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Zusammenfassung

In dieser Arbeit präsentieren wir eine Phasenfeld-basierte, geschachtelte Zeitdiskreti-
sierung für den Willmore-Fluss. Dies ist der L2-Gradientenfluss, der die Willmore-
Energie

w[x] =
1
2

ˆ
Γ

h2(x) dHd−1

minimiert. Hierbei bezeichnen Γ eine durch die Identität x über sich selbst parame-
trisierte Hyperfläche, h die mittlere Krümmung auf dieser Hyperfläche und Hd−1 das
(d− 1)-dimensionale Hausdorff-Maß.
Die grundlegende Idee unseres Ansatzes besteht darin, dass wir die mittlere Krüm-
mung h durch die zeitdiskrete, approximierte Geschwindigkeit des mittleren Krüm-
mungsflusses approximieren. Diese Geschwindigkeit wird durch das Lösen eines in-
neren Minimierungsproblems berechnet, das auf dem Konzept der natürlichen Zeitdis-
kretisierung beruht. Das äußere variationelle Problem balanciert den L2-Abstand der
Fläche zu zwei aufeinander folgenden Zeitschritten und die Abnahme der Willmore-
Energie. Dies führt zu einem Optimierungsproblem mit PDG-Nebenbedingung, das
uns Zeitschrittweiten bis zur Gößenordnung h erlaubt, wobei h die Gitterweite ist.
In dieser Arbeit leiten wir das zugehörige Phasenfeld-Modell her, indem wir mit
der parametrischen Version starten und sie schrittweise in den Phasenfeld-Kontext
übertragen. Anschließend beweisen wir die Existenz einer Lösung.
Ein lineares Modellproblem ist gegeben durch den biharmonischen Wärmefluss. Für
diesen Fall präsentieren wir bewiesene Fehlerschranken und verifizieren sie numerisch.
Anschließend testen wir unser Modell und vergleichen es mit einem semi-impliziten
Modell von Du et al. [40, 42], wobei wir feststellen, dass unser Modell stabiler ist.

Evolution von zwei Kreisen unter Willmore-Fluss (obere Reihe), sowie die zugehörige
diskrete Krümmung, farbkodiert auf dem Intervall [−10, 10] durch .
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Als Anwendung unseres geschachtelten, zeitdisketen Willmore-Fluss-Modells beschäf-
tigen wir uns mit der Rekonstruktion von Hyperflächen anhand von gegebenen nie-
derdimensionalen Huffman-Labelings. Dabei zählt das Huffman-Labeling die Anzahl
der Schnittpunkte zwischen der Hyperfläche und dem Projektionsstrahl. Zur Rekon-
struktion der Fläche minimieren wie eine Regularisierungsenergie bestehend aus der
skalierten Flächen-, sowie der skalierten Willmore-Energie unter der Nebenbedingung,
dass das Huffman-Labeling der minimierenden Fläche fast überall gleich dem gegebe-
nen Huffman-Labeling ist. Wir lösen dieses Problem im Phasenfeld-Kontext durch
einen alternierenden Algorithmus, der abwechselnd die Regularisierungsenergie und
eine Mismatch-Energie minimiert und übertragen unser Problem von einem groben
Startgitter auf immer feinere Gitter.

h = 2−6 0 h = 2−6 1 h = 2−8 7

Rekonstruktion eines Torus anhand eines gegebenen Huffman-Labelings, dessen
1-Niveaulinie in blau dargestellt ist. Die rote Linie zeigt die 1-Niveaulinie des

Huffman-Labelings des 3-dimensionalen Objektes. Die aktuelle Gitterweite sowie der
aktuelle Schritt auf dem jeweiligen Gitter werden oberhalb des Objektes angezeigt.

In weiten Teilen der Arbeit lösen wir unser geschachteltes Minimierungsproblem zur
Berechnung des Willmore-Flusses, indem wir die zugehörige Lagrange-Gleichung auf-
stellen und das daraus resultierende Sattelpunktproblem lösen. Alternativ beschäfti-
gen wir uns im letzten Teil dieser Arbeit damit, wie wir sowohl das lineare Modellpro-
blem, als auch unser geschachteltes, zeitdiskretes Problem mit Hilfe eines Augmented-
Lagrange-Verfahrens lösen können.

6



Acknowledgements

First I would like to thank my advisor Martin Rumpf for the possibility of being part
of his group for several years and for his support and guidance during this time.
Furthermore I am indepted to Benedikt Wirth for many fruitful discussions and suc-
cessful cooperation on joint projects within this thesis.
In particular I want to thank Martin Rumpf and Benedikt Wirth for investigating on
error estimates for the fully discrete biharmonic heat flow, presented in Chapter 4.
Moreover I am grateful to my colleagues at the Institute for Numerical Simulation,
at the University of Bonn, for a pleasant working atmosphere over several years and
for numerous interesting and helpful discussions.
Finally my thank goes to my family and my husband for their support over the years.

Martina Franken

7



8



Contents

Contents

1 Introduction 11
1.1 Willmore flow in literature . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2 Phase field based Willmore flow and mean curvature motion in literature 14

2 Foundations 17
2.1 Phase Field approximations . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Finite Element discretization . . . . . . . . . . . . . . . . . . . . . . . 23
2.3 Survey of solving constrained minimization problems . . . . . . . . . . 25

3 Nested time discretization of Willmore flow 29
3.1 Derivation of the model . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.1 Natural time discretization of mean curvature motion . . . . . 29
3.1.2 Natural time discretization of Willmore flow . . . . . . . . . . . 37
3.1.3 The constrained optimization perspective . . . . . . . . . . . . 41

3.2 A fully practical numerical scheme . . . . . . . . . . . . . . . . . . . . 43
3.2.1 Finite Element discretization in space . . . . . . . . . . . . . . 43
3.2.2 Newton method for the constrained optimization problem . . . 45

4 The biharmonic heat equation - a linear model problem 49
4.1 A nested scheme for the biharmonic heat equation . . . . . . . . . . . 49
4.2 Numerical validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2.2 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5 Numerical results and applications for Willmore flow 57
5.1 Simulation based on the nested time discretization . . . . . . . . . . . 57
5.2 Comparison with a semi-implicit scheme . . . . . . . . . . . . . . . . . 63

5.2.1 A semi-implicit phase field scheme for Willmore flow . . . . . . 64
5.2.2 Newton method for the semi-implicit scheme . . . . . . . . . . 65
5.2.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3 Application to an image restoration . . . . . . . . . . . . . . . . . . . 66

6 Shape from apparent contour 71
6.1 The model problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2 Huffman labeling in literature . . . . . . . . . . . . . . . . . . . . . . . 73
6.3 The variational phase field model . . . . . . . . . . . . . . . . . . . . . 76

6.3.1 Finite Element discretization . . . . . . . . . . . . . . . . . . . 78

9



6.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.4.1 Two-dimensional simulations . . . . . . . . . . . . . . . . . . . 79
6.4.2 Three-dimensional simulations . . . . . . . . . . . . . . . . . . 83

6.5 Further discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7 Augmented Lagrange method for computing Willmore and bihar-
monic heat flow 91
7.1 Augmented Lagrange method for the biharmonic heat equation . . . . 91

7.1.1 Derivation of the model . . . . . . . . . . . . . . . . . . . . . . 92
7.1.2 A fully practical numerical scheme . . . . . . . . . . . . . . . . 94
7.1.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.2 Augmented Lagrange method for our Willmore flow model . . . . . . . 98
7.2.1 Derivation of the model . . . . . . . . . . . . . . . . . . . . . . 98
7.2.2 A fully practical numerical scheme . . . . . . . . . . . . . . . . 100
7.2.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Bibliography 111

List of Figures 119

List of Algorithms 121

Nomenclature 123

Index 129

10



Chapter 1

Introduction

In this work a phase field based nested variational time discretization for Willmore
flow is presented. Willmore flow is the L2-gradient flow minimizing the Willmore
energy

w[x] =
1
2

ˆ
Γ

h2(x) dHd−1 (1.1)

on a hypersurface Γ parameterized over itself by the identity mapping x. Here h is
the mean curvature of the hypersurface Γ and Hd−1 denotes the (d− 1)-dimensional
Hausdorff measure. Willmore flow is also known as elastic flow and from a physical
point of view Willmore energy approximates the stored energy in a thin elastic shell.
Willmore flow and Willmore energy can be used for modeling edge sets in imaging
[77, 75, 102, 22] or to applications in surface modeling [97, 13, 12, 85, 101]. In Sec-
tion 1.1 we give a short survey on publications dealing with Willmore flow in general,
while Section 1.2 presents some work focusing on phase field based Willmore and mean
curvature flow.

The basic idea of our model is to approximate the mean curvature h by a time-
discrete, approximate speed of the mean curvature motion. This speed is computed
by a fully implicit time step of mean curvature motion, which forms the inner problem
of our model. It is set up as a minimization problem taking into account the concept
of natural time discretization. Therefore it is closely related to the variational time
discretization of mean curvature motion as it is presented in the paper of Almgren,
Taylor and Wang [1] and Luckhaus and Sturzenhecker [70]. Since Chambolle devel-
oped a corresponding level set algorithm for this type of time stepping [20] the inner
variational problem is also closely related to this work.
The outer problem is a variational problem balancing between the L2-distance of the
surface at two consecutive time steps and the decay of the Willmore energy. This is
a typical ansatz in case of natural time discretization as it is used in the inner prob-
lem. Within the Willmore energy the mean curvature is approximated as mentioned
above. Consequently our model is a nested variational and leads to a PDE constraint
optimization problem to compute a single time step.
A corresponding parametric version of this model based on finite elements on a tri-
angulation of the evolving geometry was investigated by Olischläger and Rumpf in
[81, 82]. Picking up the intention of these two works we aim for a stable time dis-
cretization allowing large time steps.
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1 Introduction

To set up the nested variational time discretization of Willmore flow based on phase
field approximation we introduce some basic knowledge on phase field and finite el-
ement discretizations in Chapter 2. With respect to the two presented methods for
solving the PDE constraint optimization problem we give a short survey of solving
constraint minimization problems in the last Section of Chapter 2.
In Chapter 3 the derivation of the model starts with the natural time discretization of
mean curvature motion. Based on this in Subsection 3.1.2 we continue with the natural
time discretization of Willmore flow, the central model of this work. In this Subsec-
tion we also prove the existence of a time-discrete phase field solution of our model.
To set up a fully practical numerical scheme consisting of finite element discretization
in space as well as a Newton method for solving the constrained optimization problem
(cf. Section 3.2) we first deal with the constrained optimization perspective of this
model.
Since biharmonic heat flow is a linear model problem for our nested time discretiza-
tion of Willmore flow we transfer our model to the linear case in Chapter 4. Moreover
we present a result proven in [52] concerning error estimates for the fully discrete
biharmonic heat flow and validate it numerically. Based on the analogy of the linear
and the nonlinear model we expect an analog error estimate for our nested time dis-
cretized Willmore model.
This expectation will be supported by the results of a numerical test of our Will-
more flow model presented in Chapter 5. This chapter focuses on numerical results
and applications of the nested time discretized Willmore model and starts with the
computation of the experimental error of our Willmore flow scheme for radially sym-
metric Willmore flow. The error order correlates with the one stated by Theorem 4.4
in the linear case. In addition we compare this result with the corresponding result
computed with the semi-implicit phase field scheme for Willmore flow introduced by
Du et al. [40, 42]. Their scheme is presented in Section 5.2 and the comparison based
on our experiments reveals that the nested variational method presented in Chapter 3
is significantly more robust. Finally the last section of this chapter deals with an
exemplary application of our model, which is an elastic model for edge restoration in
images by Nitzberg et al. [77].
After concentrating on the nested time discretized Willmore model including numer-
ical tests and a simple application in the previous chapters we focus on a further,
more complex application in Chapter 6. The problem we are dealing with consists in
reconstructing a hypersurface Γ ⊂ Rd corresponding to a given (d − 1)-dimensional
apparent contour or Huffman labeling. In Section 6.1 we derive the model problem
and present a definition for the apparent contour and the Huffman labeling as it is
used in this work. After this we give a short survey on Huffman labeling in literature.
We start with the labeling Huffman introduced 1971 [58], continue with the labeling
Williams worked with in [98] until we come to the Huffman labeling used by Bellet-
tini et al.[9, 10]. Our work concerning reconstructing shapes from a given apparent
contour is strongly related to the two works by Bellettini et al.. This strong relatedness
is mirrored by the fact that apart from one property their kind of Huffman labeling
is the same as our version. At the same time our version is completely different from
the original labeling presented by Huffman in [58]. After this survey on Huffman
labeling in literature we set up the phase field version of the apparent contour inverse
problem and present some two and three-dimensional results. Although these results
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1.1 Willmore flow in literature

are convincing we have to discuss some shortcomings of this model in the last section
of Chapter 6.1. This discussion motivates and leads over to the last chapter of this
work.
In Chapter 7 we present an alternative method for solving the nested variational time
discretized Willmore flow model introduced in Chapter 3. This alternative method
consists in an Augmented Lagrange method which we introduce for the linear model
problem first until we deal with the Augmented Lagrange method for our Willmore
flow model. The main advantage of the Augmented Lagrange method in comparison
to the Lagrange method used in Chapter 3 is that we have to solve a minimization
problem in each iteration of the Augmented Lagrange method instead of finding a
saddle point as in the Lagrange method used before. In the two-dimensional case this
leads to convincing results, whereas the three-dimensional tests reveal some future
work on more efficient solvers within the Trust-Region method.

1.1 Willmore flow in literature

Willmore flow as well as Willmore surfaces, which are defined as minimizer of the
Willmore energy [99] are topics frequently treated in literature. In 1996 Polden [66, 84]
analytically treated the Willmore flow of curves and surfaces. For sufficiently smooth
initial surfaces Simonett presented a proof of the existence of a unique and locally
smooth solution of Willmore flow [92]. In case of initial surfaces close to a sphere
he proved exponential convergence to a sphere. In the same and the following year
Kuwert and Schätzle [63, 64, 65] published a paper dealing with long time existence
and regularity of solutions. Recently, Rivière [87] extended results of Kuwert and
Schätzle [65] for co-dimension 1 to arbitrary co-dimension.
Also in the area of numerical treatment of Willmore flow several papers have been
published. In [43] Dzuik, Kuwert and Schätzle focused on a theoretical and numerical
treatment of Willmore flow of curves. In comparison to this Rusu [89] dealt with
the numerical approximation of parametric Willmore flow of surfaces and presented a
mixed scheme based on the surface parametrization x and the mean curvature vector
hn (with n being the surface normal) as independent variables. An application of this
ansatz in case of surface restoration can be found in the paper of Clarenz et al. [25].
A related level set formulation, which deals with a slightly different splitting based on
the level set function φ and the curvature density function h|∇φ| was presented by
Droske and Rumpf in 2004 [38]. Deckelnick and Dzuik [31] focused on error analysis for
spatially discretized, time-continuous Willmore flow of graphs. Within this work they
used an analogous splitting in context of piecewise linear finite elements and proved
L∞(L2)- as well as L2(L2)-error bounds of order O(h2(log h)2) for the discretized
graph solution. Later Deckelnick and Schieweck [33] focused on axially symmetric
surfaces and proved convergence of a conforming finite element approximation. They
proved an L2(L2)-error bound of order O(h4) and L∞(H i)-error bounds for i = 0, 1, 2
of order O(h4−i). In the same year Dziuk and Deckelnick [34] published a paper
dealing with error analysis of elastic flow of curves. They proved L∞(H1)- as well
as L2(L2)-error bounds of order O(h). For parametric Willmore flow Barrett, Garcke
and Nürnberg [7] and Dziuk [44] presented an alternative finite element algorithm.
In comparison to all these papers the one by Bobenko and Schröder [15] deals with
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1 Introduction

a different topic. They present a discretized Willmore flow scheme which takes into
account a circle pattern on the surface. The temporal evolution of this circle pattern
reflects the invariance of Willmore flow with respect to Möbius transformations.

1.2 Phase field based Willmore flow and mean curvature
motion in literature

Since phase field based mean curvature motion as well as phase field based Willmore
flow are main topics of this work we give a short survey on papers dealing with these
topics while we concentrate on a content based survey on phase field discretizations
in Section 2.1.
Already 1977 Modica and Mortola proved in [74] for a properly chosen double well
function Ψ the Γ-convergence of the nowadays called Modica-Mortola energy

aε[u] =
1
2

ˆ
Ω
ε|∇u|2 +

1
ε

Ψ(u) dx

to the area functional. Based on this Modica presented a phase field model for mean
curvature motion in [73]. In 1994 Nochetto, Paolini and Verdi [80, 79] proved an
error estimate of order O(ε2) between the exact evolution of an interface under mean
curvature motion and the corresponding evolution of a diffuse interface computed
with a phase field mean curvature motion model. More recently, Evans, Soner and
Souganidis proved in [50] that a scaled Allen–Cahn equation leads to a generalized
motion by mean curvature.
In [30] it is presented the so-called de Giorgi conjecture. It states that the functional

wε[u] =
1
2ε

ˆ
Ω

(
−ε∆u+

1
2ε

Ψ′(u)
)2

dx

Γ-converges to the Willmore functional. This functional is foundation for further
analytical treatment by Loretti and March in [69] and Bellettini and Mugnai in [8].
Du et al. [39] focused on the Euler–Lagrange equation of the phase field formulation
and proved by formal asymptotics that it converges to the Euler–Lagrange equation of
the Willmore energy (1.1). A corresponding Γ-convergence result for a modified func-
tional was finally presented by Röger and Schätzle in [88]. Recently Dondl, Mugnai
and Röger used a phase field model for minimizing Euler’s elastica energy of non-
overlapping curves in a bounded domain [36].
In the area of papers dealing with numerically discretized phase field models Chen et al.
[23] proved that the zero level set of the solution of the Allen-Cahn equation converges
to the mean curvature motion as ε goes to zero if h,

√
τ = O(εp) for p > 1 for grid size

h and the time step size τ . In 2005 Deckelnick, Dziuk and Elliott presented in [32] a
survey of different discretization of mean curvature flow. They compare the paramet-
ric, graph, level set and phase field based ansatz. With respect to the simulation of
fourth order PDEs based on phase field models, Elliott et al. [45] proved (among other
estimates) for a splitting scheme for the Cahn–Hilliard evolution an O(h2) estimate
for the L∞(L2)-error. In 1992 Elliott and Larsson analyzed a corresponding time-
discretized backward Euler scheme and verified an O(h2 + τ) error estimate. The last
paper we mention here are written by Du et al. [40, 42]. They presented a discrete

14



1.2 Phase field based Willmore flow and mean curvature motion in literature

semi-implicit scheme for Willmore flow based on the above phase field energy wε[·].
Their model is important with respect to our work since we compare it with the one
presented here in Section 5.2.
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Chapter 2

Foundations

This chapter starts with a short survey of three mathematical topics that are fun-
damental for this work. Since we work with phase field approximations we shortly
introduce two widespread kind of phase field functions and focus on the type we will
work with. After this we present some basic knowledge on Finite Element discretiza-
tions and particularly present the notation used in this work. Finally this chapter is
finished with a more detailed survey on solving constrained minimization problems.

2.1 Phase Field approximations

Phase field functions are appropriate to deal with discontinuity sets that often arise in
computer vision or physics. In general there are several kinds of phase field functions.
Two well known types are presented in this section: Ambrosio-Tortorelli type phase
field functions, also called single well phase field functions and Modica-Mortola or
double well phase field functions.
Single well phase field functions are often used for free discontinuity problems like
finding the cartoon of a given image y0 : Ω → R with image domain Ω ⊂ Rd. A
cartoon is a pair (y,K) consisting of a piecewise smooth function y : Ω \ K → R
and a discontinuity set K ⊂ Ω. The cartoon of a given image y0 can be found by
minimizing the Mumford-Shah functional (cf. [76, 3])

elMS[y,K] =
ˆ

Ω\K
|∇y|2 + α|y − y0|2 dx +νHd−1(K) . (2.1)

The first term acts as a smoother, preserving edges, the second term measures how
well y approximates the given image y0 and the (d−1)-dimensional Hausdorff measure
Hd−1 controls the length of the discontinuity set K. As discontinuity sets are difficult
to handle, one introduces a phase field function, in this case a single well phase field
function u. It approximates 1− χK , where χK denotes the characteristic function of
the set K. Using this kind of phase field function we can approximate Hd−1(K) by
the Ambrosio-Tortorelli approximation

eεAT[u] =
1
2

ˆ
Ω
ε|∇u|2 +

1
ε

(1− u)2 dx ,

while the first term of the Mumford-Shah functional (2.1) is approximated by
ˆ

Ω\K
|∇y|2 dx ≈

ˆ
Ω
u2|∇y|2 dx .
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2 Foundations

The so-called optimal profile [17] of such a phase field function is u(x) = 1−e−
dist(x,K)

ε ,
where dist(x,K) denotes the distance of a point x to the set K. In one dimension,
following Berkels [11], we set K = {0}, Ω = [0,∞) and get

Lemma 2.1 (Optimal profile of an Ambrosio-Tortorelli phase field function in 1D).
The function uε : [0,∞)→ R, x 7→ 1− e−

x
ε minimizes

1
2

ˆ ∞
0

ε|u′(x)|2 +
1
ε

(1− u(x))2 dx (2.2)

under the boundary conditions u(0) = 0 and lim
x→∞

u(x) = 1.

Proof. The second derivative of the function uε(x) = 1− e−
x
ε is

(uε)′′ (x) = − 1
ε2
e−

x
ε .

Thus uε(x) solves the Euler–Lagrange equation of (2.2)

−εu′′(x)− 1
ε

(1− u(x)) = 0

and as uε(0) = 0 and lim
x→∞

uε(x) = 1 it fulfils both boundary conditions. Combined
with the convexity of the functional and the fact that it is finite if it is evaluated in
uε the proof is completed.

Double well phase field functions or Modica-Mortola type phase field functions arise in
a wide range of problems. One example of a phase transition problem is the study of
the behavior of metal alloys consisting of two components [18, 46]. Moreover Modica-
Mortola type phase field functions arise in the study of two-phase incompressible
flows [91, 68, 54] as well as in the study of reaction-diffusion systems [53]. Another
example is image segmentation where an image y0 : Ω → R is given and has to be
decomposed into two regions described by a piecewise constant function w : Ω →
{−1, 1}. As presented in [100], a model for partitioning a given image y0 into two
regions depending on the deviation of the image from two given values c1, c2 ∈ R is

min
w
Hd−1(Ω ∩ ∂{x ∈ Ω : w(x) = 1}) +

ˆ
Ω

(w + 1)|y0 − c1|2 + (w − 1)|y0 − c2|2 dx

on the set {w : Ω→ {−1, 1}}. In this case the (d− 1)-dimensional Hausdorff measure
of the discontinuity set acts as regularizer. To deal with the discontinuity set we
use a Modica-Mortola type phase field function u ∈ H1(Ω) which approximates the
piecewise constant function w : Ω→ {−1, 1}. Hence, the (d−1)-dimensional Hausdorff
measure of the discontinuity set is approximated by the Modica-Mortola energy [74]

aε[u] =
1
2

ˆ
Ω
ε|∇u|2 +

1
ε

Ψ(u) dx , (2.3)

where Ψ : R→ R denotes a double well potential with global minima Ψ(−1) = Ψ(1) = 0.
If we set Ψ(u) = (1−u2)2, the optimal profile of the Modica-Mortola type phase field
function is given by u(x) = tanh

(
sgndist(x,K)

ε

)
. In this formula the discontinuity set

is again denoted by K and sgndist(x,K) is the signed distance of a point x ∈ Ω to
the set K ⊂ Ω with negative sign in the interior of K.
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2.1 Phase Field approximations

Lemma 2.2 (Optimal profile of a Modica-Mortola type phase field function in 1D).
The function uε : R→ R, x 7→ tanh

(
x
ε

)
minimizes

1
2

ˆ
R
ε|u′|2 +

1
ε

(
1− u2

)2 dx (2.4)

under the boundary conditions lim
x→−∞

u(x) = −1 and lim
x→∞

u(x) = 1.

Proof. By the direct method in the calculus of variations one proves the existence of
a minimizer. Following Braides [17] one estimates by applying Young’s inequality

1
2

ˆ
R
ε|u′|2 +

1
ε

Ψ(u) dx ≥
∣∣∣∣ˆ u(∞)

u(−∞)

√
Ψ(u) du

∣∣∣∣
for all u. Since

(uε)′ (x) =
1
ε

(
1− tanh2

(x
ε

))
,

uε(0) = 0

uε solves the ordinary differential equation

u′(x) =
1
ε

√
Ψ(u(x)) ,

u(0) = 0

which is equivalent to

u′(x) =
1
ε

(
1− u2(x)

)
,

u(0) = 0

with Ψ(u) =
(
1− u2

)2. Moreover lim
x→−∞

uε(x) = −1 and lim
x→∞

uε(x) = 1.

Now let ũ be a minimizer of (2.4) with lim
x→−∞

ũ(x) = −1 and lim
x→∞

ũ(x) = 1. Then

1
2

ˆ
R
ε|ũ′|2 +

1
ε

Ψ(ũ) dx ≤ 1
2

ˆ
R
ε|(uε)′|2 +

1
ε

Ψ(uε) dx

=
ˆ uε(∞)

uε(−∞)

√
Ψ(uε) duε .

Consequently∣∣∣∣ ˆ ũ(∞)

ũ(−∞)

√
Ψ(ũ) dũ

∣∣∣∣ ≤ 1
2

ˆ
R
ε|ũ′|2 +

1
ε

Ψ(ũ) dx ≤
ˆ uε(∞)

uε(−∞)

√
Ψ(uε) duε .

From this it follows that uε is a minimizer of (2.4).

In this work we deal with Modica-Mortola type phase field functions. Thus we con-
centrate on this type and regard the Modica-Mortola energy (2.3) in more detail.
The second term of the integrand in (2.3) consists of the double well potential, which
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in this work is Ψ(u) =
(
1− u2

)2. This term penalizes values of u being different
from −1 or 1. However it does not prevent u from oscillating between these two
values. Therefore we need the first term, containing the gradient of u. The scaling
of the higher order term is explained by Braides in [17] for the one dimensional case:
consider

ˆ y+δ

y
ε|u′(x)|2 dx +

ˆ y+δ

y

1
ε

Ψ(u(x)) dx (2.5)

on the interval (y, y+ δ), where u(y) is close to −1 and u(y+ δ) close to 1. Thus δ is
the interface transition width. As Ψ(u(x)) is bounded on (y, y + δ), the contribution
of the second term is of order δ

ε . With respect to the special choice of the interval
(y, y + δ) the contribution of the first term is of order ε

δ . Thus (2.5) is of order ε
δ + δ

ε
which is minimal and positive for ε = δ. It follows: if (2.5) is bounded the number of
such intervals is bounded and therefore u does not oscillate between −1 and 1.
Now we introduce the so-called Γ-convergence which is fundamental for the next the-
orem.

Definition 2.3 (Γ-convergence). Let X be a topological space and fi : X → R∪{∞},
i ∈ N a sequence of functionals. Then we say fi Γ-converges to f : X → R ∪ {∞}, if
for every x ∈ X the following two conditions hold:

(i) For every sequence xi ∈ X, i ∈ N with xi
i→∞−→ x

f(x) ≤ lim inf
i→∞

fi(xi) .

