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IV. Zusammenfassung 

Lebende Zellen sind umhüllt von einer Zellmembran, welche aus 

Proteinen und Lipiden besteht. Die laterale Organisation dieser 

Bausteine innerhalb der Zellmembran ist Gegenstand aktueller 

Forschung. So wird z.B. seit zwei Dekaden diskutiert ob Lipide stabile 

Assemblate, Domänen oder Plattformen in der Zellmembran bilden 

können.  

Ein grundsätzliches Problem bei der Aufklärung dieser Fragen besteht 

in der Visualisierung von Lipidstrukturen. Das Lipid Phosphatidylcholin 

(PC) gehört zu den verbreitesten Lipiden in Zellmembranen. Seit 

kurzem besteht die Möglichkeit, PC nach nicht-invasiver metabolischer 

Markierung gefolgt von Fluoreszenzmarkierung in Membranen sichtbar 

zu machen.  

In der vorliegendenArbeitwurde eine Kombination dieser eleganten, 

nicht invasiven Markierung und verschiedene moderne Methoden aus 

der Mikroskopie angewendet, um die Verteilung des Lipides innerhalb 

der Plasmamembran zu untersuchen. Für die Analysen wurden sowohl 

ganze Zellen als auch zellkörperfreie Plasmamembranpräparationen, 

sogenannte „Membrane Sheets“ untersucht. Es konnte nicht nur wie 

erwartet eine homogene Verteilung von PC innerhalb der 

Plasmamembran beobachtet werden, sondern es wurden auch lokal 

begrenzte PC-Plattformen entdeckt. Die PC-Domänen wurden 

charakterisiert durch Vermessung ihrer Größe und der Berechnung des 

Anreicherungsfaktors vom Lipid gegenüber der homogenen 

Membranumgebung. Ferner konnte auch gezeigt werden, dass obwohl 

diese PC-Domänen im Mittel nicht in der Molekülanzahl fluktuieren 

dennoch Lipide mit ihrer Umgebung austauschen.  

Anhand von den erhobenen Ergebnissen und den erarbeiteten 

Resultaten aus Kollaborationen wurde ein Modell entwickelt, welches 

einen konzeptionellen Rahmen für die Organisation von PC innerhalb 

der Plasmamembran liefert. Das Modell suggeriert, dass PC 
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Lipidplattfomen einen Durchmesser von 120 nm besitzen und aus rund 

20000 PC-Molekülenbestehen,wobei PC 50 % der Plattformoberfläche 

bedeckt. Die Ergebnisse dieser Arbeit sind aus zellbiologischem 

Standpunkt weitreichend bedeutend, da bis jetzt keine Lipidplattformen 

innerhalb von Zellmembranen auf diesem Niveau charakterisiert 

werden konnten. Somit kann zu der oben genannten Diskussion ein 

essentieller Beitrag geliefert werden, indem bestätigt wird, dass 

Lipidplattformen existieren. 
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V. Summary 

All living cells are enclosed by a membrane that is mainly made up of 

proteins and lipids. The lateral organization of these constituents is a 

subject in current research. Ithas beendiscussed since two decades 

whether lipids are able to form stable assemblies, domains or platforms 

in the plasma membrane.  

A major issuein this fieldis the visualization of lipid structures. The lipid 

phosphatidylcholine (PC) is one of the most common lipids in the 

plasma membrane. Recently, PC was visualized in membranes via a 

non-invasive metabolic labeling followed by fluorescent labeling. 

In the present work, the arrangement of this lipid within the plasma 

membrane was studied using a combination of this elegant, non-

invasive labeling and a variety of modern fluorescent microscopy 

techniques. Both whole cells as well as cell body free plasma 

membrane preparations, so-called “membrane sheets”, were used for 

the analyses. It was demonstrated that PC is not only 

homogenouslyfound within the plasma membrane, but also organized 

into locally restricted lipid platforms. The PC domains were 

characterized by determining their size and calculating the enrichment 

factor of the lipid in these spots in comparison to their homogenous 

surrounding. Furthermore, it could be demonstrated that although these 

PC-enriched structures were not fluctuating in their number of 

molecules, they exchanged lipids with their surroundings.  

Based on thisstudy and together with acquired results from 

collaborators, a model was developed that broadens the current view of 

the organization of PC within the plasma membrane. PC platforms have 

been calculated to have a diameter of 120 nm, consist of about 20,000 

lipids and PC comprises 50 % of the platform. So far, lipid platforms on 

the plasma membrane could not be visualized and characterized. 

Hence, this work is of essential importance for the cell biological field 

validating the existence of lipid platforms.  
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1. Introduction 
1.1 The theory of the cell 

The definition of the cell was established in 1664 when Robert Hooke 

first described what he saw in a cork sample with the help of a very 

rudimentary and simple microscopy setup. He could observe “little 

chambers”, as he called them, and therefore he used the Latin name 

cellula (=cell)(Hooke, 1664). With the advancements ofoptics in the 

microscope setups in those early years, it was then in 1838 when 

Matthias Schleiden and Theodor Schwann after studying samples from 

plants and animals both first established the differences and proposed a 

general cell theory: “All living things are composed of cells that have 

analogue structures and cells are the basic unit of life” (Schleiden, 

1838;Schwann et al., 1847). 

 

 

 

 

 

Figure1: Cells recognized by 
Theodor Schwann. 
Branchial cartilage from the larva of 
Rana esculenta (modified 
fromSchwann et al., 1847) 
 

 

Rudolf Virchow described a few years later that cells divide and that 

every single cell is derived from a pre-existing cell (Virchow, 1871). The 

aspects postulated by the three lastly named scientists accredited them 

with the cell theory, since their announcements for our comprehension 

of a cell are valid until today.  
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1.2 Biological membranes 

Biological membranes are fundamental to life because they enclose, 

separate and define cells and organisms (Table 1). Theyalso play an 

important role in defining membrane organelles within eukaryotic cells 

e.g. the endoplasmic reticulum (ER), the nuclear envelope or organelles 

like mitochondria and lysosomes. A consequence of 

compartmentalization are several functionsconferred to the membranes 

e.g. providing cells with energy derived from chemical and charge 

gradients (Batista et al., 2012) or mediating the transduction of 

information via receptors found on the plasma membrane(Akira and 

Takeda, 2004). Another important feature is the selective permeability 

of the plasma membrane of cells that allows movement of specific ions 

and organic molecules in and out of the cell e.g. uptake of nutrients is 

regulated and most harmful agents are excluded from entering the cell. 

Table 1. Distinct biological membranes found in organisms. 
Correlation between lipid compositional complexity and cellular architecture and 
function (Lipids: phosphatidylethanolamine (PE), phosphatidylglycerol (PG), 
sphingolipids (SP), glycerophospholipids (GP) (modified from Simons and Sampaio, 
2011). 

 

 

Biological membranes are bilayers formed by lipids that embed proteins 

in a lipid matrix. 
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1.3 The plasma membrane of eukaryotic cells and its 
composition 

The plasma membrane of eukaryotic cells separates the inside of a cell 

from its environment and is composed of more or less defined 

composition regarding lipids, proteins and carbohydrates (Phillips et al., 

2009; Ohtsubo and Marth, 2006). 

Lipids are amphipathic molecules thatvary in their chemical structure. A 

cell is capable of metabolizing more than 1000 distinct lipids (van Meer 

et al., 2008) being able to combine distinct head groups with acyl chains 

of different lengths. Lipids tend to self-associate in aqueous solution 

and arrange in the energetically most efficient orientation. 

 

 

Figure 2. Two major lipids found in the PM of cells.Phosphatidylcholine 
(schematical (A) and chemical formula (B)), the most abundant phospholipid in cell 
membranes, and cholesterol (formula (C) and scheme (D)), another important 
component of the PM (modified from Alberts, 2008). 
 

The polar headgroups of the lipids point towards the aqueous 

environment, while their acyl chains form a non-polar environment in 

between.Phospholipids are the largest group of related lipids within the 

plasma membrane, followed by sphingolipids and sterols (van Meer et 

al., 2008).  

Proteins that are embedded within the lipid bilayer are called integral 

membrane proteins. They have one or several transmembrane domains 
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that serve as anchor to the membrane. The epitopes of most proteins 

can be found at the intracellular leafletwhile some are only exposed to 

the outer part of the membrane. But there are also 

periphericmembrane-associated proteins that bind to the plasma 

membrane (Figure 3).  

 

Figure 3.Association of proteins to the plasma membrane. 
Proteins associate to the lipid bilayer (1) in different ways: transmembrane proteins 
with a single α-helix (2) or multiple α-helices (3) extend across the bilayer or as a 
rolled-up β-sheet as in the case of many channels (4). Other membrane proteins are 
present only on one side of the membrane and they are either bound by an 
amphipathic α-helix (5), by a covalently attached lipid chain (6) or even at the 
extracellular leaflet bound via an oligosaccharide linker (7). Proteins are also bound to 
other proteins by non-covalent interactions (8, 9)(modified from Alberts, 2008). 
 

Both lipids and proteins can be modified during synthesis by attachment 

of carbohydrates. The glycosylated lipids or proteinsform another major 

constituent of the plasma membrane. They are exclusively found on the 

extracellular leaflet.  

In summary, the three constituentsdictate the architecture of the plasma 

membrane(Figure 4) and its functional properties. Besides its role within 

the cell metabolism by maintaining charge and concentration gradients, 

a plasma membrane is also very active, flexible and self-healing. It is 

even maintained and repaired when needed during exo-/endocytotic 

processes (McNeil and Steinhardt, 2003). It is a dynamic structure with 

constant motion that houses different constituents that arrange and 

interact with each other. Within the last decades the interest for 

understanding the concept of this fundamental architecture for life has 
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increased. The research in this field developed different scientific 

paradigms that still bear many unknowns to science. 

 

Figure 4.Membrane of cells.Simple scheme of the composition of the plasma 
membrane of eukaryotic cells (modified from Nelson et al., 2001). 
 

1.4 Historical and current models of the plasma 
membrane 

1.4.1 Historical models 

The view of the plasma membrane of cells has been a very variable 

one. It has developed within the last century.The first researchers 

working on membranesstated that the PM must be a membrane 

composed of lipids and that lipids form a lipid bilayer (Overton, 

1895;Gorter and Grendel, 1925). In their interpretations only little was 

mentioned about proteins in the lipid plasma membrane. 

The first published model that was accepted dates to 1935 and was 

proposed by Danielliand Davson (Danielli and Davson, 1935). Their 

model of the membrane was based on thermodynamic argumentation 

and measurements of the surface tension ending up in a plasma 

membrane model in which proteins form globules on top and bottom of 

the lipid bilayer (Figure 5A). In 1959, Robertson used his observations 

established by thin section electron microscopy for arguing that the 
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proteins form a layer covering the lipid bilayer that looked like “a railroad 

track” (Figure 5B;Robertson, 1981). Another model proposed by 

Benson and Green (Figure 5C, Aloia, 1983) is the opposite of the 

models previously described showing a membrane in which proteins 

are solvated by lipids. This model never gained major acceptance. 

 

 

Figure 5. Historical models of membrane organization. 

According to Danielli and Davson, the lipids are surrounded by proteins arranged as 
globular packages on top of the bilayer (A). Robertson’s model basically modified the 
protein arrangement, by proposing that they are like a railroad track aligning the lipids 
(B). The opposite of the mentioned models was proposed by Benson and Green (C) 
showing protein particles that are solvated by lipids and readily fractionated into 
complexes (modified from 1935; Robertson, 1981;Aloia, 1983). 
 

1.4.2The fluid mosaic model 

While in both (Danielli and Davson model and the Robertson model) the 

nature of the lipid bilayer was correctly described, their concept was still 

poor regarding the incorporation of proteins into the bilayer. In this 

respect,in 1972S.J. Singer and G. L. Nicolson revolutionizedthe 

previous conception with their fluid mosaic model (Figure 6). It 

summarizes the outcome of several experiments concerning the 

energetic behavior of proteins and lipids and their association to each 

otherwhen forming the plasma membrane of cells. Singer and Nicolson 

describe the PM as a fluid phospholipid matrix that contains a mosaic of 

proteins.The matrix allows a lateral diffusion, so dynamic plays an 

important role in distribution of the different constituents of the PM. The 

fluidic properties were shown in 1970 by fusing two mammalian cells 

(Frye and Edidin, 1970). The new postulated model could answer e.g. 

that some proteins are embedded within the PM and have 
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transmembrane domains that allow them to pass the membrane or the 

question about the thickness of the membrane. This model became the 

basis forthe scientific community that has been constantly modified 

andadapted according to recent findings concerning membrane 

organization. 

 

 
 
 
Figure 6.The fluid mosaic model.Model 
of the plasma membrane proposed by 
Singer and Nicolsonin 1972. Membrane 
proteins are embedded in the lipid bilayer. 
(modifiedfrom Singer and Nicolson, 1972) 
 

 

 

1.4.3The anchored transmembrane protein picket fence model  

In the fluid mosaic model, proteins diffuse freely along the PM. 

However, experimental data has shown that proteins are generally 

restricted in mobility. One possibility for obstructions is the cytoskeleton. 

Results obtained by experiments performed on diffusion of proteins on 

the membrane of erythrocytes showed that the cytoskeleton has an 

influence on lateral diffusion (Sheetz et al., 1980).The next generated 

model, the so called picket fence model, arose after clarifying that 

lateral movement of proteins seems to be affected by different factors. 

Sheetz continued to analyze the diffusion within the “compartments” as 

he called the regions enclosing proteins and lipidsandargued that the 

cytoskeleton might act as a fence preventing a free lateral movement of 

proteins on the PM. Later, it wasshown that a degradation of the 

cytoskeleton by treatment with e.g.trypsin or Latrunculin B led to 

facilitated diffusion of proteins on the PM (Tsuji and Ohnishi, 1986, Cha 

et al., 2004).The area for the diffusion of proteins was calculated, 

defining the compartments to a size of about 230 nm diameters 

(Fujiwara et al., 2002). The expanded picket fence model is known 
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today as the anchored transmembrane protein picket fence 

model(Kusumi et al., 2005).It took into account that lipids are also 

hindered in diffusion across the PM by proteins that cross the PM and 

therefore create a barrier not only for the proteins but also for the rapid 

lipids.Fujiwara proposed that lipids are even able to travel between the 

compartments by hopping from one field to another (Fujiwara et al., 

2002). The size of the compartments described by Fujiwara were 

confirmed by Morone demonstrating by electron micrographs the dense 

cytoskeleton (Figure 7) that lines the inner face of the PM (Morone et 

al., 2006).  

