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II Summary 

Summary 

In this study we have identified SATB1, a nuclear protein that recruits chromatin-remodeling 

factors and regulates numerous genes, as a novel effector molecule in Treg cells. Our interest 

in SATB1 resulted from a genome wide expression profile of Treg cells and conventional T-

cells (Tconv cells). SATB1 was a prominent candidate gene that constantly repressed in Treg 

cells and highly expressed in Tconv cells. The dominant repression of SATB1 expression in 

Treg cells could be confirmed at mRNA, protein, and single cell level under resting and 

different stimulation conditions in humans and mice. In contrast, SATB1 is expressed at high 

levels in Tconv cells and is further enhanced following physiological stimulation.  

The inverse expression pattern of FOXP3, the main transcription factor in shaping and 

maintaining Treg cell identity, in relation to SATB1 led us to hypothesize its active 

involvement in regulation of SATB1. On the one hand, induction of FOXP3 was associated 

with inhibition of SATB1. This could be demonstrated by induction of FOXP3 in naïve CD4
+
 

T-cells converted to induced Treg cells (iTreg) or in CD4
+
 T-cells ectopically overexpressing 

FOXP3 after lentiviral transduction. On the other hand, using different genetic approaches 

loss of FOXP3 expression in Treg cells results in relieving the FOXP3-mediated repression 

and leads to an upregulation of SATB1. Furthermore, confocal microscopy on lymphocytes 

form scurfy and normal mice interestingly showed mutually excluding staining patterns. 

While the SATB1 signal is low in normal FOXP3-expressing thymocytes, it is high in 

thymocytes expressing a mutated non-functional FOXP3 from scurfy animals. 

FOXP3 as a transcription factor has been linked to direct binding to DNA, thereby regulating 

gene expression. To investigate whether FOXP3 can directly bind to the SATB1 genomic 

locus FOXP3-ChIP tiling arrays were performed. The analysis of tiling array data provided us 

with several putative FOXP3 binding sites in the promoter and intronic regions of the SATB1 

locus which were confirmed by ChIP qRT-PCR. Furthermore, we were able to demonstrate 

high specificity of the binding and determine the binding coefficients of FOXP3 to several 

motifs in the SATB1 locus by filter retention assays. To assess whether this binding has 

functional relevance, we performed reporter assays and showed that FOXP3 reduces 

lucifierase activity for several binding regions clearly supporting that FOXP3 regulates 

SATB1 transcription by direct binding to the genomic locus. Interstingly, we showed that 

FOXP3 also controls SATB1 gene expression indirectly at post-transcriptional level via 

miRNAs. Indeed we identified several FOXP3 dependent miRNA that have been linked to 

http://ukpmc.ac.uk/abstract/MED/12692553/?whatizit_url_gene_protein=http://www.uniprot.org/uniprot/?query=SATB1&sort=score
http://ukpmc.ac.uk/abstract/MED/12692553/?whatizit_url_go_term=http://www.ebi.ac.uk/ego/GTerm?id=GO:0006338
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post-transcriptional regulation of gene expression. FOXP3-ChIP tiling arrays showed FOXP3 

peaks within these miRNAs loci. Furthermore, silencing of FOXP3 reversed this enrichment, 

whereas over-expression of FOXP3 induced their expression. Binding of FOXP3-dependent 

miRNAs to the 3´UTR of SATB1 in reporter assays confirms the suppressive effect of these 

miRNAs on SATB1 expression. An additional level of regulation of gene expression is 

exerted by epigenetic modifactions of the respective genomic locus. Epigenetic changes 

control the accessibility of a genomic locus by permissive or inhibitory histone modifications 

as well as methylation of CpG islands. Although, we did not observe differences in the 

methylation pattern of the CpG islands at the SATB1 locus between Treg cells and Tconv cells, 

we observed more permissive and less repressive histone marks at the SATB1 genomic locus 

in Tconv cells and the opposite in Treg cells which is in line with the expression data and 

aforementioned described regulatory mechanism of SATB1 expression in Treg cells.  

Besides the molecular mechanism regulating SATB1 expression in Treg cells, we further 

delineated the functional consequences of induction of SATB1 in Treg cells. Lentiviral over-

expression of SATB1 in human and murine Treg cells resulted in the edition of gene 

expression and function of Treg cells. The striking observation was the abrogation of the 

capacity of Treg cells to suppress the proliferation of responder cells in vitro, in addition to the 

production of proinflammatory cytokines like IL-4 and IFN-γ. These findings suggested that 

Treg cells acquire an effector phenotype a finding which is further corroborated on a genome 

wide level. Gene expression profiles of SATB1 overexpressing Treg cells showed that many 

proinflammatory genes have been switched on upon induction of SATB1 expression in Treg 

cells which promotes skewing of regulatory towards effector programs. To further prove the 

antagonistic effect of SATB1 on the regulatory function of Treg cells in vivo, we adoptively 

transferred Treg cells overexpressing SATB1 with naïve CD4
+
 cells into RAG2-/- mice. In this 

experimental setting Treg cells failed to suppress inflammation in vivo and subsequently the 

mice developed colitis.  

In conclusion, SATB1 is an important effector molecule whose expression is tightly regulated 

in Treg cells. SATB1 upregulation in Treg cells results in aquisition of proinflammatory 

properties and attenuated suppressive function in vitro and in vivo. Therefore, FOXP3-

mediated repression of SATB1 expression in Treg cells seems to be an important regulatory 

circuit crucial to maintain suppressive function of these cells. 
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Introduction

1 Introduction

1.1 Tolerance 

1.1.1 Introduction 

The immune system faces a unique challenge. While it must deal with and control a broad 

spectrum of pathogens, it has to coexist peacefully at the same time with self-tissues. This 

challenge persists over the life time of an individuum as the immune system is chronically 

xposed to molecular components of various sources. Consistent contact of the immune system 

with newly presented intrinsic and extrinsic antigens by changing microbiotic colonization 

and fluctuating gene expression over its life span complicates its function toward keeping 

these two opposing challenges evenly balanced [1]. Maintaining the balance between a 

protective and a detrimental immune response is specifically controlled by mechanisms 

subsummized under the term tolerance. Both the innate and adaptive immune system 

cooperate to maintain tolerance towards certain antigens [2-5]. Although tolerance is 

mediated by many mechanisms, it has been grouped into two main categories according the 

site of induction: central tolerance in central lymphoid organs and peripheral tolerance in 

peripheral tissues [6]. Disturbance of tolerance has a dual sided effect. Diminished tolerance 

is associated with autoimmune diseases [7-12], while excessive tolerance may interfere with 

pathogen clearance and initiate a cancer promoting environment [13-15]. However, this also 

makes its manipulation highly desirable in diseased individuals as this might provide 

promising solutions for many urgent medical challenges including transplantation tolerance, 

autoimmunity and tumorogenesis [16]. 

1.1.2 Central tolerance 

Central or recessive tolerance mainly deals with emerging autoreactive lymphocytes and 

prevents them from reaching the circulation [17]. This process includes two major check 

points, postitive and negative selection, in which the developing lymphocytes are screened for 

tissue restricted self peptide-MHC presented by medullary thymic epithelial cells (mTEC) and 

medullary dendritic cells (DC) [18-20]. The selection process has two unequivocal outcomes, 

either life or death [21-23]. Positive selection occurs when double positive thymocytes (DP) 

with a minimal threshold of reactivity to the particular self-MHC haplotypes survive; whereas 

thymocytes failing to express a T-cell receptor (TCR) without this basal self-recognition 

undergo apoptosis [24]. After receiving a selection signal and migrating to the thymic 
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medulla, thymocytes undergo the process of negative selection. Thymocytes bearing strongly 

self-reactive TCRs undergo apoptosis, thus preventing their maturation and subsequent ability 

to mount an autoimmune response in the periphery [25]. Negative selection of auto-reactive 

thymocytes is under control of autoimmune regulator (AIRE) which is a transcription factor 

that controls ectopic expression of tissue restricted antigens within mTEC. Nevertheless, there 

is an alternative fate in which these cells are rendered functionally idle through receptor 

editing in which the autoreactive T-cell receptors are replaced with nonreactive ones [26],[17, 

24, 25]. 

1.1.3 Peripheral tolerance 

Peripheral tolerance is the second line of immunoregulation exerted by the immune system to 

preserve immune homeostasis [1, 6, 17, 27]. It has a proof reading function for the output of 

central tolerance. The elimination of autoreactive cells by central tolerance is not without 

error, therefore a complementary machinery is required to track and eliminate or inactivate 

autoreactive cells which have escaped negative selection or receptor editing and prevent them 

from activation and expansion [28]. The major mechanisms of peripheral tolerance are anergy 

induction, clonal deletion by activation induced cell death (AICD), and cell mediated immune 

suppression in which Treg cells play the main role [7, 29-32]. Anergy as a mechanism of 

tolerance is induced in response to partial or suboptimal stimulation and results in functional 

inactivation of T-cells, which become incapable of clonally expanding or producing cytokines 

upon re-encounter with antigen [24]. AICD deletion of autoreactive cells is mediated via 

induction of apoptosis in  a Fas/FasL dependent manner [33]. The cellular control of 

peripheral tolerance comprises different myeloid and lymphoid subpopulations including Treg 

cells which play a central role in maintaining self-tolerance [34, 35].  

1.1.4 Cellular componentsof peripheral tolerance  

 Antigen presenting cells 1.1.4.1

Dendritic cells (DCs) have attracted a great deal of attention as a highly specialized 

population of well equipped antigen-presenting cells. Recently the focus has shifted towards 

their role in peripheral tolerance. Both myeloid DC (mDC) and plasmacytoid DC (pDC) have 

been implicated in tolerance induction. The tolerizing effect of DCs is mediated at least partly 

through their interaction with regulatory T-cells [7, 36]. In non-inflammatory settings cross 

presentation by DCs induces tolerance in CD8
+
 T-cells rather than activation [15]. DCs with 
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lower levels of MHC class II (MHC-II) and co-stimulatory molecules (CD40, CD80, CD86) 

as immature DCs (imDC) can induce antigen-specific tolerance [28, 37]. On the opposite, 

high expression of the aforementioned molecules on DCs induces T cell immunity. In 

addition, mature DCs cells can induce tolerance under some in vitro circumstances such as 

antigen cross-presentation to CD8
+
 T-cells in the absence of CD4

+
 T-cells. Furthermore, 

maturation of DCs with TNFα and prostaglandin E2 induces tolerogenic T-cells [15].   

 B-cells 1.1.4.2

B-cells, in addition to their contribution to humoral immune responses, are important for 

CD4
+
 T-cell activation, proliferation and differentiation [38-40]. B-cells are effective antigen-

presenting cells when antigen is limited and they are able to induce tolerance under various 

settings [41, 42]. B-cells may also modulate regulatory T-cell development, proliferation and 

survival. In support of this possibility, a recent study showed that culturing CD19
+
 human B-

cells with CD4
+
CD25

+
 alloreactive T-cells plus IL-2 and CD28-specific antibody induced a 

40-fold expansion of regulatory T-cells [43]. 

Additionally, regulatory B-cells or IL-10 secreting B-cells (B10 cells) are a subset of B-cells 

that have been recently identified in mice and their role in inducing immune tolerance in an 

IL-10 dependent manner has been clearly established. The existence and the role of B10-cells 

in humans is less defined as few reports have described and characterized this rare 

subpopulation [44, 45], [46].  

 Regulatory T-cells 1.1.4.3

The first evidence for the existence of cell mediated tolerance was the breakdown of tolerance 

in mice which had been thymectomized within the first 3 days after birth and that these mice 

could be rescued by adoptive transfer of cells from normal mice [47, 48]. This concept was 

further fortified when Sakaguchi described for the first time a subpopulation of CD4
+
 T-cells 

constitutively expressing IL-2Rα (CD25) that have an effective suppressive function in a 

variety of autoimmune models [49]. Characterization of this subpopulation relying solely on 

the expression of CD25 was difficult as T-cells upregulate CD25 upon activation [47, 50]. 

Later on, the discovery of the transcription factor FOXP3 as a master regulator for regulatory 

T-cells improved the identification and the functional characterization of Treg cells [51, 52]. 

Altough CD4
+
CD25

+
FOXP3

+
 Treg cells were reported to have the major role in exerting 

suppression in different autoimmune disease models, several subpopulations of regulatory T-
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cells have been reported to exert regulatory function. In addition to CD4
+
 FOXP3

+
 Treg cells, 

Th3 transforming growth factor beta (TGF-β)-producing cells, and type 1 regulatoryT-cells 

(Tr1 cells) that secrete IL-10 and lack FOXP3 expression have been described [53-56]. 

Furthermore, CD4
+
CD25

+
FOXP3

+
 Treg cells can be further subdivided according to their site 

of generation. Naturally occurring Treg cells (nTreg) are generated in the thymus and are 

mainly reactive against self-antigens, whereas induced Treg cells (iTreg) are generated in the 

periphery and show specificity for neo-antigens [57, 58]. 

1.2 Development of regulatory T-cells  

1.2.1 Thymic development of nTreg 

T-cell development takes place in the thymus. The developmental stages of lymphocytes were 

first classified according to the expression of CD4 and CD8 co-receptors to double negative 

(DN), double positive (DP), and CD4 or CD8 single positive (SP) cells [18]. Positive 

selection and negative selection are two vital checkpoints occuring during the developmental 

progression towards mature T cells [59-61]. These two events ensure the deletion of 

autoreactive T-cells in the thymus before they reach the periphery. Positive selection and 

negative selection occur very close together or even simultaneously [59]. Positive selection 

ensures the ablity of TCR with CD4 and CD8 co-receptor to recognize self-peptide-MHC-I or 

II complex with low affinity/avidity. The ligation of the TCR with cognate self-peptide-MHC 

induces signaling events that provide a survival signal through the TCR; whereas the failure 

to recognize these complexes induces apoptosis by neglect [5, 6, 17, 27, 59, 62]. On the other 

side, negative selection occurs when the recognition of self-peptide with high affinity/avidity 

by the TCR causes deletion of these thymocytes via apoptosis from the repertoire [18, 63] . 

Natural Treg cells are not an exception; they undergo the same selection pressure and 

developmental checkpoints as conventional T-cells. Although the recognition of self-antigen 

on MHC-I & II that are presented by mTEC and intrathymic dendritic cells (tDCs) with high 

affinity is a hallmark of autoreactive T-cells and these cells have to be eliminated, this high 

affinity interaction is a key step in the positive selection of nTreg cells [64, 65].   

The importance of the thymus in the development and generation of nTreg cells was shown as 

mice aquire severe autoimmune lesions when they are subjected to thymectomy within the 

first 3 days after birth [8, 66]. The development pathway through which nTreg cells arise is 

still ambiguous. When nTreg cells diverge from other thymocytes towards lineage commitment 
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remains unclear. Nonetheless, FOXP3 upregulation occurs rather late during thymic 

development. FOXP3-GFP reporter mice have shown that the majority of FOXP3
+
 cells are 

detected at the CD4
+
CD8

-
 single positive stage [67]. However, the expression of FOXP3 

follows the upregulation of CD25 on DP which is associated also with expression of nTreg 

characteristics markers like CTLA-4 and GITR [68, 69].  

The anatomic site of FOXP3 expression induction in thymus is also still a source of debate. 

The majority of data are supporting thymic medulla as the enhancing compartment, where 

FOXP3 expression is up-regulated [64, 70-72]. Several lines of evidence support this 

conclusion, since the majority of the FOXP3
+
 population was identified in the medulla. 

Furthermore, a study showed that the expression of AIRE in mTEC in the medulla is required 

for nTreg cells development, whereas the presence of MHC-II negative mTEC in the 

medullary region led to significantly lower frequency FOXP3
+
 Treg cells [11, 64, 73]. Besides 

AIRE, thymic stromal lymphopoietin (TSLP) is produced in the medulla and is critical for 

nTreg cells [74, 75]. These notions showed the importance of the medulla in the development 

of nTreg cells but did not exclude a supporting role of the cortex. Accumulation of 

CD4
+
FOXP3

+
 thymocytes within the cortex upon blocking of thymic migration from the 

cortex to the medulla in CCR7 deficient mice supported the involvement of the cortex in the 

induction of FOXP3 [71]. However, evidence suggest that FOXP3 induction is not limited to 

a single anatomical location as multiple thymic components of the medulla as well as the 

cortex support the generation of FOXP3 thymocytes [76].  

1.2.2 Induced regulatory T-cells (iTreg) 

For a long period of time the generation of Treg cells in the periphery remained controversial. 

The first clue for the presence of functional extra-thymic Treg cells was the ability of 

CD4
+
CD25

-
 T-cells transferred into RAG2-/- mice to convert and expand to FOXP3

+
 CD4

+
 T-

cells [58, 77-79] and the capacity of these cells to maintain suppressive function against 

effector cells in vitro and in vivo. These cells were later called induced Treg cells [58, 78]. The 

major known difference between nTreg and iTreg cells is their origin as iTreg cells differentiate 

in the periphery from naïve CD4
+
 T-cells in various tissues like lymph nodes, lamina propria 

of the gut and in response to several conditions as chronical inflamation, tumors [80] and in 

response to foreign antigens such as food and microbiota [78].  

The generation of iTreg cells is favored under two conditions, suboptimal stimulation and 

costimulation provided via CTLA-4 rather than CD28. In agreement with these data, mice 
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deficient in CTLA-4 were devoid of iTreg cells [70, 81]. Moreover, strong ligation of CD28 

molecules results in the inhibition of TGF-β induced iTreg cell induction [82].    

Besides TCR engagement and weaker co-stimulation signals through B7, TGF-β and IL-2 are 

needed for the acquisition of an iTreg-cell phenotype [72, 83]. In vivo neutralization of TGF-β 

impaired oral tolerance and inhibited Treg-cell induction [37]. The reported mechanism of 

FOXP3 induction in TGF-β-induced Treg cells is mediated by the cooperative binding of TGF-

β signaling molecule SMAD3 and NFAT to the FOXP3 gene enhancer [84]. Furthermore, 

TGF-β also cooperates with CTLA-4 to attenuate the strong TCR signal which is required for 

effector T cell differentiation to a suboptimal signal that favors Treg cell induction [57]. The 

importance of IL-2 in iTreg cell generation is mediated through attenuating the TGF-β 

mediated proliferation inhibition and enhancing IL-2-STAT5 mediated FOXP3 induction 

[83].  

Another prominent difference between both populations is the stability of FOXP3 mRNA 

expression. It is less stable in iTreg cells and its expression fades rapidly on withdrawal of IL-2 

and TGF-β [85]. The preferential stability of FOXP3 in nTreg cells might be attributed to 

continuous stimulation of nTreg cells by self-antigens and the methylation status of FOXP3 

specific CpG islands at the genomic FOXP3 locus which is completely demethylated in nTreg 

cells and only partially demethylated in iTreg cells [86, 87].  

Induction of iTreg cells normally does not occur under promoting conditions like in nTreg cells. 

The generaration of iTreg takes place in proiflammatory environments like in the gut that 

antagonizes their generation [88]. Therefore, in such conversion conditions other mediators 

like retinoic acid are favoring and augmenting iTreg conversion. In addition, DCs under 

specific settings are important players in this situation. Gut and mesenteric lymph node 

CD103
+
 DCs effectively induce Treg cells via TGF-β and production of retinoic acid through 

metabolizing vitamin A [89, 90]. CD8
+
DEC205

+
 splenic DCs are another TGF-β provider for 

conversion of naïve CD4
+
 to iTreg cells [91].  

In summary, although nTreg and iTreg cells express FOXP3 as a master transcription factor, 

they are different in many aspects regarding the site and the conditions of generation, the 

stability, and might even differ at a functional level as nTreg cells mainly deal with self-

antigen and iTreg cells control the immune response to newly generated antigens.  
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1.3 Mechanism of Treg cell suppression 

Regulatory T-cells control immune homeostasis through the suppression of activation and 

proliferation of immunocompetent cells. So far several mechanisms of Treg mediated 

suppression have been proposed. According to their main effector mechanisms they have been 

grouped into two categories namely cell-dependent and cell-independent. However, it is not 

yet clear whether the aforementioned mechanisms act synergistically or independently in 

response to a specific situation [6, 92, 93]. Treg cells have to react in response to a variety of 

immunological contexts; hence it is reasonable to assume that no single mechanism could be 

applied to all situations. Therefore, the mechanism of suppression of Treg cells might not be 

pre-determined but it is rather shaped by the local immune context. The targets of Treg-cell 

mediated suppression are widely spread. Treg cells can suppress both CD4
+
 and CD8

+
 

activation, proliferation, and cytokine production [94-96]. Alterations in B-cell 

immunoglobulin production and class switching have been described as major effects exerted 

by Treg cells [97, 98]. Treg cells further inhibit cytolytic function of NK [99] and NKT-cells 

[100] and interfere with the activation and maturation of DCs [101]. The suppression exerted 

by Treg cells requires Treg cell activation via TCR ligation but the suppressive activity itself 

does not depend on antigen specificity [92]. 

1.3.1 Cell-to-cell contact dependent suppression 

Early studies could show that physical contact between Treg cells and effector cells is required 

for suppression at least in vitro. This suppression was abolished when the two cell populations 

were separated by a semi-permeable membrane [102]. Over the last years, many molecules 

have been associated with the contact dependent mechanism of Treg-cell mediated 

suppression. For instance, CTLA-4 (CD152) has been shown to be critical for suppression. 

Blocking of CTLA-4 in normal mice led to multiorgan autoimmune disease through loss of 

Treg cell suppressive activity [103, 104]. In vivo, Treg cell specific CTLA-4 deficiency directly 

affected the suppressive activity of Treg cells in the periphery while it had no effect on their 

thymic development [12]. CTLA-4 downmodulates DC stimulatory function via reduction of 

CD80 and CD86 expression. Furthermore, CTLA-4 induces indolamine-2,3-deoxygenase 

(IDO) expression which catalyzes the conversion of tryptophan to kynurenine and other 

metabolites. This metabolic change acts as a potent suppressive effect on the neighboring T-

cells mediated by depletion of the essential amino-acid tryptophan and the accumulation of 

the immunomodulatory kynurenines [105-107]. Cytolysis is another potential mechanism for 

Treg-cell mediated suppression. Treg cells can express perforin and Granzyme B, therefore, the 
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intimate cell contact between Treg cells and effector cells cannot only hamper the activation 

and proliferation of the effector cells but it might also result in cell death. Granzyme 

B/perforin mediated killing by Treg cells was reported for CD4
+
 and CD8

+
 T-cells as well as 

NK cells [98, 108]. Treg cells from Granzyme B deficient mice were less efficient than normal 

Treg cells in their suppressive activity in vitro [108]. Metabolic disruption of target cells 

through two main mechanisms has also been proposed: release of cAMP and pericellular 

accumulation of adenosines. On the one hand, Treg cells produce high levels of the second 

messenger cyclic adenosine monophosphate (cAMP). It inhibits the proliferation and IL-2 

synthesis by effector T-cells. It has been reported that Treg cells inject cAMP via a gap 

junction into responder cells [109]. On the other hand, adenosines are released into the 

extracellular space following cellular distress or injury and sensing of these molecules by 

immune cells can be either anti- or proinflammatory depending on the local 

microenvironment [110]. It has been shown that a subset of regulatory T-cells constitutively 

expresses CD39, the ectonuclase converting enzyme which hydrolyzes ATP. Treg cells from 

CD39 deficient mice show an altered phenotype with a capability to proliferate under TCR 

stimulation without exogenous IL2 and impaired suppressive activity [111, 112]. The 

immunomodulatory effect of CD39 can be augmented in the presence of CD73 (ecto-5´-

nucleotidase) which dephosphorylates AMP generating adenosine. The production of 

adenosine results in an inhibitory signal delivered to effector cells via activation of the A2A 

receptor upon binding of adenosine. DCs in particular might be the main target by this 

mechanism as pre-exposure of Treg cells to ATP containing medium reduced ATP-driven DC 

maturation [112] .  

Furthermore, the lymphocyte activation gene 3 (LAG-3) or (CD223) is a CD4-associated 

adhesion molecule that binds MHC-II. It is expressed on the surface of murine Treg cells upon 

activation. LAG-3 neutralizing antibodies resulted in abrogation of Treg-cell function in vitro 

and in vivo without any manifestation of overt autoimmunity. The absence of hyperimmune 

manifestations suggests that other modes of suppression might compensate for this deficiency 

[113]. Furthermore, Treg cells isolated from LAG3 knock-out mice showed impaired 

suppressive activity in vitro. Ectopic expression of LAG-3 in naïve CD4
+
 T-cells reduced 

their proliferation and rendered them suppressive. The binding of LAG-3 to MHC-II on 

immature DCs induces ITAM-mediated inhibitory signals that interfered with the maturating 

and co-stimulatory function of these cells [114]. 
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1.3.2 Cell-to-cell contact independent suppression 

Although the initial papers described cell-to-cell contact to be the dominant mechanism of 

suppression, the active involvement of many soluble mediators has gained substantial 

leverage over the last years. Several studies in the 1990s reported that both TGF- and IL-10 

are rarely found in the supernatant of Treg cells in in vitro suppression assays and 

neutralization of these cytokines failed to abrogate the suppressive activity of Treg cells [27, 

115]. However, several studies have shown that both factors play an important role in vivo. 

Adoptive colitis in RAG
-/-

 deficient mice could not be prevented by adoptive transfer of 

CD4
+
CD25

+
CD45RB

low 
Treg cells from IL-10 knockout mice [116]. Similarly, another study 

using a Treg-cell-specific IL-10 knockout could show that the production of IL-10 by Treg cells 

is essential for limiting active immune response at environmental interfaces such as skin and 

colon but it was not required for the control of systemic autoimmune responses [117]. In 

contrast to IL-10 deficient Treg cells, Treg cells isolated from TGF-β
-/-

 mice showed normal 

suppressive activity and rescued RAG2
-/-

 mice from developing adoptive colitis [118, 119]. 

These studies showed that autocrine production of TGF-β by Treg cells might not be critical 

for their function. However, administration of an anti-TGF-β antibody to recipient mice 

resulted in abrogation of Treg-cell mediated suppressive activity, suggesting that TGF-β is 

required for protection from inflammatory bowel disease (IBD) [120]. Over the last years it 

has become more and more clear, that TGF-β might mediate suppression through cell-to-cell 

contact via membrane bound complexes rather than acting as a humoral mediator [99, 121]. 

TGF-β is synthesized as a precursor molecule. Through proteolytic processing, active TGF-β 

is produced in association with latency associated peptide (LAP). LAP binds TGF-β forming 

a latent complex. Active TGF-β is produced by dissociation from this complex [122]. Indeed, 

a subset of Treg cells expressing LAP has been described [123]. Membrane bound TGF-β 

might inhibit activation of effector cells via interaction and activation of the Notch/HES-1 

axis [124]. However, neither active nor LAP-bound TGF-β can be detected on the surface of 

non-activated Treg cells in mice and man [57]. However, a high percentage of activated Treg 

cells could be stained with anti-LAP antibodies suggesting that LAP and possible also TGF-β 

could have a role in the suppressive function of activated Treg cells [57]. In addition to IL-10 

and TGF-β, Treg cells produce the inhibitory cytokine IL-35 which is a member of the IL-12 

family of cytokines and consist of a heterodimer of EBI3 and IL-12α/p35. Recent studies have 

shown that IL-35 is an active soluble mediator of Treg cells with suppressive function in mice 
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and man [125, 126]. Treg cells from EBI3
-/- 

and IL12A
-/- 

mice showed significantly reduced 

suppressive capacity in vitro and failed to control experimental colitis in vivo [126]. 

Consuming of growth factors during cell contact is another potential mechanism that mediates 

cell suppression or even induction of apoptosis. IL-2 is required for peripheral survival, 

activation, and function of Treg cells and the main sources for IL-2 cells seem to be activated 

T-cells [127]. In addition to the inability of Treg cells to produce IL-2, they express high levels 

of the high-affinity α-chain of the IL2 receptor (CD25) which might enable Treg cells to 

consume local IL-2 and therefore induce cytokine-deprivation-mediated apoptosis of effector 

T-cells [128]. 

1.4 MicroRNA and Treg cells 

The importance of microRNAs for the biology of Treg cells has been shown by deletion of 

DICER specifically in the Treg-cell lineage [129, 130]. DICER is an RNaseIII-microRNA 

processing enzyme which is critical for miRNAs biogenesis. It is responsible for cleaving of 

dsRNA and pre-microRNA into about 20-25 nucleotides short ds-RNA [131]. Depletion of 

DICER in Treg cells resulted in fatal early onset of lymphoprolferative autoimmune diesease, 

indistinguishable from scurfy mice [132, 133]. Although neither the development, 

proliferation, nor survival of thymic Treg cells deficient in miRNAs were grossly perturbed, 

Dicer-deficient Treg cells showed impaired homeostasis and lack of suppressive activity in the 

periphery [132]. The specific role of individual miRNAs in the function of Treg cells has 

recently been addressed. Treg cells have a distinct profile of miRNAs and many of these 

miRNAs are FOXP3-associated as the ectopic expression of FOXP3 in Tconv cells confered a 

partial Treg-cell miRNAs profile [134]. The study of genome-wide FOXP3 target genes 

revealed that FOXP3 binds to intergenic regions, demonstrating that FOXP3 regulates the 

expression of non-coding RNA [135]. MiRNA-155 is a well known example of FOXP3-

driven miRNAs, highly enriched in Treg cells. It promotes cell homeostasis in competitive 

lymphopenic conditions as inflammation. Mechanistically, miRNA-155 increases the 

sensitivity of Treg cells to IL-2 through targeting the SOCS1 gene in the presence of limiting 

amounts of IL-2 [136]. 
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1.5 Forkhead Box P3 (FOXP3) 

1.5.1 Molecular structure of FOXP3 

FOXP3 is a member of the Forkhead/winged-helix family of transcription factors. It is the 

master regulator for the development and function of Treg cells [51, 137]. It is highly 

conserved amongs humans, dogs, cats, mice, macaques, and cattle. The similarity of human 

and mouse FOXP3 protein is around 91% and the  identity is 86% in their amino acids [138].  

FOXP3 has three functional domains: a single C2H2 zinc-finger-like motif (amino acid 200-

223) with unknown function, a leucine-zipper-like motif (amino acid 240-261) which is 

critical for homodimer formation, and carboxy-terminal forkhead domain (amino acid 338-

421) which is critical for both DNA binding and nuclear localization [27, 139]. The N-

terminal domain is rich in proline, acts as transcriptional repressor domain and interacts with 

histone deacetylase (HDAC) (Fig.1). In contrast to mice where only one functional isoform 

exists, two main functional isoforms of FOXP3 are expressed in humans. The main isoform is 

the full-length isoform, while the second isoform lacks the proline-rich exon 2, which encodes 

the Leu-X-X-Leu-Leu motif. This region interacts with and represses the retinoic acid-related-

orphan receptor-α (ROR-α) and ROR-γt [140]. 

 

 

Figure 1. Schematic representation of the functional domains of FOXP3. 

NFAT: Nuclear factor of activated T-cells, HDAC: Histone deacetylases, NF-kB: nuclear factor kappa-

light-chain-enhancer of activated B cells. This figure is adapted from Sakaguchi et al., 2010 [27]. 

The identification of FOXP3 as a specific marker for Treg cells followed the characterization 

of fatal autoimmune manifestations in male scurfy mice. Scurfy mice have an insertion in the 

FOXP3 gene that results in the induction of a premature stop codon and therefore a 

production of a truncated non-functional protein [141]. The importance of FOXP3 in 

controlling immune homeostasis has been shown experimentally in FOXP3-deficient mice. 
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Germ-line deletion of FOXP3 in mice resulted in a disease phenotype similar to scurfy [142-

144]. The requirement of FOXP3 for Treg-cell fate has attracted a lot of discussion until 

recently, when it was shown that the function of FOXP3 is not absolutely required for the 

commitment of developing thymocytes to the Treg-cell lineage but it rather stabilizes and 

amplifies Treg-cell function once Treg-cell fate is determined [145, 146]. In humans, the 

deficiency of FOXP3 and thereby a loss of Treg cells either in numbers or function underlies 

the lympho-proliferation and multi-organ autoimmunity of scurfy mutant mice and is linked 

with immunodysregulation, polyendocrinopathy, and the X-linked syndrome (IPEX) [141, 

147, 148].  

Together, these studies showed that FOXP3 is absolutely required for suppressive activity, 

proliferation, lineage stability, and metabolic fitness of Treg cells [137, 141, 147, 149].  

The complexity of the FOXP3-mediated control of the Treg cell program has been studied over 

the last years. Genome wide analysis of the transcriptional program induced by FOXP3 has 

shown that it can act as an activator or repressor of gene expression [135, 139]. An elegant 

study used chromatin immunoprecipitation (ChIP) combined with tiling array or promoter 

array analysis revealed that 10% of FOXP3-dependent genes are directly regulated by FOXP3 

[135]. It was also shown that FOXP3 might impart epigenetic marks on its target genes as the 

FOXP3 binding sites correlate with significant enrichment of permissive trimethyled histone3 

lysine 4 (H3K4me3) and suppressive trimethyled histone3 lysine 27 (H3K27me3) markers 

[150]. Furthermore, a genome wide comparative analysis of FOXP3 occupancy in FOXP3
+
 

and FOXP3
-
 cells supported the importance of FOXP3-mediated gene regulation in Treg cells. 

