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Abstract

The two-channel Kondo (2CK) e�ect with its exotic ground state properties has remained
di�cult to realize in physical systems. At low energies, a quantum impurity with or-
bital degree of freedom, like a proton bound in an interstitial lattice space, comprises a
3-level system with a unique ground state and (at least) doubly degenerate rotational
excitations with excitation energy ∆0. When immersed in a metal, electronic angular
momentum scattering induces transitions between any two of these levels (couplings J),
while the electron spin is conserved. We show by extensive numerical renormalization
group (NRG) [1] calculations that without �ne-tuning of parameters this system exhibits
a 2CK �xed point, due to Kondo correlations in the excited-state doublet whose degen-
eracy is stabilized by the host lattice parity, while the channel symmetry (electron spin)
is guaranteed by time reversal symmetry. We �nd a pronounced plateau in the entropy
at S(TK < T < ∆0) = kB ln 2 between the high-T value, S(T � ∆0) = kB ln 3, and the
2CK ground state value, S(0) = kB ln

√
2. This indicates a downward renormalization of

the doublet below the non-interacting ground state, thus realizing the 2CK �xed point, in
agreement with earlier conjectures [2]. We mapped out the phase diagram of the model
in the J − ∆0 plane. The Kondo temperature TK shows non-monotonic J-dependence,
characteristic for 2CK systems.

Beside the two-channel Kondo e�ect of the model, we also study the single-channel
version, which is realized by applying a strong magnetic �eld to the conduction band elec-
trons so that their degeneracy is lifted and consequently having only one kind of electrons
scattering o� the impurity. This single-channel case is easier to analyze since the Hilbert
space is not as large as that of the 2CK. We equally �nd a downward renormalization
of the excited state energy by the Kondo correlations in the SU(2) doublet. In a wide
range of parameter values this stabilizes the single-channel Kondo �xed point and a phase
diagram is also mapped out for the model. In the single-channel version a plateau is found
in the entropy at S(TK < T < ∆0) = kB ln 2 between high-T value, S(T � ∆0) = kB ln 3,
and the single-channel Kondo ground state value, S(0) = kB ln 1.
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Zusammenfassung

Der zwei-Kanal Kondo E�ekt (2CK) mit seinen auÿergewöhnlichen Grundzustandseigen-
schaften ist bisher physikalisch schwer zu realisieren gewesen. Eine niederenergetische
Quantenstörstelle mit Drehimpulsfreiheitsgrad, wie z.B. ein gebundenes Proton an ein-
er Gitterstörstelle, bildet ein 3-Level-System mit genau einem Grundzustand und einer
(mindestens) zweifach entarteten Rotationsanregung mit Anregungsenergie. Be�ndet sich
eine solche Störstelle in einem Metall, so werden durch Drehimpuls-Streuung Übergänge
zwischen diesen entarteten Anregungen induziert (Kopplungsstärke J), wobei der Elektro-
nenspin erhalten bleibt. Wir haben durch umfassende numerische Renormierungsgruppen
(NRG)-Rechnungen [1] gezeigt, dass solche Systeme, selbst ohne Feinabstimmung der Kop-
plungsparameter, einen 2CK Fixpunkt aufweisen. Grund dafür sind Kondo Korrelationen
der angeregten Doublets, deren Entartung durch die Parität der Gitterstruktur stabilisiert
wird, während die Zerfallskanal-Symmetrie auf Grund der Zeitumkehrinvarianz garantiert
ist. Die Berechnungen haben gezeigt, dass die Entropie S(TK < T < ∆0) = kB ln 2
ein ausgeprägtes Plateau im Energieintervall zwischen dem Wert bei hohen Energien
S(T � ∆0) = kB ln 3 und dem 2CK Grundzustand S(0) = kB ln

√
2 aufweist. Das ist

ein numerischer Beweis dafür, dass das angeregte Doublet einen energetisch niedrigeren
Zustand annimmt als der nicht interagierende Grundzustand. Damit wurde die zuvor
gemachte Vermutung [2] bestätigt, dass sich in derartigen Systemen ein 2CK Fixpunkt
realisieren lässt. Weiterhin haben wir ein Phasendiagramm des Modells in der J − ∆0

Ebene erstellt. Dies weist eine für 2CK Systeme typische nicht monotone Abhängigkeit
der Kondotemperatur TK von der Kopplungskonstanten J auf.

Zusätzlich zu dem zwei-Kanal Kondo E�ekt (2CK) haben wir auch den ein-Kanal Kon-
do E�ekt (1CK) eines solchen Systems untersucht, der sich durch das Anlegen eines starken
Magnetfeldes verwirklichen lässt. Das Magnetfeld hebt die Entartung auf, so dass nur noch
Elektronen eines Spinzustandes von der Störstelle gestreut werden. Die Untersuchungen
des ein-Kanal E�ektes sind numerisch weniger aufwendig, da der relevante Teil des Hilbert-
Raumes deutlich kleiner als beim 2CK E�ekt ist. Die Untersuchungen belegten ebenfalls
eine Energieabnahme des angeregten Zustandes hervorgerufen durch Kondo Korrelationen
innerhalb des SU(2) Doublets. Dadurch wird der ein-Kanal Kondo Fixpunkt innerhalb
eines groÿen Parameterraumes stabilisiert. Dies ist deutlich dem erstellten Phasendia-
gramm zu entnehmen. Das Plateau der Entropy S(TK < T < ∆0) = kB ln 2 be�ndet
sich in der ein-Kanal Version des Kondo E�ektes in demselben Energieintervall als beim
2CK E�ekt und nimmt dort denselben Wert S(T ) = kB ln 2 an. Die Entropie bei hohen
Energien ist ebenfalls identisch zu dem 2CK Fall, wohingegen der 1CK Grundzustand die
Entropie S(0) = kB ln 1 besitzt.
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Nomenclature

NRG Numerical Renormalization Group
1CK Single-Channel Kondo
2CK Two-Channel Kondo
TLS Two-Level Systems
RG Renormalization Group
TK Kondo Temperature
RGT Renormalization Group Theory
AIM Anderson Impurity Model
PRG Perturbative Renormalization Group
kB Boltzmann Constant
ln Natural Logarithm
Fig Figure
fcc face-centered cubic
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Chapter 1: Introduction

Chapter 1

Introduction

The Kondo e�ect is a cornerstone in condensed matter physics that enables the under-
standing of the behavior of metallic systems with strongly interacting electrons. It has
been studied for more than 70 years but has not ceased to amaze physicists because of the
discoveries of more exotic ground states. The Kondo e�ect has a wide range of applica-
tions especially as an indicator of the purity of a metal from magnetic impurities, it serves
as an example of the simplest possible magnetic systems, it also serves as a good example
of asymptotic freedom, which is the theory that explains the situation where the coupling
becomes non-perturbatively strong at low temperatures and low energies. When extended
to a lattice of magnetic impurities, the Kondo e�ect can likely explain the formation of
heavy fermions and Kondo insulators in intermetallic compounds etc.

The Kondo e�ect for magnetic impurities in metals was �rst explained by Jun Kondo
in 1964 [4] (modeled as the single-channel Kondo model). However, Kondo's explana-
tion is only valid down to a certain temperature and below this temperature, this theory
makes an unphysical prediction (which says that resistivity diverges as the temperature
approaches zero). The breakdown of Kondo's explanation became known in the litera-
ture as the Kondo problem and the temperature at which it breaks down as the Kondo
temperature. The Kondo problem was solved ten years later by Kenneth Wilson using
the numerical renormalization group (NRG) technique that he invented [1]. An analytical
solution for the so called single-channel Kondo (1CK) e�ect was provided a few years
later in 1980 by Natan Andrei and P.B. Wiegmann [5, 6]. The result of their work further
con�rmed the work Wilson had earlier done on the Kondo model using the NRG.

Nozières and Blandin in 1980 proposed a generalization of the single-channel Kondo
model in which more than one conduction channels of electrons interact independently
with the impurity through exchange coupling [7]. This was the birth of the multi-channel
Kondo model. When only two conduction channels are considered the result is two-
channel Kondo (2CK) e�ect. The 2CK e�ect is an archetype for electronic correlations
in metals and so far a physical realization has been clear only in special �ne-tuned sys-
tems. The 2CK unlike the 1CK e�ect has an exotic non-Fermi liquid ground state with
a non-vanishing zero point entropy. After the introduction of the 2CK, NRG calculations
were done on it which con�rmed the non-Fermi liquid nature of the ground state [8] and
the stability of the 2CK e�ect �xed point against anisotropy [9]. The theoretical frame-
work for the calculation of some of its thermodynamic and dynamical properties has been
worked out using methods such as the Bethe Ansatz [10, 11], the conformal �eld theory
[12, 13, 14], and other methods like the Majorana fermion representation of the problem
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[15].
It was later realized that the Kondo e�ect is not limited only to the case where the im-

purity is magnetic but occurs whenever a discrete, degenerate quantum degree of freedom
is exchange-coupled to one or more conduction bands of electrons. In the case of more
than one conduction band, they must be exchange-coupled in a symmetrical way. Vládar
and Zawadowski were the �rst to suggest a model for a non-magnetic impurity Kondo
model which was the two-level system (TLS) [16]. The TLS is a double well potential
with an atom immersed in a metal. In this system the role of the impurity spin is played
by internal degrees of freedom of the TLS and the magnetic spin of the conduction elec-
trons serve as a channel index. In fact, in this system, the 2CK scenario results directly
by virtue of the degeneracy of the magnetic spin of the electrons of the conduction band.
However, the TLS has the obvious shortcoming in that it does not adequately explain
2CK behavior as detailed in [17, 18]. Due to the drawbacks of the TLS, Arnold et al. [2]
proposed a model that could circumvent this drawbacks.

The reason why some experiments like that of Ralph and Buhrmann [3] have been
barely understood till now is because there is no microscopic model with a stable 2CK �xed
point. Consequently some of the fascinating observations made by Ralph and Buhrmann
in their experiment are still not completely apprehended.

In this thesis, the partially broken SU(3) Kondo model proposed by Arnold et al. as a
realistic, microscopic model for the 2CK e�ect is examined. The kondo degrees of freedom
in this model are the parity-degenerate rotational states of an atomic three-level system
and the �avor or channel degree of freedom is the magnetic spin of the conduction band
electrons. This model is very robust with respect to dynamical screening as well as to
coupling to higher impurity excitations as detailed out in [19]. Arnold et al. used the
perturbative renormalization group (PRG) to study the physics of this model.

Our goal in this thesis is to use the non-perturbative technique, the NRG to show that
the partially broken SU(3) Kondo model has a 2CK behavior in a wide parameter range,
calculate some physical properties of the model and show that its Kondo temperature has
two di�erent kinds of behavior with respect to the coupling J . The rest of the thesis is
organized as follows:

In Chapter 2, a pedagogical approach is used to explain the Kondo e�ect. It starts up
with the phenomenology of the Kondo e�ect and then brie�y gives an outline of magnetic
impurities. The di�erent methods used to understand the Kondo e�ect are also tackled in
this chapter. The chapter ends by discussing the 1CK e�ect and giving its characteristics.

Chapter 3 focuses on the 2CK e�ect. It gives the physical description of the 2CK
model and RG analysis of this model. It also explains the duality behavior of the 2CK
model and ends with some characteristics of non-Fermi liquids.

In Chapter 4, two non-magnetic impurity models are presented and brie�y explained.
These two models are the TLS and the partially broken SU(3) Kondo model. The choice
of these two models is due to their relevance to this work.

Chapter 5 presents an overview of the NRG method and the rationale behind the
various steps of the method necessary for solving the Kondo problem.

In Chapter 6, the NRG presented in the previous chapter is used to solve the partially
broken SU(3) Kondo model. The matrices necessary for the NRG calculation are given
and the di�erent states of the system are calculated. The results are presented, starting
with the 1CK version of the partially broken SU(3) Kondo model which is obtained when
the conduction band electrons are all polarized in the same direction. A phase diagram

2
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and the entropy for this 1CK model are also shown. In the second part of this chapter
the more challenging calculations of the 2CK version of this model are carried out and
the energy �ows are shown which shows two 2CK characteristics. The phase diagram
for the 2CK model is also presented and the duality and the non-monotonicity of the
Kondo temperature behavior of this model is explicitly demonstrated too. The impurity
contribution to the entropy of the system is calculated in the presence and absence of a
small magnetic �eld.

We present the conclusion and give an outlook in chapter 7.
The Appendix gives some details on the NRG method as well as the calculations of

the di�erent basis states and the starting matrices necessary for the NRG procedure. The
implementation of symmetries in the NRG method is done here and last but not least, a
detailed calculation of the impurity entropy using the NRG method is presented.
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Chapter 2

The Kondo e�ect and the
renormalization group theory

The story of Kondo physics started in Leiden in 1934 when de Haas et al., [20] observed
a resistivity minimum in seemingly pure gold, silver, and copper samples. This resistivity
minimum was later explained by Jun Kondo [4] in 1964 as due to the presence of magnetic
impurity atoms, such as manganese, iron, chromium, etc, in the gold metal. He used
perturbation theory to calculate the resistivity, however, this theory breaks down at a
certain temperature when the coupling becomes large. The temperature for which this
happens became known as the Kondo temperature TK . The search for a solution beyond
the TK became known in the literature as the Kondo problem while the explanation of
the minimum is known as the Kondo e�ect.

For many problems in physics perturbation theory is divergent. The Kondo problem
is such a problem and so to solve it, one needs a technique like the renormalization group
theory (RGT) which solves these types of problems. In this chapter, we discuss the Kondo
e�ect and some of the methods that are used to obtain the interesting physics that comes
out of it. We will brie�y introduce methods like perturbation theory which was used by
Jun Kondo to explain the e�ect and also the basic ideas behind a more robust method
like the RGT.

2.1 Phenomenology

The electrical resistivity of metals is ordinarily caused by impedance to the free �ow of
conduction electrons. This usually arises as a result of the conduction electrons being
scattered o� phonons. The quanta of vibrations of ionic lattice are known as phonons.
One would expect that as the temperature is lowered, less and less phonons will be excited,
and the electrical resistivity will decrease monotonically. It turns out that in the presence
of a few magnetic impurities, the simple picture painted above is no longer respected.
The resistivity rather passes through a minimum and increases before saturating to a
�nite value. The analysis of this problem is not a simple one, since we have to deal
with a many-body problem that can not be reduced to a one-body case. Fig. 2.1 gives a
picture of the di�erent scenarios that set in as the temperature is lowered. Firstly, at high
temperature, the major contributor to the resistivity are phonons which cause a resistivity
varying as T 5. It is indicated in Fig. 2.1 by the blue part of the curve and would decrease
monotonically in the absence of impurities or imperfections in the metal. In the presence
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Chapter 2: The Kondo e�ect and the renormalization group theory

of magnetic impurities, at low temperatures, the curve passes through a minimum and
starts to increase (the red part of the curve), an e�ect which is due to spin �ip scattering
o� the impurity and is proportional to lnT . At much lower temperatures (the green part
of the curve), there is the formation of a singlet due to screening of the local moment.
The temperature at which the singlet is formed is known as the Kondo temperature.

Figure 2.1: The change of resistivity R as the temperature T is decreased. The blue line
is for phonon scattering proportional to T 5, while the red line is the spin �ip scattering
of the impurity which is proportional to lnT , and lastly the green curve is the screening
of the local moment that leads to the formation of a singlet.

2.2 Impurity magnetic moments in metals

The obvious question to ask here is, why does iron, cobalt, or manganese in copper have
magnetic moments whereas gold in copper does not? The answer to this is electrostatic
repulsive interactions between electrons. We will attempt to explain this by using the
Anderson impurity model (AIM) [21]. In this section we will brie�y explain the AIM and
then show how the Kondo model is obtained from it as an e�ective low temperature model
using the Schrie�er-Wol� transformation.

2.2.1 Anderson impurity model

Iron atoms have incomplete d-shells with non-zero total spin. This means that the iron
atom has a singly occupied orbital when it is in isolation. When this atom is brought
in contact with conduction electrons by being placed inside a metal, there is a chance
for hybridization to occur. This means that it is possible for one of the conduction
electrons to jump to the singly occupied impurity orbital and brie�y spend some time
there. The reverse can actually occur too, that is, an electron of the impurity jumps onto
the conduction band. A complete description of these impurities in metals can be modeled
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using the famous Anderson Hamiltonian.

HA =
∑
k,σ

εkc
†
kσckσ + εd

∑
σ

d†σdσ + Ud†↑d↑d
†
↓d↓ + V

∑
k,σ

(c†kσdσ + d†σckσ) (2.1)

The �rst term in (2.1) is the kinetic energy of the conduction electron where εk is the
dispersion relation measured relative to the Fermi energy and c†kσ (ckσ) is the creation
(annihilation) operator. In the second term, εd is the energy of the impurity level, d†σ and
dσ are creation and annihilation operators at the impurity site respectively. The third
term is known as the Hubbard term, where U is the Coulomb interaction, that causes a
second electron in the impurity orbital to pick up electrostatic potential energy. The last
term is the hybridization term which comes about due to hopping of electrons into and
out of the impurity orbital. Fig. 2.2 shows both the high and low energy dynamics of the

Figure 2.2: Energy level scheme of the Anderson impurity model, where the High and
Low E values on the plot denote the absolute values of the energy di�erence of the various
energy levels from the Fermi level εF .

AIM. To describe the low-energy dynamics, one needs to separate out the energy scales.

2.2.2 Origin of the Kondo Hamiltonian

In this subsection we will outline the raison d'etre for brie�y introducing the AIM in
the preceding subsection. The Kondo model is just an e�ective model that corresponds
to a certain parameter regime of the Anderson model. We will explain how the Kondo
Hamiltonian can be obtained from the Anderson Hamiltonian. The condition for a local
moment to exist is that the singly occupied con�guration lies lowest in energy, that is
εd < εF , εd +U > εF , and U > |εd|. For example, some numerical values for the di�erent
parameters are: U ∼= 10eV , |εd| ∼= 0.5V . Fig. 2.3 shows the di�erent energy levels. For
U
|εd|
� 1, the dynamics of the system is e�ectively restricted to the Hilbert space with

nd =
∑

σ
d†σdσ = 1

Schrie�er-Wol� transformation

As already mentioned above, the Kondo model can be deduced from the Anderson model
using the Schrie�er-Wol� transformation which was �rst introduced by J. R. Schrie�er
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Figure 2.3: Energy conditions for local moment to exist.

and P. A. Wol� in ref. [22]. We will brie�y give the rationale behind this transformation
and give sketches of calculations required to move from the Anderson Hamiltonian to the
Kondo Hamiltonian.

