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SUMMARY 

 

Lipid droplets (LDs) are the intracellular storage organelles for neutral lipids. Over 

the last decade LDs have been identified to play important roles in lipid homeostasis, 

cellular signaling events and as a platform to sequester specific proteins. Lipid 

droplets are also linked to human diseases like type 2 diabetes or obesity. LDs are 

dynamic organelles, which can move rapidly within cells along microtubule tracks 

using the cellular transport machinery. While LDs are usually found evenly dispersed 

throughout the cytoplasm of cells, they have also been observed to aggregate and 

form dense clusters consisting of numerous individual LDs. It has been suggested that 

LD clustering is involved in LD fusion or in mediating increased storage of neutral 

lipids. Even though several proteins have been shown to induce LD clustering, a 

molecular mechanism explaining how LDs are tethered to form these clusters is 

unknown.  

This thesis demonstrates that LD associated ancient ubiquitous protein 1 (AUP1) 

promotes the clustering of LDs. Furthermore, it is shown that knock-down of AUP1 

leads to the dispersion of LD clusters. Results from this study demonstrate that AUP1 

is ubiquitinated in a process that depends on the integrity of an intrinsic AUP1 

ubiquitin-binding domain. It is also shown that AUP1 is ubiquitinated at several 

lysine residues. AUP1 mutants that fail to become ubiquitinated lose the ability to 

promote LD clustering. Fusing a single ubiquitin moiety to AUP1 mutants that 

otherwise fail to induce LD clustering, is sufficient to restore LD clustering in cells. 

Thus, for the first time a posttranslational modification is identified that controls the 

clustering of LDs. In addition, AUP1 is known to be a highly phosphorylated protein 

and this study shows that mimicking phosphorylation of one specific threonine 

residue attenuates AUP1-induced LD clustering. It further shows that this 

phosphorylation of AUP1 does not interfere with the ubiquitination of AUP1. 

Based on these findings, a regulatory mechanism is proposed in which the identified 

posttranslational modifications of AUP1 control intracellular LD clustering. 
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ABBREVIATIONS 
            

 

  

ACSL3  acyl-CoA synthetase long-chain family member3 

ADRP   adipose differentiation-related protein 

AUP1   ancient ubiquitous protein 1 

AT   acyltransferase domain  

Amp   ampicillin 

BB   blocking buffer 

CUE   coupling of ubiquitin conjugation to ERAD 

CIDEA  cell death-inducing DFFA-like effector a 

DGAT2  diacylglycerol O-acyltransferase 2 

dH2O   distilled water 

DIO2   deiodinase, iodothyronine, type II 

DMEM  Dulbecco´s modified Eagles medium 

DMSO   dimehtylsulfoxide 

ER   endoplasmic reticulum 

ERAD   ER associated degradation 

Eps15   epidermal growth factor pathway substrate 15	  

EGFR   epidermal growth factor receptor	  

E. coli   Escherichia coli 

FCS   fetal calf serum 

fsp27   fat specific protein27 

FAS2/UBXD8  fas associated factor family member 2 

GRASP  golgi reassembly and stacking protein 

GAPDH  glyceraldehyde-3-phosphate dehydrogenase 

G2BR   G2 binding region 

His   histidin 

HCV   hepatitis C virus 

HRP    horseradish peroxidase 

HA   hemagglutinin 
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isoT   isopeptidase T 

Kd    dissociation constant 

Kan   kanamycin 

kDa   kilo dalton 

LDT   lipid droplet targeting 

LD   lipid droplet 

LPCAT  lysophosphatidylcholine acyltransferase 

LC3   microtubule-associated protein-1 light chain 3 

MEM   minimal essential medium Eagel 

MettL7b  methyltransferase like 7b 

NEDD4 neural precursor cell expressed developmentally down-

regulated 4 

NSDHL  NAD(P)H steroid dehydrogenase-like protein 

PC   phosphatidylcholine 

PFA   paraformaldehyde 

PBS   phosphate buffered saline 

PCR   polymerase chain reaction 

PFA   paraformaldehyde 

Poli   polymerase iota 

PKA   cAMP dependent protein kinase 

P62/SQSTM1  ubiquitin binding protein of 62kDa/sequestosome1 

RABEX-5  rabaptin-5 associated exchange factor for Rab5 

RT   room temperature 

RUZ   rabex-5 ubiquitin binding zinc finger 

siRNA   small interfering RNA 

SDS   sodium dodecyl sulfate 

SNARE  soluble N-ethylmaleimide-sensitive-factor attachment receptor 

TRAPPI  transport protein particle I 

TAG   triacylglycerides 

UBL   ubiquitin-like domain 

Ub   ubiquitin 

UBA   ubiquitin associated  

UBM   ubiquitin binding motif 
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Ube2g2  ubiquitin conjugating enzyme E2 G2 

UBD   ubiquitin-binding domain 

UBX   ubiquitin regulatory X 

WT   wild type 

WB    western blot 

ZFN   zinc finger nuclease 

ZIP   zinc transporter 

ZnF UBP  zinc-finger ubiquitin binding 

 



	  

	  

	  
INTRODUCTION 

	  
	   	  

11	  

1. Introduction 
 

 

1.1. Lipid Droplets 

	  

Lipid Droplets (LDs) are neutral lipid storage organelles found in most organisms, 

from bacteria and yeast to plants and mammals (Zweytick et al., 2000). LDs consist 

of a hydrophobic core, mainly made up of triacylglycerides (TAG) and esterified 

sterols, surrounded by a phospholipid monolayer (Fig. 1). Compartmentalization via a 

polar lipid monolayer is a unique structural feature which LDs share only with plasma 

lipoproteins (Walther and Farese, 2012). First observed in the 19th century by light 

microscopy (R., 1890; Debelyy et al., 2011), LDs have long been regarded as rather 

inert lipid inclusions with a sole purpose of storing fat. However, research on LDs 

over the last decades revealed LDs as independent cellular organelles with distinct 

functions apart from the storage of lipids. LDs have been shown to play an important 

role in lipid homeostasis (Thiele and Spandl, 2008; Gong et al., 2009), signaling 

events (Bozza et al., 2011) and are thought to function as a platform to sequester 

excess proteins or otherwise toxic substances (Ohsaki et al., 2006; Welte, 2007; 

Cermelli et al., 2006). LDs are linked to several human diseases like obesity or type 2 

diabetes (Greenberg et al., 2011). In addition, human pathogens like the hepatitis C 

virus (HCV) or Chlamydia trachomatis can hijack LDs as sites for assembly or 

replication (Shavinskaya et al., 2007; Kumar et al., 2006).  

LDs themselves are adorned by proteins and several LD proteomes revealed a 

plethora of different proteins associated with LDs (Athenstaedt et al., 1999; 

Brasaemle et al., 2004; Fujimoto et al., 2004; Wan et al., 2007). In 1991, perilipin 

was the first protein to be identified to specifically associate with LDs in vertebrates 

(Greenberg et al., 1991). Within the last 20 years several LD proteins were identified 

and described, giving new insights into LD formation, growth, function and 

metabolism (Beller et al., 2010; Martin and Parton, 2006; Murphy et al., 2009; Thiele 

and Spandl, 2008).  
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Figure 1. 

Schematic view of an LD 

Schematic representation of an LD is shown. A hydrophobic core mainly composed of TAG 

and esterified sterols is surrounded by a phospholipid monolayer with several associated and 

embedded proteins. Picture kindly provided by Mario Schöne. 

 

 

How and where LDs form is still under debate. Many cellular organelles self-replicate 

by fission, however LDs are thought to form de novo. A current but yet unproven 

model for LD formation is shown in Figure 2. Neutral lipids accumulate between the 

two ER leaflets until a new LD buds from the ER, taking with it the cytosolic 

membrane sheet from the ER, which in turn becomes the phospholipid monolayer 

surrounding the neutral lipid core of the LD (Martin and Parton, 2006).    
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Figure 2. 

A current model for the de novo formation of an LD 

Neutral lipids accumulate between the two ER leaflets which marks the site for the de novo 

formation of an LD. The nascent LD grows by acquiring more neutral lipids. Simultaneously 

proteins attach to the forming LD which finally buds from the ER. Picture kindly provided by 

Mario Schöne. 

 

 

After de novo formation, LDs are not static with respect to size, localization or protein 

composition. TAG can be synthesized locally on the surface of LDs by the activity of 

diacylglycerol O-acyltransferase 2 (DGAT2) and is thought to be stored within the 

hydrophobic core of LDs (Kuerschner et al., 2008). Phosphatidylcholine (PC), the 

main component of the LD phospholipid monolayer, can be synthesized locally by the 

activity of lysophosphatidylcholine acyltransferase (LPCAT) 1 and 2, which could 
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provide membrane lipids for growing LDs (Moessinger et al., 2011). Although a rare 

event, LDs have also been suggested to grow by fusion of individual LDs (Boström et 

al., 2005; Bostrom et al., 2007; Walther and Farese, 2009) or by shuttling of lipids 

from one LD to another, requiring both LDs to be in close contact with each other 

(Gong et al., 2011).  

 

 

1.2. LD clustering 

 

LDs have a diverse morphological appearance, ranging in size from less one µm in 

yeast and up to 100 µm in adipocytes (Walther and Farese, 2009; Zweytick et al., 

2000). But not only the size of LDs can vary; also their intracellular distribution is 

modular. LDs have been observed to move rapidly within cells (Targett-Adams et al., 

2003; Spandl et al., 2009) and that motility and intracellular redistribution of LDs 

depends on an intact microtubule network (Bostrom et al., 2005; Boulant et al., 2008; 

Targett-Adams et al., 2003). It was further shown that LD motility depends on the 

motor proteins dynein (Gross et al., 2000; Welte et al., 2005; Yu et al., 2011) and 

kinesin-1 (Shubeita et al., 2008). LD motility has been demonstrated to be important 

for the change in LD distribution in early Drosophila embryogenesis (Gross et al., 

2003; Welte et al., 1998; Yu et al., 2011). LD motility has also been suggested to be 

important for the exchange of lipids between LDs and distinct cellular compartments 

(Zehmer et al., 2009b; Bartz et al., 2007a; Liu et al., 2007; Ozeki et al., 2005; 

Goodman, 2008). The microtubule network and the motor protein dynein have also 

been suggested to be necessary for the clustering of LDs (Boström et al., 2005; Welte, 

2009; Boulant et al., 2008; Goodman, 2008).  

Even though LDs are usually dispersed throughout the cytosol (Welte, 2009; Walther 

and Farese, 2012), under certain conditions LDs have been observed to aggregate and 

form densely packed clusters, consisting of numerous individual LDs (Fowler and 

Greenspan, 1985; Walther and Farese, 2012; Scott et al., 2004). This LD clustering 

has been suggested to be a prerequisite for LD fusion (Jambunathan et al., 2011; 

Gong et al., 2011) whereas the opposite effect, LD declustering is thought to promote 

increased access to LDs by cytosolic lipases, thereby facilitating lipolysis 
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(Marcinkiewicz et al., 2006; Garcia et al., 2004; Christianson et al., 2010; Bickel et 

al., 2009). Also, core protein of HCV localizes to LDs and causes their clustering and 

it has been suggested that this redistribution of LDs increases pathogenicity of HCV 

(Boulant et al., 2008; Depla et al., 2010; Herker and Ott, 2011; Shavinskaya et al., 

2007).  

Sample images from two cell lines used in this work and depicting the different 

intracellular distributions of LDs are shown in Figure 3. COS-7 cells supplemented 

with oleate exhibit numerous LDs dispersed throughout the cell (Fig. 3, A) whereas 

A431 cells exhibit few clusters of numerous individual LDs (Fig. 3, B). 

 

 
 
Figure 3. 
LD distribution in COS-7 and A431 cells 

Fluorescent micrographs of two different cell-lines supplemented with 50 µM oleate are 

shown with LDs depicted in green and nuclei in blue. (A) COS-7 cells exhibit numerous LDs 

dispersed throughout the cytosol with no apparent clustering of LDs. (B) A431 cells show few 

densely packed LD clusters consisting of numerous individual LDs. 

 

 

Several proteins have been shown to promote LD clustering upon overexpression in 

cells but a molecular mechanism explaining how individual LDs are tethered to form 

LD clusters is currently unknown. LD proteomics revealed several proteins associated 

with LDs that are commonly known for vesicle mobility and docking to target 

membranes, mainly proteins of the Rab family (Bartz et al., 2007b; Brasaemle et al., 

2004). In addition, several members of the SNARE (soluble N-ethylmaleimide-
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sensitive-factor attachment receptor) membrane fusion machinery have been 

identified on LDs (Bostrom et al., 2007). Rab proteins have been shown to mediate 

movement of vesicles along the cytoskeleton and suggested to recruit proteins 

necessary for docking and tethering of vesicles to target membranes (Jordens et al., 

2005), whereas SNAREs are important for vesicle fusion events (Jahn and Scheller, 

2006). Rab and SNARE proteins might play similar roles in the cellular distribution, 

clustering and/or fusion of LDs (Bostrom et al., 2007).  

Ancient ubiquitous protein 1 (AUP1) is one protein that has been observed to promote 

LD clustering upon overexpression in COS-7 cells (Spandl Johanna, PhD thesis 

2009). Preliminary data also suggest that knock-down of AUP1 in the A431 cell line 

leads to a partial declustering of the otherwise predominant LD clusters observed in 

this cell line (Spandl Johanna, PhD thesis 2009). This thesis focuses on the 

elucidation of a possible molecular mechanism behind AUP1-induced LD clustering. 	  

 

 

1.3. Ancient Ubiquitous Protein 1 

 

AUP1 is a ubiquitously expressed and highly conserved protein among multi-cellular 

organisms that has a predicted length of 410 amino acids (Jang et al., 1996; Spandl et 

al., 2011). The AUP1 gene was first described as part of mouse chromosome 6 and 

human chromosome 2 (Jang et al., 1996; Weber et al., 1998) and AUP1 was later 

described as a cytosolic protein functioning in the signal transduction in platelets 

(Kato et al., 2002). Yet, AUP1 appeared in several LD proteomes generated from 

different labs (Brasaemle et al., 2004; Moessinger et al., 2011; Sato et al., 2006; Wan 

et al., 2007). Immunostaining and subcellular fractionation revealed AUP1 as an LD 

and ER membrane associated protein (Spandl et al., 2011; Klemm et al., 2011).  

AUP1 exhibits a hydrophobic stretch of amino acids close to its N-terminus 

(henceforward termed lipid droplet targeting (LDT) domain), which is assumed to be 

necessary for AUP1 localization to both, LDs and ER membranes (Stevanovic and 

Thiele, 2012; Spandl et al., 2011). Regardless of AUP1 localization to LDs or ER 

membranes, both the C- and N-termini of AUP1 face the cytoplasm (Fig. 4) (Spandl 

et al., 2011). Therefore, AUP1 belongs to the category of monotopic membrane 
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proteins. Indeed, monotopic integration of proteins into the monolayer of LDs and the 

ER bilayer has been shown for several LD proteins like LPCAT1 and 2 (Moessinger 

et al., 2011), DGAT2 (Stone et al., 2006) or NAD(P)H steroid dehydrogenase-like 

protein (NSDHL) (Ohashi et al., 2003; Caldas and Herman, 2003). 

Adjacent to the LDT domain resides a predicted acyltransferase (AT) domain, which 

appears to have weak acyltransferase activity (Spandl Johanna, PhD thesis 2009).  

At its C-terminus, AUP1 has two functional domains, a G2 binding region (G2BR) 

and a coupling of ubiquitin conjugation to ERAD (CUE) domain. The G2BR domain 

is necessary and sufficient to bind the ubiquitin conjugating enzyme E2 G2 (Ube2g2) 

and recruit Ube2g2 to LDs (Fig. 4) (Spandl et al., 2011; Klemm et al., 2011). The 

CUE domain belongs to a larger group of protein domains that have been shown to 

bind ubiquitin (further outlined below) (Fig. 4). The CUE domain of AUP1 has been 

suggested to bind ubiquitin and it has been demonstrated that the CUE domain is 

important for intramolecular ubiquitination of AUP1 itself (Klemm et al., 2011), yet 

no function could be assigned to this posttranslational modification. However, 

preliminary data suggests that deletion of the AUP1 G2BR and CUE domain inhibits 

intramolecular ubiquitination of AUP1 and negatively influences the ability of AUP1 

to promote LD clustering (Spandl Johanna, PhD thesis 2009).   

Phosphoproteome profiles from different cell lines found AUP1 to be highly 

phosphorylated at several threonine and serine residues (Dephoure et al., 2008; Kim 

et al., 2006; Yang et al., 2006). Preliminary data suggested that a specific 

phosphorylation of AUP1 at threonine 68 negatively interferes with the ability of 

AUP1 to induce LD clustering (Spandl Johanna, PhD thesis 2009). Interestingly, a 

recent study suggested that phosphorylation of the LD associated protein perilipin A 

leads to the declustering of LD clusters (Marcinkiewicz et al., 2006).  
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Figure 4. 

AUP1 domain structure 

Schematic representation of the AUP1 domain structure and their proposed functions are 

shown. The LDT domain at the N-terminus is important for targeting of AUP1 to LDs and is 

followed by the predicted AT domain. There are two functional domains at the C-terminus. 

The CUE domain is important for intramolecular ubiquitination of AUP1 and is thought to bind 

ubiquitin and the G2BR domain binds the E2 ubiquitin conjugase Ube2g2.  

 

 

A phyllogenetic analysis of AUP1 uncovered a close correlation to Cue1p in yeast 

and to the E3 ubiquitin ligase autocrine motility factor receptor (AMFR) in higher 

eukaryotes (Spandl et al., 2011). All three proteins share the conserved CUE and 

G2BR domains (Spandl et al., 2011). Cue1p and AMFR participate in ER associated 

degradation (ERAD), in which misfolded or unassembled proteins from the ER are 

targeted for destruction by the proteasome (Meusser et al., 2005; Vembar and 

Brodsky, 2008). AUP1 has been repeatedly suggested to participate in ERAD by 

recruiting already ubiquitinated ER proteins, binding components of ER quality 

control machinery or by directing Ube2g2 to sites of protein ubiquitination at the ER 
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(Claessen et al., 2010; Klemm et al., 2011; Mueller et al., 2008; Spandl et al., 2011). 

However, the specific role of AUP1 in ERAD is still unknown. 

