +2° + Bow® = 0, (5.1.22)

with By # 0. This is the same equation as above, and we can thus resolve it in the same way (we
introduce back the \;s to denote the coordinates introduced at each blow up. We will mantain this
notation from now on),

Yie A6l + AsAsdad (M@ 4+ BoAiasA2a®) =0, (5.1.23)
together with the projective relations

[>\6)\5)\4)\3)\2g . )\6)\5)\4)\3)\25% . ’LD] s [)\6)\5)\4)\3:0 1T >\6>\5)\4)\3)\1] 5
[)\6)\4?; . )\4)\1, )\6)\5>\Q] N [)\6>\5g . >\6)\5)\3 . )\1] s [)\()17 . )\3 . )\2] s [g . )\5] .

The singularity located at the point y = = = 0 of the elliptic fiber on top of the {w} divisor (that
is, the divisor defined by the holomorphic equation w = 0) is replaced by a set of smooth intersecting
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Curve Multiplicity | Diagram

A: AM=y=0 2 )

B A=X=0 3 (»)

C: A=g=0 3 0

D: A3=X=0 4

E: AM=y=0 5 &

F:oo A= X7? + X302 033 =0 2 ®

G As = Ag =0 4 Oa0,
H:  dg= X7+ AA3)\22° =0 6 ®

X : Z = )\21/2 + /\1/\2)\51’3 =0 1 o

Table 5.1.1: Curves and intersections for an E8 singularity

exceptional divisors over which the fiber is described by a P'. The complete description of the resolved
fiber on top of the original {w} divisor can be seen from noticing that the restriction w = 0 becomes
after the resolution

WA A A3NINENS = 0. (5.1.24)

The power appearing on each holomorphic variable A; must be taken into account, and they contribute
to the multiplicity of each exceptional divisor. Formally, after blowing up an exceptional divisor F/
inside Y, an already existing divisor D inside ¥ becomes

7 'D=D+nE (5.1.25)

where 7 is the projection as defined in section , D is the proper transform of D, and n of an
exceptional divisor E is the multiplicity. In the case at hand, the divisor {w} inside the fivefold X3
becomes

mHw} = {@} + (M} + Do} + {As} + 20} +4{xs} + 6{\¢}. (5.1.26)

Note that we still have to intersect these divisors inside X5 with the fiber (5.1.23). When we do that, it is
straightforward to see that we obtain the curves and multiplicities of table[5.1.1] that intersect according
to the depicted diagram. The intersections and multiplicities obtained agree exactly with the affine
Dynkin diagram for the Eg group, as in [[147].

The fiber over the curve X in ??, obtained by w = 0, corresponds to the affine node in the Ey affine
diagram, as described in picture It cannot be interpreted as a broken U(1), in the sense that an
M2 brane wrapping X does not shrink to zero volume in the unbroken limit, when we blow down the

resolution.
_ —~
resolution

Figure 5.1: The resolution replaces the singularity by a series of P's, and their intersections
can be described in a Dynkin diagram. Here we show the A4 (or SU(5)) case.
The affine node is simply the proper transform of the singular elliptic curve, that
is topologically a P!,
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5.2 AnSU(S) GUT Model

In this section we review an SU(5) model with enhancement loci, where the enhancements can be
resolved via small resolutions as done in [55]] and further explored in [57]]. We start by constructing the
elliptic curve El, introduced in previous chapter, by the Weierstrass equation defined as a submanifold
inside a projective space P?,

y? — 23— fazt — g8 =0. (5.2.1)

The complex structure of the elliptic curve 7 can be obtained from f and g Now we fiber this elliptic
curve over a base Bs. We construct the fibration in such a way that we can define a smooth section
isomorphic to the base. This section will be given by z = 0, that restricts the elliptic curve to the divisor
(a point) (z,y) = (0, 1), where we used the rescaling condition to fix . In F-Theory the base will be
identified with the physical internal space of Type IIB String Theory, while the complex structure of the
elliptic fiber is identified with the axion-dilaton in type IIB theory.

To geometrically engineer an SU(5) model, we specify a divisor on the base such that the fibration
develops an SU(5) singularity. In type IIB, the divisor will correspond to the divisor wrapped by the stack
of D7 Branes. Additionally, there might be regions on this divisor where this singularity is enhanced. In
the Type IIB picture, this corresponds to other branes intersecting the SU(5) Brane.

We explicitly construct such fiber by specifying the f and g, and one way to do that is by the Tate’s
Algorithm. We start with a more general expression for the Weierstrass equation,

— zy2 + 23 + a0z3 + agxz® + a3y22 + agzz® + aszxy = 0, (5.2.2)

that can be obtained from (5.2.1)) by completing squares. The paremeters a; are related to the complex
structure of the curve, and in general depend on the coordinates of the base. Since we want an SU(S5)
singularity on a divisor w = 0 of the base, we introduce the section w as

ag = Bow’, az=Pow®, az=Psw’, as=pPsw, as=ps. (5.2.3)
Thus, the elliptic fiber reads
— 2 + 2 4 B2’ + fazztw? + BayzPw? + Bux’zw + Bszay = 0. (5.2.4)

According to the Tate’s algorithm, this model gives an elliptic fiber with an SU(5) singularity over
the divisor defined by w = 0. The restriction of this divisor to the base we will call Sgyr, that in the
Type IIB limit corresponds to the divisor wrapped by the brane that holds the GUT group.

We can see that by recalling the definitions in chapter[d] the discriminant A and the functions f and
g become

A =N,
1

/ zfg(—ﬁg — 8B4Bzw — 16557w? + 2483 B5w* + 48B2w?), (5.2.5)
1

9 =57 85 + 12845 + 48578207 — 368, 8307+

+ 6483w — 1448384 85w> — 7262 82w + 21655w* — 28862 84w + 8645ow®),
with

A" = B5P + wps(8B4P + B5R) + w? (163253 + B5Q) + wS + wiT + wPU, (5.2.6)

2Often in the literature (as in the review [[126] and in the previous chapter) the elliptic curve is constructed in a weighted
projective space WPSQ,J, with rescaling relations (z,y, 2) = (\%z, A3y, Az), and A € C*.
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where P, R, @, S,T and U are polynomials related to 8; and w as

P = B384 — BafB3fs + o2, R =4BoBusfs — B — B2Ps, (5.2.7)
Q = —2(18033 B4 + 882387 — 158233 85 + 4538435 — 245031 85 + 1803333),

S = 27B5 — 72628584 — 168557 + 645033 + 9635 B35 — 1445083845 — 72803213,

T =8 (885 + 275035 — 3680B2P1) . U = 4325;.

So on top of the GUT divisor w = 0, for general values of /3;s, and as long as A’ remains non-
vanishing, the vanishing orders of A, f and g as we approach w — 0 are

ord(A) = 5, ord(f) =0, ord(g) = 0. (5.2.8)

According to the Kodaira classification described in table[5.0.1] this corresponds to a singular curve of
type I5, thus an A4 (or SU(5)) singularity.

Notice also that if we just fix all the parameters 3; to zero except [y, we reproduce the Eg singularity
described in section In fact, such an SU(5) model described by can be seen as a higgsing
of an Eg down to SU(5),

Eg — SU((5) x SU(5) 1, (5.2.9)

and the vevs for the Higgs are related to the sections ;. In the Type IIB picture, this can be interpreted
locally as a stack of five D7-branes separated by some distance (encoded by the vev of a Higgs field),
to other branes. As we move them close together the singularity enhances. However, from the pure
perturbative description we cannot reproduce an Eg-brane. If however we allow ourselves to deepen in
the strong coupling regime, we need to include (p,q)-7-branes, and open strings that attach to 3 or more
branes. These bizarre open strings configurations can reproduce an L algebra [[148L|149].

In the following, we proceed to resolve the curve explicitly. First notice that

— 2 + 23 + BoPw® + Bor2?wd + Bayztw? + Bax’zw + Bszay = 0, (5.2.10)

is singular when w = x = y = (. Since we are interested in what happens at the singularity, we can
from now on use the rescaling condition of the ambient P? [z : y : 2] to set z = 1,

— 2 + 23 + Bow® + Bozw® + Bayw? + Bax’w + Bsxy = 0. (5.2.11)

The f3;s depend on the coordinates on the base of the elliptic fibration Bs. They define holomorphic
sections of the bundle O([6 — i|Kp, — [5 — m|Scur), where K p, is the canonical bundle on the base
Bs.

Even after we resolve completely the singularity located in x = y = w = 0, there will be singulari-
ties remaining in particular subloci on the GUT divisor, specified by particular values of the 5;’s. Esole
and Yau [55]] worked out such resolutions, that will be reviewed in the following.

We perform the first blow up A; : [y, z, w], that is, introducing a coordinate \; as

y:)\lg, $:)\1£i', w:)\lﬁ). (5.2.12)
together with the projective relations [¢ : Z : @] . The defining equation (5.2.11)) becomes
A(=97 + ME® + BoATd® + BaATEd® + BsMigd® + Baddd + Bsd) = 0. (5.2.13)

The expression in brackets is the proper transform that defines Yy (we reserve the tilde to the fully

resolved space), and as in (5.1.23)
Y, — Vi + 2F,, (5.2.14)

where B = {5\1}
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Yy is still singulariny = & = A1, and we blow up (we will reuse primed coordinates to denote all
the intermediate blow ups, to avoid adding too many symbols and because we are mainly interested in
the original space and the final resolved one),

— 5% 4 Ao @3 + Bora A3 + Boro X2z 4 BshG® + BadeMiZP + Bsdg =0,  (5.2.15)

or, rearranging,
— (y + Bah? + 65:E) o (563 + BoN2D® + Bodydid® + 54562@@) —0. (5.2.16)

The space is smooth in general points of the GUT divisor, but it acquires further singularities when
we approach particular values for the f3;s, corresponding to subregions on Sgyr. To resolve this ad-
ditional singularities we follow the work of Esole and Yau [55]. First, notice that we can rewrite the
defining equation as

§s 4+ Aahit = 0, (5.2.17)

with
s =104 B + Bsd,  t =2+ BoAi0° + o @i + Buiid. (5.2.18)

The equation is a binomial equation, and similarly to the Eg resolution discussed in section
[5.1.4 we resolve such a space through small resolutions. However, since s and ¢ are not independent
sections, but involve the other coordinates, must always be observed.

