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CHAPTER 1

Introduction

1.1 Introduction

In the real world we recognise objects and action without paying attention to the process of recognition
itself. It is an unconscious part of the observation, but a very difficult part indeed. Imagine looking
at a picture, seeing an animal, a bear for example. In that moment the brain receives a huge amount
of information, a few million bits representing colours and pixels from the eye and it can reduce this
by orders of magnitude to short sentences which can be communicated later on more easily. The very
same thing is happening in modern particle physics experiments. Physicists would like to interpret
the millions of bits of information from every particle collision recorded in the detectors by gradually
decreasing this size in order to extract only a few bits of information representing if, for example a given
event was either a tt̄ or a W+jets production. What happens with the original information content in the
meantime and why were a number of bits eliminated in the process? How much information do we lose
with this?

We can assume that we lose information if the original picture can not be reconstructed, and in many
cases this is what is happening. To reconstruct a picture, we naturally just read a text and imagine
the mentioned objects and environment. This obviously must be based on previous experience on the
subject, and the capability to associate the current and previous pictures with simple symbols. What
helps here most, is the abstract idea of objects. In this sense an object is a specialised entity of a class,
that has only a finite number of parameters. In case we assume that the given picture can be described
by using a sum of objects, then it follows that the picture is a specialised entity of another representation
of the class. There might not be one-to-one correspondence between a series of pictures and a class, as
some internal parameters may remain hidden, but if the picture can be classified in this way, the problem
of information loss more or less disappears. This is because everyday objects have only a small number
of parameters, individual solid objects in three dimensions have actually only six parameters. These
fully describe the position of the object and its setting, meaning that series of pictures of that given
object can be described with only this six parameters, hence giving us a possibility to reduce the size of
data with the ability to reconstruct the original.

Non-solid objects have more than six parameters. Getting back to the picture of a bear, we can see if
the bear is aggressive, hungry, if it is approaching us or going away and we can even imagine a parameter
that represents the likelihood of the bear being actually a teddy bear. We can image just as many
independent parameters as the pixels the picture has, so in that case we could describe every possible
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1 Introduction

picture with our new parameter space, but then we lose the possibility of lossless data compression.
Obviously, some parameters are more important to us, because it is necessary to act on them. In extreme
cases this can save our life, like in the case of an aggressive bear, so it is evolutionary beneficial to give
higher ranks to such information. Other parameters, like the state of every hair in the fur of the bear
seems absolutely unimportant. Ranking the parameters, and keeping only the important ones still makes
it possible to reconstruct the original image accurately, though definitely losing some information.

Important to mention, usually there is no need to define all the possible parameters. Having all the
parameters would allow us to describe any possible picture, including white noise as well, but obviously
it is very rare that a common object becomes white noise, so there is no reason to include such a
parameter. We may call it common sense, but the real reason is that the parameters of everyday objects
have a very specific distribution. We may say that every brown bear is brown, grizzlies are black and
polar bears are white, the distribution of their colour is very narrow, so we may be inaccurate a bit in
describing it. Although we may forge a parameter that describes the resemblance of a bear to a teddy
bear, we would normally never use all values of this parameter as it is not represented in reality. We
would only use the extremes of it, saying if the observed object is either a real bear or a teddy bear and
so such parameter would effectively become a discrete number or symbol. The simplest thing to do is
just to forget such parameters and use two classes to describe reality. One for the real bears and one for
the teddy bears.

This leads to the ability to describe data without serious information loss and gain a good level of
compression. One can set a convenient accuracy for the reconstruction and determine what number of
discrete classes is beneficial. The better compression level can be interpreted as a better understanding of
the data, or in other words a better and simpler theoretical description, which is just a modern evaluation
of Occam’s Razor.

1.2 The structure of this thesis

How does one actually find classes? If we define classes in a way that they can be separated by discrete
parameters, while the continuous parameters lead only to other members of the same class, then it is
equivalent to saying that a class is represented by a hypersurface in the data. Such a hypersurface should
be visible as a correlation of input parameters.

This thesis describe methods that help to investigate physical phenomena. Chapter 2 shows how the
Standard Model of particle physics can be constructed via the knowledge of the observed constraints.
Its first section reflects the author’s point of view, a conjecture that quantum field theory is the simplest
of the possible probabilistic theories that fulfil the space-time symmetries, accompanied with a general
introduction to the properties of the Standard Model. Chapters 3 and 4 are about two newly developed
probabilistic methods on classifying data sets. Additionally, Chapter 5 describes a newly developed
regression method that was used for comparison in some of the chapters. The former one utilises a
pre-defined description of known classes via a density estimation technique while the latter one finds
clusters via a method searching for hyper-surfaces. The further chapters describe the theoretical and
experimental methods that are relevant when performing an analysis of the data from the ATLAS de-
tector. Chapter 6 deals with the methodology of simulating the various aspects of physical collisions.
The next chapter in order, chapter 7 introduces the target of interest, the singe top-quark production and
the challenges in its detection. The following three chapters are about the experimental setup of LHC
and ATLAS, the architecture of data acquisition and the description of the definitions of the common
objects. In chapter 11 the density estimator is applied to the single top-quark Wt-channel.

The author of this thesis contributed to three articles related to the thesis. The theory of a Green’s
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function based density estimator was published in the Journal of Physics: Conference Series as a pro-
ceedings to the Advanced Computing and Analysis Techniques Workshop in 2011 [1]. A pilot study
prior to the data taking period was published as an ATLAS internal note about the jet selection for top
physics [2]. Finally, the regression method described in Chapter 5 was sent for publication to the Journal
of Machine Learning [3].
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CHAPTER 2

Standard Model of particle physics

The Standard Model of particle physics comes with extraordinary claims, saying that with the precise
knowledge of only nineteen variables one can describe physical phenomena up to the energies reachable
with current accelerators. The nineteen continuous parameters are masses of particles and interaction
probabilities, accompanied with a few discrete parameters which describe the structure of the theory.
The strong claim of its descriptive power lies within quantum field theory which postulates that space-
time symmetries force constraints on the existence and possible behaviour of physical objects. Sec-
tion 2.2 is a genuine attempt to show that the existence of quantised fields is one of the simplest models
that can describe probabilistic laws and correlations on a space-time continuum. The next section intro-
duces the formalism of quantum field theory with some of the simplest models, while the last section
of this chapter summarises the further known non-space-time symmetries and interactions that build up
into the Standard Model.

2.1 The importance of symmetries

Galileo Galilei, the definitive person of the scientific world in the XVI century was the first to state
that two identical physical experiments should yield the same results if one of them was conducted in an
environment moving with a constant speed. Though it sounds simple, it contains one of the fundamental
principles that helps determining the physical laws. It tries to identify a symmetry of Nature, a feature
that does not change despite the fact that the environment has changed. A formulation of such an
observation gives a constraint to the possible physical laws, as they should also be invariant under such
a change [4].

For example, the requirement that the outcome should not depend on the relative velocity can only be
fulfilled if every possible sub-process is independent in it. This results in formulas that do not contain
absolute velocities, just relative ones. Consider two velocities in the system ~v1 and ~v2, and a function
f (~v1,~v2) that describes some process in the system. A small ∆~vobs change in the speed with which the
observer is travelling should result in no change in f :

∆ f = f (~v1 + ∆~vobs,~v2 + ∆~vobs) − f (~v1,~v2) = 0 .

Expressing this with the derivatives of f

5



2 Standard Model of particle physics

∆ f =
d f (~v1,~v2)

d~vobs
∆~vobs =

∂ f (~v1,~v2)
∂~v1

∂~v1

∂~vobs
∆~vobs +

∂ f (~v1,~v2)
∂~v2

∂~v2

∂~vobs
∆~vobs = 0 .

It was implicitly assumed before that changing the observers velocity affects the other velocities linearly,

like ~vnew
1 = ~vold

1 + ∆~vobs. This has the derivative
∂~v1

∂~vobs
= 1, and results in the following:

∂ f (~v1,~v2)
∂~v1

= −
∂ f (~v1,~v2)
∂~v2

. (2.1)

So the velocities ~v1 and ~v2 in this process have a similar influence on the observable f , but with
a negative sign. This mutual dependency means that the actual number of degrees of freedom of f is
reduced, and it can be parametrized with a function of~v1 and~v2, fnew(~v1−~v2). It can be easily shown that
this new function gives the same derivative structure, hence it is a solution. We can see in this example
that a simple requirement for invariance reduces the complexity of the possible processes, therefore it is
a powerful tool to find them.

What kind of symmetries can be found in Nature? Galilei found two types, the invariance under
translation and under boost. Lorentz modified the picture by requiring the invariance under time trans-
formation, and taking relativistic effects into account during the boost, namely that the speed of light is
the same constant in every inertial reference frame.

2.2 A probabilistic model

When the symmetries of Nature have been successfully identified, one can ask what kind of correlations
are possible. Group theory helps in parameterising surfaces which are associated with invariants under

the group transformations. The Galilean group preserves the distance ∆s =

√∑
i ∆x2

i , while the Lorentz
group preserves the distance defined in Minkowsky space-time :

s2 = t2 − x2 − y2 − z2 = xµxµ .

The full group of flat space-time is the Poincaré group, containing translations, rotations and boosts. To
derive the constraints for the possible physical processes that respects these symmetries, we should allow
a broad set of functions as a starting point. There are several reasons to allow probability functions:

• probability can describe deterministic processes as well;

• there might be interactions that are inherently probabilistic;

• some stochastic and chaotic processes are easier to describe using probability theory.

The most general probability measure on a specified time slice would look like the following:

P(Aa(xν)|x0 = t0) = f [Aa(xν)] dµAb dµxη |x0=t0 ,

where Aa(xν) is a general multi-valued function defined on the whole space, and the associated probabil-
ity is the functional of it; while µAb and µxη are integral measures around the xη point in space-time and
the Ab value of a measurement. A single point is not enough to express temporal evolution of a physical
system, so one should look for a probability that contains at least two points. The simplest example is
the scalar function of probabilities giving answers to yes-no binary questions:
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2.2 A probabilistic model

P(xA
ν , x

B
ν ) = f (xA

ν , x
B
ν ) dµAB , (2.2)

in the area around xA
ν and xB

µ . The probability measure f dµAB gives 1 when integrating over a 6 dimen-
sional subspace, varying xA

ν and xB
µ but keeping the time constant:

"
R3R3

f dµAB

∣∣∣∣∣∣∣∣∣xA
0 =tA

xB
0 =tB

= 1 .

The probability in eq. (2.2) should not change when observed from a different coordinate system, so it
has to be invariant under an arbitrary group transformation G:

GP(xA
ν , x

B
ν ) = P(xA

ν , x
B
ν ) .

As one does not know a priori which group representation Nature is using, a general G has to be
used. It can be constructed from different irreducible representations Girr:

G = R−1


Girr

a1

Girr
a2

. . .

0

0 Girr
an

 R ,

where the ai index refers to the type of the representations, and R is an arbitrary unitary matrix. G
is actually an operator, as it acts on functions ψs(xµ), from which one has to build up the probability
f dµAB. The irreducible representations of the Poincaré group are classified via spin and mass. The spin
number is quantised, it can take any positive integer or half integer value, while the mass has to be a
non-negative real value. How to compose f from ψ? It has to be a functional of some ψis, in a way that
it gives a proper probability measure:

f (xA
ν , x

B
ν ) dµAB = f [ψi] .

Such a measure should satisfy some basic criteria, namely that the probability of a volume should be
the sum of the probabilities of the disjoint volumes that it can be combined from and that the probability
of the full volume has to be unity. Gleason’s theorem [5] says that for a Hilbert space with dimension
≥ 3 the only possible measure for a volume V on a function Ψ is

P(Ψ,V) =

∫
V

Ψ∗Ψ dV = Tr(PV |Ψ〉〈Ψ|) = |〈V |Ψ〉|2 ,

providing that on a Hilbert space the only possible probability measure is the one that is familiar from
quantum mechanics, the square of the wave function’s amplitude. The integral in this case is 6 dimen-
sional, over the combined phase-space of the spatial part of xA

µ and xB
µ , which can be denoted as xA

i and
xB

i . As a consequence, Ψ has to have 6 spatial coordinate, and because the group acts on 4 dimensional
functions, all having the their role, hence a suitable Ψ has to have 8 space-time parameters, xA

µ and xB
µ .

The requirement in eq. (2.2) that the full 6-dimensional volume should give 1 restricts the possible Ψs.
Any square-integral of Ψ on a constant tA ⊗ tB hypersurface has to be constantly unity. This means that
there exists a U(tA, tB) unitary operator that produces it from a time-slice:
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2 Standard Model of particle physics

Ψ8D(xA
µ , x

B
µ ) = U(tA, tB)Ψ6D(xA

i , x
B
i ) . (2.3)

The volume V also has to be a function which G acts on, hence it has to have a spinor index. In the
8-dimensional space-time a composite G = GA ⊗GB is needed, which acts separately on xA

µ and xB
µ . As

an external observer has only a 4-dimensional coordinate, a change in its reference frame should both
change xA

µ and xB
µ , hence GA = GB. A G transformation on the probability in eq. (2.2) would take a form

GP(xA
ν , x

B
ν ) = G f (xA

ν , x
B
ν ) dµAB = |〈VAB|G†G|Ψ8D〉|2 ,

where 〈VAB| is the function with which Ψ can be projected onto the volume µAB, that can be denoted
later as 〈xA

µ | ⊗ 〈x
B
µ |. The principle of relativity requires that this transformation should not affect the

probability, leaving it invariant. This can be formulated as

|〈VAB|G†G|Ψ8D〉|2 = |〈VAB|Ψ
8D〉|2 , (2.4)

which means G has to be a unitary representation of the group, because its hermitian conjugate has to
be its inverse, G† = G−1. There is another way how an observer could determine if there is a special
reference frame, namely if it only changes the experiment in one of the points, and leaves the other
untouched. This is equivalent of a group action on one of the points:

GBreplace = 1 ⊗GB .

Supposing that the observer has the freedom to set up the experiment, this replacement should provide
the same probabilistic result as replacing the point A with GAreplace = G−1

B ⊗ 1, because a G = G−1
B ⊗

GB transformation of the reference frame provides the same 〈VAB|. Functionally this means that the
following should hold:

|〈VAB|1 ⊗G−1
r |Ψ

8D〉|2 = |〈VAB|Gr ⊗ 1|Ψ8D〉|2 ,

which has to be true for an arbitrary Gr replacement and VAB volume. That can only be satisfied if the
Ψ8D has the following property for any Gr:

Gr ⊗ 1|Ψ8D〉 − 1 ⊗G−1
r |Ψ

8D〉 = 0 . (2.5)

Just like in eq. (2.1), Ψ8D(xA
µ , x

B
µ ) = Ψ4D(xA

µ − xB
µ ) is also a solution, however it is not general. Namely

Ψ8D is a tensor with two spinor indices, generally Ψ8D =
∑

i ciΨ
4D
Ai ⊗ Ψ4D

Bi with ci constants. Therefore
eq. (2.5) only requires that

∑
i ciGΨ4D

Ai invokes
∑

i ciG−1Ψ4D
Bi , hence there must be a mutual dependence

between Ψ4D(xA
µ ) and Ψ4D(xB

µ ). In other words, there must be a linear or non-linear operator M for
which Ψ4D

B = M[Ψ4D
A ], and its inverse must exist, so Ψ4D

A = M−1[Ψ4D
B ] can be expressed. A possible

solution to satisfy eq.(2.5) is to require M to be invariant under the transformation with GxA acting on
the coordinate xA and G−1

xB
on xB with a translation in the opposite direction but with the same amplitude:

M[Ψ4D
A ] = G−1

xB
M[GxAΨ4D

A ] (2.6)

or equivalently, its inverse should satisfy

M−1[Ψ4D
B ] = G−1

xA
M−1[GxBΨ4D

B ]

In case M is a linear operator, what was learned from eq. (2.1) can be applied directly, meaning that
M must be of the form M(xA

µ − xB
µ ) and Ψ4D

B (xB) =
∫

M(xA
µ − xB

µ )Ψ4D
A (xA) dxA. A non-linear M could

8



2.2 A probabilistic model

be described by perturbation theory, for which it can be proved that it must depend only on xB − xA. A
second order M would look like

Ψ4D
B (xB) = M0 +

∫
M1(xA

µ − xB
µ )Ψ4D

A (xA) dxA +

"
M2(xB − x′A, xB − x′′A)Ψ4D

A (x′A)Ψ4D
A (x′′A) dx′A dx′′A .

Using an M that satisfies eq. (2.6), the transformation of a Ψ8D = Ψ4D
A ⊗Ψ4D

B will satisfy eq.(2.5), since
the following two transformations generate the same Ψ8D:

GxA · Ψ
4D
A ⊗ Ψ4D

B = GxAΨ4D
A ⊗ M[GxAΨ4D

A ] = GxAΨ4D
A ⊗G−1

xB
Ψ4D

B ,

G−1
xB
· Ψ4D

A ⊗ Ψ4D
B = M−1[G−1

xB
Ψ4D

B ] ⊗G−1
xB

Ψ4D
B = GxAΨ4D

A ⊗G−1
xB

Ψ4D
B .

Examining the special case when there are no ci factors, Ψ8D is a diadic tensor, the criteria that the
double-time slices should provide the full probability looks like the following:

1 =

"
R6

|M[ΨA] ⊗ ΨA︸          ︷︷          ︸
Mi[ΨA]·ΨA j

|2 d3xA d3xB

∣∣∣∣∣∣∣∣∣xA
0 =tA

xB
0 =tB

=

∫
R3

|M[ΨA]|2 dµB

︸               ︷︷               ︸
cB(tB)

∫
R3

|ΨA|
2 dµA

︸         ︷︷         ︸
cA(tA)

,

where result of the integrals cA and cB may depend on tA and tB, but their product should be 1 for any
choice. This leaves the only possibility of time-independent constants, where cA = 1/cB. The different
cA values are not observable, hence it is an equality class. Without breaking generality, both can be
chosen to be unity, with the requirement that any time-slice integral of |ΨA|

2 and |M[ΨA]|2 must be
1. As it was observed in eq. (2.3), the time dependence of Ψ8D can be explicitly written into a unitary
operator. That means that M[ΨA] might be expressed with a functional of a chosen time-slice of ΨA, and
the time-dependent unitary operator. In the case where Ψ3D(xA

j )|tA=const. this may look like the following:

Ψ8D =
∑

i

ciU(tA − tB)M3D[Ψ3D
Ai ] ⊗ Ψ3D

Ai .

This still has a tensor product that may mix the ΨA part with ΨB, causing that the outcome of the
measurement in xA

µ may depend on the measurement in xB
µ . There might be arguments that an effective

arrow of time may emerge even from such a system, but this is also an observation of the physical world,
so the feature that measurement A should have no dependence on measurement B if tA < tB must be
present. This can be built in if the M3D operator is linear, so every ci constant can be suppressed into
Ψ3D

A .
For the case where the measurement device is the same for A and B, it can be required that for tA = tB

Ψ4D
A ≡ Ψ4D

B to provide the same probabilities for the same time slices. This means that up to an unknown
phase U(0) and M3D can be chosen to be 1. In this case if Ψ3D

A was known for tA, the time dependence
of the measurement can be expressed as

Ψ4D
B (xB

µ ) = U(tA − tB)Ψ3D
A (xA

i ) ,

where the U unitary operator has no dependence neither on xA
i nor on xB

i , so it must commute with the
space-like, and because of the tA − tB structure it must also commute with the time-like group operators.
Such a unitary operator can be expressed with a constant Hermetian operator H as U(∆t) = exp(iH∆t),
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2 Standard Model of particle physics

H has to commute with any group operation. Hence for infinitesimal time shifts

i∂tΨ
4D = HΨ4D .

The result is the time evolution equation known in quantum field theory. A further requirement on
H is that it has to be positive semi-definite, so there is a global ground state that can be called vacuum.
A constraint on Ψ comes from the spin-statistics theorem that the Ψ function belonging to integer spin
representations that is considered to be indistinguishable should be symmetric, while half spin wave-
functions should be antisymmetric. This should be there to preserve the order of time, and prevent
information travelling faster than light. Measurements on systems represented by a Ψsys should also
follow the physical constraints that were derived. A measurement apparatus is also a physical system
that may be represented by a wave-function. In case the measurement process disturbs the observed
system only minimally, than it can be modelled as a weak interaction between the two by a given
Hamiltonian operator. The result is that after the interaction the wave functions of the measurement
device and the observed system becomes entangled [6][7]. This can be modelled as an action of a
self-adjoint operator on Ψsys. The interaction will turn the system into one of the eigenvectors of the
operator, with the probability of the overlap between the eigenvector and the system’s wave-function.

2.3 Free particles and interactions

The wave-functions that belong to the irreducible representations of the group may be called particles,
as these are the simplest objects that can be distinguished. When their time evolution is only determined
by the irreducible group’s time translation, it may be called a free particle. For the Poincaré group, the
time evolution of a half-spin free particle is governed by the Dirac equation:(

−iγµ∂µ + m
)
ψ(xµ) = 0 ,

with the spin-indexed gamma matrices. Interactions with other particles are usually introduced via
gauge theories, when a known global symmetry is taken to be locally true. Generally, a symmetry
between a set of particles appears as a Mab(θl) group operation with θl parameters, and mixes the states
ψa, a ∈ {1..N},while leaving the Lagrangian invariant.

Lfree =
∑

a

ψ̄a(iγµ∂µ − m)ψa

=
∑
abc

ψ̄cM−1
cb (iγµ∂µ − m)Mabψa .

Since a local Mab(θ(xµ)) transformation does not commute with i∂µ, the free Lagrangian is not invari-
ant:

Ltr.
free =

∑
abc

ψ̄cM−1
cb (iγµ∂µ)Mabψa −

∑
a

mψ̄aψa .

Hence an interaction with an Aµab external, so called gauge field, with certain transformation properties
has to be introduced to compensate the effect:

Lint =
∑

a

ψ̄aiγµgAµψa ,
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2.3 Free particles and interactions

with
Atr.
µab = MacAµcd M−1

db −
1
g

(∂µMac)M−1
cb .

The interaction Lagrangian transforms similarly as the free Lagrangian, and as a simplification a
covariant derivative can be defined:

Dµ = ∂µ − igAµ .

The introduction of the new field alone does not introduce interaction, the free particles will follow
the same path. Hence it is just a re-parametrisation in this form. However, additional degrees of freedom
can appear while introducing further transformation invariant terms. One such term is the kinetic energy
of the new field:

Lgauge =
1
2

trFµνFµν ,

where
F =

1
ig

[Dµ,Dν] .

Without this term, the new field would not propagate and would have no physical effect. It is important
to note that the mass term of the A field is not gauge invariant:

Lgauge mass =
1
2

m2
AA2 .

Nevertheless such a term can appear in effective field theories, breaking gauge invariance at certain
energy levels or phase spaces. This can happen through another type of interaction by the Yukawa
coupling. Strictly speaking the gauge interaction is a procedure where a change in the current of a
particle radiates a boson, while in the Yukawa interaction the annihilation of one or more particle creates
new types of particles. One example is the coupling of a scalar boson φ to a fermionic field ψ with a
coupling constant gy:

LYukawa = −gyψ̄φψ .

As Yukawa interactions are not constrained by symmetries like the invariance under gauge transfor-
mations, a large variety of additional terms can be considered. This is often denoted with a general V(φ)
potential.

These equations describe microscopic, fundamental interactions that happen at small time scales. On
longer time scales and distances more of these can happen, which may not be resolvable by an observer.
The procedure of summing up all these possibilities is called renormalisation. This will hide the real
history of events happening on the macroscopic timescale and gives rise to an effective theory with
many possible interactions and coupling constants. However, a class of the renormalisable interactions
do exist, which keep their original form during the renormalisation procedure. Compared to these
interactions, the non-renormalisable theories require infinitely many number of coupling constants, but
these will be suppressed by the renormalisation, making them invisible at all scales [8]. Renormalisation
is not without effects. The most striking one is the energy dependence of the renormalised coupling
constants, or its other name the running coupling. The infinite number of parameters appearing for non-
renormalisable theories makes it necessary that in practice renormalisability is required for an acceptable
theory.

11



2 Standard Model of particle physics

2.4 Symmetries of the world

Discovering the symmetries in the outcome of physical experiments helped physicists to deduce the
Standard Model of particle physics. The local-space time symmetry, which is described by the Poincaré
group largely contributes to this by giving the constraint of momentum and angular momentum con-
servation, the existence of the spin and the requirement for causality. This latter one gives rise to the
spin-statistics theorem that explains the Pauli principle, the anticommuting behaviour of half- spin par-
ticles and the commutation of particles with integer spin.

It has to be noted that the Lorentz and Poincaré symmetries are not global, as they are not true on
cosmic scales. Instead the Einstein-Hilbert symmetries are more accurate, explaining the gravitational
interaction classically with the curvature of space time by the energy-momentum tensor. Astonishingly
this symmetry is not renormalisable, giving way to speculations on how to introduce this interaction into
quantum field theories consistently.

What are the known microscopic symmetries? The fundamental ones are the charge conservation
laws of the electroweak and the strong interaction. The electromagnetic interaction is the only one that
can be observed in the classical limit, but unifies with the weak interaction at high energies. The weak
interaction, first observed in β-decays, has a low probability to occur at low energies, because of the
heavy vector bosons involved. Up to now the strong interaction was the hardest to unlock. Although it
is behind many symmetries visible between flavours of mesons and hadrons, but due to being strong, it
is also screened. This screening makes it impossible to see the strong charges, the so-called colours on
larger distances.

2.4.1 Quantum electrodynamics

The electromagnetic interaction was the first to receive a quantum field theoretical explanation. Al-
though it is a renormalisable theory, now it is thought to be the low energetic effective theory of the
electroweak interaction. It is a U(1) gauge symmetry of charged fields, coming from the phase of a
complex field. The requirement of local invariance under gauge transformations gives place for a sin-
gle massless, spin one vector boson field: the photon. The Lagrangian of the interaction between a
fermionic field ψ and the photon A is the following:

LU(1) = ψ̄(iγµDµ − m)ψ −
1
4

FµνFµν ,

with

Dµ = ∂µ − ieAµ ,

Fµν =
1
ie

[Dµ,Dν] = ∂µAν − ∂νAµ .

The recipe to calculate probabilities is the following. First the operator of the action must be defined,
between two time slices:

S =

t1∫
t0

L dt .

S is needed in order to calculate the time evolution operator U(∆t):
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2.4 Symmetries of the world

U(t0 − t1) = TeiS (t0,t1) ,

where the T operator means time ordering. The probability of a transition between state A at time t0 to
state B at t1 is

P(A→ B) = |〈ψt1
B |U(t0 − t1)|ψt0

A〉|
2 . (2.7)

This looks simple, but is rather hard to calculate as the operator inside the bracket contains the in-
formation for all the possible transitions, it is called the S matrix. It is often approximated in the limit
of t0 → −∞ and t1 → ∞. To calculate the transition probability for specific processes, it is better to
do it within the framework of perturbation theory. As the electron charge can be considered small, the
Taylor series of eq. (2.7) in powers of e gives one simple way to calculate the scattering cross sections
perturbatively. The first order only contributes to a single interaction, for example

P(
−→
ke− +

−→
ke+ →

−→
k γ) = |〈Akγ |

∫
ψ̄γµeAµψ dt|ψke−

ψ̄ke+ 〉|
2 , (2.8)

shows the probability that an electron and a positron with momentum
−→
ke− and

−→
ke+ annihilate into a photon

with momentum
−→
k γ. This is now much easier to calculate, as the commutation relation and integral

of single operators come from first principles. Equation (2.8) is the leading term of the unperturbed
probability in eq. (2.7) and consequently it is easier to calculate. The integral corresponds to a simple
Feynman diagram, the electromagnetic interaction vertex. The full cross section contains all possible
graphs with the same configuration of outgoing lines. To take all these into account, the masses and the
charges have to be renormalised, as the bare parameters are unmeasurable for a macroscopic observer.

2.4.2 The electroweak interactions

The electroweak interaction is more complex than the simple electromagnetic interaction as its under-
lying group is S U(2)L × U(1)Y . It is parity violating, as it only connects the left-handed fermions and
leaves the right-handed helicity untouched. The left- and right-handed part of the fermions are two dif-
ferent massless half-integer spin representations of the Lorentz group. A Dirac fermion contains both,
and they can be expressed as a projection:

ψL = (1 − γ5)ψ ,

ψR = (1 + γ5)ψ .

In this interaction, only the left-handed particles form doublets, belonging to the spinor representation
of the S U(2)L group, while right-handed particles are all singlets, and they transform under gauge
transformation accordingly: (

ψa
L

ψb
L

)′
= T1/2

(
ψa

L

ψb
L

)
,

ψa
R
′

= T0ψ
a
R ,

ψb
R
′

= T0ψ
b
R .

