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Abstract

In this thesis we discuss two aspects of branes relevant to high-energy phenomenology. First, we
consider a single D6-brane wrapping a special Lagrangian cycle and the background space compactified
in a Calabi-Yau orientifold the conditions needed to obtain a four-dimensional N = 1 supersymmetric
theory. We calculate the bosonic part of the effective action by performing a Kaluza-Klein reduction of
the brane seven-dimensional action, and obtain theN = 1 characteristic data. To discuss the moduli, we
first fix the moduli from deformations of the background Calabi-Yau and study the D-brane deformation
moduli space. We next allow for Calabi-Yau deformations, and show that the moduli space for complex
structure deformations is corrected by the fields living on the D6-brane. We also calculate the scalar
potential from D- and F-terms generated from brane and background configurations that would break
the supersymmetry condition. We then, via Mirror Symmetry, relate the spectrum obtained in our work
to the spectrum in Type IIB effective theory with D3- D5- and D7-branes, and we propose a Kähler
potential for the moduli space of brane deformations in Type IIB theories. In the second part of the
thesis we discuss effects of brane intersections when the string coupling can become strong, and we
work in the framework of F-theory. After reviewing the basics of F-theory constructions and a particular
SU(5) model already discussed in the literature, we construct a model which contains a point of E8

singularity, and curves of E6 singularity. By explictly resolving the space, we show that the resolution
requires the introduction of higher dimensional fibers, and argue how we can circunvent this problem
for the E6 curve, leading to the expected resolution that generate an E6 group, while at the E8 point we
cannot make the resolution lead to an expected E8 structure.
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Chapter 1

Introduction
The quest for understanding Nature’s mysteries have always played an important role in humankind.
All around the world, since the most remote times, societies have tried to create explanations for why
the world is as it is, either for practical technological purposes that could in principle favor societies
to survive and flourish, either to satisfy an innate curiosity, and understand the broader picture of the
Universe and our role as humans and part of the Cosmos. Much have changed since the ancient Greek
philosophy, the Chinese schools of logic, the Persian medicine academies, the Aztec metaphysics and
the Roman theology, but the desire for understanding the Universe still nowadays perseveres just as, or
even more, strongly.

What often come with this ceaselessly search for answers are shifts in paradigms. Much more than
just curiosities restricted to academic circles, these scientific shifts have cultural an social impact. An-
cient cosmology saw, understandingly, a very limited picture of what is out there. Humankind discussed
for millenia whether the Sun or the Earth would be the center of all things. The view of an Earth or the
Sun as the (physical and philosophical) center of the whole Universe might now seem even ridiculous
to most people. Our cosmology has advanced at such a fast pace, that took us from the first evidence for
other galaxies outside the Milky Way by Hubble (the man) to the fascinating and breathtaking pictures
by Hubble (the telescope) that showed us a countless number of galaxies of which our humble Milky
Way seems to play no distinguishable role. We can now discuss the evolution and fate of the Universe as
a whole, with new concepts that would probably be unimaginable some centuries ago. Down to Earth,
the study of the basic constituents of matter also gave astonishingly new perspectives. In a little more
than one century we changed dramatically our understanding of particles and forces, and often had to
abandon our intuition when dealing with phenomena in the subatomic world. All these investigations are
backed up by measurements with always increasing precision and based over a powerful mathematical
background.

Together with the quest for understanding often comes a quest for simplicity and unification of
phenomena in fewer fundamental ingredients. An idea present in different ancient cultures is that the
universe could be described by a handful of basic “elements”. with one of the best known examples
being the four platonic elements. Moving fast forward in time, after the stablishment of the scientific
method and the investigations of nature by what we now know as physical sciences, the probably greatest
episodes in physics were the unification of earthly and heavenly mechanics in Newton’s Principia, the
unification of electricity and magnetism under Maxwell’s theory, the unification of space, time and
gravity via General Relativity and more recently the unification of particle physics under the elegant
Standard Model of particles. Important to say is that unification comes often as much more than an
obsession for elegance, but rather as a necessity when the existing theories become inconsistent by
themselves or with phenomena. Today probably one of the most fascinating explorations in physics is
String Theory, that tries to unify the two main pillars of fundamental physics, Quantum Theory and
General Relativity. This proposal to describe everything as subsets of a single theory can seem too
utopic and audacious, but there are in fact practical reasons for why such a pursuit is not only desired,
but needed. Additionally, if String Theory is indeed correct, it will be a huge change to the way we
understand particles, interactions, spacetime and even our Universe itself!

At the moment, this is a panorama on the status of fundamental physics: Quantum Field Theory
(QFT) is the framework to describe the phenomena in small length scales, in which particles are point
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excitations of fields in spacetime. The Standard Model of particle physics is a QFT that has been
extremely successful to explain with great detail what goes on in particle accelerators. It postulates as
building blocks for matter three families of chiral fermions with two quarks and two leptons in each, each
family being a heavier copy of the other. The vast majority of all the matter we see belongs to the first
family, but the more massive particles from the other families can be produced in high energy collisions,
but decay fast into the lighter “cousins”. The fundamental forces of nature (outside gravity), namely
strong nuclear, weak nuclear and electromagnetic forces are described by the bosonic spin one particles,
respectively the gluons, W and Z bosons and the photon. As gravity is too weak when compared to
the other forces, in the energy scales relevant to “earthly” particle physics the gravitational interaction
can be safely neglected. The forces in the Standard Model arrange themselves elegantly as a gauge
theory SU(3) × SU(2) × U(1) under which the fermions are singlets or transform in the fundamental
representation. The electroweak SU(2)× U(1) is spontaneously broken into the electromagnetic U(1)
and the massive (short range) weak force via a Higgs mechanism, under which the scalar Higgs field,
charged under SU(2), acquires a vacuum expectation value, giving a mass to the gauge bosons of SU(2),
breaking the symmetry. A surprising fact was that the Standard Model predicted correctly the existence
of the top and bottom quark, the W and Z bosons and the gluon with amazing precision! It also predicts
the existence of a remaining massive boson, the Higgs boson, and it is still the only piece of the Standard
Model yet to be found. Recently however the ATLAS and the CMS collaboration at the LHC just claimed
the discovery of a boson with a mass compatible with the predicted for the Higgs, ∼ 125 GeV [1, 2]. If
its properties match with the predicted Higgs boson, this will show once more the strength of theoretical
physics.

Leaving the micro-domain, we have General Relativity, a classical (that is, non-quantum) theory to
describe phenomena when the masses and distances are large, i.e. when the gravitational interaction be-
comes relevant, and it has passed through a large number of experimental tests that makes it extremely
difficult to challenge. The standard model of cosmology, called the Lambda-CDM model, assumes
General Relativity as a framework and describes the evolution and fate of the Universe and what is in it.
It has also been extremely successful in describing the formation of structures, the accelerated expan-
sion of the universe, barionic formation, the cosmic microwave background and many other observed
features. The model postulates a small cosmological constant in the general relativity equations, that
could be described by a vacuum energy, now called dark energy. It also includes cold dark matter, some
hypothetical non-relativistic1 matter that does not interact electromagnetically and is therefore invisible
directly, to account for the discrepancy between the seen matter in the universe and the necessary to
match the observational data.

Quantum Theory and General Relativity are unfortunately not compatible. When one tries to de-
scribe General Relativity as a quantum field theory described by a spin two graviton (the quantized
spacetime metric) problems emerge. The standard quantization of the theory, unlike what happens to the
other forces, leads to a non-renormalizable theory, and one has to try other non-orthodox approaches.
A quantum theory for gravity would be crucial when we want to describe situations of a high mass in
small volumes, as it is expected to happen for example in the center of black-holes or at the Big-Bang
singularity, or when we want to describe quantum particles in strong gravitational fields, as for example
to try to describe the Hawking radiation of black holes. Also,the Standard Model has no particle which
matches the criteria for cold dark matter, and the vacuum energy density calculated from the standard
model is way much higher than the dark energy density. One could then expect that the Standard Model
holds as long as we stay in a domain below the Planck energy scale ∼ 1019 GeV, where the gravity
coupling is much smaller than the other couplings of the theory. However, even way below the Planck
scale there are problems appearing in the Standard Model indicating that it might have to be modified
already around or above the TeV energy.

1 Proposals with hot and warm dark matter (where particles move at relativistic speeds) also exist, but are not as popular as
cold dark matter

2



One of these problems is the hierarchy problem, that comes when one calculates the quantum correc-
tions from loop amplitudes to the mass of the Higgs boson. If we introduce a cuttoff scale Λ to indicate
the limit up to which we expect the Standard model to hold, already at one-loop the correction to the
Higgs mass squared goes as Λ2, while all the corrections to other massive particles go as ln(Λ2/m2),
where m is the mass of the particle involved in the loop correction (for the Higgs boson, the main con-
tribution comes from the mass of the tau lepton). This implies that to a Λ close to the Planck scale
the logarithmic term contributes to a factor comparable to the mass of the particle or one maybe two
orders of magnitude higher, while the Higgs mass correction runs to absurd values, and we need a strong
fine-tuning to bring it back to the ∼ 100 GeV scale.2

1.1 A novel symmetry and more unification

One way to address the Higgs mass problem is to introduce a new symmetry, supersymmetry, trans-
forming fermions into bosons (and vice-versa), such that they would always appear in pairs of same
mass. As a fermion loop caries opposite signal to a bosonic loop, the corrections to the Higgs could be
cancelled. Of course, the bosons and fermions we see in nature do not have same mass superpartners, so
supersymmetry must be broken, and approximately restored at at a scale ∼ 1 TeV to solve the hierarchy
problem. The same loop cancellations between supersymmetric partners can bring the vacuum energy
contributing to the cosmological constant to a dramatic lower value. And since adding supersymmetry
to the Standard Model adds a bunch of unseen massive particles, we have good candidates for dark mat-
ter. Experiments around the world are looking for signals from supersymmetric particles, and one hopes
that the high energies and luminosities of the LHC give some hint on the existence of supersymmetric
particles.

There is still another feature of the Standard Model that might indicate new physics below the Planck
Scale, besides supersymmetry. When one calculates the quantum corrections to the gauge couplings,
they run to large energies in such a way that they almost meet in Standard Model at an energy scale,
and actually converge in the minimal supersymmetric version of the Standard Model (within the pre-
cision boundaries). Together with the fact that the fermions in the Standard Model arrange themselves
nicely in families, one can formulate a Grand Unified Theory (GUT) in which the various particles in-
side a single family are actually different states of a single particle multiplet, and the gauge bosons are
the remaining massless bosons after the breaking of a larger symmetry. The first proposal for such a
unification of all the fundamental (except gravity) interactions was done by Georgi and Glashow [4],
still inside non-supersymmetric theories, the SU(5) Minimal GUT. Without supersymmetry however a
precise calculation shows that the gauge couplings only almost unify. In the supersymmetric version of
SU(5) [5,6] the couplings do unify, but the new particles and couplings from the supersymmetric sector
introduced the (unwanted) possibility of a proton decay. Although this idea might seem uncomfortable,
there is still room for it, since the prediction for the decay time of the proton is within the actual experi-
mental bounds. This problem can be completely avoided however if one introduces discrete symmetries
to create selection rules for the allowed interactions.

Thus, Supersymmetry provides a solution to the hierarchy problem of the Higgs, has candidates
for dark matter and favors a unification of all the quantum interactions in a single force. Besides, the
introduction of a totally new symmetry, different from any other up now, is a fascinating possibility
to explore. There is however still a problem. Supersymmetry might provide answers to many open
questions, but it says nothing about the unification with General Relativity. When one tries to merge
supersymmetry with general relativity one gets supergravity, that is however non-renormalizable. So

2Additionally, the running of the Higgs self-interaction at high energies (∼ 1014 GeV or higher) might make the coupling
negative, thus turning the value of ∼ 125 GeV a metastable state of the Higgs, from which it might decay to a much larger
value [3]. Other problems of the standard model not necessarily related to the Higgs include for example the strong CP problem
or the neutrino masses and oscillations.
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some other approach is still needed to describe the interplay between both frameworks. For an extensive
review on supersymmetry, supergravity and their implications to particle physics we refer the reader
to [7].

1.2 String Theory joins the game

String Theory [8,9] is an alternative proposal that leads to a quantized theory for gravity, which replaces
the point particle by a tiny (up to now beyond experimental detectability) one-dimensional object, that
can be either open or closed. It contains in its spectrum the graviton, the quantized excitation of the
background spacetime metric, and it reproduces the Einstein’s gravity equations not from equations
of motion, but only from requiring the theory to be anomaly-free. Anomaly cancellations imply the
background spacetime to be ten dimensional. Supersymmetry is also a requirement of String theory
to get rid of unwanted tachyons in the spectrum. There is just one type of interaction, the joining and
splitting of strings. The bad divergences of usual quantum theories arising from the point-like nature
of the interactions are now absent present, since the interactions are now smeared out in a smooth
worldsheet wiped by the interacting strings.

There are actually five consistent ways of quantizing the superstring that leads to a tachyon-free
spectrum, or five Superstring theories, Type IIA, Type IIB, Type I SO(32), Heterotic E8 × E8 and
Heterotic SO(32). The n-point amplitudes for string scatterings can be calculated and identified to the
n-point amplitudes of effective supersymmetric quantum field theories as we use the string length as a
small expansion parameter. In the limit of the String length going to zero, the effective theories are the
Type IIA, Type IIB and Type I Supergravity theories in ten dimensions. So the non-renormalizability of
supergravities theories are not a problem anymore, since they are just low energy effective actions. In
Sting Theory the gauge groups are described by extra degrees of freedom at the end points of the open
strings, or from the extra bosonic degrees of freedom appearing in the heterotic closed string. Type IIA
and IIB however have the apparent problem of containing in the spectrum only closed strings and with
possibility to include gauge degrees of freedom. So for a long time the attempts to describe the Standard
Model as a limit of string theory were performed with Type I and heterotic strings. In particular the large
E8 × E8 is favorable for embedding a wide variety of extensions of the Standard Model, in particular
Grand Unified Theories.

To arise at four dimensions, one has to perform a suitable compactification of the space, a general-
ization of the Kaluza-Klein reduction. If additionally we want a minimal amount of supersymmetry in
the effective four-dimensional description, we have to compactify on a manifold with SU(3) holonomy,
a Calabi-Yau manifold. The effective theory therefore can also be expanded in a parameter of the order
of the volume that will encode the Kaluza-Klein tower of states. In heterotic compactifications, in order
to obtain a correct four dimensional coupling constant of gravity the string length and the length of the
compactification manifold must be the order he Planck scale. Also, the length of the strings should be the
order of the Planck length3. Phenomenology from heterotic strings are often referred to as top-bottom
approach, in the sense that we construct the theory in a consistent internal space and extract the physical
information of it. Often in compactified theories the size of the internal manifold is related to the cou-
pling constants and the topological data of the manifold to the spectrum of the theory, i.e. for example
the number of families, charges and spin of the fields. A concise review on the heterotic construction of
the (supersymmetric) Standard Model can be found for example in [11] and references therein.

Heterotic constructions were unfortunately not perfect. As one of the issues, one can cite the moduli
stabilization problem. In string compactifications usually (as was the case for heterotic compactifi-

3this can be avoided in large-volume compactification scenarios where the ten-dimensional Planck length can be made
much smaller than the four-dimensional one via the relation M pl

4 ∼ M pl
10Vol while the Standard Model is located in a small

subregion of the compactification space [10].
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cations4) there are many moduli, massless scalar fields often related to particular deformations of the
internal geometry that are not restricted by a potential, meaning that these fields can acquire any vacuum
expectation value (vev) in a continuous. In other words, the geometry can be deformed with no imped-
iment in a continuous way. This continuous space of possible deformations of the geometry define a
manifold, the moduli space, that although extremely interesting from the theoretical and mathematical
point of view, is phenomenologically undesired since the values for the physical couplings are related to
the geometry, and thus a Universe with unfixed couplings would be incompatible with reality.

1.2.1 A Brane New World

The status of string theory changed dramatically in the mid 90’s with the discovery of Dp-Branes in Type
II theories, p-dimensional objects on which open strings end [15]. This has broadened the possibilities
to construct interesting phenomenological actions in String Theory, since one could form a stack of N
D-branes on top of each other, and the open strings would be in the adjoint representation of an SU(N)
group (or Sp(2N) or SO(2N) in orientifold compactifications), and their effective action described by a
Super-Yang-Mills theory. Branes could intersect at some angle, and at the intersection of a stack ofN D-
branes with a stack ofM D-Branes, open strings would be in the bi-fundamental representation (N,M),
thus providing an elegant way of introducing barionic representations geometrically. Additionally, Type
II theory with Branes contained a good variety of field-strength fluxes, topological solutions to the field
strength that have become the main mechanism in the string theory literature to stabilize the moduli,
give a chiral mass spectrum and induce breakings of the gauge groups.

In the last two decades there have been a huge number of papers written on the realization of four
dimensional quantum field theories from Type II string theories with D-branes, reproducing Standard
Model-like scenarios or extensions of it (as mentioned, the literature is extensive, so we just cite some
early representatives [16–18] and the reviews [19–21]). Brane model constructions are often referred to
as bottom-up, since one starts by specifying the local geometry (the configurations and intersections of
branes at subregions of the compactification space), in opposition to the global constructions of heterotic
strings.

Additionally, String Theory with D-branes have also become an interesting framework to study gen-
eral properties of supersymmetric theories, such as phase transitions and non-perturbative corrections.
D-brane constructions also provided a framework to compute the black-hole entropy [22], now one of the
strongest theoretical evidences in favor of string theory. Type II strings with D-branes also supported a
novel interpretation of gravity via holography (starting from the Maldacena conjecture [23] and the vast
subsequent literature on AdS/CFT and related topics). Alternatively to these and many other physical
applications, string theory has also contributed to pure mathematics, as for example in the computation
of rational curves of the quintic manifold using string theory arguments [24].

Brane-world scenarios also brought a fascinating contribution to cosmology. Since the Standard
Model is localized in the internal space at some crossing of branes (or branes at a singularities, as
in [25]), the Universe as we see it could be just a tiny fraction of the whole. Matter representations away
from the Standard Model region could account for dark sectors of the spectrum, connected to our world
only via loop corrections, and the dynamical nature of branes could be behind cosmological episodes
like the inflation epoch or even the Big Bang, also offering predictions to precision measurements of
astronomical data (for a review, [26]).

Although much is known from the spectrum and the basic theory which branes give rise to, detailed
calculations have shown non-trivial interactions between fields, that could in principle contribute to ef-
fects on our real world physics. As one example, one can cite the kinetic mixings between different U(1)
gauge bosons that often appear in brane compactifications [27, 28]. Such mixing could in principle be

4More recently many solutions to the moduli stabilization problem in heterotic strings have been proposed. As recent
examples, we can cite the case for orbifold compactifications in [12] and for more general compactifications [13, 14].
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detected in experiments, as for example the “light through walls” setups [29], where the electromagnetic
photon could become a non-Standard Model boson (a “hidden photon”, or for massive invisible U(1)s,
Z-prime bosons) that could go through a barrier, mix back into a photon and be detected at the other
side of the barrier. The non-detection of such phenomena impose limits on the coupling of the mixing,
and therefore to the properties of the internal geometry. Also, many phenomenological examples treat
the branes as fixed in the internal geometry, but this is not general, since the branes can be moved and
deformed. These deformations can in some cases contribute to new loop couplings between the fields
on the branes, as well as to generate potentials that break supersymmetry. Detailed calculations can also
give explicit values for the cosmological constant, and in models with supersymmetry breaking with
gravity or gauge mediation (in which there are two brane sectors, the Standard Model and a hidden sec-
tor that breaks Supersymmetry spontaneously) a more precise calculation is also important to understand
quantitatively and not only qualitatively the induced masses after the breaking of supersymmetry. One
of the focus of this thesis is to work explicitly the action for a single D-brane, and perform a careful
analysis of the four dimensional field theory on it.

1.2.2 Getting stronger

The many different quantized string constructions Type IIA, Type IIB, Type I and the heterotics might
seem incompatible with the idea of a single unifying theory. However an exciting consequence of
String Theory is the existence of many dualities relating the various formulations [30]. It has also been
postulated the existence of an eleven-dimensional theory, called M-theory, that has M2- and M5-Branes
as the fundamental objects and reduce to eleven-dimensional supergravity in the low-energy limit [31].
From what it is known of M-theory, there are strong indications that it reproduces all the string theories
in particular compactification limits or after a sequence of dualities. The most straightforward relation
is between Type IIA and M-theory, in which it has been shown that eleven dimensional supergravity
compactified on a circle reduces to Type IIA supergravity as the radius of the circle becomes tiny, and
the various D-branes would be then compactification of the M-branes or special purely geometrical
non-trivial solutions. M-theory would be then the strong-coupling “lift” of Type IIA, with the IIA
string coupling given by the radius of the compactified eleventh dimension. Until this moment however
only the supergravity limit of M-theory and the effective descriptions of single M2 and M5 branes are
known [32]. Actions for the worldvolume of multiple M2- and M5-branes are still being proposed (for
example in [33]).

The D-branes in Type IIB also obey a special type of duality that relates strong and weak string
coupling. This duality acts on fields as an SL(2,Z) symmetry, that is also the symmetry group lattice
of a torus. The axio-dilaton, a combination of the string coupling with the Ramond-Ramond axion,
would transform under this duality in the same way as the complex structure of a torus. This symmetry
also implies the introduction of new non-perturbative objects, (p,q)-branes, around which the theory
suffers a monodromy, described by the SL(2,Z) group. All those facts induced string theorists to
search for another theory with an underlying torus structure that could reduce to Type IIB in some limit.
This hypothetical theory received the name F-theory [34]. Additionally, F-theory compactified on an
elliptically fibered K3 manifold was inferred to be dual to Heterotic string compactified on a torus,
strengthening the web of string dualities known. Finally, F-theory can also be seen as a T-dual picture
of M-theory, in the same way as Type IIB is T-dual to Type IIA string theory. This comes from the fact
that a special compactification limit of M-theory with a T-dualization leads to Type IIB theory with the
desired underlying torus structure. And like M-theory, F-theory has no fundamental description. Even
worse, there is no known low-energy action, as there is supergravity for M-theory. One could then ask
oneself if it is really a physical theory, or just a nice mathematical way of seeing things. Independently
on the answer, one can work with it. And for the moment, that is enough.

It is important to point out the geometrization that occurs as one moves from perturbative to strong
coupling. The description of a D6 brane in M-theory is via a purely geometrical object, a generalization
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of the Kaluza-Klein monopole that is a non-trivial solution to the supergravity equations. When we T-
dualize to F-theory, the lift of the D6-brane becomes an elliptically fibered divisor, with a singular fiber.
But if we remain in perturbation theory, the D6-Branes are T-dual to D7-branes. That is, in F-theory the
strongly coupled equivalents of the D7-branes become entirely part of the geometry.

F-theory has many other interesting features. String-theoretically, being a strong coupling regime
of Type IIB, one can learn more about the non-perturbative effects of strings, branes and fluxes. The
interplay among Type IIB string↔ M-Theory↔ Heterotic string under F-theory allow us to alternate
among the available tools on each framework, with which we can obtain results beyond the perturbation
theory. On the Heterotic side, one can use F/M-theory to solve the moduli problem described earlier, as
we can incorporate fluxes. Also, one can explore the geometrical realizations of elements from heterotic
theory, and use heterotic strings to understand better M- and F-theory.

Phenomenologically, the non-perturbative nature of F-theory allows for the realization of exceptional
groups over the seven-branes, extending the previous possibilities SU(N), SO(2N) and Sp(2N). This
is crucial specially when constructing realizations of GUT models, since in previous perturbative brane
constructions some of the couplings could not be realized. As a particular famous example, In SU(5)
GUTs localized on a brane, the coupling between the matter representations 10 10 5 was known to be
obtained only via instantons. This however is the coupling necessary to couple the top-quark to the
Higgs in SU(5) models [35], so it is quite undesirable that the most massive fermion would receive
its mass from highly suppressed corrections5. In GUTs constructed from F-theory, or simply called
F-theory GUTs, such couplings are generated naturally, as in the intersection of branes the theory can
become strongly coupled. F-theory as a non-perturbative lift of Type IIB was known since the end of the
’90s, but the tools for constructing such GUT models with exceptional groups are very recent [36–38],
and triggered a renewed interest in F-theory.

We could resume the standard constructions of F-theory GUTs in the following items:

• Start with an elliptically fibered Calabi-Yau fourfold that contains a divisor on the base over which
the fiber becomes singular. The Calabi-Yau condition is the requirement for supersymmetry in
four dimensions.

• One can analyse the gauge group on top of this divisor either by the Heterotic duality as an unbro-
ken subgroup of E8, either by using explicit algebraic or toric geometry to resolve the singularity
and wrap M2 branes on the resolved fiber reproducing vector multiplets transforming in the adjoint
of the corresponding group.

• One can turn on M-theory fluxes on the brane to break the GUT gauge group down to smaller
groups (like the Standard Model groups).

• At curves on the base the singularity worsens, and the associated gauge group enhances, giving rise
to matter curve representations. In Type IIB picture, these curves correspond to the intersection
between two stack of seven-branes, reproducing bi-fundamental representations.

• From the M-theory perspective, one can localize the G4 flux along the resolved curve, and make
the matter representation chiral.

• The geometric localization of matter on curves allow a natural way to generate or suppress certain
matter couplings in particular models, as they would simply correspond to intersecting or non-
intersecting curves, respectively.

• The number of matter curves and their intersections can be encoded in the specifications of the
fibration defining the topological data of the Calabi-Yau.

5The couplings might have the right hierarchical structure in flipped SU(5) models [35].
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It is important to point out the mixed local/global features of F-theory GUTs. First, the local realization
of gauge groups as a singular elliptic fiber works only for non-Abelian groups. U(1)s in F-theory GUTs
are generally massive (via coupling with the axion), and thus are only unbroken when they satisfy some
global criteria [39–41]. Also, the fluxes (used for chirality or GUT breaking) must also obey some
global restrictions to preserve the Calabi-Yau condition (and supersymmetry), and the local description
of matter curves is not enough to give the full picture. The good thing about F-theory constructions is
that one can explore the F-theory/Heterotic duality to obtain global informations. For a very incomplete
list of examles of F-theory GUT constructions we refer to [42–47] and references there cited.

The possibility to describe in a globally consistent way matter curves reproducing interesting spec-
trum and Yukawa interactions has led many to try to reproduce more than just the spectrum and the
gauge groups, but also open questions in the Standard Model like the neutrino mixings and the hier-
archy for the lepton masses. The flavor hierarchy was explored in [48, 49], while the neutrino masses
in [50, 51]. In order to solve both problems at the same time one has to consider the matter represen-
tations intersecting at a point that would enhance to an E8 singularity (that is, a singular fiber whose
associated gauge group after the resolution is an E8 group). Kaluza-Klein excited states can couple to
the matter representations, and are integrated out when we move below the GUT scale. Allowing extra
U(1) symmetries in the setup at high energies, the charges of the fields under these U(1)s can generate
quark hierarchies in Froggatt-Nielsen models [52] (or reviews in supersymmetric models [53, 54]),

The idea of Froggatt-Nielsen works as follows: Close to the Planck scale there is an extra U(1)
under which a scalar flavon field S is charged. There are additionally massive fields Gi that have the
same Standard Model quantum numbers as the quarks. These fields appear naturally in Strings/F-theory
compactifications as the Kaluza-Klein excitations of the massless quarks (before the Higgs acquires a
vev). By assigning correct charges to the Standard Model fields under the extra U(1), the Lagrangian
terms for the Yukawa couplings must be U(1) invariant, and some couplings of massless quarks to the
Higgs are not generated at the classical level. When the flavon acquires a vev 〈S〉 theU(1) is broken, and
in the low energy theory we can integrate out the fieldsGi. This generates an effective coupling between
the quarks and the Higgs with a coupling constant (〈S〉/MGi)

n, where n is some integer related to the
U(1) charge of the quarks. The interesting thing about this mechanism is that to generate large hierarchy
between quarks we just need a very small hierarchy between 〈S〉 and MGi , that can be both close to the
Planck scale. For example, with (〈S〉/MGi) ∼ 0.2 = ε and choosing the right charges under U(1) one
can generate charge hierarchies of the form mu : mc : mt ∼ ε8 : ε4 : 1 and md : ms : mb ∼ ε5 : ε2 : 1,
consistent with the experimental data.

Recently a problem with the construction of GUTs in F-theory was found out. It was worked out
explicitly that the relation between the gauge group from the broken E8 in the heterotic side and the
M-theory interpretation via M2 branes in the adjoint of the group works fine at the GUT brane (divisor
on the base), but might fail at the matter curves and Yukawa points [55]. In view of this fact, and with
the phenomenological interest for flavor behind, we can try to construct explicitly some geometry to
reproduce an E8 point. Having an explicitly resolved geometry we can than proceed to calculate the
allowed interactions at the Yukawa point, and that could in principle lead to non-obvious interactions
between the matter representations. Besides, there are not many explicit examples for less generic
fibers with stronger singularities, and such constructions might help understanding even better the non-
perturbative effects of F-theory.

1.3 Outline

This thesis has two main parts. Both deal with aspects of brane physics. The first part focus on per-
turbative Type IIA theory, where we study the four dimensional physics of a D-brane in a particular
setup, while the second part we introduce the lift to the hypotetical non-perturbative descriptions of
Type II string theories, namely M- and F-theory, and we also discuss how to realize matter representa-
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tiosn and Yukawa couplings in F-theory models, and we discuss some tipically non-perturbative effects,
not present in perturbative Type II picture with D-branes.

In the second chapter we will review the basics on supersymmetric theories. We will give a stronger
focus on N = 1 theories, as they are the most phenomenologically interesting. Since the remaining
of the thesis will be focused on local descriptions of Brane actions and F-theory fibrations, we are not
concerned with couplings to gravity. For that reason, we skip a discussion on supergravity.

In chapter 3 we present a calculation for the effective four dimensional theory of a single D6-brane
in a Calabi-Yau orientifold, that fills the entire spacetime in a way that it preserves supersymmetry.
We analyse the fields living on the brane from a four dimensional perspective, as well as the fields
corresponding to deformations of the internal space and of the brane. Some of these deformations
might break supersymmetry, and we find the conditions that leave it unbroken. The supersymmetric
deformations in the absence of fluxes allow the brane to be deformed continuously, with no impediment.
These continuous deformations form a moduli space, that has some specific geometrical properties that
we describe. We also present corrections to the gauge coupling functions coming from the deformations
and fluxes, and show how kinetic mixings between different U(1)s are generated. The results could be
used in explicit phenomenological scenarios constructed from brane intersections, and the U(1) mixings
we calculated have been used in a nice description of the possible hidden photons appearing in different
string constructions [56].

In chapter 4 we review M and F-theory, and present some tools needed for engineering Grand Unified
Theories. Finally, in chapter 5 we first review the resolution for an SU(5) model with an enhancement
to an E6 Yukawa point [55] and review the analysis of the matter curves and Yukawa couplings [57].
Then, using the spectral cover formalism imported from heterotic string, we construct a model that has
a point with a singularity of the E8 type, that we resolve explictly. The resolution cannot be performed
in the same way as in [55], and we have to introduce new structure on the base. We analyse the possible
implications of it, but up to this moment there are some unanswered questions, that still require attention.
We plan to address the problems in an upcoming work.
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Chapter 2

Supersymmetric Theories
Supersymmetry (SUSY) has become one of the main lines of thought in contemporary high-energy
particle physics, and also in quantum field theories arising from or motivated by (super)string theory. In
this chapter we review the background needed on supersymmetric theories that will be most relevant to
the subsequent discussion along this thesis. For a longer discussion on supersymmetric theories we refer
the readers to the main references used to write this chapter, [58–61].

First we construct the SUSY algebra for N independent supersymmetries. Then we focus on the
particular case of N = 1, i.e. minimal supersymmetry, and just the fact that we want a theory which
is invariant under SUSY transformations imposes some conditions on the moduli space (the space of
expectation values for the scalar fields in the theory, that classically correspond to minima of the poten-
tial). The most general four dimensional supersymmetric action without the inclusion of gravity can be
written in a most simple form, described in section 2.5. This is the form pursued later in chapter 3, when
we compactify type IIA supergravity and the D6-brane action (ten- and seven-dimensional, respectively)
into a four-dimensional theory with an unbroken N = 1 SUSY.

2.1 The SUSY Algebra

Supersymmetry is, up to this date, the only known unitary extension of the Poincaré spacetime sym-
metry (outside internal symmetries), and is generated by spinorial operators QAα , that together with the
momentum Pµ, the generator of spacetime translations, obey{

QAα , Q̄β̇B

}
= 2σµ

αβ̇
Pµδ

A
B (2.1.1)[

Pµ, Q
A
α

]
=
[
Pµ, Q̄α̇A

]
= 0{

QAα , Q
B
β

}
= εαβX

AB.

Here we use the Weyl spinor convention for the indices (α = 1, 2 and α̇ = 1, 2), µ are spacetime
indices and A,B denote the number of independent supersymmetries A = 1 . . .N we can start with.
The supersymmetry algebra (2.1.1) contains a central charge described by the antisymmetric XAB that
appears only in N = 2 or higher.

From the fact that the SUSY generators Qα commute with Pµ, we can construct representations of
the SUSY algebra (multiplets) from representations of the Casimir P 2, and therefore each component
inside a supersymmetric representation will have the same mass. Taking the trace over the representa-
tion, one can also show that the number of bosonic and fermionic states of a supersymmetric multiplet
is the same.

Massless representations

We first look at a massless supersymmetric representation. We can perform a spatial rotation (that
commutes with the SUSY algebra) to put the state in the frame where Pµ = (−E, 0, 0, E), so{

QAα , Q̄β̇B

}
= 2

(
2E 0
0 0

)
δAB. (2.1.2)
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We introduce the fermionic creation and annihilation operators

aA =
1

2
√
E
QA1 , (aA)† =

1

2
√
E
Q̄A

1̇
. (2.1.3)

that obey the Clifford algebra {
aA, (aB)†

}
= δAB. (2.1.4)

The irreducible representation is constructed as usually is done with a Clifford algebra, by starting with
some ground state |Ω〉 that is annihilated by every annihilation operator aA and act with the creation
operators as many times as possible. In this case there is just one fermionic operator for each A =
1, . . . ,N , so the SUSY representation consists simply in

|Ω〉, (aA1)†|Ω〉, (aA2)†(aB2)†|Ω〉, . . . , (a1)†(a2)† . . . (aN )†|Ω〉. (2.1.5)

The (aA)† operator transforms as a spinor (0, 1/2), and therefore when acting on |Ω〉 it increases the
helicity by 1/2. Thus, if the state |Ω〉 has helicity λ, the state

1√
n!

(aA1)†(aA2)† . . . (aAn)†|Ω〉 (2.1.6)

will carry a helicity λ+ 1
2n. The highest spin state in (2.1.5) will therefore carry λ+ 1

2N helicity. The
full representation will have a number of components given by the power set of theN creation operators,
2N . The multiplet is in general not CPT invariant, since CPT takes λ to −λ. So, to have a CPT invariant
representation we must add by hand the opposite helicity states to the spectrum. The only situations
where the multiplet (2.1.5) is already CPT invariant is when the helicity of |Ω〉 is λ = −N/4.

Massive Representations and BPS states

For a massive state, we can work in a frame where Pµ = (M, 0, 0, 0). Then (2.1.1) becomes{
QAα , Q̄β̇B

}
= 2Mδαβ̇δ

A
B. (2.1.7)

We introduce fermionic creation and annihilation operators (aAα )† = (2M)−1/2Q̄α̇A and
aAα = (2M)−1/2QAα , that obey the usual Clifford algebra{

aAα , (a
B
β )†
}

= δβαδ
A
B ,

{
aAα , a

B
β

}
=
{

(aAα )†, (aBβ )†
}

= 0. (2.1.8)

We construct the representation in the usual manner. There are 2N creation operators, the 2 coming from
the two spinorial components for a Weyl spinor. For a non-degenerate vacuum, the SUSY multiplet is
22N dimensional. If we instead start with a “vacuum” that is a spin j multiplet, the dimension of the
representation will be then 22N (2j + 1).

For the case of a single supersymmetry, N = 1, the states obtained from any massive ground state
are

|Ω〉, a†1|Ω〉, a†2|Ω〉,
1√
2
a†1a
†
2|Ω〉. (2.1.9)

Now consider a state with total spin j and component along the direction 3 of the spin m = −j, (−j +
1), . . . , (j − 1), j. The spinorial operator (aα)† has the following commutation property with the spin
operator S3 = 1

2σ
3 [

S3,

(
a†1
a†2

)]
=

1

2

(
a†1
−a†2

)
. (2.1.10)

12



Thus, for a state with a particular spin component j3,

S3a
†
1|j3〉 =

(
j3 +

1

2

)
a†1|j3〉, S3a

†
2|j3〉 =

(
j3 −

1

2

)
a†1|j3〉. (2.1.11)

In total, the irreducible representation (2.1.9) from a ground state |j3〉 will consist then of states with
spin (j, j + 1/2, j − 1/2, j). For the particular case when |Ω〉 has 0-spin, the representation under the
supersymmetry algebra corresponds to two spin zero fields and the two components of a Weyl spinor
(with spin 1/2 and−1/2). The spin zero field 1√

2
a†1a
†
2|Ω〉 corresponds to a pseudoscalar, since the parity

operator interchanges a†1 and a†2, but from the anticommutation relation

1√
2
a†1a
†
2|Ω〉 = − 1√

2
a†2a
†
1|Ω〉. (2.1.12)

For N > 1, however, there might be even smaller massive representations than the 22N (2j + 1)
dimensional ones, since now we have an extra parameter in our algebra, the central charges XAB ,{

QAα , Q
B
β

}
= εαβX

AB. (2.1.13)

For simplicity, we consider the case N = 2. As the matrix XAB has to be antisymmetric, we can write
XAB = X12 ≡ Z. We then define the operators

aα =
1

2

[
Q1
α + εαβ(Q2

β)†
]
, bα =

1

2

[
Q1
α − εαβ(Q2

β)†
]

(2.1.14)

and using (2.1.1) we can write the anticommutation relations{
aα, a

†
β

}
= δαβ(2M + Z) ,

{
bα, b

†
β

}
= δαβ(2M − Z). (2.1.15)

So, for a normalized state with mass M and central charge Z |M,Z〉, 〈M,Z|M,Z〉 = 1, and using the
fact that the states constructed via b†α|M,Z〉 or bα|M,Z〉 also have norm ≥ 0, we have,

〈M,Z|
{
bα, b

†
β

}
|M,Z〉 = δαβ(2M − Z) ≥ 0, (2.1.16)

thus,
Z ≤ 2M. (2.1.17)

This is called the Bogomol’ny-Prasad-Sommerfield (BPS) bound. In the particular case when the bound
is saturated, Z = 2M , the operators bα and b†α project the state to a zero norm state. So, they do not
play a role when constructing the full SUSY multiplet for a BPS-saturated state (or simply, a BPS state).
We can alternatively say that the state is invariant under half the supersymmetries. The supersymmetric
representation is then constructed by acting only with a†α on a ground state, and therefore has dimension
4(2j + 1) for N = 2. An analogous result holds in general for N > 1, but there is one supercharge Zn
for each pair of supercharges, n = 1, . . . , N/2, and the dimension of BPS states is 2N (2j + 1) instead
of 22N (2j+1) for the non-BPS states. The multiplet constructed from a BPS state is often called a short
multiplet, in opposition to the long multiplet constructed from a†αs and b†αs. For higher supersymmetric
theories,N > 2, the number of central charges is bigger and we can have more possibilities for the BPS
bounds. For example, in N = 4 there are two independent supercharges, Z1 and Z2, and a state with
M = Z1 < Z2 is transformed only by 3/4s of the total number of independent supercharges, and is
called a quarter-BPS state.