The introduction of s and ¢ can also be interpreted as replacing the elliptic fiber by a higher dimen-
sional auxiliary binomial variety (5.2.17)), and the elliptic fiber is defined as the complete intersection of
the binomial variety with (5.2.18).

Notice that the ways of resolving the singularities are not unique. Namely, one can perform one of
the six following pair of blow ups,

In the following we will work in detail only the first resolution in the list above. The other resolutions
are connected to the one we are going to perform via conifold-like transitions [55]. We blow up as
01 : [§, A1] and 62 : [s, Ao], thus obtaining (again, repeating the hatted notation)

75 + Aot (020023 + Bo02 N300 + Bodi MZW® + B4320) = 0 (5.2.19)

025 — 619 + 53515\11])2 + B2 =0 ’ o
with the projective relations

[6102)af) : GodoZ 0], [617:Z: 0 M), [G: M), [5: Al (5.2.20)

As long as the 3;’s are non-factorizable holomorphic sections, (5.2.19) is smooth. A factorizable 3;
might lead to even stronger singularities, and we will explore one particular model in section[5.3]
To see the resolved structure of the elliptic fiber, we first notice that

We now look for the the intersections of the divisor {w = 0} inside the fivefold with the elliptically
fibered fourfold, defined by (5.2.19), together with the conditions (5.2.20). Similarly to what was done
in section (5.1.4)),we obtain the curves described in table with P! fibers intersecting as an (affine)
SU(S).
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Curve Mult. | Diagram

A: )\1282513]—6555:0 1 @
B . ~52 = 51’:17 + ﬂ351>\1ﬁ)~2 + G52 = 1

C =5+ A (BodR N + Pady MFDP + fiFD) = 0 © %
C: )\22y252§—,63(51>\1u~)2+ﬁ51~3:0 1 @
D: 01 =625+ B5T = §5 + A (02007 + B47%0) = 0 1
X B = 55+ JeMES = 025 — 017 1 Bt = 0 | ®

Table 5.2.1: Curves on the resolved SU(5) divisor.

We can see explictly that each curve is a P'. Take for example the curve A. A\; = § = 0 allow us
to use the projective relations [ : A;] and [3 : o] and fix § = Ay = 1. We still have the condition
d1 = [5T on the curve, that makes the condition [017 : T : 515\1] be trivially satisfied, and we can just
fix the value of . We are thus left with the first condition, that now becomes simply [d2 : w]. The curve
A is therefore defined by two patches C connected by [d2 : 0], that is, a P,

From the fact that the self-intersection of a P! is —2, we can also identify each P! with the (negative)
roots of SU(5) and write the Cartan matrix for the (extended) SU (5),

A B C D X

A 2 1 0 0,1
B 1 2 1 0'0
C 0 1 -2 1.0
D 0 0 1 2,1
X \1 0 0 112

5.2.1 Matter Curves

In general, the model described up to now has an elliptic curve with a singularity of type Ay, that
reconstructs the root system for an SU(5) group. But as was pointed out, there are special regions along
the GUT divisor where the singularities enhances. From the expression for f, g and the discriminant A,
(3.2.3), we can extract information on the location of the enhanced singularities. For convenience, we

repeat here,
A =w®(B5(8584 — B2B3Bs + BoBz) + O(w)), (5.2.22)
f :%8(—5;1 — 8482w — 1683w 4 2483 B5w* + 48Bw?),

1
:@(ﬁg + 12834 83w + 4862 B2w? — 368383w?+
+ 6485w — 144838, B5w® — T262B82w> + 21655w" — 28882 B4w™ + 8648yw®),

9

We see immediately that we get an enhancement when we reach the loci 5 = 0 or P = ﬁ§64 —
B2385 + oz = 0. We will explore each case in the following.

10 Matter

The first singularity enhancement we analyse is when we reach the region on the base where 85 = 0. At
this locus, the vanishing orders go as ord(A) = 6, ord(f) = 2 and ord(g) = 4. From the Kodaira table
we see that naively we would expect an enhancement to an SO(10) singularity.
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Curve Mult. Diagram

A: AM=s=6=0 2
Bi: 01 =02 =75+ Bado?w =0 2 e @

5 = § + Pk’ = 1 (4)

By : - - -
27 Bsi 4 Aa(Bod2 A2 + Boby MFW? + B4d2) =0
C: )\ngzdgg—ﬁg(;l)\lﬁ)Q:O 1 @
Di: 61 =35=03008 + 4w =0 1
X: w=75+MMNi3 =05 —-57=0 1 @ @

Table 5.2.2: Curves over the 85 matter curve

From the resolution, we can extract explicitly what happen to the curves at the locus 35 = 0. Some
curves remain the same, for example A that is now described by the simpler expression A|g ¢ : A=
§ = 01 = 0. Some curves however split into smaller components. Take for instance §; = 0, that
previously corresponded to the curve D. It now has three possible solutions,

Dy ¢ 61 =35 =008 4 st =0 (5.2.23)
By i 01 =08y =5+ Bade i = 0
Diy(=A4) : 51 =5=X=0

When we reach a point on the base where 35 = 0 the fibered P! that we denoted by D splits into
three curves, and one of them “merges” with the already existing curve A, changing its multiplicity.
Another curve that suffers a splitting is B, into By = D5 and B2. We sum up all the curves with their
multiplicities and intersections at 55 = 0 in table[5.2.2]

The curves intersect as the Dynkin diagram for the SO(10), as expected. from the vanishing order
of the coefficients.

It is also interesting to see how the 10 representation arises from the resolution. As was shown
above, when we reach the 35 locus some of the curves split as

B D C A
(Bs =0) B, By By D A C A

By calculating the intersection of each new curve with the P's that correspond to the roots of the
SU(5) we get the Cartan charge associated with each P!, that will correspond to the Cartan charge of
a M2-brane wrapped on the corresponding P'. The intersection number of each splitted curve with
the original roots will be either +1 or —1. Additionally, since there was no new curve appearing, but
only splittings, the sum of charges of the “daughter curves” has to be equal to the “mother curve”. For
example

D — A + Dy + B,
(0,0,1,-2) = (-2,1,0,0) + (£1,0,0,+1) + (&1,£1,+1,+1),

that we can immediately solve and obtain

D1(1,0,0,—1),  By(1,—1,1,-1). (5.2.24)
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These charges correspond to weights of the 10 representation. We can analyse in the same way
the splitting of the D curve, and we get the charges indicated below. The curves form a basis for the
complete 10 representation.

Curve Charge Weight

A55:0 ( 2, 1, 0 0) —Qaq

Big,—o | (1,— 17 1 —1) | —=(p10 — a1 —ag — a3)
Ba g5—0 (0,-1,0,1) H10 — o1 — 20 — Qg
055:0 (0 -2, ) —Qs3

Dip—0 | (1, 0 0,-1) fi10 — Qg — a3 — Oy

5 Matter

When P = ﬁ§ﬁ4 — B9fB385 + ﬁoﬂg vanishes, the vanishing order A increases to ord(A) = 6. This
implies that, on the particular region in the base where the ;s satisfy the particular constraint given by
P =0, the SU(5) singularity enhances to an SU(6) (cf. table[5.0.1).

We can see explictly what happens to the curves on top of P = (. Notice that we can rewrite
B384 — B2B3B5 + B2 = 0 as the solution to the set of equations

2 =0
BoG? + BaC + B 5225
B3¢+ Bs =0,
with B3 # 0. Notice also, that in the resolved fourfold (5.2.19),
;g§ + 5\25\11‘ 52)\21‘ +w /80 51/\1w 51)\1w + 54 =
[ ( B+ 5(35) ﬂ (5.2.26)

098 — 019 + & [ﬁ;;(mle) -1-55} 0

If we restrict , = ¢ = 0, we can immediately identify ( = S A w2 /. Keeping this in mind, we recall
the expression for the curve B,

B: 8 =6+ (5351X1w2 n 5@) — G5+ Aol (5@%&%@4 + Body M FE? + 34:7;2) —0.

We can solve 35(8; A\ 02) = —(619 + ﬁ5x) in the second member of the equation, multiply the last one
by ﬁg and replace the solved (33 ((51)\1111 ). We use the fact that P = 0, and a g factorizes, thus splitting
the curve B into two curves

Bi: 8y = B35+ Aadwdy [Bod1§ + (28085 + B283)F] = 017 + B3di\d? + BsF = (P =)0,
By: 8y =4 = B30\ + P52 = (P =)0. (5.2.27)

The curves now structure themselves as the diagram of an SU(6), again in agreement with the Kodaira
classification, table We can again calculate the intersections of By and Bs with the SU(5) roots,
table|5.2.3| and see that the P's reproduce the 5 representation.