(ii) There exists a sequence xi ∈ X, i ∈ N with xi
i→∞−→ x, such that

f(x) ≥ lim sup
i→∞

fi(xi) .

In Chapter 3 we will use that aε[·] Γ-converges to 4
3H

d−1[·] for ε→ 0 and double well
potential Ψ(u) =

(
1− u2

)2. Here the factor 4
3 is induced by the fact that

ˆ 1

−1

√
Ψ(s) ds =

4
3

for Ψ(u) =
(
1− u2

)2. The more general version of this statement deals with an
arbitrary Ψ ∈ C1(R) with global minima Ψ(−1) = Ψ(1) = 0.

Theorem 2.4. Let

aε[u] :=
{

1
2

´
Ω ε|∇u|

2 + 1
εΨ(u) dx if u ∈ H1(Ω)

∞ else,

then

Γ− lim
ε→0

aε =
ˆ 1

−1

√
Ψ(s) ds Per(·) ,
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2.1 Phase Field approximations

where Per : L1(Ω)→ [0,∞] is the perimeter functional

Per(u) :=
{
Hd−1(Ω ∩ ∂{x ∈ Ω : u(x) = 1}) if u : Ω→ {−1, 1}
∞ else

and the Γ-limit is taken with respect to the L1(Ω)-topology.

For the proof we refer to [17]. In this work we present a two-dimensional computation
which illustrates the impact of this Theorem. Regard the zero level set of u, denoted
by [u = 0] as curve with arc length parametrization γ(s), where s denotes the arc
length parameter. Then each point x ∈ Uδ([u = 0]) in a δ-neighborhood of the zero
level set of u can be written as x(s, t) = γ(s) + tn(s) with t ∈ R and n(s) being the
outer unit normal vector to the curve γ in γ(s). We choose δ small, but big enough
such that u(x) approximately equals 1 or −1 for all x ∈ Ω \Uδ([u = 0]), consequently
Ψ(u) = |∇u| = 0 on Ω \ Uδ([u = 0]). Thus we do a change of coordinates and
approximate the Modica-Mortola energy

aε[u] =
1
2

ˆ
Ω
ε|∇u|2 +

1
ε

Ψ(u) dx

≈ 1
2

ˆ
γ−1([u=0])

ˆ δ

−δ

(
ε|∇uε(s, t)|2 +

1
ε

Ψ(uε(s, t))
)
|detDx(s, t)|dt ds .

As before uε denotes the optimal profile (cf. Lemma 2.1 and 2.2).
At the point γ(s), we denote the tangent vector to the curve γ with t(s). Moreover
let h be the mean curvature of γ and (t(s) , n(s)) the matrix consisting of the two
columns t(s) and n(s). Then we get with respect to the Frenet formula n′(s) = ht(s)

| det(Dx(s, t))| = |det
(
γ′(s) + tn′(s) , n(s)

)
|

= |(1 + th) det (t(s) , n(s)) |
= |1 + th| . (2.6)

In a δ-neighborhood of [u = 0] and with δ small enough we can approximate

| det(Dx(s, t))| ≈ 1 .

For the following corollary we need the definition

Definition 2.5. We write

f = g +O(h) as x→ x0

provided there exists a constant C such that

|f(x)− g(x)| ≤ C|h(x)|

for all x sufficiently close to x0.

In other words: f = g+O(h) as x→ x0 if and only if f − g = O(h) as x→ x0. Based
on this notation we state:
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Corollary 2.6. Let uε : R→ R, x 7→ tanh
(
x
ε

)
and a ∈ R>0 then

ε

ˆ a

−a

(
(uε)′ (t)

)2 dt =
4
3

+O(σ(a, ε))

with σ(a, ε) := 2
(
1− tanh

(
a
ε

))2 (1 + tanh
(
a
ε

))
.

Moreover, for a ≥ − ε
2

(
ln 1

2 + 3
2 ln δ

)
with δ ∈ R>0

ε

ˆ a

−a

(
(uε)′ (t)

)2 dt =
4
3

+O(δ3) .

Proof. From the proof of Lemma 2.2 we know (uε)′ (x) = 1
ε

√
Ψ(uε(x)). Thus, using

a simple coordinate transformation we get

ε

ˆ a

−a

(
(uε)′ (t)

)2 dt =
ˆ uε(a)

uε(−a)

√
Ψ(uε) duε

=
ˆ 1

−1

(
1− (uε)2

)
duε +

ˆ
[−1,1]\[uε(−a),uε(a)]

(
(uε)2 − 1

)
duε

=
4
3

+O(σ(a, ε)) .

In the last line we have used∣∣∣∣ ˆ
[−1,1]\[uε(−a),uε(a)]

(
(uε)2 − 1

)
duε

∣∣∣∣ ≤ ˆ
[−1,1]\[uε(−a),uε(a)]

| (uε)2 − 1| duε

≤
ˆ

[−1,1]\[uε(−a),uε(a)]

(
1− tanh2

(a
ε

))
duε

= 2
(

1− tanh
(a
ε

))(
1− tanh2

(a
ε

))
= σ(a, ε) .

As 1− tanh
(
a
ε

)
≤ 2e−2a

ε we estimate

σ(a, ε) ≤ 4
(

2e−2a
ε

)2
.

Moreover a ≥ − ε
2

(
ln 1

2 + 3
2 ln δ

)
is equivalent to 2e−2a

ε ≤ δ
3
2 .

As Ψ(u) =
(
1− u2

)2 is the double well potential used before, uε(s, t) is the optimal
profile from Lemma 2.2, only depending on t and with Corollary 2.6 we get

aε[u] ≈ 1
2

ˆ
γ−1([u=0])

ˆ δ

−δ
ε|∇uε(t)|2 +

1
ε

Ψ(uε(t)) dt ds

=
1
2

ˆ
γ−1([u=0])

ˆ δ

−δ

2
ε

Ψ(uε(t)) dt ds

≈ 4
3

ˆ
γ−1([u=0])

ds

≈ 4
3
Hd−1([u = 0]) .

Thus this approximate computation leads to the same result as presented in Theo-
rem 2.4.
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2.2 Finite Element discretization

2.2 Finite Element discretization

In most cases we use the linear Finite Element method for the spatial discretization
of our models. Only in Chapter 6 we use the multilinear Finite Element method for
some special terms. Thus we recall both versions in this section and introduce the
notation. For further information we refer to [16].
In case of the linear Finite Element method our computational domain Ω, which is
[0, 1]d with d = 2, 3 is covered by a regular and uniform simplicial mesh T . The
elements of this mesh are triangles in 2D and tetrahedra in 3D, both denoted by
T ∈ T . Moreover I denotes the vertex index set of T . With P1 denoting the space of
affine functions the Finite Element space of continuous, piecewise affine functions is

V :=
{

Φ ∈ C0(Ω) : Φ|T ∈ P1 ∀T ∈ T
}
.

This Finite Element space is spanned by the usual nodal basis {Φi}i∈I . Here, the
basis function Φi is uniquely defined as the continuous, piecewise linear function with
the nodal property

Φi(xj) =
{

1 for i = j ,
0 else,

(2.7)

where xi denotes a vertex of the grid T . Now the Finite Element discretization of a
continuous function f : Ω→ R is F =

∑
i∈I FiΦi, where Fi = f(xi). Note, within this

work we denote continuous functions with lower case letters and their Finite Element
discretizations with upper case letters. The corresponding nodal coordinate vector is
F = (Fi)i∈I .
In order to write down the matrix formulation of our discretized models we introduce
the weighted lumped mass matrix

M[λ] =
(ˆ

Ω
Ih (λΦiΦj) dx

)
i,j

,

where λ : Ω → R is an arbitrary continuous weight function and Ih denotes the
Lagrange interpolation. The canonical lumped mass matrix is denoted by M = M[1]
and the stiffness matrix is given by

L =
(ˆ

Ω
∇Φi · ∇Φj dx

)
i,j

.

M[λ] and M are lumped mass matrices and consequently diagonal by definition. The
stiffness matrix L is also a sparse matrix, but here all entries Li,j are different from
zero for which the nodes xi and xj are either equal or adjacent in the mesh T . To
compute the nonzero entries we use midpoint quadrature, which is exact for linear
finite elements.

For f : Ω→ Rd being a vector valued function its Finite Element discretization is

F =
∑
i∈I

k=1,...,d

F ki Φk
i ,
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h

Figure 2.1: A uniform rectangular grid C (solid lines) and the corresponding uniform
simplicial grid T (solid and broken lines). The vertices of both meshes are identical
and the mesh resolution h, too.

where Φk
i = (0 . . . 0 Φi 0 . . . 0)T = Φiek and Φi denotes the ith basis vector of V. In

this work we often deal with the problem of solving a system of equations of the form
∇(U,V,P )L[U, V, P ] = 0. We regard the three unknowns as one vector valued function
with three components. As we use a Newton method to solve this problem we need to
calculate a Hessian D2L whose entries are matrices in the discretized version. Thus
we have to deal with so-called block matrices, for which we introduce the following
notation. In case of a d× d block matrix A we write

A =
(
Ak,li,j

)
i,j∈I, k,l=0,...d−1

,

where the indices k and l denote the position of the block entry and i, j are the indices
within each block iterating over all entries of the vertex index set I.

In case of multilinear Finite Elements our computational domain Ω is covered by
a uniform rectangular grid C. Here, the elements are squares in 2D and cubes in
3D. In both cases we denote them by C ∈ C. As we can see in Figure 2.1 the vertex
index set I is independent of the choice between linear and multilinear Finite Element
discretization and the mesh resolution h is identical in both cases, too. Let Pm1 be the
set of multilinear functions. Then the Finite Element space of continuous, piecewise
multilinear functions is

Vm :=
{

Φ ∈ C0(Ω) : Φ|C ∈ Pm1 ∀C ∈ C
}
.

Although the basis functions of Vm fulfill the nodal property (2.7), they are not
identical to the basis functions of V. Nevertheless, by a slight misuse of notation, we
denote them by Φi, too. Within this work we specify in advance which terms of a
functional are discretized by linear or multilinear Finite Elements, but afterwards we
use the same notation, that means, lower case letters for continuous functions, upper
case letters for discretized functions and upper case letters with bar on top for the
corresponding nodal vector.
As we will see in Chapter 6 we use both discretizations within one functional. This
is uncomplicated, because as we have seen the vertex index set of both kinds of

24



2.3 Survey of solving constrained minimization problems

discretizations is identical and thus the nodal vector we are working with is identical,
too. We only have to be careful in being consistent in all derivatives of the functional.
Moreover, in Section 6.3 we will have to evaluate functions of type

f(x1, . . . , xd−1) =
ˆ 1

0
f̃(x) dx d

with x ∈ Rd and f̃ : Rd → R and integrals
ˆ

[0,1]d−1

f(x1, . . . , xd−1) dx 1,...,d−1 . (2.8)

Thus it is convenient to use multilinear Finite Element discretization with tensor
product Gaussian quadrature [28]. This allows us to write an integral of type (2.8)
as a single integral over the whole d-dimensional cube [0, 1]d. Within this work we
use in case of multilinear Finite Elements Gaussian quadrature with two quadrature
points in the direction of each coordinate axis at (1− 1√

3
)/2 and (1 + 1√

3
)/2 [93].

2.3 Survey of solving constrained minimization problems

Solving a constrained minimization problem is a central issue in this work. Thus we
give a short survey of this topic. We orient ourselves mainly on the book of Nocedal
and Wright [78] and adapt it to our problem setup by treating equality constraints
only. In the literature, the problem

min
x∈Rn

f(x) subject to ci(x) = 0 ∀i ∈ E , (2.9)

with f, ci : Rn → R and finite index set E is often regarded. We will see in the follow-
ing chapters that we always have to minimize functionals over function spaces. But
at the end we regard the discretized case and consequently we have again a problem
of type (2.9).

One well known possibility to solve such problems consists in solving the corresponding
saddle point problem. We set up the Lagrange function

`(x, p) = f(x)−
∑
i∈E

pici(x) (2.10)

consisting of the function f we want to minimize and the scalar product of the La-
grange multiplier vector p = (pi)i∈E and the vector of constraints c(x) = (ci(x))i∈E . A
saddle point (x∗, p∗) of this Lagrange function has to fulfill the Karush-Kuhn-Tucker
(KKT) conditions

∇x`(x∗, p∗) = ∇xf(x∗)−
∑
i∈E

p∗i∇xci(x∗)
!= 0 ,

∇p`(x∗, p∗) = c(x∗) != 0 .

This method is used in most parts of this work, but a disadvantage is that it requires
solving a saddle point problem. Thus simple step size controls based on line search
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methods which aim to minimize an energy or function, do not work in general.

Another way to solve problem (2.9) requires setting up the quadratic penalty function

q(x;λ) = f(x) +
λ

2

∑
i∈E

c2
i (x)

with penalty parameter λ > 0. With this method one computes an approximate solu-
tion of problem (2.9) by minimizing the unconstrained function q(x;λ) for a series of
growing λ. A disadvantage of this method consists in the fact that, depending on the
choice of λ the quadratic penalty function can be unbounded below although the orig-
inal constrained problem has an exact solution (cf. [78]). Moreover the approximate
minimizer xk of the quadratic penalty function q(x;λk) does not fulfill the constraint
exactly. In [78] it is proven that

ci(xk) ≈ −
p∗i
λk
, ∀i ∈ E .

This will be prevented by using a different method, which is based on both methods
previously presented in this section. In contrast to the quadratic penalty method,
which is not used in this work, this other method will be used in Chapter 7.

This previously mentioned method is the Augmented Lagrange method or method of
multipliers. It obviously bases on the two presented methods, as the structure of the
Lagrange function `(x, p) appears in the Augmented Lagrange function

`A(x, p;λ) = f(x)−
∑
i∈E

pici(x) +
λ

2

∑
i∈E

c2
i (x)

as well as the structure of the quadratic penalty function q(x;λ). Within this method
one chooses a fixed estimate of the Lagrange multiplier vector pk and a fixed λk > 0.
For these parameters one minimizes `A(·, pk;λk) approximately until pk and λk are up-
dated to pk+1 and λk+1 and `A(·, pk+1;λk+1) is approximately minimized. A suitable
update formula for the Lagrange multiplier bases on the comparison of the optimality
condition ∇x`A(xk, pk;λk) = 0 for unconstrained minimization problem with the first
Karush-Kuhn-Tucker condition ∇x`(x∗, p∗) for a saddle point (x∗, p∗) of the Lagrange
function (2.10). This update formula is

pk+1
i = pki − λkci(xk) ∀i ∈ E .

In general convergence of this method can be assured even if λ is not increased indef-
initely. Thus the problem of being ill conditioned is less critical than in the quadratic
penalty method. Moreover Bertsekas proved in [14] that an approximate solution xk

is close to the exact solution x∗ if p is the exact Lagrange multiplier or λ is big enough.
However the main advantage of the Augmented Lagrange method is that we have to
solve an unconstrained minimization problem in each Augmented Lagrange iteration
and do not have to find a saddle point any more.
In most parts the concrete Algorithm for the Augmented Lagrange method is equal
to an algorithm implemented in the LANCELOT software package [26]. The original
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version handles equality and inequality constrains, but we implemented the equality
constrained version, only. This algorithm can also be found in [78].
In this algorithm η∗ and w∗ denote final convergence tolerances: η∗ guaranties that
the L2-norm of the constraint is lower than allowed and w∗ is the tolerance which has
to be fulfilled by the L2-norm of the gradient of the Augmented Lagrange function. In
comparison to this ηk and wk are the corresponding temporal convergence tolerances
which are adpated in each iteration.
The constants 100, 0.1 and 0.9 in the update formula for λk+1 and ηk+1 are unchanged
in comparison to the original version of this algorithm presented in [78]. In general
it is possible to slightly modify these constants without compromising the theoretical
convergence properties of Algorithm 2.1. This special choice of constants guarantees:
if the L2-norm of the constraint is less or equal ηk than the Lagrange mutliplier is
updated, λk is unchanged and the convergence tolerances ηk and wk are reduced.
Here the constant 0.9 in the update formula for ηk+1 guarantees a stronger reduction
of wk than of ηk. If the L2-norm of the constraint is greater than ηk the Lagrange
multiplier is unchanged, while λk grows by a factor 100. In this case the convergence
tolerances wk and ηk also grow. Now the constant 0.1 guarantees a lower value for
wk+1 than for ηk+1.

27



2 Foundations

Algorithm 2.1: Augmented Lagrange method

given: initial point x0 and initial Lagrange multipliers p0;
given: convergence tolerances η∗ and w∗;
given: maximal number of Augmented Lagrange iterations Kmax;
given: penalty parameter λ0;
Set w0 = 1

λ0
and η0 = 1

λ0.1
0

;

for k = 0 to Kmax do
find an approximate minimizer xk of `A(·, pk;λk) such that

‖∇x`A(xk, pk;λk)‖L2 ≤ wk;

if ‖c(xk)‖L2 ≤ ηk then
if ‖c(xk)‖L2 ≤ η∗ and ‖∇x`A(xk, pk;λk)‖L2 ≤ w∗ then

stop;
end
pk+1 = pk − λkc(xk);
λk+1 = λk;
ηk+1 = ηk

λ0.9
k+1

;

wk+1 = wk
λk+1

;
else

pk+1 = pk;
λk+1 = 100λk;
ηk+1 = 1

λ0.1
k+1

;

wk+1 = 1
λk+1

;
end

end
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Chapter 3

Nested time discretization of
Willmore flow

3.1 Derivation of the model

Before we deal with the derivation of the whole model let us have a look at the natural
time discretization of mean curvature motion, which is part of our model. Originally
Luckhaus and Sturzenhecker [70] presented this ansatz to develop an implicit time
discretization for mean curvature motion. Later Chambolle [21] transferred it to the
level set version, and recently Olischläger and Rumpf [81, 82] used this ansatz to
develop a two step time discretization for Willmore flow in the parametric case.

3.1.1 Natural time discretization of mean curvature motion

We consider the general case of a (d− 1)-dimensional hypersurface Γ evolving under
a gradient flow. Let the hypersurface Γ be contained in a computational domain
Ω ⊂ Rd and x : Γ → Γ be the identity on Γ. The Riemannian manifold consist-
ing of all admissible hypersurfaces Γ is denoted by M and provided with a metric
gΓ : TΓM× TΓM→ R. Here TΓM is the tangent space to M in Γ and in this work
the expression metric is used in the same sense as the expression scalar product. The
energy which will be minimized by a gradient flow is e :M→ R. With this notation
the gradient flow equation minimizing the energy e[·] with initial data x0 ∈M is

∂t x(t) = − gradgΓ
e[x(t)] (3.1a)

x(0) = x0, (3.1b)

where the gradient is defined by

Definition 3.1. Let M be a manifold, TΓM the tangent space to M in Γ ∈ M,
x : Γ→ Γ the identity on Γ, e :M→ R a scalar mapping and gΓ : TΓM×TΓM→ R
a metric on M. Then the gradient of e is defined by

gradgΓ
e[x] = v ∈ TΓM :⇔ ∀w ∈ TΓM, gΓ(v, w) = 〈e′[x], w〉,

where 〈e′[x], w〉 = d
dεe[cw(ε)]

∣∣
ε=0

with c ∈ C1([0, 1],M) and c(0) = x, ċw(0) = w.

To solve the gradient flow equation one can approximate the time derivative or use a
natural time discretization, based on a variational ansatz, leading to a time discrete
solution.
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3 Nested time discretization of Willmore flow

Definition 3.2 (Natural time discretization). Given a manifold M with metric
gΓ : TΓM× TΓM→ R and a parametrization xk of a hypersurface Γk ∈ M at time
kτ . Define the parametrization xk+1 of the hypersurface Γk+1 ∈ M at time (k + 1)τ
by

xk+1 := argmin
x

(
dist(x, xk)2 + 2τe[x]

)
, (3.2)

where

dist(x, xk) := inf
c∈S

ˆ 1

0

√
gc(s)(ċ(s), ċ(s)) ds

denotes the shortest path length on the manifold, with respect to the metric gc(s) and

S := {c ∈ C1([0, 1],M) : c(0) = xk, c(1) = x}.

In [83], Otto proved that the Euler–Lagrange equation of the natural time discretiza-
tion (3.2) coincides with the implicit Euler method for the gradient flow equation
(3.1a). Additionally, by the definition of the natural time discretization we directly
get an energy estimate, which guarantees the energy decay in each time step.

Corollary 3.3 (Energy estimate). Let (xk)k∈N be a sequence of parametrizations of a
sequence of hypersurfaces

(
Γk
)
k∈N solving the natural time discretization of a gradient

flow minimizing e[·]. Then,
e[xk+1] ≤ e[xk].

Proof. As xk+1 is the minimizing argument of dist(x, xk)2 + 2τe[x] and by the posi-
tiveness of dist(x, xk)2 we get

e[xk+1] ≤ e[xk+1] +
1
2τ

dist(xk+1, xk)2 ≤ e[xk] +
1
2τ

dist(xk, xk)2 = e[xk].

In the special case of mean curvature motion we choose as metric gΓ : TΓM× TΓM→ R
on the Riemannian manifoldM the L2-metric on the hypersurface Γ and denote it by
(·, ·)L2(Γ) . The parametrization of the initial hypersurface Γ(0) is x0 : Γ(0) → Γ(0),
while each other hypersurface Γk = Γ(kτ) at time kτ is parametrized over the previ-
ous hypersurface Γk−1 by xk : Γk−1 → Rd. Then the natural time discretization of
mean curvature motion is

Definition 3.4 (Natural time discretization of mean curvature motion). Given a
parametrization xk of a hypersurface Γk ∈ M at time kτ , define the parametrization
xk+1 of the hypersurface Γk+1 ∈M at time (k + 1)τ by

xk+1 := argmin
x:Γk→R

‖x− xk‖2L2(Γk) + 2τHd−1[x(Γk)] . (3.3)

In a next step, we introduce the phase field version of the natural time discretization
of mean curvature motion. We denote the phase field function, representing x(Γk) by
u and use Theorem 2.4 to replace Hd−1[x(Γk)] by 3

4a
ε[u]. To replace the first term of

(3.3) we introduce the following lemma.
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Lemma 3.5. Let uε : R → R, t 7→ tanh
(
t
ε

)
and δ, a ∈ R>0 with δ � 1 and

a ≥ − ε
2

(
ln 1

2 + 3
2 ln δ

)
. Then

ε

ˆ a

−a
(uε(t)− uε(t− δ)))2 dt =

4
3
δ2 (1 +O(Θ(δ, ε))) ,

where Θ(δ, ε) :=
√
δ
ε + δ2

ε2
+ δ3.

Proof. The Taylor expansion of uε(t− δ) is

uε(t− δ) = uε(t)− (uε)′(t)δ +
ˆ t−δ

t
(t− δ − s̃) (uε)′′(s̃) ds̃

= uε(t)− (uε)′(t)δ +
ˆ 1

0
(t− δ − t+ sδ) (uε)′′(t− sδ)(−δ) ds

= uε(t)− (uε)′(t)δ + δ2

ˆ 1

0
(1− s) (uε)′′(t− sδ) ds

in which we have used a coordinate transformation s̃ := t − sδ in the Lagrange
Remainder. Comparing with Corollary 2.6 we get

ε

ˆ a

−a
(uε(t)− uε(t− δ))2 dt = ε

ˆ a

−a

(
(uε)′(t)δ + δ2

ˆ 1

0
(s− 1)(uε)′′(t− sδ) ds

)2

dt

= ε

ˆ a

−a
δ2
(
(uε)′(t)

)2 dt

+ 2ε
ˆ a

−a
(uε)′(t)δ3

ˆ 1

0
(s− 1)(uε)′′(t− sδ) ds dt

+ ε

ˆ a

−a
δ4

(ˆ 1

0
(s− 1)(uε)′′(t− sδ) ds

)2

dt

= δ2

(
4
3

+O(δ3)
)

+ 2ε
ˆ a

−a
(uε)′(t)δ3

ˆ 1

0
(s− 1)(uε)′′(t− sδ) ds dt

+ ε

ˆ a

−a
δ4

(ˆ 1

0
(s− 1)(uε)′′(t− sδ) ds

)2

dt

=
4
3
δ2
(
1 +O(δ3) + ϑ(δ, ε)

)
with

ϑ(δ, ε) :=
3
2
ε

ˆ a

−a
(uε)′(t)δ

ˆ 1

0
(s− 1)(uε)′′(t− sδ) ds dt

+
3
4
ε

ˆ a

−a
δ2

(ˆ 1

0
(s− 1)(uε)′′(t− sδ) ds

)2

dt
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3 Nested time discretization of Willmore flow

Finally we have to show that ϑ(δ, ε) = O
(√

δ
ε + δ2

ε2

)
.

|ϑ(δ, ε)| ≤ 3
2
ε

ˆ a

−a
|(uε)′(t)δ

ˆ 1

0
(s− 1)(uε)′′(t− sδ) ds | dt

+
3
4
εδ2

ˆ a

−a

(ˆ 1

0
(s− 1)(uε)′′(t− sδ) ds

)2

dt

≤ 3
2
εδ

(ˆ a

−a

(
(uε)′(t)

)2 dt
) 1

2

(ˆ a

−a

(ˆ 1

0
(s− 1)(uε)′′(t− sδ) ds

)2

dt

) 1
2

+
3
4
εδ2

ˆ a

−a

(ˆ 1

0
(s− 1)(uε)′′(t− sδ) ds

)2

dt

≤ 3
2
εδ

(
C

ε

) 1
2
(
C

δε3

) 1
2

+
3
4
εδ2C

ε3

≤ C

(√
δ

ε
+
δ2

ε2

)

Here we have used the inequality
´ a
−a (((uε)′(t))2 dt ≤ Cε−1 from Corollary 2.6 and

estimated

ˆ a

−a

(ˆ 1

−1
(s− 1)(uε)′′(t− sδ) dx

)2

dt ≤
ˆ a

−a

ˆ 1

−1
(s− 1)2

(
(uε)′′(t− sδ)

)2 dx dt

≤
ˆ a

−a

ˆ 1

−1

(
(uε)′′(t− sδ)

)2 dx dt

=
ˆ a

−a

ˆ t−δ

t

(
(uε)′′(s̃)

)2(−1
δ

)
ds̃ dt

=
1
δ

ˆ a

−a

ˆ t

t−δ

(
(uε)′′(s̃)

)2 ds̃ dt .

Using (uε)′(x) = 1
ε

√
Ψ(uε(x)) from Lemma 2.2 we get

(uε)′′(x) =
Ψ′(uε(x))

2ε2
.
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3.1 Derivation of the model

Consequently

1
δ

ˆ a

−a

ˆ t

t−δ

(
(uε)′′(s̃)

)2 ds̃ dt =
1
δ

ˆ a

−a

ˆ uε(t)

uε(t−δ)

1
4ε4

(−4uε)2
(
1− (uε)2

)2 ε

1− (uε)2
duε dt

=
4
δε3

ˆ a

−a

ˆ uε(t)

uε(t−δ)
(uε)2

(
1− (uε)2

)2 duε dt

≤ 4
δε3

ˆ a

−a

ˆ uε(t)

uε(t−δ)
1duε dt

=
4
δε3

ˆ a

−a
(uε(t)− uε(t− δ)) dt

≤ 4
δε3

ˆ a

−a
2 dt

≤ 16a
δε3

.