This study showed that FOXP3 binds to around 700 genes and intergenically encoded 

miRNAs. In agreement with the previous study, gene expression analysis revealed that 

FOXP3 can activate or repress the transcription of target genes [135]. 

1.5.2 Regulation of FOXP3 expression 

Rather unexpected, the promoter region of FOXP3 showed only weak promoter activity in 

reporter assays using a murine T-cell line [84, 151]. This interesting observation has 

suggested the involvement of other proximal regulatory elements in the induction of FOXP3 

in Treg cells. The regulatory regions of FOXP3 expression consist of a promoter, two 

enhancers or conserved non-coding sequence regions (CNS1 and CNS2) and a third 

conserved non-coding sequence region (CNS3) [152, 153]. Recent studies showed that 

FOXP3 induction is under synergetic control of signaling molecules downstream of several 
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pathways including TCR, co-stimulatory molecules and cytokines receptors [27, 84, 140, 151, 

154-162]. These molecules mediate their action through binding to the regulatory elements 

within the FOXP3 genomic locus [163]. The FOXP3 promoter is activated in response to 

TCR signaling through binding of NFAT and AP-1 [164]. CNS1 contains binding sites for 

NFAT and Smad3 which are important for the induction of FOXP3 in peripheral naïve CD4
+
 

T-cells [84]. CNS2 and 3 are intronic regulatory regions which are not only sites for 

transcriptional regulation but CNS2 also harbors several CpG rich islands (Fig. 2) [86, 151]. 

AP-1, STAT5, and FOXO1 and FOXO2 act as positive transcriptional regulators through 

binding to CNS2, whereas STAT3 binding to CNS2 antagonizes FOXP3 expression [86, 

140]. Similarly, c-Rel, an essential NF-kB family transcription factor, directly controls 

FOXP3 gene expression through biniding to CNS3 [153, 157, 165]. Demethylation of the 

CpG islands in CNS2 is a prequisite for the binding of interaction partners [153]. Taken 

together, several signaling molecules are actively involved in regulation of FOXP3 expression 

and the net effect of these interactions is either positive or negative depending on the 

interaction partners (Fig.2).   

 

 

 

Figure 2. Transcriptional regulation of FOXP3 expression. 

Regulatory elements within the genomic FOXP3 locus. The FOXP3 locus contains several moieties 

governing its expression: the FOXP3 promoter region, exons −2a, −2b, two enhancers (CNS1 and 2), 

and a conserved non-coding sequence 3 (CNS3). Depicted above and below the regulatory factors 

that either positively or negatively control FOXP3 expression .The diagram is adapted from Mashide 

Tone and Mark I. Greene, 2011 [155]. 

Additionally, epigenetic modifications of the FOXP3 genomic locus are an additional level of 

regulation. Both methylation of CpG residues and covalent post-transcriptional modification 
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of histone proteins are involved in this process [166]. The DNA methylation status of the 

proximal promoter and CNS2 correlates with the expression of FOXP3. The CNS2 region is 

called Treg-cell specific demethylated region (TSDR) and was found to be fully demethylated 

in Treg cells and methylated in Tconv cells [87, 167]. This difference in methylation of the 

TSDR has been regarded as an explanation for the preferential stability of FOXP3 expression 

in nTreg cells rather than in iTreg cells where the TSDR is only partially demethylated [86, 

168]. Besides its methylation status, di- and trimethylation of histone 3 lysine 4 residue 

(H3K4) at the FOXP3 locus was reported to enhance FOXP3 induction upon TCR activation 

of naïve CD4
+
 T-cells [134]. In addition to its methylation status, histone acetylation enhances 

gene accessibility and therefore gene expression [140]. Recruitment of histone deacetylases 

(HDACs) like HDAC7 or HDAC9 to the genomic FOXP3 locus inhibits it expression. 

Consistent with these findings, treatment of Treg cells with the HDAC inhibitor like  

trichostatin A increases FOXP3 gene acetylation and results in enhanced Treg cells function 

[169]. Taken together, accumulating data supports the involvement of methylation and histone 

modifications in the regulation of FOXP3 expression [170, 171]. 

In summary, the FOXP3 locus contains several regulatory elements that serve as a platform 

for the interaction of different transcription factors and epigenetic modifications. 

Consequently, FOXP3 expression is under tight control of various signal crosstalks that 

determine the fate of FOXP3 expression in terms of induction or repression. 

1.6 Specific AT rich binding protein 1 (SATB1) 

SATB1 was the first matrix attachment region (MAR) binding protein to be identified from a 

thymic cDNA expression library screened with a concatamer containing the nucleation site 

for unwinding of the 3`MAR flanking the IgH enhancer [172, 173]. MARs often contain base-

unpairing regions (BURs) which are typically 100-150 bp regions within MARs, possess an 

intrinsic propensity to unwind under negative superhelical strain, and are considered to be 

hallmarks of MARs. MAR binding proteins bind via MARs to the DNA allowing binding to 

the nuclear matrix as a structural component inside the nucleus and thereby forming the 

looped chromatin structure. 

SATB1 itself is highly conserved between vertebrates [174] and was among the first cell-

type-restricted MAR binders [175]. It is expressed predominantly but not exclusively in 

thymocytes with additional expression in brain and testis as well as various cell lines [174]. 

SATB1 binds selectively and uniquely to AT-rich DNA reffered to as BUR dsDNA sequences 
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in the minor groove with little contact between the bases. It recognizes a specific DNA 

sequence context rather than a consensus DNA sequence. In general, SATB1 binds to 

promoters, intronic regions and gene loci [176].  

1.6.1 Functional structure of the SATB1 protein 

SATB1 is a 763 amino acid protein containing six functional domains: a nuclear localization 

signal (NLS), a PDZ-like domain, a Base Unpairing Region (BUR)-binding domain, two Cut 

repeats (CUT1 and CUT2), and a typical homeodomain (HD) in the distal protein region [95, 

177-179]. PDZ is an acronym combining the first letters of three proteins: post synaptic 

density protein (PSD95), Drosophila disc large tumor suppressor (Dlg1), and zonula 

occludens-1 protein (zo-1) which first discovered to share the domain. These multiple 

domains are all necessary for SATB1 to excert its function. The NLS mediates SATB1 

localization to the nucleus. The N-terminal PDZ-like domain is a protein-protein interaction 

domain found mostly in signaling proteins, necessary for dimerization of proteins [95, 177]. 

Hence, the PDZ-like domain provides the dimerization interface of SATB1. In addition, it 

allows SATB1 to interact with multiple protein partners including co-repressors and co-

activators. Over the last years, it could be established that SATB1 has to dimerize in order to 

bind to DNA and that this homodimerization is mediated by the PDZ-like domain [95]. The 

CUT domains contain a DNA-binding motif. In addition, CUT1 and part of the CUT2 domain 

are part of the BUR-binding domain. The BUR domain is the module responsible for specific 

recognition of the BURs as opposed to any AT-rich sequence motif  [96, 174]. 

Homeodomains are DNA-binding motifs typically found in transcription factors. [179]. The 

homeodomain of SATB1 together with the CUT repeat containing domains confer specific 

binding with high affinity to the core unwinding elements of BURs [180].  

 

Figure 3. Illustration of the functional structure of SATB1. 

NLS: nuclear localization signal, PDZ: PDZ is an acronym for a protein binding-domain combining the 

first letters of three proteins PSD95, Dlg1, and zo-1 which were first discovered to share the domain, 

BUR: Base Unpairing Region, HD: homeodomain. This figure is adapted from 

http://atlasgeneticsoncology.org/Genes/SATB1ID44225ch3p24.html.  

http://atlasgeneticsoncology.org/Genes/SATB1ID44225ch3p24.html
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1.6.2 SATB1 as a matrix binding protein 

The organization of high-order chromatin is started at a basal level with packaging of 

genomic DNA into nucleosomes in 10 nm beads-on-a-string fibers. This is followed by the 

next level of organization by folding of nucleoprotein octameres (nucleosomes) into 30 nm 

fibers [181]. Chromatin compaction is further refined by loop formation which is independent 

of basal level packaging. The main players in formation and organization of loops are the 

nuclear matrix and matrix or scaffold attachment regions [181, 182].  

The nuclear matrix is a non-chromatin structure which is composed of an insoluble fibrous 

network in the nucleus that provides an architectural support for high-order chromatin 

packaging and for the central processes of nucleic acid metabolism [183]. Furthermore, it is 

resistant to salt extraction and the majority of nuclear matrix composites are acidic and non-

histone proteins [184].  

MARs are sequences of DNA that exhibit high affinity for the nuclear matrix in vitro [181]. 

Organizing the genomic DNA into topologically distinct loops is the outcome of anchoring of 

the chromatin through MARs onto the nuclear matrix [185-187]. Co-localization or 

enrichment of MARs adjacent to regulatory elements is an indication of the importance of 

these sequences in regulation of gene replication and transcription [188, 189]. A set of 

characteristics are proposed for MAR sequences including their enrichment in inverted 

sequence repeats, AT tracts, DNA unwinding elements, DNAse I hypersensitivity sites, 

replication initiation sites, nucleosome free stretches, poly purine stretches, and motifs with 

potential for left handed and triplex structure [190, 191]. Another sub-specificity of MARs is 

small regions inside their sequences that reveal higher affinity to the isolated nuclear network 

in vitro, called BURs. BURs have a unique DNA content as they contain well mixed ATC 

sequences devoid of Gs. The importance of BUR sequences has been evaluated by mutation 

of their sequences which results in weak association with the nuclear matrix [172, 175].    

The DNA binding proteins which bind directly to matrix associated region of DNA are called 

MAR binding proteins (MARBP). Several MARPBs have been characterized like SATB1, 

SATB2, BRIGHT, Cux/CDP, Lamin A/B/C, HMG, and SMAR1 [192-195]. It has been found 

that MARPBs are dynamic and their distribution is cell and cell cycle specific. This dynamic 

expression and distribution of proteins may dictate the functional state of the cell. The co-

localization of MARPBs with many trans-activators and co-repressor has raised the question 

whether they directly or indirectly participate in gene regulation in addition to their role as 
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chromatin organizers. Various studies of different MARPBs have highlighted their influential 

role not only on gene expression but also on other important aspects of DNA biology such as 

translation and repair [188, 196]. In addition, MARPBs may directly modulate target gene 

expression or indirectly influence their transcription through recruitment and interaction with 

chromatin remodeling complexes. This modulation can result in either activation or repression 

of gene expression [192, 197, 198]. Another interesting aspect in the biology of these proteins 

is their ability to modulate gene expression over long distances which might range from a 

kilobase to hundreds of kilobases through forming chromatin loop domains that are important 

for organization of chromatin into units of genomic function [199, 200]. 

SATB1 is a prototypical example of one of these MARBPs. It functions as a global gene 

regulator and acts as a cis- or trans-acting factor over long distances of thousands of kilobases 

by reorganizing and modifying the chromatin into topologically distinct loop domains which 

are critical for bringing together different transcription complexes and coordinating their 

actions [95, 96, 201]. The expression of genes bracketed within SATB1 loops is either 

repressed or activated directly by influencing the promoter activity of these genes and 

indirectly by recruitment and interaction with chromatin remodeling complexes [190, 193, 

202-206]. 

This interaction of SATB1 with different modifiers further controls the gene expression by 

inducing histone modifications, thus deciding its fate to act as repressor or an activator. It is 

reported that SATB1 overexpression in K562 cells increases ε-globin and decreases -globin 

gene expression accompanied by histone hyperacetylation and hypomethylation at the ε-

globin promoter and hypersensitive site 2 HS2, and histone hypoacetylation and 

hypermethylation at the γ-globin promoter [198]. 

The importance of SATB1 for gene regulation has been shown in several publications [207-

215]. SATB1 ablation by gene targeting led to a global gene dysregulation affecting hundreds 

of genes (around 2% of all T-cell genes). A genome wide expression approach using 19k 

cDNA microarrays identified 10% of the hybridized genes are either positively or negatively 

regulated by SATB1 [216]. 

How SATB1 switches between acting as a repressor or activator is an interesting 

phenomenon. It has been reported that SATB1 itself is subjected to post-translational 

modifications which act as molecular switches. Thereby SATB1 can acquire either activating 

or repressing functions through interacting and recruiting several chromatin remodeling 
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proteins. The choice of interaction partner is dependent on the phosphorylation and the 

acetylation status of the PDZ-like interaction domain in SATB1 [217-219]. Phosphorylation is 

correlated with gene repression, whereas acetylation is associated with release of repression 

[212, 215, 216, 220-222]. While phosphorylation of SATB1 regulates its mutual exclusive 

interaction with histone deacetylase 1 (HDAC1), acetylation directly affects SATB1 binding 

affinity to DNA. In the absence of activation, SATB1 is phosphorylated by PKC at S186 and 

shows higher binding affinity to DNA and association with HDAC1. Upon activation SATB1 

is dephosphorylated, alternatively acetylated at K136 and the binding partners are replaced by 

the histone acetyltransferase PCAF [217]. This modification is negatively affecting the 

binding affinity to DNA and results in the release of HDAC1 from the complex [217].  

1.6.3 SATB1 in T-cell biology 

Generation of SATB1 null mice was the first evidence of the biological function of MARBP 

in vivo specifically in T-cells [223]. These mice exhibited neurological defects, reduced size 

of thymi and lymph nodes and succumbed to death after about three weeks later. Multiple 

defects at early stages of T cell development have been reported. Loss of SATB1 results in 

reduced number of immature CD3
−
CD4

−
CD8

−
 triple negative (TN) thymocytes, and arrest of 

thymocyte development at the double positive (DP) stage, inappropriate migration of DP 

cells, increased apoptosis rates and impaired proliferation after activation. Ablation of SATB1 

in thymocytes leads to temporal and spatial misexpression of numerous genes related to 

chemokines, cytokines, developmental surface markers, apoptosis, and tumor genes as 

assessed by gene expression profiling [223]. Overall more than 2% of T-cell genes were 

dysregulated with around 10% of genes either positively or negatively regulated by SATB1 

[223]. 

SATB1 is one of the genes that show up-regulation after ligation of the TCR complex [224]. 

The mechanism of oscillation between activation and repression in order to explain how 

SATB1 represses gene expression has been shown for the expression of IL-2 in T-cells. In 

resting T-cells, IL-2 and IL2RA are repressed through occupancy of a SATB1 binding site 

(SBS) in both the IL-2 and IL-2R- locus. However, activation of T-cells leads to changes in 

the loop structure and a loss of the SATB1 occupancy within the IL-2 and IL2RA locus which 

culminates in the derepression of IL-2 and IL-2R- expression [217]. Similarly, SATB1 has 

been linked to both repression and derepression of gene expression during Wnt signaling in T-

cells [215]. Many genes are repressed by SATB1 when it is bound to DNA in close proximity 
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with c-terminal binding protein (CtPB) and this repression is dependent on the interaction of 

CtPB with HDAC1 [221]. Acetylation of SATB1 and binding of PCAF reverses gene 

repression by disruption of the SATB1-CtPB interaction and recruitment of coactivators [212, 

215]. 

The role of SATB1 in regulation of T-cell specific genes in differentiated T helper cells has 

been described in a Th2 clone [211]. The Th2 specific cytokine genes are arranged in a cluster 

of around 200 kb and this cluster consists of the genomic loci of IL-4, IL-5, IL-13, Rad50 and 

Kif3a [225]. Several important regulatory elements have been identified including specific 

hypersensitivity sites and conserved non-coding sequences (e.g. CNS1 and CNS2) which are 

critical for the expression of these genes [226]. Various cis-acting factors including GATA3 

and STAT6 have been shown to control the expression of these genes through directly 

influencing their expression or recruitment of different chromatin remodellers and histone 

modifiers [227]. The importance of a locus control region (LCR) in coordinating expression 

of Th2-cell specific interleukins but not Rad50 through conformational changes in the 

formation of higher order chromatin structure was reported [228]. The involvement of the 

LCR in coregulation of these genes however does not explain the coregulation of the IL-5 

locus as the LCR interacts with the IL-4 and IL-13 but not the IL-5 locus [229]. Furthermore, 

it was shown that SATB1 in Th1 cells is important for packaging of the Th2 locus and 

regulation of cytokine gene expression [211].  

SATB1 interaction at the Th2 locus has resulted in a model that explains how a set of genes 

are organized in a poised chromatin conformation to which all necessary transcription factors 

and regulatory element are recruited. In vitro, nine SATB1 binding sites (SBS) were identified 

in a BAC clone encompassing the Th2 cell cytokine locus. SATB1 folds the chromatin across 

the Th2 cytokine locus by anchoring BURs within the cluster. After resting, these Th2 cells 

revealed 3D loops that involved only the two distal SBSs, CNS1, the IL-5 promoter, and the 

3´region of the LCR. Whereas after activation, large numbers of smaller sized loops are 

formed and additional matrix-associated elements are involved in the formation of the loop 

structure such as an additional SBS, the IL-13 promoter, CNS2, and the IL-4 promoter. 

Moreover, H3K4/14 acetylation was observed at most sites and colocalization of GATA3 

with SATB1 upon activation could be detected. These modifications at the Th2 locus after 

activation result in the coordinated expression of IL-4, IL-5, and IL-13 [211].  
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Furthermore, SATB1 is an important factor in the differentiation of Th2 cells. SATB1 

mediates this role by regulating GATA3 expression and thereby regulating the expression of 

the Th2 cytokine signature in a Wnt/β-catenin dependent manner. SATB1 enhances the 

expression of GATA3 through cooperative interaction of SATB1 and β-catenin directly at the 

GATA3 promoter. Blocking of Wnt signaling or silencing of β-catenin drastically reduced the 

expression of GATA3 and subsequently the production of Th2 cell specific cytokines. It has 

been shown that SATB1 competes with T cell factor (TCF) for β-catenin and recruits β-

catenin to its genomic locus. Therefore, genes formerly repressed by SATB1 are upregulated 

by Wnt signaling. SATB1 deacetylation occurring upon Wnt/-catinin signaling is associated 

with increased occupancy of SATB1 on genomic targets and altered histone actylation of 

H3K9 on its targets. This increased binding of SATB1 to genes is mirrored by increased 

levels of β-catenin on the same gene as SATB1 recruits -catenin to DNA. Once this complex 

of SATB1 and β-catenin is formed, β-catenin can recruit additional partners to potentiate gene 

expression and thereby switch SATB1 into a transcriptional activator [215]. Taken together, 

SATB1 regulates GATA3 expression in Th2 lineage differentiation by regulating Wnt/β-

catenin signaling. 

The specific role of SATB1 in CD8 development was studied in mice engineered to express 

reduced SATB1 in T-cells under the control of a CD2 cassette. This allowed to study the 

influence of SATB1 in single positive cells which was not possible in SATB1 null mice as 

thymocyte development is arrested at the DP stage [230]. These mice showed a reduced CD8
+
 

SP T-cell population with enhanced expression of CD3. L2a is a cis-acting DNA element with 

properties of a MAR acting as a potential silencer for CD8α expression. It could be shown 

that SATB1 and CDP/Cux are interacting with L2a. The outcome of this interaction on gene 

expression is dependent on the interaction partner. Binding of SATB1 to the L sub-motif of 

L2a results in displacement of CDP/Cux and correlates with enhanced CD8α expression and 

development of CD8
+
 T-cells [230]. 

Interestingly, a link between SATB1 and the phenomenon of co-receptor reversal in SP CD8
+
 

T-cell lineage development had been proposed. The co-receptor reversal model proposes that 

DP thymocytes that have selectively terminated CD8 transcription can be signaled by IL-7 to 

differentiate into CD8
+
 T-cells by silencing CD4 transcription and reinitiating CD8 

transcription. It was shown that thymocytes from SATB1 null mice that have selectively 

terminated CD8 expression failed to reinitiate CD8 transcription in the presence of IL7 

whereas cells from wild type mice re-expressed CD8 co-receptor again. How SATB1 is 
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getting involved in this process is not clear at the molecular level. It is reported that a ~1.5 kb 

sub-region of the E8III enhancer necessary for CD8 expression was sufficient to promote co-

receptor reversal during positive selection of DP thymocytes. The authors hypothesized that 

SATB1 recruits a chromatin modeling complex to the p12 site within the E8III enhancer 

[231]. 

Finally, a recent study has linked SATB1 to Treg cells where gene expression data clearly 

showed that SATB1 is differentially repressed in Treg cells and suggested a functional 

consequence for this repression in comparison to Tconv cells [232].    

In summary, T-cell thymic development and differentiation is a highly coordinated 

phenomenon. The transition from a developmental phase to another is mediated by interaction 

between several effector molecules. SATB1 as a global genome organizer is an active 

regulatory molecule in T-cell biology. SATB1 is not only required at the early stages of T-cell 

development in the thymus but its significance extends to the peripheral T-cell homeostasis as 

well. The importance of SATB1 in this context has been shown in differentiation and cytokine 

production of Th2 T-cells where SATB1 coordinates genes expression through organization 

of regulatory chromatin loopscapes. 
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2 Objectives  

Regulatory T-cells (Treg cells) are the stronghold of peripheral tolerance through modulation 

and control of activation, proliferation, and function of effector cells under both homeostatic 

and pathogenic conditions. The function and phenotype of Treg cells depends to great extent 

on their unique transcriptional profile and its master regulator, the transcription factor 

FOXP3. One of the major functions of FOXP3 is to modify the transcriptional landscape of 

Treg cells antagonizing effector programs while preserving their T-cell identity. Despite their 

key importance for Treg cell function and identity the molecular mechanisms that allow 

FOXP3 to suppress effector programs in Treg cells are only partially understood. 

The main aim of this study was to gain a better understanding of the molecular mechanisms 

that mediate the inhibitory functions of FOXP3 over proinflammatory transcriptional 

programs. In initial experiments, we identified the chromatin modifier and transcription factor 

SATB1 as an interesting candidate that showed a low expression in Treg cells in comparison to 

Teff cells. We hypothesized that SATB 1 is an effector molecule whose expression is 

repressed by FOXP3. In order to prove this hypothesis we tested whether the SATB1 locus is 

under the control of FOXP3, therefore we undertook an in silico approach to find FOXP3 

binding motifs at the SATB1 locus followed by experimental validation via FOXP3-ChIP 

tilling arrays, qRT-PCR, functional assays,and filter binding assays. We also evaluated post-

transcriptional control of SATB1 mediated by FOXP3 dependent miRNAs in addition to 

epigenetic modifications. As a next step, we evaluated the effects of overexpression of 

SATB1 on the transcriptional program of Treg cells. Finally, we evaluated the functional 

consequences of SATB1 overexpression for Treg cells in vivo and in vitro. 
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3 Materials 

3.1 Chemicals and reagents 

Agar      Applichem, Darmstadt, GER 

Agarose     Applichem, Darmstadt, GER 

Ammonium persulfate (APS)   Sigma-Aldrich, St Louis, USA, USA 

Ampicillin     Applichem, Darmstadt, GER, GER 

BCA protein assay kit   Pierce, Rockford, US 

Bovine serum albumin (BSA)   Sigma-Aldrich, St. Louis, USA 

Brefeldin A     Sigma-Aldrich, St. Louis, USA 

Bromophenole blue    Roth, Karlsruhe, GER 

β-Mercaptoethanol    Sigma-Aldrich, München, GER 

CFSE       Sigma-Aldrich, München, GER 

Chloroform     AppliChem, Darmstadt, GER 

Dimethylsulfoxid (DMSO)   Sigma-Aldrich, München, GER 

Dithiothreitol (DTT)    Fermentas GmbH, GER 

Ethanol      Roth, Karlsruhe, GER 

Ethidium bromide     AppliChem, Darmstadt, GER 

Ethylendiamintetraacetat (EDTA)   Sigma, St Louis, US 

ExVivo 15     Lonza, Basel, CH 

Fetal calf serum (FCS)    Invitrogen Life Technologies, Karlsruhe, GER 

Ficoll-Paque PLUS    Amersham, Piscataway, US 

Formaldehyde     Sigma-Aldrich, München, GER 

GeneRuler1 kb Plus DNA Ladder  Fermentas GmbH, St. Leon-Rot, GER 

Glutamax     Invitrogen Life Technologies, Karlsruhe, GER 

H2O (sterile)     Fresenius Kabi AG, Bad Homburg, GER 

Human Pancoll    PAN BiotechGmbH, Aidenbach, GER 

Hydrochlorid acid (37 %)    Merck, Darmstadt, GER 

Ionomycin     Sigma-Aldrich, St. Louis, USA 

Isopropanol      Roth, Karlsruhe, GER 

Laemmli buffer for SDS-PAGE (10 x) Serva Electrophoresis GmbH, Heidelberg, GER 

Methanol      Roth, Karlsruhe, GER 

Milk Powder (Blotting Grade)  Roth, Karlsruhe, GER 

Monensin     Sigma-Aldrich, St. Louis, USA 
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N,N,N’,N’-Tetramethylethylenediamine AppliChem, Darmstadt, GER 

Odyssey 4X Protein Loading Buffer  Licor Biosciences, Bad Homburg, GER 

Odyssey Blocking Buffer   Licor Biosciences, Bad Homburg, GER 

Odyssey Two-Colour MW Marker  Licor Biosciences, Bad Homburg, GER 

Paraformaldehyde (PFA)    Sigma-Aldrich, München, GER 

PBS       PAA Laboratories GmbH, Pasching, AT 

Penicillin/Streptomycin    PAA Labotories GmbH, Pasching, AT 

Phorbol Myristate Acetate (PMA)  Sigma-Aldrich, St. Louis, USA 

Re-Blot plus mild solution   Millipore, Temecula, USA 

RNeasy MinElute Cleanup Kit   Qiagen, Hilden, GER 

RPMI 1640     Invitrogen Life Technologies, Karlsruhe, GER 

Running buffer 20x     Invitrogen Life Technologies, Karlsruhe, GER 

Sodium chloride(NaCl)    Roth, Karlsruhe, GER 

Sodium hydroxide (NaOH)   Merck, Darmstadt, GER 

Sodiumdodecylsulfate (SDS)   AppliChem, Darmstadt, GER 

TRIS (hydroxymethyl)-aminomethane  Carl Roth GmbH Co KG, Karlsruhe, GER 

Tris      Applichem, Darmstadt, GER 

Tris-HCl      Applichem, Darmstadt, GER 

Triton X-100      Promega Corporation, Madison, US 

TRIzol Reagent    Invitrogen Life Technologies,Karlsruhe, GER 

Trypan blue (0.4%)    Merck, Darmstadt, GER 

Tryptone     Roth, Karlsruhe, GER 

Yeast extracts     Applichem, Darmstadt, GER 

3.2 Cytokines  

Interleukin 2 (IL-2)     Immunotools, Friesoythe, GER 

TGF-β1      PeproTech EC Ltd., London, UK
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3.3 Equipments 

AutoMACS Pro Separator Miltenyi Biotech, Berg. Gladbach, GER 

BD FACSAria III flow cytometer   BD Biosciences, Heidelberg, GER 

BD LSRII flow cytometer    BD Biosciences, Heidelberg, GER 

BioDoc Analyze     Biometra, Jena, GER 

Centrifuge 5415R     Eppendorf GmbH, Hamburg, GER 

Centrifuge 5810R  Eppendorf GmbH, Hamburg GER 

Centrifuge Mikro-200R    Hettich, Tuttlingen, GER 

Centrifuge Rotina 420R    Hettich, Tuttlingen, GER  

Dynal MPC 15 Magnet    Dynal Biotech, Hamburg, GER 

Electroporator      Amaxa, Köln, GER 

Eppendorf Concentrator Plus  Eppendorf GmbH, Hamburg, GER 

Magnet MACS Multi Stand  Miltenyi Biotech, Berg. Gladbach, GER 

Mini Trans-Blot system  BioRad Laboratories, München, GER 

Mini-Protean Electrophoresis System  BioRad Laboratories, München, GER 

NanoDrop 2000  Thermo Scientific, Rockford, USA 

Odyssey Infrared Imaging System  Licor Biosciences, Bad Homburg, GER 

PowerPac HC Power Supply  BioRad Laboratories, München, GER 

Real-time PCR system LightCycler 480  Roche Diagnostics, Basel, Switzerland 

Spectrophotometer NanoDrop 2000   Thermo Scientific, Waltham, USA 

SRT9D Roller Mixer Stuart  Bibby Scientific Ltd, Staffordshire, UK 

Synergy HT Multi-Mode Micro-plate Reader Bio-Tek Instruments GmbH, GER 

Thermomixer comfort    Eppendorf GmbH, Hamburg , GER 

T-Professional Basic Gradient PCR Cycler Biometra, Jena, GER 

Trans-Blot Semi-Dry Transfer Cell   Bio-Rad Laboratories, München , GER 

Vortexer      Velp Scientifica, Usmate, Italy 

Water bath      Memmert, Schwabach , GER 
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3.4 Antibodies 

3.4.1 Antibodies for Western blotting  

Antigen Species Distributor 

Anti-β-actin (primary 

antibody) 
mouse Chemicon, Temecula (US) 

SATB1 mouse BD Biosciences, USA 

Anti-mouse IgG IRDye 680 

(secondary antibody) 
goat Licor Biosciences, Bad Homburg (USA) 

Anti-mouse IgG, IRDye 

800CW (secondary 

antibody) 

goat Licor Biosciences, Bad Homburg (USA) 

 

3.4.2 Antibodies for flow cytometry 

Antigen Clone Isotype Fluorophore Manufacturer 

Anti-human-CD127 
hIL-7R-

M21 
Mouse IgG1,κ 

Alexa Fluor 

647 

BD Biosciences, 

USA 

Anti-human-FOXP3 206D Mouse IgG1,κ PE BioLegend, USA 

Anti-human SATB1 
Alexa Fluor 

647 
Mouse IgG1,κ 

Alexa Fluor 

647 

BD Biosciences, 

USA 

Anti-human-CD25 M-A251 Mouse IgG1,κ APC 
BD Biosciences, 

USA 

Anti-human-CD25 M-A251 Mouse IgG1,κ FITC BioLegend, USA 

Anti-human-CD25 M-A251 Mouse IgG1,κ PE 
BD Biosciences, 

USA 

Anti-human-CD25 2A3 Mouse IgG1,κ PE-Cy7 
BD Biosciences, 

USA 

Anti-human-CD3 SK7 Mouse IgG1,κ APC-Cy7 
BD Biosciences, 

USA 

Anti-human-CD3 SK7 Mouse IgG1,κ FITC 
BD Biosciences, 

USA 

Anti-human-CD3 UCHT1 Mouse IgG1,κ PE 
BD Biosciences, 

USA 

Anti-human-CD4 SK3 Mouse IgG1,κ FITC 
BD Biosciences, 

USA 

Anti-human-CD4 SK3 Mouse IgG1,κ PE 
BD Biosciences, 

USA 

Anti-human-CD4 SK3 Mouse IgG1,κ PE-Cy7 
BD Biosciences, 

USA 

Anti-human-CD4 L200 Mouse IgG1,κ PerCp-Cy5.5 
BD Biosciences, 

USA 

Anti-human-CD45RA L48 Mouse IgG1,κ FITC 
BD Biosciences, 

USA 
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Anti-human-CD45RA HI100 
Mouse 

IgG2bκ 
PE-Cy5 BioLegend, USA 

Anti-human-CD45RO UCHL1 
Mouse 

IgG2bκ 
APC 

BD Biosciences, 

USA 

Anti-human-CD45RO UCHL1 
Mouse 

IgG2bκ 
PE 

BD Biosciences, 

USA 

Anti-human-CD56 MY31 Mouse IgG1,κ PE 
BD Biosciences, 

USA 

Anti-human-CD8 SK1 Mouse IgG1,κ APC 
BD Biosciences, 

USA 

Anti-human-CD8 SK1 Mouse IgG1,κ PerCP 
BD Biosciences, 

USA 

Anti-human-CD8 SK1 Mouse IgG1,κ PE 
BD Biosciences, 

USA 

Anti-mouse-CD4 GK1.5 Rat IgG2b,k PerCp-Cy5.5 BioLegend, USA 

Anti-mouse-CD25 PC-61 Rat IgG1, λ 
Alexa Fluor 

647 
BioLegend, USA 

Anti-mouse-CD3 500A2 
Syrian hamster 

IgG2,k 
V500 

BD Biosciences, 

USA 

Anti-mouse-CD62L MEL-14 Rat IgG2a,k PE-Cy7 BioLegend, USA 

Anti-mouse-CD8 53-6.7 Rat IgG2a,k Pacific Blue BioLegend, USA 

Anti-mouse-CD90.1 OX-7 Mouse IgG1, κ V450 
BD Biosciences, 

USA 

Anti-mouse-Foxp3 MF-14 Rat IgG2b,k 
Alexa Flour 

488 
BioLegend, USA 

Isotype Control MOPC-21 Mouse IgG1,κ 
Alexa Fluor 

647 

BD Biosciences, 

USA 

Isotype Control MOPC-21 Mouse IgG1,κ PE 
BD Biosciences, 

USA 

Isotype Control MOPC-21 Mouse IgG1,κ 
Alexa Fluor 

488 

BD Biosciences, 

USA 

Isotype Control MOPC-21 Mouse IgG1,κ PerCp-Cy5.5 BioLegend, USA 

Isotype Control MOPC-21 Mouse IgG1,κ Pacific Blue BioLegend, USA 

Isotype Control MOPC-21 Mouse IgG1,κ PECy7 BioLegend, USA 
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3.5 Buffers and media 