It is important to point out that the curves obtained explictly via the resolution agree with the Kodaira
classification for the vanishing orders of f, g and A, even though the Kodaira classification was obtained
for codimension one singularities.

5.2.2 Yukawa couplings (codimension 3)

Having successfully reproduced the matter curves, and seeing that they agree with the expected from a
naive comparison with the Kodaira classification, we now proceed to show the behavior of the curves at
the Yukawa couplings, or triple intersections on the base.
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Curve Charge Weight Diagram
Ap:() (—2,1,0,0) —Q C
Bip=o | (1,-1,0,0) | —(pus — o) ©
BQPZO (0,—1,1,0) Hms — 1 — Qg B X
Cp:() (0, 1, —2, 1) —Q3 @
Dp:() (0, 0, 1, —2) —Qy @

Table 5.2.3: Curves and their Cartan charges over the P = 0 matter curve

1055 coupling

We first look at the point defined by the intersection w = f3 = 5 = 0. Before writing the curves, we

point out that when we restrict the curve B, one of its factorizations is
By : 69 = § = Bodi it + Badi M Zw? + BaF? = 0. (5.2.28)

The last equality is a second order polynomial in { = §; A w2 /Z. We can solve it and we obtain two
solutions,

2 IPrF VB3 —4BaPo _ 0
260
The curves and their structure are given in table and, following the splitting

Boy : =3 =M (5.2.29)

A B C D

I 7ANNEN VAN

(B3=pB5=0)A By By B C C By A D

we can again compute the Cartan charges, as was done along the matter curves. The charges are shown
in table

As a more interesting phenomenological consequence, we can analyse the Yukawa couplings al-
lowed at this locus. For that, we want to see how the matter representations couple at the enhancement
point. So, instead of moving directly from w = 0 to w = B3 = 5 = 0, we follow the curves as they
move to the Yukawa point.

We first look at the curves from the 10 representation, shown in table Notice that

B3=0
By (5s=0) — Bar (85=5=0) T Ba— (85=ps=0)- (5.2.30)

But Bj (5,—0) corresponds to an element in the 10 representation, while By (5,—g,—0) are in 5. We can
therefore write the “invariant” term at the $3 = 5 = 0 point

(10 — o1 — 200 — a3) — 2(pus — a1 — ),

or simply 10 5 5, the known coupling from the perturbative brane description.

It is more tricky to see the 105 5 coupling arising from the 5 matter curve. Notice that when we
computed the daughter curves of B in P = 0 (5.2.27), we had to use 33 # 0, which is not allowed now.
But we can simply reconstruct the weight of B} p—g and By p—g from the daughter curves of B in table
We thus get for the 5 from By p—o, the decomposition —(us — 1) — (s — a1 — az) — (az) —
(10 — a1 — ag — ag), or simply 105 5.

This might have looked redundant, since this result was known just from group theory arguments.
Indeed this is true, but it is nevertheless instructive to explicitly see the couplings arising from a geomet-
rical perspective.

83



Curve

Mult. Diagram

A(63:55:0) B )\1 = S = 51 =0 2
By (5,—p,—0) 2 = 61 = §5 + Bada T = 0 2
Boi (ps=py—0) @ 02 =17 =2Bp51\0? — FB2 + T/B3 — 4BaBo =0 1
By (gy=py—0) : 02 =17 =2B001\Mw0? — FPo — /B3 —4BsBo=0| 1
Clgamps=o) :* A2=y=0=0 2
D, (B5=B3=0) D 01 =8=022+ B0 =0 1
X(gympsm0) = W=F5F+ AT =025 —01§=0 1

Table 5.2.4: Curves over the w = 5 = 3 = 0 point

Curve Charge Weight
Ags=ps=0) | (=2,1,0,0) —an
By (g=py=0) | (1, =1, 1,=1) | —(p10 — a1 — a3 — a3)
B2+ (B5s=B3=0) ( ,—1, 1, O) Us — oy — Qg
By (B5=B3=0) (07 —1 la 0) M5 — Qg — Q2
C(ﬁs=53:0) (0,1, ,1) —asg
Dl (Bs=B3=0) ( ) 707 1) M1 — Qg — Q3 — Oy

Figure 5.2: Curves and Cartan charges over the 83 = 85 = 0 point.

A 10105 coupling

As was mentioned earlier, one of the main phenomenological interests on F-theory is the possibility to
construct exceptional groups that are not present in perturbative Type II theory. In particular, the SU (5)
elliptic fiber model was claimed to contain an Fg enhancement locus, at 84 = 85 = 0. We will now see

the explicit resolved structure at this point.

Since most of the discusion is similar to what was done for the 10 5 5 point, we will simply present
the results. The curves split not as an affine Eg, but something similar (table[5.2.5)), although not present

in the Dynkin classification. The cartan charges are presented in table

It is also straightforward to work the splitting of each “weight” P! for the 5 and the 10 representation,
and one sees that the only splittings allowed are the ones that form an intersection of the form 1010 5.
That is, the explicit reproduction of an Eg Dynkin root system is not needed, as long as the intersections

of curves at the point reproduce the desired couplings.

Curve Mult. | Diagram
A(ﬁ3=65=0) DA =s= 5} =0 2 @
By (gy=pi=0) @ 62=01=9=0 2 o
By (gy=pi—0) : 02=01=5=0 3
C 0=y — fBshw? = BB
B3 (55:64:0) . _ 635 _ )\2/\1@51(5051/\11112 + 6237) =0 1 @
Closmpomt) : Ao =y =025 — P31\’ =0 ]
X(53=,35=0) oW =ys+ )\%Alfﬁg’ = 95 — 51g =0 1 @

Table 5.2.5: Curves over the “Eg-like” point
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] Curves \

GUT divisor “FEjg” point Charges Repr.
A - A/35=,34=0 ( 2, 17070) —Q
Bi g5=pi=0 (0,-1,1,0) fi5 — o1 — v
B < By gs—p,—0 (1.0,0,-1) 10 — Qg — Qi3 — Oy
B3 5=p4=0 (0,-1,0,1)  pio— o1 —2a9 — a3
C _— 055:54:0 (O, 1, —2, 1) —Qs3
< Bi g5=p4=0 (0,-1,1,0) fi5 — 01 — v
D 2 X 3255:54:0 2 % (1.0, 0, *1) H10 — Qg — (x3 — 04
A55:54:0 (—2,1,0,0) —Qg

Table 5.2.6: Curve splittings and their charges and associated representation at the “Fg-like”
point.

5.3 An SU(5) model with an £ Yukawa Point

In particular, at the point on the base defined by w = 84 = 85 = 0, when these coordinates are treated as
non-factorizable holomorphic variables, the explicit resolution does not give the diagram for a Eg group
that would be expected from the counting of the vanishing order as in table [5.0.1] Further analysis [57]
showed that although the resolution does not reproduce the exact diagram that would be naively expected
from the Tate’s algorithm, it still reproduces the 10 10 5 coupling, necessary to give mass to the top quark
in an SU(5) GUTs, the main reason for why one considers E enhancements in the first place.

However, Esole-Yau resolution [55]] does not contemplate further singularities, that can arise in
particular regions on the moduli space of the base where the parameters 3; factorize. Such possibility of
factorization was studied for example in [[141}{150].

We also propose a similar factorization to reproduce a codimension 3 (a point on the base) enhance-
ment to an Fg singularity. Our construction of such splitting follows from the established connections
between F-theory and heterotic string theory, where the coefficients 3; are related to the higgsings used
to break Eg down to SU(5), as

Eg — SU(5) x SU(5), . (5.3.1)

We will briefly review how are the coefficients in the elliptic fiber related to the Higgs vevs in the next
section, following [151}/152].
5.3.1 The j3; Coefficients from the Spectral Cover

The rough idea of the spectral cover construction is to incorporate in a geometrical description the
higgsing of a gauge group. Our starting point is the Fg group, that we break down to an SU(5),

FEg — SU(5) x SU(5), — SU(5) x U(1)™. (53.2)

There is a Higgs field responsible for the breaking, which can be locally described as a section of the
canonical bundle over the SU(5) divisor S with values on the adjoint of Fg,

Ks ® Adj(Es). (5.3.3)

In standard geometrical engineering, the gauge groups are identified with singularities as the standard
ADE classification, obtained as a blow-down of the resolved geometry. They are then broken to smaller
subgroups by giving non-vanishing volume to some P!’s. This corresponds to giving a vev to the Cartans
of SU(5),. Thus, being a Cartan root, the Higgs field we are interested in obeys [®, ®T] = 0. These
solutions are also relevant since they usually leave A/ = 1 supersymmetry unbroken.
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We next want to describe the Higgs field in terms of its eigenvalues and eigenvectors, that is, its
spectral data. We introduce a section s of the canonical bundle over S, Kg, and we can write the
eigenvalue equation

det(sI — ®) = 0. (5.3.4)

Since we restrict to the Higgs field that leaves the SU(5) but breaks SU(5) , we can expand (5.3.4) in
the 5 eigenvalues ¢; for the fundamental representation of SU(5) | as

[[Gs—t)=o0. (5.3.5)

7

Expanding, we find
Bos® + B2s” + B35 + Pas + B5 = 0. (5.3.6)

The B is not present since 51 = t1 + ... + t5 = 0, from the tracelessness condition of the roots in
SU(5). Although it is not yet clear, the §;s in are the same as the elliptic fiber equation in the
Tate form, when in the vicinity of the GUT divisor. To see that, we first define the “Tate divisor” [57]],
as the equation