In chapter 3 we will start with ten-dimensional supergravity with two supercharges (N = 2) and
add to it a six-(spatial)-dimensional object, a D6-brane. In general, a single object localized in space
breaks spacial translation, and also supersymmetry. There are however configurations for the brane in
which it is invariant under the action of half the supercharges, breaking the other half. The brane, at
these configurations, is a BPS object. The effective theory on such brane is thusN = 1 supersymmetric.
In chapter 3 this will be precisely the situation we will deal with.
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Superspace

To work with supersymmetric field theory, it is more convenient to redefine the SUSY generators by
introducing grassmanian variables θAα and θ̄Aα̇ (using the standard notation from the literature, as in [58])
such that (2.1.7) is replaced by the Lie algebra[

θAQ, θ̄BQ̄
]

= 2θσµθ̄Pµδ
AB.

A summation over the spinorial indices is understood. The grassmanian variables θAα together with the
usual spacetime coordinates xµ define the superspace, the stardard framework of supersymmetric field
theories.

The supersymmetry transformation maps fields of a given spin into fields with different spins. It
is possible however to define superfields as a combination of fields covariant under the SUSY trans-
formations, such that the supersymmetry transformation of a superfield is still a superfield of the same
kind.

A representation for the SUSY generators in the rigid (that is, with global supersymmetry) N = 1
superspace is

Qα = ∂α − iσµαβ̇ θ̄
β̇∂µ, Q̄α̇ = ∂̄α̇ − iθβσµβα̇∂µ, (2.1.18)

that act on superfields. We can also construct a covariant derivative that anticommutes with the SUSY
generators

Dµ = ∂µ, Dα = ∂α + iσµ
αβ̇
θ̄β̇∂µ, D̄α̇ = −∂̄α̇ − iθβσµβα̇∂µ. (2.1.19)

A superfield is in general not an irreducible representation of the supersymmetry algebra. From the
fact that the covariant derivative commute with the supersymmetry generators, given a general superfield
we can construct a smaller representation by imposing some constrain using the covariant derivatives.
This explicit construction of the irreducible representations of superfields may not be directly related
to the multiplets constructed from the SUSY algebra. The reason is that the superfields in general do
not obey the mass-shell condition. Only after we impose the equations of motion we can relate the
irreducible superfield to the 22N dimensional multiplets from the one-particle representations discussed
earlier.

We will in the following briefly describe the relevant superfields we shall be concerned with through-
out this thesis.

2.2 N = 1 Superfields

The first superfield we are interested in is the chiral multiplet Φ, defined by the constraint D̄α̇Φ = 0. To
construct explicitly such a field, it is convenient to introduce a translated bosonic coordinate

yµ = xµ + iθσµθ̄, (2.2.1)

that obeys D̄α̇y
µ = 0. Everywhere summations as θσµθ̄ = θασµ

αβ̇
θ̄β̇ are understood. As D̄α̇ also

satisfies D̄α̇θ
β = 0, every combination of y and θ is chiral. So, the most general chiral superfield we

can construct is (with factors added to match the literature)

Φ(y, θ) = φ(y) +
√

2θψ(y) + θθF (y), (2.2.2)

where φ and F are complex scalar fields and ψα is a left-handed Weyl spinor. Expanding y,

Φ(x, θ, θ̄) = φ(x) +
√

2θψ(x) + θθF (x) + +iθσµθ̄∂µφ(x) +
i√
2

(θθ)∂µψ(x)σµθ̄ − 1

4
θθθ̄θ̄�φ(x).

(2.2.3)
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Analogously one can define an antichiral field from DαΦ† = 0, and repeat the same steps, using ȳ =
xµ − iθσµθ̄ instead of y.

The most general renormalizable Lagrangian containing only i = 1...N chiral superfields is

L =

∫
d4θΦiΦi† +

∫
d2θW (Φ) +

∫
d2θ̄W̄ (Φ†), (2.2.4)

whereW (Φ) = λiΦ
i+ 1

2mijΦ
iΦj+ 1

3gijkΦ
iΦjΦk is the superpotential, and we have used the shorthand

notation d4θ = dθαdθ
αdθ̄β̇dθ̄

β̇ and d2θ = dθαdθ
α. in components,

L = −iψσµ∂µψ − ∂µφ∗∂µφ+ F ∗F −mij
1

2
ψiψj + gijkψ

iψjφk +

(
F
∂W (φ)

∂φ
+ h.c.

)
. (2.2.5)

The field F is not dynamical, and can be removed from the action by the equations of motion F ∗ =
∂W/∂φ. When this is done, the Lagrangian becomes

L = −iψσµ∂µψ − ∂µφ∗∂µφ−mij
1

2
ψiψj + gijkψ

iψjφk − V (F, F ∗), (2.2.6)

where V = F ∗F = |∂W/∂φ|2 is known as the F-term potential. As was stated in advance, the removal
of F via the equations of motion leaves us with the complex scalar φ plus the Weyl fermion ψ, thus 2+2
degrees of freedom, as expected for the lowest spin multiplet mentioned in the previous section.

We next want to construct supersymmetric gauge theories, and therefore we need a superfield that
contains real vector fields. We start by defining a general superfield that obeys a reality condition

V = V †.

Since for our discussion the full form of the general expression for V is not relevant it is enough to say
that, as inferred by the name, this multiplet contains a real vector field vµ,

V (x, θ, θ̄) ⊃ −θσµθ̄vµ(x) + ... (2.2.7)

and therefore receives the name of vector superfield. Notice that we can also define a hermitian combi-
nation from any chiral field Φ,

Φ + Φ†,

that contains a term (2.2.3)
Φ + Φ† ⊃ iθσµθ̄∂µ(φ+ φ∗). (2.2.8)

Comparing to (2.2.7), it is then natural to construct a supersymmetric version of a gauge transformation
with a chiral field Λ,

V → V + i(Λ + Λ†), (2.2.9)

that reproduces the usual vector gauge transformation

Aµ → Aµ + ∂µ(φ+ φ∗). (2.2.10)

By choosing a convenient Λ one can put the vector superfield in the Wess-Zumino gauge,

V = −θσµθ̄Aµ(x) + iθθθ̄λ̄(x)− iθ̄θ̄θλ(x) +
1

2
θθθ̄θ̄D(x). (2.2.11)

λ(x) is the gaugino spinor and D(x) is the D-term. This form, although much simpler, has no manifest
supersymmetry. It is also worth to point out that under the transformation (2.2.9) the components λ(x)
and D(x) are gauge invariant.
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The supersymmetric version of the field strength for the vector superfield is defined as

Wα = −1

4
D̄D̄DαV, (2.2.12)

and it is straightforward to show that it is a chiral superfield (D̄β̇Wα = 0) and gauge invariant. Similarly,
we can also define an antichiral W̄α̇ = −1

4DDD̄α̇V . Explicitly, in terms of the translated coordinate y,
Wα reads, in the Wess-Zumino gauge,

Wα = −iλα(y) + θαD(y)− i

2
(σµσνθ)α(∂µAν(y)− ∂νAµ(y)) + θθσµ∂µλ̄(y), (2.2.13)

that contains only the gauge invariant terms λ, D and the “usual” vector field strength Fµν = ∂µAν −
∂νAµ.

The super-Yang-Mills Lagrangian for Abelian gauge fields in the superspace reads

LSYM =
1

4

(∫
d2θWαWα +

∫
d2θ̄W̄ α̇W̄α̇

)
, (2.2.14)

that in components translates to, up to total derivatives,

LSYM = −1

4
FµνFµν − iλσµ∂µλ̄+

1

2
D2. (2.2.15)

At this stage, the field D is a non-dynamical free field, but when we couple this gauge theory to matter,
it will play a role in generating a (D-term) scalar potential.

The generalization to non-Abelian theories works by introducing a trace over the adjoint representa-
tion in the action above, and by generalizing the gauge transformation

eV
′

= e−iΛ
†
eV eiΛ, W ′α = e−iΛWαe

iΛ, (2.2.16)

where Λ = T aΛa and V = VaT
a are now matrices in the adjoint representation with the matrix genera-

tors T a.
We next want to include chiral superfields charged under a gauge group. In non-supersymmetric

theories, we would just add to the Yang-Mills action an action for the charged matter, with the kinetic
terms modified, to include covariant derivatives under the new gauge bundle. Here the strategy is the
same, and with the kinetic term replaced by

Φ†Φ→ Φ†eV Φ,

where now the superfield V should be expanded in the representation under which Φ transforms. Notice
that the kinetic term Φ†Φ→ Φ†eV Φ induces a coupling of the D-term with the scalar fields φ∗Dφ, and
similarly as the F-term, after eliminating D from the action one has a contribution of the form (after
introduction of the gauge coupling g)

VD =
1

2g2
D2 =

g2

8
([φ, φ∗])2 . (2.2.17)

The scalar potential arises therefore from either self-interactions of the scalar components of the
chiral fields giving rise to F-terms or via the interaction of the same scalar components with the gauge
fields of the theory, generating D-terms. F- and D-term potentials are key elements in supersymmetric
theories, since the mechanisms for breaking supersymmetry (and therefore establishing contact with our
real universe) rely on building potentials that induce vacuum expectation values to the scalar components
and spontaneously break supersymmetry. Alternatively, knowing the scalar potential of some theory and
requiring the theory to remain supersymmetric may lead to restrictions on the allowed scalar fields of
the theory, as in chapter 3
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2.3 The moduli space for N = 1 SUSY Theories

Often the scalar potential can be minimized not by single vacuum expectation values for the scalar
fields, but by a continuous set. Since the scalar fields are also differentiable, this set of minima define
a manifold called the moduli space. One interesting and very general result on the geometry of moduli
spaces of supersymmetric theories is that, if we require N = 1 supersymmetry to be preserved, the
moduli space of every supersymmetric theory, renormalizable or not, has to be a Kähler space [59]. This
argument is briefly reviewed here.

We start with the most general form for a supersymmetric Lagrangian, not necessarily renormaliz-
able, with only chiral superfields Φ

L =

∫
d4θK(Φ, Φ̄) +

∫
d2θW (Φ) +

∫
d2θ̄W̄ (Φ̄), (2.3.1)

where K(Φ, Φ̄) and W (Φ) are the Kähler potential and the Superpotential, respectively. One can see
that this Lagrangian is invariant under a (anti-)holomorphic transformation of the Kähler potential,

K(Φ, Φ̄)→ K(Φ, Φ̄) + F (Φ) + F̄ (Φ̄), (2.3.2)

called a Kähler transformation. When expanded in components, only the Kähler potential contributes
to a kinetic term to the scalar components,

L ⊃ ∂2K

∂φi∂φ̄̄
dφidφ̄̄. (2.3.3)

This term is the Lagrangian for a non-linear sigma model and can be seen as the line element of a
manifold

ds2 = gīdφ
idφ̄̄, (2.3.4)

with the metric of the manifold given by

gī =
∂2K

∂φi∂φ̄
. (2.3.5)

If we require the kinetic term to come with the correct sign, we expect the metric to be positive definite,
and to be nonsingular. Also, from the reality of the Lagrangian (2.3.1) the Kähler potential is hermitian,
and so is the metric. A positive definite, nonsingular metric, that can be written as (2.3.5) defines a
Kähler metric. A manifold which admits a Kähler metric is a Kähler manifold. Also notice that from
(2.3.2) the Kähler potential does not define the metric completely, but only up to a (anti-)holomorphic
translation.

It is instructive to see this statement in terms of the Kähler form, defined as,

J = igīdφ
i ∧ dφ̄. (2.3.6)

If the metric is written as (2.3.5), this implies that the Kähler form is closed, since

dJ = −i∂gī
∂φk

dφ̄ ∧ dφi ∧ dφk + i
∂gī

∂φ̄k̄
dφi ∧ dφ̄ ∧ dφ̄k̄ (2.3.7)

= −i ∂3K

∂φk∂φi∂φ̄
dφ̄ ∧ dφi ∧ dφk + i

∂3K

∂φ̄k̄∂φi∂φ̄
dφi ∧ dφ̄ ∧ dφ̄k̄

= 0,

where in the last step we used the symmetry of the derivatives and the antisymmetry of the wedge
product. We then present an alternative definition of a Kähler manifold:
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Definition: A manifold is called Kähler the (1,1)-form J associated to the metric (i.e., the Kähler
form) is closed.

When the moduli manifold is compact, J cannot be exact, since the volume volume form of a
compact n-complex dimensional Kähler manifold is proportional to Jn, and J = dα globally would
imply a vanishing volume integral. Thus, in any compact Kähler manifold X , J is an element of the
cohomology H1,1(X)

2.4 Super Yang-Mills Action

As was discussed in section 2.2, the supersymmetric version of a field-strength for a vector field is given
by the chiral superfield Wα, and the supersymmetric gauge transformation parameterized by the chiral
superfield Λ is

Wα → e−iΛWαe
iΛ. (2.4.1)

The most obvious way to construct a gauge invariant supersymmetric Lagrangian that reproduces the
kinetic term for a vector field is via

∫
d2θ trWαW

α. However, such a term in the Lagrangian is not real,∫
d2θ trWαWα = tr

[
1

4
FµνF

µν − i

4
FµνF̃

µν − iλσµ∇µλ̄+
1

2
D2

]
, (2.4.2)

where F̃µν = εµνρσFρσ.
One way to construct a hermitian version of the vector superfield Lagrangian is to simply add the

term W̄ α̇W̄α̇, as was done in section 2.2. This definition however removes the topological theta term
iFµνF̃

µν . To construct a real version of the field strength Lagrangian that includes the gauge coupling g
as well as a correct topological theta term, we introduce the complexified gauge coupling

τ =
θYM
2π

+
4πi

g2
, (2.4.3)

where θYM is the topological theta term, and define the Lagrangian (with the right coefficients adjusted),

1

8π
Im

[∫
d2θτ trWαWα

]
=

1

g2
tr

[
1

4
FµνF

µν − iλσµ∇µλ̄+
1

2
D2

]
− θYM

32π2
trFµνF̃

µν . (2.4.4)

By including charged chiral fields, one can write a more general kinetic term that replaces the con-
stant coupling function τ with an holomorphic function of the chiral fields f(Φ)

L ⊃ 1

8π
Im

[∫
d2θf(Φ) trWαWα

]
. (2.4.5)

f(Φ) is called the gauge kinetic coupling function. In four dimensional effective actions arising from
compactifying ten dimensional string theory theories, the coupling function for vector fields often de-
pends on the fields that characterize the geometry of the compactification (internal) space.

In the particular configuration explored in chapter 3 the gauge fields are all Abelian, but there is still
the possibility for mixings between different U(1) fields,

L ⊃ 1

8π
Im

[∫
d2θfAB(Φ) trWαAWB

α

]
, (2.4.6)

where A,B label the vector field. A non-diagonal fAB matrix leads to kinetic mixings of different
U(1) vector bosons, that in turn may have interesting phenomenological consequences (for example,
see [62,63], where they explore the possibility of “Hidden Photons”, massive vector bosons coupling to
the Standard Model photon via kinetic mixing).
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2.5 N = 1 action and renormalization

We conclude this chapter by writing the bosonic part of a most general N = 1 supersymmetric action
in four dimensions in differential forms notation,

S =

∫ (
gī(φ, φ̄)Dµφ

i ∧ ∗Dµφ + Re(fab)F
a ∧ ∗F b + Im(fab)F

a ∧ F b − VF − VD
)
. (2.5.1)

The quantities that define the theory, i.e. the characteristic data, are the spectrum (specified by the chiral
and the vector multiplets), the superpotential that defines

VF = gī(φ, φ̄)DiWD̄W, (2.5.2)

the D-term potential VD (that carries information on the charges of the scalars via the gauge groups, and
how this can change the vacuum), the Kähler potential that locally specifies the metric

gī =
∂2K

∂φi∂φ̄j
, (2.5.3)

and the gauge coupling function fab, that usually is holomorphic on the chiral fields.
In general, the parameters of quantum field theories run with the energy scale, and the tracking

of the running of all the couplings can become an annoyance as we change the scale we are working
with. Supersymmetric theories however have powerful renormalization theorems that make things much
easier and controlled.

It is possible to show via explicit loop calculations using supergraphs [64] that the superpotential is
not renormalized in perturbation theory. There is also an alternative beautiful argument [65] that, mo-
tivated by string theory in which the coupling “constants” are actually dynamical fields, they consider
the couplings of N = 1 theories as background chiral fields with the same dimensions as the constants
they are replacing. Then, they analise global symmetries that were explictly broken when the couplings
were set to a fixed value, and that are restored when the couplings vev vanish. These broken global sym-
metries induce selection rules that tells what are the allowed corrections for the superpotential coming
from loop contributions, leading to the conclusion that perturbatively the superpotential is given by its
tree-level form. Corrections are however allowed non-perturbatively via instantons.

The (complexified) gauge coupling function (2.4.3) of super Yang-Mills is also constrained byN =
1 supersymmetry. It can be shown [66] that it has perturbative couplings only at one-loop (calculated
from the β-function), but non-perturbative corrections are present via instantons.

One of the main reasons behind the existence of such (non-)renormalization theorems for the super-
potential and the gauge coupling come from the fact that these quantities are holomorphic/chiral, that
strongly restricts the type of corrections allowed.

The Kähler potential, on the other hand, is not holomorphic, and there are no general N = 1
results to infer restrictions on its loop corrections. However, in Calabi-Yau compactifications of effective
actions of supersymmetry, the Kähler potential describing the complex structure deformations for type
IIB theories gets no quantum corrections, that is, its classical description is exact! On the other hand, the
Kähler potential that describes Kähler deformations (variations of the Kähler form) gets no perturbative
corrections, only via (stringy) instantons. Mirror Symmetry maps both moduli spaces into one another,
and therefore gives the powerful result [67] that the classical information of the one tells about the
non-perturbative corrections of the other!

In the next chapter we study one particular scenario in the framework of (low energy) string theory,
and one of the pursuits is to write the bosonic action in the standard form (2.5.1), and identify theN = 1
characteristic data.
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Chapter 3

Brane Effective Actions
In this chapter we start reviewing the effective action for ten-dimensional Type IIA supergravity when
compactified to four dimensions. We choose the compactification space to be a six-dimensional Calabi-
Yau manifold, an SU(3) holonomy space in which a covariantly constant spinor can be globally defined,
and each one of the two supercharges of d = 10 Type IIA theory has a component unbroken by the
compactification. The Calabi-Yau compactification of Type IIA thus preserves 2 supercharges, so we
obtain an N = 2 supersymmetric theory in four dimensions.

To further reduce the supersymmetries of the four dimensional action to the more phenomenolog-
ically interesting N = 1 we introduce on the Calabi-Yau threefold a discrete involution together with
a reversing of the string orientation that projects out half of the degrees of freedom, and leaves just a
symmetric combination of the two supercharges unbroken. The fixed point of the involution defines an
Orientifold plane, and in the Type IIA case a O6-plane.

We next introduce a single D6-brane that fills completely the four dimensional spacetime and wraps
a three-cycle in the Calabi-Yau space. To have unbroken supersymmetry in four dimensions, the three-
cycle wrapped by the brane must be of a special kind, called special Lagrangian. The action of the
D6-Brane is divided in two sectors: 1) the sector corresponding to fields living on the brane that come
from open strings attached to the brane and generate super Yang-Mills fields and moduli from the brane
deformations, 2) the Chern-Simons sector, that arises from the interaction between open and closed
strings, respectively brane and bulk fields, and gives information on topological data and (“electric” and
“magnetic” Ramond-Ramond charges of the D-brane).

The reduction to four dimensions leads to anN = 1 supersymmetric theory of the form presented in
section 2.5, and we find the characteristic data, together with the conditions on the brane deformations
for unbroken supersymmetry. We also calculate corrections to the gauge coupling functions coming
from mixings between the different gauge fields from different origins (open or closed strings), as well
as corrections to the moduli space when we allow deformations of the Calabi-Yau manifold together
with brane deformations.

Finally, we map via Mirror Symmetry [68] the moduli space for the D6-branes to the moduli space of
D3-, D5- and D7-branes in the mirror type IIB geometry. We use the description of Mirror Symmetry de-
scribed in [69], in which the Calabi-Yau is treated as a three-torus fibration over a three-(real)dimensional
base, and Mirror Symmetry is simply T-duality along the three dimensions of the torus.

3.1 Calabi Yau compactification

To define our setup we start from ten dimensional type IIA supergravity, one of the two possible max-
imally supersymmetric gravity theories in ten dimensions, that arises from the low-energy effective
description of (closed) Type IIA string theory (the second is Type IIB supergravity), and its bosonic
field content consists of the NS-NS dilaton φ, the metric gµν , the two-form B

(10)
2 and the R-R one- and

three-forms C1 and C3. The bosonic part of the action reads [9]

S
(10)
IIA =

∫
1

2
R(10) ∗ 1− 1

4
dφ(10) ∧ ∗dφ(10) − 1

4
e−φ

(10)
H

(10)
3 ∧ ∗H(10)

3 (3.1.1)

−1

2
e

3
2φ

(10)

G
(10)
2 ∧ ∗G(10)

2 − 1

2
e

1
2φ

(10)

G
(10)
4 ∧ ∗G(10)

4 − 1

2
B

(10)
2 ∧G(10)

4 ∧G(10)
4 ,
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with the field strengths

H
(10)
3 = dB

(10)
2 , G

(10)
2 = dC

(10)
1 , F

(10)
4 = dC

(10)
3 − C(10)

1 ∧H(10)
3 . (3.1.2)

We next compactify the theory from ten to four dimensions, by requiring our ten dimensional space to
be of the formM3,1 × Y3, whereM3,1 stands for a Minkowski four-dimensional spacetime and Y3 is
a Calabi-Yau threefold, that we will often refer as the internal space. This compactification leads to an
N = 2 action in four dimensions.

The metric splits thus in
ds2 = ηµνdx

µdxν + gīdy
idȳ, (3.1.3)

with ηµν and gī respectively a Minkowski and a Calabi-Yau metric.
The field content above splits in an internal and a 4d-spacetime part. As the internal space is com-

pact, the field might become an infinite tower of Kaluza-Klein states. Usually in realistic compactifica-
tion models we assume the compactification length scale to be small enough so that the Kaluza-Klein
states are still beyond the energy scale of accelerators (otherwise we would have seen them already). A
common compactification scale is around the GUT scale 1016GeV1 (although interesting phenomenol-
ogy can also be obtained from Large Volume scenarios [71, 72]). The Kaluza-Klein states then are
mostly irrelevant to the low-energy physics and we can consider only the massless modes. Additionally,
the number of massless modes can be directly related to the number of independent harmonic forms on
the internal space, and therefore to the cohomology of Y .

Zero mode deformations of the metric have three contributions, either coming from only spacetime
deformations, only deformations of the Calabi-Yau space, or mixed deformations of the form δgµi or
δgµı̄. The massless deformation modes could be decomposed in a basis of harmonic one-forms of the
Calabi-Yau. However, a consequence of SU(3) holonomy is the non-existence of harmonic one-forms
in a Calabi-Yau manifold.

The Calabi-Yau deformations in turn can be decomposed in complex structure and Kähler defor-
mations, arising respectively from deformations of the globally defined holomorphic 3-form Ω of the
Calabi-Yau and from deformations of the Kähler form J = igīdz

i ∧ dz̄ ̄. In four dimensions, these
deformations correspond to scalar fields, that locally define a moduli space of the splitted form

Mcs ×Mks

Both factors are special Kähler manifolds. This type of manifold appear in general N = 2 supergravity
actions in four dimensions, and are defined as an n dimensional Hodge-Kähler manifold2 in which
a Kähler potential can be defined from a holomorphic section Ω ∈ Γ(SV ⊗ L,M) (where SV is a
simpletic vector bundle of rank 2n+ 2 and L a line bundle with c1(L) = [J ]) as

K = − ln〈Ω|Ω̄〉, with 〈Ω|∂iΩ〉 = 0, (3.1.4)

where 〈Ω|Ω̄〉 is a symplectic inner product defined from the standard symplectic basis of SV . Expanding
Ω in the symplectic basis such that

Ω =

(
Z Î

FĴ

)
Î,Ĵ=0,1,...,n

, K = − ln i
(
Z ÎF̄Î − Z̄

ÎFÎ
)
. (3.1.5)

For the Calabi-Yau compactification, it turns out that the moduli spaces for the complex structure
and Kähler deformations are precisely of such form [73, 74], as we will briefly describe (for a more

1A nice review on the energy scales involved in string phenomenology can be found in [70]
2 that is, a Kähler manifoldM with a line bundle L such that c1(L) = [J ], where [J ] is the cohomology class of the Kähler

form J .
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detailed discussion, see [73,75–77]). The deformations of complex structure all lie inside the H(1,2)(Y )
cohomology, and can be expanded in a basis of (1, 2) harmonic forms χK , with K = 1, . . . , h(1,2). The
moduli space is an h(1,2)-dimensional manifold with coordinates q,

ds2 = GKL̄dq
KdqL̄, with GKL̄ =

∫
Y χK ∧ χ̄L∫
Y Ω ∧ Ω̄

, (3.1.6)

where Ω is the globally defined holomorphic (3,0)-form of the Calabi-Yau. It can also be shown that the
metric GKL̄ can be written in terms of the Kähler potential

GKL̄ =
∂2Kcs

∂qK∂q̄L̄
, Kcs = − ln

(
i

∫
Y

Ω ∧ Ω̄

)
. (3.1.7)

The complex structure deformations can also be described in terms of the deformation of Ω(q) via

∂qKΩ(q) = χK + Ω ∂qKK
cs. (3.1.8)

The deformed holomorphic 3-form can be expanded in a complete basis of H3(Y ), of dimension

dimH3(Y ) = h(3,0) + h(1,2) + h(2,1) + h(0,3) = 2 + 2h(1,2), (3.1.9)

using that in a Calabi-Yau h(m,n) = h(n,m) and h(3,0) = h(0,3) = 1. One can introduce a symplectic
basis of H3(Y ), (αK̂ , β

L̂), that satisfies3∫
Y
αK̂ ∧ ∗β

L̂ = −
∫
Y
βL̂ ∧ ∗αK̂ = δL̂

K̂
, K̂, L̂ = 0, . . . , h(1,2), (3.1.10)

and expand the new holomorphic 3-form in this basis, by introducing the dual homology basis (AK̂ , BL̂)
of $H3(Y ) and defining the periods

ZK̂ =

∫
AK̂

Ω =

∫
Y

Ω ∧ βK̂ , FL̂ =

∫
BL̂

Ω =

∫
Y

Ω ∧ αL̂, (3.1.11)

we can write the deformed Ω as

Ω(q) = ZK̂(q)αK̂ −FK̂(q)βK̂ . (3.1.12)

The FK̂ are not independent functions, but rather depend on ZK̂ and can be expressed as the derivative
of a holomorphic prepotential F(Z),

FK̂ = ∂
ZK̂
F . (3.1.13)

The expansion in the symplectic basis allows us to define a symplectic product and together with (3.1.8)
and (3.1.7) reproduce (3.1.4). Notice also that Ω(q) is defined up to a rescaling Ω → Ωe−h(q), since
that translates into a Kähler transformation of Kcs leaving the metric GKL̄ unchanged. The rescaling
defines a complex line bundle on the Calabi-Yau. The rescaling allow us to fix one of the ZK̂s, and
in a particular patch4 where Z0 6= 0 choose Z0 = 1, and define qI = ZI/Z0, making explicit the
dependence on the moduli space coordinates qI . With this redefinition, the Kähler potential can be put
in the form

Kcs = − ln i|Z0|
[
2(f − f̄)− (∂qKf + ∂q̄K f̄)(qK − q̄K)

]
, with F = (Z0)2f. (3.1.14)

3the hat indicates that the index runs from 0 instead of 1.
4If Z0 vanishes on this patch, just redefine another ZI that is non-vanishing as the new Z0.
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The moduli space of Kähler structure deformations on the other hand is described by real fields vA,
from the expansion of the Kähler form J = vAwA. It does however get complexified by combining
with the moduli bA from the expansion of the two-form B = bAwA via Jc = B + iJ , and defining
tA = bA + ivA. The complexified Kähler moduli ti also can be written as the second derivative of a
Kähler potential,

GAB̄ =
∂2Kks

∂tA∂t̄B̄
, Kks = − ln

(
i

6
KABC(t− t̄)A(t− t̄)B(t− t̄)C

)
, (3.1.15)

where KABC is the triple intersection
∫
ωA ∧ ωB ∧ ωC , with the ωA are basis elements for H(1,1)(Y ).

The Kähler potential can be re-expressed in terms of a holomorphic prepotential f(t) as in (3.1.14),

Kks = − ln i
[
2(f − f̄)− (∂tAf + ∂t̄A f̄)(tA − t̄A)

]
, where f = −1

6
KABCtAtBtC . (3.1.16)

It is important to point out that since the Kähler potential is described in terms of a chiral prepotential,
it is also protected from perturbative loop corrections, receiving corrections only non-perturbatively.

We will not explore the complete N = 2 effective action, since we are interested in the N = 1
reduced case by the action of an Orientifold. For the reader who wants to read more on the N = 2
action of type IIA, we suggest [78, 79] or the review in [80].

3.2 Type IIA Orientifold Compactification

We now introduce an orientifold projection on the Calabi-Yau, O,

O = (−1)FLΩpσ
∗ (3.2.1)

where Ωp is the world-sheet parity reversal, FL is the space-time fermion number in the left-moving
sector, and σ is an anti-holomorphic and isometric involution of the compact Calabi-Yau manifold Y . If
we require the projection Y/O to preserve N = 1 supersymmetry, this implies [81, 82]

σ∗J = −J , σ∗Ω = e2iθΩ̄ , (3.2.2)

where θ is some real phase.
The four-dimensional scalars, vectors, two- and three-forms will arise in the expansions of the ten-

dimensional fields into harmonic forms of Y which have to transform in a specified way under the
orientifold parity to yield modes which remain in the orientifolded N = 1 spectrum. More specifically,
the ten-dimensional metric and the dilaton are invariant under the action of σ while the NS-NS B-field
transforms as σ∗B2 = −B2. The R-R fields C1, C3, C5, C7 remain in the orientifold spectrum if they
obey σ∗Cp = (−1)(p+1)/2Cp. The R-R fields are however not all independent, as they obey an electric-
magnetic duality,

Gp+1 = (−1)(p+1)/2 ∗10 G9−p , (3.2.3)

where
G2 = dC1 , Gp+1 = dCp −H3 ∧ Cp−2 , H3 = dB2 . (3.2.4)

with Gp+1, p = 1...9. One can use a democratic formulation of Type II supergravity [83] instead of the
usual form (3.1.1) described5 in section 3.1. The bosonic kinetic terms of the ten-dimensional action are
then given by

S
(10)
dem = −

∫
1
2R ∗10 1 + 1

4H3 ∧ ∗10H3 +

9∑
p=1

1
8Gp+1 ∧ ∗10Gp+1 . (3.2.5)

5We are also omitting the superscript (10) to avoid a dirty notation.
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As the self duality condition of G5, the duality conditions (3.2.3) do not arise from the equations of
motion and have to be imposed by hand. When coupling the bulk supergravity to a D-brane it turns out
to be useful to also introduce another basis Aq of q-forms with a redefined duality relation

A =
∑
q

Aq = e−B2 ∧
∑
p

Cp , dAq = (−1)(q+1)/2(∗B dA)q , (3.2.6)

where the ‘B-twisted’ Hodge star is given by ∗B = e−B2 ∗10 e
B2 .

To perform the Kaluza-Klein expansion of the closed string fields we first decompose the de Rham
cohomologies as even (denoted Hn

+(Y ))and odd (denoted Hn
−(Y )) cohomologies under the involution

σ,
Hn(Y ) = Hn

+(Y )⊕Hn
−(Y ). (3.2.7)

From (3.2.2), we see that J is odd under the involution, and therefore can be expanded in a basis {ωa}
of H(1,1)

− (Y ). The same happens for surviving components of the B2 field, so the complexified holo-
morphic two-form Jc decomposes in a basis of H(1,1)

− (Y ),

Jc = B2 + iJ = (ba + iva)ωa = taωa , (3.2.8)

where a = 1, . . . , h
(1,1)
− labels a basis ωa of H2

−(Y ). We thus find the same complex structure as in
the underlying N = 2 theory described in section 3.1 with the dimension of the Kähler moduli space
truncated from h(1,1) to h(1,1)

− .
To describe the three-form Ω, we first notice thatH3(Y ) splits asH3

+(Y )⊕H3
−(Y ). Each component

has dimension dimH3
±(Y ) = h(1,2) + 1. It is possible to write a symplectic basis (αk, β

λ) that span
H3

+ and (αλ, β
k) that span H3

−. The intersections of the basis elements are∫
Y
αk ∧ βl = δlk,

∫
Y
ακ ∧ βλ = δλκ , (3.2.9)

and zero for all the others. We again split

Ω = Zkαk + Zλαλ −Fλβλ −Fkβk (3.2.10)

We introduce a complex ‘compensator’ C ∝ e−φ+iθ, as given in (3.2.16), that absorbs the phase of the
orientifold action on Ω and contains the dilaton. Under the orientifold projection, we can easily see that

Im(CZk) = Re(CFk) = 0, Re(CZλ) = Im(CFλ) = 0. (3.2.11)

Thus,
CΩ = Re(CZk)αk − i Im(CZλ)αλ − Re(CFλ)βλ − i Im(CFk)βk. (3.2.12)

We then define a complexified three-form Ωc that contains the degrees of freedom arising from the
complex structure moduli, the dilaton as well as the scalars from the R-R forms. We combine these as

Ωc = 2 Re(CΩ) + iCsc
3 = N ′k αk − T ′λ βλ , (3.2.13)

where k = 1, . . . , n−, λ = 1, . . . , n+ label a basis (αk, β
λ) of H3

+(Y,R). Here Csc
3 is the part R-R

three-form which is also a three-form on the Calabi-Yau manifold Y and hence descents to scalars in
four dimensions. We considered only the real part of CΩ, since the imaginary part is redundant, and is
connected to the real part via a Legendre transform (see the Appendix in [82]).

From the orientifold projection condition for the Ramond-Ramond fields σ∗Cp = (−1)(p+1)/2Cp,
we can also expand Csc

3 in the basis of H3
+(Y,R), Csc

3 = ξkαk + ξ̃λβ
λ. We thus find the explicit

expressions
N ′k = 2 Re(CXk) + i ξk , T ′λ = 2 Re(CFλ) + i ξ̃λ . (3.2.14)
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Note that the split of the h(2,1) + 1 basis elements of H3
+(Y,R) into n− elements αk and n+ elements

βλ does depend on the point in the complex structure moduli space on which one evaluates CΩ. In
fact, at the large complex structure point the precise split will determine whether this type IIA set-up
is dual to an orientifold with O3/O7 planes or O5/O9 planes as we will discuss in detail in section 3.6.
It is important to point out, that the complex coordinates (N ′k, T ′λ) are the correct complex scalars in
the N = 1 chiral multiplets in the absence of D6-branes, but will receive corrections upon introducing
dynamical D6-branes.

It is also interesting to note that the correct chiral coordinates now depend explicitly on Fλ, while in
the N = 2 case the coordinates were only ZI , and the metric was encoded in a prepotential. This new
fact is a consequence of the breakdown to N = 1, and the moduli space is not anymore special Kähler,
although some structure of it can still be seen.

Before discussing the open string spectrum let us comment further on the complex function C ap-
pearing in (3.2.13). Since the orientifold projection is an anti-holomorphic involution the complex struc-
ture deformations will be real. In fact, C has a phase factor e−iθ and is defined to compensate rescalings
of Ω such that CΩ has a fixed normalization

e2φCΩ ∧ CΩ = 1
6J ∧ J ∧ J . (3.2.15)

It is convenient to introduce the four-dimensional dilaton D by setting e−2D = e−2φV , where V =
1
6

∫
Y J ∧ J ∧ J is the string-frame volume of the Calabi-Yau space. The compensator field is then given

by
C = e−D−iθeK

cs/2 = e−φ−iθV1/2eK
cs/2, (3.2.16)

where Kcs = − ln
[
− i
∫

Ω ∧ Ω̄
]
.

Let us note that the R-R three-form in general also leads to U(1) vectors in four space-time dimen-
sions via the expansion

Cvec
3 = Aα ∧ ωα (3.2.17)

where ωα is a basis of H2
+(Y,R). Their holomorphic gauge coupling function fαβ has also been deter-

mined in ref. [82]. Denoting by Kαβa =
∫
Y ωα ∧ ωβ ∧ ωa, the intersection form of two elements of

H2
−(Y,R) with one element of H2

+(Y,R) one finds that fαβ = iKαβata.

3.3 The inclusion of a D6-brane

We have discussed up to now the degrees of freedom for the field theory on the bulk. In the string theory
framework, the bulk theory consists of fields coming from closed strings. We next include a D6-brane in
our setup. In subsection 3.3.1 we describe the conditions for unbroken supersymmetry and the spectrum
coming from the massless modes of open strings attached to the brane. These modes decompose into
longitudinal or normal modes to the brane, with the former corresponding to U(1) vector fields living
on the brane and the latter to modes that describe the geometrical deformations of the brane.

The deformations can be along the flat directions of the potential, preserving supersymmetry, or
the brane can be deformed into configurations that are not anymore supersymmetric. The latter case
contribute to a non-vanishing scalar potential, that we describe in subsection 3.3.2.

We conclude this section in 3.3.4 when we write the D6-brane action compactified to four dimen-
sions. The result will not be yet in the standard N = 1 form (2.5.1). The identification of the N = 1
characteristic data will be discussed in the next sections, 3.4 and 3.5.

3.3.1 Open string sector: supersymmetric D6-branes

We want to include D6-branes in the background configuration such that they preserve the same super-
symmetry as the O6-planes which arise as the fix-point set of the involution σ. In fact, since σ is an
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anti-holomorphic involution the O6-planes wrap special Lagrangian cycles satisfying

J |O6-plane = 0 , Im(CΩ)|O6-plane = 0 . (3.3.1)

Let us consider a single D6-brane wrapped on a three-cycle L in Y . We will consider the simple case
where L is mapped under the orientifold map to a three-cycle L′ = σ(L) which is in a different co-
homology class and does not intersect L.6 For this situation the pair of the D6-brane and its image
D6-brane is merely an auxiliary description of a single smooth D6-brane wrapping a cycle in the orien-
tifold Y/O. Note that the number of D6-branes is restricted by tadpole cancellation. In cohomology one
has to satisfy7 ∑

D6

[L+ L′] = 4[LO6] , (3.3.2)

where the sum is over all D6-branes present in the compactification and LO6 is the fix-point set of the
involution indicating the location of the O6-plane.

Supersymmetry implies that the D6-brane has to wrap a calibrated (i.e. minimal volume) cycle.
These calibration conditions have been determined in [85], and they imply that the D6-brane must wrap
a special Lagrangian submanifold L0 ⊂ Y ,

J |L0 = 0 , Im(CΩ)|L0 = 0 , 2 Re(CΩ)|L0 = e−φvolL0 (3.3.3)

where volL0 =
√
ι∗g6d

3ξ is the induced volume form on L. Note that the first condition in (3.3.3)
implies that L0 is Lagrangian, while the second condition makes it special Lagrangian. We fixed the
coefficient, in particular the phase of CΩ, such that the same supersymmetry is preserved as for the
orientifold planes (3.3.1). The third equation is simply the calibration condition. Finally, we note that it
was also shown in [86] that in a supersymmetric background one has

FD6 −B2|L0 = 0 , (3.3.4)

where FD6 is the field strength of the U(1) gauge field A living on the D6-brane. In the following we
will always denote the background special Lagrangian cycle wrapped by a supersymmetric D6-brane by
L0.

