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This thesis is concerned with the application of ideas from optimal transport to jump
processes. The first chapter gives an introductory survey of the topics of this the-
sis. The later chapters are each self contained and treat results of different flavours.
Chapter 2 deals with a notion of Ricci curvature that applies to finite Markov chains.
The results presented here have been obtained in collaboration with Jan Maas and
have been published in [EM12]. Chapter 3 deals with a gradient flow interpretation of
evolution equations driven by non-local Lévy operators. Most of the results presented
here have been published in the preprint [Erb12].
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Summary

In the first part of this thesis, we present a new notion of Ricci curvature that applies
to finite Markov chains. This notion relies on geodesic convexity of the entropy and
is analogous to the one introduced by Lott–Villani and Sturm for geodesic metric
measure spaces. In order to apply to the discrete setting the role of the L2-Wasserstein
distance is taken over by a different metric W on the space of probability measures
having the property that the continuous time Markov chain is the gradient flow of
the entropy.

Using this notion of Ricci curvature we prove discrete analogues of fundamental
results by Bakry–Émery and Otto–Villani. In particular, we show that Ricci curva-
ture bounds imply a number of functional inequalities for the invariant measure of
the Markov chain. These include a modified logarithmic Sobolev inequality and a
Talagrand-type transport inequality involving the distance W.

Moreover, we prove that Ricci curvature bounds are stable under tensorisation. As
a special case we obtain the sharp Ricci curvature bound for the simple random walk
on the discrete hypercube {0, 1}n.

In the second part, we take a similar approach towards jump processes on Rd. We
introduce a new transport distance W between probability measures on Rd that is
built from a jump kernel J(x,dy) of Lévy measures. It is defined via a non-local
variant of the dynamical characterisation of the L2-Wasserstein distance. We study
geometric and topological properties of the distance W. In particular, we prove that
every pair of probability measures at finite distance can be connected by a geodesic.

We put particular focus on translation invariant jump kernels J(x,A) = ν(A− x)
and consider the non local operator L given by

Lu(x) =

∫
1

2

(
u(x+ z) + u(x− z)− 2u(x)

)
ν(dz) ,

with a symmetric Lévy measure ν on Rd. L is the generator of a pure jump Lévy
process. We prove that the semigroup generated by this non-local operator is the
gradient flow of the relative entropy with respect to the distance W. This is remi-
niscent of the Jordan–Kinderlehrer–Otto interpretation of the heat equation as the
gradient flow of the entropy w.r.t. the L2-Wasserstein distance. Moreover, we show
that the entropy is convex along W-geodesics.

As a special case, we obtain a gradient flow characterisation of the semigroup
generated by the fractional Laplacian L = −(−∆)

α
2 .
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1 Introduction

Jump processes and non-local operators arise naturally in various areas of mathemat-
ics and become increasingly important in applications ranging from discrete structures
with finite Markov chains in computer science and statistical mechanics to the use of
Lévy jump processes in physical modelling and mathematical finance.

In this thesis we will focus on two seemingly very different aspects of jump processes:
the geometry of graphs induced by finite Markov chains and evolution equations
driven by non-local operators in Rd.

In the last two decades the theory of optimal transport emerged as a powerful
tool both to study the geometry of non-smooth spaces and to study evolution PDEs
associated to diffusions. On one hand, the Wasserstein geometry on the space of
probability measures encodes curvature information about the underlying space via
geodesic convexity of the entropy. On the other hand, diffusion equations evolve as
gradient flows of entropy functionals w.r.t. the Wasserstein distance. Unfortunately,
discrete spaces and non-local evolutions remain inaccessible to the existing theory.

In this thesis, we establish a link between ideas from optimal transport and jump
processes by using a new non-local transport distance. We show that evolution equa-
tions driven by non-local Lévy operators are gradient flows of the entropy w.r.t. the
new distance. In the discrete setting we use similar transport metrics to give a notion
of Ricci curvature that applies to finite Markoc chains.

In this first chapter we give a survey-style introduction to the topics of this thesis.
Our intention is twofold: on one hand, we want to motivate our interest in a link
between optimal transport and jump processes and non-local operators. On the other
hand, we want to place the results obtained in this thesis into the framework of the
existing mathematical literature.

We will first give a short introduction to optimal transport and survey important
results of the theory. In particular, we will highlight the connection of optimal trans-
port to geometry and to partial differential equations and discuss the problems arising
when dealing with discrete structures. In this context we will then present the main
results of this thesis. A precise statement of the main results and a more detailed
summary will be given at the beginning of Chapters 2 and 3, respectively.

1.1 Optimal transport

The theory of optimal transport originated in the work of Monge [Mon81] on a civil
engineering problem. He asked for an optimal way of moving a pile of building
material (e.g. sand) into a given configuration (say a sandcastle), minimising a certain
cost given by the total transport distance. In modern terms his problem can be
formulated as follows. Given two probability measures µ and ν on Rd, find a minimiser

1



1.1 Optimal transport

of

inf
T

∫
Rd
|x− T (x)| dµ(x) ,

where the infimum is taken over all maps T : Rd → Rd pushing µ forward to ν, i.e.
T#µ = ν or ν(A) = µ(T−1(A)) for all Borel sets A ⊂ Rd.

This problem turned out to be extremely difficult, in particular because the con-
straint on T is highly non-linear. Moreover, there need not even be an admissible
map, as is easily seen by considering the case where µ is a Dirac measure and ν is
not.

Only more than 150 years later Kantorovich gave a first satisfactory answer (see
[Kan06] for an English translation of the Russian article from 1942). He suggested
the following relaxation of the transport problem with a general cost function c :
Rd × Rd → R looking for a minimiser of

inf
q

∫
Rd×Rd

c(x, y)dq(x, y) ,

where now the infimum is taken over all couplings of µ and ν, i.e. probability measures
q on Rd × Rd whose first and second marginal are µ and ν respectively. This is a
linear constraint on q and if a transport map T exists, the measure q = (Id, T )#µ
constitutes a coupling. Under suitable assumptions on the cost function c existence
of a minimiser follows by direct methods.

These results have found numerous applications in mathematics and economics,
we refer to [RR98] for a survey. Starting with the contributions of Brenier, Gangbo,
McCann, Rüschendorf and others the theory of optimal transports has undergone a
massive development, attracting a broad interest. Independently, Brenier [Bre91] and
Rachev and Rüschendorf [RR90] solved the Monge problem with squared distance cost
c(x, y) = |x− y|2. They showed that if µ is absolutely continuous w.r.t. Lebesgue
measure, then the optimal coupling is unique and given by a transport map T = ∇ϕ
which is the gradient of a convex function. Their results are based on the powerful
duality theory of Kantorovich and a fine analysis of the structure of optimal couplings.
They have been extended by McCann [McC01] to optimal transport on Riemannian
manifolds and to more general cost functions by several authors, we refer to the review
[GM96].

Of particular importance for us later on will be a connection of the L2-transport
problem to continuum mechanics. Benamou and Brenier [BB00] gave a dynamical
characterisation of the L2-transport cost between two probabilities µ0 = ρ0(x)dx and
µ1 = ρ1(x)dx on Rd, showing that

inf
T#µ0=µ1

∫
Rd
|x− T (x)|2 ρ0(x)dx = inf

ρ,ψ

∫ 1

0

∫
Rd

|∇ψt(x)|2 ρt(x)dxdt , (1.1.1)

2



1 Introduction

where the infimum on the right-hand side is taken over all sufficiently smooth func-
tions ρ : [0, 1]× Rd → R+ and ψ : [0, 1]× Rd → R subject to the continuity equation{

∂tρ+∇ · (ρ∇ψ) = 0 ,

ρ(0, ·) = ρ0 , ρ(1, ·) = ρ1 .
(1.1.2)

Intuitively, if we picture ρ0 and ρ1 as two configurations of a gas of particles, then a
solution to the continuity equation corresponds to an evolution of the gas, where a
particle at x at time t moves with velocity ∇ψt(x). Thus the minimal L2-transport
cost is given by the minimal total kinetic energy required to let ρ0 evolve into ρ1.

The optimal transport problem is also used to endow the space of probability
measures over a (polish) metric space (X, d) with a distance function. We consider
for p ∈ [1,∞) the Lp-Wasserstein distance

Wp(µ, ν)p := inf
q

∫
X×X

d(x, y)pq(dx,dy) .

It is finite on the set Pp(X) of all probability measures µ with finite p-th mo-
ments, i.e.

∫
d(x0, x)pµ(dx) < ∞ for some (hence any) x0 ∈ X and we call the

pair (Pp(X),Wp) the Lp-Wasserstein space. It inherits many geometric properties
of the underlying space X. For example, let X be a geodesic space, i.e. any x, y ∈ X
can be connected by a curve γ : [0, 1] → X with γ(0) = x, γ(1) = y satisfying
d(γ(t), γ(s)) = |t− s| d(x, y) for all s, t ∈ [0, 1]. Then also Pp(X) for p > 1 is a
geodesic space. In fact, each geodesic in Pp(X) for p > 1 can be represented as a
probability measure on the geodesics in X such that the joint law of the initial and
final point constitutes a coupling of µ0 and µ1.

Due to Brenier’s theorem we can give an explicit description of geodesics in P2(Rd).
Given two measures µ0 = ρ0(x)dx and µ1 the curve

µt =
(
(1− t)Id+ t∇ϕ

)
#
µ0 ,

where ∇ϕ is the optimal map pushing µ0 to µ1, is a geodesic. This curve is called
the displacement interpolation between ρ0 and ρ1. In his thesis [McC97] McCann
made the important observation that certain functionals on probability measures
are displacement convex, i.e. convex along any displacement interpolation curve.
Important examples are the Boltzmann entropy and the potential energy functional
defined for a measure µ(dx) = ρ(x)dx by

H(µ) =

∫
ρ(x) log ρ(x)dx , V(µ) =

∫
V (x)µ(dx) ,

where V : Rd → R is a convex potential. McCann used this result to prove uniqueness
of minimisers of such functionals.

3



1.2 The geometry of metric measure spaces

1.2 The geometry of metric measure spaces

The discovery of displacement convexity revealed a deep connection between optimal
transport and geometry and gave rise to a fascinating development in the study of
non-smooth spaces that we shall now describe.

The key observation is a generalisation of McCann’s displacement convexity to op-
timal transport on a Riemannian manifold M, proved by von Renesse and Sturm
[RS05] building on earlier work by Cordero-Erausquin, McCann and Schmucken-
schläger [CEMS01]. Namely, they showed that the Ricci curvature of M is bounded
below by some constant K ∈ R if and only if the entropy is K-convex along geodesics
in the Wasserstein space P2(M), i.e.

H(µt) ≤ (1− t)H(µ0) + tH(µ1)− K

2
t(1− t)W2(µ0, µ1)2 .

The reason for this is the fact that Ricci curvature controls the distortion of volume
elements that are transported along geodesics. More generally, the relative entropy
with respect to a weighted volume measure given for µ = ρ vol by H(µ|e−V vol) =∫
ρ log ρd vol +

∫
V ρd vol is K-convex along geodesics if and only if the so-called

Bakry–Émery tensor (see [BÉ85]) is bounded below:

Ric + HessV ≥ K .

Note that the condition of geodesic convexity of the entropy does not use the
differential structure of M but only requires a metric to define the L2-Wasserstein
distance and a reference measure to define the entropy. Therefore this condition
can be used to define a notion of Ricci curvature lower bound on a large class of
metric measure spaces. This allowed Sturm [Stu06] and Lott and Villani [LV09] in
two independent contributions to solve the long-standing open problem of finding
a synthetic notion of Ricci curvature for non-smooth spaces. By considering more
refined convexity properties of the entropy it is possible to give a condition which
combines a lower bound on the Ricci curvature with an upper bound on the dimension.

One of the remarkable features of this curvature-dimension condition for metric
measure spaces is that it is stable under Gromov–Hausdorff convergence, which makes
this theory a good framework for studying non-smooth spaces that arise as limits of
Riemannian manifolds with uniform curvature and dimension bounds. Moreover,
the curvature-dimension condition implies a large number of geometric and func-
tional inequalities such as a Poincaré inequality, a logarithmic Sobolev inequality or
a Brunn–Minkowski inequality. This allows one to generalise many well known re-
sults from comparison geometry to metric measure spaces, such as Bishop–Gromov
volume comparison or a Bonnet–Myers diameter bound.

The theory of metric measure spaces with Ricci curvature bounds in the sense of
Lott–Villani and Sturm is still under active development, see e.g. the recent preprints
[AGS11a, AGS11b].

4



1 Introduction

1.3 The geometry of diffusion equations

A second striking application of optimal transport that we want to highlight is its
link with evolution partial differential equations. This connection will be a recurrent
theme in this thesis.

In a seminal paper [JKO98], Jordan, Kinderlehrer and Otto gave a new interpre-
tation of the Fokker–Planck equation

∂tρ = ∆ρ+ div(ρ∇V ) .

They showed that it can be viewed as the gradient flow of the entropy with respect
to the L2-Wasserstein distance on the space of probability measures. Later, Otto
[Ott01] gave a similar interpretation of the porous medium equation. Along with this
discovery, he developed a powerful geometric picture viewing the Wasserstein space
as a formal Riemannian manifold. This intuition, often called “Otto calculus”, is
based on the dynamical characterisation of the L2-Wasserstein distance (1.1.1) and
allows one to heuristically derive results about the PDE in question by performing
Riemannian computations on the Wasserstein space.

In order to give a rigorous meaning to the gradient flow interpretation of a diffusion
equation one has to define a notion of gradient flow in the metric space P2(Rd). There
are several concepts that generalise gradient flows to a metric setting, for a detailed
study we refer to the monograph [AGS08]. Here, we want to highlight one concept
that we will use in the sequel and that gives a very strong characterisation of gradient
flows of geodesically (semi-)convex functionals. To motivate this concept, consider a
convex function F : Rd → R. It is easy to see that a smooth curve u : [0,∞) → Rd
satisfies the gradient flow equation u̇(t) = −∇F (u(t)) if and only if it satisfies the
following set of inequalities:

1

2

d

dt
|u(t)− y|2 ≤ F (y)− F (u(t)) ∀y ∈ Rd .

The latter condition only appeals to the function F and the metric |·|, hence it can be
taken as a definition of gradient flow in a metric space. More precisely, the result of
Jordan, Kinderlehrer and Otto can be rephrased as follows. The solution (ρt) to the
Fokker–Planck equation is the gradient flow of the entropy in the Wasserstein space
P2(Rd), in the sense that it satisfies the so-called Evolution Variational Inequality,
short EVI,

1

2

d

dt
W2(ρt, σ)2 ≤ H(σ)−H(ρt) ∀σ ∈P2(Rd) . (1.3.1)

In fact, in [JKO98] the authors use a time discrete approximation scheme to charac-
terise the gradient flow, but the Evolution Variational Inequality is already implicit
in their work.

The discovery of Jordan, Kinderlehrer and Otto has been the starting point for
many developments in evolution equations, probability and geometry. For an overview

5



1.4 Discrete spaces

we refer to the monographs [AGS08, Vil09]. In particular, the gradient flow approach
has proved very successful in studying diffusion processes and the PDEs associated
to them. Let us highlight some results. Already in Otto’s original work [Ott01],
the characterisation of the porous medium equation as the gradient flow of a strictly
convex functional has been used to derive exponential convergence rates in the asymp-
totic behaviour. This approach also yields nice geometric heuristics for famous results
of Bakry–Émery [BÉ85] and Otto–Villani [OV00], which were then proved by PDE
methods. In the former work it is shown that on a Riemannian manifold a lower
bound on the weighted Ricci curvature Ric + HessV implies a logarithmic Sobolev
inequality for the measure e−V vol. In the latter, the authors show that a logarithmic
Sobolev inequality implies Talagrand’s transport inequality. Many of these results
have been generalised to the setting of metric measure spaces with curvature bounds
as noted in section 1.2. In Chapter 2 we will derive discrete analogues of these results
in the setting of finite Markov chains.

Besides being a source of valuable intuition the theory of gradient flows in metric
spaces itself has become a powerful tool in analysing evolution partial differential
equations. Constructing the metric gradient flow can yield existence of weak solu-
tions, a strategy that has been applied e.g. by Matthes, McCann and Savaré [MMS09]
to a class of nonlinear fourth order equations. Recently, it has been shown that this
theory also provides a robust framework to study stability properties of diffusion
processes. Ambrosio, Savaré and Zambotti [ASZ09] consider stochastic partial differ-
ential equations of Fokker–Planck type with log-concave invariant measure and show
stability in law with respect to changes in the potential.

By now, the gradient flow interpretation of the heat flow has been extended to
a broad variety of settings including Riemannian manifolds [Erb10, Vil09], Finsler
spaces [OS09], Aleksandrov spaces [GKO10], Wiener spaces [FSS10] and metric mea-
sure spaces with Ricci curvature bounds [AGS11a, AGS11b]. In the latter case, the
twofold description of the heat flow as the L2 gradient flow of the Dirichlet energy and
the Wasserstein gradient flow of the entropy is a major tool in developing a powerful
calculus on metric measure spaces.

1.4 Discrete spaces

In Section 1.2 we have already seen some of the strong results in terms of functional
inequalities that can be obtained on a large class of metric measure spaces using
the theory of synthetic curvature bounds, based on optimal transport. In many
applications the spaces of interest are discrete, such as graphs, and the relevant
process is a Markov chain. A prominent example is the discrete hypercube {0, 1}n
which is the fundamental building block of many models in computer science and
statistical physics.

Unfortunately, the curvature condition of Lott–Sturm–Villani typically does not
apply to discrete spaces. This is due to the fact that the L2-Wasserstein space over

6



1 Introduction

a graph X equipped with the graph distance does not contain geodesics. To see this,
consider e.g. the graph consisting of two points a, b and a single edge {a, b}. Every
probability measure is then of the form µβ = βδa + (1− β)δb with β ∈ [0, 1]. Now if
(µβ(t))t∈[0,1] is a constant speed geodesic we have

|t− s|W2(µβ(0), µβ(1)) = W2(µβ(s), µβ(t)) =
√
|β(t)− β(s)| .

Hence β is 2-Hölder and thus constant. So every constant speed W2-geodesic must
be constant.

As a consequence, several other concepts of curvature for discrete spaces have
been proposed in the literature. One of the most prominent is a notion of Ricci
curvature that applies to Markov chains on metric spaces and was introduced by
Ollivier [Oll07, Oll09]. This notion is also based on ideas from optimal transport and
uses the L1-Wasserstein metric W1, which behaves better in a discrete setting than
W2. Ollivier’s criterion has the advantage of being easy to check in many examples.
Furthermore, in some interesting cases it yields functional inequalities with good –
yet non-optimal – constants. It is not completely clear how Ollivier’s notion relates
to the one by Lott–Sturm–Villani (see [OV10] for a discussion).

In the setting of graphs, Ollivier’s Ricci curvature has been further studied in the
recent preprints [BJL11, HJL11, JL11].

Another approach has been taken by Lin and S.T. Yau [LY10], who defined Ricci
curvature in terms of the heat semigroup, i.e. the semigroup associated to the con-
tinuous time random walk on a graph.

Bonciocat and Sturm [BS09] followed a different approach to modify the Lott–
Sturm–Villani criterion, in which they circumvented the lack of midpoints in the
L2-Wasserstein metric by allowing for approximate midpoints. A Brunn–Minkowski
inequality in this spirit has been proved on the discrete hypercube by Ollivier and
Villani [OV10].

In a recent preprint, Gozlan, Roberto, Samson and Tetali [GSRT12] study convexity
of the entropy along a certain class of interpolating paths in the space of probability
measures over a finite graph, which generalises W1-geodesics. The authors prove a
tensorisation property and also derive different functional inequalities with optimal
constants in important examples.

1.5 Finite Markov chains and non-local transport

In view of the great generality in which a gradient flow interpretation of the heat flow
has been obtained, it seems natural to ask whether a similar result also holds in a
discrete setting. We shall now discuss a recent result by Maas [Maa11] in which an
extension of the gradient flow approach to finite Markov chains has been obtained.

Consider a finite set X equipped with an irreducible, reversible Markov kernel K.
The law ρt of the continuous time Markov chain associated to K evolves according
to the equation ρ̇ = (K − I)ρ, which can be regarded as the heat equation on X .

7



1.6 The results of Chapter 2

In fact, (K − I) is the Laplacian associated to the weighted graph structure induced
by the kernel K. This gives rise to a semi group (Pt)t≥0 given by Pt = et(K−I)

which we view as the “heat semigroup” on X . Therefore, one can ask, whether this
semigroup can also be characterised as the gradient flow of the entropy with respect
to a suitable metric on the space of probability measures on X , where the unique
stationary measure of the Markov chain is the natural reference measure on X .

Unfortunately, it turns out that also here the L2-Wasserstein distance (build from
the graph distance) is not appropriate for this purpose. Indeed, the derivative of
W2 along the semigroup Pt will typically be infinite (this can easily be seen on a
similar example as above by considering a Markov chain on just two points). Thus,
the Evolution Variational Inequality (1.3.1) for W2 breaks down.

However, Maas [Maa11] showed that the heat semigroup can still be seen as the
gradient flow of the entropy if the Wasserstein metric is replaced by a different metric
W on the space of probability measures over the set X . This new metric is constructed
by Maas via a discrete analogue of the Benamou–Brenier formula (1.1.1). It is a
dynamic transport distance which is non-local in the sense that the cost of moving
mass between two points x, y depends on the amount of mass present at x and y. We
will discuss this distance in detail in Chapter 2. A remarkable feature of the distance
W is the fact that, unlike the Wasserstein distance, it does not require a metric on
the underlying set X but only the Markov kernel K.

A similar gradient structure has been discovered independently both by Mielke
[Mie11] in the setting of reaction-diffusion systems and by Chow et al. [CHLZ12] for
Fokker–Planck equations on graphs. In two recent independent preprints Carlen and
Maas as well as Mielke use a similar approach to give a gradient flow interpretation
of dissipative quantum systems [CM12, Mie12a].

1.6 The results of Chapter 2

The first part of this thesis will be concerned with the application of ideas from
optimal transport to the study of discrete spaces. We will present a new notion of
Ricci curvature that applies to finite Markov chains.

In a continuous setting, the Wasserstein distance and the entropy have a twofold sig-
nificance: they encode important geometric information about the underlying space
through the powerful Lott–Sturm–Villani theory of synthetic curvature bounds and
they characterise the heat flow as the Wasserstein gradient flow of the entropy. Un-
fortunately, as we saw in Sections 1.4 and 1.5, both the curvature condition of Lott–
Sturm–Villani and the gradient flow approach based on the L2-Wasserstein distance
do not apply to discrete spaces, the former being a consequence of the non-existence
of W2-geodesics.

The aim of Chapter 2 is to develop a variant of the theory of Lott–Sturm–Villani,
which does apply to discrete spaces. We consider an irreducible, reversible Markov
kernel K on a finite set X with invariant measure π. Our approach is based on a

8



1 Introduction

different geometry on the space of probability measures determined by the metric W
that was introduced in [Maa11] and depends on the kernel K. Since the heat flow
associated to K is the gradient flow of the entropy with respect toW, this new metric
naturally takes over the role of the L2-Wasserstein distance.

We will show that every pair of probability densities on X can be joined by a W-
geodesic. Hence, it is possible to define a notion of Ricci curvature in the spirit of
Lott–Sturm–Villani by requiring geodesic (semi-)convexity of the entropy with respect
to the metricW. This possibility has already been indicated in [Maa11]. Owing to the
non-local character of the distance W, we call this notion non-local Ricci curvature.
Convexity along W-geodesics may be regarded as a discrete analogue of McCann’s
displacement convexity [McC97], which corresponds to convexity along W2-geodesics
in a continuous setting.

We shall show that this new notion of Ricci curvature shares a number of properties
which make the Lott–Sturm–Villani theory so powerful. For a detailed statement and
discussion of our results we refer to Section 2.1. Here, we only highlight the key points.
One of our main result is that

• non-local Ricci curvature bounds are stable under tensorisation.

As a consequence, we obtain explicit curvature bounds in important examples. In
particular, we obtain

• a lower bound on the non-local Ricci curvature of (the kernel of simple random
walk on) the discrete hypercube {0, 1}n, which turns out to be optimal.

Our second main result is a discrete counterpart of the results by Bakry–Émery
[BÉ85] and Otto–Villani [OV00]. Namely, we will prove that

• non-local Ricci curvature bounds imply a number of functional inequalities in-
cluding a modified logarithmic Sobolev inequality and a Talagrand-type in-
equality involving the metric W.

In the case of the discrete hypercube, we obtain sharp constants in these inequalities.

As compared to the other notions of Ricci curvature for discrete spaces that we
have discussed in Section 1.4 the notion considered here appears to be the closest in
spirit to the one by Lott–Sturm–Villani. Furthermore, it seems to be the first that
yields natural analogues of the results by Bakry–Émery and Otto–Villani.

Independently to the results obtained in [EM12] geodesic convexity of the entropy
for Markov chains has also been studied by Mielke [Mie12b]. There, good convexity
estimates are obtained, in particular, for discretisations of one-dimensional Fokker–
Planck equations. However, the notion of curvature bounds is not discussed and no
consequences in terms of functional inequalities are considered.

9
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1.7 The results of Chapter 3

We have seen in Section 1.3 that in the last two decades optimal transport has been
applied very successfully in the study of diffusion processes and PDEs associated to
them. In many applications ranging from physical modelling to financial markets
we encounter discontinuous stochastic processes that propagate by jumps. Their
generators are typically non-local operators.

The aim of the second part of this thesis is to build a bridge between the theory of
jump processes and non-local operators on one hand and ideas from optimal transport
on the other hand. Our approach is similar in spirit to the work of Maas [Maa11] for
finite Markov chains and generalises it to a certain extent.

We will give a gradient flow interpretation of the equation

∂tu = Lu , (1.7.1)

where L is a non-local operator given by

Lu(x) =

∫
1

2

(
u(x+ z) + u(x− z)− 2u(x)

)
ν(dz) ,

with a symmetric Lévy measure ν on Rd. Such operators arise naturally as the
generators of pure jump Lévy processes, i.e. jump processes with independent and
stationary increments. The measure ν(dz) gives the intensity of jumps from x to x+z.
For background on Lévy processes and their generators we refer to the books [Ber96,
App04]. A prominent example of a non-local operator that our results will apply
to is the fractional Laplacian L = −(−∆)

α
2 corresponding to the choice να(dz) =

cα |z|−α−d dz with α ∈ (0, 2). This is a pseudo differential operator with symbol |ξ|α
and the corresponding Lévy process is the α-stable process.