 

 

Figure 7.The anchored transmembrane protein picket fence model. 
Model showing the diffusion tracks of a phospholipid within the fence created by the 
cytoskeleton (A) and anchored proteins. The original picket fence model was 
expanded after gaining experimental evidence that anchored proteins also act as 
barriers providing the pickets to the fence. The lower panel shows an electron 
micrograph of the dense cytoskeleton (B) and for better visualization by the eye, a 
coloration of the free space within the cytoskeleton (C). The scale bar in B represents 
100 nm(Modified fromFujiwara et al., 2002;Morone et al., 2008).  
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1.4.4Membrane raft hypothesis 

The picket fence model provides a reasonable explanation for 

observation of restricted diffusion within the PM.Alternatively the 

assembly of lipids within the plasma membrane into liquid ordered 

phases provided another concept for membrane compartmentalization. 

In the so-calledlipid raft hypothesis (Simons and Ikonen, 1997), lipids 

interactand self-arrange intospecific microdomains resembling liquid-

ordered phases known from model membranes.Simons and Ikonen 

postulated that the domains are created by clustering of sphingomyelin 

and cholesterol in the outer plasmalemmal leaflet to which specific raft 

proteins are recruited. These platforms enable functions like signaling, 

exo- and endocytosis (Rosa and Fratangeli, 2010; Gupta and 

DeFranco, 2007) or are even responsible for e.g. insulin resistance 

(Holzer et al., 2011). The existence of lipid rafts was first described 

upon the simple fact that cells lysed bythe detergent Triton-

X100yieldeddetergent resistant membranes that could be isolated after 

density gradient centrifugation.This detergent resistant lipid rafts could 

be also found in specific model membranes with lipid concentrations 

and the concept of liquid ordered phases was established. Later,it was 

suggestedthat this liquid ordered phases were not only present in model 

membranes but also in native membranes.Within these phases, specific 

proteins were found and claimed to be specific markers for the lipid rafts 

(Foster et al., 2003). This argumentation for detection of rafts, became 

the major critical point because it was demonstrated by other 

experiments that treatment of the cells by detergent, generated such 

phases (Heerklotz, 2002;Shogomori and Brown, 2003;Zurzolo et al., 

2003) and the rafts as they were first seen are only artifacts of this 

treatment. Until today, no evidence for liquid ordered phases has been 

observedin vivo (Mishra and Joshi, 2007; Hancock, 2006).Nevertheless, 

the concept was not withdrawn. In 2006, the Keystone Symposium 

defined new characteristics for the exact description of membrane rafts 

–as they were newly named (Pike, 2006).They were declared to be 

highly dynamic platforms of 10-200 nm in size, heterogeneous layers 
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made from sphingomyelin and sterols that are able to (de-)arrange 

quickly and serve as enriched platforms for lipid-lipid, lipid-protein or 

even protein-protein interactions (Simons and Gerl, 2010). 

 

Figure 8.Membrane raft model. Model of the plasma membrane with an assembled 
membrane raft as proposed by Simons and Ikonen. Two decades later, the model has 
not disappeared but was controversly discussed(modified from Lingwood and Simons, 
2010). 
 

1.4.5Protein cluster theory 

All the models shown so far help to understand the concept of the 

plasma membrane and its spatial lateral organization, but not all 

compartmentalization effects especially those involving proteins can be 

explained with these models.  

In theory, for the picket fence model, all proteins with similar 

intracellular domains should be restricted in movement in the same 

manner and they should be located in the same membrane domains. 

Similarly, in the membrane raft model, since hydrophobic lipid-lipid or 

protein-lipid interactions are responsible for organization and 

arrangement, similar proteins should be arranged into the same 

domains. For both cases, experimental data proofed that the expected 

theories do not apply. 



Introduction 
 

 
 27 

There are several membrane proteinsthat - even though their 

transmembrane domains are almost identical - are not found in the 

same membrane domains (Uhles et al., 2003; Zacharias et al., 

2002).Furthermore, special motifs within the proteins can also be 

responsible for specific cluster formation and therefore for relocalizing 

proteins to distinct domains (Sieber et al., 2006).In the case of 

Syntaxin1A, a member of the SNARE complex, it was demonstrated 

how this protein forms protein clusters by protein-protein interactions. 

The size of a single cluster (Figure 9) is limited by the corresponding 

attraction forces that the proteins apply to each other. 

 

 

Figure 9.Model of a Syx1 cluster in the PM.Architecture of a cluster formed by 
Syntaxin1 on a lipid bilayer membrane.This model does not show the number of 
molecules per cluster but stresses a concentration gradient across the 
cluster(modified from Bar-On et al., 2012). 
 
 
When the number of copies gets too high, the balance changes and 

repelling forces induce single proteins to be excluded from the protein 

cluster (Sieber et al., 2007).Dependency of clusters on a certain lipid 

composition (lipid-protein interaction) could also be shown; studies 

performed on SNARE proteins revealed that the formation of 

Syntaxin1A clusters are dependent of cholesterol and PIP2 (Lang et al., 

2001, Chamberlain and Gould, 2002, Murray and Tamm, 

2009).Additionally, a negative effect of lipid-protein interaction on 
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cluster formation was demonstrated in the presence of the plasma 

membrane lipid phosphatidylserine(Murray and Tamm, 2011). 

The lipid raft hypothesis and its controversy were necessary for 

continuous intensive study of the membrane and especially the lipids. 

This controversy opened the door for new techniquesapplied on the 

analysis of native cell membranes (Simons and Gerl, 2010). By 

improving and developing microscopy methods and experimental 

setups many new insights weregained in this interesting field(Owen et 

al., 2012).  

 

1.5 Enigmatic lipid domains – Difficulties and 
limitations 

Experiments so far have shown that proteins and lipids 

areheterogeneouslydistributedalong the PM and might be arranged into 

nanodomains (Engelman, 2005).Important contributions to the current 

view on the architecture of the PM like the picket fence hypothesis or 

the protein cluster theory postulate proteins to be key players 

concerning the formation of such membrane domains.  

But what about thelipid components of the PM?To date, only few lipids 

have been analyzed in detail in order to generally describe 

theorganization of potential lipid domains. According to the lipid raft 

theory, lipids are the major driving force for membrane organization. As 

already described (see 1.4.4membrane raft hypothesis), a discussion 

has been carried out over the last two decades and there are numerous 

studies that either support or contradict this theory (Simons and Gerl, 

2010). A final answer has not been foundpartially because of different 

interpretation of experimental results (e.g. detergent resistant fractions, 

see section 1.4.4) but also due to technical limitations.Nevertheless, the 

following characteristics have been agreed on: Cholesterol and 

sphingomyelin can been detected in nanodomains with diameters of 

less than 20 nm (Sahl et al., 2010). Their dwell times in these domains 
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were calculated to be around 10 - 20 ms (Eggeling et al., 2009). The 

nanodomains themselves are short-lived as suggested by single 

molecule studies.  

Protein domain studies outnumber the research on lipid nanostructures 

by quality and quantity.One reason for the imbalance isthat lipids are 

tedious biomolecules to deal with. Due to their hydrophobic 

characteristics, lipids require treatments for extraction and analysis that 

are laborious and tend to be more artifact-prone than for proteins. 

Furthermore, it is very challenging to tag lipids without altering their 

composition and physicochemical properties. These changesmight 

consequently influenceinteractions with their native environment. 

Additionally, lipids diffuse much faster than proteins across the PM 

making them difficult to image and they are present in higher number 

than proteins – for every single protein there are 50 lipids present 

(Jacobson et al., 2007).  

 

1.5.1 Studying lipid nanodomains with single molecule approaches 

As mentioned before, single molecule approaches helped to unravel 

some characteristics of lipid domains. One of the modern methods is 

fluorescence correlation spectroscopy (FCS) (He and Marguet, 2011). 

In FCS, a fluorescent particle is detected within a defined space and its 

fluctuation within this defined volume is measured. It is possible to 

deduce molecular aggregations of particles, calculate their flow rates or 

the rotational diffusion coefficients (Thompson et al., 2002). 

Nevertheless, in FCS the size of the volume that is used for 

measurements is a limiting factor. The latest FCS improvement 

regarding smaller sample volumes was made by including stimulated 

emission depletion microscopy (STED) resulting in STED-FCS 

(Eggeling et al., 2009; Mueller et al., 2011). Disadvantages of single 

molecule approaches include photobleaching effects that can lead to 

the incapacity of detecting very slowly moving or static objects. It is not 

possible to differentiate the already trapped molecules in a preexisting 
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domain from the ones that are immobilized by a domain that is formed 

when it is detected. In summary, it cannot be excluded that there are 

also small long lived lipid domains present in the PM of cells.  

1.5.2 Lipid homeostasis  

Lipids are not encoded in the genome, so cells have to take up these 

important constituents directly from nutrition and synthetize them de 

novo from precursors.Eukaryotic cells are able to synthesize thousands 

of different lipid molecules that are then incorporated into the multiple 

cellular membranes. This process involves the activity of enzymes that 

depending on their modification actions are responsible for the great 

lipid diversity. Additionally there are several, redundant, mechanisms to 

transport lipids from their site of synthesis to other cellular membranes. 

The different cellular compartments have also defined lipid 

compositions in order to function altogether with the corresponding 

proteins. Lipid transport has to be efficient for supplying the distinct 

membranes with their essential components. In general, the 

endoplasmic reticulum (ER) is the major site for lipid synthesis. 

Therefore intracellular lipid trafficking is necessary to maintain most 

other organelle membranes as they lack the capability to synthesize 

lipids de novo (van Meer et al., 2008). Because of their hydrophobic 

nature, most of the lipids cannot be transferred by free diffusion 

between compartments and must therefore rely on active mechanisms 

to facilitate transport. In principle, three basic mechanisms are applied 

(Blom et al., 2011).  

First, membrane transport that involves the budding of vesicles from a 

donor membrane and subsequent fusion with an acceptor membrane is 

one form oflipid trafficking. Second, cells use cytosolic proteins for 

transferring lipids between compartments with the help of a hydrophobic 

lipid binding pocket that allowsbinding ofonly one lipid. Some lipid 

transfer proteins contain special binding domainsthat determine the 

donor and acceptor membranes, providing compartmental specificity for 

transfer (Blom et al., 2011). The third transport option is union of donor 
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and acceptormembranes in order to transferlipids via membrane 

contact sites. In vivo, combinations of these three mechanisms that act 

in parallel are responsible for lipid trafficking. In the present work, a lipid 

platform composed of PC is presented. Therefore the emphasis of this 

section is laid on the synthesis of this lipid in order to understand the 

importance within metabolic labeling process. 

PC accounts for approximately 50 % of total cellular phospholipids and 

is the most abundant phospholipid in mammalian membranes (van 

Meer et al., 2008).PC is cylindrical in shape; as such, it is an important 

structural component that contributes to the integrity and function of 

membranes. It is essential for the formation and secretion of very low 

density lipoproteins by the liver, which is responsible for the delivery of 

hydrophobic cargo (cholesterol and energy in the form of fat) to other 

organs and it also plays a role in bile salt-mediated micelle formation in 

the intestinal lumen, which facilitates the absorption of lipid-soluble 

nutrients from the diet. 

Mammalian cells are able to synthesize PC via two pathways: In the 

CDP-choline pathway choline entering the cell is rapidly phosphorylated 

by the choline kinase, converting it to phosphocholine (Figure 10). The 

second enzyme in this pathway, the CTP:phosphocholine 

cytidylyltransferase (CT) facilitates the conversion of phosphocholine to 

CDP-choline. The addition of the phosphocholine moiety to 

diacylglycerol completes the synthesis of PC. This reaction is catalyzed 

by CDP-choline:1,2-diacylgylcerol cholinephosphotransferase, or CPT, 

and occurs at the surface of the endoplasmic reticulum (Gibellini and 

Smith, 2010). 
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Figure 10: Pathways involved in choline and PC homeostasis 

The figure shows the metabolic pathways of choline after uptake from diet in all 
nucleated cells (modified from Li and Vance, 2008). 

The second synthesis pathway, also named phosphatidylethanolamine 

N-methyltransferase (PEMT) pathway primarily occurs in the liver. The 

hepatic cell has a high demand for PC due to the production and 

secretion of very low density lipoproteins and PC secretion into the bile, 

in addition to the normal cellular requirement for the synthesis of 

membranes. PEMT is an intrinsic membrane protein and active in the 

endoplasmic reticulum, where it performs three repeated methylation 

reactions converting phosphatidylethanolamine (PE) to PC. The methyl 

donor S-adenosylmethionine is required for each step of the reaction, 

generating three molecules of S-adenosylhomocysteine for each PC 

molecule produced. This mechanism contributes approximately 30% of 

PC produced in the liver, when choline supply is adequate to maintain 

PC synthesis through the CDP-choline pathway. However, when 

choline is limited in the diet, the PEMT pathway becomes critical.Once 

PC is synthetized it can be metabolized into sphingomyelin, a 

sphingolypid also found in mammalian cell membranes. The 

degradation of PC by a phospholipase results in lyso-PC (Pörn et al., 

1993).  

PC is part of all cellular membranes so it has to be transported from its 

site of synthesis (mainly the ER) to the different acceptor membranes. 