The object usually left behind when a local moment forms within an atom is always
a quantum mechanical object with pure spin degrees of freedom. The interaction of these
spin degrees of freedom and the surrounding conduction band electrons is usually via
virtual charge �uctuations, whereby an electron from the conduction sea brie�y migrates
onto the ion or vice versa leading to a spin-exchange between the local moment and the
conduction band electrons. This process induces an antiferromagnetic interaction between
the conduction electrons and the magnetic ion. Fig. 2.4(a) and Fig. 2.4(b) show the two
possible spin exchange processes. Fig. 2.4(a) shows the process in which the conduction
electron hybridizes with the impurity electron. This only happens if it has the same orbital
symmetry. Consequently the intermediate state formed during this process is spatially
symmetric and hence has a spin-antisymmetric singlet state. Whereas the process in
Fig. 2.4(b) passes through a doubly occupied singlet impurity state and can only occur
if the impurity state and incoming conduction electron have opposite spins. It can be

(a) (b)

Figure 2.4: Spin exchange process that passes (a) through an intermediate state, (b) via
a doubly occupied singlet impurity state.

noticed that spin exchange only takes place in the singlet channel thereby lowering the
energy of the singlet con�guration as will be shown below in the sketchy calculation of the
Schrie�er-Wol� transformation. One usually starts with the decomposition of the total
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wave function. That is
|ψ〉 = |ψ0〉+ |ψ1〉+ |ψ2〉 (2.2)

where |ψm〉, m = 0, 1, 2 are components of |ψ〉 with occupation number nd = m. We
also make use of projection operators which act on the di�erent subspaces of m = 0, 1, 2.
These projectors have the following forms

P0 = (1− nd↑)(1− nd↓)
P1 = (1− nd↑)nd↓ + nd↑(1− nd↓)
P2 = nd↑nd↓ (2.3)

P0 is the projection operator on the subspace m = 0, P1 is for m = 1, and P2 for m = 2.
The projection operators respect the following basic rules

PnPm = Pnδnm∑
m=0,1,2

Pm = 1

|ψm〉 = Pm|ψ〉 (2.4)

We can now decompose the Schrödinger equation in the following way

PmH|ψ〉 = PmE|ψ〉 (2.5)

When ∑
m

P 2
m = 1 (2.6)

is inserted in (2.5), one obtains the following relation∑
n

(PmHPn)Pn|ψ〉 = EPm|ψ〉 (2.7)

Where Pn is the projection operator onto the subspace with occupation number n. (2.7)
can be expressed in matrix form as followsH00 H01 H02

H10 H11 H12

H20 H21 H22

ψ0

ψ1

ψ2

 = E

ψ0

ψ1

ψ2

 (2.8)

H02 and H20 are equal to zero since the Anderson Hamiltonian couples only to neighboring
subspaces. To obtain the e�ective Hamiltonian for |ψ1〉, we eliminate |ψ0〉 and |ψ2〉 from
(2.8). The following expression is obtained in terms of |ψ1〉

[H11 +H12(E −H22)
−1H21 +H10(E −H00)

−1H01]|ψ1〉 = E|ψ1〉 (2.9)

The second and third terms describe virtual excitations. The matrix elements of (2.9) are
explicitly written out in the following way:

H00 = (
∑
k,σ

εkc
†
kσckσ)P0

H11 = (
∑
k,σ

εkc
†
kσckσ + εd1)P1

H22 = (
∑
k,σ

εkc
†
kσckσ + 2εd1 + U1)P2 (2.10)
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for the diagonal elements and

H10 = P1HP0 =
∑
k,σ

Vkdd
†
σckσP0, H01 = H†10

H21 = P2HP1 =
∑
k,σ

V ∗kdd
†
σckσP1, H12 = H†21 (2.11)

for the o� diagonal elements. Here 1 denotes an identity matrix operator. By substituting
the above diagonal and o�-diagonal elements in the second and third term of (2.9) one
obtains these expressions for them

H12(E −H22)
−1H21 = −

∑
kk′
σσ′

V ∗k′dVkd
U + εd − εk

(1− (E − εd −H0)

U + εd − εk
)−1dσd

†
σ′c
†
kσck′σ′

H10(E −H00)
−1H01 = −

∑
kk′
σσ′

V ∗k′dVkd
εk − εd

(1− (E − εd −H0)

εk − εd
)−1d†σckσc

†
k′σ′d

†
σ′ . (2.12)

In (2.12) above, the second term in the parenthesis on the right hand side, is much smaller
than one, since the system is restricted to a singly occupied subspace (E−H0 ≈ εd), that
is lowest order in the hybridization Vkd, so it is neglected. The following expression is
used to express (2.12) in terms of spin dependent expressions,

∑
σ,σ′

c†kσd
†
σ′ck′σ′dσ = −2

(
Skk′ ·Sd +

1

4

∑
σ

c†kσckσ
∑
σ′

ndσ′

)
(2.13)

where Sikk′ = 1
2

∑
αβ c

†
kα(σi)αβck′β′ with σi the Pauli matrices. The second quantization

representation of Sd is the same, except that in place of c operators there are d's. With
the help of the following identity∑

i=x,y,z

σiαβσ
i
γδ = 2δαδδβγ − δαβδγδ, (2.14)

one can easily prove (2.13). Where δ is the Kronecker delta function, which is 1 if the
variables are equal and 0 if they are di�erent. After some mathematical gymnastics, (2.12)
is obtained in terms of spin operators as follows

H12(E −H22)
−1H21 = −

∑
kk′

V ∗k′dVkd
U + εd − εk

Skk′·Sd −
1

2

∑
kk′

V ∗k′dVkd
U + εd − εk

c†kσckσ

H10(E −H00)
−1H01 = −

∑
kk′

V ∗k′dVkd
εk − εd

Skk′·Sd −
1

2

∑
kk′

V ∗k′dVkd
εk − εd

c†kσckσ +
∑
k

V ∗k′dVkd
εk − εd

(2.15)

where we use the relation
∑

σ ndσ = 1 in order to obtain the e�ective Hamiltonian in the
singly occupied subspace and by substituting (2.15) in (2.9) thus the following,

Heff =
∑
k,σ

εkc
†
kσckσ +

∑
kk′

Jkk′Skk′·Sd +
∑
kk′

Kkk′c
†
kσckσ + εd +

∑
k

V ∗k′dVkd
εk − εd

. (2.16)
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Here the �rst term is the kinetic energy of conduction electrons, the second term is the ef-
fective exchange coupling between the impurity and the conduction sea where the coupling
is given by

Jkk′ =
V 2

U + εd − εk
+

V 2

εk − εd

≈ V 2

U + εd
+

V 2

−εd
> 0. (2.17)

The second approximate equality holds, because |εk| � |εd|, |εd + U | at low energies.
Jkk′ > 0 means antiferromagnetic coupling. The third term is just a residual potential
scattering o� the impurity. This term normally vanishes when there is particle-hole sym-
metry and consequently can be dropped, since it does not involve the internal dynamics
of the impurity. The coupling in this third term has the following form

Kkk′ =
V 2

εk − εd
− V 2

U + εd − εk
(2.18)

The fourth and the �fth terms are just constants, and the energies may be measured with
respect to them, thus leading to the famous Kondo Hamiltonian

HK =
∑
k,σ

εkc
†
kσckσ +

∑
kk′

Jkk′Skk′ ·Sd (2.19)

2.3 Kondo metals

2.3.1 Single-channel Kondo problem

The single-channel Kondo model arises when one conduction band of electrons is exchange
coupled to the impurity. It is described by the following Hamiltonian

HK =
∑
k,σ

εkc
†
kσckσ + JS· s, J > 0 (2.20)

Where S is the impurity spin operator, s the conduction electron spin operator. s is de�ned
in terms of electron operators as follows

∑
kk′ c

†
kσ ~τσσ′ck′σ′ , ~τ are the Pauli matrices.

~τ = ~τx + ~τy + ~τz

~τx =

(
0 1
1 0

)
~τy =

(
0 −i
i 0

)
~τz =

(
1 0
0 −1

)
(2.21)
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where[τi, τj] = 2εijkτk, εijk is a totally antisymmetric tensor. For example

Sz =
1

2

∑
kk′
σσ′

c†kσ~τσσ′ck′σ′ =
1

2

∑
kk′

(c†k↑~τz↑↑ck↑ + c†k↓~τz↓↓ck′↓) =
1

2

∑
kk′

(c†k↑ck′↑ − c
†
k↓ck′↓)

Sx =
1

2

∑
kk′

(c†k′↑ck↓ − c
†
k↓ck′↑) =

1

2
(S+ + S−)

Sy = − i
2

(S+ − S−) (2.22)

The S+, S− are the raising and lowering operators for the spin angular momentum,
respectively, whereas Sx, Sy, and Sz depict the three cartesian components of spin angular
momentum. τx, τy, and τz are the Pauli matrices.

In order to investigate the Kondo Hamiltonian, one has to treat the quantum nature
of the spin, hence a diagrammatic technique for spin operators is required. The problem
is that there is no Wick's theorem for spin operators, since their commutators are not
c-numbers. To circumvent this problem, we use the pseudo-particle approach for which a
brief explanation is given in the next subsection.

2.3.2 Pseudo-particle representation

Abrikosov introduced the pseudo-particle representation in 1965, so as to give a fermionic
representation for the local spins [23]. Barnes, 10 years later, de�ned a pseudo-particle
representation of the local impurity level as, empty state |0〉, two singly occupied states
|σ〉, σ =↑, ↓, and doubly occupied state |2〉 [24]. The de�nition of di�erent pseudo-particle
creation operators that create the states when operating on the vacuum is as follows

|0〉 = b†|vac〉
|σ〉 = f †σ|vac〉, σ =↑, ↓
|2〉 = a†|vac〉 (2.23)

with two fermionic operators fσ and two bosonic operators b and a. The creation operator
of an electron in the empty or singly occupied d-level reads

c†d,σ = f †σb+ σa†f−σ, σ = ±1

f †σb|0〉 = f †σ|vac〉 = |σ〉
a†f−σ| − σ〉 = a†|vac〉 = |2〉 (2.24)

The fermionic operators fσ respect the following commutation relations

{fσ, f †σ′} = δσσ′

{fσ, fσ′} = 0 (2.25)

The introduction of pseudo-particles implies an arti�cially enlarged Fock space. The
physical sector is de�ned by the constraint that the local d-level should be in one of the
four states:

Q =
∑
σ

f †σfσ + b†b+ a†a
!

= 1 (2.26)
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For the Kondo model, one has only the singly occupied states and no doubly and zero
occupied states, hence the following constraint

Q =
∑
σ

f †σfσ
!

= 1 (2.27)

The impurity spin operator can now be written in terms of pseudo-fermions as follows

~S =
∑
σ

f †σσ′~τσσ′fσ′ for spin-1/2

Sz =
1

2
(f †↑f↑ − f

†
↓f↓)

S+ = f †↑f↓

S− = f †↓f↑ (2.28)

Thus, the Kondo Hamiltonian in terms of these spin operators has the following form

HK =
∑
k,σ

εkc
†
kσckσ + J

∑
kk′
σσ′
ττ ′

(~τττ ′·~τσσ′)f †τ fτc
†
kσck′σ′ (2.29)

In order to project onto the physical sector of the Fock space with Q = 1, we use the
technique proposed by Abrikosov in [23]. Any physical expectation value 〈A〉 is to be
evaluated in the canonical ensemble where Q = 1. The idea is to deduce the expectation
value from the grand canonical ensemble with respect to Q. The statistical operator is
de�ned as

ρG =
1

ZG
e−β(H+λQ) (2.30)

with λ associated with the chemical potential and ZG denoting the grand canonical par-
tition function of the ensemble,

ZG = tr[e−β(H+λQ)] (2.31)

where the trace extends over the complete Fock space including the sum over Q = 0, 1, 2.
The expectation value is thus

〈A〉 = tr[ρGA] =
tr[Ae−β(H)]

tr[e−β(H)]

∣∣∣∣
Q=1

(2.32)

〈A〉 = lim
λ→+∞

tr[Ae−β(H+λQ)]

tr[Qe−β(H+λQ)]

= lim
λ→+∞

1
ZG
tr[Ae−β(H+λQ)]

1
ZG
tr[Qe−β(H+λQ)]

= lim
λ→+∞

〈AQ〉G
〈Q〉G

= lim
λ→+∞

〈A〉G
〈Q〉G

for A|Q = 0〉 = 0 (2.33)
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The constrained impurity Green's function in the grand canonical ensemble is given by

G = lim
λ→+∞

Gλ

〈Q〉G
(2.34)

with Gλ given in terms of the pseudo-fermions and the expectation value of Q in the limit
as λ→∞ is de�ned as follows

lim
λ→+∞

〈Q〉G = lim
λ→+∞

∑
σ

〈f †σfσ〉G (2.35)

Where f †σ (fσ) is the usual fermionic creation (annihilation) operator. The diagrammatic
simpli�cation due to limλ→+∞ gives the following calculation for the bubble diagram.

F =
1

β

∑
ω′

G(0)
σ (iω′)G

(0)
σ′ (iω − iω′)

= −
∮

dz

2πi
f(z)

1

z − λ
1

z + iω − λ

=
f(λ)− f(λ− iω)

iω
(2.36)

When λ→∞ then e−βλ → 0 the distribution function

f(ε+ λ) =
1

e−β(ε+λ)
(2.37)

This implies that the projection to the pseudo-fermion bubbles such as the one in Fig. 2.5
vanishes.

Figure 2.5: An electron selfenergy f -bubble

= Gkσ(tim) = −〈T̂{ckσ(tim)c†kσ(0)}〉 (2.38)

= Gσ(tim) = −〈T̂{fσ(tim)f †σ(0)}〉 (2.39)

G
(0)
kσ(iω) =

1

iω − εp
(2.40)

G(0)
σ (iν) =

1

iν − λ
(2.41)

where T̂ is the time ordering operator and tim describes the Euclidean time here. ω
and ν both depict the Matsubara frequencies of the conduction electron and impurity,
respectively. G(0)

kσ(iω) and G(0)
σ (iν) are the free Matsubara Green's functions for electrons

and pseudo-fermions, respectively. The dashed line represents the impurity propagator
and the full line the conduction electron propagator.
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2.3.3 Perturbation theory

After a brief introduction of the Kondo model in the preceding sections, it is now time to
carry out an analysis of the Hamiltonian (2.20). The �rst approach to consider is Kondo's
perturbative analysis that gives explanations for the resistivity minimum and explains the
low temperature physics down to the Kondo temperature but not beyond. In order to
calculate the resistivity of a simple metal with magnetic impurities, we need the scatter-
ing amplitude of the electrons in the metal. This scattering amplitude is an element of
the T -matrix T , which is usually computed with standard tools of quantum mechanics.
Generally, the Hamiltonian is usually in two parts, the kinetic part and the interaction
part. The interaction is between the conduction electrons and the impurity spin. Per-
turbation theory is carried out in J , the exchange interaction between the conduction
electron spin and the impurity spin. Knowledge of the T -matrix permits one to calculate
the resistivity. When the scattering matrix in �rst order is considered, one immediately
notices that the T -matrix is independent of both the energy and the temperature. As
a consequence, the resistivity of the impurity is independent of temperature. Generally,
spin independent interactions usually lead to temperature independent contributions to
the resistivity. This kind of contributions are termed potential scattering and do not lead
to resistivity minimum. The following is a diagram that shows the physical processes
described by the �rst order term in the perturbative expansion.

T (1)
kk′σ1τ1σ2τ2

=

τ1

σ1

σ2

τ2

= J(~ττ1τ2 ·~τσ1σ2) (2.42)

where σ is the conduction electron spin, τ is the spin of the impurity and the solid and
dashed lines represent the conduction electron and the impurity propagators, respectively.
Since the �rst order term in perturbation theory does not lead to a resistivity minimum,
it is necessary to consider the second order. The following diagrams show the di�erent
physical processes taking place during scattering in second order.

T (2)
kk′σ1τ1σ2τ2

=

σ, iωn

τ, iνn
τ1, ν

σ1, ω

τ2, ν

σ2, ω

+

σ, iωn

τ, iνn
τ1, ν

σ1, ω

τ2, ν

σ2, ω

(2.43)
The above (2.43) represents the second order term in perturbation theory.

T (2)
kk′σ1τ1σ2τ2

(iωn) = −[(−J)2
∑
τ,σ

(~ττ2τ ·~τσ2σ)(~τττ1·~τσσ1)·
∑
k

1

β

∑
ωn

Gkσ(iωn) Gτ (iνn)|λ→∞

+(−J)2
∑
τ,σ

(~ττ2τ ·~τσσ1)(~τττ1·~τσ2σ)·
∑
k

1

β

∑
ωn

Gkσ(iωn) Gτ (iνn)|λ→∞

(2.44)

The lines and the symbols are de�ned as in (2.42), whereas ωn and νn describe the Mat-
subara frequencies for the conduction electrons and the impurity, respectively. The �rst
term in (2.43) shows how an incoming electron scatters o� the impurity into an interme-
diate state and then scatters again into a �nal state. This scattering might lead to the
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�ipping of the spin of both the conduction electron and the impurity. The mathematical
formula that goes with the �rst term of (2.43) is the �rst term in (2.44). The second term
in (2.43) describes a much more complicated scattering in which the outgoing electron is
�rst created before the incoming one is annihilated. This diagram also illustrates a many
body e�ect. The formula for this diagram is the second term of (2.44). The �rst scat-
tering of this diagram creates an electron-hole pair whereas in the second scattering the
incoming electron is absorbed by the hole. (2.44) is then computed in order to extract the
contributions of both diagrams to the resistivity. With a few mathematical gymnastics,
one arrives at an expression that the scattering amplitudes have an explicit temperature
dependence. Let I and II represent the �rst and second terms of (2.43), respectively.