In order to give a gradient flow interpretation to equation (1.7.1) the Wasserstein
distance is not appropriate. We take a similar approach as in Chapter 2 and construct
a new transport distance W on the space of probability measures on Rd that is non-
local in nature. It is defined via a non-local variant of the dynamical characterisation
of the Wasserstein distance by Benamou and Brenier [BB00]. In fact, the construction
of this distance is general and applies also to inhomogeneous jump processes where the
intensity of jumps from x to y is given by a space dependent Lévy measure J(x,dy).
We will show that any two probability measures at finite distance can be joined by a
W-geodesic.

We will then focus on homogeneous jump kernels corresponding to Lévy processes,
i.e. J(x,dy) = ν(dy−x) for a symmetric Lévy measure ν satisfying suitable regularity
assumptions. One of the main results of Chapter 3 is that

• the entropy is convex along geodesics of the metric W built from ν.

This can be see as a non-local analogue of McCann displacement convexity that we
encountered in Section 1.1. Moreover, we obtain a gradient flow characterisation of
equation 1.7.1. We show that

10
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• the semigroup Pt = etL of the pure jump Lévy process generated by the non-
local operator L is the gradient flow of the entropy with respect to W in the
sense of the Evolution Varitational Inequality:

1

2

d

dt
W(Ptµ, σ)2 ≤ H(σ)−H(Ptµ) ∀σ .

For a precise statement and detailed discussion of our results we refer to Section 3.1.
Our interest in such a link between jump processes and optimal transport is mo-

tivated on one hand by the many applications of the Wasserstein gradient flow ap-
proach to evolution PDE. For inhomogeneous jump kernels where the entropy is
strictly W-geodesically convex the framework developed here could be used to study
the asymptotic behaviour of the associated non-local equation and derive functional
inequalities for the equilibrium along the lines of the results in Chapter 2.

On the other hand our approach is also motivated by the regularity theory for
elliptic and parabolic equations involving non-local operators which is under active
development including both analytic and probabilistic approaches (see e.g. [CS11],
[BBCK09] and references therein). In a local setting very precise regularity results
can be obtained using a lower bound on the Ricci curvature of the operator in the
sense of the Bakry-Émery criterion [BÉ85]. Equivalently, such curvature information
can be encoded into convexity properties of the entropy along Wasserstein geodesics.
In this sense the approach presented here could be used to define an alternative notion
of curvature of a non-local operator in the spirit of Lott–Villani–Sturm that might
be more adapted to certain situations than the non-local Γ2-calculus.

Modifications of the Wasserstein distance in a continuous setting have been con-
sidered recently by a number of authors. For example, Buttazzo, Jimenez and Oudet
[BJO09] and Brasco, Butazzo, Santambrogio [BBS11] use a Benamou–Brenier type
approach to study mass transport with congestion effects in crowd movement or
branched transports, respectively. In [DNS09], Dolbeault, Nazaret and Savaré pro-
posed a new class of transport distances also based on an adaptation of the Benamou-
Brenier formula to give a gradient flow interpretation to a class of transport equations
with non-linear mobilities. Geodesic convexity of the entropy with respect to these
distances has been studied in [CLSS10].

The distance W introduced in Chapter 3 seems to be the first that captures non-
local effects and makes the connection to jump processes. The techniques that we
use here are inspired by the ones developed in [DNS09].

11
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2 Ricci curvature for finite Markov
chains

In this chapter we study a new notion of Ricci curvature that applies to Markov
chains on discrete spaces. This notion relies on geodesic convexity of the entropy and
is analogous to the one introduced by Lott, Sturm, and Villani for geodesic measure
spaces. In order to apply to the discrete setting, the role of the Wasserstein metric
is taken over by a different metric, having the property that continuous time Markov
chains are gradient flows of the entropy. Using this notion of Ricci curvature we
prove discrete analogues of fundamental results by Bakry–Émery and Otto–Villani.
Furthermore we show that Ricci curvature bounds are preserved under tensorisation.
As a special case we obtain the sharp Ricci curvature lower bound for the discrete
hypercube.

2.1 Main results

Let us start by describing our setting and results in more detail. We work with an
irreducible Markov kernel K : X × X → R+ on a finite set X , i.e., we assume that∑

y∈X
K(x, y) = 1

for all x ∈ X , and that for every x, y ∈ X there exists a sequence {xi}ni=0 ∈ X such
that x0 = x, xn = y and K(xi−1, xi) > 0 for all 1 ≤ i ≤ n. Basic Markov chain theory
guarantees the existence of a unique stationary probability measure (also called steady
state) π on X , i.e.,∑

x∈X
π(x) = 1 and π(y) =

∑
x∈X

π(x)K(x, y)

for all y ∈ X . We assume that π is reversible for K, which means that the detailed
balance equations

K(x, y)π(x) = K(y, x)π(y) (2.1.1)

hold for x, y ∈ X .
Let

P(X ) :=
{
ρ : X → R+ |

∑
x∈X

π(x)ρ(x) = 1
}

be the set of probability densities on X . Since by elementary Markov chain theory
π(x) > 0 for all x, we can identify P(X ) with the set of probability measures on

13



2.1 Main results

X . The subset consisting of those probability densities that are strictly positive is
denoted by P∗(X ). We consider the metric W defined for ρ0, ρ1 ∈P(X ) by

W(ρ0, ρ1)2 := inf
ρ,ψ

{
1

2

∫ 1

0

∑
x,y∈X

(ψt(x)− ψt(y))2ρ̂t(x, y)K(x, y)π(x)dt

}
,

where the infimum runs over all sufficiently regular curves ρ : [0, 1] → P(X ) and
ψ : [0, 1]→ RX satisfying the ‘continuity equation’

d

dt
ρt(x) +

∑
y∈X

(ψt(y)− ψt(x))ρ̂t(x, y)K(x, y) = 0 ∀x ∈ X ,

ρ(0) = ρ0 , ρ(1) = ρ1 .

(2.1.2)

Here, given ρ ∈ P(X ), we write ρ̂(x, y) :=
∫ 1

0 ρ(x)1−pρ(y)pdp for the logarithmic
mean of ρ(x) and ρ(y). The relevance of the logarithmic mean in this setting is due
to the identity

ρ(x)− ρ(y) = ρ̂(x, y)(log ρ(x)− log ρ(y)) ,

which somewhat compensates for the lack of a ‘discrete chain rule’. The definition
of W can be regarded as a discrete analogue of the Benamou–Brenier formula 1.1.1
(see [BB00]). Let us remark that if t 7→ ρt is differentiable at some t and ρt belongs
to P∗(X ), then the continuity equation (2.1.2) is satisfied for some ψt ∈ RX , which
is unique up to an additive constant (see [Maa11, Proposition 3.26]).

It has been proved in [Maa11] that the interior P∗(X ) equipped with the distance
W is a Riemannian manifold and that the heat flow associated with the continuous
time Markov semigroup Pt = et(K−I) is the gradient flow of the entropy

H(ρ) =
∑
x∈X

π(x)ρ(x) log ρ(x) , (2.1.3)

with respect to the Riemannian structure determined by W.
We shall show that every pair of densities ρ0, ρ1 ∈P(X ) can be joined by a constant

speed geodesic. Therefore the following definition in the spirit of Lott–Sturm–Villani
seems natural.

Definition 2.1.1. We say that K has non-local Ricci curvature bounded from below
by κ ∈ R if for any constant speed geodesic {ρt}t∈[0,1] in (P(X ),W) we have

H(ρt) ≤ (1− t)H(ρ0) + tH(ρ1)− κ

2
t(1− t)W(ρ0, ρ1)2 .

In this case, we shall use the notation

Ric(K) ≥ κ .

14



2 Ricci curvature for finite Markov chains

Remark 2.1.2. Instead of requiring convexity along all geodesics it will be shown to
be equivalent to require that every pair of densities ρ0, ρ1 ∈P(X ) can be joined by
a constant speed geodesic along which the entropy is κ-convex. Another equivalent
condition would be to impose a lower bound on the Hessian of H in the interior
P∗(X ) (see Theorem 2.4.5 below for the details).

One of the main results of this chapter is a tensorisation result for non-local Ricci
curvature, which we will now describe. For 1 ≤ i ≤ n, let Ki be an irreducible
and reversible Markov kernel on a finite set Xi, and let πi denote the corresponding
invariant probability measure. Let K(i) denote the lift of Ki to the product space
X = X1 × . . .×Xn, defined for x = (x1, . . . , xn) and y = (y1, . . . , yn) by

K(i)(x,y) =

{
Ki(xi, yi), if xj = yj for all j 6= i,
0, otherwise.

For a sequence {αi}1≤i≤n of non-negative numbers with
∑n

i=1 αi = 1, we consider the
weighted product chain, determined by the kernel

Kα :=
n∑
i=1

αiK(i) .

Its reversible probability measure is the product measure π = π1 ⊗ · · · ⊗ πn.

Theorem 2.1.3 (Tensorisation of Ricci bounds). Assume that Ric(Ki) ≥ κi for
i = 1, . . . , n. Then we have

Ric(Kα) ≥ min
i
αiκi .

Tensorisation results have also been obtained for other notions of Ricci curva-
ture, including the ones by Lott–Sturm–Villani [Stu06, Proposition 4.16] and Ollivier
[Oll09, Proposition 27]. In both cases the proof does not extend to our setting, and
completely different ideas are needed here.

As a consequence, we obtain a lower bound on the non-local Ricci curvature for
(the kernel Kn of the simple random walk on) the discrete hypercube {0, 1}n, which
turns out to be optimal.

Corollary 2.1.4. For n ≥ 1 we have Ric(Kn) ≥ 2
n .

The hypercube is a fundamental building block for applications in mathematical
physics and theoretical computer science, and the problem of proving “displacement
convexity” on this space has been an open problem that motivated the recent paper
by Ollivier and Villani [OV10], in which a Brunn–Minkowski inequality was obtained.

The second main result of this chapter is the fact that non-local Ricci bounds
imply a number of functional inequalities, which are natural discrete counterparts
to powerful inequalities in a continuous setting. In particular, we obtain discrete
counterparts to the results by Bakry–Émery [BÉ85] and Otto–Villani [OV00].
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To state the results we consider the Dirichlet form

E(ϕ,ψ) =
1

2

∑
x,y∈X

(
ϕ(x)− ϕ(y)

)(
ψ(x)− ψ(y)

)
K(x, y)π(x)

defined for functions ϕ,ψ : X → R. Furthermore, we consider the functional

I(ρ) = E(ρ, log ρ)

defined for ρ ∈ P(X ), with the convention that I(ρ) = +∞ if ρ does not belong to
P∗(X ). Its significance here is due to the fact that it is the time-derivative of the
entropy along the heat flow: d

dtH(Ptρ) = −I(Ptρ). In this sense, I can be regarded
as a discrete version of the Fisher information.

Theorem 2.1.5 (Functional inequalities). Let K be an irreducible and reversible
Markov kernel on a finite set X .

(i) If Ric(K) ≥ κ for some κ ∈ R, then the HWI-inequality

H(ρ) ≤ W(ρ,1)
√
I(ρ)− κ

2
W(ρ,1)2 (HWI(κ))

holds for all ρ ∈P(X ).

(ii) If Ric(K) ≥ λ for some λ > 0, then the modified logarithmic Sobolev inequality

H(ρ) ≤ 1

2λ
I(ρ) (MLSI(λ))

holds for all ρ ∈P(X ).

(iii) If K satisfies (MLSI(λ)) for some λ > 0, then the modified Talagrand inequality

W(ρ,1) ≤
√

2

λ
H(ρ) (TW(λ))

holds for all ρ ∈P(X ).

(iv) If K satisfies (TW(λ)) for some λ > 0, then the Poincaré inequality

‖ϕ‖2L2(X ,π) ≤
1

λ
E(ϕ,ϕ) (P(λ))

holds for all functions ϕ : X → R.

Here, 1 denotes the density of the stationary measure π.
The first inequality in Theorem 2.1.5 is a discrete counterpart to the HWI-inequ-

ality from Otto and Villani [OV00], with the difference that the L2-Wasserstein metric
has been replaced by W.
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2 Ricci curvature for finite Markov chains

The second result is as a discrete version of the celebrated criterion by Bakry-Émery
[BÉ85], who proved the corresponding result on Riemannian manifolds. Classically,
the Bakry-Émery criterion applies to weighted Riemannian manifolds (M, e−V volM),
and asks for a lower bound on the generalised Ricci curvature given by RicM+ HessV .
As in our setting we allow for general K and π, the potential V is already incorporated
in K and π, and our notion of Ricci curvature can be thought of as the analogue of
this generalised Ricci curvature.

The modified logarithmic Sobolev inequality (MLSI) is motivated by the fact that
it yields an explicit rate of exponential decay of the entropy along the heat flow. It has
been extensively studied (see, for example, [BT06, CDPP09]), along with different
discrete logarithmic Sobolev inequalities in the literature (for example, [AL00, BL98]).

The third part is a discrete counterpart to a famous result by Otto and Villani
[OV00], who showed that the logarithmic Sobolev inequality implies the so-called T2-
inequality; recall that the Tp-inequality is the analogue of TW , in whichW is replaced
by the Lp-Wasserstein metric Wp (see Section 1.1 for the definition), for 1 ≤ p <∞.
These inequalities have been extensively studied in recent years. We refer to [GL10]
for a survey and to [ST09] for a study of the T1-inequality in a discrete setting.

The modified Talagrand inequality TW that we consider is new. This inequality
combines some of the good properties of T1 and T2, as we shall now discuss.

Like T1, it is weak enough to be applicable in a discrete setting. In fact, we shall
prove that TW(λ) holds on the discrete hypercube {0, 1}n with the optimal constant
λ = 2

n . By contrast, the T2-inequality does not even hold on the two-point space,
and it has been an open problem to find an adequate substitute.

Like T2, and unlike T1, TW is strong enough to capture spectral information. In
fact, the fourth part in Theorem 2.1.5 asserts that it implies a Poincaré inequality
with constant λ.

Furthermore, we shall show that TW yields good bounds on the sub-Gaussian
constant, in the sense that

Eπ
[
et(ϕ−Eπ [ϕ])

]
≤ exp

( t2
4λ

)
(2.1.4)

for all t > 0 and all functions ϕ : X → R that are Lipschitz constant 1 with respect
to the graph norm. Here, we use the notation Eπ[ϕ] =

∑
x∈X ϕ(x)π(x). As is well

known, this estimate yields the concentration inequality

π
(
ϕ− Eπ[ϕ] ≥ h

)
≤ e−λh2

for all h > 0. The proof of (2.1.4) relies on the fact, proved in Section 3.4, that the
metric W can be bounded from below by W1 (with respect to the graph metric),
so that TW(λ) implies a T1(2λ)-inequality, which is known to be equivalent to the
sub-Gaussian inequality [BG99].

The proof of Theorem 2.1.5 follows the approach by Otto and Villani. On a tech-
nical level, the proofs are simpler in the discrete case, since heuristic arguments from
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Otto and Villani are essentially rigorous proofs in our setting, and no additional PDE
arguments are required as in [OV00].

To summarise, we have the following sequence of implications, for any λ > 0:

Ric(K) ≥ λ ⇒ MLSI(λ) ⇒ TW(λ) ⇒
{

P(λ)
T1(2λ) .

Organisation of this chapter

In Section 2.2 we collect basic properties of the metricW and formulate an equivalent
definition that is more convenient to work with in some situations. Geodesics in the
W-metric are studied in Section 2.3. In particular, it is shown that every pair of
densities can be joined by a constant speed geodesic. In Section 2.4 we present the
definition of non-local Ricci curvature and give a characterisation in terms of the
Hessian of the entropy. Section 2.5 contains a criterion that allows us to give lower
bounds on the Ricci curvature in some basic examples, including the discrete circle
and the discrete hypercube. A tensorisation result is contained in Section 2.6. Finally,
we introduce new versions of well-known functional inequalities in Section 2.7 and
prove implications between these and known inequalities.

2.2 The metric W
In this section we shall study some basic properties of the metric W. Throughout we
shall work with an irreducible and reversible Markov kernel K on a finite set X . The
unique steady state will be denoted by π, and we shall write Pt := et(K−I), t ≥ 0, to
denote the corresponding Markov semigroup.

We start by introducing some notation.

2.2.1 Notation

For ϕ ∈ RX we consider the discrete gradient ∇ϕ ∈ RX×X defined by

∇ϕ(x, y) := ϕ(y)− ϕ(x) .

For Ψ ∈ RX×X we consider the discrete divergence ∇ ·Ψ ∈ RX defined by

(∇ ·Ψ)(x) :=
1

2

∑
y∈X

(Ψ(x, y)−Ψ(y, x))K(x, y) ∈ R .

With this notation we have

∆ := ∇ · ∇ = K − I ,

and the integration by parts formula

〈∇ψ,Ψ〉π = −〈ψ,∇ ·Ψ〉π
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2 Ricci curvature for finite Markov chains

holds. Here we write, for ϕ,ψ ∈ RX and Φ,Ψ ∈ RX×X ,

〈ϕ,ψ〉π =
∑
x∈X

ϕ(x)ψ(x)π(x) ,

〈Φ,Ψ〉π =
1

2

∑
x,y∈X

Φ(x, y)Ψ(x, y)K(x, y)π(x) .

From now on we shall fix a function θ : R+ × R+ → R+ satisfying the following
assumptions:

Assumption 2.2.1. The function θ has the following properties:

(A1) (Regularity): θ is continuous on R+ × R+ and C∞ on (0,∞)× (0,∞);

(A2) (Symmetry): θ(s, t) = θ(t, s) for s, t ≥ 0;

(A3) (Positivity, normalisation): θ(s, t) > 0 for s, t > 0 and θ(1, 1) = 1;

(A4) (Zero at the boundary): θ(0, t) = 0 for all t ≥ 0;

(A5) (Monotonicity): θ(r, t) ≤ θ(s, t) for all 0 ≤ r ≤ s and t ≥ 0;

(A6) (Positive homogeneity): θ(λs, λt) = λθ(s, t) for λ > 0 and s, t ≥ 0;

(A7) (Concavity): the function θ : R+ × R+ → R+ is concave.

It is easily checked that these assumptions imply that θ is bounded from above by
the arithmetic mean:

θ(s, t) ≤ s+ t

2
∀s, t ≥ 0 . (2.2.1)

In the next result we collect some properties of the function θ, which turn out be
very useful in obtaining non-local Ricci curvature bounds.

Lemma 2.2.2. For all s, t, u, v > 0 we have

s · ∂1θ(s, t) + t · ∂2θ(s, t) = θ(s, t) , (2.2.2)

s · ∂1θ(u, v) + t · ∂2θ(u, v)− θ(s, t) ≥ 0 . (2.2.3)

Proof. The equality (2.2.2) follows immediately from the homogeneity (A6) by noting
that the left-hand side equals d

dr

∣∣
r=1

θ(rs, rt). Let us prove (2.2.3). Note that by the
concavity (A7) of θ the gradient ∇θ is a monotone operator from R2

+ to R2. Hence,
for all s, t, x, y > 0 we have

(s− x)
(
∂1θ(s, t)− ∂1θ(x, y)

)
+ (t− y)

(
∂2θ(s, t)− ∂2θ(x, y)

)
≤ 0 .

By the homogeneity (A6) both ∂1θ and ∂2θ are 0-homogeneous. Taking now, in
particular x = εu, y = εv and letting ε→ 0 we obtain

s
(
∂1θ(s, t)− ∂1θ(u, v)

)
+ t
(
∂2θ(s, t)− ∂2θ(u, v)

)
≤ 0 .

From this we deduce (2.2.3) by an application of (2.2.2).
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The most important example for our purposes is the logarithmic mean defined by

θ(s, t) :=

∫ 1

0
s1−ptpdp =

s− t
log s− log t

,

the latter expression being valid if s, t > 0 and s 6= t. For ρ ∈ P(X ) and x, y ∈ X
we define

ρ̂(x, y) = θ(ρ(x), ρ(y)) .

For a fixed ρ ∈P(X ) it will be useful to consider the Hilbert space Gρ consisting of
all (equivalence classes of) functions Ψ : X ×X → R, endowed with the inner product

〈Φ,Ψ〉ρ :=
1

2

∑
x,y∈X

Φ(x, y)Ψ(x, y)ρ̂(x, y)K(x, y)π(x) . (2.2.4)

Here we identify functions coinciding on the set {(x, y) ∈ X×X : ρ̂(x, y)K(x, y) > 0}.
The operator ∇ can then be considered as a linear operator ∇ : L2(X )→ Gρ, whose
negative adjoint is the ρ-divergence operator (∇ρ·) : Gρ → L2(X ) given by

(∇ρ ·Ψ)(x) :=
1

2

∑
y∈X

(Ψ(x, y)−Ψ(y, x))ρ̂(x, y)K(x, y) .

2.2.2 Equivalent Definitions of the metric W

We shall now state the definition of the metric W introduced in [Maa11]. Here and
in the rest of this chapter we will use the shorthand notation

A(ρ, ψ) := ‖∇ψ‖2ρ =
1

2

∑
x,y∈X

(ψ(y)− ψ(x))2ρ̂(x, y)K(x, y)π(x) ,

for ρ ∈P(X ) and ψ ∈ RX .

Definition 2.2.3. For ρ̄0, ρ̄1 ∈P(X ) we define

W(ρ̄0, ρ̄1)2 := inf

{∫ 1

0
A(ρt, ψt)dt : (ρ, ψ) ∈ CE1(ρ̄0, ρ̄1)

}
,

where for T > 0, CET (ρ̄0, ρ̄1) denotes the collection of pairs (ρ, ψ) satisfying the
following conditions:

(i) ρ : [0, T ]→ RX is C∞ ;
(ii) ρ0 = ρ̄0 , ρT = ρ̄1 ;
(iii) ρt ∈P(X ) for all t ∈ [0, T ] ;
(iv) ψ : [0, T ]→ RX is measurable ;
(v) For all x ∈ X and all t ∈ (0, T ) we have

ρ̇t(x) +
∑
y∈X

(
ψt(y)− ψt(x)

)
ρ̂t(x, y)K(x, y) = 0 .

(2.2.5)
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Using the notation introduced above, the continuity equation in (v) can be written
as

ρ̇t +∇ · (ρ̂∇ψ) = 0 . (2.2.6)

Definition 2.2.3 is the same as the one in [Maa11], except that slightly different regu-
larity conditions have been imposed on ρ. We shall shortly see that both definitions
are equivalent.

The following results on the metric W have been proved in [Maa11].

Theorem 2.2.4. The following assertions hold:

(i) The space (P(X ),W) is a complete metric space, compatible with the Euclidean
topology.

(ii) The restriction of W to P∗(X ) is the Riemannian distance induced by the
following Riemannian structure:

• the tangent space of ρ ∈P∗(X ) can be identified with the set

Tρ := {∇ψ : ψ ∈ RX }

by means of the following identification: given a smooth curve (−ε, ε) 3
t 7→ ρt ∈ P∗(X ) with ρ0 = ρ, there exists a unique element ∇ψ0 ∈ Tρ,
such that the continuity equation (2.2.5)(v) holds at t = 0.

• The Riemannian metric on Tρ is given by the inner product

〈∇ϕ,∇ψ〉ρ =
1

2

∑
x,y∈X

(ϕ(x)− ϕ(y))(ψ(x)− ψ(y))ρ̂(x, y)K(x, y)π(x) .

(iii) If θ is the logarithmic mean, i.e., θ(s, t) =
∫ 1

0 s
1−ptpdp, then the heat flow is the

gradient flow of the entropy, in the sense that for any ρ ∈P(X ) and t > 0, we
have ρt := Ptρ ∈P∗(X ) and

Dtρt = − gradH(ρt) . (2.2.7)

Remark 2.2.5. If ρ belongs to P∗(X ), then the gradient flow equation (2.2.7) also
holds for t = 0.

Remark 2.2.6. The relevance of the logarithmic mean can be seen as follows. The
heat equation ρ̇t = ∆ρt = ∇ · (∇ρt) can be rewritten as a continuity equation (2.2.6)
provided that

∇ψ = −∇ρ
ρ̂

.
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2.2 The metric W

On the other hand, an easy computation (see [Maa11, Proposition 4.2 and Corollary
4.3]) shows that under the identification above, the gradient of the entropy is given
by

gradW H(ρ) = ∇ log ρ .

Combining these observations, we infer that the heat flow is the gradient flow of the
entropy with respect to W, precisely when

∇ρ
ρ̂

= ∇ log ρ ,

that is, when θ is the logarithmic mean.
This argument shows that the same heat flow can also be identified as the gradient

flow of the functional F(ρ) =
∑

x∈X f(ρ(x))π(x) for any smooth function f : R→ R
with f ′′ > 0, if one replaces the logarithmic mean by θ(r, s) = r−s

f ′(r)−f ′(s) . We refer to

[Maa11] for the details.

Our next aim is to provide an equivalent formulation of the definition of W, which
may seem less intuitive at first sight, but offers several technical advantages. First,
the continuity equation becomes linear in V and ρ, which allows us to exploit the
concavity of θ. Second, this formulation is more stable so that we can prove existence
of minimisers in the class CE ′0(ρ̄0, ρ̄1). Similar ideas have already been developed in
a continuous setting in [DNS09], where a general class of transportation metrics was
constructed based on the usual continuity equation in Rn.

An important role will be played by the function α : R×R2
+ → R∪ {+∞} defined

by

α(x, s, t) =


0 , θ(s, t) = 0 and x = 0 ,
x2

2θ(s,t) , θ(s, t) 6= 0 ,

+∞ , θ(s, t) = 0 and x 6= 0 .

The following observation will be useful.

Lemma 2.2.7. The function α is lower semicontinuous and convex.

Proof. This is easily checked using (A7) and the convexity of the function (x, y) 7→ x2

y
on R× (0,∞).