Introduction 
 

 
 33 

The steroidogenic acute regulatory transfer (StAR) proteins belong to a 

superfamily of cytosolic proteins capable of binding specifically to lipids 

(and sterols) and are responsible for their transport (Alpy and 

Tomasetto, 2005). The main characteristic of the proteins is the START 

domain (~210 amino acids) which is a lipid binding pocket formed by α-

helices. The family is composed of 15 proteins (in humans). An 

example of specific transfer proteins is StarD2 (also named 

phosphatidylcholine transfer-protein PC-TP) which binds to PC (Kanno 

et al., 2007).  

 

Figure 11.StarD2 and its mode of action.Ribbon diagram of StarD2 protein (A) in 
complex with PC (yellow stick model) and (B)its mode of action. START domain only 
proteins like StarD2 interacts with membranes through α-helix and opens the 
hydrophobic pocket for binding with the lipids. After complexing, the pocket closes and 
protein is able to target an acceptor membrane for delivery of the specific lipid 
(modified from Roderick et al., 2002; Alpy and Tomasetto, 2005).  
 

1.5.3 Novel strategies for lipid labeling 

An important achievement in recent years for studying lipids was the 

development of click chemistry. This “tailored chemistry” makes use of 

the cellular synthesis pathways to metabolically label defined lipids. 

This elegant method has the advantage that there are no major 

changes of the biochemical properties of the studied lipid. The 

bioincorporated label allows e.g. addition of a fluorescent probe that 

enables visualization of the studied lipid.  

The practicability of the method was already mentioned a decade ago 

(Rostovtsev et al., 2002). For the labeling of PC(as first shown by Jao et 
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al., 2009), cells are fed with propargyl-choline which is then metabolized 

into propargyl-phosphatidylcholine (pPC). The newly synthetized pPC 

behaves as natural PC. The minor chemical difference is located on the 

choline head group where a small alkyne chain is present. This alkyne 

serves as anchorage site for cycloaddition of the azido-sulfo-Bodipy.  

 

 

Figure 12.Cycloaddition of Bodipy to PC. First, propargyl-choline is supplied to cell 
medium that is biosynthetized into propargyl-phosphatidylcholine (pPC). Bodipy is 
then added to pPC by a Cu (I) dependent reaction of an alkyne group to an azide 
(modified from Jao et al., 2009).  
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1.6 Aims of the work 
The aim of this work was to extend our understanding of 

phosphatidylcholine membraneorganization which is one of the major 

lipid components in plasma membranes. To this end, a novel approach 

for non-invasive lipid labeling was applied in combination with modern 

imaging techniques using cell free membrane preparations as biological 

samples. 

One of the main aims was to test if click chemistry is a suitable tool for 

the analysis of lateral PC distribution and dynamics. The main question 

was, whether PC is laterally organized in a specific pattern within the 

plasma membrane. Any potential clusters or nanophases should then 

be characterized bydetermining thesize,calculating the phospholipid 

enrichment and measuring dynamics by attachment of fluorophores to 

metabolically labeled PC followed by the analysis of lateral PC 

distribution. 

After characterization of potential nanophases, a description and 

analysis of their dynamics should be performed.  
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2. Materials and Methods 

 

2.1 Materials 

All chemicals, reagents and media used in the experiments described in 

this work are products of the German companies Roth (Karlsruhe), 

Merck (Darmstadt), Fermentas (St. Leon-Rot), Sigma-Aldrich 

(Hamburg), Biochrom (Berlin), PAA Laboratories (Cölben) and 

Macherey-Nagel (Düren), if not otherwise stated. All buffers and 

solutions were prepared using autoclaved distilled water. 

 

2.1.1 Instruments and equipment 

• Cell counting chamber (Neubaur 0640110, Paul Marienfeld 

GmbH) 

• Confocal laser scanning microscope (Fluoview1000 (equipped 

with climate control), Olympus GmbH), supplemented with 

 488 nm Laser (FVS-LDPSU, Olympus GmbH) 

 Control software (OlympusFluoview 3.0, Olympus GmbH) 

 Oil objective (UPLANSPO Oil 60x N.A 1,35, Olympus 

GmbH) 

• DNA and protein concentration measurements (NanoDrop2000, 

Thermo Fisher Scientific) 

• Epifluorescence microscope (Axio Observer D1, Carl Zeiss AG), 

supplemented with 

 CCD camera (12 Bit Sensicam QE, PCO AG) 

 Control software (Sensicam software, PCO AG) 

 Oil objective (Objective NA 1,4 x 100 Plan-Apochromat, 

Carl Zeiss AG) 

 Optical filter systems (DAPI, GFP, TRITC channel filters, 

AHF Analysetechnik AG) 

 Xenon lamp (XBO75 100.26B, LEJ GmbH) 



Materials and Methods 
 

 
 37 

• Extrusion device (Mini-Extruder, Avanti Polar Lipids Inc.) 

• Extrusion membrane with defined pore size (Pore 50 nm (MB 19 

mm 0.05 µm, cat. no.: 800308), Whatman, GE Healthcare Inc.) 

• Filter support for extrusion membrane (Filter support (Drain disc 

10 mm cat. no.: 8009220361) Whatman, GE Healthcare Incorporation) 

• Freezing Container (5100 Cryo 1 °C Freezing Container “Mr. 

Frosty”, Thermo Fisher Scientific) 

• Gel documentation (DH-50, Biostep GmbH) 

• Gel electrophoresis chambers, semi-dry blotting, power supply 

(Mini-Protean Tetra Electrophoresis, Semi-Dry Trans-blot transfer cell 

and Power Pac basic (and H), Bio-Rad Laboratories Incorporation) 

• Membrane and gel scanning device (western blot) (Odyssey, Li-
COR Incorporation) 

• Microplate Reader (Infinite F200Pro, Tecan Trading AG) 

• Microscope for cell culture (Eclipsets 1000, Nikon Instruments) 

• PCR Thermocycler (T-Professional basic Thermocycler, 

Biometra GmbH) 

• Sonifier (Sonoplus HD 2070, Bandelin Electronic GmbH) 

• TIRF microscope (IX81-ZDC TIRF equipped with diverse 

magnification lenses (1x, 2x, 4x), Olympus GmbH), supplemented with 

 Control software (CellR, Olympus GmbH) 

 EmCCD camera (ImagEM C9100-13, 16 bit EmCCD 

camera, Hamamatsu Photonics Incorporation) 

 Filter set (U-MTIR488-HC, Olympus GmbH) 

 Laser beam (488nm Ag laser beam, Olympus GmbH) 

 Oil objective (Objective Apoachromat NA 1,49 x 60, 

Olympus GmbH) 
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2.1.2 Buffers and solutions 

Sonication buffer 
120mM KGlu, 20mM KAc, 20mM HEPES-KOH, 10 mM EGTA; pH 7.2 

 

KGlu buffer 
120mM KGlu, 20mM KAc, 20mM HEPES-KOH, 10 mM EGTA; pH 7.2 

 
Ringer Solution 
130mM NaCl, 4mM KCl, 1mM CaCl2, 1mM MgCl2, 48mM D(+)Glucose, 

10mM HEPES-NaOH; pH 7.4 

 

PBS solution 
2.7 mM KCl, 1.47 mM KH2PO4, 136 mM NaCl, 8.1 mM Na2HPO4; 

pH 7.3 

 

PBS/BSA solution 
2.7 mM KCl, 1.47 mM KH2PO4, 136 mM NaCl, 8.1 mM Na2HPO4; pH 

7.3, 1% (w/v) BSA 

 

PFA 16 % stock solution 
Solution was kindly provided by Y. Okamura (preparation: 16% (w/v) 

paraformaldehyde in ddH2O(solved at 65 °C adding NaOH drops);pH 

7.2 after cool-down) 

 

PFA 4% fixative 
16% PFA stock solution diluted (1:4) in 1x PBS; pH 7.2 

 

TMA-DPH solution 
Saturated 1-(4-Trimethyl-ammoniophenyl)-6-phenyl-1,3,5-hexatriene p-

toluolsulfonate (TMA-DPH; T204, Invitrogen, Carlsbad, USA) (1:3 in 

KGlu for membrane sheets or Ringer solution for whole cells) 
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Poly-L-lysine solution (20x Stock solution) 
2 mg/ml poly-L-lysine-hydrobromide (Sigma, P1524) in ddH2O 

 

2.1.3 Cell culture media 

PC12 standard medium 
DMEM Glc 4.5 g/l with L-Gln with phenol red, supplemented with 1.6 

mM L-Gln, 5% (v/v)inactivated FBS, 10% (v/v) horse serum, 1% (v/v) 

penicillin/streptomycin (penicillin 10.000 U/ml; streptomycin 10 mg/ml)  

 

PC12 freeze medium 
DMEM with phenol red, 20% (v/v) inactivated FBS, 10% (v/v) DMSO 

 

PC12 delipidated medium 
DMEM with phenol red, 10% (v/v) delipidated FBS, 1% 

(v/v)penicillin/streptomycin (penicillin 10.000 U/ml; streptomycin 10 

mg/ml) 

 

HepG2 standard medium 
EMEM with phenol red, 10% (v/v) inactivated FBS, 1% 

(v/v)penicillin/streptomycin (penicillin 10.000 U/ml; streptomycin 10 

mg/ml) 

 

HepG2 delipidated medium 
EMEM with phenol red, 10% (v/v) delipidated FBS, 1% (v/v) 

penicillin/streptomycin (penicillin 10.000 U/ml; streptomycin 10 mg/ml) 

 

HepG2 high Ca2+ medium 
Standard medium supplemented with 1.8 mM CaCl2 and 20 µM 

ionomycin; pH 7.2 

 

PC12 and HepG2 starving media 
Standard medium without serum  
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2.1.3.1 Cell culture stock solutions 

Fetal bovine serum (FBS)(cat. no.: S0615, Biochrom AG, Berlin, 

Germany) 

 

Delipidated FBS 
Delipidated FBS was kindly provided by C. Thiele and was prepared as 

already described (Camber and Knowles, 1976).  

 
Horse serum (HS)(cat. no.: S9135, Biochrom AG) 
 

2.1.4 Antibodies 

Primary antibodies 
Anti-His: mouse monoclonal IgG (cat. no.: sc-53073, Santa Cruz, USA).  

Antibody was used 1:200 for western blot analysis. 

Anti-SNAP23: rabbit polyclonal IgG (cat. no.: 111203, SySy, Göttingen, 

Germany). Antibody was used 1:200 for colocalization experiments. 

Anti-Syntaxin4: rabbit polyclonal IgG (cat. no.: 110043, SySy, 

Göttingen, Germany). Antibody was used 1:200 for colocalization 

experiments. 

 

Secondary antibodies 
Goat anti-mouse IRDye 800CW (cat. no.: 926-32210, Li-COR 

Biosciences, Nebraska, USA). Antibody was used 1:200. 

Donkey anti-rabbit Alexa594 (cat. no.: A21207, Invitrogen). Antibody 

was used 1:200. 

 

2.1.5 Reagents 

Ionomycin solution (1000x stock) 
20 mM ionomycin (cat. no.: Asc-116, Ascent Scientific, USA) in DMSO; 

pH 7.2 
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Protease inhibitors (25x) 
Complete (mini), EDTA-free (cat. no.: 1836170, Roche). 1 tablet in 2 ml 

ddH2O 

 

PMSF  
200mM phenylmethanesulfonylfluoride (cat. no.: 6367.2, Roth, 

Germany) in EtOH 

 

Trypsin/EDTA 
0.05% trypsin (cat. no.:L11-004, PAA Laboratories, Germany), 0.02% 

EDTA in 1x PBS  

 

2.1.6 Click chemistry reagents (provided by C. Thiele) 

Propargyl-choline-bromide 

100mM propargyl-choline-bromide (Jao et al., 2009) in ddH2O 

 

TBTA 

1mM TBTA (Tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine)(Sigma-

Aldrich, cat. no.: 678937) in ddH2O. 

 

Cu (I) solution 

1MTetrakis(acetonitrile)copper(I) tetrafluoroborate(cat. no.: 677892, 

Sigma-Aldrich) in acetonitrile. 

 

Ascorbate solution 
10 mM L-ascorbic acid (cat. no.: A4403, Sigma-Aldrich) in ddH2O 

 

Azido-sulfo-Bodipy 

100mM azido-sulfo-Bodipy (i.e. 8-(5-Azidopentyl)-4,4-difluor-1,3,5,7-

tetramethyl-4-bora-3a,4a-diaza-s-indacene-2,6-disulfonic acid disodium 

salt) (synthetized and kindly provided by Prof. Dr. C. Thiele) in ddH2O 
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2.1.7 Mediumand buffers for bacteria 

LB-medium 
2% Lennox broth (w/v) in ddH2O 

 

LB-agar plates 
2% Lennox broth (w/v), 2% agar (w/v) in ddH2O 

 

TYM-medium (complete medium) 
2% (w/v) bacto trypton, 0.5 % (w/v) yeast extract, 0.1M NaCl, 10mM 

MgSO4 in ddH2O 

 

SOB-medium 
2 % w/v bacto trypton, 0.5 % w/v yeast extract, 0.01M NaCl, 10mM 

MgSO4, 10mM MgCl2 in ddH2O,Mg2+added after autoclaving;pH 7.0 

 
SOC-medium 
SOB-medium supplemented 20mM glucose. 

