Charakterisierung von Adenosin-A_{2B}-Rezeptor-Agonisten

und

Adenosin-Rezeptor-Heterodimeren

Dissertation

zur

Erlangung des Doktorgrades (Dr. rer. nat.)

der

Mathematisch-Naturwissenschaftlichen Fakultät

der

Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

Sonja Hinz

aus

Siegburg

Bonn 2012

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn.

Gutachter: Prof. Dr. Christa E. Müller
Gutachter: Prof. Dr. Ivar von Kügelgen
Tag der Promotion: 17.12.2012
Erscheinungsjahr: 2013

Die vorliegende Arbeit wurde in der Zeit von Januar 2008 bis Juni 2012 am Pharmazeutischen Institut der Rheinischen Friedrich-Wilhelms-Universität Bonn unter der Leitung von Frau Prof. Dr. Christa E. Müller durchgeführt.

Mein ganz besonderer Dank gilt Frau Prof. Dr. Christa E. Müller, die mich dazu ermutigt hat diese Arbeit anzufertigen. Ich danke ihr für ihre stets freundliche Betreuung, die zahlreichen Anregungen und die Unterstützung, die maßgeblich zum Gelingen dieser Arbeit beigetragen haben.

Herrn Prof. Dr. Ivar von Kügelgen danke ich sehr herzlich für die freundliche Übernahme des Koreferats. Herrn Prof. Dr. Gerd Bendas und Herrn Prof. Dr. Jörg Höhfeld danke ich für die Mitwirkung in meiner Promotionskommission.

Sebastian

und

meiner Familie

"In der Wissenschaft gleichen wir alle nur den Kindern, die am Rande des Wissens hier und da einen Kiesel aufheben, während sich der weite Ozean des Unbekannten vor unseren Augen erstreckt."

Isaac Newton

Inhaltsverzeichnis

1 1	Einleitung	1
1.1	G-Protein-gekoppelte Rezeptoren	1
1.2	Klassifizierung von purinergen Rezeptoren	5
1.3	Adenosinrezeptoren	6
1.4	Homo-, Heterodimerisierung und Oligomerisierung von	
	G-Protein-gekoppelten Rezeptoren	13
1.4	.1 Adenosin-Rezeptor-Homodimere	17
1.4	.2 Adenosin-Rezeptor-Heterodimere/Oligomere	19
1.5	Ziele der Arbeit	24
2 (Charakterisierung von humanen und Nagetier-Adenosin-A _{2B} -	
]	Rezeptoren mit [³ H]NECA	27
2.1	Einleitung	27
2.1	.1 Prinzip von Radioligand-Rezeptor-Bindungsstudien	27
2.1	.2 Antagonisten und Agonisten für Adenosin-A _{2B} -Rezeptoren	30
2.2	Methodenentwicklung	33
2.2	.1 Zusammenfassung	37
2.3	Assoziations- und Dissoziationsexperimente an humanen	
	Adenosin-A _{2B} -Rezeptoren	37
2.3	.1 Zusammenfassung und Diskussion	39
2.4	Sättigungsexperimente an humanen, Maus- und	
	Ratten-Adenosin-A _{2B} -Rezeptoren	39
2.4	.1 Zusammenfassung und Diskussion	41
2.5	Kompetitionsexperimente an humanen, Maus- und	
	Ratten-Adenosin-A _{2B} -Rezeptoren	42
2.5	.1 Homologe Kompetitionsexperimente	43

	2.5.2	Heterologe Kompetitionsexperimente mit verschiedenen Standardagonisten und	
		Antagonisten	44
	2.5.3	Zusammenfassung und Diskussion	50
3	Chai	rakterisierung des Adenosin-A _{2B} -Rezeptor-Agonisten BAY60-6583	
	an ve	erschiedenen A _{2B} -Rezeptor-exprimierenden Zelllinien	53
3.	1 I	Einleitung	53
	3.1.1	Pharmakologische Klassifizierung von Agonisten und Antagonisten	53
	3.1.2	Allosterische Modulation des Ligandenbindungsverhaltens an	
		Adenosin-Rezeptoren durch Natrium-Ionen	55
	3.1.3	Adenosin-A2B-Rezeptor vermittelte intrazelluläre cAMP-Akkumulation	56
	3.1.4	Prinzip von cAMP-Akkumulationsexperimenten	57
	3.1.5	Adenosin-A2B-Rezeptor vermittelte intrazelluläre Calcium-Freisetzung	58
	3.1.6	Prinzip der fluorimetrischen Calcium-Experimente	59
	3.1.7	Pharmakologische Experimente mit dem A _{2B} -Rezeptor-Agonisten BAY60-6583	59
3.	.2 N	Natrium-Shift-Experimente an humanen Adenosin-A _{2B} -Rezeptoren	60
	3.2.1	Zusammenfassung und Diskussion	62
3.	.3 N	Aessung der intrazellulären cAMP-Akkumulation in HEK-293- und in	
	r	ekombinanten HEK-hA _{2B} -Zellen	62
	3.3.1	Zusammenfassung und Diskussion	65
3.	.4 N	Aessung der intrazellulären Calcium-Freisetzung in HEK-293- und in	
	r	ekombinanten HEK-hA _{2B} -Zellen	66
	3.4.1	Zusammenfassung und Diskussion	69
3.	.5 N	Aessung der intrazellulären cAMP-Akkumulation und Calcium-Freisetzung	
	i	n Jurkat-T- und Messung der Calcium-Freisetzung in CHO-h A_{2B} -Zellen	70
	3.5.1	Messung der intrazellulären cAMP-Akkumulation in Jurkat-T-Zellen	70
	3.5.2	Messung der intrazellulären Calcium-Freisetzung in Jurkat-T-Zellen	72
	3.5.3	Messung der intrazellulären Calcium-Freisetzung in CHO-hA2B-Zellen	73
	3.5.4	Zusammenfassung und Diskussion	74

75

4	Pharmakologische Untersuchungen an doppelt-transfizierten			
	CHO-hA _{2B} -hA _{2A} -Zellen	79		
4.1	Einleitung	79		
4.2	Detektion von A2A- und A2B-Rezeptoren auf mRNA-Ebene	82		
4.3	Radioligand-Rezeptor-Bindungsstudien an CHO-h A_{2A} -h A_{2B} -Zellen	83		
4.4	cAMP-Experimente an CHO-hA _{2A} -hA _{2B} -Zellen	85		
4.5	Zusammenfassung und Diskussion	89		
5	Kolokalisationsexperimente an doppelt-transfizierten			
	CHO-hA _{2B} -EYFP-hA _{2A} -ECFP-Zellen	91		
5.1	Einleitung	91		
5	.1.1 Prinzip der konfokalen Fluoreszenzmikroskopie	91		
5	.1.2 Fluoreszierende Proteine	91		
5.2	Überprüfung der Funktionalität des A _{2B} -EYFP Fusionsproteins und			
	Kolokalisation von A_{2A} - und A_{2B} -Rezeptoren	93		
5.3	Zusammenfassung und Diskussion	94		
6	Fluorimetrische FRET-Experimente an doppelt-transfizierten			
	CHO-hA _{2B} -hA _{2A} -Zellen	97		
6.1	Einleitung	97		
6	.1.1 Methoden zur Untersuchung von Protein-Protein-Interaktionen	97		
6	.1.2 Mögliche Interaktionsflächen von dimeren Rezeptoren	100		
6.2	Expressionskontrolle der verwendeten Donor- und Akzeptorkonstrukte	102		
6.3	Bestimmung der FRET-Effizienz an doppelt-transfizierten CHO-h A_{2B} -h A_{2A} -			
	Zellen	105		
6	.3.1 Zusammenfassung und Diskussion	111		

6.4	6.4 Bestimmung der FRET-Effizienz einer hA _{2A} -Rezeptor-Mutante mit verkürztem				
	C-Terminus in Kombination mit dem A _{2B} -Rezeptor	113			
6.4	4.1 Zusammenfassung und Diskussion	115			
7	Fluorimetrische BiFC-Experimente an doppelt-transfizierten				
	CHO-hA _{2B} -hA _{2A} -Zellen	117			
7.1	Einleitung	117			
7.1	1.1 Prinzip der Bimolekularen-Fluoreszenzkomplementation	117			
7.2	Bestimmung der relativen EYFP-Fluoreszenz an doppelt-transfizierten				
	CHO-hA2B-hA2A-Zellen und Überprüfung der Proteinexpression	119			
7.2	2.1 Zusammenfassung und Diskussion	126			
7.3	Bestimmung der BiFC-Effizienz an doppelt-transfizierten				
	CHO-hA _{2B} -hA _{2A} -Zellen	127			
7.3	3.1 Zusammenfassung	130			
8	Zusammenfassung und Ausblick	131			
9	Experimenteller Teil	137			
9.1	Geräte und Materialien	137			
9.2	Chemikalien und Substanzen	140			
9.3	Kultivierte Zelllinien	142			
9.3	3.1 Verwendete Kulturmedien	142			
9.4	Radioliganden	143			
9.5	Puffer und Lösungen	144			
9.5	5.1 Puffer und Lösungen für Radioligand-Rezeptor-Bindungsstudien	144			
9.5	5.2 Puffer und Lösungen für die Zellkultur	144			
9.5	5.3 Puffer und Lösungen für die Proteinbestimmung nach Lowry	146			
9.5	5.4 Puffer und Lösungen für die Proteinbestimmung nach Bradford	147			
9.5	5.5 Puffer und Lösungen für funktionelle cAMP-Experimente	147			

9.5.6 Puffer und Lösungen für fluorimetrische FRET- und BiFC-Experimente		147		
9.5.7 Puffer und Lösungen zum Fixieren von Zellen		147		
9.5.8 Puffer und Lösungen für intrazelluläre Calcium-Experimente		148		
9.5.9	9.5.9 Puffer und Lösungen für die Molekularbiologie			
9.6	Materialien für die Molekularbiologie	150		
9.6.1	Expressionsvektoren	150		
9.6.2	Primer	152		
9.6.3	Enzyme	153		
9.6.4	Antikörper	153		
9.6.5	Chemikalien und Materialien für die Molekularbiologie	153		
9.6.6	Verwendete Kits	154		
9.6.7	Marker	155		
9.7	Zellkultur	155		
9.7.1	Auftauen von Zellen	155		
9.7.2	Passagieren von Zellen	155		
9.7.3	Einfrieren von Zellen	155		
9.7.4	Zellzahlbestimmung	156		
9.7.5	Retrovirale Transfektion von GP ⁺ env AM12 und Infektion von			
	CHO-K1-, CHO-hA2B- und HEK-293-Zellen	156		
9.7.6	Zellen fixieren	157		
9.7.7	Membranpräparationen von rekombinanten CHO-hA2B, rA2B-, mA2B-			
	und CHO-hA _{2B} -hA _{2A} -Zellen	157		
9.8	Proteinbestimmung nach Lowry	158		
9.9	Radioligand-Rezeptor-Bindungsstudien	159		
9.9.1	Kompetitionsexperimente mit [3H]PSB-603 an humanen rekombinanten			
	Adenosin-A _{2B} -Rezeptoren	159		
9.9.2	Natrium-Shift-Experimente an humanen A2B-Rezeptoren mit [3H]PSB-603	161		
9.9.3	Assoziations- und Dissoziationsexperimente mit [3H]NECA an humanen			
	rekombinanten Adenosin-A _{2B} -Rezeptoren	162		
9.9.4	Sättigungsexperimente mit [3H]NECA an rekombinanten humanen, Ratten- un	nd		
	Maus-Adenosin-A _{2B} -Rezeptoren	164		

9.9.5 Kompetitionsexperimente mit [³ H]NECA an rekombinanten humanen, Ratten-				
	u	nd Maus-Adenosin-A _{2B} -Rezeptoren	165	
9.10	Flu	orimetrische Calcium-Messungen an Jurkat-T-, HEK-293-, HEK-hA _{2B} -		
	und	CHO-hA _{2B} -Zellen	166	
9.11	Prä	paration des cAMP-Bindeproteins	167	
9.12	cAI	MP-Experimente an CHO-hA _{2B} -hA _{2A} -Zellen	167	
9.13	cAI	MP-Experimente an Jurkat-T-, HEK-293- und HEK-hA _{2B} -Zellen	168	
9.14	Tra	insiente Transfektion und FRET-Experimente	169	
9.15	Tra	insiente Transfektion und BiFC-Experimente	172	
9.16	Kol	okalisationsexperimente	174	
9.17	Mo	lekularbiologische Arbeiten	174	
9.17	7.1	Western Blots	174	
9.17	7.2	Agarose Gelelektrophorese	175	
9.17	7.3	Herstellung von LB-Medium	175	
9.17	7.4	Herstellung von Agarplatten	175	
9.17	7.5	Polymerase-Ketten-Reaktion (PCR)	176	
9.17	7.6	Aufreinigung von PCR-Produkten	176	
9.17	7.7	Extraktion von DNA aus einem Agarosegel	176	
9.17	7.8	Restriktionsverdau	177	
9.17	7.9	Auffüllen von 5'-überhängenden Enden mit der T4-DNA-Polymerase	177	
9.17	7.10	Auffüllen von 5'-überhängenden Enden mit dem Klenow-Fragment	177	
9.17	7.11	Ligation mit T4-DNA-Ligase	178	
9.17	7.12	Herstellung von chemisch kompetenten E. coli Top 10-Bakterien	178	
9.17	7.13	Transformation von chemisch kompetenten E. coli Top 10-Bakterien	179	
9.17	7.14	Anzucht von Monoklonen in Übernachtkulturen	179	
9.17	7.15	Aufreinigung von Plasmid-DNA aus E. coli-Bakterien	179	
9.17	7.16	Sequenzierung	179	
9.17	7.17	Anlegen von Glycerinkulturen	180	
9.17	7.18	Konzentrationsbestimmung von DNA	180	
9.17	7.19	Nachträgliches Einfügen eines Tags oder einer Linkersequenz	180	

10	Ab	kürzungsverzeichnis	183
9.1	7.22	Gen-Fragment Amplifizierung aus cDNA	181
9.1	7.21	Reverse Transkriptions-PCR	181
9.1	7.20	RNA-Isolierung aus Zellkulturen	180

11Literaturverzeichnis189

1 Einleitung

1.1 G-Protein-gekoppelte Rezeptoren

Bei der Signaltransduktion werden extrazelluläre Signale durch Rezeptoren in der Plasmamembran von Zellen erkannt und in das Zellinnere weitergeleitet. Die Aktivierung der Rezeptoren erfolgt dabei durch die Bindung eines Liganden an eine bestimmte Bindungsstelle am Rezeptorprotein. Sie führt im Fall von G-Protein-gekoppelten Rezeptoren (GPCRs) zu einer Aktivierung heterotrimerer GTP-bindender Proteine (G-Proteine), die weitere Effektoren in der Zelle beeinflussen können.¹ Des Weiteren sind auch G-Protein-unabhängige Signaltransduktionswege beschrieben worden.² Abb. 1-1 gibt einen Überblick über die allgemein über G-Proteine vermittelte Signaltransduktion von GPCRs. Der Mechanismus der G-Protein-Aktivierung wird in Kapitel 3.1.3 und 3.1.5 genauer erläutert.

Abb. 1-1: Durch G-Proteine vermittelte Signaltransduktion von GPCRs.³

Ein Abschalten des Signals kann, neben einem Entfernen des Agonisten, auch durch eine β -Arrestin induzierte Rezeptorinternalisierung erfolgen, um die Zelle für weitere äußere Reize empfänglich zu halten. Dabei wird nach der Bindung des Liganden (Agonisten) eine Phosphorylierung des Rezeptors durch bestimmte G-Protein-gekoppelte Rezeptorkinasen (GRKs) herbeigeführt, was eine Rekrutierung von β -Arrestin zur Folge hat. Die Bindung des β -Arrestins führt zu einer Internalisierung des phosphorylierten Rezeptors in Form von Membranvesikeln ("clathrin-coated vesicles"), welche abgebaut oder recycelt werden, wodurch der Rezeptor erneut an die Zelloberfläche gelangen kann. Des Weiteren kann die Bindung von β -Arrestin an das Rezeptorprotein auch andere Signaltransduktionswege, wie die Aktivierung von MAP-Kinasen (Mitogen-aktivierte Proteinkinasen) wie ERK zur Folge haben.⁴ Eine Übersicht der durch β -Arrestin vermittelten Signaltransduktion von GPCRs gibt Abb. 1-2.

Abb. 1-2: Durch β-Arrestin vermittelte Signaltransduktion von GPCRs.⁴

Darüber hinaus können die Rezeptor-Liganden (Agonisten) eine funktionelle Selektivität ("biased signalling") für einen bestimmten Signaltransduktionsweg aufweisen. So kann ein Agonist z. B. zu einer Aktivierung von G-Proteinen führen, jedoch nicht zu einer Rekrutierung von β -Arrestin, was für die Entwicklung neuer potentieller Arzneistoffe mit maximaler Wirkung bei geringeren Nebenwirkungen von Bedeutung sein könnte.⁵

Die Superfamilie der G-Protein-gekoppelten Rezeptoren (GPCRs) stellt die größte Proteinkodierende Gen-Familie beim Menschen dar.⁶ Sie lässt sich aufgrund von phylogenetischen Merkmalen in fünf verschiedene Klassen, Glutamat-Rezeptoren, Rhodopsin-Rezeptoren, Adhäsions-Rezeptoren, Frizzled/Taste-2-Rezeptoren und Secretin-Rezeptoren einteilen (GRAFS).⁷ Weiterhin können diese in drei Hauptklassen, Klasse A (Rhodopsin-Rezeptoren), Klasse B (Adhäsions-Rezeptoren und Secretin-Rezeptoren) und Klasse C (Glutamat-Rezeptoren) unterteilt werden.⁸ Allen gemeinsam ist der strukturelle Aufbau aus sieben transmembranären α -Helices, die durch drei intra- und drei extrazelluläre Schleifen miteinander verbunden sind. Der N-Terminus ist dabei extrazellulär und der C-Terminus ist im Inneren der Zelle lokalisiert.⁹

Die größte Familie der GPCRs stellt die Klasse A der Rhodopsin-Rezeptoren dar, die ca. 670 humane Rezeptorproteine beinhaltet und in vier weitere Untergruppen α , β , γ , δ aufgeteilt werden kann, von welchen die olfaktorischen Rezeptoren (Gruppe δ) die größte Gruppe darstellen.⁸ Als physiologische Liganden für Rhodopsin-Rezeptoren sind hauptsächlich kleine Moleküle wie Amine, Purine, Fettsäuren, Prostaglandine, Peptide aber auch große Glykoproteine beschrieben worden. Ungefähr 25 % der auf dem pharmazeutischen Markt verfügbaren "small molecule drugs" agieren über diese Subfamilie,¹⁰ was ihre hohe therapeutische Relevanz verdeutlicht. Des Weiteren existieren mehr als 140 "Orphan"-Rezeptoren unter den GPCRs, deren physiologischer Ligand noch unbekannt ist, und die zusätzlich ein großes Potential für die Entwicklung neuer Arzneistoffe darstellen.¹¹

Die dreidimensionale Struktur eines GPCRs in der inaktiven Rezeptorkonformation (Rinderrhodopsin gebunden mit 11-cis-Retinal) konnte erstmals im Jahr 2000 von Palczewski et al. aufgedeckt werden.¹² Im Jahr 2008 konnten dann erstmals Röntgenkristallstrukturen der aktiven Rezeptorkonformation von nativen Opsin in freier Form und zusätzlich an ein Peptidfragment (GaCT) gebunden, publiziert werden.¹³⁻¹⁴ Die Röntgenkristallstrukturen von Rhodopsin wurden nachfolgend als Grundlage für theoretische Modelle von anderen G-Protein-gekoppelten Rezeptoren genutzt. Darüber hinaus wurden später eine Reihe weiterer Röntgenkristallstrukturen von GPCRs mit gebundenen Agonisten oder Antagonisten/inversen Agonisten, wie z. B. die des humanen A_{2A} -Rezeptors,¹⁵⁻¹⁸ des humanen β_2 -adrenergen Rezeptors,¹⁹⁻²⁰ des β_1 -adrenergen Rezeptor des Truthahns,²¹ des Chemokin-Rezeptors (CXCR4)²² des humanen Dopamin D₃-Rezeptors²³ des humanen M₂-muskarinischen Rezeptors,²⁴ des humanen M₃-muskarinischen Rezeptors,²⁵ des humanen Histamin H₁-Rezeptors,²⁶ des Sphingosin-1-Phosphat-Rezeptors²⁷ und des Maus-µ-Opioid-Rezeptors²⁸ publiziert. Die Rezeptoren konnten dabei unter anderem durch die Verknüpfung mit monoklonalen Antikörper-Fragmenten (Fab-Fragment), durch das Einbringen des stabilen Lysozyms des Bakteriophagen T4 (T4L) oder durch die Herstellung spezifischer thermostabiler Rezeptormutanten für die nachfolgende Kristallisation stabilisiert und kristallisierbar gemacht werden.²⁹

Für den Adenosin-A_{2A}-Rezeptor konnten bis heute drei Röntgenkristallstrukturen Agonistgebundener (Adenosin, NECA und UK-432097) aktiver Rezeptorkonformationen¹⁷⁻¹⁸ und drei Röntgenkristallstrukturen von Antagonist-gebundenen (ZM241385, Coffein, XAC) inaktiven Rezeptorkonformationen¹⁵⁻¹⁶ publiziert werden. Generell unterscheidet sich die Struktur des Adenosin-A_{2A}-Rezeptors (A_{2A}-T4L- Δ C gebunden mit ZM241385) von der anderer GPCRs, da die Struktur der extrazellulären Schleifen und insbesondere der zweiten extrazellulären Schleife keine Sekundärstrukturelemente wie α -Helices oder β -Faltblättern aufweist. Auch werden drei Disulfidbrücken zwischen den extrazellulären Schleifen 1 und 2 ausgebildet, von denen zwei einzigartig für den A_{2A}-Rezeptor sind (Cys71 - Cys159 und Cys74 - Cys146), während die dritte (Cys77 - Cys166) in Klasse A GPCRs konserviert ist. Zusätzlich wird eine vierte Disulfidbrücke in der dritten extrazellulären Schleife zwischen Cys259 und Cys262 ausgebildet. Durch die relativ starre und offene Architektur des Disulfidbrückennetzwerks können kleine Liganden jedoch relativ frei zu der Ligandbindungstasche durchdringen.¹⁶ ZM241385 hat dabei eine senkrecht zur Plasmamembran gelegene Bindungsorientierung, wobei minimale Interaktionen mit Helix 3 und 5 und ausgeprägte Interaktionen mit Helix 6 und 7 und mit Resten in der zweiten und dritten extrazellulären Schleife auftreten. Diese unterscheidet sich damit wesentlich von den Ligandbindungstaschen des Rhodopsins oder der biogenen Amin-Rezeptoren.¹⁶

Sowohl NECA als auch Adenosin besitzen eine Ribose-Gruppe, welche tief in die Ligandbindungstasche eintaucht und dort sowohl polare Interaktionen mit konservierten Resten in Helix 7 (Ser277 und His278) als auch unpolare Interaktionen mit Resten in Helix 3 eingehen kann. Diese Interaktionen konnten für die Bindung des inversen Agonisten ZM241385 nicht beobachtet werden. Des Weiteren lässt sich schlussfolgern, dass die Bindung der Agonisten NECA und Adenosin eine Einwärtsrotation von Helix 7, eine Bewegung von Helix 3 und eine Aufwölbung von Helix 5 induziert und so eine Aktivierung des Rezeptors bewirkt. Der inverse Agonist ZM241385 scheint im Vergleich dazu keine Aufwölbung von Helix 5 hervorzurufen, wodurch keine aktive Rezeptorkonformation induziert werden kann. Da in dem generierten Rezeptorkonstrukt A_{2A}R-GL31 die Bindungsstelle für die G-Proteine blockiert war, wurde weiterhin davon ausgegangen, dass die Röntgenkristallstrukturen für die Bindung von NECA und Adenosin an das Rezeptorprotein eine intermediäre Rezeptorkonformation zwischen inaktiver und aktiver darstellen.¹⁷

Kürzlich konnte erstmals auch eine hochaufgelöste Röntgenkristallstruktur des ternären Komplexes zwischen einem Agonisten, dem aktivierten β_2 -Rezeptor und einem G-Protein publiziert werden, welche die aktive Rezeptorkonformation darstellt und strukturellen Einblick in den Mechanismus der Signaltransduktion geben kann.³⁰

Des Weiteren scheinen allgemein Interaktionen zwischen dem zytoplasmatischen Ende von Helix 3 (konserviertes D/ERY Sequenzmotiv) und einem Glutamatrest in Helix 6 ("ionic lock") in Rhodopsin und anderen Klasse A-GPCRs wichtig zu sein, um den Rezeptor in der inaktiven Rezeptorkonformation zu halten.¹⁶ Im A_{2A}-Rezeptor scheint dies aber nicht der Fall zu sein, da Asp101 (D in D/ERY) eine Wasserstoffbrückenbindung mit Tyr112 in einem kurzen helikalen Abschnitt in der zweiten intrazellulären Schleife bildet, sowie auch mit Thr41 in Helix 2. Der Argininrest im D/ERY Motiv könnte dabei wichtig sein, um den angrenzenden Aspartat- oder Glutamatrest in der deprotonierten Form zu stabilisieren, was die polaren Interaktionen zwischen dem D/ERY Motiv und der intrazellulären Schleife 2 und der Helix 2 stärkt. Diese Interaktionen könnten direkte Auswirkungen auf die Aktivierung des Rezeptors haben.¹⁶ Darüber hinaus scheint generell auch ein in Klasse-A-Rezeptoren hochkonservierter Tryptophanrest in Helix 6 (Position 6.48) wichtig zu sein, um das Gleichgewicht zwischen aktiver und inaktiver Rezeptorkonformation zu kontrollieren. Jaakola et al. spekulierten, dass durch Wasserstoffbrückenbindungen zwischen dem Furanring von ZM241385 und dem konservierten Tryptophanrest (Trp246) in Helix 6 des Adenosin-A_{2A}-Rezeptors, die strukturellen Änderungen zur Aktivierung des Rezeptors verhindert werden und somit die inaktive Rezeptorkonformation stabilisiert wird.¹⁶

Durch die Vielzahl der nun zur Verfügung stehenden Röntgenkristallstrukturen von GPCRs, kann ein Einblick sowohl in die Ligandbindungstasche als auch in die durch die spezifischen Liganden induzierten strukturellen Veränderungen der Rezeptorproteine und die damit verbundene Aktivierung der G-Proteine erhalten werden. Dadurch ist die Möglichkeit gegeben, die Optimierung von Leitstrukturen voranzubringen sowie die Entdeckung neuer chemischer Klassen von Liganden durch "Molekulare-Docking-Studien" mit sich anschließender Testung zu erleichtern.³¹

1.2 Klassifizierung von purinergen Rezeptoren

Die Familie der purinergen Rezeptoren enthält viele Rhodopsin-artige Klasse A-GPCRs, neben einer Unterfamilie von ionotropen Rezeptoren (P2X). Purinerge Rezeptoren lassen sich allgemein in P1- und P2-Rezeptoren unterteilen. Adenosinrezeptoren sind GPCRs der Klasse A und werden als P1-Rezeptoren bezeichnet. Sie lassen sich durch ihren endogenen Purinnukleosid-Liganden Adenosin aktivieren. Zu den P2-Rezeptoren zählen die P2X₁₋₇-Rezeptoren (Ligand-gesteuerte Ionenkanäle) und die G-Protein-gekoppelten P2Y_{1,2,4,6,11,12,13,14}-Rezeptoren, welche durch Purinnukleotid-Liganden wie ATP, (P2X, P2Y_{2,11}) ADP (P2Y_{1,12,13}), UTP (P2Y_{2,6}), UDP (P2Y_{4,14}) und UDP-Glukose (P2Y₁₄) aktiviert werden können.³² Abb. 1-3 gibt eine Übersicht über P1- und P2-Rezeptoren sowie über den Mechanismus der ATP-Freisetzung und des ATP-Abbaus.

Abb. 1-3: Übersicht über P1- und P2-Rezeptoren und über den Mechanismus der ATP-Freisetzung und des ATP-Abbaus. Abkürzungen: Alk. Phos., Alkalische Phosphatase; Myok., Adenylatkinase; NDK, Nukleosiddiphosphatkinase; NPPs, Nukleosidpyrophosphatase/Phosphodiesterase; 5'-Nuc, 5'-ecto-Nukleotidase; VNUT, vesikulärer Nukleotidtransporter.³²

Auch die Nukleobase Adenin konnte als endogener Agonist von "orphan" G-Proteingekoppelten Nagetier-Rezeptoren identifiziert werden, wodurch eine dritte Klasse von purinergen Rezeptoren begründet wird.³³⁻³⁴ Diese wurde von Brunschweiger et al. als PO-Rezeptoren bezeichnet.³⁵

1.3 Adenosinrezeptoren

Adenosinrezeptoren gehören als G-Protein-gekoppelte Rezeptoren zur Familie der Rhodopsin-Rezeptoren (Klasse A) und lassen sich in vier verschiedene Subtypen A₁, A_{2A}, A₃ und A_{2B} unterteilen. A₁- und A₃-Rezeptoren koppeln an G_i-Proteine, was bei einer Aktivierung der Rezeptoren durch den endogenen Agonisten Adenosin zu einer Hemmung der Adenylatzyklase und damit zu einer verringerten cAMP-Produktion in der Zelle führt, während A_{2A}- und A_{2B}-Rezeptoren G_s/G_{olf}-gekoppelt sind, was zu einer Stimulierung der Adenylatzyklase und damit zu einem Anstieg an cAMP in der Zelle führt.³⁶ Weiterhin ist für die A₁-, A_{2B}- und A₃-Adenosinrezeptor-Subtypen in verschiedenen Zellsystemen eine Aktivierung der Phospholipase C beschrieben worden, was bei einer Rezeptoraktivierung in einem intrazellulären Calcium-Anstieg resultiert.³⁷⁻³⁹ Darüber hinaus können alle Adenosinrezeptor-Subtypen auch die Aktivität von Mitogen-aktivierten Proteinkinasen (MAP-Kinasen) beeinflussen, wodurch Prozesse wie Zellproliferation und Apoptose gesteuert werden.⁴⁰ Tab. 1-1 gibt einen Überblick über die wichtigsten Effektorsysteme und über selektive Agonisten und Antagonisten für die Adenosinrezeptor-Subtypen.

Rezeptor-Subtyp	A ₁	A _{2A}	A ₃	A _{2B}
G-Protein	G_i / G_o	G_s / G_{olf}	$G_i \ / \ G_{q/11}$	$G_s \ / \ G_{q/11}$
Effekt	cAMP↓	cAMP ↑	cAMP ↓	cAMP ↑
	$Ca^{2+}\uparrow$		$Ca^{2+}\uparrow$	$\mathrm{Ca}^{2+}\uparrow$
Agonisten	СРА	CGS-21680	Cl-IB-MECA	BAY60-6583 ⁴¹
	ССРА			
Antagonisten	PSB-63 ⁴²	MSX-2	PSB-11 ⁴³	PSB-603 ⁴⁵
	DPCPX	SCH-58261	MRS-3008F20 ⁴⁴	MRS-1754
				OSIP-339391 ⁴⁶
				MRE-2029F20 ⁴⁷

Tab. 1-1: Wichtige Effektorsysteme und selektive Agonisten und Antagonisten der Adenosinrezeptoren.³⁶

Des Weiteren konnte eine Rezeptorinternalisierung durch β-Arrestin sowohl für den A_{2B}- als auch für den A₁- und den A₃-Adenosinrezeptor nachgewiesen werden. So konnte in HEK-293-Zellen, die eine reduzierte Menge an β-Arrestinen aufweisen, eine Abschwächung der durch den Agonisten NECA induzierten A_{2B}-Rezeptorinternalisierung gemessen werden sowie auch eine Abnahme des nach einer Internalisierung erneut an die Zelloberfläche transportierten A_{2B}-Rezeptors.⁴⁸ Auch für den Adenosin-A₁-Rezeptor konnte eine Interaktion mit β-Arrestin-1 bestätigt werden, da durch einen "knock-down" des Proteins mit Hilfe von siRNA die Agonist-induzierte Desensibilisierung des Rezeptors aufgehoben werden konnte.⁴⁹ Für den Adenosin-A₃-Rezeptor konnte mit Hilfe des PathHunter[®] Zellsystems eine Kopplung des Rezeptors mit β-Arrestin bestätigt werden und zusätzlich konnten funktionell selektive Liganden für Adenosin-A₃-Rezeptoren identifiziert werden.⁵⁰ Bei dem PathHunter[®] β-Arrestin Assay handelt es sich vom Prinzip um einen Enzym-Komplementationsassay. Dabei wird ein großes Fragment des Enzyms β-Galaktosidase an den C-Terminus von β-Arrestin fusioniert und der kleinere komplementäre Teil der β-Galaktosidase wird an den C-Terminus des zu untersuchenden GPCR fusioniert. Nach einer Rezeptoraktivierung bindet β-Arrestin an den GPCR was zu einer Komplementation des Enzyms β -Galaktosidase führt. Die Funktionalität des Enzyms kann dann durch die Zugabe des entsprechenden Substrats und nachfolgender Fluoreszenzmessung bestätigt werden.⁵¹

Basale extrazelluläre Adenosinkonzentrationen liegen zwischen 30 und 200 nM⁵² und bei Sauerstoffmangel, Entzündungsprozessen oder erhöhter Stoffwechselaktivität kann diese Konzentration rapide ansteigen. Unter diesen Zuständen übersteigt der ATP-Verbrauch der Zelle die ATP-Synthese, was in einem reduzierten ATP-Spiegel und in steigenden Konzentrationen von ADP, AMP und Adenosin resultiert. Intrazelluläres Adenosin entsteht durch die Dephosphorylierung von AMP, und durch spezifische bidirektionale equilibrative Nukleosid-Transporter (ENTs) kann das Adenosin in den Extrazellulär-Raum transportiert werden. Ein Abbau von intrazellulärem Adenosin zu Inosin wird durch das Enzym Adenosindesaminase vermittelt; alternativ erfolgt eine Phosphorylierung des Adenosins durch die Adenosinkinase zu AMP. Auch durch den extrazellulären Abbau von ATP oder ADP zu AMP (CD39, NTPDase) und durch die 5'-ecto-Nukleotidase (CD73) weiter zu Adenosin, können hohe Konzentrationen an extrazellulärem Adenosin entstehen, was in einer Aktivierung der Adenosinrezeptoren resultiert.⁵³⁻⁵⁴

Bedingt durch diesen dynamischen Metabolismus ist es nicht möglich, die genaue Affinität des physiologischen Agonisten Adenosin an den jeweiligen Adenosinrezeptor-Subtypen zu bestimmen. Auch eine Bestimmung der Potenz an den verschiedenen Adenosinrezeptor-Subtypen erweist sich als schwierig, da diese sowohl von der Rezeptorexpression bzw. Rezeptorreserve als auch von dem gemessenen Signaltransduktionsweg abhängig ist. Eine zusätzliche Einteilung der Adenosinrezeptoren in für Adenosin hoch- und niedrig-affine Rezeptoren, wie sie bisher üblicherweise vorgenommen wurde, erscheint somit nicht sinnvoll.⁵²

Durch ihre ubiquitäre Verteilung im Körper sind Adenosinrezeptoren an einer Reihe von physiologischen Prozessen beteiligt und stellen somit Zielstrukturen für die Entwicklung neuer Arzneistoffe dar. In den letzten Jahren sind eine Vielzahl von potenten und selektiven Agonisten, welche sich strukturell hauptsächlich von dem endogenen Agonisten Adenosin, und Antagonisten, welche sich strukturell hauptsächlich aus Xanthin- oder Adenin-Derivaten ableiten, entwickelt worden.^{52, 55-57}

Adenosin- A_1 -Rezeptoren sind insbesondere im Gehirn (Cortex, Hippocampus), im Rückenmark, im Auge, in den Nebennieren und im Herzen hoch exprimiert.³⁶ Eine Aktivierung des A_1 -Rezeptors führt unter anderem zu antiischämischen Effekten im Herzen

und im Gehirn. So konnten eine Reihe von selektiven Partial-A₁-Agonisten als potentielle Therapeutika für Tachykardien, Herzflimmern, Angina pectoris, Typ II-Diabetes und neuropathischem Schmerz entwickelt werden.⁵⁶ Der von Bayer entwickelte nicht-nukleosidische A₁-Rezeptor-Agonist Capadenoson (BAY68-4986) konnte in Patienten mit stabiler Angina pectoris bei oraler Einnahme die Herzrate signifikant senken, was zu einer Verzögerung bis zum Auftreten einer Ischämie führte.⁵⁸ Kürzlich konnte gezeigt werden, dass nicht nur Adenosin, sondern auch AMP zu einer Aktivierung des Adenosin-A₁-Rezeptors führen kann (EC₅₀ = 1,69 μ M).⁵⁹

Adenosin-A₁-Rezeptor-Antagonisten könnten unter anderem für die Behandlung von Herzinsuffizienz und von Nierenfunktionsstörungen von Bedeutung sein.⁵⁶ So konnte kürzlich gezeigt werden, dass durch Sauerstoffmangel die Herzrate in Maus-Embryonen herabgesetzt wurde und dass Coffein durch die Hemmung des Adenosin-A₁-Rezeptors diesen Effekt aufheben konnte, was in einer Steigerung der Herzrate resultierte.⁶⁰ Des Weiteren konnte ein diuretischer Effekt des A₁-Rezeptor-Antagonisten KW-3902 und weiterer A₁-Antagonisten nachgewiesen werden.⁶¹⁻⁶³ Darüber hinaus kann Adenosin die Ausschüttung von Neurotransmittern wie z. B. Dopamin und Noradrenalin im Gehirn hemmen, was zu einem sedativen Effekt führt, welcher durch den Antagonisten Coffein aufgehoben wird, wodurch dessen zentral anregende Wirkung erklärt werden kann.⁶⁴

Adenosin-A_{2A}-Rezeptoren werden hauptsächlich im Gehirn (Caudate-Putamen, Nucleus accumbens), in der Milz, im Thymus, auf Leukozyten und auf Thrombozyten exprimiert.³⁶ Die Aktivierung des A_{2A}-Rezeptors führt hauptsächlich zu antiinflammatorischen und zu immunsupressiven Effekten.⁶⁵ Aufgrund ihrer vasodilatorischen Eigenschaften sind A_{2A}-Rezeptor-Agonisten wie z. B. Regadenoson für die Diagnostik der Herzdurchblutung (Darstellung der Herzkranzgefäße) zugelassen, während A_{2A}-Rezeptor-Antagonisten ein hohes therapeutisches Potential für neurodegenerative Erkrankungen wie Morbus Parkinson, Alzheimer, Restless-Legs-Syndrom, aber auch für Depressionen und Sucht aufweisen.⁵⁶ Kürzlich konnte gezeigt werden, dass die Bindung eines Antikörper-Fragments (Fab2838) an den Adenosin-A_{2A}-Rezeptor die Bindung des Agonisten [³H]NECA vollständig inhibierte, während die Bindung des Antagonisten [³H]ZM241385 nicht beeinflusst war. Diese Beobachtung sowie die Kristallstruktur des A_{2A}-Rezeptors verknüpft mit dem Antikörper-Fragment weisen darauf hin, dass dieses eine inaktive Rezeptorkonformation induzieren kann ohne die Ligandbindungstasche zu besetzen. Dieser Ansatz könnte eine neue Strategie darstellen, um die Aktivität von G-Protein-gekoppelten Rezeptoren zu modulieren.⁶⁶

Adenosin-A_{2B}-Rezeptoren sind in hohen Konzentrationen im Gastrointestinaltrakt (Dickdarm, Blinddarm), in der Harnblase, in der Lunge, sowie unter anderem auch auf Herzmuskelzellen und auf Immunzellen exprimiert.^{36, 67} Darüber hinaus wird die Expression des A_{2B}-Rezeptors unter inflammatorischen Zuständen und unter Hypoxie gesteigert.⁶⁷ Unter hypoxischen Bedingungen wird der Transkriptionsfaktor HIF-1 α (hypoxia-inducible factor), welcher an eine bestimmte Promotorregion (HRE = hypoxia responsive element) im Gen des A_{2B}-Rezeptors binden kann, stabilisiert, was zu einer erhöhten Rezeptorexpression führt.⁶⁸

Der Adenosin-A_{2B}-Rezeptor kann in Abhängigkeit vom Zell- bzw. Gewebetyp möglicherweise sowohl pro- als auch antiinflammatorische Effekte vermitteln.⁶⁹ In Bezug auf die Behandlung von akuten Lungenerkrankungen kann die Aktivierung des A_{2B}-Rezeptors zu antiinflammatorischen Effekten führen.⁷⁰ An Wildtyp-Mäusen konnte mit dem A_{2B}-Rezeptor-Antagonisten PSB-1115 eine gesteigerte Lungenentzündung, Ödembildung und ein abgeschwächter Gasaustausch verzeichnet werden, wohingegen eine Behandlung mit dem A_{2B}-Rezeptor-Agonisten BAY60-6583 diese Symptome mildern konnte.⁷⁰ Kürzlich konnte gezeigt werden, dass es durch die Aktivierung des A_{2B}-Rezeptors in aktivierten Maus-Mikroglia-Zellen zu einem Anstieg des antiinflammatorischen Interleukins-10 kommt, welches wichtig ist, um inflammatorische Prozesse im zentralen Nervensystem abzuschwächen.⁷¹

Des Weiteren kann auch die Hemmung des A_{2B}-Rezeptors zu antiinflammatorischen Effekten führen. So konnte gezeigt werden, dass die Aktivierung des A_{2B}-Rezeptors im Darmepithel von Wildtyp-Mäusen zur Ausbildung einer Colitis führte, während in A_{2B}-Rezeptor "knock-out"-Mäusen eine reduzierte Entzündungsreaktion gemessen wurde.⁷² Darüber hinaus konnte der A_{2B}-Rezeptor-spezifische Antagonist GS-6201 (CVT-6883) sowie der "knock-out" des A_{2B}-Rezeptors eine Lungenfibrose und die Ausbildung einer pulmonalen Hypertonie abschwächen. A_{2B}-Rezeptor-Antagonisten haben daher ein großes Potential zur Behandlung von interstitiellen Lungenerkrankungen.⁷³ Abb. 1-4 gibt einen Überblick über die proinflammatorischen Effekte, welche durch die Aktivierung des A_{2B}-Rezeptors vermittelt werden können.⁷⁴

Abb. 1-4: Die Aktivierung des A_{2B} -Rezeptors kann zu proinflammatorischen Effekten von verschiedensten Zelltypen führen, die an der Entstehung von asthmatischen Erkrankungen beteiligt sind.⁷⁴

Zurzeit befindet sich der spezifische A_{2B}-Rezeptor-Antagonist CVT-6883 in der klinischen Testung zur Behandlung von Asthma und entzündlichen Erkrankungen. Der A2B-Rezeptor-Agonist BAY60-6583 wurde präklinisch zur Behandlung von Arteriosklerose untersucht.⁵⁶ Kürzlich wurde außerdem gezeigt, dass der A2B-Rezeptor ein vielversprechendes Target bei der Behandlung von Krebserkrankungen sein könnte.⁷⁵⁻⁷⁶ So konnten sowohl der unselektive Adenosin-Rezeptor-Antagonist Aminophyllin als auch der selektive A2B-Rezeptor-Antagonist ATL801 das Wachstum von MB49 Blasen- und 4T1-Brustkrebstumoren in Mäusen hemmen und zu 85 % die Metastasierung von Brustkrebszellen vom Brustfettgeweben zur Lunge reduzieren. Durch die Verwendung von A2A- und A2B-Rezeptor-"knock-out"-Mäusen konnte der Effekt von Aminophyllin dem A_{2B}-Rezeptor zugeordnet werden.⁷⁵ Darüber hinaus scheint der Adenosin-A_{2B}-Rezeptor auch ein Regulator für die Differenzierung von Osteoblasten, für die Knochenbildung und auch für die Reparatur von Frakturen zu sein, da die Aktivierung des Rezeptors durch den Agonisten NECA die Osteoblastentranskriptionsfaktor-Expression und die Menge der gebildeten Osteoblasten erhöhte.⁷⁷ Des Weiteren kann die Aktivierung von A2B-Rezeptoren, und zu einem geringeren Ausmaß auch die Aktivierung von A2A-Rezeptoren, zu einer Steigerung der alternativen Makrophagen-Aktivierung führen, wodurch Adenosin-Rezeptoren auch ein therapeutisches Target für parasitäre Infektionen und Wundheilung darstellen könnten.⁷⁸

Adenosin-A₃-Rezeptoren werden ubiquitär z. B. auf Immunzellen, im Gehirn, im Herzen, in der Lunge, in der Niere und in Ratten-Testes exprimiert.^{36, 79} Adenosin-A₃-Rezeptor-Agonisten werden als Therapeutika für Autoimmunerkrankungen wie der Rheumatoiden Arthritis und Psoriasis untersucht und könnten darüber hinaus aufgrund ihrer kardioprotektiven Effekte von Bedeutung sein.⁵⁶ Adenosin-A₃-Rezeptor-Antagonisten werden für die Behandlung von Glaukom, Krebs, Schlaganfällen und Entzündungsprozessen diskutiert. Bis heute konnte jedoch kein A₃-Rezeptor-Antagonist in humanen Studien evaluiert werden.⁵⁶ Tab. 1-2 gibt eine Zusammenfassung über die Expressionsprofile der Adenosinrezeptor-Subtypen sowie über mögliche Indikationen von Agonisten und Antagonisten.

Rezeptor-Subtyp	Expressionsprofil (Mensch)	Mögliche Indikationen für (partial) Agonisten	Mögliche Indikationen für Antagonisten
A ₁	Gehirn Rückenmark Auge Nebennieren Herz	Tachykardien Herzflimmern Angina pectoris Typ II-Diabetes neuropathischer Schmerz	Herzinsuffizienz Nierenfunktionsstörungen
A _{2A}	Gehirn Milz Thymus Herz auf Leukozyten auf Thrombozyten	Diagnostik der Herzdurchblutung COPD Entzündungen	Morbus Parkinson Alzheimer Restless-Legs-Syndrom Depressionen Sucht
A ₃	auf Immunzellen Gehirn Herz Lunge Niere	Rheumatoide Arthritis Psoriasis	Glaukom Krebs Schlaganfälle kardiale Ischämie
A _{2B}	Gastrointestinaltrakt Harnblase Lunge Herz auf Immunzellen	Arteriosklerose	Asthma Diabetes Entzündungen

Tab. 1-2: Expressionsprofile der Adenosinrezeptor-Subtypen und mögliche Indikationen von Agonisten und Antagonisten.^{36, 56, 67, 79}

1.4 Homo-, Heterodimerisierung und Oligomerisierung von G-Protein-gekoppelten Rezeptoren

Ein weiteres Forschungsgebiet zu G-Protein-gekoppelten Rezeptoren, welches in den letzten Jahren in den Fokus der Aufmerksamkeit gerückt ist, stellt die Möglichkeit der Rezeptoren, Homo- und Heterodimere sowie Oligomere auszubilden, dar. Durch die Verwendung von biochemischen Methoden wie z. B. der Koimmunpräzipitation, der Analyse von Rezeptormutanten und Chimären und durch den Einsatz von biophysikalischen Methoden wie z. B. dem Fluoreszenz-Resonanz-Energie-Transfer (FRET), dem Biolumineszenz-Resonanz-Energie-Transfer (BRET), der Bimolekularen-Fluoreszenzkomplementation (BiFC), der konfokalen Mikroskopie sowie der Röntgenstrukturanalyse konnten in den letzten Jahren eine Reihe von dimeren und oligomeren Komplexen sowohl in nativen als auch in künstlich hergestellten Zellsystemen identifiziert werden.⁸⁰

Somit wurden klare Definitionen und Standardisierungen in den Bezeichnungen dieser Protein-Protein-Interaktionen notwendig. Eine mögliche Nomenklatur für Rezeptorkomplexe wurde von Ferré et al. vorgeschlagen.⁸¹ Bei einem "heteromeren" Rezeptor handelt es sich demnach um einen dimeren oder oligomeren Rezeptor, bei welchem die minimale Funktionseinheit aus zwei oder mehreren verschiedenen Untereinheiten aufgebaut ist, die einzeln nicht funktionsfähig sind (z. B. Ligand-gesteuerte-Ionenkanäle). Ein "homomerer" Rezeptor besteht dementsprechend aus zwei oder mehreren gleichen Untereinheiten, die einzeln nicht funktionsfähig sind. Ein "Rezeptor-Heteromer" besteht aus mindestens zwei unterschiedlichen, aber einzeln funktionellen Rezeptoren, wohingegen ein "Rezeptor-Homomer" aus zwei oder mehreren gleichen funktionellen Rezeptoren besteht. Weiterhin wird ein alphanumerisches Ordnungssystem für GPCR-Heterodimere vorgeschlagen, in welchem als erstes der Name der beiden (oder von mehreren) Rezeptoren in einem Heteromer genannt wird, separiert durch einen Bindestrich in alphabetischer und numerischer Ordnung (z. B. A_{2A}-CB₁-D₂ Rezeptor-Heteromer). Allgemein gilt, dass wenn Rezeptor-Heteromere in transfizierten Zellen nachgewiesen werden, diese generell auch in nativen Geweben vorkommen können, vorausgesetzt die beiden Rezeptoren werden in der gleichen Zelle und im gleichen zellulären Kompartiment exprimiert.⁸¹ Weitere Informationen zu publizierten Rezeptor-Homomeren und -Heteromeren können seit 2010 in einer Online-Datenbank "The G-Protein-Coupled Receptor-Oligomerization Knowledge Base Project" erhalten werden (http://www.gpcr-okb.org).⁸²

Die Rezeptor-Homodimerisierung und -Heterodimerisierung beeinflusst allgemein die Rezeptorregulation, die Ligandbindung, die Rezeptoraktivierung und die Signaltransduktion,

wodurch die Rezeptor-Di- bzw. -Oligomere interessante Targets für die Entwicklung von Pharmaka darstellen könnten.⁸³ Im Folgenden wird auf die einzelnen Punkte näher eingegangen.

Ein Forschungsgebiet zu Rezeptor-Homodimeren bzw. -Heterodimeren stellt die Frage nach der Biogenese der Rezeptorkomplexe dar. So scheint es sowohl Rezeptor- als auch Gewebeund Zell-spezifisch zu sein, ob sich die Protein-Protein-Interaktionen schon im Endoplasmatischen Retikulum (ER) und im Golgi-Apparat ausbilden, oder ob erst eine Stimulierung mit einem spezifischen Agonisten oder Antagonisten notwendig ist, um Rezeptorkomplexe in der Plasmamembran zu bilden. Mandrika et al. konnten mit Hilfe von BRET zeigen, dass die kürzlich deorphanisierten Niacin-Rezeptoren NIACR1 (GPR109A) und NIACR2 (GPR109B) sowohl als Homo- als auch als Heterodimere existieren und funktionieren können.⁸⁴ Die Aktivierung der Rezeptoren mit selektiven Agonisten hatte keinen Einfluss auf das Ausmaß der Bildung von Homo- und Heterodimeren, woraus sich schließen lässt, dass die Dimerisierung von NIACR1 und NIACR2 nicht durch Liganden induziert wurde. Vielmehr wurden die Dimere in der Plasmamembran und auch schon in der Endoplasmatischen Retikulum-Fraktion gefunden, welche mit Hilfe eines diskontinuierlichen Sucrose-Gradienten erhalten werden konnte. Dies unterstützt die Hypothese, dass die Rezeptor-Dimerisierung konstitutiv und früh während der Biosynthese erfolgt.⁸⁴

Des Weiteren scheint der Transport von Rezeptorheterodimeren zur Plasmamembran durch Chaperone unterstützt zu werden. So "beschützt" das Golgi-Chaperon RTP4 den μ - δ -Opioid-Rezeptor-Komplex vor einer Ubiquitinierung und einem darauf folgenden Abbau im Proteasom, was zu einem Anstieg von Rezeptorheteromeren in der Plasmamembran führt.⁸⁵

Grundsätzlich muss bei der möglichen Ausbildung der Heterodimere im ER und Golgi-Apparat davon ausgegangen werden, dass die Interaktion statisch ist und somit eine sehr hohe Affinität der Protomere zueinander benötigt. Diese wird z. B. durch die Ausbildung von kovalenten Disulfidbindungen erreicht, welche z. B. in der Klasse C der GPCRs gefunden werden können.⁸³ Darüber hinaus gibt es aber auch Hinweise in der Literatur, dass transiente und dynamische Rezeptorinteraktionen existieren,⁸⁶⁻⁸⁷ welche sich somit erst spät nach der Biogenese ausbilden können. Verfolgt man den Weg des Proteintransports weiter, so stellt sich auch die Frage nach der Internalisierung von Rezeptor-Homodimeren und -Heterodimeren. Erste experimentelle Ansätze für die Untersuchung der Internalisierung von Dimeren wurden an β_2 -adrenergen Rezeptoren durchgeführt.⁸⁸ So konnte gezeigt werden, dass

15

die Besetzung durch einen Agonisten eines Rezeptors (Protomer) im Rezeptordimer ausreichend ist, um eine Internalisierung des gesamten β_2 -Dimers zu induzieren.⁸⁸

Die Bindung eines spezifischen Liganden an ein Rezeptorprotein im Rezeptordimer führt dabei in der Regel zu einer allosterischen Modulation der Ligand-Bindung an dem zweiten Rezeptorprotein im Rezeptordimer. So besitzt jedes Protomer in einem Dimer sowohl eine orthosterische als auch eine allosterische Bindungsstelle und die Bindung eines Liganden an die orthosterische Bindungsstelle an dem ersten Rezeptor kann einen allosterischen Effekt (positive oder negative Kooperativität) an der orthosterischen Bindungsstelle an dem zweiten Rezeptor hervorrufen. Des Weiteren kann auch durch die Bindung eines allosterischen Liganden an die orthosterische Bindungsstelle am zweiten Rezeptor die Bindung des Liganden an die orthosterische oder allosterische Bindungsstelle am zweiten Rezeptor positiv oder negativ moduliert werden.⁸⁹ Eine Übersicht über mögliche allosterische Modulationen an einem Rezeptordimer gibt Abb. 1-5.

Abb. 1-5: Die Bindung eines orthosterischen Liganden an den ersten Rezeptor (R1) im Rezeptordimer resultiert in einer allosterischen Modulation (positive oder negative Kooperativität) für die Ligandbindung am zweiten Rezeptor (R2) (a). Auch die Bindung eines allosterischen Liganden an den ersten Rezeptor (R1) im Rezeptordimer resultiert in einer allosterischen Modulation (positive oder negative Kooperativität) für die Ligandbindung am zweiten Rezeptor (R2) (b).⁸⁹

Casado et al. konnten 2010 zeigen, dass A_1 - A_{2A} -Heterodimere in Caudate-Nucleus-Membranen aus menschlichem Gehirn eine Kopplung zu G_i-Proteinen aufweisen.⁹⁰ Die Bindung von A₁-Agonisten wurde durch die Bindung von A_{2A}-Agonisten negativ moduliert, da die Besetzung der A_{2A}-Rezeptoren zu einer Verringerung der Affinität für A₁-Agonisten führte.⁹⁰ Daraus folgt, dass z. B. bei einer niedrigen Adenosinkonzentration nur der A₁-Rezeptor und damit G_i-Proteine aktiviert werden, während bei einer hohen Adenosinkonzentration beide Rezeptoren besetzt sind und es somit zu einer A_{2A}-vermittelten Hemmung der G_i-Protein-Aktivität kommt. Des Weiteren konnte festgestellt werden, dass der A_{2A}-Rezeptor-Agonist CGS21680 in hohen Konzentrationen signifikant an den A₁-Rezeptor binden konnte und dort als Partial-Agonist wirksam ist.⁹⁰ Dieser Regulierungsmechanismus des A₁-A_{2A}-Heterodimers stellt einen "biologischen Fingerprint" dar und wurde auf die Glutamat-Freisetzung in striatalen Neuronen bezogen (Abb. 1-6).⁹¹⁻⁹²

Abb. 1-6: A_1 - A_{2A} -Rezeptorheterodimer. Bei niedrigen Adenosinkonzentrationen im Striatum wird nur der Adenosin- A_1 -Rezeptor aktiviert und somit wird die Glutamatfreisetzung inhibiert (links). Bei hohen Adenosinkonzentrationen wird auch der A_{2A} -Rezeptor aktiviert, was zu einer negativen Modulation des A_1 -Rezeptors im Rezeptorheterodimer führt und damit zu einer Glutamatfreisetzung (rechts).⁹¹⁻⁹²

Ein weiteres Beispiel für eine allosterische Modulation ist die antagonistische A_{2A} - D_2 -Rezeptorinteraktion. So führt die Aktivierung des A_{2A} -Rezeptors zu einer reduzierten Affinität von D_2 -Rezeptor-Agonisten wie Dopamin. Ein neuartiger Therapieansatz, um mögliche Nebenwirkungen bei der Langzeitbehandlung von Morbus Parkinson zu reduzieren, könnte daher die simultane Gabe von A_{2A} -Antagonisten in Kombination mit D_2 -Rezeptor-Agonisten sein.⁹³ Nicht nur spezifische Liganden sind in der Lage, ein Rezeptordimer zu modulieren, sondern auch der Einsatz von Heterodimer-spezifischen Antikörpern könnte in Zukunft einen neuen Ansatz darstellen, um die GPCR-Dimer-Pharmakologie zu charakterisieren.⁹⁴

Des Weiteren können Rezeptor-Homodimere/Heterodimere im Vergleich zu den Rezeptormonomeren teilweise unterschiedliche Signaltransduktionswege aktivieren. Han et al. entwickelten 2009 einen funktionellen Komplementationsassay, mit welchem die genauen Komponenten der "Signalling-Einheit" von D₂-Homodimeren bestimmt werden konnten.⁹⁵ Die minimale "Signalling-Einheit" bestand demnach aus zwei Rezeptoren und einem einzigen G-Protein, welches durch die Bindung des Agonisten Quinpirole an einem Protomer maximal aktiviert werden konnte. Die Bindung eines inversen Agonisten an das zweite Protomer die Funktionalität, während die Bindung eines Agonisten an das zweite Protomer die Funktionalität hemmte. Daraus folgt, dass die Dimerfunktionalität anscheinend auch durch den Aktivitätszustand des zweiten Protomers beeinflusst werden kann.⁹⁵

Darüber hinaus führt die Aktivierung von einzeln exprimierten D₁- und D₂-Rezeptoren durch den Agonisten SKF 83959 zu einer für die einzelnen Rezeptoren beschriebenen G_s- bzw. G_i-Protein-Kopplung, während bei einer Koexpression das D₁-D₂-Rezeptorheterodimer durch eine Aktivierung des Agonisten zu einer Ga-Protein-Kopplung führt. Zusätzlich ist die im Gehirn durch Dopamin induzierte Signaltransduktion auch hauptsächlich über G_q-Proteine vermittelt, was auf eine D₁-D₂-Rezeptorheterodimerisierung in-vivo schließen lassen könnte. $^{96\text{-}97}$ Auch zwischen $\mu\text{-}Opioid\text{-}$ und $\delta\text{-}Opioid\text{-}Rezeptoren konnten Heterodimere und$ Oligomere identifiziert werden, welche völlig neue funktionelle Eigenschaften und Ligand-Affinitäten aufwiesen im Vergleich zu den einzelnen μ - oder δ -Opioid Rezeptoren.⁹⁸ So konnte in einer weiteren Studie gezeigt werden, dass µ-Opioid-Rezeptoren hauptsächlich als Dimere vorliegen, die mit δ-Opioid-Rezeptoren zu Tetrameren oligomerisieren können. Eine längere Behandlung mit dem µ-Opioid-Rezeptor-Agonisten Morphin resultierte dabei in einer Dissoziation der Tetramere.⁹⁹ Darüber hinaus konnten kürzlich auch Röntgenkristallstrukturen von Rezeptordimeren (µ-Opioid-Rezeptor-Dimer und CXCR4-Rezeptor-Dimer) publiziert werden,^{22, 28} welche strukturellen Einblick in die Dimer-Interaktionsflächen und die Ligandbindungstasche geben können. Diese werden in Kapitel 6.1.2 ausführlicher beschrieben.

1.4.1 Adenosin-Rezeptor-Homodimere

1.4.1.1 A₁-A₁-Homodimere

Bis heute sind eine Vielzahl von Dimeren und Oligomeren von GPCRs beschrieben worden. So existieren viele Heterodimere, Homodimere und Oligomere insbesondere auch innerhalb der Familie der Adenosinrezeptoren. Ciruela et al. konnten 1995 erstmals Hinweise auf eine Adenosin-A₁-Homodimerisierung im Schweine-Cortex erhalten.¹⁰⁰ So konnte mit verschiedenen Antikörpern im Western Blot sowohl eine 39 kDa große Proteinbande, welche der Größe des Adenosin-A₁-Rezeptors entspricht, als auch eine 74 kDa große Proteinbande detektiert werden. Diese Bande konnte durch die vorherige Behandlung mit A1-Agonisten oder Antagonisten in die 39 kDa Bande überführt werden, was den Schluss nahelegte, dass es sich um ein A₁-Homodimer handelte.¹⁰⁰ Nachfolgend konnten A₁-Rezeptor-Homodimere transfizierten CHO-K1-Zellen mit Hilfe der auch in Bimolekularen-Fluoreszenzkomplementation (BiFC) identifiziert werden.¹⁰¹ Suzuki et al. konnten anschließend mit Immunpräzipitationen und BRET die A1-Rezeptor-Homodimer-Interaktionsfläche näher charakterisieren.¹⁰² Dabei schienen die Transmembrandomänen 4 und 5 nicht von Bedeutung für eine A1-Rezeptor-Homodimerisierung zu sein. Jedoch konnte dabei die konservierte Aminosäure Trp132 in TM 4 als wichtig für die Bindung von Agonisten am A₁-Rezeptor identifiziert werden.¹⁰²

1.4.1.2 A_{2A}-A_{2A}-Homodimere

A_{2A}-Rezeptor-Homodimere wurden mit den verschiedensten Methoden wie FRET, BRET, BiFC, FRET kombiniert mit BiFC und BRET kombiniert mit BiFC nachgewiesen^{101, 103-106} und sind somit das am besten untersuchte Adenosin-Rezeptor-Homodimer. 2011 konnten Gracia et al. eine Interaktion des Adenosin-A_{2A}-Rezeptor-Homodimers mit dem Enzym ADA nachweisen.¹⁰⁷ So konnte in Anwesenheit von ADA ein signifikanter Anstieg des BRET-Signals gemessen werden, was den Schluss nahe legte, dass ADA Konformationsänderungen im A_{2A}-Rezeptor-Homodimer induziert, welche in einem reduzierten Abstand der beiden Fluorophore Rluc und YFP zueinander am C-Terminus resultierten. Weiterhin konnte ADA als positiver allosterischer Modulator identifiziert werden, da es sowohl die Ligand-Affinität als auch die Rezeptorfunktion steigern konnte.¹⁰⁷ In weiteren Studien wurde die A_{2A}-Dimer-Interaktionsfläche näher charakterisiert, und in verschiedenen theoretischen Dimermodellen sind Helix 1 und auch konservierte Aminosäuren in Helix 1, 2, 6 und 7 von Bedeutung.¹⁰⁸

1.4.1.3 A₃-A₃-Homodimere

Mit Hilfe eines theoretischen Computermodells wurde 2006 die Existenz eines mögliches A₃-Rezeptor-Homodimer postuliert, in welchem hauptsächlich die Transmembrandomänen 4 und 5 an der Dimerinteraktionsfläche beteiligt sein sollen.¹⁰⁹ Kürzlich konnten A₃-Rezeptor-Homodimere in transfizierten CHO-K1-Zellen mit Hilfe von BiFC identifiziert werden.¹¹⁰ Zusätzlich konnte an A₃-Rezeptor-Homodimeren in Anwesenheit von kompetitiven Antagonisten und Agonisten eine gesteigerte Dissoziation des fluoreszierenden Agonisten ABA-X-BY630 gemessen werden, was auf allosterische Interaktionen zwischen den einzelnen Protomeren im Rezeptordimer hinweisen könnte.¹¹⁰

1.4.1.4 A_{2B}-A_{2B}-Homodimere

Ein Adenosin-A_{2B}-Rezeptor-Homodimer ist bislang nicht publiziert worden.

1.4.2 Adenosin-Rezeptor-Heterodimere/Oligomere

1.4.2.1 A₁-A_{2A}-Heterodimer

Ciruela et al. konnten 2006 erstmals eine Heterodimerisierung von A₁- und A_{2A}-Rezeptoren in kotransfizierten HEK-293-Zellen mit Hilfe von BRET, TR-FRET ("time resolved"-FRET) und Koimmunpräzipitations-Experimenten nachweisen.¹¹¹ Die Hauptcharakteristik des A₁-A_{2A}-Heterodimers scheint dabei, wie in Kapitel 1.4 beschrieben, darin zu liegen, dass die Aktivierung des A_{2A}-Rezeptors zu einer Reduzierung der Affinität von A₁-Agonisten führt.¹¹¹ Darüber hinaus konnten Briddon et al. 2008 die Existenz des A₁-A_{2A}-Rezeptor-Heterodimers zusätzlich mit BiFC-Experimenten in kotransfizierten CHO-Zellen bestätigen.¹⁰¹

1.4.2.2 A_{2A}-A_{2B}-Heterodimer

Hinweise auf die Existenz eines möglichen A_{2A} - A_{2B} -Rezeptor-Heterodimers konnten erstmals von Moriyama et al. 2010 gefunden werden.¹¹² So konnte mit Hilfe von Koimmunpräzipitationen in kotransfizierten HEK-293-AD-Zellen eine Proteininteraktion zwischen A_{2A} - und A_{2B} -Rezeptoren festgestellt werden. Des Weiteren wurden Rezeptorchimären generiert, welche zusätzlich auf eine Heterodimerisierung hindeuten.¹¹² Auf diese Experimente wird in Kapitel 4.1 näher eingegangen.

