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Zusammenfassung: Eine wichtige Eigenschaft von höher entwickelten
Lebensformen ist ihre Fähigkeit zur Erneuerung des Körpers. Dazu teilen
sich Zellen, die mikrometergroßen ,,Atome” des Lebens, und bilden da-
raufhin spezialisierte Gewebe. In der Haut, aber auch während der
Embryogenese, vollführen die Zellen gerichtete Bewegungen, um ihren
genetisch vorgesehenen Platz einzunehmen. Nur einige wenige Moleküle
bestimmen die relevanten Kraftgesetze zur Zellmigration, nämlich Aktin,
Integrin, Cadherin und Myosin.

Die Dynamik des Zytoplasmas innerhalb der Zelle kann durch eine
hydrodynamische Kontinuumstheorie beschrieben werden, welche ,,Re-
active Interpenetrating Flow” (reaktive, sich durchdringende Strömung)
genannt wird. Die zentrale Annahme der Theorie lautet, dass das Zyto-
plasma im Wesentlichen eine inkompressible Flüssigkeit darstellt, welche
aus einer Mischung von Aktin-Netzwerk und wässrigem Zytosol besteht.
Dabei werden die Synthese des Aktin-Netzwerks durch Polymerisierung,
dessen Transport, sowie der dazwischenliegende Fluß des Zytosols berück-
sichtigt. In den isotropen Bewegungsgleichungen überwiegen die Rei-



bungskräfte, und es treten sowohl aktive als auch passive Spannungsterme
auf. Die passiven Spannungen gründen auf dem Mischungscharakter der
Flüssigkeit, und beinhalten den Quelldruck des Netzwerks sowie Reibung
aufgrund von Viskosität und der Durchdringung der Komponenten. Die
aktiven Spannungen entstehen durch Kontraktionen im Netzwerk, welche
von Myosin-Motorproteinen erzeugt werden.

Bezieht man Integrin-Moleküle mit ein, die Adhäsionskräfte zum Sub-
strat vermitteln, so kann man eine eindimensionale Modellzelle konstru-
ieren, welche zwei charakteristische dynamische Zustände einnimmt: 1. im
symmetrischen und ruhenden Zustand kompensieren sich die Zugkräf-
te aus beiden Richtungen, so dass sich die Zelle nicht bewegen kann;
2. im polaren und migrierenden Zustand entsteht eine Assymetrie in den
Zugkräften, welche die Zelle antreibt und persistent bewegt. Beide Zu-
stände sind relativ stabil und autonom in dem Sinne dass sie keine Reg-
ulierung außerhalb des bestehenden Modells benötigen, etwa wenn man
das vordere oder hintere Zellende künstlich vorschreiben würde. Ein ver-
einfachtes, zwei-dimensionales Zellmodel zeigt charakteristische Korrela-
tionen, wie sie bei Migrationstrajektorien aus Experimenten an mensch-
lichen Hautzellen auftreten.

Die Form von wechselwirkenden Einzelzellen innerhalb einer einlagi-
gen Schicht läßt sich mathematisch durch eine neue Art von Voronoi-
Diagramm beschreiben, wobei Ellipsen als sogenannte Erzeuger fungieren.
Diese Ellipsen werden als Parameter gewählt, und beschreiben Position,
bevorzugte Größe und die Orientierung der betrachteten Zellen. Jeder
Erzeuger ordnet einem beliebigen Punkt in der Ebene ein gewisses Gewicht
zu, nämlich den Quotienten aus dem Abstand Erzeuger-Punkt und dem
Radius der Ellipse in diesselbe Richtung. Mit Hilfe der Punktgewichte
werden die expliziten Nachbarschaftsbeziehungen sowie die Form der Kon-
takte zwischen den einzelnen Modellzellen des Voronoi-Diagramms bes-
timmt. Als Vorgabe für die Erzeugerellipsen läßt sich die Lage von Zellk-
ernen verwenden, etwa wie man sie auf gängigen Fluoreszenzaufnahmen
erkennen kann. Das daraus erstellte Voronoi-Diagramm zeichnet die Zell-
Zell Kontakte aus dem Experiment nach.

In Gruppen oder im Gewebe vermitteln sogenannte Cadherine auf der
Außenseite der Zellmembran die Adhäsionskräfte zwischen den Zellen.
Ausgehend vom Voronoi-Diagramm als Modell für die Zellgeometrie wer-
den geeignete Kraftgleichungen aufgestellt, mit denen man die Wechsel-
wirkungen von Zellen in Gruppen quantitativ untersuchen kann. Berück-
sichtigt man auftetende Variationen in der Zellgröße sowie stochastische
Kräfte, so gibt es in kleinen dynamischen Zellgruppen mehrere topologis-
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che Möglichkeiten, die Zellen relativ stabil anzuordnen. Die Kohäsion des
Modellgewebes in Bewegung hängt essentiell von der relativen Lamellen-
breite der Zellen sowie der Homogenität ihrer Größenverteilung ab. Diese
beiden wichtigen Größen sind geometrischer Natur und deswegen mit
Hilfe der Phasenkontrastmikroskopie experimentell bestimmbar. Wie es
auch an embryonalen Zellextrakten beobachtbar ist, werden die Zellen im
Modell langsam in zusammengehörige Gruppen sortiert. Dazu wird der
Exprimierungsgrad von Cadherin für beide Zellarten separat eingestellt.
Die sogenannte Elongation des Keimbandes während der Entwicklung der
Drosophila-Fliege erwächst aus der Änderung der topologischen Nachbar-
schaftsbeziehungen zwischen den Zellen. Bereits kleine Anisotropien in
der Interaktionskraft zwischen den Zellen reichen aus, um das Gewebe
persistent zu verformen.

Summary: A crucial property of higher-developed living beings is the
ability to continuously exchange and renew their body. This is achieved
by division and redistribution of cells, the micron-sized and autonomous
“atoms” of life. In the skin and during embryogenesis, these cells un-
dergo directed motion to arrive at their native place within dedicated
tissue environments. Only few molecular players essentially determine
the involved physical force balances, namely actin, integrin, cadherin and
myosin.

The intracellular dynamics of actin network polymerisation, transport
and the interstitial flow of the aqueous cytosol can be described by a
two-component hydrodynamical continuum theory called the Reactive
Interpenetrating Flow. The central underlying assumption in this theory
is, that the cytoplasm is essentially an incompressible fluid, consisting of
the dynamic actin network and the aqueous cytosol. The force balances
in the fluid are dominated by friction and involve both active and passive
isotropic stresses. Passive stresses arise from the presence of two fluid
components, leading to network swelling and friction due to viscosity
and fluid permeation. Active stresses in the fluid relate to the presence
of myosin motor proteins that induce contractions in the actin network.

Including the adhesion of the cell towards the substrate by means of
integrin molecules, one can construct a one-dimensional model cell that
exhibits two characteristic dynamical cell states: 1. in the symmetric rest-
ing state, traction from front and back balances so that the cell adheres to
the substratum without moving, and 2. in the polarized migrating state,
an asymmetry in traction drives persistent cell locomotion. These two
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steady states are rather stable and autonomous in the sense that they do
not need any out-of-model regulation prescribing front and back of the
cell. A simplified two-dimensional model exhibits the characteristic cor-
relation features from trajectories of human epidermal keratinocyte cells
as determined in experiments.

The shapes of individual interacting cells in a monolayer can be math-
ematicaly quantified by means of a novel type of Voronoi tessellation,
which involves ellipses as so-called generators. These generator ellipses
are prescribed and encode the positions of the cells, their preferred size
and orientation. To every point in the plane each generator attributes
a certain power, given by the center distance divided by the colinear lo-
cal radius of the ellipse. From these point powers, the proposed Voronoi
tessellation constructs explicit neighbor relations and the shape of the
cell-cell contacts within groups of model cells. By taking cell nuclei from
fluorescence micrographs as model input for the generator ellipses, the
resulting Voronoi tesselation is able to recapitulate the corresponding
cell-cell contacts as observed simultaneously in the experiment.

Central to cell-cell adhesion in groups and tissue are cadherin receptors
on the exterior cell membranes, providing for a force link between cells in
contact. Employing the Voronoi tesselation as cell geometry model, one
can construct compatible in-tissue force balances and thereby elucidate
the interactions of cells in groups. The explicit consideration of size
variation and stochastic forces leads to several relatively stable topological
cell arrangements in small groups. The cohesion of the model tissue
crucially depends on the relative lamella width and the homogeneity of
the cell size distribution, both of which are geometric quantities accessible
in phase-contrast microscopy. As observed in cell extracts from embryos,
the model is able to slowly sort mixed cells into matching groups by
attributing differential cadherin expression levels to the individual cells.
Finally, the so-called convergent extension during the development of the
Drosophila fly relies on topological rearrangements induced by only small
anisotropies in the cellular interaction force.
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Parts of this work have already been published:

• M. Bock, A. K. Tyagi, J.-U. Kreft, and W. Alt. Generalized Voronoi
tessellation as a model of two-dimensional cell tissue dynamics. Bulletin
of Mathematical Biology, 72:1696, 2010.
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1. How do biological cells move?1

Summary: Taking a historical perspective, we revisit selected key ex-
periments and methods that have lead to the current understanding of
the motion of biological cells. As it turns out, only few molecular play-
ers essentially determine the involved physical force balances, namely (i)
actin, (ii) myosin, (iii) integrin, and (iv) cadherin. By identifying their
function in isolation and mutual cooperation, we put forward a general
conceptual framework, which allows for the classification and unification
of various cell migration phenomena.

1.1. On microscopes, cells and animalculae

Back in 1665, Robert Hooke (1635–1703)2 delivered his book “Micro-
graphia” to his contractors, the “Council of the Royal Society of Lon-
don for Improving of Natural Knowledge” [108]. This groundbreaking
work marks the advent of the empirical method – justifying knowledge
from repeated observations and measurements. This concept still pro-
vides for an essential basis of science today. In this spirit and by his duty
as a curator of the scientific devices of the Royal Society, Robert Hooke
had been ordered to make “some physiological descriptions of minute
bodies made by magnifying glasses with observations and inquiries there-
upon” [108]. Hooke presented his findings in 38 schemes, comprising
micrographs from cloth to plants, animals, fossils, and even the surface
of the moon. In his observation XVIII, “Of the Schematisme or Texture
of Cork, and of the Cells and Pores of some other such frothy Bodies”
Hooke makes a striking and peculiar observation:3

“[. . . ] I could exceeding plainly perceive it to be all perforated
and porous, [. . . ] but that the pores of it were not regular;

1With some modifications, this chapter appeared as an article in the European
Communications in Mathematical and Theoretical Biology [32]. This article was writ-
ten jointly by M.B. and Carina Wollnik.

2Unless indicated otherwise, all historical dates in this chapter are taken from the
book by Ilse Jahn [115]. For a historical perspective specifically on cell mechanics,
see [175].

3Compare “Schem. XI, Fig: 1” in [108].
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[. . . ] the Interstitia, or walls (as I may so call them) or par-
titions of those pores were neer as thin in proportion to their
pores, [. . . ] these pores, or cells, were not very deep, but con-
sisted of a great many little Boxes [. . . ] there were usually
about threescore of these small Cells placed end-ways in the
eighteenth part of an Inch in length [. . . ]” [108, Observ. XVIII]

Apparently without knowing, Hooke had observed plant cells in their
typical box-like structure with enforced walls, thereby laying the foun-
dation to the current notion of cell in biology. As we know now, the
biological implications of his results have proven their significance in the
subsequent centuries.

Another pioneer of early microscopy was Antonie van Leeuwenhoek
(1632–1723). Being clothier by profession, he had – despite of being a
layman – constructed optical devices allowing a magnification of up to
270 fold. In 1677, he sent a letter to the publisher of the “Philosophical
Transactions”, the Royal Society’s scientific journal. In this letter he
reported the observation of little “animulculae” immersed in rain water
stored for a few days in a “new earthen pot” [220]. Moreover, the size
of some of these animulculae was about one thousand times smaller than
the eye of a louse4. He also described that the animulculae use tails and
little feets as tool to move about.

By using single spherical lenses of very small diameter, van Leeuwen-
hoek was able outperform the multi-lens microscopes of contemporary
vintage. This is due to the favorable imaging properties of such a simple
device: it does not inherit the multiplicative propagation of imaging errors
from lens to lens. Indeed, Leeuwenhoek got a glimpse into a new world,
for he discovered protozoa and bacteria. However, the lack of independent
observations and the difficulty of integrating empirical observations into
a consistent and comprehensive framework prevented a quicker scientific
progress: it was not before the 19th century, that van Leeuwenhoek’s
animalculae could be observed with conventional microscopes of two or
more lenses.

In 1847, the English translation of a remarkable treatise by the German
researcher Theodor Schwann appeared. Schwann opens his preface with:

“It is one of the essential advantages of the present age, that
the bond of union connecting the different branches of natu-
ral science is daily becoming more intimate, and it is to the

4“Schem. XXXV” in [108].
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Figure 1.1.: Cartilage cells from the from the frog Rana esculenta (left)
and tadpole pigment cells (right) as sketched by Theodor
Schwann in [195, Plate II Fig. 8 and Plate II Fig. 1].

contributions which they reciprocally afford each other that
we are indebted for a great portion to the progress which the
physical sciences have lately made.” [195]

Two years earlier, in 1845, the Royal society had awarded the Copley
Medal to Schwann (1810–1882). Together with his colleague Matthias
Jakob Schleiden (1804–1881) he laid the foundation to the cell theory,
essentially stating that life is made of cells. The anecdote goes that the
initial spark to this theory came up when Schwann and Schleiden dis-
cussed their microscopical observations during dinner. Coming from the
formerly distant fields of physiology and botany, respectively, they found
striking coincidences in animals and plants – on the microscopic scale.
Apparently there are “elementary particles” in animals that function in
several respects like the cells long known in the kingdom of plants. Figure
1.1 shows some original sketches of Schwann from his far reaching work.

1.2. On proteins, muscle and the cytoskeleton

The advances of microscopy during the 19th century – among the most
notable being those made by Ernst Karl Abbe (1840–1905) – lead to
the development of microscopes working at the fundamental diffraction
limit imposed by the wavelength of visual light. In this way, for the first
time, researchers were able to observe structures on the micron-scale and
slightly below. In particular, the cytoskeleton falls into this ‘microscopic’
length-scale. The cytoskeleton comprises protein structures that stabilize
a cell’s form, enable the cell to move and help transporting proteins and
organelles inside the cell.
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1. Intracellular actin and myosin: Contraction in muscle was one of
the first driving force for the study of cytoskeletal structures. Already
in 1864, Wilhelm Kühne described a protein called myosin [134]. Later,
in 1942, Albert Szent-Györgyi and co-workers found two myosin-proteins
called myosin A and myosin B [19], which by now are called myosin
and acto-myosin (i.e. actin bound to myosin). Furthermore, they found
another protein that was thought to activate myosin and therefore called
it actin. It was first described in 1942 by F.B. Straub [203], a co-worker
of Szent-Györgyi. Actin, however, had already been purified long before
by W.D. Halliburton (1887) [95, 176], when its significance was not yet
discovered and it therefore had no name.

As we know by now, actin is a central component of the cytoskele-
ton: the small actin monomers aggregate into elongated filaments by
converting energy stored in ATP5. Importantly, filamentous actin is of po-
lar structure, so that a certain quasi-stationary state called treadmilling
may emerge during polymerization and depolymerization [34]. This state
is characterized by the filament polymerization being faster at the plus
(barbed) end than at the minus (pointed) end. Thus, the chemical re-
action kinetics effectively establish a net transport velocity towards the
minus end of the filament, which usually happens to be directed inwards
to the cell body.

Along these possibly treadmilling actin filaments, certain types of mo-
tor proteins, for example myosin-II (animals) or myosin-V (plants), move
and transport vesicles or cell organelles throughout the cytoplasm. In
muscle cells one observes a complex called acto-myosin or sarcomer. There,
the myosin head regions move along opposite directions of aligned actin
filaments, so that tension is created and the whole muscle contracts. In
non-muscle cells, actin and myosin play an analogous role and thereby
form an integral part of the migration machinery. Specifically, the cellular
contraction force is provided by actin and myosin-II interaction [222].

2. Transcellular receptors: Other proteins are responsible for the cell’s
interaction with its surroundings. There are four distinct families of pro-
teins which connect a cell to its environment, like substrate, extra-cellular
matrix, or other cells. These families are:

• the immunoglobulin family of cell adhesion molecules (Ig-CAMs),
which are involved in connections to other cells, cell adhesion, signal
transduction and regulation of gene expression,

5ATP = adenosine triphosphate
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• the cadherin family, which is central to cell adhesion and cell-cell
contacts,

• the integrin family, which links the cytoskeleton to substrate and
activates intracellular signaling pathways,

• the selectin family, which is involved in vascular cell adhesion and
signalling,

Here we give further details on two of these families:

(i) Cadherin: The force-bearing connections in cell-cell contacts are mostly
formed by a certain family of Ca2+ dependent adhesion proteins, the
cadherins. The first described member of this family was the E-
cadherin. Also known as L-CAM, Warren J. Gallin and co-workers
described it as cell adhesion molecule in chicken in 1983 [84], whereas
Reinhard Schuh and co-workers as uvomorulin in mice in 1986 [194].
The main cadherin types are E-cadherin (epidermal), N-cadherin
(neural) and R-cadherin (retinal tissue). All of them are either in-
volved in cell adhesion or cell-cell contacts.

One usually differentiates between classical and proto-cadherins. For
cell migration and aggregation, the most important ones are certain
classical cadherins, like E- and N-cadherin. They participate in so-
called strong cell-cell adhesions [94]. Under normal circumstances,
breaking of these strong adhesions occurs only with the help of other
molecules, e.g. by means of phosphorylation.

(ii) Integrin: The integrin family provides the most important cellular
receptor molecules for connections of a migrating cell to the sub-
strate, and is also involved in transmembrane signaling processes.
Integrin was initially described in the 1960s and 1970s as oxyper-
tine, a tranquilizing drug against schizophrenia [12, 162]. Later on,
in 1987, Richard O. Hynes introduced the name ‘integrin’ [112]. In-
tegrins are composed of two chains termed α and β. These chains
vary in their composition, giving rise to multiple types of integrins
with distinct properties. In mammals there are 24 different kinds of
integrins, which are composed of 18 distinct α-subunits and 8 distinct
β-subunits [113]. Despite of this compositional variety, all integrins
are approximately horseshoe-shaped. The two leg regions extend side-
ways and join at the prominent “head”, where both α- and β-chains
are connected.
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Integrins can be in either of two conformational states, active or in-
active. In the inactive state, the head region faces the cell membrane
by bending over towards the leg regions, whereas in the active state
the head region is freely accessible. The binding sites for other pro-
teins are situated in the head region, so that the binding affinity is
modulated by the integrins’ activation state. Usually, most integrins
are in the inactive state and have to be activated by divalent cations
like Mn2+ or by the attachment of certain ligands [185].

Before coming to further details of integrin cooperation, we visit some
fairly recent methodological advances.

1.3. On rubber sheets, traction and fluorescence

Modern microscopic techniques provide many possibilities for the visual-
ization of different properties of the objects under study. One perhaps
surprising yet very exciting imaging technique allows for the quantifi-
cation of forces. The basic idea is to measure the deformation of the
substrate on which the cell migrates.

1. Soft substrate traction force microscopy: In the 1980s, Harris in-
vented the elastic substrate method, whereby a thin layer of a liquid
silicone surface is polymerized [97]. When seeded on such a substrate, a
migrating cell causes the surface to wrinkle. Unfortunately the precise
mathematical relation of wrinkles and forces is unknown, and the initially
assumed proportionality did not yield consistent results. In a next step,
in 1994, Lee and co-workers stabilized the substrate by connecting the
surface edges to a rigid box [140]. To measure the substrate deformation,
silicon beads were added to the polymer sheet. Yet the bulk modulus
was quite high, so that the beads would displace only by a very small
amount. The breakthrough came in 1997, when Pelham and Wang im-
proved synthesized polyacrylamide substrates [174]. The crosslinker to
monomer ratio of polyacrylamids can be freely adjusted so to match the
applied forces of different cell types with a suitable substrate stiffness. In
1999, Dembo and Wang used smaller beads and fluorescence to further
increase the resolution [63]. By now, traction force microscopy has seen
several modifications and refinements. Mutual limitations and benefits
are discussed in [187].
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2. Micro-needle traction force microscopy: Other groups measured
the forces applied by the cell to the substrate by means of micro-needles.
Initially, in 1997, Galbraith and Sheetz used small needles to measure
forces at adhesion sites [80]. In 2001, Balaban and co-workers invented
stress measurement at focal adhesion sites with micro-patterned surfaces
[18] and finally in 2003, Tan used arrays of regularly spaced micro-needles,
which made the method more precise [209]. When employing this method,
care has to be taken that the relation between force and elongation or
needle displacement is known precisely.

3. Fluorescing proteins: An important tool to further analyze the cells’
cytoskeleton in-vivo or in-vitro are fluorescent proteins, such as GFP6.
GFP was first discovered in the jellyfish Aequorea victoria, but by now it
has been found in several other animals. The first description was given
by F.H. Johnson and co-workers in 1962 [119]. As often in science, the
true benefit of this discovery has not been identified until much later.
The first paper in connection with proteins marked by other fluorescent
proteins was written by M. Chalfie and co-workers in 1994 [44]. Already
in 2008, the Nobel prize in chemistry was awarded to O. Shimomura,
M. Chalfie and R. Y. Tsien for GFP and similar blue and yellow colored
fluorescent proteins. Today, a lot of different fluorescence protein con-
structs are available in various different colors, acting as specific markers
for other proteins. It is even possible to employ several distinct fluores-
cence markers at the same time, which is useful to distinguish different
proteins in a cell or even in the same spot.

4. Comprehensive integration in quantitative models: What set out
with the observation of animalculae has now grown into a vivid field,
in which researchers seek to understand the inner mechanisms of bio-
logical cells, be it prokaryotes or eukaryotes. Here we are interested in
the phenomena of cellular motion. With the detailed data on intra- and
transcellular protein interactions at hand, our task is now to integrate
these data into a common and widely applicable theory. Such a theory
should be able to account for the behavior observed in selected model
systems. In the process of theory building we should generalize, refine or
adapt our framework, and reiterate until the cell-level theory describes
the motion of various types of cells, possibly with additional specializ-
ing modifications. Since biological phenomena are inherently diverse and

6GFP = green fluorescent protein
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mutually interrelated, the process of finding a suitable theory typically
takes a long time – often so long that the impression might arise that
there will never be a complete theory for biological systems. With this
in mind we turn to the seminal works of the current paradigm, which
sorted out the details and assembled a unified picture of the migration of
specific cells on two-dimensional substrata.

1.4. “Cell migration: a physically integrated molecular
process”

The title of this section is the one of a famous opinion article by Doug
Lauffenburger and Alan Horwitz [138], of which the science portal http:
//webofknowledge.com lists over 2100 citations by December 2012. In
this article, the authors provide a kind of taxonomic description of the cel-
lular migration process, which organizes a plenitude of detailed observa-
tions into a single conceptual framework. The key steps of cell migration
in this framework are exhibited in the section titles of [138]:

1. “Morphological Polarization” provides for the initial starting point,
since there should be some direction as to what is forward. This
aspect of cell motility is observable in many distinct kinds of cells,
e.g. keratinocytes, fibroblasts, neutrophils.

2. “Membrane Extension” encompasses a kind of forward-step of the
cell, and is approximately centered around the forward direction as
set by the cell’s morphology.

3. “Formation and Stabilization of Attachments” mostly at the cell
front leads to the transmembrane connection of the cell to the sub-
strate.

4. “Contractile Forces and Traction” due to cytoskeleton and adhe-
sions generate a net pulling/pushing effect for the cell in forward
direction.

5. “Rear Release” and breaking of no longer needed attachments at
the rear end enables the cell to actually translocate upon traction
generation.

6. “Overall Coordination” somehow has to take place to carry out
steps 1–5 in a efficient and/or controlled manner.

8

http://webofknowledge.com
http://webofknowledge.com


Figure 1.2.: A human epidermal keratinocyte migrates on a fibronectin
substrate from right to left. At the front (left), the mem-
brane is pushed out to enable subsequent adhesion forma-
tion (green). In this way, intracellular forces couple to the
substrate and give rise to the translocation of the cell body
(bright, elliptical region in the middle of the cell). At the
cell’s rear end, retraction fibers form at sites of breaking ad-
hesions, hindering the cell in its forward translocation. The
fluorescing marker (green) is Zyxin, which colocalizes with fo-
cal adhesion complexes containing transmembrane integrins.

The appeal to this scheme is that it allows to separately investigate
the single steps in specific submodels or experiments. Moreover, it is
sufficiently concise that it can be grasped as a whole. Indeed, the work by
Lauffenburger and Horwitz [138] has inspired many cartoons explaining
cellular migration in later publications (e.g. [135, 150]). In figure 1.2,
some of the elementary steps are already visible from a micrograph of a
human epidermal keratinocyte.

1. Polymerization and tip dynamics: It is perhaps not surprising that
many researchers focused on the first two steps to further explain cell
motility. Somehow, morphology and membrane extension seem to be
related concepts, for they both affect the observable outline of the cell.
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Also, Lauffenburger and Horwitz note in their article that “response to
migratory stimuli is almost universally found to be coupled with local
actin polymerization” [138, Section “Membrane Extension”]. The result-
ing effect on the cell’s morphology can also be seen in figure 1.2, where
the cell exhibits a prominent, wide and flat lamella at the front (left), to-
gether with several spike-like filopodia extending forward. Consequently,
in 2003, Thomas D. Pollard and Gary G. Borisy found that the “Cellular
motility [is] driven by assembly and disassembly of actin filaments” [179].

The rationale for this hypothesis is the following: actin filaments poly-
merize at the cell front in such a way that the membrane is pushed out-
ward, away from the central cell body. This process is driven by the
orientational polarity inherent in actin filaments. The spatial regulation
of the polymerization zone then leads to the formation of a polarized
cell morphology. In order to enhance the overall polymerization rate at
the lamella tip, branching proteins like Arp2/37 and membrane-anchored
WASP8 complexes provide for additional nucleation points for actin fil-
aments. These polymerization agents are believed to be produced only
at the membrane. Correspondingly, polymerization occurs mostly at the
very cell tip. Inhibition of polymerization by capping proteins in an inter-
mediate zone and severing of filaments further back, e.g. by ADF/cofilin
(actin depolymerizing factor), recycles the actin monomers so that they
again may be incorporated into polymerizing filaments [151, 179]. These
and other molecular players in the polymerization processes at the lamella
tip are summarized in figure 1.3 which was originally proposed in [179,
Figure 3].

2. Cellular adhesion-velocity relation: In this way, key steps 1 & 2 of
the scheme above can be explained. A fairly detailed understanding of
steps 3 & 5 had already been achieved by the end of the 90s. In 1997,
Palacek and co-workers had found that in CHO9 cells, the migration speed
depends on integrin, such that even small changes in integrin concentra-
tion can significantly affect the migration speed. If the concentration of
available ligands on the substrate is low, speed increases upon increasing
the amount of expressed integrin. In contrast, when the concentration
of available substrate ligands is high, the migration speed increases with
decreasing expression of integrins. In between these two regimes, the

7Arp2/3 = actin related proteins 2 and 3
8WASP = Wiskott-Aldrich syndrome protein
9CHO = Chinese hamster ovary
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Figure 1.3.: Cartoon picture of the dendridic actin nucleation at the tip of
migrating cells. The polymerization of actin is faster at the
barbed ends of the filaments, which mostly point towards
the cell membrane, in a characteristic pattern of dendritic
branches. The Arp2/3 complex is activated at the membrane
and creates additional branches in the filament network,
which enhances the effective actin polymerization close to
the membrane. This polymerization then advances the mem-
brane, so that the network falls behind the zone of enhanced
polymerization. Due to filament aging involving the dephos-
phorylation in the actin monomers, the network becomes sus-
ceptible to depolymerization, which is additionally enhanced
by severing agents. The released pool of actin monomers is
subsequently again phosphorylated while diffusing back to
the membrane, which completes the actin polymerization cy-
cle. The presented cartoon is reprinted from [179, Figure 3],
with kind permission by Thomas D. Pollard.
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maximum migration speed for these cells was 10–20 µm/h [169]. These
effects can be explained from a 4-state model of the kinetics of the binding
complex, which connects cell-internal F-actin and cell external substrate
by intermediate integrin [170]. Specifically, the involved binding affinities
give rise to inherent reaction time constants, which – depending on cell
type and substrate stickiness – influence the mutual effectiveness of the
processes in 3 & 5. Consequently, some cells are faster than others.

3. Active contraction and traction: From the traditional results of
acto-myosin in muscle, the details of step 4 seem to be reasonably under-
stood. As described before, myosin colocalizes with actin, crosslinks the
filaments and creates a net tensile force due its ATP consuming motor
activity. Therefore, only step 6 of aforementioned scheme needs further
clarifications. To this end, we further review several polarization mech-
anisms in a broad sense, which have been implicated to be at work in
certain model systems.

1.5. Cellular polarization mechanisms

1. Mechanisms occurring close to the membrane: The most com-
mon theme in cell polarization is certainly the regulatory aspect of the
actin polymerization cascade at the lamella tip. Extracellular signals
somehow have to make their way inside to initiate certain effects. It is
believed, that the Rho/Rac family of proteins processes external chemical
signals [184], whereby one specific complex involved in polymerization is
WASP. While the molecular details are quite puzzling and not yet com-
pletely understood [168], the basic working principle goes like this: Being
sterically auto-inhibited to actin or Arp2/3 binding, WASP gets activated
by deformation in the presence of transmembrane PIP210 and cytosolic
Cdc4211. Subsequently, Arp2/3 may attach to actin so that polymeriza-
tion is induced.

Even though not all details of molecular regulation processes on the
nano-scale are known completely, there is a common denominator on
the whole cell level, which can resemble and summarize various specific
pathways. In fairly abstract mathematical terms, stimulation of poly-
merization can be recapitulated from local-excitation global-inhibition
models [232], or several other mathematically distinct but conceptually

10PIP2 = phosphatidylinositol biphosphate
11Cdc42 = cell division control protein 42
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related schemes [116], usually involving actin-polymerizing agents at the
membrane. When solving the underlying equations on a roughly cell-like
geometry like a circle, these mechanisms give rise to a spatial pattern lo-
calizing a leading edge, the region of predominant actin polymerization.
For further details we refer to [116], which also gives an account on capa-
bility and limitations of three model classes on membrane-initiated cell
polarization.

Once the cell has established a spatial regulation pattern designating
the leading edge, actin polymerization has to adapt so that protrusion
forces are generated in the corresponding direction. There are two theo-
retical frameworks how force generation works at the interior surface of
the cell membrane:

(i) In the Brownian Ratchet model [150,152–154], actin filaments directly
support the membrane with their plus ends. When there is enough
space due to thermal fluctuations of membrane or filament, an actin
monomer squeezes in between and the filament grows. Averaging over
many of these polymerization events, a net protrusion force emerges,
which pushes the membrane forward.

(ii) Alternatively or coincidentally, polymerization may be initiated at
motor proteins anchored in the cell membrane. Careful force and
energy estimates lead to the postulate that such an mechanism is
actually at work in migrating cells [65, 66]. Originally, this mode of
force generation was observed in listeria. These bacteria infect host
cells and propel themselves by creating an actin polymerization tail
at their rear ends. Since insertion of monomers is an active process,
the emerging motion is step-like.

Certainly, the phenomena described above play an important role to
the cell’s sense of direction. However, to ensure overall and cell-wide
coordination, these purely membrane-associated processes do not seem
to suffice. Taking place mostly at the very tip of the lamella front, the
rear release, for example, cannot be influenced from this regulation cir-
cuitry. Indeed, during the last years, some other mechanisms have been
implicated to participate in directing a cell.

2. Mechanisms occurring in the cell bulk: One of those other mecha-
nisms depart from the membrane relies on internal processes in the acto-
myosin bulk of the cell. Suppose a cell is at rest, entirely symmetric,
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i.e. circular, and the retrograde flow is directed radially inward, point-
ing from the lamella tip to the cell body/nucleus, which is enclosed by
a shell of peripheral actin fibers. Initially, all forces are balanced in this
system: contractions in the fiber shell are compensated by the retrograde
flow from the periphery. Thereby, the fiber shell around the cell body
contracts in centripetal direction, whereas the incoming retrograde flow
builds a pressure acting in centrifugal direction. If however contraction
is enhanced/decreased in a particular region, the initial symmetry will
break and some morphological polarization of the cell will occur. These
effects have been observed in fish keratocytes [229,233], and suggested to
be an effective response to inhibitory extracellular chemical gradients [52].

Reorientation works as follows: if some repelling stimulus is received,
strong contractions are induced in the corresponding region of the cell.
These cytoskeletal contractions lead to localized compressions of the cell
bulk. At the same time, the cytosol is squeezed away from the contractile
region, which affects the overall flow equilibrium. In this way the mem-
brane at the opposite end of the cell bulges out, and the overall morphol-
ogy starts to change. A similar phenomenon occurs when the contraction
is decreased in a particular cell region, except that the membrane then ex-
tends in the same place, not at the opposite cell end. These effects can be
nicely observed in blebbing cells, for example L929 fibroblasts [216]. How-
ever, the underlying mechanisms have been conceptualized much earlier.
Already in the 1970s, Taylor and co-workers developed the idea in a se-
ries of papers on certain amoeba and Dictyostelium discoideum [212,213].
Also, experiments on Xenopus laevis from the 1980s seem to support the
general idea of contraction-induced polarization [204].

3. Fluctuations and spontaneous polarization: It is important to real-
ize that both cell bulk and membrane associated polarization mechanisms
can also arise spontaneously, i.e. without relying on external cues. Con-
centrations of all involved proteins vary, so that locally there might occur
fluctuations, effectively shifting the relevant reaction equilibrium. De-
pending on the strength of the fluctuation, the cell system as a whole
might be stable or unstable under these perturbations. Notably, close
to equilibrium most extracellular signals are in the strong-fluctuation
regime, because in this “homeostatic” state there are only very few sig-
naling molecules at work. Of course, whether such effects are actually
important to the cell’s function should be clarified in experiments. We
expect, however, that ubiquitous fluctuations are not only involved in cel-
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lular regulation, but rather have been explored by nature so to participate
in almost all processes that jointly comprise life.

4. Checking with phenomenology – repetitive protrusion cycles: It
was known by the mid-90s, that cultured human epidermal keratinocytes
exhibit characteristic ruffle dynamics at their lamella tips. In repeat-
ing periods of approximately two minutes, lamellipodia protrude at 2–
6 µm/min and subsequently retract again with 1–4 µm/min, whereas
filopodia protrude and retract at slightly higher velocities [7]. Similar ob-
servations had previously been made in the lamellae of amoeboid cells and
even cell extracts. If one stimulates human epidermal keratinocytes with
epidermal growth factor, the ruffle velocity and frequency increases [103].

This phenomenon is remarkable for several reasons. Apparently, there
seems to be an inherent rhythm to the cell’s protrusion/retraction be-
havior. Next, the protrusion velocity is similar for both lamellipodia and
filopodia. Finally, the observed dynamics of the leading edge can serve
as fairly easy benchmark for protrusion/polarization models, namely by
comparing kymographs of lamella tip positions from in-vitro and in-silico
cells. Recently, related effects have been observed in the filament-based
leading edge models by Falcke and coworkers [75, 236]. By coupling the
polymerizing F-actin brush at the lamella tip to a cross-linked gel-like
bulk further in the back, they find several distinct protrusion phenotypes
in their simulations. Notably, these phenotypes share some common char-
acteristics with the ruffle dynamics reported in [7,103] and already reca-
pitulated in simulations [8].

Our observations of the lamella of human epidermal keratinocytes sug-
gest to interpret the rhythmic protrusion cycles of a cell as a way of sens-
ing and exploring its environment. Some experimental attempts have
already been made to relate a cell’s protrusion dynamics with its mor-
phological polarity [142]. If protrusion indeed constitutes a kind of en-
vironmental sensing, one would expect a correlation between protrusive
activity and the course of the subsequent migration trajectory. Moreover,
one could further test this hypothesis by studying protrusion behavior of
cells while controlling the persistence of their migration trajectory [173].

5. Polarization of polymerization, protrusion, and morphology: Here,
we argue that steps 1, 2 and 6, i.e. “Morphological Polarization”, “Mem-
brane Extension” and “Overall Coordination” from the scheme in section
1.5 should be combined and understood jointly on the whole-cell level.

15



Protrusion activity is affected both by actin polymerization at the lamella
tip and fluid streaming upon local cell contraction. Overall coordination
– e.g. from front to back – can be reached by chemical agents, but also
directly via the force equilibrium in the cytoskeleton. The cell’s mor-
phology ultimately arises from a combination of all these effects, and also
depends on the adhesive properties of its environment. The actual loci
of membrane extension are a mere consequence of this interplay.

1.6. Revisiting cellular adhesion and tension

1. Actin, myosin and stress fibers: If actin filaments align in anti-
parallel orientational polarity and connect with the help of cross-linker
proteins, the emerging bundles are called stress fibers. Thereby, α-actinin
and myosin alternate in linking the fibers, which leads to an overall bundle
contractility, similar to the phenomena known from muscle cells. Accord-
ing to [110], there are three different types of stress fibers, cf. figure 1.4:

1. Dorsal stress fibers develop through actin polymerization induced
by formin proteins, which occurs close to focal adhesions. At the
one end, they point to the leading edge of the cell, while their other
end extends towards the cell center. In this central region, dorsal
stress fibers are sometimes connected to stress fibers of type 2.

2. Transverse arcs are bent actin filament bundles, which are nucleated
by the Arp2/3 complex and attached to myosin bundles. Transverse
arcs are usually not connected to focal adhesion complexes.

3. Ventral stress fibers are converted dorsal fibers or transverse arcs
that end up at the rear end of the cell. These ventral fibers are
connected to focal adhesions on both ends.

In this light, we may regard stress fibers as a machinery that transduces
forces from one position of the cell to another. Furthermore, structures
such as the bulk actin network, intermediate filaments or even micro-
tubuli participate in this cell-scale force distribution. The cytoskeleton-
mediated force propagation also provides for a direct regulative hook
from the cell’s front to its back, and is involved in the stabilization of cell
shape [41]. If only the membrane were to support overall cell cohesion,
there would occur instabilities causing rupture, so that fragments of the
cell would separate from the rest. In migration models of fibroblasts,
this instability has been reported as the “dripping faucet instability”, in
analogy to a drop parting from a not entirely closed faucet [99].
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Figure 1.4.: There are different kinds of stress fibers distributed at dif-
ferent loci of a migrating cell (picture here: human osteosar-
coma cell, “U2OS”). 1. Dorsal stress fibers (red) extend radi-
ally throughout the lamella and connect cell body and focal
adhesions. 2. Transverse arc stress fibers (yellow) provide for
lateral tension and are bent in the direction of migration.
3. Ventral stress fibers (green) facilitate rupture of adhesions
at the rear end of the cell by propagating tension from trans-
verse arcs to the retraction zone. The picture shown here is
reproduced from [110] with permission by P. Hotulainen.

2. Effective fluidity of the cell bulk: The here postulated analogy of
cell bulk and drop is not coincidental. Indeed, we share the opinion that
the cytoplasm mostly behaves like a fluid. This perhaps controversial
view has a rather simple explanation: the inherent time-scale of chemical
processes in the cytoplasm, most notably of the actin cytoskeleton, is
much smaller than the relevant time-scale of cellular migration. Actin
monomers turn over in seconds, whereas cell motility and translocation
happens in minutes to hours. Fluidity arises because there are almost no
bonds between actin monomers that would stay connected long enough
to determine cellular motion. Instead, due to chemical turnover, the
cytoskeleton bulk appears as fluid when investigating the long time-scale
of motility. In a similar manner, crosslinkers like myosin attach and
dissociate to/from actin filaments rather quickly – again compared to the
time-scale of cell motion of minutes to hours. This “fluid” view becomes
more and more common in whole-cell models [6, 118, 123] and is already
well established at the tissue-level [94, 145, 198]. Nevertheless, actin and
crosslinker bonds do influence the material properties of the cytoplasm.
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It is to be expected that their kinetic turnover speed would modulate the
effective viscosity of the cytoplasmic fluid.

3. Integrin and focal adhesions: During migration, it is important
for the cell to connect itself to the underlying substrate. To this end,
focal adhesion complexes assemble at the interface between cell and sub-
stratum, so that locomotion forces can be transmitted. For human epi-
dermal keratinocytes it has been reported that initially small adhering
connections are assembled below filopodia, i.e. spike-like thin, and elon-
gated cytoskeletal protuberances. This assembly process is mediated by
a small protein called VASP12 [190]. After that, right behind VASP,
slightly larger connecting sites are formed from proteins like tensin, pax-
illin, talin, zyxin, β-integrin, vinculin and even VASP itself. These larger
connections are called small focal adhesion sites. A small focal adhesion
will grow to a larger one as soon as the lamellipodium arrives at the
corresponding region [190]. As the focal adhesion site grows, there is a
steady phosphorylation and turnover of vinculin molecules. Subsequent
size maintenance and shrinking of the focal adhesion site is modulated
by vinculin dephosphorylation [158].

Apparently, there also seems to be an inherent time-scale in focal ad-
hesion formation, maturing and subsequent disassembly. Fluorescence
recovery after photo-bleaching (FRAP) measurements on the exchange
dynamics of vinculin pose a lower boundary of approximately 1 min to
this ripening or maturing process [156, 158]. In mature focal adhesions,
the residence time of integrin is approximately 1–3 min [180].

Moreover, adhesion sites to the substrate also seem to be important for
the cell shape. When seeding cells on substrates with localized adhesive
spots, they exhibit a characteristic outline, whereby tip-like extensions
anchor to the adhesive spots. At the same time, the intermediate arcs
sharply curve inward, approximately in a circular fashion [28]. Based on
an energy-minimizing principle, the emerging cell shape can be related to
the forces acting on the adhesive spots, and the cell outline thus becomes
directly predictable [28]. This shows that the distribution and strength
of adhesion spots contribute to whole-cell shape generation.

4. Mutual feedback of cytoskeleton and focal adhesions: Finally, fo-
cal adhesion sites are also influenced by stresses in the actin cytoskeleton.
Upon ATP hydrolysis, the actomyosin-complex contracts, which creates

12VASP = Vasodilator-stimulated phosphoprotein
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a tension in the focal adhesion complexes [224]. Some of the molecular
bonds in the focal complex are sensitive to tensile forces and therefore
tend to break upon load, which leads to an incomplete detachment of the
focal adhesions. In this way, a crawling cell leaves a so-called migration
track behind, which mostly contains integrin clusters [124]. This suggests
to combine steps 4 “Contractile Forces and Traction” and 5 “Rear Re-
lease” of the scheme in section 1.5. The inverse phenomenon does occur
as well. In nascent focal adhesions, force-induced tensile load as provided
e.g. by stress fibers or retrograde actin flow facilitates the further assem-
bly and clustering process of the complex [81, 89, 180]. Consistent with
these observations, focal adhesions of MDCK13 cells enlarge on stiffer
substrates [188].

5. Cadherin and intercellular junctions: Cadherin is an elongated mole-
cule, with two characteristic functional groups at its opposite ends, namely
the C-terminal region (ending with a carboxyl group COOH) and the
N-terminal region (ending with an amino group NH2) [139]. At the N-
terminal domain, there are five different extracellular repeat units EC1–
EC5, of which the first three are believed to dominate the formation of
homophilic cadherin-cadherin bonds. These bonds develop in two dis-
tinct kinetic phases: In the first phase, cadherins mostly form EC1–EC2
bonds, whereby the corresponding probability of accomplishing the cell-
cell contact is relatively low. Then, after a short lag phase, cadherins
engage in EC3 bonds, which provides for stronger coupling of the cells
and keeps them connected [139].

Similar to integrin, cadherin forms adhesions in patches involving sev-
eral individual molecules. Functionally most important are the so-called
adherens junctions, which are composed of clustered cadherins [107,235].
Initially, few E-cadherins connect to those of the other cell in a small
number of bonds. Then, other cadherins approach the region by means
of diffusion, where they engage in dimers and thus become trapped. Sub-
sequently, so-called catenins attach to the cell-interior domains of the cad-
herins. This enforces the present cluster structure and at the same time
provides for connections to the cytoskeleton, so that cohesive stresses may
propagate from one cell to the other. Once established, the adherens junc-
tion is fairly stable, because there is a certain energy cost for a cadherin to
leave the cluster, leading to a half residence time of approximately 2 min-
utes [107]. In figure 1.5, one can recognize a cadherin-mediated adhesion

13MDCK = Madin-Darby canine kidney epithelial cells
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Figure 1.5.: This pair of human epidermal keratinocytes has formed a
cadherin-mediated adhesion zone. The fluorescent marker
(green) is Zyxin, which colocalizes both with focal and trans-
cellular adhesion complexes. A possible adhesion mechanism
has been suggested in [35]. Thereby, one cell touches the
other with its filopodia. The other, in turn, responds by
generating localized stresses in its actin cytoskeleton. In this
way, cadherin adhesion is initiated and a stable cell-cell adhe-
sion emerges. In the picture above we see two connected cells
with an already mature cell-cell contact zone. The strong fo-
cal adhesions towards the substrate (also green) show that
the cells have been in this constellation for a longer time.
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zone between two human epidermal keratinocytes. The striking stability
of such an adherens junction can be understood in terms of a receptor-
ligand binding model on fluctuating membranes [225]. Thereby, mem-
brane fluctuations lead to the preferential formation of receptor/ligand
pairs close to existing clusters, which constitutes a positive, self-enhancing
feedback of adherens junctions [131].

There are two distinct kinds of catenins, namely α-catenin and β-
catenin [33,94]. Both species are involved in cadherin clustering, whereby
the latter forms a complex with E-cadherin. The former can bind in sev-
eral states: as a monomer, it attaches to β-catenin in the E-cadherin–β-
catenin complex, whereas in its homo-dimer conformation, it only binds
to actin filaments. In this way, actin filaments may restrain the E-
cadherin diffusion into the junction. Additionally, α-catenin may also
prevent the Arp2/3 complex from binding to actin, thereby inhibiting
actin polymerization [33,94].

6. Clustering and force-induced adhesion modulation: One early and
important model of the dynamics at cell-cell contacts has been by by
George I. Bell, from 1978. The central idea is quite simple: connec-
tions between adjacent cells are realized by their surface proteins, which
eventually bind to one another. Bond disconnection is modulated by the
applied force. Thereby, the dissociation rate (off rate) of cell-cell bonds
increases exponentially with the applied force (load) [21]. In the late
90s, Evans and Ritchie showed by means of simulations, that under high
loading rates the number of rupture events is also high. Conversely, un-
der low loading rates, there seem to appear very low bond strengths [76].
Meanwhile, the measurement of forces on single bonds is quite a standard
technique, by which these theoretical predictions have been verified [147].