50 x TAE buffer 

242 g Tris, 57.1 ml glacial acetic acid, 100 ml 0.5 M EDTA pH=8, ad 1 l H2O 

ACK lysis buffer: 

0.15 M NH4Cl, 10.0 mM KHCO3, 0.1 mM Na2EDTA,  

pH=7.2-7.4 adjusted with 1 N HCl, solution was sterile filtered 

10 x TBS 

12.14 g/l Tris-HCl, 87.66 g/l NaCl 

5 x Laemmli loading buffer 

0.3 M Tris-HCl pH6.8, 50% glycerol, 25 % β-Mercaptoethanol, 2 % SDS,  

0.01 % bromophenol blue 

Lysis buffer  

20 mM Tris-HCl pH=8, 10 % Triton X-100, 100 mM NaCl,  

1 mM EDTA, 1 M DTT, a Complete Mini Protease inhibitor tablet 

MACS buffer 

1 x PBS supplemented with 0.5 % BSA, 2 mM EDTA, pH=7.2 sterile-filtered 

4.5 % stacking gel 

1.83 ml H2Odest, 0.83 ml 1M Tris-HCl (pH6,8), 25 µl 10 x SDS,  

0.42 ml 30 % Acrylamide, 17 µl 10 % APS, 3.3 µl TEMED 

10 % separating gel 

2.01 ml H2Odest, 1.25 ml 1.5 M Tris-HCl (pH8,8), 50 µl 10x SDS, 

1.67 ml 30 % polyacrylamide, 16.65 µl 10 % APS, 7 µl TEMED 

4 % native polyacrylamide gel (for 20 ml) 

2.5 ml 40% polyacrylamide (Polyacrylamide-BIS ratio =29:1),  

1 ml 1M Tris (pH=7,5), 3.8 ml 1 M Glycine, 80 µl 0.5M EDTA,  

13 ml H2O, 100 µl, 10 % APS, 15 µl TEMED 

Western blot transfer buffer (for semi dry blotting) 

25 mM Tris, 192 mM glycine 

Western blot transfer buffer (for wet blotting) 

4.8 mM Tris-Base, 3.9 mM glycine, 20 % methanol 

SOB-medium 

5 g yeast extract, 20 g trypton, 0.6 g NaCl, 0.2 g KCl ad 1 l H2O, Medium was 

autoclaved and further supplemented with 10 ml of a 1 M MgCl2 solution and 10 ml of 

a 1 M MgSO4 solution before use. 
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SOC-medium 

SOB-medium was supplemented with 20mM glucose solution  

LB growth medium 

 10 g/l Bacto-tryptone, 5 g/l Bacto yeast extract, 10 g/l NaCl 

3.6 Disposables 

6-well tissue culture plates   Sarstedt, Nürnbrecht , GER 

12-well tissue culture plates   Sarstedt, Nürnbrecht , GER 

24-well tissue culture plates   Sarstedt, Nürnbrecht , GER 

48-well tissue culture plates   Sarstedt, Nürnbrecht , GER 

96-well tissue culture plates   Sarstedt, Nürnbrecht , GER 

10 cm plates     Sarstedt,Nürnbrecht , GER 

LightCycler 480 Multiwell Plate   Roche Diagnostics, Basel, Switzerland 

0.5-2.0 ml reaction tubes   Eppendorf GmbH, Hamburg , GER 

0.2 ml PCR reaction tubes   Eppendorf GmbH, Hamburg , GER 

15 ml Falcon tubes    Sarstedt, Nürnbrecht , GER 

50 ml Falcon tubes    Sarstedt, Nürnbrecht , GER 

MACS LS columns     Miltenyi Biotech, Bergisch Gladbach , GER 

MACS LD columns     Miltenyi Biotech, Bergisch Gladbach , GER 

MACS MS columns     Miltenyi Biotech, Bergisch Gladbach , GER 

Nitrocellulose-membrane Hybond-C Extra GE healthcare, Piscataway, USA 

Parafilm     Pechiney, Chicago, USA 

2, 5, 10 & 25 ml Pipettes   Sarstedt, Nürnbrecht , GER 

10, 200 & 1.000 µl Pipette tips  Sarstedt, Nürnbrecht , GER 

Pre-Separation Filters    Miltenyi Biotech, Bergisch Gladbach , GER 

10, 20, 100, 200 & 1.000 µl Filter Tips Starlab, Ahrensburg , GER 

0.2 µm Sterile filter     Sartorius, Hannover , GER 

2, 5, 10, &50 ml Syringe   Braun, Melsungen , GER 

3.7 Software 

BD CBA     BD Biosciences, Heidelberg, GER 

CorelDRAW X4    Corel Corporation, USA 

Endnote X5     Thomson Reuters, Carlsbad, USA 

FACSDiva     BD Biosciences, Heidelberg, GER 

FlowJo 7.5 and later    Tree Star, USA 
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LightCycler 480 Software    Roche Diagnostics GmbH, Mannheim, GER 

Mircosoft Office 2007    Microsoft Deutschland GmbH, GER 

Odyssey V3.0 software   Licor Biosciences, GER 

SigmaPlot 10.0     Systat Software GmbH, GER 

Vector NTI     Invitrogen Life Technologies, Karlsruhe, GER 

3.8 Kits and reagents 

Amaxa Human T Cell NucleofectorKit Lonza Cologne AG, Köln, GER 

BCA protein assay kit   Thermo Scientific, Rockford, USA 

BLOCK-iT™ miR RNAi Select  Invitrogen Life Technologies 

CD4
+
 T cell isolation Kit II   Miltenyi Biotech, Bergisch Gladbach, GER 

cDNA Synthesis Kit 

Conventional and FastDigest-  Thermo Scientific, GER  

restriction enzymes 

DNA loading dye 6X    Thermo Scientific, GER  

Dual-Luciferase® Assay System   Promega, Mannheim 

Dynalbeads®CD3/CD28 T Cell Expander Dynal Biotech, Oslo, NO 

FOXP3 Fix/Perm Buffer Set   BioLegend, San Diego, USA 

Gateway® LR Clonase
TM

 Enzyme Mix Invitrogen Life Technologies 

GeneJET
TM

 Plasmid Miniprep Kit   Fermentas GmbH, St. Leon-Rot, GER 

LightCycler 480 Probe Master Kit  Roche Diagnostics, Basel, Switzerland 

MicroBeads CD25
+
     Miltenyi Biotech, Bergisch Gladbach, GER 

MicroBeads CD45RA
+
    Miltenyi Biotech, Bergisch Gladbach, GER 

Midi Plasmid HiSpeed prep  kit  Qiagen, Hilden, GER 

QIAquick Gel Extraction Kit   Qiagen, Hilden, GER 

QIAquick PCR Purification Kit   Qiagen, Hilden, GER 

QuickChange Lightning Multi-  Agilent Technologies, USA 

Site-Directed Mutagenesis kit 

RosetteSep (CD4+ T cell enrichment kit)  Stem Cell Technologies, Grenoble, France 

T4 DNA Ligase    Thermo Scientific, GER 

T4 Polynucleotide Kinase   New England Biolabs,  UK 

TaqMan MicroRNA assay   Applied Biosystems, USA 

TaqMan® Lightcycler Kit    Roche Diagnostics GmbH, Mannheim, GER 

Transcriptor First Strand   Roche Diagnostics GmbH, Mannheim, GER 
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Turbofect in vitro Transfection Reagent Thermo Scientific, GER  

3.9 Bacterial strains 

BL-20      Agilent Technologies, USA   

DH5α      Invitrogen Life Technologies 

One Shot Stbl3    Invitrogen Life Technologies 

One Shot TOP10     Invitrogen Life Technologies 

XL-1 blue     Invitrogen Life Technologies   

XL-10 gold     Agilent Technologies, USA   

3.10 Plasmids 

pGL4.24     Promega Corp., Madison, USA 

pGL4.72     Promega Corp., Madison, USA 

pcDNA6.2-GW/EmGFP-miR  Invitrogen Life Technologies 

pDONR221     Invitrogen Life Technologies 

pLenti6.3/V5-DEST    Invitrogen Life Technologies 

pLVTHM     Addgene, USA 

pMD2-G     Addgene, USA 

pCMVRΔ8.74     Addgene, USA 

psiCHECK-II     Promega Corp., Madison, USA 

pIRES      Clontech Laboratories, Inc
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4 Methods 

4.1 Mouse strains 

C57BL/6 mice were purchased from Jackson Laboratory. RAG2
-/-

, DEREG, scurfy and 

DEREG x scurfy mice were previously described [233-236]. Mice were housed under specific 

pathogen-free conditions at TWINCORE, Hannover, the Centre for Experimental and Clinical 

Infection Research or at the LIMES Institute, University of Bonn and used in accordance with 

the German legislation governing animal studies following the principles of laboratory animal 

care (NIH publication No. 85-23, revised in 1996).FOXP3-GFP-hCre BAC Dicer
lox/lox

 mice 

and FOXP3-GFP-hCre BAC Dicer
lox/lox

 ROSA26R-loxP-Stop-loxP-YFP mice have been 

previously described [237]. Mice were housed and bred under specific pathogen-free 

conditions at the UCSF Animal Barrier Facility of the University of California, San 

Francisco. All animal experiments were approved by the Institutional Animal Care and Use 

Committee of the University of California, San Francisco 

4.2 Cell culture 

4.2.1 Human Peripheral Blood Mononuclear Cell (PBMC) isolation 

All human cell populations in this study were purified from whole blood of healthy human 

donors in compliance with institutional review board (IRB) protocols. PBMCs were isolated 

from human buffy coats. Buffy coats were diluted 1:2 with PBS, then 35 ml was over-layered 

on 13 ml of Pancoll (PAA Laboratories GmbH, Austria), and centrifuged for 30 min at room 

temperature at 1000x g without break. PBMCs were then collected and washed twice with 

PBS and used for further experiments. 

4.2.2 Human CD4
+
 T-cell isolation (Rossettesep) 

For the isolation of human CD4
+
 T-cells each ml of buffy coat was mixed with 40 µl CD4

+
 

antibodies (STEMCELL technologies Inc, Canada) and incubated at room temperature for 20 

min. Then the cells were diluted 1:2 with PBS. Every 35 ml of diluted cells was over-layered 

on 13 ml of Pancoll, centrifuged for 30 min at room temperature at 1000x g without break. 

CD4
+
 T-cells were collected from the interface and washed two times with PBS. Afterwards, 

purity of the cells was assessed by flow cytometry after staining of CD3, CD4, and CD8 with 

fluorescently conjugated antibodies.  
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4.2.3 Human CD25
+
 T-cell isolation 

To isolate human Treg cells, 10
7
 CD4

+
 Tcells were incubated with 10 µl of CD25

+
 microbeads 

II for 20 min (Miltenyi Biotec, Bergisch Gladbach, Germany). The cells were then washed 

with MACS buffer. CD4
+
 CD25

+
 Treg cells were enriched by magnetic separation using either 

a MIDI-Macs equipped with LS columns or the AutoMACS pro with the “possls” program. 

Cell purity was routinely determined by flow cytometry (staining cells with CD3, CD4, 

CD25, CD127 antibodies) and was always higher than 90%. 

4.2.4 Human naïve CD4
+
CD25

-
CD45RA

+
 T-cell isolation 

PBMCs isolated from human buffy coats were isolated as described above. To islate human 

naïve T-cells the naïve T-cell isolation kit was used (Milteny Biotec). Therefore 40 µl of 

Biotin-antibody cocktail II were mixed with 10
7
 PBMCs and incubated for 25 minutes at 4°C. 

After incubation the cells were washed two times and re-suspended in MACS buffer 80 µl per 

10
7
 cells. The magnetic labeling was done by adding 20 µl of anti-biotin micro-beads per 10

7
 

cells. Incubation was performed for 20 minutes at 4
o
C followed by washing for two times. 

Each 10
8
 cells were resuspeded in 500 µl MACS buffer then enriched by depletion using 

either a MIDI-Macs equipped with LS columns or the AutoMACS pro with the “depletes” 

program. The enrichment of naïve T-cells was assessed after stainig of CD3, CD4, CD45RA, 

and CD8 using flow cytometry.  

4.2.5 In vitro generation of human iTreg cells 

Human naïve CD4
+
CD25

-
CD45RA

+
 T-cells were purified from buffy coats of healthy human 

donors as described above. Naïve CD4
+
 T-cells (5 x 10

4
 cells per well) were stimulated in 

serum-free Aim-V/X-Cell (50%/50% V/V) medium with 5 x 10
4
 magnetic beads per well 

coated with 5% CD3 (OKT3, Ortho Biotech), 12% CD28 (9.3), and 83% anti-MHC-I 

(W6/32) monoclonal antibody and TGF-β(R&D systems,  5 ng/ml) for a period of 5 days in 

the presence of IL-2 (200 IU/ml). The described composition of beads was optimized for the 

induction of iTreg cells. The FOXP3 induction was examined by flow cytometry after 

intracellular staining of FOXP3 as described below relative to its induction in the absence of 

TGF-β. 

4.2.6 Human Treg-cell expansion 

Human Treg and Tconv cells were isolated by negative selection using CD4-RosetteSep (Stem 

Cell), followed by positive-selection using CD25-specific MACS beads (Miltenyi Biotech). 
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Isolated cells were stained with combinations of fluorochrome-labeled monoclonal antibodies 

to CD3, CD4, CD25, and CD127 at 4
ο
C for 30 min. The cells were then sorted on a 

FACSAria III cell sorter (Becton Dickinson) by gating on the CD3
+
CD4

+
CD25

high
CD127

low
 

population. The purity of the isolated cell was assessed after sorting and was always above 

98%. The sorted cells were then stimulated with Human Treg Expander DynalBeads 

(Invitrogen, USA) at bead-to-cell ratio of 4:1 in the presence of 1000 IU IL-2/ml. The 

expanding time was between 2–3 weeks with addition of IL-2 every 3 days and restimulation 

of the expanding cells with beads every 8-10 days. After expansion, FOXP3 expression of the 

Treg-cell expansion cultures was assessed by flow cytometry and usually was above 90%. 

4.2.7 siRNA-mediated gene silencing  

siRNA were obtained either form Dharmacon, Thermo Scientific or synthesized by biomol 

GmbH, Germany. Upon delivery siRNA was reconstituted in siRNA buffer (Dharmacon, 

Thermo Scientific, Belgium) at a final concentration of 100 µM. Then each pair of siRNA 

was annealed at 90ºC for 5 min and allowed to cool down to room temperature over 45 min. 

Annealed siRNAs for target genes were then pooled and stored at -80°C. 

For gene silencing, freshly isolated conventional CD4
+
 T-cells or Treg cells were transfected 

using the human T-cells nucleofector kit (Lonza AG, Germany) according to the 

manufacturer’s instructions. Around 5-10 x 10
6
 freshly isolated T-cells were mixed with 1000 

pmol of gene specific or control siRNA, mixed and 100 µl of the nucleofector solution 

provided with the kit was added. Next, the mixture was transferred into an Amaxa certified 

cuvette. The transfection was performed with the U-14 program. To enhance the cell survival 

500 µl of pre-warmed medium was added and the transfected cells were transferred into a 12-

well plate. The cells were rested overnight in 5% CO2 at 37°C and restimulated with 

CD3/CD28-coated beads the next day for 2-3 days. The efficiency of gene silencing was 

assessed on RNA and protein level after 48-72 hrs by qRT-PCR, immunoblotting, and flow 

cytometry. 

4.2.8 Isolation of murine CD4
+
 T-cells 

Murine CD4
+
 T-cells were isolated from mouse spleen and lymph nodes. First, single cell-

suspensions were prepared by smashing tissues in a cell strainer inside a petri dish using a 

syringe plunger then sieving the cells through a 70 µm cell strainer to obtain single cells. The 

pelleted cells were resuspended in 1-2 ml of gentle hypotonic solution (ACK) for 1-2 min to 
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lyse erythrocytes. The lysis buffer was removed by washing the cells with 30-40 ml of PBS. 

Trypan blue staining was used to determine the total number and viability of isolated cells. 

Next, the single cell suspension from spleen and lymph nodes was used to isolate CD4
+
 

lymphocytes by depletion of non-CD4
+
 cells using the mouse CD4

+
 T cell isolation kit 

(Miltenyi Biotec). CD4 negative cells were labeled with a cocktail of biotin-conjugated 

monoclonal antibodies. Then these labeled cells were further stained by coupling them to anti-

biotin labeled MicroBeads. CD4
+
 T-cells were collected in the negative elution fraction. In 

brief, according to the manufacturer’s protocol 10
7
 mouse cells were resuspended in 40 µl of 

MACS buffer then incubated with 10 µl of antibodies cocktail for 10 min followed by 

addition of an extra volume of 30 µl of buffer in addition to 20 µl of MicroBeads, mixed and 

incubated for 20 min. All incubations were performed at 4°C. The cell suspension was 

washed and resuspended in 500 µl of buffer per 10
8
 cells. The separation was performed with 

a MIDI-Macs equiped with LS columns or the AutoMACS pro with the “Deplete” program.  

4.2.9 Isolation of murine CD4
+
 CD45RB

hi
 T cells  

Single cell suspensions from mice spleen and lymph nodes were prepared as described above. 

Afterwards, CD4
+
 cells were enriched using the mouse-CD4

+
 T cell isolation kit (Miltenyi 

Biotech). Enriched CD4
+
 T-cells were stained with a combination of monoclonal antibodies 

against CD4, CD25, and CD45RB. Naive CD4
+
CD45RB

hi
 T-cells were sorted with a 

FACSAria III (Beckton & Dickinson). 

4.2.10 Mouse Treg cell expansion 

Mouse DEREG CD4
+
 T-cells were isolated as described above then cells were stained for 

CD3, CD4, and CD25 with fluorescently labeled antibodies. The stained cells were sorted on 

the CD3
+
CD4

+
CD25

high
GFP

+
 population using a FACSAria III. After sorting, the cells were 

expanded with Mouse T-Activator CD3/CD28 DynalBeads (Invitrogen, USA). Briefly, four 

beads were used per cell in addition to IL-2 (1000 IU/ml). IL-2 was added evey 3 days. The 

beads were changed on day 8-11 and novel beads added at a 1:1 bead per cell ratio. The cells 

were expanded for 2-3 weeks. The expression of FOXP3 was monitored by intracellular 

staining and by assessing expression of GFP.  



 

36 
 

36 Methods 

4.2.11 Cell viability and counting 

The number of cells was determined using trypan blue based exclusion method and expressed 

as number of cells per ml. Therefore, cells were diluted with 0.4% tryban blue and loaded into 

a haemocytometer (Neubaur, Assistent, Germany). 

Cell number was calculated using the following equation: 

Cell number = number of living cells x dilution factor x volume x 10
4 

4.2.12 Intracellular staining 

Intracellular staining was used to stain either nuclear or cytoplasmic proteins. The FOXP3 

staining kit (Biolegend Inc, USA) was used according to the manufacturer’s instructions. 

Briefly, the cells were first stained for extracellular markers then washed. Fixation was 

performed for 20 min at room temperature then the fixative was removed by washing. Next, 

the cells were permeabilized for 15 min with a subsequent washing step. The cells were 

resuspended in permeabilization buffer and incubated with blocking antibodies (murine 

CD16/CD32 or human irrelevant IgG) for 10 min. The staining was performed with the 

required amount of antibodies for 30 min in the dark at room temperature. Finally, cells were 

washed and resuspended in 200 μl of PBS. Samples were analyzed by flow cytometry within 

18 hrs and data were analyzed using FlowJo software. 

4.2.13 Generation of high titer lentiviral stocks  

Lentivirus-containing supernatants were generated by co-transfection of plasmids encoding 

vector components into the highly transfectable HEK-293T cell line. Next ultracentrifugation 

was used to generate stock solutions of highly concentrated virus.  

One day before transfection, 3-4 x 10
6
 HEK293T-cells were plated on 10 cm petri dishes. On 

the next day, lentiviral vectors were co-transfected with helper constructs using lipofection 

with TurboFect (Fermentas, Thermo Scientific, Germany) according to the manufacturer’s 

instructions. The medium was exchanged 4-6 hrs after transfection. The plates were incubated 

for 72 hrs for virus production. On the third day, the supernatant was collected into 50 ml 

falcon tubes and centrifuged for 10 min. The virus-containing supernatant was passed through 

a 0.45 µm filter and transferred into autoclaved ultracentrifugation tubes (Beckman Coulter, 

Optima, LE-80K). The tubes containing viral supernatants were centrifuged at 82,000xg at 
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16°C for 140 min. The supernatants were decanted and the pellets were resuspended with the 

remaining medium and an additional 200 µl of PBS. The concentrated virus stock was stored 

at 4
o 
C for a short storage period or alternatively at -80°C for long-term storage.  

Virus titers were determined by transduction of HEK293T using polybrene with serial 

dilutions of viral stock. The efficiency of transduction was determined by flow cytometry 

either directly for GFP encoding virus or after staining for reporter genes like Thy1.1. The 

dilution resulting in less than 10% transduced cells was used for the calculation of the 

multiplicity of infection (MOI) - the number of viral particles per cell - according to the 

following formulas: 

                              
                                                       

                           
 

                                
                                                    

                                           
 

4.2.14 Transduction of lymphocytes 

Human or mouse CD4
+
 T cells were stimulated overnight with CD3/CD28-coated beads 

before transduction. The cell concentration was kept at 10
6 

per ml of medium with stimulating 

beads and 6 µg/ml polybrene at the day of transduction. Spinoculation was used to infect the 

cells with lentiviral constructs (MOI 20-50). The cells were centrifuged for 90 min at 30°C 

then left in 5% CO2 at 37°C for 3-5 hrs. Then transduction media was removed and the cells 

were washed twice. The transduced cells were resuspended in fresh complete media and 

incubated for three days with CD3/CD28-coated beads and 100 IU/ml IL-2. Transduction 

efficacies were estimated using the expression of reporter genes which were also used for 

purification of transduced cells on a FACS Aria III. The level of gene expression was 

determined at protein and mRNA levels relative to its expression in control vector transduced 

cells and untransduced cells. 

 miRNA-mediated gene silencing in human Treg cells 4.2.14.1

Human Treg cells were expanded and transduced as as described above. The transduced cells 

were sorted on GFP expression and used for further analysis as summarized in Figure 4.   
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Figure 4. Experimental protocol for combined silencing of SATB1 and FOXP3 in expanded 

human Treg cells with artificial miRNA.  

FACS-sorted human CD4
+
CD25

high
CD127

low
CD45RA

+
 Treg cells were expanded for 14 days with CD3 

and CD28-coated Treg-cell expanding beads in the presence of 1000 IU/ml IL-2. After this initial 

expansion, Treg cells were lentivirally transduced in the presence of 6 µg/ml polybrene with miR-RNAi 

against FOXP3, FOXP3 and SATB1, or control plasmids containing EmGFP and expanded for 3 

additional days in the presence of CD3 and CD28-coated beads and IL-2. Cells were sorted on 

EmGFP-positivity using a FACS Aria III sorter (with cells showing highly similar EmGFP expression 

used for further analysis. 

 Transduction of human Treg cells with SATB1 4.2.14.2

To assess the influence of SATB1 on Treg cell phenotype and function, lentiviral 

overexpression of SATB1 in human Treg cells was done (all experiements were performed in 

the lab of James Riley, Perelman School of Medicine, University of Pennsylvania). Therefore, 

expanded human Treg cells were transduced with pELNS lentivirus encoding for full-length 

SATB1 and DsRED as reporter. Co-expression of full length SATB1 and DsRED at a 1:1 

ratio was achieved using the 2A peptide (Fig. 5). After sorting of cells on DsRED-positive 

cells, these were used for further experiments. 
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Figure 5. Experimental protocol for overexpression of SATB1 in primary human Treg cells.  

MACS-isolated human CD4
+
CD25

high
 Treg or CD4

+
CD25

-
 Tconv cells were stimulated overnight with 

CD3 and CD28-coated beads in the presence of IL-2. After this initial stimulation, Treg cells were 

lentivirally transduced with pELNS DsRED 2A SATB1 or control plasmids, , expanded for 6 days in 

the presence of CD3 and CD28-coated beads and IL-2. Cells were sorted for DsRED-positivity using 

a MoFlo sorter (DakoCytomation) with cells showing highly similar DsRED expression used for further 

analysis. 

 Transduction of murine Treg cells with SATB1 4.2.14.3

Expanded murine Treg cells from DEREG mice were transduced with either pLVTM lentiviral 

vectors encoding for SATB1 and Thy1.1 or Thy1.1 alone. Co-expression of full length 

SATB1 and Thy 1.1 as a reporter protein was achieved using an internal ribosomal entry site 

(IRES). The transduction was performed with 20-50 MOI in the presence of CD3 and CD28 

coated beads, 1000 IU/ml IL-2, and 6 µg/ml polybrene. In order to enhance the infection 

process, the cells were centrifuged for at 30
o
C for 90 min followed by incubation for 4 hrs. 

After incubation, the cells were washed twice and then resuspened in complete medium 

containing IL-2 and incubated for 3-4 days. Only Treg cells overexpressing SATB1 were used 

for downstream experiments by sorting on co-expression of GFP as reporter for FOXP3 and 

Thy1.1. The level of overexpression was assessed at protein level by intracellular staining and 

on mRNA level using qRT-PCR. The experimental setup is further outlined in Figure 6. 
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Figure 6. Experimental protocol for overexpression of SATB1 in murine Treg cells. 

FACS sorted murine CD4
+
GFP

+
 Treg cells from DEREG mice were expanded for 10-14 days with 

CD3/CD28-coated beads in the presence of 1000 IU/ml IL-2. After this expansion period, Treg cells 

were transduced with pLVTHM-SATB1-IRES-Thy1.1 or control lentivirus and cultivated in the 

presence of CD3/CD28-coated beads and IL-2 for 3-4 days. SATB1-Thy1.1-transduced, control-

transduced or non-transduced expanded Treg cells were sorted on GFP and Thy1.1 expression or 

GFP expression alone on a FACS Aria III (BD).  

4.2.15 Proliferation assay 

Amine interacting dyes were used to monitor cell division. CFSE (Carboxyfluorescein 

diacetate succinimidyl ester, Molecular probes, Invitrogen, USA) was used in most 

experiments. Labeling was done by mixing 10
7
 cells in 1 ml of PBS with CFSE dye for 8 min 

at room temperature in the dark (final concentration 0.5-1 µM). The reaction was then 

quenched with 10 ml of FCS and washed twice with complete medium. Proliferation of cells 

was measured by flow cytometry.  

Cell proliferation dye eFlour 670 (eBioscience, Inc, USA) was used to monitor the 

proliferation of GFP-expressing cells where usage of CFSE was not applicable. Shortly, 5 µM 

of the dye was used to stain 10
7 

cells at 37°C for 10 min in the dark. The labeling was stopped 

by adding ice cold FCS followed by washing two times with complete medium.   
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In both cases, the labeled cells were stimulated after staining with CD3/CD28 coated beads 

for 72 hrs. Labeled but unstimulated cells were also included as reference population. FlowJo 

software (Tree Star, USA) was used to analyse the data. 

4.2.16 Suppression assay 

Responder cells (conventional CD4
+
 T-cells or CD8

+
 T-cells) were labeled either with CFSE 

or Cell Proliferation Dye eFluor 670 as described above. In a 96 well-plate, fixed numbers of 

labeled responder cells (5-10 x 10
4
) were co-cultured with different ratios of shortly 

stimulated and unlabeled Treg cells (1:1 through 8:1). The cells were then stimulated with anti-

CD3/CD28 beads for 72 hrs at a ratio of 1:1 responder cells. The proliferation of responder 

cells was measured by flow cytometry. Analysis was performed with FlowJo software using 

unstimulated labeled responder cells as a negative control and the stimulated responder cells 

without Treg cells as 100% proliferation. Suppression was expressed as a reduction in the 

percentage of proliferation of the labeled responder cells. 

4.2.17 Detection of cytokines using cytometric bead arrays (CBA) 

Cytokines were quantified in supernatants with multiplex cytokine detection systems which 

allows for the simultaneous detection of multiple cytokines (human cytometric bead array 

Th1/Th2 cytokine kit, BD Biosciences, or human or mouse Th1/Th2 11-plex FlowCytomix 

multiplex kits, eBiosience, USA) according to the manufacturer’s instructions. Beads with 

two different sizes and with distinct fluorescence intensities have been coated with capture 

antibodies specific for the respective cytokines. PE conjugated detection antibodies are used 

to quantify the interaction between antibody-bead complexes and respective cytokines. The 

intensity of fluorescence of each sandwich complex is proportional to the concentration of the 

corresponding cytokine. In brief, the supernatants of cells are thawed at room temprature. 

Next, the bead populations in addition to the PE detection reagent were mixed together and 

incubated with serially diluted standards or cell culture supernatants for 3 hours at room 

temperature protected from light. The beads were washed and resuspended in 300 µl of PBS. 

The data were analysed either with FCAP array software (Soft Flow Inc., Pecs, Hungary) or 

with FlowCytomix Pro Software (eBioscience). 
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4.2.18 In vivo assessment of SATB1 overexpression in murine Treg cells  

  Induction of colitis by adoptive transfer of naïve CD4
+
 T-cells 4.2.18.1

After isolation of naïve CD4
+
CD45RB

hi
 T-cells from wild-type mice by magnetic isolation of 

CD4
+
 T-cells and sorting of CD45RB highly expressing CD4

+
 T-cells on a FACS Aria III, 

RAG2
-/-

 mice were injected by tail vene injection with 6 x 10 cells. While the first group of 

animals only received naïve T-cells, the second group of animals was transferred additionally 

with 2 x 10
5
 freshly isolated Treg cells. The third group of animals additionally received 2 x 

10
5
 expanded and sorted Treg cells expressing the control plasmid. The fourth group 

additionally received 2 x 10
5 

Thy1.1
+
 Treg cells overexpressing SATB1.  

The recipient mice were weighed prior T cell transfer and subsequently three times per week. 

They were observed for clinical signs of illness, including hunched over appearance, 

piloerection of the coat, and diarrhea. Diseased animals were sacrificed 9 weeks after T cell 

transfer. 

  Microscopic and macroscopic characterization of colitis model 4.2.18.2

In order to assess the distribution of transplanted cells, spleens, peripheral and mesenteric 

lymph nodes were isolated from reconstituted RAG2
-/-

 mice from each mouse in each group. 

Single cell suspensions were obtained as described above. The isolated cells were stained, 

characterized and quantified using BD counting beads by flow cytometery.  

To examine the characteristic histological changes of colitis, the animals were sacrificed and 

the colons were excised and fixed in 10% neutral buffered formalin. The samples were 

routinely processed, sectioned at 5 μm thickness, and stained with hematoxylin and eosin 

(H&E) for light microscopic examination. The histological sections and analysis were 

performed by Dr. Claudia Wickenhauser (Leipzig University Hospital, Leipzig). 

4.3 Biochemistry and molecular biology 

4.3.1 Cell lysis and immunoblotting 

Total cell lysates were prepared by lysing cells in lysis buffer containing protease inhibitors 

(Roche Applied Science, Switzerland). Cell lysates were incubated on ice for 30 min, 

centrifuged at 12000 g, and the supernatant transferred to a new tube. The total concentration 

of protein contents was determined using the BCA assay kit (Thermo Scientific, USA) 

according to the manufacturer’s recommendations. Immunoblots were performed with 20-50 
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µg of total protein. The protein was denatured with Laemmli buffer at 90°C for 5 min. The 

mixture was loaded on SDS-PAGE gels (Bio-Rad Laboratories, France) and run at 80 V for 

20 min then at 160 V for 1 hr. Proteins were transferred either by wet or semi-dry blotting 

onto a nitrocellulose membrane (Amersham Bioscience, UK). After blotting, the membrane 

was blocked with Odyssey blocking buffer (LI-COR Bioscience, USA) for 1 hr. Next, the 

membrane was incubated with primary monoclonal antibodies diluted in Odyssey blocking 

buffer at 4°C overnight. The blot was washed with PBS plus 0.2% Tween-20 three times. 

Next, the membrane was incubated with IRDye secondary antibodies diluted in Odyssey 

blocking buffer for 1 hr followed by washing as described above. The membrane was scanned 

using the Odyssey imaging system (LI-COR Biosciences, USA). Expression of β-actin was 

used as an internal control after stripping of the membrane according to the manufacturer’s 

protocol (Amersham, UK). 