Given ρ ∈P(X ) and V ∈ RX×X we define

A′(ρ, V ) :=
∑
x,y∈X

α(V (x, y), ρ(x), ρ(y))K(x, y)π(x) ,

and we set

CE ′T (ρ̄0, ρ̄1) := {(ρ, ψ) : (i′), (ii), (iii), (iv′), (v′) hold } ,
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2 Ricci curvature for finite Markov chains

where 

(i′) ρ : [0, T ]→ RX is continuous ;
(iv′) V : [0, T ]→ RX×X is locally integrable ;
(v′) For all x ∈ X we have in the sense of distributions

ρ̇t(x) +
1

2

∑
y∈X

(
Vt(x, y)− Vt(y, x)

)
K(x, y) = 0 .

(2.2.8)

The continuity equation in (v′) can equivalently be written as

ρ̇t +∇ · V = 0 .

As an immediate consequence of Lemma 2.2.7 we obtain the following convexity of
A′.

Corollary 2.2.8. Let ρi ∈ P(X ) and V i ∈ RX×X for i = 0, 1. For τ ∈ [0, 1] set
ρτ := (1− τ)ρ0 + τρ1 and V τ := (1− τ)V 0 + τV 1. Then we have

A′(ρτ , V τ ) ≤ (1− τ)A′(ρ0, V 0) + τA′(ρ1, V 1) .

Now we have the following reformulation of Definition 2.2.3.

Lemma 2.2.9. For ρ̄0, ρ̄1 ∈P(X ) we have

W(ρ̄0, ρ̄1)2 = inf

{∫ 1

0
A′(ρt, Vt)dt : (ρ, V ) ∈ CE ′1(ρ̄0, ρ̄1)

}
.

Furthermore, if ρ̄0, ρ̄1 ∈ P∗(X ), condition (iv) in (2.2.5) can be reinforced into:
“ψ : [0, T ]→ RX is C∞”.

Proof. The inequality “≥” follows easily by noting that the infimum is taken over
a larger set. Indeed, given a pair (ρ, ψ) ∈ CE1(ρ̄0, ρ̄1) we obtain a pair (ρ, V ) ∈
CE ′1(ρ̄0, ρ̄1) by setting Vt(x, y) = ∇ψt(x, y)ρ̂t(x, y) and we have A′(ρt, Vt) = A(ρt, ψt).

To show the opposite inequality “≤”, we fix an arbitrary pair (ρ, V ) ∈ CE ′1(ρ̄0, ρ̄1).
It is sufficient to show that for every ε > 0 there exists a pair (ρε, ψε) ∈ CE1(ρ̄0, ρ̄1)
such that ∫ 1

0
A(ρεt , ψ

ε
t )dt ≤

∫ 1

0
A′(ρt, Vt)dt+ ε .

For this purpose we first regularise (ρ, V ) by a mollification argument. We thus define
(ρ̃, Ṽ ) : [−ε, 1 + ε]→P(X )× RX×X by

(ρ̃t, Ṽt) =


(ρ(0), 0) , t ∈ [−ε, ε) ,
(ρ( t−ε

1−2ε),
1

1−2εV ( t−ε
1−2ε)) , t ∈ [ε, 1− ε) ,

(ρ(1), 0) , t ∈ [1− ε, 1 + ε] ,
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2.2 The metric W

and take a non-negative smooth function η : R → R+ which vanishes outside of
[−ε, ε], is strictly positive on (−ε, ε) and satisfies

∫
η(s)ds = 1. For t ∈ [0, 1] we

define

ρεt =

∫
η(s)ρ̃t+sds , V ε

t =

∫
η(s)Ṽt+sds .

Now t 7→ ρεt is C∞ and using the continuity of ρ it is easy to check that (ρε, V ε) ∈
CE ′1(ρ̄0, ρ̄1). Moreover, using the convexity from Corollary 2.2.8 we can estimate∫ 1

0
A′(ρεt , V ε

t )dt ≤
∫ 1

0

∫
η(s)A′(ρ̃t+s, Ṽt+s)dsdt

≤
∫ 1+ε

−ε
A′(ρ̃t, Ṽt)dt =

1

1− 2ε

∫ 1

0
A′(ρt, Vt)dt .

To proceed further, we may assume without loss of generality that V (x, y) = 0
whenever K(x, y) = 0. The fact that

∫ 1
0 A

′(ρt, Vt)dt is finite implies that the set
{t : ρ̂t(x, y) = 0 and Vt(x, y) 6= 0} is negligible for all x, y ∈ X . Taking properties
(A3) and (A4) of the function θ into account, this implies that for the convolved
quantities the corresponding set {t : ρ̂εt (x, y) = 0 and V ε

t (x, y) 6= 0} is empty for all
x, y ∈ X . Hence there exists a measurable function Ψε : [0, 1]→ RX×X satisfying

V ε
t (x, y) = Ψε

t (x, y)ρ̂εt (x, y) for all x, y ∈ X and all t ∈ [0, 1] . (2.2.9)

It remains to find a function ψε : [0, 1]→ RX such that ∇ρεt ·Ψ
ε
t = ∇ρεt · ∇ψ

ε
t . Let

Pρ denote the orthogonal projection in Gρ onto the range of ∇. Then there exists
a measurable function ψε : [0, 1] → RX such that PρεtΨ

ε
t = ∇ψεt . The orthogonal

decomposition

Gρεt = Ran(∇)⊕⊥ Ker(∇∗ρεt ) (2.2.10)

implies that ∇ρεt · Ψ
ε
t = ∇ρεt · ∇ψ

ε
t , hence (ρε, ψε) ∈ CE1(ρ̄o, ρ̄1). Using the decom-

position (2.2.10) once more, we infer that 〈∇ψεt ,∇ψεt 〉ρεt ≤ 〈Ψ
ε
t ,Ψ

ε
t 〉ρεt . This implies

A(ρεt , ψ
ε
t ) ≤ A′(ρεt , V ε

t ) and finishes the proof of the first assertion.
If ρ̄0 and ρ̄1 belong to P∗(X ), one can follow the argument in [Maa11, Lemma

3.30] and construct a curve (ρ̆, V̆ ) ∈ CE ′1(ρ̄0, ρ̄1) such that ρ̆t ∈ P∗(X ) for t ∈ [0, 1]
and ∫ 1

0
A′(ρ̆t, V̆t)dt ≤

∫ 1

0
A′(ρt, Vt)dt+ ε .

Then one can apply the argument above. In this case, ρεt (x) > 0 for all x ∈ X
and t ∈ [0, 1], and therefore the function Ψε : [0, 1] → RX×X is C∞. Furthermore,
since the orthogonal projection Pρ depends smoothly on ρ ∈ P∗(X ), the function
ψε : [0, 1]→ RX is smooth as well.

Remark 2.2.10. In [Maa11] the metricW has been defined as in Definition 2.2.3, with
the difference that (i) in (2.2.8) was replaced by “ρ : [0, T ]→P(X ) is piecewise C1”.
Therefore Lemma 2.2.9 shows, in particular, that Definition 2.2.3 coincides with the
original definition of W from [Maa11].
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2.2.3 Basic Properties of W

As an application of Lemma 2.2.9 we shall prove the following convexity result, which
is a discrete counterpart of the well-known fact that the squared L2-Wasserstein
distance over Euclidean space is convex with respect to linear interpolation (see, for
example, [DNS09, Theorem 5.11]).

Proposition 2.2.11 (Convexity of the squared distance). For i, j = 0, 1, let ρji ∈
P(X ), and for τ ∈ [0, 1] set ρτi := (1− τ)ρ0

i + τρ1
i . Then

W(ρτ0 , ρ
τ
1)2 ≤ (1− τ)W(ρ0

0, ρ
0
1)2 + τW(ρ1

0, ρ
1
1)2 .

Proof. Let ε > 0. For j = 0, 1 we may take a pair (ρj , V j) ∈ CE ′(ρj0, ρ
j
1) with∫ 1

0
A′(ρjt , V

j
t )dt ≤ W2(ρj0, ρ

j
1) + ε

in view of Lemma 2.2.9. For τ ∈ [0, 1] we set

ρτt := (1− τ)ρ0
t + τρ1

t , V τ
t := (1− τ)V 0

t + τV 1
t .

It then follows that (ρτ , V τ ) ∈ CE ′1(ρτ0 , ρ
τ
1), hence by Corollary 2.2.8,

W(ρτ0 , ρ
τ
1)2 ≤

∫ 1

0
A′(ρτt , V τ

t )dt

≤ (1− τ)

∫ 1

0
A′(ρ0

t , V
0
t )dt+ τ

∫ 1

0
A′(ρ1

t , V
1
t )dt

= (1− τ)W(ρ0
0, ρ

0
1)2 + τW(ρ1

0, ρ
1
1)2 + ε .

Since ε > 0 is arbitrary, this completes the proof.

In this section we compare W to some commonly used metrics. A first result of
this type (see [Maa11, Lemma 3.10]) gives a lower bound on W in terms of the total
variation metric

dTV (ρ0, ρ1) =
∑
x∈X

π(x)|ρ0(x)− ρ1(x)| .

Here, more generally, we shall compare W to various Wasserstein distances. Given a
metric d on X and 1 ≤ p <∞, recall that the Lp-Wasserstein metric Wp,d on P(X )
is defined by

Wp,d(ρ0, ρ1) := inf

{( ∑
x,y∈X

d(x, y)pq(x, y)

) 1
p
∣∣∣ q ∈ Γ(ρ0, ρ1)

}
, (2.2.11)
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2.2 The metric W

where Γ(ρ0, ρ1) denotes the set of all couplings between ρ0 and ρ1, i.e.,

Γ(ρ0, ρ1) :=

{
q : X × X → R+

∣∣∣ ∑
y∈X

q(x, y) = ρ0(x)π(x) ,

∑
x∈X

q(x, y) = ρ1(y)π(y)

}
.

It is well known (see, for example, [Vil09, Theorem 4.1]) that the infimum in (2.2.11)
is attained; as usual we shall denote the collection of minimisers by Γo(ρ0, ρ1).

In our setting there are various metrics on X that are natural to consider. In
particular,

• the graph distance dg with respect to the graph structure on X induced by K
(i.e., {x, y} is an edge iff K(x, y) > 0).

• the metric dW , that is, the restriction of W from P(X ) to X under the identi-
fication of points in X with the corresponding Dirac masses:

dW(x, y) :=W
(

1{x}

π(x)
,
1{y}

π(y)

)
.

The induced Lp-Wasserstein distances will be denoted by Wp,g and Wp,W respectively.

We shall now prove lower and upper bounds for the metric W in terms of suitable
Wasserstein metrics. We start with the lower bounds. Let us remark that, unlike
most other results in this chapter, the second inequality in the following result relies
on the normalisation

∑
y∈X K(x, y) = 1.

Proposition 2.2.12 (Lower bounds for W). For all probability densities ρ0, ρ1 ∈
P(X ) we have

1√
2
dTV (ρ0, ρ1) ≤

√
2W1,g(ρ0, ρ1) ≤ W(ρ0, ρ1) . (2.2.12)

Proof. Note that dtr ≤ dg, where dtr(x, y) = 1x 6=y denotes the trivial distance. There-
fore, the first bound follows from the fact that dTV is the L1-Wasserstein distance
induced by dtr (see [Vil03, Theorem 1.14]).

In order to prove the second bound, we fix ε > 0, take ρ̄0, ρ̄1 ∈P(X ) and (ρ, ψ) ∈
CE1(ρ̄0, ρ̄1) with

(∫ 1

0
A(ρt, ψt)dt

) 1
2

≤ W(ρ̄0, ρ̄1) + ε .
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2 Ricci curvature for finite Markov chains

Using the continuity equation from (2.2.5) we obtain for any ϕ : X → R,∣∣∣∑
x∈X

ϕ(x)(ρ0(x)− ρ1(x))π(x)
∣∣∣

=

∣∣∣∣ ∫ 1

0

∑
x∈X

ϕ(x)ρ̇t(x)π(x)dt

∣∣∣∣
=

∣∣∣∣ ∫ 1

0

∑
x,y∈X

ϕ(x)
(
ψt(x)− ψt(y)

)
ρ̂t(x, y)K(x, y)π(x)dt

∣∣∣∣
=

∣∣∣∣ ∫ 1

0
〈∇ϕ,∇ψt〉ρtdt

∣∣∣∣
≤
(∫ 1

0
‖∇ϕ‖2ρtdt

)1/2(∫ 1

0
‖∇ψt‖2ρtdt

)1/2

=

(∫ 1

0
‖∇ϕ‖2ρtdt

)1/2

(W(ρ̄0, ρ̄1) + ε) .

Let [ϕ]Lip denote the Lipschitz constant of ϕ with respect to the graph distance dg,
i.e.,

[ϕ]Lip := sup
x 6=y

|ϕ(x)− ϕ(y)|
dg(x, y)

.

Applying the inequality (2.2.1) and using the fact that dg(x, y) = 1 if x 6= y and
K(x, y) > 0, we infer that

‖∇ϕ‖2ρt =
1

2

∑
x,y∈X

(
ϕ(x)− ϕ(y)

)2
K(x, y)ρ̂t(x, y)π(x)

≤ 1

4
[ϕ]2Lip

∑
x,y∈X

K(x, y)
(
ρt(x) + ρt(y)

)
π(x)

=
1

2
[ϕ]2Lip

∑
x∈X

ρt(x)π(x)
∑
y∈X

K(x, y)

=
1

2
[ϕ]2Lip .

The Kantorovich–Rubinstein Theorem (see, for example, [Vil03, Theorem 1.14])
yields

W1,g(ρ̄0, ρ̄1) = sup
ϕ:[ϕ]Lip≤1

∣∣∣∑
x∈X

ϕ(x)(ρ̄0(x)− ρ̄1(x))π(x)
∣∣∣ ≤ W(ρ̄0, ρ̄1) + ε√

2
,

which completes the proof, since ε > 0 is arbitrary.

Before stating the upper bounds, we provide a simple relation between dg and dW .
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Lemma 2.2.13. For x, y ∈ X we have

dW(x, y) ≤ c√
k
dg(x, y) ,

where

c =

∫ 1

−1

dr√
2θ(1− r, 1 + r)

<∞ and k = min
(x,y) : K(x,y)>0

K(x, y) .

If θ is the logarithmic mean, then c ≈ 1.56.

Proof. Let {xi}ni=0 be a sequence in X with x0 = x, xn = y and K(xi, xi+1) > 0 for
all i. We shall use the fact, proved in [Maa11, Theorem 2.4], that the W-distance
between two Dirac measures on a two-point space {a, b} with transition probabilities
K(a, b) = K(b, a) = p is equal to c√

p . The concavity of θ readily implies that c is

finite. Furthermore, it follows from [Maa11, Lemma 3.14] and its proof, that for any
pair x, y ∈ X with K(x, y) > 0, one has

W
(

1{x}

π(x)
,
1{y}

π(y)

)
≤ c

√
max{π(x), π(y)}
K(x, y)π(x)

≤ c√
k
.

Using the triangle inequality for W we obtain

dW(x, y) =W
(

1{x}

π(x)
,
1{y}

π(y)

)
≤

n−1∑
i=0

W
(

1{xi}

π(xi)
,

1{xi+1}

π(xi+1)

)
≤ nc√

k
,

hence the result follows by taking the infimum over all such sequences {xi}ni=0.

Now we turn to upper bounds for W in terms of L2-Wasserstein distances.

Proposition 2.2.14 (Upper bounds for W). For all probability densities ρ0, ρ1 ∈
P(X ) we have

W(ρ0, ρ1) ≤W2,W(ρ0, ρ1) ≤ c√
k
W2,g(ρ0, ρ1) , (2.2.13)

where c and k are as in Lemma 2.2.13.

Proof. We shall prove the first bound, the second one being an immediate consequence
of Lemma 2.2.13. For this purpose, we fix ρ̄0, ρ̄1 ∈ P(X ) and take q ∈ Γo(ρ̄0, ρ̄1).

For all u, v ∈ X , take a curve (ρu,v, V u,v) ∈ CE ′
(1{u}
π(u) ,

1{v}
π(v)

)
with

∫ 1

0
A′(ρu,vt , V u,v

t )dt ≤ dW(u, v)2 + ε ,
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and consider the convex combination of these curves, weighted according to the op-
timal plan q, i.e.,

ρt :=
∑
u,v∈X

q(u, v)ρu,vt , Vt :=
∑
u,v∈X

q(u, v)V u,v
t .

It then follows that the resulting curve (ρ, V ) belongs to CE ′1(ρ̄0, ρ̄1). Using the
convexity result from Lemma 2.2.7 we infer that

W(ρ̄0, ρ̄1)2 ≤
∫ 1

0
A′(ρt, Vt)dt ≤

∑
u,v∈X

q(u, v)

∫ 1

0
A′(ρu,vt , V u,v

t )dt

≤
∑
u,v∈X

q(u, v)(dW(u, v)2 + ε)

= W2,W(ρ̄0, ρ̄1)2 + ε .

which implies the result.

2.3 Geodesics

In this section we show that the metric space (P(X ),W) is a geodesic space, in the
sense that any two densities ρ0, ρ1 ∈ P(X ) can be connected by a (constant speed)
geodesic, that is, a curve γ : [0, 1]→P(X ) satisfying

W(γs, γt) = |s− t|W(γ0, γ1)

for all 0 ≤ s, t ≤ 1.

Let us first give an equivalent characterisation of the infimum in Lemma 2.2.9,
which is invariant under reparametrisation.

Lemma 2.3.1. For any T > 0 and ρ̄0, ρ̄1 ∈P(X ) we have

W(ρ̄0, ρ̄1) = inf

{∫ T

0

√
A′(ρt, Vt)dt : (ρ, V ) ∈ CE ′T (ρ̄0, ρ̄1)

}
. (2.3.1)

Proof. Taking Lemma 2.2.9 into account, this follows from a standard reparametri-
sation argument. See [AGS08, Lemma 1.1.4] or [DNS09, Theorem 5.4] for details in
similar situations.

Theorem 2.3.2. For all ρ̄0, ρ̄1 ∈P(X ) the infimum in Lemma 2.2.9 is attained by
a pair (ρ, V ) ∈ CE ′1(ρ̄0, ρ̄1) satisfying A′(ρt, Vt) = W(ρ̄0, ρ̄1)2 for a.e. t ∈ [0, 1]. In
particular, the curve (ρt)t∈[0,1] is a constant speed geodesic.
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Proof. We will show existence of a minimising curve by a direct argument. Let
(ρn, V n) ∈ CE ′1(ρ̄0, ρ̄1) be a minimising sequence. Thus we can assume that

sup
n

∫ 1

0
A′(ρnt , V n

t )dt < C

for some finite constant C. Without loss of generality we assume that V n
t (x, y) = 0

when K(x, y) = 0. For x, y ∈ X , define the sequence of signed Borel measures νnx,y
on [0, 1] by νnx,y(dt) := V n

t (x, y)dt. For every Borel set B ⊂ [0, 1] we can give the
following bound on the total variation of these measures:

‖νnx,y‖(B) ≤
∫
B
|V n
t (x, y)| dt ≤

√
2C ′

∫
B

√
α(V n

t (x, y), ρnt (x), ρnt (y))dt ,

where we used the fact that ρ(x) ≤ max{π(z)−1 : z ∈ X} =: C ′ <∞ for ρ ∈P(X ).
Using Hölder’s inequality we obtain

∑
x,y∈X

‖νnx,y‖(B)K(x, y)π(x) ≤
√

2C ′ Leb(B)

(∫ 1

0
A′(ρnt , V n

t )dt

) 1
2

≤
√

2CC ′ Leb(B) . (2.3.2)

In particular, the total variation of the measures νnx,y is bounded uniformly in n.
Hence we can extract a subsequence (still indexed by n) such that for all x, y ∈ X the
measures νnx,y converge weakly* to some finite signed Borel measure νx,y. The estimate
(2.3.2) also shows that νx,y is absolutely continuous with respect to the Lebesgue
measure. Thus there exists V : [0, 1] → RX×X such that νx,y(dt) := Vt(x, y)dt.
We claim that, along the same subsequence, ρn converges pointwise to a function
ρ : [0, 1] → P(X ). Indeed, using the continuity of t 7→ ρnt one derives from the
continuity equation (v′) in (2.2.8) that for s ∈ [0, 1] and every x ∈ X ,

ρns − ρn0 =
1

2

s∫
0

∑
y∈X

(V n
t (y, x)− V n

t (x, y))K(x, y)dt . (2.3.3)

The weak* convergence of νnx,y implies (see [AGS08, Prop. 5.1.10]) the convergence
of the right-hand side of (2.3.3). Since ρn0 = ρ̄0 for all n, this yields the desired
convergence of ρns for all s, and one easily checks that (ρ, V ) ∈ CE ′1(ρ0, ρ1). The weak*
convergence of νnx,y further implies that the measures ρnt (x)dt converge weakly* to
ρt(x)dt. Applying a general result on the lower-semicontinuity of integral functionals
(see [But89, Thm. 3.4.3]) and taking into account Lemma 2.2.7, we obtain∫ 1

0
A′(ρt, Vt)dt ≤ lim inf

n

∫ 1

0
A′(ρnt , V n

t )dt = W(ρ̄0, ρ̄1)2 .
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Hence the pair (ρ, V ) is a minimiser of the variational problem in the definition of
W. Finally, Lemma 2.3.1 yields∫ 1

0

√
A′(ρt, Vt)dt ≥ W(ρ̄0, ρ̄1) =

(∫ 1

0
A′(ρt, Vt)dt

) 1
2

,

which implies that A′(ρt, Vt) = W (ρ̄0, ρ̄1)2 for a.e. t ∈ [0, 1].
The fact that (ρt)t is a constant speed geodesic follows now by another application

of Lemma 2.3.1.

We shall now give a characterisation of absolutely continuous curves in the metric
space (P(X ),W) and relate their length to their minimal action. First we recall some
notions from the theory of analysis in metric spaces. A curve (ρt)t∈[0,T ] in P(X ) is
called absolutely continuous w.r.t. W if there exists m ∈ L1(0, T ) such that

W(ρs, ρt) ≤
∫ t

s
m(r)dr for all 0 ≤ s ≤ t ≤ T .

If (ρt) is absolutely continuous, then its metric derivative

∣∣ρ′t∣∣ := lim
h→0

W(ρt+h, ρt)

|h|

exists for a.e. t ∈ [0, T ] and satisfies |ρ′t| ≤ m(t) a.e. (see [AGS08, Theorem 1.1.2]).

Proposition 2.3.3 (Metric velocity). A curve (ρt)t∈[0,T ] is absolutely continuous with

respect to W if and only if there exists a measurable function V : [0, T ]→ RX×X such
that (ρ, V ) ∈ CE ′T (ρ0, ρT ) and∫ T

0

√
A′(ρt, Vt)dt < ∞ .

In this case we have |ρ′t|
2 ≤ A′(ρt, Vt) for a.e. t ∈ [0, T ] and there exists an almost ev-

erywhere uniquely defined function Ṽ : [0, 1]→ RX×X such that (ρ, Ṽ ) ∈ CE ′T (ρ0, ρT )
and |ρ′t|

2 = A′(ρt, Ṽt) for a.e. t ∈ [0, T ].

Proof. The proof follows from the very same arguments as in [DNS09, Thm. 5.17]. To
construct the velocity field Ṽ , the curve ρ is approximated by curves (ρn, V n) which
are piecewise minimising. The velocity field Ṽ is then defined as a subsequential
limit of the velocity fields V n. In our case, existence of this limit is guaranteed by a
compactness argument similar to the one in the proof of Theorem 2.3.2.

For later use we state an explicit formula for the geodesic equations in P∗(X )
from [Maa11, Proposition 3.4]. Since the interior P∗(X ) of P(X ) is Riemannian by
Theorem 2.2.4, local existence and uniqueness of geodesics is guaranteed by standard
Riemannian geometry.
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Proposition 2.3.4. Let ρ̄ ∈ P∗(X ) and ψ̄ ∈ RX . On a sufficiently small time
interval around 0, the unique constant speed geodesic with ρ0 = ρ̄ and initial tangent
vector ∇ψ0 = ∇ψ̄ satisfies the following equations:

∂tρt(x) +
∑
y∈X

(ψt(y)− ψt(x))ρ̂t(x, y)K(x, y) = 0 ,

∂tψt(x) +
1

2

∑
y∈X

(
ψt(x)− ψt(y)

)2
∂1θ(ρt(x), ρt(y))K(x, y) = 0 .

(2.3.4)

2.4 Ricci curvature

In this section we initiate the study of a notion of Ricci curvature lower boundedness
in the spirit of Lott, Sturm, and Villani [LV09, Stu06]. Furthermore, we present a
characterisation, which we shall use to prove Ricci bounds in concrete examples.

As before, we fix an irreducible and reversible Markov kernel K on a finite set X
with steady state π. The associated Markov semigroup shall be denoted by (Pt)t≥0.

Assumption 2.4.1. Throughout the remainder of this chapter we assume that θ is
the logarithmic mean.

We are now ready to state the definition, which has already been given in [Maa11,
Definition 1.3].

Definition 2.4.2. We say that K has non-local Ricci curvature bounded from below
by κ ∈ R and write Ric(K) ≥ κ, if the following holds: for every constant speed
geodesic (ρt)t∈[0,1] in (P(X ),W) we have

H(ρt) ≤ (1− t)H(ρ0) + tH(ρ1)− κ

2
t(1− t)W(ρ0, ρ1)2 . (2.4.1)

An important role in our analysis is played by the quantity B(ρ, ψ), which is defined
for ρ ∈P∗(X ) and ψ ∈ RX by

B(ρ, ψ) :=
1

2

〈
∆̂ρ · ∇ψ,∇ψ

〉
π
−
〈
ρ̂ · ∇ψ , ∇∆ψ

〉
π

=
1

4

∑
x,y,z∈X

(
ψ(x)− ψ(y)

)2(
∂1θ
(
ρ(x), ρ(y)

)(
ρ(z)− ρ(x)

)
K(x, z)

+ ∂2θ
(
ρ(x), ρ(y)

)(
ρ(z)− ρ(y)

)
K(y, z)

)
K(x, y)π(x)

− 1

2

∑
x,y,z∈X

(
K(x, z)

(
ψ(z)− ψ(x)

)
−K(y, z)

(
ψ(z)− ψ(y)

))
×
(
ψ(x)− ψ(y)

)
ρ̂(x, y)K(x, y)π(x) ,

(2.4.2)

where

∆̂ρ(x, y) := ∂1θ(ρ(x), ρ(y))∆ρ(x) + ∂2θ(ρ(x), ρ(y))∆ρ(y) .