For a fixed background complex and Kähler structure we can discuss supersymmetric deformations
of the D6-branes. In fact, the deformations of L0 preserving the special Lagrangian conditions (3.3.3)
were studied by McLean [87]. When we deform a compact special Lagrangian cycle L0 to Lη passing
through a continuous family of cycles (not necessarily special Lagrangian), we can associate the defor-
mation to a vector field η normal to L0 (as figure 3.1 in page 35). The deformation is however performed
only through special lagrangian cycles if and only if the one-form defined as θη = ηyJ is harmonic. In
other words, non-harmonic θη will correspond to deformations breaking the special Lagrangian condi-
tions, and therefore breaking supersymmetry. This restriction to harmonic forms reduces the infinite di-
mensional space of maps from L0 to Lη to a deformation space of dimension b1(L0) = dimH1(L0,R).
Furthermore, there are no obstructions to extending an infinitesimal deformation to a finite deformation.
The tangent space to such deformations can be identified through the cohomology class of the harmonic
form with H1(L0,R). We can thus write a basis of harmonic one-forms θi on L0 as

θi = siyJ |L0 , ∗θi = −2eφsiyIm(CΩ)|L0 , i = 1, . . . , b1(L0) , (3.3.5)

where si is a basis of the real special Lagrangian normal deformations. Let us recall the derivation of
the expression for ∗θi [88]. We do this more generally, by determining the Hodge-dual of a one form

6This is a non-generic situation for a three-cycle in a six-dimensional manifold. Generically D6-branes on three-cycles will
intersect in points. At these intersections matter fields can be localized and have to be included in the reduction.

7This condition will be modified in the presence of NS-NS background flux H3 and the Romans mass parameter m0 with
an additional term proportional to m0H3 (see, e.g. , ref. [84]).

27



α = (XyJ)|L0 for some X ∈ TY |L0 . Note that the vector dual to α by raising the index with the
induced metric is IX where I is the complex structure on Y . Hence one checks

∗ (XyJ)|L0 = (IX)y volL0 . (3.3.6)

However, on L0 the volume form is identical to 2eφRe(CΩ) by (3.3.3). This implies

∗ (XyJ)|L0 = 2eφ(IXyRe(CΩ))|L0 = −2eφ(XyIm(CΩ))|L0 (3.3.7)

where the minus sign arises from evaluating I on the (3, 0)-form Ω, (IX)yΩ = iXyΩ.
We have just introduced the general supersymmetric deformation encoded by b1(L0) scalars ηi aris-

ing in the expansion θη = ηiθi of the harmonic form θη. The ηi(x) will be real scalar fields in the
four-dimensional effective theory depending on the four space-time coordinates x. Let us next discuss
the degrees of freedom due to U(1) Wilson lines arising from non-trivial one-cycles on the D6-brane
world-volume. Later on we will show that these real scalars will complexify the ηi, that is, the super-
symmetric chiral coordinates will be a combination of brane deformations and Wilson line scalars. The
latter arise in the expansion of the U(1) gauge boson AD6 on the D6-brane as

AD6 = A+ ai α̃i , (3.3.8)

where A is a U(1) gauge field and the ai(x) are b1(L0) real scalars in four dimensions. The forms α̃i
provide a basis of H1(L0). Note that in general the U(1) field strength FD6 = dAD6 can additionally
admit a background flux 〈FD6〉 = fD6 in H2(L0,Z), which can be trivial or non-trivial in H2(Y,R).
Since we will focus on the kinetic terms in the following we will set fD6 = 0 for most of the discussion.
Note that FD6 naturally combines with the NS–NS B-field into the combination FD6 − ι∗B2.

To summarize, one finds as massless variations around a supersymmetric vacuum h
(1,1)
− +h(2,1) + 1

chiral multiplets from the bulk and b1(L0) chiral multiplets (ηi, ai) from the D6-brane. The precise
organization of these fields into N = 1 complex coordinates is postponed to section 3.4.

3.3.2 General deformations of D6-branes

So far we have discussed the supersymmetric background D6-brane and its also supersymmetric defor-
mations. However, in general L0 admits an infinite set of deformations which will render the deformed
D6-brane non-supersymmetric. These deformations will be included in the following and shown to be
obstructed by a scalar potential. In order to do that, one recalls that the string-frame world-volume action
for the D6-brane takes the form [8, 9, 89]

SSF
D6 = −

∫
W7

d7ξe−φ
√
−det (ι∗ (g10 +B2)− FD6) +

∫
W7

∑
q odd

ι∗(Cq) ∧ eFD6−ι∗(B2) . (3.3.9)

The first term of (3.3.9), the Dirac-Born-Infeld (DBI) action, can be understood very roughly as
the stringy generalization of the action of an object wiping a seven dimensional worldvolume. A free-
moving point particle, for example, has a Lagrangian L =

√
−ι∗g, where the integral is along a world

line. ι is the pull back of the ambient metric to the world line (or for the case of the brane, the world-
volume). The movement of the brane wiping the worldvolume is described by open strings with mo-
mentum normal to the brane, thus obeying Dirichlet boundary conditions along its momentum. Open
strings are also responsible for introducing a U(1) gauge field along the brane, coming from strings with
Neumann boundary conditions, i.e., moving freely along the brane tangent directions.

A moving D0-brane is a relativistic point particle with three-dimensional velocity ~v and has a kinetic
Lagrangian given in Minkowski space by

Lpp = mc2

√
1− ~v2

c2
, (3.3.10)
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In the T-dual picture, when Dirichlet and Neumann boundary conditions are exchanged, the D0-brane
becomes a D1-brane with a U(1) field along the T-dualized direction. Just as the D0-brane had a velocity
bounded by v < 1, the D1-brane also has a bounded electromagnetic field, described by the Born-Infeld
action8,

LB = b

√
1− ( ~E2)/b2, (3.3.11)

where b is the bound (| ~E|) < b. The argument can be repeated for a D-brane of any dimension, and in
more general spacetime backgrounds, leading to the Born-Infeld action

SBI =

∫ √
−det(gmn + Fmn), (3.3.12)

This Lagrangian however is not completely gauge invariant. In the string worldsheet action, There is a
gauge transformation given by

δBµν = ∂µζν − ∂νζµ , δAµ = −ζµ, (3.3.13)

under which Fµν is not gauge invariant, but the combination B2 + F is. Therefore, the correct gauge
invariant action for a Dp-brane is

SDBI = −
∫
Wp+1

dp+1ξe−φ
√
−det (ι∗ (g10 +B2)− F ). (3.3.14)

The second term in (3.3.9) is the Chern Simons action, that gives information on the Ramond-
Ramond charge of the D-brane. U(1) fields on the brane also couple to RR fields, and as before, gauge
invariance imply the appearance of B2.

In this subsection we calculate the scalar potential that arises when we study general deformations
of special Lagrangian cycles, as was performed in [87]. The scalar potential corresponds thus to the
obstruction for the deformed cycle to be special Lagrangian, and therefore supersymmetric. This scalar
potential will appear in the reduction of the first term in (3.3.9) (the spacetime geometry term). In section
3.5 we show how this scalar potential descends from a superpotential, as required in supersymmetric
theories.

Exponential map and normal coordinate expansion

A general fluctuation of L0 to a nearby three-cycle Lη is described by real sections η of the normal
bundle NL0. Clearly, the space of such sections is infinite dimensional as is the space of all Lη. We can
understand the deformation of L0 to a neighboring Lη as a diffeomorphism mapping each point p on L0

with a normal vector η(p) to a point in Lη through a geodesics, given by the exponential map expη(p).
We can construct then a vector field η for the deformations living in the normal vector bundle of L0. We
should also know how to describe the pullback of a bulk field onto Lη. In particular, we will be very
interested in the pull back of the forms J and Im(CΩ) that give us information on whether the cycle it
is pulled back to is special Lagrangian or not, as in (3.3.3).

We then define the pullback of the exponential map expη,

Eη(γ) = exp∗η(γ|Lη) , (3.3.15)

where η ∈ NL0, and γ ∈ Ωp(Y ) are p-forms on Y . Eη pulls back γ from Lη to a p-form Eη(γ) ∈
Ωp(L0) on L0.

8 Initially this proposal was made to try to solve the divergent electromagnetic field problem in classical electrodynamics
[90, 91]. The electric field of a point charge would not be infinite, and in the limit b → ∞ the Lagrangian gives the classical
Maxwell theory.
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It was shown in [87] that the pullback Eη(J) and Eη
(
CΩ
)

are exact forms on L0
9, that is, it is

possible to find a 1-form µ̂1 and a 2-form µ̂2 such that

Eη(J) = dµ̂1 , Eη
(
Im(CΩ)

)
= dµ̂2 . (3.3.16)

In order to study special Lagrangian deformations as in section 3.3.1 one thus has to consider the space
of deformations ηsp such that Eηsp(J) = 0 and Eηsp(Im(CΩ)) = 0 [87], that is, µ1 and µ2 have to be
closed forms for the mapping between special lagrangian cycles.

We can find easily explicit expressions for the deformations of J and Im(CΩ) in the particular case
of small (first order) deformations. We introduce a real parameter t to the deformation such that, for
small deformations, E′η(γ) := ∂tEtη(γ)|t=0. A straightforward computation shows that for any closed
for γ on Y one has

dγ = 0 : E′η(γ) = Lη(γ)|L0 = d(ηyγ)|L0 . (3.3.17)

Here we have used the standard formula for the Lie derivative on a form Lηγ = d(ηyγ) + ηydγ. Note
that (3.3.17) immediately implies that

E′η(J) = dθη , E′η(Im(CΩ)) = −2eφd ∗ θη . (3.3.18)

where θη = ηyJ |L0 and we have again used the fact that ∗θη = 2eφηyImCΩ|L0 as in (3.3.5). One can
proceed with the expansion of the exponential map and determine the full normal coordinate expansion.
In particular, for a p-form one finds the small t expansion

Etη(Cp) = 1
p!

[
Ci1...ip + t ·

(
ηn∂nCi1...ip − p∇i1ηnCni2...ip

)
(3.3.19)

+ 1
2 t

2 ·
(
ηn∂n(ηm∂mCi1...ip)p∇i1ηnηm∂mCni2...ip −

p(p−1)
2 ∇i1ηn∇i2ηmCnmi3...ip

+ p−2
2 Rjni1mη

nηmCji2...ip

)
+ O(t3)

]
dξi1 ∧ . . . ∧ dξip .

Such normal coordinate expansions have been used for D-branes of different dimensions, for example,
in refs. [27, 92, 93].

The scalar potential for Lagrangian deformations

We can use the procedure above to describe how the volume form changes as we move from L0 to Lη.
At any L, we define the volume functional

V (L) =

∫
L
d3ξ e−φ

√
det(ι∗g) =

∫
L
e−φ volL . (3.3.20)

The pullback ι is the same one described in the D-brane action, (3.3.9), that pulls the metric on the
Calabi-Yau manifold onto the cycle L. Equation (3.3.20) is the geometrical part of the DBI action after
compactification, that will lead to a scalar potential in four dimensions. This scalar potential will act as
en obstruction to deformations of the brane that break the special Lagrangian condition, and therefore
supersymmetry.

The idea will be to introduce again the real parameter t and calculate the deformation of V (Lη). If
the deformation is small, we can expand around L0,

V (Lη) = V (L0) + t
dV

dt
(L0) +

1

2
t2
d2V

dt2
(L0) + . . . . (3.3.21)

9This can be deduced from the fact that J and Im(CΩ) are closed and since L0 and Lη are in the same cohomology class,
one has in cohomology that [Eη(γ)] = [γ|L0 ].
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Also, the special Lagrangian manifold L0 is by definition a calibrated manifold, that is, among all the
manifolds in the same cohomology class, the calibrated ones are the ones with the minimal volume.
That is, when deforming L0, since it is a minimum of volume, the first derivative dV/dt evaluated on
L0 vanishes. So the first contribution to δV comes from the second derivative in (3.3.21), that we will
calculate in the following.

The first case we will consider is when Lη is still Lagrangian, but not necessarily special. This
implies that θη = ηyJ is still closed, but the volume form now also has a contribution from the imaginary
part of Ω. Actually, as the brane can also have a phase θD6(ξ) different from the phase of the orientifold
plane and dependent on the coordinates on the brane, we also define a compensator for the brane CD6

with which we can write

e−φvolLη = 2CD6Ω|Lη , with CD6(ξ) = |C|e−iθD6(ξ) . (3.3.22)

We can then calculate the first derivative of the volume,

d

dt
(e−φ+iθD6 volL) = (Lη|C|Ω)|L = e−φ+iθD6(idθD6 ∧ ηy volL +d(ηy volL) , (3.3.23)

where again Lη is the Lie derivative, Lη(γ) = dηyγ + ηydγ + . . . for any form γ, and we used the
fact that volL is a closed form. As we will at the end evaluate this expressions on L0 where we had
∗θη = ηy Im(CΩ), we can call already

ηy volL = id ∗ θη, (3.3.24)

that agrees with the usual result since at L0 the normal vector field η is normal to volL0 ∼ 2 ReCΩ,
so ηyReCΩ vanishes there. Additionally, we can write the last term on (3.3.23) as ∗d(ηy volL) volL,
where we used that, on the L cycle, the hodge dual ∗ imples ∗1 = volL. We then calculate the derivative
in the left-hand side of (3.3.23), and match imaginary and real terms,

d

dt
θD6 = −d∗θη ,

d

dt
volL = −dθD6 ∧ ∗θη , (3.3.25)

Note that a particularly interesting case is when θη = dθD6, since in this case the second equation
ensures that the volume of L is decreasing along this direction. In fact, this normal vector precisely
parameterizes the directions toL in which its volume is most efficiently decreasing. This vector is known
as mean curvature vector. Such Lagrangian mean curvature flows have been discussed intensively in the
mathematical literature (see, e.g., refs. [94, 95], and references therein).

We now proceed to calculate the second derivative from (3.3.25) and evaluate at t = 0, where
L(t = 0) = L0,

d

dt
volL |t=0 = 0 ,

d2

dt2
volL |t=0 = (dd∗θη) ∧ ∗θη . (3.3.26)

In this computation it is crucial to use the fact that at t = 0 one has θD6(0) = θO6 is constant on L0.
This immediately implies the vanishing of the first derivative of volL using (3.3.25). To evaluate the
second derivative both equations (3.3.25) have to be applied successively. Finally, we can use (3.3.26)
to evaluate the lowest order scalar potential for a Lagrangian brane on L(t) as

d2

dt2
V (Ltη)|t=0 = e−φ

∫
L0

d ∗ θη ∧ ∗d ∗ θη = 4eφ
∫
L0

d(ηyImCΩ) ∧ ∗d(ηyImCΩ) , (3.3.27)

where V is the volume functional (3.3.20). As we will show later on, this term provides a scalar potential
which corresponds to a D-term in the four-dimensional N = 1 effective theory for the D6-brane.
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The scalar potential for general deformations

Before turning to the details of the Kaluza-Klein reduction let us recall that one can extend the analysis
to deformations η for which L(t) is no longer Lagrangian. In this case dηyJ does not necessarily vanish
and (3.3.22) is not generally possible. However, one can still evaluate the second derivative of the
volume of L(t) at the point t = 0 as [87]

d2

dt2
V (Ltη)|t=0 = e−φ

∫
L0

d(ηyJ) ∧ ∗d(ηyJ) + 4eφ
∫
L0

d(ηyImCΩ) ∧ ∗d(ηyImCΩ) . (3.3.28)

The new term depending on d(ηyJ) is the obstruction for L(t) to be Lagrangian. In the four-dimensional
N = 1 effective theory for the D6-brane this term can be obtained as one of the F-term contributions
from a superpotential which we determine in section 3.5.

The scalar potential including the B-field

So far we have discussed the scalar potential without the inclusion of the NS-NS B-field of Type IIA
string theory and the brane field strength FD6. To compute the leading order potential including FD6 we
note that only the part F̃ of FD6 contributes to the potential which has indices on the internal three-cycle
wrapped by the brane. We perform a Taylor expansion of the Dirac-Born-Infeld action using√

det(A + B) =
√

det(A)
[
1 + 1

2Tr(A−1B) + 1
8

([
Tr(A−1B)

]2 − 2Tr
(
[A−1B]2

))
+ . . .

]
(3.3.29)

for small fluctuations B and invertible A. The matrix B we want to identify with the normal coordinate
expansion of B2 − F̃ in (3.3.9), while A is the background metric of the Calabi-Yau space restricted to
L0. Recall that the normal coordinate expansion Etη(B2) was given in (3.3.19). One notes that the first
term in the expansion (3.3.29) is canceled by tadpole cancellation of the D6-branes with the O6-planes in
the background. Moreover, the second and third term in (3.3.29) do not contribute to the potential since
A is symmetric while B is anti-symmetric. Evaluating the remaining term Tr

(
[A−1B]2

)
and adding the

result (3.3.28) one finds

V SF
DBI = e−φ

∫
L0

[
d ∗ θη ∧ ∗d ∗ θη + dθη ∧ ∗dθη + (F̃ −B2 − dθBη ) ∧ ∗(F̃ −B2 − dθBη )

]
, (3.3.30)

which is still expressed in the ten-dimensional string frame. Here we have introduced the abbreviation

θBη = ηyB2|L0 , (3.3.31)

which is the B-field analog of θη = ηyJ |L0 . This concludes the computation of the scalar potential from
the Dirac-Born-Infeld action. In a next step we want to introduce a Kaluza-Klein basis and determine
the complete leading order effective action including the kinetic terms.

3.3.3 A Kaluza-Klein basis

In performing a Kaluza-Klein reduction of the D6-brane action to four spacetime dimensions we would
like to include all massive modes corresponding to arbitrary deformations of L0 to Lη. This means that
we include sections sI of NL0 which yield one-forms in the contraction with J

θI = sIyJ |L0 ∈ Ω1(L0) . (3.3.32)

For a compact L0 it is possible to label these one-forms by indices I = 1, . . . ,∞ by considering the
Kaluza-Klein eigenmodes of the Laplacian ∆L0 . In this case the zero modes ∆L0θi = 0 are precisely the
harmonic forms θi introduced in (3.3.5). However, the basis adopted to ∆L0 is not always useful, since
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it explicitly depends on the metric inherited form the ambient Calabi-Yau manifold. In the following
we will therefore work with a general countable basis of Ω1(L0), and later use the induced metric to
interpret the final expressions after performing the reduction. In general we will always demand that the
one-forms θI are finite in the L2-metric

G(α̃, β̃) =

∫
L0

α̃ ∧ ∗β̃ , (3.3.33)

where α̃, β̃ ∈ Ω1(L0).
Let us now turn to the discussion of the U(1) gauge field on the D6-brane. It admits the general

expansion

AD6 = AJ hJ + aI α̂I , (3.3.34)

where hJ ∈ C∞(L0) is a basis of functions on L0 and α̂J ∈ Ω1(L0) is a basis of one-forms on L0. Here
again a countable basis can be chosen due to the compactness of L0. Note that the field-strength of AD6

is given by

FD6 = F J hJ −AJ ∧ dhJ + daI ∧ α̂I + F̃ , F̃ = aI dα̂I + fD6 , (3.3.35)

where fD6 ∈ H2(L0,Z) is a background flux of FD6 on L0. The terms dhJ and dα̂I arise due to the
fact that the functions hJ need not to be constant on L0 and the one-forms α̂I need not to be closed.

We thus find that an infinite tower of scalars aI which are coefficients of exact forms are actually
gauged by the gauge fields AJ for which dhJ 6= 0. Moreover, scalars aI arising in the expansion in
non-closed forms appear without four-dimensional derivative in the expansion (3.3.35). To see this, we
introduce a special basis adopted to the metric induced on L0. More precisely, via the Hodge decompo-
sition each one-form α̂I can be uniquely decomposed into a harmonic form, an exact form dĥI and an
co-exact form d∗γ̂I on L0 as

α̂I = µiI α̃i + dĥI + d∗γ̂I , (3.3.36)

where α̃i are the b1(L0) harmonic forms introduced in (3.3.8). We thus pick a basis of the space of
exact forms Ω1

ex(L0) denoted by dhI and a basis d∗γI of the space Ω1
co-ex(L0) which are exact with

respect to d∗. By appropriate redefinition we can introduce scalars âI parameterizing the expansion in
dhI . Denoting the coefficients of the non-closed forms d∗γI by ãI , and the coefficients of the harmonic
forms by aj the expansion (3.3.35) reads

FD6 = F I hI + daj ∧ α̃j +DâI ∧ dhI + dãI ∧ d∗γI + F̃ , (3.3.37)

DâI = dâI −AI , F̃ = ãIdd∗γI + fD6 .

From this we conclude that precisely the scalars âI are gauged by AI . Since the four-dimensional
effective theory is anN = 1 supersymmetric theory one infers that there will be D-terms induced due to
these gaugings DâI , while F-terms are induced due to F̃ . We will determine the D-term in section 3.5,
and check that it matches the moment map analysis of ref. [96].

3.3.4 The four-dimensional effective action

We can now determine the kinetic terms for the chiral multiplets of the D6-brane coupled to the bulk
supergravity. Since the bulk action has been Kaluza-Klein reduced on the orientifold background in
ref. [82] we will focus on the reduction of the D6-brane action (3.3.9). The contributions entirely due to
bulk fields are later included in the determination of the N = 1 characteristic data.
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Dirac-Born-Infeld action

Let us start by considering the Kaluza-Klein reduction of the first term in (3.3.9), i.e. the Dirac-Born-
Infeld action. We expand the determinant in (3.3.9) to quadratic order in the fluctuations around the
supersymmetric background. These are precisely the fluctuations of the embedding ι of L parameterized
by the fields ηi of (3.3.5) and the Wilson line scalars ai introduced in (3.3.8). The normal coordinate
expansions of the ten-dimensional metric on the D6-brane world-volume is given to leading order by

ι∗g10 =
(
e2Dηµν + g(∂µη, ∂νη)

)
dxµ · dxν + (ι∗g + δ(ι∗g))mndξ

m · dξn , (3.3.38)

where gmn is the induced metric on L, and δ(ι∗g)mn is the metric variation induced by the variation of
the background Kähler and complex structure. Note that the four-dimensional metric ηµν is rescaled to
the four-dimensional Einstein frame.10 One first performs the Taylor expansion of the determinant while
using (3.3.38). Inserting the result together with FD6 given in (3.3.37) into the first part of (3.3.9) we
obtain the four-dimensional action

S
(4)
DBI = −

∫
1
2Refr IJ F

I ∧ ∗F J + e2DGij dai ∧ ∗daj + e2DG̃IJ dãI ∧ ∗dãJ

+e2DGIJ DâI ∧ ∗DâJ + e2DĜIJ dηI ∧ ∗dηJ + VDBI ∗ 1 , (3.3.39)

in the four-dimensional Einstein frame. The covariant derivative DâI was introduced in (3.3.37) and
indicates the gauging of the infinite tower of scalars âI . The potential term VDBI depends on the defor-
mations δ(ι∗g)mn of the calibration conditions (3.3.3) induced by the variation of the induced metric on
Lη which we computed in (3.3.28). Moreover, one obtains an additional term depending on the modes
violating the background condition FD6 −B2|L0 = 0 as in (3.3.30). Explicitly we find

VDBI =
e3φ

V2

∫
L0

d∗θη∧∗d∗θη+
e3φ

V2

∫
L0

(
dθη∧∗dθη+(F̃−B2−dθBη )∧∗(F̃−B2−dθBη )

)
, (3.3.40)

where F̃ is defined in (3.3.37). In the following we will discuss the metric functions appearing in the
kinetic terms of (3.3.39).

The first term in (3.3.39) is the kinetic term for the U(1) gauge bosons AI . The gauge coupling
function is thus given to leading order by

Re fr IJ =

∫
L0

2 Re(CΩ)hIhJ , (3.3.41)

where the volume of L0 has been replaced using (3.3.3). Note that Refr IJ admits a simple geometrical
interpretation as L2-metric on the space of functions on L0. More generally, without introducing a
specific basis and restricting to a special Lagrangian one writes for two functions h, h̃ on L

Refr(h, h̃)|L = e−φ
∫
L
h ∧ ∗h̃ , (3.3.42)

which readily reduces to (3.3.53) on L = L0 using ∗1 = volL and (3.3.3).
The second, third and fourth term in (3.3.39) are the kinetic terms for the Wilson line moduli

ai, ãI , âI , where the later appear with the covariant derivativeDâI = dâI+AI as introduced in (3.3.37).
The appearing metrics take the form

Gij = 1
2e
−φG(α̃i, α̃j) , G̃IJ = 1

2e
−φG(d∗γI , d

∗γJ) , GIJ = 1
2e
−φG(dhI , dhJ) , (3.3.43)

10Recall that the four-dimensional metric in the Einstein frame η is related to the string frame metric ηSF via η = e−2D ηSF.
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Figure 3.1: A diagrammatic representation of the original cycle L0 wrapped by the brane,
and its deformation until Lη , the C4 chain bounded by L0 and Lη , and the vector
field η normal to L0.

where G is the L2-metric defined in (3.3.33), and α̃i, dhI and d∗γI are the one-form basis introduced in
(3.3.37). The fifth term in (3.3.39) contains the field space metric for the deformations ηI and is of the
form

ĜIJ =

∫
L0

g(sI , sJ)Re(CΩ) = 1
2e
−φG(θI , θJ) . (3.3.44)

where θI are the one-forms on L0 introduced in (3.3.32). Let us comment on the derivation of the second
identity in (3.3.44). Here we first have to use the fact that g(si, sj) = J(si, Isj) = (Isj)yθi, where J is
the Kähler form and I is the complex structure on Y . Next we deduce from J ∧ Re(CΩ) = 0 that we
can move the Isj to obtain θi ∧ (Isj)yReCΩ. However, since CΩ is a (3, 0)-form one deduces using

2(Isj)yReCΩ = −2sjyIm(CΩ) = e−φ ∗ θj , (3.3.45)

and the identity (3.3.5) the second equality in (3.3.44).
This completes our reduction of the Dirac-Born-Infeld action. Let us stress that the reduction so far

only included the leading order terms. In order to fully extract the N = 1 characteristic data, however,
we will need to match also higher order terms. It turns out that an efficient strategy to proceed is to
include these by using supersymmetry and a careful study of the the Chern-Simons action. We will turn
to the Kaluza-Klein reduction of this part of the D-brane action in the following.

Chern-Simons action

Let us now turn to the dimensional reduction of the Chern-Simons part of the D6-brane action. In
the reduction one can again perform a normal coordinate expansion of the form-fields appearing in the
action. However, we will take here a somewhat different route and parameterize the normal variations
by introducing a four-chain C4 which contains the three-cycle Lη in its boundary

∂C4 = Lη − L0 , (3.3.46)

as in figure 3.1 where L0 is the reference three-cycle, the supersymmetric background cycle.
We consider the Chern-Simons action containing the R-R forms C3, C5 and C7 given by

SCS =

∫
W(0)

7

eF−B2 ∧ (C3 + C5 + C7) + SC4CS. (3.3.47)

HereW(0)
7 =M3,1 × L0,

SC4CS =

∫
W8

d
[
eF−B2 ∧ (C3 + C5 + C7)

]
, (3.3.48)
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and W8 = M3,1 × C4 such that W7 ⊂ ∂W8. This is in a similar spirit as the constructions in [97].
To perform the Kaluza-Klein reduction of (3.3.48) we consider the expansion of A, the wedge product
between the R-R forms and the B-field introduced in (3.2.6), as∑

p=3,5,7,9

e−B2 ∧ Cp = (ξkαk − ξ̃λβλ) + (Aα ∧ ωα +Aα ∧ ω̃α) (3.3.49)

+(Cλ2 ∧ αλ − C̃2
k ∧ βk) + (C0

3 + Ca3 ∧ ωa + C3
a ∧ ω̃a + C3

0 ∧ volY ) .

In (3.3.49), (αλ, β
k) is a basis of H3

−(Y,R), ωa, ωα are basis of H2
−(Y,R), H2

+(Y,R), and ω̃a, ω̃α are a
basis of H4

+(Y,R), H4
−(Y,R). Here we introduced the four-dimensional two-forms (Cλ2 , C̃

2
k) which are

dual to the scalars (ξk, ξ̃λ), already introduced in (3.2.14). The vectors Aα have been already introduced
in (3.2.17), and Aα are their four-dimensional duals. Moreover, the Kaluza-Klein expansion (3.3.49)
also contains the four-dimensional three-forms (C0

3 , C
a
3 , C

3
a , C

3
0 ) which are non-dynamical, but will

crucially contribute to the scalar potential as in ref. [93].
Note also that the fields defined in (3.3.49) are not the expansions from the R-R forms alone, but in

general combine with the NS-NS two-formB2. Denoting by a hat̂ the fields which arise in the expansion
of the R-R forms alone, one finds, for example, that

B2-corrected:

{
vectors: Aα = Âα , Aα = Âα − ÂβbaKβaα ,
3-forms: C0

3 = Ĉ0
3 , Ca3 = Ĉa3 + Ĉ0

3 b
a , etc.

(3.3.50)

where Âα, Ĉ0
3 and Âα, Ĉa3 denote the space-time vector bosons and three-forms coming from the ex-

pansion of C3 and C5, respectively. In contrast, the scalars and two-forms in (3.3.49) have no mixing
with the B-field such that

no B2-correction: scalars: (ξk, ξ̃λ) 2-forms: (Cλ2 , C̃
2
k) . (3.3.51)

As discussed in more detail in section 3.6 the situation is precisely reversed under mirror symmetry. In
fact, using the results on the side without B2 corrections mirror symmetry can be used to compute the
corrected couplings.

The Chern Simons action is dimensionally reduced by inserting (3.3.49) into (3.3.48). Focusing on
the couplings of Aα and (Cλ2 , C̃

2
k) in favor over their duals, one finds 11

S
(4)
CS =

∫
1
2 Imfr IJ F

I ∧ F J − (δIλdC
λ
2 − δkI dC̃2

k) ∧AI (3.3.52)

−(IIλ dCλ2 − IkI dC̃2
k) ∧ daI + Lmix + L3 .

The first term is the theta term of the gauge theory on the D6-brane, with Im fr IJ =
∫
L0
Csc

3 hIhJ that
combines with (3.3.41) to form

Re fr IJ =

∫
L0

(2 Re(CΩ) + iCsc
3 )hIhJ =

∫
L0

ΩchihJ , (3.3.53)

where we have used the definition for Ωc in (3.2.13). Lmix in (3.3.52) corresponds to the mixing of the
brane and bulk gauge bosons

Lmix =
(
aJ∆(I)Jα + Γ(I)α

)
dAα ∧ F I + J̃ α(I)dAα ∧ F

I , (3.3.54)

and L3 is the term which depends on the three-form field strengths as

L3 = dC0
3

(
1
2a

IaJ∆IJ + aJ Γ̃J
)

+ dCa3
(
aJ∆Ja + Γa

)
+ dC3

a J̃ a . (3.3.55)

11One could also include the couplings to Aα and (ξk, ξ̃λ). In this case one has to analyze also the bulk action keeping all
forms and their duals as in ref. [83].
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In order to display the remaining couplings appearing in this action we first define the integral
I(α̃, α) between a one-form α̃ on Lη and a three-form α on Y , as well as the integral J (β̃, ω) between
a two-form β̃ on Lη and a two-form ω on Y . To do that we again extend the forms defined on L0 to the
chain C4 such that they are constant along the normal directions of Lη in Y . We define

I(α̃, α) =

∫
C4
α̃ ∧ α , J (β̃, ω) =

∫
C4
β̃ ∧ ω . (3.3.56)

Furthermore, we will also need a pairing δ between a function h on L0 and three-form α on Y , as well
as a pairing ∆ between a one-form γ on L0 and a two-form on Y . Hence, we set

δ(h, α) =

∫
L0

hα+ I(dh, α), ∆(γ, β) =

∫
L0

γ ∧ β + J (dγ, β) . (3.3.57)

Note that these latter definitions include terms supported onL0 which are non-vanishing even in the limit
of vanishing normal displacement η. This redefinition is necessary since I and J vanish for a vanishing
normal displacement. In fact, we can expand (3.3.56) to first order in η for small normal displacement
in ∂C4 = Lη − L0 and obtain

I(α̃, α) =

∫
L0

α̃ ∧ ηyα + ... , J (β̃, ω) =

∫
L0

β̃ ∧ ηyω + ... , (3.3.58)

which has a leading term linear in η.
Having introduced the pairings we can display the couplings in (3.3.52), (3.3.54) and (3.3.55). Let

us start with the couplings in (3.3.52) obtained as

IIλ = I(α̂I , αλ) , IkI = I(α̂I , β
k) , δIλ = δ(hI , αλ) , δkI = δ(hI , β

k) . (3.3.59)

Furthermore, in the mixed term Lmix, given in (3.3.54), for the gauge bosons one finds

∆(I)Jα = ∆(hI α̂J , ωα) , Γ(I)α = J (hIfD6, ωα) , J̃ α(I) =

∫
C4
hI ω̃

α . (3.3.60)

Finally, we introduce the coefficients in (3.3.55) as

∆Ja = ∆(α̂J , ωa) , Γa = J (fD6, ωa) , (3.3.61)

for couplings between the ambient space two-forms ωa and forms α̂J and fD6 on the D6-brane. The
remaining couplings are

∆IJ =

∫
L0

α̂I ∧ dα̂J , Γ̃J =

∫
L0

α̂J ∧ fD6 , J̃ a =

∫
C4
ω̃a . (3.3.62)

It is not hard to interpret the different terms appearing in the action (3.3.52). The second term
proportional to (δIλdC

λ
2 − δkI dC̃2

k) ∧ AI is a Green-Schwarz term which indicates that the scalar fields
(ξk, ξ̃λ) dual to the two-forms (C2

k , C̃
λ
2 ) are gauged by the D6-brane vector fields AI . In fact, upon

elimination of (C2
k , C̃

λ
2 ) one finds the covariant derivative

Dξk = dξk + δkIA
I , Dξ̃λ = dξ̃λ + δIλA

I , (3.3.63)

We will show in section 3.5 that these gaugings induce the corresponding D-terms in VDBI as expected
from a supersymmetric theory.

The third term in (3.3.52) proportional to daI will be of importance for the derivation of the Kähler
potential and complex coordinates on the N = 1 field space. Upon elimination of (C2

k , C̃
λ
2 ) it induces
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a mixing of the kinetic terms of aI = (ai, âI) and (ξk, ξ̃λ). More precisely, one finds the modified
four-dimensional kinetic terms

Lkin
C3

= Gkl∇ξk ∧ ∗∇ξl +Gλκ∇ξ̃λ ∧ ∗∇ξ̃κ + 2G λ
k ∇ξk ∧ ∗∇ξ̃λ (3.3.64)

where the modified derivatives∇ are defined by

∇ξk ≡ Dξk + IkI daI and ∇ξ̃λ ≡ Dξ̃λ + IIλdaI , (3.3.65)

with the metric G given as in the closed string case,

Gkl = 1
2 e

2D

∫
Y
αk∧∗αl , Gλκ = 1

2 e
2D

∫
Y
βλ∧∗βκ , G λ

k = −1
2 e

2D

∫
Y
αl∧∗βλ . (3.3.66)

Note that the form of the metric G for ∇ξk and ∇ξ̃λ closely resembles the form of the metric Gij for
the scalars ai as seen from (3.3.39) and (3.3.43). We will exploit this observation in the detailed study
of the moduli space geometry later on. This similarity only occurs in the N = 1 orientifold for which
the field space metric is Kähler. In the underlying N = 2 set-ups the moduli space containing the R-R
scalars is a quaternionic manifold.

The Lmix is a kinetic mixing term between the U(1) from the brane with the vector field from the
C3 expansion. This term will be important in the derivation of the gauge coupling function in section
3.4.

The term L3 given by (3.3.55) contains the four-dimensional three-forms which arise in the expan-
sion of C3, C5, C7. Very similar to the analysis in ref. [93] they will be crucial to complete the scalar
potential contributions in VDBI to supersymmetric F-terms which can be obtained from a superpoten-
tial. To find the scalar potential from the three-form potential one has to eliminate the forms dC0

3 , dC3
a

and dCa3 from the complete four-dimensional effective action. In particular, in addition to L3 one also
has to include the reduction of the ten-dimensional kinetic term in (3.2.5). The resulting action for the
three-forms will be given in terms of the matrix NÂB̂ defined as

NÂB̂ =

(
−1

3Kabcb
abbbc 1

2KBabb
abb

1
2KAabb

abb −KABaba
)
− iV

(
1 + 4Gabb

abb −4GBab
a

−4GAab
a 4GAB

)
, (3.3.67)

where Â = {0, a, α}, and one has to use Kabα = Kαβγ = 0. Using these definitions we find after
rescaling to the Einstein frame that

S3-form =

∫
1
4e
−4D(ImN )−1 âb̂(dC3

â −Nâĉ dC ĉ3) ∧ ∗(dC3
b̂
− N̄b̂d̂ dC

d̂
3 ) + L3 , (3.3.68)

where C â3 = (C0
3 , C

a
3 ) and C3

â = (C3
0 , C

3
a), and L3 is the D-brane coupling defined in (3.3.55). As

in ref. [93] we next dualize dC0
3 , dC

a
3 and dC3

a , dC
3
0 into flux scalars e0, ea,m

a,m0. In ref. [98] the
interpretation of these scalars as quantized fluxes has been provided. They also arise as background
values of the field strengths F2 = maωa, F4 = eaω̃

a and F6 = e0 volY as their expansions into harmonic
forms on Y . In addition there is Romans mass parameter F0 = G0 = m0. After dualization of the three-
forms on finds the scalar potential

Vflux+CS = 1
4e
−4D(ImN )−1 âb̂(ẽâ −Nâĉ m̃ĉ) ∧ ∗(ẽb̂ − N̄b̂d̂ m̃

d̂) , (3.3.69)

where

ẽ0 = e0 + 1
2

∫
C4
F̃ ∧ F̃ + 1

2

∫
L0

F̃ ∧ aI α̂I , (3.3.70)

ẽa = ea +

∫
C4
F̃ ∧ ωa +

∫
L0

aI α̂I ∧ ωa,

m̃a = ma +

∫
C4
ω̃a , m̃0 = m0 .
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The additional terms in the definitions (3.3.70) arise precisely because of the term L3 form the D6-
brane. Luckily, apart from these shifts, the closed string moduli dependence of the potential (3.3.69)
agrees with the analog expression found in ref. [82], and we will thus be able to integrate it into a
superpotential without much effort.

Restriction of the brane action to harmonic modes

To conclude our reduction of the D6-brane action let us also give the result which is obtained by restrict-
ing to harmonic forms. This corresponds to a truncation of the Kaluza-Klein tower of the brane fields
to include only the lightest states. The resulting action will be useful in the next section when analyzing
the moduli space. The Kaluza-Klein Ansatz for the D6-brane field strength, eqn. (3.3.37), simplifies to

FD6 = F + dai ∧ α̃i + fD6 . (3.3.71)

This implies that the DBI action reduces to

S
(4)
DBI = −

∫
1
2Refr F ∧ ∗F + e2DGij dai ∧ ∗daj + e2DĜij dηi ∧ ∗dηj , (3.3.72)

with the metric Gij being the same as in (3.3.43), and Ĝij the restriction of (3.3.44) to supersymmetric
deformations (i.e., harmonic one-forms θi). The gauge coupling function (3.3.53) simplifies to

Re fr =

∫
L0

2 Re(CΩ) , (3.3.73)

as we restrict hI to the only harmonic function, the constant function which we normalized to 1. We did
not include the scalar potential VDBI since it vanishes when restricting to the harmonic subset of forms,
as we will show in section 3.5.