4.3.2 Immunofluorescence microscopy 

Thymocytes from DEREG mice or CD4
+
 GFP

+
 Treg cells from female heterozygous DEREG x 

scurfy mice isolated by sorting using a FACS Diva cell sorter were provided by Katharina 

Lahl and Tim Sparwasser (Institute of Infection Immunology, Hannover Medical School). 

These slides were stained and analysed by Eva Schönfeld and Thomas Quast. Briefly, after 

centrifugation the cells fixed in 4% cold paraformaldehyde for 10 min, washed with PBS, 

permeabilized with Triton-X and pre-blocked in PBS containing 10% normal goat serum and 

1% gelatine from cold water fish skin for 30 min. Slides were then incubated in combinations 

of primary antibodies (rabbit anti-GFP, mouse anti-FOXP3, mouse anti-SATB1-AF647) for 

60 min, washed twice, and incubated with secondary antibodies (anti-rabbit-AF488, anti-

mouse-AF555) for 60 min, stained with DAPI and immunofluorescence was examined using 

an Olympus FluoView FV1000 or Zeiss LSM 5 LIVE confocal microscope. 

4.3.3 Chromatin Immunoprecipitation 

 Genome-wide analysis of FOXP3 binding 4.3.3.1

Genome-wide FOXP3 binding sites were identified by Simon Barry and Timothy Sadlon 

(Molecular Immunology Laboratory, University of North Adelaide, Australia). The detailed 

method and analysis was described previously [238]. In brief, cord blood CD4
+
CD25

+
 Treg 

and CD4
+
CD25

-
 Tconv cells were isolated from purified mononuclear cells using the regulatory 

CD4
+
CD25

+
 T Cell Kit (Invitrogen, USA). The ex vivo expansion was performed as described 
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above at a bead-to-cell ratio of 3:1. Expanded cord blood Treg cells were restimulated with 1 

mM ionomycin (Sigma-Aldrich, St. Louis, MO) for 2 hrs. Isolated T-cells were cross-linked 

for 10 min in 1% formaldehyde solution. Formaldehyde was quenched by the addition of 

glycine. Anti-FOXP3 or control rabbit IgG was used to precipitate cross-linked protein-DNA 

complexes from nuclear lysates. The cross-linking of the immunoprecipitated material was 

removed and the material was proteinase K treated, and the DNA was purified and amplified. 

The resultant material was labeled and hybridized to Affymetrix Human Tiling 2.0R arrays. 

Data from two independent ChIP-on-chip experiments were analyzed as replicates using 

model-based analysis of tiling-arrays (MAT, Model-based Analysis of Tiling-array) [239] to 

identify the locations of binding sites for FOXP3. Significantly enriched regions in FOXP3 

binding relative to input chromatin were identified with a false discovery rate (FDR) of 0.5%. 

Gene accession numbers were assigned to an individual ChIP region if the peak of the 

enriched region was within 20 kb upstream of a transcriptionstart site (TSS) or 20 kb 

downstream of the transcription end site. Annotation was performed using gene accession 

numbers both from the University of California, Santa Cruz and the National Center for 

Biotechnology Information. 

 Analysis of histone modifications at the SATB1 locus 4.3.3.2

To study differences in histone modifications at the SATB1 locus in Treg and Tconv cells 

chromatin immunoprecipitations of histone proteins was performed by Wolfgang Krebs. In 

brief, expanded Treg and Tconv cells were harvested on day 14, treated with MNase to generate 

approximately 80% mononucleosomes and 20% dinucleosomes. Chromatin from 2.5 × 10
6
 

cells was used for each ChIP experiment, which yielded approximately 500 pg of DNA. 

Antibodies against histone H4Ac, H3K4me3 and H3K27me3 (Millipore) were used. Analysis 

of histone binding to the genomic SATB1 locus was carried out by ChIP-qRT-PCR. 

Reactions were performed using SYBR green qRT-PCR master mix (Fermentas, Thermo 

Scientific, Germany). The relative enrichment of target regions in histone immunoprecipitated 

material relative to input chromatin analysis was carried out using the 2
-ΔΔCT

 method. 

Immunoprecipitations using control IgG were used to normalize for non-specific background. 

4.3.4 Bisulphite sequencing 

To assess and compare the methylation status of the SATB1 locus in Treg and Tconv cells. 

human Treg and Tconv cells were purified by negative selection using RosetteSep (Stem Cell) 

followed by sorting on a FACSDiVa cell sorter (Becton & Dickinson) at the Institutes of 
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Molecular Medicine and Experimental Immunology (IMMEI), University Hospital Bonn, 

after incubating cells with a combination of fluorochrome-labeled monoclonal antibodies to 

CD4, CD25, and CD127. Genomic DNA was isolated using phenol/chloroform extraction. 

Sodium bisulphate treatment of genomic DNA results in the deamination of unmethylated 

cytosines to uracil, whereas methylated cytosines remain unchanged. After amplification, 

PCR products were purified and sequenced in both directions. Bisulphate sequencing and 

analysis of the CpG islands was perfomed by Dr. Andreas Waha, University Hospital Bonn.  

4.3.5 Gene expression 

 RNA isolation 4.3.5.1

For RNA isolation, cells were washed, pelleted and lysed with 1ml of TRizol reagent for 10 

min at room temperature and stored at -80°C or processed directly. Shortly, 200 µl of 

chloroform were added per 1 ml of TRizol then centrifuged at 12000x g for 10 min. The 

upper phase, containing the RNA, was collected and mixed with 500 µl of isopropanol and 

incubated for 10 min at room temperature then centrifuges at 12000x g for 30 min at 4°C.  

After removal of isopropanol, the RNA was washed with at least 1 ml of 75% ethanol and 

centrifuged at 12000x g at 4°C. After removal of the ethanol, the pellet was dried for 10-20 

min and dissolved with nuclease free water. The concentration and quality of the RNA was 

assessed using a spectrophotometer (Nanodrop, Thermo Scientific, USA).  

 cDNA synthesis 4.3.5.2

mRNA was converted to cDNA using the Transcripter First Strand cDNA Synthesis Kit 

(Roche Applied Science, Switzerland). The method is summarized in the table below. 

Total RNA 50-1000 ng 

Anchored-oligo(dT)18 Primer 50 pmol/ µl 1 µl 

H2O Upto 13 µl 

The template was denatured at 65°C for 10 min then kept on the ice for 5 min 

Reaction Buffer, 5× conc 4    µl 

Protector RNase Inhibitor 40 U/ µl 0.5 µl 

Deoxynucleotide Mix, 10 mM each 2    µl 

Transcriptor Reverse Transcriptase 20 U/ µl 0.5 µl 

The reaction mix was incubated at 50°C for 60 min then inactivated for 5 min at 85°C 
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 Real time PCR 4.3.5.3

cDNAs were synthesized as described above and diluted with nuclease free ddH2O up to 100 

µl before usage. For qRT-PCR, each sample was run in triplicates in a 96-well-plate. The 

reaction was performed with 4 µl of cDNA in a final volume of 10 µl. Threfore, the universal 

library probe and the primers were mixed with 5 μL of TaqMan Universal PCR Mastermix 

containing PCR buffer, dNTPs, and Taq polymerase. The master mix was then plated in 

triplicates in 96-well optical reaction plates. After addition of the respective DNAs the plate 

was centrifuged shortly and run on a LightCycler 480 II (Roche Applied Science, 

Switzerland). The relative gene expression was calculated using the 2
-ΔΔCT

 method. 

Housekeeping genes like β2-microglobulin for human samples and β-actin for murine 

samples were used for normalization. 

Universal ProbeLibrary probe 0.1 µl 

Forward primer, 10 µM 0.2 µl 

Reverse primer, 10 µM 0.2 µl 

ddH2O 0.5 µl 

TaqMan Universal PCR Mastermix 5    µl 

cDNA 4    µl 

The Roche Light Cycler 480 II was used with the following amplification program: 

  Temp.°C Hold No. of 

cycles 

Acquisition 

mode 

Analysis 

mode 

pre-

incubation 

Initial-

denaturation 

95 10 min 1 None None 

Amplification Denaturation 95 10 sec 45-55 

cycles 

None Quantitative 

 Annealing 60 30 sec Single  

 Extension 72 5   sec None 

Cooling  40 10 sec  None None 

 Whole-genome gene expression in human cells 4.3.5.4

All RNA was extracted using TRIzol and purified in our laboratory using standard methods. 

Sample amplification, labeling and hybridization on Illumina WG6 Sentrix BeadChips V1 

were performed for all arrays shown in Figure 7 according to the manufacturer’s instructions 

(Illumina) using an Illumina BeadStation. All data analyses were performed by using 
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Bioconductor for the statistical software R (http://www.r-project.org). Expression values were 

normalized and summarized by using the IlluminaGUI package [240]. From the resulting data 

sets we extracted a list of genes with a significant different expression in Treg compared to 

Tconv cells. Data generation and analysis was conducted by Dr. Marc Beyer and former group 

members Dr. Sabine Claßen and Dr. Daniela Eggle. Details concerning sample processing, 

data collection, data assessment and statistical analysis can be obtained from the Ph.D. thesis 

of Dr. Sabine Claßen and Dr. Daniela Eggle. 

For SATB1-transduced Treg cells as well as FOXP3-transduced Tconv cells Illumina WG6 

Sentrix BeadChips V3 were used according to the manufacturer’s instructions (Illumina) 

using an Illumina BeadStation. All data analyses were performed as described above. From 

the resulting data sets we extracted a list of genes with a significant different expression in 

SATB1-transduced Treg cells compared to control-transduced Treg cells. These were analyzed 

in comparison to a dataset consisting of CD4
+
CD25

+
 Treg cells, CD4

+
CD25

-
 T-cells, naive 

CD4
+
CD25

-
CD45RA

+
 T-cells activated for 5 days with CD3/CD28-coated beads, as well as 

unstimulated naive T-cells to define Tconv-cell dependent genes (differentially expressed 

between Tconv and Treg cells), T-cell activation dependent genes (differentially expressed 

between activated and unstimulated naive T-cells), and common T-cell genes (changed in the 

same direction in both comparisons). For enrichment analysis of Th-cell gene sets, the 

expression dataset was filtered for expressed probes and significance of enrichment was 

calculated using χ² statistic implemented in R.  

4.3.6 Generation of plasmids containing the ORF or genomic sequences of SATB1 and 

FOXP3 

 PCR amplification 4.3.6.1

PCR reactions were carried out in reaction volumes of 50 μl as described in the table below. 

10x Buffer with Mg
2+

  5     µl 

Forward primer,20 µM  1.5  µl  

Reverse primer, 20 µM  1.5  µl  

dNTPs, 2mM  5     µl  

DNA Polymerase  Varying 

Template DNA  10 pg-1 ug 

Nuclease free water  To 50 µl 

http://www.r-project.org/
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General set-up for amplification 

 Temp(°C) Hold No. of cycles 

Initial denaturation 95 4 min 1 

Denaturation 95 30 sec 30 cycles 

Annealing varying 30 sec 

Extension 72 1min/kb of plasmid 

Final extension 72 10 min 1 

Hold 8 ∞  

After amplification, the size of the PCR products was assessed using agarose gel 

electrophoresis. 1-1.5% agarose gels were used. For further processing, the amplified product 

was excised and isolated using the QIAquick gel extraction kit according to manufacturer’s 

instructions (Qiagen GmbH, Hilden, Germany). 

 Restriction digestion and gel extraction 4.3.6.2

All restriction endonucleases were used according to the manufacturer’s instructions. In 

general, restriction digests were set up in a total volume of 20 μl. The mixture contained 1 µg 

of purified template/vector dissolved in ddH2O, together with 2 μl of the appropriate 10x 

enzyme buffer and 0.5 U of restriction enzyme. Reaction mixtures were incubated for a 

minimum of 1 hour at 37ºC. Agarose gel electrophoresis was used to separate the digested 

fragments. The desired band was excised and extracted with the QIAquick gel extraction kit 

as described above. 

 Ligation of DNA insert (sequence of interest) 4.3.6.3

Ligation of DNA was performed in a final volume of 20 µl. The plasmid DNA and 4-5 fold 

molar excess of PCR-amplified insert were mixed with 10x reaction buffer and 5 units of T4 

DNA ligase (Fermentas, Thermo Sceintific, Germany) and incubated between 4 and 16 hr at 

16-22
ο
C. Afterwards, the reaction was inactivated at 85°C for 5 min. 

 Bacterial transformation and plasmid purification 4.3.6.4

Chemically competent E.coli bacteria were used. 2-5 µl of ligation reaction were shortly 

mixed with 100 µl of competent cells and incubated for 30 min on ice. To induce DNA uptake 

by the bacteria, a heat-pulse for 45 sec in a water bath preheated to 42°C was performed. 
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Next, the bacteria were placed on ice for 2 min and 500 µl of prewarmed SOC medium was 

added. The transformed bacteria were incubated at 37°C for 1 hr. 50-200 µl of the 

transformed bacteria were plated on LB agar containing the proper antibiotic. The agar plates 

were incubated overnight at 37°C. On the next day, the plates were examined for bacterial 

growth and single colonies were screened for the insertion of the amplified product either by 

PCR or restriction digestions after bacterial amplification and plasmid extraction. In brief, 

several colonies were picked and inoculated in 2 ml LB medium containing the proper 

antibiotic. Next, the cultures were incubated overnight at37°C. Plasmid extraction was 

performed using the GeneJET Plasmid Miniprep Kit (fermentas, Thermo Scientific) 

according to manufacturer’s instructions and the plasmid’s concentration and purity was 

assessed on a spectrophotometer. 

To generate high amounts of plasmid DNA, 1 ml of bacterial cultures were diluted 1:200 in 

LB medium and incubated overnight. Plasmid DNA was extracted with the High Speed 

Plamid MidiKit (Qiagen GmbH, Hilden, Germany) according to manufacturer’s instructions. 

The plasmid’s concentration and quality were assessed on a spectrophotometer.  

4.3.7 Reporter assays to assess functional binding to the genomic SATB1 locus 

All luciferase assays in this thesis were performed together with Roman Müller and Stefanie 

Keller in the lab of Bernhard Schermer/Thomas Benzing in University Hospital of Cologne. 

The dual Luciferase Reporter (DLR) assay system (Promega Corporation, USA) was used. In 

brief, activities of firefly (Photinus pyralis) and renilla (Renilla reniformis) luciferase are 

measured sequentially from a single sample. The firefly luciferase reporter is measured first, 

afterwards this reaction is quenched, while the renilla luciferase reaction is simultaneously 

initiated and quantified.  

To assess the inhibitory effect of binding of FOXP3 and FOXP3-driven miRNA to the 

SATB1 locus the pGL4 and the psiCHECK II luciferase reporter systems were used. FOXP3 

binding sites that had been identified in the genomic SATB1 locus by ChIP were cloned into 

the pGL4.24 (luc2P/minP) plasmid containing the luciferase reporter gene luc2P (Photinus 

pyralis) as described above. The pGL4.74 (hRluc/TK) vector encoding the luciferase reporter 

gene hRluc (Renilla reniformis) was used for normalization. Similarily, the putative binding 

sites of FOXP3-dependent miRNA to the 3´UTR region of SATB1 were cloned into 

psiCHECK II. The DLR was performed according to the supplier’s instructions. In brief, 

HEK293T-cells were co-transfected with the pGL4.24 and pGL4.74 constructs in addition to 
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a FOXP3 expressing construct in a 96-well-plate. After 24 hrs, cells were lysed with passive 

lysis buffer for 15 min at room temperature. Next, 100 µl of LAR II Luciferase Assay Buffer 

was injected into each well containing 20 µl of cell lysate followed by reading the firefly 

luminescence on a Mitras plate reader (Berthold Technologies GmbH, Austria). Directly, 100 

µl of Stop & Glo was injected into each well to quench the firefly luciferase and measure 

renilla luciferase. Triplicates of each transfection were measured. The luminescence signal of 

the constitutively expressed renilla luciferase is used as an internal control for normalization. 

For analysis, the ratio of firefly and renilla signals was calculated for each sample of three 

independent experiments. 

4.3.8  Site directed mutagenesis of reporter constructs 

For mutation of FOXP3 and miRNA binding motifs the QuickChange Lightning Multi Site-

Directed mutagenesis kit (Stratagene, Agilent Technologies, USA) was used. In brief, 

supercoiled dsDNA vectors isolated from a Dam
+
 bacteria strain and two synthetic 

oligonucleotide primers containing the desired mutations (listed in Appendix) are mixed. The 

oligonucleotide mutagenic primers, each complementary to opposite strands of the vector, are 

extended without primer displacement during temperature cycling by pfu DNA polymerase, 

generating dsDNA molecules with one strand bearing multiple mutations and containing 

nicks. Next, the nicks are sealed by components in the enzyme set. To remove the parental, 

methylated and non-mutated DNA strand, the thermal cycling reaction was treated for 5 min 

at 37°C with DpnI endonuclease which targets methylated and hemimethylated DNA. Next, 

the reaction mixture is used to transform XL10-Gold ultra-competent cells. Specific 

sequencing primers were used for selection of positive clones. 

10x Buffer with Mg
2+

 5 µl 5 µl 

Forward primer, 20 µM 100 ng Varying 

Reverse primer, 20 µM 100 ng Varying 

dNTPs, 10 mM 0.2  mM 1 µl  

pfu DNA Polymerase  1 µl 

Template DNA 50-100 ng Varying 

Nuclease free water  To 50 µl 
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Cycling parameters: 

 Temp(C) Hold No. of cycles 

Initial-denaturation 95 3 min 1 

Denaturation 95 20 sec 18 cycles 

Annealing Varying 30 sec 

Extension 68 30 sec/kb of plasmid 

Final extension 68 5 min 1 

Hold 8 ∞  

4.3.9 Protein expression and purification 

For in vitro binding assays, FOXP3 was recombinantly expressed in E. coli BL21. Therefore, 

the FOXP3 open reading frame was amplified by PCR and cloned into the pASK-IBA43plus 

vector under control of the tet promoter/repressor which allows for protein expression only 

after addition of anhydro-tetracycline. This vector contains both a N-terminal 6x histidine-tag 

and a C-terminal strep-tag II that can be used for protein purification and detection.  

Not in all bacterial colonies integrating the construct protein expression can be induced. After, 

screening for inducible expression in a small scale experiment, glycerol stocks of positive 

colonies were generated and preserved. To express the protein at a high-scale, the colony that 

showed the highest protein induction was used for protein expression. 500 µl of inducible 

bacteria culture were grown overnight in 50 ml of LB medium with the appropriate antibiotic. 

On the next day, 1 liter of LB medium containing the proper antibiotic was added to the 

culture and incubated on a shaking platform at room temperature and the growth was 

monitored spectrophotometrically every 1 hr. When the OD600 reached between 6.0-8.0 one 

ml of the culture was removed, centrifuged and kept as uninduced control, anhydro-

tetracycline (200 µg/ml medium) was added and the culture incubated for 3-5 hr. At the end 

of the incubation period, the culture was centrifuged and washed once with PBS and bacterial 

pellets stored at -80 °C.  

Protein was purified with Ni-NTA (Nickel-Nitrilotriacetic acid) affinity chromatography 

(Qiagen GmbH, Hilden, Germany) which binds histidine tags with high affinity to the beads. 

This tight binding can be reversed with high concentrations of imidazole which is used for 

elution. All experimental steps were carried out on ice. Bacterial cells were lysed in 

sonification buffer with lysozyme and protease inhibitors for 30 min followed by mechanical 
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lysis by sonification. The cell lysate was centrifuged and incubated with 2 ml of pre-

equilibrated Ni-NTA slurry for 1 hr with gentle rotation. Next, the cell lysate resin mixture 

was loaded onto the column and the column was washed twice with washing buffers I and II. 

The protein was eluted with imidazole (500 mM). The eluted protein was further cleaned 

using a PD-10 desalting column (GE Healthcare, UK). The protein concentration was 

determined by BCA assay kit (Thermo Scientific, USA). Afterwards, the purity and the size 

of the expressed protein were assessed by SDS-PAGE gel. 

4.3.10 Filter retention assays 

Wild type and mutated FOXP3 binding sites in the SATB1 promoter were used for this assay 

to determine the binding coefficient of FOXP3 to the SATB1 locus. Synthetic ssDNA 

oligonucleotides were purchased form Ella Biotec GmbH, Germany. Synthetic ssDNA was 

annealed in TE buffer at 94°C for 5 min and cooled down to room temperature. [
-32

P]-labeled 

dsDNA was generated using the T4 polynucleotide kinase (New England Biolabs, UK) and [
-

32
P]-ATP. [

-32
P]-end labeled DNA (10 nM) was incubated with increasing concentrations of 

FOXP3 protein in binding buffer for 30 min at 37°C. After incubation, the reactions were 

passed through a 0.45 µm nitrocellulose membrane and washed four times with 200 ml 

binding buffer. Bound protein-DNA was quantified by phosphorimager (FLA 5000, Fuji 

photo film Co. Ltd, Japan). All assays were performed in quadruplicates.  

4.3.11 Lentiviral expression system 

In preliminary experiments, several lentiviral vectors with promoters like CMV, EF-1α and 

hPGK were tested for efficient gene transfer into primary cells and a high and relatively stable 

level of protein expression or gene silencing in case of shRNA. 

For SATB1 overexpression in murine Treg cells, we subsequently used the pLVTHM lentiviral 

backbone and cloned the murine SATB1 ORF in front of an IRES cassette with a subsequent 

Thy1.1 as reporter gene. As control an IRES-Thy1.1 construct was generated as well. 

For silencing of FOXP3 and SATB1 in human expanded Treg cells, we generated pLenti6.3-

V5-GW-EmGFP lentiviral backbone containing either a miR RNAi against FOXP3, SATB1, 

both, or an empty control by chaining the miR RNAi using the Gateway system from 

Invitrogen. miRNAs mediated gene silencing were designed using the Invitrogen website 

(https://rnaidesigner.invitrogen.com/rnaiexpress/) and for this purpose BLOCK-iT Pol II 

miR RNAi Expression Vector Kits (Invitrogen, UAS) were used. The advantages of this 
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system over conventional shRNA systems are the higher silencing success rate, expression 

tracking through co-expression of GFP, polycistronic expression which allows multiple 

targeting through chaining, and it’s pol II expression system which enables co-cistronic 

expression of multiple miRNAs. miRNAs were synthesized by Sigma Aldrich, Germany. 

Annealing of each complementary oligonucleotide was performed as described above. miR 

RNAi-ds oligos were cloned into linearized pcDNA6.2-GW/miR  using T4 DNA ligases. The 

ligation reaction was used to transfect One Shot TOP10 competent E.coli and plated into 

Spectinomycin containing LB agar. The correct oligo sequence and the orientation are 

confirmed by sequencing the plasmid prepared from MiniPrep. The pri-miRNAi expression 

cassette was transferred to a lentivirally based destination vector using Gateway Technology. 

pLenti 6.3/V5 Dest as a Gateway adapted  destination vector was used to host the respective 

pre-miRNA. The recombination was carried out as stated in the vendor manual. The transfer 

process of the cassette includes two recombination reactions. Rapid BP/LR recombination 

was performed. The first recombination reaction was done between linearized attB expression 

clone and donor vector in the presence of PB clonase for 6 hrs at room temperature. PB 

clonase catalyzes the recombination of attB substrate with an attP substrate to create an attL-

containing entry vector. LR clonase promotes in vitro recombination between an entry clone 

(attL-flanked sequence) and any number of attR-containing destination vectors to generate 

attB-containing expression clones The LR reaction was the second step and performed 

directly without an intermediate bacterial transformation step. The destination vector was 

mixed with PB reaction in the presence of LR clonase II overnight at room temperature. In 

this reaction an attL (entry clone) is recombined with attR (destination vector) to create an 

attB-containing expression clone. Subsequently the LR reaction was used to transfect One 

Shot TOP10 competent E.coli which were then plated on ampicillin LB agar. 

miR RNAi encoding lentivirus containing supernatants were generated by transfecting 

HEK293T-cells with pLenti 3.6 letivirus vector with the following packaging plasmids: 

pMD2.G, pMDLg/p, pRSV-Rev. 

To generate murine SATB1 encoding supernatants HEK293T-cells were transfected with the 

pLVTHM plasmid together with the pMD2.G and pCMV∆R8.74 packaging plasmids. 

4.3.12 MicroRNA quantification 

MicroRNAs were quantified using the TaqMan MicroRNA assays as recommended by the 

manufacturer (Applied Biosystems, USA). In brief, total RNA was isolated with the standard 
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TRizol method. Afterwards, miRNA is reversely transcribed form total RNA using specific 

primers with the TaqMan Universal PCR master mix. Next, looped-primer RT-PCR 

amplification was performed by addition of miRNA specific primers in triplicates using the 

LightCycler 480 II. The relative miRNA expression was calculated using the 2
-ΔΔCT

 method. 

Constitutively expressed small RNA or miRNA like U6 small nuclear RNA or miR-26b were 

used for normalization. 

4.4 Statistical analysis. 

Student’s t-tests and ANOVA with least significant difference (LSD) were performed with 

SPSS 19.0 software. 
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5 Results 

While the main function of Teff cells is to respond against potential threats, Treg cells have the 

task to limit and shape the immune response to prevent a destructive overreaction against 

healthy tissues and harmless antigens. Although it is clear that Treg and Teff cells develop from 

a common progenitor, the mechanisms that regulate the acquisition of these opposing 

programs is not yet completely understood. To understand the molecular mechanisms and find 

new targets that control the functional specificity of Treg and Teff cells is of high importance as 

this might allow us to restore homeostasis in pathological conditions where the balance 

between tolerance and inflammatory responses has been altered.  

SATB1 is required for terminal thymocyte differentiation in the thymus. Furthermore, SATB1 

is involved in the acquisition of effector function of T-cells particularly in the production of 

Th2 related cytokines. However, the role of SATB1 for the acquisition of effector and 

regulatory programs in T-cells has not yet been described in detail. Preliminary data from a 

former PhD student in the laboratory, Sabine Claßen, revealed that SATB1 is highly 

expressed in conventional T-cells, whereas its expression is lower in Treg cells indicating that 

SATB1 might initiate and maintain T-cell effector programs [232]. This thesis was intended 

to elucidate how SATB1 expression is regulated between effector and regulatory T-cells and 

how its expression contributes to shape the antagonistic responses observed between these 

cells. To gain insight into the regulation of SATB1, its expression patterns were analyzed in 

effector and regulatory T-cells in mice and human. Enforced SATB1 expression in Treg cells 

was performed to address the functional consequences of its expression in vitro. Furthermore, 

the regulation of SATB1 expression in Treg cells was investigated and the active role of 

FOXP3 in this process explored. Finally the functional effect of gaining high SATB1 

expression in Treg cells in an in vivo model was examined. 

5.1 Low SATB1 expression in human natural Treg cells  

Previous data showed that SATB1 is expressed in a tissue specific pattern, mainly in 

thymocytes [173, 174, 241]. Its expression is low in peripheral T-cells but is induced upon 

stimulation which suggests the involvement of SATB1 in effector mediating functions [224]. 

To our knowledge no previous study has specifcally addressed the expression of SATB1 in 

Treg cells. Our first question was whether SATB1 is differentially expressed between Treg and 

Tconv cells. To explore the expression pattern of SATB1 amongst Tconv and Treg, CD4
+
CD25

+
 

Treg and CD4
+
CD25

-
 Tconv cells were isolated from human blood. The cells were either left 
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untreated or stimulated with anti CD3/CD28-coated beads alone or in combination with TGF-

β. Cells from the different experimental conditions where lysed in TRIzol and the RNA was 

extracted to perform whole transcriptome profiling. The experimental procedures and data 

analysis were performed by former members of the Schultze laboratory. Transcriptome 

analysis showed lower expression of SATB1 in thymic derived natural Treg cells, whereas it is 

highly expressed in conventional CD4
+
 T-cells. Next, SATB1 expression was assessed on 

mRNA and protein levels. The inverse expression of SATB1 between Treg and Tconv cells was 

corroborated at mRNA level using qRT-PCR (Fig. 7, b). Moreover, this difference in SATB1 

expression was confirmed by immunoblotting (Fig. 7, c) and flow cytometric analysis by 

intracellular staining of CD4
+
 cells using a directly labeled SATB1 antibody (Fig. 7, d). In 

summary, our data showed that SATB1 expression is lower in Treg cells relative to Tconv cells. 

  

Figure 7. Low SATB1 expression in human naturally occurring Treg cells. 

Human CD4
+
CD25

-
 T-cells (Tconv), and regulatory CD4

+
CD25

+
 T-cells (Treg) were isolated from 

peripheral blood of healthy donors. The isolated cells were then either rested or stimulated with 

CD3/CD28 beads alone or with TGF-β. Expanded Treg cells were stimulated with CD3/CD28 expander 

beads. (a) Microarray analysis of SATB1 mRNA expression in Tconv and Treg cells (rest=resting, 

act=activated, TGF=TGFβ treated, exp=expanded). (b) Relative SATB1 mRNA expression compared 

to B2M in freshly isolated Treg and Tconv cells assessed by qRT-PCR (mean±s.d., n=5; * p<0.05). (c) 

Immunoblotting of SATB1 in freshly isolated Treg cells and Tconv cells, relative expression of SATB1 

was measured densitometrically in comparison to β-actin (representative donor (left), relative 

expression (right; n=6, mean±s.d.; * p<0.05)). (d) Flow cytometric analysis of SATB1 expression in 

freshly isolated Treg and Tconv cells. Cells were stained intracellularly with SATB1 monoclonal 

antibodies after fixation and permeabilization with Biolegend’s FOXP3-staining kit. Data presented as 

mean fluorescence intensity (MFI) (left: representative donor; right: mean±s.d., n=11; * p<0.05). 
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5.2 SATB1 is expressed at low levels in murine Treg cells 

The protein sequence of SATB1 is highly conserved between mice and men which implies 

functional similarity across the species. The study of human Treg cells is challenging due to 

the lack of reliable surrogate markers for isolation and characterization. FOXP3 is commonly 

used as a specific marker for Treg cells; however, the transient expression of FOXP3 in 

activated human Tconv cells is further complicating the analysis and understanding of human 

Treg-cell biology. Such challenges are overcome at least in part in mouse models where 

FOXP3 is co-expressed with a reporter gene such as GFP providing a reliable marker for 

isolation and characterization of Treg cells. To precisely address some aspects of SATB1 

biology in Treg cells, FOXP3-GFP reporter mice were used. Therefore, the DEREG 

(DEpletion of REGulatory T-cells) mouse model was used in this study in collaboration with 

the group of T. Sparwasser (Hannover Medical School, Hannover) [242]. This model is a 

BAC (bacterial artificial chromosome) transgenic mouse line carrying a DTR-eGFP fusion 

transgene under the control of the endogeneous FOXP3 promoter, thereby allowing specific 

depletion of Treg cells by application of diphtheria toxin and at the same time allowing for 

isolation of highly pure GFP-marked Treg cells for downstream analyses [242]. To asses the 

expression of SATB1 in murine CD4
+
 T-cells, Treg and Tconv cells were freshly isolated and 

sorted from spleens of DEREG mice. SATB1 protein expression was assessed by flow 

cytometry and immunoblott. The experiments clearly established lower expression of SATB1 

in murine Treg cells. For flow cytometry the isolated cells were fixed, permeabilized and 

stained intracellularly for SATB1. Immunoblotting was performed in Jeffrey Bluestone’s 

laboratory (UCSF, San Francisco) on cells which were isolated from FOXP3-GFP mice  

[243]. Both methods revealed that the pattern of expression of SATB1 is similar to the pattern 

observed in humans with lower SATB1 expression in Treg compared to Tconv cells (Fig. 8, a 

and b). Altogether, our data suggest that the expression pattern of SATB1 is conserved 

between murine and human Treg cells, supporting a conserved function and regulation of 

SATB1 across different species. 
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Figure 8. Low SATB1 expression in murine regulatory T-cells.  

(a) Flow cytometric analysis of SATB1 in freshly isolated Treg cells and Tconv from spleens of male 

DEREG mice (left: representative mouse; right: mean±s.d. n=3; * p<0.05). MFI values are presented 

for Treg and Tconv cells respectively. (b) Western blot analysis of SATB1 protein expression in murine 

Treg and Tconv cells. Erk1 and Erk2 were used as loading control. 

5.3 Reduced SATB1 expression levels in human induced Treg cells  

Treg cells can be subdivided according to their sites of induction into thymus-derived natural 

Treg cells and peripherally induced iTreg cells. In vitro, TGF-β in concert with high 

concentration of IL-2 and the presence of a TCR and a co-stimulatory signal mediates the 

induction of FOXP3 in naïve CD4
+
 T-cells [80, 244, 245]. Briefly, iTreg cells were generated 

from naive CD4
+
CD45RA

+
 T-cells stimulated with CD3/CD28-coated beads in combination 

with TGF-β and IL-2. FOXP3 and SATB1 expression was analysed by flow cytometry and 

qRT-PCR. To assess the influence of FOXP3 induction on SATB1 expression and 

consequently on the differentiation of effector T-cell cytokines were measured in the 

supernatants. It could be observed that FOXP3 induction in naïve CD4
+
T-cells was correlated 

with repression of SATB1 expression in iTreg cells relative to stimulated CD4
+
 Tcells (Fig. 9, 

a ). Furthermore, FOXP3 induction and SATB1 suppression were associated with a decrease 

in the production of proinflammatory cytokines such as IFN- and IL-4 as typical Th1/Th2 

cytokines as potential targets of SATB1-dependent gene regulation (Fig. 9, b). 