The significance of B(ρ, ψ) is mainly due to the following result:
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Proposition 2.4.3. For ρ ∈P∗(X ) and ψ ∈ RX we have〈
HessH(ρ)∇ψ , ∇ψ

〉
ρ

= B(ρ, ψ) .

Proof. Take (ρ, ψ) satisfying the geodesic equations (2.3.4), so that〈
HessH(ρt)∇ψt , ∇ψt

〉
ρt

=
d2

dt2
H(ρt) .

Using the continuity equation we obtain

d

dt
H(ρt) = −

〈
1 + log ρt,∇ · (ρ̂t∇ψt)

〉
π

=
〈
∇ log ρt, ρ̂t · ∇ψt

〉
π

=
〈
∇ρt,∇ψt

〉
π
.

Furthermore,

d2

dt2
H(ρt) =

〈
∇∂tρt,∇ψt

〉
π

+
〈
∇ρt,∇∂tψt

〉
π

= −
〈
∂tρt,∆ψt

〉
π
−
〈
∆ρt, ∂tψt

〉
π
.

Using the continuity equation we obtain〈
∂tρt,∆ψt

〉
π

= −
〈
∇ · (ρ̂∇ψt),∆ψt

〉
π

=
〈
ρ̂t∇ψt,∇∆ψt

〉
π

=
〈
∇ψt,∇∆ψt

〉
ρt
.

Furthermore, applying the geodesic equations (2.3.4) and the detailed balance equa-
tions (2.1.1), we infer that〈

∆ρt, ∂tψt
〉
π

= −1

2

∑
x,y,z∈X

(
ψt(x)− ψt(y)

)2
∂1θ
(
ρt(x), ρt(y)

)
×
(
ρt(z)− ρt(x)

)
K(x, y)K(x, z)π(x)

= −1

4

∑
x,y,z∈X

(
ψt(x)− ψt(y)

)2(
∂1θ
(
ρt(x), ρt(y)

)(
ρt(z)− ρt(x)

)
K(x, z)

+ ∂2θ
(
ρt(x), ρt(y)

)(
ρt(z)− ρt(y)

)
K(y, z)

)
K(x, y)π(x)

= −1

2

〈
∆̂ρt · ∇ψt,∇ψt

〉
π
.

Combining the latter three identities, we arrive at

d2

dt2
H(ρt) = −

〈
∇ψt,∇∆ψt

〉
ρt

+
1

2

〈
∆̂ρt · ∇ψt,∇ψt

〉
π
,

which is the desired identity.
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Our next aim is to show that κ-convexity of H along geodesics is equivalent to
a lower bound of the Hessian of H in P∗(X ). Since the Riemannian metric on
(P(X ),W) degenerates at the boundary, this is not an obvious result. In particular,
in order to prove the implication “(4) ⇒ (3)” below we cannot directly apply the
equivalence between the so-called EVI (2.4.4) and the usual gradient flow equation,
which holds on complete Riemannian manifolds (see, for example, [Vil09, Proposition
23.1]). Therefore, we take a different approach, based on an argument by Daneri and
Savaré [DS08], which avoids delicate regularity issues for geodesics. An additional
benefit of this approach is that we expect it to apply in a more general setting where
the underlying space X is infinite, and finite-dimensional Riemannian techniques do
not apply at all.

Remark 2.4.4. The quantity B(ρ, ψ) arises naturally in the Eulerian approach to the
Wasserstein metric, as developed in [DS08, OW05]. In fact, in a crucial argument
from [DS08], the authors consider a certain two-parameter family of measures (ρst )
and functions (ψst ) on a Riemannian manifold M, and show that

∂sH(ρst ) +
1

2
∂t

∫
M
|∇ψst |2dρst = −sB(ρst , ψ

s
t ) , (2.4.3)

where

B(ρ, ψ) :=

∫
M

(1

2
∆(|∇ψ|2)− 〈∇ψ,∇∆ψ〉

)
dρ .

Since Bochner’s formula asserts that

B(ρ, ψ) =

∫
M
|D2ψ|2 + Ric(∇ψ,∇ψ)dρ ,

one obtains a lower bound on B if the Ricci curvature is bounded from below. The
lower bound on B can be used to prove an evolution variational inequality, which in
turn yields convexity of the entropy along W2-geodesics.

In our setting, the quantity B(ρ, ψ) can be regarded as a discrete analogue of
B(ρ, ψ). Therefore the inequality B(ρ, ψ) ≥ κA(ρ, ψ) could be interpreted as a one-
sided Bochner inequality, which allows us to adapt the strategy from [DS08] to the
discrete setting.

In the following result and the rest of this chapter we shall use the notation

d+

dt
f(t) = lim sup

h↓0

f(t+ h)− f(t)

h
.

Theorem 2.4.5. Let κ ∈ R. For an irreducible and reversible Markov kernel (X ,K)
the following assertions are equivalent:

(i) Ric(K) ≥ κ ;
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2 Ricci curvature for finite Markov chains

(ii) For all ρ, ν ∈ P(X ), the following ‘evolution variational inequality’ holds for
all t ≥ 0:

1

2

d+

dt
W2(Ptρ, ν) +

κ

2
W2(Ptρ, ν) ≤ H(ν)−H(Ptρ) ; (2.4.4)

(iii) For all ρ, ν ∈P∗(X ), (2.4.4) holds for all t ≥ 0;

(iv) For all ρ ∈P∗(X ) and ψ ∈ RX we have

B(ρ, ψ) ≥ κA(ρ, ψ) .

(v) For all ρ ∈P∗(X ) we have

HessH(ρ) ≥ κ ;

(vi) For all ρ̄0, ρ̄1 ∈P∗(X ) there exists a constant speed geodesic (ρt)t∈[0,1] satisfying
ρ0 = ρ̄0, ρ1 = ρ̄1, and (2.4.1).

Proof. “(3)⇒ (2)”: This is a special case of [DS08, Theorem 3.3].
“(2) ⇒ (1)”: This follows by applying [DS08, Theorem 3.2] to the metric space

(P(X ),W) and the functional H.
“(1)⇒ (6)”: This is clear in view of Theorem 2.3.2.
“(6) ⇒ (5)”: Take ρ ∈ P∗(X ) and ψ ∈ RX and consider the unique solution

(ρt, ψt)t∈(−ε,ε) to the geodesic equations with ρ0 = ρ and ψ0 = ψ on a sufficiently
small time interval around 0. Using the local uniqueness of geodesics and (6), we
infer that

HessH(ρ)(∇ψ) =
d2

dt2

∣∣∣
t=0
H(ρt) ≥ κ‖∇ψ‖2ρ

(see, for example, the implication “(ii)⇔ (i)” in [Vil09, Proposition 16.2]).
“(5)⇒ (4)”: This follows from Proposition 2.4.3.
“(4) ⇒ (3)”: We follow [DS08]. In view of Lemma 2.2.9 we can find a smooth

curve (ρ·, ψ·) ∈ CE1(ν, ρ) satisfying∫ 1

0
A(ρs, ψs)ds <W(ρ, ν)2 + ε . (2.4.5)

Note in particular that s 7→ ρs and s 7→ ψs are sufficiently regular to apply Lemma
2.4.6 below. Using the notation from this lemma, we infer that

1

2
∂tA(ρst , ψ

s
t ) + ∂sH(ρst ) = −sB(ρst , ψ

s
t ) .

Using the assumption that B ≥ κA we infer that

1

2
∂t

(
e2κstA(ρst , ψ

s
t )
)

+ ∂s

(
e2κstH(ρst )

)
≤ 2κte2κstH(ρst ) .
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2.4 Ricci curvature

Integration with respect to t ∈ [0, h] and s ∈ [0, 1] yields

1

2

∫ 1

0

(
e2κshA(ρsh, ψ

s
h)−A(ρs0, ψ

s
0)
)

ds

+

∫ h

0

(
e2κtH(ρ1

t )−H(ρ0
t )
)

dt ≤ 2κ

∫ 1

0

∫ h

0
te2κstH(ρst )dtds .

Arguing as in [DS08, Lemma 5.1] we infer that∫ 1

0
e2κshA(ρsh, ψ

s
h)ds ≥ m(κh)W2(Phρ, ν) ,

where m(κ) = κeκ

sinh(κ) . Using (2.4.5) together with the fact that the entropy decreases
along the heat flow, we infer that

m(κh)

2
W2(Phρ, ν)− 1

2
W2(ρ, ν)− ε

+ Eκ(h)H(Phρ)− hH(ν) ≤ 2κ

∫ 1

0

∫ h

0
te2κstH(ρst )dtds ,

(2.4.6)

where Eκ(h) :=
∫ h

0 e
2κt dt. Since H is bounded, it follows that

lim
h↓0

1

h

∫ 1

0

∫ h

0
te2κstH(ρst )dtds = 0 .

Furthermore,

lim
h↓0

1

h

(
Eκ(h)H(Phρ)− hH(ν)

)
= H(ρ)−H(ν) .

Since ε > 0 is arbitrary, (2.4.6) implies that

d+

dh

∣∣∣∣
h=0

(
m(κh)

2
W2(Phρ, ν)

)
+H(ρ)−H(ν) ≤ 0 .

Taking into account that

d+

dh

∣∣∣∣
h=0

(
m(κh)

2
W2(Phρ, ν)

)
=
κ

2
W2(ρ, ν) +

1

2

d+

dh

∣∣∣∣
h=0

W2(Phρ, ν) ,

we obtain (2.4.4) for t = 0, which clearly implies (2.4.4) for all t ≥ 0.

The following result, which is used in the proof of Theorem 2.4.5, is a discrete
analogue of (2.4.3) and the proof proceeds along the lines of [DS08, Lemma 4.3].
Since the details are slightly different in the discrete setting, we present a proof for
the convenience of the reader.
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Lemma 2.4.6. Let {ρs}s∈[0,1] be a smooth curve in P(X ). For each t ≥ 0, set

ρst := est∆ρs, and let {ψst }s∈[0,1] be a smooth curve in RX satisfying the continuity
equation

∂sρ
s
t +∇ · (ρ̂st · ∇ψst ) = 0 , s ∈ [0, 1] .

Then the identity

1

2
∂tA(ρst , ψ

s
t ) + ∂sH(ρst ) = −sB(ρst , ψ

s
t )

holds for every s ∈ [0, 1] and t ≥ 0.

Proof. First of all, we have

∂sH(ρst ) =
〈
1 + log ρst , ∂sρ

s
t

〉
π

= −
〈
1 + log ρst , ∇ · (ρ̂st · ∇ψ)

〉
π

=
〈
∇ log ρst , ρ̂

s
t · ∇ψst

〉
π

=
〈
∇ρst , ∇ψst

〉
π

= −
〈
ψst , ∆ρst

〉
π
.

(2.4.7)

Furthermore,

1

2
∂tA(ρst , ψ

s
t ) =

〈
ρ̂st · ∂t∇ψst , ∇ψst

〉
π

+
1

2

〈
∂tρ̂

s
t · ∇ψst , ∇ψst

〉
π

=: I1 + I2 .

In order to simplify I1 we claim that

−∇ ·
(
(∂tρ̂

s
t ) · ∇ψst

)
−∇ ·

(
ρ̂st · ∂t∇ψst

)
= ∆ρst − s∆

(
∇ · (ρ̂st · ∇ψst )

)
, (2.4.8)

∂tρ̂
s
t = s∆̂ρst . (2.4.9)

To show (2.4.8), note that the left-hand side equals ∂t∂sρ
s
t , while the right-hand side

equals ∂s∂tρ
s
t . The identity (2.4.9) follows from a straightforward calculation.

Integrating by parts repeatedly and using (2.4.7), (2.4.8) and (2.4.9), we obtain

I1 = −
〈
ψst , ∇ · (ρ̂st · ∂t∇ψst )

〉
π

=
〈
ψst , ∆ρst

〉
π
− s
〈
ψst , ∆

(
∇ · (ρ̂st∇ψst )

)〉
π

+
〈
ψst , ∇ ·

(
(∂tρ̂

s
t )∇ψst

)〉
π

= −∂sH(ρst ) + s
〈
ρ̂st · ∇ψst , ∇∆ψst

〉
π
− s
〈
∆̂ρst · ∇ψst , ∇ψst

〉
π
.

Taking into account that

I2 =
s

2

〈
∆̂ρst · ∇ψst , ∇ψst

〉
π
,

the result follows by summing the expressions for I1 and I2.
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The evolution variational inequality (2.4.4) has been extensively studied in the
theory of gradient flows in metric spaces [AGS08]. It readily implies a number of in-
teresting properties for the associated gradient flow (see, for example, [DS08, Section
3]). Among them we single out the following κ-contractivity property.

Proposition 2.4.7 (κ-Contractivity of the heat flow). Let (X ,K) be an irreducible
and reversible Markov kernel satisfying Ric(K) ≥ κ for some κ ∈ R. Then the
associated continuous time Markov semigroup (Pt)t≥0 satisfies

W(Ptρ, Ptσ) ≤ e−κtW(ρ, σ)

for all ρ, σ ∈P(X ) and t ≥ 0.

Proof. This follows by applying [DS08, Proposition 3.1] to the functional H on the
metric space (P(X ),W).

2.5 Examples

In this section we give explicit lower bounds on the non-local Ricci curvature in
several examples. Moreover, we present a simple criterion (see Proposition 2.5.4) for
proving non-local Ricci curvature bounds. Although the assumptions seem restrictive,
the criterion allows us to obtain the sharp Ricci bound for the discrete hypercube.
Moreover, it can be combined with the tensorisation result from Section 2.6 in order
to prove Ricci bounds in other nontrivial situations. To get started let us consider a
particularly simple example.

Example 2.5.1 (The complete graph). Let Kn denote the complete graph on n vertices
and let Kn be the simple random walk on Kn with transition kernel K(x, y) = 1

n for
all x, y ∈ Kn. Note that in this case π is the uniform measure. We will show that
Ric(Kn) ≥ 1

2+ 1
2n . In view of Theorem 2.4.5 we have to show B(ρ, ψ) ≥ (1

2+ 1
2n)A(ρ, ψ)

for all ρ ∈ P∗(X ) and ψ ∈ RX . Recall the definition (2.4.2) of the quantity B. We
calculate explicitly:

〈
ρ̂ · ∇ψ , ∇∆ψ

〉
π

=
1

2

1

n3

∑
x,y,z∈X

ρ̂(x, y)∇ψ(y, x)

[
∇ψ(x, z)−∇ψ(y, z)

]
= − 1

2

1

n2

∑
x,y

ρ̂(x, y)
(
∇ψ(x, y)

)2
= −A(ρ, ψ) .

With the notation ρ̂i(x, y) = ∂iθ(ρ(x), ρ(y)) and using equation (2.2.2) we obtain
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further〈
∆̂ρ · ∇ψ,∇ψ

〉
π

=
1

2

1

n3

∑
x,y,z

(
∇ψ(x, y)

)2[
ρ̂1(x, y)(ρ(z)− ρ(x))

+ ρ̂2(x, y)(ρ(z)− ρ(y))

]
= −A(ρ, ψ) +

1

2

1

n3

∑
x,y,z

(
∇ψ(x, y)

)2[
ρ̂1(x, y)ρ(z)

+ ρ̂2(x, y)ρ(z)

]
.

Keeping only the terms with z = x (resp. z = y) in the last sum and using (2.2.2)
again, we see

〈
∆̂ρ · ∇ψ,∇ψ

〉
π
≥
(

1

n
− 1

)
A(ρ, ψ) .

Summing up, we obtain B ≥ (1
2( 1
n − 1) + 1)A, which yields the claim.

For the rest of this section we let K be an irreducible and reversible Markov kernel
on a finite set X . In order to state the criterion and to perform calculations, it will
be convenient to write a Markov chain in terms of allowed moves rather than jumps
from point to point.

Let G be a set of maps from X to itself (the allowed moves) and consider a function
c : X ×G→ R+ (representing the jump rates).

Definition 2.5.2. We call the pair (G, c) a mapping representation of K if the
following properties hold:

(i) The generator ∆ = K − I can be written in the form

∆ψ(x) =
∑
δ∈G
∇δψ(x)c(x, δ) , (2.5.1)

where

∇δψ(x) = ψ(δx)− ψ(x) .

(ii) For every δ ∈ G there exists a unique δ−1 ∈ G satisfying δ−1(δ(x)) = x for all
x with c(x, δ) > 0.

(iii) For every F : X ×G→ R we have∑
x∈X ,δ∈G

F (x, δ)c(x, δ)π(x) =
∑

x∈X ,δ∈G
F (δx, δ−1)c(x, δ)π(x) . (2.5.2)
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Remark 2.5.3. This definition is close in spirit to the recent work [CDPP09], where
Γ2-type calculations have been performed in order to prove strict convexity of the
entropy along the heat flow in a discrete setting. Here, we essentially compute the
second derivatives of the entropy along W-geodesics. Since the geodesic equations
are more complicated than the heat equation, the expressions that we need to work
with are somewhat more involved.

Every irreducible, reversible Markov chain has a mapping representation. In fact,
an explicit mapping representation can be obtained as follows. For x, y ∈ X consider
the bijection t{x,y} : X → X that interchanges x and y and keeps all other points fixed.
Then let G be the set of all these “transpositions” and set c(x, t{x,y}) = K(x, y) and
c(x, t{y,z}) = 0 for x /∈ {y, z}. Then (G, c) defines a mapping representation. However,
in examples it is often more natural to work with a different mapping representation
involving a smaller set G, as we shall see below.

It will be useful to formulate the expressions for A and B in this formalism. For
this purpose, we note that (2.5.1) implies that∑

y∈X
F (x, y)K(x, y) =

∑
δ∈G

F (x, δx)c(x, δ)

for any F : X × X → R vanishing on the diagonal. As a consequence we obtain

A(ρ, ψ) =
1

2

∑
x∈X ,δ∈G

(
∇δψ(x)

)2
ρ̂(x, δx)c(x, δ)π(x) (2.5.3)

and

〈ρ̂∇ψ,∇∆ψ〉π =
1

2

∑
x∈X

∑
δ,η∈G

∇δψ(x)

[
∇ηψ(δx)c(δx, η)

−∇ηψ(x)c(x, η)

]
ρ̂(x, δx)c(x, δ)π(x) .

(2.5.4)

Setting for convenience ∂iθ(ρ(x), ρ(y)) =: ρ̂i(x, y) for i = 1, 2 we further get

1

2
〈∆̂ρ∇ψ,∇ψ〉π =

1

4

∑
x,δ,η

(
∇δψ(x)

)2[
ρ̂1(x, δx)∇ηρ(x)c(x, η)

+ ρ̂2(x, δx)∇ηρ(δx)c(δx, η)

]
c(x, δ)π(x) .

(2.5.5)

Now the expression for B(ρ, ψ) is obtained as the difference between the two preceding
two expressions.

We are now ready to state the announced criterion, which shall be used in Ex-
amples 2.5.6 and 2.5.8 below. Intuitively, condition (ii) expresses a certain ‘spatial
homogeneity’, saying that the jump rate in a given direction is the same before and
after another jump.
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Proposition 2.5.4. Let K be an irreducible and reversible Markov kernel on a finite
set X and let (G, c) be a mapping representation. Consider the following conditions:

(i) δ ◦ η = η ◦ δ , for all δ, η ∈ G,

(ii) c(δx, η) = c(x, η) , for all x ∈ X , δ, η ∈ G,

(iii) δ ◦ δ = id , for all δ ∈ G.

If (i) and (ii) are satisfied, then Ric(K) ≥ 0. If moreover (iii) is satisfied, then
Ric(K) ≥ 2C, where

C := min{c(x, δ) : x ∈ X , δ ∈ G such that c(x, δ) > 0} .

Remark 2.5.5. Note that requiring (i) and (iii) simultaneously imposes a very strong
restriction on the graph associated with K. We prefer to state the result in this
form in order to give a unified proof which applies both to the discrete circle and the
discrete hypercube, with optimal constant in the latter case.

Proof of Proposition 2.5.4. In view of Theorem 2.4.5 it is sufficient to show that
B(ρ, ψ) ≥ 0 resp. B(ρ, ψ) ≥ 2CA(ρ, ψ) for all ρ ∈ P∗(X ) and ψ ∈ RX . First
recall that

B(ρ, ψ) = − 〈ρ̂∇ψ,∇∆ψ〉π +
1

2
〈∆̂ρ∇ψ,∇ψ〉π =: T1 + T2 .

Using (2.5.4) and conditions (i) and (ii) we can write the first summand as

T1 = − 1

2

∑
x,δ,η

∇δψ(x)

[
∇ηψ(δx)−∇ηψ(x)

]
ρ̂(x, δx)c(x, δ)c(x, η)π(x)

= − 1

2

∑
x,δ,η

∇δψ(x)

[
∇δψ(ηx)−∇δψ(x)

]
ρ̂(x, δx)c(x, δ)c(x, η)π(x) .

In a similar way we shall write the second summand. Starting from (2.5.5) and
invoking (ii) and equation (2.2.2) from Lemma 2.2.2, we obtain

T2 =
1

4

∑
x,δ,η

(
∇δψ(x)

)2[
ρ̂1(x, δx)∇ηρ(x)

+ ρ̂2(x, δx)∇ηρ(δx)

]
c(x, δ)c(x, η)π(x)

=
1

4

∑
x,δ,η

(
∇δψ(x)

)2[
ρ̂1(x, δx)ρ(ηx)

+ ρ̂2(x, δx)ρ(ηδx)− ρ̂(x, δx)

]
c(x, δ)c(x, η)π(x) .
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Using the reversibility of K in the form of (2.5.2), and again condition (ii) we can
write

T2 =
1

4

∑
x,δ,η

((
∇δψ(ηx)

)2[
ρ̂1(ηx, δηx)ρ(x) + ρ̂2(ηx, δηx)ρ(δx)

]

−
(
∇δψ(x)

)2
ρ̂(x, δx)

)
c(x, δ)c(x, η)π(x) .

Adding a zero, we obtain

T2 =
1

4

∑
x,δ,η

((
∇δψ(ηx)

)2 − (∇δψ(x)
)2)

ρ̂(x, δx)c(x, δ)c(x, η)π(x)

+
1

4

∑
x,δ,η

(
∇δψ(ηx)

)2[
ρ̂1(ηx, δηx)ρ(x) + ρ̂2(ηx, δηx)ρ(δx)

− ρ̂(x, δx)

]
c(x, δ)c(x, η)π(x)

=: T3 + T4 .

Invoking the inequality (2.2.3) from Lemma 2.2.2, we immediately see that T4 ≥ 0.
Hence we get

B(ρ, ψ) ≥ T1 + T3

=
1

4

∑
x,δ,η

(
∇δψ(ηx)−∇δψ(x)

)2
ρ̂(x, δx)c(x, δ)c(x, η)π(x)

≥ 0 .

If moreover, condition (iii) is satisfied, the latter estimate can be improved by
keeping only the terms with η = δ in the last sum. We thus obtain

B(ρ, ψ) ≥ C

4

∑
x,δ

(
2∇δψ(x)

)2
ρ̂(x, δx)c(x, δ)π(x)

= 2CA(ρ, ψ) .

Let us now consider some examples to which Proposition 2.5.4 can be applied.

Example 2.5.6 (The discrete circle). Consider the simple random walk on the discrete
circle Cn = Z/nZ of n sites with transition kernel K(m,m− 1) = K(m,m+ 1) = 1

2
for m ∈ Cn. We have the following mapping representation for K. Set G = {+,−}
where +(m) = m + 1 and −(m) = m − 1 and let c(m,+) = c(m,−) = 1

2 for all m.
Proposition 2.5.4 immediately yields that Ric(K) ≥ 0.
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A similar argument can be used to show that the simple random walk on a discrete
torus X = Cn × · · · × Cn has non-negative non-local Ricci curvature. Alternatively,
in Proposition 2.6.4 we deduce such a result from the previous example with the help
of the tensorisation property proven in Theorem 2.6.2.

Example 2.5.7 (Triangular lattices on the torus). Consider the simple random walk
on the two-dimensional discrete torus Tn = Cn × Cn with transition kernel

K
(
(m, l), (m+ e, l)

)
= K

(
(m, l), (m, l + e)

)
= K

(
(m, l), (m+ e, l + e)

)
=

1

6
,

where e = +1,−1. The corresponding graph structure on the torus is a peri-
odic triangular lattice. A mapping representation for K is obtained by setting
G = {he, ve, de | e = +1,−1}, where he(m, l) = (m + e, l), ve(m, l) = (m, l + e),
de(m, l) = (m+ e, l + e), and c(x, δ) = 1

6 for all x ∈ Tn and δ ∈ G. Proposition 2.5.4
then yields that Ric(K) ≥ 0.

Example 2.5.8 (The discrete hypercube). LetQn = {0, 1}n be the hypercube endowed
with the usual graph structure and let Kn be the kernel of the simple random walk
on Qn. The natural mapping representation is given by G = {δ1, . . . , δn}, where
δi : Qn → Qn is the map that flips the i-th coordinate, and c(x, δi) = 1

n for all
x ∈ Qn. Here the criterion from Proposition 2.5.4 yields Ric(Kn) ≥ 2

n . We shall see
in Section 2.7 that this bound is optimal.

Alternatively, we can use the fact that Qn is a product space and use the ten-
sorisation property Theorem 2.6.2 below. This will allow us to consider asymmetric
random walks on the hypercube, as well.

2.6 Basic Constructions

In this section we show how non-local Ricci curvature bounds transform under some
basic operations on a Markov kernel. The main result is Theorem 2.6.2, which yields
Ricci bounds for product chains. We start with a simple result that shows how Ricci
bounds behave when adding laziness.

Let K be an irreducible and reversible Markov kernel on a finite set X . For λ ∈
(0, 1) we consider the lazy Markov kernel defined by Kλ := (1−λ)I+λK. Clearly, Kλ

is irreducible and reversible with the same invariant measure π. With this notation,
we have the following result:

Proposition 2.6.1 (Laziness). Let λ ∈ (0, 1). If Ric(K) ≥ κ for some κ ∈ R, then
the lazy kernel Kλ satisfies

Ric(Kλ) ≥ λκ .