Since we use a fixed a we can find a constant C such that

ˆ a

−a

(ˆ 1

−1
(s− 1)(uε)′′(t− sδ) dx

)2

dt ≤ C

δε3
.

Lemma 3.5 is essential to prove the following theorem which tells us how to replace
the first term of (3.3) in the phase field model of the natural time discretization of
mean curvature motion.

Theorem 3.6. For Γ being a (d−1)-dimensional regular hypersurface let ũε : Ω→ R,
Ω ⊂ Rd, d = 1, 2 be a phase field function taking the optimal profile normal to this
hypersurface Γ. Moreover let δ(x) = εβ(x) with β(x) > 2 be some function on Γ and n
the unit normal on Γ, where δ and n are assumed to be extended constantly in normal
direction to Γ. Then

ε

ˆ
Ω

(uε(x)− uε(x− δ(x)n(x)))2 dx =
4
3

ˆ
Γ
δ2(x)dHd−1 (1 +O (Σ (‖δ‖∞, ε))) (3.4)

with Σ(‖δ‖∞, ε)→ 0 for ε→ 0.

Proof. We start to prove the case d = 2. Therefore we use a method presented in
Section 2.1. For d = 2 the hypersurface Γ is a curve with arc length parametrization
γ(s), where s denotes the arc length parameter. Then we can write each point x ∈
Ua(Γ) in an a-neighborhood of the curve Γ as x(s, t) = γ(s) + tn(s) with t ∈ R,
|t| < a and n(s) being the unit normal vector to the curve γ in γ(s). Now we proceed
analogously as in Section 2.1 and use a coordinate transformation to rewrite the
integral at the left hand side of (3.4). We choose

a = max
(
−1

2
ln
(

1
2

)
,
3
4

max
x∈Ω

β(x)
)

(ε− ε ln(ε))
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3 Nested time discretization of Willmore flow

such that a ≥ − ε
2

(
ln
(

1
2

)
+ 3

2 ln(δ(x))
)

= − ε
2

(
ln
(

1
2

)
+ 3β(x)

2 ln(ε)
)

for all x ∈ Γ.
Then

ε

ˆ
Ω

(ũε(x)− ũε(x− δ(x)n(x)))2 dx

(2.6)
= ε

ˆ
γ−1(Γ)

ˆ a

−a
(uε(t)− uε(t− δ(x(s))))2 |1 + th|dt ds

+ ε

ˆ
Ω\Ua(Γ)

(ũε(x)− ũε(x− δ(x)n(x)))2 dx .

For the treatment of the second summand on the right hand side we use estimates
known from the proof of Corollary 2.6 and get

ε

ˆ
Ω\Ua(Γ)

(uε(x)− uε(x− δ(x)n(x)))2 dx ≤ ε
ˆ

Ω\Ua(Γ)

(
1− tanh

(a
ε

))2
dx

≤ ε
ˆ

Ω\Ua(Γ)

(
2e−2a

ε

)2
dx

≤ ε
ˆ

Ω\Ua(Γ)
δ3(x) dx

≤ ε|Ω \ Ua(Γ)|‖δ‖3∞
≤ Cε‖δ‖3∞

and for the first one

ε

ˆ
γ−1(Γ)

ˆ a

−a
(ũε(t)− ũε(t− δ(x(s))))2 |1 + th| dt ds

≤
ˆ
γ−1(Γ)

ε

ˆ a

−a
(ũε(t)− ũε(t− δ(x(s))))2 dt ds |1 + C(ε− ε ln(ε))|

La 3.5
≤
ˆ
γ−1(Γ)

4
3
δ2(x(s))

(
1 +O(δ3(x(s))) + ϑ(δ(x(s)), ε)

)
ds |1 + C(ε− ε ln(ε))|

≤
ˆ

Γ

4
3
δ2(x)dHd−1

(
1 +O(‖δ‖3∞) + ϑ(‖δ‖∞, ε)

)
|1 + C(ε− ε ln(ε))| .

Now we have to deal with
(
1 +O(‖δ‖3∞) + ϑ(‖δ‖∞, ε)

)
|1 +C(ε− ε ln(ε))|. Therefore

we define δ := ‖δ‖∞ . Moreover we use the convention that C denotes always a
constant of the right value.(

1 +O(δ3) + ϑ(δ, ε)
)
|1 + C(ε− ε ln(ε))|

proof of La 3.5
≤

(
1 + Cδ3 + C

(√
δ

ε
+
δ2

ε2

))
(1 + C (ε− ε ln(ε)))

≤ 1 + C

(√
δ

ε
+
δ2

ε2
+ δ3

)
+ C

(
ε+
√
δ +

δ2

ε
+ δ3ε

)
− C

(
ε+
√
δ +

δ2

ε
+ δ3ε

)
ln(ε)

≤ 1 + C

(√
δ

ε
+
δ2

ε2
+ δ3 + ε

)
− C

(
ε+
√
δ +

δ2

ε

)
ln(ε)
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3.1 Derivation of the model

Thus we get

ε

ˆ
Ua(Γ)

(uε(x)− uε(x− δ(x)n(x)))2 dx =
4
3

ˆ
Γ
δ2(x)dHd−1

(
1 +O(Σ̃(‖δ‖∞, ε))

)

with Σ̃(‖δ‖∞, ε) =
(√

‖δ‖∞
ε + ‖δ‖2∞

ε2
+ ‖δ‖3∞ + ε

)
−
(
ε+

√
‖δ‖∞ + ‖δ‖2∞

ε

)
ln(ε).

As δ(x) = εβ(x) with β(x) > 2, there exists one β > 2 such that ‖δ‖∞ = εβ and
therefore

Σ̃(‖δ‖∞, ε) = ε
β
2
−1 + ε2β−2 + ε3β + ε−

(
ε+ ε

β
2 + ε2β−1

)
ln(ε)

≤

{
ε− ε ln(ε) for β ≥ 4
ε
β
2
−1 − ε ln(ε) for 2 < β < 4

.

In combination with

4
3

ˆ
Γ
δ2(x)dHd−1 = O(ε2β)

and

ε

ˆ
Ω\Ua(Γ)

(uε(x)− uε(x− δ(x)n(x)))2 dx = O(ε3β+1) = O(ε2β)O(εβ+1)

we conclude there exists a function Σ(‖δ‖∞, ε) with Σ(‖δ‖∞, ε) → 0 for ε → 0 such
that

ε

ˆ
Ω

(uε(x)− uε(x− δ(x)n(x)))2 dx =
4
3

ˆ
Γ
δ2(x)dHd−1 (1 +O (Σ (‖δ‖∞, ε))) .

For d = 3 most parts of the proof can be done analogously to the case d = 2. Therefore
we will focus on these parts which base on a different ansatz and do not detail those
parts which can be done completely analogously to the two-dimensional case.
In contrast to the two-dimensional case, the hypersurface Γ is no curve, but a surface.
Let this surface Γ be parametrized by γ(s1, s1) and each parallel surface Γt in Ua(Γ)
will be parametrized by γt(s1, s2) = γ(s1, s2) + tn(s1, s2), where n(s1, s2) denotes a
unit normal vector to the surface Γ in γ(s1, s2). Now we split the integral at the left
hand side of (3.4)

ε

ˆ
Ω

(uε(x)− uε(x− δ(x)n(x)))2 dx = ε

ˆ a

−a

ˆ
Γt

(uε(x)− uε(x− δ(x)n(x)))2 dHd−1 dt

+ ε

ˆ
Ω\Ua(Γ)

(uε(x)− uε(x− δ(x)n(x)))2 dx .

The integral over Ω \ Ua(Γ) will be treated as before, but the inner integral of the
first summand will be rewritten as an integral over Γ. For a shorter notation we write
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3 Nested time discretization of Willmore flow

s = (s1, s2).

ε

ˆ a

−a

ˆ
Γt

(uε(x)− uε(x− δ(x)n(x)))2 dHd−1 dt

=
ˆ a

−a

ˆ
γ−1
t (Γt)

(uε(x(s))− uε(x(s)− δ(x(s))n(x(s))))2 ‖∂s1γt × ∂s2γt‖ ds dt

=
ˆ a

−a

ˆ
γ−1(Γ)

(uε(x(s))− uε(x(s)− δ(x(s))n(x(s))))2 |1− 2ht+ kt2|‖∂s1γ × ∂s2γ‖ ds dt

= ε

ˆ a

−a

ˆ
Γ

(uε(x)− uε(x− δ(x)n(x)))2 |1− 2ht+ kt2|dHd−1 dt

In the last two lines k denotes the Gaussian curvature and the step from line two
to three can be found in [35]. The rest of the proof can be done analogously to the
two-dimensional case.

Based on Theorem 2.4 and Theorem 3.6 we formulate the phase field model of the
natural time discretization of mean curvature motion in Definition 3.4. Using Theorem
3.6 it is possible to write the phase field version of ‖x − xk‖2

L2(Γk)
, the first term of

(3.3) in the natural time discretization of mean curvature motion (MCM). Recall that
the phase field function representing the interface x(Γk) is denoted by u. Moreover uk

is the phase field function representing the interface Γk. We assume that both phase
field functions take the optimal profile perpendicular to the interface, thus we can
apply Theorem 3.6. Now uk takes the role of uε(x) and u the one of uε(x− δ(x)n(x)).
As xk is the parametrization of Γk and x the parametrization of x(Γk) the distance
function δ = x− xk. Thus we get

ε‖u− uk‖2L2(Ω) =
4
3
‖x− xk‖2L2(Γk)

(
1 +O(‖x− xk‖L∞(Γk), ε)

)
.

As O(‖x − xk‖L∞(Γk), ε) converges to zero for ε → 0 we can approximate the first
term of (3.3) by 3

4ε‖u − u
k‖2L2(Ω). Using Theorem 2.4 both terms in the phase field

version of (3.3) scale with 3
4 and therefore we can neglect the scaling factor.

Definition 3.7 (Phase field version of the natural time discretization of MCM).
Given a phase field function uk at time kτ , define the phase field function uk+1 at
time (k + 1)τ by

uk+1 := argmin
u∈H1(Ω)

ε‖u− uk‖2L2(Ω) + 2τaε[u] .

Although we define uk+1 as minimizing argument of this special energy notice that it is
not necessarily unique. We expect it to be unique only for small τ . Since this notation
will be used frequently in this work we introduce the convention that a variable which
is defined as minimizing argument of an energy does not have to be uniquely defined.
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3.1 Derivation of the model

3.1.2 Natural time discretization of Willmore flow

After the derivation of the phase field version of the natural time discretization of
mean curvature flow we deal with the nested time discretization of Willmore flow.
We start with the parametric version and transfer it to the phase field set up.
As before, let the hypersurface Γ be contained in a computational domain Ω ⊂ Rd

and x : Γ → Γ be the identity on Γ. Then, the associated Willmore energy is
w[x] = 1

2

´
Γ h2(x) dHd−1, where h denotes the mean curvature. The L2-gradient flow,

which minimizes the Willmore energy is called Willmore flow and the weak version of
the gradient flow equation is

(∂tx, ϑ)L2(Γ) = −∂xw[x](ϑ)

for all test functions ϑ ∈ C∞(Γ,Rd). In this equation (·, ·)L2(Γ) denotes the L2-metric
on the interface Γ and ∂xw[x](ϑ) the variation of the Willmore energy in a direction
ϑ. The hypersurface which one gets under Willmore flow at time t is denoted by Γ(t)
and x(t) is the identity mapping on Γ(t). Following the proceeding of Olischläger
and Rumpf in [81, 82] one approximated the mean curvature by the time-discrete
propagation speed of mean curvature motion. This ansatz is reasonable because the
speed with which an interface evolves at some point under mean curvature motion
equals the mean curvature of the interface at this point. Thus one introduces a
variational problem in which one has to minimize the energy

ein[x, y] = ‖y − x‖2L2(Γ) + 2τ̃Hd−1[y(Γ)] , (3.5)

which one knows from Definition 3.4. Here, the parametrization x : Γ → Γ of an
interface Γ over itself is given and the parametrization y : Γ → Rd of a hypersurface
y(Γ) denotes the parametrization which minimizes the inner energy (3.5). Thus it
is the approximate solution of one step of mean curvature motion with time step
size τ̃ and therefore we can approximate the mean curvature h by |y−x|

τ̃ and the

Willmore energy w[x] ≈ 1
2

´
Γ

(y−x)2

τ̃2 dHd−1. Using Definition 3.2 of the natural time
discretization we introduce the outer energy

eout[xk, x, y] = ‖x− xk‖2L2(Γk) +
τ

τ̃2
‖y − x‖L2(Γ) . (3.6)

Here, xk is the identity on Γk and with a slight misuse of notation we write y instead
of y ◦ x. Starting with an approximation xk to x(kτ) we compute the solution xk+1

at time (k+ 1)τ under Willmore flow by minimizing the outer energy (3.6) under the
constraint that y is the minimizer of ein[x, ·].

Definition 3.8 (Parametric nested variational time discretization of Willmore flow).
Given a parametrization xk of a hypersurface Γk at time kτ , define the parametrization
xk+1 at time (k + 1)τ by

xk+1 = argmin
x∈{x̃:Γk→Rd}

eout[xk, x, y[x]], where (3.7a)

y[x] = argmin
ỹ∈{˜̃y:x(Γk)→Rd}

ein[x, ỹ] . (3.7b)

Furthermore we denote y[xk+1] by yk+1.
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3 Nested time discretization of Willmore flow

The transfer to the phase field version can be done straightforward. The phase field
version of the inner energy has been treated in the previous subsection and the outer
energy consists of two L2- norms on interfaces Γ and Γk. We have seen how to deal
with terms like this in the previous section, too.
Let uk be the phase field function approximating the interface Γk, while u and v
are the phase field approximations of x(Γk) and y(x(Γk)). Assuming all phase field
functions take the optimal profile perpendicular to the interface the outer and inner
energy in the phase field version are

eεout[u
k, u, v] = ε‖u− uk‖2L2(Ω) +

τε

τ̃2
‖v − u‖2L2(Ω) , (3.8a)

eεin[u, v] = ε‖v − u‖2L2(Ω) + 2τ̃ aε[v] . (3.8b)

Here we used Theorem 3.6 to get

ε‖u− uk‖2L2(Ω) =
4
3
‖x− xk‖L2(Γk)

(
1 +O(‖x− xk‖L∞(Γk), ε)

)
,

ε‖v − u‖2L2(Ω) =
4
3
‖y − x‖L2(Γ)

(
1 +O(‖y − x‖L∞(Γ), ε)

)
and Theorem 2.4 which states

Γ− lim
ε→0

aε[v] =
4
3
Hd−1 (y[Γ]) .

Consequently eεout[u
k, u, v] is the phase field version of the outer energy eout[xk, x, y]

(3.6) and eεin[u, v] the phase field version of the inner energy ein[x, y] (3.5). Thus for
sufficiently small phase field parameter ε and assuming τ , τ̃ to be small enough such
that the local distance δ between the evolving hypersurfaces at two consecutive time
steps of mean curvature motion and of Willmore flow is small enough in comparison
to ε the nested variational time discretization of Willmore flow is

Definition 3.9 (Nested variational time discretization of Willmore flow). Given a
phase field uk at time kτ define the phase field uk+1 at time (k + 1)τ by

uk+1 = argmin
u∈L2(Ω)

eεout[u
k, u, v[u]] , where (3.9a)

v[u] = argmin
ṽ∈H1(Ω)

eεin[u, ṽ] . (3.9b)

Furthermore, we denote v[uk+1] by vk+1.

Notice, now we write v instead of v[u] although v depends on u. An alternative way
to formulate the constraint (3.9b) is to write it as Euler–Lagrange equation for (3.8b),
that is, v has to solve

ˆ
Ω
ε(v − u)ϑ+

τ̃

2ε
Ψ′(v)ϑ+ ετ̃∇v · ∇ϑ dx = 0 ∀ϑ ∈ H1(Ω) .

The following theorem states an existence result for this time-discrete Willmore flow
model:
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Theorem 3.10 (Existence of a time-discrete phase field solution). Let Ω be a bounded
set in Rd with Lipschitz boundary and suppose u0 ∈ L2(Ω). Then there exists a
sequence ((uk, vk))k=1,... ⊂ L2(Ω)×H1(Ω) of solutions of (3.9a) and (3.9b).

For the proof of this theorem we need one theorem (cf. [61]):

Theorem 3.11. Let V be a convex subset of a separable reflexive Banach space,
F : V → R convex and lower semicontinuous. Then F is also lower semicontinuous
with respect to weak convergence.

and another theorem (cf. [49]):

Theorem 3.12 (Weak lower semicontinuity). Assume that L is smooth, bounded
below, and in addition the mapping p 7→ L(Dw,w, x) is convex, for each w ∈ R,
x ∈ U . Moreover there exist constants α > 0, β ≥ 0 such that

L(Dw,w, x) ≥ α|Dw|q − β ∀Dw ∈ Rn, w ∈ R, x ∈ Ω .

Then I[·] is weakly lower semicontinuous on W 1,q(U).

I[w] :=
ˆ
U
L(Dw(x), w(x), x) dx

Now let us prove Theorem 3.10.

Proof. We start considering the variational problem (3.9b) for given uk ∈ L2(Ω) and
regard a minimizing sequence (vkj )j=1,.... Then we estimate eεin[uk, vkj ]

eεin[uk, vkj ] = ε

ˆ
Ω

(
vkj − uk

)2
dx +τ

ˆ
Ω
ε|∇vkj |2 +

1
ε

Ψ(vkj (x)) dx

≥ ε
ˆ

Ω
||vkj | − |uk||2 dx +τε

ˆ
Ω
|∇vkj |2 dx

Young
≥ ε

(
1− 1

δ

)
‖vkj ‖2L2(Ω) + ε (1− δ) ‖uk‖2L2(Ω) + τε

ˆ
Ω
|∇vkj |2 dx

≥ εmin((1− 1
δ

), τ)‖vkj ‖2H1(Ω) + ε (1− δ) ‖uk‖2L2(Ω) ,

where we have used Young’s inequality 2ab ≤ δa2 + 1
δ b

2 for a, b > 0 and δ > 1. From
this it follows

εmin((1− 1
δ

), τ)‖vkj ‖2H1(Ω) ≤ e
ε
in[uk, vkj ] + ε(δ − 1)‖uk‖2L2(Ω) .

We know (vkj )j=1,... is a minimizing sequence, thus there exists N ∈ N>0 such that
eεin[uk, vkj ] is uniformly bounded (cf. [60]) for j > N . Moreover uk ∈ L2(Ω) and there-
fore we get the uniform boundedness of vkj in H1(Ω). By the uniform boundedness
of vkj in H1(Ω) and by the fact that H1(Ω) is a reflexive Banach space we extract a
subsequence, again denoted by (vkj )j=1,... such that vkj converges weakly in H1(Ω) to
some vk. It remains to show that eεin[ukj , ·] is weakly lower semicontinuous on H1(Ω).
This follows with Theorem 3.12. Thus we get by the direct method in the calculus of
variations the existence of a minimizer vk = vk[uk] ∈ H1(Ω).
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3 Nested time discretization of Willmore flow

This allows us to consider for fixed k > 0 and given uk−1 ∈ L2(Ω) a minimizing
sequence (ukj , v

k
j )j=1,... with vkj being a minimizer of eεin[ukj , ·]. The outer energy eεout

can be estimated

eεout[u
k−1, ukj , v

k
j ] = ε‖ukj − uk−1‖2L2(Ω) +

τε

τ̃2
‖vkj − ukj ‖2L2(Ω)

≥ ε
ˆ

Ω
|ukj − uk−1|2 dx

≥ ε
ˆ

Ω
||ukj | − |uk−1||2 dx

= ε

ˆ
Ω
|ukj |2 + |uk−1|2 − 2|ukj | |uk−1|dx

≥ ε‖ukj ‖2L2(Ω) + ε‖uk−1‖2L2(Ω) − 2ε
ˆ

Ω

(
1
2δ
|ukj |2 +

δ

2
|uk−1|2

)
dx

= ε

(
1− 1

δ

)
‖ukj ‖2L2(Ω) + ε (1− δ) ‖uk−1‖2L2(Ω) ,

where we used Young’s inequality with δ > 1. From this it follows

ε(1− 1
δ

)‖ukj ‖2L2(Ω) ≤ e
ε
out[u

k−1, ukj , v
k
j ] + ε(δ − 1)‖uk−1‖2L2(Ω) .

We know that (ukj , v
k
j )j=1,... is a minimizing sequence, thus there exists N ∈ N>0 such

that eεout[u
k−1, ukj , v

k
j ] is uniformly bounded for j > N . Moreover uk−1 ∈ L2(Ω) and

therefore we get the uniform boundedness of ukj in L2(Ω). In the same way as before
we estimate eεin[ukj , v

k
j ] and get the uniform boundedness of vkj in H1(Ω), because ukj

is uniformly bounded in L2(Ω) and vkj is a minimizer of eεin[ukj , ·].
By the uniform boundedness of ukj and vkj in L2(Ω) and H1(Ω) and by the fact
that L2(Ω) and H1(Ω) are reflexive Banach spaces we extract a subsequence, again
denoted by (ukj , v

k
j )j=1,..., such that ukj converges weakly in L2(Ω) to some uk and vkj

converges weakly in H1(Ω) to some vk. Furthermore we show that eεout[u
k−1, ·, ·] in

(3.9a) is weakly lower semicontinuous, i. e. lim inf
j→∞

eεout[u
k−1, ukj , v

k
j ] ≥ eεout[u

k−1, uk, vk].

Therefore we define ẽεout[u
k−1, ũ, ṽ] := ε

(
ũ− uk−1

)2 + ετ
τ̃2 (ṽ − ũ)2 and use Fatou’s

Lemma

lim inf
j→∞

eεout[u
k−1, ũj , ṽj ] ≥

ˆ
Ω

lim inf
j→∞

ẽεout[u
k−1, ũj , ṽj ] dx

=
ˆ

Ω
ẽεout[u

k−1, u, v] dx

for ṽj → v and ũj → u in L2(Ω). As eεout[u
k, ·, ·] is convex we use Theorem 3.11 and

get that eεout[u
k−1, ·, ·] is weakly lower semicontinuous.

It remains to prove that eεin[uk, vk] = min
v∈H1(Ω)

eεin[uk, v]. Let us assume that there is a
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3.1 Derivation of the model

v∗ with eεin[uk, vk]− eεin[uk, v∗] > 0, then we obtain

0 < eεin[uk, vk]− eεin[uk, v∗] = ε

ˆ
Ω

(uk − vk)2 − (uk − v∗)2 dx +2τ̃(aε[vk]− aε[v∗])

= ε

ˆ
Ω

2uk(v∗ − vk) + (vk)2 − (v∗)2 dx +2τ̃(aε[vk]− aε[v∗])

≤ lim inf
j→∞

ε

ˆ
Ω

2ukj (v
∗ − vkj ) + (vkj )2 − (v∗)2 dx +2τ̃(aε[vkj ]− aε[v∗])

= lim inf
j→∞

(
eεin[ukj , v

k
j ]− eεin[ukj , v

∗]
)
.

In the third line we have used the lower semi-continuity of aε[·], the weak con-
vergence of vkj to vk in H1(Ω) and the weak convergence of ukj to uk in L2(Ω),
and that by Rellich’s embedding theorem vkj already converges strongly in L2(Ω),
which implies vkj u

k
j ⇀ vkuk weakly in L1(Ω). Hence, there exists an index j with

eεin[ukj , v
k
j ]− eεin[ukj , v

∗] > 0, contradicting our assumption eεin[ukj , v
k
j ] = min

v∈H1(Ω)
eεin[ukj , v].

Thus, eεin[uk, vk] = min
v∈H1(Ω)

eεin[uk, v] and (uk, vk) solves the variational problem (3.9a)

and (3.9b).

Now we have shown the existence of a solution of the variational problem given by
(3.9a) and (3.9b). However remark that due to the non-convexity of Ψ the solutions
of (3.9a) and (3.9b) are not necessarily unique.

3.1.3 The constrained optimization perspective

Computing one time step of Willmore flow with the nested variational time discrete
Willmore model presented in Definition 3.9 involves the solution of a variational prob-
lem with a PDE constraint. This is equivalent to the problem of finding a saddle point
of the corresponding Lagrangian ` (cf. [78]), which is defined as the sum of the outer
energy functional (3.8a) and the variation of the inner energy functional (3.8b) in
the direction of p. This p is a dual function and it takes the role of the Lagrange
multiplier. Thus the Lagrangian is

`[uk, u, v, p] = eεout[u
k, u, v] + ∂ve

ε
in[u, v](p)

=
ˆ

Ω
ε(u− uk)2 +

ετ

τ̃2
(v − u)2 dx +

ˆ
Ω

2ε(v − u)p+
τ̃

ε
Ψ′(v)p+ 2ετ̃∇v · ∇p dx .

(3.10)

To find a saddle point (u, v, p) ∈ L2(Ω) × H1(Ω) × H1(Ω) of this Lagrangian ` we
have to solve the equation

∇(u,v,p)`[u
k, u, v, p] = 0 . (3.11)
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3 Nested time discretization of Willmore flow

The three components of ∇(u,v,p)`[uk, u, v, p] are

∂u`[uk, u, v, p](ϑ) =
ˆ

Ω
2ε(u− uk)ϑ− 2τε

τ̃2
(v − u)ϑ− 2εϑp dx ,

∂v`[uk, u, v, p](ξ) =
ˆ

Ω

2τε
τ̃2

(v − u)ξ + 2εpξ +
τ̃

ε
Ψ′′(v)pξ + 2ετ̃∇p · ∇ξ dx ,

∂p`[uk, u, v, p](ς) =
ˆ

Ω
2ε (v − u) ς +

τ̃

ε
Ψ′(v)ς + 2ετ̃∇v · ∇ς dx

with test functions ϑ ∈ L2(Ω), ξ ∈ H1(Ω), and ς ∈ H1(Ω).
In order to understand the meaning of the three components of the equation (3.11) we
present another ansatz to solve the variational problem presented in Definition 3.9.
We have to keep in mind that the variable v in the outer energy in (3.9a) depends on
u, thus v = v[u]. Hence, the variation of the outer energy eεout in direction u with test
function ϑ ∈ L2(Ω) reads

∂u

(
eεout[u

k, u, v[u]]
)

(ϑ) = (∂ueεout) [uk, u, v[u]](ϑ) + (∂veεout) [uk, u, v[u]] (∂uv[u](ϑ)) ,

(3.12)

where the first summand is

(∂ueεout) [uk, u, v[u]](ϑ) =
ˆ

Ω
2ε(u− uk)ϑ− 2τε

τ̃2
(v − u)ϑ dx .