We believe that this force-induced speed up of molecular bond breaking
is a very central motif of cellular motility. Ultimately, migration follows
force transduction. Therefore, in any motility process leading to translo-
cation, there must be some forces involved. Since force affects chemical
bonds, this certainly comprises a very direct regulation circuitry. Specifi-
cally, the sensed forces can provide for feedback onto the macromolecular
aggregates involved in cellular motility processes.

The inverse effects may also occur at sites of adhesion. We have already
seen that adhesion formation involves clustering of multiple receptors. In
the preceding paragraph we have found that actin in cooperation with
α-catenin is involved in the cadherin clustering process. When a cadherin
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molecule close to the cluster is connected to an actin filament, the forces
pulling on that filament – or even its Brownian fluctuations – might
navigate the cadherin into the cluster, which subsequently enhances the
local adhesion strength. Similar processes are also at work during the
maturation of focal adhesion sites [81]. Additionally, integrins might be
activated by mere pulling in the suitable directions [180, Fig. 1]. Finally,
imposing tensile load on an immature adhesion complex increases its
size [158].

Altogether, these effects comprise a conceptually simple and power-
ful mechanism for a crosstalk of actin and cell-cell and cell-substratum
adhesion molecules. In the initial phase of adhesion formation, external
load on the adhesion molecules enhances the clustering effect, so that the
adhesion matures more quickly. When the adhesion site has aged, fairly
strong pulling forces are able to overcome the barrier of the connecting
bonds in the adhesion molecules. After some time, this would induce
subsequent rupture and disassembly of the adhesion site.

1.7. Modes of motion of selected kinds of vertebrate
cells

1. Length-scale, timescale and molecular key players: Modeling cell
migration easily gets complex and considering every single involved pro-
tein complicates the matter even more. Therefore, one needs to focus on
the main functional themes. Here we identify three important locations
for the processes driving cellular motility:

• the cell bulk,

• the contact zone between two adjacent cells,

• the contact zone between cell and substrate or extracellular matrix.

When describing whole-cell motility, the corresponding dimensions give
rise to approximately three different length-scales:

• molecular scale ≈ membrane thickness (∼ 10 nm),

• intermediate scale ≈ cell lamellipodium (∼ 1 µm),

• cell scale ≈ one to few cell radii (∼ 50 µm).

Similarly, there are three distinct time scales:
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• chemical reaction scale (∼ 5 s),

• intermediate scale ≈ protrusion, adhesion maturation (∼ 2 min),

• cell translocation scale (∼ 1 h).

These time- and length-scales help to organize and categorize specific
phenomena in the sense of a taxonomy. At the same time, they allow for
a certain modularity in the construction of models. Commonly, things
that happen at a different time- and/or length-scale can be neglected or
their effects can be conveniently summarized without resorting to detailed
submodel development.

According to section 1.6, there are usually four dominant chemical
players related to force transduction in cell motility:

• actin (cytoskeleton),

• myosin (contraction),

• integrin (cell-matrix or cell-substrate adhesion),

• cadherin (cell-cell adhesion).

Here we do not list any upstream or downstream chemical signaling
species. Such species ultimately regulate only detailed aspects of the
aforementioned force machinery. Any regulation circuitry should there-
fore be a modular ingredient to the model and tuned to the specific cell
type at hand.

2. Physical mechanisms jointly at work: In the light of the previous
considerations, there are fairly few mechanisms that jointly constitute the
majority of cellular motility phenomena:

1. actin polymerization (usually mostly at the tip),

2. motor-induced cytoskeletal contraction (cell bulk),

3. long range force transduction (across cell bulk),

4. force-induced molecular clustering and breaking of chemical bonds
(adhesion sites, possibly cytoskeleton),

5. fluid-like behavior of cytoplasm/cytoskeleton (cell bulk).
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Location and effect of these few mechanisms are combined and explored
in-vivo so that many different modes of cellular motion and morphology
have been developed.

Certainly, the item 5 of the preceding list is the most controversial
one: it might be difficult to imagine long-range force transduction in
wobbling fluids. Central to a fluid’s cohesion, however, are its interior
stresses, which jointly contribute to the overall surface tension. In the
cell, this function is provided by two players: (i) the membrane as flexible
container of the cytoplasm, and (ii) the cytoskeleton inside of that con-
tainer, including but not limited to the cortex underneath the membrane.
Importantly, the tension provided by the membrane does not suffice in all
cases to achieve cohesion of the whole cell. In these cases, the cytoskele-
ton serves by enforcing and strengthening the effective cellular surface
tension.

Our findings are summarized in table 1.1, and in line with the inspiring
work by Denise Montell [159]. We try to relate the biological phenomena
to their location, the underlying physical mechanisms, and the involved
chemicals.

When idealizing a complex real-live system into a coherent model, not
all details can be captured exhaustively. On the other hand, one would
like to summarize omitted facts so to at least partially account for them.
One summarizing technique is the incorporation of stochastic perturba-
tions.

Perturbations, however, are not only a useful ingredient to idealized
model systems. In fact, fluctuations occur in any system involving the
spatial distribution of chemical reactants. Diffusion is inherent to such
systems, which is a stochastic process driven by Brownian motion of the
particles in the surrounding solvent fluid. Effectively, this leads to vari-
ations in the concentration profile of the reactants, which constitutes
a direct source of fluctuations. It is therefore to be expected that na-
ture has somehow explored these fluctuations to help in the ubiquitous
self-organization processes that we observe at all stages of life. The con-
siderations of fluctuations might even proof to be essential in order to
explain certain biological phenomena.

Yet to a modeler, the immediate practical benefits of perturbations
are more mundane: increasing noise serves as a quick benchmark for the
robustness of the system. After all, robustness is a central characteristic
of all living beings.
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Biological
phenomenon

Location Physical
mechanism

Chemical players

cell-wide
coordination

whole cell chemical signalling;
force transduction,

adhesion
modulation by force

various;
actin, myosin

sensing,
polarization

lamella tip,
cell bulk

chemical signalling,
polymerization,

fluid flow

PIP2, . . . , Arp2/3,
actin;

actin, myosin

protrusion,
membrane
extension

lamella;
cell bulk

fluid flow Arp2/3, actin,
actin, myosin

cell-matrix
adhesion

below cell adhesion
modulation by force

integrin, . . . ;
actin, myosin

contraction cell bulk,
backside

motor activity actin, myosin

rear release below cell,
backside

adhesion
modulation by force

integrin, . . . ,
actin, myosin

cell-cell adhesion between two
cells, close to
membranes

adhesion
modulation by force

cadherin, . . . ;
actin, myosin

tissue cohesion cell bulk,
between cells

trans-cellular
adhesion and

force-transduction

actin, myosin,
cadherin, . . .

collective
migration

tissue bulk trans-cellular
adhesion,

force-transduction,
substratum tension

actin, myosin,
cadherin, . . . ,
integrin, . . .

Table 1.1.: Taxonomy of force-involving phenomena in cellular migration.
Migration combines the mechanisms in the third column in
a modular way. Generic parameters to these mechanisms,
e.g. strength, speed/time-scale, and noise-driven fluctuations,
need to be ajdusted according to cell type. In this way, typical
migrating cell systems, such as keratinocytes and fibroblasts,
can be understood within this common conceptual framework
(see also example paragraph 1.7.3 in the text).

25



3. Some tangible biological examples: Human epidermal keratino-
cytes exhibit several typical morphological modes on two-dimensional
substrates, see figure 1.6. In their sessile state A, as attained after spread-
ing on a substrate, they are circular. This corresponds to a force equi-
librium between radial retrograde flow, adhesion induced expansion and
lateral tangential contraction, e.g. by stress fibers around the cell body,
cf. also paragraph 1.5.2.The migrating state B is polarized and exhibits a
broad front of polymerization, with adhesion “carpet” maturing shortly
behind the leading edge, so that a lamella develops in the direction where
the cell is crawling. At the rear end, stress-fiber contractions help in
breaking adhesion bonds. Most of these phenomena could already be
conceived in whole-cell continuum descriptions [6, 135]. Since switching
is possible between the two states, the emerging cell trajectories exhibit
intervals of persistent and fast locomotion with slow reorientation phases
in between. The bimodal morphology C with two protrusion zones on
opposite cell ends facilitates these reorientations.

Fish keratocytes are in many ways similar to human epidermal ker-
atinocytes. In their canoe-shaped migratory mode, the recycling of actin
monomers is slightly more efficient, and possibly adhesions are regulated
more tightly, so that the leading edge is sufficiently smooth, as typical
for this type of cells. Strongest traction is situated at the lateral parts,
i.e. shifted outwards as compared to human keratinocytes. Altogether,
this leads to very persistent and fast locomotion [123,233].

Depending on their state, there are one or more distinct tip regions
of active actin polymerization in fibroblasts, see e.g. [178, 206]. Accord-
ingly, there are usually several protruding lamellipodia, giving rise to a
multi-modal cell shape. At the same time, removal of remaining adhe-
sions at the back is also fairly localized [99]. Radial stress fibers in long
rupture podia are under high tension towards the cell center. In this
way, forward traction and backward retraction forces are under continu-
ous competition. Thus, fibroblasts reorient frequently during migration,
leading to rather slow overall translocation speeds.

Neutrophils are morphologically distinct, because they follow a guid-
ing chemical cue. They attain a drop-like like shape, with the so-called
uropod being the thin part, situated at the back. While hunting a bac-
terium14, the blob-like front quickly adapts to directional changes. This
is achieved by reducing the overall cellular surface tension. Being softer

14See the famous movie by David Rogers, http://www.biochemweb.org/

neutrophil.shtml.
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Figure 1.6.: When seeded on fibronectin substrata, human epidermal ker-
atinocytes attain distinct morphological states. In the ses-
sile state A, cells are round and attain a fried-egg shape.
The migrating state B is characterized by a broad lamella in
the direction of the cell’s crawling motion. Sometimes, ker-
atinocytes also attain a bimodal shape C, where there are
two lamella at opposite ends of the cell. In A and C, the
green fluorescence staining is for vinculin, which co-localizes
with the cellular focal adhesions involving also integrin. In
B, staining is for tubulin, which is a part of the cytoskeletal
network and mostly situated within the cell body. The pre-
sented micrographs are by courtesy of Carina Wollnik [231].
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and more deformable obviously facilitates the migration through the sur-
rounding tissue. However, also the adhesions have to be reorganized very
quickly. We speculate that this works by keeping the focal adhesions in
the nascent state before maturation. Due to their task, neutrophil trajec-
tories are expected to be closely related to the pattern set by the chemical
cues.

Finally, neuronal growth cones share some of the aforementioned mo-
tion principles. Recently, it has been shown that growth cones are excep-
tionally soft mechanical structures [24]. This means that only weak ad-
hesions are needed for translocation. At the same time, the protrusional
“sensing” is excessive, which could arise from the need of integrating ex-
tracellular signals very precisely. Also, the trailing axon certainly plays a
role, however it is not clear whether the axon is pulled or rather assem-
bled on-the-fly. All in all, a straight growth trajectory emerges, whereby
the speed of the cone is very slow [23].
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2. The Reactive Interpenetrating Flow model
describes the dynamics of the cytoplasm

Summary: In this chapter we derive a hydrodynamic continuum theory
for the cytoplasm of motile cells. The model presented here was origi-
nally proposed by Alt and Dembo, and is usually referred to as Reactive
Interpenetrating Flow (RIF) model [6, 8, 50, 58, 60, 62]. The central un-
derlying assumption in this theory is, that the cytoplasm is essentially
of fluid nature, where tensile and pressure like forces are generated from
active components in the fluid. RIF distinguishes two phases in the cy-
toplasm, namely (i) the filamentous cytoskeleton and (ii) the aqueous
cytosol phase. There is a separate mass and force balance for each of
these phases. The mass balances are constructed in a way that the total
volume flux is incompressible. Moreover, the Stokes-type force balances
contain an isotropic, active, and bistable stress. Also, there is a Darcy
type friction between the filamentous and aqueous phase. Both active
stress and inter-phase friction are prescribed as constitutive equations.

2.1. Mass balances involve the volume fraction

1. Three distinct mass balances in the cytoplasm: In order to repre-
sent and quantify the physical cytoplasm mechanisms 1 & 5 from para-
graph 1.7.2, we treat the cytoplasm as a compound fluid, whereby we
initially start with three constituents.1 To this end, we consider the mass
densities of (i) filamentous F-actin ρf, (ii) monomeric G-actin ρg, and (iii)
aqueous solvent ρs. Accordingly, we write the three mass balances,

F-actin: ∂tρf +∇∇∇ ·
(
ρfvf

)
= J ′, (2.1)

G-actin: ∂tρg +∇∇∇ ·
(
ρgvg + jg

)
= −J ′, (2.2)

solvent: ∂tρs +∇∇∇ ·
(
ρsvs − jg

)
= 0. (2.3)

1This chapter relies heavily on the notions of hydrodynamics. A brief and acces-
sible introduction to the matter is given in [177, chapter 12]. The classic reference
is [137], however the treatment of fluid mixtures differs from the approach pursued
here. To this end, the underlying ideas are most clearly exposed in the early RIF
papers [57,61].
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Here, bold symbols indicate vectors, and we have employed the∇∇∇-notation
familiar from vector analysis, indicating the divergence in the second
terms on the left-hand side. Moreover, the three fluid components ρf, ρg, ρs

are transported with their respective advection velocities vf,vg,vs. The
G-actin diffusion current jg is embedded in the advection flow with vg. A
similar diffusion of F-actin has been neglected, because the filaments are
connected in a cross-linked structure. Importantly, we separately retain a
distinct velocity field for each phase. Finally, the polymerization rate J ′

describes the chemical reaction ρf ↔ ρg and quantifies both F-actin fila-
ment assembly and disassembly from/to surrounding G-actin monomers.

2. Mass density rescaling and volume fractions: Let ma be the mass
of a single actin monomer, and Va its volume, both when dissolved and
embedded in a filament. Correspondingly, let ms, Vs be mass and volume
of one element of solvent. With the help of these quantities, we express
the mass densities ρf, ρg, ρs in terms of the respective volume fractions
θf, θg, θs, namely

θf =
Va
ma

ρf, θg =
Va
ma

ρg, θs =
Vs
ms

ρs. (2.4)

Accordingly, dividing the actin equations (2.1, 2.2) by ma/Va, and the
solvent equation (2.3) by ms/Vs gives us the mass balance equations in
terms of volume fractions,

F-actin: ∂tθf +∇∇∇ ·
(
θfvf

)
=

Va

ma

J ′, (2.5)

G-actin: ∂tθg +∇∇∇ ·
(
θgvg −Dg∇∇∇θg

)
= − Va

ma

J ′, (2.6)

solvent: ∂tθs +∇∇∇ ·
(
θsvs +Dg∇∇∇θg

)
= 0, (2.7)

bulk: θf + θg + θs = 1. (2.8)

Specifically, the G-actin diffusion current was assumed to be jg = −Dg∇∇∇ρg,
and Dg denotes the G-actin diffusion constant. We stress that both ms

and Vs are effective quantities. If the solvent were to consist of water
only, ms and Vs would be precisely the mass and volume of one single
H2O molecule. However, because the cytosolic solvent contains many
different molecules, we have to think of ms and Vs as average values,
without accounting for variations in the cytosolic composition. Of course
one could always add additional mass balances if the model is required
to resolve further details. Moreover, the molecular actin mass ma and
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volume Va in solution is not exactly the same as that of a monomer in
a filament. Both might be modified slightly due to interactions with the
solvent. However, such meticulous details are generally neglected in RIF
models [6, 8, 50, 58, 60, 62], since their effect on the flow in a whole-cell
level description is expected to be small.

3. Combination of G-actin and solvent mass balance: Since the actin
monomers with volume fraction θg are distributed throughout the aqueous
solvent θs, we assume the monomer and solvent velocities to coincide,
vg = vs =: w. Denoting the combined volume fraction of G-actin and
solvent by θw := θg + θs, we obtain a single effective mass balance by
addition of the two relations (2.6, 2.7). Adding the result to (2.5) yields

∂tθf +∇∇∇ ·
(
θfu
)

=
Va

ma

J ′, (2.9)

∇∇∇ ·
(
θfu + θww

)
= 0, (2.10)

θf + θw = 1, (2.11)

where we introduced the abbreviation u := vf. Here, the second equation
expresses the incompressibility of the overall volume flux. Together with
the third equation, the solvent velocity w could be expressed in terms of
the actin network volume fraction θg and its velocity u. We stress that
there is no simple scaling conversion between the effective cytosol volume
fraction θw and its mass density analogue ρw. Specifically we have

ρw := ρg + ρs =
ma

Va
θg +

ms

Vs
θs, (2.12)

θw := θg + θs =
Va
ma

ρg +
Vs
ms

ρs, (2.13)

which follows from the density scaling relations (2.4). The reason for this
delicacy is that both ρw and θw represent the density or volume fraction
of a combined quantity, which contains both reactive and non-reactive
chemical species. The possibility for writing simple conversion equations
involving only one scaling factor like (2.4) requires that all chemically
reacting species have their own mass balance equation.

2.2. Both in-phase force balances are friction-dominated

1. Navier-Stokes fluid force balances: In order to find the transport
velocities u,w, we have to construct expressions for the momentum bal-
ances of the corresponding phases. We have argued in paragraph 1.6.2
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that the dynamical behavior of the cellular cytoplasm is essentially that
of a fluid. Since there are two fluid phases in RIF flows, we have two
separate momentum balances of Navier-Stokes type,

ρf

(
∂t + u · ∇∇∇

)
u−∇∇∇ ·

(
Sf + ηf∇̃∇∇u

)
= f ext

f , (2.14)

ρw

(
∂t + w · ∇∇∇

)
w −∇∇∇ ·

(
Sw + ηw∇̃∇∇w

)
= f ext

w . (2.15)

with the combined G-actin/solvent mass density of the aqueous cytosol
ρw := ρg + ρs. The first term in both equations represents the inertia
due to the fluid mass. The second term on the left-hand side represents
stresses within the respective phase of the compound fluid. Specifically,
we consider the viscous stresses ηf∇̃∇∇u, ηw∇̃∇∇w in filament and aqueous
phase, respectively. The involved symmetrized velocity gradient has ten-
sorial structure and reads ∇̃∇∇v := (∂ivk + ∂kvi) for v = u,w in explicit
components. Any other in-phase stress is represented by the two tensors
Sf and Sw, which will be specified later. Forces not arising in the corre-
sponding fluid phase are summarized by the external forces f ext

f , f ext
w on

the right hand sides.

2. Dimensional considerations: In order to simplify these momentum
balances, we estimate typical values of several involved key quantities.
These values are presented in table 2.1 and further discussed in the ap-
pendix A.1. Using these typical values, we can render the momentum
balances (2.14, 2.15) dimensionless. This is achieved by dividing both
sides by ρ0

f |u0|2/L0 or ρ0
w|w0|2/L0, respectively, where ρ0

f , ρ
0
w are the char-

acteristic mass densities, and L0 is the typical length scale of the flow.
With the characteristic advection velocities u0 := |u0|, w0 := |w0|, the
scaled derivatives ∂ut := L0∂t/u0, ∂

w
t := L0∂t/w0 in time and ∇∇∇L0 :=

L0∇∇∇,∇̃∇∇L0 := L0∇̃∇∇ in space we obtain

ρf

ρ0
f

(
∂u0t +

u

u0

∇∇∇L0

) u

u0

−∇∇∇L0 ·
( Sf

ρ0
f u

2
0

+
ηf

L0ρ0
f u0

∇̃∇∇L0

u

u0

)
=
L0f

ext
f

ρ0
f u

2
0

, (2.16)

ρw

ρ0
w

(
∂w0
t +

w

w0

∇∇∇L0

)w

w0

−∇∇∇L0 ·
( Sw

ρ0
ww

2
0

+
ηw

L0ρ0
ww0

∇̃∇∇L0

w

w0

)
=
L0f

ext
w

ρ0
ww

2
0

.

(2.17)

The dimensionless viscosities of the F-actin ηf/
(
L0ρ

0
f u0

)
and the cytosol

phase ηw/
(
L0ρ

0
ww0

)
in the last summands on the left-hand side represent

the inverse Reynolds numbers of the corresponding flow. If the Reynolds
number is very low, the viscosity terms ∝ η will dominate over the mass
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quantity symbol typical value comment

F-actin density ρ0
f ∼ 1.5 g/cm3 slightly higher

than water
F-actin velocity |u0| . 0.25µm/s in fish keratocytes

[78,192,229,233]
F-actin viscosity η0

f ∼ 500 Pa · s in neutrophils [101,104]

cell size L0 ∼ µm up to 50µm

cytosol density ρ0
w ≈ 1.1 g/cm3 similar to water

cytosol velocity |w0| . 0.7µm/s in fish keratinocytes
[123]

cytosol viscosity η0
w ∼ 10−3 Pa · s [202, table I]

Table 2.1.: The characteristic dimensions of cytoplasm flow can be esti-
mated from various measurements. All these estimates are
presented in appendix A.1, together with a short critique and
further explanations. Note that the mass densities ρ0

f , ρ
0
w can

also be measured in units of pg/µm3 ≡ g/cm3.

inertia terms ∝ ρ on the left-hand side. In this way, inertia could be
neglected, and the preceding equations would be much simpler. Indeed,
with the numbers from table 2.1 and as discussed in appendix A.1, we
obtain the Reynolds numbers

F-actin network phase: Ref :=
L0ρ

0
f u0

ηf

∼ 10−12, (2.18)

aqueous solvent phase: Rew :=
L0ρ

0
ww0

ηw

∼ 10−6. (2.19)

In order to ensure that the first terms in the equations (2.16, 2.17) can
really be neglected safely, we have to take into account possible devia-
tions of the dimensionless densities ρf/ρ

0
f , ρw/ρ

0
w from unity. The overall

concentration of actin monomers is usually rather low, e.g. some 500µM
at the leading edge of certain highly motile mouse melanoma cells [129].
Therefore it is clear that the dimensionless mass density of the cytosol
ρw/ρ

0
w is very close to 1, because the monomers would comprise only

a very small part of the cytosolic solvent.2 However, in the cytoskele-
ton phase we have to expect more variation in the concentration ρf/ρ

0
f ,

2Compare the physiological actin concentration of 500µM ≡ 0.0005 mol/l with
the concentration of densely packed “actin monomer” balls with diameter of 2.7 nm,
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because actin filaments preferentially assemble at the leading edge. Nev-
ertheless, considering the value Ref, there is plenty of room for F-actin
density variations, even if the inertia term in (2.16) is neglected. Indeed,
if the estimated ηf were off by two orders of magnitude, cf. discussions in
the appendix A.1, neglecting inertia in the cytoskeleton phase would still
be valid at least for ρf/ρ

0
f < 108, where we have allowed for an additional

safety margin of two orders of magnitude.

3. Neglecting inertia terms: In conclusion, the force balances (2.14,
2.15) can be treated in the friction-dominated regime, and therefore it is
sufficient to consider the corresponding Stokes equations,

−∇∇∇ ·
(
Sf + ηf∇̃∇∇u

)
= f ext

f , (2.20)

−∇∇∇ ·
(
Sw + ηw∇̃∇∇w

)
= f ext

w . (2.21)

In the following section, we take a closer look at the involved model
stresses and forces.

2.3. Force balances include isotropic active stresses and
Darcy permeation

In order to close the RIF system of equations for cytoplasm flow, we have
to make several model assumptions regarding the effective stresses in the
force balances. These assumptions are made in the sense of phenomeno-
logical constitutive laws, so that most important features of cytoplasm
motion can be captured. Therefore, the chosen relations have to prove
their usefulness a-posteriori, when comparing RIF theory with experi-
ments.

1. External forces acting on the phases: Apart from possibly other
contributions, e.g. due to substratum friction, the external forces on the
right-hand side of equations (2.20, 2.21) contain a permeation term which
represents the friction forces between filamentous actin network and aque-
ous solvent. According to the phenomenological Darcy law [53,161], such
a permeative friction is proportional to the velocity difference. Moreover,
it is generally assumed in RIF models, that this inter-phase friction is

which is approximately 0.12 M. Conversely, the mass density of “pure” F-actin of 1.5
g/cm3 quoted in the table is equivalent to a concentration of 0.03 M, since a single
actin monomer has the approximate mass of 42000 atomic mass units.
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also proportional to the product of the two volume fractions θfθw, which
is taken as a measure for the effective drag between the two phases. Not-
ing that the inter-phase friction opposes the flow velocity of the respective
phase, we write

f ext
f = θfθwφph

(
w − u

)
+ fu, f ext

w = θfθwφph

(
u−w

)
, (2.22)

with the friction coefficient φph. The additional summand fu in the first
equation represents possible other interactions of the cytoskeleton with
the cell exterior, which shall play an important role in the following chap-
ter. A similar contribution for the solvent has been dropped. To this
end, one could think – for example – of osmotic effects due to ions in
and around the cell. However, such contributions can alternatively be
absorbed in the boundary conditions. We note that an extension of the
present model including external cytosol forces is straight forward, and
has already been proposed in [5, cf. Fa].

2. Internal stresses in the phases: Now we turn to the in-phase stress
tensors Sf and Sw. Comparing the dimensionless viscosities or inverse
Reynolds numbers of the two phases, c.f. equations (2.18, 2.19), we find
that the F-actin viscosity exceeds the cytosol viscosity by approximately
six orders of magnitude. In this way, F-actin poses a rather rigid ob-
stacle for the cytosol. We therefore neglect the viscous term ηw∇̃∇∇w in
equation (2.21), because the effective inter-phase friction appears to be
much higher. Since the aqueous phase is essentially passive, we do not
consider any active contributions to its stresses. Therefore, we write for
the corresponding cytosol stress

∇∇∇ · Sw = −θw∇∇∇p, (2.23)

where we assume that forces arising from gradients in the hydrostatic
pressure p split across the two phases according to their volume fraction.

Correspondingly, the pressure gradient appears with θf in the network
phase. Next, we clearly have to retain the viscosity term in (2.20), because
ηf is rather high. Indeed, the estimated F-actin viscosity as characterized
by the dimensional number ηf is comparable to that of molten glass [59].
Moreover, we assume the model stress Sf for the network to be isotropic,
Sf := SI, where I denotes the identity matrix I := diag

(
1, . . . , 1

)
, with the

model function S to be specified later. A thermodynamically amenable
construction of anisotropic stresses has been undertaken in the so-called
Active Polar Gel (APG) theory [118], which is comparable to the one
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presented here. In order to derive such anisotropic stresses, one intro-
duces the mean orientation of the local F-actin network as new hydro-
dynamic variable called polarity [133]. However, this entails a plethora
of cross-couplings, for example between the actin polymerization kinetics
J ′, cf. equation (2.9), and the F-actin velocity u [42, 117]. For simplicity
we therefore neglect these anisotropic stresses. In this way, we have

∇∇∇ · Sf =∇∇∇
[
S(θf)

]
− θf∇∇∇p. (2.24)

In the past, various model functions have been considered for S, which
all can be summarized by a difference of two functionally distinct terms,

S(θf) = ψ(θf)− σ(θf), (2.25)

where ψ represents contractions in the F-actin network, and σ its osmotic
swelling pressure. Even though being termed osmotic, this swelling pres-
sure resides exclusively within the cell’s cytoplasm and does not involve
the cell membrane in any way. It arises because local regions with high
F-actin volume fractions attract surrounding solvent cytosol in the same
manner as salt attracts water.

Another possible interpretation of the two stress contributions is that
ψ includes any active effects arising in the cell due to the consumption
of energy in dedicated molecular machines. In contrast, σ encompasses
purely passive effects which arise from the presence of concentration gra-
dients in thermodynamic systems. A common assumption in RIF-type
models is, that the network contraction is proportional to the network
volume fraction θf. Moreover, contraction may be enhanced or inhibited
by specific regulation factors, for example myosin. Again, swelling is gen-
erally considered to represent purely passive stress contributions. It has
often been omitted from RIF models, or modeled by non-linear expres-
sions involving some logarithm of θf, which arises from a suitably chosen
thermodynamic potential.

The actual relations that have been published as models for S are
summarized in table 2.2. Together with the external and internal model
stresses (2.22, 2.23, 2.25), the resulting Stokes equations (2.20, 2.21) for
the momentum balance in the two phases are

F-actin: −∇∇∇ ·
(
ηf∇̃∇∇u

)
−∇∇∇S(θf) + θf∇∇∇p =θfθwφph

(
w − u

)
+ fu, (2.26)

cytosol: θw∇∇∇p =θfθwφph

(
u−w

)
. (2.27)

By adding the latter equation to the former, we can eliminate the explicit
dependence on the solvent variables θw,w from the F-actin momentum
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# contraction ψ swelling σ viscosity ηf references

1. ψ0θf 0 η0θf [101,136]
2. −ψ0θfm 0 η0θf [99]

3. ψ0θf σ0

∣∣θf + ln(1− θf)
∣∣ η0θf [57, 61]

4. ψ0θ
2
f σ0

∣∣ln(1− θf/θσ)
∣∣ η0θf [218]

5. ψ0θfm σ0

∣∣ln(1− θf)
∣∣ η0θf [6]

6. ψ0θ
2
f /(1 + θf/θψ)2 σ0

∣∣ln(1− θf)
∣∣ η0θf [135]

7. ψ0θ
2
f exp

(
−θf/θψ

)
σ0

∣∣ln(1− θf)
∣∣ η0θf [8]

8.
ψ0θf(m−m0) and

ψ0θf ln(m/m0)
0 η0θf exp(θf/θη) [59]

9. ψ0θf and 0 0 η0θf exp(θf/θη) [100]
10. ψ0θ

2
f exp

(
−θf/θψ

)
0 η0 [200]

Table 2.2.: In earlier applications of RIF-type models, various phe-
nomenological stress functions have been explored. They are
presented in the table without any particular order. Here
θf ≥ 0 indicates the F-actin volume fraction, and m ≥ 0 the
dimensionless density of of a messenger modulating network
contraction. All other quantities are positive constants in spe-
cific models. Note that by equations (2.20, 2.25), the contrac-
tion ψ has the same sign as the viscosity term ηf, whereas the
swelling σ has the opposite sign. Specifically, the “contrac-
tion” ψ in 2. actually represents a polymerization pressure at
the leading edge of crawling cells. The non-linear viscosity
in 8. is a necessary ingredient so that separated endo- and
ectoplasm zones emerges in a model of the fountain flow in
Amoeba proteus.
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balance, because the φph-terms cancel and the volume fractions add up,
θf + θw = 1, see equation (2.11). Moreover, we can solve (2.27) for the
velocity w of the aqueous solvent, and insert it into the divergence relation
for the total volume flux (2.10), which yields

∇∇∇ ·
(1− θf

φphθf

∇∇∇p
)

=∇∇∇ · u, (2.28)

where again (2.11) was employed. This represents the compressibility of
the F-actin flow as embedded in the solvent. Naturally, compressibility in
the network phase does not affect the incompressibility of the bulk cyto-
plasm (2.10), because the aqueous solvent flow is present to compensate.

3. Reactive interpenetrating flow field equations: Putting all the
pieces together again, the RIF field equations are given by (2.9), (2.26+2.27),
and (2.28) for

F-actin volume fraction θ : ∂tθ +∇∇∇ ·
(
θu
)

= J, (2.29)

F-actin transport velocityu : −∇∇∇ ·
(
ηf∇̃∇∇u

)
−∇∇∇S +∇∇∇p = fu, (2.30)

Hydrostatic pressure p : ∇∇∇ ·
(1− θf

φphθf

∇∇∇p
)

=∇∇∇ · u, (2.31)

respectively. Here, the index f at F-actin volume fraction θ was dropped
for convenience, and the chemical reaction term on the right-hand side
of (2.29) has been condensed, J := VaJ

′/ma, cf. (2.9). For solving the
the preceding system of equations for θ,u, p, the fields for the aqueous
solvent phase do not need to be computed explicitly. Instead, for given
θ,u, p they directly follow from the relations (2.11) and (2.27), namely

cytosol volume fraction θw : θw = 1− θ, (2.32)

cytosol transport velocityw : w = u− 1

φphθ
∇∇∇p. (2.33)

In this way, the quantitative RIF description of the dynamics of the cy-
toplasm is closed. Note that the pressure p effectively serves as Lagrange
multiplier to enforce the incompressibility constraint (2.10), stating that
the bulk flux velocity θu + (1 − θ)w is divergence free. This is an im-
portant property of most generic liquids like e.g. water, and one of the
checkmarks to distinguish fluids from gases, because in general the latter
are highly compressible.
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2.4. The Active Polar Gel is an alternative cytoplasm
theory

1. Active Polar Gel theory: The initial starting point for the RIF the-
ory was, that the cytoplasm should be described as a multi-component
fluid. During the last couple of years, an alternative theory was devel-
oped based on the same underlying idea. This theory is usually called
“Active Polar Gel” (APG) [117,118,133] and based on linear irreversible
thermo-hydrodynamics [54].

In APGs, there is in principle only one independent velocity in the
fluid, namely the center-of-mass velocity. This velocity derives from one
single force balance, however it appears in the mass balances of all mod-
eled molecular species. For the cytoplasm, one typically considers (i)
polymer/F-actin, (ii) monomer/G-actin and (iii) aqueous solvent, as in
RIF described above. The relative mixing between these three phases
is accomplished by augmenting the center-of-mass advection with an ad-
ditional so-called diffusion flux in each phase. Importantly, these fluxes
incorporate all kinds of possible transportation, including diffusion due to
both thermal and concentration gradients, relative advection of different
molecular species, and several other mechanisms.

Starting from the Helmholtz free energy3, one derives source terms of
the entropy density. These source terms have a characteristic structure,
each being a product of a so-called thermodynamic flux with a so-called
conjugate force. For the constitutive equations, one makes a general
ansatz by writing fluxes as linear functions of forces and their gradients.
Possible coupling coefficients have to obey the Curie principle [54, chap-
ters IV, VI] and Onsager reciprocal relations [54,165,166], which all follow
from fundamental symmetry principles, such as the expected behavior un-
der time- and/or space inversion. As a result, the emerging entropy source
is a non-negative definite expression in the forces and their gradients, so
that Clausius inequality4 holds.

A central prerequisite to express the thermodynamic fluxes as linear
ansatz of the forces is the presence of anisotropy in the APG. This is
implemented by introducing a new, vector-valued hydrodynamic vari-
able called polarity. For example, a thin slab of an Active Polar Gel
spontaneously starts to flow in the direction of its polarity [42]. Active

3The (Helmholtz) free energy is an important quantity in classical thermodynam-
ics, see [43] for an introduction.

4In a closed thermodynamic system, the entropy S cannot decrease, ∆S ≥ 0.
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contractions in APGs are considered to be eventually driven by chemi-
cal fuels like ATP. The dominant contributions to these contractions are,
however, mediated by aforementioned polarity vector, because it provides
for an inter-conversion instance from scalar- to vector-valued variables in
the constructed entropy source. Thus, Active Polar Gels can only be
“active” whence they are anisotropic. Without polarity, there cannot be
active contractions in the otherwise passive gel.

Recently, APG theory has been extended by Callan-Jones and Jülicher
[42] to exhibit a permeation term similar to the Darcy law involved in
RIF, cf. equation (2.22). In section 2.2 of this paper, they present the
RIF-like limit of APG theory. Under several fairly strong assumptions
they rewrite the linear ansatz for the polymer/solvent diffusion current
to yield force balances much akin to the ones of RIF. Naturally, as RIF
models are isotropic, the APG in the RIF limit is actually passive, i.e. it
does not involve the polarity vector and therefore does not exhibit active
contractions of the polymer phase. Surprisingly, and in contrast to RIF,
the viscosity and pressure terms appear in the solvent force balance [42,
equation (37)].

2. Differences between APG and RIF: Even though both theories
start from the same basic idea, there seem to be several essential differ-
ences between Active Polar Gels and Reactive Interpenetrating Flow:

1. RIF models are isotropic. Nevertheless, the general assumption is
that there are active contractile stresses in the polymer of F-actin
phase.

2. In RIF, each phase has a transport velocity on its own, together
with a corresponding force balance.

3. Diffusion currents in RIF are not included in the corresponding in-
phase transport velocities. They do not “come out” of the theory
by a kind of linear ansatz. Instead, they are explicitly modeled,
cf. the Dg-terms in equations (2.6, 2.7).

Moreover, one commonly assumes non-linear chemical reactions in RIF-
type models, for example for the actin polymerization kinetics J ′, cf. equa-
tion (2.1). Since the underlying linear irreversible thermo-hydrodynamics
[54] cultivates the linear ansatz as virtue, inclusion of similar effects in
APGs is somewhat against the spirit of the theory. Indeed, as pointed
out in [54, chapter X, §2], chemical reactions commonly call for non-linear
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modeling expressions, which cannot be faithfully represented by linear ir-
reversible thermo-hydrodynamics. In order to circumvent this limitation
in APGs, one could – of course – choose suitable non-linear coupling
coefficients depending e.g. on the actin monomer concentration in the
cytosol. In doing so, one then has to ensure that the resulting entropy
source obeys to Clausius inequality.

2.5. Specific assumptions inherit intrinsic model
limitations

1. Main assumptions of RIF models: The central assumptions of the
RIF cytoplasm model presented in this chapter can be summarized as
follows:

(i) The total cytoplasm mass is conserved and consists of two phases,
 equation (2.32).

(ii) There is material transport and turnover in both phases,
 equations (2.30, 2.33).

(iii) The total cytoplasm flux is incompressible,  equation (2.31).

(iv) The cytoskeleton motion effectively comprises a friction-dominated
Stokes flow,  equation (2.30).

(v) There are active and isotropic contractile stresses in the cytoskele-
ton phase,  equation (2.25).

(vi) The friction between cytoskeleton and cytosol is Darcy-like,
 equation (2.22).

Importantly, the time scale envisioned for such a cytoplasm model is given
by typical dynamical features of cellular migration. According to the
arguments in paragraph 1.7.1, this time scale would range from minutes to
hours. On the seconds time-scale, the elastic response of the cytoskeleton
would have to be considered. At the other end of the time-scale window,
we would have to account for cell reorganization as induced by genetic
regulation or the progress of the cell cycle.
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2. Coarse-graining of particles into continuum densities: Common
to all continuum models is the assumption of a intermediate time- and
length-scale, in which averages of particle and momentum densities can
be defined in a meaningful way. In order for a model to be useful, the
details of common experiments should be clearly resolved. For example,
the typical concentration of F-actin on the leading edge of crawling cells is
∼ 500µM5 [129]. Neglecting advanced techniques involving fluorescence
or near-field imaging, the typical resolution limit of an optical microscope
is ∼ 200 nm. Also, the lamella at the leading edge of the cell is roughly
100 nm high. We have therefore an averaging volume of approximately
200·200·100 nm3 at the crucial intermediate-scale averaging of our contin-
uum description. Correspondingly, this volume contains around 1200 G-
actin monomers. Naturally, if the concentration of the involved molecules
is much lower, e.g. in the nM region for typical messenger species, this
limitation becomes more severe. However, as a positive side-effect, we
can safely choose a simulation grid with fairly wide compartment spac-
ing. Not only does this ensure the validity of the continuum description,
it also speeds up computations significantly.

3. Number of distinct mass equations: In the derivation of the RIF
theory, we had to rescale the initial continuity equations for the mass
densities. This rescaling has to be performed using constant scalars, oth-
erwise additional terms would arise from the derivatives in the equations.
For example, starting from the mass balance equations for (i) F-actin den-
sity (ii) G-actin/solvent density, the rescaling of (ii) cannot be done with-
out the additional assumption that the local amount of G-actin would be
constant in the combined G-actin/solvent density. Luckily, such problems
can be circumvented by starting from a sufficient number of continuity
equations. Specifically, both educt and product of a chemical reaction in
the cytoplasm need to be included as separate mass balances. One can
reduce the number of equations after scaling, by simple addition of the
relations to be lumped together.

4. Is the pressure p negligible? The authors of [186, page 1856] argue
that one can neglect the pressure term p in equation (2.30). Indeed, for
keratocytes they estimate the corresponding stress to be approximately
10% of the viscoelastic or contractile contributions of the cytoskeleton

5The unit µM indicates the number of micro-moles per liter.
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phase. Therefore, the additional equation of the Darcy law is not neces-
sary in their approach. However, here we model both cytoskeleton and
cytoplasm phase, so that the pressure is an essential ingredient to imple-
ment the incompressibility of the composite cytoplasm. The latter can be
pictured as internally condensing sponge, where actin turnover changes
the local two-phase material composition. In this way, each phase is sep-
arately compressible. At the same time, when exerting external pressure
on a wet sponge, it will respond by releasing some of its contained fluid,
so that the total volume of sponge and water remains constant. In the
RIF description, the cytoplasm would respond in the same way, and the
pressure is required to enforce this dynamical behavior. Note however
that the wet sponge analogy is limited, because the network phase in
actual cytoplasm is highly diluted as compared to the pores of a sponge.

5. RIF force balances and their dissipation functional: Both Stokes
equation (2.30), and the divergence relation (2.31) can be derived by
minimizing a functional that can be interpreted as the power dissipated
in the RIF cytoplasm at each time instant. Moreover, the construction
of this functional involves the mathematically weak formulation of (2.30,
2.31) and opens the possibility to construct numerical solutions with the
help of finite elements. The derivation of the RIF equations from such a
power dissipation functional was proposed in [5]. Interestingly, a similar
formulation of a so-called two-fluid model of polymer blends and melts
has been given by Doi and Onuki in 1992 [70]. In order to formulate and
minimize dissipation functional, they employ the method of Onsager [165,
166] which is at the heart of linear irreversible thermo-hydrodynamics
[54]. Recently, these models have been applied to the growth and invasion
of skin tumors [22,46]. All these efforts show that two-phase models are a
versatile tool and promise a wide applicability in the biological sciences.
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3. Coupling of cytoplasm and adhesion
dynamics determines single cell polarization
and locomotion1

Summary: In this chapter we describe whole-cell motion by means of
a one-dimensional model system. Thereby, we consider both the inter-
nal cytoplasm dynamics as well as the exterior adhesion site formation.
The cytoplasm dynamics in the cell is represented by the Reactive In-
terpenetrating Flow equations from chapter 2. Cytoskeletal contraction
is active and mediated by an additional density variable resembling the
role of myosin as tension-inducing agent. Moreover, explicit considera-
tion of an adhesion mediator akin to integrin provides for connections to
the substratum so that the model cell can exert traction. When all these
ingredients are combined in a coupled system of equations, the model cell
exhibits two distinct steady states:

(i) In the symmetric resting state, traction from front and back bal-
ances so that the cell adheres to the substratum without moving.

(ii) In the polarized migrating state, an asymmetry in traction drives
persistent cell locomotion.

These two steady states are rather stable and autonomous in the sense
that they do not need any out-of-model regulation e.g. like prescribing
front and back of the cell. Here we induce the transition between rest-
ing and migrating state by a super-threshold external stimulus. Various
emerging characteristics of the simulation model compare favorably with
experimental data obtained from highly motile cells.

A simplified version of the model above can be cast in a quasi two-
dimensional form. To this end, we write actin, integrin, substratum lig-
ands and the local lamella width as freely evolving fields on the unit circle,
and assume a basic molecular transport mechanism relating to the cellu-
lar migration velocity. The resulting model cell is capable of exhibiting
shape fluctuations and migration trajectories in the plane.

1Data presented in sections 3.1–3.7 of this chapter have been published in [6],
which was jointly written by Wolfgang Alt, M.B., and Christoph Möhl.
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Figure 3.1.: Certain cells develop characteristic fan-like shape during mi-
gration. Specifically, the anterior-posterior axis of the cell
is given by direction of its motion. Here we define the
model variables on the time dependent one-dimensional in-
terval Ω(t) = [y1(t), y2(t)] along the anterior-posterior axis
of the cell. Marked by the fluorescence dye are the focal
adhesion contacts which connect the cell to the underlying
substratum. The presented microscopic picture of a human
epidermal keratinocyte is courtesy of Claudia Schäfer, Merkel
group, Forschungszentrum Jülich [189, movie 05].

3.1. Myosin leads to cytoskeletal contraction

1. Simulation domain: Human epidermal keratinocytes polarize into
a fan-like shape with a rather straight posterior retracting end and the
roughly semi-elliptical, protruding lamella at the anterior front, cf. fig-
ure 3.1. Therefore it is natural to approximate the domain Ω(t) of the
cytoplasmic equations of motion by the interval

Ω(t) =
[
y1(t), y2(t)

]
, (3.1)

aligned on the posterior-anterior axis of a crawling cell. Thus, we model
a section through the cell, from posterior to anterior end, and approxi-
mately through the center of the cell nucleus. In figure 3.1, this section
is indicated by the green bar and bounded by the intersections of the
horizontal axis with the cell outline. The ends of the cell are denoted by
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the spatial coordinates y1(t) and y2(t), whereby it is not specified a-priori
which of these ends will be the anterior or posterior one. Importantly, all
velocities in following model equations are measured in the lab frame at
rest.

2. Two molecular states of myosin motors: The filaments in the cy-
toskeleton phase may be connected to various specialized kinds of linker
molecules, each of which is responsible for specific functions. In particu-
lar, we are interested in molecules involved in physical mechanisms such
as force generation and transduction. As we have seen in paragraphs 1.2.1
and 1.6.1, myosin proteins attach to the actin filaments of the cytoskele-
tal phase and create contractile forces by means of sliding the adjacent
filaments in opposite directions. Here we consider two main states of this
process:

1. bound myosins mb are connected with the filamentous phase and
give rise to contractions therein,

2. free myosins mf are immersed in the solvent phase and diffuse freely.

Importantly, mb and mf describe the respective molecular concentrations
with a dimension of dimension number/volume.

3. Scalar reaction, diffusion and transport equations: In one spatial
dimension we can write all quantities as scalars, including the previously
introduced F-actin transport velocity u ≡ u. Denoting the spatial coor-
dinate by y ∈ Ω ≡ [y1, y2], the mass balances for bound and free myosin
are

∂tmb + ∂y
(
mbu

)
= αmθmf − δm(θ)mb, (3.2)

∂tmf − ∂y
(
Dm∂ymf

)
= −αmθmf + δm(θ)mb. (3.3)

The second terms on the left-hand sides represent material transport.
Since mb is bound to the F-actin network, it is convected with the cy-
toskeleton transport velocity u. In contrast, the free myosins mf merely
diffuse with constant Dm, because there is no specific anchoring for mf

in the cytosol. The kinetic terms with αm, δm quantify the local turnover
in the reversible chemical reaction mf ↔ mb. The association rate αm on
the right-hand sides describes the bond formation between free myosins
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mf and cytoskeletal filaments. The bond dissociation rate δm = δm(θ) is
exponential in the volume fraction of the cytoskeleton phase θ,

δm(θ) = δm0 exp
( θ

θm

)
, (3.4)

which resembles steric inhibition or competition for binding sites.2 The
two constants δm0 and θm are model parameters, see appendix table A.2.
The boundary conditions for the two myosin mass balances will be dis-
cussed in section 3.4.