Energy dependence

We �rst sum over the di�erent Matsubara frequencies in (2.43) . This can be achieved
by transforming the sums into contour integrals. The residue theorem is applied, which
changes the sums to complex integrals. This method is necessary and e�ective because the
Matsubara frequencies of the fermions are the poles of Fermi distribution function, f(εk).
The explicit calculation is given in (2.45) and (2.46) for both second order perturbation
theory diagrams. Because of conservation of energy at the vertex for the �rst term of
(2.43), ω + ν = ωn + νn, if ω′ = ω + ν then νn = ω′ − ωn

I ∼ 1

β

∑
ωn

Gkσ(iωn) Gτ (iω
′ − iωn)|λ→∞

=
1

β

∑
ωn

1

iωn − εk
· 1

iω′ − iωn − λ

∣∣∣∣∣
λ→∞

=

∮
dz

2πi
f(z)

1

z − εk
· 1

iω′ − z − λ

∣∣∣∣
λ→∞

=
∑
k

(
f(εk)

iω′ − εk − λ
− f(iω′ − λ)

iω′ − λ− εk
)

∣∣∣∣
λ→∞

=
∑
k

f(εk)− 1

iω′ − εk − λ
, iω′ → iω′ + λ

=
∑
k

1− f(εk)

εk − iω′
(2.45)

The presence of 1− f(εk) in (2.45) can only happen if the process shown above was in an
initial empty state in the background of the Fermi sea. This occurs with a probability of
1− f(εk) while for the second process to be possible in (2.43), the intermediate state has
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to be occupied with a probability of f(εk).

II ∼ 1

β

∑
ωn

Gkσ(iωn) Gτ (iωn − iω′)|λ→∞

= −
∮

dz

2πi
f(z)

1

z − εk
· 1

z − iω′ − λ

∣∣∣∣
λ→∞

=
∑
k

(
f(εk)

εk − iω′ − λ
− f(λ+ iω′)

λ+ iω′ − εk
)

∣∣∣∣
λ→∞

f(λ+ iω′) = f(λ)→ e−βλ → 0; iω′ → iω′ − λ

=
∑
k

f(εk)

εk − iω′
(2.46)

In both energy dependence calculations, the energy is measured in a way so as to get rid
of the λ in the denominator. For the particle-like calculations I, the result is continued
analytically by iω′ → iω′ + λ whereas for the hole-like calculations II, it is rather iω′ →
iω′−λ. One can immediately observe that f(εk) has an explicit temperature dependence
of the scattering amplitudes.

Spin structure

There are also spin indices in (2.43) and we need to work them out. Using spin relations,
we work them out as in the following two equations,

I ∼
∑
τ,σ

(~τσ2σ·~ττ2τ )(~τττ1 ·~τσσ1)

=
∑
τ,σ

∑
i,j

(τ iσ2σ
τ iτ2τ )(τ

j
ττ1
τ jσσ1

)

=
∑
i,j

(τ iτ j)τ2τ1(τ iτ j)σ2σ1

=
∑
k

iεijkτ
k
τ2τ1

iεijkτ
k
σ2σ1

+ 3·1τ2τ1·1σ2σ1

= i2(~ττ2τ1·~τσ2σ1) + 3·1τ2τ1·1σ2σ1 (2.47)

II ∼
∑
τ,σ

(~ττ2τ ·~τσσ1)(~τττ1·~τσ2σ)

=
∑
i,j

(τ iτ j)τ2τ1(τ jτ i)σ2σ1

=
∑
k

iεijkτ
k
τ2τ1

iεijkτ
k
σ2σ1

+ 3·1τ2τ1·1σ2σ1

= −i2(~ττ2τ1 ·~τσ2σ1) + 3·1τ2τ1·1σ2σ1 (2.48)
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In order to obtain the total contribution of the second order terms, one combines (2.45),
(2.46), (2.47), and (2.48) to get the following form

T (2)
kk′σ1τ1σ2τ2

= −J2i2(~ττ2τ1·~τσ2σ1)
∑
k

1− f(εk)

εk − iω′

+(−)J2(−)i2(~ττ2τ1·~τσ2σ1)
∑
k

f(εk)

εk − iω′

+ potential scattering

(2.49)

The term in (2.49) that is independent of the temperature is termed potential scattering
and will make a contribution similar to that of the �rst order scattering perturbation
term though smaller by an order of magnitude. Consequently, more attention is paid to
the term with a temperature dependence which is the �rst and second term of (2.49).
Combining both terms, we obtain the following form

T (2)
kk′σ1τ1σ2τ2

= J2(~ττ2τ1·~τσ2σ1)
∑
k

1− 2f(εk)

εk − iω′

+ potential scattering; iω′ → ω′ + i0+ (2.50)

We use the canonical procedure to evaluate (2.50) as a function of energy and temperature.
We do an integration over the energy, ε. This is done by transforming the sum over
momentum k into an energy integral using∑

k

→
∫
dεN(ε) (2.51)

We consider a rectangular and constant density of states over the bandwidth D, conse-
quently the integral becomes ∑

k

= N(0)

∫
dε (2.52)

Substituting (2.52) in (2.50) one obtains

T (2)
kk′σ1τ1σ2τ2

=
∑
k

1− 2f(εk)

εk − iω′

= N(0)

∫ D

−D

1− 2f(ε)

ε− ω
dεN(ε)

= N(0)

∫ D

−D
dεN(ε)

tanh( ε
2T

)

ε− ω

≈ 2N(0)ln
D

Dmax(|ω|, T )

≈ 2N(0)ln
D

T
(2.53)

Where N(ε) is the density of states and D is the bandwidth. The integral diverges if the
bandwidth is in�nite and thus sensitive to the value of D. Adding the �rst order value of
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perturbation to the above second order term, we get a full expression for the scattering
amplitude as follows

Tkk′σ1τ1σ2τ2 = J(~ττ2τ1 , ~τσ2σ1)[1 + 2N(0)ln
D

T
+ . . . ] (2.54)

The scattering cross section is proportional to |T |2 which itself is proportional to the
electric resistivity ρ(T ) which can be written mathematically as follows

ρ(T ) ∝ 1 + 2N(0)J ln
D

T
(2.55)

This means that the resistivity ρ(T ) increases logarithmically as T → 0. This also means
a breakdown of perturbation theory when 2nd order is comparable to 1st order in size,
that is for

1 = 2N(0)J ln
D

T
(2.56)

and
TK = De−

1
2N(0)J (2.57)

Below TK , perturbation theory no longer works and the search for a solution in this regime
became known in the literature as the Kondo problem.

2.3.4 Perturbative renormalization group method

The renormalization group (RG) was �rst introduced in quantum electrodynamics by
Gell-Mann and Low in 1954 [25]. It was �rst applied in solid state physics by Abrikosov
and Migdal in 1970 [26] and later on by Fowler and Zawadowski to investigate the Kondo
problem infrared divergences [27]. Renormalization group is the basic idea that a change
of scale, for example, of the bandwidth, D can be made up for by a corresponding change
of the parameters of the physical theory such as, the exchange coupling, J . This leads to
di�erent Hamiltonians at di�erent scales describing the physics at the respective scales.
The transformation from one Hamiltonian H(D) to H(D′) is known as the RG transfor-
mation. It should be mentioned that the RG does not form a real group since there is
no inverse transformation. When this RG procedure is repeatedly applied, it leads to a
family of Hamiltonians H(D). The Hamiltonian H usually contains a series of dimen-
sionless coupling constants gi which represent the strength of interactions term in them.
The scaling equation for the evolution of these coupling constants with the energy cuto�
value is given by

∂gj
∂lnD

= βj(gi) (2.58)

If the β function is negative, this implies that the relevant coupling constant grows as
the energy cuto� is reduced. Whereas a positive β function means an irrelevant coupling
constant that decreases as the cuto� is diminished. This kind of scaling process leads to
the occurrence of two types of events, namely a crossover and a �xed point. A crossover
happens when the cuto� energy scale D becomes smaller than the characteristic energy
scale of a particular class of high frequency excitations, then at lower energies, these exci-
tations may only occur through a virtual process. The Hamiltonian changes its structure
in order to sustain this change thereby picking up additional terms that simulate the ef-
fect of the high frequency virtual �uctuations on the low energy physics. A good example
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of a crossover is the passage from the Anderson model to the Kondo model. One can
notice in the RG treatment of the Anderson model that, when the energy cuto� of the
conduction electron band becomes smaller than the energy to produce �uctuations, then
a crossover takes place in which real charge �uctuations are eliminated and the physics
at lower energy scales is described by the Kondo model. A �xed point is reached if the
cuto� energy scale becomes smaller than the lowest energy scale of the problem, imply-
ing there are no further changes that can occur in the Hamiltonian. This means that
the Hamiltonian remains invariant under the scaling procedure. The β function of all
the remaining parameters in the Hamiltonian vanishes. The attribute of the low energy
physics are described by the �xed point Hamiltonian. This RG idea is a very general idea
and has found applications in a variety of physical theories. Many problems in physics
usually involve several energy or length scales. This kind of problems are suitable for the
renormalization group method if only a �nite number of operators in the Hamiltonian are
generated during the RG �ow. The Kondo model is an example. In order to understand
why the resistivity does not diverge as the temperature approaches zero, we apply the
renormalization group technique to the problem. We will start by applying the so-called
poor man's scaling method introduced by P. W. Anderson [28]. The rationale behind the
scaling method is that by reducing the bandwidth of the conduction electrons D, then
the argument of the logarithmic divergent term will also reduce, thereby making the di-
vergence weaker. Just a synopsis of this method will be given here since it can be found
easily in almost all books on Kondo physics.

Poor man's scaling

The poor man's scaling is a method in which the evolution of the coupling constant is
followed so as to keep physical quantities, like the T -matrix invariant, as the bandwidth
of the conduction band is reduced. In the case of the Kondo model, the high energy scale
of D is successively removed from the physical properties. This is usually the starting
point for the renormalization group method. The reason why this is done is because the
physical properties do not depend on the high energy cuto� D, in particular, T (D) is
invariant, where T (D) is the scattering matrix. The RG procedure is as follows
1) Reduce cuto� D → D − ∆D. This step is done by integrating out the degrees of
freedom in this range as shown in Fig. 2.6.
2) Change coupling constant J → J −∆J such that T (D) is invariant.
3) Iterate these two steps.
The �rst two steps are the RG transformations that permit us to map the Hamiltonian
H → H ′. The third step produces the so called RG �ow. The RG equation for the Kondo
coupling, J is of the form

dJ

dlnD
= −2N(0)J2 (2.59)

where N(0) is the density of states. The detail derivation of (2.59) can be found in [29].
One can understand the consequences that result from the decrease of the bandwidth D,
by integrating (2.59). The result of this integration is the following equation

J̃(D̃) =
J

1 + 2ρJ ln(D̃/D)
(2.60)

D̃ is the reduced bandwidth while J̃ is the corresponding coupling. If J is negative, then we
have ferromagnetic coupling and, consequently, no divergence. In this case perturbation

19



Chapter 2: The Kondo e�ect and the renormalization group theory

theory and the scaling work very well as the bandwidth is reduced. This is because the
coupling gets smaller and smaller as we scale to a free impurity spin. On the other hand,
if J is positive, then we have an antiferromagnetic coupling. Perturbation theory fails
at some value of the bandwidth as it is reduced. In other words, we could say that
perturbation theory fails at some temperature T . The temperature at which this happens
is known as the Kondo temperature. It is also observed that the RG �ow diverges when
D̃ reaches the Kondo temperature TK . This means that J̃ has become in�nite and so
perturbation theory can no longer work. TK is a scaling invariant. This means that
materials with same TK even if they have di�erent J , N(0), and D will still have the
same low-energy properties. TK is the only relevant energy scale, which means that all
temperature dependence of all observables must be universal functions of T/TK . The
divergence of J at T = TK is an artefact of the approximations made in the calculation
and not the true physics. If we go to higher orders of perturbation theory in J , say the
third order, then this divergence of the e�ective coupling J̃ at TK is removed as shown
by Hewson in [29]. This does not help that much since it does not change the fact that
there exists a unique relation between TK/D on the one hand and J on the other hand.
K. Wilson, using the numerical renormalization group (NRG) [1], found a full solution of
the RG problem, including the strong coupling regime. We will discuss this method in
chapter 5.

Figure 2.6: Integrating out high energies thereby reducing the Bandwidth.

2.4 Characteristics of single-channel Kondo e�ect

The single-channel Kondo (1CK) model has a few unique properties that can be used to
distinguish it from other models. In this subsection, we look at some of these properties
without getting into how they are calculated since we will handle this issue of calculation
in chapter 5 using the numerical renormalization group method. We will rather con-
centrate on how these properties behave as the temperature turns to zero. Some of the
properties that we will brie�y mention here are the conductivity, speci�c heat, magnetic
susceptibility, entropy and the Wilson ratio.

2.4.1 Fermi liquid

The Landau Fermi liquid theory provides the foundation for the understanding of how
interactions between electrons in metals a�ect the metallic states. This theory gives the
basis for understanding metals in terms of weakly interacting electrons. We will not get
into the details of this theory but rather just give a brief de�nition and focus on the
properties of the system that comes out of this theory. The basic idea behind the Fermi
liquid theory as proposed by Landau is that it consists of a one-to-one correspondence
between the eigenstates of the non-interacting electron gas and those of the interacting
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liquid [30]. P. Nozières was the �rst to give a Fermi liquid description of the Kondo
problem at low temperatures [31]. The impurity spin is screened at low temperatures
by the conduction electrons, thereby forming a singlet that scatters the other electrons.
There exist weak interactions between the conduction electrons of opposite spin in the
neighborhood of the impurity due to the virtual excitations of the singlet to the triplet
state. The length scale of these interactions and scattering from the impurity is much
larger than the distance between the electrons. The screening is done by electrons close to
the Fermi energy. Therefore the impurity does not only cause the scattering of electrons
but also the interactions between electrons. Since these interactions do not change at
microscopic length scale, it is expected that a Fermi liquid theory should be applicable to
it. The e�ective Fermi energy of this local Fermi liquid is set by the Kondo temperature.
We look at such an assertion in the di�erent physical properties below.

Conductivity

The low temperature conductivity of the Kondo problem increases as the temperature
increases. The reason for this behavior is that as the temperature is increased, the scat-
tering from the impurity of the conduction electrons becomes less pronounced away from
the Fermi energy and so the elastic scattering from the impurity is reduced due to ther-
mal smearing. In addition to the elastic scattering, there is the inelastic scattering since
the conduction electrons are interacting thereby adding a Fermi liquid correction to the
conductivity. The inelastic scattering rate in a Fermi liquid is proportional to the square
of the temperature. The conductivity of this system at small but �nite temperature as
stated by P. Nozières is as follows

σ(T ) = σ(0)(1 + π2α2k2BT
2) (2.61)

where kB is the Boltzmann constant and at typical low temperature scale α can be identi-
�ed with 1/kBTK . The Kondo temperature TK is the temperature scale for the change of
the conductivity. The inverse of the conductivity is called the resistivity and the behavior
of the resistivity is illustrated in Fig. 2.1.

Speci�c heat

The impurity contribution to the speci�c heat in single-channel Kondo model peaks near
TK as the temperature is decreased and then falls linearly to zero. The reason for this
behavior again is due to spin scattering e�ect that becomes pronounced as the temperature
is lowered. The impurity spin is quenched below TK and so a singlet is formed. The singlet
is a bound state that just acts as an inert potential scatterer, restoring the Fermi liquid.

Magnetic susceptibility

For T > TK , the magnetic susceptibility of the 1CK a�ect increases, as the temperature
is lowered, analogous to Curie behavior of a free spin. Below TK it saturates to a constant
value (Pauli susceptibility). This is because the spin degree of freedom is gradually being
quenched as the temperature is lowered.
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Entropy

The entropy associated with the impurity decreases as the temperature is lowered. It
starts out at S = kB ln 2, since the impurity spin has two possible states in the case of
the spin-1/2 single-channel Kondo model.The quenching of the impurity spin happens for
temperatures of the order of TK and S falls to S(0) = 0.

Wilson ratio

The Wilson ratio is the ratio of the speci�c heat coe�cient and the Pauli susceptibility.
The mathematical formula for the Wilson ratio is

RW =
χimp/χ

cV,imp/cV
(2.62)

χimp and cV,imp are the magnetic susceptibility and the speci�c heat associated with the
impurity. This ratio characterizes the extent to which the impurity changes the interac-
tions between the electrons. It is usually one in the case of non-interacting systems. In
the case of a static impurity, the conduction electrons only have a change in the potential
they feel hence their interactions are not a�ected. This kind of impurity only a�ects the
density of states at the Fermi level, and since both the speci�c heat and the susceptibility
are proportional to the density of states, the Wilson ratio, RW = 1. In the case of a mag-
netic impurity the Wilson ratio RW = 2. This is because the magnetic impurity causes
interactions between the conduction electrons and since the speci�c heat does not change
with this interactions and only the susceptibility changes hence the change of the value of
the Wilson ratio with the presence of a magnetic impurity. This means that the Kondo
e�ect leads to a Fermi liquid behavior at low temperatures. The spin compensated state
of a Kondo system at low temperatures can be accounted for by the Fermi liquid theory.
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Chapter 3

Two-channel Kondo problem

The 2CK e�ect has not ceased to amaze physicists ever since it was �rst proposed by
Nozières and Blandin in 1980 [7] because of its exotic non-Fermi liquid ground state with
a non-vanishing zero-point entropy. This e�ect can be observed whenever a discrete,
degenerate quantum degree of freedom is exchange-coupled to two conserved �avors of
conduction electrons in a symmetrical manner. The two-channel Kondo impurity model
is just a particular case of the multichannel Kondo impurity models that have attracted
much attention lately due to the fact that, in the overscreened case, they provide us
with an unequivocal example of the non-Fermi liquid ground state. In addition, they can
be studied using di�erent types of controlled methods and supply us with great testing
grounds for theoretical techniques for correlated electron systems. Lastly, they too have
experimental bearing on tunneling phenomena in quantum dots as well as in two-level
systems (TLS) and also on heavy fermion compounds. So far the physical realization of
the 2CK has been clear only in special �ne-tuned systems. In this chapter we discuss the
physics of the 2CK e�ect with emphasis on its physical description, renormalization group
analysis and some of its properties.

