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Abstract 

The first part of this thesis is concerned with the reaction mechanism of activation of H2O by 

titanocene(III) chloride. Two important aspects of Cp2TiCl(H2O) complexes are investigated: 

(1) does the oxygen from water directly bind to titanium? and (2) is there a hydrogen bond 

between water and chloride? 

Experimental and computational studies have been carried out to describe the correct 

structures and revised mechanism of water binding. In the computational study, calculations 

of the bond dissociation energies for each molecules and the complexation of Cp2TiCl(H2O) 

with THF and without THF are performed. In the experimental study, the EPR and CV 

measurements provide direct evidence for the cationic species as elucidated from the 

magnetic properties of the Ti center. The calculations are in a good agreement with the 

experimental observations. 

The second part of the thesis concentrates on the reaction mechanism of reductive epoxide 

opening. This part is composed of two sections that deal with the binding of epoxide to 

titanocene(III) chloride with and without spin trapping. During epoxide ring opening, the spin 

trapping method has been carried out to detect the presence of a carbon radical.  

The calculations on the formation of the Cp2TiCl-epoxide show that, in the presence of 

chloride, epoxide does not coordinate to titanium. In agreement with the calculations, the 

EPR spectra of this complex reveal rhombic symmetry and show dissociation of chloride 

ligand.  

With respect to the spin trapping experiments, DFT studies of Cp2TiCl(DMPO)-Epoxide 

indicate that the epoxide opens reductively upon the binding to Ti(III). Further EPR 

measurements show a signal coming from a DMPO radical.  

The third part of the thesis focuses on the characterization of the paramagnetic Ti species in 

terms of electronic, structural, chemical and magnetic features. A novel concept for catalytic 

radical 4-exo cyclizations is studied, which does not require the assistance of the gem-dialkyl 

effect. The computational study shows that the formation of the corresponding cis-products is 

thermodynamically unfavorable and hence their ring opening is too fast to allow the pivotal 

radical reduction.  

The last part of the thesis concerns the oxidation of a Li/X (X = Cl–,F–) phosphinidenoid 

complex. To obtain insight into the mechanistic aspects of this oxidation reaction, the 

reactivity of a Li/X phosphinidenoid complex is investigated by using the two tritylium salts 

[Ph3C]BF4 and [(p-Tol)3C]BF4. The EPR investigations of this reaction show that the unpaired 

electron occupies a pure 3p orbital at P without admixture of the 3s orbital. 

  



 

 

Zusammenfassung 

Der erste Teil der vorliegenden Arbeit beschäftigt sich mit dem Reaktionsmechanismus der  

Aktivierung von H2O mit Titanocen(III)chlorid und konzentriert sich hierbei auf zwei wichtige 

Aspekte des Cp2TiCl(H2O) Komplexes. (1) Bindet der Sauerstoff des Wasserliganden direkt 

an das Titanzentrum? (2) Kommt es zur Ausbildung von Wasserstoffbrücken zwischen  

Wasser und Chlorid im Titanocen Komplex?  

Hierzu wurden experimentelle und theoretische Studien durchgeführt, um korrekte  

Strukturvorschläge zu machen und den Mechanismus neu vorherzusagen. In der  

computerchemischen Studie wurden Berechnungen zu Bindungsdissoziationsenergien der  

verschiedenen Moleküle und die Komplexierung von Cp2TiCl(H2O) mit THF und ohne THF  

durchgeführt. Die experimentellen EPR spektroskopischen und elektrochemischen (CV)  

Messungen liefern einen direkten Beweis für die Beteiligung einer kationischen Spezies, wie 

aus den magnetischen Eigenschaften des Ti Zentrums hervorgeht. Die theoretischen  

Ergebnisse stimmen gut mit den entsprechenden experimentellen Daten überein. 

Der zweite Teil der Arbeit konzentriert sich auf den Reaktionsmechanismus der reduktiven  

Epoxidöffnung. Dieser Teil besteht aus zwei Abschnitten, die sich mit der Bindung des  

Epoxids an Titanocen(III)chlorid befassen, wobei die Experimente hier sowohl mit oder ohne 

Spin-trapping durchgeführt wurden. Während der Epoxidringöffnung muss das Spin-trapping 

Verfahren angewandte werden, um das Vorhandensein e ines radik l ischen  

Kohlenstoffzentrums nachweisen zu können.  

Berechnungen zum weiteren Verlauf der Reaktion zeigen, dass die Bildung von  

Cp2TiCl-Epoxid Komplexen die Dissoziation von Chlorid bedingt. Sofern ein Chloridligand an 

den Titanocen komplex koordiniert, kann das Epoxid nicht an das Titan atom binden. In  

Übereinstimmung mit den Berechnungen zeigen die EPR-spektroskopischen Ergebnisse  

eine rhombische Symmetrie der Komplexe und die Dissoziation von Chlorid.  

In  Bezug auf  d ie Spin - t rapping-Exper imente zeigen d ie DFT Studien der   

Cp2TiCl(DMPO)-Epoxid Komplexe, dass das Epoxid reduktiv geöffnet wird sobald  

Koordination an das Titan(III) Ion erfolgt. Weitere EPR Messungen zeigen ein eindeutiges  

Signal, welches einem DMPO Radikal zugeordnet werden kann. 

Der dritte Teil  fokussiert sich auf die Charakterisierung von paramagnetischen Ti-Spezies in 

welches keine Hilfe des gem-dialkyl Effekts erfordert. Die theoretische Studie zeigt, dass die 

Bildung des entsprechenden cis-Intermediates thermodynamisch ungünstig ist und damit  

seine Ringöffnung zu schnell verläuft, um die entscheidenden radikale Reduktion zu  

ermöglichen.  

Der letzte Teil der Arbeit befasst sich mit der Oxidation von Li/X (X = Cl–,F–) Phosphinidenoid

Komplexen. Um einen Einblick in die mechanistischen Aspekte der Oxidationsreaktion zu  

erhalten, wurde die Reaktivität der Li/X Phosphinidenoid Komplexe bezüglich der beiden  

Tritylium Salze [Ph3C]BF4 und [(p-Tol)3C]BF4 untersucht. Die EPR-spektroskopische Analyse

dieser Reaktionen zeigen, dass das ungepaarte Elektron ein reines 3p-Orbital am P Atom  

ohne Beimischung der 3s-Orbital besetzt. 
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1 Introduction 

1.1 Organic Synthesis in Chemistry 

In synthetic chemistry, the synthesis of substances should ideally be safe and environmentally 

friendly. It is also advantageous to optimize the synthesis with respect to energy consumption and 

costs through the use of efficient procedures. Preferably, selective reactions are performed, for 

which knowledge of the chemistry of the educts is required. Furthermore, the use of protecting 

groups should be avoided, if possible. In the context of this concept, the requirements for an ideal 

synthesis were described in 1989 by E.J. Corey.1 Corey also described the requirements for an ideal 

asymmetric synthesis, which is presently commonly used in modern organic synthesis. An 

asymmetric synthesis is a reaction in which a chiral moiety is generated from a prochiral center such 

that the asymmetric products, either enantiomers or diastereomers, are formed in different 

amounts. Ideally, only one isomer is formed.2 

In pharmacology, asymmetric synthesis should be optimized to produce active isomers analogous to 

the natural products. The natural products have clearly defined stereo-centers, and it was recognized 

early that the isomers are different in their reactivity.3 Zopiclone, a pharmaceutical substance that is 

used to treat insomnia, is an example. The (S)-enantiomer, which is known as eszopiclon (Figure 1.1) 

has a higher binding affinity to specific benzodiazepine receptors in the human brain than the (R)-

enantiomer. 

 

Figure 1.1. Eszopiclon. 

 

Stereo centers also play a role in sensory impressions such as smell. As a result, there is presently a 

great deal of interest in stereoselective synthesis for aromatic substances. The growing demand for 

stereoselective methods makes it essential to improve upon existing synthesis methods and to 

develop and establish new processes. 

 

http://upload.wikimedia.org/wikipedia/commons/3/32/(S)-Eszopiclone_Structural_Formulae.png
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Over the past three decades, the knowledge of stereoselectivity has improved tremendously. New 

reactions have been especially established in radical chemistry and catalysis. The range of reactions 

extends up to highly selective catalytic processes with transition metals. In addition to the

application of these methods, the continued development of known reactions and methods is a focal 

point of researchers. 
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1.2 Epoxides 

Among all substances used as educts in organic and synthetic chemistry, epoxides are one of the 

most commonly used substrates. This is because of their high reactivity and their ease of preparation 

from available precursors such as olefins or carbonyl compounds. Many natural substances possess 

epoxide units, which play a decisive role for their specific biological activity. Examples are triptolide, 

epothilones and cryptophycin (Figure 1.2a). These molecules are key intermediates in the 

biosynthesis of many natural products such as brevetoxin-B, monensin and glabrescol (Figure 1.2b). 

 

 

Figure 1.2. Examples of natural products containing epoxide units.
4
 

The opening of epoxides, which is based on titanocene(III)-promoted epoxide deoxygenation, has 

been used in the synthesis of a wide array of natural products. Methods for synthesizing complex 

natural products require selectivity, mild experimental conditions and wide functional group 

tolerance. Because the requirement of this condition can be provided by titanocene(III) complexes, 

the method has been used in the synthesis of about  natural products and advanced synthons. 

Cuerva J. M., Oltra J. E.5,6 and coworkers have demonstrated that titanocene(III)-catalyzed radical 

cascade cyclizations has been used successfully in the synthesis of terpenoids. Another example is 

the work of Roy et al.,7,8 which has been intensively exploited for the total synthesis of antibiotic 

butyrolactones, and the works of Ziegler and Sarpong,9 who used a titanocene-promoted cyclization 

for the synthesis of a protected carbocyclic core of BMS200475 (entecavir), a nucleoside active at the 

nanomolar level against the hepatitis B virus. Consequently, in these fields the method has already 

largely proved its synthetic usefulness. This titanocene(III)-based transformation is exhaustively 

explained in chapter 1.2.  

a 

b 
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The origin of the high reactivity of epoxides is based on the inherent strain of approximately 27 

kcal/mol in the three-membered ring, which provides a sufficient driving force for the ring opening 

event. Their facile nucleophilic ring opening has been very useful in SN2 reactions, which conserve the 

configuration at the reacted carbon atoms. Among the most useful of the epoxide openings in SN2 

reactions are the transition-metal-catalyzed desymmetrizations of meso-epoxides and the 

production of monosubstituted and 1,1-disubstituted epoxides.10-13 Thus, a broad range of 1,2-

difunctionalized compounds have been obtained with high enantio- and stereo-selectivity, both of 

which possess two contiguous chiral centers. In this respect, epoxides, especially when prepared in 

enantiomeric excess, have furnished a number of highly useful procedures.  

Probably the first asymmetric epoxidation using a synthetic catalyst was achieved by Katsuki and 

Scharpless14 in 1980, for which Barry Scharpless was awarded the 2001 Nobel Prize for his work in 

the field of asymmetric epoxidation. His awarded study has been expanded greatly for the 

preparation of pharmaceutical products such as antibiotics, anti-inflammatory drugs and other 

medicines. In 1990, Jacobsen and Katsuki15,16 discovered a system for catalytic asymmetric 

epoxidation that contains unfunctionalized alkenes by using manganese salen complexes. 

However, in spite of the successful applications, there are also limitations to this approach.17,18 

Enantioselectivity is controlled by some of alkene classes via the available epoxidation procedure. 

Interestingly, achiral meso-epoxides (symmetric) give rise to chiral ring opening, which these 

protocols do not perform. In order to synthesize the enantiomeric ring-opened products, a 

conceptually different approach has been developed. This approach is not based on enantioselective 

epoxides. (Scheme 1.1) 

 

Scheme 1.1. Enantioselective ring-opening of a meso-epoxide (A) and racemic epoxide (B). 

An alternative approach to exploit the high reactivity of the strained epoxide is constituted by ring 

opening reactions through electron transfer from low-valent metal complexes. The general idea of 

this concept was achieved by Nugent and RajanBabu in 1988-1994.19-22 In this scenario, a suitable 

chiral catalyst is used, typically a chiral Lewis acid that coordinates to the oxygen and activates the 

epoxide toward electron transfer by complexation with the metal and its ligands. Titanocenes have 

emerged as the most powerful compounds in these transformations, which reductively open the 

epoxide either with or without deoxygenation. This is achieved by epoxide binding to the titanocene 

followed by cleavage of the C-O bond through a homolytic substitution reaction and overcoming the 

activation energy of the latter process.23 Even the oxygen rebound step, a homolytic substitution 

reaction has been also discussed for the hydroxylation reaction of hydrocarbons either by 
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organometallic complexes or by enyzmes as such the P450 enzymes.24 The mechanistic aspect is 

shown in Scheme 1.2, which includes a ring opening, ring closure and hydroxylation reaction. 

 

                                    

Scheme 1.2.  Reaction featuring a homolytic substitution reaction with a metal oxygen bond. 

1.2.1 Examples of Epoxide Ring Opening Reactions 

Probably the first example of epoxide opening via electron transfer was reported in 1950. Brown and 

coworkers reported that the various labile norbornyl epoxides would be reduced by using lithium-

ethylamine to corresponding alcohols.25 This reaction was processed under strongly protic Birch 

conditions, in which norbornanol (4) was generated from norbornene oxide (1) in 87 % yield (Figure 

1.3).  

 

Figure 1.3. The reduction of narbornene oxide by Brown. 
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In this reaction, first the -metal-oxy radical (2) is formed by an electron the transfer to epoxide. This 

radical is converted in a subsequent step by a second reduction into corresponding organolithium 

compound (3). Finally, the abstraction of lithium-carbon and lithium-oxygen bonds results in alcohols 

(4). Additionally, the protic birch conditions ensure that no organolithium compound is formed, 

which interferes with other electrophiles in the intermediate stage.26,27 However, the calcium reagent 

can be also reduced epoxide to alcohols in etylenamine in higher yields, which is the possibility of 

choosing large-scale reductions of epoxides.28                  

In this respect, an important reaction was discovered by Bartmann29 in 1986. He demonstrated that 

epoxides could be opened by aromatic radical anions such as biphenyl at low temperature via 

electron transfer under aprotic Birch conditions (Figure 1.4). 

 

Figure 1.4. Epoxide opening with aromatic radical anions by Bartmann. 

The regioselectivity of ring opening depends on the substituents of the oxirane. If the substituent is a 

phenyl or an ester group (5), the neighboring carbon-carbon bond is only cleaved and includes 

enalotes and benzylic organometallic compounds (6). But if the substituent is an alkyl group (7), the 

more distant carbon-oxygen will be cleaved, which lead to the less-substituted organolithium 

compounds (8). The intermediate -lithioalkoxides can be successfully trapped at a low temperature 

(-90 °C) by using very reactive electrophiles, for example, H2O, D2O, CO2, MeI or disulfides.30 

 

 

Figure 1.5. Calculation of epoxide opening by Cohen and Houk. 
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The mechanism of this oxirane opening has been explored by Cohen and Houk. (Figure 1.5) The 

comprehensive calculations show that the lithiated radical anion (9) is a decisive intermediate. This 

study also predicted that the intermediate opening of epoxide was exothermic (-100 kJ/mol) and that 

radical (10) was obtained, which was further reduced to (11). 31  

Two years later, Bartmann, Nugent and Rajanbabu introduced a new concept, in which the 

titanocene(III) chloride can be used as a stoichiometric reagent for the reductive opening of epoxide 

with or without deoxygenation. Their hypothesis is based on a -complex of epoxide with a transition 

metal, which possesses a half-filled d-orbital. The carbon-centered -metaloxyradical is formed after 

the carbon-oxygen bond is cleaved. Their study has striking an analogy to the cyclopropylmethyl 

radical for which the opening of the epoxide proceeds through electron transfer19-21 (See Figure 1.6). 

 

Figure 1.6. Opening of cyclopropylmethyl radical with the strategy of Nugent and Rajanbabu. 

 

These unprecedented features of epoxide make them attractive reactants for radical chemistry. 
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1.3 Radicals in Organic Chemistry 

Free radicals are paramagnetic reactive intermediates of considerable importance in the organic 

chemistry.32,33 A detailed picture of the reactivity, selectivity and stability of many types of organic 

radical has emerged34-36 and free radical reactions in organic synthesis are highly desirable. A review 

by  Hart37 in 1984 has provided a summary of accomplishments prior to the  period of rapid growth. 

In another review, Giese et al.38 have provided in-depth coverage of important concepts and 

applications, in particular the mildness of radical generation, the wide applicability to many 

functional groups and the high predictability of C-C bond-forming reactions.  

Because of the advantages of radical reactions, the research groups have become increasingly 

interested in radical chemistry. The drive to accurately understand the mechanism of radical 

reactions derives from the desire of new developments that contain radical-based stereoselective 

reactions and synthesis. 

1.3.1 History of Radical Chemistry 

Radicals in organic synthesis were discovered long ago. The first stable radical in organic chemistry 

was observed in 1900 by Gomberg39. He developed the synthesis and investigated the reactivity of 

the triphenylmethyl radical, which is in equilibrium with its dimer (Figure 1.7). In his work, Gomberg 

was actually looking for tetramethylmethane and hexaphenylethane but found the radicals instead. 

Nevertheless, he established a low yield of the desired products. Moreover, he realized that the 

synthesized product includes an unpaired electron. Another example is aromatic p-diamine or so-

called Wurster’s salt, which is a radical-cation or a ketyl radical anion from benzophenone and which 

may polymerize in a sufficiently concentrated solution40. These radicals are, in general, much more 

stable than the corresponding quinone diimines. The absorption spectra of these radicals are given 

by Piccard and display a very distinct pattern of bands according to substitutions at the amino groups 

or at the rings.41 The exact description of the electronic structure of these radicals was given by 

Rutherford after first presentation of the radical a century earlier.  

 

 

Figure  1.7.  Gomberg’s triphenylmethyl radical and its dimer in equilibrium. 
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Another key radical reaction was discovered by Kharasch42,43 for the anti-Markonikov-addition in 

1940, in which organohalide compounds such as carbon tetrachloride or chloroform add to alkenes. 

This reaction is very important for industry, especially for olefin polymerization,44 which is considered 

a first step in atom transfer radical polymerization. A further development in radical chemistry was 

the production of cyclic systems through the intramolecular addition of radicals. This requires the 

precise knowledge of their selectivities and their reactivities. In this context, Houk45 and Beckwith46  

have been investigated these intramolecular addition reactions by means of theory and kinetic 

assays. In this respect, Porter47 and Storck,48 who have used radicals for macrocyclization or for 

complex synthesis can be given as a good example. Substituted macrocyclic ketones or lactones have 

been used to cyclize by using bromide precursor. As an example of an electron transfer agent in 

radical chemistry, samarium diiodide has been used by Kagan et al.49  

Radicals generally play a prominent role in the synthesis of complex natural products and are 

widespread in many biological processes. Radical reactions are more selective and predictable than 

ionic reactions, which can occur in additions and cyclizations in the syntheses of simple or complex 

nature products. The radical processes show numerous advantages over their ionic counterparts, 

which has only recently been recognized. They have greater functional-group tolerance, and thus the 

reaction conditions are more flexible. Furthermore, radicals can be generated under pH-neutral 

conditions, and thus strong acidic or basic conditions are not necessary. In addition, radicals are 

usually stable under protic conditions. There are many examples of radical reactions that can be 

performed in alcohols or even in water. Therefore, radical chemistry is amenable to “green” 

chemistry. Consequently, protic functional groups such as hydroxyl or amino functions do not need 

protection because they behave inertly. Otherwise, radical processes also show the ability to be 

incorporated into elaborate reaction cascades that rapidly increase molecular complexity. 

Considering all of these advantages, the synthesis of natural products is more attractive by using free 

radical reactions. 

For a deeper understanding of the reactivity or stereoselectivity of radicals, a physico-chemical 

analysis by spectroscopic or microscopic methods is required. In addition, with computational 

methods the courses of many radical reactions can be understood in detail. 

 

1.3.2 Examples of Radical Reactions 

1.3.2.1 Samarium(II) diiodide based Reactions 

In the following section, a few examples of radical reactions are given. Samarium diiodide as an 

electron transfer reagent in organic synthesis was used by Kagan50 in 1980. The high oxophilicity of 

samarium allows the addition reactions of ketyl radicals to olefins. In this manner, an important class 

of ketyl coupling is obtained through cyclization, in which bicyclic products can be obtained with a 

simple substrate. (Figure 1.8) Other applications of ketyl cyclization are the addition hydrazones, 

nitriles and oximes.51-53 
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Figure 1.8.  Samarium(II) iodide cyclization. 
54

 

Another set of reactions in radical chemistry comprises single electron transfer (SET), which is well-

established in organometallic reactions. Aldehydes or ketones are usually used as radical precursors. 

SET reagents can initiate radical reactions either by the donation of a single electron from the metal 

to the substrate via reduction or by an electron transfer from the substrate to the reagent via 

oxidation. For this purpose, samarium diiodide, which is a strong electron donor, provides the key 

intermediate for the synthesis of Hypnophilin. (16) Here, samarium diiodide added to a suitable 

aldehyde homolytically cleaves the carbon-oxygen bond (Figure 1.9). 

 

Figure 1.9. Preparation of the Hypnophilin. 
55,56 

 

Samarium diiodide has been established as a major reagent in most forms of radical reactions, which 

include ketyl-alkene couplings, conjugate additions, pinacol coupling reactions, deoxygenation, 

dehalogenation or other many reduction reactions57. The basic reactions induced by SmI2 concern 

intermolecular or intramolecular reactions and reductions of various functional groups, which are 

called Barbier reaction58,59. Suginome and Yamada60 have applied the Barbier procedure to 

synthesize exaltone or (±)-muscone. They have achieved this by intramolecular cyclization as shown 

in Figure 1.10. The SmI2-mediated Barbier type reactions can be carried out between aldehydes or 

ketones and a variety of organic halides.(17) In the absence of organic halides or protic conditions, 

pinacol can easily be reduced by reductive coupling of aldehydes whereas the formation of pinocol is 

slow by ketones under the same conditions. Otherwise, samarium diiodide plays a key role in several 

Reformatzky-type protocols, which allows hemolytic carbon-halogen bond cleavage and cyclization 

of carbon-carbon multiple bonds. 
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Figure 1.10. SmI2-mediated intramolecular Barbier reaction.  

1.3.2.2 Organotin based Reaction 

As mentioned above, radical reactions have gained importance in the synthesis of natural products. 

Nature is highly selective and very efficient and often uses sequential transformations, which contain 

a series of reaction steps. In these reaction steps, several bonds are formed or broken without 

isolation of the intermediate. In this field, alkaloids, terpenes and especially steroids, which possess 

five or six ring systems, are important examples. In radical reactions, a novel radical is generated 

after cyclization or any other radical translocation. Because of this feature, a secondary carbon bond 

formation can be extended even further. These reactions are often referred to as tandem reactions. 

A tandem reaction is a process involving two or more consecutive reactions in which subsequent 

reactions result as a consequence of the functionality formed by bond formation or fragmentation in 

the previous step. The resulting tandem reactions can be used for the efficient preparation of 

polycyclic compounds from simple starting materials. This method was used successfully by Stork et 

al.61 for the synthesis of prostaglandins in which rapid intramolecular cyclization is followed by a slow 

intermolecular addition. Another example for a radical tandem cyclization was reported by Curran et 

al.62-65 for the synthesis of (±)-Hirsutene, which involves halogen compounds. This reaction is based 

on two steps and finally creates a tricyclic system65 (Figure 1.11). 

Because free radical reactions tolerate oxygen functionally well, more triquinanes have been 

prepared such as (±)-coriolin or (±)-hypnophilin by the same synthetic strategy. In general, an 

illustration of this synthetic strategy consists of the direct condensation toward linear 

cyclopentanoids and sequential constructions of each ring in the tricyclic system. In the remainder of 

the paragraph, the production of (±)-Hirsutene is described. In the presence of catalytic amounts of 

the azo-bis-isobutyronitril (AIBN) radical initiator, the tributylstannyl radical is generated. Treatment 

of an appropriate precursor such as bromide or iodide 19 with tri-n-butyltin hydride should produce 

the transient radical 20. This carbon radical (20) undergoes two successive cyclizations to produce 

two five-member rings. This results in the production of vinyl radical 22. Finally, in a slower step, the 

vinyl radical (22) abstracts hydrogen from tri-n-butyltin hydride in which the terminal double bond is 

formed and the tricyclic product Hirsutene (23) is generated. These reactions would produce 

hirsutene (23) from 19 in a single step synthesis.  
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Figure 1.11. Preparation of (±)-Hirsutene. (X = Br, I, etc.). 

Organotin compounds such as tributylstannane offer the possibility of a mediated radical addition for 

the reductive formation of carbon-carbon bonds, including many additions that are difficult to carry 

out through standard methods. Most radicals are generated using tin hydrides, and they have proven 

their merit for the substitutions of hydrogen in place of halogen, amino, nitro, carboxylate, Xanthate 

or other functional groups.66 However, there are some drawbacks for tin-based radical chemistry. 

Trialkyl tin hydride is very toxic. Furthermore, it is difficult to remove from the desired end products, 

which are intended for human consumption such as drugs or medicines. Due to the toxicity of 

organic tin compounds, many alternatives have been introduced, of which silicon-based radical 

reducing reagents are the best alternatives. Phosphorous-based radical reducing reagents or even 

transition metal based hydrides are major alternatives to the tin hydrides in which the risk of toxicity 

in some cases is reduced to a minimum.67-69 

1.3.3 Reagent Controlled Radical Chemistry 

Most free radicals are highly reactive species. Unlike anions and cations, they react with themselves, 

for example by disproportionation. The free radical reaction can be classified by addition-, 

fragmentation- or cyclization-reaction types. To be useful in synthesis, these radicals must have 

sufficient lifetimes. However, there are also disadvantages to this type of radical reaction. The 

reaction cannot usually be controlled and the ligand sphere on the reagent generating the radical, 

which plays a key role on the selectivities of the reactions, cannot be influenced.70,71  
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An interesting alternative is represented by reagent controlled transformations.72,73 The benefit of 

this kind of reaction concerns a wider application because the reactivity of the substrate on the 

chemo- and stereoselectivity can ideally be controlled. This can be performed with a chiral Lewis 

acid, a chiral catalyst or a chiral environment, and thus the route of reaction can be straightforwardly 

controlled.  

In this approach, electron transfer from low-valent metal complexes to available radical precursors 

such as aldehydes or ketones occurs. The reagent control is achieved by varying these metals and 

their ligands. In this respect, the samarium diiodide mediated reactions with carbonyl compounds 

have led to activity. But because of the high nucleophilicity of the iodide the iodohydrin can be 

formed, which is further reduced by samarium. However, owing to the high costs and the large 

molecular weight of the metal, these reactions are unattractive. Other reagents such as chromium or 

vanadium have not been successful for these prospects. The radicals resulting from electron transfer 

of the vanadium cannot be trapped in the reaction, which included carbon-carbon forming reactions. 

The reason for the unexpected result can be explained by the fact that the dimeric structure of the 

vanadium in solution gives rise to an intramolecular second electron transfer. Chromium 

demonstrates low reactivity in this manner.  

Another attractive method has been developed by Nugent and Rajanbabu. They have used 

titanocene chloride, which provides an efficient alternative for the exploitation of carbon-carbon 

bond forming reactions. In this strategy, epoxides can be used as radical precursors because they are 

conveniently prepared from various functional groups. The reductive epoxide opening is achieved by 

a single electron transfer reaction from titanocene(III) monochloride. This allows a mild conditions 

and highly chemoselective access to radical chemistry, which in this case includes a -titanoxy 

radical. Titanocene dichloride is usually reduced by zinc or manganese powder, in order to form the 

titanocene(III) monochloride catalyst. The titanocene monochloride reagent features an 

unprecedented cleavage of the titanium-oxygen bond in reductive epoxide opening. The weak Ti-O 

bond arises from a combination of the low Lewis acidity and low reducing power of titanocene(III) 

monochloride, which prevents epoxide opening by an SN2 mechanism. Rather, the epoxide opening 

reaction proceeds by a -metal-oxy radical intermediate. The reducing agent and titanocene are 

employed in stoichiometric quantities. This provides a better reagent control than with non-

stoichiometric amounts of titanocene. In stoichiometric quantity, the titanocene alkoxide 

intermediate is converted into a derivate of the alcohol or the alcohol itself and titanocene 

dichloride. An acid regenerates the titanocene(III) complex by protonation of the titanium-bound 

oxygen. However, there is some limitation for choosing the acid. The acid must be strong enough for 

the protonation, but it may not oxidize the metal powder and it may not deactivate the reaction by 

complexation of the resulting base to the catalyst. (See chapter 1.4) Because of the pKa value, 

pyridinium hydrochloride is appropriate for these requirements. 

1.3.4 Radical Polymerization 

The most important industrial application of free radical chemistry in organic synthesis is radical-

induced polymerization, for example, ethylene polymerization.  

In order to develop new polymers the control of stereoregularity is important. The discovery of a 

metallocene catalyst made this important step possible in practical applications, which permits 
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stereochemical control in polymerization.74-78 Consequently, studies including a metallocene catalyst 

have been extended with the desired successful results. Kaminsky79 et al. have developed this using a 

high active catalyst Ti and metylaluminoxane (MAO) as a co-catalyst, which acts as a Lewis acid in 

order to abstract a hydride anion and to facilitate the formation of electron-deficient unsaturated 

cationic titanocene species. However, Jordan80 et al. have demonstrated that some of the 

dicyclopentadienyl zirconium alkyl complexes carry out ethylene polymerization in the absence of a 

co-catalyst. Recently, in 1994, Kim has reported that a mixture of zirconocene modified with 

Si(CH3)3OH and trialkylaluminums as a co-catalyst gives polyethylene in a high yield.81 Furthermore, 

the dicyclopentadienyl titanium(III) complexes are known to be of considerable interest as Ziegler-

type catalysts, e.g., in the polymerization of ethylene or propylene.79,82-84 Two classes of Ziegler type 

catalysts are known. The first class consists of catalysts, which are called heterogeneous catalysts. 

This class contains e.g. titanium based catalysts such as TiCl4 and TiCl3, which are highly active in 

alkene polymerization. The second class comprises two subclasses, comsisting of metallocene and 

non-metallocene catalysts, which are called homogeneous catalysts. Among them, the ansa-bridged 

metallocene catalysts, particularly titanocene compounds can produce isotactic or syndiotactic 

polymers of propylene.       

Hopefully, the metallocene catalytic system might improve the copolymerization of ethylene and 

styrene in which many technical problems cannot be resolved with traditional Ziegler-Natta catalysts. 

The metallocene catalyst can serve to control of the properties of the polymer products. The 

syntheses of ethylene-styrene copolymers can be performed by using metallocene catalysts, which 

are activated by metlyaluminoxane (MAO). The produced poly(ethylene-styrene) can be further used 

to produce polyolefin blends and composites. The copolymerization process depends on the catalyst 

performance and the ligand modification of the catalyst, which plays a decisive role for the 

copolymer properties such as tacticity, microstructure or the level of the incorporation of a 

comonomer.  The construction of the ligand structure, which is chosen based on the desired steric 

and electronic properties of the copolymer, constitutes an important part of the investigation of the 

copolymerization of ethylene-styrene. As an example for the influence of the ligand structure on the 

performance of the catalyst, inclusion of a bridging unit between two ligands shows an increased 

activity owing to increased Lewis acidity of the catalyst. In this area, Bercaw and Okuta75,85 have 

firstly reported a new type of metallocene catalyst that functions without producing amounts of 

homopolymer impurities.  Kakugo et al.86 have discovered that a bidentate 2,2´-thiobis(6-tert-butyl-

4-methylphenol) (TBP) is extremely active toward olefin and styrene and produces ethylene-styrene 

copolymers together with syndiotactic polystyrene. In contrast to this result, Mulhaupt87 has found 

by using the identical catalyst, that only a random ethylene-styrene copolymer was formed without 

an isotactic structure.  

Polymerization of styrene can also be achieved by using zirconium- and titanium half-sandwich 

complexes. The zirconium compounds are less active than the titanium compounds and show lower 

syndiospecifity and lower molecular masses of the polymers. In contrast, the half-sandwich 

titanocene catalysts, which contain cyclopentadienyl, substituted cyclopentadienyl, indenyl or 

substituted derivatives, are highly active, highly syndiospecific and give rise to a broader molecular 

weight distribution of the styrene polymers.88-96  

The synthesis of macromolecular structure has benefited from living radical polymerization, which 

can be controlled by the molecular weight (Mn) and polydispersity (Mw/Mn) by the reversible 
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termination of the growing chains with persistent radicals or degenerate transfer (DT) agents.97 In 

general, living polymerization occurs by atom transfer, dissociation-combination or degenerate 

transfer, which is catalyzed using a transition metal. The studies in the field of living radical 

polymerization focused on the titanocene-catalyzed radical ring opening (RRO) of epoxides, which 

are reduced by Ti(III) species. This reaction can be successfully carried out in the initiation of a radical 

polymerization, which is mediated by Ti in a living fashion. In the presence of the epoxide, one 

equivalent of Ti(III) opens the ring of epoxide, and this radical adds to styrene, which initiates the 

polymerization. Another equivalent of Ti(III) controls the polymerization. Some advantages of this 

method are because the epoxide can serve as a convenient substance for the synthesis of complex 

polymer architectures by transformation epoxide-generated alcohol groups. Moreover, this method 

is started by an inexpensive homogeneous catalyst, which does not need extra ligands, additives or 

activators. Furthermore, the most important point of this method is the selection of the steric and 

electronic nature of the titanocene complexes; additionally, the most titanocene structures used in 

coordination polymerizations may also be successful in living polymerization in conjunction with zinc, 

epoxides or another initiator.97-99  
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1.4 Titanocene in Organic Chemistry 

1.4.1 History of Titanocene and Fundamental Properties 

After the discovery of titanium by William Gregor in 1791, knowledge of its chemistry has remained 

relatively limited as compared to that of many other metals, although titanium has a natural 

abundance (the nineth-most abundant) of about 0.63 % in the earth’s crust. The most common 

oxidation state of titanium is 4+, which is called titania. However, the 2+ and 3+ oxidation states are 

also readily accessible. The 3+ oxidation state is much better known than the 2+ oxidation state and 

has an unprecedented function as a reducing agent in organic chemistry. As examples for the 

usefulness of titanium as a reducing agent, Knecht and Hibbert100,101 have shown that aqueous 

solution of TiCl3 reduces nitro-arene to amino-arene. A short time later they also reported the 

reduction of quinones to hydroquinones by TiCl3. In 1922, Macbeth102 demonstrated that Ti(III) was 

capable of one-electron reduction of N-Br and N-Cl bonds in a variety of substrates. Van Temelen and 

Schwartz103 in 1965 have reported the reduction of allylic and benzylic alcohols to dimeric 

symmetrical hydrocarbons by titanium, in which the valence is changed from 4+ to 2+. As can be 

seen from the examples, low-valence titanium reagents are undoubtedly important for organic 

chemistry. Many more examples can be found in literature that illustrate the usefulness Ti(III) in 

organic and radical chemistry. 

Nevertheless, with the discovery of metallocenes, a new area opened up for the chemistry of 

titanium. Titanocene and analogues of other transition metals show a wide range of properties. 

Among these, the most important property is the 18-electron rule, which describes metallocenes 

with a total of 18 valence electrons. The metallocenes that comply with this rule are stable and have 

sandwich-structure. For example, ferrocene, which is the most stable of the metallocenes, has a 

sandwich structure, because of having the ideal number of the electrons. On the other hand, 

Cobaltocene, a d7-19 electron complex and nickelocene, a d8-20 electron are easily oxidized.104 On 

the other hand, complexes such as titanocene (d2-14 electron) or vanadocene (d3-15 electron) are 

electron deficient, having fewer than 6 d electrons. One way the electron-deficient complexes can 

achieve the desired 18-electron configuration is to add additional ligands, which can contribute 

additional electrons. When the additional ligands coordinate to the metal, the cyclopentadienyl 

ligands bend back and in this structure, the cyclopentadienyl ligands are almost free to rotate with 

respect to each other.  The simplest examples of bent cyclopentadienyl-metal complexes are the 

compounds in which the metal atom has two cyclopentadienyl and one hydride ligand. There are also 

molecules with a variety of ligands, including halides and alkyl groups.105 Examples of these 

complexes are Cp2MX2 complexes. They all generally have the same geometry and have non-bonding 

d1 electron configuration. Petersen, Dahl and Fenske106-108 have spectroscopically investigated these 

complexes and calculated the molecular orbitals. For example, the electronic g values a few 

vanadium complexes and related Cp2TiCl2 complexes are in excellent agreement with EPR results. 

The EPR spectra provide information that the unpaired electron is in a1 orbital of high metal 

character, primarily 3dz2 with only a very small amount of 3dx2-y2 and virtually no s or p character. 
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1.4.2 Examples of Monomeric, Dimeric and Trimeric Catalysts Based on Titanocene  

A variety of titanocene complexes has chirality in the ligand or at the titanium center. They have 

been used as enantioselective catalysts. Especially, complexes with chiral ligands have been used 

with success in catalytic enantioselective opening of meso-epoxides.109 The chirality in the 

cyclopentadienyl-ligand can have different origins which have been categorized in three types. Their 

chirality depends on how the two faces of the Cp ligands are oriented to each other. Homotopic faces 

of cyclopentadienyl ligands are equivalent because of the existence of a C2 symmetry axis between 

the two faces. Enantiotopic faces of cyclopentadienyl ligands evidence a mirror plane and give 

enantiomeric compounds, when metalated with an achiral metal fragment. Diastereotopic faces of 

cyclopentadienyl ligands give a mixture of diastereomers because of their asymmetric property, 

when metalated. A first example of chiral cyclopentadiene is menthyl-derived cyclopentadiene, 

which was described by Kagan and collaborators110 in 1978. They have been prepared from the 

inexpensive, enantiomerically pure natural product menthol. The ansa-metallocenes, which 

Brintzinger et al.111,112 have described, possess an interannular connection and are another example 

of chiral cyclopentadienyl-metal complexes containing prochiral cyclopentadiene ligands. Chiral 

cyclopentadienyl- and prochiral cyclopentadienyl-metal complexes have been applied in three main 

areas.113 First, they are used as catalysts in asymmetric hydrogenation reactions, reactions involving 

ketones, aldol reactions, epoxidations and alkene isomerizations. In this area, Kagan and 

collaborators114,115 have used bis(cyclopentadienyl) titanium dichloride with menthyl or neomenthyl-

substituted cyclopentadienyl ligands in hydrogenation of 2-phenyl-butane. As another example in the 

same area, Colletti and Halterman reported that bis[1-indenyl]titanium dichloride can function as a 

catalyst for the asymmetric epoxidation of unfunctionalized alkenes116; second, as stoichiometric 

reagents for stereoselective cobalt-mediated cyclizations and zirconium-mediated aminations; third, 

as catalysts in stereoregular polymerizations of alkenes. Additionally, the allylmetal reagents have 

been successfully used for synthetically interesting transformations that have led to the development 

of allyl complexes of chiral titanocene. For example, Collins has reported an enantioselective 

allylation of aldehydes using a chiral allytitanium reagent.117  

The allydicyclopentadienyl titanium complexes can be also given as examples for monomeric 

structures of titanocene derivatives. In these compounds, the allylic groups act as bidentate ligands. 

Unlike the other structures of titanocene, which are able to polymerize ethylene, solutions of allylic 

complexes are not an active towards ethylene polymerization. IR measurements showed that allylic 

ligands are -backbonded to the metal in analogy to cyclopentadienyl ligands.118  

Several carboxylate derivatives of bis(cyclopentadienyl) titanium compounds have been prepared by 

Coutts and Wailes.119 These compounds have mono- or di- carboxylate ligands. Their study has shown 

that the carboxylate ligands are bidentate and exhibit a covalent bond to the metal. The complex is 

symmetric with respect to both monomer halves.  

Nöth et al.120,121 have reported the magnetic properties of these trivalent cyclopentadienyl titanium 

derivatives. In the case of titanium trichloride, the susceptibility does not follow a Curie-Weiss law. If 

one cyclopentadienyl group is present, it behaves as a magnetically dilute compound, so its 

susceptibility does follow the Curie-Weiss law and the structure of mono-cyclopentadienyl 

titanocene dichloride is a dimeric. With two cyclopentadienyl groups, the spin-spin interaction 
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becomes stronger. In the absence of the halogen, tris(cyclopentadienyl) titanium(III) shows no spin-

spin interaction and is only present in monomeric form. 

The hydride derivatives of titanocene, which may be present as a dimeric or monomeric structure, 

are of considerable interest because of their activity in low-pressure ethylene polymerization. Some 

complexes of group (IV-VII) transitions metals have been found, in which a hydride ligand acts as a 

bridge between two metal centers of a binuclear species. This hydride bridge behaves chemically 

most like an embedded proton in the electron density of a metal-metal bond. In some cases, the 

hydrogen bridge can be formed by insertion of a proton into a neutral metal-metal bonded species. 

In other instances, the hydrogen complex is easily deprotonated and the remaining electrons form 

the corresponding metal-metal bond in the anionic complex in alkaline media. However, the metal 

boron hydrides [Cp2TiBH4] have a monomeric structure, in which the titanium and boron atoms are 

linked by two hydrogen bridges. According to the IR and EPR spectra, this compound exhibits 

tetrahedral symmetry.120-122  

According to a recent report123, the [Cp2TiCl] compound  is dimeric in the crystalline state and in 

benzene solution. The dimer form involves pairs of Titanium atoms that are grouped together by 

bridging chloride ligands. Magnetic measurements of this complex showed that the compound has 

one unpaired electron per titanium atom and exhibits an antiferromagnetic interaction between the 

two Titanium centers. The spin-spin interaction between the titanium atoms causes singlet and 

triplet states in thermal equilibrium. As the temperature is lowered, the singlet state becomes more 

populated at the expense of the triplet state and the susceptibility and magnetic moment decrease. 

From IR measurements, it became clear that the dimeric species are tetrahedral, and the overall 

symmetry is not cubic.124 In contrast to the case in the benzene solution, the complex is present as a 

monomer in ether or tetrahydrofuran solution, because coordination of an ether molecule to the 

vacant coordination site of [Cp2TiCl] is strong enough to compete with the formation of the dimer. 

The dipole moment and electron diffraction of the monomeric compound of Cp2TiCl indicated that 

this complex can be described as a “wedge-shaped sandwich” of tetrahedral structure.125,126 The 

aromatic rings are usually not parallel but an unrestricted rotation of the rings about the bond axis 

through the metal atom is possible. The unpaired electron magnetically interacts with each of the ten 

ring hydrogen atoms. 

The dimetallic complexes, in which the coordinated bridging ligands are chloride ions, are other 

interesting examples of cyclopentadienyl titanium halide complexes. These compounds do not easily 

decompose.127 Unlike the dimeric formation of other titanium halide compounds, the titanocene 

halide complexes exhibit a weak magnetic interaction between the titanium atoms. The 

cyclopentadienyl rings are weakly  bound to titanium. Although dimetallic and trimetallic complexes 

have identical bonds between cyclopendienyl and titanium, Reid, Scaife and Wailes et al.128 have 

demonstrated that the characteristic vibration for the -systems in the IR spectrum is not completely 

identical for the dimetallic and trimetallic systems. As for the symmetry, Titanium-Zinc-Titanium 

trinuclear complexes and cyclopentadienyl titanium dimeric complexes must have the same 

symmetry due to identic splitting of the d-d transitions of the each complex. For the trinuclear 

complex, it was shown that two titanocene units are linked by ZnCl4 through chloride ligands. The 

local symmetry of each titanium is tetrahedral. The trimetallic and dimeric complexes also show 

another similar feature in their magnetic properties. The unpaired electron resides in a molecular 
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orbital, which is primarily dz2 in character in both the dimer complexes and the zinc bridged 

trimetallic complexes. 

The majority of dimeric compounds are diamagnetic. When the two metals possess unpaired 

electrons, they are able to exhibit magnetic properties and give information about the metal-metal 

distance and about the exchange interaction between the two metal centers by EPR studies. 

However, since the dimerization often gives rise to antiferromagnetic coupling, the dimeric systems 

are more difficult to study by EPR spectroscopy. 

Another example of a dimeric compound is a complex in which the two metallic centers are held 

together carbonyl ligands. Its ferromagnetic behavior was deduced from magnetic susceptibility 

measurements that showed a populated triplet state.129  

Titanocene derivatives do not only form monomers or dimers. In addition to these structures, it is 

possible to obtain trimers. An example for this form is the class of pseudo-halogen derivatives of 

bis(cyclopentadienyl) titanium compounds such as the cyanide or isothiocyanate compounds.130 Both 

of them must be bridging through the cyanide ligands.The magnetic properties of both of cyanide 

complexes (I and II in Figure 1.12) are very similar, indicating the presence of a cyclic trinuclear unit 

and a titanium (III) cation. Interestingly, unlike the isothiocyanate and cyanide complexes, the 

isocyanate complex is formed as a monomer. (III in Figure 1.12)  

 

Figure 1.12. Trimeric or momomeric structure of pseudo-halogen derivatives of bis(cyclopentadienyl) titanium 

compounds. 

1.4.3 Reactions Catalyzed by Titanocene Derivatives 

Until this point, the structures of the titanocene-derivatives and their physical and chemical 

properties have been described. This section focusses on the various reactions that can be 

performed within radical chemistry using these titanocene derivative complexes.  

As already described in the chapter (1.3), in addition to samarium(II) iodide as a SET reagent, the low-

valent titanocene complexes can be used to generate reduced radicals. This SET method is realized 

by transfer of an electron from a low-valent metal to a suitable substrate. The absence of a radical 

initiator has some advantages, e.g., the variability of the reduction potential of the different metals 

and no loss of functionality of the generated a radical. 

At the beginning of the 1970s, the McMurry reaction has been developed in organic chemistry, which 

is based on reductive coupling of carbonyl compounds to produce alkenes by low-valent titanium.131 

Ever since its discovery, low-valent titanium has become increasingly important in organic synthesis. 

Low-valent titanium has even become irreplaceable in many organic reactions, in particular, in 
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numerous syntheses of natural products. In addition, recent developments also showed that 

intermolecular couplings of esters and amides are possible with this type of reaction. Hence, the 

production of some aromatic heterocycles is realized by reductive carbonyl reactions, which have 

opened a new area for alkaloid syntheses and pharmaceutical research. Annelations, 

macrocyclizations, pinacol couplings and heterocycle syntheses are all carried out by using the low-

valent Titanium.132 We start by giving examples with pinacol coupling.  

1.4.3.1 Pinacol Coupling 

The first report of pinacol coupling in 1858 by Fittig133 concerned the reaction of acetone with 

sodium, which is achieved by reductive coupling of two carbonyl compounds (Figure 1.13a). The 

stoichiometric reagents are titanium(III) complexes such as titanium trichloride or titanocene 

chloride. They can be successfully used for pinacol coupling of aromatic and ,-unsaturated 

aldehydes. In this context, Seebach134 reported that diastereoselective couplings of aromatic 

aldehydes to racemic 1,2-diols are carried out by using titanium trichloride and butyllithium. Because 

of the high chemeoselectivity of this reagent, neither aliphatic aldehydes nor ketones were effective. 

In 1987, Inanaga and Handa135 found that aromatic and ,-unsaturated aldehydes can be given to 

racemic 1,2-diols in high yield and in high diastereoselectives. In this context, titanocene dichloride is 

reduced by Grignard reagents, which produced a trinuclear titanium(III) complex. In another example 

for pinacol coupling, Schwartz136 stated that aldehydes activated the highly diastereoselective 

coupling by using aluminum powder-reduced titanocene dichloride dimer compounds. However, 

these titanium(III) reagents react with a high chemoselectivity, which causes lack of activity with 

some of carbonyl compounds. Mukaiyama137 has developed titanium(II) reagents, which in the 

absence of formation of deoxygenation products ketones can be coupled to 1,2-diols. Subsequently, 

in order to promote the performance of the titanium(II) reagents, Matsubara138 improvemed the 

procedure to  include the addition of chelating diamines and aminoalcohols to the reaction mixture. 

 

Figure 1.13. The first pinacol coupling by Fittig (a) Titanocene-catalyzed pinocol coupling (b). 

 

a 

b 
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The pinacol coupling can also be performed catalytically; this procedure requires harsh reaction 

conditions, low selectivities and low functional group tolerance. Based on the ability of the 

titanocene chloride reagent, the reaction conditions can be controlled. In this case, Gansäuer et al. 

developed a catalytic method for the titanocene-mediated pinacol coupling, in which titanium 

compound was used 3-5%139-141 (Figure 1.13b). 

In general, this reaction proceeds through the metal oxides or alkoxides. A low-valent redox-active 

metal compound is used as a catalyst. The low-valent metal compound is generated by silylation of 

the metal-oxygen bond with Me3SiCl, which is used as a stoichiometric reagent to replace the 

catalyst. Thus, the metal oxides or alkoxides are converted to metal chlorides. However, the silylation 

process can cause problems. Firstly, the silylation step in catalytic cycle is the slowest step. Secondly, 

Me3SiCl supports the electron transfer from metal to aldehydes and at this point, the undesired 

catalytic reaction takes place. Finally, after hydrolysis hexamethyldisiloxane is generated in 

stoichiometric amounts that cannot be recycled and therefore must be disposed of as waste. In this 

context, the first successful example was the McMurry catalytic reaction in Titanium. The samarium 

diiodide was also used by Nozaki-Hiyama coupling in catalytic reaction.142 When comparing 

titanocene dichloride and samarium diiodide, samarium diiodide can be seen as more expensive and 

less selective than non-toxic titanocene dichloride.135,136,143  

1.4.3.2 Reductive Ring Opening without Deoxygenation 

The reduction of ketone to secondary alcohols via ketyl radicals is carried out by using titanocene in 

aqueous solution. This reductive process takes place under mild conditions, which means that safe, 

cheap reagents can be used. Mechanistically, the reaction proceeds by an organometallic complex as 

a catalyst and water as a proton donor. Along these lines, an oxygen-free THF-water mixture as the 

reaction medium is sufficient. The nature of the catalyst is suitable for the asymmetric synthesis.  

 

  

Figure 1.14. The nucleophile epoxide ring opening:  (a) General nucleophilic mechanism for epoxide ring 

opening; (b) Epoxide ring reaction via SN2 mechanism in the presence of amines.                                     

 

 

a 

b 
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The titanium complex is a reducing agent and simultaneously activates the epoxy function, in which 

epoxides open homolytically and an intermediate carbon-centered -titanoxy is generated.72 In order 

to understand the reaction mechanically, the behavior of the epoxide must be considered in the 

reaction. The epoxide can be also opened heterolytically by a nucleophile via an SN2 mechanism. The 

nucleophile attacks to the electropositive carbon atom and displaces the oxygen atom; thus, a new 

bond is formed (Figure 1.14a). In the organic chemical context, Azizi’s works can be given as an 

example. He has reported that a nitrogen atom can be used as a nucleophile and that the epoxide is 

opened in water at room temperature without a catalyst. This reaction results the -amino alcohols 

(31) under mild conditions with high selectivity and in higher yield144 (Figure 1.14b). 

Additionally, the using of the titanocene(III) chloride as a SET reagent for the opening of the epoxide 

has some advantages. This process can be achieved through using the non-nucleophilic ligands, 

which reduce the strength of the Lewis-acidic metal center by - and -donor interaction. Hence, the 

reaction does not proceed by SN1 or SN2 mechanism, so the convenient nucleophilic reagents must 

not be used. In this manner, Lewis acid catalysis and radical chemistry can be uniquely combined. 

Consequently, titanocene(III) chloride can be ideally applied for this procedure (Figure 1.15). 

 

Figure 1.15. Reductive epoxide opening with titanocene(III) chloride. 

The reductive epoxide opening is based on the reduction of ring strain and the formation of titanium-

oxygen bond. Unlike the other reagent, e.g., the abstraction of the chloride by tributylstannane, the 

formation of metal-free radical is not formed by using titanocene(III) chloride. The oxygen atom is 

bound to the radical center in the -position; thus, the titanocene complex can be influenced in 

principle in the reactivity of the radical. 