 

 

1.4. Ubiquitin 

 

Ubiquitin is a 76 amino acid long globular protein that is found in all eukaryotic life 

forms (Kerscher et al., 2006). Ubiquitin itself can be covalently attached to other 

proteins in a highly specific and regulated process, termed ubiquitination. The best 

understood function for protein ubiquitination is in targeting proteins for degradation 

by the proteasome, but ubiquitination has additional functions in such diverse 

processes as endocytosis, histone modification or membrane transport (Weake and 

Workman, 2008; Schnell and Hicke, 2003; Chen and Sun, 2009). The degradation of 

proteins by the ubiquitin-proteasome system consists of two main events. First, 

through the consecutive action of three classes of enzymes a polyubiquitin chain is 

assembled on the target protein and second, the polyubiquitinated protein is targeted 

to and degraded by the proteasome (Fig. 5) (Hershko and Ciechanover, 1998). 

Ubiquitin is commonly attached to the target protein by the formation of an isopeptide 

bond between the C-terminal glycine of ubiquitin and a lysine residue within the 

target protein (Hershko and Ciechanover, 1998).  
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Figure 5. 

The ubiquitin-proteasome system 

Ubiquitin is attached to a specific substrate by the consecutive action of E1 (or ubiquitin 

activating enzyme), E2 (or ubiquitin conjugating enzyme), and E3 (or ubiquitin ligase). The C-

terminal glycine residue of ubiquitin is attached to a lysine residue within the target protein 

through the formation of an isopeptide bond. Additional ubiquitin moieties are transferred to 

the already attached ubiquitin until a polyubiquitin chain is assembled on the substrate, which 

is subsequently degraded by the proteasome. 

 

 

For polyubiquitin chain assembly, ubiquitin moieties are covalently linked to each 

other through isopeptide bonds between a lysine residue of one moiety already 

attached to the target protein and the C-terminal glycine of the next moiety (Fang and 

Weissman, 2004). Proteasomal degradation of proteins is mainly mediated by 

polyubiquitin chains linked through lysine 48 (Hershko and Ciechanover, 1998). 

However, ubiquitin chains linked through different lysine residues on ubiquitin have 

been shown to be important for proteasomal degradation as well (Ikeda and Dikic, 

2008; Jin et al., 2008; Saeki et al., 2009). 
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1.5. Monoubiquitination 

 

Ubiquitin attached to a protein is not always further ubiquitinated to form a 

polyubiquitin chain; proteins can be modified by a single ubiquitin moiety, a process 

termed monoubiquitination (Johnson, 2002). Protein monoubiquitination, like 

polyubiquitination, is a highly regulated protein modification, which controls a 

diverse range of cellular processes (Fig. 6) (Schnell and Hicke, 2003). 

Monoubiquitination of cell surface receptors can lead to their endocytosis and cycling 

to lysosomes (Haglund et al., 2003; Sigismund et al., 2005). Monoubiquitination of 

histones exerts transcriptional control over many genes (Zhou et al., 2008; Weake and 

Workman, 2008). Monoubiquitination of proteins can also control their subcellular 

localization, conformation or interaction with other proteins (Haglund and Dikic, 

2005). 

It has been shown that proteins can be monoubiquitinated at several single lysine 

residues within the same protein. This multiple monoubiquitination of proteins has 

been shown to be important for endocytotic events in cells (Fig. 6) (Haglund and 

Dikic, 2005).  

 

 
 

Figure 6. 

Protein ubiquitination  

Schematic view of different protein ubiquitination variants is shown. A protein can be modified 

by one ubiquitin moiety (monoubiquitination), an important signal for histone regulation, 

endocytosis, DNA repair or endosomal sorting. Several individual ubiquitin moieties can be 

attached to the same protein (multiple monoubiquitination), an important signal for 

endocytosis. The polyubiquitination of a protein through lysine 48 linked ubiquitin moieties is 

the major signal for protein degradation by the proteasome.  
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1.6. Ubiquitin-binding domains 

 

How monoubiquitination of proteins control all these different cellular aspects is as 

yet not entirely understood. One emerging scheme suggests that a diverse range of 

effector proteins can interact in a non-covalent fashion with ubiquitin covalently 

attached to another protein, thereby acting downstream of protein monoubiquitination 

and translating this modification into its many cellular functions (Fig. 7, A) (Haglund 

et al., 2003; Haglund and Dikic, 2005; Harper and Schulman, 2006; Ramanathan and 

Ye, 2012). At least 20 different protein domains, which specifically bind ubiquitin in 

a non-covalent fashion have been identified so far and have been summarized as 

ubiquitin-binding domains (UBDs) (Chen and Sun, 2009; Hurley et al., 2006). 

Proteins containing a UBD are commonly referred to as ubiquitin-receptors. A well-

studied ubiquitin-receptor is the epidermal growth factor pathway substrate 15 

(Eps15). Eps15 is thought to bind ubiquitin covalently attached to epidermal growth 

factor receptor (EGFR) by virtue of its UBD and thereby function in EGFR 

endocytosis (de Melker et al., 2004; van Bergen En Henegouwen, 2009).  

In addition, it has been demonstrated that Eps15 itself undergoes monoubiquitination 

(Klapisz et al., 2002; Woelk et al., 2006; Hoeller et al., 2006). It has been speculated 

that this monoubiquitination of Eps15 could serve as a self-inhibitory signal, 

preventing Eps15 from binding to other ubiquitinated proteins (B). It is thought that 

the UBD of Eps15 can directly bind to the intramolecular attached ubiquitin, which in 

turn prevents the UBD from interacting with other ubiquitinated proteins, like EGFR 

(for a representative model see Fig. 7, C) (de Melker et al., 2004; van Bergen En 

Henegouwen, 2009). 

The monoubiquitination of ubiquitin-receptors, like Eps15, is a feature shared by 

several UBD containing proteins (Klapisz et al., 2002; Hicke et al., 2005b; Di Fiore et 

al., 2003) including AUP1 (Klemm et al., 2011). A functional UBD is thought to be a 

prerequisite for the monoubiquitination of ubiquitin-receptors and hence has been 

termed coupled monoubiquitination (Fig. 7, B). Coupled monoubiquitination has been 

worked out in molecular detail for Eps15. I was shown that the UBD of Eps15 binds 

ubiquitin covalently attached to the E3 ubiquitin ligase NEDD4 (neural precursor cell 

expressed developmentally down-regulated 4) which in turn transfers an activated 
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ubiquitin to Eps15 itself (Woelk et al., 2006). Coupled monoubiquitination of Eps15 

is also accomplished in an analogous mechanism by the E3 ubiquitin ligase Parkin 

(Fallon et al., 2006b; Haglund and Stenmark, 2006). Parkin contains a ubiquitin-like 

(UBL) domain which has been shown to exhibit similar overall structure and fold 

characteristics to ubiquitin (Chen et al., 2011; Welchman et al., 2005). It has therefore 

been suggested that the UBL domain of Parkin interacts with the UBD of Eps15 and 

subsequently transfers a ubiquitin to Eps15 itself (Fallon et al., 2006a; Haglund and 

Stenmark, 2006).  

 
 

Figure 7. 

A ubiquitin-receptor and its diverse interactions with ubiquitin  
Schematic representation of a ubiquitin-receptor and its interaction with ubiquitin is shown. (A) 

UBD containing proteins bind to monoubiquitinated proteins and mediate downstream 

signaling events. (B) Coupled monoubiquitination leads to the intramolecular 

monoubiquitination of a ubiquitin-receptor. Ubiquitin covalently attached to an E3 ubiquitin 

ligase binds to the UBD and thereafter transfers an activated ubiquitin to the UBD containing 

protein.  (C) Intramolecular interaction between a covalently attached ubiquitin and the UBD 

on the same protein leads to self-inhibition of a ubiquitin-receptor. 
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1.7. Molecular interaction of ubiquitin and UBDs 

 

Binding of UBDs to ubiquitin relies on specific amino acid residue contacts between 

ubiquitin and the UBD. Key hydrophobic amino acids of several UBDs have been 

demonstrated to contact a highly conserved hydrophobic patch on ubiquitin centered 

around isoleucine 44 and comprising leucine 8 and valine 70 (Chen and Sun, 2009; 

Hicke et al., 2005b; Hurley et al., 2006). These hydrophobic contacts are crucial for 

the vast majority of UBD ubiquitin interactions (Chen and Sun, 2009). However, 

other amino acid residues on ubiquitin have been shown to be important for binding to 

UBDs. One such exception is the Rabex-5 ubiquitin binding zinc finger (RUZ) 

domain of RABEX-5 (Rabaptin-5 associated exchange factor for Rab5), which 

interacts specifically with aspartic acid 58 on ubiquitin (Penengo et al., 2006; Lee et 

al., 2006). Considering the highly conserved nature of ubiquitin, additional residues 

on ubiquitin important for UBD interaction might be unraveled in the future (Raiborg 

et al., 2006; Hicke et al., 2005b). An overview of amino acid residues on ubiquitin 

mentioned in this thesis is given in Figure 8. 

 
Figure 8. 

Several important amino acid residues on ubiquitin 

Schematic representation of a ubiquitin moiety with annotated amino acid residues (structure 

and relative distribution of amino acid residues derived from (Chung et al., 2010; Hicke et al., 

2005b; Holstein et al., 2012). A hydrophobic patch consisting of leucine 8 (L8), isoleucine 44 

(I44) and valine 70 (V70) is important for binding to most UBDs. Aspartic acid 58 (D58) is 

important for binding to the RUZ domain of Rabex-5. Glycine 76 (G76) is covalently linked to 

lysine residues of other proteins or other ubiquitin moieties. Lysine 48 (K48) is the primary 

residue for covalent attachment of additional ubiquitin moieties to form a polyubiquitin chain. 
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2. Aim of this thesis 
 

 

In general, the aim of this thesis is to contribute to the molecular understanding of the 

cell biology of lipid droplets. Ancient ubiquitous protein 1 (AUP1) is a lipid droplet 

(LD) associated protein, which has been observed to influence the intracellular 

distribution of LDs. This thesis intends to characterize and quantify the impact of 

AUP1 overexpression and knock-down on the intracellular distribution of LDs. 

The main body of experiments engages in the elucidation of molecular mechanisms 

behind AUP1-induced redistribution of LDs. Special focus is laid on the suggested 

posttranslational modifications of AUP1 through ubiquitination and phosphorylation. 

The following questions were approached during the work of this thesis: 

 

• Are any of the functional domains of AUP1 necessary for the redistribution of 

intracellular LDs? 

• Is the localization of AUP1 to LDs necessary for its impact on the 

redistribution of LDs? 

• What are the molecular mechanisms behind the ubiquitination of AUP1? 

• Which lysine residues of AUP1 are targeted by ubiquitination? 

• Does the ubiquitination of AUP1 influence the intracellular distribution of 

LDs? 

• Does the phosphorylation of AUP1 influence the intracellular distribution of 

LDs? 
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3. Materials and Methods 
 

 

3.1. Materials 

	  

3.1.1. Chemicals and cell culture media 

Cell culture media (DMEM, FCS, trypsin/EDTA, Opti-MEM) were obtained from 

Life Technologies. DNA preparation was done using NucleoBond Xtra Midi, 740410 

and NucleoSpin Plasmid, 740588 from Macherey-Nagel (Düren, Germany) or 

QIAquick gel extraction kit, 28704 from Qiagen (Hilden, Germany). Chemicals were 

obtained from AppliChem (Darmstadt, Germany) or Carl Roth (Karlsruhe, Germany). 

Enzymes (Restriction enzymes, Phosphatases, DNA-Polymerase (Phusion High 

Fidelity), dNTPs, loading dye, protein and DNA ladders were obtained from New 

England BioLabs (Ipswich, United States). Primers were obtained from Biosprings 

(Frankfurt, Germany). 

 

3.1.2. siRNAs, Constructs, Primers 

The following siRNAs targeting AUP1 were obtained from Life Technologies: 

siRNA1: AUP1 Stealth Select RNAi siRNA (HSS141340) 

siRNA2: AUP1 Stealth Select RNAi siRNA (HSS141341) 

siRNA3: AUP1 Stealth Select RNAi siRNA (HSS182853) 

 

 

Table 1: List of Constructs and Primers 
Name	   Alias	   Vector/	  

Resistance	  
Primer	  and	  Template	  or	  Source	   Restrictio

n	  Sites	  
AUP1-‐HA	   pCT7	   pCDNA3.1Hygro-‐

3HA	  
ampicillin	  

hAUP1_HA_Hindfor	  
CTAGATAAGCTTGCCATGGAGCTTCCCTCAGGGCC	  
hAUP1_HA_Xba_rev	  
CTATCTAGAGTCAGCCTCCTGGGCTCG	  
Template:	  AUP1-‐EST	  

HindIII/	  
XbaI	  

AUP1-‐
∆G2BR-‐HA	  

pCT15	   pCDNA3.1Hygro-‐
3HA	  
ampicillin	  

hAUP1_HA_Hindfor	  
CTAGATAAGCTTGCCATGGAGCTTCCCTCAGGGCC	  
AUP_trunc2_nostop_xba	  
CTATCTAGAGCTGGGAAACTTGGAGGCAG	  
Template:	  pAUP1	  

HindIII/	  
XbaI	  
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AUP1-‐
T68D-‐HA	  

pCT116	   pCDNA3.1Hygro-‐
3HA	  
ampicillin	  

Source:	  pCT92	  	   HindIII/	  
XbaI	  

AUP1-‐
T68A-‐HA	  

pCT117	   pCDNA3.1Hygro-‐
3HA	  
ampicillin	  

Source:	  pCT93	   HindIII/	  
XbaI	  

3HA-‐Ub	   pWZ1	   ampicillin	   Wolfgang	  Zachariae	   	  
6His-‐Ub	   pWZ2	   ampicillin	   Wolfgang	  Zachariae	   	  
AUP1-‐	  
mutLDT1-‐
HA	  

pAS1	   pCDNA3.1Hygro-‐
3HA	  
ampicillin	  

AUP1-‐P33L-‐V34L-‐G35L-‐HA	  
As	  described	  in	  (Stevanovic	  and	  Thiele,	  2012)	  

	  

AUP1-‐	  
mutLDT2-‐
HA	  

pAS2	   pCDNA3.1Hygro-‐
3HA	  
ampicillin	  

AUP1-‐R62F-‐R63F-‐HA	  
As	  described	  in	  (Stevanovic	  and	  Thiele,	  2012)	  

	  

AUP1-‐
mutCUE1-‐
HA	  

pDL45	   pCDNA3.1Hygro-‐
3HA	  
ampicillin	  

AUP1_CUE_VLP-‐GGR_for	  
GCTCAGAGAGTCAAGGAAGGTGGGCGCCATGTGCCATT
GGG	  
AUP1_CUE_VLP-‐GGR_rev	  
CCCAATGGCACATGGCGCCCACCTTCCTTGACTCTCTGA
GC	  
AUP1_HindIII_for	  
GTGCCAAGCTTGCCATGGAGC	  
AUP1_rev	  
GGATCCTCTAGAGTCAGC	  
Template:	  pCT7	  

HindIII/	  
XbaI	  

AUP1_CUET
I\AD_3HA	  

pDL64	   pCDNA3.1Hygro-‐
3HA	  
ampicillin	  

AUP1_CUE_TI\AD_for	  
GGCTGTGTAGACTTGGCTGACACTAATCTGCTTGAGG	  
AUP1_CUE_TI\AD_rev	  
CCTCAAGCAGATTAGTGTCAGCCAAGTCTACACAGCC	  
AUP1_HindIII_for	  and	  AUP1_rev	  
Template:	  pCT7	  

HindIII/	  
XbaI	  

AUP1-‐
mutCUE2-‐
HA	  

pDL71	   pCDNA3.1Hygro-‐
3HA	  
ampicillin	  

AUP1_CUE_VIQRDL\VRQRVD_for	  
CCATGTGCCATTGGGTGTCCGCCAGAGAGTCGAGGCCA
AGACTGGCTGTGTAGAC	  
AUP1_CUE_VIQRDL\VRQRVD_rev	  
GTCTACACAGCCAGTCTTGGCCTCGACTCTCTGGCGGAC
ACCCAATGGCACATGG	  
AUP1_HindIII_for	  and	  AUP1_rev	  
Template:	  pDL64	  

HindIII/	  
XbaI	  

AUP1-‐
K305R-‐HA	  

pDL75	   pCDNA3.1Hygro-‐
3HA	  
ampicillin	  

AUP1_K305R_for	  
GCTCAGAGAGTCCGGGAAGTTTTGCC	  
AUP1_K305R_rev	  
GGCAAAACTTCCCGGACTCTCTGAGC	  
AUP1_HindIII_for	  and	  AUP1_rev	  
Template:	  pCT7	  

HindIII/	  
XbaI	  

AUP1-‐
K322R-‐HA	  

pDL76	   pCDNA3.1Hygro-‐
3HA	  
ampicillin	  

AUP1_K322R_for	  
CCAGAGAGACCTGGCCCGGACTGGCTGTGTAGACTTG	  
AUP1_K322R_rev	  
CAAGTCTACACAGCCAGTCTTGGCCAGGTCTCTCTGG	  
AUP1_HindIII_for	  and	  AUP1_rev	  
Template:	  pCT7	  

HindIII/	  
XbaI	  

AUP1-‐
K143R-‐HA	  

pDL87	   pCDNA3.1Hygro-‐
3HA	  
ampicillin	  

AUP1_K1/R_for	  
GGTGGAGTCACTCAGGAGATTCTGTGCTTCC	  
AUP1_K1/R_rev	  
GGAAGCACAGAATCTCCTGAGTGACTCCACC	  
AUP1_HindIII_for	  and	  AUP1_rev	  
Template:	  pCT7	  

HindIII/	  
XbaI	  

AUP1-‐	  
K250R-‐HA	  

pDL89	   pCDNA3.1Hygro-‐
3HA	  
ampicillin	  

AUP1K2Rnew-‐for	  
CAGCTGGTGGCCAGGGAATTGG	  
AUP1_K2/R_rev	  
CCCTGTCTGGCCCAATTCCCTGGCCACCAGC	  
AUP1_HindIII_for	  and	  AUP1_rev	  
Template:	  pCT7	  

HindIII/	  
XbaI	  

AUP1-‐
K264R/K26
9R-‐HA	  

pDL91	   pCDNA3.1Hygro-‐
3HA	  
ampicillin	  

AUP1_KK3-‐4/RR_for	  
CCAGCTGACAGAGCAGAGCACATGAGGCGACAAAGACA
CCCC	  
AUP1_KK3-‐4/RR_rev	  
GGGGTGTCTTTGTCGCCTCATGTGCTCTGCTCTGTCAGC
TGG	  
AUP1_HindIII_for	  and	  AUP1_rev	  
Template:	  pCT7	  
	  