Proof. Writing Aλ and Bλ to denote the lazy versions of A and B, a direct calculation
shows that

Aλ(ρ, ψ) = λA(ρ, ψ) , Bλ(ρ, ψ) = λ2B(ρ, ψ)
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for all ρ ∈P∗(X ) and ψ ∈ RX . As a consequence,

Bλ(ρ, ψ)− λκAλ(ρ, ψ) = λ2(B(ρ, ψ)− κA(ρ, ψ)) .

The result thus follows from Theorem 2.4.5.

We now give a tensorisation property of lower Ricci bounds with respect to products
of Markov chains. For i = 1, . . . , n, let (Xi,Ki) be an irreducible, reversible finite
Markov chain with steady state πi, and let αi be a non-negative number satisfying∑n

i=1 αi = 1. The product chain Kα on the product space X =
∏
iXi is defined for

x = (x1, . . . , xn) and y = (y1, . . . , yn) by

Kα(x,y) =


n∑
i=1

αiKi(xi, xi) , if xi = yi ∀i ,

αiKi(xi, yi) , if xi 6= yi and xj = yj ∀j 6= i ,

0 , otherwise .

Note that the steady state of Kα is the product π = π1⊗· · ·⊗πn of the steady states
of Ki.

Theorem 2.6.2 (Tensorisation). Assume that Ric(Ki) ≥ κi for i = 1, . . . , n. Then
we have

Ric(Kα) ≥ min
i
αiκi .

Proof. In view of Theorem 2.4.5 we have to show that for any ρ ∈ P∗(X ) and
ψ : X → R:

B(ρ, ψ) ≥ (min
i
αiκi)A(ρ, ψ) .

We will use a mapping representation for the Markov kernel Kα as introduced in
Section 2.5. Let (Gi, ci) be mapping representations of Ki for i = 1, . . . , n. To each
δ ∈ Gi we associate a map δ̄ : X → X by letting δ act on the i-th coordinate. Let us
set G =

⋃
i{δ̄ : δ ∈ Gi} and define c : X ×G→ R+ by

c(x, δ̄) := αici(xi, δ) , for δ ∈ Gi .

One easily checks that (G, c) is a mapping representation of Kα. Recalling the ex-
pressions (2.5.4),(2.5.5) which constitute B in mapping representation, we write

B(ρ, ψ) =:
∑

x∈X ,δ,η∈G
F (x, δ, η) .

Taking into account the product structure of the chain we can write

B(ρ, ψ) =

n∑
i,j=1

Bi,j with Bi,j =
∑
x∈X

∑
δ∈Gi,η∈Gj

F (x, δ̄, η̄) .

The proof will be finished if we prove the following two assertions:
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(i) Bi,j ≥ 0 for all i 6= j ,

(ii)
n∑
i=1
Bi,i ≥ (min

i
αiκi)A(ρ, ψ) .

To show (i), first note that for δ ∈ Gi and η ∈ Gj the maps δ̄ and η̄ act on different
coordinates if i 6= j. Thus we have δ̄ ◦ η̄ = η̄ ◦ δ̄ and furthermore c(δ̄x, η̄) = c(x, η̄).
Note that these are precisely the properties used in the proof Proposition 2.5.4, hence
the assertion here follows from the same arguments.

Let us now show (ii). We set X̌i =
∏
j 6=iXj . For x̌i ∈ X̌i we let ρx̌i , ψx̌i : Xi → R

denote the functions ρ and ψ where all variables except xi are fixed to x̌i. Note that
ρx̌i does not necessarily belong to P(Xi), but this will be irrelevant in the calculation
below, and we shall use expressions such as A(ρx̌i , ψx̌i) by abuse of notation. We also
set π̌i =

⊗
j 6=i πj . Once more using the product structure of the chain c, we see:

A(ρ, ψ)

=
1

2

n∑
i=1

∑
x∈X ,δ∈Gi

(
∇δ̄ψ(x)

)2
ρ̂(x, δ̄x)c(x, δ̄)π(x)

=
1

2

n∑
i=1

∑
x̌i∈X̌i

∑
xi∈Xi,δ∈Gi

(
∇δψx̌i(xi)

)2
ρ̂x̌i(xi, δxi)αici(xi, δ)πi(xi)π̌i(x̌i)

=
n∑
i=1

αi
∑
x̌i∈X̌i

Ai(ρx̌i , ψx̌i)π̌i(x̌i) ,

where Ai (resp. Bi) denotes the function A (resp. B) associated with the ith chain.
Similarly, we obtain

Bi,i = α2
i

∑
x̌i∈X̌i

Bi(ρx̌i , ψx̌i)π̌i(x̌i)

≥ α2
i κi

∑
x̌i∈X̌i

Ai(ρx̌i , ψx̌i)π̌i(x̌i) ,

where the last inequality holds by assumption on the curvature bound for Ki. Sum-
ming over i = 1, . . . , n we obtain (ii).

We shall now apply Theorem 2.6.2 to asymmetric random walks on the discrete
hypercube. For p, q ∈ (0, 1) let Kp,q be the Markov kernel on the two point space
{0, 1} defined by K(0, 1) = p,K(1, 0) = q. The asymmetric random walk is the n-fold
product chain on Qn denoted by Kp,q,n where αi = 1

n . Note that the steady state of
Kp,q,n is the Bernoulli measure(

(1− λ)δ{0} + λδ{1}

)⊗n
with parameter λ = p

p+q . We then have the following bound on the non-local Ricci
curvature:
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Proposition 2.6.3. For n ≥ 1 we have

Ric(Kp,q,n) ≥ 1

n

(
p+ q

2
+
√
pq

)
.

Proof. The two-point space Q1 = {0, 1} has been analysed in detail in [Maa11]. In
particular, [Maa11, Proposition 2.12] asserts that Ric(Kp,q,1) ≥ κp,q,1, where

κp,q,1 =
p+ q

2
+ inf
−1<β<1

{
1

1− β2

q(1 + β)− p(1− β)

log q(1 + β)− log p(1− β)

}
.

In order to estimate the right-hand side, we use the logarithmic-geometric mean
inequality to obtain for β ∈ (−1, 1),

1

1− β2

q(1 + β)− p(1− β)

log q(1 + β)− log p(1− β)
≥
√

pq

1− β2
≥ √pq

We thus infer that Ric(Kp,q,1) ≥ p+q
2 +

√
pq. The general bound then follows imme-

diately from Theorem 2.6.2.

We shall see in Section 2.7 that this bound is sharp if p = q. If p 6= q, it should
be possible to improve this bound by obtaining a sharper bound in the minimisation
problem in the proof above.

As another application of the tensorisation result, we prove non-negativity of the
non-local Ricci curvature for the simple random walk on a discrete torus of arbitrary
size in any dimension d ≥ 1.

Let c := {cn}dn=1 be a sequence of natural numbers and consider the discrete torus

Tc := Cc1 × . . .× Ccd .

The simple random walk Kc on Tc is the d-fold product of simple random walks on
the circles of length c1, . . . , cd.

Proposition 2.6.4 (d-dimensional torus). For any d ≥ 1 and c := {cn}dn=1 ∈ Nd we
have

Ric(Kc) ≥ 0 .

Proof. This follows from Example 2.5.6 and Theorem 2.6.2.

2.7 Functional Inequalities

The aim of this section is to prove discrete counterparts to the celebrated theorems
by Bakry–Émery and Otto–Villani. Along the way we prove a discrete version of the
HWI-inequality, which relates the L2-Wasserstein distance to the entropy and the
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Fisher information. As announced in the introduction, we shall follow the approach
from Otto–Villani, which relies on the fact that the heat flow is the gradient flow of
the entropy. Therefore, the role of the L2-Wasserstein distance will be taken over by
the distance W.

We fix a finite set X and an irreducible and reversible Markov kernel K with steady
state π. Recall that the relative entropy of a density ρ ∈P(X ) is defined by

H(ρ) =
∑
x∈X

ρ(x) log ρ(x)π(x) .

As before, we consider a discrete analogue of the Fisher information, given for ρ ∈
P∗(X ) by

I(ρ) =
1

2

∑
x,y∈X

(
ρ(x)− ρ(y)

)(
log ρ(x)− log ρ(y)

)
K(x, y)π(x) .

If ρ(x) = 0 for some x ∈ X , we set I(ρ) = +∞. Note that this quantity can be
rewritten in the form I(ρ) = ‖∇ log ρ‖2ρ using the definition of the logarithmic mean.
The relevance of I in this setting is due to the fact that it describes the entropy
dissipation along the heat flow:

d

dt
H(Ptρ) = − I(Ptρ) . (2.7.1)

The following proposition gives an upper bound for the speed of the heat flow
measured in the metric W.

Proposition 2.7.1. Let ρ, σ ∈P(X ). For all t > 0 we have

d+

dt
W(Ptρ, σ) ≤

√
I(Ptρ) . (2.7.2)

In particular, the metric derivative of the heat flow with respect to W satisfies the
bound |(Ptρ)′| ≤

√
I(Ptρ). If ρ belongs to P∗(X ), then (2.7.2) holds at t = 0 as well.

Proof. Let us set ρt := Ptρ. Elementary Markov chain theory guarantees that ρt ∈
P∗(X ) for all t > 0 and that the map t 7→ ρt is smooth. To prove (2.7.2) we use the
triangle inequality and obtain

d+

dt
W(ρt, σ) = lim sup

s↘0

1

s

(
W(ρt+s, σ)−W(ρt, σ)

)
≤ lim sup

s↘0

1

s
W(ρt, ρt+s) .
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Note that the couple (ρr,− log ρr)r∈[0,1] solves the continuity equation (2.1.2). From
the definition of W we thus obtain the estimate

lim sup
s↘0

1

s
W(ρt, ρt+s) ≤ lim sup

s↘0

1

s

t+s∫
t

‖∇ log ρr‖ρrdr

= lim sup
s↘0

1

s

t+s∫
t

√
I(ρr)dr

=
√
I(ρt) .

The last equality holds since r 7→
√
I(ρr) is a continuous function.

Let us now recall from Section 2.1 the functional inequalities that will be studied.
Recall that 1 ∈ P(X ) denotes the density of the stationary distribution, which is
everywhere equal to 1.

Definition 2.7.2. The Markov kernel K satisfies

(i) a modified logarithmic Sobolev inequality with constant λ > 0 if for all ρ ∈
P(X )

H(ρ) ≤ 1

2λ
I(ρ) . (MLSI(λ))

(ii) an HWI inequality with constant κ ∈ R if for all ρ ∈P(X )

H(ρ) ≤ W(ρ,1)
√
I(ρ)− κ

2
W(ρ,1)2 . (HWI(κ))

(iii) a modified Talagrand inequality with constant λ > 0 if for all ρ ∈P(X )

W(ρ,1) ≤
√

2

λ
H(ρ) . (TW(λ))

(iv) a Poincaré inequality with constant λ > 0 if for all ϕ ∈ RX with
∑

x ϕ(x)π(x) =
0

‖ϕ‖2π ≤
1

λ
‖∇ϕ‖2π . (P(λ))

The following result is a discrete analogue of a result by Otto and Villani [OV00].

Theorem 2.7.3. Assume that Ric(K) ≥ κ for some κ ∈ R. Then K satisfies
HWI(κ).
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Proof. Fix ρ ∈P(X ). Without restriction we can assume that ρ > 0 since otherwise
I(ρ) = +∞ and there is nothing to prove. Let ρt = Ptρ where Pt = et(K−I) is the
heat semigroup. From Theorem 2.4.5 and the lower bound on the Ricci curvature
we know that the curve (ρt) satisfies EVI(κ), i.e., equation (2.4.4). Choosing, in
particular, ν = 1 and t = 0 in the EVI we obtain the inequality

H(ρ) ≤ − 1

2

d+

dt

∣∣∣∣
t=0

W(ρt,1)2 − κ

2
W(ρ,1)2 .

To finish the proof we show that

−1

2

d+

dt

∣∣∣∣
t=0

W(ρt,1)2 ≤ W(ρ,1)
√
I(ρ) .

Indeed, using the triangle inequality we estimate

−1

2

d+

dt

∣∣∣∣
t=0

W(ρt,1)2 = lim inf
s↘0

1

2s

(
W(ρ,1)2 −W(ρs,1)2

)
≤ lim sup

s↘0

1

2s

(
W(ρ, ρs)

2 + 2W(ρ, ρs) · W(ρ,1)
)
,

Using the estimate (2.7.2) from Proposition 2.7.1 with σ = ρ and t = 0 we see that
the second term on the right-hand side is bounded by W(ρ,1)

√
I(ρ) while the first

term vanishes.

The following result is now a simple consequence.

Theorem 2.7.4 (Discrete Bakry–Émery Theorem). Assume that Ric(K) ≥ λ for
some λ > 0. Then K satisfies MLSI(λ).

Proof. By Theorem 2.7.3 K satisfies HWI(λ). From this we derive MLSI(λ) by an
application of Young’s inequality :

xy ≤ cx2 +
1

4c
y2 ∀x, y ∈ R , c > 0 ,

in which we set x =W(ρ, 1), y =
√
I(ρ) and c = λ

2 .

Theorem 2.7.5 (Discrete Otto–Villani Theorem). Assume that K satisfies
MLSI(λ) for some λ > 0. Then K also satisfies TW(λ).

Proof. It is sufficient to prove that TW(λ) holds for any ρ ∈P∗(X ). The inequality
for general ρ can then be obtained by an easy approximation argument taking into
account the continuity of W with respect to the Euclidean metric.

So, fix ρ ∈P∗(X ) and set ρt = Ptρ. First note that as t→∞, we have

H(ρt)→ 0 and W(ρ, ρt)→W(ρ,1) . (2.7.3)
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Indeed, by elementary Markov chain theory, we know that as t→∞, one has ρt → 1
in, say, the Euclidean distance. The claim follows immediately from the continuity
of H and W with respect to the Euclidean distance, the latter being a consequence
of, for example, Proposition 2.2.14.

We now define the function F : R+ → R+ by

F (t) := W(ρ, ρt) +

√
2

λ
H(ρt) .

Obviously we have F (0) =
√

2
λH(ρ) and by (2.7.3) we have that F (t) → W(ρ,1) as

t→∞. Hence it is sufficient to show that F is non-increasing. To this end we show
that its upper right derivative is non-positive. If ρt 6= 1 we deduce from Proposition
2.7.1 that

d+

dt
F (t) ≤

√
I(ρt)−

I(ρt)√
2λH(ρt)

≤ 0 ,

where we used MLSI(λ) in the last inequality. If ρt = 1, then the relation also holds
true, since this implies that ρr = 1 for all r ≥ t.

In a classical continuous setting it is well known that a logarithmic Sobolev inequal-
ity implies a Poincaré inequality by linearisation. Let us make this explicit in the
present discrete context. Fix ϕ ∈ RX satisfying

∑
x ϕ(x)π(x) = 0 and for sufficiently

small ε > 0 set ρε = 1 + εϕ ∈P∗(X ). One easily checks that as ε→ 0 we have:

1

ε2
H(ρε) −→ 1

2
‖ϕ‖2π ,

1

ε2
I(ρε) −→ ‖∇ϕ‖2π .

Thus assuming MLSI(λ) holds and applying it to ρε we get the Poincaré inequality
P(λ). In [OV00] it has been shown that the Poincaré inequality can also be obtained
from Talagrand’s inequality by linearisation. The same is true for the modified Tala-
grand inequality involving the distance W.

Proposition 2.7.6. Assume that K satisfies TW(λ) for some λ > 0. Then K also
satisfies P(λ). In particular, Ric(K) ≥ λ implies P(λ).

Proof. Assume that TW(λ) holds and let us show P(λ). The second assertion of the
proposition then follows from Theorem 2.7.4 and Theorem 2.7.5. So fix ϕ ∈ RX
satisfying

∑
x ϕ(x)π(x) = 0 and for sufficiently small ε > 0 set ρε = 1+ εϕ ∈P∗(X ).

Let (ρε· , V
ε
· ) ∈ CE ′1(ρε,1) be an action minimising curve. Now we write, using the

continuity equation,∑
x

ϕ(x)2π(x) =
1

ε

[∑
x

ϕ(x)
(
ρε(x)− 1

)
π(x)

]

=
1

2ε

∫ 1

0

∑
x,y

∇ϕ(x, y)V ε
t (x, y)K(x, y)π(x)dt .
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Using Hölder’s inequality we can estimate

∑
x

ϕ(x)2π(x) ≤ 1

ε

(∫ 1

0
‖∇ϕ‖2ρεtdt

) 1
2
(∫ 1

0
A′(ρεt , V ε

t )dt

) 1
2

=

(
1

2

∑
x,y

(
∇ϕ(x, y)

)2
gε(x, y)K(x, y)π(x)

) 1
2 1

ε
W(ρε,1) ,

where gε ∈ RX×X is defined by gε(x, y) =
∫ 1

0 ρ̂
ε
t (x, y)dt. Using TW(λ) we arrive at

‖ϕ‖2π ≤ ‖(∇ϕ)
√
gε‖π

1

ε

√
2

λ
H(ρε) .

The proof will be finished if we show that as ε goes to 0

1

ε

√
2

λ
H(ρε) −→

√
1

λ
‖ϕ‖π , ‖(∇ϕ)

√
gε‖π −→ ‖∇ϕ‖π .

As before, the first statement is easily checked. For the second statement it is sufficient
to show that ρεt → 1 uniformly in t as ε → 0, as this implies that gε → 1. Since
W(ρε,1)→ 0 as ε→ 0, this follows immediately from the estimate

W(ρε,1) ≥ sup
t
W(ρεt ,1) ≥ sup

t

∑
x

π(x) |ρεt (x)− 1| ,

where we used that (ρεt )t∈[0,1] is a geodesic and the fact that W is an upper bound
for the total variation distance (see Proposition 2.2.12).

In the following result we use the probabilistic notation

Eπ[ϕ] =
∑
x∈X

ϕ(x)π(x)

for functions ϕ : X → R.

Proposition 2.7.7. Assume that K satisfies TW(λ) for some λ > 0. Then the
T1(2λ) inequality holds with respect to the graph distance:

W1,g(ρ,1) ≤
√

1

λ
H(ρ) . (2.7.4)

Furthermore, the sub-Gaussian inequality

Eπ
[
et(ϕ−Eπ [ϕ])

]
≤ exp

( t2
4λ

)
(2.7.5)

holds for all t > 0 and every function ϕ : X → R that is 1-Lipschitz with respect to
the graph distance on X .
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Proof. The T1-inequality (2.7.4) follows immediately from Proposition 2.2.12. The
inequalities (2.7.4) and (2.7.5) are equivalent, as has been shown in [BG99].

Arguing again exactly as in [OV00], we infer that a modified Talagrand inequality
implies a modified log-Sobolev inequality (with some loss in the constant), provided
that the non-local Ricci curvature is not too bad.

Proposition 2.7.8. Suppose that K satisfies TW(λ) for some λ > 0 and that
Ric(K) ≥ κ for some κ > −λ. Then K satisfies MLSI(λ̃), where

λ̃ = max

{
λ

4

(
1 +

κ

λ

)2
, κ

}
.

Proof. This is an immediate consequence of the HWI(κ)-inequality and an elementary
computation (see [OV00, Corollary 3.1]).

As an application of the results proved in this section, we will show how non-local
Ricci curvature bounds can be used to recover functional inequalities with sharp
constants in an important example.

Example 2.7.9 (Discrete hypercube). In Example 2.5.8 and Proposition 2.6.3 we
proved that the Markov kernel Kn associated with the simple random walk on the
discrete hypercube Qn = {0, 1}n has non-local Ricci curvature bounded from below
by 2

n . Applying Theorem 2.7.4 and Proposition 2.7.7 in this setting, we obtain the
following result. We shall write y ∼ x if K(x, y) > 0.

Corollary 2.7.10. The simple random walk on Qn has the following properties:

(i) the modified log-Sobolev inequality MLSI( 2
n) holds, that is, for all ρ ∈ P∗(Qn)

we have∑
x∈Qn

ρ(x) log ρ(x) ≤ 1

8

∑
x∈Qn,y∼x

(ρ(x)− ρ(y)) (log ρ(x)− log ρ(y)) .

(ii) the Poincaré inequality P( 2
n) holds, that is, for all ϕ : Qn → R we have∑

x∈Qn
ϕ(x)2 ≤ 1

4

∑
x∈Qn,y∼x

(ϕ(x)− ϕ(y))2 .

(iii) The sub-Gaussian inequality (2.7.5) holds with λ = 2
n .

In all cases the constants are optimal (see [BT06, Example 3.7] and [BHT06, Propo-
sition 2.3] respectively). Moreover, the optimality in (3) implies that the constant
λ = 2

n in the modified Talagrand inequality for the discrete cube is sharp, as well.
We finish this chapter by remarking that modified logarithmic Sobolev inequalities

for appropriately rescaled product chains on the discrete hypercube {−1, 1}n can be
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2 Ricci curvature for finite Markov chains

used to prove a similar inequality for Poisson measures by passing to the limit n→∞
(see [Led01, Section 5.4] for an argument along these lines involving a slightly different
modified log Sobolev inequality). All of the functional inequalities in Theorem 2.1.5
are compatible with this limit. However, the sub-Gaussian estimate will (of course)
not hold for the limiting Poisson law. This does not contradict the results in this
section, since the sub-Gaussian estimates here are obtained using the lower bound
for W in terms of W1, which relies on the normalisation assumption

∑
yK(x, y) = 1,

which does not hold in the Poissonian limit.

53



2.7 Functional Inequalities

54



3 Gradient flows of the entropy for
jump processes

In this chapter we introduce a new transport distance between probability measures
on Rd that is built from a Lévy jump kernel. It is defined via a non-local variant of
the Benamou-Brenier formula. We study geometric and topological properties of this
distance, in particular we prove existence of geodesics. For translation invariant jump
kernels we identify the semigroup generated by the associated non-local operator as
the gradient flow of the relative entropy w.r.t. the new distance and show that the
entropy is convex along geodesics.

3.1 Main results

Let us now discuss the setting and the main results of this chapter in more detail.
Let ν be a symmetric Lévy measure on Rd, i.e. a Borel measure satisfying ν({0}) = 0
and ν(A) = ν(−A) for all A ⊂ Rd as well as∫

Rd

(1 ∧ |z|2)ν(dz) <∞ .

Associated to ν is a non-local operator L given by

Lu(x) =

∫
1

2

(
u(x+ z) + u(x− z)− 2u(x)

)
ν(dz) .

The operator L is the general form of the generator of a pure jump Lévy process.
Here the jump measure ν(dz) gives the intensity of jumps from x to x+ z. The Lévy
process generated by L is characterised in the sense of the Lévy-Khintchine formula
(see e.g. [App04]) by the parameters (0, 0, ν), i.e. drift and diffusion part vanish.
We will be particularly interested in the choice ν(dz) = cα |z|−α−d dz with α ∈ (0, 2)
and a suitable constant cα. In this case L = −(−∆)

α
2 is the fractional Laplacian,

the pseudo differential operator with symbol |ξ|α. The associated Lévy process is the
symmetric α-stable process.

The main result of this chapter is a characterisation of the evolution equation

∂tu = Lu (3.1.1)

as the gradient flow of the entropy with respect to a suitable metric on the space
of probability measures. The usual Wasserstein distance is not appropriate for this
purpose and one of the main contributions of this chapter is the construction of a new
transport distance between probability measures on Rd which is non-local in nature
and allows for the desired gradient flow interpretation.
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3.1 Main results

A non-local transport distance

The construction of the new transport distance is more general and does not only
apply to Lévy processes but also to inhomogeneous jump processes where the intensity
of jumps from x to y is given by a space dependent measure J(x,dy).

We fix a jump kernel (J(x, ·), x ∈ Rd). By this we mean that for all x ∈ Rd J(x, ·)
is a Radon measure on Rd \ {x} depending measurably on x. Throughout this text
J shall satisfy the following

Assumption 3.1.1. For every bounded continuous function f : Rd → R the mapping

x 7→
∫
f(y)(1 ∧ |x− y|2)J(x, dy)

is again bounded and continuous.

In particular (J(x, ·), x ∈ Rd) is a so called Lévy kernel (see e.g. [App04, Ch. 3.5]).
Further let m be a Radon measure on Rd. We assume that J is reversible w.r.t. m,
i.e. the measure J(x,dy)m(dx) is symmetric.

Let us first give a heuristic description of the new distance before we sketch the
rigorous construction. The construction is motivated by the dynamical characteri-
sation of the L2-Wasserstein distance via the Benamou–Brenier formula discussed in
Section 1.1 and is based on non-local analogues of the formulas (1.1.1) and (1.1.2).

For a function ψ : Rd → R we will denote by ∇ψ(x, y) = ψ(y) − ψ(x) its discrete
gradient. In order to obtain a metric with the desired properties it is necessary to
introduce a function θ : R+ × R+ → R+ satisfying Assumption 3.2.1 below and to
consider the mean ρ̂(x, y) := θ(ρ(x), ρ(y)) of a given density ρ : Rd → R at different
points. We will be mostly interested in the logarithmic mean

θ(s, t) =
s− t

log s− log t
(3.1.2)

but for future use we allow for more generality in the construction. Following the
approach of [Maa11] one is led to consider the following ‘distance’. Given probability
measures µ̄0 = ρ̄0m and µ̄1 = ρ̄1m set

W̃(µ̄0, µ̄1)2 := inf
ρ,ψ

1

2

∫ 1

0

∫ ∣∣∇ψt(x, y)
∣∣2 ρ̂t(x, y)J(x,dy)m(dx)dt , (3.1.3)

where the infimum is taken over all functions ρ and ψ satisfying the ‘continuity
equation’ {

∂tρt +∇ · (ρ̂t∇ψt) = 0 ,

ρ0 = ρ̄0 , ρ1 = ρ̄1 ,
(3.1.4)

in distribution sense, i.e. for every test function ϕ ∈ C∞c ((0, 1)× Rd) we have∫ 1

0

∫
∂tϕρtdmdt− 1

2

∫ 1

0

∫
∇ϕt(x, y)∇ψt(x, y)ρ̂t(x, y)J(x, dy)m(dx)dt = 0 .
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3 Gradient flows of the entropy for jump processes

For the rigorous construction of the new transport distance we will not address the
variational problem (3.1.3) directly. Instead, we will adopt a measure theoretic point
of view and recast it in the more natural relaxed setting of time-dependent families
of measures. Let us briefly sketch this approach.