The cyclopentadienyl ligand determines the chemoselectivity of the reaction, which relies on the 

regulation of the redox properties and the steric demand of the metal complex. Interestingly, the 

steric interaction between the cyclopentadienyl and the epoxide dominate the regioselectivity of 

epoxide opening. This is confirmed by computational investigations.145 The steric interaction plays a 

crucial role in the intermediate step, in which the reduction of the carbon-centered radical is 

prevented by using a further equivalent of titanocene(III) chloride. The higher-substituted -titanoxy 

radical is generated, and thus the radical is durable enough to take part in radical reactions. 

Consequently, no metal-free radical is formed via the reactivity of a Titanium complex. 

1.4.3.3 Reductive Ring Opening with Deoxygenation 

If the reaction medium contains additional stoichiometric amounts of titanocene(III) chloride,  

deoxygenation of epoxide is achieved. The first attempts were reported by Kochi et al.146 in the area 

of -metaloxy radical. The deoxygenation of styrene and cyclohexene oxide by using chromium (II) 
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reagents takes place by discrete one electron steps via the carbon-centered radical (35). However, 

stereoselectivity was not observed in this reaction (Figure 1.16).   

 

Figure 1.16. The first use of -metaloxy radical in the deoxygenation reaction. 

The deoxygenation step can be used for the synthesis of valuable natural products with an oxirane 

moiety. Doris147,148 and coworkers have found that the deoxygenation of Leurosine (38) resulted in 

anhydrovinblastine (39) in higher yield (See Figure 1.17). Anhydrovinblastine is an important 

intermediate for the antitumor agent Navelbine, which is a member of crytophycin family of natural 

products. The reaction is based on a single-electron transfer from titanocene(III) chloride to the 

oxirane, in which the carbon-centered radical intermediate is generated through a -alkoxy radical. 

Subsequently, titanium-oxo byproducts, which are reduced by a further equivalent of titanocene(III) 

chloride, are eliminated, which results in the deoxygenated anhydrovinblastine (39). 

 

 

Figure 1.17. Synthesis of anhydrovinblastine by Doris et al. 

 

The intermediate -titanoxy radical (41) can subsequently be reduced by a hydrogen atom donor 

such as tert-butyl thiol, H2O or 1,4-cylohexadiene to convenient alcohol (42)149,150  (Figure 1.18).                       
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Figure 1.18. Mechanism of titanocene(III) chloride-mediated reductive opening epoxide. 

This epoxide opening reaction can be also carried out by using stoichiometric amounts of 

titanocene(IV) chloride.149,150 Also, collidine hydrochloride was added in stoichiometric amounts. In 

this method, the titanocene(III) chloride must be regenerated because during the reaction 

titanocene(III) chloride is consumed. The opening of the titanium-oxygen or titanium-carbon bond 

can proceed after any intermolecular or intramolecular addition.  Therefore, the titanocene alkoxide 

should not be released. Titanium-oxygen bond is only in situ cleaved to regenerate titanium(IV) 

chloride. Thus, titanocene(III) chloride is formed again for the further epoxide.  

 

 

Figure 1.19. Titanocene-catalyzed reductive epoxide opening. 
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An alternative way for the formation of the alcohol through cleavage of titanium-oxygen bond is 

hydrolysis. This process is achieved under the stoichiometric amounts of titanocene(II) chloride. An in 

situ protonation of the titanium-oxygen bond step is important. To achieve this process, a suitable 

acid can be used. Thus, the titanocene alkoxide must be converted into alcohol and titanocene(IV) 

chloride. As described previously, the acidity of the used acid must be strong enough to protonate 

the titanium-oxygen bond. However, it should not promote the opening of the epoxide. Additionally, 

the conjugate base of the used acid must not be not nucleophilic in order to prevent nucleophilic 

opening of the epoxide and it should not be too basic. Pyridine hydrochloride seems to be 

appropriate for these conditions.73  

A catalytic cycle is achieved with titanocene(IV) chloride, which is reduced with a metal dust (Zn or 

Mn) to titanocene(III) chloride, collidine hydrochloride and a suitable hydrogen-atom donor, which 

1,4-cyclohexadiene is usually used as a hydrogen-atom donor. All of them form the backbone of this 

method. The planned catalytic cycle for the reductive opening is outlined in Figure 1.19. 

After the opening of epoxide, the -titanoxy radical (44) is generated that becomes -titanoxy by the 

abstraction of a hydrogen atom from a hydrogen atom donor. 1,4-cyclohexadiene is usually used as a 

reducing reagent. However, -terpinene can be an alternative as a hydrogen atom donor, which is 

provided economically and in an ecologically benign condition in contrast to the more expensive and 

carcinogenic 1,4-cyclohexadiene. This reagent is also used for the highly selective opening of 

Sharpless epoxides and their derivatives, which are easily prepared in high enantiomeric purity.151 As 

the next step, the resulting titanocene alkoxide (46) has to be cleaved to liberate the final products. 

This procedure is achieved by protonation by a suitable acid. As in the catalytic pinacol coupling, the 

acid should not deactivate any titanium species and should be weak enough not to open the epoxide. 

For these purposes, the Bronsted acids involving pKa values between 5.25 and 12.5 should be 

suitable. Although pyridine hydrochloride and 2,6-lutidine is able to to protonate alkoxides, 2,4,6-

collidine hydrochloride acid (pKa = 7.43) gave the best results and can be combined with manganese 

as a reductant for protonation of titanocene alkoxide. After protonation, the metal powder reduces 

in situ titanocene(IV) chloride (46) again to active titanocene(III) chloride (43). When choosing metal 

powder as a stoichiometric reductant, an important point to consider is the redox potential of the 

metal. Undesired reduction to titanocene(III) chloride should not occur by a further redox reaction. 

The Lewis acid metal halide arises from the redox reaction and should not affect the catalytic cycle. 

Zinc and manganese meet these conditions. Moreover, zinc is a stronger reducing agent than 

manganese. This catalytic system showed the same regioselectivity as the stoichiometric system. In 

the stoichiometric reductive system, the electron transfer process from the metal powder was 

ensured so that the titanocene(IV) chloride is reduced. The highly active functional group of the 

stoichiometric reaction was protected under catalytic conditions. Nevertheless, in the catalytic cycle 

system, the mild acid is not able to promote the electron transfer from metal powder to variety 

functional groups such as ester, nitriles, ketones or aldehydes. This system is also useful for other 

radical reactions, for example, cyclization or additions.  

A natural example is eudesmanolides that are synthesized by the Oltra and Cuerva150 groups. These 

natural compounds are classified into two categories: 12,6-eudesmanolides and 12,8-

eudesmanolides, which have pharmacological properties such as anti-inflammatory and anti-tumoral 

activities. Their proposed catalytic cycle was based on the single electron between titanocene(III) 

chloride and available epoxygermacrolide (Figure 1.20). The difference in the catalytic cyclic between 
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Gansäuer and Oltra groups is the use of the base. Collidine hydrochloride acid, the reagent 2,4,6-

trimethylsilylpyridinium chloride, is used as a base in this cycle, which can be regenerated from 

titanocene(III) chloride and plays an important role for production of the exocyclic alkene. Because of 

the high Lewis acidity of silicon, the titanium-oxygen bond can only be cleaved. However, the authors 

have further developed this synthesis method, which is called biomimetic synthesis. In addition to 

the catalytic cyclic, before the reaction of the catalysis with suitable germacrolide, the alkaline 

isomerization is formed for providing accessible germacrolide. The selective epoxidation is followed 

by titanocene-mediated cyclization. Subsequently, the product can be achieved in four steps.  

 

Figure 1.20. Hypothetical catalytic cycle for the synthesis of eudesmanolides by Oltra and Cuerva. 

However, the tri-substituted epoxide can be reductively opened using titanocene(III), which results in 

regioisomeric products. The steric and electronic factors of the epoxide can influence which bond is 

going to be opened. In this manner, the researchers have demonstrated that the 2,3-epoxy alcohols 

yielded the asymmetric 1,3-diols by titanocene(III) chloride.152 The substituents on the titanocene 

catalyst or substituents of the epoxide in the adjacent position to each other cause the steric and 

electronic factors. For example, in the presence of carbonyl or phenyl groups in the neighbor position 

on the epoxide, the generation of the radical and thus the regiochemistry of the opening of epoxide 

can be affected. Doris et al.153 have shown that ,-epoxy ketones can be selectively reduced to -

hydroxy ketones by titanocene(III) chloride (Figure 1.21). The reaction is successfully performed from 

a di- and tri-substituted epoxy ketone system to primary, benzylic and tertiary alcohols. The reaction 

mechanism proceeds via single electron transfer. Firstly, the single electron from titanocene(III) 

chloride is transferred to oxirane (47). After a further equivalent of the titanocene(III) chloride, 

enolate -alcoholate is generated (48). Finally, the enolate -alcoholate can be protonated by using 

of methanol and as a result the -hydroxy ketone (49) is yielded. Additionally, this procedure can also 

be achieved for the aliphatic or cyclic ketone systems in a high yield.  
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Figure 1.21. Reductive opening of the --epoxy ketones by Doris et al. 

As described in Section 1.4.1, the variation of ligands of the titanocene catalyst can control the 

regioselectivity of the epoxide and the steric interactions between the substituent of epoxide and the 

ligand of the catalyst influence on the regioselective opening of the epoxide. In this context, 

Gansäuer et al.109,154 have disclosed that the catalytic opening of meso-epoxide can be carried out by 

using catalysis with the chirality contained in the ligand via electron transfer in high 

enantioselectivity and in high diastereoselectivity. They have used the designed catalysis with 

menthyl-substituents, which are synthesized from available menthol or neo-menthol from nature, 

because the methyl groups of menthyl can be shielded from the chloride atom bound to the 

titanium. The usage of these catalysts increases the enantioselectivity of the product (51) with the 

convenient meso-epoxide (50) (Figure 1.22). The coplanarity of the benzene rings and 

cyclopentadienyl rings of the catalyst causes the highly selective binding of the substrate due to  

stacking.113,155,156  The rationally designed catalyst is obtained with a yield of 71 % and is highly 

enantioselective (93 % when substituted with phenylmenthyl ligands (52)). However, the methyl-

titanocene catalyst (53) results in a 76 % and 94 %, yield and enantioselectivity, respectively, under 

the same reaction conditions.  

In the opening of epoxide, the -titanoxyradical is generated as an intermediate step. Intermolecular 

addition of carbon-carbon multiple bonds can occur by adding a suitable free radical acceptor. In this 

way, new carbon-carbon and carbon-oxygen bonds can be generated. As an example for including 

the chemoselectivity of this method, Dötz et al.157 have used alkenyl and alkynyl carbene complexes 

of chromium and tungsten. They have reported that bicyclic trans-fused tetrahydropyranosylidene 

and dihydropyranosylidene complexes are obtained by diastereoselective cyclization reaction with a 

suitable epoxide in the presence of titanocene(III) chloride. The products are characteristic building 

blocks in biologically active compounds in biomedical research. Under mild conditions, 1,2-

dihydroglucose (55) can be opened via two alternatives of homolytic-cleavage: one possibility 

concerns a carbon-centered secondary radical and finally the bicyclic acetal pyranosylidene (C) is 

produced (path a). Another alternative for homolytic cleavage of the epoxide provided a secondary 

anomeric carbon radical, which finally yields the pyranosylidene complex (D) (path b). The reactions 

take place under stoichiometric addition of titanocene(III) chloride (Figure 1.23). 
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Figure 1.22. Enantioselective reductive opening by chiral titanocenes. 

 

 

Figure 1.23. Synthesis of dihydropyranosylidene by Dötz. 
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Acrylic acid ester derivatives are particularly well-suited for the titanocene-mediated intermolecular 

addition of opened epoxides at carbon-carbon multiple bonds. In this case, -hydroxylesters, -

lactones, -hydroxyamides or -hydroxynitriles are created by using titanocene dichloride containing 

sterically demanding alkyl substitutions151,158 (Figure 1.24). After the reductive opening of the suitable 

epoxide (56) with an enantiopure catalyst, intermolecular addition can be achieved with the bond 

acceptor. The resulted products (58) prefer the formation of the trans-isomers. The reason of this 

unprecedented result can be explained by the fact that the cis-face of the radical is determined by 

shielding through the cyclopentadienyl groups and its substituted alkyl groups (anti-rule by Giese).159 

Interestingly, the titanocene(III) chloride without substituent (61) can give diastereoselectivite 

amounts of 77:23. Despite this issue, the catalyst with tert-butyl substituent (59) resulted in the 

highest diastereoselectivity (>97: < 3) and the small methyl substituent (60) containing catalyst yields 

the diastereoselectivite amounts of 94:6. 

 

Figure 1.24.  Titanocene-mediated intermolecular addition of --unsaturated carbonyl compounds. 

1.4.3.4 Cyclization Reactions 

Many natural products can be synthesized by intermolecular cyclization. Unlike in the intermolecular 

addition, one or more multiple bonds are cyclizised in the intermolecular cyclization. Because of high 

speed of the 5-exo cyclization, this reaction is an ideal way for a radical cyclization. Additionally, the 

6-endo cyclization and slower 6-exo cyclization have attracted less attention due to their kinetic 

results.160 A significant advantage of 5-exo cyclization is that a substitution of radical acceptors by 

electron-withdrawing groups is not required, which is necessary in the previously discussed 
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intermolecular reaction. In this context, Clive and his group161,162 have reported the synthesis of 

propellanes and triquinanes, e.g., ceratopicanol. Another study was done by Roy et. al.163,164, who 

established the synthesis of a number of tetrahydrofuran-derivatives ring of natural products, for 

example methylenolactocin and protolichesterinic acid.  

In general, the 5-exo cyclization is achieved by a spiro-cyclic epoxide as a starting reagent. In a 

further step, the epoxide is opened and carbon-centered radical is generated. In this manner, 

intermolecular 5-exo cyclization can be given as the first example, which has a terminal double bond 

in the -positions (62) (Figure 1.25). The catalytic system can be started by the reductive opening of 

the epoxide using titanocene(III) chloride and yields the alcohol (66). The protonation of titanium-

carbon and titanium-oxygen bonds is a key-step for this methodology, which is generally split by 

collidine hydrochloride acids. The cyclization products can be varied by using substituted 

cyclopentadienyl ligands, which are realized by an enantioselective opening of meso-epoxides.165,166  

 

 

                                       Figure 1.25. Titanocene-catalyzed intermolecular 5-exo cyclization.  

 

1.4.3.5 Tandem Cyclization Reactions 

A tetra-substituted alkene can be given as an example for carbocyclic and heterocyclic products by 5-

exo cyclization167 (Figure 1.26). In these types of reactions, the entire reaction sequence can be 

described as a domino cyclization addition reaction. If the cyclization is carried out with the terminal 

alkene (67) residues in -position to the spiro-cyclic epoxide, then a tetra-substituted alkene with 

excellent diastereoselectivity, usually >97:3, can be obtained. No products have been observed from 

undesired reactions (< 3%).  

In this respect, titanocene(III) chloride can catalyze the cyclization of suitable unsaturated epoxides, 

which proceed by intermolecular additions to --unsaturated carbonyl compounds. In this case, 

Gansäuer and coworkers have devised an intermolecular synthesis of tri- and tetra-substituted 

olefins, which result in the formation of the polycyclic tetrahydrofuran (THF) derivatives in highly 

stereoselective yield. They have used tributlystannyl- and phenlyselenyl-substituted vinyl radicals for 

this purpose. The reductive opening of epoxide is formed by intermolecular cyclization of the  
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Figure 1.26. Titanocene-mediated tandem reaction with alkene. 

intermediate. The key point of this reaction is the choice of the solvent. The solvent must feature a 

lower hydrogen atom donor propensity than THF in order to avoid reduction of vinyl and aryl radicals 

by abstraction of a hydrogen atom from the solvent. Under these conditions products of simple 

cyclization can be obtained. The domino cyclization-addition reaction results in the desired products 

in high yields. However, the undesired product can occur from intermolecular addition without 

cyclization or from simple cyclization in very small amounts.167 The scope of this domino cyclization-

addition reaction can be also extended to the heterocyclic products (72). In this example, N,N-

dimethylacrylamide (70) is a radical acceptor in the solution (Figure 1.27). 

 

 

Figure 1.27. Radical domino cyclization-addition reaction involving vinyl radicals. 

At the end of this section, a natural product synthesis is given as a last example, which is a -steroid 

from the plant Nolana rostrota. Oltra et al. have represented the tandem-cyclization successfully in 

the synthesis of Labdane diterpenoids that show interesting pharmacological properties such as 

antibacterial, antifungal, antiprotozoal or anti-inflammatory properties (Figure 1.28). Their strategy 

consists of three stages: (a) the selective epoxidation of the commercial available polyenes (73), (b) 

titanocene(III)-catalyzed cyclization of epoxypolyprenes (74), in which the double bond initially cycles 

in the -position (c) palladium-mediated remote functionalization of the equatorial methyl group. 

The 6-endo cyclization is followed by a further 6-endo cyclization, which results in bicyclic 

diterpenoids (75).168  



32  1.4 Titanocene in Organic Chemistry 
 

 
 

 

Figure 1.28. Titanocene-catalyzed synthesis of the diterpenoids. 
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1.5  4-exo Cyclization Reactions 

As is outlined in chapter 1.4.3, unlike the cyclization of 3-member rings, 4-member rings, 7-member 

rings and 8-member rings, the cyclization of 5-member rings and 6-member rings is a common 

reaction catalyzed by titanocene(III) chloride in the presence of epoxides.169 However, the synthesis 

of small rings, such as cyclobutanes and their derivatives or cyclopropanes, is usually difficult with 

respect to the kinetics.170 The rate constant for the 3-member ring opening is 108-109 s-1 at 25 °C. It is 

clear from this value that the ring opening of the intermediate cyclopropylcarbinyl radicals is 

amongst the fastest radical reactions (Figure 1.29a). The rate constant of the 4-exo cyclization is 101 

s-1, so the ring closure of pentenylcarbinyl radicals is the slowest radical reaction due to its low rate. 

However, the ring opening of the cyclobutylcarbinyl radical is fast, based on the rate constant 

amount of 103-104 s-1 (Figure 1.29b).171-174  

 

Figure 1.29. Kinetics of the 3-exo (a) and 4-exo cyclization (b). 

1.5.1 The gem-dialkyl Effect 

Interestingly, the addition of gem-dialkyl groups onto the pentenyl chain causes the fast cyclization 

of the pentenylcarbinyl radicals, which are substituted in the -position to the carbon-centered 

carbon atom (k = 106 s-1). The reason for the acceleration arises from the replacement of the 

hydrogen atoms with alkyl groups on the carbon atom including the two reacting centers. This effect 

was first explained by Ingold and Thorpe in 1915.175,176 The repulsion of the opposing methyl groups 

to each other on the carbon atom give rises to an increase of the bond angle in -position and 

simultaneously a decrease of the bond angle in the -position. As a result, the carbon-carbon-carbon 

angle of propane is 112.2°; this angle is reduced to 111.1° and 109.5° in isobutene and in 

neopentane, respectively (Figure 1.30). The first example of this effect is observed in the cyclization 

of chlorohydrins to epoxide, where the rate of the ring closure is accelerated 200-fold due to the 

replacement of the methylene hydrogens with a gem-dialkyl group. Allinger and Zalkow have 

demonstrated the gem-dialkyl effect in the formation in the cyclohexenes from hexanes in 1960.177 

They reported that the enthalpy favors the cyclization of substituted hexanes. There are two reasons 

for this result. Firstly, the number of gauche interactions of the open chain substrate is increased. 

Secondly, entropy is increased because the branching is reduced in the rotation in the open chain 

more than in the ring.  

 

a 

b 
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Figure 1.30. Thorpe-Ingold effect. 

Although the radical cyclization of the 4-member ring is unusual, cyclobutanes and their derivates 

have generated increasing interest in synthetic organic chemistry, because the small ring cyclizations 

are important building blocks in organic synthesis and constitute a structural motif in natural 

products, such as in marine materials or terpenes. In 1973, the first study of radical 4-exo cyclization 

was presented. Picardi et al.178 described the free radical reaction of carbon tetrachloride with 

3,3,4,4-tetrafluoro-1,5-hexadiene, which was resulted tetrafluorocyclobutane. The calculation by 

Newcomb has shown that the carbon atom must be as a C2-quarternary and the functional of alkene 

on terminal must be possessed an electron withdrawing group for a successful radical cyclization.173 

Nevertheless, Cyclobutanes are most often prepared using photochemical [2+2] cycloaddition 

processes. 

Cyclopropane does not as frequently occur in the synthesis of natural products as cylclobutane, 

which can be prepared by the addition of carbenes to alkenes. For example, the addition of a 

divalent carbon to unsaturated carbon-carbon compound would be a direct method for the 

formation of the 3-member rings, which is known as the Simmons-Smith-Reaction.179 Cyclopropane 

can be also formed when the transition metal-catalyzed decomposition of diazo compounds with 

substitutuents is added to the double bond of the carbene.180 Otherwise, the formation of 

cyclobutane is carried out via pericyclic reactions, nucleophilic substitutions or addition reactions. 

Among them, the intramolecular addition on the acceptor systems and the nucleophilic homolytic 

substitution are known such as intramolecular dimerization of a diradical.181,182 However, the 

intermolecular nucleophilic substitution or addition reaction is commonly used in modern synthetic 

chemistry. The success of this methodology depends on the understanding of the rate constants of 

the various competing radical processes.  

1.5.2 Examples of 4-exo Cyclization 

The formation of cyclobutane can be accomplished by using -formyl-epoxide and stoichiometric 

amounts of titanocene chloride. After reductive opening, the radical center is converted to 

corresponding cyclobutane products (77) with an aldehyde function (Figure 1.31).  

In addition to this example, radical cyclizations can be also started by other metals, for example 

samarium. As Kagan and coworkers found, samarium diiodide has been used for many applications 

in synthetic and radical chemistry.  
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Figure 1.31. Titanocene-mediated 4-exo-cyclization of the -carbonyl epoxide. 

Samarium diiodide is an incredibly versatile reagent, which can not only be used for 3-exo cyclization 

but also for 4-exo cyclization. Procter has proven that the cyclobutanols can be produced using 

radical ketyl-olefin cyclization by samarium diiodide. The samarium-mediated 4-exo-trig of ,-

unsaturated aldehydes (78) can produce anti-cyclobutanol products (79) in a stereoselective manner 

(Figure 1.32). Interestingly, the ester substrate gives the anti, anti-diastereoisomer as the only 

product in good yield. However, the sulfone substrate gives the corresponding anti, anti-cyclobutanol 

product by uncyclized aldehyde, which does not have the -benzyloxy group. Also, the yield by using 

the ester was higher than the yield by using the sulfones.183-186  

 

Figure 1.32. SmI2-mediated 4-exo cyclization. 

Another example for the cyclization of the 4-exo-trig comes from Nature. Pestalotiopsin A has been 

investigated by Procter187 in 2001; it can be isolated from the endophytic fungus of Taxus brevifolia, 

the Pacific yew. The terpene derivative possesses an oxatricyclic structure in Nature products and has 

shown immunosuppressive properties and cytotoxicity activity. He has described the approach to 

prepare the functionalized 2-oxabicyclo[3.2.0]-heptane core of the Pestalotiopsin. This synthesis 

consists of five stereocontrolled steps, which are based on a samarium diiodide-mediated 4-exo-trig 

cyclization and trans-lactonization process trigged by the addition of the alkylterbium reagents to a 

cyclobutane intermediate. The corresponding ,-unsaturated aldehyde (80) is converted into the 

anti-cyclobutane product (81) by using samarium(II) diiodide as a catalyst in a mixture of THF/MeOH 

(Figure 1.33). 
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Figure 1.33. Synthesis of Pestalotiopsin A by samarium-mediated 4-exo cyclization.  

In the early 1990s, Jung reported an efficient preparation of four-membered rings by radical 

cyclization.188,189 The 4-exo cyclization by using tributlystannane is accompanied with an unusual 

oxidation of a dialkoxyalkyl radical and produces a vinyl transfer to give an ester in good yield (Figure 

1.34a). Another four-membered ring formation using of tributlystannane has been demonstrated by 

Ogura.190 In this context, the substitution of the methylthio and p-tolylsulfonyl groups stabilize the 

resulting radical (82), where the corresponding radical undergoes additional stabilization by 

electrostatic interaction between the methyl hydrogen and sulfonyl oxygen (Figure 1.34b). 191-194 

 

Figure 1.34. 4-exo cyclization by Jung et al. and by Ogura et al. 

As described in the previous section, the cyclization of cyclobutane can also take place using 

titanocene(III) chloride. In this context, Gansäuer and coworkers have described a catalytic cycle of 4-

exo cyclization (Figure 1.35). 

 

Figure 1.35. Titanocene-mediated 4-exo cyclization by Gansäuer. 

a 

b 
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The catalytic cycle is summarized in Figure 1.35’s and outlined exhaustively in Figure 1.36. The 

catalytic cycle starts with the reduction of titanocene(IV) chloride to titanocene(III) chloride by Zinc. 

In the first SET step, epoxide (84) is reductively opened using titanocene(III) chloride and a 

quaternary carbon-centered radical (85) is generated, which is durable enough for the cyclization of 

the cyclobutylcarbinly radical (86). In the second SET step, titanoncene(III) chloride is reduced again. 

This step is irreversible and thus the equilibrium moves to the product side. In the final step, the 

hydrolysis of the titanium-oxygen bond occurs by using collidine hydrochloride. Subsequently, the 

cyclobutane (89) results and the released titanocene(IV) chloride is reduced to titanocene(III) 

chloride again in the catalytic cycle.  

 

Figure 1.36. Titanocene-mediated catalytic cycle of the 4-exo cyclization. 

 

As can be seen from all of the examples, the formation of cyclobutanes by radical cyclization results 

in good yields, provided suitable molecular structures and reaction pathways are used. Despite the 4-

exo cyclization being the slowest free-radical reaction and the corresponding ring opened reaction 

being much faster, a considerable number of examples are present in the literature, which includes a 

successful 4-exo cyclization. 
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1.6 Hydrogen Atom Transfer (HAT) 

Hydrogen atom transfer is a key step in many chemical and biological reactions and involves two 

elementary particles, a proton and an electron. Traditional HAT reactions have an abstracting group, 

which is a p-block radical such as t-butoxyl from organic molecules. In contrast, the transition metal 

complexes that abstract H• typically have an oxidizing metal center to accept the electron and a basic 

ligand to accept the proton.  

The HAT process from accessible hydrogen atom donors can be also used as a step in the reduction 

of carbon-based radicals. In this context, water would be used as the hydrogen atom source, which 

serves as a remarkable, safe and cheap HAT reagent. Nevertheless, it is generally believed that this 

potential HAT reaction is avoided by the carbon-centered radical due to the high dissociation energy 

(BDE) of the H-OH bond (around 118 kcal/mol). However, some years ago, Cuerva J. and coworkers 

demonstrated that water acts as an excellent hydrogen atom donor in the presence of [Cp2TiCl] 

towards to carbon radicals.195 To explain their proposition, they proposed that water is coordinated 

to titanocene(III) as a ligand; the H-OH bond is weakened and the corresponding aqua-complex (90) 

acts as an efficient hydrogen atom donor (Figure 1.37). 

 

Figure 1.37. Mechanism of carbon-centered radical reduction through an aqua complex. 

The unprecedented HAT reaction from water facilitate the efficient synthesis of alcohols from 

epoxides with anti-Markovnikov regiochemistry196, the control of the final step in titanocene-

catalyzed radical cyclization, which is useful for the synthesis of the polycyclic terpenoids5,6,150,168,197, 

and the new hydrogenation reaction of alkenes and alkynes.198 The [Cp2TiCl]/H2O-mediated 

asymmetric epoxidation the reductive epoxide opening can especially be an alternative with 

complementary stereoselectivity of hydroboration-epoxidation for the enantioselective synthesis of 

anti-Markovnikov alcohols from alkenes.199 In all of these applications, water can be used as a safe 

and cheaper HAT reagent.  

In addition, hydrogen transfer from water, mediated by samarium(II) diiodo or titanocene(III) 

chloride, can generate transient ketyl radicals from aromatic ketones, yielding either pinacol-coupling 

products or reduction products (alcohols), which are based on a conventional House’s reduction 
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mechanism.200 In this context, the carbonyl compounds mediated by [Cp2TiCl]/H2O can be better 

described as unique HAT processes. The metal-mediated carbonyl reductions in protic media are 

often preceded by the HAT mechanism.  

Consequently, the success of the titanocene(III) chloride aqua complexes are based on two features, 

which can serve as an excellent class of HAT reagent: firstly, excellent binding capabilities between 

water and titanocene(III) complexes and secondly, a low activation energy for the HAT step.  

However, the transfer of hydrogen atoms of water onto free radicals can be mediated by complexes 

of the trialkyl boranes. Organoboranes can be easily prepared via hydroboration of alkenes.201 This 

reaction is based on an anti-Markovnikov addition of water to alkenes. Under initiation of peroxide 

or other oxidizing reagents, alcohols are generated. Although the procedure for the reduction of the 

double bonds is more attractive, the reduction of alkylboranes is less common to alkanes. In this 

manner, Renaud P.202 has reported a method for the reduction of organoboranes with alcohols under 

mild conditions, where his strategy consists of complexation of the O-H bond of alcohol with a Lewis 

acid and thus the release of hydrogen atoms. 
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1.7 Oxaphosphirane 

The epoxide SET ring-opening mediated by titanium(III) species can be applied to oxaphosphirane. 

Unlike epoxide, the evolution of the oxaphisphirane is relatively new. The oxaphosphirane ring is of 

considerable interest due to its analogy to the oxirane rings, which are important building blocks for 

oxaphosphirane chemistry.  

In 1978, 4


5-oxaphoshiranes (93) were first synthesized by Röschenthaler and Schmutzler203 via a 

[2+1] cycloaddition reaction of iminophosphine derivative (91) and hexafluoroacetone (92), which 

has been characterized through spectroscopy (Figure 1.38). 

 

 

Figure 1.38.  The first synthesis of oxaphosphirane. 

 

Four years later, Bartlett204 found a 4


5-oxaphoshiranes phosphorus-oxide derivate in the ring 

expansion reaction. In 1988, the monomer-dimer equilibrium of a 4


5-oxaphoshiranes was 

investigated by Boisdan and Barrans.205 In 1990, Mathey and coworkers have described 

oxaphosphirane transition-metal complexes, which were prepared by epoxidation of phosphaalkene 

complexes with meta-chloroperbenzoic acid206 (94 in Figure 1.39). This procedure is based on the 

oxidation of a series of phosphaalkene phosphorous-complexes, which often appears for free 

phosphaalkenes and was avoided by blocking the lone pair in the phosphorous by a metal carbonyl 

fragment (W(CO)5). 

In 1994, Streubel and coworkers discovered a new route in order to synthesize the oxaphosphirane 

complexes. They gained novel access to oxaphosphirane tungsten complexes using a transient Li/Cl 

phosphinidenoid tungsten complex, which reacted in situ with benz- or isobutyaldehyde207,208 (95 in 

Figure 1.39). However, the Streubel group also presented another method, which generates 

transition-phoshinidenoids under mild conditions and uses them selectively for substitution reaction 

and responses of end stage phosphinidenoid complexes209 (96 in Figure 1.39). 
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                                     Figure 1.39. Established synthetic route to oxaphosphirane complexes.  

The deprotonation of chlor-phosphane complex (97) with Lithiumdiisopropylamid (LDA) in the 

presence of [12] crown-4 selectively leads to compound (98) (Figure 1.40). In order to prove the 

existence of phoshinidenoid-complex, they showed that in the presence of the methyliodide, the 

obtained p-methyl-substituted chlorphosphane is the only phosphorus-containing product, and thus 

an intermediate incidence of complex (98) is proven beyond a reasonable doubt.  

 

Figure 1.40. Synthesis of phosphanylidenoid complex 99. 



42  1.7 Oxaphosphirane 
 

 
 
In summary, Streubel’s group demonstrated two ways in which transient phoshinidenoid complexes 

are produced selectively under mild conditions by deprotonation or by an exchange of the 

chloride/lithium. In addition, based on DFT calculations, a mechanism was proposed starting with a 

P-O bond cleavage in the parent oxaphosphirane.210,211 
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1.8 The Aim of the Work 

Despite the described advantages of the titanocene-catalyst, curiously enough, no mention is made 

in the literature about their physical molecular properties and their exact electronic structure.  

The aim of this work is to elucidate the electronic structure of the paramagnetic titanocene(III) 

complex and the exact reaction mechanism of the epoxide ring opening reaction, which is achieved 

by titanocene(III) chloride as the catalyst. This allows for an unambiguous identification of the 

reactive intermediates.  

Electron Paramagnetic Resonance (EPR) is a spectroscopic method that is used to investigate 

paramagnetic electronic states. The sample is placed in a magnetic field and exposed to microwaves 

of the appropriate frequency, which generates resonant transitions in the electronic spin system. The 

information of the electronic and geometric structure and the bonding of ligands, dynamics and 

concentration dependence can be investigated by using EPR methods. Most importantly, the 

paramagnetic species can be identified. Consequently, EPR spectroscopy is widely used.212-216  

In addition, EPR spectroscopy is one of the most sensitive techniques for the detection of free 

radicals. These are paramagnetic owing to the unpaired electrons, which have a magnetic moment.  

In many chemical reactions and in a number of biochemical processes, intermediate free radicals are 

formed. These radicals are highly reactive, but in general their quasi-stationary concentration and 

their life time are very small. These are not often sufficient for direct detection by EPR spectroscopy 

to demonstrate the formation of such radicals. However, they can still detected by using spin traps. 

Such spin trap molecules are diamagnetic and react with reactive free radicals to form stable 

nitroxide radicals. 

In this work, the EPR studies are used to obtain information about g-values, the hyperfine coupling 

and the quadrupole interaction, which is obtained from cw-EPR and pulse EPR techniques. In order to 

characterize titanocene(III) chloride complexes with bound small molecules such as water or 

methanol, epoxide or oxirane or phosphanylidenoid complexes, the interactions between the 

electron spin S of the unpaired electron and nuclear spin I of the direct (strongly coupled) or 

indirectly (weakly coupled) neighboring atoms are measured. These interactions provide important 

information about the structure of the investigated complexes.  

Hyperfine couplings of the hydrogen atoms of the same titanocene(III) chloride complexes have been 

determined by the pulsed ENDOR method. The pulsed ENDOR method, provides a.o. information 

about the relative orientation of the g-tensor and hyperfine and quadrupole interaction tensors. 

In EPR spectra, the hyperfine couplings, which derive from the more distant nuclei from unpaired 

electron, cannot be resolved. The information about this coupling can be obtained by ESEEM and 

HYSCORE spectroscopy. We used the ESEEM method for the determination of chloride or deuterium 

hyperfine couplings. The 2D HYSCORE method provides better resolution in case of overlapping 

signals in the 1D ESEEM spectra.  
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This thesis is divided into eight chapters. After the introduction, in the second chapter, the 

theoretical foundations of EPR spectroscopy are introduced. In third chapter, the employed modern 

EPR- and electrochemistry-techniques are described in more detail, including a technical perspective. 

Also in this part, Density Functianal Theory is explained. Chapters four to seven describe the obtained 

results and a discussion, which have been communicated in three peer-reviewed papers. In chapter 

4, experiments of the titanocene(III) chloride in the presence of water molecules are described. The 

resulting hydrogen atom transfer is corroborated with theoretical results. Chapter 5 describes the 

binding of titanocene(III) chloride and epoxide and the reaction mechanism of the epoxide ring 

opening reaction, which is achieved by using titanocene(III) chloride. To determine the reaction 

mechanism, spin trap techniques are used. Chapter 6 describes the 4-exo cyclization with theoretical, 

spectroscopic and synthetic perspectives. In chapter 7, information about the geometry and the 

electronic structure of phosphanyl radicals is reported. The bonding and reactivity of phosphanyl 

radicals are investigated by spectroscopic and theoretic methods. In the chapter 8, the results of this 

work will be briefly summarized. 
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2 Theoretical Fundamentals of Electron Paramagnetic Resonance 

Spectroscopy 

 

2.1 History of Electron Paramagnetic Resonance (EPR) Spectroscopy 

Electron paramagnetic resonance (EPR) is a spectroscopic method for studies of paramagnetic 

species. The theoretical description of electron paramagnetic resonance (EPR) spectroscopy is very 

similar in concept to the more familiar nuclear magnetic resonance spectroscopy (NMR). Although 

they have the same basic principles, in the case of EPR, the magnetic moments arise from electrons, 

whereas they are derived from nuclei in NMR. Since the discovery of this method by E. K. Zavoisky, 

who used samples of CuCl2.2H2O, this method has evolved to an important tool in chemistry, physics, 

biology and materials science.  

This chapter explains the theoretical basis of EPR spectroscopy, which is necessary for understanding 

the measurements performed here. 

 

2.1.1  Electron Spin 

The EPR spectroscopy is based on measurements of the interaction between electromagnetic 

radiation and the magnetic moment of an electron, the electron spin. In 1920, an experiment in basic 

quantum mechanics by Otto Stern and Walther Gerlach showed that the magnetic moment of the 

electron in a magnetic field can take only discrete orientations. The Stern-Gerlach experiment 

involves a beam of particles through an inhomogeneous magnetic field and observing their 

deflection. Five years later, Goudsmit and Uhlenbeck demonstrated that there are previously 

unknown quantum numbers of the electron, the spin quantum number needed. It characterizes the 

“angular momentum” of the electron, its so-called spin.  

Each angular momentum with a magnetic moment associated, which can be written: 

 ⃗                  (2.1) 

The proportionality factor is known as the magnetogyric ratio . Equation (2.1) describes only a 

portion of the total magnetic moment of an electron, because in addition to the spin the orbital 

angular momentum still exists. The eigenvalues of the spin operators are half-integer multiples of 

Planck’s constant, so that operates as a convenience to the product. This is given by:
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                        (2.2) 

where µB is the Bohr magneton. The so-called g-factor of the free electron can be determined as 

2.00232; in organic radicals, the g-factor differs only slightly from this value.  

If one applies a homogeneous magnetic field B0, the electron spins in the sample take a parallel (Ms = 

+ 1/2) or anti parallel (Ms = - 1/2) towards the outer magnetic field. There is therefore to a Zeeman 

splitting of energies with  

                    (2.3) 

and the formation of the Zeeman levels:  

   
 

 
                 (2.4) 

    
 

 
                (2.5) 

The Zeeman splitting is proportional to the external magnetic field B0. 

 

 

Figure 2.1. Zeeman splitting of the energy of an unpaired electron in a magnetic field B0. 

The energy difference between W and Wresults in a thermodynamic equilibrium in the sample to 

a population difference, according to the Boltzmann distribution:  

  

  
    [ 

  

   
]     [ 

      

   
]           (2.6) 

kB is the Boltzmann constant (1.38066∙10-23 J∙K-1) and T the absolute temperature in Kelvin. It is clear 

that the population difference increases with the magnetic field strength. The transition between 

two levels can be achieved by irradiating electromagnetic waves reaching the microwave range. After 

irradiation at the resonance frequency EPR on the sample absorption is observed, which is 

proportional to the population difference.   

 

2.2 The Spin Hamilton Operator 

The Hamilton operator  ̂ describes the properties of a quantum mechanical system, which includes 

all energy contributions of the spin system. To describe the EPR spectra certain contributions are 

neglected in the Hamilton-operator. In this way, the analysis of the EPR spectra is facilitated.227   
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The description of the interaction energy of a paramagnetic atom in a constant external magnetic 

field B0 is given by the following spin Hamilton operator  ̂: 

 ̂      ̂      ̂       ̂       ̂         (2.7) 

   ̂  = Zeeman-interaction of the electron with an external magnetic field 

   ̂ = Zeeman interaction of the nuclei with an external magnetic field 

   ̂  = Hyperfine interaction between the electron and the nuclei 

   ̂  = Nuclear-quadrupole interaction between the quadrupole moment of the nucleus and the   

gradient of the electronic field 

In the high-field approximation with     ̂     ̂ ,    ̂, the electron Zeeman term represents the 

strongest interaction. In this approximation, the quantization axis of the electron spin is mainly 

determined by the electron Zeeman interaction. The influence of nuclear spins on this axis is 

negligibly small. Nuclear Zeeman and hyperfine interactions are often of similar magnitude. Thus, the 

nuclear spin quantization direction aligns along a direction of the resultant from nuclear Zeeman 

term and local filed. In EPR spectroscopy, a lot of information about the electronic and geometric 

structure of a paramagnetic compound can be obtained from the listed interactions from eq. (2.7). 

They provide information about the electronic ground state, the “site” symmetry, the spin density 

distribution, the type of atom, the distance, the type of binding and electronic field gradients, and 

the distribution of charge.  

In the following the different interactions are explained  briefly.

 

2.2.1 The Electron Zeeman Interaction 

The interaction energy is indicated between the spin of a free electron and the magnetic field. The g-

value generally depends on the bonding situation of the electron. Then the nucleus framework and 

the orbitals preferred directions in a molecule-related coordinate system are defined, and the g-

value is also dependent on the direction. Therefore, the electron-Zeeman interaction can be written: 

     
  

 
                   (2.8) 

where g is the g-tensor,   is Plank’s constant, B is the external magnetic field and S denotes the spin 

operator.  

In general, many interactions are dependent on the direction of magnetic resonance in particular 

(anisotropic).  According to the directions we formulate eq. (2.8): 

     
  

 
                              (2.9) 

The effective field for the spin is not along the z-direction. To consider this effect, a symmetric g-

tensor can be taken. Some tensor can be diagonalized; i.e., there is a coordinate system in which all 

the off-diagonal elements are zero. This coordinate system is called the principal axis system (PAS), 

the values on the diagonal are the main values and they can be called g11, g22 and g33. For the 
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description of symmetric tensors we also like to use the isotropic mean value (giso), the anisotropic 

(∆g) and the asymmetry . They are given by the following equation: 

       
 

 
                       (2.10) 

                      (2.11) 

    
       

  
            (2.12) 

where the values are arranged such that  is the smallest positive number. (0≤≤1) analogous 

definitions apply for other tensors.  

The magnetic field vector can be expressed by the polar angle θ and 𝜙 in the principal axis system:  

                 𝜙            𝜙                (2.13) 

Then we can write eq. (2.9): 

   ̂   
  

 
               𝜙                 𝜙                       (2.14) 

The quantization direction with the magnetic field direction is consistent under these conditions; 

exactly for g11 = g22 = g33 (anisotropic g-tensor). In the case for for | 
  

  
   

|   
   

, a good 

approximation is valid, which is fulfilled almost always with organic radicals. From eq. (2.14) an 

effective g value can be obtained for an orthorhombic symmetry (g11 ≠ g22 ≠ g33): 

                  𝜙    
              𝜙    

            
  

 
 ⁄      (2.15) 

This equation allows a geometric interpretation of the tensor by an ellipsoid, which presents three 

axes g11, g22 and g33 in X, Y and Z directions. Then, geff is precisely the length of a vector from the 

origin to the surface with the polar angles  and  (Figure 2.2). 

In transition metal complexes, the g-value is largely determined by the nature of the directly 

coordinated ligands to the central ion, which includes information about the symmetry and 

electronic structure of the paramagnetic metal ion. In disordered powder systems or frozen 

solutions, the molecules have a statistical distribution of the directions of their g-tensor axis with 

respect to external magnetic field B0. Due to the rapid movement of molecules in the liquid, only an 

isotropic average giso is observed. However, this average differs from the general g-value of the free 

electron, because the spin-orbit coupling (SOC) is a small admixture of orbital angular moment. Such 

mixtures of various interactions are generally relevant when interactions are similar in magnitude or 

if there are nearly degenerate states. SOC effects are large when two orbitals have an energy 

difference, which is not much larger than the electron Zeeman energy.  
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Figure 2.2. Schematic representation of an axial ellipsoid with the principal axes of the g-tensor and its 

dependence on the angle . 

 

2.2.2 Nuclear-Zeeman Interaction  

The electron spin is coupled to the nuclear spins by the hyperfine interaction. There are commonly 

three interactions in the used magnetic field of a similar magnitude: the hyperfine interaction, the 

nuclear-Zeeman interaction and the nuclear quadrupole interaction. In solution they are not 

generally more relevant. Because the anisotropic parts of all the interactions average out, the

quantization direction of the nuclear spins are determined only by the nuclear-Zeeman interaction 

and is parallel to the magnetic field axis. With this information, the behavior of the electron spins can 

be described precisely without knowing the nuclear spin. The situation is different in the solid state, 

where the quantization direction of the nuclear spins can be determined through a combination of all 

three interactions. Because the quantization affects the observed hyperfine splitting and the 

transition probabilities, then the nuclear-Zeeman interaction and nuclear quadrupole interaction 

must be included in the spin-Hamilton. Even interactions that do not influence the quantization 

direction must be considered when the spectra of the nuclear spins over the electron spins are 

detected by double resonance methods. 

The nuclear-Zeeman interaction can be described as follows:  

      
      ̃

 
            (2.16) 

where gn and I are the designated nuclear g-factor and the nuclear spin operator, which are inherent 

properties of a nucleus, respectively.  

The nuclear-Zeeman interaction usually has little influence on the EPR spectrum, which can be 

neglected in the analysis of EPR spectra, unless it is of the same order of magnitude as a resolved 

hyperfine coupling of the same nucleus. In the case of ESEEM or ENDOR spectroscopy, the nuclear-

Zeeman interaction becomes important and can be used to assign the hyperfine couplings to 

elements.  
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2.2.3 Hyperfine Interaction 

The interaction of the magnetic moment of the electron spin S with the local magnetic field, which is 

generated by the neighboring nuclear spin I, causes the hyperfine splitting. The hyperfine interaction, 

which is between an electron and a nuclear spin, term of the Hamiltonian is given by  

     ̃              (2.17) 

where A is the sum of the isotropic part (the Fermi contact interaction) and the anisotropic dipole-

dipole coupling term (electron-nuclear).  

The Fermi-contact interaction can be written: 

          ∑                     (2.18) 

If both spins are quantized along the magnetic field, the individual summands are simplified 

to            . The Fermi-contact interaction is due to the non-zero probability to find the electron at 

the nucleus. This happens only when an unpaired electron is in an s orbitals, which are both 

spherically symmetric and the Fermi contact term is necessary isotropic. The isotropic coupling aiso is 

calculated by: 

     
 

 

  

 
        |     |           (2.19) 

The isotropic hyperfine coupling aiso is caused by the electron spin density in the s orbitals and thus 

provides information about the spin density distribution in paramagnetic compounds. The factor 

|     |
  is the probability to find the electron at the nucleus in the ground state with wave function 

  . The hyperfine coupling of the different isotopes of the same element is proportional to 

corresponding gn values. When the unpaired electron resides in p, d or f orbitals such as transition 

metal complexes, they do not contribute to Fermi contact interaction; spin density at the nucleus is 

induced by configuration integrals or the spin polarization mechanism.  

The isotropic hyperfine interaction plays a major role for determining the electronic structure of 

organic radicals. This means that in -radicals (the unpaired electron in a -orbital) the isotropic 

hyperfine coupling is proportional to non-zero probability of electrons at the neighboring carbon 

atom.  

The anisotropic part of the hyperfine interaction results from the interaction between the magnetic 

moments of the electron and the magnetic moments of the nuclei. This electron-nuclear dipolar-

dipolar interaction is analogous such that there is a dipole-dipole interaction between electrons 

spins. The Hamiltonian for the anisotropic dipolar-dipolar interaction is given by: 

         ∑                  (2.20) 

with the dipolar coupling tensor T. In general, the matrix element Tij of the total anisotropic hyperfine 

coupling tensor T is given with the ground state wave function: 

    
  

   
        ⟨  |

          
 

  |  ⟩        (2.21) 
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The anisotropic hyperfine interaction provides information about the distance and the orientation of 

the nuclear spins to the electron spin. The dipole-dipole interaction depends on the relative 

orientation of the magnetic moments and its anisotropy. When the unpaired electron is localized in a 

p, d or f orbital, the anisotropic contribution can only arise from through-space dipole-dipole 

coupling to other centers of spin density. The hyperfine coupling tensor can be approximated by the 

point-dipole formula: 

  
  

   
        ∑   

      ̃   

  
             (2.22) 

 
 
 is the spin density which is summed over all orbitals at the center, Rk is the distance between the 

nucleus and the centers of spin density and  nk is the unit vector denoting the direction cosines of Rk 

in the molecular frame. In ENDOR spectroscopy of the transition metal complexes, the point-dipole 

approximation is often used to determine the position of the protons from their hyperfine 

interactions.  

Consequently, the hyperfine interaction contains information about the spin density distribution, the 

type of the coupled nucleus, the type of chemical bond between the atoms in the considered 

molecules and the distance between the unpaired electrons and neighboring nucleus. All this 

information can be used to elucidate the electronic structure and geometry of the molecule. 

The hyperfine interaction can be summarized as follows: 

              ∑               (2.23) 

The symbols Ak are total hyperfine coupling tensors and I are nuclear spin vector operators. 

 

2.2.4 Nuclear-Quadrupole Interaction 

Nuclear spins with Ik>1/2 have an electronic quadrupole moment that can interact with the electric 

field gradient at the nucleus. This interaction can also be written in tensor form: 

     ∑                       (2.24) 

where P is the nuclear quadrupole tensor, which is traceless in its principal axis. The nuclear 

quadrupole Hamiltonian can be written as:  

        
      

      
  

    

         
⌈    

            (  
    

 )⌉    (2.25) 

where eq is the electric field gradient and   is the asymmetry parameter given by: 

  
(     )

  
  with  |  |  |  |  |  |  and            (2.26) 

The electric field gradient characterizes the symmetry of the charge distribution in the vicinity of the 

considered nucleus. The charge distribution is dependent on the bonds, which enter the atom and its 

neighbors. Thus, the knowledge of the experimentally quantity   provides detailed information about 

the charge distribution and the bonding properties of the atom.  
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A determination of P from EPR spectra is only very rarely possible, because this interaction leads to 

only small second-order contributions. However, in ENDOR or ESEEM spectra, the nuclear 

quadrupole interaction is observed as first-order contributions. 

 

2.2.5 The Entire Spin Hamilton Operator 

The entire Hamiltonian for an electron spin S, which is coupled to n nuclear spins Ik, can be 

summarized as follows: 

                    

  
    

 
     ∑

      ̃  

 
 
    ∑  ̃    

 
    ∑   ̃               (2.27)

 

This spin Hamiltonian was first derived by Abraham and Pryce228 from Hamiltonian governing the 

wavefunction of bound electrons using perturbation approach. 

 

2.3 Multi-Frequency EPR Spectroscopy  

For a successful structural characterization of a paramagnetic compound using the EPR method, it is 

often necessary to consider at which frequencies different interactions can be best detected. The 

optimal EPR frequency strongly depends on the studied system. Much of the information, which the 

EPR spectroscopy provides through the structure and binding of paramagnetic metal centers, can be 

obtained by an analysis of g-tensor, hyperfine and nuclear quadrupole couplings. The change of the 

magnetic field B0 frequently alters the appearance of a spectrum and additional information may 

become observable to facilitate the interpretation.  

The commonly used microwave frequencies associated with magnetic fields are listed in Table 2.1. In 

this work only the X- and Q-bands are used. The electron and nuclear Zeeman interactions linearly 

depend on the applied field B0; the stronger the magnetic field the higher the microwave frequency. 

Thus, the spectra are wider at higher frequencies, in which a strong increase of the microwave 

frequency can lead to the complete loss of resolution of the hyperfine structure. This often happens 

in frozen solutions because they have a distribution of g-tensors. However, at the higher frequencies 

and the higher magnetic fields the anisotropy of the g-tensor can be resolved because the line width 

of the EPR spectrum is dominated by the g-anisotropy. As compared to X-band (9.75 GHz), the high-

field G-band (180 GHz) is stretched by about a factor of 20. Thus, high-field EPR allows effective 

analysis of the g-tensor anisotropy due to the increasing in resolution and absolute sensitivity, which 

is achieved by the use of superconducting magnets and quasi-optical methods. 
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Table 2.1. Microwave frequency bands used in EPR spectroscopy with corresponding external magnetic field B0 

for ge = 2 

MW-Band MW-Frequency 
range 

Typical EPR 
Frequency n 

[GHz] 

Typical 
wavelength [mm] 

Typical EPR Field 
B0 [mT] 

L 1-2 1.5 200 54 

S 2-4 3.0 100 110 

X 8-12 9.5 30 340 

Ku 12-18 17 17 600 

Q 30-50 36 8 1280 

V 50-75 70 4 2500 

W 75-110 95 3 3390 

D 110-170 140 2 5000 
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3 Methods 

Below, a short summary of all methods employed in the work described in this thesis is given. In the 

subsequent sections, each method is described in more detail. 