Crue : Bow’ + Pazw® + Bayw? + Baz’w + Bszy = 0. (53.7)

The equation for the elliptic fiber (5.2.11)),
—y? + 2% + (Bow® + Boxw® + Bayw® + BaaPw + Brzy) = 0, (53.8)

. . . . . 2 . .
when restricted to the Tate divisor implies %; = 1. Also we can define the holomorphic section u = y/x
on the Tate divisor. This allows us to write the Tate divisor as

Crae  :  Pow® + Bowu?® + Baw?u® + Bawut + Bsu® = 0. (5.3.9)

We then restrict to the vicinity of w — 0 and close to the singularity on the elliptic fiber y — 0, x — 0.
This in turn implies u — 0. To arise at the spectral curve (5.3.6), we consider the section s = w/u, and
we arrive at

Bos® + P25 + B3s® + Pus + B5 = 0, (5.3.10)

that is precisely our spectral cover construction (5.3.6). The coefficients (; are given in terms of the
eigenvalues ¢; as

Bi = —BoY ti=0,  Ba=PBo Y titj,
i i#]
Bs = —Bo Y titjt,  Ba=Po > titjtiti,  Bs = —PBotitatstats.
i#j#k i#j#k#L
Recall also that the first enhancements that we encounter in the SU(5) model happens when A’ in
A = w® A’ has a first order zero. This corresponds to the vanishing of

Bs = —potitatststs, or (5.3.11)
P = -5 H(—tz’ —t;) = B354 — B2B3B5 + Lok
1]

The expansion of the f, g and A in terms of the variables on the singularity w and {t;} is given by

A= 4328500+ f=B) titjutt..., g=Buw’+. .., (5.3.12)
i#]
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where the dots indicate higher order terms in w. As we want an enhancement to an Fj, it follows from
the Kodaira classification[3.0.1] that we should have

ord(f) >4, ord(g) =5, ord(A) = 10. (5.3.13)

In order to achieve ord(f) > 4 we require every term ¢;¢; to vanish, that in turn imposes that at least
4 of the t;s are zero. But then the tracelessness condition implies that all should be zero. We could have
advanced this, since the ¢;s are related to higgsings of the underlying Fg group, so setting all ¢;s to zero
would un-break the Fis.

Since we want to describe this enhancement as a codimension 3 locus, we introduce sections p and
q, that will be normal sections to curves on the SU(5) divisor. We could interpret this as the normal
sections of divisors on the base B3, but as we will argue later, having started from the Tate model does
not allow this interpretation. Looking at 3, relation with S this means that Z# j t;1; must be a section
of the K% @ L;;(5):

We impose now that the ¢;’s can be written as

t; =t'p + tlq. (5.3.14)

The ¢! and t! could also be sections of some bundle on the base, but for simplicity of the model we
consider them to be constant integer numbers. This implies that p and ¢ are sections of K 1531 ® Lsu(s)s
and could be homologically equivalent to each other. The tracelessness condition 5; = 0 implies

p(th +th + 15 + ] + t8) + q(t] + 13 + 5 + ] + 1) = 0.

We also want no trivial solution to (5.3.11)), thus ¢; # 0 and ¢; + t; # 0. One choice that satisfies all the
above requirements is

ti=p, la=q, t3=p+gq, ta=-2q, t5=—2p.

This particular selection is symmetric under the exchange p <+ ¢. The matter curves represented by
p=w = 0and ¢ = w = 0 could be exchanged. Together with the fact that they are in the same
homology class, they represent the same curve, as in figure The role of exchange symmetries for
the curves in phenomenological F-Theory models was explored in [51].

The ;s after the replacements become

B2 = —Bo(3p* + pg + 3¢?), Bs = Bo(p + q)(2p* — 3pq + 2¢%),
Ba = 2Bopa(p* + 4pg + ¢*),  Bs = —4Bop**(p + q).

It is also convenient, for reference, to write the polynomials P and R,

P =263p(p — 29)(p — 9)*(2p — 9)a(p + 9)*(2p + q) (p + 29), (5.3.15)
R=—B3p—q)*(p+q)(8p° — 4p°q — 38p"q* — 43p3¢® — 38p°¢* — 4pg® + 8¢°).

Replacing the values for the /3;’s, equation (5.3.13)), and setting Sy = 1,

y? — 4p¢* (p + Qayw + [20° + ¢*) — pa(p + q)] yw? + 2° + W'+ (5.3.16)
+ [-3(0* + ¢*) — pq] 2w® + 2pg(P* + ¢* + dpg)z*w = 0

We next calculate explictly f, g and A with respect to w, p and ¢q. There will be codimension two
and three loci on the base where the vanishing order of the functions will increase. If we extrapolate
the result of the Kodaira classification (table[5.0.I) to codimension higher than one, we can extract the
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information on the “expected” gauge group over each enhancement locus. For p # 0 and ¢ # 0, as
expected for the SU(5) singularity (for the full expression, see Appendix [A.4),

A = w®(-512°(p — 20)(p — 0)*(2p — )¢’ (P + )°(2p + @) (p + 29)) + O(w"),
16 5 3

f= =3P +a)'+O0w), (53.17)
128
9 = S5-p70 (Pt a)’ + Ow).

So ord(A) = 5 and ord(f) = ord(g) = 0. On the codimension 2 locus p = 0 together with w = 0, we
get

A = —432¢2%u0® + ...,
f = =3¢w+..., (5.3.18)
g = Pt + ..

where the . .. are terms of higher vanishing order. Therefore ord(A) = 8, ord(f) = 3 and ord(g) = 4,
the vanishing degrees for a Ejg singularity. There are also other codimension 2 enhancements appearing
inp+q=0,p+x2¢=0and2p=+q =0, that we sumarise in table[5.3.1 We will call the w =p =0
locus the Eg matter curve, even if the explicit resolution lead to something different from an Ejg. Similar
notation will apply to the other codimension two loci.

At the point p = ¢ = w = 0 in which we expect by construction to get a Eg singularity,

A = —4320'0%+ ..,
f = =3p*w® — pquw® — 3¢*w + ..., (5.3.19)
g = w+...,

Thus ord(A) = 10, ord(f) = 5 and ord(g) = 5, the expected for a Fg singularity. Similarly, we call
this codimension three locus the Eg Yukawa point.

Curve (inw = 0) | Codim | ord(A/f/g) | Sing. type
p=0 8/3/4 Es
p+q=0 ) 8/2/3 SO(12)
p—q=0 7/0/0 SU(7)
pt2¢=0 6/0/0 SU(6)
p=q=0 3 10/5/5 Fx

Table 5.3.1: Codimension 2 and 3 enhancements for the particular model (5.3.15). Exchang-
ing p <> q gives the same results

5.3.2 Resolution

The expression for the elliptic curve becomes, after we replace the values of the 3;’s for our chosen

factorization (5.3.19),

y(—y — 40’ (p+ @)z + [2(0° + ¢*) — pa(p + ¢)] Mw?)+ (5.3.20)
Fao (Ao + Mw® + [-3(0% + ¢) — pa] Mw?x + 2pg(p?® + ¢* + 4dpg)aw) = 0.

We again have a binomial variety of the form encountered before,

ys + MA2(...) =0, (5.3.21)
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Figure 5.3: A diagram of the model considered. The curves p = 0 and g = 0 are in the same
homology on the base, and correspond to the same matter curve, and they meet
at a point of E'g enhancement.

with s = —y — 4p%¢*(p + @)z + [2(p3 +¢%) — pq(p + q)} A w?. We perform the small resolutions
(51 : [y, )\1] and 52 : [8, )\2],

0 =ys+ A1 (Gadowd + 62\2wd + [—3(102 +q¢?) — pq] St w?x + 2pq(p? + ¢% + 4pq)xw)
0 =das+ oy +4p°¢P(p+ @)z — [2(0° + ¢*) — pa(p + q)] i \w?,
(5.3.22)
with the projective relations

[0201 A2y : dodox : w], [y :z:01A], [y: A, [s:Ag]. (5.3.23)

At this point, in Esole-Yau resolution [55]] we would have the fully resolved space. The enhancements
would not worsen the singularities, but only split the already existing curves. Here, however, there are
further singularities to be resolved. The reason for this is that in our model the 5;’s split in a product of
the sections p and ¢, thus enhancing the vanishing order of the previously smooth terms.

We now proceed to resolve the additional singularities. First, we rearrange the equation as

0 =ys+ A1 (G2hez® + 03A3w® + [=3(p* + ¢*) — pq] Siw?z + 2pg(p? + ¢* + 4pg)z?w)
0 =das+6 (y— 200"+ ¢*) —palp + 9)] Mw?) + 4p°¢*(p + ¢) .

We note that all the singularities of the second equation arise when d2 = 6; = s = (...) =p =0. or
do =01 = s = (...) = ¢ = 0. Similarly as was done to resolve the SU(5), we introduce an auxiliary
equation t = y — [2 (P +¢%) — palp + q)] Aw?, and we now work with the system of three equations,

0= ys+ AAi(62h0a® + 53A3w® + [=3(p® + ¢%) — pq] Sr w?x + 2pq(p* + ¢* + 4pg)x*w)
0= 625+ 0t +4p*°¢(p+q)x (5.3.24)
0= —t+y—[20°+¢) — pa(p+ q)] Mw?.