Denote by P(Rd) the space of Borel probability measures on Rd. We define the
set G := {(x, y) ∈ Rd×Rd : x 6= y} and fix the measure γ(dx,dy) = J(x, dy)m(dx).
We replace ρ by a continuous curve t 7→ µt = ρtm in P(Rd) and ψt induces a family
of signed Radon measures νt(dx,dy) = ∇ψt(x, y)ρ̂t(x, y)γ(dx,dy) on G. The couple
(µ,ν) now satisfies the linear equation{

∂tµt +∇ · νt = 0 ,

µ0 = µ̄0, µ1 = µ̄1

(3.1.5)

in distribution sense, i.e. for all test functions ϕ ∈ C∞c ((0, 1)× Rd) :∫ 1

0

∫
∂tϕdµtdt+

1

2

∫ 1

0

∫
∇ϕ(x, y)νt(dx,dy)dt = 0 .

The quantity to be minimised in (3.1.3) can now be rewritten as

1

2

∫ 1

0

∫ ∣∣∣∣dνtdγ
(x, y)

∣∣∣∣2 θ(dµt
dm

(x),
dµt
dm

(y)

)−1

γ(dx, dy)dt .

We will define a distanceW by proceeding as follows. To any µ ∈P(Rd) we associate
two Radon measures on G by setting µ1(dx, dy) = J(x, dy)µ(dx) and µ2(dx, dy) =
J(y,dx)µ(dy). Given a Radon measure ν on G we choose a reference measure σ on
G such that ν = wσ and µi = ρiσ, i = 1, 2 are all absolutely continuous w.r.t. σ.
Then we define the action functional by

A(µ,ν) :=
1

2

∫ ∣∣∣∣dνdσ

∣∣∣∣2 θ(dµ1

dσ
,
dµ2

dσ

)−1

dσ .

Assumptions on θ will guarantee that the map (w, s, t) 7→ w2θ(s, t)−1 is homogeneous,
hence the definition of A is independent of the choice of σ. Given two measures
µ̄0, µ̄1 ∈P(Rd) we denote by CE0,1(µ̄0, µ̄1) the set of all sufficiently regular solutions
(to be made precise in section 3.3) (µt,νt)t∈[0,1] of the continuity equation (3.1.5).

Definition. For µ̄0, µ̄1 ∈P(Rd) we define

W(µ̄0, µ̄1)2 := inf

{∫ 1

0
A(µt,νt)dt : (µ,ν) ∈ CE0,1(µ̄0, µ̄1)

}
.

It is unclear whether W coincides with W̃ defined in (3.1.3) in full generality.
However, we will give a positive answer in the case of a sufficiently regular translation
invariant jump kernel. (see Proposition 3.5.11). We can now state the first main
result.
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3.1 Main results

Theorem 3.1.2. W defines a (pseudo-) metric on P(Rd) . The topology it induces
is stronger than the topology of weak convergence. For each τ ∈ P(Rd) the set
Pτ := {µ ∈ P(Rd) : W(µ, τ) < ∞} equipped with the distance W is a complete
geodesic space.

As the Wasserstein distance, the distanceW can take the value +∞ on P(Rd). We
will study in more detail the “α-stable distance” Wα associated to the jump kernel
Jα(x,dy) = cα |x− y|−α−d dy. In particular, we will show that Wα(µ0, µ1) <∞ if µ0

and µ1 have finite moments of order α, see Proposition 3.4.14.

Gradient flow of the entropy

We now concentrate on a translation invariant jump kernel J . We assume that

J(x+ z,A+ z) = J(x,A) ∀x, z ∈ Rd, A ⊂ Rd

and that m is Lebesgue measure. In this case we have J(x,A) = ν(A − x) for a
symmetric Lévy measure ν on Rd and the underlying jump process is a Lévy process.

Let us give a short formal argument why the evolution equation (3.1.1) can be seen
as the gradient flow of the relative entropy w.r.t. the distance W if we choose θ to
be the logarithmic mean. In the classical setting many partial differential equations
of the form

∂tρ−∇ ·
(
ρ∇f ′(ρ)

)
= 0

can, at least formally, be seen as the gradient flow of the integral functional F given by
F(ρ) =

∫
f(ρ)dm w.r.t. the L2-Wasserstein distance. By the same formal argument,

in the new geometry determined by the distance W̃ via (3.1.3), (3.1.4) the gradient
flow of the functional F should be given by the equation

∂tρ−∇ ·
(
ρ̂∇f ′(ρ)

)
= 0 .

If we now consider the relative entropy H we have f ′(r) = 1 + log r. Taking into
account (3.1.2) we see that the corresponding gradient flow is given by

∂tρ−∇ ·
(
∇ρ
)

= 0 ,

which is a weak formulation of (3.1.1). In particular we see that the role of the
logarithmic mean is to compensate the lack of a chain rule for the discrete gradient.

Our second main result is a rigorous characterisation of the evolution equation
(3.1.1) as the gradient flow of the entropy in terms of the Evolution Variational
Inequality (EVI). For µ ∈P(Rd) we define the relative entropy by

H(µ) =

∫
ρ(x) log ρ(x)dx
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3 Gradient flows of the entropy for jump processes

if µ is absolutely continuous with density ρ and (ρ log ρ)+ is integrable. Otherwise,
we set H(µ) = +∞.

We formulate our result in terms of the semigroup Pt = exp(tL) generated by
the operator L. We assume that the equation (3.1.1) has a fundamental solution
ψ : (0,∞)× Rd → R+. The semigroup Pt then acts on P(Rd) via convolution:

Pt[µ] := µ ∗ ψt .

Under certain further regularity assumptions on the kernel ψ (see Section 3.5 for a
precise statement) we prove the following

Theorem 3.1.3. The semigroup P generated by L is the gradient flow of the rel-
ative entropy in the sense that it satisfies the EVI: For any µ ∈ P∗ = {µ ∈
P(Rd) : H(µ) > −∞} and σ ∈Pµ ∩P∗ we have

1

2

d+

dt
W(Pt[µ], σ)2 +H(Pt[µ]) ≤ H(σ) ∀t > 0 . (3.1.6)

Moreover the entropy is convex along W-geodesics. More precisely, let µ0, µ1 ∈
P(Rd) such that W(µ0, µ1) < ∞ and let (µt)t∈[0,1] be a geodesic connecting µ0 and
µ1. Then we have

H(µt) ≤ (1− t)H(µ0) + tH(µ1) .

The statement about geodesic convexity of the entropy is a direct consequence of
the EVI in a general setting of metric spaces (see [DS08]). Convexity of the entropy
alongW-geodesics can be seen as a non-local analogue of McCann’s displacement con-
vexity [McC97], which corresponds to convexity along geodesics of the L2-Wasserstein
distance. For the choice ν(dy) = cα |y|−α−d dy with α ∈ (0, 2) and a suitable constant
cα we obtain the following

Corollary 3.1.4. The fractional heat equation

∂tu+ (−∆)
α
2 u = 0

is the gradient flow of the relative entropy w.r.t. the metric Wα built from the jump
kernel Jα(x, dy) = cα |y − x|−α−d dy.

Organisation of this chapter

In Section 3.2 we study the action functional A and establish various properties
needed in the sequel. Section 3.3 is devoted to an analysis of the non-local conti-
nuity equation (3.1.5). In Section 3.4 we define the metric W and prove Theorem
3.1.2. Then we study in more detail the α-stable distance Wα. Finally, we focus on
translation invariant jump kernels and present the proof of Theorem 3.1.3 in Section
3.5.
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3.2 The action functional

3.2 The action functional

In this section we introduce and study an action functional on pairs of measures.
This functional will depend on a jump kernel. Throughout this section we fix a jump
kernel J satisfying Assumption 3.1.1.

Let us first introduce some notation. We denote by P(Rd) the space of Borel
probability measures on Rd equipped with the topology of weak convergence. We
let G = {(x, y) ∈ Rd × Rd|x 6= y} and denote by Mloc(G) the space of signed
Radon measures on the open set G equipped with the weak* topology in duality with
continuous functions with compact support in G.

The definition of the action functional and later the metric will depend on the
choice of a function θ : R+ × R+ → R+. We will always require it to fulfil the
following assumptions:

Assumption 3.2.1. The function θ has the following properties:

(A1) (Regularity): θ is continuous on R+ × R+ and C1 on (0,∞)× (0,∞);

(A2) (Symmetry): θ(s, t) = θ(t, s) for s, t ≥ 0;

(A3) (Positivity, normalisation): θ(s, t) > 0 for s, t > 0 and θ(1, 1) = 1;

(A4) (Zero at the boundary): θ(0, t) = 0 for all t ≥ 0;

(A5) (Monotonicity): θ(r, t) ≤ θ(s, t) for all 0 ≤ r ≤ s and t ≥ 0;

(A6) (Positive homogeneity): θ(λs, λt) = λθ(s, t) for λ > 0 and s, t ≥ 0;

(A7) (Concavity): the function θ : R+ × R+ → R+ is concave.

These assumptions are identical to Assumption 2.2.1 from Chapter 2. It is easy to
check that they imply

θ(s, t) ≤ s+ t

2
∀s, t ≥ 0 . (3.2.1)

In view of applications to gradient flows of the entropy we will be mostly interested
in a particular choice of θ, namely the logarithmic mean given by

θ(s, t) =

∫ 1

0
sαt1−αdα =

s− t
log s− log t

, (3.2.2)

the latter expression being valid for s, t > 0 with s 6= t. However, for future use we
will allow for more generality in the choice of θ. Given a function ρ : Rd → R+ we
will often write

ρ̂(x, y) := θ(ρ(x), ρ(y)) .

60



3 Gradient flows of the entropy for jump processes

We introduce a function α : R × R+ × R+ → R+ ∪ {∞}, called the action density
function, by setting

α(w, s, t) :=


w2

2θ(s,t) , θ(s, t) 6= 0 ,

0 , θ(s, t) = 0 and w = 0 ,
+∞ , θ(s, t) = 0 and w 6= 0 .

We recall the following observation from Chapter 2 which will be useful in the sequel.

Lemma 3.2.2. The function α is lower semicontinuous, convex and positively homo-
geneous, i.e.

α(λw, λs, λt) = λα(w, s, t) ∀w ∈ R , s, t ≥ 0 , λ ≥ 0 .

Proof. This is easily checked using (A6),(A7) and the convexity of the function

(x, y) 7→ x2

y on R× (0,∞).

We will now define an action functional on pairs of measures (µ,ν) where µ ∈
P(Rd) and ν ∈ Mloc(G). To µ we associate two Radon measures in Mloc(G) by
setting:

µ1(dx,dy) := J(x, dy)µ(dx) , µ2(dx,dy) := J(y,dx)µ(dy) . (3.2.3)

We can always choose a measure σ ∈ Mloc(G) such that µi = ρiσ, i = 1, 2 and
ν = wσ are all absolutely continuous with respect to σ. For example take the sum of
the total variations σ :=

∣∣µ1
∣∣ +
∣∣µ2
∣∣ + |ν|. We can then define the action functional

by

A(µ,ν) :=

∫
α
(
w, ρ1, ρ2

)
dσ .

Note that this definition is independent of the choice of σ since α is positively homo-
geneous. Hence we can also write the action functional as

A(µ,ν) =

∫
α

(
dλ1

d |λ|
,

dλ2

d |λ|
,

dλ3

d |λ|

)
d |λ| , (3.2.4)

where λ is the vector valued measure given by λ = (ν, µ1, µ2).
In the case where the measure µ is absolutely continuous w.r.t. m the next lemma

shows that the action takes a more intuitive form. For this we denote by Jm ∈
Mloc(G) the measure given by Jm(dx,dy) = J(x, dy)m(dx).

Lemma 3.2.3. Let µ ∈ P(Rd) be absolutely continuous w.r.t. m with density ρ.
Further, let ν ∈ Mloc(G) such that A(µ,ν) < ∞. Then there exist a function
w : G→ R such that ν = wρ̂Jm and we have

A(µ,ν) =
1

2

∫
|w(x, y)|2 ρ̂(x, y)J(x,dy)m(dx) . (3.2.5)
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Proof. Choose λ ∈ Mloc(G) such that Jm = hλ and ν = w̃λ are both absolutely
continuous w.r.t. λ. Note that µi = ρiJm, i = 1, 2 with ρ1(x, y) = ρ(x) and
ρ2(x, y) = ρ(y). Further, we denote by ρ̃i the density of µi w.r.t λ. Now by definition,

A(µ,ν) =

∫
α
(
w̃, ρ̃1, ρ̃2

)
dλ < ∞ . (3.2.6)

Let A ⊂ G such that
∫
A θ(ρ

1, ρ2)dJm = 0. From the homogeneity of θ we conclude

0 =

∫
A
θ(ρ1, ρ2)dJm =

∫
A
θ(ρ̃1, ρ̃2)dλ ,

i.e. θ(ρ̃1, ρ̃2) = 0 λ-a.e. on A. Now the finiteness of the integral in (3.2.6) implies
that w̃ = 0 λ-a.e. on A. In other words ν(A) = 0 and hence ν is absolutely
continuous w.r.t. the measure ρ̂Jm. Formula (3.2.5) now follows immediately from
the homogeneity of α.

We will now establish several important properties of the action functional.

Lemma 3.2.4 (Lower semicontinuity of the action). A is lower semicontinuous w.r.t.
weak convergence of measures. More precisely, assume that µn ⇀ µ weakly in P(Rd)
and νn ⇀

∗ ν weakly* in Mloc(G). Then

A(µ,ν) ≤ lim inf
n
A(µn,νn) .

Proof. Note that by Assumption 3.1.1 the weak convergence of µn to µ implies the
weak* convergence of µin to µi in M+(G) for i = 1, 2. Now the claim follows imme-
diately from the representation (3.2.4) and a general result on integral functionals,
Proposition 3.2.5.

Proposition 3.2.5 ([But89, Thm. 3.4.3]). Let Ω be a locally compact Polish space
and let f : Ω×Rn → [0,+∞] be a lower semicontinuous function such that f(ω, ·) is
convex and positively 1-homogeneous for every ω ∈ Ω. Then the functional

F (λ) =

∫
Ω

f

(
ω,

dλ

d |λ|
(ω)

)
|λ| (dω)

is sequentially weak* lower semicontinuous on the space of vector valued signed Radon
measures Mloc(Ω,Rn).

The next estimate will be very useful in the sequel.

Lemma 3.2.6. i) There exists a constant C > 0 such that for all µ ∈P(Rd) and
ν ∈Mloc(G) we have:∫

G

(
1 ∧ |x− y|

)
|ν| (dx,dy) ≤ C

√
A(µ,ν) .
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3 Gradient flows of the entropy for jump processes

ii) For each compact set K ⊂ G there exists a constant C(K) > 0 such that for all
µ ∈P(Rd) and ν ∈Mloc(G) we have:

|ν| (K) ≤ C(K)
√
A(µ,ν) .

Proof. To prove i) let us define the measure λ =
∣∣µ1
∣∣ +

∣∣µ2
∣∣ + |ν| and write µi =

ρiλ, ν = wλ. We can assume that A(µ,ν) < ∞ as otherwise there is nothing to
prove. This implies that the set A = {(x, y) | α(w, ρ1, ρ2) = ∞} has zero measure
with respect to λ. We can now estimate:∫

G

(
1 ∧ |x− y|

)
|ν| (dx,dy)

≤
∫
G

(
1 ∧ |x− y|

)
|w|dλ

=

∫
Ac

(
1 ∧ |x− y|

)√
2θ(ρ1, ρ2)

√
α(w, ρ1, ρ2)dλ

≤

∫
G

(
1 ∧ |x− y|2

)
2θ(ρ1, ρ2)dλ

 1
2
∫
G

α(w, ρ1, ρ2)dλ

 1
2

≤ C
√
A(µ,ν) .

The last inequality follows, since by the estimate (3.2.1) and Assumption 3.1.1 we
have: ∫

G

(
1 ∧ |x− y|2

)
θ(ρ1, ρ2)dλ ≤

∫
G

(
1 ∧ |x− y|2

)1

2
(ρ1 + ρ2)dλ

=

∫
G

(
1 ∧ |x− y|2

)
J(x,dy)µ(dx)

≤ sup
x

∫
(1 ∧ |x− y|2)J(x,dy) < ∞ .

To prove ii) we note that by a similar argument

|ν| (K) ≤

∫
K

2θ(ρ1, ρ2)dλ

 1
2 √
A(µ,ν)

≤

 ∫
K∪Kt

J(x,dy)µ(dx)

 1
2 √
A(µ,ν) ,

where Kt := {(y, x)|(x, y) ∈ K}. The first factor in second line of the previous
estimate is bounded independently of µ by Assumption 3.1.1.
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Lemma 3.2.7 (Convexity of the action). Let µj ∈ P(Rd) and νj ∈ Mloc(G) for
j = 0, 1. For τ ∈ [0, 1] set µτ = τµ1 + (1− τ)µ0 and ντ = τν1 + (1− τ)ν0. Then we
have :

A(µτ ,ντ ) ≤ τA(µ1,ν1) + (1− τ)A(µ0,ν0) .

Proof. Let us fix a reference measure λ ∈Mloc(G) such that µj,i,νj for j = 0, 1 and
i = 1, 2 are all absolutely continuous w.r.t. λ and write µj,i = ρj,iλ and νj = wjλ.
Note that µτ,i = ρτ,iλ with ρτ,i = τρ1,i + (1 − τ)ρ0,i and that ντ = wτλ with
wτ = τw1 + (1 − τ)w0. From the convexity of the action density function α we
obtain:

A(µτ ,ντ ) =

∫
α(wτ , ρτ,1, ρτ,2)dλ

≤ τ

∫
α(w1, ρ1,1, ρ1,2)dλ+ (1− τ)

∫
α(w0, ρ0,1, ρ0,2)dλ

= τA(µ1,ν1) + (1− τ)A(µ0,ν0) .

We will now show that the action functional enjoys a monotonicity property under
convolution if we assume that the jump kernel is translation invariant in the sense
that

J(x− z,A− z) = J(x,A) ∀x, z ∈ Rd, A ∈ B(Rd) . (3.2.7)

For the rest of this section we also assume that m is Lebesgue measure. We first need
to fix a way of convoluting measures on Rd and on G in a consistent manner. Let k
be a convolution kernel, i.e. a function k : Rd → R+ satisfying

∫
k(z)dz = 1. Given

a measure µ ∈P(Rd), its convolution is defined as usual by

(µ ∗ k)(A) :=

∫
k(z)µ(A− z)dz ∀A ∈ B(Rd) .

On the other hand given a measure ν ∈Mloc(G) we define ν ∗k ∈Mloc(G) by setting
for all Borel measurable sets B ⊂ G

(ν ∗ k)(B) :=

∫
k(z)ν(B −

(
z

z

)
)dz . (3.2.8)

Note that this implies in particular that for every bounded function f : G→ R with
compact support in G we have:∫

f(x, y)(ν ∗ k)(dx, dy) =

∫ ∫
k(z)f(x+ z, y + z)ν(dx, dy)dz .

We now have the following monotonicity property under convolution.
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3 Gradient flows of the entropy for jump processes

Proposition 3.2.8. Assume that J satisfies (3.2.7) and let k be a convolution kernel.
Then for every µ ∈P(Rd),ν ∈Mloc(G) we have

A(µ ∗ k,ν ∗ k) ≤ A(µ,ν) . (3.2.9)

Proof. We can assume without restriction that A(µ,ν) is finite as otherwise there is
nothing to prove. Let us introduce the maps τz : x 7→ x + z for z ∈ Rd and let us
denote by µz,νz the push forward (τz)∗µ = µ(· − z), resp. (τz × τz)∗ν = ν(· −

(
z
z

)
).

Using the convexity of the action functional, Lemma 3.2.7, together with its lower
semicontinuity, Lemma 3.2.4, we see that

A(µ ∗ k,ν ∗ k) ≤
∫
A(µz,νz)k(z)dz .

Thus the proof is complete if we show that A(µz,νz) = A(µ,ν) for all z ∈ Rd. To
this end, recall the definition (3.2.3). Using the the invariance property (3.2.7) it is
immediate to check that µiz = (τz× τz)∗µi for i = 1, 2. Now choose λ ∈Mloc(G) with
µi = ρiλ and ν = wλ. Then for all z ∈ Rd we have (µz)

i = (µi)z = ρi(· −
(
z
z

)
)λz and

νz = w(· −
(
z
z

)
)λz. Hence we finally obtain

A(µz,νz) =

∫
α

(
w(· −

(
z

z

)
), ρ1(· −

(
z

z

)
), ρ2(· −

(
z

z

)
)

)
dλz

=

∫
α(w, ρ1, ρ2)dλ = A(µ,ν) .

3.3 A non-local continuity equation

In this section we will consider the continuity equation

∂tµt +∇ · νt = 0 on (0, T )× Rd . (3.3.1)

Here (µt)t∈[0,T ] and (νt)t∈[0,T ] are Borel families of measures in P(Rd) and Mloc(G)
respectively such that∫ T

0

∫ (
1 ∧ |x− y|

)
|νt| (dx,dy)dt < ∞ . (3.3.2)

We suppose that (3.3.1) holds in the sense of distributions. More precisely, we require
that for all ϕ ∈ C∞c ((0, T )× Rd) :∫ T

0

∫
∂tϕt(x)µt(dx)dt+

1

2

∫ T

0

∫
∇ϕt(x, y)νt(dx,dy)dt = 0 . (3.3.3)

Recall that for a function ϕ : Rd → R we denote by ∇ϕ(x, y) = ϕ(y) − ϕ(x) the
discrete gradient. Note that (3.3.2) is a natural integrability assumption one should
make to ensure that the second term in (3.3.3) is well-defined. The following is an
adaptation of [AGS08, Lemma 8.1.2].
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3.3 A non-local continuity equation

Lemma 3.3.1. Let (µt)t∈[0,T ] and (νt)t∈[0,T ] be Borel families of measures in P(Rd)
and Mloc(G) satisfying (3.3.1) and (3.3.2). Then there exists a weakly continuous
curve (µ̃t)t∈[0,T ] such that µ̃t = µt for a.e. t ∈ [0, T ]. Moreover, for every test function

ϕ ∈ C∞c ([0, T ]× Rd) and all 0 ≤ t0 ≤ t1 ≤ T we have :∫
ϕt1dµ̃t1 −

∫
ϕt0dµ̃t0 =

∫ t1

t0

∫
∂tϕdµtdt+

1

2

∫ t1

t0

∫
∇ϕdνtdt . (3.3.4)

Proof. Let us set

V (t) :=

∫ (
1 ∧ |x− y|

)
|νt| (dx,dy) .

By assumption t 7→ V (t) belongs to L1(0, T ). Fix ξ ∈ C∞c (Rd). We claim that
the map t 7→ µt(ξ) =

∫
ξdµt belongs to W 1,1(0, T ). Indeed, using test functions

of the form ϕ(t, x) = η(t)ξ(x) with η ∈ C∞c (0, T ), equation (3.3.3) shows that the
distributional derivative of µt(ξ) is given by

µ̇t(ξ) =
1

2

∫
∇ξdνt

for a.e. t ∈ (0, T ) and we can estimate

|µ̇t(ξ)| ≤
1

2

∫ ∣∣∇ξ∣∣d |νt| ≤ 1

2
‖ξ‖C1V (t) . (3.3.5)

Based on (3.3.5) we can argue as in [AGS08, Lemma 8.1.2] to obtain existence of a
weakly continuous representative t 7→ µ̃t.

To prove (3.3.4) fix ϕ ∈ C∞c ([0, T ]× Rd) and choose ηε ∈ C∞c (t0, t1) such that

0 ≤ ηε ≤ 1 , lim
ε→0

ηε(t) = 1(t0,t1)(t) ∀t ∈ [0, T ] , lim
ε→0

η′ε = δt0 − δt1 .

Now equation (3.3.3) implies

−
∫ T

0
η′ε

∫
ϕdµ̃tdt =

∫ T

0
ηε

∫
∂tϕdµtdt+

1

2

∫ T

0
ηε

∫
∇ϕdνtdt .

Thanks to the continuity of t 7→ µ̃t we can pass to limit as ε → 0 and obtain
(3.3.4).

In view of the previous lemma it makes sense to define solutions to the continuity
equation in the following way.

Definition 3.3.2. We denote by CET (µ̄0, µ̄1) the set of all pairs (µ,ν) satisfying the
following conditions:

(i) µ : [0, T ]→P(Rd) is weakly continuous ;
(ii) µ0 = µ̄0 , µT = µ̄1 ;
(iii) (νt)t∈[0,T ] is a Borel family of measures in Mloc(G) ;

(iv)
∫ T

0

∫ (
1 ∧ |x− y|

)
|νt| (dx,dy)dt < ∞ ;

(v) We have in the sense of distributions:

∂tµt +∇ · νt = 0 .

(3.3.6)
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3 Gradient flows of the entropy for jump processes

The following result will allow us to extract subsequential limits from sequences of
solutions to the continuity equation which have bounded action.

Proposition 3.3.3 (Compactness of solutions to the CE). Let (µn,νn) be a sequence
in CET (µ̄0, µ̄1) such that

A := sup
n

∫ T

0
A(µnt ,ν

n
t )dt < ∞ . (3.3.7)

Then there exists a couple (µ,ν) ∈ CET (µ̄0, µ̄1) such that up to extraction of a subse-
quence

µnt ⇀ µt weakly in P(Rd) for all t ∈ [0, T ] ,

νn ⇀∗ ν weakly* in Mlog(G× (0, T )) .

Moreover along this subsequence we have :∫ T

0
A(µt,νt)dt ≤ lim inf

n

∫ T

0
A(µnt ,ν

n
t )dt .