 

Anhydrotetracycline (AHT) stock solution 
10mg anhydrotetracycline (cat. no.: 2-0401-001, IBA technologies) in 

10ml EtOH 

 

TfB I-buffer 
30mM KAc, 50mM MnCl2, 100mM KCl, 10mM CaCl2, 15% glycerol in 

ddH2O 

 

TfB II-buffer 
10mM HEPES (pH 7.0), 75mM CaCl2, 10mM KCl, 15% glycerol, in 

ddH2O 
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2.1.8 Antibiotics 

100µg/ml penicillin/streptomycin in corresponding medium 

150µg/ml chloramphenicol in corresponding medium 

100µg/ml ampicillin in corresponding medium 

50µg/ml kanamycin in corresponding medium 

 

2.1.9 Electrophoresisbuffers / SDS-Page 

50x TAE buffer (DNA electrophoresis) Tris-acetate-EDTA 
2M Tris, 50mM Na2EDTA (pH 8.0), 5.71% (v/v) acetic acid (CH3COOH) 

in ddH2O 

 

RIPA buffer 
10mM Tris (pH 7,4), 150mM NaCl, 1mM EDTA, 1% (v/v) Triton X-100, 

0.5% (v/v) DOC, 0.1% (w/v) SDS in ddH2O 

1mMPMSF,1x Complete® proteaseinhibitorsadded prior to lysis 

 

SDS stock solution 
10% SDS in ddH2O(solved at 68 °C);pH 7.2 

 

APS solution 
10%ammoniumpersulfateinddH2O 

 
4 x Laemmli loading/sample buffer (SB) 
250mM Tris (pH 6,8),30% (v/v) glycerol, 0.04% (v/v) bromphenol blue, 

6% (v/v) SDS, in ddH2O (20% ß-mercaptoethanol added freshly) 

 

10x SDS transfer/running buffer 
250mM Tris (pH 8,3), 1% (v/v) SDS, 2,5M glycine, in ddH2O 

 

12% SDS gel (2 gels) 
Stacking gel: 3.05ml ddH2O, 650 µl 30% acrylamid 0.8% bisacrylamid, 

1.25ml 0.5 M Tris-HCl (pH 6.8), 50 µl 10% SDS 
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Resolving gel: 3.4ml ddH2O, 4 ml 30% acrylamid 0.8% bisacrylamid, 

2.5ml 1.5 M Tris-HCl (pH 8.8), 100µl 10% SDS  

 

1x Transfer buffer (TB) 
20%MeOH in 1x SDS buffer 

 

10x TBS 
100mM Tris, 1,5M NaCl in ddH2O; pH 7.6 

 

TBST 
1% Tween-20 (v/v) in 1x TBS 

 

Coomassie blue staining solution 
0.25% Coomassie brilliant blue, 10% CH3COOH,40% EtOHin ddH2O 

 

Coomassie blue destaining solution 
20%MeOH, 10% CH3COOH in ddH2O 

 

Gel drying solution 
40% MeOH, 10% glycerol, 7.5% acetic acid in ddH2O 

 

Blocking buffer 
LiCOR® blocking buffersolution (1:1) in 1x TBS 

 

2.1.10 Protein purification solutions 

Sonication buffer 
50mM Tris (pH 8), 300mM NaCl, 1% (v/v) Triton-X 100, 1x Complete® 

EDTA-free, 1mM PMSF, 100µg/µl lysozyme in ddH2O 
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Binding buffer (BB) 
20mM Tris (pH 8), 150mM NaCl, 1x Complete® EDTA-free, 1mM PMSF, 

Ni-NTA beads (Protino® cat. no. 745400.25, Macherey&Nagel, used 

1:10) inddH2O 

 

Elution buffer 
20mM, Tris (pH 8), 150mM NaCl, 1x Complete® EDTA-free, 1mM 

PMSF, 20mM (40mM; 75mM; 150mM; 300mM) imidazole in ddH2O  

 

2.1.11 E.coli strains 

E. coli XL10-Gold ultracompetent cells (Stratagene cat.No.:200315) 

were used for cloning of the vector pASK-IBA 43+ containing the 

specific StarD protein for purification of plasmids when required. 

E. coli BL-21 (DE3)pLysS (Promega, cat No.: C6020-03)were used for 

overexpression and purification  

 

2.1.12 Kits (cloning/ purification of DNA/ protein quantification) 

NucleoSpin Extract II (cat. no.: 740609), NucleoSpin Plasmid (cat. no.: 

740588), NucleoBond PC 500 (cat. no.: 740574), NucleoBond Xtra 

Maxi Plus (cat. no.: 740416). Both Nucleospin kits (MACHEREY-

NAGEL GmbH & Co. KG, Düren) 

Zero Blunt TOPO® PCR Cloning Kit (cat. no.: K2800-20, Life 

Technologies GmbH, Darmstadt). 

BCA protein assay Reagent (cat. no.: 23225, Thermo Scientific Pierce 

Protein Biology Products, Rockford, USA) 

 

2.1.13 Cell lines 

HepG2 
HepG2 cells are derived from ahuman liver tumor (HepG2 cells, homo 

sapiens, ATCC: HB-8065).The cell line was kindly provided by Prof. Dr. 
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Famulok. The identity of the cells was verified applying geneticin (G-

418) and checking for trypsin resistance and morphology. HepG2 cells 

were splitted every 3 days when confluency of the flask was about 90%. 

Splitting was performed always 1:3 and for longterm storage, 2.5x106 

cells were frozen in cryovials. 

 
PC12 
Cells originate from pheochromocytoma from the rat adrenal gland 

(PC12 cells, clone 251,rattus norvegicus, ATCC: CRL-1721, Heumann 

et al., 1983).This cell line was splitted every 3-4 days when confluency 

of the flask was about 80%. Splitting was performed always 1:3 and for 

longterm storage, 2x106 cells were frozen in cryovials. 

 

2.1.14 DNA constructs 

pASK-IBA43+StarD2 was cloned from a construct originally prepared by 

E. Guhr and was described in her Bachelor thesis (Guhr, 2005). The 

construct was kindly provided by Prof. Dr. C. Thiele.  

 

2.2 Methods 

2.2.1 Preparation of chemocompetent E. coli 

In principle any E. coli strain can be transformed into chemocompetent 

bacteria. Therefore this protocol can be generally applied. First, 

E.colistrain is inoculated on a LB0 agar plate (6 cm petri dish) and 

incubated ON at 37°C.From the LB0 agar plate, 100 ml TYM medium 

were inoculated with a single colony and incubated overnight at 37 °C. 

The next morning, bacterial OD600 was measured and diluted to OD600 = 

0.1 in 500 ml TYM medium. The flask was incubated at 37 °C and 

shaken (160 rpm). 

When OD600 = 0.6 was reached, the bacteria suspension was 

centrifuged (at 4 °C) at 4000 rpm for 8 min. The supernatant was then 
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discarded and the pellet resuspended in 100 ml ice-cold Tfb I solution. 

Immediately, the suspension was centrifuged again at 4000 rpm at 4 °C 

for 8 min. The supernatant was discarded and the pellet resuspended in 

20 ml Tfb II solution and triturated. The solution was then dispersed in 

200 µl aliquots and immediately frozen and stored at -80 °C. 

 

2.2.2Cloning of StarD2 

All cloning procedures were performed according to standard PCR and 

microbiological protocols as described by Sambrook and Rusell 

(Sambrook and Rusell, 2006). The oligonucleotides were ordered from 

MWG Operon (Obersberg, Germany) and sequencing was performed 

by GATC (Konstanz, Germany). 

The proteins of interest were already cloned in the vector pN3HA 

(kanamycin resistance, prepared by C. Thiele, 2005). This vector 

contained the wildtype StarD2 protein. StarD2 sequence specific 

primers(Table 2) were used for Gateway-cloning into the TOPO® vector 

prior to final insertion into pASK-IBA43+ vector for overexpression in 

bacteria. The vector was purchased from IBA technologies (cat. no.: 2-

1443-000). Expression of the final vector results in a double tagged 

protein: an N-terminal 6xHistidine-tagand aC-terminal strep-tag.  

The constructs were amplified when required in E. coli bacterial lines 

DH5a, Top10, XL1-blue or XL10-gold. DNA purification was performed 

with kits as described by the manufacturer. 

  

Table 2. Primerused for cloningStarD2 into pASK-IBA43+ vector 

D2_FWD GCGGGG GAATTC ATGGAGCTGGCCGCCGGAAAC 

D2_REV GCGGGG GGATCCGGTTTTCTTGAGGTAGTTCTG 
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2.2.3Protein purification of StarD2 

StarD2 (PC-TP) was cloned into pASK-IBA-43+ (IBA Technologies). 

Plasmids were transformedinto E. coli BL21(DE3), and protein 

expression was induced by addition of 200µg AHT (when OD600 = 0.6) 

to 1L LB followed by 8h of shaking (250 rpm) at 18 °C.Bacteria were 

pelleted by centrifugation, lysed bysonication in sonication buffer and 

centrifuged (4200rpmfor 20min at 4 °C). His-tagged proteins contained 

in the bacterial supernatants wereadsorbed to nickel beads 

(preincubated for 45min with sonication buffer, then centrifuged 500 xg 

for 1min) within a falcon tube. After a total incubation time of 4 hwith the 

beads (at 4 °C) on a rotating device, the proteins were washed in BB 

(flowthrough sample was taken for WB analysis)and elutedusing a 

stepped imidazole gradient (2x 20mM in 5ml BB and 1x 300mM in 5ml 

EB). For desalting and exchange of buffers, solutions containing 

StarD2were appliedto a PD10Sephadex®G25 column (GE Healthcare). 

The column was previously equilibrated withbuffer (e.g. KGlu buffer 

when working on membrane sheets; PBS was the elution buffer when 

the proteins should be used on liposomal assays).After purification, his-

tagged recombinantproteins yielded single bands as assessed by SDS-

PAGEfollowed by Coomassie brilliant blue staining. Protein 

concentrationswere determined according to their molar 

extinctioncoefficients at 280nm, which were calculated based on 

aminoacid sequences (www.expasy.org). 

 

2.2.4 BCA test 

The BCA test was purchased as a kit and it was prepared according to 

manufacturer’s orders and the absorbance at 592 nm was measured in 

a 96-well in a microplate reader. The concentration was then calculated 

using the standard BSA as described by the manufacturer. 
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2.2.5 SDS-PAGE and Western blot analysis 

Unless otherwise stated, 1 x107 cells were centrifuged (1000 rpm, 3 

min) and the pellet was washed twice with 1x PBS. Then, the pellet was 

resuspended in 80 µl RIPA buffer and kept on ice for 30 min. After lysis, 

the sample was centrifuged at 4 °C at 750 rpm and the supernatant was 

transferred into a new tube. Both samples were then frozen in liquid 

nitrogen and stored at -80 °C until needed for the corresponding 

experiment. In the case of protein purification by bacterial 

overexpression the samples were taken in every step of the purification 

protocol for quality control and optimization. For cells, 30 µg samples 

were applied in lanes, for protein purification the same volume was 

taken in order to provide a possibility for later comparison of amounts in 

gels. The samples were pelleted and resuspended in 50µl 1xSB and 

incubated at 99 °C for 5min. SDS-PAGE and semi-dry blotting were 

performed as already described (Kyhse-Andersen, 1984). SDS-PAGE 

was performed on 12 % acrylamide gels. After semi-dry blotting the 

nitrocellulose membrane was blocked with the LiCOR® buffer and 

stained with the corresponding Ab for the proteins of interest. Detection 

of the fluorescent secondary Ab (IRDye 800CW) was performed on the 

Odyssey imaging system.  

 

2.2.6Coating of glass coverslips with poly-L-lysine 

For all experiments with microscopy analysis, cells were seeded on 

coverslips (radius 25mm, degree 0, cat.No.: 0110650, Marienfeld, 

Germany). The glass cover slips were first shaken carefully for 1h in 1M 

HCl, then washed 3x with ddH2O. Afterwards, they were shaken gently 

for 1hwith 1M NaOH. The coverslips were washed again 3x with ddH2O. 

Finally, they wereshaken for 2h in EtOH (absolute) and after discarding 

the EtOH, the cover slips were autoclaved.  

The cover slips were dispersed in 6-well plates and coated with 500µl of 

a 1x poly-L-lysinesolution. After 20min of incubation, the solution was 
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aspirated and the coverslips were washed 2x with ddH2O. The water 

was discarded and the cover slips dried for 2h under the sterile hood. 

The 6-wells were stored at 4 °C until needed for the experiments.  

 

2.2.7Cell Culture 

The cell lines mentioned before were cultivated under sterile conditions 

and kept in standard cell culture vessels (Sarstedt, Nürnbrecht and 

Labomedic, Bonn, Germany). 

 

Thawing, splitting, seeding and freezing of cells 

The first passage was thawing cells from liquid nitrogen. The cryovial 

was allowed to thaw in a water bath at 37 °C for 3min and then the cells 

were quickly transferred into a 25cm2 cell culture flask and cultivated 

overnight in 10ml cell specific medium. The next morning, the medium 

was changed. Once the cells reach a high confluence, the first splitting 

was performed. 

Both cell lines were maintained in 75cm2 tissue culture flasks containing 

25ml of cell specific medium (see cell culture media and buffers). The 

cells were incubated at 37 °C, 10% CO2 and 90% relative humidity in 

sterile incubators and allowed to grow 3-4 days to attain a confluence 

before splitting into fresh flasks.  

Prior to splitting, the cells were washed with PBS and then detached 

from the vessel using 2ml of trypsin/EDTA. After 5min incubation at 37 

°C, trypsin was inactivated by adding 10ml cell specific medium and the 

suspended cells were then centrifuged in a 50ml falcon tube at 

1000rpm for 5min at RT. The supernatant was then removed and the 

cells were resuspended and triturated 10x in 10ml medium for either 

continuous cell culture (split 1:3) in a fresh flask or -using a dilutionof 

1:10 in PBS- counted in a Neubaur counting chamber in order to use a 

defined cell number for the corresponding experiment. When cells were 
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seeded on poly-L-lysine coated cover slips, usually 500,000 cells per 

coverslip were used, unless it is otherwise stated. The seeded cells 

were kept for 20min at 37 °C and 5% CO2 in the incubator and after this 

adhesion time, 2ml cell specific medium was given into each well. For 

cycloaddition experiments, cells were washed after 4h with warm 1x 

PBS and cell specific delipidated medium supplemented with 0.5mM 

propargyl-choline is added. The 6-wells were then further kept in the 

incubator for 8h. Only cells in the passage number 4-20 were used and 

a feeding time of 8h corresponded to overnight feeding.  

For long-term storage of cells, 2x106 cells of each cell line were frozen 

using 1ml of the corresponding freeze medium. The cells were keptin 

cryovials in a gradient freezing chamber filled with isopropanol for 24h 

and then changed to a liquid nitrogen container. 