The truncation of the Chern-Simons action to the harmonic modes is

S
(4)
CS =

∫
1
2 Imfr F ∧ F − (δλdC

λ
2 − δkdC̃2

k) ∧A− (Iiλ dCλ2 − Iki dC̃2
k) ∧ dai (3.3.74)

+
(
aj∆jα + Γα

)
dAα ∧ F + J̃ αdAα ∧ F + dCa3

(
aj∆ja + Γa

)
+ dC3

a J̃ a + dC0
3

(
ajΓ̃j

)
,

with couplings

δλ =

∫
L0

αλ, δk =

∫
L0

βk, Iiλ =

∫
C4
α̃i ∧ αλ, Iki =

∫
C4
α̃i ∧ βk , (3.3.75)

∆iA =

∫
L0

α̃i ∧ ωA, ΓA =

∫
C4
fD6 ∧ ωA, A = {a, α}, Γ̃i =

∫
L0

α̃i ∧ fD6 ,

and J̃ A =
∫
C4 ω̃

A as defined in (3.3.62). One realizes that the couplings (δλ, δ
k) and ∆iA, Γ̃i are

constants, while the couplings (Iiλ, Iki ) and ΓA depend on the brane deformations through the chain C4.
Let us take a closer look at the three-form couplings coming from L3 (3.3.55), after the reduction

given simply by dCa3
(
aj∆ja + Γa

)
+ dC3

a J̃ a + dC0
3

(
ajΓ̃j in (3.3.74). We can expand the C4 chain

around the L0 cycle to see the explicit dependence on the brane deformations. Just as in (3.3.58), we
obtain, up to first order in the open fields,

L3 = dCa3

∫
L0

(
ajα̃j ∧ ωa + ηjsjyωa ∧ fD6

)
+ dC3

a

∫
L0

ηjsjyω̃
a + dC0

3

∫
L0

ajα̃j ∧ fD6. (3.3.76)

Note that this implies that L3 is non-vanishing also in the case we restrict to harmonic forms only.
However, note that (3.3.76) describes a coupling between the open and closed sector. In fact, the scalar
potential (3.3.69) arising from (3.3.76) is obtained as an F-term potential when varying the superpotential
with respect to the closed string fields ta, as we will describe in section 3.5.

39



3.4 The open-closed moduli space and the Hitchin functionals

In this section we discuss the geometry of the moduli space of the bulk sector and brane sector in more
detail. In the first part, section 3.4.1, we assume that the open moduli are frozen and discuss the geometry
of the moduli spaceMQ of the dilaton and the real complex structure deformations following [82]. In
section 3.4.2 we discuss the moduli space of special Lagrangian deformations ηi following the work
of Hitchin [88, 99]. This description will be slightly extended by including the NS-NS B-field. The
open moduli space has finite dimension b1(L0) and can be encoded by the variation of harmonic one- or
two-forms on L0.

In the complete set-up, with varying open and closed modes, the definition of being special La-
grangian crucially depends on both the Kähler as well as the complex structure moduli of Y . In fact, the
normal vectors si used in order to define the one-forms θi = siyJ need to be chosen such that θi is har-
monic. This notion changes when varying the complex and Kähler structure of Y . Nevertheless, if such
a change does not alter the topology of Y and L0, one expects to find a new embedding map ι′ which
makes Lη supersymmetric in Y and posses also b1(L0) special Lagrangian deformations. This suggests
to view the full moduli space as fibration of the open string moduli space MC

o over the closed string
moduli spaceMK

C ×M
Q
C , whereMK

C is the space spanned by the complexified Kähler deformations.
In section 3.4.3 we will explore the local geometry of this full moduli space in more detail. Note that we
are still dealing with only a finite set of deformations. In the absence of background fluxes these remain
massless due to the vanishing of the scalar potential.

In section 3.4.4 we also analyze the gauge coupling function and the kinetic mixing for the brane
and bulk U(1) gauge fields. In particular, we comment on its holomorphicity properties.

3.4.1 The orientifold moduli space

We start discussing the moduli space coming from the four dimensional dilatonD and the complex struc-
ture deformations, described by the scalars qK . We will review how the complex structure deformations
combine with the scalar part of the three form C3, and justify our inclusion of Ωc as the complexified
complex structure that gives rise to the “correct” chiral fields of the theory. Here we will follow [82].

The moduli space for the dilaton and complex structure deformations is described by

1
2G = dD · dD +Kcs

KL dq
K · dqL , (3.4.1)

where Kcs
KL is the metric restricted to the deformations preserving the orientifold constraint (3.2.2). We

will argue now how this moduli space can be encoded in the complexified Ωc, (3.2.13),

Ωc = 2 Re(CΩ) + iCsc
3 = N ′k αk − T ′λ βλ , (3.2.13)

where N ′k and T ′λ were defined in (3.2.14)

N ′k = 2 Re(CXk) + i ξk , T ′λ = 2 Re(CFλ) + i ξ̃λ . (3.2.14)

Here we have introduced the convenient notation for the periods of Ωc,

Uk = 2 Re(CXk), and Uλ = 2 Re(CFλ). (3.4.2)

Importing the Kähler function from the underlying N = 2 theory, the metric in (3.4.1) can be obtained
as the second derivative with respect to U of the function [82]

KQ(V ) = −2 ln
[
i

∫
Y
CΩ ∧ CΩ

]
= −2 log

[
e−2D

]
. (3.4.3)
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Calculating the metric explictly,

G =
∂2KQ

∂UK∂UL
dUK · dUL = Gkl dU

k · dU l +Gλκ dUλ · dUκ + 2G λ
k dUk · dUλ . (3.4.4)

where the metrics are the same as in (3.3.66)

Gkl = 1
2 e

2D

∫
Y
αk∧∗αl , Gλκ = 1

2 e
2D

∫
Y
βλ∧∗βκ , G λ

k = −1
2 e

2D

∫
Y
αl∧∗βλ . (3.3.66)

Alternatively to the direct calculation from a truncation of the N = 2 moduli space, one can calculate
the above metrics as in [100] via the techniques introduced by Hitchin [101] The metrics in (3.3.66)
were the metrics obtained from the kinetic terms of real scalars {ξk, ξλ} coming from compactifying
C3,

C3 = ξkαk + ξλβ
λ + . . . , (3.4.5)

thus we can combine the real fields {ξk, ξλ} with {Uk, Uλ} in the chiral fields {N ′k, T ′λ}, (3.2.14). We
can also see that the imaginary part of CΩ appears as the first derivative of KQ,

1

2

∂KQ

∂Uk
= 2 e2DIm(CFk) ≡ Vk ,

1

2

∂KQ

∂Uλ
= −2 e2DIm(CXλ) ≡ V λ . (3.4.6)

That is, {Vk, V λ} appear as a dual coordinates to {Uk, Uλ} and can be alternated via a Legendre trans-
form in the action.

Note that originallyMQ
C was found as the N = 1 field-space obtained by truncating the underling

quaternionic geometry spanned by the N = 2 hypermultiplets. Each hypermultiplet has been truncated
to a single N = 1 chiral multiplet such thatMQ has half the real dimension of the quaternionic space.
ButMQ can also be viewed as a Lagrangian submanifold of an auxiliary vector space [28], similarly to
what will be done in the next section 3.4.2 for the moduli space of brane deformations.

Let us conclude the discussion of the moduli spaceMQ ×MK by presenting yet another way to
motivate its geometrical structures. In an orientifold compactification it is well-known that the orien-
tifold planes, located on the fix-points of the involution σ, are not dynamical and hence do not posses
moduli at weak string coupling. Hence, all deformations inMQ×MK need to preserve the embedding
of the fix-planes and thus the conditions (3.3.1). Also the real complex structure and Kähler structure
deformations chosen such that Im(CΩ) and J remain elements of H3

−(Y,R) and H2
−(Y,R) ensure that

these forms vanishes on the fix-point locus of σ. In the discussion of the D6-brane moduli space we will
turn the story around and consider the variations of the D-brane embedding maps ι which preserve the
conditions (3.3.3) for fixed closed string fields.

3.4.2 The moduli space of D6-branes on special Lagrangian submanifolds

In the following we will discuss the moduli space of a supersymmetric D6-brane wrapped on a special
Lagrangian cycle on a Calabi-Yau manifold Y with fixed complex and Kähler structure following [88,
99]. At the end of this subsection we propose a simple modification to include the B-field.

The geometry of the moduli space of special Lagrangian submanifolds

To begin with, recall that the space of deformations taking a three-dimensional submanifold L0 into
another Lη is infinite dimensional if no restrictions are imposed. We have seen however that there is
a preferable subset of deformations that lie in the flat directions of the scalar potential, while all the
others contribute to the scalar potential thus breaking supersymmetry. He have also seen that the fields
corresponding to special Lagrangian (thus supersymmetric) deformations correspond to real massless
scalar fields in the effective action, with the number of fields given by b1(L0), while the remaining
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(infinite) fields that correspond to non-special Lagrangian deformations are massive in the compactified
theory.

In this section we explore further the finite dimensional space corresponding to deformations that
preserve the special Lagrangian conditions, described by the harmonic one-forms ηiθi = ηisiyJ on
L0. Here si is an element of the basis of normal vectors parameterizing a deformation through special
Lagrangian submanifolds, and J is the fixed background Kähler form which vanishes on L0. The Hodge
dual to θi on L0 can be obtained as contraction of Im(CΩ) with si as given in (3.3.45), e−φ ∗ θi =
−2siyIm(CΩ). The variations of the θi and ∗θi are analyzed by expanding these forms in a basis α̃i of
H1(L0) and β̃i of H2(L0) respectively,

θi = λji α̃j ,
1
2e
−φ ∗ θi = µji β̃

j , (3.4.7)

where λji (η) and µij(η) define the periods of θi and e−φ ∗ θi. Explicitly they are given by

λji =

∫
L0

siyJ ∧ β̃j , µij = −
∫
L0

sjyIm(CΩ) ∧ α̃i . (3.4.8)

Note that we have introduced an additional factor of the dilaton, which is constant for a fixed background,
but will later allow us to make contact to the metrics found in section 3.3. Since J and Im(CΩ) are
closed, one shows that there exist functions (ui, vi) such that [99]

∂ui

∂ηj
= λij ,

∂vi
∂ηj

= µij . (3.4.9)

In fact, (ui, vi) are the analogs of (UK , VK) for the orientifold moduli space (3.4.6).
Let us point out that the harmonic one-forms θηi can be constructed on each Lη obtained by a super-

symmetric deformation of L0 [99]. Generalizing (3.4.7) we can pull back θηi from Lη to L0 using the
exponential map E introduced in section 3.3.2. Following the strategy of section 3.3.4 we can then use
the chain C4 to write

λji = ∂ηi

∫
C4
J ∧ β̃j , µji = −∂ηi

∫
C4

ImCΩ ∧ α̃j . (3.4.10)

which at linear order reproduces (3.4.7) on L0. Inserting (3.4.10) into (3.4.9) this provides us with a
chain integral expression for the coordinates (ui, vi).

To obtain the differential geometrical structure onMo we introduce an embedding Fo,

Fo : Mo ↪→ V × V ∗, V = H1(L,R), V ∗ = H2(L,R) , (3.4.11)

ηi 7→ (λki αk, µjiβ̃
j) ,

where V ∗ is a dual vector space of V . We can construct a symplectic structure w on the product V ×V ∗
that acts on a, b ∈ V and a′, b′ ∈ V ∗ by [99]

w((a, a′), (b, b′)) = a′(b)− b′(a), a′(b) =

∫
L
a′ ∧ b. (3.4.12)

When pulled back to Mo, the symplectic form w is zero, F ∗o (w) = 0, the equivalent statement of
J |L0 = 0, thus Mo is special Lagrangian inside. We can show that, following [99]. We can act the
pullback on two objects ηi and ηj inMo,

F ∗o (w)(ηi, ηj) = w(Fo(η
i), Fo(η

j)). (3.4.13)

Using the definition (3.4.11) and (3.4.12),

F ∗o (w)(ηi, ηj) = λki µkj − λkjµki. (3.4.14)
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But from the fact that J ∧ Im(CΩ) = 0, we can contract with two vectors si and sj and using that
J |L0 = Im(CΩ)|L0 = 0 and the definitions θi = siyJ , e−φ ∗ θi = −2siyIm(CΩ) together with the
identities (3.4.7) we show that the right-hand side of (3.4.14) is zero. Thus, F ∗o (w = 0.

We can also define a natural metric tensor in V × V ∗ as

g((a, b′), (a, b′)) = b′(a), (3.4.15)

that we can similarly pullback toMo and obtain a natural metric for the moduli space,

(F ∗o g)ijdη
idηj = Ĝij dηi · dηj = Gij dui · duj , (3.4.16)

where Gij and Ĝij are given in (3.3.43) and (3.3.44),

Gij = 1
2e
−φG(α̃i, α̃j) , ĜIJ =

∫
L0

g(sI , sJ)Re(CΩ) = 1
2e
−φG(θI , θJ) . (3.4.17)

It is straightforward to evaluate the metrics in terms of the periods λji and µij using (3.4.7) and (3.4.9)
as

Ĝij = µki λ
k
j , Gij = µik (λ−1)kj . (3.4.18)

From the fact that Mo is a Lagrangian submanifold one finds that it can be locally represented by a
single function Ko with vi = ∂Ko/∂u

i. This is the direct analog of (3.4.6).
As in the case of the orientifold moduli space, we next have to define a complexification of Mo

to obtain the space MC
o . Let us first consider the case of vanishing B-field. Since the metric Gij in

the coordinates ui agrees with the metric for the Wilson line moduli ai, found in (3.3.39), one defines
complex coordinates ζi onMC

o as

no B-field: ζi = ui + iai , (3.4.19)

and identifies Ko(ζ + ζ̄) as a Kähler potential such that

Gij =
∂2Ko

∂ui∂uj
= 4

∂2Ko

∂ζi∂ζ̄j
. (3.4.20)

The metric Gij onMC
o satisfies an important additional property. In fact, it turns out thatMC

o is actually
a non-compact Calabi-Yau manifold with non-vanishing holomorphic b1(L0)-form Ω̂ = dζ1∧ . . .∧dζb1

with constant length with respect to the Kähler form onMC
o [99].

Open coordinates with B-field

So far we have analyzed in this subsection the open moduli space for vanishing B2 and fD6. We want
to generalize this in the following. To include the B-field we note from (3.4.10) and (3.4.9) that ui can
be written by using the four-chain in (3.3.46) as

ui =

∫
C4
J ∧ β̃i =

∫
L0

ηyJ ∧ β̃i + . . . , (3.4.21)

where we have also given the η expansion for small fluctuations around L0. One can now replace J
in (3.4.21) by −iJc = J − iB2 as used for the closed coordinates in (3.2.8). This leads us to modify
(3.4.19) as

ζi = uic + iai , uic = −i
∫
C4
Jc ∧ β̃i . (3.4.22)

Note that uic is the complexification of ui with a B-field correction which can be absorbed by a shift of
ai. This implies that (3.4.20) remains to be valid.
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In the definition (3.4.22) we have used the chain C4 with boundaries L0 and Lη. It is desirable
to introduce a similar extension which allows to include the gauge field. To do that we introduce an
extension FD6 = dAD6 of the gauge connection AD6 to the chain C4 such that

AD6|L0 = A0
D6 , AD6|Lη = A0

D6 − aI α̂I , (3.4.23)

where α̂I and A0
D6 have been transported trivially from L0 to Lη along the geodesic given by η. Here

A0
D6 is a background gauge bundle on L0 which for fixed B2 allows to satisfy the supersymmetry con-

ditions on L0. In other words, for a constant B2 along the chain, FD6 might satisfy the supersymmetry
conditions on L0 but violate the supersymmetry conditions on Lη due to non-trivial Wilson line scalars
aI . Importantly this prescription can also be used for η → 0. In this case, one does not deform L0 but
changes the gauge connection by modifying the Wilson line scalar aI on a fixed brane. The imaginary
part of theN = 1 coordinates arising from the gauge connectionAD6 can now be also written as a chain
integral

∫
C4 FD6 ∧ β̃i. Thus, we find that the ζi are given by the elegant expression

ζi = −i
∫
C4

(Jc −FD6) ∧ β̃i . (3.4.24)

At leading order in the η-expansion the complex coordinates ζi are encoded by a one-form Ac on L0

with expansion
Ac = −iηyJc + iAD6 = ζiα̃i , (3.4.25)

into a basis α̃i of H1(L0,Z). Let us close by noting that (3.4.24) naturally includes a possible D6-brane
flux. It would be interesting to evaluate all expressions found below including this flux. However, we
will keep fD6 = 0 in most of the computations.

3.4.3 The open-closed Kähler potential and N = 1 coordinates

In the following we determine the N = 1 data for the kinetic terms of the four-dimensional effective
action by specifying the N = 1 complex coordinates, the Kähler potential and the gauge coupling
function for the U(1) gauge theory on the D6-brane. We will do this by only including a finite set
of deformations specified in the last two subsections. Note that these deformations will be obstructed
by a scalar potential, since one always needs to impose the supersymmetry conditions (3.3.3) for the
deformed D6-brane which depend on both the open as well as closed moduli. One thus expects that only
a space of complex dimension smaller than 1

2b
3(Y ) + h1,1

− (Y ) + b1(L0) can be studied as a true open-
closed moduli space which is classically un-obstructed by a scalar potential in the absence of background
fluxes. This can be also understood by noting that Type IIA compactifications with D6-branes will admit
an M-theory embedding as a compactification on a G2-manifold [98, 102, 103]. The finite number of
massless deformations of this manifold will incorporate the subset of the closed and open deformations
of section 3.4.1 and 3.4.2 which are flat directions of the supersymmetry conditions (3.3.3).

Let us start by noting that the D6-brane degrees of freedom are still encoded by the complex coor-
dinates ζi which have been introduced in (3.4.19) and (3.4.22). From the closed string sector we find
the complexified Kähler structure deformations ta introduced in (3.2.8). As we will check later on, the
definition of the remaining closed string complex coordinates is corrected by a functional depending on
the open coordinates ζi. More precisely, they arrange very elegantly as

Nk = Uk − 2 ∂Vk(e2DKo) + iξk , Tλ = Uλ − 2 ∂V λ(e2DKo) + iξ̃λ, (3.4.26)

where the real scalars (ξk, ξ̃λ) arise in the expansion (3.2.13), and we recall that Uk = 2Re(CXk),
Uλ = 2Re(CFλ) as well as Vk = 2e2DIm(CFk), V λ = −2e2DIm(CXλ) are periods of CΩ. In
summary, we can simply write

ζi = uic + iai , MK = UK − 2 ∂VK (e2DKo) + iξK , (3.4.27)
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where ξK = (ξk, ξ̃λ) and the abbreviations UK = (Uk, Uλ) and VK = (Vk, V
λ) are as in (3.4.6).

The real function Ko is now dependent on both ui as well as UK (or rather VK). To see this, note that
eφ∗θi = 2siyIm(CΩ) as introduced in (3.3.5), clearly depends on Im(CΩ). Performing the η-expansion
of Ko around η = 0 one finds

− 2 ∂Vk(e2DKo) = − ∂Vk(e2DGij)|η=0u
iuj + . . . , (3.4.28)

= −1

2

∫
L0

α̃i ∧ slyβk
(∫

L0

β̃j ∧ slyJ
)−1

uiuj + . . . ,

as we derive in detail in appendix A.1. Together with a similar expression for ∂V λ(e2DKo), replacing
βk → αλ, one can use (3.4.28) to derive the leading order effective action. In order to do that, we also
need to specify the Kähler potential, to which we will turn next. Realize that as a trivial check of (3.4.27)
one recovers the bulk N = 1 coordinates (N ′k, T ′k) given in (3.2.14) if Ko = 0.

To encode the leading order D6-brane effective action found in (3.3.39) and (3.3.52), we finally need
to specify the Kähler potential. It is given by

K = Kks +KQ = − ln
[

4
3

∫
Y
J ∧ J ∧ J

]
− 2 ln

[
i

∫
Y
CΩ ∧ CΩ

]
, eK =

1

8
e4DV−1. (3.4.29)

Note that K has to be evaluated in terms of the N = 1 coordinates (3.4.26) and thus only depends on
ζi + ζ̄i, MK + M̄K and ta − t̄a. This can be done explicitly for the first term Kks since

Kks(t, t̄) = − ln
[
i
6Kabc(t− t̄)

a(t− t̄)b(t− t̄)c
]
, (3.4.30)

where Kabc =
∫
Y ωa ∧ ωb ∧ ωc are the triple intersection numbers. It corresponds to the volume of

the Calabi-Yau manifold Y and will be corrected by perturbative and non-perturbative string worldsheet
contributions. For the second term KQ it is in general hard to find an explicit expression in terms of
the N = 1 coordinates. However, we are nevertheless able to check that the general kinetic terms
determined by the derivatives of KQ match the leading order terms found by dimensional reduction.

Let us summarize the derivatives of the Kähler potential KQ. We note that the derivatives with
respect to the closed string moduli Nk, Tλ take the same form as in (3.4.6), ∂NkK = Vk, ∂TλK = V λ.
However, (Vk, V

λ) now depend implicitly on the open string coordinates ζi through the evaluation of the
closed string expressions in terms of the N = 1 coordinates (3.4.26), i.e. one has to view VK(ui, UK).
The derivatives with respect to ζi will be postponed to section 3.5. In summary one finds that

Ki = e2Dvi , Kk = 2 e2DIm(CFk) , Kλ = −2 e2DIm(CXλ) . (3.4.31)

where Ki = ∂K/∂ζi, Kk = ∂K/∂Nk and Kλ = ∂K/∂Tλ. Also the Kähler metric can be evaluated
explicitly. One finds for the derivatives with respect to (Nk, Tλ, ζ

i) that

Kkl̄ = Gkl , Kλκ̄ = Gλκ , Kkλ̄ = Gλk , (3.4.32)

Kī = e2DGij + IKi GKLILj , Kik̄ = ILi GLk , Kiλ̄ = ILi GλL ,

where GKL = (Gkl, G
λκ, Gλk) was given in (3.3.66), and IKi = (Iki , Iiλ) are the derivatives

Iki =
∂2Ko

∂Vk∂ζi
, Iiλ =

∂2Ko

∂V λ∂ζi
. (3.4.33)

In appendix A.1 we will check these expressions by an explicit computation, and match these data with
the leading order effective action obtained in section 3.3.

Let us comment on the special form of the Kähler metric (3.4.32). It can be directly inferred by
making use of the invariance of the kinetic terms under the shift symmetries

Nk → Nk + iΛk , Tλ → Tλ + iΛλ , (3.4.34)
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for arbitrary constants (Λk,Λλ). If such shift symmetries exist in the full four-dimensional effective
action one can replace the chiral multiplets Nk and Tλ) by linear multiplets (Vk, C

2
k) and (V λ, Cλ2 ), as

described in more details in appendix A.2. Here VK = (Vk, V
λ) are the scalars dual to (ReNk,ReTλ)

given in (3.4.31) and (C2
k , C

λ
2 ) are two-forms dual to the scalars from C3. The chiral multiplets and

linear multiplets are connected by a Legendre transform, and the new real function encoding the kinetic
terms of the multiplets is given by

K̃(V, ζ + ζ̄) = K(V )− Vk(Nk + N̄k)− V λ(Tλ + T̄λ) (3.4.35)

= K(V ) + 4
∂(e2DKo)

∂VK
VK − 4 ,

where we have inserted (3.4.27) and used that VkUk + V λUλ = e2D
∫
CΩ ∧ CΩ = 1 to obtain the

constant term−4. The key point to notice is that in this dual picture all quantities are functions of VK , ζi.
In particular, this implies that now K(V ) = −2 ln(e−2D) = −2 ln(i

∫
CΩ ∧ CΩ) is independent of

ζi, and all equalities found for the moduli space of special Lagrangian cycles of section 3.4.2 can be
directly applied. Since the linear multiplet picture is just an equivalent dual description one can equally
express the kinetic terms in the chiral multiplet picture in terms of the derivatives of K̃. Let us denote
by K̃KL = ∂VK∂VLK̃, and by K̃KL its inverse. Similarly, we denote by K̃K

ζi
and K̃ζiζj the remaining

second derivatives with respect to ζi and VK . The expression for the kinetic terms then has the form

Lkin = −(K̃ζiζ̄j + K̃K
ζi K̃KLK̃

L
ζ̄j ) dζ

i ∧ ∗dζ̄j + K̃KL

(
dReMK ∧ ∗dReML + dξK ∧ ∗dξJ

)
−2 K̃KLK̃

L
ζj

(
dReMK ∧ ∗duj + dξK ∧ ∗daj

)
(3.4.36)

This is precisely the form of the Kähler metric (3.4.32) and it remains to check that indeed K̃KL = GKL,
K̃ζiζ̄j = e2DGij and K̃K

ζi
= IKi . For the leading order actions found in section 3.3 this is done in

appendix A.1. Note that the form of the metric (3.4.36) is also inherited if only a potential term breaks
the shift-symmetries (3.4.34).

Let us make a brief comment on the appearance of the term dReM I ∧ ∗duj . This term corresponds
to a kinetic mixing between complex structure and brane deformations, and would be expected to appear
in higher order expansions of the Dirac-Born-Infeld action. In this section however it was obtained by
simply analyzing the N = 1 characteristic data and the moduli space.

3.4.4 Gauge coupling functions and kinetic mixing for finite deformations

Having discussed the kinetic terms for the scalars in the N = 1 effective theory we will now turn to
an analysis of the kinetic terms for the U(1) vectors fields. We have shown in section 3.3 in the case
one focuses on harmonic modes in the reduction that the spectrum contains a D6-brane U(1) vector A
as well as h(1,1)

+ bulk U(1) vectors Aα. The leading gauge coupling function for the brane U(1) was
derived in section 3.3.4 and given by

fr =

∫
L0

(
2 Re(CΩ) + iC3) = δkN

′k − δλT ′λ , (3.4.37)

where δk =
∫
L0
αk and δλ =

∫
L0
βλ. However, as we have discussed in section 3.4.3, the inclusion of

the open moduli forces us to introduce the modified complex coordinates Nk, Tλ given in (3.4.26). In
order to obtain a holomorphic gauge coupling function it is expected that (3.4.37) is modified to

f = δkN
k − δλTλ . (3.4.38)

The modifications in (3.4.38) did not appear in our leading order dimensional reduction, but are expected
to arise a higher order in the brane deformations. As we will see shortly open moduli corrections to fr are

46



also obtained after a careful treatment of the two dual bulk gauge fields Aα, Aα introduced in (3.3.50).
Recall that the gauge coupling function for the bulk R-R U(1) vectors Aα is simply given by [82]

fαβ = i

∫
Y
ωα ∧ ωβ ∧ ωa ta = iKαβata = −iN̄αβ . (3.4.39)

where Nαβ is the complex matrix already introduced in (3.3.67). Clearly, fαβ is holomorphic in the
complex fields ta. Since the ta are not corrected by the open moduli one expects the result (3.4.39) to
remain valid also in the leading order reduction with a D6-brane. We will show in the following that this
is indeed the case. More interestingly, we find that there are further corrections depending on the open
moduli and D6-brane fluxes which induce a kinetic mixing of the brane and bulk U(1) gauge fields.

Let us now turn to a more careful analysis of the gauge coupling functions including the brane
moduli. In order to do that we summarize the action for all vector fields including the dualAλ introduced
in (3.3.50). The mixing terms proportional to dAα∧F and dAα∧F have appeared in the reduction of the
Chern-Simons action in (3.3.74). The brane couplings have to be taken into account when eliminating
Aα in favor of Aα by using vector-vector duality in four dimensions as enforced by (3.2.3). A detailed
calculation can be found in appendix A.3 which uses a procedure similar to the one of ref. [27]. Here
we just present the results. The action obtained after a careful elimination of Aλ is

S
(4)
vec = −

∫
1
2RefαdAα ∧ ∗F + 1

2 ImfαdAα ∧ F + 1
2 ImNαβdAα ∧ ∗dAβ

+1
2ReNαβdAα ∧ dAβ + 1

2RefcorF ∧ ∗F + 1
2 ImfcorF ∧ F

where the gauge coupling function fα encoding the kinetic mixing between bulk and brane U(1)’s is
given by

fα = −4(iN̄αβJ̃ β + iaj∆jα + iΓα) , (3.4.40)

and the corrected gauge coupling function fcor for the brane U(1) is

fcor = fr + 4(iN̄αβJ̃ α + iaj∆jβ + iΓβ)J̃ β . (3.4.41)

The coefficient functions are given by J̃ α =
∫
C4 ω̃

α, ∆jα =
∫
L0
α̃j ∧ ωα and Γα =

∫
C4 ωα ∧ fD6 as

introduced in section 3.3. Recall that ∆jα is independent of the moduli, while J̃ β,Γα depend on the
brane deformations through the chain C4.

To study the holomorphicity properties of the gauge couplings we discuss fα and fcor in turn. One
notes that the first term in (3.4.40) can be rewritten as

iN̄αβJ̃ α =

∫
C4
iN̄αβω̃α =

∫
C4

(J − iB) ∧ ωβ = ujc ∆jβ , (3.4.42)

where we have used (3.4.22) to obtain the factor ujc. Using this expression it is straightforward to rewrite
the gauge coupling fα in the absence of brane fluxes as

fα = −4ζj∆jβ , (3.4.43)

which is clearly holomorphic on the open moduli ζi = uic + iai. It would be interesting to extend these
arguments to include the D6-brane flux fD6.

Let us now turn to the analysis of the corrected gauge coupling function fcor of the brane U(1).
Using (3.4.41) and (3.4.40) one sees that it can be written as

fcor = fr − fαJ̃ α , (3.4.44)
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the additional term is at least of second order in the open moduli. One notes that the real part of fcor is
given by

Refcor = Refr + 4ImNαβJ̃ αJ̃ β = Refr + RefαRefαβRefβ , (3.4.45)

which can be inferred from (3.4.40) and (3.4.44). This result generalizes to the space of infinite de-
formations by replacing fr with fr IJ , and fα with fαI . The expressions for these are straightforward
generalizations of (3.4.40)-(3.4.45) with the abbreviations introduced in section 3.3.4. Hence, the real
part of the gauge coupling function takes the form

Re f =

(
Refr IJ + RefγIRefγδRefδJ RefIα

RefJβ Refαβ

)
, (3.4.46)

and can be easily inverted. This result will be important in section 3.5, when we compute the scalar
potential coming from D-terms since it involved the inverse (Re f)−1.

Let us close this section by making some general remarks about the holomorphicity of the gauge
coupling function fcor in (3.4.44). In order to do that, one has express it in terms of the N = 1
coordinatesNk, Tλ, t

a and ζi. However, recall from (3.4.26) that also theNk and Tλ receive corrections
by the open deformations. In fact, we η-expand

Re(Nk−N ′k)δk−Re(Tλ−T ′λ)δλ = ui
(
− 1

2

∫
L0

α̃i∧ηyβk
∫
L0

αk + 1
2

∫
L0

α̃i∧ηyαλ
∫
L0

βλ
)

+ . . . ,

(3.4.47)
where we have used (3.4.21) and (3.4.28). To compare this result, we also η-expand (3.4.44) to find

Refcor − Refr = 4ui
∫
L0

α̃i ∧ ωα
∫
L0

ηyω̃α + . . . . (3.4.48)

This indicates that the result for fcor cannot be complete. In particular, it is conceivable that a contribu-
tion from the two-forms ωa is missing which arises at higher order in the Kaluza-Klein reduction. This is
similar to what was found in [27,93] for D7- and D5-branes on the type IIB side. It would be interesting
to complete this computation to higher order and determine the fully corrected gauge coupling function.
For example, one loop corrections for the gauge-coupling function were calculated for orbifold models
in [104].

3.5 General deformations and the D- and F-term potential

In the previous section we considered D6-branes with a finite number of deformations arising from the
expansion into harmonic forms on the brane world-volume. Using harmonic modes one infers that the
scalar potential (3.3.40) vanishes. A non-vanishing potential precisely arises for deformations which
violate the supersymmetry conditions that the three-cycle is special Lagrangian. In this section we
include such deformations into the discussion and analyze the N = 1 encoding the geometry on the
infinite field space. We discuss the Kähler potential and show that the scalar potential (3.3.40) indeed
arises from a D-term, induced by a gauging, and a holomorphic superpotential. In order to do that
we will keep the background geometry fixed and only consider the variations of the brane degrees of
freedom.

3.5.1 A local Kähler metric for general deformations of L0

In the general reduction performed in section 3.3.2 we already included a whole tower of normal
deformations of L0 as well as the whole tower of Kaluza-Klein modes in FD6 parameterizing varia-
tions around a background connection A0. Together, these modes parameterize a neighborhood around
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(L0, A0) in an infinite dimensional field-space Vo. We will focus on the neighborhood around a super-
symmetric L0 and mainly be concerned with the local geometrical structure of Vo. In order to do that
we study the tangent space to Vo at the special Lagrangian L0 with connection A0. This tangent space
is identified with

T(L0,A0)Vo ∼= TY |L0
∼= NL0 ⊕ TL0 . (3.5.1)

In this we can identify the sI introduced in (3.3.32) as basis of sections ofNL0 and the s̃mI = gmn|L0(α̂I)n
as sections of TL0. Note that in defining the tangent vector s̃I we have simply raised the tangent index
m of the one-form α̂I introduced in (3.3.34) by the inverse of the induced metric gmn|L0 . This also
means that we can identify

T(L0,A0)Vo ∼= Ω1(L0)⊕ Ω1(L0) , (3.5.2)

which is naturally parameterized by the basis vectors θI and α̂I introduced in (3.3.32) and (3.3.34).
Using the first identification in (3.5.1) the tangent space T(L0,A0)Vo admits a natural symplectic form

ϕ(X,Y ) =
1

2
e−φ

∫
L0

J(X,Y )|L0 volL0 . (3.5.3)

for X,Y ∈ TY |L0 . It was shown in [88] that the two-form ϕ on Vo is actually closed. The tangent
space (3.5.1) also admits a natural complex structure I , which is the induced complex structure from
the Calabi-Yau manifold Y . At L0 the complex structure I identifies TL0 with NL0 such that complex
tangent vectors in T(L0,A0)Vo are given by

∂zI = 1
2(sI − iIsI) , ∂z̄Ī = 1

2(sI + iIsI) . (3.5.4)

Since this complex structure is formally integrable, the manifold Vo is Kähler, with Kähler form

ϕ(∂zI , ∂z̄J ) =
i

2
e−φ

∫
L0

g(sI , sJ) volL0 = iĜIJ , ϕ(∂zI , ∂zJ ) = ϕ(∂z̄I , ∂z̄J ) = 0 . (3.5.5)

Here we have used that J(IsI , sJ) = −g(sI , sJ) and the fact thatL0 is Lagrangian such that J(sI , sJ) =
−J(IsI , IsJ) = 0 for normal vectors sI to L0. This implies that ĜIJ is a Kähler metric, which is locally
the second derivative of a Kähler potential Ko = Ko(z

I , z̄I). Explicitly this means that

ĜIJ = ∂zI∂z̄JKo = 1
2e
−φ
∫
L0

θI ∧ ∗θJ , (3.5.6)

with the forms θI as introduced in (3.3.32). Note that the real part of the complex coordinates zI

are the normal vectors ηI . This should be contrasted to the complex coordinates ζi which were the
complexifications of the ui as discussed in section 3.4.2.

It is interesting to note that there is a natural generalization of the finite-dimensional analysis of
section 3.4.2 to the infinite dimensional deformation space. The key will be the use of the four-chain C4

which interpolates between L0 and Lη. Clearly, the natural generalization of the complex coordinates
ζi in (3.4.24) is

ζI = −i
∫
C4

(Jc −FD6) ∧ β̂I , (3.5.7)

where βI is the infinite basis of two-forms on L0 which has been trivially extended to the chain C4.
We have also included the field strength FD6 on C4 which is obtained from the gauge connection AD6

introduced in (3.4.23). A natural proposal for the Kähler potential Ko is given by

Ko(ζ + ζ̄) = −1

2

∫
C4
J ∧ β̂I

∫
C4

Im(CΩ) ∧ α̂I . (3.5.8)
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This can be checked by performing an η-expansion around the supersymmetric cycle L0. This yields
the leading term

Ko(ζ + ζ̄) = −1
2

∫
L0

sLyJ ∧ β̂I
∫
L0

sKyIm(CΩ) ∧ α̂I ηLηK + . . . (3.5.9)

= 1
4e
−φ
∫
L0

θL ∧ β̂I
∫
L0

∗θK ∧ α̂I ηLηK + . . .

= 1
2 ĜLK η

LηK + . . .

= 1
8GLK(ζ + ζ̄)L (ζ + ζ̄)K + . . .

where here we mean by ĜLK ,GLK the leading order metrics independent of η. Here we have used
(3.3.7) on L0 to rewrite the contraction sKyIm(CΩ) into the Hodge-star on L0. Using (3.5.9) one sees
that (3.5.6) is satisfied. Let us stress that in general the evaluation of Ko as a function of ζI + ζ̄I is non-
trivial due to the appearance of the chain C4 in both integrals of (3.5.8). It would be very interesting the
compute Ko explicitly for specific orientifold examples, generalizing the superpotential computations
of [105–115].

3.5.2 The superpotential and D-terms

Having discussed the Kähler potential determining the kinetic terms, we will now examine the scalar
potential in more detail. More precisely, we will work in a fixed background geometry by fixing Kähler
and complex structure deformations and focus on the leading scalar potential VDBI given in (3.3.40). We
will show that VDBI splits into an F-term and a D-term piece as

VDBI = VF + VD , (3.5.10)

with

VD =
e3φ

V2

∫
L0

d∗θη ∧ ∗d∗θη (3.5.11)

and

VF =
e3φ

V2

∫
L0

dθη ∧ ∗dθη + (F̃ −B2 − dθBη ) ∧ ∗(F̃ −B2 − dθBη ) . (3.5.12)

We will show momentarily that VF = eKGIJ∂ζIW∂ζJW can be obtained from a superpotential W and
the metric determined from Ko using only the open string degrees of freedom.

To specify W we aim to define a functional which picks out deformations η such that Lη is a
Lagrangian submanifold J |Lη = 0. In section 3.3.4 we defined a chain C4 with boundaries Lη and L0.
Recall also that we extended the gauge field AD6 from L0 to C4 as in (3.4.23), such that the extension
FD6 = dAD6 satisfies

FD6|L0 = fD6 , FD6|Lη = fD6 + aIdα̂I . (3.5.13)

In the following we will again set again the D-brane flux fD6 to zero. One next identifies the superpo-
tential functional

W =

∫
C4

(Jc −FD6) ∧ (Jc −FD6) (3.5.14)

depending on the open string data as well as the complexified Kähler form (3.2.8). This is an extension of
the functional introduced in ref. [96], since we have included the B-field through the complex two-form
Jc. Note that a superpotential of this form has been already discussed in [116, 117].

Let us briefly study the holomorphicity properties of W . Clearly, W is holomorphic with respect to
variations of the complexified Kähler form Jc parameterized by the scalars ta in (3.2.8). However, note
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that one first has to express W as a function of the open fields ζI = uIc + iaI introduced in (3.5.7). To
check that W it is a holomorphic section in the ζI we show that ∂ζ̄IW = (∂uIc + i∂aI )W = 0. The
derivative with respect to Wilson lines is

∂aIW = 2

∫
Lη

(Jc−FD6)∧ α̂I = 2

∫
L0

(Jc−FD6)∧ α̂I + 2

∫
L0

d(ηyJc− aJ α̂J)∧ α̂I + . . . (3.5.15)

To evaluate the derivative with respect to uIc we expand the chain integral around the special Lagrangian
cycle L0 in terms of the deformations

W = 2

∫
L0

ηyJc ∧ (Jc − F̃ ) +

∫
L0

ηyJc ∧ LηJc + ... (3.5.16)

= 2

∫
L0

(ηyJc) ∧ (Jc −FD6) +

∫
L0

ηyJc ∧ d(ηyJc + 2 aI α̂I) + ...

Recalling ηyJc = θBη + iθη = iuIc α̂I + ... one sees that by comparing (3.5.15) with ∂uIcW obtained from
(3.5.16) that the superpotential is holomorphic in ζI = uIc + iaI .