In the meantime, all these chiral fermions fields are complex, and they belong to a U(1)Y gauge
group as well. This group sets a ghc hypercharge for each chiral particle, making these chiral fermions a
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2 Standard Model of particle physics

representation of the S U(2)L×U(1)Y . The difference in the representation between left and right handed
fermions renders a different covariant derivative for them. With the T a generator matrices of the S U(2)
group and the gw weak charge the covariant derivatives can be expressed as

DLµ = ∂µ − ighcAµ − igwBµaT a ,

DRµ = ∂µ − ighcAµ .

Although the transformation of these fields correspond to S U(2)L × U(1)Y transformations, these
are not necessarily the ones which have a propagator. Experiments showed that some of the gauge
bosons must have an effective mass, which breaks the electroweak symmetry. The gauge symmetry
can still exist, if the symmetry breaking is not explicit but a consequence of some other interaction. It
can be spontaneous symmetry breaking, by a Higgs-like Yukawa interaction or a dynamic one creating
interacting scalar bosons, and so on. There are many scenarios, and the Standard Model incorporates
one of the simplest ones, the single scalar Higgs boson model which will be discussed later.

Generally, massive bosons can be modelled by a positive semi-definite matrix M2, mixing the vector
bosons:

Lmass =
1
2

VaM2
abVb ,

Vµ =


Aµ
Bµ0
Bµ1
Bµ2

 ,
where only the mass-eigenstates would be able to propagate. Nature realises this in a way that the
diagonal elements of the S U(2)L ×U(1) field matrix mixes up into a massless and a massive boson, the
electromagnetic photon field and the heavy mediator of the weak neutral currents Z. The off-diagonal
elements become the two charged, massive W± bosons. The mass term that represents a self-interaction
between the A and Ba fields contains only three non-zero parameters instead of the possible 16:

Wi j = ghcAδi j + gwBaT a
i j ,

Lmass = m2
EW

∑
j∈{0,1}

W1 jW j1 .

In this picture, the hypercharge and the weak charge was used to parameterise the mixing of the gauge
bosons. As mixing is much simpler than what is generally possible, it is the first hint that the mass term
is an effect of additional interactions. Furthermore, a theory with manifestly massive bosons can only
work as a low energy effective theory, because at higher energies the higher order corrections will start
to dominate and eventually break the unitarity of the scattering matrix and the probabilities will not
add up to one. For the effective electroweak theory, the mass scale of the vector bosons is around 100
GeV, and the theory breaks down at TeV scales. Conversely, it is expected that electroweak symmetries
restore at these energies and the low energy symmetry breaking gets an explanation. Another feature of
the electroweak theory is that since it requires chiral fermions, these fermions have to be massless. An
explicit mass term would break the gauge symmetry, but this as well can be got around by a Yukawa
coupling with a Higgs boson.
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2.4 Symmetries of the world

2.4.3 Quantum chromodynamics

The strong interaction produces the large family of observed mesons and baryons. Most of them can
be grouped together by the closeness of their masses, which let many scientists to theorise that those
consist of different configurations of a few unobservable particles. The theory of strong interaction
came as a solution, introducing several of new fermions, the quarks and a new type of charge, the
colour. Each of the new quarks comes in three different strong charges, so they are triplets of the theory.
The symmetry between these quarks gives place for a S U(3) gauge freedom, whose eight mediating
bosons are the gluons. Due to the strength of the coupling, QCD is not perturbative at low energies,
and only lattice calculations are predictive at this scale. As the gluons are massless and have colour
charge, the self interaction between them is also large, which screens every coloured particle until it
seems colourless for the external observer. This feature has another effect, namely that quarks can not
be freed, they always remain in a bound state with additional quarks. As a consequence, the hadrons
formed consist of seas of quarks with hardly predictable momentum distributions, or parton distribution
functions. Interestingly, a large fraction of the hadron’s mass comes from the gluons themself, with
a positive binding energy. As a consequence, hadrons can be understood as belonging to a different
vacuum in QCD.

One of the strongest evidence for QCD being to be the correct theory of the strong interaction is
its running coupling constant. Although at high energies QCD is perturbable, it is still necessary to
calculate higher order corrections to scattering processes, since they can give a significant contribution.
This is not an easy task to do, but fortunately the renormalisation of the parameters is still doable.
The energy dependence of the coupling constant gives a unique signature of the underlying symmetry.
Although QCD is independent from the electroweak part, there is still a slight influence on each. The
quarks form isospin doublets as well, which results for them having an electric charge. Surprisingly,
this charge is only a fraction of the electron charge, being 1/3 and −2/3, but still summing up to integer
charges within the hadrons. The fractional charge is somewhat the consequence of the full Standard
Model being a consistent theory, where anomalies1 should cancel [9].

2.4.4 The Higgs field

A simple procedure to give mass to gauge bosons is via spontaneous symmetry breaking of scalar
fields. The Higgs field is a complex scalar S U(2) doublet. Invariance under gauge transformations is
maintained through the left handed covariant derivative in the Klein-Gordon equation:

LHiggs =
1
2

Dµ

(
φ0∗

φ1∗

)
Dµ

(
φ0

φ1

)
+ λ

((
φ0∗

φ1∗

) (
φ0

φ1

)
− µ2

)2

.

Instead of a mass term, it contains a self-coupling potential. The structure of the potential ensures a
degenerate ground state for the Higgs field, changing the roles of the original four degrees of freedom.
When perturbed around the ground state, the vacuum, this field has three massless degrees of freedom
and one massive, leaving no question that the symmetry of the Lagrangian is broken. The original
O(4) symmetry – which is called custodial symmetry – breaks down to an O(3), which is coupled to
the S U(2) gauge bosons via the covariant derivative [10][11][12]. At low energies, near to the per-
turbative regime of the Higgs vacuum, these three scalar fields will become indistinguishable from the
longitudinal degrees of freedom, making them look massive.

1 Anomalies may happen during renormalisation. As the integrals may diverge and infinities appear, a regularisation of the
integral is needed. But there might be no regularisation scheme which leaves all of the assumed symmetries unbroken,
making the full theory non-symmetric.
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PPPPPPPPPcharge
gen.

I II III

leptons
0
−1

(
νe

e

) (
νµ
µ

) (
ντ
τ

)

quarks
2/3
−1/3

(
u
d

) (
c
s

) (
b
t

)
Table 2.1: The three generations of fermions in the Standard Model.

Phenomenologically, the massive degree of freedom of the Higgs field can also interact with the
massless, chiral fermion fields, mixing them together. This, on low energies would create an apparent
mass for them. Similarly to the mass term of the electroweak gauge bosons, the fermion mass term also
allows mixing between the three generations of the fermion fields, explaining why the mass eigenstates
of the fermions are not the eigenstates of the weak interaction.

2.4.5 Table of particles

The above described interactions are realised by many fundamental particles in nature [13]. The fermions
are summarised in table 2.1. The two main categories are the leptons and the quarks, where only the lat-
ter play a role in the strong interactions, and it can be thought that every quark belongs to an additional
strong triplet. The doublets shown are the weak isospin doublets, the interaction of the partner particles
produce W± bosons, while the interaction with their own anti-particle can produce a Z boson. There are
three generations of leptons and quarks, with identical charges but with increasing masses. As it was
described in the context of the Higgs mechanism, the mass eigenstates do not coincide with the weak
eigenstates. The vector bosons of the Standard Model are the massless photon of the electroweak inter-
action, the massive weak bosons, the charged W± and the neutral Z and finally the eight neutral gluons,
the mediating particle of the strong interaction. The reason for the electroweak symmetry breaking is
unknown at the moment. The simplest explanation is the Higgs mechanism, which would add only one
neutral scalar particle to the picture.

2.4.6 About gravitation

Gravitation is an interaction that is missing from the Standard Model, and there are many reasons for
that. The Einstein equations that describe gravity classically, holds some problems when quantised. It
is not renormalisable, invalidating it as a quantum field theory. Several approaches have been suggested
which circumvent this, slightly modifying the Einstein-Hilbert action, still without experimental proof.
One problem is that the energy scale of quantum gravity should be around the Planck mass, 1019 GeV,
which suggests that most attempts would be unprovable, as their predictions can not be tested in the
laboratories. A no-go theorem also exists from Coleman and Mandula [14], saying that the space-time
and internal symmetries can only be mixed in the trivial way, leaving no space for interaction. Theories
with spontaneously broken symmetries in special ways are allowed, and supersymmetric theories are
also exceptions [15] [8]. The most popular theories are loop quantum gravity and superstring theory.
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CHAPTER 3

Addressing correlations

Randomness is an inherent feature of quantum mechanics, disguising the structure of Nature from the
observer. To obtain information about a system, many experiments have to be repeated to reveal the dis-
tribution of the observables. How can this information be used? The simplest thing to do is interpolation
in the parameter range that was already scanned, but an extrapolation is never straightforward. This is
especially true when such new systems need to be explored which are more complex than the already
known ones. To use data for prediction, some modelling must be done.

The two ways of modelling are estimating the underlying probability distributions or creating a sim-
plified model with regression. Though the central limit theorem says that probability distributions can
be approximated with measured data with infinitely many sample points, with finite samples there are
always components which are free to be chosen, a path for convergence. The same is true for regres-
sions. This chapter investigates a data modelling method based on unparameterised density estimation,
suitable to model data with minimum assumptions.

3.1 Supervised and unsupervised machine learning

Machine learning is associated with a broad range of computational methods, where decisions must
be done with the help of samples, typically classification. A possible partition is supervised and un-
supervised machine learning. Supervision in these terms means that an algorithm first faces a tagged
data sample or training data, then tries to tag new untagged data with it. An example of this is optical
character recognition, where various pictures of the alphabet are prepared, learned and this knowledge
is used to transliterate texts. In unsupervised learning however, only the criteria of what defines a class
is programmed. Such an algorithm finds classes independently of what others define as a class. Typi-
cally it searches for pre-defined features like peaks in data, Gaussians, Lorentz, etc... or more complex
structures such as the k-means clusters.

Particle physics usually requires classification, as it is the core for further analyses such as cross
section determination or mass measurements, but unfolding is also a task for machine learning. Classi-
fication is nothing more than estimating the following Bayesian posterior probability:

P(A|x) =
P(x|A) · P(A)

P(x|B) · P(B) + P(x|A) · P(A)
, (3.1)

which gives the probability that a measured quantity x of coming from class A instead of class B,
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Figure 3.1: An example plot for binary regression. (a) shows two gaussian distributions (red and blue line) and
samples drawn from them placed at ±1 targets. The ideal classification curve yANN what a neural network(NN)
would find is illustrated by the dashed green line. (b) shows that if the blue and red distributions were placed to
the value predicted by yANN then they appear as two peaks near the desired target values.

inverting the original condition. An example can be seen on fig. 3.1. However, it can be seen that
eq. (3.1) requires the knowledge of the probability that a certain class occurred, P(A) or P(B) which is
usually an uncertain quantity, the target of the measurement. The conditional probabilities, P(x|A) and
P(x|B) that describe the distribution of the measured quantity x are usually not known analytically, but
only a Monte Carlo approximation can be given. Exactly these probabilities need to be modelled by a
density estimator, or their ratio, P(x|A) · P(x|B)−1, by a binary regression. The following chapter is an
extension of the article based on the author’s work [1]

3.2 Theory of density estimations

There are numerous techniques to estimate probability densities from a given sample {xi} of measure-
ments. One popular method is histogramming, where the probability density is estimated from the
number of events falling into a bin with boundaries b j < b j+1 :

P(b j < x < b j+1|A) ≈
|{xi|b j < xi < b j+1}|

|{xi}|
.

Despite being simple, using histograms has its consequences. First of all, high dimensional his-
tograms are memory-consuming, as the number of bins goes with the power of the number of dimen-
sions. Secondly, histograms with fixed bin sizes come with fixed resolutions, introducing a bias into the
density estimation.

The same can be said for fixed kernel methods [17, p182], where the density is estimated with a sum
of normalised, non-negative K(y − x) kernels placed into the sample points xi:

gest(y) =
1
Ns

Ns∑
i

K(y − xi) .

The formula is actually an estimation for the following expectation value:
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3.3 Green’s function based density estimation

gest(y) =

∫
K(y − x)g(x) dx ,

where g(x) is the distribution underlying the {xi} sample. It is technically a convolution, and unless the
kernel is the δ- function, the gest will be a smeared version of g. Kernels allowing negative values can
also be used as a density estimator. However, the treatment of negative densities is problematic, and the
overall normalisation has to be solved, typically with a high dimensional volume integral.

Feature extraction is also considered as a kernel method, where the density is estimated with a set
of weighted base functions, which are pairwise orthogonal. Because of the orthogonality, the determi-
nation of the weights does not require more than an evaluation of scalar products, which are basically
estimations of expectation values. As there are infinitely many of these base functions, such a method
needs a stopping criteria.

Some adaptivity, or iterative parameter search, is then justified when one wants to estimate densities
both without bias and with finite computation time.

3.3 Green’s function based density estimation

To construct a density estimator, one can start from linear operators, as they are known to be simple to
evaluate. The integral that needs to be calculated can be thought as an expectation value, or a Monte
Carlo integral on the acquired sample:

lim
N→∞

1
N

N∑
i=1

Lp =

∫
L(x, x′)p(x′) dη(x′) ,

with a linear operator L, parameter vectors p(x) and probability measure η. A probability density esti-
mator of this form should be then an identity operator. With a post processing operation P, which makes
a scalar from the linear operators output this would look like the following:

µ(x) = I(µ) = P
(∫

L(x, x′)p(x′) dη(x′)
)
.

Identity operators can be constructed from Green’s functions of linear differential operators. A simple,
and well studied one is the Green’s function of the Laplace operator in dimensions n ≥ 3. With surface
of a unit sphare in n-dimensions, S n, the Green’s function G is the following:

∆G(x, x′) = δ(x − x′) , (3.2)

G(x, x′) = −
1

S n

1
|x − x′|n−2 .

For twice differentiable c(x) functions that disappear at the boundaries:

lim
x→∞

c(x) = 0 ,

the following integral identity is then true:
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3 Addressing correlations

c(x) = −
1

S n

∫
Rn

∆c(x′)
|x − x′|n−2 dnx′ (3.3)

=
1

S n

∫
Rn

∂µ′
1

|x − x′|n−2 · ∂µ
′c(x′) dnx′ . (3.4)

This still contains different derivatives of c(x) on the two sides of the equation, which is not very handy
when used for probability densities. An external differentiation makes it an identity for ∂µc(x):

∂µc(x) =
1

S n

∫
Rn

∂µ∂µ′
1

|x − x′|n−2 · ∂µ
′c(x′) dnx′ .

The amplitude of ∂µc(x) is still a scalar function, which can be identified with a probability measure
g(x). If, for a given g(x) there exists a c(x) function for which

|∂µc(x)| = g(x) (3.5)

is true, then with a field of unit vectors φµ = cµ/|c|, the following identity must hold:

g(x)φµ(x) =
1

S n

∫
Rn

∂µ∂µ′
1

|x − x′|n−2 · φµ
′(x′)g(x′) dnx′ . (3.6)

A c(x) function that satisfies eq. (3.5) exists for any differentiable g(x), the proof can be found in
Section 3.3.1. The particular integral operator in eq. (3.6) was derived from the Laplace operator, and
in three dimensions it is similar to the dipole interaction operator in electromagnetism. The auxiliary
φµ field can then be called a dipole field, and this acts a as parametrisation of the estimation. It is not
known a priori, but must be found iteratively by evaluating the left-hand side of eq. (3.6) for a given φµ
field, until a suitable set is found. A possible stopping criteria for the iteration is, when the expectation
value Eµ(x) has the same direction as the φµ(x) field at every x :

φµ(x) ‖ Eµ(x) =
1

S n

∫
Rn

∂µ∂µ′
1

|x − x′|n−2 · φµ
′(x′)g(x′) dnx′ . (3.7)

Even without tuning the φµ parameters, Eµ ≈ gφµ is true, since they can only differ by a divergent-free
vector field. To show this, one must do an integration by parts, so a divergence on gφµ appears:

Eµ(x) =
1

S n

∫
Rn

∂µ∂µ′
1

|x − x′|n−2 · φµ
′(x′)g(x′) dnx′ = −

1
S n

∫
Rn

∂µ
1

|x − x′|n−2 · ∂µ
′

(
φµ′(x′)g(x′)

)
dnx′ .

The boundary term is suppressed, since the derivatives of the probability density must also be suppressed
to zero at infinity. The divergence of Eµ is an external differentiation that only acts on the interaction
term, which becomes a delta function due to the properties of the chosen Green’s function:

∂µEµ(x) =

∫
Rn

−
1

S n
∂µ∂µ

1
|x − x′|n−2︸                    ︷︷                    ︸

∆G(x,x′)=δ(x−x′)

· ∂µ′
(
φµ′(x′)g(x′)

)
dnx′ = ∂µ

(
φµ(x)g(x)

)
.
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3.3 Green’s function based density estimation

Consequently, up to a divergence-free field they are equal. The actual difference between Eµ and gφµ
can be modelled by introducing a measure. With the square of the difference, it becomes the following
inequality: ∫

Rn

(
g(x)φµ(x) − Eµ(x)

)2
dnx ≥ 0 . (3.8)

Expanding the square, three terms can be identified:∫
Rn

dnx g2︸︷︷︸
invariant

−2 gφµEµ︸ ︷︷ ︸
dipole energy

+ E2︸︷︷︸
field energy

.

The dipole energy is an expectation value, but the field energy requires a volume integral. Fortunately, it
is strongly related to the dipole energy. In order to show how to simplify it, it must be explicitly written
out: ∫

Rn

dnxE2 =

∫
R2n

dnx dny
[
gxφx

µg
yφ

y
ν

] ∫
Rn

dnz∂xµ∂zη
1

|x − z|n−2 ∂yν∂zη
1

|y − z|n−2︸                                            ︷︷                                            ︸
Iint

. (3.9)

Although the Iint term contains two of the dipole interaction operators, with an integration by parts, a
term ∆ 1

|x−z|n−2 , familiar from the definition of the Green’s function appears. Because of eq. (3.2), this
term can be substituted with a delta function, but still under a partial differentiation. Evaluating this
integral gives a simple form for Iint, being equal to the dipole interaction operator:

Iint. = −

∫
Rn

dnz ∂xµδ(x − z)∂yν
1

|y − z|n−2 = ∂yν∂xµ
1

|x − y|n−2 .

Substituting this result back into eq. (3.9) one sees that the field energy equals the dipole energy, and
eq. (3.8) can be modified accordingly.∫

Rn

dnx E2 =

∫
Rn

dnx gφµEµ

∫
Rn

(
g(x)φµ(x) − Eµ(x)

)2
dnx =

∫
Rn

dnx
(
g2 − gφµ Eµ

)
≥ 0 . (3.10)

This form shows, that in order to minimise the difference between Eµ and gφµ, it is enough to min-
imise the dipole energy,

∫
gφµEµ dnx. Since the φµ dipole field has a constant length of unity, the

criterium for the minima is that φµ is pointing in the direction of the Eµ field at every x point. This justi-
fies the stopping criteria expressed in eq. (3.7). Although there might be several local minima where the
distance between Eµ and gφµ is not zero in the inequality (3.10), the global minimum (the equivalence)
can be reached for differentiable g(x). The proof is shown in the next subsection.

3.3.1 Existence of the optimum

The formula in eq. (3.6) can only be used as a density estimator if a c(x) scalar field exists with the
property that the amplitude of the gradient is exactly the density function in question, |∂µc(x)| = g(x).
Although the Green’s function identity in eq. (3.3) is true for twice differentiable functions, it is not
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3 Addressing correlations

trivial what function space the absolute value of the gradient of c(x) covers. It can be formulated in a
way that for a g(x) density function one has to find a φµ(x) field configuration for which the following
is true:

∂µc(x) = g(x)φµ(x) . (3.11)

The c(x) function is a potential of g(x)φµ(x), the line integral of g(x)φµ(x) has to be the same on every
possible path, or equivalently every possible loop integral is zero.∮

L

g(x)φµ(x) dlµ = 0 .

As it is possible to represent a loop integral with a sum of conjoined loop integrals, it is enough to show
that every infinitesimal loop integral can be annulled in the same time, or according to Stoke’s theorem
the n-dimensional curl is zero. A cube in n dimensions has n(n−1) faces, hence n(n−1)

2 independent loop
integrals can be imagined for a singe point, and this is the number of independent parameters the curl is
going to have. At the same time, the unit-length φµ(x) field has only n − 1 independent parameters for
every x, which makes it seem non-trivial to solve. The curl in question is the following:[

curl g(x)φµ(x)
]
νη

= ∂(ν)(gφµ)e(ν)
µ − ∂(η)(gφµ)e(η)

µ
?
= 0 , (3.12)

denoting the unit basis vector in the ν direction with e(ν)
µ , and the bracketed indices are not summed up.

It can be simplified by choosing the basis to be e(ν)
µ = δµ(ν):[

curl f (x)φµ(x)
]
νη

= ∂(ν)(gφ(ν)) − ∂(η)(gφ(η))
?
= 0 .

In this expression, not all derivatives of φµ appear; the ν component needs to be derived only in the ν
direction. Because of this, there are enough degrees of freedom to set the remaining components of
∂νφµ to a value which annulls all components of the curl. One possibility to do this is to zero out the
following subcomponents while solving the differential equation for φµ:

∂(ν)(gφ(ν)) = 0 ,

∂(ν)φ(ν)

φ(ν)
= −

∂(ν)g

g
. (3.13)

This must be solved with the constraint φµφµ = 1. The particular amplitude of φµ does not matter, since
it appears in a fraction. The question is, if φµ can be rotated along with the change of ∂νg/g while
moving in the ν direction. This can be done until φµ points in the ν direction, where a solution breaks
down if −∂νg/g is still non-zero. Nevertheless, it can be solved for a differentiable g(x), but the solution
should start from the points where |∂νg/g| is the largest.

For a g(x) which is non-differentiable, ∂νg would contain δ-functions, and the solution for φ should
reflect these. The problem there is that φµ should take a different value when approaching to such a
discontinuity from different directions:

lim
ε→0

φµ(x − ε) , lim
ε→0

φµ(x + ε) ,

making it impossible to solve eq. (3.13) with a single φµ field for all the possible discontinuities. To
show this, let’s consider the exception when g(x) is homogenous spherical surface:
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3.3 Green’s function based density estimation

g(x) =
1

S n
δ(|x| − 1) . (3.14)

In this case two possible solutions exist for c(x) to produce |∂µc(x)| = g(x). The first case is

c(x) =

0 if |x| > 1
S −1

n if |x| ≤ 1
,

while in the second case c(x) is non-zero outside the sphere. In these solutions the φµ dipole field is
only relevant where g(x) is non-zero, on the surface of the unit sphere, and should point inwards to or
outward from the centre. In accordance with the law of Gauss, such a gφµ dipole field would produce no
Eµ field inside and outside the sphere, but only on the surface, which models the g(x) density function
well. Any inhomogeneity in the density on the spherical surface would break such a cancellation of
the fields, invalidating the model. Something similar happens when the density in question is simply
a δ-function, which can be modelled as a limit of a spherical surface being shrunk to zero radius. The
different direction of φµ at different points of the surface can be maintained as long as the radius is finite;
when it reaches zero, the solution for φµ becomes ambiguous.

Although there might be solutions for eq. (3.11), or more importantly to the identity (3.6) outside
those described by eq. (3.13), it is safe to say that the density estimate is valid for differentiable density
functions.

3.3.2 Applicability of the method on a finite sample

As long as a φµ field was found that satisfies the stopping criteria in eq. (3.7), identity (3.6) can be used
for density estimations for any {xi} sample:

g(x) = lim
N→∞

∣∣∣∣∣∣∣ 1
NS n

N∑
i=1

∂µ∂ν
1

|x − xi|
n−2 · φν(xi)

∣∣∣∣∣∣∣ . (3.15)

On a finite sample however, the 1/r type singularity in the Green’s function may cause unnecessarily
large fluctuations. This originates from the low number of sample points around the point x where one
is interested in the density, which results in uncertainly estimating the integral in this layer. However,
synchronous with the assumption that the underlying g(x) probability density is differentiable, one can
assume that in this small sphere where the fluctuations come from, the g(x)φµ(x) = gφµ field is constant
and homotropic. For such a spherical surface the relevant integral in the estimator gives no contribution
to the centre at x:

∫
S n

∂µ∂µ′
1

|x − x′|n−2 gφµ
′ dnx′ = gφµ′∂µ

∫
S n

∂µ′
1

|x − x′|n−2 dnx′

= gφν∂µ

∫
S n

−
1

|x − x′|n−1︸         ︷︷         ︸
const.

r̂µ′ dS n

︸                       ︷︷                       ︸∫
S n

r̂′µ dS n=0

dr′ = 0 .
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This means that a small ∆R radius sphere can be excluded from the calculation in eq. (3.15), since its
contribution will go with ∂µ(g(x)φν(x))O(∆R) for any continuous g(x) and φ(x). The only exception
where the error is not O(∆R) is for δ functions, so these points have to be treated independently.

To have the fluctuations of the density estimation under control, the ∆R exclusion radius has to be
chosen in such a way that the sample points around this sphere still provides a meaningful estimate
for the integral of the area they represent. This requires that the first δr thick layer around this sphere,
for which the values between { 1

∆Rn ,
1

(∆R+δr)n } are still in the same order of magnitude, must contains
enough number of sample points for the integral estimation. The larger number of points means less
uncertainty, but it requires larger ∆R exclusion as well, which also assumes homogeneity on g(x) and
hence worsening the resolution.

The δr thickness of the layer around the excluded sphere can be determined from the behaviour of
the series of (1 + 1/n)−n, which quickly saturates around the value of 1/2 as a function of n. In the same
manner, the values coming from the sample points in the δr = ∆R/n thick layer are all in the same order
of magnitude. The volume of this layer can be related to the volume of the sphere:

Vlayer ≈ S n∆Rn−1δr = Vn∆Rn︸ ︷︷ ︸
Vsphere

δr
n∆R

= Vsphere
1
n2 .

In this approximation, one needs to choose a ∆R that covers Ndiscr = n2Nlarge sample points to have
Nlarge points in the first stable layer. Figure 3.2a shows an example dipole configuration for a Gaussian
distribution. When the smoothing applied the direction of the dipoles that satisfy eq. (3.6) follows
the centrally symmetric nature of the distribution and the evaluation gives a rather smooth and density
estimation on fig. 3.2b.

(a) 2000 points (red dots) from a two dimensional Gaussian distri-
bution. The black sticks represent the direction of the dipoles
at the sample points, and are shown after the ground state was
found.
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(b) Contour plot of the logarithm of the estimated densities of a
Gaussian distribution.

Figure 3.2: A Gaussian distribution as a sample with the kernel parameterisation, and the estimated density.
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3.3 Green’s function based density estimation

3.3.3 Finding the kernel parameterisation

Energy minimisation

It was shown above that the φµ(x) parametrisation that satisfies eq. (3.6) for a given g(x) density can be
thought as a dipole configuration that minimises the energy of the system. However, to use the method
for density estimation on a finite sample, some modifications have to be made to eq. (3.15). The φµ(x)
parametrisation can only be defined for a finite set of points, {φµi = φµ(xi)}, which have to be sampled
from the g(x) probability density function that is wished to be estimated. For these {xi} set of points, the
exclusion radii Ri

discr for a suitable Ndiscr can be defined implicitly as the following:∣∣∣{k : |xi − xk| < Ri
discr}

∣∣∣ = Ndiscr .

With the unit vectors r̂i j
µ that point from xi

µ to x j
µ, the dipole interaction operator becomes the Di jµν

interaction matrix:

r̂i j
µ =

xµi − xµ j

|xi − x j|
,

Di jµν =

∂µ∂
′
ν

1
|xi−x′j |

n−2 = (n − 2) nr̂i j
µ r̂i j

ν −δi j

|xi−x j |n
if |xi − x j| > Ri

discr

0 if |xi − x j| < Ri
discr

, (3.16)

with which the associated energy of the dipole system can be written as a simple matrix equation

U = −
1

2NS n

∑
i j

φiµDi jµνφ jν . (3.17)

The stopping criteria in eq. (3.7) can still be applied, requiring for a good set of {φµi} to be parallel
and unidirectional with the Ei

ν field it generates:

φµi ‖ Eµ(xi) =
1

NS n

∑
j

Di jµνφν j . (3.18)

Similarly to the continuous version, this can be found by minimising the dipole energy, for which
one possible strategy is the steepest descent method. The gradient of the energy function, taking into
account the φµiφ

µ
i = 1 constraint is

dφiη = −
∂U
∂{φ j}

= (1 − φiηφiµ)Eiµ = (1 − φiηφiµ)
1

NS n

∑
i j

Di jµνφ jν , (3.19)

which is eventually a rotation on the φµi dipoles until their directions match the directions of Eµi. The
steepest descent method typically requires a line search to assure not to overshoot the minima, but it is
not necessary here. The minima will necessarily have the parallel property shown in eq. (3.18), so it is
enough to check the angle between φµi and Eµi during the iteration, and choose the maximal rotation
angle not to overshoot the parallel phase.