In summary, independently of the origin of Treg cells, SATB1 expression is lower in Treg cells 

in comparison to Tconv cells. Moreover, in iTreg cells FOXP3 upregulation was concomitant 

with SATB1 repression, suggesting a possible regulatory loop between these two molecules. 
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Figure 9. SATB1 expression is reduced in human iTreg cells and correlates with the induction 

of FOXP3. 

Human naïve CD4+CD45RA+ T-cells were isolated and stimulated for 5 days either with CD3/CD28 

beads alone or in combination with TGF-β and IL-2 to generate iTreg cells. (a) Left, qRT-PCR, right, 

flow cytometry of SATB1 in unstimulated T-cells (unstim T), stimulated T-cells (stim T), and iTreg 

cells (iTreg) on day 5 (left: representative experiment; right: n=3, mean±s.d.; * p<0.05)). (b) 

Cytokine bead array for IL-4 and IFN-γ secretion in the supernatants of unstimulated T-cells, 

stimulated T-cells, and iTreg cells; n=3 (mean±s.d.; * p<0.05).  

 

 

 

 

 

 

 

 

 

 

 

5.4 SATB1 expression is significantly upregulated in Tconv cells upon stimulation in 

comparison to Treg cells 

T-cell survival, differentiation, and function are dependent on the integration of diverse 

signals provided during the interaction of lymphocytes with antigen-presenting cells. TCR, 

costimulatory/inhibitory molecules, and cytokines signals can positively or negatively shape 

the immune response via modulating the activation status of the major downstream signaling 

molecules. The ability to transduce extrinsic signals is mediated through several proximal and 

distal effector molecules and signal transduction cascades such as Lck, Zap70, Jaks, MAPK, 

PKC and others. The strength and duration of these signaling events subsequently resulting in 

differential and combinatorial activation of several transcription factors such as AP-1, NFAT, 

NF-kB, ERK and STATs that shape the fate of the immune response [246, 247]. We observed 

that following TCR ligation in CD4
+
 T-cells, SATB1 expression was rapidly upregulated. To 

examine the difference in the expression kinetics of SATB1 in Treg cells in comparison to 

Tconv cells under activation conditions, Treg and Tconv cells were freshly isolated and activated 

with CD3 alone in the presence of IL-2 or CD3/CD28-coated beads. In contrast to Treg cells 

where SATB1 showed only minimal induction upon TCR activation in combination with 
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costimulation, Tconv cells showed around 7-fold increase in SATB1 expression under sub-

optimal stimulation (Fig.10, a and b). The induction of SATB1 expression was lower in the 

absence of co-stimulation which might indicate a probable role of the costimulation signaling 

pathway in SATB1 activation (Fig.10, b).  

Overall, upon TCR activation, SATB1 expression is only slightly increased in Treg cells, 

whereas it is highly induced in Tconv cells. This evidence suggests the presence of a dominant 

inhibitory mechanism on SATB1 expression in Treg cells. 

5.5 SATB1 gene expression is under control of FOXP3 

FOXP3 is the master regulator of Treg cell function and many studies have dissected the role 

of FOXP3 in maintaining Treg cell functional identity and stability [135, 145, 146, 150, 248-

251] which clearly suggests that FOXP3 largely defines the transcriptional program of Treg 

cells. This evidence was further supported by ectopic expression of FOXP3 in non-Treg cells 

(CD4
+
CD25

-
) which resulted in endowing Tconv cells with a Treg-cell-like phenotype [52].  

Genome wide expression studies performed by our group and others have shown that several 

genes are repressed in Treg cells. The repressive status of many of these genes is functionally 

relevant, as their upregulation antagonizes Treg cell identity and function, e.g. RORγt, Akt, 

and proinflammatory cytokines genes. Our data showed that SATB1 was repressed in Treg 

cells. Moreover, FOXP3 induction was negatively correlated with the expression of SATB1. 

This led us to hypothesize that FOXP3 imposes a potential regulatory circuit on SATB1 

 

Figure 10. SATB1 expression in 

CD4+ T-cells upon stimulation.  

Tconv and Treg cells were isolated and 

either rested or stimulated with 

CD3/CD28-coated beads or CD3 

and IL-2 for 48 hrs. (a) Flow 

cytometry of SATB1 expression 

after stimulation of Treg cells and 

Tconv for 2 days. (b) Relative protein 

expression of SATB1, normalized to 

resting Tconv cells (mean±s.d. n=5; * 

p<0.05) 
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expression in Treg cells. To test this hypothesis, we combined gain and loss of function genetic 

approaches to study the proposed effect of FOXP3 on SATB1 expression. Furthermore, we 

examined the staining pattern of FOXP3 and SATB1 in FOXP3-competent and FOXP3-

mutated thymocytes. 

5.5.1 SATB1 shows an inverse staining pattern to FOXP3 in murine thymocytes 

To dissect SATB1 localization and abundance in Treg and Tconv cells cells, were isolated from 

DEREG reporter mice and confocal microscopy was performed. To investigate how the 

staining of SATB1 in thymocytes correlated with FOXP3 staining, thymocytes were purified 

from male DEREG mice, fixed with paraformaldehyde, permeabilized with Triton-X, and 

stained with primary antibodies against SATB1 followed by staining with secondary 

antibodies and DAPI to stain chromatin (all slides and images were prepared by Eva 

Schönfeld and Marc Beyer). Consistent with the expression data, the nuclear staining pattern 

of SATB1 (shown in red) is more intense in FOXP3 negative thymocytes which reflects 

higher expression of SATB1 in non-Treg cells. In contrast, SATB1 staining was dim in 

FOXP3-expressing Treg cells (GFP-positive cells) (Fig.11). 

 

Figure 11. SATB1 is expressed at high levels in FOXP3-negative thymocytes. 

Confocal immunofluorescence for SATB1 (red) and FOXP3 (green) in freshly sorted thymocytes, Z-

projection of immunofluorescence for SATB1 GFP protein expression in thymocytes from male 

DEREG mice counterstained with DAPI (blue). White arrow depicts a Treg-cell.  

5.5.2 Ectopic expression of FOXP3 in CD4
+
 T-cells represses SATB1 expression 

The data obtained in iTreg cells clearly demonstrated that the induction of FOXP3 is inversely 

correlated with SATB1 expression supporting the hypothesis of a putative suppressive 

mechanism exerted by FOXP3 on SATB1 gene expression. To test whether FOXP3 regulates 

SATB1 expression, the full-length cDNA of FOXP3 variant 1 was cloned into a lentiviral 

vector in the laboratory of James Riley (University of Pennsylvania, Philadelphia). Afterwads, 
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lentivirus was produced in HEK293T-cells and concentrated by ultracentrifugation. Human 

naïve CD4
+
CD25

-
CD45RA

+
 Tconv cells were isolated by magnetic separation and transduced 

with high concentrations of FOXP3 encoding virus or control virus, expanded for several 

days, and sorted after a resting period on reporter gene expression in the laboratory of James 

Riley (University of Pennsylvania, Philadelphia). After RNA isolation and cDNA generation, 

FOXP3 and SATB1 expression were assessed by qRT-PCR. Under these conditions, SATB1 

was highly expressed in control virus transduced Tconv cells but ectopic expression of FOXP3 

resulted in a drastic inhibition in the expression of SATB1 in Tconv cells (Fig. 12, a). The 

FOXP3 associated reduction of SATB1 expression in Tconv cells was also coupled with a 

significant decrease in the production of Th1/Th2 cytokine genes e.g. IL-5 and IFN-γ (Fig. 12 

b). Taken together, this evidence further supported the idea of FOXP3-mediated repression of 

SATB1 gene expression. 

 

Figure 12. FOXP3 represses SATB1 transcription. 

Human naïve CD4+CD25-CD45RA+ Tconv cells were isolated by magnetic separation, activated for 48 

hrs and lentivirally transduced with FOXP3 and control virus and expanded for several days. After a 

resting period of 3 days, reporter gene expressing cells were isolated by flow cytometry and 

analyzed. a) qRT-PCR analysis of FOXP3 and SATB1 expression. (b) qRT-PCR analysis of IL-5 and 

IFN-γ expression. mean±s.d. n=5, * p<0.05. 

5.5.3 Loss of function of FOXP3 results in the upregulation of SATB1 in Treg cells 

Since we observed that ectopic expression of FOXP3 in Tconv cells antagonized SATB1 

induction, we wanted to examine whether a reduction in FOXP3 expression would result in an 

increase in SATB1 expression in FOXP3-expressing cells. We studied this effect in Treg cells 

where FOXP3 was either intrinsically defective as in scurfy mice where FOXP3 is inactive 

because of a point mutation at the FOXP3 locus or in artificially FOXP3-silenced human Treg 

cells. For this we either silenced FOXP3 expression in human Treg cells by sequence specific 

siRNAs or lentivirally transduced human Treg cell with artificial miRNA (RNAi) targeting 

FOXP3.  
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 Intrinsic loss of FOXP3 results in increased SATB1 expression and expression of 5.5.3.1

Th1/Th2 cytokine genes in Treg cells 

Scurfy mice harbor a mutated allele for FOXP3 which results in rapid protein degradation. To 

characterize “would-be” Treg cells from scurfy mice, scurfy mice were crossed with DEREG 

mice in the laborytory of Timm Sparwasser (Hannover Medical School, Hannover) providing 

us with a tool to visualize and isolate Treg cells with non-functional FOXP3. Thymocytes were 

isolated from female DEREG mice heterozygous for the scurfy mutation. As FOXP3 is 

encoded on the X chromosome and because of the random inactivation of the second X 

chromosome in cells from female animals, these mice have both normal Treg cells 

(CD4
+
GFP

+
FOXP3

+
) as well as Treg cells expressing the mutated FOXP3 allele 

(CD4
+
GFP

+
FOXP3

-
). Confocal microscopy of SATB1 in FOXP3-sufficient and FOXP3-

deficient Treg cells (performed by Eva Schönfeld and Marc Beyer) showed that SATB1 signal 

intensity was inversely correlated with FOXP3 expression. While the SATB1 signal was 

higher in scurfy Treg cells where FOXP3 expression is defective (corresponding to a weak 

GFP signal), SATB1 signal was lower in wild type Treg cells (corresponding to a strong GFP 

signal, Fig. 13 a). 

Next, we asked whether the loss of FOXP3 expression also results in increased levels of 

SATB1 mRNA expression. Therefore, Treg cells from male DEREG mice harbouring the 

scurfy mutation as well as Treg cells from normal DEREG mice were isolated by flow 

cytometry and mRNA expression of SATB1 was quantified by qRT-PCR. Our data 

demonstrate that non-functional FOXP3 correlated with induction of SATB1 expression at 

even higher levels than the levels observed in Tconv cells from DEREG or DEREG mice with 

non-functional FOXP3 (Fig. 13, b).  

Using flow cytometry of thymocytes from female mice heterozygous for the scurfy mutation, 

we could confirm that scurfy Treg cells showed higher SATB1 protein expression relative to 

wild type counterparts (Fig. 13, c). 

Functional wild type Treg cells are unable to produce proinflammatory cytokines. In contrast, 

Treg cells from scurfy mice have been reported to produce Th2 cytokines, suggesting that they 

mediate inflammatory rather than regulatory responses. Moreover, SATB1 has been reported 

to be involved in the production of Th2 cytokines [190, 249, 252, 253]. To investigate 

whether enhanced expression of SATB1 in Treg cells is associated with the production of 

proinflammatory cytokines we assessed mRNA expression of proinflammatory cytokines by 
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qRT-PCR. Indeed, the derepression of SATB1 expression in Treg cells from scurfy mice was 

associated with a significant production of Th1/Th2 cytokines (IL-6 and IFN-γ) in comparison 

to wild type Treg cells from DEREG mice (Fig. 13, d). 

In summary, our data indicate that the loss of functional FOXP3 increases SATB1 expression 

and results in the production of Th1/Th2 cytokine gene expresison in scurfy Treg cells. This 

evidence further supported the association that FOXP3 might actively repress SATB1 

expression.  
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Figure 13. Loss of FOXP3 function results in SATB1 induction.  

(a) Confocal microscopy for SATB1 (red) and FOXP3 (green) in freshly sorted thymic Treg cells from 

female DEREG mice heterozygous for the scurfy mutation counterstained with DAPI (blue). FOXP3 

competent CD4
+
GFP

+
FOXP3

+
 (FOXP3

wt
) Treg cells or FOXP3 incompetent CD4

+
GFP

+
FOXP3

-
 Treg 

cells (FOXP3
sf
) Treg cells. (b) qRT-PCR for SATB1 in freshly sorted CD4

+
GFP

+
 Treg cells and 

CD4
+
GFP

-
 Tconv cells (♂ DEREG mice; ♂ FOXP3-deficient DEREG x scurfy mice). Data are 

representative of two experiments (mean ± s.d. of three replicates; * p<0.05). (c) qRT-PCR for IL-6 

and IFN-γ mRNA production by Treg cells derived from male DEREG or DEREG x scurfy mice. 

mean±s.d; * p<0.05; n.d. = not detectable. (d) Flow cytometry for SATB1 in freshly isolated thymic 

single positive FOXP3
+
 (left, light grey) and FOXP3

-
 (right, dark grey) GFP

+ 
Treg cells from female 

DEREG mice heterozygous for the scurfy mutation; one representative experiment (left); mean±s.d. 

(right, n=2). Isotype control shown as solid line. 
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 siRNA-mediated silencing of FOXP3 abrogates Treg-cell function and upregulates 5.5.3.2

SATB1 expression 

To further characterize the role of FOXP3 in SATB1 gene repression, we used a siRNA-

mediated silencing approach of FOXP3 in nTreg cells (performed together with Anne Flach). 

Therefore, human nTreg cells were freshly isolated and electroporated with siRNA targeting 

FOXP3. After electroporation, cells were rested and then incubated for 24 hrs in the presence 

of CD3 and IL-2 and used for further experiments. Specific silencing of FOXP3 resulted in 

low levels of FOXP3 mRNA and protein in FOXP3-silenced Treg cells (Fig. 14, a). Next, the 

suppressive function of FOXP3-silenced Treg cells was analyzed by co-cultivating the siRNA-

treated Treg cells with Tconv cells stimulated with beads as artificial antigen presenting cells 

(aAPC). These experiments clearly revealed that loss of FOXP3 resulted in an impairment of 

the suppressive activity of Treg cells (Fig. 14, b). In addition, we assessed the expression of 

several well-known marker genes for Treg cells in FOXP3-deficient cells by qRT-PCR and 

observed a reduction in the expression of several important Treg cells markers genes (Fig. 14, 

c). 
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Figure 14. FOXP3 silencing impairs suppressive function and Treg-cell associated genes 

expression.  

To assess whether silencing of FOXP3 reverses the phenotype and function of Treg cells, we isolated 

human Treg cells and performed siRNA-mediated knockdown of FOXP3 and analyzed suppressive 

function after 24 hrs of incubation with CD3 and IL-2 as well as mRNA expression of typical Treg cell 

genes after stimulation for 48 hours with CD3 and CD28 (mean±s.d., n=3; * p<0.05). (a) Flow 

cytometric analysis of intracellular FOXP3 expression in Treg cells post FOXP3 knockdown compared 

to control siRNA transfected Treg cells (left: representative donor; right: mean±s.d., n=6; * p<0.05). (b) 

In vitro suppressive function of control or FOXP3 siRNA treated Treg cells cultured for 4 d together 

with CFSE-labeled allogeneic CD4
+
 T-cells at a 1:1 ratio; after stimulation of cultures, CFSE dilution 

was assessed by flow cytometry. (c) Treg-cell associated gene expression in FOXP3-silenced human 

Treg cells (mean±s.d., n=3; * p<0.05). 

Next, SATB1 expression levels were assessed in FOXP3-silenced and control siRNA treated 

Treg cells. It could be shown that FOXP3-silenced Treg cells expressed significantly higher 

levels of SATB1 in comparison to control-siRNA treated Treg cells. Furthermore, SATB1 

expression was further enhanced in FOXP3-silenced Treg cells after stimulation with CD3 

together with IL-2 or in combination with CD28 (Fig. 15, a). This increase in SATB1 



 

68 
 

68 Results 

expression upon FOXP3 silencing in Treg cells was also associated with the expression of 

Th1/Th2 cytokine genes (IL-5 and IFN-γ, Fig. 15, b) and the production of Th1/Th2 cytokines 

(IL-4, and IFN-γ, Fig. 15 c) suggesting that SATB1 is actively involved in the production of 

these cytokines. 

In conclusion, siRNA mediated knock down of FOXP3 in nTreg cells reverses their 

suppressive function and results in a Teff cell-like phenotype, manifested by an increase in the 

expression of SATB1 and the production of Th1/Th2 cytokines. 

 

Figure 15. Rescue of SATB1 expression after silencing of FOXP3 in human Treg cells.  

Human Treg cells were either transfected with control siRNA or FOXP3-specific siRNA. (a) qRT-PCR 

for SATB1 (mean±s.d., n=6; * p<0.05) in human Treg cells after silencing of FOXP3. Treg cells were 

transfected and cultivated for 48 hours without stimulation or in the presence of CD3 and IL-2 or CD3 

and CD28. (b) qRT-PCR for IL-5 and IFN-γ (n=4, mean±s.d.; * p<0.05) in siRNA-treated Treg cells 

stimulated for 48 hours in the presence CD3 and IL-2. (c) Cytometric bead array for IL-4 and IFN-γ 

(mean±s.d.; * p<0.05) in the supernatant of siRNA-treated Treg cells stimulated for 48 hours in the 

presence of CD3 and IL-2. 

 SATB1 mediates proinflammatory cytokine production in FOXP3 deficient Treg 5.5.3.3

cells 

A direct role of SATB1 in the transcription of proinflammatory cytokines has been reported 

[254]. However, the aforementioned experiments could only indirectly suggest that SATB1 is 
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required for the induction of the Th1/Th2 cytokine genes. To investigate whether the 

induction of SATB1 upon the loss of FOXP3 in Treg cells drives the production of Th1/Th2 

cytokines, we silenced FOXP3 alone or in combination with SATB1 in Treg cells using siRNA 

and a miRNA (RNAi) based approach and assessed the production of cytokines by qRT-PCR. 

Freshly isolated human Treg cells were transfected either with FOXP3-siRNA alone or in 

combination with SATB1. Scrambled-siRNA treated Treg cells were used as a control. 

Nucleofected cells were rested overnight, and then stimulated with CD3/CD28 antibodies for 

48 hrs. Cells were harvested and the expression of FOXP3, SATB1 and cytokine genes was 

analysed. On the one hand, we observed that upon silencing of FOXP3 (Fig. 16, a) the 

expression of SATB1 as well as IL-5 and IFN-γ was increased in comparison with control 

siRNA treated cells (Fig. 16, a and b, gray bars). On the other hand, double knock down of 

FOXP3 and SATB1 significantly reduced both the expression of SATB1 and FOXP3 as well 

as the expression of cytokine genes (Fig. 16, a and b, black bars).  

 

Figure 16. SATB1 induces the expression of cytokine genes in FOXP3-silenced Treg cells.  

Freshly isolated human Treg cells were transfected with either FOXP3 and SATB1 siRNA, or control 

siRNA. The cells were rested overnight and afterwards stimulated for 48 hrs with CD3/CD28-coated 

beads. (a) Relative expression of FOXP3 and SATB1 after siRNA transfectionby qRT-PCR. (b) qRT-

PCR for IL-5 (left) and IFN-γ (right) in Treg cells (n=4, mean±s.d. one-way ANOVA with LSD; * 

p<0.05). 
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 miRNA-mediated silencing of FOXP3 rescues SATB1 and cytokine gene 5.5.3.4

expression in Treg cells 

Although the use of siRNAs has been used successfully for gene targeting, miRNA (RNAi) 

have many advantages over siRNAs. For instance, the short RNAs used for  knock down are 

endogenously produced by the cellular machinery, multiple gene targeting is applicable, and 

higher success rates by stable expression can be achieved. Targeting oligo-sequences for 

FOXP3 and SATB1 were designed using the Block-it RNAi designer. Next, oligos were 

annealed and cloned into an intermediate vector, chained and recombined into a lentiviral 

expression vector. Finally, the lentivirus for different constructs were produced and used to 

transduce expanded Treg cells. Subsequently, the transduced Treg cells were sorted on GFP 

expression on the third day after transduction and stimulated for an additional 3 days. The 

supernatant and mRNA were used to analyse the expression level of cytokines in Treg cells 

under different silencing conditions relative to control miRNA (RNAi) transduced cells. In 

accordance with the data obtained using siRNAs, successful silencing of FOXP3 (Fig. 17, a, 

gray bar) in Treg cells was associated with the induction of SATB1 (Fig. 17, b, gray bar) and 

proinflammatory cytokines (IL-5 and IFN-γ, Fig. 17, c and d, gray bars). Moreover, co-

silencing of FOXP3 and SATB1, significanly decreased the production of proinflammatory 

cytokines at mRNA and protein levels (Fig. 17, c and d, black bars). 

Altogether the results obtained by loss of function approaches for FOXP3 support the 

hypothesis that FOXP3 represses SATB1 expression. Furthermore, FOXP3 and SATB1 

double knockdown dampened the expression of Th1/Th2 cytokines in Treg cells which 

suggests that SATB1 is directly involved in the expression of these genes.  

 



 

71 
 

71 Results 

 

Figure 17. SATB1 expression is induced 

upon silencing of FOXP3 in expanded 

human Treg cells with artificial miRNAs.  

(a) Relative FOXP3, (b) SATB1, (c) IL-5 (left), 

and IFN-γ (right) mRNA expression in GFP
+
 

sorted expanded human Treg cells transduced 

with nontargeting  miR RNAi (Ctrl miR RNAi), 

FOXP3-targeting miR RNAi (FOXP3 miR RNAi) 

or FOXP3- and SATB1-targeting miR RNAi 

(FOXP3 + SATB1 miR RNAi). *P < 0.05 

(Student’s t-test). Data are representative of 

three experiments (mean and s.d.) with cells 

derived from different donors. (d) Relative IL-5 

and IFN-γ secretion in the supernatants Treg 

cells sorted as described above. *P < 0.05 

(Student’s t-test). Data is representative of one 

experiment representative of two (mean ± s.d. 

of triplicate wells) with cells derived from 

different donors. 

 

 

5.6 FOXP3 directly controls SATB1 transcription  

5.7 Identification of FOXP3 binding sites at the genomic SATB1 locus 

Both loss and gain of function experiments pointed towards the existence of a putative 

FOXP3-SATB1 regulatory axis. To define the potential targets of FOXP3 in Treg cells, 

FOXP3-ChIP tiling arrays using chromatin isolated from expanded cord blood natural Treg 

cells were performed by the group of Simon Barry (University of Adelaide, North Adelaide, 

Australia). For this purpose, isolated CD4
+
CD25

+
 Treg cells were expanded ex vivo using 

CD3/CD28 expander beads. The expanded Treg cells were characterized phenotypically by the 

expression of FOXP3 and functionally by in vitro suppression assays and retained Treg cell 

proterties over the expansion period. Chromatin preparations from expanded Treg cells for 

ChIP were performed as follows: expanded Treg cells were stimulated with ionomycin for 2 

hrs, cross-linked with formaldehyde solution followed by quenching the formaldehyde with 

glycine and washing. Afterwards, anti-FOXP3 or control rabbit IgG were used to precipitate 

cross-linked protein–DNA complexes from nuclear lysates. The cross-linking of the 
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immunoprecipitated material was removed and the samples were proteinase treated. The 

obtained purified DNA was amplified and hybridized to probes covering only the known 

promoter regions of known genes in the whole human genome using Affymetrix GeneChip 

Human Tiling Array Set. 

The data were analysed by Dr. Marc Beyer using model based analysis of tiling arrays (MAT) 

with a false discovery rate of (FDR) of 5%. 13 potential FOXP3 binding regions at the 

SATB1 gene locus were identified with significant enrichment in FOXP3 binding. The 

FOXP3 binding sites are distributed in the promoter and within the genomic region of SATB1 

(Fig. 18, a and b). Combining these data with bioinformatic in silico prediction, we could 

identify 16 regions for qRT-PCR validation. Remarkably, FOXP3 binding was preferentially 

enriched in all identified binding regions (Fig. 18, c). To corroborate the specificity of FOXP3 

enrichment at the SATB1 locus, analysis of known Treg-cell genes was performed, FOXP3 

binding to the promoter regions of CTLA-4, IL-7R, and two regions within the PDE3B locus 

as positive controls as well as AFM and intron 10 at the PDE3B locus as negative controls 

were assessed by promoter arrays, whole genome tiling arrays, and ChIP-qRT-PCR. While no 

enrichment was observed at the AFM locus or at intron 10 at the PDE3B locus, FOXP3 

binding was significantly enriched at the promoters of CTLA-4, IL-7R, and at two regions 

within the PDE3B locus as well as at the SATB1 locus (Fig. 19). 

Taken together, results from both tiling array and qRT-PCR strongly indicated that FOXP3 

binds directly at the SATB1 locus. This observation, in concert with the decreased levels of 

SATB1 mRNA and protein in the presence of FOXP3 suggests that FOXP3 directly represses 

SATB1 expression.  
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Figure 18.  FOXP3 binds to the genomics SATB1 locus.  

(a) FOXP3 ChIP tiling array data from human expanded cord-blood Treg cells assessed with a FOXP3 

antibody and hybridized to Affymetrix tiling arrays. Data were analyzed with MAT and overlayed to the 

SATB1 locus to identify binding regions (1-13, p<10
-5

 and FDR<0.5%). (b) Schematic representation 

of FOXP3 binding regions (BR) at the human genomic SATB1 locus identified by in silico prediction 

within the indentified regions. (c) ChIP-qRT-PCR for FOXP3 binding at the SATB1 locus in human 

expanded cord-blood Treg cells. Input DNA and precipitated DNA were quantified by qRT-PCR; the 

same chromatin was used for control ChIP experiments with immunoglobulin G–coupled Dynabeads. 

Enrichment over input DNA was normalized to control IgG (mean±s.d.; * p<0.05; n=3).  
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Figure 19. Array and ChIP-qRT-PCR 

results for FOXP3 binding known FOXP3 

target genes.  

FOXP3 ChIP-on-chip experiments and data 

analysis using MAT were previously 

described [248]. Each bar represents the 

signal intensity of an individual 

oligonucleotide probe on Affymetrix Human 

Promoter 1.0 (upper panel) or Human Tiling 

2.0R Arrays (lower panel). ((a) FOXP3 binds 

to the human SATB1 locus. (b) FOXP3 

binds to the promoter region of the human 

CTLA4 locus. (c) FOXP3 binds to the 

human IL7R locus. (d) No FOXP3 binding to 

the human AFM locus. (e) FOXP3 binds to 

the human PDE3B locus. (f) Confirmation of 

FOXP3 binding by ChIP-qRT-PCR. 

Quantitative PCR was performed using 

primer sets corresponding to the marked 

regions and FOXP3 antibody or control IgG 

precipitated chromatin isolated from Treg 

cells. Relative enrichment of FOXP3 Chip 

over input normalized to IgG was calculated. 

The AFM locus or intron 10 of PDE3B  were 

used as negative controls. 
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5.7.1 FOXP3 binds with high affinity to motifs within the human SATB1 locus 

Next, to demonstrate the specificity of the binding of FOXP3 to the genomic SATB1 locus 

and assess the affinity of this binding we characterized FOXP3 binding at the SATB1 locus in 

a cell-free assay. Filter retention assays are a simple method used to study the binding affinity 

between two molecules such as nucleic acids and protein. Briefly, dsDNA oligos containing a 

FOXP3 binding motif of the specific binding regions 9 and 10 at the SATB1 locus were 

synthesized and labeled with [
-32

P]. The labeled oligos were incubated with different 

concentrations of FOXP3 recombinant protein. Then, the complexes were passed through a 

nitrocellulose membrane and bound protein-DNA complexes quantified by phosphor-

imaging. Filter binding assays revealed that FOXP3 binds with a KD of 516.2 nM and 579.8 

nM to a FOXP3 binding motif within BR9 and BR10, respectively. Furthermore, the high 

affinity of FOXP3 binding to the SATB1 locus was abrogated upon mutation of the specific 

motifs in the dsDNA oligos (Fig. 20). 

Taken together, these experiments confirmed the specific binding of FOXP3 to the genomic 

SATB1 locus and could establish for the first time the binding affinity of FOXP3 to specific 

DNA sequences.  

 

Figure 20. FOXP3 binds with high affinity to the SATB1 locus.  

Filter binding assays to determine the kinetic of binding of FOXP3 at the SATB1 locus expressed as 

KD-values of FOXP3 binding to FOXP3 binding motifs in BR9 and BR10 at the SATB1 locus. His-

tagged-FOXP3 protein was expressed in E.coli and purified using Ni-NTA resins. dsOligos were 

labeled with
 
[
γ-32

P] using T4 polynucleotide kinase. The labeled dsOligos were incubated with 

increasing concentration of FOXP3 proteins, filtered through a nitrocellulose membrane, washed tree 

times with binding buffer and dried. DNA retained on the membranes was quantified with a 

phosphorimager (mean±s.d.; * p<0.05; n=3). 



 

76 
 

76 Results 

5.7.2 Binding of FOXP3 to the SATB1 locus suppresses SATB1 transcription 

The identification of putative FOXP3 binding sites at the genomic SATB1 locus requires 

further functional verification to demonstrate regulation of transcriptional activity. To study 

the functional significance of this binding, reporter assays using conventional luciferase 

plasmids were performed. The six binding regions with the highest probability score were 

cloned into the pGL4.24 firefly reporter construct. These constructs were co-transfected into 

HEK293 cells with an expression vector encoding for full length FOXP3 gene and the 

pGL4.74 plasmid, a renilla luciferase expressing vector under control of a constitutive 

promoter as an internal control. The activity of luciferases was measured using dual luciferase 

kit. (The cell culture, transfections, and luciferase assays were performed in the laboratory of 

Bernhard Schermer and Thomas Benzing (University Hospital Cologne). Measurements of 

luciferase activity showed a significant reduction for 4 of the 6 regions analyzed in the 

presence of FOXP3. Interestingly, all sites that showed reduced activity had more than one 

FOXP3 binding motif suggesting that cooperative or multiple binding of FOXP3 might be 

necessary to functionally alter gene expression. Next, the specificity of the binding was 

assessed by mutating FOXP3 binding sites. The luciferase assays were repeated under the 

same conditions that had been described above. The luciferase activity was rescued upon 

mutation of these sites which confirmed the specificity of FOXP3 binding to the SATB1 locus 

(Fig. 21).  

Taken together, these reporter assays could establish a functional link between FOXP3 

expression and transcriptional control of the SATB1 locus, supporting the repressive activity 

of FOXP3 on the SATB1 locus at the functional level.  

In summary, the data generated by loss and gain of function experiments, ChIP tiling arrays, 

ChIP qRT-PCR, filter binding, and luciferase assays provided strong evidence of the presence 

of a FOXP3-SATB1 regulatory axis, in which FOXP3 suppresses SATB1 gene expression. 
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Figure 21. Direct suppression of SATB1 mRNA transcription by FOXP3.  

Luciferase reporter assays comparing wildtype to mutated FOXP3 binding regions (mean±s.d.; * 

p<0.05; n=3). FOXP3 binding was assessed by transfecting a reporter construct containing the 

potential FOXP3 binding region in cells expressing FOXP3 in comparison to an empty control. 

Constructs with mutated motifs were used to demonstrate specificity. 

5.8 Posttranscriptional regulation of SATB1 by FOXP3 dependent microRNAs 

5.8.1 Identification of Treg cell distinctive miRNAs 

miRNAs regulate gene expression post-transcriptionally by forming imperfect base pairing 

with sequences within the 3` untranslated region (3`UTR) of genes to prevent protein 

accumulation by repressing translation or by inducing mRNA degradation [129, 255]. 

miRNAs have been reported as important players shaping the Treg-cell phenotype and function 

[130, 243, 256-258]. In order to explore miRNA-dependent regulation of SATB1 expression 

in Treg cells, miRNA profiling was performed in Treg and Tconv cells by Dr. Marc Beyer using 

whole miRNA transcriptome arrays. miRNA expression analysis revealed that Treg and Tconv 

cells harbor a distinctive miRNA signature (Fig.22). Next, we wanted to identify Treg-cell 

specific miRNAs targeting the 3´UTR of SATB1. Using the miRNA expression data as well 

as bioinformatic in silico analysis, we identified miR-155, miR-21, miR-18a, miR-7, and 

miR-34 as potential cadidates binding to the SATB1 3`UTR (Fig. 22, a). To validate the 

preferential expression of these miRNAs in Treg cells, we assessed their expression in Treg and 

Tconv cells using miRNA-specific qRT-PCR. In fact, the predicted miRNAs showed an 

increase of 4 to 10 fold in Treg compared with Tconv cells (Fig. 23, b).  