1.4.2.3 A_{2A}-D₂-Heterodimer

Die Protein-Protein-Interaktion zwischen dem A2A- und dem D2-Rezeptor ist das beste bisher untersuchte Adenosin-Rezeptor-Heterodimer.⁵² Erste Hinweise auf eine antagonistische A_{2A}-D₂-Rezeptor-Interaktion konnten Ferré et al. 1991 finden.¹¹³ So konnte an striatalen Membranpräparationen gezeigt werden, dass der A2A-Agonist CGS21680 die Affinität für Dopamin-Agonisten an der hochaffinen Bindungsstelle reduzieren konnte.¹¹³ Später konnten Hillion et al. mit Hilfe Koimmunpräzipitationsexperimenten sowohl von an Membranpräparationen von mit dem D₂-Rezeptor stabil transfizierten humanen SH-SY5Y-Neuroblastoma-Zellen als auch in kotransfizierten (D2-Rezeptor stabil transfiziert, A2A-Rezeptor transient transfiziert) Maus-Fibroblasten-Zellen eine Interaktion des A2A-Rezeptors

mit dem D₂-Rezeptor nachweisen.¹¹⁴ Weiterhin wurden sowohl BRET- und FRET-Experimente an kotransfizierten HEK-293-Zellen¹¹⁵⁻¹¹⁶ als auch BiFC-Experimente an kotransfizierten neuronalen CAD-Zellen durchgeführt,¹⁰⁵ die das Vorhandensein von A_{2A}-D₂-Rezeptorheterodimeren zusätzlich bestätigen. Darüber hinaus scheint der C-Terminus des A_{2A}-Rezeptors mit an der Interaktion mit dem D₂-Rezeptor beteiligt zu sein.¹⁰³ Zusätzlich konnte mit SRET-Experimenten eine Interaktion des Calcium-bindenden Proteins Calmodulin mit dem A_{2A}-D₂-Rezeptor-Heterodimer aufgezeigt werden, welches bevorzugt an den C-Terminus des A_{2A}-Rezeptors zu binden scheint.¹¹⁷ Die Aktivierung des A_{2A}-Rezeptors in dem Komplex führte dabei zu einer abgeschwächten MAP-Kinase-Aktivität, während die Aktivierung des D₂-Rezeptors im Oligomer zu einer gesteigerten MAP-Kinase-Aktivität führte. Die Koaktivierung beider Rezeptoren in dem Komplex führte zu einer Abschwächung des MAP-Kinase-Signals, was durch die antagonistische A_{2A}-D₂-Rezeptor-Interaktion erklärt werden könnte.¹¹⁸ Die simultane Gabe von A_{2A}-Rezeptor-Antagonisten in Kombination mit L-DOPA könnte daher möglicherweise die Behandlung von Morbus-Parkinson effektiver machen.⁹³

1.4.2.4 A₁-D₁-Heterodimer

Erste Hinweise auf eine mögliche Interaktion des A₁-Rezeptors mit dem D₁-Rezeptor konnten Ferré et al. 1998 in kotransfizierten Maus-Fibroblasten-Zellen finden.¹¹⁹ So konnten der A₁-Agonist CPA die Menge der im hochaffinen Zustand befindlichen D₁-Rezeptoren reduzieren. Weiterhin konnte auch die durch Dopamin induzierte cAMP-Akkumulation durch den A₁-Agonisten gehemmt werden. Die Blockade des A₁-Rezeptors mit dem Antagonisten DPCPX oder die Behandlung mit PTX (Pertussis Toxin) führte sowohl zu einem Anstieg der durch Dopamin induzierten cAMP-Akkumulation als auch zu einem Anstieg des basalen cAMP-Signals. Diese Ergebnisse lassen darauf schließen, dass der A1-Rezeptor den D1-Rezeptor in Bezug auf seine Funktionalität antagonistisch modulieren kann.¹¹⁹ Später konnten Gines et al. die Interaktion A₁-Rezeptors D₁-Rezeptor des mit dem durch Koimmunpräzipitationsexperimente in kotransfizierten Maus-Fibroblasten-Zellen und durch Kolokalisationsexperimente sowohl in kotransfizierten Maus-Fibroblasten-Zellen als auch in cortikalen Neuronen bestätigen.¹²⁰ Diese Heterodimerisierung konnte dabei durch die Vorbehandlung mit einem D₁-Rezeptor-Agonisten aufgelöst werden, jedoch nicht durch die Vorbehandlung mit einer Kombination eines A₁-Rezeptor-Agonisten mit einem D₁-Rezeptor-Agonisten.¹²⁰
1.4.2.5 A_{2A}-D₃-Heterodimer

Eine Heterodimerisierung zwischen dem A_{2A} - und dem D_3 -Rezeptor konnte 2005 von Torvinen et al. mit Kolokalisations- und FRET-Experimenten an kotransfizierten HeLa-Zellen nachgewiesen werden.¹²¹ In Radioligand-Rezeptor-Bindungsstudien an kotransfizierten CHO-Zellen konnte gezeigt werden, dass der A_{2A} -Agonist CGS21680 die Affinität von [³H]Dopamin für die hochaffine Bindungsstelle am D_3 -Rezeptor reduzieren konnte. Darüber hinaus konnte CGS21680 auch die durch die Aktivierung des D_3 -Rezeptors induzierte Hemmung des cAMP-Signals inhibieren. Es lässt sich somit schlussfolgern, dass im A_{2A} - D_3 -Rezeptor-Heterodimer die Aktivierung des A_{2A} -Rezeptors zu einer Affinitätsverringerung der D_3 -Rezeptor-Agonisten und auch zu einer reduzierten D_3 -Rezeptor-Signaltransduktion führt.¹²¹

1.4.2.6 A_1 -mGlu_{1 α}-Heterodimer

Ciruela et al. konnten 2001 eine Heterodimerisierung zwischen dem Adenosin-A₁-Rezeptor und dem mGlu_{1 α}-Rezeptor aufzeigen.¹²² So konnte sowohl mit Kolokalisationsexperimenten als auch mit Koimmunpräzipitationsexperimenten in kotransfizierten HEK-293-Zellen und in Neuronen vom Ratten-Cerebellum eine Proteininteraktion zwischen den A₁- und den mGlu_{1 α}-Rezeptoren aufgezeigt werden. Des Weiteren führte in doppelt-transfizierten HEK-293-Zellen die Vorinkubation mit dem mGlu_{1 α}-Rezeptor-Agonisten Quisqualische-Säure zu einem potenzierten Calcium-Signal nach Aktivierung des A₁-Rezeptors. Umgekehrt führte auch die Vorinkubation der kotransfizierten Zellen mit dem A₁-Rezeptor-Agonisten *R*-PIA zu einem markanten Anstieg des durch die Quisqualische-Säure induzierten Calcium-Signals. Diese Ergebnisse lassen auf eine heterologe Sensibilisierung oder auf einen synergistischen Effekt nach einer mGlu_{1 α}- und A₁-Rezeptor-Aktivierung schließen.¹²²

1.4.2.7 A₁-P2Y₁-Heterodimer

2001 beschrieben Yoshioka et al. eine Heterodimerisierung zwischen dem Adenosin-A₁-Rezeptor und dem P2Y₁-Rezeptor.¹²³ So konnte mit Hilfe von Koimmunpräzipitationen in kotransfizierten HEK-293-Zellen eine Proteininteraktion zwischen A₁- und P2Y₁-Rezeptoren bestätigt werden, während zwischen A₁- und D₂-Rezeptoren keine Interaktion gefunden werden konnte. Zusätzlich wurde eine Kolokalisation von HA-A₁-Rezeptoren und Myc-P2Y₁-Rezeptoren mit Hilfe eines konfokalen Fluoreszenzmikroskops beobachtet. Des Weiteren führte die Bildung des Heterodimers zu einem signifikanten Affinitätsverlust von Agonisten und Antagonisten für den Adenosin-A₁-Rezeptor, während die Affinität des potenten P2Y₁-Rezeptor-Agonisten ADPβS 400-fach erhöht war. Auch konnte der P2Y₁-Rezeptor-Agonist konzentrationsabhängig eine Hemmung des durch Forskolin induzierten cAMP-Signals hervorrufen. Dieser Effekt konnte sowohl durch einen A₁-Rezeptor-Antagonisten als auch durch PTX (Pertussis Toxin) aufgehoben werden, jedoch nicht durch einen P2Y₁-Rezeptor-Antagonisten. Im Gegensatz dazu war die durch den P2Y₁-Rezeptor-Agonist induzierte Aktivierung der Phospholipase C im Heterodimer nicht beeinflusst.¹²³ Die A₁-P2Y₁-Rezeptor-Heterodimerisierung konnte nachfolgend auch im Ratten-Cortex, Hippocampus, Cerebellum und in Primärkulturen von kortikalen Neuronen bestätigt werden.¹²⁴

1.4.2.8 A₁-P2Y₂-Heterodimer

2006 konnten Suzuki et al. ein A₁-P2Y₂-Rezeptor-Heterodimer in transfizierten HEK-293-Zellen mit Koimmunpräzipitationsexperimenten nachweisen.¹²⁵ In kotransfizierten HEK-293-Zellen konnte die Bindung der A₁-Rezeptor-Agonisten [³H]NECA und [³H]CCPA signifikant durch die P2Y₂-Rezeptor-Agonisten ATP und UTP gehemmt werden. Auch konnte in kotransfizierten HEK-293-Zellen die durch CPA induzierte Hemmung der cAMP-Produktion durch UTP aufgehoben werden. Zusätzlich konnte in Calcium-Experimenten an kotransfizierten HEK-293-Zellen die simultane Gabe von NECA und UTP einen höheren Calcium-Anstieg induzieren als die einzelnen Agonisten. Diese Ergebnisse lassen schlussfolgern, dass durch die Heterodimerisierung ein neuer struktureller Proteinkomplex gebildet wird, bei welchem durch die simultane Aktivierung der beiden Rezeptoren die G₁-Protein-Kopplung gehemmt und die G_q-Protein-Kopplung gesteigert wird.¹²⁵ Darüber hinaus konnte die A₁-P2Y₂-Rezeptor-Heterodimerisierung mit Hilfe der Immunogold-Elektronen-Mikroskopie in den Neuronen des Ratten-Cortex, des Cerebellums und auch in den cerebellaren Purkinje-Zellen nachgewiesen werden.¹²⁶

1.4.2.9 A_{2A}-CB₁-Heterodimer

2007 konnten Carriba et al. ein A_{2A} -CB₁-Rezeptor-Heterodimer sowohl in transfizierten HEK-293-Zellen mit Hilfe von BRET als auch im Ratten-Striatum mit Kolokalisationsexperimenten und Koimmunpräzipitationen nachweisen.¹²⁷ In der humanen Neuroblastoma-Zelllinie SH-SY-S5Y konnte zusätzlich mit funktionellen cAMP-Experimenten gezeigt werden, dass eine Koaktivierung des A_{2A} -Rezeptors für ein CB₁-Rezeptor-"Signalling" notwendig erscheint.¹²⁷

1.4.2.10 A_{2A}-D₂-CB₁-Oligomer

In transfizierten HEK-293-Zellen konnte erstmals auch ein oligomerer Rezeptorkomplex aus den A_{2A} -, D_2 -, und CB₁-Rezeptoren mit Hilfe einer sequentiellen BRET-FRET (SRET)-

23

Methode identifiziert werden.¹²⁸ Navarro et al. konnten nachfolgend das A_{2A}-D₂-CB₁-Rezeptor-Oligomer in transfizierten HEK-293-Zellen mit kombinierten BRET-BiFC-Experimenten bestätigen.¹²⁹

1.4.2.11 A2A-mGlu5-Heterodimer, A2A-D2-mGlu5-Oligomer

Cabello et al. konnten 2009 mit Hilfe von BiFC erstmals ein A_{2A} -mGlu₅-Rezeptor-Heterodimer in transfizierten HEK-293-Zellen identifizieren sowie zusätzlich mit kombinierten BRET-BiFC-Experimenten und sequentiellen BRET-FRET (SRET)-Experimenten ein Rezeptoroligomer aus dem A_{2A} -, dem D_2 - und dem mGlu₅-Rezeptor.¹³⁰ Weiterhin konnte mit einer hochauflösenden Immunoelektronen-Mikroskopie eine Kolokalisation der Rezeptoren in der extrasynaptischen Plasmamembran einer striatalen Synapse beobachtet werden. Darüber hinaus konnte auch mit Koimmunpräzipitations-Experimenten in Ratten-Striatum-Homogenaten die Existenz der Proteininteraktionen zwischen den A_{2A} -, D_2 - und den mGlu₅-Rezeptoren bestätigt werden.¹³⁰

1.5 Ziele der Arbeit

Adenosinrezeptoren und insbesondere A_{2A} - und A_{2B} -Rezeptoren gelten als interessante Zielstrukturen in der Therapie von entzündlichen, neurodegenerativen und kardiovaskulären Erkrankungen. Daher ist die Suche nach neuen potenten und selektiven Liganden als Pharmaka für diese Subtypen von großer Bedeutung. Radioligand-Rezeptor-Bindungsstudien sowie funktionelle Experimente sind daher wichtig, um neue Leitstrukturen für potentielle Rezeptor-Agonisten- und Antagonisten zu identifizieren. Darüber hinaus können GPCRs sowohl Homodimere als auch Heterodimere bzw. oligomere Strukturen ausbilden, welche völlig neue pharmakologische Eigenschaften im Vergleich zu den monomeren Rezeptoren aufweisen können, und die somit die Diversität der intrazellulären Signaltransduktionswege erhöhen. Die Entwicklung neuer Rezeptordimer-spezifischer Liganden und auch die genaue Charakterisierung dieser Komplexe insbesondere in nativen Geweben und Zellen sind in den letzten Jahren mit in den Mittelpunkt der GPCR-Forschung gerückt.

Im Rahmen dieser Arbeit sollte zunächst ein Radioligand-Rezeptor-Bindungsassay mit einem A_{2B} -Rezeptor-Agonist-Radioliganden entwickelt werden, welcher es erlaubt, die Affinität von A_{2B} -Rezeptor-Agonisten an der für Agonisten hochaffinen, aktiven Rezeptorkonformation zu bestimmen. Dabei sollte der unselektive aber relativ potente A_{2B} -Rezeptor-Agonist-Radioligand [³H]NECA zur Charakterisierung von rekombinanten Adenosin- A_{2B} -Rezeptoren unterschiedlicher Spezies zum Einsatz kommen.

Ein wichtiges Ziel war es außerdem, den einzigen bisher beschriebenen hochselektiven und hochaffinen A_{2B} -Rezeptor-Agonisten BAY60-6583 umfassend zu charakterisieren.

Da es in der Literatur Hinweise auf die Existenz eines möglichen A_{2B}-A_{2A}-Rezeptor-Heterodimers gab, sollte dieses mit entsprechenden Methoden identifiziert und charakterisiert werden. Zunächst sollten dafür doppelt-transfizierte stabile Zelllinien generiert werden, um deren pharmakologische Profile in Bezug auf Rezeptor-spezifische Agonisten und Antagonisten im Vergleich zu den einzeln transfizierten Zelllinien zu untersuchen. Die Charakterisierung der getesteten Verbindungen in den verschiedenen Zellsystemen sollte dabei sowohl über die Bestimmung der Affinität in Bindungsstudien als auch mit Hilfe von funktionellen Experimenten erfolgen. Anschließend sollten Kolokalisationsexperimente an den mit dem A_{2A} - und A_{2B} -Rezeptor stabil transfizierten Zellen durchgeführt werden. Hierbei galt es, sowohl das fluoreszierende Protein ECFP als auch das fluoreszierende Protein EYFP jeweils an den C-Terminus der Rezeptoren anzubringen und mit Hilfe eines konfokalen Fluoreszenzmikroskops die Rezeptorexpression zu untersuchen.

Darüber hinaus sollten biophysikalische Methoden wie FRET- und BiFC-Experimente etabliert werden, um potentielle A_{2A} - A_{2B} -Rezeptor-Heterodimere in transient kotransfizierten CHO-K1-Zellen zu identifizieren. Um nachfolgend die Interaktionsfläche des A_{2A} - A_{2B} -Rezeptor-Heterodimers näher zu charakterisieren, sollte zusätzlich eine A_{2A} -Rezeptor-Mutante mit verkürztem C-Terminus in FRET-Experimenten untersucht werden.

Die genannten Teilprojekte dienen dem Ziel, neue Erkenntnisse zur komplexen Pharmakologie der A_{2A} - und A_{2B} -Rezeptoren, die große pathophysiologische Bedeutung (z. B. bei inflammatorischen Erkrankungen und Krebs) besitzen, zu erhalten. Dadurch wird die Suche nach neuen selektiven Adenosinrezeptor-Liganden als potentielle Pharmaka erleichtert.

2 Charakterisierung von humanen und Nagetier-Adenosin-A_{2B}-Rezeptoren mit [³H]NECA

2.1 Einleitung

2.1.1 Prinzip von Radioligand-Rezeptor-Bindungsstudien

Radioligand-Rezeptor-Bindungsstudien stellen eine wichtige Methode dar, um die direkte Interaktion zwischen Liganden und einem Rezeptorprotein zu charakterisieren. Als pharmakologische Werkzeuge werden dafür hoch potente, spezifische, radioaktiv markierte Agonisten oder Antagonisten eingesetzt. Meist werden tritiierte Verbindungen verwendet, welche den Vorteil bieten, dass die chemische Struktur des Radioliganden nicht verändert wird. Die theoretische Grundlage von Radioligand-Rezeptor-Bindungsstudien beruht auf dem Massenwirkungsgesetz. Dabei wird das Rezeptorprotein (R) mit einem hochaffinen, radioaktiv markierten Liganden (L^{*}) bis zum Erreichen eines Gleichgewichtzustandes zwischen Assoziation und Dissoziation inkubiert.¹³¹

$$k_{on}$$

 $[R] + [L^*] \rightleftharpoons [RL^*]$
 k_{off}

$$K_D = \frac{k_{off}}{k_{on}} = \frac{[R] \times [L^*]}{[RL^*]}$$

Gl. 2-1: Das Massenwirkungsgesetz und die Gleichgewichtsdissoziationskonstante K_D.¹³¹

Der K_D-Wert entspricht dabei der Radioligandkonzentration, bei welcher die Hälfte der Rezeptoren im Gleichgewicht besetzt ist.¹³² Diese Gleichgewichtsdissoziationskonstante (K_D) stellt ein Maß für die Affinität eines Radioliganden zum Rezeptorprotein dar. Je kleiner der K_D-Wert, desto größer ist die Affinität und desto mehr wird die Lage des Gleichgewichts zugunsten des Radioligand-Rezeptor-Komplexes verschoben. Da aus einer hohen Affinität auch eine langsame Dissoziation des Radioligand-Rezeptor-Komplexes resultiert, können freie Ligandmoleküle quantitativ durch Filtration von gebundenen abgetrennt werden.

Die Zahl der möglichen Bindungsstellen (B_{max}) hängt dabei von der Expression des Rezeptors in dem entsprechenden Gewebe bzw. von der eingesetzten Proteinmenge ab. Aus einem Sättigungsexperiment lässt sich sowohl die maximale Anzahl der Bindungsstellen (B_{max}) als auch der K_D -Wert bestimmen. Dabei ist die Menge der besetzten Rezeptoren (RL^*) abhängig von der Konzentration des eingesetzten Radioliganden (L^*).

$$[RL^*] = \frac{B_{max} \times [L^*]}{K_D + [L^*]}$$

Gl. 2-2: Sättigungsfunktion.¹³²

Aus den in den Sättigungsexperimenten erhaltenen B_{max} -Werten in cpm kann unter Einbeziehung der Zähleffizienz des Flüssigkeits-Szintillations-Counters, der spezifischen Aktivität des Radioliganden, dem Umrechnungsfaktor von cpm in Becquerel und der jeweils eingesetzten Proteinmenge die Anzahl der maximalen Bindungsstellen in fmol/mg Protein berechnet werden.

$$B_{max}\left[\frac{fmol}{mg}\right] = \frac{B_{max}[cpm] \times 100}{Effizienz \times 2,2 \times spezif. Aktivität \left[\frac{Ci}{mmol}\right] \times Protein [mg]}$$

Gl. 2-3: Umrechnung des B_{max}-Wertes von cpm in fmol/mg Protein.¹³²

Aus einem homologen Kompetitionsexperiment wird der B_{max} -Wert in cpm durch folgende Beziehung berechnet und kann dann für die Umrechnung in [fmol/mg] in (Gl. 2-3) eingesetzt werden:

$$B_{max}[cpm] = \frac{spez.Bdg.[cpm] \times IC_{50} [nM]}{Konz.Radioligand [nM]}$$

Gl. 2-4: Berechnung des B_{max} -Wertes in cpm aus einem homologen Kompetitionsexperiment.

Die Gesamtbindung des Radioliganden setzt sich aus der spezifischen und der unspezifischen Bindung zusammen. Zur Bestimmung der unspezifischen Bindung wird eine unmarkierte zum Rezeptorprotein affine Verbindung im Überschuss (1000 x K_D) eingesetzt, sodass alle Rezeptoren besetzt werden und der Radioligand somit nur noch unspezifisch binden kann.¹³¹ Die spezifische Bindung lässt sich dann aus der Differenz zwischen Gesamtbindung und

29

unspezifischer Bindung berechnen. Generell nimmt die spezifische Bindung linear mit der eingesetzten Proteinmenge bzw. Rezeptormenge zu. Die Inkubationsdauer der Sättigungsexperimente wird so gewählt, dass im Gleichgewichtszustand gemessen wird. Die erforderliche Inkubationsdauer kann in Assoziationsexperimenten bestimmt werden, welche zeitabhängige Bindung Liganden die des an den Rezeptor charakterisieren. Dissoziationsexperimente spiegeln den zeitabhängigen Zerfall des Radioligand-Rezeptor-Komplexes wieder. Assoziations- und Dissoziationsexperimente verlaufen exponentiell, vorliegt.¹³³ Bindungsstelle Weiterhin solange nur eine lassen sich aus den Kinetikexperimenten Assoziations- und Dissoziationskonstanten berechnen (kon, koff) aus welchen anschließend ein kinetischer K_D -Wert bestimmt werden kann,¹³³ der im Konzentrationsbereich des Sättigungsexperimentes liegen sollte. Des Weiteren lässt sich auch K_D-Wert aus ein abgeschätzter homologen Kompetitionsexperimenten ermitteln $(K_D = IC_{50}-[Radioligand])$ ¹³⁴ Dabei wird als Inhibitor der entsprechende Kaltligand in unterschiedlichen Konzentrationen mit gleichen Konzentrationen des Radioliganden und dem Rezeptorprotein inkubiert. Die halbmaximale Hemmung des Radioliganden durch die Testsubstanz (IC₅₀) ist dann ein Maß für deren Potenz. Der IC₅₀-Wert ist jedoch abhängig sowohl von der eingesetzten Konzentration des Radioliganden, als auch von der Konzentration des Inhibitors.¹³³ Um vergleichbare Werte für die Affinität von potentiellen Liganden für einen Rezeptorsubtyp zu bekommen, wird deshalb die Gleichgewichtsdissoziationskonstante Ki des Inhibitors bestimmt. Diese ist Versuchsunabhängig und entspricht der Konzentration des Inhibitors, die 50 % der Bindung des Radioliganden an den Rezeptor verdrängt.¹³³ Je niedriger der K_i-Wert desto affiner ist die untersuchte Substanz zu dem Rezeptor. Folgende Gleichung wird verwendet, um den Ki-Wert aus experimentell bestimmten IC₅₀-Werten zu berechnen.¹³⁵

$$K_i = \frac{IC_{50}}{1 + \frac{[L]}{K_D}}$$

[L] = Konzentration des Radioliganden

K_D = Gleichgewichtsdissoziationskonstante des Radioliganden

 IC_{50} = Die Konzentration der Testsubstanz, die 50 % der Radioligandbindung inhibiert

2.1.2 Antagonisten und Agonisten für Adenosin-A_{2B}-Rezeptoren

Um potentiell neue selektive und affine Liganden für einen Rezeptorsubtyp zu identifizieren, sind pharmakologische Werkzeuge wie Radioliganden somit unverzichtbar. Für den Adenosin-A_{2B}-Rezeptor sind in den letzten Jahren eine Reihe von hoch potenten und selektiven Antagonisten beschrieben worden.^{46-47, 136-137} Insbesondere der von Borrmann et al. entwickelte und 2009 publizierte selektive A_{2B}-Antagonist-Radioligand [³H]PSB-603 (Abb. 2-1) zeigt mit einem K_i-Wert von 0,553 nM an humanen A_{2B}-Rezeptoren und mit einem K_D-Wert von 0,351 nM an Maus A_{2B}-Rezeptoren nicht nur eine sehr hohe, sondern auch eine Spezies-übergreifende Affinität.⁴⁵

Abb. 2-1: Struktur des hochaffinen A_{2B}-Rezeptor-Antagonisten 8-(4-(4-(4-Chlorphenyl)piperazin-1-sulfonyl)phenyl)-1-propylxanthin, PSB-603.

Die meisten entwickelten Adenosin- A_{2B} -Rezeptor-Agonisten leiten sich strukturell von dem endogenen Agonisten Adenosin (Abb. 2-2) ab. Substitutionen finden hauptsächlich an den N⁶- oder C2-Positionen des Purinheterocyclus und/oder an der 5'-Position der Ribose des Adenosins statt. Des Weiteren existieren auch Kombinationen dieser Substitutionen.¹³⁸

Abb. 2-2: Struktur des endogenen Adenosin-Rezeptor-Agonisten Adenosin.

Das 5'-substituierte Adenosin-Derivat N-Ethylcarboxamidoadenosin (NECA, Abb. 2-3) stellt einen relativ potenten wenn auch nicht selektiven A2B-Rezeptor-Agonisten mit Ki-Werten von ca. 500 nM (z. B. 489 nM⁴⁶ und 570 nM¹³⁷) an humanen A_{2B}-Rezeptoren dar. Diese Werte wurden in Bindungsstudien unter Verwendung von Antagonist-Radioliganden bestimmt, wodurch die Affinität vermutlich unterschätzt wird, da man die Affinität zwischen bestimmt.139 niedrigaffinen Rezeptorkonformationen Des Weiteren scheint eine N⁶-Substitution des NECAs relativ potente und selektive A_{2B}-Rezeptor-Agonisten hervorzubringen,¹⁴⁰ während Substitutionen in Position C2 des Adenosins wie z. B. bei dem 2-Halogen-substituierten Adenosin-Derivat 2-Chloradenosin (CADO, Abb. 2-3) die A2B-Affinität eher verringern.¹⁴¹

Abb. 2-3: Strukturen der unselektiven Adenosin-Rezeptor-Agonisten CADO und NECA.

Weitere potente und selektive A_{2B} -Rezeptor-Agonisten, welche sich strukturell nicht vom Adenosin ableiten lassen, stellen Pyridin-3,5-dicarbonitril-Derivate, insbesondere das BAY60-6583 (Abb. 2-4) dar, mit einem EC₅₀-Wert im nanomolaren Bereich an humanen

 A_{2B} -Rezeptoren.^{41,142} Die Verbindung wird in Kapitel 3 ausführlich beschrieben und pharmakologisch charakterisiert.

Abb. 2-4: Struktur des potenten und selektiven A2B-Rezeptor-Agonisten BAY60-6583.

Trotz der Vielzahl der vorhandenen A_{2B}-Rezeptor-Agonisten, ist bis heute noch kein hoch potenter und selektiver A2B-Rezeptor-Agonist-Radioligand verfügbar, welcher die weitere Charakterisierung des A2B-Rezeptors voranbringen könnte. Der einzige Agonist-Radioligand, der in den letzten Jahren an verschiedenen A2B-Rezeptor-exprimierenden Zelllinien und Geweben verwendet wurde, ist die tritiierte Form des unselektiven Liganden NECA. 1986 konnten Bruns et al. zwei verschiedene Subtypen von A2-Rezeptoren mit [3H]NECA in unterschiedlichen Geweben nachweisen. Ein Rezeptor hatte eine hohe Affinität für NECA, der andere eine niedrige.¹⁴³ Es wurde deshalb, wie auch schon 1983 erstmals von Daly et al. vorgeschlagen, der hochaffine Rezeptor mit A_{2A} und der niedrigaffine mit A_{2B} bezeichnet.¹⁴⁴ Einige Jahre später konnten Casado et al. eine Bindung von tritiierten NECA an chromaffinen Rindernierenzellmembranen ermitteln.¹⁴⁵ Die Bindung der spezifischen A_{2A}-Radioliganden [³H]CGS21680 und der A₁-Radioliganden [³H]*R*-PIA und [³H]DPCPX schien dabei vernachlässigbar zu sein, während [3H]NECA ein hohe spezifische Bindung aufzeigte. Die Testung verschiedener Standardliganden gegen [3H]NECA ergab ein pharmakologisches Profil, (DPCPX > NECA > CADO > R-PIA > Theophyllin > CGS21680) welches dem des A_{2B}-Rezeptor-Subtyps entspricht.¹⁴⁵

Nachfolgend konnten Mirabet et al. eine Bindung von [³H]NECA mit einem K_D-Wert von 1,2-1,5 μ M und einem B_{max}-Wert von 1,1 ± 0,5 pmol/mg Protein an Jurkat-T-Zellmembranen bestimmen.¹⁴⁶ Auch hier war die Bindung von 2,4 nM [³H]DPCPX, 8,5 nM [³H]*R*-PIA oder 12,5 nM [³H]CGS21680 vernachlässigbar und die Testung von Standardliganden gegen [³H]NECA wies ein pharmakologisches Profil typisch für den A_{2B}-Rezeptor auf. Des Weiteren konnte der Agonist NECA in Jurkat-T-Zellen ein Calcium-Signal induzieren,

induzierte Calcium-Signal wurde in dieser Publikation auf den Adenosin-A_{2B}-Rezeptor zurückgeführt.¹⁴⁶ In einer weiteren Studie wurde an rekombinanten humanen A_{2B}-Rezeptoren mit [³H]NECA ein homologes Kompetitionsexperiment in An- und Abwesenheit von 5 I.U./ml Adenosindesaminase (ADA) durchgeführt. Es zeigte sich, dass sich die Affinität von NECA in Anwesenheit von ADA signifikant erhöhte, (K_i-Wert in Abwesenheit von ADA 2,1 μ M und in Anwesenheit von ADA 0,4 μ M) was eine direkte Interaktion des A_{2B}-Rezeptors mit dem Enzym schlussfolgern lässt.¹⁴⁷ Eine weitere Interaktion des A_{2B}-Rezeptors scheint mit dem Protein Netrin-1 zu bestehen. So konnten Corset et al. mit humanen A_{2B}-Rezeptor-transfizierten HEK293-Zellen zeigen, dass die Bindung von tritiierten NECA in Abhängigkeit von der Konzentration des eingesetzten Netrin-1 Proteins zunahm. Die Bindungsstelle des Proteins am A_{2B}-Rezeptor scheint aber unterschiedlich zu der Bindungsstelle für NECA oder Adenosin zu sein.¹⁴⁸

Bisher wurden A_{2B}-Rezeptor-Agonisten jedoch hauptsächlich gegen die vorhandenen hoch potenten Antagonist-Radioliganden oder in funktionellen Assaysystemen getestet.^{46, 137, 140, 149} Nach dem Zwei-Zustände-Rezeptormodell wird davon ausgegangen, dass in Abwesenheit eines Agonisten ein Gleichgewicht zwischen inaktiver und aktiver Rezeptorkonformation vorliegt. Agonisten binden bevorzugt an die aktive Rezeptorkonformation und verschieben das Gleichgewicht zugunsten derselben, während Antagonisten/inverse Agonisten bevorzugt an die inaktive Rezeptorkonformation binden.¹⁵⁰ Um somit die genaue Affinität von Testsubstanzen zu bestimmen, sollten Agonisten gegen strukturell ähnliche Agonist-Radioliganden getestet werden. Bisher wurden Agonisten jedoch auch gegen Antagonist-Radioliganden getestet, um die Bindung am Rezeptorprotein auch mit strukturell unterschiedlichen Verbindungen zu bestätigen.

2.2 Methodenentwicklung

In diesem Teilprojekt sollte die Bindung von [³H]NECA an rekombinanten humanen, Mausund Ratten-A_{2B}.Rezeptoren charakterisiert werden. Die dafür verwendeten stabil transfizierten CHO-A_{2B}-Zelllinien wurden in der eigenen Diplomarbeit (humane) sowie von den Masterstudenten Alessandro Casari (Maus) und Mohammed Wessam Alnouri (Ratte) mit Hilfe eines retroviralen Transfektionssystems hergestellt. Für die Charakterisierung wurden Kinetik-, Sättigungs- und Kompetitionsexperimente herangezogen. Potentiell neue A_{2B}- Rezeptor-Agonisten könnten dann mit diesem entwickelten Assaysystem gegen [³H]NECA als Radioligand getestet werden.

Die Bindung eines Radioliganden an einen Rezeptor wird durch eine Reihe von Faktoren beeinflusst, wie z. B. durch die Zusammensetzung und den pH-Wert des Puffers, der verwendeten Materialien, der Temperatur und dem verwendeten Lösungsmittel. Um geeignete Bedingungen für die Durchführung der Bindungsstudien zu erhalten, wurden verschiedenste Parameter getestet. Um eine ausreichende spezifische Bindung zu erhalten erwies sich ein 1 ml Versuchsansatz am geeignetsten, welchem zusätzlich zu einem üblicherweise verwendeten "Standardpuffer" (Tris 50 mM, pH 7,4), 10 mM MgCl₂ zugesetzt wurden. Magnesiumionen sind in der Lage, die Bindung von Agonisten positiv zu modulieren, indem sie die Kopplung der G-Proteine an den Rezeptor und damit die aktive Rezeptorkonformation begünstigen können.¹⁵¹⁻¹⁵² Da die Wasserlöslichkeit der meisten zu testenden Verbindungen zu gering ist, musste dem Versuchsansatz außerdem 2,5 % DMSO zugesetzt werden. Höhere DMSO-Konzentrationen sollten aufgrund eines möglichen Einflusses auf das Rezeptorprotein vermieden werden.

Die in der Bindungsstudie einzusetzende Radioligandkonzentration wird üblicherweise so gewählt, dass sie 1/10 - 10 x des K_D-Wertes der Verbindung entspricht.¹³⁴ Die in der Literatur beschriebenen K_i-Werte für NECA an humanen A_{2B}.Rezeptoren schwanken jedoch teilweise je nach verwendetem Radioligand relativ stark und reichen von 262 nM bis 1890 nM.^{45, 153}

Für die Etablierung der Bindungsstudien wurde eine Radioligandkonzentration von 30 nM (>1/10 des abgeschätzten K_D-Wertes) ausgewählt, da mit dieser Konzentration in ersten Vorversuchen ausreichend hohe Gesamtcounts gemessen werden konnten (ca. 3000 cpm) und eine spezifische Bindung erkennbar war. Die unspezifische Bindung des Radioliganden an die verwendeten GF-B Filter war jedoch noch relativ hoch, was sich unter der Verwendung von GF-C Filtern und insbesondere mit einer Erhöhung der Waschschritte mit eiskaltem Tris-Puffer verbessern ließ. Dabei war es wichtig, dass bei jedem Waschschritt das gleiche Volumen eingesetzt wurde (Abb. 2-5).

Abb. 2-5: Einfluss der verschiedenen durchgeführten Waschschritte auf die spezifische Bindung von [${}^{3}H$]NECA an humanen A_{2B}-Rezeptoren. Der Vorversuch wurde in Duplikaten durchgeführt.

Die für Bindungsstudien eingesetzten Radioliganden sollten idealerweise hoch affin mit einem K_D-Wert <1 nM sein, eine geringe unspezifische Bindung aufweisen, eine hohe spezifische Aktivität (<5 Ci/mmol erscheint unbrauchbar) besitzen, um auch geringe Rezeptormengen zu detektieren und spezifisch für den jeweiligen Rezeptorsubtyp sein.¹³¹ Da für [³H]NECA diese Voraussetzungen nicht alle erfüllt sind, wurde um eine durch die geringe Affinität zu schnelle Dissoziation des Liganden insbesondere schon während des Absaugvorganges zu verhindern, der gesamte Ansatz 4 h bei 4°C inkubiert.

Des Weiteren war die Proteinmenge, die zum Erreichen einer ausreichenden (\geq 50 %) spezifischen Bindung eingesetzt werden musste, abhängig von der jeweiligen Membranpräparation. Generell waren ca. 200 µg der Membranpräparationen pro Reagenzglas sowohl für humane als auch für Ratten-A_{2B}-Rezeptoren ausreichend (Abb. 2-6, Abb. 2-7). Die Expression des Maus-A_{2B}-Rezeptors schien etwas geringer zu sein und es mussten von diesem Rezeptorsubtyp mehr als 200 µg Protein pro Reagenzglas eingesetzt werden, um eine spezifische Bindung von nahezu 50 % zu erzielen (Abb. 2-6).

Abb. 2-6: Abhängigkeit der spezifischen [³H]NECA Bindung von der eingesetzten Proteinmenge von Rattenund Maus-A_{2B}-Rezeptoren. Der Vorversuch wurde in Duplikaten durchgeführt.

Um auszuschließen, dass [³H]NECA in die für die Bindungsstudie notwendigen hohen eingesetzten Radioligandkonzentrationen und Proteinmengen unspezifisch an nativ exprimierte Rezeptoren wie z. B. an P2Y₂-Rezeptoren in untransfizierten CHO-K1-Zellen bindet,¹⁵⁴ wurden diese zusätzlich als Kontrolle getestet. Es zeigte sich, dass auch mit sehr hohen eingesetzten Proteinmengen von 350 μ g pro Reagenzglas an den Membranen der untransfizierten CHO-K1-Zellen keine spezifische Bindung gemessen werden konnte, während die spezifische Bindung von [³H]NECA an humane A_{2B}-Rezeptoren proportional mit der eingesetzten Proteinmenge zunahm (Abb. 2-7).

Abb. 2-7: Abhängigkeit der spezifischen [³H]NECA Bindung von der eingesetzten Proteinmenge von humanen A_{2B}-Rezeptoren sowie von untransfizierten CHO-K1-Zellen. Der Vorversuch wurde in Duplikaten durchgeführt.

2.2.1 Zusammenfassung

Die spezifische Bindung von [³H]NECA an die Membranen von rekombinanten humanen, Maus- und Ratten-A2B-Rezeptoren nimmt mit steigender Proteinmenge zu, was eine spezifische Interaktion des Liganden mit dem Rezeptorprotein verdeutlicht. Zusätzlich konnte an den nicht transfizierten CHO-K1-Zellen auch mit hohen Proteinmengen keine spezifische Bindung gemessen werden. Es lässt sich somit festhalten, dass unter den ausgetesteten und in Kapitel 2.2 beschriebenen Bedingungen eine spezifische Bindung von nahezu 50 % erreicht werden konnte. Die Bindung war jedoch nicht immer stabil, sondern schien insbesondere von der Inkubationstemperatur, dem Absaugvorgang und den verwendeten von Membranpräparationen abhängig zu sein.

2.3 Assoziations- und Dissoziationsexperimente an humanen Adenosin-A_{2B}-Rezeptoren

Die Kinetikexperimente an humanen Adenosin-A_{2B}-Rezeptoren wurden unter dem Einsatz einer Radioligandkonzentration von 30 nM und bei einer Inkubation von 4°C durchgeführt. Dabei spiegeln Assoziationsexperimente die zeitabhängige Bindung des Liganden an das Rezeptorprotein wieder, während Dissoziationsexperimente den zeitabhängigen Zerfall des Radioligand-Rezeptor-Komplexes verdeutlichen.

Abb. 2-8: Assoziationsexperiment. Zeitabhängige spezifische Bindung von [^{3}H]NECA an humanen Adenosin-A_{2B}-Rezeptoren (n=3, ± SEM).

Abb. 2-9: Dissoziationsexperiment. Zeitabhängige spezifische Bindung von [3 H]NECA an humanen Adenosin-A_{2B}-Rezeptoren (n=3, ± SEM).

Aus den drei unabhängigen Assoziationsexperimenten lässt sich eine Konstante K_{ob} von 0,073 min⁻¹ (± 0,008) und aus den drei unabhängigen Dissoziationsexperimenten lässt sich eine Geschwindigkeitskonstante K_{off} von 2,16 min⁻¹ (± 0,52) bestimmen. Um daraus die Assoziationskonstante K_{on} zu berechnen kann folgende Formel verwendet werden:

 $K_{on} = K_{ob}-K_{off} / [Radioligand]^{133}$

Aus der Beziehung $K_D = K_{off} / K_{on}$ kann dann ein kinetischen K_D -Wert bestimmt werden.¹³³ Da die Dissoziation jedoch sehr schnell verläuft und die Werte für K_{off} dadurch größer sind als die für K_{ob} , konnte aus den Experimenten kein kinetischer K_D -Wert berechnet werden.

2.3.1 Zusammenfassung und Diskussion

Sowohl die Assoziations- als auch die Dissoziationsexperimente von [³H]NECA an humane Adenosin-A_{2B}-Rezeptoren lassen sich am besten mit einer einphasischen Kurve darstellen, was darauf hindeutet, dass NECA eine Bindungsstelle am Rezeptor besitzt bzw. bevorzugt mit hoher Affinität an die für Agonisten beschriebene aktive Rezeptorkonformation bindet. Die Halbwertszeit der Assoziation mit 9,74 min spiegelt eine relativ schnelle Kinetik wieder. Das Bindungsgleichgewicht ist nach ca. 50 min erreicht und bleibt auch über einen Zeitraum von 240 min stabil (Abb. 2-8). Nach Zugabe des Kaltliganden fällt die Dissoziationskurve rapide auf nahezu 0 % ab, was beweist, dass die Bindung an den Rezeptor vollständig reversibel ist. Die Halbwertszeit der Dissoziation ist mit 0,374 min sehr schnell, was eine geringe Affinität des Liganden zum Rezeptorprotein vermuten lässt (Abb. 2-9).

Eine ähnlich schnelle Kinetik von [³H]NECA konnten Casado et al. an chromaffinen A_{2B} -Rezeptor exprimierenden Rindernierenzellmembranen zeigen. In Dissoziationsexperimenten durchgeführt bei 2°C, konnten sie eine Geschwindigkeitskonstante von k_{-1} von $1,9 \pm 0,8$ min⁻¹ bestimmen, woraus berechnet werden konnte, dass <22 % der Radioliganddissoziation schon während des Absaugvorgangs auftrat.¹⁴⁵

Für nachfolgende Sättigungs- und Kompetitionsexperimente auch an Maus- und Ratten- A_{2B} -Rezeptoren wurde eine Inkubationszeit von 240 min bei 4°C gewählt, da in diesem Zeitraum mit Gewissheit eine Gleichgewichtseinstellung erreicht ist.

2.4 Sättigungsexperimente an humanen, Maus- und Ratten-Adenosin-A_{2B}-Rezeptoren

Da die spezifische Bindung eines Radioliganden bei konstanter Rezeptoranzahl mit steigender Ligandkonzentration sättigbar ist, erhält man eine Hyperbel, wenn die eingesetzte Radioligandkonzentration gegen die spezifische Bindung graphisch aufgetragen wird. Aus einem Sättigungsexperiment kann dann sowohl die Gleichgewichtsdissoziationskonstante (K_D) des Radioliganden als auch die maximale Anzahl der Bindungsstellen (B_{max}) berechnet werden.

Es wurden vier voneinander unabhängige Bindungskurven für [³H]NECA an humanen Adenosin- A_{2B} -Rezeptoren in einem Konzentrationsbereich von 10-2000 nM aufgenommen (Abb. 2-10). Um eine ausreichende spezifische Bindung zu erhalten, wurden von der humanen A_{2B} -Rezeptor-Membranpräparation 200 µg Protein pro Reagenzglas eingesetzt.

Abb. 2-10: Sättigungsexperiment von [³H]NECA an humanen, rekombinanten Adenosin-A_{2B}-Rezeptoren (n=4, \pm SEM). Aus den vier unabhängigen Experimenten wurde als Mittelwert ein K_D-Wert von 441 \pm 169 nM und ein B_{max}-Wert von 2150 \pm 449 fmol/mg Protein bestimmt.

Für Maus- und Ratten-Adenosin- A_{2B} -Rezeptoren wurden zwei voneinander unabhängige Sättigungsexperimente in einem Konzentrationsbereich von 10-2000 nM durchgeführt (Abb. 2-11, Abb. 2-12). Dafür wurden von der Ratten- A_{2B} -Rezeptor-Membranpräparation 250 µg Protein pro Reagenzglas und von der Maus- A_{2B} -Rezeptor-Membranpräparation, da diese auch in Vorversuchen schon eine geringere Expression aufwies (Abb. 2-6), 340 µg Protein pro Reagenzglas eingesetzt.

Abb. 2-11: Sättigungsexperiment von [³H]NECA an rekombinanten Maus-Adenosin-A_{2B}-Rezeptoren (n=2, \pm SEM). Aus den zwei unabhängigen Experimenten wurde als Mittelwert ein K_D-Wert von 894 \pm 115 nM und ein B_{max}-Wert von 1990 \pm 187 fmol/mg Protein bestimmt.

Abb. 2-12: Sättigungsexperiment von [3 H]NECA an rekombinanten Ratten-Adenosin-A_{2B}-Rezeptoren (n=2, ± SEM). Aus den zwei unabhängigen Experimenten wurde als Mittelwert ein K_D-Wert von 325 ± 144 nM und ein B_{max}-Wert von 2680 ± 472 fmol/mg Protein bestimmt.

2.4.1 Zusammenfassung und Diskussion

Die Sättigungsexperimente zeigen den Verlauf einer monophasischen Kurve, was auf eine bevorzugte Bindungsstelle von [³H]NECA an Adenosin-A_{2B}-Rezeptoren schließen lässt. Für die Bindung von [³H]NECA an humane Adenosin-A_{2B}-Rezeptoren wurde ein K_D-Wert von 441 ± 169 nM und ein B_{max}-Wert von 2150 ± 449 fmol/mg Protein bestimmt. Dieser K_D-Wert liegt im selben Konzentrationsbereich wie einige in der Literatur beschriebenen K_i-Werte (bestimmt mit Antagonist-Radioliganden) für [³H]NECA an humanen A_{2B}-Rezeptoren.^{46, 137} An Ratten- und Maus-A_{2B}-Rezeptoren wurden in den Sättigungsexperimenten ähnliche K_D-

Werte von 325 \pm 144 nM bzw. 894 \pm 115 nM und B_{max}-Werte von 2680 \pm 472 fmol/mg

Protein bzw. 1990 ± 187 fmol/mg Protein bestimmt. Da die A_{2B}-Rezeptor-Sequenz nur geringe Unterschiede zwischen den verschiedenen Spezies aufzeigt, humane und Maus-A2B-Rezeptoren weisen 85 % Identität und Ratten- und Maus-A2B-Rezeptoren weisen 95 % Übereinstimmung auf,¹⁵⁵ erscheinen auch ähnliche pharmakologische Charakteristika wahrscheinlich. Die B_{max} -Werte von humanen A_{2B} -Rezeptoren sind mit 2150 ± 449 fmol/mg Protein höher als die mit dem Antagonist-Radioligand [${}^{3}H$]PSB-603 bestimmten von 502 ± 57 fmol/mg Protein.⁴⁵ Eine mögliche Erklärung für diesen Unterschied könnte darin begründet sein, dass der [3H]NECA-Bindungsstudie Magnesiumchlorid zugegeben wurde, welches zumindest für Adenosin-A2A- und A1-Rezeptoren die aktive Rezeptorkonformation zu begünstigen scheint, zu welcher Agonisten eine hohe Affinität aufweisen.¹⁵¹⁻¹⁵² Bei PSB-603 handelt es sich vermutlich um einen inversen Agonisten, welcher bevorzugt an die inaktive Rezeptorkonformation bindet, aber nicht an beide Rezeptorkonformation mit gleicher Affinität, wie es z. B. bei neutralen Antagonisten der Fall ist. Die B_{max}-Werte von humanen, Maus- und Ratten-A2B-Rezeptoren sind vergleichbar, was sich damit erklären lässt, dass alle stabil exprimierenden Zelllinien mit dem gleichen retroviralen Transfektionssystem hergestellt wurden. Auch wurden gleiche niedrige Zellpassagen und gleiche Inkubationsbedingungen für die Zellen verwendet.

Es lässt sich somit schlussfolgern, dass [³H]NECA nur eine moderate Affinität zu A_{2B} -Rezeptoren aufweist und daher nur bedingt als Radioligand für Bindungsstudien geeignet ist. Da zurzeit jedoch kein anderer hoch affiner Agonist-Radioligand für A_{2B} -Rezeptoren verfügbar ist, stellt dieser Assay eine geeignete Möglichkeit dar, um A_{2B} -Rezeptor-Agonisten zu charakterisieren.

2.5 Kompetitionsexperimente an humanen, Maus- und Ratten-Adenosin-A_{2B}-Rezeptoren

In heterologen Kompetitionsexperimenten werden verschiedene Standardagonisten und Antagonisten getestet, um zu überprüfen, ob die gegen $[^{3}H]$ NECA bestimmten K_i-Werte mit Werten aus der Literatur korrespondieren oder ob sich Unterschiede feststellen lassen.

In homologen Kompetitionsexperimenten lassen sich zusätzlich K_D - und B_{max} -Werte bestimmen, welche im Bereich der Werte liegen sollten, die mit Sättigungsexperimenten bestimmt wurden. Die Strukturen der getesteten Agonisten NECA und CADO sind in Abb. 2-3 und die Struktur von BAY60-6583 ist in Abb. 2-4 dargestellt. Die Struktur des Antagonisten PSB-603 ist in Abb. 2-1 gezeigt, während die Strukturen der weiteren getesteten Antagonisten Coffein und CGS15943 im Folgenden aufgeführt sind:

Abb. 2-13: Strukturen der mit [³H]NECA charakterisierten Antagonisten Coffein und CGS15943 (9-Chlor-2-(2-furanyl)[1,2,4]triazolo[1,5-*c*]quinazolin-5-amin).

2.5.1 Homologe Kompetitionsexperimente

Bei einem homologen Kompetitionsexperiment wird der entsprechende, nicht radioaktiv markierte Ligand in verschiedenen Konzentrationen gegen eine konstante Menge an Radioligand getestet. Aus den erhaltenen IC₅₀-Werten kann dann aus der Beziehung (IC₅₀-[Radioligand] = K_D)¹³⁴ ein K_D-Wert berechnet werden, welcher mit den aus Sättigungsexperimenten bestimmten K_D-Werten übereinstimmen sollte. Des Weiteren können auch B_{max}-Werte berechnet werden (Gl. 2-3, Gl. 2-4).

Abb. 2-14: Homologes Kompetitionsexperiment zwischen dem nicht markierten Liganden NECA und dem Radioliganden [³H]NECA (30 nM) an humanen Adenosin-A_{2B}-Rezeptoren (n =5, ± SEM). Aus den fünf unabhängigen Experimenten wurde aus der monophasischen Kurve als Mittelwert ein K_D-Wert von 665 ± 73 nM und ein B_{max}-Wert von 2220 ± 71 fmol/mg Protein berechnet. Die alternative Auswertung über eine biphasische Kurve ergab eine hoch affine Bindungsstelle von K_H = 322 nM (73,4 %) und eine niedrig affine Bindungsstelle von K_L = 2965 nM (26,6 %).

Abb. 2-15: Homologes Kompetitionsexperiment zwischen dem nicht markierten Liganden NECA und dem Radioliganden [³H]NECA (30 nM) an Maus- und Ratten-Adenosin-A_{2B}-Rezeptoren (n=3, \pm SEM). Aus den drei unabhängigen Experimenten wurde als Mittelwert ein K_D-Wert von 465 \pm 104 nM und ein B_{max}-Wert von 1480 \pm 451 fmol/mg Protein an Maus- und ein K_D-Wert von 532 \pm 65 nM und ein B_{max}-Wert von 4400 \pm 1500 fmol/mg an Ratten-A_{2B}-Rezeptoren berechnet.

Aus den homologen Kompetitionsexperimenten lassen sich ein K_D-Wert von 665 \pm 73 nM und ein B_{max}-Wert von 2220 \pm 71 fmol/mg Protein an humanen Adenosin-A_{2B}-Rezeptoren (Abb. 2-14), ein K_D-Wert von 465 \pm 104 nM und ein B_{max}-Wert von 1480 \pm 451 fmol/mg Protein an Maus-Adenosin-A_{2B}-Rezeptoren (Abb. 2-15) und ein K_D-Wert von 532 \pm 65 nM und ein B_{max}-Wert von 4400 \pm 1500 fmol/mg Protein an Ratten-Adenosin-A_{2B}-Rezeptoren (Abb. 2-15) berechnen. Alternativ ließe sich das homologe Kompetitionsexperiment an humanen A_{2B}-Rezeptoren auch über eine biphasische Kurve auswerten, welches eine hoch affine Bindungsstelle für [³H]NECA von K_H = 322 nM an der aktiven Rezeptorkonformation (73,4 %) und eine niedrig affine Bindungsstelle für [³H]NECA von K_L= 2965 nM an der inaktiven Rezeptorkonformation (26,6 %) berechnet (Abb. 2-14).

2.5.2 Heterologe Kompetitionsexperimente mit verschiedenen Standardagonisten und Antagonisten

Für die Durchführung von heterologen Kompetitionsexperimenten wurde eine Radioligandkonzentration von 30 nM von [³H]NECA eingesetzt. Die Kompetitionskurven des Agonisten BAY60-6583 und der getesteten Antagonisten wurden extrapoliert, da die Verbindungen in den höheren Konzentrationen nicht löslich waren und präzipitierten.

In Tab. 2-1 sind die Affinitäten der getesteten Agonisten und Antagonisten, sowie die entsprechenden Literaturdaten zusammengefasst.

Abb. 2-16: Heterologes Kompetitionsexperiment zwischen BAY60-6583 und dem Radioliganden [³H]NECA (30 nM) an humanen Adenosin-A_{2B}-Rezeptoren (n=5, \pm SEM). Aus den fünf unabhängigen Experimenten wurde aus der monophasischen Kurve als Mittelwert ein K_i-Wert von 31400 nM \pm 7750 nM bestimmt. Die alternative Auswertung über eine biphasische Kurve ergab eine hoch affine Bindungsstelle von K_H = 118 nM (5,20 %) und eine niedrig affine Bindungsstelle von K_L = 39000 nM (94,8 %).

Abb. 2-17: Heterologes Kompetitionsexperiment zwischen BAY60-6583 und dem Radioliganden [³H]NECA (30 nM) an Maus- und Ratten-Adenosin-A_{2B}-Rezeptoren (n=2-3, \pm SEM). Aus den zwei bzw. drei unabhängigen Experimenten wurde als Mittelwert ein K_i-Wert von 10300 nM \pm 3400 nM an Maus- und ein K_i-Wert von 10400 nM \pm 3430 nM an Ratten-A_{2B}-Rezeptoren bestimmt.

Abb. 2-18: Heterologes Kompetitionsexperiment zwischen CADO und dem Radioliganden [³H]NECA (30 nM) an humanen Adenosin-A_{2B}-Rezeptoren (n=3, \pm SEM). Aus den drei unabhängigen Experimenten wurde als Mittelwert ein K_i-Wert von 11700 nM \pm 2890 nM bestimmt.

Abb. 2-19: Heterologes Kompetitionsexperiment zwischen Coffein und dem Radioliganden [³H]NECA (30 nM) an humanen Adenosin-A_{2B}-Rezeptoren (n=2, \pm SEM). Aus den zwei unabhängigen Experimenten wurde aus der monophasischen Kurve als Mittelwert ein K_i-Wert von 4500000 nM \pm 142000 nM bestimmt. Die alternative Auswertung über eine biphasische Kurve ergab eine hoch affine Bindungsstelle von K_H = 27900 nM (14,6 %) und eine niedrig affine Bindungsstelle von K_L = 7700000 nM (86,4 %).

Abb. 2-20: Heterologes Kompetitionsexperiment zwischen PSB-603 und dem Radioliganden [³H]NECA (30 nM) an humanen Adenosin-A_{2B}-Rezeptoren (n=4, \pm SEM). Aus den vier unabhängigen Experimenten wurde aus der monophasischen Kurve als Mittelwert ein K_i-Wert von 104 nM \pm 36 nM bestimmt. Die alternative Auswertung über eine biphasische Kurve ergab eine hoch affine Bindungsstelle von K_H = 0,448 nM (31,7 %) und eine niedrig affine Bindungsstelle von K_L = 363 nM (69,3 %).

Abb. 2-21: Heterologes Kompetitionsexperiment zwischen CGS15943 und dem Radioliganden [³H]NECA (30 nM) an humanen Adenosin-A_{2B}-Rezeptoren (n=2, \pm SEM). Aus den zwei unabhängigen Experimenten wurde aus der monophasischen Kurve als Mittelwert ein K_i-Wert von 10400 nM \pm 2410 nM bestimmt. Die alternative Auswertung über eine biphasische Kurve ergab eine hoch affine Bindungsstelle von K_H = 229 nM (41,6 %) und eine niedrig affine Bindungsstelle von K_L = 116000 nM (58,4 %).

	A_{2B}	A_{2B}	Ratio
Verbindung	K _i (nM)	K _i (nM)	K _i ([³ H] Antagonist
	V.S.	V.S.	/ K _i ([³ H] Agonist
	[³ H]Agonist	[³ H]Antagonist	(Agonist Shift)
Agonisten			•
NECA	$665 (h) (K_D)^1$	1890 (h) ^{2,a}	2,84
	$322 (h) (K_{\rm H})^1$	1850 (h) ^{3,b}	
	2965 (h) $(K_L)^1$	$330 (h)^{4,e}$	
		570 $(h)^{5,f}$	
	400 (h) ^{1,m}	489 (h) ^{6,g}	
	1200-1500 (h) $(K_D)^{1,n}$	361 (h) ^{7,h}	
	1000 (b) $(IC_{50})^{1,1}$	262 (h) ^{8,i}	
	$465 (m) (K_D)^1$	1010 (m) ^{5,k}	2,17
		642 (m) ^{2,d}	1,38
	$532 (r) (K_D)^1$	$1100 (r)^{2,c}$	2,07
BAY60-6583	31400 (h) ¹	212 (h) ^{2,j}	0,007
	118 (h) $(K_{\rm H})^1$		
	39000 (h) (K _L) ¹		
		330 (m) ^{5,k}	
	$10300 (m)^1$	134 (m) ^{2,d}	0,013
	10400 (r) ¹	$100 (r)^{2,c}$	0,009
CADO		33900 (h) ^{3,b}	
		25500 (h) ^{4,e}	
	11700 $(h)^1$	21400 (h) ^{2,a}	1,83
	14000 (b) (IC ₅₀) ^{1,1}		

Tab. 2-1: K_i -Werte von Agonisten und Antagonisten an A_{2B} -Rezeptoren sowie die entsprechenden Literaturdaten.

Antagonisten				
Coffein	$4500000 (h)^{1}$ $27900 (h) (K_{H})^{1}$ $7700000 (h) (W_{H})^{1}$	33800 (h) ^{2,a}	0,008	
	7700000 (n) (K _L)	20500 (h) ^{3,b} 22500 (m) ^{2,d}		
PSB-603	$104 (h)^{1}$ 0,448 (h) (K _H) ¹ 363 (h) (K _L) ¹	0,553 (h) ^{2,a} 0,250 (r) ^{2,c} 0,355 (m) ^{2,d}	0,005	
CGS15943	10400 (h) ¹ 229 (h) (K _H) ¹ 116000 (h) (K _L) ¹	$30,0 (h)^{2,a}$ $130 (h)^{3,b}$ $34,2 (h)^{5,f}$ $7,6 (h)^{6,g}$ $9,8 (h)^{8,i}$ $16,4 (h)^{7,h}$ $14,6 (m)^{2,d}$ $9,07 (m)^{5,k}$	0,003	

Fett: eigene Daten, (h) human, (r) Ratte, (m) Maus, (b) Rind

 K_{H} : hoch affine Bindungsstelle, K_{L} : niedrig affine Bindungsstelle

1: vs. [³H]NECA, **2:** vs. [³H]PSB-603, **3:** vs. [³H]PSB-298, **4:** vs. [¹²⁵I]I-ABOPX, **5:** vs. [³H]MRS1754, **6:** vs. [³H]OSIP339391, **7:** vs. [³H]ZM241385, **8:** vs. [³H]MRE2029-F20

a: Borrmann et al., 2009,⁴⁵ **b:** Bertarelli et al., 2006,¹⁵⁶ **c:** Müller et al., noch nicht publiziert, **d:** Müller et al., noch nicht publiziert, **e:** Linden et al., 1999,³⁹ **f:** Ji et al., 2001,¹³⁷ **g:** Stewart et al., 2004,⁴⁶ **h:** Ji et al., 1999,¹⁵⁷ **i:** Gessi et al., 2005,¹⁵³ **j:** Schiedel et al., 2011,¹⁵⁸ **k:** Auchampach et al., 2009,¹⁵⁹ **l:** Casado et al., 1992,¹⁴⁵ **m;** Herrera et al., 2000,¹⁴⁷ **n:** Mirabet et al., 1997.¹⁴⁶

Für die getesteten Agonisten ergibt sich, sowohl gegen Agonist- als auch gegen Antagonist-Radioliganden folgende Affinitätsreihe an humanen Adenosin- A_{2B} -Rezeptoren: BAY60-6583 > NECA > CADO. Auch für Antagonisten entspricht die Affinitätsreihe sowohl bei der Testung gegen Agonist- als auch bei der Testung gegen Antagonist-Radioliganden dem Profil des A_{2B} -Rezeptors: PSB-603 > CGS15943 > Coffein.

2.5.3 Zusammenfassung und Diskussion

Die aus den homologen Kompetitionsexperimenten erhaltenen K_{D} - und B_{max} -Werte für [³H]NECA an humanen, Maus- und Ratten-Adenosin-A_{2B}-Rezeptoren stimmen gut mit den aus den Sättigungsexperimenten erhaltenen Werten überein. Des Weiteren kann das homologe Kompetitionsexperiment von [³H]NECA an humanen A_{2B}-Rezeptoren auch durch einen biphasischen Algorithmus beschrieben werden (Abb. 2-14). Die daraus resultierenden Werte für eine hoch affine Bindungsstelle ($K_H = 322$ nM) spiegeln die bevorzugte Bindung des Agonisten NECA an die aktive Rezeptorkonformation wieder (Tab. 2-1). Der Wert für die niedrig affine Bindungsstelle ($K_L = 2965$ nM) liegt in dem Konzentrationsbereich des K_i-Wertes, wenn NECA gegen den Antagonist-Radioliganden [³H]PSB-603 getestet wurde ($K_i = 1890$ nM⁴⁵). Dieser K_L-Wert scheint dementsprechend der Bindung an die inaktive Rezeptorkonformation zu entsprechen, da es sich bei PSB-603 um einen inversen Agonisten handeln könnte, welcher die inaktive Rezeptorkonformation bevorzugt.

Vergleicht man die Ergebnisse der Kompetitionsexperimente nach der Auswertung mit einem monophasischen Kurvenverlauf, so zeigt sich, dass die bestimmten Affinitäten für NECA an humanen, Maus- und Ratten-A_{2B}-Rezeptoren und für CADO an humanen A_{2B}-Rezeptoren ca. 2-3-fach niedriger sind, wenn sie gegen den Agonist-Radioliganden [³H]NECA anstelle des Antagonist-Radioliganden [³H]PSB-603 getestet wurden (Tab. 2-1). Auch damit scheint sich zu bestätigen das NECA und PSB-603 zu unterschiedlichen Rezeptorkonformationen bevorzugte Affinität aufweisen. Dass Agonisten getestet gegen Antagonist-Radioliganden eine deutlich geringere Affinität aufzeigen, konnte auch schon für den Ratten-Adenosin-A_{2A}-Rezeptor gezeigt werden. So konnten Müller et al. in einer Studie zeigen, dass die K_i-Werte für Agonisten, die mit dem Antagonist-Radioligand MSX-2 getestet wurden, 3-7-fach höher waren als die K_i-Werte gegen den Agonisten [³H]CGS21680. Im Gegensatz dazu waren die K_i-Werte für Antagonisten im gleichen Konzentrationsbereich, unabhängig davon ob ein Agonist oder Antagonist-Radioligand verwendet wurde.¹³⁹

Eine Besonderheit scheint der Agonist BAY60-6583 aufzuweisen. Wenn die Kurve mit einem monophasischen Verlauf ausgewertet wurde, ergaben sich sowohl für humane, Maus- und Ratten-A_{2B}-Rezeptoren gegen [³H]NECA K_i-Werte, welche ca. 100-fach höher waren, als wenn die Substanz gegen einen Antagonisten wie [³H]PSB-603 oder [³H]MRS1754 getestet wurde (Tab. 2-1). Vermutlich haben die Agonisten NECA und BAY60-6583 aufgrund ihrer

strukturellen Unterschiede unterschiedliche Bindungsstellen am A_{2B}-Rezeptor oder bevorzugen unterschiedliche Rezeptorkonformationen. Die Kompetitionskurve von BAY60-6583 getestet gegen [³H]NECA an humanen A_{2B}-Rezeptoren konnte zusätzlich auch durch einen biphasischen Verlauf beschrieben werden mit einer hoch affinen Bindungsstelle $(K_H = 118 \text{ nM})$ und einer niedrig affinen Bindungsstelle $(K_L = 39000 \text{ nM})$ (Abb. 2-16, Tab. 2-1). Der Wert für die hoch affine Bindungsstelle ($K_H = 118$ nM) liegt im Konzentrationsbereich des Ki-Wertes der erhalten wird, wenn BAY60-6583 gegen den Antagonisten [${}^{3}H$]PSB-603 getestet wurde (K_i = 212 nM¹⁵⁸). Vermutlich bindet BAY60-6583 somit, obwohl es ein Agonist zu sein scheint, bevorzugt an die von [3H]PSB-603 markierte, inaktive Rezeptorkonformation. Aufgrund dieser Bindungsunterschiede zu dem Agonisten NECA, wurde BAY60-6583 in Kapitel 3 zusätzlich ausführlich in funktionellen Calcium- und cAMP-Experimenten an unterschiedlichen A2B-Rezeptor exprimierenden Zelllinien untersucht. Vergleicht man die Affinitäten der gegen [3H]NECA getesteten Antagonisten PSB-603, Coffein und CGS15943, so zeigt sich ähnlich wie bei BAY60-6583 eine starke Rechtsverschiebung der monophasischen Kurven im Vergleich zu einer Testung gegen Antagonist-Radioliganden (Tab. 2-1). Auch diese scheinen eine andere Bindungsstelle als [³H]NECA am A_{2B}-Rezeptorprotein zu haben oder bevorzugen vermehrt die inaktive Rezeptorkonformation. Des Weiteren können auch bei den Antagonisten alle Kompetitionskurven besser mit einem biphasischen Modell beschrieben werden, mit einer hoch affinen Bindungsstelle (K_H) und einer niedrig affinen Bindungsstelle (K_L) (Abb. 2-19, Abb. 2-20, Abb. 2-21). Die Werte für die hoch affine Bindungsstelle (K_H) liegen bei allen Antagonisten in etwa in dem Konzentrationsbereich der Ki-Werte, wenn die Substanzen gegen den Antagonisten [3H]PSB-603 getestet wurden (Tab. 2-1). Anscheinend binden alle getesteten Antagonisten somit bevorzugt an die von [3H]PSB-603 markierte, inaktive Rezeptorkonformation.

