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Summaries

English Summary

It is the aim of this thesis to present a toolbox of methods which can be used to compute the
group cohomology Hq(Sp2(Z),Mλ) of the Siegel modular group Sp2(Z) for a given integer
q ≥ 0 and a highest weight module Mλ with respect to a weight λ. Many tools we introduce
in this thesis can be applied with minor changes also to groups different from the symplec-
tic group. By some spectral sequence argument we get under some week assumptions an
isomorphism

Hq(Sp2(Z),Mλ

) ∼= Hq
(
S2/Sp2(Z), M̃λ

)
between group cohomology of Sp2(Z) and sheaf cohomology of the sheaf M̃λ over S2/Sp2(Z),
which is associated to the module Mλ. Here S2 denotes the Siegel upper half-space. The
cohomology groups behave very differently for different choices of λ. In particular, those
cases are of special interest in number theory, e.g. for Harder’s conjecture on eigenvalues
of Hecke operators, which have non-vanishing so called cusp cohomology. This happens for
the first time for the highest weight module of weight λ = (7, 4), which has rank 1820 over
the integers, which is not really small.

There are three main branches in this thesis:

Topological Model: It is known by a result of Mark McConnell and Robert MacPherson
from the late eighties that there is a Γ′-equivariant deformation retract W of S2 for a neat
arithmetic subgroup Γ′ ⊂ Sp2(Z), which has the structure of a regular cell complex, and
descends to a 4-dimensional retractW/Γ′ of the 6-dimensional space S2/Γ

′, which has again
a cell decomposition. Our first main result is the generalization of this model to the torsion
case. To do this we have to replace cells by new objects called orbicells, which are the
orbifold equivalent to cells in manifolds, and have very similar properties. We obtain a retract
W/Γ′ of S2/Γ

′ for any subgroup Γ′ ⊆ Sp2(Z) of finite index. Each of these retracts has an
orbicell decomposition, which derives from the cell decomposition of W. We implemented a
computer program in SAGE which computes various things related to these decompositions,
e.g. closures, stabilizers, and neighbours of cells. We illustrate up to some level – drawing in
4-D is a little bit ambitious – how the building blocks look like.

Highest Weight Modules: It is essential for an efficient computation of the cohomology to
be able to perform various actions with and on highest weight modules. Most things are
quite simple if a basis is known. However it turned out that the computation of the action
of a group element on the module is not that easy. Therefore, our second main result is an
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algorithm to compute this action. This involves the decomposition of a given group element
into generic generators coming from some roots via the morphism between Lie algebras
and Lie groups. To obtain the needed decomposition we introduce a structured Gaussian
elimination which preserves the symplectic structure.

Compute Cohomology: There is the notion of constructible sheaves due to Alexander Gro-
thendieck and his collaborators, which describes a category of sheaves which are locally
constant restricted to objects which cover (in Zariski-sense) a variety. We were able to gen-
eralize this category to a category of sheaves on the obtained orbicell decomposition. This
construction is quite beautiful, and works in a much more general context. Therefore, we
present parts of it not only for W or W/Γ′, but for an abstract space with a suitable de-
composition and an action of a group. We use this language to get an abstract description
of the cohomology groups we are looking for, which later could be used to compute the
cohomology.

Finally we discuss the application of this construction to the orbicell decomposition of the
deformation retract W/Γ of the Siegel modular variety S2/Γ and indicate what has to be
done to complete the computation of the cohomology of the symplectic group.

Deutsche Zusammenfassung

Das Ziel dieser Doktorarbeit ist es, einen Werkzeugkausten bereitzustellen, der dazu verwen-
det werden kann die Kohomologiegruppen Hq(Sp2(Z),Mλ) der Siegelschen Modulgruppe
Sp2(Z) für eine gegebene ganze Zahl q ≥ 0 und einen Höchstgewichtsmodul Mλ zu einem
Höchstgewicht λ zu berechnen. Viele Hilfsmittel, die wir in dieser Arbeit einführen, können
mit geringfügigen Änderungen auch für die Berechnung der Kohomologie anderer Grup-
pen eingesetzt werden. Unter einigen schwachen Annahmen erhalten wir mittels geeigneter
Spektralsequenzen einen Isomorphismus

Hq(Sp2(Z),Mλ

) ∼= Hq
(
S2/Sp2(Z), M̃λ

)
zwischen der Gruppenkohomologie der Gruppe Sp2(Z) und der Garbenkohomologie der
zum ModulMλ assoziierten Garbe M̃λ auf S2/Sp2(Z). Dabei bezeichnet S2 den Siegelschen
oberen Halbraum. Die Kohomologiegruppen verhalten sich abhängig vom Gewicht λ recht
unterschiedlich. Insbesondere diejenigen Gewichte sind von besonderem zahlentheoreti-
schem Interesse, etwa für Harders Vermutung über die Eigenwerte von Heckeoperatoren,
die nicht verschwindende Spitzenkohomologie haben. Der kleinste Höchstgewichtsmodul,
für den dies eintritt, ist der Modul zum Gewicht λ = (7, 4), der schon Rang 1820 über den
ganzen Zahl hat.

Diese Doktorarbeit besteht aus drei Hauptzweigen:

Topologisches Modell: Aus den späten 80er Jahren gibt es ein Ergebnis von Mark Mc-
Connell und Robert MacPherson, das besagt, dass es für jede arithmetische Untergruppe
Γ′ ⊂ Sp2(Z), die zusätzlich neat ist, einen Γ′-äquivarianten Deformationsretrakt W von S2
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gibt, der die Struktur eines regulären Zellenkomplexes besitzt. Aus diesem Retrakt erhält
man einen 4-dimensionalen RetraktW/Γ′ des 6-dimensionalen Raumes S2/Γ

′, der wiederum
eine Zellenzerlegung besitzt. Unser erstes Hauptresultat verallgemeinert dieses Modell, so
dass es sich auch für Grupppen mit Torsion anwenden lässt. Dazu mussten wir Zellen durch
ihr Orbifoldäquivalent, Orbizellen, die ähnliche Eigenschaften wie Zellen haben, ersetzen.
Schließlich erhalten wir einen Retrakt W/Γ′ von S2/Γ

′ für jede Untergruppe Γ′ ⊆ Sp2(Z)
von endlichem Index. Jeder dieser Retrakte besitzt eine Orbizellzerlegung, die man aus der
Zellenzerlegung vonW erhält. Wir haben in SAGE ein Computerprogramm geschrieben, das
verschieden Dinge zu diesen Zerlegungen, wie etwa Abschlüsse, Stabilisatoren oder Nach-
barn von Zellen, ausrechnen kann. Wir können auch, soweit es geht – Zeichnen in 4-D ist
doch eine gewisse Herausforderung –, die einzelnen Bausteine graphisch darstellen.

Kohomologieberechnung: Es is unerlässlich für eine effektive Berechnung der Kohomolo-
gie, verschiedene Operationen auf und mit Höchstgewichtsmoduln durchführen zu können.
Das meiste davon ist einfach, sofern man eine Basis des Moduls kennt. Es stellte sich jedoch
heraus, dass die Berechnung der Gruppenwirkung nicht ganz so einfach ist. Somit stellt
ein Algorithmus zur Berechnung der Gruppenwirkung das zweite Hauptergebnis dieser Ar-
beit dar. Zur Berechnung der Gruppenwirkung muss man ein gegebenes Gruppenelement in
generische Erzeuger zerlegen, die man aus der Theorie von Liealgebren und deren Beziehung
zu Liegruppen erhält. Zur Berechnung der benötigten Zerlegung führen wir dann einen
strukturierten Gaußalgorithmus ein, der die symplektischen Strukturen respektiert.

Kohomologieberechnung: Konstruktible Garben wurden ursprünglich durch Alexander
Grothendieck und die Gruppe von Mathematiker um ihn eingeführt. Die Garben dieser
Kategorie zeichnen sich dadurch aus, dass sie eingeschränkt auf gewisse Objekte, die die Va-
rietät (im Zariski-Sinn) überdecken, lokal konstant sind. Wir verallgmeinern diese Kategorie
zu einer Kategorie von Garben, die man aus einer gegeben (Orbi-) Zellzerlegung erhält. Diese
Konstruktion funktioniert auch in einem weitaus allgmeinerem Kontext, so dass wir deren
Darstellung nicht auf die Räume W or W/Γ′ beschränken, sondern für einen allgemeinen
Raum mit einer geeigneten Zerlegung und Gruppenwirkung darstellen. Wir verwenden
diese Sprache, um eine abstrakte Beschreibung der Kohomologiegruppen, die wir berech-
nen wollen, zu erhalten, die sich für eine spätere praktische Berechnung der Kohomologie
bestens eignet.

Zu guter Letzt diskutieren wir noch, wie sich diese Konstruktion auf die von uns eingeführte
Orbizellzerlegung des Deformationsretrakts W/Γ der Siegelschen Modulvarietät S2/Γ an-
wenden lässt, und skizzieren, was noch notwendig ist, um die Berechnung der Kohomologie
der symplektischen Gruppe zu vervollständigen.
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Hints for Reading

In this short section we give the reader some guidance through this thesis. We try to visualize
the structure and dependencies in Figure 0.1.

Figure 0.1.: Structure and dependencies in this thesis. Yellow boxes indicate that the most of the contents of
that chapter is known. Orange boxed parts are mixtures of my own work and known results to equal parts. The
red boxed parts are completely my own work. The Black arrows indicate strong dependencies, whereas the dotted
arrows show some weak dependency.
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There are two main branches, Chapters 11 – 13, which are dedicated to Γ-modules, the
computation of sheaf cohomology and some related topics, and Chapters 7 – 10, which cover
to the construction of the cell decomposition. These two branches are up to some level
independent. Therefore, one can read one of them more or less independently of the other.
The auxiliary chapters, which are not part of these two branches, might be skipped by an
advanced reader except for parts of Chapter 5, where we define orbicells, which are essential
for the further understanding, in particular for Chapters 9 and 13.
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1. Introduction

1.1. Extended Summary

This thesis essentially consists of three parts. First, we collect some more ore less commonly
known results we will use later on. The second part is dedicated to the question how to
obtain the topological model and to get some additional information on the structure out
of it. In the third and last part we will handle questions related to cohomology and their
computation.

Background

In Chapter 5 we introduce the necessary definitions related to sheaf cohomology. After that
we give some summary on orbifolds, before we introduce cells, which we assume to be
commonly known, and orbicells, which are our orbifold counterpart to cells in a manifold
and which are in some way new objects.

The main objects in Chapter 6 are algebraic groups and their associated symmetric spaces.
Therein we discuss first arithmetic groups and Γ-modules in Section 6.1 and symmetric and
locally symmetric spaces in Section 6.2 in a more general context, before we start to focus on
the symplectic group and Siegel modular varieties, some locally symmetric spaces associated
to the symplectic group, which are the main objects in this thesis. Here we have to discuss
different ways to define ”the” symplectic group Sp2(Z) and present some basic properties
of this group (see Section 6.3.1). The definition of the Siegel upper half-spaces Sg as well
as a collection of basic facts on them and their quotients by arithmetic subgroups of the
symplectic group are given in Section 6.3.2. Then we discuss which integers can occur as
orders of elements in Spg(Z) (see Section 6.3.3). We close this section with a short survey on
the connection between the structure of points in the moduli space of principally polarized
abelian varieties with a prescribed automorphism group and fixed point sets in the Siegel
upper half-space under the symplectic group in Siegel modular varieties (see Section 6.3.4).
We continue in Section 6.4 with a summary on the basic notions related to Lie algebras and
highest weight modules associated to them. We assume that the reader is familiar with
this topic, but since there are different naming and enumerating conventions, we decided to
include a part on that into this thesis. The knowledge of this topic is essentiall to compute
bases of Γ-modules and the action of Lie group elements on them later in Section 11.2. Finally,
in Section 6.5, we state a second description of highest weight modules for the symplectic
group.
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1.1. Extended Summary

On Quadratic Forms and Cells

Chapter 7 is meant as an informal introduction to different notions of reduction theories and
in addition contains a short survey on the already known results on this topic for different
kinds of groups.

In Chapter 8 we proceed with an outline of Voronoı̈’s work on reduction theory of quadratic
forms, which is related to the groups GLd(Z) or SLd(Z) respectively. We concentrate on the
so called Voronoı̈ I reduction. (He give two different constructions.) To formulate his results
we have to have a closer look at the space of positive definite quadratic forms of dimension
d and the action of GLd(Z) on it.

We start Chapter 9 with an extended summary of the results of McConnell and MacPherson
from [MM93, MM89] for neat subgroups of Sp2(Z) in Section 9.1, which is the starting point
of our own extension of their results to the torsion case in Section 9.2, which is our first main
result (Theorem 9.2.11). This shows that inW there are up to equivalence under Sp2(Z) only
eleven classes of cells. This is an equivalent of [MM93; Theorem 8.8] stated in context of
orbifolds with an orbicell decomposition.

In Chapter 10 we discuss questions related to the computation of several derived objects
from cells or orbicells respectively. We present a method how to compute closures (see
Section 10.4.2), stabilizers (see Section 10.5) and neighbours (see Section 10.6) of a given
(orbi-)cell in a (orbi-)cell decomposition in a simple and fast way with one single idea. This is
the second main result of this thesis. The speed-up of the computation bases on two simple
observations. The first idea is that we can represent (orbi-)cells by collections of column
vectors together with an equivalence relation, on which the group acts essentially by matrix
multiplication with the inverse of the group element from the left. Therefore, we find that the
set of columns representing top-dimensional cells are up to to some equivalence the column
vectors of matrices in Sp2(Z). We consider two sets as equivalent if they are equal up to
their order and multiplication by ±1. The second idea is that cells in the boundary of a
given cell are represented by a collection of vectors which contains the collection of vectors
which represents the inner cell. There is, up to equivalence under the group, only one top-
dimensional cell, i.e. a cell of dimension four, which is represented by the four unit column
vectors in Z4. Our algorithm now uses – with some variations – these two ingredients in the
following way: Generate matrices from a collection of vectors by permuting the columns and
giving them some signs, check for each matrix whether it is symplectic or not and proceed
with further checks and operations depending on the type of object to be computed. We
implemented some simple ideas to reduce the runtime, for example by reducing the number
of candidate matrices which have to be checked. We close this chapter with a presentation
of the obtained results. In particular, we give a description how the closures, neighbours,
and stabilizers of each type of cells in W and how their images in the quotient look like (see
Section 10.7).

Cohomology

Chapter 11 is dedicated to the construction and computation of highest weight modules with
an action of the symplectic group, i.e. a Lie group. We start with their abstract construction in
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1. Introduction

Section 11.1. Here we focus on their relation to highest weight modules for Lie algebra repre-
sentations. This is used in Section 11.2 to state a basis, which is called Poincaré-Birkhoff-Witt
basis, of that module. It turns out that it is necessary for the description of a matrix represen-
tation of the group action on a highest weight module to decompose the given group element
into a product of images of generic generators of the Lie algebra. We give an explicit con-
struction for this decomposition, which is in some way a structured version of the Gaussian
elimination algorithm (see Section 11.2.3). At last we give some examples including some
discussion of the runtime and explain how to compute invariants of highest weight modules
under some finitely generated groups (see Sections 11.2.4 to 11.2.6).

We start Chapter 12 with the introduction of orbilocal systems in Section 12.1, which some
authors also call local systems, and proceed in Section 12.2 with the definition of the object
of interest in this thesis, i.e. the cohomology of arithmetic groups. Later in Section 12.3 we
collect some vanishing results for the cohomology of arithmetic groups which can be used to
check results for their correctness or later in praxi to avoid unnecessary computations of cases
where the cohomology is known to be equal to zero. Beside these results also we find the
vanishing result in relation to the virtual cohomological dimension, which was the starting
point for McConnell and MacPherson to look for the retract we are using in Part II. In the
following Section 12.4 we show how our program can compute global sections and analyse
its runtime.

In Chapter 13 we introduce a partially new concept of constructible sheaves1 on a topological
space X with a suitable decomposition, extend it in a natural way to the new concept of
orbiconstructible sheaves on quotients of X and construct some suitable resolutions using
these category of sheaves. Those resolutions can be used to compute the cohomology we are
looking for. Both definitions depend up to some level on a cell decomposition of the space or
an orbicell decomposition of its quotient. We can apply this construction in a slightly more
general context than needed to obtain only the cohomology of the symplectic group. We
start in Section 13.1 with the definition of a constructible sheaf, which is roughly spoken a
sheaf which is constant restricted to each cell of some cellular decomposition. In addition,
if we have a group action which is compatible with the cell decomposition we can under
certain conditions descend to an orbiconstructible sheaf on the quotient (see Section 13.2).
After the analysis of some interesting properties we are then able to write down several exact
sequences which can be used to construct resolutions as well for a constant sheaf on the
covering space as for the associated sheaf on its quotient (see Section 13.3). This is the third
main result of this thesis. At the end of Chapter 13, in Section 13.4, we discuss the application
of the previously introduced methods to the retract W and W/Γ. First, we explain how to
compute the cohomology groups we are looking for in case of this example. For this, we focus
on the resolution from Theorem 13.3.16 in this special case (see Theorem 13.4.3). Here one
has to discuss different problems which occur during the implementation of the necessary
operations on (orbi-)constructible sheaves. Then we continue with the specialization and
discuss the case where the underlying coefficient module of the cohomology group is given
by a highest weight module (see Section 13.4.2). We end up Chapter 13 with a short section on
the further steps one needs to complete the computation of the cohomology of the symplectic
group.

1An analogue concept was originally introduced by Alexander Grothendieck and his collaborators in the early
sixties.
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1.2. History of this Thesis

In the last chapter, i.e. Chapter 14, we summarize the problems which we solved in this thesis
and indicate which problems are still open.

1.2. History of this Thesis

The starting point of this thesis was in some sense the retirement of one of my academic
teachers and, which I did not know at that time, of one of my advisors of this thesis project.
On February 7th 2003 Professor Günter Harder gave, on occasion of his retirement, a col-
loquium talk in Bonn with the title A Congruence between Siegel and Elliptic Modular Forms
[Har03]. In this talk he presented some ideas he was thinking about for many years, which
lead to the original motivation of this thesis.

In this talk Harder presented a conjectural connection between the eigenvalues of Hecke op-
erators T′p and Tp on the space of cusp forms on one side for the Siegel modular group
Sp2(Z) and on the other side for the elliptic modular group SL2(Z) in terms of some con-
gruence conditions for the eigenvalues modulo a large2 prime `. Such a congruence should
exist if ` does not divide some critical values of some L-functions related to modular cusp
forms of given weights. In some way this conjecture is a generalization of the classical result
of Srinivasa Ramanujan [Ram16] published in 1916 that

τ(p) ≡ p11 + 1 mod 691 (1.1)

holds for all primes p, where τ(p) is the p-th coefficient of the q-expansion of the famous
∆-function

∆(z) = q − 24q2 + 252q3 − 1472q4 + 4830q5 ∓ . . . =
∞∑
n=1

τ(n) · qn. (1.2)

Whereas Ramanujan formulated his result as a property of the q-expansion of the ∆-function,
which can be turned into a relation for Hecke eigenvalues since the Hecke eigenvalues are
the same as the Fourier coefficients of ∆, Harder’s conjecture is a conjecture on Hecke eigen-
values and there seems to be no analogous result for the corresponding Fourier series.

Harder showed – using some computational results of Gerard van der Geer from Amster-
dam – that the conjecture holds for 2 ≤ p ≤ 11.

In June 2004 there was a summer school on Modular Forms at Nordfjordeid in Norway. As
one part van der Geer gave there lectures on Siegel Modular Form in which he presented
some additional evidence3 for Harder’s conjectures and gave a more precise formulation
of this conjecture [Ran08]. Due to this publication Harder’s conjecture became much more
popular in the number theory community.

At the time when I though about the possible subjects for a thesis, I found by accident the
book by William Stein [Ste07] on computational aspects of modular forms with a quite inter-
esting appendix by Paul Gunnells on higher rank computations [Gun07]. In his contribution

2Here large does not mean that ` has to have hundreds of digits as in cryptography. It is enough that ` is larger
than 20.

3He and his collaborators computed the eigenvalues up to p = 37.
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1. Introduction

Paul Gunnells also gives an overview on open and/or only partially answered questions in
this area, i.e. the practical computation of cohomology groups in case of higher rank, and
I remembered the lecture of Harder some four and a half years ago. After some informal
discussion with Jens Franke and Günter Harder we agreed that there should be enough sub-
stance to do my thesis in this area. Since there are several results for the cohomology of
SLn(Z) and related subgroups, but only a few on symplectic groups, we decided to focus on
this. Furthermore, an efficient computation of the cohomology (as module under the Hecke
algebra) would be a way to check – as a goal in the far future – the conjecture of Harder.

As a first task we wanted to compute the cohomology for Sp2(Z), before we start to compute
Hecke operators on these spaces and to check Harder’s conjecture. Unfortunately we under-
estimated the complexity of this task completely. Very optimistic we wrote a proposal for
a project on these tasks and applied for some funding by the Hausdorff Center for Mathe-
matics. We got that project for two years and I started with my first steps in this direction.

At the beginning of the project we had essentially two ideas how to attack the problem,
which seemed to be promising. One was to use the identification of the Siegel modular
variety with the moduli space of principally polarized abelian varieties of dimension three
as well as the structure of the automorphism groups of these abelian varieties. The other
idea was to use a result of Mark McConnell and Robert MacPherson, who introduced a
deformation retract W/Γ′ for quotients of the Siegel upper half-space S2 by neat/torsion
free subgroups Γ′ ⊂ Sp2(Z). The group Sp2(Z) has torsion, thus one could use a standard
technique where one covers the quotient by the torsion group by the quotient for the torsion
free group. The cohomology groups of the original quotient are then the invariants under
the deck transformation group of the covering. I decided to try the method which uses the
retracts first. The main problem with that method is that the number of cells increases if we
replace one space by a covering of it, because the number of cells scales with the cardinality
of the deck transformation group4. Thus, complexity is quite bad. Therefore, after a (too)
short reflection on this, I decided to give the other method a chance. To say it in advance, it
was a mistake to change the method at that early stage.

We started to follow the second alternative and found out after a while that there are several
problems which one could not solve as easily as we thought. By accident I met Paul Gunnells
in Oberwolfach and he pointed out how one should be able to use McConnells and MacPher-
sons results in my situation without the scaling problem mentioned above. He believed that
an analogous result should be true also in the torsion case. We found out that he was com-
pletely right and we generalized in the following the original construction, which is now
one main result in this thesis. For this we had to face several, most times rather technical,
problems related to the question how to compute the needed things efficiently. We solved or
even avoided almost all of them, but this took much more time than expected such that we
could not reach the original goal of this thesis completely.

4The deck transformation group related to the principal congruence subgroup Γ(p) ⊂ Sp2(Z) is isomorphic to
Sp2(Fp) and thus also in the smallest torsion free cases, i.e. p = 3, quite huge (#Sp2(F3) = 51840). We refer
to page 59 for a more detailed discussion of this.
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1.3. History of the Problem

1.3. History of the Problem

At the same time there are a lot of results and only a few of them related to the topics of this
thesis. We give an overview what this means. This thesis is dedicated to the question how
to get a method to compute the cohomology of the symplectic group Spg(Z) for g = 2 with
coefficients coming from highest weight modules. For this we use a construction bases on a
suitable deformation retract.

Hence, there are three aspects which we have a closer look at:

• Harder’s conjecture (motivation for this thesis)

• Cohomology of the symplectic group with different coefficients

• Cohomology computed by deformation retracts

Harder’s Conjecture Since it was the central motivation for this thesis, we give an overview
on publications related to Harder’s conjecture, which we discussed in the previous section.
First, there is the original source, i.e. Günter Harder’s colloquium [Har03] which was pub-
lished in [Ran08] later on. In the same volume Gerard van der Geer presents some additional
considerations related to Harder’s conjecture (see [vdG08]) and gave it a more precise form.
In some way, Harder raised similar questions already earlier (see e.g. [Har93]).

During the last years there were some efforts by van der Geer and some of his collabora-
tors to get computational evidence for the conjecture (see [BFvdG08, FvdG04a, FvdG04b]).
Although there is up to now no proof of the conjecture, some researchers also try to gener-
alize the conjecture to other groups, where similar congruences can occur (see e.g. [Ibu08,
Dum11, BFvdG11]). The most recent publication related to Harder’s conjecture is the preprint
[GRS12] published in March 2012, where the authors give some further verifications for the
conjecture. The known examples let us believe that the conjecture might be true.

Cohomology We do not want to discuss here the development of the cohomology of arith-
metic groups in general. We focus on the results related to the symplectic group Sp2(Z). For
some results on cohomology of arithmetic groups in general and of the symplectic group in
particular one might have a look into the works of Joachim Schwermer [Sch83, Sch94, Sch86,
LS09, SL01, Sch10]. He also studies the question under which conditions the cohomology
or parts of it vanish. This information allows us a deeper look into inner structures of the
cohomology.

There are several results for the cohomology Hq(Sp2(Z),R) of the symplectic group Sp2(Z)
(and some subgroups of this group) with coefficients in a commutative ring R. Most of the
results are part of a sequence of papers of Ronnie Lee and Steven H. Weintraub and their
collaborators. The starting point of this sequence is [LW85] from 1985, which considers the
group cohomology of Sp2(Z) and some subgroups, where the coefficients for the cohomology
come from a fieldF. As an example they compute the rank of the cohomology of the principal
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1. Introduction

congruence subgroup Γ(2) ⊂ Sp2(Z) of level 2. They proved that

rankFH
q(Γ(2),F) =



1 q = 0

0 q = 1

1 q = 2

14 q = 3

16 q = 4

for any field F with char(F) > 2. In a similar way Rainer Weissauer gave in [Wei88] an
explicit formula for the rank over C of the global sections H0(S2/Γ(N),C) for principal
congruence subgroups Γ(N) of level N .

The main result in this sequence of papers is contained in the two papers [BL92, BL94b]
of Alan Brownstein and Ronnie Lee from 1992 and 1994. In these papers the authors com-
pute the cohomology groups Hq(Sp2(Z),Z) explicitly. They start their computation with
the 2-primary part of the cohomology in [BL92] and continue with the odd torsion cases
in [BL94b]. It is enough to compute the 2-, 3- and 5-primary parts, because there are no
elements in Sp2(Z) which have an order divisible by a prime different from 2, 3 and 5
(comp. Section 6.3.3). These local informations together with the rank over R or C give a
complete description of Hq(Sp2(Z),Z).

These results are followed in 1998 by the computation of the cohomology of Γ(4) ⊂ Sp2(Z) by
J. William Hoffman and Steven H. Weintraub in [HW98], using techniques of Takayuki Oda
and Joachim Schwermer presented in [OS90] for the cohomology of torsion free arithmetic
subgroups Γ′ ⊂ Sp2(Q). Some of the results up to that point are summarized in [LW98],
which also contains the computation of Hodge numbers.

In 2000 Gunnells published in [Gun00] an additional approach using symplectic modular
symbols, which were already used e.g. in case of the cohomology of SL2(Z) and its sub-
groups, and obtains some results for the cohomology of the symplectic group in certain
degrees.

The most recent contribution in this direction were published in 2001 and 2003 by Hoffman
and Weintraub, who computed the cohomology of the moduli space of principally polarized
abelian varieties with N -level structure (comp. Section 6.3.4) [HW01], which is essentially
the same as the cohomology of Γ(N), and of its boundary [HW03] with respect to a smooth
toroidal compactification (see e.g. [Nam80]).

These are in some sense the main results. There are some more for special subgroups in the
literature, such that one can state that we have a quite good understanding of the cohomology
of the symplectic group as long as the coefficients are Z or a field. The problem is that we
need the cohomology for non-trivial coefficient systems, but in this case there are no explicit
computational results known. There are only some vanishing results, e.g. by Schwermer et
al. (see above).

Cohomology Computed by Deformation Retracts: Georgy F. Voronoı̈ (1868–1908) intro-
duced in a sequence of posthumously published papers [Vor08b, Vor08a, Vor09] a reduction
theory for quadratic forms, which can be used to get some fundamental domains for the
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1.3. History of the Problem

Figure 1.1.: A fundamental domain for the group SL2(Z). For the classical one see Figure 7.2a

0

i

1
2 1

ρ
i+ 1

groups GLd(Z) for some integer d (comp. the discussion in Section 7.1). His construction
gives a model which has the same dimension as the original space. For our purpose we want
to have a minimal model, which carries all information on the cohomology of the space,
but has lower dimension than the original space (see Chapter 7). Such spaces are called
deformation retracts (see page 37).

Since this question is not a new one there are some results on the construction of deformation
retracts for several groups. First, there are results in the case of groups of type SLd(Z).
In 1971 Jean-Pierre Serre introduced the so called Serre tree for the group SL2(Z) acting
on the upper half-plane [Ser71]. This is the classical example for most things related to the
cohomology of arithmetic groups and thus the most discussed case in the whole area. Here
one contracts the fundamental domain (see Section 7.1) shown in Figure 1.1 (or one of its
translates, resp.) to the union of three (geodesic) edges connecting the central fixed point
ρ = exp(πi/3) with the three images of i under SL2(Z) lying on the boundary of the shaded
area in Figure 1.1, i.e. with i, i + 1 and −(i − 1)−1 = 1

2(i + 1). If we now translate this
component by SL2(Z) we get an object which is in this case a tree, i.e. a graph without loops
(see Figure 1.2). The group PSL2(Z) acts on this tree by permuting the edges and vertices.
The elements in PSL2(Z) of finite order, i.e. the stabilizers of i or ρ (or one of its translates),
have order two and three. In the picture one can see their action. The elements of order two
flip two vertices which are connected by one edge. The element of order 3 rotates the free
neighbours of a vertex.

For d = 3 there is the Soulé Cube found by Christophe Soulé [Sou78] and, independently,
by Ronnie Lee and Robert Henry Szczarba [LS78]. The examples of the cases d = 2 and
d = 3 are both handled in [Ste07].

The most important known example are the recent results for the group SL4(Z) by Avner
Ash, Mark McConnell, and Paul Gunnells, see e.g. [Ash80, AGM02, AGM08, AGM10,
AGM11, Gun09] and for GLn(Z) by McConnell in [AM97]. They obtain their results on
reduction with a method which is very similar to the one we use (comp. Chapters 8 and 9).
Further, there are results for GLd(Z) and SLd(Z) for d = 5, 6 by Philippe Elbaz-Vincent, Her-
bert Gangl and Christophe Soulé [EVGS02] which one should mention. They use a slightly
different approach to get their reduced model of the quotient and handle in the following
parts the K-theory of Z which is strongly related to the cohomology with trivial coefficients.
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Figure 1.2.: Serre tree for the group SL2(Z). The gray lines indicate the boundary of the copies of a fundamental
domain of the form shown in Figure 7.2b and the blue vertices and edges are the related spine or to be precise a
finite part of it. This picture was partially computed with SAGE and then enhanced with Adobe R© Illustrator R©.

Figure 1.3.: Soulé Cube. This picture was drawn with LATEX and tikz after the picture in [Gun07].
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1.3. History of the Problem

For SLd(Z) with d = 3, 4, 5, 6 you will find in the mentioned references beside the reduced
models for the groups also results on the cohomology. However all authors only handle
trivial coefficients, i.e. Z or R, which make considerable difference to our work since we are
looking in particular for application to non-trivial coefficient systems coming from irreducible
representations (comp. Chapters 12 and 13).

Dan Yasaki proved in his PhD-thesis a general result how to construct a spine forQ-rank one
groups. He then applied his method to some example groups like the groups SU(2, 1,Ok)
where Ok is the ring of integers of some algebraic number field k [Yas05, Yas07b, Yas07a,
Yas10]. Thus, the question is completely answered if the group has rank one. The group
Sp2(Z), we are interested in, has rank two.

There are much less known results for higher rank groups. An overview on the problems
and results in the higher rank case can be found in the appendix of [Ste07] by Paul Gunnells
[Gun07]. More or less the only known examples are the groups SLd(Z) and GLd(Z) for
some d > 2 (for d = 2 they are of rank 1) mentioned above and some result MacPherson
and McConnell [MM93, MM89] for symplectic groups. After a very short survey how to
attack symplectic groups in general the two authors focus on the case of neat subgroups of
Sp2(Z) and prove their main result only in that case. As far as I know there is no result
known neither for symplectic groups with torsion and a non-trivial coefficient system nor
for symplectic groups of higher rank. We discuss Section 9.1 the method of MacPherson and
McConnell more in detail. Furthermore, we are going to extend their method to a slightly
more general context such that we can apply this method to the Sieg modular group Sp2(Z)
and its finite index subgroups (see Section 9.2). This extension is one main goal of this thesis.

The reason why there are up to now no results on topological reductions for Sp2(Z) might
be that the quotient will – if one uses the usual approaches – not be a cell complex. We will
remove this problem via a kind of redefinition of the problem. We will simply replace the
types of objects we are looking for. Instead of looking for a cell complex we will look for an
orbicell complex (which is in some sense the orbifold equivalent to a cell complex) which is
compatible with the underlying group structure (comp. Section 5.3). This orbicell decompo-
sition can be a classical cell decomposition, but does not have to. We have to emphasize that
it is not enough to modify the definitions such that they fit the situation. One has to ensure
in addition that the new model is one which is powerful enough to do its duty, i.e. it allows
to compute the cohomology from it. We will show that this is possible. However this needs
some additional work.
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2. Used Computer Resources

2.1. Used Software

For my work I used several software packages:

• PythonTM 2.6 (http://www.python.org)

• SAGE 4.6.2 (http://www.sagemath.org)

• GAP 4.4.12 with GAP SmallGroups Libray and the QuaGroup-package
(http://www.gap-system.org)

• Mathematica R© 8.0 by Wolfram Research Inc. (http://www.wolfram.com)

• This document was generated with LATEX, AMS-LATEX, SAGETEX, and
KOMA-Script.

Most software – except Mathematica R© – which I used is free software and in most cases also
under GNU licence. In the following, I omit all references to different kinds of licences and
trademarks.

Usually I used the open source program SAGE, which is written in Python, and which either
can be used as stand-alone computer algebra system or as Python library. Python is an object-
oriented programming language which allows for a high degree of abstractness which is quite
useful in several cases. I decided to use SAGE since there are several libraries available which
seemed to be well suited for my kind of problems. Furthermore, there is the possibility to
wrap code of other systems like Pari or GAP into SAGE-programs such that one can benefit
from the advantages of different worlds. SAGE uses this ability also for its own algorithms.
For example, the implementation of matrix groups, which we use to handle stabilizers of
cells, uses for a lot of its routines essentially the realization of matrix groups in GAP. For
my project in particular the indirect use of GAP was quite useful to handle Lie-algebras and
highest weight modules as parts of a SAGE program (see e.g. Section 11.2).

Note that Python and therefore also SAGE starts indexing with zero. Therefore, there might
be some index shifts in parts which describe source code compared to some usual notations
in mathematics, which I also use in some place inside the text of this thesis.

The SAGE source code of the programs described in this thesis can be found completely on
the CD included in the printed copy of this thesis or can be obtained from the author. It is
partially included in the Appendix B. All in all, the program has a length of about 4800 lines
(counted only the parts written by myself).
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2.2. Used Hardware

2.2. Used Hardware

To test my program I used the following computer systems at home and in the Max-Planck-
Institut für Mathematik:

theia@MPIM A SUN ray server with eight 2.7GHz Quad-Core AMD OpteronTM8384 pro-
cessors with Debian 5.0, Linux kernel 2.6.26 with a maximum of 320GB DDR2 666MHz
memory, an L2 cache of 512KB per Core, and an L3 cache of 6MB per CPU. For the tests
in this thesis I used only a single core on one processor per run, but took several runs
in parallel.

harmonia@MPIM A SUN ray server with 24 AMD 2.1GHz OpteronTM6172 processor with
12 cores each, Debian Release 6.0.1 (squeeze), Linux kernel 2.6.32-5-amd64, 64GB DDR2
RAM 666MHz, and 512kB L2 cache per core.

NOETHER@HOME An iMac 2.66GHz Intel Core Duo with Mac OS X 10.6.8, 4GB 800MHz
DDR2 SDRAM, and 6MB L2 Cache.

Here I want to thank the IT support at the Max-Planck-Institut für Mathematik for continuous
support, their kind and fast help if I needed some software to be installed or updated and
the possibility to use the computer facilities.
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3. Notation

For an index of notations and symbols used in this thesis we refer to the list of symbols
beginning on page 248. Here we introduce some general notations we are use during this
thesis.

We denote by N the positive integers and by N0 the non-negative integers. The ring of
integers is Z. Further, we denote by Q the field of rational numbers, by R the real numbers,
by R+ = {x ∈ R : x > 0} the positive real numbers, and by C the complex numbers.

We use i =
√
−1 for the imaginary unit, and sometimes π = 3.1415 . . . for the number π and

not a canonical projection, which occurs much more often than the number.

We sometimes omit zeros in matrices to make the entries more readable. The set of d × d
matrices with entries from a ring R is denoted by Matd(R) and analogously for non-square
matrices if we use two indices.

Usually we denote column vectors by bold face letters like x,y, z . By xt and At we denote
the transpose of a column vector x and a matrix A. The standard basis vectors, where at the
i-th position is a 1 and 0 at all other positions, we call ei.

We use ⊂ to indicate an arbitrary subset. If we want to indicate a proper subset we use $.
In some cases we will in addition, if we want to emphasize that equality can hold, use ⊆ for
a subset which can also be equal. To indicate the boundary and the closure of a topological
space X we use ∂X and X .

To avoid misunderstandings with quotients, which occur quite often, we use G−H to express
the elements of G without the elements of H and not the notion G\H which is also used in
the literature. We use # or | | to indicate the number of elements in a set or the order of a
group which is the same.

We use the following short form

a⊗n := a⊗ . . .⊗ a︸ ︷︷ ︸
n times

.

We write types of cells or their images in the quotient with small caps like Crystal. Source
code and commands in programming languages are given in type writer face, like Command.
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5. Sheaves and Orbifolds

Quae legeris, memento!

(Marcus Porcius Cato)

We assume that the reader is familiar with the basic topological notions, in particular topo-
logical spaces, categories, functors, and sheaves. So it is not the aim of this section to be a
self contained introduction to basic topological notions. We will give the most important def-
initions used in this thesis and some references for further reading. For general topological
definitions we refer to the classical books of William Massey [Mas78, Mas91], or the more
recent book of Alan Hatcher [Hat02]. For a slightly more computational approach there is
the book by James Munkres [Mun84]. A basic introduction to categories and functors can be
found – if necessary – in the book of Saunders MacLane [Mac98].

We assume that all topological spaces in this thesis are Hausdorff.

5.1. Sheaf Cohomology

There are several good references for sheaves in general and sheaf cohomology in particular.
The general theory can be found in the book on sheaf theory of Glen Bredon [Bre97] or that of
Birger Iversen on cohomology of sheaves [Ive86]. A good introduction more focused on ques-
tions related to the cohomology of arithmetic groups is the book of Günter Harder [Har08c]
and his lecture notes [Har05, Har08a], which can be found on his website.

We briefly recall the definition of sheaf cohomology. Let for the following part X be a nice,
connected topological space and letM be a sheaf on X . All sheaves we consider in this thesis
are sheaves of abelian groups (or later sheaves of R-modules for some commutative ring with
identity R). The global section functor

H0(X , ) : SheavesX → Ab

M 7→ H0(X ,M) =M(X )
(5.1)

from the category of sheaves to the category of abelian groups is a left exact functor (see
[Har08c; p. 51]). To avoid to much Γs later on we use H0(X , ) instead of ΓX since Γ will be
an arithmetic group and occurs in plenty variations. Since H0(X , ) is left exact we can form
the right derived functors Rq(H0(X , )) of H0(X , ).

Definition 5.1.1 (Cohomology): Let M be a sheaf (of abelian groups) over a topological space X .
Then we define for q ≥ 0 by

Hq(X ,M) = Rq(H0(X ,M)
)

the q-th cohomology group of X with values in the sheafM. Hq(X , ) is functor from the category of
sheaves on X SheavesX to the category of abelian groups Ab.

2



5.1. Sheaf Cohomology

We have always that H0(X ;M) = M(M) which explains the notion H0(X ; ) for the global
section functor in (5.1). Remember the definition of an acyclic sheaf.

Definition 5.1.2: LetM be a sheaf on X . ThenM is called an acyclic if

Hq(X ,M) =

{
M(X ) q = 0

0 q > 0.

To compute the cohomology groups we use so called acyclic resolutions.

Definition 5.1.3: An acyclic resolution of a sheafM over X is an exact sequence

0 M I0 I1 I2 I3 . . .
ι t0 t1 t2 t3

of sheaves where the Ik are acyclic sheaves.

The global section functor H0(X , ) is only left exact (see [Har08c; p. 51]). If we have an
acyclic resolution 0→M→ I• we can apply this functor to 0→ I• and we get

0 I0(X ) I1(X ) I2(X ) I3(X ) . . . . (5.2)

Let us denote this sequence by H0(X , I•). We can now apply the known theory on that
acyclic resolution (see e.g. [Bre97; II.4], or [Har08c; 2.3.1]) and get the following theorem.

Theorem 5.1.4: Let 0 → M → I• be an acyclic resolution for the sheaf M over the topological
space X , then

Hq(H0(X ,M)) = Hq(X ,M).

We know that if we have an exact sequence of sheaves on X

0 M1 M M2 0 (5.3)

then there is an exact sequence in the cohomology

0 M1(X ) M(X ) M2(X )

H1(X ;M1) H1(X ;M) H1(X ;M2)

H2(X ;M1) H2(X ;M) . . . .

(5.4)

This follows from the functorial properties of the cohomology (comp. [Har08c; p. 51]).

Definition 5.1.5: Let M be a sheaf of abelian groups on X , then the support of the sheaf M is
given by

supp (M) = {x ∈ X :Mx 6= 0} (5.5)
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5. Sheaves and Orbifolds

and the support of a section s ∈M(U) for an open set U ⊂ X is given by

supp (s) = {x ∈ U : sx 6= 0}, (5.6)

where ww indicates the closure of the set.

5.2. From Manifolds to Orbifolds

The basic objects in differential geometry are manifolds, i.e. topological spaces which are
locally homeomorphic to open sets inRk for some integer k together with some compatibility
conditions for the homeomorphisms. The basic geometric objects in this thesis are quotients
of symmetric spaces, i.e. manifolds, by a discrete properly discontinuously acting group
of isometries G (see Section 6.2). If G is not torsion free the quotient need not be again
a manifold. It is only a so called orbifold. In the literature there are several, sometimes
equal, sometimes slightly different, definitions for objects called orbifold, thus we will give a
definition of what we call an orbifold. Let in the following G be a discrete group of isometries
of a smooth manifold M which acts properly discontinuously on M.

Definition 5.2.1: A topological space O is called orbifold if there is a manifold M with an atlas
{φi : Ui → Vi ⊂ R

k}i∈I and a family of finite subgroups Hi ⊂ G such that

a) The sets Ui are invariant under Hi.

b) The continuous maps φi are Hi-equivariant.

c) The sets Ui/Hi cover O and fulfil the classical conditions for coordinate charts of manifolds,
except that they need not to be open.

An orbifold is called smooth if the underlying manifold M is smooth.

This definition is equivalent to the following: An orbifold O is the quotient of a manifold
by a finite group Gfinite of isometries. The notion of an orbifold is a natural generalization
of manifolds, because every manifold is an orbifold. It is easy to prove that O = M/G is a
smooth orbifol, if M is a smooth manifold and G a discrete group of isometries as aboved. If
the group G acts torsion free, it is well known that the quotient of a smooth manifold M by
G is again a smooth manifold (see e.g. [Hel78]). Assume now that G acts with torsion, then
there is a torsion free normal subgroup G′ ⊂ G and we have

X/G =
(
X/G′

)
/
(
G′/G

)
(5.7)

where X/G′ is a smooth manifold, since G′ is torsion free, and G′/G is a finite group. This
shows that X/G is a smooth orbifold. This orbifold can – but does not have to – have in
addition some quotient singularities.
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5.3. Cells and Orbicells

5.3. Cells and Orbicells

Let X be a topological space. A subset σ ⊂ X is called a (open) cell if σ is homeomorphic to
an open k-ball for some integer k ≥ 0. All cells in this thesis are open (relative to the Rk). If
a cell σ is homeomorphic to a k-ball we call σ a k-cell. A cell decomposition or cell complex
is a decomposition of X into a disjoint union of cells. A cell decomposition is called locally
finite if all compact sets K ⊂ X intersect only finitely many cells in the decomposition. The
closure of a cell is always in this thesis the closure in X (and not in some compactification of
X ). A decomposition is regular if the closure of each cell is homeomorphic to a closed ball.
If the decomposition is locally finite, the boundary of each cell is a union of finitely many
lower dimensional cells.

The notion of a CW-complex (comp. [Mun84; §38]) is due to John Henry C. Whitehead and
was created by him in 1949. A CW-complex is a Hausdorff space X together with a cell
decomposition (into open cells) X =

⊔
i∈I Xi with the following additional properties:

• For each cell Xi there is a homeomorphism ιi : Xi ↪→ X such that ιi(∂Xi) is a finite
union of cells in X , each of dimension less than dimXi.

• A subset of X is closed if and only if it meets the closure of a cell in a closed set
whenever the intersection of closures is non-empty.

We also have to remember the definition of the barycentric subdivision of a cell decompo-
sition (comp. [Mun84; §15]). The barycentric subdivision of X =

⊔
i∈I Xi is an iterative

procedure which we can apply to any cell complex. The easiest case is that of a simplicial
complex. We start with the 0-cells in the decomposition. The subdivision of the 0-cells are the
0-cells itself. We proceed with the 1-cells. Here we add a 0-cell, i.e. a point, in the barycentre
of the 1-cell, that is the middle of the 1-cell. So, in this step, we double the number of 1-cells,
because we split the original 1-cell into two parts. In the next step we add a 0-cell in the
barycentre of the 2-cells and connect the new 0-cells with all (also the newly created) 0-cells
in the boundary of the cell it is put in. We can proceed in this way and add new 0-cells in the
centres of all cells and connect them with lower dimensional cells to the cells in the boundary
of the cell they are lying in. By B(X ) we denote the first barycentric subdivision of X .

The advantage of such a refinement is that we can iteratively replace a maybe complicated cell
decomposition with possibly very fancy cell shapes by finer decompositions into (usually)
simpler cells. Maybe one has to repeat this procedure to get a decomposition with good
properties. We only need the first barycentric subdivision (comp. Section 9.1.3).

We apply the notion of cells to the context of orbifolds. Let O = X/G be a smooth orbifold
(comp. Section 5.2). A subset σ ⊂ O is called orbicell if there is a cell σ̃ ⊂ X such that

σ = σ̃/Gσ̃ (5.8)

where Gσ̃ ⊂ G is the stabilizer of σ̃ in G. If σ̃ is a k-cell we call σ a k-orbicell. If Gσ̃ acts
torsion free on σ̃, the orbicell σ is also a cell in the usual sense. Thus, orbicells are a natural
extension of the notion of cells to orbifolds. Nevertheless one can also define cells in the
classical sense of orbifolds, but for our purpose orbicells are the better objects to consider.
We use the analogous notions to the case of cells also in case of orbicells. Thus, we will deal
with orbicell decompositions.
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5. Sheaves and Orbifolds

Let X be any topological space. Assume we have a decomposition X =
⊔
iXi, then we denote

by
Ck(X ) =

{
Xi : dimXi = k

}
(5.9)

the set of k-cells or k-orbicells depending on whether X has a cell or an orbicell decomposi-
tion. Furthermore, we denote by

Sk(X ) = {Xi : dimXi ≤ k} (5.10)

the k-skeleton of X . If we use the term k-skeleton of a single (orbi-)cell we mean the k-
skeleton of its closure in X (or X/G).
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6. Arithmetic Groups and Symmetric Spaces

The mathematical sciences
particularly exhibit order, symmetry
and limitation; and these are the
greatest forms of the beautiful.

(Aristoteles)

6.1. Arithmetic Groups

We assume that the reader is familiar with the general notion of algebraic groups, Lie groups
and representation theory of groups. In the first section we establish some notations related
to algebraic groups in general and arithmetic groups in particular before we focus on the case
of Sp2(Z). Arithmetic subgroups of classical groups and the related reduction theory, i.e. the
questions related to finding fundamental domains for their group actions (see Section 7.1),
were introduced by Carl Ludwig Siegel (1896–1981) around 1940 as a continuation of ideas
which are much older for some special cases. Later the theory was fit in the framework of
algebraic groups by Claude Chevalley (1909–1984), Armand Borel (1923–2003) and Jacques
Tits (b.1930), and others. Arithmetic groups play a fundamental role not only in this thesis,
but also in number theory in general and the theory of automorphic forms in particular.
The most famous examples of such groups are GLn(Z), SLn(Z) and Spg(Z) and various
subgroups of them. In this thesis we focus on the group Sp2(Z) and related groups.

For this part we refer to the books of Jean-Pierre Serre [Ser73, Ser79], the book of Tony Albert
Springer [Spr08], the paper of Armand Borel and Harish-Chandra [BHC61] or the survey
article by Christophe Soulé [Sou07] for an introduction on algebraic groups. A quite good
reference which focuses more to the case of Lie groups and their representations is the book
of Daniel Bump [Bum04]. For our purpose it is enough to restrict ourselves to the case that
the underlying algebraic groups are already defined over the rational numbersQ. This is not
a serious restriction, because the symplectic group we consider is already defined over the
ring of integers, but the definition in case of non-fields is a little bit more fancy in detail.

In the second section we consider representations of Lie groups and introduce the basic
notions related to Γ-modules and the associated sheaves which we use to describe the co-
efficients for the cohomology groups we want to compute. For details on Γ-modules and
their relation to the cohomology of arithmetic groups we refer to [Har08c, Har75, Har08a] by
Günter Harder.
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6. Arithmetic Groups and Symmetric Spaces

6.1.1. Algebraic and Arithmetic Groups

Let G /Q be an algebraic group, i.e. G is a functor from the category of Q-algebras to the
category of groups. We denote by G := G (R) its R-valued points of G . For simplicity
we consider G (k) as a subgroup of G`d(k) for any field extension k/Q and some integer d,
because we are interested in explicit computations and this point of view is better suited for
that kind of considerations than the more abstract definition as a functor from the category
of Q-algebras to the category of groups.

Remember, a torus in G is an algebraic subgroup of G which becomes, after some field
extension, isomorphic to a direct product of finitely many Gm. Let T /Q be a maximal torus
in G , then the rank – or more precise the Q-rank of G – is defined by

rankQ (G ) := dimQ T (Q) (6.1)

An algebraic group is called semi-simple if the (solvable) radical of the identity component
is trivial, or equivalently, if it has no connected, normal, abelian subgroups. All groups we
will consider, as for example Spg/Q, are semi-simple algebraic groups.

Two subgroups Γ1,Γ2 ⊂ G (Q) are called commensurable if Γ1 ∩ Γ2 has finite index in both
groups Γ1 and Γ2. A subgroup Γ ⊂ G (Q) is called arithmetic if Γ is commensurable with
G (Z). In particular, the group G (Z) is arithmetic.

A group is called torsion free if all elements different from the identity have infinite order. An
element g ∈ G (Q), where g 6= Id, is called neat if for a faithful complex values representation
ρ the set of all eigenvalues of ρ(g) generates a torsion free subgroup of C×. A subgroup
of G (Q) is called neat if all its elements different from Id are neat. In particular all neat
arithmetic groups are torsion free. Any arithmetic group has a neat subgroup of finite index.

All algebraic groups G /Q we consider in this thesis carry also the structure of Lie groups. To
be more precise, the set of real valued points G (R) of G is a (real) Lie group. Remember, a
group G is called (real) Lie group if G has the structure of a real differentiable manifold and
the group action is compatible with this structure. The notions for algebraic groups and Lie
groups are quite analogous. In the following, we use G := G (R) for the group of real valued
points.

6.1.2. Γ-Modules

Let G /Q be an algebraic group over Q. An algebraic representation (ρ,Mρ,Q) over a field
k/Q is a homomorphism of algebraic groups

ρ : G ×Q k → GL(Mρ,Q ⊗Q k) (6.2)

whereMρ,Q is a finite dimensionalQ-vector space. If the group G is already defined over the
integers, i.e. G /Spec (Z) is a group scheme, we can replace this definition by: An algebraic
representation (ρ,Mρ) over R is a morphism

ρ : G ×Spec(Z) R→ GL(Mρ ⊗Z R) (6.3)

where R is any ring extension of Z andMρ a free Z-module of finite rank. If R is a field k/Q
both definitions are equivalent. This construction is essentially the same as the definition of
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6.2. Symmetric and Locally Symmetric Spaces

a Lie group representation. Remember that a representation (ρ,Mρ,R) of the Lie group G (R)
is a group homomorphism

ρ : G (R)→ GL(Mρ,R) (6.4)

for a finite dimensional R-vector space Mρ,R. We make use of the fact that each vector space
Mρ,R is given by an underlying free Z-moduleMρ, such thatMρ,R = Mρ⊗ZR. Analogously,
Mρ,Q is also given by a free Z-module Mρ. In all these cases, we call Mρ the representation
module for ρ. Sometimes we identify the representation (ρ,Mρ,R) with its underlying rep-
resentation module Mρ. We can assume that all Lie group representations of a Lie group
G = G (R) come from an algebraic representation.

Furthermore, any algebraic representation (ρ,Mρ) induces a natural action of the group G (R)
on the module Mρ ⊗Z R by

G (R)×Mρ ⊗Z R→Mρ ⊗Z R

(g,m) 7→ ρ(g) ·m.

One of the most important types of objects in this thesis are so called Γ-modules for a
(not necessarily arithmetic) subgroup Γ ⊂ G (R).

Definition 6.1.1 (Γ-module): Let R be some ring as above and Γ ⊂ G (R) be any subgroup. An
R-Γ-module M is an R-module M together with a Γ-action defined by a representation (ρM,M)
of Γ. R-Γ-modules form a category. We denote the category of Z-Γ-modules by ModΓ. We call a
Γ-module irreducible if there are no non-trivial Γ-submodules.

Usually we assume in this thesis that R is the ring of integers Z or an extension of Z like the
ring

ZΓ = Z[ 1
30 ],

which is associated to the Siegel modular group Γ and which we consider later in Sec-
tion 12.2 in context of the cohomology of arithmetic groups and which is the ring where
we invert the orders of elements of finite order in Γ (see Definition 12.1.3). These modules
form a subcategory of ModΓ. If nothing else is mentioned we from now on always consider
Z-Γ-modules and simply call them Γ-modules.

In Chapter 11 we use Γ-modules which are given by highest weight modules (comp. Sec-
tion 6.4.4) as coefficients of the cohomology groups. We define these modules in terms of Lie
algebra representations. There is a strong connection between representations of Lie groups
and representations of Lie algebras such that we can canonically define a group representa-
tion coming from a Lie algebra representation and the other way around (see Section 11.1).

6.2. Symmetric and Locally Symmetric Spaces

Let G = G (R) be a real Lie group given by an algebraic group G /Q and let K ⊂ G be a
maximal compact subgroup of G. Then the symmetric space related to G is defined by

XG = XG := K\G. (6.5)
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6. Arithmetic Groups and Symmetric Spaces

If the underlying group is clear from its context we omit the group in the index. If Γ ⊂ G (Q)

is a good1 arithmetic group we have a natural action of Γ on X which is induced by the
group multiplication. Therefore, we can form the quotient X/Γ, which is called a locally
symmetric space if Γ acts torsion free on X and therefore the quotient is a manifold. We
denote the canonical projection onto this quotient usually by

π : X→ X/Γ. (6.6)

The quotient X/Γ is in general not a manifold, but always a smooth orbifold. The quotient
can have lots of singularities, which are difficult to control in general. Also if we restrict – as
we can do – to consider only quotients by arithmetic groups the quotient can have a very
bad structure. In particular, the volume of the quotient need not to be finite if the arithmetic
group is too small. To avoid lots of trouble we can assume that Γ has finite covolume, i.e.
X/Γ has finite volume. In case of the symplectic group we focus on this is not a restriction at
all since Spg(Z) has finite covolume. It is known that X/Γ is a smooth manifold if the group
Γ is torsion free (comp. Section 5.2). Let us now define by

vcd (Γ) := dimR (X)− rankQ (Γ) (6.7)

the virtual cohomological dimension of Γ. A theorem of Serre shows that the definition is
independent of the choice of Γ as arithmetic subgroup of G (Q) and thus this definition only
depends on the algebraic group [Ser71]. Another way to define this number is to define it
as the smallest integer q such that Hq(X/Γ, A) vanishes for all coefficients A for all degrees
above q [BS73], which is a definition which is not very handy. By Theorem 12.3.4 of Borel
and Serre, which we state later in the section on the cohomology of arithmetic groups, we
will see that both definitions coincide.

For further details on symmetric and locally symmetric spaces we refer to the standard litera-
ture such as [Hel78]. A condensed introduction to this topic, which handles also the example
we are most interested in (see Section 6.3.2), can also be found in [Bum04; Chap. 31].

6.3. Symplectic Groups and the Siegel Modular Variety

6.3.1. The Symplectic Group and the Siegel Modular Group

Now we consider the so called symplectic group which is the main object of interest in
this thesis. The symplectic group was first studied by the Norwegian mathematician Niels
Hendrik Abel (1802–1829). So it had been studied decades before the group2 got its today’s
name which is due to Herman Weyl. Before Weyl lots of different notions were used to
describe the same object. There was the notion of abelian group as well as complex group or
complex line group. Each of them had the disadvantage that it was misleading because the
used names were already used with a different meaning. That is in principle not a problem
at all. In mathematics there are a lot of notions used in different contexts which have the

1Good will usually mean torsion free or even neat. Later we find that one can skip in many cases for our
purposes assumptions like this.

2The formal definition of a group is due to Cayley in 1854, which means that it was not known as abstract
concept at lifetime of Abel, who died in 1829.
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6.3. Symplectic Groups and the Siegel Modular Variety

same name, only to mention simple. But here it was used in more or less the same context. So
Herman Weyl a new name for that object proposed in his first edition of [Wey46]. He wrote
[Wey46; p. 165]:

The name complex group formerly advocated by me in allusion to line complexes,
as these are defined by the vanishing of antisymmetric bilinear forms, has be-
come more and more embarrassing through collision with the word complex in
the connotation of complex number. I Therefore, propose to replace it by the cor-
responding Greek adjective symplectic. Dickson calls the group the abelian linear
group in homage to Abel who first studied it.

Herman Weyl 1939

Within a few years this new name effectively replaced the previously used ones. The first
mathematician who studied the newly named group extensively was Carl-Ludwig Siegel.
His book [Sie43] is always a good reference. Other good references are for example the
books of Eberhard Freitag [Fre83, Fre91] and the book of a student of Siegel named Helmut
Klingen [Kli90]. But these books have their main focus on the theory of Siegel modular
forms. Dedicated to questions more related to the topic of this thesis is the part by Gerard
van der Geer [vdG08] in the book [Ran08]. It considers for example also Harder’s conjecture
(see [Har08b]), which was one motivation for this thesis (see Section 1.2). For some further
information in direction of compactifications or more cohomological questions we refer to
[Sch86, Nam80].

6.3.1.1. Definition of the Symplectic Group

We start with the most general definition.

Definition 6.3.1: Let V be a free Z-module equipped with a non-degenerate alternating bilinear form
〈, 〉 : V × V → Z. Then we define the symplectic group on (V, 〈, 〉) to be

Sp(V, 〈, 〉) = Aut (V, 〈, 〉) = {g ∈ End (V ) : 〈g(v), g(w)〉 = 〈v, w〉 ∀v, w ∈ V } .

The form 〈, 〉 is called symplectic form.

There are several choices to equip a module with a symplectic form. Furthermore, it is
necessary that the rank of V is even, i.e. rank Z(V ) = 2g, because otherwise there is no
symplectic form. Therefore, we can assume that V = Z2g. We identify the symplectic group
with a matrix group, because End (V ) = End

(
Z

2g
)

= GL2g(Z). To do this we define a
symplectic form in a canonical way.

Let B = (e1, . . . , eg, fg, . . . , f1) ⊂ Z2g be the set of standard basis vectors of Z2g. We define
the standard symplectic form 〈, 〉 : Z2g ×Z2g → R to be the linear extension of the following
relations on the basis to a bilinear form. For all 1 ≤ i, j ≤ g we have〈

ei, fj
〉

= −
〈
fj , ei

〉
= δij and

〈
ei, ej

〉
=
〈
fi, fj

〉
= 0, (6.8)

where δij is the Kronecker δ. It is not difficult to check that this indeed defines a symplectic
form. We know from linear algebra how to describe bilinear forms in a given basis by

11
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matrices. The standard symplectic form in the basis B is given by

〈x,y〉 = xt · Jg · y with Jg =


1

. .
.

1
−1

. .
.

−1

 . (6.9)

For g = 2 we use J2 =: J . Now a matrix A ∈ GL2g(Z) is symplectic if and only if the
following equation holds:

At · Jg ·A = Jg. (6.10)

We define for a ring extension R of Z

Spg(R) = Sp(Z2g ⊗Z R, 〈, 〉R) = {A ∈ GL2g(R) : At · Jg ·A = Jg} (6.11)

where 〈, 〉R is the (unique) bilinear extension of 〈, 〉 to Rd, which is in terms of matrices given
by the same defining antisymmetric matrix Jg as 〈, 〉. Therefore, we omit the index in the

following. Obviously we have Aut
(
R

2g, Jg

)
= Spg(R) and Aut

(
Z

2g, Jg

)
= Spg(Z). We

call Γg = Spg(Z) the Siegel modular group (of degree g). For g = 2 we use only Γ instead of
Γ2. For g = 1 we have by definition Sp1(R) = SL2(R). It remains to introduce the group of
symplectic simmilitudes

GSpg(R) =
{
A ∈ GL2g(R) : At · Jg ·A = λ · Jg for a λ ∈ R×

}
. (6.12)

We introduce the usual notation and set Γ0 = GSp2(Z). Since Z× = {±1} we easily find that

Γ0 = Γ o 〈diag (1, 1,−1,−1)〉 . (6.13)

6.3.1.2. Properties of Symplectic Groups

We want collect some properties of symplectic groups in general and the Siegel modular
group (for g = 2) in particular. The matrix group Spg(R) is a real Lie group, i.e. it has the
structure of a smooth real manifold and the group action is compatible with the differentiable
structure. We can view the symplectic groups Spg as algebraic groups defined over the
integers. The related functor is realized by the map Spg : B 7→ Spg(B), where B is some
algebra, according to (6.11). The Siegel modular group Γg is a discrete algebraic subgroup
of Spg, which is also an arithmetic subgroup. The group Spg is as algebraic group and
Spg(R) is as real Lie group simple and connected. But Spg(R) is not simply connected, so
its fundamental group is isomorphic to Z, whereas Spg(C) is simply connected.

By equation (6.10) one finds easily that any A ∈ Spg(R) has to have determinant ±1. In fact,
we have more:

Lemma 6.3.2: For all g ≥ 1 and any ring extensions R over Z we have a natural inclusion
Spg(R) ↪→ SL2g(R). In particular, we have det(A) = 1 for all A ∈ Spg(R).

There are several ways to exclude −1 from being a valid value of the determinant. Later we
need to compute the action of group elements on highest weight modules. To do this we

12



6.3. Symplectic Groups and the Siegel Modular Variety

have to decompose a given group element into special generators of the group which are
unipotent, i.e. all eigenvalues are +1 (see Section 11.2.3). Therefore, we use the following
theorem to prove the previous lemma.

Theorem 6.3.3: The symplectic group Spg(R) is generated by its unipotent elements.

The same statement is valid for all other classical groups. For the proof we refer to [GW09;
Theo. 2.2.2]. The Lemma follows immediately since the special linear group is the group of
all matrices of determinant +1. We postpone the detailed description of this generators to
Section 11.2.3, where we also state an algorithm to obtain a decomposition into unipotent
generators, because they are related to root systems (see Section 6.4.2).

6.3.1.3. Other Realizations

Note that in the equations (6.9) and (6.10) one can replace Jg by any other (integral) anti-
symmetric 2g × 2g-matrix of full rank. By the analogue of Sylvester’s law of inertia in case
of antisymmetric bilinear forms we know that in a suitable basis the defining matrix is an
antisymmetric matrix with only zeroes and ±1 as entries. The entries of the matrix are the
values of the symplectic form evaluated on the basis vectors. Therefore, we may consider
those forms which corresponds to the choice of a different ordering of the basis which also
fulfil the relations from (6.8). This covers all standard cases of symplectic forms in literature.

We know by linear algebra that two symplectic groups given by different (integral) symplectic
forms are conjugate to each other. The element with which the matrix is conjugated need not
to be a symplectic matrix (with respect to one of both forms). If it is a symplectic matrix the
symplectic groups defined for both forms coincide. Otherwise they are only isomorphic. In
case of the group Sp2(R) there are two classes of symplectic forms, which fall together if we
are allowed to conjugate with non-symplectic elements in the general linear group.

We decide to choose the matrix Jg as matrix which defines the symplectic group, which also
defines the used realization of the standard representation of the symplectic group. This
choice is somewhat arbitrary, although there are some reasons to use this form and not an
arbitrary one, which are related to some easier descriptions of deduced objects. It seems to be
a kind of law in mathematics that whenever there is a choice between different possibilities
which are in some way canonical one finds for each of them mathematicians who choose
this in their work. We now have the problem that in the context of our work three different
choices for a symplectic form occur. Each of them has some advantages for its context and
disadvantages in other contexts. First, there is the classical representation which is used for
example in the books [Sie43, Fre83, Fre91, Kli90] and very often in context of Siegel modular
forms, because in that context the description is more easy. For example the action can be
written in terms of block matrices and one can check (using only matrix multiplication, matrix
addition and transposition) symplecticity in terms of the blocks. Furthermore, most things
in this formulation can be written down completely analogous to the known formulas for
SL2(R). In this context the symplectic form is given by the block matrix

Jvar
g =

(
0 Id
−Id 0

)
.

13
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This corresponds to the same relations as in (6.8), but one uses the basis in a different order,
namely Bvar = (e1, . . . , eg, f1, . . . , fg). We do not use this form. Finally we have a third
basis B′ = (fg, e1, fg−1, e2, . . . , f2, eg−1, f1, eg) which occurs in the GAP library to model Lie
algebras. This basis has the advantage that the matrices representing positive and negative
root vectors are upper or lower triangular matrices, depending on whether they are associated
to positive or negative roots. In this basis the symplectic form is given by the matrix

J ′g =


(−1)

g

. .
.

−1
1

−1
1

. .
.

−(−1)
g

 .

It is easy to transfer a symplectic group given by a form J (1) to J (2). This is essentially the
well known base change for matrices and bilinear forms.

Lemma 6.3.4 (Base change): Let J (1) and J (2) be two integral matrices defining each a symplectic
form. Assume that

At · J (1) ·A = J (2).

Then we have
Sp(R2g, J (1)) = A · Sp(R2g, J (2)) ·A−1

We need this in some internal parts of our SAGE program later on, where we have to put
the computation of stabilizers and cells. This part of the program uses a definition of the
symplectic group by Jg, together with highest weight modules computed with GAP, which
produces elements which are symplectic with respect to J ′g. As standard we use the symplec-
tic elements defined by Jg and, if necessary, we convert the elements to the needed form.

6.3.2. Siegel Upper Half-Space and Siegel Modular Varieties

We now consider the symmetric space associated to the symplectic group Spg(R). We know
that the unitary group U(g) ⊂ Spg(R) (see e.g. [vdG08; p. 185]) is a maximal compact
subgroup of the symplectic group. All other maximal compact subgroups are conjugated to
U(g). We call the (hermitian) symmetric space

Sg = U(g)\Spg(R) (6.14)

the Siegel upper half-space. The Siegel upper half-space is a simply connected complex
manifold. This manifold is isomorphic to the space symmetric g × g matrices with positive
definite imaginary part, i.e. we have

Sg
∼=
{
S ∈ Matg(C) : S = St, Im (S) > 0

}
. (6.15)

There is another quite useful description of the Siegel upper half-space in terms of quadratic
forms (see also Chapter 8).
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Lemma 6.3.5: If Q2g
>0 is the space of positive definite quadratic forms of dimension 2g (see Section 8.1

for its definition) then we have

Sg =
{
Q ∈ Q2g

>0 : Qt · Jg ·Q = Jg

}
.

The proof is not difficult. One direction follows immediately from [MM93; (1.7)] and the
other direction is a simple exercise in linear algebra (comp. [MM93; p. 589]).

There is a natural action of Spg(R), and therefore also of its discrete subgroup Γg, on Sg,
which can be written – in a suitable basis3 – as fractional linear operation on the set of
symmetric matrices from (6.15). One finds, similar to the case of the group SL2(R), that ±Id
act trivially on Sg. Therefore, the exact group of automorphisms of Sg is not Spg(R), but
the the group

PSpg(R) := Spg(R)/{±Id}, (6.16)

which is called the projective symplectic group. For the group action on Sg, there is no
difference between the action of Γg and the action of PSpg(Z). We now form the quotient
Sg/Γ

g, which is called the Siegel modular variety of dimension g. Since Γg does not act
torsion free on Sg, the quotient is a smooth complex orbifold of dimension g(g+ 1)/2 (comp.
Section 5.2). If we replace Γg by a suitable torsion free subgroup Γ′ ⊂ Γg, the quotient Sg/Γ

′

becomes a smooth complex manifold. In other words, Sg/Γ
′ is a locally symmetric space. We

know by Siegel [Sie43, Sie55] that the volume of a fundamental domain of Γg, or equivalently
of the quotient Sg/Γ

g, is finite and has the value

Vol
(
Sg/Γ

g) = 2 · π−
1
2g(g+1)

g∏
k=1

(k − 1)! · ζ(2k) (6.17)

where ζ is the Riemann ζ-function. For g = 2 we get as volume

Vol (S2/Γ) = 2 · π−3 · ζ(2) · ζ(4) =
π3

270
. (6.18)

There are other ways to normalize the volume such that for torsion free groups the volume
equals the Euler number of the manifold.