It is now straightforward to resolve this system of equations. First we resolve the singularity at
g = s =t =01 = d = 0 in the second equation, by performing the blow up x1 : [s, ¢, ¢|, that is

s — x18, t = x1t, ¢ = x1q, with the projective relation [s:¢: q]. (5.3.25)
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Notice that this was a P2 blow up, not a small resolution as was done to resolve the curves and
Yukawa enhancements in the previous section. As a consequence, we are in fact introducing a new
(three-dimensional) divisor on the fourfold, but localized along codimension 2 on the base (the matter
curve). That is, the new fiber will have to have dimension higher than one. Up to now, the effect of the
resolutions was only to modify the one-dimensional fiber of the fourfold, replacing the singular points
by one dimensional curves. In the resolution we will perform now, we then also modify the base of the
fibration, introducing new submanifolds along the enhancement loci.

The difference here to the previous case where we only needed small resolutions lies on the fact that,
in the brane picture, the collisions that lead to SU(6) and SO(10) matter curves come from collision of
the SU(5)-brane with an U (1) seven-brane or an O7-plane. Both correspond to a non-singular degener-
ation of the fiber, and therefore a resolution is not needed. In this case, however, the collision inducing
an Fg enhancement can be understood as

Es — SU(5) x SU(3), (5.3.26)

and thus the colliding brane would carry with it a singularity from the F-theory perspective. Our local
construction however does not allow us to see the colliding brane outside the SU (5) locus {w = 0}.
One should also keep in mind that there is a large number of possibilities for the blow-ups, that
might lead to different final resolved manifolds. Here we perform one of many choices, that leads to a
resolved space in few steps. There is however no possibility to resolve this singular space only via small
resolutions. To fully resolve the space, we then choose to perform other three blow ups, in the following
order,
o [s,tpl, ok [s,tml, xe t [s, 6 X, (5.3.27)

thus introducing four new divisors to the ambient fivefold given by {m; = 0}, {m2 = 0}, {x1 = 0} and
{x2 = 0}. The defining equations for the elliptic fiber consists now on the triple intersection

0= mmax1x35y + MAe(—2pmimagxix2(p*mims + dpmimagxixe + ¢XiX3) — 1A w’+
+81 01 (3p?mins + primagxi X2 + 3¢2X3x3)w?z — dadex?)

0= 4p*mq*x1(pmima + gxix2) + 625 — 01t

0= —mmaxixat — M(pmima + gxix2)(2p*7ims — 3pmimagxixe + 2¢°Xix3)w? + v,

(5.3.28)

together with the list of projective relations

[0102A2y : So ot w] #[0:0:0], [hy:x:M]F#[0:0:0], [y:A]#][0:0],
[T17ax1X35 1 Aa] # [0: 0], [mimaxas : mmaxat:q] #[0:0:0], (5.3.29)
[rax2s i maxat :p] #[0:0:0], [xes:xot:m]#[0:0:0], [s:t:x1]#][0:0:0].

Since the last equation in (5.3.28)) has a simple dependence on y, we can use it to eliminate y in the
other equations, and return to a system of two equations,

0= mm3x1x3s [mmax1X3t + A1 (pmima + qxaxe) (2p*wind — 3pmimagyxixe + 2¢°X3x3)w?] +
A2 [—2pmimagxix2 (PPrins + dpmimegxixe + ¢ XIx3) — 0TATw O+
i (3p*mims + pmimagxaxe + 3¢ X x3)wiz — S hpa?]

0= 4p*ma*xi(pmima + gxix2) + 025 — Oit,

(5.3.30)

while the projective relations should be inverted to eliminate the dependence on y. The sections corre-
sponding to the original GUT divisor and the two matter enhancements now become

5251)\2)\111) = 0, TP = 0, X2X149 = 0. (5.3.31)
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5.3.3 Codimension 1 - The GUT Divisor

At codimension one, when we restrict ourselves to mom1p # 0, x2Xx19 7 0, we can simply blow down
the four P%s since they sit on pg = 0 or gg = 0. Blowing down, we simply return to our space after
the two small resolutions, (5.3.24). Even without blowing down, we have the same number of curves as
before, with the same multiplicities and same intersecting properties. This is rather obvious, since the
additional structure coming from the extra blow-ups appear only at particular values of p and q.

5.3.4 Codimension 2 - The “FEg” Matter Curve

Now we look at the interesting locus of codimension 2, where in the original blown-down space corre-
sponded to w = p = 0. As mentioned above, this locus naively corresponds to an Eg enhancement,
as in table [5.3.1] In the blown-up space, for each curve in codimension one, table [5.2.1] we can take
as restrictions to the Eg matter enhancement either p = 0, m; = 0 or m2 = 0 obeying the projective
relations (5.3:29). At this locus some solutions are not simple P's inside the resolved elliptic curve, as
before. Take as an example the curve B. Along the pg = mimep = 0 locus, 4 and S5 vanish, so the
defining equation of the curve simplifies to

Oy = 7T17T%X1X35(7717T§X1X§t + A153w2) + )\1)\2(—5%)\%1115 + 51)\1B2w2:n) =01t =0. (5.3.32)

However, as mentioned, the restriction to the Fg curve can be taken to be p = 0, m1; = 0 or m = 0.
When 71 = 0 the curve B reduces to

(1 =0) &3 = 1A N (=61 \w® + faw?x) = §1t = 0. (5.3.33)

That has as one possible solution
E* : 52 =T = (51 = 0. (5334)

The rescaling conditions that have to be obeyed for E, are

[0:0:w], [0:2:0], [Atgxixew : A1, [0: Xa], [0:0: ¢ql, [maxas : maxat : p], [x2s: xat : 0], [s:t: x1].

Using the fact that y1x2q # 0 and the rescaling conditions above, we can fix Y1 = ¢= XA =z =w =
A1 = 1, and we are still left with the unfixed coordinates 72, s, t and p, together with the conditions

[mas : mot = pl, [s: t]. (5.3.35)

So, the solution F, is actually a P2 blown up at the point s = ¢ = 0 by a P!,
There are however minimal solutions that correspond to a P! hypersurface inside this P?. As one
concrete example, take the intersection of B with p = 0,

(p =)62 = mmax1X5s(mmEx1Xat+ A1 (gx1x2) W) +01 AT Aow? (=51 Mw® +3(gx1 x2)*x) = 61t = 0,
(5.3.36)
that has as one possible minimal solution

Ep: (p=)y=0=m =0. (5.3.37)

We can see from the defining equations of E, (5.3.34) and (5.3.33) that E.,, is a P* hypersurface inside
E,.

Summarizing all the possible splittings, the codimension one curves decompose as they reach the
matter curve pg = 0 as shown in figure

The only curve that is not a P! is E, described above. We denoted E*]% minimal solutions that were

hypersurfaces inside F,, with k= s, t,p, mo.
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B1 BeB3FE.p Ev«tEyryBs By By AE.,,B1 B, E,, C

Figure 5.4: The splittings as we move to the Eg curve.

The equations for the curves are given in table The multiplicity in E, ) : is counted as
the largest multiplicity among all the representatives [P~ curves of the homology. The diagram has ten
independent nodes, and do not correspond to any group in the Dynkin classification. One should keep
in mind that the P's are not all localized on the fiber of the resolved Calabi-Yau fourfold. The matter
curve was also blown up, and what we are considering the “new” fiber is a non-trivial mixing of the old
fiber with the new one-dimensional structure introduced on the base along the matter curve.

Curve Mult. Diagram
A D AM=p=s=6=0 2
E*(k) : 52 =71 = 51 = (k‘ :)0, k= S,t,p 2%
El,<7r2 : 52:7'(1:51:7'(2:0 2
Bl H 52:]?:8:51:0 3
By : da=p=mmxixst+MPsw? =06 =0 2
Bg : 52 =p= 27‘(’17‘(%)(33 + )\251)\1(—51)\1103 + 3)(%.%‘) =t=0 1
B4 : 52 =T = —(51)\1’103 + (qX1X2)2$ =t=0 1
B; : s=m=—0\w’ + (gxixe)’r =pp’mPxixe — it =0 1
C D Ao =p=mmx1Xat + M Bsw? = das — 61t =0 1
X 1 w=p=mmxixsst + AM1A3022° = da5 — 51t =0 1

Table 5.3.2: Curves in codimension 2 wy = po = 0. * the multiplicity is counted from the P* with
the highest multiplicity. This diagram should NOT be interpreted as the “Dynkin-like”
diagram on the fiber.

Notice that while k = s, ¢, p correspond to the P! hypersurfaces of P? and therefore are in the same
homology class, F., is not homologically equivalent. It intersects with the P? at the point s = ¢ = 0,
and therefore with E,s and F,;, but not with F,,. The intersections among the curves £, and A are
represented in figure[5.5]

Figure 5.5: The intersections of A, E,s, E.p, Fyr,, E« and Bs. For obvious dimensional
difficulties, we represented the 2n-cycles P™ by n-cycles S™.

In the M-theory perspective, the four-cycle P2 can be wrapped by M5-branes that correspond to a
string in the remaining dimensions with tension given by the volume of the four-cycle [[153]. When
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shrunken back to zero volume, the wrapped M5-branes become tensionless strings. In the effective
theory, this corresponds to a tensor multiplet becoming massless, leading to a breaking of the low-
energy effective theory and thus a phase transition. In the Type IIB picture, the blow-up introduce a one
dimensional P! on the fiber and also a P! on the base along the matter curve (one non-trivially fibered
over the other). This blown-up P! can be wrapped by a D3-brane, that again in the blown-down limit
give rise to a massless string. Additionally, we might have to worry about string worldsheet instantons
wrapping the vanishing P's. The P! along the curve might also break the Calabi-Yau condition. A
similar blow-up along a curve in Type IIB picture was studied in [[115]]. A more detailed exploration of
the role of tensionless strings on the theory (or the phase transition) arising in this particular setup would
be interesting, however we do not deal with it in this thesis.