Es wird deutlich, dass es bei der genauen Ermittlung der Affinitäten wichtig erscheint, Agonisten gegen strukturell ähnliche Agonist-Radioliganden mit gleichen Bindungseigenschaften und Antagonisten gegen Antagonist-Radioliganden mit gleichen Bindungseigenschaften zu testen. Des Weiteren scheinen für unterschiedliche Agonisten auch verschiedene Rezeptorkonformationen in Betracht zu kommen, nicht nur eine einzige aktive Rezeptorkonformation. So konnten Lebon et al. in einer Studie mit dem Adenosin-A_{2A}-Rezeptor zeigen, dass der Agonist UK432097 bevorzugt an die aktive Rezeptorkonformation bindet, während NECA und Adenosin an eine intermediäre Konformation zwischen aktiver und inaktiver Rezeptorkonformation binden.¹⁷

3 Charakterisierung des Adenosin-A_{2B}-Rezeptor-Agonisten BAY60-6583 an verschiedenen A_{2B}-Rezeptor-exprimierenden Zelllinien

3.1 Einleitung

3.1.1 Pharmakologische Klassifizierung von Agonisten und Antagonisten

Zur Charakterisierung neuer Liganden wird nicht nur die Affinität in Form der Bestimmung des K_{D} - oder K_i -Wertes in Betracht gezogen, sondern zusätzlich stellt sich die Frage nach der Wirkung, die ein Ligand in einem bestimmten Zellsystem auslösen kann. Diese Wirkung kann durch die Potenz eines Pharmakons und durch seine intrinsische Aktivität charakterisiert werden. Die Potenz einer Substanz bezeichnet allgemein die Konzentration, welche die halbmaximale Rezeptoraktivierung hervorrufen kann (EC₅₀). Die Bestimmung dieses Parameters ist wichtig, da dadurch angezeigt wird, dass der Ligand mit dem entsprechenden Rezeptorprotein interagiert und zusätzlich auch funktionell ist. Die intrinsische Aktivität eines Liganden ist dabei ein Maß für die Aktivierbarkeit der Rezeptoren bzw. ein Maß für den Effekt der dadurch ausgelöst wird, unabhängig von der Ligandkonzentration.¹⁶⁰

Der maximal mögliche Effekt kann dabei von vollen Agonisten ausgelöst werden, während ein nur teilweise ausgelöster Effekt von partiellen Agonisten hervorgerufen wird. Ein inverser Agonist führt zu einem negativen Effekt, indem er z. B. an einen konstitutiv aktiven Rezeptor bindet und dessen Aktivität herabsetzen kann. Neutrale Antagonisten binden an den Rezeptor und lösen selber keinen eigenen Effekt aus. Die intrinsische Aktivität eines Agonisten ist dabei abhängig vom verwendeten Zellsystem und der entsprechenden Rezeptorexpression. Bei einer hohen Rezeptorexpression mit einer hohen Rezeptorreserve ist die Aktivierung einer kleinen Menge an Rezeptoren ausreichend, um einen vollen Effekt auszulösen, während in einem Zellsystem mit geringer Rezeptorexpression und ohne Rezeptorreserve auch die Aktivierung einer relativ großen Menge an Rezeptoren fast nicht ausreicht um einen vollen Effekt zu erzielen.¹⁶⁰

Der Effekt eines partiellen Agonisten wird deshalb erst in einem Zellsystem mit einer relativ geringen Rezeptorexpression sichtbar (Abb. 3-1).

Abb. 3-1: Intrinsische Aktivität von vollen und partiellen Agonisten in Abhängigkeit von der Rezeptorexpression.¹⁶⁰

Zusätzlich lässt sich die unterschiedliche intrinsische Aktivität von vollen, partiellen und inversen Agonisten auch anhand ihrer unterschiedlichen Bindungseigenschaften erklären.

In einem Zellsystem in Abwesenheit eines Agonisten liegen G-Protein-gekoppelte Rezeptoren normalerweise in einem Gleichgewichtszustand zwischen aktiver und inaktiver Rezeptorkonformation vor. Volle Agonisten haben eine bevorzugte Affinität zu der aktiven Rezeptorkonformation und verschieben das Gleichgewicht in Richtung derselben, während partielle Agonisten keine besonders bevorzugte Affinität zu der aktiven Rezeptorkonformation im Vergleich zur inaktiven Rezeptorkonformation besitzen. Inverse Agonisten mit negativer intrinsischer Aktivität haben eine bevorzugte Affinität zur inaktiven Rezeptorkonformation und verschieben das Gleichgewicht in Richtung derselben. Neutrale kompetitive Antagonisten besitzen gleiche Affinität für die aktive wie auch für die inaktive Rezeptorkonformation und haben einen indirekte Wirkung, indem sie den Effekt von Agonisten und inversen Agonisten hemmen können.¹⁶¹

Dabei wird die Dosis-Wirkungskurve des Agonisten in Gegenwart eines kompetitiven Antagonisten ("surmountable"), bei der Inkubation von Agonist und Antagonist, nach rechts verschoben (Erhöhung des EC₅₀-Wertes), während der maximale Effekt unverändert bleibt.¹⁶² Nicht-kompetitive Antagonisten besitzen entweder eine andere Bindungsstelle am Rezeptor als Agonisten (allosterische Antagonisten) und können z. Β. durch eine Konformationsänderung des Rezeptors den Effekt des Agonisten hemmen, oder sie können sekundäre Signaltransduktionswege beeinflussen (funktionelle Antagonisten).

In beiden Fällen wird die Dosis-Wirkungskurve des Agonisten in Anwesenheit des nichtkompetitiven Antagonisten ("unsuremountable") bei der Inkubation von Agonist und Antagonist gestaucht, was in einer Abnahme des maximalen Effekts resultiert, während der EC_{50} -Wert nahezu gleich bleibt oder auch nach rechts verschoben sein kann.¹⁶²

3.1.2 Allosterische Modulation des Ligandenbindungsverhaltens an Adenosin-Rezeptoren durch Natrium-Ionen

Die Bindung eines orthosterischen Liganden an einen Rezeptor kann nicht nur durch allosterische Liganden moduliert werden, sondern auch durch die Bindung von kleinen allosterischen Modulatoren wie z. B. Natrium-Ionen. Im Allgemeinen verringern Natrium-Ionen an Adenosinrezeptoren und anderen G-Protein-gekoppelten Rezeptoren die Affinität für Agonisten indem sie die Rezeptorkonformation in Richtung der inaktiven Konformation verschieben. In einer Studie von Klaasse et al. z. B. wurde die Affinität des Adenosin-A₁-Rezeptor- Agonisten CPA in Anwesenheit von 1 M NaCl dreifach verringert, während die Affinität des Antagonisten/inversen Agonisten [³H]DPCPX in Anwesenheit von 1 M NaCl zunahm.¹⁶³

Eine wichtige Rolle bei der Modulation durch Natrium-Ionen scheint dabei ein in G-Proteingekoppelten Rezeptoren hoch konservierter Aspartatrest in der Transmembranhelix 2 zu spielen, da sich z. B. an der Mutante D79N des α_2 -adrenergen-Rezeptors die Rezeptor-Ligand-Interaktionen nicht mehr durch Natrium-Ionen modulieren ließen.¹⁶⁴ Für den humanen Adenosin-A₁-Rezeptor konnte die Aminosäure D55 als wichtig für eine Modulation durch Natrium-Ionen identifiziert werden, da an der Mutante D55A in Anwesenheit von verschiedensten Konzentrationen von Natrium-Ionen keine Veränderung der Affinität des Agonisten [³H]CCPA mehr gefunden werden konnte.¹⁶⁵

Auch an Adenosin-A_{2A}- und A₃-Rezeptoren wurde eine allosterische Modulation durch Natriumchlorid beschrieben.¹⁶⁶⁻¹⁶⁸ In einer Studie von Gao et al. konnte gezeigt werden, dass Natrium-Ionen die Dissoziation des Antagonisten [³H]ZM241385 am humanen Adenosin-A_{2A}-Rezeptor verringern und somit eine Steigerung der Affinität bewirken. Der B_{max}-Wert blieb davon jedoch unbeeinflusst.¹⁶⁶ In weiteren Experimenten der gleichen Arbeitsgruppe wurden durch Mutagenesestudien die Aminosäuren Glutamin 13 und Histidin 278 als wichtig für die Ligandbindung und für die Modulation des Adenosin-A_{2A}-Rezeptors durch Natrium-Ionen identifiziert.¹⁶⁷ An A_{2A}-Wildtyprezeptoren konnte in Anwesenheit von Natriumchlorid 1 M eine Rechtsverschiebung der Agonist-Kurven gegen [³H]ZM241385 gemessen werden, während die Rechtsverschiebung an den Rezeptormutanten geringer ausfiel. Auch die

Dissoziationsgeschwindigkeit von [³H]ZM21385 in Anwesenheit von Natrium-Ionen war an den A_{2A}-Wildtyprezeptoren geringer als an den Rezeptormutanten.¹⁶⁷

Weitere wichtige Aminosäuren die an der allosterischen Modulation durch Natrium-Ionen an dem Adenosin-A3-Rezeptor beteiligt sind, konnten ebenfalls von Gao et al. identifiziert werden.¹⁶⁸ So konnte am Wildtyp-Adenosin-A3-Rezeptor eine 80 % ige Inhibition der Agonist-Bindung in Anwesenheit von 100 mM Natriumchlorid beobachtet werden, während dieser Effekt an den Rezeptormutanten D58N, D107N und F182A nicht zu verzeichnen war. Im Gegensatz dazu konnte an den Rezeptormutanten N30A und N274A in Anwesenheit von Natrium-Ionen sogar eine gesteigerte Agonist-Bindung induziert werden. Zusätzlich führte Natriumchlorid Wildtyp-A₃-Rezeptoren an zu einer verringerten Dissoziationsgeschwindigkeit des Antagonist-Radioliganden [3H]PSB-11, wohingegen dieser Effekt an der Rezeptormutante D58N nicht vorhanden war.¹⁶⁸

Im Falle des humanen Adenosin-A_{2B}-Rezeptors bewirkte die Anwesenheit von 100 mM Natriumchlorid einen dreifachen Anstieg der Rezeptorbindungsstellen für den Radioliganden [³H]PSB-298.¹⁵⁶ Des Weiteren konnte eine signifikante Rechtsverschiebung der Agonist-Kurve (NECA) gegen den Radioliganden [³H]PSB-298 in Anwesenheit von 100 mM Natriumchlorid beobachtet werden, während bei einem homologen Kompetitionsexperiment die Kurve des Antagonisten PSB-298 eine Linksverschiebung aufwies. Sehr wahrscheinlich scheint PSB-298 somit ein inverser Agonist an humanen A_{2B}-Rezeptoren zu sein.¹⁵⁶

3.1.3 Adenosin-A_{2B}-Rezeptor vermittelte intrazelluläre cAMP-Akkumulation

Bei G-Protein-gekoppelten Rezeptoren erfolgt allgemein durch die Bindung eines entsprechenden Agonisten an das Rezeptorprotein eine Konformationsänderung und dadurch eine Interaktion mit einem heterotrimeren G-Protein. Dieses besteht aus einer G_{α}-Untereinheit und aus einem G_{$\beta\gamma$}-Dimer. Bedingt durch die Aktivierung wird an der G_{α}-Untereinheit GDP gegen GTP ausgetauscht, wodurch der G-Protein-Komplex zerfällt. Beide Untereinheiten G_{α} und G_{$\beta\gamma$} können anschließend nachfolgende Effektorproteine regulieren. Zur G-Protein-Inaktivierung wird das GTP der G_{α}-Untereinheit durch die intrinsische GTPase-Aktivität hydrolysiert, wodurch die Untereinheiten G_{α} und G_{$\beta\gamma$} reassoziieren und erneut an den Rezeptor binden können.¹⁶⁹

Es sind vier Hauptklassen von G_{α} -Proteinen identifiziert worden, welche nachfolgende Effektorproteine regulieren können. $G_{\alpha q}$ -Proteine modulieren das Enzym Phospholipase C β (s. Kapitel 3.1.5), $G_{\alpha 12}/_{13}$ -Proteine sind in Rho-vermittelte Signaltransduktionswege involviert, und $G_{\alpha i/0}$ - und $G_{\alpha s}$ -Proteine führen zu einer Abnahme bzw. Zunahme von
intrazellulären cAMP-Spiegeln.¹⁷⁰ Im Falle von G_{α s}-Proteinen erfolgt zunächst eine direkte Aktivierung der Adenylatcyclase, welche Adenosintriphosphat (ATP) zu cAMP und Pyrophosphat spaltet. Das gebildete cAMP bindet anschließend an eine Proteinkinase A, welche dann durch Phosphorylierungen bestimmte Zielenzyme und Transkriptionsfaktoren regulieren kann. Ein Abbau von intrazellulärem cAMP erfolgt durch Phosphodiesterasen (PDE), welche cAMP zu AMP abbauen.¹⁷⁰

Es ist generell akzeptiert, dass Adenosin-A_{2B}-Rezeptoren in einer Vielzahl von Zelllinien G_{α s}-Protein-gekoppelt vorliegen.^{39, 171-178} In HEK-293-Zellen, konnte von Cooper et al. ein endogener A_{2B}-Rezeptor identifiziert werden, da in cAMP-Experimenten für den A_{2B}-Rezeptor typische Affinitätsreihen für Agonisten und Antagonisten aufgestellt werden konnten. Der A_{2A}-Rezeptor-selektive Agonist CGS21680 konnte unterhalb von 30 μ M keine cAMP-Akkumulation in nativen HEK-293-Zellen hervorrufen.¹⁷¹

In Jurkat-T-Zellen konnte von Fredholm et al. ein cAMP-Signal durch NECA und Adenosin hervorgerufen werden, welches durch den Antagonisten 8-*p*-Sulfophenyl-theophyllin aufgehoben werden konnte und somit auf A₂-Rezeptoren in Jurkat-T-Zellen schließen lässt.¹⁷⁹ Weitere Untersuchungen an dieser Zelllinie wurden unter anderem von Van der Ploeg et al. durchgeführt, welche mit Hilfe einer mRNA-Isolierung und funktionellen cAMP-Experimenten zeigen konnten, dass sowohl A_{2A}- als auch A_{2B}-Rezeptoren in Jurkat-T-Zellen exprimiert werden.¹⁷⁶

3.1.4 Prinzip von cAMP-Akkumulationsexperimenten

Bei den in dieser Arbeit durchgeführten cAMP-Experimenten handelt es sich vom theoretischen Prinzip um ein Kompetitionsexperiment (s. 2.1.1). Bei diesem Assaysystem konkurriert der verwendete [³H]cAMP-Radioligand mit dem durch die Aktivierung der Rezeptoren gebildeten cAMP um die Bindungsstelle an einem spezifischen cAMP-Bindeprotein (Proteinkinase A). Mit steigender gebildeter cAMP-Menge sinkt somit die spezifische Bindung des Radioliganden an die Bindungsstelle. Um die cAMP-Menge, die durch Stimulierung mit einem spezifischen Agonisten von den Zellen produziert wurde, zu bestimmen, wird zusätzlich eine Standardgerade mit bekannten cAMP-Konzentrationen aufgenommen. Aus dieser kann anschließend der cAMP-Gehalt der unbekannten Proben berechnet werden. Des Weiteren kann auch der K_B-Wert eines Antagonisten bestimmt werden. Dieser ist ähnlich wie die Dissoziationskonstante K_D ein Maß für die Affinität der Verbindung an dem entsprechenden Rezeptorprotein.¹³³ Dafür wird die Dosis-Wirkungskurve des Agonisten in An- und Abwesenheit einer geeigneten Konzentration des Antagonisten

aufgenommen. Aus dem "Shift" ("Dose Ratio") und der eingesetzten Antagonist-Konzentration kann der K_B-Wert berechnet werden.¹³³

$$\frac{EC_{50} \text{ mit Antagonist}}{EC_{50} \text{ ohne Antagonist}} = Dose \text{ Ratio}$$

Gl. 3-1: Berechnung der "Dose Ratio".¹³³

$$\frac{[Antagonist]}{K_B} = Dose Ratio - 1$$

Gl. 3-2: Berechnung des K_B-Wertes.¹³³

3.1.5 Adenosin-A_{2B}-Rezeptor vermittelte intrazelluläre Calcium-Freisetzung

Allgemein wird durch die Aktivierung von G_{aq} -Proteinen eine Aktivierung der Phospholipase C β herbeigeführt, welche durch Spaltung von Phosphatidylinositol-4,5-bisphosphat (PIP₂) die beiden Second-Messenger Inositol-1,4,5-trisphosphat (IP₃) und 1,2-Diacylglycerol (DAG) generiert. IP₃ kann anschließend am endoplasmatische Retikulum (ER) IP₃-Rezeptoren aktivieren, wodurch es zu einer intrazellulären Calcium-Freisetzung kommt. Diese Aktivierung wird je nach schon vorhandenen intrazellulären Calcium-Spiegeln positiv oder negativ reguliert.¹⁸⁰ Der zweite Second-Messenger DAG führt zu einer Aktivierung der Proteinkinase C (PKC) welche als Serin-/Threonin-Kinase viele weitere Effektorproteine phosphorylieren kann.¹⁸¹

Dieser Signaltransduktionsweg ist für den A_{2B} -Rezeptor in verschiedenen Zelllinien wie HEK-293, HMC-1 und auch in einigen Krebszelllinien beschrieben worden.^{39, 182-185}

Für den A_{2B} -Rezeptor auf der humanen Leukämie T-Zelllinie Jurkat-T wurde zusätzlich eine intrazelluläre Calcium-Mobilisierung unabhängig von einem IP₃-Mechanismus beschrieben.¹⁴⁶ Auch in humanen Erythroleukämie-Zellen konnten Feokstistov et al. eine Calcium-Ausschüttung durch Stimulierung des A_{2B} -Rezeptors unabhängig von einer Aktivierung der Phospholipase C nachweisen. Wahrscheinlich wird in diesen Zellen durch einen Cholera-Toxin-sensitiven Mechanismus, welcher einen initialen Anstieg von intrazellulärem Calcium benötigt, ein Calcium-Kanal aktiviert.¹⁸⁶

3.1.6 Prinzip der fluorimetrischen Calcium-Experimente

Bei der Messung von intrazellulären Calcium-Spiegeln werden die zu untersuchenden Zellen zunächst mit einem membrangängigen Farbstoff (Oregon Green BAPTA1/AM) inkubiert. Dieser kann in der Form eines lipophilen Esters die Zellmembran passieren und wird anschließend im Cytosol durch Esterasen hydrolysiert. Da der Farbstoff unter physiologischen Bedingungen nun geladen vorliegt (deprotonierte freie Säure) kann er die Zelle nicht mehr verlassen. Nach Zugabe des spezifischen Agonisten, erfolgt durch die Rezeptoraktivierung eine Ca²⁺-Ionen Freisetzung aus dem ER, welche mit dem Farbstoff einen Chelatkomplex bilden können. Dadurch ändert sich das Fluoreszenzverhalten des Farbstoffes konzentrationsabhängig, was in einem Fluoreszenzmessgerät detektiert werden kann.¹⁸⁷

3.1.7 Pharmakologische Experimente mit dem A_{2B}-Rezeptor-Agonisten BAY60-6583

Der nicht vom Adenosin strukturell abgeleitete selektive und potente A_{2B}-Rezeptor-Agonist BAY60-6583 (s. Abb. 2-4) befindet sich zurzeit in der präklinischen Testung gegen Arteriosklerose.⁵⁶ Allerdings konnte kürzlich eine relativ gute Affinität von BAY60-6583 an rekombinanten Maus-A₁-Rezeptoren aufgezeigt werden (K_i-Wert 232 nM, Radioligand [¹²⁵I]I-AB-MECA), wohingegen jedoch keine Hemmung des durch Forskolin induzierten cAMP-Signals gemessen werden konnte.¹⁸⁸ Auch eine antagonistische Wirkung von BAY60-6583 an Maus-A₁-Rezeptoren erscheint unwahrscheinlich, da eine Konzentration von bis zu 1 μ M keine Verschiebung der Agonist-Dosis-Wirkungskurve (CCPA) bewirkte. Eine eindeutige Erklärung für die Diskrepanz zwischen Bindungsaffinität und funktioneller Potenz kann bislang nicht geliefert werden.¹⁸⁸

Weitere Studien mit BAY60-6583 wurden hauptsächlich in Bezug auf kardiovaskuläre Erkrankungen durchgeführt. So scheint die Verbindung durch die Aktivierung des A_{2B} -Rezeptors kardioprotektive Effekte hervorzurufen, da an Wildtyp-Mäusen eine signifikante Verringerung des Infarktausmaßes gemessen werden konnte. Im Gegensatz dazu konnte dieser Effekt an A_{2B} -Rezeptor "knock-out"-Mäusen nicht beobachtet werden.⁴¹ Zusätzlich konnte auch an Kaninchen-Herzen eine kardioprotektive Wirkung von BAY60-6583 festgestellt werden.¹⁸⁹ Des Weiteren scheint es zusätzlich Hinweise zu geben, dass sowohl A_{2A} - als auch A_{2B} -Rezeptoren an den kardioprotektiven Effekten beteiligt sind.¹⁹⁰⁻¹⁹¹

So konnte der unselektive Agonist NECA das Infarktausmaß an Ratten-Herzen deutlich reduzieren und dieser Effekt ließ sich sowohl durch den selektiven A_{2A} -Rezeptor-Antagonisten SCH58261 als auch durch den A_{2B} -Rezeptor-Antagonisten MRS1706 aufheben. Auch konnte BAY60-6583 das Infarktrisiko reduzieren, jedoch nicht der selektive

 A_{2A} -Agonist CGS21680. Interessanterweise konnte aber durch eine Kombination der beiden Agonisten BAY60-6583 und CGS21680 zusätzlich eine deutliche Reduzierung des Infarktausmaßes beobachtet werden, was den Schluss nahe legt, dass beide Adenosin-Rezeptor-Subtypen an diesen Effekten beteiligt sind.¹⁹¹ Weitere Krankheitsbilder die im Zusammenhang mit Adenosin- A_{2B} -Rezeptoren stehen, sind Asthma und andere entzündliche Erkrankungen wie z. B. Kolitis. So konnte BAY60-6583 in Wildtyp-Mäusen protektiv gegen entzündliche Darmerkrankungen wirken, wohingegen dieser Effekt in A_{2B} -Rezeptor "knock-out"-Mäusen nicht zu beobachten war.¹⁹²

In weiteren Studien an Wildtyp-Mäusen, konnte mit dem A_{2B} -Rezeptor-Antagonisten PSB-1115 eine gesteigerte Lungenentzündung, Ödembildung und ein abgeschwächter Gasaustausch verzeichnet werden, wohingegen eine Behandlung mit BAY60-6583 diese Symptome mildern konnte.⁷⁰ Eine ähnlich positive Wirkung auf eine durch Endotoxin hervorgerufene Lungenentzündung konnte von BAY60-6583 in Wildtyp-Mäusen beobachtet werden aber nicht an A_{2B} -Rezeptor "knock-out"-Mäusen.¹⁹³

Da es in Kapitel 2.5.2 Hinweise auf die Bindung an eine im Vergleich zu dem unselektiven Agonisten NECA unterschiedliche bevorzugte Rezeptorkonformation von BAY60-6583 am A_{2B} -Rezeptor gibt, war das Ziel dieses Teilprojektes die detaillierte funktionelle Charakterisierung dieser Verbindung an verschiedenen A_{2B} -Rezeptor exprimierenden Zelllinien. Des Weiteren wurden modifizierte Bindungsstudien wie Natrium-Shift-Experimente durchgeführt. Da BAY60-6583 bis heute in vielen Tierversuchen Verwendung fand und weiterhin findet, ist eine genauere Untersuchung unerlässlich.

3.2 Natrium-Shift-Experimente an humanen Adenosin-A_{2B}-Rezeptoren

Wie in Kapitel 3.1.2 beschrieben, können Natrium-Ionen Adenosinrezeptoren allosterisch modulieren, indem sie allgemein das Gleichgewicht zugunsten der inaktiven Rezeptorkonformation verschieben. So konnte von Bertarelli et al. an humanen A_{2B} -Rezeptoren gezeigt werden, dass der Agonist NECA unter Zusatz von 100 mM NaCl eine signifikante Rechtsverschiebung der Dosis-Wirkungskurve aufwies, während die Kompetitionskurve des inversen Agonisten PSB-298 eine signifikante Linksverschiebung zeigte.¹⁵⁶

Für die nachfolgenden Experimente wurde in kompetitiven Radioligand-Rezeptor-Bindungsstudien mit dem neuen Radioliganden [³H]PSB-603, die Affinität der entsprechenden Liganden in An- und Abwesenheit von 100 mM Natriumchlorid bestimmt.

Abb. 3-2: Kompetitionsexperimente von NECA, BAY60-6583 und PSB-603 gegen 0,3 nM [3 H]PSB-603 an CHO-hA_{2B}-Membranpräparationen in An- und Abwesenheit von 100 mM Natriumchlorid (n=3-4, ± SEM). Aus den drei bis vier unabhängigen Experimenten wurde als Mittelwert in der Abwesenheit von Natriumchlorid ein IC₅₀-Wert von 0,439 nM ± 0,044 nM für PSB-603, ein IC₅₀-Wert von 343 nM ± 176 nM für BAY60-6583 und ein IC₅₀-Wert von 1720 nM ± 559 nM für NECA bestimmt. In der Anwesenheit von 100 mM NaCl wurde für PSB-603 ein IC₅₀-Wert von 0,359 nM ± 0,050 nM, für BAY60-6583 ein IC₅₀-Wert von 559 nM ± 350 nM und für NECA ein IC₅₀-Wert von 13900 nM ± 3430 nM bestimmt.

Abb. 3-3: Vergleich der pIC₅₀-Werte von NECA, BAY60-6583 und PSB-603 gegen 0,3 nM [3 H]PSB-603 an CHO-hA_{2B}-Membranpräparationen in An- und Abwesenheit von 100 mM Natriumchlorid (n=3-4, ± SEM, ${}^{**}p < 0,01$).

In Anwesenheit von 100 mM Natriumchlorid wird die Kurve des Agonisten NECA signifikant (n=3, **p < 0.01, ungepaarter t-Test) nach recht verschoben, während die Kompetitionskurven von BAY60-6583 und PSB-603 keine signifikante Verschiebung aufzeigen (n=4, Abb. 3-2, Abb. 3-3).

3.2.1 Zusammenfassung und Diskussion

62

Wie schon von Bertarelli et al. für die Testung des Agonisten NECA gegen [³H]PSB-298 an humanen A_{2B}-Rezeptoren gezeigt, erfährt der Agonist NECA auch gegen den in dieser Arbeit verwendeten Radioliganden [³H]PSB-603 in Anwesenheit von 100 mM Natriumchlorid eine signifikante Rechtsverschiebung (Abb. 3-3). Dieses Ergebnis würde wie schon in Kapitel 2.5.3 vermutet, für eine bevorzugte Affinität des Agonisten NECA an die aktive Rezeptorkonformation sprechen.

Die beiden Verbindungen BAY60-6583 und PSB-603 weisen keine signifikante Verschiebung der Kompetitionskurven in Anwesenheit von Natriumchlorid auf (Abb. 3-3), wodurch sie theoretisch wie neutrale Antagonisten gleiche Affinität zur aktiven und inaktiven Rezeptorkonformation aufzeigen. Lediglich eine leichte jedoch nicht signifikante Linksverschiebung kann für PSB-603 in Anwesenheit von 100 mM Natriumchlorid beobachtet werden, was Hinweise auf eine bevorzugte Affinität zur inaktiven Rezeptorkonformation und somit auf einen möglichen inversen Agonismus geben könnte.

Es lässt sich somit auch mit diesen Experimenten wie in Kapitel 2.5.3 diskutiert schlussfolgern, dass BAY60-6583 und PSB-603 eine ähnliche Rezeptorkonformation des A_{2B} -Rezeptors bevorzugen, während NECA eine andere Rezeptorkonformation zu bevorzugen scheint.

3.3 Messung der intrazellulären cAMP-Akkumulation in HEK-293- und in rekombinanten HEK-hA_{2B}-Zellen

Wie in Abschnitt 3.1.3 beschrieben, liegt der Adenosin-A_{2B}-Rezeptor in einer Vielzahl von Zelllinien G_{α s}-Protein-gekoppelt vor. An nativen HEK-293-Zellen konnte in den folgenden Experimenten durch den unselektiven Agonisten NECA (5 μ M) ein cAMP-Signal induziert werden, wohingegen der selektive A_{2A}-Rezeptor Agonist CGS21680 sowohl in einer Konzentration von 1 μ M als auch von 10 μ M nur ein geringfügiges cAMP-Signal hervorrufen konnte. Weiterhin konnte der potente A_{2B}-Rezeptor-Antagonist PSB-603 in selektiven Konzentrationen das durch NECA (5 μ M) induzierte cAMP-Signal signifikant hemmen, während der potente A_{2A}-Rezeptor-Antagonist MSX-2 in selektiven Konzentrationen keine signifikante Abschwächung des durch 5 μ M NECA, 10 μ M Adenosin oder 10 μ M BAY60-6583 induzierten cAMP-Signals aufweisen konnte (Abb. 3-4).

Abb. 3-4: Induzierte cAMP-Signale an nativen HEK-293-Zellen durch NECA, CGS21680, BAY60-6583 und Adenosin in der An- und Abwesenheit von 0,2 μ M MSX-2 sowie die Hemmung des durch NECA (5 μ M) induzierten cAMP-Signals durch PSB-603. Die Daten wurden auf 5 μ M NECA (100 %) und Puffer (0 %) normalisiert (n=2-3, ± SEM, ^{***} p < 0,001).

Da das durch BAY60-6583 induzierte cAMP-Signal (10 μ M) an nativen HEK-293-Zellen im Vergleich zu NECA (5 μ M) und Adenosin (10 μ M) auffällig gering ausfiel (Abb. 3-4), wurden Experimente zum Vergleich der intrinsischen Aktivität der Agonisten durchgeführt.

Abb. 3-5: Vergleich der intrinsischen Aktivitäten der Agonisten NECA (100 μ M, 88 ± 8 %), BAY60-6583 (30 μ M, 4 ± 2 %) und Adenosin (300 μ M, 56 ± 4 %), an nativen HEK-293-Zellen. Die Daten wurden auf 300 μ M NECA (100 %) und Puffer (0 %) normalisiert (n=3, ± SEM, ^{**}p < 0,01 ^{***}p < 0,001).

Vergleicht man die intrinsischen Aktivitäten der untersuchten Agonisten an nativen HEK-293-Zellen so wird deutlich, dass NECA maximale intrinsische Aktivität aufweisen kann. Adenosin zeigt als endogener Agonist in diesen Versuchen eine signifikant geringere intrinsische Aktivität als NECA, während BAY60-6583 auch in hohen Konzentrationen bis zu 100 μ M nur einen marginalen Effekt hervorrufen kann (Abb. 3-5). Da der sichtbare Effekt eines partiellen Agonisten abhängig von der Rezeptorexpression bzw. Rezeptorreserve sein kann, wurden zusätzlich mit dem A_{2B}-Rezeptor transfizierte HEK-293-Zellen in cAMP-Experimenten untersucht, da diese erwartungsgemäß eine höhere Rezeptorexpression und Rezeptorreserve als native HEK-293-Zellen haben sollten. Die Bestimmung des B_{max}-Wertes von nativen HEK-293-Zellen war nicht möglich, da der A_{2B}-Rezeptor-Antagonist-Radioligand [³H]PSB-603 eine zu geringe spezifische Bindung an nativen HEK-293-Membranen aufwies und somit konnte in ersten Vorversuchen keine homologe Kompetitionskurve aufgenommen werden.

Abb. 3-6: Aus den vier unabhängigen Experimenten wurde als Mittelwert ein EC₅₀-Wert von 2510 nM \pm 593 nM für Adenosin, ein EC₅₀-Wert von 505 nM \pm 231 nM für BAY60-6583 und ein EC₅₀-Wert von 200 nM \pm 52 nM für NECA bestimmt. Vergleich der intrinsischen Aktivitäten der Agonisten NECA (10 μ M, 88 \pm 10 %), BAY60-6583 (10 μ M, 41 \pm 6 %) und Adenosin (100 μ M, 92 \pm 11 %) an rekombinanten HEK-hA_{2B}-Zellen. Die Daten wurden auf 300 μ M Adenosin (100 %) und Puffer (0 %) normalisiert (n=4, \pm SEM, ^{***} p < 0,001).

Vergleicht man die intrinsischen Aktivitäten der untersuchten Agonisten an rekombinanten HEK-hA_{2B}-Zellen so wird deutlich, dass NECA und der endogene Agonist Adenosin maximale intrinsische Aktivität aufweisen, während BAY60-6583 einen signifikant geringeren Effekt aufzeigt (Abb. 3-6). Im Gegensatz dazu zeigten NECA (200 ± 52 nM) und BAY60-6583 (505 ± 231 nM) ähnliche EC₅₀-Werte, während der EC₅₀-Wert (2510 ± 593 nM) für Adenosin signifikant höher war.

3.3.1 Zusammenfassung und Diskussion

Wie zuvor in der Literatur beschrieben, konnte bestätigt werden (Abb. 3-4), dass in HEK-293-Zellen hauptsächlich der Adenosin-A_{2B}-Rezeptor $G_{\alpha s}$ -Protein gekoppelt vorliegt, während der Einfluss des Adenosin-A_{2A}-Rezeptors vernachlässigbar zu sein scheint.^{171, 194}

So konnten Cooper et al. unter anderem zeigen, dass der selektive und potente A_{2A} -Rezeptor Agonist CGS21680 unterhalb von 30 µM keine cAMP-Akkumulation in nativen HEK-293-Zellen hervorrufen kann.¹⁷¹ Vergleicht man dann die auf die Stimulation des A_{2B} -Rezeptors zurückzuführenden intrinsischen Aktivitäten der Agonisten NECA, BAY60-6583 und Adenosin an nativen HEK-293-Zellen so wird deutlich, dass NECA maximale intrinsische Aktivität aufzeigt. Adenosin und insbesondere BAY60-6583 zeigen im Vergleich dazu auch in hohen Konzentrationen nur eine partielle Aktivierung (Abb. 3-5). In rekombinanten HEK-hA_{2B}-Zellen war dieser Effekt nicht ganz so deutlich ausgeprägt. In dieser Zelllinie zeigten NECA und Adenosin vergleichbare intrinsische Aktivitäten und BAY60-6583 im Vergleich dazu eine signifikant geringere intrinsische Aktivität, die jedoch insgesamt höher ausfiel als in nativen HEK-293-Zellen (Abb. 3-6). Die ermittelten Potenzen der Agonisten an HEK-hA_{2B}-Zellen zeigten folgende Reihenfolge: NECA \geq BAY60-6583 > Adenosin (Abb. 3-6). Obwohl von BAY60-6583 eine niedrigere Dosis im Vergleich zu Adenosin notwendig ist, um 50 % der Rezeptoren zu aktivieren, ist es nicht dazu in der Lage einen maximalen Effekt auszulösen. Die partial agonistische Wirkung von BAY60-6583 scheint somit in einer Zelllinie mit einer niedrigeren Rezeptorexpression wie den nativen HEK-293-Zellen insgesamt deutlicher zu werden, als in einer Zelllinie mit einer höheren Rezeptorexpression und hoher Rezeptorreserve (HEK-hA_{2B}). Ein Vergleich der B_{max}-Werte von nativen HEK-293- und HEK-hA_{2B}-Zellen konnte nicht erfolgen, da in ersten Vorversuchen keine ausreichende spezifische Bindung des A_{2B}-Rezeptor-Antagonisten [³H]PSB-603 an nativen HEK-293-Membranen gemessen werden konnte.

Da Agonisten gegenüber verschiedenen Signaltransduktionswegen eine funktionelle Selektivität aufweisen können ("biased-signalling"),⁵ wurde BAY60-6583 auch in Bezug auf eine mögliche Calcium-Freisetzung in HEK-293- und rekombinanten HEK-hA_{2B}-Zellen untersucht.

3.4 Messung der intrazellulären Calcium-Freisetzung in HEK-293- und in rekombinanten HEK-hA_{2B}-Zellen

In HEK-293-Zellen konnten die unselektiven Agonisten NECA (5 μ M) und Adenosin (10 μ M) ein Calcium-Signal induzieren, wohingegen auch bei diesem Signaltransduktionsweg der selektive und potente A_{2A}-Rezeptor-Agonist CGS21680 (10 μ M, 1 μ M) nur einen marginalen Effekt auslösen konnte. Auch die potenten Adenosin-A₃- und A₁-Rezeptor-Agonisten Cl-IB-MECA (0,2 μ M) und CCPA (0,2 μ M) zeigten keinen Effekt. Weiterhin konnte das durch 5 μ M NECA induzierte Calcium-Signal nahezu vollständig durch den potenten A_{2B}-Rezeptor-Antagonisten PSB-603 in selektiven Konzentrationen signifikant gehemmt werden, jedoch konnte keine signifikante Hemmung durch den potenten A_{2A}-Antagonisten PSB-10 (0,2 μ M) beobachtet werden (Abb. 3-7).

Abb. 3-7: Induzierte Calcium-Signale an nativen HEK-293-Zellen durch Adenosin, NECA, CGS21680, CL-IB-MECA und CCPA. Das durch NECA (5 μ M) induzierte Calcium-Signal konnte signifikant durch den Antagonisten PSB-603 gehemmt werden, jedoch nicht durch die Antagonisten MSX-2, PSB-10 und PSB-36. Die Daten wurden auf 10 μ M Adenosin (100 %) und Puffer + 0,2 μ M MSX-2 (0 %) normalisiert (n=3, ± SEM, ^{**}p < 0,01).

Da in HEK-293-Zellen das induzierte Calcium-Signal auch nur auf die Aktivierung des A_{2B} -Rezeptors zurückzuführen ist, ist auch hier ein Vergleich der intrinsischen Aktivitäten der unselektiven Adenosin-Rezeptor-Agonisten NECA und Adenosin mit dem selektiven A_{2B} -Rezeptor-Agonisten BAY60-6583 möglich.

Abb. 3-8: Vergleich der intrinsischen Aktivitäten der Agonisten NECA (100 μ M, 94 ± 7 %), BAY60-6583 (30 μ M, 13 ± 10 %) und Adenosin (300 μ M, 96 ± 13 %) an nativen HEK-293-Zellen. Die Daten wurden auf 300 μ M NECA (100 %) und Puffer (0 %) normalisiert (n=4, ± SEM, ^{***} p < 0,001).

Vergleicht man die intrinsischen Aktivitäten der untersuchten Agonisten an nativen HEK-293-Zellen, so wird deutlich, dass NECA und Adenosin maximale intrinsische Aktivität aufweisen, während BAY60-6583 auch in hohen Konzentrationen bis zu 100 μ M einen signifikant geringeren Effekt bewirkt (Abb. 3-8).

Auch in rekombinanten HEK-h A_{2B} -Zellen konnte diese Tendenz beobachtet werden, wenn auch in dieser Zelllinie eine insgesamt höhere intrinsische Aktivität (30 µM BAY60-6583 ca. 55 % intrinsische Aktivität) von BAY60-6583 gemessen werden konnte (Abb. 3-9).

Abb. 3-9: Aus den vier unabhängigen Experimenten wurde als Mittelwert ein EC₅₀-Wert von 990 nM ± 231 nM für Adenosin, ein EC₅₀-Wert von 579 nM ± 262 nM für BAY60-6583 und ein EC₅₀-Wert von 438 nM ± 177 nM für NECA bestimmt. Vergleich der intrinsischen Aktivitäten der Agonisten NECA (10 μ M, 87 ± 10 %), BAY60-6583 (30 μ M, 50 ± 6 %) und Adenosin (100 μ M, 99 ± 3 %) an rekombinanten HEK-hA_{2B}-Zellen. Die Daten wurden auf 300 μ M Adenosin (100 %) und Puffer (0 %) normalisiert (n = 4, ± SEM, ^{**}p < 0,01 ^{***}p < 0,001).

Die ermittelten Potenzen der Agonisten an HEK-h A_{2B} -Zellen zeigten folgende Reihenfolge: NECA (438 ± 177 nM) = BAY60-6583 (579 ± 262 nM) > Adenosin (990 ± 231 nM).

3.4.1 Zusammenfassung und Diskussion

Wie schon in der Literatur beschrieben, wird mit den Experimenten deutlich, dass nur der Adenosin-A_{2B}-Rezeptor in eine Calcium-Mobilisierung in HEK-293-Zellen involviert ist, während die anderen Adenosinrezeptorsubtyen nicht beteiligt sind (Abb. 3-7). So konnten Gao et al. zeigen, dass 1 μ M NECA ein Calcium-Signal in HEK-293-Zellen induziert, welches durch Enprofyllin (A_{2B}-selektiver-Antagonist) und Theophyllin (unselektiver Adenosin-Rezeptor-Antagonist) blockiert werden konnte, jedoch nicht durch WRC0571 (A₁-selektiver-Antagonist). Auch konnten die Agonisten CPA (A₁) 1 μ M, IB-MECA 1 μ M (A₃) oder CGS21680 1 μ M (A_{2A}) kein Calcium-Signal in HEK-293-Zellen induzieren.¹⁹⁴ Dadurch war es möglich, die intrinsischen Aktivitäten der unselektiven Adenosin-Rezeptor-Agonisten NECA und Adenosin mit der des selektiven A_{2B}-Rezeptor-Agonisten BAY60-6583 in HEK-293-Zellen zu vergleichen. In Experimenten an nativen HEK-293-Zellen wird deutlich, dass NECA und der endogene Agonist Adenosin in Calcium-Experimenten maximale intrinsische Aktivitäten aufweisen, während BAY60-6583 (30 μ M BAY60-6583 ca. 13 % intrinsische Aktivität) auch in relativ hohen Konzentrationen bis zu 100 μ M nur einen geringen Effekt hervorrufen kann (Abb. 3-8). Diese Tendenz war auch an rekombinanten HEK-hA_{2B}-Zellen zu verzeichnen, wo aber die intrinsische Aktivität von BAY60-6583 aufgrund der höheren Rezeptorexpression und Rezeptorreserve insgesamt gesteigert war (30 μ M BAY60-6583 ca. 55 % intrinsische Aktivität) (Abb. 3-9). Die für die Agonisten ermittelten Potenzen in Calcium-Experimenten liegen in der gleichen Größenordnung wie die in cAMP-Experimenten ermittelten: NECA (438 ± 177 nM) = BAY60-6583 (579 ± 262 nM) > Adenosin (990 ± 231 nM) (Abb. 3-9). Auch hier zeigt BAY60-6583 eine relativ gute Potenz bei jedoch geringer intrinsischer Aktivität. Auch bei diesem Signaltransduktionsweg scheint sich somit zu bestätigen, dass BAY60-6583, im Vergleich zu dem endogenen Agonisten Adenosin und dem Agonisten NECA, als partieller Agonist wirksam ist.

3.5 Messung der intrazellulären cAMP-Akkumulation und Calcium-Freisetzung in Jurkat-T- und Messung der Calcium-Freisetzung in CHO-hA_{2B}-Zellen

3.5.1 Messung der intrazellulären cAMP-Akkumulation in Jurkat-T-Zellen

Um die gemessenen Effekte von BAY-606583 in einem weiteren, unterschiedlichem Zellsystem zu bestätigen, wurden zur nachfolgenden Untersuchung Jurkat-T-Zellen herangezogen. Diese besitzen eine relativ hohe A_{2B} -Rezeptor Expression, während die Expressionslevels der anderen Adenosinrezeptorsubtypen zu vernachlässigen sind.¹⁴⁶ In Vorversuchen konnte gezeigt werden, dass NECA (10 μ M) ein cAMP-Signal in Jurkat-T-Zellen induzieren kann, wohingegen der selektive A_{2A} -Rezeptor-Agonist CGS21680 (10 μ M) nur einen geringen Effekt hervorrief. Weiterhin konnte der potente A_{2B} -Rezeptor-Antagonist PSB-603 in selektiven Konzentrationen das durch NECA induzierte cAMP-Signal nahezu vollständig hemmen (Abb. 3-10).

Abb. 3-10: Durch Forskolin, NECA, BAY60-6583 und CGS21680 induziertes cAMP-Signal in Jurkat-T-Zellen. Die Daten wurden auf 10 μ M Forskolin (100 %) und Puffer (0 %) normalisiert (n=2, ± SEM, ***p < 0,001).

BAY60-6583 zeigte in einer Konzentration von 10 μ M nur einen geringen Effekt (Abb. 3-10). Als 100 % Wert wurde in diesen Versuchen der Naturstoff Forskolin verwendet, welcher unabhängig von einer Rezeptoraktivierung direkt die Adenylatcyclase stimuliert und so zu einem maximalen cAMP-Signal führen kann.¹⁹⁵ Es konnte somit bestätigt werden, dass das durch den unselektiven Agonisten NECA induzierte cAMP-Signal in Jurkat-T-Zellen nur durch eine Aktivierung des A_{2B}-Rezeptors zustande kommt, wohingegen der Einfluss des A_{2A}-Rezeptors vernachlässigbar ist. Da für partielle Agonisten weiterhin bekannt ist, dass sie in Gegenwart eines Vollagonisten als Antagonist wirken können, wurden weiterführende Experimente an Jurkat-T-Zellen durchgeführt. Dafür wurden die Zellen mit 10 μ M NECA bzw. 250 μ M Adenosin in Anwesenheit steigender Konzentrationen an BAY60-6583 inkubiert.

Abb. 3-11: Sigmoidale Dosis-Wirkungskurve von BAY60-6583 in Anwesenheit von 10 μ M NECA oder 250 μ M Adenosin in cAMP-Assays an Jurkat-T-Zellen. Die Daten wurden relativ zu 10 μ M NECA bzw. 250 μ M Adenosin normalisiert (n=3-4, \pm SEM). Aus den drei bis vier unabhängigen Experimenten wurde als Mittelwert ein IC₅₀-Wert von 7500 nM \pm 1400 nM für BAY60-6583 gegen NECA 10 μ M und ein IC₅₀-Wert von 25100 nM \pm 5600 nM für BAY60-6583 gegen 250 μ M Adenosin bestimmt.

Es konnte gezeigt werden, dass BAY60-6583, dass durch 10 μ M NECA induzierte cAMP-Signal mit einem IC₅₀-Wert von 7500 ± 1400 nM und das durch 250 μ M Adenosin induzierte cAMP-Signal mit einem IC₅₀-Wert von 25100 ± 5600 nM inhibieren kann. Weiterhin konnte BAY60-6583 (100 μ M) das durch 10 μ M NECA induzierte cAMP-Signal zu nahezu 82 % und das durch 250 μ M Adenosin induzierte cAMP-Signal zu nahezu 71 % hemmen (Abb. 3-11). Um diese antagonistischen Effekte noch weiter zu bestätigen, wurde zusätzlich ein K_B-Wert für BAY60-6583 an Jurkat-T-Zellen bestimmt. Dafür wurde die cAMP-Stimulierung durch NECA in An- und Abwesenheit von 5 μ M BAY60-6583 gemessen.

Abb. 3-12: Sigmoidale Dosis-Wirkungskurve von NECA in An- und Abwesenheit von 5 μ M BAY60-6583 in cAMP-Assays an Jurkat-T-Zellen. Die Daten wurden relativ zu 300 μ M (100 %) oder 1000 μ M (100 %) NECA normalisiert (n=3, \pm SEM, **p < 0,01). Aus den drei unabhängigen Experimenten wurde als Mittelwert ein K_B-Wert von 393 nM \pm 48 nM für BAY60-6583 berechnet.

In Abwesenheit von BAY60-6583 wurde für NECA ein EC₅₀-Wert von 3810 \pm 560 nM gemessen, während in Anwesenheit von 5 μ M BAY60-6583 eine signifikante Rechtsverschiebung der Agonist-Dosis-Wirkungskurve gemessen werden konnte (52900 \pm 7000 nM), wobei der maximal ausgelöste Effekt jedoch nahezu gleich blieb (Abb. 3-12). Aus diesem "Shift" konnte mit Hilfe der Gleichungen Gl. 3-1 und Gl. 3-2 ein funktioneller K_B-Wert von 393 \pm 48 nM für BAY60-6583 berechnet werden.

3.5.2 Messung der intrazellulären Calcium-Freisetzung in Jurkat-T-Zellen

Auch in Jurkat T-Zellen scheint hauptsächlich der Adenosin- A_{2B} -Rezeptor an einer Calcium-Mobilisierung beteiligt zu sein.¹⁴⁶ Zusätzlich konnten Borrmann et al. jedoch zeigen, dass auch der Adenosin- A_{2A} -Rezeptor mit an einer Calciumfreisetzung beteiligt zu sein scheint, da sowohl der A_{2B} -Rezeptor-spezifische Antagonist PSB-603 als auch der A_{2A} -Rezeptorspezifische Antagonist MSX-2 das durch NECA (10 μ M) induzierte Calcium-Signal inhibieren konnten.⁴⁵

Aus diesem Grund wurden nachfolgende Calcium-Experimente in Anwesenheit von 0,2 μ M MSX-2 durchgeführt, um die möglichen Effekte des A_{2A}-Rezeptors zu inhibieren (Abb. 3-13).

Abb. 3-13: Vergleich der intrinsischen Aktivitäten der Agonisten NECA, BAY60-6583 und Adenosin an nativen Jurkat-T-Zellen. Die Daten wurden auf 300 μ M Adenosin + 0,2 μ M MSX-2 (100 %) und Puffer + 0,2 μ M MSX-2 (0 %) normalisiert (n=3 ± SEM, ^{***} p < 0,001).

Auch in diesem Zellsystem und mit diesem Signaltransduktionsweg zeigte BAY60-6583 nur einen - im Vergleich zu NECA und Adenosin partiellen agonistischen Effekt.

3.5.3 Messung der intrazellulären Calcium-Freisetzung in CHO-hA_{2B}-Zellen

Da das in HEK-293- und Jurkat-T-Zellen induzierte Calcium-Signal hauptsächlich durch eine Aktivierung des A_{2B} -Rezeptors zustande kommt,^{39, 146} wurden rekombinante CHO-h A_{2B} -Zellen auf ihre Fähigkeit hin untersucht, ein mögliches Calcium-Signal durch die entsprechenden Agonisten zu induzieren (Abb. 3-14).

Abb. 3-14: Relative Fluoreszenzeinheiten induziert durch NECA, BAY60-6583, Adenosin, ATP und UTP an rekombinanten CHO-hA_{2B}-Zellen. Der Versuch wurde in Triplikaten durchgeführt.

Weder NECA oder BAY60-6583 noch Adenosin konnten ein Calcium-Signal in dieser Zelllinie induzieren, während die P2Y₂-Rezeptor-Agonisten ATP und UTP einen intrazellulären Calcium-Anstieg aufgrund von nativ exprimierten P2Y₂-Rezeptoren hervorrufen können.¹⁵⁴

3.5.4 Zusammenfassung und Diskussion

Wie mit cAMP-Experimenten bestätigt, wird deutlich, dass nur der Adenosin- A_{2B} -Rezeptor in die cAMP-Akkumulation in Jurkat-T-Zellen involviert ist, während der A_{2A} -Rezeptor keine Rolle spielt (Abb. 3-10). So konnten Van der Ploeg et al. zuvor schon zeigen, dass NECA ein cAMP-Signal in Jurkat-T-Zellen induzieren kann, während der selektive und potente A_{2A} -Agonist CGS21680 in Konzentrationen bis zu 100 μ M inaktiv war.¹⁷⁶

Partialagonisten besitzen außerdem die Fähigkeit in Anwesenheit von vollen Agonisten je nach Gewebe und Rezeptorexpression bzw. Rezeptorreserve, als Antagonisten zu wirken.¹⁹⁶ Dieses Phänomen konnte in Jurkat-T-Zellen deutlich gezeigt werden, da sowohl das durch NECA (10 μ M) als auch das durch Adenosin (250 μ M) induzierte cAMP-Signal durch BAY60-6583 konzentrationsabhängig inhibiert werden konnte (Abb. 3-11).

Nonaka et al. konnten mit Hilfe von cAMP-Assays an Jurkat-T-Zellen einen K_B -Wert (52 nM) von der Verbindung KW-3902 an humanen A_{2B} -Rezeptoren bestimmen. So erfolgte in Anwesenheit von verschiedenen selektiven Konzentrationen des Antagonisten eine signifikante Rechtsverschiebung der Dosis-Wirkungskurve für NECA.¹⁹⁷ Diese beobachtete Rechtsverschiebung der NECA-Dosis-Wirkungskurve an Jurkat-T-Zellen konnte auch mit

BAY60-6583 beobachtet werden (Abb. 3-12). Daraus konnte für BAY60-6583 ein K_B-Wert von 393 ± 48 nM berechnet werden, welcher ca. 100-fach niedriger liegt, als der in Radioligand-Bindungsstudien bestimmte K_i-Wert (31400 nM) gegen [³H]NECA an humanen A_{2B}-Rezeptoren (Tab. 2-1). Dadurch, dass der maximal Effekt von NECA in Anwesenheit von BAY60-6583 nahezu erhalten bleibt und nur eine Rechtsverschiebung der Dosis-Wirkungskurve beobachtet werden konnte, wird BAY60-6583 sehr wahrscheinlich wie ein kompetitiver Antagonist die gleiche oder zumindest eine ähnliche Bindungsstelle am A_{2B}-Rezeptor wie NECA besitzen.

In Calcium-Experimenten konnte an Jurkat-T-Zellen ähnlich wie in HEK-293-Zellen ein signifikant geringerer Effekt von BAY60-6583 im Vergleich zu NECA und Adenosin gemessen werden (Abb. 3-13). Auch in dem Testsystem der Jurkat-T-Zellen lässt sich somit ein partial agonistischer Effekt von BAY60-6583 sowohl mit cAMP- als auch mit Calcium-Experimenten bestätigen.

Im Gegensatz dazu konnte in rekombinanten CHO-h A_{2B} -Zellen kein Calcium-Signal durch die A_{2B} -Rezeptor spezifischen Agonisten hervorgerufen werden (Abb. 3-14).

3.6 Zusammenfassung und Diskussion

In den in Kapitel 3.3, 3.4 und 3.5 durchgeführten Experimenten wurde die intrinsische Aktivität von BAY60-6583 an verschiedenen A_{2B}-Rezeptor exprimierenden Zellen untersucht. BAY60-6583 zeigte in cAMP- und Calcium-Mobilisierungsexperimenten sowohl an nativen HEK-293- als auch an HEK-hA_{2B}-Zellen eine deutlich niedrigere intrinsische Aktivität als die Agonisten Adenosin und NECA. Dabei war dieser Effekt an den nativen HEK-293-Zellen in beiden Signaltransduktionswegen ausgeprägter als an rekombinanten HEK-hA_{2B}-Zellen. Dies kann auf die wahrscheinlich geringere A_{2B}-Rezeptor-Expression und Rezeptorreserve in nativen HEK-293-Zellen zurückgeführt werden, da der Effekt für Partialagonisten in einem System mit geringer Rezeptorreserve deutlicher wird. Des Weiteren scheint die durch einen partiellen Agonisten induzierte Rezeptorkonformation eine geringere Affinität zu G-Proteinen zu besitzen als die Rezeptorkonformation die durch einen vollen Agonisten induziert wird.¹⁹⁸ Dies konnte mit den durchgeführten NaCl-Shift- Experimenten bestätigt werden, da BAY60-6583 eine ähnliche Rezeptorkonformation wie der Antagonist [³H]PSB-603 zu bevorzugen scheint, welche unterschiedlich zu der von NECA ist (3.2.1).

Auch an nativen Jurkat-T-Zellen konnte sowohl mit cAMP- als auch mit Calcium-Experimenten ein eindeutiger partial-agonistischer Effekt von BAY60-6583 nachgewiesen werden. In Anwesenheit der Vollagonisten NECA und Adenosin konnte der antagonistische Effekt BAY60-6583 cAMP-Experimenten von in deutlich gezeigt werden (Abb. 3-11, Abb. 3-12). So kann BAY60-6583 generell in einer nativen Zelllinie mit erwartungsgemäß geringer A_{2B}-Rezeptorexpression in Anwesenheit eines Vollagonisten wie z. B. Adenosin als Antagonist wirken und in Abwesenheit von Adenosin als Partialagonist, was eine funktionelle Selektivität dieser Verbindung bewirkt, welche therapeutisch von Vorteil sein kann. Die Expression von A_{2B}-Rezeptoren scheint somit in Jurkat-T-Zellen, ähnlich wie in nativen HEK-293-Zellen, nur moderat zu sein, obwohl von Mirabet et al. an Jurkat-T-Zellen eine relativ hohe Expression von A2B-Rezeptorengefunden wurde. So konnte mit 49 nM [³H]NECA ein B_{max}-Wert von 1,1 ± 0,5 pmol/mg Protein bestimmt werden, während die spezifische Bindung der A1,- A3- und A2A-Radioliganden [3H]DPCPX, [3H]R-Pia und [3H]CGS21680 vernachlässigbar erschien.¹⁴⁶ Eine weitere mögliche Erklärung für die geringe intrinsische Aktivität von BAY60-6583 an Jurkat-T-Zellen könnte auch eine mögliche Dimerisierung von A_{2B}- und A_{2A}-Rezeptoren mit veränderter Pharmakologie sein.

So konnte Svenja Lacher in ihrer Doktorarbeit an Jurkat-T-Zellen zeigen, dass ein durch einen A_{2A}-Agonisten induziertes Calcium-Signal nicht nur durch einen selektiven A_{2A}-Antagonisten blockiert werden konnte, sondern auch teilweise durch einen selektiven A2B-Rezeptor-Antagonisten.¹⁹⁹ Zusätzlich konnte mit Hilfe von Radioligand-Rezeptor-Bindungsstudien eine relativ gute spezifische Bindung von [3H]PSB-603 (A2B-spezifischen-Antagonist) und MSX-2 (A2A-spezifischer-Antagonist) an dieser Zelllinie bestimmt werden, während für die A1- und A₃-spezifischen Radioliganden [³H]CCPA und [³H]PSB-11 nur marginale spezifische Bindungen bestimmt werden konnten. Bei sehr guter Expression der A_{2B}-(B_{max}: 75,5 pmol/ mg Protein) und A_{2A}-Rezeptoren, (B_{max}: 4,56 pmol/mg Protein) konnte eine signifikant geringere Affinität vieler Subtyp-spezifischen Agonisten und Antagonisten beobachtet werden als erwartet.¹⁹⁹ So konnte für [³H]MSX-2 ein K_D-Wert von 287 nM an A2A-Rezeptoren in Jurkat-T-Zellmembranen bestimmt werden, während an humanen, rekombinanten A2A-Adenosinrezeptoren ein K_D-Wert von 7,3 nM für [3H]MSX-2 beschrieben wurde.¹⁹⁹ Auch für den spezifischen A2B-Antagonisten [3H]PSB-603 konnte mit einem KD-Wert von ca. 55 nM an Jurkat-T-Zellmembranen ein hoher Affinitätsverlust im Vergleich zu rekombinanten A_{2B}-Rezeptoren in CHO-Zellen (K_D-Wert 0,403 nM) verzeichnet werden.¹⁹⁹ Weitere Theorien für die Wirkung von Partialagonisten beruhen auf der Tatsache, dass diese nicht lange genug an den Rezeptor binden können, um einen vollen Effekt auszulösen.²⁰⁰ Der von Svenja Lacher bestimmte Ki-Wert von BAY60-6583 an Jurkat-T-Zellen gegen [³H]PSB-603 zeigt eine deutlich geringere Affinität (K_i-Wert: 12000 nM)¹⁹⁹ im Vergleich zu dem an rekombinanten CHO-A_{2B}-Zellen ($K_i = 212 \text{ nM}$) mit dem gleichen Radioliganden,¹⁵⁸ was somit auch ein natives Rezeptordimer in Jurkat-T-Zellen wahrscheinlich macht.

Obwohl es sowohl in Jurkat-T- als auch in HEK-293-Zellen Hinweise auf einen endogenen A_{2A} -Rezeptor gibt, wird die Calcium-Ausschüttung in diesen Zelllinien hauptsächlich dem A_{2B} -Rezeptor zugeschrieben.^{39, 146} Rekombinante CHO-h A_{2B} -Zellen zeigten nach der Zugabe von NECA, Adenosin oder BAY60-6583 jedoch kein Calcium-Signal, obwohl diese Zelllinie entsprechende G_q -Proteine besitzt, da die spezifischen P2Y₂-Rezeptor- (native Expression) Agonisten ATP und UTP ein Calcium-Signal induzieren können (Abb. 3-14). Möglicherweise könnte also auch die Calcium-Ausschüttung in HEK-293- und Jurkat-T-Zellen erst durch eine Dimerisierung von A_{2B} - und A_{2A} -Rezeptoren in diesen Zelllinien zustande kommen.

Es bleibt festzuhalten, dass insbesondere Jurkat-T-Zellen auch durch die veränderte Affinität vieler A_{2B} -spezifischer Liganden (s. Tab. 4-3), ein natives Zellsystem darstellen, in denen eine Heterodimerisierung von A_{2B} - und A_{2A} -Rezeptoren vorhanden sein könnte.

4 Pharmakologische Untersuchungen an doppelt-transfizierten CHO-hA_{2B}-hA_{2A}-Zellen

4.1 Einleitung

Für den Adenosin- A_{2B} -Rezeptor gibt es bislang Hinweise auf eine mögliche antagonistische Interaktion mit dem Dopamin- D_2 -Rezeptor in Ratten-Chemorezeptor-Zellen.²⁰¹ So konnte der in cAMP-Experimenten bestimmte inhibitorische Effekt von A_2 -Rezeptor-Antagonisten durch D_2 -Rezeptor-Antagonisten aufgehoben werden. Weiterhin konnte der stimulierende Effekt von A_2 -Rezeptor-Agonisten sowohl durch D_2 -Rezeptor-Agonisten als auch durch A_{2B} -Rezeptor-Antagonisten aufgehoben werden.²⁰¹

Eine Koexpression von A2A- und A2B-Rezeptoren ist in vielen verschiedenen Zellsystemen beschrieben worden.^{173, 176, 183-184, 202} Svenja Lacher konnte wie in Abschnitt 3.6 beschrieben, durch ein verändertes pharmakologisches Profil vieler A2A- und A2B-Rezeptor-Agonisten und Antagonisten Hinweise auf eine mögliche A2A-A2B-Rezeptor Heterodimerisierung in Jurkat-T-Zellen finden.¹⁹⁹ Weitere Hinweise auf ein A2A-A2B-Rezeptor Heterodimer durch eine veränderte Pharmakologie könnte es an der humanen Blasen-Karzinom-Zelllinie T 24 geben. Obwohl in dieser Zelllinie die mRNA sowohl für A2A- als auch für A2B-Rezeptoren gut detektiert werden konnte, war der selektive und potente A2A-Rezeptor-Agonist CGS21680 in cAMP-Experimenten (<10 µM) nahezu inaktiv.¹⁸³ Das durch NECA (700 nM) induzierte cAMP-Signal konnte jedoch durch den A2A-Antagonisten SCH58261 mit einem IC50-Wert von 405 \pm 112 nM inhibiert werden.¹⁸³ Bei der Verbindung SCH58261 handelt es sich um einen selektiven, hoch A_{2A}-Rezeptor-Antagonisten potenten mit einem in Sättigungsexperimenten bestimmten K_D-Wert von 2,3 nM an humanen Adenosin-A_{2A}-Rezeptoren.^{151, 203-204}

Sowohl A_{2A} - als auch A_{2B} -Adenosinrezeptoren scheinen eine wichtige Rolle bei kardiovaskulären Erkrankungen zu spielen.^{190-191, 205-208} So konnte NECA das Infarktrisiko an Ratten-Herzen reduzieren, während sowohl der selektive A_{2A} -Rezeptor-Antagonist SCH58261 als auch der selektive A_{2B} -Rezeptor-Antagonist MRS1706 diesen Effekt aufheben konnten. Auch konnte durch BAY60-6583 das Infarktrisiko minimiert werden, was durch den selektiven A_{2A} -Rezeptor-Agonisten CGS21680 nicht möglich war. Nur eine Kombination aus beiden Agonisten konnte das Infarktrisiko noch weiter reduzieren.¹⁹¹ Es scheint damit weitere Hinweise auf eine spezifische Interaktion zwischen A_{2A} - und A_{2B} -Rezeptoren auch im Herzgewebe zu geben. Ähnliche Effekte konnten auch an Mäuse-Herzen beobachtet werden, wo NECA eine protektive Funktion an CD73-,,knock-out"-Mäusen aufweisen konnte. Durch Koadministration der beiden Subtyp-spezifischen Agonisten BAY60-6583 und CGS21680 konnte ebenfalls eine protektive Wirkung erzielt werden.¹⁹⁰

Zahn et al. konnten zeigen, dass eine Inhibition von A_{2A} - oder von A_{2B} -Rezeptoren notwendig ist, um eine durch den A_1 -Rezeptor vermittelte kardioprotektive Wirkung hervorzurufen. So konnte sowohl durch eine pharmakologische Blockade der A_{2A} - und A_{2B} -Rezeptoren durch spezifische Antagonisten (SCH58261, MRS1754) als auch durch die Verwendung von A_{2A} und A_{2B} -Rezeptor-"knock-out"-Mäusen, eine reduzierte kardioprotektive Wirkung des selektiven A_1 -Rezeptor-Agonisten CHA beobachtet werden.²⁰⁶

Weiterhin konnte eine 4,5-fach gesteigerte A_{2B} -Rezeptor-Expression in A_{2A} -Rezeptor-"knock-out"-Mäusen beobachtet werden,²⁰⁹ was auch Hinweise auf eine mögliche Kommunikation der Rezeptoren untereinander geben könnte.