From equations (3.2, 3.3) we can obtain the chemical equilibrium con-
centration for mb. Setting the left-hand sides to zero, i.e. vanishing trans-
port ∂y . . . and concentration change ∂t . . . , we solve the remaining ex-
pressions for

mb =
αmθ

δm(θ)
mf , (3.5)

where mf now represents the constant base-level concentration of free
myosin.

4. Myosin and active stresses: When in contact with the cytoskeleton,
bound myosin mb gives an active contribution to the model stress S from
equation (2.25). The specific form of this active stress contribution will
be introduced in section 3.3.

3.2. Integrin connects cytoskeleton and substratum

1. Four integrin binding states: In the introduction, paragraphs 1.2.1
and 1.6.3, we have already seen how integrin affects the cellular migration
machinery. Recall that integrin is a trans-membrane receptor, which has
binding sites for both intracellular and extracellular ligands. In this way,
integrin provides for the links of the cell to the substratum or the extra-
cellular matrix fabric. Notably, the fairly complex process of assembling
and disassembling so-called focal adhesion sites involves various regula-
tion hooks [87]. Based on the already present ingredients of our model,
we here employ a four-state model for the integrin binding kinetics, which
was originally proposed by Palacek and coworkers [170] and subsequently
applied in a model of cell fragment motion [135]. In these four-state

2In [6, eq. 8], the dissociation rate δm was ∝ (1 + θ2/θ2
m). However, the model

modification (3.4) with exponential was actually used in [6, section 4.2].
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models, one separately takes into account the state of both exterior and
interior binding sites:

(i) free integrins bf diffuse in the cell membrane,

(ii) actin bound integrins ba are connected with the cell’s actin cy-
toskeleton on their interior binding site,

(iii) substratum bound integrins bs are attached to the extracellular ma-
trix on their exterior binding site,

(iv) bound integrins bb maintain connections on both binding sites, pro-
viding the link between substratum and cytoskeleton.

A cartoon summary of the four binding states is presented in figure 3.2.

2. Integrin reaction, diffusion and transport equations: According to
figure 3.2, we write four mass balance equations for the respective number
of integrins per basal cell area,

∂tbf − ∂y
(
Df∂ybf

)
= −βfsabf + δsfbs, (3.6)

∂tba + ∂y
(
bau
)

= αfabf − βfabba + δbabb, (3.7)

∂tbs = αfsbf − βfsbbs + δbsbb, (3.8)

∂tbb = + αsbbs + αabba − βsabbb. (3.9)

For the sake of better readability, we introduced the combined reaction
constants

βfsa ≡ αfa + αfs, βfab ≡ δaf + αab,

βfsb ≡ αsb + δsf , βsab ≡ δba + δbs.
(3.10)

Several reaction constants depend on the amount of present actin θ and
the local force fu,

αfa = α0
fa · θ, αsb = α0

sb · θ, (3.11)

δba = δ0
ba · exp

(
ρba|fu|

)
, δbs = δ0

bs · exp
(
ρbs|fu|

)
. (3.12)

The first two identities mean that integrins are recruited to the cytoskele-
ton in an auto-catalyzed manner proportional to the local amount of F-
actin. The second two equations resemble the dependence of chemical
bond rupture on the applied force fu in focal adhesions bb. For further
details on this force-induced rupture mechanism see section 1.6.6. All the
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Figure 3.2.: The adhesion of cells to the extracellular matrix or substrata
is mediated by so-called integrins. This whole class of trans-
membrane molecules connects the intracellular cytoskeleton
to the extracellular matrix, for example to fibronectin. If
we do not consider any further mediator proteins, this leaves
four distinct binding states for a single integrin molecule:
(i) free integrins (f) diffuse on the cell membrane, (ii) actin
bound integrins (a) are linked with the cytoskeleton within
the cell, (iii) substratum bound integrins (s) are attached to
the adhesion sites on the extracellular matrix, and (iv) bound
integrins (b) have connections to both substratum and the cy-
toskeleton. In the text, we denote the corresponding integrin
concentrations by bf , ba, bs, bb, respectively. The association
and dissociation rates α., δ. characterize the formation and
subsequent bond breaking kinetics of the integrins. Initially,
such an adhesion model has been proposed in [170]. The
cartoons presented here are courtesy of Esa Kuusela [135].
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remaining coefficients and reaction constants are model parameters, see
appendix table A.2. Finally, the specific form of fu will be introduced in
equations (3.14, 3.38).

In addition to the chemical kinetics, we consider material transport in
equations (3.6–3.9). Being immersed in the cell membrane, free integrins
diffuse with the diffusion constant Df , see equation (3.6). Moreover, actin
bound integrins ba are advected with the F-actin cytoskeleton velocity
u, cf. equation (3.7). Finally, due to their rigid connections with the
substratum, both substratum and double bound integrins bs, bb are at
rest. Therefore, equations (3.8, 3.9) lack a transport term with ∂y. As
for myosin, the boundary conditions will be discussed in section 3.4.

3. Parameter estimates: Regarding the model parameters presented
in this section, only few rather rough estimates can be extracted from
experimental data. Integrin transport properties like velocities and dif-
fusion constants have been measured in Chinese hamster ovary cells by
means of image correlation microscopy [230, table 1]. The reported diffu-
sion constants are approximately 0.5 . . . 6 times the value from appendix
table A.2. For all the chemical parameters α, δ, we refer to the original
model [170, table 1] and references therein.

3.3. Cytoplasm contractions and adhesion sites join
forces in whole-cell migration

In this section we combine the equations for reactive interpenetrating
flow, myosin reaction/transport and four-state integrin reaction/transport
into a coupled system jointly describing cytoplasm and adhesion dynam-
ics of a one-dimensional migrating model cell.

1. Reactive interpenetrating flow: In one spatial dimension, the gen-
eral equations (2.29, 2.31, 2.30) for the combined cytoskeleton and cytosol
flow read

∂tθ + ∂y
(
θu
)

= J, (3.13)

−∂y
(
η∂yu

)
− ∂y

(
S − p

)
= fu, (3.14)

∂y

(1− θ
φphθ

· ∂yp
)

= ∂yu, (3.15)

where all quantities have been replaced by their scalar representation,
i.e. u ≡ u, fu ≡ fu and ∇∇∇ = ∇̃∇∇ ≡ ∂y. As in chapter 2, θ denotes the
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F-actin volume fraction, u its transport velocity, and p the hydrostatic
pressure. The force fu on the right-hand side of (3.14) will be specified
later in equation (3.38).

2. Viscosity and actin polymerization: The viscosity η is assumed to
be linear in the F-actin volume fraction,

η = η0θ, (3.16)

because denser filament networks are more viscous due to increased en-
tanglement [69].

The actin polymerization J is believed to be mostly determined by
the amount of available barbed or plus ends θ+ in the filamentous net-
work phase [179]. Following [151], we write ∂tθ+ = βn(θ) − ωθ+ for the
corresponding kinetic evolution equation, where βn is denotes the F-actin
branching rate and ω the rate of branch number reduction due to capping
proteins. Assuming that the preceding chemical reaction quickly reaches
its equilibrium, this relation reduces to

θ+(θ) = βn(θ)/ω. (3.17)

This equilibrium assumption relies on the idea that the reaction kinetics
is fast as compared to the other processes occuring in the cell during
migration. The effective F-actin branching rate βn has two contributions,

βn = ε+ ν
θ

θβ + θ
. (3.18)

Here, ε summarizes the spontaneous actin nucleation rate, which is ex-
pected to be low, because most actin monomers associate with the poly-
merization inhibitor thymosin (S.A. Koestler, private communication).
The second term on the right hand side of (3.18) represents stimulated
filament branching of the actin network. Thereby, ν = ν0·[Arp2/3] is
proportional to the concentration of activated Arp2/3 complexes induc-
ing branches. Also, branching begins to saturate at the characteristic
volume fraction θβ. The net F-actin polymerization J includes these in-
gredients in a specific manner,

J =
(
αBθg − δB

)
θ+(θ)− δaθ + perturbations. (3.19)

Again, F-actin polymerization mostly occurs at the barbed ends θ+ of
the filaments, which comprises a mechanism of auto catalysis. Thus the
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polymerization term αBθgθ+ depends linearly on the amount of available
barbed ends θ+, but also on the present G-actin monomers θg. Actin dis-
assembly occurs in two distinct ways, namely (i) via the depolymerization
δB at plus or barbed ends θ+, and (ii) via other mechanisms like filament
severing, pointed-end depolymerization or other degradation, with the
lumped rate δa. Since we do not explicitly resolve the G-actin monomers
as a separate phase in the compound fluid, we have to prescribe their
volume fraction as constant θg < 1 − θ as part of the aqueous cytosolic
phase. This assumption is not problematic because the F-actin volume
fraction θ is expected to not exceed θ ∼ 0.1, even under the rather ex-
treme conditions at the leading edge of the cell. The last term in the
preceding equation contains contains the small stochastic perturbations
that were employed as a robustness check during the simulations. As
usual, the constant model parameters η0, ω, ε, ν0, [Arp2/3], θβ, αB, θg, δB
and δa are given in appendix table A.2.

3. Myosin induced contraction and cytoskeleton swelling: The bound
myosins mb are attached to the F-actin cytoskeleton θ, and induce a
certain contractile stress ψ in the filament phase. Together with the
swelling pressure σ we obtain the effective cytoplasm stress

S = ψ − σ = ψ0θmb − σ0

∣∣ln(1− θ)
∣∣, (3.20)

cf. also row 5 in table 2.2 As mentioned in paragraph 2.3.2, the second
term σ on the right hand side arises due to osmotic effects, because regions
with high F-actin volume fractions attract solvent cytosol in the same
manner as salt attracts water.

In order to better understand the first term ψ, we insert the equation
(3.5) corresponding to the situation when bound myosin mb is in chemical
equilibrium with respect to a certain fixed free myosin concentration mf .
With the help of this approximation we have

myosin equilibrium: ψ
(3.5)
= ψ0

αmmf

δm0

· θ2

exp(θ/θm)
, (3.21)

In this way, the active cytoskeleton stress S depends only on the F-actin
volume fraction θ, and we can plot the emerging S(θ), see figure 3.3.
However we emphasize that in the actual simulations the more complete
model expression from equation (3.20) has been employed, and the con-
centrations of both myosin species mb,mf have been retained as free
variables.
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Figure 3.3.: Stress model functions according to equation (3.20) with the
simplification (3.21). Both active contractile stress ψ and
osmotic swelling pressure σ depend on the F-actin volume
fraction θ, and jointly constitute the active cytoplasm stress
S = ψ− σ. This stress should be compared with the F-actin
assembly rate J(θ). In the low concentration regime, strong
polymerization overcomes the weak expanding pressure from
S. In contrast, in the high concentration regime, strong de-
polymerization and strong pressure join forces to spread and
dissolve all the F-actin. In the intermediate regime, the con-
tractile stress causes the filaments to aggregate. For the plot
of ψ, the free myosin concentration was mf = 10µM.
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3.4. Boundary conditions describe phenomena close to
the plasma membrane

1. Lab frame coordinates and velocities: In the cell migration model
presented here, all quantities are written in terms of the lab frame at-
tached to the resting substrate underneath the cell. As already men-
tioned, the moving domain Ω(t) is delimited by the set of time-dependent
boundary points Γ := ∂Ω = {y1(t), y2(t)}, see figure 3.1. The motion of
the free boundary Γ̇ can therefore be conveniently expressed in terms of
the boundary point velocities,

Γ̇
∣∣
y1

= ẏ1 · νΓ

∣∣
y1
, Γ̇

∣∣
y2

= ẏ2 · νΓ

∣∣
y2
, (3.22)

where we again stress that these boundary point velocities ẏ1, ẏ2 are mea-
sured in the lab frame.

As we have seen in paragraph 1.5.1, actin polymerization induces a
certain boundary stress at the outer edge of crawling cells. This stress
will appear in the boundary conditions, which are necessary to close the
mathematical RIF description (3.13–3.15) of the cytoplasm flow. Since
these boundary conditions are quite peculiar, we take the remainder of
this section to develop them in detail.

2. The tip expansion velocity V : In general, since the cell membrane is
impermeable to actin filaments, we have to impose a zero efflux condition
on the F-actin mass balance (3.13). This means that the F-actin network
θ cannot cross the free boundary Γ. However, in principle, the network
may as well fall back and leave the membrane by moving towards the cell
center. The resulting boundary condition for the F-actin mass balance
(3.13) is therefore an inequality,

y = y1, y2 : θV · νΓ ≥ 0, with V := ẏ1,2 − u. (3.23)

For convenience, we have condensed the boundary velocities ẏ1/2 ≡ ẏ1, ẏ2,
because the last equation of (3.23) holds for both respective boundary
positions y = y1, y2 in the lab frame. The quantity V indicates the amount
of membrane advancement as compared to the amount of F-actin network
advection u on both ends y = y1, y2 of the cell. It therefore represents
the intracellular expansion velocity between membrane an cytoskeleton
at the outer tip of the cell, so that we briefly shall refer to V as “tip
expansion velocity”. Clearly, the F-actin volume fraction θ ≥ 0, so that
the F-actin boundary flux inequality (3.23) is fulfilled in the following
scenarios for the tip dynamics:
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1a. V · νΓ > 0, θ|Γ > 0 : F-actin flux away from membrane

1b. V · νΓ > 0, θ|Γ = 0 : zero F-actin flux with non-zero tip expansion

2. V · νΓ = 0, 0 ≤ θ|Γ ≤ 1 : zero F-actin flux at the boundary.

The generic case is 1a. The non-zero tip expansion V means that the F-
actin velocity u tends to remove the network from the tip. Simultaneously,
however, the emerging gap towards the membrane is closed by enhanced
actin polymerization, so that V can here be interpreted as effective tip
polymerization speed. In the special case 1b, the solvent flow enlarges
the gap between cell boundary Γ and the F-actin network θ, which can
be observed in biological cells during blebbing [216]. In case 2, the F-
actin network always has contact to the membrane, which happens at
regions of active retraction or stalled tip advancement. In any case, both
protrusion and retraction naturally emerge from our model system.

3. Motion of the free boundary Γ̇: For the cell to translocate, the tip
has to extend and the rear has to retract. This kind of boundary motion
is determined from the total volume flux,

ẏ1/2 = θu+ (1− θ)w. (3.24)

However, the RIF dynamics from above have been written in terms of
θ, u, p exclusively, so that we want to eliminate the cytosol velocity w.
To this end, we again employ the original equation (2.33) for the cytosol
velocity w and insert it into equation (3.24),

ẏ1/2 = u− 1− θ
φphθ

∂yp. (3.25)

Replacing the left-hand side with ẏ1/2 from equation (3.23), we see that
tip expansion is related to the pressure gradient at the boundary,

y = y1, y2 : V = −1− θ
φphθ

∂yp. (3.26)

4. Boundary pressure balances: Since there is a separate force balance
in each phase, cf. equations (2.26, 2.27), there are two distinct boundary
pressure balances at y = y1, y2 [5, section 2.4],

F-actin:

−νΓ · η(θ)∂yu− ψ(θ,mb) + θp = κΓθτ + Ppoly

(
θ,mb, V

)
, (3.27)

cytosol: σ(θ) + (1− θ)p = (1− κΓθ)τ − Ppoly

(
θ,mb, V

)
. (3.28)
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The F-actin contractile stress ψ(θ,mb) and the swelling pressure σ(θ) have
been introduced in equation (3.20). Moreover, κΓ ∈ [0, 1] represents the
relative influence of the membrane tension τ on the cytoskeleton phase
at the tips y1, y2. As a side note, τ itself is an independent field variable
τ = τ(t, y) of the dimension of an effective pressure, which describes the
tension of those parts of the membrane that are situated below the cell.
Other effects which could arise from the membrane dynamics atop – but
not below – the cell are neglected. Finally, the lamella tip polymerization
pressure Ppoly has three contributions,

Ppoly

(
θ,mb, V

)
= Pclamp(θ) + Pratchet(θ)− ηΓ

(
θ,mb

)
V. (3.29)

Here we take into account boundary pressures that arise from the clamp-
motor Pclamp and Brownian ratchet Pratchet mechanism. They both arise
from the localized polymerization of F-actin at the cell boundary Γ, see
paragraph 1.5.1 for details. The resistance against polymerization orig-
inates from cross-linked filaments that are situated slightly behind the
membrane edge. This resistance limits the tip expansion velocity V and
is assumed to be purely viscous on the considered time- and length-scale,
see paragraphs 1.6.2 and 2.2.2. The related effective viscosity ηΓ depends
on both the present actin θ and the cross-linking motor myosin mb. In
order to keep the focus on the boundary conditions, we refer to appendix
A.2 for details on the model functions Pclamp, Pratchet, ηΓ.

5. Actin boundary conditions and free boundary motion: With the
ingredients from the preceding paragraphs, we can now write the actin
boundary conditions. First, we sum the boundary pressure balances
(3.27, 3.28),

y = y1, y2 : −νΓ · η(θ)∂yu− S(θ) + p = τ, (3.30)

where S = ψ − σ as before. Next, we eliminate the pressure p with the
help of the cytosol boundary balance (3.28),

νΓ · η(θ)∂yu+S(θ) =
1

1− θ
[
θ(1−κΓ)τ −σ(θ)−Ppoly

(
θ,mb, V

)]
, (3.31)

which can be employed as a boundary expression for u.3 Importantly,
however, since the tip expansion velocity reads V = u − ẏ1/2, equation

3A slightly simplified relation follows from writing the swelling σ in the F-actin
boundary pressure balance 3.27. Dropping κΓ and splitting τ according to volume
fraction θ, one obtains νΓ · η(θ)∂yu+ S(θ) + Ppoly

(
θ,mb, V

)
= 0.
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(3.31) constitutes a mixed Dirichlet-Neumann expression in u, cf. also the
polymerization pressure (3.29).

The actual choice of boundary conditions for the RIF system (3.13–
3.15) depends on the aforementioned scenarios for the tip dynamics:

1a. V · νΓ > 0, θ|Γ > 0 : The zero efflux condition for the F-actin mass
balance is fulfilled since V · νΓ > 0. Equation (3.31) constitutes a
mixed condition for u, while the cytosol boundary pressure balance
(3.28) represents a Dirichlet condition for p. The motion of the free
boundary ẏ1/2 is then determined from u and ∂yp according to (3.25),
which is an implicit relation because the boundary conditions for u
and p contain ẏ1/2 via V in the polymerization pressure term ∝ Ppoly.
Since membrane and F-actin network move in opposite directions,
the boundary influx for the F-actin mass transport equation (3.13)
has to vanish.

1b. V · νΓ > 0, θ|Γ = 0 : Here, the F-actin efflux vanishes because θ = 0.
This case can arise at boundary points with vanishing polymerization
pressure Ppoly. There, the volume fraction θ → 0 degenerates, so that
all summands of the F-actin boundary pressure balance (3.27) vanish
independently. The solvent boundary pressure balance (3.28) breaks
down to the Dirichlet condition p = τ for p. Finally, by (3.25, 3.26)
we have V = ẏ1/2, whereby ẏ1/2 follows from the L’Hospital limit of
the expression ∝ ∂yp for y → y1, y2 from the interior.

2. V · νΓ = 0, 0 ≤ θ|Γ ≤ 1 : The F-actin efflux vanishes again, since V =
0. The tip expansion relation (3.26) therefore yields a zero-Neumann
condition for p. Conversely, (3.30) constitutes a pure Neumann con-
dition for u, because it does not contain the polymerization pressure
Ppoly.

The quite subtle case 1b is desirable only for specific biological phenomena
like the aforementioned blebbing. The earlier formulation [135] of the
present model has taken into account such a possibility. For the pursued
modeling aim of explaining relatively fast cell migration this complication
is however not needed. In the remaining part of this chapter, we therefore
assume for simplicity

∀y ∈ Ω : θ > 0, (3.32)

so that the F-actin cytoskeleton always sticks to the membrane. More-
over, since the extension of steadily crawling cells like human epidermal

58



keratinocytes along the anterior-posterior axis does not change very much
during migration, we also assume

y2(t)− y1(t) = const. =: λ, (3.33)

where the model cell length λ is parameter, see appendix table A.2. In this
way, the boundary velocities ẏ1 = ẏ2 ≡ ẏ1/2 are identical and constitute
the migration velocity of the model cell.

Under the remaining tip scenarios 1a & 2 and together with the re-
spective boundary conditions from above, the hyperbolic-elliptic system
(3.13–3.15) for actin turnover and flow is closed and therefore accessible
to its numerical solution. The motion of the time-dependent domain Ω(t)
follows from equation (3.25). The only remaining undetermined quantity
is the effective membrane surface tension τ . As will turn out, it provides
for a Lagrange multiplier needed to implement the cellular force balance
constraint as introduced in the following section, cf. 3.5. Before coming to
that, however, we also have to close the transport, reaction and diffusion
systems for myosin and integrin.

6. Myosin boundary conditions: Since the myosin evolution equations
(3.2, 3.3) involve transport terms, they also require the specification of
suitable boundary conditions describing the mass transport at the domain
border Γ. For bound myosin mb, the situation is similar to that of F-
actin discussed above. However, since the role of mb does not involve
the peculiarities of polymerization at the cell boundary Γ, we can take a
simpler approach here and require zero flux without inequality,

y = y1, y2 : mb

(
u−ẏ1/2

)
·νΓ = 0 ⇔

{
mb = 0 for V · νΓ > 0,

mb free for V · νΓ = 0.
(3.34)

The corresponding zero flux identity Dm∂ymf = 0 for free myosin gives
rise to the Neumann condition,

y = y1, y2 : ∂ymf = 0. (3.35)

7. Integrin boundary conditions: The boundary conditions for the two
integrin mass balances (3.6, 3.7) are also zero flux. In full analogy to the
corresponding myosin relations, we therefore write

y = y1, y2 : ∂ybf = 0, (3.36)

ba
(
u− ẏ1/2

)
· νΓ = 0 ⇔

{
ba = 0 for V > 0,

ba free for V = 0.
(3.37)
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Having found suitable boundary conditions for the coupled system for
cytoplasm and adhesion dynamics, we come now to the mechanism gen-
erating the locomotion forces of the model cell.

3.5. Cell-substratum adhesive slip mediates locomotion
forces

1. Traction arising from frictional slip: As argued in paragraph 1.6.3,
the forces for cellular locomotion arise at the interface between the cell
and the substratum. At this interface, integrins connect the cell-interior
F-actin and the cell-exterior substrate or extracellular matrix. Impor-
tantly, these connections appear to be non-rigid on the time-scale of cel-
lular migration. Bond formation and breakup are in a dynamical chemi-
cal equilibrium, where both the forward and the backward reaction occur
simultaneously. In this sense and in the time average relevant to cellu-
lar migration, the instantaneous assembly of substratum adhesion bonds
allows only for transient force transduction. Accordingly, the F-actin ret-
rograde flow is only transiently connected to focal adhesion sites, and
therefore does not stop by mere integrin binding.

This transiency of the cellular adhesion mechanism can be conceptu-
alized in terms of a molecular clutch [45]. Instantaneously, force trans-
mission is possible at seemingly fixed or rigid focal adhesions, while on
a longer time-scale, the whole focal adhesion complex is well capable of
moving relative to the substrate. The same holds also for F-actin moving
over the integrin substratum contact. Indeed, this molecular clutch has
been shown to be effective in human osteosarcoma cells [11]. Experimen-
tal evidence indicates that α-actinin is involved in increasing the slip at
the actin-integrin binding complex [38, table 1]. The apparent mutual re-
lation of focal adhesions and actin speed [3,86] also seems to be consistent
with the general idea of a molecular clutch at focal adhesions.

Since the integrin bonds are transient only, the actin retrograde flow
generates friction-type forces, which ultimately give rise to forward translo-
cation of the cell. Here, we model this cytoskeleton-initiated traction via
a slip of F-actin dragging over the integrin-mediated substratum adhe-
sions,

fu = −φubbθu. (3.38)

The parameter φu describes the amount of effective friction due to the
interactions of F-actin θ with bound integrins bb. Importantly, the drag
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force fu appears also as external force on the right-hand side of the Stokes
equation (3.14).

2. Cell-level force balance: Recall that the domain Ω of the migrating
model cell has the fixed length λ. Therefore, the cellular migration veloc-
ity v coincides with the velocity ẏ1/2 driving the free boundary Γ = ∂Ω.
Assuming that the lower plasma membrane moves along with the whole
cell, the local friction towards the substratum is

fv = −φvv ≡ −φvẏ1/2, (3.39)

whereby φv denotes the membrane friction coefficient. The resulting sub-
stratum force balance reads

∫ y2

y1

(
fu + fv

)
dy = 0 ⇔ λφvẏ1/2 =

∫ y2

y1

(
φubbθu

)
dy. (3.40)

Substituting fu from the Stokes equation (3.14) into the first summand
of the friction integral (3.40), one obtains the Stokes boundary terms

∫ y2

y1

fu dy =
(
−νΓ · η∂yu− S + p

)∣∣y2
y1

= τ
∣∣y2
y1
, (3.41)

where we used the boundary condition (3.30) for the last equality. From
the total friction integral we therefore conclude

λφvẏ1/2 = τ |y2y1 . (3.42)

This reveals that, similar to p, τ acts as a Lagrange multiplier. As
mentioned in paragraph 2.3.3, p enforces the incompressibility condition
(2.10) on the bulk cytoplasm flux velocity θu + (1 − θ)w. In contrast,
τ(t, y) causes the lower plasma membrane to move with the uniform ve-
locity Γ̇ over the substrate for all positions y ∈ [y1, y2]. Alternatively one
could also impose the incompressibility of the membrane, see [6, section
3.2.4] for details.

Equation (3.42) also shows that the determination of the variable pair
u, p in the tip expansion scenarios 1b & 2 is implicit as well. For 1b,
the Dirichlet condition (3.28) for the pressure reads p = τ and relates
the original identity (3.25) for ẏ1/2 indirectly with τ . In scenario 2, the
relation (3.42) indirectly affects the employed Neumann condition (3.30)
for u via τ , while at the same time ẏ1/2 = u from equation (3.25). Thus,
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in any case u, ẏ1/2 and τ are given in an implicit way and the equa-
tions have to be numerically iterated until the system is self-consistent.
Since the τ -equation (3.42) determines only the tension difference be-
tween the two cell ends, we assume a small baseline tension parameter
τ0 = min

[
τ(y1), τ(y2)

]
in the numerical iteration, see table A.2.

3.6. Cell polarization is either spontaneous or induced
by taxis cues

1. Symmetric and polarized model cell mode: When seeding human
epidermal keratinocytes on fibronectin substrata, these cells exhibit sev-
eral dynamical states at sufficiently low density, compare figure 1.6. The
most common dynamical states of the cells are (i) the symmetric state
in which the cells are circular and do not move, and (ii) the polarized
state with prominent leading lamella extending in the direction of the
cellular migration. The same two states have also been observed in fish
keratocytes [233], and in celloids without nucleus [221]. Here we want
to understand the nature of these two dynamical cell modes and their
underlying molecular structure.

2. Symmetric non-motile cell mode: Starting from evenly distributed
actin, myosin and integrin concentrations θ,mf ,mb, bf , ba, bs, bb, the model
cell quickly settles and exhibits the symmetric state, see figure 3.4 (a1) &
(a2). This sessile cell mode is characterized by the concentrations being
distributed in symmetric manner with respect to the center of the cell.
Apparently, actin, myosin and bound integrin pile up in the middle of
the cell. This can be understood in terms of the F-actin flow velocity
u, see the black dotted line in figure 3.4 (a1). Since this flow is directed
towards the cell center, there is a tendency to remove actin associated
species from the outer ends and advect them to the central region.

Accordingly, since ba integrins are actin-bound, they are transported
with the F-actin flow velocity u. Thus, there is a general trend for the
majority of the overall integrin pool to accumulate at the cell center.
In contrast, free and substrate-bound integrins bf , bs extend towards the
outer ends of the cell. Recall that by equations (3.11, 3.12), both actin
θ and force fu = −φubbθu (red dashed line in figure 3.4 (a1)) affect the
integrin association and dissociation rates, respectively. Since αfa, αsb ∝
θ, the relatively low amount of actin at the ends of the cell shifts the
chemical integrin equilibrium towards bf , bs. In the intermediate range,
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Figure 3.4.: Keratinocytes at rest attain a circular, symmetric and unpo-
larized state, while migrating ones are of asymmetric shape
and the polarized lamella is oriented towards the direction of
the motion. Here we consider central sections through the
cell, along the posterior-anterior axis. The emerging con-
centration profiles of the quantities in the simulated, one-
dimensional model cell exhibit both of these two, clearly dis-
tinct motility states. On the left hand side, the cytoskeletal
F-actin θ together with the contractile myosin mb and the
bound integrin bb is symmetric with respect to the cell center.
Since the cytoskeleton flow u is evenly oriented in centripetal
direction towards the cell center, the cell the net locomotive
force of the cell vanishes. In contrast, on the right hand side
the concentrations θ,mb and bb are asymmetric. The inter-
play of the posterior cytoskeletal contraction and the anterior
polymerization drive at the lamella tip leads to a prominent
asymmetry in the F-actin flow profile u. Due to the enhanced
retrograde flow at the cell front, the integrated overall force
leads to forward translocation in positive y-direction.
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where |fu| is rather high, focal adhesions are quickly disrupted yielding
increased amounts of ba, bs, even despite of the already high actin level
θ. In the center of the cell, the very high amount of actin θ and the
relatively low force |fu| favor the double-bound state bb of integrins.

The cellular migration force fu from equation (3.38) is determined from
the joint action of integrin adhesion sites bb and the centripetal F-actin
mass flux θu. As can be observed in figure 3.4 (a1) & (a2), the profiles
of both F-actin θ and integrin bb are symmetric about the cell center
y ∼ 5 µm. In contrast, the profile of the F-actin transport velocity u
is antisymmetric, so that the resulting profile of the traction force fu is
antisymmetric. Thus, the centripetal pulling forces from both cell ends
mutually compensate in the cellular traction force integral

∫
Ω
fu dy from

equation (3.40). In this way, the cell remains stationary and rests at its
place, even though the underlying cytoskeleton machinery turns over in
a highly dynamic manner.

3. Polarized and migrating cell mode: Cell polarization arises from
contractile or polymerization stimuli as discussed in the following para-
graph. Once the full polarity has been established, the model cell migrates
and exhibits asymmetric concentration profiles, see figure 3.4 (b1) & (b2).
In the plots, we see the resulting protrusion front on the right hand side
of the model cell. This lamella-like region is characterized by low levels
of bound myosin mb and a prominent retrograde flow velocity u. At the
rear end of the cell, the F-actin flow u is almost vanishing, whereas the
amount of bound myosin mb is generally high. Note that in the presented
plots, u is measured in cell-centric coordinates, so that the F-actin veloc-
ity in the lab frame is ulab = uplot + v, whereby v ≈ 0.12 µm/min denotes
the migration velocity of the cell.

The particular distribution of actin in figure 3.4 (b1) is somewhat at
odds with the general behavior as observed in experiments like [192,221].
However, here we do not model the presence of a cell body or nucleus.
Its presence would impose a spatial obstacle within the cytoplasmic flow.
During migration, this obstacle is situated at the back of the cell, so that
the accumulation of actin at the rear end would be hindered. In spite
of this model limitation, we emphasize that the obtained distributions of
F-actin exhibit the correct profile at the outer ends of the cell, see also
the experimental data below.

The behavior of the bound myosin mostly arises from its transport
properties. Since it is bound to the F-actin cytoskeleton, it moves with the
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corresponding velocity u, and is thus constantly shuffled away from the
front towards the rear. Due to the permanent mutual turnover between
bound and free myosins, depletion of one leads to the depletion of the
other. Therefore, also free myosin mf is low at the front. The converse
situation arises at the rear of the cell, where the general trend is similar
as for actin.

The mechanism underlying the observed integrin distributions is much
alike the one in the symmetric cell mode. The now asymmetric flow
shuffles actin-bound integrins ba to the back. The transition from the
bound kinetic state bb to the semi-bound ones ba, bs is mediated by the
force-dependent disruption rates δba, δbs. Therefore, integrin recycling
occurs predominantly at the cell rear, where the forces fu give rise to
strong retraction.

The motion of the cell arises from the specific profile of fu, which –
in contrast to the symmetric cell state – does not balance in the cellular
traction force integral

∫
Ω
fu dy from equation (3.40). Recall that by

equation (3.38) we have fu ∝ bbθu. Inspecting figure 3.4 (b1) & (b2),
we find that the asymmetry in fu follows almost exclusively from the F-
actin transport velocity u. Surprisingly, both F-actin θ and integrin bb
profiles rather seem to antagonize the forward asymmetry of fu toward
the right-hand side of the plots. Nevertheless, since the retrograde flow
is prominent enough throughout the tip region y ∼ 7 . . . 11 µm, and also
because there is a small overlap of high θ and bb values with still negative
u at y ∼ 6 µm, the model cell migrates due to aforementioned asymmetry
in the force integral. This shows that the consideration of a dynamical
F-actin transport velocity u is essential for the model cell’s migration
capability.

4. Transition and robustness of the two cell modes: Here we consider
two scenarios for the stimulus that causes the model cell to polarize. As
we have seen in section 1.5, the Rho/Rac family of proteins is involved
in initiating a F-actin polymerization stimulus [168, 184]. In order to
mimic the effect of a chemotactic gradient, we permanently increase the
F-actin polymerization rate J from equations (3.13, 3.19) at one end of
the model cell in its sessile and unpolarized mode. As expected, the cell
slowly polarizes and engages in persistent migration, see [6, section 4.2]
for further details.

On the other hand, polarization might also arise due an asymmetry
in the stress distribution throughout the cell, see again section 1.5. A
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corresponding stimulus would affect the contractile machinery in the cell,
which also has been associated with downstream effectors of Rho [168].
Here we directly modify the myosin-actin association rate αm, which leads
to an increased contractile stress ψ according to equation (3.21). If we
prescribe αm = 20/min at one end of the unpolarized cell for 0.5 min, the
cell returns to its initial sessile state after a short period of overshooting
migration. However, if we impose a stimulus of αm = 50/min for the same
time, the polarization is persistent and migration prevails, see [6, figure 8]
for the emerging cell velocity curves. Importantly, the polarizing stimulus
has to exceed a certain threshold so that persistent cell migration may
emerge.

Finally, we also impose stochastic perturbations on the F-actin poly-
merization rate J from equation (3.19). This particular robustness check
demonstrates that both the sessile and the migrating cell mode are able
to withstand occurring fluctuations in all force-bearing chemical reaction
processes. Together with the in-silico experiments on stimulated cell po-
larization mentioned above, we conclude that the fundamental modes of
migrating cells in two dimensions are autonomous, self-organizing, and
self-stabilizing. Indeed, from a biological perspective, such a robustness is
highly desirable, in particular with respect to signal reception and trans-
duction. When the dynamical system of the force-generating cellular
migration machinery is able to sustain the fundamental morphological
modes autonomously, then the associated signalling relay merely needs
to control the switch between these modes. Consequently, any logic that
just maintains a specific mode would – in principle – be superfluous. Con-
versely, such a logic could be neglected until the mechanical cell modes
and their upstream signalling switch are understood in a satisfactory
manner.

5. Comparison with experimental data: Here we present relevant con-
centration, traction and flow fields of HEK cells, see figure 3.5. The data
contain the information extracted from several different time-lapse movies
that have been averaged according to a novel method involving the cir-
cular normalization of the cell outline [157]. Thereby, the cell shape is
approximated by a polygon with ∼ 12 nodes, for each frame in the in-
volved movies. The cell center is identified with the center-of-mass of the
polygon, and the cell’s velocity is computed from the time derivative of
the center position, see A & E in figure 3.5. Then, the individual frames
are rotated, so that the turned cell always migrates towards the top, cf. B
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Figure 3.5.: Experimental data on human epidermal keratinocytes (HEK)
compares favorably with the results from the simulation
model. Note that these data are averaged, see the text for
a brief description of the averaging procedure. The connec-
tions between experimental and model quantities are (i) vin-
culin ≈ bound integrins bb, (ii) actin ∼ cytoskeletal F-actin
θ, (iii) cytoplasm flow ∼ F-actin velocity u, and (iv) traction
≈ traction force fu. The nature of these correspondences is
further explained in the text. This figure has been repro-
duced from [157, figure 1 A-H, figure 3 B & F], with kind
permission by Christoph Möhl.
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& F. Since the cell center is known, the cell contours can be morphed to
a circle of fixed radius, which is again done for each frame. Each of the
resulting micrographs of the time-lapse movie frames thus exhibits an
almost circular cell and therefore they all can be averaged in a mean-
ingful way. Here, we compare these experimental data to the migrating
state of our model cell, because the cells in the time-lapse movies were
also migrating. Note that the model plots from figure 3.4 feature the
anterior-posterior cell axis from left to right, cf. the simulation domain
[y1, y2] as drawn in figure 3.1. In contrast, the anterior-posterior cell axis
stretches from bottom to top in the experimentally determined reference
pictures from figure 3.5.

Vinculin is known to co-localize with focal adhesions, so that the con-
centration profile in figure 3.5 D relates to the profile of bound integrins
bb, indicated in blue in figure 3.4 (b2). The concentration profile in 3.5
H shows the distribution of actin, in both monomeric and filamentous
states. Even though we model only F-actin explicitly, we compare H
with the model prediction θ, see blue line in figure 3.4 (b1). Since this
‘correspondence’ is clearly incomplete, any interpretation arising from
this particular comparison of experiment and theory should not be over-
stretched. Note also that in the averaged experimental profiles, the effect
of the cell nucleus is clearly visible. Being situated at the cells rear, it
decreases both actin and vinculin levels as one can see from the promi-
nent blue/green spot within the otherwise mostly red cell circle in figure
3.5 D & H.

The cytoplasmic flow field in figure 3.5 B’ has been recorded in lab
coordinates, so that the highest amount of flow is situated at the cell’s
rear. The F-actin flow profile u as indicated by the black dotted line
in figure 3.4 (b1), however, is displayed in cell-centric coordinate. By
writing the F-actin velocity in the lab frame, ulab = uplot + v, we see that
ulab resembles the experimental situation quite precisely. Finally, the
averaged traction forces from 3.5 F’ mostly arise in the rear half of the
cell. Note that in white regions of F’ there was unfortunately not enough
data to faithfully quantify traction. In any case, the traction analogue in
the model cell fu appears to match the general behavior, cf. the red line
in figure 3.4 (b1).

Finally, we note that there are several other experimental data that
exhibit the semi-quantitative features of the simulations presented here,
for example (i) actin and myosin distribution in celloids, in both resting
and migrating states [221, figure 2ac], (ii) actin velocity field [192, figure
1G], (iii) force distribution in Dictyostelium discoideum [55, figure 1(d)],
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(iv) actin velocity field, traction forces and substratum interactions [78,
figure 2], and (v) actin bundling, actin velocity field, myosin distribution
[229, figure 1]. We take this as an indication and a-posteriori confirmation
that the phenomenological constitutive force and stress laws introduced
in sections 2.3, 3.3 are useful in compound fluid models and capable of
describing whole cell motion.

3.7. The migration velocity of cells is sensitive to
substratum adhesion

1. Modification of adhesion and friction model functions: In this
section we investigate the influence of substratum adhesiveness on the
distribution of focal adhesion integrins bb and the generation of cellular
traction forces. During focal adhesion formation, integrin binding clearly
depends on the availability of substratum receptors such as fibronectin.
For simplicity, we describe the arising effective substratum adhesiveness
by the dimensionless number Adh. Since both traction and friction ulti-
mately arise from the substratum adhesiveness, effects on the migration
velocity v of the cell are to be expected. Including the effect of sub-
stratum receptors leads to a linear dependence of the integrin reaction
constants on the adhesiveness,

αfs = αs0 · Adh, αab = αs0 · Adh, (3.43)

with αs0 = 5 min−1 and typically Adh ∼ 3, see also equations (3.6–3.9).
At the same time, since the cell membrane friction is influenced by the
molecular bonds towards the substrate, we suppose the proportionality

φv = φ0
v · Adh, (3.44)

for the cellular friction coefficient (3.39), whereby φ0
v = 6 Pa ·min/µm2.

2. The cellular adhesiveness-speed relation: In order to explore pos-
sible modifications in the migration machinery of the model cell, we put
it on substrata of different adhesiveness Adh, and measure the emerging
steady-state speed together with the essential concentration and force
profiles, see figure 3.6. The top left panel shows the resulting velocity-
adhesiveness curve. Depending on substratum adhesiveness Adh, the cell
exhibits two distinct migration regimes. In the low adhesiveness regime,
Adh = 0 . . . 3, there is a quick adaption of the migration speed to the
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Figure 3.6.: The substratum adhesiveness Adh influences the migration
speed v of the model cell, see top left panel. For low substra-
tum adhesiveness Adh = 0 . . . 3, the cell is highly respon-
sive to changes in Adh. At higher levels of adhesiveness,
there is a broad optimal range for the model cell’s migra-
tion speed. Comparing with experiment, see top right panel,
the model cell speed seems to capture the general behavior.
The lower panels (a-d) show integrin and force profiles of
the model cell at respective Adh-values indicated in the top
left panel. The top right plot containing experimental data
is reproduced from [169, figure 1a], with kind permission by
D.A. Lauffenburger.
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substratum adhesiveness. In contrast, for higher values of Adh, the speed
of the model cell does not change much while it is fairly high in gen-
eral. This points at the ability of the cell to adapt to various external
conditions at seemingly optimal performance. Indeed, this adaption is
also reflected in the traction force and integrin profiles from figure 3.6
(a–d), which characteristically vary according to the adhesiveness Adh of
the present substratum:

(a) Adh ∼ 0.01: almost symmetric bb and fu distribution with flat force
plateau at the front

(b) Adh ∼ 0.2: start of integrin bb accumulation at the rear reducing
migration speed

(c) Adh ∼ 1 . . . 3: enriched bb carpet at the front and sharp increase of
disruptive forces at the rear

(d) Adh ∼ 20: bb accumulation at rear reducing migration speed v

Therefore, for 1 < Adh < 4, the cell has a high sensitivity for respond-
ing to an increase of adhesiveness, while between 5 < Adh < 12 a broad
optimum in saturated migration speed occurs. This explains the polariza-
tion and haptotaxis of cells in spatial adhesion gradients, and reproduces
adhesion and migration experiments on CHO B2 cells4 [169, figure 1a].

Mechanistic understanding of cellular migration: In the light of the
emerging concentration profiles in figures 3.4 (b1) & (b2) and 3.6 (a-d), a
physical explanation for cell migration therefore is not “more adhesion” or
“stronger force” at the front compared to the rear. Instead, the asymme-
try in the polarized state leads to a wide front region with modest forward
traction force, and a short rear region with strong opposing forces favor-
ing FA rupture. This is how the self-organizing morphological features of
crawling cells regulate the strength of motile force transduction.

4mutated Chinese hamster ovary cells
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3.8. The cytoplasm flow model can be applied in a
quasi two-dimensional geometry

1. Peripheral approximation and simulation domain: Here, we pro-
pose a modified version of the single cell motility model described in the
preceding sections. Since that model was limited to one dimension, it
is desirable to extend the theory so that two-dimensional shape and dy-
namics can be accounted for. At the same time, however, the need for
additional simplifications arises. To this end we follow the general ideas
laid out in the earlier efforts [200, 201, 218], while retaining the most es-
sential quantities of the one-dimensional model from before.

The central idea to arrive at a quasi two-dimensional description is to
go over to cell-centric coordinates, whereby the cell body center represents
the co-moving origin. In figure 3.7, the cell body is indicated by the white
line R(ϕ). We then parameterize all field variables like actin and forces in
terms of the polar angle ϕ, which constitutes the only considered spatial
coordinate in the cell frame. In this way, the simulation domain is given
by the unit circle. In order to quantify the shape of the cell, we introduce
the local lamella width L = L(t, ϕ) as additional field variable. It denotes
the distance from the cell body to the exterior tip boundary in direction of
ϕ at each time instant t, cf. figure 3.7. Concentrations like the one of actin
a = a(t, ϕ) are then assumed to be constant in the infinitesimal lamella
segment

{
(r, φ) ∈ R2 : R(φ) ≤ r ≤ R(φ) +L(t, φ), ϕ−dϕ ≤ φ ≤ ϕ+ dϕ

}

around ϕ. Alternatively, one could think of the average concentration of
actin in that region. Importantly, since we are now employing cell-centric
coordinates, we also measure the mass transport velocities relative to the
moving cell center.

2. Peripheral mass balances: In order to set up the mass balance equa-
tion for the F-actin density a(t, ϕ), we write the one-dimensional analogue
of (2.1). Identifying ρf := a, and introducing the modifications explained
below, we obtain

∂ta+ ∂s
(
aua −Da∂sa

)
= J ′′. (3.45)

In the one-dimensional peripheral approximation, we employ the F-actin
concentration a = θ/Va, where Va indicates the volume of a single actin
monomer. Moreover, we compute the derivatives involved in the trans-
port terms on the surface of the cell body,

∂s :=
1

R
· ∂ϕ, (3.46)
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Figure 3.7.: Cell centric coordinates underlying the quasi two-dimensional
migration model. In order to obtain a simple description, we
attach a coordinate system to the center of the migrating cell,
see black arrows, and parameterize all model variables over
the unit circle as described by the polar angle ϕ. The curve
of L(ϕ) represents the outline of the cell as it spreads on
the substratum, relative to the cell body R(ϕ). The latter
can be observed as the fan-like central region with bright
white spots and almost no focal adhesions, and is indicated
by the white line in the picture. In the micrograph, the
focal adhesion sites are highlighted by a green fluorescence
dye. The presented microscopic picture of a human epidermal
keratinocyte is courtesy of Claudia Schäfer, Merkel group,
Forschungszentrum Jülich [189, movie 05].
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where we have assumed that the cell body is spherical and has a constant
radius R(ϕ) = const. =: R. A certain amount of F-actin diffusion with
constant Da could arise from material transport not fully captured by the
F-actin velocity ua, which represents the tangential component of u from
equation (2.1). For a more detailed explanation of the velocity ua see the
paragraph 3.8.4 on transport velocities below. The actin polymerization
model function reads

J ′′ = αLL+ αaba− δaa+ βaξt. (3.47)

F-actin assembly arises from the local cell extension L in the first sum-
mand with coefficient αL > 0. Adhesion-mediating integrins b recruit
auto-catalyzing F-actin with the association constant αa in the second
summand, see below for details on the integrin concentration b. More-
over, filament disassembly is proportional to the amount of F-actin a,
with the dissociation constant δa. The last term on the right-hand side
induces small variations in the F-actin polymerization due to fluctua-
tions in the environment, where ξt is a Gaussian random number with
mean zero and variance one, and βa the model parameter for the pertur-
bation strength. The actual values of the parameters Da, αL, αa, δa, βa
are all listed in table A.6. Previously, we have employed different rep-
resentations of the polymerization function J ′′, cf. equations (2.1, 2.29).
Though not directly needed in the present model formulation, the rela-
tions for conversion would be J ′ = maJ

′′ = maJ/Va, where ma is the
mass of a single actin monomer, and Va its volume.