6.3.3. Elements of Finite Order in the Symplectic Group

In 1979 Balz Bürgisser (b. 1953) received his PhD at the ETH Zürich with a thesis [Bür79]
wherein and in a sequel paper [Bür82] he constructed elements of finite order in some matrix
groups of Lie type. He considered the groups GLd(R), SLd(R) and Spd(R) for an integrally
closed domain R and showed that all possible finite orders of elements in GL2d(R) also
occur in Spd(R). In particular, all elements of finite order in SLd(R) are also in Spd(R).
Furthermore, he stated a criterion which allows to decide easily whether an order can occur
in a group. We can use this criterion to check the plausibility of the results on stabilizers in
the symplectic group later on. The result was partially known before in some special cases,
but not in that generality which Bürgisser obtained. Similar ideas occur also in context of

3This is the basis in which the symplectic form is given by Jvar
g .
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the study of non-trivial automorphism groups of principally polarized abelian varieties (see
Section 6.3.4).

The general idea to obtain the result is to look at the eigenvalues and the possible charac-
teristic polynomials. One easily finds that the eigenvalues have to have absolute value 1 in
all cases of matrices of finite order. Therefore, the characteristic polynomial χ has to be a
product of cyclotomic polynomials Φdi

∈ Z[X], which have the primitive di-th roots of unity
as roots. Since we do not need the results in complete generality, we only state the result for
Spg(Z). In this case we have:

Theorem 6.3.6 (Bürgisser): Let m =
∏k
i=1 p

νi
i for pi prime and integers νi ≥ 1. We assume that

pi < pi+1 for all 1 ≤ i ≤ k and set

ϕ̃(m) =

{∑k
i=2 ϕ(p

νi
i ) if m ≡ 2 mod 4∑k

i=1 ϕ(p
νi
i ) else

where ϕ is the Euler ϕ-function. Then there is an element A ∈ Spg(Z) of order m if and only if
ϕ̃(m) ≤ 2g.

The difference in the definition of ϕ̃ between the case of the doubles of odd integers and the
remaining cases has its origin in the action of −1 on roots of unity, i.e. if d is odd we have
Φd(−X) = Φ2d(X). From this theorem we easily find that:

Corollary 6.3.7 (Finite Orders): If A ∈ Sp1(Z) = SL2(Z) has finite order, then its order is 1, 2, 3, 4
or 6. If A ∈ Sp2(Z) has finite order, then its order is 1, 2, 3, 4, 5, 6, 8, 10 or 12.

The study of the properties of the function ϕ̃ is a quite interesting business, but not topic of
this thesis.

6.3.4. The Symplectic Group and the Moduli Space of Abelian Surfaces

In this section we collect some results on the connection of abelian surfaces and the symmetric
space for the symplectic group. We use these results in Chapter 10 to check whether the
results concerning the stabilizers can be correct.

For a general reference on abelian varieties we refer to the classic book of David Mum-
ford [Mum70] on abelian varieties or the book of Christina Birkenhake and Herbert
Lange [BL04] on complex abelian varieties, which is somehow closer to the topics we are
interested in. There are several resources on special automorphism structures of abelian va-
rieties which apply (partially) to our problem. The most useful of them are [HN65, BGL99a,
BGL99b, BL94a, LR04a, LR04b, Gon09, GMG01, GMG04, GMG05, GR99, Fuj88].

Related to the more special questions, which we have to answer, there is the PhD-thesis [Sch97]
of Dieter Schmidt, a student of Herbert Lange and Christina Birkenhake in Erlangen. In his
thesis he discusses the automorphism structure of (complex) 2 and 3-dimensional abelian
varieties. There seems to be an older, never published preprint of Shi-Shyr Roan [Roa90],
which is cited at several places. Unfortunately it is not true that this was, as many papers
refer, a preprint of the MPI for Mathematics in Bonn, although Roan was in Bonn at that
time. However one is able to reconstruct the content from the citations in [BL04, Sch97]. Also
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6.3. Symplectic Groups and the Siegel Modular Variety

useful are [Str10, BLS11] of Marco Streng, who studied so called (`, `)-endomorphisms which
are exactly what we are interested in for ` = 1, which is a case he originally did not consider.4

The basic idea is that one can identify the Siegel modular variety Sg/Γ
g with the moduli

space of principally polarized abelian varieties (comp. e.g. [BL04; pp. 204]), i.e. each point
in Sg/Γ

g corresponds to an isomorphism class of principally polarized abelian varieties. If
we replace the group Γg by a (congruence) subgroup we get the moduli space with some
additional level structure (see e.g. [BL04; pp. 216]). Here we only consider the case where
g = 2, i.e. we only have principally polarized abelian surfaces. For simplicity we skip prin-
cipally polarized in the following, since all abelian surfaces are principally polarized. Each
point in S2/Γ corresponds to an isomorphism class of abelian surfaces. Each isomorphic
abelian surface has isomorphic automorphism groups. It is not difficult to check that there
is (up-to isomorphism) a one-to-one correspondence between stabilizers of a point x ∈ S2/Γ
and the automorphism group of an abelian surface of the isomorphism class of abelian sur-
faces represented by x. For our purpose it is enough to get a complete list of all possible
groups which may occur as stabilizer of a point in S2. Most points have trivial stabilizers,
i.e. they are equal to the group {Id,−Id}. The question is how to get a list of the remaining
groups.

The general idea is not that difficult. One uses the fact that each abelian surface is a com-
plex torus, i.e. it has the form C

2/Λ, where Λ ∼= Z
4 is a suitable lattice compatible with

the polarization. It is not difficult to see that the abelian surfaces which admit a non-
trivial automorphism structure have to be abelian surfaces with complex multiplication (CM)
(see [BL04; Cor.13.3.3]). The theory of complex multiplication was extensively studied by
Gorō Shimura and his students (see e.g. [Shi63, Shi71, Shi98] for a definition). The CM-type
Φ of an abelian surface A is a pair of pairwise non complex conjugated embeddings of a
totally imaginary algebraic number field K/Q of degree four into the complex numbers C,
i.e. we can identify Φ with a pair of the form Φ = {α1, α2}, where αi ∈ C and α1 6= α2. Let
K/Q be a field as above and let Φ be a CM-type. Then it is not difficult to find out that the
units O×K are automorphisms of the lattice OK ⊂ C

2 and thus of the abelian surface

A = A(K,Φ) := K ⊗Q R/OK ,

where the tensor product is given by two embeddings of the CM-type. Further, we have
that the diagonal matrix diag (α1, α2) is an automorphism of A. We should stress that not
all automorphisms are units in O×K . One finds that all occurring fields K in this context
have to be cyclotomic fields K = Q(ζk), i.e. they are generated by a primitive root of unity
ζk = exp(2πi/k) for some k. For the k only a few integers may occur, namely some of those
which occur in the list stated in Corollary 6.3.7. A pair (A, f), where A is an abelian surface
and f ∈ Aut (A)−{±Id}, is up to isomorphisms uniquely determined by the CM-type of the
abelian variety A together with the eigenvalues of f , which can represent a CM-type as we
saw above (see [BL04; Section 13.3]). In all case we identify f with its complex representation
in GL2(C). If one combines the above made observations one gets a classification of abelian
surfaces with non-trivial automorphisms.

One finds that there are up to isogeny three different cases (comp. [BL04; Prop. 13.4.1]):

4We figured out together with Marco Streng, that all of his construction works fine for ` = 1 and thus are
applicable in our case.
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No. Variety A EndQ (A)

1 A is simple Skewfield of degree 1,2 or 4 over Q

2 E1 × E2

E1 and E2 are non-isogenous
elliptic curves.

K1 ⊕K2

Ki = EndQ (Ei) ⊆ Q(
√
−di)

3 E × E
E elliptic curve

Mat2(K)
K = EndQ (E) ⊆ Q(

√
−d)

To be isogenous to a product of elliptic curves does not mean to be isomorphic to a product
of elliptic curves, because it might happen that there are some relations given by an isogeny.
If there is such a relation the abelian surface does not split and is isomorphic to the product
of the two curves modulo the isogeny. Let

Eτ := C/ < 1, τ >Z . (6.19)

Then up to isomorphism the only elliptic curves Eτ which have non-trivial automorphisms
are those curves given by τ ∈ {i,

√
−2, ζ3}. One easily finds the following lemma

(see [BL04; Cor. 13.3.5]):

Lemma 6.3.8: Suppose f is an automorphism of an abelian surface A of order d ≥ 3 where f acts
by multiplication with a scalar, i.e. f = a · Id. Then a = ζd with d = 3, 4 or 6 and

A = E × E

where E is isomorphic to either C/Z[ζ4] or C/Z[ζ6], i.e. an elliptic curve admitting an automorphism
of order d.

The automorphisms are then generated by ζ3, ζ4, or ζ6 (see [BL04; Cor. 13.3.4]. The next case
which might occur is covered by [BL04; Cor.13.3.6].

Theorem 6.3.9: Let A be an abelian surface with an automorphism f of order d ≥ 3. Let Φf =
{α1, α2}, where the α ∈ C are eigenvalues of f . Suppose all eigenvalues of f in Φf are primitive and
ϕ(d) = 4. Then A is isomorphic to A(Q(ζd),Φf ) with d and CM-type Φf as in Table 6.1.

One finds that (see [BL04; Cor.13.3.7, Rem. 13.3.8, Theo. 13.4.2]:

Theorem 6.3.10:

a) If an abelian surface A has an automorphism of order 5, then A ∼= A(Q(ζ5), {ζ5, ζ
2
5}).

b) An abelian surface is simple if and only if it has an automorphism of order 5.

c) The abelian surface A(Q(ζ5), {ζ5, ζ
2
5}) is isomorphic to the Jacobian of the curve y2 = x(x5−1).

d) We have

Aut
(
A(Q(ζ5), {ζ5, ζ

2
5})
)

=

〈(
ζ10

ζ3
10

)〉
= C10.

Thus, it remains to consider the non-simple abelian surfaces which are isogenous to a product
of elliptic curves. This fixes the abelian surface only up to isogeny, but in one isogeny class
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Table 6.1.: Abelian surfaces A with a non-trivial automorphism f of degree d with CM-type Φf from Theo-
rem 6.3.9. In the last column we indicate whether the abelian surface is simple or not. This last column is not
part of Theorem 6.3.9.

d A f Φf simple

5 A(Q(ζ5), {ζ5, ζ
2
5}) diag

(
ζ5, ζ

2
5

)
{ζ5, ζ

2
5} Yes

8
E√−2 × E√−2

(√
−2 −1
−1 0

)
{ζ8, ζ

3
8} No

Ei × Ei
(

0 i

1 0

)
{ζ8, ζ

5
8} No

10 A(Q(ζ5), {ζ5, ζ
2
5}) diag

(
ζ10, ζ

3
10

)
{ζ10, ζ

3
10} Yes

12
Ei × Ei i ·

(
0 1
−1 0

)
{ζ12, ζ

5
12} No

Eζ3 × Eζ3 ζ2
3 ·
(

0 1
−1 0

)
{ζ12, ζ

7
12} No

Table 6.2.: Isogeny classes of abelian surface A with automorphism group G from Theorem 6.3.11. E and E′

are generic elliptic curves with trivial automorphism groups isomorphic to C2.

G Structure A〈(
−1 0
0 1

)
,

(
1 0
0 −1

)〉
C2 × C2 E × E′〈(

−1 0
0 1

)
,

(
1 0
0 i

)〉
C2 × C4 E × Ei〈(

−1 0
0 1

)
,

(
1 0
0 ζ6

)〉
C2 × C6 E × Eζ3〈(

i 0
0 1

)
,

(
1 0
0 ζ6

)〉
C4 × C6 Ei × Eζ3

there is one maximal group, such that all occurring automorphism groups of surfaces in that
class are isomorphic to a subgroup of this group. Let us start with the case where the two
curves are non-isogenous. Then we have (see [BL04; 13.4.4])

Theorem 6.3.11: Let G = Aut (A) be the automorphism group of an abelian surface A. Assume
that G is finite and maximal in its isogeny class of abelian surfaces. If A is isogenous to a product of
two non-isogenous elliptic curves then (A,G) is contained in Table 6.2.

The last case is then given by (see [BL04; 13.4.5]):

Theorem 6.3.12: Let G = Aut (A) be the automorphism group of an abelian surface A. Assume
that G is finite and maximal in its isogeny class of abelian surfaces. If A is isogenous to a product
E × E of two elliptic curves then (E,G) is contained in Table 6.3.

This completes the list of possible groups. For more details of the proof and further construc-
tions we refer to the literature cited above.
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Table 6.3.: Isogeny classes of elliptic curves E together with G = Aut (E × E) from Theorem 6.3.12.

No. Structure G #G E

1 D8

〈(
0 1
−1 0

)
,

(
0 1
1 0

)〉
8 any

2 D12

〈(
0 −1
1 0

)
,

(
0 1
1 0

)〉
12 any

3 C8 o C2

〈(
−1 0
0 1

)
,

(
1 0
0 −1

)
,(

0 1
1 0

)
, 1√
−2

(
1 1
−1 1

)〉 16 E√−2

4 C12 o C2

〈
i ·
(

1 1
−1 0

)
,

(
−1 −1
0 1

)〉
24 Ei

5 C12 · C2

〈
i ·
(

1 1
−1 0

)
,

(
1 i

i− 1 −1

)〉
24 Ei

6 (C4 × C4) o C2

〈
i · Id,

(
i 0
0 1

)
,
(
0 1 1 0

)〉
32 Ei

7 (Q8 o C3) o C2

〈(
1 1
−2 1

)
,

(
−1−

√
−2 −1

2 ·
√
−2 1 +

√
−2

)
,(

−1
√
−2
2√

−2 0

)
,

(
−1 0

2 +
√
−2 1

)〉 48 E√−2

8 (C6 × C6) o C2

〈
−ζ3 · Id,

(
−ζ3 0

0 1

)
,

(
0 1
1 0

)〉
72 Eζ3

9 (Q8 o C3) o C3

〈
ζ3 · Id2,

(
1 + 2 · ζ3 −1
−2 −1− 2 · ζ3

)
,(

−1 ζ2
3

−2 · ζ3 1

)
,

(
−1 −ζ3

−2 · ζ3 2 + ζ3

)〉 72 Eζ3

10 (Q8 o C3) · C3

〈(
i 0
0 −i

)
,

(
0 −1
1 0

)
,

i−1
2

(
i −i
1 1

)
,

(
0 i

1 0

)〉 96 Ei
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6.4. Lie Algebras and Highest Weight Modules

We assume that the reader is familiar with the basic notions from representation theory,
root systems and Lie algebras, which can be found in the classical book of Hermann Weyl
[Wey46] or the more recent books of William Fulton, Joe Harris, Roe Goodman, and Nolan
Wallach [FH91, GW98, GW09] as well as the standard book of James E. Humphreys on Lie
algebras [Hum78]. A reference that focuses more on Lie groups is the book of Daniel Bump
[Bum04].

6.4.1. Lie-Algebras

Let K be either R or C. Remember, a Lie algebra over the field K is a K-vector space g with
an antisymmetric bilinear product

[, ] : g× g→ g (6.20)
(X,Y ) 7→ [X,Y ]

which satisfies the Jacobi identity, i.e.

[X, [X,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0 (6.21)

holds for all X,Y, Z ∈ g. The bilinear map is called Lie bracket. A non-abelian5 Lie algebra
is called simple if it contains no non-trivial ideals. A Lie algebra is called semi-simple if it is
the direct sum of simple Lie algebras. In the following, we only consider Lie subalgebras of
the matrix algebra Matd(K), which becomes the Lie algebra gld(K) together with the usual
commutator [X,Y ] = X · Y − Y ·X .

Any (real) Lie group G defines an associated Lie algebra g = Lie (G). In our context this can
be done quite explicitly. Assume we can realize the Lie group G as a subgroup of GLd(R)
for some integer d, then

Lie (G) = {X ∈ Matd(R) : exp(t ·X) ∈ G∀t ∈ R} . (6.22)

We will write exp(g) := G if g = Lie (G). But take care if G is not abelian or if the X,Y ∈ g
do not commute, i.e. [X,Y ] 6= 0, exp is not a homomorphism, because

exp(X + Y ) 6= exp(X) · exp(Y ).

In this case one can apply the Baker-Campell-Hausdorff formula to evaluate the exponential
series which involves lots of commutators (see e.g. [Hau06]). Unfortunately the result in
these cases is usually an infinite series expansion. So we will try to avoid this. For the
general formalism concerning the relation between Lie algebras and Lie groups we refer to
the literature (see e.g. [Bum04, GW09]).

Recall that a Cartan subalgebra h of a Lie algebra g is a nilpotent6 subalgebra of g which is
self-normalizing.7 Each Cartan algebra of a semi-simple Lie algebra is an abelian Lie algebra.

5A Lie algebra g is called abelian if for all possible X,Y ∈ g we have [X,Y ] = 0.
6A Lie algebra g is called nilpotent if the series g > [g, g] > [[g, g], g] > [[[g, g], g], g] > . . . becomes zero.
7A Lie subalgebra h of g is called self-normalizing if it follows that H2 ∈ h if [H1,H2] ∈ h for all H1 ∈ h.
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In case of subalgebras of a matrix algebra over an algebraically closed field a Cartan subalge-
bra consists only of diagonalizable matrices, i.e. it is conjugate to an algebra consisting only
of diagonal matrices. We will only consider maximal Cartan subalgebras. One finds that if
h ⊂ g is a (maximal) Cartan algebra and g = Lie (G) for some Lie group G then there is a
(maximal) torus H ⊂ G such that h = Lie (H).

We can now state the symplectic Lie algebra spg(K) = Lie
(
Spg(K)

)
in a quite explicit way.

Using the definition of the symplectic group given by the symplectic form defined by Jg
(see equation (6.10)) we get

spg(K) =
{
X ∈ Mat2g(K) : Jg ·X = −Xt · Jg

}
. (6.23)

Therefore, we get as Cartan algebra

h =
{

diag
(
a1, . . . , ag,−ag, . . . ,−a1

)
: ai ∈ K

}
(6.24)

which is associated to the maximal torus

H =
{

diag
(
x1, . . . , xg, x

−1
g , . . . , x−1

1

)
: xi ∈ K

×
}
. (6.25)

Note: If the symplectic form which is used to define the symplectic group
changes, this description can also change in some cases (comp. Section 6.3.1.3).

We remember that the symplectic Lie algebra is a simple Lie algebra and therefore in partic-
ular semi-simple.

Any Lie algebra g acts on itself by multiplication from the left using the Lie bracket. This
action is nothing else than the action of the so called adjoint representation, which is given
by sending X ∈ g to adX which is defined to be

adX : g→ g (6.26)
Y 7→ adX(Y ) := [X,Y ].

This is a Lie algebra representation, i.e. a Lie algebra homomorphism

ρ : g→ gl(Mρ) (6.27)

for some K-vector space Mρ, which means that

ρ([X,Y ]) = [ρ(X), ρ(Y )] = ρ(X) · ρ(Y )− ρ(Y ) · ρ(X). (6.28)

This definition is completely analogous to that of representations of groups (comp. Section
6.1.2). Thus, we can replace again the the representation space over K by an underlying free
Z-module Mρ,Z for which Mρ = Mρ,Z ⊗Z K holds.

Let from now on K = R and g = Lie (G) where G = G (R) for some algebraic group G , i.e.
G is a real Lie group.

Finally we have to recall the definition of the universal enveloping algebra U(g) of a Lie
algebra g. We only give its direct definition and refer for topics like its universal property and
further nice features to the standard books (see e.g. [Hum78; V.]). Let T (g) =

⊕
n≥0 g

⊗d be the
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tensor algebra of g. By its definition T (g) has the structure of a g-module (see Section 6.4.4),
which gets its g-structure by the natural extension of the adjoint representation to T (g). We
have a natural embedding i : g ↪→ T (g) and identify g with its image i(g) in T (g). Let I be
the two-sided ideal in T (g) generated by elements of the form a ⊗ b − b ⊗ a − [a, b] for all
a, b ∈ g. Then the universal enveloping algebra U(g) of the Lie algebra g is defined to be

U(g) := T (g)/I. (6.29)

The natural map i : g ↪→ T (g) descends to a Lie algebra homomorphism from g to U(g). If g
is the Lie algebra coming from a Lie Group G we can identify the Lie algebra with the space
of left invariant vector fields on G, which is isomorphic to the tangent space at the identity
element in G (see e.g. [Bum04; Chap. 7]). In this differential geometric language, we can
also identify the universal enveloping algebra with the algebra of left-invariant differential
operators on G (see e.g. [Bum04; Chap. 10]).

6.4.2. Roots and Weights

Let g = Lie (G) for some (connected) semi-simple8 Lie group G and let us fix a maximal
torus H in G. We denote the associated Cartan algebra by h = Lie (H). All sets defined in
the following depend on the choice of the maximal torus. Usually one chooses the maximal
torus to be the subgroup of diagonal matrices in G (comp. (6.25)), but it can be easily
replaced by an arbitrary conjugate of this group in G. We consider g as Lie subalgebra of
gld(R) = Matd(R) for some integer d. Therefore, we can define a symmetric bilinear pairing
on g by

〈X,Y 〉g = tr
(
Xt · Y

)
. (6.30)

Denote by h∗ the dual space of h with respect to 〈 , 〉g. There is a natural pairing ( , )

between g∗ and g given by
(α,X) = α(X) = tr (α ·X) (6.31)

for α ∈ g∗ and X ∈ g. We can associate a subspace of g to each element α ∈ h∗ by

gα := {X ∈ g : [h, X] = adh(X) = α(h) ·X for all h ∈ h} . (6.32)

We call a non-zero α ∈ h∗ a root if gα is non-zero. The space gα is then called root space. One
finds that all root spaces gα are one-dimensional. Furthermore, one can show that the space
g0, which is not a root space, is equal to the Cartan algebra h. We denote the set of roots by
Φ = {α1, . . . , αl}. The set Φ is called root system for g. Elements in root spaces are called root
vectors. If h∗ is the dual Lie algebra of h with respect to the pairing we introduced above,
we fix a basis {εi} of h∗ as described in [GW09; p. 91f.]. For the detailed description of the
choice in case of classical (simple) Lie algebras we refer to that reference. For our purposes
we only need the result for symplectic Lie algebras. For g = spg we can choose the basis as
follows: The element εi is determined by

〈εi, A〉 = ai for A = diag
(
a1, . . . , ag,−ag, . . . ,−a1

)
∈ h∗.

The order of the ai on the diagonal depends on the choice of the underlying symplectic form
(comp. (6.25)). The shown form is that for Jg.

8A connected Lie group is semi-simple if and only if its Lie algebra is semi-simple.
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A semi-simple Lie algebra g is uniquely determined by its (irreducible) root system. There
is a complete classification of irreducible root systems of simple Lie algebras. Over a field of
characteristic zero there are four infinite families Ad, Bd, Cd and Dd and five exceptional cases
of irreducible root systems, namely E6, E7, E8, F4, and G2, which are called Cartan types
of root systems. We are primarily interested in the Lie algebra of type C2, because the Lie
algebras spg have Cartan type Cg. In all cases the index refers to the rank of the root system,
i.e. to the dimension of the Cartan subalgebra.

A subset ∆ = {α1, . . . , αk} ⊂ Φ of roots is called a set of simple roots if every root can be
uniquely written as integral linear combination of the αi where all (integral) coefficients have
the same sign. One can show that ∆ generates h∗. Further, we define the set of positive roots
Φ+ = {α1, . . . , αs} ⊂ Φ to be the subset of all non-negative linear combinations of elements

in ∆. This induces a decomposition

Φ = Φ+ ∪ (−Φ+). (6.33)

For the symplectic Lie algebra spg of rank g, which is a Lie algebra of Cartan type Cg, we
get an explicit description of its root system with the notions from above (comp. [GW09;
2.4.1, 2.4.3]). We take the set B = {e1, . . . , eg, fg, . . . , f1} defined in Section 6.3.1.3 as basis.
Let Ei,j ∈ Mat2g(Z) be the matrix with everywhere zeroes except a single entry in the j-th
column and the i-th row, which is equal to 1. The Ei,j for 1 ≤ i, j ≤ 2g form a basis of
Mat2g(Z). Set for 1 ≤ i < j ≤ g

xεi−εj := Ei,j −E2g+1−i,2g+1−j (6.34)

x−(εi−εj) := Ej,i −E2g+1−j,2g+1−i,

where {εi} is the previously chosen basis of h∗. One easily checks that

[h,xεi−εj ] =
〈
εi − εj ,h

〉
· xεi−εj (6.35)

for h ∈ h. Thus, ±(εi − εj) for 1 ≤ i < j ≤ g is a root and its root space is

g±(εi−εj) = x±(εi−εj)C. (6.36)

We set yεi−εj = x−(εi−εj). Analogously, one shows that for 1 ≤ i ≤ j ≤ g the elements
±(εi + εj) are also roots with root vectors

xεi+εj := Ei,2g+1−j + Ej,2g+1−i (6.37)

x−(εi+εj)
:= E2g+1−j,i + E2g+1−i,j =: yεi+εj .

Their associated root spaces are gεi+εj = xεi+εjC and g−εi−εj = yεi+εjC. We get

Φ =
⋃

1≤i<j≤g

{
±(εi − εj),±(εi + εj)

}
∪
⋃

1≤k≤g
{±2εk} . (6.38)

It is not difficult to check with the definitions above that

ytα = xα. (6.39)
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Let αi = εi − εi+1 for 1 ≤ i < g and αg = 2εg. We can take as set of simple roots

∆ =
{
α1, . . . , αg

}
. (6.40)

The associated set of positive roots for spg is then given by

Φ+ =
⋃

1≤i<j≤g
{εi − εj , εi + εj} ∪

⋃
1≤k≤g

{2εk} . (6.41)

For the other Cartan types of root systems of simple Lie algebras as well as for the described
case the construction of roots and associated root vectors can be found in [GW09; 2.4.1].

From now on we assume that we fixed a system of positive roots Φ+ = {α1, . . . , αs}. For each
root α ∈ Φ we define an associated coroot hα ∈ [gα, g−α] by the normalization

(α,hα) = 2. (6.42)

We can define a lattice Λ ⊂ h∗ by

Λ =
{
µ ∈ h∗ : (µ,hα) = µ(hα) ∈ Z ∀α ∈ Φ

}
. (6.43)

This lattice is called weight lattice of g. An element in Λ is called an integral weight. With
the choices for the εi from above Λ is generated by the εi, i.e. Λ =

⊕
iZ · εi. There is a subset

Λ+ =
{
µ ∈ h∗ : (µ,hα) = µ(hα) ∈ N0 ∀α ∈ Φ

}
⊂ Λ. (6.44)

The elements in Λ+ are called dominant weights. The dominant weights are integral weights
and generate the lattice Λ of integral weights. Note that they do not form a sublattice in
Λ. The fundamental weights (with respect to some choice of simple roots ∆) are the set
{ω1, . . . , ωg} where (ωi,hαj ) = δi,j . We have Λ+ =

⊕
iN0 · ωi. For the weight modules we

are interested in dominant weights are of particular interest (comp. Section 6.4.4). Hence, we
usually write each (integral) weight λ ∈ Λ as λ =

∑
i λi · ωi for some λi ∈ Z and identify λ

with the collection (λi) of coefficients in this basis. If λ is dominant all λi are non-negative.

For the symplectic Lie algebra spg we have ωi =
∑i

k=1 εk for 1 ≤ i ≤ g. In this case we can
easily express a dominant weight λ =

∑g
i=1 λi · ωi in terms of the εi via

λ =

g∑
i=1

λi · ωi =

g∑
i=1

λi ·

∑
j≤i

εj

 =

g∑
i=1

 g∑
j=i

λj


︸ ︷︷ ︸

=:λ̃i

·εi. (6.45)

Since λi ≥ 0 the coefficients λ̃i are also non-negative integers. An easy computation shows
that if λ =

∑g
i=1 λ̃i · εi ∈ Λ+, we have

λ =

g∑
i=1

λ̃i · εi =

g∑
i=1

(
λ̃i − λ̃i+1

)
︸ ︷︷ ︸

≥0

·ωi, (6.46)
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where we set λ̃g+1 := 0. Therefore, λ =
∑g

i=1 λ̃i · εi ∈ Λ+ if λ̃1 ≥ λ̃2 ≥ . . . ≥ λ̃g ≥ 0. A weight
is called regular if all ≥ are >.

All λ = (λi) ∈ Λ define a rational character9 of the maximal torus H via the map10

(see e.g. [GW09; 2.4.1])

h = diag (hi) 7→
∏
i

h
λi
i =: hλ. (6.47)

Since h is abelian we know by a standard result in linear algebra that the family of endo-
morphisms given by adg(h) are simultaneously diagonalizable (see [Hum78; 8.1])). In other
words, g decomposes into a direct sum of eigenspaces gα under the action of h. Therefore,
we get

g = g0
=h
⊕
⊕
α∈Φ

gα =
⊕
α∈Φ

+

g−α︸ ︷︷ ︸
=n
−

⊕h⊕
⊕
α∈Φ

+

gα︸ ︷︷ ︸
=n

+

(6.48)

= n− ⊕ h⊕ n+.

This decomposition is called root space decomposition (comp. [GW09; p. 93]). We will equip
the Lie algebra g with a standard basis whose structure constants are integral
(comp. [Hum78; VII.25]). Let d be the rank of Φ, i.e. d = dim h. We choose root vectors
xα ∈ gα and yα ∈ g−α such that they generate the corresponding root spaces, i.e. they are
unique up to a sign. Further, we set hα = [xα,yα]. One easily finds that hα ∈ h. For simplic-
ity we set yi := yαi , xi := xαi and hi := hαi . We normalize11 the elements yi and xi by the
following conditions:

[hi,hj ] = 0 [xi,yj ] = δi,j · hi (6.49)
[hj ,xi] = ci,j · xi [hj ,yi] = −ci,j · yi

where ci,j = (αi,hj) = αi(hj) for αi, αj ∈ Φ. We have defined 3s elements in {yi,hj ,xk},
but the dimension of g is only 2s+ d by the decomposition of (6.48). Therefore, the elements
cannot be linearly independent. Furthermore, by a theorem of Claude Chevalley we find,
that the hi for d < i ≤ s can be written even as integral linear combinations of h1, . . . ,hd and
with the above made normalizations the set of {yi,hj ,xk} only depends on the choice of the
root system together with its fixed system of simple roots (see e.g. [Hum78; VII.25]). In other
words, the definition of the elements is in some way canonical. This leads to the following
definition:

Definition 6.4.1 (Chevalley basis): The set {y1, . . . ,ys,h1, . . . ,hd,x1, . . . ,xs}, where the yi,hi,xi
are defined as above and fulfil the conditions from (6.49), is called the Chevalley basis of g (with
respect to ∆).

For the symplectic Lie algebra the elements in the Chevalley basis are exactly those yα and
xα defined earlier in (6.34) and (6.37).

9The choice of a different basis of Λ does not affect the existence of such a character. It changes only its
representation.

10If in the chosen basis of H the element h ∈ H does not have diagonal shape, one has to replace the hi by the
images of the i-th coordinate function (see e.g. proof of [GW09; Theo. 2.1.5]).

11The choice of a generator of a one-dimensional space involves a choice of a sign.
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6.4.3. Kostant’s Z-Form and the Poincaré-Birkhoff-Witt Theorem

The construction we present in this section can be found in the original papers of Henri
Poincaré [Poi00], George Birkhoff [Bir37], Ernst Witt [Wit37], and Bertram Kostant [Kos66] or
little bit more convenient to the reader in [Hum78; VII.26].

Let g be a semi-simple Lie algebra over a field of characteristic zero (this is not necessary for
all computations but for some) and let Φ be its root system of g. Let, as before,

{y1, . . . ,ys,x1, . . . ,xs,h1, . . . ,hd}

be a fixed Chevalley basis12 of g with respect to the chosen Cartan subalgebra h
(see Definition 6.4.1). Remember that we have the root space decomposition (see equa-
tion (6.48))

g = n− ⊕ h⊕ n+

where the gα are one-dimensional and generated by a root vector xi or yi, respectively. To
shorten the notation we introduce for i = 1, . . . , s and n, k ∈ N

x
(n)
i =

xni
n!

y
(n)
i =

yni
n!

(
hi
k

)
=

k∏
j=1

(hi − j + 1)

j
. (6.50)

Further, we set for multiindices N = (n1, . . . , ns), M = (m1, . . . ,ms), and
K = (k1, . . . , kl) with ni, mi, ki ≥ 0

xN = x(n1)
α1
· · ·x(ns)

αs
yM = y(m1)

α1
· · ·y(ms)

αs
hK =

(
h1

k1

)
· · ·
(
hl
kl

)
. (6.51)

This leads to the well known theorem which is named after Poincaré, Birkhoff and Witt.

Theorem 6.4.2 (Poincaré 1900, Birkhoff 1937, Witt 1937): Let g be a semi-simple Lie algebra over a
field of characteristic zero and the other notions defined as above, then the universal enveloping algebra
U(g) is generated as free algebra over C by the monomials of the form

yM · hK · xN

for multiindices M,K,N as above.

In the papers of Poincaré, Birkhoff and Witt they do not use the normalization introduced
before, because they did not look at the underlying integral structure. But Bertram Kostant,
who presented the following theorem in 1965 at a Symposium held at Boulder (Colorado), did
exactly this and therefore we decided to restate the original Poincaré-Birkhoff-Witt Theorem
in a modified version which is more related to Kostant’s work and is in some sense stronger.

Theorem 6.4.3 (Kostant, 1966): Let g be a semi-simple Lie algebra over a field of characteristic zero
and the other notions defined as above, then the universal enveloping algebra U(g) is generated as a
free Z-module by the monomials of the form

yM · hK · xN

for multiindices M,K,N as above. We call the lattice generated by these monomial an admissible
lattice for U(g).
12Note: In GAP the order is exactly as indicated here, i.e. first the negative root vectors, then the positive root

vectors, then the Cartan elements.
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It is interesting to note that neither Birkhoff nor Witt mention the work of Poincaré in their
publication. It is not known whether one of them knew of the preliminary version of their
theorems stated by Poincaré 37 years earlier or not.

Beside the fact that the monomials yM · hK · xN generate U(g) as free Z-module we have
some relations between the generators given by the so called Serre relations, which can be
written down in terms of Lie brackets and elements in the Cartan matrix. These relations are
used for example by GAP to simplify the expressions. Beside the relations stated in (6.49)
during the definition of a Chevalley basis there are two additional relations, which involve
the adjoint representation. Since we do not need these in the following, we do not state them
explicitly.

6.4.4. Highest Weight Modules and Representations

Highest weight modules or highest weight representations are the building blocks to describe
representations of Lie groups or Lie algebras and play an important role in this thesis as coef-
ficient modules of the cohomology groups. Here we summarize here the essential definitions
and facts on representations and their relation to highest weight modules.

Definition 6.4.4 (g-module): Let g be a Lie algebra, R a ring extension of Z and V be a free
R-module with an action · : g× V → V of the Lie algebra. We call V a g-R-module if the following
conditions are fulfilled

M1 (aX + bY ) · v = a(X · v) + b(Y · v) for a, b ∈ R, v ∈ V and X,Y ∈ g.

M2 X · (av + bw) = a(X · v) + b(X · w) for a, b ∈ R, v, w ∈ V and X ∈ g.

M3 [X,Y ] · v = X · (Y · v)− Y · (X · v) for v ∈ V and X,Y ∈ g.

For R = Z we call a g-Z-module simply a g-module.

Note: By Theorem 6.4.3 we know that the universal enveloping algebra is given by its un-
derlying integral structure. Therefore, we replaced – compared to some definitions in the
literature – the field of real or complex numbers number by a ring R/Z and vector spaces
over these fields by free R-modules (comp. the analogous remarks on group representations
in Section 6.1.2).

Any Lie algebra representation φ : g→ gl(V ) may be viewed as a g-module via the action

X · v = φ(X) · v. (6.52)

The other way around every g-module is also a Lie algebra representation of g. Thus, there
is a one-to-one correspondence between representation modules for a Lie algebra represen-
tation of g and g-modules.

A g-module is called irreducible if there are no non-trivial g-submodules. The construction
is completely analogous to the construction of Γ-modules and representations of Lie groups
(see Section 6.1.2 ). If V is an irreducible g-module of finite rank, we know that h has to
act diagonally on V . Therefore, we have a decomposition of V into eigenspaces under this
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action. Thus, we have
V =

⊕
λ∈h∗

V (λ) (6.53)

where V (λ) = {v ∈ V : h · v = λ(h)v}. If V (λ) 6= 0 we call the V (λ) a weight space or weight
module.

Let α ∈ Φ, X ∈ gα, h ∈ h and v ∈ V (λ), then we have

h ·X · v = (X · h+ [h,X]) · v = (λ(h) + α(h))X · v. (6.54)

Thus, elements in gα map V (λ) into V (λ + α). This observation leads to the definition of
highest weight module.

Definition 6.4.5 (Highest Weight Module): A g-module M is a highest weight module or a
highest weight representation13 (with respect to a fixed set of positive roots Φ+) if there is a
weight λ ∈ h∗ and a non-zero vector v0 ∈M such that

a) n+ · v0 = 0

b) h · v0 = λ(h) · v0 for h ∈ h

c) M = U(g) · v0.

The vector v0 is called a maximal vector of M and λ is called highest weight of M.

Some authors consider a highest weight module as U(g)-module, but the objects are in both
cases the same, because we can write all elements in U(g) by Theorem 6.4.3 in terms of a
product of root vectors (applied to a highest weight vector). We know that for each λ ∈ h∗

there is irreducible highest weight representation for that weight. Furthermore, for a highest
weight module the related highest weight is uniquely determined [GW09; 3.2.1]. We denote
the highest weight module of weight λ by Mλ. We need some properties of highest weight
modules and collect them in the following theorem [Hum78; Theo. VI.20.2].

Theorem 6.4.6: LetM be the highest weigh module of weight λ ∈ h∗ generated by a maximal vector
v0. Let (α1, . . . , αs) = Φ+ be the chosen fixed system of positive roots. Then:

a) M is spanned by the vectors y
i1
1 · · ·y

is
s · v0 with ij ∈ N0. These vectors have weights

λ −
∑

j ij · αj . Thus, M is a semi-simple h-module. The set of generating vectors is called
the Poincaré-Birkhoff-Witt basis (PBW-basis) of M.

b) All weights µ of M satisfy µ ≤ λ, i.e.

µ = λ−
∑
α∈Φ

+

mα · α

with mα ∈ N0.

c) For all weights µ of M we have rankM(µ) < ∞ for the weight space M(µ), while
rankM(λ) = 1.

13One identifies sometimes the representation with the module implicit together with the action of the group via
the representation.
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d) Each submodule ofM is a weight module. A submodule generated by a maximal vector of weight
µ < λ is proper.

Furthermore, we get the following decomposition from (6.53) and the previous theorem
[GW09; Lemma 3.2.2]

Mλ = v0 · Z⊕
⊕
µ<λ

Mλ(µ) (6.55)

where all submodules are of finite rank. One can use point a) of the theorem above and
the previous equation to compute a basis of a highest weight module. The following lemma
shows why the consideration of highest weight representations is of particular interest
(see [GW09; Cor. 323]).

Lemma 6.4.7: Let π : g → gl(V ) be a non-zero irreducible Lie-algebra representation. Then there
exists a unique dominant integral weight λ ∈ h∗ such that rankV (λ) = 1, and for all other weights
µ of vectors in V we have µ < λ.

From this we immediately get:

Corollary 6.4.8: Every irreducible Lie algebra representation of a Lie algebra g is contained in a
uniquely determined highest weight module Mλ for a dominant integral weight λ ∈ h∗.

We should emphasise that a finite rank highest weight representation for a highest weight λ
need not be irreducible. We know that an irreducible highest weight module Mλ is of finite
rank if and only if λ is integral and dominant (see [Hum78; Cor. 21.2]).

The next question we might ask is if a highest weight module can be written in a basis in the
sense of point a) of the Theorem 6.4.6, how does the action of the Lie algebra g in this basis
then look like? This is essentially basic linear algebra, because if we have a basis element
we can multiply the monomial by the Lie algebra element written, in terms of the Chevalley
basis, as linear combination of the root vectors xα and yα with α ∈ Φ+. By Definition 6.4.5 c)
the result again has to be a vector in that highest weight module. Therefore, it again has to
be written in the original basis of the highest weight module. This last part is in praxi the
main difficulty, because we need to apply the relations to simplify the expressions and write
them again in terms of only elements coming from negative roots, i.e. the yα. For details
how to do this in praxi we refer to Section 11.2.3.

The last important question we handle in this section is which rank/dimension a highest
weight module for a given (integral) weight has. There are several ways to compute the
dimension of a highest weight module. We use Weyl’s dimension formula which is a conse-
quence of Weyl’s character formula [GW09; 7.1]

rank Z(Mλ) =
∏
α∈Φ

+

(λ+ α, α)

(ρ, α)
, (6.56)

where

ρ = 1
2

∑
α∈Φ

+

α. (6.57)

All other formulas derive from this in some way.
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6.4. Lie Algebras and Highest Weight Modules

Example 6.4.9. LetMλ be the highest weight module for the Lie algebra spg of integral weight
λ =

∑
i λiεi ∈ h∗, i.e. λi ∈ Z. Then we have

rank ZMλ =
∏

1≤i<j≤g

(λi − g + i− 1)2 − (λj − g + j − 1)2

(g − i+ 1)2 − (g − j + 1)2

∏
1≤i≤g

λi + g − i+ 1

g − i+ 1
(6.58)

6.4.5. The Standard Representation

Finally, we introduce the so called standard representation as highest weight representation
(see [FH91] for further details). The standard representation (ρg,0,V) of g is given by the
natural inclusion map from g into gl(V). The standard representation is given by the rep-
resentation of its root vectors as matrices, which we presented in (6.34) and (6.37) for the
symplectic Lie algebra, and which can be obtained in the general case in a completely anal-
ogous way. The matrices in (6.34) and (6.37) are the images ρg,0(xi) and ρg,0(yi), where the
xi and yi are elements of the Chevalley basis {yi,hj ,xk} of g (comp. Definition 6.4.1). The
standard representation is the representation of smallest rank which is faithful, i.e. the ho-
momorphism ρg,0 =: ρ0 is injective. Furthermore, this representation is given as a highest
weight representation for the weight λ0 = ω1 = ε1, i.e. V := M1,0,...,0. To shorten the notation
we use VR := V ⊗Z R.

Later in Chapter 11 we use the standard representation V as an essential building block for
Γ-modules and thus for our coefficients of the cohomology. Therefore, we have a closer look
how the matrix representation on the Chevalley basis of g looks like.

Because we can view V as a highest weight module of weight λ0, we have an additional
way to write the standard representation, namely the PBW-basis of V = M1,0,...,0 introduced
in Theorems 6.4.3 and 6.4.2. According to Theorem 6.4.6 a) any basis element of V can be

given – with the notation from (6.51) – as yµ
′
· v0, where v0 is a fixed highest weight vector

and µ′ = (µ′α1
, . . . , µ′αs) is a multiindex of length s = |Φ+|. The weight vectors yµ

′
· v0 have

weight µ = (µ1, . . . , µs) ≤ λ0 = (1, 0, . . . , 0), i.e. µ = λ0 − µ
′ = λ0 −

∑
αi∈Φ

+ µ′i · α for some

µ′i := µ′αi ∈ N0.

For simplicity we restrict outselves to g = sp2, which is the case we need later on. In this case
we have the following positive roots:

α = 2ω1 − ω2 = ε1 − ε2

β = −2ω1 + 2ω2 = 2ε2

α+ β = ω2 = ε1 + ε2

2α+ β = 2ω1 = 2ε1.

(6.59)

The simple roots are α and β. Let t = diag
(
t1, t2, t

−1
2 , t1

)
, then the corresponding torus

characters are given by

α(t) = t1 · t
−1
2

β(t) = t22

(α+ β)(t) = t1 · t2
(2α+ β)(t) = t21.

(6.60)
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6. Arithmetic Groups and Symmetric Spaces

Figure 6.1.: Roots and weights for sp2: the dots indicate the weight lattice Λ, where the empty dots are those
weights which are roots. The weights in the shaded area are dominant weights.
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Now one has to find the weights µ of the elements of the PBW-basis, i.e. yµ
′
· v0, which have

to fulfil
µ = λ0 − µ

′ = λ0 −
(
µ′αα+ µ′ββ + µ′α+β(α+ β)

)
(6.61)

with µ′i ≥ 0. One can easily check that if we have chosen a highest weight vector v0, the
root vector yβ annihilates v0, while the other products of negative root vectors with v0 are
non-zero (see Table 6.4). Therefore, yβ · v0 cannot be a basis element and the PBW-basis of
V is given by {v0,yαv0,yα+βv0,y2α+βv0}. We stated the action of the roots on this basis
together with the resulting weights µ in Table 6.4. From this one can easily read the matrix
ρ0(X) for an element X of the Chevalley basis of g/h, which also gives the values on the
Cartan elements by application of the commutator relation.

The resulting matrices written in the PBW-basis are exactly the same as those defined earlier
in this section (see (6.34) and (6.37)).

6.5. Highest Weight Modules for Sp2(Z)

There is another (compared with that one presented in Section 6.4) way to describe highest
weight modules, which is also used in context of cohomology of arithmetic groups, since it
has the advantage that one does not use the theory of Lie algebras. In other words, in this
section we consider highest weight modules as modules for the Lie group. For simplicity
we restrict to the case of Sp2/Q. The representations of Lie groups and Lie algebras can
be identified using the exponential map whereas the underlying modules are the same. In
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6.5. Highest Weight Modules for Sp2(Z)

Table 6.4.: Poincaré-Birkhoff-Witt basis with its weights µ and the action of roots on the basis.

v0 y1v0 y3v0 y4v0

yα · y1v0 0 y4v0 0
yβ · 0 −y3v0 0 0

yα+β · y3v0 −y4v0 0 0
y2α+β · y4v0 0 0 0

µ λ0 − 0 λ0 − α λ0 − (α+ β) λ0 − (2α+ β)
= ω1 = −ω1 + ω2 = ω1 + ω2 = −ω1

Section 11.1 we have a closer look on this. There we focus on the computation of highest
weight modules.

Let
ρ′1,0 : Sp2(Z) =: Γ→ GL(M1,0) (6.62)

be the standard representation of Sp2(Z) introduced above. Further, let

ρ′0,1 : Γ→ GL(M0,1) (6.63)

be the irreducible subrepresentation of the representation Λ2
M1,0 given by the decomposition

Λ2
M1,0 = Z⊕M0,1. (6.64)

Now we consider the module Symm(M1,0) ⊗ Symn(M0,1) for a pair (m,n) of non-negative
integers, which has a unique subrepresentation

ρ′m,n : Γ→ GL(Mm,n) (6.65)

which is defined by the requirement that is has the largest dominant weight among the
highest weights of all subrepresentations. Then Mm,n is the unique irreducible submodule
with highest weight λ = m ·ω1 +n ·ω2, i.e. the module defined in this way coincides with the
highest weight module of weight λ introduced in Definition 6.4.5 (see e.g. [Har08b; p. 253ff.]).

Some authors like Gerard van der Geer and his collaborators prefer to define the representa-
tion ρ′m,n using the modules of the form Symi(M1,0)⊗Symj(Λ2

M1,0), which leads to the very
same modules which might be indexed in a different way.14

14This different ways to index correspond to different choices from bases of the roots. We use a basis containing
the fundamental weights ωi whereas others choose a basis formed by the εi.
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On Quadratic Forms and Cells
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7. Background on Reduction

7.1. Classical Reduction Theory

In the theory of group actions it is an old problem that one is interested in finding minimal
sets which consist only of elements which are not equivalent under the group action. Such
a set is called fundamental domain. In general it is not so easy to give a good description
of such a fundamental domain in an explicit way. One problem is that there is not a unique
one, hence there are plenty of possible ways to construct such sets for one given group. To
make it more complicated there are also minor differences between different definitions of
such a domain (some of these domains are not even a domains since they are not open). We
understand a fundamental domain as an open set such that there are no equivalent points
under the group action in the set and the translates of its closure cover the whole space.

In some cases one can construct from a given set for a larger group a fundamental domain
for subgroups by translating the given domain by any set of representatives of the quotient
of the larger group by the smaller one. But it remains to determine at least one such set.

Now a reduction theory for a group is an algorithm which describes how to construct for
a given group and a space on which the group acts a fundamental domain. There are a lot
of things which one easily can do if one has a good, i.e. easy, description of the quotient of
some set by a group acting on it.

The most classical example is the fundamental domain for the group SL2(Z) acting on the
upper half-plane, i.e. the complex numbers with positive imaginary part. Here one funda-
mental domain is given by

{z ∈ C : Im (z) > 0} ∩ {z ∈ C : |z| > 1} ∩
{
z ∈ C : |Re (z) | < 1

2

}
. (7.1)

This set has a nice description and can easily be plotted (see Figure 7.2a). To get the quotient
one only has to identify the boundary in the right way, i.e. the two vertical lines are glued
together as well as the right part of arc and the left part of the arc. In practice used there is
a different construction for a fundamental domain for the group SL2(Z), which is shown in
Figure 7.2b. This is not a fundamental domain in the above mentioned way, since it is three
times as large as the domain in Figure 7.2a) and thus there are point represented by more
then one point in the set. But for some purposes this construction has some advantages.

As mentioned before it is not difficult to construct from this fundamental domain fundamen-
tal domains for finite index subgroups of SL2(Z).

For the symplectic group Spg(Z) one can get an analogous description by a set of inequalities
applying Hermann Minkowski’s lattice reduction algorithm [Min05]. A priori, there are
infinitely many of them, but one can show that finitely many are sufficient to describe the
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7. Background on Reduction

Figure 7.1.: The classical fundamental domain for the group SL2(Z) (a) and an other commonly used funda-
mental domain (b).
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domain exactly. A special version of this reduction algorithm for the group Spg(Z) was given
by Carl-Ludwig Siegel [Sie43]. But he was only able to simplify the system of inequalities
for Minkowski’s algorithm for arbitrary symplectic groups. The first list of a finite set of
inequalities which describes all boundary components of the fundamental domain was given
by a PhD-student of Carl-Ludwig Siegel in Göttingen named Erhard Gottschling in [Got59;
Satz 1, Satz 2]. Gottschling gave a description in terms of 28 polynomial inequalities of
degree 4 with 3 complex variables. The fundamental domain is then the intersection of the
half-spaces defined by these inequalities. However neither Siegel nor Gottschling attempted
to find a kind of cellular structure or a description of all components of the intersections.
Thus, their description is not very helpful for our purpose because we cannot use their
results (directly). One reason is that the structure is rather complicated and before one can
work with that one has to get all components of the boundary in the Siegel upper half-
space and and their behaviour under the group. This is not impossible, but also not very
illuminating. In the next section we will give an other reason why for us an other variant of
a reduction theory is more useful.

7.2. Topological Reduction Theory

It is the aim of a reduction theory to give a minimal description of the action of a group.
In the previous section we considered fundamental domains which are minimal in a given
space on which the group acts, i.e. for each orbit there is at most1 one element. But one might
ask whether this construction is also minimal in the context of topological questions like the

1The reason why we write ’at most’ is the fact that, if the set is a domain, i.e. it is in particular open, the boundary
does not belong to the domain and therefore there are some orbits – those which correspond to elements in
the boundary of a fundamental domain – which are not represented. In the literature some authors call a set
fundamental domain which has for each orbit exactly one representative in the set, others define a kind of
closed fundamental domains which have at least one representative, i.e. they contain the whole boundary of
the (open) fundamental domain and therefore some orbits have more than one representative.
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7.2. Topological Reduction Theory

computation of the cohomology of that group. Topological questions can be in some sense
weaker since for example the cohomology of an object does not change if we replace the
original space by a space of the same homotopy type. So we can extend the question and ask
whether there is a homotopy equivalent space which carries enough information of the group
action to compute the cohomology. The object we are looking for is some kind of a minimal,
good topological model which is compatible with the group action. Minimal in this context
should mean that it is of minimal dimension. Good means that it has a simple topological
structure, e.g. is a locally finite CW-complex or an analogue in the context of orbifolds. It is
an obvious advantage if the space of which we want to compute the cohomology has such a
minimal form because the runtime of such a computation decreases if the dimension becomes
smaller or the topological structure is more rigid.

Due to Theorem 12.3.4 we know that all cohomology groups of degree larger than the virtual
cohomological dimension of the group vanish. Thus, there is a chance to find a homotopy
equivalent space which has dimension equal to the virtual cohomological dimension of the
group. In the case of the Siegel modular variety, which is of real dimension 6, the virtual
cohomological dimension is only 4. The best model for our purpose should therefore have
dimension 4.

In some sense this is nothing else than before. But we first replace the (locally) symmetric
space by a subspace which is homotopy equivalent to the original one and has a simpler
structure. To be precise, we replace the space by a suitable strong deformation retract2 of the
original space. All deformation retracts we will consider in this thesis are strong deformation
retracts. Thus, we will skip this attribute in many cases. After this exchange we start with
reduction theory for this deformation retract of the original space in the same fashion as
described in the previous section. We will explain what this means more in detail later (see
Section 9.1). Such a retract of a (locally) symmetric space is sometimes called spine of that
space. Since in constructions of this type one uses sets of short vectors which form a system
which is more round then others, one calls such a retract well rounded.

2 A (strong) deformation retract of a topological space X onto a subspace A ⊂ X is a continuous family of
continuous maps ft : X → X with t ∈ [0, 1] such that f0 = Id, f1(X ) = A, and ft |A= Id for all t ∈ [0, 1].
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8. Quadratic Forms and Voronöı’s Theory

The russian mathematician Georgy F. Voronoı̈ (1868–1908) with ukrainian roots developed
shortly before his early death in the year 1908 in a sequence of three papers [Vor08b, Vor08a,
Vor09] a theory of reduction for quadratic forms or, to be more precise, he developed two
independent theories. One of these is an important ingredient for the later work of Robert
MacPherson together with his student Mark McConnell [McC91, MM93], which I used for
my model of the Siegel modular threefold (see Chapter 9). The last part of that work was
published in 1909 shortly after Voronoı̈’s death. The method which is used in [McC91, MM93]
is the method described in [Vor08b] and hence called Voronoı̈ I. Today the method described
in [Vor08a, Vor09] – called Voronoı̈ II – is better known since it is used in algebraic geometry
since years. So it was used for example in [AMRT75] for the toroidal compactification of
arithmetic quotients or in the theory of lattices and packing problems (see e.g. [CS99]).

Since Voronoı̈ I is important for my work I will sketch his main results of the reduction
theory for GLd(R). A very good reference for this area is the Habilitationsschrift of Achill
Schürmann from 2007 [Sch07] which appeared also in the AMS University Lecture Series
in 2009 [Sch09]. A much shorter introduction to Voronoı̈ I can also be found either in the
survey article [McC98] in the conference proceedings volume of a conference on Voronoı̈’s
impact in modern science held 1998 in Kyiv, or in the paper of Robert MacPherson and Mark
McConnell [MM93].

8.1. Positive Definite Quadratic Forms

Quadratic forms are a quite old and fascinating subject in mathematics. Diophantus of
Alexandria1 studied questions related to integral solutions of equations given by quadratic
forms. In modern times Pierre de Fermat (1607/8–1665) restarted this subject followed
by Joseph-Louis de Lagrange (1736–1813), Adrien-Marie Legendre (1752–1833), and Carl
Friedrich Gauß (1777–1855), who presented in his Disquisitiones Arithmeticae (1801)
[Gau01] a description of the case of binary quadratic forms. But it was Charles Hermite
(1822–1901) who first studied quadratic forms of arbitrary degree in a systematic way and
not only special cases like binary, ternary, etc. forms.

A quadratic form is a map of the form

x 7→ Q[x] := xt ·Q · x (8.1)

where Q := (qij)i,j=1,...,d ∈ Matd(R) is a d × d-matrix and x = (x1, . . . , xd)
t ∈ Rd a column

vector. We will only consider real or even integral quadratic forms, i.e. the matrix Q has real
1The exact time when Diophantus lived is not known. But because he cited Hypsikles of Alexandria we can

assume that he lived after 150BC. For several reasons one assumes that he lived about 250AD [Mac].
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8.2. Quadratic Forms and Symmetric Spaces

or integral entries. Furthermore, we assume that all quadratic forms are symmetric, i.e. we
have that qij = qji or equivalently Q = Qt. Therefore, we will omit the attribute symmetric
for the rest of this thesis.

We identify the space of symmetric quadratic forms with the space of symmetric matrices.

Qd :=
{
Q ∈Md(R) : Q = Qt

}
= Sym2

(
R
d∗
)
. (8.2)

The subset of positive definite quadratic forms Qd
>0 is given by

Qd
>0 :=

{
Q ∈ Qd : Q[x] > 0 ∀x ∈ Rd − {0}

}
, (8.3)

and the subset of positive semidefinite quadratic forms is given by

Qd
≥0 :=

{
Q ∈ Qd : Q[x] ≥ 0 ∀x ∈ Rd

}
.

If the dimension is clear we omit the exponent d.The space Qd
>0 is the closure of Qd

>0 in Qd.
We can equip Q with an inner product

〈
Q,Q′

〉
Q

= tr
(
Q ·Q′

)
=

d∑
i,j=1

qijq
′
ij (8.4)

thus Q gets the structure of a euclidean vectorspace of real dimension
(
d+1

2

)
= 1

2d(d+ 1).

Furthermore, we find that the space of positive definite quadratic forms Qd
>0 is an open

full dimensional convex polyhedral cone in Qd with apex in 0. In other words, Qd
>0 is

invariant under homotheties, i.e. multiplication with positive scalars λ ∈ R+. Under the
map Q 7→ Q−1 (matrix inverse) the cone Qd

>0 is mapped to its dual cone with respect to the
introduced inner product. Voronoı̈ found that Qd

>0 is self dual. This fact was used by Avner
Ash [Ash77] (for a summary see e.g. [McC98; (2.5)]) to extend the theory of self dual cones
and to prove the existence of deformation retracts of lowest possible dimension for some
groups using this extension. See Section 9.1 for more details on this.

8.2. Quadratic Forms and Symmetric Spaces

We have two natural actions of the group GLd(R) on Q, Qd
>0, and Qd

>0. First, we have a
right action of GLd(R) given by

Rg : Q −→ Q (8.5)

Q 7−→ Rg(Q) := gt ·Q · g

and secondly with have a left action, which is given by

Lg : Q −→ Q (8.6)

Q 7−→ Lg(Q) := g ·Q · gt.
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8. Quadratic Forms and Voronoı̈’s Theory

We have that Rg = L
g
t . Each of these two group actions has only one orbit, because we know

from linear algebra that there exists a linear substitution S ∈ GLd(R) such that for every
Q ∈ Q in StQS = Idd. In other words we have for every Q ∈ Q a decomposition

Q = St ·D · S

with a diagonal matrix D = diag (D1, . . . , Dd) and a unipotent upper triangular matrix S.
Since Q is positive definite all Di > 0. Hence, we get A =

√
D · S ∈ GLd(R) and get the well

known Cholesky decomposition Q = At·A which is unique up to orthogonal transformation,
i.e. A and OA for any O ∈ Od define the same quadratic form Q. For more information on
the action of these groups on the cones see the book of Jean Pierre Serre [Ser73; V.1.1]. In the
following, we will only consider the right action defined above, but all results stay (up to the
changes related to this action) valid if we exchange the right action by the left action.

We call two quadratic forms Q,Q′ ∈ Q arithmetically equivalent if there is an element
γ ∈ GLd(Z) such that Q′ = Rγ(Q) = γt · Q · γ holds. It is easy to check that this is an
equivalence relation.

Proposition 8.2.1: Let Q,Q′ ∈ Q be two arithmetical equivalent positive quadratic forms then
Q
[
Z
d] = Q′

[
Z
d].

Proof. If Q and Q′ are arithmetically equivalent positive quadratic forms, there is a
γ ∈ GLd(Z) s.th. Q′ = γt ·Q · γ holds. Then we have for any x ∈ Zd that Q′[x] = Q[γ · x] and
γ · Zd = Zd.

This leads to the idea of the German mathematician Carl-Friedrich Gauß (1777– 1855), who
started in 1840 to interpret the value of a quadratic form on lattice vectors. He used for a
Q ∈ Qd

>0 the mentioned Cholesky decomposition Q = At ·A by

Q[x] = xt ·Q · x = xt ·At ·A · x = ‖A · x‖2. (8.7)

This was the starting point of a theory due to Hermann Minkowski (1864–1909) which con-
nects the theory of lattices with number theory known as geometry of numbers. If we have a
basis (a1, . . . ,ad) then we can identify the lattice

Λ = a1 · Z⊕ . . .⊕ ad · Z

where the the ai are column vectors of the matrix A = (a1, · · · ,ad). If (a1, . . . ,ad) is a basis
of Λ, then this d× d Matrix A has rank d and thus A ∈ GLd(R). Since Zd and γ ·Zd for some
γ ∈ GLd(Z) define the same lattice, they only differ by the choice of their bases, so we can
write every lattice as Λ = γ · A · Zd for a A ∈ GLd(R) and γ ∈ GLd(Z). Therefore, a lattice
can be identified with an element out of the quotient GLd(Z)\GLd(R). As mentioned above
the matrix A ∈ GLd(R) is unique only up to action of the orthogonal group Od. This shows
the following theorem:

Theorem 8.2.2: There is a one-to-one correspondence between the space of quadratic forms of dimen-
sion d and the symmetric space for GLd:

Qd
>0︸︷︷︸

pos. def. quadratic forms

1:1←→ Od\GLd(R).︸ ︷︷ ︸
bases up to orth. trans.
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8.3. Perfect Quadratic Forms

Furthermore, we have also a one-to-one correspondence between quadratic forms of dimension d up to
arithmetic equivalence and a locally symmetric space

Qd
>0/GLd(Z)︸ ︷︷ ︸

pos. def. quadratic forms
up to arithm. equiv.

1:1←→

space of lattices︷ ︸︸ ︷
Od\GLd(R) /GLd(Z).︸ ︷︷ ︸

lattices up to isometries

Using e.g. the Iwasawa decomposition it is easy to see that an analogue result holds if we
divide out homotheties. Denote by PQd

>0 the quotient of Qd
>0 by homotheties, which is a

subset of the projectivization PQ of the space of (symmetric) quadratic forms Q. In other
words we have an embedding

PQd
>0 ↪→ PQ. (8.8)

We summarize:

Lemma 8.2.3: There is a one-to-one correspondence between the space of quadratic forms of dimen-
sion d up to homothety and the symmetric space for SLd:

PQd
>0

1:1←→ SOd\SLd(R)

and analogously a one-to-one correspondence

SLd(Z)\PQd
>0

1:1←→ SOd\SLd(R)/SLd(Z).

We will discuss some more details of this connection later in Section 8.4, where we discuss
the result of Voronoı̈ for the groups GLd or SLd resp., and some extension to the group Spg
in Section 9.1.

8.3. Perfect Quadratic Forms

Let for the following all quadratic forms be integral. For a positive definite (integral) quadratic
form Q ∈ Qd

>0 there is an n ∈ N such that the Diophantine equation Q[x] = n has an integer
vector valued solution. We define the arithmetic minimum as

µ(Q) := min
x∈Zd−{0}

Q[x]. (8.9)

We have that µ(λQ) = λ ·µ(Q) for λ ∈ R+. For a positive definite quadratic form Q ∈ Qd
>0 the

arithmetic minimum µ(Q) is always positive. Every positive definite quadratic form defines
a real valued strictly convex function on Rd. For every c ∈ R+ the set

E(Q, c) :=
{
x ∈ Rd : Q[x] ≤ c

}
(8.10)

forms an ellipsoid and the points of a constant value of a Q ∈ Qd
>0 form the surface of

an ellipsoid. This give us a geometric interpretation of the arithmetic minimum µ(Q). The
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8. Quadratic Forms and Voronoı̈’s Theory

Figure 8.1.: Example for d = 2 for some E(Q,µ(Q)).

arithmetic minimum is the smallest natural number n ∈ N for which the intersection be-
tween E(Q,n) and the lattice Zd contains a non-zero element. Obviously the points which
attain the arithmetic minimum lie on the boundary of the ellipsoid E(Q,µ(Q)). The set of
representatives of the arithmetic minimum

Min (Q) = {x ∈ Zd : Q[x] = µ(Q)} (8.11)

is called set of minimal vectors. Because the boundary of the ellipsoid E(Q,µ(Q)) is compact
there are only finitely many points of Zd where Q can take the minimum. Therefore, we have
that |Min (Q) | <∞. A quadratic form Q ∈ Qd

>0 is called perfect if Q is uniquely determined
by its arithmetic minimum µ(Q) and and its set of minimal vectors Min (Q).

Lemma 8.3.1: If Q,Q′ ∈ Qd
>0 are arithmetically equivalent positive definite quadratic forms with

Q′ = Rg(Q) = γt ·Q · γ with γ ∈ GLd(Z) then

µ(Q) = µ(Q′) and Min
(
Q′
)

= γ−1 ·Min (Q) .

Furthermore, Q is perfect if and only if Q′ is perfect.

Proof. An easy calculation gives Q′[x] = Q[γ · x]. The remaining part follows because every
matrix γ ∈ GLd(Z) maps Zd isomorphically onto Zd.

The matrix A ∈ GLd(R) maps the standard lattice Zd to the lattice Λ = A·Zd and the ellipsoid
E(Q,µ(Q)) is transformed to

A · E(Q,µ(Q)) =
√
µ(Q) ·Bd, (8.12)

where Bd = {x ∈ Rd : ‖x‖ =
√
xt · x ≤ 1} is the euclidean unit ball. The arithmetic

minimum µ(Q) of Q is the square of the length of the shortest non-zero lattice vector and the
determinant detQ of the quadratic form Q may be interpreted geometrically as the square of
the volume of a fundamental cell of the lattice. This is the point where we have the relation
to different kinds of sphere packings (compare [CS99]). Let

δ(Q) :=
µ(Q)
d
√

detQ
. (8.13)
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This is a density function, which was introduced by Hermite, which measures the density of
a sphere packing of the Rd by spheres centered at the lattice points. An extremal form is a
local minimum of the density δ.

Furthermore, we have:

Theorem 8.3.2: An integral quadratic form Q ∈ Q is perfect if and only if

spanCone{x · x
t : x ∈ Min (Q)} = Q.

Here spanCone means the conal span, i.e. the space which is generated by all non-negative linear
combinations with real coefficients.

The form x · xt has only rank 1. Since ±x give the same rank-1 form xxt the number of
elements in the set of minimal vectors |Min (Q)| of a perfect form Q ∈ Qd

>0 is at least (d+1)d.
Since it is impossible that the x · xt for x ∈ Min (Q) span Q if they do not span Rd, we have:

Proposition 8.3.3: If Q ∈ Qd
>0 is (integral) perfect then Min (Q) spans Rd as real vectorspace.

In fact, if Min (Q) does not span Rd, the elements x ·xt can maximally span a
(
d
2

)
-dimensional

subspace of Q. Korkin and Zolotarev proved that extremal forms are perfect forms. Further,
Voronoı̈ proved that for d ≥ 6 the converse is false (for a proof see [Bar57]).

We call a form Q eutactic if its dual form Q−1 is contained in the cone generated by the min-
imal vectors of Q. This cone is called Voronoi cone (see (8.15) for the definition). Voronoı̈ in-
troduced that notion only in the cases where Q is perfect and did not use the word eutactic,
which was introduced later by Harold Scott MacDonald Coxeter (1907–2003) in 1951. But
Voronoı̈ proved in [Vor08b; 17]:

Theorem 8.3.4 (Voronöı, 1907): A quadratic form is extreme if and only if it is perfect and eutactic.

Without explaining this in more detail this gives an easierer way to check perfect forms
for extremality, which plays some role in Voronoı̈’s algorithm for finding perfect forms
(Algorithm 1)

8.4. Voronöı I

Let X = {x1, . . . ,xs} be any non empty finite set of column vectors xi ∈ Z
d. We define a real

cone generated by the set X by

R(X) :=

{
s∑
i=1

ρixi · x
t
i : ρi > 0

}
=: cone

(
x · xt : x ∈ X

)
⊂ Q. (8.14)

For any finite set X of vectors in Zd this set R(X) is an open rational polyhedral cone, i.e.
the cone has only finitely many faces and these are given by rational equations. The closure
of this cone is obviously given by
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8. Quadratic Forms and Voronoı̈’s Theory

R(X) :=

{
s∑
i=1

ρixi · x
t
i : ρi ≥ 0

}
.

If we have such a set X = {xi} we do not make a difference between sets which define the
same cone R(X). Hence, we introduce an equivalence relation on the set of finite sets of
column vectors in Zd of the same length. Let X = {x1, . . . ,xs} and Y = {y1, . . . ,ys}, then we
call X and Y equivalent if there is a permutation σ ∈ Ss such that xi = yσ(i) or xi = −yσ(i)

for all i = 1, . . . , s. To indicate the equivalence classes we will enclose the set in brackets
[X] := [x1, . . . ,xi]. In the following, we will most time identify all sets of column vectors
with their equivalence classes. This is useful to simplify notation in context of generating
sets for cones and cells. In particular, if we write X ⊂ X ′ for some sets of column vectors X
and X ′ we mean that there is a representative X0 of the class [X] of X and a representative
X ′0 of the class [X ′] of X ′ such that X0 ⊂ X ′0. If X ⊂ X ′ we have obviously by definition of
the R that R(X) ⊂ R(X ′). Thus, we have a partial ordering on the set of cones of the form
R induced by the partial ordering coming from the inclusion relations on the generating sets.
In other words we have here the structure of a partially ordered set (poset) as well on the
space of cones as on the space of generating sets which are compatible.

In the special case thatX = Min (Q) for aQ ∈ Qd
>0 we define the Voronoı̈ cone or Voronoı̈ do-

main by

V(Q) = R(Min (Q)) = cone
{
x · xt : x ∈ Min (Q)

}
. (8.15)

Remark: Also subcones of such a V(Q) are called Voronoı̈ cones.

For every closed face F of V(Q) for Q ∈ Qd
>0 the relative interior Int

(
F
)

= F of F , i.e. the
interior of F in its span, is a rational cone which either lies in Qd

>0 or is disjoint from Qd
>0.

Now we go the other way round. Let Z be any closed non-zero face2 of V(Q) for some
Q ∈ Qd

>0, then Z is generated by some subset of X ⊆ Min (Q). In other words, if we set

X(Q,Z ) = {x · xt ∈ Z : x ∈ Min (Q)} ⊂ Qd (8.16)

then we have Z = R (X(Q,Z )). One easily deduces

Corollary 8.4.1: The Voronoı̈ cone V(Q) of some Q ∈ Qd
>0 is full dimensional if and only if Q is

perfect.