It is now straightforward to determine the F-term potential using the expression (3.5.16). The real
part of the derivative of (3.5.16) is given by

Re ∂ζIW = 2

∫
L0

dθη ∧ α̂I . (3.5.17)

Note that dθη is a 2-form in L0 and therefore can be expanded in the infinite basis ∗α̂I as dθη = cI ∗ α̂I
The coefficients cI can be obtained by taking on both sides the wedge product with αJ and integrate on
L0. Inverting this relation for cI and taking the Hodge star one finds

∗ dθη = 1
2e
−φα̂I GIJ

∫
L0

α̂J ∧ dθη . (3.5.18)

We proceed analogously with the imaginary part Im ∂ζIW obtained from (3.5.16) and expand the two-
form (B − F̃ + dθBη ) in the ∗α̂I basis. The F-term potential is thus given by

VF = eKGIJ∂ζIW∂ζJW

=
e2D

2V

∫
L0

dθη ∧ α̂I GIJ
∫
L0

α̂J ∧ dθη

+
e2D

2V

∫
L0

(B − F̃ + dθBη ) ∧ α̂I GIJ
∫
L0

α̂J ∧ (B − F̃ + dθBη )

=
1

V2
e3φ

∫
L0

dθη ∧ ∗dθη + (B − F̃ + dθBη ) ∧ ∗(B − F̃ + dθBη ) (3.5.19)

which agrees with the result (3.5.12) obtained from dimensional reduction, and reduces to the result of
McLean [87] in the limit of vanishing B field. As expected, the condition for vanishing of the potential
and therefore to preserve supersymmetry is the closedness of θη and θBη , as well as the condition (B −
F̃ )|L0 = 0.

Finally, we also compute the D-term potential in (3.5.11) induced by the gaugings of the scalars âI

in (3.3.37) and (ξk, ξ̃λ) in (3.3.63). More precisely, these scalars are charged under the gauge transfor-
mations AI → AI + dΛI of the U(1) vectors AI as

âI → âI − ΛI , (ξk, ξ̃λ)→ (ξk − δkIΛI , ξ̃λ − δλIΛI) (3.5.20)
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The potential arising from D-terms can be calculated by

VD = 1
2RefABDADB , ∂ADI = KAB̄X

B
I , (3.5.21)

where XB
I are the Killing symmetries appearing in the covariant derivative Dξk = dξk + Xk

IA
I . Ex-

plicitly they take the form

Xk
I =

∫
L0

hIβ
k +

∫
C4
dhI ∧ βk , XIλ =

∫
L0

hIαλ +

∫
C4
dhI ∧ αλ . (3.5.22)

The leading inverse gauge coupling function is simply

(Ref−1
r )IJ =

(∫
L0

hIhJ2Re(CΩ)

)−1

. (3.5.23)

Integrating (3.5.21) we obtain the D-terms

DI = −2e2D

(∫
L0

hI ImCΩ +

∫
C4
dhI ∧ ImCΩ

)
. (3.5.24)

We can expand the chain along an infinite set of brane deformations and obtain

DI = −2e2D

∫
L0

hI ImCΩ− 2e2D

∫
L0

hId(ηyImCΩ) + . . . , (3.5.25)

where we have used that the functions hI are translated constantly along the chain. Now we repeat a
similar calculation as for the F-term, by expanding the three forms into ∗hI and noticing that on the L0

cycle
∫
hJ ∗ hI = eφ

∫
hJhI2Re(CΩ) = eφRefrIJ . The potential is then,

VD =
e3φ

V2

∫
L0

4 ImCΩ ∧ ∗ImCΩ + 4 ImCΩ ∧ ∗d ∗ θ + d ∗ θ ∧ ∗d ∗ θ . (3.5.26)

From the condition ImCΩ|L0 = 0 only the last term survives, yielding the remaining term obtained from
dimensional reduction. The vanishing of the D-term potential, which is necessary in a supersymmetric
vacuum, happens when the two-form ∗θη is closed.

3.6 Mirror Symmetry with D-branes

In this final section we relate the Type IIA N = 1 characteristic data found in the previous sections
with the data for Type IIB orientifolds with space-time filling D3-, D5- and D7-branes. In order to do
that, we first review some basics of Type IIB orientifolds following [82]. To define the orientifold set-up
starting with Type IIB string theory compactified on a Calabi-Yau manifold Ỹ , one acts with a discrete
involutive symmetry O containing worldsheet parity Ωp. In Type IIB one still is left with two options
of constructing such an involution. These correspond to the situations with O3/O7 or O5/O9 orientifold
planes:

O1 = ΩpσB(−)FL , σ∗BΩ = −Ω , O3/O7 ,

O2 = ΩpσB , σ∗BΩ = Ω , O5/O9 .
(3.6.1)

Here σB is a holomorphic (instead of antiholomorphic, as in the Type IIA case) involutive symmetry
σ2
B = 1 of the Calabi-Yau target space, and FL is the space-time fermion number in the left-moving

sector. The subspace of fields which are invariant under the orientifold projection has to satisfy

σ∗Bφ = φ ,
σ∗Bg = g ,
σ∗BB2 = −B2 ,

O3/O7

σ∗BC0 = C0 ,
σ∗BC2 = −C2 ,
σ∗B C4 = C4 ,

O5/O9

σ∗BC0 = −C0 ,
σ∗BC2 = C2 ,
σ∗BC4 = −C4 ,

(3.6.2)
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where the first column is identical for both involutions σB in (3.6.1). The involution allows us to separate
the cohomologies into even and odd eigenspaces H(p,q) = H

(p,q)
+ ⊕H(p,q)

− .

Let us focus on the closed string sector for the moment. Locally the truncated moduli space of Type
IIB orientifolds can then be written as a direct product

MK
B ×M

Q
B . (3.6.3)

HereMQ
B is a Kähler manifold and spanned by the dilaton, the Kähler structure deformations, the NS-

NS B-field and the R-R scalars. MK
B is a special Kähler manifold spanned by the complex structure

deformations of Ỹ respecting the constraints (3.6.1). In contrast, recall that in Type IIAMQ
A is spanned

by the dilaton, the complex structure deformations and the R-R scalars, while MK
A is spanned by the

Kähler deformations and the NS-NS B-field. The Type IIB effective theory also contains h(2,1)
+ (h

(2,1)
− )

vector multiplets for orientifolds with O3/O7(O5/O9) planes, whereas in Type IIA one as h(1,1)
+ vector

multiplets. The number of multiplets from the closed string sector is shown in Table 3.6.1.

multiplets IIAY O6 IIBỸ O3/O7 IIBỸ O5/O9

vector multiplets h
(1,1)
+ h

(2,1)
+ h

(2,1)
−

chiral multiplets inMK h
(1,1)
− h

(2,1)
− h

(2,1)
+

chiral multiplets inMQ h(2,1) + 1 h(1,1) + 1 h(1,1) + 1

Table 3.6.1: Number of N = 1 multiplets of orientifold compactifications.

Applying mirror symmetry to this N = 1 set-up one expects that theMQ
B space of type IIB should

be identified with theMQ
A moduli space of the mirror IIA, and similarlyMK

B withMK
A. Requiring Ỹ

to be the mirror manifold of Y , the mirror map between the moduli spaces implies that for the different
orientifold setups

O3/O7 : h
(1,1)
− (Y ) = h

(2,1)
− (Ỹ ) , h

(1,1)
+ (Y ) = h

(2,1)
+ (Ỹ ) ,

O5/O9 : h
(1,1)
− (Y ) = h

(2,1)
+ (Ỹ ) , h

(1,1)
+ (Y ) = h

(2,1)
− (Ỹ ) , (3.6.4)

as well as h(2,1)(Y ) = h(1,1)(Ỹ ) for both set-ups. The mirror mapping for closed moduli is discussed in
more detail in [82], and will be briefly recalled below.

In the following we want to extend the mirror identification to include the leading corrections due
to the space-time filling D-branes. As we have seen, at leading order the moduli space MK

A remains
unchanged after the inclusion of open string moduli. This is also true forMK

B on the Type IIB side. In
section 3.4 we have shown that the open string moduli space of the D6-branes is fibered over the closed
string moduli spaceMQ

A. The mirror equivalent of this statement has been established in [27,92,93] for
MQ

B and the moduli space of D3-, D5- or D7-branes. In the reminder of this section we will therefore
focus on the discussion of theMQ and establish the mirror map including the open degrees of freedom.
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3.6.1 Mirror of O3/O7 orientifolds

The moduli spaceMQ is obtained from the four-dimensional scalar parts of the fields J,B2, C2, C4. To
make this more precise, we expand

B2 = bk ωk , C2 = ck ωk , k = 1, . . . , h
(1,1)
− (Ỹ ) , (3.6.5)

J = vλ ωλ , C4 = ρλ ω̃
λ , λ = 1, . . . , h

(1,1)
+ (Ỹ ) .

The complex coordinates and the Kähler potential which encode the local geometry ofMQ
B are [?]

τ = C0 + ie−φB , Gk = ck − τbk , (3.6.6)

T ′Bλ = e−φB 1
2Kλρσv

ρvσ + iρλ − i1
2Kλklb

kGl ,

and

K(τ,Gk, T ′Bλ ) = −2 ln

[
e−2φB

∫
Ỹ
J ∧ J ∧ J

]
= ln(e4DB ) . (3.6.7)

Here DB is the redefined four-dimensional dilaton. The Kähler potential has to be evaluated as a
function of the moduli τ,Gk, T ′Bλ by solving (3.6.6) for va, φB and inserting the result into (3.6.7).
The coefficients Kλbc are the intersection numbers of the basis ωλ of H1,1

+ (Ỹ ) and ωa of H1,1
− (Ỹ ),

Kλbc =
∫
ωλ ∧ ωb ∧ ωc. Note that the above scalar fields can be also obtained from the expansion

− Re Φev + i
∑
n

e−B ∧ C2n = iτ + iGkωk + T ′Bλ ω̃λ , (3.6.8)

which has to be evaluated by matching the parts of different form degrees on both sides. Here we have
introduced the even form

Φev = e−φBe−B2+iJ (3.6.9)

following the notation of [100].
Let us now recall the mirror map to the Type IIA coordinates without inclusion of the open string

degrees of freedom. The N = 1 coordinates (N ′k, T ′λ) have been introduced in (3.2.14). Note that on
a Calabi-Yau manifold we can use the rescaling invariance of Ω to fix one of the XI to be constant. At
large complex structure there is a special real symplectic basis of H3(Y ) which is distinguished by the
logarithmic behavior of the solutions in the complex structure moduli of Y . In particular, this fixes a
pair (α0, β

0), by demanding that X0, the fundamental period, has no logarithmic singularity. One can
use the rescaling of Ω to set the α0 period to a constant. Note that in the orientifold background H3(Y )
splits into H3

− and H3
+. The component chosen to eliminate the rescaling property of Ω can be either in

the positive or negative eigenspace of the orientifold projection. We will see momentarily these choices
will correspond to different orientifold set-ups on the Type IIB side.

For the O3/O7 case we fix the component X0α0 in H3
+(Y ). We define then the special coordinates

q and the scaling parameter gA as

qk =
ReCXk

ReCX0
, qλ =

ImCXλ

ReCX0
, g−1

A = 2ReCX0 . (3.6.10)

Recall that in the underlying N = 2 theory, the periods of Ω are determined by a holomorphic pre-
potential F(X). Due to the homogeneity property of F we can define a rescaled function f as

F(2CX) = i(2ReCX0)2f(qk, qλ) (3.6.11)

such that CΩ can be written as

2CΩ = g−1
A

[
1α0 + qkαk + iqλαλ − fλβλ − i(2f − qkfk − qλfλ)β0 − ifkβk

]
, (3.6.12)
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H3(Y ) Heven(Ỹ )

α0 ∈ H3
+(Y ) 1

αk ∈ H3
+(Y ) ωk ∈ H2

−(Ỹ )

αλ ∈ H3
−(Y ) ωλ ∈ H2

+(Ỹ )

βk ∈ H3
−(Y ) ω̃k ∈ H4

−(Ỹ )

βλ ∈ H3
+(Y ) ω̃λ ∈ H4

+(Ỹ )

β0 ∈ H3
−(Y ) V−1volỸ

Table 3.6.2: The mirror mapping from the basis ofH3(Y ) to the basis of even cohomologies
of the mirror Calabi-Yau Ỹ in O3/O7 orientifold setups.

where (fλ, fk) are the derivatives of f with respect to (qk, qλ). The coordinates (N ′k, T ′λ) become in
terms of these special coordinates

N ′0 = g−1
A + iξ0 N ′k = g−1

A qk + iξk T ′Aλ = g−1
A fλ + iξ̃λ . (3.6.13)

In order to provide complete match with the Type IIB side we need an explicit expression for fλ at
the large complex structure limit of the Calabi-Yau manifold Y . The results will then be identified with
the large volume results of Type IIB. In this limit the N = 2 pre-potential is given by

F(X) =
1

6
κIJK

XIXJXK

X0
. (3.6.14)

Therefore, inserting the orientifold constraints and switching to special coordinates we find

f(q) = −1
6κλµρq

λqµqρ + 1
2κλklq

λqkql , (3.6.15)

such that one can readily evaluate the T ′Aλ using (3.6.13). Now it is straightforward to relate the Type
IIA coordinates with the ones from the Type IIB side

(−iτ,−iGk)↔ (N ′0, N ′k) and − T ′Bλ ↔ T ′Aλ , (3.6.16)

with the matching of the cohomologies for the pair of mirror Calabi-Yau manifolds given in Table 3.6.2.
In terms of the string moduli, the above relations translate into

g−1
A = e−φB , qk = −bk , qλ = vλ , (3.6.17)

ξ0 = −C0 , ξk = −ck + C0b
k , ξ̃λ = −ρλ +

1

2
Kλklckbl −

1

2
C0Kλklbkbl .

Inclusion of D3 brane moduli

In the discussion of mirror symmetry with D-branes we first consider the setup with spacetime filling
D3 branes. The N = 1 characteristic data were analyzed in [92]. The brane is a point in the internal
space Ỹ , such that the brane deformations η are described by six scalar fields φI corresponding to the
possible movements in Ỹ . These fields naturally combine into complex fields φi, φ̄ with i, ̄ = 1, 2, 3 if
one uses the inherited complex structure of the Calabi-Yau manifold. Clearly, there are no Wilson line
moduli for D3-branes since there is no internal one-cycle on the brane. It turns out that, up to second
order in the fields, only the coordinates T ′Bλ are corrected by the open moduli [92]

ReTBλ = ReT ′Bλ + i(ωλ)ī(φ0)φiφ̄ , (3.6.18)
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where the two-form (ωλ)ī has to be evaluated at the point φ0 around which the D3-brane fluctuates.
More generally, it was argued in ref. [118] that the D3-brane correction to Tα can be expressed through
the Kähler potential KỸ for the Calabi-Yau metric as

ReTBλ = ReT ′Bλ − ∂vλKỸ (φ0 + φ) , (3.6.19)

where vλ are the Kähler moduli introduced in (3.6.5). To obtain (3.6.18) one expands KỸ around the
point φ0 as

KỸ (φ0 + φ) = K0
Ỹ

+ 2Re
[
(KỸ )0

iφ
i
]

+ Re
[
(KỸ )0

ijφ
iφj ] + (KỸ )0

īφ
iφ̄j + . . . , (3.6.20)

where K0
Ỹ

, and (KỸ )0
i , (KỸ )0

ij , (KỸ )0
ī are the Kähler potential and its φi-derivatives evaluated at φ0.

Since the coefficients are constant, the first three terms in (3.6.20) can be absorbed by a holomorphic
redefinition into a new TBλ . Clearly, this does not change the complex structure on the N = 1 moduli
space. Using (KỸ )0

ī = −iJ0
ī = −ivλ(ωλ)ī(φ0) one then recovers (3.6.18).

Let us now turn to the discussion of mirror symmetry. We aim to match the corrected coordinates
TBλ as well as the un-corrected Gk and τ with the Type IIA side. This implies that we must have up to
quadratic order in the brane moduli that

− 2∂V λ(e2DAKo) = ∂vλKỸ (φ0 + φ) ∼= −i(ωλ)ij̄φ
iφj̄ (3.6.21)

∂V0(e2DAKo) = ∂Vk(e2DAKo) = 0 ,

where the ∼= indicates that one has to apply the transformation which identifies (3.6.19) and (3.6.18).
Using the fact that V λ = −e2DBe−φBvλ, as inferred from (3.6.12), the identification (3.6.21) implies

Ko(φ, φ̄) = 1
2e
−φBKỸ . (3.6.22)

The number of open moduli must coincide, so the number of brane deformations on the Type IIB must
equal the number of brane and Wilson line moduli on the Type IIA side. Since this number is given
by the number of non-trivial one-cycles in L0, we must have b1(L0) = 3. However, recall that the
open moduli space in Type IIA has shift symmetries, Imζi → Imζi + ci, for constants ci. These are
not manifested in the Type IIB side for a general KỸ , since the Calabi-Yau metric has no continuous
symmetries. As we recall below, this can be attributed to the fact that instanton contributions break these
symmetries and are not included in this leading order identification.

Before commenting on the corrections to the mirror construction let us make contact to the chain
integral form of the Kähler potential as given in (3.5.8). For a D3-brane we simply have to introduce a
one-chain C1 which starts at φ0 and ends at the point in Ỹ to which the D3-brane has moved. We also
introduce a basis of complex normal vectors si to the point φ0 and dual (1, 0)-forms sj(1) such that

siys
j
(1) = δji . (3.6.23)

Note that the index i, j are counting here the number of such normal vectors. In case we only include the
massless modes, one has i, j = 1, . . . , 3. The complex structure of si and si(1) is induced by the complex

structure of Ỹ , and hence depends on the complex structure moduli. In fact one can use the no-where
vanishing (3, 0)-form Ω on Ỹ and introduce a bi-vector sj such that sj(1) = s̄jyΩ. To propose a form for
Ko one trivially extended si, s̄i to the chain C1 and writes

Ko = i
4e
−φB

∫
C1
siyJ

∫
C1
s̄iyΩ + c.c. . (3.6.24)
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This form ofKo is very suggestive and yields upon expanding the chain integral the desired leading order
expression (3.6.18). Moreover, we will see in the following that a generalization of this Ko also arises
for D7-brane, and one can generally write in O3/O7 orientifolds for the deformations of aD(p+3)-brane

Kdef
o = i

4

∫
Cp+1

sIyImΦev

∫
Cp+1

s̄I · Ω + c.c. . (3.6.25)

where Φev has been introduced in (3.6.9), and Cp+1 is a (p + 1)-chain which ends on the internal parts
of the D-branes and its reference cycle. Moreover, sI is an appropriate basis of complex normal vectors
and sJ are their duals as we discuss below.

Before giving a more careful treatment of the other D-brane configurations let us first comment
on a more intuitive understanding of mirror symmetry which we will apply below. It was argued by
Strominger, Yau and Zaslow [69] that the Calabi-Yau manifold Ỹ can be viewed as a three-torus fibration
with singular fibers. This manifold can be endowed with a semi-flat metric. In a local patch avoiding
possible singular points the metric of the Calabi-Yau manifold can be written as

ds2 = gab(ũ)dũadũb + 2gia(ũ)dãidũa + gij(ũ)dãidãj , i, a = 1, 2, 3 , (3.6.26)

where ãi are the coordinates on the T 3 fiber and ũa of the base. Since the coefficient functions in (3.6.26)
are independent of ãi the shift symmetry is now manifest. In fact, introducing complex coordinates as in
the Type IIA setting a Kähler metric in (3.6.26) can be obtained from a Kähler potential KỸ (ũ) which
is independent of ai. The argument for the existence of such a T 3-fibration with a metric of the form
(3.6.26) away from singularities proceeds precisely via mirror symmetry of a pointlike D-brane on Ỹ
which is mapped to a D-brane which wraps a three-torus [69]. Having found a T 3-fibration in the Type
IIB set-up one can equally use T-duality along all T 3-directions to analyze the setting. Since T-duality
exchanges Neumann and Dirichlet boundary conditions, it exchanges the dimensionality of the brane for
each wrapped cycle that is T-dualized. Starting with a D3-brane on such a fibered Calabi-Yau manifold,
T-duality on the fiber will turn the brane into a D6-brane wrapping the T 3-fiber. The D6-brane then has
b1(L0) = 3 deformation moduli in the direction of the base, and there are also b1(L0) = 3 Wilson line
moduli will be along the torus.

In the following it will be more important that we can use the SYZ-picture also for D7- and D5-
branes present in a Type IIB reduction. Clearly, both types of branes will map to D6-branes under
mirror symmetry. Away from the singular fibers one can obtain a clearer picture of the wrappings of the
D6-branes as indicated in Table 3.6.3.

D6 D3 D6 D7 D6 D5
× × ×

T3 × × ×
× × ×

Base × ×
× × × ×

Table 3.6.3: It is summarized how mirror symmetry acts on different brane configurations.
The table shows the six dimensions of the Calabi-Yau manifold, split into base
and fiber. × indicate the directions wrapped by each brane. Mirror symmetry
acts as T-duality on all directions of the T 3-fiber. It exchanges Dirichlet and
Neumann boundary conditions, while it does not act on the base. Different
wrappings of a D6-brane correspond to different branes in the Type IIB side.
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Inclusion of D7 brane moduli

Let us now discuss mirror symmetry for the D7-brane case. The effective action for a pair of moving D7-
branes was computed in [27]. In this setup, the brane wraps a four-cycle S(1) while its orientifold image
wraps a non-intersecting S(2). One can view the whole configuration as a single D7-brane wrapping a
divisor S+ = S(1) + S(2). Brane deformations and Wilson line moduli can be expanded in terms of

χ = χAsA + χ̄Ās̄Ā, A = 1, . . . , h
(2,0)
− (S+) , (3.6.27)

a = aIγI + āĪ γ̄Ī I = 1, . . . , h
(0,1)
− (S+) ,

where sA and γI are complex normal vectors to S(1) and (0, 1)-forms on S(1), respectively. The complex
type of sA and γI is induced by the complex structure of Ỹ . Moreover, one can use the holomorphic
(3, 0)-form Ω on Ỹ to map the sA to (2, 0)-forms SA = sAyΩ on S(1). The restriction to the odd
cohomology comes from the fact that as the normal bundle of S+ is even and the holomorphic 3-form
Ω is odd under the orientifold action, the contraction SA = sAyΩ is odd. Also, the tangent bundle on
S+ is anti-invariant under the orientifold action, and therefore the Wilson moduli must be in H1

−(S+).
The four-dimensional fields are thus the h(2,0)

− + h
(0,1)
− complex scalars χA and aI , and their complex

conjugates.
Including the open string degrees of freedom, the chiral coordinates (τ,Ga, T

′B
λ ) are shifted to [27]

S = τ + LAB̄χAχ̄B̄, Gk = ck − τbk , (3.6.28)

TBλ = 1
2e
−φBKλρσvρvσ + iρλ − i1

2Kλklb
kGl + iCλIJ̄aI āJ̄ .

The coupling functions LAB̄ and Cλ IJ̄ for the basis of brane deformations and Wilson line moduli on
the four-cycle are given by

LAB̄ =

∫
S+
SA ∧ S̄B∫

Ỹ Ω ∧ Ω̄
, Cλ IJ̄ =

∫
S+

ωλ ∧ γI ∧ γ̄J̄ . (3.6.29)

Since the closed moduli are the same, we proceed in the same way as we did for the closed and the
D3-brane cases, identifying the coordinates as (3.6.16). Analogously to the D3-brane case, we expand
up to second order in the open moduli and match both theories by

∂V λ(e2DAGij)u
iuj ∼= iCλIJ̄aI āJ̄ , ∂V0(e2DAGij)u

iuj ∼= iLAB̄χAχ̄B̄ , ∂Vk(e2DAGij)u
iuj ∼= 0 ,

(3.6.30)
where we have indicated that as in the D3-brane case one will need to make the shift symmetry manifest
before finding complete match. Crucially one has to split the Type IIA coordinates into two sets ζI and
ζA and identify

ζI ∼= aI , ζA ∼= χA . (3.6.31)

One notes that Wilson line moduli and brane deformations do not mix on the Type IIB side which seems
to be in contrast to the general form on the Type IIA side. We will argue later how this splitting can be
understood from the SYZ-picture of mirror symmetry.

As already suggested in (3.6.25) one expects that the open corrections to theN = 1 coordinates can
again be given in terms of chain integrals. Let us first give the expression for Ko which encodes upon
differentiation with respect to V λ, V0, Vk the corrections in Tλ, N0, Nk. Explicitly, we propose

Ko = i
4

∫
C5
sAyIm Φev

∫
C5
s̄A ∧ Ω + i

4

∫
C5
FD7 ∧ γI ∧ ImΦev

∫
C5
FD7 ∧ γ̄I + c.c. , (3.6.32)

where Φev is given in (3.6.9). Here we have used a five-chain C5 ending on the D7-brane and a reference
four-cycles S0

+. Note that similar to the D6-brane case we have to introduce a dual basis sA and sA. To
do that we use the fact that no-where vanishing (3, 0)-form Ω provides an identification

Ω : NS+ → TS∗+ ∧ TS∗+ , (3.6.33)
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of normal vectors with two-forms of S+. Hence, in the Type IIB setting we adopt this basis to the
complex structure by demanding that sA is a complex normal vector in H0

+(NS+) and sA is a (2, 0)-
form in H(2,0)

− (S+) on S0
+. Similarly, γI is a (0, 1)-form as introduced above and γJ is a (1, 2)-form in

H
(1,2)
− (S0

+). These forms are defined to be dual and hence satisfy∫
S0

+

s̄A ∧ (sByΩ) = δAB ,

∫
S0

+

γI ∧ γ̄J = δJI . (3.6.34)

As in the D6-brane case we have to extend these forms to the chain. It is interesting to note that the
expression (3.6.32) indeed reproduces the leading order corrections after differentiating with respect to
V λ, V0, Vk.

3.6.2 Mirror symmetry for O5-orientifolds and D5-branes

Let us now discuss the second Type IIB set-up which is obtained by an involution with O5-planes as fix-
point set. The bulkN = 1 coordinates of the moduli spaceMQ are given as functions of the zero-modes
in the expansion

J = vk ωk , C2 = C̃2 + ck ωk , k = 1, . . . , h
(1,1)
+ (Ỹ ) , (3.6.35)

B2 = bλ ωλ , C4 = ρλ ω̃
λ , λ = 1, . . . , h

(1,1)
− (Ỹ ) .

Note the difference that we have used forms of different σ-parity in the expansion for the R-R-fields, C2

and C4 as required for the second orientifold projection in (3.6.2). While C0 has been projected out C2

now contains a four-dimensional two-form C̃2(x) which together with the dilaton φB form the bosonic
content of a linear multiplet. However, C̃2 can be dualized to a scalar field h and form with φB a chiral
multiplet. The N = 1 coordinates which spanMQ are thus the h(1,1) + 1 complex fields

t′k = e−φBvk − ick , Pλ = Kλρkbρtk + iρλ , (3.6.36)

S = e−φBV + ih− i
2ρλb

λ − 1
2Pλb

λ,

Formally the Kähler potential is the same as in the O3/O7-case given in (3.6.7). However, it now has to
be evaluated as a function of the coordinates t′k, Pλ and S by using there explicit form (3.6.36). Similar
to (3.6.8) we can write

− Im Φev + i
∑
n

eB2 ∧ C2n = −t′kωk + Pλω̃
λ + SvolỸ . (3.6.37)

Let us turn to the discussion of the mirror Type IIA side to this construction. As explained above the
second set-up with O5-planes is obtained by choosing the three-form α0 for the fundamental period X0

to lie in the negative eigenspace H3
−(Ỹ ). Again we will perform a rescaling of Ω setting the coefficient

of α0 to be constant. The special coordinates are then given by

g−1
A = 2ImCX0 , qk =

ReCXk

ImCX0
, qλ =

ImCXλ

ImCX0
. (3.6.38)

Now the rescaled prepotential f is given by F(2CX) = −i(2ImCX0)2f(qk, qλ). This allows us to
rewrite CΩ in the rescaled coordinates as

2CΩ = g−1
A

[
qkαk + iα0 + iqλαλ + fλβ

λ − (−2f + qkfk + qλfλ)β0 + ifkβ
k
]
. (3.6.39)

Moreover, we can use the special coordinates to write (N ′k, T ′Aλ , T ′A0 ) as

N ′k = g−1
A qk + iξk T ′A0 = g−1

A (−2f + qλfλ + qkfk) + iξ̃0 T ′Aλ = −g−1
A fλ + iξ̃λ . (3.6.40)
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With f in the large complex structure limit

f(q) = 1
6κklmq

kqlqm − 1
2κlµρq

lqµqρ . (3.6.41)

this allows us to write

T ′A0 = g−1
A

(
1
6κklmq

kqlqm − 1
2κµλkq

µqλqk
)

+ iξ̃0 , T ′Aλ = g−1
A κλµkq

µqk + iξ̃λ . (3.6.42)

The mirror mapping is then realized by

t′k ↔ N ′k and (S, Pλ)↔ (T ′A0 , T ′Aλ ) . (3.6.43)

In terms of the Kaluza-Klein modes this amounts to the identification of the closed moduli

g−1
A = e−φB , qk = vk , qλ = bλ , (3.6.44)

ξ̃0 = h− ρλbλ + 1
2Klλκc

lbλbκ , ξk = −ck , ξ̃λ = ρλ −Kλκlclbκ .

The identification of the basis elements on the Type IIA and Type IIB side is given in Table 3.6.4.

H3(Y ) Heven(Ỹ )

α0 ∈ H3
−(Y ) 1

αk ∈ H3
+(Y ) ωk ∈ H2

+(Ỹ )

αλ ∈ H3
−(Y ) ωλ ∈ H2

−(Ỹ )

βk ∈ H3
−(Y ) ω̃k ∈ H4

+(Ỹ )

βλ ∈ H3
+(Y ) ω̃λ ∈ H4

−(Ỹ )

β0 ∈ H3
+(Y ) V−1volỸ

Table 3.6.4: The mirror mapping from the basis ofH3(Y ) to the basis of even cohomologies
of the mirror Calabi-Yau Ỹ in O5/O9 orientifold setups.

Inclusion of D5 brane moduli

We now consider a pair of D5-branes on curves Σ(1) and Σ(2) which are interchanged under the orien-
tifold involution. We call the positive union of Σ(1) and Σ(2) by Σ+ = Σ(1) + Σ(2) Again we view this
as a single D5-brane on the quotient space. The open moduli for a single D5-brane [93], corresponding
to complex brane deformations χA and Wilson line moduli aI , correct theN = 1 coordinates according
to

tk = t′k + LkAB̄χ
Aχ̄B̄,

Pλ = Kλρkbρt′k + iρλ , (3.6.45)

S = e−φBV + ih− i
2ρλb

λ − 1
2Pλb

λ + CIJ̄aI āJ̄ .

The deformations χA are given by sections of the holomorphic normal bundle NΣ+ that are invariant
under the orientifold projection, and therefore the index A = 1, . . . , dimH0

+(Σ+, NΣ+). The Wilson
line moduli aI are in the tangent bundle of Σ+, just like in the D7 brane case, and the index runs as
I = 1, . . . , h

(0,1)
− (Σ+). Here we have introduced the couplings

LkAB̄ = −i
∫

Σ+

sAys̄Byω̃
k , CIJ̄ = i

∫
Σ+

γI ∧ γ̄J̄ (3.6.46)
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The Kähler potential now has to be evaluated as a function of tk, Pλ, S as well as the open coordinates
χA and aI .

In order to discuss mirror symmetry to the D6-brane set-up we again compare the form of theN = 1
coordinates. Expanding to second order in the open corrections we find

−∂Vk(e2DAGij)u
iuj ∼= LkAB̄χ

Aχ̄B̄, −∂V0(e2DAGij)u
iuj ∼= CIJ̄aI āJ̄ , −∂V λ(e2DAGij)u

iuj ∼= 0 .
(3.6.47)

More interestingly, we can also directly compare the open Kähler potential Ko. To do that, we give a
chain integral expression for the D5-brane case. We introduce a the three-chain C3 ending on a reference
cycle Σ0

+ and the two-cycle to which the brane has moved. The open Kähler potential then takes the
form

Ko = − i
4

∫
C3
sAyRe Φev

∫
C3
s̄A · Ω− i

4

∫
C3
FD5 ∧ γI ∧ Re Φev

∫
C3
FD5 ∧ γ̄I + c.c. , (3.6.48)

where Φev is given in (3.6.9). Note that this expression has a similar structure as (3.6.32). However, due
to the lower dimensionality of the chain the four-form part of Re Φev is picked up in the first term of
(3.6.48), while the zero-form part of Re Φev contributes in the second term of (3.6.48). In the case of a
D5-brane the (3, 0)-form Ω on Ỹ provides a map

Ω : NΣ+ ⊗NΣ+ → TΣ∗+ , (3.6.49)

taking two normal vectors to a one-form on Σ+. This allows us to introduce a basis sA of H0(TΣ0
+ ⊗

NΣ
0
+) which is dual to the normal vectors sA. Hence, the · in (3.6.48) indicates that the vector part of

sA is inserted, while the form part of sA is wedged with Ω. We also introduce complex one-forms γJ

on Σ0
+ which are dual to the (0, 1)-forms γI used in the expansion determining the complex Wilson line

scalars aI . Explicitly, the sA, γI have to satisfy on the reference Σ0
+ that∫

Σ0
+

sAys̄
B · Ω = δBA ,

∫
Σ0

+

γI ∧ γ̄J = δJI , (3.6.50)

As in the D6-brane case the basis forms and vectors have to be extended trivially to the chain C3 to
evaluate the open Kähler potential (3.6.48). One can now check that the expansion (3.6.48) leads upon
differentiation with respect to Vk, V 0, V λ the leading order corrections in (3.6.45).

3.6.3 General remarks on the structure of the couplings

In this subsection we address the question if there is a simple way to understand the mappings of (3.6.47),
(3.6.21) and (3.6.30) using the SYZ-picture of mirror symmetry. For example for D5-branes the
(∂Vk(e2DAGij), ∂V0(e2DAGij)) correct the coordinates tk and S by brane deformations and Wilson
line moduli as demanded by the mirror identification (3.6.47). In contrast, the coordinates Pλ do not
receive any contributions from open moduli and hence ∂V λ(e2DAGij) has to vanish in the D6-brane
set-up mirror dual to a D5-brane. To analyze this question in the SYZ-picture, first let us look at the
gauge coupling functions. In the limit of vanishing open string moduli they are given by the analogous
to the D6-brane gauge coupling function fD6 = Nk

∫
L αk − Tλ

∫
L β

λ,

fD3 = τ , fD5 = tΣ
∫

Σ+

ωΣ , fD7 = TS

∫
S+

ω̃S , (3.6.51)

where Σ+(S+) is the curve(divisor) wrapped by the D5(D7)-brane, and they are obtained from a basis
of homology by

[Σ+] = nk [Σk] , Σk ∈ H+
2 (Y ) and (3.6.52)

[S+] = nλ[Sλ] , Sλ ∈ H+
4 (Y ) .
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Therefore the forms appearing in (3.6.51) are, in terms of the cohomology basis, ωΣ = nkωk and
ω̃S = nλω̃

λ.
From the four internal dimensions the D7-brane wraps, locally two of them are along the T 3-fiber

and the other two on the base, as seen from table 3.6.3. The mirror D6-brane, on the other hand, wraps
one dimension on T 3-fiber and two dimensions on the base. It is also inferred from the gauge coupling
function of the D7-brane (3.6.51) that ω̃λ sits on the brane, therefore having two “legs” on the 3-Torus
and two on the base. We define thus the notation ω̃λ : (bbtt), where b and t correspond to base and
torus components. Table 3.6.2 shows that ω̃λ on the Type IIB side is mapped on the Type IIA side to
βλ. Therefore, from table 3.6.3, since βλ must sit on the mirror D6-brane, it should satisfy βλ : (bbt).
βλ must be dual to αλ on the Calabi-Yau manifold Y, thus αλ : (btt). A similar analysis can be done for
the D5 and D3-Branes, from where we obtain αk : (btt), βk : (bbt), β0 : (bbb) and α0 : (ttt).

One can now analyze the open moduli corrections to the N = 1 chiral coordinates from the metric
derivatives ∂V0 Ĝij , ∂Vk Ĝij and ∂V λ Ĝij . As a simple example we consider the D3-brane case. We can
rewrite the corrections in terms of the normal deformations ηi

Re(N ′0 −N0) = ∂V0(e2DA Ĝij)ηiηj =
1

2

∫
L0

α̂k ∧ ηyβ0

∫
L0

β̂k ∧ ηyJ . (3.6.53)

Since the brane wraps the three-torus, both integrands in (3.6.53) must be of the form (ttt). The normal
directions of this D6-brane are all on the base, so ηyβ0 : (bb), making the first integral vanish. Therefore
there is no correction to N ′0 = iτ coming from ∂V0 Ĝij , as was already seen in (3.6.21). By repeating
the analysis to ∂V λ Ĝij and ∂Vk Ĝij one shows that only the latter can be non-vanishing, and analysing in
the same fashion the corrections for the D5 and the D7 cases we obtain the same relations as (3.6.47)
and (3.6.30).

One can realize then that brane deformations with normal direction η along one cycle of the 3-torus
on the Type IIA side are mapped to Wilson line moduli along the T-dual cycle on the Type IIB side,
while brane deformations along the base are mapped to brane deformations on the Type IIB side, also
along the base. In the opposite direction, brane deformations on the Type IIB side along the 3-torus are
mapped to Wilson line moduli along the dual cycle on the Type IIA side.

We conclude this section by summarizing the results here obtained. It was a known result [87]
how some deformations of a calibrated special lagrangian manifold can break the special lagrangian
conditions. This can be encoded in a scalar potential, that give obstructions to these conditions. The same
potential can be obtained from explicit calculation of the Dirac-Born-Infeld of a D6-brane wrapping a
special lagrangian manifold.

The reduction of the action describes a four-dimensionalN = 1 supersymmetric theory, from which
we identified the characteristic data. The deformations of the brane are described by real fields, but they
naturally complexify with the Wilson line moduli to form a chiral multiplet. When we introduce closed
string modes, these chiral fields correct the moduli of complex structure deformations.

At the end, we mapped the field content using Mirror Symmetry in view of the SYZ conjecture. We
also proposed a Kähler potential to describe the brane moduli space in type IIB theory, inspired by the
Kähler potential we obtained for the D6-brane moduli.
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Chapter 4

M and F Theory: non-perturbative descrip-
tions
In the previous chapter we have seen how one arises at a standard N = 1 four-dimensional action from
spacetime filling D-branes, when we compactify part of the ten-dimensional space in a three complex-
dimensional Calabi-Yau orientifold. Models with intersecting branes in fact correspond to a great part of
the strings phenomenology literature. However, one can point out that in the previous chapter we did not
treat the whole story since we fixed a small background value for the dilaton (the string coupling) such
that we could trust the perturbation string theory description. But in general this cannot be expected to
work, since the dilaton is a dynamical field and not just a free parameter of the theory. It is important
then to explore the domain of strong coupling, not only as a theoretical curiosity, but as a theoretical
necessity.

In the last two decades much effort has been put in constructing strong coupling descriptions for
string theory. We will dedicate this chapter to review the basics on two such constructions, M- and
F-theory.

4.1 Type IIA as a limit of M-theory

In the mid 90’s [31,119] it was proposed that there should be a theory that contains Type IIA string theory
as a particular limit, and this hypothetical theory received the name of M-Theory. Although M-Theory
does not yet have a fundamental perturbative description, it is postulated that M-theory has an effective
description described by eleven dimensional supergravity, the maximally supersymmetric gravity theory
known. When one compactifies eleven dimensional supergravity on a circle of radius R11, one arises
at Type IIA supergravity with the vacuum expectation value for the dilaton being the compactification
radius R11 in Planck length units. So, sending the string coupling to infinity corresponds to the circle
decompactification.

Eleven dimensional supergravity contains solitonic solutions that couple electrically and magnet-
ically to the three-form potential A3. These solutions are extremal black-branes of two and five di-
mensions. The extremal black-hole condition can be translated to a BPS condition, and leads to the
conclusion that such objects are stable even away from the low energy limit. These objects are the M2
and M5 branes of M-Theory, up to now believed to be the only fundamental objects of this theory.

When compactified to ten dimensions the M2- and M5-branes become respectively to the D2 and
NS5 Branes of Type IIA, and if one of the dimensions of the M2- and M5-Branes wrap the compacti-
fication circle they lead respectively to the fundamental superstring1 and the D4 Brane . The D0 brane
however does not come from a compactified M-brane, but rather from the first Kaluza-Klein (KK) exci-
tation of the graviton multiplet. Its mass is given by 1/R, where R is the radius of the compactification
circle.