HindIII/	  
XbaI	  
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AUP1-‐
K347R-‐HA	  

pDL130	   pCDNA3.1Hygro-‐
3HA	  
ampicillin	  

AUP1_K347R_for	  
GCCTGAAGACATCACCCGGGGAACTCAGTCC	  
AUP1_K347R_rev	  
GGACTGAGTTCCCCGGGTGATGTCTTCAGGC	  
AUP1_HindIII_for	  and	  AUP1_rev	  
Template:	  pCT7	  

HindIII/	  
XbaI	  

AUP1-‐
K359R-‐HA	  

pDL131	   pCDNA3.1Hygro-‐
3HA	  
ampicillin	  

AUP1_K359R_for	  
GCCTCTGCCTCCCGGTTTCCCAGCTCTGG	  
AUP1_K359R_rev	   	  
CCAGAGCTGGGAAACCGGGAGGCAGAGGC	  
AUP1_HindIII_for	  and	  AUP1_rev	  
Template:	  pCT7	  

HindIII/	  
XbaI	  

AUP1-‐
mutCUE3-‐
HA	  

pDL174	   pCDNA3.1Hygro-‐
3HA	  
ampicillin	  

AUP1_L333E_L334D_for	  
CTATCACTAATGAGGATGAGGGGGCCG	  
AUP1_L333E_L334D_rev	  
CGGCCCCCTCATCCTCATTAGTGATAG	  
AUP1_HindIII_for	  and	  AUP1_rev	  
Template:	  pCT7	  

HindIII/	  
XbaI	  

Ub-‐K48R-‐	  
noStop	  

pDL189	   pCDNA3	  
ampicillin	  

Ub_K48R_for	  
GCTGGGCGACAGCTGGAAGATGG	  
Ub_K48R_rev	  
CCATCTTCCAGCTGTCGCCCAGC	  
Ub-‐EcorI-‐for	  
CGGGAATTCTCCATGCAGATCTTCG	  
Ub-‐noStop-‐XbaI-‐rev	  
GCCTCTAGAACCACCTCTTAG	  
Template:	  Ub-‐3HA	  

EcoRI/	  
XbaI	  

AUP1-‐
UbK48R-‐HA	  

pDL196	   pCDNA3.1Hygro-‐
3HA	  
ampicillin	  

	  AUP1_HindIII_for	  	  
AUP1_nostop_EcorI_rev	  
GGTAGAATTCGTCAGCCTCCTGGGCTCG	  
Template:	  pCT7	  
HindIII/EcoRI	  cloned	  into	  pDL189	  HindIII/EcoRI	  cut	  
again	  HindIII/XbaI	  cloned	  into	  pCDNA3.1Hygro-‐3HA	  
HindIII/XbaI	  

HindIII/	  
XbaI	  

AUP1-‐
mutCUE2-‐
UbK48R-‐HA	  

pDL198	   pCDNA3.1Hygro-‐
3HA	  
ampicillin	  

AUP1_HindIII_for	  and	  AUP1_nostop_EcorI_rev	  	  
Template:	  pDL71	  
HindIII/EcoRI	  cloned	  into	  pDL189	  HindIII/EcoRI	  cut	  
again	  HindIII/XbaI	  cloned	  into	  pCDNA3.1Hygro-‐3HA	  
HindIII/XbaI	  

HindIII/	  
XbaI	  

AUP1340-‐410	   pDL206	   pCDNA3	  
ampicillin	  	  

AUP1-‐dCUE-‐for	  
GCCGTAGAATTCATGCCTGAAG	  
AUP1_rev	  
Template:	  pCT7	  

EcoRI/	  
XbaI	  

AUP11-‐293	   pDL207	   pCDNA3	  
ampicillin	  	  

AUP1-‐dCUE-‐rev	  
GCCAGTTGGAATTCAGGAGAAG	  
AUP1_HindIII_for	  
Template:	  pCT7	  

HindIII/	  
EcoRI	  

AUP1-‐3MYC	  
	  

pDL208	   MoMyc9-‐XhoI-‐
3.1Hygro-‐9DG2	  
ampicillin	  

Source:	  pCT7	   HindIII/	  
XbaI	  

AUP1-
mutG2BR-
MYC	  

pDL211	   MoMyc9-‐XhoI-‐
3.1Hygro-‐9DG2	  
ampicillin	  
	  

AUP1-‐A397E-‐R398G-‐R400E-‐F401D-‐T402A-‐HA)	  
AUP1_ARRFT/EGEDA_for	  
GAATACGAAGGAAGGGAAGACGCAGAGAGACGAGCCC	  
AUP1_ARRFT/EGEDA_rev	  
GGGCTCGTCTCTCTGCGTCTTCCCTTCCTTCGTATTC	  
AUP1_HindIII_for	  and	  AUP1_rev	  
Template:	  pCT7	  

HindIII/	  
XbaI	  

AUP1_Δ295	  
339_V294E	  

pDL212	   pCDNA3	  
ampicillin	  

pDL206	  EcoR/XbaI	  cloned	  into	  pDL207	  EcoRI/XbaI	   EcoRI/	  
XbaI	  

AUP1-‐
ΔCUE-‐HA	  

pDL213	   pCDNA3.1Hygro-‐
3HA	  
ampicillin	  

Source:	  pDL212	   HindIII/	  
XbaI	  

AUP1-‐
ΔCUE-‐	  
MYC	  

pDL214	   MoMyc9-‐XhoI-‐
3.1Hygro-‐9DG2	  
ampicillin	  

Source:	  pDL213	   HindIII/	  
XbaI	  

AUP1-‐
ΔCUE-‐
T68D-‐HA	  

pDL219	   pCDNA3.1Hygro-‐
3HA	  
ampicillin	  

AUP1-‐T68D-‐sense,	  AUP1-‐T68D-‐anti,	  AUP1_HindIII_for	  
and	  AUP1_rev	  
Template:	  pDL213	  

HindIII/	  
XbaI	  

AUP1-‐
ΔCUE-‐
T68A-‐HA	  

pDL220	   pCDNA3.1Hygro-‐
3HA	  
ampicillin	  

AUP1-‐T68A-‐sense,	  AUP1-‐T68A-‐anti,	  AUP1_HindIII_for	  
and	  AUP1_rev	  
Template:	  pDL213	  
	  

HindIII/	  
XbaI	  
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AUP1-‐
ΔG2BR-‐
T68D-‐HA	  

pDL223	   pCDNA3.1Hygro-‐
3HA	  
ampicillin	  

AUP1-‐T68D-‐sense	  
GCAGATTCGTAGTGCGGGACATGTGTGCGGTGCTAGG	  
AUP1-‐T68D-‐anti	  
CCTAGCACCGCACACATGTCCCGCACTACGAATCTGC	  
AUP1_HindIII_for	  
AUP_trunc2_stop_xba	  
CTATCTAGATTAGCTGGGAAACTTGGAGGCAG	  
Template:	  pCT7	  

HindIII/	  
XbaI	  

AUP1-‐
ΔG2BR-‐
T68A-‐HA	  

pDL224	   pCDNA3.1Hygro-‐
3HA	  
ampicillin	  

AUP1-‐T68A-‐sense	  
GCAGATTCGTAGTGCGGGCCATGTGTGCGGTGCTAGG	  
AUP1-‐T68A-‐anti	  
CCTAGCACCGCACACATGGCCCGCACTACGAATCTGC	  
AUP1_HindIII_for	  and	  AUP_trunc2_stop_xba	  
Template:	  pCT7	  

HindIII/	  
XbaI	  

NSDHL-‐
UbK48R-‐HA	  

pDL254	   pCDNA3.1Hygro-‐
3HA	  
ampicillin	  

NSDHLfull-‐HindIII-‐for	  
CTTAAGCTTGCCATGGAACCAGCAG	  
NSDHLfull-‐EcoRI-‐rev	  
CTCGAATTCCTTGACCCTCCG	  
Template:	  pCT76	  
HindIII/EcoRI	  cloned	  into	  pDL189	  HindIII/EcoRI	  cut	  
again	  HindIII/XbaI	  cloned	  into	  pCDNA3.1Hygro-‐3HA	  
HindIII/XbaI	  

HindIII/	  
XbaI	  

AUP1-‐
ΔCUE-‐
UbK48R-‐HA	  

pDL263	   pCDNA3.1Hygro-‐
3HA	  
ampicillin	  

AUP1_HindIII_for	  and	  AUP1_nostop_EcorI_rev	  	  
Template:	  pDL213	  
Sequential	  digestion	  with	  HindIII/EcoRI	  cloned	  into	  
pDL189	  HindIII/EcoRI	  cut	  again	  HindIII/XbaI	  cloned	  
into	  pCDNA3.1Hygro-‐3HA	  HindIII/XbaI	  

HindIII/	  
XbaI	  

NSDHL-‐	  
noStop	  

pDL288	   pCDNA3	  
ampicillin	  

NSDHL-‐EcorI-‐for	  
CTTGAATTCGCCATGGAACCAGCAG	  
NSDHL-‐XbaI-‐rev	  
CTCTCTAGACTTGACCCTCCG	  
Template:	  pCT76	  

EcoRI/	  
XbaI	  

UbK48R-‐	  
NSDHL-‐HA	  

pDL290	   pCDNA3.1Hygro-‐
3HA	  
ampicillin	  

Ub-‐NoLys-‐HindIII-‐for	  
CTGAAGCTTTCCATGCAGATCTTCG	  
Ub-‐NoLys-‐EcorI-‐rev	  
GCCGAATTCACCACCTCTTAG	  
Template:	  pDL189	  
HindIII/EcoRI	  cloned	  into	  pDL290	  HindIII/EcoRI	  cut	  
again	  HindIII/XbaI	  cloned	  into	  pCDNA3.1Hygro-‐3HA	  
HindIII/XbaI	  

HindIII/	  
XbaI	  

AUP1-‐
ΔCUE-‐	  
UbK48R-‐
D58A-‐HA	  

pDL311	   pCDNA3.1Hygro-‐
3HA	  
ampicillin	  

Ub-‐D58A-‐for	  
CTGTCTGCCTACAACATC	  
Ub-‐D58A-‐rev	  
GATGTTGTAGGCAGACAG	  
Ub-‐noStop-‐XbaI-‐rev	  and	  AUP1_HindIII_for	  
Template:	  pDL263	  

HindIII/	  
XbaI	  

AUP1-‐
ΔCUE-‐	  
UbI44A-‐
K48R-‐HA	  

pDL314	   pCDNA3.1Hygro-‐
3HA	  
ampicillin	  

Ub-‐I44AonK48R-‐for	  
CAGAGGTTGGCCTTTGCTGG	  
Ub-‐I44AonK48R-‐rev	  
CCAGCAAAGGCCAACCTCTG	  
Ub-‐noStop-‐XbaI-‐rev	  and	  AUP1_HindIII_for	  
Template:	  pDL263	  

HindIII/	  
XbaI	  

AUP1-‐
10KR-‐HA	  

pDL366	   pCDNA3.1Hygro-‐
3HA	  
ampicillin	  

See	  methods:	  3.2.9.	  DNA	  amplification	  and	  
modification	  by	  PCR	  

HindIII/	  
XbaI	  

AUP1-‐
10KR-‐
UbK48R-‐HA	  

pDL368	   pCDNA3.1Hygro-‐
3HA	  
ampicillin	  

AUP1_HindIII_for	  and	  AUP1_nostop_EcorI_rev	  	  
Template:	  pDL366	  
HindIII/EcoRI	  cloned	  into	  pDL189	  HindIII/EcoRI	  cut	  
again	  HindIII/XbaI	  cloned	  into	  pCDNA3.1Hygro-‐3HA	  
HindIII/XbaI	  

HindIII/	  
XbaI	  

Constructs with alias pCT, pWZ and pAS were kindly supplied by Christoph Thiele, 

Wolfgang Zachariae and Ana Stevanovic, respectively.  

Constructs pCT7, pCT15 and pDL211 were described before (Spandl et al., 2011). 

Constructs pCT116 and pCT117 were described (Spandl Johanna, PhD thesis 2009). 

pCDNA3.1Hygro-3HA was used as control when indicated. 
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3.1.3. Antibodies 

Table 2: List of primary antibodies 

Name/antigen Species Dilution Producer 

AUP1/ancient ubiquitous 

protein 1 

Rabbit 1:5000 (WB) 

1:400 (IF) 

Christoph Thiele, 

cited in (Spandl et al., 

2011) 

HA-F7/Influenza hemagglutinin Mouse 1:1000 (WB) 

1:100 (IF) 

Santa cruz, 

7329 

HA-Y11/Influenza 

hemagglutinin 

Rabbit 1:1000 (WB) Santa cruz, 805 

Myc-9E10/C-myc Mouse 1:1000 (WB) Santa cruz, 40 

Myc-A-14/C-myc Rabbit 1:1000 (WB) Santa cruz, 789 

ACSL3/acyl-CoA synthetase 

long-chain family member3 

Rabbit 1:2500 (WB) Christoph Thiele, 

cited in (Spandl et al., 

2011) 

NSDHL/NAD(P)H steroid 

dehydrogenase-like protein 

Rabbit 1:2500 (WB) Christoph Thiele, 

cited in (Moessinger 

et al., 2011) 

GAPDH (1D4)/glyceraldehyde- 

3-phosphate dehydrogenase 

Mouse 1:1000 (WB) NovusBiologicals, 

NB300-221 

 

 

3.2. Methods 

 

3.2.1. Cell culture 

COS-7 and A431 cell line were from ATCC (Virginia, US) with ID numbers CRL-

1651 and CRL-1555, respectively. COS-7 and A431 cells were grown in a humidified 

incubator with 5% CO2 at 37°C and cultured in DMEM (Gibco, 41965) supplemented 

with 10% FCS (Gibco, 10437). Cells were split regularly at around 80% confluency 

with trypsin/EDTA (Gibco, 25300).  
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3.2.2. Thawing of cells 

Vials containing frozen cells were thawed in a water bath set at 37°C. Then, cells 

were transferred into a new culture flask and DMEM + 10% FCS was added. Cells 

were kept in the humidified incubator and split at 80% confluency. 

3.2.3. DNA transfection 

For transfection in 24-well and 6-well plates, cells were grown until reaching a 

confluency of around 70%, washed with PBS and 200 µl Opti-MEM (Gibco, 11058) 

were added to each well of a 24-well or 1ml to each well of a 6-well plate and kept in 

the humidified incubator.  

3-4 µl Lipofectamine 2000 (Life Technologies, 11668-019) was mixed with 100 µl 

Opti-MEM, and 1 µg of plasmid DNA was mixed with another 100 µl of Opti-MEM. 

Both mixes were incubated for 5min at room temperature and then both mixes were 

combined and incubated for another 20min. From this transfection mix, 40 µl per well 

of a 24-well or 200 µl per well of a 6-well plate were added drop wise to the prepared 

cells. 4h post transfection medium was replaced by 1 ml per well of a 24-well or 3 ml 

per well of a 6-well plate of fresh DMEM + 10% FCS supplemented with 50 µM 

oleate. For analysis of cellular proteins or analysis by microscopy cells were 

harvested or fixed approximately 24h post transfection.  

 

3.2.4. siRNA transfection 

Approximately 5000 A431 cells were plated per well of a 24-well plate in 1 ml 

DMEM + 10% FCS the day before transfection. The next day cells were washed with 

PBS and 200 µl Opti-MEM were added to each well of the 24-well plate. 0.8 µl 

Lipofectamine 2000 was mixed with 50 µl Opti-MEM, and 2 µl siRNA (20 µM) (see 

3.1.3.) was mixed with another 50 µl Opti-MEM. Both mixes were incubated for 

5min at room temperature and then both mixes were combined and incubated for 

another 20min. The entire transfection mix was added drop wise to the prepared cells. 

Cells were incubated over night and then the transfection medium was replaced by 

1ml per well of a 24-well plate of fresh DMEM + 10% FCS supplemented with 50 

µM oleate. For analysis of cellular proteins or analysis by microscopy cells were 

harvested or fixed approximately 72h post transfection.  
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3.2.5. Cultivation of E. coli 

E. coli were grown in LB-Medium or on LB-Agar plates (LB-Medium: 5 g/L yeast 

extract, 10 g/L NaCl, 10 g/L tryptone, containing ampicillin (amp) (100 µg/ml) or 

kanamycin (kan) (50 µg/ml) at 37°C shaking at 180rpm or without shaking for cells 

grown on LB-Agar plates. 

 

3.2.6. Preparation of chemical competent E. coli 

E. coli DH5-alpha cells were grown in 250 ml SOB Medium (SOB Medium: 0.5% 

yeast extract, 2% tryptone, 10 mM NaCl, 2.5 mM KCl, 10 mM MgCl2, 10 mM 

MgSO4) at 19°C to OD 0.5. Then cells were put on ice for 10min. Bacteria were 

pelleted by centrifugation (4000g/10min/4°C) and resuspended in 16 ml 

Transformation Buffer (Transformation Buffer: 10 mM PIPES, 250 mM KCl, 15 mM 

CaCl2, 55 mM MnCl2, adjusted to pH 6.7 with KOH (before the addition of MnCl2)). 

Cells were again pelleted and resuspended in 20 ml Transformation Buffer 

supplemented with 1.4 ml DMSO. 100 µl aliquots were shock frozen in liquid 

nitrogen and stored at -80°C. 

 

3.2.7. Transformation of E. coli 

Chemical competent bacteria were thawed on ice and mixed with 50 ng of plasmid 

DNA or the entire DNA from a ligation mix. Bacteria were kept on ice for 5min 

followed by a heat shock at 42°C for 60sec. Afterwards, bacteria were plated directly 

onto LB plates, supplemented with amp or 1 ml LB-Medium was added and cells kept 

at 37°C for 1h, pelleted, resuspended and then plated onto LB plates supplemented 

with kan. 

 

3.2.8. DNA preparation from E. coli 

DNA was prepared according to manufacturers (Macherey-Nagel) protocols as Mini 

or Midi preparations. DNA Concentration was determined using the NanoDrop 

photospectrometer. Midi and Maxi preparations were diluted to final concentration of 

1 µg/µl with dH2O. DNA sequencing was performed by GATC-Biotech GmbH. 
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3.2.9. DNA amplification and modification by PCR 

DNA was amplified from plasmids with pre-designed primers (see table 1) using 

standard lab PCR protocols. SYBR green I (Invitrogen, S7567) was added to PCR 

amplified DNA to a final dilution of 1:15000 and loading dye according to 

manufactures (New England BioLabs) protocol. PCR products were separated on 1% 

agarose TAE (TAE (50x): 100 ml 0.5 M Na2EDTA pH 8.0, 242 g Tris base, 57.1 ml 

glacial acetic acid, H2O up to 1000 ml) gels. PCR products were extracted from gels 

according to manufactures (Qiagen) instructions and digested with appropriate 

restriction enzymes (see table 1) according to manufactures (New England BioLabs) 

protocols. Digested PCR products were purified over and extracted from agarose TAE 

gels. Digested PCR products were ligated into appropriate DNA plasmids (pre-

digested with appropriate restriction enzymes) (see table 1) using standard lab 

protocols (T4-DNA ligase and ligation buffer were obtained from MPI-Dresden in-

door facility). 