3.1 Physical description

The two-channel Kondo (2CK) model describes the over-screening of a local moment in
the presence of two conduction electron channels. In this model, two di�erent conserved
�avors of conduction electrons are considered, which are associated with the two-channels.
The two-channel Hamiltonian for a magnetic impurity has the following form

HK =
∑
kσα

εkc
†
kσαckσα + J

2∑
α=1

S · sα. (3.1)

α is the channel index which runs from 1 to 2 in the case of the two-channel model or from
1 to N in the case of the N -channel model. This model can be generalized to the case of
non-magnetic impurities as will be discussed in chapter 4. (3.1) has three possible ground
states when J > 0. If the spin of the impurity is, say SI and the number of di�erent
channels N , then the following three scenarios can be considered:
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Underscreened

In the case where N < 2SI , there are not enough conduction electrons to screen the
impurity spin, hence resulting in a �nite local moment left behind and consequently a
residual entropy as T → 0. This appears to go against the third law of thermodynamics,
however, in the presence of more than one impurity this violation can be taken care of.
Fig. 3.1 illustrates this underscreening behavior.

Figure 3.1: When N < 2SI the impurity spin is undercompensated resulting in a spin-1/2
left behind.

Screened

This is the situation where N = 2SI , the screening of the impurity is exact and hence the
ground state is a singlet. The uniqueness of the ground state at T = 0 causes the entropy
to turn to zero as T turns to zero. Fig. 3.2 shows this underscreening behavior.

Figure 3.2: When N = 2SI the impurity spin is compensated and therefore forming a
singlet.

Overscreened

The third alternative is the one in which N > 2SI so that there are more conduction
electron spins than are needed by the impurity to be fully compensated hence overcom-
pensation. There is a residual entropy as a result of an e�ective spin formed between
the impurity and the conduction channels. In the case where SI = 1

2
and N = 2, then

the impurity is overcompensated by the presence of two conduction electrons of spin 1/2
each. The ground state will have an e�ective spin of 1/2 and this will result in an anti-
ferromagnetic exchange generated with the electrons o� the impurity site. This idea will
be dealt with explicitly in the next section where we discuss the renormalization group
(RG) analysis. This overscreening behavior is shown in Fig. 3.3.
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Figure 3.3: When N > 2SI the impurity spin is overcompensated, consequently an e�ec-
tive spin-1/2 persists.

3.2 Renormalization group analysis

In order to gain deeper understanding of the 2CK problem, we apply the RG techniques
to it. This method has already been brie�y introduced in chapter 2. Here, we will
concentrate on what can be extracted from this model when we apply the RG method.
We start our analysis by looking at how the system changes as the coupling constants
�ow to in�nity. We are interested here in the overscreened case where the ground state
is non-Fermi liquid. We will thus extend the argument already started above in the
overscreened scenario. In Fig. 3.4, one can see that in the free limit, that is at the origin,
there is a free spin which scatters both conduction seas of electrons and this results
in a logarithmically growing scattering as the temperature is lowered. As the coupling
constants J1 and J2 of the two channels in Fig. 3.4 grow, the impurity spin has a problem,
as it does not �know� which of the channels to form a singlet with, since the symmetry
of the problem forbids it from preferring one channel to another. These two-channels
therefore overcompensate the impurity spin and thus lead to a three body object that has
an e�ective spin 1/2. At this strong-coupling �xed point, an antiferromagnetic exchange
is generated with electrons of the impurity site. These exchange interactions introduce
kinetic energy that renders the strong-coupling (J →∞) �xed point unstable. It can be
shown by second order perturbation theory that an e�ective coupling results at this �xed
point and can be de�ned as follows as in [32]

J̃ = γ
t2

J
, (3.2)

where t is the e�ective hybridization required for an electron to hop in and out of the
impurity site, while J , is the binding energy at the impurity site, and γ is just a number
whose value is 30/46 as calculated in [32]. This is because at the strong-coupling �xed
point the kinetic energy of the impurity is negligible. Fig. 3.4 gives an illustration of this
behavior. One can see that because of the fact that the strong coupling regime is unstable,
the e�ective model �ows back to the weak coupling limit where J = 0. Since the weak
coupling �xed point is unstable due to the Kondo e�ect, this means that both strong and
weak coupling limits are unstable. Therefore, there must be a non-trivial �xed point at
an intermediate coupling strength. This is the red dot in the middle of the diagonal in
Fig. 3.5. If one of the coupling constants J1 and J2 is slightly stronger, then the system
will �ow to the single-channel Kondo �xed point of the stronger coupling constant as
illustrated in Fig. 3.4. Fig. 3.5 illustrates the stability of the 2CK �xed point, showing
scaling trajectories. This non-trivial �xed point produces a ground state with non-zero
entropy and has a non-Fermi liquid energy spectrum. Unlike in the compensated case
mentioned above, there is a non-integer degeneracy of the ground state [5]. So there is
always a residual entropy that comes from the degeneracy of the impurity. This degeneracy
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of the ground state can be lifted by applying a �nite external magnetic �eld to it. In the
next section, we will shed more light on some of the ideas put forth in this section.

Figure 3.4: 2CK RG analysis for both strong and weak coupling constants showing the
duality behavior, which is one of the characteristics of the 2CK model. The blue lines are
the scaling trajectories for the case of an impurity with spin 1/2. Picture is courtesy of
Johann Kroha.

3.3 Characteristics of two-channel Kondo e�ect

In this section, some of the properties of the 2CK that makes it di�erent from other models
are brie�y explained. We will not get into the details of how some of these properties are
calculated, since the perturbation theory is completely analogous to the 1CK case and
these calculations can be found practically in all standard reviews on the 2CK e�ect, for
example in [33].

3.3.1 Duality of weak and strong coupling regimes

Kolf and Kroha have shown in [32] that the 2CK e�ect exhibits a duality between the weak
and the strong coupling regimes. They showed that the crossover scale from the weak
coupling regime to the 2CK non-Fermi liquid behavior can be obtained by perturbative
analysis in the coupling constants around the weak and strong coupling �xed points. With
this approach the Kondo temperature for small coupling constants can be calculated using
the expression

T
(wc)
K = De−

1
2MN(0)J (3.3)

where D is the half bandwidth, M the number of conduction electron channels, N(0) is
a constant density of states, and J the coupling constant. From (3.3), it can be noticed
that TK increases with increase in the coupling constant. On the other hand, when the
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Figure 3.5: 2CK RG analysis for both strong and weak coupling constants showing the
stability of the 2CK �xed point. The blue lines are the scaling trajectories for an impurity
with spin 1/2. Picture is courtesy of Johann Kroha.

coupling constant is large, then by just using second order perturbation theory with the
e�ective coupling J̃ as in (3.2), one gets the Kondo temperature as follows

T
(sc)
K = De−

γN(0)J
2M (3.4)

Unlike in the weak coupling regime, TK decreases with an increase in the coupling constant
as can be seen in (3.4). The duality relation in the coupling constant is of the form

J ↔ 1

γJ
(3.5)

One can immediately see that there is a duality between the weak and the strong coupling
regime as shown in Fig. 3.4. Hence the 2CK e�ect has an intermediate �xed point that
�ows from both below and above. Because of this behavior there is a mapping of the �ow
below and that from above. This duality is one of the properties of the 2CK and could
possibly explain why no broad distribution of TK is observed in experimental conductance
anomalies of nanoconstrictions with 2CK signatures as hinted in [32]. We will come back
to this duality behavior in chapter 6 when we analyze the partially broken SU(3) Kondo
model. For a detailed analysis on this duality behavior see [32]

3.3.2 Non-Fermi liquid

The recent discovery of metals that apparently fall outside the framework of our conven-
tional theory of metals has led to the new excitement in this area of physics. Non-Fermi
liquid systems show physical properties which cannot be understood in terms of weakly
interacting electrons, hence their low temperature behavior do not follow the power-laws
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in temperature that are observed in Fermi liquids. Some of the examples of these systems
are metals close to a quantum critical point; this is because the scattering of quasi-particles
near a phase transition is singular and, therefore, the systems no longer behave as pre-
scribed in the Fermi liquid theory. The second example are Luttinger liquids which are
one dimensional metals. The electrons in one dimensional metals are usually unstable and
consequently decay into spinons and holons, spin and charge excitations, respectively. The
last but not least of these non-Fermi liquid systems is the two-channel Kondo model which
we have already explained above. The change of the physical properties of non-Fermi liq-
uids with temperature are completely di�erent from those obtained in the case of Fermi
liquids. Thus, we will brie�y give a few examples of the di�erent physical properties as
they vary with temperature.

Resistance

The resistivity of the 2CK e�ect behaves as follows

ρ(T ) ∼ 1− c
(
T

TK

)1/2

(3.6)

where c is a constant of order one. This behavior of the resistivity in the 2CK case is
clearly di�erent from the typical Fermi liquid one in which the resistivity shows a T 2

behavior [13].

Speci�c heat

The speci�c heat of 2CK impurity diverges as the temperature turns to zero. It is

c(T )

T
= − A

TK
ln

T

bTK
+B (3.7)

where A and b are constants and B is a temperature-independent crystal-�eld background
in c/T [14].

Entropy

As the temperature decreases the entropy of the 2CK drops and at very low temperatures
there is a residual entropy which is as a result of the fact that the ground state is degen-
erate. The expression of the entropy is normally the derivative of the free energy with
respect to temperature. The derivative is as follows

S = −∂F
∂T

(3.8)

where F and T are the free energy and temperature, respectively. The zero point entropy
is given by

S(0) = kB ln
√

2 (3.9)

This basic idea of the impurity entropy is very central to this thesis, because it gives useful
information on the nature of the impurity in the partially broken SU(3) Kondo model.
In the ordinary spin-1/2 2CK e�ect, the entropy of the impurity decreases from ln 2,
re�ecting the two degrees of freedom of the free spin down to 1

2
ln 2 at low temperatures

28



Chapter 3: Two-channel Kondo problem

as if a
√

2-fold degenerate degree of freedom were left. This object is represented by the
real part of the Majorana fermion (half-fermionic excitations) and it remains free at low
temperatures, consequently, disrupts the local Fermi liquid that is present in the case of
the single-channel. We will see in chapter 6 that this behavior depends on the nature of
the impurity and that interesting physics can be squeezed out of the model just by looking
at the behavior of the impurity entropy as the temperature drops. The impurity entropy
behavior is a�ected by the presence of a strong magnetic �eld, since it lifts the degeneracy
of the impurity. These magnetic �eld e�ects will also be looked into in chapter 6.

Magnetic susceptibility

The magnetic susceptibility also diverges for T → 0 as

χ(T ) ∼ − 1

TK
ln

T

TK
(3.10)

The divergence of the magnetic susceptibility is due to the presence of an e�ective spin
even at very low temperatures.

Wilson ratio

Since both the magnetic susceptibility and the speci�c heat diverges as T → 0, to obtain
the Wilson ratio, for example in the case of the numerical renormalization group (NRG)
method, one �ts both quantities with the logarithmic form as explained in [50]. The
calculations show that the Wilson ratio of the 2CK, RW = 8/3.
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Chapter 4

Non-magnetic Kondo impurities in
metals

Contrary to the believe in the past that the Kondo e�ect could only be observed in the
case of magnetic impurities, it has been shown that whenever the impurity has a localized,
discrete, degenerate quantum degree of freedom that exchange-couples to the conduction
band electrons, the Kondo e�ect is manifested. Jun Kondo [34, 35] had suggested that an
atom jumping between two equivalent positions in a metal is dressed by the conduction
electrons and consequently may form a Kondo e�ect. Kondo had shown that the scattering
process in which the atom changes its position has non-commutative angular dependence
and that this non-commutative case leads to logarithmic contributions to the electrical
resistivity. He showed that this exists even in the leading logarithmic approximation
[34] and the result was obtained in fourth order approximation. Kondo then exploited
the similarity between this kind of non-magnetic impurity problem and the magnetic
impurities in dilute alloys. In this kind of system the role of the impurity spin is taken
over by the equivalent sites of the jumping impurity, and the spin polarization in the
conduction sea is replaced by the angular dependence of the screening. In the case of the
non-magnetic impurity, the two-channel Kondo model results by virtue of the degeneracy
of the conduction band electrons. In this chapter, we outline brie�y the experimental
motivation of this work, then give a synopsis of the two-level systems Kondo model and
last but not least the partially broken SU(3) Kondo model which was proposed in [2], to
explain all the experimental features of the Ralph and Buhrman experiments [3]. It is for
reasons of space and relevance to this thesis that we will deal only with the two models
mentioned above.

4.1 Experimental motivation

There have been many experimental observations of the 2CK e�ect signatures such as in
heavy fermion compounds and in designed quantum dot systems. One of the recently most
interesting observations has been those of Ralph and Buhrmann [3], in which they reported
conductance anomalies in apparently simple copper point contacts. These results show
one of the salient 2CK signatures near zero bias (zero-bias conductance anomalies with√
V behavior, where V is the voltage), which includes the theoretically expected scaling

behavior [44, 45]. Ralph and Buhrmann suggested that many of the logarithmic zero-bias
peaks seen in point contacts and tunnel junctions which can not be explained by magnetic
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impurities are due to the Kondo e�ect in two-level systems. They were however unable
to fully explain the sharp features at slightly higher biases in the di�erential conductance
especially the dependence of these transition on the magnetic �eld and temperature.

4.1.1 Experimental procedure

In order to have a better idea of the motivation of this work, it is necessary to give the
scheme of the experimental setup as detailed in [36]. Just an outline of the experimental
procedure is given here so that one can have a feeling for the physical relevance of this
work. The development of the fabrication technique for nano point contacts has made
it possible to study scattering in very small metal constrictions. In their experiment,
Ralph and Buhrman used nano point contacts that were fabricated using electron beam
lithography and reactive ion etching to form in a silicon nitride membrane a hole of
diameter of about 6 nm. This was carried out in an ultrahigh vacuum and at room
temperature. The membrane was then rotated to expose both sides while evaporating the
metal to �ll the hole and thus a metal constriction formed as in Fig. 4.1. This device is
of interest because the mean free path of the electrons is much larger than the diameter
of the constriction. In the copper samples they used, the mean free path was 180 nm
at 4.2 K. Because of this when a voltage is applied across the constriction, there is a
generation of a strongly non-equilibrium electron distribution. Since energy dependent
scattering mechanisms lead to V-dependent resistance signal, this provides a means of
spectroscopic studies as explained by Wolf in [37] and Duif et al. in [38]. They measured
the V-dependent di�erential conductance curve for the unannealed copper nanobridge.

Figure 4.1: The cross-section of metal point contact. The very small constriction at the
lower side of silicon nitride determines the region over which an applied voltage drops [39].

4.1.2 Experimental result

The results they obtained for the di�erential conductance fall in the domain of zero-bias
anomalies (the minimum of resistance at zero bias) that have long been observed in point
contacts [40] and tunneling devices [37]. They noticed that a dramatic and unanticipated
e�ect occurs away from zero bias in the unannealed copper samples. These were spikes
in the di�erential conductance. Furthermore, they observed that this spike appears in
V-symmetric pairs and occurred only on samples which also show a zero-bias dip in the
conductance as shown in Fig 4.2. They also observed that these signals were similar
to those resulting from Kondo scattering from magnetic impurities in the absence of an
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applied magnetic �eld. They noted that the magnetic �eld dependence of their results
shows that the source of the scattering is from non-magnetic impurities. These results,
as already highlighted in the introductory part of this section, led to the introduction of
various theoretical models to explain all the experimental features of these results, as will
be seen in the next section.

(a)

(b)

Figure 4.2: Di�erential conductance of a copper nano-constriction versus voltage [3].

4.2 Models

In this section we discuss the models that attempt to explain the experimental features
of Ralph and Buhrman's experiment. We start with the two-level system Kondo model
that explains the zero bias anomalies but has the limitation that it can not explain the
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magnetic �eld and temperature dependence of di�erential conductance at higher bias.
Then we move on to the partially broken SU(3) Kondo model which explains all the
experimental features of the Ralph and Buhrman's experiment as detailed in [2].

4.2.1 Two-level systems

Two-level systems (TLS) were motivated by experiments like point contact spectroscopy
[41]. Simply put, a TLS is a system that has two possible states. Examples of such
systems are the spin-1/2 particle such as an electron, in which its spin can have values of
+1/2 or −1/2 in units of ~ (Planck constant divided by 2π), and a particle that sits in
one of the two minima of a double-well potential and tunnels between them. The particle
in the double well could be an atom, an ion, an electron, a proton or a muon. The degree
of freedom here is the positions of the atom in the well either left or right. TLS have
been proposed by Vladár and Zawadowski [42] as a model to explain Kondo signatures in
measurements of the resistivity in disordered materials without magnetic impurities. In
the following we will consider this somewhat more closely.

Physical description

Figure 4.3: TLS in which ∆0 is the tunneling rate between the two minima while ∆ is the
energy splitting between the two positions.

Fig. 4.3 shows the TLS in which an atom sits in one of the two wells. The center
of the two wells is separated by a displacement vector ~a. The lines are the localized
levels of each well. The next excited level has energy which is above the barrier and so is
not localized in either of the wells. To draw an analogy of this system with that of the
usual spin-1/2 Kondo model, the spin �ipping in this case is the tunneling of the particle
between the wells assisted by the electrons in the conduction band. There are generally
two types of TLS, namely, slow TLS and fast TLS [43] where the tunneling time is longer
or shorter than the coherence time, respectively. Vladár and Zawadowski had interpreted
the signatures close to zero bias and the enhanced conductance in Ralph and Buhrman's
experiment as a result of the presence of fast TLS [42].
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Two-level system Hamiltonian

The TLS Hamiltonian is given by

HTLS =
∑
k,σ

εkc
†
kσckσ+

1

2

∑
n=x,y,z

∆nτn+
1

N

∑
k,k′,σ

[V 0
k,k′c

†
k,σck′,σ+

∑
n=x,y,z

V n
k,k′τ

nc†k,σck′,σ], (4.1)

where the �rst term represents the kinetic energy in which c†kσ (ckσ) creates (annihilates)
electrons in the conduction band with wave vector k and real magnetic spin σ while εk
is the excitation energy of the free electron measured from the chemical potential. The
second term is the atomic degree of freedom of the TLS where τn are the Pauli matrices
for n = x, y, z. The energy splitting between the two wells is represented by ∆z and the
other ∆ components are the tunneling matrix elements responsible for spin �ip with no
help from other excitations. The y-component of ∆ vanishes when the wave function of
the atom in the two wells is real. Consequently, ∆z = ∆, ∆x = ∆0, and ∆y = 0. The third
and fourth terms represent the interactions between the TLS and conduction electrons.
The third is just a potential scattering term and of little importance for the Kondo physics
unless the total scattering strength is large as explained in [46], whereas the fourth term
is the one responsible for the screening of the TLS by electrons of the conduction sea due
to the scattering of these electrons from the atom in either of the minima when V n = V z.
This term is also responsible for electron scattering that induces transitions between the
two minima when V n = V x,y, and this is known as electron assisted tunneling. It should
be mentioned that the real spin σ is conserved in the coupling of the TLS but plays the
role of the channel �avor in connecting the TLS problem to the 2CK model.