In this simplified model, we consider only one kind of integrin molecules
involved in cellular adhesion, namely the bound ones b ≡ bb, compare
also figure 3.2. The corresponding mass balance for the concentration of
bound integrin receptors b engaged in focal adhesions reads

∂tb+ ∂s
(
bub
)

= αbad− δbb exp
(
f/fb

)
− δeb

(
vout

tip + vout
body

)
. (3.48)

Here, ub denotes the transport velocity, see paragraph 3.8.4 for details.
The first term on the right-hand side indicates that F-actin a facilitates
the formation of integrin-mediated adhesions b. They assemble at sites
where there are suitable substratum ligands d = d(t, ϕ), see below for de-
tails. In this way, the reservoir function of the semi-bound integrins from
figure 3.2 is included in the effective association rate constant αb. The
adhesions b disassemble with the rate δb, whereby the present tensile load
f := |f(t, ϕ)| affects the kinetics in a Bell-type exponential factor [21].
The load f arises from the traction force of the cell and is defined below
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in equation (3.57). The last term on the right-hand side includes passive
effects of adhesion sites leaving the cell lamella domain in radial direc-
tion, where δe indicates the inverse characteristic length of effective radial
egress. This type of transport occurs both at the lamella tip L(ϕ) and
at the cell body (cf. figure 3.7), with the respective velocities vout

tip , v
out
body,

whose definition is given in the following paragraph 3.8.3. The specific
values for the parameters αb, δb and δe are listed in table A.6.

The integrin kinetics above involve the adhesion ligand density d on
the substratum, e.g. like fibronectin or collagen. In order to account for
their variations, we consider their mass balance in an idealized manner,

∂td+ ∂s
(
dud
)

= −αbad− δed
(
vout

tip + vout
body

)
+ αdv

in
tipζt

(
d0, σd

)
, (3.49)

where the velocities ud, v
in
tip, v

out
tip , and vout

body are defined below. The first
term on the right-hand side indicates that the substratum ligands d be-
come occupied by integrin in focal adhesion sites b, see also equation
(3.48). The ligands d can also leave the cell lamella domain in radial
direction, which is represented by the second summand on the right hand
side of the mass balance (3.49). The most important kinetic term is the
last one. In the employed co-moving cell coordinate frame, new sub-
stratum ligands enter the cell lamella domain at the tip R + L(t, ϕ).
Thereby, the amount of entering ligands derives from the local lamella
area increase, which is proportional to the tip growth velocity vin

tip. Here
we model the ligand density within the gained area by the stochastic
variable ζt

(
d0, σd

)
≥ 0, which is assumed to be distributed according to

the truncated positive Gaussian distribution with mean d0 and standard
deviation σd.

5 The coefficient αd represents the effective radial ingress
parameter for ligands entering from the lamella tip. Together with the
values for αb, δe, d0 and σd, the ingress parameter αd is is given in table
A.6. An alternative and more complete adhesion model has been studied
in [132], whereby the model cell crawls on a substrate with a check-board
like Poissonian adhesion ligand density.

3. Passive radial transport velocities: In order to specify the transport
velocities in equations (3.45, 3.48, 3.49), we introduce the radial and
tangential unit vectors

êr(ϕ) =

(
cosϕ
sinϕ

)
, êϕ(ϕ) =

(
− sinϕ

cosϕ

)
, (3.50)

5This is implemented by drawing vectors of Gaussian random numbers ζt ∈
N (d0, σd) and replacing negative entries by zero.
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defined for each angle ϕ in co-moving polar cell coordinates. Furthermore,
let v = v(t) denote the cellular migration velocity as defined in paragraph
3.8.5 below. Expressing v in terms of the local polar unit vectors (3.50)
we have

vr(t, ϕ) = v(t) · êr(ϕ), vϕ(t, ϕ) = v(t) · êϕ(ϕ). (3.51)

The relative radial lamella tip growth or local protrusion velocity at a
certain position ϕ then reads

vtip(t, ϕ) = vr(t, ϕ) + ∂tL(t, ϕ). (3.52)

For the inward velocity vin
tip appearing in equation (3.49), we consider

only forward tip growth and not shrinking,

vin
tip =

[
vtip(t, ϕ)

]
≥0
. (3.53)

This is implemented by returning zero whence the expression in square
brackets is negative. As already mentioned, the amount of incoming
substratum ligands d is proportional to vin

tip, because the local area gain
at the lamella tip is proportional to the product vin

tip · dt at each time
instant.

In a similar way, adhesion sites leave the cell domain at places where
the lamella is retracting. The corresponding retraction velocity vout

tip is
responsible for the loss of adhesion sites close to the tip,

− vout
tip (t, ϕ) =

[
vtip(t, ϕ)

]
≤0
. (3.54)

where we consider cell shrinking by allowing for non-positive values only.
Note that vout

tip is non-negative, cf. equations (3.48, 3.49).
When inspecting the micrograph in figure 3.7, on observes that there

are only few green fluorescence spots of adhesion sites below the cell
body as outlined by R in white. In order to take this observation into
account, we suppose that the adhesions disassemble when they approach
the cell body boundary. This could be triggered by specialized chemical
agents close to or within the cell body. In human epidermal keratinocytes,
tubulin is a possible candidate, because its location matches [231, figure
3.4], cf. also figure 1.6. Independent of the precise chemistry of their
degradation pathway, we here assume that the adhesion sites vanish when
they come into contact with the cell body. The relevant radial velocity
of the cell body boundary with respect to the adhesion site is given by

vout
body(t, ϕ) =

[
vr(t, ϕ)

]
≥0
, (3.55)
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where we again pertain only non-negative values. In this way, adhesion
sites approaching the cell body from the cell front in the direction of
migration are removed from the pool at ϕ, see also equations (3.48, 3.49)
and figure 3.7.

4. Passive tangential transport velocities: The peripheral mass bal-
ances from paragraph 3.8.2 describe transport and turnover of actin a, in-
tegrin receptors b and substratum ligands d. The corresponding transport
velocities ua, ub, ud redistribute the three species in ϕ-direction through-
out the cell lamella. In order to keep this model as simple as possible,
we suppose that the peripheral transport is purely passive and driven by
drag effects arising from the cell being pulled over the substratum. Thus,
as the cell proceeds, the stationary substratum underneath would be in
transient contact with the cellular molecules, which would entail a certain
amount of mutual sliding and result in an effective opposing drag. This
is the essence of the molecular clutch mechanism described in paragraph
3.5.1, see also [156, section 3.4] for some experimental figures on the slid-
ing of focal adhesion sites. In the basic description we develop here, we
however take a short cut and have the velocity of the substratum with
respect to the co-moving cell frame drive molecular transport, and not
vice-versa. To this end we the assume the linear slip relations

ua(t, ϕ) = −κavϕ(t, ϕ), ub(t, ϕ) = −κbvϕ(t, ϕ),

ud(t, ϕ) = −κdvϕ(t, ϕ),
(3.56)

expressing the molecular transport velocities ua, ub, ud in terms of the
local tangential projection of the substratum velocity −vϕ. The effective
slip factors κa < κb < κd ≤ 1 are model parameters, see table A.6.

Apart from considering ϕ as the only spatial variable, the equations
(3.56) constitute the second major assumption in the peripheral approx-
imation. Naturally, such a simplistic velocity model cannot fully capture
the transport phenomena occurring in the cytoplasm or on the cell mem-
brane. This is also the reason for including the diffusion term ∝ Da in
the F-actin mass balance (3.45), which provides for a certain smooth-
ing property being essential for the model cell’s stability and migration
capability.

5. Cellular migration force: In paragraph 1.7.1, we have found that the
key molecular players driving cellular locomotion are actin, myosin and
integrin. In the one-dimensional migration model, we have seen how actin
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retrograde flow, myosin induced contraction and integrin adhesion jointly
create the cellular locomotion forces, cf. paragraph 3.7.3. Similar to the
one-dimensional model equation (3.38), we assume that the locomotion
force is proportional to the local integrin receptor density b. As additional
modification, we account for actin a and the lamella width L in the local
force density f ,

f(t, ϕ) = floc · a(t, ϕ)b(t, ϕ)L(t, ϕ) · êr(ϕ). (3.57)

We interpret the combination of aL as a measure for the contractility of
the cell in the specific direction êr, which would ultimately arise from the
activity of myosin motors not explicitly resolved in the two-dimensional
model. In this way, the lamella segment around ϕ imposes a force on the
cell body pulling in centripetal direction êr, where the pulling strength
floc is a model parameter, see table A.6. The force integral over the unit
circle then determines the total cellular locomotion,

Floc =

∫ π

−π
f(t, ϕ) dϕ. (3.58)

Essential to the model is that the integrin dissociation term ∝ δb in equa-
tion (3.48) involves the exponential of the local tensile density |f(t, ϕ)|
defined here, otherwise the model cell seems to be incapable to migrate.

In a friction-dominated environment, the traction force Floc determines
the velocity v of the cell body from the effective drag γv of the cell with
the substratum,

γvv = Floc. (3.59)

For simplicity, we assume that γv is a constant model parameter, again
see table A.6. Together with the force integral (3.58), equation (3.59)
constitutes the cell-level force balance, in full analogy to (3.40) from the
one-dimensional migration model.

6. Radial force balance at lamella tip: In order to close the description,
we still need an equation for the evolution of the local lamella width
L(t, ϕ). To this end, we introduce the effective cellular curvature force
τ̃ = τ̃(t, ϕ),

τ̃ = − τ0a
2

R + L
+ ∂s

(
τ0a

2∂sL
)

+
p0

L
. (3.60)

The first two summands derive from the uncompensated tension of the
F-actin network τ0a

2 close to the curved cell outline. The first term
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resembles the contribution of a purely circular geometry with radius R+
L, and the second term the deviations from that circle. The specific
exponent in the model expression τ0a

2 depends on the employed stress
model for the actin filament network, see e.g. [69]. Other values are
possible and typically range from 1 to 2, of which we choose the upper
bound to facilitate shape deformations in our model cell. The overall
tension of the actin network behind the lamella tip can be adjusted by
prescribing the coefficient τ0, see table A.6. Moreover, we evaluate the
derivatives at the surface of the cell body for simplicity. This avoids
further complications, as the derivatives would otherwise involve L. The
last summand in equation (3.60) incorporates the pressure-like protrusion
force p0 initiating from the central cell body and propagating towards
the cell periphery. Here we model the effective decrease of that force
throughout the lamella by including the inverse local lamella width L. As
a further simplifying approximation, we assume that p0/L � τ0a

2/(R +
L). The motivation for this approach is, that the actin network at the
lamella tip is rather protrusive than tensile, which is consistent with the
observation of stress softening in lammellipodia-like, reconstituted actin
networks [47]. Under this approximation, we may write

τ̃ ≈ τ = ∂s
(
τ0a

2∂sL
)

+
p0

L
. (3.61)

Importantly, the choice of the p0 and τ0 parameters is consistent with the
employed approximation, cf. table A.6.

Lamella protrusion and retraction derives from a force balance at the
tip L(t, ϕ). In the peripheral approximation and the employed co-moving
cellular coordinate system, the involved forces are balanced in radial di-
rection exclusively. The resulting scalar radial force balance for lamella
protrusion and retraction is

φ0a∂tL = τ + pbab− ρ0a
2. (3.62)

The left hand side represents the friction force that opposes the lamella
deformation occurring with the radial velocity ∂tL. This friction is as-
sumed to be proportional to the local concentration of F-actin, because
the viscosity of the cytosol can be neglected, see paragraph 2.3.2. The
first term on the right-hand side is the effective cellular curvature force
τ = τ(t, ϕ) as described above. The second term on the right-hand side
∝ pb represents enhanced lamella protrusion onto substratum adhesion
sites b. Such a protrusion involves F-actin polymerization initiating from
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the barbed ends of the filaments, which we here assume to be a linear
function in a. Finally, the F-actin network is engaged in retrograde flow
towards the cell center. This gives rise to retraction stresses at the lamella
tip, which derive from the tension in the filament network. Consistent
with the arguments for deriving τ , we suppose that the stress is propor-
tional to the squared concentration of actin a2. The model parameters
φ0, p0, pb and ρ0 are constants and listed in appendix table A.6.

3.9. Simulations including the cell lamella exhibit
cellular shape and trajectory characteristics

1. Dimensional considerations: In order to obtain meaningful data
from our simulations, we have to clarify the units that are implied by
the model equations in the preceding section. In paragraph 1.7, we have
identified µm and min as the biologically relevant time- and length-scale
of cellular migration. Moreover, the total traction force of cells has been
estimated to be in the nN region [10, table 2]. Thus, the physical scales
of the model are set.

For chemistry, we first observe that a is the volume concentration of
actin monomers assembled in filaments. Here we measure this concen-
tration in mM, i.e. milli-moles per liter. In this way, typical values of a
in the model are close to the ones observed in the lamellipodia of mouse
melanoma cells [129], cf. also table A.5. On the other hand, the integrin
receptors b and substratum ligands d clearly represent area concentrations
indicating the number of molecules per surface area. Unfortunately, there
seem to be no quantitative experimental data on typical values for b and
d. If one estimates the lateral extension of a single integrin to be approx-
imately 2 . . . 5 nm, one concludes that there could be 40.000 . . . 250.000
molecules per µm2 in maximal packing on a square lattice. With the
values b, d as in table A.5, the suitable area concentration measure is
approximately 106 µm−2.

The resulting dimensions of the model variables are listed in table A.5,
together with typical values obtained from the simulations described be-
low.

2. Simulating the quasi two-dimensional model cell: For the in-silico
simulation of migrating cells, we start by initializing the model variables
a, b, d, L with constant values along the cell perimeter ϕ ∈ [−π, π]. We
then solve the evolution equations (3.45, 3.48, 3.49, 3.62) in an explicit
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Euler-Maruyama scheme [127], where we have to take into account the
periodic boundary conditions X(t,−π) = X(t, π) for all variables X =
a, b, d, L. The locomotion force follows from (3.58) and the cell velocity
v from (3.59), so that the cell position x is updated according to dx =
vdt in each time step. All parameter values involved in this numerical
model are listed in table A.6. Part of one particular resulting trajectory
of the migrating model cell is shown in figure 3.8, together with the
instantaneous cell outline and the concentrations of actin and integrin.

3. Experimental reference data: For comparison with experiments we
include some image analysis data from a migrating human epidermal ker-
atinocyte. The phase-contrast micrograph presented in figure 3.8 is part
of a movie taken by Christoph Möhl at the Institut für Zellbiologie [155].
From these raw data the outline of cell edge and body can be extracted
by means of semi-automatized image processing tools that have been de-
veloped by Wolfgang Alt, Christoph Möhl and Carina Wollnik [231]. The
central idea for image processing is same as for the simulation model:
the local cell-centric coordinate system is a natural representation for the
description of motility phenomena. Here we only briefly summarize the
employed algorithm to reconstruct both cell body and tip outline.

The center of the migrating cell had already been quantified in ear-
lier efforts. Therefore, the transformation in polar coordinates attached
to this very cell center was straight forward. The resulting map of im-
age brightness values in polar coordinates then formed the basis for fur-
ther processing. The two outlines were then detected with the help of
a stochastic chain or active contour algorithm [7, 141, 231]. To this end,
a circle of interest was prescribed around the cell center to define rel-
evant region within the micrograph. Next, the radial gradients in the
polar brightness map were computed. Subsequently, an imaginary chain
was placed on the polar picture, and moved according to “image forces”
including chain stiffness, centripetal contraction and radial brightness
gradients. With suitably chosen parameters, this chain is driven towards
the cell (body) outline, where additional stochastic perturbations helped
to overcome small obstacles due to dirt or other debris. Repeating the
procedure, the two outlines were obtained for each frame in the movie.
Cell body and edge outline are colored cyan and blue in figure 3.8, re-
spectively, and comprise the data needed for the analysis below.
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Figure 3.8.: Tracking of cell body and lamella outline of a migrating hu-
man epidermal keratinocyte (left) and a simulated model cell
(right), both with the corresponding cell-center migration
trajectory (green). In the simulation model we have assumed
that the cell body has constant radius R as indicated by the
innermost black circle in the right plot. The local lamella
width L is indicated in blue, with the cell body circle as ref-
erence. Similarly, the concentration of actin a is drawn in
red, with the same reference. Finally, the integrin adhesion
sites b are indicated by the line in magenta, with respect to
the outer black reference circle. Note that plotting the model
cell in this compact figure involves additional rescaling of the
values of a and b. For comparison, we present the analogous
in-vitro experiment (left). Here, cell body (cyan) and lamella
outline (blue) have been extracted by means of image anal-
ysis. The time-lapse phase-contrast micrographs have been
taken by Christoph Möhl at the Institut für Zellbiologie, Uni-
versität Bonn. Subsequent image analysis was performed by
Wolfgang Alt and Carina Wollnik.
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4. Cell shape and trajectory: The full-length movie s2d simulation.avi6

of the simulated model cell exhibits several interesting quantitative fea-
tures. As in figure 3.8, the lamella width L is represented by a blue line,
F-actin a by a red line, adhering integrins b by a magenta line, and the
cell center trajectory by a green one. After the initial start with evenly
distributed molecular players, the lamella of the cell spreads in a symmet-
ric manner for some 10 min. Next, the polar symmetry of the model cell
breaks quite quickly due to the stochastic perturbation term in the actin
polymerization, cf. equation 3.47. Approximately at t ∼ 14 min, one can
already see that the model cell starts to polarize, which coincides with a
slow but steady increase in the cellular migration speed. Subsequently,
the onsetting forward motion causes new adhesion ligands d to enter the
cell domain from the tip, which gives a positive feedback on integrin b
and thereby on actin a and lamella width L, as expected from equations
(3.48, 3.45, 3.62). In this way, persistent migration emerges in a robust
manner without the need for external guiding cues. In that sense, the
essential guiding cue is the forward motion and protrusion of the model
cell itself. Noteworthy, the cellular polarization seems to be most clearly
visible in the integrin distribution.

Once a while, for example at t ∼ 30 min, t = 155 min or t ∼ 200
min, the model cell engages in rather sharp turns, whereby the apparent
polarization tends to break down. However, protrusion continues so that
the subsequent repolarization does not take very long. This exhibits the
interplay between protrusion and persistent locomotion. The assembly
of new adhesion sites induces an accelerated local protrusion, which pulls
the cell in the corresponding direction. Thus, the shape dynamics of the
model cell is decisive for the emerging directionally persistent trajectories.

5. Quantitative migration observables: In order to get a better un-
derstanding of the observed migration behavior of the model cell, we
consider several quantities that serve as benchmarks for the ongoing cell
motion and deformation. Apart from the cell’s migration speed |v| and
its lamella area

ALam(t) =
1

2

∫ π

−π

[
L2(t, ϕ)−R2(t, ϕ)

]
dϕ, (3.63)

we employ so-called directors that represent the instantaneous polariza-
tion of a certain cell characteristic like actin distribution. The director

6See supplementary material or http://www.theobio.uni-bonn.de/people/

mab/dsup.
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for a given quantity X(ϕ) is given by

DX =

∫ π
−πX êr dϕ∫ π
−πX dϕ

, (3.64)

and thus constitutes the orientation vector of X as averaged over the
whole cell periphery. These directors can be defined for all model variables
X = a, b, d, L, and have the property of being dimensionless with |DX | ≤
1.

In figure 3.9, we see the plots of mean cell speed |v| (green), lamella
area ALam (blue), and the director strengths |DL|, |Da|, |Db| for lamella
width (black), actin (red) and integrin (magenta), respectively. Upon
closer inspection one encounters characteristic time constants in these
observables. For example, the integrin director seems to break down ap-
proximately every 15 . . . 25 min. Indeed, one can observe a sharp turn
in the cell trajectory at t ∼ 200 min, whence the integrin is evenly dis-
tributed around the cell. In the plots of figure 3.9, the lamella director
|DL| mostly seems to follow the actin director |Da|, unless there simulta-
neously occur rather dramatic evens in the integrin director |Db|. Similar
effects are also exhibited by the cell migration speed and the lamella area,
which will be discussed below.

Before that, however, we point out that the proposed directors and
similar quantities are readily accessible to experimental measurements,
although some require molecular staining by means of fluorescence. The
main advantage of directors is that they provide for a cell-level descrip-
tion of subcellular detail. The molecular directors proposed here directly
relate to the distribution of mechanically active units throughout the cell.
We therefore suggest that such directors could serve as practical criteria
to identify new phenotypes or mutants. For example, by looking at cell
aspect ratio and actin variation along leading edge, the vast majority of
observed keratocyte shapes could be predicted in a quantitative way [122].
As opposed to the common catalogization of genomics and proteomics,
this emphasizes the importance of functional aspects as cornerstone of
coherent biological model genesis.

6. Comparing correlation features in experiment and simulation: Here
we take a closer look at the cell migration speed |v| and its possible re-
lation with the lamella area ALam. To this end we consider the autocor-
relation function

CX(τ) =
〈[X(t)− µX ] · [X(t+ τ)− µX ]〉t

σ2
X

(3.65)
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Figure 3.9.: Observables in the quasi two-dimensional cell migration ex-
periment (top) and model (bottom). Here, we plot the time
series of the cell speed |v| in green, the lamella director |DL|
in black, and the lamella area ALam in blue. In the simula-
tion model, we additionally obtain the molecular directors of
actin |Da| (red) and integrin adhesions |Db| (magenta). All
directors are dimensionless, which is indicated by the symbol
[1] for the respective units. In the model, the most promi-
nent behavior is observed in the integrin director modulus
|Db|, which is highly dynamic and varies almost over the
whole possible range 0 . . . 1. Note that this director drops
sharply before the model cell engages in turning movements,
see e.g. at t ∼ 30, 155, 200 min. Both model and experimental
observables exhibit a seemingly regular quasi-periodic behav-
ior. Further details are discussed in the text.
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of a time-dependent quantity X, where 〈〉t indicates averaging over the
time series, µX ≡ 〈X(t)〉t the mean and σ2

X ≡ 〈[X(t)−µX ]2〉t the squared
standard deviation of X. The correlation coefficient CX(τ) has the prop-
erty of being ∈ [−1, 1]. When it is close to +1, then – on average – X(t)
is similar to X(t+ τ). Conversely, if CX(τ) is around −1, X(t) would be
on average close to −X(τ). Finally, if CX(τ) is close to zero, than there
is no trend in either of the two aforementioned directions.

As can be seen in figure 3.10, the autocorrelation functions for the cell
speed X(t) = |v(t)| has a pronounced minimum both in experiment and
simulation. For the simulated cell, this reflects the properties of the green
speed curve from figure 3.9, where the migration velocity increases and
decreases in periods of approximately 25 min. Correspondingly, the cor-
relation function exhibits a maximum for correlation times τ ∼ 22 . . . 28
min. Consistent with this model prediction, a similar effect can also
be observed in the experimental data. It is not surprising that these
characteristic speed fluctuations are also reflected in the model cell’s tra-
jectory, cf. figure 3.8 and the movie. In particular, the black crosses
on the green trajectory are evenly spaced in time, so that intermittent
phases of decreased cell speed become visible by the proximity of these
time checkmarks. Naturally, this effect is most pronounced close to the
turning points in the trajectory. Thus, the autocorrelation function of the
migration speed reflects the cell’s tendency to reorient and additionally
exhibits the inherent characteristic reorientation time-scale.

The autocorrelation functions (3.65) of the lamella area X(t) = ALam(t)
exhibit the same general behavior, although the period times appear to
be somewhat different, see figure 3.10 (bottom plot). In the experimental
curve we observe a broad minimum from τ = 8 . . . 13 min, which however
does not deviate significantly from the zero within the given confidence
interval. There is also no clear subsequent maximum due to the limited
observation time of the experiment. In contrast, there is a very pro-
nounced trend and a very clear periodicity of 18 . . . 19 min for the model
cell. Since the simulations can be run as long as desired, the confidence
interval is very narrow as well. One might be tempted to extrapolate the
period in the experiment to some 20 min, based on the position of the
minimum at the red curve in figure 3.10 (bottom plot). However, the
experimental data neither support nor contradict any such predictions.

Regardless of the precise periodicity, both experiment and model data
point to the presence of certain persistence phenomena in migrating cells.
Lamella area and cell speed are modulated in the sense that they in-
crease and subsequently decrease in a repetitive manner, which hints
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Figure 3.10.: Autocorrelation function of cell speed |v| (top) and lamella
area (bottom) in experiment and model. The qualitative
shapes of the experimental and simulation curves seem to
coincide. The positions of minima and maxima of both
speed autocorrelation functions (top) exhibit a certain peri-
odicity, roughly 20 min for the experiment, and 27 min for
the simulation model. A similar behavior can be observed in
the lamella area autocorrelation function (bottom). There,
the simulations show a very prominent periodicity of ap-
proximately 18 min. Due to the limited observation time,
the experimental curve is less indicative. Note that the
thin lines surrounding the autocorrelation curves indicate
the 95% confidence interval.
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towards specific adaptation properties in the underlying dynamical pro-
cesses. Comparison of several cells from experiments shows that their
modulation is universal, whereas the respective periodicity is not [210, fig-
ure 14 & 15]. In the well-controlled simulation model we do not have to
expect ubiquitous variations across different individual cells, because the
exact model behavior is naturally reproducible. It is therefore not sur-
prising that both periodicity and modulation are robust for a given set
of parameters. The degree of robustness can be tested by adjusting the
stochastic perturbation βa for actin, which does only barely affect the
observed model dynamics of speed and lamella area, even when increased
to quite high values.

Reviewing the plots from figure 3.10, it is remarkable that the area
and speed autocorrelation functions look quite similar in a qualitative
way. Thus one might suspect a relation or dependency between the two
model observables. In order to test this hypothesis, we consider the cross-
correlation function

C×XY (τ) =
〈[X(t)− µX ] · [Y (t+ τ)− µY ]〉t

σXσY
, (3.66)

where again µX denotes the mean of X over the whole time series and
σX its standard deviation. This function probes the similarity of the two
time series X(t) and Y (t+ τ), where τ represents the relative time lag.

The crosscorrelation function of cell speed |v| =: X versus lamella
area ALam =: Y is plotted in figure 3.11. The data of experiment (red)
and simulation (blue) exhibits a certain maximum close to τ = 0, which
seemingly implies that cell speed and lamella area are correlated, and
the relative lag time is given by the position of the respective maxi-
mum. Yet the basis for the underlying data consists of only one single
cell trajectory in both theory and experiment. Indeed, when comparing
the experimental observation with [210, figure 19], one finds that other
human epidermal keratinocytes behave markedly different. This individ-
ualism pervades also the simulation model. From the blue simulation
curve in figure 3.11, one might be tempted to infer from the maximum
plateau at τ ∼ −7 min, that the cell speed builds after the lamella area
has increased. However, this feature is not robust and highly depends
on the specific simulation, because the stochastic realizations of the two
variables a, d differ for every run. Neither does fixing all other parame-
ters and decreasing the stochastic perturbation lead to more conclusive
results. In yet another cell migration model, there is also no clear trend
whether the lamella area follows speed or vice versa [193, figures 12 &
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17].
The biological relevance of this question lies in the possibility to explain

molecular interactions in a functional manner and particularly in terms
of the whole-cell behavior. It is commonly perceived that the protrusion
and retraction of the lamella constitutes a kind of cellular sensing, with
an implicit assumption that the environment would thus be probed more
efficiently. Consequently, one is lead to hypothesize that cellular reori-
entation would somehow be related with preceding protrusions. Since
we could not make definite statements about this relation, it would be
desirable to further refine the methodology of theoretical model and ex-
perimental data evaluation. In the worst case we could hope for finding
that protrusion and subsequent migration are not related at all. In the
best case we would quantify the precise relation so to make a prediction
on the molecular pathways suitable to trigger the cellular reorientation.
We emphasize, however, that such predictions are only possible by con-
sidering basic quantities such as cell and lamella size, area, orientation
and relate them to the molecular distributions on the whole-cell level as
summarized e.g. by the directors proposed above. Thus, to arrive at a
modern biology of the cell, it is inevitable to consider quantitative spatio-
temporal and kinetic features of molecular distributions.
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4. Generalized Voronoi tessellations divide
space into cellular compartments

Summary: In this chapter we propose a new method to construct Voronoi
tessellations from generators of elliptic shape. The resulting set of Voronoi
cells represents individual biological cells cooperating in small aggregates
or proto-tissues.

The locus of the contact border between two Voronoi cells is given by
an equality of mathematical norms. Each of these norms attributes a
certain power to any point in space, and is associated with the genera-
tors adjacent to the contact border. Scaling the contact equation with a
monotonic function gives an equivalent expression, so that the generators
may be written in terms of matrices in homogeneous coordinates. These
generator matrices describe ellipses of arbitrary size and orientation in the
two-dimensional plane. Finding the shape of the contact border between
two elliptic generators amounts to diagonalizing the so-called contact ma-
trix. The entries of this matrix are coefficients of a quadratic form for
a conic section. Non-degenerate contact matrices describe ellipses or hy-
perbolas, while degenerate contact matrices give rise to straight lines or
parabolas. All these contact borders can be parameterized in polar co-
ordinates. Using the polar ordering property of points on the contact
border, we find an algorithm that constructs Voronoi tessellations from
the elliptic generators.

4.1. Voronoi generators consisting of norm-functions
give rise to curved cell-cell contacts

The following definitions involve the d-dimensional real vector space1 Rd,
which is a particular example of a normed space. In principle one could
give these definitions in the more general setting of normed spaces. How-
ever, this generalization is not useful for describing biological systems in
the intended context. Let {i = 1, . . . N} be a set of indices with N ∈ N
members.

1For an introductory text on vector spaces and linear algebra, see the particularly
accessible textbook [25]. For reference purposes, [37] is quite versatile.
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Definition 4.1.1 (Voronoi generator): Let ‖.‖i be a norm on Rd, and let
the zero element of the normed space

(
Rd, ‖.‖i

)
be denoted by xi. Then

the norm ‖.‖i is called Voronoi generator.

Remark: The zero element xi of the norm ‖.‖i is defined by the expression
‖xi‖i = 0. In practice, xi is supposed to coincide with the position of the
cell center, for example as given by the center of cell body or nucleus.

Example 4.1.2: Consider the n-th power norm of the d-dimensional vec-
tor x := (x1, . . . , xk, . . . , xd),

‖x‖(n) :=
( d∑

k=1

xnk

)1/n

. (4.1)

The corresponding shifted expressions

‖x‖i := ‖x− xi‖(n) (4.2)

are also norms, whereby the normed spaces
(
Rd, ‖.‖i

)
have the zero-

element xi.

Example 4.1.3: Let F̃ ∈ Rd×d be a d-dimensional, symmetric, positive
definite matrix. With x as in the previous example, the expression

‖x‖(F̃) =
[
xT · F̃ · x

]1/2
(4.3)

constitutes a norm. Allowing a separate F̃i for each i, and considering x
relative to xi, we obtain the norms

‖x‖i := ‖x− xi‖(F̃i) ≡
[
(x− xi)

T · Fi · (x− xi)
]1/2

, (4.4)

where the corresponding normed space
(
Rd, ‖.‖i

)
again has its zero ele-

ment at xi.

Definition 4.1.4 (Voronoi cell): Let
{
‖.‖i : i = 1, . . . , N

}
be a set of

Voronoi generators and 0 < dmax ∈ R a real number. Then

Vi :=
{
x ∈ Rd : ‖x‖i < min

[
‖x‖j, dmax

]
∀j 6= i

}
(4.5)

is the Voronoi cell corresponding to the generator ‖.‖i.
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Remark 4.1.5: This marks the central property of Voronoi tessellations.
The set Vi consists of the “spatial” surrounding of xi. All points in Vi
are – in this general sense – closer to xi than to any other generator xj
with i 6= j.

Definition 4.1.6 (Contact border, neighbor pair): Let Vi be the closure
of Voronoi cell i, and let i 6= j. If the intersection

Γij := Vi ∩ Vj 6= ∅, (4.6)

is non-empty, then i, j form a neighbor pair and Γij is called the contact
border. This neighbor relation is denoted by i ∼ j.

Remark (Contact equation): From the definitions 4.1.4 and 4.1.6, we
find that Γij is embedded in a certain point set,

Γij ⊂
{
x ∈ Rd : ‖x‖i = ‖x‖j

}
. (4.7)

This set is described by the so-called contact equation, ‖x‖i = ‖x‖j,
and represents a hyper-surface, which separates the two corresponding
Voronoi cells.

Corollary 4.1.7 (Generalized Voronoi cell): Let P : R 3 y 7→ P(y) ∈ R
be a scaling function of the form

P
(
y
)

= qyν + P0, (4.8)

with the real constants q 6= 0, ν 6= 0,P0 ∈ R. The following definitions of
a Voronoi cell Vi are equivalent:

1. Vi =

{
x ∈ Rd : ‖x‖i < min

[
‖x‖j, dmax

]
∀j 6= i

}
, (4.9)

2. sgn q = sgn ν :

Vi =

{
x ∈ Rd : P

(
‖x‖i

)
< min

[
P
(
‖x‖j

)
,P
(
dmax

)]
∀j 6= i

}
,

(4.10)

3. sgn q 6= sgn ν :

Vi =

{
x ∈ Rd : P

(
‖x‖i

)
> max

[
P
(
‖x‖j

)
,P
(
dmax

)]
∀j 6= i

}
.

(4.11)
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Proof: The result follows from equivalent reformulations of the inequal-
ity in equation (4.5). First we note that the shape of the contact border
Γij does not change when transforming both sides of the contact equa-
tion with the help of the scaling function P . For the Voronoi cells not
to change, however, the inequality in (4.5) has to be transformed si-
multaneously. The resulting expressions (4.9, 4.10, 4.11) depend on the
monotonicity behavior of P , which is determined by the sign function
sgn(q · ν) of the involved constants q, ν.

Based on the corollary 4.1.7, we may extend our notion of Voronoi gen-
erators, so that the flexibility of the scaling function P can be exploited
in the intended biological application.

Definition 4.1.8 (Generalized Voronoi generator): Let P(y) = qyν+P0

be a scaling function with real constants q 6= 0, ν 6= 0,P0 ∈ R. Define the
abbreviations

Pi(.) ≡ P
(
‖.‖i
)

Pex ≡ P
(
dmax

)
. (4.12)

Then we call the scaled norm Pi(.) a generalized Voronoi generator, and
Pex the extremal scaled norm.

Remark (Generalized contact equation, point power): With the pre-
ceding notion of generalized Voronoi generator, the embedding set of a
contact border (4.7) is modified to

Γij ⊂
{
x ∈ Rd : Pi(x) = Pj(x)

}
, (4.13)

which now involves the generalized contact equation Pi(x) = Pj(x). In
this sense, each generalized Voronoi generator Pi assigns to the point x
a certain power Pi(x). Voronoi cells and contact equation therefore arise
from the comparison of the point powers Pi(x),Pj(x), which also may be
interpreted as distance notions, cf. also remark 4.1.5.

Definition 4.1.9 (Free margin): The free margin Γi0 of a Voronoi cell
Vi is the boundary set

Γi0 := ∂Vi \
⋃

j 6=i

Γij. (4.14)

Remark: From definition 4.1.4, dmax determines the maximal extension of
a Voronoi cell in directions where there is no other cell. Correspondingly,
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the set Γi0 is contained in
{
x ∈ Rd : ‖x‖i = dmax

}
. By corollary 4.1.7,

this is equivalent to

Γi0 ⊂
{
x ∈ Rd : Pi(x) = Pex

}
, (4.15)

meaning that the point power Pi(x) is constant on the free margin Γi0.

In the remaining part of this section, let N ∈ N indicate the number
of present Voronoi generators.

Definition 4.1.10 (Voronoi tessellation): Let
{
Pi(.) : i = 1, . . . , N

}

be a specific set of generalized Voronoi generators. The collection of all
Voronoi cells ⋃

i

Vi (4.16)

is called Voronoi tessellation.

Definition 4.1.11 (Voronoi diagram): Let
{
Pi(.) : i = 1, . . . , N

}
be a

specific set of generalized Voronoi generators. Then the graph of
⋃

i∼j

Γij ∪
⋃

i

Γi0 (4.17)

is called Voronoi diagram.

Remark: In two spatial dimensions, the Voronoi tessellation covers space
with its plastering mosaic tiles or cells, while the corresponding diagram
refers to the emerging edges in between. However, in the rest of this thesis
we do not insist on this peculiar distinction and consider Voronoi tessel-
lation and Voronoi diagram as synonyms, regardless of the dimension of
the underlying space.

Definition 4.1.12 (Delaunay triangulation): Let
{
Pi(.) : i = 1, . . . , N

}

be a specific set of generators, and let
{

(i, j) : i ∼ j
}

be the set of
neighbor pairs of the Voronoi tessellation. The graph of straight lines
connecting the cell centers of all neighbor pairs (i, j) is called Delaunay
triangulation.

Remark: As a historic note, Voronoi tessellations constructed from the
Euclidean norm were described by Voronoi2 in 1908 [223]. Delaunay
triangulations were proposed by Delaunay3 in 1934 [56].

2Russian name [228]: Ãåîðãèé Ôåîäîñüåâè÷ Âîðîíîé
3Russian name [228]: Áîðèñ Íèêîëàåâè÷ Äåëîíå
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Example 4.1.13: Let the centers xi ∈ R2 for all i = 1, . . . , N and the

generalized Voronoi generators Pi
(
x
)

=
(
x − xi

)2
. With q = 1, ν =

2,P0 = 0 in equation (4.8), we see that the underlying norm ‖.‖i is the
Euclidean one, whereby the zero element is situated at xi, as usual. The
generalized contact equation (4.13) reads

Pi(x) = Pj(x) ⇔ ‖x‖i = ‖x‖j ⇔ ‖x− xi‖ = ‖x− xj‖, (4.18)

where the equivalence to the ordinary contact equation 4.7 follows from
corollary 4.1.7. In this two-dimensional setting, the set of all contact
borders

{
Γij : i ∼ j

}
(straight lines) and free margins

{
Γi0 : Γi0 6= ∅

}

(circular arcs) comprises the Voronoi diagram as sketched in figure 4.1
(left). The generator centers xi are indicated by blue stars, which are
situated within their surrounding Voronoi cell as delimited by the afore-
mentioned Γij and Γi0. The resulting Delaunay triangulation connects
the centers xi of neighboring cells by cyan lines. As a first generalization
to these simple Euclidean generators, we have proposed a method to con-
struct two-dimensional Voronoi tessellations from Pi(x) = (x − xi)

2/r2
i ,

with ri > 0 a scalar weight representing the size of the cell [31]. It turned
out, that the cell-cell contacts Γij in general also comprise circular arcs,
in addition to the free margins Γi0, see figure 4.1 (right).

In the following section we construct an anisotropic norm allowing for
curved cell-cell contacts with varying curvature.

4.2. Homogeneous coordinates facilitate transformation
operations on vectors

In the preceding section we have set up the formal definition of Voronoi
tessellation in the vector space Rd. However, in this section we employ
the notion of homogeneous coordinates instead of considering the usual
Cartesian vectors with d components.4 Dating back to Möbius [149],
homogeneous coordinates are heavily used in computer graphics, because
they simplify and unify many operations on sets of points or vectors, see
e.g. [102]5. Most notably, translation and subsequent rotation can be

4Initially, I encountered the idea of homogeneous coordinates on wikipedia.org

[228, fall 2010]. Subsequently, I have set up my own notions, which are presented in
the rest of this section.

5Pierluigi Taddei, the author of [208], pointed me to the highly relevant article [102]
by Kenneth J. Hill in August 2012, when the presented theory on elliptic Voronoi
diagrams had already been completed.
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Figure 4.1.: Planar (left) and circular (right) Voronoi diagram differ in
the shapes of their contact borders Γij (red). The underlying
centers xi (blue stars) are the same in both diagrams. The
generators in the planar Voronoi diagram consist of the Eu-
clidean norm, centered at the center points xi. Weighting the
Euclidean norm with different weights ri > 0 for each center
causes the Voronoi cells to exhibit varying sizes and shapes.
In particular, the contacts are straight lines in the planar
Voronoi diagram (left), whereas in the circular Voronoi di-
agram (right) they are spherical arcs. The free margins Γi0
(black) close the cells towards the surrounding. The light
cyan lines connect cell centers obeying the neighbor relation
i ∼ j, i.e. when the cells are adjacent to each other and
thereby share a common cell boundary Γij. In this way, the
so-called Delaunay triangulation (cyan) is the geometric dual
of the Voronoi tessellation (red).
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represented by a product of two corresponding square matrices. This is
also the main advantage of homogeneous coordinates to the modelling of
cells in this thesis. For readers interested in a more formal development
of homogeneous coordinates, we refer to mathematical texts on projective
geometry, for example [51].

Definition 4.2.1 (Homogeneous coordinates): Let x =
(
x1, . . . , xd

)
∈

Rd, and let Λ 6= 0 be a length unit. The vector

xhom :=
(
x1/Λ, . . . , xd/Λ, 1

)
∈ Rd+1 (4.19)

is called homogeneous transform of x. Its components x1, . . . , xd, 1 are
the homogeneous coordinates of x.

Remark: In homogeneous coordinates, the position of a point is encoded
in the ratios – and not the absolute values – of the vector components.
Since we are dealing with cells and cell aggregates of finite extension, we
do not need to take into account points at infinity, where Λ would be zero.
Therefore, the transformation x↔ xhom is bijective, i.e. an isomorphism.
For convenience, we set Λ := 1.

Definition 4.2.2 (Translation matrix): Let y =
(
y1, . . . , yd

)
∈ Rd. Then

T = T
(
y
)

:=




1 0 . . . 0 y1

0
. . .

. . .
...

...
...
. . .

. . . 0
...

...
. . . 1 yd

0 . . . . . . 0 1




∈ R(d+1)×(d+1) (4.20)

is called d-dimensional homogeneous translation matrix.

Remark: The d-dimensional homogeneous translation matrix acts on the
homogeneous transform xhom of any d-dimensional vectors x. Suppose
x =

(
x1, . . . , xd

)
,y =

(
y1, . . . , yd

)
∈ Rd. The operation

x̃hom := T
(
y
)
xhom (4.21)

displaces x by y. This can be seen by assuming Λ = 1, inserting xhom

and computing the matrix product

x̃h =
(
x1 + y1, . . . , xd + yd, 1

)
. (4.22)

98



Definition 4.2.3 (Homogeneous rotation matrix): Let D̃ = D̃
(
{ϕk}

)

be the rotation matrix in d dimensions, with its angle parameters ϕk ∈
R ∀k = 1, . . . , d(d− 1)/2. Then

D = D
(
{ϕ}

)
:=




. . . . .
.

0

D̃
(
{ϕk}

) ...

. .
. . . . 0

0 . . . 0 1




∈ R(d+1)×(d+1) (4.23)

is called d-dimensional homogeneous rotation matrix.

With these notations at hand, we can conveniently define certain func-
tions Pi as anisotropic generators of generalized Voronoi diagrams. As
indicated before, each of these functions then encodes the approximate
shape of a tissue cell in a sense that will become apparent in the following
sections.

4.3. Matrices in homogeneous coordinates provide for
anisotropic Voronoi generators

Definition 4.3.1 (Anisotropic generator matrix): Let Ti := T
(
−xi

)

and Di = D
(
{−ϕik}

)
be d-dimensional homogeneous translation and ro-

tation matrices, respectively. Furthermore, let the homogeneous axis ma-
trix Fi := diag

(
wi1, . . . , w

i
d,−1

)
, be diagonal with wij > 0 for j = 1, . . . , d.

The anisotropic generator matrix Ei is then defined as

Ei := TTi DT
i FiDiTi ∈ R(d+1)×(d+1), (4.24)

whereby superscript capital T indicates matrix transposition.

The parameters xi describe center position, and
{
wij
}

the anisotropic
axis weights of a specific Voronoi generator i. Its orientation is determined
by the d(d − 1)/2 angles {ϕik} in the homogeneous rotation matrix Di.
Again, the center position of a generator is supposed to coincide with the
center of a model cell body or nucleus.

Definition 4.3.2 (Anisotropic Voronoi generator): The quadratic func-
tion

Pi
(
x
)

:= xThom · Ei · xhom. (4.25)

is called anisotropic Voronoi generator.
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Before exploring the formal properties of Pi, and, in particular, whether
it is of the form as required by definition 4.1.1, we consider a basic ex-
ample, which provides also a kind of formal motivation for our approach.

Example: In d = 2 there is only the single angle parameter ϕi1 ≡ ϕi
in the homogeneous rotation matrix Di. Furthermore we identify wi1 ≡
1/a2

i , w
i
2 ≡ 1/b2

i in the homogeneous axis matrix Fi, where ai and bi
are positive real constants. Expansion of equation (4.25) leads to point
powers being a quadratic form in the components x, y of x,

Pi
(
x
)

=

(
∆x cosϕi + ∆y sinϕi

)2

a2
i

+

(
−∆x sinϕi + ∆y cosϕi

)2

b2
i

− 1,

(4.26)
with the abbreviations ∆x := x−xi, ∆y := y−yi, xi = (xi, yi). Equating
the right-hand side with a constant C > −1, one obtains the implicit
definition of the graph of an ellipse. In the specific case of xi = yi = ϕi =
0, the point power Pi(x) simplifies to

Pi(x) =
x2

a2
i

+
y2

b2
i

− 1. (4.27)

If we furthermore set Pi(x) equal to zero, we obtain an ellipse equation
in its fundamental form, whereby the semi-axes ai, bi are aligned with the
coordinate axes x, y,

Pi
(
x
)

= 0 ⇔ x2

a2
i

+
y2

b2
i

= 1. (4.28)

We interpret the emerging graph as the outline of the cell body, which
surrounds the center of each cell, and encloses its nucleus.

Proposition 4.3.3: The expression xThom ·Ei ·xhom is a Voronoi generator,
i.e. of the form q‖x‖ν + P0.

Proof: Without loss of generality assume Ei = Fi (otherwise use Ti,Di

to transform both Ei and x). Then we have

Pi
(
x
)

= x · F̃i · x− 1, with F̃i = diag
(
w

(i)
1 , . . . , w

(i)
d

)
, (4.29)

where x =
(
x1, . . . , xd

)
. Note that F̃i ∈ Rd×d is the non-homogeneous

axis matrix, without the additional “homogeneous” dimension. For con-
venience, we drop the generator index i for the rest of this proof. The
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first summand in the preceding equation can be understood as a scalar
product,

x · F̃ · y =
d∑

k=1

wkxkyk =: p
(
x,y

)
, (4.30)

because it is bilinear, symmetric and positive definite, since for all k :
wk > 0. Therefore,

√
p(x,x) is a norm, and we can identify q = 1, ν =

2,P0 = −1.

Remark: When employing Voronoi generators of the form (4.25), one can
no longer express all norms that would have been possible according to
definition 4.1.8. Instead, the attainable norms inherit the axis matrix F̃i,
which has to be positive definite for the norm property to hold. The re-
sulting norms comprise quadratic forms in the components of the vector
x. In that sense, the previously given definition 4.1.8 of Voronoi genera-
tors is therefore more flexible. However, for the intended modeling aim
of expressing the preferred shape function of biological cells as ellipses,
the expression from equation (4.25) is sufficient.