For the introduction of point-mutations by PCR, the following approach was chosen. 

Forward and reverse Primers containing the appropriate mismatches and spanning the 

identical region where point-mutations should be introduced were designed. Two 

independent PCR reactions with either forward or reverse primer were performed 

with appropriate complementary forward and reverse primers (see table 1). Both PCR 

products were purified over and extracted from agarose TAE gels and combined for 

an additional PCR reaction. PCR reaction was set up using standard lab PCR 

protocols with the following modifications. 

PCR was run for 5 cycles and then the same complementary forward and reverse 

primers as used before in the two independent PCR reactions were added and PCR ran 

for another 30 cycles. Melting temperature was set for 25sec and annealing 

temperature was set for 25sec. Finally, PCR products were purified and extracted 

from agarose TAE gels, digested, purified and extracted again from agarose TAE gels 

and ligated into appropriate DNA plasmid (protocol adapted from Ho et al., 1989 (Ho 

et al., 1989)).  

For sequential DNA digestion, DNA was first digested to completion with the first 

restriction enzyme having only one recognition site. Digestion products were split into 

three tubes. Second restriction enzyme, having two recognition sites, was added to 

each tube in decreasing concentrations and digestion was carried out for 1min (for 
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HighFidelity restriction enzymes). DNA was immediately loaded on 2% agarose TAE 

gels and appropriate band cut from gel and purified.  

Cloning of AUP1-10KR (AUP1-K143R-K250R-K264R-K269R-K305R-K322R-

K347R-K359R-K377R-K390R-HA): The above-described protocols were used to 

introduce additional lysine to arginine mutations into pDL91 (see table 1), mutating 

one lysine residue to arginine for every complete cloning round (Primers used as in 

table 1). The generated construct was then used for the next cloning round. The two 

most C-terminally located lysine residues were mutated to arginine by two sequential 

cloning rounds using Primers: AUP1-HindIII-for and AUP1-rev (see table 1) together 

with the following primers:  

AUP1-K377-for: CATTTGCCAGCTCTTCCTGG together with  

AUP1-K377-for: CCAGGAAGAGCTGGCAAATG 

and 

AUP1-K390-for: CAGGAGCGCAGGCAAGCAC together with  

AUP1-K390-rev: GTGCTTGCCTGCGCTCCTG 

 

3.2.10. SDS poly-acrylamide gel electrophoresis (SDS-PAGE) 

Samples were prepared in SDS Sample Buffer (Laemmli Buffer (5x): 125 mM Tris-

HCl pH 6.8, 4% SDS, 0.004% Bromophenol blue, 20% (w/v) glycerol, 2% 

betamercaptoethanol). 

Mini-protean system from Bio-Rad was used to cast and subsequently run SDS-

PAGE gels. Standard lab protocols were used and the following stock solutions: 1x 

Running Buffer (25 mM Tris, 192 mM glycine, 0.1% SDS), 4x Separating Gel Buffer 

(1.5 M Tris-HCl pH 8.8, 0.4% (w/v) SDS), 4x Stacking Gel Buffer (0.5 M Tris-HCl 

pH 6.8, 0.4% (w/v) SDS), 30% acrylamide stock solution (30% (w/v) acrylamide, 

0.8% (w/v) bisacrylamide), TEMED and 10% (w/v) ammonium persulphate. Gels 

were blotted or stained in Coomassie blue solution (0.25% (w/v) Coomassie Brilliant 

Blue R250, 40% methanol, 10% glacial acetic acid, 50% dH2O) shaking at RT for 1-

4h and destained using destaining solution (50% methanol, 10% glacial acetic acid, 

40% dH2O). Gel was scanned after complete destaining procedure.  
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3.2.11. Western blot (WB) 

Proteins were blotted onto Nitrocellulose membranes “Protran” (Whatman, Dassel, 

Germany) using Mini-protean system from Bio-Rad and Blotting Buffer (400 ml 1x 

Running Buffer, 200 ml methanol, 400 ml dH2O) at 350mA for 1h. Membranes were 

blocked (Blocking Buffer: PBS containing 0.05% Tween-20 and 5% milk powder) for 

0.5-1h at RT or over night at 4°C. After blocking, appropriate primary antibodies 

were diluted (1:1000 to 1:5000) in Blocking Buffer and added onto the membrane and 

incubated 1h at RT or over night at 4°C shaking. Membranes were washed 2-3 times 

with Blocking Buffer and incubated with HRP (Horseradish peroxidase)-conjugated 

secondary antibody (Jacksons Immunological, West Grove, PA) (1:5000 in Blocking 

Buffer) for 1h. Finally membranes were washed 3x with Blocking Buffer, 2x with 

PBS containing 0.05% Tween-20 and 2x with PBS, each 10min. Detection was done 

using QImaging Fast 1394 Rolera-Mgi Plus camera controlled by Gel-Pro Analyzer 

Software (Media Cybernetics, Inc, Bathesda, MD, USA).  

In order to strip the antibodies from a WB membrane to reprobe with a different 

antibody; the membrane was incubated with a 1x PBS solution containing 1% SDS 

and 3 mg of TCEP. The membrane was then incubated for 20min at 60°C in a water 

bath. Afterwards the membrane was washed two times for 5min with 1x PBS with 

0.1% TWEEN and reprobed with new antibodies. 

 

3.2.12. Crude cell lysates 

After washing cells with PBS, cells were either lysed directly in 2x Sample Buffer or 

lysed with Mild Lysis Buffer (Mild Lysis Buffer: 25 mM HEPES pH7.5, 150 mM 

NaCl, 1% Triton-X100, 0.5% Na-deoxycholate) and 5x SDS Sample Buffer was 

added to 2x final concentration. After boiling at 95°C for 5-10min samples were 

resolved by SDS-PAGE.  

 

3.2.13. Chloroform-methanol precipitation 

Protein precipitation followed the method described by Wessel and Fluegge, 1984 

(Wessel and Flügge, 1984). For sample volumes of 100 µl, 400 µl of 2:1 

methanol:chloroform was added, then 100 µl dH2O and 100 µl chloroform. Sample 
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was mixed vigorously and centrifuged (10000g/10min/RT). Upper phase was 

removed and 500 µl methanol was added and sample was centrifuged 

(10000g/10min/RT). Supernatant was removed, the pellet air dried and dissolved in 

2x Sample Buffer. 

 

3.2.14. Analysis of AUP1 expression levels 

For analysis of the expression levels of AUP1, COS-7 and A431 cells were plated in 

6-well plates. An equal number of cells were lysed from one well containing COS-7 

or A431 cells in Mild Lysis Buffer (see 3.2.12.) and proteins were Chloroform-

methanol precipitated (see 3.2.13.). Proteins were re-dissolved in 2% SDS solution. 

For protein determination 50µL of fluorescamine solution (25 mg fluorescamine in 

100 ml acetone), 50 µL of protein solution and 150 µL of 0.1 M sodium borate buffer 

with pH 9 was mixed and added to a 96 well plate. Then fluorescence was determined 

using the Tecan i control infinite pro200 with 360 nm, 35 nm bandwidth excitation 

filter and a 465 nm, 35 nm bandwidth emission filter. 

For calibration a BSA dilution series was used. Protein concentration was equalized 

across all samples with 2% SDS solution and equal amounts from all three samples 

were mixed with equal volumes of 5x Sample Buffer (to final concentration of 2x 

Sample Buffer). Proteins from equal volumes from both samples were separated on 

SDS-PAGE and AUP1 detected with the AUP1 specific antibody (see table 2). 

 

3.2.15. Immunoprecipitation of myc-tagged AUP1 

Cells were plated in 6-well plates and seeded at a density of approximately 60%, 

transfected the next day with myc- and HA-tagged AUP1 plasmids (see table 1) using 

Lipofectamine 2000 and grown for 24h in DMEM + 10% FCS supplemented with 50 

µM oleate followed by immunoprecipitation as detailed below. 

Cells were washed with ice cold PBS and lysed in 1 ml ice cold Lysis Buffer (Lysis 

Buffer: 25 mM HEPES pH 7.5, 150 mM NaCl, 1% NP-40 and cOmplete Protease 

inhibitor cocktail without EDTA (Roche, 12936900). Lysis was performed at 4°C for 

5-10min shaking. Lysate was centrifuged (15000g/5min/4°C) and 100 µl saved as 

10% input and chloroform:methanol precipitated. To the remaining 900 µl, 10 µl anti-
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myc specific antibody (Myc-9E10, mouse) and 20 µl Protein-A sepharose (CL4B, GE 

Healthcare) was added. Samples were incubated at 4°C over night on rotary wheel, 

centrifuged (1000g/1min/4°C) and Protein-A sepharose washed three times with Lysis 

Buffer followed by elution with 80 µl glycine pH 2.2. Then, 20 µl of 2M Tris-HCl pH 

8.8 was added immediately to the eluate followed by 25 µl 5x Sample Buffer. 35 µl 

from 10% input and from eluate were loaded on 10% SDS-PAGE. Immunostaining 

was done against HA-tag (HA-Y11, rabbit), myc-tag (Myc-A-14, rabbit), each on 

separate WB membranes. For Immunostaining against ACSL3 and NSDHL 

membrane was cut at around 60kDa and upper part immunostained with anti-ACSL3 

and lower part with anti-NSDHL antibody. Antibodies were stripped from membrane 

were indicated, membrane was then cut at around 60kDa and upper part 

immunostained with anti-ACSL3 and lower part with anti-NSDHL antibody. 

 

3.2.16. Ubiquitination-assay 

Cells were plated in 6-well plates and seeded at a density of approximately 60% and 

transfected the next day with His-tagged ubiquitin (0.5 µg/100 µl Opti-MEM was 

used) and HA-tagged AUP1 plasmids (see table 1) using Lipofectamine 2000 (see 

3.2.3.) Cells were grown for 24h in DMEM + 10% FCS supplemented with 50 µM 

oleate followed by His-tag purification as detailed below. 

Cells were washed with PBS and lysed in 1 ml Lysis Buffer (Lysis Buffer: 6 M 

Guanidine hydrochloride, 100 mM disodium hydrogen phosphate pH 7.4, 0.5% 

Triton-X100, 20 mM imidazole, 10 mM Tris-HCl pH 7.4). 100 µl of cell lysate was 

kept for 10% input and chloroform-methanol precipitated. 35 µl of 50% slurry of Ni-

Agarose (Ni-NTA Superflow, Qiagen) was added to remaining cell lysate and 

incubated at rotary wheel at RT for 2-3h, centrifuged (1500g/1min/RT) and Ni-

Agarose was washed three times with Washing Buffer (Washing Buffer: 8 M urea, 

100 mM disodium hydrogen phosphate pH 7.4, 0.5% Triton-X100, 20 mM imidazole, 

10 mM Tris-HCl pH 7.4) followed by elution with 50 µl Elution Buffer (Elution 

Buffer: 250 mM imidazole, 150 mM NaCl, 25 mM Tris-HCl pH 6.0). Finally, 5x SDS 

Sample Buffer was added to eluate to a 2x final concentration. Proteins were 

separated on 10% SDS-PAGE and immunoblotted with anti-HA antibody (HA-F7). 
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3.2.17. Paraformaldehyde fixation of cells for microscopy 

Cells were washed with PBS and fixed in PBS with 3.7% (v/v) paraformaldehyde 

(PFA). After 30min the PFA-mix was removed and cells were washed with PBS. 

Fixed cells were stored in PBS at 4°C and stained the next day. 

 

3.2.18. Immunofluorescence microscopy 

For immunofluorescence microscopy, fixed cells were blocked in Blocking Buffer 

(Blocking Buffer (BB): PBS with 1% BSA and 0.2% saponin) for 30min. Incubation 

with 1st antibody was performed on parafilm onto 30 µl of diluted primary antibody 

(HA-F7 antibody diluted 1:100 and AUP1 antibody diluted 1:500) in BB for 1h. Cells 

were washed 3x 10min with BB in 24-well plate and incubated with 30 µl secondary 

antibody (conjugated to Alexa 488 or 647 (Life Technologies)) diluted 1:500, again 

on parafilm. Cells were washed 3x 10min with BB in 24-well plate and DAPI and 

LD540 stained as detailed below. 

100 µl of PBS containing DAPI (1µg/ml in PBS) and LD540 (Spandl et al., 2009) 

were added to each well of the 24-well plate and incubated for 15min, shaking and 

protected from light. Cells were washed 3x 10min with PBS and 1x with dH2O and 

mounted with 5 µl mowiol/DABCO (6 g glycerol, 2.4 g mowiol, 6 ml dH2O, 12 ml 

0.2 M Tris-HCl pH 8.5, 0.1% DABCO) on microscope slide. Images of fixed samples 

were acquired using Zeiss Axio Observer.Z1 equipped using 63x/NA 1.4 Oil Plan-

Apochromat or 63x/NA1.4 objectives. 

 

3.2.19. ZFNs working protocol: mRNA preparation 

In principal, ZFNs delivery into cells and analysis of putative knock-out cells were 

done according to manufactures (Sigma-aldrich) protocols, using AUP1 specific 

ZFNs generated by Sigma-aldrich (CompoZR Knockout Zinc Finger Nucleases, 

CKOZFND3771-1KT). The ZFN binding and cutting site is as follows with putative 

cutting site in bold and underlined: 

GACCATGTGTGCGGTGCTAGGGCTCGTGGCCCGGCAGGA  

The following kits were used: 
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To efficiently deliver ZFNs coding sequence into cells they were first in vitro 

transcribed into mRNA. mRNA was generated independently for both AUP1 specific 

ZFNs. The linearization of the plasmid DNA was accomplished via standard 

restriction digest using XbaI restriction enzyme to generate 5´-protruding ends. 

Generation of mRNA was done using the MessageMAX™ T7 ARCA-Capped 

Message Transcription Kit (150482, Biozym, Hessich Oldendorf). poly(A) tailing was 

done using A-Plus Poly(A) Polymerase Tailing Kit (15491, Biozym, Hessich 

Oldendorf).  The mRNA was purified using the MEGAClear Kit (AM1908, 

LifeTechnologies). The mRNA content was measured using NanoDrop 

photospectrometer. Both mRNAs resulting from each ZFN were combined in an equal 

molar ratio. 

 

3.2.20. ZFNs working protocol: Transfection of cells 

A431 cells were seeded in 6-well plates. Transfection was done using Trans-IT 

mRNA Transfection Kit (MIR2225, MoBiTec Distributor of Mirus in germany, 

Göttingen) according to manufactures instructions.  

 

3.2.21. ZFNs working protocol: Single cell sorting 

Transfected cells were trypsinated 72h post-transfection and centrifuged. Cells were 

single sorted in 96-well plates by Marcus Beier (using FACS sorter). Single clones 

were propagated and genomic DNA was isolated using GenElute Mammalian 

Genomic DNA Miniprep Kit (G1N70, Sigma-Aldrich). Genomic DNA was analyzed 

for successful genomic alteration using the CelI assay. 

 

3.2.22. ZFNs working protocol: CelI assay 

The region were ZFNs are thought to introduce alterations into the genomic DNA of 

AUP1 were amplified using forward and reverse primers supplied by Sigma-Aldrich 

(ZFN Primer F: GGATCCACGTCTTCCTGGT and ZFN Primer R: 

GGGTTAGGGGTAAGGCTCAG) and standard lab PCR protocols. PCR products 

were purified and extracted from agarose TAE gels. Elution was done with Elution 

Buffer (Elution Buffer: 12,5 µl 2M KCl, 2,5 µl 2 M Tris-HCl pH 7,5, 50 µl 0,15 M 
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MgCl2, according to CelI manufactures protocols). 400 ng of the purified PCR 

product were taken directly for the annealing assay. Assay was done in the 

Thermocycler using PCR tubes with the following Program: 

95ºC 10 min; 95ºC to 85ºC (-2.0ºC/s); 85ºC 1 min; 85ºC to 75ºC (-0.3ºC/s); 75ºC 1 

min; 75ºC to 65ºC (-0.3ºC/s); 65ºC 1 min; 65ºC to 55ºC (-0.3ºC/s); 55ºC 1 min; 55ºC 

to 45ºC (-0.3ºC/s); 45ºC 1 min; 45ºC to 35ºC (-0.3ºC/s); 35 ºC 1 min; 35ºC to 25ºC (-

0.3ºC/s); 25ºC 1 min; 4ºC Hold. 

The PCR product was then supplemented with 1µl of SURVEYOR-Nuclease and 1µl 

of the Enhancer-Solution, both from the Transgenomic SURVEYOR Mutation 

Detection Kit (706020, Transgenomic Inc.). The digestion was done at 42 ºC for one 

hour using the Thermocycler.  
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4. Results 
 

 

4.1. AUP1 overexpression causes clustering of LDs 

 

To investigate the role of AUP1 in the intracellular distribution of LDs, AUP1 was 

overexpressed in one of our standard cell lines, the monkey kidney fibroblast COS-7 

cell line. COS-7 cells readily induced the formation of LDs, which were usually 

dispersed throughout the cells (see Introduction Fig. 3, A), when supplemented with 

oleate.  

Overexpression of HA-tagged AUP1 (AUP1-HA) in COS-7 cells caused a striking 

change in the intracellular distribution of LDs. In COS-7 cells overexpressing AUP1-

HA, LDs accumulated in one or few LD clusters whereas the cells were almost devoid 

of any solitary LD (Fig. 9, A). In contrast, COS-7 cells transfected with an empty 

control vector showed no LD clustering whereas numerous LDs were dispersed 

throughout the cells (Fig. 9, B). Next, it was analyzed whether the observed clustering 

of LDs in AUP1 overexpressing cells is quantifiable. As LD clustering was readily 

detectable upon overexpression of AUP1, a cell was simply defined to show LD 

clustering when the majority of LDs were packed in LD clusters and only few 

dispersed LDs could be observed. About 80% of cells overexpressing AUP1-HA 

showed LD clustering whereas only 5% of cells transfected with empty control vector 

exhibited LD clustering (Fig. 13, A). These results suggest that AUP1 actively 

promotes the aggregation of LDs to form one or few LD clusters.  
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Figure 9. 