To compute ∂uv[u], we start by noting that

0 = ∂ve
ε
in[v[u], u](ξ)

=
ˆ

Ω
2ε (v[u]− u) ξ +

τ̃

ε
Ψ′(v[u])ξ + 2ετ̃∇v[u] · ∇ξ dx (3.13)

for ς ∈ H1(Ω). The variation of the Euler–Lagrange equation in direction u is

0 = ∂u (∂veεin[v[u], u](ξ)) (%)

= ∂2
ve
ε
in[v[u], u] (ξ, ∂uv[u](%)) + ∂u∂ve

ε
in[v[u], u](ξ, %) (3.14)

Following Hinze et al. [57] and Haslinger and Mäkinen [55] the Lagrangian dual
problem consists of finding p ∈ H1(Ω) such that

∂2
ve
ε
in[v[u], u](ξ, p) = −∂veεout[u

k, u, v[u]](ξ) (3.15)

⇔
ˆ

Ω
2εpξ +

τ̃

ε
Ψ′′(v[u])pξ + 2ετ̃∇p · ∇ξ dx = −

ˆ
Ω

2τε
τ̃2

(v − u)ξ dx

for ξ ∈ H1(Ω). Using (3.15) and (3.14) we compute the second summand of (3.12)

(∂veεout) [uk, u, v[u]](∂uv[u](ϑ))
(3.15)

= −∂2
ve
ε
in[v[u], u] (∂uv[u](ϑ), p)

= −∂2
ve
ε
in[v[u], u](p, ∂uv[u](ϑ))

(3.14)
= ∂u∂ve

ε
in[v[u], u](p, ϑ)

= −2ε
ˆ

Ω
ϑp dx .
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3.2 A fully practical numerical scheme

Consequently (3.12) is

∂ue
ε
out[u

k, u, v[u]](ϑ) =
ˆ

Ω
2ε(u− uk)ϑ− 2τε

τ̃2
(v − u)ϑ− 2εϑp dx . (3.16)

Comparing this with the components of ∇(u,v,p)`[uk, u, v, p] = 0 reveals ∂u` = 0 is
the actual Lagrangian multiplier formulation of the nested variational problem and
corresponds to (3.16). The second component ∂v` = 0 is the dual problem (3.15)
defining a dual variable p and ∂p` = 0 reflects the Euler–Lagrange equation of the
inner variational problem (3.13).
To solve the Euler–Lagrange equation corresponding to ` in (3.10) we use a Newton
scheme, because Ψ(v) = (1− v2)2 and therefore the variation of the Lagrangian in v
and p is nonlinear in v.

3.2 A fully practical numerical scheme

To formulate a fully practical numerical scheme we have to discretize our problem in
space. After this we concentrate on the question of solving our nested minimization
problem. Therefore, we introduce a Newton method for finding a saddle point of the
discrete Lagrangian, corresponding to our problem.

3.2.1 Finite Element discretization in space

For the spatial discretization of our problem we regard a regular and uniform simplicial
mesh T covering the computational domain Ω. As described in Section 2.2 we define
the Finite Element space of continuous, piecewise affine functions

V := {Φ ∈ C0(Ω) : Φ|T ∈ P1 ∀T ∈ T }

on this mesh. With the notation introduced in Section 2.2, i.e. M being the lumped
mass matrix, the discrete version of the outer and inner energy eεout[·] in (3.8a) and
eεin[·] in (3.8b) is

Eεout[U
k, U, V ] = εM

(
U − Uk

)
·
(
U − Uk

)
+
τε

τ̃2
M
(
V − U

)
·
(
V − U

)
, (3.17a)

Eεin[U, V ] = εM
(
V − U

)
·
(
V − U

)
+ 2τ̃Aε[V ] . (3.17b)

In the discrete inner energy Eεin the discrete phase field energy Aε is

Aε[V ] =
1
2

ˆ
Ω
ε∇V · ∇V +

1
ε
Ih (Ψ(V )) dx =

ε

2
LV · V +

1
2ε

MΨ(V ) · 1 ,

where Ih again denotes the Lagrange interpolation. This leads to the problem of
solving the following fully discrete minimization problem in each time step.

Definition 3.13 (Fully discrete variational time discretization of Willmore flow).
Given a discrete phase field Uk ∈ V at time kτ define the phase field Uk+1 ∈ V at
time (k + 1)τ by

Uk+1 = argmin
U∈V

Eεout[Uk, U, V ] , where (3.18a)

V = argmin
Ṽ ∈V

Eεin[Ṽ , U ] , (3.18b)
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3 Nested time discretization of Willmore flow

and denote by V k+1 the solution V of (3.18b) for U = Uk+1.

As V is a finite dimensional Euclidean space it is isomorphic to R]I , where ]I denotes
the cardinality of the set I. Thus we identify each discrete function U ∈ V with
its nodal coordinate vector U and get the following statement on the existence of a
solution of the fully discretized Willmore flow model.

Theorem 3.14 (Existence of a fully discrete phase field solution). Let Ω be a bounded
set in Rd, covered with a regular and uniform simplicial mesh T and I being the vertex
index set of T . Suppose U0 ∈ R]I . Then there exists a sequence ((Uk, V k))k=1,... ⊂
R]I × R]I of solutions of (3.18a) and (3.18b).

Proof. We start considering the fully discrete variational problem (3.18b) for given
U
k ∈ R]I and regard a minimizing sequence (V k

j )j=1,.... Then we estimate Eεin[Uk, V k
j ]

Eεin[Uk, V k
j ] = εM

(
V
k
j − U

k
)
·
(
V
k
j − U

k
)

+ 2τ̃Aε[V k
j ]

≥ εM
(
V
k
j − U

k
)
·
(
V
k
j − U

k
)

≥ ελmin‖V
k
j − U

k‖2

≥ ελmin|‖V
k
j ‖ − ‖U

k‖|2

≥ ελmin

((
1− 1

δ

)
‖V k

j ‖2 + (1− δ) ‖Uk‖2
)
,

where λmin denotes the smallest eigenvalue of M and we have used Young’s inequality
for δ > 1. As ‖Uk‖ < ∞ and (V k

j )j=1,... is a minimizing sequence of Eεin[Uk, ·] we

get the uniform boundedness of V k
j in R]I . With Bolzano-Weierstraß we get the

existence of a convergent subsequence. Thus it remains to show, that Eεin[Uk, ·] is lower
semicontinuous. As the first two summands of Eεin[Uk, V ] are quadratic in V and as
Ψ(V ) is continuous in V , Eεin[Uk, ·] is actually continuous. Hence, by the direct method
in the calculus of variations, we get the existence of a minimizer V k = V

k[Uk] ∈ R]I .
This allows us to consider for fixed k > 0 and given Uk−1 ∈ R]I a minimizing sequence
(Ukj , V

k
j )j=1,... of Eεout[U

k−1
, ·, ·] with V

k
j being the minimizer of Eεin[Ukj , ·]. The outer

energy Eεout can be estimated

Eεout[U
k−1

, U
k
j , V

k
j ] = εM

(
U
k
j − U

k−1
)
·
(
U
k
j − U

k−1
)

+
τε

τ̃2
M
(
V
k
j − U

k
j

)
·
(
V
k
j − U

k
j

)
≥ ελmin‖U

k
j − U

k−1‖2

≥ ελmin

((
1− 1

δ

)
‖Ukj ‖2 + (1− δ) ‖Uk−1‖2

)
,

where again λmin denotes the smallest eigenvalue of M and δ > 1. As (Ukj , V
k
j )j=1,... is

a minimizing sequence of Eεout[U
k−1

, ·, ·] we get the uniform boundedness of Ukj in R]I .

In the same way as before we estimate Eεin[Ukj , V
k
j ] and get the uniform boundedness

of V k
j in R]I .
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3.2 A fully practical numerical scheme

By the uniform boundedness of Ukj and V k
j in R]I we can extract a subsequence, again

denoted by (Ukj , V
k
j )j=1,..., such that Ukj converges to some Uk and V

k
j converges to

some V k both in R]I . As Eεout[U
k−1

, U, V ] is continuous in (U, V ), we get

Eεout[U
k−1

, U
k
, V

k] = lim
j→∞

Eεout[U
k−1

, U
k
j , V

k
j ] .

It remains to prove that Eεin[Uk, V k] = min
V ∈R]I

Eεin[Uk, V ]. Therefore let us assume that

there is a V ∗ ∈ R]I with Eεin[Uk, V k]−Eεin[Uk, V ∗] > 0, then we obtain by the continuity
of Eεin[·, ·] in both arguments

0 < Eεin[Uk, V k]− Eεin[Uk, V ∗]

= lim
j→∞

Eεin[Ukj , V
k
j ]− Eεin[Ukj , V

∗] .

Hence, there exists an index j with Eεin[Ukj , V
k
j ] − Eεin[Ukj , V

∗] > 0. This contradicts

our assumption that Eεin[Ukj , V
k
j ] = minV ∈R]I Eεin[Ukj , V ]. Thus,

Eεin[Uk, V k] = min
V ∈R]I

Eεin[Uk, V ]

and (Uk, V k) solves the fully discrete variational problem (3.18a) and (3.18b).

3.2.2 Newton method for the constrained optimization problem

As in Subsection 3.1.3 we replace the problem of solving the above fully discrete
constrained optimization problem (3.18a) and (3.18b) by the equivalent problem of
finding the saddle point of the corresponding Lagrangian. This discrete Lagrangian
is

L[Uk, U, V, P ] = Eεout[U
k, U, V ] + ∂V Eεin[U, V ](P ) (3.19)

= εM
(
U − Uk

)
·
(
U − Uk

)
+
τε

τ̃2
M
(
V − U

)
·
(
V − U

)
+ 2εM

(
V − U

)
· P − 4τ̃

ε
M[1− V 2]V · P + 2ετ̃LV · P .

Now we have to solve ∇(U,V,P )L[Uk, U, V, P ] = 0 to find a saddle (U, V, P ) ∈ V×V×V
of the Lagrangian L. Therefore we compute the three components

∂UL[U, V, P ](Θ) = 2εM
(
U−Uk

)
·Θ− 2τε

τ̃2
M
(
V −U

)
·Θ− 2εMP ·Θ ,

∂V L[U, V, P ](Ξ) =
2τε
τ̃2

M
(
V − U

)
· Ξ + 2εMP · Ξ− 4τ̃

ε
M[1−3V 2]P · Ξ + 2ετ̃LP · Ξ ,

∂PL[U, V, P ](Σ) = 2εM
(
V −U

)
·Σ − 4τ̃

ε
M[1−V 2]V ·Σ + 2ετ̃LV ·Σ

with Θ, Ξ, Σ ∈ V. Due to the definition of the double well potential Ψ(V ) =(
1− V 2

)2 the third summand of ∂V L and the second summand of ∂PL is nonlin-
ear in V . Thus we set up a Newton method to find the saddle point of the Lagrangian
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3 Nested time discretization of Willmore flow

L and consequently we have to compute the Hessian of L. The different components
are

∂U∂UL[U, V, P ](Θ,Λ) = 2εMΛ ·Θ +
2τε
τ̃2

MΛ ·Θ

∂V ∂UL[U, V, P ](Θ, Π) = −2τε
τ̃2

MΠ ·Θ

∂P∂UL[U, V, P ](Θ,Υ) = −2εMΥ ·Θ

∂V ∂V L[U, V, P ](Ξ, Π) =
2τε
τ̃2

MΠ · Ξ +
24τ̃
ε

M[V P ]Π · Ξ

∂P∂V L[U, V, P ](Ξ,Υ) = 2εMΥ · Ξ− 4τ̃
ε

M[1− 3V 2]Υ · Ξ + 2ετ̃LΥ · Ξ

∂P∂PL[U, V, P ](Σ,Υ) = 0

and therefore the Hessian of the discretized Lagrangian is

D2L=

 2ε
(
1+ τ

τ̃2

)
M −2τε

τ̃2 M −2εM
−2τε

τ̃2 M 2ετ
τ̃2 M + 24τ̃

ε M[V P ] 2εM− 4τ̃
ε M[1− 3V 2] + 2ετ̃L

−2εM 2εM− 4τ̃
ε M[1−3V 2] + 2ετ̃L 0

 .

Now we define F [U, V, P ] := ∇(U,V,P )L[U, V, P ] and apply a Newton method to find a
root of F . Therefore we introduce some further notation: Let Ui, Vi, and Pi be given
approximations for Uk+1, V k+1 and P k+1, then we define Zi := (Ui, Vi, Pi). In general
in a Newton method we would have to iterate solving the following linear system of
equations

DF [Zi](Zi+1 − Zi) = −F [Zi]

for Zi+1 with DF = D2L. To get a positive definite matrix on the left hand side we
have to modify the linear system of equations, such that we solve

DF [Zi]TDF [Zi](Zi+1 − Zi) = −DF [Zi]TF [Zi] (3.20)

for Zi+1 within each Newton step. Notice, that in general DF [Zi]TDF [Zi] is only
positive semi definite. However in our test cases DF [Zi] has no eigenvalues being zero
such that we can use the Cholesky solver from the CHOLMOD package [29, 24].
In Algorithm 3.1 it is documented that for a given phase field function U0 we compute
V 0 as a root of ∂PL[U0, ·, P ] = 0 and P0 by solving the linear system of equations
∂V L[U0, V0, P ] = 0 in P . At the beginning of each Newton step we initialize Z0 =
(U0, V0, P0) with (Uk, V k, P k). Moreover it turned out that in all our applications
presented in Chapter 5, a time step control in the Newton scheme is not required.
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3.2 A fully practical numerical scheme

Algorithm 3.1: Newton method with Cholesky solver to solve the variational
problem (3.18a) and (3.18b)

given: phase field function U0;
given: maximal number of time steps Kmax;
compute V 0 as root of ∂PL[U0, ·, P ] = 0;
compute P 0 as root of ∂V L[U0, V 0, ·] = 0 ;
for k = 0 to Kmax do

set counter of the Newton method i = 0;
set Zi := (Ui, Vi, Pi) = (Uk, V k, P k);
while ‖F [Zi]‖ > ε do

solve DF [Zi]TDF [Zi](Z̃i) = −DF [Zi]TF [Zi] with Cholesky;
Zi+1 = Zi + Z̃i;
i← i+ 1;

end
Uk+1 = Ui;
V k+1 = Vi;
P k+1 = Pi;

end
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Chapter 4

The biharmonic heat equation -
a linear model problem

In this chapter we deal with a linear model problem for our nested time discretization
of Willmore flow. This linear model problem is given by the L2-gradient flow of the
energy wl[u] = 1

2

´
Ω(∆u)2 dx , where Ω is a polygonally bounded, convex domain.

In [52] we presented some numerical analysis for this linear model problem and ob-
served by numerical experiments the same convergence behavior for the nested time
discretized Willmore model.
In addition to the notation introduced in the previous chapters, where we used up-
per case letters for spatially discretized quantities and lower case letters for spatially
continuous quantities we distinguish between time-discrete quantities without tilde
and time-continuous quantities with tilde. With this notation the L2-gradient flow
equation leading to a minimum of the energy wl[ũ] is

∂tũ = −∆2ũ on Ω (4.1)

with initial conditions ũ = ũ0 at t = 0. For this partial differential equation we
discuss three different types of boundary conditions. Natural boundary conditions
as arose in Chapter 3 and as they will be used later on in this chapter, Dirichlet
boundary conditions, as in the image restoration in Section 5.3, and periodic boundary
conditions on a fundamental cell Ω = (0, 1)d.

4.1 A nested scheme for the biharmonic heat equation

To develop an analog model for the biharmonic heat flow as our nested time discretized
Willmore flow model we should notice that the energy functional wl[u] takes the role
of the Willmore functional w[u] = 1

2

´
Ω h2[u] dx . Thus, analog to the approximation

of the mean curvature h we approximate the Laplacian of u by ∆u ≈ v−u
τ̃ , where v

has to minimize the inner energy

elin[u, v] = ‖v − u‖2L2(Ω) + 2τ̃ al[v] . (4.2)

Here al denotes the Dirichlet energy and is defined by al[v] := 1
2

´
Ω |∇v|

2 dx . This
inner energy follows the concept of the natural time discretization from Definition 3.2.
The same concept and the discretization of ∆u will be used to define the outer energy

elout[u
k, u, v] = ‖u− uk‖2L2(Ω) +

τ

τ̃2
‖v − u‖2L2(Ω) . (4.3)
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4 The biharmonic heat equation - a linear model problem

To formulate the time-discrete scheme for the biharmonic heat equation we have to
specify the different ansatz spaces to realize the three kinds of boundary conditions.
For Dirichlet boundary conditions u = ∆u = 0 on ∂Ω we choose the ansatz space
H

1(Ω) = {u ∈ H1(Ω) : u = 0 on ∂Ω}. Here u = 0 on ∂Ω is meant in a sense of
trace. In case of natural boundary conditions ∂νu = ∂ν∆u = 0 on ∂Ω with nor-
mal derivative ∂ν on ∂Ω and outer normal ν we set H1(Ω) = H1(Ω) ∩ L2

0(Ω) with
L2

0(Ω) = {u ∈ L2 :
´

Ω udx = 0} and finally for periodic boundary conditions on a
fundamental cell Ω = (0, 1)d and with ei being the ith unit normal vector the ansatz
space is H1(Ω) = {u ∈ H1(Ω) : u(x+ ei) = u(x) on ∂Ω}.
Thus, depending on the special choice of boundary conditions, respectively ansatz
space H1(Ω) we get the following time-discrete scheme for the biharmonic heat equa-
tion.

Definition 4.1 (Time-discrete biharmonic heat flow). For given u0 ∈ H1(Ω), let the
sequence uk ∈ H1(Ω), k ∈ N, be defined as the solution of

uk+1 = argmin
u∈H1

(Ω)

elout[u
k, u, v] , where (4.4a)

v = argmin
ṽ∈H1

(Ω)

elin[u, ṽ] . (4.4b)

In case of this linear model problem it is possible to write the operator version of
the time-discrete biharmonic heat flow in Definition 4.1. Therefore we regard the
Lagrangian corresponding to (4.4a) and (4.4b)

`l[uk, u, v, p] = elout[u
k, u, v] + ∂ve

l
in[u, v](p)

=
ˆ

Ω

(
u− uk

)2
+

τ

τ̃2
(v − u)2 dx +

ˆ
Ω

2 (v − u) p+ 2τ̃∇v · ∇pdx .

From this we deduce the KKT conditions

0 =
ˆ

Ω
2
(
u− uk

)
ϑ+

2τ
τ̃2

(u− v)ϑ dx −
ˆ

Ω
2pϑ dx , (4.5a)

0 =
ˆ

Ω

2τ
τ̃2

(v − u) ξ dx +
ˆ

Ω
2ξp+ 2τ̃∇ξ · ∇p dx , (4.5b)

0 =
ˆ

Ω
2 (v − u) %+ 2τ̃∇v · ∇%dx (4.5c)

with ϑ, ξ, % ∈ H1(Ω) which lead to the operator version of Definition 4.1. For deriving
this operator version we follow from (4.5c)

v = (id− τ̃∆h)−1 u . (4.6)

Here we denote by ∆hu the solution w ∈ L2(Ω) of

(w, ϑ)L2(Ω) = −(∇u,∇ϑ)L2(Ω) ∀ϑ ∈ H1(Ω) .

Moreover from (4.5b) we get

p =
τ

τ̃2
(id− τ̃∆h)−1 (u− v) . (4.7)
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4.1 A nested scheme for the biharmonic heat equation

Combining (4.6) and (4.7) we deduce from (4.5a)

u− uk =
τ

τ̃2
(v − u) + p

(4.7)
= − τ

τ̃2
(u− v) +

τ

τ̃2
(id− τ̃∆h)−1 (u− v)

=
τ

τ̃2

(
(id− τ̃∆h)−1 − id

)
(u− v)

(4.6)
= − τ

τ̃2

(
(id− τ̃∆h)−1 − id

)2
u .

Therefore the operator version of Definition 4.1 is

Definition 4.2 (Operator version of the time-discrete biharmonic heat flow). For
given u0 ∈ H1(Ω), let the sequence uk ∈ H1(Ω), k ∈ N, be defined as the solution of

uk+1 − uk = − τ

τ̃2

(
(id− τ̃∆h)−1 − id

)2
uk+1 .

To derive the fully discretized version of the time-discrete biharmonic heat flow in
Definition 4.1 we proceed as follows: With V being the Finite Element space as defined
in Section 2.2 we introduce the Finite Element space V = V ∩H1(Ω), which is a Finite
Element space with boundary conditions as in Definition 4.1. Then we write the
discrete version of the linear outer and inner energy

E lout[U
k, U, V ] = M

(
U − Uk

)
·
(
U − Uk

)
+

τ

τ̃2
M
(
V − U

)
·
(
V − U

)
,

E lin[V,U ] = M
(
V − U

)
·
(
V − U

)
+ τ̃LV · V .

A comparison of these two discrete energies with the fully discrete outer and inner
energy Eεout and Eεin in (3.17a) and (3.17b) demonstrates why this is the linear model
problem of our nested time discretized Willmore flow model. With ε = 1 and without
the nonlinear term 1

2εMΨ(V ) · 1 in the inner energy (3.17b) the linear outer energy
E lout is equal to Eεout and E lin is equal to Eεin. Thus the fully discretized linear model
problem of our nested time discretized Willmore flow model is

Definition 4.3 (Fully discretized biharmonic heat flow). For given U0 ∈ V, the
sequence Uk ∈ V, k ∈ N, is defined as the solution of

Uk+1 = argmin
U∈V

E lout[Uk, U, V ] , where (4.9a)

V = argmin
Ṽ ∈V

E lin[U, Ṽ ] . (4.9b)

To avoid the necessity of analyzing an error caused by numerical quadrature we assume
the fully discrete outer and inner energy E lout and E lin to be evaluated exactly such that
E lout = elout and E lin = elin. This is equivalent to assume at least second order quadrature.
Moreover, in what follows, we consider quasiuniform triangulation with grid size h.
The convergence behavior of the fully discrete model in Definition 4.3 will be presented
in the following theorem. Therefore we need some further notation. As in [95] we
define

Ḣs :=

v ∈ L2(Ω) : |v|s =

( ∞∑
m=1

λsm (v, ϕm)2

) 1
2

<∞

 ,
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4 The biharmonic heat equation - a linear model problem

the subspace of functions with s weak derivatives which is associated with the spec-
tral norm belonging to ∆s. Here {λm}∞m=1 is a nondecreasing sequence of positive
eigenvalues of the eigenvalue problem

−∆ϕ = λϕ in Ω, with ϕ = 0 on ∂Ω

and {ϕm}∞m=1 is the corresponding sequence of eigenfunctions which form a basis of
L2(Ω). Furthermore we denote by ∆hΦ ∈ V for Φ ∈ V the discrete Laplacian, which
is the unique solution of

(−∆hΦ,Θ)L2(Ω) = (∇Φ,∇Θ)L2(Ω) ∀Θ ∈ V .

Finally, with Rhu ∈ V for u ∈ H1(Ω) being the canonical Ritz projection, defined as
the unique Finite Element solution of

(∇Rhu,∇Θ)L2(Ω) = (∇u,∇Θ)L2(Ω) ∀Θ ∈ V ,

we introduce the projection ˆ̂Rhu ∈ V for u ∈ Ḣ5, defined as ˆ̂Rhu = ∆−2
h Rh∆2u.

Theorem 4.4 (Error estimates for fully discrete biharmonic heat flow). For given
ũ0 ∈ Ḣ8, let ũ be the solution to the biharmonic heat equation (4.1), and let Uk,
k ∈ N, be the solution of the fully discretized scheme (4.9) with U0 = ˆ̂Rhũ0. On
quasiuniform triangulations with grid size h and for uniform time steps τ and τ̃ with
tk = kτ

‖Uk − ũ(tk)‖L2 ≤ C(tk)(h2 + τ + τ̃) , (4.10a)

‖Uk − ũ(tk)‖H1 ≤ C(tk)
(
h+ (1 +

√
τ̃
h )(τ + τ̃)

)
(4.10b)

holds for a continuous function C : R+ → R+.

A proof of this theorem is presented in [52]. It bases on a splitting of the error
Uk − ũ(tk) into Uk − Ũ(tk), the difference between the fully discrete and the time
continuous, but spatially discretized solution and Ũ(tk)− ũ(tk), the time continuous
Finite Element error. This is a well known splitting to analyze condition and stability.
As Theorem 4.4 states the scheme stably approximates the biharmonic heat flow for
any combination of time steps τ and τ̃ . Nevertheless it does not make sense to in-
crease τ̃ beyond τ . The step size τ̃ is related to the accuracy with which the Laplace
operator is approximated and the outer step size τ defines the time scale at which the
bi-Laplace is resolved. In the same way, the inner step size τ̃ in the Willmore flow
case is associated with the accuracy with which the mean curvature h is approximated
and the outer step size defines the scale at which the Willmore flow is resolved. Thus
in the nonlinear case it also does not make sense to increase τ̃ beyond τ .
Apart from this similarity we will observe that the experimental convergence behav-
ior of the phase field model for Willmore flow, presented in Chapter 3 fits to the
convergence behavior of the linear model.
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4.2 Numerical validation

4.2 Numerical validation

In this section we numerically validate the convergence result presented in Theorem 4.4
by solving the Dirichlet boundary value problem

∂tũ+ ∆2ũ = f̃ on Ω× [0, T ], with ũ = ∆ũ = 0 on ∂Ω (4.11)

with Ω = [0, 1]2 for a special choice of f̃ .

4.2.1 Implementation

For the implementation of the validating test we consider the following lemma pre-
senting a special right hand side and the corresponding analytical solution.

Lemma 4.5. Let Ω = [0, 1]2 and f̃ : Ω× [0, T ]→ R be

f̃(t, x, y) := 20 e20t(x4 − 2x3 + x) (y4 − 2y3 + y)

+ 24 (e20t − 1) (y4 − 2y3 + y + (x2 − x) (12y2 − 12y) + x4 − 2x3 + x)

then the solution of the Dirichlet boundary value problem (4.11) is

ũ(t, x, y) = (e20t − 1) (x4 − 2x3 + x) (y4 − 2y3 + y) .

Proof. The property ũ(t, x, y) = 0 on ∂Ω for Ω = [0, 1]2 can be seen directly. Moreover
the gradient of ũ in (x, y) is

∇ũ(t, x, y) =
( (

e20t − 1
) (

4x3 − 6x2 + 1
) (
y4 − 2y3 + y

)(
e20t − 1

) (
x4 − 2x3 + x

) (
4y3 − 6y2 + 1

) )
and therefore

∆ũ(t, x, y) =
(
e20t − 1

) ((
12x2 − 12x

) (
y4 − 2y3 + y

)
+
(
x4 − 2x3 + x

) (
12y2 − 12y

))
.

Again it is obvious that ∆ũ = 0 on ∂Ω. Since

∂tũ(t, x, y) = 20 e20t(x4 − 2x3 + x) (y4 − 2y3 + y)

the computation of

∆2ũ(t, x, y) = 24 (e20t − 1) (y4 − 2y3 + y + (x2 − x) (12y2 − 12y) + x4 − 2x3 + x)

finishes the proof.

Since the right hand side f̃ of (4.11) is different from zero we have to replace the outer
energy in (4.9) by

E l,fout[U
k, U, V ] := E lout[U

k, U, V ]− 2τ
ˆ

Ω
Ih(f̃U) dx ,

while the constraint (4.9b) remains the same. As in Chapter 3 we set up the La-
grangian

Ll[Uk, U, V, P ] = M
(
U − Uk

)
·
(
U − Uk

)
+

τ

τ̃2
M
(
V − U

)
·
(
V − U

)
− 2τMIh(f̃) · U + 2M

(
V − U

)
· P + 2τ̃LV · P .
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4 The biharmonic heat equation - a linear model problem

The computation of the variation of the Lagrangian L in U , V and P

∂UL[Uk, U, V, P ](Θ) = 2M
(
U − Uk

)
·Θ− 2τ

τ̃2
M
(
V − U

)
·Θ− 2τMIh(f̃) ·Θ

− 2MP ·Θ ,

∂V L[Uk, U, V, P ](Ξ) =
2τ
τ̃2

M
(
V − U

)
· Ξ + 2MP · Ξ + 2τ̃LP · Ξ ,

∂PL[Uk, U, V, P ](Σ) = 2M
(
V − U

)
· Σ + 2τ̃LV · Σ

reveals that the equation∇(U,V,P )L[Uk, U, V, P ] = 0 is a linear equation. Consequently
it is not necessary to use a Newton method for finding a saddle point. Nevertheless
we use a Newton method to keep the model and the code as similar to the Willmore
flow model in Chapter 3 as possible. Thus we compute the Hessian

D2L=

 2
(
1+ τ

τ̃2

)
M −2τ

τ̃2 M −2M
−2τ
τ̃2 M 2τ

τ̃2 M 2M + 2τ̃L
−2M 2M + 2τ̃L 0

 .