Merits and demerits of the two-level system

Since the suggestion of the model based on TLSs by Anderson et al. [47] and Phillips [48],
the TLSs have been able to successfully explain thermal conductivity in disordered solids
which cannot be described by phonon excitations as well as the low-temperature behavior
of speci�c heat [49]. In spite of all its merits, the TLS fails to explain some of the features
in Ralph and Buhrman's experiment, which are the signatures that occur at non-zero bias.
It was shown by Aleiner, Altshuler, Galperin, and Shutenko [17] that, for 2CK physics to
occur in TLS, the energy splitting must be small as compared to the Kondo temperature.
This is not generally the case. This result put a serious dent on hopes of the TLS being
a realistic model for the 2CK. Taking into account the above-mentioned shortcomings of
the TLS, it was necessary to continue the search for a realistic model for the 2CK model.
It is in this light that we talk about the partially broken SU(3) Kondo model in the next
section which takes care of the essential de�ciencies of the TLS.

4.2.2 Partially broken SU(3) Kondo model

In this section we present the model that is investigated in this thesis which is the partially
broken SU(3) Kondo model. The partially broken SU(3) Kondo model is a quantum
impurity model consisting of three local orbitals embedded in a metal with partially broken
SU(3) symmetry. That is, two of the local levels are degenerate, while the third one is
split o� by a level spacing ∆0, and conduction electron scattering o� the impurity may
induce transitions between any of the three local orbitals. This model has been proposed
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in [2] as a physical realization of the 2CK e�ect and may be realized physically by an ion,
e.g., a proton, bound in an interstitial space of a copper fcc host lattice. In this system,
the three impurity levels are formed by the unique ground state with orbital angular
momentum m = 0 and an excited doublet of angular momentum states m = −1,+1
which is degenerate due to mirror symmetry (parity) of the host lattice, see Fig. 4.4(a)
and Fig. 4.4(b). We neglect higher excited angular momentum states that result from
higher Brillouin zones. In this model the Kondo degrees of freedom are the degenerate
excited doublet m = −1,+1. This excited doublet is accountable for the pseudospin-�ip
processes, that is the transitions between the lattice angular momentum of the impurity
and that of the conduction sea electrons. The magnetic spin of conduction sea electrons
are conserved after scattering in our model due to the fact that the impurity in this model
is non magnetic. As a result of this, the magnetic spin of the conduction electrons serve
as the channel or �avor index in this model. Therefore, two channels result naturally
because of the degeneracy of the conduction electrons magnetic spin.

The obvious problem with our model is that the degenerate states are not the ground
states. This means that at low temperatures these degenerate states are frozen out and
only the unique ground state is left behind in the case of the isolated impurity, hence
Kondo physics cannot occur. However, when interactions are incorporated into the model,
they have the e�ect of lowering the energy of the excited doublet. It has been shown by
Arnold et al. in [2], that when the renormalization group (RG) scheme is applied to this
model, one sees that the excited doublet are renormalized downward in such a way that a
crossover occurs in which the degenerate states becomes the ground states. A degenerate
ground state is a necessary condition for resonance scattering to happen and thus Kondo
physics.

(a)

(b)

Figure 4.4: (a) Level scheme of the SU(3) impurity, (b) De�nition of the coupling constants
of the local level transitions.
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The Hamiltonian

The partially broken SU(3) Kondo model Hamiltonian is de�ned as follows [2],

H =
∑
kσm

εkc
†
kσmckσm + ∆0

∑
m=±1

f †mfm

+
∑
σ

[
1

2
Jz Szs

σ
z + J⊥

(
S1,−1s

σ
−1,1 + S−1,1s

σ
1,−1
)]

+
∑
σ

∑
m,n=−1,1
n−m∈±1

[
g
(n)
m0 Sm,0s

σ
n−m,n +H.c

]
+
∑
σ

∑
m±1

2g(0)mmSm,ms
σ
0,0 (4.2)

Here the �rst term is the conduction electron kinetic energy, the second one is the de-
generate local doublet with the level spacing ∆0 above the impurity ground state m = 0.
The third, fourth, �fth, and sixth terms describe the interactions between the impurity
ion and the electrons of the conduction band. These are the transitions between the local
levels induced by the conduction electrons scattering, where the capital Sm,n operators
denote the SU(3) generators in the impurity Hilbert space and lower-case sm,n operators
denote the generators of SU(3) in the conduction electron Hilbert space. The transitions
due to the unbroken SU(2) symmetry in the degenerate subspace of excited levels m = ±1
are written explicitly as the third and forth terms in (4.2). The coupling constants Jz, J⊥,
and gmimfmi are de�ned in Fig. 4.4(b).

The coupling constants Jz, J⊥, are responsible for the downward renormalization of
∆0 and therefore play a great role in order for the Kondo e�ect to be manifested. This
is because the couplings J are in charge of resonance scattering of the degenerate states
m = ±1. The couplings gnimfmi are accountable for the ground-to-excited states transitions
and potential scattering in this model and, therefore, have counter e�ects to the Kondo
e�ect. The subscripts in gnimfmi simply indicate that the impurity scatters from an initial
state mi to a �nal state mf whereas the superscript ni is the initial state of the conduc-
tion electron. The fact that only transitions in which angular momentum is conserved are
considered, makes it possible to directly deduce the �nal state of the conduction electron
if the other three states are known. The ground-to-excited states scattering terms are the
terms in which the initial state in the coupling gnimfmi is di�erent from the �nal state. In
the case where mf = mi, we have potential scattering. The e�ect of ∆0 to the Kondo
e�ect is pretty straight forward. Large values of ∆0 makes it di�cult for the Kondo e�ect
to be realized whereas smaller values make it easier, of course depending on the other
couplings. Detailed studies of how these di�erent coupling interfere with the Kondo e�ect
is dealt with in chapter 6.

It is important to note that the defect dynamics is subject to the following constraint
which projects onto the physical Fock space in which the impurity states are singly occu-
pied, Q̂ =

∑
m=0,±1 f

†
mfm = 1, where f †m (fm) is the creation (annihilation) operator for

the impurity in the di�erent states labeled by m as mentioned above.

Merits of the partially broken SU(3) Kondo model

We are already aware of the shortcomings of the TLSs as detailed above. Unlike the TLSs,
the partially broken SU(3) Kondo model always have a degenerate level which is neces-
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sary for the Kondo e�ect to manifest. The Kondo temperature is not reduced by charge
screening e�ects [19]. This is because in this model the Kondo screening happens due to
space-inversion symmetric roton doublets which alters the phase but not the charge distri-
bution of the system. This implies that the charge density and Kondo degree of freedom
are independent unlike in the case of the TLS where this spatial charge distribution is
coupled to the Kondo degree of freedom. Therefore, in this model the Kondo temperature
TK is not a�ected by charge screening. Another advantage of this model is that for 2CK
e�ect to be observed one does not need transitions through higher excited states in order
to make TK larger than the energy of the excited doublet. This enhancement of TK over
the level splitting is inhibited by the alternating parity of the higher excited states [17].
The reason why the partially broken SU(3) Kondo model do not need the TK enhance-
ment is because its excited-state doublet is degenerate by space inversion symmetry. This
means that two 2CK behavior in this model can be interrupted only if the space inversion
symmetry is broken, for instance, by lattice distortion or by applying a strong magnetic
�eld to it.
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Chapter 5

Numerical renormalization group
method

Our main goal in this chapter will be to give a brief description of the numerical renormal-
ization group (NRG), which is a non-perturbative technique �rst invented by K. Wilson
in the 70's to solve the Kondo problem [1]. It has since been extended to solve generally
other quantum impurity problems [50]. The NRG was initially conceived for magnetic
impurity systems, where the degree of freedom of the impurity is the magnetic spin. While
Wilson is credited for inventing the NRG method and applying it to the single-channel
Kondo model, Cragg et al. [8] was the �rst to apply the NRG to the more exotic two-
channel Kondo model and provided the �rst con�rmation of the non-trivial �xed point
that Noziéres and Blandin had earlier proposed [7]. Cragg's calculations were done with
strong bare coupling values that were all isotropic. Later on Pang and Cox [9] did a more
comprehensive calculation using a wider parameter range that permitted for the �rst time
to see transitions from weak coupling to strong coupling regimes in both isotropic and
anisotropic cases. We only give a synopsis of the NRG method here, while the details on
the method are discussed in the appendix.

5.1 Numerical renormalization group strategy

In this section we present the essential steps and tricks of the numerical renormalization
group method to solve the quantum impurity problem.

5.1.1 Logarithmic discretization of the conduction band

The logarithmic discretization was conceived by Wilson to re�ect the exponentially small
energy scale evident in the behavior of perturbation theory for the Kondo problem. The
basic idea of the NRG is to discretized the conduction band of bandwidth 2D loga-
rithmically [1] via a discretization parameter Λ (Λ > 1). The logarithmic discretiza-
tion of the conduction band [−D < εk < D] in energy, that is a division into intervals
D+ = [Λ−(N+1),Λ−N ] and D− = [−Λ−N ,−Λ−(N+1)] for positive and negative parts respec-
tively. The conduction band is logarithmically discretized because the impurity couples
to all energies. Details on this discretization scheme can be found in the appendix A.
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5.1.2 Mapping onto a semi in�nite chain

In order to make the logarithmically discretized conduction band part of the Hamiltonian
numerically treatable, it is necessary to convert it into a tridiagonal form. This can be
achieved by applying the tridiagonalization procedure proposed in [51], which is known in
the literature as the Lanczos procedure. A brief outline of the Lanczos procedure is given
in appendix A. The Kondo Hamiltonian now has the following form

HK = JSd · s0 +
∞∑

N=0,σ

[εNc
†
NσcNσ + tN(c†NσcN+1σ + c†N+1σcNσ)] (5.1)

with s0 = c†0,σ~σσµc0,µ and the localized Wannier state generated by c0,σ =
∑

k ck,σ, where
the electronic impurity is replaced by a localized spin-1/2 described by the spin operator
Sd. c†N is the operator that corresponds to the N − th site of conduction sea part of
the chain whereas εN and tN are the chain parameters for the on-site energies and the
hopping matrix elements, respectively. Wilson considered a �at conduction band which
means εN = 0 and

tN =
1

2
(1 + Λ1)Λ−N/2

1− Λ−N−1√
(1− Λ−2N−1)(1− Λ−2N−3)

. (5.2)

5.2 Iterative diagonalization

It is at this point that the renormalization group (RG) character of the method gets
involved. All the above transformations were necessary to get the Hamiltonian into the
right form, that is, the semi-in�nite chain in which the coe�cients fall o� exponentially
as one moves along the chain. This falling o� along the chain is a necessary ingredient for
the iterative diagonalization. For details of the iterative diagonalization, see appendix A.

5.2.1 Renormalization group transformation

A renormalization group transformation relates e�ective Hamiltonians on successive en-
ergy scales Λ−N/2 and Λ−(N+1)/2. It is convenient to rescale the Hamiltonian directly by
de�ning HN = H̃N/DN where DN = DΛN/2 is the bandwidth in the N − th iteration.
One can relate HN to HN+1 through the recursion relation

HN+1 = Λ1/2HN +
∑
σ

(c†N,σcN+1,σ +H.c) ≡ R[H] (5.3)

This transformation is exact up to the discretization error associated with Λ. If one were
to treat subsequent HN by numerical diagonalization, the memory and work needed would
increase exponentially because the number of degrees of freedom grow by a factor of four
in the spin-1/2 impurity single-channel case at each step. Wilson suggested to keep only
a certain number of the lowest lying eigenstates of HN at each step.

5.2.2 Application of symmetries

The use of symmetries in the NRG is very important because it helps to reduce the di-
mension of the Hamiltonian matrices to be diagonalized by separating them into block
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matrices [52]. The symmetries do not only improve on the e�ciency (speed and mem-
ory) of the NRG calculations but they also avoid the situation where numerical round-o�
errors induce accidental symmetry breaking. If this accidental symmetry breaking is sig-
ni�cant, then this could lead to faulty results. Both discrete symmetries such as parity or
particle-hole symmetries and continuous symmetries such as SU(2) and U(1) symmetries
are considered. The discrete ones are factored in by projecting basis states to the invari-
ant subspaces with well de�ned parity or particle-hole quantum number using suitable
projection operators. The continuous ones are factored in by constructing the basis states
using Lie group representation theory in particular the Clebsch-Gorden coe�cient and the
Wigner-Eckart theorem. By taking into account all the symmetries of a model we make
a formerly intractable problem tractable on the computer. For details on how the basis
construction of the U(1) symmetry is done in our NRG calculation, see appendix C.

Spin symmetry

It is possible in an isotropic model to employ the SU(2) group for spin rotations and
use the Sz component and the total spin Stot. The Stot and Stotz both commute with
the Hamiltonian and, consequently are conserved quantities. When a magnetic �eld is
applied, the spin SU(2) symmetry is broken, while the U(1) resulting from Sz is una�ected,
as long as the �eld is in the same direction as the Sz. The U(1) from Sz is broken when
there is another magnetic �eld in the x or y direction and also when there is the chance
for spin-�ip processes along the chain [33]. The total Sz component is,

Sz =
∞∑

n=1,σ,α

σf †n,σ,αfn,σ,α + Simpz (5.4)

where N , α, and σ, are the number of electrons, the number of channels that exchange-
couple to the impurity, and the magnetic spin, respectively. Simpz is the z-component of
the total spin of the impurity.

Charge symmetry

Since electrons are neither annihilated nor created by the Hamiltonian, this implies that
the total charge of the system remains unchanged. The total charge is therefore a good
quantum number. The U(1) charge operator on the impurity is as follows

Q =
∞∑

n=1,σ,α

(f †n,σ,αfn,σ,α − 1) (5.5)

The subscripts in (5.5) are the same as in (5.4) and f †n,σ,α (fn,σ,α) is fermionic creation
(annihilation) operator, respectively.

5.2.3 Numerical scheme

Here we present the numerical renormalization group method algorithm which is as follows:
1) The Hamiltonian HN is numerically diagonalized using optimized standard routines
from the LAPACK library [53] and the lowest eigenvalues and corresponding eigenvectors
are retained.

40



Chapter 5: Numerical renormalization group method

2) The eigenvectors from 1) are used to transform all relevant operators on the N -site
system to the new basis. This is achieved through similarity transformation using the
BLAS library routines [54].
3) HN+1 is formed from HN using the following relation

HN+1 = Λ1/2HN +
∑
σ

(c†N,σcN+1,σ + h.c.),

that is adding a site to the chain HN+1 in the expanded product basis.
4) Process 1) to 3) is repeated, replacing HN+1 with HN until when the lowest lying spec-
trum of eigenvalues for successive HN is unchanged.
This process is illustrated schematically in Fig. A.3 in appendix A.

5.2.4 Renormalization group �ow and �xed Points

The behavior of the system can be understood by searching for the �xed points. In the
case of the single-channel Kondo problem, both �xed points are found for J = 0 and
J =∞. At J = 0 the impurity is decoupled from the conduction band and the excitation
energies are those from the non-interacting tight binding band extending from 0 to N .
For J = ∞ the impurity forms an in�nitely tightly bound singlet with the site 0 of the
tight binding chain. The excitation energies relative to the ground states are therefore of
a chain extending from 1 to N . The nature of the spectrum depends on whether N is
even or odd. We notice that the strong coupling �xed point is stable, because it has no
relevant operators while that of the weak coupling �xed point is unstable, because it has
relevant operators. From the output of our code we can notice that the renormalization
group �ows from the unstable J = 0 �xed point to the stable �xed point J =∞.

5.3 Computation of physical properties

In this subsection we look at how the di�erent physical properties of the Kondo model
can be calculated. The physical properties of a system are properties that can be mea-
sured and whose values describe the state of the system. We will show how to calculate
static thermodynamic quantities such as susceptibility, heat capacity, and entropy. Beside
computing the thermodynamic quantities, we will also show how to calculate more elusive
dynamical quantities such as the spectral function, which is a quantity that makes it very
easy to interpret experimental results.

5.3.1 Thermodynamic properties

As mentioned above we look at the static thermodynamic quantities like the entropy, spe-
ci�c heat, and charge susceptibility of the Kondo model. These quantities can easily be
calculated once we have the energy spectrum of the system. With the energy spectrum
we can calculate the partition function Z. As we know from statistical physics, once we
have the partition function we can calculate all other thermodynamic properties of a given
system. The truncation of the Hamiltonian does not a�ect the calculation of thermody-
namic properties as long as the energies thrown away are of values much higher than kBT
above the ground state. This is because theses energies are suppressed exponentially. In
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general the contribution of the impurity to the thermodynamic quantities is what we are
interested in and this can be derived from the impurity free energy Fimp = −β ln(Z/Zcb),
where β = (kBT )−1 and Zcb is the partition function of the non-interacting system, where
cb stands for the conduction band. The partition function is de�ned as follows

ZN(T ) = Tr e−βHN =
∑
i

e−βE
N
i (5.6)

where N is the iteration number in the NRG scheme.