AUP1 overexpression causes LD clustering 

(A) Fluorescence micrographs of COS-7 cells overexpressing HA-tagged AUP1 and 

supplemented with 50 µM oleate are shown. Cells were immunostained with anti-HA antibody 

(left panel), LDs were stained with LD540 (middle panel). Merged images with nuclei stained 

by DAPI in blue, AUP1 in red and LDs in green are shown (right panel). Bars, 10µm. Note: 

Cells not expressing AUP1 do not show LD clustering (marked with asterisk (*)). (B) COS-7 

cells transfected with an empty control vector and supplemented with 50 µM oleate. LDs were 

stained with LD540 (middle panel). Merged image with nuclei stained by DAPI in blue and 

LDs in green are shown (right panel). Bars, 10µm.  

 

 

4.2. Expression levels of AUP1 

 

AUP1 was found to be highly abundant in a purified LD fraction from the human 

epithelial A431 cell line (Moessinger et al., 2011). Furthermore, it was observed that 

A431 cells form LD clusters when supplemented with oleate (see Introduction Fig. 3, 

B). Hence, different expression levels of AUP1 in A431 cells compared to COS-7 

cells might explain the observed difference in the intracellular distribution of LDs.  

Equal amounts of protein from COS-7 and A431 cells were separated on SDS-PAGE 

and immunoblotted with anti-AUP1 antibody. The A431 cells contained relatively 
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high levels of AUP1 compared to COS-7 cells (Fig. 10). These results indicate that 

the difference in endogenous AUP1 expression between these two cell lines could be 

responsible for the absence of LD clusters in COS-7 cells and the formation of LD 

clusters in A431 cells. 

 

 
Figure 10. 

Relative expression levels of AUP1 

Relative expression levels of endogenous AUP1 in COS-7 and A431 cells. Equal amounts of 

protein from COS-7 and A431 cells were separated on SDS-PAGE and immunoblotted with 

anti-AUP1 antibody. 

 

 

4.3. Knock-down of AUP1 in A431 cells causes 

declustering of LDs 

 

Results so far indicate that AUP1 is important for the clustering of LDs in cells and 

that the relatively high expression levels of AUP1 observed in the A431 cell line 

might be responsible for the strong tendency of A431 cells to form LD clusters. 

Hence, a knock-down approach was used to investigate whether the clustering of LDs 

in A431 cells depends on endogenous expression levels of AUP1. Three different 

stealth siRNAs against AUP1 were analyzed with respect to their knock-down 

efficiency in A431 cells. Two of three siRNAs showed a strong reduction of 

endogenous AUP1 levels (Fig. 11, A). These two siRNAs were used to knock-down 

AUP1 in A431 cells and LD clustering was analyzed and compared to mock 

transfected A431 cells. Knock-down of AUP1 with either siRNA strongly decreased 

LD clustering compared to the control cells (Figure 11, B and C), suggesting that 

AUP1 is involved in the clustering of LDs in the A431 cell line. These results further 
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indicate that endogenous expression levels of AUP1 can be sufficient to induce LD 

clustering. 

 

 
Figure 11. 

Knock-down of AUP1 causes declustering of LDs 

(A) A431 cells were either mock transfected or transfected with one of three different siRNAs 

against AUP1. Cells were lysed and proteins separated on SDS-PAGE and immunoblotted 

with anti-AUP1 antibody. GAPDH served as loading control. (B) Fluorescence micrographs of 

A431 cells either mock transfected (control) or transfected with siRNA3 and supplemented 

with 50 µM oleate are shown. Cells were immunostained with anti-AUP1 antibody (left 

panels), LDs were stained with LD540 (middle panels). Merged images with nuclei stained by 

DAPI in blue, AUP1 in red and LDs in green are shown (right panels). Bars, 10µm. (C) 

Quantification of LD clustering in A431 cells mock (control) or siRNA (as indicated) 

transfected. Results are average of three independent experiments with standard deviation. 

For each individual experiment at least 25 cells were analyzed. 
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4.4. The AUP1 CUE domain is important for LD 

clustering 

 

To identify functional domains of AUP1 important for LD clustering we generated 

truncation and deletion mutants of AUP1 fused to an HA-tag and studied their effect 

on LD clustering. We focused on the two functional domains located at the C-

terminus of AUP1, the G2BR and CUE domain. The G2BR domain is essential for 

binding Ube2g2 (Spandl et al., 2011; Klemm et al., 2011). The CUE domain belongs 

to a group of UBDs, which have been shown to interact with ubiquitin (Shih et al., 

2003).  

Overexpression of AUP1 (1-362) lacking the G2BR domain (AUP1-ΔG2BR-HA) still 

caused clustering of LDs in COS-7 cells (Fig. 12, A), with around 85% of cells 

showing LD clustering (Fig. 13, A). In contrast, overexpression of an internal deletion 

mutant of AUP1 (Δ295-339) lacking the CUE domain (AUP1-ΔCUE-HA) in COS-7 

cells did not induce LD clustering as strongly as was observed for the overexpression 

of AUP1-HA (for the sake of simplicity: similar observations in COS-7 cells are from 

now on referred to as “attenuated LD clustering”),  (Fig. 12, B). Only around 30% of 

cells analyzed showed LD clustering (Fig. 13, A), suggesting an important role for the 

CUE domain in LD clustering. The CUE domain consists of three alpha-helices with 

conserved residues for binding ubiquitin on helices one and three and key residues for 

the helix one and two packing interface on helix two (Fig., 13, C) (Kang et al., 2003; 

Prag et al., 2003). We mutated amino acid residues within these conserved regions to 

hinder interaction with ubiquitin. Figure 13, C shows the AUP1 CUE mutants 

generated. Comparable to the AUP1-ΔCUE-HA construct, overexpression of these 

AUP1 CUE mutants in COS-7 cells strongly attenuated LD clustering (Fig. 12, C and 

D; Fig. 13, A), confirming the importance for the CUE domain in LD clustering. 

Importantly, truncation of the G2BR domain and deletion or mutation of the CUE 

domain did not change the localization of AUP1 to LDs (Fig. 12, A- D, inset).  
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Figure 12. 

The AUP1 CUE domain is important for LD clustering 

(A-D) Fluorescence micrographs of COS-7 cells overexpressing different HA-tagged AUP1 

constructs (as indicated) and supplemented with 50 µ M oleate are shown. Cells were 

immunostained with anti-HA antibody (left panels), LDs were stained with LD540 (middle 

panels). Merged images with nuclei stained by DAPI in blue, AUP1 in red and LDs in green 

are shown (right panels). Bars, 10µm. 
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To test whether different expression levels of the above mentioned constructs might 

be responsible for the observed difference in LD clustering, these AUP1 constructs 

were overexpressed in COS-7 cells and expression levels analyzed by immunoblotting 

against the HA-tag, using GAPDH as loading control (Fig. 13, B). AUP1-ΔCUE-HA 

and AUP1-mutCUE3-HA had higher expression levels than AUP1-HA, but strongly 

attenuated LD clustering. On the other hand, AUP1-ΔG2BR-HA as well had higher 

expression levels than AUP1-HA, but promoted LD clustering to comparable extends. 

These results suggest that attenuated LD clustering in COS-7 cells overexpressing 

AUP1 with a deleted or mutated CUE domain does not result from a difference in 

expression levels compared to AUP-HA.  

 

 
Figure 13. 

The AUP1 CUE domain is important for LD clustering II 

(A) Quantification of LD clustering in COS-7 cells overexpressing HA-tagged AUP1 constructs 

(as indicated). Empty vector was used as control. Results are average of three independent 

experiments with standard deviation. For each individual experiment at least 25 cells were 

analyzed. (B) Expression levels of HA-tagged AUP1 constructs. Proteins from COS-7 cells 

overexpressing HA-tagged AUP1 constructs (as indicated) were separated on SDS-PAGE 

and immunoblotted with anti-HA antibody. GAPDH served as loading control. Note: AUP1-

ΔCUE and AUP1-mutCUE3 migrated at an apparent molecular weight around five kDa higher 

than expected. (C) Amino acid sequence of the AUP1 CUE domain and predicted relative 

position of the three α-helices after Prag et al. (Prag et al., 2003). Mutated amino acid 

residues of the three AUP1-mutCUE constructs used in this work are highlighted in grey. 
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4.5. AUP1 is ubiquitinated in COS-7 cells 

 

It has been observed that AUP1 is ubiquitinated in HeLa cells (Klemm et al., 2011). It 

was therefore analyzed whether AUP1 is also ubiquitinated in COS-7 cells, 

employing the His-tag affinity purification. 

COS-7 cells were transfected with His-ubiquitin and AUP1-HA followed by 

solubilization with 6 M guanidine hydrochloride. His-ubiquitin and any His-ubiquitin 

modified proteins were recovered from cell lysate over Ni-NTA agarose and 

immunoblotted against the HA-tag of AUP1. Two major bands for AUP1-HA were 

detected, migrating at an apparent molecular weight of 8 and 16 kDa above the 

expected molecular weight for AUP1-HA (Fig. 14). This molecular weight shift 

suggests a modification of AUP1 by one and two ubiquitin moieties, respectively.  

Next, the same His-tag affinity purification was used to analyze whether any of the 

before described AUP1 mutations obviate the ubiquitination of AUP1.  

For AUP1-ΔG2BR-HA, the same molecular weight shift was observed as for AUP1-

HA (Fig. 14). In contrast, this molecular weight shift was almost undetectable for 

AUP1-ΔCUE-HA or for the HA-tagged AUP1 CUE mutants (Fig. 14), demonstrating 

that the CUE domain of AUP1 is essential for AUP1 ubiquitination in COS-7 cells, 

whereas the G2BR domain is dispensable for this process. In addition, a high 

molecular weight smear was detectable for both, AUP1-HA and AUP1-ΔG2BR-HA 

(Fig. 14), suggesting that AUP1 protein levels are also regulated posttranslational 

through polyubiquitination. 
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Figure 14. 

AUP1 is ubiquitinated in a CUE dependent manner 

COS-7 cells were transfected with His-ubiquitin and HA-tagged AUP1 constructs and controls 

(as indicated). His-ubiquitin and His-ubiquitin modified proteins were purified from cell lysates 

over Ni-NTA agarose. Proteins from lysates (10% input) and His-purifications were separated 

on SDS-PAGE and immunoblotted with anti-HA antibody. 

 

	  

4.6. AUP1 is ubiquitinated on multiple lysine residues  

 

Ubiquitination usually leads to the formation of a covalent bond between ubiquitin 

and a lysine residue of the target protein. AUP1 contains ten lysine residues 

representing potential targets for ubiquitination. To investigate which lysine residues 

are important for ubiquitination, single lysine to arginine (K-to-R) mutations were 

introduced into HA-tagged AUP1. The two most C-terminally located lysine residues, 

Lys377 and Lys390 were not analyzed this way. Both, Lys377 and Lys390 are deleted 

in the AUP1-ΔG2BR-HA construct, which showed the same ubiquitination pattern as 

AUP1-HA (Fig. 14). These lysine residues were therefore not considered to be 

potential targets for ubiquitination.  

As shown in Figure 15, A each AUP1 construct containing single K-to-R mutations 

exhibited the same ubiquitination pattern as AUP1-HA, suggesting that AUP1 can be 

ubiquitinated on more than one lysine residue. Hence, an HA-tagged AUP1 construct, 

in which all ten lysine residues were mutated to arginines (AUP1-10KR-HA) was 

generated and analyzed with respect to its ubiquitination pattern. Ubiquitination was 
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undetectable for AUP1-10KR-HA (Fig. 15, B). Together, these results demonstrate 

that AUP1 is ubiquitinated on several lysine residues and that multiple K-to-R 

changes are required for the inhibition of AUP1 ubiquitination.  

Next, we wanted to know if any of the lysine to arginine mutations has an effect on 

LD clustering. Overexpression of the single AUP1 K-to-R mutants in COS-7 cells 

caused clustering of LDs to comparable extends as COS-7 cells overexpressing 

AUP1-HA (Fig. 15, C). In contrast, LD clustering was strongly attenuated in COS-7 

cells overexpressing AUP1-10KR-HA (Fig. 15, C and Fig. 16) and was similar to 

COS-7 cells overexpressing AUP1 with a deleted or mutated CUE domain, although 

AUP1-10KR-HA retained the CUE domain. These results suggest that the AUP1 

CUE domain alone is not sufficient to promote LD clustering. Rather, the CUE 

domain is necessary for AUP1 ubiquitination, which in turn is necessary to promote 

LD clustering.  
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Figure 15. 

AUP1 is ubiquitinated at multiple lysine residues 

(A) COS-7 cells were transfected with His-ubiquitin and HA-tagged AUP1 constructs (as 

indicated). His-ubiquitin and His-ubiquitin modified proteins were purified over Ni-NTA 

agarose. Proteins from lysates and His-purifications were separated on SDS-PAGE and 

immunoblotted with anti-HA antibody. (B) COS-7 cells were transfected with His-ubiquitin and 

HA-tagged AUP1 constructs (as indicated). Samples were processed as under (A). (C) 

Quantification of LD clustering in COS-7 cells overexpressing HA-tagged AUP1 constructs (as 

indicated). Results are average of three independent experiments with standard deviation. 

For each individual experiment at least 25 cells were analyzed.  
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Imortantly, neither the single K-to-R mutations (not shown) nor the mutation of all ten 

lysine residues to arginines changed the localization of AUP1 to LDs (Fig. 16, inset).  

 

 
Figure 16. 
Non-ubiquitinated AUP1 fails to induce LD clustering  

Fluorescence micrographs of COS-7 cells overexpressing AUP1-10KR-HA and supplemented 

with 50 µM oleate are shown. Cells were immunostained with anti-HA antibody (left panel), 

LDs were stained with LD540 (middle panel). Merged images with nuclei stained by DAPI in 

blue, AUP1 in red and LDs in green are shown (right panel). Bars, 10µm. 

 

 

4.7. AUP1 monoubiquitination is sufficient to 

promote LD clustering 

 

In order to address the question whether AUP1 ubiquitination is sufficient to promote 

LD clustering, even in absence of a functional CUE domain, we constructed HA-

tagged chimeras of AUP1-ΔCUE (AUP1-ΔCUE-UbK48R-HA) and AUP1-mutCUE2 

(AUP1-mutCUE2-UbK48R-HA) fused to ubiquitin. Lys48 on ubiquitin was further 

mutated to arginine (UbK48R) to prevent further polyubiquitination of the chimera 

proteins. Overexpression of these chimera proteins in COS-7 cells induced LD 

clustering to comparable extends as AUP1-HA, with around 90% of cells showing LD 

clustering (Fig. 17, A, B and D). Also, overexpression of HA-tagged UbK48R fused 

to AUP1-10KR (AUP1-10KR-UbK48R-HA) induced LD clustering, with around 

90% of COS-7 cells showing LD clustering (Fig. 17, C and D).  
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Figure 17. 

AUP1 monoubiquitination is sufficient to promote LD clustering 

(A-C) Fluorescence micrographs of COS-7 cells overexpressing HA-tagged AUP1 constructs 

(as indicated) and supplemented with 50 µM oleate are shown. Cells were immunostained 

with anti-HA antibody (left panels), LDs were stained with LD540 (middle panels). Merged 

images with nuclei stained by DAPI in blue, AUP1 in red and LDs in green are shown (right 

panels). Bars, 10µm. (D) Quantification of LD clustering in COS-7 cells overexpressing HA-

tagged AUP1 constructs (as indicated). Results are average of three independent 

experiments with standard deviation. For each individual experiment at least 25 cells were 

analyzed.  
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From the above data we conclude that the addition of a single ubiquitin moiety to 

AUP1 is sufficient to promote LD clustering and that this process is independent of 

the CUE domain. Yet, the chimera proteins did not form the ring-like structures 

around individual LDs (Fig. 17, A-C, inset) as was observed for AUP1-HA (compare 

to fig. 11, A, inset). However, the AUP1 ubiquitin chimera proteins are enriched at 

the sites of LD clusters (Fig. 17, A-C, inset) (see discussion).  

Attention should be paid to the fact that the observed LD clustering seemed to be 

independent of the expression levels of the used constructs. LD clustering was also 

induced in cells having very low expression levels of the chimera proteins. Figure 18 

shows COS-7 cells overexpressing AUP1-ΔCUE-UbK48R-HA and an additional 

merged image with overexposed signal from the chimera protein. Even cells with very 

low expression levels showed LD clustering whereas only cells without any 

detectable expression of the fusion protein showed no LD clustering.  
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Figure 18. 

Low expression levels of the AUP1 ubiquitin chimera proteins are sufficient to induce 
LD clustering 

Fluorescence micrographs of COS-7 cells overexpressing AUP1-ΔCUE-UbK48R-HA and 

supplemented with 50 µM oleate are shown. Cells were immunostained with anti-HA antibody 

(left panel), LDs were stained with LD540 (middle panel). Merged images with nuclei stained 

by DAPI in blue, AUP1 in red and LDs in green are shown (right panel). Bars, 10µm. The 

overexposed Merge shows LD clustering only for cells overexpressing the chimera protein 

(marked with asterisk (*)), cells without detectable expression show no LD clustering (marked 

with plus (+)). 

 

 

The ubiquitin fused to AUP1 might be targeted for polyubiquitin chain assembly. 

Although Lys48 has been mutated to arginine, a different lysine on ubiquitin might be 

targeted for assembly of a polyubiquitin chain. The His-tag affinity purification was 

therefore used to analyze whether AUP1-mutCUE2-UbK48R-HA is further 

ubiquitinated. Full length AUP1 fused to HA-tagged UbK48R (AUP1-UbK48R-HA) 

was used as a control to analyze whether further ubiquitination is possible if the CUE 

domain is retained within the chimera protein. AUP1-mutCUE2-UbK48R-HA and 

AUP-WT-UbK48R-HA exhibited strongly reduced expression levels compared to 

AUP1-HA (Fig. 19). AUP1-mutCUE2-UbK48R-HA and AUP-UbK48R-HA 
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migrated at approximately the same molecular weight as monoubiquitinated AUP1-

HA. Also, AUP1-WT-UbK48R-HA is further modified by one ubiquitin moiety while 

AUP1-mutCUE2-UbK48R-HA lacked any further ubiquitination (Fig. 19). Although 

expressed at much lower levels than AUP1-HA, the AUP1-mutCUE2-UbK48R-HA 

construct appeared to be stable and not further ubiquitinated, validating that a single 

ubiquitin moiety fused to AUP1 is sufficient to promote LD clustering.  