The massless condition for the 11-dimensional graviton reads

− pipi = M2 = 0, i = 0, ..., 9, 11. (4.1.1)

1the relation between the supermembrane in supergravity and the superstring appeared in a much earlier work by Duff in
1987 [120]
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Note that to agree with the usual notation of the literature, we skip the index 10. When compactified
along the 11th direction on a circle of radius R, the quantization of the momentum along the compact
dimension implies

− pµpµ − p11p
11 = −pµpµ −

(
N

R

)2

= 0, µ = 0, ..., 9. (4.1.2)

The first KK excited state has mass 1/R. From the dimensional reduction of the eleven-dimensional
action, one can identify the radius compactification circle in terms of the 11d and 10d gravitational
coupling constant, and in turn relate it to the string coupling. It turns out that the radius R (in string
length units) is precisely the inverse of the string coupling constant gs. Therefore the mass of the first
excited KK mode agrees with the expected mass of a D0 brane, MD0 = gs.

The D6-brane is the “magnetic” dual of the D0-brane, so one might expect that it also has a ge-
ometrical origin. Indeed, the D6-brane comes from a eleven-dimensional Kaluza-Klein monopole, a
topological defect solution of eleven-dimensional supergravity that is the magnetic dual of the Kaluza-
Klein excitation.

This solution is just the eleven-dimensional version of the five-dimensional Kaluza-Klein monopole
[121] that we briefly review here. Five-dimensional Einstein’s equations has as a possible solution

ds2
5 = −dt2 + ds2

TN, (4.1.3)

where the Taub NUT metric [122]

ds2
TN = V (r)(dr2 + r2dΩ2

2) +
1

V (r)
(dy +R sin2(θ/2)dφ)2, (4.1.4)

where dy is a periodic direction and
V (r) = 1 +R/2r. (4.1.5)

From the Kaluza-Klein Ansatz, we can identify the Kaluza-Klein one-form A = R sin2(θ/2)dφ, and
from it calculate the magnetic field around the origin,

B = −∇V = ∇×A. (4.1.6)

One can also calculate the electric field, E = ∂tA = 0, so the Taub-NUT solution is purely magnetically
charged, a magnetic monopole.

One can extend this solution by adding six transverse flat directions, reproducing then an extended
six-dimensional object inside the eleven-dimensional theory. Thus, Type IIA supergravity is consistently
described as eleven dimensional supergravity compactified on a circle when the radius of compactifica-
tion (and therefore the Type IIA string coupling gs IIA is very small. The string coupling is given by the
background value of the dilaton, gs = eφ. If we allow the dilaton value to depend on the spacetime co-
ordinates, the lift to M-theory corresponds to replace the circle compactification of radius R by a circle
fibration over ten-dimensions, where R(x) now vary over the ten dimensional space.

Type IIB string theory can be obtained from Type IIA string theory via T-duality, so it is also a
particular limit of M-theory. Type I, SO(32) Heterotic and E8 × E8 Heterotic superstring theories can
also be described as limits of the same underlying eleven dimensional theory [123, 124]. M-theory then
is the hypothetical eleven-dimensional theory that has as fundamental objects M2- and M5-branes and
under particular limits it reduces to all the known supersymmetric string theory constructions.

4.2 F-Theory from M-theory

Low Energy Type IIB also has an hypotetical strong coupling limit construction, named F-theory [34].
In this section we will briefly review its formulation and the necessary background for the remaining of
this thesis. We will follow mainly [125–127].
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Figure 4.1: The fundamental domain of τ .

The motivations for F-theory may be traced to the SL(2,Z) symmetry of Type IIB supergravity. In
Type IIB string theory, the RR fields are all even forms C2n (in contrast with the odd forms of Type IIA).
Also, the axionic C0 form joins with the dilaton e−φ and we define the chiral axio-dilaton field

τ = C0 + ie−φ. (4.2.1)

The effective action is

S
(10)
IIB =

∫
1

2
R ∗ 1− 1

4
dφ ∧ ∗dφ− 1

4
H3 ∧ ∗H3 −

1

4
e2φF1 ∧ ∗F1 (4.2.2)

−1

4
eφF3 ∧ ∗F3 −

1

8
F5 ∧ ∗F5 −

1

4
C4 ∧H3 ∧ F3,

H3 = dB2, F1 = dC0, Fq+1 = dCq − Cq−2 ∧H3,

This action can be rewritten in the more convenient form

S
(10)
IIB =

∫
1

2
R ∗ 1− 1

2(Im τ)2
dτ ∧ ∗dτ̄ − 1

2 Im τ
G3 ∧ ∗G3 −

1

8
F̃5 ∧ ∗F̃5 −

1

4
C4 ∧H3 ∧ F3,

G3 = dC2 − τH3, F̃ = dC4 −
1

2
C2 ∧H3 +

1

2
B2 ∧ dC2, (4.2.3)

that can be easily shown to be invariant under the SL(2,R) transformation

τ ′ =
aτ + b

cτ + d
, ad− bc = 1 (4.2.4)(

H ′

F ′

)
=

(
d c
b a

)(
H
F

)
,

The SL(2,R) is a symmetry of the classical theory. Once we include D(−1)-instantons (that come with
factors ∼ e2πiτ ) the SL(2,R) symmetry is reduced to an SL(2,Z).

The complexified gauge coupling function τ has thus a fundamental domain, a region F defined in
the complex plane such that any point outside F can be mapped back to F via SL(2,Z) transformations.
The fundamental domain is shown in figure 4.1.

One particular choice for this transformation, namely (a, b, c, d) = (0,−1, 1, 0), corresponds to the
S duality

eφ → e−φ, B2 → C2, C2 → −B2, (4.2.5)
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the exchange of a D1-brane (or a D-string) with a fundamental string (F-string). Both strings have the
same vibrational spectrum, and same quantum numbers, but they differ on tension (TF = eφTD) and the
F-string is magnetically charged under B2 while the D-string under C2. In general, we can expect the
existence of a (p, q)-string, with charge (p, q) under (B2, C2), where under this notation a (0, 1)- and an
(1, 0)-string corresponds to a F- and a D-string, respectively.

Something interesting also happens with the D7-brane, still in the perturbative regime. The D7-
brane is magnetically charged under C0, and noticing that the space transverse to the D7-brane is two
dimensional, we can integrate the brane charge in a complex plane z, with the D7-brane at the origin.
Normalizing the charge to 1,

1 =

∮
dC1, (4.2.6)

(analogous to the charge of a magnetic monopole,
∮
F ), that we can solve the residue and write a simple

solution close to z → 0,

τ = τ0 +
1

2πi
ln z + . . . , (4.2.7)

plus regular terms. Circling once around the origin gives the monodromy τ → τ + 1, and therefore
corresponds to the SL(2,Z) transformation with (a, b, c, d) = (1, 1, 0, 1). We can study the behavior of
τ far from the brane, calculated from the backreaction of the brane on the spacetime metric, described
by the warp factor B(z, z̄), in

ds2 = −dt2 +
∑
i

dx2
i + eB(z,z̄)dzdz̄, (4.2.8)

where xi are the 7 longitudinal directions to the brane. One can solveB(z, z̄) in terms of τ , and conclude
that [128] the space is asymptotically flat but has a deficit angle of π/6.

It is interesting to point out what is so special with the seven dimensional brane, compared to lower
dimensional branes that do not introduce monodromies or asymptotic backreaction effects. This comes
from the fact that when the transversal space to the brane is of dimension d+ 2 (d > 0), the solution of
(4.2.6) is of the form Φ ∼ r−d, that vanishes at infinity and presents no monodromy.

In general, the τ → τ + N transformation corresponds to the existence of a stack of N D7-branes
at the perturbative level. If we move to strong coupling, the perturbative description does not hold
anymore, and we must include (p, q)-branes, objects of more complicated monodromies (corresponding
to more general terms of the SL(2,Z) action) on which the (p, q) strings can end.

Observing the SL(2,Z) transformations, one could naively guess that Type IIB arises from a twelve
dimensional theory compactified on a torus of complex structure τ , with some field strengthG4 wrapping
each cycle A or B of the torus, corresponding to F3 and H3. The SL(2,Z) transformations would then
be simply the modular transformations of a torus. This guess turns out to be problematic, but the idea of
a torus compactification survived in the now called F-theory.

There is up to now no fundamental description of F-theory, but there are different ways of extracting
results in the strong coupling limit of Type IIB theory. One approach is to construct F-theory as a T-
dual description of M-theory, as we will review in the following. Another explored approach is via
Heterotic/F-theory duality, in which E8 × E8 heterotic string theory compactified on a Calabi Yau
threefold can be related to F-theory compactified on a fourfold. We will however not discuss Heterotic-
F-theory duality here, but the reader may look for example in the original work by Vafa [34].

To formulate F-theory, we start from eleven dimensional M-theory compactified on a torus T 2. More
precisely, we consider an elliptic fibration over a nine dimensional base. Locally, the prescription works
as follows [129]:

1. As we shrink one of the cycles (say the “A-cycle”), M-theory on the torus becomes Type IIA
compactified to nine dimensions on the remaining “B-cycle”. The coupling is gIIA = RA, in
string units;
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2. We shrink the B-cycle to zero, and T-dualize it. The T-dual B’-cycle will have infinite radius, thus
getting ten dimensional Type IIB, with coupling gIIB = gIIA/RB = RA/RB = Im τ , as we
wanted.

It is important to notice that the F-theory limit RA, RB → 0 is taken in a way that τ is finite, and thus
we can move into regions outside perturbation theory.

As a more phenomenologically interesting case, we consider M-theory compactified on an ellipti-
cally fibered Calabi-Yau fourfold that corresponds thus to an effective three (1+2) dimensional theory.
After the dualization to F-theory, the B-cycle becomes a spacetime dimension, leaving us with four
spacetime dimensions, (figure 4.2). It is not obvious that this asymmetric prescription leads to four
dimensional Lorentz invariance, but the limit can be taken in a particular way that is Lorentz invari-
ant [125].

?

-

?

Type IIA on
R1,2 × S1

B ×B3

M-theory on
R1,2 × T 2 ×B3

F-theory

Type IIB on
R1,3 ×B3

RA → 0

T-dualize RB ⇒ R′B
RB → 0⇒ R′B →∞

Figure 4.2: The steps from M-theory to Type IIB with an underlying torus structure. The
limits are taken in such a way that τ = RA/RB is finite.

The branes in Type IIB, following this prescription, should also come from objects in M-theory. The
M2 brane wrapped on the torus becomes an F- or a D-string, and when not wrapping the torus becomes
a D3 brane. The M5 brane, depending on how it is wrapped, can correspond to D5- or NS5-branes.
The 7-branes, however, do not come from M-branes. Looking at the intermediate Type IIA theory, the
D7-branes of type IIB should come from D6-branes. The latter, as was seen in the previous section, are
purely geometrical solutions of the eleven dimensional theory2. We should then expect that the 7-branes
also have a geometrical origin, as we will describe.

We start with the algebraic construction of an elliptic curve (i.e., the torus), given by the Weierstrass
function

y2 = x3 + fxz4 + gz6, (4.2.9)

where (y, x, z) ∈ C3. More precisely, the elliptic curve is defined inside a weighted projective space P2,
with homogeneous coordinates (y, x, z) obeying the rescaling conditions (y, x, z) ' (α3y, α2x, αz). In
the patch where z 6= 0 we can use the rescaling condition to set z = 1,

y2 = x3 + fx+ g = (x− e1)(x− e2)(x− e3). (4.2.10)

The equation above describes a double cover of the x plane, and by writing

y =
√

(x− e1)(x− e2)(x− e3), (4.2.11)

one can easily see that it has branch points at x = e1, e2, e3. There is also a monodromy around a circle
of infinite radius, x = |x|eiθ taking θ from 0 to 2π. We can alternatively describe this infinite circle by
identifying the infinity in the complex plane to a point, so the infinite circle is a small circle around the
infinity “point”. But C ∪∞ ' P1, and we can then represent the domain of y(x) as a (double cover of

2The connection between the geometrical Taub-NUT spaces and D7-branes was explored for example in [130] to calculate
non-perturbative contributions coming from U(1) fluxes to the gauge-coupling function on a D7-brane.
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Figure 4.3: The x plane with the added point at infinity (∼ P1), as one cover of the y(x)
function. The branch cuts for (4.2.11) connects the branch points. It is also
drawn the two non-homological 1-cycles, where the dashed line indicates the
cycle passing through the second cover of y(x).

a) sphere. We have then to define the branch cuts, and we can do it as represented in figure 4.3. The
resulting manifold has then two independent 1-cycles, that we can immediately identify with the two
independent cycles of the torus.

The complex structure of the torus can be calculated from

τ =

∮
A Ω∮
B Ω

, (4.2.12)

where Ω is the globally defined meromorphic 1-form, and A and B are two independent one-cycles in
figure 4.3. Clearly, τ is invariant up to SL(2,Z) transformations when we consider any two combina-
tions A′ = aA+ bB, B′ = cA+ dB for the cycles defining (4.2.12).

The meromorphic form Ω can be obtained from the general equation

Ω =
1

2πi

∮
P=0

w · V
P

, (4.2.13)

where P is the defining equation for the elliptic curve, P = y2− x3− fxz4− gz6, w is a meromorphic
form defined on the ambient C3 (with w/P gauge invariant), w = dx∧ dy ∧ dz, and V the vector fields
generating the gaugings (x, y, z) ' (α2x, α3y, αz),

V =
∑

xi=x,y,z

Qixi
∂

∂xi
= 2x

∂

∂x
+ 3y

∂

∂y
+ z

∂

∂z
. (4.2.14)

Inserting V , w and P into (4.2.13),

Ω =
1

2πi

∮
P=0

2xdy ∧ dz + 3ydx ∧ dz + zdx ∧ dy
−y2 + x3 + fxz4 + gz6

. (4.2.15)

Since this holds globally, we can move to the particular patch z = 1, and easily solve

Ω =
1

2πi

∮
P=0

dx ∧ dy
P

=
dx

∂P/∂y
=
dx

2y
. (4.2.16)

It is a known result from the mathematics literature that we can write a relation among the complex
structure τ for the elliptic curve and the parameters f and g [128],

j(τ) =
4(24f)3

∆
, ∆ = 27g2 + 4f3, (4.2.17)
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with j(τ) = e−2πiτ + 744 + e2πiτ + . . ., that is invariant under SL(2,Z) transformation. j(τ) is a
function that maps the fundamental domain of τ into C. The ∆ function is the discriminant of the curve,
and the elliptic curve becomes singular when ∆ = 0. In terms of equation (4.2.11), this happens when
two eis coincide, and one of the cycles shrinks to zero size.

We now “promote” the elliptic curve to an elliptic fiber, by introducing a base B over which the
parameters of the elliptic curve, f and g vary. We consider a simple case where the base has just one
complex dimension represented locally by the coordinate u. In K3 fibrations, for example, the base is a
CP1, a two-sphere, and f(u) and g(u) are polynomial functions of degree 12 and 8, respectively. Thus,
∆ will be a degree 24 polynomial, and will have generically 24 order one zeros. We choose one of these
particular zeros, namely u = ui, such that near this point ui,

j(τ) ∼ 1

u− ui
⇒ τ ∼ 1

2πi
ln(u− ui), (4.2.18)

again reproducing the D7-brane monodromy. In fact, this solution is defined only up to an SL(2,Z)
transformation. When we consider more branes localized at different points ui, we cannot in general fix
τ to be of the form (4.2.18) for each brane. Not only this, but the monodromy present at one particular
point ui can change as we circle around another point uj . So, in general, identifying locally a D7-brane
(or a (p,q)-brane, with specific (p,q) values) is not something that holds globally.

There are however particular cases in which we can restore the perturbative type IIB description
globally. In the beautiful work by Sen [131, 132] the conditions for a constant τ with large imaginary
part (corresponding to small string coupling) are imposed, and a precise interpretation of Type IIB theory
from the F-theory perspective is worked out. So, although the D-brane + O-plane picture can indeed be
achieved, it is not a general feature, but rather a very particular subdomain of possible theories.

We also introduce a more general form for the Weierstrass function (with z = 1),

− y2 + x3 + a6 + a4x+ a3y + a2x
2 + a1xy = 0. (4.2.19)

This form can be reduced back to (4.2.9) by completing the squares. To relate the new coefficients to f
and g we first define

b2 = a2
1 + 4a2, b4 = a1a3 + 2a4, b6 = a2

3 + 4a6, (4.2.20)

c4 = b22 − 24b4, c6 = −b32 + 36b2b4 − 216b6. (4.2.21)

One can then show that
f = − 1

48
c4, g = − 1

864
c6. (4.2.22)

and from ∆ = 27g2 + 4f3 one computes directly

∆ =
1

4
b22(b2b6 − b24)− 83

4 − 27b26 + 9b2b4b6. (4.2.23)

This form will be used later to introduce a new section that will correspond to a particular divisor in the
base, via the Tate algorithm.

If we want our compactification to lead an effective four dimensionalN = 1 supersymmetric theory,
we must compactify on a Calabi-Yau fourfold. This imposes some conditions on the elliptic fiber, that
we review here. In a general F-theory compactification, there will be some divisors Si on the base over
which the fiber degenerates. In Type IIB theory picture, this corresponds to a D7-brane wrapping Si.
The first Chern class of such a fibration π : Y4 → B3 is given by [126]

c1(Y4) ' π∗(c1(B3))−
∑
i

δi
12

[Si] , (4.2.24)
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where δi ∼ ∆|Si , ∆|Si is the discriminant of the elliptic curve close to the divisor Si, and [Si] is the
Poincarè-dual two-form to the divisor Si. We also used the common notation c1(X) = c1(TX), where
TX is the tangent bundle of any manifold X . If we want the fourfold to be Calabi-Yau, we must require
c1(Y4) = 0 and therefore ∑

i

δi[Si] = 12c1(B3), (4.2.25)

that can be seen as a consequence of the tadpole cancellation of charges for D7-branes and O7-planes,
(analogous to the condition for D6-branes in Type IIA orientifold compactifications, as in our setup
(3.3.2)), ∑

i

Ni[Si] = 4[O7]. (4.2.26)

An interesting consequence of F-theory compactifications is that the base itself is not Calabi-Yau, but
only the full fourfold. As we move to the strong coupling regime of Type IIB theory, the D7-branes
induce strong backreactions in the threefold geometry, thus breaking the Calabi-Yau condition.

The Calabi-Yau condition (4.2.25) implies that the variables of the Weierstrass form must be sections
of specific bundles. Recall the first Chern class of the Canonical Line Bundle, c1(KB3) = −c1(B3).
Also, the left-hand side of (4.2.25) is in homology equal to the full [∆]. Together with the relation
∆ = 27g2 + 4f3, this implies that f and g are sections of K−4

B3
and K−6

B3
, respectively. Since the fiber

is given by the Weierstrass equation,

y2 = x3 + xfz4 + gz6, (4.2.27)

x, y must transform as K−2
B3

and K−3
B3

, respectively. By construction, z is the section isomorphic to the
base B3. So, if we want our elliptic fourfold to be Calabi-Yau, the sections must transform as required
above. In terms of the modified Weierstrass function (4.2.19), ai, bi and ci each are sections of K−1

B3
.

In perturbative type IIB, N coinciding D7-branes give SU(N), SO(2N) or Sp(2N) groups, depending
on how the divisor wrapped by the brane behaves under the orientifold involution. In the F-theory
perspective, putting branes on top of each other leads to higher vanishing order of ∆ in (4.2.17). When
this happens, not only the elliptic fiber degenerates, but it becomes singular, i.e., P = dP = 0, where
P is the defining function of the elliptic fiber, (4.2.9). One can then resolve the singularity, and the
resolution leads to a set of two-cycles that can be identified with the root system of some gauge group,
as we describe in more detail in the next chapter. One of the most phenomenologically interesting
consequences is that in F-theory there is the possibility of constructing gauge groups not realizable in
perturbation theory. We will describe gauge groups via F-theory compactifications in the next chapter.
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Chapter 5

Singularities in F-theory
In F-theory compatifications to four dimensions the Calabi-Yau threefold of the perturbative Type IIB
is replaced by an elliptically fibered Calabi-Yau fourfold, and the regions on the base where the fiber
degenerates correspond to a 7-brane. The total compactification space might be seen as a fourfold inside
an ambient five dimensional manifold with a P2 fiber in which the elliptic curve is constructed. The
gauge theory living on the brane is now encoded in the kind of singularity appearing in the elliptic fiber
over the base regions where the fiber degenerates.

The way to identify the corresponding gauge group of a singularity in the elliptic fiber is by resolving
it. The resolution in general replaces the singular point by a series of P1s on the fiber, that are two-cycles.
From the M-theory perspective [133, 134], each 2-cycle can be wrapped by M2-branes of different
orientations. These M2-branes are charged under the three-form C3, that decomposes as

C3 = Ak1 ∧ ωk , (5.0.1)

where ωk is a two-form on the k-th P1, and eachAk1 is a one-form corresponding to a vector gauge boson
in the base of the fibration, and the M2-branes correspond to W bosons. When we shrink the P1 to zero
size, the branes and the U(1) boson become massless, and they enhance to an unbroken SU(2). Thus,
each P1 in the resolved singularity correspond to a broken SU(2), and the blow-down limit arrange each
SU(2) as the root elements of a higher order group.

The classification of the singularities for compactifications on an elliptically fibered K3 (in which
the base is the projective1 space P1) was done by Kodaira [135, 136]. This classification identifies what
sort of singularities appear at some point (divisor) on the base, depending on the vanishing order of ∆,
f and g. The singularities appearing in this construction are ADE singularities, referring to the ADE
groups associated to them. The classification is summarized in table 5.0.1.

With this prescription we can construct effective gauge theories in four dimensions with the groups
described in table 5.0.1. But to build a realistic model one also has to include matter in the spectrum,
as well as interactions among the matter representations. The matter representations are constructed
in F-theory from intersections between singularities, that in the perturbative description correspond to
7-branes colliding, and a matter representation appearing at the intersection curve. Couplings among
different matter curves happen as the matter curves intersect in points on the base, often called Yukawa
points. There is also an equivalent brane picture, in which three or more branes intersect at a point.

The matter representations must be chiral, as is our real world. One stardard way to construct chiral
representations, also imported from model building with intersecting D-branes, is to add fluxes along
the matter curve. In M-/F-theory, the only type of flux in the theory comes from the field strength G4.
This at first might seem as a contradiction, since the matter curve is two-real-dimensional, while G4 is a
four-form. However, at the matter curves the singularity enhancement can be interpreted as a collapsed
two-cycle on the fiber that exists only on top of the matter curve. We can then localize the flux along the
matter curve by decomposing it as

G4 = F2 ∧ ω0, (5.0.2)

where F2 is a two-form flux and ω0 is the two-form dual to the collapsed two-cycle. Fluxes in general
also play an important role on the breaking of GUT gauge theories to (extensions of) the Standard

1since we are dealing only with complex projective spaces, we write simply Pk instead of CPk. But it should be kept in
mind that the homogeneous coordinates are always complex.
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Type ord(f) ord(g) ord(∆) j(τ) Group Monodromy
I0 ≥ 0 ≥ 0 0 R — 12×2

I1 0 0 1 ∞ U(1)

(
1 1
0 1

)
In 0 0 n > 1 ∞ An−1

(
1 n
0 1

)
II ≥ 1 1 2 0 —

(
1 1
−1 0

)
III 1 ≥ 2 3 1 A1

(
0 1
−1 0

)
IV ≥ 2 2 4 0 A2

(
0 1
−1 −1

)
I∗n

2 ≥ 3
n+ 6 ∞ Dn+4

(
−1 −b
0 −1

)
≥ 2 3

IV ∗ ≥ 3 4 8 0 E6

(
−1 −1
1 0

)
III∗ 3 ≥ 5 9 1 E7

(
0 −1
1 0

)
II∗ ≥ 4 5 10 0 E8

(
0 −1
1 1

)

Table 5.0.1: Kodaira Classification of singular fibers of an K3 elliptic fibration. Table ex-
tracted from [55, 137].

Model, and as in the example cited in chapter 3, fluxes can lead to corrections on the effective action
characteristic data and to contributions to the scalar potential, with obvious and important consequences
for phenomenology. A better understanding of the role of fluxes in F-theory model building has been an
important field of research in the late years, and as some examples of the still growing literature we can
cite [38, 40, 130, 138–144] and references therein.

5.1 The basics on Blow-ups

Since the construction of gauge groups and representations depend on the resolved manifold as seen in
the M-theory picture, it is thus convenient to review some basics on blow-ups. We first look at simple
double point singularities inside C3 that will allow us to set the ground for singularities arising in F-
theory elliptic fibrations. A similar discusion focused on orbifold singularities appears in [145].

5.1.1 The Blow-up of a point

In this short section, we review the blow-up of the origin point in Cn [146]. We first introduce a Pn−1

with homogeneous coordinates [z̃1, z̃2, ..., z̃n], and relating the original Cn coordinates zi with the Pn−1

coordinates via
zi = λz̃i, (5.1.1)

with λ complex. The relation (5.1.1) defines a subvariety inside Cn × Pn−1, and we can define a
projection π from the blow-up space to Cn a π : (zi, z̃i)→ zi.

The origin is then replaced by the condition λ = 0, which implies that the coordinates x′, y′ and
z′ can take any value obeying the homogeneity condition. Thus, π−1(0) = Pn−1. Outside the origin,
λ 6= 0 and (5.1.1) specifies a point in the Pn−1. Therefore outside the origin the blow-up space is
isomorphic to Cn.
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5.1.2 The A1 singularity

Now we want to describe the resolution of a submanifold inside C3. A simple example is the A1

singularity given by the singular point in the surface

XA1 = {x2 + y2 + z2 = 0} ⊂ C3. (5.1.2)

It has a singular (double) point located at the origin p0 : x = y = z = 0 (at this point, XA1 = 0 and
dXA1 = 0). The resolution procedure consists in blowing up a P2 at the singular point of the embedding
space,

x = λx̃, y = λỹ, z = λz̃, [x̃, ỹ, z̃]. (5.1.3)

Replacing the coordinates in (5.1.2) with (5.1.3), we get

λ2(x̃2 + ỹ2 + z̃2) = 0 . (5.1.4)

Notice the singularity y = x = z = 0 is now “encoded” in the condition λ = 0. We artificially remove
the singularity by defining X̃A1 , the blow-up space of XA1 , as the proper transform of (5.1.2), that is,

X̃A1 = {x̃2 + ỹ2 + z̃2 = 0 | [x̃ : ỹ : z̃]} . (5.1.5)

The new manifold X̃A1 is not singular (XA1 = 0 and dXA1 = 0 cannot be simultaneously satisfied).
We will now show that the singularity of the original curveX was replaced in the blown-up space by

a P1 defined by {λ = 0} ∩ X̃A1 . The equation λ = 0 defines the exceptional divisor E in C3. To show
that E|X̃A1

= P1, it is convenient to perform a change of coordinates such that the defining equation can
be written in the form

X̃A1 = {−ũṽ + z̃2 = 0 | [ũ : ṽ : z̃]} . (5.1.6)

Introducing the patches U , V and Z , defined respectively by ũ 6= 0, ṽ 6= 0 and z̃ 6= 0, we can use the
rescaling condition to fix ũ = 1 in the patch U , and the same to V and Z . In the patch U

ṽ = z̃2, (5.1.7)

which fixes z̃ in terms of ṽ, so locally E|U = C. Similarly, in the patch V equation ũ = z̃2 implies
E|V = C. At the intersection U ∩ V the defining equation (5.1.6) implies that z̃ 6= 0. The intersection
region U ∩ V is therefore visible in the patch Z ,

ṽ =
1

ũ
, (5.1.8)

that is precisely the transition function for the two local patches C that define a P1.

5.1.3 A2 Singularity

Another simple example is the singular surface defined by

XA2 = {x2 + y2 + z3 = 0} ⊂ C3. (5.1.9)

After blowing up a P2 at the origin as before,

X̃A2 = {x̃2 + ỹ2 + λz̃3 = 0} ⊂ C3 × P2. (5.1.10)

The origin was again replaced by the divisor λ = 0 in the ambient space, that now restricted to the
surface X̃A2 corresponds to two independent curves,

C1 : (x̃+ iỹ) , C2 : (x̃− iỹ) , (5.1.11)

that intersect at the point λ = x = y = 0. Thus, the blow-up of XA2 replaces the singular point by two
intersecting P1s,
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C1

C2 or ������

An singularity

The general An singularity is given by the singular locus of the surface

XAn = {x2 + y2 + zn+1 = 0} ∈ C3. (5.1.12)

After the first blow up,

x = λ1x
′, y = λ1y

′, z = λ1z
′, [x′ : y′ : z′]. (5.1.13)

the surface might still be singular at x′ = y′ = λ1 = 0. We need to blow-up again with new λi’s until
we get rid of all singularities, and the exceptional divisors will be given by restrictions of each λi = 0.
One can easily show that this leads to a chain of n P1s, as the Dynkin diagram for an SU(n+ 1) group,

������������.. ���
n

5.1.4 The E8 singularity

Analogously, we proceed to resolve the E8 singularity, important in F-theory model building. In this
example we come across a small resolution. The E8 singularity is described by the point {x, y, z} =
{0, 0, 0} of the surface

XE8 = {y2 + x3 + z5 = 0} ∈ C3. (5.1.14)

We perform the first blow up as

y = a0y1, x = a0x1, z0 = a0z1, (5.1.15)

with the new homogeneous coordinates
[y1 : x1 : z1] . (5.1.16)

The subscript will indicate the number of times the coordinate was blown up. From now on, we will
introduce the notation a0 : [x, y, z], corresponding to the blow up described above. After we take the
proper transform, the defining equation for the blown-up surface is

y2
1 + a0x

3
1 + a3

0z
5
1 = 0. (5.1.17)

This is singular in y1 = x1 = a0 = 0. We perform then a sequence of blow ups. Here we just show
one particular choice of many possible resolutions, in the following order:

a0 : [y, x, z], b0 : [y1, x1, a0], c0 : [y2, a1, b0], d0 : [y3, c0, a2], e0 : [y4, c1, b1]. (5.1.18)

As said, the notation means for example that the third blow up is defined as y2 = c0y3, a1 = c0a2 and
b0 = c0b1, with a projective relation [y3 : a2 : b1]. The proper equation of XE8 after the blow ups
mentioned above is

y2
5 + e0c2b2a3(b2x

3
2 + d3

0c2a
2
3z

5
1) = 0 (5.1.19)
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There is still a singularity left, when y = e0 = (b2x
3
2 + d3

0c2a
2
3z

5
1) = 0. However, we do not need to

perform a P2 blow up as before, since the equation is factorized. It is a binomial variety of the form
y2 + e0U = 0, that is a “conifold-like” equation. And just like the conifold, we can perform a small
resolution, a P1 blow up instead of the P2 blow up.

A conifold uv+w2 = 0 can be resolved either by blowing up {u,w} or {v, w}. The two resolutions
are connected via a conifold transition, when we start with a resolved conifold, say, in {u,w}, we blow
down by shrinking the volume of the P1 to zero, thus restoring the singularity, and then blow up the
coordinates {v, w}. Another way to de-singularize the conifold is to introduce a non-zero parameter in
the equation as uv+w2 = ε, deforming the conifold. The deformation and the resolution are connected
by a flop transition, sending the parameter ε to zero and then blowing up a P1, or vice-versa.

In terms of the ambient space C3 with coordinates u, v, w, a small resolution defined as u = λu1,
v = λv1 with the projective relation [u1 : v1] corresponds to replace every point on the complex plane
u = v = 0 by a P1, instead of the replacement of the origin point by a P2, described in section 5.1.1.

Back to (5.1.19), we perform the small resolution f : [y5, e], obtaining the smooth space defined by

X̃E8 : fỹ2 + ecba(bx̃3 + d3ca2z̃5) = 0 . (5.1.20)

To clean the notation, we simply omitted all the subscripts and denoted the final coordinates ỹ, x̃ and z̃
to differentiate from the original coordinates y, x and z.

The projective relations in terms of the final blown up coordinates are

[fedcbỹ : fedcbx̃ : z̃] , [fedcỹ : x̃ : fedca] , (5.1.21)

[fdỹ : da, feb] , [feỹ : fec : a] , [fỹ : c : b] , [ỹ : e] .

The exceptional divisors are obtained as before by restricting the new coordinates a,...,f to zero. The
restriction {λi = 0} ∩ X̃E8 (where λi = a . . . f ) gives the curves from table 5.1.1, that intersect as the
E8 Dynkin diagram below.

���������������������G F E D C B A

���H

The E8 singularity from an elliptic fibration

In F-theory compactifications we can get an E8 gauge group on a divisor {w} of the base defined by the
equation w = 0 if our curve for the elliptic fiber is written as

y2 + x3 + β0w
5 = 0, (5.1.22)

with β0 6= 0. This is the same equation as above, and we can thus resolve it in the same way (we
introduce back the λis to denote the coordinates introduced at each blow up. We will mantain this
notation from now on),

ỸE8 : λ6ỹ
2 + λ5λ3λ2λ1(λ2x̃

3 + β0λ
3
4λ3λ

2
1w̃

5) = 0 , (5.1.23)

together with the projective relations

[λ6λ5λ4λ3λ2ỹ : λ6λ5λ4λ3λ2x̃ : w̃] , [λ6λ5λ4λ3ỹ : x̃ : λ6λ5λ4λ3λ1] ,

[λ6λ4ỹ : λ4λ1, λ6λ5λ2] , [λ6λ5ỹ : λ6λ5λ3 : λ1] , [λ6ỹ : λ3 : λ2] , [ỹ : λ5] .

The singularity located at the point y = x = 0 of the elliptic fiber on top of the {w} divisor (that
is, the divisor defined by the holomorphic equation w = 0) is replaced by a set of smooth intersecting
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Curve Multiplicity Diagram
A : λ1 = y = 0 2

jj
jj
jj
jj

C

B

G

D

E

F

A

X

jH

B : λ2 = λ6 = 0 3
C : λ2 = ỹ = 0 3
D : λ3 = λ6 = 0 4
E : λ3 = ỹ = 0 5
F : λ4 = λ6ỹ

2 + λ5λ3λ
2
2λ1x̃

3 = 0 2
G : λ5 = λ6 = 0 4
H : λ6 = λ2x̃

3 + λ3
4λ3λ

2
1z̃

5 = 0 6
X : z = λ2y

2 + λ1λ
2
4λ5x

3 = 0 1

Table 5.1.1: Curves and intersections for an E8 singularity

exceptional divisors over which the fiber is described by a P1. The complete description of the resolved
fiber on top of the original {w} divisor can be seen from noticing that the restriction w = 0 becomes
after the resolution

w̃λ1λ2λ3λ
2
4λ

4
5λ

6
6 = 0. (5.1.24)

The power appearing on each holomorphic variable λi must be taken into account, and they contribute
to the multiplicity of each exceptional divisor. Formally, after blowing up an exceptional divisor E
inside Y , an already existing divisor D inside Y becomes

π−1D = D̃ + nE (5.1.25)

where π is the projection as defined in section 5.1.1, D̃ is the proper transform of D, and n of an
exceptional divisor E is the multiplicity. In the case at hand, the divisor {w} inside the fivefold X5

becomes

π−1{w} = {w̃}+ {λ1}+ {λ2}+ {λ3}+ 2{λ4}+ 4{λ5}+ 6{λ6}. (5.1.26)

Note that we still have to intersect these divisors inside X5 with the fiber (5.1.23). When we do that, it is
straightforward to see that we obtain the curves and multiplicities of table 5.1.1, that intersect according
to the depicted diagram. The intersections and multiplicities obtained agree exactly with the affine
Dynkin diagram for the E8 group, as in [147].

The fiber over the curve X in ??, obtained by w̃ = 0, corresponds to the affine node in the E8 affine
diagram, as described in picture 5.1. It cannot be interpreted as a broken U(1), in the sense that an
M2 brane wrapping X does not shrink to zero volume in the unbroken limit, when we blow down the
resolution.

Figure 5.1: The resolution replaces the singularity by a series of P1s, and their intersections
can be described in a Dynkin diagram. Here we show the A4 (or SU(5)) case.
The affine node is simply the proper transform of the singular elliptic curve, that
is topologically a P1.
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5.2 An SU(5) GUT Model

In this section we review an SU(5) model with enhancement loci, where the enhancements can be
resolved via small resolutions as done in [55] and further explored in [57]. We start by constructing the
elliptic curve 2, introduced in previous chapter, by the Weierstrass equation defined as a submanifold
inside a projective space P2,

y2 − x3 − fxz4 − gz6 = 0. (5.2.1)

The complex structure of the elliptic curve τ can be obtained from f and g Now we fiber this elliptic
curve over a base B3. We construct the fibration in such a way that we can define a smooth section
isomorphic to the base. This section will be given by z = 0, that restricts the elliptic curve to the divisor
(a point) (x, y) = (0, 1), where we used the rescaling condition to fix y. In F-Theory the base will be
identified with the physical internal space of Type IIB String Theory, while the complex structure of the
elliptic fiber is identified with the axion-dilaton in type IIB theory.

To geometrically engineer an SU(5) model, we specify a divisor on the base such that the fibration
develops an SU(5) singularity. In type IIB, the divisor will correspond to the divisor wrapped by the stack
of D7 Branes. Additionally, there might be regions on this divisor where this singularity is enhanced. In
the Type IIB picture, this corresponds to other branes intersecting the SU(5) Brane.

We explicitly construct such fiber by specifying the f and g, and one way to do that is by the Tate’s
Algorithm. We start with a more general expression for the Weierstrass equation,

− zy2 + x3 + a0z
3 + a2xz

2 + a3yz
2 + a4zx

2 + a5zxy = 0, (5.2.2)

that can be obtained from (5.2.1) by completing squares. The paremeters ai are related to the complex
structure of the curve, and in general depend on the coordinates of the base. Since we want an SU(5)
singularity on a divisor w = 0 of the base, we introduce the section w as

a0 = β0w
5 , a2 = β2w

3 , a3 = β3w
2 , a4 = β4w , a5 = β5 . (5.2.3)

Thus, the elliptic fiber reads

− y2 + x3 + β0z
3w5 + β2xz

2w3 + β3yz
2w2 + β4x

2zw + β5zxy = 0. (5.2.4)

According to the Tate’s algorithm, this model gives an elliptic fiber with an SU(5) singularity over
the divisor defined by w = 0. The restriction of this divisor to the base we will call SGUT, that in the
Type IIB limit corresponds to the divisor wrapped by the brane that holds the GUT group.

We can see that by recalling the definitions in chapter 4, the discriminant ∆ and the functions f and
g become

∆ =w5∆′,

f =
1

48
(−β4

5 − 8β4β
2
5w − 16β2

4w
2 + 24β3β5w

2 + 48β2w
3), (5.2.5)

g =
1

864
(β6

5 + 12β4β
4
5w + 48β2

4β
2
5w

2 − 36β3β
3
5w

2+

+ 64β3
4w

3 − 144β3β4β5w
3 − 72β2β

2
5w

3 + 216β2
3w

4 − 288β2β4w
4 + 864β0w

5),

with

∆′ = β5P + wβ5(8β4P + β5R) + w2(16β2
3β

3
4 + β5Q) + w3S + w4T + w5U, (5.2.6)

2Often in the literature (as in the review [126] and in the previous chapter) the elliptic curve is constructed in a weighted
projective space WP2

2,3,1, with rescaling relations (x, y, z) ≡ (λ2x, λ3y, λz), and λ ∈ C∗.
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where P,R,Q, S, T and U are polynomials related to βi and w as

P = β2
3β4 − β2β3β5 + β0β

2
5 , R = 4β0β4β5 − β3

3 − β2
2β5, (5.2.7)

Q = −2(18β3
3β4 + 8β2β3β

2
4 − 15β2β

2
3β5 + 4β2

2β4β5 − 24β0β
2
4β5 + 18β0β3β

2
5),

S = 27β4
3 − 72β2β

2
3β4 − 16β2

2β
2
4 + 64β0β

3
4 + 96β2

2β3β5 − 144β0β3β4β5 − 72β0β2β
2
5 ,

T = 8
(
8β3

2 + 27β0β
2
3 − 36β0β2β4

)
, U = 432β2

0 .