Alternative interpretation - Matter Curve

Here we mention a somewhat ad hoc argument to obtain a structure of P's in what we will call the “F-
theory fiber”, the fiber composed simply from the proper transform of the elliptic fiber X and a particular
subset of the P's. As we mentioned, the blow-ups that took p — momp introduced two-dimensional
spaces located along the matter curve that could be interpreted as a mixed resolution of the fiber via
an one-dimensional space and a resolution of the matter curve on the base. We assume that the P's
forming the “F-theory fiber” are the ones obtained only by intersection with p = 0, then the curves
Bowt = {Fsry, Fys, Evxt, By, Bs} of table are not anymore solutions. One sees that the remaining
curves intersect precisely as an affine Fg Dynkin diagram, with the correct multiplicities.

Curve Mult. Diagram
A : M=p=s=6=0 2
E*p . (52=p=(51=7T1=0 2
Bl : 52:]?:8:61:0 3
By, : by =p=mmsxix5t + M fsw? =06, =0 2
Bg : 52 =p= 271'171'%}(%54-/\2(51)\1(—51)\111)34-3)(%.%) =t=0 1
C g :pzﬂlﬂgxlxgt—i-)\lﬁng =09s — 01t =0 1
X 0 w=p=mimxixast + MA3022> = a5 — 61t =0 1

Table 5.3.3: Curves in codimension 2 wo = p = 0. The Diagram is precisely the Dynkin diagram of
an affine Es group.

The removed curves, By could be related to the broken SU (3) described in (5.3.26). We however
do not address this possibility here, but leave it to a future work.

5.3.5 Codimension 3 - The Yukawa Point

We next restrict the elliptic fiber to the Yukawa point, that before the blow ups corresponded to the locus
w = p = ¢ = 0. Similarly, the restriction to the codimension three locus has as solutions some curves
that are not P's, but again, some of the internal P! hypersurfaces appear as solutions. The curves at the
Yukawa point with their multiplicities are described in table[5.3.5] It is also interesting to see how the
IP%s intersect to form the respective intersections for the P! hypersurfaces. The resolution diagram at the
Yukawa point is presented in figure[5.6]

The interpretation of this resolution at the Yukawa point is even more complicated. The blowups
again introduce divisors on the fourfold, but now located on a point on the base. This implies a two-
dimensional structure appearing on the base. However, no blow-up was performed directly at the
Yukawa point, but only on the matter curves. And as we argued, the blow-ups introduced locally a
one-dimensional P! on the base. Thus, the collision of the two Eg matter curves should then lead to the
Hirzebruch surface Fy = P! x P!, or even a more general Hirzebruch surfaces F,.
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Curve Mult. Diagram
A AM=p=qgq=8=01 = 2
E*(]%) do=p=x1=202=(k=)0, k=s,tq 4
ET(k) (52 =71 = X1 —(52 = (k :)0, k :S,t 2
Ei(k) (52 = T2 = X1 —(52 = (k :)0, k :S,t 2
Eﬂ(k) 52 =T = X2 = 52 (k :)0, k= S,t 2
B1 51:p:q:(52:s:o 3
BQ . 61:p—q:(52:t: 4
C . 52:p:q:)\2:t:0 2
X 1 w=p=q=mmxixast + MA3022° = das — 51t =0 1

Table 5.3.4: Curves in the expected Fs Yukawa point.

Figure 5.6: The intersection diagram with the higher dimensional surfaces.

Again, we can restrict ourselves to the curves obtained when we collide the curves given only by the
restriction p = 0 and ¢ = 0. The curves located at this intersection are A, C, By, By, x4 and X, that
arrange as shown in the diagram of table We see that some of the P%s are completely removed
from the set, so the hypothesis that on the Eg Yukawa point we would have an F}, surface on the base
seems to not be valid.

Curve Mult. | Diagram
C 52:p:q:)\2:t:0 2
BQ : (51:p:q:(52:t:0
E*q : 52:p:q:(52:)(1=0
Bl :
A
X

@O

S —p=q=0s=5=0
w:p:q:W%W§X%X%St+)\1)\%52x3:(525_51t:0

—_ o W A &

@)
®y
AX)

Table 5.3.5: Curves restricted to p = g = 0 over the Yukawa point.

We conclude this section and chapter with a summary on the results obtained so far. F-theory model
building rely on the assumption that the matter curves and Yukawa couplings are reproduced at loci on
the base where the gauge group is enhanced, importing what has been known from perturbative type
IIB theory with intersecting branes and the spectral cover formalism of heterotic strings. However, the
non-perturbative character of branes in F-theory might lead this naive perturbative picture inconsistent.
The gauge groups in F-theory are constructed from ADE singularities appearing on the elliptic fiber
at particular submanifolds on the base. Having an explicit algebraic description of the singularity, one
can identify a gauge group associated to it. This gauge group is constructed in the M-dual picture by
wrapping M2 branes on curves in the resolved fiber that arrange themselves as the roots of a gauge
group. The identification of the resolved structure of curves and the corresponding gauge group gives an
ADE classification for the singularities. The ADE classification however is only valid in codimension
one on the base of the fibration. It might work for particular cases in higher codimension but in general
can fail (as was shown in [55] for the matter curves, and reviewed here in section [5.2.1).

Even if the resolution at subloci does not lead to a series of curves intersecting in a way that repro-
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duces the expected enhanced gauge group, once we know the explicit fiber resolution it is nevertheless
possible to analyse the physical quantities we are interested in. Namely, we can identify to what rep-
resentation a matter curve corresponds to, and identify how the representations couple at the Yukawa
points. This was done for the SU(5) case going to an expected Eg Yukawa point [57]. Not treated here
in this thesis is the work [[154] in which the matter representation and Yukawa coupling from a model
starting with a divisor carrying an Eg singularity is analyzed, and it reproduces the matter representation
27 and the coupling 272727.

Here we tried to construct an explicit model which would have a codimension 3 locus with an Eg
singularity. We imported results from F-theory/Heterotic duality, specially to the identification via the
spectral cover of the coefficients in the elliptic fiber to with the vevs for the Higgs field responsible
for breaking the Eg gauge group in Fg X Eg heterotic models. To fully resolve the space, we had
to perform blow-ups that introduced two(-complex)-dimensional subspaces along the codimension two
enhancement loci. We proposed that these two-dimensional spaces correspond partly to a resolution of
the matter curve itself (and therefore a modification of the base) and partly to a resolution of the singular
one-domplex-dimensional elliptic fiber. We have shown and ad hoc selection of curves that reproduce
a Eg diagram in codimension two, as naively expected from the Kodaira classification, but the same
selection lead to a resolution in codimension three with a very small number of curves, while the non-
selected curves on the Yukawa point at least agreed with a Eg diagram in the number of nodes. As was
pointed out however, we should not expect to obtain an agreement with the Dynkin diagrams, but we
do have to check if the resolution leads to desired matter representations and couplings. We have not
performed this computation yet, but this will be done in a next work.
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Chapter 6

Conclusions and Outlook

In this thesis we presented two constructions worth of exploration in the framework of effective String
Theory and its strongly coupled relatives M- and F-theory. In the first part we calculated the Kaluza-
Klein reduction of the action for a spacetime filling D6-brane on a Calabi-Yau orientifold, and derived
the A/ = 1 characteristic data for the theory living on the brane reduced to four dimensions. We first
discussed the geometrical space associated to the scalar fields for brane deformations ¢/, when the
background Calabi-Yau internal space is fixed. We were able to construct a local description for the
Kihler potential of this space written in the elegant form

Ko(¢+0) :—;/c J/\BI/C Im(CQ) A éy, (6.0.1)

where {3’, a7} form an infinite basis of two- and one-forms on L. A subset of the deformation fields,
namely b'(Lg) of them, generate deformations that preserve the supersymmetry conditions and are
described by massless modes, and the base {3’, a7} reduces to the symplectic basis discussed in section
The remaining deformation fields induce a positive scalar potential. We saw how the scalar
potential could be generated from a generalized version of the superpotential in (3.5.14),

W = . (JC — -FDG) N (Jc - .FDg) (6.0.2)

where we included of B-fields. The scalar potential would also receive contributions from the D-terms,
giving at the end

1 - -
V=V2€3¢/L d0,y A +d6, + (B — F + d0B) A +(B — F + do) + d« 0 Axd 0. (603)
0

In section [3.4] we showed how to combine complex structure deformations and brane deformations,
and specified a Kéhler potential for this open-closed moduli space. The deformations ¢ corrected the
complex structure deformation moduli {N'*, T}, as

NF=N"*—20y (?PK,),  Tr=T, 20 (c*PK,). (6.0.4)

The gauge coupling function for the U(1) field living on a static brane,
fr= / (2Re(CQ) +iC3) = 5N — T} (6.0.5)
Lo

is corrected to
f=0,N* — 6T, (6.0.6)

when we allow brane deformations. Here ), and delta’ are the integral over Lg of {ay, 5/\}, the base
elements of H3(Y). We also calculated kinetic mixings between the massless U(1)s coming open and
closed strings, A and A“ respectively, and the mixing coupling was found to be given in the simple
holomorphic form

fou=—C'Ag, (6.0.7)
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where Az is a geometrical factor integrated over the cycle of the background brane. This coupling
induced a correction to the gauge coupling function of the U (1) living on the brane f; as

feor = fr — fa T (6.0.8)