 

2.2.8Preparation of membrane sheets 

Membrane sheets allow in a cell-freesystem for visualization and 

analysis of lipids and proteins under native conditions. In order to 

prepare membrane sheets, adherent cells are “unroofed”. This can be 

achieved by mechanical stress (Fujimoto et al., 1991) sliding glass 

cover slips or even easier by a sonication pulse (Lang, 2003). After 

applying a single ultrasonic pulse on adherent cells, only the attached 

basal plasma membrane stays on poly-L-lysine coated thin glass cover 

slips (Figure 13). The prepared membrane sheets are biochemically still 

active and are accessible for immunofluorescent staining of proteins by 

antibodies or for analysis of exocytotic processes (Avery et al., 2000). 

This method has gained popularity in the last decade due to its powerful 

advantage of having a natural environment for proteins or lipids of 

interest that are present in the plasma membrane. 
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Figure 13.Preparation of membrane sheets. 
Adherent cells are cultivated on cover slip. After sonication, the cells are “unroofed” 
and the remnant membrane is the so-called membrane sheet. 

 

In the present work, membrane sheets were prepared from cells 

incubated overnight seeded on PLL-coated cover slips. First of all, 

every single cover slip was submerged in 20 ml ice cold sonication 

buffer. The sonicator tip was brought closer (and also submerged) to 

the coverslip with the cells facing towards the tip (distance ~0.5 cm). 

Then, an ultrasonic impulse was applied (0.1 s) with the optimized 

specific strength for the corresponding cell line. Normally, a star-shape 

is visible, meaning that within the branched regions the cells have been 

unroofed, so one can find native plasma membrane sheets attached to 

the cover slip surface. Membrane sheets are still biochemically active 

and accessible for e.g. immunohistochemical staining. The sheets can 

be used directly in native form or fixed for 0.5 h – 1 h in 4% PFA in 1x 

PBS and then quenched with 50 mM NH4Cl.  
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2.2.9Immunostaining of membrane sheets 

Immunostaining of membrane sheets was performed as already 

described (Lang et al., 2001). Membrane sheets were fixed with 4% 

PFA and afterwards washed in 1x PBS. Then, 50mM NH4Cl in 1x PBS 

was added in order to quench the fixative for 20min. The samples were 

then incubated with 150µl primary antibodies (see section Primary 

antibodies) upside down on parafilm for 45min at RT in a moist 

chamber and washed three times in 1x PBS for 5 min each, followed by 

45min incubation with the respective secondary antibody (150µl each 

sample) conjugated to a fluorescent dye (see sectionSecondary 

antibodies).  

 

2.2.10Incubation of membrane sheets with lipid transfer protein 
StarD2  

After protein purification and quantification via BCA test (see below), the 

protein was used for incubating membrane sheets. The amount of 

protein used in experiments varied depending on the purification values. 

For quality reasons low amounts were used for initial experiments on 

native membranes since experience in preliminary experiments showed 

that the lipid transfer proteins have a very high efficiency rate and effect 

on membranes. For StarD2, 100nMor 250nM working 

concentrationswere used. 

2.2.11Increase of intracellular calcium levels inside cells 

As mentioned before cells were seeded on PLL-coated cover slips and 

incubated ON. The next morning, the medium was discarded and cells 

were washed twice with 2ml PBS. Then, the cell specific medium pH 

7.2 supplemented with 20mM ionomycin (+10mM EGTA in control 

conditions) was added to the cells. The plate was incubated at 37 °Cfor 

5min, afterwards the medium was discarded and 2ml 1xPBS was added 

to the cells. The cells were then immediately used for preparation of 

membrane sheets and click reaction.  
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2.2.12Cycloaddition of dyes 

The cycloaddition reaction was performed on fixed cells as well as 

either fixed or native membrane sheets. In a separate FRAP 

condition;sheets were also fixedafter performing the cycloaddition 

reaction. Priorto preparation of membrane sheets, a click reaction mix 

was prepared (625µM TBTA, 500µM ascorbate, 500µM Cu(I) and 

100µM azido-sulfo-Bodipy in 1x PBS)and samples were incubated for 

30min at RT within a moisture chamber. The coverslips were then 

washed twice in 1x PBS. For STED microscopy, azido-coupled 

Atto647N (AD647N-101, ATTO-tec, Siegen, Germany) was employed 

(instead of the azido-sulfo-bodipy) using the click-iT cell reaction buffer 

kit (C10269, Invitrogen). 

 

2.2.13Thin layer chromatography 

50,000 HepG2 cells per condition were harvested from 6-wells by 

scraping, followed by washing in 1x PBS, centrifugation and the cell 

pellet was frozen in liquid nitrogen. For lipid extraction, the pellet was 

resuspended in 1ml (1:3 chloroform/methanol), vigorously shaken and 

centrifuged (4500rpm for 5min at RT). The supernatant was then mixed 

with 400µl ddH2O and 600µl chloroform. After phase separation the 

upper phase was removed and the remaining lower organic phase was 

evaporated. Lipids were dissolved and incubated for 3h at 40 °C in 

cycloaddition mix containing 2.3mM Cu (I) tetrafluoroborate, 81µM 

hydroxyazidocoumarin(Thiele et al., 2012)in EtOH. After the 

cycloaddition reaction, samples were loaded onto TLC plates (without 

fluorescent indicator). TLC was performed first in 

CHCl3/MeOH/H2O/HOAc (65:25:4:1) followed by running in 

hexane/ethylacetate (1:1) for full plate distance. Finally, the plate was 

dried and exposed to 3% Hueing base in hexane. Fluorescent-labeled 

lipids were detected by excitation at 420nm and detection at 494 nm. 

Images were quantified by using the gel-pro software. 
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2.2.14Microscopy methods 

2.2.14.1 Epifluorescence microscopy 

Epifluorescence microscopy is the most common method for visualizing 

biomolecules of interest that have been tagged with a fluorophore either 

by biomolecular methods (cloning of proteins and fusion to EGFP), by 

immunofluorescent labeling (antibodies raised against a certain protein 

that again are tagged by secondary antibodies attached to a marker 

e.g. Cy3, Alexa594®), or by chemical attachment of a fluorophore (e.g. 

Bodipy) as in the case of click chemistry (see section below). In 

epifluorescence the basic setup is a light source (normally a xenon 

lamp) followed by a filter system that excites distinct fluorescent probes 

with different excitation ranges, the optics system, and a CCD camera 

that captures images from the sample. Epifluorescence microscopy can 

be used when imaging of cytosolic tagged biomolecules is necessary 

rather than exact analysis of membranes. The disadvantage is the 

strong out of focus fluorescence signals that are emitted and not filtered 

in the setup.  

For this work epifluorescence microscopy was performed on native 

plasma membrane sheets with a Zeiss Axio Observer D1 fluorescence 

microscope. A majority of the experiments were performed with 

membrane sheet preparations. Even though in vivoconditions are 

obviously not present anymore, the preparations are perfect for analysis 

of the native plasma membranes. In order to visualize the integrity of 

the plasma membrane, staining by TMA-DPH was used. TMA-DPH is 

only able to emit fluorescence when it encounters a lipid environment 

as in the plasma membrane. This fluorescent intercalating membrane 

marker was detected in the DAPI channel of the microscope. From now 

on, the GFP channel is denominated as the Bodipy channel from which 

the signal of cycloadded Bodipy to the PC was detected. The TRITC 

channel was used for additional staining by Ab AlexaFluor594 for 

colocalization analysis with proteins. The illuminating time used for 
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DAPI and Bodipy was 400 ms and for TRITC 1 s, unless stated 

otherwise.  

 

Raw data images were analyzed with the program imageJ (Schneider 

et al., 2012). First, images taken in different channels were aligned in 

the red and green channels. For lateral alignment tetraspeck beads 

were used as reference. Then, for calculation of the correlation 

coefficient the imageJ plugin colocalization indicesanalysis (Nakamura 

et al., 2007; Sieber et al., 2007) was used in a square ROI (150 x 150 

pixel). Resulting correlation coefficientvalues from membrane sheets 

per independent experiment were averaged. For every individual 

experiment at least 15 spots per membrane sheet from 15 membrane 

sheets were analyzed. 

For spot over background analysis, round shaped 7 x7 pixel ROIs were 

centered randomlyover individual spots in the Bodipy channel and the 

same 7 x7 pixel ROIs was placed on the uniform layer of the sheet next 

to the spot. These spots were then transferred to the aligned red 

channel. A background valuewas taken fromproximity to the sheet and 

the value was subtracted from mean intensity values of the spots in 

both channels and the ratio between spot and background was finally 

calculated for at least 15 spots per sheet and 15 sheets in one 

individual experiment.  

Visualization of the movement of PC platforms was additionally 

incorporated in this work. The experiment was designed together with 

E. Merklinger who then performed the experiment and G. Schloetel 

assisted on the analysis.  

 

2.2.14.2 Total internal reflection (TIRF) microscopy  

TIRF microscopy is used to analyze biomolecules present in the basal 

membrane of cells. In a TIRF setup, a laser beam is applied on a cell in 
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a defined critical angle in order to create an evanescent field of 

excitation light that is around 100 nm. In this case, only fluorescence 

within this depth can be detected (Steyer and Almers, 2001). The 

excitation in this range enables the detailed visualization of the plasma 

membrane of living cells that are in close proximity of the glass cover 

slip that they are attached to (Figure 14). Such a specialized 

visualization improves the signal to noise ratio diminishing the 

undesirable out of focus fluorescence that might be created by 

fluorescence coming from inner compartments of cells e.g. Golgi 

apparatus or endoplasmic reticulum.  

 

 
Figure 14.Physical principle of TIRF microscopy. 
The excitation beam hits the coverslip at incident angle θ which is greater than the 
critical angle θc (dashed line). The excitation beam is reflected off the coverslip and an 
evanescent field is generated in the cell side (modified from Mattheyses et al., 2010). 
 

Total internal reflection fluorescence (TIRF) microscopy was performed 

as part of this work as described previously (Schreiber et al., 2012). 

Cells were fixed for 30-45 min at RT with 4% PFA in 1x PBS, followed 

by quenching with 50mM NH4Cl in 1x PBS. Then Bodipy was 

cycloadded as previously described. Fixed cells (minimum 15 cells are 

imaged for every single experimental day) were imaged at RT in Ringer 

solution (containing TMA-DPH). The TIRF microscope components are 

described in section 2.1.1 Instruments and equipment. The combination 

of magnifying lenses, objective and the EmCCD camera ended in a 
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pixel size of 83.3nm. Images were acquired with CellR Olympus 

software and exported into TIFF format for further processing in imageJ.  

 

2.2.14.3 High resolution microscopy: stimulated emission 
depletion (STED) 

STED microscopy enables to break the resolution limits of conventional 

microscopy. It is based on confocal laser scanning microscopy with the 

difference that two laser beams are used in this method. One laser 

excites the probe while another overlaps with a donut shape over the 

excitation in order to reduce the region of interest by simply depleting 

the outcoming signal to a defined region in nm size (Figure 15). The 

signal is then detected and a computer generated image is obtained. A 

STED setup is capable of a resolution of 15 nm/pixel. The greatest 

advantage of having a better resolution is the possibility to accurately 

calculate the size of clusters that might be found on cellular membranes 

in order to e.g. calculate the number of biomolecules that are present in 

nanophases.  

 

 
Figure 15.Simplified excitation and detection path of a STED microscope. 

The excitation laser (green) and the STED depletion beam (red) are focused into the 
specimen to yield a diffraction limited excitation spot and a donut shaped STED point 
spread function (PSF), respectively. A helical phase plate in the STED beam path 
generates the donut shape of the STED-PSF. Fluorescence (yellow) is recorded by a 
point detector (modified from Hell and Wichmann, 1994). 
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For the STED microscopy applied in the present work a Leica TCS SP5 

STED microscope equipped with a 100x 1.4 NA HCX PL APO CS oil 

objective as previously described (Denker et al., 2011) was used. 

These experiments were performed at the European Neuroscience 

Institute in the Laboratory of S. O. Rizzoliin Göttingen, Germany. S. 

Saka performed 2 experimental days.  

For spot size analysis, a 150 x 150 pixel ROIwas randomly chosen. 

Linescans with a size of 3 pixels wide and 30 pixels long were placed 

on the center of clusters available within the ROI. By obtaining intensity 

profiles of individual spots the values were then fitted using a Gaussian 

function (OriginPro 8.0, OriginLab Corporation). The size of the full 

width at half maximum (FWHM) was determined and averaged of at 

least 200 spots on 10 membrane sheets for each individual 

experimental day. 

For spot over homogenous layer intensity ratio analysis, the same 

150x150 pixel ROIs as in the spot size analysis were used. A circular 

region of 7x7 pixels was laid over every single spot and over the closest 

surrounding of the spot. Additionally, a background measurement was 

performed on the original size images (1024x1024 pixel) for later 

subtraction from the measured circular ROI and the homogenous layer. 

The background corrected values were then divided for calculation of 

the spot over layer intensity ratio and averaged. 

 

2.2.14.4 Confocal laser scanning microscopy (CLSM) and 
fluorescence recovery after photobleaching (FRAP) 

FRAP is a method commonly used for studying dynamics of proteins 

that are overexpressed and attached to a fluorophore reporter molecule 

such as EGFP. The experiment is performed with a confocal laser 

scanning microscope. Excitation is provided by a laser with a defined 

wavelength for the corresponding fluorescent probe and the detection is 

done by calculation of the fluorescence signals that arrive at the 
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photomultiplier detector. FRAP can be observed when applying high 

intensities of excitation light. The increase in energy of the excitation 

laser beam leads to bleaching in a previously defined region of interest 

(ROI) due to chemical modification of the fluorophore caused by the 

electrons excited during fluorescence. The defined ROI is measured 

continuously afterwards in order to quantify the recovery rate of 

fluorescent signals. A recovery is seen due to diffusion of the 

fluorescent biomolecule from unbleached regions of the PM into the 

ROI. 