EPR Spectroscopy: EPR spectroscopy is used to elucidate the electronic and geometric structures of 

paramagnetic compounds. Information is obtained through the analysis of the hyperfine- and 

quadrupole-coupling constants. An electron is mostly surrounded by many nuclei with magnetic 

moments. From the specific interaction between the electron and the nuclear spin, information 

about the structure and binding of the paramagnetic metal-center is achieved. These couplings can 

sometimes be derived from a characteristic splitting in an EPR spectrum. However, this information 

can not always be obtained directly. The information is then accessible by modern EPR methods such 

as ENDOR, ESEEM and HYSCORE spectroscopy.  

For strong coupling, the ENDOR method is best suited. In contrast, the ESEEM and HYSCORE methods 

are more effective for the weak hyperfine interaction. EPR, ESEEM, HYSCORE and ENDOR spectra 

were recorded for frozen solutions using a Bruker ELEXSYS E580 FT-EPR spectrometer. The EPR, 

ESEEM, HYSCORE and Davies-ENDOR experiments were performed with a Bruker MD4 (ENDOR) or 

MD5 (EPR, ESEEM, HYSCORE) resonator. All methodologies and their backrounds are described in 

section 3.1. 

Electrochemistry: Cyclic voltammetry is an established electrochemical method, which gives 

information about the reduction potentials of the compounds studied, but also on the kinetics of 

electron transfer. The cyclic voltammograms were recorded on a 600D Electrochemical 

Analyzer/Workstation (CH-Instruments). The working electrode was a glassy carbon disk of diameter 

1 mm. The electrode surface was polished using 0.25 μm diamond paste (Struers A/S), followed by 

cleaning in an ethanol bath. The counter electrode consisted of a platinum coil melted into glass, 

while a Ag/AgI electrode (silver wire immersed in a Pyrex tube containing 0.2 M Bu4NPF6 + 0.02 M 

Bu4NI in THF) separated from the main solution by a ceramic frit served as the reference electrode. 

All potentials were reported against the Fc+/Fc redox couple, the potential of which is equal to 0.52 V 

vs. SCE in 0.2 M Bu4NPF6/THF.  

DFT Calculations: Finally, in Section 3.3, the density functional theory is given. Density Functional 

Theory is a method to calculate the properties of quantum mechanical many-electron systems in the 

ground state in the Born-Oppenheimer approximation. The existing geometry optimization methods 

in the quantum chemistry program package ORCA were extended. The geometry optimization was 

carried out with the BP functional and a split-valence basis set with additional polarization functions 

(SVP). After geometry optimization, the B3LYP functional and a triple-zeta basis set with polarization 

functions (TZVP) was employed to calculate g values and hyperfine coupling constants. Results 

obtained with the DFT theoretical treatment are compared to those results obtained with the 

experimental treatment in Chapters 4 to 7.  
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3.1 EPR Spectroscopy 

The basic methods in EPR spectroscopy used in this thesis are summarized in Table 3.1; these 

methods are applied to elucidate the electronic and geometric structure of paramagnetic 

compounds.216,229  

Table 3.1. EPR spectroscopic methods used in this work. 

cw-Method Pulse-Method 

cw-EPR FT-EPR 

 Pulsed-ENDOR (Mims-ENDOR, Davies-ENDOR) 

 ESEEM 

 HYSCORE 

 

The cw-EPR (continuous wave) and pulse EPR techniques provide information about the electron 

Zeeman interaction, which is characteristic for the electronic state of the investigated complex. In 

addition to this, strong hyperfine interactions are observed, which provide information about the 

couplings between the unpaired electron and the directly neighboring nuclei. Pulse ENDOR 

spectroscopy provides information about strongly coupled nuclei. Using ESEEM and HYSCORE 

spectroscopy, the interactions with more distant nuclei can be investigated. The 1D-ESEEM and -

ENDOR experiments are the equivalent of 1D-NMR spectra. HYSCORE is the equivalent of 2D NMR 

spectroscopy.  

 

3.1.1 cw-EPR  

The cw-EPR spectrometer and the cw-EPR spectrum are described in this section. A cw-EPR 

spectrometer basically consists of a microwave bridge, a resonator, a magnet system and control 

electronics, which are depicted in Figure 3.1. The microwave bridge houses the oscillator, attenuator, 

circulator, detector, phase shifter and bias. Their properties can be described as follows: the 

oscillator generates microwave power, and ideally the microwave power is absorbed by the sample 

in the resonator. The attenuator is used for attenuating microwave power. The detector converts 

microwave power into a zero frequency voltage. The phase shifter changes the travelling path length 

of the microwave radiation. The microwave resonator has two important purposes. Firstly, they 

collimate a sufficient microwave magnetic field at the sample for driving the EPR transition; secondly, 

they convert the sample response into a detectable microwave signal. To fulfill both these 

requirements, specialized resonators have been designed such as the dual mode resonator for the 

investigation of forbidden transitions and the double resonator for quantitative EPR. 

A magnet system comprises the magnet, the power supply, a field sensor and a field regulator. If the 

magnetic field fulfills the resonator condition of the sample, a spin transition is induced and 

registered by the data system. Information about the components of the cw-spectrometer is shown 

below; the experimental cw-EPR spectrum is then explained. 



57  3.1 EPR Spectroscopy 
 

   
 

 

Figure 3.1. The hardware components of a cw-EPR spectrometer: a) microwave bridge; b) spectrometer 

electronics; c) electromagnet; d) resonator and e) magnet power supply. 

The EPR spectrum records the response of the sample as a synchronous detection. In the cw-EPR the 

microwave frequency is kept constant and the external magnetic field varies continuously. Due to a 

phase sensitive measurement method, the first derivative of the spectra is recorded. The magnetic 

field is modulated with additional coils. With the setting of a particular magnetic field value, a certain 

g-value is also set in which the microwave absorption takes place. The g-value provides direct 

information about the electronic structure of the system. The stronger the magnetic field, the better 

the resolution of the g-value due to the electron Zeeman Effect.  

In most of the paramagnetic compounds, the unpaired electron is surrounded by many neighboring 

magnetic nuclei. If the hyperfine coupling A is greater than the natural ERR line width, the EPR lines 

are dependent on the nuclear spin I and the number of equivalent nuclei N into ∏          single 

lines are split. Thus, the number of EPR lines is multiplicatively increased with the number of coupling 

nuclei. The distance between the EPR lines corresponds to the hyperfine coupling. If the electron spin 

S interacts with several groups of non-equivalent nuclei, a very complicated pattern of lines in the 

EPR spectrum can be obtained. Moreover, the anisotropic components of the hyperfine coupling 

cause an inhomogeneous broadening of the observed EPR line. Because of that, many hyperfine 

interactions are not resolved.  

In general, in a cw-EPR spectrum the couplings to directly neighboring nuclei are only spectrally 

resolved. In contrast, the interactions with more distance nuclei are not detected. In order to resolve 

the smaller hyperfine coupling, different strategies are needed for increasing the spectral resolution, 

which are described in the following sections.  

 

a 

b c 

d 
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3.1.2 Pulse EPR  

An important area in the modern EPR methods includes pulsed EPR, in which the electron spins are 

excited by a series of pulses. In typical pulsed EPR experiments, the signal is emitted by the spin 

system following a series of one or more pulses and contains spectral information and spin relaxation 

information. 

The pulse EPR has no microwave applied during signal acquisition, but the pulse timing and resonator 

bandwidth are critical. These differences require a different structure compared to a cw-EPR 

spectrometer. Much larger B1 fields are required for pulse EPR than cw-EPR. To magnify the 

microwave field at the sample location, the output power of the microwave source must be 

amplified by a travelling wave tube (TWT) amplifier. An essential requirement of this amplifier is its 

phase stability. To exploit the fixed phase relationship between the pulses and the signal, the signal 

must be referenced in the detection on the phase of the microwave source. This step is performed in 

a mixer and ensures simultaneously that only the modulation of the microwave carrier frequency is 

measured. Before the mixer, the original signal must be increased for obtaining a good signal-to-

noise ratio. 

  

3.1.2.1 Vector Model for Pulse EPR 

An ensemble of non-interacting spins can be described by the sum average of the electronic spin 

moments, often called as magnetization, which follows the laws of classical mechanics and behaves 

as a classical vector. Magnetization is an exact description of the quantum mechanical density matrix 

describing a single unpaired electron.  

As it is outlined in chapter 2.1.1, the population of the energy levels follows the Boltzmann law (eq. 

(2.6)). In thermal equilibrium, the individual unpaired electron spins in the external magnetic field 

are oriented along B0 (B0 = (0, 0, B0)). Under the influence of an external magnetic field, on the hand, 

the difference in the occupation of spin states leads to a macroscopic total magnetization M. For an 

ensemble of unpaired electron spins, the macroscopic magnetization M from the vector sum results 

over all magnetic moments µi in volume V: 

   
 

 
∑                (3.1) 

The magnetization M0 in thermal equilibrium is referred to as longitudinal magnetization Mz because 

it is oriented parallel to the magnetic field B0 (M0 = (0, 0, Mz)). The population difference is called as 

polarization. The macroscopic magnetization constitutes a macroscopic magnetic moment of the 

sample. This macroscopic size allows for a classical consideration of the phenomena of magnetic 

resonance.  

In the thermal equilibrium, the magnetization vector is aligned along the external magnetic field. The 

individual electron spins precess in thermal equilibrium in the laboratory coordinate system with 

Larmor frequency L at an external magnetic field B0: 

    
    

 
    

    

  
          (3.2) 
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where    is the gyromagnetic ratio of an electron.  

For the description of the pulse EPR method, a coordinate system is introduced where the laboratory 

coordinate system (x, y, z) is replaced by a rotating coordinate system (x´, y´, z´). This offers the 

advantage that the associated spin Hamilton operators are no longer explicitly time-dependent. The 

Hamiltonian is transformed into a system that rotates with the irradiated microwave frequency 

about the z axis of the laboratory coordinate system. In a pulse experiment, the microwave pulses 

are applied perpendicular to B0 in the x direction in the rotating coordinate system. These pulses lead 

to a strong time- dependency to the spin system. . The linearly polarized magnetic field    

            is formally divided into two circularly polarized components with equal amplitudes 

(                                   and                                 ). A 

component in the same direction rotates as the rotating coordinate system; it is independent of time 

through this transformation. It is arranged parallel to the x-axis of the rotating coordinate system. 

The other component is non-resonant and can be neglected, because it leads to very small, usually 

not experimentally detectable shift in the transition. The macroscopic magnetization M in the 

absence of a microwave excitation precesses the z´-axis of the rotating coordinate system with the 

offset frequency          . 

The linearly polarized magnetic field can cause a rotation of the macroscopic magnetization M. 

During the period of a pulse, tp, an additional precession of the macroscopic magnetization M about 

B1 with the frequency    
    

  
 occurs. The flip angle   of the magnetization, Mz, about the x-axis is 

proportional to the effective magnetic field strength, B1, and the period of the pulse tp  

      .           (3.3) 

The macroscopic magnetization in the thermal equilibrium M0 is thus rotated by the flip angle of   =  

90° in a magnetization along the y´-direction of the rotating coordinate system (See the right side of 

Figure 3.2).  

Upon application of a microwave pulse with a period of tp =   ⁄  ,   ⁄ -MW-pulse, is applied to an 

“on-resonance”-magnetization, once the resonance condition     
    

  
   , is exactly fulfilled, 

the initial longitudinal magnetization Mz is transferred into transverse magnetization in y´-direction 

of the rotating coordinate system. In the laboratory coordinate system, macroscopic magnetization 

exhibits a helical motion, which is composed of a precession with the Larmor frequency L about the 

z-axis and a precession with frequency 1 about the x-axis of the rotating coordinate system (See the 

left side of Figure 3.2). 

In a non-resonance microwave pulse or at “off-resonance”, magnetization is presessing with Larmor-

frequency L. In this case, the external magnetic field B0 is not completely transformed, but only the 

magnitude (B0 > B0,eff) becomes smaller. Therefore, the magnetization precesses about an effective 

magnetic field Beff, which consists of B1 and B0,eff. The macroscopic magnetization vector precesses 

with the effective frequency eff around this effective magnetic field Beff, which forms an angle 

         
  

  
  between the z-axis of the external magnetic field B0 and the linearly polarized 

magnetic field B1. This precession has the frequency      √  
    

 .  
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Figure 3.2. Left: Movement of the macroscopic magnetization in a static field in the z direction and a 

microwave field in the laboratory axis system. Right: Movement of the macroscopic magnetization in a static 

field in the z direction and a microwave field in the rotating system. 

For example, in the two-pulse echo sequence, a transverse y-magnetization (perpendicular to B0) is 

generated by the first 
 

 
 pulse (𝜙      , which is illustrated in Figure 3.3. At thermal equilibrium, the 

magnetization vector is oriented along the z-axis. The 
 

 
 pulse along the x-axis rotates the 

magnetization to the y-axis. After the pulse, different spin packets begin to precess with their 

individual Larmor frequencies           around the z-axis, resulting in a defocusing of the 

transverse magnetization. After time apulse again along the x-axis turns all the magnetization 

vectors through 180° about this axis. Since the directions of rotation of the individual spin packets 

are not changed by the refocusing pulse, after another time , all the vectors are aligned along the y-

axis. The resulting net y magnetization is called an electron spin echo.  

 

Figure 3.3. Vector model for the reorientation of the spins by the microwave pulses. 
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3.1.3 Electron Spin Echo Spectroscopy 

In 1950, Erwin Hahn invented the spin echo, which is based on the non-linear behavior of an 

ensemble of spins with different Larmor frequencies.230 After eight years, Blume231 reported the first 

observation of an electron spin echo. In this section, the electron spin echo of non-interacting 

electron spins in an inhomogeneous internal or external magnetic field is described. The procedure 

of an electron-spin-echo experiment requires either the presence of an inhomogeneous broadened 

ERP-line or an inhomogeneity of the external magnetic field, which is caused by static interactions. 

The spins of a homogeneous line have the same Larmor frequency, so that they cannot be refocused. 

Thus, they do not contribute to the echo. The inhomogeneous line broadening is represented as a 

superposition of the homogeneous line width of individual spin packets that different frequencies 

(different electron-Zeeman-interaction) possess. In addition, unresolved hyperfine splitting and 

inhomogeneity of the external magnetic field lead to an inhomogeneous line broadening.  

 

Figure 3.4. Two-pulse sequence for the generation of electron spin echoes. 

In his original paper, Hahn described nuclear spin echoes created by the pulse sequence ( /2-- --

echo), which is called the primary echo. However, most EPR pulse sequences are based either on the 

one or two pulse sequence. The one pulse sequence strategy is the measurement, the relaxation 

times from the free evolution of the spin system between or following microwave pulses. The second 

pulse sequence shows that the relaxation times can be measured from the recovery of the spin 

system following perturbation.  

The field-swept electron spin echo (FS-ESE) method is especially suitable for studies of systems with 

large EPR-line broadening and short-lived paramagnetic species. In the FS-ESE spectroscopy (field 

swept electron spin echo) the echo intensity for the two-pulse echo sequence ( /2-- --echo) is 

measured as a function of the magnetic field B0. In this connection, integration over the spin-echo 

signal as a function of the external magnetic field B0 is performed. In this way, an electron-spin-echo 

(ESE) detected spectrum is obtained. The advantage of the pulse EPR is that very broad EPR lines can 

often be resolved, which are not observable by the application of the conventional cw-EPR method.

3.1.4 Pulse ENDOR Spectroscopy 

ENDOR is a member of a family of EPR methods that measures the magnetic resonance frequencies 

of nuclei interacting with an electron spin by exiting the electron spins with a microwave field and 

the nuclei with an RF field. G. Feher232 developed the cw-ENDOR technique in 1956, in which the 

intensity depends on a balance between the relaxation times of the electron and the nuclei. The 

analog pulse ENDOR technique was introduced by Mims and Davies.233 There are two basic 
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approaches to pulsed ENDOR: the Mims-ENDOR, which based on the simulated echo and the Davies-

ENDOR based on the inversion recovery measurement.  

As already mentioned, the number of the transitions with the number of coupled nuclei N 

multiplicative     increases in EPR spectroscopy: 

     ∏         
             (3.4) 

In the ENDOR spectroscopy, the additive attitude  ∑  is observed.  

         ∑   
 
              (3.5) 

In addition to the smaller number of lines, an ENDOR spectrum has also a simpler splitting pattern 

(multiple structures). The lines in the ENDOR spectrum are usually narrower, so that this causes a 

better resolved spectrum. This is because the transverse relaxation time of nuclear spins is in general 

longer than the transverse relaxation time of electron spins.  

In the ENDOR experiment, nuclear spin transitions are detected via electron spins transitions. This is 

advantageous because the electron spins exhibit a much larger magnetic moment. The polarization 

of electron spins transitions is larger than the polarization of nuclear spin transitions, so that this 

results a larger population difference or a larger polarization in thermal equilibrium.  

In this work, the investigations are performed with the pulse EPR, ENDOR, ESEEM, and HYSCORE 

techniques in disordered system or frozen solution. In the following sections ENDOR, ESEEM, and 

HYSCORE methods are described in detail.  

 

3.1.4.1 Model System for Pulse ENDOR Experiments for the Spin Systems of S = ½, I = 

½  

The spin Hamilton operator of the spin system S = ½, I = ½ is defined for an isotropic g-value and an 

anisotropic hyperfine coupling in the laboratory coordinate system, which the external magnetic field 

B0 is orientated along z-axis, by: 

  ̂             (              )        (3.6) 

where    
      

 
 is the electron Zeeman frequency and     

      

 
  is the nuclear Zeeman 

frequency. The hyperfine coupling tensor contains secular       , pseudo-secular (         ) and 

non-secular (                   ) terms. The non-secular terms combine the energy levels with 

different spin quantum numbers ms. The pseudo-secular terms couple different nuclear spin 

quantum numbers mI (shift of the EPR-lines) within a ms-substate. The non-secular term  (     

    ) causes an effect of the second-order and this term can be neglected in the high-field 

approximation       . In the rotating coordinate system, the Hamilton-operator can be written 

as: 

  ̂                                (3.7) 
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where       and   (   
     

 )
   

 are defined as secular and pseudo-secular parts of the 

hyperfine coupling, respectively. The axially symmetric A-tensor is applied for the coefficients A and 

B from eq. (3.7): 

                                            

                                      (3.8) 

The diagonalization of the spin Hamiltonian of eq. (3.7) gives the nuclear transition frequencies   

and  , which are described in eqs. (3.9) and (3.10).  
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For an isotropic hyperfine interaction, eqs. (3.9) and (3.10) can be written as: 
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|           (3.11) 

The ENDOR transition frequencies for spin systems for S = ½, I = ½ (a) and the weak coupling and 

strong coupling (b) are illustrated in Figure (3.5). In the weak-coupling case the ENDOR frequency is 

centered at |  | and split by 
| |

  
. In the strong-coupling case, the ENDOR frequency is centered at 

| |

  
 

and split by  |  |.  

In the “exact cancelation” condition (| |   |  |), the magnetic field B0 cancels the hyperfine field. 

For quadrupolar nuclei (I > ½) with small hyperfine anisotropy the nucleus experiences a near zero-

field situation. The three characteristic nuclear quadrupole frequencies (NQR) are given by: 

   
    

  
                (3.12) 

   
     

  
(  

 

 
)                 (3.13) 

   
     

  
(  

 

 
)                 (3.14) 

These nuclear quadrupole frequencies can be calculated by eq. (3.12) with the nuclear quadrupole 

coupling constant κ and the asymmetry parameter η. If the anisotropic hyperfine coupling is small 

compared to the isotropic hyperfine and nuclear quadrupole interaction, a double-quantum 

transition with ∆mI = ±2 is represented. This double-quantum transition frequency of a nucleus with 

spin I = 1 can be expressed by: 
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Figure 3.5. Schematic representation of a) the energy levels diagram for a spin system of S = ½, I = ½ and b) 

ENDOR frequencies for a weak-(left) and strong-coupling (right) case. 

     [(|  |  |
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        (3.15) 

In addition, in the ESEEM spectra of disordered systems, the nuclear quadrupole frequencies 

               are observed as narrow lines because they have no dependence of orientation on 

the external magnetic field. In contrast, the double-quantum transition frequency     is observed as 

a broad line

 

3.1.4.2 Davies ENDOR  

The Davies ENDOR method is based on the transfer of spin polarization.234 In this experiment the 

much larger polarization of the electron spin transitions are used for the sensitive detection of 

nuclear spin transition. The pulse sequence of Davies ENDOR is sketched schematically in Figure 3.6A.  

In the thermal equilibrium, the spin system in the state of a spin-polarization is represented (Figure 

3.6B). An EPR transition can take place only under this condition, which a population difference in 

a 

b 
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the energy levels exists the electron spins. The state of a spin system is defined by |    〉 or for 

example by |  〉 or | 〉. Based on a selective excitation of the EPR transition from | 〉 to | 〉, the 

ENDOR experiment begins with a selective π-microwave pulse. As in Figure (3.6B, bottom b) shown, 

this pulse is inverted the electron spin population or occupation of the levels of a single EPR-

transition between levels | 〉 and | 〉. The Figure (3.6, bottom c) shows that the nuclear spin 

populations in the states | 〉 and | 〉 are inverted by a selective π-RF pulse. The resonant π-RF pulse 

(see Figure 3.6, bottom c) leads to the disappearance of the population difference of the excited EPR 

transition (| 〉   | 〉  and thus also of the echo intensity. However an echo is measured at a non- 

resonant -RF pulse (see Figure 3.6, bottom d). A similar description can be applied for other nuclear 

spin transition or other observed EPR transitions. 

 

A superposition of homogeneous lines with different resonant frequencies causes an inhomogeneous 

line broadening. In the microwave excitation, an inhomogeneous line can be only a part of the spins 

“on-resonance.” The resonant part of contributing spins can be saturated the complete 

inhomogeneous line. Through this process, which is called the “hole burning,” a hole is burned into 

the line. This inversion pulse causes a “spectral hole” in the inhomogeneous line of the EPR 

spectrum. Under certain conditions, a homogeneous line can disappear by microwave irradiation. 

This effect, which makes the disappearance of line, is known as “saturation.” The hole-width 

corresponds to the width of the homogeneous lines. The nuclear spin transitions are polarized by this 

π-microwave pulse in both mS states. Because the electron-spin-lattice relaxation time T1 in frozen 

solutions amount to a dependence on temperature, this time is usually extended in order to invert 

the nuclear spin polarization in one of the both ms-states by a selective RF pulse.  

In the case of the exact inversion of the populations there is no population difference between levels 

of | 〉 and | 〉 (see Figure 3.6, bottom c) or between | 〉 and | 〉, which leads to the disappearance of 

the echo. The intensity of the ENDOR signal with optimal experimental parameters amounts to only a 

few percent of the intensity of the EPR signal. The nuclear spin transition can be detected indirectly 

via a  
 

 
           pulse sequence. This detector-pulse sequence (Hahn echo) generates an 

echo-signal, which detects real electron spin polarization at the magnetization hole by the electron 

coherence. In the Davies ENDOR experiment, the echo amplitude of the inverted echo at a fixed 

position of the external magnetic field B0 is observed in dependence on the radio frequency that is 

varied. The ENDOR intensity does not correspond to the exact multiplicity of nucleuses because the 

RF pulses strongly encourage the different NMR- or ENDOR-transitions due to the hyperfine coupling.  

The sensitivity of the Davies ENDOR experiments depends on the hyperfine interaction. For small 

couplings, which are located within the burned hole, the Davies ENDOR method is insensitive. 

Therefore, this method is better qualified for the detection of large hyperfine couplings, whereas the 

Mims-ENDOR method (described below) is better suited for the detection of small couplings.  
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Figure 3.6. Schematic representation of A) Pulse sequence for a Davies ENDOR experiment, consisting of a 

microwave and radio pulse and B) Polarization transfer in the Davies-ENDOR experiment for a spin system with 

S = ½, I = ½. Black (high population) and white (low occupancy) boxes describe the population differences of the 

energy levels of a spin system with S = ½, I = ½ according to Boltzmann.  

 

3.1.4.3  Mims ENDOR  

The first pulsed ENDOR was performed by Mims in 1965, in which a stimulated echo is measured as a 

function of the variable frequency of the RF pulses. The selective RF pulse is used in the time T 

between the second and third microwave pulse.  

 

Figure 3.7. Pulse sequence for the Mims ENDOR experiment, consisting of a microwave and RF pulse. 

A 

B 
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In general, the microwave pulses in the Mims ENDOR experiment are chosen as very short, and non-

selective so that a large spectral excitation bandwidth is achieved, which is sketched in Figure 3.7. 

The first 
 

 
 microwave pulse is transferred into a transverse magnetization in the x, y-plane. Thereby, 

electron coherence is generated. By the following 
 

 
 microwave pulse, the magnetization in nuclear 

coherence is rotated back into the z-direction so that the initial electron spins polarization is 

transferred though the second 
 

 
 microwave pulse. This pulse sequence  

 

 
   

 

 
  produces a 

magnetization pattern (polarization pattern) in the inhomogeneous EPR-line with a frequency 

   
  

 
. The generated nuclear coherence can be influenced by a selective π-RF-pulse between the 

nuclear spin states. When the following RF pulse is resonant, the populations are modified at this 

nuclear spin transition. Consequently, the polarization pattern is changed so that a transfer of spin 

packets is generated within this polarization pattern. 

The excitation of a nuclear spin transition shifts the Larmor frequencies of the electrons, which 

causes a shift of the frequency scale of the z-magnetization. Hence, this results in a changing of the 

rephasing of the pattern that forms the echo. Through the RF pulse (selective) changed nuclear spin 

polarization is transformed by the non-selective microwave pulse in electron spin coherence, which 

is detected as the stimulated echo. The simulated echo is measured as a function of the variable 

radio frequency, in which is kept constant. Due to the complicated -dependent magnetization 

patterns on the EPR-line, blind spots are observed in the Mims-ENDOR spectrum. These blind spots 

occur in Mims-ENDOR spectra for values of: 

  
   

 
                                        (3.16) 

where a is characterized as the hyperfine coupling. By a longer  -value, the magnetization pattern is 

fine. This gives rise to the fact that small hyperfine coupling constants can be detected. Because of 

the “blind spots,” the Mims-ENDOR experiment at several  -values should be performed. Thus, a 

complete overview of the ENDOR spectrum and the correct line shape are obtained. Davies ENDOR 

has no “blind spots” but exhibits small echo amplitude. However Mims-ENDOR methods are carried 

out with non-selective microwave pulses. Therefore a comparison of the relative echo intensities of 

these two ENDOR-methods is not possible.  

The pulse sequence  
 

 
   

 

 
  is used in the Mims-ENDOR experiment but it is also used in the 

ESEEM and HYSCORE experiment. 

 

3.1.5 ESEEM Spectroscopy  

After the observation of the primary electron spin echoes, the nuclear modulation effect was 

developed by Mims in 1972, which is the so-called electron spin echo envelope modulation (ESEEM). 

ESEEM spectroscopy has been become very popular for studying hyperfine and nuclear quadrupole 

coupling.  

In ENDOR spectroscopy, the nucleus transitions are directly encouraged with RF pulses, where the 

sensitivity of the electron spins is exploited in ESEEM spectroscopy. For both methods, the nuclear 

frequencies are indirectly detected by microwave pulses.235 The ESEEM method has the advantage 
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that there is no complex apparatus structure such as the ENDOR resonator and RF amplifier, which is 

necessary for an ENDOR experiment. In general, the hyperfine couplings of nuclei with small 

magnetic moments (due to the low probabilities of transition) are detected difficult using the ENDOR 

technique. ESEEM spectroscopy is commonly used to detect the hyperfine interactions of the 

paramagnetic metal center with a weakly coupled nucleus. This method allows to resolve the 

hyperfine couplings of nuclei with small gyromagnetic ratios such as 14N and 2D. In addition, it also 

allows the observation of nuclear quadrupole coupling.  

In general, in comparison to ENDOR spectroscopy the advantage of ESEEM spectroscopy is the 

possibility of determining of small couplings. The large couplings are not detectable due to technical 

limitations such as spectrometer-dead time. With modern 2D methods such as HYSCORE this is partly 

circumvented.

 

3.1.5.1 Three-Pulse ESEEM Experiment 

The hyperfine interaction leads to modulation of the echo intensity, which occurs by the 

simultaneous excitation of allowed         and forbidden         EPR-transitions. These 

nuclear modulation effects can occur only in systems that have an anisotropic hyperfine interaction.      

  

Figure 3.8. Pulse sequence for the three-pulse ESEEM experiment. 

A three-pulse ESEEM experiment consists of the pulse sequence  
 

 
   

 

 
   

 

 
        , which 

is shown in Figure (3.8).236 Based on the in-thermal-equilibrium existed electron-spin-polarization 

(longitudinal magnetization), nuclear-coherence is generated by the pulse sequence (
 

 
   

 

 
). 

During the time t, the nuclear coherence develops. The third 
 

 
-pulse converts these nuclear 

coherences back into an observable electron coherence that can be observed as a “stimulated” echo. 

When the time t is incremented between the second and third pulse, then a modulation of the echo 

intensity can be measured. This modulation of the echo intensity is described by the term “echo 

envelope.” The echo-envelope modulation is caused by the nuclear-Zeeman and hyperfine-

interaction. The nuclear transition frequencies of the interacting nuclei correspond to the modulation 

frequencies. During the experiment the time   persists constant between the first and second pulse. 

The echo envelope is recorded as a function of the variable time interval t in the time domain. A 

Fourier transform provides a spectrum in the frequency domain, in which can be given the 

information about the type and size of the hyperfine interaction. The modulated echo amplitude 

decays in the time t with the relaxation time T1. Thereby, the modulation can be observed longer, so 

that the Fourier transform of the experimental recorded time domain spectrum obtains a good 
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resolution of the frequency domain spectrum. This is characterized by narrow ESEEM-lines in the 

frequency domain spectrum. For the S = ½, I = ½ spin system the three-pulse ESEEM modulation 

formula is given by: 

                         

    
 

 
              [     (       )]  [     (   )][     (       )] (3.17) 

where k is the modulation depth parameter. An observation of the echo modulation requires the 

presence of a pseudo-secular coupling (B) between electrons and nuclei. If the spin-Hamilton 

operator contains pseudo-secular terms of the form       and      , forbidden transitions appear 

in the corresponding spin systems. The intensity of modulation depends on the strength of the 

nuclear-Zeeman and hyperfine-interaction. By using a low external magnetic field B0 an 

enhancement of the intensity is allowed the modulation amplitude.  

For the case of an isotropic hyperfine coupling or an orientation of the external magnetic field along 

a direction of the principal axes of the A-tensor, the condition is considered B = 0. This causes the 

disappearance of the ESEEM modulation. In the ESEEM spectrum, ENDOR or NMR transitions under 

the condition that the terms [     (     )]    are observed. In the three-pulse ESEEM 

experiment as well as in the Mims ENDOR experiment “blind spots” make an appearance.237 By a 

suitable choice of the value, for example signals from 1H, can be completely suppressed. Thereby, the 

-value corresponds to the integer periodicity of the Larmor frequency of the suppressed nuclei.  

             
 

  
                               (3.18) 

Because of these effects, a repeated measurement of the three-pulse ESEEM spectra for various -

values is required to detect these “blind spots” and to detect all nuclei frequencies. Another 

disadvantage of the three-pulse ESEEM experiment represent the spectrometer-dead time because 

no signals can be recorded at this time. This dead time is important for a disordered system, because 

the anisotropy of the hyperfine and nuclear quadrupole interaction leads to a rapid decay of the 

ESEEM signals.  

Under that condition, the interactions between individual nuclei spins can be neglected; the echo 

modulation is expressed for multiple nucleus by the following product rule: 

        
 

 
[∏   

       ∏   
       

 
 
 ]        (3.19) 

     describes the dependence of the echo intensity on  and t and    that is, according to eq. 

(3.17), the calculated the modulation intensity or the amplitude of modulation of the individual 

nuclei. This rule also simplifies the treatment of a larger spin system. In the ESEEM spectrum, 

combination of frequencies is formed according to eq. (3.19) within the same ms-state, in which 

exhibit usually a low intensity.  

The nuclear transition in ESEEM spectra is analogous to the situation of the nuclear transition in the 

ENDOR spectra, in which the shape of the line is different. The ESEEM and ENDOR spectroscopy 

represent complementary methods. However, the ESEEM method assumes an anisotropic hyperfine 

coupling, in which the ENDOR method allows to determine the hyperfine coupling. 
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3.1.6 HYSCORE Spectroscopy  

Hyperfine sublevel correlation (HYSCORE)  spectra represent the four-pulse 2D measurement, which 

was developed in 1986.238 Hyperfine couplings provide information about structure. The isotropic 

part is a function of the spin density in the s-orbital at the nucleus, which is defined by the Fermi-

contact term. The anisotropic part describes the dipole-dipole interaction between the electron and 

nuclear spin. The determination of these quantities can be difficult for the single crystals due to the 

overlaps of signals. Moreover, for the disordered system, the experimental determination is often 

not possible for insufficient resolution because of the overlap of the signals and strongly anisotropic 

hyperfine coupling constants, the interpretation of the spectra can be complicated. The 2D hyperfine 

correlation spectroscopy allows a better spectral resolution and separation of different hyperfine 

couplings. In this section, the 2D-HYSCORE method is described. 

 

Figure 3.9. Pulse sequence for the HYSCORE experiment. 

The HYSCORE pulse sequence is shown schematically in Figure 3.9. The HYSCORE spectrum is 

experimentally measured at a fixed value of the external magnetic field and at a fixed value. In 

HYSCORE experiment, nuclear coherences are generated by the pulse sequence (
 

 
   

 

 
). This 

nuclear coherence can evolve during the time t1. Through the subsequent inversion pulse   the 

nuclear coherence is mixed.  A coherence of the nucleus in an exact ms-state is transferred into 

coherence of the same nucleus of another ms-state. During the time t2 the coherence is developed 

again after  -pulse. By a 
 

 
 pulse this nuclear spin coherence in the observable electron spin 

coherence is converted, whereby the amplitude of the echo is influenced. The times t1 and t2 are 

independently incremented. The inverted echo is measured as a function of the times t1 and t2 so 

that the recording of the spectra is carried out in the two time domains. The first time domain is 

detected for a fixed value t2, while the echo modulation is measured as a function of the increment 

of t1. The signal of the second time domain is recorded as a function of the variable time t2 at 

constant t1. Subsequently by 2D fourier transformed of the measured modulated time signal, a 2D 

frequency spectrum with the frequency axes 1 and 2 is obtained. The echo in the HYSCORE 

experiment decays with the longitudinal spin-lattice-relaxation time T1. Thus, a good resolution of 

the frequency is achieved in both two dimensions.  

For the S = ½ and I = ½ spin system, the correlation between the ENDOR frequencies  and  or  

and  occurs, which is referred to as the cross-correlation peak. The frequencies  and  are 

characterized by the nuclear transitions | 〉   | 〉 or | 〉   | 〉. The excitation band width of the 

inversion pulse represents an important factor for the resolution of the spectra. For a non-selective 

 -pulse, the mixture of the nuclear spin state is  to be complete in the various ms-states. In the case 
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of a selective pulse, the  -pulse is not completely transferred to the coherence and they are 

developed on the same transitions. Therefore, the diagonal of a HYSCORE spectrum is experimentally 

observed such as (, ) or (, ), which is called autocorrelation peaks. However, this is not for an 

ideal  -pulse. The cross-peaks only appear that are observed between the same nuclear frequencies. 

In an analogy to the three-pulse ESEEM experiment (eq. 3.17), the combination peaks also occur in 

HYSCORE experiment also occur (eq. 3.20). The combinations of peaks considerably exhibit weaker 

intensity than the desired cross-peaks, so they do not occur frequently in the HYSCORE spectrum239, 

which contain information about the relative sign of the coupling. The observed combination 

frequencies are defined as sums and difference of the nuclear frequencies from the same ms-state. 

The correlations peaks couple the nuclear transition from different ms-state with each other.  

 

3.1.6.1 Quantitative Description for Ideal Pulses in HYSCORE Experiment 

3.1.6.1.1 The Case of the S = ½, I = ½ Spin System 

For S = ½ and I = ½ spin system, the HYSCORE modulation formula is defined as the analogy to the 

three-pulse ESEEM modulation formula (eq. 3.17):  
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VMod describes the dependence of the echo intensity on , t1 and t2. V and V are represented as the 

calculated modulation. The transition probabilities of the allowed and forbidden nuclear-transitions 

are described by        (
 

 
) and        (

 

 
), respectively.   symbolizes the angle between two 

effective fields at the nucleus of the two ms-states. The correlation of the two NMR frequencies is 

described by the term Cc, in which the intensity of the correlation peaks is a function of the -values. 

This term also causes the blind spots in the HYSCORE spectrum.240   
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3.1.6.1.2 The Case of the S = ½, I = 1 Spin System  

The experimental HYSCORE spectrum is more complicated for the nuclear I = 1, such as 14N, because 

the number of the nuclear spin states mI is increased and the nuclear quadrupole interactions must 

be considered. In this case, the frequencies of the nuclear transition in two quadrants are observed 

simultaneously in the HYSCORE spectrum. The three characteristic nuclear quadrupole frequencies 

(zero-field transition) are given by:   

                  (3.23) 

                     (3.24) 

                     (3.25) 

A single-quantum marked transitions 0,- with ∆mI = ± 1 and a double-quantum transition dq  with 

∆mI = ± 2 are represented. The location of the double-quantum transitions dq can be described by 

eq. (3.26).  
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The 2D HYSCORE spectroscopy has several advantages compared to 1D ESEEM and ENDOR 

spectroscopy. In these 1D spectra the signals from different magnetic nuclei often overlap. Due to 

overlap of the signals, the interpretation and analysis of the spectra can be difficult. In addition, an 

ENDOR measurement is often not possible for low-frequency signal components (< 5 MHz) because 

of the technical problems. The HYSCORE method makes possible interpretation of complex spectra 

by the second dimension. In HYSCORE spectra, the unordered systems appear anisotropically 

broadened ESEEM lines as “ridge-correlations”, so that the HYSCORE method allows an improved 

resolution of the broad signals in comparison with the three-pulse ESEEM experiments. Also in 

contrast to the ENDOR method, the HYSCORE method offers the possibility of detection for low 

frequency signals (< 5 MHz). To avoid the “blind spot,” the SMART (single pulse matched resonance 

transfer) HYSCORE is described.241  In addition the application of the “matched” pulses can be also 

called HTA (high tuning angle), and the intensity of the cross-correlation peaks of the translations 

increase with small modulation depth parameters.242 Thus, measured signals are amplified and peaks 

are clearly visible.243,244  
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3.2 Electrochemistry 

The electrochemistry method is based on the fact that, between two electrodes, a voltage is applied 

and the current, which is generated by a voltage caused by the chemical reaction, is measured. The 

applied voltage is generated by a potentiostat, and such a potentiostat can be switched in a two or 

three electrode system. The two or three electrode system differs in the control of the working 

electrode applied potential. The circuit design of a potentiostat is illustrated in the Figure 3.10. 

 

Figure 3.10. Schematic of the potentiostat. 

A potenstiotat regulates the output voltage so that in the (+) and (–) from the input of the 

potenstiostat the fitting voltages have same value. In the two-electrode system, the (-) from input of 

the potenstiostat is connected directly to the counter electrode and the output of the potenstiostat. 

In this case, the difference of the voltage between the counter electrode and the working electrode 

is controlled. However, the difference in the voltage between the solution and the working electrode 

cannot be controlled. The created voltage between the counter electrode and the working electrode 

differs because the other transitions from the counter electrode in the solution and the solution 

resistor themselves represent the current. 

In a three-electrode system a reference electrode, which is usually arranged to be the working 

electrode, is used to control the voltage. Thus, the potenstiostat is controlled by the voltage between 

the working electrode and the solution itself. The voltage drop that occurs between the working 

electrodes and the solution in the transition will be compensated for. The reference electrode is an 

electrochemically active electrode having a well-defined potential. In this case, they are applied by 

the potentiostat on the measuring cell, which creates potentials related to the known substance or 

the voltage. The voltage drop, which occurs in the transition between the counter electrode and the 

solution, will be compensated from the potentiostat by a higher voltage between the electrodes 

themselves.  

Consequently, in the two-electrode system, the effective voltage generated by an electrochemical 

reaction at the working electrode is always smaller than in a three-electrode system. In the two-

electrode system electrochemical reactions appear slower than in a three-electrode system.  
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3.2.1 Chronoamperometry 

Chronoamperometry is the simplest electrochemical measurement method. Between the counter 

electrode and the working electrode, a voltage is applied and the resulting current is measured as a 

function of the time. The equilibrium composition of the electrochemically active substance on the 

working electrode can be calculated by using the Nernst-equation. 
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]          (3.27) 

The composition in the solution differs from those calculated according to the Nernst-equation, due 

to an electron transfer. This diffusion is a result of concentration gradient. The oxidized or reduced 

form of the electrochemically active substance deposits on the electrode. The measured current is 

dependent on the quantity of the material that arrives on the surface of the electrode. A diffusion 

layer is formed in the course of time, in which the converted substance is depleted. At the diffusion 

layer, the dependence of the current on the time is influenced; it depends on whether the diffusion is 

carried out planar or spherical. The corresponding current-time curves can be calculated using the 

Cottrell equation for the planar diffusion (3.28) and for the spherical diffusion (3.29).  
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For the case of planar diffusion, a permanent chronological reduction of the current occurs, for the 

case of spherical diffusion, the current is assumed to be at the constant value. The radial diffusion 

occurs not only to spherical electrodes, but after a certain period also in square or circular 

microelectrodes. The date in which a radial diffusion is observed at microelectrodes, is dependent on 

the magnitude of the microelectrode. For example, in the small electrodes a mixed behavior of 

planar and radial diffusion can be expected.  

Another deviation from the denoted current-time curves can be observed in measurements in a thin 

film system. When the diffusion layer is in contact with the wall of the capillary, the diffusion layer 

depletes faster than the electrochemically convertible substance.  
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3.2.2 Cyclic Voltammetry 

In cyclic voltammetry (CV) a triangular voltage is applied in the working electrode. The ratio of the 

oxidized and reduced substance on the surface of the electrode arises according to the Nernst 

equation. The amount of substance that deposits on the electrode increases at once, so that a rise of 

the current is observed. The diffusion layers are formed as in with the chronoamperometric 

measurements. If it is a planar diffusion, in principle the drop of the current intensity occurs. In a 

radial diffusion a constant current arises in the course of time. With increasingly larger and smaller 

potentials, a further shift of the redox equilibrium is carried out in the direction of the oxidized and 

reduced species. Although the concentration difference between the electrode surface and the 

electrolyte solution is increased, the decisive diffusion gradient for the diffusion cannot be increased 

because of the spread of the diffusion layer. According to the Nernst equation, the change in the 

composition of the electrochemically active substance is progressively cancelled.  

 

Figure 3.11. Typical cyclic voltammogram, whereas ipc and ipa show the peak cathodic and anodic current 

respectively, for a reversible reaction. 

The presence of a one-dimensional diffusion perpendicular to the surface of the electrode results in a 

CV that has oxidation and reduction peaks (Figure 3.11). The electrochemically active substance is 

arranged in the free electrolyte solution, so the difference between the oxidation and the reduction 

peak is of 59 mV, if it is a reversible system. The electrochemical substance is directly bound to the 

surface of the electrode, and the oxidation and the reduction peaks are arranged at the same 

potential. With an increasingly slower running electrochemical reaction, while the composition is 

lagged to the electrode surface, the distance between the peaks is increasingly larger. The same 

effect is observed if a high ohmic resistance lies between the electrode surface and the potentiostat; 

this resistance from the potentiostat cannot be compensated for in a two-electrode system, and the 

counter electrode limits the current flow. 

By the alternative oxidation and the reduction at the working electrode, the initial conditions at the 

electrode are installed after the cycle of the back scans again. The following scans are repeated in the 

same manner. However, an electrochemical reaction at the electrode can be coupled to a chemical 

reaction. It is possible, for example, that the oxidized substance is immediately reduced by using a 

catalyst, which is located on the surface of the electrode. In this case, with the CVs, only a reduced 

reduction peak is visible and the oxidation peak is increased.  
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3.3  Density Functional Theory (DFT) 

Density Functional Theory is a way to calculate the properties of quantum mechanical many-electron 

systems in the ground state usually in the Born-Oppenheimer approximation. All properties are 

considered and not as a functional of the wave function or the density matrix, as the electron density 

distribution. 

In 1998, Walter Kohn was awarded the Nobel Prize in chemistry for the development of density 

functional theory.  

3.3.1 Kohn-Sham Equations 

The first Hohenberg-Kohn theorem245 proved that the three space coordinate-dependent electron 

density       is a sufficient basic parameter for the description of the ground state of a molecule. 

One does not need to consider the complicated multi electron wave function         , which 

depends on the location- and spin-coordinates of all electrons in the molecule. In particular, 

Hohenberg and Kohn showed that the total energy of a molecule in the ground state can be 

calculated from the functional of the electron density  : 

            ∫                     (3.30) 

where the number of electrons in the molecule is defined by ∫        . In the equation (3.30) 

       is a universal functional of the electron density   and it is often referred to as the Hohenberg-

Kohn functional. The molecule specific contribution, that is the potential       , is a part of the 

integral term. The Hohenberg-Kohn functional includes the kinetic energy      and the electron-

electron interaction energy       , both of which are  dependent on the electron density  . 

                            (3.31) 

Further, the Hohenberg-Kohn second theorem245 says that for any test  electron density  ̃    with 

the condition ∫  ̃       , the variation principle  

            ̃           (3.32) 

applies. It means that the exact ground state electron density    minimizes the energy functional 

     and therefore the minimum    is the ground state energy of the molecule.  

However, neither      nor        for the relevant molecular case is explicitly known, and hence we 

have to use the best possible approximations for       . A good approach for this approximation of 

       is found in the work of Kohn and Sham246, which introduces molecular spin orbitals   . 

Instead of the existing interacting electron gas, a non-interactive electron gas is considered with an 

effective potential          , in which the lowest energy orbitals are occupied. As in other 

molecular orbital methods, the wave function    is obtained as antisymmetric product in the form of 

a Slater determinant: 

   
 

√  
                .          (3.33) 

The electron density      and the kinetic energy       are given by: 
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From this approach follows that n one-electron Schrödinger equations of the form: 

[ 
 

 
            ]          with                 (3.35) 

to be solved. The effective electron potential           is constructed as equation (3.43) A 

convenient representation of the Hohenberg-Kohn functional is given by: 

                                 (3.36) 

where       represents the kinetic energy of the non-interacting electron gas, which is given by 

equation (3.33),      is the classical Coulomb electronic repulsion  , 

     ∬
     (  )

|    |
                (3.37) 

 and         is so-called Exchange-Correlation-Functional. In        should be defined as the 

difference between       and      and it should also include the non-classical part of the electron-

electron interaction       : 

                                       (3.38) 

The functional form of        and the functional from of        are not exactly known. However,  

approximations for        have been developed, which allow the calculation of molecular force 

fields with high accuracy.  

If we assume an explicit form for       , then the effective potential energy term in equation (3.34) 

can be given by: 
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The equations (3.32)-(3.34) represent the so-called Kohn-Sham equations where the effective 

potential energy            is given as in equation (3.38). Since           depends on the electron 

density  , which in turn depends on the functions (orbitals)   , the n one-electron Schrödinger 

equations are coupled, and their relation must be iterative. 
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3.3.2 The Exchange-Correlations-Functional 

To complete the Kohn-Sham equations in the previous section, an appropriate approximation for 

       is still missing. The simplest approach is already found in the Thomas-Fermi model, in which 

an electron gas of homogeneous density with          is considered.247 From this model, the 

famous Thomas-Fermi functional        for the kinetic energy of a homogeneous electron gas is 

derived. In the cited work, the foundations of the modern DFT were laid. The kinetic energy 

functional        of a homogeneous electron gas is applied as an approximation of the kinetic 

energy of an inhomogeneous electron gas. It is assumed here that the kinetic energy of an 

inhomogeneous electron gas can be obtained approximately by summation over        in 

infinitesimally small volume areas with locally homogeneous electron density. However, as 

demonstrated, this simple approach is not sufficient to describe chemical bonds in molecules.247  

A further development of the Thomas-Fermi model was undertaken by Dirac, who also considered 

the Exchange-Energy                   of a homogeneous electron gas. But only through the 

inclusion of the electron correlation energy                   of a homogeneous electron gas246 

could molecular properties be reproduced with sufficient accuracy . This Exchange-Correlation-

Functional                      is derived from the assumption of a locally homogeneous 

electron gas. Approximations of this kind are defined as local-density approximation (LDA). The 

applicability of the LDA-approximation for the description of an inhomogeneous electron system in 

atoms and molecules cannot be justified in a purely formal way, but arises solely from the success of 

numerous calculations. 247 

The LDA-approximation has still some serious weaknesses.  For example, atomization energies and 

energy differences of molecular configurations will be incorrectly predicted by up to a factor two. In 

addition, the strength of hydrogen bonds in the LDA-approximation is generally overestimated by 

about 15 kJ/mol, or more than half of the actual binding energy (20-25 kJ/mol)248. The cause of the 

misbehaviour of the LDA-approximation is based on an underestimation of the exchange energy     

by about 10% and an overestimation of the correlation energy    by about a factor of two. 

Therefore, many improved exchange-correlation functionals     have been developed. A first 

successful step was made by Perdew who corrected for the self repultion energy of an electron gas in 

the LDA- approximation.249 Also the so-called gradient-corrected Exchange-Correlation-Functionals 

have been developed, in which the gradient of an inhomogeneous electron gas is taken into account. 
250-252 

A widely used gradient corrected functional        arises from the combination of the Exchange-

Functional by Becke251 and the correlation functional by Lee, Yang and Parr253. This functional is 

labeled as BLYP functional (the initials of the given authors) and it managed to fix many weaknesses 

of the LDA- approximation. The very popular B3LYP functional consist of the B88 exchange part by 

Becke, and the  correlation part LYP by Lee, Yang and Parr as well as the exchange from Hartree-Fock 

theory:  

   
         

          
       

      
     (  

      
   )      (3.40) 

where a, b and c are empirical constants, obtained by fitting to experimental data. Because of the 

inclusion of the Hartree-Fock exchange, these functionals are called hybrid functionals. 
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In this thesis, the functionals used for the calculations are the BP86 and B3LYP functionals, which 

were built from different terms for the exchange and correlation parts. The BP86 functional consists 

of an exchange part by Becke and a correlation part by Perdew.  
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4 H2O-Activation for HAT: Correct Structures and Revised Mechanism 

This Chapter has been published in: A. Gansäuer, A. Cangönül, M. Behlendorf, C. Kube, J. M. Cuerva, 

J. Friedrich, and M. van Gastel Angew. Chem. Int. Ed. 2012, 51, 3266-3270. 

 

4.1 Introduction 

The reduction of radicals to hydrocarbons through hydrogen atom transfer (HAT) is a fundamental 

radical reaction.[4.1] Recent developments in the field concentrate on alcohols and H2O as HAT 

reagents in the presence of boranes[4.2] and Cp2TiCl,[4.3] the use of H2O as final reductant,[4.4] and on 

BH3-NHC-complexes (NHC = N-heterocyclic carbene).[4.5] All cases feature a weakening of otherwise 

strong H-X bonds.  

The propensity of H2O to act as a HAT-reagent has been explained by a reduction of the bond 

dissociation energy (BDE) of the O–H by about 60 kcal mol-1 in the presence of Cp2TiCl.[4.3] Here, we 

demonstrate by EPR spectroscopy and cyclic voltammetry (CV) that the proposed HAT-reagent 1 is 

not present in THF solutions of Znreduced Cp2TiCl2 containing H2O. Instead, our results hint at 2 and 3 

as the active HAT-reagents (Figure 4.1). Moreover, we show that previous data in support of 1[4.3c] are 

in agreement with 2, 3a, and 3b and that an older computational study [4.3c] needs extension and 

refinement. 

Ti
Cl

O

H

H
Ti Cl

O
H

H

Ti (OH2)1,2Ti Cl

O
H

H

(1) (3a,b)(2a) (2b)
 

Figure 4.1. Proposed modes of complexation of [Cp2TiCl] by H2O. 