We introduced in (8.4) the structur of an euclidean vectors space on Q. We find that the
Voronoı̈ cone is the normal cone with respect to this inner product, i.e.{

N ∈ Qd : 〈N,Q〉 ≤
〈
N,Q′

〉
∀Q′ ∈ Pµ(Q)

}
where Pλ is the Ryshkov polyhedron for a non-negative real parameter λ defined by

Pλ =
{
Q ∈ Qd

>0 :
〈
Q,x · xt

〉
≥ λ∀x ∈ Zd − {0}

}
. (8.17)

2Non zero mean different from the apex of the cone.
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Algorithm 1: Voronoı̈’s algorithm for finding perfect quadratic forms
Input : Dimension d, Q0 perfect quadratic form
Output : A complete list Listperf of inequivalent perfect forms in Qd

>0

Listperf, new = {Q0};
Listperf = {Q0};
repeat

for Q ∈ Listperf, new do
Compute Min (Q) and the describing inequalities of the polyhedral cone

P(Q) = {Q′ ∈ Qd : Q′[x] ≥ 0,∀x ∈ Min (Q)}

Enumerate extreme rays R1, . . . , Rk of P(Q);
Find contiguous perfect forms Qi = Q+ αRi for i = 1, . . . , k and

α = min
ρ∈N

(ρ : µ (Q+ ρR) = µ(Q0))

if Test: Qi 6∼ Q for some Q ∈ Listperf then
Add Qi to Listperf,new, Add Qi to Listperf;

until Listperf, new = ∅;
return Listperf

The Ryshkov polyhedra Pλ are for any λ an intersection of infinitely many halfspaces. But
if d ≥ 1 and λ > 1 the Ryshkov polyhedra Pλ are locally finite polyhedra. The theory of
Ryshkov polyhedra can be used to give a geometric picture of Voronoı̈’s construction and his
algorithm to compute the reduction for spaces of quadratic forms (see e.g.[Gru07, Gru09]).

The right action of GLd(Z) on Q introduced in (8.5) defines also an action on its subcones,
in particular on Pλ, where it permutes vertices, edges and facets of them. A lattice A · Zd is
called perfect if At · A defines a perfect quadratic form. Bases of perfect lattices correspond
to vertices of a locally finite Ryshkov polyhedron Pλ with λ = 4 · µ(Q)2. Now Voronoı̈ states:

Theorem 8.4.2 (G. Voronöı, 1907): [Vor08b; p. 110] Up to arithmetic equivalence and homotheties
there exist only finitely many perfect forms in a given dimension d ≥ 1.

One can now deduce from the statements from above that it is enough to know a complete
(finite) list of all perfect forms to generate the set of all (positive definite, integral) quadratic
forms via taking Voronoı̈ cones and translating them under the action of of the group GLd(Z).
For more details on this we refer to the literature (see e.g. [CS99, Sch09]) and the description
of Voronoı̈’s reduction later in this chapter (see page 46 f.).

Therefore, it is an obvious question if there is an algorithm to give us such a list. For-
tunately the answer to this question is Yes. Voronoı̈ gave such an algorithm in [Vor08b]
and presented a list of perfect forms up to arithmetic equivalence which he computed by
hand for the cases up to d = 5. We state his algorithm without describing all the details in
Algorithm 1. To start the algorithm one needs at least one perfect form, which is always
possible (see e.g. [CS99; Section 6.1]).
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Table 8.1.: Known number of perfect and extremal quadratic forms up to arithmetic equivalence with their
finders [Vor08b, Bar57, Sch07].

number of
d perfect extremal author(s) year

forms
2 1 1 Lagrange 1773
3 1 1 Gauß 1840
4 2 2 Korkin & Zolotarev 1877
5 3 3 Korkin & Zolotarev 1877
6 7 6 Barnes 1957
7 33 30 Jaquet-Chiffelle 1993
8 10916 2408 Dutour, Sikirić, Schürmann, Vallentin, Riener 2005
9 > 5×105 Dutour, Sikirić, Schürmann, Vallentin, Riener 2005

The first implementation on a computer was done by Larmouth in 1971, who was able to
verify the results of Barnes [Bar57] up to d = 6. Today there are many implementations of
Voronoı̈’s algorithm available, for example in computer algebra systems GAP or Magma. With
some changes Voronoı̈’s algorithm is still used to find all perfect forms. But todays algorithms
are much faster than Voronoı̈’s original version of that algorithm. For example, one uses some
variation of the LLL-algorithm [LLL82] to find the Min (Q) and the α in Algorithm 1 which
is much faster than the original version of Voronoı̈. Further, there are today better methods
than in 1908 to determine whether forms are equivalent. For more details on the algorithm
and its implementations we refer e.g to [Sch07; 3.1.4-3.1.5] and [Sch09]. Table 8.1 shows the
known numbers of perfect quadratic forms. Until d = 6 the computation can be done easily
with usual computers, but the number of perfect forms and therefore the runtime grows
quite fast with ascending d. In other words, it is computationally hard to compute the case
d = 9 or even higher d also with modern computer systems and algorithms. Fortunately we
need only the results for d = 4 which are known since 1887. One can find a complete list of
inequivalent perfect quadratic forms and their sets of minimal vectors for d ≤ 7 in [CS88].
For d = 4 we have only two classes of perfect quadratic forms Q1 and Q2 (see Table 8.2),
which are related to lattices of type D4 and A4, respectively. For them there are 12 or 10 pairs
of minimal vectors. A list of these minimal vectors can be found in Table 8.2.

Voronoı̈’s first reduction (Voronoı̈ I) is based on perfect forms and Theorem 8.4.2. We de-
scribe briefly the idea how it works. For any (integral) Q ∈ Qd

>0 we have that V(Q) is a
fulldimensional cone, i.e. dim V(Q) = dim Qd =

(
d+1

2

)
, if and only if Q is perfect. Fur-

thermore, the set of all Voronoı̈ cones forms a partially ordered set (poset) with respect to
inclusion and defines a polyhedral subdivision of

Pd := cone{xxt : x ∈ Zd},

which is the rational closure of Qd
>0 for which

Qd
>0 ⊂ P

d ⊂ Qd
≥0 (8.18)

holds (see e.g. [Sch07; p. 54]). Since further only Voronoı̈ cones of perfect forms are full
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Table 8.2.: List of perfect quadratic forms (up to arithmetic equivalence) and their sets of pairs of minimal
vectors in dimension 4. For each minimal vector also −1 times that vector is minimal. [CS88]

Quadratic Form
Corres-
ponding
Lattice

Minimal Vectors


1
0
0
0

,


0
1
0
0

,


0
0
1
0

,


1
−1

0
0

,


1
0
−1

0

,

Q1 =


2 1 1 2
1 2 1 2
1 1 2 2
2 2 2 4

 D4


1
0
0
−1

,


0
1
−1

0

,


0
1
0
−1

,


0
0
1
−1

,


0
1
1
−1

,


1
0
1
−1

,


1
1
0
−1



Q2 =


2 1 1 1
1 2 1 1
1 1 2 1
1 1 1 2

 A4


1
0
0
0

,


0
1
0
0

,


0
0
1
0

,


0
0
0
1

,


1
0
0
−1

,


1
0
−1

0

,


1
−1

0
0

,


0
0
1
−1

,


0
1
0
−1

,


0
1
−1

0



dimensional (compare Prop. 8.3.3) we have

Pd =
⋃

Q perfect

V(Q) . (8.19)

One gets by (8.18) and (8.19) a covering by perfect Voronoı̈ cones, on which the group GLd(Z)
acts by permutations. This action is induced by the multiplication of the elements in the
defining sets of the cones with a matrix in GLd(Z). We will take a closer look at this ac-
tion later on page 55 in case of the action of the symplectic group, which is essentially the
same. We postpone the discussion how the action looks like in detail to that place. In fact,
Voronoı̈ proved that:

Definition 8.4.3 (Voronöı): Let P(Zd) be the set of all sets of column vectors in Zd. The Voronoı̈ I
decomposition is defined by

Qd
>0 =

⋃
X∈R

R(X),

where

R =
{
X ∈ P(Zd) : ∃ perfect Q ∈ Qd

>0 : X ⊂ Min (Q) ,R(X) ⊂ V(Q) face
}
/∼
.

We say X ∼ X ′ if the cones spanned by X and X ′ coincide, i.e. R(X) = R(X ′).
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We set
R(R) := {R(X) : X ∈ R} . (8.20)

Each F ∈ R(R) is also called a Voronoı̈ cone.

Thus, we have a one-to-one correspondence between full dimensional Voronoı̈ cones and
some subsets of P(Zd). Let R ⊂ Qd

>0 be a full dimensional Voronoı̈ cone, then there is at least
one finite set X ∈ P(Zd) such that R = R(X) and X spans Rd. Let

S (X) =
{
Q ∈ Qd

>0 : [Min (Q)] = [X]
}
, (8.21)

then we have, if S (X) 6= ∅, that R(Y ) = R(X) = R for Y ∈ S (X). One can easily
show that R(X) = S (X) if X spans Rd (use [McC91; (2.5)]). Therefore, a full dimensional
Voronoı̈ cone R defines up to the previously introduced equivalence relation (see p. 44) a
unique class [X] and we write X = X(R) if R = R(X(R)). This relation decends to non
maximal Voronoı̈ cones because they are subcones of maximal cones and their defining sets
correspond to sets which span lower dimensional spaces for which we can do the same.

The action defined in (8.5) on quadratic forms induces an associated action on maximal
Voronoı̈ cones in the following way: Let R = R(X(R)) be a maximal Voronoı̈ cone, then
there is a quadratic form Q ∈ Qd

>0 such that [X(R)] = [Min (Q)]. Since X(R) has to span
R
d the form Q has to be perfect by Corollary 8.4.1. We know by Lemma 8.3.1 that for any

γ ∈ GLd(R) we have that Min
(
Rγ(Q)

)
= γ−1 ·Min (Q). This defines an action on the maximal

cones, which descends also to their subcones. Let X ∈ R and γ ∈ GLd(R) then we have

Rγ(R(X)) = γt ·R(X) · γ = R(γ−1 ·X). (8.22)

Further, Voronoı̈ gave in [Vor08b] the following theorem, which shows that the previous
definition makes sense.

Theorem 8.4.4 (Main Theorem of Voronöı’s Reduction Theory, 1907): a) For each Voronoı̈ cone
F ∈ R, the set X(Q,F ) is independent of Q. More precisely,
if Q,Q′ ∈ Qd

>0 are perfect forms and if Z and Z ′ are non-zero closed faces of V(Q) ,V
(
Q′
)

respectively such that F = Int (Z ) = Int
(
Z ′) then

X(Q,F ) = X(Q′,F ).

Hence, we will write X(Q,F ) = X(F ).

b) R defines a locally finite decomposition into open cones (cells), i.e.

Qd
>0 =

⊔
X∈R

R(X)

and a given F ∈ R is only in the closure of finitely many elements of R.

c) The action of GLd(Z) on R has only finitely many orbits.

Proof. Part b) is proved in [Vor08b; 21,24]. Part a), which implies that in b) the union is
disjoint, is proved in [Vor08b; 20] and Part c) follows from Theorem 8.4.2.
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Since there are only finitely many perfect forms modulo GLd(Z) and homothethies and
hence also modulo SLd(Z), we have only finitely many orbits in the whole decomposition
in b) of Theorem 8.4.4. In Chapter 9 we will explain how to get from this result a cellular
decomposition in our case.
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One should always generalize.

(Carl Jacobi)

Before we extend the method of Robert MacPherson and Mark McConnell to the symplectic
group Γ = Sp2(Z) we sketch their strategy (see Section 9.1.1) and give a short review on
[MM89, MM93] without proofs (see Sections 9.1.2 and 9.1.3). For proofs we refer to their
original articles. Our extension of their results is based on the fact that – as MacPherson
and McConnell mention in [MM93; p. 620] – their construction for the retract of the Siegel
upper half-space S2 does not depend on the choice of a neat subgroup of Γ. In a subsequent
publication [McC98] Mark McConnell has removed the condition that the group has to be
neat for the case of subgroups of the group SLn(Z) and replaced it by subgroup of finite
index. It seems that at least the authors and some specialists in this area like Paul Gunnells
know or perhaps only expect that a weaker version of the main theorem [MM93; Theorem
8.8] is true for symplectic groups which are not torsion free. We will see later (in Section 9.2)
that indeed an analogue theorem to [MM93; Theorem 8.8] holds for any subgroup of Γ of
finite index. In 2009 Paul Gunnells mentioned to me that he thinks that the result of [MM93]
should be true also for the symplectic group. The analogue we will proof provides an orbicell
decomposition which is a classical CW-complex if the subgroup of Γ is torsion free. This
construction is the natural generalization of a cell complex to this context and is enough to
compute later the cohomology of the Siegel modular variety. To prove this result one only has
to go through the original proof and adapt, if necessary, some parts to the case that there is
torsion. A similar approach was worked out by Paul Gunnells et. al. for the case of the group
SL4(Z), which according to him is much simpler (see [AGM02, AGM08, AGM10, Gun09]).
But up to now no result for the symplectic group in this direction was published or used
for other computations. So we decided to work out this more in detail to get a suitable
topological description of the Siegel modular variety.

9.1. Reduction Theory for Neat Symplectic Groups by MacPherson
and McConnell

I describe the method developed by Mark McConnell and Robert MacPherson in [MM93] to
construct an explicit reduction theory for some subgroups of Γ := Sp2(Z). Their method is
based on Voronoı̈’s reduction theory described in Chapter 8. The rough idea is to replace the
Siegel upper half-space and its quotients by equivalent spaces which are as easy as possible,
but have the same cohomology (compare Section 7.2). In particular, one tries to reduce the
dimension of the considered space. Due to Theorem 12.3.4 of Armand Borel and Jean-Pierre
Serre we can hope to find a 4-dimensional deformation retract W of the 6-dimensional space
S2 such that the quotient W/Γ is homotopy equivalent to S2/Γ. As reference for this one
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can use the original paper [MM93] and its three satellite papers [MM89, McC91, McC98].

Since we are not interested in any kind of compactification we skip the part of [MM93]
dedicated to this problem. In presence of the torsion elements in particular the behaviour
of the boundary is significantly more complicated than in cases where the group is torsion
free. Basically the restriction to neat subgroups of Γ in [MM93] is caused by the fact that
the authors consider also compactifications of Siegel modular varieties such that they had to
ensure that the action of the group extends in a nice way to the boundary of the variety, which
is the case if the considered group is neat. For our case – we only consider the cohomology of
the open space S2/Γ and not of a compactification of S2/Γ – we will see that we can remove
those restriction, but we have to pay the price that we have to replace in general the cellular
structure by a suitable analogue (see Section 9.2).

9.1.1. Overview of the Strategy of MacPherson and McConnell

The construction of MacPherson and McConnell roughly consists of four steps.

Step 1 Construct a decomposition of Q4
>0 into polyhedral cones.

Step 2 Reduce Q4
>0 modulo homotheties and get a decomposition of XSL4

= PQ4
>0 into

polyhedral cells.

Step 3 Embed S2 ↪→ PQ4
>0 and get a decomposition for S2 induced by the decomposition

of PQ4
>0. One has to prove that the decomposition gives cells and is equivariant and to

find a set of generators. This is the most difficult part of [MM93].

Step 4 Take the polyhedral decomposition for S2 and take the first barycentric subdivision
and remove all cells of that which are not dual cells of the original decomposition. This
gives a deformation retract.

We will not present all details and most time refer for proofs to the original paper since
especially the part that the resulting objects are really cells is rather technical and hence not
helpful for the understanding of the method.

9.1.2. Using an Embedding

The idea of MacPherson and McConnell is extremely simple, but has some technical difficul-
ties in detail as we will see later. We have seen in Lemma 8.2.3 that

XSLd
= PQd

>0 := Qd
>0/∼

.

Further, we get from (8.5) for Q = Id a map GL2g(R) ⊃ Spg(R)→ Q2g by x 7→ xt · x, which
descends to a map on Sg = XSpg

Sg ↪−→ Q2g
>0. (9.1)

By Lemma 6.3.5 and the fact that Q2g
>0 is a cone we find that the embedded image of Sg

under this map is preserved by the group of symplectic simmilitudes GSpg(Z) and hence
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also by the group Spg(Z). The group GSpg(Z) is the largest group with that property. By
composition of this embedding with the projection map

p : Q2g−{0}� PQ2g
>0

we get an embedding

Sg Q2g
>0 PQ2g

>0 PQ2g.
p

j

(9.2)

In the following, we will identify Sg with its image j(Sg) [MM93; (1.8)]. From the definition
of the cone R(X) in (8.14) for any finite set of column vectors X = [x1, . . . ,xs] we get that the
image under the projection p of R(X) is a rational polyhedron, which we denote by PR(X).
We call PR(X) a Voronoı̈ cell with respect to X .

We introduced in Section 8.4 an easy order relation on cones coming from inclusion relations
of their generating sets. We can use this poset structure to determine closures of cones. We
want to emphasize that here it is important that this partial ordering is defined in terms of
the equivalence classes of the column vectors defined earlier (see page 44) and not necessarily
on the sets itself although we identify the classes with a suitable representative. This leads
to:

Lemma 9.1.1: A cone R(X ′) lies in the closure R(X) ⊂ XSLd
of R(X) if and only

if X ⊂ X ′.

Let R be the set of sets of column vectors from Definition 8.4.3. Then we have

Sg ⊂ PQ2g
>0 =

⊔
X∈R

PR(X) (9.3)

and hence

Sg =
⊔
X∈R

(
PR(X) ∩Sg

)︸ ︷︷ ︸
=:B(X)

=
⊔
X∈R

B(X). (9.4)

We call B(X) a cell if it is non empty and homeomorphic to some Rn. Now there are two
problems left:

Problem A Is B(X) 6= ∅ and how can we decide whether B(X) is different from the empty
set or not?

Problem B Is B(X) homeomorphic to Rn form some n (or to a single point for n = 0),
i.e. is B(X) a cell?

The order relation for the cones descends to an order relation for the cells.

Corollary 9.1.2: A cell B(X ′) lies in the closure B(X) ⊂ S2 of B(X) if and only if X ⊂ X ′. This
defines a partial ordering . on the set of X and makes them a partially ordered set (poset).
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First, there are obviously X ∈ R such that B(X) 6= PR(X), because

dim Sg ≤ dim XSL2g

with equality if and only if g = 1. Further, there is no general argument known to prove
that the B(X) are cells [MM93]. A further question is whether a resulting cell complex will
be regular, i.e. the closure of each cell is homeomorphic to some closed ball. There are
strange things which could happen since there is no hidden linear structure (see page 56
for more explanation). For example, the boundaries of closures of cells could be non-simply-
connected homology spheres instead of true spheres. Due to all these difficulties MacPherson
and McConnell restricted themselves to the case g = 2 and did explicit the computations only
in that case. We will do the very same and restrict our considerations from now on to the
case g = 2.

According to Table 8.2 we have only two sets of 10 and 12 pairs of minimal vectors for the
two different classes of perfect quadratic forms for SL4(Z) or GL4(Z) respectively, which are
related to extremal root lattices of type A4 and D4. All subsets of these xi are the candidates
for sets X which we have to check first for equivalence and then for intersection.

But we and also MacPherson and McConnell are in the lucky situation that Mikhail Štogrin
[Š74] and four years later independently Ronnie Lee and Robert Henry Szczarba [LS78] found
a list of 21 classes of cones/cells represented by subsets of the minimal vectors from Table 8.2
for the larger group GL4(Z). From the 21 classes only 18 are are not of boundary type (see
below), thus we only have to check these 18 classes, which is not difficult, to answer Problem
A. We get [MM93; pp. 586-588]

Theorem 9.1.3 (MacPherson, McConnell 1993): Let Σ be the set of sets of column vectors of the
matrices in Table 9.1 which are not of boundary type then B(X) 6= ∅ if and only if [X] = [γ · S] for
some S ∈ Σ and γ ∈ Γ0 := GSp2(Z). We call Σ the set of standard elements. All elements of Σ
are inequivalent under the action of Γ0. The dimension is given by dimRB(X) = rank (X) where
rank (X) is the rank stated in Table 9.1. If x is a translate of an element in Σ we define the rank to be
the rank of its preimage in Σ.

We call B(X) of transverse, non-transverse, or boundary type if X is a translate of a set
X , which has that type according to Table 9.1. These types are related to the intersection
behaviour of cells for SL4 under the inclusion map (for an explanation see [MM89]). We
call X a Name-set if X is a translate of name Name. We will say that all cell in one orbit
have the type Name of the related standard element in Σ. If we have to distinguish more
than one cell of the same type we use indices which usually start with 0 like Pyramid0 or
Pyramid12. An explanation of the names of the cell types is given in [MM89; § 5.3]. For
a proof of Theorem 9.1.3 we refer to [MM93]. The action of the group Γ0 on the sets X is
defined by multiplication from the left on the set of column vectors. this compatible with the
action on cones defined earlier in (8.22).

Note: Not all of the 18 classes of non boundary type of the 21 GL4(Z)-classes occur in the
list stated in Table 9.1, since some have empty intersection with the embedding. So there
are indeed empty intersections. Further, there are two Γ0-classes (Hexagon and Vertebra)
which belong to the same class for GL4(Z). So the GL4(Z) class decomposes into two
connected components which are not equivalent under the action of Γ0. This is caused by the
fact we will discuss later on that the Siegel upper half-space is not a linear symmetric space
and therefore we have some strange behaviour under intersections (comp. page 56).

53



9. Reduction Theory for the Symplectic Group

Table 9.1.: List of standard elements from [MM93; pp.587-588]. Abbreviation for types: T=Transverse,
N=Non-Transverse, B=Boundary.

Rank Name Type Set

6 Desargues T


1 0 0 0 1 1 1 0 1 1
0 1 0 0 1 0 0 1 1 0
0 0 1 0 0 1 0 0 1 1
0 0 0 1 0 0 −1 1 0 −1


6 Reye T


1 0 0 0 1 1 0 0 1 1 1 0
0 1 0 0 1 0 1 0 1 1 0 1
0 0 1 0 0 -1 0 1 0 -1 -1 1
0 0 0 1 0 0 -1 -1 -1 0 1 -1


5 DR T


1 0 0 0 1 1 1 0 1
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1
0 0 0 1 0 0 −1 1 −1


5 RR T


1 0 0 0 1 0 0 1 1
0 1 0 0 1 1 0 1 0
0 0 1 0 0 0 1 −1 −1
0 0 0 1 0 −1 −1 0 1


4 Hexagon N


1 0 0 0 1 0
0 1 0 0 0 1
0 0 1 0 0 1
0 0 0 1 1 0


4 Square T


1 0 0 0 1 1 0 1
0 1 0 0 1 0 1 0
0 0 1 0 0 0 0 1
0 0 0 1 0 −1 1 −1


4 Triangle T


1 0 0 0 1 1 0 1
0 1 0 0 1 0 1 0
0 0 1 0 0 1 0 1
0 0 0 1 0 0 1 −1


3 Vertebra N


1 0 0 0 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 1


3 Crystal N


1 0 0 0 1 0
0 1 0 0 0 1
0 0 1 0 1 0
0 0 0 1 0 1


3 Pyramid T


1 0 0 0 1 0 1
0 1 0 0 1 1 0
0 0 1 0 0 0 1
0 0 0 1 0 1 −1


2 RedSquare N


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



2 LagrangianTriple B


1 0 1
0 1 1
0 0 0
0 0 0


1 LagrangianPair B


1 0
0 1
0 0
0 0


0 Point B


1
0
0
0
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By simple computations one can show that:

Proposition 9.1.4: The Γ and Γ0 orbits of Σ coincide.

We set W := ΓΣ, then we get from (9.4) a locally finite decomposition (Theorem 8.4.4)

S2 =
⊔
X∈W

B(X). (Voronoı̈ decomposition) (9.5)

MacPherson and McConnell showed that:

• The B(X) are open cells for X ∈W with dimRB(X) = rank (X) [MM93; pp. 589-594,
pp. 600-602].

• The (relative) closure B(X) ⊂ S2 is contained in a union of Voronoı̈ cells B(X ′) for
some X ′ ∈W. [MM93; pp. 594-599, pp. 602-603]

Since PR(X) are rational polyhedra the B(X) are also polyhedra. For finite sets X the
B(X) have only finitely many faces. Therefore, S2 gets by this construction the structure of a
CW-complex. Let Γ0 = GSp2(Z). It is not difficult to check that there is a group action of Γ0

on the B(X), which is the right action on the cones R(X) given by (8.22) via the action of Γ0

on the column vectors in X . Hence, the action is given by

Rγ (B(X)) = B(γ−1 ·X) (9.6)

for a γ ∈ Γ0. We find also by application of the definitions that this action is cellular on the
decomposition (9.5), i.e. it acts by permutation of the cells. There is the same action on other
kinds of cells, e.g. C (X) defined later. This action is not fixed point free, since Γ0 has torsion
and hence there are fixed point components inside the cells. We want to emphasize that this
does not mean that if γ ·B(X) = B(X) for some X ∈W that B(X) is fixed pointwise under
γ ∈ Γ0. But we know by Avner Ash [Ash80, Ash84] (see also [McC91; (2.5)]) that the stabilizer
of each cell is finite. We denote B(X) modulo the action of Γ0 by BΓ0

(X). Later we use the
analogous notation also for other kinds of cells, like C (X), and subgroups of Γ0, in particular
for the Siegel modular group Γ ⊂ Γ0. It turns out in our special situation that the quotients
of B(X) by Γ0 and its subgroup Γ coincide, because on one side −Id acts trivially and on the
other side we have the equivalence relations on the set of column vectors (comp. Prop. 9.1.4).

Let Γ′ ⊂ Γ be a neat arithmetic subgroup, then one gets by results of the Japanese mathe-
matician Ichirō Satake [Sat60b, Sat60a] that the quotient

S2/Γ
′ =

⊔
X∈W/Γ

′

BΓ
′(X) (9.7)

has the structure of a regular CW-complex. Satake’s work, which is used in [MM93, McC98],
applies only for neat subgroups. Later for our purpose we have to take care of this.
We summarize the results of MacPerson and McConnell on this decomposition:

Theorem 9.1.5 (MacPherson, McConnell 1993): Let Σ be the set of standard elements and W = Γ·Σ
as above then

S2 =
⊔
X∈W

B(X)

55



9. Reduction Theory for the Symplectic Group

is a decomposition of S2 into polyhedral cells on which the group Γ0 acts cellularly. If Γ′ ⊂ Γ is a
torsion free arithmetic group then there is a decomposition

S2/Γ
′ =

⊔
X∈W/Γ

′

BΓ
′(X),

which is a finite regular cell complex.

We will prove in Section 9.2 that a very similar result is valid for the group Γ itself. For com-
pleteness we want to mention that the construction of MacPherson and McConnell extends
easily to the so called partial Satake compactification S∗2 of S2 with respect to the standard
representation of the symplectic group. For this one replaces W by W∗ := Γ0Σ∗, where Σ∗ is
the set of all elements in Table 9.1 including those of boundary type. Then the partial Satake
compactification S∗2 with respect to the standard representation of Sp2(R) can be obtained
as the union of S2 with its rational boundary components, i.e.

S∗2 = S2 ∪R1 · Sp2(Q) ∪R2 · Sp2(Q),

where

R1 =

{(
A 0
0 0

)
∈ Mat4(R) : A ∈ R2(R), A = At, A > 0

}
R2 =

{(
1

0

)
∈ Mat4(R)

}
.

The Ri are called standard rational boundary components of S2 and their translates Rγ(Ri)
under some γ ∈ Sp2(Q) are called rational boundary components of S2.

Note: The decomposition of S2 in Theorem 9.1.5 is not locally finite near its rational bound-
ary components [MM93; (6.1)]. But for retraction we will have a locally finite decomposition
(see Theorem 9.2.11).

9.1.3. Construction of the Retract

Theorem 9.1.5 gives us a decomposition of S2. This is not the decomposition we are looking
for, since the dimension is still 6 and not 4 as we hope to find due to Theorem 12.3.4. In this
section we now describe how to construct from this decomposition a lower dimensional one
which has the right properties. MacPherson’s and McConnell’s approach uses a bunch of
different tools to prove that their construction has the right properties. They use for example
the so called Whitney stratification, so called warped/non-warped pairs and properties of
tubular neighbourhoods which we will not explain since they are rather technical and not
needed for the understanding of the results. For more details we refer to the original paper
and the references there in [MM93; (6)-(7)].

The main problem of the authors is the fact that for g ≥ 2 the space Sg is not a linear
symmetric space. But for example the space XSLd

is a linear symmetric space. We will
explain what this means in a minute. As a consequence one has the problem that some

56



9.1. Reduction Theory for Neat Symplectic Groups

known concepts which apply (only) for linear symmetric spaces are not applicable in our
case.

Definition 9.1.6: A symmetric space XG is called a linear symmetric space if there are an embed-
ding i : XG ↪→ R

d of the symmetric space XG and a faithful representation ρ : G (R) → GLd(R)
such that the map i becomes equivariant.

This means in particular that the induced action on the embedded image has to map rays

to rays and also to preserve the closed cone Qd
>0. This kind of structure is strongly related

to the theory of so called self adjoint homogenous cones [AMRT75, Ash77]. It might be
important to mention that in a linear symmetric space one is able to construct for any set of
points a convex hull which is equivariant. It is clear that this is extremely useful if we want
to construct an equivariant cell decomposition. If the space is not linear the boundaries of
the closures could be non-simply-connected homology spheres. There are known retractions
for all (irreducible) linear symmetric spaces [AMRT75, Ash77, Sou78, Ash84]. A bit less than
half of all negatively curved symmetric spaces are linear (see [MM93; p. 579]).

Unfortunately S2 is not a linear symmetric space which is [MM93; (0.3)]. As a consequence,
the embedding S2 ↪→ Q is preserved by the action of Γ (Lemma 6.3.5), but the intersection
of the cone R(X) with the embedded image is not in all cases a full cone. The intersection
can have three different types (transversal, non-transversal and boundary), which behave
completely differently. If PR(X) for some set X intersects (the embedded image of) S2

transversely, then it is clear that B(X) = PR(X) ∩S2 is a cell. In the other cases one has to
work more [MM93]. This small difference causes also much more technical problems if we
want to construct a Γ-equivariant retraction of S2, which we describe now.

Avner Ash described in [Ash77] a method to obtain an equivariant retraction with respect
to some arithmetic group if one has a decomposition into polyhedra. This construction was
then used by MacPherson and McConnell in [MM93; (8)] to derive a Γ′-equivariant retraction
for a torsion free or neat arithmetic subgroup Γ′ ⊂ Γ (Theorem 9.1.10). To get a retraction
by directly applying [Ash77] it is enough to demand from the group to be torsion free.
Neatness is only important to extend the results also to the boundaries. We sketch here only
the method of Ash and present later some more details of the construction in our case, i.e. if
torsion is allowed (see Section 9.2).

Let Γ′ ⊂ Γ be a neat arithmetic subgroup. To get the demanded retraction we start with
the extended version of the decomposition from Theorem 9.1.5 to the compactified quotient,
i.e. we replace Σ by Σ∗ and S2 by S∗2 in Theorem 9.1.5. It will turn out that for us we
can even start directly with the decomposition from Theorem 9.1.5 since the additional parts
do not occur in the new decomposition which we want to construct. This decomposition
is a Γ′-admissible decomposition (see [Ash77; p. 72]). We can now follow step by step the
construction in [Ash77; §2].

Thus, we take first the first barycentric subdivision B(S∗2/Γ
′) of the decomposition of S∗2/Γ

′.
We know by [MM93; (8.4)] that B(S∗2/Γ

′) is the order complex of the poset (W/Γ′,.) where
. is the partial ordering relation defined in Corollary 9.1.2. The vertices, i.e. the zero dimen-
sional cells, in B(S∗2/Γ

′) are in one-to-one correspondence to elements in W/Γ′ (see [Ash77]
or [MM93; (8.5)]), therefore we can associate to each vertex in B(S∗2/Γ

′) an element in W/Γ′.
We introduced in (8.4) an inner product on the cone of positive definite quadratic forms.
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Table 9.2.: Dimension of the cells C (X) for X ∈ Σ.

Cell name D
e
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e
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e
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e
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dim(C (X)) 0 0 1 1 2 2 2 3 3 3 4

Using this inner product we can introduce a dual cell structure on S∗2. Let

B∨(X) :=
{
Q 7→

〈
Q′, Q

〉
Q

: Q′ ∈ B(X)
}
⊂
(
Qd
>0

)∨
(9.8)

be the dual cell to B(X) for some X ∈ W. According to Voronoı̈ we can identify (Qd
>0)∨

again with Qd
>0. Therefore, we can view the B∨(X) as subset in Qd

>0. Denote by

C (X) := B∨(X) (9.9)

the dual cell to B(X). We define analogously CΓ
′(X) := BΓ

′ ∨ (X) for some X ∈ Γ′\W.
By taking the dual of a cell the dimension is reversed, i.e. the dimension of the dual cell
is the difference between the dimension of the whole space and the dimension of the cell.
Therefore, we have by Theorem 9.1.3

dimR C (X) = dimR CΓ
′(X) = dimRS2 − dimRB(X)

= 6− rank (X). (9.10)

Definition 9.1.7: We denote by WΓ
′ the full subcomplex of the cell complex B(S∗2/Γ

′) spanned by
those vertices σ ∈ B(S∗2/Γ

′) for which σ = CΓ
′(X) for some X ∈W/Γ′.

Note: WΓ
′ is the order complex of (W/Γ′,.). Thus, it makes here no difference whether

we consider the barycentric subdivision for B(S∗2/Γ
′) or for B(S2/Γ

′) since we take only the
elements corresponding to the elements in W/Γ′.

By definition WΓ
′ ⊂ S2/Γ

′. Therefore, we can define

Definition 9.1.8 (Retract): Let W = π−1(WΓ
′) for π : S2 → S2/Γ

′. We denote the restriction of
the projection map π to W by π̃.

Note: This definition is – as mentioned in [MM93; p. 620] – independent of the chosen
group Γ′. For its construction we will later give a proof which is not given in [MM93]
(see Lemma 9.2.1).

By [MM93; (8.7)] we have:

Lemma 9.1.9 (Retract): The cell complex S2/Γ
′ is a strong deformation retract of S2/Γ

′.

At the end we want to mention that this result extends easily to S∗2/Γ
′ in the following

way. Let W∗
Γ
′ be the full subcomplex spanned by the vertices in B(S∗2/Γ

′) corresponding to
dual cells defined by elements in W∗/Γ′. Then we can define W∗ to be its inverse image
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under the projection π. This W∗ defines then a deformation retract of the partial Satake
compactification with respect to the standard representation. This leads to the main theorem
of MacPherson and McConnell [MM93; Theorem 8.8]:

Theorem 9.1.10 (MacPherson, McConnell 1993): Let Γ′ ⊂ Γ0 be a neat (or torsion free) subgroup.
Then there is a Γ′-equivariant strong deformation retraction W of S2 which has the structure of a
locally finite Γ′-equivariant regular cell complex with only finitely many Γ′-orbits of cells. The face
poset of W is C (W), partially ordered by inverse inclusion, and Γ′ acts compatibly on W and W.

Note: It is essential that the retract now has the structure of a locally finite cell complex. This
is not true for the cell complex before the retraction.

The last part of [MM93] is dedicated to a much more explicit construction for the case that
the group which is considered is a principal congruence subgroup Γ(p) of odd prime level
p ≡ 3 mod 4. This construction uses McConnell’s work on configuration in projective ge-
ometry in connection to cone decomposition [McC91] and is also applicable for some groups
different from the symplectic group. In particular, it works for GLd and SLd [MM89]. A more
detailed analysis for the spaces related to these groups and their Satake compactifications is
contained in [AM97, McC99].

Remark (Why not use projective configurations with a covering?):
It is known that we could replace the study of a quotient by a group with torsion by the
study of a branched covering, which is a quotient by a torsion free group. So one might ask
the question why not use these projective configurations, then take a covering and simply
compute the cohomology from that. This is of course possible, but the problem in practice is
that the covering group, which in our case for Γ(p) is Sp2(Fp), is quite large. For example,
the smallest case where Γ(p) is torsion free (and also neat) with p ≡ 3 mod 4 is Γ(3). Here we
have a branched 51840-fold covering of our space. This leads in the further computations to
linear systems, which have to be solved, which are 51840 times as large as the original ones.
In the best case the runtime to solve linear systems grows quadratically in the dimension n.
For a generic dense case one has, using Strassen’s trick1, a complexity of O(nlog2(7)), which
is asymptotically faster than the classical gaussian elimination, which needs O(n3), because
log2(7) = 2.80735... < 3 (see [vG03; p. 327ff.]). Therefore, we have to assume in the case above
that the computation for the larger system needs roughly between 2.69 × 109 (sparse case)
and 1.72 × 1013 (dense case) times as long as for the original system. After this estimate we
thought that this approach is probably not the best solution for our problem.

The analogue of Ash’s construction [Ash77; §3] shows that W can be interpreted as the
Poincaré dual of the decomposition of S2. The sets C (X) form an analytic Whitney stratifi-
cation of S2 [MM93; (0.2)] and we can viewW as a subcomplex of the original decomposition
of S2.

1Volker Strassen proposed in 1969 [Str69] a faster alternative to the classical gaussian elimination which uses
an iterated splitting of the matrix into blocks of half size. If the dimension is n = 2

k one can show that one
needs at most 6 × nlog2(7) and if n is arbitrary one needs at most 42 × nlog2(7). The fastest known methods
today are variations of Strassen’s approach. The best known method for dense systems has a complexity
of O(n

2.376
) [vG03; p. 329].
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9.2. Extension to the Torsion Case

Now we extend the results of MacPherson and McConnell from Theorem 9.1.10, which are
only valid for neat subgroups of Γ0, to arbitrary arithmetic subgroups of Γ of finite index.
This result is stated in Theorem 9.2.11. There are some differences to the result in Theo-
rem 9.1.10. First, the resulting decomposition in the quotient is not a regular CW-complex,
because not all objects in the decomposition are cells (they are only orbicells). Furthermore,
the result seems not to extend (in general) to a suitable description of compactifications of
the quotient. This is not really surprising because even in the absence of torsion we have to
handle fancy identifications in the boundaries.

The first step in this extension was the above mentioned remark that W does not depend on
the choice of Γ′. This is easy to see. According to Theorem 9.1.5 we have a set Σ such that
W = Γ · Σ. This is obviously independent of Γ′. Hence, we get:

Lemma 9.2.1 (Independence): The construction of the space W is independent of the chosen Γ′.
More precisely, if Σ is the set of standard elements from Theorem 9.1.3 and C (X) the cell dual to
B(X) for X ∈W = Γ · Σ, then

W =
⊔
X∈W

C (X).

A remark on the notation: we will very often identify W with the set of cells which are
defining W, hence we use terms like σ ∈W.

In some way this lemma suggests that the complete construction from [MM93] should be
valid more or less for arbitrary subgroups of Γ and therefore also the group Γ itself. This
leads to the question whether Theorem 9.1.10 stays true if there is torsion and how the
constructions differ between the case where the group has torsion elements and the case
where it has not. While reading [MM93] I got the strong feeling that torsion in some way
only matters if we consider also the behaviour on the boundaries or compactifications. Since
we are only interested in the cohomology of the space itself and not its compactifications,
this should not be a serious problem. My idea was that the only thing one should change in
the presence of torsion elements is that then the image of cells in the quotient are no longer
copies of cells in S2, but they are cells on S2 modulo the action of the stabilizer, i.e. orbicells
(see Section 5.3). However, the space W seems to be independent of the group used for its
construction in Definition 9.1.8.

Now we have to verify step by step some properties of W with respect to the group Γ which
were proved in [MM93] in case of neat subgroups of Γ0. Usually one can replace Γ by a
subgroup Γ′ in the following statements and they stay valid.

Proposition 9.2.2 (Cellularity): The group Γ acts cellularly on the space W by the action induced
by the action of Γ on W.

Proof. Let σ ∈ W be a cell, then there is an element X ∈ W such that σ = C (X). By
Theorem 9.1.5 we have W = ΓΣ. Therefore, there is an element γX,S ∈ Γ such that γ−1

X,S ·X = S

is a standard element.2 Both stabilizers are conjugated.). By (9.6) the group Γ acts on the cells

2The element γX,S is not unique. One can replace γX,S by a translate under an element of the stabilizers of the
sets X and S.
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by Rγ (C (X)) = C (γ−1 ·X). Hence, we get that

Rγ(σ) = Rγ (C (X)) = C (γ−1 ·X)

= C (γ−1 · γX,S︸ ︷︷ ︸
=:γ
′

·S) = C (γ′ · S︸ ︷︷ ︸
=:X

′

)

= C (X ′),

where X ′ ∈W by construction. So the group Γ acts by permuting the cells.

The next proposition is a complete triviality.

Proposition 9.2.3 (Orbits): The action of the group Γ on W, and therefore on W, has only finitely
many orbits.

Proof. This follows immediately from the fact that W = Γ · Σ (see Theorem 9.1.3) and Σ
consists of exactly 11 elements (see Table 9.1). In other words, W decomposes into 11 orbits
under Γ generated by the 11 sets in Σ.

If Γ′ ⊂ Γ is a subgroup of finite index Proposition 9.2.3 is still valid, since if Γ decomposes
W into m orbits and [Γ : Γ′] = d then there are at most d ·m different orbits. There might be
some orbits which are stable under the subgroup while others may decompose. Hence

Corollary 9.2.4: Let Γ′ ⊂ Γ be a subgroup of finite index. Then Γ′ has only finitely many orbits on
W and therefore on W.

By the original proof in [MM93] it is clear that for any X ∈ W the set C (X) is a cell. Since
there the groups are neat the cells C (X) have a trivial stabilizer, i.e. plus and minus identity
are the only possible elements in the isotropy group of the cell. Therefore, also the associated
set CΓ(X) in the quotient is a cell. If there are torsion elements this is no longer true, because
the non-trivial stabilizer causes additional problems.

Lemma 9.2.5: Let σ ∈W be a cell, then σ/Γ is an orbicell in W/Γ and σ/Γ = σ/Γσ =: σΓ, where

Γσ =
{
γ ∈ Γ : Rγ(σ) = σ

}
is the stabilizer of the cell σ. We use, as before, CΓ(X) = C (X)/ΓX where ΓX = ΓC (X) with the
previous notation.

Note that the stabilizer does not necessarily stabilize the cell pointwise.

Proof. By Proposition 9.2.2 the action of Γ is cellular. Hence, γ ∈ Γ either maps a cell in the
decomposition to another cell or to itself. Therefore, if γ 6∈ Γσ it does not act on σ and we
have σ/Γ = σ/Γσ. We know that the stabilizer Γσ is discrete since Γ is discrete. Γσ is compact
because Γσ is the intersection of a group which is conjugate to the maximal compact group
U(2) with Γ. Therefore, Γσ is finite. Since σ is homeomorphic to an open ball and Γσ is a
finite group of isometries, the quotient is an orbicell.
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We know that a cell B(X ′) lies in the closure B(X) ⊂ S2 of B(X) if and only if X ⊂ X ′

(comp. Corollary 9.1.2). Going from cells to dual cells reverses the inclusion compared to the
order relation for the B(X) (or R(X)).

Corollary 9.2.6: A cell C (X ′) lies in the closure C (X) ⊂W of C (X) if and only if X ⊃ X ′. This
defines a partial ordering relation on W.

This is the most important tool for our algorithms to determine closures and boundaries of
cells in Chapter 10. Before we proceed with the proof that our decomposition of the quotient
has the structure of a finite orbicell complex, we need to have a better description of the
closure of cells in W and its quotients.

Proposition 9.2.7 (Closure I): The closure of a cell σ ∈W in W is a finite union of cells σi ∈W.
The closure of each cell is homeomorphic to a closed ball., i.e. W has the structure of a locally finite
regular cell complex. If σ = C (X), we have

σ =
⊔

X
′⊃X

∃γ∈Γ:γX
′∈Σ

C (X ′)

Proof. By construction W is a cell complex. By [MM93; Proposition 8.3] we have that the
closure of a cell is a closed cell, i.e. homeomorphic to a closed ball. Therefore, we have a
regular cell complex (comp. e.g. Theorem 9.1.10). This cell complex is locally finite because
by Theorem 8.4.4 of Voronoı̈ the polyhedral cone we are starting with is locally finite.

We now want to descend to the quotient.

Corollary 9.2.8 (Closure II): Let Γ′ ⊂ Γ be a subgroup of finite index. The closure of an orbicell
σΓ
′ ∈ W/Γ′ in W/Γ′ is a finite union of orbicells σi,Γ′ ∈ W/Γ′ which are images of cells σi ∈ W

under the projection map π̃.

Proof. Let σ̃Γ
′ be a lift of the orbicell σΓ

′ to W. By Proposition 9.2.7 the closure σ̃Γ
′ of σ̃Γ

′ in
W is a union of cells σi in W. By Proposition 9.2.3 and Corollary 9.2.4 there are only finitely
many Γ′-orbits, hence the cells σi ∈W descend to only finitely many orbicells σi,Γ′ in W/Γ′

(comp. Lemma 9.2.5).

Remark: Unlike the cells in W (Proposition 9.2.7) or the cells in the quotient in case of neat
subgroups in the original work of MacPherson and McConnell [MM93] we cannot ensure
that in the general case the closure is homeomorphic to a closed ball. If there is torsion
then the boundary will be identified in a non-trivial way in the quotient. Hence, we have in
general not a regular cell structure in the quotient.

Lemma 9.2.9 (Finite cell complex): Let Γ′ ⊂ Γ be a subgroup of finite index. Then we have that

W/Γ′ =
⊔

X∈W/Γ
′

CΓ
′(X)

has the structure of a finite orbicell complex.

Proof. This follows immediately from the fact that there are only finitely many Γ′-orbits
(Corollary 9.2.4) and Proposition 9.2.7.

62
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The only thing which now is still missing is that this is indeed a deformation retract for our
quotient.

Proposition 9.2.10 (Retract): W is a Γ-equivariant strong deformation retract of S2. If Γ′ ⊂ Γ is
a subgroup of finite index then W/Γ′ is a strong deformation retract of S2/Γ

′.

Proof. By [MM93; Prop. 8.7] we have thatW is a strong deformation retract of S2. According
to Theorem 9.1.10 W is Γ′-equivariant for any neat Γ′ ⊂ Γ. Furthermore, we know by
Proposition 9.2.7 that W is a locally finite cell complex on which by Proposition 9.2.2 the
group Γ acts cellularly. Hence, we can make W into a Γ-equivariant deformation retract,
because by Lemma 9.2.1 W does not depend on the chosen neat Γ′ ⊂ Γ which was used
during its construction. The proof of the analogous statement in the neat case can be found
in [MM93; §8], where it is split into several partial results. This proves the first part.

Further, each cell has only finitely many faces (see Proposition 9.2.7), therefore W is a
Γ-admissible decomposition in the sense of [Ash77; p. 72]. Now we can consider W/Γ as
a finite subcomplex of the finite cell complex S2/Γ by the embedding of cells in in the con-
struction of W (comp. Section 9.1.3). We are now able to define exactly the retraction from
S2/Γ onto W/Γ in the same way as described in [Ash77; p. 75f.] (which is the same as in
[MM93; Lemma 8.7]), but we have to replace the (relatively open) polyhedral cones there
by the cones modulo their stabilizers, which are again polyhedral cones, but not necessarily
relatively open. With the previous results it is easy to check that this defines now indeed also
a strong deformation retraction to W/Γ. We refer to [Ash77; p. 74f.] for all details, which are
easy to adapt.

An other method than to use [Ash77; §3] to prove the Proposition 9.2.10 is to use the result
of MacPherson and McConnell that there is a retraction for some neat subgroup Γ′ ⊂ Γ from
[MM93] and to consider the (branched) covering of W/Γ by W/Γ′. But this is essentially the
same since the lift of the retraction map involves to divide out the non-trivial stabilizers at
some point.

We can now collect the results from above.

Theorem 9.2.11 (Main Theorem): Let Γ′ ⊂ Γ be an arithmetic subgroup of finite index. Then there
is a Γ′-equivariant strong deformation retractionW of S2 which has the structure of a regular locally
finite Γ′-equivariant regular cell complex. The cell complex W is independent of Γ′ and decomposes
into finitely many Γ′-orbits of cells. Let W = Γ · Σ, where Σ is the set of standard elements from
Theorem 9.1.3, then the face poset of W is C (W), partially ordered by inverse inclusion, and Γ′ acts
compatibly on W and W. We have that

W =
⊔
X∈W

C (X).

Further, there is a strong deformation retract of S2/Γ
′ which is equal to W/Γ′ and hence we have an

orbicell decomposition

W/Γ′ =
⊔

X∈W/Γ
′

CΓ
′(X).
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9. Reduction Theory for the Symplectic Group

So we got an extension of the original result from [MM93; Theorem 8.8] (see Theorem 9.1.10)
which is valid for arbitrary arithmetic subgroups and therefore in particular for the Siegel
modular group Γ itself. The only malus is that it is not possible to get a cell decomposition
in the classical sense, but only an orbicell decompostion.

This result is in some way consistent to some phenomena in this area. For example, the
result on the virtual cohomological dimension of [BS73] (see Theorem 12.3.4) was first only
considered for torsion free groups and then extended to the general case by showing that it
does not depend on the choice of the subgroup.

We use the results presented in this section in Chapter 10 to compute complete lists of
(orbi-)cells in W (or W/Γ) which are consistent to some known local consideration on cells
in W done with this method by the authors in [MM89] and some notes from Paul Gunnells
on the work of Robert MacPherson on arithmetic groups [Gun06], where he states the local
results on the closure of one 4-cell in W from [MM89]. These known results are not enough
to compute later the cohomology (see Section 13.3).
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10. Computing a Cellular Decomposition

Variatio delectat.

(Marcus Tullius Cicero)

10.1. Introduction

In this chapter we describe the methods we used to compute lists of cells inW, their stabiliz-
ers (and thus also orbicells in W/Γ), boundaries, or neighbours. All these computations are
more or less purely combinatorial and use – in the sense of the famous sentence of the Ro-
man philosopher and statesman Marcus Tullius Cicero1 – most of the time different variants
of the same basic idea (see Section 10.4.1). One can summarize the main tools for this task as
follows

a) Theorem 9.2.11 together with the definition of the set Σ of standard elements.

b) The order relation on the sets W and W from Corollary 9.2.6.

c) Some basic linear algebra.

The method proposed by us might be not the fastest possible method, but it has the big
advantage to be quite simple and that it is obvious that it returns the right results. A sequence
of tests showed that our method is fast enough to give us the results we are looking for in a
few minutes. So it was not necessary to speed-up things at this point.

The computations for this part are more or less completely done in SAGE. Only the part
which allows us to identify the abstract group structure of stabilizers uses explicitly the GAP

SmallGroups Library [BEO02].2 In particular, in this part we used the possibility of SAGE to
create objects which carry not only the information of the defining set X ∈ W, from which
all other necessary information could be deduced, but also some additional information,
like the rank, which make the handling easier and faster since they do not have to be com-
puted several times. We created a class to describe cells in W together with their properties.
A list of available commands in Chapter A in the Appendix. We cannot state the full source
code of our program. Therefore, we put the parts of the SAGE source code, which are useful
to understand the program in Appendix B. The full source code is available either on the
CD-ROM, which is included in the printed copy of this thesis, or direct from the author. In
this chapter we only present the ideas of the used algorithms and explain at which points
there were some technical problems and how we handled them. Furthermore, we will give
some example outputs of our program. Additional results can be found on the CD-ROM,
which is include in the printed copy of this thesis.

1”Variatio delectat” from Marci Tullii Ciceronis ”De natura deorum” (Liber I, 9, 22). Also known in a variant
(sic!) from the poet Phaedrus (”Fabulae” Liber II, prologus 10)

2
SAGE uses some parts of GAP inside its own algorithms as subroutines for some tasks for matrix groups.
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10. Computing a Cellular Decomposition

It is necessary to discuss some technical questions like how to represent a cell (see Sec-
tion 10.3) and the choice of lifts (see Section 10.2) before we are going in medias res because
it is essential for all algorithms to represent the objects in a unique way such that one can
compare them fast.

10.2. The Question of Lifts

Let π̃ : W → W/Γ be the projection map to the quotient of the retract (comp. Sections 6.2
and 12.1). By the choice of the set of standard elements Σ in Theorem 9.1.3 and Table 9.1
we implicitly made a choice for a lift under π̃ of each orbicell in the decomposition of W/Γ.
Since each cell in W lies in the orbit of exactly one standard element we find

W/Γ =
⊔
σ∈Σ

π̃(σ) (10.1)

If σ ∈W/Γ is an orbicell then

σ̃ := π̃−1(σ) ∩ {C (X) : X ∈ Σ} (10.2)

is this chosen lift for the orbicell σ. We know by Lemma 9.2.5 that then σ = σ̃/Γσ̃ where Γσ̃
is the stabilizer of the lifted cell σ̃ in W. Remember that the stabilizer need not to stabilize
the cell pointwise. Thus, we have a one-to-one correspondence between elements in Σ and
orbicells in W/Γ. Assume now that we replace a chosen lift by a translate, say σ̃′ = γ · σ̃ for
some γ ∈ Γ, then we have γ−1 · Γσ̃′ · γ = Γσ̃ and thus

π̃(σ̃′) = π̃(σ̃) = σ̃/Γσ̃ = σ̃′/Γσ̃′ = σ. (10.3)

From now on we fix for each orbicell inW/Γ a lift by (10.2). It is a more complicated question
how to fix a preimage for a single point x ∈W/Γ or some arbitrary subset of W/Γ. This is
not important for the computation of cells or their stabilizers, etc., but we discuss this shortly
to make clear what kind of problems can occur in this context in general. The basic problem
is that even if we fix a lift for each cell, we might, depending on the stabilizer of x, have more
than one lift of x in the chosen lift of the cell in which x lies. At most there are finitely many
such lifts. Let us now have a closer look at this. We know that for each point x ∈W/Γ there
is a unique orbicell σx such that x ∈ σx and σx = CΓ(X) for one X ∈ Σ. Now choose an
arbitrary point x̃0 ∈ σ̃x ∩ π̃

−1(x), i.e. x̃0 is one of the lifts of x in the cell σ̃x. Then we find∣∣∣π̃−1(x) ∩ σ̃x
∣∣∣ = [Γσ̃x : Γx̃0

] (10.4)

different preimages of x which lie inside the uniquely determined cell σ̃x. It follows by
cellurarity of the action that the stabilizer of a point in a cell has to be contained in the
stabilizer of the whole cell. The number of preimages in the cell does not depend on the
choice of x̃0 because all possible finitely many different Γx̃0

are conjugated subgroups of
Γσ̃x and therefore have the same index. If the stabilizer of a point inside the cell equals the
stabilizer of the cell there is exactly one preimage. In all other cases we have more than one
possible points in the unique cell σ̃x.

There is no canonical choice to distinguish a single out of these points. Thus, one has to
choose one out of these arbitrarily if there are no further restrictions to the choice. Further
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restrictions we can consider are for example if we have more than one point, say a small
connected open neighbourhood U of x, then it is useful to choose the preimages of x simulta-
neously together with all points in U such that also the preimage is connected. But take care,
even if U ⊂ W/Γ is simply connected there is no reason that any connected preimage of U
in W has to be simply connected. In particular, it can (but need not to) have several holes, if
U contains more than one orbicell. Therefore, we will make the choice of preimages of sets
which are neither orbicells nor unions of orbicells if necessary depending on the context. In
all other cases we take the choice from above.

These chosen preimages have an interesting property. Using Corollary 9.2.6 together with
Table 9.1 shows that all cells C (X) for X ∈ Σ lie in the boundary of C (RedSquare), be-
cause each defining set X ∈ Σ contains the standard basis {e1, e2, e3, e4}. This is due to the
fact that a collection can only define a cell in the inner if the collection generates Z4. This
follows easily from Theorem 8.3.2 and Proposition 8.3.3 together with the definition of the
Voronoı̈ I decomposition (Definition 8.4.3) and is a quite useful property for the following
computations.

In Section 13.3 we will find that it is not enough to choose only one preimage per type of
cells. According to Section 13.3, we need to choose a representative per orbit of 4-cells which
lie around each chosen lift of a k-cell for k ≤ 3 under the stabilizer of that particular k-cell.

In later computations (see Section 10.7.3.1) we will see that in case of the three different
types of 3-cells there is for each cell of type Crystal and Vertebra only one orbit of 4-cells
around them under the stabilizer of the central 3-cell, whereas the neighbours of dimension 4
of cells of type Pyramid decompose into three orbits under the corresponding stabilizer, two
of length one and one of length two. Therefore, we need two additional representatives of
cells of type RedSquare beside the standard 4-cell RedSquare0 represented by the identity
matrix. In further steps this has to be iterated with 3-cells around 2-cells and so on. It is
obvious that the set of standard cells is not large enough to do this, since therein is only one
representative per type. We find analogous situation for cells of other dimensions. For an
efficient computation is is useful to reduce the number of chosen representatives as much as
possible to reduce the complexity of computations.

10.3. How to Represent Cells

The most important question for doing computations in this part is: What are cells for the
computer and how to generate and represent them. We have to include in this decision
which kind of operations we have to perform with cells. For us this means that we have to
be able to check the inclusion relations for cells and to compute the action of a given group
element. Therefore, we will also give a short description how to do this (see Section 10.3.2.2
and 10.3.2.3).

Group elements are in our program given as MatrixGroupElement, which is a predefined data
type in SAGE, which uses parts of the MatrixGroup construction from GAP. Each element in
a SAGE MatrixGroup can be given as a matrix.

It is a little bit more complicated to get a suitable description for (orbi-)cells. We decided to
represent an orbicell in W/Γ as well as a cell in W by a representative in W or, to be more
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10. Computing a Cellular Decomposition

precise, by an element in W. This has the advantage that the computations are much simpler
in W or W and the disadvantage that to describe an orbicell in W/Γ we have to deal with
lifts and maybe several equivalent definitions for the same orbicell. The first problem was
discussed in the previous section for cells and is therefore not a problem at all. The problem
of having several descriptions which define the same object occurs not only for orbicells in
W/Γ, but also for cells inW itself. InW two sets which are equivalent under the equivalence
relation defined on page 44 define the same cell. InW/Γ all cells of the same type inW define
the same orbicell in the quotient. Up to further notice we are only dealing with cells in W.
We describe first how to represent cells in W.

10.3.1. Cells in W - Dealing with Equivalent Defining Sets

According to the results in Chapter 9 we know that every cell σ – independent of whether a
cell in W or in W/Γ – is defined by an element X ∈ W, i.e. a collection of integral column
vectors. Therefore, a minimal definition has to contain only this set X . We defined on page 44
an equivalence relation on the set of collections of integral column vectors in the context of
cones. We reformulate this together with the results from Corollary 9.2.6:

Proposition 10.3.1: Let X = (x1, . . . ,xk) and X ′ = (x′1, . . . ,x
′
l) with xi,x

′
i ∈ Z

4. We have that
C (X) = C (X ′) if k = l and there is a permutation σ ∈ Sk and ε1, . . . , εk ∈ {±1} such that

(xσ(1), . . . ,xσ(k)) = (ε1 · x
′
1, . . . , εk · x

′
k)

and therefore [X] = [X ′].

Recall that if we enclose a collection of vectors in [. . .] we consider the collection as collection
up to equivalence as described in Proposition 10.3.1. We choose a representative in each class
of collections of column vectors in a way such that we are able to compute this representative
effectively. For that purpose we introduce a standardization of the signs of the columns and
their order in following way:

• If the first non-zero entry of a column is negative, replace the column by its negative.

• Sort the columns in the following way:

– Count the number of zeroes in each column. Take first the columns with the most
zero entries, then the others with ascending number of non-zero entries.

– Inside a block with the same number of zeroes the columns are ordered in such a
way that in each row the size of the entries is descending.

An element which has the above stated form we call an element of standard form.

We decided to store sets of columns in a matrix because then the group action on a cell is
a matrix multiplication from the left with the inverse of the matrix representing the group
element (comp. equation (9.6)). See Sage Source Code B.1 for the implementation of the
function getstandardform in SAGE, which converts a given matrix, i.e. collection of column
vectors, into the standard form.
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Here an example in SAGE with a random matrix with six columns:

sage: m1 = random_matrix(ZZ,4,6, density=0.5); m1

[ 0 0 0 4 1 -1]

[ 0 -14 -3 0 0 -2]

[ 17 0 0 0 0 -2]

[ 0 1 0 -1 0 1]

sage: getstandardform (m1)

[ 1 0 0 4 0 1]

[ 0 3 0 0 14 2]

[ 0 0 17 0 0 2]

[ 0 0 0 -1 -1 -1]

In our program we will store every defining set for cells in this form. If we perform any kind
of operation on a cell we apply the induced action an the set of standard form and store, after
the operation is done, the obtained result again in standard form. This allows us to compare
cells (for equality or inclusion relations) simply by comparing the stored generating sets in
standard form.

This is a huge advantage compared with the case where we compare matrices in non stan-
dardized forms because then the only thing one can do is to compare all possible combina-
tions of signs and permutations, which costs much more time. For example, for the smallest
set of four columns one has to compare in the worst case up to

24 × 4! = 384

matrices. In case of the largest occurring collection in Σ with 12 columns there are up to

212 × 12! = 1, 961, 990, 553, 600 ≈ 1.96× 1012

possible matrix representations to check. The matrices themselves are not that huge that
one matrix comparison operation (about 215ns) needs a mentionable amount of time, but
the potentially huge number of necessary comparisons which has to be done changes the
things. It is quite obvious that it is not very intelligent to compare up to 1012 matrices, which
needs roughly 116 hours, in each check of equality of cells. In SAGE we can use the very
efficient implemented sorting algorithms coming from Python in the command sorted such
that the standardization after each operation is much less time consuming then one naively
performed comparison operation for a large example (see e.g. Table 10.1). Almost all parts
of our algorithms to compute closures, stabilizers, etc. require a great many comparisons,
therefore it is important to have a storing format which allows fast comparisons.

10.3.2. Cells as Objects - Unifying Descriptions

From some point of view it is enough to represent a cell by the matrix in standard form which
encodes the defining set in X ∈ W. But then we have – as mentioned above – to deduce
the other informations by often time-consuming computations. So it is better to remember
some additional data like the rank or the standard set in which orbit X is contained. These
information are important if we work also with cells in the quotient or if we construct a
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10. Computing a Cellular Decomposition

Table 10.1.: Comparison of runtimes for the comparison operation. The examples are random matrices of full
rank with four rows and the number of columns stated in the first column. We measured the time for a single
comparison operation which checks if two matrices are equal. Further, we computed the maximal possibly
necessary number of matrix comparisons in case of the comparison of cells in non standard form. The product of
these numbers gives the maximal total time for one cell comparison, which is also stated in the table. In addition
we measured the time to transform and store a matrix in standard form using the getstandardform command.
The maximal total time in this case is then the sum of the time per comparison and the time to convert the
matrix to standard form, which is roughly the same as the time which is needed to convert the matrix, therefore
we do not list it in the table. All timings were done on the ray server harmonia at MPIM in Bonn and are the
arithmetic mean of 625 runs.

columns
time per
comparison

Non Std. Form Std. Form

time to get
standard form

maximal
number of
comparisons

maximal
total time

4 219ns 384 84.1µs 391µs
6 214ns 4.6× 104 9.86ms 630µs
8 216ns 1.03× 107 2.23s 685µs

10 216ns 3.71× 109 13.38min 751µs
12 213ns 1.96× 1012 116.08h 789µs

resolution to compute the cohomology. We know by Theorem 9.2.11 that every set X ∈W is
an image of a set X0 ∈ Σ under the group Γ. So a the cell σ can be given by an element in Σ
together with (at least) one element in Γ. In other words, we have to store besides the defining
set also the standard set from which the the defining set can obtained and a group element
which maps one onto the other. It is not useful to recompute this information every time it
is used, because one has a similar problem than in the previous section. this information is
also used to identify cells with its corresponding orbicells in the quotient. It might also be
useful to have more information, as the dimension or the rank of the cell or later if we have
computed them, the cells in the boundary or the stabilizer of the cell.

10.3.2.1. Cells as Objects

A good concept to handle this is to use so called objects. This concept is known in many
programming languages such as C++ or Python (and so in SAGE). Since we do not assume
that all readers are familiar with this concept we describe what this means in context of our
example, the description of cells.

An object is some kind of data type which has some underlying attributes, e.g. an integer
which is the dimension or a matrix which is a defining set of the cell. Furthermore, an object
can carry information which operations are allowed with or on it and how to perform these
operations. In other words an object is a kind of container for some data, called attributes,
and functions, called methods, related to this data. This concept is very familiar to math-
ematicians since usually we have complicated structures which we have to encode in some
way. A good example might be an integer. An integer has its value, but we also have to
know how to multiply this number with other objects of the same type, i.e. an integer. Ob-
jects allow a great degree of abstractness in the code. We defined in our package Cells cells
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as objects carrying lots of different attributes and methods. The more structure we define for
an object, the slower might be the access (in particular the creation of new objects depends
on this). Parts of the data are necessary, e.g. the defining set and the rank. Other parts, like
the closure of a cell and its stabilizer, could be computed, but are stored after the fist compu-
tation as an attribute of the cell to avoid to compute it again and again. This is extended in
the way that we cached this data in addition on the disc to avoid the recomputation for the
next time.

For example, the method stabilizer returns the attribute _stabilizer if the attribute is
set, otherwise it checks whether a cached version can be found on the disc and if this also
fails, it starts to compute the stabilizer and stores the result. We use this also for other time
consuming parts like the closure of a cell. In this way we can avoid the time consuming
recomputation of results, because we can load them from disc after they were computed
once. To define an object in SAGE we use so called classes. The class which defines cells
is called Cell. One can create a new object of a class by calling the class. This means in
case of the class Cell evaluating the command Cell (matrix, key1=val1,...), where the
parameter matrix is required and further optional arguments (keys) can be set, otherwise a
default value is used. For the class Cell there are the following arguments. We list them
together with their default parameter if there is one.

matrix The matrix containing the defining set as columns. Any matrix is converted to stan-
dard form during initialization this ensures that in any case the matrix has standard
form.

name=’Cell’ The name which is returned when calling the cell. For cells coming from a
standard set we give by default a string concatenating the cell type with an integer.

latex name=’Cell’ SAGE objects allow to return a LATEX string. This string can contain LATEX
formating commands.

cell type=None A string equal to name of the standard set, i.e. one of
the following strings: [’RedSquare’, ’Vertebra’, ’Crystal’, ’Pyramid’,
’Triangle’, ’Square’, ’Hexagon’, ’RR’, ’DR’, ’Desargues’, ’Reye’] or None if the
type is not known. This attribute is used to identify orbicells in the quotient since they
are uniquely determined by its type.

cell rank=None An integer equal to the rank of the defining set in sense of Theorem 9.1.3.

bd type=False A boolean, i.e. True or False, which indicates whether the cell is of boundary
type. This information is not used so far.

transv=None A boolean or None. It is set to None if the is of boundary type or it is not known
whether the cell is transverse or not. This information is not used so far.

map2standard=None A symplectic matrix γ such that γ applied to the cell is one of the
standard cells defined by an elements in Σ.

closure=None List of objects from the class Cells which lie in the closure of the cell.

stabilizer=None An object of the SAGE class MatrixGroup equals to the stabilizer of the cell.
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These arguments are stored as attributes of the class Cell and can be used to compute further
data for the cell. By default some parameters, like stabilizer or closure, are set to be None,
although we could compute them during the initialization of the new object. We postpone
their computation to the first use, such that the initialization of a new object is faster and we
avoid the expensive (in time) computation for those objects where this information is maybe
never used. After the first use the related attribute is set from None to its real value and in
some cases also stored in addition on disc. We will explain this later. There is one important
exception to this: if we generate a cell as image under some group operation, we compute
the new values, for example for the attributes _stabilizer and _closure, from the original
object, because they can be obtained simply by translation, conjugation, or simple copying of
the original value.

Beside the class Cell, which describes arbitrary cells, we defined a further class called
StandardCell which inherits fromCell the definition and its properties with only a sim-
ple modification which allows to define the matrices of the standard set as lists of integers
which refer to the positions of the occurring columns. Here we use the fact that there is only
a rather small number of different columns which are combined in different ways to get the
standard sets. This makes it easier to define the standard elements. In other words, the only
difference in handling the objects of the class StandardCell is during the initialization.3 All
objects defined by elements coming from Σ are collected in a predefined list of objects called
StandardElements, such that they are easily accessible for further use.

In the following two sections we have a short look at the two most important basic operations
for cells: The action of group elements, i.e. matrices, and the comparison of two cells. These
are two of several class methods which are included in definition of the class Cell.

10.3.2.2. Action on Cells

We defined the operation of group elements as class method in the class Cell. Here we
use the possibility to overload operators. This means that we replace the * operator for
multiplication by our own definition on the objects of type Cell. Beside this short form
we have also the class method apply which does exactly the same. We decided only to
implement the right action on the cells, because that is is the only action we used up to
now. However we want for simple handling that in the implementation multiplication with
a group element g from the right and the left side returns the result of the right action Rg of
the group on cells.

We illustrate how the group action can be computed with an example how we can use the
group action in our program.

3and they return True in the method is_StandardCell.
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sage: C= RedSquare; C.matrix()

[ 1 0 0 0 ]

[ 0 1 0 0 ]

[ 0 0 1 0 ]

[ 0 0 0 1 ]

sage: g=matrix([[-1,0,1,0], [0,1,0,-1], [0,0,1,0],

[0,0,0,-1]]);

sage: g

[ -1 0 1 0]

[ 0 1 0 -1]

[ 0 0 1 0]

[ 0 0 0 -1]

sage: g*C

[1 0 1 0]

[0 1 0 1]

[0 0 1 0]

[0 0 0 1]

sage: C.apply(g)

[1 0 1 0]

[0 1 0 1]

[0 0 1 0]

[0 0 0 1]

sage: C*g==g*C

True

The standard multiplication in Python of object with an element, which is defined in the class
method __mul__, is left multiplication, i.e. one computes C*g. Left here refers to the position
where the object of the class in which this multiplication is defined is placed. To get a code
which looks more like the usual notation we overload also the right multiplication, which is
defined in the method __rmul__, such that we have a multiplication also from the other side.
For the class Cell both multiplication methods are, as shown in the example, set to give the
same result. This allows us to read the code in the usual way, i.e. the group acts from the left
on the cell.