In this work, FRAP was performed at RT and confocal laser scanning 

microscopy (CLSM)in an environment control chamber at 37°C using an 

OlympusFluoview1000 laser scanning microscope as described 

previously (Zilly et al., 2011). Pixel size was adjusted to 69nm, dwell 

time to 20µs/pixel and the image size to 200x200 pixels. Bleaching was 

performed in a 30x30 pixel ROI using the 488nm laser at full intensity. 

First, the pre-bleach frame was recorded, then the sample was 

bleached immediately followed by the post-bleach recording and then 

another recording 60 sec after the pre-bleach frame. In control 

experiments for bleaching of whole membrane sheets, an adequate 

size was chosen in order to keep the settings for the bleach protocol as 

just mentioned and secondly a size was chosen that allows acquisition 

of whole membrane sheets. Single measurements were made to show 

the rapid recovery. In that case the pre-bleach phase is 3 frames 

acquired at 1 Hz, bleach phase is 1 frame at 1 Hz and post-bleach 6 

frames at 1 Hz.  

For analysis, spot over homogenous layer analysis was performed 

within the bleach region as described above. Only spots showing at 

least 50% local increase before bleaching are included in further 

calculations. 
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3. Results 

PC is the most abundant phospholipid within the plasma membrane of 

mammalian cells and yeast. It has been considered as a passive 

component and classified as cylindrically shaped constituent of the PM 

having less influence in the curvature than other conical (e.g. PE) or 

inverted conical (e.g. SM) classified lipids (Simons and Sampaio, 

2011).Yet, there is no clear picture of the organization of PC within the 

plasma membrane. To clarify this question, a wide range of microscopy 

methods were combined with click-chemistry to study this major 

component of the PM. Cycloaddition of azido-sulfo-Bodipy has already 

been demonstrated to be a useful tool to label PC in whole cells (Jao et 

al., 2009). These early experiments showed a labeling of the multiple 

cellular membranes. In the present work, metabolic PC-labeling/click-

chemistry was applied to study nano-anatomical aspects of PC 

organization and dynamics not onlyfor whole cells but also in native 

membrane sheets.  

 

3.1 Labeling with Bodipy and detection of pPC in the 
plasma membrane of mammalian cells 

HepG2 and PC12 cells were seeded and fed ON with propargyl-choline 

and then fixed with 4% PFA. Fixation with 4 % PFA in general leads 

also to permeabilization of cells, so also intracellular pPC will be labeled 

with the fluorophore and can be potentially visualized. After 

cycloaddition of azido-sulfo-Bodipy to pPC, the samples are imaged 

with a TIRF microscope setup. Initially epifluorescence shows a bright 

signal viewed in HepG2 and PC12 cellsdemonstrating the high amount 

of pPC in all cellular membranes. Then, by applying TIRF 

microscopy,selectivelythe basal plasma membrane of cellswas 

observed. 
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As expected, pPC formed a uniform background but also a major 

number of remarkably clear visible spots were seen (Figure 16).  

The presence of pPC in spots within the plasma membrane gave a first 

hint about a lateral organization of the pPC. 

 

 

Figure 16. PC forms spots in the plasma membrane of whole cells. 

HepG2 and PC12 cells were fed with propargyl-choline ON and fixed in 4% PFA. After 
cycloaddition, imaging was performed in a TIRF microscopy setup having first 
visualized the target cells in epifluorescence mode (not shown) and then switching to 
TIRF-modus to visualize the basal plasma membrane of cells. The left panel 
showsBodipy signal of a representative HepG2 celland right panel a PC12 cell in 
TIRF-modus.  

 

3.2 Labeling of pPC on membrane sheets shows spots 

Again, cells were seeded on PLL-coated glass coverslips and fed ON 

with propargyl-choline. Native membrane sheets were prepared from 

two different cell lines (HepG2 and PC12) by applying a short ultrasonic 

pulse to the cells (see section2.2.8Preparation of membrane sheets). 

Then, click-chemistry was applied. Membrane sheet preparations help 

to visualize the pPC spots within the native plasma membrane with a 

better signal to noise ratio due to the lack of the remaining cell body. In 

order to visualize the membrane sheets and check their integrity a 

TMA-DPH staining is required.TMA-DPH is an intercalating agent and 
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its fluorescence increases in the presence of lipids. This staining helps 

to visualize and select only those membranes that have not been 

completely ruptured by the sonication process. The results are shown in 

figure 17. 

Click reaction control was performed by preparing cells that were not 

fed with propargyl-choline. After click reaction, these cells or their 

membrane sheet preparations did not show a fluorescence signal (data 

not shown) in the Bodipy channel.  

 

 

Figure 17. PC forms spots on native plasma membrane sheets. 

HepG2 and PC12 cells were fed with propargyl-choline ON and fixed in 4% PFA. After 
cycloaddition imaging was performed with an epifluorescence microscope visualizing 
first target membranes (TMA-DPH) and then the signals of pPC (Bodipy) inthe plasma 
membrane preparations. The left panels show representative membrane sheets 
visualized with TMA-DPH and the right panels show the same membrane sheets after 
switching to Bodipy channel.  
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Similar to the results seen in whole cells, membrane sheets also 

showed spots after cycloaddition of Bodipy to pPC. Beyond this finding, 

there is a homogenous layer of labeled pPC indicating that not all pPC 

is found within spots.  

 

3.3 Does temperature influence the cycloaddition 
reactionand the formation of pPC spots? 

So far, all experiments were performed at RT. Concerning the 

characteristics of lipids to form phases at different temperatures (Quinn 

et al., 2005), it was important to carry out a control experiment in which 

click reaction and imaging were performed at a different temperature. 

For this reason, physiological temperature (37°C) was chosen in order 

to confirm, that spot formation is not a result from temperature driven 

phase formation.  

First, membrane sheets were prepared as already described and click 

reaction was carried out at 37 °C in a humid chamber. Then, aconfocal 

laser scanning microscope with a moisture and climate control chamber 

was used for performing imaging. The membrane sheets still show 

spots (Figure 18). This experiment shows that neither during the click 

reaction nor during imaging spots are able to form. Therefore a hint is 

given that spots are not artifacts driven by temperature influence. 
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Figure 18.Cycloaddition of azido-sulfo-Bodipy to pPC and imaging at 37 °C. 

The left panel shows a representative membrane sheet prepared from a HepG2 cell. 
The right panel shows a membrane sheet from a PC12 cell. CLSM images show 
distribution of pPC after click reaction.  

 

3.4Fraction of metabolically labeled pPC by azido-
hydroxycoumarin 

Mammalian cells synthesize PC via the CDP-choline pathway or the 

PEMT pathway (see section 1.5.2Lipid homeostasis). During this 

process, propargyl-choline supplemented in the cell media is therefore 

bioincorporated either into PC or SM. In order to check for the relative 

amount of pPC related to all lipids with incorporated propargyl-

choline.Cells were seeded on 6-well plates, fed and incubated with 

propargyl-choline for different time periods (0 h, 2 h, 4 h, 6 h, 8 h and 10 

h). After the defined incubation time, cells were harvested and 

lipidswere extracted. The click-reaction was then performed on the 

samples prior to TLC. 

In these experiments, labeling of pPC was performed with azido-

hydroxycoumarin (Thiele. et al., 2012). The dye is non-polar and does 

not dominate the migration behavior of the reaction products during the 

TLC separation. As a reference lyso-propargyl-PC and propargyl-PC 

were used. Figure 19shows a representative result after separation of 
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the clicked samples on a standard silica gel TLC plate. Two distinct 

solvents with different polarities were used for the separation run (see 

methods, TLC).  

As a standard, no sphingomyelin available for click chemistry so far but 

characteristic SM double bands run below PC and above lyso-pPC. In 

case that the propargyl-choline is also incorporated into SM, there 

should be a stronger fluorescence signal.After 8h, around 98 % of the 

labeling is seen in pPC, less than 1 % is detected in lyso-pPC as well 

as in SM (not shown). The ratios did not vary with feeding time. TLC 

demonstrated that cycloaddition labels almost exclusively pPC even 

after short feeding times of the cells with propargyl-choline.  

 

 

Figure 19. Propargyl-choline is incorporated into propargyl-phosphatidylcholine 
(pPC).  
HepG2 cells were fed with propargyl-choline for 2-10h and lipid extracts were 
analyzed by TLC. From top to bottom, unspecific azido-coumarin background bands, 
pPC and lyso-pPC are seen.Analysis of the 8h sampleresulted in 98±0.2%pPC signal 
andonly very low propargyl-choline signal was detected in SM (0.7±0.1%) and lyso-
pPC (0.7±0.2%). Values are given as mean ±SEM (n=5).  
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3.5ChangingpPC concentrations and platforms within 
plasma membrane of cells 

After first characterization of the pPC organization in platforms, the 

question was addressed whether the domains can be altered 

experimentally. For instance, number of pPC spots may depend on the 

level of pPC concentration. To this end, a strategy was designed for 

changing pPC levels in membrane sheets. It has been already shown 

that lipid transfer proteins are specific intracellular transporters for lipids 

(Alpy and Tomasetto, 2005).On this basis,the idea came up to use a 

specific PC transporter to deplete the lipid from the plasma membrane 

and then check if after click reaction still spots can be visualized.The 

lipid transfer protein StarD2 was purified and applied on native 

membrane sheets priorto click reaction. StarD2 is a cytosolic protein 

that binds specifically PC taking advantage of its lipid binding pocket 

that is able to carry one PC molecule that is first removed from a donor 

membrane (see section 1.5.2 Lipid homeostasis, Figure 11). 

Another idea was to check if spot formation is dependent on proteins. In 

order to change the number of spots, another strategy was designed 

from observations made in experiments concerning protein clusters. 

Ca2+ ions have been shown to have electrostatic effects on proteins. As 

already described (Zilly et al., 2011), calciumincrease led to 

associations of negatively charged proteinsby compensating local 

accumulation of electric charges. 

In the following two segments the new approaches for experimentally 

influencing pPC platformsare presented: directly via StarD2treatment 

for pPC depletion on membrane sheets and byinducing first Ca2+ 

increase in whole cells that are then prepared to membrane sheets. 
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3.5.1 Do pPC spots form only when a critical pPC concentration is 
available? 

As described in the methods section StarD2 was overexpressed by 

bacteria and purified in a large scale. Figure 20 shows the western blot 

analysis. The anti-His antibody(mouse monoclonal IgG (cat. no.: sc-

53073, Santa Cruz, USA) was used to detect the protein.The 

purification was performed using the His-tag attached to the protein. For 

western blot analysis a sample was taken in all steps of the purification 

protocol. The protein was always freshly purified for every single assay 

that it was needed for. Storage at -80 °C in elution buffer supplemented 

with glycerol led to protein crystallization and is not suitable for this 

protein.  

 

Figure 20.Protein purification of StarD2. 
In western blot analysis the protein purification of StarD2 can be monitored. Lane 14 
resembles the final elution of the 24 kDa sized protein. A clear band slightly below the 
27kDa is visible. Lanes 2-13 represent different steps during purification protocol as 
indicated. 
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Once the protein was successfully purified, the protein was freshly 

applied on HepG2 membrane sheets. Astonishingly, pPC was almost 

decreased by half when applying merely 100 nM of StarD2. Figure 21A 

shows representative images of membrane sheets prior and after 

incubation with StarD2. The treatment of StarD2 decreased the overall 

intensity of the signal, but the spots were still present after using 100 

nM and 250 nM StarD2. The use of higher concentration had already 

effects on the integrity of the membrane sheets. This disintegration was 

observed by TMA-DPH staining (data not shown) in form of holes within 

the membrane sheets.  

 

Figure 21.Depletion of pPC from membranes by StarD2. 
Representative membrane sheets from HepG2 cells in control condition without 
StarD2 treatment (A) and membrane sheets after 5min incubation with 100 nM or 250 
nM StarD2 at 37 °C. A loss in fluorescence is detected (B) compared to control 
conditions (475 ±232 a.u.) to 100nM StarD2 treated membrane sheets (171 ± 141 
a.u.) and 250nM (112 ± 47 a.u.) treated membrane sheets; experiment with 21-29 
membrane sheets measured per condition). 
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This preliminary data suggests that even though half of the pPC is 

removed spots persist.  

3.5.2 Intracellular increase of calcium decreases PC spots and 
overall intensity 

As already mentioned, it should be tested if the intracellular increase of 

calcium concentration also has an effect on the organization of pPC. 

Therefore, HepG2 cells were seeded and fed ON with propargyl-

choline. Then, cells were treated with the ionophore ionomycin in order 

to transport and therefore increase Ca2+ ion concentrations (see 

Methods, section2.2.11). Membrane sheets were then prepared and 

click reaction was performed for labeling of pPC. The images of 

representative membrane sheets are shown in figure 22. 

 

Figure 22. Influence of calcium ions on pPC organization.  
Intracellular levels of calcium ions were increasedin HepG2 cells by treatment with 
ionomycin and membrane sheets were prepared. TMA-DPH was used for visualization 
of membrane sheet integrity (left panels) and Bodipy coupled to PC was detected after 
click reaction (right panels). The effect was not quantified but seen in the experiments. 
(n=3 experiments, each with 15 membrane sheets imaged) Figure shows 
representative membrane sheets. 
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The membrane sheets of the control show the typical abundant pPC 

spots and the homogenous layer. When Ca2+ was intracellularly 

increased, the sheets prepared from those cells showed a significant 

decrease in spot number and a lower intensity in fluorescence was 

measured (Figure 23). This experiment shows that pPC spots are 

probably kind of dependent on protein organization. In addition, the 

experiment shows that spots are dependent on biological mechanisms 

and not a result from the cycloaddition reaction as in both conditions 

membrane spots are identically treated after sonication. 

 

Figure 23.Quantification of loss in fluorescence signals of labeled pPC induced 
by calcium. Graph shows the relative fluorescent intensity of labeled pPC in control or 
increased calcium conditions. The relative fluorescence signal obtained from the 
control condition was 548 ±81 a.u. and the signal decreased to 255 ±10 a.u. after Ca2+ 
increase. (n=2, 5-24 sheets were measured on each experiment, values are given as 
mean ±STD) 
 

As already mentioned above, calcium ions were shown to be able to 

influence the arrangement of membrane proteins.In the case that 

proteins recruit pPC into platforms, a disturbance of the protein order 

would also influence pPC organization. This possible interaction 

between proteins and pPC might explain the reduction of spots found 

within the PM after calcium treatment.  