Electron paramagnetic resonance (EPR) spectroscopy and the hyperfine resolving techniques 

Electron Spin Echo Envelope Modulation (ESEEM)[4.6] and Hyperfine Sublevel Correlation (HYSCORE) 

spectroscopy[4.6d,4.7] are excellent methods for studying interactions between H2O and Cp2TiCl. The g 

values provide direct information about unpaired electron’s orbital. The ESEEM and HYSCORE 

methods are well suited for examining the coordination sphere of the [Cp2TiCl]-H2O system by the 

detection of magnetic hyperfine couplings with surrounding nuclear spins. Here, this allows studying 

the binding of chloride (I = 3/2) and the coordination of H2O or D2O through the coupling to protons 

(I = ½) or deuterons (I =1).
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4.2 Results and Discussion 

Pulsed EPR spectra of Zn-reduced [Cp2TiCl2] in THF were recorded. Without H2O, they are in 

agreement with a previous study[4.8] on Cp2TiCl and show that the unpaired electron resides in a     
   

orbital at TiIII. This is also the case upon addition of H2O. However, the shape of the spectrum and 

especially the gx value change significantly upon addition of various molar equivalents of H2O (See 

Supporting Information for the Spectra).  

In order to understand these effects, ESEEM spectra of Zn-reduced [Cp2TiCl2] in THF with different 

amounts of added H2O (Figure 4.2, left panel) and D2O (Figure 4.2, right panel) were recorded. Under 

the experimental conditions (microwave frequency of 34 GHz) they contain nuclear modulations 

derived from chloride (I = 3/2) and from deuterons (I = 1). Protons (I = 1/2) do not contribute, 

because their Zeeman frequency amounts to 50 MHz and their modulations have zero amplitude.[4.9] 

The frequency of the nuclear modulations changes noticeably upon addition of 10 or 20 equivalents 

of H2O (left panel) indicating an interaction of the halide with H2O. The modulations become weaker 

for 40 and more equivalents of H2O. This suggests that the Ti-Cl is eventually cleaved through the 

generation of hydrated chloride and a titanocene cation. However, from this particular ESEEM 

spectrum it is not clear if the titanocene cation is hydrated or not.  

 

Figure 4.2. Normalized Q-Band 3-pulse modulation patterns (T = 30 K) of Zn-reduced Cp2TiCl2 in THF with 

different added molar equivalents of H2O and D2O. For the same spectra in the frequency domain see 

supporting Information. 

Therefore, to directly study the interaction of water with the titanocene moiety, ESEEM spectra of 

Zn-reduced [Cp2TiCl2] in THF with different equivalents of added D2O were recorded (Figure 4.2, right 

panel). Addition of 10 equivalents D2O resulted in similar, albeit not identical, initial changes of the 

chloride modulations. This is related to the different hydrogen bonding propensities of H and D and 

to a beginning superposition of the modulations caused by D and Cl. Starting from 20 molar 

equivalents D2O, the modulations with a frequency of 8 MHz became clearly observable In 

presenceof more than 40 equivalents these signals dominate the appearance of the ESEEM 
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spectrum. This coupling constitutes the direct experimental proof for the coordination of D2O to 

titanium that occurs via a Ti-O bond. Moreover, the combination of the ESEEM experiments 

highlights that coordination of water is especially favourable after dissociation of the halide ligand. 

Thus, H2O is coordinated in a dissociative mechanism that is caused by the low Lewis-acidity of 

[Cp2TiCl]. 

 

Figure 4.3. X-band (9.68 GHz) HYSCORE spectra recorded at 30 K of Zn-reduced Cp2TiCl2 in THF (a) without H2O 

(b) with 10 eq. of H2O, (c) with 100 eq. of H2O, recorded at the gy canonical orientations. 

These conclusions were further verified by HYSCORE experiments. At the employed microwave 

frequency (X-band, 9.7 GHz) all proton signals appear in the spectral region around 14 MHz Off-

diagonal signals (cross-peaks) appear between nuclear transition frequencies that belong to the 

same proton, similar to 2D-NMR experiments. Striking differences are observed between the spectra 

of Zn-reduced [Cp2TiCl2] without added H2O and those with 10 and 100 molar equivalents H2O (Figure 

4.3). This is especially apparent at the frequency coordinates (11, 19) MHz and (19, 11) MHz Cross 

peaks are absent for Zn-reduced [Cp2TiCl2] but weak signals appear with 10 eq. of H2O. With 100 eq. 

H2O this cross-peaks become very intense. Interestingly, the line shape of the signals observed with 

10 eq. and 100 eq. of water is essentially identical. This once again supports our notion of a cationic 

titanocene coordinated to H2O in the presence of a hydrated chloride counter-ion. Neither the 

ESEEM nor the HYSCORE experiments thus provide any evidence for the presence of 1 in Zn-reduced 

[Cp2TiCl2] in THF upon addition of H2O. 

Moreover, the HYSCORE allows an estimation of the distance between the protons of the bound H2O 

and Ti. The ridges of these cross-peaks do not form straight lines, but are rather bent, indicative of 

the presence of anisotropic hyperfine interaction.[4.10] Careful analysis allows a determination of the 

dipolar hyperfine coupling constant T of 5.7 MHz This value is comparable to that found for the 

equatorial protons of [Cu(H2O)6]
2+ and indicates that the effective distance between the protons of 

H2O and the unpaired electron is smaller than 3.3 Å.[4.10]  

To verity these conclusions, the Zn-reduced THF solutions of [Cp2TiCl2] with added H2O were 

investigated by cyclic voltammetry (CV) with concentrations of all regents being identical to those of 

the EPR samples. The voltammograms recorded at sweep rates of 0.1 and 1 V s-1 are shown in Figure 

4.4 (For CVs with higher sweep rates see Supporting Information). For both sweep rates two 

oxidation waves were observed for all cases investigated. Zn reduced [Cp2TiCl2] these are assigned to 

the oxidation of [(Cp2TiCl)2] and [Cp2TiCl] (first wave) and [Cp2Ti+] (second wave) in analogy 

toprevious studies.[4.11] Several features of the CVs obtained upon addition of H2O deserve closer 

attention: 
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Figure 4.4. CV of Zn-reduced Cp2TiCl2 (a 0.1 V s
-1

, b 1 V s
-1

) in THF with 0 (black), 10 (green), and 100 (red) 

equivalents of added H2O in 0.2 M TBAPF6/THF.  

First, in the presence of H2O the peak current ratio of the two oxidation waves remains essentially 

constant as a function of sweep rate. This suggests that in agreement with the heterolytic breaking of 

the Ti-Cl bond observed in the ESEEM experiment the [Cp2Ti+] derived species are present in Zn-

reduced solutions in THF with added H2O. This is not the case without H2O. It should be noted that 

not even the addition of the strongly coordinating HMPA to Zn-reduced solutions of [Cp2TiCl2] results 

in the generation of solvated [Cp2Ti+] [4.12] Thus, the solvation of chloride through hydrogen bonding 

by H2O is essential for generation of the titanocene cation.  

Second, the first oxidation wave of Zn-reduced [Cp2TiCl2] in the presence of H2O does not consist of 

two individual processes (oxidation of [Cp2TiCl] and [Cp2TiCl2])) because no second oxidation peak 

appears at higher sweep rates.[4.11a] This results indicate that [(Cp2TiCl)2] dissociates into monomeric 

species upon addition of H2O.  

Third, the oxidation wave of the [Cp2Ti+] derived species is shifted to more negative values upon 

addition of H2O. For 10 equivalent of H2O this shift is 50 and 80 mV suggesting the formation of 

[Cp2Ti(OH2)
+]. In the presence of 100 equivalents of H2O shits of 130 and 180 mV were observed. This 

change suggests the coordination of a further molecule of water and hence at the presence of 

[Cp2Ti(OH2)
+]. 

Finally, the peak potential of the first oxidation wave does not change upon addition of H2O. This 

implies that H2O does not bind to the Ti nucleus of [Cp2TiCl] because in that case a noticeably more 

negative peak potential shifted by 50-80 mV in analogy to [Cp2Ti(OH2)
+] should have been observed. 

The interaction of H2O with [Cp2TiCl] was studied by computational means next. The geometries 

were optimized at the BP86/TZVP[4.13,4.14] level of theory using density fitting. Stationary points were 

characterized by analyzing the hessian matrix.[4.15] The energies were obtained by B3LYP-d/def2-

TZVPP[4.16] single-point calculations using COSMO[4.17] with including the zero-point energy 

correction of the BP86 level. 
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Scheme 4.1. Computational results on the complexation of Cp2TiCl by H2O with and without THF (B3LYP-

d/def2-TZVPP). COSMO
[4.17]

 with ( 

In Scheme 4.1 the behavior of [Cp2TiCl] in the presence of H2O and in the presence of H2O and THF is 

summarized. If specific interactions of H2O with THF are excluded, the two structures 2a and 2b with 

hydrogen bonding of H2O to the Ti-Cl bond are identified as minima. 2b is more favorable than 2a 

because of a dipole-dipole interaction between O and Ti. However, the complexation energy is far 

too weak for a covalent Ti-O bond present in the postulated 1. With the inclusion of specific 

interactions of H2O and THF, the situation becomes slightly more complex. H2O and 2 equivalents of 

THF form a hydrogen bonded complex with a ΔE of -7.8 kcal mol-1. Both hydrogen bonds are of equal 

strength (-3.9 kcal mol-1). Based on these values it is clear that hydrogen bonding in 2a is too weak to 

persist when specific THF interactions are included. For 2b, the inclusion of H2O*2THF leads to a 

noticeably more favorable binding (-7.4 kcal mol-1 vs. -17.4 kcal mol-1). This is mainly because of the 

increase of negative charge on the O of H2O due to hydrogen bonding that leads to a stronger 

interaction with Ti. It should be noted that an interaction between an α–H of THF and Cl also 

contributes to the stability of 2b*2THF (See the Supporting Information for the structure). However, 

even the binding of 2b*2THF is characteristic of a dipole-dipole interaction and not of a Ti-O bond.  

The computational investigation of the formation of cationic titanocenes in the presence of H2O is 

summarized in Scheme 4.2. For our study it is important to recall that Zn-reduced solutions of 

[Cp2TiCl2] contain ZnCl2. This strong Lewis-acid is rendering the heterolytic cleavage of the T-Cl bond 

more favourable through the formation of ZnCl4
2-. Even so, the cleavage of the Ti-Cl bonds is highly 

endothermic because of charge separation.  

For the solvation of the titanocene cations, the inclusion of THF in the mechanistic analysis must not 

be neglected. Whereas, the complexation of a single H2O is exothermic (-25.0 kcal mol-1 per Ti), the 

complexation of the first H2O*2THF is much more favorable (-41.4 kcal mol-1 per Ti). Binding of the 

second equivalent of H2O*2THF is less exothermic (-19.7 kcal mol-1 per Ti) but more advantageous 

than THF alone (-16.4 kcal mol-1 per Ti).  



86  4.2 Results and Discussion 
 

 
 
Therefore, the reaction of 4H2O*2THF with 2[Cp2TiCl] and ZnCl2 results in an exothermic formation of 

solvated titanocene cations (-19.1 kcal mol-1 per Ti). This value is 2.7 kcal mol-1 more favourable than 

the energy of generation of 3b*4THF (-17.4 kcal mol-1) from Cp2TiCl and H2O*2THF. The preference of 

3b*2THF over 2b*2THF should become even more pronounced if solvation of ZnCl4
2- is included in 

the analysis. While, the calculation of the complete solvation sphere of ZnCl4
2- is beyond the scope of 

this study, the correctness of our assumption is highlighted by that fact that the interaction of ZnCl4
2- 

with 6 eq. of H2O is exothermic by -30.9 kcal mol-1
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Scheme 4.2. Computational results on the formation of cationic titanocene(III) complexes in the presence of 

ZnCl2 (B3LYP-d/def2-TZVPP). COSMO
[4.17]

 with ( = 7.6). 

The computed bond dissociation energies (BDEs) of 2b*THF, 3a*THF, and 3b*3THF (52.3, 64.7, and 

53.5 kcal mol-1) are summarized in Scheme 3. We propose that a dissociation of one THF from the 

more stable fully hydrogen bonded species is necessary for an unhindered backside attack of a 

radical on H. As expected this dissociation of THF is especially difficult for the most Lewis-acidic 

3a*2THF. The difference in BDE between 3a*THF and 3b*3THF is most likely due to the better 

stabilization of the TiIV in 7 through complexation. All species investigated constitute more efficient 

HAT reagents than traditionally employed cyclohexadienes, stannanes, silanes, and germanes.[4.1]
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4.3 Conclusion 

Taking all of our experimental and computational results into account, it seems clear that addition of 

H2O to Zn reduced [Cp2TiCl2] does not lead to the formation of 1. The ESEEM spectra show that at a 

high concentration of H2O, the chloride ligand is removed from the TiIII center. The HYSCORE spectra 

demonstrate that with 10 and 100 equivalents of H2O identical species are obtained. Both findings 

imply that even at low concentrations of H2O no 1 is formed. This conclusion is supported by the CV 

measurements that also preclude a coordination of H2O to a TiIII center with a chloride ligand. 

Instead, the shifts of the oxidation waves of the titanocene cations demonstrate the presence of 

waterligated [Cp2Ti]+ as in 3a and 3b. These experimental results are supported by the calculations 

that suggest that the formation of hydrated titanocene cations is more favorable than the formation 

of 1 even in the presence of a low number of equivalents of H2O. Moreover, it has been 

demonstrated that the inclusion of THF is essential for the understanding of the structures and 

relative stabilities of the complexes involved. 

It should be noted that the previous computational study[4.3c] did not consider the possibility of 

cationic structures. Moreover, the effects of specific interactions of H2O with THF were neglected. 

None of the earlier experimental data provided direct structural data for the existence of 1. A UV/ Vis 

study on the interaction of H2O with [(Cp2TiCl)2]
[4.3c] has demonstrated that the addition of more than 

10 equivalents of H2O results in dissociation of [(Cp2TiCl)2]. The resulting Ti species were not 

characterized further, though. While the observation of the dissociation is in agreement with our 

data, our EPR and CV measurements provide evidence for the cationic species 3. 

In a kinetic study, the rate constants for HAT from “[Cp2TiCl]-complexed H2O” to alkyl radicals were 

reported.[4.18] However, rate constants do not provide any structural information. Moreover, the 

measured rate constants are lower than those of stannanes even though the BDEs of the titanocene-

derived species are substantially lower. This discrepancy can be readily explained with our results 

because an unfavorable loss of THF from 3a·2THF and 3b·4THF is required for HAT (Scheme 4.3). This 
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leads to a low concentration of the active HAT reagent and hence a reduction of the observed rate 

constant for HAT. 

The mechanism of H2O activation by Zn-reduced [Cp2TiCl2] is fundamentally different from that of 

MeOH activation by boranes.[4.2] This is due to the inability of boranes to form cationic species. Thus, 

boranes react with alcohols by associative processes to form classical Lewis base adducts. For these 

species the loss of alkyl radicals during HAT is essential.[4.2] 

Our mechanistic proposal for the generation of Ti(III)-based HAT-reagents and the HAT itself should 

be valid for the activation of other molecules and electron transfer reagents,[4.19] also. This opens 

fascinating perspectives for the development of even more efficient and sustainable reagents. 

Cationic low-valent metal complexes, not necessarily derived from titanium,[4.20] with donor ligands 

containing O-H or N-H bonds should give such HAT-reagents. Amides and especially peptides or even 

proteins are prime candidates for such activation towards HAT.  
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5 Trapping Radicals in Reductive Epoxide Opening 

5.1 Introduction 

Free radicals are reactive intermediates of considerable importance in the organic chemistry.[5.1,5.2] 

Especially, radical chain reactions are useful in synthesis such as in the formation of C-C bonds. 

Compared to the ionic counterparts the advantages of these reactions are the mildness of radical 

generation, the wide applicability to many functional groups and the high predictability of C-C bond-

forming reactions. Also they are usually stable under protic conditions. All of these advantages, the 

use of chain reactions has increased the number in total syntheses of natural product.  

However, the stereoselectivity and the chemoselectivity of the radical reaction cannot be controlled 

by using these transformations. An alternative approach to control radical selectivity is represented 

by reagent controlled transformations.[5.3,5.4] This reagent control is achieved by the use of transition 

metals, in which an electron transfer from low-valent metal complexes occurs . In this field, 

titanocene-mediated and titanocene-catalyzed radical reactions are attractive for the generation of 

the organic radicals.  

Epoxides are one of the intriguing classes of radical sources in metal-initiated reactions due to their 

high reactivity and the ease of preparation from alkenes or carbonyl compounds.[5.5-5.7] The strain 

inherent (approximately 27 kcal/mol) in the three member ring causes the high reactivity during the 

ring opening event.  

Additionally, an interesting alternative to chain radical reactions is the reductive ring opening 

reaction via single electron transfer from titanocene complexes. In this manner, Nugent and 

Rajanbabu[5.8-5.11] have demonstrated a novel method, which includes -titanoxy radical from 

titanocene chloride. The cleavage of the titanium-oxygen bond features prevention of the ring 

opening reaction by SN2 due to the low Lewis acidity of titanocene chloride reagent. Examples for 

titanocene-catalyzed epoxide opening reactions are the radical cyclizations such as 3-exo or 4-exo-

cyclization, which have been employed in synthesis of natural products or biological active 

substances. Moreover, the titanocene-mediated epoxide ring opening reaction has been successfully 

used for radical-induced polymerization.[5.12-5.14] 

An attractive feature of titanocene catalysis is the variety of titanocene complexes, which can 

influence the stereoselectivity by the chirality in the ligand. In particularly, the enantioselective 

opening of meso–epoxides has successfully been performed by using a chiral catalyst.[5.15] The 

chirality of the titanocene catalyst derives from either the ligand such as cyclopentadienyl 

or from the titanium center. For example, the chiral menthyl-derived cyclopentadienyl[5.16] is 

prepared from the nature product pure menthol or ansa-metallocenes.[5.17,5.18]  

Despite the advantage of the titanocene-mediated reductive ring opening reaction of epoxide, the 

reaction mechanism has only been studied computationally, hence the knowledge of the 
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determination of the structure and the electronic properties of intermediates of epoxide opening are 

not exactly understood.  

In this contribution we investigate the reaction mechanism of the epoxide ring opening reaction by 

using the electron paramagnetic resonance (EPR) spectroscopy. Additionally, we used the hyperfine 

resolving techniques Electron Spin Echo Modulation (ESEEM)[5.20-5.22] and Hyperfine Sublevel 

Correlation (HYSCORE)[5.23,5.24] to obtain the detailed information of the electronic and geometric 

structure. In order to determine the hyperfine coupling of the hydrogen atoms and the magnetic 

hyperfine interaction between the unpaired electron and nearby nuclear spins, the pulsed electron 

nuclear double resonance (ENDOR)[5.25-5.27] technique is used. The magnitude of the hyperfine 

interaction reveals information about the effective distance between the unpaired electron and the 

nuclear spin.  By using the EPR techniques, carbon radicals have not been directly observed. 

Therefore we used spin traps, which react with reactive free radicals to form stable nitroxide radicals.    

 

Scheme 5.1. Reaction of the spin traps N-tert-butyl--phenylnitrone (PBN) or 5,5-dimethyl-1-pyrroline N-oxide 

(DMPO) with free radicals R
▪
. 

The EPR spin trapping technique[5.28-5.31]
 is based on the indirect detection of the short-lived radicals 

by trapping with a diamagnetic compound. The most important class of diamagnetic spin traps are 

nitrones such as 5,5-dimethyl-1-pyrroline N-oxide (DMPO), -(4-Pyridyl-1-oxide)-N-tert-butylnitrone 

(POBN) or N-tert-butyl--phenylnitrone (PBN), which DMPO is used as spin trap in this work. A 

characterization is possible on the dominant hyperfine coupling of the product, which derives from 

the nitrogen and the proton in the vicinity of reactive carbon atom. (See in Scheme 5.1)

In this paper, our results are summarized in two parts. The first part contains the results of the 

epoxide binding, which occurs in the reaction between epoxide and titanocene monochloride in the 

absence of the spin trap molecules. The results of the spin trap process are examined in the second 

part of our results. However, in general we report that DMPO binds directly to titanocene(III) 

molecules and the radical intermediates are observed during epoxide opening by titanocene 

monochloride. Also, the DFT calculations of the epoxide ring opening reaction evidence the spectral 

observations. Moreover, our results are the first proof for epoxide-titanocene complexes in reductive 

ring opening by electron transfer, in which the reaction proceeds via a radical reaction.  
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5.2 Experimental Section 

Sample Preparation: All samples were prepared under an atmosphere of dry N2 or Ar using 

standard Schlenk techniques. The solvent THF was distilled prior to use from sodium and 

benzophenone under N2 or Ar. Cp2TiCl2 (Aldrich) and 1,1-diphenyl epoxide (Acros) were purchased 

and used as received.  

A stock solution of Cp2TiCl in THF was prepared by dissolving Cp2TiCl2 in THF to an end concentration 

of 10 mM and addition one or a varied equivalent of Zn powder.[5.11] Five molar equivalent 1,1-

diphenyl epoxide was added to the green solution of Cp2TiCl in THF at the room temperature or at -

80° C. For the spin process, firstly one molar equivalent DMPO in THF was added into Cp2TiCl in THF 

solution and after a few seconds. Ten or varied molar equivalents of 1,1-diphenyl epoxide were 

added to solution of Cp2TiCl, DMPO in THF at room temperature.  

The following samples have been prepared: (1) Cp2TiCl in THF; (2) Cp2TiCl in THF and 1,1-diphenyl 

epoxide; (3) Cp2TiCl in THF with 1,1-diphenly epoxide and DMPO; (4) Cp2TiCl in THF and DMPO.  The 

solutions were transferred from a Schlenk tube into the EPR tube.  

Measurements: EPR, ESEEM, HYSCORE and ENDOR spectra were recorded for frozen solutions (T = 

30 K) of 10 mM concentration using a Bruker ELEXSYS E580 FT-EPR spectrometer. The EPR, ESEEM, 

HYSCORE and Davies-ENDOR experiments were performed with a Bruker MD4 (ENDOR) or MD5 (EPR, 

ESEEM, HYSCORE) resonator. For the Electron Spin Echo (ESE) detected EPR experiments, a Hahn 

echo pulse sequence with pulses of 24 ns and 48 ns and a pulse separation of 300 ns was employed. 

The three-pulse ESEEM[5.32] and HYSCORE experiments were carried out with pulses of 16 ns length. 

The time between the first two pulses was fixed at 200 ns. A mono-exponential background was 

subtracted from the modulation pattern. The resulting modulations were multiplied with a Hamming 

window function, zero-filled to 2048 points and Fourier transformed into frequency domain. The 

spectra were displayed as magnitude ESEEM spectra. Davies ENDOR spectra were recorded with a 

pulse sequence, which features an RF pulse of 10 µs, an inversion pulse of 200 ns, and a Hahn echo 

detection sequence with pulses of 100 ns and 200 ns. In the ENDOR experiment, the magnetic field 

and all microwave pulses are fixed and the frequency of the RF pulse is swept while monitoring the 

ESE detected EPR signal. The exact RF frequency, at which the echo-signal changes, provides 

information about the magnitude of the hyperfine interaction. 

DFT calculations and geometry optimization of models for Cp2TiCl and 1,1-diphenyl epoxide, Cp2TiCl 

and DMPO and Cp2TiCl with 1,1-diphenly epoxide and DMPO were performed with the ORCA 

program package.[5.33] The geometry optimization was carried out with the BP functional and a split-

valence basis set with additional polarization functions (SVP).[5.34,5.35] After geometry optimization, 

the B3LYP functional and a triple-zeta basis set with polarization functions (TZVP)[5.36] was employed 

to calculate g values and hyperfine coupling constants.  
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5.3 Results and Discussion  

 

Epoxide binding:  

Q-band ESE detected EPR spectra (left), three-pulse time-domain ESEEM spectra (middle) and ENDOR 

spectra (right) of frozen solution of (1) and (2) are shown in Figure 5.1. The canonical g values read 

from the spectra are representative for a monomeric, species, which is in agreement with previous 

observations.[5.37] Interestingly, upon addition of 1,1-diphenyl epoxide, an EPR signal is still observable 

at 30 K, even though the color of the solution changes to red. The spectrum is characterized by 

essentially the same g values as those for Cp2TiCl, though the intensity of (2) has redistributed such 

that the amplitude at gx has increased. 
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Figure 5.1. Q-band ESE detected EPR spectrum (left) (T = 30 K) of (a) Cp2TiCl in THF, mw = 33.117 GHz;  (b) 

Cp2TiCl in THF and 1,1-diphenyl epoxide, mw = 33.914 GHz; Q-band three-pulse modulation patterns (middle) 

and ENDOR spectra (right) of (a) Cp2TiCl in THF; (b) Cp2TiCl in THF and 1,1-diphenyl epoxide, recorded at the gy 

canonical orientations. Experimental conditions: Pulse sequence 90 -  - 90 - T - 90 - T - echo. Length of 90 

pulses 36 ns,  = 300 ns. For ENDOR, RF Pulse length 10 s, length of inversion pulse 200 ns. 

The EPR experiments selectively investigate the paramagnetic monomeric species. The ESE detected 

EPR spectra indicate that the unpaired electron resides in essentially the same molecular orbital. 

Although the observed small changes in the canonical g values of (1) and (2), the g values, which are 

shifted away from gz implies that the unpaired electron occupies orbital. This result can be 

corroborated by DFT calculations. 
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Table 5.1. Canonical and average g values for Cp2TiCl, Cp2TiCl and 1,1-diphenyl and g values derived from a DFT 

calculation for a Cp2TiCl model. 

Complex  g values     
 x y z av. 

Cp2TiCl 1.955 1.983 2.001 1.979 
Cp2TiCl with 1,1-diphenyl epoxide 1.959 1.980 1.998 1.979 
DFT 1.954 1.985 1.999 1.979 

 

The hyperfine resolving ESEEM and ENDOR methods examine the chemical environment of spins and 

thus information about the binding of 1,1-diphenyl epoxide to Cp2TiCl is obtained. The ESEEM 

method is suitable for detection of signals from nearby nuclear spins such that the frequency of the 

nuclear spin transition is close to 0 MHz. At Q-band, the nuclei of chloride can contribute to the 

ESEEM spectrum, but hydrogen does not contribute.  

Q-band three-pulse time-domain ESEEM spectra (middle) and ENDOR spectra (right) of (1) and (2) 

have been recorded at the gy canonical orientation. In Figure 5.1a (middle) displays a rich structure 

completely derived from coupling of the unpaired electron to the nuclear spin of Cl (I = 3/2). For 

Cp2TiCl and 1,1-diphenyl epoxide, the echo invariably lacked significant modulations.  As compared to 

the time-domain ESEEM spectrum of Cp2TiCl to which only Clcontributes, the absence of echo 

modulation thus implies a removal of the chloride anion from the titanocene upon addition of 

epoxide. 

The most striking observation is completely the disappearance of the signal upon addition of 1,1-

diphenyl epoxide. Given that, the overall electronic structure has remained the same according to 

the EPR measurements, the changes observed in the ESEEM spectra upon addition of 1,1-diphenyl 

epoxide must be related to dissociate of chloride. The echo amplitude is not modulated for (2) as 

compared (1). Moreover, an intensity redistribution observed in the ESE detected the EPR spectrum 

of (2) corroborates dissociation of chloride.  

In order to investigate the interaction of unpaired electron with nearby protons, Q-band Davies-

ENDOR spectra were recorded, which are ideally suited for detection of nuclei with large 

gyromagnetic ratios for which the transition frequencies are far away from 0 MHz. The ENDOR 

spectra of complex (1) and (2) are given in Figure 5.1 (right panel). For free protons, the nuclear spin 

transitions are expected near the protons Zeeman frequency. The ENDOR spectrum of complex (1) 

spans the frequency region from -2.64 MHz to 2.96 MHz, indicating the presence of a proton with an 

effective hyperfine coupling constant of 5.6 MHz and the Zeeman frequency z = 53.1 MHz. The 

ENDOR spectrum of (1) markedly differs from that of (2). In respect of Cp2TiCl and 1,1-diphenyl 

epoxide, the signals span almost same range from -2.96 MHz and 2.98 MHz. With added 1,1-diphenyl 

epoxide, the decreased span of the ENDOR spectrum of (2), the binding of 1,1-diphenyl epoxide does 

not give rise to a proton, which is close to the unpaired electron of the titanium(III) center.  

The observed nuclear hyperfine couplings between the unpaired electron and the protons visible in 

the ENDOR spectra corroborate the observations of the ESEEM spectra. Particularly, the ENDOR 

spectra of (1) and (2) are completely different, indicating that a strong interaction between the 

unpaired electron and proton from 1,1-diphenyl epoxide is absent.  
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Upon addition of 1,1-diphenyl epoxide, the intensity distribution in the ENDOR spectrum of the 

differs from of that Cp2TiCl in THF. This observation may be related to the fact that the epoxide is 

bulkier than chloride. Because in the presence of the bulkier epoxide, the angle of the two 

cyclopentadienyl becomes larger, thus the hyperfine coupling constants of the cyclopentadienyl 

protons are affected thought this effect, which are observed in the ENDOR spectrum. The 

experimental and calculatedhyperfine coupling constants are summarized in the Table 5.2. 

Table 5.2. Average isotropic hyperfine coupling constants (aepx) [MHz] for Cp2TiCl derived from ENDOR spectra 

and calculated values aDFT from DFT calculations.  

  aexp                                        aDFT 

Cyclopentadienyl Protons                              

8 1.86 -2.02   -2.98   5.01 

9 5.91 -3.32   -2.11   5.43 

19 2.93 -2.62   -2.32   4.95   

20 3.85 -2.78   -2.39   5.18 

 

In summary, the experimentally found hyperfine coupling constants for Cp2TiCl are agreement with 

the hyperfine constants derived from DFT calculations on Cp2TiCl. 

 

 
 
Figure 5.2. Left: X-band EPR spectra (T = 30 K) of 1 equivalent Cp2TiCl2 and 5 equivalent 1,1-diphenyl epoxide in 

THF with different added molar equivalents of Zn. Right:  Amplitude of EPR signal at gy as a function of the 

added molar equivalents Zn. 

 

ESE detected EPR spectra of (2) with varied added molar equivalent of Zinc are given in the Figure 

5.2. The spectra are characterized rhombic g values and completely identical of the spectrum of (1). 

Addition of one molar equivalent of Zinc, Cp2TiCl fully reacts with epoxide, thus no signal can be 
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observed, because of the completely oxidation of Ti(III) to Ti(IV). With addition of increased molar 

equivalent of Zinc, an EPR signal is observed again. Ti(IV) can be reduced back to Ti(III) by added molar 

equivalents of Zinc. The Ti(III) signal can  be saturated at 15 molar equivalent of Zinc (Figure 5.2, right 

panel).  

 

Spin trapping: 

The X-band ESE detected EPR spectra of frozen solution of (1) (left), (4) (middle) and (3) (right) are 

shown in Figure 5.3. The X-band EPR spectrum of (1) confirms once again that unpaired electron 

resides in molecular orbital at titanium. With respect to Cp2TiCl in THF and DMPO, the spectrum is 

characterized by basically the same g values as those of Cp2TiCl (See Table 5.3). The distance 

between the three most intense bands amounts to 2.9 mT. In contrast, in the spectrum of (4), the 

signal changed and the intensity distribution in the EPR spectrum differs from that of Cp2TiCl in THF.  

The EPR spectrum of Cp2TiCl in THF with 1,1-diphenyl epoxide and DMPO spans from g = 2.025 to g = 

2.002, typical for a DMPO radical signal.  
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Figure 5.3. X-Band ESE detected EPR spectra (T = 30 K) of (a) Cp2TiCl in THF, mw = 9.7118 GHz; (b) [TiCp2]
+
 with 

DMPO in THF, mw = 9.6617 GHz; (c) [TiCp2]
+
 with 1,1-diphenyl epoxide and DMPO in THF,  mw = 9.7188 GHz.  

For a nitroxide radical, the unpaired electron in nitroxides is mainly distributed in a  orbital along 

the N-O bond. (See in Figure 5.7) Typical g values and typical hyperfine couplings are gxx = 2.0090, gyy 

= 2.0060, gzz = 2.024 and Axx = Ayy = 18 MHz, Azz = 96 MHz are found.[5.38-5.40]  
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Table 5.3. Canonical and average g values for Cp2TiCl, Cp2TiCl and 1,1-diphenyl epoxide, [Cp2Ti]

+
 with DMPO 

and [Cp2Ti]
+
 with DMPO and 1,1-diphenyl epoxide and g values derived from a DFT calculation for each model. 

Complex    g values     

 x y z av. 

 TiCp2Cl 1.953 1.982 1.993 1.976 

     

[Cp2Ti]+  with 1,1-diphenyl epoxide 1.959 1.979 1.997 1.978 

[Cp2Ti]+ with DMPO 1.967 1.983 1.999 1.983 

[Cp2Ti]+ with DMPO and 1,1-diphenyl epoxide 2.025 2.012 2.002 2.013 

DFT ([Cp2Ti]+  with DMPO) 1.965 1.982 2.001 1.982 

DFT ([Cp2Ti]+  with 1,1-diphenyl epoxide) 1.954 1.985 1.999 1.979 

DFT (TiCp2Cl with 1,1-diphenyl epoxide and DMPO) 2.002 2.006 2.009 2.005 

 

Epoxide binding has been investigated with DMPO as a spin trapping agent. As a control experiment, 

we measured no signals for DMPO in THF. Upon mixing of Cp2TiCl with DMPO and with 1,1-diphenyl 

epoxide, an NO radical has been observed, which is characterized with typical g value for a nitroxide 

radical. When DMPO was added to Cp2TiCl, a broader spectrum is obtained, in which titanium and 

nitrogen structure dominates, thus contributions of Ti are present. This indicates that DMPO most 

likely binds to Cp2TiCl, but the unpaired electron is located still at titanium, so the electron transfer to 

form Cp2Ti(IV)Cl-epoxide radical has not  occurred. 

 

Figure 5.4. X-band frequency-domain ESEEM spectra (T=30 K) of (a) [TiCp2]
+
 with DMPO in THF, mw = 9.6603 

GHz;  and (b) [TiCp2]
+
 with 1,1-diphenyl epoxide and DMPO, mw = 9.7209 GHz. 

In order to further investigate the electronic structure of the complexes, three-pulse ESEEM 

experiments have been performed at the low temperature. The X-band frequency-domain ESEEM 

spectra of frozen solutions of (3) and (4) are shown in Figure 5.4. The distance between the three 

most intense bands amounts to 2.9 mT. The three-pulse X-band ESEEM spectra of (3) and (4) have 

been recorded at the gy canonical orientation. All signals are located between 0 MHz and 20 MHz. 

The two spectra look very different. The bands in the spectrum of complex (4) are significantly 
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broader than those of complex (3). The bands below 10 MHz in Figure 5.4a occur at 1.22, 2.08, 3.42, 

5.07, 6.16, 8.67 MHz.  

The ESEEM spectrum of Cp2TiCl in THF and DMPO displays a rich structure completely derived from 

coupling of the unpaired electron to 14N/15N (Zeeman frequency Z = 1.077 MHz). Thus, the 

coordination of the DMPO to the metal center is directly demonstrated through spectroscopic 

evidence.  

These estimations were further confirmed by HYSCORE experiments. The HYSCORE spectrum of (4) 

recorded at the gy canonical orientation is shown in Figure 5.5. The spectrum displays two sets of 

signals. One set stems from 1H and is centered around the 1H Zeeman frequency at coordinates (14.9, 

14.9) MHz. The second set concerns signals with frequency below 10 MHz, for which cross peaks 

occur at the same frequencies as those observed in the ESEEM spectrum (Figure 5.4a).  

 

 

Figure 5.5. X-band HYSCORE spectra (T = 30) of [Cp2Ti]
+
 with DMPO in THF, recorded at the gy canonical 

orientations. Experimental conditions: Pulse sequence 90 -  - 90 - T - 90 - T - echo. Length of 90 pulses 16 

ns,  = 200 ns. 

Signals of 35Cl/37Cl (z = 1.467 MHz) cannot be distinguished from signals of the nitrogen atom. The 

Zeeman frequencies of these two atoms are close to each either, thus the signal of chloride and the 

signals of nitrogen overlap. Neither the ESEEM nor the HYSCORE experiments provide any evidence 

for dissociate of chloride. But DFT calculations support the motion of DMPO coordinated to the 

cationic Cp2Ti containing without chloride ligand. However, the second set of signals derives from the 
14N/15N (Zeeman frequency Z = 1.077 MHz). In additional to the ESSEM spectrum of Cp2TiCl in THF 

and DMPO, given these observed conclusions of the HYSCORE spectrum of the complex of Cp2TiCl in 

THF and DMPO, the N does directly bind to titanium.  
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DFT calculations: 

The singly occupied molecular orbitals (SOMOs) obtained for models of (2), (3) and (4) are shown in 

Figure 5.6. The singly occupied orbital at Ti is clearly recognizable for (2) and (4) complexes. Upon 

introduction of 1,1-diphenyl epoxide to the model geometry of (2), it turns out that epoxide bonding 

cannot be realized due to steric interactions of the phenyl groups with either the Cp ligands or Cl

. 

Geometry optimization of this structure indeed leads to dissociation of the epoxide. Upon removal of 

Clfrom the model structure and geometry optimization, the epoxide does bind and the optimized 

Ti-O distance amounts to 2.065 Å, indicating that a weak bond between Ti and the epoxide oxygen 

has been formed. For this optimized geometry, a SOMO is found as well. The epoxide does not open 

upon binding to titanium (III) complex. The two C-O distances amount to 1.60 Å and 1.44 Å and are 

slightly longer than the optimized distances of 1.45 Å and 1.43 Å for isolated 1,1-diphenyl epoxide.  

Although the epoxide does not open in the complex (2), for complex (3) the epoxide open upon 

binding to titanium (II), which the Ti-O distance amounts to 1.785 Å and indicating that Ti has not 

unpaired electron anymore. However, for complex (4), the singly occupied orbital at Ti is clearly 

visible. The optimized geometry of the complex (4) appears that the DMPO is hanging on Ti and Ti-O 

distance amount to 1.980 Å. 

 

[Cp2Ti]
+

 * 1,1-diphenyl epoxide 

 

[Cp2TiCl] * 1,1-diphenyl epoxide with DMPO 
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[Cp2Ti]
+

 * DMPO 

Figure 5.6: Singly occupied orbitals for geometry-optimized models (B3LYP functional, SVP basis set)
[34,35] 

of 

[Cp2Ti]
+
 with 1,1-diphenyl epoxide, [Cp2Ti]

+
 with DMPO and Cp2TiCl with 1,1-diphenyl epoxide and DMPO. 

 

The DFT calculations of (2) corroborate the dissociation of chloride, which is evident from the 

disappeared nuclear modulations of chloride upon addition of 1,1-diphenyl epoxide in the ESEEM 

spectra. (See in Figure 5.2b, middle)  As understood from DFT calculations, in the presence of 

chloride, epoxide does not coordinate to Ti(III). Interestingly, after epoxide binding to titanium, DFT 

calculation shows that chloride can bind again to titanium.  

Mechanistic Aspect: 

Epoxide Binding:  

The mechanistic pictures of reductive ring opening reaction of epoxide are shown in Scheme 5.2. We 

propose that the reaction proceeds in two steps. In the first step, epoxide reacts with Cp2TiCl, which 

acts as a catalyst for this reaction. As an intermediate step, chloride is cleaved, Ti(III) binds to oxygen, 

thus -titanoxy (A) radical is formed. For the next step, epoxide is opened and a carbon radical (B or 

C) is generated. In this step, there are two possibilities for generation of these carbon radicals.  

 

Scheme 5.2. Mechanistic picture for epoxide opening.  
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The singly occupied molecular orbitals (SOMOs) pictures of the two possible for the carbon radical (B, 

C) are given in the Figure 5.7.  From the DFT calculations, the second radical (C) is more energetically 

more favorable amount to ∆E = - 22.703 kcal/mol. This result can be expected because the primary 

radical is more stable than according to the secondary radical.  

 

Figure 5.7: SOMO picture of for two possible carbons radicals for 3. 

In this manner, the second step is critical step for this reaction. The generation of the high energy 

species can be most likely avoided through electron transfer from titanium(III) to oxygen.   

5.4 Conclusion 

In this work, an EPR study of the reductive ring opening reaction of epoxide by titanocene(III) 

chloride has been performed. The generated carbon radical has been trapped by using of spin trap 

molecule and was investigated further by ESE detected EPR, 1H ENDOR spectroscopy and ESEEM 

spectroscopy and HYSCORE spectroscopy at 9.7 GHz and at 34 GHz (X-band and Q-band, 

respectively). The interpretation of the spectra was supported by spin-unrestricted DFT calculations.  

The addition of 1,1diphenyl epoxide to the green solution of Cp2TiCl in THF results in a red solution. 

The change of color highlights that a large change in the first coordination sphere of titanium occurs 

upon addition of 1,1diphenyl epoxide that can be probed an ideal manner by the advanced EPR 

methods. The electronic ground state of all monomeric species is characterized by a    
  singly 

occupied molecular orbital (SOMO) at Ti(III). 

According to the ESEEM spectra, epoxide binding results in dissociation of the chloride ligand. To 

verify our results we plan to measure ESEEM and ENDOR spectra of deuterated 1,1-diphenyl epoxide 

under the same experimental conditions. 

 For the reduction of Cp2TiCl2 with different molar equivalents of Zinc, we demonstrated that epoxide 

does not polymerize due to saturation of the titanium(III).   

A radical signal has been observed in the ESE detected EPR spectra using DMPO as a spin trap 

molecule. This suggests that DMPO molecule binds to epoxide. However, from this particular EPR 

spectrum it is unfortunately not clear if the epoxide is opened or not. Moreover, the ESEEM and 

HYSCORE spectra at X-band of Cp2TiCl with DMPO have indicated that DMPO binds directly to 

titanium. The DFT calculation of the according to complex supports the experimental observations 

and also indicates that upon addition of DMPO to Cp2TiCl, chloride dissociates.  
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6 Radical 4-exo Cyclizations via Template Catalysis 

This Chapter has been published in: A. Gansäuer, K. Knebel, C. Kube, A. Cangönül, M. van Gastel, K. 

Daasbjerg, T. Hangele, M. Hülsen, M. Dolg, and J. Friedrich Chem. Eur. J. 2012, 18, 2591-2599. 

6.1 Introduction 

Radical cyclizations are amongst the most powerful methods for the construction of C-C bonds and 

have thus been extensively employed as key steps in the synthesis of natural products and 

biologically active substances.[6.1] However, serious limitations exist in the access to small rings, 

especially four-membered carbocyclic and heterocyclic compounds. This is due to the high strain of 

the cyclobutylcarbinyl radicals formed and the low rate constants of 4-exo cyclizations.[6.2] 

In order to enforce an efficient propagation in classical radical chain reactions, either the use of 

substrates with gem-dialkyl or gem-dialkoxyl substitution and with activated radical acceptors, such 

as --unsaturated carbonyl compounds,[6.3] or the incorporation of the 4-exo cyclization into 

transannular sequences is mandatory.[6.4] 

Transition metal mediated and catalyzed processes offer a more general approach to slow 

cyclizations because chain propagation is not an issue. However, even the use of the most popular 

electron transfer reagents, SmI2
[6.5] and Cp2TiCl derived complexes,[6.6] has only resulted in a limited 

number of 4-exo cyclizations that moreover rely on the aid of the gem-dialkyl effect.[6.7] 

Recently, we described the first examples of such 4-exo cyclizations without assistance by the gem-

dialkyl effect.[6.8] The use of our novel cationic catalyst 2[6.9] was essential as shown for substrate 1 in 

Scheme 6.1. The opening of a coordination site for a two-point radical binding was postulated to be 

essential. In this manner, the radical and the radical acceptor are forced into spatial proximity at the 

titanocene template and the overall process should be rendered thermodynamically more favorable. 
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Scheme 6.1. 4-exo Cyclization of 1 catalyzed by Mn-reduced 2. 
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Here, a combined synthetic, electrochemical, spectroscopic and computational study is presented 

that provides evidence for the postulated two-point binding mode at the catalyst and against a 

single-point radical binding. The surprisingly complex structures of our novel catalysts in solution 

could be determined and the origins of the diastereoselectivity of the 4-exo cyclizations are outlined. 

The mechanism is far more intricate than initially anticipated. Moreover, our results are of 

importance for the development of other unusual radical cyclizations. 

 

6.2 Results and Discussion 

Structure of Mn-reduced 2 in Solution: In order to study the mechanism of the 4-exo cyclization it is 

essential to establish the structure of Mn- or Zn-reduced 2, the species responsible for radical 

generation through epoxide opening, in solution. This issue was addressed by using cyclic 

voltammetry (CV) and EPR spectroscopy. The combination of these methods is ideally suited for 

studying the coordination sphere of Mn-reduced 2 with its unpaired spin and its redox behavior. 

Potential structures for Mn-reduced 2 that contain MnCl2 are shown in Figure 6.1. 

 

 

Figure 6.1. Potential structures of the titanocene components of 2 reduced by either Mn or Zn. 

In 2a the coordinated pending amide results in a neutral 17-electron complex.[6.10] 2b is a 15-

electron complex similar to simple alkyl substituted titanocenes such as (tBuC5H4)CpTiCl. The super-

unsaturated 13-electron complex 2c would be formed from 2b by abstraction of chloride. The 

formation of a hydrogen bond to amide N-H by chloride and complexation of MnCl2 or ZnCl2 by the 

amide could provide the driving force for ionization. Finally, the seemingly more stabilized 15-

electron complex 2d can either be formed through chloride abstraction from 2a or by complexation 

of the amide from 2c. 
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CV of Mn- and Zn-reduced 2: To establish the composition of THF solutions of Mn-reduced 2, 

cyclic voltammograms of 2 and (tBuC5H4)CpTiCl2 (4) were recorded at a sweep rate, , of 50 or 500 

mV s-1 (Figures 6.2A and B, respectively) along with corresponding voltammograms of Mn-reduced 2 

and 4 (Figures 6.3A-C). In the discussion of the redox features it is important to recall that CV is a 

dynamic technique, in which the species generated and detected at the electrode are not necessarily 

the same as those actually present in the bulk solution. 

The voltammograms of 4 are similar to those of other alkyl substituted titanocene complexes.[6.11] 

Thus, the redox wave appearing with a characteristic potential of -1.33 V vs. Fc+/Fc for  = 500 mV s-1 

(taking as the average of the two peak potentials) is assigned to 4/4-, where 4- is the anionic species 

[(tBuC5H4)CpTiCl2]
-. In comparison, the voltammograms of 2 also show a distinct redox wave shifted 

in a positive direction by 300 mV relative to that of 4/4-. This large potential shift cannot be 

attributed to a difference in the inductive effect of the alkyl substituents, since in both cases a 

tertiary carbon atom is attached directly to the cyclopentadienyl ring. Rather this is a reflection of the 

ionic structure of 2 caused by the ability of the pending alkyl amide to displace chloride from the 

titanium atom. Formally, the reduction of 2 should afford 2a which is substantiated through an 

analysis of the constitution of the Mn-reduced solutions (vide infra). On the basis of the oxidation 

potentials recorded for 4- and 2a it may be concluded that the former with its negative charge is a 

more potent reductant than the latter. Importantly, this does not imply that it also the most reactive 

titanium(III) species.[6.11] 

For a Mn-reduced solution of 4 the neutral (tBuC5H4)CpTiCl would be the main constituent 

according to earlier studies.[6.11] Indeed the same characteristic voltammetric features are observed 

with the peak at -0.78 V vs. Fc+/Fc for  = 500 mV s-1 assigned to the oxidation of (tBuC5H4)CpTiCl 

(Figures 3A and C). The second oxidation wave at -0.47 V vs. Fc+/Fc for  = 500 mV s-1 pertains to the 

cation (tBuC5H4)CpTi+ that is generated along with (tBuC5H4)CpTiCl2 at the electrode in a so-called 

parent-child reaction. (tBuC5H4)CpTi+ is not present in the bulk solution but only formed at the 

electrode surface during the sweep. This is because the relative intensity of the second oxidation 

wave decreases with respect to the first wave on increasing  (see Supporting Info).[6.11a-c] Finally, on 

the reverse sweep a reduction peak appears at -1.26 V vs. Fc+/Fc for  = 500 mV s-1 due to the 

reduction of the (tBuC5H4)CpTiCl2 formed in the electrode processes. 
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Figure 6.2. CV of 2 and 4 recorded at  = 50 and 500 mV s
-1

 in 0.2 M TBAPF6/THF. 
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Figure 6.3. CV of Mn- and Zn-reduced 2 and 4 in 0.2 M TBAPF6/THF. 
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For Mn-reduced 2 the oxidative features on the forward sweep are independent on the time scale 

of the experiment. Two peaks are observable at -0.91 and -0.48 V vs. Fc+/Fc for  = 50 mV s-1. A 

comparison of this voltammogram with those of the Mn-reduced 2 and 4 demonstrate that the first 

peak of Mn-reduced 2 is not due to 2b that should have a peak at about -0.83 V vs. Fc+/Fc (Figure 

6.3A and 6.3C) exactly as the first peak observed in the CV of Mn-reduced-4 that corresponds to 

(tBuC5H4)CpTiCl.[6.11] 

Further, this implies that the first peak at -0.91 V vs. Fc+/Fc most likely originates from the 

oxidation of the amide-coordinated 2a species, which exactly is the one detected on the backward 

oxidative sweep in the voltammogram of 2 (vide supra; Figure 6.2A). This interpretation is supported 

by the fact that for the unsubstituted Cp2TiCl prepared in a Mn-reduced solution of Cp2TiCl2 the 

oxidation wave shifts by 200 mV in negative direction upon addition of the oxygen-containing 

coordinating agent .[6.10] 

Also, an oxidation wave at -0.48 V vs. Fc+/Fc was observed for Mn-reduced 2 that is, by analogy to 

Mn-reduced 4 (exhibiting a wave at -0.48 V vs. Fc+/Fc), attributed to the oxidation of the 

uncoordinated cationic 2c. However, in sharp contrast to the voltammetric behavior seen for Mn-

reduced 4 the relative intensity of this wave increases with increasing  (Figure 6.3B) which would 

suggest that 2c might be genuinely generated in the Mn-induced reduction of 2 rather than just 

temporarily through secondary reactions at the electrodes.  

In principle, if sufficiently high sweep rates are employed in CV to decrease the time scale of the 

experiment and hence outrun follow-up reactions a true picture of the solution content would be 

obtainable. Unfortunately, with the ordinary microelectrodes used here it is not possible to attain 

such a situation, meaning that even when employing  = 50 V s-1 the precise equilibrium ratio of 2a 

and 2c is not revealed. Still, it may be stated that to the best of our knowledge this is the first 

instance that a cationic species has been observed for titanocene(III) chlorides. Since there are no 

further unassigned oxidation waves it may be concluded on the basis of the CV investigations that a 

solution of Mn-reduced 2 consists of 2a and the unusual 2c, although in an unknown equilibrium 

proportion. 

The situation is somewhat more complicated for Zn-reduced 2. Besides the two peaks observable 

for all sweep rates (-0.94 and -0.43 V vs. Fc+/Fc at  = 500 mV s-1, see Supporting Information for 

further details) a third peak appears at -0.85 V vs. Fc+/Fc for  = 50 mV s-1 (Figure 6.3C, red CV). A 

comparison of the voltammograms of Zn-reduced 2 and 4 (see Supporting Information) reveals 

coincidence of the peaks at -0.85 V vs. Fc+/Fc. This suggests that the non-amide coordinated 2b 

species is the one giving rise to this small oxidation wave. Since 2b is only observed at rather low 

sweep rates it must be formed in a slow equilibrium process, involving another species such as the 

cationic 2c or 2d being more difficult to oxidize. 