Sanjani et al. konnten zusätzlich eine kompensatorische Steigerung der A_{2A}-Rezeptor-Expression in A_{2B}-Rezeptor-,,knock-out"-Mäusen feststellen.²⁰⁵ BAY60-6583 hatte in A_{2B}-Rezeptor-,,knock-out"-Mäusen keinen Effekt auf den Koronarfluss, in WT-Mäusen konnte hingegen eine Steigerung des Koronarflusses beobachtet werden. Im Gegensatz dazu konnten sowohl NECA als auch CGS21680 den Koronarfluss in A_{2B}-Rezeptor-,,knock-out"-Mäusen mehr steigern als in WT-Mäusen.²⁰⁵ Auch konnte der A_{2A}-selektive Antagonist SCH58261 den durch NECA induzierten Anstieg im Koronarfluss in A_{2B}-Rezeptor-,,knock-out,,-Mäusen signifikant mehr inhibieren als in WT-Mäusen. Weiterhin konnte NECA keinen Anstieg des Koronarflusses in A_{2A}/A_{2B}-,knock-out"-Mäusen induzieren. Es wird deutlich, dass sowohl A_{2A}- als auch A_{2B}-Rezeptoren mit in die Änderungen des Koronarflusses involviert sind und dass in A_{2B}-Rezeptor-,,knock-out"-Mäusen eine gesteigerte Expression von A_{2A}-Rezeptoren erfolgt.²⁰⁵

Erste Untersuchungen in einem künstlich erzeugten Zellsystem zur Interaktion von Adenosin-A_{2A}- und A_{2B}- Rezeptoren wurden kürzlich von Moriyama et al. durchgeführt.¹¹² Sie stellten mit Hilfe von Immunoassays fest, dass die Oberflächenexpression der A_{2B}-Rezeptoren in transfizierten HEK-AD-293 Zellen signifikant geringer ausfiel, als die Oberflächenexpression der A_{2A}-Rezeptoren. Um zu untersuchen, ob der A_{2B}-Rezeptor im C-Terminus ein dominantes Transportsignal besitzt, um vom ER zur Zelloberfläche transportiert zu werden, oder ob der C-Terminus des A_{2B}-Rezeptors ein ER-Retentionssignal enthält, wurden verschiedene A_{2B}-Rezeptormutanten mit verkürzten C-Termini hergestellt. So konnten die A_{2B}-Rezeptormutanten 306 und 292 Stopp die Oberflächenexpression zwar etwas reduzieren, jedoch waren trotzdem noch ca. 50 % der A2B-Rezeptoren in der Membran exprimiert, was den Schluss nahe legt, dass der C-Terminus des A2B-Rezeptors nicht zwingend für eine Oberflächenexpression erforderlich ist. Es scheint also weder ein ausgeprägtes ER-Retentionssignal noch ein dominantes Transportsignal zur Plasmamembran im C-Terminus des A_{2B}-Rezeptors enthalten zu sein.¹¹² Im Gegensatz dazu war die Oberflächenexpression der Mutanten von A_{2A}- und β_2 -Rezeptoren mit verkürzten C-Termini fast vollständig aufgehoben. Zu weiteren Untersuchung wurden Chimären hergestellt, wobei eine aus dem A2A-Rezeptor mit dem C-Terminus des A_{2B}-Rezeptors bestand und eine weitere aus dem β_2 -Rezeptor mit dem C-Terminus des A2B-Rezeptors. Diese Mutanten zeigten eine etwas bessere Oberflächenexpressionen (20-30 % vom Wildtyp) als die A2A- und β_2 -Rezeptoren (weniger als 5 % vom Wildtyp) mit verkürzten C-Termini, jedoch eine geringere Expression als die Wildtyp-Rezeptoren. Dies bestätigt zusätzlich, dass der C-Terminus des A_{2B}-Rezeptors weder ein ER-Retentionssignal noch ein dominantes Transportsignal zur Plasmamembran enthält.¹¹² Darüber hinaus wurde auch eine Chimäre aus dem Adenosin-A2B-Rezeptor mit dem **C**-Terminus des A_{2A}-Rezeptors hergestellt. Diese konnte die A_{2B} -Rezeptoroberflächenexpression dramatisch steigern (mehr als 300 % vom WT), was den Schluss nahe legt, dass ein dominantes Transportsignal zur Plasmamembran aus dem C-Terminus des A2A-Rezeptors wichtig ist (F(x)6LL-Motif) bzw. dass dem A2B-Rezeptor-C-Terminus dieses Transportsignal fehlt.¹¹² Um zu überprüfen ob eine gesteigerte A_{2B}-Rezeptor-Oberflächenexpression auch aufgrund eines möglichen Heterodimers zustande kommen könnte, wurden A2A- und A2B-Rezeptoren in HEK-AD-293-Zellen kotransfiziert. Nach Kotransfektion konnte auch hier eine gesteigerte Oberflächenexpression des A2B-Rezeptors gemessen werden, was den Schluss eines möglichen A2A-A2B-Heterodimers nahe legt.¹¹² Die physikalische Interaktion der beiden Rezeptor-Subtypen in transfizierten HEK-AD-293 Zellen konnte anschließend auch mit Hilfe einer Koimmunpräzipitation bestätigt werden.¹¹² Weiterhin konnte in einem ex-vivo System gezeigt werden, dass die durch den A2B-Rezeptor induzierte cAMP-Menge in Splenozyten von A2A-Rezeptor-"knock-out"-Mäusen geringer ausfiel als in Wildtyp-Mäusen, was eine höhere Oberflächenexpression des A2B-Rezeptors in Gegenwart des A2A-Rezeptors noch zusätzlich bestätigt.¹¹²

Da es durch pharmakologische Besonderheiten an Jurkat-T-Zellen und an Herzgeweben sowie auch in kotransfizierten HEK-AD-293-Zellen deutliche Hinweise auf eine A_{2A}-A_{2B}-Rezeptor-Heterodimerisierung gibt, wurde diese mit weiterführenden Methoden genauer untersucht. Als Modellsystem wurden CHO-K1-Zellen gewählt, da diese im Gegensatz zu der von Moriyama et al. gewählten HEK-AD-293-Zelllinie,¹¹² die sich aus HEK-293-Zellen,

transfiziert mit einem zusätzlichen Gen für eine bessere Zelladhäsion ableiten,²¹⁰ keine nativen Adenosinrezeptoren besitzen,²¹¹ welche die Expression der zusätzlich eingebrachten A_{2B}- und A_{2A}-Konstrukte beeinflussen könnten. Um erste Hinweise für eine A_{2A}-A_{2B}- Rezeptor-Heterodimerisierung in CHO-K1-Zellen zu erhalten, wurden zunächst stabile, doppelt-transfizierte Zelllinien mit verschiedenen retroviralen Vektoren (pQCXIN-hA_{2B}/pQCXIP-hA_{2A}, pLXSN-hA_{2B}/pQCXIP-hA_{2A}) generiert, die den Vorteil einer konstanten Rezeptorexpression insbesondere für vergleichbare pharmakologische Experimente liefern können.

4.2 Detektion von A_{2A}- und A_{2B}-Rezeptoren auf mRNA-Ebene

Da keine geeigneten Antikörper für Adenosin-A_{2A}- und A_{2B}-Rezeptoren zur Verfügung standen und da aufgrund einer wahrscheinlich relativ geringen Expression des A_{2A}-Rezeptors keine Bindung der A_{2A}-Rezeptor spezifischen Radioliganden [³H]MSX-2 und [³H]CGS21680 an den generierten CHO-hA_{2B}-hA_{2A} Zelllinien gemessen werden konnte (s. Tab. 4-3), wurde die erfolgreiche Kotransfektion der Zellen durch Detektion der mRNA überprüft. Nach der Extraktion der mRNA aus den CHO-K1- (Kontrolle), CHO-hA_{2B}- und aus den CHO-hA_{2B}-hA_{2A}-Zellen, wurde diese durch reverse Transkription in cDNA umgeschrieben. Anschließend wurde von den jeweiligen cDNAs eine PCR mit genspezifischen Primern für hA_{2A}- hA_{2B}-Rezeptoren und für β-Aktin durchgeführt.

Abb. 4-1: Gen-Fragment-Amplifizierung aus cDNA von CHO-K1- (oben links, Spur 2-4), CHO-hA_{2B}- (oben rechts, Spur 5-7) und CHO-hA_{2B}-hA_{2A}- (pQCXIN-hA_{2B}/pQCXIP-hA_{2A} unten links, Spur 2-4 und pLXSN-hA_{2B}/pQCXIP-hA_{2A} unten rechts, Spur 5-7) Zellen.

In den Experimenten wurde β -Aktin als Positivkontrolle verwendet, da dieses Gen als "Housekeeping"-Gen hoch konserviert ist und in nahezu allen Zellen vergleichbar gut exprimiert wird. In einigen Situationen wie während des Zellwachstums und unter pathologischen Zuständen kann die Expression dieses Gens jedoch auch teilweise variieren.²¹² Das Gen für β -Aktin (258 bp) konnte in allen Zelllinien detektiert werden und zusätzlich auch die für die jeweilige Zelllinie erwarteten Adenosinrezeptoren (hA_{2A}: 491 bp, hA_{2B}: 458 bp) (Abb. 4-1). Für weitere pharmakologische Experimente wurde die Zelllinie CHO-pLXSNhA_{2B}/pQCXIP-hA_{2A} ausgewählt, da es aufgrund der geringeren A_{2A}-Rezeptor mRNA-Menge im Vergleich zur A_{2B}-Rezeptor mRNA-Menge sein kann (Abb. 4-1), dass der A_{2A}-Rezeptor etwas weniger exprimiert wird als der A_{2B}-Rezeptor. Dieses Expressionsverhältnis würde auch dem in Jurkat-T-Zellen nahekommen, wo es Hinweise auf eine A_{2A}-A_{2B}-Rezeptor-Heterodimerisierung gibt.¹⁹⁹

4.3 Radioligand-Rezeptor-Bindungsstudien an CHO-hA_{2A}-hA_{2B}-Zellen

Zunächst wurde durch ein homologes Kompetitionsexperiment der K_D-Wert von [³H]PSB-603 an der generierten CHO-hA_{2A}-hA_{2B}-Zelllinie bestimmt.

Abb. 4-2: Homologes Kompetitionsexperiment zwischen dem nicht markierten Liganden PSB-603 und dem Radioliganden [³H]PSB-603 (0,3 nM) an CHO-hA_{2B}-hA_{2A}-Zellen (n=2, \pm SEM). Aus den zwei unabhängigen Experimenten wurde als Mittelwert ein K_D-Wert von 0,238 nM \pm 0,072 nM bestimmt.

Die Bindung von PSB-603 war an den doppelt-transfizierten Zellen nicht beeinflusst und der berechnete K_D -Wert betrug 0,238 nM, welcher vergleichbar mit dem aus der Sättigung bestimmten K_D -Wert für [³H]PSB-603 an der CHO-hA_{2B}-Zelllinie (0,403 nM⁴⁵) ist. Auch der aus der homologen Kompetition berechnete B_{max}-Wert für die CHO-hA_{2A}-hA_{2B}-Zelllinie von

418 fmol/mg Protein zeigt eine ähnliche A_{2B} -Rezeptorexpression wie die CHO- hA_{2B} -Zellen mit einem aus der Sättigung bestimmte B_{max} -Wert von 502 fmol/mg Protein.⁴⁵ Für die nachfolgende Testung der Substanzen wurde der K_D-Wert von 0,238 nM zur Berechnung der K_i-Werte eingesetzt.

In Tab. 4-1 sind die Affinitäten der getesteten Substanzen an CHO-h A_{2B} -Membranpräparationen und an CHO-h A_{2A} -h A_{2B} -Membranpräparationen zusammengefasst.

Tab. 4-1: Affinitäten der Testsubstanzen an humanen A_{2B} - und an humanen A_{2B} - A_{2A} - Rezeptor exprimierendenCHO-Zellen (n=2-3, ± SEM, *p < 0,05 **p < 0,01 ****p < 0,001).</td>

Verbindung	Rekombinante CHO-Zelllinie hA _{2B} vs. [³ H]PSB-603 K _i [nM]	Rekombinante CHO-Zelllinie hA _{2B} -hA _{2A} vs. [³ H]PSB-603 K _i [nM]
NECA	1890 ± 240^{45}	5400 ± 363***
BAY60-6583	212 ± 20^{158}	107 ± 17 ^{**}
PSB-603	$0,553 \pm 0,103^{45}$	$0,172 \pm 0,053^{*}$

Der unselektive Adenosin-Rezeptor-Agonist NECA weist an den mit dem A_{2A} - und A_{2B} -Rezeptor transfizierten Zellen im Vergleich zu den mit dem A_{2B} -Rezeptor transfizierten Zellen eine signifikant geringere Affinität auf. Die Auswertung der Bindungskurve von NECA mit einem zweiphasischen Bindungsmodell an der CHO-h A_{2B} -h A_{2A} -Zelllinie ergab kein Ergebnis. Im Gegensatz dazu zeigen BAY60-6583 und PSB-603 eine im Vergleich zur A_{2B} -Rezeptor-Zelllinie signifikant verbesserte Affinität an der doppelt-transfizierten Zelllinie (Tab. 4-1).

4.4 cAMP-Experimente an CHO-hA_{2A}-hA_{2B}-Zellen

Um auch einen möglichen Unterschied in der Wirkung der Verbindungen an der doppelttransfizierten Zelllinie im Vergleich zur A_{2B}-Rezeptor-transfizierten Zelllinie zu erhalten, wurden cAMP-Akkumulationsexperimente durchgeführt. Eine Zusammenfassung der Ergebnisse ist in Tab. 4-2 dargestellt.

Abb. 4-3: Vergleich der intrinsischen Aktivitäten von BAY60-6583 (10 μ M) und NECA (10 μ M) an rekombinanten CHO-hA_{2B}-hA_{2A}-Zellen bestimmt in cAMP-Experimenten. Es wurden drei voneinander unabhängige Experimente in Duplikaten durchgeführt (n=3, ± SEM).

Tab. 4-2: Zusammenfassung der in funktionellen cAMP-Experimenten bestimmten EC_{50^-} und K_B -Werte an humanen A_{2B} und an humanen A_{2B} -A_{2A}-Rezeptor exprimierenden CHO-Zellen (n=2-4, ± SEM, **p < 0,01 ***p < 0,001).

Verbindung	Rekombinante CHO-Zelllinie hA _{2B} EC ₅₀ /K _B [nM]	Rekombinante CHO-Zelllinie hA _{2B} -hA _{2A} EC ₅₀ /K _B [nM]	$\begin{array}{c} \Delta \ Shift \\ EC_{50}/K_B \\ hA_{2B}\text{-}hA_{2A} / \\ EC_{50}/K_B \\ hA_{2B} \end{array}$	Max. intrinsische Aktivität hA _{2B} %	Max. intrinsische Aktivität hA _{2B} -hA _{2A} %
NECA	26,8 ± 4,5	$1090 \pm 29^{***}$	40,7	84 ± 3	80 ± 7
Adenosin	806 ± 36^{a}	$11300 \pm 2540^{***}$	14,0	100	100
BAY60-6583	37,5 ± 12,3	$193 \pm 30^{***}$	5,15	78 ± 9	34 ± 5
CGS21680	n. b. (100 µM ca. 30 pmol cAMP)	n. b. (100 μM ca. 10 pmol cAMP)	n. b.	n. b.	n. b.
MSX-2	$2250 \pm 330^{\text{b}}$	$377 \pm 10^{b^{**}}$	0,168	-	-

n. b. nicht bestimmt

a: bestimmt von Dominik Thimm

b: K_B-Wert

Es zeigt sich, dass sowohl NECA und Adenosin als auch BAY60-6583 signifikant höhere EC_{50} -Werte an den mit dem A_{2A} -und A_{2B} -Rezeptor transfizierten Zellen im Vergleich zu den nur mit dem A_{2B} -Rezeptor transfizierten Zellen aufweisen (Tab. 4-2). Die Auswertung mit Hilfe eines zweiphasischen Bindungsmodells an der CHO-h A_{2B} -h A_{2A} -Zellline war für NECA und Adenosin nicht möglich. Der A_{2A} -selektive Antagonist MSX-2 weist an der CHO-h A_{2A} -h A_{2B} -Zelllinie mit 377 nM einen höheren K_B -Wert auf als der allgemein für MSX-2 bestimmte K_D -Wert von 7,3 nM²¹³ am humanen A_{2A} -Rezeptor. Der selektive A_{2A} -Rezeptor-Agonist CGS21680 erscheint auch in hohen Konzentrationen von 100 µM sowohl an CHO-h A_{2B} - als auch an CHO-h A_{2A} -Zellen relativ inaktiv, wobei auch eine etwas niedrigere intrinsische Aktivität an der CHO-h A_{2A} -h A_{2B} -Zelllinie im Vergleich zu den CHO-h A_{2B} -Zellen beobachtet werden konnte (Tab. 4-2). Des Weiteren konnte eine Abnahme der intrinsischen Aktivität von BAY60-6583 im Vergleich zu NECA an den mit dem A_{2A} -A $_{2B}$ -Rezeptor doppelt-transfizierten Zellen beobachtet werden (Abb. 4-3, Tab. 4-2).

Eine Zusammenfassung der in Radioligand-Rezeptor-Bindungsstudien bestimmten K_i/K_D -Werte und eine Zusammenfassung der in funktionellen Experimenten bestimmten EC_{50} - und IC_{50} -Werte ausgewählter Verbindungen an rekombinanten A_{2A} -, A_{2B} -, A_{2A} - A_{2B} - und Jurkat-T-Zellen sowie die entsprechenden Literaturdaten geben Tab. 4-3 und Tab. 4-4.

Tab. 4-3: Zusammenfassung der in Radioligand-Rezeptor-Bindungsstudien bestimmten K_i/K_D-Werte undfunktionell bestimmte K_B-Werte ausgewählter Verbindungen an rekombinanten hA_{2A} -, hA_{2B} -, hA_{2A} - hA_{2B} -Zelllinien und an Jurkat-T-Zellen sowie die entsprechenden Literaturdaten.

Verbindung	Rekombinante hA _{2B} K _i /K _D /K _B [nM]	Rekombinante hA _{2A} K _i /K _D /K _B [nM]	Rekombinante hA _{2B} -hA _{2A} K _i /K _D /K _B [nM]	Jurkat-T (hA _{2B} > hA _{2A}) K _i /K _D /K _B [nM]
NECA	$1890^{b,45} \\1850^{c,156} \\570^{e,137} \\489^{f,46} \\361^{g,157} \\330^{d,39} \\262^{h,153} \\665^{a}$	66 ^{j,214}	5400 ^b	14700 ^{b,199} 22200 ^{i,199}
BAY60-6583	212 ^{b,158} 31400^a	n.b.	107 ^b	12000 ^{b,199} 393 *
CGS21680	>10000 ^{h,153} 361000 ^{d,39}	221 ^{j,214} 53,3 ^{k,214}	keine Bindung ^k	192000 ^{i,199} keine Bindung ^{k,176}
PSB-603	0,553 ^{b,45} 104^a	>10000 ^{1,45}	0,172 ^b	55,4 ^{b,199} 0,871 *
MSX-2	2250*	7,3 ^{i,213}	377* keine Bindung ⁱ	287 ^{i,199}
Coffein	33800 ^{b,45} 20500 ^{c,156}	2396 ^{j,214}	n.b.	>100000 ^{b,199} >100000 ^{i,199}
SCH58261	n.b.	$1,5^{g,215} \\ 0,6^{j,216} \\ 1,1^{j,214}$	n.b.	2,5 ^{j,217}

Fett: eigene Daten

n.b. nicht bestimmt

* K_B-Wert

a: vs. [³H]NECA, b: vs. [³H]PSB-603, c: vs. [³H]PSB-298, d: vs. [¹²⁵I]ABOPX, e: vs. [³H]MRS-1754, f: vs. [³H]OSIP339391, g: vs. [³H]ZM241385, h: vs. [³H]MRE2029-F20, i: vs.[³H]MSX-2, j: vs. [³H]SCH58261, k: vs. [³H]CGS21680

Tab. 4-4: Zusammenfassung der in cAMP- und Calcium-Experimenten bestimmten EC_{50}/IC_{50} -Werte ausgewählter Verbindungen an rekombinanten hA_{2A} -, hA_{2B} -, hA_{2B} -Zelllinien und an Jurkat-T-Zellen sowie die entsprechenden Literaturdaten.

Verbindung	Rekombinante hA _{2B} EC ₅₀ /IC ₅₀ [nM]	Rekombinante hA _{2A} EC ₅₀ /IC ₅₀ [nM]	Rekombinante hA _{2B} -hA _{2A} EC ₅₀ /IC ₅₀ [nM]	$Jurkat-T \\ (hA_{2B} > hA_{2A}) \\ EC_{50}/IC_{50} \\ [nM]$
NECA	26,8^a 200^a 438^b 152 ^{a,215} 1400 ^{a,218} 890 ^{b,219}	26,1 ^{a,214}	1090 ^a	2510^a 550 ^{a,217} 5800 ^{a,176} 3980 ^{a,146}
Adenosin	$\begin{array}{r} 806^{\rm a,c}\\ \textbf{2510^{a}}\\ \textbf{990^{b}}\\ 23500^{\rm a,220}\\ \left(\text{pEC}_{50}5,7\right)^{\rm b,219}\end{array}$	363 ^{a,214} 730 ^{a,220}	11300 ^a	237000^a >10000 ^{b,146}
BAY60-6583	37,5 ^a 505 ^a 579 ^b 3-10 ^{a,41}	>10000 ^{a,41}	193 ^a	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
CGS21680	relativ inaktiv (100 μM) ^a >10000 ^{a,215} 15200 ^{a,39} 410 ^{a,153}	36,8 ^{a,214}	relativ inaktiv (100 µM) ^a	16800^b >10000 ^{b,146} 4400 ^{a,176} (+ Forskolin)
PSB-603	n.b.	n.b.	n.b.	1,13 ^{b,45}
Coffein	15500 ^{a,220}	$\frac{12330^{a,214}}{12300^{a,220}}$	n.b.	n.b.
SCH58261	5011 ^{a,216}	6,63 ^{a,214}	n.b.	n.b.

Fett: eigene Daten, a: cAMP-Experiment, b: Calcium-Experiment, c: Daten aus unserem Arbeitskreis, n.b. nicht bestimmt

4.5 Zusammenfassung und Diskussion

Mit Hilfe einer Reversen-Transkriptase-PCR konnte in den generierten CHO-hA2B-hA2A-Zelllinien sowohl die mRNA von A2A- als auch von A2B-Rezeptoren detektiert werden, was auf eine gute Expression beider Adenosin-Rezeptor-Subtypen hinweisen könnte. Weiterhin scheint die Menge der A2A-Rezeptor-mRNA in einer Zelllinie etwas geringer auszufallen als die mRNA Menge des A_{2B}-Rezeptors (Abb. 4-1). Da dieses mögliche Expressionsverhältnis dem in Jurkat-T-Zellen ähnlich ist, wurde diese Zelllinie für weitere Experimente verwendet. In Radioligand-Rezeptor-Bindungsstudien konnte an der doppelt-transfizierten CHO-hA2BhA2A-Zelllinie im Vergleich zu der CHO-hA2B-Zelllinie eine veränderte Affinität der Agonisten und Antagonisten festgestellt werden, was Hinweise auf eine mögliche Heterodimerisierung der Rezeptoren geben könnte. So zeigt NECA eine signifikant verschlechterte Affinität an den doppelt-transfizierten Zellen, wohingegen BAY60-6583 und PSB-603 eine signifikante Verbesserung der Affinitäten zeigten (Tab. 4-1). Es könnte jedoch auch möglich sein, dass sich durch das nachträgliche Einbringen des A2A-Rezeptors in die CHO-hA_{2B}-Zelllinie die Rezeptorpopulation ähnlich wie bei der Zugabe von NaCl (s. 3.2.1) so verändert hat, dass mehr A2B-Rezeptoren in der inaktiven Rezeptorkonformation vorliegen zu welcher, wie in Kapitel 3.2 diskutiert, der Partialagonist BAY60-6583 und insbesondere der Antagonist PSB-603 eine gute Affinität aufweisen. NECA als Vollagonist bevorzugt die aktive Rezeptorkonformation des A2B-Rezeptors und zeigt damit eine signifikante Rechtsverschiebung der Kompetitionskurve.

In funktionellen cAMP-Experimenten zeigten NECA, Adenosin und BAY60-6583 eine signifikant geringere Potenz an den doppelt-transfizierten Zellen im Vergleich zu den nur mit dem A_{2B}-Rezeptor transfizierten Zellen (Tab. 4-2). Auch wurde der partial-agonistische Effekt von BAY60-6583 (10 μ M) deutlich, da die Verbindung an der doppelt-transfizierten Zelllinie eine signifikant geringere intrinsische Aktivität als NECA (10 μ M) aufwies (Abb. 4-3). Bei diesem Vergleich scheint das durch NECA induzierte cAMP-Signal auf Grundlage des A_{2A}-Rezeptors vernachlässigbar zu sein, da der Agonist CGS21680 auch in hohen Konzentrationen (100 μ M) an der CHO-hA_{2A}-hA_{2B}-Zelllinie nahezu inaktiv ist (Tab. 4-2). Diese Effekte könnten, ähnlich wie an den untersuchten Jurkat-T-Zellen ebenfalls Hinweise auf ein mögliches A_{2A}-A_{2B}-Rezeptor Heterodimer mit veränderter Pharmakologie geben. Jedoch könnte für die Erhöhung der EC₅₀-Werte und für den deutlichen partial agonistischen Effekt von BAY60-6583 an den doppelt-transfizierten Zellen generell auch ein Verlust der A_{2B}-Rezeptorexpression in Betracht gezogen werden. Zwar ließ sich an der CHO-hA_{2B}-A_{2A}-Zelllinie ein nur etwas geringerer B_{max}-Wert von 418 fmol/mg Protein im

Vergleich zur CHO-hA_{2B}-Zelllinie von 502 fmol/mg Protein⁴⁵ feststellen, dieser könnte jedoch aufgrund einer Bestimmung mit Hilfe einer homologen Kompetition zu ungenau sein.

Der für den selektiven A_{2A}-Rezeptor-Antagonisten MSX-2 bestimmte K_B-Wert ist an der CHO-hA_{2B}-hA_{2A}-Zelllinie signifikant geringer als an der CHO-hA_{2B}-Zelllinie (Tab. 4-2), was zusätzlich zur mRNA-Detektion, zumindest ein Vorhandensein des A_{2A}-Rezeptors bestätigen könnte. Allerdings liegt der für MSX-2 bestimmte K_B-Wert an CHO-hA_{2B}-hA_{2A}-Zellen mit 377 nM viel höher als der für die Verbindung beschriebene K_D-Wert von 7,3 nM an humanen A_{2A}-Rezeptoren.²¹³ Ein ähnlicher K_D-Werte von 287 nM für MSX-2 wurden von Svenja Lacher an Jurkat-T-Zellen bestimmt (s. Tab. 4-3). Zusätzlich ist der selektive A_{2A}-Agonist CGS21680 in beiden Zelllinien auch in hohen Konzentrationen (100 µM) nahezu inaktiv, was auch Van der Ploeg et al. an Jurkat-T-Zellen trotz vorhandener A_{2A}-Rezeptor-mRNA beobachten konnten.¹⁷⁶ Auch diese pharmakologischen Änderungen könnten somit auf ein A_{2A}-A_{2B}-Heterodimer hinweisen.

Es bleibt jedoch insgesamt zu diskutieren, ob die an den CHO-h A_{2B} -h A_{2A} -Zellen beobachteten pharmakologischen Effekte auf einer veränderten A_{2B} -Rezeptorpopulation mit einer geringeren A_{2B} -Rezeptor-Expression im Vergleich zu den CHO-h A_{2B} -Zellen oder auf einem möglichen A_{2A} - A_{2B} -Rezeptor Heterodimer beruhen. Weitere Experimente müssen folgen, um die Annahmen zu bestätigen.

5 Kolokalisationsexperimente an doppelt-transfizierten CHO-hA_{2B}-EYFP-hA_{2A}-ECFP-Zellen

5.1 Einleitung

5.1.1 Prinzip der konfokalen Fluoreszenzmikroskopie

Ein konfokales Fluoreszenzmikroskop besteht aus zwei Teilen: einem modernen konventionellen Fluoreszenzlichtmikroskop und einer entsprechenden Scanning-Apparatur.²²¹ Um Fluoreszenzfarbstoffe oder fluoreszierende Proteine in den zu untersuchenden Objekten anzuregen, wird Laserlicht in der entsprechenden Wellenlänge verwendet. Dabei wird das Anregungslicht auf einen Punkt in der Probe fokussiert und das Licht aus diesem Fokus wird durch das gleiche Objektiv auf eine Lochblende abgebildet. Licht das ober- und unterhalb der Fokusebene entsteht, wird dabei ausgeblendet. Von dort gelangt es auf einen Photomultiplier, welcher die Lichtintensität in ein elektrisches Signal konvertiert. Da man so nur Licht aus einem Punkt der Probe erhalten würde, ist es für zwei oder dreidimensionale Bilder notwendig, die Probe mit Hilfe eines Scanners in verschiedenen Fokusebenen abzurastern.²²¹

5.1.2 Fluoreszierende Proteine

Im Jahre 2008 erhielten die drei Wissenschaftler Osamu Shimomura, Martin Chalfie und Roger Y. Tsien für die Entdeckung und Weiterentwicklung des grün fluoreszierenden Proteins (GFP) den Nobelpreis der Chemie.²²² So konnten Shimomura et al. durch die Aufreinigung und Gewinnung von Aequorin aus der Qualle Aequorea aequorea ein weiteres Protein (GFP) identifizieren, welches im Gegensatz zum blau emittierten Licht des Aequorins, eine grüne Fluoreszenz aufzeigte.²²³ Später konnten Morise et al. dann zeigen, dass die grüne Fluoreszenz der Qualle Aequorea durch einen strahlungsfreien Energietransfer zustande kommt.²²⁴ Da sich das Emissionsmaximum des Aequorins mit dem Anregungsmaximum des GFP überlappt, wies alles auf eine Anregung des GFPs durch Aequorin hin.²²⁴ 1992 konnten Prasher et al. das GFP sowohl aus der cDNA als auch aus der genomischen DNA der Qualle Aequorea victoria klonieren und sequenzieren.²²⁵ Der aus der cDNA erhaltene Klon gfp10 codierte für ein 238 Aminosäuren großes Protein mit einem berechneten Molekulargewicht von 26888 Dalton. Dabei ist der Chromophor des GFPs sehr stabil gegenüber extremen Bedingungen wie Hitze und extremen pH-Werten. So geht die Fluoreszenz zwar unter stark sauren oder basischen pH-Werten verloren, kann jedoch nach Neutralisation mit einem identischen Emissionsspektrum wiedererlangt werden.²²⁵

Zur Ausbildung der Fluoreszenz werden keine Co-Faktoren benötigt sondern der Chromophor wird durch einen autokatalytischen Prozess gebildet. Die Chromophor-Gruppe wird aus den Aminosäuren Ser65, Tyr66 und Gly67 gebildet, welche post-translational zu einem 4-(p-Hydroxybenzyliden)imidaziolidin-5-on modifiziert werden.²²⁶ Weiterhin befindet sich der Chromophor im Innern einer Zylinder- oder Fassstruktur, welche innen aus einer α -Helix und außen aus 11 β -Faltblättern besteht (Abb. 5-1). Zusätzlich dienen kurze α -Helix-Segmente als Deckel des Zylinders. Das Wildtyp-GFP besitzt zwei Anregungsmaxima, eines bei 395 nm und ein weiteres, kleineres bei 475 nm. Das Emissionsmaximum liegt bei 508 nm.²²⁶

Abb. 5-1: Fassstruktur (links) und ein Faltungstopologie-Diagramm (rechts) des grün fluoreszierenden Proteins. Die β -Faltblätter sind in grün, die α -Helices in blau und die "Schleifen" in gelb dargestellt.²²⁶

Die erfolgreiche Expression des GFP-Proteins konnte 1994 erstmals von Chalfie et al. in *E. Coli* und *Caenorhabditis elegans* gezeigt werden, womit GFP als Marker für die Genexpression und Proteinlokalisation in lebenden Zellen verwendet werden kann.²²⁷ Nachfolgend wurden verschiedenste GFP-Varianten mit verbesserten biologischen und physikalischen Eigenschaften generiert sowie auch Varianten mit verschiedenen spektralen

physikalischen Eigenschaften generiert sowie auch Varianten mit verschiedenen spektralen Eigenschaften, wie solche mit Emissionsspektren im blauen und gelben Bereich.²²⁸⁻²³⁰ So können zwei farblich verschiedene GFP-Varianten z. B. für den Nachweis von Protein-Interaktionen mit Hilfe von Fluoreszenz-Resonanz-Energie-Transfer-Experimenten eingesetzt werden.²²⁹
5.2 Überprüfung der Funktionalität des A_{2B}-EYFP Fusionsproteins und Kolokalisation von A_{2A}- und A_{2B}-Rezeptoren

Um eine mögliche Kolokalisation der A_{2A} - und A_{2B} -Rezeptoren in CHO-K1-Zellen festzustellen, wurde eine Zelllinie generiert, die beide Rezeptor-Subtypen als Fusionsproteine mit je einem fluoreszierenden Protein exprimiert. Dabei wurde an den C-Terminus des A_{2B} -Rezeptors das EYFP und an den C-Terminus des A_{2A} -Rezeptors das ECFP angebracht. Es wurde diese Position für die Anbringung der Tags ausgewählt, da die Funktion von A_{2A} - und D₂-Rezeptoren dabei erhalten blieb.¹¹⁵ Auch konnte mit einem cAMP-Assay gezeigt werden, dass auch der A_{2B} -Rezeptor mit EYFP als Tag am C-Terminus noch voll funktionsfähig ist und die Agonisten BAY60-6583 und NECA ein cAMP-Signal induzieren können (Abb. 5-2). Die EC₅₀-Werte für BAY60-6583 (104 nM) und NECA (73 nM) an den CHO-h A_{2B} -EYFP-Zellen sind vergleichbar, liegen jedoch insgesamt etwas höher als an den CHO-h A_{2B} -Zellen (Tab. 4-2), was auf eine etwas geringere Rezeptorexpression hinweisen könnte. Es lässt sich somit schlussfolgern, dass diese Position des Tags auch beim Adenosin- A_{2B} -Rezeptor keinen Einfluss auf die Kopplung der G-Proteine hat und der Rezeptor noch voll funktionsfähig ist.

Abb. 5-2: Durch die Agonisten NECA und BAY60-6583 induzierten cAMP-Signale in CHO-hA_{2B}-EYFP-Zellen (n=2, \pm SEM). Aus den zwei unabhängigen Experimenten wurde als Mittelwert ein EC₅₀-Wert von 73,0 nM \pm 18,4 nM für NECA und ein EC₅₀-Wert von 104 nM \pm 6 nM für BAY60-6583 bestimmt.

Bei EYFP und ECFP handelt es sich um verschiedene Mutanten des Wildtyp-GFPs, wobei das "enhanced" YFP (EYFP) im Vergleich zum Wildtyp GFP vier Mutationen (T203Y/S65G/V68L/S72A) enthält, die in einem Anregungsmaxima von 513 nm und in einem Emissionsmaxima von 527 nm resultieren.²³¹⁻²³² Das "enhanced" CFP (ECFP) besitzt sechs Aminosäuresubstitutionen. Die Tyr66 zu Trp66 Mutation resultiert in einem Anregungsmaximum von 434 nm und einem kleineren Peak bei 452 nm sowie in einem Emissionsmaximum von 476 nm mit einem kleineren Peak bei 505 nm.²³³ Die anderen fünf

Substitutionen (Phe64 zu Leu, Ser65 zu Thr, Asn146 zu Ile, Met153 zu Thr, Val163 zu Ala) verbessern die Effizienz der Chromophorbildung und Proteinfaltung, was in einer gesteigerten Fluoreszenz und Proteinlöslichkeit resultiert.^{228, 230, 234}

Mit Hilfe eines retroviralen Transfektionssystems wurden beide Konstrukte nacheinander stabil in die CHO-K1-Zellen eingebracht. Die so erhaltenen doppelt-transfizierten Zellen wurden fixiert und die Objekte wurden im Arbeitskreis von Prof. Hoch mit Hilfe von Dr. Behr mit einem konfokalen Fluoreszenzmikroskop betrachtet. Dabei wurde das ECFP mit einem 458 nM-Laser angeregt und die Emission wurde bei 470-500 nm gemessen. Das EYFP wurde mit einem 514 nM-Laser angeregt und die Emission wurde bei 520-550 nm gemessen. Da die Emissionen der beiden Fluorophore durch geeignete Filterwahl somit nicht überlappen, ist eine getrennte Darstellung möglich (Abb. 5-3).

Abb. 5-3: Messung der Fluoreszenz für EYFP, ECFP und die Übereinanderlagerung ("Merge") beider Bilder.

Sowohl das EYFP als auch das ECFP lassen sich durch geeignete Laser anregen, was auf eine gute Expression sowohl von A_{2A} - als auch von A_{2B} -Rezeptoren schließen lässt.

5.3 Zusammenfassung und Diskussion

Sowohl A_{2A} - als auch A_{2B} -Rezeptoren werden in den transfizierten CHO-K1-Zellen exprimiert, da sich sowohl EYFP als auch ECFP durch geeignete Laser anregen und darstellen lassen. Bei der Überlagerung der Bilder wird deutlich, dass es teilweise rote und grüne Bereiche gibt, in denen die A_{2B} - und A_{2A} -Rezeptoren einzeln vorliegen, zusätzlich aber auch orange-gelbe Bereiche, die eine Kolokalisation der A_{2B} - und A_{2A} -Rezeptoren bestätigen können (Abb. 5-3). Da keine zusätzlichen Fluoreszenzfarbstoffe wie z. B. Plasmamembranmarker und Zellkernmarker für die Objekte verwendet wurden, gestaltet sich der Nachweis bestimmter Zellstrukturen und somit die genaue Lokalisation der Rezeptoren anhand der Bilder als schwierig. Da jedoch nahezu alle sekretorischen Proteine und Membranproteine zunächst am rauen ER gebildet werden, anschließend in das ER-Lumen gelangen von wo sie zum Golgi-Apparat und anschließend in Vesikeln zu ihrem Bestimmungsort transportiert werden,²³⁵ ist es sehr wahrscheinlich, dass die beiden Adenosin-Rezeptor-Subtypen hauptsächlich im ER/Golgi-Apparat und in der Plasmamembran kolokalisiert vorliegen.

Ein Nachteil des verwendeten retroviralen Transfektionssystems ist die Tatsache, dass kein Einfluss auf die Expression der einzelnen Rezeptoren genommen werden kann. So kann es aufgrund einer zu hohen Expression leicht zu einer Messung von Artefakten kommen. Des Weiteren gestaltet sich die retrovirale Doppeltransfektion als zeitaufwändig, nicht immer erfolgreich und zusätzlich zeigten die doppelt-transfizierten Zellen ein sehr langsames Wachstum. Zur weiteren Bestätigung eines A_{2A}-A_{2B}-Heterodimers mit nachfolgenden FRETund BiFC-Experimenten, wurde deshalb eine transiente Transfektionsmethode mit Hilfe von Lipofectamin verwendet.

6 Fluorimetrische FRET-Experimente an doppelt-transfizierten CHO-hA_{2B}-hA_{2A}-Zellen

6.1 Einleitung

6.1.1 Methoden zur Untersuchung von Protein-Protein-Interaktionen

Es ist heute allgemein akzeptiert, dass G-Protein-gekoppelte-Rezeptoren nicht nur als Monomere sondern auch als Dimere oder oligomere Strukturen vorliegen können. Dabei weisen die Dimere/Oligomere häufig unterschiedliche biochemische und pharmakologische Eigenschaften im Vergleich zu den Monomeren auf, was allgemein die Diversität der Rezeptorfunktion und Signaltransduktion erhöht.²³⁶

Um mögliche Dimere/Oligomere meist in künstlich erzeugten Zellsystemen zu identifizieren, wurden eine Reihe von biochemischen und biophysikalischen Methoden entwickelt. So zählt zu den biochemischen Methoden z. B. die Koimmunpräzipitation und die Analyse von Rezeptormutanten und Chimären und zu den biophysikalischen Methoden z. B. der Fluoreszenz-Resonanz-Energie-Transfer (FRET), der Biolumineszenz-Resonanz-Energie-Transfer (BRET), die Bimolekulare-Fluoreszenzkomplementation (BiFC), die Lumineszenz-Fluoreszenzkomplementation (BiLC), die Fluoreszenz-Detektion nach dem Ausbleichen (FRAP) und die Immunfluoreszenzmikroskopie.⁸⁰ Ein Nachteil der Koimmunpräzipitation stellt die Notwendigkeit der Lyse und Solubilisierung der Zellen dar. Dadurch könnten die beobachteten Dimere lediglich Solubilisierungsartefakte sein und deshalb kann daraus nicht unbedingt auf eine Dimerisierung in lebenden Zellen geschlossen werden.²³⁷

Resonanz-Energie-Transfer-Studien sind relativ gut geeignet, um Protein-Protein-Interaktionen in lebenden Zellen auch in Echtzeit zu untersuchen.²³⁸⁻²³⁹ Somit können auch die kinetischen und dynamischen Eigenschaften wie z. B. die Konformationsänderungen in einem Rezeptor nach der Aktivierung durch einen Agonisten oder durch Interaktionen mit einem inversen Agonisten genauer untersucht werden.²⁴⁰⁻²⁴¹ Bei der von Hoffmann et al. entwickelten Fluoreszenz-Resonanz-Energie-Transfer Methode, liegt der Vorteil in einem relativ kleinen Tag, welches die Funktionalität der Rezeptoren weniger beeinflusst als die großen fluoreszierenden Proteine wie CFP oder YFP.²⁴² Dabei wurde in der dritten intrazellulären Schleife des A_{2A}-Rezeptors eine kurze Peptidsequenz eingefügt, die aus einem Prolin-Glycin-Motiv, flankiert von je zwei Cystein-Resten besteht (CCPGCC). Nach Expression des Rezeptors kann diese Sequenz ein kleines Fluorophor (FlAsH, Fluorescein Arsenical Hairpin Binder), welches durch die Membran diffundieren kann, binden. Die Anregungs- und Emissionsmaxima sind bei diesem Fluorophor mit dem vom YFP vergleichbar, womit dieses in Kombination mit CFP (Donorfluorophor) am C-Terminus des Akzeptorfluorophor für die A_{2A}-Rezeptors als Detektion von intramolekularen Rezeptorkonformationsänderungen durch eine Agonist-Stimulierung verwendet werden kann.²⁴² Dabei ergab das CFP-FlAsH-System ein durch den Agonisten induziertes 5-fach höheres FRET-Signal bei ähnlicher Kinetik als das CFP-YFP-System. Weiterhin war die Fähigkeit des A2A-CFP-YFP-Systems, die Adenylatzyklase durch NECA stimulieren zu können, nahezu eliminiert während das A2A-FlAsH-CFP-System voll funktionsfähig war.²⁴² Das Prinzip des Fluoreszenz-Resonanz-Energie-Transfers (FRET) beruht allgemein auf der strahlungsfreien Energieübertragung eines angeregten Fluoreszenzmoleküls auf ein anderes. Die Grundlagen dazu wurden erstmals von Förster et al. 1948 beschrieben.²⁴³

Für die Messung eines FRET werden zwei aufeinander abgestimmte Fluorophore benötigt, wobei einer als Donor- und einer als Akzeptorfluorophor wirkt. Eine Voraussetzung ist, dass das Emissionsspektrum des Donors mit dem Anregungsspektrum des Akzeptors überlappt.²³⁷ Erfolgt ein Resonanzenergietransfer kann eine Abnahme der Emission des Donorfluorophors und eine Zunahme der Strahlungsemission des Akzeptors gemessen werden.

Abb. 6-1: Grundprinzip des Fluoreszenz-Resonanz-Energie-Transfers (FRET) (YFP: gelb fluoreszierendes Protein, CFP: Cyan fluoreszierendes Protein).²³⁷

Die FRET-Effizienz ist dabei von mehreren Faktoren abhängig. Die Emissionsbande des Donors sollte eine ausreichend große Überlappung mit der Anregungsbande des Akzeptors aufzeigen und beide Fluorophore sollten nur wenige Nanometer (<10 nm) voneinander entfernt sein, da die Intensität des FRET-Signals mit der 6. Potenz des Abstands beider Fluorophore abnimmt. Auch die räumliche Orientierung der Fluorophorpaare zueinander spielt eine entscheidende Rolle.²³⁷ Die Effizienz des Energietransfers (*E*) ist zusätzlich auch vom Förster-Radius (*R*₀) des Fluorophorpaars abhängig. Dabei ist der Förster-Radius der Abstand zwischen beiden Fluorophoren, bei dem der Energieübertrag zu 50 % erfolgt.²⁴³⁻²⁴⁴

Abb. 6-2: Abhängigkeit der FRET-Effizienz vom Abstand zwischen Donor- und Akzeptorfluorophor.²⁴⁴

Für die Identifizierung von Protein-Protein-Interaktionen mit Hilfe von FRET wurde hauptsächlich das CFP-YFP-Donor-Akzeptorfluorophorpaar verwendet.²⁴⁵⁻²⁴⁷ Jedoch können auch andere aufeinander abgestimmte Fluorophorpaare wie z. B. GFP-YFP²⁴⁸ oder CFP-DsRed / GFP-DsRed²⁴⁹ verwendet werden. Von Zimmermann et al. wurde ein neues GFP²-EYFP-FRET-Paar entwickelt, welches eine verbesserte FRET-Effizienz im Vergleich zum CFP-YFP-Donor-Akzeptorfluorophorpaar aufweist.²⁵⁰ GFP² lässt sich bei 395 nm maximal anregen, wobei bei dieser Wellenlänge die Anregung von EYFP praktisch vernachlässigbar ist. Damit bietet sich dieses Paar für die FRET-Auswertung nach der "Sensitized-Emission"-Methode (s. 9.14) an.²⁵⁰

Um die Existenz von Rezeptordimeren/Oligomeren auch in nativen Geweben untersuchen zu können, wurden verschiedene Methoden entwickelt. So konnten Albizu et al. erstmals Oxytocin-Rezeptordimere im nativen Ratten-Milchdrüsengewebe nachweisen.²⁵¹ Ihr experimenteller Ansatz beruht auf einer homogenen zeitauflösenden FRET-Strategie (HTRF), bei welcher die Rezeptoren mit Hilfe von selektiven fluoreszierenden Liganden markiert werden. Dabei findet der Energietransfer zwischen einem langlebigen Lanthanoid als Donor (z. B. Europium, Terbium) und einem dazu kompatiblen Akzeptorfluorophor

(z. B. Alexa-647) statt. Nach einer kurzzeitigen Anregung des Donors mit einer relativ langen Fluoreszenzlebensdauer kann eine zeitverzögerte Messung der Akzeptorfluoreszenz erfolgen. Spezifische Fluoreszenz-markierte Liganden stellen somit ein gutes Werkzeug dar, um Rezeptordimere auch in nativen Geweben nachzuweisen. Des Weiteren haben sie den Vorteil einer geringeren Größe im Vergleich zu Antikörpern oder lumineszierenden Proteinen.²⁵¹ Trifilieff et al. konnten mit Hilfe eines "proximity ligation assays" (PLA) die Existenz von A_{2A}-D₂-Rezeptorkomplexen im Mausstriatum bestätigen.²⁵² Bei diesem experimentellen Ansatz werden zwei für das jeweilige Antigen (Rezeptoren) spezifische erste Antikörper sowie zwei spezifische zweite Antikörper gegen die ersten Antikörper benötigt. Die zweiten Antikörper sind jeweils mit einem kurzen DNA-Strang verlinkt. Nur wenn sich die zweiten Antikörper in räumlicher Nähe befinden (<16 nm), können die kurzen DNA-Stränge durch die Zugabe von zwei weiteren DNA-Oligonukleotiden miteinander interagieren. Nach einer enzymatischen Ligation der beiden zugegebenen Oligonukleotide erfolgt eine Amplifikation. Das kreisförmige Endprodukt kann dann durch die Zugabe von komplementären fluoreszierenden Oligonukleotiden sichtbar gemacht werden.²⁵²

6.1.2 Mögliche Interaktionsflächen von dimeren Rezeptoren

Nicht nur die Identifizierung von Dimeren/Oligomeren in künstlichen und nativen Zellsystemen ist ein Forschungsgebiet, auch ist es von Interesse, die genaue Struktur und auch die Interaktionsflächen von Dimeren/Oligomeren zu entschlüsseln. In einem theoretischen Modell konnten hauptsächlich die Transmembrandomänen 4 und 5 für die Interaktionsfläche von Homodimeren von GPCRs der Klasse A identifiziert werden.¹⁰⁹ So konnte die Beteiligung der Transmembrandomäne 4 an der Interaktionsfläche des D2-Homodimers bestätigt werden.²⁵³⁻²⁵⁴ Für den Adenosin-A_{2A}-Rezeptor scheint die konservierte Aminosäure Met193 in der TM 5 von großer Bedeutung für eine Homodimerisierung zu sein.²⁵⁵ In einer weiteren Studie, konnte zusätzlich die Helix 1 als wichtig für die Homodimerisierung des A_{2A}-Rezeptors identifiziert werden, sowie einige konservierte Aminosäuren in den Helices 1, 2, 6 und 7, die für die Aufrechterhaltung des strukturellen Netzwerkes der A_{2A}-Rezeptoren wichtig zu sein scheinen.¹⁰⁸ Der lange C-Terminus des A_{2A}-Rezeptors scheint dagegen nicht mit in eine A2A-Homodimerisierung involviert zu sein, da eine am C-Terminus deletierte Mutante des A2A-Rezeptors noch dazu fähig war, Dimere auszubilden.¹⁰³ Im Gegensatz dazu scheint der C-Terminus des A2A-Rezeptors mit an einer Heterodimerisierung mit dem Dopamin-D₂-Rezeptor beteiligt zu sein.^{115, 256-257} So gibt es Hinweise, dass eine Argininreiche Domäne in der dritten intrazellulären Schleife des Dopamin-D2-Rezeptors durch elektrostatische Interaktionen mit einem spezifischen Motiv im C-Terminus des A2A-

Rezeptors interagiert. In diesem Motiv scheint ein phosphoryliertes Serin374 besonders wichtig zu sein.²⁵⁶ So konnte eine einzelne Punktmutation (S374A) im C-terminalen Teil des A_{2A} -Rezeptors die A_{2A} -D₂-Rezeptorheterodimerisierung reduzieren und damit die allosterische Modulation des D₂-Rezeptors verhindern, was einen neuen therapeutischen Ansatz darstellen könnte.²⁵⁶ Auch scheinen die Transmembrandomänen 4 und 5 des Dopamin-D₂-Rezeptors eine Rolle in der A_{2A} -D₂-Rezeptor-Interaktionsfläche zu spielen.²⁵⁷ Weiterhin konnten die zusätzlich zur S374A eingeführten Mutationen der negativ geladenen Aspartate (D401A und D402A) die A_{2A} -D₂-Rezeptor-Heterodimerisierung noch drastischer reduzieren und eine antagonistische allosterische Modulation des D₂-Rezeptors verhindern. Dies bestätigt zusätzlich eine elektrostatische Interaktion der dritten intrazellulären Schleife des D₂-Rezeptors mit dem C-terminalen Teil des A_{2A} -Rezeptors.²⁵⁷

Aus der Kristallstruktur des CXCR4-Rezeptor-Dimers gebunden mit dem "small molecule-Antagonisten" IT1t konnten die extrazellulären Seiten von Helix 5 und 6 sowie hauptsächlich hydrophobe Wechselwirkungen zwischen den Aminosäuren als wichtig für die Interaktionsfläche des Dimers identifiziert werden.²² Zusätzlich zeigt die Kristallstruktur des CXCR4-Rezeptor-Dimers gebunden mit dem cyclischen-Peptid-Antagonisten CVX15 Interaktionen zwischen den intrazellulären Enden von Helix 3 und 4 sowie der intrazellulären Schleife 2, welche hauptsächlich durch hydrophobe Interaktionen von Tyr135, Leu136, und His140 und Pro147-Seitenketten kontrolliert werden.²² Des Weiteren kann anscheinend die Bindung eines Liganden an das eine Protomer im Dimer strukturelle Änderungen in Helix 5 des anderen Protomers hervorrufen, was in einer Modulation der Ligandaffinität an das zweite Protomer resultiert.²² Auch die Kristallstruktur des symmetrischen Maus- μ -Opioid-T4L-Rezeptor-Dimers gebunden mit dem irreversiblen Antagonisten 5 und 6 von Bedeutung sind.²⁸

Abb. 6-3: Extrazelluläre Aufsicht auf die Kristallstruktur des symmetrischen Maus- μ -Opioid-T4L-Rezeptor-Dimers gebunden mit dem irreversiblen Antagonisten β -Funaltrexamin. Aminosäurereste die an der direkten oder indirekten Dimerinteraktionsfläche beteiligt sind, sind als blaue Kugeln dargestellt. Der Ligand ist in grün dargestellt.²⁸

6.2 Expressionskontrolle der verwendeten Donor- und Akzeptorkonstrukte

Um eine mögliche Interaktion von A_{2A}- und A_{2B}-Rezeptoren mit Hilfe von Fluoreszenz-Resonanz-Energie-Transfer-Studien in CHO-K1-Zellen zu untersuchen, wurde als Donorfluorophor GFP² und als Akzeptorfluorophor EYFP verwendet. Beide Fluorophore wurden wie bei der stabil hergestellten CHO-hA_{2B}-EYFP-hA_{2A}-ECFP-Zelllinie (s. 5.2), jeweils am C-Terminus der verwendeten Rezeptoren angebracht, da diese Position die Funktionalität nicht beeinflusste.¹¹⁵ Die Kombination von GFP²-EYFP als FRET-Paar weist eine höhere FRET-Effizienz als CFP-YFP auf, da die Donoremission unter anderem nahezu vollständig mit der Akzeptoranregung überlappt. Weiterhin liegt das Anregungsmaximum von GFP² bei 395 nm, dieses kann leicht mit einem 405 nm Laser angeregt werden, wobei die Anregung des EYFP (Anregungsmaximum 514 nm) bei dieser Wellenlänge in dem von Zimmermann et al. verwendeten Filtersystem unter 1 % liegt.²⁵⁰

Abb. 6-4: Anregungs- und Emissionsspektren von GFP² und YFP.²⁵⁰

Ein Problem ist jedoch, dass die Emissionsspektren von Donor und Akzeptor signifikant überlappen. Dieses "Durchbluten" der Donoremission in den FRET-Kanal sowie die mögliche Anregung von EYFP durch die Anregung des Donors, wurde wie in der Gl. 9-2 beschrieben mit Hilfe der "Sensitized-Emission"-Methode aus dem gemessenen FRET-Signal subtrahiert. Da es für die nachfolgenden FRET-Experimente wichtig ist, eine relativ gute Expression aller zu testenden Rezeptoren zu erzielen, wurden Vorversuche mit einzeln transfizierten DNA-Konstrukten durchgeführt. Somit können auch die einzusetzenden DNA-Mengen besser abgeschätzt und zusätzlich kann die Funktion der Konstrukte überprüft werden. Als Positivkontrollen wurden ein GFP2-EYFP Fusionsprotein eingesetzt, bei welchem aufgrund des sehr kurzen Abstandes der Proteine zueinander (kurze Linkersequenz) ein relativ hohes FRET-Signal zu erwarten ist, sowie das schon mehrfach in der Literatur beschriebene Adenosin-A_{2A}-Rezeptor-Homodimer.^{103, 106-108} Als Negativkontrolle wurde wie von Canals et al. und Gracia et al. beschrieben, der GABA_BR2-Rezeptor in Kombination mit dem A_{2A}-Rezeptor verwendet.^{103, 107, 115} GABA_B-Rezeptoren gehören als GPCRs zu den metabotropen GABA-Rezeptoren, welche im zentralen Nervensystem den Neurotransmitter GABA (y-Aminobuttersäure) binden können. Dabei bewirken präsynaptische GABA_B-Rezeptoren eine Abnahme der Calcium-Konzentration, was in einer reduzierten Transmitterfreisetzung aus der Präsynapse resultiert, während postsynaptische GABA_B-Rezeptoren eine Aktivierung von Kalium-Kanälen hervorrufen können, was zu einem inhibitorischen postsynaptischen Potential führt.²⁵⁸ Funktionelle GABA_B-Rezeptoren werden aus zwei Untereinheiten, den GABA_BR1 und GABA_BR2 gebildet, die durch eine Interaktion ihrer C-Termini miteinander verbunden sind.²⁵⁹ Die GABA_BR2-Untereinheit wird dabei auch in Abwesenheit der GABA_BR1-Untereinheit gut in der Plasmamembran exprimiert und ist teilweise funktionell (Gi-gekoppelt), während die GABABR1-Untereinheit in Abwesenheit von GABABR2 nicht an der Zelloberfläche exprimiert wird.²⁶⁰ So konnten Margeta-Mitrovic et al. zeigen, dass die GABA_BR1-Untereinheit durch ein C-terminales Retentionssignal im ER zurückgehalten wird.²⁶¹ Nur die Koexpression des GABA_BR2-Rezeptors kann dieses Signal durch Bildung des Heterodimers maskieren, wodurch eine Expression des voll funktionsfähigen Komplexes in der Plasmamembran ermöglicht wird.²⁶¹

Für erste Vorversuche wurden die verwendeten EYFP-Akzeptorkonstrukte in verschiedenen DNA-Mengen transfiziert und mit einem Anregungsfilter von 500/10 nm und einem Emissionsfilter von 535/25 nm gemessen. Als Hintergrundkontrolle wurden untransfizierte CHO-K1-Zellen verwendet. Die gewählte Lampenenergie wurde bei 28000 festgelegt, da bei dieser Energie eine ausreichende Fluoreszenz gemessen werden konnte und eine Erhöhung Erhöhung keine weitere Verbesserung, sondern nur eine gleichzeitige der Hintergrundfluoreszenz bewirkte. Um ein Ausbleichen der Fluorophore auch nach mehrmaligen Messen zu verhindern, wurde eine relativ niedrige Zählzeit von 0,1 s pro Well verwendet.

Abb. 6-5: Relative Fluoreszenz der EYFP-Akzeptorkonstrukte einzeln transient exprimiert in CHO-K1- Zellen; Anregungsfilter 500/10 nm, Emissionsfilter 535/25 nm (n=2, \pm SEM).

Wie aus dem Balkendiagramm ersichtlich, lassen sich die für die FRET-Messungen benötigten EYFP-Akzeptorkonstrukte bei den entsprechenden Wellenlängen anregen, und steigende transfizierte DNA-Mengen führen allgemein zu einer steigenden Fluoreszenz, die mit einer steigenden Expression der Rezeptoren korreliert. Die Hintergrundfluoreszenz (CHO-K1-Zellen untransfiziert) ist in der für EYFP verwendeten spezifischen Filterkombination relativ gering (ca. 2000 Fluoreszenzeinheiten). Anhand der eingesetzten DNA-Mengen und der gemessenen Fluoreszenz wird deutlich, dass die Expression des A_{2B}-Rezeptors geringer ist als die des GABA_BR2- und des A_{2A}-Rezeptors. Höhere eingesetzte DNA-Mengen von 6 μ g des A_{2B}-Rezeptor steigern dessen Expression nur geringfügig, während insbesondere beim A_{2A}-Rezeptor eine deutliche Steigerung der Expression beim Einsatz von höheren DNA-Mengen zu verzeichnen ist. Auch das Fusionsprotein GFP²-YFP lässt sich auch bei relativ geringen zur Transfektion eingesetzten DNA-Mengen von 4 μ g gut exprimieren (Abb. 6-5).

Für die Fluoreszenzmessungen der einzeln transfizierten Donorkonstrukte wurde ein Anregungsfilter von 405/10 nm und ein Emissionsfilter von 510/10 nm verwendet. Alle weiteren Geräteeinstellungen wurden beibehalten.

Abb. 6-6: Relative Fluoreszenz der GFP²-Donorkonstrukte einzeln transient exprimiert in CHO-K1-Zellen; Anregungsfilter 405/10 nm, Emissionsfilter 510/10 nm (n=2, ± SEM).

Auch die für die FRET-Experimente generierten Donorkonstrukte lassen sich alle bei der für GFP^2 spezifischen Wellenlänge anregen und zeigen mit ansteigenden zur Transfektion eingesetzten DNA-Mengen auch eine ansteigende Fluoreszenz bzw. Rezeptorexpression. Auch hier scheint A_{2A}-GFP² etwas besser als A_{2B}-GFP² exprimiert zu werden, wobei bei einer DNA-Menge von >6 µg pro 6-Well, die Expression wieder abnimmt. Da außerdem die Hintergrundfluoreszenz (untransfizierte CHO-K1-Zellen) bei der für GFP² erforderlichen Filterkombination sehr hoch ist (ca. 23000 Fluoreszenzeinheiten für GFP²) müssen für weitere Experimente relativ hohe Donorfluorophor DNA-Mengen eingesetzt werden, um nach Abzug des Hintergrundes, noch eine verbleibende Fluoreszenz zu messen. Auch hier zeigt das GFP²-YFP Fusionsprotein eine sehr gute Expression bei einer relativ niedrigen zur Transfektion eingesetzten DNA-Menge (Abb. 6-6).

6.3 Bestimmung der FRET-Effizienz an doppelt-transfizierten CHO-hA_{2B}-hA_{2A}-Zellen Wie in Kapitel 6.2 gezeigt, waren alle benötigten Rezeptorkonstrukte und auch das Fusionsprotein GFP²-YFP funktionell und zeigten eine relativ gute Expression. Um ein mögliches FRET-Signal zu messen, wurden verschiedenste Kombinationen von Donor- und Akzeptorfluorophor-DNA-Mengen ausgetestet. Für den Donor A_{2A}-GFP² wurde sowohl in Kombination mit ansteigenden zur Transfektion eingesetzten DNA-Mengen von A_{2A}-YFP (Positivkontrolle) als auch in Kombination mit ansteigenden DNA-Mengen von GABA_BR2-YFP (Negativkontrolle) eine konstante DNA-Menge von 3.5 µg für die Transfektion ausgewählt, da mit dieser Menge eine nach Abzug des Hintergrundes gute Fluoreszenz erzielt werden konnte. Da die Expression des A_{2B} -Rezeptors generell niedriger als die des A_{2A} -Rezeptors erschien (Abb. 6-5, Abb. 6-6), wurde von diesem eine konstante Donor-DNA-Menge von 4,5 µg A_{2B} -GFP² in Kombination mit steigenden DNA-Mengen von A_{2A} -YFP zur transienten Transfektion verwendet. Alle Rezeptorkombinationen wurden in den gewählten DNA-Mengen transfiziert, und zur Berechnung der Korrekturfaktoren (CoB und CoA) wurden GFP² und EYFP je einzeln transfiziert, sowie auch 3 µg DNA des GFP²-YFP Fusionsproteins. Nach der Transfektion wurden alle Proben in allen drei Filterkombinationen (GFP²: Anregung 405/10 nm und Emission 510/10 nm, FRET: Anregung 405/10 nm und Emission 535/25 nm, EYFP: Anregung 500/10 nm, Emission 535/25 nm) gemessen und wie mit Gl. 9-2 und Gl. 9-3 beschrieben ausgewertet.

Wie bei der Positivkontrolle zu erkennen, wurden sowohl A_{2A} -GFP² als auch A_{2A} -YFP gut exprimiert, und zusätzlich konnte eine steigende Fluoreszenz bzw. Expression von A_{2A} -YFP mit steigenden zur Transfektion eingesetzten DNA-Mengen beobachtet werden. Auch das GFP²-YFP Fusionsprotein zeigt mit einer im Vergleich zu den Rezeptoren relativ geringen eingesetzten DNA-Menge von 3 µg eine sehr gute Expression (Abb. 6-7).

Abb. 6-7: Relative Fluoreszenz von konstanten Mengen an A_{2A} -GFP² (3,5 µg) kotransfiziert mit ansteigenden Mengen von A_{2A} -YFP in CHO-K1-Zellen. GFP²: Anregungsfilter 405/10 nm, Emissionsfilter 510/10 nm, YFP: Anregungsfilter 500/10 nm, Emissionsfilter 535/25 nm (n= 8-12, ± SEM).

Für die Berechnung des normalisierten FRET-Signals wurde Gl. 9-3 verwendet, welche Fluktuationen von Donor- und Akzeptorkonzentrationen mit berücksichtigt.²⁶²

Abb. 6-8: Normalisierte FRET-Signale für die Kotransfektion von konstanten Mengen an A_{2A}-GFP² (3,5 μ g) mit ansteigenden Mengen von A_{2A}-YFP, sowie des Fusionsproteins GFP²-YFP (n=8-11, ± SEM).

Es wird deutlich, dass ein Energietransfer stattfindet und eine FRET-Effizienz von durchschnittlich ca. 0,2 zwischen A_{2A} -Rezeptoren gemessen werden kann. Mit steigenden transfizierten A_{2A} -YFP-Mengen scheint eine leichter Anstieg der FRET-Effizienz feststellbar, jedoch sinkt diese mit 2,5 µg transfizierter DNA-Menge von A_{2A} -YFP wieder etwas ab. Das Fusionsprotein GFP²-YFP zeigt eine relativ hohe FRET-Effizienz von 0,444 ± 0,038 (Abb. 6-8).

Auch die transfizierten Rezeptorkombinationen für die Negativkontrolle zeigen eine gute Fluoreszenz bzw. Expression von A_{2A} -GFP² (3,5 µg) sowie auch von GABA_BR2-YFP. Zusätzlich kann eine steigende YFP-Fluoreszenz bzw. GABA_BR2-Expression bei steigenden transfizierten DNA-Mengen des Akzeptorkonstruktes GABA_BR2-YFP beobachtet werden (Abb. 6-9).