In the following sections, we restrict our analysis to systems of two
spatial dimensions. This approach does not only simplify the underly-
ing equations, but it is also justifiable on biological grounds: all tissues
ultimately arise from quasi two-dimensional epithelial structures during
embryogenesis [77, 160], which partially carry over to the adult, e.g. in
intestine and skin.

4.4. Circular Voronoi diagrams emerge from isotropic
axis matrices

1. Isotropic axis weights: Let
{
Pi : i = 1, . . . , N

}
be a set of N Voronoi

generators, so that the resulting point powers
{
Pi(x)

}
are of the form

(4.25). Furthermore, assume that the underlying axis weights wi1, . . . w
i
d

in the axis matrices Fi from equation (4.24) coincide,

wi1 = . . . = wid ≡ 1/r2
i ∀i = 1, . . . , N, (4.31)

where the ri are positive real numbers. With the help of the additional
assumption (xi + xj)/2 = 0 we have previously shown [31], that the
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Rij

xj

rj

xi

Mij ri

dij

δj δi

δij

d̂ijSij

Γij

Figure 4.2.: Circular contact surface Γij (red) with radius Rij and cen-
tered at Mij according to equation (4.33). Positions xi,xj
and weights ri, rj are indicated in green. The rest of the
geometric items presented here will be explained in section
5.3.

generalized contact equation (4.13) can be rewritten to

(
x−Mij

)2
= R2

ij, with (4.32)

Mij = −r
2
i + r2

j

r2
i − r2

j

· xi − xj
2

, Rij =
rirj
|r2
i − r2

j |
∣∣xi − xj

∣∣. (4.33)

for ri 6= rj. Clearly, the preceding contact equation represents a sphere
of radius Rij centered at Mij, see figure 4.2.

Definition 4.4.1 (Circular Voronoi tessellation/diagram): A Voronoi
tessellation constructed from the scaled norms (4.25) with isotropic weights
such that wik ≡ 1/r2

i holds ∀k = 1, . . . , d is called circular.

Remark: This method of constructing circular Voronoi tessellations in
two dimensions is discussed as “quotient method” in [31, section 2.2].
Figure 4.1 displays an example of such a circular Voronoi diagram with
23 cells in the right panel.

Under the assumption of isotropic axis weights from equation (4.31),
we can conveniently represent the information contained in a generator Pi
by the mathematical ball Bri(xi), see the green circles in 4.2. In practice,
this ball centered at xi and with radius ri could be fitted to the cell body
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or nucleus. In terms of the point power Pi(x), we thus can express the
cell body or nucleus by the set identity,

Bri(xi) =
{
x ∈ R2 : Pi(x) ≤ 0

}
, (4.34)

which provides for a clear-cut relation between formal description and
the actual biological system. Importantly, the Voronoi generator balls
Bri(xi) are readily accessible to experimental determination via image
processing, see also section 5.2.

2. Planar cell-cell contacts: A notable special case in circular Voronoi
diagrams is the occurrence of a planar contact boundary. This happens
when the isotropic axis weights of two adjacent generators are equal,
ri = rj. In this case, the two equations in (4.33) clearly degenerate
and become undefined. However, under these circumstances, the contact
equation Pi(x) = Pj(x) is still defined and yields

(
x− xi + xj

2

)
·
(
xi − xj

)
= 0. (4.35)

This represents a (d − 1)-dimensional hyper-plane embedded in the d-
dimensional space, which forms the perpendicular bisector of the straight
line connecting the two centers xi and xj. In this way, conventional
Voronoi diagrams [105, 223] are contained in the generalized framework
presented here.

In chapter 5, we show how to make use of spherical Voronoi tessellations
in order to simulate the spatio-temporal dynamics of two-dimensional
cell aggregates or proto-tissues. Before coming to numerics, however, we
first explore how to construct Voronoi diagrams from general anisotropic
generators of the form (4.25). Such diagrams are of novel type and have
– to my knowledge – so far not been described elsewhere. There seems to
be only one comparable approach [72–74], which employs another notion
of point power, see also paragraph 4.9.4 for details.

4.5. The contact matrix can be diagonalized

Definition 4.5.1 (Contact matrix): Let Pi(x) = xThom · Ei · xhom and
Pj(x) = xThom ·Ej · xhom be two anisotropic Voronoi generators according
to definitions 4.3.1 and 4.3.2. The matrix

E := Ei − Ej (4.36)

is called contact matrix of the two generators Pi,Pj.
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Proposition 4.5.2 (Matrix contact equation): The contact equation
(4.7) can be represented in matrix form

xThom · E · xhom = 0, (4.37)

with the contact matrix E ≡ Ei − Ej.

Proof: The anisotropic generators Pi and Pj have the matrix represen-
tation (4.25), which we insert into the contact equation (4.7), namely
Pi
(
x
)

= Pj
(
x
)
. We obtain the result by subtracting the right-hand side

and factoring out xThom and xhom.

Since the shape of the contact between two cells is determined by equa-
tion (4.37), it is worthwhile to study its properties in detail.

Corollary 4.5.3: The contact matrix E is symmetric.

Proof: By definition 4.3.1, Ei = TT (−xi)DT (−ϕi)FiD(−ϕi)T(−xi). In
two dimensions, the translation matrix T(−xi) as defined in equation
(4.20) contains the explicit vector components (xi, yi) = xi of the cell
center xi. Moreover, the homogeneous axis and rotation matrices are

Fi :=



a−2
i 0 0
0 b−2

i 0
0 0 −1


 , D

(
ϕi
)

:=



ci −si 0
si ci 0
0 0 1


 , (4.38)

respectively, with ci := cosϕi and si := sinϕi. Computing the product
of the five matrices we obtain

Ei =



αi γi κi
γi βi λi
κi λi ωi


 , with

αi := c2
i a
−2
i + s2

i b
−2
i ,

βi := s2
i a
−2
i + c2

i b
−2
i ,

γi := cisi
(
a−2
i − b−2

i

)
,

κi := −αixi − γiyi,
λi := −γixi − βiyi,
ωi := αix

2
i + 2γixiyi + βiy

2
i − 1,

(4.39)

Since the anisotropic generator matrix Ei is symmetric, also the contact
matrix E = Ei − Ej is symmetric.

Similar as for Ei, we introduce the following short-hand notations for
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the contact matrix,

E = Ei − Ej :=



α γ κ
γ β λ
κ λ ω


 , with

α := αi − αj,
β := βi − βj,
γ := γi − γj,
κ := κi − κj,
λ := λi − λj,
ω := ωi − ωj.

(4.40)

Clearly, the expression xhom · E · xhom from the contact equation is a
quadratic form in the components x, y of x. In general, such quadratic
forms describe a conic section (or briefly, conic). In order to assess
whether its graph is an ellipse, hyperbola, or other curve, one needs to
find the eigenvalues of E. One possibility to find them is diagonalizing the
contact matrix E. As an additional benefit, we may get some idea as to
where the conic is located and how it is oriented in the two-dimensional
plane.

Here we make an ansatz much alike the construction principle for Ei
from definition 4.3.1. Consider the transformed contact matrix

E′ = DT
(
φ
)
TT
(
x0

)
ET
(
x0

)
D
(
φ
)

=:



α′ γ′ κ′

γ̃′ β′ λ′

κ̃′ λ̃′ ω′


 . (4.41)

The specific coordinate system in which E′ becomes diagonal has the
origin at x0 :=

(
x0, y0

)
. With the abbreviations c ≡ cosφ, s ≡ sinφ we

obtain

α′ = αc2 + 2γcs+ βs2,

β′ = αs2 − 2γcs+ βc2,

γ̃′ = γ′ = −
(
α− β

)
cs+ γ

(
c2 − s2

)
,

κ̃′ = κ′ = c
(
αx0 + γy0 + κ

)
+ s

(
γx0 + βy0 + λ

)
,

(4.42)

λ̃′ = λ′ = −s
(
αx0 + γy0 + κ

)
+ c

(
γx0 + βy0 + λ

)
,

ω′ = x0

(
αx0 + γy0 + κ

)
+ y0

(
γx0 + βy0 + λ

)
+ κx0 + λy0 + ω.

This shows that E′ is indeed symmetric. In order to diagonalize E′, we
have to find φ, x0, y0 such that γ′ = κ′ = λ′ = 0. Once we know such
φ, x0, y0, we have also found the actual center x0 and orientation φ of the
contact border.
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For the translation parts of E′ to vanish, we set

κ′ = 0

λ′ = 0

}
⇔
{
αx0 + γy0 = −κ
γx0 + βy0 = −λ (4.43)

Solvability of this linear system depends on the determinant of the two-
dimensional part of the contact matrix,

δ :=

∣∣∣∣
α γ
γ β

∣∣∣∣ = αβ − γ2. (4.44)

With this short-hand notation, we solve the system (4.43) and thus we
have proven the following

Proposition 4.5.4: The translation parts κ′, λ′ of the transformed con-
tact matrix (4.42) vanish, iff6

δ 6= 0 ∧ x0 =
1

δ

(
γλ− βκ
γκ− αλ

)
. (4.45)

Remark: Using of (4.43) and (4.45), the last equation in (4.42) can be
simplified to

ω′ = ω + κx0 + λy0 = ω − 1

δ

(
αλ2 − 2γλκ+ βκ2

)
iff δ 6= 0. (4.46)

In order to complete the diagonalization of E′, we investigate the im-
plications of setting γ′ = 0, however this requires several auxiliary con-
structs and additional notions. From the trigonometric relations c =(
eiφ + e−iφ

)
/2 and s = −i

(
eiφ − e−iφ

)
/2 follows

cs = − i
4

(
e2iφ − e−2iφ

)
, c2 − s2 =

1

2

(
e2iφ + e−2iφ

)
. (4.47)

With these two identities we cast the γ′-equation from (4.42) into the
form

4γ′ = e2iφ
[
2γ + i(α− β)

]
+ e−2iφ

[
2γ − i(α− β)

]
. (4.48)

We observe that in the square brackets there appears the complex number
z := 2γ + i(α − β) and its conjugate z∗ = 2γ − i(α − β). Equivalently,
one may use the polar representation of z,

z = reiψ, z∗ = re−iψ, with

r2 := 4γ2 + (α−β)2, sinψ :=
α− β
r

, cosψ :=
2γ

r
,

(4.49)

6if and only if
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where we employ the usual convention r ≥ 0. Thus, for r 6= 0 the
expression 4γ′ = 0 reads e4iφ + e2iψ = 0. In this way, we find with the
help of −1 = ei(2n+1)π, n ∈ Z the orientation

φ =
(2n+ 1)π

4
− ψ

2
, (for r 6= 0) (4.50)

of the contact border in the plane. Without loss of generality it is suffi-
cient to consider n = −2,−1, 0, 1. Moreover, in the equations (4.42) for
α′, β′, γ′, there appear only two-factor products of trigonometric functions
c = cosφ, s = sinφ, namely c2, s2, cs. In order to express these products
in terms of (α− β), γ, r, we compute c and s from equation (4.50). They
are both of the form

c, s = ±
√

2

2

(
cos

ψ

2
± sin

ψ

2

)
, (4.51)

where the actual signs depend on n. In this way, the products c2, s2, cs
do only depend on sinψ and cosψ. With the relations (4.49), we obtain

c2 =
1

2

(
1 + [−1]n

α− β
r

)
, s2 =

1

2

(
1− [−1]n

α− β
r

)
, cs =

1

2
[−1]n

2γ

r
,

(4.52)
Inserting these expressions into the first three equations of (4.42) yields

α′ =
1

2

(
α + β + [−1]nr

)
,

β′ =
1

2

(
α + β − [−1]nr

)
, with n = −2,−1, 0, 1, and r 6= 0,

(4.53)

whereby γ′ vanishes as expected. This completes the proof of:

Proposition 4.5.5: The two-dimensional rotation part γ′ of the trans-
formed contact matrix (4.42) vanishes, iff r 6= 0 ∧ φ = (2n+1)π/4−ψ/2.

Altogether, the transformed contact matrix is diagonal, namely E′ =
diag

(
α′, β′, ω′

)
, and all the other entries vanish. Based on this simple

representation, we may explore special cases such as δ = 0 or r = 0.
Before that, however, we investigate under which conditions generator
and contact matrices can be determined uniquely.
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4.6. Generator and diagonalized contact matrices are
unique

In the preceding sections we constructed Voronoi generators Pi(x) =
xThom · Ei · xhom representing scaled norms. The identity Pi(x) = 0 de-
scribes the graph of an ellipse situated in the two-dimensional plane. Our
initial premise was to construct Voronoi diagrams from certain properties
of biological tissue cells. As a first approximation beyond the isotropic
sphere, the shape of cell bodies (containing nucleus, organelles, etc.) can
be represented by ellipses [231]. Now we ask for the corresponding gen-
erator matrix Ei, given a cell body of idealized ellipsoid shape. Clearly,
the center position of the cell body uniquely determines the position pa-
rameter xi of Ei. In contrast, there is some redundancy in the choice of
the corresponding

{
ai, bi, ϕi

}
: First, ai could be either major or minor

half-axis of the ellipse. Next, for a fixed ratio of major and minor half-
axes, four distinct angles ϕi = ϕ̃i +nπ/2, n ∈ Z align with the symmetry
axes of the ellipse. Specifically, there are four parameter constellations of
winding number zero7 which all describe the same graph:

ai > bi ∧ ϕi = ±ϕ̃i and ai < bi ∧ ϕi = ±ϕ̃⊥i . (4.54)

Here, ±ϕ̃⊥i indicate those two directions perpendicular to ±ϕ̃i ∈ [−π, π),
which are also situated in the interval [−π, π). In order to make the
choice of

{
ai, bi, ϕi

}
unique, we align ϕi with the major axis of the ellipse

and impose the following two conditions:

ai ≥ bi ∧ ϕi ∈
[
−π

2
,
π

2

)
. (4.55)

In a similar manner, we can make the parameters
{
α′, β′, φ

}
of the contact

matrix Ei unique, if we require

α′ ≤ β′ ∧ φ ∈
[
−π

2
,
π

2

)
, (4.56)

cf. Fi in equation (4.38) and E′ in equation (4.59). Specifically, if r = 0
then we have α′ = β′ from equation (4.49) and the graph of xh ·E ·xh = 0
is circular. In this way, φ does not affect the shape of the contact graph.

With the help of the uniqueness criterion (4.56), we can slightly simplify
the expressions (4.53). Enforcing α′ ≤ β′ leads us to n being odd, so that

7Being of winding number zero means that the angle ϕi is situated within the
interval [−π, π).
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way we obtain

α′ =
1

2

(
α + β − r

)
, β′ =

1

2

(
α + β + r

)
. (4.57)

Requiring the angle φ ∈
[
−π/2, π/2

)
and considering only odd n leaves

only one consistent choice for the signs of c, s from the identities in (4.52),

c =

√
2

2

√
1− α− β

r
,





s =

√
2

2

√
1 +

α− β
r

, for γ ≤ 0,

s = −
√

2

2

√
1 +

α− β
r

, for γ > 0,

(4.58)

where r > 0 has again been employed. We have thus proven the main
result:

Theorem 4.6.1: Let E be a contact matrix of the form (4.40), with
δ = αβ − γ2 6= 0 and r2 = 4γ2 + (α − β)2 > 0. Then the transformed
contact matrix E′ in equation (4.41) is unique and diagonal,

E′ =



α′ 0 0
0 β′ 0
0 0 ω′


 , with

α′ =
1

2

(
α + β − r

)
,

β′ =
1

2

(
α + β + r

)
,

ω′ = ω − αλ2 − 2γλκ+ βκ2

δ
.

(4.59)

Now we are in the position to study the properties of contact borders
and the precise conditions under which a specific shape occurs. In the
non-degenerate cases we have δ 6= 0 ∧ r > 0, so that with sgnα′ =
sgn β′ = − sgnω′, the contact border is an ellipse8, whereas with sgnα′ 6=
sgn β′ a hyperbola. Apart from these two simple cases, there are several
degenerate contact surfaces which we treat in the following section.

4.7. There are several types of degenerate contact
border surfaces

In the preceding sections we have found elliptic and hyperbolic contact
borders by diagonalizing the contact matrix. There are several cases in
which a complete diagonalization of the contact matrix is not possible:

8 It remains elusive whether sgnα′ = sgnβ′ = sgnω′ is actually possible.
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1. r2 = 0 ⇔ α = β ∧ γ = 0, i.e. ψ and φ undefined, cf. (4.50)

2. δ = αβ − γ2 = 0, i.e. x0 =
(
x0, y0

)
undefined, cf. (4.45)

a) α = β = γ = 0 (implies also case 1),

b) α 6= 0 ∧ β = γ = 0,

c) β 6= 0 ∧ α = γ = 0,

d) γ 6= 0 ∧ αβ = γ2.

Let us investigate what kind of contact border arises in these special
cases.

1. Undefined contact orientation φ, circular contact: We have r = 0,
i.e. α = β ∧ γ = 0. First, assume α 6= 0, so that also β 6= 0, otherwise
refer to case 2a. Under these assumptions, δ = αβ − γ2 = α2 > 0. Next,
we partially transform the contact matrix E according to equation (4.41),
however without including the rotation D. This is equivalent to formally
setting φ = 0, which yields the degenerate transformed contact matrix

E′ = TT
(
x0

)
ET
(
x0

)
=



α 0 0
0 α 0
0 0 ω′


 . (4.60)

Thereby, E′ is written in coordinates centered at x0. Equations (4.45)
and (4.46) remain valid, so that inserting δ = α2 gives us the identities

x0 = − 1

α

(
κ
λ

)
, ω′ = ω − κ2 + λ2

α
. (4.61)

Then, the quadratic form of the contact border reads

(
x− x0

)2
=
κ2 + λ2

α2
− ω

α
. (4.62)

The preceding equation represents – up to matters of sign on the right
hand side – a sphere. Therefore, it remains to be shown that the right-
hand side is ≥ 0. To this end, we investigate the premises α = β ∧ γ = 0,
together with the generator uniqueness criteria ai ≥ bi ≥ 0 and ϕi/j ∈[
−π/2;π/2

)
(cf. section 4.6). We observe that there are two sub-cases,

1. ϕi = ϕj  a−2
i − b−2

i = a−2
j − b−2

j ,

2. ϕi 6= ϕj  a−2
i = b−2

i ∧ a−2
j = b−2

j ,
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which also cover the situation with ‘special’ angles ϕi/j = nπ/4, n ∈ Z,
whence c2

i/j = s2
i/j.

In the first sub-case ϕi = ϕj, a longer but straight-forward calculation
yields

κ2 + λ2 − αω =
1

a2
i a

2
j

(
ci
(
xi − xj

)
+ si

(
yi − yj

))2

+
1

b2
i b

2
j

(
−si
(
xi − xj

)
+ ci

(
yi − yj

))2

≥ 0,
(4.63)

with the abbreviations ci ≡ cosϕi, si ≡ sinϕi. In deriving this relation,
we can use γi = γj to symmetrize the γ-terms by setting γi =

(
γi+γj

)
/2,

because γ = 0. Moreover, α2 > 0 by assumption, so that the right-
hand side of equation (4.62) is indeed ≥ 0. In particular, equality holds
iff xi = xj ∧ yi = yj, which we can exclude by requiring the generator
centers to be not coinciding. Altogether, equation (4.62) represents a
sphere under the premises α = β 6= 0 ∧ γ = 0 ∧ ϕi = ϕj ∧ xi 6= xj.

In the second sub-case ϕi 6= ϕj, both generators represent spheres,
ai = bi =: ri, aj = bj =: rj. Then the contact equation (4.62) again takes
the form of a sphere,

x0 =
r2
jxi − r2

i xj

r2
j − r2

i

,
κ2 + λ2

α2
− ω

α
=
r2
i r

2
j (xi − xj)

2

(r2
i − r2

j )
2

. (4.64)

The relation to equation (4.33) is as follows: First, we write the contact
equation (4.62) in right-handed Cartesian coordinates centered at

(
xi +

xj
)
/2, with the positive x-axis pointing towards xj. We observe that

the form of x0 does not change under this transformation. Moreover,
the y-component of both generator centers vanishes in these coordinates.
Clearly, the x-component of both transformed xi,xj are – up to the sign
– equal to half the center distance

∣∣xi− xj
∣∣/2. In this way, centers xi,xj

and weights ri, rj can be disentangled and we see that the transformed
x0 is identical to Mij from equation (4.33).

2. Undefined contact center x0, parabolic or flat contact border:
We have δ = αβ − γ2 = 0. This happens, when the semi-axes of the two
involved generator ellipses ai, bi, aj, bj obey certain ordering inequalities,
see appendix A.3.1. Here we are interested in the specific form of the
emerging contact equation xThom · E · xhom = 0, which can be seen most
directly when considering the aforementioned sub-cases:
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2a, α = β = γ = 0 : The six individual identities α = β = γ = 0 can be
condensed into three,

1

a2
i

+
1

b2
i

=
1

a2
j

+
1

b2
j

,

cos
(
2ϕi
)( 1

a2
i

− 1

b2
i

)
= cos

(
2ϕj
)( 1

a2
j

− 1

b2
j

)
,

sin
(
2ϕi
)( 1

a2
i

− 1

b2
i

)
= sin

(
2ϕj
)( 1

a2
j

− 1

b2
j

)
.

(4.65)

Squaring the last two equations and adding them yields a−2
i −b−2

i =
a−2
j −b−2

j . Addition and subtraction to/from the first equation leads
to ai = aj ∧ bi = bj, and we have

ellipse-like generators: ai = aj, bi = bj, ϕi = ϕj, (4.66)

meaning size and orientation of the generators are equal. If the
generators are circles, the sin- and cos-equations of (4.65) hold for
any ϕi, ϕj, because they vanish,

circular generators: ai = bi = aj = bj. (4.67)

Recall the homogeneous coordinate vectors xhom = (x, y, 1) as in-
troduced in definition 4.2.1. The untransformed contact equation
(4.37) reads

xThom·E·xhom = xThom·




0 0 κ
0 0 λ
κ λ ω


·xhom = 2κx+2λy+ω = 0. (4.68)

This clearly represents a straight line. There are two possibilities,

λ 6= 0 : y = −κ
λ
x− ω

2λ
,

λ = 0, κ 6= 0 : x = − ω

2κ
.

(4.69)

Both κ and λ cannot vanish at the same time, because this would
imply xi = xj, which we again exclude by requiring |xi − xj| > 0,
i.e. the centers of two distinct cells may not coincide.

2b, α 6= 0 ∧ β = γ = 0: In contrast to sub-case 2a above, the three
identities β = γ = 0 do not lead to expressions of similar simplicity.
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However, we still can use βi = βj and γi = γj, while γ = β gives no
new information. The untransformed contact equation (4.37) is

xThom ·E ·xhom = xThom ·



α 0 κ
0 0 λ
κ λ ω


 ·xhom = αx2 +2κx+2λy+ω = 0.

(4.70)
If λ does not vanish, this identity represents a parabola,

λ 6= 0 : y = − α

2λ
x
(
x+

2κ

α

)
− ω

2λ
. (4.71)

Otherwise, for λ = 0, we end up with a quadratic equation for
x. Solvability in the real numbers R depends on the discriminant
κ2−ωα, which happens to be one of the two other sub-determinants
of the contact matrix E, besides δ. Appendix A.3.2 shows that with
β = γ = λ = 0, the discriminant κ2 − ωα ≥ 0, whereby equality
arises when yi = yj. In this way we may write

λ = 0 : x = −κ
α
± 1

α

√
κ2 − ωα, (4.72)

representing two straight lines, both parallel to the y-axis. This
perhaps puzzling situation can be understood in terms of a degen-
erate underlying cone, which has its vertex at infinity. The “cone”
thus appears as a cylinder. The “conic section” of two parallel
lines from above is then obtained by intersecting the cylinder with
a plane parallel to the polar symmetry axis.

2c, β 6= 0 ∧ α = γ = 0: This case is conceptually similar to 2b. The
untransformed contact equation (4.37) is

xThom ·E ·xhom = xThom ·




0 0 κ
0 β λ
κ λ ω


 ·xhom = βy2 +2λy+2κx+ω = 0.

(4.73)
If κ = 0, the discriminant λ2 − ωβ ≥ 0, see appendix paragraph
A.3.2. Thus, we arrive at

κ 6= 0 : x = − β

2κ
y
(
y +

2λ

β

)
− ω

2κ
, (4.74)

κ = 0 : y = −λ
β
± 1

β

√
λ2 − ωβ, (4.75)

which again represents parabola and straight lines.
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2d, γ 6= 0 ∧ αβ = γ2: The two-dimensional part of the contact matrix
can be rotated by the uniquely determined angle φ from equation
(4.58), which leads to

E′ =



α′ 0 κ′

0 β′ λ′

κ′ λ′ ω′


 , with

α′ =
(
α + β − r

)
/2,

β′ =
(
α + β + r

)
/2,

κ′ = κ cosφ+ λ sinφ,

λ′ = −κ sinφ+ λ cosφ,

ω′ = ω.

(4.76)

Here, the matrix entries follow from equations (4.42), by formally
setting x0 = y0 = 0. Alternatively one can construct E′ without
translation, E′ = DT (φ)ED(φ), which leads to the same result.

By equation (4.49), the helper radius is given by r2 = 4γ2+(α−β)2.
Since we have γ2 = αβ in this case, we obtain

r2 =
(
α + β

)2
, i.e.

α′ =
(
α + β − |α + β|

)
/2,

β′ =
(
α + β + |α + β|

)
/2.

(4.77)

Depending on the sign of α + β, either α′ or β′ will vanish, while
the other will be equal to α+β. Note that due to δ = αβ−γ2 = 0,
the sign of α and β will coincide. Altogether, for any E with δ = 0
there exists a unique coordinate system tilted by −φ, so that the
transformed E′ attains the representation (4.76) with (4.77). In
these coordinates, the contact equation attains the form of either
case 2b or 2c, and these previous results can be readily applied.
The shape of the contact border is therefore either a parabola or
two parallel straight lines, possibly in superposition.

4.8. How to construct Voronoi diagrams from elliptic
generators?

In the previous two sections we have discovered various possible shapes
for the contact border between two Voronoi cells. All these shapes may
arise from the contact equation (4.37). As an overviewing summary we
recapitulate all different types of contact shapes together with precise
conditions when they do occur, see table 4.1. A specific realization of a
Voronoi diagram constructed from elliptic generators is presented in figure
4.3. For the sake of brevity, we shall call such a diagram “elliptic Voronoi
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Figure 4.3.: Voronoi diagram of four elliptic generators. The centers of
the generators are indicated by stars, and their elliptic con-
tours arising from Pi(x) = xhom · Ei · xhom = 0 are drawn
in blue. The emerging Voronoi diagram consists of cell-pair
contact borders Γij (red) and free margins Γi0 (black). The
corresponding Delaunay triangulation is indicated in thin
cyan lines connecting the generator centers. The two up-
permost cells share common size ai = aj ∧ bi = bj and ori-
entation ϕi = ϕj, so that the contact matrix degenerates,
α = β = γ = 0. Therefore, the corresponding contact border
is a straight line. Other common contact shapes are ellipse
and hyperbola. Both unlabeled contact borders (bottom and
center red line) are also hyperbola segments.
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# δ r2 α, β, γ section shape

0a − + 4.6 hyperbola
0b + + 4.6 ellipse
1 + 0 4.7.1 circle

2a 0 0 α = β = γ = 0 4.7.2a single straight line

2b 0 + β = γ = 0 4.7.2b λ 6= 0 parabola; λ = 0 two
parallel straight lines

2c 0 + α = γ = 0 4.7.2c κ 6= 0 parabola; κ = 0 two
parallel straight lines

2d 0 + αβ = γ2 4.7.2d cf. 2b or 2c

Table 4.1.: Different types of emerging contact border shapes under var-
ious conditions for the contact determinant δ = αβ − γ2, the
helper radius r2 = (α− β)2 + 4γ2, and the coefficients α, β, γ.
Note that the non-trivial zero of r2 in case 1 implies δ > 0,
otherwise see 2a. For 2d it has been shown that it either maps
to 2b or 2c. Possible contact shapes then are parabola or a
pair of parallel straight lines.

diagram” in the rest of this thesis. We now come to the algorithm how
to numerically construct such a diagram. After the detailed explanation
of each algorithm step 1–7 as given below, the involved key variables like
indices and arrays are briefly summarized at the end of each paragraph.9

1. Ordering property of the contact border: It is clear that both the
circular and the elliptic contact border from table 4.1 can be conveniently
parameterized in polar coordinates. The resulting expression R = R(θ)
is explicit, in contrast to the implicit contact equation (4.37). Using
the same polar ansatz, also hyperbolas, straight lines and parabolas can
be written as R(θ). All these polar expressions are given in appendix
A.5. With the help of this parameterization one can devise the following
ordering property for points x1,x2 ∈ Γij:

x1 < x2 ⇔ θ(x1) < θ(x2) for θ ∈ [−π, π). (4.78)

9The following paragraphs explain the accompanying prototype routine mwvoro.m

for circular generators. The presented algorithm however is general in the sense that it
is also capable to construct elliptic Voronoi tessellations. See http://www.theobio.

uni-bonn.de/people/mab/dsupfor the supplementary material including mwvoro.m.
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As discussed below, this ordering property is essential to identify the
correct contact borders.

2. Construction of candidate contact borders: The general equation
parameterizing a superset of each contact border Γij is given by (4.37).
We compute the involved matrix E = Ei − Ej for all the generator pairs
(i, j) with j > i, where i, j ∈ {1, . . . , N} are cell indices. The resulting
set of matrices is stored in the array EE, which is indexed by the pair
index m.10 Additionally, we set up a mapping array p2c, which contains
the paired cell numbers (i, j) as indexed by the corresponding pair index
m  (i, j). Conversely, the cell’s membership in pair m is recorded in
the mapping array c2p, indexed by the cell number. In principle, the
computational cost of this step is quadratic in the number of generators
N , because usually the “exterior” Voronoi cells of a specific diagram are
unbounded. However, in definition 4.1.4 we made an additional assump-
tion, which could be exploited to consider fewer generator pairs. Clearly,
the maximal extension of a Voronoi cell is bounded by extremal scaled
norm P(dmax) ≡ Pex, cf. equations (4.9–4.11). For example, the black
surrounding lines in figure 4.3 indicate the emerging exterior boundary
delimiting the Voronoi cells. Given a set of generalized generators {Pi},
one can therefore derive a maximal generator distance, beyond which no
contact border is possible. This property can be used to divide the sim-
ulation space into boxes, where only generator pairs in the same or in
two adjacent boxes need to be considered. This approach is also useful to
distribute the computation to multiple processor cores and is sometimes
called “linked-cell” algorithm [92, chapter 3].

indices: cell numbers i, j, candidate cell pair number m

arrays: mapping pair-to-cell p2c and cell-to-pair c2p,
contact matrices EE

3. Construction of candidate vertices: A vertex is the intersection of
three contact borders. It arises from a triple consisting of three pairs
formed by three generators. In the case when four or more contact bor-
ders intersect in one common point, we merely obtain several distinct
triples. Contact border intersections between two general conical sec-
tions (≡ conics) can be computed according to [102,208]. To find vertex

10The array EE in this description corresponds to the pair-to-sphere array p2s in
the accompanying prototype implementation mwvoro.m.
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candidates, we iterate over cell pairs m and m′ > m. If these two pairs
share a common cell, we have identified a triple and acquire the third pair
index m′′ from the cell-to-pair mapping array c2p. In a subroutine we
mutually intersect the three candidate contact borders and keep those in-
tersection points that occur three times. A possible safety check for such
a potential vertex with position v is whether the norm function [Pi(v)]1/2

values are – up to numerical fluctuations – identical for all three gener-
ators i of the triple. Additionally, we impose that Pi(v) ≤ Pex, because
otherwise the vertex will be outside of the Voronoi cell. Having identified
these triple’s vertex candidates, we store their position in the VV array,
indexed by their respective vertex candidate number n.11 Subsequently,
we associate contact border and potential vertex by means of the map-
ping array p2v, containing all vertex candidate numbers n of the pair as
indexed by m. For bookkeeping purposes we also create the pair-to-triple
p2t and triple-to-cell t2c mapping arrays.

index: vertex candidate number n

arrays: mapping pair-to-vertex p2v, pair-to-triple p2t,
triple-to-cell t2c, vertex candidate positions VV

4. Injection of free margin and connection vertices: For each can-
didate contact border m, we gather all vertices in the vertex candidate
array VCL.12 For each vertex we record position v ≡ (vx, vy) and squared
norm Pi(v) with respect to any/all the surrounding generator centers
{xi}. All this information can be obtained from p2v, VV and EE. Such a
vertex is said to be “ordinary” and of type 1, which is also recorded. In
addition to these “ordinary” vertices, we have to consider two kinds of
special vertices.

First, we need to account for the limited size of the Voronoi cells under
construction. Therefore we include in VCL so-called “margin” vertices.
They arise from the intersection of the free margin supersets, Pi(x) =
Pex = Pj(x), cf. definition 4.1.9.13 Up to four such margin vertices may

11The array VV in this description corresponds to the vertex-to-vertex array v2v in
the accompanying prototype implementation mwvoro.m.

12The equivalent in the prototype implementation is vcl, which contains slightly
more information. This information is not strictly needed to construct the Voronoi
tessellation, and therefore was omitted in the present description of the algorithm.

13These margin vertices are termed “wertex” in the accompanying prototype im-
plementation mwvoro.m.
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arise, which are designated the type 0. As before, squared norm Pex and
vertex position is also stored in VCL.

In order to correctly identify the Voronoi contact borders, we still need
another type of special vertices called “connection” vertices.14 Since the
angle parameter θ ∈ [−π, π) is discontinuous at the cut θ = ±π, we
have to work around the resulting continuation problem. By inserting a
pair of connection vertices at the θ-discontinuity, the unit circle can be
connected, see also step 6 below. These connection vertices are of type
2, and are also recorded in VCL.

array: vertex candidate array VCL

5. Vertex erosion and sorting: This is the central step in the algo-
rithm. Previously, in step 4, we have constructed the vertex candidate
array VCL for each candidate contact boundary m. To decide whether a
vertex is part of the contact border, we have to check that its squared
norm Pi(v) = Pj(v) with respect to the pair generators i, j is less than
Pk(v) for all surrounding generators k. The index set {k} is stored in the
common neighbor candidates vector cnbc, which is constructed from p2t

and t2c by finding all generators that participate in a triple with pair
m. For each candidate vertex in VCL, we iterate over the generators k
in cnbc. If Pi(v) > Pk(v) for some vertex candidate, then it is ignored.
The remaining vertices are then part of the contact border m, and sub-
sequently transfered into the vertex array vl. When adding vertices to
vl, we additionally record their orientation

θ(v) = atan(v − x0) (4.79)

with respect to the contact border center x0. Here, atan denotes the
arc tangent function with vector argument that uniquely determines θ ∈
[−π, π).

In principle, the number of vertices in vl has to be even, because each
line segment is delimited precisely by two points. However, when four
or more cells share a common vertex, this vertex appears two or more
times in vl. Therefore, before sorting, only vertices of unique position
are retained in vl, where an exception is made only for the connection
vertices. Then we sort vl according to increasing θ(v). The resulting
sorted vertex array svl starts with the connection vertex at θ = −π and
ends with the connection vertex at θ = π, unless they have been removed
during erosion.

14Connection vertices are termed “uertices” in mwvoro.m.
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array: sorted vertex array svl

6. Connecting vertices to full contact borders: Now we can use the
essential contact border ordering property introduced in step 1 above.
In general, the contact border Γij consists of one or more non-touching
contact arcs. If the first vertex in svl is a connection vertex, it has to
be situated on a contact arc, because it was kept during the erosion step.
Otherwise, it has been removed so that the first non-connection vertex
initiates an arc. Thus, in any case the first vertex in svl will initiate
an arc. Correspondingly, we iterate over pairs of consecutive vertices
and connect them by contact arc segments in alternating fashion like a
check board. When arriving at the last vertex, we take into account the
possibility that the first/last vertex in svl may be a connection vertex. In
this case, we remove the connection vertices so that the two arcs adjacent
to θ = ±π are united. Each of the obtained contact arcs is then stored
in the array AA, indexed by the arc number p.15 Specifically, we store
the index of the corresponding cell contact border matrix in EE, and the
θ-parameters for the start and stop vertex. Moreover, we record the
involved vertex positions and types. For bookkeeping purposes, we also
introduce a cell-to-arc mapping array c2a. The candidate pair m fulfills
the neighbor relation i ∼ j if there exists a corresponding contact border
arc. This neighbor property is recorded in the neighbor array nd, indexed
by cell number i and containing the indices of neighboring cells j.

index: arc number p

arrays: neighbor arc array AA, cell-to-arc mapping array c2a,
neighbor array nd

7. Closing free margins of Voronoi cells: The idea to close the free
margins of the Voronoi cells towards the surrounding is similar as for
step 6. Since each free margin arc is situated on an ellipse given by
Pi(x) = Pex, the ordering property described in step 1 applies here as
well. For each cell i we first collect all margin vertices from the contact
borders involving i, as recorded in c2a and AA. For each of these vertices
we then determine the angular orientation ϕ with respect to the cell center

15The array AA is the analogue of a2a in the prototype implementation mwvoro.m.
Minor differences in the data structure of AA and a2a are owed to the generality of
the algorithm described here, which is capable of constructing Voronoi tessellations
from elliptical, and not only spherical generators.
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xi. In order to ensure connectivity at ϕ = ±π, we inject an additional pair
of connecting vertices, which we erode over the already defined neighbors
j of i, as recorded in nd. After sorting the obtained vertex list according
to their angular position ϕ, we can connect consecutive vertices, so that
the resulting arcs form a checked pattern. For each of these arcs we gather
the generator index i, and the involved ϕ-parameters in the free arc array
FF, indexed by arc number q.16

index: margin arc index q

array: margin arc array FF

Taking together the steps 1–7 we have shown the second result:

Theorem 4.8.1: The algorithm described above constructs a Voronoi
diagram from generalized anisotropic generators.

Remark: The Voronoi tessellation has been introduced in definition 4.1.10,
and the generalized anisotropic generator in definition 4.3.2. The corre-
sponding Delaunay triangulation according to definition 4.1.12 follows
from the set of constructed Voronoi neighbor relations {i ∼ j}.

Remark: The notion of cell is of utmost importance in biology. There-
fore it is indispensable for the intended modelling aim to extract explicit
cellular entities from the computed Voronoi diagram. This purpose is
achieved by the c2a and nd data structures, which enable the modeler to
directly address a specific cell’s boundary and its direct neighbors.

4.9. Comparing generalized Voronoi tessellation
methods

Before coming to the comparison of several types of Voronoi diagrams,
we recapitulate the critical steps in the construction of the formal theory
proposed here. In section 4.1 we have started from Voronoi generators
comprising of norms ‖.‖i, whereby the zero element of the associated
normed (vector) space

(
Rd, ‖.‖i

)
represents the center xi of cell body or

nucleus. We then constructed equivalent formulations of the Voronoi cell
by scaling the norms ‖.‖i =: y with the scaling function P(y) = qyν +

16Again, there are slight differences in the data structure of FF with respect to the
analogue f2f in the prototype implementation mworo.m.
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P0, leading to Voronoi generators Pi in terms of scaled norms, Pi(x) ≡
P
(
‖x‖i

)
. The scaled norms Pi(x) represent the power of the point x

with respect to the generator Pi. Comparing point powers of individual
generators leads to the equation contact Pi(x) = Pj(x), which forms the
basis of constructing the Voronoi diagram, cf. equation (4.13). In order
to be able to write this contact equation as a simple product of the form
xThom · (Ei −Ej) · xhom = 0, we then introduced homogeneous coordinates
xhom in section 4.2. They allowed to understand both translations and
rotations in terms of matrix products. In particular, this formulation
involved generator norms ‖.‖i in terms of the positive definite axis matrix

F̃i, namely ‖.‖i = (xT · F̃i · x)1/2. We additionally assumed that the F̃i
are diagonal, with strictly positive matrix elements called axis weights.
This means that all norms involved in the proposed Voronoi tessellation
method are elliptic, even though the initial formulation from section 4.1
accommodates for arbitrary norms in Rd. In any case, we denote by ‖.‖
without superscript the Euclidean norm. Note also that in this section
we compare only two-dimensional Voronoi diagrams, even though there
are generalizations of some of the presented generator formulas to higher
spatial dimensions.

1. Polar generator symmetry: From the definition (4.3.2) of anisotropic
Voronoi generators Pi, we can derive an equivalent formulation for the
point power Pi(x), see appendix section A.4. The resulting expression

Pi(x) =
‖x− xi‖
ri(ϕix)

, (4.80)

relies on the inherent polar symmetry, where ri(ϕ
i
x) denotes the polar pa-

rameterization of an ellipse, cf. equation (A.31), possibly with non-zero
orientational tilt. Importantly, the angle ϕix = atan(x − xi) depends on
the relative position of the point x with respect to the generator center
xi. see figure 4.4 (blue). In particular, the point power (4.80) repre-
sents the Euclidean norm of x − xi, divided by the weighting extension
ri of the generator ellipse in the direction of x − xi, again see figure 4.4
(blue). Anisotropic Voronoi generators as described in this thesis have
the favorable property that their diagram does not change when scaling
all Pi with a common factor, or – equivalently – adjusting q in the scaling
function P from equation (4.8). We emphasize that the particular rep-
resentation (4.80) of the point powers Pi(x) yields an implicit expression
for the contact equation Pi(x) = Pj(x) which is not well-suited to further
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i
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Figure 4.4.: Voronoi generators Pi attribute to each point x in the plane
a certain power Pi(x), which is usually some function of the
distance of x from the generator. Here, we compare genera-
tors which can be described by convex shape functions ri(ϕ)
in polar coordinates with respect to the generator center xi.
In this thesis, we have developed point powers as in 1 (blue),
whereby we prescribe ellipses centered at xi and with ra-
dius function ri as Voronoi generators. For finding the power
Pi(x) of the point x, we divide the Euclidean norm ‖x− xi‖
by the local ellipse radius ri(ϕ

i
x) in the relative direction of

the point x. This idea is also used in method 5 (green),
however the weighting radius r(ϕjx) is the same for all gen-
erators, and it may represent a single but arbitrary convex
shape [143]. Although based on ellipses as well, method 4
(magenta) developed by Emiris and coworkers [73] is differ-
ent. There, the point power Pi(x) is the shortest distance
to the surface of the ellipse surface of the Voronoi generator.
For further explanations of the methods 1, 4 and 5, see the
respective paragraphs 4.9.1, 4.9.4 and 4.9.5 in the text.
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analysis. However, equation (4.80) is still useful to compare the Voronoi
tessellation described in this work with other approaches.

2. Circular Voronoi diagrams: Setting ri = const. in equation (4.80),
we obtain the point power

Pi(x) =
‖x− xi‖

ri
. (4.81)

as generalized Voronoi generator. Such generators lead to the conven-
tional multiplicatively weighted Voronoi diagram by Aurenhammer and
Edelsbrunner [16], which is discussed as “quotient method” in our work
[31]. The equivalent representation of the generator (4.81) in terms of
homogeneous matrices has already been derived in section 4.4. As can
be seen from equation (4.81), such a diagram is based on the Euclidean
norm weighted by ri, with the scaling function P coefficients from equa-
tion (4.8) being q = 1, ν = 2,P0 = −1. In the multiplicatively weighted
Voronoi diagram the generators can also be represented as circles of ra-
dius ri centered at xi, and the resulting contact borders are either circles
or straight lines. We therefore refer to such a diagram as circular. Specif-
ically, the circular generators (4.81) are special cases of the elliptic ones
from the preceding paragraph, with the simplification of ri(ϕ

i
x) = ri being

constant and independent of ϕix. Aurenhammer and Edelsbrunner have
shown that the optimal time to construct a circular Voronoi diagram is
O(N2), i.e. quadratic in the number of generators N [16]. To achieve this
optimality, the authors map the two-dimensional plane on a two-sphere
embedded in three dimensions. This is a way to introduce the projective
plane and thereby the homogeneous coordinates used in this thesis. How-
ever, whether and in which way the cell complex described in [16] can be
mapped to the concepts described here is less obvious.

3. Increasing functions of the Euclidean norm: Ash and Bolker have
worked on the question whether a given tessellation is Voronoi and, if so,
what are the underlying generators [14]. For the point power Pi(x) they
write the expression

Pi(x) = f
(
‖x− xi‖

)
+ wi. (4.82)

The function f is increasing in the Euclidean norm ‖.‖, and the additive
weights wi may be different for each generator. If wi < 0 and f = ‖x−xi‖,
the resulting contact borders are straight lines and the emerging Voronoi

124



diagram is often called “power diagram”. This special case is discussed as
“difference method” in [31], where it turned out that the partition of space
between two neighboring cell bodies exhibits a biologically undesirable
monotonicity behavior in the wi. For wi > 0 and f = ‖x−xi‖, the contact
borders are hyperbolic arcs or straight lines. Another possible choice for
f involves the distance constructed from a quadratic form with the help
of a two-dimensional matrix F̃ [15, section 3.1.5], cf. also example 4.1.3.
For comparison, the anisotropic generator expression (4.80) sets wi :=

w ≡ const. in (4.82), while generalizing the matrix F̃ in f to prescribe F̃i
independently for each generator, see section 4.3. Finally, by taking the
logarithm of the circular generator function (4.81), one finds that it is also
of the form (4.82). Therefore, the anisotropic generators (4.80) proposed
in this thesis generalize the expressions (4.81) and certain versions of
(4.82). In this way, the expression (4.80) establishes a formal connection
between Voronoi diagrams with hyperbolic and circular contact borders,
and closes the formalism to allow for all kinds of conic section type contact
shapes.

4. Voronoi diagram of ellipses: Another type of Voronoi diagrams has
been been developed by Emiris and coworkers [72–74], and is called a
“Voronoi diagram of ellipses”. The employed point power Pi(x) con-
stitutes the Euclidean distance of x from the surface of the ellipse i,
see figure 4.4 (magenta). The resulting contact equation Pi(x) = Pj(x)
is computationally quite demanding, because it involves the solution of
degree-184 polynomial equations [74]. Remarkably, the Voronoi diagram
constructed in such a way changes when scaling the generator ellipses
with a common factor.

5. Polar weighting functions: Klein and Ma have prescribed r(ϕix) as
the same polar weighting function for all generators [17,143],

Pi(x) =
‖x− xi‖
r(ϕix)

, (4.83)

see figure 4.4 (green). This technique shares some similarity with the one
proposed in this thesis. The main difference is that there is only one single
global shape template r for all Pi. The shape of the resulting Voronoi
cells then depends on the particular choice of r. Interestingly, in Voronoi
diagrams constructed from (4.83), the symmetry property x↔ xi of the
anisotropic Voronoi generators (4.80) is not required [143]. This allows
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for generator shapes which are not point symmetric with respect to their
center.