The calcium effect was described for some SNARE proteins (Zilly et al., 

2011). Interestingly some of these proteins are also known to be 

dependent on cholesterol rich phases within the PM (Lang et al., 2001). 
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Propargyl-PC could be another lipid that co-stabilizes SNARE 

complexes.In order to check if pPC spots are also associated to 

SNARE proteins a colocalization coefficient was calculated. The 

Pearson correlation coefficient (cc) was calculated as described in the 

methods section. The coefficient defines the degree of a linear 

correlation between fluorescence signals distributed in two images 

(Manders et al., 1992). In case of 100 % colocalization a Pearson 

correlation coefficient would be cc = 1. This is the case in two identical 

images. The inversion would result in a correlation coefficient of cc = -1. 

If two images do not correlate the cc value is 0. For colocalization 

experiments, membrane sheets from HepG2 cells were prepared as 

already described and after click reaction an antibody staining was 

performed. 

 

 

Figure 24.Colocalization analysis of pPC with SN23 and Syx4. 
(A)Graphshows the Pearson correlation coefficient from the colocalization 
experiments. SN23 0.1 ± 0.03; Syx4 0.16 ± 0,03 (n = 3 experiments, 66 - 101 
membrane sheets were measured. Values are given as mean ±SEM). (B) Membrane 
sheets of HepG2 cells were prepared as already described. Prior to cycloaddition, 
immunolabeling was performed using antibodies against different proteins of interest 
(SN23, Syx4). The membrane sheets were then imaged in the different channels 
(TMA-DPH –not shown, Bodipy, Cy5). The left panels show the structures from the 
pPC of representative membrane sheets. Central panels show the Ab labeling signal 
of the corresponding protein. The right panels show a merged image of both channels, 
demonstrating only little colocalization of the pPC vs. the tested proteins. 
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The colocalization analysis of pPC spots vs.SN23 and Syx4 showed no 

correlation between the staining of pPC and the respective protein. This 

result means that the tested SNARE proteins are not connected to pPC 

spots.  

 

3.6Imaging of PC spots with super-resolution 
microscopy 

The labeling of pPC on cells and membrane sheets showed a novel 

organization level of the lipid on the plasma membrane of cells. In order 

to characterize the spots in more detail super-resolution microscopy 

was applied. STED microscopy was used for exact visualization of 

morphology and size of pPC spots. HepG2 cells were prepared as 

already described and again a click reaction was performed, but for 

STED microscopy it was necessary to utilize a different fluorophore. In 

this case, an azido-coupled Atto647N dye was applied for click-

chemistry.For illustration of the gain in resolution, first a CLSM image 

was taken (Figure 25) and then the setup was switched to STED mode 

in order to improve resolution and quality of images. Signals of spots 

that might appear as one big spot observed by CLSM on a membrane 

sheet preparation can now be distinguished by STED as two or more 

spots. 
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Figure 25.Imaging of labeled pPC with CLSM vs. STEDmicroscopy. 

The spatial resolution of microscopy images is strongly improved by STED microscopy 
compared to conventional CLSM. The yellow arrowsmark regions where pPC 
structures areobservedin CLSM (left panel). The same region was then acquired after 
switching to STED mode (right panel). The yellow arrows demonstrate that the marked 
spots in CLSM in fact consist of twowhen viewed in STED mode. These experiments 
were performed at the European Neuroscience Institute in collaboration with the 
Laboratory of S.O.Rizzoli. S. Saka performed the imaging of two experimental days of 
data shown in figure 26. 

 

However, in general STED microscopy was not necessary to resolve 

spots but more important required to visualize the exact size of the 

spots and therefore improve accuracy of the analysis. Figure 26shows 

the analysis of the spot size. Once a ROI is defined, a linescan (3x30 

pixels) is laid centered over single spots (Figure 26B). The length is 

also important for having a base line on the fluorescence intensity 

profile acquired for each spot so thata gaussian fitting can be performed 

afterwards (Figure 26C). Gaussian half-width corresponds to real spot 

size (Bill et al., 2010). The analysis of spot sizes resulted in an average 

size of 122nm±16nm.  
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Figure 26.STED microscopy of ATTO647N-labeled pPC and analysis of single 
spots. 
A representative STED image of pPC in a native plasma membrane preparation of a 
HepG2 cell.From individual spots (B, shows spot indicated by arrow at different 
constrast), linescan analysis was performed. Intensity profile was fitted to a Gaussian 
distribution from which the full width at half maximum (FWHM) was obtained, resulting 
in 122 ±16nm which corresponds to the size of the spot (n=3 independent 
experiments; for each experiment 122-259 spots from 17-25 membrane sheets were 
analyzed). Value is given as mean ±SEM.  
 

From the imaging experiments using STED microscopyit is possible to 

use the same data for calculation of the enrichment factor of the pPC 

spots in contrast to the homogenous layer of labeled pPC within the 

plasma membrane (Figure 27).An averaged enrichment of 236 ±68% 

could be calculated for pPC spots. It should be noted that the 

enrichment calculation could be an underestimate due to quenching of 

the Bodipy fluorophore preferentially occurring in the densely crowded 

spots, so the real value is in fact much higher. 
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Figure 27.Enrichment of pPC quantified bySTED microscopy. 

For quantifying the enrichment of pPC spots in comparison to the homogenous 
membrane, the same spots wereselected as in spot size analysis. A representative 
STED micrograph is shown on which the sites of the three measurement ROIs are 
marked: a PC spot in the membrane (1), the homogenous layer the closest possible to 
the spot (2) and the background that is used for correction of the values (3). 
Calculations resulted in an average enrichment of 236 ± 68 % (n = 3; for each 
experiment 182 - 314 spots from 17 - 25 membrane sheets were analyzed). The value 
is given as mean ± SEM. 

 

In summary, the results achieved by high resolution microscopy show 

again a spot formation by pPC on the plasma membrane of cells. The 

spots are very numerous and dispersed all over the membrane samples 

but do not move.No specific pattern or order of the spots could be 

identified. The spots were calculated to be 120nm in size and the 

enrichment factor of pPC spots showed a 236% higher concentration of 

pPC in comparison to the surrounding homogenous layer. 
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3.7 pPC is mobile within the plasma membrane of cells 

Lipids and proteins are mobile within the PM of cells. Analysis of 

dynamics is important in order to check whether the molecules within 

the pPC spots exchange lipids with the surroundings. The displacement 

might be hindered by surrounding within the membrane or by 

cytoskeletal structures associated to the PM. FRAP is a commonly used 

microscopy method for the analysis ofdiffusional mobility of membrane 

components. Usually, fluorescent proteins (e.g. EGFP) are used in 

FRAP but in principle all fluorophores that can be bleached are suitable 

for this method. The azido-sulfo-Bodipy used for click chemistry 

hassimilar excitation and emission curves as GFP and can thereby be 

bleached in the same manner. 

For testing the dynamics of pPC, cells were seeded on glass coverslips 

and fed over night with propargyl-choline. The next day, membrane 

sheets were prepared and the click reaction was performed. After 

cycloaddition of the azido-sulfo-Bodipy the sample was analyzed on a 

CLSM with a FRAP module that permits the bleaching of a defined ROI 

within the field of view.In the case of the clicked pPC it could 

beconfirmed that lipids move fast on the PM.An interesting 

observationwas made in one of the first FRAP experiments in which not 

only fast recovery of the homogenous layer containing pPC was 

observed but also in the enriched spots. Figure 28shows the recovery 

of such a spot within seconds. 



Results 
 

 
 78 

 

Figure 28. FRAP of pPC on membrane sheets of HepG2 cells. 

Native membrane sheet acquired with a confocal microscope. PC fluorescence in a 
defined squared ROI (30x30 pixels)was bleached and five more images were 
acquired.The arrow marks the region of interest bleached in this FRAP experiment. 
 

The fast diffusion of lipids within membranes has been already shown in 

earlier studies, so this question was not addressed when establishing a 

new FRAP protocol. In the first observations, the spots remained static 

and were able to recover. A new reduced FRAP protocol was then 

established as described in the methods. The protocol includes shorter 

acquisition times because of the bleaching effects of the Bodipy labeling 

to the pPC. The new question that arose was whether there is 

exchange between platform molecules and their surroundings. The new 

designed experiments should answer this. It cannot be excluded that 

Bodipy has an influence on the overall diffusion dynamics.  

In order to control for spontaneous recovery of the Bodipy dye, the 

FRAP protocol was applied on whole membrane sheets (Figure 29). 

Under the established experimental conditions, at least two membrane 

sheets were imaged with the exception that not a ROI was bleached but 
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one entire membrane sheet. Under these conditions no recovery was 

observed, documenting that the recovery seen in figures 28, 30 and 32 

are the result from unbleached molecules diffusing into the bleached 

area.  

 
 

Figure 29. FRAP control for labeling of pPC on membrane sheets. The figure 
shows a representative pair of plasma membrane preparations.Membrane sheets of 
HepG2 cells were prepared as already described and after cycloaddition of Bodipy to 
pPC the samples were used directly for FRAP experiments. For this experiment, a 
bigger ROI was set for visualizing two whole membrane sheets (pre-bleach). Then a 
bleaching ROI was placed over a whole membrane sheet and an image was acquired 
after bleaching(post-bleached). After 60 s a final image was acquired (recovery). (n = 
3, each experiment includes 5 membrane sheets) 
 

It was thencalculatedhow manybleached PC spots are able to recover 

with unbleached labeled PCin the ROI. The FRAP protocol generates a 

pre-bleach image where a ROI for bleaching is randomly set on the 

homogenous layer of the plasma membrane preparation. Bleaching 

then was followed by immediate image acquisition (post-bleach). 60s 

after initiation of bleaching another image is acquired for visualization of 

the fluorescence recovery (recovery). Figure 30 shows the results from 

application of the new FRAP protocol on native membrane sheets. 
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Ahistogram demonstrating the distribution of the amount of 

fluorescence recovery on the level of individual nanostructures is shown 

in figure 30. The levels of recovery differ: some spots recover slightly 

while others recover almost to the initial intensity. All in all, most spots 

recovered significantly and remained static. Spot enrichment was 

calculated as already described for STED imaging and recovery 

intensity was related to pre-bleach intensity yielding %-recovery. The 

results are shown in figure 30 (lower panel). 

 

 

Figure 30. FRAP analysis of pPC on native plasma membranes of HepG2 cells. 
Upper panelsshow arepresentative membrane sheet and the different acquired 
timepoints of the images.In the pre-bleach and the recovery image, fluorescence 
arising from spots was corrected for uniform background fluorescence. The calculation 
for the recovery of the spots was performed as described in the methods section. For 
individual spots fluorescence intensity after recovery was expressed as percentage 
from the pre-bleach value. Histogram (lower right panel, results are seen in the table 
to the left) shows the distribution of the extent of fluorescence recovery on the level of 
individual platforms (n=3, each experiment includes 14-28 spots measured on 5-13 
membrane sheets). Values are given as mean ±SEM.  
 

Combining the results obtained so far (%-recovery of spots and the 

calculation of the enrichment factor as in STED) no correlation could be 

established between the percentage recovery and the enrichment of 
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PC. The results are shown in figure 31. For correlation analysis all spot 

values that show at least 50 % higher intensity than the surrounding 

were included.  

 

Figure 31.Correlation of pPC enrichment factor vs. recovery. 
Intensity of single PC spots over homogenous background (x-axis) was plotted versus 
the recovery percentage (y-axis). In this graph all spots from 3 independent 
experiments were included that show a minimum of 50% intensity over the 
background (n=3experiments, 72 spots >50% enrichment factor). 

 

The FRAP experiment shows that PC spots exchange molecules with 

their surroundings. In addition, it can be concluded that the spots are 

not organelles associated to the PM because those should not recover 

after complete bleaching. 

 

3.8Does fixation influence the recovery of lipid spots? 
The results so far show that on native plasma membrane sheet 

preparations PC molecules diffuse.The observed spots with enriched 

fluorescent signals from pPC recovered after FRAP analysis. An 

interesting question to solve was if the commonly used fixative PFA 

would influence this recovery. PFA is a fixative agent that denaturates 

proteins and thereby terminatesbiochemical reactions. Fixation of cells 

has been shown to have no effect on the dynamics of lipids (Kusumi 

and Suzuki, 2005). For testing this, HepG2 membrane sheets were 

prepared and fixed prior to the click reaction or after performing 
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cycloaddition. As shown in figure 32, in both cases fixation reduced 

recovery modestly. The recovery images did not show a high amount of 

recovery as seen in the native plasma membranes, an imprint remains 

in the ROI that was bleached. 

 

 

Figure 32. FRAP analysis of membrane sheets including PFA fixation before or 
after labeling of pPC. Membrane sheets of HepG2 cells were prepared and fixation 
occurred before or after the click reaction. The upper panel is representative for 
images obtained after applying the FRAP protocol on membrane sheets that were 
fixed after click reaction. The arrows mark spots that recover after bleaching. Lower 
panels show the histograms of the different conditions of fixation before (left 
histogram, n=3, each experiment includes 6-14 spots measured on 3-4 membrane 
sheets) and after (right histogram, n=3, each experiment includes 5-24 spots 
measured on 4-9 membrane sheets) click reaction. Values are given as mean ±SEM 
and only spots with enrichment factor >50% were included. 
 