Remember, a group element, which is encoded as an object of the class Matrix4 or an object of
the class MatrixGroupElement, operates on the cell by multiplication with the inverse of the
matrix on the set of columns from the left (see (9.6)). The Sage Source Code B.2 in Appendix B
shows also – we mentioned that before – that if further attributes of the cell are known the
corresponding attributes are computed from that of the original cell. To be mentioned are in
particular the closure and the stabilizer, which can be obtained by translation or conjugation
with the element which is applied to the cell. Other attributes as the rank and the type stay
the same under the action and are simply copied.

After the multiplication is done a new object of the class Cell is created by the data com-
puted from the original object. In this creation operation the application of the function
getstandardform is hidden. As last part we return the newly created cell.

4Note: Matrix is the class in SAGE. In addition there is a function which is a matrix constructor called matrix

which parses the arguments to the constructor of the class. This function matrix is used in the example above.
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10.3.2.3. Comparison of Cells

Most parts of our algorithm consist of comparisons of cells, so we are now going to have a
closer look on the comparison of cells. This method is simple, but also enormously important.
Assume we have two cells σ1 and σ2 and we want to know how they are related. We say
σ1 = σ2 if they are equal (it is up to now only a tautology). We say σ1 < σ2 if σ1 lies in the
boundary of σ2 and σ2 < σ1 if σ2 lies in the boundary of σ1. According to Corollary 9.2.6 we
can test the property for σ1 to be in the boundary of σ2 by testing whether the columns of σ2

are contained in the set of columns of σ1. To check equality we simply compare the defining
matrices in standard form of both cells (comp. Section 10.3.1). We implemented this in the
function is_in_closure_of (see Sage Source Code B.3) which then is used in the method
__cmp__ which in Python is used to check the relations <,>,>=,<=,!= and ==. To be precise
we overload the standard comparison operator coming from the method __cmp__ with our
own comparison function described above. The method __cmp__ has to return real numbers
and is interpreted by Python in the following way:

__cmp__(σ1, σ2)


< 0 if σ1 < σ2

= 0 if σ1 = σ2

> 0 if σ1 > σ2

(10.5)

We decided to set the value of __cmp__ in the top case equal to −1 and in the bottom case
equal to 1. Furthermore, if neither the cells are equal, nor one lied in the boundary of the
other we return the value None (see Sage Source Code B.4). To return the value None allows
to separate those cases and to avoid a crash during execution of the program. We want to
emphasize that it is is enough to us the class method is_in_closure_of, since we check first
whether both are equal. The class method is_in_boundary_of, which also exists, uses also
is_in_closure_of and checks in addition for inequality.

Note: This check only works in case of cells inW. There is no such simple check for orbicells
in W/Γ. For them one has to compute for each type the closure and can then deduce from
that which cell types occur in the boundary of a given type and which do not.
Now we give a short example how __cmp__ is used:

sage: C1= Vertebra; C1.matrix()

[1 0 0 0 1]

[0 1 0 0 0]

[0 0 1 0 0]

[0 0 0 1 1]

sage: C2=RR; RR.matrix()

[ 1 0 0 0 1 0 0 1 1]

[ 0 1 0 0 1 1 0 1 0]

[ 0 0 1 0 0 0 1 -1 -1]

[ 0 0 0 1 0 -1 -1 0 1]

sage: C= RedSquare; C.matrix()

[ 1 0 0 0 ]

[ 0 1 0 0 ]

[ 0 0 1 0 ]

[ 0 0 0 1 ]

sage: C2==C1, C2<C1, C<C2, C1>C, C>=C, C2!=C

False, False, True, True, True, True
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10.4. Computing Closures of Cells

Computing the closure of a cell in W is, beside the computation of the stabilizer, which we
handle later on, the most important operation in our program. The implementation has two
steps. First, one has to ensure that one is in the boundary of the cell C (RedSquare), then one
can use a very simple method to get a list consisting of all cells which lie in the boundary of
a given cell, which we describe in Section 10.4.1. Here one uses the fact that there is only one
orbit of 4-cells and all representatives of lower dimensional cells are chosen such that they lie
also in the boundary of the chosen 4-cell C (RedSquare). We know by Theorem 9.1.10 that
W is a regular cell complex. Therefore, the boundary of each cell is a union of finitely many
lower dimensional cells.

For the later use we need a good description how the standard 4-cell and its boundary
components as well as and its surrounding cells together with their boundary look in detail
(see Section 10.7). Therefore, we need to be able to compute the closure for any cell, but we
we really compute the closure for C (RedSquare) and some 4-cells lying around.

10.4.1. The Basic Idea

Without loss of generality we assume that the cell for which we want to compute the closure
is the standard cell C (RedSquare), which is given by the four by four unit matrix. Since
all cells are translates of the standard cells and therefore the closure of C (RedSquare) con-
tains at least one representative of each orbit under Γ we can obtain the closure of all other
4-cells also by translation. Furthermore, it is easy to see from the fact that W is a regular
cell complex (see Theorem 9.1.10) that if a lower dimensional cell lies in the boundary of
C (RedSquare) also its closure has to lie in the boundary of C (RedSquare).

According to Chapter 9 we have 11 orbits of cells under the action of Γ. Each orbit is de-
fined by a standard element X ∈ Σ. The cell C (RedSquare) is the only 4-cell among these
standard cells, thus its closure is the union of C (RedSquare) itself with cells of lower di-
mension, which are given by some translates of all of the 10 classes coming from elements
in Σ−{RedSquare}. It is necessary for a cell C (X) for some X ∈W to be in the boundary of
C (RedSquare) that [RedSquare] ⊂ [X]. If we assume that X has standard form we only have
to check RedSquare ⊂ X or equivalently to use the methods __cmp__ or is_in_boundary_of
discussed above.

Furthermore, we know that the set X has to be a translate of an element
in Σ − {RedSquare}. What does this mean? Let X = [x1, . . . ,xk] ∈ W = Γ · Σ for some
integer k ≥ 4 and γ ∈ Γ, then we have by (9.6) and the definition of the cells C (X) that

Rγ (C (X)) = C (γ−1 ·X) (10.6)

and

γ−1 ·X = γ−1 · [x1, . . . ,xk] = [γ−1 · x1, . . . , γ
−1 · xk]. (10.7)

By assumption C (X) is a cell in the boundary of C (RedSquare), therefore we know that
[e1, . . . , e4] ⊂ X . If the defining set X has standard form we have x1 = e1,. . .,x4 = e4.
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10. Computing a Cellular Decomposition

Since X is in the orbit of some X0 ∈ Σ we find an element γ ∈ Γ and an element
X0 = [x0

1, . . . ,x
0
k] ∈ Σ such that X0 = γ−1 ·X . Now we have that

γ−1 · ei =: gi ∈ X
0 (10.8)

where the gi are on the one hand the i-th column vectors of the matrix representing γ−1, on
the other hand they are up to a factor εi ∈ {±1} some of the column vectors in the collection
X0. Thus, we have that there are ε1 . . . , ε4 ∈ {±1} and a permutation σ ∈ S4 such that the
matrix of γ−1 is given by the following column representation

γ−1 = (ε1 · gσ(1), ε2 · gσ(2), ε2 · gσ(3), ε2 · gσ(4)). (10.9)

Since either gi ∈ X
0 or −gi ∈ X

0 we find a permutation τ ∈ Sk such that gσ(i) = xτ(i). We
summarize:

Lemma 10.4.1 (Prima Variatio): Let C (X) for some X = [x1, . . . ,xk] ∈ W. The cell C (X) is
in the closure of C (RedSquare) if and only if there are an element X0 ∈ Σ, ε1, . . . , ε4 ∈ {±1},
a permutation τ ∈ Sk, and a matrix γ ∈ Γ such that [γ−1X] = [X0] where γ−1 has the column
representation γ−1 =

(
ε1 · x

0
τ(1), ε2 · x

0
τ(2), ε3 · x

0
τ(3), ε4 · x

0
τ(4)

)
.

We define

Γ(X) =
⋃

σ∈Sk/S4

⋃
(ε1,...,ε4)

∈{±1}4

{
γ ∈ Γ : γ−1 =

(
ε1 · x

0
τ(1), ε2 · x

0
τ(2), ε3 · x

0
τ(3), ε4 · x

0
τ(4)

)}
(10.10)

to be the set of all elements in Γ which can be constructed from columns in X with some
signs. We can now use Lemma 10.4.1 to compute the γ ∈ Γ which define the cells in the
closure of C (RedSquare).

Corollary 10.4.2 (Closure): We have

C (RedSquare) =
⋃
X∈Σ

⋃
γ∈Γ(X)

C (γ−1 ·X)

where the set Γ(X) is the set defined in (10.10).

It is not so difficult to get the list Γ(X) for X ∈ Σ by simply computing all permutations with
all possible sets of signs, and then to check whether the resulting element is a symplectic
matrix. The only problem might be that the number can be quite huge. There are for a
standard set with k columns 4!×24×

(
k
4

)
different matrices which have to be checked whether

they are symplectic or not. Let us call these matrices candidate matrices. This means we have
to check between 384 matrices for the set RedSquare and 190080 matrices for cells of type
Reye for each set in Σ. All in all there are 448512 different candidate matrices. Neither are
all this matrices symplectic nor define they different cells because of the possible action of
stabilizers. So we first have to check whether they are in Γ and then whether they define a
new element in the closure. We will propose a method to reduce the number of candidates.

Remark: Someone might insist that one can also get the elements by solving linear equations,
but this means to solve not only one but lots of linear equations – namely equations com-
ing from changing the representative of the class – which is much more expensive (comp.
Table 10.1) than the combinatorial construction (with some improvements we still have to
describe), because we have no advantage from using our standard form for the sets.
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To reduce the number of candidate matrices we have to check we decompose them. We can
write these matrices in the form

γ−1 =
(
ε1 · x

0
τ(1), ε2 · x

0
τ(2), ε3 · x

0
τ(3), ε4 · x

0
τ(4)

)
(10.11)

=


ε1

ε2
ε3

ε4

(x0
τ(1),x

0
τ(2),x

0
τ(3),x

0
τ(4)

)
.

We know that γ−1 ·X0 and −γ−1 ·X0 define the same cell since −Id acts trivially on W andW.
This means that we can generate all necessary elements from only half of the candidates. We
denote by D the set of diagonal matrices with ±1 entries on the diagonal which contains for
each such matrix m only m or −m. We call D the set of sign matrices. We decompose this set
into the set of elements which are symplectic, which is denoted by Ds, and the complement
Dn, which containes the non symplectic sign matrices. So we get

D = Ds tDn. (10.12)

In our example we have 24 = 16 possible distributions of ±1 on the diagonal, but only 23 = 8
are in D because the others are redundant. Out of these 8 matrices 6 are non symplectic and
2 are symplectic.

Let M(X) be the set of four by four matrices which can be constructed from columns from
the set X ∈ W. We call M(X) the set of column matrices for X . The basic idea is that
one decomposes each candidate matrix into a (unique) product of a sign matrix in D with a
column matrix in M(X) for some X ∈W. Since matrices form a group under multiplication
we can reduce the number of times where we have to check for symplecticity, because if both
matrices are symplectic the product has to be symplectic, if one is symplectic but the other
is not the product cannot be symplectic and we have not to consider these products only if
both matrices are not symplectic one has to check the product for symplecticity.

To reduce the number of checks needed to decompose M(X) into symplectic and non sym-
plectic elements we use an additional test which we apply to the elements before we start to
check whether a matrix is symplectic or not. We simply compute the absolute value of the
determinant of the element and check whether the result is one. This needs roughly 4.2µs
compared to 1.72ms to check the symplecticity of a matrix.5 So we got a decomposition
M(X) into

M(X) = Ms(X) tMn(X) tMo(X), (10.13)

where Mo are the elements with a determinant different from ±1 (most of them are even
singular), Mn(X) are those of the remaining elements which are not symplectic, and Ms(X)
are the symplectic elements in M(X).

Due to the fact that all elements in D have to have either determinant 1 or −1 we can remove
the elements in Mo(X) from our further considerations. All in all we reduced the task of
checking all candidate matrices for symplecticity using the following cases. Assume for this
that a candidate matrix m is written in the form m = d ·mc where d ∈ D and mc ∈M(X) for
some X ∈W.

5Both computations done on the ray server harmonia at the MPIM in Bonn. We took for each the arithmetic
mean over 625 runs and repeated that several times to ensure that the result is stable.
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10. Computing a Cellular Decomposition

Table 10.2.: Candidate matrices by cell type: We counted the number of candidate matrices depending on their
kind. This data is stated in the shaded columns. There are three kinds of matrices: those which fail the first test
in the algorithm which checks whether the absolute value of their determinant is one, those which fail the test for
symplecticity, and those which pass both test. The last two columns show the number of checks for symplecticity
and the number of computations of determinants of 4 × 4-matrices which are done during the reduction of the
number of candidate matrices before checking whether the cells defined by the matrices are already known.

Cell Number of matrices in Tests for
Type columns Ms(X) Mn(X) Mo(X) sympl. det
Desargues 10 2040 2970 30 20820 5040
Reye 12 4392 7404 84 51912 11880
DR 9 1224 1778 22 12468 3024
RR 9 1080 1914 30 13428 3024
Hexagon 6 144 198 18 1404 360
Square 8 665 999 16 7009 1680
Triangle 8 600 1066 14 7476 1680
Vertebra 5 48 66 6 468 120
Crystal 6 144 210 6 1476 360
Pyramid 7 264 568 8 3984 840
RedSquare 4 0 22 2 156 24

Sum: 10601 17195 236 120601 28032

Case 1 If d ∈ Ds and mc ∈Ms(X) keep m.

Case 2a If d ∈ Ds and mc 6∈Ms(X) remove m from the list of candidate matrices.

Case 2b If d 6∈ Ds and mc ∈Ms(X) remove m from the list of candidate matrices.

Case3 If d ∈ Dn and mc ∈ Mn(X) check whether m ∈ Sp2(Z). If so keep m, otherwise
remove m from the list of candidate matrices.

In this way we can reduce the number of checks for being symplectic. But we add some
time to construct the lists of symplectic and non-symplectic elements. Before this reduction
we had to check for all 24 ·

∑
X∈Σ #M(X) = 448512 candidate matrices whether they are

symplectic or not. Each summand in the formula above has the form 4! ×
(
k
4

)
if the set X

has k columns. If we assume that each check needs 1.72ms (see above) we need 16.3s only
for these checks. If we use the decomposition described above we first have to check for all
column matrices, i.e

∑
X∈Σ #M(X) = 28032 many times, the determinant which needs 4.2µs

per time. Therefore, we need about 118.ms to do this.

It remains to check for
∑

X∈Σ(#M(X)−#Mo(X)) matrices the symplecticity. Altogether we
have to compute

23 +
∑
X∈Σ

(#M(X)−#Mo(X) + #Dn ·#Mn(X)) = 120609

times the condition to be symplectic and not 448512. But we pay for this by the additional
computation of some determinants, but this is not that expensive. This optimized version
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needs for the part to perform all checks for symplecticity 207.4s compared with 771.4s in the
non optimized case6. This means a speed-up for this part of about 73.11%.

The other advantage is that we have already removed the doublets coming from the action of
−Id, so that the output of symplectic elements is only half as large as in the non optimized
case. This reduces the time for the remaining part, where we have to check whether we got
new cells, to only a half.This is the most time consuming part of the algorithm. Furthermore,
we can reduce the number of elements which have to be checked by the simple fact that the
closure is the union of the cell with cells of lower dimension. Therefore, we can skip all cells
which have dimension larger than or equal to the dimension of the cell of which we want
to compute the closure. The only cell of the same dimension which we have to include is
the inner cell itself. For the details of the algorithm we refer to the implementation of the
function getclosure, which is given in an abbreviated form in Sage Source Code B.5.

The runtime corresponds directly to the number of candidate matrices one has to check.
Therefore, the most time consuming parts during the computation are obviously those com-
ing from defining sets which have the most columns, i.e. in particular the cells of the types
Desargues, Reye, DR, and RR. The only exception is the computation of the closure of
cells of type Desargues and Reye itself, because there is no need to compute the closure
of points since they are closed. If we want to compute the closure of a cell with dimension
larger than zero we have to check the column matrices M(X) for all X which define cells of
lower dimension. As a direct consequence of this we would expect that the computation of
the closure of cells of the same dimension should need roughly the same time.

Furthermore – we mentioned this already before – if a cell lies in the boundary of a larger cell
so does its closure, too. This can be used to reduce the time for the computation of the closure
of all cells which lie in the boundary of a cell whose closure is known, because we can take
the already computed closure of the larger cell and check the elements in this list whether
they are in the closure of the smaller cell or not. In our implementation we apply this to all
cells in the boundary of C (RedSquare). Thus, we first compute the closure of C (RedSquare)
and then the closure of other cells. In Table 10.3 we compare the time to compute the closure,
on the one hand using the precomputed closure for C (RedSquare) and on the other hand
computing each closure on scratch. The time to get the closure of C (RedSquare) which is
about 8.5 minutes on theia, is therefore the biggest part while computing the structure of
the cell complex.

10.4.2. Computing Closures

We can now assume that we can compute the closure for arbitrary cells in the closure of
C (RedSquare). If we have an arbitrary cell C (X) for some X ∈W we can get the closure of
C (X) by translating it to a suitable cell in the closure of C (RedSquare). We can then there
compute the closure and translate the closure back to the cell we started with. The main
problem is to find an element γ ∈ Γ which maps C (X) to a cell C (X0) in the closure of
C (RedSquare) for which we can compute the closure. The set X0 can be an element from Σ,

6In all timings in this section the time for generating the lists as object (not to compute their content) is omitted.
The generation of lists has to be done only a couple of times in the whole program and the time for each
generation – between 9µs and 8ms depending on the length – is negligible compared with the operations we
have to perform several times.
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Table 10.3.: Time to compute the closure of standard cells with and without using the precomputed closure of
C (RedSquare), using the command getclosure. The computations are done on the ray servers harmonia

and theia at the MPIM in Bonn. To force not to use the precomputed results we removed temporarily the
related part from the program. This leads to a very tiny speed-up which is – as we see in the timings – over
compensated by the other slower operations. All times are the arithmetic mean of 5 runs of the program where
we do not use the precomputed data and the arithmetic mean of 625 runs in the other cases.

Time on
harmonia theia NOETHER

Cell-Type with without with without with without
Desargues 1.17µs 59.5ms 3.32µs 76.5ms 406ms 0.03s
Reye 1.21µs 63.2ms 3.41µs 67.0ms 532ms 0.03s
DR 1.19µs 369.08s 3.30µs 314.65s 355ms 323.08s
RR 1.22µs 369.64s 3.37µs 315.21s 371ms 322.13s
Hexagon 1.19µs 494.73s 1.81µs 422.85s 230ms 433.15s
Square 1.22µs 497.67s 1.00µs 422.77s 317ms 435.01s
Triangle 1.16µs 496.66s 3.77µs 423.73s 311ms 443.47s
Vertebra 1.18µs 571.68s 3.58µs 487.10s 215ms 505.19s
Crystal 1.15µs 567.17s 3.30µs 486.09s 250ms 499.87s
Pyramid 1.16µs 570.36s 3.36µs 487.89s 273ms 503.81s
RedSquare - 606.23s - 512.00s - 538.58s

but it does not need to be. There are essentially two ways to get a suitable γ ∈ Γ.

a) The easiest method is to use the attribute map2standard if this is different from None.
In this case it gives exactly one of the γ we are looking for. In practice this will happen
only if C (X) is still in the closure of the standard 4-cell C (RedSquare) or we got it by
applying a translation to such an element.

b) Use the function getmap2standard, which computes such a map and sets the related
attribute of the cell. This function uses similar techniques to those used before to get
the closure for cells. Then we can proceed with the previous case.

As illustrated in case of the closure of C (RedSquare), solving linear equations is not the
method of choice to get a map to a standard cell, because for each element also here we have
to solve lots of linear systems.

The starting point to find a map to a standard element is that we have only one type of 4-cell
among the standard cells and all other 4-cells are translates of the cell C (RedSquare). Let
C (X4) be an arbitrary 4-cell, i.e. there is a γ ∈ Γ such that

Rγ(C (X4)) = C (RedSquare). (10.14)

Now it is important to remember that

RedSquare =


1

1
1

1

 .

80



10.4. Computing Closures of Cells

Hence, we have

[γ−1 ·X4] = [RedSquare] (10.15)

or equivalently

[X4] = [γ · RedSquare] = [γ]. (10.16)

We know by Theorem 9.1.10 and Lemma 9.2.1, together with the fact that all standard cells lie
in the closure of C (RedSquare), that any cell lies in the closure of some 4-cell. Furthermore,
we have that if we take a map which maps an arbitrary 4-cell C (X4) onto C (RedSquare), also
the closure of C (X4) is mapped onto the closure of C (RedSquare). Therefore, it is sufficient
for the computation of the closure of an arbitrary cell C (X) to find one 4-cell C (X4) for
which C (X) lies in its boundary. But it is not necessary to get all 4-cells for which C (X) lies
in its boundary. To get all such cells – also for other cells than 4-cells – is the thing we have
to do if we compute the neighbours of a cell (see Section 10.4.3).

For runtime reasons Python uses, if possible, so called iterators for the iteration in
for-loops. In particular, if we iterate over sets which are constructed with range, tuples,
or arrangements, the iteration over one of these sets is not implemented by computing the
full list of elements and running through this list. Instead of that the iterator over this set
is used. This is an object which has an actual value and some functions which give the
next or the previous element in the list. After each cycle of the loop the next value is com-
puted from the actual value which then replaces the actual value. This has the advantage
that if – as in this example – there is an early termination of the loop, we avoid the gener-
ation of the remaining elements of the list. This is much faster and uses less memory. So
this part of the program will be much faster then the one which computes the neighbours
(see Section 10.4.3).

It remains to find a way to get as fast as possible a suitable 4-cell C (X4) = C ([γ]) for some
γ ∈ Γ. We use for this a variation of the method we used before to get the closure for a cell
in the closure of C (RedSquare). If C ([γ]) is a 4-cell such that C (X) lie in its boundary, we
have to have by Corollary 9.2.6 that [γ] ⊂ [X], i.e. the columns of γ occur (up to their sign) in
the list of columns of X . Therefore, we get a similar result to Lemma 10.4.1.

Lemma 10.4.3 (Secunda Variatio): Let C (X) for X = [x1, . . . ,xk] ∈ W be any cell and C (X4)
a cell which lies in the orbit of the standard 4-cell C (RedSquare), i.e. there is a γ ∈ Γ such that
Rγ(C (X4)) = C (RedSquare). The cell C (X) lies in the closure of C (X4) if and only if [X4] = [γ]
for a γ ∈ Γ which then has to have the column representation γ = (εi ·xτ(i))i=1,...,4, where εi ∈ {±1},
τ ∈ Sk.

The set of all such γ is in bijection with the set Γ(X) introduced earlier with the difference
that here we want that γ and not γ−1 has the desired form. It might also be a method for a
later further speed-up of our algorithm to use precomputed lists of matrices of this form.

The implementation of the function getmap2standard can use then the same techniques as
described in Section 10.4.1. But since we need only a single element we can return the first
symplectic matrix which fulfils the conditions from Lemma 10.4.3. Thus, we do not need to
use the decomposition into a sign matrix and a column matrix, because if there is a symplectic
column matrix m ∈ M(X) ∩ Sp2(Z) (and there is always one) we can return the first m we
have found and are finished.
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10.4.3. Computing Boundaries and Skeletons

In some sense boundaries and skeletons are derived constructions from the closure of a cell
or a union of cells. For simplicity we restrict ourselves to the case of single cells. We obtain
the boundary of a cell by taking its closure and removing the cell from that list. To get the
k-skeleton – here we understand as the k-skeleton of a cell the k-skeleton of its closure –
of a cell we take from the list containing the closure only those cells of dimension lower or
equal to k. By default k = 1 in our program. We also implemented a realization of the
1-skeleton as graph in SAGE. Here one can use the plotting libraries to get a two or even a
three dimensional picture of the cells.

10.5. Computing Stabilizers of Cells

The technique to compute the stabilizer of a given cell C (X) for some
X = [x1, . . . ,xk] ∈W is a further variant of the idea which was used to compute the closure.
The stabilizer ΓX of a cell is the group of all elements γ ∈ Γ such that [γ · X] = [X]. We
assume that C (X) is a cell in the closure of C (RedSquare). As before, we have that the
standard basis vectors e1, . . . , e4 are in the collection X . If X is given in standard form we
have x1 = e1, . . . ,x4 = e4. Therefore, we have that

γ(x1, . . . ,xk) = (γ · x1, . . . , γ · xk) = (g1,g2,g2,g3, γ · x4, . . . γ · xk) (10.17)

where gi is the i-th column of γ. Therefore, an element γ ∈ ΓX has to have the following
column representation

γ = (ε1 · xτ(1), ε2 · xτ(2), ε3 · xτ(3), ε4 · xτ(4)) (10.18)

where τ ∈ Sk is a permutation and εi ∈ {±1}. This is only a necessary condition, which
needs not to be sufficient, because these elements stabilize at least 4 of the k columns, but not
necessarily all k. Therefore, one has to check in addition whether the elements of this form
really stabilize the cell. Thus

Lemma 10.5.1 (Tertia Variatio): The stabilizer ΓX of X is given by

ΓX =
⋃

τ∈Sk/S4

⋃
(ε1,...,ε4)

∈{±1}4

{
γ ∈ Γ : γ = (ε1 · xτ(1), ε2 · xτ(2), ε3 · xτ(3), ε4 · xτ(4))

}
∩ ΓX .

To compute ΓX we generate a list of elements of the demanded form with the very same
algorithm as described in Section 10.4.1 for computing the elements mapping a cell to a
standard cell (see in particular Sage Source Code B.5). In this way we get a list of matrices.
From this list we have to remove those elements which do not stabilize the other columns of
the defining set of the cell C (X). As in the previous variations on this method, this method
is much faster than to compute the stabilizer by solving lots of linear equations.

Assume now C (X) for some X ∈ W is an arbitrary cell which not necessarily lies in the
closure of C (RedSquare). Then we find, using Lemma 10.4.3, an element γ ∈ Γ such that
Rγ(C (X)) = C (γ−1 ·X) is a cell in the closure of C (RedSquare). Then we have

ΓX = γ−1 · Γ
γ
−1·X · γ. (10.19)
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10.5. Computing Stabilizers of Cells

Table 10.4.: Runtime to compute stabilizers for cells in the closure of RedSquare0 by cell type. All timings
were done on the ray server theia at MPIM in Bonn and are the arithmetic mean of 25 runs if possible each
over a different representatives of the same class.

Cell Type Time [s] Std. Dev.
Desargues 129.44 0.69
Reye 305.57 0.94
DR 78.20 0.23
RR 78.05 0.09
Triangle 43.34 0.05
Square 43.34 0.09
Hexagon 9.85 0.04
Vertebra 3.44 0.04
Crystal 9.62 0.07
Pyramid 21.85 0.08
RedSquare 1.36 -

It is simple to get from this equality together with Lemma 10.5.1 the stabilizer ΓX of C (X).
Our SAGE program provides the function getstabilizer which is also used to compute, if
necessary, the value of the class attribute _stabilizer, and the class method stabilizer of
an object of the class Cell, which either returns the value of the attribute _stabilizer if it is
different from None or computes the stabilizer using the function getstabilizer. As in case
of the function getclosure, the attribute _closure, and the class method closure, we use
also a combination of cached and newly computed results.

For some purposes we are interested to know in an abstract sense how the groups look
like. In other words we identify up to isomorphism the groups, which are realized in a
first instance in terms of matrix groups, with finite groups, which we can write in terms of
e.g. cyclic groups Cn or dihedral groups Dn. In our SAGE program we realize stabilizers as
objects in the class MatrixGroup, which is realized in SAGE via a wrapper from GAP. The
matrix group is initialized by a set of generators, which can be either matrices defined over
some ring or matrix group elements, which again are given by some matrix. By default we
consider the groups over the rational numbers Q. But all groups are as finite groups already
realized over Z. Therefore, we can reduce the matrices modulo some prime p. If p is large
enough, i.e. it is coprime to the order the group, the finite groups over Fp we obtain in
this way is isomorphic to the group over the integers. For subgroups of Γ is is sufficient
that p ≥ 7 (comp. Section 6.3.3). In our SAGE program we wrote a function makefinitegrp

which reduces a matrix group modulo p and returns this group as a MatrixGroup over Fp.
By default we reduce module 7, but the function can take an optional parameter p to choose
any prime we want. In GAP one can use for matrix groups over a finite field (or permutation
groups) the SmallGroups Library [BEO02] to get the description we are looking for. For this
we use our function getgroupstructure, which has as an optional parameter the prime p,
with which the group is reduced.

One has to mention that here we cannot reduce the time for the computation of the stabilizer
by deducing them via a filtering procedure as we can for the closure, because there is – except
for the group Γ itself – no larger group containing other stabilizers. We study the intersection
behaviour of stabilizers for different cells later in Section 10.7.5.
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10. Computing a Cellular Decomposition

10.6. Computing Neighbours

For the computation of the cohomology – as we will explain in Section 13.3 – it is essential
to know for cells – besides their closure, which we already discussed in Section 10.4.2 – their
surrounding cells of higher dimension, which we call neighbours, of the considered cell. To
be precise, the set of neighbours of a cell C (X) is the set of those cells whose closure has
non-zero intersection with the cell C (X). We can apply Lemma 10.4.3 to get a list of all 4-cells
whose closure contains the cell C (X). Due to the fact that the (only) 4-cell is represented by
the set of the four standard unit vectors in Z4, we know that all other 4-cells are represented
by a collection of four vectors which are, up to their order and sign the column vectors of
a symplectic matrix. In other words, the elements we need are represented by the matrices
which map C (X) onto a cell which lies in the boundary of the standard 4-cell RedSquare.
Since we can compute the closure for each cell C (Y ) ∈W (see Sections 10.4.1 and 10.4.2), it
is not difficult to identify all cells whose closure contains C (X) by applying a suitable filter
to the list of all cells which are in the closure of at least one of the 4-cells which lie around
C (X). If we know the closure of the standard 4-cell RedSquare it is quite easy to compute
all these closures fast, as we explained earlier. Unlike in the method to compute the map
in getmap2standard, here we have to find all 4-cells with this property and not only one,
so that we cannot leave the loop earlier. Therefore, the runtime depends essentially only on
the numbers of columns and symplectic matrices which we can obtain from them. Thus, the
runtime does not differ much for cells of the same type. Some timings with the standard
deviation of the considered sample can be found in Table 10.5.

The SAGE source code of the function getneighbours can be found in the Appendix in sec-
tion B.3. In Section 10.7.3.1 we will analyse the structure of the set of neighbours associated
to a given cell under the stabilizer of that cell in detail.

Table 10.5.: Time to compute all cells in the neighbourhood of a cell of given type in the boundary of
RedSquare0. For the computation of neighbours there are in some cases large differences between different
representatives of the same cell type, in particular for those with a larger number of columns. Therefore, we
include also the standard deviation for the samples of the test. All timings were done on the ray server theia at
MPIM in Bonn and are the arithmetic mean of 25 runs, if possible each for a different representative of the same
class.

Cell Type Time [s] Std. Dev.
Desargues 353.67 40.69
Reye 949.75 102.25
DR 151.75 11.94
RR 197.16 28.09
Triangle 33.82 1.61
Square 34.75 1.34
Hexagon 26.99 3.76
Vertebra 1.81 0.12
Crystal 4.53 0.49
Pyramid 11.68 1.27
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10.7. Results

In the following sections we give an overview on results we can obtain using our program
in SAGE. Some additional results can be found in the different lists on the CD-ROM, which
is included in the printed copy of this thesis. In this section we restrict ourselves to the
interpretation and visualization of these results.

10.7.1. The Structure of the Stabilizers of Cells

We start with the description of the stabilizers of cells since we need them to understand the
orbicells in the quotient which we handle later in context of the closures of cells. There are
two things we can do to verify our results by known results. On one hand we know by the
result of Balz Bürgisser [Bür82] which finite orders can occur for elements in Γ and thus in
the stabilizers (see Section 6.3.3 and therein in particular Theorem 6.3.6 and Corollary 6.3.7).
However the knowledge of orders cannot tell us which groups occur. On the other hand we
know that S2/Γ is isomorphic to A2, i.e. the moduli space of principally polarized abelian
surfaces (see Section 6.3.4). Since W/Γ is a deformation retract of that space, the points
and therefore also the cells correspond to some isomorphism classes of abelian surfaces. The
stabilizers of lifts of points inW/Γ correspond to the automorphism groups of these varieties.
As mentioned in Section 6.3.4 there are several results on abelian surfaces with a non-trivial
automorphism group, i.e. the only automorphisms are ±Id, and which groups can occur as
automorphism groups of abelian surfaces. Unfortunately the known results are not stated in
a sufficiently explicit way to directly check the correctness of our results, for several reasons.
Some of the authors handle only special cases like abelian surfaces which are isomorphic to a
product of elliptic curves [GR99] or abelian varieties with non-trivial automorphism groups
which are isolated in A2 [GMG05]. Other authors determine only the orders of the groups
occurring as automophism groups or focus not on the automorphisms, but rather on the
structure of the abelian varieties themselves. These kinds of results are not very helpful at all
to check the results in detail. There are few results which give a more complete picture of the
situation in the case of abelian surfaces, which is interesting for us. In these works usually
the groups are realised as abstract groups or subgroups of the endomorphism ring of the
varieties in terms of groups of units of number fields with complex multiplication. We give a
much more detailed picture of the situation because we compute for all cases the stabilizers
of cells explicitly as matrix groups, which we then identify with abstract groups. Among
these few results one can find the most complete results in the thesis of Dieter Schmidt from
Erlangen [Sch97] and in the work of Shi-Shyr Roan on automorphisms of complex 2- and
3-tori [Roa90]. The work of Roan is unfortunately unpublished, but it is presented e.g. in
[BL04], which we used as reference. In addition there is a recent preprint [BLS11] of Reinier
Broker, Kristin Lauter, and Marco Streng, which gives also a full classification of all abelian
surfaces with some predescribed endomorphism structure. Their result is somehow more
general, but can be easily specialized to our case. For more information on this topic we
refer to Section 6.3.4 and the references therein. We use the known results briefly sketched
in that section to compare, up to some level, the results of our computation of stabilizers
to them at the end of this section. There are some problems during this comparison. One
reason is that the results are formulated in at least three different languages. There are
some given as abstract groups, others in terms of CM-fields, and our own results as matrix
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groups. Furthermore, it is not so easy to make the connection between cells and a particular
abelian surface, because we have no explicit map from our purely combinatoric model to the
moduli space. We can only deduce the connection from some obstructions. For example,
we can compare stabilizers of cells to automorphism groups of abelian surfaces to make
a connection. However this does not work to differentiate between cells with isomorphic
stabilizers. Finally we do not have a one-to-one correspondence between the list of possible
automorphism groups and the list of stabilizers of cells, because the automorphism groups
correspond to stabilizers of points in W/Γ. But since the elements of the stabilizer need not
to stabilize the cell point-wise, single points within cells might have different (larger) groups
as stabilizer, which we do not identify at this point.

To compute the stabilizer of a cell in W we use the algorithm described in Section 10.5.
We computed the stabilizers for all standard cells. The stabilizers of the other cells of the
same type are are by equation (10.19) isomorphic to that of the standard cell of that type,
since we have only to conjugate with integral matrices. To get a better picture how this
groups look like we did several things. First, we computed for the matrix groups we found
the order of each element and – this requires the knowledge of the cells in the boundary –
determined whether the elements act on W orientation preserving or orientation reversing
(see Table 10.6). Further, we use the GAP SmallGroups Library [BEO02] to identify the
abstract structure of the groups we got in terms of simple components such as cyclic groups
or dihedral groups, the number of generators, and whether the group is abelian or not (see
Table 10.7).

Due to the results of Bürgisser [Bür82] we expected to find elements of the orders 1, 2,
3, 4, 5, 6, 8, 10 and 12 in the group Γ (see Section 6.3.3). A comparison with the orders
of elements stated in Table 10.6 shows that elements of all expected orders really occur in
some of the stabilizers. Furthermore, we find that all elements in the groups have charac-
teristic polynomials which are products of cyclotomic polynomials. This property is stable
under conjugation because conjugated matrices have the same characteristic polynomial (see
Table 10.8). Therefore, stabilizers of cells of the same type have the same characteristic poly-
nomial. The possible orders of the elements, which are annihilated by these polynomials, are
also determined by the orders. However the knowledge of all characteristic polynomials of
elements in a stabilizer of a cell give some deeper insight than only to know the order of the
elements. Nevertheless also this additional information does not give the concrete subgroups
of Γ.

Let us now have a closer look at the structure of the stabilizers. As mentioned above
we can use the connection to abelian surfaces to check whether our results are plausible
(see Section 6.3.4). Some possible automorphism groups do not occur – as mentioned above –
in our list of stabilizers. The reason is that some groups occur only as stabilizer of points and
not as stabilizer of cells. One example of an abelian surface whose automorphism group does
not occur is A = E × Ei where E is a generic elliptic curve with trivial automorphism group
and Ei = C/Z[i]. Furthermore, we have the problem that one can equip abelian surfaces
which are isomorphic to the product of two isogenous elliptic curves with quite different
automorphism structures, corresponding to different CM-structures. We restrict ourselves to
presenting here only three examples of the correspondence, which belong to three different
types of abelian surfaces which have a non-trivial automorphism group. The other cases can
be checked analogously.
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Table 10.6.: Stabilizers of standard cells. All stabilizers of cells of the same type are isomorphic. We computed
the orders of the groups and all their elements, and determined whether their operation is orientation preserving
(O) or non orientation preserving (N), and collected their numbers in this table.

Cell type Order Order of Elements Orientation
preserving

1 2 3 4 5 6 8 10 12 O N
Desargues 10 1 1 4 4
Reye 48 1 13 8 6 8 12
DR 2 1 1 2
RR 12 1 7 2 2 12
Hexagon 72 1 9 8 6 36 12 72
Square 4 1 3 2 2
Triangle 2 1 1 2
Vertebra 24 1 3 2 4 6 8 12 12
Crystal 24 1 9 2 6 6 12 12
Pyramid 4 1 3 2 2
RedSquare 32 1 7 16 8 16 16

Table 10.7.: Structure of Stabilizers. We use GAP with its SmallGroups Library [BEO02] to get the structure
of the stabilizer in terms of elementary groups. Then we state the GAP group ID which is a pair consisting
of the order of the group and a consecutive number, which identifies the group in the database. I the last two
columns we give the number of generators and an information whether the group is abelian or not.

Cell Type Structure
GAP

Group
Id #

G
en

er
at

or
s

A
be

li
an

Desargues C10 10 2 2 Yes
Reye GL2(F3) = Q8 oD3 48 29 3 No
DR C2 2 1 1 Yes
RR D6 = S3 × C2 12 4 3 No
Hexagon C3 × ((C6 × C2) o C2) 72 30 5 No
Square C2 × C2 4 2 2 Yes
Triangle C2 2 1 1 Yes
Vertebra C12 × C2 24 9 3 Yes
Crystal (C6 × C2) o C2 24 8 4 No
Pyramid C2 × C2 4 2 2 Yes
RedSquare (C4 × C4) o C2 32 11 3 No
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10. Computing a Cellular Decomposition

Table 10.8.: Characteristic polynomials of elements in stabilizers of cells. If there is an element in a group of
given type with a characteristic polynomial stated in the first row, the corresponding field is marked with a x.

Type Φ
4 1

Φ
4 2

Φ
2 1

Φ
2 2

Φ
2 3

Φ
2 6

Φ
2 4

Φ
3

Φ
4

Φ
6

Φ
4

Φ
3

Φ
6

Φ
2 1

Φ
3

Φ
2 1

Φ
6

Φ
2 1

Φ
4

Φ
2 2

Φ
3

Φ
2 2

Φ
6

Φ
2 2

Φ
4

Φ
5

Φ
1
0

Φ
8

Φ
1
2

Desargues x x x x

Reye x x x x

DR x x

RR x x x x x

Hexagon x x x x x x x x

Square x x x

Triangle x x

Vertebra x x x x x x x x x

Crystal x x x x x x x

Pyramid x x x

RedSquare x x x x x x x

Example 1: Desargues According to Theorem 6.3.9 there is a simple abelian surface which
is isomorphic to the complex 2-torus given by

OQ(ζ5) ⊗Z R/OQ(ζ5)

where ζ5 is a primitive fifth root of unity and OQ(ζ5) the ring of integers in the CM-field
Q(ζ5). This abelian surface is also isomorphic to the Jacobian of the curve y2 = x(x5−1)
(see [BL04; p. 421]). Their automorphism group is generated by a primitive tenth root
of unity ζ10 and therefore isomorphic to C10, which is the stabilizer of a cell of type
Desargues (see Table 10.7). We have to mention that −Id acts trivially as well on the
complex torus as on the retract W, Therefore, the action is equal to the action of the
group which is generated by ζ5, which is a root of Φ5 and Φ10. We know by a result on
abelian surfaces that these points have to be isolated fixed points [GMG05].

Example 2: RedSquare Consider the CM abelian surface A = Ei × Ei whose CM-structure
is given by {ζ8, ζ

5
8}, then we know that

Aut (A) = (C4 × C4) o C2 =

〈
i · Id,

(
0 1
1 0

)
,

(
i 0
0 1

)〉
(see e.g. [BL04; Cor. 13.3.6, Thm.13.4.5]), which is exactly the stabilizer of a cell of
type RedSquare. The structure of the automorphism group is somehow reflected in the
occurring characteristic polynomials. There are, beside the elements with characteristic
polynomials with roots equal only to ±1 and elements with characteristic polynomial
equal to the cyclotomic polynomial Φ8, only polynomials which have at least one irre-
ducible factor equal to Φ4, which is the only factor with non-trivial roots, i.e. such roots
which are neither 1 nor −1.
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Example 3: Vertebra Consider the abelian surface A = Ei × Eζ6 then we know that

Aut (A) = C4 × C6

(see e.g. [BL04; Thm.13.4.4]). This is the stabilizer of a cell of type Vertebra. Here
we have a much simpler correspondence between the subgroups of the abelian group
C4 × C6 and the irreducible factors of the characteristic polynomials of elements in the
stabilizer of the cells of type Vertebra.

Also the other results we obtained are consistent with the possible groups
(see e.g. [BL04, BLS11] and Section 6.3.4). For the computation of the cohomology we have
also to compute the intersections of stabilizers. This can be done by comparison of the list
of matrices. Results on this can be found in intersections.pdf on the CD-ROM, which is
included in the printed copy of this thesis.

10.7.2. The Structure of the Cells in W

In this section we give a short overview which information we can get by the method stated
earlier in this chapter. Here we focus on the geometric realization of the cells in W. From
this we will deduce in Section 10.7.2 also – upto some level – also a picture of the orbicells in
W/Γ. It is important to emphasize that all pictures come from the combinatorial/topological
model. In particular, there is no need that the lengths or angles in the pictures we will show
are related to any isometric embedding into a suitable space. However we believe that it is
useful to have some kind of simplified geometric picture in mind while dealing with such
abstract objects.

The question we want to answer is how do the cells in W look like. It is easily possible to
give a good picture how k-cells in W look like for k = 0, . . . , 3. Unfortunately our world – at
least the part of the world we can see with our eyes – is three dimensional, so we have a little
problem to get a suitable picture of the shape of a 4-cell. We will try to do this similarly as in
the lower dimension by giving a description how the boundary, which is three dimensional,
looks like. The reader with a good spatial awareness might get some idea how this four
dimensional object is constructed from knowing the structure of the boundary. For cells of
dimension less or equal to three and orbicells of dimension less or equal to two we can draw
some nice picture (see Figure 10.1).

There are eleven types of standard cells coming from the eleven sets in Σ. There are one
type of a four dimensional cell, three of dimension three, three of dimension two, and two
of dimension one and zero each. We computed, using the algorithms described above, lists
of boundaries of cells of each type and of neighbours of them. We state the number of them
by type together – one above the diagonal one below – in Table 10.9. Using these numbers
we get a good description of the cells and how they are related to cells of other types. We
find for example that in the boundary of C (RedSquare) there are 512 different cells or that
around the cell C (RedSquare) there are 117 other 4-cells, separated from C (RedSquare) by
its 512 boundary components. Sometimes it is not that easy to imagine how 4-cells meet in
some 3-cells, but we have to think for that in four dimensions (or even higher to get a better
embedding7).

7I really like the embedding theorems from complex analysis for complex manifolds. However in this case they
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Table 10.9.: Cellular decomposition - neighbours and boundaries. How to read this table: In the area above the
diagonal (darkly shaded) we find the number of cells of the type stated in the first row which border on a single
cell of the type in the first column. This is the number of neighbours of a cell. In the area below the diagonal
(lightly shaded) we list the number of cells of the type stated in the first row which lie in the boundary of cell
of type in the first column. For example, in the boundary of one cell of RedSquare-type we find 48 cells of
Desargues-type, whereas 15 cells of RedSquare-type meet in one cell of Desargues-type. These results are
consistent with those stated in [MM89; p. 279].
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Desargues 5 0 5 5 0 5 5 5 15 C
ells

in
N

eighbourhood

Reye 24 8 48 24 4 24 16 36 42
DR 1 1 2 2 0 3 3 3 11
RR 0 1 6 0 1 6 3 6 15
Triangle 1 2 2 1 1 1 2 7
Square 2 2 4 0 2 2 1 8
Hexagon 0 6 0 6 6 0 0 9
Vertebra 12 12 36 12 12 12 2 3
Crystal 12 8 36 6 12 12 0 3
Pyramid 2 3 6 2 4 1 0 4
RedSquare 48 28 176 40 112 64 4 4 4 32

For an easier use we enumerated the different defining sets of cells of the same type accord-
ing to their order of generation in the algorithm and gave them the name Typei, where i
is the counter. The standard cells have the number zero. Thus, RedSquare = RedSquare0,
Crystal = Crystal0 and so on. A list of all 513 cells which lie in the closure of C (RedSquare),
with their defining sets can be found in cells_in _closure_of_RedSq.pdf on the CD-ROM
included in the printed copy of this thesis.

We can get a kind of geometric visualization by the combinatorics of their inclusion relations.
For example, if we have something which has a boundary consisting of three vertices and
three edges, we can conclude that the shape of this kind of cells has to be something like a
triangle. We can do the same in all other cases. We start a survey on the structure of cells
starting with the lowest dimensional cells.

10.7.2.1. Dimension 0 and 1 – Vertices and Edges.

Already by their dimension we know that cells of the types Desargues and Reye are vertices,
i.e. points, in the decomposition. Each point of Desargues-type in W is an isolated fixed
point of Γ with a stabilizer of order 10 in Γ. They are the only fixed points whose order
is divisible by 5. The vertices of type Reye have quite a large (compared with most other
groups occurring in this context) stabilizer. The order is 48 and they are the only points,
except an isolated fixed point in each 4-cell, whose stabilizers contain elements of order 8

dos not help to understand the structure at all.
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Figure 10.1.: 3-cells with their boundaries consisting of the 2-cells, the 1-cells, and the 0-cells. The different
cells are coloured in different kinds of blue which are the same as before in the pictures of the 2-cells.

(a) Vertebra (b) Crystal (c) Pyra-
mid

(see remarks in Sections 10.7.1 and Table 10.6 on stabilizers and their order).

We know also by their dimension that cells of the types DR and RR have to be line segments.
Our computations show now that a cell of type DR connects one cell of type Desargues with
an other of type Reye. Furthermore, we get that the closure of a cell of type RR contains,
beside the cell of type RR, two different cells of type Reye. These connecting property is the
origin of the names of the defining sets DR and RR.

10.7.2.2. Dimension 2

The two dimensional cells in W have shapes as indicated by their names (that is the reason
to name the defining sets in the way they are named). So we have triangles which have as
vertices two of type Reye and one of type Desargues, as well as the three edges of types DR
and RR (twice). The quadrangle or square has only edges at its boundary of type DR and
therefore two vertices of each type. The hexagon shaped cell has only vertices of type Reye

and thus also only edges of type RR.

10.7.2.3. Dimension 3 and 4

Next we study the structure of the three different types of 3-cells. We can do this essentially
in the same way as we did before in case dimension two. Here we can include the knowledge
of the structure of the lower dimensional (orbi-)cells.

The most simple cell is the cell of type Pyramid, which has the shape of a four-sided pyramid
with one cell of type Square in the bottom and four triangular cells forming the pyramid
above (see Figure 10.1 (c)). The other two types of 3-cells have a more fancy structure.

The boundary of a cell of type Crystal contains two stars, one placed at the top, one at
the bottom, each build from six cells of type Square, which are arranged around a common
point of type Reye. Between these two sets there is a chain of six vertices of type Reye and
six edges of type RR. In each vertex of this chain one cell of type Square from the top meets
one cell of type Square from the bottom. The remaining gaps are filled with 12 triangles, six

91



10. Computing a Cellular Decomposition

above and six below the central chain (see Figure 10.1 (b)).

The cells of Vertebra-type are the only 3-cells with some hexagonal faces. The two hexagons
are placed at two opposite ends of the boundary. They are rotated with an angle of π/6, i.e. a
twelfth rotation, against each other. The boundary contains in addition – as all other kinds of
3-cells – triangles and quadrangles. Twelve triangles – six in in the upper and six in the lower
part – meet with their edge of type RR one of the edges of the hexagons of type RReach.
The remaining point of each triangle is a vertex of type Desargues, which is connected via
an edge of type DR with a vertex of type Reye, which lies in the boundary of the opposite
hexagon. The twelve gaps between the triangles and the edges of type DR are filled with
cells of type Square (see Figure 10.1 (a)).

In the boundary of a 4-cell we find four cells of type Vertebra, they form – glued along their
hexagonal faces – a solid torus, which is in some sense the vertebral column of the boundary.
This chain contains 48 vertices of type Desargues and 24 of type Reye. These are all but four
vertices in the full closure of the 4-cell. The four remaining vertices are of type Reye and can
be placed on a circle, which lies in the hole of the solid torus. We find that any pair of two
adjacent vertices on this circle forms, together with some of the vertices from the chain of
closures of cells of type Vertebra, a cell of type Crystal. So there are four of these. We have
now all vertices and edges of the boundary of the cell of type RedSquare. However there
are some holes in this solid construction. These 32 gaps have all the shape of a pyramid and
are filled with cells of type Pyramid. All in all there are 512 cells of the ten different classes
in the boundary of each cell of type RedSquare (see Table 10.9).

10.7.3. The Structure of Orbits

There are at least two reasons for us to try to understand the orbits of cells under some
groups. These groups are on one hand the full Siegel modular group Γ and on the other
hand stabilizers of cells. In the first case we get a description of the orbicells in the quotient,
which we discuss in Section 10.7.4. In this section we focus on the action of finite groups,
i.e. stabilizers of cells. One reason to study the orbits under these groups is that we want to
understand how the orbicells in the quotient look like, i.e. we have to compute the quotient of
the cells described in Section 10.7.2 under the related stabilizers. The other reason is that for
the computation of the cohomology later on we will need to know what the structure of the
set of neighbours of a given cell under its associated stabilizer looks like (see Section 13.3).

Therefore, it is of fundamental interest to know not only the cells in the boundary
(see Section 10.4) and the neighbours (see Section 10.6) of a given cell, but also their be-
haviour under the stabilizer of the central cell. One might expect that the cells are distributed
equally onto the orbits. But contrary to this, we will find that the structure is a little bit more
complicated

10.7.3.1. The Structure of Neighbours

The neighbours of a cell C (X) are, as explained in Section 10.6, those cells C (Y ) whose
closure has non-empty intersection with the closure of C (X). Therefore, the dimension
of cells in the neighbourhood of C (X) is always larger than the dimension of the central
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cell C (X). We computed for each cell C (X) in the boundary of RedSquare first its set of
neighbours before we determined for all of them in which orbit they lie under the stabilizer
ΓX of C (X). We have at least one orbit per type of cells, since these are in the same orbit
under the full Siegel modular group Γ. The results of these computations can be found in
Table 10.10.

One observes several things: The action of the stabilizers is almost never transitive on the
set of neighboured cells of the same type, i.e. we find more than one orbit per cell type.
This makes some things in Section 13.3 a little bit more complicated that it would be in
the transitive case because then there are several orbits under the stabilizer and not only
one. Further, we find that the length of orbits of the same type is not always constant. This
phenomenon occurs only in few cases, namely for cells of type RedSquare around the cells
Pyramidi for i = 0, . . . , 31 under ΓPyramidi

, the cells of type RedSquare around Squarei for
i = 0, . . . , 63 under ΓSquarei

, and finally for cells of type RedSquare as well as for those of
type Crystal around Reyei for i = 0, . . . , 27 under ΓReyei

. In all of these four cases the set
of orbits splits into two different kinds of orbits. This is somehow astonishing, because one
might expect that the situation is completely symmetric under the group action. Although
there is this broken symmetry, the structure is the same if we consider another cell of the
same type as central cell.

10.7.3.2. The Structure of the Boundary

In some way the consideration of orbits of cells in the boundary of a given cell is ’dual’
to the situation presented in the previous section. As before, we compute for all cells in
the boundary of the standard 4-cell RedSquare their orbits under the group ΓRedSquare

(see Table 10.11 (a)). Furthermore, we did the same for all other types of cells (see Table 10.11
(b)-(h)). We find that for all cells of the same type the structure is the same. As also in case of
orbits of neighbours under stabilizers we find here an analogous phenomenon, which affects
the same types of cells as in the previously considered orbits of neighboured cells. To be
accurate we have the following: There are orbits of two different lengths for the cells of type
Reye and Square around a cell of type RedSquare under the corresponding stabilizer, and
for cells of type Reye under the stabilizer of a cell of type Crystal around that cell. The
details can be obtained from Table 10.11.

10.7.4. The Structure of the Orbicells in W/Γ

The description of orbicells in the quotient needs some tinkering with scissors and glue. In
particular, in case of higher dimensional orbicells we have to do some fancy identifications
of the cells in W. We have to distinguish between the description of an orbicell and the
description of the behaviour of the lifts of its boundary components under the map π̃ to the
quotient. We have to emphasize that there are two kinds of identifications which take place
under π̃, those which come from elements in the stabilizer of the considered cell in W or
the lift of an orbicell in W/Γ and those which come from group elements which map one
cell onto a different cell in W. The elements of the stabilizer identify also parts of the cell
itself – remember an orbicell CΓ(X) in the quotient is the image of the cell C (X) ∈W under
its stabilizer ΓX – and maybe also parts of the boundary to see how they fit in the whole

93



10. Computing a Cellular Decomposition

Table 10.10.: Orbits of cells in the neighbourhood of a given cell under its stabilizer for non-trivial cases in the
boundary of the standard 4-cell RedSquare0. (a) Desarguesi for i = 0, . . . , 47. (b) Reyei for i = 0, . . . , 27.
(c) DRi for i = 0, . . . , 175.(d) RRi for i = 0, . . . , 39. (e) Trianglei for i = 0, . . . , 111. (f) Squarei for
i = 0, . . . , 63. (g) Hexagoni for i = 0, . . . , 3. (h) Vertebrai for i = 0, . . . , 3. (i) Crystali for i = 0, . . . , 3.
(j) Pyramidi for i = 0, . . . , 31.

Cell Type Orbits Structure
(# of orb.×length)

DR 1 1×5
Triangle 1 1×5
Square 1 1×5
Vertebra 1 1×5
Crystal 1 1×5
Pyramid 1 1×5
RedSquare 3 3×5

(a)

Cell Type Orbits Structure
(# of orb.×length)

DR 1 1×24
RR 2 2×4
Triangle 2 2×24
Square 2 2×12
Hexagon 1 1×4
Vertebra 1 1×24
Crystal 3 2×6 1×4
Pyramid 3 3×12
RedSquare 4 3×12 1×6

(b)

Cell Type Orbits Structure
(# of orb.×length)

Triangle 2 2×1
Square 2 2×1
Vertebra 3 3×1
Crystal 3 3×1
Pyramid 3 3×1
RedSquare 11 11×1

(c)

Cell Type Orbits Structure
(# of orb.×length)

Triangle 2 2×1
Square 2 2×1
Vertebra 3 3×1
Crystal 3 3×1
Pyramid 3 3×1
RedSquare 11 11×1

(d)

Cell Type Orbits Structure
(# of orb.×length)

Vertebra 1 1×1
Crystal 1 2×1
Pyramid 1 1×1
RedSquare 5 7×1

(e)

Cell Type Orbits Structure
(# of orb.×length)

Vertebra 1 1×2
Crystal 2 2×1
Pyramid 1 1×1
RedSquare 5 3×2 2×1

(f)

Cell Type Orbits Structure
(# of orb.×length)

Vertebra 1 1×6
RedSquare 1 1×9

(g)

Cell Type Orbits Structure
(# of orb.×length)

RedSquare 1 1×3

(h)

Cell Type Orbits Structure
(# of orb.×length)

RedSquare 1 1×3

(i)

Cell Type Orbits Structure
(# of orb.×length)

RedSquare 3 2×1 1×2

(j)
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Table 10.11.: Orbits of cells in the boundary of a given cell under its stabilizer for non-trivial cases in the
boundary of the standard 4-cell RedSquare0. (a) RedSquare0. (b) Crystali for i = 0, . . . , 3. (c) Vertebrai

for i = 0, . . . , 3. (d) Pyramidi for i = 0, . . . , 31. (e) Trianglei for i = 0, . . . , 111. (f) Squarei for
i = 0, . . . , 63. (g) Hexagoni for i = 0, . . . , 3. (h) RRi for i = 0, . . . , 39.

Cell Type Orbits Structure
(# of orb.×length)

Desargues 3 3×16
Reye 4 1×4 3×8
DR 11 11×16
RR 5 5×8
Triangle 7 7×16
Square 5 3×16 2×8
Hexagon 1 1×4
Vertebra 1 1×4
Crystal 1 1×4
Pyramid 2 2×16

(a)

Cell Type Orbits Structure
(# of orb.×length)

Desargues 1 1×12
Reye 3 1×2 2×3
DR 3 3×12
RR 1 1×6
Triangle 1 1×12
Square 2 2×6

(b)

Cell Type Orbits Structure
(# of orb.×length)

Desargues 1 1×12
Reye 1 1×12
DR 3 3×12
RR 1 1×12
Triangle 1 1×12
Square 1 1×12
Hexagon 1 1×2

(c)

Cell Type Orbits Structure
(# of orb.×length)

Desargues 1 1×2
Reye 3 3×1
DR 3 3×2
RR 2 2×1
Triangle 2 2×2
Square 1 1×1

(d)

Cell Type Orbits Structure
(# of orb.×length)

Desargues 1 1×1
Reye 2 2×1

DR 2 1×1
RR 1 1×1

(e)

Cell Type Orbits Structure
(# of orb.×length)

Desargues 1 1×2
Reye 2 2×1

DR 2 2×2

(f)

Cell Type Orbits Structure
(# of orb.×length)

Reye 1 1×6
RR 1 1×6

(g)

Cell Type Orbits Structure
(# of orb.×length)

Reye 1 1×6
RR 1 1×6

(h)
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ensemble of orbicells. Our consideration starts usually first with the identification under the
stabilizer elements, followed by the identification of the remaining boundary, which are not
yet identified under the action of the stabilizer, components according to their types. The last
part does not change the shape of the orbicells. We will give a detailed construction of this
in case of orbicells whose dimension is two and less. For 3- and 4-orbicells it is more difficult
to get a picture out of this construction. The more advanced reader with much better spatial
awareness then myself may get a glimpse how they look like also in the case of 3- or even
4-orbicells in the quotient.

If we want to get a picture of the orbicells in the quotient, we need to include the action
of the elements of the stabilizer of the cell, which fold and/or cut and glue the cells in
W. To visualize this we will identify parts of their boundary according to the observations
made in Section 10.7.3.2. This describes how the orbicells CΓ(X) = C (X)/ΓX look like in
W/Γ. We complete the picture how the different orbicells together with their boundary fit
in the quotient W/Γ by identifying in addition also the remaining orbicells in the boundary
according to their type. Analogously to the cells in W we will give a short survey starting
with the orbicells of lowest dimension.

10.7.4.1. Dimension 0 and 1 – Vertices and Edges.

As already discussed in Section 10.7.2.1 the dimension forces the cells of type Desargues

and Reye to be vertices. In this case orbicells are, independent of the stabilizer, even cells in
the classical sense.

Also by dimension we know that the cells of type RR and DR have to be some kind of line
segments inW. Since all cells of type Reye become equivalent in the quotient and there is no
element in the stabilizers of cells of type RR which interchanges the two end points of type
Reye, a cell of type RR in the quotient together with its identified boundary forms a loop,
whereas cells of type DR stay line segments with two different endpoints also in the quotient.
Furthermore, we can conclude that the stabilizers of cells of types DR and RR stabilize the
cell even pointwise. (For 0-cells this is obviously also true.) Therefore, also in dimension one
all orbicells are even cells in the classical sense. Finally we want to mention that there are no
lines connecting two points of type Desargues.

10.7.4.2. Dimension 2

To get a picture of the image of the 2-cells in the quotient, i.e. their images under π̃, we have
to cut, fold and glue them and their boundary components according to their stabilizers.
According to Table 10.11 all vertices and all edges of the same type lie also in the same orbit
under the stabilizers, i.e. in these cases the stabilizer acts transitively on the sets of vertices
and edges, i.e. all cells in the boundary. Therefore, we have here

CΓ(X) = C (X)/Γ, (10.20)

i.e. the orbits under Γ and ΓX coincide. We tried to illustrate the construction we describe
now in some pictures (see Figures 10.2, 10.3 and 10.4).
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Figure 10.2.: 2-cell of type Triangle and cellular tinkering to the corresponding orbicell in the quotient. The
dark vertices are those of type Reye, the light vertex is the vertex of type Desargues. The dark edge is of type
RR, the other two light edges are of type DR. The arrows indicate how to identify the parts.

(a) Original (b) Result

Figure 10.3.: 2-cell of type Square and cellular tinkering to the corresponding orbicell in the quotient. The
dark vertices are those of type Reye, the light vertices are of type Desargues. All edges are of type DR. The
arrows indicate how to identify the parts. The dotted line shows the branching points which have different
stabilizers then the other points.

(a) Original (b) Intermediate (c) Result

Let us start our considerations with the triangular cell. By the computation of the stabilizers
of cells of type Triangle we found that the stabilizer consists only of ±Id, therefore also in
the quotient the orbicell has the shape of an open triangle and is therefore a cell. But under
the quotient map π̃ both vertices of type Reye and both edges of type DR are identified.
Therefore, the picture of the closure of the cell of type Triangle in the quotient looks like
the surface of a cone (see. Figure 10.2).

The cells of type Square in W have a stabilizer of order 4 in Γ which descends for the action
on W to a subgroup of order two in PSp2(Z). Therefore, we have to fold and glue the
square along one of the two diagonals. Since there is no element mapping the two vertices
of type Reye onto each other, but there is an element which interchanges the two cells of
type Desargues in the boundary, there has to be a subset of the cell which is stable under
this map and which connects the two points of type Reye. This subset, which is the diagonal
connecting the two points of type Reye, consists of branching points for the covering of the
orbicell in the quotient by its preimage in W. We indicated this subset by a dotted line in
Figure 10.3. Note that the element of order 2 in PSp2(Z) reverses the orientation of the
orbicell. We see that the shape of the image of a cell of type Square in the quotient is a kind
of triangle which forms, as in the previous case, a kind of cone if we include the identification
by elements which are not in the stabilizer. The bottom side of the cone-like shape shown
in Figure 10.3 (b) are only branching points which are inside the orbicell and not a boundary
component. This is the first example of an orbicell which is not a cell in the usual sense.

In case of the Hexagon-type cell we have a very similar situation to that of the cells of type
Square if we only look to them as objects in W. We easily find that the shape of cells of
Hexagon-type is a hexagon whose boundary consists of six vertices of type Reye joint by
six edges of type RR. The stabilizer is much larger (it has order 72) as in case of cells of
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type Square, but all its elements act orientation preserving on the hexagon. A closer look
to its structure and its action on the boundary shows that although the group is much more
complicated the action on the hexagon is essentially the action of C6, the cyclic group of
order order 6. Therefore, the only point which is stable under each element of ΓHexagon

is
the central point of the hexagon, indicated in Figure 10.4. This central point has the maximal
stabilizer equal to ΓHexagon

. All other points are rotated with multiples of π/3 around this
central point. Therefore, all other points have a much smaller stabilizer which has only order
12 and is the subgroup of ΓHexagon

which stabilizes the complete cell pointwise. Thus, the
orbicell CΓ(Hexagon) is a sixfold covering with an single branching point which has the
shape of a cone (see Figure 10.4). In this case one easily find that this cone in the quotient is
homeomorphic to an open disc and therefore different from the orbicell of type Square, also
a classical cell.

Figure 10.4.: 2-cell of type Hexagon and cellular tinkering to the corresponding orbicell in the quotient. The
central branching point is indicated by by a black dot. In the intermediate step we cut the hexagon into six
triangular leaves around the branching point. Here only the thin solid black lines in the front of the picture
belong to the triangle. In the result these six leaves are glued together to a sixfold covered cone (black arrows in
(b) and (c)) with a loop in the boundary coming from the boundary of the hexagon.

(a) Original (b) Intermediate 1 (c) Intermediate 2 (d) Result

10.7.4.3. Dimension 3 and 4

Now we ask what we can say about the image of the 3- and 4-cells under the projection map
π̃ in the quotient. We start with the cell of type Pyramid. The stabilizer of the pyramidal
cell in Γ is isomorphic to C2 × C2 which descends to a stabilizer of order two in PSp2(Z).
This is exactly the same stabilizer as the stabilizer of the cell of type Square in the bottom.
Therefore, in the quotient the orbicell is a twofold branched cover. The preimages branching
points in a fixed lift of the orbicell form in W a triangle shaped set. The vertices of this
triangular shaped set are the cells of type Desargues in top of the pyramid and the two
vertices of type Reye in the boundary of the rectangular cell in the bottom. The stabilizer
of the cell identifies also parts of the boundary components: The rectangular cell is – as
described above – folded and glued to a triangle, two pairs of triangles and the corresponding
edges and vertices are identified. It becomes rather complicated if we include the behaviour
of the remaining identifications under π̃. This means that we identify the remaining 2-, 1-
and 0-cells of the same type. The result of this is not so easy to draw. We leave it as an
exercise to the interested reader. Here we have the same problem than in case of the orbicell
of type Square that the object in the quotient is an orbicell but not a cell. The same is true
for the remaining objects in the quotient.

More complicated to describe are the remaining two types of 3-orbicells. We start with the
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cells of type Vertebra in W. These cells have a stabilizer which acts as a C12. This action
consists of of two types of operations. First rotations around the axis connecting the isolated
fixed points of the two hexagons. This axis stays stable also under the second component
of the action of the stabilizer, which interchanges the two hexagons (and forced by this also
the other cells), and therefore under all elements in ΓVertebra

. This flip does not preserve the
orientation of the cell. However there is a subset of the cell which stays stable under this flip
which defines some additional branching points in the quotient. In the intersection of this
subset and the axis is a fixed point with maximal stabilizer equal to ΓVertebra

. Note that also
the cells of type Square stay stable under the flip of the two hexagons (but not the cells in
their boundary, they are interchanged). Furthermore, under this flip pairs of triangles are
interchanged. This can be combined with a rotation around the central axis. In this way we
get a description of the covering and branching behaviour of an orbicell of type Vertebra in
the quotient. To complete the picture how this orbicell fits in the quotient we have now in
addition to identify the images of all remaining cells of the same type in the boundary.

The last type of 3-cells we have to consider are those of type Crystal. The stabilizer of cells
of this type is isomorphic to (C6 × C2) o C2 (see Table 10.7). The action of the stabilizer
consists, similar to the previous case, of a rotation around a central axis connecting the top
and the bottom point of type Reye of the cell shown in Figure 10.1 (b), together with an
interchange of the part above and below the hexagon consisting of the remaining six vertices
of type Reye. Also in this case this flip reverses the orientation of the cell. Therefore, we
have as sets of branching points the central axis and the plane defined by the six vertices of
type Reye. The intersection point of these two sets is the fixed point with maximal stabilizer.
Further, there are elements of the stabilizer which interchange pairs of triangles. This gives
us a picture of the covering and branching of the orbicell in the quotient. As last part of this
construction we have to identify the cells in the boundary according to their types.

Now we have to finish our considerations of the structure of the orbicells in the quotient by
handling the only 4-orbicell. This is from our point of view the most complicated object due
to the lack of intuition in handling four dimensional object. Nevertheless we try to give a
sketch in the same way we did before in case of lower dimensional parts of its boundary.
There is exactly one representative of each type of orbicells in the closure of the 4-orbicell in
W/Γ. Their description was already given above. Remember, the closure of CΓ(RedSquare)
is equal to W/Γ. Thus, we have to complete our picture of W/Γ by looking to the behaviour
of C (RedSquare) under its stabilizer. The stabilizer acts transitively on the sets of cells
of types Crystal and Vertebra. Each of these sets consists of four elements. For each
cell C (X) for some X ∈ W which is of type either Crystal or Vertebra in the boundary
of C (RedSquare) there is a subgroup of ΓRedSquare

which is isomorphic to D4 = C4 o C2

which also stabilizes C (X) (comp. Table 10.12). The stabilizer ΓRedSquare
is isomorphic to

(C4 × C4) o C2 = D4 ×D4 which has order 32. We know by our computations of ΓRedSquare

that the highest order of an element in this group is eight. Furthermore, the order of the
stabilizer in PSp2(Z) is only 16. Therefore, it is not surprising that the set of 32 cells of type
Pyramid splits into two disjoint orbits of 16 cells each8. On these two orbits the stabilizer
of the 4-cell act transitively. There are several cyclic subgroups therein which have orbits of
length two or four. But no element from the stabilizer of the 4-cell – except ±Id – stabilizes

8If the 32 cells of type Pyramid are enumerated as mentioned before in the order of their genera-
tion, i.e. we have Pyramid0, . . . ,Pyramid31. The first orbit consists of the cells with the indices
{0, 1, 2, 3, 12, 13, 14, 15, 20, 21, 22, 23, 24, 25, 30, 31}. The other orbit consist of the remaining 16 cells.
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a pyramid. Thus, we have, after we applied the action of the stabilizer to the boundary,
two pyramids, and one of the other 3-cells each. The lower dimensional components are not
changed up to now since their stabilizers intersected with the stabilizer of the 4-cell consist
only of ±Id. First, we have now to identify the remaining two classes of pyramids, then
we can replace all 3-cells together with their boundaries by the description stated above.
Finally we have to identify also the remaining classes of images of lower dimensional cells
according to the results of Section 10.7.3.2 for the picture of lower dimensional branching
point inside RedSquare. In the center of the 4-cell there is a distinguished point which has
the full stabilizer of the cell as stabilizer. This point lies in the intersection of all fixed point
components of the subgroups of ΓRedSquare

which are isomorphic to D4. A deeper analysis
of these groups and the permutations as discussed in Section 10.7.3.2 defined by them can
give a more detailed picture of their fixed point components, which we skip at this place.
Parts of that will be covered of the discussion of intersections of stabilizers in the following
Section 10.7.5.