Abb. 6-9: Relative Fluoreszenz von konstanten Mengen an A_{2A}-GFP² (3,5 μ g) kotransfiziert mit ansteigenden Mengen von GABA_BR2-YFP in CHO-K1-Zellen. GFP²: Anregungsfilter 405/10 nm, Emissionsfilter 510/10 nm, YFP: Anregungsfilter 500/10 nm, Emissionsfilter 535/25 nm (n= 8-12, ± SEM).

Trotz insgesamt guter Expression der Donor- als auch der Akzeptorkonstrukte konnte in der Negativkontrolle nur eine sehr geringe FRET-Effizienz zwischen dem A_{2A} - und dem GABA_BR2-Rezeptor gemessen werden (Abb. 6-10).

Abb. 6-10: Normalisierte FRET-Signale für die Kotransfektion von konstanten Mengen an A_{2A} -GFP² (3,5 µg) mit ansteigenden Mengen GABA_BR2-YFP, sowie des Fusionsproteins GFP²-YFP (n=7-9, ± SEM).

Die Kotransfektion der A_{2A}- und A_{2B}-Rezeptoren zeigt sowohl eine relativ gute Expression der A_{2B}-Rezeptoren (4,5 μ g), als auch eine gute Expression der A_{2A}-Rezeptoren. Mit

steigenden transfizierten DNA-Mengen kann auch in diesen Experimenten eine ansteigende YFP-Fluoreszenz des Akzeptorkonstruktes A_{2A} -YFP gemessen werden, was mit einer steigenden Expression korreliert (Abb. 6-11).

Abb. 6-11: Relative Fluoreszenz von konstanten Mengen an A_{2B} -GFP² (4,5 µg) kotransfiziert mit ansteigenden Mengen von A_{2A} -YFP in CHO-K1-Zellen. GFP²: Anregungsfilter 405/10 nm, Emissionsfilter 510/10 nm, YFP: Anregungsfilter 500/10 nm, Emissionsfilter 535/25 nm (n=8-12, ± SEM).

Es wird deutlich, dass ein Energietransfer zwischen A_{2A} - und A_{2B} -Rezeptoren stattfindet und eine FRET-Effizienz von durchschnittlich ca. 0,15 gemessen werden kann. Mit steigenden transfizierten A_{2A} -YFP Mengen scheint eine leichter Anstieg der FRET-Effizienz feststellbar, jedoch sinkt diese mit mehr als 1,25 µg vom A_{2A} -YFP wieder ab (Abb. 6-12).

Abb. 6-12: Normalisierte FRET-Signale für die Kotransfektion von konstanten Mengen an A_{2B}-GFP² (4,5 μ g) mit ansteigenden Mengen A_{2A}-YFP, sowie des Fusionsproteins GFP²-YFP (n=7-11 ± SEM).

Vergleicht man die gemessenen FRET-Effizienzen, so wird deutlich, dass in der Negativkontrolle in allen verschiedenen transfizierten DNA-Mengen von Donor- und Akzeptorfluorophor, trotz guter Expression beider Rezeptoren, eine geringere FRET-Effizienz gemessen wird, als zwischen A_{2A} -Rezeptoren und zwischen A_{2A} - und A_{2B} -Rezeptoren (Abb. 6-8, Abb. 6-10, Abb. 6-12).

Bei den Kotransfektionen von Donor- und Akzeptorkonstrukten, können allgemein nur in etwa die Expressionen der Akzeptorkonstrukte untereinander verglichen werden, da das gemessene Donorsignal je nach dem Grad der Bildung von Dimeren entsprechend gequencht wird. Für den Vergleich und die Berechnung der Signifikanzen wurde die Menge von 3,5 µg A_{2A} -GFP² + 3,5 µg GABA_BR2-YFP und A_{2B} -GFP² 4,5 µg + 1,5 µg A_{2A} -YFP ausgewählt, da die YFP-Fluoreszenz von 3,5 µg GABA_BR2-YFP in etwa vergleichbar mit 1,5 µg A_{2A} -YFP ist (Abb. 6-9, Abb. 6-11). Vom A_{2A} -Rezeptor wurde die Menge von 3,5 µg A_{2A} -GFP² + 1,5 µg A_{2A} -YFP zum Vergleich herangezogen, da dabei die gleiche DNA-Menge A_{2A} -YFP wie in Kombination mit A_{2B} -GFP² eingesetzt wurde.

Abb. 6-13: Vergleich der normalisierten FRET-Effizienzen (n=9, \pm SEM, ^{***} p < 0,001).

Da der A_{2B}-Rezeptor wie in Kapitel 6.2 gezeigt, etwas geringer als der A_{2A}-Rezeptor exprimiert wurde, könnte auch die Menge von 4,5 μ g A_{2B}-GFP² in der Zelle in etwa vergleichbar mit den Mengen von 3,5 μ g A_{2A}-GFP² sein.

Das Fusionsprotein GFP²-YFP zeigt die höchste FRET-Effizienz (0,444 \pm 0,038) gefolgt von dem A_{2A}-Homodimer (0,227 \pm 0,032) und den A_{2A}-A_{2B}-Rezeptoren (0,161 \pm 0,012) während die Negativkontrolle A_{2A}-GABA_BR2 (-0,008 \pm 0,033) keinen Energietransfer aufweist (Abb. 6-13).

6.3.1 Zusammenfassung und Diskussion

Alle für die FRET-Versuche verwendeten Rezeptorkonstrukte und insbesondere das Fusionsprotein GFP²-YFP zeigen eine gute Expression. Dabei ist die A_{2A}-Rezeptor-Expression am höchsten, gefolgt vom GABA_BR2-Rezeptor und die geringste Expression scheint der A_{2B}-Rezeptor aufzuweisen (Abb. 6-5). Dies ist in etwa vergleichbar mit den Ergebnissen von Moriyama et al., welche in transfizierten HEK-AD-293-Zellen eine geringere Oberflächenexpression des A_{2B}-Rezeptors schien dabei im Proteasom abgebaut zu werden.¹¹² Bei der Kotransfektion der zu untersuchenden Rezeptorkonstrukte wird deutlich, dass in der Positivkontrolle GFP₂-YFP in allen Versuchen eine höhere FRET-Effizienz gemessen wird als bei der Verwendung der Rezeptorkonstrukte (Abb. 6-13). Zum einen zeigt das Fusionsprotein auch schon mit relativ geringen eingesetzten DNA-Mengen von 3 µg eine sehr gute Expression und zum anderen befinden sich GFP² und EYFP in großer räumlicher Nähe, da beide Proteine nur durch eine sehr kurze Linkersequenz von wenigen Aminosäuren

voneinander getrennt sind. Die gemessene FRET-Effizienz von $0,444 \pm 0,038$ liegt dabei in einem ähnlichen Bereich wie die von Canals et al. für das GFP²-YFP Fusionsprotein bestimmt (0,52).¹⁰³ Die Positivkontrolle des A_{2A}-Homodimers zeigt eine FRET-Effizienz von 0.227 ± 0.032 welche ebenfalls in etwa mit der von Canals et al. gemessenen von 0.28 korreliert.¹⁰³ Je nach dem verwendeten Filtersystem können die Werte dabei auch etwas variieren. Im Gegensatz dazu zeigt die Negativkontrolle trotz guter Expression sowohl von A2A- als auch von GABABR2-Rezeptoren in allen in Kombination zur Transfektion eingesetzten DNA-Mengen nur eine geringfügige FRET-Effizienz (Abb. 6-9, Abb. 6-10). Auffällig ist, dass bei einer eingesetzten Donormenge von 3,5 µg A_{2A}-GFP² in Kombination mit dem GABA_BR2-YFP-Rezeptor eine deutlich höhere GFP²-Fluoreszenz gemessen wird, als die gleiche Menge A2A-GFP2 (3,5 µg) in Kombinationen mit dem A2A-YFP-Rezeptor (Abb. 6-9, Abb. 6-7). Da es zwischen A2A- und GABABR2-Rezeptoren zu nahezu keinem Energietransfer kommt, wird die Fluoreszenz des Donors nicht gequencht und ist damit im Vergleich zu dem A_{2A}-Homodimer höher, bei dem ein Energietransfer stattfindet was in einer Abnahme der Donorfluoreszenz resultiert. Des Weiteren könnten auch die gewählten Kombinationen der Rezeptorkonstrukte jeweils eine unterschiedliche Expression aufweisen, da z. B. eine DNA eventuell sequenzabhängig in Kombination besser von den Zellen aufgenommen wird als die andere. Zwischen den A2A- und A2B-Rezeptoren kann im Vergleich zur Negativkontrolle eine nahezu gleichbleibende FRET-Effizienz in allen zur Transfektion eingesetzten DNA-Mengenkombinationen von ca. 0,15 gemessen werden (Abb. 6-12), was die Bildung eines A2A-A2B-Heterodimers wahrscheinlich werden lässt. Zumindest befinden sich beide Rezeptoren in räumlicher Nähe (<10 nm). Mit der Zugabe von mehr A2A-YFP steigt die FRET-Effizienz nur etwas an und nimmt bei höheren DNA-Mengen wieder ab (Abb. 6-12), da hier anscheinend schon eine Sättigung erreicht ist und nicht mehr Dimere durch die Zugabe von mehr Akzeptor-DNA gebildet werden. Vielmehr sterben die Zellen bei zu hohen eingesetzten DNA-Mengen (>8-9 µg DNA pro 6-Well) ab. Sehr wahrscheinlich werden insgesamt auch mehr A2A-Homodimere als A2A-A2B-Heterodimere gebildet oder die Struktur des A2A-Homodimeres bringt beide C-terminalen Fluorophore in größere räumliche Nähe als die Struktur des A2A-A2B-Heterodimers, da die FRET-Effizienz des A_{2A}-Homodimers signifikant höher als die des A_{2A}-A_{2B}-Heterodimers ist (Abb. 6-13). Zusammenfassend lässt sich schlussfolgern, dass im Vergleich zur Negativkontrolle ein signifikant höherer Energieübertrag zwischen A2A- und A2B-Rezeptoren gemessen werden kann, der eine Heterodimerbildung wahrscheinlich macht. Ein Schluss auf die Funktionalität der Rezeptordimere kann mit diesem Versuchsansatz auch durch eine eventuelle Zugabe von Agonisten nicht direkt gegeben werden, da bei dieser fluorimetrischen Messung nicht zwischen Proteininteraktionen in der Plasmamembran oder in intrazellulären Kompartimenten unterschieden werden kann. Dafür müssten z. B. zeitauflösende FRET-Studien am konfokalen Mikroskop durchgeführt werden, wo ein Bereich in der Plasmamembran spezifisch ausgewählt werden könnte.

6.4 Bestimmung der FRET-Effizienz einer hA_{2A}-Rezeptor-Mutante mit verkürztem C-Terminus in Kombination mit dem A_{2B}-Rezeptor

Da der C-Terminus des A_{2A} -Rezeptors nicht an einer Homodimerisierung zwischen A_{2A} -Rezeptoren,¹⁰³ wohl aber an einer Heterodimerisierung zwischen A_{2A} - und D_2 -Rezeptoren¹¹⁵ beteiligt zu sein scheint, wurde, um die Struktur des A_{2B} - A_{2A} -Heterodimers näher zu untersuchen, eine Mutante des humanen A_{2A} -Rezeptors mit verkürztem C-Terminus (A_{2A} -1-293R) generiert. Als Positivkontrollen wurden wie in Abschnitt 6.2 beschrieben das A_{2A} -Homodimer sowie das GFP²-YFP-Fusionsprotein, und als Negativkontrolle der GABA_BR2-Rezeptor in Kombination mit dem A_{2A} -Rezeptor verwendet. Als Donorkonstrukt wurden 4,5 µg von A_{2B} -GFP² in Kombination mit ansteigenden Mengen von hA_{2A} -1-293R-YFP, und für die Positiv- bzw. Negativkontrollen wurden je 3 µg von A_{2A} -GFP² in Kombination mit ansteigenden Mengen an GABA_BR2-YFP verwendet (Abb. 6-14).

Abb. 6-14: Relative Fluoreszenz von konstanten Mengen an A_{2B} -GFP² (4,5 µg) kotransfiziert mit ansteigenden Mengen von A_{2A} -1-293R-YFP; oder konstante Mengen von A_{2A} -GFP² (3 µg) kotransfiziert mit ansteigenden Mengen von A_{2A} -YFP oder von GABA_BR2-YFP in CHO-K1-Zellen. GFP²: Anregungsfilter 405/10 nm, Emissionsfilter 510/10 nm, YFP: Anregungsfilter 500/10 nm, Emissionsfilter 535/25 nm (n=13-14, ± SEM).

Es wird deutlich, dass die Mutante des humanen A_{2A} -Rezeptors eine gute Expression aufweist, da mit ansteigenden zur Transfektion eingesetzten Akzeptor-DNA-Mengen von A_{2A} -1-293R-YFP eine ansteigende YFP-Fluoreszenz gemessen werden kann. Dabei scheint die Expression des A_{2A} -Wildtyp-Rezeptors geringfügig besser zu sein, da ca. 1,5 µg von A_{2A} -1-293R-YFP benötigt werden, um eine vergleichbare YFP-Fluoreszenz wie mit 1 µg A_{2A} -YFP hervorzurufen. Der GABA_BR2-YFP-Rezeptor zeigt mit etwa 3,5 µg eingesetzter DNA-Menge eine vergleichbare YFP-Fluoreszenz wie 1,5 µg von A_{2A} -1-293R-YFP (Abb. 6-14). Auch hier kann kein Vergleich über die Expression der Donorfluorophore angestellt werden, da bei der Koexpression je nach dem Grad der Bildung von Dimeren die Donoremission gequencht wird. Vergleicht man die berechneten FRET-Effizienzen, so wird deutlich, dass in der Negativkontrolle in allen mit verschiedenen DNA-Mengen von Donorund Akzeptorfluorophor transfizierten Zellen, trotz guter Expression sowohl von A_{2A} - als auch von GABA_BR2-Rezeptoren und zwischen A_{2A} -1-293R und A_{2B} -Rezeptoren (Abb. 6-15).

Abb. 6-15: Normalisierte FRET-Signale für die Kotransfektion von konstanten Mengen an A_{2B}-GFP² (4,5 μ g) mit ansteigenden Mengen von A_{2A}-1-293R-YFP; oder von konstanten Mengen an A_{2A}-GFP² (3 μ g) kotransfiziert mit ansteigenden Mengen von A_{2A}-YFP oder von GABA_BR2-YFP sowie des Fusionsproteins GFP²-YFP 3 μ g (n=9-14, ± SEM).

Zwischen A_{2B}- und A_{2A}-1-293R kann eine FRET-Effizienz von durchschnittlich ca. 0,25 gemessen werden, die mit höher eingesetzten Mengen von A_{2A}-1-293R etwas ansteigt und mit 2,5 μ g eingesetzter DNA-Menge wieder abfällt. Die FRET-Effizienzen zwischen A_{2A}-Rezeptoren von durchschnittlich 0,18 und des GFP²-YFP Fusionsproteins von ca. 0,50 sind in

etwa vergleichbar mit den in Kapitel 6.3 gemessenen Werten (Abb. 6-15). Für den Vergleich und die Berechnung der Signifikanzen wurden die Mengen von 3 μ g A_{2A}-GFP² + 3,5 μ g GABA_BR2-YFP, A_{2B}-GFP² 4,5 μ g + 1,5 μ g A_{2A}-1-293R-YFP und 3 μ g A_{2A}-GFP² + 1 μ g A_{2A}-YFP herangezogen (Abb. 6-16), da die YFP-Fluoreszenzen der Rezeptoren mit diesen Mengen und somit die Expressionen in etwa vergleichbar sind (Abb. 6-14). Wie in Abb. 6-6 gezeigt, ist die Expression des A_{2A}-Rezeptors etwas höher als die des A_{2B}-Rezeptors, weswegen eine höhere Donorkonstruktmenge von 4,5 μ g A_{2B}-GFP² im Vergleich zu 3 μ g A_{2A}-GFP² eingesetzt wurde.

Abb. 6-16: Vergleich der normalisierten FRET-Effizienzen (n=10, \pm SEM, ^{***} p < 0,001).

Das Fusionsprotein GFP²-YFP zeigt die höchste FRET-Effizienz (0,501 \pm 0,030) gefolgt von den A_{2A}-1-293R-A_{2B}-Rezeptoren (0,244 \pm 0,030) und dem A_{2A}-Homodimer (0,134 \pm 0,040) während die Negativkontrolle A_{2A}-GABA_BR2 (-0,010 \pm 0,034) keinen Energietransfer aufzeigt (Abb. 6-16).

6.4.1 Zusammenfassung und Diskussion

Auch die verkürzte C-Terminus Mutante des humanen A_{2A} -Rezeptors zeigt eine gute Expression, die insgesamt etwas geringer als die des Wildtyp- A_{2A} -Rezeptors ausfällt (Abb. 6-14). Weiterhin kann auch zwischen dem mutierten A_{2A} - und dem A_{2B} -Rezeptor ein Energieübertrag gemessen werden, während zwischen A_{2A} - und GABA_BR2-Rezeptoren trotz guter Expression und in allen Kombinationen von transfizierten DNA-Mengen nur ein vernachlässigbarer Energieübertrag gemessen werden kann (Abb. 6-15). Der C-Terminus des humanen A_{2A} -Rezeptors scheint somit nicht entscheidend für eine Heterodimerisierung mit

dem A_{2B}-Rezeptor zu sein. Des Weiteren ist die gemessene FRET-Effizienz in diesen Versuchen zwischen der A_{2A}-Rezeptor-Mutante und dem A_{2B}-Rezeptor signifikant höher als zwischen dem A_{2A}-Homodimer (Abb. 6-16), was entweder einen Anstieg der Heterodimerisierung aufgrund der Mutation vermuten lässt, oder aber die Struktur des A_{2A}-A_{2B}-Heterodimers wird durch das Fehlen des C-Terminus so verändert, dass die beiden Rezeptoren in größere räumliche Nähe gebracht werden können. Moriyama et al. konnten zeigen, dass ein spezielles Transportsignal im C-Terminus des A_{2A}-Rezeptors notwendig ist, um den A_{2B}-Rezeptor vermehrt an die Zellmembran zu bringen.¹¹² Dadurch kann jedoch nicht auf fehlende Heterodimerbildung beim Fehlen des A_{2A}-C-Terminus geschlossen werden, da sich Rezeptorinteraktionen auch schon im ER/Golgi-Apparat ausbilden können.²⁶³ Weiter spekulierten die Autoren, dass nicht ausschließlich die C-Termini von A_{2A}- und A_{2B}-Rezeptoren in eine Interaktion involviert sind, sondern das wahrscheinlich auch die

Transmembrandomänen an der Dimer-Interaktionsfläche beteiligt sind.¹¹²

Canals et al. konnten zeigen, dass der C-Terminus des A_{2A} -Rezeptors nicht an einer Homodimerisierung beteiligt ist.¹⁰³ Da humane A_{2A} - und A_{2B} -Rezeptoren zu 56 % identisch sind,²⁶⁴ könnten ähnliche Interaktionsflächen wie beim A_{2A} -Homodimer wahrscheinlich sein, die somit auch eine Beteiligung des A_{2A} -Rezeptor-C-Terminus im A_{2A} - A_{2B} -Rezeptorheterodimer ausschließen.

Des Weiteren scheint der C-Terminus des A_{2A} -Rezeptors hauptsächlich als Kontaktstelle für spezifische Interaktionen mit anderen Proteinen wie z. B. für G-Protein-Rezeptor-gekoppelte Kinasen oder für β -Arrestine genutzt zu werden.²⁶⁵ Im Vergleich zu den anderen Adenosinrezeptor-C-Termini fehlt dem C-Terminus des A_{2A} -Rezeptors jedoch ein konserviertes Cystein, an welches posttranslational eine Palmitinsäure angehängt wird. Diese Palmitoylierung dient zur Vermittlung von weiteren Protein-Protein-Interaktionen und für eine Verankerung in der Plasmamembran.²⁶⁵ Durch das Fehlen dieses Lipidankers, wird die Flexibilität des A_{2A} -C-Terminus erhöht,²⁶⁵ und auch eine Proteininteraktion mit weiteren Rezeptoren erscheint dadurch unwahrscheinlicher.

Schließlich konnte mit diesem Experiment auch die Bildung des A_{2B} - A_{2A} -Heterodimers zusätzlich erhärtet werden, da das YFP durch den verkürzten C-Terminus des A_{2A} -Rezeptors nicht mehr so flexibel rotieren kann, um zufällig ohne eine echte Interaktion in die Nähe des GFP² am C-Terminus des A_{2B} -Rezeptors gebracht zu werden.

7 Fluorimetrische BiFC-Experimente an doppelt-transfizierten CHO-hA_{2B}-hA_{2A}-Zellen

7.1 Einleitung

7.1.1 Prinzip der Bimolekularen-Fluoreszenzkomplementation

Zur Untersuchung von Proteininteraktionen in lebenden Zellen, können nicht nur Resonanz-Energie-Transfer-Studien wie FRET oder BRET (Biolumineszenz-Resonanz-Energie-Transfer) herangezogen werden, sondern auch Bimolekulare-Fluoreszenzkomplementations-Experimente (BiFC) oder Bimolekulare-Lumineszenzkomplementations-Experimente (BiLC).²⁶⁶ Das Grundprinzip der Bimolekularen-Fluoreszenzkomplementation (BiFC) besteht darin, dass zwei verschiedene Fragmente eines fluoreszierenden Proteins an die zwei zu untersuchenden Proteine angefügt werden. Beide Fragmente weisen dabei keine eigene Fluoreszenz auf. Befinden sich die Proteine in räumlicher Nähe, so kann eine Zusammenlagerung der Fragmente zu einem funktionsfähigen fluoreszierenden Protein

Das Auftreten der Fluoreszenz liefert somit einen direkten Hinweis auf eine Interaktion und auch auf deren Lokalisation.

Abb. 7-1: Grundprinzip der Bimolekularen-Fluoreszenzkomplementation (BiFC).²⁶⁷

Es können verschiedenste Fragmente von fluoreszierenden Proteinen eingesetzt werden. Für die meisten BiFC-Experimente bieten sich verkürzte Versionen des EYFP-Proteins an, welches in ein N-terminales Fragment YN155 (AS 1-154) und ein C-terminales Fragment C155 (AS 155-238) unterteilt werden kann. Diese produzieren nach einer spezifischen Interaktion gute Fluoreszenzsignale mit einer relativ geringen Hintergrundfluoreszenz bei Proteinen, die nicht miteinander interagieren.²⁶⁸ Des Weiteren können auch andere Splittvarianten von YFP, z. B. YN173 (AS 1-172), YC173 (AS 172-238) und auch andere

fluoreszierende Proteine wie z. B. Venus eingesetzt werden. Dieses Protein besitzt nach einer spezifischen Komplementation eine höhere Fluoreszenz, jedoch auch eine höhere Hintergrundfluoreszenz in den Negativkontrollen.²⁶⁸

Tab. 7-1 gibt eine Übersicht über die möglichen Kombinationen der Fragmente von fluoreszierenden Proteinen für BiFC-Experimente.²⁶⁸

Tab. 7-1: Kombinierte Fragmente von fluoreszierenden Proteinen für BiFC-Experimente.²⁶⁸

Combinations of fluorescent protein fragments recommended for BiFC analysis.			
Fusions ¹	Purpose	Excitation filter(s)	Emission filter(s)
A-YN155 B-YC155	A–B interaction	500/20 nm	535/30 nm
A-YN173 B-YC173	A–B interaction	500/20 nm	535/30 nm
A-CN155 B-CC155	A-B interaction	436/10 nm	470/30 nm
A-YN155 B-CN155 Z-CC155	Concurrent visualization of A and B interaction with Z	500/20 nm and 436/10 nm	535/30 nm and 470/30 nm

Es können nicht nur verschiedene Kombinationen von Fragmenten von fluoreszierenden Proteinen verwendet werden, sondern auch die Positionen, in welchen die Fragmente an die zu untersuchenden Proteinen angebracht werden, sind für eine mögliche Komplementation entscheidend. Je nachdem, wie die Struktur einer Proteininteraktion beschaffen ist, können acht verschiedene Fragmentkombinationen je am Amino- und/oder Carboxyterminus der Proteine auf eine mögliche Komplementation hin untersucht werden.²⁶⁸ Dabei ist auch die Linkersequenz zwischen dem Protein und dem Fragment wichtig, da diese flexibel und lang genug sein sollte, um eine maximale Mobilität zu gewährleisten.²⁶⁸

Hu et al. verwendeten die Transkriptionsfaktoren Jun (bJunYN) und Fos (bFosYC) der bZip-Familie als Modellsysteme, um die Proteininteraktionen in lebenden Zellen mit Hilfe von BiFC zu untersuchen.²⁶⁹ So konnte nach einer Heterodimerisierung der Transkriptionsfaktoren eine YFP-Fluoreszenz im Zellkern gemessen werden, während eine Leucin-Zipper-Mutante von Fos (bFos Δ ZipYC) in Kombination mit bJunYN nahezu keine Fluoreszenz mehr aufwies. Damit konnte unter anderem die Anwendbarkeit des BiFC-Assays für die Identifizierung von Proteininteraktionen in lebenden Zellen bestätigt werden.²⁶⁹

Auf dem Forschungsgebiet der Adenosinrezeptoren konnte kürzlich unter anderem mit Hilfe von BiFC-Experimenten eine Homodimerisierung des humanen Adenosin-A₃-Rezeptors in

CHO-Zellen gezeigt werden.¹¹⁰ Auch das bereits gut untersuchte A_{2A}-D₂-Rezeptor Heterodimer konnte mit BiFC-Experimenten nachgewiesen werden.¹⁰⁵ Des Weiteren ist eine Kombination von BiFC-Experimenten mit Resonanz-Energie-Transfer-Studien möglich, um oligomere Rezeptorstrukturen zu identifizieren.^{104, 106, 262}

Um die Heterodimerisierung von A_{2A}- und A_{2B}-Rezeptoren weiter zu bestätigen, wurden im folgenden BiFC-Experimente etabliert. Diese haben gegenüber von FRET-Experimenten den Vorteil, dass eine mögliche Proteininteraktion mit nur einem Anregungs- und Emissionsfilter für das entsprechende verwendete fluoreszierende Protein direkt gemessen werden kann. Damit ist die Methode sehr sensitiv und kann auch zur Detektion von relativ geringen Signalen für Proteininteraktionen z. B. bei einer geringen Proteinexpression der Interaktionspartner eingesetzt werden.²⁷⁰ Ein Nachteil des BiFC-Assays ist jedoch, dass keine Messungen der Proteinassoziationen in "Echtzeit" möglich sind, da nach der Zusammenlagerung der Fragmente die Maturation des Chromophors zeitverzögert erfolgt. So ist z. B. für die funktionelle Ausbildung des EYFP eine Inkubation der Zellen bei 30°C notwendig. Auch ist die einmal gebildete Tertiärstruktur des fluoreszierenden Proteins nicht mehr reversibel, was aber für die Detektion von transienten Interaktionen von Vorteil sein kann.²⁷⁰

Eine mögliche Heterodimerdissoziation z. B. durch die Zugabe eines spezifischen Agonisten für einen Rezeptor im Heterodimer, könnte mit diesem System somit nicht gemessen werden.

7.2 Bestimmung der relativen EYFP-Fluoreszenz an doppelt-transfizierten CHO-hA_{2B}-hA_{2A}-Zellen und Überprüfung der Proteinexpression

Um die Heterodimerisierung zwischen A_{2A}- und A_{2B}-Rezeptoren auch mit diesem Assaysystem zu bestätigen, wurden verschiedenste Rezeptorkonstrukte konstruiert. So wurden die Fragmente des EYFP-Proteins YN155 (AS 1-154) und YC155 (AS 155-238) in Kombination für die BiFC-Experimente ausgewählt und jeweils an den C-Terminus der zu untersuchenden Rezeptoren angebracht. Weiterhin wurde an die Rezeptorkonstrukte mit YC155 ein HA-Tag (Antikörper anti HA) am N-Terminus angefügt, um die Expression der Rezeptoren mit Hilfe von Western Blots auch bei einer Koexpression getrennt überprüfen zu können. Der für die Detektion der YN155-Konstrukte verwendete monoklonale Antikörper anti GFP (Covance, MMS-118P) erkennt dabei nur diese und nicht die YC155 Konstrukte.²⁷¹ Des Weiteren wurden die Rezeptorkonstrukte mit einem langen Linker (L) Aminosäuren: APVRPACKIPNDLKQKVMNHGS oder einem kurzen Linker (S) Aminosäuren:

ihrer Flexibilität eine unabhängige Bewegung der Proteine sowie der beiden YFP-Fragmente ermöglichen. Die Linkersequenzen RPACKIPNDLKQKVMNH und RSIAT sind dabei schon mehrfach erfolgreich für BiFC-Experimente verwendet worden.²⁶⁷

Für die Messung der EYFP-Fluoreszenz wurde ein Anregungsfilter von 500/10 nm und ein Emissionsfilter von 535/25 nm verwendet. Als Positivkontrolle wurde wie in den FRET-Experimenten auch, das A_{2A}-Homodimer und als Negativkontrolle wurde der A_{2A}-Rezeptor in Kombination mit dem GABA_BR2-Rezeptor verwendet. Als Kontrolle für das Funktionieren des BiFC-Assays wurden die von Prof. Dr. Kerppola freundlicherweise zur Verfügung gestellten DNA-Konstrukte der Transkriptionsfaktoren bJunYN155 und HA-bFosYC155 in Kombination verwendet. Um zunächst eine mögliche Eigenfluoreszenz der für die Experimente verwendeten Rezeptorkonstrukte auszuschließen, wurden diese in relativ hohen Mengen einzeln in CHO-K1-Zellen transfiziert.

Abb. 7-2: Relative EYFP-Fluoreszenz der einzeln transfizierten Transkriptionsfaktoren und der Rezeptorkonstrukte (n=7-8, \pm SEM) sowie Überprüfung der Expression mit Hilfe von Western Blots. Jun-NYFP: ca. 32 kDa, HA-Fos-CYFP: ca. 24 kDa, A_{2A}-L-NYFP: ca. 65 kDa, HA-A_{2A}-S-CYFP: ca. 56 kDa, A_{2B}-L-NYFP: 56 kDa, HA-A_{2A}-L-CYFP: ca. 57 kDa, GABA_BR2-S-NYFP ca. 124 kDa.

Es zeigt sich, dass alle einzeln transient transfizierten Transkriptionsfaktoren und Rezeptorkonstrukte in den für die Transfektion gewählten DNA-Mengen eine gute Expression zeigen, jedoch nahezu keine YFP-Fluoreszenz, was aufgrund des Fehlens der jeweiligen komplementären YFP-Fragmente zu erwarten ist. Insbesondere die Transkriptionsfaktoren Jun und Fos zeigen auch schon mit einer geringen zur Transfektion eingesetzten DNA-Menge (1 µg) eine gute Expression (Abb. 7-2), während von den Rezeptorkonstrukten höhere DNA-Mengen für eine gute Expression einsetzt werden mussten.

Um anschließend eine mögliche Interaktion der Transkriptionsfaktoren und der Rezeptoren untereinander durch Messung einer YFP-Fluoreszenz nachzuweisen, wurden verschiedenste Kombinationen koexprimiert. Zunächst wurden zur Prüfung der Funktionalität des BiFC-Assays, Jun-NYFP und HA-FosCYFP (je 1 µg) kotransfiziert, und für die Überprüfung der Expression mit einem Western Blot wurden nach einer Lyse der Zellen und einer Proteinbestimmung nach Bradford 10 µg von der Proteinprobe auf ein SDS-Gel geladen.

Abb. 7-3: Relative EYFP-Fluoreszenz der kotransfizierten Transkriptionsfaktoren (n=7, \pm SEM) und Überprüfung der Expression mit Hilfe von Western Blots. Jun-NYFP: ca. 32 kDa, HA-Fos-CYFP: ca. 24 kDa.

Es wird deutlich, dass im Vergleich zu den einzeln transfizierten Konstrukten, die Kotransfektion der beiden Transkriptionsfaktoren Jun und Fos von je 1 μ g DNA nach Abzug der Hintergrundfluoreszenz von untransfizierten CHO-Zellen, zu einer relativen YFP-Fluoreszenz von ca. 6500 Fluoreszenzeinheiten führt, was die generelle Funktion des BiFC-Assays und die in der Literatur beschriebene Dimerbildung der Transkriptionsfaktoren bestätigt.²⁷² Der Western Blot zeigt eine sehr gute Expression der Proteine trotz relativ wenig für die Transfektion eingesetzter DNA-Mengen (je 1 μ g) und einer relativ geringen eingesetzten Proteinmenge (10 μ g) für den Western Blot (Abb. 7-3).

Für die Positivkontrolle wurde das A_{2A} -Homodimer mit ähnlichen transfizierten DNA-Mengen wie in den FRET-Experimenten untersucht, da mit diesen eine gute Expression erzielt worden war. So wurde eine konstante Menge von A_{2A} -L-NYFP (4 µg) mit ansteigenden Mengen von HA- A_{2A} -S-CYFP kotransfiziert (Abb. 7-4).

Abb. 7-4: Relative EYFP-Fluoreszenz bei konstant kotransfizierter Menge von 4 μ g A_{2A}-L-NYFP mit ansteigenden Mengen von HA-A_{2A}-S-CYFP (n=9-10, ± SEM), und Überprüfung der Expression mit Hilfe von Western Blots (25 μ g Protein pro Probe).

Nach Abzug der Hintergrundfluoreszenz konnte eine, wenn auch im Vergleich zu dem Jun und Fos Heterodimer geringere, EYFP-Fluoreszenz gemessen werden, was eine Interaktion der A_{2A}-Rezeptoren bestätigt. Auch konnte mit steigenden zur Transfektion eingesetzten DNA-Mengen eine leichte Zunahme der EYFP-Fluoreszenz bzw. Dimerisierung bis zu einer Sättigung (bis 1,75 μ g HA-A_{2A}-S-CYFP) beobachtet werden, was zusätzlich für eine spezifische Interaktion spricht. Bei höheren eingesetzten DNA-Mengen nimmt die Dimerbildung wieder geringfügig ab (Abb. 7-4). Zur Überprüfung und zur Vergleichbarkeit der Expressionen, wurden für alle Versuche 25 μ g der jeweiligen Proteinproben auf ein SDS-Gel geladen. Des Weiteren wurden die Blots unter nahezu gleichen Bedingungen mit dem Enzymsubstrat inkubiert und auch die Belichtungszeit der Röntgenfilme wurde konstant gehalten. Im Western Blot wird deutlich, dass beide A_{2A}-Rezeptorkonstrukte gut exprimiert werden, wobei bei steigender transfizierter DNA-Menge von HA-A_{2A}-S-CYFP auch eine steigende Expression gut erkennbar ist. Die Expression von A_{2A}-L-NYFP scheint leicht abzunehmen, obwohl konstante DNA-Mengen eingesetzt wurden (Abb. 7-4). Eventuell wird dieses Konstrukt durch die steigende Menge des anderen verdrängt.

Als Negativkontrolle wurde der A_{2A} -Rezeptor in Kombination mit dem GABA_BR2-Rezeptor untersucht. Es wurde eine konstante Menge von A_{2A} -L-CYFP (2,5 µg) mit ansteigenden Mengen von GABA_BR2-S-NYFP oder eine konstante Menge von GABA_BR2-S-NYFP (2,5 µg) mit ansteigenden Mengen von HA-A_{2A}-L-CYFP kotransfiziert (Abb. 7-5).

Abb. 7-5: Relative EYFP-Fluoreszenz bei konstant kotransfizierter Menge von 2,5 μ g HA-A_{2A}-L-CYFP mit ansteigenden Mengen von GABA_BR2-S-NYFP; oder bei konstant kotransfizierter Menge von 2,5 μ g GABA_BR2-S-NYFP mit ansteigenden Mengen von HA-A_{2A}-L-CYFP (n=8-10, ± SEM) sowie Überprüfung der Expression mit Hilfe von Western Blots (25 μ g Protein pro Probe).

Auch hier zeigt sich in allen Kombinationen eine geringe EYFP-Fluoreszenz die jedoch insgesamt im Vergleich zum A_{2A} - A_{2A} -Homodimer geringer ist. Des Weiteren ist praktisch keine Zunahme der YFP-Fluoreszenz mit steigenden DNA-Mengen erkennbar, was eine spezifische Interaktion der Rezeptoren untereinander unwahrscheinlich werden lässt (Abb. 7-5). Trotz der in allen Kombinationen gemessenen nur geringen EYFP-Fluoreszenz, konnte mit Western Blots eine gute Expression der GABA_BR2-Rezeptoren sowie der A_{2A} -Rezeptoren gezeigt werden. Mit ansteigenden transfizierten DNA-Mengen ist eine steigende Proteinexpression des GABA_BR2- und des A_{2A} -Rezeptoren, wurde eine konstante DNA-Menge von A_{2B} -L-NYFP (5 µg) mit ansteigenden Mengen von HA- A_{2A} -S-CYFP kotransfiziert (Abb. 7-6).

Abb. 7-6: Relative EYFP-Fluoreszenz bei konstant kotransfizierter Menge von 5 μ g A_{2B}-L-NYFP mit ansteigenden Mengen von HA-A_{2A}-S-CYFP (n=9-10, ± SEM) und Überprüfung der Expression mit Hilfe von Western Blots (25 μ g Protein pro Probe).

Damit konnte eine EYFP-Fluoreszenz, welche mit ansteigenden transfizierten DNA-Mengen von HA-A_{2A}-L-CYFP zunimmt, gemessen werden, womit eine spezifische Interaktion der Rezeptoren untereinander wahrscheinlich ist (Abb. 7-6). Im Western Blot wird deutlich, dass

sowohl A_{2A} - als auch A_{2B} -Rezeptoren in den für die Transfektion eingesetzten DNA-Mengen gut exprimiert werden, wobei mit steigender transfizierter DNA-Menge von HA- A_{2A} -S-CYFP auch eine steigende Expression gut erkennbar ist. Die Expression von A_{2B} -L-NYFP scheint trotz konstant eingesetzter DNA-Mengen ähnlich wie beim A_{2A} -Homodimer etwas geringer zu werden (Abb. 7-6). Eventuell wird dieses Konstrukt auch hier durch die steigende Menge des anderen bei der Aufnahme in die Zelle verdrängt.

Da versucht wurde, die Bedingungen der Western Blots in allen Proben gleich zuhalten, kann die Expression der Rezeptoren zumindest bei der Verwendung der gleichen Antikörper auch untereinander annähernd verglichen werden. Für den Vergleich und die Berechnung der Signifikanzen wurde die Kombination von 2,5 μ g HA-A_{2A}-L-CYFP + 3 μ g GABA_BR2-S-NYFP und 5 μ g A_{2B}-L-NYFP + 1,5 μ g HA-A_{2A}-S-CYFP ausgewählt, da die Expression von 3 μ g GABA_BR2-S-NYFP in etwa vergleichbar mit 5 μ g A_{2B}-L-NYFP ist. Des Weiteren ist in der Negativkontrolle sogar eine höhere Menge an A_{2A}-Rezeptor vorhanden. Vom A_{2A}-Rezeptor wurde die Menge von 4 μ g A_{2A}-L-NYFP + 1,5 μ g HA-A_{2A}-S-CYFP zum Vergleich herangezogen. Die Expression von 4 μ g A_{2A}-L-NYFP scheint in dieser Kombination annähernd vergleichbar oder nur geringfügig mehr zu sein als 5 μ g A_{2B}-L-NYFP oder 3 μ g GABA_BR2-S-NYFP. Auch ist die Expression von 1,5 μ g HA-A_{2A}-S-CYFP in Kombination mit dem A_{2B}-Rezeptor.

Abb. 7-7: Vergleich der relativen EYFP-Fluoreszenz bei annähernd gleichen Expressionen der Rezeptoren $(n=10, \pm SEM, *** p < 0,001)$.

Insgesamt lässt sich zeigen, dass trotz annähernd vergleichbarer Expressionen, zwischen A_{2A} und A_{2B} -Rezeptoren eine signifikant höhere EYFP-Fluoreszenz als zwischen GABA_BR2- und A_{2A} -Rezeptoren gemessen werden kann, was eine Heterodimerisierung bestätigt. Des Weiteren werden wie auch mit FRET-Experimenten in Kapitel 6.3 gezeigt, signifikant mehr A_{2A} -Homodimere als A_{2A} - A_{2B} -Heterodimere gebildet (Abb. 7-7).

7.2.1 Zusammenfassung und Diskussion

Alle für die BiFC-Experimente verwendeten Rezeptorkonstrukte und insbesondere die Transkriptionsfaktoren Jun und Fos zeigen auch schon mit relativ geringer für die Transfektion eingesetzter DNA-Menge eine gute Expression. Der Assay und die Durchführung wurden validiert: Bei der Kotransfektion der beiden Transkriptionsfaktoren im Vergleich zu den einzeln transfizierten Konstrukten konnte eine robuste EYFP-Fluoreszenz nachgewiesen werden (Abb. 7-2, Abb. 7-3). Als schwierig gestaltet sich der Vergleich der Expressionen der Rezeptoren untereinander. Da für die Western Blots nahezu gleiche Bedingungen gewählt wurden, können zumindest Rezeptoren die jeweils mit dem gleichen Antikörper detektiert wurden, annähernd untereinander verglichen werden. Dabei erscheint die Expression des A2A-L-NYFP-Rezeptors mit 4 µg etwas höher als die Expression des GABA_BR2-S-NYFP-Rezeptors mit 3 μ g und die des A_{2B}-L-NYFP-Rezeptors mit 5 μ g eingesetzter DNA zu sein. Weiterhin ist aber die Menge an A2A-Rezeptor in der Zelle in der Kombination mit dem GABA_BR2-Rezeptor höher als in Kombination mit dem A_{2A}- oder A_{2B}-Rezeptor. Somit kann auch die Bildung von Artefakten aufgrund einer zu hohen Expression ausgeschlossen werden, da trotz insgesamt annähernd gleichen Rezeptormengen in der Zelle zwischen A2A- und GABABR2-Rezeptoren in allen Kombinationen, im Vergleich selbst zu den geringsten eingesetzten Mengen von A_{2B}-und A_{2A}-Rezeptoren, eine signifikant geringere EYFP-Fluoreszenz gemessen werden, was die Ausbildung eines A2A-A2B-Heterodimers bestätigt.

Es bleibt jedoch generell unklar, bei welchen Expressionsverhältnissen sich überhaupt Dimere ausbilden können. So muss eventuell nur relativ wenig an A_{2A} -Rezeptor in der Zelle vorhanden sein, damit sich Homodimere ausbilden. Auch scheinen sich insgesamt mehr A_{2A} -Homodimere als A_{2A} - A_{2B} -Heterodimere auszubilden. Auch hier ist nicht klar, in welchen Mengenverhältnissen A_{2A} - und A_{2B} -Rezeptoren in der Zelle vorliegen müssen, damit sich Heterodimere ausbilden. Eventuell bilden sich erst A_{2A} -Homodimere aus, wodurch dann insgesamt weniger A_{2A} -Rezeptoren für die Ausbildung von Heterodimeren zur Verfügung stehen. Fakt ist jedoch, dass sich zwischen A_{2A} - und GABA_BR2-Rezeptoren auch in den verschiedensten gewählten Expressionskombinationen und bei guter Expression signifikant weniger Proteininteraktionen ausbilden als zwischen A_{2A} - und A_{2B} -Rezeptoren. Einen Hinweis auf die genaue Lokalisation der Heterodimere kann mit diesem fluorimetrischen Ansatz nicht gegeben werden, da alle in der Zelle gebildeten Heterodimere gemessen werden, nicht nur die in der Plasmamembran. Weiterhin eignet sich dieser Assay auch nicht, um die Bildung der Heterodimere in "real time" zu messen, da es bedingt durch die Maturation des EYFP-Chromophors zu einer Zeitverzögerung kommt. Auch eine mögliche Dissoziation kann nicht gemessen werden, da die Ausbildung der EYFP-Tertiärstruktur irreversibel ist.

7.3 Bestimmung der BiFC-Effizienz an doppelt-transfizierten CHO-hA_{2B}-hA_{2A}-Zellen

Zur Bestimmung der BiFC-Effizienz, welche einen zusätzlichen Hinweis auf das Vorliegen von A_{2A}-A_{2B}-Heterodimeren liefern kann, ist es notwendig, zu den in Kombination transfizierten Rezeptorkonstrukten mit EYFP-Fragmenten, zusätzlich zu allen Proben die gleiche Menge eines internen Standards zu transfizieren. Dieser Standard muss ein unterschiedliches Anregungs- und Emissionsspektrum als EYFP aufweisen, damit beide voneinander unterschieden werden können.²⁷³ Damit können Rückschlüsse auf eine vergleichbare Transfektionseffizienz geschlossen werden. Für die nachfolgenden Experimente wurde als interner Standard 100 ng des Vektors GFP²-N3 eingesetzt, welcher sich auch mit geringen Mengen gut transfizieren ließ. Für die Messung der EYFP-Fluoreszenz wurde ein Anregungsfilter von 500/10 nm und ein Emissionsfilter von 535/25 nm, und für die Messung der GFP²-Fluoreszenz wurde ein Anregungsfilter von 405/10 nm und ein Emissionsfilter von 510/10 nm verwendet. Die BiFC-Effizienzen wurden dann wie in Gl. 9-4 und Gl. 9-5 beschrieben berechnet.

Als Assaykontrolle diente auch hier die Kombination der beiden Transkriptionsfaktoren Jun und Fos, als Positivkontrolle das A_{2A} -Homodimer und als Negativkontrolle der GABA_BR2-Rezeptor in Kombination mit dem A_{2A} -Rezeptor. Die DNA-Mengen wurden wie in Kapitel 7.2 beschrieben gewählt und zusätzlich wurden alle Proben mit einer konstanten Menge von 100 ng GFP²-N3 transfiziert.

Abb. 7-8: BiFC-Effizienzen zwischen A_{2A} -Rezeptoren und zwischen den Transkriptionsfaktoren Jun und Fos (n=10, \pm SEM).

Zwischen den A_{2A} -Rezeptoren lässt sich mit steigenden transfizierten Mengen von HA- A_{2A} -S-CYFP eine steigende BiFC-Effizienz messen, die mit durchschnittlich 0,09 insgesamt geringer ausfällt als die die zwischen den Transkriptionsfaktoren Jun und Fos gemessen wurde (0,257) (Abb. 7-8). Trotzdem kann somit auf die Bildung eines Homodimers geschlossen werden. Insgesamt liegen die gemessenen Werte relativ niedrig, was durch die relativ hohe Fluoreszenz des eingesetzten Standards von 100 ng GFP² sowie der relativ geringen gemessenen EYFP-Fluoreszenz resultiert.

Als Negativkontrolle wurde der A_{2A} -Rezeptor in Kombination mit dem GABA_BR2-Rezeptor verwendet. Es wurde auch hier eine konstante Menge von A_{2A} -L-CYFP (2,5 µg) mit ansteigenden Mengen an GABA_BR2-S-NYFP; oder eine konstante Menge an GABA_BR2-S-NYFP (2,5 µg) mit ansteigenden Mengen an HA-A_{2A}-L-CYFP und zusätzlich je 100 ng GFP² kotransfiziert (Abb. 7-9).

Abb. 7-9: BiFC-Effizienzen zwischen A_{2A} - und GABA_BR2-Rezeptoren (n=8-10, ± SEM).
Zwischen den A_{2A} - und GABA_BR2-Rezeptoren lässt sich mit steigenden transfizierten Mengen von HA-A_{2A}-L-CYFP oder GABA_BR2-S-NYFP eine nur geringfügig steigende BiFC-Effizienz messen, die mit durchschnittlich 0,03 insgesamt sehr gering ausfällt (Abb. 7-9). Zur Untersuchung des A_{2A}-A_{2B}-Rezeptorheterodimers, wurde eine konstante Menge von A_{2B}-L-NYFP (5 µg) mit ansteigenden Mengen von HA-A_{2A}-S-CYFP und zusätzlich je 100 ng GFP² kotransfiziert (Abb. 7-10).

Abb. 7-10: BiFC-Effizienzen zwischen A_{2A} - und A_{2B} -Rezeptoren (n=8-10, ± SEM).

Zwischen den A_{2A} - und A_{2B} -Rezeptoren lässt sich mit steigenden transfizierten Mengen von HA- A_{2A} -S-CYFP eine steigende BiFC-Effizienz messen, die mit durchschnittlich 0,06 geringer ausfällt als zwischen A_{2A} -Rezeptoren, jedoch insgesamt höher liegt als zwischen A_{2A} - und GABA_BR2-Rezeptoren (Abb. 7-10).

Für den Vergleich und die Berechnung der Signifikanzen wurden, da gleiche DNA-Mengen wie in Kapitel 7.2 zur Transfektion verwendet wurden und somit annähernd gleiche Expressionen zu erwarten sind, die Kombination von 2,5 μ g HA-A_{2A}-L-CYFP + 3 μ g GABA_BR2-SNYFP und 5 μ g A_{2B}-L-NYFP + 1,5 μ g HA-A_{2A}-S-CYFP ausgewählt, da die Expression von 3 μ g GABA_BR2-SNYFP in etwa vergleichbar mit 5 μ g A_{2B}-L-NYFP war. Des Weiteren ist in der Negativkontrolle sogar eine höhere Menge an A_{2A}-Rezeptor vorhanden (HA-A_{2A}-L-CYFP 2,5 μ g). Vom A_{2A}-Rezeptor wurde die Menge von 4 μ g A_{2A}-L-NYFP + 1,5 μ g HA-A_{2A}-S-CYFP zum Vergleich herangezogen.

Abb. 7-11: Vergleich der BiFC-Effizienzen (n=10, \pm SEM, ^{***} p < 0,001).

Insgesamt lässt sich zeigen, dass zwischen A_{2A} -und A_{2B} -Rezeptoren eine signifikant höhere BiFC-Effizienz als zwischen GABA_BR2- und A_{2A} -Rezeptoren gemessen werden kann, was eine Heterodimerisierung bestätigt. Des Weiteren ist die BiFC-Effizienz zwischen A_{2A} -Rezeptoren signifikant höher als zwischen A_{2A} - und A_{2B} -Rezeptoren (Abb. 7-11).

7.3.1 Zusammenfassung

Auch die Bestimmung der BiFC-Effizienz mit Hilfe eines internen Standards bestätigt die Bildung eines A2A-A2B-Rezeptor Heterodimers, da diese in zumindest annähernd gleichen Expressionen signifikant höher ausfällt als zwischen A2A- und GABABR2-Rezeptoren. Die **BiFC-Effizienz** wie höchste wurde ähnlich in Kapitel 7.2 zwischen den Transkriptionsfaktoren Jun und Fos, gefolgt von dem A2A-Homodimer gemessen. Auch mit diesem Ansatz bestätigt sich, dass mehr A2A-Homodimere als A2A-A2B-Heterodimere ausgebildet werden.

8 Zusammenfassung und Ausblick

Adenosinrezeptoren gehören zur Familie der G-Protein-gekoppelten Rezeptoren und dienen aufgrund ihrer ubiquitären Verbreitung im Körper als vielversprechende Targets für die Entwicklung neuer Arzneistoffe. Auf der Suche nach spezifischen Rezeptorliganden, die als potentielle Wirkstoffe von Interesse sind, ist es erforderlich, die entsprechenden Verbindungen mit Hilfe von Bindungsstudien und funktionellen Experimenten ausführlich zu charakterisieren. Darüber hinaus ist in den letzten Jahren eine mögliche Dimerisierung und Oligomerisierung von G-Protein-gekoppelten Rezeptoren in den Fokus der Aufmerksamkeit gerückt, welche aufgrund von veränderten pharmakologischen Eigenschaften im Vergleich zu den monomeren Rezeptoren neuartige Targets für die Entwicklung von Pharmaka darstellen könnten.

Im Fokus der vorliegenden Arbeit stand der A_{2B} -Adenosinrezeptor-Subtyp, über den bisher noch wenig bekannt ist, der aber eine große Rolle bei verschiedenen Krankheiten wie Krebs und inflammatorischen Erkrankungen zu spielen scheint.

G-Protein-gekoppelte Rezeptoren können verschiedene Konformationen einnehmen; es besteht ein Gleichgewicht zwischen vermutlich mehrerer inaktiver, d.h. für Agonisten niedrigaffiner Konformationen, und mehrerer aktiver, für Agonisten hochaffiner Rezeptor-Konformationen. Dabei markieren Agonisten bevorzugt einen aktiven Rezeptor-Zustand, während Antagonisten mit invers agonistischer Aktivität eine bevorzugte Affinität für den inaktiven Rezeptor-Zustand besitzen; sogenannte neutrale Antagonisten besitzen dieselbe Affinität zu aktiven und inaktiven Rezeptor-Konformationen. Bei der Testung von Agonisten gegen Antagonist-Radioliganden mit invers agonistischer Aktivität werden daher i.d.R. niedrigere Affinitäten für Agonisten gemessen als bei der Verwendung von Agonist-Radioliganden, da letztere die für Agonisten hochaffine Rezeptorkonformation markieren. Daher ist es von Bedeutung, einen Agonist-Radioligand-Assay zu entwickeln, mit welchem die genaue Affinität von Agonisten zu der hochaffinen, aktiven Rezeptorkonformation bestimmt werden kann.

Zur Etablierung eines Agonist- A_{2B} -Rezeptor-Bindungsassays wurde der Agonist-Radioligand [³H]NECA ausgewählt, da dieser trotz moderater Affinität zum A_{2B} -Rezeptor schon mehrfach in der Literatur für die Markierung von A_{2B} -Rezeptoren verwendet wurde. Dieser sollte hinsichtlich seiner Interaktionen mit rekombinanten humanen, Maus- und Ratten- A_{2B} -Rezeptoren genauer untersucht werden. Dafür wurden Kinetik-, Sättigungs- (Abb. 8-1) und homologe sowie heterologe Kompetitionsexperimente durchgeführt.

Abb. 8-1: Sättigungsexperiment von [3H]NECA an humanen, rekombinanten Adenosin-A2B-Rezeptoren.

In Kompetitionsexperimenten zeigte sich, dass die bestimmten K_i -Werte für NECA an humanen, Maus- und Ratten- A_{2B} -Rezeptoren sowie der K_i -Wert für den Agonisten CADO an humanen A_{2B} -Rezeptoren ca. 2-3-fach niedriger sind, wenn sie gegen [³H]NECA statt gegen den Antagonist-Radioliganden [³H]PSB-603 bestimmt wurden.

Im Gegensatz dazu zeigten die getesteten Antagonisten sowie überraschenderweise auch der Agonist BAY60-6583 gegen den Agonist-Radioliganden [³H]NECA eine Rechtsverschiebung der Kompetitionskurven im Vergleich zu einer Testung gegen den Antagonist-Radioliganden [³H]PSB-603. Mit diesen Ergebnissen bestätigt sich, dass Agonisten wie NECA die für Agonisten hochaffine Rezeptorkonformation des A_{2B}-Rezeptors markieren, während inverse Agonisten wie PSB-603, und interessanterweise auch der A_{2B}-Agonist BAY60-6583, eine andere Rezeptorkonformation bevorzugen, zu der Adenosin-Derivate (Vollagonisten) nur eine relativ niedrige Affinität besitzen.

Der neu etablierte A_{2B} -Rezeptor-Agonist-Bindungsassay eignet sich somit als pharmakologisches Werkzeug, um die reale Affinität von potentiell selektiven und affinen A_{2B} -Rezeptor-Agonisten an der hochaffinen, aktiven Rezeptorkonformation zu bestimmen. Des Weiteren deuten diese Ergebnisse darauf hin, dass BAY60-6583 möglicherweise kein Vollagonist an A_{2B} -Rezeptoren darstellt.

Der potente und selektive A_{2B} -Rezeptor-Agonist BAY60-6583 wurde bisher in vielen Tierversuchen verwendet und scheint insbesondere in Bezug auf Lungenerkrankungen antiinflammatorische Effekte hervorzurufen. Dies steht im deutlichen Widerspruch zu den nach einer Aktivierung des A_{2B} -Rezeptors hauptsächlich beschriebenen proinflammatorischen Effekten in der Lunge; so gelten A_{2B} -Rezeptor-Antagonisten in der Behandlung von Asthma als vielversprechende neue Wirkstoffe. Da in Bindungsstudien erste Hinweise gefunden wurden, dass BAY60-6583 möglicherweise nicht als Vollagonist an A_{2B} -Rezeptoren wirkt, sollte eine weiterführende funktionelle *In-vitro*-Charakterisierung dieser Verbindung an verschiedenen A_{2B} -Rezeptor exprimierenden Zelllinien durchgeführt werden.

In cAMP- sowie in Calcium-Mobilisierungsexperimenten an nativen HEK-293-, an rekombinanten HEK-hA_{2B}- und an nativen Jurkat-T-Zellen zeigte BAY60-6583 eine signifikant geringere intrinsische Aktivität im Vergleich zu dem endogenen Agonisten Adenosin und dem Agonisten NECA. In Jurkat-T-Zellen konnte mit cAMP-Experimenten in Anwesenheit eines Vollagonisten wie NECA oder Adenosin ein antagonistischer Effekt von BAY60-6583 gezeigt werden (Abb. 8-2).

Abb. 8-2: Sigmoidale Dosis-Wirkungskurve von BAY60-6583 in Anwesenheit von 10 μM NECA und 250 μM Adenosin in cAMP-Assays an Jurkat-T-Zellen.

Durch diese Experimente konnte BAY60-6583 eindeutig als Partial-Agonist an A_{2B} -Rezeptoren charakterisiert werden. Da BAY60-6583 in Anwesenheit des endogenen vollen Agonisten Adenosin daher antagonistisch wirken kann, könnten sich dadurch evtl. die antiinflammatorischen Effekte von BAY60-6583 in der Lunge erklären lassen. Alle *In-vivo*-Ergebnisse unter Verwendung von BAY60-6583 als A_{2B} -Agonist müssen nunmehr neu interpretiert werden.

Adenosin A_{2A} - und A_{2B} -Rezeptoren werden in vielen Zelltypen und in verschiedenen Geweben koexprimiert, sodass eine Heterodimerisierung in nativen Zellsystemen möglich erscheint. Insbesondere in Jurkat-T-Zellen und im Herzgewebe gibt es, bedingt durch pharmakologische Besonderheiten, einige Hinweise auf mögliche A_{2A} - A_{2B} -Rezeptorheterodimere, welche damit ein neuartiges Target für die Behandlung von kardiovaskulären Erkrankungen und weiteren Erkrankungen darstellen könnten. Zunächst wurden pharmakologische Untersuchungen an rekombinanten, stabil transfizierten CHO-hA_{2A}-hA_{2B}-Zellen durchgeführt. In Radioligand-Rezeptor-Bindungsstudien und in funktionellen cAMP-Experimenten konnten veränderte Affinitäten und intrinsische Aktivitäten für die getesteten Verbindungen an den doppelt-transfizierten Zellen im Vergleich zu den einzeln transfizierten Zellen festgestellt werden. So lag z. B. der für den selektiven A_{2A}-Antagonisten MSX-2 bestimmte K_B-Wert an CHO-hA_{2B}-hA_{2A}-Zellen mit 377 nM viel höher als der für die Verbindung beschriebene K_D-Wert von 7,3 nM an humanen A_{2A}-Rezeptoren. Auch war der selektive A_{2A}-Agonist CGS21680 an der CHO-hA_{2B}-hA_{2A} Zelllinie in cAMP-Experimenten auch in hohen Konzentrationen (100 μ M) nahezu inaktiv. Diese veränderten pharmakologischen Wirkungen könnten unter anderen auf ein mögliches A_{2A}-A_{2B}-Rezeptorheterodimer hinweisen.

In der Folge wurden Kolokalisationsexperimente an stabilen A_{2A} - und A_{2B} -Rezeptor exprimierenden Zellen durchgeführt. Diese zeigten, dass beide Rezeptoren in bestimmten Bereichen der Zelle kolokalisiert vorliegen.

Darüber hinaus wurden Methoden wie Fluoreszenz-Resonanz-Energie-Transfer-Studien (FRET) (Abb. 8-3) und Bimolekulare-Fluoreszenz-Komplementationsexperimente (BiFC) an transient transfizierten CHO-K1-Zellen zur weiteren Bestätigung eines möglichen Adenosin- A_{2A} - A_{2B} -Rezeptorheterodimers herangezogen. Mit beiden Methoden konnte eine Heterodimerisierung von A_{2A} - und A_{2B} -Rezeptoren bestätigt werden - zumindest befinden sich beide Rezeptoren soweit in räumlicher Nähe, dass sowohl ein Energieübertrag als auch die Zusammenlagerung der beiden YFP-Fragmente zu einem funktionellen YFP-Protein erfolgen kann.

Abb. 8-3: Vergleich der normalisierten FRET-Effizienzen.

Dabei scheint der C-Terminus des A_{2A} -Rezeptors nicht zwingend an der Heterodimerisierung beteiligt zu sein, da in FRET-Experimenten mit einer A_{2A} -Rezeptor-Mutante (1-293R) mit verkürztem C-Terminus in Kombination mit dem A_{2B} -Rezeptor auch noch ein Energieübertrag gemessen werden konnte.

In den bearbeiteten Teilprojekten dieser Arbeit ist es gelungen, neue pharmakologische Eigenschaften von A_{2B} -Rezeptor-Agonisten zu identifizieren, die in Zukunft Einsatz als potentielle Arzneistoffe finden könnten. Zudem konnten A_{2A} - A_{2B} -Rezeptorheterodimere in einem künstlichen Zellsystem nachgewiesen werden.

Um die strukturellen Eigenschaften des A_{2A} - A_{2B} -Rezeptorheterodimers noch weiter zu charakterisieren, könnten zukünftig weitere Mutagenese-Studien zur Identifizierung der Interaktionsfläche durchgeführt werden. Da bei vielen beschriebenen GPCR-Heterodimeren die Aminosäuren der Transmembran-Domänen an der Interaktion beteiligt sind, könnten diese in weiteren Mutagenesestudien ausgetauscht werden. Darüber hinaus ist in Zukunft auch die Identifizierung eines A_{2A} - A_{2B} -Heterodimers in nativen Zelllinien oder Geweben mit den entsprechend geeigneten Methoden von Bedeutung.