In addition, a specific band appeared for both AUP1 ubiquitin chimera proteins, 

migrating at an apparent molecular weight of around 100kDa (see 4.10. AUP1 forms 

stable dimers).  

  

 

 
Figure 19. 

Western blot analysis of AUP1 ubiquitin chimera proteins 

COS-7 cells were transfected with His-ubiquitin and HA-tagged AUP1 constructs (as 

indicated). His-ubiquitin and His-ubiquitin modified proteins were purified from cell lysates 

over Ni-NTA agarose. Proteins from lysates (10% input) and His-purifications were separated 

on SDS-PAGE and immunoblotted with anti-HA antibody. Note: a specific band appears for 

both AUP1 ubiquitin fusion proteins migrating at an apparent molecular weight of around 

100kDa (marked with asterisk (*)). (B) Overexposed signal from (A). 
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4.8. Conserved residues on ubiquitin not required for 

LD clustering 

 

Monoubiquitinated proteins are often recognized by other UBD containing proteins, 

which in turn function in downstream signaling events. Such interactions might be 

important for monoubiquitinated AUP1-induced LD clustering. Amino acid residues 

on ubiquitin known to mediate interaction with UBDs are isoleucine 44 (I44) and 

aspartic acid 58 (D58). We therefore generated two AUP1-ΔCUE constructs, each 

fused to HA-tagged UbK48R carrying itself an additional I44A or D58A mutation 

(AUP1-ΔCUE-UbI44A-K48R-HA and AUP1-ΔCUE-UbK48R-D58A-HA). 

Overexpression of either construct in COS-7 cells still caused the clustering of LDs 

(Fig. 20, A and B). 

 

 
Figure 20. 

Conserved residues on ubiquitin are not required for LD clustering 

(A-B) Fluorescence micrographs of COS-7 cells overexpressing HA-tagged AUP1 constructs 

(as indicated) and supplemented with 50 µM oleate are shown. Cells were immunostained 

with anti-HA antibody (left panels), LDs were stained with LD540 (middle panels). Merged 

images with nuclei stained by DAPI in blue, AUP1 in red and LDs in green are shown (right 

panels). Bars, 10µm. 
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These results suggest that conserved residues isoleucine 44 and aspartic acid 58 on 

ubiquitin are not required for LD clustering induced by the ubiquitination of AUP1.  

 

 

4.9. AUP1 localization to LDs is necessary for LD 

clustering 

 

It was shown that AUP1 is ubiquitinated in a CUE dependent fashion and that this 

ubiquitination is necessary to promote LD clustering. Also, irrespective of the 

changes introduced into AUP1, each construct still localized to LDs. Only for the 

AUP1 ubiquitin chimera proteins localization to LDs was not as readily observed. It 

was therefore analyzed whether the localization of AUP1 to LDs is a prerequisite to 

induce their clustering. 

Like several other integral LD proteins, AUP1 exhibits a dual distribution in cells, 

localizing to LDs and the ER. In collaboration with Ana Stevanovic, LD clustering 

was analyzed in COS-7 cells overexpressing HA-tagged AUP1 mutants (AUP1-

mutLDT1-HA and AUP1-mutLDT2-HA) that localize only to the ER and fail to reach 

LDs (Stevanovic and Thiele, 2012). Figure 21, A shows COS-7 cells overexpressing 

AUP1-mutLDT1-HA, which localized to the ER but not to LDs. LD clustering could 

not be observed in COS-7 cells overexpressing either, AUP1-mutLDT1-HA or AUP1-

mutLDT2-HA, similar to COS-7 cells transfected with an empty control vector (Fig. 

21, B). These results suggest that AUP1 localization to LDs is necessary to promote 

LD clustering.  

However, AUP1 localization to LDs might be a prerequisite for its ubiquitination, 

which in turn is necessary for LD clustering. The His-tag affinity purification was 

used to analyze whether the AUP1-mutLDT mutants are still ubiquitinated. As shown 

in Figure 21, C AUP1-mutLDT1-HA and AUP1-mutLDT2-HA exhibited the same 

ubiquitination pattern as AUP1-HA, suggesting that AUP1 localization to LDs is not 

necessary for AUP1 ubiquitination. Taken together, these results demonstrate that 

AUP1 localization to LDs is necessary to promote LD clustering. 
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Figure 21. 

AUP1 localization to LDs is necessary for LD clustering 

(A) Fluorescence micrographs of COS-7 cells overexpressing HA-tagged AUP1-mutLDT1 and 

supplemented with 50 µM oleate are shown. Cells were immunostained with anti-HA antibody 

(left panel), LDs were stained with LD540 (middle panel). Merged images with nuclei stained 

by DAPI in blue, AUP1 in red and LDs in green are shown (right panel). Bars, 10µm. (B) 

Quantification of LD clustering in COS-7 cells overexpressing HA-tagged AUP1 constructs (as 

indicated). Results are average of three independent experiments with standard deviation. 

For each individual experiment at least 25 cells were analyzed. Data for (B) taken from PhD 

thesis, Stevanovic Ana (2012). (C) COS-7 cells were transfected with His-ubiquitin and HA-

tagged AUP1 constructs (as indicated). His-ubiquitin and His-ubiquitin modified proteins were 

purified over Ni-NTA agarose. Proteins from lysates and His-purifications were separated on 

SDS-PAGE and immunoblotted with anti-HA antibody. GAPDH served as loading control. 
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4.10. AUP1 forms stable dimers 

 

While working with AUP1, we repeatedly observed a high molecular weight band for 

AUP1 on western blots migrating at an apparent molecular weight of around 100 kDa, 

twice the molecular weight of AUP1 (for examples see fig. 14). The observed band at 

around 100 kDa was especially prominent for the overexpressed AUP1 ubiquitin 

chimera proteins (Fig. 19). Dimerization of AUP1 could represent a possible mean to 

drive LD clustering (see discussion). It was therefore speculated whether the observed 

band might be an AUP1 dimer. To analyze possible AUP1 dimerization, AUP1 self-

interaction was studied by a pull-down approach.  

Whole cell extract from COS-7 cells overexpressing myc- and HA-tagged AUP1 were 

immunoprecipitated with a myc-tag specific antibody. HA-tagged AUP1 was 

efficiently co-purified with myc-tagged AUP1 while HA-tagged AUP1 was not co-

purified in the absence of myc-tagged AUP1 (Fig. 22, A). As expected, myc-tagged 

AUP1 was efficiently pulled down by the myc-tag specific antibody (Fig. 22, B). To 

exclude the possibility that we unspecifically pulled down LD proteins, the 

immunoprecipitate was also analyzed for contamination with the LD proteins NSDHL 

and ACSL3 (acyl-CoA synthetase long-chain family member3) . Both proteins were 

present in the cell lysate but were absent in the immunoprecipitate (Fig. 22, C). Also, 

the observed band at the molecular weight of around 100 kDa appeared in the 

immunoprecipitate and was positive for both, HA- and myc-tagged AUP1.  

Next, we examined myc-tagged AUP1 mutants for their ability to pull-down AUP1-

HA. We used AUP1-ΔCUE-myc and an AUP1 construct with point mutations within 

the G2BR domain (AUP1-mutG2BR-myc) to analyze whether any of the two C-

terminally located domains are important for AUP1 dimerization. Both, AUP1-

ΔCUE-myc and AUP1-mutG2BR-myc efficiently pulled down AUP1-HA. Again, 

both myc-tagged constructs were present in the immunoprecipitate while NSDHL and 

ACSL3 were not co-purified (Fig., 22, A, B and C). These results suggest that AUP1 

can form stable dimers and that neither, a functional G2BR nor CUE domain on one 

interacting AUP1 partner is necessary for this process. In addition, since the CUE 

domain is necessary for AUP1 ubiquitination, these results suggest that AUP1 

ubiquitination is not required for the dimerization of AUP1.   
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Figure 22. 

AUP1 forms stable dimers 

COS-7 cells were transfected with HA-tagged AUP1 (WT) and myc-tagged AUP1 constructs 

(as indicated). Myc-tagged and associated proteins were immunoprecipitated with myc-tag 

specific antibody and separated on SDS-PAGE and immunoblotted with (A) anti-HA antibody, 

(B) anti-myc antibody or (C) membrane was cut in half (indicated by dotted line). Upper part 

was immunoblotted with anti-ACSL3 and lower part with anti-NSDHL antibody. Putative AUP1 

dimers are marked with asterisk (*).  
 

 

4.11. Phosphorylation of AUP1 

 

AUP1 is a highly phosphorylated protein (Dephoure et al., 2008; Kim et al., 2006; 

Yang et al., 2006). A function to these posttranslational modifications has only been 

suggested for phosphorylation of Thr68. Preliminary data suggested that exchanging 

AUP1 Thr68 by the negatively charged aspartic acid, thereby mimicking the 

phosphorylated state of Thr68, negatively interferes with LD clustering. In contrast, 

exchanging AUP1 Thr68 for alanine, thereby mimicking the non-phosphorylated state 

of Thr68 does not change the clustering of LDs (Spandl Johanna, PhD thesis 2009). 

The same HA-tagged AUP1 constructs (AUP1-T68D-HA and AUP1-T68A-HA) were 
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used to further investigate and quantify the effect of the assumed phosphorylation of 

AUP1 Thr68 on LD clustering.  

Overexpression of AUP1-T68D-HA in COS-7 cells caused LD clustering in only 

around 20% of cells, whereas COS-7 cells overexpressing AUP1-T68A-HA showed 

LD clustering to a comparable degree than AUP1-HA overexpressing COS-7 cells 

(Fig. 23, A and B). These results indicate that phosphorylation of AUP1 at Thr68 

negatively interferes with the ability of AUP1 to promote LD clustering. However, it 

has to be noted that expression levels of AUP1-T68D-HA were very low compared to 

AUP-HA or AUP1-T68A-HA (see below). Importantly, exchanging Thr68 for 

aspartic acid or alanine did not change the localization of AUP1 to LDs (Fig. 23, A, 

inset).  

Phosphorylation is a wide spread posttranslational modification with diverse 

functions. For several proteins it was shown that phosphorylation influences 

ubiquitination of the phosphorylated protein (Hunter, 2007). Results shown so far 

demonstrated the importance of AUP1 ubiquitination for the induction of LD 

clustering. Phosphorylation of AUP1 might therefore control LD clustering by 

negatively influencing the ubiquitination state of AUP1. Hence, the His-tag affinity 

purification was used to analyze whether the AUP1-T68D mutation influences AUP1 

ubiquitination. Yet, AUP1-T68D-HA and AUP1-T68A-HA exhibited the same 

ubiquitination pattern as AUP1-HA (Fig. 23, C), suggesting that the phosphorylation 

of AUP1 Thr68 does not attenuate LD clustering by obviating AUP1 ubiquitination.  
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Figure 23. 

Mimicking phosphorylation of AUP1 Thr68 prevents LD clustering 

(A) Fluorescence micrographs of COS-7 cells overexpressing HA-tagged AUP1 constructs 

(as indicated) and supplemented with 50 µM oleate are shown. Cells were immunostained 

with anti-HA antibody (left panel), LDs were stained with LD540 (middle panels). Merged 

images with nuclei stained by DAPI in blue, AUP1 in red and LDs in green are shown (right 

panels). Bars, 10µm. (B) Quantification of LD clustering in COS-7 cells overexpressing HA-

tagged AUP1 constructs (as indicated). Results are average of three independent 

experiments with standard deviation. For each individual experiment at least 25 cells were 

analyzed. (C) COS-7 cells were transfected with His-ubiquitin and HA-tagged AUP1 

constructs (as indicated). His-ubiquitin and His-ubiquitin modified proteins were purified over 

Ni-NTA agarose. Proteins from lysates and His-purifications were separated on SDS-PAGE 

and immunoblotted with anti-HA antibody 
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As apparent from Figure 23, C, expression levels of AUP1-T68D-HA were strongly 

reduced compared to AUP1-HA or AUP1-T68A-HA. The possibility therefore 

remained that decreased expression levels of AUP1-T68D-HA attenuated the 

clustering of LDs. As shown before, AUP1-ΔG2BR-HA had much higher expression 

levels than AUP1-HA and caused LD clustering to comparable extends as AUP1-HA 

(Fig. 12, A and B). To increase stability of AUP1-T68D-HA, the T68D mutation was 

introduced into HA-tagged AUP1-ΔG2BR (AUP1-T68D-ΔG2BR-HA), which led to 

strongly elevated expression levels compared to AUP1-T68D-HA alone. HA-tagged 

AUP1-T68A-ΔG2BR was cloned as a control to exclude the possibility that deletion 

of the G2BR domain in the context of a mutated Thr68 residue has an influence on 

LD clustering. Again, AUP1-T68D-ΔG2BR-HA overexpressed in COS-7 cells (Fig. 

24, A) caused LD clustering in only around 20% of cells (Fig. 24, B) whereas around 

80% of COS-7 cells overexpressing AUP1-T68A-ΔG2BR-HA showed LD clustering 

(Fig. 24, A and B). These results suggest that the reduced expression levels of AUP1-

T68D-HA are not responsible for the observed change in LD clustering. Taken 

together, these results indicate that phosphorylation of AUP1 Thr68 prevents LD 

clustering or actively promotes LD declustering. 
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Figure 24. 

Reduced expression levels of AUP1 phosphomimetic mutants are not responsible for 

reduced clustering of LDs 

(A) Fluorescence micrographs of COS-7 cells overexpressing HA-tagged AUP1 constructs 

(as indicated) and supplemented with 50 µM oleate are shown. Cells were immunostained 

with anti-HA antibody (left panels), LDs were stained with LD540 (middle panels). Merged 

images with nuclei stained by DAPI in blue, AUP1 in red and LDs in green are shown (right 

panels). Bars, 10µm. (B) Quantification of LD clustering in COS-7 cells overexpressing HA-

tagged AUP1 constructs (as indicated). Results are average of three independent 

experiments with standard deviation. For each individual experiment at least 25 cells were 

analyzed. 
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4.12. AUP1-T68D-ΔCUE, abolishing LD clustering 

 

So far, several mutations were found to attenuate the ability of AUP1 to promote LD 

clustering. Yet, preventing ubiquitination of AUP1 or mimicking phosphorylation of 

AUP1 at residue Thr68 did not decrease LD clustering to the same level as in cells 

transfected with an empty control vector. Possibly, preventing the ubiquitination of 

AUP1-T68D-HA could further decrease LD clustering. It was therefore analyzed 

whether AUP1-ΔCUE combined with the T68D mutation would further attenuate the 

clustering of LDs.  

Indeed, COS-7 cells overexpressing AUP1-T68D-ΔCUE-HA showed LD clustering 

to a lesser extent than COS-7 cells overexpressing AUP1-T68D-HA or AUP1-ΔCUE-

HA, and to a similar extend as COS-7 cells transfected with an empty control vector 

(Fig. 25, A and B). On the other hand, COS-7 cells overexpressing AUP1-T68A-

ΔCUE-HA showed LD clustering to a similar degree as COS-7 cells overexpressing 

AUP1-ΔCUE-HA alone (Fig. 24, A and B). Again, exchanging Thr68 for aspartic 

acid or alanine in an AUP1-ΔCUE background did not change the localization of 

AUP1 to LDs (Fig. 25, A, inset). These results suggest that Thr68 phosphorylated 

AUP1 still retains a partial ability to promote LD clustering due to the prevailing 

ubiquitination.  

Taken together, results presented here suggest that posttranslational modifications of 

AUP1 through ubiquitination and phosphorylation antagonistically control LD 

clustering.  
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Figure 25.  

LD clustering is abolished by phosphorylation of AUP1 lacking ubiquitination 

(A) Fluorescence micrographs of COS-7 cells overexpressing HA-tagged AUP1 constructs 

(as indicated) and supplemented with 50 µM oleate are shown. Cells were immunostained 

with anti-HA antibody (left panels), LDs were stained with LD540 (middle panels). Merged 

images with nuclei stained by DAPI in blue, AUP1 in red and LDs in green are shown (right 

panels). Bars, 10µm. (B) Quantification of LD clustering in COS-7 cells overexpressing HA-

tagged AUP1 constructs (as indicated). Results are average of three independent 

experiments with standard deviation. For each individual experiment at least 25 cells were 

analyzed. 
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4.13. AUP1 T68 phosphorylation does not prevent 

AUP1 dimerization 

 

Mimicking AUP1 phosphorylation at Thr68 did not influence AUP1 ubiquitination, 

but might have an influence on AUP1 dimerization. Dimerization of myc-tagged 

AUP1 with AUP1-T68D-ΔG2BR-HA or AUP1-T68A-ΔG2BR-HA was hence 

analyzed by pull-down approach. The AUP1-T68D-HA mutant could not be used for 

the pull-down experiment, the low expression levels obviated a reliable detection after 

immunoprecipitation. 

Whole cell extract from COS-7 cells overexpressing myc-tagged AUP1 and HA-

tagged AUP1-T68D-ΔG2BR or AUP1-T68A-ΔG2BR were immunoprecipitated with 

myc-tag specific antibody. HA-tagged AUP1 constructs were efficiently co-purified 

with myc-tagged AUP1 (Fig. 26, A). Again, myc-tagged AUP1 was efficiently pulled 

down by the myc-tag specific antibody (Fig. 26, B). The LD proteins NSDHL and 

ACSL3 were present in the cell lysate but were absent from the immunoprecipitate 

(Fig. 26, B).  

AUP1 ubiquitination and phosphorylation might both control AUP1 dimerization 

independent from each other, and possibly AUP1 dimerization is inhibited by an 

AUP1-T68D mutant lacking ubiquitination. Dimerization of myc-tagged AUP1 with 

HA-tagged AUP1-T68D-ΔCUE and AUP1-T68A-ΔCUE was therefore analyzed by 

pull-down approach. Again, HA-tagged AUP1 constructs were efficiently co-purified 

with myc-tagged AUP1 (Fig. 26, A). Also, myc-tagged AUP1 was efficiently pulled 

down by the myc-tag specific antibody (Fig. 26, B) and the LD proteins NSDHL and 

ACSL3 were present in the cell lysate but were absent from the immunoprecipitate 

(Fig. 26, B). Taken together these results suggest that neither the phosphorylation of 

AUP1 at Thr68 nor the ubiquitination of AUP1 are required for AUP1 dimerization.  
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Figure 26. 