It is surprising that the 13-electron complex 2c should be favored over the 15-electron 

amide-coordinated 2d, in particular, when taking into account that of the two neutral titanocene(III) 

chlorides, 2a and 2b, the former amide-coordinated was the favored one as deduced from the cyclic 

voltammograms. Thus, one might consider the option, that the peak at -0.48 V vs. Fc+/Fc originates 

from the oxidation of 2d rather than 2c, assuming that the ligand stabilization of 2d and its oxidized 

form would be the same. However, this suggestion seems highly unlikely since coordination of an  
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amide to titanium(IV) is stronger than to the corresponding titanium(III) core. Moreover, we have 

previously found that the wave pertaining to the unsubstituted Cp2Ti+ cation was shifted by 400 mV 

in a negative direction upon addition of HMPA.[6.10] Thus, a significantly lower potential for the 

oxidation peak of 2d than -0.48 V vs. Fc+/Fc is expected. 

A mechanism for generation of 2c from 2a must account for the abstraction of chloride and the 

removal of the amide ligand from the titanium center. This can be accomplished by a hydrogen bond 

between the chloride ion and the N-H bond of the pending amide and a complexation of the amide 

carbonyl group by the MCl2 (M = Mn, Zn) salts generated during the reduction of 2.  

EPR–Measurements of Zn-reduced 2: In order to provide further experimental support for a 

coordination of the pending amide to titanium, Electron Spin Echo Envelope Modulation (ESEEM) 

spectra were recorded. The ESEEM method is especially well suited for studying the coordination 

sphere of metal center by detecting magnetic couplings of the electron to atoms with nuclear spin 

greater than zero.[6.12] In our case this could allow the recognition of amide complexation [I(14N = 1)], 

since a magnetic coupling is only present if the amide ligand is directly bound to Ti. The ESEEM 

spectrum of Zn-reduced 2 in THF at 30 K is shown in Figure 6.4. 
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Figure 6.4. a) Modulation pattern and b) 3-pulse ESEEM spectrum of Zn-reduced 2. Experimental conditions: T 

= 30 K, microwave frequency = 33.1962 GHz, B = 1.1942 T, length of /2 pulse = 40 ns, pulse sequence =/2 – 

200 ns – /2 – t – /2 – echo. 

 

The modulation pattern in the time domain and the corresponding signal at 3.23 MHz in the 

frequency domain are indeed indicative of a coupling between the electron located on titanium and 
14N. Thus, unambiguous direct spectroscopic evidence for the coordination of the amide ligand to the 

metal center and hence for the presence of 2a is provided by EPR spectroscopy. 

Epoxide Opening by Mn- or Zn-reduced 2: Knowledge of the active species of epoxide 

opening,[6.13] the radical generating step of the 4-exo cyclization, and of the binding of the radical to 

titanium is essential for the understanding of the 4-exo cyclization.  
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Of the complexes present in THF solutions of Mn-reduced 2, 2a is unlikely to be responsible for 

epoxide opening because it has no free coordination site. The super-unsaturated 13-electron 

complex 2c is cationic and hence a strong Lewis acid with vacant coordination sites and should bind 

the epoxide easily. Ensuing electron transfer results in the formation of radical 6 containing a cationic 

14-electron titanium(IV) center that will either coordinate the pending amide or the ,–unsaturated 

amide of the substrate.[6.9] In this manner 7 and 8 are formed from 6 (Scheme 6.2). 

It should be noted, that the minor neutral and hence less reactive minor 15-electron complex 2b 

that is only present in Zn-reduced 2 can also be an active species for epoxide opening. After electron 

transfer, radical 9 containing a 16-electron titanium(IV) center is formed. Substitution of the chloride 

ligand by the amides results in the generation of 7 or 8.  
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Scheme 6.2. Proposed mechanism of the ring-opening of 1 with Mn- or Zn-reduced solutions of 2 and possible 

structure of radical intermediates. For reasons of clarity 8 is only shown with the trans-orientation of the α,β–

unsaturated amide and alkoxide groups. 

The formation of 7 should be more favorable in analogy to 2 because the titanium containing ring 

is not strained. This should result in a cyclization similar to those of any unsaturated epoxide 

catalyzed by alkyl substituted titanocene complexes.[6.7f,i] Complexation by the unsaturated amide, on 

the other hand, leads to a strained ten-membered ring with a two point-binding of the radical to 

titanium. In this less favorable binding mode, the amide is additionally activated towards radical 

addition by complexation to the metal center and the 4-exo cyclization should be promoted.  

One other aspect is important for the understanding of the 4-exo cyclization. In titanocene(IV) 

complexes with pending amides it has been demonstrated that amide coordination is reversible.[6.9] 

This implies that 7 and 8 equilibrate via 6. A complete conversion is impossible if 7 and 8 cannot 

interconvert and only one leads to the desired product. 
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The mechanism of these cyclizations was investigated by a combined analysis of synthetic and 

computational studies next. The computational results, if in agreement with the outcome of the 

experiments, are especially revealing because they provide not only reaction and activation energies 

of the processes involved but also structures of pertinent intermediates, transition structures, and 

products that can be employed for the design of more efficient catalysts. 

Experimental and Computational Analysis of the Mechanism of the 4-exo Cyclization, Origin of 

Diastereoselectivity:  

Experimental Results of the 4-exo Cyclization: 

Critical experimental results for a mechanistic analysis of the template catalyzed 4-exo cyclization are 

summarized in Scheme 6.3.[6.8] Only the use of the template catalyst 2 and closely related titanocenes 

resulted in conversion to 3. Complete trans-diastereoselectivity of the cyclization at 0 °C, room 

temperature, and 68 °C (refluxing THF) was observed. This is quite unusual as the diastereoselectivity 

of most radical cyclizations normally strongly decreases with increasing reaction temperature. With 

larger primary substituents than CH3 as in 10 at the tetrasubstituted epoxide carbon, the 

diastereoselectivity of the formation of 11 is slightly reduced but also constant over the same 

temperature range. With Zn as reductant the same diastereoselectivity was observed. The isolated 

yield of 3 was lower, however, when Zn was used as reductant. This is due to competing 

decomposition of the substrate in the presence of ZnCl2 during the extended reaction time. 
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Scheme 6.3. Experimental results of the template catalyzed cyclization of 1 and 10. 

Any proposed mechanism of the 4-exo cyclization must account for this behavior. Possible courses 

of the cyclobutane formation were investigated next with the aid of computational chemistry. 

Computational Details: The geometry optimizations were carried out within the framework of 

DFT with the BP86/TZVP method (Becke-Perdew gradient corrected exchange and correlation density 

functional[6.14] combined with a polarized split-valence basis set of triple-zeta quality[6.15]) using the RI-

approximation (resolution of identity) within the TURBOMOLE program package.[6.16] The stationary 

points on the potential energy surface were characterized by analyzing the Hessian matrix.[6.17] The 

energies were corrected for the zero point vibrational energy (ZPVE).[6.17] In our earlier work on 

radical cyclizations it was found that BP86/TZVP calculations yield satisfactory results for these types 

of reactions.[6.7i] Solvation effects were estimated by single point calculations at the gas phase 

structure using the COSMO model.[6.18] 
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Computational Study of the Reaction Mechanism: In this computational study, the 

cyclohexylidene group in 7 and 8 was replaced by a gem-dimethyl group and the NHBn group by an 

NHMe group to reduce the complexity of the system. This is justified because the experimental 

results are essentially identical for titanocenes containing such changes.[6.8]  

Single Point Binding of the Radicals: 

The simplest starting point of the study of the 4-exo cyclization is radical 12 featuring a single-

point binding of the radical to the titanocene. It should be noted that this single-point binding results 

in a reaction similar to that of free-radical reactions where the titanocene acts as a radical generating 

agent and bulky group as potential passive control element of diastereoselectivity. No further 

activation of the radical or the radical acceptor towards the 4-exo cyclization is operative in this 

scenario.  

The coordination of the pending amide to the a cationic Ti(IV) center is analogous to 2. As yet, 

there are no examples of such compounds without this particular complexation.[6.9a,c] In all structures 

similar to 2, the chloride ligand is found close to the coordinated pending amide, presumably for 

electrostatic reasons. If, as in 2, the amide possesses an N-H bond, the chloride is additionally 

stabilized by a hydrogen bond to the N-H proton. Thus, in the starting geometry of 12, chloride was 

hydrogen bonded to the proton of the NHMe group in close vicinity of the pending amide. The 

results of the calculations of the cyclizations of 12 are summarized in Table 6.1. Since charged species 

are involved, solvents effects were simulated by using the COSMO model with a dielectric constant of 

 = 10. 

Table 6.1. Relative energies of substrates, products, and transition states of the 4-exo cyclization of 12. The 

ZPVE is included from the BP86/TZVP calculation. 

Method 12 TS12cis TS12trans 12Pcis 12Ptrans 

BP86/TZVP 0.0 +10.2 +10.6 +2.8 +2.0 

BP86/TZVP/COSMO 0.0 +12.9 +12.9 +5.4 +4.7 

 

Using the COSMO model the relative energies of the transition states and products are 

increased by about 2.5 kcal mol-1. Thus, the trends predicted by the BP86/TZVP remain unaffected by 

the COSMO model for the cyclization of 12. Even a value of  = ∞ did not change the qualitative 

trends. 
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Scheme 6.4. Computational study of the cyclization of 12 with single-point radical binding (For the 

computational structures see Supporting Information). 

Thermodynamically, the cyclizations are highly unfavorable (E = +4.7 kcal mol-1 and 5.4 kcal mol-

1, respectively) with only a slight preference for 12Ptrans (76:24 at 25 °C). The differences in 

activation energies (Ea= 0.4 kcal mol-1) predict an unselective reaction. These results are in 

contradiction with the experimental results obtained with 2 as catalyst but in line with the inability of 

simple alkyl substituted titanocenes to induce reactions of 1.[6.7i] In both product radicals, the radical 

center can be readily approached by a second equivalent of the titanocene. Therefore, a selective 

reductive trapping of either 12Pcis or 12Ptrans that renders the cyclization irreversible is improbable. 

Thus, the formation of both isomers of 3 is highly unlikely to occur via a single-point binding of the 

radical to a cationic titanocene complex as in 12 and a more elaborate mechanism must be operating 

for the 4-exo cyclization. 

Two Point Binding of the Radicals: To this end, two-point binding of the radical by a cationic 

titanocene(IV) complex as in 8 (Figure 6.5) was investigated. In this manner, the radical center and 

the radical acceptor are forced into close proximity and the ,-unsaturated amide is activated for 

radical addition through complexation by the Lewis acid titanocene cation.  
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Figure 6.5. Schematic two point binding of the radicals with trans- and cis-orientation of the unsaturated amide 

and the alkoxide substituents with numbering of the future cyclobutane C-atoms. 
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The generation of these ten-membered rings containing a titanium and two oxygen atoms as well 

as the radical center raises fascinating issues. First, it is not clear if trans-(A) or cis-(B) is more 

favorable and how many minima of A and B exist. Second, it is interesting to understand the 

influence of stereochemical control elements, such as the eclipsing substituents, on the relative 

stabilities of the medium sized rings, the corresponding transition states, and products of the 

cyclization. 

Comparison of the BP86/TZVP with COSMO and Potential Energy Surfaces: After two-point 

binding by the radicals the cationic titanium(IV) center is tetrahedrally coordinated and no covalent 

bonds to chloride can be formed as in 2 and 12. Chloride was therefore placed close to the 

coordinated amide in strict analogy to the experimentally observed positioning of the halide in 2 and 

the ‘computational radical’ 12.  

Table 6.2. Relative energies of substrates, products, and transition states of the 4-exo cyclization 

after two-point binding to titanium in kcal mol-1 (BP86/TZVP with COSMO). The ZPVE is included from 

the BP86/TZVP calculation. 

Radical Substrate Transition 

State 

Product E Ea 

13 0.0 +14.6 +11.1 +11.1 +14.6 

14 +2.5 +12.9 +2.5 -0.0 +10.4 

15 +4.1 +17.1 +11.0 +6.9 +13.0 

 

Geometry optimization (BP86/TZVP) resulted in three structures 13, 14, and 15 of the templated 

radical 8. Of these, 13 and 15 lead to the formation of a cis- and 14 to a trans-cyclobutylcarbinyl 

radical. The relative energies (BP86/TZVP with COSMO) of these species, the transition states, and 

products of the cyclization are summarized in Table 6.2. The potential energy surface is depicted in 

Figure 6.6. 

Since all structures contain chloride anions and cationic titanocenes, the COSMO model was 

applied to account for solvent effects.  

 

Figure 6.6. Relative energies of species relevant for the formation of 13P, 14P, and 15P BP86/TZVP with 

COSMO bottom. 
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Cleary, the presence of three substrate radicals complicates matters and it has to be established if 

they can interconvert. Amide complexation at titanocene(IV) complexes is usually fast and 

reversible.[6.9] Because the energy differences between the substrate radicals are additionally 

relatively low, it can be assumed that 13, 14, and 15 are in a fast equilibrium. From the equilibrating 

radicals the formation of 13P and 15P is kinetically possible (Ea = +14.6 kcal mol-1 and +13.0 kcal mol-

1) but thermodynamically unfavorable (E = +11.1 kcal mol-1 and +6.9 kcal mol-1). This implies that 

ring opening of the cyclobutylcarbinyl radicals 13P and 15P (Ea = +3.5 kcal mol-1 and +6.1 kcal mol-1) 

will be very fast. Due to their short lifetimes the bimolecular trapping of 13P and 15P by a second 

equivalent of the titanocene that is present in concentrations of less than 0.02 M under the 

experimental conditions will be kinetically disfavored and is therefore highly unlikely, exactly as for 

12P.  

The situation is markedly different for radical 14. First, the cyclization is thermoneutral (E = -0.0 

kcal mol-1) and thus the two-point binding in 14 leads to the only case where the inherent 

thermodynamic disadvantages of the 4-exo cyclization studied here can at least be compensated. 

Second and equally important, the activation energy of the cyclization is lower (Ea = +10.4 kcal mol-1) 

than for 13 and 15. Both points imply that 14P has a longer life-time than 13P and 15P because 

opening of 14P (Ea = +10.4 kcal mol-1) is less favored than for 13P and 15P. As a consequence, of all 

product radicals 14P is formed most readily thermodynamically and kinetically and, as a consequence, 

will have the longest life-time. Its reduction by a second equivalent of the titanocene will therefore 

also be accomplished most readily.  

Thus, the two-point binding in radicals 13, 14, and 15 to the titanocene results in a peculiar 

situation. Only the 4-exo cyclization leading to the trans-cyclobutane is possible, exactly as observed 

experimentally. An activation of the cyclization by the gem-dialkyl effect that is essential for the 4-

exo cyclization catalyzed by simple alkyl substituted titanocenes is therefore not necessary. The 

structural reasons for this reactivity pattern will be discussed next.  

Structures of the Substrate Radicals: There are two interesting issues concerning the structure of 

the substrate radicals. First, formation of a cis-3 can be accomplished from two species, 13 and 15, 

that differ in relative stability by +4.1 kcal mol-1. Second, only 14 that is intermediate in stability leads 

to the formation of trans-3.  

The main reason for the highest stability of 13 (Fig. 6.7) is the presence of a hydrogen bond 

between chloride and the N-H bond of the amide that is absent in 14 and 15. The CH3 substituent of 

the radical center is pointing towards the ‘upper’ substituted cyclopentadienyl ligand. This 

arrangement results in a distance of 2.98 Å between C1 (radical center) and C4 (β–C of the olefin). 

Moreover, close contacts between the β–hydrogen of the olefin and the tert-alkyl group of the 

pending amide (2.00 Å) and the α–hydrogen of the olefin and one of the CH3 groups of the amide are 

present.  
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Figure 6.7. BP86/TZVP structure of 13. The structure is depicted as viewed along the C3-C2 bond (see Figure 6.5 

for numbering). 

In 15 the CH3 substituent of the radical center is pointing towards the ‘lower’ unsubstituted 

cyclopentadienyl ligand. This binding mode prevents the formation of the hydrogen bond but avoids 

steric interactions between the titanocene and the radical. The conformation of the ten-membered 

ring is otherwise very similar to that of 13.  

In 14 the hydrogen bonding observed for 13 is also not possible. However, the binding of the 

radical that leads to trans-3 results in a looser structure as indicated by the distance between C1 and 

C4 (3.21 Å). Therefore, a less strained ten-membered ring can be formed with close contacts to the 

titanocene moiety being absent. This effect is clearly significant in comparison to 15 but it cannot 

compensate the hydrogen bond in 13. 

Structures of the Transition States: The relative energies of the transition states do not reflect 

the relative stabilities of the substrate radicals.  

The compression of the structures due to the presence of the forming C1-C4 bond (2.08 Å) 

prevents the hydrogen bonding present in 13 for 13T. The more compact structure also results in a 

relatively small dihedral angle C1,C2,C3,C4 (17.7°, numbering see Fig.6.5) and pronounced eclipsing 

interactions in the forming cyclobutane. Moreover, the amide is significantly rotated out of 

conjugation (120°) and thus orbital overlap between the SOMO of the radical and the LUMO of the 

olefin is not ideal.[6.19] Close contacts between the substituents of the ten-membered radical and the 

catalyst are absent, however.  

The forming bond between C1 and C4 also results in a more compact structure for 14T (Figure 

6.8). However, the dihedral angle C1,C2,C3,C4 (24.0°) is larger than in 13T and thus eclipsing 

interactions are weaker. Moreover, the amide is rotated out of conjugation by only 18.8° and 

therefore, the cyclization is electronically more favorable than in 13T. The presence of one close 

contact between the CH2O-group and the lower Cp-ring must destabilize 14T somewhat. However, 

the above mentioned contributions seem more relevant as 14T is more stable than 13T by 1.5 kcal 

mol-1. 

Of the transition states 15T is the least stable. This is due to a strong contact between the CH3 

substituent of the radical and the lower Cp-ring and the amide being rotated out of conjugation by 

117.5°.  
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These data suggest that a favorable overlap between the SOMO of the radical and the HOMO of 

the radical acceptor through binding of the ,β–unsaturated amide without of a significant 

weakening of conjugation constitutes the single most important factor for the lowest energy of 

14T.[6.19]  

 

Figure 6.8. BP86/TZVP structure of 14T. The structure is depicted as viewed along the C3-C2 bond (see Figure 

6.5 for numbering). 

Structures of the Product Radicals: The cyclization of the most stable substrate radical 13 is highly 

endothermic (E = +11.1 kcal mol-1). This is for two three reasons. First, the stabilization by hydrogen 

bonding in 13 is not possible in 13P. Second, the cyclobutane in 13P is generated in a strained 

puckered form. This is indicated by the dihedral angle C1, C2, C3, C4 of 21.6° that is larger than in cis-

3 (16.4°). Finally, there are close contacts between the protons of the CH2O-group and the ‘lower’ Cp-

ligand (2.13 Å) and the protons of the CH3-group of the cyclobutane and both CH3-groups of the tert-

alkyl group of the pending amide (2.09 Å and 2.11 Å). Thus, the favorable features of 13 do not 

translate into 13P. 

The generation of 14P (Figure 6.9) is thermoneutral (E = 0.0 kcal mol-1). The increased stability of 

14P compared to 13P is due to two factors. First, the dihedral angle C1, C2, C3, C4 of 15.9° is 

significantly smaller. Indeed, this value is close to the one observed in trans-3 (17.6°) and indicates 

that the binding of the product radical to the template does not result in a significant puckering of 

the cyclobutane. Second, compared to 13P there is only one close contact that occurs between the 

CH2O-group and the ‘lower’ Cp ligand (2.03 Å).  

Finally, cyclization leading to 15P is endothermic (E = +6.9 kcal mol-1), also. The cyclobutane ring 

is noticeably more puckered (dihedral angle C1, C2, C3, C4 of 19.5°) than in 14P but less so than in 

13P. A rather close contact (1.95 Å) is observed between the protons of the CH2O-group and one of 

the CH3 groups of the tert-alkyl group of the pending amide that seems to be significantly more 

unfavorable than the interactions in 13P and 14P.  
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Figure 6.9. BP86/TZVP structure of 14P. The structures are depicted as viewed along the C3-C2 bond (see 

Figure 6.5 for numbering).  

Thus, the contraction of the two-point bound substrate radicals through cyclization is highly 

unfavorable kinetically and thermodynamically for the formation of cis-cyclobutanes but does allow 

the formation of the trans-cyclobutane. 

Finally, the computational results can also rationalize the experimentally observed lower 

diastereoselectivity in the cyclization of 9 (trans:cis = 90:10; R = Et). In both 14T and 14P larger 

groups than CH3 at C1 of the (forming) cyclobutane will strongly interact with the tert-alkyl group of 

the pending amide. This contact was not observed in 13T and 13P. Thus, the thermodynamic and 

kinetic preference for the products such as trans-11 will decrease compared to trans-3. According to 

the analysis above, this leads to a reduction in diastereoselectivity of the 4-exo cyclization. 

 

6.3 Conclusion 

In summary, we have demonstrated a novel concept for catalytic radical 4-exo cyclizations that 

does not require the assistance of the gem-dialkyl effect. It relies on a two-point binding of radicals 

to titanocene complex that is able to compensate the intrinsically unfavorable reaction and 

activation energy of the 4-exo cyclization occurring without templating of the radical intermediates. 

Our method features a novel class of titanocene(III) catalysts that are activated through hydrogen 

bonding of the pending amide ligand to yield a coordinatively super-unsaturated 13-electron 

complex as corroborated by cyclic voltammetry. The computational study of the effect of the two-

point binding on the structures and relative energies of the substrate radicals, transition states, and 

product radicals revealed a peculiar mechanistic situation related to but more complicated than a 

classic Curtin-Hammett-scenario. The equilibrating substrate radicals can all react to yield the 

corresponding cyclobutyl carbinyl radicals. However, only the formation of the trans-substituted 

product 14P results in a sufficient life-time of the cyclization product for reductive trapping by a 

second equivalent of the titanocene(III) reagent. The formation of the corresponding cis-products is  
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thermodynamically unfavorable and hence their ring opening is too fast to allow the pivotal radical 

reduction.  

Our approach of rendering the kinetically and thermodynamically disfavored 4-exo cyclization 

feasible by a two-point binding through the action of a catalyst will be of interest for the realization 

of other intrinsically unfavorable radical reactions also. 
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7 An Unusual Case of Facile Non-Degenerate P-C Bond Making and 

Breaking  

This Chapter has been published in: V. Nesterov, A. Özbolat-Schön, G. Schnakenburg, L. Shi, A. 

Cangönül, M. van Gastel, F. Neese, and R. Streubel Chem. Asian J.  2012, 7, 1708-1712. 

7.1 Introduction 

Transient phosphorus radicals having different oxidation states and geometries are known to 

be involved in numerous chemical reactions and have been studied for more than fifty years. [7.1] 

To obtain insight into the bonding and reactivity of phosphorus radicals great efforts were 

undertaken to synthesize relatively stable and/or persistent radicals, [7.2] and important results 

were achieved especially in the area of phosphanyl radicals. [7.3] Fresh stimulus has been provided 

recently by the work of Studer and Grimme who elegantly demonstrated radical substitution 

reactions using silyl- and/or stannylphosphanes[7.4] and Cummins et al. who showed the 

feasability of direct functionalisation of white phos-phorus using his tris(amido)titanium(III) 

complex.[7.5] By contrast, information is still scarce about the bonding and reactivity of radicals 

containing a functional group at the phosphorus atom that could serve as a leaving group. [7.6] On 

the other hand, P−C bond making and breaking is of fundamental interest in synthesis and 

catalysis and the knowledge about facile processes that allow for both is extremely scarce. One 

special case is represented by so-called circumabulatory rearrangements, e.g., the 

circumambulation of a phosphirane was described by Lammertsma. [7.7]   

Recently, formation of the first transient P-chlorophosphanyl complexes were described,[7.8,7.9] 

using oxidation of Li/Cl phosphi-nidenoid tungsten complexes[7.10] by tritylium tetrafluoroborate. 

Although electron paramagnetic resonance (EPR) evidence for the open-shell derivatives was 

obtained, the actual reaction course of this single-electron oxidation remained largely 

speculative as only the final products, a P-chlorophosphane and a phosphaquinomethane 

complex, were characterized.  

To obtain more insight into mechanistic aspects of this oxidation reaction, we have now investigated 

reactivity of a Li/F phos-phinidenoid complex towards two different tritylium salts [Ph3C]BF4 and [(p-

Tol)3C]BF4. In the latter case, the results provide strong evidence for the existence of new 

intermediates and a facile conversion into a single final product, a P-F, P-trityl*-substituted 

organophosphane complex (trityl*=tris(p methylphenyl)methyl). State-of-the-art theoretical 

calculations reveal the structures of the in situ formed combined singlet diradical pairs formed in the 

first step and the nature of intermediates on the way to the final product. 
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7.2 Results and Discussion 

Oxidation of complex 2[7.11] with 1.2 equiv. of [Ph3C]BF4 (3), at low temperature (–78 °C), 

proceeded with immediate color change from yellow to deep red, to blue and, finally, to orange (0°C). 

Supported by EPR measurements (see below and Supporting Infomation) the formation of a radical 

pair containing the radicals 4 and 5 can be concluded, and as the radicals were not inert[7.12] a P-C 

coupling occurred to give selectively the P-fluoro organophosphanyl complex 7 as final product 

(Scheme 7.1); the formation of the kinetically favored intermediate complex 6 was not detected. 

Complex 7 was purified by column chromatography, obtained as a colorless solid (40% isolated yield) 

and its structure confirmed by single-crystal X-ray diffraction analysis [7.13] (Figure 7.1). 

 

Scheme 7.1. Oxidation of Li/F phosphinidenoid complex 2 with [Ph3C]BF4 . 

 

Unexpectedly, complex 6 could be obtained as the major product if a larger excess (3.2 equiv.) of 

the tritylium salt 3 was used; phosphane complexes 1 and 7 were observed as minor products (total 

amount less than 5%) together with Ph3CH. Product 6 was purified by column chromatography and 

obtained as a colorless solid that was stable in the solid state at low temperature but rearranged 

quantitatively in solution (n-pentane, 25°C) to give 7. This was further supported by DFT 

calculations[7.14] at the B3LYP/def2-TZVPP//BP86/def2-TZVP level of theory (see also Supporting 

Information): isomer 7 is 24.6 kcal/mol lower in energy than isomer 6. While the 31P NMR data of 

complex 6 (δP = 193.2, 1JW,P = 288.6 Hz, 1JP,F = 845.6 Hz) are similar to 7 (δP = 187.3, 1JP,W = 292.7 Hz, 
1JP,F = 811.6 Hz), the 19F NMR resonances differ significantly (6: δF = –118.3, and 7: δF = –108.9 ppm).  
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Figure 7.1. Molecular structure of complex 7 (50% probability level; except H7a hydrogen atoms are omitted 

for clarity). Selected bond lengths [Å] and angles [°]: W–P 2.4878(8), P–F 1.6127(19), P–C(20) 1.808(3), P–C(1) 

1.818(3); C(1)–P–C(20) 108.96(14), C(1)–P–F 97.81(12), C(1)–P–W 119.50(10). 

To investigate the reactivity of the transient radical 5 towards a trityl radical with a substituent in 

para position, Li/F phosphinidenoid complex 2 was reacted with [(p-Tol)3C]BF4 (1.2 equiv.); this led to 

complex 11 (δP = 207.1, 1JP,W = 283.5, and 1JP,F = 821.4 Hz) as the final product, obtained in pure form 

(55% isolated yield) by column chromato-graphy (Scheme 7.2). Monitoring of the reaction by 31P(1H) 

NMR spectroscopy (–78 °C to 25 °C) revealed the formation of three major  and one minor 

intermediates 10a,a´ and 10c,c` (ratio: ~ 1:1:1:0.3) distinguished by their relative orientations of the 

CH(SiMe3)2 and W(CO)5 groups (see also the discussion of the theoretical results below). All 

intermediates have very similar chemical shifts and phosphorus-tungsten and phosphorus-fluorine 

couplings (δP = 216.1, 1JP,W = 284 Hz, 1JP,F = 843.0 Hz; δP = 211.0, 1JP,W = 284.8 Hz, 1JP,F = 878.7 Hz, δP = 

203.4, 1JP,W = 281.2 Hz, 1JP,F = 836.7 Hz, and  δP = 191.8, 1JP,F = 846.8 Hz[7.15]). At 0 °C, one of them (δP = 

203.4 ppm) remained as major component but also disappeared in favor of 11, which was the final 

product at ambient temperature. We failed to isolate the major component by crystallization at 0°. 

Further attemps to obtain this compound using 3.2 equivalents of 8 were also not successful. 

 

Scheme 7.2. Oxidation of complex 2 with [(p-Tol)3C]BF4. 

The structure of complex 11 was unambiguously confirmed (Fig. 7.2) and displayed a P–C1 bond 

of 1.954(3) Å, which is significantly longer than the average P–C single bond length of trivalent 
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phosphanes and/or their transition metal complexes (the sum of the covalent radii of P and C atoms 

is ~ 1.83 Å). 

 

Figure 7.2. Molecular structure of complex 11 (50% probability level; hydrogen atoms are omitted for clarity). 

Selected bond lengths [Å] and angles [°]: W–P 2.5675(8), P–F 1.6184(19), P–C(1) 1.954(3), P–C(23) 1.826(3), 

C(1)–P–C(23) 107.17(14), C(1)–P–F 94.66(12), C(23)–P–F 97.73(12), C(1)–P–W 122.85(9), C(23)–P–W 122.42(10), 

F–P–W 104.23(7). 

To achieve a better understanding of the observed intermediates and the formation of complex 

11, DFT calculations were carried out on various closed-shell, open-shell and zwitterionic isomers 

based on the assumption that complex 10a is the kinetically favored product and the starting point 

(for 10b,d see the Supporting Information). Of all calculated structures, the ones lowest in energy are 

shown in Figure 7.3 (10b,d are very high in energy and therefore not shown here). Compared to the 

energy of the combined singlet diradicals 5+9, the ZPE-corrected energies (kcal/mol) of complexes 

10a and 10c were found to be lower only by 12.7 kcal/mol and 12.8 kcal/mol, respectively. 

 

 

Figure 7.3: Calculated low-energy isomeric structures of complex 11. 

 

Further inspection revealed that 10a and 10c can appear as P−C atropisomers 10a’ (–9.2 kcal/mol) 

and 10c’ (–6.8 kcal/mol) being close in energy but differing in the relative orientation of their CH and 
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PW bonds (Figure 7.3), thus leading to s-cis and s-trans conformers,[7.16] the latter being favored in 

both cases. The final product, complex 11, was more stable than 5+9 by 19.4 kcal/mol; 11 also adopts 

the s-trans con-formation. Stimulated by these theoretical results and especially by the prediction of 

a small energy difference between 5+9 and 11 a preliminary study on the thermal stability of 

complex 11 was performed. Heating a toluene solution at moderate temperatures (75°C, 4h) led to a 

selective cleavage of the (long) P–C bond and to the formation of the phosphane complex 1.  

EPR investigations of the reactions described in Schemes 1 and 2 confirmed the presence of long-

lived carbon-centered radicals formed in the initial reaction steps, thus confirming their radical-based 

nature (see the Supporting Information for details on the EPR experiments). Typical EPR spectra of a 

liquid solution containing Li/F phosphinidenoid complex 2 and 1.2 equivalents [(p-Tol)3C]BF4 (Figure 

7.4a) and revealed that different reactions coexist. In the presence of [(p-Tol)3C]BF4, the EPR 

spectrum consists of a narrow signal at 336 mT and a broad signal with a peak-to-peak width of 1.18 

mT. In addition, an oscillatory structure is present with a low amplitude on top of the broad signal. In 

the presence of [Ph3C]BF4, the oscillatory structure dominates the EPR spectrum, which was assigned 

to 4 based on camparison with literature data.[7.17]  
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Figure 7.4. EPR spectra of (2) with 1.2 equiv. [(p-Tol)3C]BF4 (a) and [Ph3C]BF4 (b). Experimental conditions: T = 

150 K, mw = 9.42 GHz, modulation amplitude 0.05 mT. 

Given the observation that the widths of the EPR signals of the broad signal in Figure 7.4a and 

that of 9 are similar, the broad signal very likely also stems from a radical with a trityl-related core. 

The narrow signal disappears completely upon freezing to T = 100 K. As is the case for NMR 

spectroscopy, the anisotropic contributions do not average out in the solid state, and this species is 

thus subject to a very strong anisotropic coupling, for example with the nuclear spin of 31P. Moreover, 

if the temperature is raised to 180 K, the narrow signal rapidly becomes smaller in intensity, 

indicating that a reaction is occuring inside the EPR tube. This signal is therefore tentatively assigned 

to 5, in which the unpaired electron occupies a pure 3p orbital at 31P without admixture of the 3s 

orbital. The spin density distribution in complex 5 obtained from a DFT calculation[7.14] is given in 

Figure 7.5. Geometry optimization of the complex resulted in a local geometry of phosphorus, which 

is almost planar (W,P,F) = 115.6; (W,P,C) = 129.6, P−W 2.484, P−F 1.669, P−C(23) 1.830. As 

shown in the figure, the majority of spin density is located at P (68%).

Small amounts of spin density are found at the adjacent W (9%), C (-0.6%) and F (4%) atom and the 

remaining part distributed over the CO ligands. 
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Figure 7.5. Calculated spin density distribution in complex 5. 

 

7.3 Conclusion 

First insights into an unusual case of facile non-degenerate P–C bond making and breaking was 

obtained using a radical pair of a trityl derivative and a short-lived P−F organophosphanyl complex as 

starting point. State-of-the-art theoretical calculations on real molecular entities revealed the 

structures of the in situ formed combined singlet diradicals (4+5 and 5+9) and the nature of 

intermediates, presumably being two pairs of atropisomers 10a,a´ and 10c,c´, on the way to the final 

product, the complex 11. Two aspects deserve special attention: the narrow energy regime (~ 20 

kcal/mol) of all isomers of 11  may constitute an ideal test bed for further studies on dispersion 

effects in low-symmetry radical pairs, and the sterically encumbered P–F diorganophosphane 

complex 11 may serve as blueprint for the exploitation of P-trityl derivatives as new entry into open-

shell phosphorus chemistry.  

 

7.4 Experimental Section 

General Procedures. All manipulations involving air- and moisture-sensitive compounds were carried 

out under an atmosphere of purified argon by using standard Schlenk-line techniques or a glove-box. 

Solvents were dried with appropriate drying agents and degassed before use. The 1H, 13C(1H), and 
31P(1H) NMR spectroscopic data were recorded on a Bruker DMX 300 spectrometer. Mass spectra 

were recorded on a MAT 95 XL. 

6: To a stirred solution of phosphane 1 (534.2 mg, 1 mmol) and 12-crown-4 (0.175 mL, 1.12 mmol) in 

40 mL of THF at –78 °C was slowly added solution of n-BuLi (1.6 M, 0.7 mL, 1.12 mmol). After 15 min 

the mixture was cooled down up to –90 °C and triphenylcarbenium tetrafluoroborate (1.056 g, 3.2 

mmol) was added under Ar atmosphere as a solid. Stirred reaction mixture was slowly warmed up to 

0 °C in a cooling bath (ca. 4 h). Volatiles were removed under reduced pressure. Crude product was 

extracted with n-pentane (ca. –35 °C) and subjected to column chromatography (silica gel, –20 °C, 

petrol ether, petrol ether/diethyl ether = 10/0.5). Eluation of a second band and evaporation of 

volatiles gave brownish oil. Fractional crystallization from n-pentane at –35 °C gave triphenyl 

methane (total amount 225 mg, 0.68 mmol) as a white solid . Evaporation of the solvent from 

mother liquid gave complex 6 as a pale yellow solid containing triphenyl methane and complex 7 as 

impurities (total amount less than 5%). Yield: 340 mg, (0.44 mmol, 44%). 1H NMR (300.13 MHz, CDCl3, 
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25°C): = 0.28 (s, 9H, Si(CH3)3), 0.34 (s, 9H, Si(CH3)3), 2.29 (d, 1H, 2JH,P = 16.4 Hz, PCH(Si(CH3)3)2), 4.21–

4.29 (m, 1H, PCH), 5.97 (m, 2H, CH(CH=CH)2C), 6.76 (m, 2H, CH(CH=CH)2C), 7.10–7.31 (m, 10H, 2Ph). 
13C{1H} NMR (125.77 MHz, CDCl3, 25°C): = 3.1 (pt, 3JC,P = 2.6 Hz, 4JC,F = 2.6 Hz, Si(CH3)3), 3.4 (dd, 3JC,P = 

2.6 Hz, 4JC,F = 1.9 Hz, Si(CH3)3), 28.8 (dd, 1JC,P = 18.7 Hz, 2JC,F = 12.2 Hz, PCH(Si(CH3)3)2), 53.8 (pt, 1JC,P = 

14.6 Hz, 2JC,F = 14.6 Hz, PCH), 123.40 (dd, 2JC,P = 5.5 Hz, 3JC,F = 2.7 Hz, CH), 124.43 (dd, 2JC,P = 5.5 Hz, 3JC,F 

= 1.8 Hz, C’H), 127.5 (s, Ph), 127.6 (s, Ph’), 127.8 (d, 5JC,P = 11.9 Hz, CPh2), 128.20 (s, Ph), 128.26 (s, Ph’), 

129.42 (s, Ph), 129.45 (s, Ph’), 130.60 (d, 8JC,P = 3.7 Hz, Ph), 130.67 (d, 8JC,P = 2.8 Hz, Ph’), 131.3 (d, 3JC,P 

= 10.1 Hz, CH), 131.4 (d, 3JC,P = 11.0 Hz, C’H),140.8 (d, 4JC,P = 12.8 Hz, C=CPh2), 141.4 (d, 6JC,P = 4.5 Hz, 

Ph), 196.7 (dd, 2JC,P = 7.3 Hz, 3JC,F = 3.7 Hz, cis-CO), 198.3 (d, 2JP,C = 29.3 Hz, trans-CO). 19F{1H} NMR 

(282.37 MHz, CDCl3, 25°C):  = –118.3 (dsat, 
1JF,P = 844.8 Hz). 31P{1H} NMR (121.51 MHz, CDCl3; 25 °C): 

 = 193.13 (dsat, 
1JP,W = 288.6, 1JP,F = 844.3). MS: m/z (%): 776 [M+, 29]. IR ( (CO), KBr pellet):  tilde = 

1930 (s), 2075 (s) cm-1.  

7: To a stirred solution of freshly prepared LDA (0.55 mmol) in 2.5 mL of THF at –78 °C was added 

cooled solution of phosphane complex 1 (267 mg, 0.5 mmol) and 12-crown-4 (85 µL, 0.55 mmol) in 5 

mL of THF. After 15 min at –78 °C triphenylcarbenium tetrafluoroborate was added (250 mg, 0.76 

mmol) as a solid. Immediate color change from yellow to deep violet was observed. The mixture was 

warmed up to 0 °C (ca. 2.5 h) to give yellow solution. Volatiles were removed under reduced 

pressure (ca. 0.01 mbar) and the residue was extracted with petroleum ether (3 x 0.5 mL). Combined 

extracts were used for the column chromatography (silica gel, –20 °C, petrol ether, petrol 

ether/diethyl ether 90:10). Eluation of a second band and evaporation gave complex 7 as a colorless 

solid. Yield: 158 mg (0.20 mmol, 40%); m.p. 122 °C (dec.). 1H-NMR (300.13 MHz, CDCl3, 25°C): = 0.09 

(s, 9H, SiMe3), 0.26 (s, 9H, SiMe3), 2.24 (dd, 2JH,P = 11.9 Hz, 3JH,F = 6.1 Hz, 1H, PCH), 5.62 (s, 1H, Ph2CH), 

7.77 (m, Ar). 13C{1H} NMR (75.5 MHz, CDCl3; 25 °C): = 2.6 (dd, 3JC,P = 3.3 Hz, 4JC,F = 1.0 Hz, Si(CH3)3), 3.3 

(pt, 3JC,P = 2.3, Si(CH3)3), 35.8 (dd, 1JC,P 17.1, 2JC,F 4.5, PCH), 56.6 (s, Ph2CH), 138.2 (dd, 1JC,P  = 37.8 Hz, 
2JC,F = 18.0 Hz, P-Ph), 131.4 (dd, 2JC,P = 16.2 Hz, 3JC,P  = 3.5 Hz, P-Ph), 129.4 (d, 3JC,P = 10.7, P-Ph), 148.8 

(pt, 4JC,P = 1.4 Hz, P-Ph), 126.7 (s, Ph), 129.4 (s, Ph), 128.5 (s, Ph), 142.9 (s, Ph), 196.5 (dsat, 
1JC,W = 126.0 

Hz, 2JC,P = 8.1 Hz, 3JC,F  = 3.3 Hz, cis-CO), 198.6 (dd, 2JC,P = 28.2 Hz, 3JC,F = 1.1 Hz, trans-CO). 19F{1H} NMR 

(282.37 MHz, CDCl3, 25°C):  = –108.9 (dsat, 
1JF,P  = 811.8 Hz, 1JF,W = 11.5 Hz). 31P{1H} NMR (121.51 MHz, 

CDCl3, 25 °C):  = 187.3 (dsat, 
1JP,W = 292.7 Hz, 1JP,F = 811.6 Hz). MS: m/z (%): 776 [M+, 29]. IR ((CO, KBr 

pellet):  tilde = 1910 (s), 1939 (s), 1992 (m), 2073 (m) cm-1 

11: Phosphinidenoid complex 2 was prepared as described above in 9 mL of THF, from phosphane 1 

(265 mg, 0.5 mmol), 12-crown-4 (87.5 µL, 0.56 mmol) and n-BuLi (1.6 M, 0.35 mL, 0.56 mmol). After 

15 min at –78 °C, the mixture was cooled up to –90 °C and tris(p-methylphenyl)carbenium 

tetrafluoroborate (210 mg, 0.56 mmol) was added as a solid. Stirred reaction mixture was slowly 

warmed up to room temperature (ca. 4 h) and stirred further 2 h. The solvent was evaporated and 

the residue was subjected to column chromatography (silica gel, –20 °C, petrol ether, petrol 

ether/diethyl ether = 10/0.5). Eluation of a second band and evaporation of volatiles gave crude 

product, which was crystallized at –40 °C from n-pentane to give 11 as a white solid, m.p. 132 °C. 

Yield: 226 mg, (0.27 mmol, 55%). 1H NMR (300.13 MHz, CDCl3, 25°C): = 0.01 (s, 9H, Si(CH3)3) 0.19 (d, 

9H, 4JH,P = 2.2 Hz, Si(CH3)3, 2.38 (s, 9H, 3CH3), 2.76 (dd, 1H, 2JH,P 18.1, 2JH,F 1.3, PCH) 7.15 (d, 6H, 3JH,H 8.3, 

Ar), 7.44 (d, 6H, 3JH,H 7.3, Ar). 13C{1H} NMR (75.5 MHz, CDCl3; 25 °C): = 3.66 (d, 3JC,P = 2.9 Hz, Si(CH3)3), 

4.48 (dd, 3JC,P = 4.2 Hz, 4JC,F = 1.2 Hz, Si(CH3)3), 21.05 (s, CH3), 29.2 (dd, 1JP,C = 29.5 Hz, 1JP,F = 14.0 Hz, 

PCH), 70.67 (dd, 1JC,P = 13.7 Hz, 
2JC,F = 1.8 Hz, CAr3), 128.9 (s, Ar), 132.1 (dd, 3JC,P = 5.9 Hz, 4JC,F = 2.9 Hz, 
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Ar), 137.3 (d, 4JC,P = 2.4 Hz, Ar), 138.24 (br, Ar), 197.3  (dd, 2JC,P = 6.5 Hz, 3JC,F = 4.7 Hz, cis-CO),  198.2 (d, 
2JC,P = 1.1 Hz, trans-CO). 19F{1H} NMR (282.37 MHz, CDCl3, 25°C):  = –109.4 (dsat, 

1JF,P = 821.4 Hz, 3JF,W 

= 10.1 Hz). 31P{1H} NMR (121.51 MHz, CDCl3; 25 °C):  = 207.1 (dsat, 
1JP,W = 283.5 Hz, 1JP,F = 821.4 Hz). 

MS: m/z (%): 818.1 [M+, 17]. IR ((CO, KBr pellet):  tilde = 1934 (s), 1984 (m), 2073 (s) cm-1. 
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8 Summary 

This work focusses on the spectroscopic investigation of reactions catalyzed by titanocene(III) 

chloride, in particular the reductive ring opening of epoxides. Both cw-EPR and modern pulse EPR 

methods have been employed for this purpose, in order to investigate the electronic structure of the 

catalyst and key reaction intermediates.   

EPR spectroscopy has been a useful tool for elucidating the electronic and geometric structure of the 

paramagnetic reaction intermediates, since no NMR or X-ray data is available. The investigated 

reaction mechanism proceeds via a radical mechanism.   

The obtained EPR parameters (g-tensor, hyperfine tensors) provide information about the structure 

of titanocene(III) chloride as well as titanocene(III) chloride complexed by small molecules such as 

water or methanol. Furthermore, titanocene(III) chloride with coordinated oxophosphirane was 

analyzed. The determination of the spin Hamiltonian parameters provided a detailed picture of the 

electronic structure and coordination environment of the spin-bearing titanium center.   

In the first part of this work, the interaction between titanocene(III) chloride and H2O or D2O has 

been examined by Q-band EPR spectroscopy combined with electrochemistry. Compared to X-band 

(9.7 GHz), Q-band (34 GHz) features a four-times-larger Zeeman splitting. This allows for a better 

resolution of the g-tensor and the hyperfine and quadrupole couplings, in particular for the chloride 

atom. Based on these measurements, the existence of a cationic titanocene(III) species coordinated 

by water or D2O has been unambiguously demonstrated. A detailed study of the interaction of the 

titanium(III) atom with the ligand environment was carried out with ESEEM and HYSCORE 

spectroscopy. The disappearance of the characteristic signal of chloride accompanied by the increase 

of the deuterium signal in the ESEEM spectra is clear evidence for the displacement of chloride by 

D2O.   

In the second part, the reaction mechanism of the epoxide opening catalyzed by titanocene(III) 

chloride has been investigated with pulse EPR experiments. The short lifetime of carbon radical 

species occurring in the catalytic cycle necessitates the use of spin trapping techniques. The EPR 

spectrum of the initial titanocene-epoxide-DMPO complex showed a radical signal. ESEEM and 

HYSCORE spectroscopy additionally allowed for the study of weakly coupled nuclei. These 

experiments have shown that epoxide is opened and a carbon radical is generated. To further prove 

this result, UV-vis measurements were carried out by using titanocene(III) chloride with the epoxide 

in the absence of DMPO.  

This part describes pulsed EPR and ESEEM experiments of the titanocene(III)-DMPO complex, in 

which the complexation of the DMPO to the titanocene(III) was demonstrated. The obtained ESEEM 

spectra revealed important details about the nitrogen hyperfine coupling, which was used as 

additional information to elucidate the geometric structure of the investigated titanocene-DMPO 

complex.  
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The second section of this part of this work describes pulsed EPR and ESEEM experiments of the 

titanocene(III)-DMPO complex, in which the complexation of the DMPO to the titanocene(III) was 

demonstrated. The obtained ESEEM spectra revealed important details about the nitrogen hyperfine 

coupling, which was used as additional information to elucidate the geometric structure of the 

investigated titanocene-DMPO complex. 

In the third part of this work, building on the pulsed EPR and ESEEM studies, the couplings of the 

nitrogen nucleus determines the coordination the amide ligand to the titanium center. The obtained 

ESEEM spectra showed unambiguous direct spectroscopic evidence for the coordination of the amide 

ligand to the metal center. Hence, the presence of amide complexation [I(14N = 1)] is provided by EPR 

spectroscopy. 

In the fourth part, the coordination of oxaphosphiranes to titanocene(III) was studied by means of cw 

EPR methods. Upon coordination the oxaphosphiranes undergo ring opening, forming transient 

phosphanyl radical intermediates. These radical have been detected by using either spin trapping 

agents or freeze quench techniques. The EPR investigations of this reaction have shown that the 

unpaired electron occupies a pure 3p orbital at 31P without admixture of the 3s orbital. Small 

amounts of spin density were found at the adjacent W, C and F atom and the remaining part 

distributed over the CO ligands. 

The experimentally determined EPR data of the various titanocene(III) complexes were 

complemented by density functional calculations. The computed EPR parameters of the structural 

models of titanocene(III) coordinated by water, epoxide, DMPO or oxaphosphirane showed good 

agreement with the experimental values. The calculations of the titanocene(III) chloride catalyst 

indicate that the unpaired electron resides in the titanium dz2 orbital. It was shown that the 

titanocene(III) chloride complex is monomeric in THF. Interestingly, THF does not bind to the metal 

center, because of steric congestion around the central ion.   

The use of EPR techniques such as ENDOR, ESEEM and HYSCORE spectroscopy in this study has been 

essential for the elucidation of both the electronic and geometric structure of the investigated 

titanocene(III) complexes, which represent key paramagnetic intermediates within the catalytic cycle 

of the epoxide ring opening reaction. Further insight into the details of the electronic structure of 

these compounds has been obtained from DFT calculations.  

The results of this study shed light on an important reaction in organic radical chemistry. In 

particular, the observed dissociation of chloride indicates that the catalytically active species 

concerns a cationic titanocene(III) complex  which has lost the chloride ligand. This provides strong 

experimental evidence for the postulated inner sphere electron transfer between epoxides and 

titanocenes that has been put forward to explain the high regioselectivity of ring opening. The 

structure of the complex provides an experimental basis for the design of novel reactions based on 

enantioselective interactions between epoxides and titanocenes. 

The dissociation of chloride from monomeric titanocene upon binding of 1,1-diphenyl epoxide 

demonstrates that for the finding of catalysts for the kinetic resolution of 1,1-disubstituted and tri-

substituted epoxides another ligand design has to be applied than for regioselective opening of 

meso-epoxides or cis-1,2-disubstituted epoxides. In contrast to the complex identified above the 

catalytically active species for these epoxides were postulated to retain their chloride ligands. These 
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different binding modes explain the poor performance of the catalysts successful in regioselective 

opening of the latter two classes of epoxides when applied for kinetic resolutions of 1,1-disubstituted 

and tri-substituted epoxides. 

  



141 
 

   
 

 

 

 

 

 

 

 

Appendices 

  



 

 



143  A Additional Results on H2O-Activation  
  for HAT Study 
 

   
 
 

A. Additional Results on H2O-Activation for HAT Study (Chapter 4) 

 

[1] (a) A. Schweiger, G. Jeschke. Principles of Pulse Electron Paramagnetic Resonance, Oxford, Oxford 

University Press, 2001. (b) W. B. Mims, J. Peisach, J. Chem. Phys. 1978, 69, 4921-4930. (c) W. B. 

Mims, Proc. Roy. Soc. London A 1965, 283, 452-457. 

[2] a) R. J. Enemærke, J. Larsen, T. Skrydstrup, K. Daasbjerg, J. Am. Chem. Soc. 2004, 126, 7853-7864; 

b) K. Daasbjerg, H. Svith, S. Grimme, M. Gerenkamp, C. Mück-Lichtenfeld, A. Gansäuer, A. 

Barchuk, F. Keller, Angew. Chem. 2006, 118, 2095-2098; Angew. Chem. Int. Ed. 2006, 45, 2041-

2044. 

Experimental details: 

Sample preparation: All samples were prepared under an atmosphere of argon using standard 

Schlenk techniques. THF was freshly distilled over potassium under an atmosphere of argon. The 

distilled water or D2O was degased and kept under an atmosphere of argon prior to use. Samples 

were prepared from 12.6 mg of Cp2TiCl2 (0.05 mmol, 1.0 eq.) and 3.3 mg of Zn (0.05 mmol, 1.0 eq.) in 

5 mL of THF and stirring at room temperature until the solution was green. After addition of the 

appropriate amount of water or D2O the solution was allowed to stir for 5 minutes. Samples were 

transferred under argon atmospere into the EPR-tubes and instantly frozen in liquid nitrogen.  

Measurements: Q-band EPR, ESEEM and HYSCORE spectra were recorded for frozen solutions (T = 

30 K) of 10 mM concentration using a Bruker ELEXSYS E580 FT-EPR spectrometer using a Bruker 

EN5107 D2 resonator. For the Electron Spin Echo (ESE) detected EPR experiments, a Hahn echo pulse 

sequence with pulses of 24 ns and 48 ns and a pulse separation of 300 ns was employed. The g values 

are determined by reading the magnetic field as indicated by the arrows in Figure S1 from the 

spectrum and using the resonance condition 

 Bgh B            (1) 

with h Planck constant, µB the Bohr magneton,  the microwave frequency and B the magnetic field. 