9 Experimenteller Teil

9.1 Geräte und Materialien

CP225D, Sartorius
VX-95, Systec
3850 ELV, Systec
Innova 4200 Incubator Shaker, New Brunswick
Scientific, USA
Jouan IG 650
Heraeus HERAcell® 240
Inc 246, Memmert
Roth
5 ml, 20 ml, Braun
BioRad, Mini Protean II TM
Schütt Labortechnik
Novex Mini-Cell, Invitrogen
Power Pac 300, Schütt Labortechnik
Power Pac, Universal, Bio Rad
Sarstedt (15 ml und 50 ml, steril)
NOVOstar®, bmg Labtech
Mithras Research II LB 940, Berthold
Technologies
Geldoc, BioRad
Whatman®, Schleicher und Schüll
GF/B und GF/C
Whatman®, Schleicher und Schüll
GF/B und GF/C
Cuvettes $10 \times 4 \times 45$ mm, Sarstedt
Mikroliter Syringes 705 (5 µl, 10 µl, 50 µl),
Hamilton
Gaithersburg MD, USA
Gaithersburg MD, USA
IKA Labortechnik
Thermomixer comfort, Eppendorf

Homogenisator	RW 16 basic, IKA Labortechnik
Kryovials steril	Sarstedt
Laminar-Airflow-Werkbänke	NUNC® Safe flow 1.2
	NUNC® BIOFLOW
Liquid Scintillation Counter	TRICARB® 2900TR, Canberra Packard
Tri-Carb 2810TR	Perkin Elmer
Maxivials	Roth
Mikroskop	Axiovert 25, Zeiss
	Hund Wetzlar
Mikrotiterplatten 96er	Sarstedt
	NUNC® 96well
Mikrotiterplatten 24er	Greiner bio-one
Mikrotiterplatten 6er	Costar
Mikrowelle	Microwave 800, Severin
Multipette	Eppendorf Multipette [®] Plus
Minivials C	Roth
Neubauer Zählkammer	Marienfeld, Germany
Petrischalen	Sarstedt
PE-Bakterienröhrchen	Sarstedt
PE-Vials, 4ml	Roth
pH-Meter	WTW pH Elektrode SenTix 41
Photometer	DU [®] 530, Beckman
Pipettierhilfen	Pipettus Akku, Eppendorf
	Accu Jet, Brand
Pipetten	Eppendorf research (0,5-10 µl, 10-100 µl, 20-200
	μl, 100- 1000μl)
Pipettenspitzen	Greiner Plastibrand®, Brand; Sarstedt
Pipettenspitzen für Multipetten	Ritips® professional, Ritter
Quarzküvetten	Präzisionsküvetten aus Quarzglas SUPRASIL®,
	10 mm, Hellma®, 101.150-QS
Safe-Lock Reaktionsgefäße	Eppendorf
Schüttelwasserbad	GFL [®] 1083, Gesellschaft für Labortechnik GmbH
Serologische Einmalpipetten	5 ml, 10 ml, 25 ml, 50 ml, steril, Sarstedt

Software	BLAST [®] Protein Alignment
	GraphPad Prism [®] , Version 3.0 und 4.0
	ISIS TM Draw 2.4, MDL Information Systems
	Microsoft Excel und Microsoft Word 2003/2007
	QuantityOne, Version 4.4.0
	Clone Manager, Version 9
	DNA Translator 2.0, Dr. Anke Schiedel/
	J. Bosmann
	Chromas Version 1.45, Conor McCarthy
	OligoAnalyser 3.1, IDT, Scitools
	ClustalW2, European Bioinformatics Institute
Sterilfilter	Filtropur 0,22 µm, Sarstedt
Thermocycler	Px2 Thermal Cycler, Thermo Scientific
	Biometra
Thermomixer	Eppendorf
Tischzentrifugen	Beckman Allegra [®] 21 R, Beckman Coulter
	BIOFUGE pico, Heraeus
Trockenschrank	Heraeus Instruments
Ultraturrax	T25 basic, IKA Labortechnik
Ultrazentrifuge	SW 55Ti (Rotor), Beckman Coulter
UV Star	Biometra
Vakuumpumpe	MD 4C Vario, Vaccubrand
Vortexer	MS 1 Minishaker, IKA Labortechnik
Waage	Scaltec SBC42
Wasserbad für Zellkultur	WWB 14, Memmert
Wägeschalen	Roth
Wipptisch	MiniRocker MR-1, Kisker Produkte für
	Biotechnologie
Zellkulturflaschen	25 cm ² , 75 cm ² , 175 cm ² steril, Sarstedt
Zellkulturschalen	175 cm ² , steril, Sarsted
Zellschaber	Josef Peske GmbH und Co.
Zellstoff	Labomedic
Zentrifuge	Beckman Avanti TM , J-20XP und J-201, Beckman
	Coulter

Zentrifugenröhrchen

9.2 Chemikalien und Substanzen

ADA	Roche, 10102105001
Adenosin	Sigma, A9251
ATP	AppliChem, A1348
BAY60-6583	Dr. Thomas Krahn, Bayer AG
BSA Albumin Fraktion V	AppliChem, A1391,0100
CADO	Fluka, 22997
Calciumchlorid-Dihydrat	Fluka, 21097; Sigma, C3306
cAMP	Enzo Life Science, 80-0056
CGS-15943	Sigma, C199
CGS-21680	Tocris, 1063
Coffein	Sigma, C-8960
D-(+)-Glucose (wasserfrei)	Sigma, G-7021
DMSO	Roth, 4720
DMSO, steril	AppliChem, A3672
DPCPX	Tocris, 0439
EDTA, Dinatriumsalz-dihydrat	Roth, X986.1
Ethanol, p.A.	Merck, 1.00983
Ethanol, technisch	ZVE Bonn-Endenich
Folin-Reagenz	Sigma, F-9252
Fötales Kälberserum	Sigma, F-0804
G418	AppliChem, A2167
Glycerol	Acros, 158920010
Hepes	Sigma, H3375
Hygromycin B	InvivoGen, ant-hm-5
Hypoxanthin	AppliChem, A0700,0005; Sigma, H9377
IB-MECA	Tocris, 106
Kaliumchlorid	Fluka, 60128
Kaliumdihydrogenphosphat	Sigma, P9791
Kupfer(II)sulfat Pentahydrat	AppliChem, A1034
LSC-Cocktail Lumasafe	Perkin Elmer, 3087
Magnesiumchlorid	Fluka BioChemika, 63068; Sigma M-8266

Magnesiumsulfat
MSX-2
Mycophenolsäure
Natriumbutyrat
Natriumcarbonat
Natriumchlorid
Natriumhydrogencarbonat
Natriumhydroxid 0,1 N
NECA
Oregon Green® 488 BAPTA-1
Penicillin-Streptomycin-Lösung
Phenolrot
Pluronic® F-127
Polybrene
2-Propanol, technisch
Protein Assay
PSB-10
PSB-1115
PSB-36
PSB-603
Puromycin
Ro20-1724
Salzsäure 37%
TRIS (≥ 99,3%)
TRIS, ultrapure (mind. 99,9 %)
Ultraglutamin
Xanthin

Sigma, M2643 Synthese im AK Prof. Dr. C.E. Müller Tocris, 1505 Alfa Aesar GmbH und Co. KG, A11079 AppliChem, A1881 Roth, 3957.1 Sigma, S5761 Merck, 109959 Sigma, E2387 AM Molecular Probes, O6807 Cambrex, DE17-602E Sigma, P0290 Sigma, P2443 Sigma, AL-118 **ZVE Bonn-Endenich** Bio Rad, 500-0006 Synthese im AK Prof. Dr. C.E. Müller InvivoGen, ant-pr-1 Hoffmann la Roche Sigma, 30721 Roth, AE15.3 AppliChem, A1086,1000 Cambrex, BE17-605E/U1 AppliChem, A0665

Zelllinie	Spezies	Organ	Expressionsvektor
Jurkat-T	Human	T-Lymphozyten	-
СНО-К1	Hamster	Ovarien	-
CHO-hA _{2B}	Hamster	Ovarien	pLXSN
CHO-hA _{2B} -hA _{2A} CHO-hA _{2B} -EYFP- hA _{2A} -ECFP	Hamster Hamster	Ovarien Ovarien	pLXSN/pQCXIP pQCXIN/pQCXIP
HEK293	Human	Niere	-
HEK-hA _{2B}	Human	Niere	pLXSN
GP ⁺ env AM12	Maus	Bindegewebe	-

9.3 Kultivierte Zelllinien

9.3.1 Verwendete Kulturmedien

Zelllinie	Kulturmedium
Jurkat T	RPMI-1640 (Invitrogen, 31870-025)
	versetzt mit 10 % FCS, 100 I.U./ml Penicillin
	und 100 µg/ml Streptomycin
CHO-K1	DMEM-F12 (Invitrogen, 12634-010)
	versetzt mit 10 % FCS, 100 I.U./ml Penicillin
	und 100 µg/ml Streptomycin
CHO-hA _{2B}	DMEM-F12 versetzt mit 10 % FCS, 100 I.U.
	/ml Penicillin, 100 µg/ml Streptomycin und
	200 µg/ml G418

CHO-hA _{2B} -hA _{2A}	DMEM-F12 versetzt mit 10 % FCS, 100 I.U. /ml Penicillin, 100 µg/ml Streptomycin, 200 µg/ml G418 und 7 µg/ml Puromycin
HEK-293	DMEM (Invitrogen, 41966-029) versetzt mit 10 % FCS, 100 I.U./ml Penicillin und 100 µg /ml Streptomycin
HEK-hA _{2B}	DMEM versetzt mit 10 % FCS, 100 I.U./ml Penicillin, 100 µg/ml Streptomycin und 200 µg/ml G418
GP ⁺ env AM12	HXM DMEM versetzt mit 10 % FCS, 100 I.U./ml Penicillin, 100 µg/ml Streptomycin, 1 % Ultraglutamin, 200 µg/ml Hygromycin B, 15 µg/ml Hypoxanthin, 250 µg/ml Xanthin, 25 µg/ml Mycophenolsäure

9.4 Radioliganden

Radioligand	Spezifische Aktivität / Konzentration	Hersteller
[³ H]PSB-603*	73 Ci/mmol, 1 Ci/l	GE Healthcare
[³ H]NECA	15,9 Ci/mmol, 1 Ci/l	Perkin Elmer
[³ H]cAMP	34 Ci/mmol, 1 Ci/l	Perkin Elmer

* Die unmarkierte Vorstufe des Radioliganden wurde im Arbeitskreis von Frau Prof. C. E. Müller synthetisiert. Die Tritiierung erfolgte durch GE Healthcare, UK.

9.5 Puffer und Lösungen

9.5.1 Puffer und Lösungen für Radioligand-Rezeptor-Bindungsstudien

50 mM Tris-Puffer

30,25 g TRIZMA[®]-Base (50 mM) werden in 5,0 l deionisiertem Wasser gelöst. Mit konzentrierter Salzsäure wird der pH-Wert auf 7,4 eingestellt. Anschließend wird der Puffer bei 4°C gelagert.

50 mM Tris, 0,1 % BSA

6,05 g TRIZMA[®]- Base (50 mM) und 1 g BSA (0,1 %) werden in 1,0 l deionisiertem Wasser gelöst. Mit konzentrierter Salzsäure wird der pH-Wert auf 7,4 eingestellt. Anschließend wird der Puffer bei 4°C gelagert.

50 mM Tris, 400 mM NaCl

0,605 g TRIZMA[®]- Base (50 mM) und 2,34 g NaCl (400 mM) werden in 0,1 l deionisiertem Wasser gelöst. Mit konzentrierter Salzsäure wird der pH-Wert auf 7,4 eingestellt. Anschließend wird der Puffer bei 4°C gelagert.

50 mM Tris, 10 mM MgCl₂-Puffer

6,05 g TRIZMA[®]-Base (50 mM) und 0,952 g MgCl₂ (10 mM) werden in 1,0 l deionisiertem Wasser gelöst. Mit konzentrierter Salzsäure wird der pH-Wert auf 7,4 eingestellt. Anschließend wird der Puffer bei 4°C gelagert.

9.5.2 Puffer und Lösungen für die Zellkultur

PBS-Puffer

8,0 g NaCl (150 mM), 0,2 g KCl (2,5 mM), 1,4 g Na₂HPO₄ (7,5 mM) und 0,2 g KH₂PO₄ (1,5 mM) werden in 1,0 l deionisiertem Wasser gelöst. Der pH-Wert auf wird auf 7,3 eingestellt. Der Puffer wird 20 min bei 120°C autoklaviert und bis zur weiteren Verwendung bei Raumtemperatur gelagert.

Trypsin/EDTA-Lösung

0,6 ml EDTA-Stammlösung (0,5 M) werden zu 500 ml PBS-Puffer gegeben und die Lösung wird 20 min bei 120°C autoklaviert. Nach dem Abkühlen werden unter der Sterilbank 10 ml steriles Trypsin (2,5 %) und 1,5 ml steriles Phenolrot (0,5 %) dazu gegeben. Die Lösung wird in 50 ml Portionen aliquotiert und bis zur Verwendung bei 4°C gelagert.

10 mg/ml Hypoxanthin

Hypoxanthin wird in 80 % der benötigten Wassermenge gelöst. Um die Substanz vollständig zu lösen wird 1 N NaOH zugetropft und danach auf 100 % mit Wasser aufgefüllt. Die Lösung wird steril filtriert und bei –20°C gelagert.

10 mg/ml Xanthin

Xanthin wird in 80 % der benötigten Wassermenge gelöst. Um die Substanz vollständig zu lösen wird 1 N NaOH zugetropft und danach auf 100 % mit Wasser aufgefüllt. Die Lösung wird steril filtriert und bei –20°C gelagert.

10 mg/ml Mycophenolsäure

Mycophenolsäure wird in 80 % der benötigten Wassermenge gelöst. Um die Substanz vollständig zu lösen wird 1 N NaOH zugetropft und danach auf 100 % mit Wasser aufgefüllt. Die Lösung wird steril filtriert, in Alufolie gewickelt und bei –20°C gelagert.

Natriumbutyrat (500 mM)

Die gewünschte Menge (500 mM = 55,05 mg/ml) Natriumbutyrat wird in deionisierten Wasser gelöst und steril filtriert. Die Lösung wird bis zur Verwendung bei -20° C gelagert.

G418 (50 mg/ml)

Geneticinsulfat (G418) wird in einer Menge in Wasser gelöst, die 50 mg/ml aktiver Substanz entspricht. Die Lösung wird sterilfiltriert, aliquotiert und bei -20°C gelagert.

Polybrenelösung (4 mg/ml)

Die gewünschte Menge Polybrene wird in deionisierten Wasser gelöst und sterilfiltriert. Die Lösung wird bis zur Verwendung bei 4°C gelagert.

Hygromycin B (50 mg/ml)

Die kommerziell erworbene Lösung wird in 5 ml Portionen aliquotiert und bei -20° C bis zur Verwendung gelagert.

Puromycin

Die Stammlösung der kommerziell erworbenen Puromycinlösung (10 mg/ml) wird im Kulturmedium auf eine Endkonzentration von 7 μ g/ml gebracht.

5 mM Tris, 2 mM EDTA-Puffer

0,303 g TRIZMA[®]-Base (5 mM) und 0,372 g EDTA (2 mM) werden in 500 ml deionisiertem Wasser gelöst. Mit konzentrierter Salzsäure wird der pH-Wert auf 7,4 eingestellt. Anschließend wird der Puffer bei 4°C gelagert.

9.5.3 Puffer und Lösungen für die Proteinbestimmung nach Lowry

Reagenz A

Es werden 10 g di-Natriumcarbonat (2 %) mit 0,1 N Natronlauge auf 500 ml aufgefüllt und gelöst.

Reagenz B

0,25 g Kupfersulfat Pentahydrat (0,5 %) werden in 20 ml Wasser gelöst und 0,5 g di-Natriumtartrat Dihydrat (1 %) werden in weiteren 20 ml Wasser gelöst. Anschließend werden die beiden Lösungen vereinigt und mit Wasser auf 50 ml aufgefüllt.

Reagenz C

Am Tag der Durchführung werden Reagenz A und B im Verhältnis 50:1 gemischt.

Reagenz D

In einer Braunglasflasche werden 18 ml Folin-Reagenz auf 90 ml mit deionisiertem Wasser aufgefüllt.

9.5.4 Puffer und Lösungen für die Proteinbestimmung nach Bradford

Bradford-Reagenz

In einem Messzylinder werden 20 ml Bradford-Reagenz auf 100 ml mit deionisiertem Wasser aufgefüllt. Die Lösung wird filtriert und bei 4°C bis zur Verwendung gelagert.

9.5.5 Puffer und Lösungen für funktionelle cAMP-Experimente

HBSS-Puffer

8 g NaCl (13 mM), 4,77 g Hepes (20 mM), 1 g Glucose (5,5 mM), 0,1 g MgSO₄ (0,8 mM), 0,1 g MgCl₂ (1 mM), 0,185 g CaCl₂ (1,25 mM), 0,35 g NaHCO₃ (4,2 mM), 0,4 g KCl (5,4 mM), 0,06 g KH₂PO₄ (0,44 mM), 0,048 g Na₂HPO₄ (0,34 mM) werden in 1,0 1 autoklaviertem deionisiertem Wasser gelöst. Der pH-Wert wird auf 7,3 eingestellt.

Lysepuffer 1-fach, 2-fach

1,48 g EDTA (4 mM) und 100 μ l Triton (0,01 %) werden in 1,0 l autoklaviertem deionisiertem Wasser gelöst. Der pH-Wert wird auf 7,3 eingestellt. Für 2-fach konzentrierten Lysepuffer (8 mM EDTA, 0,02 % Triton X-100) wird die doppelte Menge an EDTA und Triton X-100 eingesetzt.

9.5.6 Puffer und Lösungen für fluorimetrische FRET- und BiFC-Experimente

Für diese Experimente wurde ein kommerziell erworbener HBSS-Puffer (Invitrogen, 14025) sowie OptiMEM-Medium (Invitrogen, 31985) verwendet.

9.5.7 Puffer und Lösungen zum Fixieren von Zellen

4 % Paraformaldehyd in PBS

20 ml Wasser werden auf 80°C erhitzt. Es wird 1 g Paraformaldehyd dazu gegeben. Dann wird 1 N NaOH Lösung zugetropft, bis die Substanz vollständig gelöst ist. Nach Zugabe von 2,5 ml 10-fach PBS wird auf 25 ml mit Wasser aufgefüllt. Nach Abkühlen wird der pH-Wert auf 7,4 eingestellt und die Lösung wird bis zur Verwendung bei –20°C gelagert.

9.5.8 Puffer und Lösungen für intrazelluläre Calcium-Experimente

5-fach Krebs-Hepes-Puffer (KHP)

Es werden 16,85 g NaCl (118,6 mM), 0,875 g KCl (4,7 mM), 0,4 g KH₂PO₄ (1,2 mM), 0,875 g NaHCO₃ (4,2 mM), 5,25 g D-Glucose (11,7 mM) und 5,95 g HEPES (10 mM) in 500 ml deionisiertem Wasser gelöst. Der pH-Wert wird auf 7,4 eingestellt und es werden Aliquots zu 100 ml bei -20° C eingefroren.

1-fach Krebs-Hepes-Puffer (KHP)

Zu 100 ml 5-fach KHP-Puffer werden 650 μ l einer 1 mM CaCl₂-Stammlösung (Endkonzentration 1,3 mM) sowie 600 μ l einer 1 M MgSO₄-Stammlösung (Endkonzentration 1,2 mM) zugegeben und mit deionisiertem Wasser auf 500 ml aufgefüllt. Der pH-Wert wird erneut überprüft und es werden Aliquots zu 25 ml bei -20°C eingefroren.

Oregon-Green-Stammlösung

50 μg der Substanz werden unter Lichtausschluss in 39,7 μl DMSO gelöst (Endkonzentration 1 mM). Die Lösung wird zu 3 μl aliquotiert und bis zur Verwendung bei -20°C eingefroren.

Pluronic®-F127-Stammlösung

200 mg der Substanz werden in 800 µl DMSO gelöst. Die Lösung wird bei Raumtemperatur gelagert und vor Gebrauch ca. 15 min bei 37°C im Wasserbad erwärmt.

9.5.9 Puffer und Lösungen für die Molekularbiologie

50-fach TAE-Puffer

242 g TRIS (2 M) und 14,6 g EDTA (50 mM) werden zusammen mit 57,1 ml Eisessig mit deionisiertem Wasser auf 1 l aufgefüllt. Der Puffer wird 20 min bei 120°C autoklaviert und bis zur weiteren Verwendung bei Raumtemperatur gelagert. Für 1-fachen TAE-Puffer werden 20 ml 50-fach TAE-Puffer mit deionisiertem Wasser auf 1 l aufgefüllt.

2-fach SDS-Probenpuffer

Für einen 2-fach Probenpuffer werden 20 ml Glycerin, 15 ml 20 % SDS, 5 ml 1 M Tris/HCl (pH 6,8) und 0,5 ml 1 % Bromphenolblau zusammen gegeben. Kurz vor Gebrauch werden 5 % 2-Mercaptoethanol zugegeben.

SDS-Laufpuffer

Als Laufpuffer wurde der MOPS SDS-Running-Puffer (20-fach) von Novex verwendet. Für den Gebrauch wurden 50 ml des Puffers mit deionisiertem Wasser auf 1000 ml aufgefüllt.

Transferpuffer (10-fach)

30,25 g TRIZMA[®]-Base (250 mM) und 144 g Glycin werden mit deionisiertem Wasser auf 1000 ml aufgefüllt. Der pH sollte zwischen 8 und 10,5 liegen.

Blottingpuffer

200 ml Methanol (20 %) und 100 ml Transferpuffer (10-fach) werden mit deionisiertem Wasser auf 1000 ml aufgefüllt.

Ponceau-S-Stammlösung (10-fach)

Die Stammlösung wird hergestellt aus 2 % Ponceau S (w/v) in 30 % Trichloressigsäure (v/v). Für den Gebrauch wird die Lösung auf 0,2 % Ponceau S in 3 % Trichloressigsäure mit deionisiertem Wasser verdünnt.

10-fach PBS-Puffer

80,0 g NaCl, 2,0 g KCl, 14,4 g Na₂HPO₄ und 2,4 g KH₂PO₄ werden in 1,0 l deionisiertem Wasser gelöst. Der pH-Wert auf wird auf 7,3 eingestellt.

PBS-Tween (0,1 %) Waschlösung

50 ml 10-fach PBS-Puffer werden auf 500 ml mit deionisiertem Wasser aufgefüllt. Anschließend erfolgt die Zugabe von 500 μl Tween 20 (0,1 %).

Blockierlösung

5 g Magermilchpulver (5 %) werden auf 100 ml mit PBS-Tween (0,1 %) Lösung aufgefüllt und bis zur Verwendung bei 4°C aufbewahrt.

9.6 Materialien für die Molekularbiologie

9.6.1 Expressionsvektoren

Abb. 9-1: Retrovirale Vektoren pQCXIN und pQCXIP.

Abb. 9-2: Vektor pECFP-N1 für die transiente Transfektion.

Abb. 9-3: Vektor pEYFP-N1 für die transiente Transfektion.

Abb. 9-4: Vektoren für die transiente Transfektion; pGFP²-N3 und pcDNA3.1 (+/-).

9.6.2 Primer

Die Synthese der Primer erfolgte durch die Firma Invitrogen. Die Synthese der β -Aktin Primer erfolgte durch die Firma MWG-Biotech AG. Die kursiven pinken Buchstaben geben die zusätzlich zu der Rezeptorsequenz eingefügten Basen und die unterstrichenen Basen geben die Restriktionsenzymerkennungssequenzen an.

f-hA_{2A}-NotI: 5'-gtgacagcggccgcatgcccatcatgggctcctc-3'

r-hA_{2A}-BamHI: 5'- cttactaggatcctcaggacactcctgctccatc-3'

hA_{2A}: f-5'-aggatgtggtccccatgaac-3'

hA_{2A}: r-5'-ctctccgtcactgccatgag-3'

hA_{2B:} f-5'-gaggggtcattgctgtcctc-3'

hA_{2B}: r-5'-ggccatattcattgcccact-3'

r-hA2A-BamHI o. stop: 5'- cttactaggatccgtggacactcctgctccatcc-3`

f-AgeI-YFP: 5'-cttactaaccggtatggtgagcaagggcgaggag -3'

r-BamHI-YFP: 5'-cttactaggatccttactgtacagctcgtccatgc-3'

f-hA2B-NotI: 5'-gtgacagcggccgcatgctgctggagacacaggac-3'

r-hA2B-AgeI o. stop: 5`-cttactaaccggttaggcccacaccgagagcag-3'

f-hA2B-EcoRI: 5'-gagacggaattcatgctgctggagacacaggac-3'

r-hA2B-AgeI o. stop: 5`-cttactaaccggtgctaggcccacaccgagagcag-3'

r-hA2B-BamHI o. stop: 5'- cttactaggatccgctaggcccacaccgagagcag-3'

f-hA_{2A}-*Eco*RI: 5'-gagacggaattcatgcccatcatgggctcctcg-3'

r-hA_{2A}-AgeI ohne stop: 5'- cttactaaccggtgcggacactcctgctccatcctg-3'

f-N-YFP-BamHI: 5-gagactggatccatggtgagcaagggcgaggag-3'

r-CFP-AgeI o. stop: 5'- cttactaaccggtgccttgtacagctcgtccatgcc-3'

*Xba*I-HA-f-5`-ctaga**atg**tacccatacgatgttccagattacgctggc-3`

*Not*I-HA-r-5`- ggccgccagcgtaatctggaacatcgtatgggtacatt-3'

AgeI-short linker-f-5'-ccggtgagatccatcgccaccg-3'

BamHI-short-linker-r-5'- gatccggtggcgatggatctca-3'

AgeI-long linker-f-5'- ccggtgcgtccggcgtgcaaaatcccgaacgacctgaaacagaaagtcatgaaccacg-3'

BamHI-long-linker-r-5'-gatccgtggttcatgactttctgtttcaggtcgttcgggattttgcacgccggacgca-3'

r-hA_{2A} o. stop-AgeI 1-293R:5'cttactaaccggtgcgcggatacggtaggcgtagatg-3'

 $f-\beta$ -Aktin-Maus/Ratte: 5'-ccctaaggccaaccgtgaaaagat

r-β-Aktin-Ratte: 5´-aggtcccggccagccaggtc

9.6.3 Enzyme

AgeI	Fermentas, FD1464
BamHI	Fermentas, FD0054
Biomix	Bioline, BIO-25005
EcoRI	Fermentas, FD0274
Klenow-Fragment	Fermentas, EP0051
NotI	Fermentas, FD0594
Pyrobest-Polymerase	TaKaRa, R005
T4-DNA-Ligase	BioLabs, M0202S
T4-DNA-Polymerase	BioLabs, M0203S
XBaI	Fermentas, FD0684
XhoI	Fermentas, FD0694

9.6.4 Antikörper

Anti-HA.11-Antikörper (monoklonal), Clone 16B12	Covance, MMS-101P
Anti-GFP-Antikörper (monoklonal), Clone B34	Covance, MMS-118P
HRP-gekoppelter-	Jackson ImmunoResearch,
Ziege-Anti-Maus Antikörper	115-035-003

9.6.5 Chemikalien und Materialien für die Molekularbiologie

Agarose	Lonza, 50004L
Ampicillin-Natriumsalz	AppliChem, A0839
Bromphenolblau	Roth, A512.1
Chloroform	Merck, 1.02445.1000
DEPC	AppliChem, A0881
Desoxynukleotidtriphosphat	Invitrogen, 18427-013
Detektionsreagenz ECL-Prime	Amersham, RPN2232
DNA Exitus	AppliChem, A6441
Essigsäure	Roth, 3738.1
GelRed [®]	Genaxxon, M3199.2000
Glutardialdehyd 20 %	
Glycerol	Sigma, G5516
Glycin	Roth, 3908.3
Kanamycin	Sigma, K1876

Ladepuffer (6 x Loading Dye Solution) LB-Agar LB-Medium Lipofectamin 2-Mercaptoethanol Methanol Milchpulver MOPS SDS Running Buffer (20 x) Mountingmedium NuPage 4-12% Bis-Tris Gele 1 mm, 12 well Oligo (dT) Primer One Shot® Top 10 E. Coli **OptiMEM-Medium** Ponceau S **RedSafe**TM RNAse (Ribonuklease A) **RNAse** Exitus SDS SDS-Lösung 20% Trichloressigsäure Triton X-100 Trizol RS Reagenz Tween 20 ZeocinTM

9.6.6 Verwendete Kits

ZR Plasmid Miniprep[™]-Classic PureLink[™] HiPure Plasmid Filter Midiprep Kit Zyppy[™] Plasmid Maxiprep Kit Zymoclean[™] Gel DNA Recovery Kit DNA Clean & Concentrator[™] Omniscript-RT Kit Fermentas, R0611 Roth, X965.3 Roth, X968.2 Invitrogen 11668-019 AppliChem, A1108 VWR, 20847.307 Roth, T145.2 Novex®, NP0001 Sigma, F4680 Novex, NP0322BOX Invitrogen, 18418012 Invitrogen, C4040-10 Invitrogen, 31985 Roth, 5938.1 **CHEMBIO**, 21141 Sigma, R4875 AppliChem Acros, 419531000 AppliChem, 3942 AppliChem, A0590.0500 Sigma, X-100 Invitrogen, 15596-018 AppliChem, A1389.0500 Invitrogen, R25001

ZymoResearch, D4054
Invitrogen K2100-14
Zymo Research D4028
Zymo Research, D4002
Zymo Research, D4014
Quiagen, 205111

9.6.7 Marker

ΦX174-DNA-HaeIII	Biolabs, N3026L
Lambda DNA/ <i>EcoR</i> I+ <i>Hind</i> III Marker	Fermentas, SM0191
Sharp Pre-Stained Protein Standard	Novex®, LC5800

9.7 Zellkultur

9.7.1 Auftauen von Zellen

Vor dem Auftauen der Zellen wird eine 175 cm² Zellkulturflasche mit 30 ml des entsprechenden bei 37°C vorgewärmten Mediums vorbereitet. Die bei -80°C oder -196°C gelagerten Zellen werden schnell bei 37°C im Wasserbad aufgetaut und die Zellsuspension wird in die vorbereitete Zellkulturflasche überführt. Anschließend erfolgt eine Kultivierung bei 37°C und 5 % CO₂ im Brutschrank.

9.7.2 Passagieren von Zellen

Bei einer Konfluenz von 90 % werden die Zellen je nach Experiment in verschiedenen Verhältnissen gesplittet. Das Medium wird abgenommen und es wird mit 10 ml PBS-Puffer gewaschen. Anschließend werden 4 ml vorgewärmte Trypsin/EDTA Lösung zugegeben und für 2-5 min im Brutschrank inkubiert. Zum Abstoppen der Reaktion werden 6 ml Kulturmedium zugegeben und die Zellen werden durch Auf- und Abpipettieren vereinzelt. Die entsprechende Menge an Zellsuspension (z. B. 1 ml bei einem Splittverhältnis von 1:10) wird in eine mit 30 ml Medium befüllte 175 cm² Zellkulturflaschen gegeben und im Brutschrank (37°C, 5 % CO₂) kultiviert.

9.7.3 Einfrieren von Zellen

Eine 175 cm² Zellkulturflasche wird wie in Abschnitt 9.7.2 behandelt. Die abgelösten Zellen werden in ein 50 ml Falkon-Tube überführt und bei 200 g, 4°C für 5 min zentrifugiert. Der Überstand wird verworfen und das Pellet wird in 5 ml einer Mischung aus 90 % Kulturmedium/10 % steriles DMSO resuspendiert. Die Zellsuspension wird in 1 ml Portionen aliquotiert und für 3-4 h bei –20°C eingefroren. Anschließend werden die Zellen in –80°C überführt und können nach einem Tag für eine Langzeitlagerung in flüssigen Stickstoff überführt werden.

9.7.4 Zellzahlbestimmung

Die Zellen werden von einer 175 cm² konfluenten Flasche abgelöst und in ein 50 ml Falkon-Tube überführt. Zur Bestimmung der Zellzahl werden 10 µl der Zellsuspension auf die Zählfläche einer Neubauer-Zählkammer aufgetragen. Es werden mindestens zwei der vier Großquadrate (ein Großquadrat besteht aus 16 Kleinquadraten) ausgezählt. Unter Berücksichtigung der Fläche der ausgezählten Quadrate und dem Abstand zwischen Deckglas und Objektträger, kann die Zellmenge der Suspension bestimmt werden.

Zellzahl (Mittelwert der ausgezählten Großquadrate) $\times 10^4 = Zellen pro ml$

Gl. 9-1: Formel zur Bestimmung der Zellzahl.

9.7.5 Retrovirale Transfektion von GP⁺ env AM12 und Infektion von CHO-K1-, CHO-hA_{2B}- und HEK-293-Zellen

Einen Tag vor der Transfektion werden $1,5 \times 10^6$ GP⁺ env AM12-Zellen auf eine 25 cm² Zellkulturflasche in einem Medium ohne Xanthin, Hypoxanthin und Mycophenolsäure ausgesät. Für einen Transfektionsansatz wird eine 25 cm² Flasche benötigt.

Einige Stunden vor der Transfektion wird das Medium gegen 6,25 ml antibiotikafreies Medium ausgetauscht. Für einen Transfektionsansatz werden 10 µg DNA benötigt, wobei sich die Menge aus 6,25 µg der pQCXIN/pQCXIP/pLSXN-Vektoren mit dem entsprechenden Rezeptorgen und 3,75 µg VSV-G-Protein-DNA zusammensetzt. Die ausgerechnete DNA-Menge wird in einem Eppendorfgefäß vorgelegt und mit Medium (DMEM) ohne Zusätze auf 625 µl aufgefüllt. Außerdem werden für einen Transfektionsansatz 25 µl Lipofectamin 2000 und 600 µl DMEM in einem Eppendorfgefäß vorgelegt und 5 min bei Raumtemperatur inkubiert. Nach Inkubation wird die Mischung zu dem 625 µl DNA-Ansatz gegeben. Es wird gemischt und 20 min bei Raumtemperatur inkubiert. Der gesamte Ansatz wird auf die 25 cm² Zellkulturflasche der konfluenten Verpackungszellen gegeben und durch Umschwenken mit dem vorgelegten Medium gemischt. Nach 12-15 h bei 37°C im Brutschrank erfolgt ein Mediumwechsel (3 ml DMEM, FCS, Ultraglutamin, PS) sowie die Zugabe von 30 µl Natriumbutyrat (500 mM in Wasser, sterilfiltriert). Für die Virenproduktion wird die 25 cm² Flasche 48 h bei 32°C kultiviert. Einen Tag vor Infektion werden 5 x 10⁵ CHO-K1,- CHOhA_{2B}- bzw. HEK-293-Zellen pro 25 cm² Flasche ausgesät. Am Tag der Infektion werden 3 ml Virenüberstand der Verpackungszellen abgenommen und durch einen 0,22 µm Sterilfilter auf die Zielzellen gegeben, deren Medium zuvor abgenommen wurde. Außerdem werden 6 µl Polybrenelösung (4 mg/ml in Wasser, sterilfiltriert) zugegeben. Nach 2,5 Stunden Inkubation bei 37°C werden die Viren entfernt und durch das entsprechende Kulturmedium der Zielzellen ersetzt. Nach 48 h werden die Zellen in Selektionsmedium (Kulturmedium zusätzlich mit 800 μ g/ml G418 oder 7 μ g/ml Puromycin) umgesetzt. Alle zwei Tage wird das alte Medium abgenommen und durch neues Selektionsmedium ersetzt. Nach etwa einer Woche Selektion wird die G418-Konzentration im Medium auf 200 μ g/ml reduziert.

9.7.6 Zellen fixieren

Einen Tag vor dem Fixieren werden ca. 500.000 Zellen in eine 6-Well-Platte mit Objektträger ausgesät. Am nächsten Tag wird das Kulturmedium abgenommen und es wird zweimal mit 2 ml warmem PBS-Puffer mit Zusatz von ADA (2 U/ml) gewaschen, um tote Zellen zu entfernen. Anschließend werden die Zellen mit je 2 ml 2 % Glutardialdehyd in PBS-Puffer 20 min bei Raumtemperatur fixiert. Nachfolgend wird dreimal mit PBS-Puffer gewaschen und die Objekte werden mit Hilfe von "Mounting-Medium" auf geeignete Objektträger fixiert.

9.7.7 Membranpräparationen von rekombinanten CHO-hA_{2B}, rA_{2B}-, mA_{2B}und CHO-hA_{2B}-hA_{2A}-Zellen

Bei 90 % Konfluenz der Zellen in den 175 cm² Flaschen werden diese in einem Verhältnis von 1:20 auf Zellkulturschalen für eine Membranpräparation gesplittet. Um für nachfolgende Rezeptorausbeute werden Experimente genügend zu erhalten, mindestens 180 Zellkulturschalen benötigt. Sind diese konfluent, wird das alte Medium abgeschüttet und es wird mit je 5 ml PBS-Puffer gewaschen. Dann werden diese sofort bei -80°C bis zur Weiterbearbeitung eingefroren. Nachfolgend werden die Schalen bei Raumtemperatur kurz angetaut und es werden 2 ml 5 mM Tris-/2 mM EDTA-Puffer, pH 7,4 zugegeben. Mit einem Gummischaber werden die Zellen abgelöst und in einem Becherglas wird die Zellsuspension auf Eis vereint. Nach Bearbeitung aller Zellkulturschalen wird die Zellsuspension mit dem Ultraturrax 1 min auf maximaler Stufe zerkleinert und anschließend homogenisiert. Die Suspension wird zur Entfernung der Zellkerne und größerer Zellorganellen 10 min bei 1000 g und 4°C zentrifugiert. Die Pellets werden verworfen und der Überstand wird bei 48400 g und 4°C für 1 Stunde zentrifugiert. Anschließend wird der Überstand verworfen und die Pellets werden in 10 ml 50 mM Tris-Puffer, pH 7,4 resuspendiert. Danach wird erneut bei 48400 g und 4°C für 1 Stunde zentrifugiert. Nachfolgend wird der Überstand abgenommen und jedes Pellet wird in 3 ml 50 mM Tris-Puffer aufgenommen und resuspendiert. Die Zellsuspensionen werden in einem Becherglas vereint und erneut mit dem Ultraturrax bearbeitet und homogenisiert. Das Protein wird in 1 ml Portionen aliquotiert und bis zur Verwendung bei – 80°C gelagert.

9.8 Proteinbestimmung nach Lowry

Die Proteinbestimmung nach der Methode von Lowry beruht auf der Eigenschaft der Peptidbindung von Proteinen mit Cu²⁺-Ionen in alkalischer Lösung Komplexe zu bilden. Des Weiteren spielen einige Aminosäuren im Protein eine Rolle bei der blauen Farbentwicklung, da sie die im Folin-Reagenz enthaltenen Polymolybdato- und Polywolframatophosphorsäuren reduzieren können.²⁷⁴

Für die Standardgerade wird eine 1 mg/ml BSA-Stammlösung in deionisierten Wasser angesetzt und in einer Quarzküvette wird die Absorption bei 280 nm vermessen. Bei einer 1 mg/ml BSA-Lösung liegt der Sollwert der OD bei 0,66. Da ein linearer Zusammenhang zwischen der OD bei 280 nm und der Menge an BSA in Lösung besteht, kann mit Hilfe der gemessenen OD die tatsächliche Konzentration der BSA-Stammlösung bestimmt werden. Des Weiteren wurde frisch eine Mischung (Reagenz C) aus Reagenz A und Reagenz B im

Verhältnis 50:1 hergestellt.

Die BSA-Standardgerade wurde nach dem folgenden Verdünnungsschema hergestellt:

Ausgangslösung: 1 mg/ml BSA in Wasser

c Protein [ug/ml]	1 mg/ml BSA-Stammlösung	50 mM Tris-Puffer, pH 7.4	Verdünnungsfaktor
[[*8] ,]	[µl]	[µl]	
50	10	190	1:20
100	20	180	1:10
200	40	160	1:5
300	60	140	1:3,3
400	80	120	1:2,5
500	100	100	1:2

Table 9-1: Verdünnungsschemata für die Proteinbestimmung nach Lowry.

Bei einer abweichenden BSA-Stammlösungskonzentration wurden die angegebenen Proteinkonzentrationen dementsprechend angeglichen.

Die Proteinproben wurden verschieden verdünnt (z. B. $1:10 > 20 \ \mu$ l Probe + 180 μ l 50 mM Tris-Puffer, pH 7,4, $1:20 > 10 \ \mu$ l Probe + 190 μ l 50 mM Tris-Puffer, pH 7,4), um in dem Bereich der Proteinkonzentrationen der Standardgerade zu liegen. Des Weiteren wurden als Nullwert 200 µl 50 mM Tris-Puffer, pH 7,4 in ein Reagenzglas vorgelegt.

Zu allen 200 µl Ansätzen (verschiedene Standardproteinkonzentrationen, Proteinproben, Nullwert) werden je 1 ml Reagenz C gegeben. Es wird gemischt und 20 min bei Raumtemperatur inkubiert. Anschließend werden 100 µl Reagenz D zu allen Ansätzen gegeben. Es wird erneut gemischt und für 30 min bei Raumtemperatur inkubiert. Dann wird von jedem Ansatz 1 ml in eine Halbmikroküvette pipettiert und am Photometer werden die Proben gegen den Nullwert bei 500 nm gemessen. Die Absorptionswerte des Standards werden graphisch gegen die Proteinkonzentration aufgetragen. Anhand der erhaltenen Standardgerade, kann unter Berücksichtigung des Verdünnungsfaktors der Proteingehalt der Proben bestimmt werden.

9.9 Radioligand-Rezeptor-Bindungsstudien

9.9.1 Kompetitionsexperimente mit [³H]PSB-603 an humanen rekombinanten Adenosin-A_{2B}-Rezeptoren

Spezifische Aktivität von [³H]PSB-603 = 73 Ci/mmol, c = 1 Ci/l $K_D = 0,403 \text{ nM}$

Verdünnung im Assay: 1:20, DMSO-Gehalt: 2,5 %

Pipettierschema:

- 25 μl
 50 % DMSO / 50 % 50 mM Tris-Puffer, pH 7,4 zur Bestimmung der Gesamtbindung,
 200 μM DPCPX (Endkonzentration 10 μM) in 50 % DMSO / 50 % 50 mM Tris-Puffer, pH 7,4 zur Bestimmung der unspezifische Bindung,
 Testsubstanzen in verschiedenen Konzentrationen in 50 % DMSO / 50 % 50 mM Tris-Puffer, pH 7,4
- 2) 275 µl 50 mM Tris-Puffer, pH 7,4
- 3) 100 µl [³H]PSB-603 (Endkonzentration 0,3 nM) in 50 mM Tris-Puffer, pH 7,4
- 4) 100 μl hA_{2B}-CHO-Präparation in 50 mM Tris-Puffer, (50 μg Protein / Vial)

500 µl Endvolumen

Von den Testsubstanzen werden die gewünschten Konzentrationen unter Berücksichtigung der DMSO-Endkonzentration und der Verdünnung im Assay hergestellt. Von diesen werden je 25 µl in Duplikaten in vorbereitete 4 ml Reaktionsgefäße vorgelegt sowie 25 µl 50 % DMSO / 50 % Tris-Puffer für die Bestimmung der Gesamtbindung und 25 µl 200 µM DPCPX in 50 % DMSO / 50 % Tris-Puffer für die Bestimmung der unspezifische Bindung. Zu jedem Reaktionsgefäß werden 275 µl 50 mM Tris-Puffer, pH 7.4 gegeben und anschließend 100 µl Radioligandlösung in der entsprechenden Konzentration. Die hA2B-CHO-Membranpäparation wird mit 50 mM Tris-Puffer, pH 7,4 so verdünnt, dass pro Reaktionsgefäß 50 µg Protein eingesetzt werden. Zur Zerstörung des endogenen Adenosins werden pro ml angesetzter Proteinsuspension 2 U ADA zugesetzt und 20 min inkubiert. Anschließend werden pro Reaktionsansatz 100 µl Proteinsuspension zugegeben und es wird 75 min bei Raumtemperatur inkubiert. Durch nachfolgende Filtration über GF-B Filter, wird der gebundene Radioligand vom freien getrennt. Die Filter werden nach dem Absaugen des Versuchansatzes, mindestens viermal mit je 2 ml eiskaltem 50 mM Tris-Puffer / 0,1 % BSA, pH 7,4 gewaschen. Die Filterscheiben werden in Szintillationsgefäße überführt mit 2,5 ml Szintillationscocktail versetzt und nach 6 h Inkubation im LSC-Counter vermessen.

Für die Auswertung des Experiments wird die spezifische Bindung des Radioliganden in Anwesenheit der unterschiedlichen Konzentrationen der Testsubstanzen bestimmt und graphisch dargestellt. Zur Ermittlung der spezifischen Bindung des Radioliganden werden die im Experiment erhaltenen Werte der unspezifischen Bindung (cpm) von den Werten der Gesamtbindung und den erhaltenen Werten für die verschiedenen Konzentrationen der Testsubstanzen subtrahiert. Mit dem Programm "Graph Pad Prism 4" kann somit eine sigmoidale Inhibitionskurve erstellt werden, aus der als Maß für die Affinität der Testsubstanz zu dem Rezeptor ein IC₅₀- bzw. K_i- Wert berechnet werden kann.

9.9.2 Natrium-Shift-Experimente an humanen A_{2B}-Rezeptoren mit [³H]PSB-603

Spezifische Aktivität von [³H]PSB-603 = 73 Ci/mmol, c = 1 Ci/l K_D = 0,41 nM

Verdünnung im Assay: 1:20, DMSO-Gehalt: 2,5 %

Pipettierschema:

- 1) 25 μl 50 % DMSO / 50 % 50 mM Tris-Puffer, pH 7,4 zur Bestimmung der Gesamtbindung,
 200 μM DPCPX (Endkonzentration 10 μM) in 50 % DMSO / 50 % 50 mM Tris-Puffer, pH 7,4 zur Bestimmung der unspezifische Bindung,
 Testsubstanzen in verschiedenen Konzentrationen in 50 % DMSO / 50 % 50 mM Tris-Puffer, pH 7,4
 2) 150 μl 50 mM Tris-Puffer, pH 7,4
 3) 125 μl (400 mM NaCl gelöst in 50 mM Tris-HCl, pH 7.4)
- 4) 100 μ l [³H]PSB-603 (Endkonzentration 0,3 nM) in 50 mM Tris-Puffer, pH 7,4
- 5) 100 µl hA_{2B}-CHO-Präparation in 50 mM Tris-Puffer, (50 µg Protein / Vial)

500 µl Endvolumen

Die Versuchsdurchführung der Natrium-Shift-Experimente erfolgte, außer dem Zusatz von Natriumchlorid, analog zur Durchführung der Kompetitionsexperimente mit [³H]PSB-603 an humanen rekombinanten A_{2B}-Rezeptoren (s. 9.9.1).

9.9.3 Assoziations- und Dissoziationsexperimente mit [³H]NECA an humanen rekombinanten Adenosin-A_{2B}-Rezeptoren

Assoziationsexperiment

Verdünnung im Assay: 1:40, DMSO-Gehalt: 2,5 %

Pipettierschema:

- 25 μl
 100 % DMSO zur Bestimmung der Gesamtbindung,
 10 mM NECA (Endkonzentration 250 μM) in 100 % DMSO zur Bestimmung der unspezifische Bindung,
- 2) 775 µl 50 mM Tris-Puffer, 10 mM MgCl₂, pH 7,4
- 3) 100 μ l [³H]NECA (30 nM) in 50 mM Tris-Puffer, 10 mM MgCl₂, pH 7,4
- <u>4) 100 μl hA_{2B}-CHO-Präparation in 50 mM Tris-Puffer, 10 mM MgCl₂, pH 7,4 (200 μg Protein / Vial)</u>

Es erfolgte eine zeitversetzte Zugabe des Proteins.

1000 µl Endvolumen

Für die Bestimmung der Gesamtbindung werden 25 μ l 100 % DMSO und für die Bestimmung der unspezifische Bindung werden 25 μ l 10 mM NECA (Endkonzentration 250 μ M) in 100 % DMSO als Doppelbestimmung für jeden Messzeitpunkt vorgelegt. Anschließend werden der Inkubationspuffer und die Radioligandlösung zugegeben. Die wie in Abschnitt 9.9.5 hergestellte Proteinsuspension wird zeitversetzt in die Reaktionsgefäße, die zur Bestimmung der Gesamtbindung und unspezifischen Bindung dienen, pipettiert. Das Rezeptorprotein wurde genau nach 0,5 / 1 / 2 / 5 / 20 / 30 / 120 / 240 Minuten im inversen Zeitgang zugegeben. Anschließend wurde der Reaktionsansatz beim Zeitpunkt t = 0 (240 min) wie in Abschnitt 9.9.5 beschrieben abfiltriert und weiterbehandelt.

Zur Ermittlung der spezifischen Bindung des Radioliganden werden die im Experiment erhaltenen Werte der unspezifischen Bindung (cpm) von den Werten der Gesamtbindung subtrahiert. Anschließend werden die Inkubationszeiten gegen die entsprechende spezifische Bindung des Radioliganden mit Hilfe des Programms "Graph Pad Prism 4" nicht linear graphisch dargestellt.

Dissoziationsexperiment

Verdünnung im Assay: 1:40, DMSO-Gehalt: 2,5 %

Pipettierschema:

- 1) 775 μl 50 mM Tris-Puffer, 10 mM MgCl₂, pH 7, 4
- 2) 100 μl [³H]NECA (Endkonzentration 30 nM) in 50 mM Tris-Puffer, 10 mM MgCl₂, pH 7,4
- 3) 100 μl hA_{2B}-CHO-Präparation in 50 mM Tris-Puffer, 10 mM MgCl₂, pH 7,4 (200 μg Protein / Vial)
- 4) Inkubation 240 min bei 4°C im Kühlschrank
- Es erfolgte eine zeitversetzte Zugabe von 25 μl 10 mM NECA (Endkonzentration 250 μM) in 100 % DMSO

In je zwei Reagenzgefäße werden 25 μ l 100 % DMSO für die Bestimmung der Gesamtbindung und 25 μ l 10 mM NECA in 100 % DMSO für die Bestimmung der unspezifischen Bindung vorgelegt. In alle Reagenzgläser werden Inkubationspuffer, Radioligandlösung und die wie in Abschnitt 9.9.5 hergestellte Proteinsuspension zu gegeben. Anschließend werden 240 min bei 4°C im Kühlschrank bis zur Einstellung des Gleichgewichtes inkubiert.

Nach der Inkubation erfolgt eine zeitversetzte Zugabe, außer in die Reaktionsgefäße für die Bestimmung der Gesamtbindung und der unspezifischen Bindung, von 25 μ l 10 mM NECA (Endkonzentration 250 μ M) in 100 % DMSO. Die Substanz wurde genau nach 0,5 / 1 / 2 / 5 / 10 / 20 / 30 / 60 / 120 Minuten im inversen Zeitgang zugegeben. Beim Zeitpunkt t = 0 wird der Versuchsansatz wie in Abschnitt 9.9.5 beschrieben abfiltriert und weiterbehandelt.

9.9.4 Sättigungsexperimente mit [³H]NECA an rekombinanten humanen, Ratten- und Maus-Adenosin-A_{2B}-Rezeptoren

Verdünnung im Assay: 1:40, DMSO-Gehalt: 2,5 %

Pipettierschema:

1) 25 µl	100 % DMSO für die Gesamtbindung,
	10 mM NECA (Endkonzentration 250 μ M) in 100 % DMSO zur Bestimmung
	der unspezifische Bindung,
2) 775 µl	50 mM Tris-Puffer, 10 mM MgCl ₂ , pH 7,4
3) 100 µl	[³ H]NECA (10-2000 nM) in 50 mM Tris-Puffer, 10 mM MgCl ₂ , pH 7,4
<u>4) 100 µl</u>	A2B-CHO-Präparationen in 50 mM Tris-Puffer, 10 mM MgCl2, pH 7, 4
<u>(200-</u>	340 µg Protein / Vial)

1000 µl Endvolumen

Die Versuchsdurchführung erfolgt in Duplikaten und in hohen Radioligandkonzentrationen in Einzelwerten, um den Radioligandverbrauch zu minimieren. Der Radioligand wurde in dem gewünschten Konzentrationsbereich (10-2000 nM) mit 50 mM Tris-Puffer, 10 mM MgCl₂, pH 7,4 entsprechend verdünnt und für jede Radioligandkonzentration werden 25 µl 100 % DMSO zur Bestimmung der Gesamtbindung und 25 µl 10 mM NECA (Endkonzentration 250 µM) zur Bestimmung der unspezifische Bindung in die Reaktionsgefäße vorgelegt. Die nachfolgenden Versuchsschritte werden so durchgeführt, wie in Abschnitt 9.9.5 beschrieben. Zur Ermittlung der spezifischen Bindung des Radioliganden werden die im Experiment erhaltenen Werte der unspezifischen Bindung (cpm) von den Werten der Gesamtbindung subtrahiert. Dann werden die verschiedenen Konzentrationen des Radioliganden gegen seine spezifische Bindung mit Hilfe des Programms "Graph Pad Prism 4" nicht linear graphisch dargestellt.
9.9.5 Kompetitionsexperimente mit [³H]NECA an rekombinanten humanen, Rattenund Maus-Adenosin-A_{2B}-Rezeptoren

Spezifische Aktivität von $[^{3}H]$ NECA = 15,9 Ci/mmol, c = 1 Ci/l

 $K_{D human} = 441 \text{ nM}$ $K_{D Ratte} = 325 \text{ nM}$ $K_{D Maus} = 894 \text{ nM}$

Verdünnung im Assay: 1:40, DMSO-Gehalt: 2,5 %

Pipettierschema:

 10 mM NECA (Endkonzentration 250 μM) in 100 % DMSO zur Bestimmung der unspezifische Bindung, Testsubstanzen in verschiedenen Konzentrationen in 100 % DMSO 2) 775 μl 50 mM Tris-Puffer, 10 mM MgCl₂, pH 7,4 3) 100 μl [³H]NECA (Endkonzentration 30 nM) in 50 mM Tris-Puffer, 10 mM MgCl₂ pH 7,4 4) 100 μl A_{2B}-CHO-Präparation in 50 mM Tris-Puffer, 10 mM MgCl₂, pH 7, 4 	1) 25 µl	100 % DMSO zur Bestimmung der Gesamtbindung,		
 der unspezifische Bindung, Testsubstanzen in verschiedenen Konzentrationen in 100 % DMSO 2) 775 μl 50 mM Tris-Puffer, 10 mM MgCl₂, pH 7,4 3) 100 μl [³H]NECA (Endkonzentration 30 nM) in 50 mM Tris-Puffer, 10 mM MgCl₂ pH 7,4 4) 100 μl A_{2B}-CHO-Präparation in 50 mM Tris-Puffer, 10 mM MgCl₂, pH 7, 4 		10 mM NECA (Endkonzentration 250 μ M) in 100 % DMSO zur Bestimmung		
 Testsubstanzen in verschiedenen Konzentrationen in 100 % DMSO 2) 775 μl 50 mM Tris-Puffer, 10 mM MgCl₂, pH 7,4 3) 100 μl [³H]NECA (Endkonzentration 30 nM) in 50 mM Tris-Puffer, 10 mM MgCl₂ pH 7,4 4) 100 μl A_{2B}-CHO-Präparation in 50 mM Tris-Puffer, 10 mM MgCl₂, pH 7, 4 		der unspezifische Bindung,		
 2) 775 μl 50 mM Tris-Puffer, 10 mM MgCl₂, pH 7,4 3) 100 μl [³H]NECA (Endkonzentration 30 nM) in 50 mM Tris-Puffer, 10 mM MgCl₂ pH 7,4 4) 100 μl A_{2B}-CHO-Präparation in 50 mM Tris-Puffer, 10 mM MgCl₂, pH 7, 4 		Testsubstanzen in verschiedenen Konzentrationen in 100 % DMSO		
 3) 100 μl [³H]NECA (Endkonzentration 30 nM) in 50 mM Tris-Puffer, 10 mM MgCl₂ pH 7,4 4) 100 μl A_{2B}-CHO-Präparation in 50 mM Tris-Puffer, 10 mM MgCl₂, pH 7, 4 	2) 775 µl	50 mM Tris-Puffer, 10 mM MgCl ₂ , pH 7,4		
pH 7,4 <u>4) 100 μl A_{2B}-CHO-Präparation in 50 mM Tris-Puffer, 10 mM MgCl₂, pH 7, 4</u>	3) 100 µl	[³ H]NECA (Endkonzentration 30 nM) in 50 mM Tris-Puffer, 10 mM MgCl ₂		
<u>4) 100 µl A_{2B}-CHO-Präparation in 50 mM Tris-Puffer, 10 mM MgCl₂, pH 7, 4</u>		pH 7,4		
	<u>4) 100 µl</u>	A2B-CHO-Präparation in 50 mM Tris-Puffer, 10 mM MgCl2, pH 7, 4		
<u>(200-350 µg Protein / Vial)</u>	<u>(200-350 µg</u>	Protein / Vial)		

1000 µl Endvolumen

Von den Testsubstanzen werden die gewünschten Konzentrationen unter Berücksichtigung der DMSO-Endkonzentration und der Verdünnung im Assay hergestellt. Von diesen werden je 25 µl in Duplikaten in vorbereitete 4 ml Reaktionsgefäße vorgelegt sowie 25 µl 100 % DMSO für die Bestimmung der Gesamtbindung und 25 µl 10 mM NECA in 100 % DMSO für die Bestimmung der unspezifische Bindung. Zu jedem Reaktionsgefäß werden 775 µl 50 mM Tris-Puffer, 10 mM MgCl₂, pH 7,4 gegeben und anschließend 100 µl Radioligandlösung. Die A_{2B}-CHO-Membranpäparationen werden mit 50 mM Tris-Puffer, 10 mM MgCl₂, pH 7,4 so verdünnt, dass pro Reaktionsgefäß und je nach Rezeptorexpression 200-350 µg Protein eingesetzt werden. Zur Zerstörung des endogenen Adenosins werden pro mg verwendetes Protein 2 U ADA zugesetzt und es wird 20 min bei Raumtemperatur inkubiert. Anschließend

werden pro Reaktionsansatz 100 µl Proteinsuspension zugegeben und es wird 4 h bei 4°C im Kühlschrank inkubiert. Durch nachfolgende sofortige Filtration über GF-C Filter, wird der gebundene Radioligand vom freien getrennt. Die Filter werden nach dem Absaugen des Versuchansatzes, mindestens sechsmal mit je 3 ml eiskaltem 50 mM Tris-Puffer, pH 7,4 gewaschen. Die Filterscheiben werden in Szintillationsgefäße überführt mit 2,5 ml Szintillationscocktail versetzt und nach 6 h Inkubation im LSC-Counter vermessen.

Für die Auswertung des Experiments wird die spezifische Bindung des Radioliganden in Anwesenheit der unterschiedlichen Konzentrationen der Testsubstanzen bestimmt und graphisch dargestellt. Zur Ermittlung der spezifischen Bindung des Radioliganden werden die im Experiment erhaltenen Werte der unspezifischen Bindung (cpm) von den Werten der Gesamtbindung und den erhaltenen Werten für die verschiedenen Konzentrationen der Testsubstanzen subtrahiert. Mit dem Programm "Graph Pad Prism" kann somit eine sigmoidale Inhibitionskurve erstellt werden, aus der als Maß für die Affinität der Testsubstanz zu dem Rezeptor der IC₅₀- bzw. K_i- Wert berechnet werden kann.

9.10 Fluorimetrische Calcium-Messungen an Jurkat-T-, HEK-293-, HEK-hA_{2B}und CHO-hA_{2B}-Zellen

Die Zellen von zwei konfluenten 175 cm² Flaschen werden bei der Verwendung von HEKund CHO-hA2B-Zellen zuerst abgelöst, anschließend in ein Falkon-Gefäß überführt und 1 h bei 37 C°, 5 % CO₂ inkubiert. Bei der Verwendung von Jurkat-T-Zellen können diese direkt in ein Falkon-Gefäß überführt werden. Nach der Inkubation erfolgt eine 5 minütige Zentrifugation bei 200 g, 4°C und nachfolgend werden die erhaltenen Zellpellets in 994 µl Krebs-HEPES-Puffer, pH 7.4 resuspendiert. Dann erfolgt die Zugabe von 3 µl Oregon Green BAPTA-1/AM (OG)-Stammlösung und 3 µl Pluronic® F127-Stammlösung und die Zellsuspension wird unter Ausschluss von Licht 1 h bei Raumtemperatur unter "Rotieren" inkubiert. Nach der Inkubation werden die Zellen dreimal mit je 1 ml KHP-Puffer gewaschen und anschließend wird die Zellsuspension in 16 ml KHP-Puffer unter Zusatz von 2 U/ml ADA verdünnt. Bei der Messung von Adenosin wurde auf die Zugabe von ADA verzichtet. Anschließend werden je 160 µl der Zellsuspension (~ 300.000 Zellen) pro Well ausplattiert. Für die Testung auf Antagonismus wurden vorher 20 µl einer 10-fach höher konzentrierten Lösung des Antagonisten in 10 % DMSO und für die Testung auf Agonismus wurden 20 µl einer 90 % KHP-Puffer / 10 % DMSO Mischung in die Wells vorgelegt. Die Platten werden unter Lichtausschluss 45 min bei Raumtemperatur inkubiert. Während dieser Zeit wird eine 10-fach höher konzentrierte Agonist-Lösung in 10 % DMSO hergestellt und es werden je 30 µl in eine Injektionsplatte vorgelegt. Nach dem Spülen der Pumpe des Fluorimeters mit KHP-Puffer, werden 20 µl der Agonist-Lösung in die entsprechenden Wells mit den Zellen und vorgelegten Substanzen injiziert. Anhand der Fluoreszenzintensität kann der Anstieg der intrazellulären Calciumkonzentration in den Zellen beobachtet werden. Dabei wurden im Fall von HEK-293,- HEK-hA_{2B}- und CHO-hA_{2B}.Zellen 60 Zeitintervalle (je 4 s) gemessen, wohingegen bei der Verwendung von Jurkat-T-Zellen aufgrund des verzögerten Calcium-Signals 250 Zeitintervalle (4 s) gemessen wurden.

Für die Auswertung der Experimente wird der initial nach der Injektion gemessene Fluoreszenzwert als Nullwert verwendet und von jedem weiteren Messwert abgezogen. Anschließend wird der Mittelwert eines Messintervalls in "Graph Pad Prism" gegen die Konzentration der verwendeten Substanzen aufgetragen. Es entsteht eine Dosis-Wirkungskurve aus der der IC₅₀- oder EC₅₀-Wert einer Substanz bestimmt werden kann.

9.11 Präparation des cAMP-Bindeproteins

Die Präparation des cAMP-Bindeproteins wurde wie von Nordstedt et al. beschrieben durchgeführt.²⁷⁵ Es wurden mehrere Rindernebennieren vom Fettgewebe und Nierenmark befreit und anschließend in 10 Volumenanteilen von einem 100 mM Tris/HCl, pH 7.4, 250 mM NaCl, 10 mM EDTA, 0,1 % 2-Mercaptoethanol, und 0,25 M Sucrose enthaltenen Puffer aufgenommen und homogenisiert. Das Homogenisat wurde durch Mullbinden filtriert und anschließend durch eine Zentrifugation von 60 min bei 30000 g, 4°C weiter aufgereinigt. Der so gewonnene klare Überstand mit dem enthaltenen löslichen Protein (Proteinkinase A) wurde nach einer Proteinbestimmung nach Lowry (s. 9.8) in 1 ml Portionen aliquotiert und bis zur Verwendung bei -20°C gelagert.

9.12 cAMP-Experimente an CHO-hA_{2B}-hA_{2A}-Zellen

Einen Tag vor dem Versuch werden 200.000 Zellen pro Well in einer 24 Well-Platte ausgesät. Bei 90 % Konfluenz am nächsten Tag wird das Medium abgenommen und die Zellen werden zweimal mit HBSS-Puffer pH 7,3 gewaschen. Anschließend verbleiben 300 μ l des HBSS-Puffers mit Zusatz von 2 U/ml ADA auf den Zellen und die Platten werden 2 h bei 37°C und 5 % CO₂ inkubiert. Bei der Messung von Adenosin wurde auf die Zugabe von ADA verzichtet. Dann erfolgte die Zugabe von 100 μ l eines Phosphodiesteraseinhibitors Ro20-1724 (einsetzen 200 μ M in 2 % DMSO / 98 % HBSS-Puffer, Endkonzentration 40 μ M) welcher in 100 % HBSS-Puffer gelöst wurde. Nach einer Inkubation von 10 min bei 37°C erfolgte die Zugabe von je 100 μ l der entsprechenden Agonisten, welche in 5 % DMSO 95 % HBSS-Puffer gelöst waren. Nach weiteren 15 min Inkubation wurden 500 μ l eines heißen Lysepuffers (90°C, 4 mM EDTA, 0,01 % Trition X-100, pH 7,3) zu jedem Well pipettiert um die cAMP-Akkumulation abzustoppen. Die 24 Well-Platten wurden auf Eis gestellt und jedes Well wurde durch Auf- und Abpipettieren resuspendiert. Für die sich anschließende Radioligand-Rezeptor-Bindungsstudie wurden 50 µl des Zelllysates in Reaktionsgefäße überführt. Dann erfolgte die Zugabe von 30 µl [3H]cAMP (3 nM Endkonzentration) gelöst in Lyse-Puffer (4 mM EDTA, 0,01 % Trition X-100, pH 7,3) und anschließend die Zugabe von 40 µl cAMP-Bindeprotein (50 µg Protein pro Reagenzglas) im gleichen Puffer. Zur Bestimmung der Gesamtbindung wurden außerdem 50 µl des Lyse-Puffers (4 mM EDTA, 0,01 % Trition X-100, pH 7,3), 30 µl vom [³H]cAMP Radioliganden und 40 µl des cAMP-Bindeproteins und für die Bestimmung der unspezifischen Bindung wurden 90 µl des Lyse-Puffers (4 mM EDTA, 0,01 % Trition X-100, pH 7.3) und 30 µl des ³H]cAMP Radioliganden in die Reagenzgläser pipettiert. Des Weiteren wurden je 50 µl eines cAMP Standards mit bekannten Konzentrationen in die Reagenzgläser vorgelegt. Nach einer einstündigen Inkubation auf Eis erfolgt eine Filtration über GF-B Filter, dabei wird der gebundene Radioligand vom freien getrennt. Die Filter werden nach dem Absaugen des Versuchansatzes, mindestens dreimal mit je 3 ml eiskaltem 50 mM Tris-Puffer pH 7,4 gewaschen. Die Filterscheiben werden in Szintillationsgefäße überführt mit 2,5 ml Szintillationscocktail versetzt und nach 9 h Inkubation im LSC-Counter vermessen.

9.13 cAMP-Experimente an Jurkat-T-, HEK-293- und HEK-hA_{2B}-Zellen

Die Zellen von zwei konfluenten 175 cm² Zellkulturflaschen werden in 50 ml Falkon-Gefäße überführt und bei 200 g und 4°C 5 min zentrifugiert. Der Überstand wird entfernt und das Zellpellet wird in HBSS-Puffer, pH 7,4 unter Zusatz von 2 U/ml ADA resuspendiert. Für die Messung von Adenosin wurde auf die Zugabe von ADA verzichtet. Anschließend werden je 200 µl der Zellsuspension (ca. 300.000 Zellen pro Well) in 24 Well-Platten überführt und 1,5 h bei 37°C, 5 % CO₂ inkubiert. Dann erfolgte die Zugabe von 25 µl des Phosphodiesteraseinhibitors Ro20-1724 (Endkonzentration 40 µM) welcher in 100 % HBSS-Puffer gelöst wurde. Nach einer Inkubation von 10 min bei 37°C erfolgte die Zugabe von 12,5 µl des Antagonisten und nach weiteren 10 min Inkubation erfolgte die Zugabe von 12,5 µl des Agonisten. Für die Testung auf Agonismus wurden 25 µl des Agonisten zu jedem Well gegeben. Im Fall der Testung von NECA oder Adenosin in der Anwesenheit von BAY60-6583 wurden beide Substanzen gleichzeitig auf die Zellen gegeben. Alle Substanzen wurden in einer Mischung aus 90 % HBSS-Puffer und 10 % DMSO gelöst bevor sie auf die Zellen gegeben wurden, damit die DMSO-Konzentration im Assay 1,4 % nicht übersteigt. Nach einer 15 minütigen Inkubation der Agonisten wurden 250 µl eines heißen Lysepuffers (90°C, 8 mM EDTA, 0,02 % Trition X-100, pH 7,3) zu jedem Well pipettiert, um die cAMP-Akkumulation abzustoppen. Die 24 Well-Platten wurden auf Eis gestellt und jedes Well wurde durch Auf- und Abpipettieren resuspendiert. Für die sich anschließende Radioligand-Rezeptor-Bindungsstudie wurden 50 µl des Zelllysates in Vials überführt. Des Weiteren wurden 50 µl eines cAMP-Standards mit bekannten Konzentrationen in die Reagenzgläser vorgelegt. Dann erfolgte die Zugabe von 30 µl [3H]cAMP (3 nM Endkonzentration) gelöst in Lyse-Puffer (4 mM EDTA, 0,01 % Trition X-100, pH 7,3) und anschließend die Zugabe von 40 µl cAMP-Bindeprotein (50 µg Protein pro Reagenzglas) im gleichen Puffer. Zur Bestimmung der Gesamtbindung wurden 50 µl des Lyse-Puffers (4 mM EDTA, 0,01 % Trition X-100, pH 7,3), 30 µl vom [³H]cAMP und 40 µl des cAMP-Bindeproteins und für die Bestimmung der unspezifischen Bindung wurden 90 µl des Lyse-Puffers (4 mM EDTA, 0,01 % Trition X-100, pH 7.3) und 30 µl [³H]cAMP in die Reagenzgläser pipettiert. Nach einer einstündigen Inkubation auf Eis erfolgt eine Filtration über GF-B Filter, dabei wird der gebundene Radioligand vom freien getrennt. Die Filter wurden nach dem Absaugen des Versuchansatzes, mindestens dreimal mit je 3 ml eiskaltem 50 mM Tris-Puffer pH 7,4 gewaschen. Die Filterscheiben wurden in Szintillationsgefäße überführt mit 2,5 ml Szintillationscocktail versetzt und nach 9 h Inkubation im LSC-Counter vermessen.