10.7.5. Intersection of Stabilizers

The groups which are results of the computation of stabilizers in our program are according
to Section 10.7.1 objects in the class MatrixGroup. These objects are internally represented
and initialized by a finite set of generators, which are matrices or equivalently matrix group
elements. In our program the set of generator which is given to the constructor of the class
consists of all elements of the stabilizer. There is a method of that class called list() which
returns a complete list of elements, if the group is finite, and raises an exception otherwise.
Therefore, we can compute quite simple the intersection of two such groups. In our program
we implemented for this the function intersectionofgroups(G1,G2), which takes the lists
of elements, computes their intersection and returns the MatrixGroup generated by these
elements, which is nothing else than the group consisting of exactly these elements in the
intersection.

As we will see e.g. in Proposition 13.3.10 we have to find for certain pairs of cells the intersec-
tion of their stabilizers, to be able to compute cohomology groups. Therefore, we computed
for all cells in the boundary of RedSquare the intersection of their stabilizer with ΓRedSquare

(see Table 10.12).

We find an interesting coincidence between those types of cells in the boundary of RedSquare

which have two kinds of orbits of different length and those types which have two different
types of intersections (comp. Table 10.11). In some way this is not really surprising, since
if under ΓRedSquare

we have a shorter orbit one might guess that in these cases we could
have a larger intersection, which is true. To compute the cohomology in degree one we
need the intersections of the stabilizer of one chosen lift of a 4-cell, i.e. RedSquare, with
stabilizers of cells in its boundary. Furthermore, we need the intersections of stabilizers of
some representatives of 3-cells with stabilizers of at least one representative of each orbit
under the stabilizer of that 3-cell to compute the cohomology in degree two and so forth.
Therefore, we also computed the intersections of stabilizers of all other cells with stabilizers
of cells in their boundary. Moreover, we also computed, because it was easier to do it with
all already computed cells, the intersection of stabilizers of all cells of one type with the
stabilizers of all cells of those types, which occur in its boundary. Now we find that in
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Table 10.12.: Intersections of the stabilizers for all cells in the closure of RedSquare0 with the stabilizer
ΓRedSquare0

of the standard 4-cell.

Cell σ Group Structure
Desarguesi for i = 0, . . . , 47 C2

Reyei for i = 0, 1, 18, 19 D8

Reyei for i 6= 0, 1, 18, 19 C2 × C2

DRi for i = 0, . . . , 175 C2

RRi for i = 0, . . . , 39 C2 × C2

Trianglei for i = 0, . . . , 111 C2

Squarei for i = 8, 9, 14, 15, 16, 17, 18, 19, 30, 31, 32, 33, 52, 53, 54, 55 C2 × C2

Squarei for the other cases C2

Hexagoni for i = 0, . . . , 3 D8

Vertebrai for i = 0, . . . , 3 C4 × C2

Crystali for i = 0, . . . , 3 D8

Pyramidi for i = 0, . . . , 3, 12, . . . , 15, 20, . . . , 25, 30, 31 C2

Pyramidi for the other cases C2 × C2

most cases these intersections of stabilizers of cells which do not lie in the boundary of a
cell have a trivial intersection, i.e. the group is isomorphic to C2, but in some case we also
find larger groups as e.g. some which are isomorphic to C2 × C2. This is not necessary to
know for the computation of cohomology, but give some deeper insight into the structure
of cells in W. A list with the some more intersections of stabilizers can be found in the file
intersections.pdf which is include in the CD-ROM, which is included in the printed copy
of this thesis.
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11. Γ-Modules and their Computation

The coefficient systems of the cohomology groups we want to compute are given by
Γ-modules and systems of sheaves associated to them (see Section 12.1). In this chapter
we describe the construction and computation of the class of Γ-modules which we use later
as coefficients. The techniques used in this context are more or less standard techniques in
representation theory. The problems raise up if we are going into details of the computation
of Γ-modules. It is quite easy to compute highest weight modules for a simple or semi-simple
Lie algebra g and thus, by the results stated in Section 6.4.4, irreducible g-modules. Unfortu-
nately, the transfer from Lie algebras to Lie groups is given by the exponential map, which
is only locally a homomorphism. Therefore, we have to decompose our problem into parts
which have a good local description (see Section 11.1).

11.1. Construction of Γ-modules

We introduced in Section 6.1.2 Γ-modules for some groups Γ ⊂ G and in Section 6.4.4
g-modules for a Lie algebra g = Lie (G). Using the Poincaré-Birkhoff-Witt theorem
(see Theorem 6.4.2) one can quite easily state bases for g-modules associated to some highest
weight λ. These g-modules are highest weight modules for some representations of Lie alge-
bras. Using PBW-bases we can define the action of Lie algebra elements on these g-modules
in terms of matrices, which realizes the Lie algebra representation (comp. Sections 6.4.3
and 6.4.5). We need a description of Γ-modules and not of g-modules. Therefore, we have to
make out of such a g-module the associated Γ-module. To describe a Γ-module we need to
describe representations of the group G or a discrete subgroup Γ ⊂ G. We will describe in
the following the connection between Lie algebra representations and representations for the
associated Lie group before we are going more into the details of how to compute them.

Let g = Lie (G) the (simple) Lie algebra for G, where G is a (real) Lie group. We assume that
g is realized as Lie subalgbra of the matrix algebra gld(R) via the standard representation

ρg,0 : g ↪→ gl(VR) = gld(R) ⊃ g = im (ρg,0) (11.1)

of g. For us G will be Sp2(R) and g = sp2. Let further Γ be an arithmetic subgroup of G.
For us Γ will be the Siegel modular group or some subgroup of it. The construction in this
section will work for an arbitrary simple Lie algebra and is not restricted to the symplectic
Lie algebra. Therefore, we will formulate the results also in this generality.

As already mentioned above there is a strong relation between a Lie group G and its associ-
ated Lie algebra g = Lie (G) (see (6.22)).

g = Lie (G) = {X ∈ Matd(R) = gld(R) : exp(t ·X) ∈ G∀t ∈ R}.
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11. Γ-Modules and their Computation

This connection can be used to make out of a Lie algebra representation a Lie group rep-
resentation. This works as follows: Let ρg : g → gl(M ⊗Z R) ∼= gln(R) be a Lie algebra
representation with some g-moduleM of rank n, e.g. M is a highest weight module for some
weight λ defined over the integers.1 We define a representation of G

ρG : G→ GL(M⊗Z R) (11.2)

such that the action of Lie algebra elements is compatible with the action of Lie group ele-
ments via the exponential map. This means that the diagram

g G

gl(M⊗Z R) GL(M⊗Z R)

exp

exp

ρg ρG (11.3)

should be commutative. This suggests – if we could invert the exponential map – to set

ρG(γ) := exp(ρg(exp−1(γ))) (11.4)

for all γ ∈ G. There is one problem: The exponential map is only locally an isomorphism
onto its image and need not to be – and is not – globally even a homomorphism from g to G
(see Section 6.4.1). This means that we cannot compute the exponential map by evaluation of
the exponential series globally for arbitrary elements X ∈ g. However we can do this locally.
Thus, we need to decompose any element γ ∈ G into a product of elements for which we
know that they are images of Lie algebra elements and what their preimages are.

According to (6.48) we have the root space decomposition

g = n− ⊕ h⊕ n+,

where n± =
⊕

α∈Φ
± gα and all gα for α ∈ Φ are one-dimensional. Furthermore, we know

from Sections 6.4.2 and 6.4.3 that the root elements xα and yα for α ∈ Φ+ generate g as Lie
algebra and are as matrices nilpotent and hence we know that the matrices exp(t · nα) are
unipotent elements in G for all t ∈ R, which also generate G. To simplify the notation we
introduced here for α ∈ Φ

nα :=

{
xα if α ∈ Φ+

y−α if α ∈ Φ−.
(11.5)

The exponential map exp(t · nα) is well defined as homomorphism for all t ∈ R and α ∈ Φ
and can be computed by evaluating the exponential series, which is here just a polynomial
because the nα are nilpotent. This was shown for the case g = spg in Sections 6.4.3 and 6.4.5,
where we explicitly constructed the corresponding matrix representations. For other simple
Lie algebras g we refer to the literature (see e.g. [GW09; 2.4.1]). Hence, we find for each
γ ∈ G a decomposition

γ =
∏
i

exp(ti · nβi) (11.6)

1By the results of Kostant (see e.g. Theorem 6.4.3) all structure constants are integral and thus we can assume
that there is such a module defined over the integers.
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11.1. Construction of Γ-modules

where ti ∈ R and βi ∈ Φ. This is exactly the decomposition into unipotent elements stated
in Theorem 6.3.3. We present in Section 11.2.3 an algorithm to compute this decomposition
for a given simple Lie algebra g explicitly, which works in particular for integral elements
in g. In that section we present the details in case of g = spg, which is the only one we
need. However the implementation works also fine for other families of simple Lie algebras
in characteristic zero, which are not relevant for the considerations in this thesis.

We can now apply successively – since the operations defined in (11.3) are associative –
the inverse map exp−1 to the factors exp(ti · nβi), because on each one-parameter subgroup
{exp(t · nβ) : t ∈ R} the exponential map is a local isomorphism. To each element

exp−1(exp(ti · nβi)) = ti · nβi

we can now apply the Lie algebra representation ρg. The resulting elements

ρg(ti · nβi) = ti · ρg(nβi)

are again nilpotent since the representation ρg is a homomorphism. Thus, we can apply the
exponential map and we get for each factor a unipotent element in GL(M ⊗Z R). Using
the associativity of the action we can multiply all transferred factors together and get the
representation we are looking for. We summarize:

Theorem 11.1.1: Let g = Lie (G) be a simple Lie algebra associated to a Lie group G with a fixed
system of positive roots Φ+ as above. Let further Γ ⊂ G be an arithmetic subgroup and (ρg,M) a Lie
algebra representation of g for some g-moduleM defined over the integers. Then there is an associated
group representation

ρG : G→ GL(M⊗Z R)

such that Diagram 11.3 commutes. Let γ ∈ G be a group element, then the representation ρG is given
by

ρG(γ) =
∏
i

exp(ti · ρg(nβi)),

if

γ =
∏
i

exp(ti · nβi)

is a decomposition into finitely many factors with ti ∈ R and βi ∈ Φ+ t −Φ+. This defines a
G-structure on M⊗Z R and therefore also a Γ-R-module structure on M⊗Z R.

Obviously we can obtain a representation by restriction of ρG to a subgroup Γ ⊂ G. The in-
teresting point is that according to Theorem 6.4.3 our chosen bases have an integral structure
which is compatible with the exponential map (comp. [Kos66]). The normalization made in
(6.50) is made in a way that integral elements in g, i.e. elements in

gZ = g ∩ gl(V) (11.7)

are mapped onto integral elements in the group, i.e. G (Z) := G∩GL(V) if G /Q is the under-
lying algebraic group to G = G (R). Hence, we find that the representation ρG is an algebraic

105



11. Γ-Modules and their Computation

representation which is already defined over the integers. Therefore, the construction in The-
orem 11.1.1 descends completely to the level of algebraic groups which are defined over the
integers.

Therefore, we can in particular associate to each highest weight representation (ρλ,g,Mλ) of
g = spg of weight λ a unique group representation (ρλ,Γg ,Mλ) of Γg ⊂ Spg(Z) and make Mλ

into a Γ-module. We will describe in the following sections how to get a basis of a highest
weight module of given weight and how to compute the group action on this module.

11.2. Computation of Γ-modules

The algorithm to compute the basis of highest weight modules and the action of Lie al-
gebra elements uses Kostant’s construction [Kos66] of lattice bases for Lie algebras an the
PBW-basis [Poi00, Bir37, Wit37] for the universal enveloping algebra of sp2 (see Sections 6.4.3
and 6.4.4). For the GAP-routines on Lie algebras we use one finds some short description in
the GAP Reference Manual [The08; Chap. 60 and 61].

We describe in this section how to adapt and extend the existing routines for Lie alge-
bras and their actions to get a SAGE-package which allows us to compute bases for high-
est weight modules and other Γ-modules as well as the actions of Lie group elements on
them. For our purpose we use the existing routines in GAP and the additional GAP-package
QuaGroup. This GAP-package was developed by Willem A. de Graaf in 2002 to extend the
existing GAP-routines for Lie algebras to quantum Lie algebras and reimplements also some
existing modules much more efficient than in the original version. The ability to deal with
quantum Lie algebras is less important for us. However it offers also the ability to compute
efficiently the action of (quantum) Lie algebra elements on certain modules which is not pos-
sible in GAP without QuaGroup-package. We use this to compute the actions of the related
Lie Group on the weight modules and later to compute their invariants under these groups.

We describe as much of the internal data structure which is used in GAP to represent weight
modules over semi simple Lie algebras, elements in them, and elements in the universal
enveloping algebra as is necessary to understand our algorithms (see [The08; §61.13]). These
structures are essentially the same than in the QuaGroup package. In quantum Lie algebras
there is an additional parameter _q the so called quantum parameter. One gets classical Lie
algebras by setting quantum-parameter _q:=1. In other words, the classical Lie algebras are
only a special case this much more general framework.

All algorithms are defined over a field of characteristic zero. But we know by the result
of Kostant [Kos66] that the used objects are indeed already in the integral lattice of the Lie
algebra sp2 or of the universal enveloping algebra U(sp2) (comp. Theorem 6.4.3).

For us a Γ-module M will always be an object given by the following data:

• A Cartan type of a simple Lie algebra defined over a field of characteristic zero, which
is chosen to be Q. Usually the Lie algebra will be of type C2. The algorithm also works
for other Cartan types like D12 or B7.

• A weight λ = λ1 ·ω1 + . . .+λg ·ωg, which will be given by a list of non-negative integers
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[lambda_1,...lambda_g], i.e. the highest weights we consider are always dominant
weights.

We will describe how to obtain in our SAGE-package, which uses in this part mostly functions
from GAP, out of these data a PBW-basis of a highest weight moduleMλ and the correspond-
ing matrix representation for the symplectic group (or one of the other associated types of of
Lie groups). Here we restrict ourselves to the functions which are actively used and refer for
most functions in the background to the manual of our program in the Appendix in Chap-
ter A. Some more information can also obtained from the parts of source code your will find
in the Appendix in Chapter B.

11.2.1. Basic GAP-Objects used in Our Program

The basic objects in the program are Lie algebras and some derived objects. Simple Lie
algebras are basic objects in GAP, which we wrap into SAGE. A simple Lie algebra is given
in our package by the command SimpleLieAlgebra(type,rank, base_ring=QQ) where,

• type is a string equal to "A", "B", . . . , "G", i.e. one Cartan family.

• rank is an integer (≥ 1 for type "A", ≥ 2 for type "B" or "C", ≥ 4 for type "D", equal to
6, 7 or 8 for type "E", equal to 4 for type "F", or equal to 2 in case of type "G") equal to
the rank of the simple Lie algebra.

• base_ring is any SAGE ring, but some further parts work only if it is a field of charac-
teristic zero. Thus, we set by default base_ring=QQ.2

The objects of type SimpleLieAlgebra carry lots of additional attributes, such as the asso-
ciated root system, which can be obtained by the method RootSystem() and carries further
attributes like its positive, negative, or simple roots. We do not go too much into detail at
this place. Here is a short example output:

sage: L = SimpleLieAlgebra("C", 2); L

Algebra( Rationals, [ v.1, v.2, v.3, v.4, v.5, v.6, v.7,

v.8, v.9, v.10 ] )

sage: L.Dimension()

10

sage: R = L.RootSystem()

<root system of rank 2>

sage: R.PositiveRoots()

[ [ 2, -1 ], [ -2, 2 ], [ 0, 1 ], [ 2, 0 ] ]

sage: L.DimensionOfHighestWeightModule([10,3])

2090

The dimension of a highest weight module is computed using the Weyl character formula
(6.56), which is efficiently implemented in GAP. The most important objects are integral lat-
tice elements in the universal enveloping algebra U(g) for a simple Lie algebra g which form

2In SAGE we have that QQ are the rational numbers, RR are the real numbers and CC are the complex numbers.
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a basis according to the Theorems 6.4.2 and 6.4.3. There are two existing implementations
which we can use during this computation, one in the standard library of GAP, the other
in the quagroup-package of GAP. The last one is somewhat faster for most cases, but ac-
cording to the authors there is no good heuristic in which cases. Nevertheless we decided
to use the quagroup-package, also because in the standard GAP libraries there is no im-
plementation of the algebra action we need later on. The usage of both implementations
is identical. With our wrapper to SAGE we can get a list of these lattice elements by the
function latticegeneratorsinUEA(L), where L is a simple Lie algebra. Note: The function
latticegeneratorsinUEA(L) returns an object of the SAGE-type list, which starts indexing
with 0, whereas the class method L.latticegeneratorsinUEA() returns a GAP list, which
starts indexing with 1, as can be seen in the following example:

sage: L=p.SimpleLieAlgebra("C",2)

sage: Ugen = latticegeneratorsinUEA(L); Ugen

[y1, y2, y3, y4, x1, x2, x3, x4, ( h9/1 ), ( h10/1 )]

sage: Ugen[1]

y2

sage: L.latticegeneratorsinUEA()[1]

y1

The occurring elements yi, xj and ( hk/1 ) are exactly the elements in a Chevalley basis
of L with the notation introduced in (6.50). We should note that the first g of the yi as well
as of the xj (corresponding to the negative and positive roots, respectively) correspond to
the chosen simple roots. The last g elements are the Cartan elements, which are given by
the Lie bracket applied to the elements corresponding to simple roots. With the elements in
Ugen we can perform additions and scalar multiplications, and we can multiply them with
an other element out of Ugen. The latter multiplication is the multiplication in the universal
enveloping algebra of L. For example, we can calculate:

sage: Ugen[1]*Ugen[1]

2*y2^(2)

sage: 6*Ugen[4]*Ugen[2]

12*y2+6*y3*x1

The results are reduced and represented in the PBW-basis of the module with the normaliza-
tion from (6.50). In the used GAP-implementation the reduction uses Gröbner bases for the
monomials in the PBW-basis of the universal enveloping algebra. Since Gröbner bases are
efficiently implemented in GAP (see [The08; §64.17]), this allows a fast reduction. Unfortu-
nately the part on computation of PBW-bases is badly documented in the GAP-references as
well for Lie algebras as for the quagroup-package. Therefore, one has to go into the source
code of the used functions to get a glimpse of how it works in detail.

GAP contains highest weight modules as native objects, which we wrapped into our SAGE-
program as the command HighestWeightModule(L, weight), where L is a simple Lie alge-
bra and weight is – as mentioned above – a list of non-negative integers. Highest weight
modules are given by a PBW-basis, which can be obtained using Theorem 6.4.6. To return
this basis (as GAP list) there is the class function Basis().
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For some reason elements in highest weight modules are in GAP represented as objects in
the class LeftAlgebraModuleElement and in particular not as elements in the also exist-
ing class WeightRepElement. However, if v is an element of a highest weight module,
then ExtRepOfObj(v) is a WeightRepElement. The constructor of elements in the class
HighestWeightModule inherits from the element constructor in the class VectorSpace in
GAP. In the package quagroup there is the possibility to apply an element u in the object
latticegeneratorsinUEA(L) to a WeightRepElement b, which uses overloading of the GAP-
operator POW(u,b)/u^b. Therefore, we have to convert an element in a highest weight mod-
ule with ExtRepOfObj() to a weight representation element before we can apply a universal
enveloping algebra element given in terms of lattice elements in the universal enveloping
algebra.

A WeightRepElement is represented in GAP by a list of the form [v1,c1,v2,c2, ...], where
the vi are basis vectors, and the ci coefficients. Furthermore, a basis vector v in this list is a
weight vector, which is represented by a list of the form [k,mon,wt], where k is an integer,
which indicates the index of the basis element (Note: Here GAP indexing is used, which
starts with 1), mon is an UEALatticeElement, which is chosen such that the result of applying
mon to a fixed highest weight vector v0 is v, and wt is the weight of v. A WeightRepElement v

is printed as mon*v0, while the command ExtRepOfObj(v) returns the corresponding list as
described above. Here is an example for the usage of the mentioned objects:

sage: L = SimpleLieAlgebra("C", 2)

sage: M = HighestWeightModule(L,[2,1]); M

<35-dimensional left-module over Algebra( Rationals,

[ v.1, v.2, v.3, v.4, v.5, v.6, v.7, v.8, v.9, v.10 ] )>

sage: B = M.Basis(); B

Basis( <35-dimensional left-module over Algebra(

Rationals, [ v.1, v.2, v.3, v.4, v.5, v.6, v.7, v.8, v.9,

v.10 ] )>,

[ 1*v0, y1*v0, y2*v0, y1*y2*v0, y3*v0, y1^(2)*v0,

y1*y3*v0, y1^(2)*y2*v0, y4*v0, y2*y3*v0, y1*y4*v0,

y1^(2)*y3*v0, y1*y2*y3*v0, y2*y4*v0, y3^(2)*v0,

y1*y2*y4*v0, y1*y3^(2)*v0, y3*y4*v0, y1^(2)*y4*v0,

y2*y3^(2)*v0, y1*y3*y4*v0, y1^(2)*y2*y4*v0, y4^(2)*v0,

y2*y3*y4*v0, y3^(3)*v0, y1*y4^(2)*v0, y1*y2*y3*y4*v0,

y2*y4^(2)*v0, y3^(2)*y4*v0, y1*y2*y4^(2)*v0,

y3*y4^(2)*v0, y2*y3^(2)*y4*v0, y4^(3)*v0,

y2*y3*y4^(2)*v0, y2*y4^(3)*v0 ] )

sage: Ugen = latticegeneratorsinUEA (L);

sage: b=gap.ExtRepOfObj(2*B[6]+B[9]); b

2*y1^(2)*v0+y4*v0

sage: gap.ExtRepOfObj(b)

[ [ 6, y1^(2), [ -2, 3 ] ], 2, [ 9, y4, [ 0, 1 ] ], 1 ]

sage: Ugen[6]^b #Ugen[6]=x3

-1*y1*v0

sage: (Ugen[1]+4*Ugen[2])^b) #Ugen[1]+4*Ugen[2]=y2+4*y3

-2*y1*y3*v0+2*y1^(2)*y2*v0+2*y4*v0+-16*y1*y4*v0

+8*y1^(2)*y3*v0+y2*y4*v0+4*y3*y4*v0
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This completes the list of objects we use in our own program part which we present in the
next section.

11.2.2. Computing Highest Weight Modules

Let in this section Γ be an arithmetic subgroup of G = G (R), whose associated simple Lie
algebra is g = Lie (G). The examples for Γ-modules we consider are irreducible Γ-modules
which are given by a highest weight module Mλ for some dominant weight λ together with
an action of the group Γ. As module Mλ is the highest weight module given by the simple
Lie algebra g together with some λ ∈ Λ+. A basis of this module can be obtained using
the existing class method Basis() for a highest weight module as described in the previous
section. Thus, it remains to implement an action of the group Γ on this module. This will be
done in three steps:

Step 1: Compute the matrix representation ρg(u) for a lattice generator u in the universal
enveloping algebra U(g) on a highest weight module Mλ equipped with the PBW-basis
given by the class method Basis().

Step 2: Decompose a given element γ ∈ Γ according to Theorem 11.1.1 into unipotent ele-
ments in G, which are given by images exp(ρg(u)). We postpone the detailed descrip-
tion of this step to Section 11.2.3.

Step 3: Combine the results of the two previous steps to a matrix representation of γ on the
module Mλ.

The first step is elementary linear algebra of the first year undergraduate lectures. The
columns of the matrices are given as the images of the elements of the PBW-basis elements.
Therefore, it is easy to get the matrix representation for Lie algebra elements or, to be precise,
of their images under the natural inclusion into the universal enveloping algebra. This can be
done for any g-module which is equipped with a PBW-basis, and not only for (irreducible)
highest weight modules. We computed for all in this thesis occurring their PBW-bases. They
can be found in the file modules.pdf on the CD-ROM, which is include in the printed copy of
this thesis. In SAGE Source Code B.9 we state the function which computes the image of an
arbitrary universal enveloping algebra element under a given highest weight representation.

By default the returned matrix is a sparse matrix in SAGE. Here there is one reason to use
GAP via a wrapper in SAGE, because GAP was not made for efficient linear algebra and has
in particular no standard support for sparse matrices.3 The resulting matrices for all root
vectors are (very) sparse (see Figures 11.1 and 11.2).

Although it is not very time consuming – compared with the total runtime of our program –
to compute the matrices for a given weight4, we will pass a precomputed list containing them
to most of the following functions.

3There is an additional package gauss which offers some basic support of sparse matrices, but we do recommend
to use the more advanced Python libraries used in SAGE [Tea11b; §41.11, §41.13, and §41.15].

4For example, to compute one of these matrices for M1,2 one needs 328ms, whereas in case of M8,6 one needs
54.5s.
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Figure 11.1.: Shape of matrices given by actionmatrixofUEAelement for negative root vectors on M1,2,
which has dimension 35. Non-zero entries are indicated by dots.

(a) yα (b) yβ (c) yα+β (d) y2α+β

Figure 11.2.: Shape of matrices given by actionmatrixofUEAelement for negative root vectors on M8,6,
which has dimension 3864. Non-zero entries are indicated by dots.

(a) yα (b) yβ (c) yα+β (d) y2α+β
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To get the image in G one has to apply the exponential map to these matrices. It turned out
that the evaluation using the existing function in SAGE is much slower than a naively imple-
mented exponential map, which simply evaluates the exponential series until the monomial
in the (nilpotent) matrix yields zero.

The solution for the second step needs some more space. Therefore, we decided to postpone
the details of that to Section 11.2.3, where we derive the algorithm to obtain such a decompo-
sition. For the moment we assume that for each γ ∈ Γ there is a decomposition into unipotent
matrices which are images of nilpotent elements nβi in g of the form

γ =
∏
i

exp(ti · nβi) (11.8)

for some numbers ti and roots βi ∈ Φ+ according to Theorem 11.1.1. The list of pairs (ti, βi)
can be obtained by a structured Gaussian elimination process (see Theorem 11.2.5). Accord-
ing to the remark made above it is an easy task to compute exp(ti · nβi), which we simply
have to multiply to get the matrix ρG(γ). This completes the computation of the underlying
group representation on a given highest weight module.

For non highest weight modules it is easy to get the corresponding matrices by decomposing
the space into a direct sum, i.e. essentially a list, of irreducible highest weight representa-
tions. For this one can also use some build in GAP-function like DirectSumOfAlgebraModules
[The08; §61.14]. How to handle this one has to decide case by case since the different meth-
ods of implementations differ depending on the particular circumstances very much in their
runtime. The action of the group element on the whole module can obtained on each direct
summand by the method described above. The resulting matrix is simply a block diagonal
matrix with blocks equal to a matrix on a highest weight module. If no decomposition into
irreducible highest weight modules is known, but a PBW-basis, then it is even simpler, be-
cause the variable HWM can be any left module for a simple Lie algebra. Thus, we can use the
ability of GAP/SAGE to define a (weight-)module by fixing a basis (see e.g. [The08; §60]).

We implemented the function getreprofgroupelement in a way which allows to use some
precomputed list of generators and their images under the exponential map5, if they are
available, to avoid to compute the same objects several times in our SAGE program. This
does not make a big difference for the computation of ρG(γ) for a single element γ ∈ Γ, but
matters much more if we have to use it for lots of group elements. The resulting function is
quite simple as explained above (see SAGE Source Code B.10). Most of the difficulties are
hidden in the function getdecomposition, which we will explain in the next section. After
that we will give in Section 11.2.4 some detailed examples.

11.2.3. Computing a Group Element Decomposition

As explained in Section 11.1 we need to decompose a given Element γ ∈ Γ into a product of
unipotent elements. We stated in Theorem 6.3.3 that Γ is generated by unipotent elements.

5To be precise we do use not the generators itself. Instead we use lists of functions which map the parameter T
to exp(T · ρ(nα)), where ρ is either the standard representation ρ0 or some highest weight representation for
the considered Lie algebra. This avoids the evaluation of the exponential map. But one need still to evaluate
the functions, which is impossible to avoid, which is if the highest weight representation has larger ranks the
most time consuming part of these algorithm (see Section 11.2.4).
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It turns out that is possible to use some generic (unipotent) generators coming from the
structure of the root system (comp. Section 6.4.4). We describe this decomposition this in
a slightly more general framework than we need for our actual computations. This can be
regarded as a kind of proof of Theorem 6.3.3. We concentrate on the case where γ ∈ Spg(R)
where R is any euclidean ring, i.e. we are able to perform the euclidean algorithm in R. For
our application R will be a subring of R, namely the integers Z, but all algorithms work fine
also in the more general context.

Some set of generators of the symplectic group Spg(R
2g, Jvar

g ) and an algorithm to compute
them is well known (see e.g. the Appendix of [Fre83]). But there are two problems: First,
the algorithms decompose in upper triangular matrices and the matrix Jvar

g , which defines
the symplectic form, and second all described algorithms are given for a realization of the
symplectic group which is different from the one we are using (comp. Section 6.3.1.3). The
first point is not a real objection since one easily finds a decomposition of Jvar

g into upper and
lower triangular unipotent matrices. The second problem requires some more work. One
possible solution is to use the decomposition algorithm from [Fre83] and to transfer each ele-
ment via Lemma 6.3.4 to our standard description. But this solution is much more expensive
than a direct computation of the decomposition into the right set of generators. In this section
we present an algorithm we implemented in SAGE which solves this problem. The algorithm
incorporates the GAP implementation for the computation of simple Lie algebras and gets
the underlying Lie algebra as additional input to determine generic generators for the group,
therefore our implementation works also fine for a decomposition of a group whose (simple)
Lie algebra g is known or computable. The algorithm we developed consists of two steps:

a) Compute a set unipotent generators (”generic generators”) or the group coming from
the root space decomposition of of the Lie algebra g.

b) Compute the decomposition of a given matrix into the generic generators.

The algorithm we will give works also fine for groups arising from Lie algebras of Cartan
type different from Cg. So for example it has been tested to decompose also group elements
in SLd(Z) for d ≤ 10 into unipotent generators. The construction is – with minor changes –
also valid for all other families of simple Lie algebras, but for simplicity we give the proof
only in case of the symplectic groups G := Spg(R), which corresponds to the Lie algebra
g = spg of rank g which is of type Cg, and not for the other types.

11.2.3.1. Computing the Generic Generators

Assume we fixed a Chevalley basis of g with respect to a Cartan subalgebra h coming from
a suitable maximal torus and the (previously chosen) fixed system of simple roots (comp.
Sections 6.4 and 11.2.2). Denote by Φ+ the corresponding system of positive roots. Let V be
the standard representation of g, which we consider as free g-Z-module (see Section 6.4.4).
According to Section 6.4.4V is the highest weight module for the weight λ = (1, 0, . . . , 0). We
know by Theorem 6.4.6 that a basis of a highest weight module and thusV is given by a high-
est weight vector together with a collection of monomials in the yi. In the case g = 2 the stan-
dard representationV is generated by (v0,y1 ·v0,y3 ·v0,y4 ·v0) (comp. Section 6.4.5). Assume
we fixed such a PBW-basis ofV (with respect to g, a maximal Cartan algebra h, and a Cheval-
ley basis of g). Now we will identify the Lie algebra g with its image under the standard rep-
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resentation. In other words, we identify g with the matrix group which acts on the module
V equipped with the PBW-basis by matrix multiplication from the left. We call the matrices
ρ0(X) for X ∈ {yα,xα} for α ∈ Φ+ the generic Lie algebra generators associated to a system
Φ+ of positive roots. As before, we identify the root vectors with their images under the stan-
dard representation ρ0. Thus, the generic Lie algebra generators are the matrices yi = yαi
and xi = xαi . We already explained how to obtain these matrices for g = spg in Section 6.4.5
(see in particular (6.34) and (6.37)). But also for general simple Lie algebras g it is not difficult
to obtain the matrix representations of the yi and xj (see e.g. [GW09; 2.4.1]) and from them
together with Theorem 6.4.6 one easily gets a PBW-basis of the standard representation V of
the simple Lie algebra g.

We can now apply the Lie algebra element written in terms the root vectors to one of the
weight vectors simply by formal multiplication of expressions. After one has reduced the
result by the relations from (6.49) we can write the result again in terms of the fixed ba-
sis, which by a standard argument from linear algebra gives the matrix we are looking
for. The reduction is done quite efficiently using Gröbner bases as mentioned earlier in
Section 11.2.1. This is exactly the same construction we did for general highest weight mod-
ules in
Section 11.2.2. The matrices are, as predicted by the theory, nilpotent upper or lower tri-
angular matrices, depending on whether the element corresponds to a positive or a negative
root6. Therefore, the exponential map applied to them is a polynomial with non vanishing
zeroe order term in the nilpotent matrices which is unipotent. Via the exponential map we
can associate to each positive root α ∈ Φ+ two one-parameter subgroups in G by

α 7→ Yα = {exp(T · yα) for T ∈ R} (11.9)
α 7→ Xα = {exp(T · xα) for T ∈ R}

We identify the positive and negative root vectors with the nilpotent matrices representing
them in the chosen basis and analogously the Lie group elements with the corresponding
matrices. To simplify the notation we set for T ∈ R

Yα(T ) = exp(T · yα) Xα(T ) = exp(T · xα). (11.10)

Remark (Important): For technical reasons we use in this section until further notice mostly
the symplectic group with respect to the symplectic form defined by J ′g (comp. Section 6.3.1.3)
because GAP and therefore also our program part which uses GAP in some parts uses for
Lie algebras this modified symplectic form. If we use the standard symplectic form in this
section we will will explicitly mention that. As stated in Lemma 6.3.4 we can easily transform
the elements to our standard symplectic form.

In case of g = 2 and the basis B′ we have the following collection of elements in sp2 and
subgroups in Sp2(R) (comp. (6.39) and Table 6.4 or (6.34) together with (6.37)):

6This depends on the chosen basis. In the basis used by GAP, i.e. the symplectic form is chosen to be given
by the basis B

′, negative roots corresponds to lower triangular matrices whereas upper triangular matrices
correspond to positive roots. Unfortunately this does not stay true if we conjugate the matrices such that the
result is symplectic with respect to the standard basis B. Also in this case we have only upper and lower
triangular matrices but this property does not coincide with with the property to come from a positive or
negative root.
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x1 =

(
0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

)
X1 =

{(
1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

)
: T ∈ R

}
x2 =

(
0 0 0 0
0 0 −1 0
0 0 0 0
0 0 0 0

)
X2 =

{(
1 0 0 0
0 1 −T 0
0 0 1 0
0 0 0 1

)
: T ∈ R

}
x3 =

(
0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

)
X3 =

{(
1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

)
: T ∈ R

}
(11.11)

x4 =

(
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

)
X4 =

{(
1 0 0 T
0 1 0 0
0 0 1 0
0 0 0 1

)
: T ∈ R

}
yi = xti Yi =

{
Xi(T )t : T ∈ R

}
To get the corresponding elements with respect to our standard choice for the symplectic
form given by Jg we have to conjugate all elements in the groups above with the matrix

m =


1

1
1

1

 ∈ GL4(Z). (11.12)

We get the following collection of one-parameter subgroups of Sp2(R):

X1 =

{(
1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

)
: T ∈ R

}
X2 =

{(
1 0 0 0
0 1 0 0
0 −T 1 0
0 0 0 1

)
: T ∈ R

}
X3 =

{(
1 T 0 0
0 1 0 0
0 0 1 −T
0 0 0 1

)
: T ∈ R

}
(11.13)

X4 =

{(
1 0 0 T
0 1 0 0
0 0 1 0
0 0 0 1

)
: T ∈ R

}
Yi =

{
Xi(T )t : T ∈ R

}
.

In case of g = 3 we can give a similar list with 9 pairs of nilpotent elements in sp3 which lead
to the same number of unipotent one-parameter subgroups in Sp3(R).

We prove in the rest of this section the following theorem and give an algorithm to get
a decomposition for a given element γ ∈ G. Although we consider only the case of the
symplectic groups we remember that the statement in the theorem as well as the following
constructive proof is, with minor changes, which do not change the algorithms we use, in the
proof also valid for the groups which are associated to the other types of simple Lie algebras.

Theorem 11.2.1: The group G = Spg(R) is generated by the matrices Yα(T ) and Xα(T ) with
T ∈ R and α ∈ Φ+.

This theorem is a more precise version of Theorem 6.3.3 (comp. [GW09; Theor. 2.2.2]). It
follows by induction from the fact that that Yα(T ) and Xα(T ) generate for a single α ∈ Φ+
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a subgroup of G which is isomorphic to SL2(R) and the fact that the symplectic form splits
compatible with this embedding (comp. [GW09; Sections 2.2.1 and 2.2.2]).

We will give here a construction to decompose an arbitrary element γ ∈ G into generators
of the form Yα(T ) and Xα(T ), where α ∈ Φ+ and T ∈ R. This construction uses a kind
of structured Gaussian elimination together with a variation of the extended euclidean algo-
rithm. An different version of this method can be found e.g. in [Fre83; Anhang V.], where
it is used to prove an analogous statement. For the our construction we use induction over
rank g of the Lie algebra g. We start with g = 1.

For g = 1 we know that G = Sp1 = SL2. It is commonly known that the matrix group
SL2(R) for a euclidean ring R is generated by the elements

S =

(
0 1
−1 0

)
T (x) =

(
1 x
0 1

)
(11.14)

with x ∈ R. A proof can be found in the standard literature, see e.g. [KK07; Kap. II. §2].
There is only one positive root α because the root system has rank one and we immediately
find that T (x) = Xα(x). Furthermore, we have

S = Xα(1) ·Yα(−1) ·Xα(1). (11.15)

Thus, we can write the generators in the asserted form. For the decomposition of a given two
by two matrix into generators we refer to the description how to do this in larger dimension
(see page 118 ff.), which applies exactly in the same way.

Let us now consider g ≥ 2. We need some simple transformations. Consider

Zα := Yα(1) ·Xα(−1) ·Yα(1) (11.16)
= −Yα(−1) ·Xα(1) ·Yα(−1)

= Xα(−1) ·Yα(1) ·Xα(−1)

= −Ztα
= Z−1

α .

We can form a group from these elements, Πg := 〈Zα : α ∈ Φ〉 ⊂ Spg(Z). We will have a
closer look at these transformations, which we call symplectic permutations. According
to (6.34) and (6.37) we have three different shapes of root vectors xα, depending on which
form the root α has. Let 1 ≤ i < j < g. Then we have the following three cases:

Case 1 (α = εi − εj): Here we have xεi−εj = Ei,j − E2g+1−i,2g+1−j . One easily checks that
Ei,j ·Ek,l = δj,kEi,l. Thus, we get

Xεi−εj (T ) = Id2g + T ·Ei,j − T ·E2g+1−i,2g+1−j (11.17)

Yεi−εj (T ) = Id2g + T ·Ej,i − T ·E2g+1−j,2g+1−i

for T ∈ R. It is an easy exercise to show that

Zεi−εj = Xεi−εj (−1) ·Yεi−εj (1) ·Xεi−εj (−1)

= Id2g −Ej,j −Ei,i −E2g+1−i,2g+1−i −E2g+1−j,2g+1−j (11.18)
−Ei,j + Ej,i︸ ︷︷ ︸

i↔j

+E2g+1−i,2g+1−j −E2g+1−j,2g+1−i︸ ︷︷ ︸
2g+1−i↔2g+1−j
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During the computation it turns out that all δr,s which are not one in a trivial way van-
ish, because 1 ≤ i < j ≤ g. This computation shows that Zεi−εj permutes
(up to sign) the indices i and j as well as the indices 2g + 1 − i and 2g + 1 − j and
thus Z±(εi−εj) ∈ S2g × {±1}2g.

Case 2 (α = εi + εj): This case is completely analogous to the previous one. One only has
to use xεi+εj = Ei,2g+1−j + Ej,2g+1−i for 1 ≤ i < j ≤ g which leads to

Xεi+εj
(T ) = Id2g + T ·Ei,2g+1−j + T ·Ej,2g+1−i (11.19)

Yεi+εj
(T ) = Id2g + T ·E2g+1−j,i + T ·E2g+1−i,j

for T ∈ R and hence we get

Zεi+εj = Id2g −Ei,i −Ej,j −E2g+1−i,2g+1−i −E2g+1−j,2g+1−j (11.20)

+ E2g+1−j,i −Ei,2g+1−j︸ ︷︷ ︸
i↔2g+1−j

+E2g+1−i,j −Ej,2g+1−i︸ ︷︷ ︸
j↔2g+1−i

,

which is a permutation (up to sign) of the indices i and 2g + 1− j and of the indices j
and 2g + 1− i. Thus, we have again Z±(εi+εj)

∈ S2g × {±1}2g.

Case 3 (α = 2εi): This is in some sense – there is a factor 2 – a special case of the previous
one. Here we have x2εi

= E2g+1−i,i and hence

X2εi
(T ) = Id2g + T ·E2g+1−i,i (11.21)

for T ∈ R. Thus, we get

Z2εi
= Id2g + E2g+1−i,i −Ei,2g+1−i︸ ︷︷ ︸

i↔2g+1−i

(11.22)

and therefore Z±2εi
∈ S2g × {±1}2g.

We can conclude:

Proposition 11.2.2: Let 1 ≤ i < j ≤ 2g. Then we set

d±i,j := diag
(

1, . . . , 1,

i-th
↓
±1, 1, . . . , 1,

j-th
↓
∓1, 1 . . . , 1

)
∈ Mat2g(Z).

We have that Πg ⊂ S2g × {±1}2g and furthermore that

Πg
∼=
〈

(i, j)(2g + 1− i, 2g + 1− j)× d±i,j · d
±
2g+1−i,2g+1−j ,

(i, 2g + 1− i)(j, 2g + 1− j)× d±i,2g+1−j · d
±
j,2g+1−i,

(i, 2g + 1− i)× d±i,2g+1−i : 1 ≤ i < j ≤ g
〉

=

〈
(i, j)(2g + 1− i, 2g + 1− j)× d±i,j · d

±
2g+1−i,2g+1−j ,

(i, 2g + 1− i)× d±i,2g+1−i : 1 ≤ i < j ≤ g
〉
.
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Note that the matrices d±i,j are not symplectic matrices since they have determinant −1. Al-
though the generate of course the symplectic diagonal matrices with only ±1 on the diagonal.
It is not difficult to see that Πg/∼, where ∼ is the equivalence relation given by forgetting the
sign change of the operation, is a proper subgroup of the symmetric group S2g, i.e.

Πg/∼ $ S2g. (11.23)

For our computations we need a simple corollary out of the previous considerations.

Corollary 11.2.3: For each pair (i, j) with 1 ≤ i, j ≤ 2g there is a permutation p ∈ Πg such that for
a column vector a := (a1, . . . , a2g)

t ∈ R2g

p(a) =
(
a1, . . . , ai−1,

i-th
↓
±aj , p(ai+1), . . . , p(aj−1),

j-th
↓
∓ai, p(aj+1), . . . , p(a2g)

)t
holds.

In other words, we can (up to a sign) permute any element below the i-th row into the
i-th row without changing the elements above. This corollary follows immediately from the
knowledge of the generators. One only has to distinguish some combinations of the indices
to be in the first and/or the second block of g elements. The proof is left to the reader as an
exercise.

11.2.3.2. Computing the Decomposition

We are now able to compute the decomposition of a given element γ ∈ Spg(R) into the
unipotent elements given by the generic group generators defined in the previous section.

Proposition 11.2.4 (Symplectic Gaussian Elimination I):
Let R be a euclidean ring and γ = (ai,j)1≤i,j≤2g ∈ Spg(R) then there is an element

M0 =
∏
i

Xαmi
(Ti)

νiYαni
(Si)

µi

with integers µi, νi ∈ N0 and mi, ni ∈ N such that αmi , αni ∈ Φ+, i.e. M0 can be written in terms
of the generators in Theorem 11.2.1, such that

M0 · γ =


a′1,1 ∗ · · · ∗
0 ∗ · · · ∗
...

...
. . .

...
0 ∗ · · · ∗

 .

If the a1,i are coprime we have that a′1,1 ∈ R×. In this case we can force a′1,i = 1.

Proof. We give an explicit construction in two steps, which might be iterated:

Step 1: According to Corollary 11.2.3 we find an M1 ∈ Πg such that we have

M1 · γ =


ã1,1 ∗ · · · ∗
ã2,1 ∗ · · · ∗
...

...
. . .

...
ã2g,1 ∗ · · · ∗
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where ãi,1 = ±aσ(i) for all i for some permutation σ ∈ S2g and

0 < |ã1,1| ≤ |ãi,1|

for all 2 ≤ i ≤ 2g where ãi,1 6= 0. It is here enough to apply the permutation which
interchanges only a1,1 with a non vanishing ai,1 of smallest absolute value. In praxi it is
sufficient to apply a permutation such that the first entry is non-zero and smaller than
or equal to the next non-zero entry in the first column (compare Step 2). Nevertheless
it will be faster if we have the absolute minimum.

Step 2: By (11.11) we know how the unipotent matrices Xi(T ) and Y(T ) for T ∈ R look like.
They add the T -fold of row i1 to row i2 and the −T -fold of row j1 to row j2 for some
integers 1 ≤ i1, i2, j1, j2 ≤ 2g (see (11.17) to (11.21) for the exact possible combinations
indices). This make the situation a little bit more fancy than in case of SLn(R) or
GLn(R) (see [Fre83; p. 324]) since in many cases the elements Xα(T ) act on a pair of
rows and not on each row independently. Let us assume

M1 · γ =



ã1,1 ∗ · · · ∗

0
...

...
...

...
...

0
...

...

ãj,1
...

...
...

...
...

ã2g,1 ∗ · · · ∗


where α̃j,1 6= 0. Then we find a unipotent element Xα(T ) for some positive root α ∈ Φ+

such that

Xα(T ) ·M1 · γ =


ã1,1 ã1,2 · · · ã1,2g

0 ∗

ãj,1 ± T · ã1,1

...
∗ ∗

 .

It is important to remember that the chosen Xα(T ) cannot change the entries in the first
rows above the j-th row, it only changes rows below (comp. Corollary 11.2.3). We now
apply the euclidean algorithm to find a T1 ∈ R such that the absolute value

|ãj,1 ± T1 · ã1,1| ≤ |ãj,1 ± T · ã1,1|

for all T ∈ R, i.e. it is minimal. Because ã1,1, ãj,1 6= 0 and ãj,1 ≥ ã1,1 we will get

0 ≤ |ãj,1 ± T1 · ã1,1| < |ã1,1|

Now there are two cases: either ãj,1 ± T1 · ã1,1 = 0, then repeat Step 2 for the next
non-zero entry in the first column, or

0 < ãj,1 ± T1 · ã1,1 < ã1,1,

then restart with Step 1 and interchange the first row with an other row for which the
first entry is the smallest. The first candidate is the j-th row but it might happen that
simultaneously the other row which was changed by Xα(T1) has an even smaller non
vanishing absolute value. In this case we exchange those rows.
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Since we are working in a euclidean ring we will get in every run of these two steps either at
least one additional zero in the first row or we can replace the element in the upper left corner
by a smaller one. This will stop after finitely many steps. It follows from the well known
properties of the iterated application of the euclidean algorithm that the found a′1,1 ∈ R× if
there is no common (non-trivial) factor for all entries in the first column.

We can now assume that we can transform a given element in Spg(R) by unipotent trans-
formations into the form stated in Proposition 11.2.4. We can now proceed in the same way
and apply the method from Proposition 11.2.4 to the second column and the diagonal entry
therein, which we maximise by a suitable symplectic permutation. By Corollary 11.2.3 this
does not change the row above . This eliminates the entries in the second column below the
diagonal. We iterate this procedure for the next columns/rows. After at most g steps we
transformed the given element γ into an upper triangular matrix which is still symplectic.

The implementation of this procedure is done in two functions of our SAGE-package. The
source code of them together with some auxiliary functions are collected in the Appendix B.
The permutation needed in Step 1 of the proof of Proposition 11.2.4 can be computed with
our function rowpermutation stated in SAGE Source Code B.11. This function can do more
than the things described above. First, it performs the permutation, but in addition it ensures
that the element with lowest absolute value is positive7. Furthermore, it is possible to apply
the function in the following steps, which are controlled via the variable step, to the other
columns, permute in the actual step the smallest element to the right position and switch,
if necessary, the sign of the new entry to be positive. Furthermore, we collect the necessary
elementary operations (comp. (11.10)) in a list collection. Such an elementary operation
mat = exp(T · nidx) is stored in the form [[idx,T], mat], where T ∈ R and idx is the index
of the root in the list of roots Φ. The row operations from Step 2 of the proof, which reduce
the size of the entries below the diagonal in the actual column indicated by the variable step,
will be performed by the function rowtransformation (see SAGE Source Code B.13). This
function uses in the reduction step the function div_min, stated in SAGE Source Code B.12,
which is a variation of the extended euclidean algorithm and computes for given integers
a and b with |a| ≤ |b| a pair [s,t], such that t= min(| s*a+b |). Here it was quite useful
to compute first a lookup table, in which we stored which generic group generator affects
which rows. As keys we use the indices of the entries, therefore some elements will occur
twice, because they exchange a pair of rows. The storage works for rowtransformation as
before.

The result of this part is a (symplectic) upper triangular matrix, which need not to be unipo-
tent, because on the diagonal there might be some of the elements different from 1. In fact,
the diagonal entries have to be elements in R× (comp. Prop. 11.2.4). In the cases we are inter-
ested in it is R = Z and thus we have only ±1 on the diagonal. But during the normalization
in each step we know that all diagonal entries are positive, i.e. in this case equal to +1. For

7There are matrices of the form diag( 1, . . . , 1︸ ︷︷ ︸
step-1 times

,−1, . . . ,−1︸ ︷︷ ︸, 1, . . . , 1︸ ︷︷ ︸
step-1 times

) ∈ Spg(Z), which can be computed by

the function negative_identity(L, step=cur_step) (see SAGE Source Code B.8), which uses products of
symplectic permutations. This element is equal to id restricted to some 2g−2(step−1)-dimensional subspace,
on which the group act as a symplectic group of lower rank. These elements can of course be written in terms
of unipotent transformations. We can use thes matrices to change the sign in the actual step without changing
the signs of the normalizations in the previous steps.
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the general case one easily finds a diagonal matrix diag(r1, . . . , rg, r
−1
g , . . . , r−1

1 ) ∈ Spg(R)

with ri > 0, ri ∈ R× which can be written analogously as product of elements of the form
Yα(r) ·Xα(−r) ·Yα(r) for α ∈ Φ+ and r ∈ R× (comp. (11.16)).

In this way we get a unipotent upper triangular (symplectic) matrix. It remains to transform
this matrix into Id2g with transformations which can be written in terms of the upper tri-
angular matrices Xα(T ). This is much easier than the previous steps of the transformation,
since all operations commute and we Therefore, do not have to take care of the order of the
operations we have to perform. Furthermore, we can immediately read from the matrix what
coefficients T we have to choose. Here we use again the lookup table from above. We iterate
over the keys (i, j) of this table, check whether the element ai,j , which is changed by the
transformation for this key, is non-zero, if so we take apply Xα(−ai,j) corresponding to the
value of the key, which annihilates the non-zero element ai,j . Then we take the next key from
the lookup table and proceed in the same way with the new matrix. It will happen that a
transformation occurs as value of two different keys in the lookup table, since some elements
changes pairs of rows, this does not make a problem, because if the corresponding elements
are already zero, nothing will be done. In all tested cases it was much more expensive to
implement additional checks which avoid to have these elements twice. As before, we collect
the necessary operations. We did not include this part of the transformation in a separated
function, but in the main function getdecomposition (see SAGE Source Code B.14).

In this way we can transform any γ ∈ Spg(R) by consecutive application of a collection of
unipotent elements in Spg(R) to the identity matrix. To get the decomposition one has to
write the elements we collected in the opposite order and to switch the signs of the T in each
factor. Here we have to mention that it is in practice not necessary to reverse the order of the
elements in the program, because we can construct the list by the Python command append,
which appends the elements to the list from the left to the right and therefore the elements
are already arranged in the right order. This leads to the following theorem:

Theorem 11.2.5 (Symplectic Gaussian Elimination II):
Let R be a euclidean ring and γ = (ai,j)1≤i,j≤2g ∈ Spg(R), then there are integers µi, νi ∈ N0 and
ni ∈ N and ring elements Si, Ti ∈ R, such that αni ∈ Φ+ and

γ =
∏
i

Xαni
(Ti)

νiYαni
(Si)

µi .

The parameters ni, νi, µi, Ti, Si can be computed explicitly (see SAGE Source Code B.14).

This is a kind of structured version of the Gaussian elimination algorithm for symplectic ma-
trices. Structured Gaussian elimination, which preserves some given structures like sparsity
of the matrix, is widely known in different areas of mathematics (see e.g. [Vas07; §11.3]). In
SAGE Source Code B.14 of the function getdecomposition you find the implementation of
the algorithm described above. We use usually precomputed lists of generators8, as well of
sign and permutation matrices, because they do not change from one step to the other. These
precomputed lists do also not change if we change the weight of the considered represen-
tation module. If they are not passed to the function, the necessary lists are computed. In

8In fact, we do not store the matrices of the generators. It is better to store directly a list of polynomial
functions of the form T 7→ exp(T ·ρ0(ni)) for the standard representation ρ0, which avoids the more expensive
evaluation of the exponential map.
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addition there is a function called getdecompositionoflist which works in the same way
as getdecomposition but take instead a single matrix a list of them as input and computes
if necessary the list of generators only ones.

We also included some checks. First of all, we check whether the element is the identity
element, then no computation is needed. Second we check whether the transformation leads
to the identity matrix, if not the function returns None together with an error message. The
latter case can only happen if the matrix we are going to decompose is not in the group
related to the Lie algebra L which was passed to the function.

As already mentioned the function getdecomposition works also for other groups than
Spg(R). For example, if we have the Lie algebra sln with root system An−1 the decompo-
sition algorithm works completely in the same way (see Section 11.2.4.2). The automatically
generated lists of generators are the known generic generators, which have ones on the diag-
onal and at all other positions zeros except one non-zero entry.

11.2.4. Some Examples

11.2.4.1. The Symplectic Group Sp2(Z)

In this section we give some practical examples of the usage of the previously defined action
of group elements on a highest weight module. We have already seen some examples of
highest weight modules and their bases in Section 11.2.1. For random testing we introduced
a function randomgroupelemenetbyLiealgebra(L,number_of_generators=20), which gen-
erates a random group element, i.e. a matrix in the Lie group whose associated Lie algebra
is L. By default the number of generators is 20. For more details we refer to the manual of
our program package in Appendix in Chapter A. This is very comfortable since we need not
to find symplectic elements by ourself.9 Furthermore, the elements generated in this way
are all symplectic with respect to the basis Bvar, such that we can use them without further
transformation (comp. Section 6.3.1.3). We start with some examples on the usage of the
random element generator and the getdecomposition function.

sage: L = SimpleLieAlgebra("C", 2)

sage: m1 = randomgroupelemenetbyLiealgebra(L); m1

[ 3 7 -2 0]

[ 1 10 -2 2]

[-2 -2 1 1]

[ 0 6 -1 2]

sage: m2 = randomgroupelemenetbyLiealgebra(L); m2

[-1 0 -2 2]

[ 0 0 -1 0]

[ 1 1 0 -4]

[-1 0 -3 1]

sage: m2dec = getdecomposition(m2,L); len(m2dec)

9That would not be a problem at all, since we generated lots of symplectic elements as elements in the stabilizer,
but that elements are somehow special. For example, they have all finite order and no entries with larger
absolute values.
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20

sage: m2dec[3]

[[0, 1], [1 0 0 0]

[1 1 0 0]

[0 0 1 0]

[0 0 1 1]]

sage: m1dec = getdecomposition(m2,L); len(m1dec)

22

We see that the number of generators we obtain in the decomposition need not to be minimal,
because the element m1 was generated as product of 20 matrices, but our decomposition
returns 22 elements.

We continue our example with the function getreprofgroupelement, which compute the
matrix of the action of group elements on a given module. We choose the module M2,1,
which has dimension 35. Here is not the place to state this matrices with all its entries. But
later we will also give a picture how they look like (see Figure 11.3).

sage: M = HighestWeightModule(L, [2,1])

sage: M1 = getreprofgroupelement(m1,M); M1

35 x 35 sparse matrix over Rational Field

sage: M1.density()

1152/1225

sage: M2 = getreprofgroupelement(m2,M); M2

35 x 35 sparse matrix over Rational Field

sage: n(M2.density())

0.440816326530612

sage: m3= p.random_matrix_by_Lie_algebra(L,

number_of_generators=3); m3

[ 1 -1 -1 0]

[ 0 1 1 0]

[ 0 0 1 -1]

[ 0 0 0 1]

sage: M3 = getreprofgroupelement(m3,M)

sage: n(M3.density())

0.251428571428571

sage: m3.density()

1/2

Thus, we see that the density of the matrices on the module seems to be not directly correlated
to the density of the matrix in the Lie group. We computed for the matrices m1, m2 and m3

from the examples above their densities (in the standard represenation) together with their
densities in several matrix representations which are shown in Table 11.1 and in the pictures
of the shapes of some of them in Figure 11.3. There is no obvious rule how dense the
resulting matrices are compared with the original ones, except that the structure in some
sense seems to be constant. This means if we have a look at Figure 11.3 we immediately
find that for example the third column has always the shape of an upper triangular matrix,
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Table 11.1.: Densities for the highest weight representation for the elements m1, m2, m3 for different weights.
The standard representation is stated in the first row (λ=(1,0))

Density
Weight Dimension m1 m2 m3

(1,0) 4 0.8750 0.6250 0.5000
(0,1) 5 1.0000 0.6800 0.4800
(2,1) 35 0.9404 0.4408 0.2514
(5,0) 56 0.8957 0.4550 0.2181
(4,1) 105 0.9457 0.4051 0.2039
(4,2) 220 0.9732 0.3838 0.2014
(5,4) 880 0.9898 0.3646 0.1988
(4,6) 1330 0.9962 0.3683 0.2121

whereas also both other examples have similar, but not equal, shapes on different modules.
For the density we have example where the image has lower or higher densities than the
preimage. In particular, we cannot assume that for a generic dense matrix its image under
a highest weight representation will be much more sparse than the original matrix. This is
an important information, since later on we have to solve linear systems, thus it might be
interesting to know whether the systems are dense or not.

We now have a short look on the timings. As mentioned above we can compute each matrix
representation at its own, or we can reuse precomputed lists of generators. We took tim-
ings for both cases (see Table 11.2). Parts of the precomputed lists depend only on the Lie
algebra or the Lie algebra and the group element of which we compute the representation.
Other parts depend also on the highest weight module. It turns out that the operations not
depending on the module do not contribute much to the runtime in case of examples of
highest weight modules of higher rank. As expected, the time grows with increasing rank
of the module. This is valid in both cases. For small rank examples the dominant part is
the decomposition of the group elements, whereas this part is less important for higher rank
modules.

In the larger examples the runtime of the precomputation depends mainly on the time needed
for the computation of the generator functions for the images of root vectors in the module.
The other parts are negligible. For a single computation of the representation this is also
the dominant part of the whole computation. If we use the precomputed lists it turns out
that the most relevant part of each computation is not the decomposition of the given group
element but the evaluation and multiplication of the factors in the computed decomposition,
i.e. the very last part of the algorithm stated in SAGE Source Code B.10.
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11.2. Computation of Γ-modules

Figure 11.3.: Shape of matrices given by getreprofgroupelement for matrices m1,m2 and m3 on different
highest weight modules. Non-zero entries are indicated by dots.

(a) m1 on M0,1 (b) m2 on M0,1 (c) m3 on M0,1

(d) m1 on M2,1 (e) m2 on M2,1 (f) m3 on M2,1

(g) m1 on M5,0 (h) m2 on M5,0 (i) m3 on M5,0

(j) m1 on M4,2 (k) m2 on M4,2 (l) m3 on M4,2
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Table 11.2.: Timings: Table (a) shows the time to compute the matrix representation for m1, m2, m3 with
and without precomputed lists of generators for different weights. In Table (b)we state the timings for the
precompuation of the tables. The first block contains examples for the list corresponding to the highest weight
module indicated in the first column. The second block consists of those timings, which only depend on the
underlying Lie algebra, i.e. they do not change if we change the module. All timings are done on theia at the
MPI for Mathematics and are the arithmetic mean of 5 runs of the program.

Time [s] without Time [s] with
Weight Dimension m1 m2 m3 m1 m2 m3

(1,0) 4 1.19 1.52 0.71 0.753 1.260 0.024
(0,1) 5 2.41 1.69 1.06 0.612 1.420 0.027
(2,1) 35 4.28 4.72 3.71 0.783 1.170 0.038
(5,0) 56 8.83 12.80 8.06 1.410 1.990 0.067
(4,1) 105 13.90 14.00 11.30 2.850 3.450 0.193
(4,2) 220 43.00 52.20 47.50 15.600 16.200 1.020
(4,4) 625 305.59 297.41 87.81 227.580 221.950 14.210
(5,4) 880 596.00 565.00 130.00 572.030 552.000 27.700

(a) Computation of getreprofgroupelement(m,M)

Depends on the module Does not depends on the module
Time [ms] for

Weight M
a Gen. Funct.b Functions Time [ms]

(1,0) 13.6 357 (T 7→ Yα(T ))
α∈Φ

+
c 188.0

(0,1) 15.0 397 (T 7→ Xα(T ))
α∈Φ

+
d 187.0

(2,1) 16.0 3250 (Zα)
α∈Φ

+
e 4.1

(5,0) 37.1 5120 Lookup table for row operationsf 2.3
(4,1) 17.8 10400 U(L)Z

g 9.3
(4,2) 89.2 23600 getdecomposition(m1,L) 790.0
(4,4) 390.0 72650 getdecomposition(m2,L) 1260.0
(5,4) 711.0 107000 getdecomposition(m3,L) 387.0

(b) Precomputations depending on modules and Lie algebras

aInitialization of M using L.HighestWeightModule(wt).
bGenerating functions T 7→ exp(T · ρM(ni)) computed by the command
genericgroupgeneratorsfunctionsonHWM(M,...).

cComputed with negativegenericgroupgeneratorsfunctions(L,...).
dComputed with positivegenericgroupgeneratorsfunctions(L,...).
eComputed with genericpermutations(L,....).
fComputed with genericrowoperationdict(L,...).
gThe list of the integral lattice basis elements in the universal enveloping algebra U(L), computed with
latticegeneratorsinUEA(L).
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11.2.4.2. The Special Linear Group SL4(Z)

Finally we give a short example which shows that the program works also for other groups
than Sp2(Z). We consider the group SL4(Z) ⊂ SL4(R). The associated Lie algebra is the
simple Lie algebra sl4 of type A3.

sage: L = SimpleLieAlgebra ("A", 3); L

Algebra( Rationals, [ v.1, v.2, v.3, v.4, v.5, v.6, v.7, v.8,

v.9, v.10, v.11, v.12, v.13, v.14, v.15 ] )

sage: V = L.HighestWeightModule([1,0,0]);

# The standard representation

sage: V.Dimension()

4

sage: M101 = HighestWeightModule([1,0,1],0); M.Dimension()

15

sage: M111 = HighestWeightModule([1,1,1],0); M.Dimension()

64

sage: m= randommatrixbyLiealgebra(L); m

[ 2 1 -3 3]

[ 0 1 1 0]

[-1 -1 0 -1]

[-1 -1 5 -4]

sage: M1 = getreprofgroupelement(m,M111); M1.trace()

-6

sage: M2 = getreprofgroupelement(m,M101); M2

# Control messages deleted

[ -4 -2 -2 6 2 -1 -1 9 -8 -1 -3 -3 3 3 -3]

[ 0 -2 0 -2 0 -1 1 -1 0 -1 0 1 -1 0 0]

[-16 -8 -10 24 10 -5 1 39 -28 -2 -15 -15 6 15 -6]

[ 2 2 1 0 -1 1 0 -2 3 1 1 0 0 -1 1]

[-10 -5 -6 15 8 -3 2 24 -17 -1 -9 -12 3 12 -3]

[ 0 -8 0 -8 0 -5 5 -5 0 -2 0 5 -2 0 0]

[ 0 -5 0 -5 0 -3 4 -3 0 -1 0 4 -1 0 0]

[ 8 8 5 0 -5 5 -3 -8 10 2 5 0 0 -5 2]

[ 10 10 6 -10 -6 6 -3 -21 19 3 9 5 -5 -9 6]

[ 0 5 0 5 0 3 -3 3 0 2 0 -3 2 0 0]

[ 8 8 5 -40 -5 5 -3 -57 34 2 20 25 -10 -20 8]

[ 5 5 3 0 -4 3 -3 -5 6 1 3 0 0 -4 1]

[ -5 -5 -3 0 3 -3 1 5 -7 -2 -3 0 0 3 -2]

[ 5 5 3 -25 -4 3 -3 -35 21 1 12 20 -5 -16 4]

[ -5 -5 -3 25 3 -3 1 35 -22 -2 -12 -15 10 12 -8]
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11.2.5. Computing Invariants of a Highest Weight Module

Let Γ′ ⊂ Γ be any subgroup of the Siegel modular group and (M, ρ) be some highest weight
module. Then the invariants are by definition given by

M
Γ
′

=
{
m ∈M : ρ(γ) ·m = m ∀γ ∈ Γ′

}
=
⋂
γ∈Γ

′

ker
(
ρ(γ)− Id

)
. (11.24)

We know from Sections 11.2.2 and 11.2.3 how to compute ρ(γ). Therefore, we can easily
compute the space of invariants. In SAGE we implemented the computation of invariants in
the function invariants, which takes – beside some optional parameters – two parameters,
the highest weight module M at the first place and the group Γ′, a MatrixGroup (see SAGE
Source Code B.17 in the Appendix). In the algorithm it is possible to replace the MatrixGroup

by a set of matrices or matrix group elements. We can do some things to speed-up the
computation of invariants, which are controlled by some optional parameters.

Use Generators All groups we are considering are finitely generated.10 Let us assume that
Γ′ is generated by γ1, . . . , γs. Then it is enough to compute the kernels for ρ(γi) − Id
instead of those for all group elements to get the invariants. Thus, we get

M
Γ
′

=
⋂

i=1,...,s

ker
(
ρ(γi)− Id

)
. (11.25)

Therefore, we can save lots of non necessary expensive computations of group actions,
which partially involve quite large matrices, at the expense of finding the generators,
which only requires a few multiplications of 4 × 4 matrices. One might expect that
the reduction of the runtime for highest weight modules is roughly proportional to the
factor between the order of the group and the number of its generators11, because the
runtime to compute the generators is independent of rank of the considered highest
weight module and contribute therefore asymptotically only as a constant. In other
words the gain of this is larger, the larger the highest weight modules are. In particular,
for small modules the saved runtime should be competitively small.

We discuss the runtime more in detail in Section 11.2.6. The result there will be a little
bit surprising. For highest weight modules of lower rank we find a factor between 1
and 5 also for groups with a large factor between the number of generators and the
order of the group, i.e. a factor about 15. We observe that in most cases for larger
rank modules the gain increases, but at least for the tested examples – some of them
can be found in Table 11.3 – the gain is always much smaller as the expected factor.
Nevertheless it is recommended to set the option only_generators of the function
invariants to True, which is also the value by default.

10The group Γ is finitely generated (see Theorem 11.2.1) and all stabilizers of cells are even finite subgroups of Γ.
11Here it is the computed number of generators with the function getgenerators (see SAGE Source Code B.15

in the Appendix) and not the minimal number, because −Id is always in this set if it is in the group. This leads
to a larger set of generators e.g. in case of some groups isomorphic to a cyclic group, as e.g. the stabilizers of
cells of type Desargues, which get a set of two generators, whereas the group can be generated by only one
element.
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A further speed-up can be obtained if we precompute the generators of the occurring
groups and pass the list of them instead of the group. This was one reason why we
allow lists instead of matrix groups.

Use Precomputed Lists For the computation of getreprofgroupelement (see SAGE Source
Code B.10) we reduce the runtime because we reuse some already computed results
as e.g. the generators of the corresponding Lie algebra etc., which are passed in terms
of lists to that function. The computation of invariants involves, according to equation
(11.24), the computation of several actions of group elements on highest weight mod-
ules (see SAGE Source Code B.17). Therefore, the precomputed lists are essentially the
same lists as in case of the function getreprofgroupelement. In our implementation
of invariants we can switch between a computation without any precomputed data
and different levels of usage of precomputed data simply by passing all or even only
some of the lists. By default each of the lists is set to be equal to the empty list [ ]. All
empty lists are then replaced by newly computed versions. This is the same procedure
we use inside the function getreprofgroupelement. After that the iteration over the
elements starts and we compute each matrix of the group action with the just computed
full set of lists. Usually the iteration run over several elements. Therefore, we will save
some time because we use the function getreprofgroupelement with all possible lists
precomputed.

We obtain a further speed-up if we pass all list from the beginning to the function
invariants instead to compute them inside the the function. Some comparisons be-
tween both versions (all list precomputed and no list precomputed) will be done in
Section 11.2.6.

Use Early Break Loop Conditions In equation (11.24) the result will be the zero module if
for one γ ∈ Γ′ we have that ker (ρ(γ) − Id) = 0. Therefore, we check before compute
the intersection of the newly computed kernel with the intersection of the previous
ones, whether the kernel equals zero. Furthermore, we check after we computed the
intersection whether the result is zero. If one of these checks forces the result to be zero
at the end we break the loop over the elements in Γ′ (or over its set of generators) and
return the zero module. Therefore, if the module of invariants is zero we will get the
result probably faster. In practice we will see this in particular in case of odd weights
(comp. Table 11.5).