To realize Dirichlet boundary conditions we introduce some notation. First, we define
F [Uk, U, V, P ] := ∇(U,V,P )L[Uk, U, V, P ] as before and denote the vertex index set of
all Dirichlet nodes with ID. Then we have to set

Fki = 0 ∀i ∈ ID, k = 0, 1, 2

and for the Hessian of the Lagrangian

DFkkij = 0 ∀i ∈ ID, j ∈ I, i 6= j, k = 0, 1, 2 ,

DFkkij = 0 ∀i ∈ I, j ∈ ID, j 6= i, k = 0, 1, 2 ,

DFkkii = 1 ∀i ∈ ID, k = 0, 1, 2 ,

DFklij = 0 ∀i ∈ ID, j ∈ I, k, l = 0, 1, 2, k 6= l ,

DFklij = 0 ∀i ∈ I, j ∈ ID, k, l = 0, 1, 2, k 6= l .

Different to the procedure in Chapter 3 we use a preconditioned biconjugate gradient
method to solve the linear system of equations in each Newton step. It is faster than
the direct solver in Chapter 3 and it is sufficient for this test. As preconditioner we
use a block diagonal preconditioner [90], which works as follows. In case of a block
matrix with d × d quadratic blocks of n rows it creates a d × d temporary matrix.
Now, it iterates i from 0 to n− 1 and saves the ith diagonal entry of all blocks (j, k)
at position (j, k) of the temporary matrix. For each i we compute the inverse of the
temporary matrix, if it is invertible, or set the inverse to identity, if not. Finally all
entries of the inverted matrix are sorted into the preconditioning block matrix the
other way round they have been extracted from the block matrix which has to be
preconditioned. Thus the preconditioning block matrix has diagonal matrices in each
block.

4.2.2 Validation

As we have seen, for the special choice of f̃ the analytical solution ũ is known. Hence
we are able to compute the L2- and the H1-error of the evolution to validate the
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Figure 4.1: Temporal error evolution for the numerical solution of the biharmonic
heat equation. Upper row: L2-error for τ = h2 and τ̃ = h2 (left) as well as τ̃ = h
(right). Lower row: H1-error for τ = h and τ̃ = h2 (left) as well as τ̃ = h (right).

error order presented in Theorem 4.4. In Figure 4.1 there is presented the L2-error
for τ = τ̃ = h2 (upper left graph) and for τ = h2 and τ̃ = h (upper right graph) as
well as the H1-error for τ = h and τ̃ = h2 (lower left graph) and τ = τ̃ = h (lower
right graph). In all four cases the error evolution is plotted on grids with grid sizes
h = 2−5, h = 2−6 and h = 2−7.

More precise than analyzing error plots is the computation of the error order.
Therefore we take the numerical solution of the biharmonic heat equation at time
t = 0.15625 for tests with step size τ = h and at time t = 0.00244141 for τ = h2. The
error order for a transition from a grid with grid width h = 2−k to the next finer grid
is called experimental order of convergence (eoc) and computed by

eoc =
ln (ek+1(t))− ln (ek(t))

− ln 2
.

This order is presented in Table 4.1.
The above numerical analysis predicts an error decay by a factor 1

4 for the L2-error
with τ = τ̃ = h2 and by a factor 1√

2
for the H1-error with τ̃ = h and τ = h2 or

τ = h. In all other combinations presented in Figure 4.1 or Table 4.1 the numerical
analysis predicts an error decay by a factor 1

2 . In case of the L2-error the decay rates
are confirmed by the numerical experiments. In contrast to this the decay rates in
case of the H1-error are better than expected for τ̃ = h and τ = h2 or τ = h. This
suggests that the convergence estimates can be improved to get rid of the factor

√
τ̃
h .

Nevertheless τ̃ may be chosen small. This compensates a factor
√
τ̃
h and does not

influence the speed of the time stepping scheme.
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4 The biharmonic heat equation - a linear model problem

τ = h2, τ̃ = h2 τ = h2, τ̃ = h τ = h, τ̃ = h2 τ = h, τ̃ = h
k L2 H1 L2 H1 L2 H1 L2 H1

6 2.032 1.020 0.886 0.959 1.417 1.113 1.085 1.093
7 2.009 1.005 0.919 0.969 1.259 1.048 1.045 1.050
8 2.002 1.001 0.953 0.979 1.148 1.021 1.023 1.026

Table 4.1: Experimental order of the L2- and H1-error for the numerical solution of
the biharmonic heat equation with different time steps. The order ln(ek+1(t))−ln(ek(t))

− ln 2

is shown for each transition from one grid with grid width h = 2−k to the next finer
one. The error ek(t) was evaluated at time t = 0.15625 (cases with τ = h) and
t = 0.00244141 (cases with τ = h2), respectively.

τ = h2, τ̃ = h2 τ = h2, τ̃ = h τ = h, τ̃ = h2 τ = h, τ̃ = h
L2 H1 L2 H1 L2 H1 L2 H1

proven
decay rate ≤ 1

4
1
2

1
2

1√
2

1
2

1
2

1
2

1√
2

Table 4.2: Proven decay rate of the L2- and H1-error for the numerical solution of
the biharmonic heat equation with different time steps.
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Chapter 5

Numerical results and
applications for Willmore flow

In this chapter we present some numerical simulations demonstrating the reliability
of the Willmore model presented in Definition 3.13. Moreover we compare it with a
semi-implicit scheme by Du et al. [40, 42] and apply it to an image restoration problem
in the last section.

5.1 Simulation based on the nested time discretization

We start to document the reliability of our Willmore model by observing the evolution
of a circle in R2. This is an established test for Willmore flow models, because the
evolution of the radius is known. If we start with a circle of initial radius r0, Willmore
flow leads to a family of concentric circles denoted by Γr(t) ⊂ R2, where r(t) is the
radius of the circle at time t (cp. [47, 37]). This radius solves the ordinary differential
equation

ṙ(t) =
1
2

1
r3(t)

with r(0) = r0 .

By separation of variables, cp. [2], we get

r(t) = 4

√
2t+ r4

0 . (5.1)

As we are working with phase field approximations the interface, in this case the circle,
is given diffusely. Thus, to compute an L2-error we have to generate an analytically
“exact” phase field solution. As mentioned, the exact evolution of the radius is known.
Moreover we expect our model to generate and preserve a phase field function with
optimal profile perpendicular to the interface (cp. Lemma 2.2). Therefore we define
a function

ũkτ : Ω→ R, x 7→ tanh

(
sgndist

(
x,Γr(kτ)

)
ε

)
which is the reference solution at time kτ . With Uk being the numerical solution,
computed by our Willmore model, the L2-error is ‖ek‖L2 = ‖ũkτ − Uk‖L2 .
To benefit from a higher resolution and therefore get better results we start with a
quarter circle of initial radius r0 = 0.4 instead of a circle with initial radius 0.5r0,
centered around one corner of the computational domain Ω = [0, 1]2. In this test the
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Figure 5.1: Evolution of the L2-error for Willmore flow of a quarter circle in time.
The initial radius is r0 = 0.4, the interface transition thickness ε = 2−6 and the time
step sizes are τ = τ̃ = h2. Here, the grid sizes h vary from 2−7 to 2−9. The solid
lines show the error of our scheme, the dotted lines belong to the scheme proposed by
Du et al. (cp. Section 5.2).

interface transition thickness is ε = 2−6 and the time step sizes are τ = τ̃ = h2. The
computation is performed on three different grids with grid sizes h = 2−7, 2−8 and
2−9. In Figure 5.1 the results are visualized by solid lines. The oscillation of the error
in the case h = 2−7 indicates that the interface transition thickness ε ∼ 2h on this grid
is still too small. For an adequate approximation of a fourth order partial differential
equation we require ε = 4h. In Chapter 4, where we have treated the biharmonic heat
equation as a linear model problem, we have proven for τ = τ̃ = h2 an error decay
by a factor 1

4 when halving the grid size. The results presented in Figure 5.1 indicate
that it is reasonable to expect the same decay in case of our Willmore model.

As a further test simulation, let us consider Willmore flow of two exemplary geome-
tries. In both cases we choose Ω = [0, 1]2, h = 2−9, ε = 4h, and τ = τ̃ = h2.
The first geometry is a rectangle of width 0.4 and height 0.1 and the corresponding
phase field function is given by

urectangle(x) = tanh
(

max (|x1 − 0.5| − 0.2, |x2 − 0.5| − 0.05)
ε

)
.

As presented in Figure 5.2 the evolution is initially concentrated at the corners. This
leads to a locally concave object, which gets convex again within few time steps.
Finally it evolves to a circle. Due to (5.1) this circle would continue to grow if we
would compute more than 120 time steps.
The second geometry consists of two circles of radius r0 = 0.13 centered at (0.35, 0.5)
and (0.65, 0.5). The phase field function of this geometry is given by

ucircle(x) = tanh
(

min (f0.35(x), f0.65(x))
ε

)

58



5.1 Simulation based on the nested time discretization

Figure 5.2: Computed evolution of a rectangle under Willmore flow for grid size
h = 2−9, ε = 4h, and τ = τ̃ = h2. Results are depicted at time steps k =
0, 1, 6, 10, 20, 40, 60, 120. The bottom rows show the underlying discrete curvature
(Uk − V k)/τ̃ , color-coding on the range [−20, 20] as .

with

fα(x) =
√

(x1 − α)2 + (x2 − 0.5)2 − 0.13 .

In this test simulation we observe a topological change (cp. Figure 5.3). Within the
first time step both circles merge into one locally concave object. The concavity of
this object is more pronounced, but similar to the concavity of the object at time step
1 in the evolution of the rectangle (cp. Figure 5.2). Therefore the further evolution
of both objects is similar to each other. Different to the rectangular case it takes 450
time steps until the geometry is a circle.
Additionally to the evolution of the geometry itself the curvature approximation
(Uk − V k)/τ̃ of the evolving geometries is displayed in both Figures 5.2 and 5.3. No-
tice, in case of the rectangle the curvature is color-coded on the range [−20, 20] and
in case of the two circles on the range [−10, 10]. This curvature information reveals a
better understanding of the underlying geometry. In the fourth image of Figure 5.2 or
the fifth image of Figure 5.3 it is not really possible to decide whether the geometry is
convex. However, the curvature information displays this property since it is positive
on the whole computational domain.

Finally we consider two three-dimensional simulations of Willmore flow, presented in
Figure 5.4 and 5.5. In both cases the computation is performed on a grid with mesh
size h = 2−8, with interface transition thickness ε = 4h and inner step size τ̃ = h2.
The first geometry is a cube (cp. Figure 5.4) with edge length 0.4. Consequently the
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5 Numerical results and applications for Willmore flow

Figure 5.3: Computed evolution of two circles under Willmore flow on a grid of
mesh size h = 2−9, ε = 4h, and τ = τ̃ = h2. The visualized time steps
are k = 0, 1, 2, 4, 20, 40, 160, 450. In the two lower lines the discrete curvature
(Uk − V k)/τ̃ is color-coded on the range [−10, 10] as .
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5.1 Simulation based on the nested time discretization

Figure 5.4: Different time steps of the discrete Willmore flow for a cube with edge
length 0.4 as initial surface (left). The computational parameters are h = 2−8, ε = 4h,
τ̃ = h2. In the first line results are depicted at time steps k = 1, 20 with τ = h3 and
in the second line at time steps k = 1, 10 with τ = 0.03h. In addition to the evolving
shapes we render the underlying discrete curvature (Uk − V k)/τ̃ on a planar slice
indicated in red on the geometries and use a color-coding on the range [−5, 5] as

.
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5 Numerical results and applications for Willmore flow

Figure 5.5: Different time steps of the discrete Willmore flow for a disk of diameter 0.5
and thickness 0.1 as initial surface (left). The computational parameters are h = 2−8,
ε = 4h, τ̃ = h2. In the first line results are depicted at time steps k = 1, 20 with
τ = h3 and in the second line at time steps k = 1, 10 with τ = h2. In addition to the
evolving shapes we render the underlying discrete curvature (Uk−V k)/τ̃ on a planar
slice indicated in red on the geometries and use a color-coding on the range [−5, 5] as

.
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corresponding phase field function is

ucube(x) = tanh
(

max (max (|x1 − 0.5| − 0.2, |x2 − 0.5| − 0.2) , |x3 − 0.5| − 0.2)
ε

)
and the second geometry is a disc (cp. Figure 5.5) with diameter 0.5 and thickness
0.1, generated by

udisc(x) = tanh

max
(√

(x1 − 0.5)2 + (x2 − 0.5)2 − 0.25, |x3 − 0.5| − 0.05
)

ε

 .

In Figure 5.4 two examples for the evolution of a cube are presented and in Figure 5.5
two further examples for the evolution of a disc. In comparison to h, ε and τ̃ , which
are the same in all four cases, the choice of τ varies. In the upper lines the evolution
of the cube and the disc is presented after 1 and 20 time steps of size τ = h3. In the
lower lines the evolution of both objects is visualized after 1 and 10 time steps. In
case of the cube τ = 0.03h while τ = h2 for the disc.
Similar to the two-dimensional examples the discrete curvature (Uk − V k)/τ̃ is dis-
played on a cutting through the geometry, indicated by the red line on the three-
dimensional shape. As in the two-dimensional case in Figure 5.2, the flow in both
examples is most concentrated in regions with high curvature, leading temporarily to
concave shapes. Apart from the example of the evolving cube with outer step size
τ = 0.03h this behavior is displayed in all three examples.

5.2 Comparison with a semi-implicit scheme

After we have seen some results of numerical tests we now compare our variational time
discretization of Willmore flow with a semi-implicit phase field scheme presented by
Du et al. in [40] and [42]. They do not treat pure Willmore flow, but three-dimensional
deformations of vesicle membranes and the corresponding elastic bending energy with
constant surface area and volume. Canham, Evans and Helfrich treated this type of
energy first [19, 48, 56]. For a membrane Γ ⊂ R3 the elastic bending energy is

e[Γ] =
ˆ

Γ
a1 + a2 (h− c0)2 + a3kdH2 (5.2)

and therefore much more complicated than the pure Willmore energy.
As Du et al. prescribed a constant surface area the surface tension a1 is constant and
can be neglected. Moreover they assume the bending rigidity a2 to be constant and
further neglect Gaussian curvature k entirely by setting the stretching rigidity a3 to
zero. Thus they treat the simplified bending energy

es[Γ] =
ˆ

Γ
(h− c0)2 dH2, (5.3)

where h is the mean curvature of the membrane Γ and c0 its spontaneous curvature.
Consequently we only have to set the spontaneous curvature to zero and neglect the
constraints on the surface area and the volume to get a semi-implicit phase field
scheme for Willmore flow. This simplified version of the model presented by Du et al.
is described and compared with our model in this section.
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5.2.1 A semi-implicit phase field scheme for Willmore flow

Following [30], the Willmore energy in a phase field model can be approximated by

wε[u] =
1
2ε

ˆ
Ω

(
−ε∆u+

1
2ε

Ψ′(u)
)2

dx . (5.4)

The first variation of (5.4), i.e.

∂uw
ε[u](ϑ) =

ˆ
Ω

1
ε

(
ε∆u+

2
ε
u
(
1− u2

))(
ε∆ϑ+

2
ε

(
1− 3u2

)
ϑ

)
dx , (5.5)

can be simplified by defining f(u) := −
(
−ε∆u+ 1

2εΨ
′(u)

)
= ε∆u + 2

εu(1 − u2) and
g(u) := ∆f(u) + 2

ε2
(1− 3u2)f(u). With this notation the variation is

∂uw
ε[u](ϑ) =

ˆ
Ω
g(u)ϑ dx . (5.6)

To derive a semi-implicit time discretization ansatz Du, Liu and Wang [40] used the
variable splitting

g(u, v) :=
1
2

∆ (f(u) + f(v)) +
1
ε2

(1− u2 − uv − v2) (f(u) + f(v)) .

This treatment of nonlinear terms has been used before, for example in [41], because
it allows one to derive so-called discrete energy laws.
The semi-implicit time discretization ansatz εu

k+1−uk
τ = −g(uk+1, uk), corresponding

to this splitting leads to the following system of equations in uk+1 and fk+1

ˆ
Ω
ε
uk+1 − uk

τ
ϑ dx =

ˆ
Ω

1
2
∇
(
fk+1 + fk

)
· ∇ϑ

− 1
ε2

(
1−

(
uk+1

)2
− uk+1uk −

(
uk
)2
)(

fk+1 + fk
)
ϑ dx ,

ˆ
Ω
fk+1ϑ dx =

ˆ
Ω
−ε∇uk+1 · ∇ϑ+

2
ε
uk+1

(
1− (uk+1)2

)
ϑ dx

for given uk and fk ≡ f(uk). In [40] Du et al. used Fourier spectral methods to
discretize this time-discrete scheme in space, but for a better comparability with our
model we prefer piecewise Finite Elements for the approximation of uk+1, uk, fk+1

and fk. With the notation as before the discretized system of equations is

ε

τ
M
(
U
k+1 − Uk

)
=

1
2
L
(
F
k+1 + F

k
)
− 1
ε2

(
M−M[

(
Uk+1

)2
]
)(

F
k+1 + F

k
)

+
1
ε2

(
M[Uk+1Uk] + M[

(
Uk
)2

]
)(

F
k+1 + F

k
)
,

MF
k+1 = −εLUk+1 +

2
ε
MU

k+1 − 2
ε
M[
(
Uk+1

)2
]Uk+1

.
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5.2.2 Newton method for the semi-implicit scheme

To ensure the comparability with our model we solve this nonlinear system with the
Newton method described in Subsection 3.2.2. We define a function

F [U,F ;Uk, F k] =
(
F1[U,F ;Uk, F k], F2[U,F ;Uk, F k]

)T
with

F1[U,F ;Uk, F k] :=
ε

τ
M
(
U − Uk

)
− 1

2
L
(
F + F

k
)

+
1
ε2

M
(
F + F

k
)

− 1
ε2

(
M[(U)2] + M[UUk] + M[

(
Uk
)2

]
)(

F + F
k
)
,

F2[U,F ;Uk, F k] := MF + εLU − 2
ε
MU +

2
ε
M[(U)2]U .

To set up the Newton method we need to compute the first variation of F [U,F ;Uk, F k]
with respect to U and F .

∂UF1[U,F ;Uk, F k](Θ) =
ε

τ
MΘ− 2

ε2
M[U

(
F + F k

)
]Θ− 1

ε2
M[Uk

(
F + F k

)
]Θ ,

∂FF1[U,F ;Uk, F k](Σ) = −1
2
LΣ +

1
ε2

(
M−M[U2]−M[UUk]−M[

(
Uk
)2

]
)
Σ ,

∂UF2[U,F ;Uk, F k](Υ ) = εLΥ − 2
ε
MΥ − 6

ε
M[U2]Υ ,

∂FF2[U,F ;Uk, F k](Λ) = MΛ

We now define Zi := (Ui, Fi) and end up with solving the linear system of equations

DF [Zi]TDF [Zi] (Zi+1 − Zi) = −DF [Zi]TF [Zi]

for Zi+1 with the Cholesky solver from the CHOLMOD package [29, 24]. A comparison
with (3.20) reveals apart from the different definition of Zi and F it is the same system
of equations as in the nested variational model in Chapter 3.

5.2.3 Comparison

After presenting the semi-implicit scheme we compare it with our model. Therefore we
choose the same test as presented at the beginning of this chapter, i.e. we start with a
quarter circle with initial radius r0 = 0.4, set ε = 2−6, time step sizes τ = τ̃ = h2 and
vary the grid size from 2−7 to 2−9. The L2-error of this evolution computed with the
semi-implicit scheme is presented in Figure 5.1, where it is plotted in the same graph
as the L2-error computed with our method. The results are qualitatively equal.
For a better comparison of both schemes we listed the required Newton iterations
and the resulting computing times of both methods in Table 5.1. These results are
based on the simulation of 80 time steps on a single kernel of an Intel Xeon E5530
CPU. The comparison of the iteration numbers on a grid with grid width h = 2−7

reveals that the Newton method needs about 4 iterations per time step for our nested
time discretization, whereas the semi-implicit scheme requires up to 200 iterations.
Consequently the computation times are significantly longer.
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numerical scheme h = 2−7 h = 2−8 h = 2−9

iter time [sec] iter time [sec] iter time [sec]

nested variational 288 1366 961 20651 2562 338602

semi-implicit [42] 6176 18746 3695 121531 5776 1051560

Table 5.1: Total number of Newton iterations and computation times for the simula-
tions from Figure 5.1.

Furthermore we observed a stable convergence of the nonlinear solver in the nested
variational scheme for step sizes up to τ = 0.03h whereas the nonlinear solver in the
semi-implicit scheme revealed convergence problems for step sizes of this order.
Thus based on our experiments we conclude that the new method is significantly more
robust.

5.3 Application to an image restoration

In this section we apply our nested variational Willmore model to an image restoration
problem. This type of problem is widespread in computer vision [4, 5, 6, 67, 86, 77].
Since the result is more important than the temporal evolution image restoration
is a problem in which high accuracy in time discretization is not as important as a
robust numerical descent scheme. Thus this geometric variational problem is a nice
application of our nested variational time discretization, which allows large time steps.
To set up an adequate model we follow the edge restoration approach by Nitzberg et al.
[77]. Therefore we slightly modify our model presented in Definition 3.9 by adding an
area functional to the outer energy, leading to

eε,ηout[u
k, u, v] = eεout[u

k, u, v] + 2τηaε[u] , (5.7)

where aε[u] is the phase field approximation of the surface area defined in (2.3).
By minimizing this weighted sum of Willmore energy and area functional we aim
to find a continuation of a given image edge in a region which was destroyed in the
original image. As before the image edge is given by a phase field function uk. In
contrast to Definition 3.9 we now have to deal with C1 boundary conditions. This
leads to the following model

Definition 5.1 (Image restoration iteration). Given a phase field uk at time kτ we
define the phase field uk+1 at time (k + 1)τ by

uk+1 = argmin
u∈H1(Ω)

eε,ηout [u
k, u, v] , where (5.8a)

v = argmin
ṽ∈H1(Ωδ)

eεin[u, ṽ] , and (5.8b)

uk+1 = uk on ∂Ω . (5.8c)

Here Ωδ denotes a δ-neighborhood of the reconstruction region Ω.
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5.3 Application to an image restoration

Solving this PDE constrained variational problem leads to the problem of finding a
saddle (u, v, p) ∈ H1(Ω)×H1(Ωδ)×H1(Ωδ) with u = uk on ∂Ω of the Lagrangian

`ir[uk, u, v, p] = eε,ηout[u
k, u, v] + ∂ve

ε
in[u, v](p)

=
ˆ

Ω
ε(u− uk)2 dx +τε

(
v − u
τ̃

)2

dx +τη
ˆ

Ω
ε|∇u|2 +

1
ε

Ψ(u) dx

+
ˆ

Ω
2ε(v − u)p+

τ̃

ε
Ψ′(v)p+ 2ετ̃∇v · ∇p dx .

As we now have to deal with different boundary conditions as in Subsection 3.2.2 we
want to treat the discretization in detail again, even if it is similar to the one we have
already seen. Using our standard notation for the Finite Element discretization the
fully discretized Lagrangian is

Lir[Uk, U, V, P ] = Eε,ηout [Uk, U, V ] + ∂V Eεin[U, V ](P )

= εM
(
U − Uk

)
·
(
U − Uk

)
+
τε

τ̃2
M
(
V − U

)
·
(
V − U

)
+ 2τηAε[U ] + 2εM

(
V − U

)
· P − 4τ̃

ε
M[1− V 2]V · P

+ 2ετ̃LV · P .

The first variation of this Lagrangian with respect to U , V and P is

∂ULir[U, V, P ](Θ) = 2εM
(
U−Uk

)
·Θ− 2τε

τ̃2
M
(
V −U

)
·Θ + 2εητLU ·Θ

− 4τη
ε

M[1− U2]U ·Θ− 2εMP ·Θ ,

∂V Lir[U, V, P ](Ξ) =
2τε
τ̃2

M
(
V − U

)
· Ξ + 2εMP · Ξ− 4τ̃

ε
M[1−3V 2]P · Ξ + 2ετ̃LP · Ξ ,

∂PLir[U, V, P ](Σ) = 2εM
(
V −U

)
·Σ − 4τ̃

ε
M[1−V 2]V ·Σ + 2ετ̃LV ·Σ

and the components of the Hessian of the Lagrange function are

∂U∂ULir[U, V, P ] = 2ε
(

1 +
τ

τ̃2

)
M + 2ετηL− 4τη

ε
M[1− 3U2] ,

∂V ∂ULir[U, V, P ] = −2τε
τ̃2

M ,

∂P∂ULir[U, V, P ] = −2εM ,

∂V ∂V Lir[U, V, P ] =
2τε
τ̃2

M +
24τ̃
ε

M[V P ] ,

∂P∂V Lir[U, V, P ] = 2εM− 4τ̃
ε

M[1− 3V 2] + 2τ̃ εL ,

∂P∂PLir[U, V, P ] = 0 .

Notice, F and DF which are used in the Newton method are not just defined by
F [U, V, P ] = ∇(U,V,P )Lir[U, V, P ] and DF = D2Lir as we have seen before. At this
point we have to account for the different boundary conditions. In this case the
uniform simplicial mesh T covers the computational domain Ωδ and I denotes the
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Figure 5.6: Time steps 0, 1, and 30 from two different edge restoration problems.
The restoration region is a unit square, outlined in red and resolved by a 29 × 29

regular grid. Parameters are ε = 4h, η = 1, τ = 0.03h, and τ̃ = h2. In both rows the
rightmost image shows a blowup of the restoration region at the last time step with
the curvature color-coded as on the range [−5, 5].

vertex index set of T as before. In addition to this the vertex index set of all Dirichlet
nodes is denoted by ID ⊂ I. Let F being the nodal vector corresponding to the
discrete vector valued function F , than we have to set

F0
i = 0 ∀i ∈ ID

and for the Hessian of the Lagrangian

DF00
ij = 0 ∀i ∈ ID, j ∈ I, i 6= j ,

DF00
ij = 0 ∀i ∈ I, j ∈ ID, j 6= i ,

DF00
ii = 1 ∀i ∈ ID ,

DF0k
ij = 0 ∀i ∈ ID, j ∈ I, k = 1, 2 ,

DFk0
ij = 0 ∀i ∈ I, j ∈ ID, k = 1, 2

to realize C1 boundary conditions in U .
Results of this model are presented in Figure 5.6. In the first row we start with a
damaged circle and in the second row we start with a cross as input data. In both
cases the computational domain is outlined in red and resolved by a 29 × 29 regular
grid. The parameters are ε = 4h, η = 1, τ = 0.03h and τ̃ = h2 in both cases and
the results are presented after 0, 1 and 30 iterations. As we can see this amount of
iterations is enough to achieve satisfactory reconstruction results.
In a last test, presented in Figure 5.7, we vary the parameter η and keep all other
parameters as before. As input data we choose a bar. These results illustrate the
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5.3 Application to an image restoration

Figure 5.7: A variational C1 edge continuation is computed via a gradient flow mini-
mization of the sum of the Willmore energy and a weighted surface area starting from
an initial phase field (left). The minimizing phase field is shown for the surface weight
η = 0.1 (second), η = 1 (third), and η = 10 (fourth image).

influence of Willmore energy and surface area under different weighting. For η = 0.1
the Willmore energy is weighted higher than the surface area, thus it forms a big drop
at the end of the bar. In contrast to this, if η = 10, the surface area is weighted higher
than the Willmore energy such that the model shortens the length of the edge and
we get a small cap at the end of the bar.