Die Auswertung aller cAMP-Versuche wurde mit den Programmen Excel und "Graph Pad Prism 4" durchgeführt. Mit Hilfe der erhaltenen cAMP-Standardgerade, kann der cAMP-Gehalt aus den Proben berechnet werden. Mit dem Programm "Graph Pad Prism", wurde der erhaltene cAMP-Gehalt gegen die jeweils eingesetzte Konzentration der Substanzen aufgetragen. Es entsteht eine Dosis-Wirkungskurve aus der der IC₅₀- oder EC₅₀-Wert einer Substanz bestimmt werden kann.

9.14 Transiente Transfektion und FRET-Experimente

24 Stunden vor der Transfektion werden die CHO-K1-Zellen von einer großen konfluenten Flasche abgelöst und in ein 50 ml Falkon-Gefäß überführt. Zur Bestimmung der Zellzahl werden 10 µl der Zellsuspension auf die Zählfläche einer Neubauer-Zählkammer aufgetragen. Es werden mindestens zwei der vier Großquadrate ausgezählt. Unter Berücksichtigung der Fläche der ausgezählten Quadrate und der Entfernung zwischen Deckglas und Objektträger, kann die Zellmenge der Suspension bestimmt werden (Gl. 9-1). Pro 6-Well werden 700.000 Zellen ausgesät und jedem Well werden 2 ml Medium DMEM-F12 mit FCS ohne Antibiotikum zugegeben. Die ausgesäten 6-Well-Platten werden bis zum nächsten Tag bei 37° C und 5 % CO₂ inkubiert. Idealerweise sind die Zellen am Tag der Transfektion zu 90-100 % konfluent. Für die Transfektion wird als Transfektionsreagenz Lipofectamin 2000 verwendet. Des Weiteren werden Opti-MEM-Medium sowie ausreichende DNA-Mengen der zu untersuchenden Donor- und Akzeptorkonstrukte benötigt (Maxipräparationen). Für jede zu bestimmende Probe (Donorkonstrukt alleine, Akzeptorkonstrukt alleine, zu untersuchende Donor- und Akzeptorkonstrukte in Kombination, Positiv- und Negativkontrollen) werden je zwei 1,5 ml Eppendorfgefäße vorbereitet. In das erste Eppendorfgefäß kommen die zu testenden DNA-Mengen sowie 500 µl des Opti-MEM-Mediums. In das zweite Eppendorfgefäß kommt die entsprechende Menge an Lipofectamin (DNA-Menge (µg) zu Lipofectamin (μ l) = 1:1) und 500 μ l des Opti-MEM-Mediums. Beide Eppendorfgefäße werden gut gemischt und 5 min bei Raumtemperatur inkubiert. Anschließend wird der Inhalt von Gefäß zwei in Gefäß eins überführt (1 ml). Zur Bildung des Lipofektamin-DNA-Komplexes werden alle Eppendorfgefäße 30 min bei Raumtemperatur inkubiert. Während der Inkubationszeit wird das Medium der CHO-K1 Zellen auf den 6 Well-Platten abgesaugt, es wird zweimal mit je 500 µl Opti-MEM-Medium gewaschen und anschließend werden 500 µl Opti-MEM-Medium auf den Zellen belassen. Nach der Inkubation werden 500 µl von jeder Probe (Lipofektamin-DNA-Komplex) in Duplikaten auf die Zellen gegeben und es wird 4,5 h bei 37°C und 5 % CO₂ inkubiert. Zur Messung der Hintergrundfluoreszenz werden außerdem zwei Wells mit CHO-K1-Zellen untransfiziert belassen. Anschließend wird das Opti-MEM-Medium entfernt und es werden 2 ml Kulturmedium (DMEM-F12, FCS, PS) auf die Zellen gegeben. Um eine relativ hohe Expression zu erzielen werden die Zellen 24 h bei 37°C und 5 % CO₂ inkubiert. Nach der Inkubation wird das Medium von den Zellen abgenommen und es wird zweimal mit 1 ml HBSS-Puffer gewaschen. Anschließend verbleiben je nach noch vorhandener Zellmenge 250 µl HBSS-Puffer auf den Zellen. Diese werden vorsichtig mit einem Zellschaber abgelöst und die je 250 µl Zellsuspensionen werden in 1,5 ml Eppendorfgefäße überführt. Für eine sich anschließende Proteinbestimmung nach Bradford werden 10 µl (Zellen vorher vorsichtig resuspendieren) von allen Proben in eine durchsichtige 96-Well-Platte überführt. Weiterhin wird eine Standardgerade mit je 0,1 mg / ml, 0,2 mg / ml, 0,3 mg / ml, 0,4 mg / ml und 0,5 mg / ml BSA hergestellt und je 10 µl in Duplikaten werden in die 96-Well Platte pipettiert. Als Nullwert werden außerdem 10 µl 100 % HBSS-Puffer verwendet. Die Original Bradford-Lösung wird 1:5 mit Wasser verdünnt und filtriert. Je 190 µl der filtrierten Bradford-Lösung werden mit einer Mehrkanalpipette zu den 10 µl der Proben pipettiert und es wird 5 min bei Raumtemperatur inkubiert. Anschließend werden alle Proben bei einer Wellenlänge von 600 nm in einem Fluoreszenzmessgerät gemessen. Mit "Graph Pad Prism" wird die Steigung der BSA-Standardgerade bestimmt woraus der Proteingehalt der Proben erhalten werden kann. Anschließend wird berechnet wie viel ul HBSS-Puffer den einzelnen Proben zugegeben werden muss, um eine einheitliche Proteinkonzentration von 0,2 mg/ml zu erzielen. Nach der Verdünnung der Proben auf 0,2 mg/ml mit HBSS-Puffer, werden von allen Proben 100 µl (20 µg Protein) in eine schwarze undurchsichtige Platte überführt (Zellen vorher gut resuspendieren). Anschließend wird im Fluoreszenzmessgerät die Fluoreszenz für EYFP (Anregungsfilter 500/10, Emissionsfilter F535), GFP² (Anregungsfilter 405/10, Emissionsfilter 510/10) und für den Energieübertrag GFP²/YFP (Anregungsfilter 405/10, Emissionsfilter F535) gemessen. Die Auswertung erfolgt in Excel. Zuerst wird von allen erhaltenen Messwerten die Hintergrundfluoreszenz (untransfizierte Zellen) in den jeweiligen Filterkombinationen subtrahiert. Bei der Auswertung nach der "Sensitized Emission" Methode ist es außerdem notwendig, ein "Überspringen" der Donorfluoreszenz in den FRET-Kanal zu korrigieren. Dafür wird in der Probe wo nur der Donor anwesend ist der Quotient aus FRET-Signal_{Donor}/Donor-Signal_{Donor} = Korrekturfaktor B (CoB) bestimmt. Des Weiteren muss der Anteil der Akzeptorfluoreszenz im FRET-Kanal bestimmt werden. Dafür wird in der Probe wo nur der Akzeptor anwesend ist der Quotient aus FRET-Signal_{Akzeptor}/Akzeptor-Signal_{Akzeptor} = Korrekturfaktor A (CoA) bestimmt.²⁷⁶ Mit den bei uns verwendeten Filterkombinationen lag der Korrekturfaktor B unabhängig von dem verwendeten Donorkonstrukt bei ca. 60-80 % und der Korrekturfaktor A bei ca.1-2 %. Das korrigierte FRET-Signal lässt sich dann folgendermaßen berechnen:

 $Netto \ FRET = Fret \ Signal - (CoB \times Donor \ Signal) - (CoA \times Akzeptor \ Signal)$

Gl. 9-2: Berechnung des korrigierten FRET-Signals.²⁷⁶⁻²⁷⁷

Das korrigierte und normalisierte FRET-Signal, welches außerdem Fluktuationen innerhalb der Donor- und Akzeptorkonzentrationen berücksichtigt, wurde dann mit der Hilfe der folgenden Formel berechnet:²⁶²

$$N_{\mathrm{FRET}} = rac{\mathrm{Da}_f - (\mathrm{CoB} imes \mathrm{Dd}_f) - (\mathrm{CoA} imes \mathrm{Aa}_f)}{\sqrt{(\mathrm{Dd}_f imes \mathrm{Aa}_f)}}$$

Daf = Donor und Akzeptor Probe gemessen im FRET-Filter Ddf = Donor und Akzeptor Probe gemessen im Donor-Filter Aaf = Donor und Akzeptor Probe gemessen im Akzeptor-Filter

Gl. 9-3: Formel für die Berechnung des normalisierten FRET-Signals.²⁶²

9.15 Transiente Transfektion und BiFC-Experimente

24 Stunden vor der Transfektion werden die CHO-K1 Zellen von einer großen konfluenten Flasche abgelöst und in ein 50 ml Falkon-Gefäß überführt. Zur Bestimmung der Zellzahl werden 10 µl der Zellsuspension auf die Zählfläche einer Neubauer-Zählkammer aufgetragen. Unter Berücksichtigung der Fläche der ausgezählten Quadrate und der Entfernung zwischen Deckglas und Objektträger, kann die Zellmenge der Suspension bestimmt werden (Gl. 9-1). Pro 6 Well werden 700.000 Zellen ausgesät und jedem Well werden 2 ml Medium DMEM-F12 mit FCS ohne Antibiotikum zugegeben. Die ausgesäten 6 Well-Platten werden bis zum nächsten Tag bei 37°C und 5 % CO_2 inkubiert. Idealerweise sind die Zellen am Tag der Transfektion zu 90-100 % konfluent. Für die Transfektion wird als Transfektionsreagenz Lipofectamin 2000 verwendet. Des Weiteren benötigt man Opti-MEM-Medium sowie ausreichende DNA-Mengen der zu untersuchenden NYFP/CYFP-Konstrukte, EYFP-N1 und GFP²-N3 (Maxipräparationen). Für jede zu bestimmende Probe werden (NYFP-Konstrukte alleine, CYFP-Konstrukte alleine, NYFP und CYFP-Konstrukte in Kombination, Negativund Positivkontrollen) je zwei 1,5 ml Eppendorfgefäße vorbereitet. In das erste Gefäß kommen die zu testenden DNA-Mengen sowie 500 µl des Opti-MEM-Mediums. In das zweite Gefäß kommt die entsprechende Menge Lipofectamin (DNA-Menge (µg) zu Lipofectamin (μ l) = 1:1) und 500 μ l des Opti-MEM-Mediums. Für die Experimente zur Bestimmung der BiFC-Effizienz werden zusätzlich zu allen zu untersuchenden Proben 100 ng des GFP²-N3 Plasmids gegeben, und es werden zwei einzelne Proben von EYFP-N1 und GFP²-N3 vorbereitet. Beide Eppendorfgefäße werden gut gemischt und 5 min bei Raumtemperatur inkubiert. Nachfolgend wird der Inhalt von Gefäß zwei in Gefäß eins überführt (1 ml). Zur Bildung des Lipofektamin-DNA-Komplexes werden alle Eppendorfgefäße 30 min bei Raumtemperatur inkubiert. Während der Inkubationszeit wird das Medium der CHO-K1 Zellen auf den 6 Well-Platten abgesaugt, es wird zweimal mit je 1 ml Opti-MEM-Medium gewaschen und anschließend werden 500 µl Opti-MEM Medium auf den Zellen belassen. Je 500 µl von jeder Probe (Lipofektamin-DNA-Komplex) werden in Duplikaten auf die Zellen gegeben und es wird 4,5 h bei 37°C und 5 % CO₂ inkubiert. Als Hintergrundkontrolle werden außerdem zwei Wells mit CHO-K1 Zellen untransfiziert belassen. Anschließend wird das Opti-MEM-Medium entfernt und es werden 2 ml DMEM-F12 mit FCS und PS auf die Zellen gegeben. Um eine relativ gute Expression zu erzielen, werden die Zellen 18 h bei 37°C und 5 % CO₂ inkubiert. Anschließend werden die Zellen 4,5 h bei 30°C inkubiert um eine Maturation des EYFPs zu gewährleisten. Nach der Inkubation wird das Medium von den Zellen abgesaugt und es wird zweimal mit 1 ml/Well HBSS-Puffer gewaschen. Anschließend verbleiben (je nach noch vorhandener Zellmenge) 250 µl HBSS-Puffer auf den Zellen. Diese werden vorsichtig mit einem Zellschaber abgelöst und die 250 µl Zellsuspensionen werden in 1,5 ml Eppendorfgefäße überführt. Für eine sich anschließende Proteinbestimmung nach Bradford werden 10 µl (Zellen vorher resuspendieren) von allen Proben in eine durchsichtige 96-Well-Platte überführt. Weiterhin wird eine Standardgerade mit je 0,1 mg/ml, 0,2 mg/ml, 0,3 mg/ ml, 0,4 mg/ml und 0,5 mg/ml BSA hergestellt und je 10 µl in Duplikaten werden in die 96-Wellplatte pipettiert. Als Nullwert werden 10 µl HBSS-Puffer verwendet. Die Original Bradford-Lösung wird 1:5 mit Wasser verdünnt und filtriert. Je 190 µl der filtrierten Bradford-Lösung werden mit einer Mehrkanalpipette zu den 10 µl der Proben pipettiert und es wird 5 min bei Raumtemperatur inkubiert. Anschließend werden alle Proben bei einer Wellenlänge von 600 nm in einem Fluoreszenzmessgerät vermessen. Mit "Graph Pad Prism" wird die Steigung der BSA-Standardgerade bestimmt, woraus der Proteingehalt der Proben bestimmt werden kann. Anschließend wird berechnet wie viel µl HBSS-Puffer den einzelnen Proben zugegeben werden muss, um eine einheitliche Proteinkonzentration von 0,2 mg / ml zu erzielen. Nach Verdünnung der Proben auf 0,2 mg / ml mit HBSS-Puffer, werden von allen Proben 100 µl (20 µg) in eine schwarze undurchsichtige Platte überführt (Zellen vorher resuspendieren). Nun wird im Mithras Fluoreszenzmessgerät die Fluoreszenz für YFP (Anregungsfilter 500/10, Emissionsfilter F535) gemessen. Die Auswertung erfolgt in Excel. Zuerst wird von allen Messwerten die jeweilige Hintergrundfluoreszenz (untransfizierte Zellen) subtrahiert, um die verbleibende YFP-Fluoreszenz zu bestimmen. Diese wird in einem Balkendiagramm in "Graph Pad Prism" dargestellt und ist ein direktes Maß für die Dimerisierung. Für die Bestimmung der relativen BiFC-Effizienzen werden zuerst aus den einzeln transfizierten Proben (EYFP-N1 und GFP2-N3) die Korrekturfaktoren (x/y) des jeweiligen "Bleedthrough" berechnet. Die GFP²/YFP Fluoreszenz-Ratio (x) wird bestimmt aus Zellen die nur EYFP exprimieren und die YFP/GFP² Fluoreszenz-Ratio (y) wird bestimmt aus Zellen die nur GFP² exprimieren. Anschließend werden die gemessenen EYFP und GFP² Fluoreszenzen in den coexprimierten Proben mit folgender Formel korrigiert:²⁷³

$$EYFP_{korr} = \frac{(EYFP - y \times GFP^2)}{1 - x \times y}$$

$$GFP^{2}_{korr} = \frac{(GFP^{2} - x \times EYFP)}{1 - x \times y}$$

Gl. 9-4: Formeln zur Korrektur der gemessenen EYFP und GFP² Fluoreszenzen.²⁷³

Die relative BiFC-Effizienz berechnet sich anschließend folgendermaßen:

$$BiFC \ Effizienz = \frac{EYFP_{korr} (YN + YC)}{GFP_{korr}^{2}}$$

Gl. 9-5: Formel zur Berechnung der relativen BiFC-Effizienz.²⁷³

Um die Expression der gemessenen Proben zu überprüfen, wird die restliche Zellsuspension von allen Proben (je eine von einem Duplikat, Proben ohne GFP² als interne Kontrolle) zentrifugiert (5 min, 1000 g) und es wird ausgerechnet, wie viel μ g Protein die jeweiligen Pellets enthalten. (z. B. es sind nach Abnahme der 100 μ l für die Messung noch 200 μ l der 0,2 mg/ml Zellsuspension übrig > Zellpellet = 40 μ g) Die so erhaltenen Zellpellets werden in 1- fach SB-Probenpuffer aufgenommen und auf eine Konzentration von 1 μ g/ μ l gebracht. Alle Proben werden zur Zellyse kurz mit Ultraschall behandelt und anschließend bis zur Durchführung der Western Blots sofort bei -20°C eingefroren.

9.16 Kolokalisationsexperimente

Für die Kolokalisationsexperimente wurden die wie in Abschnitt 9.7.6 behandelten Zellobjekte (hA_{2A} -ECFP- A_{2B} -EYFP) im Arbeitskreis von Prof. Hoch mit einem konfokalen Fluoreszenzmikroskop betrachtet. Dabei wurde das ECFP mit einem 458 nm Laser angeregt und die Emission wurde bei 470-500 nm gemessen während das EYFP mit einem 514 nm Laser angeregt wurde und bei 520-550 nm wurde die Emission gemessen.

9.17 Molekularbiologische Arbeiten

9.17.1 Western Blots

Am Tag der Durchführung der Western Blots werden die in Abschnitt 9.15 erhaltenen Proben aufgetaut und 10 min bei 40°C erhitzt. Auf ein SDS-Gradientengel (4-12 %) werden je 25 μ g der Proben sowie ein vorgefärbter Proteinmarker (10 μ l) aufgetragen und bei 200 Volt ca. 1 h aufgetrennt. Anschließend werden die Proteine bei 100 Volt 1 h auf eine Nitrozellulosemembran übertragen. Zur Kontrolle des Übertrags der Proteine auf die Membran wird eine Ponceau-S-Färbung (Inkubation der Membran 2 min in 0,2 % Ponceau-S/2 % Trichloressigsäure) durchgeführt. Um unspezifische Bindungsstellen abzusättigen, wird die Membran nach mehrmaligem Waschen mit destilliertem Wasser, 1 h mit 15 ml 5 % Milchpulver/PBS-0,1 % Tween 20 geblockt. Anschließend erfolgt die Zugabe der ersten Antikörper (Monoklonaler Antikörper anti-GFP (1:3000), monoklonaler Antikörper anti-HA (1:1000) welche 1,5 h bei Raumtemperatur inkubiert werden. Als nächstes erfolgen 3 mal 20 min Waschritte mit je 15 ml PBS-0,1 % Tween 20. In einem nächsten Schritt erfolgt die Zugabe des zweiten Antikörpers, (anti-Maus, 1:3000, Inkubation 50 min RT) welcher an eine "Horseradish"-Peroxidase gekoppelt ist. Nach weiteren Waschritten mit PBS-0,1 % Tween 20 (3 mal 20 min) wird das Enzymsubstrat (4 ml) zugegeben, 3 min inkubiert und nachfolgend können durch die Chemolumineszenz Röntgenfilme belichtet (10 s) werden, welche anschließend in einem Röntgenentwickler entwickelt werden.

9.17.2 Agarose Gelelektrophorese

Für alle Klonierungen wurden 1 % ige Agarosegele hergestellt. Für ein großes Gel werden 0,5 g Agarose in 50 ml TAE-Puffer und für ein kleines Gel 0,25 g in 25 ml TAE-Puffer gelöst. Um die Agarose vollständig zu lösen, wird die Suspension in einer Mikrowelle mehrmals kurz zum Sieden erhitzt. Anschließend wird die Lösung auf 50°C bei Raumtemperatur abgekühlt und es wird Gelredkonzentrat in einer Verdünnung von 1:10000 dazu gegeben. Nachfolgend wird die Suspension gemischt und in einen mit Kämmen vorbereiteten Gelschlitten gegossen. Nach dem Erstarren wird der Kamm entfernt und das Gel wird in eine Elektrophoresekammer überführt, die mit TAE-Puffer gefüllt ist. Die DNA-Proben werden mit 6 fach Ladepuffer versetzt und es werden 6-30 µl in die Taschen geladen. Anschließend erfolgt eine Elektrophorese bei 75-100 Volt. Danach wird das Gel mit Hilfe einer UV-Lampe ausgewertet.

9.17.3 Herstellung von LB-Medium

25 g LB-Medium werden nach Herstellerangaben in 1,0 l deionisierten Wasser gelöst. Die Lösung wird bei 121°C 30 min autoklaviert und bis zur weiteren Verwendung bei 4°C gelagert. Für das Anziehen von Bakterien werden je nach verwendetem Vektor Ampicillin, (Endkonzentration 100 μ g / ml) Kanamycin (Endkonzentration 100 μ g / ml) oder Zeocin (Endkonzentration 25 μ g / ml) zugegeben und es wird gut gemischt.

9.17.4 Herstellung von Agarplatten

In 1,0 l deionisiertem Wasser werden nach Herstellerangaben 32 g LB-Agar gelöst. Die Lösung wird autoklaviert und auf 50°C bei Raumtemperatur abgekühlt. Anschließend wird je nach verwendetem Vektor Ampicillin, (Endkonzentration 100 μ g / ml) Kanamycin (Endkonzentration 100 μ g / ml) oder Zeocin (Endkonzentration 25 μ g / ml) zugegeben und die Lösung wird gemischt. Danach werden je ca. 20 ml der Lösung in vorbereitete

Petrischalen gegossen. Nach dem Erstarren werden die Schalen mit der Oberseite nach unten bei 4°C bis zur weiteren Verwendung gelagert.

9.17.5 Polymerase-Ketten-Reaktion (PCR)

Für die PCR wurde ein Mastermix gewählt, der aus folgenden Komponenten bestand:

x μl Template-DNA (10-20 ng)
2 μl f / r-Primer (5 μM)
5 μl 10 x Pyrobest-Puffer
4 μl dNTP Mix (2,5 mM)
0,5 μl Pyrobest-Polymerase
(Optional 2,5 μl DMSO 100 %)
Ad 50 μl steriles Wasser

Bei der PCR des $GABAB_{R2}$ -Rezeptors wurde dem PCR-Ansatz zusätzlich aufgrund der ungünstigen Anfangssequenz (Ausbildung von Sekundärstrukturen) 5 % DMSO (Endkonzentration) zugesetzt.

Es wurden 30 Zyklen des folgenden PCR-Programms durchgeführt:

 10 s
 98°C

 10 s
 98°C

 1 min x°C (je nach Anlagerungstemperatur der Primer)
 30 x

 1-3 min 72°C (je nach Größe des PCR-Produktes)
 30 x

 10 min 72°C
 10 min 72°C

9.17.6 Aufreinigung von PCR-Produkten

Die Aufreinigung der PCR-Produkte wurde mit dem "DNA clean and Concentrator Kit" nach Angaben des Herstellers durchgeführt.

9.17.7 Extraktion von DNA aus einem Agarosegel

Die gewünschten DNA-Banden wurden aus dem Gel ausgeschnitten und mit dem "Gel DNA Recovery Kit" nach Angaben des Herstellers aufgereinigt.

9.17.8 Restriktionsverdau

Je nach geplanter Klonierung wurden die Vektoren sowie die aufgereinigten PCR-Produkte mit den entsprechenden Restriktionsenzymen geschnitten.

Die Restriktionsansätze wurden wie folgt hergestellt:

x μl DNA (ca. 200 ng Vektor und bis zu 1 μg von dem PCR-Produkt)
2 μl (10 x Fast Digest 10 x Puffer)
<u>1 μl je von den entsprechenden Enzymen (Fast Digest Enzyme)</u>
Ad 20 μl steriles Wasser

Die Ansätze wurden je nach Enzym und Herstellerangaben 5 min oder 30 min bei 37°C inkubiert. Um kleine DNA Stücke zu entfernen wurden die Ansätze vor der Ligation mit dem "DNA clean and Concentrator Kit" nach Angaben des Herstellers aufgereinigt.

9.17.9 Auffüllen von 5'-überhängenden Enden mit der T4-DNA-Polymerase

Zum Auffüllen von 5´-überhängenden DNA-Enden diente unter anderem die T4-DNA-Polymerase. Die Reaktion wurde in einem Endvolumen von 20 µl mit folgenden Komponenten angesetzt:

x μl DNA (ca. 1 μg)
2 μl NEB-Puffer 2
2 μl BSA (10 x)
1 μl dNTPs (2 mM)
<u>1 μl T4-DNA-Polymerase</u>
Ad 20 μl steriles Wasser

Der Reaktionsansatz wurde 15 min bei 12°C inkubiert und anschließend mit dem "DNA clean and Concentrator Kit" nach Angaben des Herstellers aufgereinigt.

9.17.10 Auffüllen von 5´-überhängenden Enden mit dem Klenow-Fragment

Des Weiteren wurde auch das Fragment der DNA-Polymerase I verwendet, um nach einem Restriktionsverdau 5`-Überhänge aufzufüllen.

Folgender Reaktionsansatz wurde dafür hergestellt:

x μl DNA 2 μl (10 x Reaktionspuffer) 0,5 μl dNTPs (2 mM) Ad 20 μl steriles Wasser

Der Reaktionsansatz wurde 10 min bei 37°C inkubiert und anschließend mit dem "DNA clean and Concentrator Kit" nach Angaben des Herstellers aufgereinigt.

9.17.11 Ligation mit T4-DNA-Ligase

Die geschnittenen aufgereinigten Vektoren wurden mit den geschnittenen aufgereinigten PCR-Produkten hauptsächlich im Verhältnis 1:6 ligiert.

Ligationsansatz:

x μl Vektor-DNA (~ 50 ng) y μl PCR-Produkt (~ 300 ng) 2 μl (10 x Ligase-Puffer) 2 μl (ATP 10 mM) <u>1 μl T4-DNA-Ligase</u> Ad 20 μl steriles Wasser

Der Ligationsansatz wurde im Fall von "überhängenden Enden" 2 h und bei der Ligation von "glatten Enden" über Nacht bei Raumtemperatur inkubiert.

9.17.12 Herstellung von chemisch kompetenten E. coli Top 10-Bakterien

4 ml LB-Medium werden mit 50 μ l Glycerinkultur von *E.coli* angeimpft und bei 37°C, 220 rpm, über Nacht in den Inkubator gestellt. Anschließend werden die 4 ml Übernachtkultur in 40 ml LB-Medium überführt und nach 45 min Kultivierung wird die Absorption der Bakteriensuspension bei 550 nm gemessen. Nachdem eine OD von 0,5 erreicht wurde, (Blindwert LB-Medium) werden die Bakterien bei 4°C und 1700 g 20 min pelletiert. Das Pellet wird in 20 ml sterilen eiskalten 0,1 M CaCl₂-Lösung resuspendiert und 30 min auf Eis inkubiert. Anschließend erfolgt eine Zentrifugation 20 min bei 1700 g und 4°C. Die erhaltenen Pellets werden in 2 ml CaCl₂ Lösung resuspendiert und mit 0,5 ml Glycerol versetzt. Nachfolgend wird die Bakteriensuspension in 100 μ l Portionen aliquotiert und bis zur Verwendung bei -80°C eingefroren.

9.17.13 Transformation von chemisch kompetenten E. coli Top 10-Bakterien

Auf Eis wird der komplette Ligationsansatz zu 100 µl chemisch kompetenten Top 10 *E. coli* gegeben. Nach 30 min Inkubation auf Eis erfolgt ein Hitzeschock bei 37°C für 2 min. Die Bakteriensuspension wird erneut für 2 min auf Eis inkubiert und anschließend werden 250 µl SOC-Medium zugegeben. Es folgt eine Stunde Inkubation bei 37°C und 200 U/min. Danach werden je 150 µl mit einem Drigalski-Spatel gleichmäßig auf einer Agarplatte ausgestrichen. Die Platten werden mit der Oberseite nach unten für 12-16 Stunden bei 37°C im Brutschank inkubiert.

9.17.14 Anzucht von Monoklonen in Übernachtkulturen

Mehrere Bakterienkolonien werden mit einer gelben Pipettenspitze in 4 ml LB-Medium mit dem entsprechenden Antibiotikum überführt und für 12-16 Stunden bei 37°C inkubiert.

9.17.15 Aufreinigung von Plasmid-DNA aus E.coli-Bakterien

Je nach benötigter DNA-Menge für nachfolgende Experimente, werden Bakteriensuspensionen für Mini- (4 ml LB-Medium), Midi- oder Maxipräparationen (bis 250 ml LB-Medium) angezogen. Die Aufreinigung der DNA aus den Übernachtkulturen erfolgte mit dem Zymo Plasmid Mini- bzw. Maxipräparationskit oder dem Invitrogen Plasmid Midipräparationskit nach Herstellerangaben.

Dabei wird das Prinzip der alkalischen Lyse, der Ethanolfällung und der Elution über spezifische Säulen durch Zentrifugation ausgenutzt.

9.17.16 Sequenzierung

Die Sequenzierung erfolgte durch die Firma GATC-Biotech. Dafür wurden je etwa 1 µg DNA in Wasser verdünnt und in einem Volumen von 30 µl eingeschickt.

Es wurden Sequenzierungsprimer verwendet, die in ca. 55 bp Abstand zur Sequenz der Rezeptor-DNA, in der Vektorsequenz binden.

9.17.17 Anlegen von Glycerinkulturen

In einem Kryogefäß werden 150 µl Glycerol (15 %) vorgelegt. Aus einer frisch angezogenen Bakterien-Übernachtkultur werden 850 µl dazu gegeben. Die Kulturen werden bei -20° C und -80° C gelagert und können zur erneuten Anzucht von Übernachtkulturen verwendet werden. Dafür werden ca. 100 µl entnommen und in 4 ml LB-Medium inkubiert.

9.17.18 Konzentrationsbestimmung von DNA

2 μl DNA werden mit 998 μl Wasser gemischt. Um die Konzentration zu erhalten, wird die Lösung photometrisch unter Berücksichtigung des Verdünnungsfaktors (1:500), bei einer Absorption von 260 nm gemessen. Zur Nullwert-Bestimmung wurde Wasser benutzt.

9.17.19 Nachträgliches Einfügen eines Tags oder einer Linkersequenz

Für einige DNA-Konstrukte war es notwendig, nachträglich mit den entsprechenden Restriktionsenzymen, "in Frame" ein HA-Tag einzuführen (**MYPYDVPDYA**) oder die Linkersequenz zwischen Rezeptorgen und Tag auszutauschen. Dafür wurden komplementäre Primer mit den entsprechenden überhängenden Enden der verwendeten Restriktionsenzyme hergestellt. Die Original-Primerstammlösungen wurden auf eine Konzentration von 1 $\mu g/\mu l$ verdünnt. Anschließend wurden je 10 μl des einen Primers mit je 10 μl des komplementären Primers gemischt, für 4 min bei 94°C in der PCR-Maschine erhitzt, auf 55 °C für 2 min heruntergekühlt und danach für eine Ligation auf Eis gestellt. Für die Ligation wurden ca. 30 ng der geschnittenen Vektoren sowie die kompletten 20 μl der Primermischung eingesetzt. Nach einer Transformation, Minipräparation und Sequenzierung wurden positive Klone erhalten.

9.17.20 RNA-Isolierung aus Zellkulturen

Am Tag der Versuchsdurchführung wird eine mittlere zu 80-90 % konfluent bewachsene Zellkulturflasche der entsprechenden Zelllinie benötigt. Unter der Werkbank wird das Medium abgenommen und die Zellen werden mit 5 ml PBS-Puffer pH 7,4 gewaschen. Anschließend werden unter dem Abzug langsam 3 ml Trizol RS-Reagenz zu den Zellen getropft und die Zellkulturflasche wird dabei geschwenkt. Es erfolgt eine 10 minütige Inkubation bei Raumtemperatur. Nach der Inkubation werden je 1 ml der Zelllösung in drei Eppendorfgefäße überführt und pro Gefäß werden 200 µl Chloroform zugegeben und es wird 15 s stark geschüttelt. Es erfolgt eine 10 minütige Inkubation bei Raumtemperatur und anschließend werden 15 min bei 12.000 g und 4°C zentrifugiert. Es werden drei Phasen

sichtbar, unten eine organische rötliche Phase, eine weiße schleimige Interphase und eine obere wässrig klare Phase, welche die RNA enthält. Von allen Ansätzen wird die obere klare Phase abgenommen und in drei neue Eppendorfgefäße überführt. Es werden je 500 μ l eiskaltes Isopropanol zugeben und es wird kurz invertiert sowie 10 min bei Raumtemperatur inkubiert. Anschließend erfolgt eine Zentrifugation für 10 min, 12000 g bei 4°C. Der Überstand wird vorsichtig abgeschüttet und es erfolgt eine Zugabe von je 1 ml eiskaltem 70 % igen Ethanol. Nach Vortexen erfolgt eine Zentrifugation von 5 min, 7500 g bei 4°C. Der Überstand wird komplett abgenommen und die RNA-Pellets werden bei Raumtemperatur getrocknet. Anschließend werden alle Pellets nacheinander in 25 μ l RNase-freiem Wasser resuspendiert. Idealerweise sollte der so erhaltene mRNA-Pool direkt in cDNA umgeschrieben werden oder sofort bei -20°C gelagert werden.

9.17.21 Reverse Transkriptions-PCR

Für das Umschreiben von mRNA in cDNA wurde das Omniscript-Kit von Qiagen verwendet. Folgender Reaktionsansatz wurde dafür hergestellt:

3 μl isolierte mRNA
2 μl 10 x Puffer RT
2 μl dNTP-Mix
2 μl Oligo-dT-Primer (nicht im Kit enthalten)
10 U RNase-Inhibitor
1 μl Reverse Transkriptase
Ad 20 μl steriles Wasser

Es erfolgt eine Inkubation für 1 h bei 37°C. Bis zur PCR wurde die cDNA und die verbleibende mRNA bei -20°C gelagert.

9.17.22 Gen-Fragment Amplifizierung aus cDNA

Um zu untersuchen, ob in dem hergestellten cDNA-Pool das Gen von Interesse vorhanden ist, werden entsprechende Primer eingesetzt. Als negative Kontrolle wurde außerdem die cDNA von untransfizierten CHO-K1 Zellen verwendet. Um zu überprüfen, ob die Isolierung der RNA bzw. das Umschreiben der mRNA in cDNA funktioniert hat, werden Primer die gegen das Referenzgen β -Aktin, welches unabhängig von äußeren Einflüssen exprimiert wird, eingesetzt. Folgende PCR-Ansätze wurden hergestellt:

2 μl cDNA 1 μl f / r-Primer (5 μM) 12,5 μl Biomix <u>8,5 μl H₂O, steril</u> 25 μl

Es wurden 25 Zyklen des folgenden PCR-Programms durchgeführt:

4 min 94°C 1 min 94°C 1 min x°C (je nach Anlagerungstemperatur der Primer) 1 min 72°C 10 min 72°C

10 Abkürzungsverzeichnis

Abb.	Abbildung
ADA	Adenosindesaminase
ADP	Adenosindiphosphat
AMP	Adenosinmonophosphat
ATP	Adenosintriphosphat
BAPTA	1,2-Bis-(O-aminophenoxy)ethan-N,N,N´,N´-tetraessigsäure
BAY60-6583	2-[6-Amino-3,5-dicyano-4-[4-
	(cyclopropylmethoxy)phenyl]pyridin-2-ylsulfanyl]acetamid
BiFC	Bimolekulare-Fluoreszenzkomplementation
B _{max}	Maximale Bindungsstellenzahl
bp	Basenpaare
Bq	Becquerel (=Zerfälle pro Minute)
BRET	Biolumineszenz-Resonanz-Energie-Transfer
BSA	Bovines Serumalbumin
°C	Grad Celsius
$[Ca^{2+}]_i$	intrazelluläre Calciumkonzentration
CADO	2-Chloradenosin
cAMP	cyclisches Adenosinmonophosphat
Capadenoson	2-Amino-6-[[[2-(4-chlorophenyl)-4-thiazolyl]methyl]thio]-4-[4-
	(2-hydroxyethoxy)phenyl]-3,5-pyridindicarbonitril
[³ H]CCPA	[³ H]2-Chlor-N ⁶ -cyclopentyladenosin
cDNA	copy Desoxyribonukleinsäure
CFP	cyan fluorescent protein (cyan-fluoreszierendes Protein)
CGS15943	5-Amino-9-chlor-2-(2-furyl)[1,2,4]-triazolo[1,5-c]-chinazolin
CGS21680	2-(4-((2-Carboxymethyl)phenyl)ethylamino)-5'-N-
	ethylcarboxamidoadenosin
СНО	Chinesische Hamster Ovarien
Ci	Curie $(1 \text{ Ci} = 37 \text{ GBq})$
СРА	N^6 -Cyclopentyladenosin
cpm	Counts per minute, Zahl der gezählten Zerfälle pro Minute
DAG	Diacylglycerol
δ	Delta
DMEM	Dulbecco's modified Eagle Medium

DMSO	Dimethylsulfoxid
DNA	Desoxyribonukleinsäure
dNTP	Desoxynukleotidtriphosphat
DPCPX	1, 3-Dipropyl-8-cyclopentylxanthin
dpm	Zahl der Zerfälle pro Minute
ECFP	enhanced CFP
EC ₅₀	Halbmaximale effektive Konzentration
E.coli	Escherichia coli
EDTA	Ethylendiamintetraessigsäure
ER	Endoplasmatisches Retikulum
EYFP	enhanced YFP
f	forward
FCS	Fetal Calf Serum (fötales Kälberserum)
FRET	Fluoreszenz-Resonanz-Energie-Transfer
G418	Genticinsulfat
GABA	γ-Aminobuttersäure
GDP	Guanosindiphosphat
GF/C	Glasfaserfilter vom Typ C
GF/B	Glasfaserfilter vom Typ B
GFP	green fluorescent protein (grün-fluoreszierendes Protein)
GPCR	G-Protein-gekoppelter Rezeptor
GTP	Guanosintriphosphat
h	human
HA	Hämagglutinin
HBSS	Hank's Buffered Salt Solution
HEK	Human Embryonic Kidney
HEPES	N-(2-Hydroxyethyl)piperazin-N´-methylcarboxamid
HER	Hypoxia Responsive Element
HIF	Hypoxia Inducible Factor
[¹²⁵ I]ABOPX	[125I]3-(4-Amino-3-iodobenzyl)-8-phenyl-(4-oxyessigsäure)-1-
	propylxanthin
IB-MECA	N^{6} -(3-Iodbenzyl)adenosin-5'-N-methylcarboxamid
IC ₅₀	Halbmaximale Inhibitionskonzentration
IL-6/-8-10	Interleukin-6/-8/-10

IP ₃	Inositol-1,4,5-trisphosphat
I. U.	Internationale Einheit
kDA	kilo Dalton
K _D	Gleichgewichtsdissoziations-Konstante
K _i	Gleichgewichtsinhibitions-Konstante
KRH	Krebs-Ringer-HEPES
KW-3902	8-(Hexahydro-2,5-methanopentalen-3a(1H)-yl)-3,7-dihydro-1,3-
	dipropyl-1H-purine-2,6-dione
LB	lysogeny broth
L-DOPA	L-3,4-Dihydroxyphenylalanin
LSC	Liquid Scintillation Counter (Flüssigszintillations-Zähler)
m	Maus
$m-/\mu-/nM$	milli-/mikro-/nanomolar
МАРК	Mitogen-aktivierte Proteinkinasen
min	Minute
MRE-3008F20	5-N-(4-Methoxyphenylcarbamoyl)amino-8-propyl-2(2-furyl)-
	pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]-pyrimidin
mRNA	messenger RNA
MRS-1754	<i>N</i> -(4-Cyanophenyl)2-[4-(2,3,6,7-tetrahydro-2,6-dioxo-1,3-
	dipropyl-1H-purin-8-yl)-phenoxy]acetamid
[³ H]MSX-2	[³ H]3-(3-Hydroxypropyl)-8- <i>m</i> -methoxystyryl)-7-methyl-1-
	propargylxanthin
Myc	Myelocytomatosis virales Onkogen
n	Anzahl der durchgeführten Versuche
n.b.	nicht bestimmt
NECA	N-Ethylcarboxamidoadenosin
NG105-15	Maus-Neuroblastoma x Ratten-Glioma-Hybridzelllinie
nm	Nanometer
OSIP-339391	N-(2-{2-Phenyl-6-[4-(3-phenylpropyl)-piperazin-1-carbonyl]-
	7H-pyrrolo[2,3-d]pyrimidin-4-ylamino}ethyl)acetamid
PBS-Puffer	Phospate Buffered Saline
PCR	Polymerase-Kettenreaktion
PIP ₂	Phosphatidylinositol-4,5-bisphosphat
РКА	Proteinkinase A

РКС	Proteinkinase C
PLC	Phospholipase C
PS	Penicillin-Streptomycin
PSB	Pharmaceutical Sciences Bonn
PSB-10	(<i>R</i>)-8-Ethyl-4-methyl-2-(2,3,5-trichlorophenyl)-4,5,7,8-
	tetrahydro-1H-imidazo[2,1-i]purin-5-on
PSB-36	1-Butyl-8-(3-noradamantanyl)-3-(3-hydroxypropyl)xanthin
[3 H]PSB-11	$[^{3}$ H]8-Ethyl-4-methyl-2-phenyl-(8 <i>R</i>)-4,5,7,8-tetrahydro-1 <i>H</i> -
	imidazo-[2,1- <i>i</i>]purin-5-on
[³ H]PSB-298	[³ H]8-{4-[2-(2-Hydroxyethylamino)2-oxo-ethoxy]phenyl}-1-
	propylxanthin
[³ H]PSB-603	[³ H]8-(4-(4-(4-Chlorphenyl)-piperazin-1-sulfonyl)-phenyl)-1-
	propylxanthin
PTX	Pertussis Toxin
r	Ratte
Regadenoson	CVT3146, Lexiscan TM , 2-[4-[(Methylamino)carbonyl]-1 <i>H</i> -
	pyrazol-1-yl]adenosin
<i>R</i> -PIA	(R) - N^{6} -Phenylisopropyladenosin
rpm	rotations per minute = Umdrehungen pro Minute
RPMI	Roswell Park Memorial Institute
RT	Raumtemperatur
RT-PCR	Reverse-Transkription-Polymerase-Kettenreaktion
S	Sekunde
SCH58261	5-Amino-7-(2-phenylethyl)-2-(2-furyl)pyrazolo[4,3-e]-1,2,4-
	triazolo[1,5-c]pyrimidin
SDS	Natriumdodecylsulfat
SEM	Standard error of mean (Standardfehler des Mittelwertes)
Tab.	Tabelle
TAE	Tris-Acetat-Essigsäure
ТМ	Transmembranäre Helix
TR-FRET	time-resolved-FRET
TRIS	Tris(hydroxymethyl)aminomethan
U	Unit (Einheit)
UDP	Uridindiphosphat

UTP	Uridintriphosphat
UV	Ultraviolett
vs.	versus (gegen)
VSV-G	Vesikuläres Stomatitis Virus G-Protein
WT	Wildtyp
YFP	yellow fluorescent protein (gelb-fluoreszierendes Protein)
z. B.	zum Beispiel
[³ H]ZM241385	[³ H]4-(2-((7-Amino-2-(furyl)1,2,4-triazolo[2,3- <i>a</i>]-1,3,5-triazin-
	5-yl)amino)ethyl)phenol

11 Literaturverzeichnis

- 1. Pierce, K. L.; Premont, R. T.; Lefkowitz, R. J. Seven-transmembrane receptors. *Nat. Rev. Mol. Cell Biol* **2002**, *3*, 639-650.
- 2. Ibrahim, I. A.; Kurose, H. Beta-arrestin-mediated signaling improves the efficacy of therapeutics. *J. Pharmacol. Sci.* **2012**, *118*, 408-412.
- 3. Marinissen, M. J.; Gutkind, J. S. G-protein-coupled receptors and signaling networks: emerging paradigms. *Trends Pharmacol. Sci.* **2001**, *22*, 368-376.
- 4. Ritter, S. L.; Hall, R. A. Fine-tuning of GPCR activity by receptor-interacting proteins. *Nat. Rev. Mol. Cell Biol.* **2009**, *10*, 819-830.
- 5. Rajagopal, S.; Rajagopal, K.; Lefkowitz, R. J. Teaching old receptors new tricks: biasing seven-transmembrane receptors. *Nat. Rev. Drug Discov.* **2010**, *9*, 373-386.
- 6. Schiöth, H. B.; Fredriksson, R. The GRAFS classification system of G-protein coupled receptors in comparative perspective. *Gen. Comp. Endocrinol.* **2005**, *142*, 94-101.
- 7. Fredriksson, R.; Lagerstrom, M. C.; Lundin, L. G.; Schioth, H. B. The G-proteincoupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. *Mol. Pharmacol.* **2003**, *63*, 1256-1272.
- 8. Lagerström, C. M.; Schiöth, H. B. Structural diversity of G-protein-coupled receptors and significance for drug discovery. *Nat. Rev. Drug Discov.* **2008**, *7*, 339-357.
- 9. Keov, P.; Sexton, P. M.; Christopoulos, A. Allosteric modulation of G-proteincoupled receptors: a pharmacological perspective. *Neuropharmacology* **2011**, *60*, 24-35.
- 10. Congreve, M.; Langmead, C. J.; Mason, J. S.; Marshall, F. H. Progress in structure based drug design for G-protein-coupled receptors. *J. Med. Chem.* **2011**, *54*, 4283-4311.
- 11. Tang, X. L.; Wang, Y.; Li, D. L.; Luo, J.; Liu, M. Y. Orphan G-protein-coupled receptors (GPCRs): biological functions and potential drug targets. *Acta Pharmacol. Sin.* **2012**, *33*, 363-371.
- Palczewski, K.; Kumasaka, T.; Hori, T.; Behnke, C. A.; Motoshima, H.; Fox, B. A.; Le Trong, I.; Teller, D. C.; Okada, T.; Stenkamp, R. E.; Yamamoto, M.; Miyano, M. Crystal structure of rhodopsin: A G-protein-coupled receptor. *Science* 2000, 289, 739-745.
- 13. Park, J. H.; Scheerer, P.; Hofmann, K. P.; Choe, H. W.; Ernst, O. P. Crystal structure of the ligand-free G-protein-coupled receptor opsin. *Nature* **2008**, *454*, 183-187.
- 14. Scheerer, P.; Park, J. H.; Hildebrand, P. W.; Kim, Y. J.; Krauss, N.; Choe, H. W.; Hofmann, K. P.; Ernst, O. P. Crystal structure of opsin in its G-protein-interacting conformation. *Nature* **2008**, *455*, 497-502.

- Dore, A. S.; Robertson, N.; Errey, J. C.; Ng, I.; Hollenstein, K.; Tehan, B.; Hurrell, E.; Bennett, K.; Congreve, M.; Magnani, F.; Tate, C. G.; Weir, M.; Marshall, F. H. Structure of the adenosine A_{2A} receptor in complex with ZM241385 and the xanthines XAC and caffeine. *Structure* 2011, *19*, 1283-1293.
- 16. Jaakola, V. P.; Griffith, M. T.; Hanson, M. A.; Cherezov, V.; Chien, E. Y.; Lane, J. R.; Ijzerman, A. P.; Stevens, R. C. The 2.6 angstrom crystal structure of a human A_{2A} adenosine receptor bound to an antagonist. *Science* **2008**, *322*, 1211-1217.
- 17. Lebon, G.; Warne, T.; Edwards, P. C.; Bennett, K.; Langmead, C. J.; Leslie, A. G.; Tate, C. G. Agonist-bound adenosine A_{2A} receptor structures reveal common features of GPCR activation. *Nature* **2011**, *474*, 521-525.
- Xu, F.; Wu, H.; Katritch, V.; Han, G. W.; Jacobson, K. A.; Gao, Z. G.; Cherezov, V.; Stevens, R. C. Structure of an agonist-bound human A_{2A} adenosine receptor. *Science* 2011, *332*, 322-327.
- Cherezov, V.; Rosenbaum, D. M.; Hanson, M. A.; Rasmussen, S. G.; Thian, F. S.; Kobilka, T. S.; Choi, H. J.; Kuhn, P.; Weis, W. I.; Kobilka, B. K.; Stevens, R. C. High-resolution crystal structure of an engineered human beta₂-adrenergic G-proteincoupled receptor. *Science* 2007, *318*, 1258-1265.
- 20. Rasmussen, S. G.; Choi, H. J.; Rosenbaum, D. M.; Kobilka, T. S.; Thian, F. S.; Edwards, P. C.; Burghammer, M.; Ratnala, V. R.; Sanishvili, R.; Fischetti, R. F.; Schertler, G. F.; Weis, W. I.; Kobilka, B. K. Crystal structure of the human beta₂ adrenergic G-protein-coupled receptor. *Nature* **2007**, *450*, 383-387.
- 21. Warne, T.; Serrano-Vega, M. J.; Baker, J. G.; Moukhametzianov, R.; Edwards, P. C.; Henderson, R.; Leslie, A. G.; Tate, C. G.; Schertler, G. F. Structure of a beta₁-adrenergic G-protein-coupled receptor. *Nature* **2008**, *454*, 486-491.
- 22. Wu, B.; Chien, E. Y.; Mol, C. D.; Fenalti, G.; Liu, W.; Katritch, V.; Abagyan, R.; Brooun, A.; Wells, P.; Bi, F. C.; Hamel, D. J.; Kuhn, P.; Handel, T. M.; Cherezov, V.; Stevens, R. C. Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. *Science* **2010**, *330*, 1066-1071.
- Chien, E. Y.; Liu, W.; Zhao, Q.; Katritch, V.; Han, G. W.; Hanson, M. A.; Shi, L.; Newman, A. H.; Javitch, J. A.; Cherezov, V.; Stevens, R. C. Structure of the human dopamine D₃ receptor in complex with a D₂/D₃ selective antagonist. *Science* 2010, *330*, 1091-1095.
- 24. Haga, K.; Kruse, A. C.; Asada, H.; Yurugi-Kobayashi, T.; Shiroishi, M.; Zhang, C.; Weis, W. I.; Okada, T.; Kobilka, B. K.; Haga, T.; Kobayashi, T. Structure of the human M₂ muscarinic acetylcholine receptor bound to an antagonist. *Nature* **2012**, *482*, 547-551.
- Kruse, A. C.; Hu, J.; Pan, A. C.; Arlow, D. H.; Rosenbaum, D. M.; Rosemond, E.; Green, H. F.; Liu, T.; Chae, P. S.; Dror, R. O.; Shaw, D. E.; Weis, W. I.; Wess, J.; Kobilka, B. K. Structure and dynamics of the M₃ muscarinic acetylcholine receptor. *Nature* 2012, 482, 552-556.

- 26. Shimamura, T.; Shiroishi, M.; Weyand, S.; Tsujimoto, H.; Winter, G.; Katritch, V.; Abagyan, R.; Cherezov, V.; Liu, W.; Han, G. W.; Kobayashi, T.; Stevens, R. C.; Iwata, S. Structure of the human histamine H₁ receptor complex with doxepin. *Nature* **2011**, *475*, 65-70.
- Hanson, M. A.; Roth, C. B.; Jo, E.; Griffith, M. T.; Scott, F. L.; Reinhart, G.; Desale, H.; Clemons, B.; Cahalan, S. M.; Schuerer, S. C.; Sanna, M. G.; Han, G. W.; Kuhn, P.; Rosen, H.; Stevens, R. C. Crystal structure of a lipid G-protein-coupled receptor. *Science* 2012, *335*, 851-855.
- 28. Manglik, A.; Kruse, A. C.; Kobilka, T. S.; Thian, F. S.; Mathiesen, J. M.; Sunahara, R. K.; Pardo, L.; Weis, W. I.; Kobilka, B. K.; Granier, S. Crystal structure of the microopioid receptor bound to a morphinan antagonist. *Nature* **2012**, *485*, 321-326.
- 29. Cherezov, V.; Abola, E.; Stevens, R. C. Recent progress in the structure determination of GPCRs, a membrane protein family with high potential as pharmaceutical targets. *Methods Mol. Biol.* **2010**, *654*, 141-168.
- Rasmussen, S. G.; DeVree, B. T.; Zou, Y.; Kruse, A. C.; Chung, K. Y.; Kobilka, T. S.; Thian, F. S.; Chae, P. S.; Pardon, E.; Calinski, D.; Mathiesen, J. M.; Shah, S. T.; Lyons, J. A.; Caffrey, M.; Gellman, S. H.; Steyaert, J.; Skiniotis, G.; Weis, W. I.; Sunahara, R. K.; Kobilka, B. K. Crystal structure of the beta₂ adrenergic receptor-G_s protein complex. *Nature* 2011, 477, 549-555.
- 31. Shoichet, B. K.; Kobilka, B. K. Structure-based drug screening for G-protein-coupled receptors. *Trends Pharmacol. Sci.* **2012**, *33*, 268-272.
- 32. Abbracchio, M. P.; Burnstock, G.; Verkhratsky, A.; Zimmermann, H. Purinergic signalling in the nervous system: an overview. *Trends Neurosci.* **2009**, *32*, 19-29.
- 33. Bender, E.; Buist, A.; Jurzak, M.; Langlois, X.; Baggerman, G.; Verhasselt, P.; Ercken, M.; Guo, H. Q.; Wintmolders, C.; Van den Wyngaert, I.; Van Oers, I.; Schoofs, L.; Luyten, W. Characterization of an orphan G-protein-coupled receptor localized in the dorsal root ganglia reveals adenine as a signaling molecule. *Proc. Natl. Acad. Sci. U S A* 2002, *99*, 8573-8578.
- 34. Von Kügelgen, I.; Schiedel, A. C.; Hoffmann, K.; Alsdorf, B. B.; Abdelrahman, A.; Müller, C. E. Cloning and functional expression of a novel G_i-protein-coupled receptor for adenine from mouse brain. *Mol. Pharmacol.* **2008**, *73*, 469-477.
- 35. Brunschweiger, A.; Müller, C. E. P2 receptors activated by uracil nucleotides an update. *Curr. Med. Chem.* **2006**, *13*, 289-312.
- 36. Fredholm, B. B.; AP, I. J.; Jacobson, K. A.; Klotz, K. N.; Linden, J. International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. *Pharmacol. Rev.* **2001**, *53*, 527-552.
- Abbracchio, M. P.; Brambilla, R.; Ceruti, S.; Kim, H. O.; von Lubitz, D. K.; Jacobson, K. A.; Cattabeni, F. G-protein-dependent activation of phospholipase C by adenosine A₃ receptors in rat brain. *Mol. Pharmacol.* **1995**, *48*, 1038-1045.

- 38. Freund, S.; Ungerer, M.; Lohse, M. J. A₁ adenosine receptors expressed in CHO-cells couple to adenylyl cyclase and to phospholipase C. *Naunyn Schmiedebergs Arch. Pharmacol.* **1994**, *350*, 49-56.
- 39. Linden, J.; Thai, T.; Figler, H.; Jin, X.; Robeva, A. S. Characterization of human A_{2B} adenosine receptors: radioligand binding, western blotting, and coupling to G_q in human embryonic kidney 293 cells and HMC-1 mast cells. *Mol. Pharmacol.* **1999**, *56*, 705-713.
- 40. Schulte, G.; Fredholm, B. B. Signalling from adenosine receptors to mitogen-activated protein kinases. *Cell Signal.* **2003**, *15*, 813-827.
- 41. Eckle, T.; Krahn, T.; Grenz, A.; Köhler, D.; Mittelbronn, M.; Ledent, C.; Jacobson, M. A.; Osswald, H.; Thompson, L. F.; Unertl, K.; Eltzschig, H. K. Cardioprotection by ecto-5'-nucleotidase (CD73) and A_{2B} adenosine receptors. *Circulation* **2007**, *115*, 1581-1590.
- 42. Weyler, S.; Fülle, F.; Diekmann, M.; Schumacher, B.; Hinz, S.; Klotz, K. N.; Müller, C. E. Improving potency, selectivity, and water solubility of adenosine A₁ receptor antagonists: xanthines modified at position 3 and related pyrimido[1,2,3-cd]purinediones. *ChemMedChem* **2006**, *1*, 891-902.
- 43. Müller, C. E.; Diekmann, M.; Thorand, M.; Ozola, V. [³H]8-Ethyl-4-methyl-2-phenyl-(8R)-4,5,7,8-tetrahydro-1H-imidazo[2,1-i]-purin-5-one ([³H]PSB-11), a novel highaffinity antagonist radioligand for human A₃ adenosine receptors. *Bioorg. Med. Chem. Lett.* **2002**, *12*, 501-503.
- 44. Müller, C. E. Medicinal chemistry of adenosine A₃ receptor ligands. *Curr. Top. Med. Chem.* **2003**, *3*, 445-462.
- 45. Borrmann, T.; Hinz, S.; Bertarelli, D. C.; Li, W.; Florin, N. C.; Scheiff, A. B.; Müller, C. E. 1-alkyl-8-(piperazine-1-sulfonyl)phenylxanthines: development and characterization of adenosine A_{2B} receptor antagonists and a new radioligand with subnanomolar affinity and subtype specificity. *J. Med. Chem.* **2009**, *52*, 3994-4006.
- 46. Stewart, M.; Steinig, A. G.; Ma, C.; Song, J. P.; McKibben, B.; Castelhano, A. L.; MacLennan, S. J. [³H]OSIP339391, a selective, novel, and high affinity antagonist radioligand for adenosine A_{2B} receptors. *Biochem. Pharmacol.* **2004**, *68*, 305-312.
- 47. Baraldi, P. G.; Tabrizi, M. A.; Preti, D.; Bovero, A.; Fruttarolo, F.; Romagnoli, R.; Moorman, A. R.; Gessi, S.; Merighi, S.; Varani, K.; Borea, P. A. [³H]-MRE 2029-F20, a selective antagonist radioligand for the human A_{2B} adenosine receptors. *Bioorg. Med. Chem. Lett.* **2004**, *14*, 3607-3610.
- 48. Mundell, S. J.; Matharu, A. L.; Kelly, E.; Benovic, J. L. Arrestin isoforms dictate differential kinetics of A_{2B} adenosine receptor trafficking. *Biochemistry* **2000**, *39*, 12828-12836.
- 49. Jajoo, S.; Mukherjea, D.; Kumar, S.; Sheth, S.; Kaur, T.; Rybak, L. P.; Ramkumar, V. Role of beta-arrestin1/ERK MAP kinase pathway in regulating adenosine A₁ receptor desensitization and recovery. *Am. J. Physiol. Cell Physiol.* **2010**, *298*, C56-65.

- 50. Gao, Z. G.; Jacobson, K. A. Translocation of arrestin induced by human A₃ adenosine receptor ligands in an engineered cell line: comparison with G-protein-dependent pathways. *Pharmacol. Res.* **2008**, *57*, 303-311.
- 51. <u>http://www.discoverx.com/gpcrs/express_arrestin.php</u>.
- 52. Fredholm, B. B.; Ijzerman, A. P.; Jacobson, K. A.; Linden, J.; Müller, C. E. International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and classification of adenosine receptors an update. *Pharmacol. Rev.* **2011**, *63*, 1-34.
- 53. Eltzschig, H. K. Adenosine: an old drug newly discovered. *Anesthesiology* **2009**, *111*, 904-915.
- 54. Livingston, M.; Heaney, L. G.; Ennis, M. Adenosine, inflammation and asthma a review. *Inflamm. Res.* 2004, *53*, 171-178.
- 55. Müller, C. E.; Jacobson, K. A. Xanthines as adenosine receptor antagonists. *Handb. Exp. Pharmacol.* **2011**, *200*, 151-199.
- 56. Müller, C. E.; Jacobson, K. A. Recent developments in adenosine receptor ligands and their potential as novel drugs. *Biochim. Biophys. Acta* **2011**, *1808*, 1290-1308.
- 57. Samsel, M.; Dzierzbicka, K. Therapeutic potential of adenosine analogues and conjugates. *Pharmacol. Rep.* **2011**, *63*, 601-617.
- 58. Tendera, M.; Gaszewska-Zurek, E.; Parma, Z.; Ponikowski, P.; Jankowska, E.; Kawecka-Jaszcz, K.; Czarnecka, D.; Krzeminska-Pakula, M.; Bednarkiewicz, Z.; Sosnowski, M.; Ochan Kilama, M.; Agrawal, R. The new oral adenosine A₁ receptor agonist capadenoson in male patients with stable angina. *Clin. Res. Cardiol.* **2012**, *101*, 585-591.
- 59. Rittiner, J. E.; Korboukh, I.; Hull-Ryde, E. A.; Jin, J.; Janzen, W. P.; Frye, S. V.; Zylka, M. J. AMP is an adenosine A₁ receptor agonist. *J. Biol. Chem.* **2012**, 287, 5301-5309.
- 60. Buscariollo, D. L.; Breuer, G. A.; Wendler, C. C.; Rivkees, S. A. Caffeine acts via A₁ adenosine receptors to disrupt embryonic cardiac function. *PLoS One* **2011**, *6*, 1-10.
- 61. Mizumoto, H.; Karasawa, A.; Kubo, K. Diuretic and renal protective effects of 8-(noradamantan-3-yl)-1,3-dipropylxanthine (KW-3902), a novel adenosine A₁-receptor antagonist, via pertussis toxin insensitive mechanism. *J. Pharmacol. Exp. Ther.* **1993**, *266*, 200-206.
- Gottlieb, S. S.; Brater, D. C.; Thomas, I.; Havranek, E.; Bourge, R.; Goldman, S.; Dyer, F.; Gomez, M.; Bennett, D.; Ticho, B.; Beckman, E.; Abraham, W. T. BG9719 (CVT-124), an A₁ adenosine receptor antagonist, protects against the decline in renal function observed with diuretic therapy. *Circulation* 2002, *105*, 1348-1353.
- 63. Schnackenberg, C. G.; Merz, E.; Brooks, D. P. An orally active adenosine A₁ receptor antagonist, FK838, increases renal excretion and maintains glomerular filtration rate in furosemide-resistant rats. *Br. J. Pharmacol.* **2003**, *139*, 1383-1388.

- 64. Fredholm, B. B. Adenosine, adenosine receptors and the actions of caffeine. *Pharmacol. Toxicol.* **1995**, *76*, 93-101.
- 65. Milne, G. R.; Palmer, T. M. Anti-inflammatory and immunosuppressive effects of the A_{2A} adenosine receptor. *ScientificWorldJournal* **2011**, *11*, 320-339.
- 66. Hino, T.; Arakawa, T.; Iwanari, H.; Yurugi-Kobayashi, T.; Ikeda-Suno, C.; Nakada-Nakura, Y.; Kusano-Arai, O.; Weyand, S.; Shimamura, T.; Nomura, N.; Cameron, A. D.; Kobayashi, T.; Hamakubo, T.; Iwata, S.; Murata, T. G-protein-coupled receptor inactivation by an allosteric inverse-agonist antibody. *Nature* 2012, *482*, 237-240.
- 67. Aherne, C. M.; Kewley, E. M.; Eltzschig, H. K. The resurgence of A_{2B} adenosine receptor signaling. *Biochim. Biophys. Acta* **2010**, *1808*, 1329-1339.
- 68. Kong, T.; Westerman, K. A.; Faigle, M.; Eltzschig, H. K.; Colgan, S. P. HIFdependent induction of adenosine A_{2B} receptor in hypoxia. *FASEB J.* **2006**, *20*, 2242-2250.
- 69. Ham, J.; Rees, D. A. The adenosine A_{2B} receptor: its role in inflammation. *Endocr. Metab. Immune Disord. Drug Targets* **2008**, *8*, 244-254.
- Eckle, T.; Grenz, A.; Laucher, S.; Eltzschig, H. K. A_{2B} adenosine receptor signaling attenuates acute lung injury by enhancing alveolar fluid clearance in mice. *J. Clin. Invest.* 2008, *118*, 3301-3315.
- 71. Koscso, B.; Csoka, B.; Selmeczy, Z.; Himer, L.; Pacher, P.; Virag, L.; Hasko, G. Adenosine augments IL-10 production by microglial cells through an A_{2B} adenosine receptor-mediated process. *J. Immunol.* **2012**, *188*, 445-453.
- 72. Kolachala, V. L.; Vijay-Kumar, M.; Dalmasso, G.; Yang, D.; Linden, J.; Wang, L.; Gewirtz, A.; Ravid, K.; Merlin, D.; Sitaraman, S. V. A_{2B} adenosine receptor gene deletion attenuates murine colitis. *Gastroenterology* **2008**, *135*, 861-870.
- 73. Karmouty-Quintana, H.; Zhong, H.; Acero, L.; Weng, T.; Melicoff, E.; West, J. D.; Hemnes, A.; Grenz, A.; Eltzschig, H. K.; Blackwell, T. S.; Xia, Y.; Johnston, R. A.; Zeng, D.; Belardinelli, L.; Blackburn, M. R. The A_{2B} adenosine receptor modulates pulmonary hypertension associated with interstitial lung disease. *FASEB J.* 2012, *26*, 2546-2557.
- 74. Hasko, G.; Linden, J.; Cronstein, B.; Pacher, P. Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. *Nat. Rev. Drug Discov.* **2008**, *7*, 759-770.
- Cekic, C.; Sag, D.; Li, Y.; Theodorescu, D.; Strieter, R. M.; Linden, J. Adenosine A_{2B} receptor blockade slows growth of bladder and breast tumors. *J. Immunol.* 2012, *188*, 198-205.
- Xiang, H. J.; Chai, F. L.; Wang, D. S.; Dou, K. F. Downregulation of the adenosine A_{2B} receptor by RNA interference inhibits hepatocellular carcinoma cell growth. *ISRN Oncol.* 2011, 2011, 1-7.