The increased expression of miR-155, miR-21, miR-18a, miR-7, and miR-34 in Treg cells in 

addition to their predicted binding to the 3´UTR of SATB1 region suggests that the high 
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prevalence of these miRNAs in Treg cells might contribute to the regulation of SATB1 

expression.  

 

 
Figure 22. Treg cells show a distinct miRNA 

profile. 

All RNAs were extracted and purified from freshly 

isolated human Treg and Tconv cells.  

Heatmap displaying expression of 46 miRNAs 

differentially expressed in Treg cells and Tconv 

cells. Average expression signals were 

standardized using Z score transformation. 
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Figure 23. Identification of miRNAs potentially targeting SATB1 in Treg cells.  

(a) Representation of the human genomic SATB1 3′ UTR and the conserved miRNA binding sites. (b) 

Quantification of differentially expressed miRNAs in Tconv and Treg cells by qRT-PCR for miR-155, 

miR-21, miR-7, miR-34a, and miR-18a in human Treg and Tconv cells (mean±s.d. n=5; * p<0.05). 

5.8.2 FOXP3 binds to the genomic loci of the identified miRNAs 

Previous studies have shown that FOXP3 drives several miRNAs expression such as miR-

155, miR-146a and miR-21 [259, 260]. Genome wide FOXP3 ChIP tiling array data provided 

by the group of Simon Barry was analyzed by Dr. Marc Beyer in order to identify FOXP3 

target miRNAs. FOXP3 binding peaks were indentified in close proximity to the sequences 

encoding miR-155, miR-21, and miR-7 suggesting that FOXP3 might regulate expression of 

these miRNA. Afterwards, binding of FOXP3 was validated by ChIP-qRT-PCR for all three 

loci (Fig. 24, a and b). These data supported that FOXP3 induces miRNA that can potentially 

target the 3´UTR of SATB1 and thereby regulate SATB1 expression. 
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Figure 24. FOXP3 binds to genomic loci encoding for miRNAs.  

 (a) FOXP3 ChIP tiling array data for miR-155, miR-21, and miR-7. (b) Confirmation of FOXP3 binding 

to the miR-155, miR-21, and miR-7 loci by ChIP-qRT-PCR. Quantitative RT-PCR was performed using 

primer sets corresponding to the marked regions. Relative enrichment of FOXP3 Chip over input 

normalized to IgG was calculated. The AFM locus was used as a negative control. 

5.8.3 FOXP3 overexpression in CD4
+
 T-cells induces Treg-cell associated miRNAs  

To investigate whether expression of the aforementioned miRNAs is FOXP3 dependent, 

FOXP3 was overexpressed in Treg-cell depleted naïve CD4
+
T-cells as described above (in the 

lab of James Riley, Perelman School of Medicine, University of Pennsylvania). The 

expression of individual miRNA (miR-155, miR-21, miR-18a, miR-7, and miR-34) was 

quantified using qRT-PCR. This analysis revealed that enforced FOXP3 expression in naïve 

CD4
+
T-cells resulted in an enrichment of these Treg-cell associated miRNAs (Fig. 25, a).  

Next, to further corroborate the feed-forward loop between FOXP3 expression and the 

expression of these miRNA, we performed siRNA mediated knockdown of FOXP3 in human 

Treg cells and assessed miRNA expression in these cells. Remarkably, the loss of FOXP3 

function resulted in the downregulation of the expression of these miRNAs in human Treg 

cells in comparison to control siRNA treated Treg cells (Fig. 25, b).  

In conclusion, FOXP3 gain and loss of function experiments cleary showed that FOXP3 

induces Treg-cell associated miRNAs as an important part of its regulatory program.  
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Figure 25. Expression of miRNAs is dependent on FOXP3.  

(a,b) To assess whether FOXP3 is responsible for the increased expression of miR-155, miR-21a, 

miR-7, miR-34a, and miR-18a, expression of these miRNAs was assessed by qRT-PCR. (a) Tconv 

cells were transduced with lentivirus containing the full length human FOXP3 cDNA and assessed 

adter sorting on FOXP3-expressing cells. (b) SiRNA-mediated knockdown of FOXP3 was performed 

in isolated human Treg cells and miRNA expression was analyzed after stimulation for 48 hours with 

CD3 and IL-2. Data are representative of 3 independent experiments (mean and s.d.), with cells 

derived from different donors.  

5.8.4 Treg cell-associated miRNAs regulate SATB1 expression in Treg cells 

As shown above, SATB1 is a direct target of FOXP3. Moreover, several FOXP3-driven 

miRNAs potentially target the 3´UTR of SATB1. To address whether expression of FOXP3-

induced miRNA can functionally regulate transcription of SATB1, luciferase reporter assays 

were performed. The 3`UTR sequence of SATB1 was cloned into a reporter plasmid 

downstream of the renilla luciferase. Transfection of synthetic miRNAs (miR-155, miR-21, 

miR-18a, miR-7, and miR-34) together with the reporter plasmid harbouring the 3`UTR 

sequence of SATB1 resulted in a significant inhibition of luciferase activity (Figure 25, a). 

(All transfections and luciferase assays were performed in the laboratory of Bernhard 

Schermer and Thomas Benzing, University Hospital Cologne). This inhibition of transcription 

suggested that these miRNAs are potential inhibitors of SATB1 expression in Treg cells. To 

further support the specific impact of these miRNA, the binding sites for these miRNAs 

within the 3´UTR of SATB1 were mutated and luciferase activities were assessed under the 
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same conditions. Mutation of the seed sequences of the binding sites restored luciferase 

activity (Fig. 26, a) suggesting the involvement of FOXP3-dependent miRNAs in the 

repression of SATB1 expression.  

 

 

Figure 26. SATB1 is repressed by miRNAs in Treg cells.  

(a) Luciferase reporter assays comparing the wildtype 3’ UTR of SATB1 to a 3’ UTR containing 

mutated miRNA-binding sites (mean±s.d.; * p<0.05, n=3). Functional miRNA binding was assessed 

by transfecting either a reporter construct containing the WT or the mutated SATB1 3′ UTR in cells 

transfected with miRNA mimics. (b) Western blot of SATB1 in sorted Treg cells from mice with a Treg 

cell-specific complete loss of Dicer (Dicer
fl/fl

) in comparison to heterozygous DICER
wt/fl 

Treg cells. 

We could observe that inhibition of a single miRNA in human Treg cells did not exert a major 

inhibitory effect on SATB1 expression. This finding suggested that several miRNAs might act 

synergistically at the locus of SATB1 and that expression of several miRNA might be 

required to suppress SATB1 gene expression. To study the cooperative effect of multiple 

miRNAs on the expression of SATB1, Treg cells from conditional Dicer knock-out mice 

(devoid of functional miRNAs in Treg cells) or heterozygous Dicer 
wt/fl 

mice were isolated and 

assessed by immunobloting for SATB1 in the laboratory of Jeffrey Bluestone (University of 

California, San Francisco, California, USA). Treg cells deficient in Dicer expression showed 

elevated levels of SATB1 protein compared to Dicer expressing Treg cells. This result 
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supported that miRNAs are important for the regulation of SATB1 expression in Treg cells 

(Fig. 26, b).  

Taken together, these experiments showed that the expression of SATB1 is regulated at the 

post-transcriptional level by FOXP3 via FOXP3-induced miRNAs. 

5.9 Epigenetic control of SATB1 

Besides gene regulation by direct binding and post-transcriptional mechanisms, epigenetic 

regulation constitutes an additional layer of how gene expression can be modulated. Both 

methylation of CpG islands within the upstream promoter or enhancer elements as well as 

permissive or repressive histone modifications have been described to modulate gene 

accessibility enhancing or repressing gene transcription. 

5.9.1 Methylation status of CpG islands at the SATB1 locus in Treg cells is similar to Tconv 

cells 

DNA methylation is involved in the regulation of many cellular processes including X-

chromosome inactivation, genomic imprinting, and transcription. DNA methylation involves 

the covalent modification of the fifth carbon in cytosine residues of CG dinucleotides. CpG 

islands are stretches of DNA rich in CG dinucleotides that occur near the transcription start 

sites of approximately 50% of all mammalian genes [140, 261]. 

CpG islands near the SATB1 promoter have been indentified via analysis of the distribution 

of 5-methylcytosine at the SATB1 locus by Dr. Marc Beyer. This approach resulted in the 

prediction of three CpG-rich sites upstream of exon 1 at the SATB1 locus in CD4
+
 T-cells 

(Fig. 27, a). To explore the contribution of CpG methylation in the control of SATB1 

expression, bisulphate sequencing of human Treg and Tconv cells was performed by the group 

of Andreas Waha (Neuropathology Institute, University Hospital Bonn). In brief, human 

CD4
+
 Tcells were isolated, and sorted into Treg and Tconv cells. Genomic DNA was isolated 

from both cell populations and subjected to bisulphate sequencing. This experimental 

approach relies on the conversion of only unmethylated cytosine to uracil mediated by 

bisulfite treatment. Uracil residues are subsequently converted into thymidines upon PCR 

amplification. 

Bisulphate sequencing analysis showed no significant differences in methylation between Treg 

and conventional CD4
+
 T-cells as CpG islands are almost completely demethylated in both 
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cells populations as indicated by the yellow color code (Fig. 27, a). Conversely, as a positive 

control a well described CpG island within the promoter of the human FOXP3 locus showed 

differential methylation between Treg and Tconv cells with heavy methylation in T conv cells; 

while Treg cells showed a largely demethylated CpG island (Fig. 27, b). 

Taken together these data indicate that CpG methylation is similar in Treg and Tconv cells 

supporting a model where SATB1 expression in Treg cells is repressed by reversible 

mechanisms allowing for a possible induction of SATB1 expression which would be 

prohibited by methylation of DNA bases. 

 

Figure 27. No difference in DNA methylation of the CpG islands at the human SATB1 in freshly 

isolated Treg cells and Tconv cells.  

(a) DNA methylation of the three predicted CpG-islands in the genomic region of SATB1 in Treg cells 

and Tconv cells.Treg cells Each box represents an individual CpG motif after normalization and 

quantification of methylation signals from sequencing data by calculating ratios of T and C signals at 

CpG sites. The methylation status of individual CpG motifs is color coded according to the degree of 

methylation at that site. The color code ranges from yellow (0% methylation) to blue (100% 

methylation) according to the color scale on the right. Data are representative of three independent 

experiments (mean) with cells derived from different donors. (b) As a positive control DNA 

methylation of a described CpG-island within the human FOXP3 promoter was assessed in Treg cells 

and Tconv cells. Treg cells Data are representative of three independent experiments (mean) with cells 

derived from different donors. 
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5.9.2 Enrichment of non-permissive histone modifications at the SATB1 locus in human 

Treg cells 

The covalent modification of nucleosomal histones has emerged as an important determinant 

of chromatin structure and gene activity. The nature, position and degree of modification 

correlates with the level of transcription and modifications are largely restricted to transcribed 

regions, suggesting that their regulation is tightly linked to polymerase activity [262, 263].  

To investigate histone modifications at the genomic SATB1 locus and whether these histone 

marks correlate with its differential expression in Treg and Tconv cells, ChIP for several histone 

modifications with subsequent qRT-PCR was performed. Briefly, expanded human Treg and 

Tconv cells were lysed and treated with micrococcal nuclease (MNase) to generate 

mononucleosomes and dinucleosomes. Afterwards, ChIP was performed by Wolfgang Krebs 

by using antibodies against trimethylation of histone H3 at Lysine residue 4 (H3K4me3), 

acetylation of histone H4 (H4Ac) and trimethylation of histone H3 at Lysine ridue 27 

(H3K27me3) as well as the isotype control antibodies. After ChIP, DNA was isolated and 

qRT-PCR performed with primers every 1-2 kb within the upstream and promoter region of 

SATB1. 

Consistent with the SATB1 expression data, we observed an enrichment of the permissive 

histone modifications H3K4me3 and H4Ac in Tconv cells (Fig. 28, a and b); whereas the 

repressive mark H3K4me27 was enriched in Treg cells (Fig. 28, c). 
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Figure 28. Differences in epigenetic status contribute to the differential expression of SATB1 

in human Treg cells. 

 Freshly isolated human CD4+ T-cells were stained with antibodies against CD4, CD25, and CD127 

and sorted into Treg cellsCD4
+
CD25

+
CD127

lo
 Treg and CD4

+
CD25

-
CD127

hi
 Tconv cells. The sorted 

cells were expanded with Treg expander beads for 2-3 weeks. 10
7
 cells were used for ChIP 

experiment. (a-c) ChIP analysis of human expanded Treg cellsand Tconv cells with antibodies specific 

for the permissive histone modifications (a) H3K4me3 and (b) H4Ac and (c) the repressive histone 

modification H3K27me3 and PCR primers specific for the genomic SATB1 locus. Relative enrichment 

of histone ChIP over input normalized to IgG was calculated. *P < 0.05 (Student’s t-test). Data are 

representative of three independent experiments (mean and s.d.) with cells derived from different 

donors. 

Recently an elegant study has explored the genome-wide distribution of several histone 

modifications of different murine CD4
+
 T cell-lineages and correlated these histone 

landscapes with the corresponding transcriptional profiles [264]. These data were reanalyzed 

by Dr. Marc Beyer to explore histone methylation at the SATB1 locus in different murine 

CD4
+
 T-helper cell lineages. Analysis of histone methylations showed that the repressive 

methylation mark H3K27me3 was enriched in Treg cells at the genomic SATB1 locus which 
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correlates with the expression pattern of SATB1 in this cell lineage. On the contrary, the 

SATB1 locus was enriched for permissive H3K4me3 mainly in the helper  CD4
+
 T cell 

lineages (Th1, Th2, Th17) (Fig. 29).  

Taken together, the human as well as the murine data suggest that histone modifications can 

modulate the expression of SATB1 in Treg and Tconv cells. 

 

 

 

Figure 29 . Histone methylation at the 

murine SATB1 gene locus correlates 

with its expression in different CD4
+
T-

cell subpopulations.  

Recently published data on genome-wide 

histone methylation were reanalyzed for 

SATB1 expression and histone 

methylation in murine naive T-cells, Teff 

(Th1, Th2, resp. Th17), iTreg and nTreg 

cells [265]. (a) Expression of SATB1 as 

assessed by microarray analysis. (b) and 

(c) ChIP-sequencing data were re-

analyzed for the SATB1 locus. , 

Cumulative data for trimethylation of 

H3K4 (left) and di- and trimethylation of 

H3K27 (right) in Tnaive, Th1, Th2, Th17. 

iTreg, and nTreg cells (ND= not detectable), 

Analysis of trimethylation islands (gray: 

H3K4, black: H3K27) mapped to the 

genomic SATB1 locus. 
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5.10 SATB1 overexpression in Treg cells induces transcriptional profiles of Teff cells 

while maintaining the Treg-cell program 

As outlined above, several lines of evidence have linked SATB1 to effector function in T-

cells e.g. the expression of Th1/Th2 cytokine genes. Moreover, we could show that SATB1 is 

tightly controled at several levels in Treg cells. To evaluate the impact of high SATB1 

expression on the transcriptional profile of Treg cells, SATB1 was overexpressed in human 

Treg cells by lentiviral gene transfer in the laboratory of James Riley. In brief, the coding 

sequence of SATB1 was cloned into a lentiviral expression plasmid downstream of a DsRED 

reporter gene and an adjacent 2A petide sequence allowing for the joint expression of both 

genes. Following virus production, human Treg cells were transduced with either the control or 

the SATB1 encoding virus. DsRED-expressing cells were sorted in the laboratory of James 

Riley and used for subsequent analysis of the transcriptome of transduced cells. For this 

analysis, RNA was isolated from lysed cells and cleaned. Next, the purified RNAs were used 

for the synthesis of cRNA. Then cRNAs were labeled and hybridized to IlluminaV3 bead 

chips. After scanning and data acquisition, analysis was performed by Dr. Marc Beyer. 

Remarkably, analysis of the transcriptome of Treg cells overexpressing SATB1 showed a 

distinct expression profile. ANOVA analysis (FC >2, p-value <0.05) provided a list of around 

120 differentially expressed genes in Treg cells overexpressing SATB1. The expression of 100 

genes was increased in Treg cells overexpressing SATB1 in comparison to control Treg cells, 

whereas only 20 genes showed a decrease in expression in SATB1-overexpressing Treg cells. 

Expanding the analysis of these differentially expressed genes to data sets previously 

established in the laboratory revealed that 20% of the genes were associated with elevated 

expression in Tconv cells (in comparison to Treg cells), 29% of the differentially expressed 

genes were primarily linked to T-cell activation, and 16% were classified as common T-cell 

genes. The remaining genes (35%) showed no association with T-cell function or lineage and 

were classified as SATB1-induced (Fig. 30, a and b). Next, using precompiled lists of genes 

previously associated with Teff cell differentiation, we could establish that SATB1 

overexpression in Treg cells induces transcriptional programs of Teff cells (Fig. 30, c). 

This observation raised a question whether overexpression of SATB1 resulted in 

reprogramming of Treg cells into Teff cells or this newly acquired program is superimposed 

onto the transcriptional Treg cell program. We could demonstrate, that the majority of the Treg 

cell related genes were unchanged in Treg cells upon overexpression of SATB1 (Fig. 30, d).  
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Since polyclonal human Treg cells were used for this analysis, it is not surprising that the three 

major T-cell differentiation programs were simultaneously represented.  

In summary, overexpression of SATB1 in Treg cells resulted in a considerable reprograming of 

the Treg cell transcriptome towards a Teff cell associated signature. Therefore, SATB1 

repression in Treg cells might be necessary to inhibit the acquisition of a Teff cell programs. 
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Figure 30. Transcriptional Teff cell programs are induced in SATB1 overexpressing Treg cells.  

(a) Up- and down-regulated genes in Treg cells lentivirally transduced with SATB1 or control vector 

after 16 hours stimulation with CD3/CD28-coated beads. Data were z-score normalized. (b) Cross 

annotation analysis using 4 classes: Genes associated with Tconv but not Treg cells (yellow), with T cell 

activation (green), common T-cell genes (orange), and SATB1-induced genes (black). (c) Visualization 

of gene expression levels of genes previously associated with Th1, Th2, or Th17 differentiation; data 

were z-score normalized. p-values for T-helper associated genes determined by x² test in comparison 

to the complete data set (= Th specific gene enrichment) were p = 3.236e-06 (Th1), p = 9.017e-15 

(Th2), resp. p = 1.157e-06 (Th17). (d) Changes in genes associated with the human Treg cells 

signature in Treg cells lentivirally transduced with SATB1 in comparison to control vector transduced 

Treg cells. The mean log2 fold-changes of the comparison between Treg and Tconv cells (red dots) and 

SATB1 to control-transduced Treg cells (blue dots) were plotted and both comparisons were ranked by 

fold change in the Treg vs. Tconv cell comparison. 
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5.11 SATB1 repression does not lead to FOXP3 induction in peripheral naïve CD4
+
 T-

cells 

After establishing that FOXP3 regulates SATB1 expression on multiple levels, we asked 

whether SATB1 in turn would also regulate FOXP3 expression. To address this question, 

SATB1 was silenced by siRNA mediated knockdown in naïve CD4
+
 T-cells. These cells were 

activated with aAPC for 48 hours in the presence and absence of TGF-β and IL-2. While 

aAPC and particularly iTreg-cell inducing conditions resulted in an induction of FOXP3 

protein expression, there were no differences in the induction of FOXP3 between control and 

SATB1 deficient cells (Fig. 31, a and b).  

As a next step the expression of Treg cell associated genes was assessed, CD4
+
 Tconv cells were 

isolated, electroporated with SATB1 or control siRNA, and stimulated with CD3/CD28-

coated beads for 4 days. mRNA expression of several Treg-cell associated genes like FOXP3, 

GITR, CTLA, CD25, CD39, CD73, and PDE3B was assessed in these cells by qRT-PCR. In 

agreement with FOXP3 protein expression data, no significant differences in the expression of 

Treg-cell associated genes between SATB1 silenced or control Tconv cells were observed 

(Fig.31, c). In conclusion these observations do not support the direct involvement of SATB1 

in FOXP3 induction in naïve CD4
+
 T-cells. 
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Figure 31. SATB1 silencing does not enhance the induction of Treg-cell Treg cells associated 

genes in human CD4
+
 Tconv cells.  

(a,b) To assess whether silencing of SATB1 induces FOXP3, we isolated naïve Tconv cells, performed 

siRNA-mediated knockdown of SATB1, rested them (resting), stimulated them with CD3/CD28 coated 

beads (stimulated) or cultivated them in the presence of CD3/CD28 coated beads, TGF-α and IL-2 to 

induce iTreg cells (iTreg cells) and analyzed FOXP3 expression by flow cytometry (mean±s.d., n=4; * 

p<0.05). (c) To assess whether silencing of SATB1 induces other genes associated with the Treg-cell 

phenotype, we isolated Tconv cells, performed siRNA-mediated knockdown of SATB1, stimulated them 

with CD3/CD28 coated beads and analyzed mRNA expression for a set of known Treg-cell marker 

genes (mean±s.d., n=3; * p<0.05) 

5.12 Functional analysis of the consequences of sustained high SATB1 expression in 

Treg cells 

5.12.1 SATB1 overexpression in human nTreg cells results in a loss of suppressive activity 

and a gain in the production of cytokines 

We have shown the inverse correlation between FOXP3 and SATB1 expression and the 

global impact of SATB1 overexpression on the transcriptional profile of Treg cells. To address 

the functional significance of SATB1 overexpression on the suppressive activity of human 

Treg cells, the suppressive activity of control Treg cells and Treg cells overexpressing SATB1 
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cells was evaluated in vitro in the laboratory of James Riley. Briefly, a DsRED-2A-SATB1 

expression cassette was cloned into the pELNS lentiviral vector. Human CD4
+
CD25

+
 Treg 

cells were isolated and stimulated with CD3/CD28-coated beads. The stimulated human Treg 

cells were transduced with either the SATB1 encoding lentivirus or control lentivirus. Treg 

cells with high SATB1 expression level were sorted according to the expression of the 

DsRED reporter. Transduced Treg cells retained high expression of FOXP3 and showed a 

significant induction of SATB1 expression compared to control-transduced Treg cells (Fig. 32, 

a-c). 

  

 
Figure 32. Overexpression of SATB1 in primary human Treg cells.  

(a,b) Relative FOXP3 (a) and SATB1 (b) mRNA expression in DsRED-transduced Treg cells (Treg cells 

(Ctrl)) resp. SATB1-transduced Treg cells (Treg cells (SATB1)) was assessed by qRT-PCR and 

compared with freshly isolated Tconv. *P < 0.05 (Student’s t-test). Data are representative of three 

independent experiments (mean and s.d.) with cells derived from different donors. (c) Relative 

SATB1 expression was determined by flow cytometry, assessed and presented as in a. * p < 0.05 

(Student’s t-test). Data are representative of three independent experiments (mean and s.d.) with 

cells derived from different donors 

The suppressive activity of Treg cells was assessed by coculturing allogeneic CFSE-labeled-

PBMC Treg cells transduced with SATB1 or control vector at different dilutions in the 

laboratory of Jimes Riley. The cultured cells were stimulated and incubated for 4 days. The 

efficiency of Treg cells to restrain effector cell expansion was monitored by analysis of CFSE 

dilution in the dividing CD8
+
 T-cells. Flow cytometric analysis revealed that Treg cells 

overexpressing SATB1 had a significantly reduced capability to suppress responder cells in 

vitro in comparison to control Treg cells which showed a potent suppressive activity (Fig.33, 

a). The role of SATB1 in the coordinating expression of proinflammatory cytokines has been 

reported at least in Th2 [211]. We have shown also that silencing of SATB1 was associated 

with low levels of cytokine production. To corroborate the role of SATB1 in acquiring de 

novo expression of proinflammatory cytokines in Treg cells, we quantified the cytokines in Treg 
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cells after overexpression of SATB1. We could observe that the impairment in the supressive 

function of Treg cells overexpressing SATB1 was accompanied with the production of 

proinflammatory cytokines (IL-4, IL-17 and INF-γ) (Fig.33, b-e).  

 

 

Figure 33. SATB1 expression in Treg cells reprograms Treg cells into Teff cells.  

(a) Analysis of suppressive function of human Treg cells lentivirally transduced with SATB1 or control 

vector (DsRED) cultured for 4 d together with CFSE-labeled allogeneic PBMC at a 1:1 ratio in vitro; 

after stimulation of cultures, CFSE dilution of human CD8
+
 T-cells was assessed by flow cytometry. 

Left: representative experiment; right: mean±s.d., n=3; * p<0.05.(b) Cytometric bead array for IL-4 

and IFN-γ secretion of human Treg cells lentivirally transduced with SATB1 or control vector assessed 

4 and 16 hours after stimulation with CD3/CD28-coated beads (mean±s.d.; * p<0.05). qRT-PCR 

analysis of (c) IL-5, (d) IFN-γ, and (e) IL-17A expression in Tconv cells activated for 16 hrs with 

CD3/CD28 coated beads as well as human Treg cells lentivirally transduced with SATB1 or control 

vector (DsRED) (mean±s.d., n=3, * p<0.05). 

Collectively, overexpression of SATB1 in Treg cells was associated with an attenuation of 

suppressive function and acquisition of proinflammatory properties. This evidence suggests 

that SATB1 repression is critical to maintain the functional integrity of Treg cells. 
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5.12.2 Murine SATB1-
 
overexpressingTreg cells exhibit impaired suppressive activity with 

inflammatory cytokine production in vitro 

We have clearly shown, in vitro, that SATB1-overexpressing human Treg cells had impaired 

suppressive function accompanied with the production of proinflammatory cytokines. To 

corroborate these findings in murine DEREG Treg cells, the full length SATB1 coding 

sequence followed by an IRES-driven reporter gene (Thy1.1) was cloned into a lentiviral 

expression plasmid. 

Treg cells from DEREG mice were isolated based on FOXP3 promoter driven GFP expression. 

The sorted Treg cells were expanded and lentivirally transduced with pLTVM-SATB1-IRES-

Thy1.1 and the lentiviral control vector. After further expansion, Thy1.1-expressing GFP-

positive Treg cells were sorted and used for the indicated functional assays. Initially, SATB1 

expression was analyzed at protein and RNA levels in Thy1.1
+
 Treg cells using intracellular 

staining and qRT-PCR. SATB1 expression in transduced Treg cells showed an increase of 4-6 

fold relative to control transduced Treg cells without affecting the expression level of FOXP3 

(Fig. 34, a and b).  

The next question was, whether the overexpression of SATB1 in Treg cells would dampen the 

suppressive function of these cells. To evaluate Treg-cell function suppression assays with 

SATB1-overexpressing Treg cells were performed. Briefly, CD4
+
 T cells were isolated from 

mouse spleen and were further stimulated with CD3/CD28-coated beads and cocultured with 

Treg cells at various dilutions. Treg cells overexpressing SATB1 showed a severe impairment 

in their ability to control the proliferation of Teff cells (Fig. 34, c). In line with the human data, 

overexpression of SATB1 in murine Treg cells mediated the production of proinflammatory 

cytokines (IL-5 and IFN-γ) (Fig. 34, d).  

In conclusion, overexpression of SATB1 in murine Treg cells negatively interfered with their 

suppressive function and reprogramed their phenotype towards a Teff-cell like program.  
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Figure 34. SATB1 overexpression in murine Treg cells impairs their suppressive function and 

results in the production of proinflammatory cytokines.  

(a) Transduced Treg cells were sorted based on GFP as well as Thy1.1 expression as exemplified here 

for SATB1-Thy1.1 transduced Treg cells from a representative experiment. (b) Relative expression of 

SATB1, (c) Analysis of the suppressive function of murine Treg cells lentivirally transduced with SATB1 

or control vector  cultured for 4 d together with eFluor 670-labeled CD4
+
 T-cells at the indicated ratio in 

vitro; after stimulation of cultures, eFluor 670 dilution of CD4
+
 T-cells was assessed by flow cytometry. 

Mean±s.e.m. Data are representative of 2-3 independent experiments (mean and s.e.m. of triplicate 

cultures). (d) Relative expression of IL-5 (left), and IFN-γ (right). mRNA expression in SATB1-

overexpressing SATB1-Thy1.1-transduced (expTreg cells (SATB1)), SATB1-negative SATB1-Thy1.1-

transduced (expTreg cells (SATB1)), control-transduced (expTreg cells (Ctrl)), or non-transduced 

expanded Treg cells (expTreg cells).  
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5.12.3 SATB1-overexpressing Treg cells fail to prevent colitis in RAG2
-/-

 mice in vivo 

It has been shown that the adoptive transfer of CD4
+
CD45RB

high
 naïve T-cells into severe 

combined immunodeficiency (SCID) mice induced wasting disease and colitis which was 

ameliorated by the co-transfer of CD4
+
CD45RB

low
 T-cells [266, 267]. Similarly, transfer of 

Treg cells into RAG2
-/-

 mice challenged with naïve T-cells can rescue these animals from the 

development of colitis [268] . 

During this thesis evidence of the deleterious effect of SATB1 overexpression on Treg-cell 

phenotype and function has been demonstrated. To further investigate whether these findings 

can be translated to an in vivo situation, the adoptive transfer colitis model was used. In brief, 

RAG2
-/-

 mice were reconstituted with CD4
+
CD45RB

high
 naïve T-cells either alone as a 

positive control, or in combination either with control vector transduced Treg cells or SATB1 

overexpressing Treg cells. The onset of colitis was monitored by measuring the animals’ 

weight. 

RAG2
-/-

 mice adoptively transferred with CD4
+
CD45RB

high
 naïve T-cells and Treg cells 

overexpressing SATB1 showed symptoms of colitis like weight loss and bloody diarrhea 

around 8 weeks after transfer, whereas mice that coreceived control Treg cells did show only 

mild or no signs of disease (Fig. 35, a). 

To confirm and characterize colitis development the mice were sacrified and the colons were 

inspected macroscopically and microscopically. In mice reconstituted with CD4
+
CD45RB

high
 

naïve T-cells alone or in combination with Treg cells overexpressing SATB1, gross colon 

apprearance was consistent with colitis in terms of contracted coeca, opaque and swellen 

proximal colon. Furthermore, colon histological sections (performed in the laboratory of 

Claudia Wickenhauser (University Hospital Leipzig) from diseased mice showed leukocyte 

infiltration, depletion of goblet cells, epithelial cell hyperplasia and ulceration corresponding 

to an average colitis score of 8. On the opposite, mice transplanted with control-transduced 

Treg cells showed normal colon structure and histology (Fig. 35, b and c).  

This evidence suggested that SATB1 overexpresing Treg cells are unable to control 

CD4
+
CD45RB

high
 naïve T-cells leading to colitis. However, it is possible to obtain similar 

results if the trafficking of Treg cells to secondary lymphoid organs failed or survival of Treg 

cells in vivo is impaired. To determine whether the differences in pathology between animals 

receiving Treg cells overexpressing SATB1 and the control-transduced Treg cells were due to 
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variations in T-cell reconstitution in vivo, the absolute CD4
+
 T cell numbers in the spleen, 

mesenteric, and peripheral lymph nodes were determined. Flow cytometric analysis revealed 

that CD4
+
 T-cells proliferated significantly at these sites in mice that had received only 

CD4
+
CD45RB

high
 naïve T-cells or in combination with Treg cells overexpressing SATB1 (Fig. 

35, d); whereas the control Treg cells inhibited the inflammatory expansion of 

CD4
+
CD45RB

high
 naïve T-cells and prevented induction of colitits. (Fig. 35, d). To exclude 

that the decreased survival of Treg cells was responsible for the induction of colitis, we also 

assessed Treg cell numbers. No differences existed in numbers of Treg cells between animals 

receiving SATB1-overexpressing or control-transduced Treg cells was observed (Fig. 35; e). 

Taken together, this evidence strongly indicated that FOXP3-mediated SATB1 repression is 

relevant to maintain Treg-cell function in vivo. The concordant observations obtained in mice 

and humans suggest that FOXP3 repression of SATB1 expression by multiple layers of 

regulation is a conserved mechanism across species important to maintain Treg-cell lineage 

functionality and identity. 
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Figure 35. Ectopic SATB1 expression in Treg cells induces colitis in RAG2
-/-

 mice.  