The three-pulse ESEEM[1] experiments were carried out with pulses of 40 ns length. The time 

between the first two pulses was fixed at 200 ns. A mono-exponential background was subtracted 

from the modulation pattern. The resulting modulations were multiplied with a Hamming window 

function, zero-filled to 2048 points and Fourier transformed into frequency domain. The spectra in 

the right columns of Figures S2 and S3 are displayed as magnitude ESEEM spectra. The HYSCORE 

experiments were performed with 90 degree pulses of 16 ns length and an inversion pulse of 32 ns. 

The time between the first two pulses was fixed at 128 ns. 
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Pulsed EPR spectra: 

 

Figure A.1. Q-Band ESE detected EPR spectra (T = 30 K) of frozen solutions of Zn-reduced Cp2TiCl2 in THF, mw = 

34.117 GHz (a) without H2O, (gx, gy, gz) = (1.955, 1.983, 2.001), (b) with 10 eq. H2O, (gx, gy, gz) = (1.971, 1.985, 

2.002) and (c) with 100 eq. H2O. In the latter sample, the gx and gy values become essentially equal. 
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ESEEM spectra: 

 

Figure A.2. Normalized Q-Band 3-pulse modulation patterns and ESEEM spectra (T = 30 K) of Cp2TiCl in THF 

with different added molar equivalents of H2O (indicated in figure) recorded at the gy canonical orientation. 

 

 

Figure A.3. Normalized Q-Band 3-pulse modulation patterns and ESEEM spectra (T = 30 K) of Cp2TiCl in THF 

with different added molar equivalents of D2O (indicated in figure) recorded at the gy canonical orientation. 
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Cyclic Voltammetry:Materials: THF was distilled over potassium under an atmosphere of argon. The 

distilled water was degased and kept under an atmosphere of argon. 

Tetrabutylammoniumhexafluorophosphate, Bu4NPF6, and Tetrabutylammoniumiodide, Bu4NI, 

were commercially available in electrochemical grade from Aldrich and were stored in a glovebox 

under an atmosphere of argon. 

Apparatus.:All handling of chemicals and the cyclic voltammetric experiments were performed 

in a glovebox under an atmosphere of argon. The cyclic voltammograms were recorded by a 600D 

Electrochemical Analyzer/Workstation (CH-Instruments). The working electrode was a glassy 

carbon disk of diameter 1 mm. The electrode surface was polished using 0.25 μm diamond paste 

(Struers A/S), followed by cleaning in an ethanol bath. The counter electrode consisted of a 

platinum coil melted into glass, while a Ag/AgI electrode (silver wire immersed in a Pyrex tube 

containing 0.2 M Bu4NPF6 + 0.02 M Bu4NI in THF) separated from the main solution by a ceramic 

frit served as the reference electrode. All potentials were reported against the Fc+/Fc redox couple, 

the potential of which is equal to 0.52 V vs. SCE in 0.2 M Bu4NPF6/THF.[2] 

Procedure. In the cyclic voltammetric experiments 0.77 g of Bu4NPF6 (2.0 mmol) and a small 

magnetic bar were added to the electrochemical cell. 9 mL of freshly distilled THF, 1 mL of the 

appropriate standard solution containing the zinc-reducedCp2TiCl2 and the appropriate amount of 

water were added to the cell and the solution was stirred for 10 min. At the end of each series of 

experiments a small amount of ferrocene was added and the potential of the Fc+/Fc redox couple 

was measured. 
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Cyclovoltammograms with higher sweeprates. 
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Computational procedures: 

The anionic species were optimized with BP86/TZVP using COSMO in combination with ε=7.6. 

B3LYP-d/TZVPP energies and BP86/TZVP zero point vibratinal energies: 

 

 

ZPVE E E+ZPVE 

 au au au 

H 0,000000 -0,496808 -0,496808 

Cl- 0,000000 -460,319744 -460,319744 

2a 0,187950 -1773,123679 -1772,935729 

2b 0,189136 -1773,133460 -1772,944324 

3a 0,188732 -1312,752768 -1312,564036 

3b 0,212854 -1389,216323 -1389,003469 

Cp2TiCl 0,164946 -1696,679194 -1696,514248 

THF2*H2O 0,252382 -541,284638 -541,032256 

Cp2TiCl(H2O*THF2) 0,419443 -2237,993710 -2237,574267 

H2O 0,020611 -76,438839 -76,418229 

ZnCl4
2- 0,003327 -3620,474940 -3620,471613 

ZnCl2 0,001908 -2699,790872 -2699,788964 

Cp2Ti(H2O*THF2) 0,418952 -1777,623090 -1777,204139 

Cp2Ti(H2O*THF2)2 0,673006 -2318,940928 -2318,267923 

THF 0,113230 -232,414093 -232,300863 

4 0,534214 -2010,065419 -2009,531205 

5 0,293849 -2004,971868 -2004,678019 

6 0,292744 -1544,578019 -1544,285275 

7 0,547834 -2085,918164 -2085,370329 

2b*THF 0,304693 -2005,562844 -2005,258151 

3a*THF 0,303692 -1545,188801 -1544,885110 

3b*3THF 0,558083 -2086,510490 -2085,952408 

Cp2Ti 0,163827 -1236,269764 -1236,105937 

THF*H2O 0,136965 -308,8621976 -308,725232 

    

 

Structural analysis of selected Structures: 

Structural features of 2b*2THF: 

The H-O distance of the water Protons and the THF Oxygens are 1.75 Å and 1.82 Å respectively. The 

distance of the α-Protons to the Chloride are 2.71 Å and 2.73 Å. The distance of the Ti to the Water 

Oxygen is 2.24 Å. 
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Structural features of 2b*THF: 

The H-O distance of the water Proton and the THF Oxygen is 1.75 Å. The distance of the Ti to the 

Water Oxygen is 2.27 Å. The distance of the α-Protons to the Chloride is 3.16 Å, wich is significantly 

longer than in 2b*2THF. The distance of the second proton of water to the chloride is 2.16 Å. 

 

BP86/TZVP structures: 

  
2a 

   

  
25 

   

      

      C     2.1509734    0.6829834    0.0048631 C    -0.6203716   -1.2754417    1.1376258 

C     1.9407194    0.8671078   -1.3870143 C    -0.4995047   -0.0886772    1.9168394 

C     1.1671253    2.0438435   -1.5664767 C    -1.5732920    0.7846846    1.5729689 

C     0.8891847    2.5980135   -0.2849714 H    -2.1453865   -1.8542743   -0.3980936 

C     1.5149091    1.7625307    0.6848669 H     0.0345756   -2.1415681    1.1794707 

Cl   -1.0974368    0.0705033   -2.5126202 H     0.2742261    0.1076610    2.6523831 

Ti   -0.2037195    0.5012004   -0.3594691 H    -1.7545519    1.7724799    1.9887222 

H     2.2658698    0.1961544   -2.1776896 H     2.7086487   -0.1271241    0.4673318 

H     0.8010140    2.4200991   -2.5166337 H    -3.2493805    0.5365722    0.0954217 

H     0.3343998    3.5107574   -0.0857772 H    -3.3273394    0.7271172   -2.3001619 

H     1.5133513    1.9290510    1.7572803 O    -4.2266589    0.9823285   -2.0010697 

C    -2.3759901    0.1280613    0.6031287 H    -4.8213091    0.4390886   -2.5434341 

C    -1.7895120   -1.1376748    0.3358870 
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2b 

   

  
25 

   

      

      C     1.9574854    1.3010304    0.2226314 C    -0.4833669   -1.1967080    1.7002257 

C     1.8694328    1.1223770   -1.1862812 C    -0.4587919    0.1104971    2.2450463 

C     0.8030687    1.9141937   -1.6727312 C    -1.5863382    0.8243365    1.7394327 

C     0.2135967    2.5951403   -0.5713357 H    -1.9328959   -2.1500308    0.2620874 

C     0.9466529    2.2339060    0.5973695 H     0.2355290   -1.9845201    1.9133089 

Cl   -1.4908842   -0.1529727   -2.2370767 H     0.2924947    0.4992279    2.9262787 

Ti   -0.1641534    0.2901447   -0.1466883 H    -1.8393192    1.8575024    1.9616782 

H     2.4731660    0.4393574   -1.7765713 H     2.6842707    0.8376034    0.8842800 

H     0.4485585    1.9434671   -2.6975082 H    -3.1955501    0.2131346    0.3125638 

H    -0.6242845    3.2848267   -0.6211566 O     0.7621430   -1.5566493   -1.1518542 

H     0.7707896    2.6139345    1.5987669 H     0.0720637   -1.4952906   -1.8750038 

C    -2.3091910   -0.0397509    0.8853794 H     0.5837573   -2.3876862   -0.6794406 

C    -1.6250426   -1.2881105    0.8473502 

    

  
3a 

   

  
24 

   

      

      C     2.1218041    1.1567893    0.2147232 C    -0.2435855   -1.4740014    1.7228620 

C     2.0284630    0.8586907   -1.1722070 C    -0.2486666   -0.1714338    2.2794848 

C     0.9086588    1.5562553   -1.7051570 C    -1.3662344    0.5398388    1.7467494 

C     0.2990651    2.2922095   -0.6528357 H    -1.6732627   -2.4591026    0.2983785 

C     1.0613218    2.0575946    0.5303614 H     0.4702373   -2.2632461    1.9464738 

Ti    0.0808362    0.0199874   -0.0747328 H     0.4725857    0.2158575    2.9941024 

H     2.7059213    0.2088653   -1.7234668 H    -1.6445367    1.5626242    1.9860424 

H     0.5699339    1.5384077   -2.7395860 H     2.8895841    0.8011618    0.8965315 

H    -0.5611832    2.9496623   -0.7452853 H    -2.9656464   -0.0769009    0.3090631 

H     0.8816398    2.5102368    1.5007724 H     0.4943907   -1.2647840   -2.5703839 

C    -2.0580608   -0.3186128    0.8569413 O     0.0228209   -1.3630388   -1.7241332 

C    -1.3600673   -1.5655801    0.8355806 H    -0.4775352   -2.1977494   -1.7553541 

 

 

 

ZnCl2 

 

 

3 

 

   

   Zn   -3.9073878    0.8480934   -0.0000012 

Cl   -1.7691266    0.8480653    0.0000006 

Cl   -6.0456465    0.8480653    0.0000006 
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3b 

   

  
27 

   

      

      C     1.8570661    1.4267782    0.4315617 C    -1.5595069    0.7323172    1.7574452 

C     2.0182352    0.9689306   -0.8957580 H    -1.8310054   -2.2848223    0.3294388 

C     1.0309863    1.5986490   -1.7028716 H     0.4084740   -1.9867372    1.8355318 

C     0.2687138    2.4782029   -0.8709191 H     0.3736995    0.5005170    2.8669265 

C     0.7827453    2.3678668    0.4461408 H    -1.8742791    1.7384665    2.0195152 

Ti   -0.1713615    0.2709966   -0.1624732 H     2.4623158    1.1331601    1.2848665 

H     2.7475061    0.2401212   -1.2378996 H    -3.2501082    0.0142894    0.4945567 

H     0.9254086    1.4679818   -2.7780652 O     0.4991389   -1.4941743   -1.4016968 

H    -0.5263176    3.1485840   -1.1887057 H    -0.1420864   -1.7812403   -2.0775097 

H     0.4333874    2.9202229    1.3133315 H     0.9025663   -2.2947479   -1.0250387 

C    -2.2781744   -0.1773647    0.9459113 O    -1.5792611    0.1287227   -1.9686619 

C    -1.5309434   -1.3851554    0.8611593 H    -1.4903917    0.8200093   -2.6493237 

C    -0.3478250   -1.2289333    1.6466441 H    -2.5320801    0.0567090   -1.7800366 

C    -0.3729489    0.0777094    2.2013954 

    

  
Cp2TiCl 

   

  
21 

   

      

      
 

     C     2.0609489    0.4205010   -0.0930967 C    -1.5364444   -1.0208505    0.1891920 

C     1.6870953    0.7105244   -1.4303413 C    -0.5744174   -0.9938997    1.2312971 

C     1.2057506    2.0597908   -1.4678128 C    -0.8049859    0.1745704    2.0229169 

C     1.3153344    2.6040049   -0.1466623 C    -1.9100494    0.8727821    1.4720918 

C     1.8315123    1.5888672    0.6989954 H    -1.6331312   -1.7916485   -0.5729004 

Ti   -0.2641205    0.8941600   -0.1740632 H     0.1955293   -1.7404727    1.4068751 

H     1.7562710    0.0295210   -2.2763418 H    -0.2403641    0.4687840    2.9036394 

H     0.8697671    2.5951961   -2.3549145 H    -2.3407621    1.7950853    1.8569582 

H     1.0520557    3.6158990    0.1550455 H     2.4661372   -0.5221982    0.2649013 

H     2.0323444    1.6868468    1.7625330 H    -3.2095469    0.4037052   -0.3072483 

C    -2.3584923    0.1454674    0.3216506 

    

 

H2O 

 

 

3 

 

   

   O    -2.3437162    1.8132964   -0.0705527 

H    -1.3733924    1.8587832   -0.0705527 
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H    -2.6247392    2.7431483   -0.0705527 

 

 

 

THF 

 

 

13 

 

   

   C    -0.0018887    0.0360658    0.1135673 

O     1.2652492    0.1368274   -0.5525637 

C     1.8695088    1.3196702   -0.0137394 

C     0.7352078    2.3582665    0.0551002 

C    -0.5356877    1.4829671    0.2457003 

H    -0.6405744   -0.6237139   -0.4877437 

H     0.1331481   -0.4211704    1.1138662 

H     2.2755298    1.1150156    0.9979967 

H     2.7000261    1.6009060   -0.6739669 

H     0.8826559    3.0785286    0.8713959 

H     0.6783745    2.9232274   -0.8851108 

H    -1.0103564    1.6453869    1.2230846 

H    -1.2837647    1.7041515   -0.5268931 

 

 

  

THF2*H2O 

   

  

29 

   

      

      

      C     0.3721943   -3.4723499   -0.0045886 H     3.5453852   -5.0558842    2.2684252 

O     1.2149474   -2.9521537    1.0502443 O     4.3909630   -5.5844582    3.8759088 

C     1.9814076   -1.8298404    0.5258647 C     5.6286300   -6.2451535    3.4911869 

C     1.6602555   -1.7319161   -0.9769980 C     3.5142227   -6.5829580    4.4404533 

C     1.1002414   -3.1287809   -1.3018226 C     5.3538227   -7.7669806    3.5046833 

H     0.2530447   -4.5492484    0.1739600 H     5.8957122   -5.8677408    2.4940383 

H    -0.6222972   -2.9896337    0.0384724 H     6.4241248   -5.9629208    4.2002148 

H     1.7031483   -0.9187735    1.0782495 C     3.8212285   -7.8540527    3.6525952 

H     3.0446678   -2.0457076    0.7114456 H     3.7296987   -6.7122771    5.5185647 

H     0.8957579   -0.9625348   -1.1619110 H     2.4861628   -6.2155981    4.3249442 

H     2.5459041   -1.4774100   -1.5739326 H     5.8504526   -8.2421688    4.3632216 

H     0.4375091   -3.1329038   -2.1779352 H     5.7154487   -8.2602414    2.5931839 

H     1.9158993   -3.8459758   -1.4729997 H     3.4922949   -8.7682226    4.1654039 

H     2.4485615   -4.3198722    1.4313971 H     3.3308868   -7.8010717    2.6702823 

O     3.1277399   -5.0296990    1.3783311 
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ZnCl4
2- 

 

 

   5 

 

   

   Zn   -2.0215685   -0.8806856   -0.1639877 

Cl   -0.9909597    0.0135779   -2.0576972 

Cl   -1.5255938   -3.1560901   -0.0102525 

Cl   -4.3319329   -0.6014830   -0.3357719 

Cl   -1.2467231    0.2216228    1.7424229 

 

  
Cp2Ti(H2O*THF2) 

   

  
50 

   

      

      C     1.8912618    0.1605328   -0.5882300 C    -0.5195420    3.5005280   -4.5072067 

C     1.5123614    1.0661192   -1.6110226 C    -1.1459352    5.2518545   -2.9938812 

C     1.4061372    2.3627312   -1.0347784 C    -0.9008736    4.7439133   -5.3099519 

C     1.7222984    2.2649024    0.3521607 H     0.5544623    3.2719253   -4.5878832 

C     2.0342459    0.9030292    0.6205084 H    -1.0991300    2.6061355   -4.7738240 

Ti   -0.2513923    1.0348129    0.0015725 C    -0.6664985    5.8795530   -4.2986126 

H     1.3188083    0.8059988   -2.6489272 H    -2.2378289    5.3453610   -2.8732269 

H     1.1162125    3.2666443   -1.5640906 H    -0.6493599    5.6451734   -2.0969659 

H     1.7640358    3.0850856    1.0637705 H    -1.9586887    4.7055565   -5.6085738 

H     2.3391565    0.5006774    1.5819579 H    -0.2953417    4.8490781   -6.2188153 

C    -2.2958180    0.0418180    0.6482352 H    -1.2197041    6.7940735   -4.5468993 

C    -1.3087795   -0.9849593    0.5797097 H     0.4020312    6.1318440   -4.2367793 

C    -0.3492941   -0.7186759    1.5957753 O    -4.1135229    2.0330350   -1.3683779 

C    -0.7297174    0.4764119    2.2738480 C    -4.8208522    1.4994870   -2.5350174 

C    -1.9372924    0.9389384    1.6928859 C    -5.0186644    2.8876657   -0.5899280 

H    -1.3120933   -1.8393214   -0.0917818 C    -6.3006392    1.7171453   -2.2366486 

H     0.5200052   -1.3290397    1.8216567 H    -4.4987081    2.0573780   -3.4297503 

H    -0.1979944    0.9423806    3.0991609 H    -4.5351732    0.4450303   -2.6458341 

H    -2.4799649    1.8345434    1.9858027 C    -6.2803581    3.0333979   -1.4400853 

H     2.0576655   -0.9065933   -0.7087610 H    -5.2227958    2.3808744    0.3660024 

H    -3.1663875    0.1381932    0.0047272 H    -4.5062717    3.8388736   -0.3909808 

O    -1.4908935    2.1013276   -1.2541115 H    -6.6961765    0.8957201   -1.6217556 

H    -1.2003306    2.7524494   -1.9782128 H    -6.9034787    1.7801800   -3.1513196 

H    -2.5064062    2.0725115   -1.2657984 H    -7.1776394    3.1745332   -0.8246705 

O    -0.8052656    3.8313833   -3.1055401 H    -6.1950720    3.8941038   -2.1194438 
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Cp2TiCl(H2O*THF2) 

   

  
51 

   

      

      

      C     1.7296032    0.7323841    0.3563030 C    -0.5378642   -4.3949698   -3.6351192 

C     2.1203265    0.6821498   -1.0118553 C     0.2151532   -5.7736886   -1.9510613 

C     1.1771582    1.4117460   -1.7727428 C    -1.7695655   -5.2409920   -3.2596782 

C     0.1877288    1.9230159   -0.8896477 H    -0.7506933   -3.3366347   -3.8363566 

C     0.5464286    1.5223841    0.4314939 H     0.0006088   -4.8376171   -4.4938513 

Cl   -0.6580475   -0.7194553   -3.1561810 C    -1.2697021   -6.1516416   -2.1006525 

Ti   -0.0313938   -0.4498397   -0.7433007 H     0.8598759   -6.4505195   -2.5431944 

H     2.9723806    0.1389672   -1.4122658 H     0.5772676   -5.7585620   -0.9153133 

H     1.1641901    1.5063264   -2.8530596 H    -2.1316132   -5.8208573   -4.1190835 

H    -0.6707642    2.5255207   -1.1726042 H    -2.5939492   -4.5987045   -2.9237865 

H     0.0137501    1.7851328    1.3398577 H    -1.3924858   -7.2205616   -2.3210637 

C    -2.3512035   -1.0272797   -0.4600648 H    -1.8192801   -5.9379978   -1.1744104 

C    -1.5602183   -2.2060799   -0.3365949 O     3.3110362   -1.7168008   -3.0869819 

C    -0.7688423   -2.0906884    0.8452370 C     4.2158820   -2.8412999   -3.2821362 

C    -1.0547299   -0.8359671    1.4315170 C     2.8751774   -1.2066736   -4.3857238 

C    -2.0313416   -0.1785050    0.6235986 C     4.4813601   -2.9187594   -4.7893323 

H    -1.5468725   -3.0351415   -1.0366585 H     5.1234276   -2.6624678   -2.6872616 

H    -0.0446750   -2.8141238    1.2086275 H     3.7204551   -3.7523998   -2.9079650 

H    -0.5982810   -0.4385607    2.3336444 C     3.1951790   -2.3175470   -5.3820812 

H    -2.4456136    0.8104592    0.8009372 H     1.8063793   -0.9623928   -4.3008586 

H     2.2540617    0.2738976    1.1902129 H     3.4473296   -0.2895512   -4.6091141 

H    -3.0273316   -0.7993253   -1.2775183 H     4.6742626   -3.9466841   -5.1244701 

O     1.3475302   -2.1432177   -1.2249373 H     5.3516451   -2.3028091   -5.0614061 

H     2.0501754   -1.9231693   -1.8987345 H     2.3870837   -3.0638804   -5.3945755 

H     0.8728029   -2.9120037   -1.6326278 H     3.3285446   -1.9377523   -6.4037865 

O     0.3247401   -4.4344963   -2.4718356 

       

  

   THF*H2O 

   

  
    16 

   

      

      C     0.9803142   -3.8670851    0.9616329 H     3.6432237   -2.7167407   -0.1684397 

O     2.4245618   -3.8415930    1.0739371 H     1.3106513   -1.0756695    0.9160790 

C     2.9080853   -2.5388608    0.6311839 H     1.9070246   -1.1525228   -0.7559474 

C     1.6807205   -1.7547492    0.1336532 H    -0.3884781   -2.5064324   -0.0930799 

C     0.6489284   -2.8641861   -0.1401734 H     0.8177832   -3.3206288   -1.1263371 

H     0.6893355   -4.9009752    0.7333659 H     3.0794599   -5.1350946   -0.0293297 

H     0.5276890   -3.5709535    1.9259659 O     3.3202865   -5.7490004   -0.7646934 

H     3.4147018   -2.0440431    1.4739551 H     3.8608140   -6.4348377   -0.3413941 
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Cp2Ti(H2O*THF2)2 

   

  
79 

   

      

      C     1.1520412    0.4080997    1.0452388 O    -0.9611161    0.8748850   -4.1375600 

C     1.4943809    0.3148295   -0.3245712 C    -0.3040410    0.1418068   -5.2096130 

C     0.5745797    1.1051088   -1.0653129 C    -1.3667654    2.1929319   -4.6249586 

C    -0.3320080    1.7109182   -0.1429294 C     0.1513815    1.2089197   -6.2001548 

C     0.0294560    1.2790644    1.1589459 H     0.5112596   -0.4388651   -4.7587609 

Ti   -0.7241193   -0.6283577   -0.1008657 H    -1.0269959   -0.5532774   -5.6717095 

H     2.2945513   -0.2927470   -0.7391120 C    -0.9969513    2.2293998   -6.1118700 

H     0.5478415    1.2086759   -2.1466653 H    -2.4440991    2.3171268   -4.4435091 

H    -1.1406369    2.3932139   -0.3892175 H    -0.8181895    2.9504041   -4.0434199 

H    -0.4586733    1.5670192    2.0853524 H     0.2918477    0.8102195   -7.2131633 

C    -2.8907600   -1.4134287    0.6425388 H     1.0998754    1.6595162   -5.8725657 

C    -2.0758088   -2.5312487    0.3177210 H    -1.8452632    1.9039375   -6.7315959 

C    -0.9857335   -2.5674995    1.2397076 H    -0.7039880    3.2344708   -6.4407183 

C    -1.1314543   -1.4636300    2.1186192 O    -4.5276654    0.6427676   -1.7350704 

C    -2.3033975   -0.7446823    1.7426265 C    -5.6147396    0.0953939   -2.5449171 

H    -2.2377615   -3.2217270   -0.5055272 C    -4.9915311    1.8354804   -1.0341946 

H    -0.1975121   -3.3141470    1.2752655 C    -6.7377342    1.1327127   -2.4937108 

H    -0.4696107   -1.2116288    2.9419078 H    -5.2306980   -0.0870846   -3.5583957 

H    -2.6858636    0.1497158    2.2265106 H    -5.9243072   -0.8653313   -2.1023702 

H     1.6636445   -0.0839408    1.8677549 C    -6.5151731    1.7923779   -1.1219214 

H    -3.7853012   -1.0982755    0.1116435 H    -4.6025876    1.7954639   -0.0077169 

O     0.2004404   -1.9511578   -1.5997385 H    -4.5816638    2.7275009   -1.5376336 

H    -0.3249980   -2.7201543   -1.9549178 H    -7.7301380    0.6750785   -2.5937916 

H     1.1351918   -2.2748490   -1.4810276 H    -6.6210587    1.8723904   -3.2994795 

O    -1.9757493   -0.3156896   -1.8869042 H    -6.9314679    1.1671451   -0.3184082 

H    -1.5688187    0.1046283   -2.6937238 H    -6.9659583    2.7902263   -1.0473885 

H    -2.8939303    0.0616791   -1.8021730 O     2.7787867   -2.8211945   -1.3858184 

O    -1.1503106   -4.1137088   -2.6008928 C     3.6866194   -2.8645055   -2.5307876 

C    -0.7604979   -5.5048677   -2.3722588 C     3.4146340   -3.4487680   -0.2321951 

C    -2.0267253   -4.0395752   -3.7604751 C     4.8539371   -3.7565433   -2.1051178 

C    -1.3859910   -6.3154419   -3.5128470 H     3.1304755   -3.2510005   -3.3963431 

H     0.3373718   -5.5623293   -2.3517073 H     4.0162049   -1.8356671   -2.7491232 

H    -1.1511466   -5.8060546   -1.3876589 C     4.8979515   -3.5378569   -0.5830375 

C    -2.5886348   -5.4482788   -3.9246232 H     3.2014054   -2.8284426    0.6488975 

H    -2.7807876   -3.2692142   -3.5531709 H     2.9729451   -4.4483997   -0.0814101 

H    -1.4373844   -3.7364846   -4.6437791 H     5.7908681   -3.4806843   -2.6054930 

H    -1.6742664   -7.3248453   -3.1932716 H     4.6420772   -4.8109143   -2.3361466 

H    -0.6815331   -6.4139046   -4.3517023 H     5.4101514   -2.5950200   -0.3410620 

H    -3.4363844   -5.6072593   -3.2419436 H     5.4054565   -4.3501664   -0.0472593 

H    -2.9293823   -5.6487976   -4.9486255 

    



158  A Additional Results on H2O-Activation  
  for HAT Study 
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      C     2.5751730   -1.2039069    1.1354797 H     3.0311955    4.1066465    0.2388563 

C     2.5884505   -0.5682554   -0.1274020 H     0.6439996    6.5863142   -1.5121036 

C     2.4755514    0.8323303    0.0770174 H     1.5773134    6.3537802   -3.0077846 

C     2.4240670    1.0705097    1.4856848 H     2.9528535    6.7142491   -0.6792265 

C     2.4901587   -0.1876266    2.1342632 H     3.4767696    5.4044110   -1.7629884 

Ti    0.4376172   -0.0683170    0.9096257 O    -2.3441568    3.3434151    1.2526888 

H     2.6474090   -1.0676785   -1.0905790 C    -3.5778385    3.6033459    0.5144771 

H     2.4459317    1.5946179   -0.6973731 C    -2.2523385    4.2593280    2.3920521 

H     2.3650645    2.0379137    1.9760533 C    -4.4515693    4.4186107    1.4633638 

H     2.4926863   -0.3475055    3.2079418 H    -3.3339443    4.1695917   -0.4003026 

C    -1.7911561   -0.9290930    1.2647059 H    -4.0096971    2.6340325    0.2308752 

C    -0.8445911   -1.9198695    1.6582936 C    -3.4058783    5.2499265    2.2262642 

C    -0.1361049   -1.4078937    2.7806719 H    -2.3492281    3.6663708    3.3154416 

C    -0.6248189   -0.0984255    3.0623433 H    -1.2607967    4.7327392    2.3751254 

C    -1.6598596    0.1812800    2.1332285 H    -4.9987600    3.7563646    2.1500852 

H    -0.7277399   -2.9107122    1.2287521 H    -5.1835014    5.0371985    0.9286299 

H     0.6249483   -1.9396884    3.3425864 H    -3.7741436    5.6209047    3.1910300 

H    -0.2886988    0.5528273    3.8645575 H    -3.0915326    6.1165053    1.6262233 

H    -2.2246023    1.1082866    2.0704218 C    -0.2078214   -2.0141030   -1.6605904 

H     2.6414322   -2.2735784    1.3159786 O    -0.1682738   -0.6229188   -1.1937011 

H    -2.4833580   -1.0019890    0.4305041 C    -0.3441773    0.2831995   -2.3369187 

O    -0.2762951    1.9025067    0.2364556 C    -0.8297116   -0.6025591   -3.4788507 

H     0.3396160    2.6020697   -0.1255622 C    -0.1294152   -1.9382446   -3.1821630 

H    -1.0404221    2.3951038    0.6501190 H     0.6285515   -2.5504853   -1.1942364 

O     1.2758649    3.8510278   -0.8493743 H    -1.1554904   -2.4591242   -1.3196408 

C     0.8512310    4.4986411   -2.0913649 H    -1.0478400    1.0633963   -2.0295596 

C     2.2058690    4.7262880   -0.1367773 H     0.6318624    0.7439371   -2.5594332 

C     1.3727414    5.9335819   -2.0149311 H    -1.9225435   -0.7209573   -3.4416556 

H     1.2961020    3.9473868   -2.9355380 H    -0.5646644   -0.1894832   -4.4605528 

H    -0.2436250    4.4305470   -2.1577900 H    -0.6172319   -2.7964905   -3.6611404 

C     2.6388503    5.7769845   -1.1558642 H     0.9175393   -1.9099304   -3.5182370 

H     1.6791159    5.1824556    0.7182337 

    

 

 

 

 

 



159  A Additional Results on H2O-Activation  
  for HAT Study 
 

   
 

  
2b*THF 

   

  
38 

   

      

      C     1.7765093    1.5601411   -0.8520794 H    -0.7790636    1.3676837    2.2672376 

C     0.9597680    1.4124822   -2.0112873 H     2.8015203    1.2174082   -0.7460102 

C    -0.3232870    1.9629412   -1.7259995 H    -2.7884548    0.2112345    0.8687195 

C    -0.3061602    2.4267373   -0.3903960 O     1.5575994   -1.4025397   -1.1982462 

C     0.9925038    2.1790550    0.1500781 H     0.9825131   -1.5569213   -1.9927846 

Cl   -1.1063936   -1.1221134   -2.3186666 H     1.6455886   -2.3134854   -0.8002662 

Ti    0.0131319    0.0223376   -0.3542046 O     1.7162140   -4.0307995   -0.4844998 

H     1.2526032    0.9453942   -2.9464048 C     0.6753793   -4.7509234   -1.2125497 

H    -1.1744107    1.9701946   -2.3994260 C     3.0048449   -4.6770867   -0.7175772 

H    -1.1415513    2.8806135    0.1360109 C     1.4123334   -5.5368564   -2.2926782 

H     1.3193474    2.4125956    1.1596146 H     0.1519532   -5.4218792   -0.5099968 

C    -1.8327574   -0.2412640    1.1175507 H    -0.0372760   -4.0077384   -1.5976072 

C    -1.4260749   -1.5666605    0.7978991 C     2.7165320   -5.9184742   -1.5707987 

C    -0.1201108   -1.7668188    1.3052231 H     3.6548951   -3.9579997   -1.2413258 

C     0.3022263   -0.5673857    1.9435555 H     3.4536663   -4.9144544    0.2577347 

C    -0.7697613    0.3668257    1.8476372 H     1.6192538   -4.8936285   -3.1609123 

H    -1.9977837   -2.2748441    0.2076707 H     0.8421300   -6.4086707   -2.6395161 

H     0.4755764   -2.6691267    1.1920842 H     3.5398369   -6.1466178   -2.2603729 

H     1.2541986   -0.4062194    2.4421850 H     2.5549264   -6.7990224   -0.9314689 

 

  



160  A Additional Results on H2O-Activation  
  for HAT Study 
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37 

   

      

      C     1.9296934    1.3159059   -0.8687296 H    -1.2249711    1.4866887    1.9095863 

C     1.2656318    1.0280311   -2.0878545 H     2.9359395    1.0053814   -0.6048700 

C    -0.0541739    1.5416065   -2.0018695 H    -2.7762911   -0.3955744    0.7667066 

C    -0.2161768    2.1350594   -0.7255161 O     1.5107904   -1.4167540   -0.7217494 

C     1.0171469    1.9963913   -0.0219524 H     1.4391185   -2.3672719   -0.4407345 

Cl   -1.4589586   -1.1586785   -1.8761544 O     1.3729051   -4.1419757   -0.3227923 

Ti    0.1315360   -0.2419297   -0.3184020 C     0.4725154   -4.5906672   -1.3766334 

H     1.6701252    0.4483184   -2.9111054 C     2.6862131   -4.7407929   -0.5339194 

H    -0.8234550    1.4453867   -2.7599644 C     1.3822207   -4.9652351   -2.5419950 

H    -1.1200096    2.6103875   -0.3556719 H    -0.0990474   -5.4639965   -1.0141977 

H     1.2272601    2.3634606    0.9781182 H    -0.2190526   -3.7647547   -1.5923180 

C    -1.7827856   -0.5437423    1.1779309 C     2.5853041   -5.5885287   -1.8121283 

C    -1.0572558   -1.7750909    1.1765313 H     3.4129294   -3.9197907   -0.6374229 

C     0.2044965   -1.5403964    1.7611292 H     2.9483966   -5.3353197    0.3544255 

C     0.2912616   -0.1597344    2.0862556 H     1.6809374   -4.0599215   -3.0901189 

C    -0.9625488    0.4439112    1.7601326 H     0.9024401   -5.6567608   -3.2474359 

H    -1.4091453   -2.7151297    0.7653051 H     3.5103988   -5.5573262   -2.4027856 

H     0.9965604   -2.2734671    1.8781596 H     2.3773294   -6.6401312   -1.5643425 

H     1.1421673    0.3334939    2.5472988 

    

  



161  A Additional Results on H2O-Activation  
  for HAT Study 
 

   
 

  
3a*THF 

   

  
37 

   

      

      C     1.9253719   -0.0425903   -0.2165994 H     2.0022319   -1.1163661   -0.0684016 

C     1.7235617    0.6106298   -1.4582111 H    -3.0451393    0.0458441   -0.7398385 

C     1.6809642    2.0150169   -1.2055396 O    -1.1681831    2.4132798   -1.4214688 

C     1.8612757    2.2243776    0.1953968 H    -0.8192891    3.0896279   -2.1474364 

C     2.0113753    0.9516078    0.8020165 H    -2.1374309    2.4730641   -1.3957555 

Ti   -0.1788228    1.0914241   -0.1429941 O    -0.3412008    4.0368055   -3.1628469 

H     1.6303007    0.1260207   -2.4269576 C    -0.4776486    3.7434326   -4.6032466 

H     1.5472719    2.7924500   -1.9536067 C    -0.4325907    5.4906273   -2.9416854 

H     1.8959653    3.1836229    0.7057922 C    -0.8888356    5.0649487   -5.2463479 

H     2.1669125    0.7674814    1.8615595 H     0.5007106    3.3909028   -4.9609613 

C    -2.3346115    0.0714137    0.0841470 H    -1.2173796    2.9398853   -4.7180093 

C    -1.3366735   -0.9085966    0.3400440 C    -0.2362055    6.1074352   -4.3212884 

C    -0.6365245   -0.5079221    1.5158288 H    -1.4269842    5.7193312   -2.5262066 

C    -1.1802354    0.7311214    1.9661738 H     0.3402410    5.7611637   -2.2114092 

C    -2.2384900    1.0784433    1.0829738 H    -1.9828939    5.1762621   -5.2444517 

H    -1.1719655   -1.8196782   -0.2286417 H    -0.5415215    5.1403144   -6.2842280 

H     0.1615643   -1.0633857    1.9986653 H    -0.7032809    7.0970990   -4.3989439 

H    -0.8741344    1.2858002    2.8489240 H     0.8341455    6.2151111   -4.5481263 

H    -2.8607365    1.9675781    1.1645694 

    

  
Cp2Ti 

   

  
21 

   

      

      C     2.0609489    0.4205010   -0.0930967 C    -1.5364444   -1.0208505    0.1891920 

C     1.6870953    0.7105244   -1.4303413 C    -0.5744174   -0.9938997    1.2312971 

C     1.2057506    2.0597908   -1.4678128 C    -0.8049859    0.1745704    2.0229169 

C     1.3153344    2.6040049   -0.1466623 C    -1.9100494    0.8727821    1.4720918 

C     1.8315123    1.5888672    0.6989954 H    -1.6331312   -1.7916485   -0.5729004 

Ti   -0.2641205    0.8941600   -0.1740632 H     0.1955293   -1.7404727    1.4068751 

H     1.7562710    0.0295210   -2.2763418 H    -0.2403641    0.4687840    2.9036394 

H     0.8697671    2.5951961   -2.3549145 H    -2.3407621    1.7950853    1.8569582 

H     1.0520557    3.6158990    0.1550455 H     2.4661372   -0.5221982    0.2649013 

H     2.0323444    1.6868468    1.7625330 H    -3.2095469    0.4037052   -0.3072483 

C    -2.3584923    0.1454674    0.3216506 

 
 

    



162  A Additional Results on H2O-Activation  
  for HAT Study 
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      C     1.8634255   -0.0522667   -0.1483224 H    -2.8321366    2.1334338    0.8805960 

C     1.8049400    0.5802572   -1.4265116 H     1.8712249   -1.1235095    0.0316908 

C     1.8622850    1.9855981   -1.2291377 H    -2.9650529    0.2131846   -0.9858326 

C     1.9180777    2.2268940    0.1693599 O    -0.9272852    2.3404880   -1.3920999 

C     1.9332383    0.9664250    0.8390376 H    -0.5373502    2.9897237   -2.0821275 

Ti   -0.1721520    1.1714232   -0.2445801 O     0.0055225    3.9986404   -3.1605206 

H     1.7384251    0.0735366   -2.3874138 C    -0.3691461    3.7063484   -4.5536247 

H     1.8099301    2.7427250   -2.0071873 C    -0.2342563    5.4232925   -2.8828853 

H     1.9533941    3.2041455    0.6471097 C    -1.1216824    4.9394188   -5.0456215 

H     2.0043003    0.8171576    1.9126732 H     0.5589286    3.5350335   -5.1202104 

C    -2.3376523    0.1952142   -0.0991205 H    -0.9692918    2.7863756   -4.5546969 

C    -1.3883310   -0.8218033    0.2426357 C    -0.4540131    6.0716913   -4.2464743 

C    -0.7742513   -0.4530790    1.4693527 H    -1.1257486    5.5047287   -2.2406558 

C    -1.2745787    0.8232482    1.8416723 H     0.6403521    5.8074983   -2.3418641 

C    -2.2678614    1.2051007    0.8825939 H    -2.1906768    4.8675909   -4.7974706 

H    -1.2122143   -1.7434095   -0.3081796 H    -1.0311836    5.0717869   -6.1310921 

H    -0.0241492   -1.0263950    2.0058296 H    -1.0771348    6.9722840   -4.1787317 

H    -0.9959547    1.3838463    2.7315394 H     0.5066061    6.3538679   -4.7010710 

 

  



163  A Additional Results on H2O-Activation  
  for HAT Study 
 

   
 
 

  
3b*3THF 

   

  
66 

   

      

      C     1.5525692    1.2783568    0.3375971 C    -0.1418381   -6.0523587   -3.1726275 

C     1.6984548    1.1973478   -1.0673857 H     1.5368642   -4.7600699   -2.6331018 

C     0.5866061    1.8477815   -1.6696651 H     0.3810310   -5.0214367   -1.2858923 

C    -0.2429580    2.3574761   -0.6254664 H     0.3381619   -5.2421928   -5.1406510 

C     0.3567559    2.0040003    0.6107003 H    -1.3131937   -5.8939242   -5.0407625 

Ti   -0.3350619   -0.0040103   -0.5116614 H     0.5625586   -6.8800424   -3.3239741 

H     2.5275868    0.7288974   -1.5932552 H    -1.0300413   -6.4473182   -2.6583262 

H     0.3927539    1.9295263   -2.7357915 O    -1.3500403    1.3934331   -4.4495020 

H    -1.1598590    2.9257929   -0.7525232 C    -0.8178547    0.7127391   -5.6226825 

H    -0.0237251    2.2502306    1.5976319 C    -1.9901365    2.6444014   -4.8600202 

C    -2.2368836   -1.0994447    0.5175624 C    -0.6962839    1.7948499   -6.6909788 

C    -1.2960206   -2.0833853    0.1145522 H     0.1363735    0.2532439   -5.3330434 

C    -0.1043931   -1.8997943    0.8816954 H    -1.5207940   -0.0807786   -5.9311125 

C    -0.3203396   -0.7952771    1.7466859 C    -1.9229087    2.6736035   -6.3901390 

C    -1.6334030   -0.2918611    1.5109726 H    -3.0182204    2.6546034   -4.4706060 

H    -1.4499810   -2.8327690   -0.6573747 H    -1.4283626    3.4753631   -4.4054187 

H     0.7927520   -2.5116065    0.8404120 H    -0.7043931    1.3832029   -7.7083998 

H     0.3880377   -0.4063837    2.4719303 H     0.2347030    2.3652917   -6.5581119 

H    -2.0952641    0.5498019    2.0197486 H    -2.8285296    2.2287946   -6.8278991 

H     2.2407097    0.8757498    1.0756648 H    -1.8249534    3.6945331   -6.7801640 

H    -3.2303907   -0.9566911    0.1001311 O    -4.4996869    0.4320595   -1.6393459 

O     0.5384020   -1.2567315   -2.1563508 C    -5.4953768   -0.3643340   -2.3576662 

H     0.1862152   -2.1793533   -2.3665633 C    -5.1556581    1.5579560   -0.9809730 

H     1.5050644   -1.3409000   -2.1242953 C    -6.7976557    0.4351189   -2.2908592 

O    -1.8433534    0.1066124   -2.0930187 H    -5.1314252   -0.5282420   -3.3815966 

H    -1.6384139    0.5808636   -2.9468192 H    -5.5851040   -1.3384166   -1.8505836 

H    -2.8108458    0.2579339   -1.9004845 C    -6.6422552    1.2119715   -0.9721501 

O    -0.2789011   -3.7158579   -2.7644342 H    -4.7161130    1.6644587    0.0199496 

C    -1.0238483   -3.9877878   -3.9964679 H    -4.9563924    2.4761274   -1.5592238 

C     0.4745843   -4.9077530   -2.3740847 H    -7.6829698   -0.2131268   -2.3047027 

C    -0.5375312   -5.3526844   -4.4843245 H    -6.8717148    1.1302578   -3.1401184 

H    -2.0964497   -3.9956970   -3.7473064 H    -6.8848154    0.5704853   -0.1123004 

H    -0.8267836   -3.1699309   -4.7030715 H    -7.2781654    2.1050419   -0.9229372 

 

  



164  A Additional Results on H2O-Activation  
  for HAT Study 
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      C     1.7994491    0.7642167   -0.1006704 H     1.3891222   -4.2955790   -2.2307430 

C     1.7878533    0.7633613   -1.5190910 H     0.2544617   -5.1786280   -1.1584359 

C     0.8128010    1.6888879   -1.9484548 H     0.5739920   -4.5852638   -4.9627089 

C     0.2551279    2.3153528   -0.7888007 H    -0.7343873   -5.7703155   -5.1935543 

C     0.8715490    1.7590607    0.3472727 H     1.2644439   -6.3933408   -3.4428677 

Ti   -0.3794786   -0.0519098   -0.7396817 H    -0.4151369   -6.6773821   -2.9315147 

H     2.3567016    0.0953628   -2.1570354 O    -1.7903141    1.6225708   -4.2190581 

H     0.5255574    1.8853053   -2.9769692 C    -1.2639640    0.7092082   -5.2320872 

H    -0.5290007    3.0667418   -0.7838728 C    -1.9537944    2.9595820   -4.7937238 

H     0.6701456    2.0263583    1.3802604 C    -0.6864290    1.6118853   -6.3176442 

C    -2.2977233   -0.8354150    0.5563223 H    -0.5326104    0.0564065   -4.7369420 

C    -1.6024756   -1.9828057    0.1059373 H    -2.0948898    0.0949263   -5.6182573 

C    -0.3114841   -1.9729776    0.7012477 C    -1.6532410    2.8089139   -6.2867758 

C    -0.2185685   -0.8231774    1.5305151 H    -2.9766121    3.3022971   -4.5848893 

C    -1.4406941   -0.1045017    1.4236100 H    -1.2413022    3.6363866   -4.2957141 

H    -1.9645802   -2.7272598   -0.5973239 H    -0.6507194    1.1175346   -7.2968616 

H     0.4689902   -2.7138082    0.5516629 H     0.3345407    1.9284710   -6.0573085 

H     0.6309836   -0.5515077    2.1486971 H    -2.5710799    2.5746775   -6.8454398 

H    -1.6866037    0.8224361    1.9339450 H    -1.2198073    3.7216864   -6.7145165 

H     2.4490698    0.1634853    0.5297479 O    -4.6471786    0.4128910   -1.4212433 

H    -3.3048674   -0.5484085    0.2641501 C    -5.4337995   -0.4893946   -2.2685139 

O     0.0086100   -1.2033628   -2.1305593 C    -5.4842541    1.5343148   -0.9919891 

H    -0.2645786   -2.1604301   -2.1983183 C    -6.7735999    0.2125476   -2.4959075 

O    -2.0349037    0.8592921   -1.6946632 H    -4.8698937   -0.6715335   -3.1938151 

H    -1.9054570    1.1790004   -2.6430658 H    -5.5525672   -1.4405784   -1.7267364 

H    -3.0070342    0.6235666   -1.5907175 C    -6.9188078    1.0748419   -1.2300614 

O    -0.6362736   -3.8419341   -2.4861815 H    -5.2479200    1.7422087    0.0598917 

C    -1.2073614   -4.1471894   -3.7956049 H    -5.2331771    2.4196322   -1.5995550 

C     0.4164504   -4.8122777   -2.1816027 H    -7.5970585   -0.5012044   -2.6244658 

C    -0.2388565   -5.1261469   -4.4558593 H    -6.7321598    0.8492253   -3.3917914 

H    -2.2018686   -4.5990813   -3.6447329 H    -7.2759875    0.4690834   -0.3845439 

H    -1.3245280   -3.2005590   -4.3410612 H    -7.6089307    1.9176152   -1.3631034 

C     0.3019708   -5.9047056   -3.2448680 
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B. Additional Results on Radical 4-exo Cyclizations via Template Catalysis 

Study (Chapter 6) 

 

Cyclic Voltammetry: 

Materials. THF was distilled over potassium under an atmosphere of argon. 

Tetrabutylammoniumhexafluorophosphate, Bu4NPF6, and Tetrabutylammoniumiodide, Bu4NI, 

were commercially available from Aldrich and were stored in a glovebox under an atmosphere of 

argon and used as received. 

Apparatus. All handling of chemicals and the cyclic voltammetric experiments were performed 

in a glovebox under an atmosphere of argon. The working electrode was a glassy carbon disk of 

diameter 1 mm. The electrode surface was polished using 0.25 μm diamond paste (Struers A/S), 

followed by cleaning in an ethanol bath. The counter electrode consisted of a platinum coil melted 

into glass, while a Ag/AgI electrode (silver wire immersed in a Pyrex tube containing 0.2 M Bu4NPF6 

+ 0.02 M Bu4NI in THF) separated from the main solution by a ceramic frit served as the reference 

electrode. All potentials were reported against the Fc+/Fc redox couple, the potential of which is 

equal to 0.52 V vs. SCE in 0.2 M Bu4NPF6/THF.[S1] 

Procedure. In the cyclic voltammetric experiments 0.77 g of Bu4NPF6 (2.0 mmol) and a small 

magnetic bar were added to the electrochemical cell. 9 mL of freshly distilled THF and 1 mL of the 

appropriate standard solution (20 mM; 0.1 mmol complex / 5 mL THF 0.2 mmol Mn/Zn ) containing 

the compound of interest were added to the cell and the solution was stirred for 30 s. At the end 

of each series of experiments a small amount of ferrocene was added and the potential of the 

Fc+/Fc redox couple was measured. 
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Additional Cyclovoltammogramms: 

 

Figure B.1. CV of Mn-reduced 4 recorded in 0.2 M TBAPF6/THF. 

 

Figure B.2. CV of Zn-reduced 2 recorded at  = 50 and 500 mV s
-1

 in 0.2 M TBAPF6/THF. 
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Figure B.3. CV of Zn-reduced 2 recorded in 0.2 M TBAPF6/THF. 

 

 

 

Figure B.4. CV of Zn-reduced 2 and 4 recorded at  = 50 mV s
-1

 in 0.2 M TBAPF6/THF. 
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Figure B.5. CV of Zn-reduced 4 recorded at  = 50 and 500 mV s
-1

 in 0.2 M TBAPF6/THF. 

 

Computational Details: 

The geometry optimizations were carried out within the framework of DFT with the BP86/TZVP 

method (Becke-Perdew gradient corrected exchange and correlation density functional[S2] combined 

with a polarized split-valence basis set of triple-zeta quality[S3]) using the RI-approximation (resolution 

of identity) within the TURBOMOLE program package.[S4] The stationary points on the potential 

energy surface were characterized by analyzing the Hessian matrix.[S5] The energies were corrected 

for the zero point vibrational energy (ZPVE).[S5] Solvation effects were estimated by single point 

calculations at the gas phase structure using the COSMO model.[S6] 

[S1] a) R. J. Enemærke, J. Larsen, T. Skrydstrup, K. Daasbjerg, J. Am. Chem. Soc. 2004, 126, 7853-

7864; b) K. Daasbjerg, H. Svith, S. Grimme, M. Gerenkamp, C. Mück-Lichtenfeld, A. Gansäuer, A. 

Barchuk, F. Keller, Angew. Chem. 2006, 118, 2095-2098; Angew. Chem. Int. Ed. 2006, 45, 2041-

2044. 

[S2] a) A. D. Becke, Phys. Rev. A 1988, 38, 3098-3100. b) J. P. Perdew, Phys. Rev. B, 1986, 33, 8822-

8824. 

[S3] a) K. Eichkorn, F. Weigend, O. Treutler, R. Ahlrichs, Theor. Chem. Acc. 1997, 97, 119-124. b) A. 

Schäfer, C. Huber, R. Ahlrichs, J. Chem. Phys. 1994, 100, 5829-5835. 

[S4] a) R. Ahlrichs, M. Bär, H.-P. Baron, R. Bauernschmitt, S. Böcker, M. Ehrig, K. Eichkorn, S. Elliott, 

F. Furche, F. Haase, M Häser, H. Horn, C. Huber, U. Huniar, C. Kölmel, M. Kollwitz, C. Ochsenfeld, H. 

Öhm, A. Schäfer, U. Schneider, O. Treutler, M. von Arnim, F. Weigand, P. Weis, H. Weiss, 

Turbomole 5, Institut für Physikal. Chemie, Universität Karlsruhe, 2002. b) M. Häser, R. Ahlrichs, J. 

Comput. Chem. 1989, 10, 104-111. c) O. Treutler, R. Ahlrichs, J. Chem. Phys. 1995, 102, 346-354. 

[S5] P. Deglmann, F. Furche, R. Ahlrichs, Chem. Phys. Lett. 2002, 362, 511-518. 