- 77. Carroll, S. H.; Wigner, N. A.; Kulkarni, N.; Johnston-Cox, H.; Gerstenfeld, L. C.; Ravid, K. The A_{2B} adenosine receptor promotes mesenchymal stem cell differentiation to osteoblasts and bone formation in vivo. *J. Biol. Chem.* **2012**, *287*, 15718-15727.
- Csoka, B.; Selmeczy, Z.; Koscso, B.; Nemeth, Z. H.; Pacher, P.; Murray, P. J.; Kepka-Lenhart, D.; Morris, S. M., Jr.; Gause, W. C.; Leibovich, S. J.; Hasko, G. Adenosine promotes alternative macrophage activation via A_{2A} and A_{2B} receptors. *FASEB J.* 2012, 26, 376-386.
- 79. Koscso, B.; Csoka, B.; Pacher, P.; Hasko, G. Investigational A₃ adenosine receptor targeting agents. *Expert Opin. Investig. Drugs* **2011**, *20*, 757-768.
- 80. Kaczor, A. A.; Selent, J. Oligomerization of G-protein-coupled receptors: biochemical and biophysical methods. *Curr. Med. Chem.* **2011**, *18*, 4606-4634.
- Ferré, S.; Baler, R.; Bouvier, M.; Caron, M. G.; Devi, L. A.; Durroux, T.; Fuxe, K.; George, S. R.; Javitch, J. A.; Lohse, M. J.; Mackie, K.; Milligan, G.; Pfleger, K. D.; Pin, J. P.; Volkow, N. D.; Waldhoer, M.; Woods, A. S.; Franco, R. Building a new conceptual framework for receptor heteromers. *Nat. Chem. Biol.* 2009, *5*, 131-134.
- Khelashvili, G.; Dorff, K.; Shan, J.; Camacho-Artacho, M.; Skrabanek, L.; Vroling, B.; Bouvier, M.; Devi, L. A.; George, S. R.; Javitch, J. A.; Lohse, M. J.; Milligan, G.; Neubig, R. R.; Palczewski, K.; Parmentier, M.; Pin, J. P.; Vriend, G.; Campagne, F.; Filizola, M. GPCR-OKB: The G-protein-coupled receptor oligomer knowledge base. *Bioinformatics* 2010, *26*, 1804-1805.
- 83. Lohse, M. J. Dimerization in GPCR mobility and signaling. *Curr. Opin. Pharmacol.* **2010**, *10*, 53-58.
- 84. Mandrika, I.; Petrovska, R.; Klovins, J. Evidence for constitutive dimerization of niacin receptor subtypes. *Biochem. Biophys. Res. Commun.* **2010**, *395*, 281-287.
- Decaillot, F. M.; Rozenfeld, R.; Gupta, A.; Devi, L. A. Cell surface targeting of μ-δopioid receptor heterodimers by RTP4. *Proc. Natl. Acad. Sci. U S A* 2008, *105*, 16045-16050.
- 86. Dorsch, S.; Klotz, K. N.; Engelhardt, S.; Lohse, M. J.; Bünemann, M. Analysis of receptor oligomerization by FRAP microscopy. *Nat. Methods* **2009**, *6*, 225-230.
- 87. Fonseca, J. M.; Lambert, N. A. Instability of a class a G-protein-coupled receptor oligomer interface. *Mol. Pharmacol.* **2009**, *75*, 1296-1299.
- 88. Sartania, N.; Appelbe, S.; Pediani, J. D.; Milligan, G. Agonist occupancy of a single monomeric element is sufficient to cause internalization of the dimeric beta₂-adrenoceptor. *Cell Signal.* **2007**, *19*, 1928-1938.
- 89. Maurice, P.; Kamal, M.; Jockers, R. Asymmetry of GPCR oligomers supports their functional relevance. *Trends Pharmacol. Sci.* **2011**, *32*, 514-520.

- Casado, V.; Barrondo, S.; Spasic, M.; Callado, L. F.; Mallol, J.; Canela, E.; Lluis, C.; Meana, J.; Cortes, A.; Salles, J.; Franco, R. G_i-protein coupling to adenosine A₁-A_{2A} receptor heteromers in human brain caudate nucleus. *J. Neurochem.* 2010, *114*, 972-980.
- 91. Ciruela, F.; Ferré, S.; Casado, V.; Cortes, A.; Cunha, R. A.; Lluis, C.; Franco, R. Heterodimeric adenosine receptors: a device to regulate neurotransmitter release. *Cell Mol. Life Sci.* **2006**, *63*, 2427-2431.
- Franco, R.; Casado, V.; Cortes, A.; Mallol, J.; Ciruela, F.; Ferré, S.; Lluis, C.; Canela, E. I. G-protein-coupled receptor heteromers: function and ligand pharmacology. *Br. J. Pharmacol.* 2008, 153, S90-S98.
- 93. Armentero, M. T.; Pinna, A.; Ferre, S.; Lanciego, J. L.; Müller, C. E.; Franco, R. Past, present and future of A_{2A} adenosine receptor antagonists in the therapy of Parkinson's disease. *Pharmacol. Ther.* **2011**, *132*, 280-299.
- Hipser, C.; Bushlin, I.; Gupta, A.; Gomes, I.; Devi, L. A. Role of antibodies in developing drugs that target G-protein-coupled receptor dimers. *Mt. Sinai J. Med.* 2010, 77, 374-380.
- 95. Han, Y.; Moreira, I. S.; Urizar, E.; Weinstein, H.; Javitch, J. A. Allosteric communication between protomers of dopamine class A GPCR dimers modulates activation. *Nat. Chem. Biol.* **2009**, *5*, 688-695.
- Lee, S. P.; So, C. H.; Rashid, A. J.; Varghese, G.; Cheng, R.; Lanca, A. J.; O'Dowd, B.
 F.; George, S. R. Dopamine D₁ and D₂ receptor co-activation generates a novel phospholipase C-mediated calcium signal. *J. Biol. Chem.* 2004, 279, 35671-35678.
- 97. Rashid, A. J.; So, C. H.; Kong, M. M.; Furtak, T.; El-Ghundi, M.; Cheng, R.; O'Dowd, B. F.; George, S. R. D_1 - D_2 dopamine receptor heterooligomers with unique pharmacology are coupled to rapid activation of $G_{q/11}$ in the striatum. *Proc. Natl. Acad. Sci. U S A* **2007**, *104*, 654-659.
- 98. George, S. R.; Fan, T.; Xie, Z.; Tse, R.; Tam, V.; Varghese, G.; O'Dowd, B. F. Oligomerization of μ- and δ-opioid receptors. Generation of novel functional properties. J. Biol. Chem. 2000, 275, 26128-26135.
- Golebiewska, U.; Johnston, J. M.; Devi, L.; Filizola, M.; Scarlata, S. Differential response to morphine of the oligomeric state of μ-opioid in the presence of δ-opioid receptors. *Biochemistry* 2011, 50, 2829-2837.
- 100. Ciruela, F.; Casado, V.; Mallol, J.; Canela, E. I.; Lluis, C.; Franco, R. Immunological identification of A₁ adenosine receptors in brain cortex. *J. Neurosci. Res.* **1995**, *42*, 818-828.
- Briddon, S. J.; Gandia, J.; Amaral, O. B.; Ferré, S.; Lluis, C.; Franco, R.; Hill, S. J.; Ciruela, F. Plasma membrane diffusion of G-protein-coupled receptor oligomers. *Biochim. Biophys. Acta* 2008, 1783, 2262-2268.

- 102. Suzuki, T.; Namba, K.; Yamagishi, R.; Kaneko, H.; Haga, T.; Nakata, H. A highly conserved tryptophan residue in the fourth transmembrane domain of the A₁ adenosine receptor is essential for ligand binding but not receptor homodimerization. *J. Neurochem.* 2009, *110*, 1352-1362.
- 103. Canals, M.; Burgueno, J.; Marcellino, D.; Cabello, N.; Canela, E. I.; Mallol, J.; Agnati, L.; Ferre, S.; Bouvier, M.; Fuxe, K.; Ciruela, F.; Lluis, C.; Franco, R. Homodimerization of adenosine A_{2A} receptors: qualitative and quantitative assessment by fluorescence and bioluminescence energy transfer. *J. Neurochem.* 2004, 88, 726-734.
- 104. Gandia, J.; Galino, J.; Amaral, O. B.; Soriano, A.; Lluis, C.; Franco, R.; Ciruela, F. Detection of higher-order G-protein-coupled receptor oligomers by a combined BRET-BiFC technique. *FEBS Lett.* 2008, 582, 2979-2984.
- Vidi, P. A.; Chemel, B. R.; Hu, C. D.; Watts, V. J. Ligand-dependent oligomerization of dopamine D₂ and adenosine A_{2A} receptors in living neuronal cells. *Mol. Pharmacol.* 2008, 74, 544-551.
- 106. Vidi, P. A.; Chen, J.; Irudayaraj, J. M.; Watts, V. J. Adenosine A_{2A} receptors assemble into higher-order oligomers at the plasma membrane. *FEBS Lett.* **2008**, *582*, 3985-3990.
- Gracia, E.; Perez-Capote, K.; Moreno, E.; Barkesova, J.; Mallol, J.; Lluis, C.; Franco, R.; Cortes, A.; Casado, V.; Canela, E. I. A_{2A} adenosine receptor ligand binding and signalling is allosterically modulated by adenosine deaminase. *Biochem. J.* 2011, 435, 701-709.
- 108. Fanelli, F.; Felline, A. Dimerization and ligand binding affect the structure network of A_{2A} adenosine receptor. *Biochim. Biophys. Acta* **2011**, *1808*, 1256-1266.
- 109. Kim, S. K.; Jacobson, K. A. Computational prediction of homodimerization of the A₃ adenosine receptor. *J. Mol. Graph. Model.* **2006**, *25*, 549-561.
- 110. May, L. T.; Bridge, L. J.; Stoddart, L. A.; Briddon, S. J.; Hill, S. J. Allosteric interactions across native adenosine-A₃ receptor homodimers: quantification using single-cell ligand-binding kinetics. *FASEB J.* **2011**, *25*, 3465-3476.
- 111. Ciruela, F.; Casado, V.; Rodrigues, R. J.; Lujan, R.; Burgueno, J.; Canals, M.; Borycz, J.; Rebola, N.; Goldberg, S. R.; Mallol, J.; Cortes, A.; Canela, E. I.; Lopez-Gimenez, J. F.; Milligan, G.; Lluis, C.; Cunha, R. A.; Ferré, S.; Franco, R. Presynaptic control of striatal glutamatergic neurotransmission by adenosine A₁-A_{2A} receptor heteromers. *J. Neurosci.* 2006, *26*, 2080-2087.
- 112. Moriyama, K.; Sitkovsky, M. V. Adenosine A_{2A} receptor is involved in cell surface expression of A_{2B} receptor. *J. Biol. Chem.* **2010**, *285*, 39271-39288.
- 113. Ferré, S.; von Euler, G.; Johansson, B.; Fredholm, B. B.; Fuxe, K. Stimulation of highaffinity adenosine A₂ receptors decreases the affinity of dopamine D₂ receptors in rat striatal membranes. *Proc. Natl. Acad. Sci. U S A* **1991**, *88*, 7238-7241.

- Hillion, J.; Canals, M.; Torvinen, M.; Casado, V.; Scott, R.; Terasmaa, A.; Hansson, A.; Watson, S.; Olah, M. E.; Mallol, J.; Canela, E. I.; Zoli, M.; Agnati, L. F.; Ibanez, C. F.; Lluis, C.; Franco, R.; Ferré, S.; Fuxe, K. Coaggregation, cointernalization, and codesensitization of adenosine A_{2A} receptors and dopamine D₂ receptors. *J. Biol. Chem.* 2002, 277, 18091-18097.
- 115. Canals, M.; Marcellino, D.; Fanelli, F.; Ciruela, F.; de Benedetti, P.; Goldberg, S. R.; Neve, K.; Fuxe, K.; Agnati, L. F.; Woods, A. S.; Ferré, S.; Lluis, C.; Bouvier, M.; Franco, R. Adenosine A_{2A}-dopamine D₂ receptor-receptor heteromerization: qualitative and quantitative assessment by fluorescence and bioluminescence energy transfer. J. Biol. Chem. 2003, 278, 46741-46749.
- 116. Kamiya, T.; Saitoh, O.; Yoshioka, K.; Nakata, H. Oligomerization of adenosine A_{2A} and dopamine D_2 receptors in living cells. *Biochem. Biophys. Res. Commun.* **2003**, *306*, 544-549.
- 117. Navarro, G.; Aymerich, M. S.; Marcellino, D.; Cortes, A.; Casado, V.; Mallol, J.; Canela, E. I.; Agnati, L.; Woods, A. S.; Fuxe, K.; Lluis, C.; Lanciego, J. L.; Ferré, S.; Franco, R. Interactions between calmodulin, adenosine A_{2A}, and dopamine D₂ receptors. *J. Biol. Chem.* **2009**, 284, 28058-28068.
- 118. Ferré, S.; Woods, A. S.; Navarro, G.; Aymerich, M.; Lluis, C.; Franco, R. Calciummediated modulation of the quaternary structure and function of adenosine A_{2A}dopamine D₂ receptor heteromers. *Curr. Opin. Pharmacol.* **2010**, *10*, 67-72.
- Ferré, S.; Torvinen, M.; Antoniou, K.; Irenius, E.; Civelli, O.; Arenas, E.; Fredholm, B. B.; Fuxe, K. Adenosine A₁ receptor-mediated modulation of dopamine D₁ receptors in stably cotransfected fibroblast cells. *J. Biol. Chem.* **1998**, *273*, 4718-4724.
- 120. Gines, S.; Hillion, J.; Torvinen, M.; Le Crom, S.; Casado, V.; Canela, E. I.; Rondin, S.; Lew, J. Y.; Watson, S.; Zoli, M.; Agnati, L. F.; Verniera, P.; Lluis, C.; Ferré, S.; Fuxe, K.; Franco, R. Dopamine D₁ and adenosine A₁ receptors form functionally interacting heteromeric complexes. *Proc. Natl. Acad. Sci. U S A* **2000**, *97*, 8606-8611.
- Torvinen, M.; Marcellino, D.; Canals, M.; Agnati, L. F.; Lluis, C.; Franco, R.; Fuxe, K. Adenosine A_{2A} receptor and dopamine D₃ receptor interactions: evidence of functional A_{2A}/D₃ heteromeric complexes. *Mol. Pharmacol.* 2005, 67, 400-407.
- 122. Ciruela, F.; Escriche, M.; Burgueno, J.; Angulo, E.; Casado, V.; Soloviev, M. M.; Canela, E. I.; Mallol, J.; Chan, W. Y.; Lluis, C.; McIlhinney, R. A.; Franco, R. Metabotropic glutamate 1 alpha and adenosine A₁ receptors assemble into functionally interacting complexes. *J. Biol. Chem.* **2001**, *276*, 18345-18351.
- 123. Yoshioka, K.; Saitoh, O.; Nakata, H. Heteromeric association creates a P2Y-like adenosine receptor. *Proc. Natl. Acad. Sci. U S A* **2001**, *98*, 7617-7622.
- Yoshioka, K.; Hosoda, R.; Kuroda, Y.; Nakata, H. Hetero-oligomerization of adenosine A₁ receptors with P2Y₁ receptors in rat brains. *FEBS Lett.* 2002, *531*, 299-303.

- 125. Suzuki, T.; Namba, K.; Tsuga, H.; Nakata, H. Regulation of pharmacology by heterooligomerization between A₁ adenosine receptor and P2Y₂ receptor. *Biochem. Biophys. Res. Commun.* **2006**, *351*, 559-565.
- 126. Namba, K.; Suzuki, T.; Nakata, H. Immunogold electron microscopic evidence of in situ formation of homo- and heteromeric purinergic adenosine A₁ and P2Y₂ receptors in rat brain. *BMC Res. Notes* **2010**, *3*, 1-8.
- Carriba, P.; Ortiz, O.; Patkar, K.; Justinova, Z.; Stroik, J.; Themann, A.; Müller, C. E.; Woods, A. S.; Hope, B. T.; Ciruela, F.; Casado, V.; Canela, E. I.; Lluis, C.; Goldberg, S. R.; Moratalla, R.; Franco, R.; Ferré, S. Striatal adenosine A_{2A} and cannabinoid CB₁ receptors form functional heteromeric complexes that mediate the motor effects of cannabinoids. *Neuropsychopharmacology* **2007**, *32*, 2249-2259.
- 128. Carriba, P.; Navarro, G.; Ciruela, F.; Ferré, S.; Casado, V.; Agnati, L.; Cortes, A.; Mallol, J.; Fuxe, K.; Canela, E. I.; Lluis, C.; Franco, R. Detection of heteromerization of more than two proteins by sequential BRET-FRET. *Nat. Methods* **2008**, *5*, 727-733.
- 129. Navarro, G.; Carriba, P.; Gandia, J.; Ciruela, F.; Casado, V.; Cortes, A.; Mallol, J.; Canela, E. I.; Lluis, C.; Franco, R. Detection of heteromers formed by cannabinoid CB₁, dopamine D₂, and adenosine A_{2A} G-protein-coupled receptors by combining bimolecular fluorescence complementation and bioluminescence energy transfer. *ScientificWorldJournal* **2008**, *8*, 1088-1097.
- Cabello, N.; Gandia, J.; Bertarelli, D. C.; Watanabe, M.; Lluis, C.; Franco, R.; Ferré, S.; Lujan, R.; Ciruela, F. Metabotropic glutamate type 5, dopamine D₂ and adenosine A_{2A} receptors form higher-order oligomers in living cells. *J. Neurochem.* 2009, *109*, 1497-1507.
- 131. Hulme, E. C.; Trevethick, M. A. Ligand binding assays at equilibrium: validation and interpretation. *Br. J. Pharmacol.* **2010**, *161*, 1219-1237.
- 132. Deupree, D. J.; Bylund, B. D. Basic principles and techniques for receptor binding. *Tocris Reviews* **2002**, *18*, 1-8.
- 133. Manual GraphPad Prism version 3, Analyzing data with GraphPad Prism; http://www.graphpad.com/manuals/AnalyzingData.pdf.
- 134. Bylund, D. B.; Murrin, L. C. Radioligand saturation binding experiments over large concentration ranges. *Life Sci.* **2000**, *67*, 2897-2911.
- 135. Cheng, Y.; Prusoff, W. H. Relationship between the inhibition constant K_i and the concentration of inhibitor which causes 50 per cent inhibition (IC₅₀) of an enzymatic reaction. *Biochem. Pharmacol.* **1973**, *22*, 3099-3108.
- 136. Vidal, B.; Nueda, A.; Esteve, C.; Domenech, T.; Benito, S.; Reinoso, R. F.; Pont, M.; Calbet, M.; Lopez, R.; Cadavid, M. I.; Loza, M. I.; Cardenas, A.; Godessart, N.; Beleta, J.; Warrellow, G.; Ryder, H. Discovery and characterization of 4'-(2-furyl)-Npyridin-3-yl-4,5'-bipyrimidin-2'-amine (LAS38096), a potent, selective, and efficacious A_{2B} adenosine receptor antagonist. *J. Med. Chem.* **2007**, *50*, 2732-2736.

- Ji, X.; Kim, Y. C.; Ahern, D. G.; Linden, J.; Jacobson, K. A. [³H]MRS 1754, a selective antagonist radioligand for A_{2B} adenosine receptors. *Biochem. Pharmacol.* 2001, *61*, 657-663.
- 138. Baraldi, P. G.; Tabrizi, M. A.; Fruttarolo, F.; Romagnoli, R.; Preti, D. Recent improvements in the development of A_{2B} adenosine receptor agonists. *Purinergic Signal.* **2009**, *5*, 3-19.
- Müller, C. E.; Maurinsh, J.; Sauer, R. Binding of [³H]MSX-2 (3-(3-hydroxypropyl)-7-methyl-8-(m-methoxystyryl)-1-propargylxanthine) to rat striatal membranes a new, selective antagonist radioligand for A_{2A} adenosine receptors. *Eur. J. Pharm. Sci.* 2000, *10*, 259-265.
- 140. Baraldi, P. G.; Preti, D.; Tabrizi, M. A.; Fruttarolo, F.; Romagnoli, R.; Carrion, M. D.; Cara, L. C.; Moorman, A. R.; Varani, K.; Borea, P. A. Synthesis and biological evaluation of novel 1-deoxy-1-[6-[((hetero)arylcarbonyl)hydrazino]-9H-purin-9-yl]-Nethyl-beta-D-ribofuranuronamide derivatives as useful templates for the development of A_{2B} adenosine receptor agonists. *J. Med. Chem.* **2007**, *50*, 374-380.
- De Zwart, M.; Link, R.; von Frijtag Drabbe Kunzel, J. K.; Cristalli, G.; Jacobson, K. A.; Townsend-Nicholson, A.; Ijzerman A. P. A functional screening of adenosine analogues at the adenosine A_{2B} receptor: a search for potent agonists. *Nucleosides Nucleosides* 1998, 17, 969-985.
- 142. Rosentreter, U.; Henning, R.; Bauser, M.; Krämer, T.; Vaupel, A.; Hübsch, W.; Dembowsky, K.; Salcher-Schraufstätter, O.; Stasch, J. P.; Krahn, T.; Perzborn, E. Substituted 2-thio-3,5-dicyano-4-aryl-6-aminopyridines and the use thereof as adenosine receptor ligands. *WO Pat. 2001/025210.* **2001**.
- 143. Bruns, R. F.; Lu, G. H.; Pugsley, T. A. Characterization of the A₂ adenosine receptor labeled by [³H]NECA in rat striatal membranes. *Mol. Pharmacol.* **1986**, *29*, 331-346.
- 144. Daly, J. W.; Butts-Lamb, P.; Padgett, W. Subclasses of adenosine receptors in the central nervous system: interaction with caffeine and related methylxanthines. *Cell Mol. Neurobiol.* **1983**, *3*, 69-80.
- Casado, V.; Casillas, T.; Mallol, J.; Canela, E. I.; Lluis, C.; Franco, R. The adenosine receptors present on the plasma membrane of chromaffin cells are of the A_{2B} subtype. *J. Neurochem.* 1992, *59*, 425-431.
- 146. Mirabet, M.; Mallol, J.; Lluis, C.; Franco, R. Calcium mobilization in Jurkat cells via A_{2B} adenosine receptors. *Br. J. Pharmacol.* **1997**, *122*, 1075-1082.
- Herrera, C.; Casado, V.; Ciruela, F.; Schofield, P.; Mallol, J.; Lluis, C.; Franco, R. Adenosine A_{2B} receptors behave as an alternative anchoring protein for cell surface adenosine deaminase in lymphocytes and cultured cells. *Mol. Pharmacol.* 2001, *59*, 127-134.
- 148. Corset, V.; Nguyen-Ba-Charvet, K. T.; Forcet, C.; Moyse, E.; Chedotal, A.; Mehlen, P. Netrin-1-mediated axon outgrowth and cAMP production requires interaction with adenosine A_{2B} receptor. *Nature* **2000**, *407*, 747-750.
- 149. Liu, Y.; Yang, X.; Yang, X. M.; Walker, S.; Forster, K.; Cohen, M. V.; Krieg, T.; Downey, J. M. AMP579 is revealed to be a potent A_{2B}-adenosine receptor agonist in human 293 cells and rabbit hearts. *Basic Res. Cardiol.* 2010, 105, 129-137.
- 150. Congreve, M.; Marshall, F. The impact of GPCR structures on pharmacology and structure-based drug design. *Br. J. Pharmacol.* **2010**, *159*, 986-996.
- 151. Dionisotti, S.; Ongini, E.; Zocchi, C.; Kull, B.; Arslan, G.; Fredholm, B. B. Characterization of human A_{2A} adenosine receptors with the antagonist radioligand [³H]-SCH 58261. *Br. J. Pharmacol.* **1997**, *121*, 353-360.
- 152. Finlayson, K.; Maemoto, T.; Butcher, S. P.; Sharkey, J.; Olverman, H. J. Comparison of effects of MgCl₂ and Gpp(NH)p on antagonist and agonist radioligand binding to adenosine A₁ receptors. *Acta Pharmacol. Sin.* **2003**, *24*, 729-740.
- 153. Gessi, S.; Varani, K.; Merighi, S.; Cattabriga, E.; Pancaldi, C.; Szabadkai, Y.; Rizzuto, R.; Klotz, K. N.; Leung, E.; Mac Lennan, S.; Baraldi, P. G.; Borea, P. A. Expression, pharmacological profile, and functional coupling of A_{2B} receptors in a recombinant system and in peripheral blood cells using a novel selective antagonist radioligand, [³H]MRE 2029-F20. *Mol. Pharmacol.* 2005, 67, 2137-2147.
- 154. Ashida, N.; Ueyama, T.; Rikitake, K.; Shirai, Y.; Eto, M.; Kondoh, T.; Kohmura, E.; Saito, N. Ca²⁺ oscillation induced by P2Y₂ receptor activation and its regulation by a neuron-specific subtype of PKC (gamma PKC). *Neurosci. Lett.* **2008**, *446*, 123-128.
- 155. Volpini, R.; Costanzi, S.; Vittori, S.; Cristalli, G.; Klotz, K. N. Medicinal chemistry and pharmacology of A_{2B} adenosine receptors. *Curr. Top. Med. Chem.* **2003**, *3*, 427-443.
- 156. Bertarelli, D. C.; Diekmann, M.; Hayallah, A. M.; Rusing, D.; Iqbal, J.; Preiss, B.; Verspohl, E. J.; Müller, C. E. Characterization of human and rodent native and recombinant adenosine A_{2B} receptors by radioligand binding studies. *Purinergic Signal.* 2006, 2, 559-571.
- 157. Ji, X. D.; Jacobson, K. A. Use of the triazolotriazine [³H]ZM 241385 as a radioligand at recombinant human A_{2B} adenosine receptors. *Drug Des. Discov.* **1999**, *16*, 217-226.
- Schiedel, A. C.; Hinz, S.; Thimm, D.; Sherbiny, F.; Borrmann, T.; Maass, A.; Müller, C. E. The four cysteine residues in the second extracellular loop of the human adenosine A_{2B} receptor: role in ligand binding and receptor function. *Biochem. Pharmacol.* 2011, *82*, 389-399.
- 159. Auchampach, J. A.; Kreckler, L. M.; Wan, T. C.; Maas, J. E.; van der Hoeven, D.; Gizewski, E.; Narayanan, J.; Maas, G. E. Characterization of the A_{2B} adenosine receptor from mouse, rabbit, and dog. *J. Pharmacol. Exp. Ther.* **2009**, *329*, 2-13.
- 160. Hanania, N. A.; Sharafkhaneh, A.; Barber, R.; Dickey, B. F. Beta-agonist intrinsic efficacy: measurement and clinical significance. *Am. J. Respir. Crit. Care Med.* **2002**, *165*, 1353-1358.

- 161. Hanania, N. A.; Dickey, B. F.; Bond, R. A. Clinical implications of the intrinsic efficacy of beta-adrenoceptor drugs in asthma: full, partial and inverse agonism. *Curr. Opin. Pulm. Med.* **2010**, *16*, 1-5.
- 162. Vauquelin, G.; Szczuka, A. Kinetic versus allosteric mechanisms to explain insurmountable antagonism and delayed ligand dissociation. *Neurochem. Int.* 2007, *51*, 254-260.
- 163. Klaasse, E.; de Ligt, R. A.; Roerink, S. F.; Lorenzen, A.; Milligan, G.; Leurs, R.; Ijzerman, A. P. Allosteric modulation and constitutive activity of fusion proteins between the adenosine A₁ receptor and different 351Cys-mutated G_i alpha-subunits. *Eur. J. Pharmacol.* 2004, 499, 91-98.
- 164. Horstman, D. A.; Brandon, S.; Wilson, A. L.; Guyer, C. A.; Cragoe, E. J., Jr.; Limbird, L. E. An aspartate conserved among G-protein receptors confers allosteric regulation of alpha 2-adrenergic receptors by sodium. *J. Biol. Chem.* **1990**, *265*, 21590-21595.
- 165. Barbhaiya, H.; McClain, R.; Ijzerman, A.; Rivkees, S. A. Site-directed mutagenesis of the human A₁ adenosine receptor: influences of acidic and hydroxy residues in the first four transmembrane domains on ligand binding. *Mol. Pharmacol.* **1996**, *50*, 1635-1642.
- 166. Gao, Z. G.; Ijzerman, A. P. Allosteric modulation of A_{2A} adenosine receptors by amiloride analogues and sodium ions. *Biochem. Pharmacol.* **2000**, *60*, 669-676.
- 167. Gao, Z. G.; Jiang, Q.; Jacobson, K. A.; Ijzerman, A. P. Site-directed mutagenesis studies of human A_{2A} adenosine receptors: involvement of glu13 and his278 in ligand binding and sodium modulation. *Biochem. Pharmacol.* **2000**, *60*, 661-668.
- 168. Gao, Z. G.; Kim, S. K.; Gross, A. S.; Chen, A.; Blaustein, J. B.; Jacobson, K. A. Identification of essential residues involved in the allosteric modulation of the human A₃ adenosine receptor. *Mol. Pharmacol.* **2003**, *63*, 1021-1031.
- 169. Leifert, W. R.; Aloia, A. L.; Bucco, O.; McMurchie, E. J. GPCR-induced dissociation of G-protein subunits in early stage signal transduction. *Mol. Membr. Biol.* **2005**, *22*, 507-517.
- 170. Hill, S. J.; Williams, C.; May, L. T. Insights into GPCR pharmacology from the measurement of changes in intracellular cyclic AMP; advantages and pitfalls of differing methodologies. *Br. J. Pharmacol.* **2010**, *161*, 1266-1275.
- Cooper, J.; Hill, S. J.; Alexander, S. P. An endogenous A_{2B} adenosine receptor coupled to cyclic AMP generation in human embryonic kidney (HEK 293) cells. *Br. J. Pharmacol.* 1997, *122*, 546-550.
- 172. Kolachala, V. L.; Obertone, T. S.; Wang, L.; Merlin, D.; Sitaraman, S. V. Adenosine 2B receptor (A_{2B}R) signals through adenylate cyclase (AC) 6 isoform in the intestinal epithelial cells. *Biochim. Biophys. Acta* **2006**, *1760*, 1102-1108.

- Olanrewaju, H. A.; Qin, W.; Feoktistov, I.; Scemama, J. L.; Mustafa, S. J. Adenosine A_{2A} and A_{2B} receptors in cultured human and porcine coronary artery endothelial cells. *Am. J. Physiol. Heart Circ. Physiol.* 2000, 279, H650-656.
- 174. Peakman, M. C.; Hill, S. J. Adenosine A_{2B}-receptor-mediated cyclic AMP accumulation in primary rat astrocytes. *Br. J. Pharmacol.* **1994**, *111*, 191-198.
- 175. Strohmeier, G. R.; Reppert, S. M.; Lencer, W. I.; Madara, J. L. The A_{2B} adenosine receptor mediates cAMP responses to adenosine receptor agonists in human intestinal epithelia. *J. Biol. Chem.* **1995**, *270*, 2387-2394.
- 176. Van der Ploeg, I.; Ahlberg, S.; Parkinson, F. E.; Olsson, R. A.; Fredholm, B. B. Functional characterization of adenosine A₂ receptors in Jurkat cells and PC12 cells using adenosine receptor agonists. *Naunyn Schmiedebergs Arch. Pharmacol.* 1996, 353, 250-260.
- 177. Zhong, H.; Belardinelli, L.; Maa, T.; Feoktistov, I.; Biaggioni, I.; Zeng, D. A_{2B} adenosine receptors increase cytokine release by bronchial smooth muscle cells. *Am. J. Respir. Cell Mol. Biol.* **2004**, *30*, 118-125.
- 178. Feoktistov, I.; Biaggioni, I. Adenosine A_{2B} receptors. *Pharmacol. Rev.* **1997**, *49*, 381-402.
- 179. Fredholm, B. B.; Jondal, M.; Nordstedt, C. The adenosine receptor mediated accumulation of cyclic AMP in Jurkat cells is enhanced by a lectin and by phorbol esters. *Biochem. Biophys. Res. Commun.* **1987**, *145*, 344-349.
- 180. Hisatsune, C.; Nakamura, K.; Kuroda, Y.; Nakamura, T.; Mikoshiba, K. Amplification of Ca²⁺ signaling by diacylglycerol-mediated inositol 1,4,5-trisphosphate production. *J. Biol. Chem.* 2005, 280, 11723-11730.
- 181. Wang, Q. J. PKD at the crossroads of DAG and PKC signaling. *Trends Pharmacol. Sci.* **2006**, *27*, 317-323.
- Panjehpour, M.; Castro, M.; Klotz, K. N. Human breast cancer cell line MDA-MB-231 expresses endogenous A_{2B} adenosine receptors mediating a Ca²⁺ signal. *Br. J. Pharmacol.* 2005, *145*, 211-218.
- 183. Phelps, P. T.; Anthes, J. C.; Correll, C. C. Characterization of adenosine receptors in the human bladder carcinoma T24 cell line. *Eur. J. Pharmacol.* **2006**, *536*, 28-37.
- 184. Ryzhov, S.; Goldstein, A. E.; Biaggioni, I.; Feoktistov, I. Cross-talk between G_s and G_q -coupled pathways in regulation of interleukin-4 by A_{2B} adenosine receptors in human mast cells. *Mol. Pharmacol.* **2006**, *70*, 727-735.
- 185. Auchampach, J. A.; Jin, X.; Wan, T. C.; Caughey, G. H.; Linden, J. Canine mast cell adenosine receptors: cloning and expression of the A₃ receptor and evidence that degranulation is mediated by the A_{2B} receptor. *Mol. Pharmacol.* **1997**, *52*, 846-860.

- 186. Feoktistov, I.; Murray, J. J.; Biaggioni, I. Positive modulation of intracellular Ca^{2+} levels by adenosine A_{2B} receptors, prostacyclin, and prostaglandin E1 via a cholera toxin-sensitive mechanism in human erythroleukemia cells. *Mol. Pharmacol.* **1994**, 45, 1160-1167.
- 187. Hillmann, P. Molekulare Basis der Aktivierung und Modulation des P2Y₂-Nukleotid-Rezeptors. Dissertation, *Universität Bonn*, **2007**.
- 188. Van der Hoeven, D.; Wan, T. C.; Gizewski, E. T.; Kreckler, L. M.; Maas, J. E.; Van Orman, J.; Ravid, K.; Auchampach, J. A. A role for the low-affinity A_{2B} adenosine receptor in regulating superoxide generation by murine neutrophils. *J. Pharmacol. Exp. Ther.* 2011, *338*, 1004-1012.
- 189. Kuno, A.; Critz, S. D.; Cui, L.; Solodushko, V.; Yang, X. M.; Krahn, T.; Albrecht, B.; Philipp, S.; Cohen, M. V.; Downey, J. M. Protein kinase C protects preconditioned rabbit hearts by increasing sensitivity of adenosine A_{2B}-dependent signaling during early reperfusion. *J. Mol. Cell Cardiol.* 2007, 43, 262-271.
- 190. Methner, C.; Schmidt, K.; Cohen, M. V.; Downey, J. M.; Krieg, T. Both A_{2A} and A_{2B} adenosine receptors at reperfusion are necessary to reduce infarct size in mouse hearts. *Am. J. Physiol. Heart Circ. Physiol.* **2010**, *299*, H1262-1264.
- 191. Xi, J.; McIntosh, R.; Shen, X.; Lee, S.; Chanoit, G.; Criswell, H.; Zvara, D. A.; Xu, Z. Adenosine A_{2A} and A_{2B} receptors work in concert to induce a strong protection against reperfusion injury in rat hearts. *J. Mol. Cell Cardiol.* 2009, 47, 684-690.
- 192. Hart, M. L.; Jacobi, B.; Schittenhelm, J.; Henn, M.; Eltzschig, H. K. Cutting Edge: A_{2B} Adenosine receptor signaling provides potent protection during intestinal ischemia/reperfusion injury. *J. Immunol.* **2009**, *182*, 3965-3968.
- 193. Schingnitz, U.; Hartmann, K.; Macmanus, C. F.; Eckle, T.; Zug, S.; Colgan, S. P.; Eltzschig, H. K. Signaling through the A_{2B} adenosine receptor dampens endotoxininduced acute lung injury. *J. Immunol.* **2010**, *184*, 5271-5279.
- 194. Gao, Z.; Chen, T.; Weber, M. J.; Linden, J. A_{2B} adenosine and P2Y₂ receptors stimulate mitogen-activated protein kinase in human embryonic kidney-293 cells. Cross-talk between cyclic AMP and protein kinase c pathways. *J Biol. Chem.* **1999**, 274, 5972-5980.
- 195. Insel, P. A.; Ostrom, R. S. Forskolin as a tool for examining adenylyl cyclase expression, regulation, and G-protein signaling. *Cell Mol. Neurobiol.* **2003**, *23*, 305-314.
- 196. Albrecht-Küpper, B. E.; Leineweber, K.; Nell, P. G. Partial adenosine A₁ receptor agonists for cardiovascular therapies. *Purinergic Signal.* **2012**, *8*, 91-99.
- 197. Nonaka, H.; Ichimura, M.; Takeda, M.; Kanda, T.; Shimada, J.; Suzuki, F.; Kase, H. KW-3902, a selective high affinity antagonist for adenosine A₁ receptors. *Br. J. Pharmacol.* **1996**, *117*, 1645-1652.

- 198. Simons, P. C.; Biggs, S. M.; Waller, A.; Foutz, T.; Cimino, D. F.; Guo, Q.; Neubig, R. R.; Tang, W. J.; Prossnitz, E. R.; Sklar, L. A. Real-time analysis of ternary complex on particles: direct evidence for partial agonism at the agonist-receptor-G-protein complex assembly step of signal transduction. *J. Biol. Chem.* 2004, 279, 13514-13521.
- 199. Lacher, K. S. Adenosinrezeptoren auf humanen T-Lymphozyten: Modulation durch Subtyp-selektive Rezeptor-Agonisten und -Antagonisten. Dissertation, *Universität Bonn*, **2009**.
- 200. Hoeren, M.; Brawek, B.; Mantovani, M.; Loffler, M.; Steffens, M.; van Velthoven, V.; Feuerstein, T. J. Partial agonism at the human alpha_{2A}-autoreceptor: role of binding duration. *Naunyn Schmiedebergs Arch. Pharmacol.* **2008**, *378*, 17-26.
- 201. Conde, S. V.; Gonzalez, C.; Batuca, J. R.; Monteiro, E. C.; Obeso, A. An antagonistic interaction between A_{2B} adenosine and D₂ dopamine receptors modulates the function of rat carotid body chemoreceptor cells. *J. Neurochem.* **2008**, *107*, 1369-1381.
- 202. Mundell, S. J.; Kelly, E. Evidence for co-expression and desensitization of A_{2A} and A_{2B} adenosine receptors in NG108-15 cells. *Biochem. Pharmacol.* **1998**, *55*, 595-603.
- 203. Zocchi, C.; Ongini, E.; Conti, A.; Monopoli, A.; Negretti, A.; Baraldi, P. G.; Dionisotti, S. The non-xanthine heterocyclic compound SCH58261 is a new potent and selective A_{2A} adenosine receptor antagonist. *J. Pharmacol. Exp. Ther.* **1996**, 276, 398-404.
- 204. Zocchi, C.; Ongini, E.; Ferrara, S.; Baraldi, P. G.; Dionisotti, S. Binding of the radioligand [³H]-SCH58261, a new non-xanthine A_{2A} adenosine receptor antagonist, to rat striatal membranes. *Br. J. Pharmacol.* **1996**, *117*, 1381-1386.
- 205. Sanjani, M. S.; Teng, B.; Krahn, T.; Tilley, S.; Ledent, C.; Mustafa, S. J. Contributions of A_{2A} and A_{2B} adenosine receptors in coronary flow responses in relation to the KATP channel using A_{2B} and A_{2A}/A_{2B} double-knockout mice. *Am. J. Physiol. Heart Circ. Physiol.* **2011**, *301*, H2322-2333.
- 206. Zhan, E.; McIntosh, V. J.; Lasley, R. D. Adenosine A_{2A} and A_{2B} receptors are both required for adenosine A₁ receptor-mediated cardioprotection. *Am. J. Physiol. Heart Circ. Physiol.* **2011**, *301*, H1183-1189.
- 207. Lasley, R. D.; Kristo, G.; Keith, B. J.; Mentzer, R. M., Jr. The A_{2A}/A_{2B} receptor antagonist ZM-241385 blocks the cardioprotective effect of adenosine agonist pretreatment in in vivo rat myocardium. *Am. J. Physiol. Heart Circ. Physiol.* 2007, 292, H426-431.
- 208. Chandrasekera, P. C.; McIntosh, V. J.; Cao, F. X.; Lasley, R. D. Differential effects of adenosine A_{2A} and A_{2B} receptors on cardiac contractility. *Am. J. Physiol. Heart Circ. Physiol.* **2010**, *299*, H2082-2089.
- 209. Teng, B.; Ledent, C.; Mustafa, S. J. Up-regulation of A_{2B} adenosine receptor in A_{2A} adenosine receptor knockout mouse coronary artery. *J. Mol. Cell Cardiol.* **2008**, *44*, 905-914.

- 210. Zhang, J.; Chen, J.; Liu, L.; Ji, C.; Gu, S.; Ying, K.; Mao, Y. Different gene expression profiles of AD293 and HEK293 cell lines that show contrasting susceptibility to apoptosis induced by overexpression of Bim L. Acta Biochim. Pol. 2006, 53, 525-530.
- Klotz, K. N.; Hessling, J.; Hegler, J.; Owman, C.; Kull, B.; Fredholm, B. B.; Lohse, M. J. Comparative pharmacology of human adenosine receptor subtypes characterization of stably transfected receptors in CHO cells. *Naunyn Schmiedebergs Arch. Pharmacol.* 1998, 357, 1-9.
- 212. Ruan, W.; Lai, M. Actin, a reliable marker of internal control? *Clin. Chim. Acta* 2007, *385*, 1-5.
- 213. Reith, U. Native und rekombinante humane Adenosinrezeptoren: Charakterisierung, Interaktion mit pflanzlichen Inhaltsstoffen und Suche nach neuen Leitstrukturen. Dissertation, *Universität Bonn*, **2001**.
- Kull, B.; Arslan, G.; Nilsson, C.; Owman, C.; Lorenzen, A.; Schwabe, U.; Fredholm, B. B. Differences in the order of potency for agonists but not antagonists at human and rat adenosine A_{2A} receptors. *Biochem. Pharmacol.* 1999, *57*, 65-75.
- 215. Varani, K.; Gessi, S.; Merighi, S.; Vincenzi, F.; Cattabriga, E.; Benini, A.; Klotz, K. N.; Baraldi, P. G.; Tabrizi, M. A.; Lennan, S. M.; Leung, E.; Borea, P. A. Pharmacological characterization of novel adenosine ligands in recombinant and native human A_{2B} receptors. *Biochem. Pharmacol.* 2005, *70*, 1601-1612.
- 216. Ongini, E.; Dionisotti, S.; Gessi, S.; Irenius, E.; Fredholm, B. B. Comparison of CGS15943, ZM241385 and SCH58261 as antagonists at human adenosine receptors. *Naunyn Schmiedebergs Arch. Pharmacol.* **1999**, *359*, 7-10.
- 217. Gessi, S.; Varani, K.; Merighi, S.; Morelli, A.; Ferrari, D.; Leung, E.; Baraldi, P. G.; Spalluto, G.; Borea, P. A. Pharmacological and biochemical characterization of A₃ adenosine receptors in Jurkat T cells. *Br. J. Pharmacol.* **2001**, *134*, 116-126.
- 218. Schulte, G.; Fredholm, B. B. Human adenosine A₁, A_{2A}, A_{2B}, and A₃ receptors expressed in Chinese hamster ovary cells all mediate the phosphorylation of extracellular-regulated kinase 1/2. *Mol. Pharmacol.* **2000**, *58*, 477-482.
- 219. Patel, H.; Porter, R. H.; Palmer, A. M.; Croucher, M. J. Comparison of human recombinant adenosine A_{2B} receptor function assessed by Fluo-3-AM fluorometry and microphysiometry. *Br. J. Pharmacol.* **2003**, *138*, 671-677.
- 220. Fredholm, B. B.; Irenius, E.; Kull, B.; Schulte, G. Comparison of the potency of adenosine as an agonist at human adenosine receptors expressed in Chinese hamster ovary cells. *Biochem. Pharmacol.* **2001**, *61*, 443-448.
- 221. Stelzer, E. H.; Wacker, I.; De Mey, J. R. Confocal fluorescence microscopy in modern cell biology. *Semin. Cell Biol.* **1991**, *2*, 145-152.
- 222. Zhang, J. The colorful journey of green fluorescent protein. *ACS Chem. Biol.* **2009**, *4*, 85-88.

- 223. Shimomura, O.; Johnson, H. F.; Saiga, Y. Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, aequorea. J. Cell Comp. Physiol. 1962, 59, 223-239.
- 224. Morise, H.; Shimomura, O.; Johnson, F. H.; Winant, J. Intermolecular energy transfer in the bioluminescent system of aequorea. *Biochemistry* **1974**, *13*, 2656-2662.
- 225. Prasher, D. C.; Eckenrode, V. K.; Ward, W. W.; Prendergast, F. G.; Cormier, M. J. Primary structure of the aequorea victoria green-fluorescent protein. *Gene* **1992**, *111*, 229-233.
- 226. Yang, F.; Moss, L. G.; Phillips, G. N., Jr. The molecular structure of green fluorescent protein. *Nat. Biotechnol.* **1996**, *14*, 1246-1251.
- 227. Chalfie, M.; Tu, Y.; Euskirchen, G.; Ward, W. W.; Prasher, D. C. Green fluorescent protein as a marker for gene expression. *Science* **1994**, *263*, 802-805.
- 228. Heim, R.; Cubitt, A. B.; Tsien, R. Y. Improved green fluorescence. *Nature* **1995**, *373*, 663-664.
- 229. Heim, R.; Prasher, D. C.; Tsien, R. Y. Wavelength mutations and posttranslational autoxidation of green fluorescent protein. *Proc. Natl. Acad. Sci. U S A* **1994**, *91*, 12501-12504.
- 230. Heim, R.; Tsien, R. Y. Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. *Curr. Biol.* **1996**, *6*, 178-182.
- 231. Ormo, M.; Cubitt, A. B.; Kallio, K.; Gross, L. A.; Tsien, R. Y.; Remington, S. J. Crystal structure of the aequorea victoria green fluorescent protein. *Science* **1996**, *273*, 1392-1395.
- 232. Wachter, R. M.; Elsliger, M. A.; Kallio, K.; Hanson, G. T.; Remington, S. J. Structural basis of spectral shifts in the yellow-emission variants of green fluorescent protein. *Structure* **1998**, *6*, 1267-1277.
- 233. Bae, J. H.; Rubini, M.; Jung, G.; Wiegand, G.; Seifert, M. H.; Azim, M. K.; Kim, J. S.; Zumbusch, A.; Holak, T. A.; Moroder, L.; Huber, R.; Budisa, N. Expansion of the genetic code enables design of a novel "gold" class of green fluorescent proteins. *J. Mol. Biol.* 2003, 328, 1071-1081.
- 234. Cormack, B. P.; Valdivia, R. H.; Falkow, S. FACS-optimized mutants of the green fluorescent protein (GFP). *Gene* **1996**, *173*, 33-38.
- 235. Hong, W.; Tang, B. L. Protein trafficking along the exocytotic pathway. *Bioessays* **1993**, *15*, 231-238.
- 236. Cavic, M.; Lluis, C.; Moreno, E.; Bakesova, J.; Canela, E. I.; Navarro, G. Production of functional recombinant G-protein-coupled receptors for heteromerization studies. *J. Neurosci. Methods* **2011**, *199*, 258-264.

- 237. Szidonya, L.; Cserzo, M.; Hunyady, L. Dimerization and oligomerization of Gprotein-coupled receptors: debated structures with established and emerging functions. *J. Endocrinol.* **2008**, *196*, 435-453.
- 238. Pfleger, K. D.; Eidne, K. A. New technologies: bioluminescence resonance energy transfer (BRET) for the detection of real time interactions involving G-protein-coupled receptors. *Pituitary* **2003**, *6*, 141-151.
- 239. Pfleger, K. D.; Eidne, K. A. Monitoring the formation of dynamic G-protein-coupled receptor-protein complexes in living cells. *Biochem. J.* **2005**, *385*, 625-637.
- 240. Vilardaga, J. P.; Steinmeyer, R.; Harms, G. S.; Lohse, M. J. Molecular basis of inverse agonism in a G-protein-coupled receptor. *Nat. Chem. Biol.* **2005**, *1*, 25-28.
- 241. Ziegler, N.; Batz, J.; Zabel, U.; Lohse, M. J.; Hoffmann, C. FRET-based sensors for the human M₁-, M₃-, and M₅-acetylcholine receptors. *Bioorg. Med. Chem.* **2011**, *19*, 1048-1054.
- 242. Hoffmann, C.; Gaietta, G.; Bünemann, M.; Adams, S. R.; Oberdorff-Maass, S.; Behr, B.; Vilardaga, J. P.; Tsien, R. Y.; Ellisman, M. H.; Lohse, M. J. A FlAsH-based FRET approach to determine G-protein-coupled receptor activation in living cells. *Nat. Methods* 2005, 2, 171-176.
- 243. Förster, T. Zwischenmolekulare Energiewanderung und Fluoreszenz. Annales de Physique 1948, 2, 55-75.
- 244. Piston, D. W.; Kremers, G. J. Fluorescent protein FRET: the good, the bad and the ugly. *Trends Biochem. Sci.* **2007**, *32*, 407-414.
- 245. Tadross, M. R.; Park, S. A.; Veeramani, B.; Yue, D. T. Robust approaches to quantitative ratiometric FRET imaging of CFP/YFP fluorophores under confocal microscopy. *J. Microsc.* **2009**, *233*, 192-204.
- 246. Rizzo, M. A.; Springer, G. H.; Granada, B.; Piston, D. W. An improved cyan fluorescent protein variant useful for FRET. *Nat. Biotechnol.* **2004**, *22*, 445-449.
- 247. Kremers, G. J.; Goedhart, J.; van Munster, E. B.; Gadella, T. W., Jr. Cyan and yellow super fluorescent proteins with improved brightness, protein folding, and FRET Forster radius. *Biochemistry* **2006**, 45, 6570-6580.
- 248. Dinant, C.; van Royen, M. E.; Vermeulen, W.; Houtsmuller, A. B. Fluorescence resonance energy transfer of GFP and YFP by spectral imaging and quantitative acceptor photobleaching. *J. Microsc.* **2008**, *231*, 97-104.
- 249. Erickson, M. G.; Moon, D. L.; Yue, D. T. DsRed as a potential FRET partner with CFP and GFP. *Biophys. J.* 2003, 85, 599-611.
- 250. Zimmermann, T.; Rietdorf, J.; Girod, A.; Georget, V.; Pepperkok, R. Spectral imaging and linear un-mixing enables improved FRET efficiency with a novel GFP²-YFP FRET pair. *FEBS Lett.* **2002**, *531*, 245-249.

- 251. Albizu, L.; Cottet, M.; Kralikova, M.; Stoev, S.; Seyer, R.; Brabet, I.; Roux, T.; Bazin, H.; Bourrier, E.; Lamarque, L.; Breton, C.; Rives, M. L.; Newman, A.; Javitch, J.; Trinquet, E.; Manning, M.; Pin, J. P.; Mouillac, B.; Durroux, T. Time-resolved FRET between GPCR ligands reveals oligomers in native tissues. *Nat. Chem. Biol.* 2010, *6*, 587-594.
- 252. Trifilieff, P.; Rives, M. L.; Urizar, E.; Piskorowski, R. A.; Vishwasrao, H. D.; Castrillon, J.; Schmauss, C.; Slattman, M.; Gullberg, M.; Javitch, J. A. Detection of antigen interactions ex vivo by proximity ligation assay: endogenous dopamine D₂-adenosine A_{2A} receptor complexes in the striatum. *Biotechniques* **2011**, *51*, 111-118.
- 253. Guo, W.; Shi, L.; Javitch, J. A. The fourth transmembrane segment forms the interface of the dopamine D₂ receptor homodimer. *J. Biol. Chem.* **2003**, *278*, 4385-4388.
- 254. Lee, S. P.; O'Dowd, B. F.; Rajaram, R. D.; Nguyen, T.; George, S. R. D₂ dopamine receptor homodimerization is mediated by multiple sites of interaction, including an intermolecular interaction involving transmembrane domain 4. *Biochemistry* **2003**, *42*, 11023-11031.
- 255. Thevenin, D.; Lazarova, T.; Roberts, M. F.; Robinson, C. R. Oligomerization of the fifth transmembrane domain from the adenosine A_{2A} receptor. *Protein Sci.* 2005, *14*, 2177-2186.
- 256. Borroto-Escuela, D. O.; Marcellino, D.; Narvaez, M.; Flajolet, M.; Heintz, N.; Agnati, L.; Ciruela, F.; Fuxe, K. A serine point mutation in the adenosine A_{2A}R C-terminal tail reduces receptor heteromerization and allosteric modulation of the dopamine D₂R. *Biochem. Biophys. Res. Commun.* 2010, *394*, 222-227.
- 257. Borroto-Escuela, D. O.; Romero-Fernandez, W.; Tarakanov, A. O.; Gomez-Soler, M.; Corrales, F.; Marcellino, D.; Narvaez, M.; Frankowska, M.; Flajolet, M.; Heintz, N.; Agnati, L. F.; Ciruela, F.; Fuxe, K. Characterization of the A_{2A}R-D₂R interface: focus on the role of the C-terminal tail and the transmembrane helices. *Biochem. Biophys. Res. Commun.* **2010**, *402*, 801-807.
- 258. Hyland, N. P.; Cryan, J. F. A gut feeling about GABA: Focus on GABA_B receptors. *Front. Pharmacol.* **2010**, *1*, 124.
- 259. White, J. H.; Wise, A.; Main, M. J.; Green, A.; Fraser, N. J.; Disney, G. H.; Barnes, A. A.; Emson, P.; Foord, S. M.; Marshall, F. H. Heterodimerization is required for the formation of a functional GABA_B receptor. *Nature* **1998**, *396*, 679-682.
- 260. Martin, S. C.; Russek, S. J.; Farb, D. H. Molecular identification of the human GABA_BR2: cell surface expression and coupling to adenylyl cyclase in the absence of GABA_BR1. *Mol. Cell Neurosci.* **1999**, *13*, 180-191.
- 261. Margeta-Mitrovic, M.; Jan, Y. N.; Jan, L. Y. A trafficking checkpoint controls GABA_B receptor heterodimerization. *Neuron* **2000**, *27*, 97-106.
- 262. Shyu, Y. J.; Suarez, C. D.; Hu, C. D. Visualization of ternary complexes in living cells by using a BiFC-based FRET assay. *Nat. Protoc.* **2008**, *3*, 1693-1702.

- 263. Milligan, G. The role of dimerisation in the cellular trafficking of G-protein-coupled receptors. *Curr. Opin. Pharmacol.* **2010**, *10*, 23-29.
- 264. Sherbiny, F. F.; Schiedel, A. C.; Maass, A.; Müller, C. E. Homology modelling of the human adenosine A_{2B} receptor based on X-ray structures of bovine rhodopsin, the beta₂-adrenergic receptor and the human adenosine A_{2A} receptor. *J. Comput. Aided Mol. Des.* **2009**, *23*, 807-828.
- 265. Keuerleber, S.; Gsandtner, I.; Freissmuth, M. From cradle to twilight: the carboxyl terminus directs the fate of the A_{2A}-adenosine receptor. *Biochim. Biophys. Acta* 2011, *1808*, 1350-1357.
- 266. Vidi, P. A.; Watts, V. J. Fluorescent and bioluminescent protein-fragment complementation assays in the study of G-protein-coupled receptor oligomerization and signaling. *Mol. Pharmacol.* **2009**, *75*, 733-739.
- 267. Kerppola, T. K. Design and implementation of bimolecular fluorescence complementation (BiFC) assays for the visualization of protein interactions in living cells. *Nat. Protoc.* **2006**, *1*, 1278-1286.
- 268. Kerppola, T. K. Bimolecular fluorescence complementation (BiFC) analysis as a probe of protein interactions in living cells. *Annu. Rev. Biophys.* **2008**, *37*, 465-487.
- 269. Hu, C. D.; Chinenov, Y.; Kerppola, T. K. Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. *Mol. Cell* **2002**, *9*, 789-798.
- 270. Rose, R. H.; Briddon, S. J.; Holliday, N. D. Bimolecular fluorescence complementation: lighting up seven transmembrane domain receptor signalling networks. *Br. J. Pharmacol.* **2010**, *159*, 738-750.
- 271. Bracha-Drori, K.; Shichrur, K.; Katz, A.; Oliva, M.; Angelovici, R.; Yalovsky, S.; Ohad, N. Detection of protein-protein interactions in plants using bimolecular fluorescence complementation. *Plant J.* **2004**, *40*, 419-427.
- 272. Seldeen, K. L.; McDonald, C. B.; Deegan, B. J.; Farooq, A. Thermodynamic analysis of the heterodimerization of leucine zippers of Jun and Fos transcription factors. *Biochem. Biophys. Res. Commun.* **2008**, *375*, 634-638.
- 273. Vidi, P. A.; Przybyla, J. A.; Hu, C. D.; Watts, V. J. Visualization of G-protein-coupled receptor (GPCR) interactions in living cells using bimolecular fluorescence complementation (BiFC). *Curr. Protoc. Neurosci.* **2010**, *Chapter 5*, Unit 5 29.
- 274. Lowry, O. H.; Rosebrough, N. J.; Farr, A. L.; Randall, R. J. Protein measurement with the Folin phenol reagent. *J. Biol. Chem.* **1951**, *193*, 265-275.
- 275. Nordstedt, C.; Fredholm, B. B. A modification of a protein-binding method for rapid quantification of cAMP in cell-culture supernatants and body fluid. *Anal. Biochem.* **1990**, *189*, 231-234.

- 276. Elder, A. D.; Domin, A.; Kaminski Schierle, G. S.; Lindon, C.; Pines, J.; Esposito, A.; Kaminski, C. F. A quantitative protocol for dynamic measurements of protein interactions by Förster resonance energy transfer-sensitized fluorescence emission. *J. R. Soc. Interface* 2009, *6*, 59-81.
- 277. Xia, Z.; Liu, Y. Reliable and Global Measurement of Fluorescence Resonance Energy Transfer Using Fluorescence Microscopes. *Biophys. J.* **2001**, *81*, 2395–2402.

Danksagung

An dieser Stelle möchte ich mich bei allen bedanken, die mich auf meinem bisherigen Lebensweg und während der Promotionszeit unterstützt haben.

In erster Linie möchte ich meiner langjährigen Chefin und wissenschaftlichen Betreuerin Frau Prof. Dr. Christa E. Müller danken, ohne deren Unterstützung die Anfertigung dieser Arbeit nicht möglich gewesen wäre. Liebe Christa, durch deine stetige Betreuung und gleichzeitig durch die Gewährung großer Freiräume hast du maßgeblich zum Gelingen dieser Forschungsarbeit beigetragen. Vielen lieben Dank dafür!

Des Weiteren danke ich insbesondere Frau Dr. Anke Schiedel, die immer für alle meine Fragen und Anliegen zur Verfügung stand. Sei es bei meiner Verzweiflung von so manchen Klonierungen, bei der Anwendung von Computerprogrammen, bei der Durchführung der Western Blots oder auch beim Korrekturlesen dieser Arbeit. Liebe Anke, ich danke dir für deine Geduld und Zeit die du trotz deiner eigenen Arbeit immer wieder investiert hast!

Meiner langjährigen Bürokollegin Nicole Florin möchte ich ganz herzlich für die vielen guten Tipps und die Unterstützung danken. Liebe Nicole, du fehlst hier doch sehr und ich hoffe, dass wir auch weiterhin öfters einen Kaffee zusammen trinken gehen. Und ich wünsche dir, dass du auf deiner neuen Arbeitsstelle zufrieden wirst.

Für die freundschaftliche Atmosphäre im Büro danke ich insbesondere Wenjin Li, Karen Schmeling, Dr. Simone Brandt und Scarlett Weigel. Liebe Karen und Simone, was wäre nur aus mir ohne die ganzen Süßigkeiten die sich immer zwischen unseren Bürotischen aufgetürmt haben geworden? Wenjin Li wünsche ich für ihre Forschungsarbeit und Zukunft alles Gute und ich hoffe, dass wir unseren "Kochkreis" auch weiterhin fortführen. Vielleicht schaffe ich es ja jetzt auch bald einmal etwas zu kochen..

Dr. Aliaa Abdelrahman, Manuela Dotten, Dr. Meryem Köse, Dr. Melanie Knospe und Marion Schneider danke ich für die vielen netten persönlichen und fachlichen Gespräche. Liebe Manuela, danke dass du mich immer mal wieder noch spät abends mit deinem Auto zum Pferd gefahren hast! Dominik Thimm, Benjamin Seibt, Viktor Rempel, Sabrina Gollos, Simone Hildenbrand, Bernt Alsdorf, Claudia Spanier, Marianne Freundlieb, Stephan Jepards, Wessam Alnouri und Tadeusz Karcz möchte ich für die vielen hilfreichen Diskussionen und guten Tipps danken. Ihr wart immer sehr geduldig - sogar auch wenn ich etwas "vom Pferd" erzählt habe - und ich hoffe, dass ihr auch bald eure Arbeiten erfolgreich abschließen könnt.

Weiterhin geht mein Dank an Dr. Mathias Weigt und an die Assistentinnen und Assistenten des 2. Semesters, insbesondere an Markus Hanl und Federico Marighetti, die mir bei allen Fragen und Problemen immer weiter geholfen haben.

Von ganzem Herzen möchte ich auch meiner Familie - insbesondere meinen Eltern und meinen drei Brüdern sowie auch meinen Freunden danken. Ihr habt mich auf meinem bisherigen Lebensweg immer unterstützt und wart immer für mich da.

Des Weiteren danke ich meinem lieben Freund Sebastian, ohne dessen persönliche und "computertechnische" Unterstützung dies alles nicht möglich gewesen wäre. Danke für die schönen gemeinsamen Jahre!

Publikationsverzeichnis

Publikationen

Rempel, V,; Volz, N.; <u>Hinz, S</u>.; Karcz, T.; Meliciani, I.; Nieger, M.; Wenzel, W., Bräse, S.; Müller, C. E. 7-Alkyl-3-benzylcoumarins: A versatile scaffold for the development of potent and selective cannabinoid receptor agonists and antagonists. *J. Med. Chem.* **2012**.

Schiedel, A. C.; <u>Hinz, S</u>.; Thimm, D.; Sherbiny, F.; Borrmann, T.; Maa β , A.; Müller, C. E. The four cysteine residues in the second extracellular loop of the human adenosine A_{2B} receptor: role in ligand binding and receptor function. *Biochem. Pharmacol.* **2011**, *82*, 389-399.

Borrmann, T.; <u>Hinz, S.</u>; Bertarelli, D. C.; Li, W.; Florin, N.C.; Scheiff, A. B. and Müller C. E. 1-alkyl-8-(piperazine-1-sulfonyl)phenylxanthines: development and characterization of adenosine A_{2B} receptor antagonists and a new radioligand with subnanomolar affinity and subtype specificity. *J. Med. Chem.* **2009**, *52*, 3994-4006.

Behrenswerth, A.; Volz, N.; Toräng, J.; <u>Hinz, S</u>.; Bräse, S.; Müller, C. E. Synthesis and pharmacological evaluation of coumarin derivatives as cannabinoid receptor antagonists and inverse agonists. *Bioorg. Med. Chem.* **2009**, *17*, 2842-2851.

Weyler, S.; Fülle, F.; Diekmann, M.; Schumacher, B.; <u>Hinz, S</u>.; Klotz, K. N.; Müller, C. E. Improving potency, selectivity, and water solubility of adenosine A_1 receptor antagonists: xanthines modified at position 3 and related pyrimido[1,2,3-cd]purinediones. *ChemMedChem* **2006**, *1*, 891-902.

Drabczyńska, A.; Müller, C. E.; Schumacher, B.; <u>Hinz, S</u>.; Karolak-Wojciechowska, J.; Michalak, B.; Pekala, E.; Kieć-Kononowicz, K. Tricyclic oxazolo[2,3-f]purinediones: potency as adenosine receptor ligands and anticonvulsants. *Bioorg. Med. Chem.* **2004**, *12*, 4895-4908.

Kongressbeiträge

<u>Hinz, S</u>.; Schiedel, A. C.; Thimm, D. T.; Sherbiny, F.; Borrmann, T.; Maa β , A. and Müller. C. E. One is all it takes: disulfide bonds and cysteine residues in the extracellular loop 2 of the adenosine A_{2B} receptor. *Purine Club Meeting*, *Bonn*, Juli **2011** (Poster).

Thimm, D. T.; Schiedel, A. C.; Hochheiser, K.; <u>Hinz, S</u>.; Sherbiny, F. ; Maa β , A.; Müller, C. E. How 2B bound – New insights into ligand recognition by the human adenosine A_{2B} receptor. *DPhG Jahrestagung, Braunschweig*, Oktober **2010** (Poster).

Karcz, T.; Drabczyńska, A.; <u>Hinz, S</u>.; Rempel, V.; Müller, C. E.; Handzlik, J.; Kieć-Kononowicz, K. Modulation of physicochemical properties of phenol derivatives of 1,3-dimethyl-pyrimido[2,1-*F*]purinediones – adenosine A_{2A} receptor ligands. *ISMC, Brüssel,* September **2010** (Poster).

Karcz, T.; <u>Hinz, S</u>.; Rempel, V.; Kieć-Kononowicz, K.; Müller, C. E. Retroviral expression of CB_1 and CB_2 receptors and the related GPR55 in CHO cells. *Cannabinoid-Rezeptor Workshop, Bonn,* Juni **2010** (Poster).

<u>Hinz, S</u>.; Borrmann, T.; Bertarelli, D. C.; Schiedel, A. C. and Müller, C. E. PSB-603 – a new A_{2B} antagonist radioligand with subnanomolar affinity and subtype specificity from mouse to man. *Purines, Tarragona,* 30. Mai - 2. Juni **2010** (Poster).

<u>Hinz, S</u>.; Schiedel, A. C; Sherbiny, F.; Maa β , A.; Borrmann, T. and Müller, C. E. Importance of selected amino acids for ligand binding and activation of the human adenosine A_{2B} receptor. *DPhG Jahrestagung, Bonn,* Oktober **2008** (Poster).

Thimm, D. T.; Schiedel, A. C.; <u>Hinz, S</u>.; Sherbiny, F.; Maaß, A.; Borrmann, T.; Müller, C. E. Role of selected amino acid residues in ligand binding and activation of the human adenosine A_{2B} receptor. *DPhG Jahrestagung, Bonn,* Oktober **2008** (Poster).