Some examples including some discussion of their runtime for invariants under stabilizers
of cells are given in Section 11.2.6. Some further examples on invariants under the full Siegel
modular group Γ, i.e. global sections, are discussed in Section 12.4.

11.2.6. Examples and Runtime Analysis for Computing Invariants

In our program we can easily – not necessarily fast – compute invariants. The output is an
abstract submodule of a generic free module module V of rank n over base_ring, where n
equals to the rank of the highest weight module M over base_ring. Here we identify the
standard basis of unit vectors in V with the elements in the PBW-basis of M in the order as
they occur in our algorithm (comp. Section 11.2.2). Here an simple example of the usage:
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sage: L = SimpleLieAlgebra("C",2, base_ring=QQ)

sage: M = HighestWeightModule(L,[4,2])

sage: G = RedSquare.stabilizer();

sage: invariants(M,G)

# Control messages deleted

Vector space of degree 220 and dimension 16 over Rational Field

Basis matrix:

16 x 220 dense matrix over Rational Field

We should emphasize that the output of invariants is in particular not a submodule of M. To
obtain again elements in M from a coordinate vector in the module V we can use the function
coordinatevector2HWMelement, which converts a coordinate vector in V to an element in
M. After we got the matrix representation by evaluating the action of the generators on
the PBW-basis it is, from a computational point of view, neither necessary nor useful to do
the computations explicitly in M itself. It is much faster to stay in an abstract setting with
matrices and coordinate vectors. But for some other questions the representation of highest
weight module elements in terms of the related PBW-basis are better suited. Therefore, we
implemented that conversion function. Here an example:

sage: L = SimpleLieAlgebra("C",2)

sage: M = HighestWeightModule(L,[2,0])

sage: G = Pyramid.stabilizer();

sage: MG1 = invariants (M,G); MG1

# Control massages deleted

Vector space of degree 10 and dimension 6 over Rational Field

Basis matrix:

[ 1 0 0 0 0 -1 0 0 0 1]

[ 0 1 0 2 0 0 -1 0 0 0]

[ 0 0 1 0 0 2 0 0 0 -2]

[ 0 0 0 0 1 -2 0 0 0 2]

[ 0 0 0 0 0 0 0 1 0 0]

[ 0 0 0 0 0 0 0 0 1 2]

sage: for b in MG1.basis(): print coordinatevector2HWMelement(b,M1)

1*v0+-1*y4*v0+y4^(2)*v0

y1*v0+2*y1^(2)*v0+-1*y1*y4*v0

y3*v0+2*y4*v0+-2*y4^(2)*v0

y1*y3*v0+-2*y4*v0+2*y4^(2)*v0

y3^(2)*v0

y3*y4*v0+2*y4^(2)*v0

To illustrate the usage of our program routines we computed the invariants under the sta-
bilizers of the 11 standard cells. Their dimensions are shown in Table 11.4. Further, we did
some analysis of the runtime for the computation of the invariants. The computation of in-
variants is, as explained in Section 11.2.5, essentially based on the computation of the group
action on a highest weight module. Therefore, the runtime is roughly given by:

• The time needed to compute the matrix representation of a single element of the group.
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• The number of elements in the group for which we have to compute the action. These
are at the best only a minimal set of generators of the considered group. In our imple-
mentation we compute by default we compute from the group a set of generators. We
do not check the minimality but in praxi in most cases the size is equal to the minimal
size (comp. Table 10.7). The minimal number of generators is known because we know
the group structure and therefore also the minimal number of generators. To obtain
some gain it is important to reduce the number of elements with as less effort as pos-
sible. For a further speed-up, e.g. for really large modules, one should try only to use
sets of generators of minimal size.

• The time for the computation of kernels of matrices and their intersection with some
space. As explained in Section 11.2.5 we compute first a kernel and intersect it then
with the result of the previous step.

Compared to the first two points the third point is in most cases negligible for larger weights,
since computing kernels can be done efficiently by standard libraries. Even for such large
systems for which even the computation of a single matrix representation needs, roughly
estimated, a day it can be done in a few minutes. However in those case where the result is
zero, there might be a relevant speed-up because we break a loop earlier. In particular, this
can be observed for highest weights modules whose weights are odd in its first component,
see e.g. λ = (5, 4) in Table 11.5. As we expect, according to the results stated later in
Lemma 12.3.2 and (12.10), we get as result in this cases the zero module (see Table 11.4).

As already mentioned in Section 11.2.5 we reduce the number of objects which have to be
computed in two ways. First, we compute the intersections in (11.24) only for a set of gen-
erators of the group. Second, we have the possibility to pass some precomputed lists of
generators for one computation of the group action to the function invariants.

If we replace the group by its generators it is important that we spent – compared to the
computation of a single group action – not too much time with the search for a system of
generators. In praxi this means that for small modules it is enough to reduce the number
in a significant way whereas for really large modules it becomes more important to have
an as small as possible set. Since we are using our algorithm only for competitively small
modules we took no effort to get a minimal set. Furthermore, there is an other important
observation which leads to a not necessarily minimal set of generators. Namely it turns out
that −Id, even if it is not in a minimal set of generators, should be in the set of generators
at the first handled position, because in some cases – in particular for weights with odd first
component – this element forces the invariants to be zero, which leads to a significant gain of
time. This is the more important the larger the modules are. So for small weights with odd
first component, i.e. in Tables 11.5 and 11.4 the weights (1, 0) and (5, 0), this gain is not very
large compared to the other operations which were done. All results in Tables 11.5 and 11.4
are computed with the default option only_generators=True. One can see in all cases with
odd first component in Tables 11.5 that the runtime is smaller than the runtime for modules
of about the same size or even of smaller size, whereas the runtime in the case without this
trick should increase with the rank of the module times some factor only depending on the
group. Note that the rank of a highest weight module with respect to its weight is in this case
a cubic polynomial in the components of the weight (see equation (6.56) and Example 6.4.9).
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Table 11.3.: Comparison of runtimes for some highest weight modules between the computation of invariants
with option only_generators equals True and False. Furthermore, we state in the last column the dimension
of the space of invariants over Q. All timings are done on theia at the MPI for Mathematics and are the
arithmetic mean of 5 runs of the program.

Cell σ̃ Factora Weight Time [s] Gainb Dimension
only_generators

True False

RedSquare 10.7
(2,1) 10.05 23.13 2.30 1
(4,1) 49.59 57.65 1.16 6
(4,2) 42.64 229.56 5.38 16

Square 2.00
(2,1) 5.57 9.33 1.68 15
(4,1) 15.91 19.97 1.26 49
(4,2) 35.75 56.91 1.59 116

Hexagon 14.4
(2,1) 33.90 182.01 5.37 1
(4,1) 21.61 142.63 6.60 2
(4,2) 58.22 492.47 8.47 7

Reye 16.0
(2,1) 28.88 31.05 1.08 0
(4,1) 17.83 111.00 6.23 2
(4,2) 48.10 392.91 8.17 12

Desargues 5.00
(2,1) 5.19 10.17 1.96 7
(4,1) 15.27 29.41 1.93 21
(4,2) 36.51 100.26 2.75 44

aFactor = #Γσ̃/# generators.
bGain = time with all elements/ time with only generators.

Table 11.4.: Dimensions of invariants under stabilizers of the standard cells for some highest weight modules
over Q. In the first row we state the dimension of the modules over Q.

Weight (1,0) (0,1) (2,1) (5,0) (6,0) (4,1) (4,2) (4,4) (5,4)

Dimension 4 5 35 56 84 105 220 625 880

RedSquare0 0 0 1 0 6 6 16 46 0
Vertebra0 0 1 3 0 10 9 18 53 0
Crystal0 0 0 1 0 8 6 23 61 0
Pyramid0 0 1 15 0 44 49 116 325 0
Triangle0 0 5 35 0 84 105 220 625 0
Square0 0 1 15 0 44 49 116 325 0
Hexagon0 0 0 1 0 4 2 7 19 0
DR0 0 5 35 0 84 105 220 625 0
RR0 0 0 3 0 17 13 42 115 0
Reye0 0 0 0 0 5 2 12 31 0
Desargues0 0 1 7 0 16 21 44 125 0
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In Table 11.3 we compare for the stabilizers of five cells and three modules the runtime for
the two choices of the option only_generators. As expected we find a gain between the case
where the option is set to True and the case where the option is set to False. Surprisingly
the gain is not as high as one might expect. Naively one will expect that if we reduce the
number of elements to 1/N times the number of the original set, we should see some factor
of this size if we compare the runtime in both cases. This assumption should be plausible
if in average the operation needs about the same time for each run with a different element
and if the time to find the set of generators is negligible. This is partially wrong. The
time to decompose elements into their generators coming from the generic generators of
the Lie algebra differs as we have seen earlier (comp. Table 11.2). However also tests with
different sets of generators of the same cardinality give us results of about the same size.
Therefore, this gives no explanation for the difference to the expected runtime gain. The
second assumption is true, since the time to get a list of generators is really negligible (see
Table 11.6).

Thus, there we have still no explanation for this strange difference between expected and
observed runtime gain. We suspect, after some consultation of experts in SAGE, Python,
and GAP, that it is probably due to some side effects in the used libraries or a question of
memory usage. They told me that similar effects happen in many cases also in MAGMA. The
used library commands are plain C code, which is wrapped into GAP and/or SAGE. At least
in case of SAGE wrapping leads to as fast code as if that part is executed completely in C and
not included in Python via the Cython libraries.

The other possible explanation to look at the memory needs to check which kind of memory
is accessed. It is probably known to all of us that at the time where we have not enough RAM
to keep the computation in this kind of memory and we have to store at least some parts on
the hard drive the runtime increases rapidly, because the access to data on hard drives is
much slower than the access to data in the RAM. To be precise this happens much earlier
since there are different levels of cache memory. there are some difference between the cache
memory of the three used computers. The computer theia has much more memory than
the other two. In addition theia is the only computer which has a quite large Level 2 cache
and also some Level 3, which will be used before the usual RAM is used. This means that
theia is much better suited for computation with extensive memory consumptions. These
differences in memory can explain difference in runtime by different usage of memory. But
this effect should go in the opposite direction since the computations with all elements needs
more memory, whereas the computations with only generators should also be faster if they
fit into the faster memory, which is not large enough to handle also the other case. Therefore,
we believe that the different memory usage is not (the only) reason. This is not a satisfactory
answer, but at the moment we have also no better one.

We assume that – maybe – the difference between expected and seen runtime might be less
significant for much larger modules, i.e. of rank � 1000, because at least some side effects
might be weaker. This test has to be done carefully because for really big modules – larger
modules need larger memory – it becomes relevant that also the almost 400GB RAM of theia
are not enough and the speed will decrease significantly is one has to use hard disc memory
as mentioned above. For practical reasons it was not possible to check this up to now. It
would be interesting to analyse this deeper later on.
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11. Γ-Modules and their Computation

Table 11.5.: Time to take invariants of some highest weight modules under stabilizers of the standard cells. For
each pair consisting of a cell and a highest weight module we took the time on the one hand for runs without
(w/o) any precomputed data and on the other hand with (w/) precomputed data. All timings are done on theia

at the MPI for Mathematics and are the arithmetic mean of 5 runs of the program.

Time [s]
Weight (1,0) (0,1) (2,1) (5,0) (6,0) (4,1) (4,2) (4,4) (5,4)

RedSquare0
w/o 1.49 2.30 5.38 6.51 11.70 14.70 43.1 269.0 209.0
w/ 0.42 1.32 1.71 0.70 3.22 4.05 15.3 177.0 90.0

Vertebra0
w/o 1.13 1.50 4.10 6.05 9.74 13.30 32.1 157.0 197.0
w/ 0.50 0.54 0.70 0.67 1.44 1.98 7.3 83.6 91.3

Crystal0
w/o 1.18 1.91 5.88 6.37 12.50 14.90 45.1 353.0 204.0
w/ 0.44 0.921 2.33 0.66 4.64 5.45 21.7 260.0 91.0

Pyramid0
w/o 1.18 1.78 4.88 6.25 10.70 13.60 34.0 211.0 191.0
w/ 0.43 0.66 1.13 0.65 2.10 2.91 11.3 150.0 90.7

Triangle0
w/o 1.21 1.23 4.29 6.16 9.73 12.10 28.6 118.0 202.0
w/ 0.44 0.48 0.56 0.60 0.87 1.15 4.0 42.5 89.0

Square0
w/o 1.29 1.89 4.95 5.96 10.20 13.50 35.2 221.0 233.0
w/ 0.43 0.75 0.97 0.73 2.22 4.08 11.5 156.0 92.1

Hexagon0
w/o 1.29 2.69 6.24 0.74 13.40 5.45 45.0 353.0 237.0
w/ 0.53 2.06 2.39 0.79 4.68 4.64 20.1 219.0 86.1

DR0
w/o 1.27 1.34 4.24 6.04 9.20 11.90 29.5 121.0 206.0
w/ 0.42 0.44 0.54 0.52 0.88 1.09 3.8 41.2 89.0

RR0
w/o 1.26 1.82 5.29 6.45 11.10 14.60 39.1 288.0 235.0
w/ 0.51 1.06 1.35 0.69 2.59 3.36 14.2 196.0 85.8

Reye0
w/o 1.25 1.94 4.95 6.94 11.10 15.90 40.3 364.0 202.0
w/ 0.45 1.00 1.25 0.71 2.63 3.58 16.2 264.0 85.5

Desargues0
w/o 1.33 1.37 4.50 6.34 9.80 12.80 31.8 213.0 202.0
w/ 0.46 0.57 0.86 0.67 1.58 2.14 9.2 101.0 94.7

Table 11.6.: Time to compute a set of generators with the function getgenerators. All timings are done on
theia at the MPI for Mathematics and are the arithmetic mean of 5 runs of the program.
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11.2. Computation of Γ-modules

A further speed-up can be obtained by checking in the preprocessing of invariants whether
−Id is in the set of elements we have to use and whether we have a highest weight module
with odd first component. We decided not to implement this at the moment for two rea-
sons. First, it works in this simple way only for highest weight modules and not for more
complicated modules. Further, it is better to do this earlier in the computation of the co-
homology since then according to Corollary 12.3.3 all cohomology groups vanish. In other
words, in practice we would never ask for these invariants. Here we use the known result
to validate our implementation of the algorithms. At the present state there is no predefined
function to compute invariants for arbitrary representation modules. By complete reducibil-
ity one can decompose each such module into a direct sum of objects where we can apply
the implemented methods.

For the analysis of the runtime with and without the usage of precomputed data we have to
take into account Table 11.2 as well as Table 11.5. There are two different types of precom-
puted Data (see Table 11.2 (b)):

• Data depending on the module

– The module M

– The list of generating function for the group action on the module M

• Data independent of the module

– The list of generators for the Lie algebra and the Lie group.

– The decomposition of the group elements (This is actually NOT passed in any way
to any function.)

For runtime considerations the computation of the generators for the Lie group and Lie
algebra are completely negligible. For asymptotic runtime analysis, i.e. the runtime for
modules of large rank, the generation of all data which does not depend on the module does
not really contribute to the runtime. The only part which has to be computed in each run is
the decomposition of the group element into its generators in the Lie group. We might later
also implement a reusage of a once computed decomposition. However their contribution is
really small even if we we take into account that some of them has to be computed several
times (see Table 11.2 (b)). However the dominant part, at least for modules of larger rank,
where also the total runtime is much longer, is the generation of the precomputed data which
depends on the module. Here the initialization and generation of a highest weight module
is the less important part (comp. Table 11.2 (b)).

For small modules the accumulated time for all precomputations – depending on the group
element – is up to 80% of the total runtime of the computation of a single group action (see
Table 11.2 (a)). For larger modules the ratio decreases in most cases down to less than 10%
of the runtime of the evaluation of the function getreprofgroupelement. However there are
cases, e.g. the example m3 in Table 11.2, where also in larger modules one has gains of about
80%. In any case one saves at least some percent, if we look only at one group action and use
precomputed data. We see that the behaviour depends strongly on the group elements and
thus it is not that easy to say a priori how long the computation of invariants will need.
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11. Γ-Modules and their Computation

Since we use, as explained in Section 11.2.5, inside the function invariants the precomputed
version of getreprofgroupelement we get also some speed-up compared to the usage of only
the non-precomputed version of that function to compute the group action.

Let us now have a closer look at the examples of the evaluation of the function invariants

for some highest weight modules and the stabilizers of all standard cells, which can be found
in Table 11.5. For later use we need in addition also the invariants under intersections of
stabilizers. For questions concerning runtime they behave in the same way as the considered
groups. Anyway, according to the results stated in Table 10.12 and in intersections.pdf

on the CD-ROM, which is included to the printed copy of this thesis, most intersections
are isomorphic to C2 and should Therefore, behave similar to the stabilizers of cells of type
Triangle or DR. As expected we observe that the computation with precomputed data is
faster than without. It is interesting to observe that we have, in contrast to the previous
discussion, a gain which is also larger than the expected gain. Naively one might expect
that the runtime of the computation with precomputed data is roughly the runtime without
precomputed data minus the sum over all runtimes to produce the precomputed data. Let
us consider the weight λ = (4, 4). In detail we have, according to Table 11.2 (b):

0.39s Computing M4,4

72.65s Computing generating functions for ρ4,4

0.19s gen. from neg. roots
0.19s gen. from pos. roots

<0.01s Look-up table for row op.
0.01s Lattice generators of U(sp2)

Sum 73.43s

In addition to this we have to compute the decomposition of the group elements in the set
of generators, i.e. we have to do this up to five times. Tests show that this needs between
250ms and 3s each. However this has to be done in both cases. Therefore, we can guess that
the difference between both versions should be roughly about or below 70s. It is astonishing
to compute these differences (see Table 11.7), because in many cases the gain is larger than
expected. In one case, the invariants under the stabilizer of the cell Hexagon0, we even have
a gain twice as large as expected. For weight (4, 4) this happens quite often, for the other
weights displayed in Table 11.7 we get in most cases the expected behaviour.

It is not easy to find out the reason for this. However probably it has similar reasons as the
behaviour discussed earlier in context of doing the computation only for generators. Different
to that situation, we have here in most cases the behaviour we expect and only in some cases
we see a difference, which has to be explained somehow. In this situation some side effects
are a much more plausible explanation than in the situation before. To get a better picture in
which cases there are differences, we have to do more computations in particular with much
larger modules, i.e. of rank � 1000, because here (not only in the displayed examples) the
phenomenon occurs more often for modules of higher rank.

The computations are with the made enhancement not as fast as expected, but they are
much faster than the unoptimized versions of the functions. Therefore, usage of previously
computed data and only the generators is highly recommended. A further speed-up might
be obtained if we can manage to avoid the computation of the decomposition of the matrices
into generators and the image of them under the considered representation. However for this
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11.2. Computation of Γ-modules

Table 11.7.: Differences of the runtime of the function invariants between the computations with and without
precomputed data. The data was taken from Tables 11.2 (b) and 11.5.

(2,1) (4,1) (4,2) (4,4)

Time for precomputation 4.65 s 11.80 s 25.07 s 73.43 s

RedSquare0 3.67 s 10.65 s 27.80 s 92.00 s
Vertebra0 3.40 s 11.32 s 24.80 s 73.40 s
Crystal0 3.55 s 9.45 s 23.40 s 93.00 s
Pyramid0 3.75 s 10.69 s 22.70 s 61.00 s
Triangle0 3.73 s 10.95 s 24.60 s 75.50 s
Square0 3.98 s 9.42 s 23.70 s 65.0 s
Hexagon0 3.85 s 0.81 s 24.90 s 133.40 s
DR0 3.70 s 10.81 s 25.70 s 80.00 s
RR0 3.94 s 11.24 s 24.90 s 92.00 s
Reye0 3.70 s 12.32 s 24.10 s 100.00 s
Desargues0 3.64 s 10.66 s 22.60 s 112.00 s

additional work would be necessary to implement an efficient way for storing and accessing
this data, whereas at least in the considered examples, i.e. stabilizers of cells, whose elements
decompose into only a few factors, the estimated gain is not that high. Therefore, this is not
included in our code at the moment.
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There are several different accesses to the subject of cohomology of arithmetic groups. For
example, if Γ ⊂ G is a nice arithmetic group of a real Lie group G,X = G/K is the symmetric
space associated to G and g is the associated Lie algebra, then there are the following notions:

a) Group cohomology, i.e. Hq(Γ,M) for some Γ-module M (see [Bro94]).

b) Cohomology of sheaves, i.e. Hq(X/Γ,F ) for some sheaf F
(see e.g. [Bre97, Ive86, Har08c]).

c) Cohomology of the topological space, i.e. Hq(X/Γ, A) for some abelian group A
(see e.g. [Hat02, Mas91, Mun84, Mas78]).

d) Relative Lie algebra cohomology, i.e. Hq(g,K;C∞(G/Γ)⊗M) for some Γ-module M
(see [BW00]).

There are some equivalences of these different approaches, which we do not want to treat
exhaustively. Here we give only a sketch of some of these identifications:

• The group cohomology Hq(Γ,M) is isomorphic to the sheaf cohomology with some
sheaves M̃, which are given by the Γ-module M (comp. Theorem 12.2.3).

• Relative Lie algebra cohomology Hq(g,K;C∞(G/Γ) ⊗M) is isomorphic to group co-
homology if the Γ-modules are nice (see e.g. [BW00; Chap. VII]).

• Sheaf cohomology Hq(X/Γ,F ) equals Hq(X/Γ, A) if F is the constant sheaf with val-
ues in A and X/Γ is connected.

If the circumstances are ”nice” enough, all four points of view will coincide. For us the main
access will be the approach b) via sheaf cohomology (see Section 12.2 ), because this will give
a much more detailed picture of the situation than group cohomology a) or the cohomology
with constant coefficients c). Although relative Lie algebra cohomology provides lots of
interesting insights into the structure of the cohomology groups (see e.g. [Fra98, FS98]), we
will not consider this kind of cohomology in the following.

For sheaf cohomology we consider sheaves which are so called local systems if the group Γ
is torsion free. If Γ is not torsion free, they are some generalization of local systems we will
introduce, defined by some Γ-modules (see Section 12.1). In this context we will consider also
the connection between group cohomology and the sheaf cohomology (see Theorem 12.2.3).

As reference for the cohomology of arithmetic groups we suggest the books of Günter Harder
[Har08c, Har93], as well as his lecture notes [Har05, Har08a], available online, and two of his
papers [Har87, Har08a]. For the theory of local systems ans its generalizations to orbifolds
we refer to the already mentioned sources of Harder or the PhD thesis of Dan Yasaki [Yas05].
For the background on cohomology of sheaves there are the books of Birger Iversen and Glen
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Bredon [Ive86, Bre97].

12.1. Orbilocal Systems

There is a standard way to define a sheaf which is associated to a given Γ′-module for an
arbitrary arithmetic group Γ′. For simplicity in the notation we assume that the underlying
group Γ′ is an arithmetic subgroup of the Siegel modular group

Γ := Sp2(Z) ⊂ Sp2(R) =: G

of finite index and that we consider the symmetric space X = S2. The definitions hold also if
we replace G and X by a different Lie group with its associated symmetric space. But since
we also want to work out the connection between sheaves on S2/Γ

′ and sheaves on W/Γ′ it
is more convenient to consider at this place only the special case.

Let M := (ρM,M) be any Γ′-module and

π : S2 → S2/Γ
′ (12.1)

the canonical projection onto the quotient. Let furthermore

r : S2 →W (12.2)

be the restriction map from the Siegel upper half-space onto its retract constructed in Chap-
ter 9. To define a sheaf on S2/Γ

′ we define for every open U ⊂ S2/Γ
′ the set of sections over

U by

M̃(U) =
{
f : π−1(U)→M :

f is locally constant,
f(Rγ(x))=ρM(γ)·f(x), ∀γ∈Γ

′
, x∈π−1

(U)

}
. (12.3)

This forms, with the obvious restriction maps, a presheaf. We denote by M̃ also the sheafi-
fication of this presheaf and call it an orbilocal system on S2/Γ

′. Similarly we can define
a sheaf M̃W on W/Γ′. We will often use M instead of M̃ and MW instead of M̃W. This
construction defines a functor

shΓ
′ : ModΓ

′ → SheavesS2/Γ
′ (12.4)

from the category of Γ′-modules to the category of sheaves on S2/Γ via shΓ
′(M) = M̃. In the

same way we can define a functor for the sheaves on W/Γ′ which we also denote by shΓ
′ .

One finds that

Lemma 12.1.1: The functor shΓ maps injective Γ-modules to acyclic sheaves.

The proof of this proposition needs some more work. Therefore, we refer for the proof to
[Har05; pp. 55 f.].

There is a different point of view on the introduced sheaves in terms of flat fiber bundles,
which is in some cases quite useful. Recall that the sections of sheaves can be viewed as
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12. Cohomology of Arithmetic Groups

sections of suitable flat bundles. We define the following quotients of bundles

S2 ×Γ
′ M := S2 ×M/

{
(x,m) ∼ (Rγ(x), ρM(γ) ·m) : γ ∈ Γ′

}
(12.5)

W ×Γ M := W ×M/
{

(x,m) ∼ (Rγ(x), ρM(γ) ·m) : γ ∈ Γ′
}
.

This yields, with the notations from above, the following diagram

W ×M S2 ×M

W ×Γ
′ M W S2 S2 ×Γ

′ M

W/Γ′ S2/Γ
′

ππ̃

ι

r

ιΓ′

rΓ
′

(12.6)

If there is no torsion in Γ′ and thus S2/Γ
′ is a smooth manifold, all these bundles are flat

fiber bundles over a manifold. But if there is torsion, the quotient S2/Γ
′ is only an orbifold.

Therefore, S2 ×Γ
′ M is by construction a flat orbifold bundle over S2/Γ

′ of rank rank (M).
In the same way W ×Γ

′ M is a flat orbifold bundle over W/Γ′. For some additional facts on
these bundles see e.g. [Yas05; Section 8.3].

One can use this point of view to prove the following proposition.

Proposition 12.1.2: We have
r∗

Γ
′M =MW,

where r∗
Γ
′M is the push-forward of the sheafM by the restriction map from (12.2).

The proof is identical to the proof of [Yas05; Prop. 8.3.1], which handles an analogous state-
ment for different groups.

Before we proceed with a closer look on the functor shΓ
′ (12.4) we have to introduce a ring

extension for a – finite or infinite – discrete group Γ′. We set

DΓ
′ =

∏
p prim ,
∃Γ1⊂Γ:
p|#Γ1

p. (12.7)

It is easy to see that if Γ′ ⊂ Γ is an arithmetic subgroup then DΓ
′ is the product of all primes

which divide the order of a stabilizer of some point x ∈ S2. For our standard example, the
Siegel modular group Γ, we have

DΓ = 2 · 3 · 5 = 30, (12.8)

because we know by Corollary 6.3.7 that the only prime orders of elements in Γ are 2, 3,
and 5.
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Definition 12.1.3: Let R be a commutative ring with one and Γ′ a discrete subgroup of Γ, then we
define a new ring by RΓ

′ = R[1/DΓ
′ ].

The most important example of such a ring is the ring ZΓ = Z[1/30], i.e. R = Z and Γ′ = Γ.
Rings of this type are important for several reasons, which we explain later.

Let Γ′ ⊂ Γ be an arithmetic group and M ∈ Obj
(
ModΓ

′
,R

)
for a commutative ring with

one R. Then shΓ
′(M) is a by definition a sheaf of Γ′-R-modules on S2. If the group Γ′ acts

torsion free on S2, which is not the case for Γ′ = Γ, the quotient S2/Γ
′ is a manifold and,

independent of M, the sheaf M̃ is a local system.

Definition 12.1.4 (Local System): A sheafM on a topological space X is called locally constant
sheaf or local system if for all x ∈ X there is a neighbourhood U containing x such thatM|U is a
constant sheaf.

Some authors do not differentiate between local systems and orbilocal systems.

We want to have a closer look at stalks and sections of orbilocal systems. Let us start with
the global sections of the sheaf M̃. We find immediately by its definition that

M̃(S2/Γ
′) = MΓ

′
(12.9)

because a locally constant map f : S2 → M is necessarily constant, since S2 is contractible,
and has to be invariant under Γ′. Let us now consider the stalks of M̃ in a point x ∈ S2/Γ

′.
Then we have

M̃x = MΓ
′
x̃ , (12.10)

where x̃ ∈ π−1(x) ⊂ S2 is a chosen lift for x and Γ′x̃ is the stabilizer of this point in Γ′.
Note that this identification depends on the choice of the lift x̃, but the resulting invariants
are isomorphic for different choices of x̃. Now there is a difference between the cases where
Γ′ ⊂ Γ acts with and without torsion on S2. If Γ′ acts torsion free on S2 then we know that
the stabilizer of each point x̃ ∈ S2 is trivial, i.e. equal to Γ′x̃ = 〈±Id〉 for all x̃ ∈ S2, and
therefore we get for all x ∈ S2/Γ

′ that

M̃x = M〈±Id〉. (12.11)

In other words, all stalks are equal.1 This shows also that in the torsion free case the sheaves
M̃ are (locally) constant.

If there is torsion the situation is slightly different. The M̃ are still sheaves, but they are not
locally constant any more. The stalks will change from point to point whenever the stabilizer
of a lift of the points changes because of (12.10).

Definition 12.1.5: A sheaf F on a topological space X is called weakly locally constant or w-
locally constant if for each point x ∈ X there is a neighbourhood Ux ⊂ X of x such that the map

fUx,x : F (Ux)→ Fx

given by taking the germ of a section is an isomorphism.

1This is what we expected since locally constant sheaves on connected spaces are constant.
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It is not difficult to see that orbilocal systems as well as local systems are weakly locally con-
stant, because Γ′ acts properly discontinuously on S2. We will consider this isomorphisms
in more detail later in Section 13.1 on constructible sheaves.

Now it is easy to see that the functor shΓ
′ can in general not be exact on the category ModΓ

′ .
The functor is certainly exact if Γ′ acts torsion free. If this is not the case we can introduce the
(right) derived functors Rq shΓ

′ . The higher images of these functors Rq shΓ
′(M) are sheaves

on S2/Γ
′ which are concentrated on the fixed point sets of Γ′. Moreover, we get (see e.g.

[Har05; p. 54]):

Proposition 12.1.6: The derived functor Rq shΓ
′(M) for q > 0 is annihilated by some power of the

integer DΓ
′ .

We will see some consequences of this proposition in the next section.

12.2. Cohomology of Arithmetic Groups

Let Γ′ ⊂ Γ be an arithmetic group and M any Γ′-module (later we will restrict ourselves to
Γ′-ZΓ

′-modules). The cohomology groups related to Γ′ we are interested in are, as mentioned
in the introduction of this chapter, the sheaf cohomology groups

Hq(S2/Γ
′, shΓ

′(M)
)

= Hq(S2/Γ
′,M)

defined in Section 5.1, where the coefficient sheaf M = shΓ
′(M) is given by the orbilo-

cal system associated to the module M. If we speak of the cohomology of an arithmetic
group we will mean in the following this cohomology group. This is justified by the equal-
ities between group cohomology and cohomology of sheaves we present in this section
(see Theorems 12.2.1 and 12.2.3). To understand this, we need some preparation.

We already observed in (12.9) that

H0(S2/Γ
′,M) =M(S2/Γ

′) = MΓ
′
. (12.12)

By Proposition 12.1.2 this descends to the sheafMW on the retraction, i.e.

H0(W/Γ′,MW) =MW(W/Γ′) = MΓ
′
. (12.13)

Furthermore, we mentioned in the previous section that the functor shΓ
′ is not always exact,

such that we have to consider the derived functors Rq shΓ
′(M) for q > 0, which are according

to Proposition 12.1.6 annihilated by a power of DΓ
′ . We have in this cases the well known

spectral sequence (comp. [Gro57b, Gro57a; Chapitre V.])

Hp(S2/Γ
′,Rq shΓ

′(M))⇒ Hn(Γ′,M), n = p+ q, (12.14)

which is a useful tool for the study of cohomology and well defined in all its terms under
the assumptions from above. Some further analysis of this spectral sequence leads to the
following theorem, which uses the hypercohomology of sheaves (see [Har05; 2.9.3]):
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Theorem 12.2.1: Let M be a Γ′-module, then we have the following identity:

Hn(Γ′,M) =
⊕
p+q=n

Hp(S2/Γ
′,Rq shΓ

′(M)),

whereH0(shΓ
′(M)

)
= shΓ

′(M) and theHq(shΓ
′(M)) for q > 0 are sheaves whose stalksHq(shΓ

′(M))x
in x ∈ S2/Γ

′ are Hq(Γ′x,M).

This yields the following proposition:

Proposition 12.2.2: Let R be a commutative ring with one. If the orders of stabilizers in Γ′ are
invertible in R, i.e. R = RΓ

′ , we have that for q > 0

Rq shΓ
′(M) = 0.

Furthermore, we get from the edge homomorphism of (12.14) a natural homomorphism

αΓ
′ : Hq(Γ′,M)→ Hq(S2/Γ

′,M). (12.15)

which is in general neither injective nor surjective (comp. [Har08a; p. 32] or [Har05; 2.9.1]).
But we have:

Theorem 12.2.3: Let Γ′ ⊂ Γ be an arithmetic subgroup and DΓ
′ the integers as above. Then αΓ

′ is
an isomorphism is an isomorphism if the map m 7→ DΓ

′ ·m is an automorphism of the module M. In
the other cases ker (αΓ

′) and coker (αΓ
′) are annihilated by a power of DΓ

′ .

From this we can conclude immediately:

Corollary 12.2.4: If M ∈ Obj
(
ModΓ

′
,R

Γ
′

)
we have

Hq(Γ′,M) = Hq(S2/Γ
′,M).

This is of course a weaker result than the statement (12.14) on spectral sequences or The-
orem 12.2.1, but it is somehow easier to handle in general. This is one of those reasons
we announced earlier to consider later on for the cohomology instead of Γ′-Z-modules
Γ′-ZΓ

′-modules.

Finally we want to close this section with the famous lemma of Shapiro from 1961, which con-
nects the cohomology of an arithmetic group with the cohomology of a subgroup. Although
the result is know as Shapiro’s Lemma it is originally stated by Benno Eckmann already in
1953. Let Γ′′ ⊂ Γ′ ⊂ Γ and M a Γ′′-module, then the induced module is defined to be

IndΓ
′

Γ
′′ (M) :=

{
f : Γ′ →M : f(γ′′ · γ′) = γ′′ · f(γ′) ∀γ′ ∈ Γ′, γ′′ ∈ Γ′′

}
(12.16)

=
⊕

γ∈Γ
′
/Γ
′′

γ ·M,

which is a then Γ′-module. Then we have (see e.g. [Har05; 2.9.5])

Lemma 12.2.5 (Shapiro’s Lemma: A. Shapiro, 1961; B. Eckmann, 1953):

Hq (S2/Γ
′′, shΓ

′′(M)
)

= Hq
(
S2/Γ

′, shΓ
′

(
IndΓ

′

Γ
′′ (M)

))
.
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12.3. Vanishing Results

There are several reasons why vanishing results for the full cohomology or some parts are
interesting. First of all, if we already know that something is zero we do not need to calculate
the related groups. But mathematicians like to compute zero in ways as complicated as
possible and one can use the comparison between the computed result and the expected one
to check the used algorithms for their correctness (or the correctness of the implementation
of the used algorithms).

Furthermore, we can get some information on the inside of the cohomology if we know that
some parts, say the inner cohomology are vanishing, because in that cases we can conclude
that the computed cohomology belongs to the complement.

Last but not least the vanishing of the cohomology by Theorem 12.3.4 was the motivation for
the search for a retract in Part II. As in the previous section we state the results only in case
of the symplectic group G /Q = Sp2/Q.

12.3.1. Weights

12.3.1.1. Trivial Representation and Global Sections

Let M0 be the trivial representation of the symplectic group defined over the integers. By
definition M0,0 is the highest weight representation of weight 0 = 0 ·ω1 + 0 ·ω2. In particular,
we know that M0 is an irreducible representation (for the algebraic group), therefore there
are only two possible invariant subspaces ofM0⊗ZC under Sp2(C), namelyM0⊗ZC itself or
0. Furthermore, the set of invariants (M0 ⊗Z C)Sp2(C) is known to be an invariant subspace.
It is easy to check that

(M0 ⊗Z C)Sp2(C) = M0 ⊗Z C (12.17)

and that for all weights λ 6= 0

(Mλ ⊗Z C)Sp2(C) = 0. (12.18)

One immediately finds that from this it follows that

M
G
λ =

{
M0 if λ = 0

0 if λ 6= 0.
(12.19)

Since Γ = Sp2(Z) is Zariski-dense in G it follows:

Theorem 12.3.1: Let λ be an integral weight and Mλ its associated representation module defined
over the integers, then

H0
(
S2/Γ, ˜Mλ ⊗Z ZΓ

)
=

{
(M0 ⊗Z ZΓ)Γ for λ = 0

0 for λ 6= 0.

Note: The invariants of the module in Theorem 12.3.1 under the discrete subgroup Γ need
not to be neither the full module nor the zero module, since it is in general only irreducible
for the complex representation.
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12.3.1.2. Odd Weights

It is well known that spaces of modular forms – Siegel modular forms as well as elliptic
modular forms – with respect to an arithmetic group Γ′ vanish if −Id ∈ Γ′ acts trivially,
whereas the matrix representation of −Id is not the identity. There is a similar phenomenon
for the cohomology. According to the definition of an orbilocal system M̃m,n associated to
a highest weight module Mm,n ∈ Obj (ModΓ) in (12.3) we have to look for locally constant
functions f on π−1(U) for an open set U ⊂ S2/Γ with values on Mm,n which satisfy

f
(
Rγ(x)

)
= ρ′m,n(γ) · f(x). (12.20)

We have always R−Id(x) = x whereas

ρ′m,n(−Id) =

{
−1 if m ≡ 1 mod 2

+1 if m ≡ 0 mod 2.
(12.21)

Therefore, we get

Lemma 12.3.2: Let λ = m · ω1 + n · ω2, then we have

M̃λ = 0 (12.22)

if m ≡ 1 mod 2.

This leads immediately to

Corollary 12.3.3: Let λ = m · ω1 + n · ω2, then we have

Hq
(
S2/Γ, M̃λ

)
= 0 (12.23)

for all q if m ≡ 1 mod 2.

The same stays true if one replaces Γ by a subgroup containing −Id or if we replace the
module Mλ by Mλ ⊗Z R for some ring R ⊇ Z.

12.3.2. Virtual Cohomological Dimension

The main motivation to construct retracts of (Siegel) modular varieties for a given algebraic
group G /Q of lower dimension than dimXG is, as already discussed in Section 7.2, to get
an as simple as possible model for the variety and reduce the computational costs for e.g.
the cohomology. The main result which lets us hope that this is possible is the vanishing of
the cohomology groups above a certain limit, the so called virtual cohomological dimension
(vcd). Recall that vcd was defined in (6.7) to be

vcd (Γ) := dimR (X)− rankQ (Γ) .

There is an equivalent purely topological definition due to the following theorem of Armand
Borel and Jean Pierre Serre [BS73; Theorem 11.4.4].
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Table 12.1.: The virtual cohomological dimension for subgoups of Spg(Z) for n ≤ 9

g 1 2 3 4 5 6 7 8 9

dimRXSpg
2 6 12 20 30 42 56 72 90

vcd
(
Spg(Z)

)
1 4 9 16 25 36 49 64 81

Theorem 12.3.4 (Borel, Serre,1973): For an (not necessarily torsionfree) arithmetic subgroup
Γ ⊆ G (Z) it is H i(Γ,M) = 0 for i > vcd (Γ) independent of M.

In other words, the vcd is the highest degree of cohomology where independent of the chosen
coefficient system the cohomology is non-vanishing.

It is important to emphasize that the virtual cohomological dimension depends only on the
underlying algebraic group G /Q and not on the particular arithmetic group Γ ⊂ G (Z).

Example 12.3.5 (Symplectic Group). In case of the symplectic group, i.e. G /Q = Spg/Q we
know that (see e.g. [BL04; 8.1])

dimRXSpg
= g(g + 1) and rankQSpg = g.

Therefore, we get
vcd

(
Spg(Z)

)
= g2.

12.4. Computing Global Sections

Computing global sections of the orbilocal sheaf M̃ associated to a highest weight module
M (see equation 12.12) is essentially the same as the computation of invariants under the
(finite) stabilizers of cells, which we discussed in Sections 11.2.5 and 11.2.6. But different
to that we need to compute global sections to compute the invariants under the full group
Γ, or equivalently the invariants under the (finitely many) generators of the group (comp.
Theorem 11.2.1 and equation (11.25)). Here is a simple example of the usage of our program
to compute MΓ

1,0, i.e. the invariants for the highest weight module of weight λ = (1, 0):

sage: L = SimpleLieAlgebra(’C’,2, base_ring=QQ)

sage: G = GeneratorsSymplecticGroup(2, symplectic_type=1)

sage: G = [symplectic2symplectic(g,type_from=1,type_to=0) for g in G]

sage: M = p.HighestWeightModule(L,[1,0])

sage: invariants(M,G, only_generators=False)

#Control messages deleted

Vector space of degree 4 and dimension 0 over Rational Field

Basis matrix:

[]

For all other weights we obtain the same result except for the weight λ = (0, 0). There we
get:
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...

sage: M = p.HighestWeightModule(L,[0,0])

sage: invariants(M,G, only_generators=False)

#Control messages deleted

Vector space of degree 1 and dimension 1 over Rational Field

Basis matrix:

[1]

This is exactly what we expected, namely that all invariants of highest weight modules of
weight λ are equal to zero except for λ = (0, 0), where we have a one-dimensional space of
invariants (comp. Section 12.3.1.1).

It is strongly recommended to use the option only_generators=False, because we know
that the list of elements passed to the function is a set of generators and we can avoid the
computation of generators. In the current version of the function getgenerators elements of
infinite order are not supported. Therefore, we have to pass the list of generators of Γ and
force the program not to try to find a set of generators, because in the best case the function
getgenerators will send the input list (or a sublist of it) to the computation of kernels (comp.
Section 11.2.5), in the worst case is can raise an exception.

As in some other cases, we here have to pass the generators of the symplectic group to
the function invariants in the right form, because the representation of symplectic group
elements in context of highest weight modules uses a symplectic form which differs from
the symplectic form used in the computation of stabilizers of cells (comp. Section 6.3.1.3).
Since the function Invariants is implemented independent of both constructions, we have
to translate the group from one world into the other, which is quite easy.

In Table 12.2 and Figure 12.1 we state the runtime for a collection of highest weight modules
on the two machines NOETHER and theia. For small weights my local iMac at home, NOETHER,
is the faster one. But at some point the computation becomes slower than on theia. This is
probably due to the equipment with memory. theia has much more RAM (320GB compared
to 64GB), much more L2 cache (6MB compared to 512kB) and an L3 cache, which NOETHER

does not have (see Section 2.2). As one might expect we find that the larger the considered
modules are the larger is the memory one needs to perform the operations. Other factors
different from the memory consumption are only secondary effects. The clock rates of the
two platforms are not that different to explain a difference. An other effect which is somehow
difficult to estimate is the different structure of the arithmetic units in the CPUs. We have
the feeling that – as long as the memory consumption is not relevant – in most operations
which involve integer or rational (and not floating point) operations the iMac with its Intel
processors is significantly faster than the AMD processors of theia. If we replace the default
operations over the integers or the rational numbers by operations over the real numbers, i.e.
we use then floating point arithmetic, the speed of theia increases. Probably the program
uses or does not use integer arithmetic circuits on the CPU. In any case, for larger modules,
which are the cases we are interested in (comp. Section 1.2), one should use theia.
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Table 12.2.: Computation of global sections. The computations are done without precomputation, since for a
single computation this makes no difference. All timings are done on theia at the MPI for Mathematics and on
NOETHER, my personal computer. They are each the arithmetic mean of 5 runs of the program.

Weight Dimension Time[s]
NOETHER theia

(0,0) 1 0.56 0.84
(1,0) 4 0.72 0.93
(0,1) 5 0.84 1.02
(2,0) 10 1.14 1.41
(0,2) 14 1.65 1.89
(1,1) 16 1.60 2.06
(3,0) 20 1.87 2.43
(0,3) 30 3.07 3.25
(2,1) 35 3.18 4.17
(4,0) 35 3.11 3.88
(1,2) 40 3.72 4.32
(2,2) 81 7.62 9.36
(6,0) 84 7.94 8.86
(4,1) 105 10.40 12.20
(4,2) 220 30.92 29.00
(6,1) 231 29.3 31.80
(4,3) 390 77.34 62.65
(6,2) 455 100.54 78.65
(4,4) 625 205.83 132.70
(6,3) 770 325.37 189.63
(5,4) 880 497.25 244.53
(6,4) 1190 1044.76 430.06
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12.4. Computing Global Sections

Figure 12.1.: Plotted data from Table 12.2.
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13. Sheaf Cohomology of the Decomposition

Non est ad astra mollis e terris via.

(Seneca)

This chapter is dedicated to the introduction of a useful tool which one can use to com-
pute the cohomology groups Hq(Γ,M) for a Γ-ZΓ-module M. Remember, ZΓ was defined
to be the smallest ring extension of Z such that all orders of elements in Γ are invertible
(see Definition 12.1.3). In this chapter we look at the problem from a more general point of
view.

It is the goal of this chapter to give an explicit way to compute the cohomology of a (orbi-)cell
decomposition with coefficients coming from constant sheaves (or orbilocal systems).

The starting point is a nice1 decomposition of a nice2 topological space X together with the
action of a discrete group G of automorphism on it. We want to emphasize that we do not
assume that the group G acts torsion free on the topological space X . This decomposition
can be for example the decomposition, which we constructed in Chapter 9. Let us assume in
this chapter that all occurring modules are defined over the integers, i.e. M ∈ Obj (ModZ),
and set

MG := M⊗Z ZG. (13.1)

We have then that MG ∈ Obj
(
ModG,ZG

)
. Denote byMG = M̃G the corresponding orbilo-

cal system (comp. Section 12.1). This assumption simplifies some things: For example, we
have by Theorem 12.2.3 that3

Hq(G,MG) = Hq(X/G,MG).

To compute cohomology groups as on the right side of the equation above we use a concept
called constructible sheaves which allows to describe the sheaf in terms of local data. This
construction is known in various contexts [AGV73, Bor84, KS90, Sch03, Dim04]. The rough
idea of constructible sheaves is to glue together locally defined sheaves which are locally
constant on some kind of partition to a sheaf on the global space. Good references for
the ideas leading to our approach are in particular [KS90, Dim04] and in some cases [Sch03],
which handles the topic in a more general framework than the two sources mentioned before.

The idea of constructible sheaves is due to Alexander Grothendieck, who introduced the
notion in the context of étale cohomology (see e.g. [AGV23; exposé IX by M. Artin]). Af-
ter their invention they became very popular because of their connection to holonomic D-
modules found by the Japanese mathematician Masaki Kashiwara [Kas75], and some years

1Nice means here in particular that the decomposition has to be locally finite, regular, compatible with the
group action and fine enough. We come back to the details of this if we introduce w-constructible sheaves.

2Nice means here that the space should be a simply connected manifold.
3We stated the theorem there only for the symplectic group. However the theorem is also valid in a more general

context.
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later because of their connection to intersection cohomology indicated by Mark Goresky and
Robert MacPherson [GM83]. These new developments linked the construction to lots of
other areas and provided a new powerful tool to describe and construct sheaves in a sim-
ple way. It turned out that the different kinds of constructible sheaves have many good
properties. The different notions differ in detail, but lead in most cases to the so called coho-
mological constructible sheaves [KS90; III.4]. Special cases of this are C-constructible sheaves
(see [KS90; VIII.5] and [Dim04; 4.1]), where the underlying space is complex analytic and
the decomposition is a decomposition into complex analytic subspaces, and S-constructible
sheaves [KS90; VIII.1] for a simplicial complex S. We adapt these two notions to our context.

In our case we have to keep in mind that first we have for W only a CW-complex and for
W/Γ even only an orbicell decomposition and not a simplicial complex. Furthermore, the
(orbi-)cells do not need to be complex analytic or Zariski open subspaces. Therefore, in
Section 13.1 we start with the definition of constructible sheaves we want to use, before we
extend the notion of constructible sheaves also to sheaves together with an additional action
of a discrete group in Section 13.2. There is a different construction using G-spaces and
group action in the context of constructible sheaves, which is due to Alexander Grothedieck
(see e.g. [Gro57a, Gro57b] or [Sch03; Chap. 3]). These sheaves are called equivariant con-
structible sheaves. However these constructions turned out to be not adaptable to our sit-
uation in detail. Therefore, we developed a new kind of sheaf which we will call an orbi-
constructible sheaf, which is exactly the kind of sheaf we need during our computations
(see e.g. Section 13.3). Since this tool seems to us quite useful, we introduce this tool in a
slightly more general context.

After the introduction of (w-)constructible and orbi-(w-)constructible sheaves we construct
some resolutions. This will be done in two steps:

Step 1 Construct an acyclic resolution for a constant sheaf on X and the associated orbilocal
system on X/G using two families of short exact sequences. See Section 13.3.1.

Step 2 Construct a further resolution of the one from Step 1 using long exact cohomology
sequences from (5.4). See Section 13.3.5.

This will reduce the computation of cohomology groups to the computation of cokernels of
maps between global sections of some sheaves on X or X/G respectively. Essentially it is
also possible to compute the cohomology using only the result of the first step, i.e. the acyclic
resolution. However it turns out that it is better to do it in the way indicated above because
the maps are easier to handle.
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13.1. Constructible Sheaves

The definition of constructible sheaves on orbifolds of the form X/G, where X is a smooth
Riemannian manifold and G is a finite discrete group of isometries of X , will be done in
two steps. In this section we first introduce constructible sheaves on a locally compact
topological space X which has a locally finite cell decomposition. In Section 13.2 we ex-
tend the construction to quotients with an orbicell decomposition. We will later show that
all sheaves occurring in the resolution mentioned already in the introduction of this chap-
ter (see Section 13.3), which we need to compute the cohomology groups, are of this form
(see Lemma 13.3.2).

13.1.1. Definition w-Constructible Sheaves

Let X be a locally compact topological space with a locally finite cell decomposition

X =
⊔
i∈I
Xi =

⊔
Xi∈P

Xi. (13.2)

For simplicity we assume that the closure of each cell Xi in P is a union of Xi with finitely
many lower dimensional cells in P . Furthermore, we will assume that for each point x ∈ X
there is a neighbourhood U 3 x, such that for all cells the intersection with U is either empty
or simply connected.4 In particular, if we skip the second condition, many of the proofs
become much more complicated or one has to weaken the results somehow. It is always
possible to replace the partition P by a suitable refinement for which this condition holds.
Note that these two assumptions are fulfilled for the decomposition ofW (comp. Section 9.1).
That is not true for the decomposition of quotients ofW, but this is not the condition we need
and therefore does not effect our construction at all.

Definition 13.1.1 (Constructible Sheaf):

a) A sheaf F of Z-modules on X is called weakly constructible with respect to the partition
P if the restriction F|Xi is a local system of Z-modules. We will also say that F is weakly
P-constructible, w-P-constructible or, if P is fixed, short w-constructible.

b) A sheaf F on X is called constructible with respect to P or P-constructible if F is
w-constructible and all stalks Fx are Z-modules of finite type.

The (weakly-)constructible sheaves on X form an abelian category, which is denoted by w-ConstX
resp. ConstX .

Later we will only consider sheaves whose stalks are Z-modules of finite rank over Z. Thus, in
all these cases w-constructible sheaves are also constructible since the decomposition is locally
finite. There are definitions of constructible sheaves in various contexts. These definitions
differ depending on which kind of space the sheaves are defined on and for which kind of
partition. For example, Grothendieck et al. considered in their famous Séminaire géométrie

4If this condition is not fulfilled, one has to add in the Definition 13.1.1 that the sheaf has to be weakly locally
constant, since this cannot be concluded only from that definition.
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algébrique (SGA) du Bois-Marie, which was held from 1963 to 1964, schemes with a locally
closed decomposition into affine subschemes on which the sheaf is locally constant (see e.g. in
SGA 4 [AGV23]), whereas others consider a locally compact topological space with a locally
finite decomposition into analytic pieces or simplicial sets (see e.g. [Dim04]) or a filtration of
that space (see e.g. [Bor84; p. 69] or [Sch03; p. 18]). In all cases the basic idea is the same.
One fixes the stalks of the sheaves on a certain family of subsets. Hence, in nice cases most of
the definitions coincide or are at least compatible in some sense because to be constructible
or not depends only up to some level on the partition P (comp. Lemma 13.1.4).

The easiest example for constructible sheaves are locally constant sheaves of abelian groups
(comp. Definition 12.1.4).

Example 13.1.2 (Locally Constant Sheaves). Let X =
⊔
i∈I Xi be the decomposition of X into

its connected components and Ai for i ∈ I a collection of Z-modules, i.e. abelian groups.
Then the associated locally constant sheaf or local system ÃX has stalks

ÃX x = Ai for x ∈ Xi

and is therefore w-constructible. If all the Ai are of finite type ÃX is constructible. In
particular, the constant sheaves on a manifold are w-constructible.

The big advantage of using constructible sheaves over local systems is that this property is
preserved under many operations of sheaves which is not valid for local systems.

Theorem 13.1.3 (Constructions):

a) Let F and F ′ be two (w-)constructible sheaves on X and f ∈ Hom
(
F ,F ′

)
a morphism of

sheaves, then F ⊕F ′, F ⊗F ′, ker (f), im (f), and coker (f) are (w-)constructible.

b) If 0 → F ′ → F → F ′′ → 0 is an exact sequence of sheaves and two of the non-zero sheaves
are (w-)constructible, then so is the third.

c) Let F be a (w-)P-constructible sheaf on X and f : X → Y a continuous map which acts
cellular, i.e. cells from the partition P of X are mapped onto cells from a partition P ′ of Y , then
f∗F is (w-)P ′-constructible. If X is a closed subset of Y and f an embedding one can skip the
cellularity condition.5

d) Let G be a (w-)P-constructible sheaf on Y and f : X → Y a continuous map then f∗G is
(w-)P ′-constructible for some partition P ′ of X . If f is an embedding and acts cellular, f∗G is
also (w-)P-constructible.

Proof. The proof of a) and b) is an easy application of the definition (comp. [Dim04; Ex. 4.1.3]
or references there). The first part of c) follows immediately from the definitions. The second
part can be found e.g. in [Dim04; Rem. 4.1.7. (ii)]. For a proof of the analogous statement
to d) see [KS90; p. 347] and [Dim04; Rem. 4.1.7. (i)].

5In general f∗F is not a w-constructible sheaf, even if we assume that f is an embedding of a locally closed
subspace. A counter example can be found in [Dim04; Rem. 4.1.7. (ii)]. The assumption of a cellular action
is one way to ensure that f∗F is w-constructible but there are other reasonable assumptions on f and/or the
spaces X and Y or their decompositions.
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Lemma 13.1.4: Assume we have a partition P for X and a refinement P ′ of this partition. If a sheaf
F is (w-)P-constructible then F is also (w-)P ′-constructible.

This is more or less clear since if we decompose a cell into a union of smaller cells we do
not change the stalks. Assume we have a constructible sheaf with respect to a partition
P . Then there will be a coarser partition P ′ on which the sheaf is already constructible,
except P is maximal. This property is quite useful since we can assume that the partition
is as good/regular as we want. If not, we can replace the partition always by a finer and
sometimes also by a coarser partition.

Lemma 13.1.5 (Filtration): Let F be a (w-)P-constructible sheaf on X . Then there is for each
x ∈ X an open neighbourhood U such that the restriction of F onto U has a finite filtration

0 = F0 ⊂ F1 ⊂ . . . ⊂ Fm = F |U

where all sheaves Fk are (w-)P|U -constructible. All quotients Fk+1/Fk are locally constant and of
the form i∗L with i : σ ∩ U ↪→ U the inclusion of the cell σ ∩ U into U and L is a local system on
σ ∩ U .

Proof. For details of the proof we refer to the proof of [Dim04; Cor.4.1.8], which is essen-
tially the same. There we first have to replace the statement in Lemma 13.1.5 by the anal-
ogous statement for finite partitions, which is possible since the cellular decomposition of
X is locally finite and thus the question is local. Further, we have to apply the results of
Theorem 13.1.3 and a very similar construction to the one of the acyclic resolution in
Section 13.3.1 to get the resolution in Lemma 13.1.5 and the claimed form of the sheaves
there.

The following theorem is the essential ingredient for our computations of constructible
sheaves later on.

Theorem 13.1.6: Let X be as above and F a w-constructible sheaf. Then for any σ ∈ P and any
point x0 ∈ σ there is an open neighbourhood U ⊂ X of x0 such that:

a) the natural morphism fU,x : F (U) → Fx induced by taking the germ of a section is an
isomorphism for all x ∈ σ ∩ U .

b) Hq(U,F |U ) = 0 for all q > 0.

Proof. The proof is essentially the same as in [Dim04; Theo. 4.1.9] and [Sch03; Prop. 8.1.4].

If we remember the definition of w-locally constant sheaves (see Definition 12.1.5), we find
immediately:

Corollary 13.1.7: Any w-constructible sheaf is w-locally constant.

Note: If we skip the additional assumption on the refinement of the decomposition from
page 152 we have – as mentioned earlier –to include in the actual definition of w-construct-
ibility of a sheaf (see Definition 13.1.1) that the sheaf has to be w-locally constant. Therefore,
the condition to be w-constructible is stronger then only to be w-locally constant.
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13.1.2. Construction of w-Constructible Sheaves

To give a method to construct w-constructible sheaves we first have to answer the following
question:

Problem: Given a point x ∈ X and a w-constructible sheaf F on X . How does a section
F (U) over a given open neighbourhood U 3 x and a stalk Fx of the the sheaf F in the point
x look like?

We need to fix some additional notation. Let σ ∈ P be a cell. Then we set

U(σ) :=
{
σ′ ∈ P : σ′ ∩ σ 6= ∅

}
. (13.3)

Since the cell decomposition of X is locally finite we know that U(σ) is a finite union of cells.
Further, U(σ) is the smallest open set in X which contains the cell σ and is a union of cells.
Let x0 ∈ X , then there is a unique cell σ0 such that x0 ∈ σ0. In this case we set

U(x0) = U(σ0). (13.4)

If σ0 is a top dimensional cell, i.e. σ0 is open in X , we find that

U(σ0) = σ0. (13.5)

We call U(σ) (or U(x0)) the (open) star set of σ (or x0) with respect to the cellular decompo-
sition P . Using the definitions it is not difficult to see that:

Fact 13.1.8: Let σ, τ ∈ P , then U(σ)∩ τ 6= ∅ if and only if τ ∩σ 6= ∅. In particular, if U(σ)∩ τ 6= ∅
then U(σ) ⊃ τ .

and also

Fact 13.1.9: Let x ∈ X =
⋃
Xi be any point. Assume U(x) =

⊔k
i=1Xi, then for all open sets

U ⊂ X with x ∈ U we have U ∩ Xi 6= ∅ for all i = 1, . . . , k.

The stalks of a w-constructible sheaf are by definition constant on cells, therefore the only
possibility to change the sections of such a sheaf over different open sets is that the set of
cells which hit the open sets changes. Thus, we get

Lemma 13.1.10: Let U ⊂ U ′ ⊂ X be two neighbourhoods of a point x ∈ X and F a w-constructible
sheaf with respect to a partition P , then

{σ ∈ P : σ ∩ U 6= ∅} =
{
σ ∈ P : σ ∩ U ′ 6= ∅

}
implies F (U) = F (U ′).

Fix a cell σ ∈ P for the moment. We know by Theorem 13.1.6 and Corollary 13.1.7 that any
w-constructible sheaf F is w-locally constant and that we can find for every point x ∈ σ an
open neighbourhood U ⊂ X of x and an isomorphism fU,x : F (U) → Fx. Assume Ux is
maximal under all open neighbourhoods of x with this property.

Corollary 13.1.11: We have U(x) := U(σ) ⊂ Ux and F (Ux) = F (U(x)).
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Proof. According to Fact 13.1.9 we know that every cell contained in U(x) has to intersect
every neighbourhood of x and thus also Ux. By definition, U(x) is the smallest open neigh-
bourhood of x which can be formed by gluing cells together. In particular, Ux ∩ U(x) is non
empty and open. We can now apply Lemma 13.1.10 twice. First, we take U = Ux ∩ U(x) and
U ′ = Ux. Then we get F (Ux ∩ U(x)) = F (Ux). Now we take U ′ = U(x), then we conclude,
since the cells which intersect U and U ′ are the same, that F (Ux ∩ U(x)) = F (U(x)). Thus,
F (Ux) = F (U(x)) and so U(x) ⊂ Ux, since we assumed that Ux is maximal.

Remark: In most non-trivial examples, i.e. sheaves whose stalks are not constant over unions
of different cells, we even have Ux = U(x).

We can directly conclude from the previous statements that

Corollary 13.1.12: The restriction map res
Ux
U = Id for any U ⊂ Ux with x ∈ U .

and further that

Corollary 13.1.13: Let σ ∈ P be a cell, F be a w-constructible sheaf with respect to P and U ⊂ U(σ)
an open set with U ∩ σ 6= ∅ then F (U) = F (U(σ)).

We now have a closer look to the maps fU,x.

Lemma 13.1.14: Let fU,x : F (U)→ Fx with x ∈ U ⊂ Ux be the isomorphism defined in Theorem
13.1.6. Let V ⊂ Ux be an other neighbourhood of x, then fU,x = fV,x = fUx,x.

Proof. We have the following commutative diagram
F (U)

F (Ux) Fx

F (V )

fUx,x

fU,x

fV,x

res
Ux
U

res
Ux
U

(13.6)

where due to Corollary 13.1.12 res
Ux
U = res

Ux
V = Id and the other maps are isomorphisms.

This shows the lemma.

From now on we write for short fx := fUx,x if there is no need to specify the set.

Let now y ∈ Ux, then there is also an open neighbourhood Uy ⊂ X of y and an isomorphism
fy : F (Uy) = F (Ux ∩ Uy) → Fy (see Corollary 13.1.12). There is no reason that Uy has to
have a non-trivial intersection with the cell which contains x. Then there is a natural map

Fx F (Ux) F (Uy ∩ Ux) = F (Uy) Fy

f
−1
x

∼

res
Ux
Ux∩Uy fy

∼

Φx,y

(13.7)

where res
Ux
Ux∩Uy is the restriction map which we have since F is a sheaf and which is defined

by res
Ux
Ux∩UyF (U) = F (U ∩ Ux ∩ Uy) for any open subset U ⊂ Ux ⊂ X . We know that this
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x

y

σ2

σ1σ0

U
V

U ∩ V
Φx,y

Figure 13.1.: Schematic picture of the local situation in a cell decomposition: There are three labelled cells, one
1-cell σ0, and two 2-cells σ1 and σ2. Further, we have two points x ∈ σ0 and y ∈ σ1 together with open
neighbourhoods y ∈ V ⊂ U 3 x. We have here U ⊂ Ux and V ⊂ Uy . The map Φx,y from the stalk at x to the
stalk at y is shown as blue arrow.

map exists if Ux ∩ Uy 6= ∅. It is not necessary that also U(x) ∩ U(y) 6= ∅ (comp. Fact 13.1.8).
We now collect some properties of these maps.

Remark: In most examples we even have Uy ⊂ Ux.

Theorem 13.1.15 (Properties): Let F be a w-constructible sheaf with respect to a partition P and
x, y, z ∈ X with maximal open sets Ux, Uy, Uz ⊂ X , then we have:

a) Φx,y = Id, if there is a σ ∈ P such that x, y ∈ σ.

b) Φx,y = Φx,z , if there is a σ ∈ P such that y, z ∈ σ, i.e. the family of maps Φx, is constant on
cells.

c) Φx,y = Φz,y, if there is a σ ∈ P such that x, z ∈ σ, i.e. the family of maps Φ ,y is constant on
cells.

d) Φy,z ◦ Φx,y = Φx,z .

Proof.
a) If x = y we have Ux = Uy and the restriction map for all sheaves is the identity map.

b) If y, z ∈ σ ∈ P , then we have Fy = Fz . Thus, the domain where the map is defined is
equal for Φx,y and Φx,z . The claim follows now from the fact that U(y) = U(z), together
with Corollary 13.1.11 and Corollary 13.1.12.

c) Follows in the same way as the previous claim.

d) We can assume that y, z ∈ Ux, and z ∈ Uy, because otherwise the maps are not defined.
Without loss of generality we can assume that Ux ⊃ Uy and Uy ⊃ Uz . Otherwise we
can replace Uy by U ′y := Ux ∩ Uy and Uz by U ′z := Uz ∩ U

′
y which does not change those

maps at all by Corollary 13.1.12 and Lemma 13.1.10. We get the following commutative
diagram
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Fx F (Ux)

F (Uy) Fy

Fz F (Uz)

f
−1
Ux,x

resUx
U
y

fUy ,y

Φx,y

Φx,z

Φy,z

fUz,z

f
−1
Uy,yres

Uy

Uz

res
Ux
Uz

which proves the claim.

Since the maps Φx,y are constant in both indices on cells we set

Φi,j := Φx,y (13.8)

if x ∈ Xi and y ∈ Xj . We call a pair (i, j) a valid pair if the map Φi,j is defined. Denote by
valP the set of all valid pairs with respect to P . Let moreover

valiP =
{
l : (k, l) ∈ valP with k = i

}
.

Theorem 13.1.16: Let X =
⊔
Xi∈P Xi be a decomposition as above and F a sheaf on X . Then F is

w-constructible if and only if the following three conditions hold:

a) There is a countable system of modules {FXi : Xi ∈ P} such that Fx = Fi for all x ∈ Xi,
where Fi := FXi ∈ Obj (ModZ).

b) For every point x ∈ Xi ⊂ X there is for all y ∈ Xj with Xi ⊂ X j a map
Φx,y ∈ HomZ

(
Fx,Fy

)
which satisfies point b) and c) of Theorem 13.1.15.

c) If x ∈ Xi, y ∈ Xj , and z ∈ Xk with Xi ⊂ Xj and Xj ⊂ Xk then Φy,z ◦ Φx,y = Φx,z.

A w-constructible sheaf is uniquely determined by a collection of modules satisfying the points a)–c).

We have, as already mentioned in context of the construction of the cell decomposition for
S2/Γ in Chapter 7, that a cell decomposition induces a partial ordering on the set of cells.
This ordering is given for a pair of cells by checking whether one cell lies in the closure of
the other. These inclusion relations of our cell decomposition together with a w-constructible
sheaf define via Theorem 13.1.15 in an obvious way a directed set, which is encoded in
the set of valid pairs. We call such a directed set {(Fi, {Φi,j}j∈valiP )i∈I} associated to a
w-constructible sheaf a w-constructible system with respect to the partition P and denote
it by FP . By Lemma 13.1.4 one can replace P by a suitable refinement P ′ without changing
the constructibility property of the sheaf. Therefore, we identify all w-constructible systems
which can be obtained by a refinement of an underlying partition. If ’the’ partition is fixed
we omit the index and use simply F. We can form the direct limit, which is by definition
given by

lim−→
i

Fi =

{
(mi)Xi∈P ∈

∏
Xi∈P

Fi : Φi,j(mi) = mj ∀(i, j) ∈ valP

}
. (13.9)

By construction we have that lim−→
i

Fi is a submodule of
∏
Xi∈P Fi with an equivalence relation
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induced by the maps Φi,j for (i, j) ∈ valP (comp. (13.9)), i.e. we get

lim−→
i

Fi =
∏
Xi∈P

Fi

/
∼
⊆
∏
Xi∈P

Fi, (13.10)

where mi ∼mj for mi ∈ Fi and mj ∈ Fj if there is a k ∈ I such that (i, k), (j, k) ∈ valP and
Φi,k(mi) = Φj,k(mj).

Denote by Conni(U) the set of connected components of the intersection U ∩ Xi of a cell Xi
with an open set U ⊂ X .

Lemma 13.1.17: A w-constructible system FP defines a w-constructible sheaf F on X by defining
its sections to be given by

F (U)=

{(
(mi)σ∈Conni(U)

)
Xi∈P

∈
∏
Xi∈P

∏
Conni(U)

Fi : Φi,j(mi) = mj ∀(i, j) ∈ valP

}
(∗)

for any open set U ⊂ X together with the obvious restriction maps.

Note: For a general U the connected components of the intersection of U with a cell can
and will look dreadful. Thus, in the general case the number of elements in Conni(U) need
not to be finite or even countable. This is a general phenomenon in the theory of sheaves.
Therefore, most properties use stalks rather than sections of sheaves, which behave much
better in most cases. We use this construction only in two cases: In case of global sections
(see Corollary 13.1.18), so that thus there is only one connected component for each cell, or
in case of sections of arbitrary small neighbourhoods of points, where there are only finitely
many connected components since the decomposition is locally finite.

Proof. We have to verify two things: First, that (∗) defines indeed a sheaf. Second, that this
sheaf restricted to each cell Xi is locally constant. The first is obvious by construction. By (∗)
we have

F |Xi (U) = F (U ∩ Xi) =
∏

Conni(U)

Fi (13.11)

for any open set U ⊂ X , where the modules Fi for different i are connected via the maps Φi,j

under each other. Hence, F restricted to a cell Xi is locally constant.

If all Fi are of finite rank, the sheaf F is even a constructible sheaf with respect to P . In fact,
also a suitable subset of finite rank modules forces, via the Φx,y, the other modules to be also
of finite rank.

Proof of Theorem 13.1.16.

=⇒ If the sheaf F is w-constructible, we know that all stalks over points in the same cell Xi
are constant by Corollary 13.1.7. Furthermore, we can choose the map Φx,y as the map
defined in (13.7). Then this direction results from Theorem 13.1.15.

⇐= Follows from Lemma 13.1.17.

To show the uniqueness statement it is enough to mention that two sheaves whose stalks are
equal in every point have to be equal, which is here the case.
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From Lemma 13.1.17 and Theorem 13.1.16 we get

Corollary 13.1.18 (Global sections): Let F be a w-constructible sheaf on X with respect to some
partition P on X defined by a w-constructible system FP as in Lemma 13.1.17. Then the global
sections F (X ) are given by

F (X ) = lim−→
i

Fi.