The presented results show that this model works fine for image restoration. However,
due to the special properties of the Willmore energy and the absence of anisotropy it
can be used for restoration of objects with C1 boundary, only.
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Chapter 6

Shape from apparent contour

In this chapter we deal with a further application of the variational time discrete
Willmore model presented in Chapter 3. We infer the shape of a hypersurface from
its so-called apparent contour. The corresponding model problem is presented in
the first section and a survey of the basic terminology arising in literature in the
second. After this we concentrate on the variational phase field model and present
some numerical tests in two as well as in three dimensions.

6.1 The model problem

One application of our variational time discrete Willmore model is an inverse geo-
metric problem. Given a smooth hypersurface Γ ⊂ Rd we define the corresponding
apparent contour.

Definition 6.1 (Apparent contour). Let Γ ⊂ Rd be a (d−1)-dimensional hypersurface
and π : Rd → Rd−1 the parallel projection onto a (d − 1)-dimensional viewing plane,
without loss of generality assumed to be the x1, . . . , xd−1-plane. Moreover let ed be the
unit normal vector to this plane. Then

G(Γ) := {π(x) : x ∈ Γ ∧ ed ∈ TxΓ}

is the apparent contour of the hypersurface Γ.

The apparent contour separates the regions where the number of intersections between
the hypersurface and the projection ray is constant. The labeling which specifies these
intersection numbers is called Huffman labeling.

Definition 6.2 (Huffman labeling). Let Γ ⊂ Ω ⊂ Rd with Ω = ω×[0, 1] and ω ⊂ Rd−1

be a (d−1)-dimensional hypersurface and ed the direction normal on the viewing plane.
Then the Huffman labeling α = α[Γ] of the hypersurface Γ is defined by

α[Γ](x) := card{t ∈ R : x+ ted ∈ Γ} for a.e. x ∈ ω .

In Figure 6.1 there is exemplarily visualized a two-dimensional torus in R3 and the
corresponding two-dimensional Huffman labeling for projection direction e3.
Now the aim of this chapter is to find a surface Γ ∈ Rd which belongs to a given
(d− 1)-dimensional Huffman labeling α∗. As we will see the solution of this problem
is not unique. This can be illustrated in case of the Huffman labeling of a sphere and
a cylinder with variable height, presented in Figure 6.2. The corresponding Huffman
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x1

x3

x2

Γ

G(Γ)

0 2 4

x1

x2

Figure 6.1: A torus Γ in R3 and its apparent contour G(Γ) as well as a color sketch
of the corresponding two-dimensional Huffman labeling.

x1
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x3

x1

x2

0

2

Figure 6.2: The Huffman labeling of a sphere and a cylinder can be the same.
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labeling is almost everywhere the same. They distinguish from each other only on
a null set, where the value is 1 in case of the sphere and ∞ in case of the cylinder.
Neglecting such null sets, which is done in our variational model and in Definition 6.2,
there are infinitely many surfaces which have the same Huffman labeling. To restrict
the number of possible surfaces we introduce a suitable prior, in this case an energy
consisting of surface plus Willmore energy, which has to be minimized by the surface
whose Huffman labeling has to be equal to the given one α∗ almost everywhere.

Problem 6.3 (Apparent contour inverse problem). Let η, µ ∈ R≥0 and α∗ : Rd−1 → R
be a given Huffman labeling. Find a hypersurface Γ ⊂ Rd minimizing the regulariza-
tion energy

ereg[Γ] :=
ˆ

Γ
η +

µ

2
h2dHd−1

subject to α[Γ] = α∗ almost everywhere.

6.2 Huffman labeling in literature

The origin of the Huffman labeling presented in the previous section goes back to
the paper “Impossible Objects as Nonsense Sentences” by Huffman in 1971 [58]. He
dealt with the question how to differ impossible from possible two-dimensional images
of three-dimensional objects. He mainly concentrated on polyhedra, but in the last
part of his paper he treated smooth objects, too. The labeling he proposed discrim-
inates between edges which have one associated surface (i.e. on the boundary of the
polyhedral surface) and are marked with a single arrow “>” and folds having two as-
sociated surfaces and being marked with a double arrow “�”. The orientation of the
arrows indicates on which side of the edge or fold the associated surface or surfaces
lie. If we travel along a line in the direction the arrow points the associated surface
or surfaces are to the right. Moreover each edge or fold has a depth-index counting
the number of intersections until reaching the edge or fold and visible edges or folds
are indicated by a solid line while broken lines stand for invisible edges or folds. In
case of a two-dimensional torus in R3 this labeling is presented in part (a) of Figure 6.3.

Although there existed different kinds of labeling schemes [71, 96, 62] Williams dealt
in “Topological Reconstruction of a Smooth Manifold-Solid from Its Occluding Con-
tour” from 1995 [98] with the Huffman labeling, because this kind of labeling allows
to treat smooth surfaces with and without boundary furthermore with visible and
occluded contours. Given a labeled figure representing an occluding contour he aims
to build a combinatorial model of the corresponding smooth manifold solid. Williams
denotes by manifold solid an object with its interior. In comparison to this we regard
the boundary of this manifold solid, only, and denote it as hypersurface. This pro-
cedure is called “paneling construction”. Thereby an occluded contour is defined as
the image of points where the surface is tangent to the viewing direction. Thus the
occluded contour is the same as our apparent contour defined in Definition 6.1 and it
correlates to folds in Huffman’s labeling scheme. Edges as presented by Huffman do
not arise in this work because Williams concentrates on smooth manifold-solids whose
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Figure 6.3: Four different versions of a two-dimensional Huffman labeling of a torus in
R3: (a) Labeling as Huffman introduced it in [58]; (b) Huffman labeling as Williams
used it in [98]; (c) Huffman labeling Bellettini et al. worked with in [9]; (d) The
version of the Huffman labeling we are working with.
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boundary is closed. For the paneling construction it is necessary to introduce a vari-
able γR for each region R of the labeled figure. These variables have to solve a system
of difference equations of the form γA−γB = 2 for every pair of neighboring regions A
and B, when A lies to the right of B in the sense of Huffman’s arrows. Remark that
the solution of this system of difference equations is not unique. If {x1, x2, . . . , xn} is
a solution, then {x1 + c, x2 + c, . . . , xn + c} is a solution, too. Nevertheless we can
choose c such that these new variables correlate with what we are denoting by Huff-
man labeling. In Figure 6.3, part (b) this version of Huffman labeling is visualized for
the same example of a torus, as in part (a).

In their paper “Topological and Variational Properties of a Model for the Recon-
struction of Three-Dimensional Transparent Images with Self-Occlusions” from 2008
[9] Bellettini et al. worked with a further version of the Huffman labeling. In their
work the Huffman labeling consists of two parts. The so-called depth ordering function
defined on the arcs of the apparent contour, but not on crossings and cusps and the
function fE(x) counting the number of layers of the surface in front of x ∈ Ω ⊂ R2

on the projection plane. Thereby the depth ordering function is the same as the
depth-index in Huffman’s labeling scheme and the function fE(x) as the additional
variable in the Huffman labeling Williams dealt with, thus the same as what we are
denoting by Huffman labeling. The version of Huffman labeling used by Bellettini
et al. is presented in part (c) of Figure 6.3. A comparison with Williams version of
the Huffman labeling reveals that they only differ by the labeling of the contour with
arrows. Bellettini et al. used this Huffman labeling for reconstructing a so called
three-dimensional scene by a given gray level image. This three-dimensional scene
consists of a three-dimensional solid and maybe layered shape. Within this problem
they prove the existence of a smooth generic three-dimensional scene whose Huffman
labeling equals the given one. Moreover they define a suitable equivalence relation
for smooth generic three-dimensional scenes. In our notation this definition of the
equivalence relation is:

Definition 6.4. Let E,F ⊂ (0, 1) × [0, 1]2 be two finite perimeter sets. We say
that E and F are equivalent, and write E ∼ F , if there exists a homeomorphism
Φ : (0, 1) × [0, 1]2 → (0, 1) × [0, 1]2 of the form Φ(t, x) = (φx(t), x), such that φx is
strictly increasing for any x ∈ [0, 1]2 and χE = χF ◦ Φ.

They prove that with respect to this equivalence relation there exists a unique equiv-
alence class whose Huffman labeling equals the given one. Moreover in a further work
[10] the same authors used this kind of Huffman labeling. Within this work they deal
with the completion of visible contours and the reconstruction of a three-dimensional
scene by a given visible contour.

Finally we compare our version of the Huffman labeling which is visualized in part
(d) of Figure 6.3 with the earlier versions. It turns out that our version is completely
different from the version Huffman used originally, but it is strongly related to the
version Bellettini et al. used, because it is only one of the two parts Bellettini’s version
of the Huffman labeling consists of.
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Figure 6.4: Phase field approximation α[u] of the one-dimensional Huffman labeling
of a circle with radius r = 0.2 in [0, 1]2, centered in (0.5, 0.5) and represented by the

phase field function uc(x, y) = tanh
(√

(x−0.5)2+(y−0.5)2−0.2

ε

)
. From left to right with

ε = 2−4, 2−5, 2−6, 2−7, 2−8.

6.3 The variational phase field model

After the short excursion on different versions of Huffman labeling in the literature
we derive the phase field model to the model problem presented in Section 6.1. As in
the previous chapters let u be a Modica-Mortola type phase field function defined on
Ω = [0, 1]d describing a surface. The Huffman labeling of this surface on the viewing
plane normal to ed can be approximated by

α[u] :=
1
2

ˆ 1

0
|∂xdu| dxd . (6.1)

Figure 6.4 shows the function graph of the phase field approximation of the one dimen-
sional Huffman labeling of a circle with radius r = 0.2 in [0, 1]2, centered in (0.5, 0.5)
and represented by the phase field function

uc(x, y) = tanh

(√
(x− 0.5)2 + (y − 0.5)2 − 0.2

ε

)
.

The sequence illustrates that this approximation of the Huffman labeling converges
to the Huffman labeling in Definition 6.2 for ε→ 0.
To treat the constraint α[u] = α∗ we introduce a mismatch functional measuring the
mismatch of the given Huffman labeling α∗ and the Huffman labeling induced by the
phase field function u.

j[u] := γ

ˆ
[0,1]d−1

(α∗ − α[u])2 dx 1,...,d−1 (6.2)

The parameter γ ∈ R≥0 controls the influence of this mismatch functional which acts
as penalty functional for large values of γ.
To formulate the phase field version of the apparent contour inverse Problem 6.3 we
have to remember the surface energy scaled with η can be approximated by the
Modica-Mortola energy (2.3) and the Willmore energy scaled with µ will be treated
as in Chapter 3. That means we approximate the mean curvature by v−u

τ̃ where v has
to minimize the energy

eεin[u, v] = ε‖v − u‖2L2(Ω) + 2τ̃ aε[v] ,
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and aε[v] (2.3) is defined by

aε[v] =
1
2

ˆ
Ω
ε|∇v|2 +

1
ε

Ψ(v) dx .

Then we get the phase field version of the apparent contour inverse Problem 6.3.

Problem 6.5 (Phase field apparent contour inverse problem). Find a function
u ∈ H1(Ω) minimizing the penalized regularization energy

eεreg,p[u, v] =
η

2

ˆ
Ω

1
ε

Ψ(u) + ε|∇u|2 dx +
µ

2

ˆ
Ω
ε

(
v − u
τ̃

)2

dx

+ γ

ˆ
[0,1]d−1

(α∗ − α[u])2 dx1,...,d−1 , (6.3)

subject to

v = argmin
w

eεin[u,w]

= argmin
w

ˆ
Ω
ε(w − u)2 +

τ̃

ε
Ψ(w) + τ̃ ε|∇w|2 dx .

To solve this constrained variational problem we would like to apply a nested varia-
tional time discrete model as presented in Chapter 3 for Willmore flow. Therefore we
would introduce an outer energy

eε,rpout [uk, u, v] = ε‖u− uk‖2L2(Ω) + 2τeεreg,p[u, v] ,

set up the corresponding Lagrange function and consequently would have to compute
the Hessian of all terms of the Lagrange function and therefore of the penalized
regularization energy (6.3). Due to the special structure of the mismatch functional
and the Huffman labeling α[u] the implementation of the Hessian of the mismatch
energy requires to implement the expression

ˆ
[0,1]d−1

1
2

(ˆ 1

0
sign(∂xdu)∂xdξ dxd

)(ˆ 1

0
sign(∂xdu)∂xdϑ dxd

)
dx1,...,d−1

with testfunctions ξ, ϑ ∈ H1(Ω). Thus we will circumvent the implementation of the
Hessian of the mismatch functional and use an operator splitting strongly related to
the Strang (also called Strang-Marchuk) operator splitting [51, 94, 72]. We split up
the Problem 6.5 into the minimization of the regularization energy without mismatch
functional

eεreg[u, v] =
η

2

ˆ
Ω

1
ε

Ψ(u) + ε|∇u|2 dx +
µ

2

ˆ
Ω
ε

(
v − u
τ̃

)2

dx

and the minimization of the mismatch functional (6.2). For the minimization of
the regularization energy consisting of surface and Willmore energy we set up the
Lagrange function

`ac[uk, u, v, p] = ε‖u− uk‖2L2(Ω) + 2τeεreg[u, v] + ∂ve
ε
in[u, v](p) . (6.4)
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6 Shape from apparent contour

Then we proceed analogously as in Chapter 3 and compute a saddle point (u, v, p) ∈
H1(Ω)×H1(Ω)×H1(Ω) of this Lagrangian by using a Newton method to solve the
equation ∇(u,v,p)`[uk, u, v, p] = 0.
The minimization of the mismatch functional j[u] will be realized by an explicit
gradient flow in u

ˆ
Ω
ε
(
u− uk

)2
ϑ dx = −γτ∂uj[uk](ϑ)

with test function ϑ ∈ H1(Ω) and variation of the mismatch functional in u

∂uj[u](ϑ) =
ˆ

[0,1]d−1

2 (α∗ − α[u]) ∂uα[u](ϑ) dx1,...,d−1

=
ˆ

[0,1]d−1

2 (α∗ − α[u])
(
−1

2

ˆ 1

0
sign (∂xdu) ∂xdϑ dxd

)
dx1,...,d−1

=
ˆ

Ω
(α[u] ◦ π − α∗ ◦ π) sign (∂xdu) ∂xdϑ dx .

To remember, π denotes the parallel projection from Rd to Rd−1.
Finally we solve the phase field apparent contour inverse problem 6.5 by applying
Algorithm 6.1. Thereby the initialization is analog to the initialization in Chapter 3.

Algorithm 6.1: Initialization and operator splitting for Problem 6.5

given: phase field function u0;
given: time step size τ0;
given: maximal number of time steps Kmax;
compute v0 as root of ∂p`[u0, ·, p] = 0;
compute p0 by solving ∂v`[u0, v0, p] = 0 in p;
for k = 0 to Kmax do

τ = 0.5τ0;
compute (uk+ 1

3 , vk+ 1
2 , pk+ 1

2 ) = argmin `[uk, u, v, p];
τ = τ0;
compute uk+ 2

3 by solving
ˆ

Ω
ε
(
u− uk+ 1

3

)2
ϑ dx = −γτ∂uj[uk+ 1

3 ](ϑ) ;

τ = 0.5τ0;
compute (uk+1, vk+1, pk+1) = argmin `[uk+ 2

3 , u, v, p];
end

6.3.1 Finite Element discretization

The Finite Element discretization of the saddle point problem is done completely
analog to the Finite Element discretization in Subsection 3.2.1.
In comparison to this we use a multilinear Finite Element approach on the underlying
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rectangular grid as presented in Section 2.2 to discretize the gradient flow in the
mismatch functional (6.2). This is useful to simplify the numerical quadrature. For
a rectangular grid with tensor product Gaussian quadrature it is easy to split up the
integration over [0, 1]d into one integral over[0, 1] and a second integral over [0, 1]d−1

or to simplify an integral like
ˆ

[0,1]d−1

f(x1, . . . , xd−1) dx 1,...,d−1 (6.5)

with

f(x1, . . . , xd−1) =
ˆ 1

0
f̃(x) dx d ,

x ∈ Rd and f̃ : Rd → R as mentioned in Subsection 3.2.1.
Hence, the discretized variation ∂uj[·] coincides with the variation of the discretized
functional j[·].

6.4 Numerical results

To test our shape reconstruction model we started with the sharp version of a given
Huffman labeling as presented in Definition 6.2. But it turned out that we get better
results if we use the approximated version (6.1) computed on the grid we are working
with. Thus all tests in this section are set up as follows. In a first step we compute
the phase field function representing an object we are planning to reconstruct and
compute the corresponding Huffman labeling α∗ by (6.1). This Huffman labeling is
taken as given to reconstruct the corresponding higher dimensional object.
Moreover we use in each test a multilevel ansatz. We start with a given Huffman
labeling on a coarse grid, apply Algorithm 6.1 until the computed shape and its cor-
responding Huffman labeling fit to the given Huffman labeling quite well and refine
the grid as well as all included data, as for example the given Huffman labeling α∗.
This procedure will be iterated over several grids of recursively finer grid width.

6.4.1 Two-dimensional simulations

As first test we consider the given Huffman labeling of a disc with radius rh = 0.25.
The computational parameters are ε = 4h, µ = 0.05, γ = 10, η = 0.05, τ = 0.03h,
τ̃ = h2 and we initialize u with the phase field function of a disk of radius r0 = 0.13.
The corresponding sequence is presented in Figure 6.5. The sharp version of the given
Huffman labeling is visualized by a colored bar at the bottom. Directly above we
see the function graph of the given Huffman labeling α∗ (solid line) and the Huffman
labeling of the current object α[u] (dotted line). The phase field function u of the
object itself is visualized on top. The red lines are visual guides to facilitate the com-
parison and alignment of the different plots. During this test we computed 250, 25, 15
and 10 minimization steps on grids of mesh size h = 2−m for m = 6, 7, 8, 9. At first
we observe a strong stretching, which aims to minimize the mismatch energy. Then
the influence of the Willmore and surface energy gets more important such that the
object evolves to an ellipse. Note that we actually do not expect the object to evolve
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Figure 6.5: Reconstruction of an ellipse computed with a multilevel ansatz. The
parameters are ε = 4h, µ = 0.05, γ = 10 and η = 0.05 and for τ = 0.03h and τ̃ = h2;
the evolution is shown after 0, 1 and 250 steps on a grid with h = 2−6 and after 25,
15 and 10 steps on grids with h = 2−7, 2−8 and 2−9. The solid line represents the
given Huffman labeling and the dotted line the Huffman labeling of the object in the
image above. The colorbar shows the value of the sharp version of the given Huffman
labeling.

to a circular disk. Due to the implicit restriction on a specified area by the Huffman
labeling the object evolves qualitatively as presented in Figure 5.7 where we treated
Dirichlet boundary conditions.

Within the next test we go into detail on the evolution of the single components of the
energy. We define α∗ as the Huffman labeling of an annulus, set ε = 4h, τ = 0.03h,
τ̃ = h2, start with a grid of grid depth h = 2−6 and end with a grid of grid depth
h = 2−9. The different parts of the energy are weighted as follows: the Willmore
energy is scaled by µ = 0.0625, the surface energy by η = 0.125 and the fitting energy
by γ = 3. The computational results are shown in Figure 6.6, where various time steps
of the descent scheme are depicted together with a plot of the decay of the different
components. The visualization scheme of the Huffman labeling is the same as above.
The first image shows the initial situation at the beginning of the computation on
the grid of grid width h = 2−6, while the second image shows the evolution after
the second time step and the third one at the end of the computation on this grid
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after 40 time steps. The next two images visualize the situation at the beginning
and at the end of the computation on the next finer grid with h = 2−8, thus after
10 further time steps and the last image shows the final result on the finest grid of
grid width h = 2−9 after 60 time steps counted on all different grids. All six images
are numbered and each of this numbers can be found in the graph at the top of the
figure, where the single components of the energy are plotted over the number of time
steps. Here one can see which time steps the single images visualize. Moreover the
energy plot demonstrates what the single images indicate. During the very first time
steps the fitting energy falls rapidly, which correlates with the facts that the object
does not overstep the area marked by the red lines and that the Huffman labelings
fit to each other quite well. Furthermore we observe that the Willmore energy be-
ing significantly bigger than all other energy parts although it is weighted with the
smallest of the three weights and a jump in the energy by approximately one half for
each transition to the next finer grid. The jumps are induced by a higher accuracy
of the still diffuse interface on a finer grid. With respect to the additional hole in the
middle the evolution fits to the evolution in the first example.

To generate two final two-dimensional tests, which are slightly more ambitious we re-
gard a disc with two circular holes. In the one case the x2 coordinate of the center of
the two holes is the same and only the x1 coordinate varies and in the other case the
x1 coordinate of both centers are close to each other while the x2 coordinate differs
significantly. In both cases the radii of the two holes are different from each other. In
the second case the centers and the radii of the two holes are chosen in such a way
that the corresponding Huffman labeling of the object takes values up to 6. A sketch
of both geometries is presented in Figure 6.7. In comparison to the two previous tests
we have to start the computation in these cases on a slightly finer grid with grid width
h = 2−7. In both cases we weight the Willmore energy with µ = 0.0625, the surface
energy with η = 0.125 and the fitting energy with γ = 10. To prevent that too big
time steps τ destroy the structure of the objects we set τ = τ̃ = h2. The transition
width is ε = 4h, as in all tests in this context.
In the first case the results in Figure 6.8 are based on 100, 80, and 30 descent steps
on successively refined grids with grid size 2−7, 2−8, and 2−9, respectively. The initial
situation and the final one on the coarsest grid is visualized as well as the final object
on the finest grid. The second image demonstrates why it is necessary to start on a
finer grid than one with h = 2−6 and step size τ = h2. On a coarser grid or with
bigger time step size it would not be possible to dissolve this fine structure and we
would get an object with one hole only. Even with this choice of grid and time step
width the separation of the two holes is only weak at the end of the evolution on the
grid with h = 2−7. Nevertheless the Huffman labeling of the final object fits to the
given one and apart from the effect we have just seen in the previous tests the object
itself is recovered quite well.
This is completely different in the second case, whose results are presented in Fig-
ure 6.9. Here we have to remember that the mapping from object to Huffman labeling
is not injective. Thus there exist Huffman labelings belonging to several different ob-
jects like for example the previously described initial one and the final object in
Figure 6.9. In this case the algorithm “recovers” an object whose Huffman labeling
is the given Huffman labeling, although it is not the one we started with to generate
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Figure 6.6: Reconstruction of an “annulus” with a multilevel ansatz, starting on a
grid with h = 2−6 and ending with h = 2−9. Parameters are ε = 4h, µ = 0.0625,
γ = 3, η = 0.125, τ = 0.03h and τ̃ = h2. Different time steps and an energy decay
plot, where the energy is plotted over the number of time steps, are shown.
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Figure 6.7: Sketch of the geometries used to generate the given Huffman labelings for
the two numerical tests presented in Figure 6.8 (left) and 6.9 (right).

the “given” Huffman labeling. During this simulation we computed 100, 50 and 50
steps on grids with grid width 2−7, 2−8 and 2−9 respectively.

6.4.2 Three-dimensional simulations

The two-dimensional tests are meant to test the minimization algorithm, but origi-
nally we are interested in the reconstruction of three-dimensional objects by a given
two-dimensional Huffman labeling. In this higher dimensional case it is more compli-
cated to find an adequate visualization of the given and the current Huffman labeling.
In order to be able to compare both it would be nice to plot them over each other, but
at the same time we want to be able to see both of them. Thus we decided to plot the
jump set of the Huffman labeling or in case of the discretized Huffman labeling the
1-levelset. As we have seen at the beginning of this chapter this jump set or 1-levelset
of the Huffman labeling is the apparent contour. Depending on the values the Huff-
man labeling takes we will use a different color coding, but this will be explained later.

The simplest three-dimensional test is the reconstruction of a sphere. Therefore we
take a sphere with radius 0.3, compute the corresponding Huffman labeling and set it
as given. As initial three-dimensional object we take an ellipsoid with semi-principal
axes 0.15, 0.23 and 0.23. The computational parameters are ε = 4h, µ = 0.0625,
γ = 6, η = 0 and τ = τ̃ = h2 and the results are presented in Figure 6.10. We
computed 99 time steps on the coarsest grid with grid size h = 2−6, 49 time steps
on the next finer one and finally 9 time steps on the finest grid with h = 2−9. The
given apparent contour is visualized by a blue line and the current one by a red line.
As in the two-dimensional case we observe that the minimization algorithm tries to
decrease the fitting energy first by forming an object whose Huffman labeling fits
to the given one. After some steps concentrating on the minimization of the fitting
energy we observe the influence of the Willmore energy, which effects an evolution
to a sphere. Finally we get a nice sphere whose Huffman labeling fits to the given one.