One problem still needs to be addressed though, since Eµi changes every time φµi changed. The
answer is that Eµi rotates slower than φµi, since Eµi is a collective effect of many dipoles. The width
of distribution of the Eµ strengths is very probably non-zero, therefore the dipoles must be rotated with
different speeds, hence Eµi can not rotate everywhere with the same speed. Parallelism would be set
first for the dipoles s where Eµs is the strongest, and since every other place has smaller Eµ j | j,s field,
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3 Addressing correlations

all φµ j | j,s rotate more slowly than φµs, producing an Eµs that rotates slower than φµs. This behaviour
ensures that the correct φµ direction is set gradually from the higher density regions toward the less
dense ones. Still, a normalisation for the dφµ gradient-step in eq. (3.19) has to be chosen. If one wants
to iterate the dipoles in the canonical way,

φn+1
µi = φn

µi + λn dφµi ,

then it must be ensured that it is still a rotation, namely that the rotation angle αi is small enough that
the following approximation holds:

φn
µi · λ dφµi = cosαi ≈ 1 − α2

i .

This can be achieved if the rotation angles are 0 ≤ αi ≤ 0.1. The regularisation parameter, λn, must be
chosen in a way not to exceed this value.

Although following the gradient is successive, it may take too many iterations to reach the ground
state. This is because the density underlying the sample may have a long tail, where the density is
exponentially small, consequently the Eµ field is weak there causing very small rotation speeds. To
avoid this, it is useful to introduce a different type of iteration a few times after a longer period of steepest
descent steps. To make sure to shoot approximately into the good direction, one can use the direction
defined by dφµi = (1 − φµiφνi)Eνi, but with a random αi amplitude independently set at each point
between [0, 1], still taking care not to overshoot the parallel phase. An example for this implementation
can be seen on fig. 3.4a.
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(a) Rapid decrease of the maximal angle between a φµ dipole and
the Eµ field at the same point during the iterations for a sample
with 2000 points from a Gaussian distribution.
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(b) An energy minimum is found by the algorithm

Figure 3.3: The behaviour of fitness parameters during the energy minimasation.
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3.3 Green’s function based density estimation

Fix point search

An alternative method is based on the assumption that the solution is a fixed point. Although this is only
approximately true, as there is more than one solution because of the parity symmetry of the dipoles,
fast convergence can still be achieved. When eq. (3.6) is formulated with variable dipole amplitude, the
additional degree of freedom allows the system to escape saddle points during the minimisation and the
lack of constraints avoids the introduction of local minima. One formulation is

vout
µi =

1
NS n

∑
j

Di jµνv
in
ν j .

The vout terms can be used as the direction for the next iteration of vin, while the new amplitude of vin

must be relaxed towards 1/vout. When the iteration stabilises, vout
µ = f vin

µ and consequently |vout| =
√

f .

3.3.4 Evaluation

Centrally symmetric configurations

Once the stopping criteria is fulfilled in eq. (3.18), the {φµi} can be used for density estimation at any x
coordinate, with a customised exclusion distance:

|{k : |x − xk| < Rdiscr(x)}| = Ndiscr . (3.20)

The calculation of the Eµ field then goes as

Eµ(x) =
1

NS n

∑
j∈{ j:|x−x j |>Rdiscr(x)}

∂µ∂µ′
1

|x − x′j|
φµ′ j , (3.21)

and its absolute value approximates the density

g(x) ≈ |Eµ(x)| .

It was shown at the end of Section 3.3.1 that due to the law of Gauss a homogenous spherical sur-
face, where the dipoles point either inwards to or outwards from the centre, gives zero field inside and
outside the sphere. However it has a contribution on the surface, as it can be imagined that this imag-
inary spherical surface cuts the dipoles in half, enclosing all the same-sign charges and leaving out the
opposite-sign ones.

This feature introduces a problem into the calculation when the estimation is done on a sample, since
it requires certain regularisations to avoid fluctuations. When a certain area is excluded from the calcu-
lation where g(x)φµ(x) is not a constant and resembles more and more a centrally symmetric one, it can
happen that exactly the excluded area contains those the dipoles which would have given contribution
to the density estimation eq. (3.21). For such an area, the exclusion radius defined in eq. (3.20) has to
be shrunk, in order to include the necessary number of dipoles for the integral estimation.

To detect spherically symmetric regions, one can evaluate the following function within an exclusion
radius:

S (x) =
∑

i∈{i||x−xi |<Rdiscr(x)}

xµ − xiµ

|x − xi|
φiµ

1
Ndiscr

. (3.22)

In this formula, the dipoles within the exclusion radius are compared to the unit vector pointing to
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3 Addressing correlations

the centre of the excluded area. The extrema, S (x) = ±1, means that the configuration is spherically
symmetric, and it is expected to move towards 0 when moving away from the centre; while it should be
approximately zero for a homogenous configuration. Near the extrema then, the exclusion radius needs
to be shrunken approximately to the radius of the spherical surface in question. Since the contribution
in this case comes only from the surface of the sphere, which has one lower number of dimensions than
the sample, a certain decrease of Ndiscr can be tolerated. The result of this algorithm can be seen on
fig. 3.4a for the same two-dimensional Gaussian sample that was presented in fig. 3.2. The centrally
symmetric dipole configuration in the origin would result in an bad density estimation from the applied
exclusion, but is prevented by the shrinkage of the exclusion radius.
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(a) dipole method

Distance from origin
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

(b) nearest k-neighbour

Figure 3.4: The distribution of the estimated density versus the distance from the mean for a Gaussian distribution,
made with (a) the dipole method and (b) the nearest k-neighbour method.

Low density areas

As it may happen that the stopping criteria in eq. (3.18) only leads to a local minimum, it is possible that
the density model is either not normalised to unity or has a significant error according to eq. (3.8). The
requirement for a perfect solution for the φµ(x) field is that g(x)φµ(x) is curl-free, so one can imagine
the non-ideal solution as a curled field added to the ideal one. A prototype of a curled field may contain
only one dipole, while everywhere else the field is zero. A loop integral on a path which passes along
the dipoles while returns on a space with zero field would have no contributions to cancel the effect of
the dipole, hence this configuration has a non-zero curl. This means that the curled fields can be thought
of as dipole fields that were not cancelled out perfectly, as something that has a remnant polarisation.
Therefore whenever the configuration is not in the global energy minimum, it can be detected by looking
for sparse Eµ fields in very low, or preferably zero density areas. Furthermore, this also means that the
relative error is expected to be bigger in the low density regions, when the dipole configuration is not
in an ideal state. Figure 3.5 demonstrates how the relative error may increase in low density areas for a
Gaussian distribution. An example for a non-ground state configuration can be seen on fig. 3.6.
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3.3 Green’s function based density estimation
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(a) Spread of the dipole-based estimator over the spread of the k-
nearest neighbour estimator versus the radius
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(b) Relative error of the average of the dipole-based density esti-
mate compared to the true value.

Figure 3.5: Comparison of the spread of the density estimation with the k-nearest neighbour method and the
deviation from the true value.

(a) Sample of a heavily bent distribution (red dots) and its kernel
parametrisation (black rods).
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(b) Logarithm of the density estimate of the arc distribution. A
halo is clearly present towards the centre of the arc.

Figure 3.6: Example of a heavily curved and thin distribution. The distribution is too thin for the regularisation
and the parametrisation probably does not correspond to the real ground state.

To make the decision that there is remnant polarisation in a low density area, one needs a different
density estimator first in order to detect low density regions. Since the algorithm already requires finding
the Rdiscr exclusion radius for a sphere with Ndiscr points inside, it is economical to use a k-nearest
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3 Addressing correlations

neighbour algorithm. When one is interested in the density in a rarely populated region, it can be
checked if the closest Nlarge data points are in the shell with radii between [rclosest, rclosest(1+1/n)]. As the
volume of the sphere with radius rclosest and the shell are approximately the same, this would mean that
at the point of interest the density is significantly smaller than in the shell. Figure 3.7 shows a uniform
distribution in a rectangle, where the boundaries and edges represent a challenge to the dipole-based
density estimator. The density estimation decreases only with a power law around the density-steps, but
not so far from the edge the detection of low density areas turns on.

(a) A uniform distribution within a rectangle. The red dots
are sample points, while the black rods represent the kernel
parametrisation.
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(b) The logarithm of the estimated density of a uniform distribution
within x, y ∈ [−0.5, 0.5]. The estimation clearly drops down
around the edges, as expected, but shows a halo nearby and
cuts off the corners.

Figure 3.7: Parametrisation and density estimation of a distribution with edges and corners.

3.3.5 Initialisation and preprocessing

The solution for the φµ(x) field for a spherically symmetric g(x) distribution is known analytically, since
it is a superposition of the solutions for homogenous spherical shells. As it was shown for eq. (3.14),
the solution is a spherically symmetric φµ configuration, where all the dipoles point either inwards to or
outward from the mean of the distribution. It is possible then start the iterative search of the φµi field
from the assumption that the distribution is spherically symmetric, by setting every φµi dipole pointing
into the centre of mass of the sample.

As a preprocessing, the sample can be made more spherically symmetric with simple and computa-
tionally cheap transformations. One of the simplest is linearly rescaling the individual xµ coordinates of
the sample in a way that the empirical width become the same for all:

σ2
(µ) = 〈x2

(µ)〉 − 〈x(µ)〉
2 ,

x′i(µ) = xi
(µ)
σ(0)

σ(µ)
.
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3.4 Classification

Such a step is also required because the regularisation required for samples, as described in Section
3.3.2, does not differentiate between the coordinates for the calculation of the distances. Because of
this, it can happen that for the density estimation certain coordinates are not taken into account at all,
and the estimation becomes insensitive for these directions. An extreme example for this is a uniform
distribution in a two-dimensional rectangular region, where one of the sides is much narrower than the
other. Depending on the number of points, the exclusion radius can be bigger than the smaller side of
the rectangle. Artificially rescaling the smaller side would enhance the resolution in that direction while
worsening it in the others.

3.4 Classification

A density estimator can be used to estimate the likelihood of a given sample point belonging to a class,
hence it can be used for classification as it was described for (3.1). Following Bayes’ rule, given the
distribution of a signal s(x) = P(x|s) and a background b(x) = P(x|b) with the marginal probabilities that
they occur σs = P(s) and σb = P(b), the posterior probability that a given point x can be a signal event
is the simple fraction:

P(x is signal) = P(x|s) =
s(x)σs

s(x)σs + b(x)σb
. (3.23)

Several signals and backgrounds might be combined. With distributions si(x), b j(x) and occurrences σi
s

and σ j
b, a combined signal and background definition is sufficient:

1 =
∑

i

σi
s +

∑
j

σ
j
b ,

σs =
∑

i

σi
s , σb =

∑
i

σi
b ,

s(x) =
∑

i

si(x)
σi

s

σs
, b(x) =

∑
i

bi(x)
σi

b

σb
.

The posterior probability, eq (3.23) is not an ideal classifier though, since it contains the σs and
σb occurrences which are related to cross sections in particle physics. These are typically uncertain or
unknown quantities, and therefore it is better to construct classifiers without using them. One possibility
is to set the occurrences to be equal, σs = σb = 1/2, only for the response, and measure the real
occurrences from the data.

req(x) =
s(x)

s(x) + b(x)
.

Just like the posterior probability P(s|x) in eq. (3.23), this response function is also between 0 and 1,
but takes these extrema when either the signal or the background is pure:

0 ≤ req(x) ≤ 1

req(x) =

0 if s(x) = 0
1 if b(x) = 0

The response req is a probability variable, a Rn → R type function of x. The probability that its value
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3 Addressing correlations

is R can be expressed with an integral over the probability density of x, generally P(x):

P(req = R) =

∫
P(rex = R|x)P(x) dx . (3.24)

The response distribution of the real data d(x) might be different from the req(x) distribution from the
simulation, where σs = σb = 1/2 was true, since data is a superposition of both signal and background
with the real occurrences:

P(x) =

1
2 [s(x) + b(x)] for simulation
d(x) = σss(x) + σbb(x) for data

The only dependence of the occurrences is in the P(x) probability distribution, hence it is enough to
calculate the response for s(x) and b(x) independently, then scale it with the correct σs and σb when
they are determined. The P(req(x) = R|x) probability, since req(x) is a direct function of x, is just a
δ-function where the equality holds:

P(req(x) = R|x) = δ(req(x) − R) .

In other words, the probability in eq. (3.24) that req = R for a certain sample is nothing more than the
integral over a contour with the measure P(x). This contour can be simply expressed as

R = req(x) =
s(x)

s(x) + b(x)
=

1
s(x)
b(x) + 1

,

s(x)
b(x)

=
1
R
− 1 , (3.25)

which means that a specific response R selects a certain area where s(x)/b(x) is constant. Equation (3.23)
expresses the real probability that a certain x data point belongs to the signal class. When this P(x|s) is
used as a response or discriminator, a certain P = P(x|s) will select contours where the following is true:

P = P(x is signal) = P(s|x) =
s(x)σs

s(x)σs + b(x)σb
,

and therefore

σs

σb

s(x)
b(x)

=
1
P
− 1 . (3.26)

Since σs and σb do not depend on x, the contour selected by R in eq. (3.25) can be identified with a
contour labeled with P in eq. (3.26). The two functions are both monotonic in P and R, which means
that selecting events with the req(x) response or with the P(x|s) is equivalent, and a selected contour
would enclose the same number of signal and background events in both case. As a consequence, the
efficiency of signal selection as a function of the background rejection is the same, when the selection
is done with either R or P. The transformation between R and P is simple:

P(s|x) = P =
1

σs
σb

( 1
R − 1) + 1

In this sense every response which only depends only on the fraction of the signal and background
density s(x)/b(x) is equivalent, since the signal likelihood can be restored. Figure 3.8 shows the classi-
fication capability of the dipole-based density estimator on comparison with a regression method. The
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Figure 3.8: Comparision of the dipole based density estimator, being used to estimate signal likelihood with the
polynomial expansion of the theoretically best separation contours. The training input is twelve Gaussian peaks
as a signal with a flat background. Although the separation with the kernel method is fairly good, it is clear that it
does not behave well around the exponentially small Gaussian tails.

distribution of two responses are very similar, the main difference comes from the low density Gaussian
tails, where the dipole-based density estimation is expected to be most uncertain.

3.5 Implementation

The implementation of the density estimator algorithm was done in the C++ language using the ROOT
framework [18]. It provides the following features:

ROOT file handling

– reads, writes and merges the dipole containers in files;

– converts existing ROOT trees into the dipole format.

Create toy Monte Carlo samples
Several distributions can be requested from command line, with custom dimensions and sample
size:

– Gaussian;

– uniform;

– sum of three Gaussians;

– smeared arc distribution, to represent non-linear correlations.

Ground state search

– optimised and parallelised iterative parameter search;

– rotates the dipoles according to the energy gradient;

– stops when the maximal angle between a dipole and the Eµ field is smaller than 10−6.
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3 Addressing correlations

Initialisation
Initialisation is done with the assumption that the distribution is spherically symmetric, no pre-
processing is done.

Evaluation
The evaluation is a more sophisticated step than the ground state search:

– takes care of low density areas and centrally symmetric ones;

– Nlarge can be significantly smaller, hence the resolution is better;

– evaluation can be done on a list of sample points read from an external file;

– the result can be stored to and reread from ROOT files;

– weights are taken into account with a regression.

Classification

– cross-evaluates several samples;

– the likelihoods can be stored in or read from a file;

– uses a text file to determine which samples are signal and which are background or data;

– can handle cross sections;

– produces response histograms, efficiency vs. rejection curves.

Parallel processing

– using multi-core architectures via the pthread library and semaphores;

– multiple network nodes can be added through ROOT’s network stack.

3.6 Overtraining during regressions

Supervised machine learning can mean two tasks. One is parameter learning, regression of a latent
variable and predicting it from observables; the other is binomial regression where the target of the
learning is a discreet variable. This latter can be regarded as classification. Generally the regression for
two random variable-vectors, the observable X and the target Y with a probability distribution P(x =

X ∧ y = Y) can be regarded as a function f (x) that predicts the mean of Y from the observed X:

f (x) = E[y|x] =

∫
yP(y = Y |x = X) dy . (3.27)

For a discrete target, where Y can only take the values {yi}, eq. (3.27) splits up into a sum of probabilities:

f (x) =
∑

i

yiP(yi = Y |x = X) .

Using Bayes’ rule to express conditional probabilities from marginal probabilities, this can be expressed
with the condition for Y instead of X. For only two possible yi values, f (x) becomes a simple weighted
fraction of y0 and y1:

P(yi = Y |x = X) =
P(yi = Y ∧ x = X)

P(x = X)
=

P(x = X|yi = Y)P(yi = Y)∑
j P(x = X|y j = Y)P(y j = Y)

,
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3.6 Overtraining during regressions

f (x) =y0P(y0 = Y |x = X) + y1P(y1 = Y |x = X)

=
y0P(x = X|y0 = Y)P(y0 = Y) + y1P(x = X|y1 = Y)P(y1 = Y)

P(x = X|y0 = Y)P(y0 = Y) + P(x = X|y1 = Y)P(y1 = Y)
.

In this view, f (x) can be expressed with gi(x) = P(x = X|yi = Y) probability density functions belonging
to yi and with σi = P(yi = Y), the marginal probabilities of the occurrence of yi. This weighted sum can
be further simplified, as it is only a function of g0(x)/g1(x) and σ1/σ0 :

f (x) =
y0

g0(x)
g1(x)

σ0
σ1

+ y1

g0(x)
g1(x)

σ0
σ1

+ 1
. (3.28)

A regression to the mean is typically based on the χ2 loss function, Eχ2 . The sample with input values
{xi} and target values {yi} is modelled with a parameterised function f (x, p):

Eχ2 =
∑

i

(yi − f (xi, p))2 . (3.29)

The parameterisation p is selected via the minimisation of Eχ2 . When the f (x, p) function can param-
eterise any function, the minimum of Eχ2 will successfully approximate eq. (3.27) with enough sample
points. This is because if f (x, p) can approximate any function, then there is no constraint between the
values for two different points, x1 and x2, so f (x1, p) and f (x2, p) can be optimised independently. For
points xi = x1 the sum of squares that has to be minimised is the following:

Epart
χ2 =

∑
i∈{ j|x j=x1}

(yi − f (x1, p))2 .

This can be rearranged after expressing the squares:

Epart
χ2 =

∑
i∈{ j|x j=x1}

y2
i − 2yi f (x1, p) + f (x1, p)2

=
∑

i∈{ j|x j=x1}

y2
i + 2

 ∑
i∈{ j|x j=x1}

yi

 f (x1, p) + N f (x1, p)2

=
∑

i∈{ j|x j=x1}

y2
i + N

 f (x1, p) −
1
N

∑
i∈{ j|x j=x1}

yi


2

−

 1
N

∑
i∈{ j|x j=x1}

yi


2

.

The only variable, f (x1, p), appears within a single square, and the minimum is reached when f (x1, p)
equals to the yi average:

f (x1, p) =
1
N

∑
i∈{ j|x j=x1}

yi, when min
p

Epart
χ2

and
N = |{ j|x j = x1}| .

The derivation shows that the χ2 loss function in eq. (3.29) regresses to the mean, as the fitted function
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f (x, p) shows the estimated average of the y values distributed by the conditional probability P(y|x). But
this is only true if the population of y values for a single x is sufficiently large, so an average can be
calculated with sufficient precision. For a finite sample, where the distribution of x is not discrete,
this requires either a regularisation in x or a careful analysis of the p parametrisation, as none of the
p parameters should depend only on a few number of {xi, yi} sample point pairs. This is typically
circumvented by choosing a class of functions with only a few parameters: low degree polynomial
or a multi-layer perceptron neural network with only a few internal nodes. However, this is just a
rule of thumb, and introduces otherwise unwanted constraints into the fitting function, f (x, p). The
dependence of a parameter on a very few sample points is overfitting or overtraining. A way to check if
this happens usually requires separating the available data into independent training and testing samples,
and the procedure of early stopping requires minimising the loss function based on the training data, but
stopping the iteration when the loss function no longer decreases on the test sample.

The problem of overtraining remains when doing binary classification with a regression. The density
estimation technique, based on the dipole ground state search, explicitly requires regularisation and cal-
culates the components for eq. (3.28) independently. Although the parametrisation of the dipole system
primarily estimates probability densities of the two class, when combined for eq. (3.28) it also estimates
the conditional probability eq. (3.27) just as the regression. One may ask why this parametrisation is less
prone to overtraining? How come that for N sample points it can provide 2N(d − 1) parameters, much
more than what is advised to avoid overtraining? It is because the φµ(x) parametrisation is correlated,
the regularisation causes a smoothing in the φµ(x) field, so the direction of a φµ(xi) dipole at the point xi

can be more-or-less predicted from the nearby points. The nearby φµ directions are based on the same
information, with a little reweighting depending on the position. This correlation ensures that every φµ
dipole is supported by several data points, and depends on the distribution itself rather than the sample.
Removal or addition any of the sample points would not change any of the parameters significantly.
Figure 3.8a was produced with an independent training and testing sample. The central region of the re-
sponse is well-behaved, it is smooth as expected and signal purity increases in function of the response.
Nevertheless, the appearance of the small signal contribution at the very left side and the background
events at the very right side can be understood as a slight overtraining. These responses represent very
low signal and background regions accordingly, and those were detected and by the auxiliary algorithm
for low densities and have the largest uncertainties.
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CHAPTER 4

Principal curves and coordinates

The previous chapter dealt with a supervised machine learning algorithm that is capable of classifying
data when the class definitions are already available in a sampled way. Nevertheless, it is technically
possible to classify data without predefined classes via unsupervised learning. This typically means
clusterisation, but as it was discussed before, physics requires the detection of internal constraints and
correlations in measured data, which sometimes requires unsupervised parameterisation above the clas-
sification. This chapter aims to reformulate the heuristics in existing algorithms upon a fundamental
basis.

4.1 Principal curves

One of the most basic methods to take non-linear correlations into account is the method of principal
curves. The goal of the method is to define a curve that goes through the middle of an empirical
distribution. A simple definition by Hastie [19] is the folowing:

c(p), which satisfies min
p

∑
i

∆rclosest
i (p) , (4.1)

where c(p) is a set of curves, parametrized by p, and ∆rclosest
i is the closest distance of the ith data

point to the curve c(p). This definition still has some ambiguity. The parametrisation of all possible
curves is not possible without an infinite number of parameters, hence a static parametrisation would
not provide the fundamentally best result. With a non-static parametrisation one would need additional
optimisation criteria, which are not straightforward to select. One example is that the description of open
and closed curves are different due to their different topology, and an automatised choice between the
best closed curve and the best open curve can not be easily done. In such a case all possible curves would
have to be compared not just the ones that are accessible by the restricted parametrisation. An actual
implementation would be then heuristic, rather than fundamental. Another problem is the particular
choice of measure of the distance used in the definition. The components of a data event xµ may come
from fundamentally different sources, e.g. measurements made by different detectors. Rescaling one
component is then allowed with arbitrary units, which changes the position of the closest approach of a
given curve, opening the possibility to provide a different curve after optimisation.

A more fundamental problem is that this definition does not deal with higher dimensional hypersur-
faces, but nevertheless tries to regress a one dimensional curve on any input. It may give inappropriate
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results for input distributions where the shape is unknown, generally it can not be decided only from the
output if the distribution can be simplified into a curve or not.

4.2 Redefinition of principal curves

4.2.1 The dipole approach

Keeping all this in mind, one has a freedom to redefine the principal curve in eq. (4.1). First of all,
instead of ∆rclosest

i a strictly monotonous function of it can be used. For a decreasing function, one has
to look for the maximum in p instead of the minimum. This way any non-zero power of ∆rclosest

i is
allowed. This is beneficial, because the negative powers can be approximated with integrals, making
the equations easier to handle and avoiding the double minimisation. For a given curve c(p) one can
select a parametrisation along the curve, with parameter t, and approximate ∆rclosest

i with the following
integral:

(∆rclosest
i )−n ≈

t1∫
t0

1
|ri − c(p, t)|n

dt . (4.2)

In case there is only one point of closest approach, eq (4.2) is an approximation of (∆rclosest
i )−n for

n > 1. This is because the point of closest approach dominates the integral and every point further
is suppressed compared to that. The line integral in this definition shares similarities with the work
done along a path in the field of a point charge at ri with potential 1/rn+1. Such a parametrisation with
a 1/rn−2 potential in n-dimensions would have the benefit that the line integral only depended on the
endpoints. This would make the calculation simpler since only the endpoints would have to be varied.
Nevertheless, it is possible to modify the definition further and use the same parameters that vary the
curve to vary the potential in the same time. The simplest modification to a point charge that is also
direction dependent is the infinitesimal dipole. This integral can be reformulated as a path integral that
calculates the potential difference of two point charges at the end of the curve. Consider a unit dipole
with direction φi at every data point ri. The field of these dipoles will define a direction in every r point
in the input space:

Eµ(r) =
∑

i

nr̂µr̂ν − δµν
|ri − r|n︸        ︷︷        ︸

dipole interaction term

φiν . (4.3)

From a given starting point s a line integral can be performed along these directions, realising a general
curve

cµ(s, t)[ri, φi] = sµ +

t∫
0

Êµ(c(s, t′)) dt′ .

As it was noted about eq. (4.2), the dipole interaction term in eq. (4.3) can be used in the estimation for
the closest approach of c(p) to a point ri:

(∆rclosest
i )−n ≈

t1∫
t0

∂cµ(p, t)
∂t

nr̂µr̂ν − δµν
|ri − c(p, t)|n

φiν dt (4.4)
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4.2 Redefinition of principal curves

Here ∂c(s,t)
∂t dt had to be used in order to make the integral independent from the t parametrisation.

This approximation is only valid when the tangent vector of c(p) nearby the point ri is parallel to the
dipole φi at this point, otherwise it does not take its extremum near this point, but elsewhere. In the
following it will be shown that this is true for the principal curve. As for negative powers of rclosest

i the
principal curve has to be maximised, its definition becomes the following:

cµ(s, t)[ri, φi], which satisfies max
s,[φi]

∑
i

t1∫
t0

Eµ(c(s, t))
nr̂µr̂ν − δµν
|ri − c(s, t)|n

φiν dt .

It can be simplified as

cµ(s, t)[ri, φi], which satisfies max
s,[φi]

t1∫
t0

Eµ(c(s, t))Eµ(c(s, t)) dt .

This contains the square of the field strength, but since Eµ(c(s, t)) =
∂cµ(s, t)
∂t

, and
∣∣∣∣∣∂c(s, t)

∂t

∣∣∣∣∣ is the

distance on the curve by changing the t parameter by a unit, the overall integral is the potential difference
between the endpoints of the curve. An approximation can be introduced after reordering the equation:

t1∫
t0

Eµ(c(s, t))Eµ(c(s, t)) dt =
∑

i

φiµ

∫
L

nr̂µr̂ν − δµν
|ri − c(s, t)|n︸         ︷︷         ︸

∂µ
r̂ν

|ri − c(s, t)|n−1

Êν(c(s, t)) dr ,

where a directional derivative appears, which can be integrated out with a line integral along the curve.
In case the endpoints are not the same, the solution is that the integral is substituted with the field from
a point charge at the endpoints, Φt0µ and Φt1µ. This can be denoted as

t1∫
t0

Eµ(c(s, t))Eµ(c(s, t)) dt =
∑

i

φiµ[Φt0µ(ri) − Φt1µ(ri)] .

One should maximise this quantity to obtain the parameters for the principal curve. This result can
be interpreted as the energy of the {φi} dipole system in the field of two point charges at the endpoints
of the curve t0 and t1. These points are still related to the dipole configuration, but only indirectly.
They should be a valid endpoint of curves that the field of the dipoles determine. Around these points
the dipoles will be aligned and point directly to the point charges. The explicit way to assure that
the dipole configuration in the maximisation process selects these endpoints would be a constrained
extremum search. A technically easier way is to approximate the field of the point charges with the
dipoles themselves, and then do the maximisation. This can be expressed as the self energy of the
dipole system:

c(p, t), where max
[φi]

∑
i j

φiµ
nr̂i jµr̂i jν − δµν

|ri − r j|
n φ jν . (4.5)

Performing this calculation is technically less difficult than doing line integrals at every step of the
iteration, not to mention that sometimes the lines are infinitely long. The requirement for the ground
state of the system ensures that it is stable, and as a consequence the field generated by the dipoles at
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the data points are parallel to the dipoles themselves. This is consistent with the definition of ∆rclosest in
eq. (4.2).