Proof. For each n define the measure νn :=
∫ T

0 νnt dt ∈ Mloc(G × (0, T )). From
Lemma 3.2.6 and (3.3.7) we infer immediately that

sup
n

∫ T

0

∫ (
1 ∧ |x− y|

)
|νn| (dx,dy)dt < ∞ . (3.3.8)

Moreover, arguing exactly as in Lemma 3.2.6, we obtain that for every compact set
K ⊂ G and B ⊂ [0, T ] we have

sup
n
|νn| (K ×B) ≤ sup

n

∫
B

|νnt | (K)dt (3.3.9)

≤
√
AC(K)

√
Leb(B) . (3.3.10)

In particular, νn has total variation uniformly bounded on every compact subset of
G×[0, T ]. Hence, we can extract a subsequence (still indexed by n) such that νn ⇀∗ ν
inMloc(G×[0, T ]). The estimate (3.3.9) also shows that ν can be desintegrated w.r.t.

Lebesgue measure on [0, T ] and we can write ν =
∫ T

0 νtdt for a Borel family (νt) still
satisfying (3.3.2).

Let 0 ≤ t0 ≤ t1 ≤ T and ξ ∈ C∞c (Rd). We claim that∫ t1

t0

∫
∇ξdνnt dt

n→∞−→
∫ t1

t0

∫
∇ξdνtdt . (3.3.11)

Note, that 1(t0,t1)∇ξ is not continuous and not compactly supported in G× [0, T ]. In

order to prove (3.3.11), we argue by approximation. Let F ⊂ Rd be a compact set
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3.4 A non-local transport distance

supporting ξ. For R > 0 large we define the sets AR := [t0, t0 + 1
R ] ∪ [t1 − 1

R , t1] and
DR := {(x, y) ∈ G : |x− y| > R−1}. Moreover, we define the sets

MR :=
(
DR ∩ (F × F )

)
∪ (Bc

R × F ) ∪ (F ×Bc
R) ,

where BR denotes the ball of radius R in Rd. Let ϕR : G × [0, T ] → [0, 1] be a
continuous function supported in K × [t0, t1] for a compact set K ⊂ G such that the
set, where we have ϕ < 1 is contained in the set

SR :=
((

(BR ×BR)c ∪DR

)
× [0, T ]

)
∪ (G×AR) .

The convergence (3.3.11) holds if we replace ∇ξ by the continuous and compactly
supported function ϕR · ∇ξ. Thus, it remains to show that

sup
n

∣∣∣∣∫ t1

t0

∫
(1− ϕR)∇ξdνnt dt

∣∣∣∣ −→ 0 ,

as R→∞. Argueing as in Lemma 3.2.6, we estimate∣∣∣∣∫ t1

t0

∫
(1− ϕR)∇ξdνnt dt

∣∣∣∣ ≤ ‖ξ‖C1

∫
SR

(1 ∧ |x− y|)d |νnt | dt

≤ ‖ξ‖C1

√
A

∫
SR

(1 ∧ |x− y|2)J(x,dy)µnt (dx)dt


1
2

.

From Assumption 3.1.1 we deduce that the second factor in the last line goes to zero
uniformly in n as R→∞.

Combining now the convergence (3.3.11) with (3.3.4) for the choice ϕ(t, x) = ξ(x)
and t0 = 0, t1 = t we infer that µnt converges weakly to some µt ∈ P(Rd) for
every t ∈ [0, T ]. It is easily checked that the couple (µ,ν) belongs to CET (µ̄0, µ̄1).
As in Lemma 3.2.4 the lower semicontinuity now follows from Proposition 3.2.5 by
considering

∫ T
0 A(µt,νt)dt as an integral functional on the spaceMloc(G×[0, T ]).

3.4 A non-local transport distance

We are now ready to give the definition of the distance W. We will then establish
various properties, in particular existence of geodesics. Moreover, we will characterise
absolutely continuous curves in the metric space (P,W). Finally, we will investigate
the distance Wα associated to the α-stable jump kernel Jα in more detail.
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3 Gradient flows of the entropy for jump processes

3.4.1 Construction and properties of the distance W

We fix a jump kernel J satisfying Assumption 3.1.1 and make the following

Definition 3.4.1. For µ̄0, µ̄1 ∈P(Rd) we define

W(µ̄0, µ̄1)2 := inf

{∫ 1

0
A(µt,νt)dt : (µ,ν) ∈ CE1(µ̄0, µ̄1)

}
. (3.4.1)

Let us first give an equivalent characterisation of the infimum in (3.4.1).

Lemma 3.4.2. For any T > 0 and µ̄0, µ̄1 ∈P(Rd) we have :

W(µ̄0, µ̄1) = inf

{∫ T

0

√
A(µt,νt)dt : (µ,ν) ∈ CET (µ̄0, µ̄1)

}
. (3.4.2)

Proof. This follows from a standard reparametrisation argument. See [AGS08, Lem.
1.1.4] or [DNS09, Thm. 5.4] for details in similar situations.

The next result shows that the infimum in the definition above is in fact a minimum.

Proposition 3.4.3. Let µ̄0, µ̄1 ∈ P(Rd) be such that W := W(µ̄0, µ̄1) is finite.
Then the infimum in (3.4.1) is attained by a curve (µ,ν) ∈ CE1(µ̄0, µ̄1) satisfying
A(µt,νt) = W 2 for a.e. t ∈ [0, 1].

Proof. Existence of a minimising curve (µ,ν) ∈ CE1(µ̄0, µ̄1) follows immediately by
the direct method taking into account Proposition 3.3.3. Invoking Lemma 3.4.2 and
Jensen’s inequality, we see that this curve satisfies∫ 1

0

√
A(µt,νt)dt ≥ W =

(∫ 1

0
A(µt,νt)dt

) 1
2

≥
∫ 1

0

√
A(µt,νt)dt .

Hence we must have A(µt,νt) = W 2 for a.e. t ∈ [0, T ].

We now prove Theorem 3.1.2, the first main result announced in the introduction,
which we recall here for convenience.

Theorem 3.4.4. W defines a (pseudo-) metric on P(Rd). The topology it induces
is stronger than the weak topology and bounded sets w.r.t. W are weakly compact.
Moreover, the map (µ0, µ1) 7→ W(µ0, µ1) is lower semicontinuous w.r.t. weak con-
vergence. For each τ ∈P(Rd) the set Pτ := {µ ∈P(Rd) : W(µ, τ) <∞} equipped
with the distance W is a complete geodesic space.

Proof. Symmetry ofW is obvious from the fact that α(w, ·, ·) = α(−w, ·, ·). Equation
(3.3.4) from Lemma 3.3.1 shows that two curves in CE1 can be concatenated to obtain
a curve in CE2. Hence the triangle inequality follows easily using Lemma 3.4.2. To
see that W(µ̄0, µ̄1) > 0 whenever µ̄0 6= µ̄1, assume that W(µ̄0, µ̄1) = 0 and choose a
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3.4 A non-local transport distance

minimising curve (µ,ν) ∈ CE1(µ̄0, µ̄1). Then we must have A(µt,νt) = 0 and hence
νt = 0 for a.e. t ∈ (0, 1). From the continuity equation in the form (3.3.4) we infer
µ̄0 = µ̄1.

Let us now show that the topology induced by W is stronger than the weak one.
Let µn, µ ∈ P(Rd) with W(µn, µ) → 0 and choose minimising curves (µn,νn) ∈
CE1(µn, µ). Fix a function ϕ : Rd → R bounded in C1. Using the continuity equation
in the form (3.3.4) and Lemma 3.2.6 we estimate:∣∣∣∣∫ ϕdµn −

∫
ϕdµ

∣∣∣∣ =
1

2

∣∣∣∣∫ 1

0

∫
∇ϕdνnt dt

∣∣∣∣
≤ ‖ϕ‖C1

∫ 1

0

∫ (
1 ∧ |x− y|

)
|νnt | (dx,dy)dt

≤ ‖ϕ‖C1C

∫ 1

0

√
A(µnt ,ν

n
t )dt = ‖ϕ‖C1C · W(µn, µ) .

This implies µn ⇀ µ weakly.
The compactness assertion and lower semicontinuity ofW follow immediately from

Proposition 3.3.3. Let us now fix τ ∈ P(Rd) and let µ̄0, µ̄1 ∈ Pτ . By the triangle
inequality we have W(µ̄0, µ̄1) < ∞ and hence Proposition 3.4.3 yields existence of a
minimising curve (µ,ν) ∈ CE1(µ̄0, µ̄1). The curve t 7→ µt is then a constant speed
geodesic in Pτ since it satisfies

W(µs, µt) =

t∫
s

√
A(µr,νr)dr = (t− s)W(µ0, µ1) ∀0 ≤ s ≤ t ≤ 1 .

To show completeness let (µn)n be a Cauchy sequence in Pτ . In particular the
sequence is bounded w.r.t. W and we can find a subsequence (still indexed by n) and
µ∞ such that µn ⇀ µ∞ weakly. Invoking lower semicontinuity of W and the Cauchy
condition we infer W(µn, µ∞)→ 0 as n→∞ and µ∞ ∈Pτ .

It is yet unclear when precisely the distance W is finite. This seems to depend
heavily on the structure of the jump kernel J . In section 3.4.3 we will study in more
detail the distance Wα built from the α-stable jump kernel Jα and give sufficient
conditions for finiteness in terms of moments.

The following result shows that under certain assumptions the distance W can be
bounded from below by the L1-Wasserstein distance. Recall that the L1-Wasserstein
distance is defined for µ0, µ1 ∈P(Rd) by

W1(µ0, µ1) := inf
π

∫
Rd×Rd

|x− y|π(dx, dy) ,

where the infimum is taken over all probability measures π ∈P(Rd×Rd) whose first
and second marginal are µ0 and µ1 respectively (see e.g. [Vil09, Chap. 6]).
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Proposition 3.4.5. Assume that the jump kernel J satisfies

M2 := sup
x

∫
|x− y|2 J(x,dy) < ∞ . (3.4.3)

Then for any µ0, µ1 ∈P(Rd) we have the bound

W1(µ0, µ1) ≤ M√
2
W(µ0, µ1) .

Proof. We can assume that W(µ0, µ1) < ∞. Take a minimising curve (µ,ν) ∈
CE1(µ0, µ1) and let ϕ : Rd → R be a 1-Lipschitz function. Using the continuity
equation in the form (3.3.4) and arguing similar as in Lemma 3.2.6, we estimate∣∣∣∣∫ ϕdµn −

∫
ϕdµ

∣∣∣∣
=

1

2

∣∣∣∣∫ 1

0

∫
∇ϕdνnt dt

∣∣∣∣
≤ 1

2

∫ 1

0

∫
|x− y| |νnt | (dx, dy)dt

≤ 1√
2

(∫ 1

0
A(µnt ,ν

n
t )dt

) 1
2
(∫ 1

0

∫
|x− y|2 J(x,dy)µt(dx)dt

) 1
2

≤ M√
2
W(µn, µ) .

Taking the supremum over all 1-Lipschitz functions ϕ yields the claim by Kantorovich–
Rubinstein duality (see e.g. [Vil09, 5.16]).

The convexity and monotonicity properties of the action functional established in
Section 3.2 extend naturally to the distance function.

Proposition 3.4.6 (Convexity of the squared distance). Let µj0, µ
j
1 ∈ P(Rd) for

j = 0, 1. For τ ∈ [0, 1] and k = 0, 1 set µτk = τµ1
k + (1− τ)µ0

k. Then we have :

W(µτ0 , µ
τ
1)2 ≤ τW(µ1

0, µ
1
1)2 + (1− τ)W(µ0

0, µ
0
1)2 .

Proof. We can assume without restriction that W(µj0, µ
j
1) is finite and choose min-

imising curves (µj ,νj) ∈ CE1(µj0, µ
j
1). Then for t ∈ [0, 1] set µτt = τµ1

t + (1 − τ)µ0
t

and ντt = τν1
t + (1− τ)ν0

t . Observe that (µτ ,ντ ) ∈ CE1(µτ0 , µ
τ
1). From the definition

of W and the convexity of A as stated in Lemma 3.2.7 we infer

W(µτ0 , µ
τ
1)2 ≤

∫ 1

0
A(µτt ,ν

τ
t )dt ≤

∫ 1

0
τA(µ1

t ,ν
1
t ) + (1− τ)A(µ0

t ,ν
0
t )dt

= τW(µ1
0, µ

1
1)2 + (1− τ)W(µ0

0, µ
0
1)2 .
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Proposition 3.4.7 (Monotonicity under convolution). Let µ0, µ1 ∈P(Rd). Assume
that J satisfies (3.2.7) and let m be Lebesgue measure. Let k be a convolution kernel.
Then we have

W(µ0 ∗ k, µ1 ∗ k) ≤ W(µ0, µ1) .

If we set kε(x) = ε−dk(x/ε), then as ε↘ 0 we have

W(µ0 ∗ kε, µ1 ∗ kε) −→ W(µ0, µ1) .

Proof. Assume that W(µ0, µ1) is finite, as otherwise there is nothing to prove. Let
(µ,ν) ∈ CE1(µ0, µ1) be a minimising curve according to Proposition 3.4.3. Define
µ̃t = µt ∗k, ν̃t = νt ∗k. We claim that (µ̃, ν̃) ∈ CE1(µ0 ∗k, µ1 ∗k). Indeed, let us show
that the continuity equation (v) in (3.3.6) holds for (µ̃, ν̃). The other properties are
equally easy to verify. So let ϕ ∈ C∞c ((0, 1)×Rd) and set ϕ̃(t, x) =

∫
ϕ(t, x+z)k(z)dz.

Using the continuity equation for (µ,ν) and (3.2.8) we obtain∫
∂tϕdµ̃tdt =

∫
∂tϕ(t, x+ z)k(z)dzµt(dx)dt

=

∫
∂tϕ̃dµtdt = − 1

2

∫
∇ϕ̃dνtdt

= − 1

2

∫
∇ϕ(t, x+ z, y + z)k(z)νt(dx,dy)dzdt

= − 1

2

∫
∇ϕdν̃tdt .

Now the first assertion follows immediately from Proposition 3.2.8. This in turn
together with weak lower semicontinuity of W (see Theorem 3.4.4) yields the second
assertion.

3.4.2 Absolutely continuous curves and tangent structure

We now give a characterisation of absolutely continuous curves with respect to W
and consider a notion of tangent bundle.

A curve (µt)t∈[0,T ] in P(Rd) is called absolutely continuous w.r.t. W if there exists
m ∈ L1(0, T ) such that

W(µs, µt) ≤
∫ t

s
m(r)dr ∀ 0 ≤ s ≤ t ≤ T . (3.4.4)

For an absolutely continuous curve the metric derivative defined by∣∣µ′t∣∣ := lim
h→0

W(µt+h, µt)

|h|

exists for a.e. t ∈ [0, T ] and is the minimal m in (3.4.4) (see [AGS08, Thm. 1.1.2]).
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3 Gradient flows of the entropy for jump processes

Proposition 3.4.8 (Metric velocity). A curve (µt)t∈[0,T ] is absolutely continuous with
respect toW if and only if there exists a Borel family (νt)t∈[0,T ] such that (µ,ν) ∈ CET
and ∫ T

0

√
A(µt,νt)dt < ∞ .

In this case we have |µ′t|
2 ≤ A(µt,νt) for a.e. t ∈ [0, T ]. Moreover, there exists a

unique Borel family ν̃t with (µ, ν̃) ∈ CET such that∣∣µ′t∣∣2 = A(µt, ν̃t) for a.e. t ∈ [0, T ] . (3.4.5)

Proof. The proof follows from the very same arguments as in [DNS09, Thm. 5.17].

We can describe the optimal velocity measures ν̃t appearing in the preceding propo-
sition in more detail. We define

TµP(Rd) :=
{
ν ∈Mloc(G) : A(µ,ν) <∞ , (3.4.6)

A(µ,ν) ≤ A(µ,ν + η) ∀η : ∇ · η = 0
}
.

Here ∇ · η = 0 is understood in a weak sense, i.e.

1

2

∫
∇ξ(x, y)η(dx, dy) = 0 ∀ξ ∈ C∞c (Rd) .

Corollary 3.4.9. Let (µ,ν) ∈ CET such that the curve t 7→ µt is absolutely con-
tinuous w.r.t. W. Then ν satisfies (3.4.5) if and only if νt ∈ TµtP(Rd) for a.e.
t ∈ [0, T ].

If µ is absolutely continuous with respect to m we can give an explicit description
of TµP(Rd) as a subspace of an L2 space. For this recall that we denote by Jm ∈
Mloc(G) the measure given by Jm(dx,dy) = J(x, dy)m(dx).

Proposition 3.4.10. Let µ = ρm ∈ P(Rd). Then we have ν ∈ TµP(Rd) if and
only if ν = wρ̂Jm is absolutely continuous w.r.t. the measure ρ̂Jm and

w ∈ {∇ϕ | ϕ ∈ C∞c (Rd)}
L2(ρ̂Jm)

=: Tρ .

Proof. If A(µ,ν) is finite we infer from Lemma 3.2.3 that ν = wρ̂Jm for some density
w : G → R and that A(µ,ν) = ‖w‖2L2(ρ̂Jm). Now the optimality condition in (3.4.6)
is equivalent to

‖w‖L2(ρ̂Jm) ≤ ‖w + v‖L2(ρ̂Jm) ∀v ∈ Nρ ,

where Nρ := {v ∈ L2(ρ̂Jm) :
∫
∇ξvρ̂ dJm = 0 ∀ξ ∈ C∞c (Rd)}. This implies the

assertion of the proposition after noting that Nρ is the orthogonal complement in L2

of Tρ.
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In the light of the formal Riemannian interpretation of the distance W it seems
natural to view TµP(Rd) as the tangent space to P(Rd) at the measure µ. This is
reminiscent of Otto’s Riemannian interpretation of the L2-Wasserstein space [Ott01].
The results obtained here are in close analogy to the notion of tangent bundle to the
Wasserstein space studied in [AGS08, Sec. 8.4].

3.4.3 The α-stable distance Wα

In this section we focus on the jump kernel associated to the α-stable process and
establish some special properties of the corresponding pseudo distance.

For α ∈ (0, 2) consider the jump kernel

Jα(x,dy) =
cα,d

|x− y|α+d
dy ,

where cα,d is a constant depending on α and the dimension d.

Definition 3.4.11. We denote by Wα the distance built from the jump kernel Jα
according to Definition 2.2.3 where we choose θ to be the logarithmic mean.

Before we investigate this distance, let us collect some facts about the kernel Jα
and related objects.

The jump kernel Jα gives rise to a non-local operator which, for a suitable choice
of the constant cα,d coincides with the fractional Laplacian, i.e.

−(−∆)
α
2 u(x) =

∫
u(y)− u(x)− (y − x) · ∇u(x)1{|x−y|≤1}Jα(x,dy) .

This is a pseudo differential operator with symbol |ξ|α. This means that

F(−(−∆)
α
2 u)(ξ) = |ξ|αFu(ξ) ,

where F denotes the Fourier transform. It is well known that the fractional heat
equation possesses a fundamental solution, i.e a function ψ : (0,∞) × Rd → R+

satisfying

∂tψ + (−∆)
α
2 ψ = 0 in (0,∞)× Rd , (3.4.7)

ψ(t, ·) −→ δ0 as t→ 0 .

Although for general α the function ψ has no closed expression, its Fourier transform
can be given explicitly:

F(ψt)(ξ) =

∫
eiξ·xψ(t, x)dx = e−t|ξ|

α

. (3.4.8)

This implies the following scaling behaviour

ψ(t, x) = t−
d
α · ψ(1, x · t−

1
α ) . (3.4.9)
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3 Gradient flows of the entropy for jump processes

The function ψ is known to be smooth and strictly positive on (0,∞)×Rd. Moreover,
one has the following heat kernel bounds (see e.g. [CK03, Thm. 1.1]): There exist a
constant C > 0 such that for all x, t we have

1

C
·

(
t−

d
α ∧ t

|x|α+d

)
≤ ψ(t, x) ≤ C ·

(
t−

d
α ∧ t

|x|α+d

)
. (3.4.10)

Note that the fractional Laplacian is also the generator of the symmetric α-stable
Lévy process. The measure qt(dx) = ψt(x)dx is the law at time t of this process
started in 0.

Now we are ready to study the distance Wα. We will first show that it also enjoys
a scaling property.

Lemma 3.4.12. For h > 0 consider the map sh(x) = h · x. For any µ0, µ1 ∈P(Rd)
we have

Wα(sh∗µ0, s
h
∗µ1) = h

α
2 · Wα(µ0, µ1) .

Proof. Let (µ,ν) ∈ CE1(µ0, µ1) be a minimising curve for Wα. We set µht := sh∗µt
and νht = (sh × sh)∗νt to obtain a pair (µh,νh) ∈ CE1(sh∗µ0, s

h
∗µ

h
1). To calculate

the action of this curve, recall that for a given µ ∈ P(Rd) we defined the measures
µ1(dx,dy) := Jα(x, dy)µ(dx) and µ2(dx,dy) := Jα(y,dx)µ(dy). It is easily checked
that

(sh∗µ)i = h−α · (sh × sh)∗µ
i , i = 1, 2 . (3.4.11)

We choose a reference measure σ such that µit = ρitσ and νt = wtσ are all absolutely
continuous w.r.t. σ and set σh := (sh×sh)∗σ. By (3.4.11) we have that (µht )i = ρh,it σh

and νht = wht σ
h with ρh,it (x, y) = h−α · ρit(xh ,

y
h) and wht (x, y) = wt(

x
h ,

y
h). Thus we

obtain

A(µht ,ν
h
t ) =

∫ ∣∣wht ∣∣2
2θ(ρh,1t , ρh,2t )

dσh = hα ·
∫

|wt|2

2θ(ρ1
t , ρ

2
t )

dσ = hα · A(µt,νt) .

Integrating over t, we obtain the estimate

Wα(sh∗µ0, s
h
∗µ1) ≤ h

α
2 · Wα(µ0, µ1) .

We can apply a similar argument scaling a geodesic between sh∗µ0 and sh∗µ1 by h−1

to obtain equality.

Our next result shows that any two Dirac masses have finite distance.

Lemma 3.4.13. For any x, y ∈ Rd we have that

Wα(δx, δy) = c · |x− y|
α
2 ,

where c :=Wα(δ0, δv) <∞ for any v ∈ Rd with |v| = 1.
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3.4 A non-local transport distance

Proof. By rotational symmetry of the jump kernel Jα it is obvious that the definition
of c does not depend on the choice of v. We will show that c is finite, the rest will
then follow from Lemma 3.4.12.

So fix v ∈ Rd with |v| = 1. For t > 0 consider the measure qt(dx) = ψt(x)dx, where
ψ is the fractional heat kernel given by (3.4.8). We set q0 = δ0. We first note that

Wα(δ0, q1) <∞ . (3.4.12)

Indeed, if we set set νt(dx, dy) = ∇ψt(x, y)Jα(x,dy)dx, we have by the fractional
heat equation (3.4.7) that (q,ν) ∈ CE1(δ0, q1). We compute

A(qt,νt) =

∫
∇ψt(x, y)∇ logψt(x, y)

cα

|x− y|d+α
dxdy =: I(qt) .

From the explicit Fourier representation (3.4.8) and the heat kernel bounds (3.4.10)
one can check that I(qt) <∞ for t > 0. Moreover, using the scaling property (3.4.9)
of the heat kernel ψ, it is easily checked that I(qt) = t−1I(q1). Hence, using Lemma
3.4.2, we estimate

Wα(δ0, q1) ≤
∫ 1

0

√
A(qt,νt)dt =

∫ 1

0

√
I(qt)dt

=
√
I(q1)

∫ 1

0
t−

1
2 dt = 2

√
I(q1) < ∞ .

By translation invariance we immediately deduce that

Wα(δv, q
v
1) <∞ , (3.4.13)

where qv1 = q1(· − v). We will now show that

Wα(q1, q
v
1) < ∞ . (3.4.14)

For z ∈ Rd we denote by Qz := z + [0, 1]d the unit hypercube at z. Furthermore, we
set σz := 1Qz · q1 and σvz := 1Qz+v · qv1 = σz(·−v) and mz := q1(Qz) > 0. We consider
the following interpolating path, for t ∈ [0, 1] we define:

µt := (1− t)q1 + tqv1 , νt :=
∑
z∈Zd

2

mz
σz ⊗ σvz .

We claim that (µ,ν) ∈ CE1(q1, q
v
1). Indeed, for any ϕ ∈ C∞c (Rd) we have

d

dt

∫
ϕdµt =

∫
ϕd(qv1 − q1)

=
∑
z∈Zd

∫
ϕd(σvz − σz)

=
∑
z∈Zd

∫ (
ϕ(y)− ϕ(x)

) 1

mz
σvz (dy)σz(dx)

=
1

2

∫
∇ϕdνt .
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3 Gradient flows of the entropy for jump processes

Note that µt(dx) = ρt(x)dx with ρt(x) = (1 − t)ψ1(x) + tψ1(x − v). Thus we can
write the action as

A(µt,νt) =
∑
z∈Zd

∫
|ψ1(x)ψ1(y − v)|2

θ(ρt(x), ρt(y))

2

cαm2
z

|x− y|α+d 1Qz(x)1Qz+v(y)dxdy .

To estimate this quantity, first note that for any x ∈ Qz, y ∈ Qz+v we obviously have
|x− y| ≤ |v| + 2

√
d =: C1. Furthermore, by monotonicity (A5) and homogeneity

(A6), we have the following inequality for the function θ. For all a, b, c, d > 0 and
t ∈ (0, 1) we have

(ab)2

θ((1− t)a+ tc, (1− t)d+ tb)
≤ ab

θ(1− t, t)
max(a, b) .

Using the fact that supx∈Qz |ψ1(x)| ≤ C2 |z|−α−d for a suitable constant C2 by the
upper heat kernel bound in (3.4.10), we obtain

A(µt,νt) ≤ C1C2
2

cα

1

θ(1− t, t)
∑
z∈Zd
|z|−α−d = C3

1

θ(1− t, t)

with a finite constant C3. Hence, the distance between q1 and qv1 can be bounded as

Wα(q1, q
v
1) ≤

∫ 1

0

√
A(µt,νt)dt ≤ C3

∫ 1

0

dt√
θ(1− t, t)

≤ C3

∫ 1

0

dt√
t ∧ (1− t)

< ∞ ,

where we have used the monotonicity of θ (A5) in the last step. Using the triangle
inequality and combining (3.4.12), (3.4.13) and (3.4.14), we complete the proof.

We end this section by giving a sufficient condition for two measure to have finite
Wα distance in terms of their moments. For µ ∈P(Rd) we define the α-moment by

mα(µ) :=

∫
|x|α µ(dx) .