Enrichment factor and recovery rate were analyzed for correlation as 

describedfor native membrane sheets.Again, no correlation could be 

observed (Figure 33).  
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Figure 33. Correlation of pPC enrichment factorvs. recovery on fixed cells. 
Graphs show the correlation of recovery vs. enrichment factor of pPC spots fixed 
before (A) and after (B) the click reaction. Intensity of single PC spots over 
homogenous background (x-axis) is plotted versus the recovery percentage (y-axis). 
In this graph all spots that show a minimum of 50% (and up to 150%) intensity over 
the background are included. These are the major populations encountered in the 
analysis. Therefore the number of spots presented in the range is reduced in 
comparison to the native plasma membrane preparations (for A, n=3 experiments, 13 
spots >50% enrichment factor; for B, n=3 experiments, 30 spots >50% enrichment 
factor). 
 

In summary, pPC was demonstrated to diffuse across the PM in fixed 

preparations.The pPC found within the spots exchanged with its 

surrounding but the spots themselves remained stable and static. There 

was no correlation of the enrichment factors to the recovery 

percentages and fixation only had a moderate effect on the diffusion of 

PC molecules in the PM. The data obtained from FRAP suggests also 

that there is no enzymatic activity required for pPC spot formation. 

 

3.8.1Lipid platforms diffuse on the PM of membrane sheets after 
incubation with trypsin 

In order to show the dependency of the lipid platforms on proteins and 

check if the spots can be destabilized in any manner, membrane sheets 

were incubated with trypsinafter click reaction. The unspecific cleavage 

of proteins by this enzyme resulted in liberation of the spots that started 

floating on the PM after less than a minute. The spots have distinct 

mobilities and those spots that were close to the membrane border 
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didnot disappear, but moved along the edge or back inwards again 

(personal communication Elisa Merklinger).  

 

 

 
Figure 34. Trypsin treatment of membrane sheets after click 
reaction.Epifluorescence microscopy of native membrane sheets after addition of 
trypsin. Left column shows representative membrane sheets with labeled pPC 
platforms, in the middle a magnified view includingthe platforms that are tracked by 
the analysis. Right column illustratesthe tracks from the platforms over a treatment 
period of 200s. Diffusion coefficients were calculated from linear regression lines 
resulting in values of 0.311 x10-4 µm2/s (control) and 8.56 x10-4 µm2/s (trypsin).Result 
was obtained in collaboration with E. Merklinger and J.G. Schloetel. E. Merklinger 
performed the experiment and J.G. Schloetel the analysis. Figure was provided by 
E.Merklinger, J.G.Schloetel and T.Lang. (Spitta et al., 2012) 
 

In summary, the data suggest that protein networks immobilize the PC 

structures on the plasma membrane of cells. In a long-term treatment of 

the membrane sheets with trypsin (incubation at RT for 45 min) the spot 

number diminished but this effect is probably the effect from longer 

incubation with the enzyme (personal communication of Elisa 

Merklinger). The proteolytic reaction is very efficient and therefore the 

networks destabilize that maybe recruit the pPC. 
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4. Discussion 

In this work, a new level of organization of the phospholipid PC is 

presented resulting from studying pPC. Propargyl-PC forms stable long-

lived lipid platforms and these platforms were visualized on whole cells 

and on native plasma membrane preparations. The platforms were 

characterized in size (120 nm) and an enrichment factor was calculated 

(236%). The dynamics of the platforms were addressed by 

demonstrating that they exchange the pPC molecules with their 

surroundings.Formation does not depend on the pPC level and most 

likely involves proteins. Though dynamic, they do not move laterally in 

the plasma membrane. Moreover, the results obtained by collaborations 

demonstrate that the lipid platforms can be destabilized by long term 

enzymatic treatment with trypsin. This result gives another hint that 

there must be a protein lipid interaction mechanism that is not fully 

understood. 

 

4.1 Click-chemistry – is it suitable for visualizing PC 
platforms? 

Click chemistry is a reliable, quick and easy method for labeling the 

non-genetically encoded lipids.In fact all the advantages that were first 

predicted when the term click-chemistry was introduced already a 

decade ago (Kolb et al., 2001), are supported by the experiments in this 

work and it is because of versatility reasons (click chemistry is not only 

used in biological research) that this method is gaining rapidly 

popularity in many research areas (Tian et al., 2012; Yang et al., 2012; 

Faugeras et al., 2012).As observed in this work, after cycloaddition of 

azido-Bodipy and azido-ATTO647N to pPC, the labeled lipid could be 

detected in all microscopy setups utilized for analysis. The effectiveness 

of the reaction was demonstrated simply by the fact, that fluorescence 

could be detected within whole cells and distributed in cellular 

structures e.g. the endoplasmic reticulum. The use of membrane sheet 
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preparations helped to visualize pPC on the basal PM of cells. This 

means that after bioincorporation of propargyl-choline into pPC cells still 

transfer pPC to the PM. So far, lipid labeling has been commonly 

achieved by chemically introducing a fluorophore (e.g. NBD) to the fatty 

acyl chain, sometimes even substituting almost the whole acyl chain of 

a lipid. These lipids are then utilized in experimental approaches (e.g. 

McIntosh et al., 2010). The biochemical properties of such lipids are 

strongly influenced by the corresponding fluorophore. Not only steric 

hindering or reordering might occur when such lipids are incorporated 

into the membrane. This is not the case with the method presented in 

this work. The biochemical properties of pPC synthetized from uptake of 

propargyl-choline should remain equal since the small alkyne group on 

the choline is only required when cycloaddition of azido-sulfo-Bodipy or 

another azido-coupled fluorophore to pPC is performed. This makes the 

presented click-chemistry approach a less invasive method, since the 

lipid is first metabolically labeled and then for experiments the 

fluorophore is introduced when required. Nevertheless, on the one hand 

it cannot be excluded that Bodipy interferes on the surrounding above 

the headgroup of the lipid, but on the other hand this is rather unlikely 

because ATTO647N that carries a different charge shows similar spots.  

Phosphatidylcholine is the most abundant phospholipid within 

mammalian membranes (van Meer and de Kroon, 2011). The labeling 

efficiency on the thin layer chromatography analysis supports the view 

that spots represent pPC and not another labeled lipid (analysis showed 

98% labeling of pPC to only 1 % SM and lysoPC). Interestingly, the 

same ratio of labeling was detected for all time points of incubation (2h, 

4h, 6h, 8h and 10h). Data was not shown on which cells seeded on 

coverslips and fed with propargyl-choline were sonicated and then click 

reaction was applied in order to image these samples with different 

incubation times (2h – 10h) Already in the 2h feeding time, cells 

managed to bioincorporate the propargyl-choline into pPC and spots 

could be visualized. This suggests a rapid metabolism of the choline.  
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Click-chemistry is a suitable tool for visualizing pPC nanodomains. This 

successful visualization of labeled pPC after click reaction with modern 

microscopy techniques enabled a detailed study concerning the lateral 

organization of pPC within the PM. 

 

4.2 PC organization in an authentic lipid raft 

After cycloaddition of azido-sulfo-Bodipy to pPC spottiness was 

detected in whole cells and on membrane sheet preparations. In the 

images from the original publication (Jao et al., 2009) spots within cells 

representing presumably cellular organelles could be seen, but it was 

not expected to find spotty signals within the PM.  

The first addressed question was whether platforms are majorly 

composed of pPC. Enrichment calculations showed a 200 % increase 

over the uniform layer. In order to test whether pPC platforms exclude 

other types of molecules because of dense packing different membrane 

dyes were utilized for colocalization analysis (RedCell Mask, R18 and 

TMA-DPH). Based on their physicochemical properties, the distinct 

membrane dyes should also localize within the platforms to similar 

extent. But this was not the case. They showed low or little einrichment 

within the pPC spots (personal communication of E. Merklinger and T. 

Lang). The result is in line with the idea that PC is the key component of 

the observed platforms. 

However, the enrichment could also be a result of docked organelles 

rich in pPC or vertical accumulation of pPC in membrane invaginations. 

But colocalization with markers for membrane invaginations such as 

Clathrin and Caveolin-1 was low (personal communication of E.M and 

T.L).Spots are also not docked organelles because in FRAP analysis, if 

enrichment was also due to an organelle or a binding vesicle, then no 

recovery should be detected, because unbleached pPC molecules 

cannot reach the organelle. The pPC platforms are no artifacts that 

might be created by a pPC phase because when performing the click 
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reaction and imaging at 37°C the spots were still present. The trypsin 

experiment supports the concept that pPC spots are true lipid rafts that 

are able to float as a unit on the plasma membrane. 

The results support the hypothesis that pPC spots are authentic 

platforms and not membrane invaginations or docked organelles. 

 

4.3 PC and cholesterol, two players from the same team 
with different characteristics 

Cholesterol and sphingomyelin have been vastly studied due to their 

assumed participation in the formation of membrane rafts. Simons and 

Ikonen describedthese two lipids to be the major driving forces for 

formation of the rafts, but so far there is no exact characterization for 

example packing density and the amount of cholesterol/SM that are 

present in the nanometric raft assemblies.Depletion of cholesterol from 

membrane sheet preparations on which pPC was labeled showed a 

decrease of pPC spots (personal communication of I. Lauria, Spitta et 

al., 2012). This result suggests that pPC might be also located or 

related to cholesterol-rich phases. Nevertheless, a true dependency of 

PC to cholesterol or vice versa could be analyzed by specific 

manipulation of the lipid concentrations within membranes. Therefore, 

the use of lipid transfer proteins will confirm a dependency. Proteins like 

StarD1 or StarD2 that are capable of binding to just one specific lipid 

(cholesterol and PC respectively) will help to precisely manipulate the 

membrane composition. 

Cholesterol was described as a lipid that stabilizes the plasma 

membrane and influences its rigidity while PC has been only described 

as a rather neutral membrane component. So far, the only relation that 

has been shown for these two lipids is that cholesterol packs PC at 

higher densities in bilayers (Xu and London, 2000; Hub, et al., 2010). 
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4.4 Mechanism of PC platform formation and its 
biological role 

There are several hints obtained from the results presented in this work 

that point to a role of proteins in the pPC platform formation. The exact 

partner within the huge number of proteinshas not been established. 

One can only speculate about this missing link.  

The results obtained from intracellular calcium increase suggest a 

possible electrostatic influence. This influence was already observed on 

protein cluster formations (Zilly et al., 2011). The distortion of the 

protein cluster formation by calcium ions seems to have an effect on the 

number of labeled pPC spots.  

Experiments with StarD2 treatment of plasma membranes might be 

useful to clarify if the protein/lipid complex can be destabilized by 

depletion of pPC from the PM pool. The decrease in concentration of 

pPC on the PM should have a direct effect on the formation of pPC 

platforms.Even though half of the pPC was depleted from the 

membrane (100 nM StarD2 treatment) platforms were still present. This 

points to a strong recruiting role of proteins, but it is unclear if the 

enrichment factor is the same. It is necessary to continue exploiting the 

possibilities that lipid transfer proteins offer.  

Furthermore, the trypsin experiment directly demonstrates that the pPC 

spots formed within the PM of cells must be connected to a protein (or a 

protein complex). The liberation of the platforms as floating entities on 

the PM is a remarkable observation. The enzyme cuts in unspecific 

manner many proteins removing a possible provided anchorage 

system. Even a connection to cytoskeletal proteins might be possible. 

PC spots could represent the basement of the pillars that connect and 

support cytoskeleton localized in intimate contact with the inner leaflet 

of the PM.  
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The exact mechanism of PC platform formation can only be understood 

after clarifying and detecting the exact protein partners and the 

information so far is not sufficient for clarifying the yet unknown local 

function and the role of PC platforms at the basic level. A biological 

importance of PC domains is also unknown and can only be speculated 

on. 

 

4.5 Model of PC organization within the PM  

For illustration of PC packing within the pPC spots, a model was 

composed from the data obtained so far by experimental results of this 

work in combination with information gained from studies that analyzed 

the specific composition of vesicles (Takamori et al., 2006) and the 

assumption that PC makes up 40 % of the lipids found in plasma 

membranes (van Meer et al., 2008).The characterization of the pPC 

platforms performed in this work and the addition of the mentioned 

knowledge helped to generate the model presented in figure 35.  

In summary, pPC platforms have a size of 120 nm and enrichment of 

pPC (around 200 %) suggests that within platforms 20,000 pPC 

molecules cover around 50 % of the structure. 

This model was calculated based on the characteristics of pPC. The 

total amount of molecules is probably an underestimate because of the 

self-quenching effect between tightly packed dyes. Nevertheless, it is 

concluded that in the platforms pPC molecules are packed in high 

densities forming a novel lipid arrangement. 
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Figure 35.Model of PC platforms on the PM of cells.Scale bar represents 1 

nm.Upper right panel demonstrates the region that is focused by the upper right panel. 

The region viewed has a total length of around 15 nm. The transition of loose packing 

of pPC and the initial region of the pPC platform can be visualized from top view. 

Lower panel demonstrates in a sectional view the order of pPC within the PM- again 

the transition section and the edge of a platform are shown (Figure kindly provided by 

T.L. and C.K. Modified from Spitta et al., 2012). 
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5. Outlook 

The results shown in the present work demonstrate a new organization 

form of the lipid phosphatidylcholine. A long standing question in cell 

biology, namely whether lipid platforms exist in biological membranes, 

has been solved. As shown using PC as an example, PC platforms 120 

nm large and contain about 20,000 molecules that cover 50 % of its 

surface.  

In order to expand the knowledge of its biological relevance it is 

important to perform further experiments. For example, by utilizing 

photoactivation localization microscopy (PALM) it should be possible to 

quantify theexact number of lipids that are available in such a PC spot. 

This nanoscale analyses have been already successfully applied when 

describing protein clusters (Lang and Rizzoli, 2010). Second, the 

protein system that lies under the formation of such spots and stabilizes 

this spots has to be identified. Further colocalization analysis with 

markers of proteins that are involved with the cytoskeleton should be 

performed (e.g. using phalloidin staining or actin staining). Third, the 

lipid transfer proteins that are specific in binding will provide a toolbox 

that enables a manipulation in concentrations of the lipid composition of 

membranes and therefore analysis on membrane sheets as already 

shown in this work will help to understand the role of lipid proteins 

interactions where knowledge is still very limited. In the end, by 

understanding the exact mechanism of platform formation, it will be also 

possible to find out the biological role of such lipid platforms. 
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