This formulation of a principal curve has many benefits:

• selects the best curve from an non-constrained set;

• increasing the number of data points refines the curve;

• the definition does not requires time-consuming calculations of running through curves;

• provides a parametrisation of the data instead of a curve;

• the field lines are defined on the full input space;

• such a parametrisation can be useful on datasets which inherently consist of either several curves
or none;

• since the field lines generated by a dipole system are not crossing each other, they can be used as
a parameterisation of the data.

However, in the definition of the dipole-based principal curves a technical issue arises with the choice
of negative powers of ∆rclosest when applied together with the maximisation criteria of the sum. The
closest possible distance of a curve and a data point is zero, so while ∆rclosest approaches 0, its negative
power (∆rclosest)−n diverges, making it impossible to perform the calculation. It is then necessary to
introduce regularisation into the calculations, to provide smooth curves. To avoid artificial scales, a
fixed number of dipoles can be excluded from the calculation around the point for which the Eµ is
calculated, a similar technique to the one that was described in section 3.3.2. Such a regularisation
would disappear in the continuum limit, which makes it possible to define the principal curve with using
a probability density function f (r) instead of a data sample {rµi}. It has the benefit that it is normalised
and its properties can be investigated in the analytic form without the statistical noise. Applying the
regularisation to eq. (4.5) while denoting the dipoles as a vector field φµ(r) defined at every space point,
the formula becomes the following:

cµ(p, t), where max
[φµ(r)]

"
RR

f (r)φµ(r)
nr̂µr̂ν − δµν
|r − r′|n

f (r′)φν(r′) dnr dnr′ . (4.6)

In this limit the only problem remaining is the infinite dipole self interaction. Nevertheless, the
result of the integral is definitely finite, since the 2n-dimensional integral of a 1/rn singularity is finite.
Similar reasoning is true for the line integral on the field, as the field calculation in eq. (4.3) results in a
logarithmic singularity, which becomes finite after integration.

4.2.2 Open and closed curves

The curve parametrisation described in the previous section is very similar to the density estimation
technique described in Section 3.3. The difference is that the principal curve requires maximisation of
the dipole energy, while the density estimation needs minimisation. The two are definitely connected,
and it is possible to take advantage of this relation. When the energy is minimised, the curl of the dipole
field φµ is also minimised, as it should be zero in the ground state. This means that the dipoles would
not form a closed loop, also not the generated Eµ field, but they should end either at infinity or at places
where Eµ is zero. These are typically areas which either have a pole-like spherical symmetry in the φµ
configuration or contains a domain wall.
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4.2 Redefinition of principal curves

How to create closed curves from the open curves? It is possible to create quasi-closed loops with
curl-free dipole fields, but it requires more than unit dipoles. Figure 4.1a shows an ideal parametrisation
for closed loops that do not intersect and act like a phase: an angle that starts from a certain value and
ends at another one for every curve around the same axis, β ∈ [0, 2π]. As it was described for the
density estimator, the identity in eq. (3.6) holds for the energy ground state, when the g(x)φµ(x) field is
a gradient of a potential field c(x), so g(x)φµ(x) = ∂µc(x). Such a potential is similar to a broken helix
that only contains one curl and has drop between 2π → 0, as can be seen on fig. 4.1b. The axis will
remain an ambiguous point, but it has a nearly zero measure. The constant drop in c(x) will correspond
to a δ-function with homogenous density on a surface that has one end at infinity and one at the axis.
Individually neither the continuous part Cµ(x), nor the δ-function-like dipole-surface s(x) satisfy the
Green’s function based vector identity, but their sum is a gradient of a scalar c(x) function:

∂µc(x) = Cµ(x) + φµ(x)δ(s(x))2π .

2π

2π

0

0

2π→0

(a) A possible parameterisation of closed curves. (b) Helix-like potential belonging to a closed curve param-
eterisation.

Figure 4.1: When closed curves are parameterised with a circular phase a surface appear where the parameters
promptly change. In the case this parameter is represented by a scalar potential, this sudden change appears as a
step function. The potential at the central axis is undefined.

The δ-surface may be rotated anywhere around the axis, but it has to be perpendicular to the incident
curves, in order to ensure that the real curves are still closed loops. There can be many δ-surfaces
simultaneously, with different weights which add up to 2π, the maximal phase. The distribution of these
s(x) surfaces can be done in a way, that its density corresponds to the density of the Cµ(x) continuous
part, since the loop integral of the continuous parts were required to be a constant 2π. Evidently this
leads to a paradox, that a rotational potential field can only be constructed with a help of a secondary field
that cancels its effect, hence giving zero field-strength. The configuration is very similar as requiring
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that the produced field Eµ should be antiparallel to the field φµ, practically that the system should be in
an energy maxima. Overall, this is not a potential field, since the φµ field is not curl-free at the axis.
The reason why maximising the energy of a dipole system still leads to field lines that are looped, and
have non-zero strength is subtle. For a finite number of sample points, the dipole interaction operator
has to be regularised, implicitly requiring smoothness of the dipole field. This requirement is true for
the ground state, but as the example above shows, it is not true for the energy maxima. The used dipole
operator,

Dµνi j =


nr̂i jµr̂i jν − δµν

|ri − r j|
n if |ri − r j| > ε

0 if |ri − r j| ≤ ε

, (4.7)

needed to be regularised in order to get rid of the singularity. When this matrix is actually derived
from the Green’s function of the Laplace operator, because of the differentiation applied on the absolute
function in the denominator, it has an additional δ-function term:

∂µ∂µ′
1

|x − x′|n−2 = (n − 2)
nx̂µ x̂µ′ − δµµ′

|x − x′|n
+ (n − 2)S nδµµ′δ

n(x − x′) .

This δ-term is also ignored when the function is regularised, and requiring smoothness on a finite sample
would implicitly choose something. One of the several possible choices is the mangetic dipole. As
fig. 4.2 illustrates, in three dimensions the microscopic magnetic dipole differs from the electric dipole
only by the scale of the δ-function:

De
µµ′ =

1
4π

3x̂µ x̂µ′ − δµµ′

|x − x′|3
−

1
3
δµµ′δ

3(x − x′) ,

Dm
µµ′ =

1
4π

3x̂µ x̂µ′ − δµµ′

|x − x′|3
+

2
3
δµµ′δ

3(x − x′) .

The latter equation determines the magnetic field for infinitesimally small, closed loop currents. Al-
though in three dimensions the magnetic dipole parameterisation is the one that is capable of describing
closed curves, this can not be extended trivially to higher dimensions. Both the curl and the vector cross
product require a n-dimensional vector and a multi-index tensor, a 1-form and an (n−2) form, in order to
produce a pseudo-vector (n − 1)-form. This practically means that several additional fields are required
to produce closed curves.

However, the regularised interaction matrix in eq. (4.7), when looking for an energy maxima, can
be regarded as an extension of the magnetic dipole operator in higher dimensions, and at least in the
3-dimensional case it provides closed curves. The derivation of the 2-dimensional form is different, due
to the logarithmic potential, but leads to a formally similar result. For an example, see fig. 4.3. In higher
dimensions though, for distributions that are not inherently curve-like, the method fails to provide the
expected result. Figure 4.4 shows that for a three dimensional Gaussian distribution the algorithm fits a
curve that is although closed, but incapable of representing the symmetry of the peak. This is because
the method inherently looks for thin, curved one-dimensional distribution and interprets anything as a
sum of these, leading to the knotted feature.
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4.2 Redefinition of principal curves

(a) electric dipole (b) magnetic dipole

Figure 4.2: The far field of an electric and a magnetic dipole is identical, but the microscopic behaviour is different.
The electric field becomes divergent nearby the sources while the magnetic field is rotational. The electric field
also has a different direction between the two poles, a step in the potential, which is missing from the magnetic
field.

(a) A curved distribution example. (b) Example of a peaked distribution.

Figure 4.3: The dipole method is capable of finding the symmetries of the distribution, providing a parameterisa-
tion. (a) shows thin, curve like distribution, where although the dipole system is in a local maximum the field lines
can be followed with fourth order Runge-Kutta method, giving approximately closed curves. On a non-curved
distribution (b), the method provides a parameterisation for the phase.
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(a) front view (b) side view

Figure 4.4: The principal curve finding on a non-curved distribution, where the results are hardly interpretable.
Although the dipole system is in a energy minimum, it is just partially smooth, as the method tries to force a
one-dimensional parameterisation for the distribution. This leads to a tube-like coordinate system tightly packed
into the shape of the 3-dimensional distribution.

4.3 Supervised and unsupervised machine learning

As it was described in the previous section, a principal curve finding algorithm may be inadequate
for data sets which contain structures other than parametric curves. The algorithm can be prepared
though to look for hyper-surfaces independently of their dimensionality. Such an algorithm would
create a new mapping of the distribution, providing new coordinates. A good guiding principle can be
finding the symmetries of the system, coordinates that show the self-similarity of the distribution. A
one dimensional symmetry would show up as a translational invariance of the density, for continuous
distributions:

f (x(t, u)) = f (x(t + dt, u)) , (4.8)

∂ f (x(t, u))
∂t

= 0 .

The same requirement for every other coordinate implies the independence of the coordinates:

∂2 f (x(t0, t1, ..., tn))
∂ti∂t j

= 0 ,

f (x) dnx = P(X ∈ [xµ, xµ + dxµ)) =
∏

i

P(Tν ∈ [ti, ti + dti)) =
∏

i

gi(t) dnt ,

where g(ti) represents the probability distributions along each ti coordinate. Every non-discrete one-
dimensional distribution can be transformed into a uniform distribution, by solving

g(ti) dti = κi dci

with ki arbitrary constants. With the help of the independent coordinates f (x) can be transformed into
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an n-dimensional uniform distribution:

f (x) dnx = κ dnc .

Although this equation does not contain the boundary conditions, namely that all cν coordinates are
finite and must be between cν ∈ [C0

ν ,C
1
ν] with the condition that

∏
ν(C1

ν − C0
ν) = 1

κ and the boundaries
are rectangular ∂Ci

ν/∂cµ = 0, the equation can actually be solved as a partial differential equation:

f (x) = κ det
(
∂cν
∂xµ

)
. (4.9)

The determinant in eq. (4.9) has n(n−1) degrees of freedom, hence there are numerous ways to satisfy
the equation. The constraint from the boundary conditions described above has small importance, since
once the differential equation was solved for a certain irregular boundary, it can be later transformed
into a rectangle. A meaningful solution would also require that the new coordinate system is smooth
enough, and the coordinate lines do not cross each other too often. Such a crossing typically looks like
a pole on a map and behaves like a point-like boundary, hence it is beneficial to decrease their number
to as low as possible. This requirement is equivalent of requiring all the ∂c(µ)/∂xν (for fixed µ) fields to
be curl-free at most of the places.

The ∂c(µ)/∂xµ fields can be modelled with the help of dipole fields, where the various ground states
can provide smooth and mostly curl-free field lines. The vector identity in eq. (3.6), derived from the
Green’s function identity being true for the lowest ground state, can be used as a base to create the
approximations for the mapping:

∂µc =
1

S n

∫
Rn

∂µ∂ν
nr̂µr̂ν − δµν
|r − r′|n

∂νc dnr .

There are several possibilities to introduce the density and the vector fields into the equation. When
the f (x) density is not known exactly, and similarly to the cases in the previous sections only a sample
is given, a self consistent equation can be created that is true for the ground state. Let’s assume that n
vector fields satisfy the criteria of being curl-free, with v(ν)

µ = ∂µc(ν) for the coordinates in the ν direction.
The v(ν)

µ fields can be regarded as the legs of a local, flat coordinate system, the vielbein:

v(ν)
µ =

1
S n

∫
Rn

∂µ∂µ′
nr̂µr̂µ′ − δµµ′

|r − r′|n
v(ν)
µ′ dnr′ .

When the coordinates are chosen wisely, and f (x) = det(vνµ) is true, it can be inserted into the equation
above:

v(ν)
µ =

1
S n

∫
Rn

∂µ∂µ′
nr̂µr̂µ′ − δµµ′

|r − r′|n
f

det v
v(ν)
µ′ dnr′ . (4.10)

This equation is self consistent. It can be true for a certain choice of v(ν)
µ fields, but it is not an energy

ground state of a dipole system anymore. Nevertheless there is a chance that it can be found as a fixed
point of the equation, and can be used on samples after discretisation:

v(ν)
iµ =

1
NS n

∑
j∈{k||ri−rk |<Ri}

∂µ∂µ′
nr̂i jµr̂i jµ′ − δµµ′

|ri − r j|
n

1
det v j

v(ν)
jµ′ (4.11)
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To be a real fixed point, it is required that only one solution exists. This is definitely not true, since
reversing the direction of any v(ν)

µ field in a solution is also a solution. Nevertheless, a fix point search
can be convergent when started nearby a solution and the gradient around the solution is below certain
limits.

To investigate if this is the case for the eq. (4.10) and eq. (4.11) one has to analyse them further.
The determinant in the denominator can always be expressed as a scalar product of one of the column
vectors in the matrix with a (n − 1)-form pseudovector created from the other columns:

det vκη = v1
µ1
∧ v2

µ2
∧ ... ∧ vn

µn

= v1
µ1
εµ1µ2...µnv

2
µ2
...vn

µn︸             ︷︷             ︸
pµ1

= v1
µ1

pµ1 ,

where ∧ symbolises the wedge product, the antisymmetrised tensor product. It is equivalent of multi-
plying the vectors with the totally antisymmetric n-dimensional Levi-Civita tensor, εµ1µ2...µn . The full
determinant also depends on the amplitude of each column vector:

det vκη = εµ1µ2...µn v̂
1
µ1
...v̂n

µn
|v1|...|vn| . (4.12)

This means that the discrete and the integral version of the mapping equations, eq. (4.10) and eq. (4.11)
do not depend explicitly on the amplitude of the dipole vectors for each leg. The equation for the νth leg
depends only on the unit dipole v̂(ν)

µ and on the amplitude of the other legs. The remaining part of the
determinant in the denominator acts as a weight on the density, emphasising a certain point depending
on the amplitude and direction of the other, ν′ , ν legs. This determinant represents the only interaction
between the legs, when looking for the self-consistent solution, and otherwise it is very similar to the
equations described in the previous sections, and bears similarity with the dipole ground state search.
Since the ground state search for the system of unit dipoles is a fixed point search, one can argue that
the solution for eq. (4.11) can be found as a fixed point search nearby the solution, if the determinant
converges faster than the direction of the v̂(ν)

µ dipoles.
The solution for eq. (4.11) is still not a ground state of a dipole system, but for a fixed determinant

the individual legs can be regarded as ground state configurations. Nevertheless, unlike the individual
legs the full system is not an optimum for a single preferred variable; for example it can not be said that
it is the energy minimum of the sum of energies for the individual legs.

4.3.1 The boundary conditions

The integral in the Green’s identity is performed on the full space, as it is valid for functions with
vanishing tails:

c(x) =

∫
Rn

G(x, y)∆c(y) dny .

It is a solution of the Poisson differential equation with boundary conditions that both the value of c(x)
and its derivatives are zero at infinities. Nevertheless, if c(x) denotes a coordinate it may only be defined
on a finite volume and be undefined outside. As it was described in Section 4.2.2 these boundaries in
c(x) would be seen as a δ-function in the derivatives, hence these cases have to be treated with extra
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caution. A different problem is that although the continuous equation (4.10) is defined everywhere,
since it contains f (x)/ det vκη explicitly, the discrete version eq. (4.11) can only be defined on points
where the density f (x) is not zero. Where f (x) = 0, the f (x)/ det vκη = 1 should be compensated with
infinitely large vκη, which can only be avoided by setting up some boundaries.

The identity contains a surface term when the integral is performed only on a truncated volume,
leaving the parts where the second derivatives of c(x) are zero:

c(x) = −
1

S n

∫
V

1
|x − x′|n−2 ∂µ

′∂µ′c(x′) dnx′

=
1

S n

∫
V

∂µ′
1

|x − x′|n−2 ∂µ
′c(x′) dnx′ −

1
S n

∫
S

1
|x − x′|n−2 ∂µ

′c(x′) dS µ′ .

The identity for the first derivative of c(x) becomes

∂µc(x) =
1

S n

∫
V

∂µ∂µ′
1

|x − x′|n−2 ∂µ
′c(x′) dnx′ −

1
S n

∫
S

∂µ
1

|x − x′|n−2 ∂µ
′c(x′) dS µ′ .

The surface term gives a finite contribution to ∂µc(x) for the points within the volume, and behaves
like a field of electric charges, and this should also be present in the discrete equation (4.11). This is
something undesirable, since it does not allow to do the calculation on the sample points exclusively, but
would require an approximation for the integral on a – typically unknown – surface. When combined
with the boundary conditions for the c(x), that it should start from C0 and end at C1 independently of
the other coordinates, it means that on most of the surface ∂µc(x) must be orthogonal to the normal
of the surface, while at other places it has to be parallel. At these latter points, where c(x) = C0

and c(x) = C1, point charges are exclusively either positive or negative, and the full system looks
like field lines between two capacitor plates. The extreme example of this would be the closed loops,
where the two oppositely charged capacitor plates overlap, and the full system can be modelled with
the approximation of magnetic dipoles, as it was described in the previous section. For a non-looped
coordinate, when the surface term is neglected, the system can still be approximated as a non-ground
state solution with a remnant polarisation.

4.3.2 Considerations towards finding the solution

The naive way to solve the Jacobian identity eq. (4.11) is to iteratively feed back the results of the dipole
system into the equation again, and wait for stability, an equilibrium. Unfortunately numerical errors in
the calculation introduce instabilities, and the iteration may not converge. Such a numerical error may
arise in centrally symmetric regions, as it was described in Section 3.3.4, which should be detected and
corrected during the iterative search, but nevertheless may contain inaccuracies.

Another method to solve such an equation is the minimisation of differences between the left and the
right side of the eq. (4.10):

E(ν)
µ =

1
S n

∫
V

∂µ∂µ′
1

|x − x′|n−2 v
(ν)
µ′

f
det vκη

dnx′
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and solving with

min
v(ν)
µ

∑
ν

∫
Rn

(
v(ν)
µ − E(ν)

µ

)2
dnx . (4.13)

The problem with this formulation is that its gradient contains not only an numerically unresolvable
volume integral over Rn, but also contains a difficult derivative of the determinant and f (x) on a non-unit
power. This latter feature means that the gradient of eq. (4.13) can not be estimated with an expectation
value on a sample, but the approximate knowledge of f (x) density is also required. An other apparent
problem with this formulation is the normalisation of the v(ν)

µ legs. Because of the use of det vκη in the
equation, it is not a linear function of v(ν)

µ anymore, hence scaling the legs up with a constant factor would
not be a solution. For this reason, the solution for eq. (4.11) can only be found with allowing a variation
of a scale between the left side of the equation and the results of the right side. This can be fulfilled with
comparing only the normalised v(ν)

µ with a normalised E(ν)
µ . However, any kind of normalisation would

suffice. For example, fixing the spatial integral of either |v(ν)
µ | or |v(ν)

µ |
2, and comparing it with |E(ν)

µ | or
|E(ν)
µ |

2 accordingly only differs slightly in the measure of the difference between v(ν)
µ and E(ν)

µ .
It is also allowed to do a weighted normalisation, which is much easier to perform on samples:∫

Rn

f (x)|v(ν)
µ |

2 dnx = const. and
∫
Rn

f (x)|E(ν)
µ |

2 dnx = const. ,

instead of ∫
Rn

|v(ν)
µ |

2 dnx = const. and
∫
Rn

|E(ν)
µ |

2 dnx = const. ,

because the latter can only be calculated with the knowledge of the f (x) density when it is calculated
for a sample.

Rather difficult minimisation functions can be constructed, where the gradient can be calculated with-
out the knowledge of the f (x) density. Consider the following formulation of the equation, where dif-
ferent degrees of freedom can be varied:

E(ν)
µ =

∫
V

∂µ∂µ′
1

|x − x′|n−2 v
(ν)
µ′ f dnx′ , (4.14)

and where the density-determinant relation should be introduced as a constraint. An approximation for
the determinant, where all the legs of the coordinate system are perpendicular can be considered as an
upper limit:

det Eκ
η ≈

∏
ν

|E(ν)
µ | ,

which is now calculated from the output E(ν)
µ field, rather than from v(ν)

µ . This is actually desirable, when
one is not looking for the exact solution of eq. (4.11), but only for a model of the coordinate lines. The
normalisation for the fields can be chosen as the following:

∫
Rn

f
|E(ν)
µ |

det Eκ
η

dnx =

∫
Rn

1∏
ν′,ν
|E(ν′)|

= N(ν) ,
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∫
Rn

f |v(ν)
µ | d

nx = 1 .

This latter normalisation can be done after every iteration, and it can be assumed that it is always true.
What has to be achieved, is the equivalence between the v(ν)

µ and the E(ν)
µ fields. In the case of the

constrained eq. (4.14), a minimisation function may look like the following:

m(vνµ) =

∫
Rn

f
∑
ν

 E(ν)
µ

N(ν) det Eκ
η

− v(ν)
µ

2

dnx ,

where f could be any positive weight function, but let’s choose the density for convenience. The gradient
of m(vνµ) will then have three rather complex terms:

∂m
∂vκν(r)

= − f (r)
 E(κ)

ν (r)
N(κ) det E(r)

− v(κ)
ν (r)

 (4.15)

+ f (r)
∫

f (r′)
1

det E(r′)N(κ) Mµ′ν(r − r′)
(
δµµ′ − Ê(κ)

µ Ê(κ)
µ′

)  E(κ)
µ (r′)

N(κ) det E(r′)
− v(κ)

µ (r′)

 dnr′

+ f (r)
∑
λ,κ

∫
f (r′)

E(λ)µ(r′)

det(r′)N(λ)2

 E(λ)
µ (r′)

N(λ) det E(r′)
− v(λ)

µ (r′)

 dnr′ ·
∫

f (r′′)
1∏

ι,λ
|E(ι′)(r′′)|

Mµ′ν(r − r′′)Ê(κ)
µ′ dnr′′

All three terms, with the exception of the leading f (r), can be calculated with using expectation values.
But due to the non-linearity of the problem, the three terms depend differently on the normalisation of
the v(κ)

ν fields, hence it can be arbitrarily chosen whether the first or the second two terms are dominant.
The minima does not scale with the normalisation, but during the minimisation the last two terms can
be neglected. Using only this part of the gradient will always get closer to the minima in some extent.
It should be noted that an additional term is missing, namely the constraint that the different legs should
be perpendicular, as it was assumed for the approximation of the determinant.

4.3.3 Two ways of determinant estimation

Although eq. (4.15) shows that the solution for eq. (4.11) can be found by minimisation, it is still prone
to numerical errors. This can be demonstrated with analysing the leading part in eq. (4.15),

∂m
∂vκν(r)

= − f (r)
 E(κ)

ν (r)
N(κ) det E(r)

− v(κ)
ν (r)

 .
As it was described in Section 3.3.4, the centrally symmetric regions in the discretised equations typi-
cally underestimate the densities. Similarly, eq. (4.11) underestimates the output field strength compared
to the continuous eq. (4.10). This is true not only for the legs where the grounds state is sought, but
also for the energy maxima. When one leg forms such a configuration, assuming the other legs are
perpendicular to it, it is likely that these other legs are also non-homogenous; hence in small regions
all the E(ν)

µ field strengths are underestimated. As a consequence, the determinants are underestimated
with a much greater power, giving a unnecessarily large contribution to the gradient in this region. In
the next step of the iteration, these regions will have the dominant v(ν)

µ input, like a peak, and will give
the dominant contribution for the E(ν)

µ fields at most of the places. This behaviour makes the iteration
unstable, and some correction is inevitable.
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4 Principal curves and coordinates

The detection of centrally symmetric and inhomogenous regions, described in the Section 3.3.4, and
the dynamic change of the exclusion area can shrink the area where the determinant is underestimated,
but it can not make it disappear. This technique only moderates the problem, but it is not a final solution.
As it was mentioned in the previous section, eq. (4.11) looks like a ground state configuration of a
dipole system, for fixed determinants. This suggested that an iterative search might be stable when the
used determinants converge faster than the dipoles itself, and this situation is favourable even if the
determinants converged to crude approximations.

Orthogonal upper limit

The full determinant in eq. (4.12) depends not only on the magnitude of the E(ν)
µ fields, but also on the

angle between them. This is a large source of discrepancy, since despite that the angles between the
v(ν)
µ fields can be constrained during the iterations, the E(ν)

µ angles are always a product of a complex
function which is rather hard to set constraints on. Uncertainty in the direction of any of the E(ν)

µ fields
can introduce a factor between [0, 1] on the determinant, eventually causing division by nearly zero in
eq. (4.11). This supports the idea to estimate the determinants only with the absolute values of E(ν)

µ :

det Eκ
η ≈

∏
ν

|E(ν)
µ | .

This implicitly assumes that the E(ν)
µ fields are perpendicular to each other, or in other words, that

the new coordinate system has perpendicular legs everywhere. This can be maintained approximately,
by keeping the v(ν)

µ legs perpendicular for every data point. The two ways to do this is either the direct
orthogonalisation or the Lagrange constraint. The direct orthogonalsation would look like the following:

ṽ(ν)
µ = v(ν)

µ −
∑
ν′<ν

1
|ṽ(ν′)|2

v(ν)
η ṽ

(ν′)
η · ṽ(ν′)

µ .

This creates a new ṽ(ν)
µ collection of vectors from the old ones, v(ν)

µ . The problem is that it requires an
ordering between the different legs, and may eventually result in null vectors. Nevertheless, when the
update of the vectors is done slowly, namely the step size of the gradient method is small enough, the
orthogonality of the vectors is only slightly violated, hence a regular orthogonalisation after an iteration
would not interfere much with the gradient.

As it was mentioned above the other method is the approximate orthogonalisation via Lagrange mul-
tipliers. This is a more symmetric approach, based on adding an extra term to the minimisation function:

mL(vνη) = λ

∫ ∑
νν′

 v(ν)
µ v

(ν′)
µ

|v(ν)||v(ν′)|
− δνν′


k

dnx . (4.16)

For a large λ and an even k, this behaves as a penalty potential when the v(ν)
µ vectors are not perpendicular.

Although this is a simple, elegant and symmetric orthogonalisation technique it has a clear disadvantage
over the direct orthogonalisation. This constraint can introduce many local minima, and due to its
symmetries, it stays trapped. However, the direct orthogonalisation, with the leg ordering can jump over
these barriers.
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4.3 Supervised and unsupervised machine learning

Artificial brakes without angle constraints

Since the previous method assumes that the legs of the coordinate system are perpendicular, a more
robust method without this constraint is also necessary. As the instability of the iteration mainly comes
from the underestimation of the used determinant, a possible remedy is to introduce artificial breaks that
prevents using underestimated determinants. Practically this means that during the iterative search, the
v(ν)
µ fields should be updated in a way that is consistent with some expectations. The re-parameterised

version of eq. (4.10), namely eq. (4.14)

E(ν)
µ =

1
S n

∫
V

∂µ∂µ′
1

|x − x′|n−2 v
(ν)
µ′ f dnx′

can be used here as well, but with the following formulation of the requirements for the solution:

E(ν)
µ = f v(ν)

µ ,

det v(ν)
µ =

1
f n−1 .

The combination of the two equations results in det Eκ
η = f , a similar requirement as in the previous

section, but this formulation allows a different handle during the iterations. As practically the v(ν)
µ fields

are sought parameters, these degrees of freedom can be constrained to anything during the calculations,
and these are the ones that should be prevented of diverging due to a numerical error. This can be
modelled with a minimisation function:

m(vκη) + mdet
L (vκη) =

∑
ν

∫ (
f v(ν)
µ − E(ν)

µ

)2
dnx + λd

∫ (
det vκη −

1
f n−1

)
dnx .

There is still a problem with this minimisation function, because the interaction between the different
v(ν)
µ legs only occurs through the constraint. In practice, the update of v(ν)

µ in one iteration should be done
first, according to the gradient, then a modification can happen to the v(ν)

µ amplitudes depending on their
deviations from the constraint. This means that the determinant of the initial values of v(ν)

µ should be
close to the ideal determinant, which can be done relatively easily; but the angles between the several
v(ν)
µ legs should also not change rapidly, otherwise the rescaling of the legs after each iteration would

introduce the same numerical instability that was supposed to be prevented. The fitness of the model
can be measured by the unconstrained part of the minimisation function, which should be zero for an
ideal solution. As it was previously mentioned, a symmetric angle constraint can introduce additional
minima, and the iteration can easily got stuck there. A non-symmetric version of eq. (4.16) can be
created by introducing an ordering into the set of the legs:

masym
L (vνη) = λamL

∫ ∑
ν>ν′

 v(ν)
µ v

(ν′)
µ

|v(ν)||v(ν′)|


k

dnx .