Moreover we denote the set of probability measures with finite α-moment by

Pα(Rd) :=
{
µ ∈P(Rd) | mα(µ) <∞

}
.

The following result is a non-local analogue of the fact that finiteness of p-th moments
implies finiteness of the Lp-Wasserstein distance.

Proposition 3.4.14. For any µ0, µ1 ∈Pα(Rd) we have that

Wα(µ0, µ1) ≤ c ·
(√

mα(µ0) +
√
mα(µ1)

)
< ∞ ,

where c is the constant from Lemma 3.4.13.
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3.5 Geodesic convexity and gradient flow of the entropy

Proof. Using the convexity of the squared distance as stated in Proposition 3.4.6 and
Lemma 3.4.13, we estimate

Wα(δ0, µ0)2 ≤
∫
Wα(δ0, δx)2µ0(dx)

= c2

∫
|x|α µ0(dx) = c2 ·mα(µ0) .

The same estimate holds for µ1 and we conclude by the triangle inequality.

3.5 Geodesic convexity and gradient flow of the entropy

In this section we focus on a translation invariant jump kernel J and identify the
evolution equation generated by the associated non-local operator as the gradient
flow of the relative entropy with respect to the distance W.

Assumption 3.5.1. Throughout the remainder of this chapter we assume that θ is
the logarithmic mean.

First, we have to make precise what we mean by gradient flow. Among several
possibilities to define the notion of gradient flow in a metric space the so called
“Evolution Variational Inequality”(EVI) is one of the most powerful and restrictive
concepts. We refer to [AGS08] for a comprehensive study of gradient flows in metric
spaces. We adopt the following

Definition 3.5.2. Let (X, d) be a metric space and F : X → (−∞,∞] a lower
semicontinuous function such that its proper domain D(F ) := {x ∈ X | F (x) < ∞}
is dense in X. Further let (St)t≥0 be a C0-semigroup on X and λ ∈ R. S is called
the (λ-)gradient flow of F if St(X) ⊂ D(F ) for all t > 0, the map t 7→ F (St(u)) is
non-increasing in (0,∞) for all u ∈ X and if for all u ∈ X, v ∈ D(F ), t > 0:

1

2

d+

dt
d2(St(u), v) +

λ

2
d2(St(u), v) + F (St(u)) ≤ F (v) . (3.5.1)

Here and in the following we will use the notation

d+

dt
f(t) := lim sup

h↘0

f(t+ h)− f(t)

h
.

We will only consider translation invariant jump kernels. More precisely, from now
on we make the following

Assumption 3.5.3. Assume that m is Lebesgue measure on Rd and that J satisfies

J(x+ z,A+ z) = J(x,A) , ∀x, z ∈ Rd, A ∈ B(Rd) .

78



3 Gradient flows of the entropy for jump processes

Let us denote by ν the Borel measure on Rd given by J(0, ·). Then Assumption
3.1.1 together with the reversibility assumption simply reduces to the requirement
that ν is a symmetric Lévy measure, i.e. it satisfies ν(A) = ν(−A) for all A ⊂ Rd as
well as

Cν :=

∫
(1 ∧ |z|2) ν(dz) < ∞ . (3.5.2)

The jump kernel J gives rise to a non-local operator L given by

Lu(x) =
1

2

∫ (
u(x+ z) + u(x− z)− 2u(x)

)
ν(dz) .

We will use the shorthand notation δu(x, z) := 1
2

(
u(x+ z) + u(x− z)− 2u(x)

)
.

Note that L is also the generator of the Lévy process (Xt)t≥0 with vanishing drift
and diffusion and with Lévy measure ν (see e.g. [App04] or [Ber96] for background on
Lévy processes). Let us denote by qt the law of the Lévy process X at time t started in
0. This law qt can be given explicitly in terms of its Fourier transformation. Namely,
we have ∫

eix·ξqt(dx) = E
[

exp(i〈ξ,Xt〉)
]

= exp(−tη(ξ)) ,

where η is given by the Lévy-Khintchine formula:

η(ξ) =

∫
ei〈y,ξ〉 − 1− i〈y, ξ〉1{|y|≤1}ν(dy) .

The generator L is a pseudo differential operator with symbol η. This means that
F(Lu)(ξ) = η(ξ)F(u)(ξ), where F denotes the Fourier transform.

Given µ ∈P(Rd) we define its relative entropy w.r.t. a measure γ by

H(µ|γ) :=

{∫
ρ log ρ dγ , if µ = ργ and

∫
(ρ log ρ)+dγ <∞

+∞ , else.

We will use the shorthand notation H(µ) := H(µ|m) for the relative entropy w.r.t.
Lebesgue measure. As before, we will denote by Jm ∈ Mloc(G) the measure given
by Jm(dx, dy) = J(x,dy)m(dx). For a probability measure µ ∈ P(Rd) we define a
non-local analogue of the Fisher information by

I(µ) :=

{
1
2

∫
∇ρ∇ log ρ d(Jm), if µ = ρm and ρ > 0 ,

+∞ , else .
(3.5.3)

Throughout this section we will make the following assumption on ν in terms of
the law of the associated Lévy process.
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3.5 Geodesic convexity and gradient flow of the entropy

Assumption 3.5.4. For any t > 0 the measure qt is absolutely continuous w.r.t. m
with density ψt, where ψ : (0,∞)×Rd → R+ is smooth, bounded and strictly positive.
We assume that ψ is a fundamental solution to the equation ∂tu = Lu, i.e.

∂tψ = Lψ in (0,∞)× Rd ,
ψ(t, ·) −→ δ0 as t→ 0 .

Moreover, we assume that

H(qt) ∈ (−∞,∞) ∀t > 0 , (3.5.4)∫ t

0

√
I(qs)ds < ∞ ∀t > 0 , (3.5.5)∫ r

s
|δψt(x, z)| ν(dz)m(dx)dt < ∞ ∀0 < s < r . (3.5.6)

We will also assume a control on the moment of the Lévy measure.

Assumption 3.5.5. There exists a constant β > 0 such that

Mβ :=

∫
1{|x|>1} |x|β ν(dx) < ∞ .

Remark 3.5.6. The assumptions on the regularity of ψ are made in order to make
the presentation of the proofs in this section as simple as possible and could be
weakened. In [AGS11a] e.g. similar calculations as here are performed under very
mild assumptions in a local setting. Still, Assumption 3.5.4 is fulfilled e.g. for
να(dy) = cα |y|−α−d for α ∈ (0, 2) corresponding to the fractional Laplacian −(−∆)

α
2

with symbol η(ξ) = |ξ|α. This can be checked using the explicit Fourier representation
(3.4.8) and the heat kernel bounds (3.4.10).

Assumption 3.5.5 is only used in Proposition 3.5.7 to ensure lower semicontinuity
of the entropy w.r.t. W-convergence. For να it is satisfied for any β < α.

The Lévy process generated by the operator L gives rise to a convolution semigroup
(Pt)t≥0 acting on P(Rd) via

Pt[µ] := µ ∗ qt = µ ∗ ψt =

∫
µ(· − z)ψt(z)dz .

For ν ∈M(G) we set

Pt[ν] := ν ∗ ψt ,

with the convolution being understood in the sense of (3.2.8). Proposition 3.4.7 shows
that P is a C0-semigroup in the sense that W(Pt[µ], µ)→ 0 as t→ 0.

In order to characterise the semigroup Pt as the gradient flow of the entropy, we
want to apply Definition 3.5.2 in the case where the space X is (a subspace of)

80



3 Gradient flows of the entropy for jump processes

the space of probability measures P(Rd) equipped with the distance W and the
functional F is the relative entropy H. Let us denote

P∗ := {µ ∈P(Rd) : H(µ) > −∞} .

We set X := Pτ = {µ ∈P(Rd) : W(µ, τ) <∞} for some τ ∈P∗. The next result
ensures that this choice fits well into the setting of Definition 3.5.2.

Proposition 3.5.7. Let τ ∈ P∗. For any µ ∈ P(Rd) with W(µ, τ) < ∞ we have
H(µ) > −∞, i.e. Pτ ⊂ P∗. Moreover, the entropy functional H : Pτ → (−∞,∞]
is lower semicontinuous w.r.t. convergence in the metric W.

Proof. To prepare for the proof let us fix a measure γ(dx) := exp(−V (x))dx with

V (x) := max(1, |x|
β
2 ) + c. Here β is the constant from Assumption 3.5.5 and the

constant c is chosen such that γ is a probability measure. We can assume that β < 1.

Using the inequality
∣∣∣|y|β2 − |x|β2 ∣∣∣ ≤ |y − x|β2 , it is easy to check that

∣∣∇V (x, y)
∣∣ = |V (y)− V (x)| ≤ min(|y − x| , |y − x|

β
2 ) . (3.5.7)

Now note that for any µ ∈P(Rd) we have

H(µ) = H(µ|γ)−
∫
V (x)µ(dx) (3.5.8)

Moreover, H(µ|γ) ≥ 0 since γ is a probability measure.

Let us now show the first statement of the proposition. By (3.5.8) we have that
the integral

∫
V dτ is finite and we have to show that

∫
V dµ is finite as well. Let

(µs,νs)s ∈ [0, 1] be a minimising curve in CE1(τ, µ). For n ∈ N we define the function
Vn(x) := max(V (x), n). Arguing similar as in the proof of Lemma 3.2.6 or Proposition
3.4.5 and using (3.5.7) we obtain∣∣∣∣∫ Vndµ−

∫
Vndτ

∣∣∣∣ ≤ W(µ, τ) ·
(

1

2

∫ 1

0

∫ ∣∣∇Vn(x, y)
∣∣2 J(x,dy)µs(dx)ds

) 1
2

≤ W(µ, τ) ·
(

1

2

∫ 1

0

∫
min(|z|2 , |z|β)ν(dz)µs(dx)ds

) 1
2

≤ W(µ, τ) ·
√
Mβ + Cν

2
.

Here Mβ is the constant from Assumption 3.5.5 and Cν is given by (3.5.2). Letting
n→∞, monotone convergence yields∣∣∣∣∫ V dµ−

∫
V dτ

∣∣∣∣ ≤ W(µ, τ) ·
√
Mβ + Cν
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and in particular finiteness of the integral
∫
V dµ.

To prove the lower semicontinuity statement, fix µ ∈Pτ and a sequence (µn) such
that W(µn, µ)→ 0. By Theorem 3.4.4 we have µn ⇀ µ weakly and it is well known
that H(·|γ) is lower semicontinuous w.r.t. weak convergence of probability measures
(see e.g. [AGS08, Lemma 9.4.3]). Furthermore, arguing as before, we obtain the
estimate ∣∣∣∣∫ V dµn −

∫
V dµ

∣∣∣∣ ≤ W(µn, µ) ·
√
Mβ + Cν

2
−→ 0 .

In view of (3.5.8) this finishes the proof.

Let us now state a result giving the entropy production along the semigroup P .

Proposition 3.5.8. Let µ ∈P∗. For every t > 0 we have H(Pt[µ]) ∈ (−∞,∞) and
I(Pt[µ]) <∞. Moreover, we have the energy identity

H(Pt[µ])−H(Ps[µ]) = −
∫ t

s
I(Pr[µ]) dr ∀t ≥ s > 0 . (3.5.9)

In particular the map t 7→ H(Pt[µ]) is non-increasing.

Proof. Note that Pt[µ] = ρtm is absolutely continuous w.r.t. Lebesgue measure for
every t > 0 where

ρt(x) =

∫
ψt(x− z)µ(dz) .

Finiteness of H(Pt[µ]) and I(Pt[µ]) follows immediately from (3.5.4), (3.5.5) and
convexity of the maps r 7→ r log r and (r, s) 7→ (r − s)(log r − log s).

We prove (3.5.9) by approximating H with functionals Hn. Let us set

fn(u) :=

∫ u

0
max(1 + log(r),−n) dr . (3.5.10)

Then we have fn(u) ↘ u log(u) and f ′n(u) ↘ 1 + log(u) as n → ∞. For µ = ρm ∈
P(Rd) we setHn(µ) :=

∫
fn(ρ)dm. From Assumption 3.5.4 we deduce that ρ satisfies

∂tρ = Lρ. Now we calculate

Hn(Pt[µ])−Hn(Ps[µ]) =

∫
fn(ρt)− fn(ρs) dm

=

∫ ∫ t

s
f ′n(ρr)∂rρr drdm =

∫ ∫ t

s
f ′n(ρr)Lρr drdm

= − 1

2

∫ t

s

∫
∇f ′n(ρr)∇ρr d(Jm)dr .
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3 Gradient flows of the entropy for jump processes

The interchange of integrals in the second line is justified since f ′n(ρr) is bounded and
Lρr(x) is integrable in (s, t)×Rd. The latter follows from the fact that (3.5.6) holds
with ψ replaced by ρ. The integration by parts in the last line can be justified by
using again (3.5.6) and (3.5.5).

Letting finally n→∞, we obtain (3.5.9) by monotone convergence of both the left
and right hand sides.

We will now show that the semigroup (Pt) is the gradient flow of the relative
entropy with respect to the distance W in the sense of Definition 3.5.2. Our strategy
of proof is inspired by an argument developed in [DS08] and used in a similar form in
[DNS09, Thm. 5.29]. The following two results are a restatement of Theorem 3.1.3
from the introduction.

Theorem 3.5.9. Let µ ∈ P∗. Then Pt[µ] ∈ Pµ and H(Pt[µ]) < ∞ for all t > 0
and the map t 7→ H(µt) is non-increasing. Moreover, for any σ ∈Pµ the Evolution
Variational Inequality holds:

1

2

d+

dt
W(Pt[µ], σ)2 +H(Pt[µ]) ≤ H(σ) ∀t > 0 . (3.5.11)

Proof. Finiteness and monotonicity of H(Pt[µ]) were already proved in Proposition
3.5.8. In order to estimate W(Pt[µ], µ), denote by ρt the density of Pt[µ] w.r.t.
m and set µs = Ps[µ] and νs(dx, dy) = ∇ρsJ(x, dy)m(dx) for s ∈ [0, t]. Then
(µ,ν) ∈ CE t(µ, Pt[µ]) and thus by (3.5.5)

W(Pt[µ], µ)2 ≤
∫ t

0

√
A(µs,νs)ds =

∫ t

0

√
I(µs)ds < ∞ .

To prove the second statement, it is sufficient by the semigroup property of Pt to
assume H(µ) <∞ and prove the inequality at t = 0. So let σ ∈Pµ with H(σ) <∞
and let (σs,νs)s∈[0,1] be a minimising curve connecting σ0 = σ to σ1 = µ. We set

µεs,t = ρεs,tm := Pst+ε[σs] and

ν̃εs,t = ṽεs,tJm := Pst+ε[νs] .

The couple (µεs,t, ν̃
ε
s,t) does not satisfy the continuity equation. Hence we make the

correction

νεs,t = vεs,tJm := (ṽεs,t − t∇ρεs,t)Jm .

We will need the following result whose proof we postpone for the moment.

Claim 1. We have (µε·,t,ν
ε
·,t) ∈ CE1(Pε[σ], Pt+ε[µ]) and moreover,

H(Pε+t[µ])−H(Pε[σ]) = − 1

2

∫ 1

0

∫
∇ log ρεs,tdν

ε
s,tds . (3.5.12)
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From the definition of the distance W we now obtain the estimate

W(Pt+ε[µ], Pε[σ])2 ≤
∫ 1

0
A(µεs,t,ν

ε
s,t) ds . (3.5.13)

Recall the notation ρ̂(x, y) = θ(ρ(x), ρ(y)) with θ being the logarithmic mean here.
We can further estimate

A(µεs,t,ν
ε
s,t) =

∫ ∣∣vεs,t∣∣2
2ρ̂εs,t

d(Jm)

=

∫ ( ∣∣ṽεs,t∣∣2 − 2t∇ρεs,tvεs,t − t2
∣∣∇ρεs,t∣∣2 ) 1

2ρ̂εs,t
d(Jm)

≤ A(µεs,t, ν̃
ε
s,t)− t

∫
∇ log ρεs,tv

ε
s,t d(Jm)

≤ A(σs,νs)− t
∫
∇ log ρεs,tdν

ε
s,t ,

where we have dropped the quadratic term in t and used the monotonicity under
convolution (Proposition 3.2.8) in the last inequality. Integration over s from 0 to 1
and using (3.5.12) gives

1

2
W(Pt+ε[µ], Pε[σ])2 ≤ 1

2
W(µ, σ)2 − t ·

(
H(Pt+ε[µ])−H(Pε[σ])

)
.

By lower semicontinuity of W (see Theorem 3.4.4) and continuity of H along the
semigroup we can take the limit ε→ 0 and obtain

1

2
W(Pt[µ], σ)2 ≤ 1

2
W(µ, σ)2 − t ·

(
H(Pt[µ])−H(σ)

)
.

Finally, rearranging terms and letting t↘ 0 yields (3.5.11).

Proof of Claim 1. For the proof we first need two estimates. First, note that∫ 1

0
I(µεs,t) ds <∞ . (3.5.14)

Indeed, by convexity of the map (u, v) 7→ (u− v)(log u− log v) we have the estimate
I(µ ∗ψt) ≤ I(ψtm) for every µ ∈P(Rd). Hence, we conclude from Proposition 3.5.8
that ∫ 1

0
I(µεs,t) ds ≤

∫ 1

0
I(ψε+stm) ds = H(ψεm)−H(ψε+tm) < ∞ .
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From this we conclude that the curve (µε·,t,ν
ε
·.t) has finite action. Indeed,

A :=

∫ 1

0

∫ ∣∣vεs,t∣∣2
2ρ̂εs,t

d(Jm) ds

≤
∫ 1

0

∫
2

∣∣ṽεs,t∣∣2
2ρ̂εs,t

+ 2t2
∣∣∇ρεs,t∣∣2

2ρ̂εs,t
d(Jm) ds

≤ 2

∫ 1

0
A(σs,νs)ds+ 2t2

∫ 1

0
I(µεs,t) ds < ∞ ,

where we use Proposition 3.2.8 in the last inequality. Using Lemma 3.2.6 and the
previous estimate we see that νε·,t satisfies the integrability condition (iv) in Definition
3.3.2. The other conditions are also easily checked. Hence, we see that (µε·,t,ν

ε
·,t) ∈

CE1(Pε[σ], Pε+t[µ]).
Now let us prove (3.5.12). By a simple convolution argument we can assume

that ρεs,t is differentiable in s. Let fn be the function defined by (3.5.10) and set
f(u) = u log(u) for u ≥ 0. Now we calculate

Hn(Pε+t[µ])−Hn(Pε[σ]) =

∫ ∫ 1

0
f ′n(ρεs,t)∂sρ

ε
s,t ds dm .

Note that the map x 7→ f ′n(ρεs,t(x)) is bounded and Lipschitz uniformly in s ∈ [0, 1].
Using the integrability condition (iv) from Definition 3.3.2 we can approximate it by
functions in C∞c ((0, 1)× Rd) and obtain by the continuity equation

Hn(Pε+t[µ])−Hn(Pε[σ]) = − 1

2

∫ 1

0

∫
∇f ′n(ρεs,t)dν

ε
s,tds . (3.5.15)

By monotone convergence the left hand side of (3.5.15) converges to the left hand
side of (3.5.12). It remains to prove convergence of the right hand side. Using Hölder
inequality, we estimate∣∣∣∣∫ 1

0

∫
∇(f ′(ρεs,t)− f ′n(ρεs,t))dν

ε
s,tds

∣∣∣∣
≤
∫ 1

0

∫ ∣∣∇(f ′(ρεs,t)− f ′n(ρεs,t))
∣∣ ∣∣wεs,t∣∣d(Jm)ds

≤ A
1
2

(∫ 1

0

∫ ∣∣∇(f ′(ρεs,t)− f ′n(ρεs,t))
∣∣2 2ρ̂εs,td(Jm)ds

) 1
2

.

The integrand in the last term is bounded as∣∣∇(f ′(ρεs,t)− f ′n(ρεs,t))
∣∣2 ρ̂εs,t ≤ ∣∣∇f ′(ρεs,t)∣∣2 ρ̂εs,t = ∇ log ρεs,t∇ρεs,t .

With the help of (3.5.14) and dominated convergence we conclude convergence of the
right hand side of (3.5.15) to the right hand side of (3.5.12).
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Corollary 3.5.10. The entropy is convex along W-geodesics. More precisely, let
µ0, µ1 ∈ P∗ such that W(µ0, µ1) < ∞ and let (µt)t∈[0,1] be a geodesic connecting µ0

and µ1. Then we have

H(µt) ≤ (1− t)H(µ0) + tH(µ1) .

Proof. This is a direct consequence of Theorem 3.5.9 and the fact, proved in [DS08,
Thm. 3.2], that in a general setting the Evolution Variational Inequality implies
geodesic convexity.

We finish by giving an equivalent and more intuitive definition of the distance W
in the present setting of a translation invariant jump kernel J . We show that it
coincides with W̃ defined in (3.1.3). We introduce the following shorthand notation.
Given functions ρ : Rd → R+ and ψ : Rd → R we write

A′(ρ, ψ) :=
1

2

∫ (
ψ(y)− ψ(x)

)2
ρ̂(x, y)J(x, dy)m(dx) .

For two probability densities ρ̄0, ρ̄1 w.r.t. m and T > 0 let us denote by CE ′T (ρ̄0, ρ̄1)
the collection of pairs (ρ, ψ) satisfying the following conditions:

(i) ρ : [0, T ]× Rd → R+ is measurable ;
(ii) ρt is a probability density for all t ∈ [0, T ] ;
(iii) The curve t 7→ µt := ρtm is weakly continuous ;
(iv) ψ : [0, T ]× Rd → R is measurable ;

(v) ∂tρt +∇ · (ρ̂t∇ψt) = 0 , ρ0 = ρ̄0 , ρT = ρ̄1 .

(3.5.16)

Here the continuity equation (v) is understood in the sense that for every test function
ϕ ∈ C∞c ((0, T )× Rd) we have∫ 1

0

∫
∂tϕρtdmdt+

1

2

∫ 1

0

∫
∇ϕ(x, y)∇ψt(x, y)ρ̂t(x, y)J(x,dy)m(dy)dt = 0 .

Proposition 3.5.11. In addition to Assumptions 3.5.3 and 3.5.4 assume that the
jump kernel is given as J(x,dy) = j(y − x)dy for a function j : Rd \ {0} → R+ that
is strictly positive. Let µ̄i = ρ̄im ∈P(Rd) for i = 0, 1 such that I(µ̄i) is finite. Then
we have

W(µ̄0, µ̄1)2 = inf

{∫ 1

0
A′(ρt, ψt)dt : (ρ, ψ) ∈ CE ′1(ρ̄0, ρ̄1)

}
.

Note that the assumptions above on the jump kernel J are satisfied by the kernel
Jα associated to the fractional Laplacian.
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Proof. The inequality ‘≤’ follows easily by noting that the infimum in the defini-
tion of W is taken over a larger set. Indeed, given a pair (ρ, ψ) ∈ CE ′1(ρ̄0, ρ̄1) such
that

∫ 1
0 A

′(ρt, ψt)dt is finite we set µt = ρtm and define νt ∈ Mloc(G) by setting
νt(dx,dy) = ∇ψt(x, y)ρ̂t(x, y)J(x, dy)m(dx). Then we have A′(ρt, ψt) = A(µt,νt)
and it is easily checked using Lemma 3.2.6 that (µ,ν) ∈ CE1(µ̄0, µ̄1).

Let us now prove the opposite inequality ‘≥’. To this end, note that by a repara-
metrisation argument similar to Lemma 3.4.2 the square root of the infimum on the
right hand side coincides with

inf

{∫ T

0

√
A′(ρt, ψt)dt : (ρ, ψ) ∈ CE ′T (ρ̄0, ρ̄1)

}
.

We set µi,εt := Pt[µ̄i] = ρi,εt m and ψi,εt = log ρi,εt for i = 0, 1 and t ∈ (0, ε]. It is easily
checked, that the pair (ρi,ε, ψi,ε) belongs to CE ′ε(ρ̄i, ρ

i,ε
1 ). Using the monotonicity of

I under convolution as in the proof of Claim 1 we infer that

Li,ε :=

∫ ε

0

√
A′(ρi,εt , ψ

i,ε
t )dt =

∫ ε

0

√
I(µi,εt )dt ≤ ε

√
I(µ̄i) .

Now let (µ,ν) ∈ CE1(µ̄0, µ̄1) be a minimising curve and set µεt := Pε[µt] = ρεtm.
Proposition 3.4.8 and the proof of Proposition 3.4.7 show that the curve t 7→ µεt is
absolutely continuous w.r.t. W and thus there is a family of optimal velocity measures
ν̃ε. By Proposition 3.4.10 we have that ν̃εt = wεt ρ̂

ε
tJm where wεt belongs to Tρεt . Note

that ρεt > 0 by Assumption 3.5.4 and thus ρ̂εt > 0 for all t ∈ (0, 1) and moreover
j > 0. Hence, it is easily checked that any limit of discrete gradients in L2 w.r.t. the
measure ρ̂εtJm(dx,dy) = ρ̂εt (x, y)j(y − x)dxdy coincides again a.e. with a discrete
gradient. Thus we have wεt = ∇ψεt a.e. for a suitable function ψε : (0, 1) × Rd → R.
Now observe that (ρε, ψε) ∈ CE ′1(ρε0, ρ

ε
1) and

Lε :=

∫ 1

0

√
A′(ρεt , ψεt )dt =

∫ 1

0

√
A(µεt , ν̃

ε
t )dt

≤
∫ 1

0

√
A(µt,νt)dt = W(µ̄0, µ̄1) ,

where we have used Proposition 3.2.8 in the second line. Finally we concatenate
the three curves (ρ0,ε, ψ0,ε), (ρε, ψε) and (ρ1,ε, ψ1,ε) to obtain a curve (ρ̃ε, ψ̃ε) ∈
CE ′1+2ε(ρ̄0, ρ̄1) which satisfies∫ 1+2ε

0

√
A′(ρ̃εt , ψ̃εt )dt = L0,ε + Lε + L1,ε

≤ W(µ̄0, µ̄1) + ε(I(µ̄0) + I(µ̄1)) .

Letting ε go to zero now yields the claim.
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