Entropy

The entropy can be obtained in thermodynamics from the relationship E = F + TS
where E is the energy, F the free energy, T the temperature, and S the entropy. From
this expression one can get that

S

kB
=
E − F
kBT

= βE − βF = βE + lnZ, (5.7)

where the energy is de�ned as

E = 〈H〉 =
Tr(He−βH)

Tr e−βH
. (5.8)

Speci�c heat

One can obtain the speci�c heat from the second derivative of the free energy. The speci�c
heat is a very interesting quantity experimentally, the speci�c heat due to the impurity
can be calculated in the NRG method using the following equation

Cimp = Ctotal − Ccb (5.9)

Ctotal denotes the speci�c heat of the composite system (impurity and conduction band)
while Ccb is that of the conduction band without the impurity. Ctotal and Ccb are calculated
as follows

Cl(T )

kB
=
β2

Z

(∑
i

E2
i e
−βEi − (

∑
i

Eie
−βEi)2

)
(5.10)

where the subscript l could either be total or cb and Ei are the eigenenergies of the system.

Susceptibility

The magnetic susceptibility can be calculated using the formula,

χimp(T ) = β(gµB)2

(
1

Z

∑
i

S2
z,ie
−βEi − 1

Zcb

∑
i

S2
z,cb,ie

−βEi

)
(5.11)

g is the electronic gyromagnetic factor, Sz the z-component of the total spin, and µB is
the Bohr magneton. Z is the partition function of the combined system, impurity and
conduction electrons. The contribution of the impurity to the susceptibility of the system
is obtained in the preceding equation. The �rst term represents the combined system
while the second one is just that of the conduction electron.
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5.3.2 Dynamical properties

The importance of the dynamical properties cannot be overemphasized, considering that
in many experiments transport quantities are measured instead of thermodynamic quan-
tities. The calculation of the spectral function was the �rst chief extension of the NRG in
calculating dynamical properties [55, 56]. Some examples of dynamical properties are local
single-particle spectral function, dynamical spin susceptibility, and charge susceptibility.
One can also use the dynamical properties to distinguish between inelastic and elastic
contributions to the cross-section of scattering. The above quantities can be calculated
both at zero and at non-zero temperatures. As examples for the dynamical properties in
this section we will propose the spectral function and the dynamical spin susceptibility.

Spectral function

The spectral function is the most experimentally interesting quantity. It is the energy
resolution for a particle in a given quantum state. The spectral function gives an indication
of how well the excitation created by adding a particle in a quantum state can be described
by a free non-interacting particle. The spectral function for non-interacting free electrons
is usually a delta function whereas that for interacting systems di�ers from a delta function
but may still be a peak function. The impurity spectral function is de�ned as follows

Aσ(ω, T ) = − 1

π
ImGσ(ω, T ). (5.12)

One can immediately see from the preceding equation that, the spectral function is de�ned
in terms of the imaginary part of the Green's function G. ω and T are the frequency and
temperature respectively, while Gσ(ω, T ) denotes the retarded impurity Green's function
de�ned as

G(t) = −iθ(t)〈[d(t), d†(0)]+〉, (5.13)

where θ(t) is the Heaviside function which is 0 for all variables less than zero and 1,
when otherwise, while t is the time. d†σ(0) and dσ(t) are the ordinary fermionic opera-
tors in which an electron is created at time zero and destroyed at time t, respectively.
dσ(t) = eiĤtdσ(0)e−iĤt in the time evolution picture which is the Heisenberg representa-
tion, where Ĥ is the Hamiltonian operator. For �nite systems and arbitrary temperatures
it is convenient to write the retarded Green's function in the Lehmann's representation
as follows

AN(ω, T ) =
1

ZN(T )

∑
n,m

|〈n|d†σ|m〉|2(e−βEn + e−βEm)δ(ω − (Em − En)) (5.14)

The spectral function at T = 0 is easy to calculate as compared to its non-zero temperature
counterpart and is de�ned as

AN(ω, T = 0) =
1

ZN(0)

∑
n

|〈n|d†σ|0〉|2δ(ω −En +E0) + |〈0|f †σ|n〉|2δ(ω +En −E0) (5.15)

E0 is the ground state energy whereas En is the energy of the n− th excited level. In the
zero temperature case all transitions are from the ground state |0〉 to the excited states.
The data we obtain from the above formula is discrete because it is just a set of positions
and δ-function weights. To compare this result with continuous experimental spectra
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results, we need to broaden them [57]. This broadening can be done using functions like
the Gaussian or the logarithmic Gaussian distributions which have widths comparable to
that of the conduction bandwidth. We do not give any details of this broadening in thesis
since no direct use is made of it. It is only mentioned here in order to give a complete
picture of what can be obtained using the NRG technique.

Spin susceptibility

This is the response of a system to an applied magnetic �eld. The spin susceptibility is
given in linear response theory as follows

χ(t) = −i〈ψ0|T̂ Szimp(t)Szimp(0)|ψ0〉 (5.16)

where T̂ is the time ordering operator. Like in the case of the spectral function it can also
be expressed in the Lehmann representation. The expression in the simple case of T = 0
is de�ned as

χ(ω) = π
∑
n

|〈n|Szimp|0〉|2δ(ω − (En − E0)) (5.17)

The spin susceptibility calculated above is then broadened so it can be compared to
experimental results.

5.4 Numerical renormalization group results analysis

In this section we look at the basic NRG output which are the eigenvalues of the system and
discuss all the physics that one can deduce from it. Unlike in real space renormalization
group where the behavior of the system is described in terms of the �owing coupling
constants, in the NRG, the behavior of the system is followed in terms of the lowest lying
eigenvalues. We will �rst look at the spectra of single-channel Kondo model numerical
renormalization group calculation and then move on to the more complicated two-channel
Kondo model.

5.4.1 Single-channel Kondo e�ect spectra

The spectra for 1CK for an odd number of shells di�ers from that of an even number
of shells [33]. So generally we obtain a spectra that has an odd-even alternation. The
reason to account for this is that, whenever we have an even number of shells, there are
odd number of electrons and vice versa. With this we notice that the Fermi level passes
through the gap above a non-degenerate Fermi sea. The �nite size of the impurity makes
it possible to de�ne asymptotic scattering states which are responsible for the even-odd
e�ect. This explains why we obtain a simple e�ective Hamiltonian to describe the �xed
point. One can clearly see the crossover from one �xed point to another in the 1CK
spectra. The crossover in the case of even iterations occurs at large iteration numbers
to look like the spectra for small, odd iteration numbers. On the other hand for the
case of the odd iteration crosses over at larger iteration number to look like the spectra
for small even iteration number. This crossover scale can be quanti�ed with the Kondo
temperature TK . Another property of the 1CK spectra is the constant level spacing of
the levels. The reversal of the spectra for even and odd iteration shows that there is a
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uniformity of the level spacing and consequently a one-to-one correspondence between the
large iteration even spectra to that of small iteration odd spectra and vice versa. This
means that the low temperature spectrum is a Fermi liquid. Because electrons merely
decouple from the impurity at high temperature, hence the high temperature spectrum
is that of a Fermi gas. It could be summarized by saying that there is a π/2 phase shift
between the even and odd iterations. This π/2 phase shift means that a bound state
has been formed between the impurity and an electron of the conduction sea. The NRG
energy �ows for the spin-1/2 1CK model are given in Fig. 5.1(a) and Fig. 5.1(b). This
calculation was carried out at zero temperature and convergence was reached after about
25 iterations. The number of states kept for this calculation was 512 and both the U(1)
charge and the z-component of the total spin symmetries were made used of.

(a) (b)

Figure 5.1: (a) Finite size NRG energy spectrum at zero temperature. Even energy �ows
for the following parameters; coupling constant J = 0.2, Λ = 2, (b) Odd energy �ow for
the same parameters.

5.4.2 Two-channel Kondo e�ect spectra

Figure 5.2: Finite NRG spectrum for lowest lying levels for the isotropic spin-1/2 2CK
model. The coupling strength J = 0.2 and the discretization parameter Λ = 3.
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The 2CK spectra is remarkably di�erent from the 1CK spectra. It is more complicated
and has a non-trivial �xed point. Unlike in the 1CK case, the even and odd iterations
�ow to the same value in the region of the �xed point. The energy level spacing is not
uniform. This leads to the statement that the quantum numbers of the free states can not
be that of a Fermi liquid. Fig. 5.2 shows the NRG �nite spectrum at zero temperature for
the spin-1/2 2CK model, where the red and black lines are the odd and even iterations,
respectively. This 2CK NRG spectrum was �rst explained by Cragg et al. in [8]. It can
be observed in Fig. 5.2 that there is an even-odd alternation for the �rst few iterations
and the reason for this is the nearness to the non-interacting �xed point. The spectrum
ultimately �ows to the two-channel �xed point as the number of iterations increase. The
impurity in the 2CK is dressed and has an in�nite size, thereby making it impossible
to de�ne asymptotic scattering states with respect to it. Asymptotic scattering states
are states that at the �xed point, are in�nitely close to the Fermi level. Because of the
absence of these states the calculation does not show any even-odd e�ect. We use the
spectra presented here as a benchmark to compare the spectra of the model that we are
investigating in this thesis. This comparison helps us to identify the �xed point in the
model under investigation here.
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Chapter 6

Application of the numerical
renormalization group to the partially
broken SU(3) Kondo model

In this chapter we use the numerical renormalization group (NRG) method exposed in
chapter 5 to solve the partially broken SU(3) Kondo model explained in chapter 4. We
modify the NRG scheme proposed by Wilson [1] to suit our purpose. We start by describ-
ing the approach to attain this goal and then present both the single- and two-channel
Kondo results. We show that the partially broken SU(3) Kondo model has the usual
characteristics of the Kondo e�ect. In this regard we look at the impurity contribution to
the entropy of the system in both 1CK and 2CK scenarios. Another important thing here
is to present the phase diagram of the model of both 1CK and 2CK cases which distin-
guishes between the potential scattering and the Kondo e�ect phases. Lastly, the duality
behavior of 2CK is investigated and also the e�ects of small magnetic �elds applied to the
impurity.

6.1 Approach

A detailed explanation on how we use the NRG method to solve the partially broken
SU(3) Kondo model is described in this section. We show how the starting Hamiltonian
is constructed and how we move from the algebraic Hamiltonian to the matrix form that
is required for the NRG computation. The basis states are also built up and the iterative
structure of the Hamiltonian is shown. This detailed explanation is done only for 1CK
and the general idea extrapolated to the 2CK case.

6.1.1 Single-channel Kondo

The single-channel case of the partially broken SU(3) Kondo model arises when the elec-
trons of the conduction band are all of the same �avor or all polarized in the same
direction. Using the Hamiltonian in (4.2) we construct the matrix form of the starting
Hamiltonian. Let us start with a few de�nitions of the operators needed for this purpose.
Let d†m (dm) be the creation (annihilation) operator for the impurity in the di�erent states
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m = −1, 0,+1. The SU(3) operators of the impurity are de�ned as follows

Sz = d†1d1 − d
†
−1d−1

Smn = d†mdn. (6.1)

The SU(3) operators acting on the conduction band Fock space are lower-case sz and
smn. They are obtained by substituting cm =

∑
k ckσm in (6.1) where cm is the fermionic

operators acting on the conduction band electrons. The representation chosen here is the
one in which the SU(3) shows an unbroken symmetry of the SU(2) subgroup in the states
m = −1,+1. (4.2) can now be rewritten in the NRG discretized form using these di�erent
operators and the following form is obtained

H =
3∑
i=1

∑
n

ξn(c†n+1,icn,i + h.c) + ∆0

∑
m=±1

d†mdm +Hint (6.2)

where Hint is the interaction term which has the numeric form

Hint = 2g000d
†
0d0c

†
0c0 + 2g100d

†
0d0c

†
1c1 + 2g−100 d

†
0d0c

†
−1c−1 + 2g000d

†
1d1c

†
0c0

+2g000d
†
−1d−1c

†
0c0 + g010d

†
1d0c

†
−1c0 + g0−10d

†
−1d0c

†
1c0 + g110d

†
1d0c

†
0c1

+g−1−10d
†
−1d0c

†
0c−1 + g−101 d

†
0d1c

†
0c−1 + g10−1d

†
0d−1c

†
0c1 + g001d

†
0d1c

†
1c0

+g00−1d
†
0d−1c

†
−1c0 + J⊥(d†1d−1c

†
−1c1 + d†−1d1c

†
1c−1)

+
1

2
Jz(d

†
1d1c

†
1c1 + d†−1d−1c

†
−1c−1)−

1

2
Jz(d

†
1d1c

†
−1c−1 + d†−1d−1c

†
1c1) (6.3)

The starting Hamiltonian is the impurity levels and the interaction term only, since the
on-site energy εn = 0 for reasons already mentioned in chapter 5, hence the Hamiltonian
term from the conduction site is not included and this Hamiltonian is denoted here as

H0 = ∆0

∑
m=±1

d†mdm +Hint (6.4)

Since our system respects the constraint that the impurity is singly occupied, the matrices
de�ning the impurity have this constraint built into them. These matrices d†mdm are given
in the original undiagonalized basis of the Hilbert space as follows

d†−1d−1 =


1 0 0

0 0 0

0 0 0

 , d†0d0 =


0 0 0

0 1 0

0 0 0

 , d†1d1 =


0 0 0

0 0 0

0 0 1


(6.5)

d†−1d0 =


0 1 0

0 0 0

0 0 0

 , d†−1d1 =


0 0 1

0 0 0

0 0 0

 , d†0d1 =


0 0 0

0 0 1

0 0 0


(6.6)

where 1 is an 8 × 8 unit matrix. Thus the starting Hamiltonian for the NRG procedure
is a 24 × 24 matrix. It consists of the impurity and the �rst site of the Wilson chain.
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Number States
1 |0〉
2 c†−1|0〉
3 c†0|0〉
4 c†1|0〉
5 c†−1c

†
0|0〉

6 c†1c
†
0|0〉

7 c†−1c
†
1|0〉

8 c†−1c
†
1c
†
0|0〉

Table 6.1: The eight possible basis states on the �rst site of the Wilson chain in the 1CK
case.

The 24 basis states of this Hamiltonian are the product states of the three impurity states
m = 0,−1,+1 and the eight possible states at the �rst site of the Wilson chain which
are given in Table 6.1. The above Hamiltonian, H0 is then diagonalized numerically
using Lapack routines, and the output are the eigenvalues and the eigenvectors. The
eigenenergies are sorted with respect to increasing energies and only the low lying levels
are kept since we are only interested in the low temperature physics. The Hilbert space
grows by a factor of 8 with the addition of a new site. This means that after adding a few
sites the Hilbert space becomes so large that it can no longer be kept in the computer.
The way around this is to truncate it and keep only the low lying states which justi�es
the sorting of the eigenenergies. One then uses the eigenvectors from H0 to rotate all
the operators one is interested in to the new basis and then sort them with respect to
the eigenvalues of H0. With this, one is ready to build up H1 which is the Hamiltonian
obtained by adding a new site to the Hamiltonian H0. The matrix form is as follows

H1 =



|0〉1 c†−1|0〉1 c†0|0〉1 c†1|0〉1 c†0c
†
−1|0〉1 c†1c

†
−1|0〉1 c†1c

†
0|0〉1 c†1c

†
0c
†
−1|0〉1

|0〉1 Λ
1
2H0 −ξ0c̃†0−1 −ξ0c̃†00 −ξ0c̃†01 0 0 0 0

c†−1|0〉1 −ξ0c̃0−1 Λ
1
2H0 0 0 ξ0c̃

†
00 ξ0c̃

†
01 0 0

c†0|0〉1 −ξ0c̃00 0 Λ
1
2H0 0 −ξ0c̃†0−1 0 ξ0c̃

†
01 0

c†1|0〉1 −ξ0c̃01 0 0 Λ
1
2H0 0 −ξ0c̃†0−1 −ξ0c̃†00 0

c†0c
†
−1|0〉1 0 ξ0c̃00 ξ0c̃0−1 0 Λ

1
2H0 0 0 −ξ0c̃†01

c†1c
†
−1|0〉1 0 ξ0c̃01 0 −ξ0c̃00 0 Λ

1
2H0 0 ξ0c̃

†
00

c†1c
†
0|0〉1 0 0 ξ0c̃01 −ξ0c̃00 0 0 Λ

1
2H0 −ξ0c̃†0−1

c†1c
†
0c
†
−1|0〉1 0 0 0 0 −ξ0c̃†01 ξ0c̃

†
00 −ξ0c̃†0−1 Λ

1
2H0


(6.7)

ξ0c̃0m, ξ0c̃
†
0m, Λ

1
2H0, and 0 are all 24 × 24 matrices, where ξ0c̃0m are the transformed

fermionic operators of the new site that were acting in the previous site. Λ
1
2H0 are

diagonal matrices and 0 are simply zero matrices. This means that the dimension of the
Hamiltonian H1 is 192 × 192. Following the same procedure as above the eigenenergies
and eigenvectors of H1 are obtained by diagonalizing it. For H2 to be constructed, c†1m
needs to be determined �rst because it is necessary for the continuation of the iteration.
Generally these operators are given in the original basis of the Hilbert space and are
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usually as follows

c†−1 =



|0〉 c†−1|0〉 c†0|0〉 c†1|0〉 c†0c
†
−1|0〉 c†1c

†
−1|0〉 c†1c

†
0|0〉 c†1c

†
0c
†
−1|0〉

|0〉 0 0 0 0 0 0 0 0
c†−1|0〉 1 0 0 0 0 0 0 0

c†0|0〉 0 0 0 0 0 0 0 0
c†1|0〉 0 0 0 0 0 0 0 0
c†0c
†
−1|0〉 0 0 −1 0 0 0 0 0

c†1c
†
−1|0〉 0 0 0 −1 0 0 0 0

c†1c
†
0|0〉 0 0 0 0 0 0 0 0

c†1c
†
0c
†
−1|0〉 0 0 0 0 0 0 1 0


(6.8)

c†0 =



|0〉 c†−1|0〉 c†0|0〉 c†1|0〉 c†0c
†
−1|0〉 c†1c

†
−1|0〉 c†1c

†
0|0〉 c†1c

†
0c
†
−1|0〉

|0〉 0 0 0 0 0 0 0 0
c†−1|0〉 0 0 0 0 0 0 0 0

c†0|0〉 1 0 0 0 0 0 0 0
c†1|0〉 0 0 0 0 0 0 0 0
c†0c
†
−1|0〉 0 1 0 0 0 0 0 0

c†1c
†
−1|0〉 0 0 0 0 0 0 0 0

c†1c
†
0|0〉 0 0 0 −1 0 0 0 0

c†1c
†
0c
†
−1|0〉 0 0 0 0 0 −1 0 0


(6.9)

c†1 =



|0〉 c†−1|0〉 c†0|0〉 c†1|0〉 c†0c
†
−1|0〉 c†1c

†
−1|0〉 c†1c

†
0|0〉 c†1c

†
0c
†
−1|0〉

|0〉 0 0 0 0 0 0 0 0
c†−1|0〉 0 0 0 0 0 0 0 0

c†0|0〉 0 0 0 0 0 0 0 0
c†1|0〉 1 0 0 0 0 0 0 0
c†0c
†
−1|0〉 0 0 0 0 0 0 0 0

c†1c
†
−1|0〉 0 1 0 0 0 0 0 0

c†1c
†
0|0〉 0 0 1 0 0 0 0 0

c†1c
†
0c
†
−1|0〉 0 0 0 0 1 0 0 0


(6.10)

The symbol 1 is a 24× 24 identity matrix and the 0 are 24× 24 zero matrices too. These
three fermionic operators are rotated to the new site using the eigenvectors from the
diagonalized Hamiltonian. During each iteration, the Hamiltonian is diagonalized, the
eigenenergies sorted in increasing order, the system truncated, a new site added to the
Wilson chain, and �nally, the fermionic operators acting on this site are set up. To check
for convergence in the NRG, the low lying eigenenergies of the system are plotted against
the iteration number. The convergence of these eigenenergies indicates that the strong
coupling �xed point has been reached. For details on how this is actually calculated, see
appendix B.