The combination of the minimisation function and the two constraints can be solved with the steepest
descent method, which can be modelled with the following algorithm. To calculate the initial conditions:

1. Approximate the density of the sample, a(x), which will be used later to regulate the used deter-
minants.

2. Set the initial values of v(ν)
µ to be perpendicular, and scale it with n

√
1

det vκηan−1 .

51
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3. Normalise v(ν)
µ with

∑
i v

2(ν)(xi).

The procedure for every iteration is:

1. For every ν leg calculate the expectation value

E(ν)
µ (x j) =

1
S nN

∑
i

∂µ∂µ′
1

|x j − xi|
n−2 v

(ν)
µ′ (xi) .

2. Normalise E(ν)
µ with

∑
i(Eν

µ(xi)/a(xi))2.

3. Update v(ν)
µ with the main part of the gradient,

vνµ := vνµ − λstep

(
Eµ(xi)
a(xi)

− vνµ(xi)
)
.

4. Normalise v(ν)
µ again.

5. Approximate fitness with

mL =
∑

iν

1
a(xi)

(
a(xi)v

(ν)
µ − E(ν)

µ

)2
.

6. Apply a fitness based correction for the angles, preferring the ones with larger amplitude

v(ν)
µ := v(ν)

µ + mL

∑
ν′<ν

a(xi)
|E(ν)|

v̂(ν′)
µ v̂(ν)

α v̂
(ν′)
α .

7. Normalise v(ν)
µ again.

8. Calculate the approximate determinant

d(xi) = det vκη(xi) .

9. With the ratio of the approximate determinant and the target determinant r = (an−1(xi)d(xi))−1,
scale v(ν)

µ with ε, where ε allows a 10 % fluctuation up but no fluctuation down:

ε =

 n√r if r < 1.1
n√1.1 if r > 1.1

.

10. Normalise v(ν)
µ again.

4.3.4 Classification

Unsupervised classification is sometimes called clusterisation, but unlike many of these methods the
requirement here is not peak-finding but the separation of hyper-surfaces, as these can be identified
as physical objects. The design principle of the principal coordinate method was to find a coordinate
system in which the sample is uniformly distributed. Although the structural similarity with the principal
curves shows that the coordinate lines curve along the hyper-surfaces within the original distribution,
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additional postulates are needed to identify the hyper-surfaces. This is because the coordinates are
continuous variables and none of them suggest a direct boundary.

A meaningful criterium can be derived from the notion of information entropy. In the ideal new
coordinate system that satisfies eq. (4.10) the sample can be modelled with a uniform distribution, which
means that its information entropy is maximal, since all possible values are used equally to describe the
original distribution. This is a goal of many data compression algorithms, like the Huffman-coding [20].

To establish the idea of compression, one must select variables which can be truncated to a certain
precision without losing the possibility to reconstruct the original data-set. The truncation of certain
variables can go as far as discretising them, which being done in the principal coordinate system even-
tually means the recognition of the hyper-surfaces within the original data set. The actual error between
the original data point and its representation through the truncated principal coordinates can vary with
the machine representation of the number. Generally it can be said that a ∆cν uncertainty in the new
coordinate cν will lead to the ∆xµ uncertainty in the back-transformed coordinate xµ through the trans-
formation matrix v(ν)

µ , which is simply

v(ν)
µ ∆xµ = ∆cν . (4.17)

For the principal coordinate system det vνµ = κ f holds. Hence along the coordinate line on which the f
density drops, v(ν)

µ is large and as a consequence of eq. (4.17) the uncertainty of the reconstruction of
the original data decreases. This is why it is reasonable to truncate most of those cν coordinates along
which v(ν)

µ is large. Those coordinates are typically perpendicular to the hyper-surfaces. It must be noted
that traditional peak-finding clusterisation can be achieved by fitting a radial coordinate system to the
sample.

4.4 Conclusions

The two determinant estimation methods show similarity in the goals of well known algorithms, like
multidimensional scaling [21] and self-organised maps or Kohonen maps [22]. The crucial detail that
differentiates them from the known methods is that the dimensionality of the sought hyper-surface is not
pre-defined, but is determined from the measurements. Furthermore, in the principal coordinate system
the sample is transformed into a uniform distribution, which can be described with independent random
variables, providing a unique point of view as it makes it possible to identify hyper-surfaces and reduce
the dimensionality of the data with minimal information loss. In other words, the identification of hyper-
surfaces helps in the simplification of the description of the data by formulating its inner constraints, the
laws that describe it. In the method explained in this work, the dipole formulation could be regarded as
one of the possible ways to solve the differential equation in eq. (4.10), but its advantage is that it selects
a smoothed coordinate system from the possible solutions and is capable to find open and closed curves
at the same time.
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CHAPTER 5

Polynomial regression

Chapter 3 dealt with a density estimator, which was then used to calculate the posterior probability of a
certain phase space point being signal or background. As it was mentioned this task can also be achieved
with a regression technique. This chapter describes such a method based on the polynomial expansion
of the ideal regression function which appears to be fast and accurate. Due to its inner structure, it
is capable of extracting only the statistically relevant information while neglecting the statistical noise
associated with sampled data. This chapter contains a short summary of the polynomial expansion
method described in the article [3], while extending it with further methods increasing its accuracy and
speed for high dimensional inputs.

5.1 Polynomial expansion of the ideal classification function

According to the Neyman-Pearson lemma [23], the optimal separation contours between a signal sample
with density s(x) and a background sample with density b(x) are following the s(x)/b(x) density ratio
contours. Given large statistics, these contours can be found by fitting a yi = F(xi) function using
yi = ±1 as target for the signal and the background for data points xi. Nevertheless, this fitting function
only approximates the ideal classifier function, which is the following for the ±1 targets:

F(x) =
s(x) − b(x)
s(x) + b(x)

. (5.1)

A polynomial expansion of this function is also possible, without the knowledge of the theoretical
s(x) and b(x) distributions, only using samples. The coefficients of the F(x) =

∑
k Fkxk polynomial can

be found when the equation is multiplied by s(x) + b(x), and a F Fourier transformation is performed.
The multiplication of the two x dependent functions under Fourier transformation is a convolution,
which becomes a discrete matrix equation for the polynomial coefficients. The Fourier transform of
a distribution is the same as the expectation value of the phase eixω. It is known as the characteristic
function, and has the unique feature that its polynomial expansion can be expressed with the moments
of the untransformed distribution:

F [s(x)] = Es[eixω] =
∑

j

〈xk〉s
(−iω)k

k!
.

When eq. 5.1 is multiplied by s(x)+b(x), the polynomial of F(x) introduces a series of xk to the left-hand
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5 Polynomial regression

side. The Fourier transform of each xk[s(x) + b(x)] can be substituted with the kth derivatives of s(x)
and b(x). These derivatives can be easily approximated with the polynomials made from the moments
of the sample, and finally arrive to the equation for the polynomial coefficients:∑

k

Fk
(
〈x j+k〉s + 〈x j+k〉b

)
= 〈x j〉s − 〈x j〉b .

Here 〈x j+k〉s−〈x j+k〉b can be treated as a matrix, and Fk can be found with linear equation solvers. Such
a matrix is called a Hankel matrix, for which so-called superfast solvers exist [24]. The method itself
shows similarity with the Stieltjes and the Hamburger moment problems. Nevertheless, as it is shown
later in this chapter, the method can be extended with robust checks against overfitting.

It is possible to extend the method for general regression, and to be able to handle higher dimensional
x input spaces [3], by using tensor coefficients in the polynomial expansion and for the moment calcu-
lations. As all these tensors are symmetric, the number of free parameters is small. A n-dimensional
tensor with d-degree has nd parameters, of which only

(
n+d−1

d

)
are free. Although this is a large reduc-

tion, it still grows rapidly with the tensor degree. The two limitations for the method both appear only
at large tensor degrees, and they are related to the numerical precision of the matrix solvers:

• The high tensor degrees require calculation of high moments, which becomes a limiting factor
around degree twenty for double precision and degree thirty on quadruple precision.

• The other limitation comes from the size of the appearing matrix, since this matrix is dense and
depending on the required tensor degree, its elements may cover many orders of magnitude. This
typically happens when the matrix size reaches a few thousand rows and columns and result in
large numerical errors during solving the equations.

5.2 Propagation of uncertainty

The great advantage of using the moments as the input for the calculations is that due to the central limit
theorem these have easily calculable Gaussian uncertainty and correlations. The moments are formed
by weighted sums. For N number of entries and

∑
wi = N weights it is calculated as the following

〈xk〉 =
1
N

∑
i

wixk
i .

This formulation allows wixk
i to be treated as a single random variable, making it easier to calculate the

covariance matrix:

Cov
(
wx j, wxk

)
= E

[(
wx j − 〈wx j〉

) (
wxk − 〈wxk〉

)]
=

1
N

∑
i

w2
i x j+k

i − 〈x j〉〈xk〉 .

The covariance of the averages is then the scaled down version of the weighted values1:

Cov
(
〈x j〉, 〈xk〉

)
=

1
N − 1

Cov
(
wx j, wxk

)
.

It is possible to propagate this uncertainty into the χ2 of F(x), and check if a new tensor order sig-
nificantly decreases the χ2 or not. Due to the simplicity of how F(x) is being calculated, this takes a

1 It should be noted that this covariance matrix is not related to the standard deviation of the xk averages, as it contains the
square of the wi weights.
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rather simple form. Using yi as the target value to be regressed on the random field xi, the following
simplifications can be done to calculate the coefficients of the F(x) polynomial. With the introduction
of the Gk j matrix, which contains the correlations of the x j and xk power series, the F j coefficients are
calculated with

Gk j = 〈x jxk〉 = 〈x j+k〉 ,

F j =
∑

k

G−1
k j 〈yxk〉 . (5.2)

Treating the F j coefficients as a vector, the F(x) value can be calculated as a scalar product between F j

and a vector of diadic tensors of powers of x, namely x j:

F(x) =
∑

j

F jx j =
∑
k j

x jG−1
k j 〈yxk〉 .

This vector formulation allows now a calculation of the squared loss function, or χ2 of F(x) and the
training sample:

χ2 =
1
N

∑
i

wi (yi − F(xi))2 = 〈y2〉 − 2〈yF(x)〉 + 〈F(x)2〉 ,

where the last term can be simplified further to

〈F(x)2〉 =
∑
jkl

〈yxk〉G−1
k j

∑
i

wix
j
i xk

i︸      ︷︷      ︸
G jk

G−1
kl 〈yxl〉 =

∑
k

∑
i

wiyixk
i Fk = 〈yF(x)〉 .

Altogether, the χ2 of the F(x) function can be minimised by maximising the correlation of F(x) to the
target y, since

χ2 = 〈y2〉 − 〈yF(x)〉 .

This loss function both depends on the 〈yxk〉 and the 〈xk〉 averages; the latter one appears only via
the G−1 inverse. Assuming that 〈y2〉 can not be varied, the uncertainty of the χ2 can be approximated
with Gaussian error propagation, for a given d maximal degree of the F(x) polynomial. The standard
deviation of the χ2 is then

p j =
(
〈yx0〉, ..., 〈yxd〉, 〈x0〉, ..., 〈x2d〉

)
,

σ2
χ2 =

∑
jk

∂χ2

∂p j
Cov

(
p j, pk

) ∂χ2

∂pk
. (5.3)

The covariance term can be calculated as it was discussed before, but additionally it has to contain the
correlation between the 〈yxk〉 and 〈xk〉 terms. Using the rule for the derivative of an inverse matrix,
∂G−1

∂p j
= −G−1 ∂G

∂p j
G−1, the partial derivatives of the χ2 can be written as follows:
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∂χ2

∂〈yx j〉
= −

∂〈yFx〉
∂〈yx j〉

= −2F j

∂χ2

∂〈x j〉
=

∑
aklm

〈yxa〉G−1
ak
∂Gkl

∂〈x j〉
G−1

lm 〈yxm〉 =
∑
ak

Fa
∂Gak

∂〈x j〉
Fk = Fc

j . (5.4)

Since ∂Gak
∂〈x j〉

is a three index tensor filled with ones and zeros, Fc
j can be regarded as a convolved version

of the F j coefficients. Combining the partial derivatives of χ2 in eq. (5.4) with the covariance matrix
in eq. (5.3) gives the uncertainty of the χ2

d fitness of F(x) for a given d degree. This also allows the
calculation of the uncertainty of the χ2

d+1−χ
2
d difference, showing whether a new Fd+1 term significantly

decreases the χ2 or not. Using the t-probe to test χ2
d+1 − χ

2
d being different from zero, one can regulate

the F(x) regression function with a given confidence level while determining the maximal significant
degree of the F(x) polynomial. The equations are very similar for the higher dimensional case, though
it is unclear from this formulation how to order the different terms of the n-dimensional, d-degree tensor
Fd. This is why a different method was also developed, which can determine the importance of the
different terms.

5.3 Maximising the significance

A typical question about polynomial regression is the maximal degree used. In the solution for the Fi

coefficients in eq. (5.2) it is unclear where to truncate the matrix Gi j. Neglecting those moments which
are smaller than the main terms is ambiguous, since a transformation on the input space can largely
affect these ratios. An example is a distribution that is between x ∈ {0, 1}, which has moments that are
converging to 0 with increasing powers. However, when this distribution is shifted to x ∈ {1, 2}, the xk

powers are definitely larger than the xk−1 powers, though the complexity of the regression function is
intact.

In the case of classification one can see that the 〈yxk〉 = 〈xk〉s − 〈xk〉b averages hold crucial infor-
mation. The 〈xk〉s moment series contain the Taylor expansion of the Fourier transform of the signal
distribution, while 〈xk〉b is the same for the background distribution. It can be checked whether the
difference is significantly different from zero or not, and that can be used to terminate the moment se-
ries. Nevertheless, as it was said in the previous section, the uncertainties of the different moments are
correlated and in the higher dimensional formulation the different moments can not be ordered.

To circumvent the ordering problem and the correlations, a certain subset of variables can be selected
which are significantly different from zero when being combined. This can be performed, since the
〈xk〉s−〈xk〉b difference is a vector with an associated Gaussian uncertainty, and it can be checked whether
this vector is so different from zero that it is unlikely to be a statistical fluctuation. Furthermore, this can
be performed on various subspaces, from which the most significant can be selected.

5.3.1 Significance of variables

For variables vk = 〈xk〉s − 〈xk〉b, the uncertainty of the d amplitude can be calculated by the propagation
of the correlated uncertainties between the variables. Assuming that the signal and background samples
are independent, the covariance matrix of vk is simply the sum of the two covariance matrices:

E jk = Cov
(
〈x j〉, 〈xk〉

)
s
+ Cov

(
〈x j〉, 〈xk〉

)
b
,
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d =

√∑
j

v2
j .

With these definitions the standard deviation of the d amplitude is

σ2
d =

∑
jk

∂d
∂v j

E jk
∂d
∂vk

=

∑
jk v jE jkvk

d2 , (5.5)

and with which the confidence levels for the hypothesis that the true amplitude is zero can be calculated.
These terms make it easy to calculate the significance, namely that

the null hypothesis can be excluded with

√
d2

σ2
d

sigma coverage.

It must be noted that eq. (5.5) is only an approximation of the uncertainty of d, since d can only
be approximated with a Gaussian if d/σd is large enough. For very low d/σd values the higher order
covariances would dominate the uncertainty.

5.3.2 Selection of the most significant group of variables

To reduce the number of rows in the calculation of eq. (5.2) it is possible to select only those vari-
ables which give the largest contribution to the significance of the vk = 〈xk〉s − 〈xk〉b vector. Either
the significance has to be maximised or its inverse has to be minimised by keeping only the S set of
variables:

select the set S for which min
S∈{possible sets}

∑
j,k∈S v jE jkvk

d4 . (5.6)

For a large number of rows an iteration through every subset is unfeasible, hence some heuristics must be
used. One can start from a conveniently large set, and from those select the most significant individual
row and put it into S . The next step is to extend this set with the variable that increases the significance
the most. The increase of the significance may stop at a certain size of S for two reasons: either the
leftover variables can be predicted from the selected set or the arising numerical errors overcome the
small increase of the significance.

This method can be extended with various checks. The growth of S might be stopped at a predefined
limit, before including all the variables. A possible stopping criteria is a minimum increase in the
significance. The selection process can also be repeated on the remaining variables, as it is possible that
the same significance can be reached with a smaller number of variables.

An obvious source of error must be avoided though, and it is selection bias. When the number of
rows is large enough, the chance that a selected subspace has large significance also grows, hence the
significance threshold must be selected in a way that is bigger than this bias.

5.3.3 Optimisation of weights

The minimisation process in eq. (5.6) is equivalent of setting 1 and 0 weights to some of the vi variables
during the iterations. Since the formula to be minimised is relatively simple, it is possible to calculate
its minimum when allowing real-valued a j weights for each v j value. This is equivalent to a non-linear
transformation of the x input space where the original v j averages are transformed into a jv j. This also
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means, that the different rows and columns of the uncertainty matrix Ei j have to be reweighted too,
therefore only the square of the weights, b j = a2

j , appear in the significance calculation:

M(b0, ...) = min
a j

∑
j,k v ja2

j E jka2
kvk(∑

l vla2
l vl

)2 = min
b j

∑
j,k v jb jE jkbkvk(∑

l vlblvl
)2 (5.7)

At the minimum, the derivative of M(b j) has to be zero, which results in an equation that can be
solved analytically for b j.

d =

√∑
l

vlblvl

∂M
∂bn

= 4
∑

j v jb jE jnvnbn

d4 − 2
∑

jk v jb jE jkvkbkv
2
n

d6 = 0

∑
jk

v jb jE jkvk

(
δkn −

bkv
2
n

d2

)
= 0 . (5.8)

In eq. (5.8) a rescaled version of the uncertainty matrix appears as W jk = v jE jkvk, whereas bkv
2
n is a

dyadic matrix with a single non-zero eigenvalue. The equation resembles an eigenvector equation for
this dyadic matrix. Using matrix notations, with the vector v′n = v2

n this becomes

bT W
(
I −

bv′T

d2

)
= 0 . (5.9)

This formulation shows that the bT W vector might be an eigenvector of the bv′T matrix with the eigen-
value d2 at the extrema of M. Other solutions are also possible if the W matrix have zero eigenvalues,
which would also annull the expression. For invertible W the solution is then a weight-square vector
that is perpendicular to the following:

b j =
∑

k

W−1
jk v
′
k =

∑
k

(v jE jkvk)−1v2
k , (5.10)

without appropriate normalisation. The full solution for a singular W would be the same for the invert-
ible subspace plus any vector that is annulled by W, combined with appropriate normalisation.

In the case when the uncertainties of the vi variables are uncorrelated, the E matrix is diagonal and
the square of the weights are simply the inverse of the diagonal elements, or the standard deviations.

5.3.4 Remarks on the significance maximisation methods

The two methods might be combined, first creating a subset of variables with large significance than
calculating their optimal weights. Using only the weight optimisation may be tempting, but a nearly
singular uncertainty matrix may introduce numerical errors in the solution. Applying the method on the
vk = 〈xk〉s − 〈xk〉b vector is not a minimising the χ2 though, it is just making sure that the components
used are statistically well established and their individual effect on the χ2 will be significant. The full
solution would be setting a minimum precision required for the χ2 and selecting those components that
minimise it with at least this precision.

The modification of the methods to non-binary regression target is also possible, and it is expected to
help there against overfitting there as well.

60



5.4 Extensions towards a neural decision tree

5.4 Extensions towards a neural decision tree

The previous section can help to avoid overfitting the input sample, but it can not solve the problem of
increasing numerical errors in the calculation of higher moments. To overcome these numerical errors
one must emulate the calculation of higher moments without calculating the high powers of the input
variables. A possible method can be explained with a simple example. The high degree moments are
only necessary if the degree of the F(x) function requires it, and this can be avoided by splitting the
input space into distinct regions. A region small enough can always be successfully fitted with a low
degree polynomial.

Such a tilling has a disadvantage though, because non-differentiable jumps may appear at the region
boundaries. One can reduce this effect by not using straight boundaries, but only smoothed transitions
from one to an other, applying sigmoid weights with a given width. A combined fit would look like the
following with the w(x) sigmoid function, boundary at m and transition width Γ:

w(x) = atan
( x − m

Γ

)
+ m

F(x) = w(x)F1(x) + (1 − w(x)) F2(x) . (5.11)

The F1(x) function can be fitted on the w(x) weighted dataset while F2(x) on the 1 − w(x) weighted
dataset. Nevertheless, the weights of the dataset might not necessarily be the same as the weights on
the function combination in eq. (5.11), as with large enough statistics F1(x) would be equal to F2(x) in
the transition region. A simple way to handle the smoothness of the combined fit function is then to use
wider sigmoids for the dataset weights than for the function weights.

Considering computational complexity, the number of regions should also be minimal. Using rectan-
gular boundaries on a n-dimensional input space would produce 2n regions, hence this must be optimised
somehow. A possible way to select the interesting regions is performing a fit first on the full input space
and use the contours of this Fpre(x) fit to decide about the subregions where F1(x) and F2(x) is going
to be fitted. The width of the Fpre(x) distribution can also be used to determine a practical width for
the dataset sigmoid weights and the function combination weights. As the Fpre(x) pre-fit is already a
valuable approximation, a further improvement can be done by using its value. The F1(x) and F2(x)
functions might be regressed only for the difference between Fpre(x) and the y target. This can reduce
their functional complexity, resulting in faster calculations. The sub-region fits can be used to split the
regions further where new fits can be performed, forming a multi-layer decision tree.

A proof for the effectiveness of this method can be seen on fig. 5.1. A second degree curve can be
successfully regressed with a multi-layer tree-based network, where each node does only a linear fit.

5.5 Details of the implementation

Not all the features were implemented into the C++ code that was used to produce the figures shown
in this thesis. The significance calculation was only applied at the entry level, to determine what pre-
calculated input variables might be useful for the training, maximising their linear correlation to the
fitting target. However this feature can be turned off, to be able to compare the algorithm with other
methods.

The code is theoretically capable of calculating the fitting polynomial up to arbitrary number of
dimensions and degrees, as it was described in the cited article [3]. However, the tree-based regression
method uses second degree polynomials for the high dimensional fits, as it is the lowest degree that can
describe closed curves. Such closed curves are useful for these binomial regressions, where the signal is
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Figure 5.1: Example to show the how a decision tree can help regressing high degree functions. The target
distribution (green) on this figure follows a simple second degree curve, but it can be successfully regressed with
a few layers of linear functions. The small, smoothed transition region around 0 can be observed between the
linear fits at x > 0 and x < 0 for the 2-layer tree.

peaked above a background, hence the ideal classification contours are closed curves around the peak.
As the low degree polynomials may overshoot the target in the non-central regions, the output of this
high-dimensional low-degree curve is fed into a one-dimensional, but high-degree shaping layer. The
advantage of the shaping layer can be observed on fig. 5.2.

The number of decision layers used was determined using independent training and testing samples,
stopping at a level where the F(x) distributions of the two samples were still similar. The decision
boundaries were always at the mean of the F(x) distributions. The used Γ transition width in the function
combination sigmoid was equal to the width of the F(x) distribution, while the data weight sigmoid
width was 3Γ.

The C++ code utilises the Eigen Matrix Library [25] for the linear algebraic calculations, but some
features can be compiled using the LAPACK [26] library instead. It compiles with both the clang and
the g++-4.4 compiler under MacOS X and various flavours of Linux.

5.6 Conclusions

The core of the presented regression method is a polynomial regression that is based on using the
moments of the underlying distributions, making it possible to calculate the uncertainties and their
propagations into the fit function. The polynomial fitting itself is very robust and fast, and only requires
a single linear equation solver for the fitting. Unlike many other polynomial fitters, the size of the
utilised matrix does not grow with the number of sample points, but only with the target degree of
the fitting polynomial. The applied neural weight suppressions combined with a decision tree helps to
avoid numerical errors that might appear with high degree polynomials. What is important, is that none
of the calculations require optimisations via parameter scanning or explicit minimizations, making the
full regression procedure significantly faster compared to other methods like neural networks, boosted
decision trees or support vector machines.
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Figure 5.2: Application of a shaping layer to a high dimensional fit can be advantageous. The original high
dimensional classifier output on fig. (a) is shaped with a high-degree one-dimensional polynomial in fig. (b).
This latter output is now between the boundaries of the ±1 targets for the signal (blue) and the background (red)
distributions, and the F(x) output correlates better with the purity of the signal. The sample is the same sum of
twelve 3-dimensional Gaussian peaks and flat background that was used for demonstration in fig. 3.8

.

The possibility to select the statistically significant set of variables naturally arises from the method,
and it is unique compared to other methods which typically require the separation of the available data
set into independent training and testing samples. As Section 5.2 has shown, the method allows finding
a regression function with statistical confidence in a very simple and fast way.

The high dimensional classifications are approximated in a three step way, combining:

• preprocessing by variable selection and variable normalisations,

• high-dimensional low degree regressions,

• post-processing with one-dimensional high degree output shaping.

Hence a name was coined for the method, calling it tripoly. This short name is used in some of the
figures in this thesis, indicating if the plot was produced with the method described in this chapter.

63





CHAPTER 6

QCD, jets and Monte Carlo

The measurement of particles that do not exist at everyday energies is only possible by observing high
energy collisions where these might be produced. To predict their effect on the detectors a complex sim-
ulation infrastructure is needed, which is separated into two distinct steps. The simulation of individual
collisions is the responsibility of event generators or Monte Carlo generators, while their interaction
with the detector is done through detector simulations. This chapter discusses the former, showing how
much the pattern recognition and the theoretical calculations are intertwined.

6.1 About event generation

Event generators try to integrate the interesting phase spaces of the collisions, the ones with the highest
momentum exchange are called the hard process. At the electron-positron colliders it was typically
enough to do calculations on leading-order of the perturbation, since the electroweak coupling constant
is indeed small and the contribution from subsequent orders can be neglected. In hadron colliders
though, most processes happen via the strong interaction, where even next-to-leading-order (NLO) and
next-to-leading-logarithm (NLL) calculations can be interpreted sometimes as just qualitative models.
Since NLO generators require taking into account destructive interference between different Feynman
diagrams with the same outgoing legs, they usually need matching criteria for the similarities. The next
section aims to highlight the difficulty of this matching, because of the formation of jets. Above the
hard process generators, there are dedicated generators for resonant decays, parton showers (see below),
underlying events, hadronization, cosmic rays and ordinary decays.

6.2 Jet production

QCD being strong at low energies carries the consequence that its charges can not be directly observed.
The observable states that participate in the strong interaction and can be used for experimentation are all
bound states (technically, they belong to a different vacuum). Calculating cross sections of the scattering
of these composite objects from first principles can only be done to a limited accuracy with lattice QCD.
However, some modelling is possible which can be parametrized by experimental data. With the help
of the factorisation theorem, the cross section calculation of such a process can be factored into high
energetic and perturbative parts, and non-perturbative structure functions. The latter can be expressed
with the parton distribution functions (PDF), belonging to the colliding hadrons [13][27][28].
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6 QCD, jets and Monte Carlo

For a collision where q momentum was transferred, the cross section can be expressed with scalar
functions F that only depend on Q2 = −q2 and x, where x is the relative longitudinal momentum of the
parton within the hadron. These F j

i (x,Q2) are called the ith structure function [13] for the jth current,
either the neutral or the charged. For large virtual momentum transfers, Q2 � M2, the structure function
factors into a sum of the parton distribution functions of the individual parton types a convoluted with
the C coefficient functions:

Fi =
∑

a

Ca
i ⊗ fa ,

C ⊗ f =

∫ 1

x

dy
y

C(y) f (
x
y

) .

These f (x, µ2) parton distribution functions also depend on the renormalisation scale µ2, which makes
it valid only in a certain renormalisation scheme and perturbation order. Though the PDF can not be
calculated a priory, but its dependence on µ2 can be described with the help of the DGLAP equation,
derived by Dokshitzer [29], Gribov, Lipatov [30], Altarelli and Parisi [31], hence its name. It is called
an evolution equation, because the µ2 dependence requires the Pab splitting function, the probability of
a given parton splitting into two others: For the b→ a process it is

∂ fa
∂ ln µ2 ∼

αs(µ2)
2π

∑
b

Pab ⊗ fb .

With this differential equation, an experimentally measured PDF [32] can be extrapolated to either
lower or higher scales, and it helps describing the decay of strongly interacting states. Due to the
showering-like behaviour of these decays, the process is called fragmentation. The shower itself is
called a jet.

Many models exist to describe the evolution of jets. For low mass partons the dominating subprocess
is the soft gluon radiation (infrared divergence) and collinear splitting (new partons with approximately
the same momenta) [9], while massive partons can have a so-called dead-cone [33], into which the
gluon emission is suppressed. Calculations can be done with string, cluster fragmentation or with the
colour dipole model. The formation of hadrons is another difficulty; it can be done with angular order-
ing of the daughters, but pT ordering is also possible. The result is that jet fragmentation happens in
numerous, topologically different ways, making the cross section calculations difficult, especially when
detector acceptance has to be taken into account. Fortunately, many different jets give approximately the
same detector response. This allows calculating many cross sections with Monte Carlo integration, gen-
erally using a hard process event generator, applying a shower algorithm and finally detector response
simulation.