[S6] A. Klamt, G. Schüürmann, J. Chem. Soc., Perkin Trans. 2 1993, 799-805. 
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Optimized geometries: 
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 Ti    1.4146833   -1.5773547    0.4864667 C     1.3844863    0.3392010   -1.9726742 

C     2.9871820   -3.3108620   -0.0091687 H     1.6154831    3.8487942   -0.2645110 

C     1.7758497   -3.9669107    0.3520405 H     0.4039043    2.6010067    0.0940594 

C     2.7552071   -2.6072175   -1.2155810 C    -0.4223339    4.4821519   -0.4914346 

H     3.9249634   -3.3555513    0.5353286 H     3.6638888    2.1978411   -1.1494618 

C     0.8013312   -3.7139647   -0.6585429 H     3.4271468    3.0716958   -2.6710784 

H     1.6362111   -4.6023866    1.2220028 H     3.8354401    1.3329559   -2.6806546 

C     1.4085206   -2.8472138   -1.6074208 H     2.0217647   -0.3167691   -2.5963891 

H     3.4752393   -1.9852142   -1.7411356 H     0.3348380    0.1915207   -2.2849899 

H     0.9219241   -2.4420286   -2.4890359 O     1.4961580   -0.0708455   -0.5967278 

C     3.1735776   -1.0996983    2.1021217 H    -1.4497370    4.1782188   -0.7232679 

C     2.3320292   -2.0748422    2.7229229 C    -0.2242128    5.7730342   -0.1774592 

C     2.4302665    0.1039414    1.9854946 H     0.7869973    6.1211549    0.0414889 

H     4.2154675   -1.2332216    1.8248301 C    -1.3743248    6.7287201   -0.1698910 

C     1.0663865   -1.4872008    2.9262548 O    -2.4911034    6.3881732   -0.5828579 

H     2.6150342   -3.0907017    2.9808127 N    -1.1423833    8.0098690    0.3025969 

C     1.1254825   -0.1365664    2.4636116 C     0.1110296    8.5058104    0.8564231 

H     2.7768246    1.0188046    1.5168614 H     0.6904327    9.0853216    0.1157979 

H     0.1926966   -1.9764090    3.3476042 H    -0.1114715    9.1699511    1.7054644 

H     0.2972503    0.5650315    2.4472407 H     0.7328995    7.6897795    1.2354874 

C    -0.5943906   -4.3084459   -0.7079254 C    -2.2124918    8.9956198    0.1997160 

C    -1.3954474   -3.8781225    0.5549694 H    -1.8916553    9.8490813   -0.4205824 

H    -2.3797926   -4.3762937    0.5536381 H    -3.0812508    8.5131056   -0.2588312 

H    -0.8458249   -4.1738897    1.4635006 H    -2.4875259    9.3738843    1.1977475 

C    -1.6056185   -2.3910918    0.5797938 C    -0.4848092   -5.8510957   -0.6948844 

O    -0.5962960   -1.5780557    0.5940584 H    -0.0013226   -6.2173553    0.2223073 

N    -2.8371955   -1.9402614    0.5514738 H    -1.4907376   -6.2904730   -0.7509393 

C    -3.1800018   -0.5265876    0.5077234 H     0.0997645   -6.2064100   -1.5557932 

H    -2.9826028   -0.0405915    1.4748190 C    -1.3623841   -3.8752447   -1.9708315 

H    -2.6045330    0.0011477   -0.2657677 H    -2.3973336   -4.2434423   -1.9174669 

H     1.0278753    3.6903017   -2.7041097 H    -1.4119197   -2.7807077   -2.0683778 

C     0.7707646    2.8550476   -2.0304420 H    -0.8864786   -4.2782019   -2.8769094 

C     1.7878105    1.7662661   -2.1522206 H    -4.2502530   -0.4521413    0.2840335 

H    -0.2208400    2.4854177   -2.3390258 H    -3.6478602   -2.6941551    0.4055968 

C     0.6437522    3.4388294   -0.5813800 Cl   -4.8107899   -4.0192927   -0.0097636 

C     3.2418762    2.1085847   -2.1708953 

 
 

  

 

 

 



172  B Additional Results on Radical 4-exo Cyclizations  
  via Template Catalysis Study 
 

   
 

 

  



173  B Additional Results on Radical 4-exo Cyclizations  
  via Template Catalysis Study 
 

   
 

  
12Pcis 

   

  
71 

   

      

      C     0.5506206    1.9816353   -2.7501035 C     1.9266110    1.3345898   -2.7152872 

C     0.5511562    3.5508982   -2.3528564 C    -0.4903450    1.1415001   -2.0018784 

Ti   -0.6454764   -0.1759185    0.7694361 H    -1.3816277    3.9343469   -3.3649166 

C     0.5304147    0.3692596    2.7941732 H    -0.0146205    4.6662221   -4.2403890 

C     0.3993505   -1.0502133    2.7851115 H     2.3135861    1.3090094   -1.6882220 

C     1.3788277    0.7415808    1.7180055 H     2.6384243    1.9003300   -3.3338061 

H     0.0857310    1.0423573    3.5208716 H     1.8849218    0.3032377   -3.1026532 

C     1.1704480   -1.5658622    1.7061144 H    -0.6505877    0.2087175   -2.5807809 

H    -0.1778485   -1.6433999    3.4877471 H    -1.4639438    1.6719956   -1.9797013 

C     1.7583706   -0.4442015    1.0457020 O    -0.0693099    0.7987808   -0.7055120 

H     1.6523562    1.7504717    1.4134829 C     0.0407223    4.0262059   -1.0608336 

H     2.3677992   -0.4804696    0.1480582 H    -1.0415797    4.0988235   -0.9296515 

C    -2.2561747    1.2335755    1.9076671 C     0.9342196    4.2995744    0.0627411 

C    -2.5117563   -0.0923201    2.3695240 O     2.0728667    3.7865462    0.1064669 

C    -2.5936041    1.2834334    0.5293516 N     0.4723089    5.1075532    1.0955443 

H    -1.9107639    2.0693464    2.5082803 C    -0.7577729    5.8838986    1.0576306 

C    -2.9592393   -0.8566068    1.2702805 H    -1.5170550    5.4872272    1.7542920 

H    -2.3773710   -0.4508475    3.3853158 H    -0.5454582    6.9255366    1.3488703 

C    -3.0072476   -0.0072288    0.1274045 H    -1.1755070    5.9023785    0.0462185 

H    -2.4985244    2.1546868   -0.1119002 C     1.3104491    5.3046685    2.2697820 

H    -3.1907401   -1.9172248    1.2836091 H     0.7731714    5.0080851    3.1862811 

H    -3.2766466   -0.3115714   -0.8793705 H     2.2131977    4.6957121    2.1569263 

C     1.4008969   -3.0191194    1.3427904 H     1.5989594    6.3645126    2.3681426 

C     1.2113965   -3.2136730   -0.1822324 C     0.4590562   -3.9698199    2.1048855 

H     1.8860957   -2.5375120   -0.7322878 H    -0.5990318   -3.7140049    1.9456341 

H     1.4733844   -4.2467361   -0.4700847 H     0.6085021   -4.9999667    1.7523353 

C    -0.1952428   -2.9449257   -0.6434227 H     0.6589187   -3.9435413    3.1861675 

O    -0.8604997   -1.8892275   -0.2799457 C     2.8662370   -3.3800714    1.6881088 

N    -0.7469148   -3.8322763   -1.4365091 H     3.0618543   -4.4305092    1.4288007 

C    -2.0982691   -3.7180273   -1.9605966 H     3.5754123   -2.7497281    1.1330053 

H    -2.3290778   -4.6540218   -2.4821209 H     3.0564547   -3.2437199    2.7625305 

H    -2.8312958   -3.5595747   -1.1562481 H    -2.1787564   -2.8804300   -2.6697171 

H     0.7944538    2.3915699   -4.9144083 H     1.5872390    3.8964917   -2.4839891 

C     0.0028022    2.3958555   -4.1528003 H    -0.2075405   -4.8072453   -1.5806427 

H    -0.8450740    1.8079081   -4.5348124 Cl    0.6305100   -6.3862740   -1.5681144 

C    -0.3180051    3.8131889   -3.6190047 
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  C    0.6531683    1.8808920   -2.8342022    C    2.0694035    1.4161372   -2.7015961   

 C    0.5439484    3.9060881   -2.2730374    C   -0.3942386    1.0711696   -2.1112321   

Ti   -0.5464035   -0.2054008    0.7086390    H   -1.3018016    3.9612575   -3.4016565   

 C    0.7138120    0.3115962    2.6920586    H    0.0400061    4.7569442   -4.2462502   

 C    0.5457496   -1.1019876    2.6950332    H    2.3643890    1.3582358   -1.6461371   

 C    1.5231613    0.6618107    1.5779302    H    2.7650091    2.0845213   -3.2278199   

 H    0.3140179    0.9987953    3.4310953    H    2.1876557    0.4052950   -3.1401682   

 C    1.2713038   -1.6423534    1.5940621    H   -0.6283614    0.1866026   -2.7501818   

 H   -0.0208970   -1.6771975    3.4212289    H   -1.3383980    1.6483888   -2.0385396   

 C    1.8580289   -0.5399330    0.9061292    O    0.0337615    0.6110051   -0.8603507   

 H    1.7949623    1.6689438    1.2609910    H    1.6325000    3.9990379   -2.3301300   

 H    2.4315897   -0.5994964   -0.0136041    C   -0.0356607    4.2831743   -1.0733830   

 C   -1.9755468    1.3688164    1.8652969    H   -1.1181971    4.4282387   -1.0390301   

 C   -2.3441786    0.0784145    2.3527991    C    0.7584041    4.4037082    0.1611303   

 C   -2.3363089    1.4330899    0.4955741    O    1.8591224    3.8314508    0.2875902   

 H   -1.5312205    2.1750565    2.4401324    N    0.2261280    5.1563563    1.2030754   

 C   -2.9006865   -0.6485301    1.2777476    C   -0.9085071    6.0615913    1.0846014   

 H   -2.2156421   -0.2817420    3.3690167    H   -1.7521883    5.7407116    1.7196621   

 C   -2.8891167    0.1831834    0.1232963    H   -0.6122852    7.0750892    1.4038609   

 H   -2.1627197    2.2829825   -0.1582050    H   -1.2482905    6.1283841    0.0471398   

 H   -3.2305133   -1.6820108    1.3117268    C    0.9599246    5.2411678    2.4582510   

 H   -3.2162339   -0.1058942   -0.8709608    H    0.2903703    5.0295623    3.3080713   

 C    1.4547859   -3.1020780    1.2295097    H    1.7779121    4.5143872    2.4336085   

 C    1.1143289   -3.3111333   -0.2692621    H    1.3853994    6.2496692    2.5996777   

 H    1.7220243   -2.6311550   -0.8881055    C    0.5829672   -4.0345778    2.0907434   

 H    1.3521092   -4.3455187   -0.5719057    H   -0.4832268   -3.7695134    2.0334928   

 C   -0.3358974   -3.0553554   -0.5732254    H    0.6869230   -5.0698554    1.7365592   

 O   -0.9493747   -1.9776105   -0.1856358    H    0.8886092   -3.9975662    3.1467229   

 N   -0.9836219   -3.9791886   -1.2429969    C    2.9427751   -3.4755727    1.4341243   

 C   -2.3914151   -3.8836733   -1.5935411    H    3.0994179   -4.5326806    1.1756997   

 H   -3.0205435   -3.7430752   -0.7021624    H    3.6010744   -2.8644202    0.8004429   

 H   -2.5734654   -3.0428153   -2.2790624    H    3.2401935   -3.3236185    2.4818050   

 H    1.0210150    2.5943340   -4.8525644    H   -2.6721585   -4.8208036   -2.0877453   

 C    0.1872539    2.5244987   -4.1393683    H   -0.4635666   -4.9584288   -1.4129530   

 H   -0.6298780    1.9784893   -4.6391346   Cl    0.3894101   -6.5343038   -1.4549300   

 C   -0.2192278    3.9090541   -3.5926675   
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 Ti   -0.0015273   -0.6061603    1.2304497 C     1.6494377    1.0182116   -0.8315479 

C     1.4651761   -1.1711392    3.0360385 H     1.0698713    2.0948806   -3.6454845 

C     0.8406966   -2.3903182    2.6340751 H     1.4005491    3.8345161   -3.8086225 

C     2.2839729   -0.7313164    1.9689041 C     0.6214934    3.1974478   -1.7718036 

H     1.3471775   -0.6777781    3.9956857 H     1.6205291    3.0589430    1.0724231 

C     1.2906331   -2.7206545    1.3272842 H     2.5472135    4.2526358    0.1340908 

H     0.1590249   -2.9842012    3.2349767 H     3.3086512    2.7162120    0.6021566 

C     2.1649742   -1.6731520    0.9133160 H     2.6186611    0.5742091   -0.5200180 

H     2.8707979    0.1833285    1.9492452 H     1.3874328    0.5631125   -1.8062945 

H     2.6638828   -1.6091465   -0.0493324 O     0.6322767    0.7150664    0.0837773 

C    -0.9292947    0.8356933    2.9469631 H    -0.2944205    2.6088557   -1.6250990 

C    -1.4583546   -0.4687985    3.1982905 C     0.3613728    4.6120704   -1.4589594 

C    -1.4873836    1.3107593    1.7295024 H     1.0504270    5.3621765   -1.8522863 

H    -0.2596745    1.3907191    3.5990619 C    -0.7068275    5.0047938   -0.5465430 

C    -2.2799696   -0.8191991    2.1057117 O    -1.3076947    4.1520182    0.1441165 

H    -1.2552038   -1.0849703    4.0687426 N    -1.0257124    6.3535919   -0.4471856 

C    -2.2948833    0.2846698    1.1980514 C    -0.4128690    7.4134089   -1.2361059 

H    -1.2685441    2.2580797    1.2400713 H    -1.1635395    8.1949082   -1.4245468 

H    -2.7965902   -1.7652395    1.9701056 H     0.4419090    7.8830217   -0.7168491 

H    -2.8040482    0.3116745    0.2398293 H    -0.0790316    7.0382047   -2.2093394 

C     0.9690598   -3.9643725    0.5225821 C    -1.9702189    6.7802821    0.5761654 

C     0.6006761   -3.5683010   -0.9276724 H    -2.7987156    7.3469112    0.1218117 

H     1.4270564   -2.9979065   -1.3829881 H    -2.3654591    5.8884100    1.0725365 

H     0.4489030   -4.4714370   -1.5454018 H    -1.4756463    7.4259701    1.3222793 

C    -0.6485206   -2.7312432   -1.0091020 C    -0.1818840   -4.7788790    1.1420778 

O    -0.8605619   -1.7179132   -0.2294408 H    -1.0925467   -4.1740784    1.2633597 

N    -1.5395564   -3.0726589   -1.9107122 H    -0.4296074   -5.6250276    0.4861116 

C    -2.7967531   -2.3675419   -2.1065851 H     0.0990295   -5.1781723    2.1277480 

H    -3.3897490   -2.3387044   -1.1805402 C     2.2380898   -4.8493085    0.4679675 

H    -2.6229209   -1.3327341   -2.4356282 H     2.0324976   -5.7571453   -0.1171353 

H     3.3366683    3.6588535   -2.2384070 H     3.0772432   -4.3185446   -0.0042127 

C     2.7182257    2.7527084   -2.3107922 H     2.5481572   -5.1481082    1.4798370 

C     1.8795797    2.5274817   -1.0162231 H    -3.3596360   -2.9046120   -2.8784559 

H     3.3642996    1.9209323   -2.6308256 H    -1.3884373   -4.0445891   -2.4406976 

C     1.4104083    2.9891870   -3.1073534 Cl   -1.1160427   -5.7144325   -3.0712422 

C     2.3633957    3.1775177    0.2710432 
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      C     2.1768069    2.4433386   -0.6651398 C     2.3757682    3.1175471    0.6531290 

C     0.7579106    3.4291825   -1.8984188 C     1.7856089    0.9851216   -0.6413636 

Ti   -0.1107831   -0.6372397    1.2048842 H     1.6688823    2.2916213   -3.5185630 

C     1.1364664   -1.2473475    3.1528338 H     2.1255164    4.0038527   -3.5332764 

C     0.5281434   -2.4478317    2.6752465 H     1.5524494    2.8876446    1.3426970 

C     2.0807613   -0.8264215    2.1866492 H     2.4423614    4.2086046    0.5397112 

H     0.9264731   -0.7549909    4.0971155 H     3.3209986    2.7788190    1.1242581 

C     1.1106511   -2.7843687    1.4239256 H     2.6864567    0.4165030   -0.3035419 

H    -0.2316563   -3.0251858    3.1926413 H     1.5809920    0.6351140   -1.6719003 

C     2.0539750   -1.7595639    1.1174911 O     0.6762875    0.6912546    0.1605630 

H     2.6918515    0.0708085    2.2397306 H    -0.0229033    2.6764179   -1.7576031 

H     2.6603859   -1.7075875    0.2177165 C     0.4477545    4.7193897   -1.5111338 

C    -1.1949783    0.8245470    2.8071535 H     1.1165454    5.5299847   -1.8069372 

C    -1.7607937   -0.4734378    3.0069880 C    -0.7017634    5.0003284   -0.6369112 

C    -1.6190209    1.2999568    1.5367596 O    -1.3324847    4.0843256   -0.0703496 

H    -0.5906644    1.3750767    3.5238462 N    -1.0665337    6.3269857   -0.4534815 

C    -2.4681800   -0.8209953    1.8360146 C    -0.4423952    7.4635395   -1.1177906 

H    -1.6573097   -1.0865141    3.8969451 H    -1.2038365    8.2400380   -1.2821324 

C    -2.3779238    0.2795077    0.9287191 H     0.3705680    7.9091271   -0.5163662 

H    -1.3436378    2.2427287    1.0664072 H    -0.0471920    7.1799960   -2.0990026 

H    -2.9789597   -1.7619252    1.6512721 C    -2.1069535    6.6461762    0.5148507 

H    -2.7849995    0.3086426   -0.0770310 H    -2.9361907    7.1860532    0.0292800 

C     0.8476475   -4.0143621    0.5780939 H    -2.4824300    5.7082829    0.9360302 

C     0.6599171   -3.6006982   -0.9013884 H    -1.7063632    7.2803286    1.3242361 

H     1.5503580   -3.0550046   -1.2549931 C    -0.3896961   -4.7971184    1.0555291 

H     0.5527780   -4.4956281   -1.5402504 H    -1.2905467   -4.1663980    1.0754710 

C    -0.5449489   -2.7241762   -1.1201867 H    -0.5843122   -5.6334265    0.3697597 

O    -0.8175290   -1.7111502   -0.3583467 H    -0.2356035   -5.2080896    2.0640906 

N    -1.3314436   -3.0282811   -2.1259299 C     2.0886065   -4.9361292    0.6620989 

C    -2.5337620   -2.2812794   -2.4619241 H     1.9258406   -5.8343188    0.0493089 

H    -3.2373182   -2.2516595   -1.6168115 H     2.9914719   -4.4279347    0.2940702 

H    -2.2909968   -1.2464138   -2.7434521 H     2.2714379   -5.2493702    1.7002290 

H     3.6238725    3.7240269   -1.6437361 H    -3.0103266   -2.7866099   -3.3095884 

C     3.0304952    2.8263899   -1.8707104 H    -1.1461979   -3.9994710   -2.6480425 

H     3.7314142    2.0373366   -2.1956154 Cl   -0.8456667   -5.6673480   -3.2652594 

C     1.9047619    3.1510222   -2.8751117 
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      C     1.5627124   -2.6609022    2.4534368 H     1.0964324    2.1614060    3.4278331 

C     0.7229197    0.1853816    2.7203153 C     0.7904577    2.1000518    1.2273896 

Ti    1.7361634   -0.1536968   -0.9484954 O     1.0925109    1.3953882    0.2063288 

C     3.6655350    1.3651021   -0.7992448 N     0.4647427    3.3956428    1.0718810 

C     3.9491064    0.2205282   -0.0049934 H     4.2826293   -1.9174872   -0.5936193 

C     3.5639299    0.9577161   -2.1473580 C    -1.9003309   -1.4779559   -0.9123353 

H     3.5061984    2.3718618   -0.4260904 C    -3.1812673   -0.8269380   -1.5467488 

C     4.0620208   -0.8936007   -0.8785125 H    -3.0156191    0.2524404   -1.6634350 

H     4.0570908    0.2078871    1.0759219 H    -3.3473685   -1.2633642   -2.5434168 

C     3.8077929   -0.4483429   -2.1967125 C    -4.4521477   -1.0448489   -0.7226870 

H     3.3544017    1.5994950   -2.9974379 N    -4.8855170    0.0733582   -0.0792283 

H     3.8453927   -1.0643425   -3.0888481 H    -4.2868590    0.9188536   -0.0912725 

C     0.5431413    0.6914603   -2.8100912 C    -6.0523658    0.0682323    0.7842816 

C    -0.5072455    0.5174849   -1.8743108 H    -6.7425252    0.8783249    0.5056812 

C     1.0289260   -0.6043218   -3.1595172 H    -6.5574508   -0.8987416    0.6704718 

H     0.8778552    1.6407422   -3.2186144 O    -5.0233771   -2.1457006   -0.6624054 

C    -0.7174614   -0.8784772   -1.6642943 C    -0.2990592    4.1408966    2.0797741 

H    -1.0833928    1.3105273   -1.3850559 H     0.0602691    5.1786406    2.1097164 

C     0.2659440   -1.5611271   -2.4306114 H    -1.3618484    4.1042689    1.7811195 

H     1.7700831   -0.8320501   -3.9180721 H    -0.1944059    3.6907489    3.0700576 

H     0.4056367   -2.6378000   -2.4726901 C     0.3793644    3.9773999   -0.2713984 

O     1.5377076   -1.5975293    0.2275391 H     1.0712479    3.4628018   -0.9436306 

C     2.2575031   -2.4527067    1.1413052 H    -0.6588412    3.8586816   -0.6328138 

H     2.3781686   -3.4254033    0.6283358 H     0.6418321    5.0419946   -0.2051155 

H     3.2626562   -2.0359818    1.3321847 C    -1.9473004   -3.0061853   -1.0840278 

C     0.4676362   -3.6687810    2.5771691 H    -2.8674519   -3.3960019   -0.6293371 

H     0.5819334   -4.2713059    3.4956124 H    -1.9604132   -3.2904945   -2.1473770 

H    -0.5326998   -3.2005477    2.6451233 H    -1.0788399   -3.4846415   -0.6051390 

H     0.4373446   -4.3502703    1.7159383 C    -1.8425489   -1.1323283    0.5889307 

C     1.9083738   -1.8099389    3.6412958 H    -1.8684027   -0.0441090    0.7509214 

H     1.9584668   -2.4398036    4.5471611 H    -2.7059062   -1.5755891    1.1060791 

H     2.9051863   -1.3603078    3.5036802 H    -0.9278767   -1.5547235    1.0224349 

C     0.8925851   -0.6528163    3.9372057 H     0.4783549   -0.3747065    1.8170350 

H    -0.0778289   -1.1061297    4.2039287 H    -5.7690429    0.2033373    1.8407617 

H     1.2319313   -0.0681728    4.8056663 Cl   -2.7245810    2.5639404    0.0564138 

C     0.8775632    1.5105209    2.5790615 
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      C     1.9413798    1.8127818    2.1756949 H     3.5258834   -0.9421099    1.3118780 

C     3.6886477    1.1816464    1.2181861 C     3.1849563   -0.3944875   -0.7291958 

Ti    0.2949359   -1.2504758   -0.0317960 O     2.1339827   -1.1264801   -0.9282061 

C     1.3629340   -3.4776415    0.3023647 N     3.9570372   -0.0830633   -1.7802896 

C     1.3151523   -2.8588297    1.5784189 H    -0.4189466   -2.2230015    2.8414625 

C     0.0372969   -3.6680351   -0.1492932 C    -3.2794379   -0.2138790    0.1632105 

H     2.2628383   -3.7044891   -0.2606726 C    -4.0179210    1.0279463   -0.4486169 

C    -0.0471199   -2.6820208    1.9295532 H    -3.4434753    1.9360023   -0.2086420 

H     2.1713501   -2.5613289    2.1763780 H    -4.0127150    0.9321061   -1.5458035 

C    -0.8416623   -3.1746690    0.8633804 C    -5.4440035    1.2540012    0.0566398 

H    -0.2583431   -4.1216531   -1.0904899 N    -6.3819668    1.3859105   -0.9364480 

H    -1.9250919   -3.2076770    0.8424476 H    -6.0726532    1.3298339   -1.9012723 

C    -0.1351972    0.2095418   -1.9004225 C    -7.7817388    1.6762093   -0.6659436 

C    -1.0556875    0.6458369   -0.9282865 H    -8.4357645    0.8881865   -1.0683129 

C    -0.5065024   -1.1194593   -2.2747275 H    -7.9004164    1.7193733    0.4231059 

H     0.7139923    0.8122616   -2.2349888 O    -5.7362902    1.3302831    1.2533405 

C    -2.0113287   -0.3820262   -0.6737095 C     5.1385681    0.7719017   -1.6643494 

H    -0.9862650    1.6013071   -0.4172430 H     5.8735877    0.4528833   -2.4163921 

C    -1.6607134   -1.4743667   -1.5326107 H     4.8297461    1.8151100   -1.8485254 

H     0.0025867   -1.7501563   -2.9991655 H     5.5727961    0.6760555   -0.6641240 

H    -2.1994391   -2.4142616   -1.6113649 C     3.4658556   -0.2557900   -3.1484899 

O     0.5875540    0.0608265    1.2130507 H     2.6778969   -1.0128537   -3.1631924 

C     1.1531252    0.5433852    2.4033774 H     3.0673231    0.7157549   -3.4881758 

H     0.3256924    0.7749047    3.1112369 H     4.3009871   -0.5743259   -3.7873862 

H     1.7845848   -0.2277398    2.8885759 C    -4.2010393   -1.4421614    0.0493254 

C     1.2641932    2.8997073    1.4084501 H    -5.1082807   -1.2875514    0.6489463 

H     0.1808237    2.9274484    1.6259865 H    -4.5039452   -1.6283519   -0.9921590 

H     1.6912701    3.8839399    1.6455902 H    -3.7142234   -2.3518244    0.4273457 

H     1.3772918    2.7632285    0.3081985 C    -2.9419256    0.0524424    1.6457696 

C     2.9839457    2.1355452    3.2450882 H    -2.2354231    0.8888296    1.7422414 

H     3.1743923    3.2171905    3.2695084 H    -3.8543320    0.3039119    2.2008851 

H     2.6971707    1.8260533    4.2648320 H    -2.4754351   -0.8351073    2.0972367 

C     4.1790301    1.3581233    2.6556457 H     3.7370652    2.0460266    0.5450983 

H     5.1448666    1.8827949    2.7229601 H    -8.0791311    2.6433562   -1.0985842 

H     4.3063289    0.3757337    3.1354739 Cl    2.3114010    2.7537078   -1.8984957 

C     3.5748520   -0.0739634    0.6464848 
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      Ti    0.5112035   -1.5773495    0.2397586 H     3.7002357    1.9254495    0.2502684 

C     2.6503286   -2.8008267    0.0082457 C     2.5780020    0.4050970   -0.7223872 

C     2.6979207   -2.0741286    1.2323115 O     1.4476129   -0.2462619   -0.8947599 

C     1.6397639   -3.7756842    0.1157861 N     3.6659684   -0.0619134   -1.4353882 

H     3.2768066   -2.6148482   -0.8571474 H     1.4923814   -2.2764259    3.1059986 

C     1.7215291   -2.6188894    2.1015810 C    -2.8775794    0.1933073   -0.2608792 

H     3.3731920   -1.2520446    1.4491166 C    -4.1865085   -0.1183091   -1.0735515 

C     1.0421251   -3.6495354    1.4083672 H    -3.9636839   -0.0330438   -2.1483535 

H     1.3612821   -4.4905005   -0.6524715 H    -4.4775735   -1.1640457   -0.8841726 

H     0.2338772   -4.2566203    1.8061193 C    -5.3560237    0.8212732   -0.7761690 

C    -0.5988890   -2.4518848   -1.7095330 N    -6.4749318    0.2000404   -0.2747662 

C    -1.0954410   -1.1206184   -1.6704611 H    -6.4465847   -0.8040578   -0.1334344 

C    -1.1302454   -3.1396585   -0.5856624 C    -7.6977584    0.9197913    0.0449740 

H     0.0542213   -2.8663605   -2.4732395 H    -7.9426612    0.8374702    1.1148691 

C    -1.9494373   -0.9767434   -0.5457267 H    -7.5265720    1.9743771   -0.2017847 

H    -0.8322630   -0.3341515   -2.3709452 O    -5.3122861    2.0365214   -0.9777397 

C    -1.9201172   -2.2184119    0.1541795 C     4.9577834    0.6216829   -1.3520837 

H    -0.9981399   -4.1897361   -0.3493826 H     5.6913830    0.0331724   -1.9172436 

H    -2.4452745   -2.4410784    1.0793340 H     4.8816935    1.6407837   -1.7732229 

O     0.1066142   -0.3548164    1.5916324 H     5.2985705    0.6770844   -0.3096258 

C     0.9414543    0.3793020    2.4847220 C     3.4201137   -0.7087535   -2.7268052 

H     0.5501189    0.2442350    3.5127355 H     2.4395591   -1.1913063   -2.7193653 

H     1.9761695   -0.0018314    2.4671713 H     3.4376366    0.0469150   -3.5312302 

C     0.9740578    1.8684254    2.1544129 H     4.2018524   -1.4572501   -2.9221042 

C    -0.3986348    2.5098158    2.3779836 C    -3.2221747    0.2597056    1.2400736 

H    -0.6970846    2.3977590    3.4331525 H    -3.8034718    1.1662760    1.4583072 

H    -0.3865610    3.5836990    2.1461966 H    -3.8271166   -0.6062846    1.5516252 

H    -1.1685082    2.0428652    1.7562237 H    -2.3082465    0.2682446    1.8466156 

C     2.0720897    2.7219358    2.8611920 C    -2.2620104    1.5155570   -0.7541976 

H     1.7712951    3.2591077    3.7723572 H    -2.1244982    1.5065283   -1.8447811 

H     2.9751099    2.1299228    3.0783919 H    -2.9248071    2.3574806   -0.5219213 

C     2.2268389    3.5307184    1.5451710 H    -1.2796484    1.6794749   -0.2953288 

H     1.5882560    4.4215764    1.5207896 H     0.8386280    2.5901822    0.0113210 

H     3.2365699    3.8257855    1.2350424 H    -8.5469484    0.5451077   -0.5461690 

C     1.5998175    2.3343539    0.7605264 Cl    2.8865096    3.2008436   -2.0331966 

C     2.6921122    1.5492343    0.0965517 
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      Ti    0.5853817   -1.4929203    0.2308806 C     1.2796562    2.0316644   -0.0440617 

C     2.2493380   -2.9137787   -0.7950548 H     0.2719826    2.1607951    0.3643624 

C     2.9483491   -1.7354318   -0.4185954 C     1.3466895    1.1559574   -1.2344275 

C     1.8060673   -3.5647995    0.3925351 O     0.8363733   -0.0260902   -1.1486811 

H     2.1095694   -3.2743459   -1.8107394 N     1.8273481    1.5812399   -2.4028725 

C     2.8960270   -1.6365329    0.9880368 H     3.3382151   -0.8235509    1.5560639 

H     3.4540259   -0.9917786   -1.0478735 C    -2.8301717    0.1148608   -0.5111769 

C     2.1845132   -2.7616234    1.4982375 C    -4.2875280   -0.4076199   -0.7852886 

H     1.2758489   -4.5107063    0.4447860 H    -4.3129080   -0.8685667   -1.7849639 

H     1.9745497   -2.9771950    2.5430581 H    -4.5152001   -1.2028430   -0.0581521 

C    -0.8636958   -3.0985572   -0.8988607 C    -5.3729810    0.6690410   -0.7537873 

C    -1.3437884   -1.8791513   -1.4127103 N    -6.3435663    0.4736578    0.1983560 

C    -1.1398569   -3.1138961    0.5058313 H    -6.2753065   -0.3435972    0.7955280 

H    -0.3717090   -3.8803892   -1.4684486 O    -5.3904400    1.6333782   -1.5230558 

C    -1.9773195   -1.1400642   -0.3578451 C     2.4465411    2.8980992   -2.5857189 

H    -1.2379816   -1.5469313   -2.4413158 H     2.0373641    3.6120380   -1.8659370 

C    -1.8439038   -1.9198552    0.8159046 H     3.5338557    2.7805766   -2.4284936 

H    -0.9380307   -3.9263835    1.1977555 H     2.2324847    3.2373891   -3.6082727 

H    -2.1680490   -1.6319725    1.8114938 C     2.1177985    0.6312113   -3.4799627 

O     0.3863959   -0.4657281    1.7565033 H     1.5563701   -0.2924582   -3.3202833 

C     0.9186116   -0.1349068    3.0504850 H     1.8361929    1.0813788   -4.4413138 

H     0.2466444   -0.6062383    3.7942034 H     3.2030126    0.4294622   -3.4493274 

H     1.9206089   -0.5828325    3.1649975 C    -2.8202888    0.9461618    0.7856912 

C     0.9887765    1.3388562    3.2974136 H    -3.3816706    1.8803034    0.6438556 

C    -0.2551760    2.0827559    3.6615092 H    -3.2787751    0.4026631    1.6255251 

H    -0.0462454    2.8815624    4.3933074 H    -1.7902669    1.1927088    1.0751507 

H    -0.7224512    2.5843871    2.7919299 C    -2.3641708    0.9889503   -1.6898218 

H    -1.0203832    1.4148673    4.0837650 H    -2.3545391    0.4221615   -2.6318960 

C     2.2673015    2.1017812    3.1398470 H    -3.0538812    1.8308256   -1.8248868 

H     2.4537852    2.6791294    4.0656640 H    -1.3515716    1.3715710   -1.5136835 

H     3.1192809    1.4160600    3.0161326 C    -7.4767644    1.3707314    0.3642033 

C     2.2795695    3.1354487    1.9602033 H    -8.4290728    0.8425635    0.2063330 

H     1.3763686    3.7621027    2.0310127 H    -7.4823694    1.8263948    1.3659504 

H     3.1492040    3.7951422    2.0974747 H    -7.3766908    2.1622704   -0.3878534 

C     2.3623943    2.4591081    0.6249171 Cl    4.8632447    0.9226313   -1.2773888 

H     3.3572049    2.2070367    0.2181275 
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      C     1.1870813    0.9814708    3.0938791 C     1.7255235    2.2303288    0.2661416 

C     2.3321478    1.6332481    1.3445624 H     1.5850394    3.3109102    0.2711337 

Ti    0.7390725   -1.5024271   -0.0044751 C     1.3380116    1.5013264   -0.9276693 

C     2.5045909   -2.4984857   -1.3415336 O     1.0576883    0.2419791   -0.8956880 

C     3.1471185   -1.5296712   -0.5223244 N     1.1529981    2.1671733   -2.0976455 

C     1.9931146   -3.5264361   -0.5045793 H     3.3781232   -1.4225868    1.6897629 

H     2.4451110   -2.4611465   -2.4260435 C    -2.8281896    0.0270380    0.0093677 

C     2.9890744   -1.9431618    0.8199427 C    -4.1176828   -0.1674304   -0.8664519 

H     3.6245217   -0.6030408   -0.8801432 H    -3.8597630    0.0155770   -1.9209095 

C     2.2583528   -3.1678847    0.8425157 H    -4.4352124   -1.2195934   -0.7894168 

H     1.4830348   -4.4251314   -0.8362632 C    -5.2762075    0.7671308   -0.5180373 

H     1.9757869   -3.7350568    1.7260947 N    -6.4168240    0.1306110   -0.0931161 

C    -0.6735257   -2.6296288   -1.6133469 H    -6.4099851   -0.8821889   -0.0346438 

C    -1.2699542   -1.3498551   -1.6031980 O    -5.2048643    1.9947706   -0.6174622 

C    -0.9100630   -3.2193857   -0.3304835 C     1.7078897    3.5151158   -2.2753767 

H    -0.1568713   -3.0863801   -2.4518252 H     2.8105689    3.4515006   -2.2325365 

C    -1.9145906   -1.1385378   -0.3451461 H     1.3833577    3.8870389   -3.2541958 

H    -1.2410716   -0.6393252   -2.4245123 H     1.3299444    4.2043861   -1.5112469 

C    -1.6789882   -2.3013736    0.4290897 C     1.0925481    1.3871679   -3.3353889 

H    -0.6398071   -4.2224099   -0.0162252 H     0.5849763    0.4370810   -3.1537852 

H    -1.9845526   -2.4516939    1.4600788 H     0.5468225    1.9618928   -4.0947766 

O     0.4197333   -0.8768259    1.7117135 H     2.1251061    1.1869626   -3.6726995 

C     0.9913674   -0.5090351    2.9550505 C    -3.2151092   -0.0194065    1.4987857 

H     0.3002425   -0.8685383    3.7497523 H    -3.8194448    0.8596753    1.7627127 

H     1.9547789   -1.0265266    3.1108417 H    -3.8029108   -0.9186216    1.7394755 

C    -0.0375486    1.8315236    3.2205725 H    -2.3176736   -0.0233736    2.1318258 

H    -0.4926948    1.7023256    4.2233266 C    -2.1662963    1.3796604   -0.3161157 

H     0.1910241    2.9008752    3.1071494 H    -1.8597655    1.4330485   -1.3702580 

H    -0.8001525    1.5642328    2.4779011 H    -2.8714586    2.2004100   -0.1349876 

C     2.4796454    1.5267235    3.6856629 H    -1.2687137    1.5223796    0.3003038 

H     2.3352557    2.0896725    4.6225096 C    -7.6329765    0.8456142    0.2613965 

H     3.1911561    0.7125441    3.8931295 H    -8.4762018    0.5357017   -0.3739475 

C     2.9637019    2.3874527    2.4994144 H    -7.9008201    0.6811723    1.3161759 

H     2.5547475    3.4069614    2.5593477 H    -7.4388841    1.9132973    0.1045542 

H     4.0574615    2.4730850    2.3983388 Cl    4.3297309    1.4301298   -1.7440018 

H     2.6993998    0.6185399    1.1967530 
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      Ti    0.6003590   -1.5329611    0.0899248 C     2.2808335    1.9201950   -0.1170438 

C     2.4028905   -2.6637734   -1.1073893 H     2.5458278    2.9531949   -0.3287464 

C     3.0236703   -1.7376298   -0.2208365 C     1.5782435    1.2278533   -1.1382739 

C     1.7577838   -3.6566884   -0.3297706 O     0.9775080    0.0800585   -0.9695517 

H     2.4338570   -2.6167706   -2.1927711 N     1.4838667    1.7878147   -2.3865170 

C     2.7296704   -2.1495559    1.0986464 H     3.0633622   -1.6575791    2.0067123 

H     3.6051147   -0.8583943   -0.5157478 C    -2.9309552    0.1360146   -0.0826438 

C     1.9219632   -3.3206342    1.0408386 C    -4.3449828   -0.2386100   -0.6568793 

H     1.2125557   -4.5133659   -0.7132313 H    -4.2630501   -0.3524043   -1.7486521 

H     1.5284624   -3.8716380    1.8911270 H    -4.6352679   -1.2202706   -0.2497951 

C    -0.8907454   -2.7779728   -1.3770207 C    -5.4379142    0.7963692   -0.3921955 

C    -1.4490560   -1.4889713   -1.5244029 N    -6.4624606    0.3568819    0.4105442 

C    -1.1322518   -3.1951354   -0.0299343 H    -6.4193483   -0.5904891    0.7708110 

H    -0.4054178   -3.3534853   -2.1593533 O    -5.4141464    1.9350943   -0.8664340 

C    -2.0645828   -1.0970554   -0.2989025 C     2.2196186    3.0059989   -2.7289709 

H    -1.4135867   -0.8924700   -2.4313747 H     3.2794324    2.8928444   -2.4464923 

C    -1.8534537   -2.1592214    0.6172574 H     2.1467201    3.1570140   -3.8120415 

H    -0.8875759   -4.1593670    0.4046130 H     1.7886422    3.8894484   -2.2312892 

H    -2.1449740   -2.1652807    1.6634427 C     0.8495021    1.0788784   -3.4883091 

O     0.3233421   -0.6405653    1.6855123 H     0.3568035    0.1829315   -3.1049680 

C     0.9300785    0.0289552    2.7648191 H     0.1040865    1.7250310   -3.9774083 

H     0.1934464    0.0930134    3.5905303 H     1.6017221    0.7807491   -4.2377185 

H     1.7899827   -0.5568822    3.1415731 C    -3.0599096    0.4584391    1.4177864 

C     1.4205025    1.4400766    2.4051652 H    -3.6280501    1.3883566    1.5609892 

C     0.2778134    2.4227088    2.1738298 H    -3.5840969   -0.3421740    1.9619281 

H    -0.3482257    2.5058840    3.0767756 H    -2.0685921    0.5819647    1.8718151 

H     0.6595794    3.4270479    1.9383846 C    -2.3629254    1.3542293   -0.8355084 

H    -0.3625426    2.1063891    1.3400526 H    -2.3108837    1.1656592   -1.9175104 

C     2.4972833    2.0038230    3.3902434 H    -3.0097623    2.2282234   -0.6920785 

H     2.1680660    2.8236694    4.0436366 H    -1.3489249    1.5837876   -0.4829962 

H     2.9447883    1.2171957    4.0164023 C    -7.5992604    1.1918208    0.7656323 

C     3.3898135    2.3783500    2.1773796 H    -8.5450952    0.7377355    0.4340672 

H     3.2797691    3.4350311    1.8940583 H    -7.6466932    1.3636871    1.8517962 

H     4.4593771    2.1440994    2.2284400 H    -7.4655757    2.1543551    0.2577340 

C     2.5362995    1.4532968    1.2694947 Cl    4.7310567    1.3102269   -1.0540121 

H     2.9918211    0.4563563    1.2437162 
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     Ti    0.7437911   -1.1202576   -0.8327322 C    -2.8335812    0.1397570   -0.0658788 

C     2.6846656   -1.3027585   -2.2768712 C    -4.1601717    0.3513938   -0.8800509 

C     3.1822937   -1.0634583   -0.9618678 H    -3.9668042    1.0773703   -1.6848443 

C     2.0473467   -2.5659695   -2.2924529 H    -4.4282576   -0.6016475   -1.3633140 

H     2.7895688   -0.6230191   -3.1183762 C    -5.3363619    0.8853628   -0.0624859 

C     2.8268114   -2.1770413   -0.1688573 N    -6.4248563    0.0491364   -0.0122112 

H     3.7049106   -0.1473768   -0.6363466 H    -6.3736282   -0.8381184   -0.5014822 

C     2.0963302   -3.0990087   -0.9726206 C    -7.6496464    0.3910062    0.6942793 

H     1.5946119   -3.0426168   -3.1562292 H    -7.8557571   -0.3230085    1.5060534 

H     1.6809625   -4.0517001   -0.6517565 H    -7.5080795    1.3896298    1.1242946 

C    -0.5643858   -1.0584306   -2.8556244 O    -5.3216477    1.9822070    0.5022950 

C    -1.1844633   -0.0265144   -2.1141591 C     2.0909578    4.2781061   -0.2042958 

C    -0.8544038   -2.2906078   -2.1904290 H     3.1819075    4.1320379   -0.1015870 

H     0.0062769   -0.9341007   -3.7712064 H     1.8585063    5.1532943   -0.8241453 

C    -1.8906724   -0.5946424   -1.0101392 H     1.6512278    4.4183927    0.7879374 

H    -1.1202726    1.0330365   -2.3452099 C     1.8833456    2.9721760   -2.2774961 

C    -1.6703458   -1.9937504   -1.0676437 H     1.2999104    2.1723822   -2.7424370 

H    -0.5869338   -3.2877500   -2.5245473 H     1.6654961    3.9277569   -2.7706703 

H    -2.0282673   -2.7254417   -0.3489571 H     2.9608231    2.7363898   -2.3466164 

O     0.3433930   -1.4852374    0.9307921 C    -3.1275349   -0.7072155    1.1860809 

C     0.5072340   -2.3057183    2.0941393 H    -3.7705986   -0.1481484    1.8801115 

C     1.2244526   -1.6359523    3.2254839 H    -3.6403585   -1.6485916    0.9363435 

C     0.6499219   -0.3941098    3.8369345 H    -2.1908457   -0.9533892    1.7044035 

H    -0.3724824   -0.2312009    3.4638394 C    -2.2512791    1.4973280    0.3672600 

H     0.5839203   -0.5153747    4.9351710 H    -1.9987394    2.1241465   -0.5002108 

C     1.4824724    0.9025712    3.5638546 H    -2.9853214    2.0496335    0.9671756 

H     0.9530662    1.7679401    3.9906564 H    -1.3375824    1.3406358    0.9560372 

H     2.4519187    0.8198743    4.0825425 C     2.5500088   -2.1341658    3.7039478 

C     1.7095980    1.0671607    2.0993220 H     2.6206026   -2.0914763    4.8044175 

H     2.3472326    0.3197431    1.6220647 H     2.7408832   -3.1718083    3.3926113 

C     1.1841617    2.0150475    1.3140402 H     3.3958680   -1.5234117    3.3276811 

H     0.5953273    2.8373173    1.7286461 H    -8.5109976    0.4124984    0.0099103 

C     1.3542970    1.9542804   -0.1515167 H     1.0315362   -3.2365116    1.8131350 

O     1.1694638    0.8464002   -0.7712064 H    -0.5181341   -2.5902313    2.4137637 

N     1.5393491    3.0848608   -0.8582305 Cl    4.4944984    1.9152566   -0.1392732 

H     3.0465702   -2.2904923    0.8881575 

    

 

 

 



194  B Additional Results on Radical 4-exo Cyclizations  
  via Template Catalysis Study 
 

   
 

 

  



195  B Additional Results on Radical 4-exo Cyclizations  
  via Template Catalysis Study 
 

   
 

  
15T 

   

  
71 

   

      

      

      C     1.5528477    2.2146278    1.7341030 C    -3.1134935    0.2613523   -0.2043307 

C     2.0455505    2.5406365   -0.2497978 C    -4.4739584   -0.1744986   -0.8615669 

Ti    0.3599272   -1.3682048    0.2372374 H    -4.3438948   -0.1955509   -1.9546173 

C     2.4204637   -2.7199316    0.4564433 H    -4.7014134   -1.2046877   -0.5451073 

C     2.4792219   -1.6353713    1.3750916 C    -5.6560479    0.7485001   -0.5606963 

C     1.3509377   -3.5635067    0.8144988 N    -6.7121348    0.1376547    0.0692917 

H     3.0759681   -2.8451284   -0.3993596 H    -6.6381808   -0.8505275    0.2868448 

C     1.4446370   -1.8341546    2.3277513 C    -7.9412668    0.8393198    0.4064780 

H     3.2093306   -0.8220567    1.3123806 H    -8.1170735    0.8367599    1.4927994 

C     0.7252530   -3.0051692    1.9731764 H    -7.8280234    1.8749490    0.0650141 

H     1.0613279   -4.4754116    0.3019117 O    -5.6729012    1.9436485   -0.8661036 

H    -0.1255824   -3.4200486    2.5067944 C     3.9226039    1.5871539   -2.7173755 

C    -0.8578845   -2.4771575   -1.5365184 H     4.7373541    1.7226669   -1.9860830 

C    -1.3933596   -1.1509128   -1.6011208 H     4.3313206    1.4550798   -3.7291832 

C    -1.2996132   -3.0563357   -0.3279827 H     3.2532764    2.4528222   -2.7024972 

H    -0.2347755   -2.9469713   -2.2926454 C     3.8991995   -0.8746739   -2.6013513 

C    -2.1730213   -0.9113311   -0.4474030 H     3.2110470   -1.7182346   -2.5037821 

H    -1.2194382   -0.4512038   -2.4128950 H     4.3174702   -0.8530966   -3.6164374 

C    -2.0429509   -2.0685023    0.3818976 H     4.7103889   -0.9462242   -1.8561978 

H    -1.1182923   -4.0699740    0.0092979 C    -3.3374974    0.5018654    1.3014900 

H    -2.5094180   -2.2124029    1.3533441 H    -3.9817801    1.3791192    1.4531469 

O     0.1497711    0.2899708    0.9670274 H    -3.8255546   -0.3585464    1.7833677 

C     0.2153328    1.4978669    1.6981633 H    -2.3847425    0.6807572    1.8152488 

C     1.4504341    3.7406222    1.6402437 C    -2.6050042    1.5495502   -0.8765414 

H     0.5951737    4.1749360    2.1860957 H    -2.4721315    1.4103715   -1.9592699 

H     2.3672928    4.1945938    2.0411906 H    -3.3323555    2.3590812   -0.7409485 

C     1.3904753    3.8723249    0.1091419 H    -1.6398480    1.8482324   -0.4477566 

H     0.3544148    3.9019881   -0.2613958 C     2.6541093    1.6306793    2.5606932 

H     1.9150429    4.7479161   -0.3043395 H     2.3603660    0.6921820    3.0497900 

H     3.1265273    2.4426134   -0.0735035 H     3.5623239    1.4040069    1.9509709 

C     1.4714803    1.6567346   -1.1528572 H     2.9700737    2.3423274    3.3421696 

H     0.4013916    1.7317286   -1.3659657 H    -8.8086806    0.3869369   -0.0971696 

C     2.0770099    0.3997913   -1.5991399 H    -0.0774912    1.2780204    2.7472346 

O     1.4794873   -0.7220184   -1.3365136 H    -0.5559442    2.1784442    1.2922683 

N     3.1793555    0.3773367   -2.3590235 Cl    5.0711984    0.6270694    0.3671554 

H     1.2071470   -1.1819878    3.1633313 
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15P 

   

  
71 

   

      

      

      Ti    0.5009085   -1.5666967   -0.0795832 N     1.3990291    1.5606194   -2.2769886 

C     2.5371873   -2.9385907   -0.5984476 H     1.3149672   -2.9578322    2.5198288 

C     2.6077775   -2.4950831    0.7536302 C    -2.9093033    0.3648171    0.0856818 

C     1.4409827   -3.8128015   -0.7185549 C    -4.2951847    0.1930999   -0.6396285 

H     3.1880177   -2.6060398   -1.4015173 H    -4.1829921    0.5085914   -1.6884301 

C     1.5536307   -3.1078024    1.4710441 H    -4.5543599   -0.8772454   -0.6512019 

H     3.3336774   -1.7907101    1.1449001 C    -5.4391167    1.0110442   -0.0381888 

C     0.8066658   -3.9004806    0.5591723 N    -6.4935442    0.2634690    0.4262721 

H     1.1204608   -4.3088358   -1.6299022 H    -6.4405849   -0.7464894    0.3466002 

H    -0.0645494   -4.5003326    0.8066446 C    -7.6879198    0.8594583    1.0048880 

C    -0.7339911   -1.8040469   -2.1283695 H    -7.8250994    0.5446235    2.0504489 

C    -1.1832793   -0.5196292   -1.6863596 H    -7.5553193    1.9473851    0.9738672 

C    -1.2770013   -2.7694874   -1.2486842 O    -5.4298870    2.2432179    0.0183069 

H    -0.1268730   -2.0020416   -3.0075514 C     1.5097484    3.0068616   -2.4778683 

C    -2.0101355   -0.6859778   -0.5519718 H     2.5686865    3.3198731   -2.4414361 

H    -0.9241603    0.4276732   -2.1498903 H     1.0793909    3.2488368   -3.4575929 

C    -1.9988650   -2.0799108   -0.2367066 H     0.9362150    3.5467182   -1.7131203 

H    -1.1765839   -3.8458319   -1.3298770 C     1.5605966    0.7732477   -3.5006762 

H    -2.5148118   -2.5505435    0.5969266 H     1.5136993   -0.2913610   -3.2608246 

O     0.2873845   -0.4925363    1.3759214 H     0.7659473    1.0279450   -4.2166115 

C     0.4443649    0.6771695    2.1526235 H     2.5417651    0.9903262   -3.9571318 

H     0.0052453    1.5281031    1.6012735 C    -3.1005752    0.1090666    1.5936097 

H    -0.1326975    0.5570916    3.0903473 H    -3.7232428    0.8993817    2.0358730 

C     1.8976902    0.9962900    2.4822385 H    -3.5990870   -0.8539577    1.7816339 

C     2.1848281    2.4459141    2.9857197 H    -2.1367512    0.0943459    2.1148979 

H     1.4265239    3.1614898    2.6324687 C    -2.3802099    1.7896029   -0.1578034 

H     2.3100670    2.5730869    4.0705852 H    -2.2972161    2.0039381   -1.2329013 

C     3.4558939    2.4657211    2.0949428 H    -3.0712373    2.5277045    0.2664538 

H     3.6833990    3.3806342    1.5355209 H    -1.3870062    1.9209972    0.2912974 

H     4.3582706    2.1654738    2.6418438 C     2.4948562   -0.0332279    3.4440242 

C     2.8686948    1.2928978    1.2510108 H     3.5557755    0.1734002    3.6453913 

H     3.5591230    0.4687003    1.0280147 H     1.9605227   -0.0079125    4.4075855 

C     2.2762253    1.7980095   -0.0241575 H     2.4195364   -1.0514694    3.0440950 

H     2.1891523    2.8759060   -0.1325984 H    -8.5860747    0.5896710    0.4293391 

C     1.7825015    0.9981737   -1.0778842 Cl    4.6111411    2.1895611   -1.2669879 

O     1.7417853   -0.3138043   -0.9919522 
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Spindensities of the optimized structures: 

 

12 12Pcis 12TScis 12Ptrans 12TStrans 13 13T 

       

       36c -0.07812 2c -0.13564 2c -0.13854 40c -0.12259 2c -0.12431 26c -0.07876 2c -0.10002 

32c -0.07496 49c -0.07087 37c -0.03222 50c -0.06889 37c -0.02981 30c -0.06826 26c -0.02711 

37c -0.03015 48h -0.05058 49h -0.02713 49h -0.05208 49h -0.02613 23c -0.04939 37h -0.02596 

35c 0.03836 1c 0.09266 43h 0.04375 52n 0.07796 51o 0.04372 3ti 0.04898 27h 0.03515 

41h 0.06503 50o 0.10626 48c 0.45999 51o 0.10526 48c 0.42546 28h 0.05644 36c 0.44380 

33c 0.93801 47c 0.92205 1c 0.54102 48c 0.92334 1c 0.56523 1c 0.94784 1c 0.50696 

 

 

 

13P 14 14T 14P 15 15T 15P 

       

       35c -0.04089 25c -0.08073 2c -0.12452 35c -0.04749 64c -0.09051 2c -0.11204 31c -0.04474 

37h -0.01365 29c -0.07776 30c -0.03448 38h -0.02238 23c -0.07357 32h -0.02602 34h -0.01659 

59h 0.01171 21c -0.04676 23c -0.02886 55c -0.01150 21c -0.05480 64c -0.02267 32h 0.01166 

40n 0.11937 1ti 0.04510 71cl 0.08373 41n 0.12299 25h 0.03917 3ti 0.04699 37n 0.11707 

71cl 0.35496 27h 0.05959 37c 0.32780 71cl 0.30305 67h 0.06428 31c 0.46157 71cl 0.35135 

36c 0.37035 24c 0.95203 1c 0.61061 37c 0.45590 22c 0.96566 1c 0.48438 33c 0.39749 
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Cosmo  kcal/mol 

 
Cosmo Energy 



∞ 10 
 

 au 

13 0 0 
 

12 -2659,33311 

13T 14,4 14,6 
 

12TScis -2659,31197 

13P 10,7 11,1 
 

12TStrans -2659,31183 

    
12Pcis -2659,3254 

15 0 0 
 

12Ptrans -2659,3273 

15T 13,5 13 
  

Energy 

15P 7,6 6,9 
  

au 

    
13P -2659,29219 

14 0 0 
 

14P -2659,30514 

14T 10 10,4 
 

15P -2659,29119 

14P 0,7 0 
 

13 -2659,30789 

    
14 -2659,30305 

 
Energy ZPVE 

 
15 -2659,30001 

 
au au 

 
13T -2659,28234 

12 -2659,2909 0,5763 
 

14T -2659,28579 

12TScis -2659,2739 
0,57 

 

15T -2659,27849 

6 
  

12TStrans -2659,2733 0,5756 
 

Cosmo Energy 

12Pcis -2659,2873 0,5771 
 

∞ au 

12Ptrans -2659,2893 0,5778 
 

12 -2659,34194 

    
12TScis -2659,31981 

    
12TStrans -2659,31982 

 
Energy ZPVE 

 
12Pcis -2659,33331 

 
au au 

 
12Ptrans -2659,33511 

13P -2659,2566 0,5816 
  

Energy 

14P -2659,2724 0,5808 
  

au 

15P -2659,2568 0,5804 
 

13P -2659,30057 

13T -2659,2447 0,5773 
 

14P -2659,31258 

14T -2659,2441 0,578 
 

15P -2659,29905 

15T -2659,2409 0,5774 
 

13T -2659,29047 

13 -2659,2708 0,5797 
 

14T -2659,29502 

14 -2659,2625 0,5788 
 

15T -2659,28668 

15 -2659,258 0,5783 
 

13 -2659,31571 

    
14 -2659,31171 

    
15 -2659,30906 
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C. Additional Results on an Unusal Case of Facile Non-Degenerate P-C 

Bond Making and Breaking Study (Chapter 7) 

EPR experiments 

CW-EPR spectra were recorded on a Bruker ESP 300E EPR spectrometer equipped with a 4102ST 

X-band CW resonator and an Oxford ESR900 helium gas-flow cryostat. The CW-EPR measurements 

on liquid solutions were carried out at 150 K. The modulation amplitude amounted to 50 T and the 

microwave frequency was 9.42 GHz. The microwave power was 0.63 mW. 