13.2. Orbi-Constructible Sheaves

We introduced in the previous section the notion of constructible sheaves with respect to a
given partition P and studied some of their properties. Now we include the action of a group
into this framework and extend the notion of constructible sheaves to orbifolds. There has
been – as already mentioned in the introduction – no notion like this before except perhaps
the so called equivariant constructible sheaves, which differs in many details, such that we
will give here a description of this useful tool which is a little bit more detailed than necessary
for our purpose.

Let X be a smooth Riemannian manifold and P , as before, a locally finite decomposition
of X . Let G be a discrete group of automorphisms of X acting (from the right) cellularly
on X , i.e. G maps cells onto cells in the decomposition, with only finitely many orbits. The
restriction on the number of orbits is in many cases not necessary for the general construction
but simplifies a lot of things.6 Furthermore, it is always fulfilled for decompositions in the
sense of Theorem 9.2.11. The quotient X/G is in general an orbifold (comp. Section 5.2).

Let PG be a system of representatives of the cells in P under the action of G. Let IG ⊂ I be
the index set of those cells. Since we have only finitely many orbits, PG is finite. Thus, we
have

X =
⊔
i∈I
Xi =

⊔
Xi∈P

Xi =
⊔
i∈IG

⋃
g∈G
Xi · g =

⊔
Xi∈PG

⋃
g∈G
Xi · g︸ ︷︷ ︸

=Xi·G

. (13.12)

We do not assume that the action is free, therefore it might happen that an element g ∈ G
maps some cells onto themselves but not necessarily point-wise. Hence, we get a decompo-
sition

X =
⊔
i∈IG

⊔
g∈Gi\G

Xi · g (13.13)

where Gi is the stabilizer of Xi in G. To extend the notion of w-constructible sheaves to a
space X with a group action we have to ensure that the group action on the level of cells
and the group action on level of the modules, i.e. the stalks of the sheaves, are compati-
ble. Therefore, we have to introduce some additional compatibility maps coming from the
group action. The basic idea is that we do not longer consider w-constructible systems of
arbitrary Z-modules, but a system which associates to each cell Xi a Gi-ZG-module, such

6In the classical definitions of constructible sheaves by Grothedieck one needs some kind of finiteness condition.
Mostly one assumes that the decomposition is finite.
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that we know how Gi acts on the module Fi. A priori, there is no need for the restriction to
ZG-modules. However, this simplifies some proofs later on and we will only apply the results
to such modules. We make this more precise in the following.

Let Xi,Xj ∈ P . If Xi and Xj lie in the same orbit under G then there is an element gi,j ∈ G
such that Xi · gi,j = Xj . Since the action is cellular, each element g ∈ G can be realized as a
unique permutation on the set of indices and we will write gi,j(i) = j. On the contrary, the
element gi,j itself is not unique. It is only unique up to action of Gj from the right and Gi

from the left. Now we will focus on the associated modules. Let

FP =
{(
Fi, (Φi,j)j∈valiP

)
i∈I

}
(13.14)

be a w-constructible system where Fi ∈ Obj
(
ModGi,ZG

)
. To ensure the compatibility with

the action of G it is essential that the Fi ∈ Obj
(
ModGi,Z

)
. The additional condition on the

underlying ring to be ZG is useful to avoid nasty problems while taking invariants under
stabilizers. It is possible, as in case of the resolution of sheaves (comp. Section 13.3), to
consider arbitrary Z-modules to the cost that at some places one has to replace objects by
higher derived images of them, which we want to avoid for the moment.

For (i, j) =
(
i,gi,j(i)

)
is a trivial fact that

Gi = gi,j ·Gj · g
−1
i,j . (13.15)

Therefore, we can identify the category ModGi
with ModGj

via the isomorphism coming
from (13.15). In the following, we consider any Gj-module as a Gi-module via (13.15) if
necessary. To construct a sheaf on X which is compatible with the action of G, we need
to compare the modules Fi and Fj in some way, because they are associated to the same
orbit of cells. For each such pair (i, j) = (i,g(i)) for some g ∈ G we define an isomorphism
Ψi,g ∈ HomGi,ZG

(
Fi,Fg(i)

)
, which transfers the action on the level of cells to the level of

modules in an appropriate way. This means that:

a) For all g ∈ Gi ⊆ G, g1 ∈ G, and m ∈ Fi we have

Ψi,g1
(m · g) = Ψi,g1

(m) · g−1
1 · g · g1,

i.e. Ψi,g1
is compatible with (13.15) and realizes the ModGi

structure on Fj .

b) For all g1,g2 ∈ G we have

Fi

Fg1(i) Fg2(g1(i)).
Ψg1(i),g2

Ψi,g1

Ψi,g1·g2

c) If g ∈ Gi, then Ψi,g(m) = m · g. for all m ∈ Fi.

By condition b) we immediately get

Ψ−1
i,g = Ψ

g(i),g
−1 . (13.16)
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A collection of such maps transfers the group action to the level of modules. We use these
maps to attach modules to orbicells in X/G. Therefore, we want to have a closer look to
the collection of modules together with their associated family of isomorphisms. For this we
need to make some choices. We fix a set of representatives for the cosets Gi\G for each i ∈ I
and a set of representatives

PG =
{
Xi : i ∈ IG

}
of orbits of cells together with a family of isomorphisms Ψi,g for g ∈ Gi\G. Moreover, we

can assume without loss of generality that for all i ∈ IG

Fg(j) = Ψi,g(Fi). (13.17)

The global sections of the sheaf associated to a w-constructible system FP are a submodule of∏
i∈I Fi (comp. 13.10). We get, using (13.13) and the definition of the induced representation,∏

i∈I
Fi =

⊕
i∈IG

∏
g∈Gi\G

Ψi,g(Fi)︸ ︷︷ ︸
=:Ind

G
Gi

(Fi)

=
⊕
i∈IG

IndG
Gi

(Fi) . (13.18)

This representation depends only on the choice of the collection of maps and an order for
the representatives in IG and Gi\G. If we replace i ∈ IG by an other element g(i) for some
g ∈ G, the corresponding map

Ψg(i),g
′ = Ψi,g·g′ ◦Ψ−1

i,g = Ψi,g·g′ ◦Ψ
g(i),g

−1 (13.19)

for all g′ ∈ G. Analogously, each change of a representative g ∈ Gi\G can be realized by a
relation of the form (13.17).

By this construction the ZG-module
∏
i∈I Fi gets the structure of a G-ZG-module. We have

for all i ∈ I a decomposition
G = Gi ×Gi\G. (13.20)

Note that Gi\G is in general only a coset and only in some special cases a group, because
not all Gi are normal in G. This decomposition can be used together with (13.18) to compute
the invariants under G:(∏

i∈I
Fi

)G

=

⊕
i∈IG

IndG
Gi

(Fi)

G

=
⊕
i∈IG

(
IndG

Gi
(Fi)

)G
=
⊕
i∈IG

(
IndG

Gi
(Fi)

Gi\G
)Gi

=
∏
i∈IG

F
Gi
i

(13.21)

As before, also this identification depends on the choice of the lifts of orbicells in X/G to X
or equivalently on the choice of an index set IG. Analogue to the considerations in the con-
text of global sections of the sheaf associated to a w-constructible system, the global sections
of the associated sheaf in the quotient is contained in G-invariants of the module in that case
(see Corollary 13.1.18 together with (13.10) and (13.18) for the sheaf on X and for
Theorem 13.2.2 and Lemma 13.2.6 for the sheaf on X/G).
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To obtain the information on the sections themselves, it remains to include into our consider-
ations the compatibility conditions given by the Φi,j from (13.7), which ensure that the local
data glue to a sheaf on X (see Lemma 13.1.17).

For this we need to make some additional assumptions. Let Fi ∈ Obj
(
ModGi,ZG

)
and

Fj ∈ Obj
(
ModGj ,ZG

)
with (i, j) ∈ valP . Note that

ModGi,ZG
⊂ModGi∩Gj ,ZG

⊃ModGj ,ZG
.

Moreover, we need, as before, homomorphisms

Φi,j : Fi → Fj ,

which have to be, in addition to the previously made assumptions (see Theorem 13.1.15),
compatible with the group action. This means two things: First, the homomorphisms Φi,j

have to respect the action of elements which belong to both associated stabilizers,
i.e. Φi,j ∈ HomGi∩Gj

(
Fi,Fj

)
, and secondly that the diagram

Fi Fj

Fg(i) Fg
′
(j).

Φi,j

Φg(i),g
′
(j)

Ψi,g Ψj,g
′ (13.22)

commutes for all g,g′ ∈ G and all (i, j) ∈ valP .

Definition 13.2.1: Let FP be a w-constructible system on X such that:

• Fi ∈ Obj
(
ModGi,ZG

)
for all i ∈ I and

• Φi,j ∈ HomGi∩Gj

(
Fi,Fj

)
.

If there is a family of Ψi,g ∈ HomGi,ZG

(
Fi,Fg(i)

)
for i ∈ IG and g ∈ G which satisfy conditions a)

– c) on page 161 and are compatible with the Φi,j according to (13.22), then we call the w-constructible
system FP a G-w-constructible system with respect to G and P . We denote such a system by FP,G,
where, as before, we omit in some cases the partition P . If FP is a constructible system we call FP,G a
G-constructible system. Again we identify G-(w-)constructible systems which can be obtained by
a refinement of the underlying partition.

As before (comp. Theorem 13.1.16), we can use G-w-constructible systems to describe certain
sheaves. First, they define a sheaf on X and secondly they define also a sheaf on the quotient
X/G.
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Theorem 13.2.2: Let FP,G be a G-w-constructible system on X =
⋃
i∈I Xi as above, then:

a) There is aw-constructible sheaf F onX associated to FP,G, which is defined by (∗) in Lemma 13.1.17.
This is a sheaf of G-ZG-modules.

b) The global sections of F are given by

F (X ) = lim−→
i

Fi =
⊕
i∈IG

IndG
Gi

(Fi)
/
∼
⊆
⊕
i∈IG

IndG
Gi

(Fi) ,

where the equivalence relation ∼ is the same as in (13.10).

Proof.

a) The first part is known from Lemma 13.1.17. The additional assumptions are no restric-
tion. The second part follows from the considerations on page 162.

b) This a direct consequence of (13.10), (13.18) and Corollary 13.1.18.

Let π : X → X/G be the canonical projection of the cell complex X onto its quotient X/G,
which sends each cell Xi ⊂ X onto the orbicell Xi/Gi ⊂ X/G.

Definition 13.2.3: Let F be the sheaf given by a G-w-constructible system FP,G as in Theo-
rem 13.2.2. Then the sheaf of abelian groups

F̂ =
(
π∗ (F )

)G ∈ Obj
(
AbX/G

)
on X/G is called an orbi-w-constructible sheaf on X/G with respect to G and P . If F is a
constructible sheaf we call F̂ an orbi-constructible sheaf with respect to G and P . If G and P
are known we may omit them in the notation.

Example 13.2.4. Orbilocal sheaves (of finite rank) are orbi-constructible. The G-w-construct-
ible system FP,G consists of a collection of modules, where all modules are equal to a given
representation module Mi as long as they belong to the same connected component Yi of X ,
thus the compatibility maps Φk,l ≡ Id for al valid pairs (k, l) ∈ valP . The maps Ψk,g are not
uniquely determined. The easiest cases is that Ψk,g = ρ(g) where ρ is the representation of
G associated to the G-module Mi if the cell Xk ⊆ Yi. The restriction of the representation
ρ onto a stabilizer is in particular a representation for the stabilizer. There are infinitely
many choices for collections of Ψi,g, since we can concatenate all maps in the family of
maps (Ψi,g)g∈G by one arbitrary isomorphism on Fi. However all these sheaves for different
actions are isomorphic.

Note: As before, the definition of an orbi-w-constructible sheaf depends only up to some
level on the choice of the partition P because we can replace P by a refinement P ′ (comp.
Lemma 13.1.4), which defines an equivalent G-w-constructible system.
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x

y

y · γ

σ2

σ1σ0

Φx,y

Φx,y·γ

Ψy,γ

Figure 13.2.: Schematic picture of the local situation in a cell decomposition.

From the viewpoint of an abstract sheaf most choices during the construction of F̂ do not
change the sheaf F̂ itself, but they change the representation of the sheaf. From a computa-
tional viewpoint there are several ways to define the very same sheaf that differ in:

• The choice of FP,G in a class of refinements of the defining partition P ,

• the order of elements in the collection of cells, i.e. the index set of the collection,

• the choice of the collection of modules defining FP,G, in particular of the bases of the
modules,

• the representation of the families of maps (Φi,j) and (Ψi,γ), which can easily be changed
by concatenation with some isomorphisms, and

• the choice of representatives in an orbit under the group G or equivalently of lifts of
(orbi-)cells from X/G to X .

In particular, the last point is somehow tricky in practice, since in more complicated cell
decompositions for some reasons one need to choose more than one representative per orbit
under G, because G acts not transitive on the cells and thus we can have several orbits
under the stabilizer Gi of some cell Xi (comp. Sections 10.2, 10.7.3, and 13.3). Beside the
above mentioned choices which induce lots of isomorphisms of the way how to write down
the underlying G-w-constructible system, the sheaf is – as one can easily check from the
definition – given uniquely by a system FP,G. Thus, we have:

Lemma 13.2.5 (Uniqueness): Any orbi-w-constructible sheaf F̂ (with respect to G and P) is (up
to isomorphism) uniquely determined by its underlying G-w-constructible system FP,G.

In the following lemma we collect some useful properties of orbi-constructible sheaves.

Lemma 13.2.6: Let F̂ be an orbi-w-constructible sheaf with respect to a G-w-constructible system
FP,G.
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a) Let U ⊂ X/G, then the sections of F̂ are given by

F̂ (U) ∼=

{(
(mi)σ∈Conni

(
π
−1

(U)
))

i∈IG
∈
⊕
i∈IG

∏
Conni(π

−1
(U))

Fi :

Φi,j(mi) = mj ∀(i, j) ∈ valP

}G

, (13.23)

where the isomorphism depends only on the choice of IG ⊂ I, i.e. the set of lifts, and can be
expressed in terms of the maps Ψi,γ . Moreover, the global sections can be stated in the following
form:

F̂ (X/G) = H0
(
X/G, F̂

)
∼= lim−→

i

F
Gi
i =

⊕
i∈IG

F
Gi
i

/
∼
⊆
⊕
i∈IG

F
Gi
i ,

where the isomorphism is, as before, and ∼ the equivalence relation defined in (13.10).

b) Let x ∈ X/G with x = π(x̃), where x̃ ∈ Xi ⊂ X , then

F̂x
∼= FGx̃

i ,

where Gx̃ is the stabilizer of the point x̃ in G. The isomorphism depends on the choice of a point
x̃ ∈ π−1(x).

c) Any orbi-w-constructible sheaf is w-locally constant.

Proof.

a) The first part follows from Definition 13.2.3 of F̂ together with Lemma 13.1.17. Anal-
ogously, the second part can be obtained from the Definition of F̂ and (13.21) with
(13.10) and Corollary 13.1.18.

b) Apply Definition 13.2.3 together with Theorem 13.1.16 and Lemma 13.1.17.

c) For each point x ∈ X/G there is a small neighbourhood Ux ⊂ X/G such that for
a chosen lift x̃ ∈ π−1(x) there is one connected component of Ũx̃ ⊂ π−1(Ux) such
that the stabilizer G

Ũx̃
of the set Ũx̃ is a subgroup of the stabilizer Gx̃ of the lift x̃, i.e.

G
Ũx̃
⊆ Gx̃. We skip the proof of that, since it is lengthy and not very illuminating. Now

the claim follows essentially from Definition 13.2.3 by point b) of this lemma together
with Corollary 13.1.7.

Since G acts cellular as automorphism on X , we know that the relative order (one cell is in
the boundary of an other one) is preserved by the action of G on X . Therefore, we can, if
necessary, extend the map Φi,j for (i, j) ∈ valP to a map on the stalks in the quotient in a
natural way. We skip the details at this place.

To simplify some proofs later on we transfer the results of Theorem 13.1.3 from w-constructible
sheaves to orbi-w-constructible sheaves with respect to the group G.
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Theorem 13.2.7 (Constructions):

a) Let F and F ′ be two orbi-(w-)constructible sheaves on X/G and f ∈ Hom
(
F ,F ′

)
a mor-

phism of sheaves, then F⊕F ′, F⊗F ′, ker (f), im f , and coker f are orbi-(w-)constructible.

b) If 0 → F ′ → F → F ′′ → 0 is an exact sequence of sheaves and two of the non-zero sheaves
are orbi-(w-)constructible, then so is the third.

c) Let F be an orbi-(w-)P-constructible sheaf on X and f : X → Y a continuous map which acts
cellular, i.e. cells are mapped onto cells, then f∗F is orbi-(w-)P ′-constructible for some partition
P ′ of Y . If X is a closed subset of Y and f an embedding, one can skip the cellularity condition.

d) Let G be an orbi-(w-)P-constructible sheaf on Y and f : X → Y a continuous map then f∗G is
orbi-(w-)P ′-constructible for some partition P ′ of X . If f is injective and acts cellular, f∗G is
also orbi-(w-)P-constructible.

Proof. The proof is essentially an application of Theorem 13.1.3 (or its proof) to Defini-
tion 13.2.3 together with the fact that the considered modules are ZΓ modules and thus
taking invariants is exact.

13.3. Resolutions for (Orbi-)local Systems

13.3.1. The First Resolution

Let X =
⊔
i∈I Xi as in Section 13.2 be a cell decomposition of a nice Riemannian manifold

of (real) dimension d on which G acts cellular with finitely many orbits. Then X/G is an
orbifold with an induced orbicell decomposition

X/G =
⊔
i∈IG

Xi/Gi, (13.24)

where Gi ⊂ G is the stabilizer of the cell Xi and I ⊂ IG. We defined in (5.9) the set of
k-(orbi-)cells Ck(X ). By definition of the k-skeleton in (5.10) we have

Ck(X ) = Sk(X )− Sk−1(X ) (13.25)

and analogously

Ck(X/G) = Sk(X/G)− Sk−1(X/G). (13.26)

Let

ĩk : Ck(X ) ↪→ X (13.27)

be the natural inclusion of (relative open) k-cells into the full cell complex X and

ik : Ck(X/G) ↪→ X/G (13.28)
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be the inclusion of the (relative open) k-orbicells into the quotient X/G induced by ĩk under
the canonical projection.

We assume in the following that all modules M are defined over Z and of finite rank. For
simplicity we formulate all results, as before, only for modules

MG := M⊗Z ZG. (13.29)

In some cases the results stay also true over the integers. We get, as a direct consequence of
the definition of an orbilocal system associated to a module MG in Section 12.1:

Proposition 13.3.1: Any orbilocal systemMG = M̃G associated to a G-moduleM can be obtained
from the corresponding constant sheaf MG by

MG =
(
π∗(MG)

)G
.

Recall that this is exactly the construction we used in Definition 13.2.3 to obtain an orbi-
constructructible sheaf with respect to G. Let us now construct the building blocks of our
resolution. We set

S̃d := MG Sd :=MG := M̃G (13.30)

and

Ãd := ĩd∗̃id
∗S̃d Ad := id∗id

∗Sd. (13.31)

Then there are two maps between sheaves:

j̃d : S̃d → Ãd jd : Sd → Ad. (13.32)

The maps j̃d and jd are injective (see Corollary 13.3.5). For the moment we postpone the
proof of this. Since the maps j̃d and jd are injective we get the two exact sequences (horizontal
sequences)

0 S̃d Ãd S̃d−1 0

0 Sd Ad Sd−1 0,

j̃d p̃d

jd pd

(13.33)

where the maps from top to bottom are given by the functor(
π∗( )

)G
: SheavesX → SheavesX/G

F 7→ F̂ = (π∗F )G,
(13.34)

which is in general only left exact on the category of sheaves. But under our additional
assumptions this functor will also be exact on the category of (w-)constructible sheaves. The
sheaves S̃d−1 and Sd−1 are defined to be the quotient sheaves

S̃d−1 := Ãd
/
j̃d

(
S̃d
)

Sd−1 := Ad/jd
(
Sd
)
. (13.35)
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It is not difficult to check that the diagram (13.33) commutes, since the maps are cellular and
taking invariants under stabilizers is exact in the category of ZG-modules (comp. [Gro57b;
Chapitre V.]).

One finds that the sheaves S̃d−1 and Sd−1 have only support in the (d− 1)-skeleton Sd−1(X )
and Sd−1(X/G) respectively (see Lemma 13.3.3). Under the assumption that we have again
injective maps j̃k′ for all k ≤ k′ ≤ d for some k with 1 ≤ k ≥ d, we can now proceed to define
successively further (exact) sequences

0 S̃k′ ĩk′ ∗̃ik′
∗S̃k′ S̃k′−1 0

0 Sk′ ik′∗ik
∗Sk′ Sk′−1 0,

j̃
k
′ p̃

k
′

j
k
′ p

k
′

(13.36)

for d ≥ k′ ≥ k. This process terminates after d + 1 steps if the iteratively defined quotient
sheaves

S̃k−1 := Ãk/j̃k
(
S̃k
)

Sk−1 := Ak/jk
(
Sk
)

(13.37)

have only support in decreasing dimensions, i.e. we have in each step that

dim
(
supp S̃k

)
< dim

(
supp S̃k+1

)
, dim

(
suppSk

)
< dim

(
suppSk+1

)
(13.38)

holds. We show that this is true if all j̃k′ are injective for k ≤ k′ ≤ d (see Lemma 13.3.3). Then
Ãk and Ak can be defined by (comp. Equation (13.31))

Ãk := ĩk ∗̃ik
∗S̃k Ak := ik∗ik

∗Sk. (13.39)

Note that for k < 0 these sheaves are equal to the zero-sheaf. As in the case of (13.33), one
finds that the diagram (13.36) commutes. Therefore, we get the following identities(

π∗Ãk
)G

= Ak
(
π∗S̃k

)G
= Sk. (13.40)

There is one special case in this construction, namely the step 0. It is easy to see that in this
last non-trivial case the diagram (13.36) is somehow simpler, because the 0-skeleton coincides
with the set of 0-cells, thus we have:

0

||

0 S̃0 ĩ0∗̃i0
∗S̃0 S̃−1 0

0 S0 i0∗i0
∗S0 S−1 0

||

0.

j̃0 p̃0

j0 p0

(13.41)
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In this case we can easily see that the maps j̃0 and j0 are injective (see (13.41)). In fact, they
are isomorphisms. We call the minimal k with k ≤ d such that for all k′ with k ≤ k′ ≤ d the
map j̃k′ is injective the level of injectivity (with respect to P). We denote the this minimum
by kinj. By the above observation we find that if kinj < 1 then kinj = −∞, since for zero we
have always an isomorphism and for indices below zero the spaces are even zero. Thus, the
only map is the zero map, which is in these cases an isomorphism. We conjecture that, for
the example we are interested in, we always have that kinj = −∞ (see Conjecture 1 on page
195).

In Section 13.1.2 we introduced a so called star set U(σ) associated to a cell σ. Now we set

Ukσ = Ck(X ) ∩ U(σ) (13.42)

for a cell σ ⊂ X and denote by Connkσ the set of connected components of Ukσ . For σ = Xi we
use Uki := UkXi and Connki := ConnkXi instead. Note that Connkσ is a set which contains only
k-cells. Now we can state a collection of fundamental lemmata, which allow us to deduce
essentially two different ways to compute the cohomology groups we are looking for.

Lemma 13.3.2 ((Orbi-)Constructibility): Assume the sheaves S̃` are w-constructible7 for all ` with
kinj ≤ k < ` ≤ d, i.e. j̃k′ is injective for all k′ with k ≤ k′ ≤ d, then:

a) The S̃k and all sheaves Ãk′ , and Ãk−1 are w-constructible. If in addition M is a Z-module of
finite rank, then these sheaves are even constructible.

b) The sheaves Sk′ , Ak′ , and Ak−1 are orbi-w-constructible. IfM is a Z-module of finite rank, then
these sheaves are even orbi-constructible.

Note: By (13.30) we have that S̃d = MG, which is a constant sheaf, which is w-constructible
by Example 13.1.2. Therefore, there is a least one non-trivial case for this lemma.

Proof.

a) It is sufficient to prove the first part, because the second part then follows immediately
from the definition of a constructible sheaf. By assumption, we know that j̃k+1 is
injective. Hence, we get that the sequence

0 S̃k+1 ĩk+1∗̃ik+1
∗S̃k+1 S̃k 0

j̃k+1 p̃k+1

is exact and the sheaf S̃k is given by (13.37). This shows in particular that the sheaves
S̃m and Ãm are well defined for k ≤ m ≤ d. We have, by Theorem 13.1.3 c) and d),
that Ãk+1 := ĩk+1∗̃ik+1

∗S̃k+1 has to be w-constructible, since we know that S̃k+1 is w-
constructible. According to Theorem 13.1.3 b), we get that if all non-zero sheaves but
one in the short exact sequence above are w-constructible that also the third sheaf has
to be w-constructible. This proves the first part.

b) This follows analogously to the previous case by Theorem 13.2.7 together with the fact
that the functor F 7→ F̂ is exact since all modules are defined over ZG (comp. the
discussion of (13.34)).

7This implicitly means that the sheaves Ãm for m with k + 1 < m ≤ d are also w-constructible and that all
sheaves with larger indices are well defined.
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Lemma 13.3.3 (Support): The sheaf S̃k has – if it is defined – support in the k-skeleton Sk(X ) of X
and the sheaf Sk has support in the k-skeleton Sk(X/G) of X/G.

Proof. By equation (13.30) the sheaf S̃d is defined to be equal to MG and therefore has its
support in the d-skeleton Sd(X ), i.e. the full space. Suppose supp

(
S̃k′
)
⊆ Sk′(X ) for all

k′ ≥ k. Then we can restrict the sheaf S̃k to Sk(X ), which is an isomorphism. We know by
sheaf theory that ĩk′

∗ is an exact functor for all k′. Therefore, we get from (13.36) that the
sequence

0 ĩk
∗
(
S̃k
)

ĩk
∗̃ik ∗̃ik

∗
(
S̃k
)

ĩk
∗
(
S̃k−1

)
0

ĩk
∗
j̃k ĩk

∗
p̃k

is also exact. Since ĩk
∗̃ik∗ = Id and ĩk

∗j̃k is injective, because j̃k is injective by induction
hypothesis, we have that ĩk

∗j̃k is an isomorphism. Hence, by exactness of this short sequence
of sheaves we know that ĩk

∗S̃k−1 = 0 and thus the sheaf S̃k−1 has only support in the com-
plement of im (̃ik) in the k-skeleton Sk(X ) of X . In other words, we have

supp
(
S̃k−1

)
⊆ Sk

(
X
)
− im

(̃
ik
)

= Sk(X )−Ck(X ) = Sk−1(X ).

The claim for the sheaf Sk−1 follows completely analogously.

Next we have a closer look to stalks and the maps between them, which define, according to
Lemma 13.1.17 and 13.2.5, the structure of a constructible sheave. We start with the stalks.

Lemma 13.3.4 (Stalks): Let kinj ≤ k ≤ d and di = dimRXi. Let further x̃ ∈ Xi be any point in X
and

(
x̃σ
)
σ∈P be a collection of arbitrarily chosen points x̃σ ∈ X such that x̃σ ∈ σ.

Then we have that the sheaves S̃k and Ãk are w-constructible and the stalks of S̃k and Ãk in x are
given by

(
Ãk
)
x̃

=
⊕

σ∈Conn
k
i

(
S̃k
)
x̃σ

(
S̃k
)
x̃

=


MG for k = d

0 0 ≤ k < di ≤ d
S̃(i, k, x̃) 0 ≤ di ≤ k < d

0 k < 0,

where

S̃(i, k, x̃) =
(
Ãk+1

)
x̃

/(
j̃k+1

(
S̃k+1

))
x̃
.

The induced map on the stalks is given by

(
j̃k
)
x̃

=
⊕

σ∈Conn
k
i

Φk
x̃,x̃σ

,

where the Φk
, are the compatibility maps associated to the w-constructible sheaf S̃k defined in (13.7),

and
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j̃k
(
S̃k
)
x̃

=

m = (mσ) ∈
⊕

σ∈Conn
k
i

(
S̃k
)
x̃σ

: ∃m ∈
(
S̃k
)
x̃

: ∀σ ∈ Connki : mσ = Φk
x̃,x̃σ

(m)

 .

Proof. The first part follows immediately from Lemma 13.3.2. For k = d we have(
S̃d
)
x̃

= MG

since S̃d is the constant sheaf with values in MG. Let us now assume we know
(
S̃k′
)
x̃

for all

k < k′ ≤ d and for each point x̃ ∈ Xi. Then we have by Corollaries 13.1.11 and 13.1.13(
Ãk
)
x̃

= lim−→
U3x̃
Ãk(U) = Ãk

(
U(x̃)

)
= Ãk

(
U(Xi)

)
= ĩk ∗̃ik

∗S̃k
(
U(Xi)

)
= ĩk

∗S̃k
(̃
ik
−1(U(Xi)

))
= ĩk

∗S̃k
( ⊔
σ∈Conn

k
i

σ
)
.

Using the Mayer-Vietoris sequence (see e.g. [Ive86; 5.10]) for the space ĩk
−1(U(Xi)

)
=
⊔
σ∈Conn

k
i
σ

and the sheaf ĩk
∗S̃k on that space leads to(

Ãk
)
x̃

=
⊕

σ∈Conn
k
i

ĩk
∗S̃k(σ).

We can assume, by induction hypothesis, that for k′ > k the sheaf S̃k′ and therefore by Theo-
rem 13.1.3 d) also ĩk′

∗S̃k′ is (w-)constructible. We know by the definition of a (w-)constructible
sheaf (see Definition 13.1.1) that then(̃

ik
∗S̃k
)

(σ) =
(̃
ik
∗S̃k
)
x̃σ

=
(
S̃k
)
x̃σ
,

where this equality does not depend of the choice of the points x̃σ. Hence, we get(
Ãk
)
x̃

=
⊕

σ∈Conn
k
i

(
S̃k
)
x̃σ
. (13.43)

For all k ≤ d, the map j̃k induces, by the universal property of the direct limit, for each point
x̃ ∈ X a map (j̃k)x̃. The above made observation on stalks of the sheaves Ãk gives us also a
description of the induced maps (j̃k)x̃ using the Φk

, . Let x̃ ∈ Xi, then Φk
ỹ,x̃ is a map from the

stalk of S̃k in ỹ to the stalk in x̃. By (13.43) we can write the image of Φk
ỹ,x̃ as direct sum over

the k-cells lying around Xi. For each of these k-cells σ ∈ Connki the map Φk
x̃,x̃σ

is defined.
One easily checks that the induced map is just the direct sum of all these maps. Hence, we
have (

j̃k
)
x̃

=
⊕

σ∈Conn
k
i

Φk
x̃,x̃σ

. (13.44)
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Therefore, we have

j̃k
(
S̃k
)
x̃

=

m = (mσ) ∈
⊕

σ∈Conn
k
i

(
S̃k
)
x̃σ

:∃m ∈
(
S̃k
)
x̃

: ∀σ ∈ Connki : mσ = Φk
x̃,x̃σ

(m)

 .

(13.45)

By definition the sheaf S̃k−1 is given by

S̃k−1 = Ãk
/
j̃k

(
S̃k
)
.

Therefore, its stalk in a point x̃ ∈ X is given by(
S̃k−1

)
x̃

=
(
Ãk
)
x̃

/(
j̃k
(
S̃k
))

x̃
.

We already computed the stalks of Ãk in (13.43) as well as the stalks of j̃k
(
S̃k
)
x̃

in (13.45).

Corollary 13.3.5: The maps j̃d and jd are injective.

Proof. For k = d we get immediately from the previous Lemma that(
Ãd
)
x̃

=
⊕

σ∈Conn
k
i

(MG)x̃σ =
⊕

σ∈Conn
k
i

MG.

Since the compatibility maps are in this case all equal to the identity, the induced map j̃d on
the stalks is given by (

j̃d
)
x̃

:
(
S̃d
)
x̃
→
(
Ãd
)
x̃

m 7→ (m)
σ∈Conn

k
i
,

which is obviously injective. Therefore, the upper sequence in (13.33) is exact, or, to be more
precise, the first two non-zero terms can be completed with S̃d−1 as defined in (13.35) to an
exact sequence. The vertical maps in (13.33) are given by the functor defined in (13.34), which
is left exact. Therefore, also jd is injective.

The question whether the other maps j̃k and jk are injective for k < d is more difficult than
for k = d. We conjecture that all of them are injective (see Conjecture 1 on page 195), but we
cannot prove this in general.

Let x̃ ∈ Xi and ỹ ∈ Xj such that (i, j) is a valid pair for the underlying partition of the sheaves
S̃k and Ãk, which are known to be w-constructible sheaves by Lemma 13.3.2. Therefore, there
is, according to Theorem 13.1.6, a collection of compatibility maps for each of them, which

we denote by Φ
S̃k
x̃,ỹ and Φ

Ãk
x̃,ỹ. To shorten the notation we set

Φk
i,j := Φ

S̃k
x̃,ỹ Φk

i,j := Φ
Ãk
x̃,ỹ.
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It is not difficult to check with the already made observations that the compatibility maps
Φk
i,j associated to the sheaf Ãk are given by

Φk
i,j :

(
Ãk
)
x̃
→
(
Ãk
)
ỹ

(13.46)

(mσ)
σ∈Conn

k
i
7→ (mτ )

τ∈Conn
k
j
.

Note that by definition of U(Xi) and U(Xj) in (13.3) and the definition of the set Connki we
know that for each valid pair (i, j)

Connkj ⊆ Connki (13.47)

holds. Hence, the map Φk
i,j is an epimorphism, i.e. it is surjective.

For k = d we have that Φd
i,j = Id holds for all valid pairs, since S̃d = MG (see (13.30)).

The compatibility maps Φk
i,j for the sheaf S̃k for k < d can be defined inductively. By the

universal property of the direct limit we get from the upper row in (13.36) induced maps
(p̃k)x̃ and (p̃k)ỹ on the stalks in x̃ and ỹ respectively, which are surjective by definition. We
define Φk−1

i,j by the condition to complete the following diagram

(
Ãk
)
x̃

(
Ãk
)
ỹ

(
S̃k−1

)
x̃

(
S̃k−1

)
ỹ

(p̃k)x̃ (p̃k)ỹ

Φ
k
i,j

Φ
k−1
i,j

(13.48)

to a commutative diagram. Since (p̃k)x̃ and (p̃k)ỹ are surjective we find for each point x̃ ∈ X
a preimage in

(
Ãk
)
x̃

under (p̃k)x̃. Let m and m′ be two different preimages, then there is an
element n ∈

(
S̃k
)
x̃

such that

m′ = m + j̃k(n).

To prove that the map Φk
i,j is uniquely determined by the above diagram we have to show

that m and m′ are mapped to the same image under (p̃k)ỹ ◦ Φk
i,j . Since all maps are linear it

is sufficient to show that (j̃k)x̃(n) is mapped to 0 ∈
(
S̃k−1

)
ỹ
. We have by (13.44) that

(j̃k)x̃(n) =
⊕

σ∈Conn
k
i

Φk
x̃,x̃σ

(n).

But by the description of Φk
i,j in (13.46) we get

Φk
i,j

(
(j̃k)x̃(n)

)
=

⊕
σ∈Conn

k
j

Φk
x̃,x̃σ

(n).

We know by (13.44) together with Theorem 13.1.15 d)⊕
σ∈Conn

k
j

Φk
x̃,x̃σ

(n) =
⊕

σ∈Conn
k
j

Φk
ỹ,x̃σ

(n′)
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for n′ = Φk
x̃,ỹ(n) ∈

(
Ãk
)
ỹ
,which lies in

(
j̃kS̃k

)
ỹ

and is therefore mapped onto 0 under
(
p̃k
)
ỹ
.

Thus, the map Φk−1
i,j is well defined and, therefore all Φk

′

i,j for k0 − 1 ≤ k′ ≤ d.

To get the structure of a G-w-constructible system related to the sheaves S̃k and Ãk we have
to describe an additional family of compatibility maps (comp. Definition 13.2.1), i.e. we need
to define

Ψk
i,g := Ψ

S̃k
x̃,g Ψk

i,g := Ψ
Ãk
x̃,g, (13.49)

where x̃ ∈ Xi. Let us – similar to the previously discussed maps – consider the following
diagram for k0 ≤ k ≤ d

0
(
S̃k
)
x̃

(
Ãk
)
x̃

(
S̃k−1

)
x̃

0

0
(
S̃k
)
x̃

(
Ãk
)
x̃

(
Ãk−1

)
x̃

0.

(j̃k)x̃ (p̃k)x̃

(j̃k)x̃·g (j̃k)x̃·g

Ψ
k
i,g Ψ

k
i,g Ψ

k−1
i,g (13.50)

Since S̃d = MG we have
Ψd
i,g = Id

(S̃k)x̃
. (13.51)

We can now write down the remaining maps inductively by (13.50). It is not difficult to check
that for m ∈

(
Ãk
)
x̃

Ψk
i,g(m) =

⊕
σ∈Conn

k
j

Ψxσ ,g
(13.52)

holds, where the (xσ)σ∈P are some arbitrarily chosen points such that xσ ∈ σ (comp. Lemma 13.3.4).
Since according to the definition of w-constructible sheaves the stalks are constant on cells,
we know that the map does not depend on the choice of these points. Now we can proceed,
as before, and define the map Ψk−1

i,g by the condition that it has to make (13.50) into a com-
mutative diagram. Analogously to the last case, one shows by application of (13.22) together
with the description of (j̃k)x̃ from Lemma 13.3.4 that this definition does not depend on the
choice of the representative of an element from

(
S̃k−1

)
x̃

in
(
Ãk
)
x̃
.

The map Ψk
i,g induces the needed structure of a Gi-module on the stalk

(
S̃k
)
x̃
. Analogously,

Ψk
i,g defines the Gi-module structure on

(
Ãk
)
x̃
.

As an easy consequence of Lemma 13.3.3 on the support of the sheaves Sk and S̃k we get:

Corollary 13.3.6: We have

Hq
(
X/G,Sk

)
= 0 and Hq

(
X , S̃k

)
= 0

for q > k ≥ kinj.

Theorem 13.3.7: The sheaves Ak and Ãk are acyclic for kinj ≤ k ≤ d.
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Proof. It is sufficient to prove the claim only for the sheaf Ãk, because according to (13.40) we
have (π∗Ãk)

G = Ak. According to Definition 5.1.2 we have to show

Hq(X , Ãk) =

{
Ãk (X ) if q = 0

0 if q > 0.

It is clear by definition that for q = 0 the cohomology equals the global sections. It re-
mains to show that higher cohomology groups vanish. The map ĩk is an inclusion and we
have im

(̃
ik
)

= Ck(X ), which is open in its closure. We know from Lemma 13.3.3 that
supp Ãk ⊆ Sk(X ) and have by assumption that

Ck(X ) =
⊔
i∈I

dimXi=k

Xi =
⊔
i∈Ik
Xi,

where Ik ⊆ I is countable since the decomposition is locally finite. Hence, we get:

Hq(X , Ãk) = Hq
(
X , ĩk ∗̃ik

∗S̃k
)

= Hq
(
Ck(X ), ĩk

∗S̃k
)

= Hq
( ⊔
i∈Ik
Xi, ĩk

∗S̃k
)

=
⊕
i∈Ik

Hq
(
Xi, ĩk

∗S̃k
)
.

The Xi are (open) k-cells, i.e. they are homeomorphic to an open k-ball Bk. In other words,
it is enough to know the cohomology of Bk for any given sheaf F on Bk, which is known to
be

Hq(Bk,F ) =

{
F (Bk) if q = 0

0 if q > 0.

Therefore, we get for q > 0

Hq
(
X , Ãk

)
=
⊕
i∈Ik

Hq
(
Xi, ĩk

∗S̃k
)

=
⊕
i∈Ik

Hq
(
Bk, ĩk

∗c̃Sk

)
= 0.

This proves the claim for the sheaf Ãk.

We can now define two families of maps δ̃k and δk for d ≥ k ≥ kinj by

δ̃k = j̃k−1 ◦ p̃k δk = jk−1 ◦ pk. (13.53)

If kinj ≤ 0 we get from (13.41) that p̃0 = δ̃0 = 0 and p0 = δ0 = 0.

We can combine the exact sequences from the rows in (13.36) to two commutative diagrams
(see the two diagrams shown in Figure 13.3 on page 177).

Then the sequences in Figure 13.3 will have maximal length and the most simple form if
kinj ≤ 0. For indices below zero all sheaves are zero and the maps are the zero map. Therefore,
they are not necessary for our computations.
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Figure 13.3.

0

MW

Ad 0

0 Sd−1 Ad−1 Sd−2 0

0 Ad−2 0

0 0 Sd−3 Ad−3 Sd−4 0

MG 0
. . .

...

Ãd 0 Akinj+1

0 S̃d−1 Ãd−1 S̃d−2 0 0 Skinj
Akinj

Skinj−1 0

0 Ãd−2 0 0

0 S̃d−3 Ãd−3 S̃d−4 0

0
. . .

...

Ãkinj+1

0 S̃kinj
Ãkinj

S̃kinj−1 0

0

δd

δd−1

δd−2

δd−3

δkinj+2

δkinj+1δ̃d

δ̃d−1

δ̃d−2

δ̃d−3

δ̃kinj+2

δ̃kinj+1

jd

pd

j̃d

p̃d

jd−1

pd−1

j̃d−1

p̃d−1

jd−2

pd−2

j̃d−2

p̃d−2

jd−3

pd−3

jd−4

j̃d−3

p̃d−3

j̃d−4

jkinj+1

pkinj+1

j̃kinj+1

p̃kinj+1

jkinj

pkinj

j̃kinj

p̃kinj
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If kinj > 0 the corresponding sequences will stop earlier as shown in the sequences in Fig-
ure 13.3 since the sheaves S̃k and Sk are not defined for k < kinj− 1. In these cases we can try
to replace for them the corresponding short exact sequences by longer ones and in principle
we could proceed analogously to the method we describe now.

But we assume for the moment that kinj ≤ 0. Then we can extract from each of the two
sequences in Figure 13.3 a sequence (taking the bold blue arrows):

0 MG Ãd Ãd−1 . . . Ã2 Ã1 Ã0 0

0 MG Ad Ad−1 . . . A2 A1 A0 0.

j̃d δ̃d δ̃d−1 δ̃3 δ̃2 δ̃1 δ̃0

jd δd δd−1 δ3 δ2 δ1 δ0

(13.54)

Theorem 13.3.8: Let kinj ≤ 0. Then

a) The sequence of sheaves 0→MG → Ã• forms an acyclic resolution for the sheaf MG on X .

b) The sequence of sheaves 0→MG → A• forms an acyclic resolution for the sheafMG on X/G.

Proof. The sheaves Ãk and Ak are acyclic by Theorem 13.3.7. It remains to show that the
sequences are exact. The upper horizontal sequence in (13.54) is exact in MG since (13.33) is
exact in the first row, i.e. j̃d is in particular injective (comp. e.g. Corollary 13.3.5). Next we
have to show that im j̃d = ker δ̃d. By definition we have δ̃d = j̃d−1 ◦ p̃d, where, because of
exactness of the first vertical and the first horizontal sequence in Diagram 13.3 on page 177,
p̃d is surjective and j̃d−1 is injective because d > kinj by Corollary 13.3.5. Since j̃d−1 is injective
we conclude

ker δ̃d = ker j̃d−1 ◦ p̃d = ker p̃d.

But by exactness of the upper row of (13.33) we know already that im j̃d = ker p̃d which
proves exactness at Ãd. We have to show ker δ̃k−1 = im δ̃k for k = d, . . . , 1. On the one hand
we know that the the maps j̃k are injective and get Therefore, by exactness of (13.36) for k−1

ker δ̃k = ker j̃k−2 ◦ p̃k−1 = ker p̃k−1 = im j̃k−1.

On the other hand we have

im δ̃k−1 = im j̃k−1 ◦ p̃k = im j̃k−1.

This shows exactness in Ãk for the remaining non-zero cases. The exactness for the sequence
in the quotient can either be obtained by repeating the procedure but with the tildes removed
or one applies (13.40), which also immediately proves the claim.

We can now apply the general principle from Theorem 5.1.4 and get immediately
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Theorem 13.3.9: Let kinj ≤ 0 then we have

Hq(X ,MG) = Hq(H0(X , Ã•))

and

Hq(X/G,MG) = Hq(H0(X/G,A•))

for 0 ≤ q ≤ d.

13.3.2. Interpretation of the Terms in the Resolutions

Recall that we have by Lemma 13.3.4 that

(
Ãk
)
x̃

=
⊕

σ∈Conn
k
i

(
S̃k
)
x̃σ
.

We reinterpret this equality with respect to the action of group elements. There is a natural
action of the stabilizer Gi of the central cell on the set Connki . Denote by

∆k
i = Connki /Gi (13.55)

the set of equivalence classes under this action. In general this action is not transitive. Each
class δ ∈ ∆k

i contains at least one cell. Let σδ ∈ δ be an arbitrarily chosen representative,
i.e. σδ is a k-cell in X . Let x̃δ := x̃σδ be the point in σδ which occurs in the set of points in
Lemma 13.3.4. Let Gδ := Gσδ

. We observe that σδ = σδ · (Gδ ∩Gi).

Therefore, we get from the above equality

(
Ãk
)
x̃

=
⊕
δ∈∆

k
i

⊕
g∈Gi/Gδ∩Gi

Ψk
x̃δ,g

((
S̃k
)
x̃δ

)
︸ ︷︷ ︸

(13.18)
= Ind

Gi
Gδ∩Gi

((
S̃k
)
x̃δ

)
=
⊕
δ∈∆

k
i

Ind
Gi
Gδ∩Gi

((
S̃k
)
x̃δ

)
.

(13.56)

One easily checks with condition b) on page 161 that the representation does (up to isomor-
phism) not depend on the choice of the representatives of the classes in ∆k

i . We get:

Proposition 13.3.10: Let k ≥ k0 and x̃ ∈ Xi. Then

(
Ãk
)
x̃

=
⊕
δ∈∆

k
i

Ind
Gi
Gδ∩Gi

((
S̃k
)
x̃δ

)

holds.
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We find for x̃ ∈ Xi and m ∈ (S̃k
)
x̃

that we can rewrite the map j̃k in the following form:

j̃k(m) =
⊕

σ∈Conn
k
i

Φx̃,x̃σ
(m) =

⊕
δ∈∆

k
i

⊕
g∈Gi/Gδ∩Gi

Ψk
x̃δ,g

(
Φx̃,x̃δ

(m)
)

=
⊕
δ∈∆

k
i

Ind
Gi
Gδ∩Gi

(
Φx̃,x̃δ

(m)
) (13.57)

Since by Lemma 13.3.2 we have that Ãk is constructible for k ≥ kinj we can apply
Theorem 13.2.2 together with Proposition 13.3.10 and get

H0(X , Ãk) = lim−→
i∈I
Fi = lim−→

Xi∈P

(
Ãk
)
x̃Xi

= lim−→
i∈I

⊕
δ∈∆

k
i

Ind
Gi
Gδ∩Gi

((
S̃k
)
x̃δ

)
=
⊕
i∈I

⊕
δ∈∆

k
i

Ind
Gi
Gδ∩Gi

((
S̃k
)
x̃δ

)/
∼
,

where ∼ is the equivalence relation on the factors from (13.10). By (13.13) we get

H0(X , Ãk) =
⊕
i∈IG

∏
g∈G/Gi

Ψk
i,g

⊕
δ∈∆

k
i

Ind
Gi
Gδ∩Gi

((
S̃k
)
x̃δ

)/
∼

=
⊕
i∈IG

⊕
δ∈∆

k
i

∏
g∈G/Gi

Ψk
i,g

(
Ind

Gi
Gδ∩Gi

((
S̃k
)
x̃δ

))
︸ ︷︷ ︸

(13.18)
= Ind

G
Gi

(
Ind

Gi
Gδ∩Gi

((
S̃k
)
x̃δ

))

/
∼

=
⊕
i∈IG

⊕
δ∈∆

k
i

IndG
Gi

(
Ind

Gi
Gδ∩Gi

((
S̃k
)
x̃δ

))/
∼

Recall that the map Φk
i,j defined in (13.46), which induces the equivalence relation ∼, is given

by

Φk
i,j :

(
Ãk
)
x̃

=
⊕

σ∈Conn
k
i

(
S̃k
)
x̃σ
−→

⊕
τ∈Conn

k
j

(
S̃k
)
x̃τ

=
(
Ãk
)
ỹ

(mσ)
σ∈Conn

k
i
7−→ (mτ )

τ∈Conn
k
j

for x̃ ∈ Xi and ỹ ∈ Xj . As before, we can decompose this representation under the action
of the stabilizer of the related central cell Xi or Xj , respectively, and get a representation
compatible with the representation of the module stated above. This representation differs
for each valid pair (i, j) ∈ valP . Note that some of the maps Ψk

i,k can be collected and
interpreted according to (13.52) as the map Ψk

i,k, which commutes by (13.22) in some way8

8If we exchange the order of the maps, the indices will change.
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with the Φk
i,j . Keeping this in mind it is not difficult to compute the equivalences for concrete

examples, if needed. Thus, we skip the further details here.

We summarize:

Lemma 13.3.11: Let k ≥ k0. Then we have that

H0(X , Ãk) =
⊕
i∈IG

⊕
δ∈∆

k
i

IndG
Gi

(
Ind

Gi
Gδ∩Gi

((
S̃k
)
x̃δ

))/
∼
,

where ∼ is the equivalence introduced in (13.10).

It remains to have a closer look on the stalks and global sections in the quotient, i.e. we
have to compute the invariants of the occurring modules. We skip here the discussion of
maps on the quotients induced by the maps Φk

i,j and Φk
i,j , since for practical things it is more

convenient to write them down in the original space and use the compatibility condition
between them and the Ψk

i,j and Ψk
i,j from (13.22) to ensure that they behave in the right way

under the projection to the quotient.

Let us now start with the stalks of the sheaf Ak for k0 ≤ k ≤ d in x = π(x̃) for a fixed lift of
x̃ ∈ Xi and i ∈ IG. We know from Proposition 13.3.10 that

(
Ãk
)
x̃

=
⊕
δ∈∆

k
i

Ind
Gi
Gδ∩Gi

((
S̃k
)
x̃δ

)
. (13.58)

Therefore, we have by Lemma 13.2.6 b) that

(
Ak
)
x

=

⊕
δ∈∆

k
i

Ind
Gi
Gδ∩Gi

((
S̃k
)
x̃δ

)
Gx̃

. (13.59)

One knows by the usual properties of the induced representation

(
Ak
)
x

=
⊕
δ∈∆

k
i

((
S̃k
)
x̃δ

)Gx̃∩Gδ∩Gi

(13.60)

holds. Since x̃ ∈ Xi and the action is cellular (see Section 9.1.2) we know that Gx̃ ⊆ Gi and
thus

(
Ak
)
x

=
⊕
δ∈∆

k
i

((
S̃k
)
x̃δ

)Gx̃∩Gδ

. (13.61)

The change of the chosen lifts leads to an isomorphic description, where the isomorphism
can be given in terms of the maps of type Ψk

i,g. We can easily check with the properties
a) – c) of them stated on page 161 together with (13.22) that one choice can be transferred to
an other one. We do not distinguish between these isomorphic models.
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Analogously to Lemma 13.3.11, we can deduce from this together with Lemma 13.2.6 a):

Lemma 13.3.12: Let k ≥ k0. Then we have that

H0(X ,Ak) =
⊕
i∈IG

⊕
δ∈∆

k
i

((
S̃k
)
x̃δ

)Gx̃∩Gδ
/
∼
,

where ∼ is the equivalence introduced in (13.10).

Let x̃ ∈ Xi and m ∈
(
S̃k
)
x̃
, then by Lemma 13.3.4 we have(

j̃k
)
x̃

=
⊕

σ∈Conn
k
i

Φx̃,x̃σ
(m)

and rewrite this as above into(
j̃k
)
x̃

=
⊕
δ∈∆

k
i

⊕
Gi/Gi∩Gδ

Ψk
x̃δ,g

Φx̃,x̃δ
(m) =

⊕
δ∈∆

k
i

Ind
Gi
Gi∩Gδ

(
Φx̃,x̃δ

)
(m)

=
⊕
δ∈∆

k
i

Ind
Gi
Gi∩Gδ

(
Φx̃,x̃δ

)
(m) (13.62)

Therefore, we get

(
Sk
)
x

=
(
Ak+1

)
x

/(
j̃k
)
x

((
Sk+1

)
x

)
=
(
Ãk+1

)Gx̃

x̃

/((
j̃k
)
x̃

((
S̃k+1

)
x̃

))Gx̃

=
⊕

δ∈∆
k+1
i

((
S̃k+1

)
x̃δ

)Gx̃∩Gδ
/ ⊕
δ∈∆

k+1
i

(
Φx̃,x̃δ

((
S̃k+1

)
x̃

))Gx̃∩Gδ

. (13.63)

Therefore, we have a more handy description of the terms in the resolution Theorem 13.3.9,
which allows us to compute them, since we are able to compute the necessary modules,
groups, and invariants (see Chapters 10 and 11). In the following section we discuss more
practical questions of the computation.

13.3.3. Computing the Terms with the SNF

In this section we give a more computational description of the stalks and some of the maps
introduced in Section 13.3.1 and 13.3.2. Computational means that we write them down in
terms of some chosen bases and matrices in these bases. The main tool here is the so called
Smith-normal-form [Smi61], which can also be used to compute the (co-)homology from
a sequence of (co-)boundary maps. The computations described in this section are quite
similar but much simpler than the computation in case of (co-)homology since we have only
a dependency on a single map. In case of the computation of (co-)homology groups one has
to compute as well the image of one as the kernel of an other map simultaneously in – in the
best case – one common basis. We give some more information and references related to the
computation of cohomology groups in Section 13.3.4.
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In this section we identify the maps on stalks with their matrix representation in suitable
bases.

Let us start here with the description of the building blocks we need to describe the cohomol-
ogy. One gets via a simple computation from Lemma 13.3.4 and the following description of
the compatibility maps:

Lemma 13.3.13: Let the notions be as in Lemma 13.3.4, rd,x̃ =: rd be the rank of
(
Sd
)
x̃

over ZG,
and cd = #Conndi , then the morphism

(j̃d)x̃ =
⊕

σ∈Conn
d
i

Φx̃,x̃σ
=

⊕
σ∈Conn

d
i

Idrd

has Smith-normal-form (SNF)

SNF
((
j̃d
)
x̃

)
=

(
Idrd

0rd(cd−1),rd

)
,

where 0m,n is the m× n zero-matrix. The SNF can be obtained using the following transformation:

SNF
((
j̃d
)
x̃

)
=


Idrd
−Idrd Idrd

. . .
. . .

−Idrd Idrd


︸ ︷︷ ︸

=:T
SNF
i,d

·
(
j̃d
)
x̃
.

One easily checks that

(
TSNF
i,d

)−1
=

Idrd
...

. . .

Idrd · · · Idrd

 . (13.64)

Corollary 13.3.14: Let rd = rank ZG

(
S̃d
)
x̃
, rd = rank ZG

(
Ãd
)
x̃

and cd = #Conndi . Further, we
use the notions from Lemma 13.3.13.

Let {ej,x̃}j=1,...,rd
be the basis of

(
S̃d
)
x̃

and let {fj,x̃}j=1,...,rd
be the basis of

(
Ãd
)
x̃

(each as as ZG-

module). Let further {f ′j,x̃}j=1,...,rd
be the basis of

(
Ãd
)
x̃

such that((
Ãd
)
x̃
, {fj,x̃}j=1,...,rd

)
((
S̃d
)
x̃
, {ej,x̃}j=1,...,rd

)
((
Ãd
)
x̃
, {f ′j,x̃}j=1,...,rd

)

(
j̃d
)
x̃
·

SNF
(
j̃d

)
·

T
SNF
i,d ·
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holds. Note here are the maps represented by their matrix representation in the bases indicated in the
diagram.

If M is a free module of rank cd over ZG, then the stalks of S̃d−1 are in each point x̃ ∈ Xi ⊂ X a free
module of rank rd − rd = rd(cd − 1) over ZG. More precise we have:

(
S̃d−1

)
x̃

=

rd⊕
j=rd+1

ZG · fj,x̃ ∼= Z
rd(cd−1)
G .

Proof. According to Lemma 13.3.4 the stalks S̃d−1 in x̃ ∈ Xi are given by

(
S̃d−1

)
x̃

=
(
Ãd
)
x̃

/(
j̃d
)
x̃
·
((
S̃d
)
x̃

)
.

Therefore, we get using the elementary divisor theorem

(
S̃d−1

)
x̃

=
(
Ãd
)
x̃

/(
j̃d
)
x̃
·
((
S̃d
)
x̃

)
=

rd⊕
j=1

ZG · fj,x̃
/(
j̃d
)
x̃
·

 rd⊕
j=1

ZG · ej,x̃


=

rd⊕
j=1

ZG · fj,x̃
/ rd⊕

j=1

ZG ·
(
j̃d
)
x̃
· ej,x̃

=

rd⊕
j=1

ZG · fj,x̃
/ rd⊕

j=1

ZG ·
(
TSNF
i,d

)−1 · SNF
((
j̃d
)
x̃

)
· ej,x̃.

By Lemma 13.3.13 we get

(
S̃d−1

)
x̃

=

rd⊕
j=1

ZG · fj,x̃
/ rd⊕

j=1

ZG ·
(
TSNF
i,d

)−1 · f ′j,x̃︸ ︷︷ ︸
=fj,x̃

=

rd⊕
j=rd+1

ZG · fj,x̃.

By construction we have rd = rdcd and the remaining parts of the corollary follow immedi-
ately.

Let
k0 = max(kinj, 1). (13.65)

Let for k ≥ k0 − 1

rk,x̃ = rank ZG

(
S̃k
)
x̃

rk,x̃ = rank ZG

(
Ãk
)
x̃
. (13.66)

Then there are bases {ekj,x̃ : j = 1, . . . , rk,x̃} of
(
S̃k
)
x̃

and {fkj,x̃ : j = 1, . . . , rk,x̃} of
(
Ãk
)
x̃

such
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that that j̃k has the SNF. In general the SNF has the following form

SNF
((
j̃k
)
x̃

)
=



λ
(1)
k,x̃

. . .

λ
(ktor,x̃)

k,x̃

Idknull,x̃

0kfree,x̃,knull,x̃+ktor,x̃
0kfree,x̃,rk,x̃−ktor,x̃−knull,x̃


, (13.67)

which is a (not necessary square) block diagonal matrix, where λ(l+1)
k,x̃ |λ

(l)
k,x̃. Then

rank ZG
j̃d = ktor,x̃ + knull,x̃. (13.68)

The basis elements corresponding to the upper left block span the torsion part of (S̃k−1)x̃
whereas the elements corresponding to the lower right block span the free part of (S̃k−1)x̃
interpreted as submodule of (Ãk)x̃. A priori there is no reason that the torsion part is zero
but since our modules are defined over ZG we might expect that in most cases (depending
on the the module M) it vanishes.

Analogously to the discussion of the case k = d in Corollary 13.3.14 we can deduce from the
SNF of j̃k for k ≥ k0 a representation of (S̃k−1)x̃.

Theorem 13.3.15: Let k ≥ k0 and

((
S̃k
)
x̃
, {ekj,x̃}j=1,...,rk,x̃

) ((
Ãk
)
x̃
, {fkj,x̃}j=1,...,rk,x̃

)
((
S̃k
)
x̃
, {e′kj,x̃}j=1,...,rk,x̃

) ((
Ãk
)
x̃
, {f ′kj,x̃}j=1,...,rk,x̃

)
,

(
j̃d
)
x̃

SNF
((
j̃d
)
x̃

)
·

T
SNF
i,k,x̃ ·S

SNF
i,k,x̃ ·

where SSNF
i,k,x̃ · e

k
j,x̃ = e′

k
j,x̃ and TSNF

i,k,x̃ · f
k
j,x̃ = f ′

k
j,x̃ are mapping the bases from the upper row onto the

corresponding bases in the bottom row.

Then we have that

(
S̃k−1

)
x̃

=

ktor,x̃⊕
j=1

(
ZG

/
λ

(j)
k,x̃ · ZG

)
· fkj,x̃︸ ︷︷ ︸

torsion part

⊕
rk,x̃⊕

j=knull,x̃+1

ZG · f
k
j,x̃︸ ︷︷ ︸

free part

.

Proof. By Lemma 13.3.4 we have that

(
S̃k−1

)
x̃

=
(
Ãk
)
x̃

/(
j̃k
)
x̃

((
S̃k
)
x̃

)
.
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As before in the proof of Corollary 13.3.14, we can rewrite this as

(
S̃k−1

)
x̃

=

rk,x̃⊕
j=1

ZG · f
k
j,x̃

/(
j̃k
)
x̃

rk,x̃⊕
j=1

ZG · e
k
j,x̃


=

rk,x̃⊕
j=1

ZG · f
k
j,x̃

/ rk,x̃⊕
j=1

ZG ·
(
j̃k
)
x̃
· ekj,x̃

=

rk,x̃⊕
j=1

ZG · f
k
j,x̃

/ rk,x̃⊕
j=1

ZG ·
(
TSNF
i,k,x̃

)−1
· SNF

((
j̃d
)
x̃

)
· SSNF

i,k,x̃ · e
k
j,x̃

=

rk,x̃⊕
j=1

ZG · f
k
j,x̃

/ rk,x̃⊕
j=1

ZG ·
(
TSNF
i,k,x̃

)−1
· SNF

((
j̃d
)
x̃

)
· e′kj,x̃

=

rk,x̃⊕
j=1

ZG · f
k
j,x̃

/ktor,x̃⊕
j=1

(
TSNF
i,k,x̃

)−1
·
(
λ

(j)
k,x̃ · ZG · f

′k
j,x̃

)
⊕
ktor,x̃+knull,x̃⊕
j=ktor,x̃+1

(
TSNF
i,k,x̃

)−1
·
(
ZG · f

′k
j,x̃

)

⊕
rk,x̃⊕

j=ktor,x̃+knull,x̃+1

(
TSNF
i,k,x̃

)−1
·
(

0 · f ′kj,x̃
)

=

rk,x̃⊕
j=1

ZG · f
k
j,x̃

/[ ktor,x̃⊕
j=1

λ
(j)
k,x̃ · ZG ·

(
TSNF
i,k,x̃

)−1
· f ′kj,x̃︸ ︷︷ ︸

=f
k
j,x̃

⊕
ktor,x̃+knull,x̃⊕
j=ktor,x̃+1

ZG ·
(
TSNF
i,k,x̃

)−1
· f ′kj,x̃︸ ︷︷ ︸

=f
k
j,x̃

]

=

ktor,x̃⊕
j=1

(
ZG

/
λ

(j)
k,x̃ · ZG

)
· fkj,x̃ ⊕

rk,x̃⊕
j=ktor,x̃+knull,x̃+1

ZG · f
k
j,x̃.

We know now how to write down the quotients explicitly. To complete the picture we need
to write down also the maps Φk

i,j . In general one obtains them as described via (13.46)
and (13.48). This is not that difficult on one hand but rather technical and and not very
useful in this abstract setting, therefore we skip their description in this case at this place.

13.3.4. Computing Cohomology from a Complex

In this section we collect some references and give an overview on the question how to obtain
the cohomology from a collection of cochain maps, which we have due to Theorem 13.3.9.

There are several examples of algorithms which compute generators for a representation of
the (co-)homology from a (co-)chain complex of a simplicial or cubical complex using the
so called Smith normal form (SNF) (see e.g. [KMM04; Chap. 3,4 and 7], [DHSW03, DSV00,
DSV01, PAFL06], [Cai61; Chap. 5-7]). From an algorithmic point of view it is the same to
compute homology and cohomology, up to a change in the indices of the (co-)boundary
maps. Some of the algorithms are able to compute the whole (co-)homology, some only the
reduced part, i.e. the cohomology modulo torsion. There has been some progress on this
topic during the last years since cohomology (over F2

r ) is used in some image processing
and image recognition algorithms (see e.g. [KMM04; Chap. 8] or [PAFL06]).
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In particular, the results of Jean-Guillaume Dumas et al. [DHSW03, DSV00, DSV01] and
Samuel Peltier et al. [PAFL06] are a good reference for practical computations. The former
results were also used for an implementation in GAP in case of complexes coming from a
simplicial complex. For us it is not important where the complex comes from since in any
case the following procedure is nearly identical.

The general strategy for this task can be formulated as follows:

a) Compute a cochain complex (C•, d•) (comp. Theorem 13.3.9).

b) Compute the Smith-normal-form SNF(dk) (see e.g. [Smi61]) to all the coboundary
maps dk together with base change maps

(Tk)−1 · SNF(dk) · Sk = dk,

where

SNF(dk) =



λ
(1)
k

. . .

λ
(ktor)
k

Idkfree

0
k

1
null,ktor+kfree

0
k

1
null,k

2
null


.

c) Identify the kernel and image of the coboundary maps in SNF.

d) Compute the quotient

Hk(C•, d•) = ker
(
dk
)/

im
(
dk−1).

The last step is trivial, if it is possible to Smith normalize the maps dk−1 and dk simul-
taneously, since one can easily read off the base elements corresponding to image and
kernel. Usually that is not possible, but there are several modifications, such as a modi-
fied Smith-normal-from (mSNF), which has some better properties in this context (see e.g.
[DSV01, DHSW03, PAFL06]). The authors also give therein some useful hints how to speed
up or even avoid computations and analyse the runtime in detail. For our context we have
to be careful with the runtime analysis stated there, since they consider only cases where
the coboundary maps are sparse, which is plausible in most practical examples coming from
usual simplicial complexes. In our cases it seems quite optimistic to hope that the occurring
matrices are sparse. The additional group action makes the things more complicated.

We did some tests to check the program which is able to compute the building blocks
(comp. Section 11.2) which occur in our construction in this chapter. Further, we know
by the results in Chapter 10 enough on the structure of cells and their relations among each
other that we expect a kind of block triangular structure of dense subblocks, since on one
side e.g. both 0-cells occur in almost all higher dimensional cells in the boundary, whereas
2-cells occur only in the boundary of 3- and 4-cells and on the other side the neighbours
behave in the opposite way. In our construction both play their role because we have to sum
over representatives of equivalence classes of cells in the k-skeletons and for each of them
over the surrounding cells. The non-zero blocks in this construction seem to be neither sparse
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nor very dense (comp. e.g. Table 11.1 and Figure 11.3), if we assume that the few computed
cases of low weights, i.e. small rank of the module, are typical examples. However there
are some maps which consist only of blocks equal to the identity matrix or the zero matrix
and thus are sparse (e.g. j̃d in (13.3) together with Lemma 13.3.13). As a consequence one
should assume that we have to handle dense matrices and/or do some more tests to estimate
the density and explore the real structure before doing the real computation of the SNFs or
mSNFs, respectively.

We do not go more into the details because we found an alternative method (see Sec-
tion 13.3.5) to compute the cohomology without doing the things sketched in this section.

13.3.5. The Second Resolution

The method which we state at the end of Section 13.3.1 has one major difficulty, namely that
we need the injectivity of j̃k at least for 0 ≤ k ≤ d to define the full acyclic resolutions Ã•
and A•, which we need a priori to compute the cohomology groups we are looking for. So
far the theory. In practice we know that also in that situation one need only some of them to
obtain a particular cohomology group. In this section we give a step by step construction for
the cohomology, which, if all maps were injective, will give a description for all cohomology
groups and, if only all up to some level, it will give only of the groups up to some degree
depending on how many maps we know to be injective. We will deduce this from the
construction described above as kind of a refinement of that method, which is more handy
for practical computations and avoids the explicit knowledge of the injectivity of j̃k for all
k. To do this we will construct some further sequences which can be used to compute the
cohomology groups Hq(. . .) of degree q for q = 1, ..., d+ 1− k0, where

k0 = max(kinj, 1). (13.69)

The case q = 0 is only the computation of invariants, which is not a problem at all. We obtain
a method to get at least some cohomology groups of higher degrees.

To simplify the notation we use for a sheaf F̃ on X

Hq
(
F̃
)

:= Hq
(
X , F̃

)
and Hq(F) := Hq(X/G,F) (13.70)

for a sheaf F on X/G. We start with the two families of short exact sequences from (13.36).
Each of these short exact sequences of sheaves defines by (5.4) a long exact sequences in
cohomology. This leads to two huge diagrams displayed in Figure 13.4 on page 189 and 13.5
on page 190.

In these two diagrams the exact sequences in cohomology are indicated by different coloured
shades of the maps, depending on the short exact sequence they are coming from. The entries
in the diagrams are sorted such that cohomology groups of the same degree are placed in
the same column. The rightmost column is the exact sequence of the acyclic resolution from
Theorem 13.3.8.

By Theorem 13.3.7 we know that the sheaves Ãk and Ak are acyclic for k ≥ kinj. Therefore, the
higher cohomology groups Hq(Ãk) and Hq(Ak) for q > 0 and k ≥ kinj vanish. Furthermore,
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Figure 13.4.
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Figure 13.5.
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we know by Corollary 13.3.6 that

Hq(Sk) = Hq(S̃k) = 0 for q > k ≥ kinj (13.71)

because Sk, which is defined for k ≥ kinj, has only support in cells of dimension less or equal
to k.

This has as an important consequence that we get by exactness in the huge diagrams shown
in Figure 13.4 and 13.5 from above several isomorphisms. Thus, we get for the cohomology
groups we are interested in the following identities for the sheaves on X :

H2
(
S̃d
)
∼= H1

(
S̃d−1

)
H3
(
S̃d
)
∼= H2

(
S̃d−1

)
∼= H1

(
S̃d−2

)
...

Hd
(
S̃d
)
∼= Hd−1

(
S̃d−1

)
∼= . . . ∼= Hk0+1

(
S̃k0+1

)
∼= Hk0

(
S̃k0

)
.

(13.72)

In the same way we get the analogous identities for the sheaves on X/G

H2
(
S̃d
)
∼= H1

(
S̃d−1

)
H3
(
S̃d
)
∼= H2

(
S̃d−1

)
∼= H1

(
S̃d−2

)
...

Hd
(
S̃d
)
∼= Hd−1

(
S̃d−1

)
∼= . . . ∼= Hk0+1

(
S̃k0+1

)
∼= Hk0

(
S̃k0

)
.