6.3 Jet finding

Without mystification, it must be said that jet finding is nothing more than the clustering of objects. A
typical definition is, that a jet is a composite object with four momentum, that can be used to reconstruct
the daughter partons in the hard process. The problem is that there is no objective definition of partons,
they are a result of the calculation methods. Their definition depends on the applied perturbation, the
order of the perturbation and on renormalisation scales. Therefore it is very important to use jet finding
algorithms that are as free as possible of these effects, so different predictions can be compared [34].
This requires, that the cluster should be the same when the algorithm is applied to
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6.4 More on parton showers

• leading order partons;

• next-to-leading order partons (hard radiations);

• parton showers;

• clustered hadrons.

Theoretically this is possible when an algorithm satisfies the following:

• collinear safety :
random split of a parton into two similar momentum partons are always clustered together by the
algorithm;

• infrared safety :
soft gluon radiation would not alter the cluster.

A comparison of various jet finders can be seen on fig. 6.1. Historically, the first jet finders were cone
algorithms developed for electron-positron colliders like Petra and PEP [35]. The clustering was based
on angle differences in (φ, θ), trying to maximise the momenta of particles in a cone with a fixed opening
angle. Although this was rather easy to implement, it was neither collinear nor infrared safe. This is not
a big problem at lepton colliders though, but still other algorithms were tested. The Durham algorithm
satisfies the requirements, as do almost all recombination based algorithms. It aims to recombine objects
into higher level objects, just like reversing the fragmentation, repeating this procedure until every
particle is included into the hierarchy. A clear disadvantage though is that several ad hoc splitting scales
have to be defined, which can typically alter the observed number of jets. An advanced attempt was the
early kt algorithm [36], that recombines objects not with the predefined scales, but when their distance
is minimal compared to every other possible objects pairs. At hadron colliders the algorithm has to
take the beam remnant into account, which typically acts as a stopping criteria for clustering. Jets in
hadron collisions require an additional feature, the boost invariance in the z-direction, to handle the
uncertainty of pz of the centre-of-mass frame. This can be satisfied by using the transverse momenta,
pT , or the ∆R =

√
∆φ2 + ∆η2 pseudo-angle in the distance measure, with the approximately z-boost

invariant pseudorapidity η = − ln
(
tan θ

2

)
. The algorithm described above still has a caveat that must be

addressed. It is somewhat sensitive to low energetic noise, which can be present as calorimeter noise or
pile-up. Furthermore, the detector is not sensitive to objects below a certain threshold, which perturbs
the possible clusters a bit. To circumvent this, the anti-kt algorithms start the clustering with the highest
momentum objects first, and reconstructs the hierarchy with a top-to-bottom approach [37].

6.4 More on parton showers

Parton showering can happen not just for the particles that leave the interaction point, but it is important
to take it into account for the colliding particles, and for the spectators as well. Showering may occur
before and after the hard collision, which are called as initial- and final- state radiation (ISR and FSR).
The scale of the separation of these processes from the hard collision is purely arbitrary, as it is only
there to simplify the calculations. The usage of ISR and FSR in calculations is to approximate higher
order terms from QCD as in the Pythia event generator [38]. Although leading order QCD calculations
fit into this picture easily, but NLO and higher order calculations double count them. To incorporate
it, one must match certain outgoing parton showers of the hard collision with the final state radiation
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6 QCD, jets and Monte CarloJets (p. 60)

Comparing algorithms Jet contours – visualised

Figure 6.1: Different jet algorithms usually find the same number of clusters, but may differ significantly in the
details. The figure shows four algorithms that were applied on the same simulated event, the φ and y axes are
the coordinates of calorimeter hits. The kT and the Cambridge/Aachen algorithm are very similar, both are based
on the k-means clustering algorithm, and differ only by the definition of the weighted distance of two hits. The
anti-kT is like a kT -algoritm, but builds clusters from top-to-bottom, and less sensitive to noise. The Seedless
Infrared Safe Cone algorithm (SISCone) is an advanced cone finder method that incorporates a split-or-merge
step to find a more probable boundary for a cluster.

to avoid the double counting. Matching with the ISR showers is not necessary, due to the way ISR is
simulated.

A similar matrix element matching can be done for NLO event generation. The problem which it
solves is that although a Monte Carlo event generator is supposed to integrate the cross section formulas,
these integrals are inherently divergent. When properly regularised and renormalised, these integrals
are finite, and the divergencies are known to cancel each other. The cancellation of the divergencies
can be interpreted as a destructive interference between the infrared gluon radiation divergence and the
virtual (loop) gluon emission. This cancellation can be avoided either by matching these phase spaces
during event generation as in ALPGEN [39], or by introducing negative weights for the loop correction
graphs, like in MC@NLO [40]. However, matching within the generator needs a specific choice of jet
algorithm, which can be inconsistent with the later analyses. Event re-weighting is also possible, as is
done in POWHEG [41][42][43].
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CHAPTER 7

Top-quark production and background
processes

The top quark is the heaviest known elementary particle. Due to its high mass it has its own unique
characteristics. This chapter summarises its discovery and highlights its properties in order to show why
it was selected as a target of this analysis.

7.1 History of the top-quark

The first prediction of the top quark was made by Kobayashi and Maskawa in 1972 [44] , in order to
explain the CP-violation observed in kaon decays. As they explain, the CP-violating term may arise
when three generations of quarks are mixed, this is due to the difference between the mass and weak
eigenstates. In short, it is a time-reversal symmetry violation caused by the interference between the six
quark fields, because they propagate in space-time differently (the mass eigenstates) than how they inter-
act with each other (the weak eigenstates). This causes a charge-symmetry violation, but since the weak
interaction is already parity violating, it is altogether a CP-violation. At that time, only three quarks
were known, and the hunt was still ongoing for the charm quark, predicted by the GIM mechanism [45].

The first evidence for the third generation of quarks was the discovery of the bottom quark at Fermilab
in 1977 by Leon M. Lederman. Despite the heated expectations of the LEP collider at CERN, the top
quark remained elusive until 1994. It was already known at that time that the top-quark mass must be
larger than 77 GeV, but that year two evidences hit the light. The CDF group reported the observation
(with low confidence limits) of the top-quark pair production with a mass around 175 GeV, and with
great accordance with that precision measurements of electroweak vector boson masses and couplings
were only consistent with a top-quark mass between 145 GeV to 185 GeV. The final, high confidence
evidence came a year later, in 1995 by the two large Fermilab experiments CDF and D∅.

The rediscovery of the top quark was the warm-up for the LHC, demonstrating the readiness of the
collider and the experiments for future discoveries with the early 7 TeV collisions in 2010. Figure 7.1a
shows how the cross sections of various processes change with the increasing energy changing from
Tevatron to the LHC, and fig 7.1b reveals the good state of the LHC and the ATLAS detector by mea-
suring several cross sections with good accuracy.
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Figure 7.1: Cross section of various processes in proton-antiproton and proton-proton colliders[46], and cross
section of various processes measured with early LHC data at 7 TeV collision energy.

7.2 The top-quark, the Higgs boson and new physics

The two main types of top-quark production are the top-quark pair production and the single top-quark
processes. While the tt̄ decays have a fairly large cross section and a distinctive topology, the single
top-quark is just the opposite. At LHC energies its cross section is relatively small and its kinematic
constraints are very similar either to the constraints of tt̄ or to the various vector-boson processes. Fig-
ure 7.2 shows the possible single top-quark production processes: the two t-channel, the s-channel and
the Wt-channel. The top-quark has a very short half-life and it is therefore not expected to form hadrons.
The Cabibbo-Kobayashi-Maskawa (CKM) matrix leaves practically one decay channel for the top, via
the weak interaction, t → Wb, while every other mode is suppressed. Althouhg the W has five different
decay modes, none of them are easy to detect. The W → qq is difficult because of the uncertainty of
jet energy scales, hence such jets might be easily confused with the other jets in the event – the combi-
natorial background in identifying the W. The leptonic decays include a neutrino W → lν, which only
appears as missing momentum of the full system, which has even larger uncertainty than the jets. This
makes finding the Wt channel the hardest of the four, and the compromise is to look at the lepton+jets
channel, for which the jet combinatorics are low and there is only one neutrino to deal with [13][47].

The main background for this single top-quark processes are then the ones which produce one ener-
getic lepton, missing energy and multiple jets. These include:

fake leptons

• multi-jet production from QCD

• Z → qq + jets

• W → qq + jets
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7.2 The top-quark, the Higgs boson and new physics

2.2. The Top Quark 15

pertubative expansion in orders of the strong coupling constant, αS . The Feynman
diagrams above show the leading order (LO) of this expansion. Graphs in higher
order contain radiative corrections, loops, etc. The cross section for tt̄ production
at the LHC for 14 TeV has been calculated with next-to-leading order (NLO) preci-
sion including next-to-leading logarithmic (NLL) soft-gluon resummation. A cross
section of 883.90 ± 53 pb has been predicted [26]. For 10 TeV center-of-mass en-
ergy a lower cross-section of about 401 ± 24 pb has been computed. For the first
year of running with its expected integrated luminosity of 200 pb−1 this leads to
around 80 000 tt̄ events. In the later running periods with 14 TeV at a luminosity
of 1033 cm−2 s−1 about eight million tt̄ events will be produced per year. Thus LHC
will be a top quark factory assuring high statistics for data analysis.

It is also possible to create top quarks in weak interactions resulting in only single
top quarks. The main production channels here are W gluon fusion (t-channel),
associated production of a top quark and W boson (Wt) and s-channel production.
The Feynman graphs for these channels are shown in Figure 2.6. The summed cross
section for these events is estimated with 323 pb at 14 TeV centre-of-mass energy
and 164 pb at 10 TeV[27, 28, 29, 30]. The discovery of this production channel has
been reported by CDF and DØ very recently [31, 32].
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Figure 2.6: Feynman graphs for single top quark production. From left to right: two t-
channel graphs, s-channel, Wt-channel.

2.2.4 Top Quark Decay

As described in Section 2.2.2 the top quarks have an average lifetime of

τ ∼ 4 × 10−25s (2.8)

and thus do not travel far enough to get detected by current detectors. To derive
its properties anyhow it is therefore needed to measure the decay products that can
give further information about their parent particles. Precise information about the
decay of the top quark is thus needed.

Unlike other quarks, the top quark does not persist long enough to form a bound
state and decays directly7. It decays nearly exclusively to a W boson and a b quark

7The b quark for example forms bound states with lower mass quarks to form a B hadron before
decaying.
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decaying.
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pertubative expansion in orders of the strong coupling constant, αS . The Feynman
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order contain radiative corrections, loops, etc. The cross section for tt̄ production
at the LHC for 14 TeV has been calculated with next-to-leading order (NLO) preci-
sion including next-to-leading logarithmic (NLL) soft-gluon resummation. A cross
section of 883.90 ± 53 pb has been predicted [26]. For 10 TeV center-of-mass en-
ergy a lower cross-section of about 401 ± 24 pb has been computed. For the first
year of running with its expected integrated luminosity of 200 pb−1 this leads to
around 80 000 tt̄ events. In the later running periods with 14 TeV at a luminosity
of 1033 cm−2 s−1 about eight million tt̄ events will be produced per year. Thus LHC
will be a top quark factory assuring high statistics for data analysis.

It is also possible to create top quarks in weak interactions resulting in only single
top quarks. The main production channels here are W gluon fusion (t-channel),
associated production of a top quark and W boson (Wt) and s-channel production.
The Feynman graphs for these channels are shown in Figure 2.6. The summed cross
section for these events is estimated with 323 pb at 14 TeV centre-of-mass energy
and 164 pb at 10 TeV[27, 28, 29, 30]. The discovery of this production channel has
been reported by CDF and DØ very recently [31, 32].
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2.2.4 Top Quark Decay

As described in Section 2.2.2 the top quarks have an average lifetime of

τ ∼ 4 × 10−25s (2.8)

and thus do not travel far enough to get detected by current detectors. To derive
its properties anyhow it is therefore needed to measure the decay products that can
give further information about their parent particles. Precise information about the
decay of the top quark is thus needed.

Unlike other quarks, the top quark does not persist long enough to form a bound
state and decays directly7. It decays nearly exclusively to a W boson and a b quark
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decaying.
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It is also possible to create top quarks in weak interactions resulting in only single
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2.2.4 Top Quark Decay

As described in Section 2.2.2 the top quarks have an average lifetime of

τ ∼ 4 × 10−25s (2.8)

and thus do not travel far enough to get detected by current detectors. To derive
its properties anyhow it is therefore needed to measure the decay products that can
give further information about their parent particles. Precise information about the
decay of the top quark is thus needed.

Unlike other quarks, the top quark does not persist long enough to form a bound
state and decays directly7. It decays nearly exclusively to a W boson and a b quark

7The b quark for example forms bound states with lower mass quarks to form a B hadron before
decaying.

(c) Wt-channel

Figure 7.2: The Feynman-diagrams of the dominant single top generating processes. Since the t-channel produc-
tion requires a b-quark in the initial state, which is not present in the protons, the LO and NLO contributions have
comparable cross sections. These may happen without an on-shell W-production, hence they have less kinemat-
ical constraints than the s-channel and have larger chance to occur. The Wt-channel defines an on-shell W and a
t-quark in the final states which requires a highly off-shell b-quark, making it the less probable one and the hardest
to find.

prompt leptons

• tt̄ → W+bW−b̄→ lνbb̄ + jets

• W → lν + jets

• WW/WZ → lν + jets

The processes that fake lepton identification need to be treated differently. Since these processes are
multi-jet events originally, their individual cross section is rather uncertain. A systematic uncertainty
also emerges here because the description of faking lepton recognition heavily depends on the under-
standing of the detector. The background from the multi-jet processes are better estimated from the data
itself then, applying techniques that estimate the fake lepton efficiencies for a given channel by slightly
loosening the lepton identification criteria.

The single top quark productions are sensitive to the Vtb coupling of the CKM matrix, which is
otherwise inaccessible, therefore it is an important tool for testing the Standard Model and looking for
new physics [8]. Furthermore, as the top-quark is the heaviest known elementary particle yet, it is known
to have the strongest Yukawa coupling to the yet unconfirmed Higgs boson, which introduces slight,
logarithmic dependence into the cross sections of various processes through renormalization [48]. The
precise measurements of the single top-quark production cross sections indirectly help modelling the
backgrounds for the tt̄ cross-section and mass measurements, leading to an indirect determination of the
Higgs mass.

Although the t-channel and the s-channel single top-quark production was confirmed by Fermilab, the
proof needed a combined effort of several groups and training multivariate techniques with altogether
more than one hundred input variables [49][50]. The cross-section of single top-quark processes are
relatively higher at Fermilab than at the LHC [51], nevertheless the much higher luminosity and statistics
makes it somewhat easier to detect at the LHC.
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CHAPTER 8

LHC and ATLAS

The only place with the technology that is currently capable of producing and detecting top quarks
resides at CERN, the European Organisation for Nuclear Research. This chapter aims to describe ar-
chitecture of the Large Hadron Collider and the ATLAS detector and the engineering reasons behind
it.

8.1 Overview of the Large Hadron Collider

The building of the Large Hadron Collider (LHC) was approved in 1994 by the CERN Council with a
proposed proton-proton centre of mass collision energy of 14 TeV. This was a year after of the cancel-
lation of the 40 TeV Superconducting Super Collider in the USA and a year before Tevatron’s discovery
of the top quark.

The LHC was built in the 27 km circumference tunnel of the former Large Electron-Positron Collider
(LEP) on the border of Switzerland and France. As the proton mass is much larger than the electron
mass, the energy loss via synchrotron radiation is smaller than for electrons at the same energy and
radius. This makes possible to achieve more than an order of magnitude higher collision energy than at
LEP, where it was around 200 GeV. The centre-of-mass energy of the LHC in 2011 was 7 TeV and was
increased to 8 TeV. The nominal 14 TeV collision energy is planned to be reached in 2014.

A chain of accelerators provides the protons to LHC [52][53]. In order these are the LINAC2, PS
BOOSTER, Proton Synchrotron (PS), the Super Proton Synchrotron (SPS) and finally the LHC, what
gradually increase the beam energy. An overview can be seen on fig. 8.1.

Nearly 1300 dipole magnets are used to keep the protons on a circular track, while the 400 quadrupole
magnets are to focus the beams. Small sextupole and octupole corrector magnets are attached to the
larger dipoles and quadrupoles. In order to maintain the needed 8.3 T magnetic field for the 7 TeV
and half for the 3.5 TeV beams, superconducting niobium-titanium magnets are used, cooled to 1.9 K
with high pressure superfluid helium. The protons in the beams are in bunches, and recently in bunch
trains. These can cross at four interaction points (IP), where the the four major experiments reside,
the A Toroidal LHC ApparatuS (ATLAS), the Compact Muon Solenoid (CMS), A Large Ion Collider
Experiment (ALICE) and the Large Hadron Collider beauty experiment (LHCb). ATLAS and CMS
are general purpose detectors, and as can be seen on fig. 8.2, they are ready to observe every aspects
of proton-proton collisions and to detect anything unexpected. LHCb is still a large experiment, but
built for a specific goal. It aims to precisely measure the CP violation and rare decays of B hadrons,
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Figure 3.1: Accelerator chain of the Large Hadron Collider.

with a bunch length of 1.06 ns and a bunch spacing of 25 ns at maximum energy.
Both the acceleration cavities and the guidance magnets of LHC use superconducting
technologies. The dipoles are cooled down to temperatures of 1.9 K using superfluid
helium to achieve a maximum central field strength of 8-8.5 T which is needed to
bend the beams.

The proton beams are pre-accelerated by a chain of reused accelerators that were
upgraded to meet the requirements of the LHC. The protons are produced in a
duoplasmatron from hydrogen gas and injected into the Linac2 which accelerates
the protons up to 50 MeV. In the following chain they are accelerated by the Proton
Synchrotron Booster (PSB) to 1.5 GeV, by the Proton Synchrotron (PS) up to
25 GeV and finally by the Super Proton Synchrotron (SPS) to 450 GeV which is
the injection energy for LHC.

A detailed description of the LHC can be found in the LHC design report [35, 36, 37].

3.2 Physical Observables

To describe, measure and calculate particle attributes in hadron collisions it is im-
portant to consider specific features of these events as explained in Section 2.2.3.
As the colliding quarks and gluons carry a momentum fraction, xi, of the proton,
their initial momentum is not known3 thus applying a Lorentz boost of unknown
size to the event parallel to the beam axis. This affects all outgoing momenta !p.
To acquire a variable independent from this boost in the z-direction hadron collider

3In e+e− collisions, the initial momentum is a known variable and useful for further calculations.

Figure 8.1: The LHC accelerator complex

which can be very sensitive to new physics. ALICE, as its name suggest was built to observe heavy
ion collisions and look for collective quark phenomena, like the quark gluon plasma that may appear at
high temperatures. Nevertheless it needs proton-proton collisions for calibration, and is able to provide
more general results as well. Two detectors are suited to observe the physics of forward scattering and
provide additional luminosity measurements, Totem and LHCf. The former is near to CMS, while the
latter is close to ATLAS. Lastly, MoEDAL is an experiment that can detect magnetic monopoles.

LHC aims not only for record breaking energies, but for unprecedented luminosity as well, as that is
needed for studying processes with small cross sections. The goal is L = 1034 cm s−2, nearly a hundred
times bigger than what was achievable at Tevatron. The luminosity is a function of the following [54]:

L =
f N2

4πσ2F (θ) ,

with the parameters

f = bunch collision frequency,

N = number of particles per bunch,

σ = root mean square transverse beam size at IP,

F (θ) = luminosity reduction factor due to crossing angle, θ.

Here F is a constant parameter ∼85%, defined during the design. The bunch frequency is f = 40 MHz =

1/25 ns−1, which follows from the 7.5 m distance between the bunches. Generally beam size at the
interaction point should be as small as possible, it is different for heavy ion physics to artificially reduce
luminosity. It is because the high number of particles in a bunch, which can be around N ≈ 1011 at the
LHC, compressed into small volumes has the side effect that more than one high inelastic collision might
happen at the same bunch crossing. This effect is called pile-up, and should be handled with care in the
analyses even in proton proton collisions. In heavy ion collisions pile-up is avoided by decreasing the
luminosity, otherwise the particle multiplicity would be too high for the detectors. In the same manner,
the luminosity is decreased for LHCb.
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Figure 8.2: A plot from CMS, demonstrating the capability of LHC by rediscovering the Standard Model from
the early data.

8.2 ATLAS overview

A general purpose detector is aimed to be able to reconstruct the high energy processes at the collision
point. Eventually this requires the ability to reconstruct the four momenta of the known particles at high
energies. One can only detect directly the long lived particles, that travel far away from the IP and leave
a significant trace in the detectors before their decay. Typically these are the electrons, muons, photons,
some of the mesons from which the most abundant one are the pions, mesons with b-quark content and
in some sense the neutrinos. It is possible to reconstruct the track of charged particles, measure the
their energies and their inclination to interact with different types of matter. In this way, electrons can
be distinguished from photons because they leave tracks in the dedicated detectors. Pions differ from
photons and electrons since they interact hadronically, and they may create showers. Muons, due to
their higher mass than electrons do not brake down so easily in matter, and since they do not participate
in the strong interaction they avoid creating showers and pass through most detectors by just leaving a
simple trace. Hadrons containing a b-quark sometimes decay far enough from the IP that their decay
vertices can be directly seen within the tracking devices, but otherwise these decay vertices can still be
distinguished from the vertex of the collision point.

For centre-of-mass collisions the ideal detector would be spherically symmetric to be ready for the
spherically symmetric collision outcome. However, the centre-of-mass system in pp collisions is rather
uncertain, since it is not the protons that collide directly, but their constituents. The protons consist of
many particles, all of them carrying a fraction of the full momenta, which gives an uncertainty of the sum
of momenta for the colliding partons in the direction of the beam. This means that the original spherical
symmetry is convoluted with a translational symmetry along the beam pipe, which overall resembles to a
cylindrical symmetry. A practical reason why ATLAS was built approximately cylindrically symmetric
is that it had to be built around the beam pipes. Another physics reason is that due to the mentioned
compositeness of protons, collisions can be either elastic or inelastic. Elastic collisions only alter the
direction of the flight of the protons which tend to fly approximately parallel to the beam direction,
whereas inelastic collisions convert a more significant part of the beam energy into the creation of new
particles providing a window to high energy physics. These particles tend to be created with a momenta
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Figure 8.3: Overview of the ATLAS detector

perpendicular to the beam pipe, because of the compositeness the protons, giving an additional benefit
of cylindrical detector. These resulted in that ATLAS was constructed with a cylindrical part with
layers parallel to the beam pipe called the barrel, and with cylinder sections with layers perpendicular
to the beam pipe, the so called endcap detectors. In fig. 8.3 this structure is apparent in most of the
subdetectors.

The tracking is done by the inner detectors (ID), which is also responsible to detect the exact collision
point. The detectors are under a considerably high 2 T magnetic field, which under the charged particles
bend, revealing the sign of their charge and their momenta. The measurement of the energy is the task
of the calorimeters, but as different particles interact differently with ordinary matter, one needs to mea-
sure more than just the deposited energy. ATLAS contains an Electromagnetic Calorimeter (EMCal)
and Liquid Argon Calorimeter (LAr), with high enough granularity to help determining the direction of
the particles, which can guide the tracking algorithms where to look for high energetic particles. Typ-
ically, high energetic muons can still escape from these detectors. Their identification and momentum
measurement is helped by the outermost Muon Spectrometers (MS).

The magnetic field in ATLAS has two sources. The inner detectors are surrounded by a supercon-
ducting solenoid magnet, which provides an approximately homogenous field, ideal for momentum
determination of particles. Air-core toroids with eightfold symmetry can be found at the outer parts of
the barrel, while two smaller disks of magnets are at the endcaps. The reason behind this complexity is
to direct the muons through the detector material instead of the dead materials.
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Figure 8.4: Longitudinal view of the Inner Detector

8.3 Inner detector

The inner detector in ATLAS performs many tasks at the same time [55]. Through detecting the po-
sitions of individual interactions of the charged particles within its volume, the recorded hits can be
combined into tracks. These are important in not just determining the momenta of the particles, but also
to reconstruct the vertex where the collision happened. The hits have a 10 µm to 500 µm precision, while
the position of the vertices can be reconstructed with approximately 50 µm, see [47]. This is possible
mainly with the help of the innermost of the three inner detectors, the Pixel Detector. The precision
is needed not just to distinguish the vertices from pile-up events, but also to find displaced secondary
vertices. These are produced by the decay of relatively long-living mesons, hence it gives an important
hint of the flavour of quarks involved.

Farther from the primary vertex the Semiconductor Tracker (SCT) encapsulates the pixel detector,
see fig. 8.4. It is almost as precise as the Pixel Detector, and due to the smaller radiation it ages more
slowly, which is an important feature in the view of the expected long running time and high luminosity
of LHC. The intriguing outermost sub-detector of the Inner Detector is the Transition Radiation Tracker
(TRT), which gives not only additional precision hits for tracking but also particle identification hints.

Apart from precision tracking, vertex detection and particle identification, the overall tracking perfor-
mance should have a good enough performance to be able to tell if there was no track at all at a given
position. Many particles, such as photons and neutral pions, mesons and hadrons deposit their energies
in the calorimeters, but being neutral they expected not to leave significantly many hits in the trackers.
One especially important case is with the neutrinos and weakly interacting particles predicted by exotic
theories, which particles can only be detected through the unbalanced transverse momenta or missing
transverse energy 6ET . In such a case the tracker plays an important role in deciding if the 6ET was really
from a neutral particle or caused by an error or by a hole in the calorimetry.

8.3.1 The pixel detector

The innermost detector is the pixel detector with an inner radius of 5 cm. Its cylindrical structure built
from layers containing pixel modules. These modules are 21.4 × 62.4 mm2 semiconducting silicon
chips, each with 16 instance of 120 × 24 pixels with a resolution of 50 µm in the plane perpendicular to
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the beam, and 400 µm in the z direction. The detector consists of three layers and covers |η| < 1.5. The
barrel layers are approximately cylindrical, while the end-cap modules are disks, closing the cylinder.
The innermost layer is called b-layer, reminding its importance in b-tagging, and it is designed to be
replaceable. With the two additional layers with larger radius, the pixel detector gives a high chance
of three hits for every charged particle. The outer radii are 12.2 cm for the barrel and 14.9 cm for the
end-caps. The full detector has 80.9 million pixels. A much larger pixel detector would come with
unreasonably high material budget, meaning that the increasing readout and maintenance infrastructure
would interfere too much with the particles passing by.

8.3.2 The semiconductor tracker

Unlike the pixel detector the particle detection in the SCT is based not on pixels but on silicon stripes.
This allows a much more accurate spatial resolution of 16 µm in the Rφ plane, while it is still 580 µm
in z. Similarly to the pixel detector, the modules in the barrel region lie on the cover of the cylinder,
the 12.5 cm long strips being approximately parallel to the z-axis. The geometry of each module is
126 mm × 63.6 mm, but a second module is glued to the back of each module rotated with a 40 mrad
angle, making possible to measure the z-direction with the mentioned precision. The barrel consists
of four cylindrical layers, with radii from 30 cm to 70 cm and a length of 149 cm, altogether having 12
modules along the z direction. The end-cap parts form disks, with slightly overlapping trapezoid-shaped
modules, which are two-sided, similarly to the modules in the barrel. Each end-cap disk consists of four
concentric rings. The inner radii of these rings are adjusted in order that they cover |η| < 2.5. The
detector provides 6.2 million readout channels altogether.

8.3.3 The transition radiation tracker

The TRT also consist of stripes, but the particle detection is based on a different physical process as it
is a straw-acttube tracker. The TRT is made of grounded tubes containing wires on high voltage, filled
with a neutral gas that can be easily ionised. Similarly to a Geiger-Müller counter, when a charged
particle flies through this gas, it triggers an avalanche of ionisation. It was named after the transition
radiation effect, since it detects the photons radiated by the relativistic charged particles passing through
the boundary of two media with different dielectric constant.