The corrections are not holomorphic, since the factor 7 defined in (3.3.60) is integrated over the chain
C4, and therefore can be expanded in the real deformations. Some extra term to make it holomorphic
should arise in higher order expansions of the DBI action. Alternatively, one could modify the chain in
the definition of 7 to include also a deformation of the gauge bundle as discussed at the end of section

Finally, using Mirror Symmetry described by the SYZ conjecture [69]], we showed how could we
locally relate the obtained effective theory to the known results in the literature for the effective theory
of D3-, D5- and D7-branes in Type IIB orientifolds, for special limits of the compactification manifold,
we discussed the mappings of the fields in type IIA to type IIB and we proposed a mirror version for the
Kihler potential for the open moduli space of branes in Type IIB theory (3.6.25)),

Kdef — i/ SIJImCI)eV/ s Q+ce.. (6.0.9)
Cp+1 Cpt1

As a possible further direction to this work, one could study the lift of the dynamical brane described
here to M-theory/eleven-dimensional supergravity compactified on a G manifold (the compactification
leading to an N/ = 1 four dimensional theory). The results should be related to what was obtained
here after we identify some one-cycle which could be used as the M-theory cycle, that reduces to Type
ITA as we shrink the cycle. A similar discussion for the six dimensional effective action of an ellip-
tically fibered Calabi-Yau in F-theory (the lift of a D7-brane) was performed in [[155]]. Additionally,
in our calculations we often ignored more complicated contributions coming from brane flux, and we
did not include bulk fluxes. Their introduction could induce corrections to many results in our setup.
Also, a more phenomenologically interesting setup could be considered by intersecting two D6-branes,
generating a matter representation at the intersection. Such configurations were explored to the level
of conformal theories in particular compactifications, or had just their spectrum analyzed. A detailed
effective action description, so far as we know, is still lacking.

In the second part of the thesis we moved beyond perturbative Type II theory, and introduced M-
and F-theory. In particular, we studied the GUT model of an SU(5) brane that enhances at curves and
points. We saw explictly how the Kodaira classification cannot hold at higher codimensional locus, but
saw that nevertheless the 10 10 5 and the 5 5 10 couplings are still generated in genetic models. Then,
motivated by the interest in explaining flavor hierarchy from F-theory GUT models, we proceeded to
construct an explicit model which had a codimension three enhancement to an Ey singularity. We made
an ad hoc choice of the coefficients 3; in the Tate model, which accounts for fixing a very particular
point in the moduli space. Such choice introduced new sections p and g such that p = ¢ = w = 0 the
discriminant A of the elliptic curve would vanish as the predicted for an Eg singularity, where w = 0
was the SU(5) GUT divisor.

We saw that besides the obvious curves w = p = 0 and w = ¢ = p that reproduced the vanishing
order of A for an Ej singularity, our model had additional curves corresponding to SU(6), SU(7) and
SO(12) singularities. The singularities over these additional curves are resolved by the same small
resolutions of [55]. However, the EFg curve introduces stronger singularities. The resolution of the
singularity changes the dimension of the fiber, making it two dimensional along the matter curve. We
then proposed that this higher dimensional fiber could be splitted in an “F-theory fiber”, corresponding to
PP's, and a deformation of the base via some complementary P!. By this proposal, the “F-theory fiber”
reproduces exactly the expected intersections at the Eg matter curve, given by the affine Fg Dynkin
diagram of table shown below, where X is the curve that becomes the singular elliptic fiber in the
blow down limit.
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A similar problem also appears at the Yukawa point, but there with a three-complex-dimensional
fiber over it. We again proposed a decomposition between “F-theory fiber” and the blow-up of the base,
where now the point on the base would be replaced by a divisor on the base. The “F-theory” fiber is
described in table[5.3.5] and the diagram repeated below.

®O-OO00

that does not correspond to any Dynkin diagram.

As an urgent next step, we should understand better what are the implications for these higher di-
mensional fibers. As was pointed out from other authors [153,|156|], such resolutions do happen in
F-theory at exceptional singularities and might correspond in the effective theory to tensionless strings
modes connected to the gauge theory. Additionally, one would have to check if such resolutions do
not break the Calabi-Yau condition. Since we are explictly deforming the base, this changes the Kéhler
cone and could induce a breaking of Kéhlerity. Only then it is sensible to analyse the phenomenological
properties of such constructions. The rich intersection pattern, if realizable, could generate interesting
physics.
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Appendix A

A.1 Derivation of the Kahler metric

Let us now discuss the derivation of the Kédhler metric and compare the result with the effective action
for the D6-brane found by dimensional reduction, (3.3.72) and (3.3.74). Firstly, we note that the metrics
for ReM ™ and the pure £X terms match the result found from the reduction of the closed string action,
since KX = (G, G, Gﬁ), as described in [82]. We need then to check the terms involving open
string moduli i, From the reduction of the action the metrics G;j and QA, j are

G\ij = ki A? , Gij = Wik ()\_1)§ ; (A.1.1)
where, recalling equations and (3.3.5),
e %0, =Na; ,  0;=sJ|5,,
%e“ﬁ * 0 = pji Jc x0; = *2€¢SiJIm(CQ)|LO .

The coefficients y;; and )\{ are calculated to be

1 , -
— / oy N SjJ(V”a,{ + Vk,ﬁk) R )\g = / B8N s;ad (A.1.2)
L L

D
e? Mig = B

also making use of the relations [ &; A p = 5{ . To leading order, the V' derivatives of j;; are
0 1 [ 0 1 [ .
W(EQD[LU) = Q/LO[Z A Sj_lOé)\ 5 87‘/’6(62D/J,Z]) = 2/[/0674 AN Sj_lﬂk s (A13)
On the other hand, )\{ is independent of (V*, V}), at least for leading order complex structure deforma-
tions. This implies using (3.4.35)), (3.4.22) and (A.1.1) that
9(e*PGij)
Vi

which is in accord with the result (3.3.72)) found from dimensional reduction. The derivatives of the
metric with respect to (V*, V) are given explicitly by (for first order deformations)

Kug = VE =¢e2Pg,; (A.1.4)

1 . 1 .
8VA(62DQZ-j) = — / &iASlJGA(/ BJASZJJ)_l , avk (62Dgij) = / O~éi/\$l_1,3k(/ ,BJASZJJ)_l .
2/ L 2/ L
R (A.1.5)
The derivatives of the metric G;; are, in turn,

P~ 1 ~ ~ 1 ~
aVA(QQDgij) = /L oy N\ SiJOé)\/Lﬁl Nsjad, 8Vk(62Dgij) = 3 / ag N\ S,;_lﬁk/Lﬁl Nsjad .

2 L
(A.1.6)
To also check the mixing terms of the Wilson lines a’ with the scalars ¢* we expand
0K, ,
acf = Suijlax’ + ... (A.17)
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to lowest order in the 7". This yields the lowest order expression for K le evaluated to be

KE=1F, K)X=1In, (A.1.8)

where were used equations (3.3.38)) and (3.3.59)

f{“:/di/\mﬁhr..., jfl')\Z/di/\nJa,\-i-.... (A.1.9)
L L

A.2 Supergravity with several linear multiplets

In this appendix we want to show, in a step by step way, how does the dualization from linear to chiral
multiplets work, following [82]. We want to relate the effective action in terms of linear multiplets
(Vi,C%), obtained by generalizing a result in [157]],
L = —kczfj dCl A *dfj + %KVKVL dVi N xdV7, (A.2.1)
+Kv,v, dC A*dCF — i dCq A Ky, o d¢' — Ky e dCY)

with the one with chiral multiplets, (3.4.36)),
L = —(Kag + KEKr KE) d¢' A xdl?
+Kkr, (dReMI A «ReM” + def A *df‘]) — 2I~(KLI~(5- (dReMI A sdu? + deT A *daj) .

In (A2.1) K(V, ¢, () is a function of the scalars Vi and the chiral multiplets ¢*. The function K encodes
the dynamics of the fields, and we would like to relate it to the Kéhler potential from (3.4.36). The
standard procedure is to eliminate the fields C%{ in favor of its duals £¥ by introducing an appropriate
term to the action

L— L+LC, oL = —268dC3. = —203 N del | (A.2.2)

where ¢5 () is a Lagrange multiplier. By solving the equations of motion for £% one finds dC})’( =0
such that locally C% = dC%, giving £ = 0 as expected. One can use the equations of motion of C3.,

« O = KRV (dgh 4 4 (Ry, ¢ d¢' = Ry, g dCY)) (A2.3)
to eliminate it from (A.2.T]),
L = —Kugd(' Axdll + Ky,v, dVig AxdVy (A.2.4)

FRVEVE(E — Im(Ky, o d¢?) ) A (dEE — (K, g dC') )

For our particular case, we can further simplify this equation. Comparing (3.3.52)) with the Chern-
Simons action (3.3.49), one can notice that the field C? couples, to first order, with the imaginary part of
¢*, namely a’. We can assume that K is a function only of V7, and the real part of ¢, Re¢’ = u’. We will
see shortly that this assumption agrees with our results (indications that K depends only on Re(’ can be
inferred from section [3.4] as in equation (3.4.20)). The effective Lagrangian (A.2.4) thus simplifies to

L = —1KudC Axdd + LKy, v, dVie A xdVy, (A25)
+KVEVL (dgK — 1Ky dImCi> A *(déL — 1Ky, w dIij) .
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We would like to relate this N = 1 Lagrangian to the standard Lagrangian of chiral multiplets & =
(M, ¢)