6. Abstract Voronoi diagrams: Yet another approach is the framework
of “abstract Voronoi diagrams” as proposed by Klein and coworkers [125,
126]. For each pair of generators (i, j) there is a unique contact border
given by an arbitrary curve with a stereographic projection that contains
the north pole of the projective sphere. Thus, it is required that the
contact borders extend to infinity, and curves such as circles and ellipses
are not allowed. Conversely, hyperbolas, straight lines and parabolas can
be described by the abstract Voronoi diagram framework.

7. Partial Delaunay property, clustering and parallel computing: The
extension of a Voronoi cell Vi from definition 4.1.4 is bounded by the
maximal generalized distance dmax of a point x from the generator center
xi. In the definition 4.1.7 of a generalized Voronoi cell, the value Pex =
P(dmax) indicates the resulting extremal value attainable by the point
power Pi(x). This Pex-bound manifests itself in definition 4.1.9, which
means that the cells have a so-called free margin arc in directions void of a
sufficiently close neighbor cell. Thus, the tessellation arising from a given
set of anisotropic generators does not span the whole plane. Instead, it
is confined to a limited region, which surrounds the generator centers
{xi}. Therefore, the hull of the emerging Delaunay triangulation is not
necessarily convex. In this sense, the Voronoi tessellation put forward here
has only a partial Delaunay property. However, completing the Delaunay
triangulation for a given finite Voronoi diagram is straight forward. We
merely have to increase the maximal cell extension dmax  Pex, so that
the cells at the margin become aware of one another. In order to construct
the corresponding infinite Voronoi tessellation, and thereby the convex
Delaunay hull, we have to consider only those generators that previously
have been situated at the margin. Indeed, the remaining interior Voronoi
cells have already neighbors and extend only up to points with power
within the initial Pex bound.

The proposed property of finite Voronoi tessellations could be exploited
in several ways. Obviously, for a given Pex, there can be several clusters
of cells which are internally connected via neighbor relation chains of the
type i ∼ j ∼ . . . ∼ k. The outer limit of such a cluster is naturally given
by the free margins. Limiting the maximal Pi(x) for a point x by Pex

thus provides for a facility to detect clusters of Voronoi cells.
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Similarly, one could start to construct a Voronoi tessellation of many
generators by initially choosing dmax fairly small. As pointed out earlier,
only those generator pairs need to be considered that are sufficiently
close. Assuming the coefficients q = 1, ν = 1,P0 = 0 in the scaling
function P from equation (4.8), the plane can be subdivided into boxes
of size Pex ·maxi ai, where ai denotes the major half-axis of the generator
ellipses. Neighbor pairs can only form between generators in adjacent
boxes, so that this initial stage of the Voronoi construction can be easily
computed in parallel. Then, Pex can be successively increased and new
pairs would only arise between some of the formerly marginal cells. Once
the minimal stretched minor half-axis Pex · mini bi exceeds maxi 6=j |xi −
xj|, all generators become aware of one another. Thus one obtains the
“infinite” Delaunay triangulation, i.e. those neighbor relations that would
arise from a Voronoi tessellation without any Pex bound.

In summary, we have found a mathematical method to divide space into
closed, contacting regions. In the following chapter we apply this method
to quantitatively describe the motion within biological cell aggregates.
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5. Coupling intracellular stress and cell-cell
adhesion determines cooperative cell
motion in tissue monolayers

Summary: In this chapter we combine results from the preceding chap-
ters to arrive at a simulation model suited to describe motion in mesenchy-
mal cell aggregates or epithelial tissues. First, we survey earlier models of
multi-cellular aggregates and outline a selection of their findings. Next,
we analyze in-vitro micrographs in order to investigate whether planar or
spherical Voronoi tessellation is the more appropriate cell shape model.
Then we construct cellular interaction and locomotion forces based on
the cell outline geometry as obtained from the Voronoi tessellation. Here,
cadherin and integrin densities are assumed to be constant on the surface
of each model cell but different across the tissue. An explicit distance
dependence of the emerging force density hinders tissue collapse by pro-
viding for an idealized contact inhibition mechanism. With the help of
simulations of the resulting model tissue we find:

1. For a given set of Voronoi generators, there are several quasi-stable
topological arrangements. The multiple inherent relaxation time
scales seem to indicate that the model tissue behaves like a struc-
tural glass.

2. Starlike Voronoi cells enhance the cohesion stability of the whole
aggregate. The starlikeness property can be enforced a priori by
allowing only for moderate variation in the sizes of the model cells.

3. Since the tissue geometry is reduced to the two-dimensional plane,
cell sorting can only be partially recapitulated in our simulations.
This limitation can be understood in terms of incompletely perme-
ating strands of non-mixing cells.

4. Convergent tissue extension as occurring during embryo develop-
ment is driven by anisotropic cell-cell interactions. Here we impose
a small force anisotropy in the interactions of the inner cells for a
limited time. Surprisingly, the resulting shape deformation of the
whole tissue is large, global and persistent.
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5.1. There are several types of multi-cell tissue models

The fundamental compartment of life is the cell [195], which separates the
interior metabolism from the exterior environment [9]. This separation is
essential for gene expression and biomolecular reaction, because both pro-
cesses require a located and confined vessel providing for a well-controlled
micro-environment. In order to describe the large-scale organization of
tissue from the underlying cell compartments, we therefore need a math-
ematical formalism that is able to partition space into well-defined and
distinct regions. If we can uniquely identify the mathematical regions
with corresponding biological cells, such a formalism would allow us to
obtain a detailed description of the organizational principles of tissue for-
mation, which would be directly inferred from individual cell properties.
Indeed, there are several frameworks suited to perform such a task, with
different emphasis, advantages, but also shortcomings.

1. Vertex dynamics: The first important class of collective motility
models describes cells as shape-changing polygonal objects given by a set
of vertices. In two spatial dimensions a vertex is located at the junction
of three (or more) cells, and in three dimensions it is located at that of
four or more cells. Usually, one prescribes force balances at these node
or vertex points, and the motion of the cells is calculated accordingly.

• Sulsky and coworkers derive the force balances from a surface energy
minimizing variational principle [205].

• Weliky and Oster consider force balances at polygon nodes by in-
corporation of internal pressures and surface tensions [226,227].

• Honda and coworkers take a similar approach by starting from a
three-dimensional Voronoi tessellation [106].

• Brodland and coworkers reproduce the morphogenetic movement
of whole embryos by carefully measuring the involved forces in vivo
and implementing them in their simulations [48, 49, 111]. In ear-
lier work they investigate the influence of directed mitosis on the
emerging cell shapes and the resulting stresses in the tissue [36].

• Jülicher and coworkers describe the dynamics of developing tissues
such as the Drosophila wing disk [1]. They write an essentially elas-
tic potential-like work function, which determines the forces onto
the vertices at the cellular junctions [197].
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Models using vertex dynamics naturally implement tensile forces on the
cell boundaries. Friction automatically dominates the resulting mechan-
ical system, because the forces are imposed on massless vertices instead
of the center of gravity of the cells [106]. On the other hand, topological
rearrangements lead to the disappearance of vertices, which is usually im-
plemented by imposing a lower threshold on the distance of two vertices
on a particular edge. Energy changes arising from topological rearrange-
ments therefore might not be fully accounted for.

2. Contact boundary dynamics: The broad class of cellular Potts type
models relies on the minimization of surface energy arising from homo-
and heterotypic cell-cell adhesion contacts. The involved stochastic Monte-
Carlo update procedure locally and gradually shifts the position of cell-
cell boundaries.

• The Cellular Potts model was pioneered by Glazier and Graner [90].
Originally it appeared as a multi-spin generalization of the Ising
model in statistical physics. The simulation domain is a square or
cubic lattice, where each cell occupies several lattice sites, usually
approximately 40. Importantly, the model cells are identified by
the spin number of their underlying lattice sites. They are only
connected in a certain dynamical regime of the Monte-Carlo update,
where the level of stochastic fluctuations is not too high. Since its
initial proposal, the cellular Potts model has been extended [167]
and integrated into a freely available simulation framework [114].
Therefore it appears to be quite popular [120,146,219].

• Czirok and coworkers enhance the cellular Potts model and imple-
ment anisotropy in the adhesiveness of the cells. In this way, they
successfully reproduce the formation of blood vessels [207].

As already mentioned, the boundary dynamics method of the Cellular
Potts model relies on stochastic Monte-Carlo update rules. While usually
each component of the underlying Cellular Potts Hamiltonian function
has a straight forward interpretation in terms of biological terms like
cell protrusiveness or persistence, the relation of the Monte-Carlo update
to measurable physical force balances is less obvious. Despite of this
limitation, cellular Potts models perform exceptionally well in cell sorting
simulations.
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3. Center dynamics: Another popular approach represents cells as in-
dividual particles of finite extension. In contrast to cellular automata
on a lattice, these particles may attain arbitrary positions in continuous
space. In general, the common feature of this class of models is that the
translation dynamics acts on the cell centers exclusively.

• Drasdo and coworkers mainly model the growth kinetics of tissue-
cell populations [71, 82]. In their Monte-Carlo approach, the cell
center positions are stochastically updated depending on the change
in pair interaction energies. The simulation domain is partitioned
into polygonal cells by constructing a Voronoi tessellation. Re-
cently, they established a mapping between the cellular expansion
kinetics in two and three dimensions [181].

• Similarly, Schaller and Meyer-Hermann obtain polyhedral cells from
a three-dimensional Voronoi diagram [191]. However, their method
accounts for different sizes of the elastic cells. In a Langevin ap-
proach, the cellular motility is governed by both stochastic pertur-
bations and chemical adhesion forces. This leads to the prediction
of tissue internalization instability induced by cell transmembrane
receptor dynamics [26, 148]. Moreover, Beyer and Meyer-Hermann
could conceive the formation of the primary lymphoid follicle within
their framework of Delaunay object dynamics [27].

• Palsson and Othmer describe biological cells as deformable ellip-
soids with viscoelastic deformation forces. By employing locomo-
tion forces due to taxis and cell-cell interaction forces, they obtain
results on individual and collective movement of Dictyostelium dis-
coideum [172] and the sorting of its prestalk and prespore cells [171].

The specific construction principle for cell-cell contacts fully determines
the tissue geometry, which generally forms the basis of the dynamical
force balances in center-based tissue models. The latter have, however,
difficulties in cell sorting, as fluctuations in the cell boundaries are not
represented correctly. It is noteworthy that the earliest descriptions of
cell aggregates in terms of Voronoi tessellation date back to Honda [105].
Moreover, the tissue model described in this thesis falls into this category,
see also [31].
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5.2. Confluent monolayers and epithelial tissues can be
described by circular Voronoi tessellations

1. Shapes of biological cells in mesenchyma and epithelia: In chapter
4 we developed a method that divides space into compartments resem-
bling distinct model cells. While it has been shown that the general
method is consistent and does the envisioned job for the model, it is not
yet clear whether its application as formal description of two-dimensional
biological tissues is appropriate.

Two-dimensional cell motility ranges from single cells moving inde-
pendently to almost epithelial sheets undergoing collective and directed
migration. The intermediate regime is usually referred to as epithelial-
mesenchymal transition, see e.g. [214]. Thereby the cells loosen their
contacts to engage in relatively fast migration, for example towards a
wound. By the late 1970s, Hisao Honda had already shown that planar
Voronoi diagrams (figure 4.1 left) generally describe the cell morphology
observed highly polarized and densely packed epithelial sheets quite ac-
curately [105]. However, in these diagrams the resulting cell-cell contacts
are all represented by straight lines being flat without curvature. Also,
there is no explicit provision for cells of different sizes.

Certainly, however, both cell size and cell-cell contact shape have some
influence on cell functions, such as the formation and stabilization of
mutual adhesion, especially in the mesenchymal state between collective
epithelial resting and the independent migration of isolated cells. The
generalized Voronoi method from chapter 4 is in principle capable to
account for curved cell-cell contact shapes. It is therefore worthwhile to
check whether certain Voronoi shape models accurately resemble a given
confluent monolayer of biological cells close to the epithelial-mesenchymal
transition.

2. Aggregates of Zebrafish ectodermal cells: Both outline and nucleus
features of quasi two-dimensional cell aggregates can be extracted in a
particularly easy manner, if suitable fluorescence dyes are employed to
highlight regions of interest. In [145, figure 1A], Schoetz and coworkers
have stained membranes and nuclei of Zebrafish ectoderm cells in blue
and green, respectively, see figure 5.1 bottom.

For the purpose of computer-assisted image processing, we use the com-
mand line tool pdfimages to extract [145, figure 1] from the pdf-file of
the article. Subsequently, we crop the figure to contain only the panel
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A, and split the resulting micrograph into red, green and blue channels
for further use. In order to segment the cell nuclei, we create a blurred
version Bb of the original blue channel Ob by employing a Gaussian filter
with 50 pixels radius. Next, we subtract the blurred nuclei micrograph
from the original one, Db = Ob − Bb. If the brightness of a pixel in Db

exceeds the threshold value of 0.23 times the brightness in Bb, then we
assign the corresponding pixel a value of 1, and otherwise set it to 0. The
resulting boolean picture Zb = (Db>0.23Bb) is then smoothed by five
dilation and five subsequent erosion steps with a boolean and approxi-
mately circular stencil of 5 pixels in diameter. As a result, we obtain
several white pixel aggregates with very sharp boundaries, indicated as
white rings in figure 5.1 top left. These aggregates are then identified
with the help of a self-written clustering routine of Hoshen-Kopelman
type [109]1. It uniquely assigns a number to each of the found pixel clus-
ters, and gathers all pixels of a specific cell’s nucleus so that they can be
collectively addressed by their respective nucleus number. Importantly,
we ignore clusters consisting of only one single pixel.

The cell-cell contacts can be extracted from the green channel of the mi-
crograph, in a procedure similar to the one for the nuclei described above.
Thereby, the blurred picture Bg is created from the original Og by em-
ploying a Gaussian filter of 15 pixels radius. Then, the relative difference
is computed by Dg = (Og −Bg)/Bg, renormalized to D′g = Dg/(maxDg)
and converted to boolean by thresholding, namely Zg = (D′g>0.39) for
each pixel, see figure 5.1 top right. No further dilation or erosion steps
need to be performed, because these boolean membrane images merely
serve as a synthetic benchmark for quantifying the accuracy of certain
kinds of Voronoi tessellations.

To this end, we consider the two specific types of tessellations from
example 4.1.13, both based on the Euclidean norm: (i) the circular dia-
gram with isotropic weighted point powers Pi(x) = ‖x− xi‖/ri, and (ii)
the planar diagram without explicit generator weights, Pi(x) = ‖x−xi‖.
First, we compute the centers xi of the generators from the center of
mass of the cell nuclei, and choose the weights ri such that the total pixel
area of the nucleus coincides with the area of a circle with radius ri. In
this way, the resulting Voronoi generator balls Bri(xi) resemble the size
and position of the cell nuclei quite closely. With the help of the routine

1Alternatively, one can employ the bwlabel() function of GNU Octave http://

www.octave.org. In computer science, the Hoshen-Kopelman procedure is apparently
also known as union find, see http://www.ocf.berkeley.edu/~fricke/projects/

hoshenkopelman/hoshenkopelman.html (accessed September 18, 2012).
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Figure 5.1.: Comparing monolayer of Zebrafish ectoderm cells with re-
lated Voronoi diagram. The top row of panels represents the
overlay of extracted cell characteristics and the original inten-
sity profiles, whereby objects found from image analysis are
artificially highlighted. As described in the text, both cell
nuclei (left) and membranes (right) can be extracted from
fluorescence data in the individual channels of the original
micrograph [145, figure 1A]. The shown Voronoi tessellations
then can be constructed from size and position data of the
nuclei. In the lower row, panels show the original micrograph
in overlay with (i) a circular Voronoi diagram (left), and
(ii) an ordinary Voronoi diagram with planar cell-cell con-
tacts (right). The original fluorescence picture is extracted
from [145], with kind permission by Eva-Maria Schötz.
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mwvoro.m2 implementing the algorithm from section 4.8, we construct
the Voronoi diagrams (i) & (ii), see figure 5.1. Moreover, we render the
resulting cell-cell contact borders into the two boolean images Vplanar and
Vcircular, respectively. For (ii), an identical radius is assigned to all nucleus
balls {Bri(xi)}, so that we obtain an ordinary Voronoi diagram from ex-
ample 4.1.13. In order to quantify how well the tessellations describe the
actual tissue, we define the relative match M as ratio,

M :=
# matching Voronoi contact border pixels

total # membrane pixels
, (5.1)

which is computed from boolean template Zg and Voronoi images Vplanar, Vcircular.
All results of the image analysis are summarized in figure 5.1, together
with an overlay of the Voronoi diagrams on top of the original micro-
graph. As turns out, the relative match is (i) Mcircular = 4.6% for the
circular and (ii)Mplanar = 2.9% for the ordinary planar Voronoi diagram.
Moreover, the circles generally seem to resemble the qualitative features
of the observed cell outline curves more closely.

The relatively low values ofM arise from the incomplete segmentation
of the cell membranes and from rendering of the Voronoi contact borders
as thin lines. The significance of M is however not affected since the
situation is the same for both types of Voronoi tessellations, and because
we are mostly interested in their mutual comparison. Thus, although
the quality measureM is simplistic and certainly could be improved, we
take its values as an indication that circular Voronoi diagrams are to be
preferred when describing quasi two-dimensional cell aggregates.

3. Quail embryo endocardial cells: In order to further inquiry on the
accuracy of the two Voronoi tessellation methods, we apply the image
segmentation described above also to micrographs of endocardial cells
extracted from a quail embryo, see figure 5.2. Here, only the nuclei are
available in a separate fluorescence channel. However, the phase contrast
images taken simultaneously are also suitable for extracting data on the
cell-cell contacts. In particular, cells in the bulk seem to be surrounded by
a fairly bright halo, which is prominent enough to be taken as indication
for the membrane situated between two distinct cells.

As before, we identify the nuclei from the fluorescence channel Of .
Here, the Gaussian filter for creating the blurred image Bf has a radius

2See electronic supplementary material, section A.7, or http://www.theobio.

uni-bonn.de/people/mab/dsup.
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Figure 5.2.: Comparison of circular and planar Voronoi diagram con-
structed from the nuclei of quail embryonic endocardial cells
in a confluent monolayer. The original micrograph is cour-
tesy of Andras Czirok.
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of 25 pixels, and the difference picture is Df = Of − Bf . Thresholding
according to Zf = (Df>1.8Bf ) creates the Boolean version Zf , and only
one single dilation/erosion step is performed with a small cross-like stencil
of diameter 3. In the resulting boolean image Z ′f , we neglect clusters of
less than 12 pixels in size. Segmentation of the cell-cell contacts works as
described for the Zebrafish cells above, with Gaussian radius of 5 pixels
and the cell-cell contact brightness threshold of 0.29.

Figure 5.2 shows phase contrast and circular (top) versus planar (bot-
tom) Voronoi diagram in overlay. For cells with smaller nuclei, the differ-
ences in Voronoi cell shape are quite pronounced. In the figure, one can
also observe dividing cells near the big cell in the center of the monolayer.
Apparently, the fluorescent area associated with the nucleus appears to
split into two equal parts. This interesting feature is exhibited only in
the first image, because only the circular Voronoi diagram takes into ac-
count the varying sizes of the cell nuclei. While the relative matches
Mcircular = 13.7% versus Mplanar = 13.3% give no clear indication, the
observed cellular shape variations clearly favor the circular Voronoi tessel-
lation over the planar one. In the following sections, we therefore model
cell aggregates by circular Voronoi tessellations exclusively.

5.3. Cell pairs interact via cadherin mediated adhesion3

1. Geometry of a cell pair and starlikeness: In order to define mean-
ingful pair interaction forces, we first explore the geometric properties of
a single cell pair comprising the circular Voronoi tessellation from sec-
tion 4.4. As before, the cell bodies are represented by mathematical balls
Bri(xi),Brj(xj) from equation (4.34) and drawn green in figure 5.3. The
maximal possible extension of a Voronoi cell can be represented as ball,

BRi0
(xi) = {x ∈ R2 : Pi(x) ≤ Pex} ⊃ Vi, (5.2)

which follows from the defining relation (4.10) of a Voronoi cell Vi. Corre-
spondingly, a free cell without contact to another would comprise the open
version of the the so-called free ball BRi0

(xi). Setting q = 1, ν = 2,P0 = 0
in the scaling function (4.8), and thereby dropping the matrix notation

3Most paragraphs of this section appeared in [31], as indicated in separate foot-
notes. The article [31] was jointly written by M.B., Amit Kumar Tyagi, Jan-Ulrich
Kreft and Wolfgang Alt.
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Figure 5.3.: Contact geometry of a pair of two circular Voronoi cells. The
properties of their generators Pi,Pj are represented by the
two cell body balls Bri(xi),Brj(xj) (green circles), cf. equa-
tion (4.34). On the other hand, the maximal extension of
the corresponding Voronoi cells Vi,Vi is limited by the ex-
tremal scaled norm Pex, see equation (5.2). It gives rise to
the so-called free balls BRi0

(xi),BRj0
(xj) (blue outer circles),

which represent the occupied domains of the Voronoi cells
Vi,Vj in isolation. The latter can only be neighbors i ∼ j
if the shaded region BRi0

(xi) ∩ BRj0
(xj) is non-empty. Oth-

erwise, there would be no contact border Γij (red), because
it would be situated in the void between the distant cells.
For proposition 5.3.1, we additionally need several geometric
quantities. The point A (red dot) on the contact circle (red
line) with radius Rij is parameterized by the polar angle θ
with respect to the contact center Mij. The corresponding
angles as viewed from the cell centers xi,xj are φi, φj, and
Ri, Rj are the distances of A from xi,xj. The circle through
Mij and xi (black) has its center at T (center black dot),
and intersects Γij (red) at the AT (top black dot). The point
A0 (blue dot) marks the intersection of the circles associated
with the free balls BRi0

(xi) and BRj0
(xj). Finally, the coordi-

nate system has been aligned with the cell center connection
xi − xj, which defines the unit vector d̂ij.
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(4.25) of the generator Pi, we have

Pi(x) =
∥∥x− xi

∥∥2

i
≡ (x− xi)

2

r2
i

. (5.3)

In this way, the relation of free cell radius Ri0 defined by (5.2) and body
radius ri is

Ri0 = ri ·
√
Pex, with Pex > 1. (5.4)

The later inequality condition is a consequence of the model requirement
that a Voronoi cell should have at least some space around the central
cell body region Bri(xi). According to equation (4.15) we also have

Γi0 ⊂
{
x ∈ R2 : ‖x− xi‖ = Ri0

}
(5.5)

for the free margin Γi0 of the Voronoi cell Vi.
With these notions at hand, we take a closer look at geometrical prop-

erties of the contact surface Γij between two adjacent cells as in figure
5.3. From this figure and the formulae (4.33) defining the circular contact
border Γij, it becomes apparent that the larger cell may not always be
starlike. Recall the definition of starlikeness with respect to the center
xi : ∀x ∈ Vi also the line segment xix ⊂ Vi. Not being starlike is – how-
ever – an unusual property of biological cells. While exceptions to this
rule naturally do exist, they usually have a rather extreme architecture,
like e.g. neurons with multiple dendritic extensions and a long axon. Since
non-starlike cells also deviate from earlier tissue models [71,105,191,205],
we investigate under which circumstances Voronoi cells of circular gener-
ators remain starlike.4

In figure 5.3, the straight line connecting xi and AT is a tangent to
Γij. Thus it is clear from the geometry that both Vi and Vj are star-like
domains with respect to xi,xj, if and only if their corresponding free
balls BRi0

(xi),BRj0
(xj) do not extend beyond the point AT . Before we

proceed, we introduce the cell size homogeneity quotient

Q = min
i,j

ri + rj
|ri − rj|

=
rmax + rmin

rmax − rmin

, (5.6)

where rmin = mini ri, rmax = maxi ri, and the last equality in (5.6) follows
from monotonicity arguments. Therefore, Q = Q({ri : i = 1 . . . N}) is a
measure of the uniformity of cell sizes within a tissue, with Q → ∞ for
almost equal ri and Q ≈ 1 for rmax � rmin.

4The remainder of this paragraph appeared in slightly modified form as part of [31,
section 2.2]. M.B. performed the presented research and wrote that part of the paper.
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Proposition 5.3.1 (Starlike cells): For a circular Voronoi tessellation,
the resulting cells Vi are starlike with respect to xi, if the maximal P-
distance Pex fulfills the homogeneity constraint

1 < Pex ≤ Q. (5.7)

Proof: Consider the figure 5.3. From fundamental trigonometric rela-
tions follows the angle

φTj := ∠(T,xj,AT ) =
π

2
, (5.8)

and the geometric similarity of the triangles4(Mij,xi,AT ),4(xi,AT ,xj).
Let dij := ‖xi − xj‖ denote the distance between the two cell centers.
With rj < ri, we have for the point A = AT

cos θT =
rj
ri

(5.9)

RjT =
rj√
|r2
i − r2

j |
· dij, RiT =

ri√
|r2
i − r2

j |
· dij, (5.10)

where the angle θT corresponds to the θ-parameterization of AT on Γij
and the radii RiT , RjT connect AT and xi,xj, respectively. With the
equations in (5.10), the maximal distances of a point A on Γij from the
two cell centers have been identified. Starlikeness of Vi is equivalent to
the condition R2

i0 ≤ R2
iT with R2

i0 = Pexr
2
i , thus Pex ≤ (xi−xj)

2/|r2
i −r2

j |,
which can be fulfilled by requiring Pex ≤ Q, since we have (ri+rj)

2 ≤ (xi−
xj)

2, i.e. non-overlapping generator balls for all i, j. With the inequality
condition in (5.4) the assertion follows.

In particular, starlikeness prohibits engulfment of one cell by the other,
so that BRi0

(xi) may not contain BRj0
(xj) completely for ri > rj. Note

that within sufficiently large tissues, the smallest and biggest cell will
usually not be in contact, which relaxes inequality (5.7) into the condition:

1 < Pex ≤ min
neighbors i,j

ri + rj
|ri − rj|

=: Qnb, (5.11)

where Qnb indicates the cell size homogeneity over all neighbor pairs.
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cell body

cell-cell contact

nucleus

lamella/cortex

Figure 5.4.: Scheme of interacting cell pair with the biologically motivated
functional units nucleus (dark blue), cell body (white), and
lamella/cortex (green). The interplay of intracellular cyto-
plasm dynamics and external substratum adhesion beneath
the lamella leads to cellular locomotion. In addition, the
mutual transcellular adhesion is mediated by links bridging
the cytoskeleton of both cells via dedicated junctions at the
cell-cell contact (red), which is influenced by the underlying
density of pairing filaments (black), see text for details.

2. Structural components of cell-cell adhesions5: The cytoskeleton
with its network of filaments often features bundled structures, which are
commonly visible as so-called stress fibers. They emanate from the cell
body or nucleus in radial direction and often reach out towards the cell
border, cf. the red and green lines in figure 1.4. According to [68], fila-
mentous actin at cell cell contacts attaches to transmembrane complexes
called adherens junctions. The latter are made from e.g. catenins on the
cytosolic side and cadherins at the exterior of the cell, cf. also section 1.6.
By connecting neighboring cells, these structures stiffen and strengthen
the tissue coherence.

Inspired by this observation, it is assumed that the interaction force
between two cell bodies is transduced by radial filament structures ex-
tending towards the cell boundaries. Thereby, the filaments of one cell
connect to those of the other and form pairs along the contact border
Γij, see figure 5.4. However, these cell-cell junctions are not fixed and
undergo dissociation, diffusion, and renewed association. Motivated by
protein (e.g. cadherin) diffusion properties in membranes [85], this pro-

5A slightly modified form of this paragraph appeared in [31, section 3.1]. M.B. per-
formed the presented research and wrote that part of the paper.
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cess is considered to be fast (seconds) compared to the slower time scale
(several minutes) of cell deformation and translocation. In this way, pair
formation of cross-attachments between filament bundles from both cell
bodies can be regarded as a pseudo-stationary stochastic process [76]. In
order to compute the interaction force between two cells, one needs a
suitable expression for the density of pairing filaments ρ(θ) at the border
of the cells i, j.

3. Filament pair density at cell-cell contacts6: Consider the cell pair
as illustrated in figures 5.3 and 5.4, with cell body radii ri > rj, and
all geometric quantities as before. Starting from the surface of the cell
bodies Bri(xi) and Brj(xj), filaments extend in radial direction under
angles φi(θ) and φj(θ), respectively, to eventually meet at A(θ) on the
contact border Γij. The density of the radial filaments is assumed to
be constant on the surface of each cell body, and given by a universal
value ρ̃ > 0, which represents the active structures of the cytoskeleton
and thereby the capability for cellular contraction and spreading forces.
In order to construct the pairing density of filaments ρ(θ), we need to
establish a mapping of the single densities ρ̃ from the cell body surfaces
onto the contact border Γij. Denoting the mapped densities by ρi(θ), ρj(θ)
we find

ρi(θ)Rijdθ = ρ̃ridφi, ρj(θ)Rijdθ = ρ̃rjdφj. (5.12)

by equating corresponding surface elements. For a point A(θ) ∈ Γij, we
have

Rij sin θ = Ri sinφi = Rj sinφj, (5.13)

Rij cos θ = |xj −Mij|+Rj cosφj. (5.14)

With the help of equation (5.3), the defining condition for the contact
border in equation (4.13) can be written as

Rj = ηRi with η =
rj
ri
< 1. (5.15)

Thus, from equation (5.13) we obtain the relation

sinφi = η · sinφj (5.16)

6A longer version of this paragraph appeared in [31, section 3.2]. M.B. and Amit
Kumar Tyagi performed the presented research, and M.B. wrote that part of the
paper.
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between the two angles φi(θ) and φj(θ). Differentiation of (5.16) with
respect to θ yields the proportionality

dφi
dθ

= η · cosφj
cosφi

· dφj
dθ

=
η

κη(φj)
· dφj

dθ
, (5.17)

where κη(φj) =
√

1 + (1− η2) · tan2 φj. Moreover, by solving equation
(5.13) for Rj in terms of Rij, inserting it into equation (5.14), and using
the relations (4.33) we get an explicit expression for tanφj in terms of θ,

tanφj =
sin θ

cos θ − η . (5.18)

This expression holds for all |θ| < θT or equivalently |φj| < π/2, see
equations (5.8, 5.9). Finally, by differentiation of equation (5.18) with
respect to θ we obtain

dφj
dθ

=
tanφj

1 + tan2 φj
·
(

tanφj +
1

tan θ

)
=

1− η cos θ

1− 2η cos θ + η2
> 0. (5.19)

Let us now assume that the pairing density function ρ(θ) depends on
ρi(θ) and ρj(θ), is even in θ, maximal at θ = 0, and strictly monotonically
decreasing for increasing |θ|. In [31, section 3.2], two exemplary models
to specify such a density function ρ(θ) are discussed. Here, we prefer the
so-called mean density pairing involving the geometric mean,

ρ(θ) =
√
ρi(θ) · ρj(θ) = ρ̃ · rj

Rij ·
√
κη(φj)

· dφj
dθ

. (5.20)

It describes the steady-state of short-term stochastic filament association
provided that each filament from either of the neighboring cells has some
probability to randomly engage in some junction on Γij.

4. Pair interaction force7: Consider two adjacent neighbor cells i ∼
j with their cell-cell center distance being dij = ‖xi − xj‖. This axis
connecting the cell center defines the horizontal direction of the pair-
local coordinate system in figure 5.3, and is denoted by the unit vector
d̂ij. The orthogonal direction is given by the vertical unit vector d̂⊥ij with

7A slightly modified version of this paragraph appeared in [31, section 3.3]. Wolf-
gang Alt and M.B. jointly performed the presented research and wrote that part of
the paper.
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the property d̂ij · d̂⊥ij = 0 and facing upwards in figure 5.3. The cell body
distance corresponding to dij is δij := dij − ri − rj and relative partition
of the space in between is denoted by δij = δi + δj, cf. figure 4.2. Let
the cells be situated in such a manner that they are barely touching each
other, so that any further increase in δij would cause them to dissociate.
Then, dij = Ri0 + Rj0, and by equation (5.4) we have for the limiting
rupture distance δrup

ij of the cell bodies

δrup
ij =

(√
Pex − 1

)
(ri + rj) =: δi0 + δj0, (5.21)

where δi0 := Ri0 − ri, δj0 := Rj0 − rj quantify the partition of δij = δrup
ij

at rupture. Then according to the assumptions in the two preceding
paragraphs, any paired couple of actin fibers meeting at an adherens
junction in the contact boundary Γij develops a certain positive stress
between the two cell bodies. As in the model function (3.20) for single
cell migration, this stress depends on the mean volume fraction q0 of
the contractile cytoskeletal network8, which before touching was equal in
both contacting lamellae of width δi0, δj0, respectively. If now δij further
decreases, then both lamellae will be compressed by the equal factor
δi/δi0 = δj/δj0 = δij/δ

rup
ij < 1. as a consequence of the Voronoi partition

laws (4.10, 4.15). Thus, we can make the following two assumptions:
first, the mean volume fraction in both lamellae increases to the same
value q satisfying the inverse relation

q

q0

=
δrup
ij

δij
. (5.22)

Second, any paired actin fibers develop the same stress between their
adherens junction and the corresponding cell body, with a strength f
that, for simplicity, depends only on the common cytoskeletal volume
fraction q, i.e. f = f(q). Yet the cytoskeletal network consists not only
of cross-linked actin-myosin filaments but also of more or less flexible mi-
crotubuli and intermediate filaments [128,196,211]. Therefore, the stress
function f(q) has to decrease to (large) negative values for increasing
q → qmax = 1, which would also resemble a certain amount of contact
inhibition between cells in close contact. Here we chose the simple, ther-
modynamically compatible strictly decreasing model function

f(q) = fint

(
ln(1− q)− ln q − ln zc

)
, (5.23)

8In order to avoid notational clashes, the cytoskeletal volume fraction is denoted
by the letter q in this multi-cell model and not by θ as in chapter 3.
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where the coefficient fint is a model parameter. The corresponding gen-
eralized free energy F is convex and satisfies

F(1− q) = (1− q)
(
f(q)− fint

)
(5.24)

for 0 < q < 1 (cf. [4]), where the positive constant zc < (1 − q0)/q0

determines the critical volume fraction qc = 1/(1 + zc) > q0 such that
f(qc) = 0. Applying transformation (5.22) we finally obtain an actin
fiber stress function that depends only on the relative cell body distance
∆ij = δij/δ

rup
ij < 1, namely

f(∆ij) = fint · ln
( ∆ij −∆min

∆crit −∆min

)
, (5.25)

where 0 < ∆min = q0 < q0(1 + zc) = ∆crit < 1.
The derivation of this cellular interaction model relies on several simpli-

fying assumptions. First, the stress arises from filaments emanating from
the two cell bodies Bri(xi), Brj(xj), and engaging in an adherens junction
at Γij. Second, the stress in the filament pair is completely determined
by the coupling of effective adhesion strength fint and the local cytoskele-
ton state q. According to equation (5.22), this state is attained in the
lamellae near the horizontal cell-cell connection axis along d̂ij, see figures
5.3 and 5.4. Finally, within this pair-coordinate frame, the respective fil-
ament orientations are R̂i = (− cosφi, sinφi) and R̂j = (cosφj, sinφj),
so that the corresponding adherens junction at Γij experiences two force

vectors fi = −f(∆ij) · R̂i and fj = −f(∆ij) · R̂j with opposing horizontal
components. However, their resultant vector fi + fj generally does not
vanish (except for φi = φj = 0). It has a negative vertical component

(fi + fj) · d̂⊥ij = −f(∆ij) · (sinφi + sinφj), which could pull the adherens
junction towards the cell-cell connection line along the contact boundary
Γij.

Therefore, some counterforces due to substrate adhesion via e.g. inte-
grin [79, 98] or frictional drag have to be supposed in order to guarantee
the assumed pseudo-stationary equilibrium condition for Γij. Using the
simplifying decomposition in horizontal and vertical components, we ar-
rive at the following model expression for the force fij applied by a single
filament pair onto the cell body center xj:

fij =
1

2

(
(fi − fj) · d̂ij, α(fi + fj) · d̂⊥ij

)

=
f(∆ij)

2

(
(cosφi + cosφj)d̂ij + α(sinφi + sinφj)d̂

⊥
ij

)
,

(5.26)
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Figure 5.5.: Dependence of the in-tissue cellular interaction force |Fint
ij | on

the cell body distance δij and the ratio ri/rj of their generator
radii. In the empty regions of the plot, Fint

ij is not defined,

because there the two cells are not in contact.

where α ≥ 0 is an additional adhesion or friction parameter, representing
the cooperative traction activity of the cell pair in the vertical direction.
By relying on the pairing filament density ρ(θ) from paragraph 5.3.3, we
obtain an integral expression for the total pair interaction force applied
by cell i onto cell j:

Fint
ij = Rij

∫

Γij

dθ ρ(θ) · fij(θ) (5.27)

where the trigonometric relations between φi, φj and the parameterization
angle θ have to be extracted from equations (5.16, 5.17). The emerging
cell pair interaction force Fint

ij is shown in figures 5.5 and 5.6. A natural
and maximal cut-off distance for the force is given by the finiteness of the
Voronoi tessellation, whereby neighboring is only possible for sufficiently
small cell center distances δij < δrup

ij + ri+ rj, i.e. BRi0
(xi)∩BRj0

(xj) 6= ∅.
Once two previously isolated cells come close enough for contact, there is a
strong tendency to attach, which facilitates multicellular tissue formation.
As one can see from figure 5.6 (a), the interaction force is attractive until
the cell distance δij reaches δcrit

ij = ∆crit ·δrup
ij , where Fint

ij vanishes. Finally,
if δij drops below δcrit

ij , Fint
ij becomes repulsive and therefore hinders tissue

collapse at distances approaching δmin
ij = ∆min · δrup

ij , which resembles the
contact-mediated inhibition of collectively migrating cells.
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Figure 5.6.: Dependence of the in-tissue cellular interaction force |Fint
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In each plot we show three distinct curves corresponding to
the indicated parameter values of ri and δij, respectively.

Note that with the relative cell body distances ∆ij > ∆min, the lower
bound from inequality (5.11) on the homogeneity of cell radii due to fixed√Pex can be relaxed to

1 <
Pex(

∆min(
√Pex − 1) + 1

)2 ≤ Qnb. (5.28)

Correspondingly, Pex can be increased for given cell size homogeneity Q
or neighbor size homogeneity Qnb, cf. equations (5.6, 5.11). For example,
the constraint (5.28) yields Qnb = 6.25 for

√Pex = 3, or rmin ≥ 0.73 · rmax

for each cell pair. In fact, the actual distances ∆ij in a tissue will be
larger than ∆min, effectively relaxing (5.28) even further.

5.Locomotion force at the free boundary9: In addition to the dy-
namics induced by pair interaction forces, cells at the tissue margin may
migrate into open space. The locomotion force causing such a migration
is due to lamellipodial protrusion and retraction, which is unhindered
only at the free cell boundary Γi0. In a similar manner as before, we
assume that this locomotion or free boundary force onto the cell body
Bri(xi) is determined by connecting radial filament bundles as indicated

9A slightly modified version of this paragraph appeared in [31, section 3.4]. Wolf-
gang Alt and M.B. jointly performed the presented research, and M.B. wrote that
part of the paper.
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Figure 5.7.: Force balancing in an isolated cell pair. The deterministic
force Fj = |Fint

ij +Floc
j | acts on the cell center xj. Parameters

are fint = 60 pN, α = 1, ri = 3.0, rj = 2.0, ρ̃ = 6.6/µm,
∆min = 0.2, ∆crit = 0.5.

in figure 5.4. The filament density of cell i along its free boundary Γi0 is
given by

ρi0 =
ρ̃ri
Ri0

=
ρ̃√Pex

, (5.29)

and thus independent of ri. In this way, the locomotion force of a cell i
reads as

Floc
i = floc

∫

Γi0

dsi ρi0R̂i0(φi), (5.30)

with arc length si = Ri0φi, the radial unit vector R̂i0(φi) = (cosφi, sinφi)
and the locomotion strength parameter floc, see table 5.1 below. We
remark that this expression for the locomotion force is in full analogy to
equations (3.57, 3.58) from the peripheral cell migration model, except
that the free boundary Γi0 does not occupy the full cell perimeter. The
resultant force Fj = |Fint

ij + Floc
j | for a cell j interacting with another cell

i in a pair including locomotion is shown in figure 5.7. Apparently, there
is a stable contact equilibrium in Fj for lower values of the locomotion
strength floc ≤ 105 pN.

In order to heuristically account for ubiquitous perturbations due to
lamellipodial fluctuations or possible signals, we additionally implement
stochastic force increments at the tissue margin

dFst
i = bst

∫

Γi0

dBt,si . (5.31)

Here we assume a uniform and isotropic vector noise Bt,si defining a
spatio-temporal Brownian sheet in arc length and time coordinates with
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independent Gaussian increments satisfying Var
(
dBtsi

)
= dsi · dt. The

strength of the stochastic force is determined by the the parameter bst,
again see table 5.1 below. For each time t, stochastic integration results
in a simple weighted Gaussian noise term with random increments dWt

dFst
i = bst

√
|Γi0|dWt =̂ bst

√
|Γi0|dt

2
ξξξt, (5.32)

where ξξξt is a vector of Gaussian random numbers, which is chosen inde-
pendently for every time step in a corresponding numerical realization of
the stochastic process.

6. Drag forces10: Apart from interaction and free boundary forces, the
cell is subject to drag forces Fdrag

i slowing down its movement. Such drag
forces are generally functions of the cell body velocity ẋi = vi. As in
paragraph 3.8.5, we assume the simplest dependency of a linear force-
velocity relation

Fdrag
i = −γivi, (5.33)

with drag coefficient γi = γ(ri). Arising from friction with the substra-
tum, γi could depend on the area of the cell body, e.g. γ(ri) ∝ r2

i , however,
for simplicity, here we take γi = γ̃ independent of cell body sizes.

7. Dynamics of cell movement11: The previously described, active
and anisotropic forces Fint

ij ,F
loc
i arise from the actin filament network and

cooperative adhesions, act onto the cell center xi, and thereby cause
the cell to translocate. Thereby, the friction from equation (5.33) is
considered to be dominating and inertia terms are neglected [83,106,191],
so that the emerging deterministic overdamped Newtonian equations of
motion read as

Fi + Fdrag
i = 0, with Fi = Floc

i +
∑

j neighbor

Fint
ji . (5.34)

However, any change of the translocation direction as well as adjustment
of speed to the pseudo-steady state as given by the previous equation

10In slightly modified from, this paragraph appeared in [31, section 3.4]. Wolfgang
Alt and M.B. jointly performed the presented research, and M.B. wrote that part of
the paper.

11A slightly modified version of this paragraph appeared in [31, section 3.4]. Wolf-
gang Alt and M.B. jointly performed the presented research, and M.B. wrote that
part of the paper.

150



(5.34) requires some (mean) time Ti for restructuring and reinforcing the
anisotropic actin network. The simplest way to model this adjustment
process involves a linear stochastic filter of first order for the velocity [13].
Together with equation (5.31) this results in the stochastic differential
equation (SDE) system

dvi =
1

Ti

(
Fi

γi
− vi

)
dt+ b

(i)
st

√
|Γi0|dWt, dxi = vidt, (5.35)

with b
(i)
st = bst/γi. Similarly as the friction γi, also the mean adjustment

time Ti could be cell dependent, however here we restrict ourselves to the
case of cells with a single activity time scale ∀i : Ti = T for all cells.

For each time t, the forces (5.27, 5.30, 5.32, 5.33) can be computed ex-
plicitly from the Voronoi tessellation of the generating cell bodies {Bri(xi) :
i = 1 . . . N} using a spatial discretization of {Γij} in the parameterizing
angle θ. Next, the velocities {vi} and positions {xi} of the cell cen-
ters are updated according to both equations (5.35) in an explicit Euler-
Maruyama step [127]. Finally, the Voronoi tessellation is recomputed
from the updated cell bodies {Bri(xi)}.

Higher order stochastic integration schemes were not applied, since such
procedures require the distribution of both forces and perturbations onto
the powers of a Taylor expansion. In general, the involved derivatives of
cell-cell contacts {Γij} and cell margins {Γi0} cannot be computed easily
a priori. Particularly, the change of a contact Γij may depend on the
behavior of several distinct nearby cells k 6= i, j. Altogether, here we
use the versatile basic method for integrating the equations of motion,
because it is applicable regardless of the structure of the underlying SDE
system.

8. Dimensional considerations12: Before coming to simulations of model
tissues, we further study the cellular equations of motion (5.35). Since
both time (seconds) and length scale (microns) of cell motility processes
are well known, the only remaining free scaling figure is the magnitude of
cell forces. In accordance to [10], we assume that a typical bundle of sev-
eral actin filaments can exert a force of approximately 10 pN. A single cell
can, with the overall filament density parameter ρ̃ and the force prefactors
floc, fint as in table 5.1, reach an effective traction of O(1000 pN) from a
force as given by equation (5.27). The drag coefficient γ̃ then naturally

12A slightly modified version of this paragraph has been published in [31, section
5]. M.B. performed the presented research and wrote that part of the paper.
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Symbol Meaning Value Units
√Pex Relative maximal cell extension 3 dimensionless
ri Cell body radii 0.9 . . . 2.0 µm
T Cytoskeletal reorganization time 120 s

ρ̃ Filament bundle density on cell body 9.55 1/µm
floc Strength of cellular locomotion force 10 . . . 20 pN
fint Strength of cellular interaction force 60 pN

α Cooperative vertical traction coefficient 0 . . . 0.17 dimensionless
∆min Relative minimal cell pair distance 0.1 dimensionless
∆crit Relative critical cell pair distance 0.2 . . . 0.7 dimensionless

bst · P−1/4
ex Strength of stochastic migration force 8.31 pN /

√
µm · s

γ̃ Cellular friction constant 2.5 · 104 pN · s / µm

dt Numerical time step 2 s

Table 5.1.: Model parameter values as employed in this chapter 5, unless
indicated otherwise. As explained in the text, Pex determines
the relative size of the lamella region around the cell body
Bri(xi). The scaled interaction distances ∆min,∆crit are de-
fined in equation (5.25) and determine the sign and scaling of
the cell pair interaction force Fint

ij . The relative strength of
the vertical component of Fint

ij in equation (5.26) is given by
α. Finally, the stochastic perturbation parameter bst in equa-
tion (5.32) contains a factor (Pex)−1/4 in order to obtain the
same amount of perturbation for cells with equal body radii
ri. Since we look for robust features in the simulations, bst

was chosen fairly high.

follows from experimentally observed cell velocities [79, 155, 234]. These
and all the other model parameters used in this chapter are summarized
in table 5.1, together with a brief description of their meaning. Unless
indicated otherwise, we here employ the default parameter set from table
5.1.
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5.4. Small cell groups exhibit several topological
arrangements13

1. Emergence of tissue shape and multiple stable states: Consider a
simple proto-tissue of seven cells as shown in figure 5.8 ‘start’. Using the
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Figure 5.8.: Different tissue conformations (a–d) evolving from the con-
figuration ‘start’ after a simulation time of 8 h; here rmax =
2.0µm (cell 7), rmin = 1.0µm (cell 2), and parameters
floc = 20 pN, α = 0, ∆crit = 0.25. The percentage of occur-
rence of a particular conformation then was computed, and
the error bars were obtained by a simple bootstrap method.
Other features are further explained in the text.

parameters floc = 20 pN, α = 0,∆crit = 0.25, a series of 1000 simulations
has been performed. After a simulation time of 8 h, the emerging tissue
conformations as distinguished by Delaunay network topology have been
recorded. In the course of these 8 h, significant changes appear within the

13A slightly modified version of this section has been published in [31, section
5.1], which was jointly written by M.B., Amit Kumar Tyagi, Jan-Ulrich Kreft, and
Wolfgang Alt. M.B. performed the presented research and wrote that part of the
paper.
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tissue, and apparently several equilibrium conformations emerge. For the
four most prevalent cellular arrangements the percentage of occurrence is
displayed in figure 5.8. One observes two rather globular shapes (a), (d),
where either the big cell 1 or the two small cells 2, 3 are engulfed by the
others, respectively. Furthermore, there are two quite elongated shapes
(b), (c), where only the single small cell 2 is completely surrounded by
other cells. Being distinguished by topology, (b) and (c) are in fact quite
close in shape, despite of their rotational variation.