In a further step we reconstruct a torus with radii 0.25 and 0.1. The three-dimensional
initial object is a cube with side length 0.5 and a hole with side length 0.235. Thereby
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Figure 6.8: Reconstruction of a shape with two holes. The computational parameters
are ε = 4h, µ = 0.0625, γ = 10, η = 0.125 and τ = τ̃ = h2. The computation bases on
100, 80 and 30 descent steps on successively refined grids with grid size 2−7, 2−8 and
2−9. The first image shows the initial situation, the second one the final evolution on
the coarsest grid and the last one is the final result.
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Figure 6.9: Reconstruction of a shape with a single non convex hole for a given
Huffman labeling generated from a shape with two holes overlapping in the viewing
direction. Parameters are ε = 4h, µ = 0.0625, γ = 10, η = 0.125 and τ = τ̃ = h2.
The first two images show the initial situation on the particular grid while the last
image shows the final situation after 100, 50 and 50 steps on grids with grid width
2−7, 2−8 and 2−9 respectively.
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h = 2−6 0 h = 2−6 1 h = 2−6 2

h = 2−6 99 h = 2−7 49 h = 2−8 9

Figure 6.10: Reconstruction of a sphere for a given Huffman labeling whose 1-levelset
is plotted in blue. The red line shows the 1-levelset of the Huffman labeling of the
object above. The parameters are ε = 4h, µ = 0.0625, γ = 6, η = 0 and τ = τ̃ = h2.
The current grid size and the current step on this grid is printed above each image.
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the object is created this way that the hole points in the same direction as the hole
of the torus we want to reconstruct. The weights of the single energy parts are not
changed in comparison to the previous test and ε = 4h and τ = τ̃ = h2 are un-
changed, too. The minimization algorithm computes 99, 49 and 7 time steps on grids
of successively finer grid size 2−6, 2−7 and 2−8. In Figure 6.11 we present the results.
As before the given apparent contour is printed in blue and the current one in red.
In case of this initial object with edges we observe the influence of the fitting and
the Willmore energy during the first time step. The apparent contour of the object
after the first time step indicates that the fitting energy decreases strongly during the
first step. However if we compare the evolution of this object with the evolution of a
rectangle under Willmore flow, cp. Figure 5.2, we clearly observe the influence of the
Willmore energy which effects a strong evolution of the object around the edges and
corners of the initial object. The fact that the evolution is concentrated at the edges
and corners leads to a kind of dents on four sides of the object. During the next steps
these dents vanish and we get a torus stretched in the projection direction until it
evolves to a unstretched torus. A comparison of the apparent contours reveals that
the hole of the torus is still too small, but we expect this mismatch to vanish on finer
grids. At this point we do not continue the computation on finer grids, because until
now we always compute on the whole grid, thus it would require a lot of memory and
time. For a further discussion of this problem cp. Section 6.5

Until now we have only regarded constellations in which the Huffman labeling takes
values 0 and 2. To reconstruct a torus rotated by 90◦ in comparison to the recon-
structed torus in the previous example, we need a given Huffman labeling α∗ taking
values 0, 2 and 4. Apart from this rotation the characteristic parameters of the torus
which we will reconstruct are the same as in Figure 6.11 and also the computational
parameters like step size, transition width and weights of the single energy parts are
unchanged. As initial three-dimensional object we take the initial object from the
previous evolution rotated by 90◦ in the same direction as the torus, which we will
reconstruct. In contrast to the visualization of the apparent contour in the previous
figures we use the same color coding for the given and the current apparent contour
in Figure 6.12. In both cases the blue line indicates the special part of the apparent
contour which is equal to the set where the Huffman labeling jumps from 0 to 2. In
case of the discretized Huffman labeling this is equal to the 1-levelset. Additionally
the red line visualizes the part of the apparent contour which equals the set where
the Huffman labeling jumps from 2 to 4 or the 3-levelset of the discretized Huffman
labeling.
Within one step on the coarsest grid with h = 2−6 the initial object evolves to an
object with four handles and a hole in the middle. Thus it would be possible to put
one finger in each of the four holes such that all four fingers touch each other in the
middle. This object seems to be far away from a torus, but the apparent contour
evolves in the right direction. One step later we get an object with a single hole
pointing in the same direction the hole of the final torus shall point. After 99 time
steps and therefore at the end of the evolution on the coarsest grid the object is clearly
a torus, whose hole in the middle is still too small and which is slightly too big. These
kinds of mismatch get smaller after 49 time steps on the next finer grid and finally 5
time steps on the finest grid with h = 2−8. However the hole of the torus is still too
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h = 2−6 0 h = 2−6 1 h = 2−6 5

h = 2−6 99 h = 2−7 49 h = 2−8 7

Figure 6.11: Reconstruction of a torus for a given Huffman labeling whose 1-levelset
is plotted in blue. The red line shows the 1-levelset of the Huffman labeling of the
object above. The parameters are ε = 4h, µ = 0.0625, γ = 6, η = 0 and τ = τ̃ = h2

and the current grid size is printed above each image as well as the current step on
this grid.
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h = 2−6 0 h = 2−6 1 h = 2−6 2

h = 2−6 99 h = 2−7 49 h = 2−8 5

Figure 6.12: Reconstruction of a torus rotated by 90◦. The blue line indicates where
the Huffman labeling jumps from 0 to 2 and the blue line indicates where the Huffman
labeling jumps from 2 to 4. The computational parameters are ε = 4h, µ = 0.0625,
γ = 6, η = 0 and τ = τ̃ = h2 and the evolution bases on 99, 49 and 7 time steps on
successively refined grids of grid size 2−6, 2−7 and 2−8 respectively.

small at the end of the evolution. Thus this result is qualitative equal to the result in
case of the torus which is not rotated: the torus is reconstructed, but the hole is too
small. In both cases this mismatch is expected to vanish on finer grids.

6.5 Further discussion

As we have seen in case of the torus and the rotated torus in the previous Subsec-
tion 6.4.2 the method presented in Section 6.3 works. However if we compare the given
and the final Huffman labeling of the torus in Figure 6.11 and the rotated torus in
Figure 6.12 there is still a mismatch.
On the one hand we could get better results by computing on finer grids. However
as long as we compute on the whole grid this is not practicable. A solution would be
to use a narrow band method. This ansatz is useful in case of phase field approxima-
tions because by definition there is only a small region around the interface where we
observe changes. In most parts ob the computational domain the phase field function
takes value 1 or −1 and stays unchanged. Thus a narrow band method would be
efficient.
The use of adaptive grids would also be an alternative to realize computations on finer
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grids. Since phase field approximations of an interface equal 1 or −1 in most parts
of the computational domain it is reasonable to use coarse grids in these regions and
grids of finer resolution around the interface.
Another problem is the fact that we decide in advance how many time steps to com-
pute on which grid. Thus it is possible that we compute too many time steps on a
special grid without further significant changes in the object. This effects a loss of
time with respect to the whole computation. On the other hand it could be that it
would be more effective to compute some more steps on a coarser grid instead of lots
of on the finer one. This effects a loss of time, too.
Consequently we need a stopping criterion telling us the right moment to transfer the
computation to the finer grid or to stop the computation completely. This stopping
criterion would preferably be realized in combination with a step size control in the
Newton method. Remembering Algorithm 6.1, which is an alternating one, we have
to think about the kind of stopping criterion. Should it concentrate on a sufficient
reduction of the fitting or the Willmore plus surface energy? We tried both versions,
but a concentration on the reduction of the fitting energy involves a neglection of
a sufficient reduction of the Willmore plus surface energy and vice versa. Another
possibility we tried was a stopping criterion depending on the change in u from one
time step to the next one. However apart from the fact that this change in u provides
information on the step size, but not on the quality of the solution, it is not possible
to combine it with a step size control.
A better solution would be to solve the phase field apparent contour inverse Prob-
lem 6.5 without an operator splitting. Solving this problem with the same ansatz as
the problem without fitting energy would mean to introduce a Lagrange function

`ac[uk, u, v, p] = ε‖u− uk‖2L2(Ω) + 2τeεreg,p[u, v] + ∂ve
ε
in[u, v](p)

and to compute a saddle point (u, v, p) ∈ H1(Ω)×H1(Ω)×H1(Ω). This requires to
compute the Hessian of the fitting energy. As discussed in Section 6.3 we prefer not
to implement the Hessian and a way out of this is to approximate the Hessian of the
fitting energy, as for example done in the BFGS method [78] and to add it to the
exact Hessian of the rest of the Lagrange function. Although we have no alternating
algorithm any more, we still have the difficulty, that the problem we want to solve is
a minimization subject to an equality constraint, which leads in our case to a saddle
point problem. For saddle point problems common step size controls based on a sim-
ple line search method do not work without modifications.

In case of unconstrained minimization problems in Rn we have an energy e : Rn → R
to minimize and a line search method gets a starting point xk ∈ Rn and a direction
pk ∈ Rn to compute a steps size τ which solves the problem

min
τ>0

e(xk + τpk) .

In case of constrained minimization problems

min
Rn

e(x) subject to c(x) = 0
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the step size control should not base on the energy alone, but also consider the con-
straint. Therefore we have to replace the energy e by a so-called merit function. This
can be for example the l1 merit function

φl1(x;µ) = e(x) + µ‖c(x)‖l1 .

For further information cp. [78]. Thus in our case we have to rewrite our constraint

v = argmin
w

eεin[u,w]

= argmin
w

ˆ
Ω
ε(w − u)2 +

τ̃

ε
Ψ(w) + τ̃ ε|∇w|2 dx

as equality constraint

c(u, v) := 2ε(v − u) +
τ̃

ε
Ψ′(v)− 2τ̃ ε∆v = 0

and could work with the L1 merit function

φL1 [uk, u, v;µ] = ε‖u− uk‖2L2(Ω) + 2τeεreg,p[u, v] + µ‖c(u, v)‖L1(Ω) .

This merit function could be used for a stopping criterion, too.

A third ansatz would be to replace the saddle point problem by a simple minimization
problem. As we still have a constrained minimization problem this could be done by
using an Augmented Lagrange method [78, 14]. Therefore one would introduce the
Augmented Lagrange function

`ac
A [uk, u, v, p;λ] = ε‖u− uk‖2L2(Ω) + 2τeεreg,p[u, v]− (c[u, v], p)L2(Ω) +

λ

2
‖c(u, v)‖L2(Ω)

Due to the special property of the Augmented Lagrange method it remains to minimize
this function in u and v.
We deal with this type of ansatz in the next chapter.

90



Chapter 7

Augmented Lagrange method
for computing Willmore and
biharmonic heat flow

In this chapter we deal with the question how to replace our saddle point problem
presented in Subsection 3.2.2 by a minimization problem and induced by this how to
solve the fully discrete constrained optimization problem (3.18a) and (3.18b) with the
Augmented Lagrange method.
The motivation for this procedure was presented in Section 6.5, where we discussed
the disadvantages of Algorithm 6.1 for solving the phase field apparent contour in-
verse problem 6.5. In this section we revealed the main advantage of the Augmented
Lagrange method which consists in the fact that only an unconstrained minimization
problem remains to solve in each Augmented Lagrange iteration. Thus we concluded
that we want to solve Problem 6.5 with this method and set up the Augmented La-
grange function

`ac
A [uk, u, v, p;λ] = ε‖u− uk‖2L2(Ω) + 2τeεreg,p[u, v]− (c[u, v], p)L2(Ω) +

λ

2
‖c(u, v)‖L2(Ω) .

To keep complexity low we want to treat the Augmented Lagrange method not for
the whole problem, but for the Willmore problem, as we have seen it in Chapter 3,
only and as further simplification we start with the Augmented Lagrange method for
the biharmonic heat equation from Chapter 4.

7.1 Augmented Lagrange method for the biharmonic heat
equation

As we have seen in Chapter 4 the time-discrete biharmonic heat flow in Definition 4.1
belonging to the biharmonic heat equation

∂tu = −∆2u on Ω

with initial condition u = u0 at t = 0 is the linear model problem of our nested time
discretization of Willmore flow. Thus we will set up the Augmented Lagrange method
for this problem, first. In contrast to the situation in Section 4.2 we regard Neumann
boundary conditions instead of Dirichlet boundary conditions. This is reasonable
because the theoretical results in Theorem 4.4 hold for both, thus we can test this
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7 Augmented Lagrange method for computing Willmore and biharmonic heat flow

new model and present the second kind of boundary condition at the same time.
Due to the fact that we do no numerical analysis in this section we neglect the tilde-
notation from Chapter 4 and write u instead of ũ.

7.1.1 Derivation of the model

To derive the Augmented Lagrange method for the time discrete biharmonic heat
flow remember the outer and inner energy in the time-discrete biharmonic heat flow
in Definition 4.1 which are given by

elout[u
k, u, v] = ‖u− uk‖2L2(Ω) +

τ

τ̃2
‖v − u‖2L2(Ω) ,

elin[u, v] = ‖v − u‖2L2(Ω) + 2τ̃ al[v]

with al[v] := 1
2

´
Ω |∇v|

2 dx . Until now the constraint was given in the form

v = argmin
ṽ∈H1

(Ω)

elin[u, ṽ] . (7.1)

For the Augmented Lagrange method it is necessary to reformulate this constraint
as equality constraint cl[u, v] = 0 with cl[u, v] ∈ L2(Ω). Thus we compute the nec-
essary condition for constraint (7.1) and reformulate it such that ∂velin[u, v](ϑ) =(
cl[u, v], ϑ

)
L2(Ω)

for all test functions ϑ ∈ H1(Ω).

∂ve
l
in[u, v](ϑ) =

ˆ
Ω

2 (v − u)ϑ dx +2τ̃
ˆ

Ω
∇v · ∇ϑ dx

=
ˆ

Ω
(2 (v − u)− 2τ̃∆hv)ϑ dx

=: 2
(
cl[u, v], ϑ

)
L2(Ω)

In the second line we denote by ∆hv the solution w ∈ L2(Ω) of

(w, ϑ)L2(Ω) = − (∇v,∇ϑ)L2(Ω) ∀ϑ ∈ H1(Ω)

because, as presented in Chapter 4, u, v ∈ H
1(Ω) and thus ∆v is not defined in

general. Moreover we eliminated the factor 2 in the equality constraint, such that we
get the following version of the time-discrete biharmonic heat flow:

Definition 7.1 (Time-discrete biharmonic heat flow with equality constraint). For
given u0 ∈ H1(Ω), let the sequence uk ∈ H1(Ω), k ∈ N be defined as the solution of

uk+1 = argmin
u∈H1

(Ω)

elout[u
k, u, v], where

cl[u, v] = 0 .

The constraint is

cl[u, v] = v − u− τ̃∆hv . (7.2)
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7.1 Augmented Lagrange method for the biharmonic heat equation

As in Section 2.3 we set up the Augmented Lagrange function

`lA[uk, u, v, p;λ] = elout[u
k, u, v]−

(
cl[u, v], p

)
L2(Ω)

+
λ

2
‖cl[u, v]‖2L2(Ω)

=
ˆ

Ω

(
u− uk

)2
dx +

τ

τ̃2

ˆ
Ω

(v − u)2 dx −
ˆ

Ω
(v − u) p− τ̃∆hv pdx

+
λ

2

ˆ
Ω

((v − u)− τ̃∆hv)2 dx .

Here it is important to use a scalar product and its corresponding norm. In Section 2.3,
where we presented a short survey on solving constrained minimization problems
we introduced the Augmented Lagrange function with the Euclidean scalar product
and the Euclidean norm, but here we have to minimize a functional over a function
space, thus we have to adapt scalar product and norm. For further information cp.
[59], where Ito and Kunish applied the Augmented Lagrange method to variational
problems.
This Augmented Lagrange function has to be minimized in each Augmented Lagrange
iteration in u and v. Therefore we have to solve the equation∇(u,v)`

l
A[uk, u, v, p;λ] = 0

with

∂u`
l
A[uk, u, v, p;λ](ϑ) = 2

ˆ
Ω

(
u− uk

)
ϑ dx −2τ

τ̃2

ˆ
Ω

(v − u)ϑ dx +
ˆ

Ω
pϑ dx

+ λ

ˆ
Ω

((v − u)− τ̃∆hv) (−ϑ) dx ,

∂v`
l
A[uk, u, v, p;λ](ξ) =

2τ
τ̃2

ˆ
Ω

(v − u) ξ dx −
ˆ

Ω
ξp− τ̃∆hξpdx

+ λ

ˆ
Ω

((v − u)− τ̃∆hv) (ξ − τ̃∆hξ) dx .

Moreover we have to compute the Hessian with components

∂u∂u`
l
A[uk, u, v, p;λ](ϑ, ρ) = 2

ˆ
Ω
ρϑ dx +

2τ
τ̃2

ˆ
Ω
ρϑ dx +λ

ˆ
Ω
ρϑ dx ,

∂v∂u`
l
A[uk, u, v, p;λ](ϑ, σ) = −2τ

τ̃2

ˆ
Ω
σϑdx −λ

ˆ
Ω

(σ − τ̃∆hσ)ϑ dx

= ∂u∂v`
l
A[uk, u, v, p;λ](σ, ϑ) ,

∂v∂v`
l
A[uk, u, v, p;λ](ξ, σ) =

2τ
τ̃2

ˆ
Ω
σξ dx +λ

ˆ
Ω

(σ − τ̃∆hσ) (ξ − τ̃∆hξ) dx

to apply a Trust-Region method [27]. This is the first time we use a Trust-Region
method during this work. In general there exist Trust-Region methods for minimiza-
tion problems as well as for saddle point problems, but the version which is already
implemented in our QUOCMESH library [27, Algorithms 6.1.1 and 7.3.1-4] is meant
for solving minimization problems. As we had to solve saddle point problems until
now, we always decided to use a Newton method. The main conceptual difference
between a Newton method with step size control and a Trust-Region method consists
in the fact that one mainly uses line search techniques for step size control in Newton
methods. A line search method chooses a special direction and looks for the opti-
mal step size in this direction. In comparison to this a Trust-Region method chooses
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7 Augmented Lagrange method for computing Willmore and biharmonic heat flow

a step size and looks for the optimal direction. In [78] a short overview over the
conceptional differences between both methods is given and in [27] different versions
of Trust-Region methods are presented in detail. The motivation for using a Trust-
Region method is to keep the linear model case as similar to the nonlinear case as
possible and in the nonlinear case a Newton method with iterative solver inside does
not work for all tests any more. As presented in the following sections it turns out
that a Trust-Region method is the most robust method for solving the minimization
problem within the Augmented Lagrange setting, especially in case of the nonlinear
model.
For being able to compute biharmonic heat flow with this ansatz we need to talk
about the spatial discretization, the right choice of initial values and the concrete
algorithm. These questions will be treated in the next subsection.

7.1.2 A fully practical numerical scheme

To reveal a fully practical numerical scheme we have to specify the spatial discretiza-
tion. As presented in Section 2.2 and used in most parts of this work we regard a
regular and uniform simplicial mesh T covering the computational domain Ω and
analogously to Section 4.1 V := V ∩ H1(Ω) denotes the Finite Element space with
Neumann boundary conditions. Moreover all other notations are known from previ-
ous chapters.
Thus we can write the spatial discretized version of the outer energy and the constraint

E lout[U
k, U, V ] = M

(
U − Uk

)
·
(
U − Uk

)
+

τ

τ̃2
M
(
V − U

)
·
(
V − U

)
,

C l[U, V ] = V − U + τ̃M−1LV .

Consequently the spatial discretized version of the Augmented Lagrange function is

LlA[Uk, U, V, P ;λ] = M
(
U − Uk

)
·
(
U − Uk

)
+

τ

τ̃2
M
(
V − U

)
·
(
V − U

)
−M

((
V − U

)
+ τ̃M−1LV

)
· P

+
λ

2
M
((
V − U

)
+ τ̃M−1LV

)
·
((
V − U

)
+ τ̃M−1LV

)
.

Knowing this the components of the gradient of LlA[Uk, U, V, P ;λ] can be computed
straightforward

∂ULlA[Uk, U, V, P ;λ](Θ) = 2M
(
U − Uk

)
·Θ− 2τ

τ̃2
M
(
V − U

)
·Θ + MP ·Θ

− λM
((
V − U

)
+ τ̃M−1LV

)
·Θ ,

∂V LlA[Uk, U, V, P ;λ](Ξ) =
2τ
τ̃2

M
(
V − U

)
· Ξ−MP · Ξ− τ̃LP · Ξ

+ λ
(
1 + τ̃M−1L

)T M
((
V − U

)
+ τ̃M−1LV

)
· Ξ .
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7.1 Augmented Lagrange method for the biharmonic heat equation

For being able to apply the Trust-Region method we compute the components of the
Hessian D2LlA

∂U∂ULlA[Uk, U, V, P ;λ](Θ,Υ) =
(

2 +
2τ
τ̃2

+ λ

)
MΘ ·Υ ,

∂V ∂ULlA[Uk, U, V, P ;λ](Θ,Σ) =
(
−2τ
τ̃2
− λ
)

MΘ · Σ− τ̃λLΘ · Σ

= ∂U∂V LlA[Uk, U, V, P ;λ](Σ,Θ) ,

∂V ∂V LlA[Uk, U, V, P ;λ](Ξ, Σ) =
(

2τ
τ̃2

+ λ

)
MΞ ·Σ + 2τ̃λLΞ ·Σ + τ̃2λLM−1LΞ ·Σ .

The algorithm for computing the time-discrete biharmonic heat flow with Augmented
Lagrange method starts with an initial function U

0 ∈ V and the computation of V 0

by solving

M
(
V − U0

)
·Θ + τ̃LV ·Θ = 0 .

All entries of P 0 are set to 0.1, i.e. P 0 = 1
101 where 1 denotes the vector with 1 in

each entry. The initial value of the penalty parameter is λ0
0 = 10. Here the upper

index denotes the time step and the lower index the Augmented Lagrange iteration.
Finally the convergence tolerances η∗ and w∗ are set, before Algorithm 2.1 is applied.
Regard that x in Algorithm 2.1 is

(
U, V

)
in this case. To compute the next time step

we start with the results for U1, V 1 and P
1 and set λ1

0 = λ0
k

1002 , which is the value of
the last but one λ in the previous call of the Augmented Lagrange Algorithm 2.1.

7.1.3 Numerical results

To test the Augmented Lagrange method for the biharmonic heat flow we have to
find a good initial choice of u0 and an analytical solution for computing the order of
convergence. Therefore we look for a solution of the boundary value problem

∂tu+ ∆2u = 0 on Ω× [0, T ] with ∂νu = ∂ν∆u = 0 on ∂Ω . (7.3)

Lemma 7.2. Let Ω = [0, 1]2, then

u(t, x, y) = e−π
4t (cos(πx) + cos(πy)) (7.4)

solves the Neumann boundary value problem (7.3).

Proof. First we have to compute the gradient of u in (x, y):

∇u(t, x, y) = e−π
4t

(
−π sin(πx)
−π sin(πy)

)
.

Thus the Laplacian is given by

∆u(t, x, y) = e−π
4t
(
−π2 cos(πx)− π2 cos(πy)

)
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7 Augmented Lagrange method for computing Willmore and biharmonic heat flow

Algorithm 7.1: Augmented Lagrange method for the biharmonic heat equation
problem

given: initial point U0;
given: convergence tolerances η∗ and w∗;
given: maximal number of time steps Itermax and Augmented Lagrange
iterations Kmax;

compute V 0 by solving

M
(
V − U0

)
·Θ + τ̃LV ·Θ = 0;

set initial penalty parameter λ0
0 = 10;

set P 0
0 = 1

101;
for i = 0 to Itermax do

apply Algorithm 2.1;

U
i+1
0 = U

i
k;

V
i+1
0 = V

i
k;

P
i+1
0 = P

i
k;

λi+1
0 = max

(
λik

1002 , 10
)

;

end

and consequently

∇∆u(t, x, y) = e−π
4t

(
π3 sin(πx)
π3 sin(πy)

)
and

∆2u(t, x, y) = e−π
4tπ4 (cos(πx) + cos(πy)) .

Thus it is easy to see that (7.4) solves the equation ∂tu+ ∆2u = 0 on Ω× [0, T ]. To
proof the boundary conditions we regard the four parts of ∂Ω separately and start
with the boundary from (0, 0) to (1, 0), called B1. Here it holds

∂νu(t, x, 0) = −πe−π4t

(
sin(πx)

0

)
·
(

0
−1

)
= 0 ,

∂ν∆u(t, x, 0) = π3e−π
4t

(
sin(πx)

0

)
·
(

0
−1

)
= 0 .

On B2, the straight line from (1, 0) to (1, 1), there is

∂νu(t, 1, y) = −πe−π4t

(
0

sin(πy)

)
·
(

1
0

)
= 0 ,

∂ν∆u(t, 1, y) = π3e−π
4t

(
0

sin(πy)

)
·
(

1
0

)
= 0 .

As sin(0) = sin(π) and the normal ν only changes its sign on the opposite boundary
the remaining two parts of the boundary ∂Ω can be neglected.
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7.1 Augmented Lagrange method for the biharmonic heat equation

τ = h2, τ̃ = h2 τ = h2, τ̃ = h τ = h, τ̃ = h2 τ = h, τ̃ = h
k L2 H1 L2 H1 L2 H1 L2 H1

5 1.952 1.685 0.749 0.825 0.878 0.879 0.875 0.875
6 1.988 1.406 0.870 0.902 0.966 0.966 0.996 0.996
7 2.054 1.159 0.934 0.949 1.004 1.004 1.039 1.039

Table 7.1: Experimental order of the L2- and H1-error for the numerical solution of
the biharmonic heat equation with different time steps, computed with the Augmented
Lagrange method and accuracy w∗ = η∗ = 10−8. The order ln(ek+1(t))−ln(ek(t))

− ln 2 is shown
for each transition from one grid with grid width h = 2−k to the next finer one. The
error ek(t) was evaluated at time t = 0.03125 (cases with τ = h) and t = 0.00976562
(cases with τ = h2), respectively.
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Figure 7.1: Temporal L2-error evolution for the numerical solution of the bi-
harmonic heat equation, computed with Augmented Lagrange method, accuracy
w∗ = η∗ = 10−8 and step sizes τ = τ̃ = h2.

Thus u0(x, y) = cos(πx) + cos(πy) is a good choice as an initial value. Based on this
the error order of our method can be computed. We take the numerical solution of
the biharmonic heat equation at time t = 0.00976562 for tests with step size τ = h2

and at time t = 0.03125 for τ = h. Then we compute the error order for a transition
from a grid with grid width h = 2−k to the next fine one by

eoc =
ln(ek+1(t))− ln(ek(t))

− ln 2

where ek(t) denotes the L2-, respectively H1-error, between the numerical and the
analytical solution at time t. This error order is presented in Table 7.1. A comparison
with Theorem 4.4 or the analytical decay rate presented in Table 4.2 reveals that
the error orders from biharmonic heat flow computed with the Augmented Lagrange
method agree with the analytical predictions. Only the error order for the H1-error
in the cases with τ = τ̃ = h and τ = h2, τ̃ = h is better than expected.
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Finally we regard the temporal L2-error evolution for the numerical solution, com-
puted with the Augmented Lagrange method. For τ = τ̃ = h2, w∗ = η∗ = 10−8

and grid widths h = 2−5, 2−6, 2−7 and 2−8 it is presented in Figure 7.1. In this
figure we observe the error order presented in Table 7.1 over most parts of the time.
Consequently these tests confirm our new method.

7.2 Augmented Lagrange method for our Willmore flow
model

As a further step we reveal the Augmented Lagrange method for our Willmore flow
model. From Chapter 3 and 4 we know that both models are very similar to each
other. Consequently most parts can be adapted straightforward. Nevertheless some
aspects require a careful treatment.

7.2.1 Derivation of the model

In Section 4.1 we have just seen that the Willmore flow model differs from the bihar-
monic heat flow model by a scaling with ε and a nonlinear term in the inner energy.
Since a scaling of an energy with ε does not influence the minimum we can use the
same outer energy as in the linear model problem in the previous section. To keep
the structure of the inner energy similar to the structure of the inner energy of the
linear model problem we scale the inner energy (3.8b) with ε−1, too, such that we get
the following version of the nested variational time discretization of Willmore flow.

Definition 7.3 (Scaled nested variational time discretization of Willmore flow).
Given a phase field uk at time kτ define the phase field uk+1 at time (k + 1)τ by

uk+1 = argmin
u∈L2(Ω)

ewout[u
k, u, v] , where (7.5a)

v = argmin
ṽ∈H1(Ω)

ewin[u, ṽ] . (7.5b)

Furthermore, we denote the solution v of the inner variational problem (7.5b) for
u = uk+1 by vk+1.

Here the outer and inner energy are

ewout[u
k, u, v] = ‖u− uk‖2L2(Ω) +

τ

τ̃2
‖v − u‖2L2(Ω) , (7.6a)

ewin[u, v] = ‖v − u‖2L2(Ω) +
2τ̃
ε
aε[v] (7.6b)

with area term aε[v] known from (2.3).
Following the proceeding in the linear problem we have to formulate our constraint
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as equality constraint cw[u, v] = 0 with cw[u, v] ∈ L2(Ω).