L = —Kggd®A*dd (A.2.6)
—Keigy dC' A #d¢? — Ky s (dReM! A sReM” + dg" A «dg?)
—2K 155 (dReM! A xdu? + dé' A xda) .

and relate the Kihler metrics Kgg with derivatives of the function K, as in equation (3.4.36). This is
obtained by performing a Legendre transform with respect to the fields M,

K(M,¢) = K(V,¢+¢) + (M" + M )V (A2.7)

where Vi (¢, M) is written as a function of the complex fields ¢* and implicitly of new field M X, defined
as

MY = —1Ky, +igk. (A.2.8)

One can see (M % + MX) as the conjugate coordinate to V. To see that equations (A.2.6) and (A.2.5)
are indeed related by this Legendre transformation, one has to calculate the derivatives of K in terms of
the derivatives of K. One starts by differentiating (A.2.8§]),

Vi

m - —KVKVL 5 (A29)
OVK . 1 OVK 3ML 1 Vi Vi 1
aci — 20ME gw R B

Using these expressions one easily calculates the first derivatives of the Kihler potential (A.2.7) as
Kyx =Vk, Ka=3K, . (A.2.10)

Applying the equations (A.2.9) once more when differentiating (A.2.10) one finds the Kahler metrics

Kypeype = —KV Kyxe = %KVKVLKVLm 5
ng@ = %Kul’u] + %KulVK KVKVL KVLuj ) (A211)
with inverses
KL ~ ~ ~ i~
KM M = —KVKVL + KuiVK Ku ! KVLuj R
KM = ogw R KOY = 4k (A2.12)

Finally, one checks that K (7', N) is indeed the Kihler potential for the Lagrangian (A.2.5)). This is done
by inserting in the definition of 7}, and the Kihler metrics obtained above into (A.2.6)), yielding back

(A.2.5).

A.3 Mixing of brane and bulk U (1) vectors

In this Appendix we analyze the 4D effective action for all the massless spacetime vector fields that
appear after dimensional reduction. They are the A® and A, components coming from the combination
of RR and B bulk fields (3.3.49), and A, the massless vector component of the U(1) field Ape on the
brane, (3.3.34). The duality relation between C'3 and C’5 implies a electric-magnetic duality between A“
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and A,. To avoid the overcounting of degrees of freedom, we consider both fields, but each weighted
by a factor of one half, as in [27]]. This procedure gives the action

s — —/;RefrFA*FJr;ImfrFAF (A.3.1)

+1(ImN, 5 + ReNo, IMN P ReNs5)dAY A xd AP
+ MNP dA, A +dAg — SReNG IMNPdAg A #dA* — AqdA* NF — J*dAo A F

where F' = dA, A, = (ajAja +T,) and

ImNaﬁ = —/ Wa A *Wg ImN? = (Im./\/’aﬁ)_l = —/ O A *&P Re/\/'a/g = —b"Koap -
Y

Y
(A3.2)
Recalling the duality relation (3.2.6) for the A fields
ePdA|, = — 10 (ePdA)]|, , (A.3.3)
we obtain, for A% and A,,
d(Aa@®) + dAPY W, ANwg = — * dAY %6 w, . (A3.4)

We take the wedge product of the above expression with w, and integrate to obtain the duality relation
dA, = ImN, g * dAP 4+ ReN,pd AP . (A.3.5)
From the variation of action (A.3.T)), we obtain the equations of motion for A, and A,
$(ImN,5 + ReNo, ImNV P ReNjsg) d x dAP — ReNoy ImN P d « dAg — AydF =0 ,(A.3.6)
HImN®P dx dA, — JReNopyImNY d % dA* — JPdF =0 .

However, if one takes the exterior derivative of equation and compare with (A.3.6)), one notes
that the equations are not compatible. That is, the equations of motion and the duality constraints cannot
be simultaneously satisfied. In order to make the duality relation consistent, one should modify the field
strengths as

dA® — G® = dA® — 2J°F , dAy — G = dAg + 2AF | (A3.7)

as well as the duality relation (A.3.3) by the same redefinition. This modified action becomes then
S - - / LImN,, 5 + ReN,y, IMAVReN;5)GY A G — IReN,, ImN PGy A G (A.3.8)
+UmN®P Gy A %G + ARefy FAXF + 3Imfy FAF — AyGYANF — JGo A F .
The equations coming from this action are

dGe = —2JdF dGy = 20, dF Go =ImN,p x G® + ReN,s GP,  (A3.9)
1(ImN,5 + ReNo ImN P ReNsg) d x GP — LReN,yImNP d x Gy — AgdF =0,
JImN®F dx Gy — SReNpyImNP d 5 G* — JPdF = 0.
The first two equations follow directly from (A.3.7), the third is the imposed duality condition, and the
two remaining are the equations of motion for A“ and A,. One can check that they are now consistent,

by starting with the equation of motion for one of the fields and obtaining the equation for the dual field
after imposing the duality conditions.
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As was mentioned, the duality condition implies that the degrees of freedom for the fields are not
independent. To eliminate the dependence of A, in favor of its dual, we now treat the field strength G,
as an independent field, and add to the action the term

38 = —LdA A (G — 280 F) + MdGo — 2A,dF) (A.3.10)

where A is an auxiliary field acting as a Lagrange multiplier. The equations for this modified action are
the same as (A.3.9), but now they all come from variations on the fields A%, G, and A. Having the
equations for G, we now substitute them back into the action, and obtain

S = —/%RefrFA*FJr;ImfrF/\F (A3.11)

+1dA% A (ImN5 % GP + ReNopG” — 2A,F)
— Ay (dAY = 2J°F) N F — (ImNg % GP + ReN,3GH)T* A F

= — / T(Refr +AImMN,T*TP) F A*F + L(Imf, + 40, T + 4ReNyy T T*)F A F

—2ImN, 3 TPdAY N +F — 2(Ag + T°ReN,3)d A% A F
+1ImNL3dAY A d AP + LReN,5d A A dAP |

from where we can extract a corrected gauge coupling function f., for the brane U(1) gauge fields,
Refeor = Refy +4ImNo5 TP, Imfeor = Imfy + 4A,T% + 4ReN,s T2 T | (A.3.12)
a gauge coupling function f,, for the mixing between brane and bulk gauge bosons,
Ref, = —4ImNo3 TP, Imf, = —4(An + T ReNyg) | (A.3.13)
and the gauge coupling function for the vector field A% from the bulk (3.4.39),

fap = —iNas . (A3.14)
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A4

A, f and g in Fs Enhancement Model

—2048p* ¢*w® — 8192p*°¢ 0w’ + 512p" ¢ M w® + 43008p 8¢ 2w® + 53248p' "¢ B3 w® —
—34816p' ¢ 4w’ — 103424p"° ¢ w® — 34816p" ¢ 0w® + 53248p"3 ¢ w® + 43008p'2¢ 8w’ +
+512p " ¢ w® — 8192p0¢*0w® — 2048p%¢* w® — 2560p'8¢%w® — 13056p' "¢ W’ —
—4224p" 8w’ + 73920p' ¢"w® + 109440p ¢ 0w — 60864p3 ¢t tw® — 205312p 2 ¢ 2w’ —
—60864p' 1¢3wO + 109440p ¢ 4w + 73920p ¢ 5w’ — 4224p%¢ 0w’ — 13056p7 ¢ Tw® —
—2560p°¢" ¥ w® — 2816p"° Pw” — 6400p" ¢ w + 11456p"3Pw” + 41344p'2¢°w” +
+26976p* ¢"w” — 36096p ¢ w” — 73536p°¢ w” — 36096p%¢  w” + 26976p" ¢ w +
+41344p°% ¢ 2w + 11456p° ¢ Pw” — 6400p* ¢ 4w” — 2816p> ¢ w” — 432p'2w® —

—864p' qu® + 1944p™°¢?w® + 10456p° >w® + 6805p8¢*w® — 11908p" Pw® —
—18962p°¢%w® — 11908p°¢"w® + 6805p*¢Bw® + 10456p°°w® + 1944p%¢ 0w’ —

—864pq* 1uw® — 432¢' 208 + 864p°w? + 864p° qu® — 1080p*?w? — 4400p>PBw® —
—1080p%g*w? + 864pg°w® + 864¢°w® — 432w,

%(16})12(18 + 64pllq9 + 96p10q10 + 64pgq11 =+ 16108q12 + 16p9q5w + 96p8q6w +
+160p" ¢ w + 96p°¢dw + 16p°¢"w + 16p°¢*w? + 38p° Pw? +

—i—60p4q4w2 + 38103q5w2 + 16102qﬁw2 + 9102w3 + 3pqw3 + 9q2w3) ,

1
g (120" + 3072p ¢ + 7680p™g™ +

+1024Op15q15 + 7680p14q16 + 3072p13q17 + 512p12q18 +
+768p"0¢%w + 6144p™ ' Ow + 17664p'3q " w + 24576p'2¢ 2w +
+17664p"" "% w + 6144p'°g 4w + 768p°¢ " w + 960p'?"w? +
+5280p" ¢"w? + 14016p"¢*w? + 19392p” ¢ w® + 14016p°¢w? +
+5280p" ¢ w? + 960p°¢ 2 w? + 352p” P w® + 2496p° ¢ w? +
+4848p" Pw? + 5920p°8qBw + 4848p° ¢ w? + 2496p¢Buw? +
+352p3¢°w? + 108pSw* + 108p°quw* + 855p*¢w* +

+990p3 3w + 855p ¢ w? + 108pg°w? + 108¢°w* + 108w>)
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