6.1.2 Two-channel Kondo

As already mentioned in chapter 4, the two-channel scenario arises from the model under
investigation in this thesis by virtue of the degeneracy of the conduction band electrons
since the impurity is non-magnetic. To build up the NRG scheme for this case is quite de-
manding since the impurity space is comprised of three fermionic operators corresponding
to the three impurity levels. Correspondingly, the conduction electrons carry a three-fold
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SU(3) degree of freedom, represented by the orbital degrees of freedom, m = −1, 0,+1,
and in addition a two-fold degree of freedom of the magnetic spin, σ =↓, ↑. Thus there are
six conduction electron operators per lattice site. As a consequence, three Wilson chains,
one for each of the orbital degrees of freedom are needed for the NRG. Moreover, each of
these Wilson chains come in two �avors, the magnetic electron spin, which is conserved
in the interactions of the Hamiltonian. Collecting all the degrees of freedom mentioned
above implies that in each iteration of the NRG the Hilbert space grows by a factor of 64.
The 64 di�erent states are obtained from di�erent fermionic operators acting on the vac-
uum state as shown in Table 6.2. This makes the NRG algorithm for this extraordinarily

States Number of states
|0〉 1

c†mσ|0〉 6
c†mσc

†
mσ|0〉 15

c†mσc
†
mσc

†
mσ|0〉 20

c†mσc
†
mσc

†
mσc

†
mσ|0〉 15

c†mσc
†
mσc

†
mσc

†
mσc

†
mσ|0〉 6

c†mσc
†
mσc

†
mσc

†
mσc

†
mσc

†
mσ|0〉 1

Table 6.2: The number of basis states obtained by acting the di�erent fermionic operators
on the vacuum state.

demanding, both in terms of memory and computing time. For the technical details on
the build up of the NRG scheme for the two 2CK case, see appendix B.

6.2 Results of the single-channel case

The �rst results obtained from an NRG run are the eigenenergies of the system, which
when plotted against the iteration number, gives us information on the di�erent �xed
points of the system. In the case of the single-channel model there is this alternation
between the odd-even iteration as already explained in chapter 5.

6.2.1 Flow diagrams

The �ow diagrams permit us to make a statement on whether the system has reached the
1CK �xed point or not. Fig. 6.1 shows a typical �ow of the even iterations of eigenenergies
in which the lowest lying energy levels varies with the length of the chain. The energies are
scaled by a factor of DΛN/2, where D is the bandwidth and Λ the discretization parameter
as already discussed in chapter 5. These eigenenergies show the basic physics of the Kondo
problem. One can notice that after a few iterations the system crosses over to another
regime. The system starts up at the weak coupling regime and then between iteration
number 10 and 20 the system crosses over to the strong coupling regime where it then
�ows to the stable �xed point at iteration number greater than 20. The energy levels are
equally spaced which indicates that we are dealing with a Fermi liquid. The odd iterations
have the same structure, but for the fact that they are phase shifted by π/2. At the �xed
point the impurity degrees of freedom are completely screened. A knowledge of these
eigenenergies provides the necessary ingredient for the calculation of the di�erent physical
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properties of the system and enables us to map out a phase diagram of the Kondo �xed
point and the potential scattering regime as will be illustrated in the next subsection. The
�xed point value of the eigenenergies is changed in the presence of a potential scattering
term in the Hamiltonian as lucidly explained by Kondo using perturbative techniques in
[58] and by Cragg and Lloyd in [59] using the NRG. Kondo explains that there even exist
a critical value for the potential scattering which when exceeded, a reverse Kondo e�ect
is observed instead of the usual one. In this regime the resistivity decreases with the
decreasing temperature as a consequence of the strong potential scattering.

Figure 6.1: NRG energy �ows for the 1CK partially broken SU(3) model lowest lying
many particle levels for the following parameters: J = 0.2, g = 0.002, ∆0 = 0.001 and
Λ = 2.

6.2.2 Phase diagrams

The �ow to the 1CK or the potential scattering �xed points for di�erent set of parameters
can be summarized in the phase diagram. In the 1CK scenario, one can easily identify
this by just looking at even-odd alternations of the energies. One compares the energies
in this case with energies at zero couplings. In the case of zero couplings the energies
are just those of the interacting system, and looking at the Wilson chain one knows how
many electrons were added to the chain. This is simply just taken to be the iteration
number of the NRG calculation. Since the energies of a chain depend on whether the
number of electrons are even or odd then in the case where the system �ows to strong
coupling, it contains one electron less than in the non interacting case of zero coupling.
This is because the �rst electron forms a singlet with the impurity and hence decouples
from the other conduction electrons. This means that the odd iteration number energies
in the case of the non-interacting case become the even iteration number energies in the
case of the strong coupling and vice versa. We use this simple criterion to produce the
phase diagram in Fig. 6.2. Whenever some set of parameters is chosen in each phase,
the system will �ow to the corresponding phase. This reinforces the earlier prediction by
Arnold et al. in [2] for the 2CK calculations that the �ow of the system to the 2CK �xed
point is mainly driven by the coupling constant J . We have given just one phase line here
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that corresponds to the ratio g/J = 0.01. The in�uence of the ground-to-excited states
scattering constant g on the �ow of the system from the non-interacting �xed point to the
Kondo �xed point will be explored in the 2CK scenario. The is because it is the model
we are more interested in and also because we can easily compare our results to those in
[2]. In Fig. 6.2, one sees an o�set in the ordinate when it is compared to the 2CK phase
diagram in [2]. This o�set has nothing to do with the physics but rather it is just due to
the numerics, since the NRG method always needs some �nite couplings that can enable
the system to �ow to the Kondo �xed point in a �nite number of iterations. If we could
iterate the system for an in�nite number of iterations then the o�set will go away and
our results will agree exactly with the analytic ones of the perturbative renormalization
group (PRB) method in [2]. This phase diagram shows that the 1CK e�ect occurs in a
wide parameter range in this partially broken SU(3) Kondo model.

Figure 6.2: Phase diagram separating single-channel Kondo and potential scattering
regimes in the phase space of the level spacing ∆0 and the dimensionless coupling strength
(N(0)J)2. To the right of the line, the system shows only potential scattering while to
the left the system shows 1CK e�ect.

6.2.3 Entropy

The entropy of the impurity is obtained from the NRG using the following expression

Simp(T ) = Simp,cb(T )− Scb(T ) (6.11)

where Simp(T ) is the impurity entropy at a certain temperature T , Simp,cb(T ) the com-
bined entropy of the impurity and the conduction band, and Scb(T ) is the entropy of the
conduction band. Two NRG runs are required to obtain the impurity entropy. The �rst
run is the combined case where the coupling constant is non-zero and the second case is
when the coupling constants are set to zero so one gets only the contribution of the con-
duction band. This conduction band contribution is then subtracted from the combined
case as done in (6.11). Fig. 6.3(a) shows the entropy of the impurity on the ordinate
and the ratio of the temperature to the Kondo temperature on the abscissa which tells us
that the entropy tends to zero below TK . The actual expression for the di�erent terms in
(6.11) are given in (5.7). A careful look at (5.7) shows that one has to calculate averages
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(a)

(b)

Figure 6.3: The variation of the impurity entropy without magnetic �eld in the 1CK
scenario as the temperature decreases for the following general parameters: J = 0.1 and
Λ = 4, (a) Impurity entropy when there is a �ow to the 1CK regime for g/J = 0.01
and ∆0 = 0.007, (b) The entropy of the impurity in the potential scattering phase for
g/J = 0.01 and ∆0 = 0.008. For details of the explanation of these �gures, see text.
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using the Boltzmann weights. The inverse temperature value is crucial for this calculation
since its value for this calculations depends on both the discretization parameter Λ and
the number of states kept in each NRG iteration. One has to make sure that the inverse
temperature β in use is the right one and works well for the Λ value and the number of
states kept so that one gets the right entropy behavior for the impurity. It is a demanding
computation in terms of computing time in the case of 2CK. Details of this calculations
are given in appendix C.

The entropy of the impurity for zero Kondo coupling is simply the logarithm of the
ground state degeneracy of the free impurity; which means that in our case where the
impurity has three levels in an isolated state, its entropy is S(T ) = ln3 for T � ∆0 and
S(0) = ln1 for T � ∆0, since the excited states are frozen out at low temperatures. The
entropy is given in units where kB = 1. The ground state degeneracy is reduced under
renormalization from the non-interacting �xed point to the infrared stable �xed point.
The reason for this behavior has been intuitively explained by A�eck in [60] to be related
to the fact that when lower energy scales are investigated, approximately degenerate levels
of impurities display small splittings, thereby reducing the degeneracy. The entropy of
the impurity gives us the strongest evidence yet of the crossover of the degenerate doublet
to become the ground states, while the singlet state is decoupled. This can be seen in
Fig. 6.3(a) which shows that at high temperature (T � ∆0), all three levels contribute
to the entropy of the impurity, hence ln3. As the temperature is decreased, the degener-
ate doublet is renormalized downward and becomes the ground states, consequently the
entropy changes to ln2 and, hence the plateau. It can be seen in Fig. 6.3(a) that the
crossover energy scale from ln3 to ln2 plateau is of the order of ∆0. Kondo physics then
sets in and the doublet is screened and the entropy of the impurity becomes ln1 due to the
complete screening in the 1CK e�ect scenario. It can also be observed that the crossover
energy scale from ln2 to ln1 is equal to the Kondo temperature.

On the other hand, when the level spacing is increased leaving the coupling strength
constant, then the coupling strength is no longer strong enough to drive down the ex-
citation of the degenerate doublet to at least zero. Therefore the 1CK e�ect is never
manifested. This is because the ground state remains non-degenerate and only potential
scattering occurs, and so the system just �ows from ln3 to ln1, as shown in Fig. 6.3(b).

6.3 Results of the two-channel case

6.3.1 Flow diagrams

The �ow to the 2CK �xed point in the NRGmethod, as already brie�y explained in chapter
5, can be visualized by looking at the �ow of the eigenvalues with respect to the number
of iterations [1]. Unlike in the 1CK case, where there is an odd-even alternation in the
energy levels and a uniform spacing of the energy levels, the energy levels in the 2CK �ow
to the same point and are non-uniformly spaced [9]. In Fig. 6.4(a) a selected number of
energy levels have been plotted to elucidate the preceding sentence. We consider di�erent
parameter sets given by the coupling constants of the interacting Hamiltonian and the
initial level spacing ∆0 to show how the 2CK �xed point is reached. The three major
parameters of the model are the coupling strength J , ground-to-excited state transitions
g, and the level spacing ∆0. We show that, when the level spacing is large, then the
2CK is never reached because the excited doublet never renormalizes downward enough
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(a) (b)

(c) (d)

Figure 6.4: NRG energy levels for the following general parameters: J = 0.2, g = 0.002,
and Λ = 4 (a) when ∆0 = 0.13, it shows a 2CK �xed point because both the odd-even
iterations �ow to the same �xed point and the energy levels have a non-uniform spacing.
The odd iterations are the red lines whereas the black lines are for the even iterations and
(b) When ∆0 = 0.14, the coupling is no longer strong enough to renormalize ∆0 down to
at least zero or negative for the �ow to the 2CK �xed point to be attained. Consequently
the odd and even iterations �ow to di�erent �xed points and the energy levels are equally
spaced. (c) When ∆0 = −0.14, the system �ows to the 2CK �xed point directly since
there is no need for the downward renormalization as the degenerate doublet is already
the ground states. (d) For ∆0 = −1.0 the same �ow is obtained as in ∆0 = 0.13 and
∆0 = −0.14 for the same reason as in (c).
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to become the ground state. When the level splitting in Fig. 6.4(a) is increased by 0.01,
leaving the coupling J constant, one can immediately see that the system does not �ow
to the 2CK �xed point since the even and the odd iterations �ow to di�erent points (see
Fig. 6.4(b)). The reason for this behavior is because the interactions become insu�cient to
renormalize down the degenerate doublet to become the ground states. If J is increased,
then the system can again �ow to the 2CK �xed point.

Figure 6.5: Level scheme of the impurity for ∆0 < 0

When the level spacing is negative, the degenerate doublet is already the ground states
and the singlet the excited state. In this case the Kondo e�ects occurs without need for
the downward renormalization of ∆0 since the system ground states is degenerate from
the onset of the RG procedure. The level scheme of the impurity when the level spacing
∆0 < 0 is shown in Fig. 6.5. Fig. 6.4(c) and Fig. 6.4(d) show that the Kondo e�ect is
insensitive to ∆0 as long as ∆0 < 0. This behavior of the system con�rms the conjecture
in [2] that ∆0 is renormalized downward when it is positive and that this downward
renormalization is mainly driven by the coupling strength J .

6.3.2 Phase diagrams

The above behavior in Fig. 6.4(a) and Fig. 6.4(b) is summarized in a phase diagram, see
Fig. 6.6, where we have plotted the dimensionless (N(0)J)2 versus the level splitting ∆0.
The di�erent points on the phase diagram are instable �xed points which separate the
2CK regime from that of the potential scattering. The larger the energy splitting is, the
more strong interactions are required to renormalize down the doublet states in order for
the system to �ow to the 2CK �xed point. The o�set seen in the 1CK case also appears
in the 2CK case. The reason for this o�set has been explained in the 1CK phase diagram
and also applies here in the 2CK phase diagram. This phase diagram e�ectively con�rms
that the partially broken SU(3) Kondo model has a 2CK �xed point in a wide parameter
range namely in the upper part of the phase diagram.

E�ect of di�erent parameters on the crossover

We look at the role played by the di�erent parameters in the Hamiltonian in order for
the 2CK e�ect to be realized. There are in general three di�erent couplings involved in
the Hamiltonian of the partially broken SU(3) Kondo Hamiltonian namely gmn whose role
varies depending on whether m = n or m 6= n. When m = n then the coupling gmn is just
a potential scatterer and its e�ect on the renormalization of level spacing is weak. When
m 6= n, gmn becomes responsible for the ground-to-excited states scattering in the system
and therefore its e�ect on the crossover is stronger than that of the potential scattering
terms. The bigger the value of this coupling the larger the potential scattering phase as
shown in Fig. 6.6.

The next set of couplings that plays a crucial role for the 2CK e�ect to be observed
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Figure 6.6: Phase diagram separating 2CK and potential scattering regimes in the phase
space of the level spacing ∆0 and the dimensionless coupling strength (N(0)J)2. To the
right of each of the lines the system shows only potential scattering while to the left the
system shows 2CK e�ect.

are J⊥ and Jz. J⊥ and Jz are the couplings mainly in charge of the renormalization of
the level spacing. The isotropic case occurs when J⊥ = Jz/2 and the anisotropic case
when J⊥ 6= Jz/2. The 2CK �xed point does not �know� whether the system is isotropic
or anisotropic. This has been shown by Pang and Cox in [9] and in our NRG calculations
for this model we �nd the same behavior. The phase diagram presented in Fig. 6.6 is
realized for the isotropic case.

The last but not least of the parameters is the level spacing ∆0 which is the energy
of the degenerate doublet M = ±1. If ∆0 > 0 then the degenerate pseudospin states
M = ±1 are not the ground state therefore making it impossible for the Kondo e�ect to
occur due to the fact that it can not be energetically occupied as the temperature tends
to zero. Hence no resonance scattering can occur which is necessary for the Kondo e�ect.
Contrary to the picture painted in the preceding sentence, 2CK e�ect is still observed even
when ∆0 > 0. This is possible, if the level spacing ∆0 is renormalized to at least zero or
a negative value during the RG �ow. The degenerate doublet becomes the ground states
of the system. The downward renormalization of ∆0 is mostly driven by the coupling
constants J⊥ and Jz. It turns out that ∆0 covers a wide range depending on the choice of
the initial coupling constants. If ∆0 = 0 then we have the full SU(3) Kondo model. The
case of ∆0 < 0 is similar to the spin-1/2 2CK model since no downward renormalization
is required for ∆0 because the degenerate doublet ground states are already the ground
states. In this situation the value of ∆0 no longer in�uences the phase diagram and
therefore almost the entire plane of negative ∆0 and positive J2 is in the 2CK regime.