2. Quantifying tissue shape and its fluctuations: From the high oc-
currence of the topological conformations (a), (b) one might conclude
that these two conformations are the most stable ones. Thus, and to
clarify the interrelations between the conformations (a–d), we investigate
(a) and (b) in longer simulations. To this end, by starting from the config-
urations (a) and (b) (see figure 5.8), both tissues have been evolved for 40
additional hours of simulation time. In order to characterize the shape of
tissue with respect to global and elongated shape, here we observe tissue
size, i.e. the maximum diameter, and tissue circularity

Ω =
2
√
πAtiss∑
i |Γi0|

≤ 1, (5.36)

where Atiss is the total area of the tissue. Note that in connected tissues
Ω = 1 would be attained for a purely circular globe. In figure 5.9, we
plot the full time series of size and circularity for the two tissues from
5.8 (a) & (b). After approximately 8 h, the time series for (a =̂ blue) &
(b =̂ red) exhibit clearly different conformations. While the circularity Ω
is only slightly different in the two cases, the tissue size is clearly higher
for the elongated conformation (b). Apart from stochastic fluctuations
and an initial equilibration phase for t < 1 h, both observables attain a
constant value for time series (a). In contrast, for time series (b) there
appear distinct states between t ∼ 2.5 h and t ∼ 24 h. Indeed these
observations are reflected by the actual evolution of the tissue. While
the topology of the tissue does not change after t = 2 h for time series
(a) (mova.avi14), tissue (b) (movb.avi) goes through several different
conformational states. At t = 13.5 h it attains the same topology as
conformation (c), identifying (c) as a transient state (movc.avi). After-
wards, approximately at t ∼ 18.5 h, cell 7 establishes contact with cells

14All electronic supplementary material is available from http://www.theobio.

uni-bonn.de/people/mab/dsup.
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Figure 5.9.: Two time series (blue, red) for the tissue in figure 5.8 ‘start’.
After 8 h the two distinct topological conformations from fig-
ure 5.8(a) (blue) and 5.8(b) (red) have emerged. These topo-
logical conformations are characterized by distinct tissue size
(right axis) and circularity Ω (left axis). While (a) is appar-
ently a stable topological conformation that does not change
even for strong stochastic perturbations, (b) relaxes into a
topological conformation of globular shape via several inter-
mediate steps, see supplementary mova.avi & movb.avi.

1 and 3, so that the tissue shape is similar to (c). Finally, shortly before
t = 24 h, the tissue reaches its final conformation similar to (d) except
for the order of the marginal cells. Conformation (d) emerges in a sim-
ilar manner as (a), however instead of cells 1, 5 initially cells 3, 4 form
a neighbor pair, quickly leading to the stable final arrangement in less
than 0.5 h (movd.avi). Moreover, the time series of conformation (b) in
figure 5.9 suggests, that during t = 0.5 . . . 3 h the tissue already attains
a shape of similar compactness and stability as in figure 5.8(a). Never-
theless, the Delaunay mesh (green lines) is not convex there (movb.avi),
which explains this surprising instability.

3. Shape deformation barriers and tissue stability: It appears, that
the stability of a tissue is related to its globular shape. This is not a
surprise, since the stochastic forces in equation (5.30) are defined only on
free cell boundaries Γi0, and therefore act only on marginal cells. Thus, by
minimizing the total extension of all Γi0, maximal circularity minimizes
stochastic perturbations, which enhances the stability of the tissue.

Additionally, for a tissue to change its topology, its cells have to over-
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come barriers as imposed by the other cells. For example, cell 3 has to
displace cell 1 in movb.avi at t ≈ 3 h in order to make contact with 2.
Depending on the particular configuration, the severity of these barri-
ers might range from prohibitive to practically non-existent. Influenced
by the strength of the stochastic interactions, these barriers then deter-
mine the time scale of further relaxation to equilibrium. In this sense,
the notion of equilibrium is directly related to an inherent time scale.
According to the previous evolution of the tissue, there may be several
stable topological conformations for a given time scale.

5.5. Tissue stability is favored by starlike cell
geometries15

1. Effects of maximal cell extension and critical distance: In order
to explore the ramifications of piecewise spherical cells within our model
framework, we study the influence of Pex and ∆crit on tissue formation.
To this end, a simulation has been performed starting from an exemplary
configuration as in figure 4.1 (right) with ∆crit = 0.3,

√Pex = 3, α = 0.17
and floc = 10 pN. After 8 h, either ∆crit or

√Pex was modified to a
nearby parameter position as indicated in figure 5.10, and the simulation
was continued for another 8 h. This procedure was repeated until the
whole panel in 5.10 was filled with the final tissue configurations.

For fixed {ri},
√Pex defines the free cell radius Ri0 in units of ri, and

∆crit presets the equilibrium cell-cell body distance in units of δrup
ij , see

equations (5.4, 5.25, 5.21). In this way, both parameters jointly determine
the emerging tissue size. In figure 5.10, the corresponding overall tissue
extension increases from left to right and from top to bottom. Further-
more, for given ∆crit, tissues with higher

√Pex exhibit a rather compact,
almost quadratic shape. We speculate that this is due to spontaneous
formation of distinct protrusions arising from stochastic perturbations
and leading to an increase of locomotion at the corners. In contrast, tis-
sues with lower

√Pex feature more irregular margins. Similarly, for given√Pex, larger values of ∆crit yield more irregularity, most pronounced di-
rectly before dissociation of the tissue.

15A slightly modified version of this section has been published in [31, section
5.2], which was jointly written by M.B., Amit Kumar Tyagi, Jan-Ulrich Kreft, and
Wolfgang Alt. M.B. performed the presented research and wrote that part of the
paper.
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Figure 5.10.: Stability of tissue for various values of the parameters
√Pex

and ∆crit, where floc = 10 pN, and α = 0.17. When in-
creased, both parameters

√Pex,∆crit lead to an increased
tissue size. For sufficiently large ∆crit, the tissue eventually
dissociates. The extremal cell body radii are rmin = 0.9µm
and rmax = 1.7µm in all simulations presented in this figure.
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Figure 5.11.: Tissue aggregation and dissociation depending on the rel-
ative lamella width W and the dimensionless cell overlap
Z. The line Z · W = T0 ≈ 0.24± 3% separates associating
from dissociating tissues and was determined from a linear
regression against Z = T0/W . See also the explanations in
the text.

2. Cell overlap and tissue coherence threshold: Apparently, for sus-
taining the aggregation of the tissue, the interaction forces are sufficiently
strong only if there is enough space for the adaptation of neighboring cell
lamellae. This space serves as a cushion for accommodating near-range
repulsion from multiple neighbor cells and at the same time poses a resis-
tance to stochastic perturbations by mid-range neighbor cell attraction,
cf. also figure 5.7. Otherwise the tissue dissociates, leading to isolated
cells exclusively driven by stochastic perturbations. In order to quantify
these findings, consider the relative lamella width W and the dimension-
less cell overlap Z defined by

W =

√Pex − 1√Pex

< 1, Z = 1−∆crit < 1. (5.37)

Since W relates only to
√Pex and Z only to ∆crit, we can reconstitute

the panel from figure 5.10 in terms of W and ∆crit. The result is shown
in figure 5.11, where dissociating tissues are indicated by red dots, and
aggregating tissues by green ones. Next, we fit the function Z(W) =
T0/W to the lower-most green dots, whereby T0 is the fitting parameter.
On the resulting blue line in figure 5.11, the product Z · W attains the
constant value T0 ≈ 0.24, and aggregating tissues are located above – but
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not below – the fitted line. Thus, T0 can be identified as a threshold value
guaranteeing tissue coherence under the condition

Z ·W ≥ T0. (5.38)

The specific value of T0 eventually depends on the other dynamical tissue
parameters from table 5.1. The presence of the coherence threshold T0

confirms that for tissue aggregation to occur, there has to be enough
space for the formation of cellular lamellae. This means that the relative
lamella widthW and thereby the maximal cell extension parameter

√Pex

have to be sufficiently large.

3. Starlike cells and coherent tissues: On the other hand, we have es-
tablished this result under the tissue homogeneity condition (5.11), guar-
anteeing starlikeness of cells, which can now be rewritten as

Zmax · W = 1− 1

Qnb

, (5.39)

with Zmax := 1−∆min defining the maximal dimensionless overlap. Since
W < 1 by construction, inequality (5.38) always holds with (5.39) for
very high cell size homogeneities Qnb ≥ 1/∆min. However, for lower Qnb

there is an upper bound on W restricting the available lamella space. If,
in addition, starlikeness of cells is enforced for all possible neighborhood
constellations, then Qnb has to be replaced by Q, see equation (5.7). In
this way the relations (5.38) and (5.39) lead to the sufficient condition
for tissue coherence

T0

1−∆crit

≤ W = 1− 1√Pex

≤ 2

(1−∆min)(1 + rmax/rmin)
. (5.40)

From these estimates we conclude that the formation of connected tissue
aggregates is guaranteed within a certain finite range of the free cell size
parameter

√Pex. The precise range of
√Pex depends on the model force

parameters (∆min, ∆crit, fint, α, floc, bst) and the extremal cell body radii
rmin and rmax. Within the limits of inequality (5.40), the lamellae regions
are wide enough to perform the necessary deformations by adapting to the
surrounding neighbors through shape changes. Thus, nature’s freedom in
developing aggregating tissues may be constrained by a tradeoff between
the relative size of cells with respect to their bodies (

√Pex) and the cell
size heterogeneity (1/Q).
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Figure 5.12.: Experimental cell sorting assay with Zebrafish cells. The
cells are stained by injecting fluorescence molecules in the
one-cell stage of the embryo. Subsequently, progenitor cells
for a specific dermal layer of each donor embryo are ex-
tracted and subsequently mixed (a). After several hours
the cells start to demix (b–d) and sort out in prominent do-
mains. Depending on the combination of endoderm, meso-
derm or ectoderm cells, different sorting patterns emerge
(e–g). This figure is reprinted from [130, figure 3], with
kind permission by Carl-Philip Heisenberg.

5.6. Two-dimensional cell sorting cannot be fully
reproduced in cell-center based tissue models

1. Self-sorting of embryonic cells: In the early development of am-
phibia, between the so-called gastrula and late neurula stages, the em-
bryo is organized in three layers of cells called the endoderm, mesoderm
and ectoderm [77,160]. Most parts of the ectoderm will form the exterior
skin. The mesoderm will become muscle and connective tissue. The fate
of the endoderm is to form the digestive system and possibly other inner
organs, see e.g. [77,160].

When embryonic cells from the three dermal layers are extracted and
subsequently brought in contact in-vitro, they adhere to one another,
even if they come from different species [217]. Moreover, they arrange
in a way that recapitulates the order as present in the original embryo,
which is usually referred to as cell sorting [77,91]. One example of such a
cell sorting assay is shown in figure 5.12. Early and very extensive studies
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in the 1950s lead Townes and Holtfreter to suggest an “emergence of a
selectivity of cell adhesion” [217, p. 115] as an explanation of the observed
cellular arrangement patterns.

Based on this idea, Steinberg developed his theory of “differential adhe-
sion” in the 1960s [198, 199]. Thereby, the demixing of cells is explained
from their microscopic molecular adhesion properties, whence the cells
would adhere to one another just like molecules in a fluid. Adhesion would
occur in a differential manner according to the mutual binding energies
of the involved molecules or cells. For the same molecular reason, one
can observe the spontaneous demixing of oil and water in the salad bowl.
Despite of the obvious appeal of this simple argument, only few years
later it was pointed out that cell sorting might not be fully explained by
differential adhesion [96]. The main arguments were that cells are active,
i.e. thermodynamically open systems and not passive molecules. Also,
the cells might engage in non-local interactions extending far beyond the
molecular range. Finally, there are highly localized adhesion zones like
desmosomes, which would seem to contradict the necessity for maximiz-
ing the contact area [96]. The subsequent fruitful debate on the intricacies
of cell sorting lead to the suggestion of various sorting mechanisms and
is still in progress.

Approaching the problem with modern experimental techniques gave
rise to the conclusion that differential adhesion would not suffice to ex-
plain cell sorting [130]. These measurements were performed by means of
atomic force microscopy, and involved the selective knock-down of cad-
herin and myosin. Apparently, the by now well appreciated cortical ten-
sion arising from acto-myosin needs to be accounted for to explain the
observed cell sorting behavior [130]. As usual in science, this study lead
to puzzling new questions. In particular, it could not be explained why
the ectoderm cells would sort to the interior of aggregates in-vitro [91]. It
is therefore worthwhile to further inquire the problem in fully controlled
in-silico environments.

2. Modifications of model forces and their interpretation: Within
the tissue model presented in this thesis, there are several possible hooks
to influence specific characteristics of individual cells. Here, we consider
three behavior parameters that affect the tissue-scale dynamics by allow-
ing for differential cell properties in the force balances.

Based on the classical idea that cell sorting arises from differential cell-
cell adhesion, and according to the arguments from section 1.7, we assign
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to each model cell i its cadherin expression level ci. This dimensionless
number affects the interaction force from equation (5.27), and represents
the amount of expressed cadherin receptors on the cell membrane. Re-
call that the cellular interaction force derives from the stress exerted by
cytoskeletal filament bundles meeting on the contact surface Γij with the
mutual pairing density ρ. Generalizing the purely filament-driven inter-
action, we include also the cadherin expression level,

Fint
ij = Rij

∫

Γij

dθ cij ρ(θ) · fij(θ) (5.41)

where the adhesion density cij =
√
ci · cj results from the joint cooper-

ation of the cell pair i ∼ j. In this way, the intracellular stresses are
coupled to trans-cellular adhesion sites.

In order to additionally incorporate differential adhesion towards the
extracellular matrix, we include the cellular integrin expression level bi
in the locomotion forces from equation (5.30), again as dimensionless
number. As before, locomotion occurs at the free margin arcs Γi0 forming
the exterior tissue boundary,

Floc
i = floc

∫

Γi0

dsi biρi0R̂i0(φi), (5.42)

There, the joint action of lamella-like structures and the cell’s capability
to engage in integrin adhesions would create a net pulling force directed
outwards. Higher values of bi will therefore bias the cellular positioning
towards the free margin of the tissue with fewer surrounding neighbors.

Another factor that might influence the cellular sorting behavior is their
sensitivity to external cues. In this model, no such cues are considered ex-
plicitly. However, stochastic perturbations provide for a related function
in that they directly inject fluctuations in the force-generating migration
machinery. A possible interpretation for a strong fluctuation is that the
cell would receive a dedicated though unspecified migratory signal. In
the stochastic force from equation (5.31), the fluctuations arise from the
free cell boundary Γi0 exclusively. As an additional model refinement, we
here also include stochastic forces originating from the cell-cell contact
borders Γij,

dFst
i = bstqidW

(i)
t ,

dW
(i)
t = κΓ ·

∫

Γi0

dBt,si + (1− κΓ) ·
∑

j:j∼i

∫

Γij

dBt,sij

(5.43)
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The overall strength of stochastic perturbation is regulated by the bst

parameter. Moreover, κΓ ∈ [0, 1] describes the relative importance of
perturbation signals from free cell margin Γi0 and the pair contacts Γij.
Finally, the per-cell sensitivity to external fluctuations in the environ-
ment is quantified by the dimensionless number qi, which we shall call
protrusiveness.

3. Sorting in two-dimensional Voronoi models: In the computer sim-
ulations presented in this section, the model tissue contains two distinct
cell types with differential properties:

(i) blue cells strongly adhere to one another, cblue
i = 3.0, while exhibiting

only weak locomotion at the tissue margin, bblue
i = 0.2,

(ii) green cells have a decreased ability for adhesion, cgreen
j = 1.0, and

exert high locomotion forces at their free boundary, bgreen
j = 2.0.

Apart from the following non-differential parameters, there are no further
modifications with respect to the values used in the preceding sections
and table 5.1. In this section we employ

• ∆min = 0.02,∆crit = 0.4, to achieve a broad repulsive region in the
interaction force,

• α = 0.66, so that there is a high degree of neighbor cooperativity
in the vertical component of the interaction force,

• κΓ = 0.45, qblue
i = qgreen

j = 1.0, so that the stochastic perturbations
are the same for both cell types.

The interaction ranges ∆min,∆crit facilitate the cellular rearrangements
within the tissue, because then the slope of the resulting force at the equi-
librium point Fint

ij = 0 becomes fairly flat, cf. figure 5.6. The locomotion
strength was floc = 10 pN. Moreover, according to the κΓ parameter, the
majority of perturbations arises from the interior cell-cell contact borders.
The simple assumption of uniform protrusivity qi is justified because ear-
lier trial simulations have revealed that there is no significant influence
on the observed sorting behavior (data not shown).

Here we start each simulation with a tissue as depicted in figure 5.13 at
t = 0, whereby the cell radii ri = 1.08 . . . 1.78 are fairly uniform. Already
after two hours we observe that the blue and more adherent cells have
gathered in the interior to form a characteristic strand throughout the
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t = 0 t = 2 h t = 8 h

t = 168 ht = 84 ht = 24 h

Figure 5.13.: Cell sorting and strand formation in two-dimensional aggre-
gates. According to the expression level of cadherin and in-
tegrin proteins, the blue cells are strongly adherent, whereas
the green cells do only weakly attach to one another. Addi-
tionally, the latter are capable of sustaining relatively high
traction forces at the tissue margin, in contrast to the blue
ones. As can be observed from the second panel t = 2 h,
strands of blue cells quickly assemble in the tissue bulk.
However, sorting remains incomplete, even after the model
tissue has evolved for one week, t = 168 h. Remarkably,
the central strand of the blue cells seems to determine the
overall tissue shape.
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tissue. After that, and during the typical time-scale of few days set by
in-vitro experiments, no major changes arise. Sometimes, the blue cell
strands locally break up, though the general structure is rather persis-
tent. Inspecting the accompanying movie mov sort.avi16, one observes
that the formation of new contacts between blue cells is hindered by
intermediate and usually big green cells. Trying various combinations
of differential ci, bi, qi (data not shown) and changing the other model
parameters within biologically reasonable bounds (not shown) did not
result in quicker or more complete cell sorting. Differential protrusive-
ness qgreen

i > qblue
j enhances the mobility of the green cells, but otherwise

does not affect the aforementioned observation. In contrast, differential
integrin expression bgreen

i > bblue
j seems to facilitate sorting until strand

formation, for given amounts of differential cadherin expression.

A similar phenomenon was already observed in the small aggregates
from section 5.4. There, the steric interactions between individual cells
have posed effective barriers against otherwise favorable rearrangements.
For given amounts of stochastic perturbation, these barriers set a char-
acteristic time-scale to the further topological relaxation of the tissue.
Indeed, when continuing to evolve a model tissue for a very long simu-
lation time of up to half a year, one can observe that the cells do sort
out as expected. Thereby, the blue cells form a globular tissue core, and
the green cells gather in an exterior ring (data not shown). Apparently,
the employed cellular interaction model exhibits intermittent barriers be-
tween meta-stable tissue states that are unphysical in the sense that these
barriers cannot be overcome in the expected time frame of at most two
days.

In the spirit of Harris [96], we could consider differential cellular sur-
face contraction or cortical tension. Unfortunately, such tensile forces
would be situated within the cell-cell contacts of the model. For a valid
implementation, we would need to impose the force balances at the ver-
tices, and not at the cell centers as required by the Voronoi description.
One might also be tempted to blame the discrepancy in sorting time on
model parameter uncertainties. Indeed, since their estimation is rather
crude and the underlying measured data exhibits quite some variation,
we have to expect at least some error accumulation due to the employed
parameter values. However, even taking into account these possible er-
ror sources, being off by two orders of magnitude does not appear to be
reasonable.

16See http://www.theobio.uni-bonn.de/people/mab/dsup.
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In the context of pattern formation, the observed strand formation
nevertheless constitutes an interesting phenomenon, because the tissue
shape appears to follow the central strand. Since the interior cells are
highly adhesive, they gather the exterior green ones in their neighbor-
hood, without breaking the central strand cohesion. For further details
on pattern formation and several related mechanisms, see [144].

4. New theoretical and experimental insights: In vertex-based mod-
els, the sorting of cells can surprisingly be recapitulated in three – but not
in two – spatial dimensions (G. Wayne Brodland, private communication;
cf. also [111]). In particular, due to the additional freedom in the third
dimension, after strand formation there still is the possibility of forming
contacts with nearby cells of the same kind. One can understand this
mechanism by thinking of two connected chain links of different kinds of
cells. In this scenario, even though one cell of the blue kind would be
surrounded by green cells from almost all sides, the freedom of the third
dimension enables the blue cell to make new contacts with other adja-
cent blue ones. In contrast, in two dimensions the strands are quite stable
objects, because new contacts to the other side of the strand cannot be
made. More formally, the disentangling of the presorted cellular strands
occurs through a Plateau-Rayleigh or dripping-faucet instability in three
dimensions [111]. In two dimensions, such a breakup of the presorted
chains naturally works against sorting.

This provides for a fundamental explanation why cell sorting takes so
long when simulated in two dimensions. Moreover, the occurrence of
the problem in both Voronoi and vertex tissue models seems to indicate
that the specific nature of the involved forces is not critical. In fact,
since center and vertex based geometries are dual to one another, so is
the structure of their accessible model forces. This rises the question
why cellular Potts type models are able to reproduce sorting even in two
dimensions [90]. The reason lies in their dynamical properties. As in
the original proposal by Steinberg [198], cellular Potts models are for-
mulated in terms of surface energies, which do not directly give rise to
force balances. Instead, tissue evolution is driven by the energy-centric
and stochastic Monte-Carlo update rule, causing the cells to perpetually
deform. The resulting fairly strong fluctuations enable the strands to
quickly disentangle so that the additional effect of the Plateau-Rayleigh
instability is not needed.

In a recent report, Steinberg and coworkers propose a theory that ex-
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plains the apparent tissue surface tension from underlying cellular prop-
erties [145]. In their theory, they find that the ratio of cell-cell adhesion
and intracellular cortical tension determines the overall surface tension
of a group of specific tissue cells. Moreover, there occurs an intermediate
transitional regime between sorting driven by cortical tension and sorting
driven by cell-cell adhesion. Remarkably, several of these theoretical pre-
dictions could also be confirmed in accompanying experiments [145], and
generally agree with aforementioned AFM measurements [130]. These re-
sults suggest a modified interpretation for “adhesion energy” or “surface
contraction” as proposed in the pioneering works [96, 198]. Both could
be understood in terms of the total group surface tension divided by the
number of individual cells.

Even though the in-silico studies presented here were not conclusive,
we gain several insights from our undertaking. First, modeling efforts of
reduced dimensionality entail fundamental inherent limits. However, the
full explanation of the slow sorting in two dimensions revealed detailed
mechanistic predictions on the condensation kinetics of presorted cellu-
lar domains in three dimensions. Second, cell sorting can be influenced
by the cellular adhesion, cortical tension and possibly other differential
properties or combinations thereof. This points at a certain modular-
ity and failure tolerance in the mechano-active cellular components or
proteomics.

5.7. Convergent tissue extension is driven by
anisotropic cell-cell interactions

1. The early development of Drosophila: The fruit fly Drosophila
malanogaster plays a very special role in developmental biology. It was
the first species at which certain events during morphogenesis could be
traced back to the underlying genetic regulation circuitry [163], which
was awarded the Nobel Price in Physiology or Medicine in 1995. After
the initial fertilization of the egg, the first 12-13 division rounds occur in
a synchronous manner, whereby all nuclei share one common syncytium
or cytoplasm, see e.g. [121]. After the subsequent formation of separat-
ing cell membranes, the three dermal layers of endoderm, mesoderm and
ectoderm form in so-called invagination processes, cf. [77,160]. When the
ecto- and mesoderm have been formed, a particular movement pattern oc-
curs at the ectoderm on the surface of the embryo. Thereby, the so-called
germband converges in lateral direction, while it simultaneously expands
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along the anterior-posterior body axis. The common understanding of
this behavior relies on the collective action of the involved cells, which
are said to intercalate, i.e. squeeze in between one another towards the
anterior-posterior axis [77, section “Convergence and extension”]. The
mechanisms that give rise to the observed intercalation, however, remain
under debate.

For example, laser ablation experiments have revealed a certain anisotropy
in the distribution of the cortical actin tension, which is sufficient to drive
the elongation of the germband [183]. Estimating the cortical tension
from the observed rupture velocities, one is lead to conclude that the bond
tensions differ by a factor of approximately 2 [183, figure 6f’], depend-
ing on their direction with respect to the anterior-posterior body axis.
On the other hand, precise monitoring of cellular elongation versus in-
tercalation and tissue expansion lead to the suggestion that the observed
ectodermal cell shape changes would be mostly a passive response to the
invagination movement of the underlying mesoderm [40]. We therefore
recapitulate the elongation movement in terms of the proposed Voronoi
tissue model and see what we can learn from this paradigmatic biological
model system.

2. Modifications to the individual cell locomotion forces: Inspired by
the correlation features of single cell migration trajectories from section
3.9, we write a new expression as a substitute for the locomotion and
stochastic forces from equations (5.42) and (5.43). In order to devise a
sufficiently versatile structure, we first attribute to each cell i a certain
polarity vector pi = pi(t). This phenomenological and dimensionless
quantity describes the instantaneous and in-plane polarization state of
the cellular cytoskeleton, and is computed according to

dpi =
1

Tpol

·
( vi
vpol

− pi

)
· dt− δpp̂i · dt+ αpqidW

(i)
t . (5.44)

The first contribution to dpi represents a linear filter of first order, in
full analogy to the previous velocity update rule (5.35). This filter causes
the polarity vector pi to adapt to the normalized cell migration velocity
vi/vpol, with an effective time lag of Tpol, representing the average cellular
reorientation time. From the cell speed autocorrelation plots from figure
3.10, we would expect the cellular reorientation time to be approximately
20 min. However, we here take the relatively low value Tpol ≈ 10 min in
order to facilitate the cellular reorientation in highly dynamic embryonic
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tissues. For a list of the employed model parameters see table A.9. The
second term on the right-hand side of equation (5.44) implies that the
polarity decreases by a constant amount in each time step, however only
when pi is still large enough. The parameter δp indicates the rate of po-
larity degradation, and p̂i the unit vector in direction of pi. Finally, the
last summand in (5.44) provides for an autonomous build-up of polarity
due to cellular guiding cues, which we however do not consider explicitly
in the model. Instead, we write the stochastic terms W

(i)
t from equa-

tion (5.43), with the dimensionless protrusivity number qi. The overall
strength of the cellular perturbation is therefore regulated by the rate α2

p,
again see table A.9.

With the polarity vector pi as defined above, the so-called polarity
force

Fpol
i = fpolbiρ̃iripi (5.45)

comprises a combined stochastic and locomotion force for each cell. Here,
the force-generating polar filament density ρ̃i is a specific cell property,
with the total number of filaments in a cell being ρ̃i · ri. Finally, the
dimensionless number bi indicates the effective integrin expression level,
and fpol the strength of the polarity force.

If a single model cell is subjected to the polarity force (5.45) and the
drag force (5.33) with a cellular friction coefficient

γi = γdragbiPexr
2
i π, (5.46)

one obtains the persistent migration trajectories as discussed earlier in
section 3.9. Here, γdrag is the characteristic friction force per cell area. In
figure 5.14, we plot the resulting autocorrelation function of the migration
speed of the model cell with polarity force. The overall features of the
corresponding experimental red curve in figure 3.10 are quite similar. We
therefore conclude that the polarity force Fpol

i is capable of reproducing
the most essential properties of isolated cellular migration trajectories.
For the collective motion in tissues, we postulate that the cell’s in-plane
polarity pi essentially carries over, albeit in a less insisting manner. In
particular, the less prominent individualism effectively would result in
decreased perturbation and force parameters αp, fpol. For the specific
values employed in both figure 5.14 and the simulations described below,
see table A.9.

3. Anisotropic interaction force: It has been shown in experiments
that during the elongation of the germband of Drosophila, the involved
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Figure 5.14.: Autocorrelation function of cell migration speed arising
from the polarity force from equation (5.45). The under-
lying single-cell trajectories exhibit the piecewise persistent
structure found in in section 3.9. Note that the 95 % con-
fidence interval around the autocorrelation curve is only
barely visible because of its relative smallness.

cells intercalate by exerting anisotropic tension throughout their actin
cortex underneath the adhesion belt [183]. In a quantitative tissue model
it would therefore be natural to assume that the tension within the
cell-cell contact depends on its orientation. However, in contrast to
vertex-based models, this cannot be directly implemented in center-based
Voronoi models. Instead, we have to devise an interaction force that
would encompass the in-tissue effect of anisotropic cellular cortex con-
tractions. To this end we think of an idealized model cell being of rectan-
gular box-like shape and filled with fluid. If we were to squeeze the cell
box at its two opposite shorter faces, incompressibility of the interior fluid
would cause the box to elongate in lateral direction perpendicular to the
squeezing. Correspondingly, enhanced contractions at opposite cell-cell
contacts would drive the directed elongation of a single cell in the tissue.
Thus we can model the anisotropic cortical tension by designating a spe-
cific direction in which the cells prefer to arrange with enhanced mutual
spacing.

Accordingly, the interaction force (5.27), and in particular its distance-
dependent contribution (5.25), namely

f(∆ij) = fint · ln
( ∆ij −∆min

∆crit −∆min

)
(5.47)

has to be modified in a cell-dependent fashion. The equilibrium distance
of two adjacent cells i ∼ j is given by the parameter ∆crit. Here we
consider two distinct types of model cells: (i) the blue (and also the black)
cells are under anisotropic cortical tension, and (ii) the green cells are
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Figure 5.15.: The anisotropic cortical tension present in Drosophila cells
during germband elongation cannot be directly imple-
mented in center-based Voronoi tissue models. However, as
a phenomenological substitute one can prescribe anisotropic
equilibrium distances between neighbor cells. Here we plot
this equilibrium distance ∆bb

crit between two such cells. If the
cell-center connection vector xi−xj is parallel to the x-axis,
then the neighbor bond angle φij = atan(xi−xj) = −π, 0, π,
where ∆bb

crit attains its maxima. Conversely, its minima are
located at φij = −π/2, π/2, where xi − xj is parallel to the
y-axis.

under isotropic cortical tension. For the anisotropic ones, ∆crit should be
higher in x-direction than in y-direction. To account for the directionality,
we introduce the angle φij ≡ atan(xi−xj) indicating the direction of the
connecting line between the cell centers xi−xj. We thus end up with three
different constellations for the preferred cell-cell equilibrium distance,

green–green: ∆gg
crit = ∆

(0)
crit ≡ 0.3, (5.48)

blue–blue: ∆bb
crit =

∆
(0)
crit√

α2
ani(cosφij)2 + (sinφij)2/α2

ani

, (5.49)

blue–green: ∆bg
crit =

1

2

(
∆bb

crit + ∆gg
crit

)
. (5.50)

The expression for ∆bb
crit involves the anisotropy parameter αani. Its effect

is shown in figure 5.15, where we have chosen αani = 1.4 in such a way
that the maximum of ∆bb

crit is approximately two times its minimum.

4. Additional cell-cell friction forces: When adjacent cells within an
aggregate move with respect to one another, we certainly have to expect
a certain response to the perceived mutual sliding. In principle, such a
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response could arise from various underlying molecular interaction sig-
nals. Within the present model there are, however, only two relevant
players, namely the cadherin cell-cell adhesion molecules and the F-actin
cytoskeleton providing for intracellular adhesion anchoring. The most ba-
sic modeling expression involving the mutual cell sliding is proportional
to the difference of cell velocities vi − vj,

Fvis
ij = γvis

ij (vj − vi), (5.51)

with respect to each of the topological neighbors j ∼ i from the Voronoi
tessellation. The sign of the velocity difference vj − vi is such that the
velocity vi of cell i tends to adjust to its surrounding spatial neighbor cells.
Thus, if the cell i were passive in all other regards, due to Fvis

ij it would
still be partially dragged along by its neighbors. Here we assume that
this velocity adaptation is driven by a force-induced cross-talk between
the adjacent cells. Therefore, the effective pair-drag γvis

ij derives from the
filament and adhesion densities along the contact border Γij,

γvis
ij = γvis

0 ·Rij

∫

Γij

dθ ρ(θ)cij, (5.52)

see figure 4.2 for the contact radius Rij. The model parameter γvis
0 reg-

ulates the overall strength of the viscous cell-cell friction, see table A.9.
The integral on the right-hand side of equation (5.52) corresponds to the
one from the cellular interaction force (5.41). Specifically, we again inte-
grate the product filament pairing density ρ(θ) and the cadherin adhesion
density cij =

√
ci · cj, cf. equations (5.20) and (5.41), respectively. At this

stage one could raise the question how cell-cell adhesions might be robust
while there is apparently a non-zero strain rate vi − vj perpetually tear-
ing on the underlying chemical bonds. However, if the formation and
dissociation of these bonds were fast as compared to the related cellular
migration processes, then the transient amount of adhesions would enter
the cell-cell friction in a temporally averaged manner, which is fully com-
patible with the expression in (5.52). Indeed, this line of arguments is
based on the very idea behind the whole-cell traction clutch from para-
graph 3.5.1, or behind the fluidity of the cytoskeleton, cf. paragraph 1.7.2.
Thus, the proposed pair-drag model is the minimal consistent extension
of the assumptions made in the preceding cellular migration models.

5. Equations of motion and their numerical integration: First we
define the active forces Fi acting on each cell i as the sum of polarity and
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interaction forces,

Fi = Fpol
i +

∑

j:j∼i

Fint
ji . (5.53)

In principle, all these active forces should be balanced by the the friction
forces in a whole-cell force equilibrium,

Fi + Fdrag
i +

∑

j:j∼i

Fvis
ij = 0. (5.54)

This equation has to be solved for the cell velocity vi ≡ (vxi , v
y
i ). How-

ever, the sum in the last term involves also several of the neighbor ve-
locities vj, which have to be computed simultaneously. Therefore, we
gather all velocity components in one single combined vector Vtiss =
(. . . , vxi , v

y
i , . . . , v

x
j , v

y
j , . . .) and write the drag Fdrag

i and friction forces
Fvis
ij with the help of the large matrix

Gtiss = (gij) with





gij = γi for i = j,

gij = γvis
ij for i ∼ j,

gij = 0 otherwise,

(5.55)

where γi and γvis
ij have been defined in equations (5.46) and (5.52), respec-

tively. With the help of the force vector Ftiss = (. . . , F x
i , F

y
i , . . . F

x
j , F

y
j , . . .)

built from the components Fi ≡ (F x
i , F

y
i ), we can embed the force equi-

librium (5.54) in the linear system of equations

Gtiss ·Vtiss = Ftiss. (5.56)

This system of equations describes the force equilibria (5.54) of all tissue
cells simultaneously. In each time-step we therefore invert17 the global
drag matrix Gtiss and apply its inverse to Ftiss, which then yields the
desired velocities.

6. Cellular anisotropy drives topological cell rearrangements: We
start the tissue simulation from a cellular arrangement close to the first
panel in figure 5.16, see supplementary material18 for the precise con-
stellation at t = 0. Subsequently, the model cells move according to

17Such a kind of matrix inversion can be conveniently implemented by the left-
division operator of the open-source simulation software GNU octave, http://www.
octave.org.

18The electronic supplementary material is available from http://www.theobio.

uni-bonn.de/people/mab/dsup.
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the equations (5.56) without anisotropy αani = 1.0. The other param-
eters are given in table A.9. After the tissue has settled, we activate
the anisotropy at the simulation time of t = 8 h. To this end we set
αani = 1.4, which models the cells’ anisotropic cortical tension and pre-
scribes direction-dependent equilibrium distances ∆crit for the pair inter-
action force. Specifically, we have ∆bb

crit|horizontal ≈ 2∆bb
crit|vertical for the

interior blue and black cells, see figure 5.15. At t = 24 h, we then reset
αani = 1.0 and continue the simulation for another 24 h, especially to see
whether the apparent tissue deformation is permanent.

In the accompanying movie mov elo.avi we observe that the polarity
force causes small but persistent motions throughout the model tissue.
This inherent mobility of the cells facilitates the possibility for topological
neighbor changes, even though the tissue as a whole is robust and remains
connected. Indeed, already at t = 1 h the small cell 39 on the right
margin of the tissue connects with cell 8. Moreover, the cell-cell friction
force (5.52) also plays an important role in the overall tissue motion.
If one reduces the cell-cell friction coefficient γvis

0 , there seem to occur
even less topological neighbor changes (data not shown). This can be
conceptualized if one presumes that the rearrangements require the joint
persistent motion of several adjacent cells.

In figure 5.16, we observe the development of the elongated tissue from
its initially rather round appearance. In the panels at t = 10 h, t = 15
h and t = 20 h, whence the blue and black cells interact in the same
anisotropic manner, we observe several cells of partially quadratic shape
at the core of the tissue. This is a prominent signature for a topological
neighbor change being in progress. For example, at t = 10 h, the big blue
cells 6 & 37 are about to form a neighbor connection, cf. also the panel at
t = 15 h. In order to form this specific connection, the two cells 6 & 37
have to squeeze the intermediate black cells 22 & 2319 apart. The whole
process of squeezing and reconnecting is one example of cell intercalation.

The effect of repeated intercalations on the whole tissue is quite dra-
matic. In the first panel of figure 5.16 at t = 5 h, the blue and black
cells are ordered in clear horizontal stripes. At the late stages of the sim-
ulation, e.g. at t = 30h, the blue cells have intercalated the black ones
and the interior tissue core has clearly extended in horizontal direction.
Now the skeptic might point to the interaction anisotropy from equation
(5.49), which states that the interior cells prefer to elongate. To clarify

19The black cell 28 is situated close to the green cells in the north-west corner of
the central group of blue/black cells.
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Figure 5.16.: Evolution of intercalating tissue cells driven by anisotropic
cell-cell interaction forces. While the inner cells (blue,
black) do not seem to elongate, the tissue as a whole per-
forms a prominent stretch in horizontal direction. This
is due to the topological rearrangement of the inner cells,
which is driven by vertical pairs of cells squeezing in be-
tween two horizontal ones. This phenomenon is generally
known as cell intercalation. The inner cells (blue, black)
have anisotropic interaction forces to their neighbors for
times t = 8 h . . . 20 h, whereas the outer cells (green) have
isotropic interaction forces for all times. Note that the unit
length in the plots slightly varies in time.
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Figure 5.17.: Shape factor quantifying deviation of circularity for in-
ner cells (blue line) and whole tissue (green line). The
anisotropic equilibrium distance for the cell-cell interaction
force was activated for times t = 8 h . . . 20 h (red arrow),
and affected only the inner blue and black cells.

this question, we introduce the normalized perimeter-area ratio

PA =
perimeter

2
√

area · π ≥ 1, (5.57)

as a measure to quantify shapes and in particular “elongatedness”. Since
the shape factor PA is a purely geometric quantity, it is equally valid for
the whole tissue or individual cells. It has the specific property of PA = 1
for exactly circular shapes. Any deviation such as an elongation in a
particular direction leads to increased PA-values.20

Having established the shape measure PA, we are able to decide whether
the tissue elongation can be attributed to the anisotropic interactions of
the inner blue and black cells. Plotting the time-course of their average
PA-value – see figure 5.17 – we find that they in fact remain quite spher-
ical, even during the phase of anisotropic interaction forces. In contrast,
the PA-value of the whole tissue – including green, blue and black cells –
increases much further, even in a relative sense. Indeed, in figure 5.16 we
see that the tissue bulk elongates by almost 30% during the anisotropic
interaction phase. Thus we conclude that the tissue elongation is mostly
driven by the directed intercalation of the inner cells.

20PA is also the reciprocal value of the “circularity” Ω defined in equation (5.36).
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Within the Voronoi tissue simulations, the effect of elongation driven
by intercalation is of remarkable robustness. In the examplary simulation
from figure 5.16, only the inner cells could contribute to the directed
intercalation. If one extends the anisotropic interaction to all cells in the
tissue, it elongates even faster and further (data not shown). However,
even few anisotropic cells at the core of the tissue seem suffice for a net
elongation of the tissue. Moreover, after the anisotropy has ceased, the
tissue remains in its elongated state, at least for another 24 h. The newly
found topological cell arrangement apparently is favorable enough so to
persist and withstand the ordinary in-tissue fluctuations. Clearly, such a
robustness is helpful for ensuring the correct succession of embryogenetic
events.

7. Cause, effect and biological redundancy: In this section, we have
built our model on the assumption of an anisotropic cortical tension that
would drive the cell intercalation and subsequent germband elongation
in Drosophila. From the simulations we arrive at the conclusion, that
a certain interaction anisotropy is sufficient to drive elongation, which
matches the findings in [183]. Moreover, since the cortical tensions in
the ectoderm apparently are anisotropic [183], it is natural – though
not compellable – to assume that it is their purpose to drive the cell
intercalation.

However, there might also be other mechanisms that contribute to the
observed intercalation and/or elongation effect. With the help of the clas-
sical notion of strain21 [29], the relative contributions of cell intercalation
and deformation to elongation could be quantified [40]. In intercalation-
defective mutants (so-called Krüppel), the cells initially compensate by
means of enhanced cellular deformation, whereas in mutants without
mesoderm (twist), the ectodermal germband elongation is reduced [40].
Based on these fascinating observations, the authors of [40] therefore sug-
gest that the ectodermal shape changes would comprise a passive reponse
to the mesoderm invagination.

If this is indeed the case, then the causation chain would point in the
opposite direction. The invagination of the mesoderm constitutes a co-
ordinated motion towards the anterior-posterior body axis. Since the
ectoderm is situated on top of the mesoderm, the movement of the latter
would deform the cells of the former, leading to intercalation and therefore
elongation. What, then, causes the cortical tension in the ectoderm cells

21Another possible name would be deformation.
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to be anisotropic? From the present data we cannot make any definite
decision. Indeed, the ectoderm intercalation could be (partly) responsible
for the mesoderm invagination as well. Without further measurements,
one could speculate that for the sake of developmental robustness, both
mesoderm and ectoderm would cooperate in mutually ensuring the pro-
cesses of invagination and intercalation. In any case, this calls for a a
better understanding of the interactions between mesoderm and ecto-
derm.
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6. Mechanical and functional principles of
cellular motion

1. Persistence and polarization: One important aspect of two-dimen-
sional cellular migration trajectories is their persistence, as e.g. quantified
in the experiments described in section 3.9. The key feature is that a mi-
grating cell undergoes successive phases of polarization and depolariza-
tion, with relatively fast but also intermittently stalling locomotion. Such
a persistence is advantageous because it comprises an optimized search
strategy when signals are lacking or weak, see e.g. [67].

Apart from the migration speed, there are also morphological and
molecular polarization markers, in particular the lamella outline shape
or the localization of the actin polymerization front. In principle, how-
ever, there could be an asymmetry in the distribution of any molecule
that is somehow involved in the migration machinery, including integrin
and myosin. The directors introduced in section 3.9 provide for a quanti-
tative description of these asymmetries, both for molecular distributions
and cell shape characteristics.

If one considers the cell to be a dynamical system involving chemical re-
actions, force generating processes and mutual feedback, then one has to
expect that persistence arises from the system’s inherent time constants.
By extracting persistence times from aforementioned directors, one ob-
tains quantitative figures that directly describe the kinetics and transport
dynamics of the underlying molecular pathways on the whole-cell level.
Thus, directors provide for a prominent landmark to validate or falsify
quantitative models of biological cells. Accordingly, the parameter space
of the two-dimensional migration model could be restrained by reproduc-
ing several persistence features determined from experiments, cf. section
3.9. Similarly, one could employ the directors for quantifying genotypic
or phenotypic characteristics.

2. Modularity and robustness: It has been argued in chapter 1, that
the modular combination of relatively few mechanisms would cause di-
versity in cellular migration behavior. Such a modularity arises natu-
rally when multi-functional units like biomolecules are integrated in a
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compound system. In the context of cell migration, both extracellular
integrin adhesions and intracellular F-actin network jointly cooperate to
generate locomotion forces. Thereby, actin plays two apparently antago-
nistic roles, as it may enhance both assembly and disassembly of integrin
adhesions by imposing a suitable tensile load, see paragraph 1.6.6. This
Janus-faced behavior of actin is also implemented in the two single-cell
migration models from chapter 3.

Functionally, this a mechanism is a very elegant solution for the cyto-
plasm to inhere its two fundamental dynamical modes, cf. figure 1.6 A &
B. In the symmetric mode the forces balance around the cell periphery,
whereby adhesion assembly and disassembly occur simultaneously in all
directions. In contrast, in the asymmetric and migrating mode, adhesion
assembly occurs mostly at the lamella front, whereas disassembly domi-
nates at the cell rear, due to localized actin contractions inducing rupture.
In both modes, however, the feedback of actin on integrin adhesions has
the tendency to maintain the respective morphological organization.

Other modular cell properties are exhibited in sorting assays as dis-
cussed in section 5.6. Cellular sorting may be driven by differential cell-
cell adhesion, surface contraction, or a combination thereof. Thus, var-
ious sorting patterns can be achieved by merely adjusting the cellular
level of contraction and adhesion. At the same time, such a modularity
gives rise to graceful failure recovery and robustness, which is particularly
important during the early development of the embryo.

These two examples emphasize how functional diversity arises from few
underlying modular constituents. This is one motivation for constructing
synthetic models of biological systems, because the quantification of func-
tional principles helps to identify common patterns and modular building
blocks.