(13.73)

This reduces the computation of the cohomology groups Hq(S̃d), or Hq(Sd) respectively, for
for q in 0 ≤ q ≤ d + 1 − k0 to the computation of H1(S̃k) or H1(Sk) for d ≥ k ≥ k0 and the
computation of global sections, i.e. invariants of some modules under the group G. However
also H1(S̃k) and H1(Sk) can be computed by knowing only global sections, because we find
in both the huge diagrams (see Figure 13.4 and 13.5) also for d ≥ k ≥ k0 the following two
families of exact sequences:

0 H0
(
S̃k
)

H0
(
Ãk
)

H0
(
S̃k−1

)
H1
(
S̃k
)

0

0 H0
(
Sk
)

H0
(
Ak
)

H0
(
Sk−1

)
H1
(
Sk
)

0

j̃
∗
k p̃

∗
k

j
∗
k p

∗
k

(13.74)

We rewrite the isomorphism in (13.72) and (13.73) as

Hq
(
S̃d
)
∼= Hq−k

(
S̃d−k

)
∼= H1

(
S̃d+1−q

)
Hq
(
Sd
)
∼= Hq−k

(
Sd−k

)
∼= H1

(
Sd+1−q

) (13.75)

where 2 ≤ q ≤ d+ 1− k0 and 0 ≤ k < q. We can now replace H1(S̃k) or H1(Sk) in (13.74) by
Hq(S̃d) or Hq(Sd), respectively, using (13.72) and (13.73) or equivalently (13.75). Therefore,
we get from the exactness of (13.74) together with (13.72) and (13.73) immediately:
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Theorem 13.3.16: For k = d, . . . , k0 we have

Hd+1−k(S̃d) = H0(S̃k)/im p̃∗k

∣∣∣
H

0
(
Ãk
) = coker

(
p̃∗k

∣∣∣
H

0
(
Ãk
))

and

Hd+1−k(Sd) = H0(Sk)/im p∗k

∣∣∣
H

0
(
Ak
) = coker

(
p∗k

∣∣∣
H

0
(
Ak
)).

It is an easy exercise in linear algebra to compute the cokernel of a map, if the map is
explicitly known, e.g. as a matrix. Then the cokernel can be computed as the kernel of the
transposed matrix and for that there are fast algorithms known. Thus, in the next step we
need to get a description of the global sections and the connecting maps occurring in the
previous theorem which is as explicit as possible.

13.4. Application to the Symplectic Group

In this section we indicate how the previously introduced constructions can be used to com-
pute the cohomology of the symplectic group. There are two main tools, namely the orbicell
decomposition, which we constructed in Section 9.2 and the constructible sheaves together
with the two resolutions introduced in this chapter.

13.4.1. How to Apply the Resolutions

Let M be any given Γ-module M ∈ Obj (ModΓ) and MΓ = M ⊗Z ZΓ as before. We can
use Proposition 12.1.2 to describe the connection between the cohomology of S2/Γ and the
cohomology of the retraction W/Γ (see also (12.6) and (12.4)).

Theorem 13.4.1: Hq(S2/Γ,MΓ) ∼= Hq(W/Γ,MW) whereMΓ = shΓ(MΓ) andMW = r∗ΓMΓ.

For a proof we refer to the proof of the analogous statement [Yas05; Theo.9.4.1]. We know by
the Theorems 12.2.3 and 13.4.1 that

Hq(Γ,MΓ) ∼= Hq(S2/Γ,MΓ) ∼= Hq(W/Γ,MW)

Due to Theorem 9.2.11 we have two decompositions

W =
⊔
X∈W

C (X) W/Γ =
⊔
X∈Σ

CΓ(X)

into disjoint components, where Σ the set of standard elements defined in Theorem 9.1.3 and
with W = ΓΣ. If we apply one of the two methods stated in Theorems 13.3.9 and 13.3.16
to compute the cohomology Hq(Γ,MΓ) of the symplectic group we have to ensure that the
necessary conditions are fulfilled. This means that:

a) The retract W is a simply connected manifold. This holds because W is by Proposi-
tion 9.2.10 a strong deformation retract of the Siegel upper half-space, which has this
property.
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b) The retract W is locally finite (seeTheorem 9.1.10).

c) The retract W is a regular CW-complex (see Theorem 9.1.10).

d) The group Γ acts cellular on W (see Prop. 9.2.2).

e) The retract W has only finitely many orbits under Γ (see Prop. 9.2.3).

f) The quotient W/Γ has a finite orbicell decomposition (see Lemma 9.2.9).

g) The module MΓ ∈ Obj
(
ModΓ,ZΓ

)
by assumption.

h) The decomposition of W is fine enough in the sense of the beginning of Section 13.1.1.
One get this from the computed lists of cells (see Chapter 10), but one has to check this
property at least once per type of cells. This can be done easily but not very fast because
for each type one has to look for the cells in the closure of one chosen representative
and then for the closures of their neighbours to ensure that there is no neighbourhood
of a point which contains more then one connected component of the same cell. This
are a lot of lists of cells which one has to compute and compare under each other.

Hence, we can apply the whole machinery of (orbi-)constructible sheaves. In this example
we have the case that d = 4. We use in the following the notions from the last few sections on
constructible sheaves in general. This means that we do not indicate here, as before, the un-
derlying partition P = W, since it does not change. To compute all maps and modules which
occur in our construction we need to know for each cell, how to compute their boundary and
to obtain their skeleton and the related embedding maps (see Sections 10.4 and 10.7.2). Since
the support of the cells is concentrated in Sk(W) according to Lemma 13.3.3, we only need
to compute the stalks in the non-zero cases. The computation of skeletons, closures, etc. was
extensively discussed in Section 10.4. In addition we presented the results we need in this
context in Sections 10.7.2. The related lists of cells are included on the CD-ROM attached
to the printed copy of this thesis. This allows us to compute the embedding maps ĩk for all
4 ≥ k ≥ 0.

The modules M are highest weight modules and therefore in particular of finite rank over
Z. Hence, the modules MΓ are of finite rank and therefore all w-constructible sheaves in
the construction are even constructible (see Definition 13.1.1). As we already mentioned in
Chapter 11, we are able to compute bases for highest weight modules and the action of
group elements on the modules spanned by these basis elements. With standard SAGE and
GAP functions we can also compute direct sums of highest weight modules. It turned out
that not in any case the standard methods are the best choice since they are slow, in particular
for large weights, and do not consider the additional group action we need. In practice it
seems to be better to store direct sums as lists together with a special addition and group
operation function. We need the direct sum operation essentially at two points during the
construction:

• The computation of the stalks of the sheaves Ãk (see (13.39) for their definition and
Proposition 13.3.10) involves a direct sum over a set of cells.

• To obtain the global sections (see e.g. Lemma 13.3.11 and 13.3.12) we need to sum with
respect to the two families of compatibility maps the stalks over all types of cells.

This is the major missing part to get the original goal of this thesis. This part turned out to
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be much more complicated and time consuming than we thought at the beginning. There
are several problems. We only stress the most important one.

There is no canonical way to describe the bases in terms of bases of the stalks. This means
that if we fixed a basis of MΓ we get a derived basis of any stalk of Ã4 in a point x̃ ∈ W,
which are from an abstract point of view pairs (σ, ei), where ei is one base element from MΓ

and σ a cell in the collection of 4-cells lying around the cell, which contains x̃.9 We have that
for a valid pair (i, j) ∈ valP the index sets over which we sum fulfil

Connki ⊆ Connkj .

This is enough for abstract computations. In practice, we get the elements in both sets not
necessarily in the same order, since there is no canonical order for the cells around another
cell. Hence, one has to search for each cell in one list for the corresponding cell in the larger
list to write down the compatibility maps according to (13.46). Furthermore, it is difficult to
check whether two sets of representatives of cosets for the ∆k

i are equal up to equivalence
even if the corresponding sets Connki consist of the same elements in the same order, because
the resulting set ∆k

i depends also on the order of the elements in the group. All together this
is no problem if we want only to compute a single stalk, but we have to compute the stalks
for points in a bunch of cells and for all of them we need to known their compatibility maps,
which depend on these sets. It is not impossible to do this, but makes the things much more
complicated than only to put the object in a list, because we have to identify the identical
elements occurring in the different sets, which can for example be done by a suitable indexing
or the usage of a list of all known cells. Remember that due to the normalized representation
of cells we are able to do this comparisons quite fast (comp Section 10.3.1).

Essentially this whole discussion is a question of fixing an orientation. Recall that an orien-
tation is nothing else than to fix an order of cells around other cells. In this sense it is not
really surprising that questions like this arise during the computation.

Let us assume for the moment that this problem is solved, then we can compute induced
modules with group action and a suitable basis, using the function quotientsystem, which
we implemented in SAGE to compute left cosets of two groups as list of representatives. It
works fine for finite matrix groups and raises an exception otherwise. The algorithm is the
most simple one can think of. One starts with the larger group, pick one element, computes
the orbit in the larger group under the smaller group and removes all of the elements. Then
one proceeds with the next not removed element an repeats the procedure until no element is
left. Our function is faster than the build-in function in SAGE and works also for non-normal
subgroups. In SAGE by default the output is a group object which is much more than we
need.

In some cases we need to compute the intersection of matrix groups or, to be precise, of
finite matrix groups, which occur as stabilizers of cells. This can be done with the function
intersectionofgroups (see Section 10.7.5). In many cases the intersection is trivial, i.e. equal
to {±Id} (see Table 10.12 and on the CD-ROM included in the printed copy of this thesis),
which simplifies the computation.

All in all we are then able to compute all needed terms in the sequences, which can be used

9If the point x̃ lies in a top dimensional cell, the collection consists only of that single cell.
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to compute the cohomology according to Theorem 13.3.9 or 13.3.16. To apply these results in
all its depth it remains to show:

Conjecture 1. LetM be a highest weight module andMΓ := M⊗ZZΓ as above. Let j̃k be the
map introduced in (13.36) with respect to W together with its cell decomposition, then j̃k is
injective for k ≤ 4.

We have some indication that this should hold, but were not able to prove it in the abstract
setting. However we believe that it should be possible to prove it via step by step construction
of maps during the computation. Let us assume that Conjecture 1 holds. Then we can now
have a closer look on the terms which occur in Theorems 13.3.9 and 13.3.16 respectively.
Independent of Conjecture 1 we have by Corollary 13.3.5 that kinj ≤ 4. If Conjecture 1 holds,
we know that the level of injectivity kinj = −∞ and thus k0 = 1.

Hence, the acyclic resolution according to Theorem 5.1.4 exists and is in particular finite.
Therefore, one can easily deduce the result of Raghunathan [Rag67, Rag68a, Rag68b] in case
of the symplectic group.10

Theorem 13.4.2 (Raghunathan, 1967): If R is a commutative ring with identity and M a finitely
generated R-Γ-module, then the total cohomology⊕

q≥0

Hq (W/Γ, shΓ(M⊗R RΓ))

is a finitely generated RΓ-module.

By this we know that the cohomology groups we want to compute are finitely generated
abelian groups and have therefore by the classification theorem for finitely generated abelian
groups (see e.g. [Mun84; §4]), the form

Hq(Γ,M⊗Z ZΓ) ∼= ZbΓ ⊕
(
ZΓ/a1ZΓ ⊕ . . .⊕ ZΓ/akZΓ

)
, (13.76)

where all ai are prime powers and unique up to reordering. We discussed in Section 13.3.4
the question how to compute the cohomology in this form from the cochain complex induced
by the acyclic resolution from Theorem 5.1.4.

For practical considerations it is better to use Theorem 13.3.16 rather than Theorem 13.3.9.
Therefore, we rewrite the diagram in Figure 13.4 and get the diagram shown in Figure 13.6.

The rightmost column is the exact sequence of the acylic resolution from Theorem 13.3.8.
Analogously we can specialize the Diagram in Figure 13.5 to our situation. According to
(13.73) we get for the cohomology groups of the sheaves on the quotient:

H2(MW) ∼= H1(S3)

H3(MW) ∼= H2(S3) ∼= H1(S2) (13.77)

H4(MW) ∼= H3(S3) ∼= H2(S2) ∼= H1(S1).

Recall that this leads to the following family of exact sequences

0 H0(Sk) H0(Ak) H0(Sk−1) H1(Sk) 0
j
∗
k p

∗
k (13.78)

10Raghunathan proved this result in a more general context for arithmetic groups.
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Figure 13.6.
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and thus to (see Theorem 13.3.16)

Theorem 13.4.3: For k = 4, . . . , k0 we have

H5−k(S̃4) = H0(S̃k)/im p̃∗k

∣∣∣
H

0
(
Ãk
) = coker

(
p̃∗k

∣∣∣
H

0
(
Ãk
))

and

H5−k(S4) = H0(Sk)/im p∗k

∣∣∣
H

0
(
Ak
) = coker

(
p∗k

∣∣∣
H

0
(
Ak
)).

13.4.2. Trivial and Non-Trivial Weights

We restrict ourselves to such M which are highest weight modules. This makes some things
easier, since we know a little bit more about the invariants of such modules. In particular,
not all of them behave in the same way.

The Trivial Weight: Among these modules there is one exceptional case, namely the case
where the sheaf is associated to the trivial representation, i.e. the underlying highest weight
module M equals Mλ, where λ = 0 (see Theorem 12.3.1).

Lemma 13.4.4 (Trivial weight): LetM be the sheaf associated to a trivial representation M0 ⊗ ZΓ

andMW its restriction to the retract as in Theorem 13.4.1, then we have

ZΓ = H0(MW) = H0(A4) and H0(S3) ∼= H1(MW).

Proof. Consider the exact sequence (13.78) for k = 4:

0 H0(MW) H0(A4) H0(S3) H1(MW) 0.
j
∗
4 p

∗
4

The trivial representationM0⊗ZΓ is one dimensional and the all elements act by the identity.
Hence, we have for trivial representation

H0(MW) = (M0 ⊗ ZΓ)Γ = ZΓ.

We get analogously

H0(A4) = H0(C4, i
∗
4MW) = (M0 ⊗ ZΓ)ΓRedSquare = ZΓ.

Since (13.78) is exact we know that j∗4 is injective and thus an isomorphism onto its image,
which is the full space. Furthermore, we get by this observation that p∗4 = 0 because (13.78)
is exact. Therefore, the third map has to be an isomorphism, which proves the lemma.
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Non-Trivial Weights: Let us now consider the case where the underlying highest weight
module is of highest weight λ 6= 0. Then we know by Theorem 12.3.1 that

H0(MW) = 0. (13.79)

This leads to

Lemma 13.4.5 (Non-trivial Weight): Let M be the sheaf associated to a representation Mλ ⊗ ZΓ

with λ 6= 0 andMW its restriction to the retract as in Theorem 13.4.1, then we have

H0(MW) = 0

H0(A4) = (Mλ ⊗Z ZΓ)ΓRedSquare

H1(MW) ∼= H0(S3)/(Mλ ⊗Z ZΓ)ΓRedSquare .

Proof. The first part is Theorem 13.4.1. The second part was already used several times (see
eg. proof of Lemma 13.4.4). For the last part we look again at the exact sequence (13.74) for
k = 4, which reduces together with previous results to

0 0 (Mλ ⊗Z ZΓ)ΓRedSquare H0(S3) H1(MW) 0.
j
∗
4 p

∗
4

Thus, the last part follows immediately from exactness of this sequence.

13.4.3. Further Steps

We can in addition apply the interpretation of the occurring terms in the representation of
the stalks in terms of induced modules as we did in Section 13.3.2. We are interested in the
cohomology of the quotient, thus the induced modules e.g. in Proposition 13.3.10 are for
us only a tool, which tell us how the group action descends to the quotient. The relation
between a stalk in a point x̃ ∈W and the stalk of the associated sheaf in x = π(x̃) is giving
by taking invariants (see Lemma 13.2.6 b)). If a stalk in x̃ is given by an induced module
one needs essentially two things to compute the associated stalk in x, namely to select one
summand and to compute invariants of that summand. A priori there is no exceptional
elements among the summands in the induced module. Hence, it is somehow arbitrary
which of them to choose for the computation of invariants. It is more or less canonical to
take the summand corresponding to the neutral element. For practical computations this has
much less consequences than the representation of the related maps in SNF, which allows
to compute efficiently a basis representation of the stalks of Sk−1 if Sk and Ak are known.
Unfortunately this leads to serious problems if we describe the group action on stalks of
Sk−1, because the base change is not compatible with the group action. Not to use SNFs
leads to other problems. According to Lemma 13.3.4 the stalks of the Ãk are the direct sum
of stalks of S̃k. If we now try to write down the maps and modules as in our definition of
them in Section 13.3.1 as the direct sum of previously defined maps or modules, respectively,
and we write down the maps and modules for S̃k−1 by taking representatives in Ãk, in each
step the size of the objects with which we have to perform our operations increases. Since
we apply this recursively up to four times also the complexity of all following operations
increases, because one has to rewrite all following objects and operations in terms of Ã4 or S̃4
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13.4. Application to the Symplectic Group

respectively. This procedure makes the computations rather slow and we cannot recommend
this. Thus, we have to decide whether we want to have an easy description of bases with a
complicated computation of group actions or an easy description of the group action with a
not very handy description of the modules.

We assume that it is much better to use SNFs even if one then has to implement a complicated
group action. Here it might be useful to compute the function which computes the group
action in a similar way than we already did to compute simple group actions on a single
module (comp. e.g. Section 11.2.3).

We discussed in this last section of this thesis the issues which cause the main problems dur-
ing the coming computations. To attack these problems is not difficult, but needs a significant
amount of time. Thus, regrettably we have to restrict ourselves only to the presentation of
the methods and to postpone the computation of the cohomology groups, which was the
original goal of this thesis, to a follow up project.
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14. Résumé et Perspectives

One never notices what has been
done; one can only see what
remains to be done.

(Marie Curie)

At last we give a condensed overview on what we have done in this thesis and what is left
to be done to complete the computation of the cohomology of the symplectic group with the
methods we introduced in this thesis. We will keep it short and refer to the sections where
we already discussed several problems which occurred in this project.

14.1. Solved Problems

This thesis consists essentially of three parts.

• Computing a topological model.

• Implementing of the group action.

• Computing the cohomology groups with respect to the obtained topological model.

The first two points were solved completely during the work on this thesis. The last point
could not be solved completely but only in parts. The main results we obtained are:

Extension to the Torsion Case We extended the construction of a deformation retract of
Siegel modular varieties of McConnell and MacPherson [MM93, MM89], which in their
work only holds for neat aritmetic subgroups of the symplectic group, to arbitrary arith-
metic subgroups of finite index and thus in particular to the full group Γ = Sp2(Z),
which has torsion. To be able to handle torsion, we introduced the new notion of an or-
bicell decomposition, which is an orbifold equivalent to a classical cell decomposition.
We obtain a deformation retract of S2/Γ together with an orbicell decomposition. The
main result on this can be found in Theorem 9.2.11.

Computation of a Cell Decomposition We applied this construction of the nice1 topological
model to obtain a local description of the decomposition as well in the quotient W/Γ
as in its lift W. We can compute for each object in the decomposition of W its closure,
boundary, neighbours, and stabilizer, which are the essential building blocks for the
later constructions. The knowledge of this allows us to get a picture of the correspond-
ing elements in W/Γ. In Chapter 10 we discussed first how to compute efficiently all
these derived informations and then we gave a detailed description of the computed

1Nice means in particular locally finite, regular, compatible with the group action and fine enough.
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results. Parts of them can be found there or in the appendix of this thesis. More results
are contained in the pdf-documents included in the CD-ROM, which is attached to the
printed copy of this thesis.

Computation of the Group Action The implementation of the action of elements of the sym-
plectic group on associated highest weight modules, which we described in Chapter 11,
was much more challenging than expected. Our method returns the matrix represen-
tation in a fixed basis, which is also computed. To get both we had to apply various
results from the theory of root systems, Lie algebras, and their representations. In ad-
dition one had to decompose each given group element in a special set of generators
(see Section 11.2.3). At last we got some functions which are not only applicable to the
symplectic group but also to some other groups (see e.g. Section 11.2.4.2). To reduce
the runtime we use for example several precomputed partial results, such that it is pos-
sible to run that program also for highest weight modules beyond small ranks (see e.g.
Section 6.5). We need this e.g. to compute the invariants of highest weight modules
(see Section 11.2.5), i.e. the cohomology group of degree zero, which equals the global
sections of the corresponding sheaf.

(Orbi-)Constructible Sheaves To get an efficient method to compute the cohomology, we
are interested in in terms of the cohomology of sheaves, we extended the notion of
constructible sheaves, which is originally due to Grothendieck and his collaborators,
to an orbicell decomposition. This extension turned out to be quite powerful for the
computation of cohomology of (orbi-)local systems on a space with a nice (orbi-)cell
decomposition. Therefore, we introduced in Chapter 13 a new version of constructible
sheaves on spaces like W together with some deduced sheaves on quotients of spaces,
which we called orbi-constructible sheaves since they live on orbifolds, in a slightly
more general context, which immediately applies to our situation (comp. Section 13.4).
Furthermore, we derived some basic facts on them in Sections 13.1 and 13.2.

Resolutions The last step is the construction of two kinds of resolutions for (orbi-)construct-
ible sheaves which are the most important tools beside the construction of the decom-
position for computing the cohomology of the symplectic group. The first resolution
uses embeddings of (orbi-)cells of fixed dimension to get an acyclic resolution (see Sec-
tion 13.3.1 and therein Theorem 13.3.9). The second resolution is obtained by applica-
tion of the long exact cohomology sequence from (5.4) to several short exact sequences
used in the construction of the acyclic resolution. The malus point here is that we ob-
tain a method which works only for some of the cohomology groups of degree less or
equal to a given bound depending on the injectivity of maps j̃k (level of injectivity). We
conjecture that this bound is large enough to compute all cohomology groups.

14.2. Open Questions

First of all, we could not complete the computation of all cohomology groups, which was the
original goal of this thesis, due to the fact that many parts of this project needed longer than
estimated. Thus, we restricted this thesis more on the presentation of the tools, which can be
used for the computation than on the computation of examples. Although we could at our
current state obviously perform lots of computations by more or less step by step application
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of the functions included in our SAGE program, we decided not to include most of these
partial results to this thesis. This is due to the fact that two necessary points are missing:

• One has to show that the level of injectivity kinj < 1, such that the construction from
Section 13.3.1 works for cohomology groups of all degrees 0 ≤ q ≤ d (d is the dimension
of the space, i.e. in our example 4). We know already that kinj < d. There are two ways
to show that. One might try either to get an abstract proof in the general framework,
which we did not find up to now, or one tries to attack this question directly with the
example and computes the necessary maps (comp. the discussion in Section 13.4)

• One has to implement a suitable realization of the direct sum of stalks together with
a group action on the sum of stalks before one starts the computation of all the com-
parison maps, which is not possible at the moment (comp. Section 13.4.3). It is only
possible to plug the maps together from their building blocks by hand in some special
cases, but not in general.

We assume that these missing parts are not a real problem. We prepared the things such
that a possible follow-up study will be able to go the path we directed to the end and get all
cohomology groups. This is the first part of the larger project whose final goal is the analysis
of Hecke operators and their eigenvalues to check Harder’s conjecture (comp. Section 1.2).
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A. List of Available Commands in Our Sage
Program

In this chapter we give a list of the most important of the available commands grouped
by their modules in our SAGE program package. The less important auxiliary functions
are not stated here. In addition we state the method available in the Class Cell. For a
more detailed description we refer to the comments in the source code. According to the
SAGE programming guide lines [Tea11a], our source code has always a documentation of
the function at begin of the code of the related function with a description on the usage.

Table A.1.: Main methods from the module io.

Command Description

saveobj2file saves a SAGE object to disk.
savelist2file saves a list of SAGE objects to disk.
loadobj loads a SAGE object which is stored on disk.

Table A.2.: Main methods from the module matrix_operations.

Command Description

is_diagonal_matrix checks whether a matrix is a diagonal matrix.
expmat computes the exponential map for nilpotent matri-

ces. This is more efficient than the build in method.

Table A.3.: Main methods from the module symplectic.

Command Description

symplectic_J returns for a given integer g and a type either Jg or
J ′g (see Section 6.3.1.3)

is_symplectic returns True if the input, a Matrix or a
MatrixGroupElement, is symplectic and False oth-
erwise.

is_GSp is similar to the previous function, but checks the
input to be in in the general symplectic group.
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Table A.3.: Main methods from the module symplectic.

Command Description

symplectic2symplecticMatrix returns the matrix T , such that T t ·Jg ·T = J ′g (comp.
Lemma 6.3.4 and (11.12)).

symplectic2symplectic transfers a symplectic matrix with respect to one
sympletic form to a symplectic matrix with re-
spect to an other symplectic form using the matrix
symplectic2symplecticMatrix.

Table A.4.: Main methods from the module symplecticgrp.

Command Description

GeneratorsSymplecticGroup computes for an integer g the generators of the sym-
plectic group Spg(Z) as list of matrices.

SymplecticGroup returns the symplectic group Spg(Z) for a given in-
teger g as a SAGE MatrixGroup.

makefinitegrp reduces a (finite) MatrixGroup over Z to a
MatrixGroup over Z/NZ. By default we take N = 7,
such that for a finite subgroup of Sp2(Z) the reduc-
tion is an isomorphism .

getgroupstructure returns the structure description of a finite
MatrixGroup over a finite field using the GAP
SmallGroups Library [BEO02] (comp. Section 10.5).

getgenerators returns a list of elements generating a finite matrix
group. It works over any ring and not as the build in
method in SAGE only over finite fields.

intersectionofgroups computes the intersection of two finite MatrixGroup

objects.
quotientsystem returns a set of representative s of the quotient of two

groups.

Table A.5.: Main methods from the module cells.

Command Description

Cell the constructor for the class Cell. See Table A.8 for
its attributes and Table A.9 for its methods.

StandardCell the constructor for the class StandardCell, which is
a sub class of Cell.

is_Cell checks whether an object is an object in the class Cell
(comp. Section 10.3.2).
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Table A.5.: Main methods from the module cells.

Command Description

getmap2standard returns a matrix which maps a given cell to a stan-
dard cell (see Section 10.4.2).

getstandardform returns to a given collection of column vectors stored
as matrix the normalized form according to Sec-
tion 10.3.1.

getstabilizer computes the stabilizer of a cell as MatrixGroup ob-
ject in SAGE (see Section 10.5).

getclosure computes the closure of a cell as list of cells (see Sec-
tion 10.4).

getneighbours computes the neighbours of a cell (see Section 10.6)
listofsymplecticmatrices

fromcolumns

returns a list of symplectic 4 × 4 matrices generated
from columns of a given matrix by permutation and
multiplying with some sign (see Section 10.4.1).

listofGSpmatricesfromcolumns as above but for GSp2.
decomposeintoorbits returns a set of representatives to a given list of cells

and a group acting on that list.
RedSquare,
Vertebra, Crystal,Pyramid,
Hexagon, Square, Triangle,
DR,RR, Desargues, Reye

is the standard cell of the corresponding type.

StandardElementList is the list of standard elements.
CellList list of cells in the closure of the standard cell of type

RedSquare.
VertebraList, CrystalList,
PyramidList, HexagonList,
SquareList, TriangleList,
DRList, RRList,
DesarguesList, ReyeList

list of cells of the corresponding type in CellList.

Table A.6.: Main methods from the module cellsio.

Command Description

celloutput returns an object of type Cell with different for-
matting options (screen, latex, plot2d, plot3d,
skeleton, and graph)

savecell2file saves an object of type Cell with different formatting
options (screen, latex, plot2d, plot3d, skeleton,
and graph) to disk.

savecelllist2file saves a list of objects of type Cell with
savecell2file to disk.
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Table A.7.: Main methods from the module hwmodule.

Command Description

SimpleLieAlgebra Constructor for a simple Lie algebra (see Sec-
tion 11.2.1).

LieType returns the type of a simple Lie algebra as string.
HighestWeightModule Constructor for a highest weigh module to a given

simple Lie algebra and a highest weight (see Sec-
tion 11.2).

randomgroupelemenetbyLiealgebra returns a random element in the Lie group associ-
ated to a Lie algebra.

getdecomposition returns (essentially) the list which represents the de-
composition of a group element into its generic gen-
erators (see Theorem 11.1.1).

getdecompositionoflist does the same as the previous method but for a list
of elements.

getreprofgroupelement computes the matrix representation of a group ele-
ment on a given highest weigh module (see Theo-
rem 11.1.1).

coordinatevector2HWMelement converts a coordinate vector into an element in a
highest weight module.

invariants computes the invariants of a highest weight module
under a group element, a group or a list of group
elements.

Table A.8.: Attributes of the class Cells.

Attribute Description

_matrix contains the defining set of the cell.
_rank contains the rank of the cell (see Table 9.1.
_name contains the string which is prompted on screen if

the cell is returned.
_latex_ contains the LATEX string which is returned by the

method latex().
_cell_type contains the cell type as string.
_bd_type is equal to False for all cells we consider.
_transv contains the information on transversality according

to Table 9.1.
_map2standard contains, if known, the matrix which maps the cell

onto one of the standard elements.
_stab contains, if known, the stabilizer of the cell.
_closure contains, if known, the closure of the cell.
_nb contains, if known, the set of neighbours of the cell.
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Table A.9.: Methods of the class Cells.

Method Description

__init__ is the constructor for the class.
_repr_ returns the name of the cell stored in the attribute

_name. All SAGE objects have to have this method.
name returns the name of the cell stored in the attribute

_name.
_latex_ returns the defining set stored in the attribute

_latex_.
latex is the same as above but has a different way to exe-

cute the command.
_matrix_ returns the defining set stored in the attribute

_matrix.
matrix is the same as above but has a different way to call it.
matrix_latex returns the latex string to represent the defining set.
map2standard returns the attribute _map2standard, if known, and

computes the map otherwise before it is returned.
rename is a method to set the attribute _name to a given

value.
rename_latex is a method to set the attribute _latex_ to a given

value.
set_map2standard is a method to set the attribute _map2standard to a

given value.
set_closure is a method to set the attribute _closure to a given

value.
set_stabilizer is a method to set the attribute _stab to a given

value.
cell_type returns the attribute _cell_type.
is_boundary_type returns the attribute _bd_type.
is_transverse returns the attribute _transv.
nrows returns the number of rows of the matrix represent-

ing the cell.
ncols returns the number of columns of the matrix repre-

senting the cell.
rank returns the attribute _rank.
dim returns the dimension of the cell (see equation 9.10).
__eq__ is the method to evaluate expressions of cells with

with ==.
__ne__ is the method to evaluate expressions of cells with

with !=.
__le__ is the method to evaluate expressions with <=, i.e the

partial ordering from Corollary 9.2.6.
__ge__ is the method to evaluate expressions with >=, i.e the

partial ordering from Corollary 9.2.6.
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Table A.9.: Methods of the class Cells.

Method Description

__cmp__ is the method to evaluate comparisons of cells with
respect to the partial ordering from Corollary 9.2.6.

__mul__ returns a new cell, which is the image of the cell un-
der a given matrix or group element. This method
implements left and right multiplication by a group
element. (see Section 10.3.2.2)

__rmul__ see above.
__apply__ is essentially the same as __mul__, but allows to set

in addition the attributes _name and _latex_.
deleteclosure sets the content of the attribute _closure to None.
closure returns the attribute _closure, if it is different from

None, and otherwise computes the closure, sets the
attribute to the computed result and returns it.

boundary returns the boundary of the cell. If the closure is not
known it computes the closure first.

skeleton returns to a given integer k the set of cells in the
k-skeleton.

is_in_closure_of returns True if the cell is in the closure of an other
cell and False otherwise (see Section 10.3.2.3).

is_in_boundary_of returns True if the cell is in the boundary of an other
cell and False otherwise (see Section 10.3.2.3).

is_in_direct_boundary_of returns True if the cell is in the boundary of an other
cell and their dimension differ by one and False oth-
erwise (see Section 10.3.2.3).

deleteneighbours sets the content of the attribute _nb to None.
neighbours returns the neighbours of the cell. If no additional

parameter is set, is computes all types, otherwise
only those of some type.

deletestabilizer set the content of the attribute _stab to None.
stabilizer returns the stabilizer of the cell.
orbit returns the orbit of the cell under the group gener-

ated by a given group element. The computation
stops by default after 500 terms. There are at least or-
bits of length 12 if the element has finite order (comp.
Section 6.3.3).
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B.1. Sage Source Code from Section 10.3

Sage Source Code B.1: getstandardform.

1 def getstandardform (matr):

2 if not is_Matrix(matr):

3 raise TypeError, "matr has to be a matrix.";

4 _matr_cols = matr.columns();

5 _normed_col = [];

6 _n = matr.nrows();

7 _m = matr.ncols();

8 #Normalizing columns

9 for col in _matr_cols:

10 for i in range(_n):

11 if col[i]<0:

12 _normed_col.append((-vector(col)).list());

13 break;

14 elif col[i]==0:

15 continue;

16 else:

17 _normed_col.append(col.list());

18 break;

19 #Sorting

20 _sort_key = lambda x : tuple ([x.count(0)]+[x[i] for i in range(_n)]);

21 _sorted_list = sorted(_normed_col, key = _sort_key,reverse=True);

22 _out_list=[];

23 for vec in _sorted_list:

24 _out_list+=vec;

25 _new_matr=matrix(_m,_out_list).transpose();

26 return _new_matr;

Sage Source Code B.2: The method __mul__ in the class Cell.

1 def __mul__ (self, other):

2 if is_Matrix(other):

3 __matrix = other

4 elif is_MatrixGroupElement(other):

5 __matrix=other.matrix()

6 else:

7 try :
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8 __matrix = matrix(other)

9 except:

10 raise TypeError, "One Factor has to be a matrix or a matrix group

element";

11 __out = getstandardform((__matrix.inverse())*(self.matrix()));

12 if self._map2standard == None:

13 __out_map2std = None

14 else:

15 __out_map2std = self.map2standard()*__matrix

16 if self._stab == None:

17 __out_stab =None

18 else:

19 _stablst = [__matrix.inverse()*g*__matrix for g in self._stab]

20 __out_stab = MatrixGroup(_stablst)

21 if self._closure == None:

22 __out_closure = None

23 else:

24 __out_closure =[__matrix*c for c in self._closure]

25 __name = getname(self)

26 __latex_name = getlatexname (self)

27 return Cell (__out, name = __name, latex_name = __latex_name, cell_rank =

self._rank, cell_type = self._cell_type, transv = self._transv, bd_type

= self._bd_type, map2standard = __out_map2std, stabilizer = __out_stab

, closure = __out_closure)

Sage Source Code B.3: The class method is_in_closure_of. in the class Cell.

1 def is_in_closure_of (self, other):

2 """

3 Returns True if self is in the closure of other

4 """

5 return all([column in self.matrix().columns() for column in other.matrix()

.columns()]);

Sage Source Code B.4: The class method __cmp__. in the class Cell.

1 def __cmp__ (self, other):

2 if self == other:

3 return 0;

4 elif self.is_in_closure_of(other):

5 return -1;

6 elif other.is_in_closure_of(self):

7 return 1;

8 else:

9 return None;
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B.2. Sage Source Code from Section 10.4

Sage Source Code B.5: Function getclosure: Here a shortened version for the case that the cell is in the
boundary of the standard 4-cell is stated. So we will skip the part where the cell is transformed to a standard
cell and back again. We skip also those parts where we check whether there are precomputed results, where the
results are loaded and stored and replace them by a comment what is done.

1 def getclosure (cell_in, basedir = None, dir = ’output’):

2 #1. Attribute set?

3 if cell_in._closure != None:

4 return cell_in._closure;

5 #2. Load and return if a precomputed version possible.

6 #3. If cell_in is in boundary of C(RedSq) and the closure for C(RedSq) is

stored. Take that list and filterit for cells in closure of cell_in,

set the attributes, and store them.

7 #4. If cell_in not in the closure of C(RedSq) use getmap2standard to

transform it to a standard cell

8 #5. Start with the computation in case of a standard cell

9 _n_rows = cell_in.nrows()

10 _sgn = [];

11 for sgn in tuples([-1,1],_n_rows):

12 d=diagonal_matrix(sgn)

13 if (d not in _sgn) and ( -d not in _sgn):

14 _sgn.append(d);

15 _sgn_mat_symp = [m for m in _sgn if is_symplectic(m)]

16 _sgn_mat_non_symp = [m for m in _sgn if not is_symplectic(m)]

17 _out=[ ]

18 for cell in StandardElementList:

19 if cell.dim() > cell_in.dim():

20 continue

21 print "* Elements of type %s" %cell.cell_type();

22 _i = getindex(cell)

23 cell_list = [ cell._matrix.matrix_from_columns(arr) for arr in

arrangements(range(cell.ncols()),_n_rows)];

24 cell_list = [ m for m in cell_list if m.det().abs()==1]

25 cell_list0 = cell_list[:]

26 cell_list_s =[cell_list.pop(cell_list.index(m)) for m in cell_list0 if

is_symplectic(m)]

27 cell_list_n = cell_list[:]

28 _cell_matrix_list =[]

29 print " - Matrices in Sp: Part 1 (symp)";

30 for m in cell_list_s:

31 _new_cell = m.inverse()*cell._matrix

32 for d in _sgn_mat_symp:

33 _new_cell_d = getstandardform(d*_new_cell)

34 if all([column in _new_cell_d.columns() for column in cell_in.

_matrix.columns()]):

35 if _new_cell_d not in _cell_matrix_list :
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36 _cell_matrix_list.append(_new_cell_d)

37 __out_map2std = m*d

38 _NC = Cell (_new_cell_d, name = cell._cell_type+str(_i),

latex_name = cell._latex_+’_{%s}’%_i, cell_rank =

cell._rank, cell_type = cell._cell_type, transv =

cell._transv, bd_type = cell._bd_type, map2standard =

__out_map2std)

39 _out.append(_NC)

40 _i += 1

41 print " - Matrices in Sp: Part 2 (non symp.)";

42 for m in cell_list_n:

43 _new_cell = m.inverse()*cell._matrix

44 for d in _sgn_mat_non_symp:

45 _new_cell_d = getstandardform(d*_new_cell)

46 __out_map2std = m*d

47 if is_symplectic(__out_map2std):

48 if all([column in _new_cell_d.columns() for column in

cell_in._matrix.columns()]):

49 if _new_cell_d not in _cell_matrix_list:

50 _cell_matrix_list.append(_new_cell_d)

51 _NC = Cell (_new_cell_d, name = cell._cell_type+str(

_i), latex_name = cell._latex_+’_{%s}’%_i,

cell_rank = cell._rank, cell_type = cell.

_cell_type, transv = cell._transv, bd_type = cell

._bd_type, map2standard = __out_map2std)

52 _out.append(_NC)

53 _i += 1

54 # Postprocessing: If the cell was not in the closure of C(RedSq) transform

back. Save to disk, set attributes

55 return cell_in._closure;

‘
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Sage Source Code B.6: Function listofsymplecticmatricesfromcolumns: ...

1 def listofsymplecticmatricesfromcolumns (mat,symplectic_type=0):

2 """

3 Returns a list of symplectic matrice which are build out of column vectors

of mat (up to sign)

4 """

5

6 _n_rows = mat.nrows();

7

8 sgn_mat_list = [diagonal_matrix(d) for d in tuples([-1,1],_n_rows)]
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9 _sgn = sgn_mat_list[:]

10 sgn_s = [sgn_mat_list.pop(sgn_mat_list.index(m)) for m in _sgn if

is_symplectic(m, symplectic_type = symplectic_type)]

11 sgn_ns = sgn_mat_list[:]

12

13 print "Computing list of matrices for possible surrounding the top

dimensional cell\n"

14 #print " This might take some time. Please be patient-";

15 _tmp = [mat.matrix_from_columns(ar) for ar in arrangements(range(mat.ncols

()),_n_rows)]

16 print " * All %sx%s matrices from columns %10s" % (_n_rows,_n_rows,len(

_tmp))

17 _tmp = [m for m in _tmp if m.rank()==_n_rows]

18 print " * All %sx%s matrices of full rank from columns %10s" % (_n_rows,

_n_rows,len(_tmp))

19 print " --> split list in symplectic and non symplectic";

20 _tmp_0 = _tmp[:]

21 list_s =[_tmp.pop(_tmp.index(m)) for m in _tmp_0 if is_symplectic(m,

symplectic_type = symplectic_type)];

22 list_n = _tmp[:];

23 del _tmp;

24 print " --> done";

25 print "Add symplectic products to list"

26 out = [d*m for m in list_s for d in sgn_s]

27 print " --> done\n";

28 print "Start to check symplecticity for the remaining cases.\n";

29 for d in sgn_ns:

30 for m in list_n:

31 md= d*m

32 if is_symplectic(md, symplectic_type = symplectic_type):

33 out.append(md)

34

35 print " Done\n"

36 print " * Found number of symplectic %sx%s matrices from columns is %10s\n

" % (_n_rows,_n_rows,len(out))

37

38 return out

Sage Source Code B.7: Function getneighbours: We abbreviate the part of the function, which is related to
load and return already computed lists of neighbours.

1 def getneighbours(cellin, type=None, basedir = BASEPATH, dir = ’output/cells/

neighbours’):

2

3 if not is_Cell(cellin):

4 raise ValueError, "%s has to be a cell" %cellin

5

6 #1. Attribute set?
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7 if cellin._nb!=None:

8 if type == None:

9 return cellin._nb

10 else:

11 out = [c for c in cellin._nb if c.cell_type()==type]

12 return out

13 #2. Load and return if a precomputed version possible.

14 #3.Start with the computation

15 if type != None and cellin.cell_type()==type:

16 return []

17 elif type == None:

18 print "======================================================"

19 print "| Compute List of symplectic matrices from columns "

20 sympMats = [m.inverse() for m in listofsymplecticmatricesfromcolumns(

cellin.matrix())]

21 print "| --->done"

22 print "======================================================\n"

23 out =[]

24 print "====================================================="

25 print "| * Start loop over cells"

26 for c in CellList:

27 if cellin.dim() >= c.dim():

28 continue

29

30 for m in sympMats:

31 _m = c.apply(m)

32 if cellin.is_in_closure_of(_m):

33 if _m not in out:

34 out.append(_m)

35 print "\n";

36 else:# different types

37 stdC = [c for c in StandardElementList if c.cell_type()== type][0]

38 d = stdC.dim();

39 print "d=%s" %d;

40 if cellin.dim() >= d:

41 print "E"

42 out = []

43 # Compute List of symplectic matrices from columns

44 sympMats = listofsymplecticmatricesfromcolumns(cellin.matrix())

45 print "| --->done"

46

47 # Start loop over cells"

48 out = []

49 for m in sympMats:

50 _m = stdC.apply(m)

51 if cellin.is_in_closure_of(_m):

52 if _m not in out:

53 out.append(_m)
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54 print "| --> Done";

55 print "====================================================="

56

57 # Write elements

58

59 #Set attributes

60 if type== None:

61 setattr(cellin, ’_nb’, out)

62

63 # Save neighbours for later use

64 saveobj2file (out, cellin.name()+’neighbours-’+’%s’%type , basedir =

basedir, dir = dir)

65 print ’---> Done\n’

66

67 return out

B.4. Sage Source Code from Section 11.2

Sage Source Code B.8: negative_identity.

1 def negative_identity(L, step=0, sparse=True, permutation_list=[],

negative_list=[], positive_list=[], base_ring=QQ):

2 if permutation_list == []:

3 if negative_list == []:

4 negative_list = negativegenericgroupgeneratorsfunctions(L,base_ring

=base_ring)

5 if positive_list == []:

6 positive_list = positivegenericgroupgeneratorsfunctions(L,base_ring

=base_ring)

7 permutation_list = genericpermutations(L,negative_list=negative_list,

positive_list=positive_list)

8

9 _ncols = permutation_list[0][1].ncols()

10

11 _tmp = [[[i,j],g1*g2] for i,g1,p1 in permutation_list for j,g2,p2 in

permutation_list]

12 for i in range(len(_tmp)):

13 if all([_tmp[i][1][j,j]==1 for j in range(step)]) and _tmp[i][1][step,

step]==-1:

14

15 return _tmp[i][1]

16 _tmp =[(idx1+idx2, g1*g2) for idx1,g1 in _tmp for idx2,g2 in _tmp if

is_diagonal_matrix(g1*g2)]

17 for i in range(len(_tmp)):

18 if all([_tmp[i][1][j,j]==1 for j in range(step)]) and _tmp[i][1][step,

step]==-1:
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19

20 return _tmp[i][1]

Sage Source Code B.9: actionmatrixofUEAelement.

1 def actionmatrixofUEAelement(UEAel,HWM, base_ring=QQ, sparse=True):

2

3 entries = dict();

4 _B = [gap.ExtRepOfObj(b) for b in HWM.Basis()]

5 _dim = len(_B)

6 _Null = (0*_B[0]).ExtRepOfObj()

7 j=0

8 for b in _B:

9 z = gap.POW(UEAel,b)

10 z_ = z.ExtRepOfObj()

11

12 if z_!=_Null:

13 i = 1

14 _len = len(z_)

15 while i < _len:

16 entries[(int(z_[i,1])-1,j)] = int(z_[i+1])

17 i+=2

18 j+=1

19 return matrix(base_ring, _dim, entries, sparse=sparse)

Sage Source Code B.10: getreprofgroupelement.

1 def getreprofgroupelement(el, HWM, negative_list=[], positive_list=[],

HWMactiongenerators=[], permutation_list=[], row_position_list=[],

UEA_generators=[], base_ring=QQ, sparse=True):

2 if el==el.parent().one_element():

3 _dim = HWM.Dimension()

4 return identity_matrix(base_ring, _dim, sparse=sparse)

5

6 L=HWM.LeftActingAlgebra()

7

8 if negative_list == []:

9 negative_list = negativegenericgroupgeneratorsfunctions(L,base_ring=

base_ring)

10 if positive_list == []:

11 positive_list = positivegenericgroupgeneratorsfunctions(L,base_ring=

base_ring)

12 if permutation_list == []:

13 permutation_list = genericpermutations(L,negative_list=negative_list,

positive_list=positive_list)

14 if row_position_list == []:

15 row_position_list = genericrowoperationdict(L, negative_list=

negative_list)

16 if UEA_generators == []:
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17 UEA_generators = latticegeneratorsinUEA(L)

18 if HWMactiongenerators == []:

19 HWMactiongenerators = genericgroupgeneratorsfunctionsonHWM (HWM,

base_ring=base_ring, sparse=sparse)

20 _dec = getdecomposition(el,L,collection=[], negative_list = negative_list,

positive_list = positive_list, permutation_list = permutation_list,

row_position_list = row_position_list, base_ring=base_ring, sparse=

sparse)

21 _mat = prod([HWMactiongenerators[ref[0]](ref[1]) for ref, mat in _dec])

22 return _mat

Sage Source Code B.11: rowpermutation.

1 def rowpermutation(mat,L, step=0, collection=[], negative_list=[],

positive_list=[],permutation_list=[], base_ring=QQ, sparse=True):

2 _out=mat

3 # Generate possibly non existing lists

4 if permutation_list == []:

5 if negative_list == []:

6 negative_list = negativegenericgroupgeneratorsfunctions(L,base_ring

=base_ring)

7 if positive_list == []:

8 positive_list = positivegenericgroupgeneratorsfunctions(L,base_ring

=base_ring)

9 permutation_list = genericpermutations(L,negative_list=negative_list,

positive_list=positive_list)

10 # Permutations

11 _collect = collection[:]

12 _len = len(permutation_list)

13 _perm_dict = dict([[p_j,i] for i,m,p in permutation_list for p_j in p])

14 _col = mat.column(step)

15 _min = 0

16 _cntr = 0

17 _cntr_min = 0

18 for c_i in _col[step:]:

19 if c_i!= 0:

20 if _min==0 or abs(c_i)<abs(_min):

21 _min = c_i

22 _cntr_min = _cntr

23 _cntr+=1

24 _p = (step,step+_cntr_min)

25 if _p == (step,step):

26 if _out[step,step] < 0:

27 _out = negative_identity(L, step=step, sparse=sparse,

permutation_list=permutation_list, negative_list=negative_list,

positive_list=positive_list, base_ring=base_ring)*_out

28 append_negative_identity(L,_collect, step=step, sparse=sparse,

permutation_list=permutation_list,negative_list=negative_list,
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positive_list=positive_list,base_ring=base_ring)

29 return [_out, _collect]

30 _i = _perm_dict[_p]

31 _perm_mat = permutation_list[_i][1]

32 _out = _perm_mat * _out

33

34 _collect.append([[_i, -1], negative_list[_i](-1)])

35 _collect.append([[_i+_len, 1], positive_list[_i](1)])

36 _collect.append([[_i, -1], negative_list[_i](-1)])

37 #Give the right sign

38 if _out[step,step] < 0:

39 _out = negative_identity(L, step=step, sparse=sparse, permutation_list=

permutation_list, negative_list=negative_list, positive_list=

positive_list, base_ring=base_ring)*_out

40 append_negative_identity(L,_collect, step=step, sparse=sparse,

permutation_list=permutation_list,negative_list=negative_list,

positive_list=positive_list,base_ring=base_ring)

41 return [_out, _collect]

Sage Source Code B.12: div_min.

1 def div_min(div,n):

2 try:

3 div=int(div);

4 n=int(n)

5 except:

6 try:

7 div=float(div);

8 n=float(n);

9 except:

10 raise ValueError, "arguments of div_min has to be integers or

floats"

11 if div== 0:

12 raise ZeroDivisionError, "Division by zero"

13 if n==0:

14 return [0,0]

15 if abs(n)<abs(div):

16 raise ValueError, "div>n";

17 _out= divmod(n,div)

18 _out = [-1*_out[0],_out[1]]

19

20 if abs(_out[1] )> abs(div/2):

21 _out = [_out[0]-1,_out[1]-div];

22

23 return _out
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Sage Source Code B.13: rowtransformation. To abbreviate the code we only give the version for R = Z,
which raises an error in some cases, otherwise the variable _sgn has to be handled in a different way.

1 def rowtransformation (mat,L, step=0, collection=[], negative_list=[],

positive_list=[], permutation_list=[],row_position_list=[], base_ring=QQ,

sparse=True):

2 # Generate possibly non existing lists

3 if negative_list == []:

4 negative_list = negativegenericgroupgeneratorsfunctions(L,base_ring=

base_ring)

5 if positive_list == []:

6 positive_list = positivegenericgroupgeneratorsfunctions(L,base_ring=

base_ring)

7 if permutation_list == []:

8 permutation_list = genericpermutations(L,negative_list=negative_list,

positive_list=positive_list)

9 if row_position_list == []:

10 row_position_list = genericrowoperationdict(L, negative_list=

negative_list)

11

12 _collect = collection[:]

13 _out_mat = mat

14 _len = mat.nrows()

15 _len_n = len(negative_list)

16

17 for i in range(step+1,_len ):

18 _a = _out_mat[step,step]

19 _n = _out_mat[i,step]

20

21 if _n == 0:

22 continue;

23 _sgn = row_position_list[i][(i,step)][1]

24 if abs(_sgn)!=1:

25 raise ValueError, "Entries in generators different from +-1";

26 _cntr = _sgn*( div_min(_a,_n)[0])

27 _i = row_position_list[i][(i,step)][0]

28 _row_mat = negative_list[_i](_cntr)

29 _out_mat = _row_mat*_out_mat

30 _collect.append([[_i,-_cntr],negative_list[_i](-_cntr)])

31 _out = [_out_mat,_collect]

32 # Permute Elements

33 _out = rowpermutation (_out[0], L,step=step, collection=_out[1],

negative_list=negative_list, positive_list=positive_list,

permutation_list=permutation_list, base_ring = base_ring, sparse=

sparse)

34 _collect = _out[1]

35 _out_mat = _out[0]

36 return _out
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Sage Source Code B.14: The function getdecomposition, which computes the whole decomposition of a
given matrix mat with respect to generic Lie algebra generators coming from the Lie algebra L.

1 def getdecomposition (mat, L, collection=[], negative_list=[], positive_list

=[], permutation_list=[],row_position_list=[], base_ring=QQ, sparse=True):

2 if not is_Matrix(mat):

3 if not is_MatrixGroupElement(mat):

4 raise TypeError, "Object to decompose has to be a matrix or a

matrix group element."

5 else:

6 mat = mat.matrix();

7 #Trivial Case

8 if mat == mat.parent().one_element():

9 return collection

10 # Generate non existing lists

11 if negative_list == []:

12 negative_list = negativegenericgroupgeneratorsfunctions(L,base_ring=

base_ring)

13 if positive_list == []:

14 positive_list = positivegenericgroupgeneratorsfunctions(L,base_ring=

base_ring)

15 if permutation_list == []:

16 permutation_list = genericpermutations(L,negative_list=negative_list,

positive_list=positive_list)

17 if row_position_list == []:

18 row_position_list = genericrowoperationdict(L, negative_list=

negative_list)

19

20 _len = len(negative_list)

21 _collect = collection[:]

22 _out = [mat, _collect]

23 print ’Transforming to upper triangular matrix:\n Please wait!\n\n’;

24 for step in range(LieType(L)[1]):

25 _out = rowpermutation(_out[0], L, step=step, collection=_out[1],

negative_list=negative_list, positive_list=positive_list,

permutation_list=permutation_list, base_ring=base_ring, sparse=

sparse)

26 while not is_zeroed(_out[0], step=step):

27 _out = rowtransformation(_out[0], L, step=step, collection=_out[1],

negative_list=negative_list, positive_list=positive_list,

permutation_list=permutation_list, row_position_list=

row_position_list, base_ring=base_ring, sparse=sparse)

28

29 _mat_out = _out[0]

30 _collect = _out[1]

31 print "Eliminating elements in upper triangular matrix:\n Please wait!\n\n

"

32 for m in row_position_list:

33 _keys = m.keys();
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34 if len(_keys)>0:

35 for k in _keys:

36 _entry = _mat_out[k[1],k[0]];

37 if _entry !=0:

38 _idx=m[k][0]

39 _sgn=m[k][1]

40 if abs(_sgn) != 1:

41 raise ValueError, "Entries in generators

different from +-1";

42 _mat_out = positive_list[_idx](-_sgn*_entry)*_mat_out

43 _collect.append([[_idx+_len, _sgn*_entry],

positive_list [_idx] (_sgn*_entry)])

44 if _mat_out!= _mat_out.parent().one_element():

45 print _mat_out;

46 print ’ERROR’

47 return None

48 print ’Decomposition succesful’;

49 return _collect

Sage Source Code B.15: The function getgenerators

1 def getgenerators (G, check=False):

2

3 if check:

4 try:

5 _H = G[:]

6 for _g1 in G:

7 for _g2 in G:

8 _g12 = _g1*_g2

9 _H.remove(_g12)

10 _H.append(_g12)

11 except:

12 print "Set is not closed under multiplication\n Therefore, the

output is the set itself and NOT a set of generators"

13 return G

14

15 __G = G[:]

16

17 _id = __G[0].parent().one()

18 _gen = []

19 tmp = []

20 if _id in __G:

21 tmp.append(_id)

22 __G.remove(_id)

23 if -_id in __G:

24 _gen.append(-_id)

25 tmp.append(-_id)

26 __G.remove(-_id)

222



B.4. Sage Source Code from Section 11.2

27

28 while __G!=[]:

29 #take 1st element

30 _g = __G.pop()

31 _gen.append(_g)

32 tmp.append(_g)

33 _gprod =_g

34 if __G==[]:

35 return _gen

36 # remove powers of th element

37 cnt = 0

38 while _gprod != _id:

39 if cnt > max_cnt:

40 print "Computation of generators failed."

41 raise ValueError, "Maximal recursion depth exceeded. Pobable

there is an element of infinite order"

42 cnt=cnt+1

43 _gprod = _gprod * _g

44 if _gprod in __G:

45 __G.remove(_gprod)

46 if _gprod not in tmp:

47 tmp.append(_gprod)

48 if __G==[]:

49 return _gen

50

51 for _h1 in tmp:

52 for _h2 in tmp:

53 _h12 = _h1*_h2

54 if _h12!=_id:

55 if _h12 not in tmp:

56 tmp.append(_h12)

57 if _h12 in __G:

58 __G.remove(_h12)

59 if __G==[]:

60 return _gen

61 return _gen

Sage Source Code B.16: The function coordinatevector2HWMelement

1 def coordinatevector2HWMelement (v, M):

2 _bas = M.Basis()

3 _v = 0*_bas[1]

4 _cnt =1

5 for vi in v:

6 _v=_v+vi*_bas[_cnt]

7 _cnt = _cnt+1

8 return _v
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Sage Source Code B.17: The function Invriants, which computes the invariants of a given highest weight
modules and a group.

1 def invariants(HWM, Grp, only_generators= True, in_type=0, negative_list=[],

positive_list=[], HWMactiongenerators=[], permutation_list=[],

row_position_list=[], UEA_generators=[], base_ring=QQ, sparse=True):

2

3 print "* Check Input and convert to list of matrices"

4 V = VectorSpace(base_ring,HWM.Dimension())

5 if isinstance(Grp, list):

6 if Grp==[]:

7 return V

8 elif is_Matrix(Grp[0]):

9 pass

10 _G = Grp[:]

11 elif is_MatrixGroupElement(Grp[0]):

12 _G = [g.matrix() for g in Grp]

13 else:

14 raise TypeError, "Elements in the list has to be a matrix or a

matrix group element"

15 elif is_MatrixGroup(Grp):

16 if not Grp.is_finite():

17 raise NotImplementedError, "Is only implemented for finite Groups"

18 else:

19 _G = [g.matrix() for g in Grp]

20 else:

21 raise TypeError, "Input has to be either a MatrixGroup or a list of

matrices or matrix group elements."

22

23 if only_generators:

24 print "* Compute List of Generators"

25 #check has to be false since some of the sets are not invariant under

the group.

26 _G = getgenerators(_G,check=False)

27 print " --> Done"

28 if in_type == 0:

29 print "* Coverting matrices to the right type."

30 _G = [symplectic2symplectic(g, type_from=0,type_to=1) for g in _G]

31 print " Number of generators%s"% len(_G)

32 print " -> Done"

33

34 print "* Precompute list related to HWMs if not known"

35

36 L=HWM.LeftActingAlgebra()

37 if negative_list == []:

38 negative_list = negativegenericgroupgeneratorsfunctions(L,base_ring=

base_ring)

39 if positive_list == []:
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40 positive_list = positivegenericgroupgeneratorsfunctions(L,base_ring=

base_ring)

41 if permutation_list == []:

42 permutation_list = genericpermutations(L,negative_list=negative_list,

positive_list=positive_list)

43 if row_position_list == []:

44 row_position_list = genericrowoperationdict(L, negative_list=

negative_list)

45 if UEA_generators == []:

46 UEA_generators = latticegeneratorsinUEA(L)

47 if HWMactiongenerators == []:

48 HWMactiongenerators = genericgroupgeneratorsfunctionsonHWM (HWM,

base_ring=base_ring, sparse=sparse, UEA_generators=UEA_generators)

49

50 print " Have to handle %s elements" %len(_G)

51 cnt =1

52 for g0 in _G:

53 print " * Start with element %s" %cnt

54 g = getreprofgroupelement(g0, HWM, negative_list = negative_list,

positive_list = positive_list, HWMactiongenerators =

HWMactiongenerators, permutation_list = permutation_list,

row_position_list = row_position_list, UEA_generators=[], base_ring

= base_ring, sparse = sparse)

55

56 id = g.parent().one_element()

57 m = g-id

58 mk = m.right_kernel()

59 if mk == V.zero_submodule():

60 return V.zero_submodule()

61 V = V.intersection(mk)

62

63 if V==V.zero_submodule():

64 return V

65 cnt=cnt+1

66

67

68 print ’ --> Done’

69

70 return V
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C. List of Files on the CD-ROM

We included in the printed copy of this thesis a CD-ROM with the complete source code of
the used SAGE functions and objects and some additional tables with computational results,
which we did not include in the printed version due to their size.

In the folder sagesource on finds the following files:

• __init__.py: Has to be there by Python development rules and controls the import of
our package.

• all.py: Lists all SAGE commands which are available in the package without referring
to the module, i.e. file, in which they are contained. Commands listed in all.py are
accessible directly, those which are not listed via filename.command.

• cells.py: This is the most important file for the computations related to cells, their
closures, neighbours, stabilizers etc.. It contains in particular the definition of the class
Cell, which is used for the description of cells in the program.

• hwmodule.py: This module bundles all things related to the computations of highest
weight modules and group actions on them (see also Section 11.2).

• cellsio.py: This module contains the functions which are used to save cells or lists of
cells to a file as well as the function which defines several output forms for cells like
matrix or graph.

• io.py: Here general function related to the reading and writing of objects from/to disk
are defined. These functions are for example used to load precomputed results.

• matrix_operations.py: Contains the two functions is_diagonal_matrix and expmat.

• symplectic.py: This module contains the functions which check whether matrices are
symplectic and the function which converts different realisations of symplectic groups
into another realisation (see Section 6.3.1.3).

• symplecticgrp.py: This module contains the functions GeneratorsSymplecticGroup

and SymplecticGroup as well as some additional function for groups and their struc-
ture.

In the folder data there are the following files:

• cells_in_closure_of_RedSq.pdf (52 pages): A list of all cells in the closure of the
standard 4-cell RedSquare. We list these cells grouped by their type. In addition
we included for each cell the defining set, i.e. the collection of column vectors which
determines the cell according to Sections 8.4 and 9.1, and a matrix which maps the cell
to a standard cell in Σ.
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• stabilizers.pdf (137 pages): Here one finds for each cell in the closure of the standard
cell RedSquare its stabilizer. The stabilizers are stated as the list of their elements
which are represented by 4× 4 matrices.

• intersections.pdf (20 pages):

• neighbours.pdf (10 pages): This file contains for all standard cells in Σ, grouped by
the type, the cells in the neighbourhood. The neighboured cells are represented by their
defining sets.

• modules.pdf (66 pages): We list the PBW bases for all highest weight modules of weight
λ = (λ1, λ2) for the symplectic group for λ1 ≤ 5 and a collection of λ2 ≥ 0.
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x̃,ỹ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

Φx,y (map) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
π (projection) . . . . . . . . . . . . . . . . . . . . . . 10, 140
π̃ (projection) . . . . . . . . . . . . . . . . . . . . . . 58, 140
Πg (group) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Pλ (Ryshkov polyhedron) . . . . . . . . . . . . . . 44
P (partition) . . . . . . . . . . . . . . . . . . . . . . . . . . .152
PG (partition) . . . . . . . . . . . . . . . . . . . . . . . . . 160
PQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
PQd

>0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
PR(X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Ψi,γ (isomorphism) . . . . . . . . . . . . . . . 161, 163
PSpg(R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Pyramid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
P(Zd) (powerset) . . . . . . . . . . . . . . . . . . . . . . . 47

Q

Q (quadratic form) . . . . . . . . . . . . . . . . . . . . . 38
Q (rational numbers) . . . . . . . . . . . . . . . . . xxiv
Q8 (Quaternionic group) . . . . . . . . . . . . 20, 87
Qd (symmetric quadratic forms) . . . . . . . . 39

245



Bibliography

Qd
>0 (pos. def. quadratic forms) . . . . . . . . 39

Qd
≥0 (pos. semidef. quadratic forms) . . . 39

Q(ζk) (Cyclotomic filed) . . . . . . . . . . . . . . . . 17

R
R (real numbers) . . . . . . . . . . . . . . . . . . . . . xxiv
R (ring/euclidean ring) . . . . . . . . . . . . . 8, 113
R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
r (retraction) . . . . . . . . . . . . . . . . . . . . . . . . . . 140
R(X) (cone) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
rΓ (retraction) . . . . . . . . . . . . . . . . . . . . . . . . . 140
Ri (rational boundary component) . . . . . 56
rank (X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
rd, rd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
RedSquare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
resUF (restriction map) . . . . . . . . . . . . . . . 156
Reye . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Rg (right action) . . . . . . . . . . . . . . . . . . . . . . . . 39
RΓ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
ρg,0, ρ0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
rk,x̃ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
R

+ (positive real numbers) . . . . . . . . . . . xxiv
RR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

S
S(X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Sd (symmetric group). . . . . . . . . . . . . . . . . . .44
Sg (Siegel upper half-space. . . . . . . . . . . . .14
SheavesX (category of sheaves) . . . . . . . 139
shΓ (functor) . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Σ (standard elements) . . . . . . . . . . . . . . . . . . 53
σ (permutation) . . . . . . . . . . . . . . . . . . . . . . . . 44
Σ∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
σδ (cell) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
S̃k, Sk (sheaf) . . . . . . . . . . . . . . . . . . . . . . . . 168 f.
Sk(X ) (k-skeleton) . . . . . . . . . . . . . . . . . . . . . . . 6
Spg(R) (symplectic group) . . . . . . . . . . . . . 12
Square . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
SSNF
i,k,x̃ · . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

T
( )t (transposed) . . . . . . . . . . . . . . . . . . . . . . xxiv
Triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
TSNF
i,k,x̃ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

U
U(x),U(σ) (star set) . . . . . . . . . . . . . . . . . . . 155

U(g) (universal enveloping algebra) . . . 106
Ukσ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .170
Uki := UkXi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Ux (open neighbourhood) . . . . . . . . . . . . . 141

V

v0 (maximal vector) . . . . . . . . . . . . . . . . . . . . 29
valP (valid pairs) . . . . . . . . . . . . . . . . . . . . . . 158
valiP (valid pairs) . . . . . . . . . . . . . . . . . . . . . . 158
vcd (Γ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10, 145
Vertebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
V (λ) (weight module) . . . . . . . . . . . . . . . . . . 29
V(Q) (Voronoı̈ cone) . . . . . . . . . . . . . . . . . . . . 44
V (stand. repr.) . . . . . . . . . . . . . . . . . . . . 31, 113
VR (stand. repr.) . . . . . . . . . . . . . . . . . . . . . . . 31

W

W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
w-ConstX (category) . . . . . . . . . . . . . . . . . . 152
W/Γ (deformation retract) . . . . . . . . . . . . . 58
WΓ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
W
∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

W∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

X

X (topological space) . . . . . . . . . . . . . . . . . . . . 2
x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiv
X(F ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
X(Q,F ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
X(R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
xα . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Xα . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Xα(T ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
XG (symmetric space) . . . . . . . . . . . . . . . . . . . 9(
x̃σ
)
σ∈P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Y

y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiv
Yα . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
yα . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Yα(T ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Z

Z (integers) . . . . . . . . . . . . . . . . . . . . . . . . . . .xxiv

246



SYMBOLS

z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiv
ζ(s) (Riemann ζ-function) . . . . . . . . . . . . . . 15
ζk (k-th root of unity) . . . . . . . . . . . . . . . . . . . 17
ZΓ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9, 141

247



Bibliography

Index of Persons

A

Niels Hendrik Abel. . . . . . . . . . . . . . . . . . . . .10
Michael Artin . . . . . . . . . . . . . . . . . . . . . . . . . 150
Avner Ash . . . . . . . . . . . . . . . . . . . . . . . . . xix, 39

B

Christina Birkenhake . . . . . . . . . . . . . . . . . . . 16
George David Birkhoff . . . . . . . . . . . . . . . . . 27
Armand Borel . . . . . . . . . . . . . . . . . . . . . . . .7, 10
Glen E. Bredon . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Reinier Broker . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Alan Brownstein . . . . . . . . . . . . . . . . . . . . . xviii
Balz Bürgisser . . . . . . . . . . . . . . . . . . . . . . 15, 85

C

Marcus Porcius Cato Maior . . . . . . . . . . . . . . 2
Claude Chevalley . . . . . . . . . . . . . . . . . . . . 7, 26
Marcus Tullius Cicero . . . . . . . . . . . . . . . . . . 65
Harold Scott MacDonald Coxeter . . . . . . .43

D

Diophantus of Alexandria . . . . . . . . . . . . . . 38

E

Benno Eckmann . . . . . . . . . . . . . . . . . . . . . . . 143
Philippe Elbaz-Vincent . . . . . . . . . . . . . . . . xix

F

Pierre de Fermat . . . . . . . . . . . . . . . . . . . . . . . 38
Jens Franke . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi
Eberhard Freitag (b.1942) . . . . . . . . . . . . . . . 11
William Fulton . . . . . . . . . . . . . . . . . . . . . . . . . 21

G

Herbert Gangl . . . . . . . . . . . . . . . . . . . . . . . . . xix
Carl-Friedrich Gauß . . . . . . . . . . . . . . . . 38, 40
Gerard van der Geer . . . . . . . . . . . . . . xv, xvii
Roe Goodman . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Mark Goresky . . . . . . . . . . . . . . . . . . . . . . . . . 151
Erhard Gottschling . . . . . . . . . . . . . . . . . . . . . 36
Alexander Grothendieck . . . . . . . iv f., 150 ff.
Paul E. Gunnells . . . . . . . . . . . . xv, xviii f., 50

H

Günter Harder . . . . . . . . . . . . . . . . . . . . xv ff., 2
Harish-Chandra . . . . . . . . . . . . . . . . . . . . . . . . . 7
Joe Harris . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Alan Hatcher . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Charles Hermite . . . . . . . . . . . . . . . . . . . . 38, 43
J. William Hoffman. . . . . . . . . . . . . . . . . . .xviii
Hypsikles of Alexandria . . . . . . . . . . . . . . . . 38

I

Birger Iversen . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

K

Masaki Kashiwara. . . . . . . . . . . . . . . . . . . . .150
Helmut Klingen . . . . . . . . . . . . . . . . . . . . . . . . 11
Bertram Kostant . . . . . . . . . . . . . . . . . . . 27, 106

L

Joseph-Louis de Lagrange . . . . . . . . . . 38, 46
Herbert Lange . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Kristin Lauter . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Ronnie Lee. . . . . . . . . . . . . . . . . . . . . .xvii ff., 53
Adrien-Marie Legendre . . . . . . . . . . . . . . . . 38

M

Saunders MacLane . . . . . . . . . . . . . . . . . . . . . . 2
Robert MacPherson . . . . . . . . . . . . . . . iii f., xvi
William S. Massey . . . . . . . . . . . . . . . . . . . . . . . 2
Mark McConnell . . . . . . . . . . . . . . . . . iii f., xvi
Hermann Minkowski . . . . . . . . . . . . . . . 35, 40
David Bryant Mumford . . . . . . . . . . . . . . . . 16

O

Takayuki Oda . . . . . . . . . . . . . . . . . . . . . . . . xviii

P

Phaedrus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
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