(a) Body weight of RAG2
-/-

 recipients of naïve CD4
+
CD45RB

high
 T-cells transferred alone or together 

with control- or SATB1-transduced Treg cells, presented relative to initial body weight. Data are pooled 

from two independent experiments (average and s.d. of four to five recipient mice). (b) Hematoxylin 

and eosin staining of colon sections. Colons from mice that received naïve CD4
+
CD45RB

high
 T-cells 

only or together with SATB1-overexpressing Treg cells displayed infiltrates of inflammatory cells. In 

colons from mice that received naïve CD4
+
CD45RB

high
 T-cells and control Treg cells no inflammatory 

changes were evident. (c) Histology scores of sections of the colon at 8 weeks after cell transfer. (d) 

Recovery of Tconv cells from spleens, mesenteric, and peripheral lymph nodes. (e) Recovery of Treg 

cells from spleens, mesenteric, and peripheral lymph nodes. 
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6 Discussion 

Maintaining the proper function of the immune system requires complex and highly 

coordinated regulatory networks. This regulation begins in the thymus with the deletion of T-

cells and B cells; a process termed recessive tolerance and extends to the periphery with the 

egress of immune cells maintaining a state of unresponsiveness which can be transferred by a 

subset of cells from a tolerant donor into an immunocompetent host (dominant tolerance) 

[33]. The comprehension of dominant tolerance has been expanded with the identification and 

characterization of new immuno-regulatory cell subsets, in particular a subset of CD4
+
 T-cells 

constitutively expressing IL-2Rα (CD25) with a potent immunosuppressive function. This 

subpopulation is widely known as Treg cells and its identity has been further delineated by the 

expression of the transcription factor FOXP3 which regulates their phenotypic stability and 

functional integrity. Therefore, FOXP3 is recognized as a master regulator and lineage-

specific-modulator for Treg cells [269-273] .  

In this study, we have identified and characterized SATB1 (special AT-rich sequence-binding 

protein-1) as a novel effector molecule in the regulatory hub of Treg cells. We demonstrated 

that SATB1 is dominantly repressed in Treg cells and this low expression level is 

indispensable for the suppressor function of Treg cells. Therefore, the expression of SATB1 is 

tightly regulated through several mechanisms. FOXP3 represses SATB1 expression at 

transcriptional level via direct binding or indirectly at post-transcriptional level via FOXP3-

dependent miRNAs. In addition, post-translational repressive chromatin modifications 

constitute another layer of regulation. Functionally, we have demonstrated that sustained high 

SATB1 expression in Treg cells was at the cost of their regulatory program. SATB1 

overexpression reprograms the Treg-cell transcriptome and promotes the expression of Teff cell 

associated genes such as proinflammatory cytokines which consequently leads to impairment 

of suppresssive function in vitro and in vivo. 

6.1 SATB1 is differentially expressed in CD4
+
 T-cells 

SATB1 is a chromatin organizer and transcription factor essential for controlling a large 

number of genes involved in T-cell development and activation [209, 211, 223, 230]. We 

observed that SATB1 is differentially expressed between CD4
+
CD25

-
 Tconv cells and 

CD4
+
CD25

+
 Treg cells. Whereas it is significantly lower in human and murine Treg cells, it is 

highly expressed in Tconv cells. In addition, its expression is further augmented upon TCR 

ligation. Interestingly, stimulation-dependent induction of SATB1 was greatly blunted in Treg 
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cells. This is in agreement with a study that showed that SATB1 was among early genes were 

upregulated upon T cells stimulation [224]. Although Treg cells also are dependent on TCR 

activation for survival and function, it has been well reported that the signaling outcomes 

considerably differ between Treg and Tconv cells. This might explain reduced post-activation 

induction of SATB1 expression in Treg cells. As a matter of fact, it is well described that Treg 

cells show altered TCR signaling upon stimulation and this unique signaling is essential for 

their distinctive phenotype and function [274-279]. On biochemical level, several studies 

investigating TCR-mediated signaling in Treg cells showed a global reduction in TCR-

activated signaling pathways such as defects in calcium mobilization, Ras, Mitogen-activated 

protein kinase kinase (MEK1/2), as well as PI3K and Akt activation in comparison to Teff 

cells [278, 280-282]. However, until now the circuit that controls Teff cell program repression 

in Treg cells has not yet been thoroughly elucidated. Therefore, low expression of SATB1 and 

refractory to respond to antigenic stimulation in Treg cells makes SATB1 an attractive 

candidate to act as a molecular switch between T-cell effector and regulatory programs.  

The key role of SATB1 as a transcriptional regulator has previously been described in a 

SATB1 knock-out mouse. Mice lacking SATB1 showed an abnormal thymocyte 

development, mostly T-cell development was arrested at the double positive (DP) stage. 

Moreover, at the molecular level SATB1 knock-out mice showed derepression of 

approximately 2% of genes at inappropriate stages of T-cell development amongst them IL-

2R and IL-7R were ectopically transcribed in DP thymocytes [223]. In Teff cells, TCR 

ligation induces SATB1 expression which suggests its active role in shaping the effector 

program. Indeed, SATB1 involvement in Th2 lineage differentiation has been reported [215]. 

Moreover, its role in Th2 cytokine production was investigated in a Th2 clone. In this context, 

SATB1 acts as a platform that creates a higher chromatin loop structure that brings together 

the Th2 gene cluster and recruits specific transcription factors such as GATA3, STAT6 and c-

Maf [211]. This action enables the concerted transcription of Th2 cytokines. SATB1 was also 

shown to be induced in different T-helper cells upon activation and cytokine-mediated 

polarization [254, 283, 284].  

Functionally, in contrast to Teff cells, SATB1 is not upregulated in Treg cells even upon TCR 

ligation. One explanation for this could be that SATB1 could counteract the suppressive 

programs necessary for the Treg-cell phenotype, therefore a distinctive regulation in a Treg-cell 

specific manner is needed through active repression of SATB1 expression in Treg cells.  
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Alternatively, in Teff cells SATB1 is actively involved in T-helper cell activation, 

proliferation, and differentiation; hence it must be potentially upregulated in Teff cells. 

Furthermore, SATB1 expression could even include T helper-type specific regulation in 

which T-cell lineage specific transcription factors might modulate SATB1 expression induced 

by triggering events such as TCR activation and cytokines.   

6.2 SATB1 expression in Treg cells is under control of FOXP3 

Generally, cellular identity and functionality is under control of a complex regulatory 

program. The key players in this regulatory circuit are transcription factors. Many of these 

factors fulfill the definition of master regulator where a specific transcription factor is 

necessary and sufficient to induce a specific cell type. The concept of ''master transcription 

factors'' is applicable to several T-helper cell subsets [285]. Accumulating evidence has 

assigned FOXP3 as the master regulator in Treg cells. Not just non-functional FOXP3 is 

associated with the perturbation of immune homeostasis but also the level of its expression as 

expression of hypomorphic FOXP3 allele results in a marked impairment of Treg cell function 

and their production of IL-4 [286, 287]. Disease-causing mutations in FOXP3 are linked to 

the lethal autoimmunity, immunodysregulation, polyendocrinopathy, enteropathy, X-linked 

(IPEX) syndrome in humans and the scurfy phenotype in mice [141, 147, 288, 289]. In 

accordance with this concept, ectopic FOXP3 expression in CD4
+
CD25

-
 T-cells endowed 

them with a Treg cell-like phenotype at least in murine T-cells [51, 52, 253]. Our study has 

shown for the first time that multiple layers of regulation are involved in the repression of 

SATB1 expression in Treg cells. We have identified a key role for FOXP3 in keeping SATB1 

expression at basal levels. However, this does not rule out the potential of active involvement 

of other regulatory pathways in this process.  

Using gain- and loss-of-function we could establish that FOXP3 actively represses SATB1 

expression. Initially, we observed a low expression of SATB1 in the presence of FOXP3. This 

was further corroborated with confocal microscopy in thymocytes. In fact, FOXP3-mediated 

repression has also been described for several genes promoting Teff-cell function such as 

lineage specific cytokines like IFN-γ and transcription factors such as ROR-γt [290-292]. 

Strikingly, loss of function of FOXP3 in vitro via siRNA and miRNA against FOXP3 and in 

vivo in FOXP3 mutant scurfy mice rescued SATB1 expression even to higher levels than 

those observed in Tconv cells. In line with these findings, FOXP3 de novo expression in iTreg 

cells as well as its ectopic expression in Tconv cells resulted in SATB1 repression, 

corroborating the central role of FOXP3 in this regulatory circuit. Our evidence is in 
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agreement with other studies showing that overexpression of FOXP3 in Jurkat cells and 

human CD4
+
 T-cells favors induction of Treg-cell associated genes, defective activation 

properties, and reduced production of proinflammatory cytokines with acquisition of 

suppressive activity [293, 294]. Functionally, FOXP3 induction in conventional T-cells was 

sufficient to confer these cells with suppressor function. Furthermore the transfer of these 

FOXP3 expressing cells together with effector T-cells in RAG2-/- mice prevented wasting 

disease and development of colitis in RAG2
-/-

 mice [52]. 

These facts prompted us to further dissect the molecular mechanism of FOXP3-mediated 

SATB1 regulation. The direct involvement of FOXP3 in this regulation was demonstrated by 

the reduced expression of SATB1 in Tconv cells upon either enforced or de novo expression of 

FOXP3. Conversely, FOXP3 loss of function with either specific siRNA or miRNA in Treg 

cells was associated with restored SATB1 expression levels and production of 

proinflammatory cytokines. Supporting this observation, murine Treg cells from scurfy mice, 

where FOXP3 is non-functional, showed high expression levels of SATB1.  

In our study, we have shown that FOXP3 restrains SATB1 transcription in several ways, 

suggesting that these diverse mechanisms might synergize to control SATB1 transcription in 

an efficient manner. One of the important steps in this regulation cascade occurs at the 

transcription stage. Coding and noncoding genes contain promoter and enhancer sequences 

that are bound by transcription activators and repressors [295]. We have identified several 

FOXP3 binding sites in the genomic sequence of SATB1. Our ChIP-on-ChIP and filter 

retention data showed that FOXP3 binds specifically with high affinity to the genomic 

SATB1 locus. Furthermore, we have shown in reporter assays that the occupancy of FOXP3 

at the SATB1 locus is functional and substantially reduces the activity of the reporter gene.  

FOXP3-mediated repression of genes involved in T-cell activation and cytokine production is 

a key to maintain Treg-cell phenotype and function. Genome-wide analysis of FOXP3 binding 

genes have suggested that FOXP3 acts as a transcriptional repressor and activator and has 

identified a core set of around 700 genes that are targeted by FOXP3 via direct binding to 

their promoters [238, 296, 297]. Most of the downregulated genes upon FOXP3-induction are 

involved in T-cell activation and cytokine production and showed suppressed activation in 

stimulated FOXP3
+
 hybridoma cells [150]. Despite the great importance of NFAT and NF-κB 

in the induction of FOXP3 in the thymus, their proinflammatory activities have to be 

repressed by FOXP3 in mature Treg cells [156]. It is worth mentioning here that high cellular 
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level of NF-κB upon strong TCR activation antagonizes induction of FOXP3 in 

differentiating iTreg cells [298]. In fact, lineage commitment during T-cell differentiation is 

usually accompanied by suppression of the alternative fates that the precursor could have 

assumed. Such suppression is mainly achieved by cross-regulation among transcription 

factors at both transcriptional and post-transcriptional levels [299]. A model of cross-

regulation has been reported for the interaction between FOXP3 and RORγt which controls 

Th17-cell differentiation depending on the availability of TGF-β and particular metabolites 

and cytokines such as retinoic acid and IL-6 [300]. 

It is important to mention that the association of FOXP3 with other lineage-specific factors is 

not always antagonistic. It is well reported that Treg cells can be co-expressed T-bet, STAT3, 

and GATA3 which confers ability to adaptat to different microenvironments in trems of 

boosted survival, expansion, and function to maintain tissue homeostasis [301-304]. FOXP3 

may form complexes with these transcription factors in a manner that the capacity of these 

factors to induce effector cytokines is inhibited while the expression of other genes necessary 

to accommodate to new situations and adapt context dependent specialization, such as 

chemokine receptors, is preserved. To exemplify, the expression of Th1 transcription factor T-

bet in Treg cells promoted expression of CXCR3 on Treg cells with enhanced suppressive 

activity. Therefore, it facilitates accumulation of Treg cells to the sites of Th1 mediated 

inflammation [304]. Similarily, co-expression of GATA3 has been shown to endow Treg cells 

with ability to accumulate and suppress Th2 immune responses at the inflammed tissues 

[305]. This mechanism of cross-regulation has been nicely demonstrated for the interaction of 

FOXP3 with NFAT-1 [306]. NFAT-1 interaction with AP-1 prtotein complex is important for 

effector immune response. It has been shown that FOXP3 disrupts NFAT1-AP-1 nuclear 

complex formation and instead it cooperates with NFAT-1 in Treg cells. This cooperative 

association between FOXP3 and NFAT-1 divert the effector transcriptional program to 

regulatory program. Furthermore, NFAT-1-deficient Treg cells are functionally defective 

because FOXP3-NFAT cooperation is required for the induction of important functional 

molecules such as CD25 and CTLA-4 as well as inhibition of IL-2 production [307]. These 

critical functions of NFAT-1 in Treg cells might imply abundant expression of this gene under 

resting and stimulation conditions, however, NFAT expression was reported to remain 

constanty low in Treg relative to Tconv cells [308]. In this scenario, we would assume that the 

low expression of SATB1 might have a functional role for Treg cells by acting as a genome 
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organizer or exerting specific undescribed functions to maintain the balance between 

regulatory and inflammatory program which require further study. 

We have shown that FOXP3 regulates SATB1 expression via direct binding to the genomic 

SATB1 locus. However, its is possible that FOXP3 can act in an indirect manner via 

association with intermediary factors [171]. Recently, Eos-zinc-finger transcription factor has 

been described as a missing link in the FOXP3-dependent gene repression. Eos was shown to 

directly interact with FOXP3 and this interaction is necessary to suppress the expression of 

IL-2 as well as other genes in Treg cells. Eos recruits CtBP1 to the Eos–FOXP3 complex and 

this complex modulated the epigenetic status of the IL-2 promoter. siRNA-mediated 

knockdown of Eos resulted in a significant increase in permissive histone 3 lysine 4 

trimethylation (H3K4me3) and H3 and H4 acetylation levels at the IL-2 promoter in Treg cells. 

Furthermore, knockdown of either Eos or CtBP1 resulted in demethylation of genomic DNA 

at CpG dinucleotides in the IL-2 promoter. These epigenetic modifications observed in the 

absence of functional Eos resemble the epigenetic status of the IL-2 promoter in Teff cells 

[252]. We have assessed the transcriptional profile of T-cells after Eos silencing. To our 

interest, SATB1 was one of the prominent genes in the cluster that was significantly repressed 

in Treg cells and sharply upregulated upon Eos silencing. This observation supports our 

findings and suggests a possible FOXP3-Eos interaction in SATB1 repression.  

6.3 SATB1 expression is post-transcriptionally regulated by FOXP3-dependent 

miRNAs 

Post-transcriptional control of gene expression is an important layer of gene regulation 

excerted by microRNAs. MicroRNAs are a class of small non-coding RNAs implicated in the 

post-transcriptional regulation of gene expression, typically by base pairing to the 3´UTR  of 

target mRNAs to mediate repression of that target mRNA either by transcript destabilization, 

translational inhibition, or both [309]. There are several hundred known miRNAs with each of 

them potentially targeting multiple transcripts [310]. Therefore, it is likely that a substantial 

proportion of protein-coding transcripts are subject to miRNA-dependent regulation. The 

importance of miRNAs for the immune system was demonstrated in a pioneer study by 

specific conditional deletion of the Dicer allele in T cells at different development stages. 

Dicer deletion early in T-cell development induced by a Cre transgene driven by the lck 

promoter resulted in a sharp reduction of miRNAs at the double-positive stage and a 10-fold 

drop in the number of TCR-αβ thymocytes [129, 311]. Deletion of Dicer later in T cell 

development induced by a Cre transgene driven by the CD4 promoter resulted in moderately 
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reduced T-cell numbers [129, 312]. In general, Dicer
-/-

 T-cells exhibited decreased 

proliferative potential and increased propensity to apoptosis in response to activation [133]. 

The pivotal role of miRNA for the development and differentiation of Treg cells was illustrated 

by disruption of Dicer-dependent miRNAs at the double positive stage that resulted in a 50-

70% reduction in the frequency of FOXP3
+
 Treg cells. Depletion of miRNA within the Treg-

cell lineage resulted in loss of their suppressor capacity in vitro and fatal autoimmunity 

indistinguishable from that observed in Treg-cell–deficient mice [132, 243, 258]. Though The 

FOXP3-dependent induction of characteristic miRNAs has been described in several studies, 

the functional relevance of this finding remains largely elusive [129, 274]. The specific 

functions of individual miRNAs in the biology of Treg cells have been addressed in few 

studies suggesting that single miRNAs are involved in specific functions and can sustain a 

certain properties in Treg cells but unsurprisingly do not control the complete Treg-cell 

transcriptional program [259, 260]. miRNAs are like transcription factors also show cell-

lineage specific expression. This cell-type specific expression profile of miRNAs are largely 

goverened by conventional transcription factor-dependent transcriptional control mechanisms 

[313]. In our study we have identified a set of Treg-cell-associated miRNAs which are 

FOXP3-dependent. Ectopic expression of FOXP3 in non-Treg cells induced their expression 

and the opposite when FOXP3 was silenced; Treg cells lost this distinct profile of miRNAs.  

Our findings showed that several FOXP3-dependent miRNAs have an inhibitory effect on the 

expression of SATB1. In addition, we could demonstrate that silencing of individual miRNAs 

is not sufficient to significantly increase the expression of SATB1. However, Treg cells that 

are completely devoid of miRNAs showed a significant upregulation of SATB1. The 

observation that silencing of a single mRNAs is not sufficient to rescue SATB1 expression 

could be attributed to functional redundancy among closely related miRNA family members. 

In agreement with this notion, it has been reported that multiple sites, either for the same or 

different miRNAs, are required for effective repression, and when the sites are close to each 

other, they tend to act cooperatively [314]. Furthermore, the phenotypic properties controlled 

by miRNAs are less defined and it seems that miRNA govern a more restrained program 

compared to transcription factors. In addition, miRNA usage may be more biased towards 

controlling specific aspects of terminal differentiation of individual cell types. In support of 

this notion, miRNAs tend to have highly cell type-specific expression profiles, both during 

normal development and in specific disease states, such as cancer [313]. miRNA-155 

exemplifies this point as its deficiency in Treg cells induced no overt dysfunctional phenotype 
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under physiological conditions. However, it was critical in competitive enviroments such as 

inflammatory and lymphopenic conditions through heightened Treg cells responsiveness to IL-

2 by targeting SOCS1, a nagive regulator of IL2R signaling [259]. miR-146a is another 

example of the fine tuning of Treg cells function by miRNAs. It has been shown that it is 

essential for the ability of Treg cells to restrain IFN-γ-mediated pathogenic Th1 responses and 

associated inflammation. Interestingly, miRNA-146 stabilizes regulatory program by 

targeting excessive activation of STAT1, therefore, preventing deviation of activated Treg cells 

into IFN-γ-producing Th1-like cells [260]. 

6.4 The genomic SATB1 locus is a target of chromatin remodeling complexes 

Epigenetic modifications have recently been recognized as a key step in the control of gene 

expression since this process determines in great extent the accessibility of regulatory 

elements within target loci [261, 315-317]. DNA methylation is usually involved in gene 

silencing by blocking access of transcription factors, and forming compact, inactive chromatin 

through recruitment of chromatin remodeling factors to methylated DNA binding proteins 

known as methyl-CpG-binding domain proteins (MBDs). DNA methylation is considered as a 

stable marker, and maintained in somatic cells by several methyltransferases [318-321]. In 

general, 40% of genes contain CpG-rich islands upstream from their transcriptional start sites 

and 80-90% of all CpG islands can be methylated in mammals. Our findings showed no 

differences in the methylation of CpG islands upstream of the genomic SATB1 locus in Tconv 

and Treg cells. This led us to the assumption that DNA-methylation does not contribute to the 

downregulation of SATB1 in Treg cells, but rather would allow for a rapid upregulation of 

SATB1 expression without the need for cell division first to remove methylation. 

Histone can be modified by the enzyme-catalysed addition or removal of acetyl, methyl, 

phosphate, ubiquitin, sumoyl or ADP-ribose group. Histone modifications such us 

methylation, acetylation and phosphorylation are important defining events during gene 

regulation [227, 261, 316, 322, 323]. In general, acetylation histones 3 and 4 (H3Ac and H4 

Ac), mono, di, and trimethylation of lysine 4 of H3 (H3K4) characterize active or recently 

transcribed genes. Conversely, di and trimethylation of H3K9 and H3K27 mark silenced gene 

[227]. To explore SATB1 regulation in Treg cells in all its complexity, we examined 

permissive and repressive histone modifications at the SATB1 locus in Treg cells. As histones 

can be ornamented with a set of modifications with dual impact on gene expression, we have 

used ChIP analysis of human expanded Treg and Tconv cells with antibodies specific for the 

permissive histone modifications H3K4me3 and H4Ac and the repressive histone 
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modification H3K27me3. As a rule of thumb, histone modifications correlate well with gene 

expression as repressive marks are associated with gene silencing and permissive marks are in 

accordance with gene activation.   

We identified differences in histone modifications between Treg and Tconv cells which 

correlated well with the expression status of SATB1 in Treg cells and Tconv cells. The genomic 

SATB1 locus in Treg cells is enriched in a repressive mark, H3K27me3, with a concomittant 

reduction in permissive marks, H3K4me3 and H4Ac, while Tconv cells showed an opposite 

histone landscape, enrichment in permissive and decrease in repressive modifications. 

This pattern of histone modification raised the question whether FOXP3 is directly involved 

in the differential chromatin remodeling from a permissive to a repressive state in Treg cells. It 

is well documented that chromatin remodeling and epigenetic modifications at cytokine loci 

are presumably the consequence of upregulation or activation of particular lineage specific 

transcription factors. Transcription factors can affect epigenetic modifications directly via 

recruitment of chromating remodeling complexes or indirectly by competing for the binding 

sites of these complexes on key regulatory elements [324-326]. For example T-bet recruits 

histone H3K4 methyltransferase and H3K27 demethylase complexes to the IFN-γ locus 

through its interaction with retinoblastoma-binding protein 5 (RbBp5) and Jumonji domain 

containing 3 (JMJD3) [327]. GATA3 has been reported to compete with a methyl CpG-

binding domain protein-2 (MBD2) for binding to a particular methyl CpG in the IL-4 locus. 

Furthermore, in Tconv cells a deficiency in the DNA methyltransferase Dnmt 1 or the CpG 

binding protein 2 leads to IL-4 gene transcription in a GATA3 independent fashion [299].  

Interestingly, inhibitory binding of FOXP3 to the promoters of IL-2 and IFN-γ results in 

deacetylation of histone 3 at these promoters [328]. In contrast, FOXP3 binding to GITR, 

CD25 and CTLA-4 is correlated with increased histone acetylation [328]. Further evidence 

that FOXP3 and its associated proteins modify chromatin structure comes from studies on the 

effect of FOXP3 on the IL-4 promoter and a cis-regulatory element within the IL-4 locus. 

FOXP3 induction in Th2 cells is associated with a significant reduction in the levels of 

acetylated histone 3 in the regulatory elements of the IL-4 promoter and enhanced levels of 

repressive monomethylation of histone 3 at lysine 9 [329].  

Taken together, our study shows for the first time that SATB1 expression in Treg cells is 

tightly regulated by FOXP3 at different levels. At transpcriptional level, we could 

demonstrate direct occupancy of regulatory elements at the genomic SATB1 locus by FOXP3. 
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At the post-transcriptional level, we have identified a set of FOXP3-driven miRNAs that bind 

to 3`UTR of SATB1 which might lead to transcript destabilization. Finally, regarding SATB1 

chromatin landscape, we observed that in Treg cells the SATB1 locus is enriched in repressive 

histone marks, whereas in Tconv cells permissive histone marks are predominant. Although, the 

direct involvement of FOXP3 in defining the epigenetic marks at SATB1 locus has not been 

addressed in our study, the evidence provided by other researchers suggests that FOXP3 

might also directly or indirectly regulate the chromatin remodeling of the SATB1 locus 

similar to other FOXP3-regulated loci.  

6.5 Sustained high SATB1 expression in Treg cells 

The expression pattern and regulation of SATB1 observed in Treg cells lead us to investigate 

the functional consequences of SATB1 over-expression in Treg cells. For this purpose we 

transfected Treg cells with a construct encoding for SATB1 (SATB1
high

 Treg cells) and 

evaluated their transcriptional profile and their function in contrast to wild type Treg cells 

(SATB1
low

Treg cells).  

6.5.1 SATB1 expression in Treg cells induces transcriptional Teff-cell programs 

Genome wide transcriptional profiling of Treg cells revealed that these cells have a specific 

transcriptional signature that clearly reflects their functional features as keepers of central 

tolerance and modulators of the immune response. To elucidate the global impact of high 

SATB1 expression on Treg cells, we compared the transcriptional profiles of SATB1
high

Treg 

and SATB1
low 

Treg cells. Strikingly, SATB1 overexpression led to the expression of genes 

associated with Tconv-cell activation. As an example, the expression of effector cytokine genes 

like IFN-γ, IL-4 and IL-17, signature cytokines for Th1, Th2, and Th17 cells respectively, was 

prominently upregulated in SATB1
high

 Treg cells, while the expression of these genes was 

repressed in control SATB1
low

Treg cells.  

Under physiological circumstances it is well-known that the production of proinflammatory 

cytokines subverts the regulatory function of Treg cells and if armed with effector cytokines 

production like IL-17 and IFN-γ, Treg cells could contribute to tissue damage [152, 330, 331]. 

Furthermore, it has been described that sustained expression of FOXP3 in mature Treg cells is 

necessary for maintenance of the Treg-cell phenotype and suppressive function [286]. Loss of 

FOXP3 or its diminished expression in Treg cells leads to acquisition of Teff-cell properties 

including production of cytokines promoting an immune response such as IL-2, IL-4, IL-17, 
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and IFN-γ [110, 287, 332-334]. Interestingly, we found that SATB1
high

 Treg cells produced 

large amounts of the Th1 and Th2 signature cytokines IFN-γ and IL-4 at steady state despite 

their apparently normal expression of FOXP3. Moreover, expression of characterisitic Treg-

cell genes is well preserved albeit the expression of several bona fide Teff-cell genes. Several 

studies have reported that nTreg cells cultured under Th1 or Th17 polarizing conditions co-

express FOXP3 and proinflammatory cytokines [264, 335, 336]. This observations can be 

explained , at least in part, that in Treg cells the TBX21 and GATA3 loci show both repressive 

and permissive histone marks and the IFN-γ and IL-4 loci only show minimal H3K27me3 

[264]. Because of the bivalent histone modifications of proinflammatory cytokine genes, 

SATB1 induction in Treg cells could mediate, directly or indirectly, a shift towards gene 

expression and induce transcription of these genes even in the presence of FOXP3 inhibition. 

How SATB1 orchestrates the expression of Th2 cytokine genes is in line with the idea of 

hijacking of Treg cell program by SATB1. Upon Th2-cell activation, SATB1 is induced and 

binds to multiple SATB1 Binding Sites (SBSs) in the Th2 cytokine gene cluster and folds 

chromatin into many small transcriptionally active chromatin loops. These loopscape 

structures promote the coordinate and efficient expression of multiple genes in a cluster by 

bringing distal regulatory sequences into close proximity [190]. Supporting this notion, 

SATB1 could competitively drive gene expression through remodeling the chromatin as 

SATB1 recruits chromatin remodeling complexes to the anchored sites and thereby regulates 

the status of histone modifications and nucleosomal positioning over long-distances of DNA 

[199]. Likewise, the implication of interchromosomal interaction in IFN-γ expression and 

regulation has been already described [337] which might include SATB1to play a role in 

establishing this regulatory network.  

6.5.2 SATB1
high

 Treg cells are functionally defective  

Gene expression data prompted us to interrogate the functional properties of SATB1
high

Treg 

cells as the edition of Treg cell transcriptional program with Teff cell transcriptional program 

could negatively affect the suppressive function of SATB1
high

 Treg cells. Determining the 

suppressive activity of a regulatory T-cell population in vitro is often the first step in 

analyzing Treg cell function. The benefits of this assay include ease and simplicity of use and 

high reliability. In 1998, two groups showed that CD4
+
CD25

+
 T-cells potently suppressed in 

vitro proliferation of other CD4
+ 

and CD8
+
 T-cells when both populations were co-cultured 

and stimulated with specific antigen or polyclonal TCR stimulators such as CD3 mAb in the 

presence of antigen-presenting cells (APCs) [102, 338]. In our in vitro suppression assays, we 
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observed impaired suppressive activity of SATB1
high

 Treg cells on the proliferation of co-

cultured naive CD4
+
 T-cells compared to SATB1

low
 Treg cells which showed full suppressive 

activity under the same experimental conditions. In light of gene expression data obtained for 

SATB1
high

 Treg cells, this functional impairment further support a skewing of SATB1
high

 Treg 

cells also towards functional Teff cell program and failure of FOXP3 to prevent excessive 

polarization of Treg cells and acquisition of effector cytokines. 

In vivo function of Treg cells is determined by assessing their capacity to suppress tissue 

inflammation. Several models are used for this purpose. The T-cell transfer model of adoptive 

colitis was one of the first murine models to convincingly and reproducibly demonstrate the 

existence of Treg cells [266, 339]. In this model, the transfer of naive T-cells expressing high 

levels of CD45RB induces a Th1-mediated colitis when transferred into an immunodeficient 

host. Concomitant transfer of T-cells with low expression of CD45RB prevents development 

of colitis [267, 340]. It has now been demonstrated that the regulatory capacity of CD45RB
low

 

T-cells is mediated by the CD4
+
CD25

+
FOXP3

+
 fraction and that transfer of these Treg cells 

not only prevents colitis initiation, but also can reverse established disease [104, 341]. In our 

mouse model, the function of SATB1 transduced Treg cells is severely impaired as the co-

transfer of SATB1
high

 Treg cells with CD4
+
CD25

-
CD62L

high 
Teff cells failed to prevent colitis 

development. However, wild-type or control vector transduced Treg cells effectively 

suppressed the development of disease as judged by both body weight loss and histological 

analysis of colon tissues. This in vivo observation confirmed the detrimental effect of 

abundance of SATB1 on the functional integrity of Treg cells. One has to ask the question how 

SATB1 drives such a dramatic shift in cell-fate and overrides Treg cell regulatory programs. In 

fact, nTreg cells are relatively stable in a healthy immune system. However, reversal of Treg 

cells function is not uncommon and multiple studies have shown Treg cells instability, 

particularly, under non-physiologic settings such as lymphopenic and inflammatory 

conditions [249, 331]. Furthermore, highly polarized settings such as infection and 

inflammation are likely to contribute in a synergistic manner to the failure of Treg cells to 

maintain and appropriately control tissue damage. The described mechanisms of impaired 

regulation in Treg cells can be grouped into three main etiologies: inadequate numbers of Treg 

cells, defects in Treg cell function, and resistance of Teff cells to suppression [342]. In general, 

exposure of Treg cells to proinflammatory signals appears to abrogate their suppressive 

function. These signals act either directly on Treg cells dampening Treg cell function or 

indirectly on effector cells rendering them resistant to the Treg cell mediated suppression. IL-1, 
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IL-6, TNF-α, IL-7, and IL-15 are among the factors have been repoted to modulate Treg cell 

function either alone or in combination with other factors [343]. As an example, inflammatory 

signals delivered by cytokines like TNFα decrease Treg cell activity in rheumatoid arthritis. 

Although, Treg cells circulate in normal numbers, they have decreased activity ex vivo [344]. 

Besides the negative signals initiated by cytokines like TNF-α, Treg cells also receive 

inhibitory signals via the TCR or TLR-2 [345-348]. Indeed, it has been reported that 

suppressive Treg cells require much lower antigen concentration than that required for Teff 

cells activation [349]. In line with this findings downstream TCR activation molecules like 

Akt and NF-κB have shown to reduce Treg cell function and thus their expression and function 

appears to be tightly regulated [350]. This suggests that TCR signaling in Treg cells can result 

in a negative feed-back inhibiting Treg cell mediated suppression. On the effector cell side, 

more often chronic but also acute exposure of effecter cells to antigens has been reported to 

render the cells hyperactive by shifting the balance of the downstream signaling molecules 

like NF-κB and PKB towards activation, thereby increasing the threshold for suppression and 

overcoming regulatory activity [351]. 

Together, we have shown that induction of SATB1 in Treg cells resulted in adaptation of a 

subset of Teff cell associated gene expression with almost intact Treg cell transcritional 

signature. These findings suggest that SATB1 overrides FOXP3 program and render Treg cells 

permissive for proinflammatory cytokine production. Functionally, SATB1
high

 Treg cells 

showed attenuated suppressive function in vitro. Furthermore, in vivo, they failed to maintain 

tissue homeostasis in RAG
-/-

 mice leading to the onset of colitis. Therefore, inhibition of 

SATB1 protein expression is indispensable for maintaining suppressive function and 

preventing excessive effector polarization of Treg cells. Although our study clearly showed 

that high expression level of SATB1 resulted in malfunctioning Treg cells, the detailed 

molecular mechanism behind the defective suppressive function in our study is still elusive 

and it is opened for further inverstigations. Hence, such knowledge might uncover some 

aspects of Treg cell functional defects associated with several autoimmune diseases. Finally, 

this study have improved our understanding how FOXP3 counteracts the effector 

inflammatory program to maintain Treg cell mediated self-tolerance and provided evidence 

that SATB1 represents a novel molecular switch between effector and regulatory immune 

function. It is tempting to propose SATB1 as an attractive molecular therapeutic target that 

might potentially modulate immune response in immunologically mediated pathologies such 

as autoimmunity and inflammatory disorders. Therefore, additional studies should follow to 
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define the molecular mechanisms underlying its functions and regulation in other effector 

immune cells.   