The maximum straw length is 150 cm with only 4 mm of diameter, and there are around 50 thousand
of them in the barrel. The endcap takes a larger part in tracking, as it has 320 000 of straws. The barrel
straws, just like in SCT are lying parallel to the z-axis, and are organised into modules with a triangular
cross section. The barrel cylinder covers the radii from 56 cm to 107 cm, while most of the 36 end-cap
wheels are between 64 cm to 104 cm maintaining tracking hits in the |η| < 2.5 range. The high number
of straws assures an average number of 20 to 36 hits per tracks, each with a 170 µm precision. This
precision is a result of not just measuring the fact of transition, but the timing of the hit and the shape
of the response. TRT employs a non-flammable gas mixture of 70% Xe, 27% CO2 and 3% CF4. The
Xe is also useful in the electron identification, as it absorbs the transition radiation photons, while the
CF4 enables faster drift-time for electrons. These give a stronger signal that discriminates electrons
from pion tracks. The CO2 stabilises the mixture of the two former gases under high voltage. Unlike
the other detectors, the TRT requires uniform temperatures among the modules for stable performance,
which is solved by circulating an additional cooling gas within the system.
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8.4 Calorimetry

The calorimeters in ATLAS were designed to cover a large rapidity range |η| < 5, and provide good
granularity and energy resolution for various physics scenarios, including the invariant mass recon-
struction of various Higgs decays and exotic weak vector bosons, the Z′ and the W′. These require
the precise energy measurement of many different particles: photons, electrons, muons, taus, light and
heavy mesons and baryons and much more complex structures, like jets from different origins [56]. The
main difference in these classes is that some of them interact not only with the atomic electromagnetic
field of the detector material but also with the nuclei. These particles do not deposit their full energy in
a calorimeter since they tend to produce hadron showers that contain particles which may decay further
and produce neutrinos, or high energy muons. While the energy carried away by them can not be mea-
sured within the size of ATLAS, still the shape of the showers carry information about the energy and
origin. These also lead to the distinction between electromagnetic and hadronic calorimetry, depending
on the main type of interaction involved.

To gain the most possible information about the particles leaving the inner detector, the first they
meet is the electromagnetic calorimeter and more outside the hadronic calorimeters. The relative energy
resolution typically goes by the following formula:

σ(E)
E

=
a
√

E
+ b ,

where E is the energy of either a particle or a jet, σ(E) the root mean square of the reconstructed energy
probability. The constant a is called the statistical term, while b is the constant term. For high energies
the constant term will dominate, for electrons it is around 1%, for jets it is around 3% for the barrel and
end-caps, while 10% for the forward detectors, dominated by the hadronic calorimetry. The statistical
term for electrons is rather low, at the level of 10%, but for jets it is 50% in the central region and
even 100% in the forward detector. An important question is the linearity of the calorimeter response
with respect of the incident energy, where the detector performs rather well. An important variable in
calorimetry is the radiation length X0 for every detector material, used in the calculation of the average
energy loss by bremsstrahlung of the charged particles flying through.

8.4.1 Electromagnetic calorimeter

The electromagnetic calorimeter covers a large rapidity region of |η| < 3.2 and it is outside the inner
detector and the 44 mm thick superconducting solenoid magnet. It is a sampling calorimeter, having al-
ternating layers of lead, liquid argon and read-out electronics in an accordion shape. A particle coming
from the direction of the collision point first faces a lead pre-sampler layer, creating an initial elec-
tromagnetic shower. The lead was chosen as absorber because of its high atomic number, so charged
particles lose significant amount of energy by flying through. The signal is created in the liquid argon,
as it is ionised by the shower. The EC has three different readout layers, the closest to the interaction
point is the pre-sampler with 4.3X0, this is relatively thin compared to the second layer with 16X0, and
the last one is used as a trigger in bunch crossing identification and has thickness of 2X0. The barrel
covers the rapidity region |η| < 1.475 and the end-cap is between 1.375 < |η| < 3.2. The granularity
of the detectors are different in the sampling layers and in comparing barrel with end-cap. The barrel
presampler has the finest resolution in ∆φ, but the worst in ∆η. In terms of ∆η × ∆φ, it is 0.003 × 0.1 in
the main sampling layer, while it is 0.025× 0.025 and 0.05× 0.025 in the middle layer and in the trigger
sampler respectively. The resolution of the end-cap is similar in ∆η × ∆φ, but it changes as a function
of η, optimised for physics reconstruction. The full end-cap contains approximately 200 000 channels,

79



8 LHC and ATLAS

and this data helps seeding the tracking algorithms and the particle identification.

8.4.2 Tile calorimeter

The tile calorimeter is the hadronic calorimeter occupying the outer barrel regions up to |η| < 1.6. It
consists of alternating layers of steel absorbers and scintillators, read out by photomultiplier tubes. The
cylinder spans from radii 2 m to 4 m, segmented into a barrel in |η| < 1, and two extended barrel regions
in 0.8 < |η| < 1.7. Although iron is not as resistant to radiation as copper, the integrated dose is much
smaller than in the high rapidity regions (the endcaps and the forward parts), so it was safely chosen as
cheap absorber. The resolution of the tile calorimeter is ∆η × ∆φ = 0.1 × 0.1.

8.4.3 Liquid argon calorimeter

Hadron calorimetry in the endcap region is done by another liquid argon calorimeter, the Hadronic End-
Cap (HEC) which shares many things in design and infrastructure with the electromagnetic calorime-
ter [57]. It consists of two wheels, made of different thickness of copper plates. Its gaps are filled with
liquid argon, and covers the rapidities 1.4 < |η| < 3.1. The readout is done with kapton-insulated copper
plates, kept in place with a honeycomb structure. The granularity ∆η × ∆φ worsens as a function of |η|
from 0.1 × 0.1 to 0.2 × 0.2.

8.4.4 Forward calorimeter

The very high rapidity region is only covered by a hadron calorimeter, the Forward Calorimeter. It
consists of three disk-shaped liquid argon detectors at each side of ATLAS, between 3.0 < |η| < 4.9.
The volume of the detector is rather small, so to maintain the required resolution in η, it is a relatively
dense detector. The disk closest to the interaction point uses copper as an absorber, while the further
disks use tungsten. The detection is done in a hexagonal grid structure of tubes drilled into the disks,
pointing to the collision point. Altogether it provides 11 288 channels.

8.5 The muon spectrometer

The muon tracking and momentum measurement rely strongly on the magnetic field structure. The
barrel solenoid, the eight barrel toroid and the end-cap toroids create a complex magnetic field, while
the muon trackers are aligned in a way to be able to measure the coordinates of the tracks in the principal
bending direction for the most precise momentum measurement. The emphasis on muon tracking is
because they can provide the cleanest access to many physical processes as they may be produced in the
hard collision with high momenta. Nevertheless they only slightly interact with the detector materials at
the expected energies and lose only a small portion of their momenta. That is why the muon detectors
are trackers and they are the outermost with the arrangement as fig. 8.5 shows. The other detectors filter
everything else, with the exception of the neutrinos and occasional high energetic jet punch throughs.
The central region, |η| < 1, is dominated by the field of the barrel toroids, the 1.4 < |η| < 2.7 region
by the endcap-toroids, while in between 1.0 < |η| < 1.4 is the interplay of both. This was optimised
in a way that the magnetic field is mostly orthogonal to the muon tracks in the most interesting energy
ranges. In the barrel region lies three cylindrical layers of Monitored Drift Tubes (MDT), while the
large rapidity regions are covered by Cathode Strip Chambers (CSC). These latter despite being much
closer to the interaction point, have finer granularity to cope with the larger number of background and
to provide better precision.
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Figure 8.5: Arrangement of the muon detectors

Additionally there are two more types of muon detectors, both are dedicated for triggering. Around
the barrel stand the Resistive Plate Chambers (RPC), while up to |η| = 2.4 in the endcap the Thin Gap
Chambers (TGC) are located. Both can measure a two coordinate component of the tracks.

8.6 The trigger system

ATLAS has to face a 40 MHz stream of collisions, each intrinsically different, though most of them are
out of interest. Reading out all the channels at this rate would be impossible with current technologies,
not to mention the storage demand. To deal with this amount of information, a three level trigger system
was implemented that decides which events are worth to store. The Level 1 Trigger (LVL1) was built
directly into ATLAS, and uses the dedicated trigger detectors from the electromagnetic calorimeter,
hadronic calorimeters and from the muon detectors [58]. It must be noted that the inner detector can
not participate in the trigger decision, as it is computationally infeasible to reconstruct tracks for every
event. The LVL1 algorithm reconstructs the following objects:

• local objects

– muons

– EM-clusters, isolated or not

– narrow jets, useful for reconstruction of taus or single hadron decays
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– jets

• global objects

– missing transverse energy

– scalar transverse energy

The existence of these objects with certain minimal energy or transverse momentum can be used
as a LVL1 trigger. These objects can then be used by the High Level Triggers [46] (HLT), which is
the common name for the Level 2 Trigger (LVL2) and the Event Filter (EF). The LVL2 is based on
forming Regions of Interest (RoI) around the interesting LVL1 objects, and accessing all the detectors
within this (η, φ) region, including the trackers, which enables it to refine the LVL1 decision with better
granularity and higher quality objects. This can further decrease the rate of events leaving the detector.
Finally, these objects can be fed to the Event Filter, making a decision if the event belongs to a class
that is worth to be recorded. To avoid event shaping, namely that physicists only look at events that look
like what they prefer, the triggers are typically very loose, being based on pT thresholds, multiplicity
of objects and so on. The measurement of trigger acceptance and efficiency is non-trivial, since it can
only be based on understood physics objects. A consistent method to measure acceptance and efficiency
from data is the bootstrap method, which starts from minimum bias triggers and gradually tightens them
with increasing the thresholds when the previous one was well understood. Another method is based on
independent event signatures, where one understood trigger can be used to study an different one, though
it also needs accurate physical description. A third one, based on di-object is basically a combination of
the previous two, called as tag-and-probe method. Its credibility is based on the assumption that certain
pair-production processes are dominating, hence triggering on one of the objects can be used to test the
trigger efficiency on the other. Such processes are di-jet production in QCD, Z → ll and J/Ψ → ll
decays for example.

8.7 Luminosity measurement

Data taken with ATLAS is divided into chunks, called Luminosity Blocks (LB). This segmentation is
necessary for maintaining the same data quality, since many detector elements may suffer from tempo-
rary high voltage drops, dead times, data acquisition problems and the luminosity gradually decreases
during a run period too [59][60].

The luminosity measurement comes from many sources, because all of them are model dependent.
Their combination is used to determine and decrease the overall systematical uncertainty. The main
methods available are the following:

• Roman pots
The Roman Pots were considered to be a milestone in luminosity measurement in hadron colliders
in the 1970s. The three roman pots – one horizontal and two vertical – consist of a vacuum
chamber and a movable beam position monitor (BPM). They are attached to the beam pipes in
the very forward region of ATLAS, 240 m from the IP [61]. The idea is to measure the intensity
of particles in the beam that elastically scatter in a very small angle [62], based on the optical
theorem [63]. That formula very simply connects the total cross section σtot of the interaction to
the imaginary part of the forward scattering amplitude f , for momentum k.

σtot =
4π
k

Im f (0) .

82



8.7 Luminosity measurement

This can provide a very precise absolute luminosity measurement, an accuracy of ∆L/L =

2 % to 3 %. It can also operate as a Level 1 trigger, however it can only be used in the very
low luminosity runs, at 1027 cm−2 s−1 to calibrate the other methods.

• LHC machine parameters
Both relative and absolute luminosity measurement can be done with the estimation of the LHC
beam parameters. What have to be known are the number of protons in a bunch and in a beam,
the transverse beam dimensions β and emmittance, and finally the transverse displacement of the
beams. Here the emmittance measures the compactness of the beam in phase space, combining the
physical cross section with the momentum spread. Its uncertainty dominates the measurement,
and it is about 5 % to 10 %. The physical width of the beams are measured via Van der Meer
scans.

• W/Z counting
During high luminosity runs, when L > 1033 cm−2 s−1, the weak vector boson production can
be used for online luminosity monitoring. Depending on the uncertainty of the parton distribu-
tion functions and the W±/Z0 production cross section it can be used either for relative or absolute
luminosity measurements. The reconstruction of leptonic decays need understanding of the detec-
tor, which is expected to get better over time, and new PDF measurements can also be taken into
account. The uncertainty of the absolute measurement is around ∆L/L = 10%, while many sys-
tematic uncertainties cancel for the relative luminosity determination. At the highest luminosities
the statistical precision can be as good as 5 % in a 10 s measurement, or 1 % after 3 min.

• Dilepton counting
The cross section of µµ/ee production from photon-photon fusion is known from theory within
1% uncertainty, though it is rather low. For central muons above 3 GeV it is around 1 pb. With
good understanding of the needed objects, and knowledge of the acceptance, the absolute and
relative integrated luminosity can be measured with 2 % precision.

• LUCID
17 m from the interaction point along and around the beam pipe, but still within ATLAS stations
the LUCID, the Luminosity measurement using Cherenkov Integrating Detector [64]. It consists
of small, gas filled tubes pointing to the interaction point, to measure the flux of forward scattered
particles through the integrated Cherenkov light with photomultipliers. This detector at |η| ∼ 6
can also act as a LVL1 trigger, and monitor the relative luminosity at a bunch-by-bunch level.

• Beam Condition Monitor
BCM is a small, 1 × 1 cm2 thin artificial diamond sensor, laying directly on the beam pipe, only
1.8 m away from the interaction point and 5 cm from the centre of the beam. It can measure the
number of charged particles in 3.9 > |η| > 4.1, which typically come from inelastic collisions,
providing information about the relative luminosity.

• MBTS
The Minimum Bias Trigger Scintillator is a 2 × 8 scintillator grid in front of the LAr end-caps.
Its main purpose is to provide a LVL1 trigger for minimum bias events, with an acceptance in
|η| =1.9 to 3.8. Since it is damaged by radiation, it can only be used for relative online luminosity
monitoring.

• TileCal
The photomultiplier tubes in the hadronic calorimeter in the barrel are sensitive to the level of
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minimum bias events. The integrated anode current provides a relative luminosity monitoring,
without a need for a trigger.

• LAr
Similarly to the TileCal, the Liquid Argon calorimeter can act as a luminosity monitor too. The
relative luminosity measurement is done by recording the current of the high voltage system.
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CHAPTER 9

The data acquisition infrastructure of ATLAS

The important hardware components of data acquisition in ATLAS were described previously in Sec-
tion 8.2. This chapter summarises the additional external infrastructure and the online and offline soft-
ware necessary for data taking and physics analysis, based on the technical design reports of the trigger
system [46] and computing [65].

9.1 System components and functions

9.1.1 The data flow system

Every subdetector of ATLAS has a readout driver (ROD) that behaves as an interface between the
detector and the external infrastructure, where the connection is done with over 1600 readout links
(ROL). The LVL1 trigger decisions are made within the dedicated detectors, and the information on
the selected events are transferred from the RODs via the ROLs into the readout buffers (ROB). These
buffers serve the information for the LVL2 trigger of the HLT system. The accepted events are then
transferred to one of the ∼100 computers in the Sub-Farm Interfaces, which builds the event from the
fragments, and conveys it to the second element of HLT, the Event Filter (EF). All the events accepted by
the EF are sent both for permanent storage to the Sub-Farm Output (SFO) and for offline reconstruction
for further analysis.

9.1.2 The HLT system

The LVL2 trigger has an average time of 10 ms for every event that passed LVL1. It uses highly op-
timised, limited precision algorithms to make a decision on the fraction of the full event data, as it
typically uses only 2% of it. The several Regions of Interests (RoI) identified by the LVL1 trigger are
combined together by the RoI Builder (RoIB) algorithm, so LVL2 can make a global decision on the
event. The necessary information are dispatched by the LVL2 Supervisors (L2SV), and the LVL2 node
allocated for the event requests the ROBs themselves.

The EF receives the LVL2 accepted events, which are here subject for a more precise and computa-
tionally extensive analysis that takes 1 s on average. These events are fully built by the SFI, containing
all the information that was available for the LVL2 decision and detailed object informations like pT, ET
and isolation variables. It performs more sophisticated object reconstruction and calibration to provides
a more complex decision.
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bandwidth of 160 Mbyte/s. Taking into account estimates of the bandwidth that will be used by
each detector, the total readout bandwidth to be dealt with after the LVL1 trigger is more than
~160 Gbyte/s. This number depends on the detector occupancy as well as the LVL1 trigger rate
and will vary considerably according to the luminosity being delivered by the LHC. Other im-
portant aspects bearing on the total readout bandwidth are the data compression and zero sup-
pression schemes which are still under study in some of the detector systems. A more detailed
description of the detectors’ readout parameters can be found in Chapter 2.

1.2.3 Functional and operational requirements

The TDAQ system must be designed and constructed in such a way as to provide ATLAS with
highly reliable and efficient data-taking and event-selection capabilities. The huge investment
in both financial and human resources for the ATLAS detector itself, and also for the LHC ma-
chine, means that data-taking operations must be established and optimized as soon as possible
after first collisions in the LHC in 2007, in order to capitalize on this investment.

From early stages in the development of the ATLAS HLT/DAQ system, elements of the system
(in particular those concerned with data acquisition) have been used and tested in a test beam
environment, providing the data acquisition functionality and performance needed for the de-
tector data taking. A major effort has been made to minimize the functional divergence between
the system used at the test beam and that being developed for the final experiment. Apart from
providing a real-life, albeit scaled down, testing facility for the HLT/DAQ system, this policy
has the advantage of familiarizing the detector communities in ATLAS with the HLT/DAQ sys-
tem at an early stage. Some of the elements of the system (those closest to the detector readout,
and their associated control and supervision functions) will be required by the detectors during
their commissioning phases, both above and below ground. Requiring that the detectors be able
to use and give feedback on the HLT/DAQ system well in advance of this, therefore offers con-
siderable advantages both to TDAQ and to the detector communities in terms of easing the in-
stallation and commissioning phase of the experiment.

An essential requirement on the HLT/DAQ system which will be particularly important in the
commissioning and installation phase is the ability to partition the system into several inde-
pendent but fully-functional entities. It must be possible for several detectors and/or several
parts of a given detector to be triggered and to take data in parallel and independently of each
other. This is in order to facilitate and render as parallel as possible the detector debugging and
commissioning operations. During physics running, it will be necessary to have the capability
to run a partition of an element of a given detector in test mode, to help track down a fault,
while the rest of the ATLAS detector is taking data normally.

The DCS is an integral part of the TDAQ system and assumes a particular role in assuring the
coherent, safe operation and monitoring of all components of the ATLAS detector. Although it
is highly integrated with other parts of the system, the DCS has the particular requirements of
being operational 24 hours a day, seven days a week and of being highly fault tolerant. The
principal elements of the DCS must be installed and commissioned in time for the first detector
commissioning operations which will begin in early 2005. These elements must be able to oper-
ate in a standalone mode i.e. without depending on other parts of the HLT/DAQ system being
available.

Constraints of floor space and cooling capacity, in particular in the underground experimental
cavern and adjoining service rooms, limit the number of racks available to the HLT/DAQ sys-
tem. The proposed location of the HLT/DAQ racks is presented in Section 5.5.11.
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1.2.4 Requirements due to the long expected lifetime of ATLAS

The installation and commissioning phase of ATLAS [1-5] will take in excess of four years and
the experiment is expected to take data for fifteen years or more. This timescale puts a strong
premium on the requirement for a highly modular and cost-effective system design. This facili-
tates the replacement or upgrading of specific elements of the system in a manner that will have
little or no side effects on neighbouring elements.

Experience has shown that custom electronics is more difficult and expensive to maintain in the
long term than comparable commercial products. The use of commercial computing and net-
work equipment, and the adoption of commercial protocol standards such as Ethernet, wherev-
er appropriate and possible, is a requirement which will help us to maintain the system for the
full lifetime of the experiment. The adoption of widely-supported commercial standards and
equipment at the outset will also enable us to benefit from future improvements in technology
by rendering equipment replacement and upgrade relatively transparent. An additional benefit
of such an approach is the highly-competitive commercial market which offers high perform-
ance at low cost.

1.3 System components and functions

In this section, the principal components and
functions of the baseline HLT/DAQ system
are described very briefly in order to give the
reader an overview of the system before pro-
ceeding to the subsequent chapters where de-
tailed descriptions are given. A schematic
diagram is presented in Figure 1-1. HLT/DAQ
can be broken down into four principal sys-
tems, namely:

• The Data Flow system — responsible for
receiving the detector data, serving of a
subset of data to the HLT system, and
transporting the data for selected events
to mass storage

• The HLT system — responsible for the
post-LVL1 event selection and filtering
involving a rate reduction of a factor of
several hundred, and for the classifica-
tion of all accepted events

• The Online system — responsible for all
aspects of experiment and TDAQ opera-
tion and control during data-taking, and
during testing and calibration runs

• The DCS — responsible for the coherent
and safe operation of the ATLAS detec-
tor, as well as the interface with external
systems and services including the LHC itself.

Figure 1-1  Principal components of the Data Flow
and HLT systems
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Figure 9.1: The main components of the Data Flow system and HLT

9.1.3 The online software system

The Online Software system is an architecture that is responsible for the configuring, controlling and
monitoring of the TDAQ system. Furthermore, it defines an interface between the DAQ, HLT and Data
Control System (DCS), and it is responsible for some information distribution service and gives access
to configuration and other databases of meta-data, but does not handle information about individual
events.

It plays a role of a supervisor for the entire Data Flow system, responsible for the synchronisations
and for the proper start up and shut down of the TDAQ. This system also helps in the verification and
diagnostics of the DCS, and acts as an early error detector of the occurring problems. It also stores the
topology of the system and provides the information about the sources of errors, diagnostic messages
and monitoring histograms from the TDAQ.

9.1.4 The detector control system

The DCS communicates with the LHC infrastructure, the CERN services and supervises the experi-
mental setup, the detector infrastructure of ATLAS. It is also responsible for monitoring and controlling
operations that have safety requirements, and executes the low level commands of controlling com-
mands in their proper sequence. It also gathers event-by-event data, that can be used to evaluate the
conditions of the detectors and is necessary for offline analysis. Unlike the DAQ, DCS operates outside
data taking periods too.

9.2 Data types and data flow

The event data together with data about detector control, configuration, event and detector conditions,
online statistics and monitoring are stored together, and is produced with a rate of 10 petabytes per year.
To face this demand, this data is processed in a computing grid distributed around the world, the LHC
Computing Grid. The data is stored in four layers on the grid with different complexity. The four layers
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are:

• Tier-0 site keeps a permanent copy of the raw data. Currently it is at CERN, but is going to be
expanded with a Hungary facility in 2013.

• Tier-1 sites do the full event reconstruction and data reduction, and they also serve as analysis
facilities.

• Tier-2 sites belong to larger institutions, and have a copy of a data part of certain interest and they
are responsible to generate the Monte Carlo simulations. They also accept analysis jobs from
other institutions.

• Tier-3 sites are formally similar to Tier-2 sites, but they only serve their own institution.

The offline software of ATLAS is Athena, and is based on the Gaudi framework, that is shared with
the LHCb experiment. Gaudi serves as an abstract layer that interprets detector architecture schemes
and handles Monte Carlo simulations by Geant4 [66], whereas Athena handles the event generation,
interface to simulation, reconstruction, analysis and visualisation.

Athena handles different abstractions of data, each are derived from the combination of raw detector
output and calibration information. These abstractions are

• RAW data contains every event that passes the EF in a byte-stream, unprocessed format. An
event is about 1.6 MB, and they are expected to come with a 200 Hz frequency, accompanied with
low frequency trigger calibration data.

• ESD or Event Summary Data contains a noise filtered event information, as an output of the
reconstruction process. Its size is intended to be smaller than of the RAW events, and it is already
in an object-oriented format. Its main purpose is to be used for calibration.

• AOD or Analysis Object Data is a reduced version of the ESD, and general enough for physics
analyses. It is an object oriented ROOT file, and contains several calibration schemes and neces-
sary meta-data. The size of an event is approximately one tenth of the RAW data, and AODs are
subject to be duplicated at various sites. ATLAS recommends that any physics analysis should
be reproducible by running on AODs, but the popular use cases dictated the standardisation of
DPDs.

• DPD or Derived Physics Data are flat ROOT files, n-tuples. They come with a set of tools that help
to personalise the content for individual groups or for certain physics goals. Refining iteration of
analyses are typically faster on DPDs than on AODs; they occupy less space and it is easier to
use them on local, non grid-enabled clusters. DPDs come in three level of abstractions, from the
regular DPD to D3PD.

• TAG These files contain event-level meta-data, some basic information that can be used for event
preselection, intending to speed up queries and event selection on AODs.

• SIM files are simulation files that contain the generator-level hard process information or any
higher levels of the Geant simulation.
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9.3 Local analysis codes

As AODs are rather large and new calibration schemes may appear rather often, their regular download
is inefficient. A more convenient way is creating DPDs from the AODs on the computing grid by the
process of dumping. The local analysis code used in this thesis is based on the SFrame framework [67],
which offers several lightweight tools and eases the compilation of ROOT related codes. Uncompiled
ROOT macros are generally considered to be prone to errors and recommended only for very small pilot
analyses.

The infrastructure of SFrame was augmented for the local needs with the SFM code, offering fea-
tures like multi-jet estimation through the fake lepton methods, simplified event selection and automatic
control of histogram creation.
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CHAPTER 10

Common object selection

This chapter describes how the physical objects are identified within an event, following the recommen-
dations of the various expert groups within ATLAS. Recognising the patterns of electrons, muons, jets
or compound objects like missing transverse energy might seem straightforward, simply separating a
pattern correlating with the objects from the detector noise. Most of the difficulties arise by defining
patterns for the various objects that do not interfere each other; patterns that are independent of the
abundances of the particles or at least well known for certain event topologies. In order to introduce
the minimum possible systematic errors, all the object definitions were justified on well known physical
processes by looking at control plots. The chapter follows the structure of the ATLAS note directed to
define the object and event selection recommendations for 2012 top-quark analyses [68].

10.1 Muons

The recommendation of the Muon Combined Performance (MCP) group [69][70] are the following:

• muid algorithm for muon identification. This requires the reconstruction of track standalone track
segments which are extrapolated to the vertex and refitted with the vertex constraint [71].

• Muons are required to be combined. The algorithm first a matches the muid track with a track
from the inner detector and makes a global refit.

• The muons have to be within the acceptance range of the detector, |η| < 2.5.

• Muons are required to have pT > 25 GeV, in order to be on the plateau of the single muon trigger
efficiency.

• Muons are required to pass the MCP ID track quality cuts.

• A b-layer hit for the muon track if the extrapolated track passes this region.

• The muon track should have at least one pixel hit or cross a dead pixel.

• The number of SCT hits of the muon track plus the number of cross dead SCT sensors must be
greater or equal to 5.

• The number of pixel and SCT holes must be smaller than 3.

89



10 Common object selection

• With the n number of TRT hits plus TRT outliers, for |η| from 0.1 to 1.9 n must be greater than
5 and the fraction of outliers smaller than 90%. For |η| < 0.1 and |η| > 1.9 require the outlier
fraction to be smaller than 90% only if n > 5.

Rejection of cosmic muons:

• The z projection closest approach of the track to the primary vertex must be smaller than 2 mm.

Isolation from other objects:

• The requirement for the sum of the transverse energy around the muon in 0.1 < ∆R < 0.2 has to
be E0.2

T < 4 GeV.

• The sum of transverse momentum of tracks around the moun within 0.2 < ∆R < 0.3 has to be
p0.3

T > 2.5 GeV.

• The angular distance from a jet with pT > 25 GeV and |JVF| > 0.75 has to be ∆R > 0.4.

The jet vertex fraction JVF is a variable that determines if a jet is coming from the primary vertex or
not. With this, the last three isolation requirements separate prompt muons from heavy flavour decays
and typically from multi-jet backgrounds, which are expected to increase with pile-up, following the
increase of the luminosity. The misidentification rate is estimated with the so-called matrix method, a
fractional fitting method based on four or more bins. One of the bins should contain a relatively clear
signal, dominated by Z → µµ and selected by an invariant mass window around the Z mass. There is
another bin with a high content of multi-jet events, the most dominating background, and the rest of the
bins are overlapping regions of signal and background. The MCP group also provides efficiency scale
factors, an estimate for the ratio of moun identification efficiency in MC and data, typically determined
with a tag-and-probe method. The same scale factor is estimated for the muon trigger efficiencies for
different run periods.

10.2 Electrons

The core of electron identification is associating clusters in the EM calorimeter to tracks in the Inner
Detector. The complete list of requirements for the electron candidates are the following [72]:

• Pre-cluster seeds are reconstructed with the SlidingWindowClustering algorithm. This re-
quires towers1 to be built from calorimeter hits from longitudinal layers. The algorithm then
checks all possible rectangular regions with a predefined ∆η and ∆φ sizes, and keeps those clus-
ters which pass a certain ET = E/ cosh(η) threshold. In case of overlap, the cluster with higher
ET is kept.

• EM cluster search is performed for different cluster sizes and differently calibrated for electron
and photon candidates. The size in number of calorimeter cells in ∆η × ∆φ are 3 × 7 and 5 × 5 in
the barrel and in the end-caps respectively.

• The EM clusters have to be within the calorimeters acceptance range |η| < 2.47, excluding the
transition region 1.37 < |η| < 1.52.