∂ve
w
in[u, v](ϑ) =

ˆ
Ω

2 (v − u)ϑ dx +τ̃
ˆ

Ω
2∇v · ∇ϑ+

1
ε2

Ψ′(v)ϑ dx

=
ˆ

Ω
2
(

(v − u)− τ̃∆hv +
τ̃

2ε2
Ψ′(v)

)
ϑ dx

=: 2 (cw[u, v], ϑ)L2(Ω)

Consequently we get the following definition of a scaled nested variational time dis-
cretization of Willmore flow with equality constraint.

Definition 7.4 (Scaled nested variational time discretization of Willmore flow with
equality constraint). Given a phase field uk at time kτ define the phase field uk+1 at
time (k + 1)τ by

uk+1 = argmin
u∈L2(Ω)

ewout[u
k, u, v] , where v ∈ H1(Ω) solves (7.7a)

cw[u, v] = 0 . (7.7b)

The constraint is

cw[u, v] = v − u− τ̃∆hv +
τ̃

2ε2
Ψ′(v) . (7.8)

Furthermore, we denote the solution v of the constraint (7.7b) for u = uk+1 by vk+1.

Comparing cw[u, v] in (7.8) with cl[u, v] in (7.2) demonstrates

cw[u, v] = cl[u, v] +
τ̃

2ε2
Ψ′(v) .

Thus we only added a nonlinear term and therefore the setup of the Augmented La-
grange method should be completely analog to the one in the linear case presented
in Subsection 7.1.1. Indeed some numerical experiments revealed that it is better to
weight the outer energy with ε−1. This contradicts the scaling pesented at the begin-
ning of this subsection, but as we will see in Subsection 7.2.3 it forces the Augmented
Lagrange method to reach a higher precision in u. The new version of the Augmented
Lagrange function is

`wA[uk, u, v, p;λ] =
1
ε
ewout[u

k, u, v]− (cw[u, v], p)L2(Ω) +
λ

2
‖cw[u, v]‖2L2(Ω) (7.9)

=
ˆ

Ω

1
ε

(
u− uk

)2
dx +

τ

ετ̃2

ˆ
Ω

(v − u)2 dx

−
ˆ

Ω
(v − u) p− τ̃∆hv p+

τ̃

2ε2
Ψ′(v)p dx

+
λ

2

ˆ
Ω

(
(v − u)− τ̃∆hv +

τ̃

2ε2
Ψ′(v)

)2

dx .

A further discussion of this scaling will be presented in Subsection 7.2.3.
The additional nonlinear term makes the computation and especially the implemen-
tation of the gradient and the Hessian of `wA[uk, u, v, p;λ] slightly more complicated.
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The implementation will be treated in the next subsection and the spatial continuous
versions of the single components of the gradient are

∂u`
w
A[uk, u, v, p;λ](ϑ) =

ˆ
Ω

2
ε

(
u− uk

)
ϑ− 2τ

ετ̃2
(v − u)ϑ dx +

ˆ
Ω
pϑ dx

− λ
ˆ

Ω
(v − u)ϑ− τ̃∆hvϑ+

τ̃

2ε2
Ψ′(v)ϑ dx ,

∂v`
w
A[uk, u, v, p;λ](ξ) =

2τ
ετ̃2

ˆ
Ω

(v − u) ξ dx −
ˆ

Ω
pξ − τ̃∆hξp+

τ̃

2ε2
Ψ′′(v)pξ dx

+ λ

ˆ
Ω

(
(v − u)− τ̃∆hv +

τ̃

2ε2
Ψ′(v)

)
(
ξ − τ̃∆hξ +

τ̃

2ε2
Ψ′′(v)ξ

)
dx .

Consequently the components of the Hessian are

∂u∂u`
w
A[uk, u, v, p;λ](ϑ, ρ) =

ˆ
Ω

2
ε
ϑρ+

2τ
ετ̃2

ϑρ dx +λ
ˆ

Ω
ϑρ dx ,

∂v∂u`
w
A[uk, u, v, p;λ](ϑ, ς) = − 2τ

ετ̃2

ˆ
Ω
ϑς dx −λ

ˆ
Ω
ϑς dx +τ̃λ

ˆ
Ω

∆hςϑdx

− λ τ̃

2ε2

ˆ
Ω

Ψ′′(v)ϑς dx

= ∂u∂v`
w
A[uk, u, v, p;λ](ς, ϑ) ,

∂v∂v`
w
A[uk, u, v, p;λ](ξ, ς) =

2τ
ετ̃2

ˆ
Ω
ξς dx −

ˆ
Ω

τ̃

2ε2
Ψ′′′(v)pξς dx

+ λ

ˆ
Ω

(
ς − τ̃∆hς +

τ̃

2ε2
Ψ′′(v)ς

)
(
ξ − τ̃∆hξ +

τ̃

2ε2
Ψ′′(v)ξ

)
dx

+ λ

ˆ
Ω

(
(v − u)− τ̃∆hv +

τ̃

2ε2
Ψ′(v)

)(
τ̃

2ε2
Ψ′′′(v)ξς

)
dx .

As presented in the linear case we will use a Trust-Region method for solving the
minimization problem arising in each iteration of the Augmented Lagrange method.

7.2.2 A fully practical numerical scheme

For the spatial discretization we proceed as in Subsection 3.2.1 and regard a regular
and uniform simplicial mesh T covering the computational domain Ω. Then the
Finite Element space of continuous, piecewise affine functions on this mesh is denoted
by V := {Φ ∈ C0(Ω) : Φ|T ∈ P1∀T ∈ T }. Following the notation presented in
Section 2.2 the discrete version of the Augmented Lagrange function `wA[uk, u, v, p;λ]
(7.9) is
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LwA[Uk, U, V, P ;λ] =
1
ε
M
(
U − Uk

)
·
(
U − Uk

)
+

τ

ετ̃2
M
(
V − U

)
·
(
V − U

)
−M

((
V − U

)
+ τ̃M−1LV +

τ̃

2ε2
Ψ′(V )

)
· P

+
λ

2
M
((
V − U

)
+ τ̃M−1LV +

τ̃

2ε2
Ψ′(V )

)
·
((
V − U

)
+ τ̃M−1LV +

τ̃

2ε2
Ψ′(V )

)
.

Taking into account that the mass matrix M as well as the weighted mass matrix
M[λ] with λ : Ω → R being an arbitrary continuous weight function are lumped
matrices and therefore diagonal matrices and Ψ′(v) = −4v

(
1− v2

)
we get

∂V

(
MΨ′(V ) · P

)
(Θ) = −4MD[1− 3V 2]Θ · P

= −4M[1− 3V 2]Θ · P
= −4M[1− 3V 2]P ·Θ .

Here

D[λ] := (δijλi)i,j

with λi = λ(xi) and therefore MD[λ] = M[λ]. Consequently the components of the
gradient of the Lagrange function LwA[Uk, U, V, P ;λ] are

∂ULwA[Uk, U, V, P ;λ](Θ) =
2
ε
M
(
U − Uk

)
·Θ− 2τ

ετ̃2
M
(
V − U

)
·Θ + MP ·Θ

− λM
((
V − U

)
+ τ̃M−1LV +

τ̃

2ε2
Ψ′(V )

)
·Θ ,

∂V LwA[Uk, U, V, P ;λ](Ξ) =
2τ
ετ̃2

M
(
V − U

)
· Ξ−MP · Ξ− τ̃LP · Ξ

+
2τ̃
ε2

M[1− 3V 2]P · Ξ + λ

(
1 + τ̃LM−1 − 2τ̃

ε2
D[1− 3V 2]

)
M
((
V − U

)
+ τ̃M−1LV +

τ̃

2ε2
Ψ′(V )

)
· Ξ .

Now the computation of the discretized versions of ∂u∂u`wA[uk, u, v, p;λ](ϑ, ς) and
∂v∂u`

w
A[uk, u, v, p;λ](ϑ, υ) can be done straightforward and leads to

∂U∂ULwA[Uk, U, V, P ;λ](Θ,Σ) =
(

2
ε

+
2τ
ετ̃2

+ λ

)
MΘ · Σ ,

∂V ∂ULwA[Uk, U, V, P ;λ](Θ,Υ) =
(
− 2τ
ετ̃2
− λ

)
MΘ ·Υ− τ̃λLΘ ·Υ

+
2λτ̃
ε2

M[1− 3V 2]Θ ·Υ .
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The computation of the discretized version of ∂v∂v`wA[uk, u, v, p;λ](ξ, π) is more com-
plicated such that we do it step by step. To simplify it we rewrite the first variation
of the Augmented Lagrange function in V in direction Ξ

∂V LwA[Uk, U, V, P ;λ](Ξ)

=
2τ
ετ̃2

M
(
V − U

)
· Ξ−MP · Ξ− τ̃LP · Ξ +

2τ̃
ε2

M[1− 3V 2]P · Ξ + λM
(
V − U

)
· Ξ

+ λτ̃LV · Ξ + λ
τ̃

2ε2
MΨ′(V ) · Ξ + λτ̃L

(
V − U

)
· Ξ + λτ̃2LM−1LV · Ξ

+
λτ̃2

2ε2
LM−1MΨ′(V ) · Ξ− λ2τ̃

ε2
D[1− 3V 2]M

(
V − U

)
· Ξ

− λ2τ̃2

ε2
D[1− 3V 2]MM−1LV · Ξ− λτ̃

2

ε4
D[1− 3V 2]MΨ′(V ) · Ξ .

Moreover it is helpful to remember that M[UV ]P = M[UP ]V , which can be easily
verified

M[UV ]P = MD[UV ]P

= M

∑
j

δijUiViPj


i

= M (UiViPi)i

= M

∑
j

δijUiPiVj


i

= MD[UP ]V

= M[UP ]V .

Based on this we compute

∂V ∂V LwA[Uk, U, V, P ;λ](Ξ, Π)

=
(

2τ
ετ̃2

+ λ

)
MΞ ·Π − 12τ̃

ε2
M[V P ]Ξ ·Π − 4τ̃λ

ε2
M[1− 3V 2]Ξ ·Π + 2τ̃λLΞ ·Π

+
4τ̃2

ε4
λM[(1− 3V 2)2]Ξ ·Π − 2τ̃2λ

ε2
M[1− 3V 2]M−1LΞ ·Π

− 2τ̃2λ

ε2
LM−1M[1− 3V 2]Ξ ·Π + τ̃2λLM−1LΞ ·Π +

12τ̃λ
ε2

M[(V − U)V ]Ξ ·Π

− 24τ̃2

ε4
λM[(1− V 2)V 2]Ξ ·Π − 12τ̃2λ

ε2
M[V∆hV ]Ξ ·Π .

Finally, to set up the Augmented Lagrange algorithm for our Willmore flow model
we have to deal with the computation of the initial value V 0. Apart from the differ-
ent Augmented Lagrange function this is the only difference of Algorithm 7.1 to the
new one. But the computation of the initial value V 0 can be done analogously as in
Algorithm 3.1.
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Algorithm 7.2: Augmented Lagrange method for our Willmore flow model

given: initial point U0;
given: convergence tolerances η∗ and w∗;
given: maximal number of time steps Itermax and Augmented Lagrange
iterations Kmax;

compute V 0 by solving

M
(
V − U0

)
·Θ− τ̃LV ·Θ +

τ̃

2ε2
MΨ′(V ) = 0;

set initial penalty parameter λ0
0 = 10;

set P 0
0 = 1

101;
for i = 0 to Itermax do

apply Algorithm 2.1;

U
i+1
0 = U

i
k;

V
i+1
0 = V

i
k;

P
i+1
0 = P

i
k;

λi+1
0 = max

(
λik

1002 , 10
)

;

end

In Algorithm 2.1, which is applied in Algorithm 7.2, one has to find an approximate
minimizer of the Augmented Lagrange function `A(·, pk, λk). The index k denotes the
number of Augmented Lagrange iterations. Since k is the index denoting the time step
in this chapter we will denote the index counting the Augmented Lagrange iteration
with j. Thus in this special context the problem equals the problem of finding an
approximate minimizer of the Augmented Lagrange function `wA[uk, ·, ·, pj ;λj ]. This
can be done by a Newton method with an iterative or direct solver inside or with a
Trust-Region method. In the following subsection we present some results computed
with a Newton method with preconditioned biconjugate gradient method within the
Augmented Lagrange method and some with Trust-Region method. This originates
from the fact that we started with a Newton method combined with an iterative solver,
which works fine in some cases, but is not stable enough for all arising test cases. Thus
we tested a Newton method combined with direct solver revealing the same lack of
stability. The method working stable in all cases is the Trust-Region method. It only
leads to problems in three dimensions needing too much main memory. We will go
into detail on this problem in the following subsection.

7.2.3 Numerical results

Following the procedure in Section 5.1 we start to test our new method by analyzing
the evolution of a quarter circle under Willmore flow, computed with this method.
For being able to compare the results with the results from Section 5.1 we choose the
same setup. Thus we start with the double well function representing a quarter circle
of initial radius r0 = 0.4, set the interface transition thickness to ε = 2−6 = 0.015625
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Figure 7.2: Temporal L2-error evolution for the numerical solution of the Willmore
flow, computed with Augmented Lagrange method. The parameters are ε = 2−6,
τ = τ̃ = h2 and for the left image as well as for h = 2−7, 2−8 in the right image
w∗ = 10−8, η∗ = 10−13. For h = 2−9 in the right image we set w∗ = 10−10. The
dotted line presents the L2-error computed with the model presented in Chapter 3
and the solid one the L2-error computed with the Augmented Lagrange method.

and the step sizes τ = τ̃ = h2. To guarantee a good approximation of the mean
curvature we have to enforce a high precision in the constraint cw[u, v] = 0 which
we get by setting η∗ = 10−13. Moreover we start with the unscaled version of the
Augmented Lagrange function

`wA[uk, u, v, p;λ] =
�
��C
CC

1
ε
ewout[u

k, u, v]− (cw[u, v], p)L2(Ω) +
λ

2
‖cw[u, v]‖2L2(Ω)

which is more intuitive when coming from the linear model problem. The second
stopping criterion which measures the L2-norm of the gradient of the Augmented La-
grange function ‖∇`wA‖L2(Ω) ≤ w∗ is w∗ = 10−8. Additionally we still use a Newton
method with preconditioned biconjugate gradient method as iterative solver inside.
Later it turns out that this solver is not sufficient for all test cases, but for this first
test it works. The result is presented in the left image of Figure 7.2. Thereby the solid
line shows the L2-error computed with the Augmented Lagrange method presented in
this chapter, while the dotted line presents the L2-error computed with the method
presented in Chapter 3. On the two grids with grid widths h = 2−7 and h = 2−8 the
L2-errors computed with both methods are qualitatively the same, but on the finest
grid with h = 2−9 the L2-error computed with the Augmented Lagrange method
grows rapidly.
This problem on the finest grid can be solved by choosing a finer stopping criterion
w∗ = 10−10. The result of the corresponding test is presented in the right image of
Figure 7.2 and demonstrates a good accordance with the L2-error computed with the
old method from Chapter 3.

A comparison of the L2-norm of the single components of the gradient of the Lagrange,
respectively Augmented Lagrange function, after the first time step reveals the reason
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‖∂u`(u0, u1, v1, p1)‖L2(Ω) = 1.339 · 10−16 ‖∂u`wA(u0, u1, v1, p1)‖L2(Ω) = 3.150 · 10−16

‖∂v`(u0, u1, v1, p1)‖L2(Ω) = 8.288 · 10−9 ‖∂v`wA(u0, u1, v1, p1)‖L2(Ω) = 8.288 · 10−9

‖∂p`(u0, u1, v1, p1)‖L2(Ω) = 1.121 · 10−11 ‖cw(u1, v1)‖L2(Ω) = 4.631 · 10−8

‖∂u`(u0, u1
A, v

1
A, p

1
A)‖L2(Ω)= 3.719 · 10−9 ‖∂u`wA(u0, u1

A, v
1
A, p

1
A)‖L2(Ω)= 3.719 · 10−9

‖∂v`(u0, u1
A, v

1
A, p

1
A)‖L2(Ω)= 8.354 · 10−9 ‖∂v`wA(u0, u1

A, v
1
A, p

1
A)‖L2(Ω)= 8.354 · 10−9

‖∂p`(u0, u1
A, v

1
A, p

1
A)‖L2(Ω)= 4.096 · 10−18 ‖cw(u1

A, v
1
A)‖L2(Ω) = 1.684 · 10−9

Table 7.2: Single components of ‖∇(u,v,p)`‖L2(Ω) and ‖∇(u,v)`
w
A‖L2(Ω) evaluated after

one time step in the evolution of a quarter circle with grid width h = 2−6, τ = 0.03h,
τ̃ = h2, ε = 0.0625, w∗ = 10−8 and η∗ = 10−13. (u1, v1, p1) denotes the solution
computed with the Lagrange method from Chapter 3 and (u1

A, v
1
A, p

1
A) the solution

computed with the Augmented Lagrange method.

for the necessity of choosing a more precise stopping criterion w∗. We regard the
evolution of a quartercircle with initial radius r0 = 0.4 with step size τ = 0.03h, τ̃ = h2

and ε = 0.0625 after one time step. On the one hand computed with the Lagrange
method presented in Chapter 3 with stopping criterion ‖∇(u,v,p)`‖L2(Ω) ≤ 10−8 and
on the other hand computed with the Augmented Lagrange method and stopping
criteria ‖∇(u,v)`A‖L2(Ω) ≤ w∗ = 10−8 and ‖cw‖L2(Ω) ≤ η∗ = 10−13. As we use a
different ε scaling in the Augmented Lagrange method we adapt the Lagrange method
such that the results are comparable. These results are presented in Table 7.2. Here `
denotes the rescaled version of the Lagrange function and `wA the Augmented Lagrange
function. Moreover (u1, v1, p1) denotes the solution for u, v and p after one time step
computed with the Lagrange method, while (u1

A, v
1
A, p

1
A) denotes the solution for u, v

and p after one time step computed with the Augmented Lagrange method.
Especially the comparison of ‖∂u`(u0, u1, v1, p1)‖L2(Ω), ‖∂u`wA(u0, u1, v1, p1)‖L2(Ω),
‖∂u`(u0, u1

A, v
1
A, p

1
A)‖L2(Ω) and ‖∂u`wA(u0, u1

A, v
1
A, p

1
A)‖L2(Ω) reveals that the Lagrange

method from Chapter 3 leads to a better solution for u, because ‖∂u`(u0, u1, v1, p1)‖L2(Ω)

and ‖∂u`wA(u0, u1, v1, p1)‖L2(Ω) are significantly smaller than the corresponding values
for (u1

A, v
1
A, p

1
A). Thus a scaling of the energy ewout with ε−1 emphasizes this part of

the Augmented Lagrange function and leads to a higher precision in the u component
of the gradient of the Lagrange function without choosing a finer stopping criterion w∗.

Based on the previous results we use the scaled version of the Augmented Lagrange
function

`wA[uk, u, v, p;λ] =
1
ε
ewout[u

k, u, v]− (cw[u, v], p)L2(Ω) +
λ

2
‖cw[u, v]‖2L2(Ω)

for all following tests.
First we present the corresponding test to the one presented in Figure 7.2. We take
again the phase field function of a quarter circle with initial radius r0 = 0.4 on a grid
with grid width h = 2−9 and τ = τ̃ = h2, ε = 2−6 and different to the previous tests
w∗ = η∗ = 10−8. The result is presented in Figure 7.3. The solution computed with
the Augmented Lagrange method is presented by the solid line, while the dotted line
shows the reference solution from Chapter 3 again. Here it is nice to see, that the
L2-errors are all qualitatively equal although we use coarser stopping criteria w∗ and
η∗.
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Figure 7.3: Temporal L2-error evolution for the numerical solution of the Willmore
flow, computed with Augmented Lagrange method and new scaling. The parameters
are ε = 2−6, τ = τ̃ = h2, h = 2−7, 2−8, 2−9 and w∗ = η∗ = 10−8. The dotted line
presents the L2-error computed with the model presented in Chapter 3 and the solid
one the L2-error computed with the Augmented Lagrange method.

In a further test we take the same initial phase field function as in Figure 5.3. This is
an image consisting of two circles with initial radius r0 = 0.13 centered at (0.35, 0.5)
and (0.65, 0.5). Different to the test presented in Figure 5.3 we take a grid with grid
width h = 2−8, ε = 4h and step sizes τ = 0.03h, τ̃ = h2. As mentioned above the
stopping criteria for the Augmented Lagrange method are w∗ = η∗ = 10−8. The new
results are presented in Figure 7.4. A comparison with Figure 5.3 reveals that the
evolution is completely different. With the old method the two circles merge to one
object within one time step, while this new method finds a second possible solution,
in which both objects touch each other in one point. The plot of the curvature
approximation demonstrates that the angle between both objects is π/2, such that
there is mean curvature zero. Due to the typical evolution under Willmore flow the
curved parts of both objects grow to minimize the curvature. This leads to boundary
effects which influence the objects significantly such that they grow together and
form one bar. Thus we get zero mean curvature in the whole computational domain
Ω = [0, 1]2.
A change of grid width to h = 2−9 and step size τ = τ̃ = h2 does not change the type
of solution found by the Augmented Lagrange method. In Figure 7.5 we observe that
even on this finer grid and with finer step size the two circles do not evolve into one
object. They form noses touching each other, again.

In case of a phase field function representing a rectangle with side length 0.4 and 0.1
the solution equals the solution computed with the old method. This is demonstrated
in the following test, where we take a grid of grid width h = 2−9, ε = 4h, step sizes
τ = τ̃ = h2 and accuracy w∗ = η∗ = 10−8. In Figure 7.6 the evolution of the shape as
well as the corresponding approximated curvature (Uk − V k)/τ̃ are presented. Com-
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Figure 7.4: Evolution of two circles with initial radius r0 = 0.13 and center points
(0.35, 0.5) and (0.65, 0.5), step sizes τ = 0.03h, τ̃ = h2, ε = 4h and w∗ = η∗ = 10−8

on a grid with grid width h = 2−8 after 0, 1, 2, 4, 6, 7, 8, 9 and 10 time steps. In the
three lower rows the underlying discrete curvature (Uk − V k)/τ̃ is color-coded on the
range [−10, 10] by .
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Figure 7.5: Evolution of two circles with initial radius r0 = 0.13 and center points
(0.35, 0.5) and (0.65, 0.5), step sizes τ = τ̃ = h2, ε = 4h and w∗ = η∗ = 10−8 on a
grid with grid width h = 2−9 after 0, 1, 10 and 18 time steps. In the two lower rows
the underlying discrete curvature (Uk − V k)/τ̃ is color-coded on the range [−10, 10]
by .

Figure 7.6: Evolution of a rectangle with step sizes τ = τ̃ = h2, ε = 4h and w∗ =
η∗ = 10−8 on a grid with grid width h = 2−9 after 0, 1, 6, 10, 20, 40, 60 and 120
time steps. In the two lower rows the underlying discrete curvature (Uk − V k)/τ̃ is
color-coded on the range [−20, 20] by .
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grid width min. mem mem to store a CSM mem needed by the TRM
2−3 0.3 2 10
2−4 2.0 12 58
2−5 14.8 44 740
2−6 113.1 198 14807
2−7 884.4 1575

Table 7.3: Minimal main memory (mem) in MB needed to save a 2× 2 block matrix
in the three-dimensional case, main memory needed to store a Cholmod sparse matrix
(CSM) and main memory needed during the application of the Trust-Region method
(TRM).

paring these results with the one presented in Figure 5.2 does not lead to differences.

The presented two-dimensional tests demonstrate that the Augmented Lagrange meth-
od works reliable for solving our Willmore model. Consequently it would be nice to
test it in the three-dimensional case, too. Unfortunately in this case the Trust-Region
method needs too much main memory on finer grids. In general a three-dimensional
grid of grid depth (gd) consists of (2gd + 1)3 nodes. As our unknowns consist of two
components u and v and we are working on a triangulated grid this leads to 2 × 27
matrix entries per node. If each entry needs a memory of 23byte we need at least
(2gd + 1)3 ∗ 54 ∗ 23byte memory to store one block matrix. This is only the mini-
mal memory which is needed. In real terms within the Trust-Region method there is
applied a Cholmod factorization which saves a so-called Cholmod sparse matrix and
this matrix needs more memory. Additionally the Trust-Region method saves two
matrices of this type and needs some further main memory. The concrete numbers
are presented in Table 7.3. Especially the last column reveals that the factor between
the needed memory grows from one grid to the next finer one from 5.8 over 12.76 to
20.01. Thus a rough extrapolation reveals that we need 20 × 14GB = 280GB main
memory on a grid of grid width h = 2−7 and therefore 20× 280GB = 5600GB on the
next finer grid with h = 2−8. Since our machine with the most main memory is a
shared memory machine with 1024GB main memory a computation on a grid with
grid width h = 2−8 is not possible. Theoretically a computation on the next coarser
grid should be possible, but the test to find out the needed memory turned out that
this computation takes too much time for being practicable. Thus a computation on
a grid of grid width h = 2−6 is the best we can expect for three-dimensional compu-
tations.
Consequently we generated a phase field function representing a cube of side lenght
0.4 on a grid of grid width h = 2−6 and started the computation of one step Willmore
flow of time step size τ = τ̃ = h2 with accuracy w∗ = η∗ = 10−8 and interface transi-
tion width ε = 4h. Twelve days later the computation of the first time step was not
yet finished. Consequently even a computation on this grid is not practicable until
now.
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7.3 Future work

Recalling the previous sections we conclude that the Augmented Lagrange method
works reliable for solving the linear model problem presented in Subsection 7.1.1 as
well as our Willmore model in two dimensions. Therefore we can apply it for solv-
ing the phase field apparent contour inverse problem 6.5 in the two-dimensional case.
This induces further work such as the implementation of a Hessian which is partwise
approximated by a BFGS method and the application of a suitable step size control.
For further information cp. Section 6.5.

To make the Augmented Lagrange method working stable in the three-dimensinal
case we have to deal with the problem of finding a more efficient possibly iterative
solver to be used within the Trust-Region method.
Another ansatz is to reduce complexity of the three-dimensional problem by using
an efficient narrow band method. As already mentioned in Section 6.5 narrow band
methods are suitable in combination with double well phase field approximations
since the phase field function approximately equals 1 or −1 in most parts of the
computational domain.
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[51] I. Faragó. Operator splittings and numerical methods. In Ivan Lirkov, Svetozar
Margenov, and Jerzy Wasniewski, editors, Large-Scale Scientific Computing,
volume 3743 of Lecture Notes in Computer Science, pages 347–354. Springer
Berlin / Heidelberg, 2006.

[52] Martina Franken, Martin Rumpf, and Benedikt Wirth. A phase field based pde
constraint optimization approach to time discrete willmore flow. International
Journal of Numerical Analysis and Modeling, 2011. accepted.

[53] Karl Glasner and Robert Almgren. Dual fronts in a phase field model. Physica
D, 146:328–340, 2000.

[54] Maurizio Grasselli and Dalibor Prazak. Longtime behavior of a diffuse interface
model for binary fluid mixtures with shear dependent viscosity. Interfaces and
Free Boundaries, 13:507–530, 2011.
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