So on top of the GUT divisor w = 0, for general values of βis, and as long as ∆′ remains non-
vanishing, the vanishing orders of ∆, f and g as we approach w → 0 are

ord(∆) = 5, ord(f) = 0, ord(g) = 0. (5.2.8)

According to the Kodaira classification described in table 5.0.1, this corresponds to a singular curve of
type I5, thus an A4 (or SU(5)) singularity.

Notice also that if we just fix all the parameters βi to zero except β0, we reproduce theE8 singularity
described in section 5.1.4. In fact, such an SU(5) model described by (5.2.4) can be seen as a higgsing
of an E8 down to SU(5),

E8 → SU(5)× SU(5)⊥, (5.2.9)

and the vevs for the Higgs are related to the sections βi. In the Type IIB picture, this can be interpreted
locally as a stack of five D7-branes separated by some distance (encoded by the vev of a Higgs field),
to other branes. As we move them close together the singularity enhances. However, from the pure
perturbative description we cannot reproduce an E8-brane. If however we allow ourselves to deepen in
the strong coupling regime, we need to include (p,q)-7-branes, and open strings that attach to 3 or more
branes. These bizarre open strings configurations can reproduce an E8 algebra [148, 149].

In the following, we proceed to resolve the curve explicitly. First notice that

− zy2 + x3 + β0z
3w5 + β2xz

2w3 + β3yz
2w2 + β4x

2zw + β5zxy = 0, (5.2.10)

is singular when w = x = y = 0. Since we are interested in what happens at the singularity, we can
from now on use the rescaling condition of the ambient P2 [x : y : z] to set z = 1,

− y2 + x3 + β0w
5 + β2xw

3 + β3yw
2 + β4x

2w + β5xy = 0. (5.2.11)

The βis depend on the coordinates on the base of the elliptic fibration B3. They define holomorphic
sections of the bundle O([6 − i]KB3 − [5 −m]SGUT), where KB3 is the canonical bundle on the base
B3.

Even after we resolve completely the singularity located in x = y = w = 0, there will be singulari-
ties remaining in particular subloci on the GUT divisor, specified by particular values of the βi’s. Esole
and Yau [55] worked out such resolutions, that will be reviewed in the following.

We perform the first blow up λ1 : [y, x, w], that is, introducing a coordinate λ1 as

y = λ1ŷ , x = λ1x̂ , w = λ1ŵ . (5.2.12)

together with the projective relations [ŷ : x̂ : ŵ] . The defining equation (5.2.11) becomes

λ2
1(−ŷ2 + λ1x̂

3 + β0λ
3
1ŵ

5 + β2λ
2
1x̂ŵ

3 + β3λ1ŷŵ
2 + β4λ1x̂

2ŵ + β5x̂ŷ) = 0. (5.2.13)

The expression in brackets is the proper transform that defines Ŷ4 (we reserve the tilde to the fully
resolved space), and as in (5.1.25)

Y4 → Ŷ4 + 2E1, (5.2.14)

where E1 = {λ̂1}.
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Ŷ4 is still singular in ŷ = x̂ = λ̂1, and we blow up (we will reuse primed coordinates to denote all
the intermediate blow ups, to avoid adding too many symbols and because we are mainly interested in
the original space and the final resolved one),

− ŷ2 + λ2λ̂1x̂
3 + β0λ2λ̂

3
1ŵ

5 + β2λ2λ̂
2
1x̂ŵ

3 + β3λ̂1ŷŵ
2 + β4λ2λ̂1x̂

2ŵ + β5x̂ŷ = 0, (5.2.15)

or, rearranging,

− ŷ
(
ŷ + β3λ̂1ŵ

2 + β5x̂
)

+ λ2λ̂1

(
x̂3 + β0λ̂

2
1ŵ

5 + β2λ̂1x̂ŵ
3 + β4x̂

2ŵ
)

= 0. (5.2.16)

The space is smooth in general points of the GUT divisor, but it acquires further singularities when
we approach particular values for the βis, corresponding to subregions on SGUT. To resolve this ad-
ditional singularities we follow the work of Esole and Yau [55]. First, notice that we can rewrite the
defining equation as

ŷs+ λ2λ̂1t = 0, (5.2.17)

with
s = ŷ + β3λ̂1ŵ

2 + β5x̂ , t = x̂3 + β0λ̂
2
1ŵ

5 + β2λ̂1x̂ŵ
3 + β4x̂

2ŵ. (5.2.18)

The equation (5.2.17) is a binomial equation, and similarly to the E8 resolution discussed in section
5.1.4, we resolve such a space through small resolutions. However, since s and t are not independent
sections, but involve the other coordinates, (5.2.18) must always be observed.

The introduction of s and t can also be interpreted as replacing the elliptic fiber by a higher dimen-
sional auxiliary binomial variety (5.2.17), and the elliptic fiber is defined as the complete intersection of
the binomial variety with (5.2.18).

Notice that the ways of resolving the singularities are not unique. Namely, one can perform one of
the six following pair of blow ups,

[ŷ, λ̂1] [ŷ, λ̂1] [ŷ, λ2] [ŷ, λ2] [ŷ, t] [ŷ, t]

[s, λ2] [s, t] [s, λ̂1] [s, t] [s, λ̂1] [s, λ2]
.

In the following we will work in detail only the first resolution in the list above. The other resolutions
are connected to the one we are going to perform via conifold-like transitions [55]. We blow up as
δ1 : [ŷ, λ̂1] and δ2 : [s, λ̃2], thus obtaining (again, repeating the hatted notation){

ỹs̃+ λ̃2λ̃1(δ2λ2x̃
3 + β0δ

2
1λ̃

2
1w̃

5 + β2δ1λ̃1x̃w̃
3 + β4x̃

2w̃) = 0

δ2s̃− δ1ỹ + β3δ1λ̃1w̃
2 + β5x̃ = 0

, (5.2.19)

with the projective relations

[δ1δ2λ2ỹ : δ2λ2x̃ : w̃], [δ1ỹ : x̃ : δ1λ̃1], [ỹ : λ̃1], [s̃ : λ̃2]. (5.2.20)

As long as the βi’s are non-factorizable holomorphic sections, (5.2.19) is smooth. A factorizable βi
might lead to even stronger singularities, and we will explore one particular model in section 5.3.

To see the resolved structure of the elliptic fiber, we first notice that

w = 0→ δ1δ2λ1λ2w̃ = 0. (5.2.21)

We now look for the the intersections of the divisor {w = 0} inside the fivefold with the elliptically
fibered fourfold, defined by (5.2.19), together with the conditions (5.2.20). Similarly to what was done
in section (5.1.4),we obtain the curves described in table 5.2.1 with P1 fibers intersecting as an (affine)
SU(5).
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Curve Mult. Diagram
A : λ1 = s = δ1ỹ − β5x̃ = 0 1

m
m
m
m
m

�
�
�

A
A
A

A

B

C

D

X
B :

δ2 = δ1ỹ + β3δ1λ̃1w̃
2 + β5x̃ =

1
= ỹs̃+ λ̃2λ̃1(β0δ

2
1λ̃

2
1w̃

5 + β2δ1λ̃1x̃w̃
3 + β4x̃

2w̃) = 0
C : λ2 = y = δ2s̃− β3δ1λ1w̃

2 + β5x̃ = 0 1
D : δ1 = δ2s̃+ β5x̃ = ỹs̃+ λ̃2λ̃1(δ2λ2x̃

3 + β4x̃
2w̃) = 0 1

X : w̃ = ỹs̃+ λ̃2
2λ̃1x̃

3 = δ2s̃− δ1ỹ + β5x̃ = 0 1

Table 5.2.1: Curves on the resolved SU(5) divisor.

We can see explictly that each curve is a P1. Take for example the curve A. λ1 = s̃ = 0 allow us
to use the projective relations [ỹ : λ̃1] and [s̃ : λ̃2] and fix ỹ = λ2 = 1. We still have the condition
δ1 = β5x̃ on the curve, that makes the condition [δ1ỹ : x̃ : δ1λ̃1] be trivially satisfied, and we can just
fix the value of x̃. We are thus left with the first condition, that now becomes simply [δ2 : w̃]. The curve
A is therefore defined by two patches C connected by [δ2 : w̃], that is, a P1.

From the fact that the self-intersection of a P1 is−2, we can also identify each P1 with the (negative)
roots of SU(5) and write the Cartan matrix for the (extended) SU(5),

A B C D X
A


-2 1 0 0 1
1 -2 1 0 0
0 1 -2 1 0
0 0 1 -2 1
1 0 0 1 -2


B
C
D
X

5.2.1 Matter Curves

In general, the model described up to now has an elliptic curve with a singularity of type A4, that
reconstructs the root system for an SU(5) group. But as was pointed out, there are special regions along
the GUT divisor where the singularities enhances. From the expression for f , g and the discriminant ∆,
(5.2.5), we can extract information on the location of the enhanced singularities. For convenience, we
repeat (5.2.5) here,

∆ =w5(β5(β2
3β4 − β2β3β5 + β0β

2
5) +O(w)), (5.2.22)

f =
1

48
(−β4

5 − 8β4β
2
5w − 16β2

4w
2 + 24β3β5w

2 + 48β2w
3),

g =
1

864
(β6

5 + 12β4β
4
5w + 48β2

4β
2
5w

2 − 36β3β
3
5w

2+

+ 64β3
4w

3 − 144β3β4β5w
3 − 72β2β

2
5w

3 + 216β2
3w

4 − 288β2β4w
4 + 864β0w

5),

We see immediately that we get an enhancement when we reach the loci β5 = 0 or P = β2
3β4 −

β2β3β5 + β0β
2
5 = 0. We will explore each case in the following.

10 Matter

The first singularity enhancement we analyse is when we reach the region on the base where β5 = 0. At
this locus, the vanishing orders go as ord(∆) = 6, ord(f) = 2 and ord(g) = 4. From the Kodaira table
5.0.1 we see that naively we would expect an enhancement to an SO(10) singularity.
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Curve Mult. Diagram
A : λ1 = s = δ1 = 0 2

��������
����
����
��������

�� AA

AA ��

C B2

B1

A

X D1
B1 : δ1 = δ2 = ỹs̃+ β4λ̃2λ̃1x̃

2w̃ = 0 2

B2 :
δ2 = ỹ + β3λ̃1w̃

2 =
1

β3s̃+ λ̃2(β0δ
2
1λ̃

2
1w̃

4 + β2δ1λ̃1x̃w̃
2 + β4x̃

2) = 0

C : λ̃2 = ỹ = δ2s̃− β3δ1λ̃1w̃
2 = 0 1

D1 : δ1 = s̃ = δ2λ2x̃
3 + β4x̃

2w̃ = 0 1
X : w̃ = ỹs̃+ λ̃2

2λ̃1x̃
3 = δ2s̃− δ1ỹ = 0 1

Table 5.2.2: Curves over the β5 matter curve

From the resolution, we can extract explicitly what happen to the curves at the locus β5 = 0. Some
curves remain the same, for example A that is now described by the simpler expression A|β5=0 : λ̃1 =
s̃ = δ1 = 0. Some curves however split into smaller components. Take for instance δ1 = 0, that
previously corresponded to the curve D. It now has three possible solutions,

D1 : δ1 = s̃ = δ2λ2x̃
3 + β4x̃

2w̃ = 0 (5.2.23)

B1 : δ1 = δ2 = ỹs̃+ β4λ̃2λ̃1x̃
2w̃ = 0

D3(= A) : δ1 = s̃ = λ̃1 = 0

When we reach a point on the base where β5 = 0 the fibered P1 that we denoted by D splits into
three curves, and one of them “merges” with the already existing curve A, changing its multiplicity.
Another curve that suffers a splitting is B, into B1 = D2 and B2. We sum up all the curves with their
multiplicities and intersections at β5 = 0 in table 5.2.2.

The curves intersect as the Dynkin diagram for the SO(10), as expected. from the vanishing order
of the coefficients.

It is also interesting to see how the 10 representation arises from the resolution. As was shown
above, when we reach the β5 locus some of the curves split as

B D C A

A
A
AU

�
�
��

@
@
@R?

�
�
�	 ? ?

(β5 = 0) B2 B1 B1 D1 A C A

By calculating the intersection of each new curve with the P1s that correspond to the roots of the
SU(5) we get the Cartan charge associated with each P1, that will correspond to the Cartan charge of
a M2-brane wrapped on the corresponding P1. The intersection number of each splitted curve with
the original roots will be either +1 or −1. Additionally, since there was no new curve appearing, but
only splittings, the sum of charges of the “daughter curves” has to be equal to the “mother curve”. For
example

D → A + D1 + B1

(0, 0, 1,−2) = (−2, 1, 0, 0) + (±1, 0, 0,±1) + (±1,±1,±1,±1) ,

that we can immediately solve and obtain

D1(1, 0, 0,−1), B1(1,−1, 1,−1). (5.2.24)
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These charges correspond to weights of the 10 representation. We can analyse in the same way
the splitting of the D curve, and we get the charges indicated below. The curves form a basis for the
complete 10 representation.

Curve Charge Weight
Aβ5=0 (−2, 1, 0, 0) −α1

B1β5=0 (1,−1, 1,−1) −(µ10 − α1 − α2 − α3)

B2β5=0 (0,−1, 0, 1) µ10 − α1 − 2α2 − α3

Cβ5=0 (0, 1,−2, 1) −α3

D1β5=0 (1, 0, 0,−1) µ10 − α2 − α3 − α4

5̄ Matter

When P = β2
3β4 − β2β3β5 + β0β

2
5 vanishes, the vanishing order ∆ increases to ord(∆) = 6. This

implies that, on the particular region in the base where the βi’s satisfy the particular constraint given by
P = 0, the SU(5) singularity enhances to an SU(6) (cf. table 5.0.1).

We can see explictly what happens to the curves on top of P = 0. Notice that we can rewrite
β2

3β4 − β2β3β5 + β0β
2
5 = 0 as the solution to the set of equations{

β0ζ
2 + β2ζ + β4 = 0

β3ζ + β5 = 0,
(5.2.25)

with β3 6= 0. Notice also, that in the resolved fourfold (5.2.19),ỹs̃+ λ̃2λ̃1x̃
2
[
δ2λ2x̃+ w̃

(
β0( δ1λ̃1w̃2

x̃ )2 + β2( δ1λ̃1w̃2

x̃ ) + β4

)]
= 0

δ2s̃− δ1ỹ + x̃
[
β3( δ1λ̃1w̃2

x̃ ) + β5

]
= 0

. (5.2.26)

If we restrict δ2 = ỹ = 0, we can immediately identify ζ = δ1λ̃1w̃
2/x̃. Keeping this in mind, we recall

the expression for the curve B,

B : δ2 = δ1ỹ +
(
β3δ1λ̃1w̃

2 + β5x̃
)

= ỹs̃+ λ̃2λ̃1w̃
(
β0δ

2
1λ̃

2
1w̃

4 + β2δ1λ̃1x̃w̃
2 + β4x̃

2
)

= 0.

We can solve β3(δ1λ̃1w̃
2) = −(δ1ỹ + β5x̃) in the second member of the equation, multiply the last one

by β2
3 and replace the solved β3(δ1λ̃1w̃

2). We use the fact that P = 0, and a ỹ factorizes, thus splitting
the curve B into two curves

B1 : δ2 = β2
3s+ λ̃2λ̃1w̃δ1 [β0δ1ỹ + (−2β0β5 + β2β3)x̃] = δ1ỹ + β3δ1λ̃1w̃

2 + β5x̃ = (P =)0,

B2 : δ2 = ỹ = β3δ1λ̃1w̃
2 + β5x̃ = (P =)0. (5.2.27)

The curves now structure themselves as the diagram of an SU(6), again in agreement with the Kodaira
classification, table 5.0.1. We can again calculate the intersections of B1 and B2 with the SU(5) roots,
table 5.2.3, and see that the P1s reproduce the 5 representation.

It is important to point out that the curves obtained explictly via the resolution agree with the Kodaira
classification for the vanishing orders of f , g and ∆, even though the Kodaira classification was obtained
for codimension one singularities.

5.2.2 Yukawa couplings (codimension 3)

Having successfully reproduced the matter curves, and seeing that they agree with the expected from a
naive comparison with the Kodaira classification, we now proceed to show the behavior of the curves at
the Yukawa couplings, or triple intersections on the base.
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Curve Charge Weight Diagram
AP=0 (−2, 1, 0, 0) −α1

hh
hh
h
h
�
��

B
BB

A

B1

B2

C

D

X

B1P=0 (1,−1, 0, 0) −(µ5 − α1)
B2P=0 (0,−1, 1, 0) µ5 − α1 − α2

CP=0 (0, 1,−2, 1) −α3

DP=0 (0, 0, 1,−2) −α4

Table 5.2.3: Curves and their Cartan charges over the P = 0 matter curve

10 5̄ 5̄ coupling

We first look at the point defined by the intersection w̃ = β3 = β5 = 0. Before writing the curves, we
point out that when we restrict the curve B, one of its factorizations is

B2 : δ2 = ỹ = β0δ
2
1λ̃

2
1w̃

4 + β2δ1λ̃1x̃w̃
2 + β4x̃

2 = 0. (5.2.28)

The last equality is a second order polynomial in ζ = δ1λ̃1x̃w̃
2/x̃. We can solve it and we obtain two

solutions,

B2± : δ2 = ỹ = δ1λ̃1w̃
2 − x̃β2 ∓ x̃

√
β2

2 − 4β4β0

2β0
= 0. (5.2.29)

The curves and their structure are given in table 5.2.4 and, following the splitting

A B C D

?

�
���

�
�
��+

Q
Q
QQs

A
AAU ?

�
��	 ?

@
@@R

(β3 = β5 = 0) A B1 B2+ B2− C C B1 A D1

we can again compute the Cartan charges, as was done along the matter curves. The charges are shown
in table 5.2.

As a more interesting phenomenological consequence, we can analyse the Yukawa couplings al-
lowed at this locus. For that, we want to see how the matter representations couple at the enhancement
point. So, instead of moving directly from w̃ = 0 to w̃ = β3 = β5 = 0, we follow the curves as they
move to the Yukawa point.

We first look at the curves from the 10 representation, shown in table 5.2.2. Notice that

B2 (β5=0)
β3=0−−−→ B2+ (β5=β3=0) +B2− (β5=β3=0). (5.2.30)

But B2 (β5=0) corresponds to an element in the 10 representation, while B2± (β5=β3=0) are in 5. We can
therefore write the “invariant” term at the β3 = β5 = 0 point

(µ10 − α1 − 2α2 − α3)− 2(µ5 − α1 − α2),

or simply 10 5̄ 5̄, the known coupling from the perturbative brane description.
It is more tricky to see the 10 5̄ 5̄ coupling arising from the 5 matter curve. Notice that when we

computed the daughter curves of B in P = 0 (5.2.27), we had to use β3 6= 0, which is not allowed now.
But we can simply reconstruct the weight of B1P=0 and B2P=0 from the daughter curves of B in table
5.2. We thus get for the 5̄ from B1P=0, the decomposition −(µ5 − α1) → (µ5 − α1 − α2) − (α3) −
(µ10 − α1 − α2 − α3), or simply 10 5̄ 5̄.

This might have looked redundant, since this result was known just from group theory arguments.
Indeed this is true, but it is nevertheless instructive to explicitly see the couplings arising from a geomet-
rical perspective.
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Curve Mult. Diagram
A(β3=β5=0) : λ1 = s = δ1 = 0 2

�������
���
���
��������

B2+ B2−

C

B1

A

X D1

B1 (β5=β3=0) : δ2 = δ1 = ỹs̃+ β4λ̃2λ̃1x̃
2w̃ = 0 2

B2+ (β5=β3=0) : δ2 = ỹ = 2β0δ1λ̃1w̃
2 − x̃β2 + x̃

√
β2

2 − 4β4β0 = 0 1
B2− (β5=β3=0) : δ2 = ỹ = 2β0δ1λ̃1w̃

2 − x̃β2 − x̃
√
β2

2 − 4β4β0 = 0 1
C(β3=β5=0) : λ2 = y = δ2 = 0 2
D1 (β5=β3=0) : δ1 = s̃ = δ2λ2x̃+ β4w̃ = 0 1
X(β3=β5=0) : w̃ = ỹs̃+ λ̃2

2λ̃1x̃
3 = δ2s̃− δ1ỹ = 0 1

Table 5.2.4: Curves over the w̃ = β5 = β3 = 0 point

Curve Charge Weight
A(β5=β3=0) (−2, 1, 0, 0) −α1

B1 (β5=β3=0) (1,−1, 1,−1) −(µ10 − α1 − α2 − α3)

B2+ (β5=β3=0) (0,−1, 1, 0) µ5 − α1 − α2

B2− (β5=β3=0) (0,−1, 1, 0) µ5 − α1 − α2

C(β5=β3=0) (0, 1,−2, 1) −α3

D1 (β5=β3=0) (1, 0, 0,−1) µ10 − α2 − α3 − α4

Figure 5.2: Curves and Cartan charges over the β3 = β5 = 0 point.

A 10 10 5 coupling

As was mentioned earlier, one of the main phenomenological interests on F-theory is the possibility to
construct exceptional groups that are not present in perturbative Type II theory. In particular, the SU(5)
elliptic fiber model was claimed to contain an E6 enhancement locus, at β4 = β5 = 0. We will now see
the explicit resolved structure at this point.

Since most of the discusion is similar to what was done for the 10 5̄ 5̄ point, we will simply present
the results. The curves split not as an affine E6, but something similar (table 5.2.5), although not present
in the Dynkin classification. The cartan charges are presented in table 5.2.6.

It is also straightforward to work the splitting of each “weight” P1 for the 5 and the 10 representation,
and one sees that the only splittings allowed are the ones that form an intersection of the form 10 10 5.
That is, the explicit reproduction of an E6 Dynkin root system is not needed, as long as the intersections
of curves at the point reproduce the desired couplings.

Curve Mult. Diagram
A(β3=β5=0) : λ1 = s = δ1 = 0 2

m
m
m
m
m

C

B1

B2

A

X

mB3

B1 (β5=β4=0) : δ2 = δ1 = ỹ = 0 2
B2 (β5=β4=0) : δ2 = δ1 = s̃ = 0 3

B3 (β5=β4=0) :
δ2 = ỹ − β3λ̃1w̃

2 =
1

= β3s̃− λ2λ1w̃δ1(β0δ1λ1w
2 + β2x) = 0

C(β3=β5=0) : λ2 = y = δ2s̃− β3δ1λ̃1w̃
2 = 0 1

X(β3=β5=0) : w̃ = ỹs̃+ λ̃2
2λ̃1x̃

3 = δ2s̃− δ1ỹ = 0 1

Table 5.2.5: Curves over the “E6-like” point
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Curves
GUT divisor “E6” point Charges Repr.
A - Aβ5=β4=0 (−2, 1, 0, 0) −α1

B �
��3
-

Q
QQs

B1β5=β4=0 (0,−1, 1, 0) µ5 − α1 − α2

B2β5=β4=0 (1.0, 0,−1) µ10 − α2 − α3 − α4

B3β5=β4=0 (0,−1, 0, 1) µ10 − α1 − 2α2 − α3

C - Cβ5=β4=0 (0, 1,−2, 1) −α3

D �
��3
-

Q
QQs

B1β5=β4=0 (0,−1, 1, 0) µ5 − α1 − α2

2×B2β5=β4=0 2× (1.0, 0,−1) µ10 − α2 − α3 − α4

Aβ5=β4=0 (−2, 1, 0, 0) −α1

Table 5.2.6: Curve splittings and their charges and associated representation at the “E6-like”
point.

5.3 An SU(5) model with an E8 Yukawa Point

In particular, at the point on the base defined byw = β4 = β5 = 0, when these coordinates are treated as
non-factorizable holomorphic variables, the explicit resolution does not give the diagram for a E6 group
that would be expected from the counting of the vanishing order as in table 5.0.1. Further analysis [57]
showed that although the resolution does not reproduce the exact diagram that would be naively expected
from the Tate’s algorithm, it still reproduces the 10 10 5 coupling, necessary to give mass to the top quark
in an SU(5) GUTs, the main reason for why one considers E6 enhancements in the first place.

However, Esole-Yau resolution [55] does not contemplate further singularities, that can arise in
particular regions on the moduli space of the base where the parameters βi factorize. Such possibility of
factorization was studied for example in [141, 150].

We also propose a similar factorization to reproduce a codimension 3 (a point on the base) enhance-
ment to an E8 singularity. Our construction of such splitting follows from the established connections
between F-theory and heterotic string theory, where the coefficients βi are related to the higgsings used
to break E8 down to SU(5), as

E8 −→ SU(5)× SU(5)⊥. (5.3.1)

We will briefly review how are the coefficients in the elliptic fiber related to the Higgs vevs in the next
section, following [151, 152].

5.3.1 The βi Coefficients from the Spectral Cover

The rough idea of the spectral cover construction is to incorporate in a geometrical description the
higgsing of a gauge group. Our starting point is the E8 group, that we break down to an SU(5),

E8 → SU(5)× SU(5)⊥ → SU(5)× U(1)4. (5.3.2)

There is a Higgs field responsible for the breaking, which can be locally described as a section of the
canonical bundle over the SU(5) divisor S with values on the adjoint of E8,

KS ⊗Adj(E8). (5.3.3)

In standard geometrical engineering, the gauge groups are identified with singularities as the standard
ADE classification, obtained as a blow-down of the resolved geometry. They are then broken to smaller
subgroups by giving non-vanishing volume to some P1’s. This corresponds to giving a vev to the Cartans
of SU(5)⊥. Thus, being a Cartan root, the Higgs field we are interested in obeys [Φ,Φ†] = 0. These
solutions are also relevant since they usually leave N = 1 supersymmetry unbroken.
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We next want to describe the Higgs field in terms of its eigenvalues and eigenvectors, that is, its
spectral data. We introduce a section s of the canonical bundle over S, KS , and we can write the
eigenvalue equation

det(sI − Φ) = 0. (5.3.4)

Since we restrict to the Higgs field that leaves the SU(5) but breaks SU(5)⊥, we can expand (5.3.4) in
the 5 eigenvalues ti for the fundamental representation of SU(5)⊥ as∏

i

(s− ti) = 0. (5.3.5)

Expanding, we find
β0s

5 + β2s
3 + β3s

2 + β4s+ β5 = 0. (5.3.6)

The β1 is not present since β1 = t1 + ... + t5 = 0, from the tracelessness condition of the roots in
SU(5). Although it is not yet clear, the βis in (5.3.6) are the same as the elliptic fiber equation in the
Tate form, when in the vicinity of the GUT divisor. To see that, we first define the “Tate divisor” [57],
as the equation

CTate : β0w
5 + β2xw

3 + β3yw
2 + β4x

2w + β5xy = 0. (5.3.7)

The equation for the elliptic fiber (5.2.11),

− y2 + x3 +
(
β0w

5 + β2xw
3 + β3yw

2 + β4x
2w + β5xy

)
= 0, (5.3.8)

when restricted to the Tate divisor implies y2

x3 = 1. Also we can define the holomorphic section u = y/x
on the Tate divisor. This allows us to write the Tate divisor as

CTate : β0w
5 + β2w

3u2 + β3w
2u3 + β4wu

4 + β5u
5 = 0. (5.3.9)

We then restrict to the vicinity of w → 0 and close to the singularity on the elliptic fiber y → 0, x→ 0.
This in turn implies u→ 0. To arise at the spectral curve (5.3.6), we consider the section s = w/u, and
we arrive at

β0s
5 + β2s

3 + β3s
2 + β4s+ β5 = 0, (5.3.10)

that is precisely our spectral cover construction (5.3.6). The coefficients βi are given in terms of the
eigenvalues ti as

β1 = −β0

∑
i

ti = 0, β2 = β0

∑
i 6=j

titj ,

β3 = −β0

∑
i 6=j 6=k

titjtk, β4 = β0

∑
i 6=j 6=k 6=l

titjtktl, β5 = −β0t1t2t3t4t5.

Recall also that the first enhancements that we encounter in the SU(5) model happens when ∆′ in
∆ = w5∆′ has a first order zero. This corresponds to the vanishing of

β5 = −β0t1t2t3t4t5 , or (5.3.11)

P5 = −β3
0

∏
i 6=j

(−ti − tj) = β2
3β4 − β2β3β5 + β0β

2
5 .

The expansion of the f, g and ∆ in terms of the variables on the singularity w and {ti} is given by

∆ = −432β2
0w

10 + . . . f = β0

∑
i 6=j

titjw
3 + . . . , g = β0w

5 + . . . , (5.3.12)
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where the dots indicate higher order terms in w. As we want an enhancement to an E8, it follows from
the Kodaira classification 5.0.1 that we should have

ord(f) ≥ 4 , ord(g) = 5 , ord(∆) = 10 . (5.3.13)

In order to achieve ord(f) ≥ 4 we require every term titj to vanish, that in turn imposes that at least
4 of the tis are zero. But then the tracelessness condition implies that all should be zero. We could have
advanced this, since the tis are related to higgsings of the underlying E8 group, so setting all tis to zero
would un-break the E8.

Since we want to describe this enhancement as a codimension 3 locus, we introduce sections p and
q, that will be normal sections to curves on the SU(5) divisor. We could interpret this as the normal
sections of divisors on the base B3, but as we will argue later, having started from the Tate model does
not allow this interpretation. Looking at β2 relation with β0 this means that

∑
i 6=j titj must be a section

of the K−2
B3
⊗ L2

SU(5).
We impose now that the ti’s can be written as

ti = tpi p+ tqi q. (5.3.14)

The tpi and tqi could also be sections of some bundle on the base, but for simplicity of the model we
consider them to be constant integer numbers. This implies that p and q are sections of K−1

B3
⊗ LSU(5),

and could be homologically equivalent to each other. The tracelessness condition β1 = 0 implies

p(tp1 + tp2 + tp3 + tp4 + tp5) + q(tq1 + tq2 + tq3 + tq4 + tq5) = 0.

We also want no trivial solution to (5.3.11), thus ti 6= 0 and ti + tj 6= 0. One choice that satisfies all the
above requirements is

t1 = p, t2 = q, t3 = p+ q, t4 = −2q, t5 = −2p.

This particular selection is symmetric under the exchange p ↔ q. The matter curves represented by
p = w = 0 and q = w = 0 could be exchanged. Together with the fact that they are in the same
homology class, they represent the same curve, as in figure 5.3. The role of exchange symmetries for
the curves in phenomenological F-Theory models was explored in [51].

The βis after the replacements (5.3.15) become

β2 = −β0(3p2 + pq + 3q2), β3 = β0(p+ q)(2p2 − 3pq + 2q2),
β4 = 2β0pq(p

2 + 4pq + q2), β5 = −4β0p
2q2(p+ q).

It is also convenient, for reference, to write the polynomials P and R,

P =2β3
0p(p− 2q)(p− q)2(2p− q)q(p+ q)2(2p+ q)(p+ 2q), (5.3.15)

R =− β3
0(p− q)2(p+ q)(8p6 − 4p5q − 38p4q2 − 43p3q3 − 38p2q4 − 4pq5 + 8q6).

Replacing the values for the βi’s, equation (5.3.15), and setting β0 = 1,

y2 − 4p2q2(p+ q)xyw +
[
2(p3 + q3)− pq(p+ q)

]
yw2 + x3 + w5+ (5.3.16)

+
[
−3(p2 + q2)− pq

]
xw3 + 2pq(p2 + q2 + 4pq)x2w = 0

We next calculate explictly f , g and ∆ with respect to w, p and q. There will be codimension two
and three loci on the base where the vanishing order of the functions will increase. If we extrapolate
the result of the Kodaira classification (table 5.0.1) to codimension higher than one, we can extract the
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information on the “expected” gauge group over each enhancement locus. For p 6= 0 and q 6= 0, as
expected for the SU(5) singularity (for the full expression, see Appendix A.4),

∆ = w5
(
−512p9(p− 2q)(p− q)2(2p− q)q9(p+ q)6(2p+ q)(p+ 2q)

)
+O(w6),

f = −16

3
p8q8(p+ q)4 +O(w), (5.3.17)

g =
128

27
p12q12(p+ q)6 +O(w).

So ord(∆) = 5 and ord(f) = ord(g) = 0. On the codimension 2 locus p = 0 together with w = 0, we
get

∆ = −432q12w8 + . . . ,

f = −3q2w3 + . . . , (5.3.18)

g = q6w4 + . . . ,

where the . . . are terms of higher vanishing order. Therefore ord(∆) = 8, ord(f) = 3 and ord(g) = 4,
the vanishing degrees for a E6 singularity. There are also other codimension 2 enhancements appearing
in p± q = 0, p± 2q = 0 and 2p± q = 0, that we sumarise in table 5.3.1. We will call the w = p = 0
locus theE6 matter curve, even if the explicit resolution lead to something different from anE6. Similar
notation will apply to the other codimension two loci.

At the point p = q = w = 0 in which we expect by construction to get a E8 singularity,

∆ = −432w10 + . . . ,

f = −3p2w3 − pqw3 − 3q2w3 + . . . , (5.3.19)

g = w5 + . . . ,

Thus ord(∆) = 10, ord(f) = 5 and ord(g) = 5, the expected for a E8 singularity. Similarly, we call
this codimension three locus the E8 Yukawa point.

Curve (in w = 0) Codim ord(∆/f/g) Sing. type
p = 0

2

8/3/4 E6

p+ q = 0 8/2/3 SO(12)
p− q = 0 7/0/0 SU(7)
p± 2q = 0 6/0/0 SU(6)

p = q = 0 3 10/5/5 E8

Table 5.3.1: Codimension 2 and 3 enhancements for the particular model (5.3.15). Exchang-
ing p↔ q gives the same results

5.3.2 Resolution

The expression for the elliptic curve becomes, after we replace the values of the βi’s for our chosen
factorization (5.3.15),

y(−y − 4p2q2(p+ q)x+
[
2(p3 + q3)− pq(p+ q)

]
λ1w

2)+ (5.3.20)

+λ2λ1(λ2x
3 + λ2

1w
5 +

[
−3(p2 + q2)− pq

]
λ1w

2x+ 2pq(p2 + q2 + 4pq)x2w) = 0 .

We again have a binomial variety of the form encountered before,

ys+ λ1λ2(. . .) = 0, (5.3.21)
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Figure 5.3: A diagram of the model considered. The curves p = 0 and q = 0 are in the same
homology on the base, and correspond to the same matter curve, and they meet
at a point of E8 enhancement.

with s = −y − 4p2q2(p + q)x +
[
2(p3 + q3)− pq(p+ q)

]
λ1w

2. We perform the small resolutions
δ1 : [y, λ1] and δ2 : [s, λ2],{

0 = ys+ λ2λ1(δ2λ2x
3 + δ2

1λ
2
1w

5 +
[
−3(p2 + q2)− pq

]
δ1λ1w

2x+ 2pq(p2 + q2 + 4pq)x2w)

0 = δ2s+ δ1y + 4p2q2(p+ q)x−
[
2(p3 + q3)− pq(p+ q)

]
δ1λ1w

2 ,
(5.3.22)

with the projective relations

[δ2δ1λ2y : δ2λ2x : w], [δ1y : x : δ1λ1], [y : λ1], [s : λ2]. (5.3.23)

At this point, in Esole-Yau resolution [55] we would have the fully resolved space. The enhancements
would not worsen the singularities, but only split the already existing curves. Here, however, there are
further singularities to be resolved. The reason for this is that in our model the βi’s split in a product of
the sections p and q, thus enhancing the vanishing order of the previously smooth terms.

We now proceed to resolve the additional singularities. First, we rearrange the equation as{
0 = ys+ λ2λ1(δ2λ2x

3 + δ2
1λ

2
1w

5 +
[
−3(p2 + q2)− pq

]
δ1λ1w

2x+ 2pq(p2 + q2 + 4pq)x2w)

0 = δ2s+ δ1

(
y −

[
2(p3 + q3)− pq(p+ q)

]
λ1w

2
)

+ 4p2q2(p+ q)x .

We note that all the singularities of the second equation arise when δ2 = δ1 = s = (...) = p = 0. or
δ2 = δ1 = s = (...) = q = 0. Similarly as was done to resolve the SU(5), we introduce an auxiliary
equation t = y−

[
2(p3 + q3)− pq(p+ q)

]
λ1w

2, and we now work with the system of three equations,


0 = ys+ λ2λ1(δ2λ2x

3 + δ2
1λ

2
1w

5 +
[
−3(p2 + q2)− pq

]
δ1λ1w

2x+ 2pq(p2 + q2 + 4pq)x2w)

0 = δ2s+ δ1t+ 4p2q2(p+ q)x

0 = −t+ y −
[
2(p3 + q3)− pq(p+ q)

]
λ1w

2 .

(5.3.24)

It is now straightforward to resolve this system of equations. First we resolve the singularity at
q = s = t = δ1 = δ2 = 0 in the second equation, by performing the blow up χ1 : [s, t, q], that is

s→ χ1s, t→ χ1t, q → χ1q, with the projective relation [s : t : q]. (5.3.25)
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Notice that this was a P2 blow up, not a small resolution as was done to resolve the curves and
Yukawa enhancements in the previous section. As a consequence, we are in fact introducing a new
(three-dimensional) divisor on the fourfold, but localized along codimension 2 on the base (the matter
curve). That is, the new fiber will have to have dimension higher than one. Up to now, the effect of the
resolutions was only to modify the one-dimensional fiber of the fourfold, replacing the singular points
by one dimensional curves. In the resolution we will perform now, we then also modify the base of the
fibration, introducing new submanifolds along the enhancement loci.

The difference here to the previous case where we only needed small resolutions lies on the fact that,
in the brane picture, the collisions that lead to SU(6) and SO(10) matter curves come from collision of
the SU(5)-brane with an U(1) seven-brane or an O7-plane. Both correspond to a non-singular degener-
ation of the fiber, and therefore a resolution is not needed. In this case, however, the collision inducing
an E6 enhancement can be understood as

E6 → SU(5)× SU(3), (5.3.26)

and thus the colliding brane would carry with it a singularity from the F-theory perspective. Our local
construction however does not allow us to see the colliding brane outside the SU(5) locus {w = 0}.

One should also keep in mind that there is a large number of possibilities for the blow-ups, that
might lead to different final resolved manifolds. Here we perform one of many choices, that leads to a
resolved space in few steps. There is however no possibility to resolve this singular space only via small
resolutions. To fully resolve the space, we then choose to perform other three blow ups, in the following
order,

π1 : [s, t, p], π2 : [s, t, π1], χ2 : [s, t, χ1], (5.3.27)

thus introducing four new divisors to the ambient fivefold given by {π1 = 0}, {π2 = 0}, {χ1 = 0} and
{χ2 = 0}. The defining equations for the elliptic fiber consists now on the triple intersection

0 = π1π
2
2χ1χ

2
2sy + λ1λ2(−2pπ1π2qχ1χ2(p2π2

1π
2
2 + 4pπ1π2qχ1χ2 + q2χ2

1χ
2
2)− δ2

1λ
2
1w

5+

+δ1λ1(3p2π2
1π

2
2 + pπ1π2qχ1χ2 + 3q2χ2

1χ
2
2)w2x− δ2λ2x

3)

0 = 4p2π1q
2χ1(pπ1π2 + qχ1χ2) + δ2s− δ1t

0 = −π1π
2
2χ1χ

2
2t− λ1(pπ1π2 + qχ1χ2)(2p2π2

1π
2
2 − 3pπ1π2qχ1χ2 + 2q2χ2

1χ
2
2)w2 + y ,

(5.3.28)

together with the list of projective relations

[δ1δ2λ2y : δ2λ2x : w] 6= [0 : 0 : 0], [δ1y : x : δ1λ1] 6= [0 : 0 : 0], [y : λ1] 6= [0 : 0],

[π1π
2
2χ1χ

2
2s : λ2] 6= [0 : 0], [π1π

2
2χ2s : π1π

2
2χ2t : q] 6= [0 : 0 : 0], (5.3.29)

[π2χ2s : π2χ2t : p] 6= [0 : 0 : 0], [χ2s : χ2t : π1] 6= [0 : 0 : 0], [s : t : χ1] 6= [0 : 0 : 0].