AUP1 phosphomimetic mutants form stable dimers 

COS-7 cells were transfected with HA-tagged AUP1 and myc-tagged AUP1 constructs (as 

indicated). Myc-tagged and associated proteins were immunoprecipitated with myc-tag 

specific antibody and separated on SDS-PAGE and immunoblotted with (A) anti-HA antibody 

and (B) anti-myc antibody. (C) Antibodies from membrane used for (B) were stripped and 

membrane was cut in half (indicated by dotted line). Upper part was immunoblotted with anti-

ACSL3 and lower part with anti-NSDHL antibody. Note: Residual signal from myc-tagged 

AUP1 is still visible (indicated by arrowheads). Putative AUP1 dimers are marked with 

asterisk (*).  
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5. Discussion 
 

 

5.1. LD clustering 

 

Over the last decades LDs have been intensively studied and many aspects concerning 

the formation, growth and regulation of LDs have been addressed by numerous 

studies. The work of this thesis focused on an aspect of LD dynamics described only 

by few studies so far, the clustering of LDs. LDs have been observed to aggregate and 

form clusters in different organisms like yeast (Binns et al., 2006), Drosophila (Zhang 

et al., 2000; Scott et al., 2004) or Arabidopsis thaliana (Kuang and Musgrave, 1996) 

and several cell types ranging from Drosophila Schneider2 cells (Guo et al., 2008) to 

adipocytes (Boström et al., 2005; Wolins et al., 2005) and hepatocytes (Fowler and 

Greenspan, 1985). Also, several LD associated proteins have been described to 

promote LD clustering upon overexpression in cells, as is the case for caveolin-1 

(Ostermeyer et al., 2001), core protein of HCV (Boulant et al., 2008; Depla et al., 

2010), fat specific protein27 (fsp27) (Jambunathan et al., 2011), methyltransferase 

like 7b (MettL7b) (Turró et al., 2006), perilipin A (Marcinkiewicz et al., 2006; Miura 

et al., 2002) and perilipin5 (Granneman et al., 2009). Yet, for most proteins any 

mechanistic insight into how LD clustering is achieved is lacking so far. However, the 

localization to LDs seems to be a prerequisite to promote LD clustering, since failure 

in localizing to LDs of fsp27 (Jambunathan et al., 2011) and core protein of HCV 

(Hourioux et al., 2007; Boulant et al., 2008) was shown to also obviate their ability to 

promote LD clustering. 

AUP1 was identified in our lab as an LD associated protein, and results from this 

thesis demonstrate that overexpression of AUP1 in COS-7 cells caused LD clustering 

in a quantitative manner. 
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5.2. AUP1 and its connection to LD clustering 

 

AUP1 is a ubiquitously expressed protein and the A431 cell line was found to have 

relatively high expression levels of AUP1. Results from this thesis demonstrate that 

knock-down of AUP1 in A431 cells quantitatively reduced the otherwise predominant 

clustering of LDs observed in this cell line. Thus indicating that AUP1 is important 

for the clustering of LDs in this cell line and that endogenous expression levels of 

AUP1 can be sufficient to promote LD clustering. Yet, knock-down of AUP1 in A431 

cells did not inhibit LD clustering in all cells analyzed, suggesting that residual AUP1 

expression might be enough to promote LD clustering in some cells. In addition, it 

cannot be excluded that other mechanisms in A431 cells exist which might promote 

clustering of LDs, independent of AUP1. A complete knock-out of AUP1 in the A431 

cell line would show whether complete loss of endogenous AUP1 expression would 

be sufficient to entirely obviate LD clustering in this cell line (see 5.10.).  

In order to dissect the molecular mechanism behind AUP1-induced LD clustering, 

several AUP1 mutants were generated and analyzed for their ability to promote LD 

clustering in COS-7 cells. An overview of the AUP1 constructs used in this thesis and 

analyzed with respect to their ubiquitination state, ability to induce LD clustering, 

integrity of the CUE domain and localization to LDs is given in table 3.  
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Construct Ubiquitinated LD clustering CUE domain LD localization 

K143R Yes Yes Yes Yes 

K250R Yes Yes Yes Yes 

K264/269R Yes Yes Yes Yes 

K305R Yes Yes Yes Yes 

K322R Yes Yes Yes Yes 

K347R Yes Yes Yes Yes 

K359R Yes Yes Yes Yes 

ΔG2BR Yes Yes Yes Yes 

10KR No No Yes Yes 

ΔCUE No No No Yes 

mutCUE1,2,3 No No No Yes 

ΔCUE-Ub Yes Yes No Yes/No 

mutCUE2-Ub Yes Yes No Yes/No 

10KR-Ub Yes Yes Yes Yes/No 

T68D Yes No Yes Yes 

T68A Yes Yes Yes Yes 

mutLDT1,2 Yes No Yes No 

 
Table 3. 

Overview of AUP1 constructs analyzed in this thesis 

Different HA-tagged AUP1 constructs analyzed in this thesis with respect to their 

ubiquitination state, ability to induce LD clustering, integrity of their CUE domain and 

localization to LDs. 
 
 

Results shown in this thesis demonstrates that mutation or deletion of the AUP1 CUE 

domain alone strongly attenuated the ability of AUP1 to promote LD clustering, 

whereas deletion of the G2BR domain had no effect on the clustering of LDs.  

Additionally, it was shown that the AUP1 CUE domain itself is essential for the 

intramolecular ubiquitination of AUP1. This finding is in line with observations made 

in HeLa cells, where AUP1 was also found to be ubiquitinated in a CUE dependent 
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manner (Klemm et al., 2011). UBD dependent ubiquitination has been described for 

several proteins (Polo et al., 2002; Klapisz et al., 2002; Shiba et al., 2004; Oldham et 

al., 2002; Hicke et al., 2005b), and has been termed coupled monoubiquitination. 

Presumably, AUP1 belongs to this larger group of UBD containing proteins, which 

undergo coupled monoubiquitination. Results presented in this thesis and by others 

(Klemm et al., 2011) suggest that AUP1 is predominantly modified by one or two 

ubiquitin moieties, as apparent from a molecular weight shift of AUP1 by 8 and 

16kDa, respectively. Yet, it could not be determined whether AUP1 is modified by 

two ubiquitin moieties at two different lysine residues or by di-ubiquitin attached to 

one single lysine residue. This question will be addressed in future studies using 

different His-tagged ubiquitin lysine mutants for the co-purification of AUP1. 

How the CUE domain participates in the ubiquitination of AUP1 is as yet not clear. 

Possibly, a specific E3 ubiquitin ligase interacts with conserved residues within the 

AUP1 CUE domain and subsequently transfers ubiquitin moieties to AUP1, as 

described for Eps15 (Fallon et al., 2006b; Woelk et al., 2006) and depicted in Figure 

7. Alternatively, an E3 ubiquitin ligase independent mechanism for AUP1 

ubiquitination is conceivable. It was shown for several UBD containing proteins that 

intramolecular ubiquitination can be achieved directly by interaction with an E2 

ubiquitin conjugase, and that this process is again dependent on a functional UBD 

(Hoeller et al., 2007; Sorkin, 2007). Since AUP1 binds the E2 ubiquitin conjugase 

Ube2g2, it seems feasible that this protein complex alone could catalyze AUP1 

ubiquitination. Yet, it was demonstrated in this thesis and elsewhere (Klemm et al., 

2011) that an AUP1 truncation mutant lacking the G2BR domain, and hence unable to 

bind Ube2g2 (Spandl et al., 2011) is still efficiently ubiquitinated. However, a 

possible trans-ubiquitination of AUP1-ΔG2BR by an endogenous AUP1 Ube2g2 

complex cannot be excluded. Continuative research on AUP1 employing in vitro 

ubiquitination assays using bacterial expressed and purified AUP1 and Ube2g2 

proteins will contribute to the understanding of the molecular mechanism behind 

AUP1 ubiquitination.  

Furthermore, this thesis demonstrates that AUP1 is ubiquitinated at multiple lysine 

residues and that AUP1 lacking all lysine residues failes to undergo coupled 

monoubiquitination. This finding is supported by two recent proteome-wide 

ubiquitination site surveys, which also found AUP1 to be ubiquitinated at multiple 
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lysine residues (Wagner et al., 2011; Kim et al., 2011). Contradictory to the finding 

that the AUP1 CUE domain is important for LD clustering was the observation that 

LD clustering was strongly attenuated in COS-7 cells overexpressing AUP1 lacking 

all lysine residues, although it retained the CUE domain. It was therefore speculated 

whether the ability of AUP1 to promote LD clustering depends on the ubiquitination 

of AUP1, rather than on a functional CUE domain. This thesis demonstrates that a 

single ubiquitin moiety fused to AUP1 is sufficient to induce LD clustering, 

regardless of the presence or absence of the CUE domain. To our best knowledge, 

ubiquitination is the first posttranslational protein modification described that controls 

the clustering of LDs. Yet, it must be noted that the AUP1 ubiquitin chimera proteins 

analyzed in this thesis exhibited a different intracellular distribution than 

overexpressed full length AUP1. The AUP1 ubiquitin chimera proteins were enriched 

at the site of LD clusters, yet they exhibited a more diffuse distribution within these 

LD clusters. For Full length AUP1, characteristic ring-like structures around single 

LDs within LD clusters were observed. Since AUP1 localizes to both, LDs and the 

ER, it might be possible that the AUP1 ubiquitin chimera proteins did not actually 

localize to LD clusters but rather to ER membranes adjacent to these LD clusters. 

Indeed, a close connection of LDs with ER membranes is a commonly observed 

structural feature of LDs (Murphy et al., 2009; Beller et al., 2010; Cushman, 1970). 

However, this thesis demonstrates that AUP1 mutants which are retained within the 

ER membrane completely lose their ability to promote LD clustering, albeit being still 

modified by ubiquitin. It can therefore be assumed that the AUP1 ubiquitin chimera 

proteins have to reach LDs in order to promote their clustering. Yet, further 

experiments will be necessary to exactly determine the localization of the AUP1 

ubiquitin chimera proteins. For future studies it will also be necessary to analyze 

whether the orientation of ubiquitin fused to AUP1 influences the induced clustering 

of LDs. In all AUP1 ubiquitin fusion proteins generated for this thesis, ubiquitin is 

fused with its N-terminus to the C-terminus of AUP1. However, ubiquitin is usually 

conjugated to a lysine residue within target protein through its C-terminal glycine 

residue, whereas the N-terminus protrudes from target protein (Johnson, 2002; 

Welchman et al., 2005; Wickliffe et al., 2011). Ubiquitin is therefore fused to AUP1 

in a backward orientation. It should be analyzed whether ubiquitin fused to the N-

terminus of AUP1 also promotes the clustering of LDs. 
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A further question that remains unanswered is whether ubiquitin fused to any LD 

associated protein would also suffice to induce LD clustering. In an attempt to answer 

this question, ubiquitin was fused to either the N- or C-terminus of the LD associated 

protein NSDHL and overexpressed in COS-7 cells. Yet, expression levels of HA-

tagged NSDHL ubiquitin chimera proteins were extremely low and localization to 

LDs almost undetectable and inconsistent (Fig. 27, B), whereas HA-tagged NSDHL 

alone localized efficiently to LDs (Fig. 27, A). Even though NSDHL ubiquitin 

chimera proteins were unable to promote LD clustering, their inconsistent localization 

to LDs made it impossible to draw a conclusion as to whether ubiquitin fused to 

NSDHL might be capable of promoting LD clustering. Therefore, at this point it 

cannot be excluded that AUP1 fused to ubiquitin serves as an artificial vehicle for 

targeting a monoubiquitin to LDs, and that monoubiquitin targeted to LDs is as such 

sufficient to promote LD clustering. Any assumption as to how the ubiquitination of 

AUP1 might promote LD clustering must be speculative.  
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Figure 27. 

Ubiquitin fused to the LD associated protein NSDHL 

(A-B) Fluorescence micrographs of COS-7 cells overexpressing HA-tagged NSDHL 

constructs (as indicated) and supplemented with 50 µ M oleate are shown. Cells were 

immunostained with anti-HA antibody (left panels). LDs were stained with LD540 (middle 

panels). Merged images with nuclei stained by DAPI in blue, NSDHL in red and LDs in green 

are shown (right panels). Bars, 10µm. NSDHL-HA efficiently localized to LDs and did not 

induce LD clustering. Ubiquitin fused to the N-terminus of NSDHL did not show consistent co-

localization with LDs. 

 

 

5.3. Membrane tethering 

	  
In principal, the smallest entity of an LD cluster consists of two individual LDs that 

are tethered by an as yet unknown molecular mechanism. This tethering of individual 

LDs can be thought of as being reminiscent to the tethering between distinct 

membranous bound cellular compartments. Up to date numerous proteins, called 

tethering factors, have been identified, which participate in membrane-membrane 

tethering events (Lupashin and Sztul, 2005; Sztul and Lupashin, 2009; Yu and 

Hughson, 2010). These tethering factors are a diverse group of mainly peripherally 
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associated membrane proteins, which form physical links between two each other 

opposing membranes (Brocker et al., 2010; Sztul and Lupashin, 2009; Yu and 

Hughson, 2010). Membrane tethering can be mediated by homo-oligomerization of 

proteins, as proposed for the Golgi reassembly and stacking proteins (GRASPs) 55 

and 65, which are thought to be involved in the stacking of Golgi cisternae by 

tethering Golgi membranes from opposing cisternae (Wang et al., 2003; Xiang and 

Wang, 2010; Sengupta et al., 2009; Lowe, 2011; Tang et al., 2010). Membrane 

tethering can also be achieved by the assembly of large multisubunit complexes, as 

proposed for the transport protein particle I (TRAPPI) complex. The TRAPPI 

complex has been suggested to mediate tethering of coat protein complex II (COPII) 

coated vesicles to the Golgi membrane (Sacher et al., 2001; Cai et al., 2007; 

Conibear, 2011).	  The underlying principle governing membrane-membrane tethering 

is therefore thought to be mediated by the interaction between proteins on themselves 

opposing membranes. Figure 28 shows a schematic representation of several proposed 

molecular mechanisms for membrane-membrane tethering events.  

 

 
 

Figure 28. 

Membrane-membrane tethering 

Schematic representation of different membrane-membrane tethering events in cells are 

shown. Left: Homodimerization of proteins attached to each other opposing membranes, as 

suggested for GRASP proteins. Middle: Assembly of a multisubunit protein complex to tether 

each other opposing membranes, as suggested for the TRAPPI complex. Right: A cytosolic 

UBD containing protein simultaneously binds a ubiquitinated membrane protein and another 

membrane bound protein on an opposing membrane, as suggested for SQSTM1/p62. 
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Indeed, the dimerization of proteins from opposing LDs as a mean to drive LD 

clustering has been suggested for perilipin A (Brasaemle et al., 2000), caveolin-1 

(Ostermeyer et al., 2001) and fsp27 (Jambunathan et al., 2011). fsp27 has been shown 

to homodimerize and heterodimerize with CIDEA (cell death-inducing DFFA-like 

effector a) (Liu et al., 2009). The C-terminus of CIDEA itself has also been shown to 

promote the clustering of LDs (Christianson et al., 2010), suggesting that 

heterodimerization of these two proteins might promote LD clustering. Yet, 

experimental evidence to prove that protein dimerization might be responsible for LD 

clustering is lacking. Nevertheless, it can be envisioned that a similar mechanism is 

applicable to AUP1-induced LD clustering, in which AUP1 on one LD binds directly 

or indirectly a protein on an opposing LD and thereby physically tethers these LDs. 

The ubiquitination of AUP1 would somehow participate and potentiate this tethering 

event. 

 

 

5.4. Ubiquitin and membrane tethering 

 

Ubiquitination of membrane proteins has been suggested to be important for the 

tethering of mitochondria to forming autophagosomes in the early steps of mitophagy 

(Komatsu and Ichimura, 2010; Wild and Dikic, 2010). It has been demonstrated that 

the cytosolic ubiquitin binding protein of 62kDa/sequestosome1 (P62/SQSTM1) is 

enriched on ubiquitinated mitochondria (Lee et al., 2010; Ding et al., 2010; Geisler et 

al., 2010; Huang et al., 2011). P62/SQSTM1 itself contains a UBD, which has been 

shown to bind ubiquitin (Vadlamudi et al., 1996; Long et al., 2008) and an LC3 

interacting region (LIR) which has been demonstrated to bind autophagosomal 

localized LC3 (microtubule-associated protein-1 light chain 3) (Pankiv et al., 2007; 

Johansen and Lamark, 2011). P62/SQSTM1 has therefore been suggested to function 

as a tethering factor that physically links mitochondria to forming autophagosomes in 

the presence of ubiquitinated mitochondrial proteins (Kirkin et al., 2009; Wild and 

Dikic, 2010; Komatsu and Ichimura, 2010). 

Noteworthy, recruitment of p62/SQSTM1 to ubiquitinated mitochondria has been 
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observed to promote the clustering of these mitochondria (Okatsu et al., 2010; 

Narendra et al., 2010). Furthermore, it has been shown that p62/SQSTM1 self-

oligomerizes (Lamark et al., 2003) and that mutation of amino acid residues of 

p62/SQSTM1 important for oligomerization allenuates the clustering of mitochondria 

(Okatsu et al., 2010). Hence, it has been proposed that oligomerized p62/SQSTM1 

can simultaneously bind several ubiquitinated mitochondrial proteins via their UBDs 

and thereby tether individual mitochondria (Okatsu et al., 2010). Whether 

p62/SQSTM1 or another protein performs a similar function in the tethering of 

individual LDs will have to be determined by future studies. Such molecular players 

might be revealed by pull-down approaches using AUP1 ubiquitin chimera proteins as 

bait.  

Interestingly, it was found that in cells overexpressing spartin, orthologues of 

p62/SQSTM1 from Rattus norvegicus, namely zinc transporter (ZIP) 1, 2 and 3 are 

recruited to LDs (Urbanczyk and Enz, 2011). Although the effect of spartin 

overexpression on LD clustering was not explicitly studied, fluorescence microscopy 

pictures from cells overexpressing spartin clearly showed clustering of LDs when 

adorned by spartin (Urbanczyk and Enz, 2011). 

In conclusion, interaction between ubiquitinated proteins and UBD containing 

proteins could represent a possible mechanism by which membranes are tethered. 

Based on this assumption, possible models are presented in the next chapter as to how 

ubiquitinated AUP1 might promote LD clustering. 