6.6 Introduction of a model of SATB1 regulation in Treg cells 

Our data support a model in which SATB1 is differentially expressed in Treg cells and Tconv 

cells. On the one hand, in Treg cells, SATB1 expression is suppressed and reciprocally 

correlated with FOXP3 levels. The expression of SATB1 is tightly regulated at several levels, 

all under direct or indirect control of FOXP3. At transcriptional level, direct binding of 

FOXP3 to the genomic SATB1 locus is associated with gene transrepression which might be 

mediated either via competition with transactivators or through recruitment of silencing 

complexes. FOXP3-associated miRNAs represent post-transcriptional negative regulators of 

SATB1 through destabilization of the transcripts by binding to its 3´UTR. Predominance of 

repressive histone modifications at the SATB1 locus in Treg cells render it inaccessible to the 

transcription machinery. Functionally, SATB1 derepression in Treg cells is associated with 

curtailed suppressive function and acquisition of Teff cell characteristics as production of 

proinflammatory cytokines (Fig. 36, a). On ther other hand, in Teff cells, where FOXP3 is 

repressed, SATB1 expression is highly expressed and futher induced after physiological 

stimulation. This induction is coupled with production of effector cytokines like IL-2, IL-4, 

IL-5, and IL-13 and might result in other so far not yet clearly described functions. 

Furthermore, the SATB1 expression pattern in Teff cells correlates with histone modifications 

as the SATB1 locus is highly enriched for permissive histone marks (Fig. 36, b).   
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Figure 36.  Proposed model for the mutual regulation of SATB1 in Treg cells and Tconv cells.  

(a) In Treg cells SATB1 is downregulated and the master regulator FOXP3 negatively regulates SATB1 

expression either directly by physical interaction with the genomic SATB1 locus or indirectly through 

specific binding of FOXP3-induced miRNAs to the SATB1 3´UTR. Moreover, the genomic SATB1 

locus is enriched in repressive histone marks which might stabilize negative expression pattern of 

SATB1 in these cells. (b) In Tconv cells, the expression of SATB1 is upregulated as SATB1 expression 

is required for effector functions like production of proinflammatory cytokines. Repressed FOXP3 

expression in addition to permissive histone modifications favoring SATB1 gene accessbility might 

explain, at least partially, the high basal and inducible expression of SATB1 in Teff cells. 
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Table 1.  FOXP3 binding regions 

Tiling 

array 

region 

start stop length 

(bp) 

FOXP3 

binding 

motifs 

MAT 

score 

p-value   

(-10log10) 

FOXP3 

binding 

region 

FOXP3 

binding 

motifs 

start stop Lengt

h 

 (bp) 

B1 -19933 -18711 1223 9 7.05 154.29 BR1 7 -19337 -18711 626 

B2 -17526 -15898 1629 15 5.25 90.42 BR2 6 -16970 -16592 379 

B3 -15767 -14637 1131 7 5.16 87.58 BR3 2 -15692 -15439 254 

B4 -13165 -12161 1005 5 6.43 130.41 BR4 4 -22566 -12161 406 

B5 -12160 -11018 1143 8 4.89 79.92 BR5 4 -11490 -11217 274 

B6 -11017 -9639 1379 14 6.02 115.69 BR6 6 -10161 -9818 345 

B7 -8491 -6303 2189 13 6.88 147.33 BR7 4 -7085 -6865 221 

B8 -5995 -4369 1627 15 5.47 97.25 BR8 5 -5181 -4896 286 

B9 -4356 -1861 2496 27 12.86 483.42 BR9 4 -3947 -3697 251 

       BR10 5 -3110 -2710 401 

B10 -854 1465 2320 13 7.88 189.63 BR11 1 +269 +669 401 

B11 +2895 +6146 3252 29 7.96 193.47 BR12 3 +3336 +3736 401 

B12 +6505 +7653 1149 9 5.59 101.04 BR13 1 +6303 +6502 200 

       BR14 3 +6653 +6769 117 

B13 +11598 +13006 1409 12 6.93 149.36 BR15 7 +12260 +12760 501 

B14 +20356 +22256 1901 20 11.38 381.62 BR16 6 +21031 +21431 401 

 

Table 2.  human qPCR oligonucleotides 

SATB1 Forward CGATGAACTGAAACGAGCAG 

SATB1 Reverse CGGAGGATTTCTGAAAGCAA 

FOXP3 Forward ACCTACGCCACGCTCATC 

FOXP3 Reverse TCATTGAGTGTCCGCTGCT 

IL-5 Forward GGTTTGTTGCAGCCAAAGAT 

IL-5 Reverse TCTTGGCCCTCATTCTCACT 

IFN-g Forward CACTGAAGAAATCTTTCAGGGAAT 

IFN-g Reverse CCGTCTTTCTTCTCCACACTTT 

IL-17A Forward TGGGAAGACCTCATTGGTGT 

IL-17A Forward GGATTTCGTGGGATTGTGAT 

CTLA4 Forward TTCATCCCTGTCTTCTGCAA 

CTLA4 Reverse AGTGGCTTTGCCTGGAGAT 

GITR Forward AGGCCAGGGGGTACAGTC 

GITR Reverse AAGGTTTGCAGTGGCCTTC 

PDE3B Forward AACAATGGTATAAGCCTCATTATCAA 
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PDE3B Reverse CGAGCCTCATTTAGCACTGA 

CD25 Forward ACGGGAAGACAAGGTGGAC 

CD25 Reverse TGCCTGAGGCTTCTCTTCA 

CD127 Forward AAAGTTTTAATGCACGATGTAGCTT 

CD127 Reverse TGTGCTGGATAAATTCACATGC 

CD73 Forward TGATCCTCCCAAACTTCCTG 

CD73 Reverse AACCACGTTGATATCTTGGTCA 

CD39 Forward AAGGCCACAGCTGGCTTAC 

CD39 reverse GGAAAGGCGATGCTTTAAATAC 

GPR83 Forward TCTGCCAGAAATTATTTACCTTCA 

GPR83 Reverse AGCTGGCTCAGGGAAGTCT 

b-2 microglobulin Forward TTCTGGCCTGGAGGCTAT 

b-2 microglobulin Reverse TCAGGAAATTTGACTTTCCATTC 

Table 3.  siRNA 

FOXP3 sense GCACAUUCCCAGAGUUCCUdTdT 

FOXP3 antisense AGGAACUCUGGGAAUGUGCdTdT 

control sense UUCUCCGAACGUGUCACGUdTdT 

control antisense ACGUGACACGUUCGGAGAAdTdT 

SATB1 siRNA pool 1 sense GAAGGAAACACAGACAUUA 

SATB1 siRNA pool 1 antisense UAAUGUCUGUGUUUCCUUC 

SATB1 siRNA pool 2 sense GGAAUGCUCUGAAGGACUU 

SATB1 siRNA pool 2 antisense AAGUCCUUCAGAGCAUUCC 

SATB1 siRNA pool 3 sense GCAAAUGUCUCAGCAGCAA 

SATB1 siRNA pool 3 antisense UGCUGCUGAGACAUUUGC 

SATB1 siRNA pool 4 sense UCAGAAAUGUCUAACAAUG 

SATB1 siRNA pool 4 antisense CAUUGUUAGACAUUUCUGA 
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Table 4.  Mouse qPCR oligonucleotides 

SATB1 Forward 5′-AGGAGTGCCCCCTTTCAC-3′ 

SATB1 Reverse 5′-TGCTGCTGAGACATTTGCAT-3′ 

Foxp3 Forward 5′-ACCACACTTCATGCATCAGC-3′ 

Foxp3 Reverse 5′-CCAGTGGCAGCAGAAGGT-3′ 

IL-5 Forward 5′-CAAACTGGTAATGTAGCCAAGGAT-3′ 

IL-5 Reverse 5′-CTGTAACCTCAGCCTTCAGGA-3′ 

IL-6 Forward 5′-GCTACCAAACTGGATATAATCAGGA-3′ 

IL-6 Reverse 5′-CCAGGTAGCTATGGTACTCCAGAA-3′ 

IFN-γ Forward 5′-CCTTTGGACCCTCTGACTTG-3′ 

IFN-γ Reverse 5′-AGCGTTCATTGTCTCAGAGCTA-3′ 

β-actin Forward 5′-CTAAGGCCAACCGTGAAAAG-3′ 

β-actin Reverse 5′-ACCAGAGGCATACAGGGACA-3′ 

Table 5.  ChIP-PCR oligonucleotides 

SATB1 BR1 Forward GAACAGTAGTACATTCATATACTGG 

SATB1 BR1 Reverse TTAAGATGCCTATTCATGCTATTCC 

SATB1 BR2 Forward GAAAGTTATGTTTCAGCATGATGAG 

SATB1 BR2 Reverse CTGGTATTTACTTCAGGAAGGTAAG 

SATB1 BR3 Forward TCAACACATTAACACACATTATTTC 

SATB1 BR3 Reverse ATAACTTGAAAGCATAAAAATAGGC 

SATB1 BR4 Forward CAAACAGAGCACTCCCCTGAG 

SATB1 BR4 Reverse GGAAAGAACGCATAGAAGGTCAATC 

SATB1 BR5 Forward TCTCATTTCCTCTTGTTTATTGTTG 

SATB1 BR5 Reverse ATAATAAGGTTAAGTAGGCTTCTCC 

SATB1 BR6 Forward TTCTACTGTGGCATTATTTATCAAC 

SATB1 BR6 Reverse GCATATCCAGTTACCTATCTTGTAG 

SATB1 BR7 Forward TCTCCCAAAACAAACATAAACATTG 

SATB1 BR7 Reverse TTTCCCTAATTACTTGGCATAGAT 

SATB1 BR8 Forward AAAGTGTTATGGTGGTAAGCATTG 

SATB1 BR8 Reverse CAGAGAAAGCATTTAGAATTCGAGTG 

SATB1 BR9 Forward ATAGTCATTCTTAGATGCCTTTATG  

SATB1 BR9 Reverse CTGTTGGGCAAAATAAAATTTAAAC 
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SATB1 BR10 Forward ATTGGTGGCTTTACAGAGCTTAAT  

SATB1 BR10 Reverse AATTTGCTGGTAGGGAAAAGAGAA 

SATB1 BR11 Forward GTTTCAGGTCGGTTTTGCTAATTT  

SATB1 BR11 Reverse GATTGTGCCCTTATCCATTCCATA  

SATB1 BR12 Forward TAGGCAGCTGTTTCTTCAAACTAA  

SATB1 BR12 Reverse CTGAAACTGCCCTACAACTAAGAA  

SATB1 BR13 Forward GCAGTAGAAAGGTGGGTTCTTC 

SATB1 BR13 Reverse GCAATGAATGCAGAATTACCTTT 

SATB1 BR14 Forward GCCTGTACTGTACCCAGTC  

SATB1 BR14 Reverse CATATTCAATGGCGTTTTCATAATG  

SATB1 BR15 Forward AGGTCAGCTATTACTTCTACCAGC  

SATB1 BR15 Reverse GGAAGGTAAAAATGCGCAAATCAG 

SATB1 BR16 Forward TTTTGTAGATGCTCTTGCTACCTC  

SATB1 BR16 Reverse TCATATGATCTACATGCTTGCGTT  

SATB1 -15kb ChIP Forward AGCAAGATTTAATTGCTGGTCCTG  

SATB1 -15kb ChIP Reverse TGCAATTGAAAAGACAAAGCCCTA 

CTLA4 Forward AAGGCTTTCTATTCAAGTGCCTTC 

CTLA4 Reverse TGTTCAGGTCTTCAGGAAGTAGAG 

PDE3B Intron 1 BS2 

Forward 

TATGCATTCCGTATGCGTGGTAG 

PDE3B Intron 1 BS2 

Reverse 

AATGAACCTACAACAAGCAGCCT 

PDE3B Intron 10 Forward GTTTTGTGTGCAAACATGGGTCT 

PDE3B Intron 10 Reverse TGGAAAATGTTCTCAAGGTGGCT 

IL7RA Promoter Forward CAGGGAATATCCAGGAGGAA 

IL7RA Promoter Reverse TGTGTGAGCCAGTGTGTATGAA 

AFM Intron 1 Forward GCAGAACCTAGTTCCTCCTTCAAC 

AFM Intron 1 Reverse AGTCATCCCTTCCTACAGACTGAGA  

hsa-miR-155 Forward TGCTAATCGTGATAGGGGTTTTTG 

hsa-miR-155 Reverse GCCTGAAGTCTAAGTTTATCCAGC  

hsa-miR-21 Forward CACCACAGGTAAGACTTTAATCCG 

hsa-miR-21 Reverse AAATGTGAGTGAGAGCTGTGAATG 
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Table 6.  Oligonucleotides for cloning of the 3′UTR of human SATB1  

SATB1 3′UTR 

Forward 

5′-ATACTCGAGGATAAAAGTATTTGTTTCGTT-3′ 

SATB1 3′UTR 

Reverse 

5′-ATAGCGGCCGCACGATACAAACAATTTTAA-3′ 

Table 7.  Oligonucleotides for mutagenesis of the 3′UTR of human SATB1 

miR-155 Forward 5′-TAATTACCTTCTGTGATTATGATT-3′ 

miR-155 Reverse 5′-GCTTGTTTGAGGCTCCGGAA-3′ 

miR-34a 5′-

CTTTTATTTCCAAAATAAAAACAAATTTGAATTACCCGTGT

GCCATATAATACAAGGCATTTGTTGGCATATG-3′ 

miR-21 I 5′-

GTAAAAATTGCATACAACAATAAGAGTGATCGATATAGTA

TGAATTGCTTGGATAACATAGAGCACTTTTTA-3′ 

miR-21 II 5′-

CATTCGTGATCTATTAGTTTTATTTACCTATCGATATTTGC

ATGATAGTAAAAATTGCATACAACAATAAGAGTG-3′ 

miR-18a 5′-

GCAAACATCAATTATTTTCACATTAATTGCATAATTTTCAT

TCGTGATCTATTAGTTTTATTTACCTAAGCTTATTTGCATG-

3′ 

miR-7 5′-

TACAGATGTAGCTTTAAAATTGATTGTAAACCAAACCTTG

ACACATTGCAAACATCAATTATTTTCACATTAAT-3′ 

Table 8.  bisulphite sequencing oligonucleotides 

SATB1 CpG A Forward TCTCCCTGTGCCACCCAG 

SATB1 CpG A Reverse ACCACAATGGCACTAGGAC 

SATB1 CpG B Forward TAACTCCTCATAATTTAAAA 

SATB1 CpG B Reverse GGGAGTTATTAGGAAGTGGT 

SATB1 CpG C Forward CTCTCCCTATACCACCCAA 

SATB1 CpG C Reverse TATTATAATGGTATTAGGAT 

FOXP3 Forward TGTTGTAGGATAGGGTAGTT 
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FOXP3 Reverse CATAAAAATAATCTATCTAA 

Table 9.  oligonucleotides for filter retention  

SATB1 BR1 motif 3 

sense 

GATGTAATAAGCATGTTTACAATATTTTATTTCAGTC 

SATB1 BR1 motif 3 

antisense 

GACTGAAATAAAATATTGTAAACATGCTTATTACATC 

SATB1 BR1 motif 3 

(mutated) sense 

GATGTAATTCAATTACGAATTGTATTTAATTTCAGTC 

SATB1 BR1 motif 3 

(mutated) antisense 

GACTGAAATTAAATACAATTCGTAATTGAATTACATC 

SATB1 BR2 motif 1 

sense 

TTAGATTTGTAATGTAAACAGTGTGCCTAAGAG 

SATB1 BR2 motif 1 

antisense 

CTCTTAGGCACACTGTTTACATTACAAATCTAA 

SATB1 BR2 motif 1 

(mutated) sense 

TTAGATTTAGTGTGGATAAATCATGCCTAAGAG  

SATB1 BR2 motif 1 

(mutated) antisense 

CTCTTAGGCATGATTTATCCACACTAAATCTAA  

 

 

Table 10.  miRNA binding motifs in the 3′UTR of human SATB1  

motif wild-type mutated 

miR-155 motif at +333 AGCATTA AGCTAAT 

miR-34a motif at +538 CACTGCC CACACGG 

miR-21 motif I at +886 ATAAGCT ATATCGA 

miR-21 motif II at +932 ATAAGCT ATATCGA 

miR-18a motif at +961 CACCTTA CACGAAT 

miR-7 motif at +1012 GTCTTCC GTCAAGG 

Table 11.  Oligonucleotides for cloning of the Foxp3 binding regions of human SATB1 

Foxp3 BR9 Forward 5′-ATATGGTACCATGCTCATTTATTCTGTT-3′ 

Foxp3 BR9 Reverse 5′-ATATAAGCTTGAAATAAAATATTGTAAACA-3′ 
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Foxp3 BR10 Forward 5′-ATATGGTACCGCTATTAGAGTGATATATT-3′ 

Foxp3 BR10 Reverse 5′-ATATAAGCTTGTTCATGTAAAAATAAAG-3′ 

Foxp3 BR11 Forward 5′-ATATGGTACCGTGTTTCTGTTTCTAGATAG-3′ 

Foxp3 BR11 Reverse 5′-ATATAGATCTGAGTTTCTTTTGAGTTACACGT-3′ 

Foxp3 BR12 Forward 5′-ATATGGTACCGACTGAATTAAATATAATGG-3′ 

Foxp3 BR12 Reverse 5′-ATATAAGCTTTCCAAGTTGTTAAACTGCA-3′ 

Foxp3 BR13 Forward 5′-ATATGGTACCTAATTTGTTTGGACACAA-3′ 

Foxp3 BR13 Reverse 5′-ATATAAGCTTGCAATGAATGCAGAATTAC-3′ 

Foxp3 BR14 Forward 5′-ATATGGTACCCACAGTGAATCTCTTGTG-3′ 

Foxp3 BR14 Reverse 5′-ATATAAGCTTCTATCAAAAAGATGAAGAAGAA-3′ 

Table 12.  Foxp3 binding motifs at the human SATB1 locus 

motif wild-type mutated 

Foxp3 BR9 motif I + II ATTCTGTTTATCATTT

T 

CGTGCGGCCGCAGGA

CA 

Foxp3 BR9 motif III + 

IV 

ATGTTTAC GGTCCGTG 

Foxp3 BR10 motif I GTAATGTAAACAGTG

TG 

TGTCCTGCGGCCGCA

CG 

Foxp3 BR10 motif II CAAAATGTTTATCTG

AC 

TCGTCCCTGCAGGCC

GG 

Foxp3 BR10 motif III TGAAAAATAATTCTT

GT 

CGTGGCTGGCGAAGA

GC 

Foxp3 BR10 motif IV AATATTCTTTATTTTT

A 

GCTGGCGGCGCCGCG

CG 

Foxp3 BR10 motif V CTTTATTTTTACATGA

A 

GGCGCCGCGCGTGAT

TG 

Foxp3 BR11 motif I ATAATTGTTGTTACT

GA 

CGTGCGGCCGCAGGA

CA 

Foxp3 BR12 motif I TTAAATATAATGGTT

TT 

CCGGCGCGCCACCGC

GA 

Foxp3 BR12 motif II GGTAATGTTATTTTTT

G 

CATCCCTGCAGGGAC

CA 

Foxp3 BR12 motif III TAGCAGTAAAAAATC GCTCGCGGCCGCCGA
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TG GT 

Foxp3 BR13 motif I ATGTTTGC CGGTCCGTG 

Foxp3 BR14 motif I + II GATTATTTATTT TCGGCGGCCGCG 

Foxp3 BR14 motif III GATTGTTGGTTT CCGGCGCGCCAC 

Table 13.  Oligonucleotides for mutagenesis of the Foxp3 binding motifs of the human 

SATB1 locus 

Foxp3 BR9 motif I + II 5′-

TAAGGACTGACATGGCCTTGGTGTCCTGCGGCCGCAC

GAAA TGAGCATGGTACCGGCCAGTTAGGCCAGAG -3′ 

Foxp3 BR9 motif III + 

IV 

5′- 

TATACCCTCTAGTGTCTAAGCTTGAAATAAAATATTC

ACGGACCGCTTATTACATCATTTTACAGAAATAAATA

AGAC -3′ 

Foxp3 BR10 motif I 5′-

GCTCTGTAAAGCCACCAATACACTCTTAGGCGTGCGG

CCGCAGGACAAAATCTAAAGAAAAGCCAAAAGGTA

AAGCAGAAAAGTG-3′ 

Foxp3 BR10 motif II 5′-

GAATTTGCTGGTAGGGAAAAGAGAAAAATCACCGGC

CTGCAGGGACGATTACACATAAAAAAGCAACAAGTT

AGCACAAGTACTGAGATAAAAGGG-3′ 

Foxp3 BR10 motif III 5′-

CCATTTTAGCACCCTGAAGGCAGTTAATCATTAACAA

AAAGCTCTTCGCCAGCCACGGAATTTGCTGGTAGGG

AAAAGAGAAAAATCAGTCAG-3′ 

Foxp3 BR10 motif IV + 

V 

5′-

GCTGGAAGTCGAGCTTCCATTATATACCCTCTAGTGT

CTAAGCTTGCAATCACGCGCGGCGCCGCCAGCACAA

TGTAACCCAAAATAGAAATGCCTCATTTATCGCTTAG

G-3′ 

Foxp3 BR11 motif I 5′-

CTAAGACCATATATGATAATTACTGAATAAAACAGT

GAACCGTGCGGCCGCAGGACATTCCTTTAAAAGGAA
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AGAAAATCTCGAAATTCTAGTTTTTTAGG-3′ 

Foxp3 BR12 motif I 5′-

CACCTTTTGAATGGACCCTGCCAAAACTTCGCGGTGG

CGCGCCGGTTCAGTCGGTACCGGCCAGTTAGGCCAG

AGAAATG-3′ 

Foxp3 BR12 motif II 5′-

CTGCTAATGAATTTGCTCTTAAGAAAATAAGCCATGG

TCCCTGCAGGGATGAAACTTCTACATAAGATGTCCAA

GATCTCTGAAACTGCCCTAC-3′ 

Foxp3 BR12 motif III 5′- 

CCCAATTAAAACAAAAATAAAAAACTAGAATCATAC

TCGGCGGCCGCGAGCATGAATTTGCTCTTAAGAAAA

TAAGCCATGGTCCCTGCAGGGATG-3′ 

Foxp3 BR13 motif I 

Forward 

5′-ATACTGTATACTACTCATAGCAAA-3′ 

Foxp3 BR13 motif I 

Reverse 

5′-CACGGACCGAACTCACCATTTATCTTCAG-3′ 

Foxp3 BR14 motif I + 

II 

5′-

GGAAATATTAGCCATGACGCGGCCGCCGAACAAGAG

ATTCACTGTGGGTACCGGCCAGTTAGGCC-3′ 

Foxp3 BR14 motif III 5′-

CTATCAAAAAGATGAAGAAGAAGAGATGGAGTGGC

GCGCCGGTTCAGAAATACAGCTTGGGGGTGGC-3′ 

Table 14.  Oligonucleotides for miR RNAi targeting human SATB1 and Foxp3  

SATB1 miR RNAi sense 5′-

TGCTGATTCACTGCATACTGCTGGTTGTTTTGGCCA

CTGACTGACAACCAGCAATGCAGTGAAT-3′ 

SATB1 miR RNAi 

antisense 

5′-

CCTGATTCACTGCATTGCTGGTTGTCAGTCAGTGGC

CAAAACAACCAGCAGTATGCAGTGAATC-3′ 

Foxp3 miR RNAi sense 5′-

TGCTGAAAGCACTTGTGCAGACTCAGGTTTTGGCCA

CTGACTGACCTGAGTCTACAAGTGCTTT-3′ 
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Foxp3 miR RNAi 

antisense 

5′-

CCTGAAAGCACTTGTAGACTCAGGTCAGTCAGTGGC

CAAAACCTGAGTCTGCACAAGTGCTTTC-3′ 

Table 15.  Histone ChIP-PCR oligonucleotides 

SATB1 -25kb Forward TTAATGGCGGTAAGTAGTAAGTTC 

SATB1 -25kb Reverse TAAGACCAGAGGAATCAGAGATC 

SATB1 -24kb Forward GCCCATGTGCTTTCTATACAAGAC 

SATB1 -24kb Reverse ACTCATCTGCTTCCCCAAGTTATC 

SATB1 -23kb Forward TCCCTCCTGCTTCCATAGTTTC 

SATB1 -23kb Reverse TTGGCAAGAAGTGTAGTTAGGTTC 

SATB1 -22kb Forward GCACACACACTACAGTAACC 

SATB1 -22kb Reverse CGCACTCCTCCTCTTGTC 

SATB1 -21kb Forward GTCCATGCCTGAGTGAGTTCTG 

SATB1 -21kb Reverse ACGAGGAGTGGGTGCTACG 

SATB1 -20kb Forward TGACCTCAGAAGACCAACAG 

SATB1 -20kb Reverse GAGAAAGTTCGCCAAGGAAG 

SATB1 -19kb Forward GGATTTCCCTCCTAAAGTAC 

SATB1 -19kb Reverse GGTCTTCTTTCTCTATCTTCC 

SATB1 -17.5kb Forward ACCTTCAGATATTTCAGAGAGCAG 

SATB1 -17.5kb Reverse AAGCACAAACCACACAAAACTG 

SATB1 -13.5kb Forward AGCAGTTAATCACAGAGGTAGTTC 

SATB1 -13.5kb Reverse TTGTCTAAGTAAGCCTAAGTCCAG 

SATB1 -9.5kb Forward TGTGTAGCATAGACTGGACTGTAG 

SATB1 -9.5kb Reverse GCCAAGCCTCAGAGAAACAATG 

SATB1 -6.5kb Forward TTGTGCTGCTTTAAGAGTGTAGAG 

SATB1 -6.5kb Reverse TCCGCCAGTGACTGTGTTAG 

SATB1 -4kb Forward TCCCGTGATCTTTGTTTAGTGGTG 

SATB1 -4kb Reverse GCCAGGCAATGTCACCTCAAG 

SATB1 -3kb Forward TCAGGGTGCTAAAATGGTAGAAC 

SATB1 -3kb Reverse CACTTCTGCTGTAATCTAGGGTAG 

SATB1 -2kb Forward CCGCCTCACTCTAATCAAG 

SATB1 -2kb Reverse AAAGCCGAAAGACAAGTAAC 

SATB1 -1kb Forward CTTCTGATCTTCCTCCTCCTC 
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SATB1 -1kb Reverse CTCTCCCTGCCCATTGAC 

SATB1 0kb Forward GTCGGTTTTGCTAATTTCACTCAG 

SATB1 0kb Reverse GCTGGATCGCCTCCTTCG 

SATB1 +1kb Forward ATGGGACCTCTATCAACGGTAAAC 

SATB1 +1kb Reverse GGGCAGCAATGTTAATCTGGAAG 

SATB1 +2kb Forward CACATCTTTGGCCCAAAACTTG 

SATB1 +2kb Reverse AGAAGGTAACAAACATCTAACTGC 

Table 16.  oligonucleotides for miRNAs against human SATB and FOXP3  

SATB1 miRNA sense TGCTGATTCACTGCATACTGCTGGTTGTTTTGGCCACTG

ACTGACAACCAGCAATGCAGTGAAT 

SATB1 miRNA 

antisense 

CCTGATTCACTGCATTGCTGGTTGTCAGTCAGTGGCCAA

AACAACCAGCAGTATGCAGTGAATC 

FOXP3 miRNA sense TGCTGAAAGCACTTGTGCAGACTCAGGTTTTGGCCACT

GACTGACCTGAGTCTACAAGTGCTTT 

FOXP3 miRNA 

antisense 

CCTGAAAGCACTTGTAGACTCAGGTCAGTCAGTGGCCA

AAACCTGAGTCTGCACAAGTGCTTTC 
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9 Zusammenfassung 

In dieser Arbeit wurde SATB1 als neues Effektormolekül für regulatorische T-Zellen 

identifiziert. SATB1 ist ein nukleäres Protein, das Faktoren rekrutiert, die bei der Gestaltung 

der Chromatinstruktur entscheidend beteiligt sind und dadurch die Expression zahlreicher 

Gene reguliert. Durch genomweite Expressionsanalysen regulatorischer und konventionellen 

T-Zellen konnte eine konstitutive Expression von SATB1 in konventioneller CD4
+
 T-Zellen 

beschrieben werden, während die SATB1 Expression in regulatorischen T-Zellen reprimiert 

wird. Diese Repression in regulatorischen T-Zellen konnte sowohl in Mäusen als auch im 

Menschen unter stimulierenden und nicht stimulierenden Bedingungen durch mRNA-, 

Protein- und Einzelzell-Analysen bestätigt werden.  

Das zu SATB1 entgegengesetzte Expressionsmuster von FOXP3, dem wichtigsten 

Transkriptionsfaktor für die Entstehung und Aufrechterhaltung des Phänotyps und der 

Funktion regulatorischer T-Zellen, ließ eine aktive Beteiligung von FOXP3 an der Regulation 

von SATB1 vermuten. Einerseits wurde die SATB1 Expression bei gleichzeitiger Induktion 

von FOXP3 in CD4
+
 T-Zellen inhibiert. Andererseits erfolgte nach Verlust der FOXP3 

Expression in regulatorischen T-Zellen eine Induktion von SATB1. Des Weiteren zeigte sich, 

dass SATB1 in FOXP3-exprimierenden Thymozyten sehr schwach exprimiert war, während 

es sehr viel stärker in Thymozyten aus scurfy Mäusen exprimiert wurde, die ein mutiertes und 

somit nicht funktionelles FOXP3 Gen besitzen. 

Die Regulation der Genexpression durch FOXP3 durch direkte Bindung an die DNA,  wurde 

bereits beschrieben. Um eine direkte Bindung von FOXP3 am genomischen SATB1 Lokus zu 

bestätigen, wurden mittels Chromatinimmunopräzipitation (ChIP) genomweite 

Bindungsanalysen durchgeführt, wodurch multiple FOXP3 Bindestellen im Promoter und in 

intronischen Regionen des genomischen SATB1 Lokus identifiziert und mittels ChIP PCR 

validiert werden konnten. Außerdem konnten eine hohe Bindungsspezifität und der 

Bindungskoeffizient von FOXP3 an verschiedenen SATB1 Motiven bestimmt werden. Des 

Weiteren konnte die funktionelle Relevanz dieser FOXP3 Bindungsstellen für mehrere 

Bindestellen gezeigt werden. Zusammengenommen zeigen diese Analysen, eine Regulation 

der SATB1 Expression durch die direkte DNA-Bindung von FOXP3 erfolgte.  

Neben der direkten Repression durch Bindung an den genomsichen SATB1 Lokus 

kontrollierte FOXP3 die SATB1 Expression auch indirekt auf post-transkriptionaler Ebene 

durch FOXP3-abhängige MikroRNAs.  
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Außerdem konnten in konventionellen CD4
+
 T-Zellen vermehrt permissive und weniger 

inhibitorische Histonmodifikationen am SATB1 Gen gefunden werden während die CpG 

Zusammensetzung in konventionellen und regulatorischen T-Zellen am SATB1 Gen keine 

nennenswerten Unterschiede aufwies.  

Des Weiteren wurden die Auswirkungen einer induzierten Expression von SATB1 für die 

Funktion von regulatorischen T-Zellen untersucht. Induzierte Expression von SATB1 

veränderte signifikant das Genexpressionsmuster und die Funktion von regulatorischen T-

Zellen, was mit dem Verlust der inhibitorischen Funktion der regulatorischen T-Zellen in 

vitro, der zusätzlichen Produktion von entzündungsfördernden Zytokinen wie IL-4 oder IFN-γ 

und der Induktion von transktiptionellen T-Effektorzellprogrammen einherging. In vivo zeigte 

sich ebenfalls ein Verlust der suppressiven Funktion SATB1 exprimierender regulatorischen 

T-Zellen. 

Zusammenfassend ist SATB1 ein wichtiges Effektormolekül, dessen Expression durch 

FOXP3 in regulatorischen T-Zellen supprimiert wird, und mit den regulatorischen 

Eigenschaften der Zellen eng verbunden ist. Durch eine Überexpression von SATB1 in vivo 

und in vitro verlieren regulatorische T-Zellen ihre suppressive Funktion und zeigen einen T-

Zelleffektorphänotyp mit entzündungsfördernden Eigenschaften. 

 

 

 

 