Since the last equation in (5.3.28) has a simple dependence on y, we can use it to eliminate y in the
other equations, and return to a system of two equations,

0 = π1π
2
2χ1χ

2
2s
[
π1π

2
2χ1χ

2
2t+ λ1(pπ1π2 + qχ1χ2)(2p2π2

1π
2
2 − 3pπ1π2qχ1χ2 + 2q2χ2

1χ
2
2)w2

]
+

λ1λ2

[
−2pπ1π2qχ1χ2(p2π2

1π
2
2 + 4pπ1π2qχ1χ2 + q2χ2

1χ
2
2)− δ2

1λ
2
1w

5+

δ1λ1(3p2π2
1π

2
2 + pπ1π2qχ1χ2 + 3q2χ2

1χ
2
2)w2x− δ2λ2x

3
]

0 = 4p2π1q
2χ1(pπ1π2 + qχ1χ2) + δ2s− δ1t,

(5.3.30)

while the projective relations should be inverted to eliminate the dependence on y. The sections corre-
sponding to the original GUT divisor and the two matter enhancements now become

δ2δ1λ2λ1w = 0, π2π1p = 0, χ2χ1q = 0. (5.3.31)
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5.3.3 Codimension 1 - The GUT Divisor

At codimension one, when we restrict ourselves to π2π1p 6= 0, χ2χ1q 6= 0, we can simply blow down
the four P2s since they sit on p0 = 0 or q0 = 0. Blowing down, we simply return to our space after
the two small resolutions, (5.3.24). Even without blowing down, we have the same number of curves as
before, with the same multiplicities and same intersecting properties. This is rather obvious, since the
additional structure coming from the extra blow-ups appear only at particular values of p and q.

5.3.4 Codimension 2 - The “E6” Matter Curve

Now we look at the interesting locus of codimension 2, where in the original blown-down space corre-
sponded to w = p = 0. As mentioned above, this locus naively corresponds to an E6 enhancement,
as in table 5.3.1. In the blown-up space, for each curve in codimension one, table 5.2.1, we can take
as restrictions to the E6 matter enhancement either p = 0, π1 = 0 or π2 = 0 obeying the projective
relations (5.3.29). At this locus some solutions are not simple P1s inside the resolved elliptic curve, as
before. Take as an example the curve B. Along the p0 = π1π2p = 0 locus, β4 and β5 vanish, so the
defining equation of the curve simplifies to

δ2 = π1π
2
2χ1χ

2
2s(π1π

2
2χ1χ

2
2t+ λ1β3w

2) + λ1λ2(−δ2
1λ

2
1w

5 + δ1λ1β2w
2x) = δ1t = 0. (5.3.32)

However, as mentioned, the restriction to the E6 curve can be taken to be p = 0, π1 = 0 or π2 = 0.
When π1 = 0 the curve B reduces to

(π1 = 0) δ2 = δ1λ
2
1λ2(−δ1λ1w

5 + β2w
2x) = δ1t = 0. (5.3.33)

That has as one possible solution
E∗ : δ2 = π1 = δ1 = 0. (5.3.34)

The rescaling conditions that have to be obeyed for E∗ are

[0 : 0 : w], [0 : x : 0], [λ1qχ1χ2w : λ1], [0 : λ2], [0 : 0 : q], [π2χ2s : π2χ2t : p], [χ2s : χ2t : 0], [s : t : χ1].

Using the fact that χ1χ2q 6= 0 and the rescaling conditions above, we can fix χ1 = q = λ2 = x = w =
λ1 = 1, and we are still left with the unfixed coordinates π2, s, t and p, together with the conditions

[π2s : π2t : p], [s : t]. (5.3.35)

So, the solution E∗ is actually a P2 blown up at the point s = t = 0 by a P1.
There are however minimal solutions that correspond to a P1 hypersurface inside this P2. As one

concrete example, take the intersection of B with p = 0,

(p =)δ2 = π1π
2
2χ1χ

2
2s(π1π

2
2χ1χ

2
2t+λ1(qχ1χ2)3w2)+δ1λ

2
1λ2w

2(−δ1λ1w
3+3(qχ1χ2)2x) = δ1t = 0,

(5.3.36)
that has as one possible minimal solution

E∗p : (p =)δ2 = δ1 = π1 = 0. (5.3.37)

We can see from the defining equations of E∗ (5.3.34) and (5.3.35) that E∗p is a P1 hypersurface inside
E∗.

Summarizing all the possible splittings, the codimension one curves decompose as they reach the
matter curve p0 = 0 as shown in figure 5.4.

The only curve that is not a P1 is E∗ described above. We denoted E∗k̂ minimal solutions that were
hypersurfaces inside E∗, with k̂ = s, t, p, π2.
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Figure 5.4: The splittings as we move to the E6 curve.

The equations for the curves are given in table 5.3.4. The multiplicity in E∗(k) : is counted as
the largest multiplicity among all the representatives P1 curves of the homology. The diagram has ten
independent nodes, and do not correspond to any group in the Dynkin classification. One should keep
in mind that the P1s are not all localized on the fiber of the resolved Calabi-Yau fourfold. The matter
curve was also blown up, and what we are considering the “new” fiber is a non-trivial mixing of the old
fiber with the new one-dimensional structure introduced on the base along the matter curve.

Curve Mult. Diagram
A : λ1 = p = s = δ1 = 0 2

m
m
m
m
m
m
m

C

B2

A

E∗k

B3

B4

B5

mB1
mX

E∗π2
m

E∗(k) : δ2 = π1 = δ1 = (k =)0, k = s, t, p 2∗

E∗π2 : δ2 = π1 = δ1 = π2 = 0 2
B1 : δ2 = p = s = δ1 = 0 3
B2 : δ2 = p = π1π

2
2χ1χ

2
2t+ λ1β3w

2 = δ1 = 0 2
B3 : δ2 = p = 2π1π

2
2χ

5
2s+ λ2δ1λ1(−δ1λ1w

3 + 3χ2
2x) = t = 0 1

B4 : δ2 = π1 = −δ1λ1w
3 + (qχ1χ2)2x = t = 0 1

B5 : δ2 = π2 = −δ1λ1w
3 + (qχ1χ2)2x = pp2π1q

3χ2
1χ2 − δ1t = 0 1

C : λ2 = p = π1π
2
2χ1χ

2
2t+ λ1β3w

2 = δ2s− δ1t = 0 1
X : w = p = π2

1π
4
2χ

2
1χ

4
2st+ λ1λ

2
2δ2x

3 = δ2s− δ1t = 0 1

Table 5.3.2: Curves in codimension 2 w0 = p0 = 0. * the multiplicity is counted from the P1 with
the highest multiplicity. This diagram should NOT be interpreted as the “Dynkin-like”
diagram on the fiber.

Notice that while k = s, t, p correspond to the P1 hypersurfaces of P2 and therefore are in the same
homology class, E∗π2 is not homologically equivalent. It intersects with the P2 at the point s = t = 0,
and therefore with E∗s and E∗t, but not with E∗p. The intersections among the curves E∗k and A are
represented in figure 5.5.

Figure 5.5: The intersections of A, E∗s, E∗p, E∗π2
, E∗t and B3. For obvious dimensional

difficulties, we represented the 2n-cycles Pn by n-cycles Sn.

In the M-theory perspective, the four-cycle P2 can be wrapped by M5-branes that correspond to a
string in the remaining dimensions with tension given by the volume of the four-cycle [153]. When
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shrunken back to zero volume, the wrapped M5-branes become tensionless strings. In the effective
theory, this corresponds to a tensor multiplet becoming massless, leading to a breaking of the low-
energy effective theory and thus a phase transition. In the Type IIB picture, the blow-up introduce a one
dimensional P1 on the fiber and also a P1 on the base along the matter curve (one non-trivially fibered
over the other). This blown-up P1 can be wrapped by a D3-brane, that again in the blown-down limit
give rise to a massless string. Additionally, we might have to worry about string worldsheet instantons
wrapping the vanishing P1s. The P1 along the curve might also break the Calabi-Yau condition. A
similar blow-up along a curve in Type IIB picture was studied in [115]. A more detailed exploration of
the role of tensionless strings on the theory (or the phase transition) arising in this particular setup would
be interesting, however we do not deal with it in this thesis.

Alternative interpretation - Matter Curve

Here we mention a somewhat ad hoc argument to obtain a structure of P1s in what we will call the “F-
theory fiber”, the fiber composed simply from the proper transform of the elliptic fiberX and a particular
subset of the P1s. As we mentioned, the blow-ups that took p → π2π1p introduced two-dimensional
spaces located along the matter curve that could be interpreted as a mixed resolution of the fiber via
an one-dimensional space and a resolution of the matter curve on the base. We assume that the P1s
forming the “F-theory fiber” are the ones obtained only by intersection with p = 0, then the curves
Bout = {E∗π2 , E∗s, E∗t, B4, B5} of table 5.3.4 are not anymore solutions. One sees that the remaining
curves intersect precisely as an affine E6 Dynkin diagram, with the correct multiplicities.

Curve Mult. Diagram
A : λ1 = p = s = δ1 = 0 2

ll
ll
l

C

B2

A

E∗p

B3

lB1
lX

E∗p : δ2 = p = δ1 = π1 = 0 2
B1 : δ2 = p = s = δ1 = 0 3
B2 : δ2 = p = π1π

2
2χ1χ

2
2t+ λ1β3w

2 = δ1 = 0 2
B3 : δ2 = p = 2π1π

2
2χ

5
2s+ λ2δ1λ1(−δ1λ1w

3 + 3χ2
2x) = t = 0 1

C : λ2 = p = π1π
2
2χ1χ

2
2t+ λ1β3w

2 = δ2s− δ1t = 0 1
X : w = p = π2

1π
4
2χ

2
1χ

4
2st+ λ1λ

2
2δ2x

3 = δ2s− δ1t = 0 1

Table 5.3.3: Curves in codimension 2 w0 = p = 0. The Diagram is precisely the Dynkin diagram of
an affine E6 group.

The removed curves, Bout could be related to the broken SU(3) described in (5.3.26). We however
do not address this possibility here, but leave it to a future work.

5.3.5 Codimension 3 - The Yukawa Point

We next restrict the elliptic fiber to the Yukawa point, that before the blow ups corresponded to the locus
w = p = q = 0. Similarly, the restriction to the codimension three locus has as solutions some curves
that are not P1s, but again, some of the internal P1 hypersurfaces appear as solutions. The curves at the
Yukawa point with their multiplicities are described in table 5.3.5. It is also interesting to see how the
P2s intersect to form the respective intersections for the P1 hypersurfaces. The resolution diagram at the
Yukawa point is presented in figure 5.6.

The interpretation of this resolution at the Yukawa point is even more complicated. The blowups
again introduce divisors on the fourfold, but now located on a point on the base. This implies a two-
dimensional structure appearing on the base. However, no blow-up was performed directly at the
Yukawa point, but only on the matter curves. And as we argued, the blow-ups introduced locally a
one-dimensional P1 on the base. Thus, the collision of the two E6 matter curves should then lead to the
Hirzebruch surface F0 = P1 × P1, or even a more general Hirzebruch surfaces Fn.
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Curve Mult. Diagram
A : λ1 = p = q = s = δ1 = 0 2

kk
kk
kk
k

X

A

B1

E?

E†

E‡

E\

kB2
kC

E?(k̂) : δ2 = p = χ1 = δ2 = (k =)0, k̂ = s, t, q 4
E†(k) : δ2 = π1 = χ1 = δ2 = (k =)0, k = s, t 2
E‡(k) : δ2 = π2 = χ1 = δ2 = (k =)0, k = s, t 2
E\(k) : δ2 = π2 = χ2 = δ2 = (k =)0, k = s, t 2
B1 : δ1 = p = q = δ2 = s = 0 3
B2 : δ1 = p = q = δ2 = t = 0 4
C : δ2 = p = q = λ2 = t = 0 2
X : w = p = q = π2

1π
4
2χ

2
1χ

4
2st+ λ1λ

2
2δ2x

3 = δ2s− δ1t = 0 1

Table 5.3.4: Curves in the expected E8 Yukawa point.

Figure 5.6: The intersection diagram with the higher dimensional surfaces.

Again, we can restrict ourselves to the curves obtained when we collide the curves given only by the
restriction p = 0 and q = 0. The curves located at this intersection are A,C,B1, B2, E?q and X , that
arrange as shown in the diagram of table 5.3.5. We see that some of the P2s are completely removed
from the set, so the hypothesis that on the E8 Yukawa point we would have an Fn surface on the base
seems to not be valid.

Curve Mult. Diagram
C : δ2 = p = q = λ2 = t = 0 2

kk
kk
k

XkA

B1

E?q

B2

C
B2 : δ1 = p = q = δ2 = t = 0 4
E?q : δ2 = p = q = δ2 = χ1 = 0 4
B1 : δ1 = p = q = δ2 = s = 0 3
A : λ1 = p = q = s = δ1 = 0 2
X : w = p = q = π2

1π
4
2χ

2
1χ

4
2st+ λ1λ

2
2δ2x

3 = δ2s− δ1t = 0 1

Table 5.3.5: Curves restricted to p = q = 0 over the Yukawa point.

We conclude this section and chapter with a summary on the results obtained so far. F-theory model
building rely on the assumption that the matter curves and Yukawa couplings are reproduced at loci on
the base where the gauge group is enhanced, importing what has been known from perturbative type
IIB theory with intersecting branes and the spectral cover formalism of heterotic strings. However, the
non-perturbative character of branes in F-theory might lead this naive perturbative picture inconsistent.
The gauge groups in F-theory are constructed from ADE singularities appearing on the elliptic fiber
at particular submanifolds on the base. Having an explicit algebraic description of the singularity, one
can identify a gauge group associated to it. This gauge group is constructed in the M-dual picture by
wrapping M2 branes on curves in the resolved fiber that arrange themselves as the roots of a gauge
group. The identification of the resolved structure of curves and the corresponding gauge group gives an
ADE classification for the singularities. The ADE classification however is only valid in codimension
one on the base of the fibration. It might work for particular cases in higher codimension but in general
can fail (as was shown in [55] for the matter curves, and reviewed here in section 5.2.1).

Even if the resolution at subloci does not lead to a series of curves intersecting in a way that repro-
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duces the expected enhanced gauge group, once we know the explicit fiber resolution it is nevertheless
possible to analyse the physical quantities we are interested in. Namely, we can identify to what rep-
resentation a matter curve corresponds to, and identify how the representations couple at the Yukawa
points. This was done for the SU(5) case going to an expected E6 Yukawa point [57]. Not treated here
in this thesis is the work [154] in which the matter representation and Yukawa coupling from a model
starting with a divisor carrying an E6 singularity is analyzed, and it reproduces the matter representation
27 and the coupling 272727.

Here we tried to construct an explicit model which would have a codimension 3 locus with an E8

singularity. We imported results from F-theory/Heterotic duality, specially to the identification via the
spectral cover of the coefficients in the elliptic fiber to with the vevs for the Higgs field responsible
for breaking the E8 gauge group in E8 × E8 heterotic models. To fully resolve the space, we had
to perform blow-ups that introduced two(-complex)-dimensional subspaces along the codimension two
enhancement loci. We proposed that these two-dimensional spaces correspond partly to a resolution of
the matter curve itself (and therefore a modification of the base) and partly to a resolution of the singular
one-domplex-dimensional elliptic fiber. We have shown and ad hoc selection of curves that reproduce
a E6 diagram in codimension two, as naively expected from the Kodaira classification, but the same
selection lead to a resolution in codimension three with a very small number of curves, while the non-
selected curves on the Yukawa point at least agreed with a E8 diagram in the number of nodes. As was
pointed out however, we should not expect to obtain an agreement with the Dynkin diagrams, but we
do have to check if the resolution leads to desired matter representations and couplings. We have not
performed this computation yet, but this will be done in a next work.
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Chapter 6

Conclusions and Outlook
In this thesis we presented two constructions worth of exploration in the framework of effective String
Theory and its strongly coupled relatives M- and F-theory. In the first part we calculated the Kaluza-
Klein reduction of the action for a spacetime filling D6-brane on a Calabi-Yau orientifold, and derived
the N = 1 characteristic data for the theory living on the brane reduced to four dimensions. We first
discussed the geometrical space associated to the scalar fields for brane deformations ζI , when the
background Calabi-Yau internal space is fixed. We were able to construct a local description for the
Kähler potential of this space written in the elegant form

Ko(ζ + ζ̄) = −1

2

∫
C4
J ∧ β̂I

∫
C4

Im(CΩ) ∧ α̂I , (6.0.1)

where {βI , αI} form an infinite basis of two- and one-forms on L0. A subset of the deformation fields,
namely b1(L0) of them, generate deformations that preserve the supersymmetry conditions and are
described by massless modes, and the base {βI , αI} reduces to the symplectic basis discussed in section
3.4.2. The remaining deformation fields induce a positive scalar potential. We saw how the scalar
potential could be generated from a generalized version of the superpotential in (3.5.14),

W =

∫
C4

(Jc −FD6) ∧ (Jc −FD6) (6.0.2)

where we included of B-fields. The scalar potential would also receive contributions from the D-terms,
giving at the end

V =
1

V2
e3φ

∫
L0

dθη ∧ ∗dθη + (B − F̃ + dθBη ) ∧ ∗(B − F̃ + dθBη ) + d ∗ θ ∧ ∗d ∗ θ. (6.0.3)

In section 3.4 we showed how to combine complex structure deformations and brane deformations,
and specified a Kähler potential for this open-closed moduli space. The deformations ζ corrected the
complex structure deformation moduli {N ′k, T ′λ}, as

Nk = N ′k − 2 ∂Vk(e2DKo) , Tλ = T ′λ − 2 ∂V λ(e2DKo). (6.0.4)

The gauge coupling function for the U(1) field living on a static brane,

fr =

∫
L0

(2 Re(CΩ) + iC3) = δkN
′k − δλT ′λ (6.0.5)

is corrected to
f = δkN

k − δλTλ (6.0.6)

when we allow brane deformations. Here δk and deltaλ are the integral over L0 of {αk, βλ}, the base
elements of H3(Y ). We also calculated kinetic mixings between the massless U(1)s coming open and
closed strings, A and Aα respectively, and the mixing coupling was found to be given in the simple
holomorphic form

fα = −ζi∆iβ, (6.0.7)
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where ∆iβ is a geometrical factor integrated over the cycle of the background brane. This coupling
induced a correction to the gauge coupling function of the U(1) living on the brane fr as

fcor = fr − fαJ̃ α. (6.0.8)

The corrections are not holomorphic, since the factor J α defined in (3.3.60) is integrated over the chain
C4, and therefore can be expanded in the real deformations. Some extra term to make it holomorphic
should arise in higher order expansions of the DBI action. Alternatively, one could modify the chain in
the definition of J α to include also a deformation of the gauge bundle as discussed at the end of section
3.4.2.

Finally, using Mirror Symmetry described by the SYZ conjecture [69], we showed how could we
locally relate the obtained effective theory to the known results in the literature for the effective theory
of D3-, D5- and D7-branes in Type IIB orientifolds, for special limits of the compactification manifold,
we discussed the mappings of the fields in type IIA to type IIB and we proposed a mirror version for the
Kähler potential for the open moduli space of branes in Type IIB theory (3.6.25),

Kdef
o = i

4

∫
Cp+1

sIyImΦev

∫
Cp+1

s̄I · Ω + c.c. . (6.0.9)

As a possible further direction to this work, one could study the lift of the dynamical brane described
here to M-theory/eleven-dimensional supergravity compactified on a G2 manifold (the compactification
leading to an N = 1 four dimensional theory). The results should be related to what was obtained
here after we identify some one-cycle which could be used as the M-theory cycle, that reduces to Type
IIA as we shrink the cycle. A similar discussion for the six dimensional effective action of an ellip-
tically fibered Calabi-Yau in F-theory (the lift of a D7-brane) was performed in [155]. Additionally,
in our calculations we often ignored more complicated contributions coming from brane flux, and we
did not include bulk fluxes. Their introduction could induce corrections to many results in our setup.
Also, a more phenomenologically interesting setup could be considered by intersecting two D6-branes,
generating a matter representation at the intersection. Such configurations were explored to the level
of conformal theories in particular compactifications, or had just their spectrum analyzed. A detailed
effective action description, so far as we know, is still lacking.

In the second part of the thesis we moved beyond perturbative Type II theory, and introduced M-
and F-theory. In particular, we studied the GUT model of an SU(5) brane that enhances at curves and
points. We saw explictly how the Kodaira classification cannot hold at higher codimensional locus, but
saw that nevertheless the 10 10 5 and the 5̄ 5̄ 10 couplings are still generated in genetic models. Then,
motivated by the interest in explaining flavor hierarchy from F-theory GUT models, we proceeded to
construct an explicit model which had a codimension three enhancement to an E8 singularity. We made
an ad hoc choice of the coefficients βi in the Tate model, which accounts for fixing a very particular
point in the moduli space. Such choice introduced new sections p and q such that p = q = w = 0 the
discriminant ∆ of the elliptic curve would vanish as the predicted for an E8 singularity, where w = 0
was the SU(5) GUT divisor.

We saw that besides the obvious curves w = p = 0 and w = q = p that reproduced the vanishing
order of ∆ for an E6 singularity, our model had additional curves corresponding to SU(6), SU(7) and
SO(12) singularities. The singularities over these additional curves are resolved by the same small
resolutions of [55]. However, the E6 curve introduces stronger singularities. The resolution of the
singularity changes the dimension of the fiber, making it two dimensional along the matter curve. We
then proposed that this higher dimensional fiber could be splitted in an “F-theory fiber”, corresponding to
P1s, and a deformation of the base via some complementary P1. By this proposal, the “F-theory fiber”
reproduces exactly the expected intersections at the E6 matter curve, given by the affine E6 Dynkin
diagram of table 5.3.4 shown below, where X is the curve that becomes the singular elliptic fiber in the
blow down limit.

98



������ ���������
���
���X

A similar problem also appears at the Yukawa point, but there with a three-complex-dimensional
fiber over it. We again proposed a decomposition between “F-theory fiber” and the blow-up of the base,
where now the point on the base would be replaced by a divisor on the base. The “F-theory” fiber is
described in table 5.3.5, and the diagram repeated below.

������������������X

that does not correspond to any Dynkin diagram.
As an urgent next step, we should understand better what are the implications for these higher di-

mensional fibers. As was pointed out from other authors [153, 156], such resolutions do happen in
F-theory at exceptional singularities and might correspond in the effective theory to tensionless strings
modes connected to the gauge theory. Additionally, one would have to check if such resolutions do
not break the Calabi-Yau condition. Since we are explictly deforming the base, this changes the Kähler
cone and could induce a breaking of Kählerity. Only then it is sensible to analyse the phenomenological
properties of such constructions. The rich intersection pattern, if realizable, could generate interesting
physics.
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Appendix A

A.1 Derivation of the Kähler metric

Let us now discuss the derivation of the Kähler metric and compare the result with the effective action
for the D6-brane found by dimensional reduction, (3.3.72) and (3.3.74). Firstly, we note that the metrics
for ReMK and the pure ξK terms match the result found from the reduction of the closed string action,
since K̃KL = (Gkl, G

λκ, Gλk), as described in [82]. We need then to check the terms involving open
string moduli ζi. From the reduction of the action the metrics Gij and Ĝij are

Ĝij = µki λ
k
j , Gij = µik (λ−1)kj , (A.1.1)

where, recalling equations (3.4.7) and (3.3.5),

e−φθi = λji α̃j , θi = siyJ |L0 ,

1
2e
−φ ∗ θi = µji β̃

j , ∗θi = −2eφsiyIm(CΩ)|L0 .

The coefficients µij and λji are calculated to be

e2Dµij =
1

2

∫
L
α̃i ∧ sjy(V κακ + Vkβ

k) , λji =

∫
L
β̃j ∧ siyJ , (A.1.2)

also making use of the relations
∫
α̃i ∧ β̃j = δji . To leading order, the V derivatives of µij are

∂

∂V λ
(e2Dµij) =

1

2

∫
L
α̃i ∧ sjyαλ ,

∂

∂Vk
(e2Dµij) =

1

2

∫
L
α̃i ∧ sjyβk , (A.1.3)

On the other hand, λji is independent of (V λ, Vk), at least for leading order complex structure deforma-
tions. This implies using (3.4.35), (3.4.22) and (A.1.1) that

K̃ζiζ̄j =
∂(e2DGij)
∂VK

V K = e2DGij , (A.1.4)

which is in accord with the result (3.3.72) found from dimensional reduction. The derivatives of the
metric with respect to (V λ, Vk) are given explicitly by (for first order deformations)

∂V λ(e2DGij) =
1

2

∫
L
α̃i∧slyαλ(

∫
L
β̃j∧slyJ)−1 , ∂Vk(e2DGij) =

1

2

∫
L
α̃i∧slyβk(

∫
L
β̃j∧slyJ)−1 .

(A.1.5)
The derivatives of the metric Ĝij are, in turn,

∂V λ(e2DĜij) =
1

2

∫
L
α̃l ∧ siyαλ

∫
L
β̃l ∧ sjyJ , ∂Vk(e2DĜij) =

1

2

∫
L
α̃l ∧ siyβk

∫
L
β̃l ∧ sjyJ .

(A.1.6)
To also check the mixing terms of the Wilson lines ai with the scalars ζK we expand

∂Ko

∂ζi
= 1

2µij |fix η
j + . . . , (A.1.7)
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to lowest order in the ηi. This yields the lowest order expression for K̃K
ζi

evaluated to be

K̃k
ζi = Îki , K̃λ

ζi = Îiλ , (A.1.8)

where were used equations (3.3.58) and (3.3.59)

Îki =

∫
L
α̃i ∧ ηyβk + . . . , Îiλ =

∫
L
α̃i ∧ ηyαλ + . . . . (A.1.9)

A.2 Supergravity with several linear multiplets

In this appendix we want to show, in a step by step way, how does the dualization from linear to chiral
multiplets work, following [82]. We want to relate the effective action in terms of linear multiplets
(VK , C

2
K), obtained by generalizing a result in [157],

L = −K̃ζiζ̄j dζ
i ∧ ∗dζ̄j + 1

4K̃VKVL dVK ∧ ∗dVL (A.2.1)

+K̃VKVL dC
2
K ∧ ∗dC2

L − i dC2
K ∧

(
K̃VKζi dζ

i − K̃VK ζ̄i
dζ̄i
)
,

with the one with chiral multiplets, (3.4.36),

Lkin = −(K̃ζiζ̄j + K̃K
ζi K̃KLK̃

L
ζ̄i) dζ

i ∧ ∗dζ̄j

+K̃KL

(
dReM I ∧ ∗ReMJ + dξK ∧ ∗dξJ

)
− 2 K̃KLK̃

L
ζi

(
dReM I ∧ ∗duj + dξI ∧ ∗daj

)
.

In (A.2.1) K̃(V, ζ, ζ̄) is a function of the scalars VK and the chiral multiplets ζi. The function K̃ encodes
the dynamics of the fields, and we would like to relate it to the Kähler potential from (3.4.36). The
standard procedure is to eliminate the fields C2

K in favor of its duals ξK by introducing an appropriate
term to the action

L → L+ δL , δL = −2ξK dC3
K = −2C3

K ∧ dξK , (A.2.2)

where ξK(x) is a Lagrange multiplier. By solving the equations of motion for ξK one finds dC3
K = 0

such that locally C3
K = dC2

K , giving δL = 0 as expected. One can use the equations of motion of C3
K ,

∗ C3
K = K̃VKVL

(
dξL + i

2

(
K̃VLζi dζ

i − K̃VLζ̄i
dζ̄i
))

(A.2.3)

to eliminate it from (A.2.1),

L = −K̃ζiζ̄j dζ
i ∧ ∗dζ̄j + 1

4K̃VKVL dVK ∧ ∗dVL (A.2.4)

+K̃VKVL
(
dξ̃L − Im

(
K̃VLζj dζ

j
))
∧ ∗
(
dξ̃L − Im

(
K̃VLζi dζ

i
))

.

For our particular case, we can further simplify this equation. Comparing (3.3.52) with the Chern-
Simons action (3.3.49), one can notice that the field C2 couples, to first order, with the imaginary part of
ζi, namely ai. We can assume that K̃ is a function only of VL and the real part of ζi, Reζi = ui. We will
see shortly that this assumption agrees with our results (indications that K̃ depends only on Reζi can be
inferred from section 3.4, as in equation (3.4.20)). The effective Lagrangian (A.2.4) thus simplifies to

L = −1
4K̃uiuj dζ

i ∧ ∗dζ̄j + 1
4K̃VKVL dVK ∧ ∗dVL (A.2.5)

+K̃VKVL
(
dξ̃K − 1

2K̃VKui d Imζi
)
∧ ∗
(
dξ̃L − 1

2K̃VLuj d Imζj
)
.
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We would like to relate this N = 1 Lagrangian to the standard Lagrangian of chiral multiplets Φ =
(M I , ζi)

L = −KΦΦ̄ dΦ ∧ ∗dΦ̄ (A.2.6)

= −Kζiζ̄j dζ
i ∧ ∗dζ̄j −KMIM̄J

(
dReM I ∧ ∗ReMJ + dξK ∧ ∗dξJ

)
−2KMI ζ̄j

(
dReM I ∧ ∗duj + dξI ∧ ∗daj

)
.

and relate the Kähler metrics KΦΦ̄ with derivatives of the function K̃, as in equation (3.4.36). This is
obtained by performing a Legendre transform with respect to the fields MK ,

K(M, ζ) = K̃(V, ζ + ζ̄) + (MK + M̄K)VK (A.2.7)

where VK(ζ,M) is written as a function of the complex fields ζi and implicitly of new fieldMK , defined
as

MK = −1
2K̃VK + iξK . (A.2.8)

One can see (MK + M̄K) as the conjugate coordinate to VK . To see that equations (A.2.6) and (A.2.5)
are indeed related by this Legendre transformation, one has to calculate the derivatives of K in terms of
the derivatives of K̃. One starts by differentiating (A.2.8),

∂VK
∂ML

= −K̃VKVL , (A.2.9)

∂VK
∂ζj

=
1

2

∂VK
∂ML

∂ML

∂uj
= 1

2K̃
VKVLK̃VLuj .

Using these expressions one easily calculates the first derivatives of the Kähler potential (A.2.7) as

KMK = VK , Kζi = 1
2K̃ui . (A.2.10)

Applying the equations (A.2.9) once more when differentiating (A.2.10) one finds the Kähler metrics

KMKM̄L = −K̃VKVL , KMK ζ̄i = 1
2K̃

VKVLK̃VLui ,

Kζiζ̄j = 1
4K̃uiuj + 1

4K̃uiVK K̃
VKVL K̃VLuj , (A.2.11)

with inverses

KMKM̄L
= −K̃VKVL + K̃uiVK K̃

uiuj K̃VLuj ,

KMK ζ̄j = 2K̃uiuj K̃uiVK , Kζiζ̄j = 4K̃uiuj . (A.2.12)

Finally, one checks that K(T,N) is indeed the Kähler potential for the Lagrangian (A.2.5). This is done
by inserting in the definition of Tκ and the Kähler metrics obtained above into (A.2.6), yielding back
(A.2.5).

A.3 Mixing of brane and bulk U(1) vectors

In this Appendix we analyze the 4D effective action for all the massless spacetime vector fields that
appear after dimensional reduction. They are the Aα and Aα components coming from the combination
of RR and B2 bulk fields (3.3.49), and A, the massless vector component of the U(1) field AD6 on the
brane, (3.3.34). The duality relation between C3 and C5 implies a electric-magnetic duality between Aα
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and Aα. To avoid the overcounting of degrees of freedom, we consider both fields, but each weighted
by a factor of one half, as in [27]. This procedure gives the action

S
(4)
vec = −

∫
1
2Refr F ∧ ∗F + 1

2 Imfr F ∧ F (A.3.1)

+1
4(ImNαβ + ReNαγImN γδReNδβ)dAα ∧ ∗dAβ

+1
4 ImNαβdAα ∧ ∗dAβ − 1

2ReNαγImN γβdAβ ∧ ∗dAα −∆αdA
α ∧ F − J̃ αdAα ∧ F ,

where F = dA, ∆α = (aj∆jα + Γα) and

ImNαβ = −
∫
Y
ωα ∧ ∗ωβ ImNαβ = (ImNαβ)−1 = −

∫
Y
ω̃α ∧ ∗ω̃β ReNαβ = −baKaαβ .

(A.3.2)
Recalling the duality relation (3.2.6) for the A fields

eBdA
∣∣
6

= − ∗10

(
eBdA

)∣∣
4
, (A.3.3)

we obtain, for Aα and Aα,

d(Aαω̃
α) + dAβbaωa ∧ ωβ = − ∗ dAγ ∗6 ωγ . (A.3.4)

We take the wedge product of the above expression with ωα and integrate to obtain the duality relation

dAα = ImNαβ ∗ dAβ + ReNαβdAβ . (A.3.5)

From the variation of action (A.3.1), we obtain the equations of motion for Aα and Aα,

1
2(ImNαβ + ReNαγImN γδReNδβ) d ∗ dAβ − 1

2ReNαγImN γβ d ∗ dAβ −∆αdF = 0 , (A.3.6)
1
2 ImNαβ d ∗ dAα − 1

2ReNαγImN γβ d ∗ dAα − J̃ βdF = 0 .

However, if one takes the exterior derivative of equation (A.3.5) and compare with (A.3.6), one notes
that the equations are not compatible. That is, the equations of motion and the duality constraints cannot
be simultaneously satisfied. In order to make the duality relation consistent, one should modify the field
strengths as

dAα → Gα = dAα − 2J̃ αF , dAα → Gα = dAα + 2∆αF , (A.3.7)

as well as the duality relation (A.3.5) by the same redefinition. This modified action becomes then

S
(4)
vec → −

∫
1
4(ImNαβ + ReNαγImN γδReNδβ)Gα ∧ ∗Gβ − 1

2ReNαγImN γβGβ ∧ ∗Gα (A.3.8)

+1
4 ImNαβGα ∧ ∗Gβ + 1

2Refr F ∧ ∗F + 1
2 Imfr F ∧ F −∆αG

α ∧ F − J̃ αGα ∧ F .

The equations coming from this action are

dGα = −2J̃ αdF , dGα = 2∆αdF , Gα = ImNαβ ∗Gβ + ReNαβ Gβ , (A.3.9)
1
2(ImNαβ + ReNαγImN γδReNδβ) d ∗Gβ − 1

2ReNαγImN γβ d ∗Gβ −∆αdF = 0 ,
1
2 ImNαβ d ∗Gα − 1

2ReNαγImN γβ d ∗Gα − J̃ βdF = 0 .

The first two equations follow directly from (A.3.7), the third is the imposed duality condition, and the
two remaining are the equations of motion for Aα and Aα. One can check that they are now consistent,
by starting with the equation of motion for one of the fields and obtaining the equation for the dual field
after imposing the duality conditions.
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As was mentioned, the duality condition implies that the degrees of freedom for the fields are not
independent. To eliminate the dependence of Aα in favor of its dual, we now treat the field strength Gα
as an independent field, and add to the action the term

δS = −1
2dA

α ∧ (Gα − 2∆αF ) + λ(dGα − 2∆αdF ) , (A.3.10)

where λ is an auxiliary field acting as a Lagrange multiplier. The equations for this modified action are
the same as (A.3.9), but now they all come from variations on the fields Aα, Gα and λ. Having the
equations for Gα, we now substitute them back into the action, and obtain

S
(4)
vec = −

∫
1
2Refr F ∧ ∗F + 1

2 Imfr F ∧ F (A.3.11)

+1
2dA

α ∧ (ImNαβ ∗Gβ + ReNαβGβ − 2∆αF )

−∆α(dAα − 2J̃ αF ) ∧ F − (ImNαβ ∗Gβ + ReNαβGβ)J̃ α ∧ F

= −
∫

1
2(Refr + 4ImNαβJ̃ αJ̃ β)F ∧ ∗F + 1

2(Imfr + 4∆αJ̃ α + 4ReNαβJ̃ βJ̃ α)F ∧ F

−2ImNαβJ̃ βdAα ∧ ∗F − 2(∆α + J̃ βReNαβ)dAα ∧ F
+1

2 ImNαβdAα ∧ ∗dAβ + 1
2ReNαβdAα ∧ dAβ ,

from where we can extract a corrected gauge coupling function fcor for the brane U(1) gauge fields,

Refcor = Refr + 4ImNαβJ̃ αJ̃ β , Imfcor = Imfr + 4∆αJ̃ α + 4ReNαβJ̃ βJ̃ α , (A.3.12)

a gauge coupling function fα for the mixing between brane and bulk gauge bosons,

Refα = −4ImNαβJ̃ β , Imfα = −4(∆α + J̃ βReNαβ) , (A.3.13)

and the gauge coupling function for the vector field Aα from the bulk (3.4.39),

fαβ = −iN̄αβ . (A.3.14)
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A.4 ∆, f and g in E8 Enhancement Model

∆ = −2048p21q9w5 − 8192p20q10w5 + 512p19q11w5 + 43008p18q12w5 + 53248p17q13w5 −
−34816p16q14w5 − 103424p15q15w5 − 34816p14q16w5 + 53248p13q17w5 + 43008p12q18w5 +

+512p11q19w5 − 8192p10q20w5 − 2048p9q21w5 − 2560p18q6w6 − 13056p17q7w6 −
−4224p16q8w6 + 73920p15q9w6 + 109440p14q10w6 − 60864p13q11w6 − 205312p12q12w6 −
−60864p11q13w6 + 109440p10q14w6 + 73920p9q15w6 − 4224p8q16w6 − 13056p7q17w6 −
−2560p6q18w6 − 2816p15q3w7 − 6400p14q4w7 + 11456p13q5w7 + 41344p12q6w7 +

+26976p11q7w7 − 36096p10q8w7 − 73536p9q9w7 − 36096p8q10w7 + 26976p7q11w7 +

+41344p6q12w7 + 11456p5q13w7 − 6400p4q14w7 − 2816p3q15w7 − 432p12w8 −
−864p11qw8 + 1944p10q2w8 + 10456p9q3w8 + 6805p8q4w8 − 11908p7q5w8 −
−18962p6q6w8 − 11908p5q7w8 + 6805p4q8w8 + 10456p3q9w8 + 1944p2q10w8 −
−864pq11w8 − 432q12w8 + 864p6w9 + 864p5qw9 − 1080p4q2w9 − 4400p3q3w9 −
−1080p2q4w9 + 864pq5w9 + 864q6w9 − 432w10 ,

f =
1

3
(16p12q8 + 64p11q9 + 96p10q10 + 64p9q11 + 16p8q12 + 16p9q5w + 96p8q6w +

+160p7q7w + 96p6q8w + 16p5q9w + 16p6q2w2 + 38p5q3w2 +

+60p4q4w2 + 38p3q5w2 + 16p2q6w2 + 9p2w3 + 3pqw3 + 9q2w3) ,

g =
1

108
(512p18q12 + 3072p17q13 + 7680p16q14 +

+10240p15q15 + 7680p14q16 + 3072p13q17 + 512p12q18 +

+768p15q9w + 6144p14q10w + 17664p13q11w + 24576p12q12w +

+17664p11q13w + 6144p10q14w + 768p9q15w + 960p12q6w2 +

+5280p11q7w2 + 14016p10q8w2 + 19392p9q9w2 + 14016p8q10w2 +

+5280p7q11w2 + 960p6q12w2 + 352p9q3w3 + 2496p8q4w3 +

+4848p7q5w3 + 5920p6q6w3 + 4848p5q7w3 + 2496p4q8w3 +

+352p3q9w3 + 108p6w4 + 108p5qw4 + 855p4q2w4 +

+990p3q3w4 + 855p2q4w4 + 108pq5w4 + 108q6w4 + 108w5)
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