 

 

5.5. Molecular mechanisms for AUP1-induced LD 

clustering 

 

A very simple model that could explain how monoubiquitinated AUP1 controls LD 

clustering is depicted in Figure 29. In this model, two monoubiquitinated AUP1 

proteins face each other on opposing LDs, and both AUP1 proteins bind the ubiquitin 

attached to the other protein in trans via their CUE domain (henceforward named 

‘AUP1 homodimerization model’). Although the interaction between ubiquitin and 

UBDs is thought to be rather weak, with a Kd of around 100 µM (Hicke et al., 2005a; 
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Hurley et al., 2006), the simultaneous interaction of several AUP1 proteins on 

opposing LDs might confer a net interaction that is strong enough to tether LDs.  

Alternatively, ubiquitin attached to AUP1 could bind a UBD from another so far 

uncharacterized protein on an opposing LD (Fig. 29). In this context, Fas associated 

factor family member 2 (FAS2/UBXD8) contains an UBD (termed ubiquitin-

associated (UBA) domain) and has been identified on LDs (Zehmer et al., 2009a). 

FAS2/UBXD8 has been found to co-precipitate with AUP1 in a pull-down 

experiment (Klemm et al., 2011), and was found together with AUP1 in a purified LD 

fraction from A431 cells (Moessinger et al., 2011). Furthermore, it was shown that 

overexpression of UBX2, a close homologue of FAF2/UDXB8 in yeast, caused 

aggregation of LDs (Wang and Lee, 2012). However, deletion of the UBA domain of 

UBX2 did not disrupt the aggregation of LDs (Wang and Lee, 2012). In addition to 

the UBA domain, FAS2/UBXD8 also contains a ubiquitin regulatory X (UBX) 

domain. UBX domains have been shown to share the same superfold as ubiquitin 

(Buchberger et al., 2001; Yuan et al., 2001). It has also been demonstrated that 

protein domains, which exhibit the same superfold as ubiquitin, can interact with 

UBDs (Mueller and Feigon, 2003; Zhang et al., 2009). In the context of LD tethering, 

it can be envisioned that the UBX domain of FAS2/UBXD8 interacts with the CUE 

domain of AUP1; thereby tethering LDs. Interaction studies of different AUP1 

mutants, lacking ubiquitination or the CUE domain, with FAS2/UBXD8 might reveal 

a functional connection between AUP1 and FAS2/UBXD8. 

Analog to p62/SQSTM1 mediated tethering of mitochondria to autophagosomes 

(Kirkin et al., 2009). AUP1 ubiquitination might recruit a cytosolic UBD containing 

protein, which simultaneously binds to another LD associated protein and hence could 

function as a physical link between individual LDs (Fig. 29). Such a UBD containing 

protein could also exist in an oligomerized state, as described for p62/SQSTM1, and 

as such bind to several ubiquitinated AUP1 proteins on different LDs, thereby 

tethering these LDs. 
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Figure 29. 

Possible molecular mechanisms explaining AUP1-dependent LD clustering 

Schematic representation depicting possible molecular mechanisms for AUP1-induced LD 

clustering. Left: Two AUP1 proteins face each other on opposing LDs. Both AUP1 proteins 

bind the ubiquitin attached to the other protein in trans via their CUE domain. Middle: 

Ubiquitin attached to AUP1 is bound by a UBD containing protein from an opposing LD. 

Reight: A cytosolic UBD containing protein binds ubiquitin attached to AUP1 and 

simultaneously to a protein from an opposing LD. 

 

 

Several lines of evidence presented in this thesis support the above models. Mainly 

that AUP1 is ubiquitinated and that monoubiquitination of AUP1 is sufficient to 

promote LD clustering. It was further demonstrated in this thesis that AUP1 can 

interact with itself. On the other hand, several experiments conducted in this thesis are 

contradictory to these models. 

First, overexpression of AUP1 with a deleted CUE domain fused to ubiquitin (AUP1-

∆CUE-Ub) caused the clustering of LDs. In this case, LD clustering cannot be 

explained by the AUP1 homodimerization model. AUP1 ubiquitin chimera proteins 

lacking their CUE domains would be unable to interact with ubiquitin. Yet, COS-7 

cells also express endogenous AUP1, which could bind ubiquitin fused to AUP1-

∆CUE and thereby provide enough dimerization events to tether LDs. Repeating the 

same experiment in an AUP1 knock-out background would help to clarify this issue 
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(see 5.10.).  

Second, it was shown that interaction of AUP1 with itself is not abolished by deletion 

of the CUE domain. This result indicates that AUP1 self-interaction does not rely on a 

functional CUE domain or the ubiquitination of AUP1. The pull-down assays to 

generate these data should be repeated, employing different combinations of myc- and 

HA-tagged AUP1 mutants. Likely, additional mutational analysis of AUP1 will be 

necessary to reveal regions of AUP1 that are important for AUP1 self-interaction. 

Such mutational studies will help to clarify the mechanism for AUP1 self-interaction, 

and a possible connection to the clustering of LDs.  

Third, ubiquitin UBD interactions rely on conserved amino acid residues on ubiquitin, 

mainly isoleucine 44 and aspartic acid 58. It was shown in this thesis that mutation of 

either of these two residues to alanine on ubiquitin fused to AUP1-∆CUE did not 

obviate LD clustering. These results suggest that interaction between ubiquitin and 

UBDs, which rely on these conserved amino acid residues are not required for AUP1-

induced LD clustering. However, exchanging the hydrophobic amino acid isoleucine 

44 by the hydrophobic amino acid alanine might not suffice to efficiently disrupt 

binding of ubiquitin to a UBD. Yet, the same mutation on ubiquitin has been 

demonstrated by several studies to disrupt binding of ubiquitin to a diverse range of 

UBDs (Shih et al., 2003; Shih et al., 2002; Kang et al., 2003). In addition, other 

amino acid residues on ubiquitin might be important for binding to UBDs. Indeed, a 

ubiquitin-binding motif (UBM) from polymerase iota (poli) interacts with amino acid 

residues on ubiquitin centered around leucine 8 (Bienko et al., 2005). The zinc-finger 

ubiquitin binding domain (ZnF UBP) of deubiquitinating enzyme isopeptidase T 

(isoT) contacts hydrophobic amino acid residues leucine 8 and isoleucine 36 on 

ubiquitin (Reyes-Turcu et al., 2006). Further mutational analysis of ubiquitin fused to 

AUP1-∆CUE will be necessary to determine amino acid residues on ubiquitin that are 

important for promoting LD clustering.  

In conclusion, several mechanisms explaining how the ubiquitination of AUP1 could 

promote LD clustering have been discussed. Yet, further research will be necessary to 

determine whether any of the presented models contribute to this process.  
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5.6. A function to LD clustering 

 

As the molecular mechanism for LD clustering is still elusive, so is the function of LD 

clustering. So far only few suggestions have been made as to why LD clusters are 

formed.  

It was suggested that fsp27-induced LD clustering is a prerequisite for LD fusion 

(Jambunathan et al., 2011). fsp27 has been shown to concentrate at discrete contact 

sites between individual LDs and it was observed that fluorescent labeled fatty acids 

transit from one LD to another, resulting in a mixed population of enlarged and small 

LDs. This phenomenon was only observed when fsp27 was correctly targeted to LDs 

(Gong et al., 2011). How precisely lipids are transferred from one LD to another is as 

yet unknown. Suggestions range from pores connecting individual LDs to proteins 

shuttling lipids between LDs (Gong et al., 2011) and actual fusion of LD membranes 

mediated by SNARE proteins (Bostrom et al., 2007). That LDs clustered by AUP1 

undergo actual fusion is rather unlikely as single LDs could be observed within these 

LD clusters. A possible molecular machinery necessary for LD fusion should be 

present in COS-7 cells, as fsp27 mediated LD fusion was studied in COS-7 cells 

(Jambunathan et al., 2011). The selective transfer of lipids from one LD to another is 

also unlikely, as LDs within these clusters seemed rather homogenous in size.  

perilipin A is another LD associated protein which has been studied in more detail 

with respect to its ability to promote LD clustering. Ectopic expression of perilipin A 

in fibroblastic 3T3-L1 pre-adipocytes has been observed to cause LD clustering 

(Brasaemle et al., 2000; Marcinkiewicz et al., 2006). Furthermore, ectopic expression 

of perilipin A in fibroblastic 3T3-L1 pre-adipocytes also caused a strong increase in 

cellular TAG storage (Brasaemle et al., 2000). It is assumed that this increase in TAG 

storage is mediated by an intrinsic function of perilipin A to shield LDs from 

cytosolic lipases (Brasaemle et al., 2000; Marcinkiewicz et al., 2006). However, it has 

also been speculated whether the clustering of LDs as such is a mechanism to prevent 

lipolysis (Christianson et al., 2010; Garcia et al., 2004; Marcinkiewicz et al., 2006). 

Whether AUP1-induced LD clustering increases TAG content in cells is currently 

under investigation. Initial experiments using clickable fatty acids suggested that the 

ability of AUP1 to promote LD clustering did not positively correlate with an 
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increased TAG content in cells (Lohmann, Daniel and Piotrowitz, Kira). However, a 

study from Klemm et al. suggests a slight increase in neutral lipid content in HeLa 

cells overexpressing AUP1. Yet, it was suggested that the AT domain of AUP1 is 

important for this increase in neutral lipid storage, whereas the CUE domain seemed 

dispensable (Klemm et al., 2011). 

 

 

5.7. Phosphorylation and LD declustering 

 

Another finding from studies on perilipin A was that the clustering of LDs in 

fibroblastic 3T3-L1 pre-adipocytes ectopically expressing perilipin A is reversible 

upon lipolytic stimulation (Marcinkiewicz et al., 2006). perilipin A itself is 

phosphorylated during this event and it has been shown that the mutation of one 

proposed phosphorylation site within perilipin A is sufficient to prevent the 

declustering of LDs upon lipolytic stimulation (Marcinkiewicz et al., 2006). In 

adipocytes, Perilipin A is phosphorylated upon β -adrenergic receptor pathway 

induced lipolysis (Brasaemle, 2007) and lipolytic stimulation of adipocytes leads to 

the fragmentation of few large LDs into numerous dispersed and declustered LDs 

(Londos et al., 1999; Marcinkiewicz et al., 2006). Posttranslational modification of 

perilipin A by phosphorylation has been therefore suggested to actively disperse 

clustered LDs  (Marcinkiewicz et al., 2006). 

Interestingly, it was found that phosphorylation of a Drosophila homologue of 

perilipin A, namely LSD2 influences the intracellular motility of LDs (Welte et al., 

2005). It has been suggested that microtubule and motor protein dependent motility of 

LDs might be a necessary force to pull LDs apart and could hence be a mean to 

actively disperse LD clusters (Marcinkiewicz et al., 2006; Welte et al., 2005; Welte, 

2009). Based on these observations it was proposed that phosphorylation of perilipin 

A might enable active transport of LDs and hence cause the dispersion of LD clusters 

(Marcinkiewicz et al., 2006).  

Strikingly, this thesis demonstrated that an AUP1 Thr68 phosphomimetic mutant 

quantitatively reduced the ability of AUP1 to induce LD clustering. This result 

suggests that AUP1 phosphorylation at Thr68 might be a posttranslational 
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modification that negatively influences AUP1-dependent LD clustering. However, at 

this point it cannot be distinguished whether the AUP1 Thr68 phosphomimetic mutant 

prevents the clustering of LDs or actively promotes the declustering of previously 

clustered LDs. Results from this thesis only indicate that phosphorylation of AUP1 at 

Thr68 does not prevent LD clustering by hindering AUP1 ubiquitination.  

Taken together, results from this thesis suggest that the posttranslational modification 

of AUP1 might regulate LD clustering in two ways. First, the ubiquitination of AUP1 

promotes the clustering of LDs and second, the subsequent phosphorylation of AUP1 

Thr68 promotes the dispersion of these clusters. Also, posttranslational modifications 

of proteins by ubiquitination or phosphorylation are readily reversible (Amerik and 

Hochstrasser, 2004; Deribe et al., 2010). Cellular deubiquitinating enzymes or 

phosphatases might counteract AUP1 ubiquitination and phosphorylation, 

respectively. A model depicting how the posttranslational modifications of AUP1 

might control intracellular LD clustering, based on the above assumptions, is shown 

in Figure 30. 
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Figure 30. 

LD clustering under the control of AUP1 

Ubiquitination of AUP1 promotes the clustering of LDs whereas phosphorylation of 

ubiquitinated AUP1 actively promotes declustering of LDs. Both processes might also be 

reversible by the activity of deubiquitinating enzymes and phosphatases, respectively. 

 

 

It is tempting to speculate whether the posttranslational modifications of AUP1, and 

hence the intracellular distribution of LDs, are governed by upstream signaling 

events, as has been suggested for the phosphorylation of perilipin A. Future studies 

will show whether AUP1-induced LD clustering might be reversible under certain 

signaling conditions. 
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5.8. AUP1 ubiquitination in a different context 

 

So far it was only speculated as to how AUP1 ubiquitination influences the clustering 

of LDs. However, ubiquitination of AUP1 might also control other aspects of the 

proposed molecular functions of AUP1. It was shown that AUP1 has weak 

acyltransferase activity, which might be impaired or enhanced by ubiquitination of 

AUP1. Negative regulation of enzymatic activity through conformational changes 

induced by ubiquitination has for example been described for the deiodinase, 

iodothyronine, type II (DIO2) enzyme (Sagar et al., 2007).  

Furthermore, AUP1 has been suggested to function in ERAD by binding to ER 

quality control machinery and dislocation substrates (Spandl et al., 2011; Klemm et 

al., 2011; Mueller et al., 2008; Claessen et al., 2010), and it has been shown that 

mutation of the CUE domain diminishes binding to these components (Klemm et al., 

2011). How and whether the ubiquitination of AUP1 itself influences the role of 

AUP1 in ERAD is as yet an open question.  

As outlined during this discussion, ubiquitination of mitochondrial membrane proteins 

has been suggested to be important for their autophagocytosis (Kuma and Mizushima, 

2010). Ubiquitination of AUP1 might therefore be a possible signal for 

autophagosomal clearance of LDs (Singh and Cuervo, 2012). Indeed, recent studies 

demonstrated that LDs are found within autophagic vacuoles and that the 

autophagosomal marker protein LC3 accumulates at LDs (Rabinowitz and White, 

2010; Singh et al., 2009; Kaini et al., 2012). Following autophagocytosis in cells 

overexpressing the AUP1 ubiquitin chimera proteins might reveal the importance of 

ubiquitinated LD proteins for their autophagosomal degradation.  
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5.9. LD clusters, a shelter for proteins 

 

Finally, a speculative thought to the function of AUP1-induced LD clustering based 

on different themes discussed in this thesis.  

Under sufficient nutritional conditions, AUP1 might be ubiquitinated and 

subsequently recruit UBD containing proteins, like p62/SQSTM1 to LD clusters. 

These LD clusters might serve as a site for the sequestration of proteins that normally 

function in different cellular processes, thereby keeping them away from their 

intracellular location of action; and hence in an inactive state. Under nutritional 

deprivation, AUP1 might undergo regulated phosphorylation, promoting the 

declustering of these LD clusters and the release of sequestered proteins. Released 

proteins would then be quickly available to respond to the change in nutritionally 

conditions. P62/SQSTM1 could for example engage in autophagocytosis in order to 

supply cells with necessary energy. At least for fsp27 it was shown that partitioning of 

fsp27 onto LDs attenuates its function in promoting cell death (Liu et al., 2009). Yet, 

whether the ability of fsp27 to induce LD clustering coincides with the attenuated 

apoptotic function of fsp27 was not analyzed. 

However, LDs have been found to function as sites for the sequestration of several 

proteins normally not found to be associated with LDs (Leber et al., 1998; Jiang et al., 

2007; Whitehead et al., 2004; Li et al., 2012; Cermelli et al., 2006), and it has been 

suggested that LDs might more generally serve as a temporary shelter for specific 

proteins (Welte, 2007). Whether the clustering of LDs participates in the sequestration 

of such protein awaits further studies. 

 

 

5.10. AUP1 specific Zinc Finger Nucleases 

 

As mentioned at several points during this discussion, endogenous background levels 

of AUP1 expression hampered the interpretation of some results presented here. As 

part of this thesis and in collaboration with a diploma (Myriam Sarmiento Diaz) and 

master student (Wunderling Klaus), standard protocols for the generation of AUP1 



	  

	  

	  
DISCUSSION 

	  
	   	  

89	  

knock-out cell lines using zinc finger nuclease (ZFN) technology were used in a first 

trial to analyze efficiency of AUP1 specific ZFNs.  

ZFNs are hybrid enzymes of the FokI-cleavage domain and several DNA-binding 

zinc finger motives, which are able to introduce a broad range of genome alterations 

in eukaryotic cells (Bibikova et al., 2003; Porteus and Carroll, 2005; Wu et al., 2007). 

We obtained two ZFNs (Sigma-aldrich) which specifically bind to genomic AUP1. 

These AUP1 specific ZFNs were used in a first trial to generate an AUP1 knock-out 

in A431 cells (results will be published elsewhere). The AUP1 ZFNs are currently 

used to generate an AUP1 knock-out cell line.  
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6. Conclusion and Outlook 
 

 

In conclusion, results from this thesis confirmed and extended initial observations that 

AUP1 is a novel protein involved in the intracellular clustering of LDs. It was shown 

that AUP1 undergoes intramolecular ubiquitination in a CUE dependent manner and 

that this ubiquitination of AUP1 is a prerequisite to induce the clustering of LDs. 

Furthermore, results from this thesis suggest that AUP1 phosphorylation at Thr68 

promotes the dispersion of LD clusters. Posttranslational modifications of AUP1 

through ubiquitination and phosphorylation could therefore represent a possible 

molecular mechanism to control the intracellular distribution of LDs.  

During the work on this thesis a large set of diverse AUP1 mutants were generated 

which will help to tackle immediate questions of how AUP1 controls the intracellular 

distribution of LDs. How does ubiquitin attached to AUP1 promote the clustering of 

LDs? Which role does AUP1 play in this context? Does the observed dimerization of 

AUP1 function in the clustering of LDs? Further mutational analysis of ubiquitin 

fused to AUP1 will provide additional cues as to the function of ubiquitin in LD 

clustering. Additional molecular players involved in the clustering of LDs might be 

revealed by pull-down approaches using AUP1 ubiquitin chimera proteins as bait. 

Also, the molecular mechanism of AUP1 ubiquitination will have to be determined by 

in vitro ubiquitination assays. It will be of general interest to determine whether the 

posttranslational modifications of AUP1 and hence the intracellular distribution of 

LDs are governed by upstream signaling events. In this context, finding the kinase 

which phosphorylates AUP1 at Thr68 might provide important cues for further 

research on possible upstream signaling events controlling the posttranslational 

modifications of AUP1.     
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