3. Scales and separation: At several instances in this work, the ar-
gument of scale-separation was invoked to neglect one particular model
contribution over another. This principle is ubiquitous in physics, as it
helps to design well-controllable assays or to simplify mathematical in-
tricacies of a theory. For the proposed cell models, the basic argument
was that the chemical reaction time-scale is much faster than the cellular
migration time-scale, see e.g. paragraphs 1.6.2 & 3.5.1, and sections 2.2
& 2.5. Correspondingly, the cytoplasm was treated as a two-component,
incompressible fluid mixture of filamentous F-actin and aqueous solvent,
much like a dynamic, internally condensing sponge.
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With the help of the same argument, the adhesions of a cell were con-
sidered to exhibit a certain slip, meaning that their bonds connect only
transiently to the cytoskeleton and/or the substrate. It is important not
to picture biological bonds as overly rigid entities. Indeed, the bond en-
ergy is typically only slightly above the thermal fluctuation energy, see
e.g. [177].

Finally, in expressing the single cell migration models with the help
of continuum equations, also a spatial scale separation argument has
been invoked, see paragraph 2.5.2. Clearly, one cannot describe all the
molecules comprising a cell in full detail. Instead, one averages over tiny
boxes containing thousands of molecules, and subsequently deals with the
emerging averaged densities.

4. Geometry and shape: There are two classics on the quantification
and conceptualization of biological shape, written by D’Arcy Thompson
[215] and Harry Blum [30]. Since large parts of this thesis deal with
the geometric properties of cell aggregates, it is worthwhile to draw a
connection from those seminal works to the proposed Voronoi tessellation.

The contact border between two adjacent model cells can be con-
structed in various ways, though it is desirable to employ a simple rule
that would conform to the biological requirements. To this end, D’Arcy
Thompson develops the soap-bubble principle, see figure 6.1 top panel.
Adjacent soap bubbles have the property that any three contour lines
meet at angles of 120 degrees. Each of the bubbles inherits a certain
pressure, and the contour radii of curvature adapt accordingly. Compar-
ing with circular Voronoi cells from section 4.4, it appears that the soap
bubble centers are fairly close. Indeed, the distance between the Voronoi
cell centers can be arbitrary, without being influenced by the body radii
(fat lines in bottom right panel of figure 6.1). This additional freedom in
the Voronoi pair is also the reason why its outer cell boundaries do not
exhibit the 120 degree rule.

Harry Blum developed a whole geometry based on the primitives of
point and growth. When a point grows for some time, it becomes a disc.
Forming so-called ligatures from two discs, one obtains a pattern that is
remarkably close to a pair of circular Voronoi cells, see figure 6.1 central
panel, and compare e.g. figure 5.4 or the outer lines of the bottom right
panel in 6.1. However, the drawback of the ligature principle is that the
cell-cell contact is comprised of two straight line segments.

Surprisingly, the concept of growth is also useful for constructing a

181



Figure 6.1.: Shape geometry concepts for a cell pair. In the top panel,
there are three soap bubble “cell” pairs, whereby the centers
are rather close and the angles at the marginal triple junc-
tion are 120 degrees each (reprinted from D’Arcy Thompson’s
book [215, figure 157]). In the central panel, the so-called
ligature is built from two overlapping discs, where the inte-
rior triangles follow from so-called sym-axes (reprinted from
Harry Blum’s article [30, figure 32]). The two bottom pan-
els show how the contact border between (red) two Voronoi
cells emerges from the growth of the two adjacent generators
(blue, green). Different rules for the speed of growth give rise
to different contact borders. In the left bottom panel there
appears a straight line contact, whereas in the right bottom
panel a circular contact, cf. also figure 4.1.
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Voronoi tessellation. Depending on the growth process of the two ad-
jacent cells, several different contact shapes may arise. In the elliptical
Voronoi tessellation developed in chapter 4, there appear ellipses, cir-
cles, hyperbolas, parabolas, and straight lines as possible contact shapes.
Thus, most of the basic geometric items suggested in [30, page 279] can
be naturally obtained from the proposed Voronoi tessellation.

5. Problems and ideas: Based on the results of this work, there several
starting points for furthergoing research.

The regulation pathways affecting force-bearing players in various kinds
of cells seem to share some similarities, possibly because important pro-
tein structure motifs being evolutionary conserved [168]. In any case,
by quantitatively studying the functional aspect of force generation and
transduction, regulative similarities could be exhibited in order to pin-
point modular pathway components. Molecular directors according to
paragraph 3.9.5 provide for suitable whole-cell measures, which however
require targeted fluorescence staining.

One specific pathway centers around the epidermal growth factor, which
triggers the epithelial-mesenchymal transition (EMT) [214]. During EMT,
cells leave the tissue bulk and subsequently migrate autonomously. From
the modeler’s view one expects a full continuum of cell states ranging
from embedded epithelial to isolated and autonomous. Importantly, the
EMT has been implicated in wound healing and cancer. Therefore, the
force machinery of cells undergoing EMT should be studied, in particular
with respect to cooperative motion patterns, see e.g. figure 1.5. A neces-
sary ingredient to faithfully model EMT are polarized cells of anisotropic
shape according to chapter 4.

During wound healing, embryo development and tumor expansion, cells
divide while remaining in more or less dense contact. At some point, how-
ever, growth usually stops and the tissue enters the homeostatic state,
whereby cell division is balanced by apoptosis [182]. This raises two ques-
tions. First, how is the transition to the homeostatic state initiated, and
second, how does the transformation to a functional but otherwise pas-
sive homeostatic tissue take place. To represent the cellular deformations
during cell cycle and mitosis, one again needs anisotropic model cells, see
chapter 4.

The force generation mechanism of a single crawling cell has been in-
vestigated in section 3.7. The next step towards understanding tissue
forces would therefore be to extend the single-cell system and include a
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single neighbor cell. The full problem involves the cytoplasm dynamics of
both adjacent cells, which can be written in terms of a dissipation func-
tional J [u, ∂u, p] of the F-actin velocity u and the pressure p, see chapter
2 and [5]. As an additional complication one has to consider the motion
of the free boundary between the cells. This involves cell-cell adhesion,
cortex tension and curvature, all of which has to be incorporated in a
joint variational principle with the cytoplasm functional. The boundary
conditions from section 3.4 would serve as guideline for the envisioned
free boundary evolution.
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A. Appendix

A.1. Estimating the characteristic dimensions of
cytoplasm flow

At room temperature, the viscosity of the aqueous solvent phase is ap-
proximately that of water ηw ≈ 10−3 Pa · s = 10−3 pN · s/µm2. Typ-
ical physiological concentrations of dissolved proteins are expected to
increase this value by a factor of approximately 1.5 [202, table I]. In
contrast, the overall cell viscosity of neutrophils has been measured to be
ηcell ∼ 100 Pa · s in micropipette aspiration experiments [104]. Therefore
we suspect the cytoskeleton to be mostly responsible for the observed
whole-cell viscosity. Indeed, by comparing experiments on the ingres-
sion of neutrophils into micropipettes with corresponding simulation data,
possible values of the actin network viscosity have been narrowed down
to ηf ≈ 300 . . . 600 Pa · s [101]. In fact, these numbers are the extremal
values with which qualitative and semi-quantitative features of the time-
velocity ingression curve could be recovered. Altogether, we conclude
that the viscosity in the aqueous solvent phase θw can be neglected over
the viscosity in the actin network θg. In the light of ηf/ηw & 105, this is a
conservative assumption to make, because it still would hold if either of
our estimated viscosities were off by two orders of magnitude.

In fish keratocytes, which are known to crawl very fast, the upper
limit of the F-actin retrograde flow velocity is approximately 0.25µm/s
[78, 192, 229, 233]. In the same cell type, the transport velocity of G-
actin embedded in the solvent has been determined indirectly, being up
to 0.7µm/s [123, page 1221 and figure 3e]. Unfortunately, experimental
data on other cell types are not as widely available. However, these
numbers still provide a reasonable estimate, because it is expected that
the flow velocity in fast cells is fast as compared to cells crawling more
slowly. Moreover, an upper bound to flow velocity will give us an upper-
bound estimate for the Reynolds number, which we aim to put forward
here.

Typical diameters of cells range from few to several tens of µm [2, chap-
ter 22], whereby possible exceptions like neurons have a rather extreme
architecture. Therefore, the characteristic length-scale is 1µm, because
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streaming varies in the cells’ interior. Finally, the overall mass density of
single cells is fairly close to 1.1 mg/µl = 1.1 pg/µm3 [39, 93]. Taking all
these numbers together, we obtain the Reynolds numbers

F-actin network phase: Reg ∼ 10−12, (A.1)

aqueous solvent phase: Rew ∼ 10−6. (A.2)

A.2. Polymerization pressure and viscosity for the
one-dimensional model cell

The relations described in this appendix are all defined only on the bound-
ary Γ of the model cell, i.e. y = y1, y2. In the boundary pressure balances
(3.27, 3.28) there appears the polymerization pressure,

Ppoly

(
θ,mb, V

)
= Pclamp(θ) + Pratchet(θ)− ηΓ

(
θ,mb

)
V. (A.3)

1. Intermediate actin volume fractions: The dependence on θ involves
several intermediate players. Let θB denote the fraction of membrane-
bound filaments, with

2θB(θ) = θA + θ +
K2

θ
−
√
(
θA − θ

)2
+

2(θA + θ)K2

θ
+
K4

θ2
, (A.4)

see [6, section 4.2.2]. Here, the model parameter θA = 0.0625 denotes
the effective volume fraction of available membrane proteins for actin
binding. Their binding process is self-enhanced, e.g. due to clustering
or cooperativity, whereby the effective dissociation constant K = 0.198
is also a model parameter. With θB from equation (A.4), the volume
fraction of the remaining free filaments not bound to the membrane is
therefore

free filaments: θF (θ) = θ − θB(θ). (A.5)

Filament branching involves only barbed or plus ends of the filaments,
which are oriented roughly in direction of the cell membrane. Their
volume fraction is modeled by the so-called Monod kinetics [20, section
4.3] in the free filaments θF ,

barbed ≡ ’+’ filament ends: θ+(θ) = αArp ·
θF (θ)

θβ + θF (θ)
. (A.6)

Here, the prefactor αArp = α0
Arp · [Arp2/3] is proportional to the con-

centration of the Arp2/3 branching agent, and θβ is the half saturation
volume fraction as introduced in (3.18).
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2. Clamp-motor and Brownian ratchet pressure: The polymerization
pressure arising from the Brownian ratchet mechanism is assumed to be
proportional to the volume fraction of the barbed ends,

Pratchet(θ) = πratchet · θ+(θ). (A.7)

Moreover, the clamp-motor polymerization pressure is a linear function
of the clamped actin filaments θc at the tip,

Pclamp = πclamp · θc(θ) ≡ πclamp ·
θB(θ)

10
, (A.8)

where it was assumed that one tenth of the bound filaments at the mem-
brane are actually clamped within motors.

3. Viscous polymerization resistance: The viscosity resisting F-actin
polymerization at the tip is a linear function in the bound myosin motors
mb and the fraction of membrane-bound filaments θB,

ηΓ =
(
ηΓ

0 + ηΓ
mmb

)
θB(θ), (A.9)

where ηΓ
0 = 0.09 Pa ·min/µm, and ηΓ

m = 4.05 Pa ·min/(µm · µM).

A.3. Some formulae regarding the transformed contact
matrix

1. The two-dimensional contact matrix determinant δ = αβ − γ2:
In equation 4.44, the two-dimensional contact matrix determinant was
defined as δ = αβ − γ2. Moreover, according to equations (4.39) and
(4.40), we have

α = αi − αj =
c2
i

a2
i

+
s2
i

b2
i

− c2
j

a2
j

− s2
j

b2
j

,

β = βi − βj =
s2
i

a2
i

+
c2
i

b2
i

− s2
j

a2
j

− c2
j

b2
j

,

γ = γi − γj = cisi

( 1

a2
i

− 1

b2
i

)
− cjsj

( 1

a2
j

− 1

b2
j

)
,

(A.10)
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with the usual abbreviations ci ≡ cosϕi and si ≡ sinϕi for all i. Inserting
into δ, and factoring out products in a, b, one obtains

δ =
1

a2
i b

2
i

+
1

a2
jb

2
j

−
(
cicj + sisj

)2( 1

a2
i b

2
j

+
1

a2
jb

2
i

)

−
(
cisj − cjsi

)2( 1

a2
i a

2
j

+
1

b2
i b

2
j

)
,

(A.11)

whereby the pure fourth-order terms drop out. For convenience, we may
bring the factors a, b to the left-hand side. Finally, the trigonometric
functions can be further simplified, and we end up with

a2
i b

2
i a

2
jb

2
jδ = cos2

(
ϕi − ϕj

)(
a2
i − a2

j

)(
b2
i − b2

j

)

+ sin2
(
ϕi − ϕj

)(
a2
i − b2

j

)(
b2
i − a2

j

)
.

(A.12)

Inspecting the right-hand side, one can enumerate the cases when δ = 0,
since by assumption the generator ellipse semi-axes are positive, ai >
0 ∧ bi > 0 ∀i. All these possibilities for δ = 0 are summarized in table
A.1. The most prominent case of δ = 0 is, when any three of the involved
generator axes ai, bi, aj, bj are equal. Then, both summands in equation
(A.12) vanish separately, independent of the angle difference ∆ϕ ≡ ϕi −
ϕj, cf. cases 11., 13., and 15. in the table. The other cases δ = 0, namely
5., 7., 8., 10., and 14., involve a specific relation between the orientation
of the two generators ϕi and ϕj. This also happens in case 2., δ R 0,
where we expect a transition from elliptic (δ > 0) to hyperbolic (δ < 0)
contact surfaces.

Indeed, setting δ = 0 in equation (A.11), and employing cicj + sisj =
cos
(
ϕi − ϕj

)
, cisj − sicj = sin

(
ϕi − ϕj

)
, we find

cos2
(
ϕi − ϕj

)
=

(
a2
i − b2

j

)(
a2
j − b2

i

)
(
a2
i − b2

i

)(
a2
j − b2

j

) . (A.13)

For this equation to have a valid solution ∆ϕ := ϕi − ϕj, the right-hand
side has to be ∈ [0, 1]. Suppose now ai > aj > bi > bj as in case 2. of table
A.1. Splitting the expressions

(
a2
i − b2

j

)
and

(
a2
j − b2

j

)
at b2

i ∈
(
b2
j , a

2
j

)
, one

finds for the right-hand side in equation (A.13)

numerator =
(
a2
i − b2

i

)(
a2
j − b2

i

)
+
(
b2
i − b2

j

)(
a2
j − b2

j

)
,

denominator =
(
a2
i − b2

i

)(
a2
j − b2

i

)
+
(
b2
i − b2

j

)(
a2
i − b2

j

)
.

(A.14)

Clearly, the ratio is < 1, since ai > aj. Moreover, we see from equation
(A.13) that this ratio is > 0, since by assumption all brakets are positive.
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# Ellipse axis order C, S δ Comment

1. ai > bi > aj > bj +,+ > 0
2. ai > aj > bi > bj +,− R 0 for specifics on δ = 0 see text
3. ai > aj > bj > bi −,− < 0

4. ai > bi > aj = bj +,+ > 0
5. ai > bi = aj > bj +,0 ≥ 0 δ = 0 iff ϕi − ϕj = (2n+ 1)π/2
6. ai = bi > aj > bj +,+ > 0
7. ai > aj > bi = bj 0,− ≤ 0 δ = 0 iff ϕi − ϕj = nπ
8. ai = aj > bi > bj 0,− ≤ 0 δ = 0 iff ϕi − ϕj = nπ
9. ai > aj = bj > bi −,− < 0
10. ai = aj > bj > bi +,+ > 0 δ = 0 iff ϕi − ϕj = nπ

11. ai > bi = aj = bj 0,0 = 0
12. ai = bi > aj = bj +,+ > 0
13. ai = bi = aj > bj 0,0 = 0
14. ai = aj > bi = bj 0,− ≤ 0 δ = 0 iff ϕi − ϕj = nπ
15. ai = aj = bj > bi 0,0 = 0

16. ai = bi = aj = bj 0,0 = 0

Table A.1.: Possible constellations of generator ellipses and corresponding
sign of the determinant δ = αβ−γ2. Here, C := sgn

(
a2
i −a2

j

)
·

sgn
(
b2
i − b2

j

)
,S := sgn

(
a2
i − b2

j

)
· sgn

(
b2
i − a2

j

)
, i.e. C indicates

the sign of the coefficient at cos2
(
ϕi−ϕj

)
, whereas S the one

at sin2
(
ϕi − ϕj

)
. Upon interchanging i, j in the “axis order”

column, the behavior in the other columns remains valid. In
principle, δ > 0 will lead to elliptic contact surfaces, whereas
δ < 0 gives rise to hyperbolic ones. In the degenerate cases
δ = 0, several types of contact surfaces may occur, which are
all discussed in section 4.8.
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Therefore, ∀ai > aj > bi > bj ∃ ∆ϕ : δ = 0. For the identity (A.13) to
hold, there are four distinct ∆ϕ ∈

[
−π, π

)
. These four angle differences

divide the unit circle into four regions, where the contact surface alter-
nates from elliptic to hyperbolic in a checked pattern. Specifically, we
have

cos2
(
ϕi − ϕj

)
R

(
a2
i − b2

j

)(
a2
j − b2

i

)
(
a2
i − b2

i

)(
a2
j − b2

j

) !





ellipse,

degenerate,

hyperbola,

(A.15)

for ai > aj > bi > bj and aj > ai > bj > bi. Notably, this relation holds
also for the second case, i.e. when aj > ai. The only difference in the
derivation of the result is, that the aforementioned interval splitting has
to be performed at bj.

2. Other sub-determinants of the contact matrix: Apart from δ dis-
cussed in the previous section, the contact matrix E has two other sub-
determinants,

δ(κ) := αω − κ2, δ(λ) := βω − λ2, (A.16)

where α, β are defined as in the equations A.10. Moreover, by equations
(4.39) and (4.40), the translation coefficients κ, λ and the scaling factor
ω depend on the positions

(
xi, yi

)
,
(
xj, yj

)
of the generators,

κ = −αixi − γiyi + αjxj + γjyj,

λ = −γixi − βiyi + γjxj + βjyj,

ω = αix
2
i + 2γixiyi + βiy

2
i − αjx2

j − 2γjxjyj − βjy2
j ,

(A.17)

with γ defined in A.10. Inserting these relations into (A.16) and factoring
out xi − xj, yi − yj, one finds the two identities

−δ(κ) = αiαj
(
xi − xj

)2
+ 2
(
αjγiyi − αiγjyj

)(
xi − xj

)

+
(
γiyi − γjyj

)2 −
[
αi − αj

](
βiy

2
i − βjy2

j

)

−δ(λ) = βiβj
(
yi − yj

)2
+ 2
(
βjγixi − βiγjxj

)(
yi − yj

)

+
(
γixi − γjxj

)2 −
[
βi − βj

](
αix

2
i − αjx2

j

)
.

(A.18)

Under the premises of the special cases 2b and 2c from section 4.7, the
two rightmost terms in both preceding equations (A.18) can be treated
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jointly,

2b, β = γ = λ = 0 : 2()()− []() = γi
(
αi + αj

)(
xi − xj

)(
yi − yj

)
,

2c, α = γ = κ = 0 : 2()()− []() = γi
(
βi + βj

)(
xi − xj

)(
yi − yj

)
.

(A.19)

In this way, both −δ(κ) and −δ(λ) are ≥ 0 when γi = γj = 0, since
∀i : αi, βi > 0 by construction, see equation (4.39).

Let us now turn to the more general case γi = γj 6= 0. To this end, we
first compute the two-dimensional determinant of the generator matrix
Ei from equation (4.39),

δi := αiβi − γ2
i =

1

a2
i b

2
i

> 0. (A.20)

With the help of these short-hand notations, (A.19) can be rewritten to

2b, β = γ = λ = 0 : −δ(κ) =
2δiδj
γ2
i + γ2

j

(
yi − yj

)2 ≥ 0,

2c, α = γ = κ = 0 : −δ(λ) =
2δiδj
γ2
i + γ2

j

(
xi − xj

)2 ≥ 0,

(A.21)

which holds for γi = γj 6= 0 (otherwise see above).

3. The third Eigenvalue ω′ of the transformed contact matrix: Ac-
cording to equation (4.59), we have

δω′ = δω − αλ2 + 2γκλ− βκ2. (A.22)

Again, α, β, γ are δ are as in equations A.10. Now we separately compute
the four summands of δω′ on the right-hand side of equation (A.22), and
factor out powers and products of x, y. Once we have all these terms, we
gather them in ten groups, namely the pure ones x2

i , x
2
j , xixj; y

2
i , y

2
j , yiyj

and the mixed ones xiyi, xjyj, xiyj, xjyi. As turns out, the latter have one
single prefactor in common. Similarly, the former split into two subgroups
x and y. In this way, differences in x, y separate and we obtain

δω′ =
(
αiδj − αjδi

)(
xi − xj

)2
+
(
βiδj − βjδi

)(
yi − yj

)2

+ 2
(
γiδj − γjδi

)(
xi − xj

)(
yi − yj

) (A.23)
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Even though of similar form, the coefficients cannot be molded together,

αiδj − αjδi =
b2
i c

2
i + a2

i s
2
i − b2

jc
2
j − a2

js
2
j

a2
i b

2
i a

2
jb

2
j

,

βiδj − βjδi =
b2
i s

2
i + a2

i c
2
i − b2

js
2
j − a2

jc
2
j

a2
i b

2
i a

2
jb

2
j

,

γiδj − γjδi =
cisi(b

2
i − a2

i )− cjsj(b2
j − a2

j)

a2
i b

2
i a

2
jb

2
j

,

(A.24)

because this would break the difference structure of the x, y factors. How-
ever, with the help of equations (A.24) we can construct an alternate
representation,

a2
i a

2
jb

2
i b

2
jδω

′ =

a2
i

(
−si
[
xi − xj

]
+ ci

[
yi − yj

])2

− a2
j

(
−sj

[
xi − xj

]
+ cj

[
yi − yj

])2

+ b2
i

(
ci
[
xi − xj

]
+ si

[
yi − yj

])2

− b2
j

(
cj
[
xi − xj

]
+ sj

[
yi − yj

])2

,

(A.25)

again separating the i and j terms.

A.4. Polar representation of anisotropic Voronoi
generators

Consider a two-dimensional Voronoi generator according to definition
4.1.1 with the elliptic norm

‖x‖i =

√
x2

a2
i

+
y2

b2
i

, (A.26)

where x ≡ (x, y). For convenience, we have written ‖x‖i in its diagonal
coordinate system, in which the generator center xi coincides with the
origin, and the longer semi-axis ai of the generator ellipse aligns with
the positive x-axis. As we have shown in corollary 4.1.7 and proposition
4.3.3, the elliptic norm generator from equation (A.26) has an equivalent
representation in terms of homogeneous matrices as in definition 4.3.2.

The ellipse graph of the norm generator (A.26) is given by the identity

‖x‖i = 1. (A.27)
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Next, we scale the norm ‖x‖i =: z with the function P(z) = qzν + P0

from equation (4.8), whereby we employ the simplest possible coefficients
q = 1, ν = 1,P0 = 0. In this way we obtain a generalized Voronoi
generator according to definition 4.1.8,

Pi(x) =

√
x2

a2
i

+
y2

b2
i

, (A.28)

where we have employed the abbreviation (4.12), namely Pi(x) ≡ P
(
‖x‖i

)
.

Next, we express x in polar coordinates,

x := Rx cosϕix, y := Rx sinϕix, (A.29)

where the superscript i indicates that the polar angle ϕix for the point
x has its apex at the generator center xi. Inserting the polar form of x
into equation (A.28), we find that the scaled norm Pi is a product of two
factors,

Pi
(
Rx, ϕ

i
x

)
= R

[
cos2(ϕix)

a2
i

+
sin2(ϕix)

b2
i

]1/2

(A.30)

whereby the first factor involves only the Rx- and the second only the ϕix-
coordinate of x. The latter factor in square brackets constitutes the polar
representation of equation (A.27) for the ellipse graph underlying the
present generator. Indeed, by transforming the (A.27) with the scaling
function P , and making the polar ansatz x = ri cosϕi, y = ri sinϕ

i, we
arrive at

1

ri(ϕi)
=

[
cos2(ϕi)

a2
i

+
sin2(ϕi)

b2
i

]1/2

. (A.31)

Identifying ϕi ≡ ϕix, the polar generalized Voronoi generator from equa-
tion (A.30) becomes a ratio of radii. Moreover, the radius Rx of the point
x can be written as Euclidean norm ‖x‖, which follows from the polar
ansatz in equation (A.29). In more general coordinates, where xi 6= 0,
this norm becomes ‖x− xi‖. Altogether we have found

Pi(x) =
‖x− xi‖
ri(ϕix)

, (A.32)

where the x dependence in the radius ri is implicitly encoded in the polar
angle ϕix of the point x with respect to the generator center xi. Thus,
the point power Pi(x) of the elliptic Voronoi generator Pi represents the
Euclidean distance ‖x − xi‖ being directionally weighted by the angle-
dependent ellipse radius ri(ϕ

i
x).
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A.5. Contact surface parameterizations in polar
coordinates

This appendix builds on the results in sections 4.6 and 4.7, where the
shape of the contact border is investigated for several distinct cases,
namely 0ab (ellipse, hyperbola), 1 (circle), 2a (single straight line) and
2b–d (parabola or two parallel straight lines).

Ellipse, hyperbola, circle, cases 0ab & 1: The graph of an ellipse
centered at the coordinate origin and with semi-axes a ≥ b aligned on the
x– and y–axis, respectively, is described by the quadratic form

x2

a2
+
y2

b2
= 1. (A.33)

Inserting x := R(θ) cos θ, y := R(θ) sin θ and eliminating the sin-function
yields

R2(θ) =
b2

1− ε2 cos2 θ
, (A.34)

where ε2 := 1− b2/a2 < 1 denotes the excentricity.1 On the other hand,
the contact equation (4.37) in its diagonal form (4.59) reads

α′x2 + β′y2 + ω′ = 0 (A.35)

Comparing the identity (A.34) with the corresponding expression derived
from (A.35), we find

a2 = −ω
′

α′
, b2 = −ω

′

β′
, ε2 = 1− α′

β′
. (A.36)

Center x0 = (x0, y0) and orientation φ of this contact ellipse were already
determined during contact matrix diagonalization, cf. equations (4.45,
4.58), where φ is unique since both cosφ and sinφ are known. Altogether,
we obtain an explicit parameterization of the contact border,

x = x0 +R(θ) cos θ, y = y0 +R(θ) sin θ,

R2(θ) = − ω′

β′ − (β′ − α′) cos2(θ − φ)
.

(A.37)

1Note that the coordinate origin coincides with the center of the ellipse. This
representation is different from the commonly used description centered at one focus
of the ellipse, where we have R = a(1− ε2)/(1 + ε cos θ̃).
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with θ ∈ [−π, π). Below we argue that this parameterization is general
and holds for elliptic, circular and hyperbolic contact shapes.

If the right-hand side of the R-equation were positive for all θ, then
the graph

{
x(θ), y(θ)

}
would describe an ellipse. Recall the uniqueness

conditions (4.56), namely α′ ≤ β′ ∧ φ ∈ [−π/2, π/2). Thus, the following
three coefficient constellations may arise:

(i) α′ < β′ < 0,

(ii) α′ < 0 < β′,

(iii) 0 < α′ < β′.

Inspecting the diagonal contact equation (A.35), it becomes apparent
that only (i) and (iii) are suitable for the contact surface to be elliptic.
The sign of the homogeneous scaling coefficient ω′ then has to behave
accordingly2, i.e. ω′ > 0 for (i) and ω′ < 0 for (iii). If ω′ = 0, then the
determinant δ = 0, and the contact is a degenerate one (see below). In
case of (ii), the graph {x, y} arising from the implicit equation A.35 will
be a hyperbola regardless of the sign of ω′, because then sgnα′ 6= sgn β′.
Since we did not use any specific properties of the coefficients α′, β′, ω′ in
deriving the parameterization (A.37), it can also be employed to explicitly
describe the graph of a hyperbola. Importantly, only those θ need to
be considered where the imaginary part of R(θ) vanishes. There are
four angles θ where R becomes infinite, which coincide with the two
asymptotes of the hyperbola. In summary, all non-degenerate contact
borders are covered by aforementioned parameterization.

Parabola, cases 2b–d: For degenerate contact borders of parabola shape,
the contact equation (4.37) has the from

2bd, λ′ 6= 0 : y′ = − α′

2λ′
x′
(
x′ +

2κ′

α′

)
− ω′

2λ′
, (A.38)

2cd, κ′ 6= 0 : x′ = − β′

2κ′
y′
(
y′ +

2λ′

β′

)
− ω′

2κ′
, (A.39)

cf. equations (4.71, 4.74). In the pure cases 2b & 2c, the variables do
not involve any transformation, x ≡ x′, y ≡ y′, α′ ≡ α, β′ ≡ β, . . . . In

2Currently, it is not clear whether this follows from the assumed premises δ >
0 ∧ r2 > 0 ∧ sgnα′ = sgnβ′. Therefore this should be explicitely checked in a
numerical implementation.
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contrast, in the case 2d, the contact matrix has been rotated, see relations
(4.76), which is indicated by the primes. In order to arrive at the simplest
representation for R(θ), we first choose the coordinate center,

2bd, λ′ 6= 0 : x0 =
(
−κ

′

α′
,
κ′2 − α′ω′

2α′λ′
− λ′

2α′

)
, (A.40)

2cd, κ′ 6= 0 : x0 =
(λ′2 − β′ω′

2β′κ′
− κ′

2β′
,−λ

′

β′

)
. (A.41)

Rewriting equations (A.38, A.39) in the coordinates (x′′, y′′) ≡ x′′ :=
x′−x0, and inserting x′′ := R(θ) cos θ, y′′ := R(θ) sin(θ), one finds that the
discriminant of the quadratic equation in R vanishes. Note that here the
contact matrix coefficients α′, β′, . . . are not changed by this translation.
Thus we obtain the following expressions for the polar radius

2bd, λ′ 6= 0 : R(θ) =
λ′

α′
· − sin θ ± 1

cos2 θ
, (A.42)

2cd, κ′ 6= 0 : R(θ) =
κ′

β′
· − cos θ ± 1

sin2 θ
. (A.43)

In particular, θ ∈ [−π, π), and both signs describe the same graph. Con-
ventionally, however, one requires R > 0 which rules out one of the signs
in the numerator, depending on the sign of the respective prefactor λ′/α′

or κ′/β′. The polar contact border parameterization therefore is

x′ = x0 +R(θ) cos θ, y′ = y0 +R(θ) sin θ, (A.44)

for the cases 2bc. In the case 2d, the described set of points has to be
rotated by the angle −φ as indicated in (4.58). Finally, there is one angle
θ0 where R becomes infinite. This angle indicates the direction of the
opening of the parabola.

Straight lines, cases 2a–d: In case of 2a we have α = β = γ = 0, and
the contact border is given by the linear relation

2a, λ 6= 0 : y = −κ
λ
x− ω

2λ
, (A.45)

cf. (4.69). Inserting x := R(θ) cos θ, y := R(θ) sin θ, we obtain

2a,∀λ : R(θ) = − ω

2λ sin θ + 2κ cos θ
. (A.46)
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This expression also holds for λ = 0, because then we have x = −ω/2/κ,
whence the λ–term in the denominator drops out. In this case, only those
θ need to be considered where R(θ) > 0, because the other, unconven-
tional scenario R(θ) < 0 describes the same straight line.

For 2b–d, we again employ primed quantities to indicate the rotation
involved in 2d, whereas for 2bc primed and unprimed quantities coincide.
The corresponding contact equations describe a parallel pair of straight
lines,

2bd, λ′ = 0 : x′ = −κ
′

α′
± 1

α′

√
κ′2 − ω′α′, (A.47)

2cd, κ′ = 0 : y′ = −λ
′

β′
± 1

β′

√
λ′2 − ω′β′. (A.48)

Fixing the center of the coordinate system to x0 = (−κ′/α′, 0) (2bd) or
x0 = (0,−λ′/β′) (2cd) yields for the polar radii

2bd, λ′ = 0 : R(θ) = ± 1

α′ cos θ

√
κ′2 − ω′α′, (A.49)

2cd, κ′ = 0 : R(θ) = ± 1

β′ sin θ

√
λ′2 − ω′β′. (A.50)

Each of these expressions describes both parallel lines simultaneously,
where the correct sign has to be chosen in a θ-dependent manner from
R > 0. Again, the resulting polar parameterizations of the contact border
are

x′ = x0 +R(θ) cos θ, y′ = y0 +R(θ) sin θ, (A.51)

where an additional rotation by −φ has to be performed for 2d, according
to the relations (4.58, 4.76). There are two angles θ0, θ0 + π where R(θ)
becomes infinite. These angles indicate the direction of the described pair
of straight lines.
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A.6. Model parameters and selected mathematical
symbols

One-dimensional cell migration model, sections 3.1–3.7:

Symbol Meaning Value Units

λ Length of model cell (fragment) 10 µm

θg Volume fraction of G-actin 0.0375 dimensionless
αB Amount of F-actin polymerization at plus ends 5.57 · 105 dimensionless
δB Amount of F-actin depolymerization at plus ends 258 dimensionless
ω F-actin capping rate 1250 1/min
δa F-actin disassembly rate 0.2 1/min
ε Amount of F-actin nucleation 0.75 dimensionless
[Arp2/3] Concentration of activated Arp2/3 complexes 10 µM
ν0 Amount induced nucleation by Arp2/3 60 1/µM
θβ Half-saturation concentration for nucleation 0.00375 dimensionless

η0 Viscosity coefficient of the F-actin network phase 0.625 Pa ·min
ψ0 Contractile stress per bound myosin-II 1.04 · 104 Pa · /µM
σ0 Strength of the swelling pressure 8 · 105 Pa
φph Drag coefficient between network and solvent 2 Pa ·min/µm2

κΓ Tip curvature weight factor for membrane tension 0.5 dimensionless
τ0 Minimal cellular membrane tension 25 Pa
φu Friction per actin-substrate bound integrin 0.02 Pa ·min
φv Additional friction associated to the cell body 18 Pa ·min/µm2

Dm Diffusion coefficient for free myosin-II 0.5 µm2/min
αm F-actin binding rate of myosin-II 400 1/min
δm0 Dissociation rate of bound myosin-II 3 1/min
θm Optimal F-actin for myosin-II binding 0.025 dimensionless

Df Diffusion coefficient for free integrin 0.5 µm2/min
α0
fa Free integrin binding rate to F-actin 1.2 · 104 1/min

δaf Dissociation rate for F-actin bound integrin 5 1/min
αfs Free integrin binding rate to substrate 15 1/min
δsf Dissociation rate for substrate bound integrin 5 1/min
α0
sb F-actin binding rate for substrate bound integrin 1.2 · 104 1/min
δ0
bs FA dissociation of the F-actin link 0.1 1/min
ρbs Exponential FA-rupture coefficient substrate link 11.7 µm/Pa
αab Substrate binding rate for F-actin bound integrin 15 1/min
δ0
ba FA dissociation rate of the substrate link 0.1 1/min
ρba Exponential FA-rupture coefficient F-actin link 11.7 µm/Pa
Adh Effective substratum adhesiveness coefficient 3 dimensionless

Table A.2.: Parameter values in the one-dimensional cell migration model
from sections 3.1–3.7, unless indicated otherwise.
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Symbol Meaning Units

θ(t, y) Volume fraction of F-actin dimensionless
u(t, y) F-actin velocity µm/min
p(t, y) Effective two-phase flow pressure Pa
τ(t, y) Dorsal membrane tension induced effective pressure Pa

ẏ1 ≡ ẏ2 ≡ Protrusion / retraction speed at cell ends µm/min
v(t) Migration velocity of model cell µm/min
V Relative inward F-actin velocity at boundary µm/min
νΓ Outer normal of the free boundary Γ(t) dimensionless

mf (t, y) Concentration of free myosin-II µM
mb(t, y) Concentration of F-actin bound myosin-II µM

bf (t, y) Concentration of free integrin 1/µm2

ba(t, y) Concentration of actin bound integrin 1/µm2

bs(t, y) Concentration of substrate bound integrin 1/µm2

bb(t, y) Concentration of substrate and actin bound integrin 1/µm2

Table A.3.: Variables in the one-dimensional cell migration model from
sections 3.1–3.7.

Symbol Meaning Units

J(θ) F-actin net polymerization rate 1/min
ψ(θ,mb) Contractile stress Pa
σ(θ) Swelling pressure Pa
S(θ,mb) Effective cytoplasmic stress Pa
η(θ) Viscosity of F-actin phase Pa ·min
βn(θ) F-actin branching rate at tip dimensionless
ν([Arp2/3]) Stimulated F-actin branching coefficient at tip dimensionless

fu Active frictional clutch force at focal adhesions Pa/µm
fv Passive frictional force at dorsal membrane Pa/µm

Ppoly Total polymerization pressure Pa
Pclamp Clamp-motor polymerization pressure Pa
Pratchet Brownian ratchet polymerization pressure Pa
ηΓ(mb) Effective F-actin shear viscosity at tip Pa ·min/µm
θ+(θ) F-actin barbed/plus end volume fraction at tip dimensionless

Table A.4.: Model functions for one-dimensional cell migration as em-
ployed in sections 3.1–3.7.

199



Two-dimensional cell migration model, sections 3.8–3.9:

Symbol Meaning Values Units

a(t, ϕ) Concentration of F-actin 0.3 . . . 0.8 mM
b(t, ϕ) Area concentration of adhering integrin 0 . . . 0.03 106/µm2

d(t, ϕ) Area concentration of substratum ligands 0 . . . 0.2 106/µm3

L(t, ϕ) Local lamella width 2 . . . 5 µm
v(t) Migration velocity of model cell 0 . . . 0.3 µm/min

Table A.5.: Variables in the two-dimensional cell migration model from
sections 3.8–3.9.

Symbol Meaning Value Units

CA Area concentration 106/µm2

dt Numerical time step increment 0.01 min
R Cell body radius 2 µm
γv Effective cellular friction coefficient 25 nN·min/µm
floc Strength of locomotion force 17 nN/µm/mM/CA

κa Slip factor for actin transport velocity 0.3 dimensionless

αL Actin assembly rate per lamella extension 0.04 mM/min/µm
αa Integrin stimulated F-actin autocatalysis 0.016 1/min/CA

δa F-actin depolymerization rate 0.30 1/min
βa F-actin polymerization perturbation strength 0.14 mM/min1/2

Da Diffusion coefficient for F-actin 0.04 µm2/min

αb Adhesion assembly stimulated by F-actin 1.8 1/min/mM
δe Adhesion loss due to radial transport 1 1/µm
δb Adhesion disassembly rate 0.2 1/min
fb Characteristic adhesion rupture force 0.2 nN
κb Slip factor for integrin transport velocity 0.7 dimensionless

d0 Effective amount of substratum receptors 0.1 dimensionless
σd Substratum receptor variation 0.05 dimensionless
αd Substratum receptor gain factor 0.03 CA/µm
κd Slip factor for substratum velocity 1.0 dimensionless

φ0 Amount of tip protrusion friction 1.5 nN·min/mM/µm
τ0 Effective cellular surface tension 0.04 nN·µm/mM2

p0 Protrusion pressure from cell body 1.2 nN·µm
pb Protrusion induced by adhesions 0.3 nN/mM/CA

ρ0 Retrograde F-actin flow contraction 1.2 nN/mM2

Table A.6.: Values of model parameters from sections 3.8–3.9, unless in-
dicated otherwise.
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Symbol Meaning Units

J ′′(a, b, L) F-actin net polymerization rate mM/min

ua(v) F-actin transport velocity µm/min
ub(v) Integrin transport velocity µm/min
ud(v) Effective substratum receptor transport velocity µm/min

vin
tip(v) Velocity of incoming receptors at cell tip µm/min
vout

tip (v) Velocity of leaving receptors at cell tip µm/min
vout

body(v) Velocity of leaving receptors at cell body µm/min

τ(a, L) Effective curvature force at the cell outline mN/µm
f(a, b, L) Local cellular locomotion force mN/µm
Floc(f) Total cellular locomotion force mN

Table A.7.: Model functions for two-dimensional cell migration as em-
ployed in sections 3.8–3.9.

Cell tissue model, chapter 5:

Symbol Meaning Value Units
√Pex Relative maximal cell extension 3 dimensionless
ri Cell body radii 0.9 . . . 2.0 µm
T Cytoskeletal reorganization time 120 s

ρ̃ Filament bundle density on cell body 9.55 1/µm
floc Strength of cellular locomotion force 10 . . . 20 pN
fint Strength of cellular interaction force 60 pN

α Cooperative vertical traction coefficient 0 . . . 0.17 dimensionless
∆min Relative minimal cell pair distance 0.1 dimensionless
∆crit Relative critical cell pair distance 0.2 . . . 0.7 dimensionless

bst · P−1/4
ex Strength of stochastic migration force 8.31 pN /

√
µm · s

γ̃ Cellular friction constant 2.5 · 104 pN · s / µm

dt Numerical time step 2 s

Table A.8.: Values of model parameters from chapter 5, unless indicated
otherwise. These values have been derived from the dimen-
sional estimates in paragraph 5.3.8. This table is a duplicate
of 5.1, and repeated here for reference.
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Symbol Meaning Value Units

ri Cell body radii 1.08 . . . 1.93 µm
ρ̃i Force generating filament density 7.02 . . . 9.13 1/µm
bi Effective integrin expression level 1.0 dimensionless
ci Effective cadherin expression level 1.0 dimensionless
qi Perturbation response, protrusivity 1.0 dimensionless

fint Strength of interaction force 60 pN
α Cooperative vertical traction coefficient 0.0 dimensionless
∆min Minimal normalized cell-cell distance 0.1 dimensionless

∆
(0)
crit Critical normalized cell-cell distance 0.3 dimensionless

αani Anisotropy parameter for ∆bb
crit 1.0 & 1.4 dimensionless

fpol Strength of polarity force 2.5 pN
Tpol Polarity reorientation time 600 s
vpol Characteristic polarity adaptation velocity 1.0 µm/s
δp Polarity decrease rate 8.3 · 10−4 1/s
αp Stochastic polarity increase 0.03 1/

√
s

γdrag Friction coefficient per free cell area 1326.3 pN · s/µm3

γvis
0 Viscous cell-cell friction coefficient 200 pN · s/µm

dt Numerical time step 2 s

Table A.9.: Parameter values introduced in section 5.7 in addition to the
ones from table A.8. The values presented here are defaults
and employed only unless indicated otherwise in the respec-
tive sections.
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A.7. Accompanying electronic supplementary material

This thesis is accompanied by several files of electronic supplementary
material. This material can also be obtained from http://www.theobio.

uni-bonn.de/people/mab/dsup.

Single cell migration – section 3.9:

s2d experiment.avi s2d simulation.avi

Voronoi algorithm – section 4.8: The zip-file mwvoro.zip contains the
Octave code (Matlab-compatible) to construct circular Voronoi diagrams,
licensed under the two-clause BSD open-source license. The program files
are extensively commented.

Voronoi tissue topology – section 5.4

mova.avi movb.avi movc.avi movd.avi
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Cell sorting model – section 5.6

mov sort.avi

Germband elongation model – section 5.7
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[55] H. Delanoë-Ayari, S. Iwaya, Y. T. Maeda, J. Inose, C. Rivière,
M. Sano, and J.-P. Rieu. Changes in the magnitude and distribu-
tion of forces at different Dictyostelium developmental stages. Cell
Motility and the Cytoskeleton, 65:314, 2008.

[56] B. Delaunay. Sur la sphère vide. A la mémoire de Georges Voronöı.
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cell movement in primary melanoma explants: Plasticity of cell-cell
interaction, β-integrin function, and migration strategies. Cancer
Research, 62:2125, 2002.

[99] M. Herant and M. Dembo. Form and function in cell motility: From
fibroblasts to keratocytes. Biophysical Journal, 98:1408, 2010.

[100] M. Herant, V. Heinrich, and M. Dembo. Mechanics of neutrophil
phagocytosis: experiments and quantitative models. Journal of Cell
Science, 119:1903, 2006.

[101] M. Herant, W. A. Marganski, and M. Dembo. The mechanics of
neutrophils: Synthetic modeling of three experiments. Biophysical
Journal, 84:3389, 2003.

[102] K. J. Hill. Matrix-based ellipse geometry. In A. W. Paeth, editor,
Graphics Gems V, pages 72–77. Academic Press, 1995.

[103] B. Hinz, W. Alt, C. Johnen, V. Herzog, and H.-W. Kaiser.
Quantifying lamella dynamics of cultured cells by SACED, a new
computer-assistet motion analysis. Experimental Cell Research,
251:234, 1999.

[104] R. M. Hochmuth. Micropipette aspiration of living cells. Journal
of Biomechanics, 33:15, 2000.

[105] H. Honda. Description of cellular patterns by dirichlet domains:
The two-dimensional case. Journal of Theoretical Biology, 072:523,
1978.

218



[106] H. Honda, M. Tanemura, and T. Nagai. A three-dimensional vertex
dynamics cell model of space filling polyhedra simulating cell be-
havior in a cell aggregate. Journal of Theoretical Biology, 226:439,
2004.

[107] S. Hong, R. B. Troyanovsky, and S. M. Troyanovsky. Spontaneous
assembly and active disassembly balance adherens junction home-
ostasis. Proceedings of the National Academy of Sciences of the
United States of America, 107:3528, 2010.

[108] R. Hooke. Micrographia – Some Physiological Descriptions of
Minute Bodies Made by Magnifying Glasses with Observations and
Inquiries Thereupon. Royal Society of London, 1665. Available
online from http://www.gutenberg.org/files/15491/15491-h/

15491-h.htm.

[109] J. Hoshen and R. Kopelman. Percolation and cluster distribution.
I. cluster multiple labeling technique and critical concentration al-
gorithm. Physical Review B, 14:3438, 1976.

[110] P. Hotulainen and P. Lappalainen. Stress fibers are generated by
two distinct actin assembly mechanisms in motile cells. Journal of
Cell Biology, 173:383, 2006.

[111] M. S. Hutson, G. W. Brodland, J. Yang, and D. Viens. Cell sorting
in three dimensions: Topology, fluctuations, and fluidlike instabili-
ties. Physical Review Letters, 101:148105, 2008.

[112] R. O. Hynes. Integrins: a family of cell surface receptors. Cell,
48:549, 1987.

[113] R. O. Hynes. Integrins: Bidirectional, allosteric signaling machines.
Cell, 110:673, 2002.

[114] J. A. Izaguirre, R. Chaturvedi, C. Huang, T. Cickovski, J. Coffland,
G. Thomas, G. Forgacs, M. Alber, G. Hentschel, S. A. Newman, and
J. A. Glazier. Compucell, a multi-model framework for simulation
of morphogenesis. Bioinformatics, 20:1129, 2004.

[115] I. Jahn, editor. Geschichte der Biologie. Nikol Verlag, 3rd edition,
2004.

219

http://www.gutenberg.org/files/15491/15491-h/15491-h.htm
http://www.gutenberg.org/files/15491/15491-h/15491-h.htm


[116] A. Jilkine and L. Edelstein-Keshet. A comparison of mathemati-
cal models for polarization of single eukaryotic cells in response to
guided cues. PLoS Computational Biology, 7:e1001121, 2011.
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