 

Computational Methods 

All the DFT calculations were employed using the ORCA program package with the scalar 

relativistic, all-electron ZORA approach and empirical Van der Waals correction. The RI-BP86 method 

in combination of TZVP basis set was used for geometry optimizations, in which a one-center 

relativistic correction was applied. The final single point energies were computed using the hybrid 

B3LYP density functional with the basis set of triple-ζ quality including high angular momentum 

polarization functions (def2-TZVPP). The density fitting and chain of sphere (RIJCOSX) approximation 

has been employed in single point calculations.  
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Scheme C.1. Schematic structures of various isomers. 
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Table C.1. The calculated relative energies (kcal/mol) for combined singlet diradicals 4+5, 6, 7 and 12; their 

corresponding structures are shown in Figures S1-S4 and Tables S1-S4. 

Molecule Relative energy (kcal/mol) 

singlet diradicals 4+5 0 

6 -13.9 

7 -38.5 

12 -19.2 

 

From the aspect of thermal stability, complex 7 was obtained. 

 

Table C.2. The calculated relative energies (kcal/mol) for combined singlet diradicals 9+5, 10a-d, 11 and P-C 

atropisomers of 10a,c; their corresponding structures are shown in Figures S5-S12 and Tables S5-S12. 

Molecule Relative energy (kcal/mol) 

singlet diradicals 9+5 0 

10a (s-trans) -12.7 

10a’ (s-cis) -9.2 

10b, 10d’ or 10d’’ ≥ 31.5 

10c -12.8 

10c’ (P-C atropisomer) -6.8 

10d (singlet) 21.2 

10d (triplet) 9.0 

11 -19.4 

 

  Structures 10b, 10d, 10d’ and 10d’’ are geometrically identical. The electronic configuration of 

10b, 10d’ and 10d” are closed shell solutions (spin restricted methodology) of 10d, which are at least 

31.5 kcal/mol higher in energy than 5+9.  Consequently, the intermediates 10b’’, 10d’, 10d and 10d’’ 

are too high in energy and should be ruled out as candidates for the observed intermediates. 
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Figure C.1. The optimized molecular structure of combined singlet diradicals 4+5. 

 

 

 

 

Figure C.2. The optimized molecular structure of 6. 
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Figure C.3. The optimized molecular structure of 7. 

 

 

 

Figure C.4. The optimized molecular structure of complex 12. 
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Figure C.5. The optimized molecular structure of combined singlet diradicals 5+9. 

 

 

 

Figure C.6. The optimized molecular structure of 10a (s-trans). 
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Figure C.7. The optimized molecular structure of 10a’ (s-cis). 

 

 

 

Figure C.8. The optimized molecular structure of 10c (s-trans). 
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Figure C.9. The optimized molecular structure of 10c’ (s-cis). 

 

Figure C.10. The optimized molecular structure of 10d (singlet state). 
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Figure C.11: The optimized molecular structure of 10d (triplet state). 

 

 

Figure C.12: The optimized molecular structure of 11. 
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10d (singlet) 

 

Figure C.13. SOMOs of 10d (singlet state). 

 

 

               

10d (triplet) 

Figure C.14. SOMOs of 10d (triplet state). 



210  C Additional Results on an unusual Case of  
  Facile Non-Degenerate P-C Bond Making 
   and Breaking Study  
 

 
 
Table C.3. The optimized cartesian coordinates of combined singlet diradicals 4+5. 

  

C      -0.857350     -1.633761     -0.591027 H      -2.156741     -3.961535      1.492936 

C      -1.107768     -4.695603     -1.303984 H      -3.536820     -3.506679      0.465046 

C       0.845919     -3.717732      0.866641 H      -3.518609     -3.051404      2.184266 

C       1.396352     -3.093483     -2.101080 C       0.734283      1.971459      1.285631 

C      -3.317250     -0.173783      0.648749 C      -0.310530      2.642707      0.532030 

C      -0.951617     -1.083409      2.392713 C      -0.941590      3.821415      1.012188 

C      -2.890007     -3.167025      1.285507 C      -0.755218      2.139199     -0.717541 

C      -4.595490     -2.334116     -5.090217 C      -1.961345      4.437588      0.293868 

C      -1.862538     -2.983041     -4.478661 C      -1.778942      2.754027     -1.430282 

C      -3.971302     -3.123399     -2.436655 C      -2.395071      3.907200     -0.929596 

C      -4.630948     -0.371800     -2.939835 C       0.810431      2.117460      2.737477 

C      -2.599102     -0.245571     -5.008275   C      -0.355124      2.237742      3.533581 

F      -0.153221     -0.507560     -2.894275   C       2.060148      2.121666      3.403769 

O      -5.342618     -2.728842     -5.883369   C      -0.273786      2.357956      4.918038 

O      -1.064731     -3.698951     -4.912059   C       2.138852      2.250553      4.788108 

O      -4.419557     -3.935974     -1.744098   C       0.973346      2.368630      5.555904 

O      -5.406394      0.374979     -2.518379   C       1.714788      1.125304      0.609439 

O      -2.239931      0.571436     -5.741848   C       2.233824     -0.032145      1.242840 

P      -1.528424     -0.941953     -2.116693   C       2.189007      1.423141     -0.692007 

Si      0.059697     -3.312332     -0.800136   C       3.171378     -0.842813      0.609356 

Si     -2.040575     -1.527175      0.926852   C       3.126489      0.609622     -1.322596 

W      -3.262490     -1.695705     -3.712038   C       3.626090     -0.528700     -0.677677 

H      -0.045122     -0.924281     -0.319987   H      -0.600849      4.257197      1.951322 

H      -0.541455     -5.640885     -1.348411   H      -0.286970      1.242196     -1.116706 

H      -1.537356     -4.523665     -2.300953   H      -2.418899      5.348066      0.685169 

H      -1.935784     -4.827472     -0.594010   H      -2.105826      2.319755     -2.376641 

H       0.088654     -3.910939      1.641567   H      -1.329129      2.204421      3.044840 

H       1.483401     -2.887523      1.206703   H       2.971074      2.038596      2.809957 

H       1.474828     -4.618710      0.774878   H      -1.189452      2.432160      5.507494 

H       2.040688     -3.987001     -2.145770   H       3.116430      2.266509      5.273329 

H       2.025336     -2.220572     -1.867513   H       1.871552     -0.290006      2.238078 

H       0.960532     -2.938409     -3.099615   H       1.820849      2.318267     -1.193512 

H      -3.921897     -0.030686      1.559581   H       3.545888     -1.732911      1.118033 

H      -4.008003     -0.418083     -0.173200   H       3.477558      0.868686     -2.322669 

H      -2.829657      0.783498      0.403084   H      -3.199084      4.389974     -1.486715 

H      -0.458050     -0.113220      2.240133   H       1.035990      2.465447      6.640887 

H      -0.172175     -1.841942      2.556946   H       4.357727     -1.167188     -1.174535  
H      -1.556991     -1.010462      3.310837 
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Table C.4. The optimized cartesian coordinates of complex 6. 

 

 

  C      -0.608773      6.229772     10.213409   H      -2.651065      6.248627      5.683961 

  C      -0.740550      5.140779      9.203645   C      -3.846070      9.009154      6.473294 

  H      -0.010754      5.109287      8.395067   H      -3.082357      9.735011      6.151672 

  C      -1.710801      4.203700      9.260123   H      -4.681212      9.558916      6.924143 

  H      -1.758707      3.451206      8.473435   H      -4.220664      8.505723      5.566513 

  C      -2.738486      4.186326     10.294540   C      -4.414851      6.636483      8.388738 

  C      -2.592747      5.204116     11.325136   H      -5.037320      7.218059      9.086124 

  H      -3.279555      5.178754     12.171249   H      -3.975343      5.793095      8.940394 

  C      -1.607071      6.125793     11.313232   H      -5.076867      6.220454      7.612000 

  H      -1.497603      6.819345     12.145272   C      -3.861323      8.371452     11.676261 

  C      -3.781903      3.274947     10.294077   H      -3.099007      8.189380     12.445948 

  C      -3.777308      2.075113      9.429945   H      -4.198662      7.395811     11.300680 

  C      -2.633950      1.260962      9.308826   H      -4.716262      8.873199     12.160137 

  H      -1.736528      1.528259      9.868650   C      -4.756800     10.199247      9.433775 

  C      -2.648856      0.119253      8.506319   H      -5.406638      9.424713      9.001250 

  H      -1.754972     -0.502701      8.433604   H      -4.486754     10.906054      8.635066 

  C      -3.809005     -0.235343      7.809528   H      -5.344080     10.751431    10.186582 

  H      -3.821132     -1.128281      7.182559   C      -2.314167     10.964521    11.038673 

  C      -4.957657      0.555305      7.931251   H      -3.009373     11.570822    11.642809 

  H      -5.867957      0.283359      7.394066   H      -1.909412     11.615050    10.246542 

  C      -4.944780      1.691426      8.740320   H      -1.477973     10.654159    11.679577 

  H      -5.842654      2.302578      8.844849   C       3.176479      9.055359      7.068704 

  C      -4.972003      3.445621     11.154033   C       2.605283      7.565847      9.537726 

  C      -5.596857      4.699344     11.307811   C       1.433790      6.791047      7.008128 

  H      -5.196953      5.555389     10.764214   C       0.296233      9.423360      6.732883 

  C      -6.729881      4.844536     12.109171   C       1.622259     10.282555      9.140223 

  H      -7.201291      5.824143     12.206042   F      -0.270494      8.685934     10.959583 

  C      -7.267418      3.737236     12.773655   O       4.130307      9.366732      6.489317 

  H      -8.153557      3.849541     13.400384   O       3.191394      7.011311     10.368575 

  C      -6.669085      2.481122     12.617900   O       1.417681      5.823066      6.370729 

  H      -7.084541      1.610928     13.129041   O      -0.430393      9.933630      5.985589 

  C      -5.541617      2.335278     11.810122   O       1.681312     11.280910      9.719426 

  H      -5.080942      1.354580     11.682098   P      -0.492180      7.987507      9.491762 

  C      -2.107989      8.652585      8.979022   Si     -3.083951      7.704312      7.602789 

  H      -1.776603      9.541321      8.403391   Si     -3.235789      9.495285     10.304109 

  C      -1.997789      6.669021      6.467823   W       1.514451      8.520545      8.091958 

  H      -1.498112      5.832554      6.968599   H       0.415315      6.214944     10.644484 

  H      -1.237828      7.284460      5.965121 
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Table C.5. The optimized cartesian coordinates of complex 7. 

 

 

  C      -1.622688      6.279610      9.843394   H      -2.569209      6.565755      6.775698 

  C      -1.214912      5.089546      9.226031   H      -4.333245      6.438535      6.605244 

  H      -0.401874      5.102438      8.501774   C      -4.283133      9.494173      6.836556 

  C      -1.861518      3.890712      9.518203   H      -3.461859      9.603460      6.109491 

  H      -1.538645      2.966528      9.034117   H      -4.510295     10.489979      7.242197 

  C      -2.922223      3.849027     10.433959   H      -5.170309      9.138274      6.287726 

  C      -3.311485      5.036530     11.068273   C      -5.240121      8.049086      9.394463 

  H      -4.132322      5.016191     11.786869   H      -5.466918      8.974732      9.943090 

  C      -2.668001      6.239050     10.778175   H      -5.033497      7.254132     10.125957 

  H      -2.986324      7.154577     11.276018   H      -6.145871      7.758968      8.836286 

  C      -3.570278      2.506509     10.747316   C      -3.253976      9.601678     11.951362 

  H      -3.689271      1.984275      9.781722   H      -2.478477      8.982570     12.426502 

  C      -2.666465      1.632316     11.608821   H      -4.155216      8.987545     11.801510 

  C      -1.770995      2.179108     12.536800   H      -3.515271     10.411834    12.652048 

  H      -1.673364      3.263445     12.614093   C      -3.951016     11.499553      9.633835 

  C      -0.995259      1.346795     13.350438   H      -4.906401     10.996686      9.426686 

  H      -0.298721      1.786922     14.066133   H      -3.607075     11.974480      8.701659 

  C      -1.104639     -0.042244     13.242129   H      -4.142529     12.301971    10.365769 

  H      -0.494376     -0.691615     13.871812   C      -1.084952     11.372748    10.626073 

  C      -1.995239     -0.596041     12.315426   H      -1.313969     12.228619    11.282381 

  H      -2.082978     -1.679730     12.220141   H      -0.704089     11.778509      9.674640 

  C      -2.770783      0.238025     11.507629   H      -0.281212     10.787251    11.093589 

  H      -3.471647     -0.191853     10.787887   C       2.879936      8.011552      6.884143 

  C      -4.966068      2.664081     11.336942   C       1.908546      6.365883      9.078541 

  C      -6.043187      2.916265     10.475291   C       0.345987      6.675990      6.621021 

  H      -5.865689      2.947285      9.397369   C       0.394116      9.517932      6.963172 

  C      -7.327234      3.130969     10.980522   C       1.990119      9.260853      9.336280 

  H      -8.156256      3.320323     10.296298   F      -0.474969      8.327745     10.959172 

  C      -7.549556      3.100781     12.361901   O       3.853440      8.046282      6.256504 

  H      -8.552051      3.266230     12.759790   O       2.312246      5.478337      9.701313 

  C      -6.481465      2.849487     13.227811   O      -0.129477      5.972319      5.831216 

  H      -6.647334      2.818522     14.306146   O      -0.086265     10.413157      6.403020 

  C      -5.197339      2.631297     12.717603   O       2.436136     10.012276    10.092352 

  H      -4.365583      2.424759     13.393301   P      -0.861077      7.879529      9.428269 

  C      -2.244199      9.000987      9.015077   Si     -3.813594      8.254162      8.178241 

  H      -1.830959      9.627475      8.203325   Si     -2.634313     10.344175    10.337316 

  C      -3.518364      6.596946      7.331960   W       1.183964      7.942152      7.985321 

  H      -3.523229      5.757364      8.041038 
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Table C.6. The optimized cartesian coordinates of 12. 

 

 

 

  C      12.185687     10.329643    11.768561   H      10.155098      4.204340   11.852934 

  C      12.904701      9.838104     13.029416   H      10.836114      4.443697   13.482402 

  C      12.193366      9.276038     14.111314   H      11.694983      3.433127   12.294737 

  H      11.104380      9.256799    14.090617   C      13.500860      6.069852   13.058317 

  C      12.848312      8.780352    15.239953   H      14.147085      5.179583   13.131998 

  H      12.260845      8.362875    16.059525   H      13.070867      6.259943   14.054148 

  C      14.241588      8.817196    15.317862   H      14.126024      6.937127   12.802608 

  C      14.964441      9.361544    14.254514   C       8.251506      8.834267   11.939979 

  H      16.054180      9.400330    14.295388   H       7.215854      8.573002   12.218183 

  C      14.305741      9.864967    13.130491   H       8.214930      9.366360   10.983074 

  H      14.896632     10.289237   12.321303   H       8.638976      9.533720   12.696765 

  C      13.059240     11.329017   10.965243   C       8.925826      6.398388   13.551170 

  C      14.118707     10.941015   10.123055   H       9.738867      6.614641   14.262826 

  H      14.362710      9.892692     9.986746   H       8.832306      5.306941   13.475053 

  C      14.897571     11.886575     9.450940   H       7.991244      6.791309   13.982769 

  H      15.699908     11.542860     8.796096   C       8.536940      6.172848   10.471478 

  C      14.651447     13.250294     9.609498   H       9.148550      5.283108   10.264488 

  C      13.619853     13.654860    10.459070   H       8.459333      6.749037     9.537896 

  H      13.411944     14.716128   10.605302   H       7.521192      5.835029   10.736144 

  C      12.836472     12.709143    11.122629   C      11.086018      8.813523     6.175342 

  H      12.033109     13.059387   11.768660   C      13.341330      8.385929     7.865692 

  C      10.834877     11.014302    12.039499   C      10.865368      6.833674     8.084314 

  C       9.998765     11.315776    10.954563   C       9.378526      9.228196     8.425870 

  H      10.287003     10.983198     9.961735   C      11.768526     10.818671    8.001391 

  C       8.824429     12.049496    11.109245   F      13.455890      8.177654   10.777130 

  H       8.196114     12.245555    10.239369   O      10.936499      8.806167     5.025213 

  C       8.459414     12.527003    12.369573   O      14.458460      8.151148     7.681861 

  C       9.304210     12.284630    13.454867   O      10.544683      5.733514     7.914209 

  H       9.058837     12.682999    14.440874   O       8.246987      9.467437     8.512496 

  C      10.482876     11.550343    13.289656   O      11.945161     11.943152   7.800956 

  H      11.144939     11.428178   14.144231   P      11.895263      8.690893   10.668141 

  C      11.122860      7.454635    11.751620   Si     12.137383      5.785937   11.793100 

  H      11.377267      7.792280    12.773668   Si      9.221639      7.227978    11.870099 

  C      12.856028      5.230777    10.145796   W      11.358459      8.810915    8.166563 

  H      13.638897      4.486032    10.369507   H      14.757236      8.427327   16.196581 

  H      13.320205      6.039202     9.566429   H      15.254414     13.988361   9.078425 

  H      12.101273      4.737318     9.518540   H       7.539357     13.098267   12.501361 

  C      11.087711      4.346205   12.417375 
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Table C.7. The optimized cartesian coordinates of combined singlet diradicals 5+9. 

 

  C      -0.843224     -1.625493     -0.587975   C      -0.315749      2.630650      0.527706 

  C      -1.101517     -4.684053     -1.305599   C      -0.966006      3.802574      0.998624 

  C       0.853871     -3.715046      0.870014   C      -0.760402      2.120852     -0.718764 

  C       1.408606     -3.089725     -2.095745   C      -1.994687      4.398282      0.278495 

  C      -3.305681     -0.165072      0.651687   C      -1.797193      2.715766     -1.426139 

  C      -0.943024     -1.075398      2.397325   C      -2.438817      3.868736     -0.946823 

  C      -2.878818     -3.158789      1.283825   C       0.809083      2.121242      2.733877 

  C      -4.595960     -2.300067     -5.085202   C      -0.351617      2.251332      3.534757 

  C      -1.861843     -2.965716     -4.476861   C       2.055752      2.119984      3.405818 

  C      -3.972290     -3.099785     -2.434629   C      -0.266606      2.371926      4.917633 

  C      -4.609337     -0.337508     -2.932264   C       2.132384      2.249353      4.788549 

  C      -2.586181     -0.225620     -5.002996   C       0.974752      2.373199      5.575160 

  F      -0.138130     -0.511794     -2.899864   C      -3.542252      4.526960     -1.729270 

  O      -5.347355     -2.688359     -5.877825   C       1.060958      2.471964      7.074792 

  O      -1.063937     -3.681956     -4.909780   C       1.713129      1.122270      0.611184 

  O      -4.424438     -3.911356     -1.743382   C       2.234504     -0.033394      1.244255 

  O      -5.373664      0.420391     -2.509131   C       2.180703      1.401168     -0.696435 

  O      -2.223388      0.591014     -5.735436   C       3.158875     -0.853458      0.606002 

  P      -1.513404     -0.931928     -2.113532   C       3.104338      0.574655     -1.327173 

  Si      0.069448     -3.305461     -0.796526   C       3.616031     -0.568359     -0.690958 

  Si     -2.028279     -1.518157      0.929005   C       4.631347     -1.448780     -1.368197 

  W      -3.256638     -1.673703   -3.708450   H      -0.635965      4.248799      1.936788 

  H      -0.031243     -0.915819     -0.315725   H      -0.284340      1.229569     -1.121278 

  H      -0.538219     -5.630720     -1.357823   H      -2.467212      5.303425      0.668181 

  H      -1.533658     -4.504287     -2.300090   H      -2.126567      2.266484     -2.366182 

  H      -1.927877     -4.817900     -0.594046   H      -1.328495      2.227738      3.051082 

  H       0.095966     -3.909561      1.643939   H       2.969158      2.035397      2.815815 

  H       1.489429     -2.883611      1.210531   H      -1.182287      2.456888      5.508063 

  H       1.483608     -4.615418      0.777702   H       3.111131      2.265362      5.274494 

  H       2.050027     -3.985157     -2.142566   H      -3.134805      5.281909     -2.423933 

  H       2.039835     -2.220200     -1.858851   H      -4.094877      3.790311     -2.330693 

  H       0.974236     -2.930119     -3.094104   H      -4.251105      5.041212     -1.063351 

  H      -3.906617     -0.020454      1.564770   H       0.195915      3.010738      7.488983 

  H      -3.999562     -0.411037     -0.167170   H       1.076303      1.468423      7.534221 

  H      -2.817813      0.791101      0.402650   H       1.980530      2.989106      7.387338 

  H      -0.451192     -0.104416      2.244310   H       1.878399     -0.289297      2.242275 

  H      -0.162126     -1.832492      2.561432   H       1.812533      2.290620     -1.208152 

  H      -1.549655     -1.004033      3.314689   H       3.527530     -1.747760      1.114377 

  H      -2.146187     -3.953600      1.492372   H       3.442782      0.819492     -2.336553 

  H      -3.523839     -3.497599      0.461650   H       5.656056     -1.084674     -1.179754 

  H      -3.509516     -3.043834      2.181235   H       4.571690     -2.481338     -0.993869 

  C       0.733458      1.971693      1.283720   H       4.480628     -1.463488     -2.457739 
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Table C.8. The optimized cartesian coordinates of complex 10a. 

 

  C      11.297671      8.618618    11.765815   C      12.537475     11.474981    10.711001 

  H      11.671710      9.400166    12.455963   C      14.024200     10.063363    12.102526 

  C      11.428639      5.476645    11.727404   C      12.143009     12.131078    11.823873 

  H      11.471743      4.577002    12.363316   H      12.202220     11.820644     9.732362 

  H      12.251969      5.419241    11.002532   C      13.639735     10.750949    13.199497 

  H      10.480040      5.447203    11.170442   H      14.755958      9.259486    12.192647 

  C      10.225186      6.902744    14.141424   C      12.625568     11.799068    13.158342 

  H       9.219156      6.738012    13.729139   H      11.487487     12.996046   11.720313 

  H      10.191998      7.802114    14.773443   H      14.076089     10.490851   14.163677 

  H      10.469224      6.042261    14.786834   C      14.581186     10.409228     9.695162 

  C      13.212955      7.110073    13.674079   H      15.192564      9.495947     9.679611 

  H      13.324225      6.260263    14.367699   H      14.178796     10.584970     8.689258 

  H      13.290751      8.039875    14.259021   H      15.224154     11.259708     9.966296 

  H      14.046948      7.086563    12.958956   C      12.177126     12.448753    14.297693 

  C       9.283379     10.602464    10.400261   C      10.983536     13.317895    14.292886 

  H       8.241324     10.693812    10.053057   C      10.963521     14.509313    15.046143 

  H       9.935488     10.595268     9.517126   C       9.814679     12.977219    13.584011 

  H       9.534625     11.501017    10.984112   C       9.841360     15.335408    15.054391 

  C       8.731478      9.577416    13.171802   H      11.847107     14.783227   15.624556 

  H       9.492922     10.026076   13.828813   C       8.691898     13.801330    13.602659 

  H       8.285697      8.729477    13.708589   H       9.784996     12.036059    13.037129 

  H       7.946067     10.334808   13.015837   C       8.686370     15.001448    14.330167 

  C       8.543239      7.566048    10.843848   H       9.855719     16.259568    15.637174 

  H       8.428615      6.826953    11.652754   H       7.794947     13.502421    13.054710 

  H       9.083665      7.076333    10.021211   C      12.873328     12.318144    15.596624 

  H       7.539964      7.830114    10.475241   C      12.139376     12.121001    16.783568 

  C      11.534621      7.958985     5.906643   C      14.271338     12.434837    15.702372 

  C      13.774157      8.071016     7.577592   C      12.781588     12.006452    18.013831 

  C      11.524988      6.362415     8.282014   H      11.051474     12.057417   16.725618 

  C       9.735757      8.582709     7.941048   C      14.909568     12.329000    16.938917 

  C      11.910381     10.347024    7.453213   H      14.853646     12.629351   14.800415 

  F      13.543772      7.616265     10.608120   C      14.179628     12.103887    18.114489 

  O      11.422914      7.726281     4.776235   H      12.190586     11.841485   18.918097 

  O      14.894274      7.886432     7.355629   H      15.995363     12.435700   16.998128 

  O      11.366934      5.231957     8.469050   C       7.483705     15.907713    14.321267 

  O       8.586378      8.703772     7.866165   H       7.496797     16.565425    13.435452 

  O      11.963421     11.478093    7.200411   H       6.548749     15.328587    14.284752 

  P      12.383783      8.742857    10.306997   H       7.464170     16.551908    15.212443 

  Si     11.547555      7.011409    12.799979   C      14.868677     11.965135    19.446873 

  Si      9.460633      9.076248    11.497518   H      14.362945     12.563138   20.220855 

  W      11.765617      8.354508    7.866554   H      14.856889     10.916113   19.787314 

  C      13.454181     10.294672    10.739613   H      15.918002     12.287881   19.386680 
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Table C.9. The optimized cartesian coordinates of complex 10a’. 

 

  C      10.841933      9.299121    11.481207   C      14.307430      8.238966    11.896459 

  H      10.381429     10.201052   11.026537   C      12.625730      6.487614    11.402352 

  C      11.166635      8.725588    14.546795   C      14.473193      7.712141    13.127100 

  H      11.433639      9.163291    15.522944   H      14.936917      9.070538    11.579910 

  H      11.809755      7.848912    14.383370   C      12.814470      5.972047    12.634793 

  H      10.125241      8.376669    14.612669   H      11.902904      6.032591    10.724574 

  C      10.186943     11.456457    13.553845   C      13.740843      6.547037    13.599900 

  H       9.133870     11.158202    13.630171   H      15.225071      8.146709    13.785715 

  H      10.276184     12.232403   12.778200   H      12.211663      5.118925    12.944677 

  H      10.479889     11.918062   14.512040   C      14.210441      7.251036     9.626135 

  C      13.100742     10.780391    13.252155   H      13.565061      6.857743     8.828664 

  H      13.023534     11.798983   13.665032   H      14.782000      8.106073     9.238014 

  H      13.569746     10.860347   12.261932   H      14.916675      6.467221     9.935612 

  H      13.777826     10.190195   13.884424   C      13.895963      6.039574    14.880287 

  C       9.552716      6.462139    12.382447   C      14.591497      6.792491    15.944128 

  H       8.562927      6.073307    12.677140   C      15.456165      6.131443    16.840170 

  H      10.183888      6.515721    13.279268   C      14.382281      8.171962    16.137399 

  H      10.005447      5.738184    11.691563   C      16.109032      6.827996    17.854297 

  C       8.510931      7.939235     9.886520   H      15.612341      5.057587    16.726388 

  H       9.051306      7.209431     9.268545   C      15.031669      8.863160    17.159470 

  H       8.483937      8.890967     9.332784   H      13.677676      8.692741    15.489184 

  H       7.471829      7.590349    10.007975   C      15.914344      8.207597    18.030620 

  C       8.002677      9.056025    12.639059   H      16.783586      6.294066    18.528103 

  H       7.786736     10.062258   12.248153   H      14.841086      9.930535    17.295528 

  H       8.291259      9.153669    13.695362   C      13.368424      4.714343    15.265355 

  H       7.067437      8.472962    12.597872   C      12.738133      4.531311    16.512542 

  C      13.385079     12.477999    7.667688   C      13.515140      3.587222    14.434126 

  C      13.441798      9.615345     7.389561   C      12.246662      3.284608    16.892526 

  C      10.975021     10.931579    8.175996   H      12.637843      5.386689    17.182508 

  C      12.334149     12.251235    10.313480   C      13.028861      2.339313    14.823073 

  C      14.797082     10.886584     9.630109   H      14.038384      3.698824    13.483260 

  F      11.365264      7.947211     9.203309   C      12.378057      2.166036    16.053668 

  O      13.655928     13.366291    6.974155   H      11.753261      3.170677    17.860878 

  O      13.742441      8.888421     6.541710   H      13.169077      1.476353    14.167573 

  O       9.874320     10.927215     7.817446   C      16.642539      8.960528    19.112804 

  O      11.995192     13.027293   11.105401   H      17.645631      9.265730    18.769044 

  O      15.874946     10.872661   10.058311   H      16.098524      9.872927    19.397953 

  P      12.133669      8.961877    10.237598   H      16.779303      8.337169    20.009191 

  Si     11.364042     10.024869    13.201121   C      11.825087      0.824898    16.459227 

  Si      9.287638      8.149245     11.590085   H      11.913312      0.669368    17.544987 

  W      12.901424     10.927921    8.870484   H      10.754506      0.749568    16.202865 

  C      13.380959      7.663664    10.874062   H      12.347872      0.006435    15.942987 
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Table C.10. The optimized cartesian coordinates of complex 10c. 

  C      11.133242      8.009621   11.764296   C      12.565240     11.075804  10.070205 

  H      11.785411      8.492621   12.514825   C      13.681046      9.791668   11.961693 

  C      10.120241      5.104270   11.213340   C      12.055482     11.969325  10.949055 

  H      10.052562      4.077549   11.608827   C      13.015898     10.720391  12.843982 

  H      10.611389      5.046395   10.229147   C      12.235219     11.733745  12.371516 

  H       9.099635      5.482973   11.063191   H      13.997208      9.506942    9.822104 

  C      10.427581      6.201828   14.140092   C      11.340963     13.215782  10.510277 

  H       9.437640      6.660849   14.253864   H      10.311687     13.224103   10.907745 

  H      11.130665      6.737863   14.799106   H      11.843809     14.117428   10.897658 

  H      10.367189      5.162705   14.504654   H      11.286534     13.279291     9.415077 

  C      12.858536      5.484597   12.585091   H      12.495602     11.257614     8.997984 

  H      12.803336      4.585567   13.221911   H      11.815847     12.459632   13.071992 

  H      13.506819      6.214988   13.093389   H      13.236851     10.671064   13.909534 

  H      13.326448      5.212598   11.630405   C      14.664823      8.920713    12.408020 

  C       9.025358     10.230643   10.850462   C      14.817120      8.559355    13.832022 

  H       8.215083     10.849334   11.271830   C      13.709249      8.343559    14.676145 

  H       8.662511      9.815050    9.899721   C      16.098922      8.352727    14.386138 

  H       9.880526     10.883561   10.632148   C      13.872821      7.957087    16.004900 

  C       9.612217      9.612032   13.805025   H      12.701506      8.460546    14.277575 

  H      10.408314     10.372714  13.806384   C      16.258429      7.974502    15.716153 

  H       9.869257      8.844067   14.550306   H      16.974707      8.498005    13.752616 

  H       8.671962     10.092250   14.121387   C      15.149158      7.765975    16.552638 

  C       7.965909      7.685728   12.059560   H      12.992504      7.784552    16.628862 

  H       8.079095      6.810698   12.712844   H      17.264884      7.834388    16.118124 

  H       7.747778      7.326728   11.044555   C      15.652431      8.327611    11.479256 

  H       7.083143      8.250409   12.405407   C      16.022670      6.974503    11.571755 

  C      10.566888      7.955058    5.932176   C      16.296762      9.120836    10.511200 

  C      11.772532      6.222028    7.867628   C      16.966164      6.429440    10.703303 

  C       9.274540      7.489176    8.450101   H      15.546602      6.346021    12.324367 

  C      10.419914     10.086957   7.832644   C      17.243431      8.573218     9.648162 

  C      12.958478      8.825841    7.293470   H      16.056256     10.184506   10.456975 

  F      13.199520      7.189047   10.287316   C      17.587437      7.214023     9.720111 

  O      10.265974      7.829170    4.819497   H      17.226977      5.371484    10.784676 

  O      12.136676      5.124432    7.862521   H      17.736123      9.211611     8.911157 

  O       8.222397      7.091499    8.730795   C      15.330041      7.331160    17.983021 

  O      10.019855     11.171655   7.753875   H      15.775025      6.323835    18.035953 

  O      14.005904      9.208680    6.979206   H      16.007759      8.012823    18.521230 

  P      12.018439      8.315859   10.205385   H      14.368346      7.307165    18.515168 

  Si     11.122093      6.182917   12.379580   C      18.579946      6.613953     8.759634 

  Si      9.434956      8.869603   12.080347   H      19.083753      5.741410     9.201068 

  W      11.109577      8.161712   7.865569   H      18.074437      6.274669     7.839484 

  C      13.204571      9.804946   10.522125   H      19.342690      7.349352     8.463198 
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Table C.11. The optimized cartesian coordinates of complex 10c’. 

  C      11.025661      8.424062    11.694447   C      14.431431      7.952827    10.818225 

  H      10.226695      9.145741    11.421020   C      13.161155      5.752393    10.557437 

  C      12.703370      8.429478    14.431126   C      14.927480      7.551188    12.009531 

  H      13.498571      9.032821    14.899015   C      13.690336      5.428233    11.864452 

  H      13.153106      7.503274    14.051297   C      14.514525      6.266561    12.549094 

  H      11.983192      8.160258    15.217244   H      13.588988      7.203628     9.003682 

  C      10.517119     10.485900    13.887468   C      15.921776      8.368451    12.781716 

  H       9.802758      9.864731     14.445269   H      15.492189      8.660806    13.754780 

  H       9.957969     11.071289    13.141874   H      16.834460      7.786842    12.991602 

  H      10.969290     11.196299   14.599440   H      16.200682      9.281083    12.236923 

  C      13.175801     10.703180    12.479345   H      14.779307      8.883370    10.369995 

  H      13.527770     11.249703   13.371309   H      14.950419      5.938930    13.495481 

  H      12.768523     11.443367   11.779100   H      13.512805      4.428582    12.256876 

  H      14.045281     10.223216   12.014631   C      12.594207      4.788389     9.743300 

  C       9.311902      5.787154     11.062357   C      12.187431      3.451073    10.228677 

  H       8.682482      5.031151     11.561462   C      11.538203      3.252671    11.461377 

  H      10.114206      5.267943    10.523922   C      12.413177      2.313552     9.423537 

  H       8.695409      6.318148     10.322158   C      11.155649      1.978964    11.880285 

  C       8.417637      7.773312     13.144980   H      11.309579      4.115717    12.082865 

  H       8.000942      8.558718     12.494674   C      12.038765      1.042935     9.850779 

  H       8.616882      8.218935     14.129849   H      12.897667      2.440472     8.454485 

  H       7.639178      7.004019     13.279658   C      11.401036      0.849349    11.087394 

  C      10.797250      5.962983    13.739442   H      10.643963      1.857126    12.838191 

  H      10.769456      6.492018    14.702133   H      12.241194      0.179620     9.212057 

  H      11.847828      5.732475    13.513157   C      12.421667      4.983911     8.281978 

  H      10.252229      5.012376    13.863832   C      11.180995      4.742373     7.670795 

  C      11.921546     11.897210     7.293493   C      13.512685      5.314132     7.460486 

  C      10.175933      9.690021     7.747965   C      11.028397      4.870795     6.291257 

  C      10.899268     11.385434     9.951755   H      10.330309      4.464528     8.294980 

  C      13.738543     10.988600     9.283402   C      13.359847      5.424915     6.079210 

  C      12.991641      9.199741     7.210166   H      14.493899      5.464216     7.916204 

  F      10.834641      7.259922     9.275690   C      12.112590      5.218360     5.471527 

  O      11.901058     12.799058    6.564593   H      10.050672      4.695968     5.836081 

  O       9.178668      9.344736     7.277048   H      14.222232      5.679443    5.459601 

  O      10.278001     11.964372  10.742869   C      10.974257     -0.525814    11.529322 

  O      14.771259     11.381944    9.635888   H      10.157941     -0.908525    10.894380 

  O      13.600551      8.577364     6.446746   H      11.806899     -1.242901    11.452782 

  P      11.825859      8.285174    10.054528   H      10.618861     -0.516006    12.569726 

  Si     11.890502      9.471422    13.085013   C      11.941945      5.388464     3.984658 

  Si      9.949434      6.964529     12.385088   H      11.041355      4.869476     3.625452 

  W      11.949212     10.328895    8.561897   H      11.840188      6.455579     3.724569 

  C      13.378422      7.183370    10.083694   H      12.814030      5.000795     3.436459 
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Table C.12. The optimized cartesian coordinates of complex 10d (singlet state). 

  C      14.829595      9.983363    13.653465   C      14.289181      7.053898     8.229719 

  C      14.623967     10.318108   14.977917   C      16.139726      9.475344     8.332914 

  C      14.790473      9.299467    15.979310   H      15.335646      6.849711    11.283741 

  C      15.100556      7.982962    15.605938   H      18.525202      5.607467     7.966600 

  C      15.268450      7.598631    14.289721   H      18.666361      7.299341     8.491604 

  C      15.145854      8.611025    13.200774   H      17.215504      6.758464     7.607374 

  C      14.141524     11.647392    15.360499   H      15.148802      4.764645     9.015964 

  C      14.529556     12.231690    16.629304   H      15.458676      4.302153    10.707138 

  C      13.679761     13.132815    17.324173   H      16.490384      3.665159     9.411018 

  C      14.052846     13.677177    18.545820   H      18.845745      4.336659    10.621408 

  C      15.290344     13.363497    19.138925   H      18.050884      4.927146    12.092758 

  C      16.134711     12.470295    18.461074   H      19.332152      5.893528    11.323492 

  C      15.769638     11.915018    17.238472   H      13.046646      9.743673     9.391567 

  C      15.701075     13.987703    20.445229   H      13.983735     10.043054   10.874946 

  C      15.509668      6.174541    13.900936   H      12.982077      8.574818    10.726289 

  P      16.712888      8.596083    12.034818   H      13.646231      6.345051     8.773707 

  C      16.118851      7.416781    10.739715   H      15.025913      6.476687     7.653052 

  Si     15.081638      8.326306     9.378506   H      13.653536      7.600292     7.512551 

  C      13.649513      9.261371    10.179175   H      17.046474      8.969337     7.970713 

  C      13.270519     12.381018    14.450683   H      16.444914     10.370988     8.890424 

  C      13.314873     13.793084    14.365805   H      15.561552      9.797192     7.450767 

  C      12.485488     14.491451    13.491527   H      10.790257     11.877265   12.133222 

  C      11.566884     13.823981    12.667619   H       9.626651     14.271680   11.824806 

  C      11.509471     12.420266    12.751579   H      10.747559     15.660743   11.876831 

  C      12.341179     11.714786    13.610993   H      10.964172     14.372518   10.665815 

  C      10.679620     14.575876    11.711985   H      12.705663     13.372778   16.896708 

  W      18.983470      8.821764   13.095657   H      16.453984     11.243440   16.723536 

  C      19.809965      8.409089    11.275965   H      13.368229     14.351882   19.065978 

  O      20.299086      8.209132    10.242965   H      17.103267     12.215966   18.898295 

  F      16.428821     10.030128    11.292892   H      14.616664      9.548491   17.024625 

  C      18.909544     10.818372    12.619377   H      14.700211     10.745867   12.887461 

  O      18.876442     11.950327   12.392080   H      15.184309      7.217287   16.381703 

  C      18.222162      9.286156    14.938660   H      14.396023      8.274020   12.451808 

  O      17.908748      9.544454    16.023407   H      16.519057     13.423180   20.915784 

  C      20.828340      9.105440    13.854200   H      14.854876     14.033678   21.148182 

  O      21.895395      9.266102    14.279046   H      16.053122     15.022521   20.292460 

  C      19.025622      6.901645    13.783110   H      15.546142      5.518309   14.781357 

  O      19.056756      5.852740    14.276943   H      14.714067      5.813734   13.221772 

  Si     17.161695      5.980920     9.997928   H      16.459352      6.057799   13.347759 

  C      17.959116      6.466176     8.363442   H      12.556982     15.580341   13.434904 

  C      15.939367      4.558651     9.747998   H      14.033177     14.333805   14.982779 

  C      18.471653      5.243520    11.127118   H      12.273283     10.627831   13.663663 
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Table C.13. The optimized cartesian coordinates of complex 10d (triplet state). 

  C      11.104103      8.673059    11.908317   C      12.787011     11.280351    10.537915 

  H      11.645062      9.413592    12.527806   C      14.089179      9.781863    12.053403 

  C      10.634696      5.594435    12.072607   C      12.449418     12.019402    11.654043 

  H      10.619180      4.709138    12.729059   C      13.698895     10.530009    13.169571 

  H      11.387898      5.418606    11.289363   C      12.829162     11.647306    12.957063 

  H       9.650788      5.673735    11.587016   H      14.177781      9.754078     9.897082 

  C       9.755539      7.371049    14.432680   C      12.471256     11.728312     9.149083 

  H       8.748105      7.620426    14.073848   H      11.957125     12.699674     9.149117 

  H      10.080134      8.150852    15.139474   H      13.392787     11.812132     8.547196 

  H       9.690350      6.424192    14.995319   H      11.829602     10.996718     8.631154 

  C      12.688753      6.959894    13.972514   C      14.144327     10.173355    14.505868 

  H      12.587762      6.211855    14.776630   C      13.251701     10.382963    15.638594 

  H      12.972392      7.914868    14.441708   C      11.847776     10.293382    15.491413 

  H      13.507259      6.650285    13.309933   C      13.743769     10.654903    16.939123 

  C       9.314494     10.798131    10.320177   C      10.989625     10.469509    16.571397 

  H       8.370003     11.356366    10.437421   H      11.430284     10.056255   14.514281 

  H       9.315253     10.367432     9.312931   C      12.879742     10.833241    18.013806 

  H      10.141532     11.517367   10.395950   H      14.821221     10.738908   17.085745 

  C       9.111681     10.482723    13.285011   C      11.484546     10.745382    17.855434 

  H       9.898141     11.247683    13.393587   H       9.910837     10.381945    16.418043 

  H       9.112944      9.862196    14.190424   H      13.290916     11.054359   19.001994 

  H       8.142329     11.004771    13.228386   C      15.439301      9.538072    14.705162 

  C       8.024555      8.249966    11.399745   C      15.637058      8.569647    15.719988 

  H       8.099447      7.373978    12.059510   C      16.547828      9.844574    13.880687 

  H       8.033735      7.885188    10.362796   C      16.868860      7.950620     15.895742 

  H       7.044713      8.723827    11.576152   H      14.792380      8.288813    16.349749 

  C      11.485669      6.850086     6.280965   C      17.779666      9.224300    14.068239 

  C      12.853465      6.010243     8.545966   H      16.427551     10.593187   13.096549 

  C      10.041922      6.629271     8.757757   C      17.968000      8.267103    15.077942 

  C      10.507638      9.166642     7.443766   H      16.983286      7.190925    16.673022 

  C      13.344009      8.698685     7.519845   H      18.621083      9.489367    13.423440 

  F      13.267651      7.330192    11.023401   C      10.558471     10.951013    19.024235 

  O      11.373609      6.377565     5.227956   H      10.854176     10.325278   19.881331 

  O      13.486780      5.062900     8.733370   H      10.581364     11.999374   19.366223 

  O       9.103468      6.029022     9.073509   H       9.521062     10.704879    18.755946 

  O       9.840129      9.976088     6.948824   C      19.305449      7.610953    15.294064 

  O      14.277125      9.301729     7.188912   H      19.813848      8.035037    16.176809 

  P      12.206735      8.459004    10.476678   H      19.193457      6.530239    15.472866 

  Si     11.045167      7.129670    13.073193   H      19.964506      7.755553    14.425888 

  Si      9.391791      9.512459    11.689493   H      11.899820     12.953517   11.510337 

  W      11.693076      7.649357     8.115016   H      12.531864     12.255123   13.810401 

  C      13.484477      9.981677    10.724860   H      14.744900      8.924943    12.192111 



221  C Additional Results on an unusual Case of  
  Facile Non-Degenerate P-C Bond Making 
   and Breaking Study  
 

 
 
Table C.14. The optimized cartesian coordinates of complex 11. 

  C      12.190188     10.334644   11.773437   H       7.118767     13.804002    13.508484 

  C      12.907055      9.837234    13.031432   C      11.121172      7.462387    11.753447 

  C      12.201670      9.271199    14.112928   H      11.375654      7.802427    12.775054 

  H      11.112371      9.260913    14.103882   C      12.859914      5.238349    10.152362 

  C      12.861529      8.752536    15.227960   H      13.652818      4.505977    10.380976 

  H      12.276077      8.329714    16.047889   H      13.312375      6.047807     9.565521 

  C      14.257652      8.757801    15.311677   H      12.110604      4.730516     9.530123 

  C      14.965612      9.322555    14.242125   C      11.087833      4.350868    12.416428 

  H      16.057307      9.351259    14.277435   H      10.152548      4.213462    11.855406 

  C      14.308942      9.850453    13.131462   H      10.841087      4.441609    13.483322 

  H      14.902213     10.281952   12.327697   H      11.693756      3.438271    12.285042 

  C      13.062245     11.330034    10.967641   C      13.495086      6.077817    13.067643 

  C      14.128069     10.945445    10.133037   H      14.158557      5.198925    13.123919 

  H      14.381717      9.898198    10.004075   H      13.059984      6.240269    14.066163 

  C      14.897458     11.890418     9.451876   H      14.101816      6.963034    12.828875 

  H      15.701703     11.545857     8.797640   C       8.251072      8.848182    11.946069 

  C      14.652513     13.261481     9.579737   H       7.216679      8.586709    12.228669 

  C      13.607300     13.650927    10.426941   H       8.211843      9.378228    10.988250 

  H      13.385583     14.713532   10.552451   H       8.642668      9.549090    12.699362 

  C      12.830519     12.710781    11.102493   C       8.925219      6.413660    13.557292 

  H      12.020017     13.065532   11.737376   H       9.724317      6.657314    14.276106 

  C      10.837562     11.012420    12.042386   H       8.860508      5.319559    13.488742 

  C      10.005337     11.324245    10.956723   H       7.975917      6.785240   13.975190 

  H      10.302064     11.009460     9.960410   C       8.528516      6.186839    10.478613 

  C       8.827744     12.047720    11.112402   H       9.136267      5.294723    10.271000 

  H       8.205848     12.252207    10.238172   H       8.452857      6.763354     9.545025 

  C       8.430344     12.514679    12.372493   H       7.511523      5.853404    10.743962 

  C       9.286445     12.263186    13.451018   C      11.090241      8.819421     6.177797 

  H       9.031323     12.655753    14.438380   C      13.345761      8.388217     7.870396 

  C      10.472356     11.540407    13.290451   C      10.866629      6.842641     8.094115 

  H      11.129281     11.421918   14.149705   C       9.386399      9.244438     8.430968 

  C      14.976535      8.159292    16.491239   C      11.785336     10.824439     8.002778 

  H      14.280224      7.949312    17.315947   F      13.456656      8.178569    10.778814 

  H      15.764892      8.833036    16.861920   O      10.939983      8.810498     5.027401 

  H      15.463788      7.211000    16.208395   O      14.463132      8.151612     7.689857 

  C      15.490707     14.279388     8.852465   O      10.545191      5.741193     7.933148 

  H      16.321723     14.629397     9.488369   O       8.255820      9.487609     8.520787 

  H      14.892933     15.160921     8.576688   O      11.969666     11.947490     7.800309 

  H      15.928658     13.852109     7.938594   P      11.897921      8.699111    10.671422 

  C       7.133902     13.257880    12.554031   Si     12.135334      5.794649    11.797082 

  H       6.281168     12.558301    12.551809   Si      9.220195      7.240930    11.874901 

  H       6.968929     13.974960    11.735347   W      11.363867      8.818633    8.168221 
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