1 The two main clustering algorithms are the tower grid and the topological clusters. Their difference is detailed at the
description of the jet reconstruction.
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• Tracks used for association with clusters must pass good quality cuts: at least two hits in the pixel
detector from which one should be in the b-layer and at least seven hits in pixel and SCT together
(so called precision hits).

• The fraction of high threshold hits in TRT must be higher than 0.08 in order to reject pions.

• Transverse impact parameter of a track must be |d0| < 0.1 cm

• Track pT > 2 GeV

• The cluster and the track must be within |∆η| < 0.2 and |∆φ| < 0.1.

• Electrons with low transverse energy, calculated from the cluster energy and track η with
ET = EEM/ cosh(ηtrack) < 25 GeV are excluded

• Isolation cuts are made on multivariate likelihoods, based on sum of calorimeter momenta and
energy in certain cones around the track to differentiate electrons from photons and jets.

Forward electrons, with 2.5 < |η| < 4.9 are not used in this analysis, as the reconstruction of jets in this
region are less certain, making jet-electron overlap removal impossible. Similarly to the muonic case,
energy scale corrections and efficiency scales are determined with using the tag-and-probe method on
Z → ee and J/Ψ → ee event candidates or E/P studies, because these latter ones are sensitive to the
mass of the charged particle. The electron isolation was optimised on W → eν samples. The energy
scale corrections are a function of φcluster, ηcluster and ET, and are within ±1.5%.

10.3 Jets

Jets are formed using the anti-kt algorithm with a clustering parameter that corresponds to a radius of
R = 0.4. The algorithm is seeded by topological clusters at the electromagnetic scale (EM) in the
range of |η| < 4.5 and pT > 20 GeV. The difference from the towering algorithm is, that the tower
grid sums up the energies in the different calorimeter layers, resulting 2 dimensional (η, φ) grid, while
the topological clusters are also taking into account the depth of the different calorimeter layers, hence
creating 3-dimensional energy clusters [73]. The contributions of the two types of pile-up, in-time and
out-of-time, can be subtracted using the knowledge of the number of primary vertices in the event and
the average number of collisions per bunch crossing in a given luminosity block, respectively. This is
typically done in bins of pseudorapidity. Due to physical and detector effects, jets must be cleaned. The
important variables used to determine the quality of jets are the following:

• energy fraction in the electromagnetic calorimeter,

• maximum energy fraction in one calorimeter layer,

• energy fraction in the defective HEC layer,

• the fraction of good quality LAr cells.

Three categories of jets can be defined this way:

• Bad: jets that need to be removed, as they are likely to originate from background events or
detector effects.
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• Ugly: marks jets in problematic calorimeter regions, where energy is not well measured.

• Good: jets recommended for physics analysis.

The jets are calibrated to the hadronic scale, using pT and η dependent factors derived from inclusive
dijet Monte Carlo. The uncertainty of the energy scale for this method is much more homogeneous and
smaller than for the data-driven Local Cluster Weighting (LCW) method at the moment. The uncertainty
of the scale of the used EM+JES algorithm was derived from the early data periods from multi-jet
events, taking flavour tagging information into account. The calorimeter jet reconstruction efficiency
can be measured via the tag-and probe method, by reconstructing jets from charged tracks in the inner
detector and matching them to calorimeter jets.

10.4 Missing transverse momentum

Missing transverse energy or missing transverse momentum can be reconstructed in two fundamentally
different ways. The first is simply summing up the calibrated calorimeter energies vectorially, and tak-
ing the absolute value of the transverse component. This definition was used only in the early periods
of LHC data taking. The present recommendation of the Jet/ETmiss Working Group is more sophisti-
cated and uses more reconstructed information in the MET_RefFinal algorithm. This algorithm uses
reconstructed and calibrated objects, based on the objects optimised for a certain physics channel. These
objects are the electrons, photons, taus, muons, jets and soft jets (jets not passing the pT threshold); all
calibrated with their own scheme, but lacking out-of-cluster corrections. These latter corrections may
appear for physics objects, one reason is that the clustering algorithms have threshold cuts and low en-
ergy hits might not be used. A second possibility is that charged particles in the showers may travel far
from the centre of a cluster because of the strong magnetic field. The correction for the out-of-cluster
effects should not be applied at this stage, since the missing transverse momentum calculation must
be based on all of the calorimeter cells and otherwise the out-of-cluster energies should be subtracted
again.Those calorimeter cells that were not associated with an object are calibrated to the EM scale and
summed up as an additional term, ECellOut

T . Considering all these contributions the 6ET can be expressed
as:

6Ex,y = ERefElec
x,y + ERefJet

x,y + ERefSoftJet
x,y + ERefMuon

x,y + ECellOut
x,y ,

6ET =

√
6E2

x+ 6E2
y .

The electrons in this collection have to fulfill the Tight++ criteria with transverse momentum pT >

10 GeV. The jets above pT > 25 GeV are refined jets, and are calibrated to the EM+JES scale, while
those with pT between 7 GeV to 25 GeV are considered as soft jets and calibrated only to the EM scale.
Muons are used in the full detector acceptance range, up to |η| < 2.7 and might be non-isolated muons.
For the top-quark analyses the contributions of photon and tau are not included.

10.5 B-tagging

One of the most important types of flavour tagging is b-jet tagging, and ATLAS offers several algorithms
to do this. The principles of b-identification can be the relatively long decay time and decay length of B-
mesons, the large mass of such mesons or their large branching ratio into leptons. The three most mature
algorithms are JetFitter, IP3D and SV1. The first one exploits the weak b and c decays, identifying
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secondary decay vertices along the jet axis. The latter two methods look for secondary vertices around
the primary vertex, but on different projections. This three methods are combined with a multivariate
analysis, a TMVA-based neural network, to provide a superior discriminator: MV1.

Most of the systematic uncertainties for b-tagging can be traced back to the uncertainty of the b-jet
contribution in the training sample, which are typically di-jet QCD events. Since its cross section has
a large, approximately 100% uncertainty in the theoretical calculations, the experimental observations
have an unknown factor of light-jet background. However, there are additional theoretical uncertainties
in the proper description of b-hadron decays. Hence a certain b-tagging algorithm is only validated for a
few discriminating values, where a b-jet selection efficiency with a light-jet rejection factor is provided.

10.6 Fake lepton estimations

Most of the objects faking the lepton identification algorithms originate from QCD multi-jet events.
These have a large uncertainty in cross section and lack Monte Carlo simulations, therefore it was im-
portant to develop data driven methods to estimate the number of fake leptons in physically interesting
channels. A more-or-less channel independent method was developed based on slightly loosening the
lepton-identification criteria, and defining a new quality class which passes the lose cuts but fails the
tight ones. The ratio of these objects can be measured in multi-jet dominated channels and then extrapo-
lated to the phase space of interest, giving a tool to estimate the number of fake leptons from the number
of loose-but-not-tight leptons in that given channel. This procedure of efficiency estimation is a form
of matrix method. The multi-jet dominated control channel is selected by inverting some of the QCD
suppression cuts. One of such cuts is the transverse W-mass MT(W), and another one is the so-called
inverted triangular cut:

MT(W) < 20 GeV ,

6ET + MT(W) < 20 GeV .

There are several methods based on these ideas, and the one that is used for this analysis is the so
called matrix method B for muons [74].
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CHAPTER 11

Analysis of ATLAS data

The Wt-channel of the single top-quark productions has not yet been confirmed [75], and presents
a challenge for multivariate techniques. In the following, the previously described density estimator
and the polynomial regression method was applied to Monte Carlo simulations of the Standard Model
processes, to search for phase spaces where the single top quark Wt-channel is dominant in order to
extract this elusive signal. As fig. 11.1 shows, the ATLAS detector recorded 5.21 fb−1 data in 2011.
From this data 4.71 fb−1 was available for this analysis, using periods B to H4 from the muon stream.

Figure 11.1: The collected integrated luminosity of ATLAS until the end of the year 2011

11.1 Preselection

The analysis strategy consist of two steps. First a preselection of events with loose cuts and second
the multivariate analysis on the selected variables. The preselection follows the recommendations of the
single top group, by selecting events with objects defined in chapter 10 passing the following thresholds:

• pT > 18 GeV muon trigger;

95



11 Analysis of ATLAS data

• exactly three central jets with pT > 25 GeV and |η| < 2.5, where one is identified as a b-quark jet
using the MV1 tagger at 70% tagging efficiency;

• the jet vertex fraction must be |JVF| > 0.75;

• exactly one muon with |η| < 2.47 and pT > 25 GeV;

• 6ET > 25 GeV;

• MT(W)+ 6ET > 60 GeV to suppress QCD events;

• the first vertex must be the primary vertex, which must contain at least 4 charged tracks;

• no jets tagged as bad with EM scale pT > 20 GeV.

The various Standard Model processes that contain prompt leptons, neutrinos and hard partons may
appear as background to this single top quark channel, and were simulated by ATLAS groups. The
list can be seen seen in table 11.1, along with the number of events remaining in the sample after the
preselection, its corresponding integrated luminosity, the cross-section and the preselection efficiency.

11.2 Weights

Several of the processes appear more than once, as their production with multiple associated hard partons
is not negligible and at least one event passed the selections. The NLO simulations are inherently
weighted, with ±1 values, but all samples contain several weights to shape it to look like data. These
all originate from accelerator- and detector-related variables, and can be thought of as calibrations. The
global weight is a combination of the following:

• shaping the distribution of the number of simulated primary vertices to that of the data;

• scaling trigger efficiencies;

• scaling muon, electron and jet reconstruction efficiencies;

• scaling with the represented integral luminosity of the sample;

As fig. 11.2 shows that the distribution of weights in the Monte Carlo samples cover more than three
orders of magnitude. Such a large weight fluctuation present a challenge to many multi-variate methods,
since this may cause large uncertainty when investigating a small phase space. A way to decrease this
effect is grouping together the samples with similar weights, train a classifier for the signal agains each
background sample and combine these into a single classifier. The clustering of the different processes is
listed in table 11.1. This technique was used for the density estimator only, as the polynomial regression
method was proved to be robust against the effect.

11.3 The variables used in the likelihood analysis

To demonstrate the capabilities of the density estimator described in section 3.3 only kinematic variables
were used. Although the composition of the variables is always allowed, it is only a transformation
of the underlying probability density. Additional variables may improve the separation of signal and
background, when they contain information that might help to improve the reconstruction or calibration
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11.3 The variables used in the likelihood analysis

Nsample Lint/[pb] Process +partons σ[pb] εpresel Legend name

20 417
W → µν

+p0 8 304 7.00 × 10−6

Wc

54 1 597 +p1 1 565 2.77 × 10−5

322 4 776 Wbb +p1 43 0.001 70
2 5 069 tt̄ → jets 76 −6.77 × 10−7

813 6 642

Wc

+p1 312 0.000 392
2459 6 734 +p2 77 0.004 69
849 6 637 +p3 17 0.007 53
168 7 049 +p4 4 0.005 94

19 7 914

Z → µµ

+p0 836 2.95 × 10−6

W/Z+jets

20 7 956 +p1 168 1.82 × 10−5

88 8 033 +p2 50 0.000 260
230 7 863 +p3 14 0.002 42

87 8 726 +p4 3 0.003 32
26 10 384 +p5 1 0.002 94
3 12 703

Z → ττ

+p0 836 3.26 × 10−7

37 19 787 +p1 169 1.07 × 10−5

187 19 918 +p2 50 0.000 190
286 34 849 +p3 15 0.000 601

94 41 571 +p4 3 0.000 678
888 8 290

W → µν

+p2 453 0.000 360
2363 8 246 +p3 122 0.003 87
908 8 251 +p4 31 0.005 95
196 8 430 +p5 8 0.004 72

51 8 266
W → τν

+p2 454 2.05 × 10−5

134 8 292 +p3 122 0.000 208
66 8 125 +p4 31 0.000 423
44 8 366

Wbb
+p0 57 0.000 101

1332 8 385 +p2 21 0.008 19
657 8 798 +p3 8 0.0107
137 8 986

Wcc

+p0 153 0.000 107
580 8 677 +p1 126 0.000 564
939 8 399 +p2 63 0.001 92
563 8 354 +p3 20 0.003 98

326689 127 936 tt̄ → lν + jets 91 0.0217 TTbar
3831 146 254 WW 17 0.001 56

Diboson1844 180 389 WZ 6 0.001 89
209 197 784 ZZ 1 0.000 803
267 25 310 t-chan τν 7 0.000 965

SgTop t-chan
5618 25 366 t-chan µν 7 0.0200
419 506 981 s-chan τν 1 0.001 30

SgTop s-chan
7483 507 147 s-chan µν 1 0.0246

12427 50 637 Wt-chan 16 0.0131 SgTop Wt

Table 11.1: List of the used samples. The table shows the unweighted number of events passing the cuts, the inte-
grated luminosity of the sample, cross-section corresponding to the process and the efficiency of the preselection
cuts. The different samples have to be weighted with the inverse of their luminosity to be properly represented
in the training. To avoid large weight fluctuations the samples with similar weights were grouped together. Only
two negative weighted events from hadronic tt̄ decay passed the preselection cuts, resulting in negative efficiency.
The multijet sample is not listed, as it was obtained in data-driven way. 97
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Figure 11.2: The distribution of weights used in the Monte Carlo simulations on logarithmic scale. As the ratio
of weights can be thousandfold, it is necessary to form groups of samples with smaller weight fluctuations for the
density estimator. The polynomial regression uses test sample that is half the size of the training sample. The test
samples were also normalised to unity, which is reflected by the upward shift of their weight distributions with a
decrease in the amplitudes corresponding to the smaller sample sizes.

of the kinematical variables, such as flavour tagging. Nevertheless, their systematical uncertainty is
believed to be high at the moment, and only b-tagging is used. The charge of the lepton was also
considered as an input variable, but since it is a discrete value, it eventually halves the useful statistics
for the training so it is left out.

The remaining variables are then defined by the selected channel topology, the four vectors of the
three jets, the lepton and the known components of the missing momentum. Altogether these are eigh-
teen variables:

• pT, E, φ and η of the three jets;

• pT, E, φ and η of the muon;

• 6ET and φ6ET .

In principle it is possible to neglect some of these. This is because the detector respects the cylindrical
symmetries of the possible scattering distributions, the origin of the rotational parameter φ can be chosen
for every event, it could be set for example to the φhj of the hardest jet. One possible parametrisation is
then using the pT, E, φ−φhj and η of the jets and the lepton and finally 6ET and φ6ET−φhj. Nevertheless, due
to detector effects neither the jet nor the muon reconstruction efficiency is uniform in φ. These defects
would propagate into the ∆φ distributions causing unnecessary smearing, therefore all the φ variables
listed above were used.

11.4 Preprocessing

The used density estimator has two caveats, which must be noted:
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• The applied regularisation scheme introduces a resolution with Euclidean measure, hence it is
worthwhile to use variables with approximately the same variance.

• The density estimation is uncertain around edges, and so around cut values. However, if the
variables are transformed, it is better to be a continuous transformation. This way one can partially
avoid to introduce an artificial edge in interesting phase space, where the signal can be found.

The selection of the φhj as an origin for the φ coordinates would eliminate the uncertainty of the den-
sity estimation at φ = 0 and φ = 2 · π. However, this reparameterization was rejected, because the used
physics objects have different resolutions and efficiencies in function of φ. The η distribution has cut-off

values where the detector acceptance ends, |η| < 2.5, but the pT and ET variables are approximately ex-
ponential distributions, and are much wider. To compensate this, the natural logarithm of these values,
measured in GeV, was used.

Figure 11.3 shows the quality of the muon-related variables. The angular distributions in fig. 11.3c
and 11.3d show good agreement between the geometrical variables of data and MC. The resolution of
the muon reconstruction is good enough to reconstruct the positions of dead materials. The dips in the
φ distribution are the results of the metal legs of ATLAS, the dips in |η| ≈ 1 are caused by the transition
region between the solenoidal and the toroidal magnetic fields, while at |η| ≈ 0 is due to the gap between
the muon spectrometers. Figure 11.3a and 11.3b demonstrates that the pT and E distribution of the
muons are well described and accurately calibrated.

The control plots for the hardest light-parton jet are shown in fig. 11.4. Contrary to the pT distribution
of the softer jet on fig 11.5a, the pT of harder light-parton jet has a smoother turn-on on fig 11.4a. It
is also visible, that the simulation systematically underestimates data in the low pT region and over-
estimates it in the high pT region. This effect is more pronounced for the pT spectrum of the b-jet
on fig. 11.6a, suggesting that this discrepancy it originates from a badly estimated b-tagging and mis-
tagging rate, mis-estimating the contribution of the different processes depending on their b-jet content.

Figure 11.5 shows the control plots for the second hardest light-parton jet. The sharp rise of the pT
distribution in fig. 11.5a suggests that the real peak is below the 25 GeV cut value. Since this distribution
has a strong slope around the cut value, it is expected that the analysis depends on the jet energy scale
and the chosen pT threshold. Although the sum of the backgrounds follow a featureless exponential
pT fall or a linear fall in log(pT), the distribution of the individual background shapes slightly differ
from each other. The multijet, the vector boson plus light jet and for the W-boson plus with associated
charm production this distribution are quite similar, indicating that the soft light jet in these processes
are indeed originating from a non-hard process. This jet can be either from a secondary interaction
within the proton-proton collision, initial or finial state radiation or a randomly picked jet from a pile-up
event. The pT distribution of the tt̄ is visibly different as it has a larger pT on average than the other
backgrounds, showing that these jets are originating from a high mass particle, a top quark. The softer
light jet on average is softer than the b-tagged jet, hence in most of the events this is the softest jet.
Overall, the pT and the E distributions on fig. 11.5a and 11.5b describe the data more accurately than
for the selected b-jets on fig 11.6. Despite the accuracy in the kinematic distributions, as fig. 11.5d
shows, the η distribution of the softer light jet is worse than for the other jets, as it predicts more central
jets than what is visible in the data.

The control plots for the b-tagged jet can be found on fig. 11.6. The pT distribution of the b-tagged
jet on fig. 11.6a shows the largest systematic discrepancy between data and simulation from all of the
selected variables. This can mean that either the b-tagging efficiency together with the mis-tagging rates
are off, the physics of b-jets is not well described or the true b-jets are mis-calibrated. In case it is a
calibration problem, a pT correction only on the true b-jets could move the tt̄ peak, while leaving the
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Figure 11.3: Muon control plots. Data shown as points with error bars, simulation with filled areas as indicated
by the legend. The simulations were normalised to 4.71 fb−1, the luminosity of the data. The sub-constituents of
the samples indicated in the legend are detailed in table 11.1. The statistical and the systematic uncertainty of the
simulations are not shown.
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Figure 11.4: Hardest light jet control plots. The constituents of the samples indicated in the legend are listed in
table 11.1.
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Figure 11.5: Second hardest light jet control plots. The constituents of the samples indicated in the legend are
listed in table 11.1.
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other processes with fake b-jets intact. On the other hand, if the difference between Monte Carlo and data
comes from the mis-mesurement of b-tagging efficiency and mis-tagging rates, the nearly exponential
distributions of the processes with fake b-jets should be rescaled with different factors than the tt̄ with
true b-jets. Apart from this discrepancy, the geometric description of the b-tagged jets is rather good, as
it is visible on the φ and η distributions on fig. 11.6c and 11.6d.
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Figure 11.6: b-jet control plots. The constituents of the samples indicated in the legend are listed in table 11.1.

Despite being the most complex physics object used, the description of the missing transverse mo-
mentum is rather good as the shape estimation from simulation matches well with the shape of the data,
as it is visible on fig. 11.7.

In summary, the φ and η distributions agree well with the data, proving that the detector geometry,
the acceptance and efficiencies are well modelled. However, a discrepancy in the momentum related
variables is clearly visible. The simulation shows a tendency to overestimate the number of events with
high pT and E, while underestimates it in the low region. It is especially strong for the pT distribution
of the b-jets, which suggests that it is not a simple calibration problem, but a mis-measurement of the
b-jet tagging efficiency and light-jet rejection rate. Since the sample for the multijet background was
obtained in a data-driven way, it can be assumed that it is calibrated along with the data. In order
to investigate this in more detail, a classifier was trained to separate the multijet sample from the other
Standard Model processes. Figure 11.8a shows that the multijet sample can be very effectively separated
from the other SM model processes. Comparison with data is visible on fig. 11.8b, which shows surplus
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Figure 11.7: Missing transverse momentum control plots. The constituents of the samples indicated in the legend
are listed in table 11.1.

at the multijet-dominated right side and deficit on the left side. This discrepancy indicates that the actual
cross-section of the multijet background is somewhat larger than expected, and some other processes
need to be scaled down in the meantime. This is consistent with the assumption that the b-tagging
efficiency and the mis-tagging rate are not accurate.
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Figure 11.8: Multijet training and evaluation. The polynomial regression method was used to separate the data-
driven multijet background from the other Standard Model processes with their expected cross-sections, including
the unconfirmed single-top Wt-channel.

11.5 Training results and evaluation on data

Figure 11.9 shows the likelihood estimation on the simulation and the evaluation on data based on
the density estimator. As the density estimator requires using a regularisation, there is no need for
independent training and testing samples. Both signal and background were normalised to unity for
the training, with the notion that the multijet samples were excluded from the training. The network
is able to see a slight difference between the signal and the background, as it is shown on fig. 11.9a.
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Indeed, as fig. 11.9c indicates, the network response correlates with the purity of the signal. Since it
is off the ideal linear curve, there must be a bias present in the density estimations. Applying a cut
on the network output and the signal efficiency, the background rejection and the signal purity can be
calculated for the remaining sample. Their relation, as is shown on fig. 11.9d is actually independent
of the parameterisation of the network output and reflects the separating power of the method. The
better the separation is, the background rejection vs signal efficiency curve (red) approaches closer to
the upper-right corner. The diagonal from the upper-left corner to the bottom right represents the worst
case, when the separation is not better than a random choice. The Gini index of this training is 4 %,
which is far from the maximal possible 50 %, also indicating that the separating power is poor, but not
negligible. The blue curve on the same plot shows the relation between the signal purity after the cut on
the classifier against the signal efficiency. At 100 % efficiency the purity is 50 %, representing the signal
probability for a random choice. At lower signal efficiencies the purity slowly increases to its maximum
around 65 %. As a comparison, the polynomial regression reaches this purity much earlier, around
60 % signal efficiency. Figure 11.9b contains the comparison of the simulations scaled to the expected
cross-sections agains the data. This shows that although the data is well described in the projection of
the network response, due to the small cross-section of the Wt-channel signal the detected slight shape
difference can not be exploited for cross-section measurements with the available statistics. As it was
indicated before, the cross-section of the various background processes are also uncertain. To measure
them, the training should provide phase spaces where either the signal or the background is rather pure,
but this is not the case.

Using the same variables the data was also fed to a regression method for comparison, its result is
summarised in fig. 11.10 and 11.11. Its separation power can be seen on fig. 11.10a, overlaid with an
evaluation of an independent test sample with half the size of the training sample. The similarity of the
training and testing shapes indicates that no overtraining occurred. The separation power has greatly
improved in comparison to the results of the density estimator on fig. 11.9a. As fig. 11.10c shows,
the regression function F(x) has a strong correlation with the purity of the signal, resulting in a good
training quality. Figure 11.10d was produced on the testing samples in a similar manner to fig. 11.9d,
with a Gini index of 17 %, quantifying the improved separation power. This number is calculated from
the Lorenz curve showed in fig. 11.11 which plots the signal efficiency against the cut efficiency. The
ratio of the area between the curve and the diagonal to the area below the this diagonal is called the
Gini index. The larger this index is, the better is the separation between signal and background. The
ideal classifier, which contours follows the signal and background density ratio maximises this index.
As a comparison, the Gini index of the classifier based on dipole density estimator was only 4 %. Using
variables other than the physically motivated four-vectors can result in simpler fit function and better
fits. As an example, the polynomial regression can produce a Gini index of 18.5 % on variables that
were selected by having strong linear correlation with the regression target.

Despite the good results of this method, the small expected cross of the single top Wt-channel is still
practically undetectable with this technique with the current statistics as it is apparent on fig. 11.10b.

The separation between signal and background is much better than for the density estimator, as the
shape of the signal and the background distributions are visibly different in this projection. With equal
amounts of signal and background, the maximal signal purity is more than 70 %, but this drops down
to nearly 5 % when applying the expected cross-sections. Nevertheless, the shape difference can still be
exploited to define signal-rich and signal-depleted regions. Assuming that the relative cross-sections of
the backgrounds are precise enough, cut and count methods, such as the matrix method can be applied
to determine the posterior probability of the signal cross-section.
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Figure 11.9: Traning and evaluation of the dipole network on data.

11.6 Conclusions

Since the input variables are only the known components of the four vectors of the physical objects,
the different processes are embedded into various hyper-surfaces. They possibly have different dimen-
sionality, defined mainly by the mass constraints. Although the density estimation is biased, as can be
deduced from the non-linearity of fig. 11.9c, it is still able to see a small difference between the signal
and the background processes. However, these hyper-surfaces are certainly curved, which may indicate
that the Euclidean measure-driven regularisation and resolution may not be the optimal one. At a given
phase space region the crucial variable for the optimal separation is the ratio of the signal to background
densities, to be precise the contour surfaces of this ratio. The optimal signal and background density
resolution should follow these contours, but these can not be calculated without the precise knowledge
of the densities. To circumvent this circular dependency, one can use a regression technique which has
access both to the signal and background samples in the same time. The presented regression method,
based on the polynomial expansion of the ideal classification function indeed performs better than the
density estimation based likelihood calculation.

Although the density estimator inherently applies a regularisation, or in other words a smoothing
window, due to the large weight fluctuations it was necessary to apply further machinery for smoothing
due to the large weight fluctuations present in the samples. This latter type of smoothing is technically
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Figure 11.10: Training and evaluation of the polynomial regression method on data.
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Figure 11.11: Lorenz curve (blue) of the polynomial regression. This curve uses similar informations as the ROC
curve on fig. 11.10d, but instead the background rejection rate it plots the signal efficiency against the sample
efficiency belonging to a certain cut value on the polynomial response. The diagonal line between (0, 0) and (1, 1)
represents the worst-case classifier, which is equivalent to a random choice. The dashed line above the Lorenz
curve is its estimated tangent at (0, 0), showing that a strong cut on the response value would produce a maximal
Gini index of nearly 31 %.

equivalent to the regression of weights, in which regression function is used later in combination with
the density estimation on the unweighted data points to produce a density estimate on the weighted
sample. To do this efficiently without using unnecessarily large smoothing windows on the weights, the
training sample had to be separated into subsamples with smaller weight fluctuations. Nor the clustered
sampling and neither the explicit regression of weights was necessary when the classifier was calculated
directly via regression, as it performed the same way with and without these.

In summary, the regression method is simpler, faster and easier to use than the density estimator and
provides a better separation.
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CHAPTER 12

Summary

This thesis discussed various methods related to probability theory that can be used to analyse physical
phenomena. It is well established that the physical laws must be a description of interacting quan-
tised fields, and this was derived in Chapter 2. This chapter showed why it is important to look for
correlations, either expected or unexpected ones, in the physical experiments. Three machine learning
algorithms were described in the following chapters, two supervised and an unsupervised one.

The first supervised method is based on a novel density estimation technique that incorporates an
unusual, vector-valued kernel derived from the Green’s function of the Laplace operator. As Chapter 3
proves theoretically and practically, it is capable of estimating the probability density function from a
data sample and can be used to estimate a likelihood of a class appearing on a known background.

The unsupervised algorithm in Section 4.3 approaches classification from the information theory
viewpoint, and aims to classify data samples as belonging to certain hyper-surfaces. This criterium is
the theoretical requirement to form parametric classes, consequently ideal to be used in finding physical
objects.

In Chapter 11 the density estimator was applied to Monte Carlo simulations of a physics processes
propagating through the ATLAS detector in comparison with recorded data. The used density estimator
could see a slight difference between the simulated samples of the single top-quark Wt-channel and the
expected background from the other processes of the Standard Model. The same chapter also showed
that although the density estimator had inherent regularisation of the statistical noise, its preference on
certain distance measures can be a disadvantage.

The simple regression method based on the polynomial approximation of the ideal classification func-
tion, being described in Chapter 5 can have a better classification power. It is mainly because prior to
comparing the two distributions it is impossible to know which variables might turn out to be useful
locally in a certain phase space region, and because it is hard to estimate densities reliably over orders
of magnitude differences. A binary regression is not affected by this, as it has access to both the sig-
nal and the background sample and it is sensitive to the s(x)/b(x) density ratio instead of the densities
itself. This regression method is unique in many senses. It does not require computationally intensive
parameter optimisations, only a solution of linear equations. This not only makes it fast, but also allows
the propagation of the Gaussian uncertainties into the output of the regression function and to its χ2,
allowing the regularisation of the fit function with statistical confidence.
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