6.3.3 Duality and non-monotonicity of the Kondo temperature

It has been shown in [32] that the Kondo temperature TK dependence on bare coupling
constant J peaks at J = 0.6D and that TK decays exponentially on both sides. The
maximum is of the order of the band cuto� TK ≈ D. The TK value never reaches the
value of the band cuto� due to the presence of potential scattering which has the e�ect
of reducing TK . Non-Fermi liquid behavior is observed for all energies below TK . The
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(a) (b)

(c) (d)

(e) (f)

Figure 6.7: TK dependence on coupling strength for the following common parameters:
g/J = 0.01, Λ = 3, (a) At ∆0 = 0.001 the system needs a very small minimum coupling
constant in order to reach the 2CK regime and we start at J = 0.1, (b) For ∆0 = 0.01 the
minimum coupling is J = 0.2, (c) while for ∆0 = 0.1, minimum J = 0.25, (d) ∆0 = 0.7,
is the critical ∆0 where TK decreases for any coupling that �ows to the 2CK regime and
J = 0.7 is the minimum coupling constant. (e) For ∆0 = 1.0 the minimum coupling is
J = 0.9, (f) is the log plot of TK against the bare coupling constant.
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Figure 6.8: The change of TK on the surface of J2 and ∆0 which shows that for certain
values of ∆0, TK peaks at the red color and decays exponentially on both sides, whereas
for certain values it only decreases. The gray part of the plot is the region where the
Kondo temperature TK is not de�ned and it corresponds to the potential scattering phase
already mentioned in the phase diagram. For detailed explanation on this, see text.

partially broken SU(3) Kondo model shows an exponential increase and decrease of TK
for small and large coupling constant J , respectively when the level spacing ∆0 < 0.7
as shown in Fig. 6.7(a), Fig. 6.7(b), and Fig. 6.7(c) and an exponential decrease of TK
for ∆0 ≥ 0.7 values as shown in Fig. 6.7(d) and Fig. 6.7(e). While Fig. 6.7(f) shows a
log plot of TK against the bare couplings. One sees that TK values are the same in all
the �gures irrespective of the value of ∆0 as long as the couplings are strong enough for
the 2CK e�ect to be observed. A careful look at Fig. 6.7(a), Fig. 6.7(b), Fig. 6.7(c),
Fig. 6.7(d), and Fig. 6.7(e), shows that the �rst data point is shifted from left to right as
∆0 is increased. This simply tells us that large ∆0 requires a large J value. The raison
d'etre for this behavior is that, whenever the coupling is strong enough to renormalize ∆0

down to at least zero or negative values then the system is able to �ow to the 2CK regime.
Consequently TK can be calculated. These TK plots con�rm the fact that TK depends
only on the coupling constant and not the level spacing in this model. Unlike in the TLS
where TK is somehow tied to the level spacing as already expounded in chapter 4. The
Kondo temperature is calculated here using standard procedure of the NRG method. It is
determined as the energy scale where the NRG �rst excited energy level reaches its �xed
point value within, for instance 10%. There are other methods to calculate TK but the
complexity of the level �ow makes it di�cult to use them.

One observes that for ∆0 ≥ 0.7, the system is always in the regime where TK decreases
as the bare coupling increases. This could be explained by the fact that a level crossing
occurs when the couplings have already grown large such that we are already in the
regime where TK decreases with increase in the bare coupling. The above explanation is
supported by the fact that when ∆0 < 0.7, the results in [32] are recovered.

Fig. 6.8 shows a density plot of the variation of TK with coupling constant and the

60



Chapter 6: Application of the numerical renormalization group to the partially broken
SU(3) Kondo model

level spacing. The Kondo temperature TK is color coded, while the x and y-axes are the
level spacing and the dimensionless coupling, respectively. The sidebar beside shows the
numeric values of TK with respect to the colors in the 2CK phase. TK peaks at the red
color and its minimum is at blue. The gray part of the plot is the potential scattering
phase where the Kondo temperature TK is not de�ned. The important physics that can
be read o� Fig. 6.8 is that TK is translational invariant from left to right. This means that
∆0 has no in�uence on TK as long as the coupling strength is strong enough to renormalize
it down to at least zero or negative. The density plot of Fig. 6.8 shows that the partially
broken SU(3) rotational impurity model exhibit for low energies a duality between the
weak and strong bare Kondo coupling for level spacing ∆0 < 0.7 . The physics of this
behavior has been explicitly explained in chapter 3. The fact that this duality behavior is
indeed seen in the model under investigation here further reasserts Arnold et al.'s proposal
of this model as a realistic model for the 2CK e�ect [2].

6.3.4 Entropy

The calculation of thermodynamic quantities using the NRG technique has already been
dealt with in chapter 5. Here we focus more on the physics that is obtained from these
calculations and what we can learn from it. As we have already learned in subsection
6.2.3 about the 1CK entropy, the entropy of the impurity always reduces with the RG
�ow. It is therefore necessary for us to concentrate on how the impurity entropy changes
as the temperature is lowered in the 2CK scenario in both the partially broken SU(3) and
full SU(3) symmetry of the model in question. In Fig. 6.9(a) and Fig. 6.9(c) we show the
entropy as a function of T/TK for the SU(3) Kondo model. We rather show in Fig. 6.9(b)
the entropy as a function of T since the Kondo regime is not reached with the couplings
used. The value of TK is obtained using the following formula

TK ≈ DΛ−N/2 (6.12)

where N is the iteration number where the energies cross over to the 2CK �xed point.
How the value of N is obtained has been explained above in section 6.3.3 about 2CK
duality behavior. The NRG calculations are carried out keeping 2000 states in each step
and using the discretization parameter Λ = 4. A comparatively large value of Λ = 4 is
used and the reason for this is because it considerably reduces the number of states that
are kept in each NRG iteration step. It has been shown in [50] that this Λ value is still
acceptable for the calculation of static thermodynamic properties.

As already discussed in the section on 1CK entropy, the inverse temperature value
depends on the value of Λ and the number of states kept. Detailed information about this
can be found in [50]. Here we use inverse temperature β values from 1.2 to 1.5. The values
of β within this range give us physically reasonable results for the entropy calculations.
For numerical details on how the entropy is calculated using the NRG, see Appendix D.

One sees in Fig. 6.9(a) the partial quenching of the impurity pseudo spin by the Kondo
e�ect as the temperature is decreased down to the order of TK . There are three plateaus
in Fig. 6.9(a), the �rst one is when the impurity is free at temperature (T � ∆0), so
that the three levels all contribute to the entropy before the RG procedure. When RG is
applied, there is a �ow in which the two excited doublet are renormalized downward and
eventually cross over the singlet state to become the ground states. The energy scale of
this crossover as shown in Fig. 6.9(a) is of the order of ∆0. The second plateau is then
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(a)

(b)

(c)

Figure 6.9: The impurity entropy without magnetic �eld in the 2CK scenario for the
following general parameter: J = 0.1, Λ = 4, (a) Impurity entropy when there is a �ow
to the 2CK regime for g/J = 0.01 and ∆0 = 0.03, (b) The entropy of the impurity in the
potential scattering phase for g/J = 0.01 and ∆0 = 0.04, (c) Entropy of impurity in a full
SU(3) symmetric case when ∆0 = 0.0 and g = J . For details of the explanation of these
�gures, see text.
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that of the new ground states from the doublet and it is at ln2 as shown in Fig. 6.9(a).
As the temperature continues to decrease, then at energies of the order of TK , Kondo
screening sets in and the impurity is partially screened leading to a residual entropy of
1
2
ln2 which can be seen in Fig. 6.9(a); hence the third plateau.
In Fig. 6.9(b), one can evidently see that the entropy of the impurity �ows from ln3

to ln1. The reason for this is because the coupling constant is not strong enough to
renormalize ∆0 downward to at least zero. The coupling constant value in Fig. 6.9(b) is
the same as in Fig. 6.9(a). The ∆0 value has been increased by 0.01 thereby making it
impossible for the crossover of the doublet states to occur and the singlet state remains the
unique ground state consequently no 2CK e�ect is observed. The system remains in the
potential scattering regime. Because no 2CK e�ect is perceived in the case of Fig. 6.9(b)
so we plot the entropy as a function of temperature rather than the ratio T/TK as in
Fig. 6.9(a) and Fig. 6.9(c).

Last but not least on this section on entropy is the case where the partially broken
symmetry is lifted by setting ∆0 = 0. In this case the impurity has a ground state of
three degenerate levels. Fig. 6.9(c) shows that as the RG is applied the impurity entropy
�ows from ln3 down to ln(1+

√
5

2
) which is the expect value when three levels are screened

in the 2CK e�ect as deduced in conformal �eld theory (CFT).

6.3.5 The e�ect of magnetic �elds on the �xed point

In this subsection we investigate how small magnetic �elds a�ect the stability of a �xed
point in the partially broken SU(3) Kondo model. We focus our attention only on the
2CK case because we can easily compare our results to the perturbative renormalization
group (PRG) results of the e�ect of magnetic �eld on this model as shown in [19]. When a
small magnetic �eld is applied on the impurity, the excited doublet is split by the Zeeman
e�ect that is, its degeneracy is apparently lifted. The impurity levels with magnetic �eld
look as in Fig. 6.10. The Hamiltonian is also modi�ed so as to factor in the e�ect of the
magnetic �eld by adding the following term to (4.2)

B0

2

∑
m=±1

mf †mfm (6.13)

The e�ect of the magnetic �eld on the �xed point have been studied by Ballmann in

Figure 6.10: Level scheme of the impurity with a magnetic �eld.

[61] in details. In [61], Ballmann looks at the �ows of the states m = ±1 when they
are slightly split by the magnetic �eld. She calculated the self-energy of the impurity
levels during the renormalization group (RG) process, which changes with the �ow. The
imaginary part of the self-energy describes the life time e�ects; she could show that the
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life time of the levels m = ±1 turns to zero as the temperature is lowered in the course
of the RG �ow whereas that of m = 0 becomes �nite. With the preceding statement one
can make a statement on whether the degenerate levels did cross over or not to become
the ground states. With the NRG method used here, we rather look at the behavior of
the entropy of the impurity as the temperature is lowered. This approach is much better
since we deal with many-bodies unlike the self-energy impurity levels approach that is
used in [61]. We apply small magnetic �elds to the impurity and look at how the �xed
point is a�ected by this. We have already discussed the behavior of the entropy of the
impurity as the system �ows from high temperature down to very low temperature. We
have seen that whenever the 2CK e�ect is observed, the impurity entropy �ows to 1

2
ln2

at low temperature and when the 2CK e�ect is not observed then the system �ows to the
potential scattering regime where the ground state is the singlet m = 0. In this scenario
the entropy �ows to zero since ln1 = 0.

When a small magnetic �eld of the order of 10−4D0 (B0 > TK), where D0 = 1eV is the
half bandwidth at the start of the RG scheme, is applied to the impurity at one of the �xed
points in Fig. 6.6 with the following parameters; J = 0.1, g/J = 0.01, and ∆0 = 0.03,
the system �ows away from the 2CK phase into the potential scattering phase. However,
when the coupling strength is increased to J = 0.13 with the other parameters remaining
constant, then the system �ows back to the 2CK phase. One can therefore conclude that
this model still shows 2CK behavior even under the in�uence of the magnetic �eld as long
as the coupling constants are strong enough to enhance the crossover to occur. When
B0 < TK the �xed point is not a�ected by the magnetic �eld and the �xed point is still
reached as in the case of no magnetic �eld with the same couplings. The reason for this
is that the energy scale from the magnetic �eld is lower than that from TK and hence
2CK �xed point is not perturbed by this magnetic �eld. The crossover of the levels is
pivotal for the occurrence of the 2CK e�ect in the model. This means that in the phase
diagram, Fig. 6.6, the presence of the magnetic �eld simply shifts the phase lines to the
left. In Fig. 6.11(a) and Fig. 6.11(b) we show the entropy contribution of the impurity
to the system in the presence of a small magnetic �eld and the corresponding parameters
mentioned above. In Fig. 6.11(a) one sees that the impurity entropy �ows from ln3 directly
to ln1 without passing through ln2 as in the case where there is a crossover. When there
is no crossover the degenerate doublet never becomes the ground states and can not be
energetically occupied at low temperature hence no resonance scattering. The system ends
up with the singlet ground state that just acts as a potential scatterer. Hence the entropy
�ows directly from ln3 to ln1. But when the coupling strength is slightly increased by 0.03
as in Fig. 6.11(b), then the impurity contribution to the system shows again the behavior
that attests to the fact that the 2CK e�ect indeed happens. As previously mentioned
above in the course of the renormalization process the impurity entropy reduces from that
of the free impurity to that of the ground state as the temperature tends to zero. This
behavior explains the plateaus in the impurity entropy as the temperature is lowered.
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(a)

(b)

Figure 6.11: The impurity entropy with magnetic �eld in the 2CK scenario for the fol-
lowing general parameter: B0 = 0.0001 and Λ = 4,(a) The entropy of the impurity in the
potential scattering phase for J = 0.1, g/J = 0.01, and ∆0 = 0.03, (b) Impurity entropy
when there is a crossover to the 2CK regime for J = 0.13, g/J = 0.01, and ∆0 = 0.03.
For details of the explanation of these �gures, see text.
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Chapter 7

Conclusion and Outlook

This thesis has centered around the application of the numerical renormalization group
(NRG) to the partially broken SU(3) Kondo model. For a better understanding of the
thesis, we started up by giving a very broad introduction of the Kondo e�ect and some
of the methods used to comprehend this interesting physics. Furthermore, we brie�y
presented non-magnetic impurity Kondo models like the two-level system (TLS) and the
partially broken SU(3) Kondo model. We also dealt with the NRG method in order to
facilitate the comprehension of the reason of the application of this particular method to
the model in question in this work.

We have con�rmed that the partially broken SU(3) rotational impurity model has a
two-channel Kondo �xed point in a wide parameter regime. We have shown that the phase
diagram obtained by the NRG calculations qualitatively agrees with that obtained with
the perturbative renormalization group (PRB) method in [2]. We have also shown that the
Kondo temperature TK dependence on the bare coupling constant J peaks at J = 0.6 and
decays exponentially on both sides of the peak. This duality behavior is a characteristic
of the two-channel Kondo (2CK) e�ect. However, we have also demonstrated that this
duality behavior is only seen when ∆0 < 0.7 since both small and strong couplings J
are able to down-renormalize the energy level spacing ∆0 to at least zero. For ∆0 ≥ 0.7,
the couplings J necessary to downward renormalize ∆0 are already in the strong coupling
regime where TK decreases with increase in coupling strength.

We have also shown that the single-channel Kondo (1CK) behavior of this model agrees
with the spin-1/2 impurity case of the Kondo model. In addition, we have calculated the
impurity contribution to the entropy of the system in both the single- and two-channel
cases, which has shed more light on the crossover of the excited doublet. The impurity
entropy �ows from high temperature down to low temperature passing through a plateau
at S(TK < T < ∆0) = kB ln 2 after starting out at S(T � ∆0) = kB ln 3 and �ows down
to S(0) = kB ln 1 in the 1CK scenario, while in the 2CK case, it �ows to S(0) = 1

2
kB ln 2.

In the case where ∆0 = 0, the entropy �ows from S(T � ∆0) = kB ln 3 directly to
S(0) = kB ln(1+

√
5

2
) in the 2CK. The preceding behavior of the entropy is all in the

situation in which the system reaches the Kondo �xed point. When the system does
not reach the 2CK �xed point, the entropy �ows from S(T � ∆0) = kB ln 3 straight to
S(0) = kB ln 1. This has therefore vindicated the prediction by Arnold et al. in [2] that
a crossover occurs during the course of RG in which the degenerate excited states cross
over the singlet state at low temperatures to become the ground states. This crossover
behavior is clearly seen in the impurity entropy as the temperature is lowered down to
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zero. We have also shown that the �xed point in the partially broken SU(3) model is quite
unstable to small magnetic �elds and that the magnetic �elds shift the phase lines in the
phase diagram to the left.

We have equally shown that when ∆0 < 0 in the partially broken SU(3) Kondo model,
then it behaves exactly as the spin-1/2 2CK Kondo. This is because for ∆0 < 0, the
degenerate states are already the ground states and so resonance scattering sets in as the
temperature is decreased. The energy �ows of the system elucidate this idea very well as
they are identical to those of the spin-1/2 Kondo model.

The code we wrote for this work has just two kinds of symmetries, that is the total
charge U(1) and the z-component of the total spin Sz U(1). This helps to reduce the
Hilbert space but still it takes a lot of time for us to get results. As an outlook, it will be
necessary to add more symmetries to the code so that the computing time and memory
required for running the code is greatly reduced. One could add the total spin symmetry
which is very delicate and is broken by the presence of magnetic �elds. This means that
the addition of this symmetry will hinder the study of small magnetic �eld e�ects on
the �xed point of this model. Nevertheless, its bene�ts are enormous because it will
greatly reduce the time for a complete run of the NRG scheme. One could equally �gure
out more symmetries of the model that could be made use of, hence making the entire
problem more easily tractable. This could enable the calculation of the spectral function
and other physical properties of the model to be compared with experiments.
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Appendix A

Numerical renormalization group
details

The numerical renormalization group (NRG) details have been worked out by Wilson for
the Kondo model in [1]. For the sake of completeness we show how he derived the NRG
equations and also give the rationale behind the assumptions he made. The following
Kondo model Hamiltonian is used to derive the di�erent equations

HK = JKSd · s0 +
∑
k,σ

εkc
†
k,σck,σ (A.1)

= Hi +Hc

Hi is the interaction term whereas Hc is the kinetic term of the conduction band electrons,
where s0 = c†0,σ~σσµc0,µ and a localized Wannier state generated by c0,σ =

∑
k ck,σ. Sd is

the electronic impurity spin operator which is a localized spin-1/2.

A.1 Logarithmic discretization

We follow the explicit approach described in [50] to demonstrate how the discretization of
the conduction band is carried out. The continuous nature of the conduction band makes
computer calculations intractable. The way around this is to discretize the conduction
band. The major issue is usually the choice of the discretization scheme to use. Wilson
used the logarithmic discretization scheme because it resolves low energy states with high
accuracy while also taking the high energy states into consideration. The logarithmic
discretization of the conduction band also leads to coe�cients that fall o� exponentially
as more electrons are added to the Wilson chain. The idea of the Wilson chain will
be explained in the next section. Fig. A.1 shows how the conduction band is split into
intervals. The following approximation is used to replace the continuum band with a
discrete one

Hc =

∫ +

−1
dε εc†ε,σcε,σ ≈

∞∑
n=0

(ε−nc
†
−n,σc−n,σ + εnc

†
n,σcn,σ), (A.2)

where c†ε,σ (cε,σ) are the creation (annihilation) operators on conduction sea, respectively,
whereas εn is the on-site energy on the corresponding n-site of the conduction sea. The
parameter Λ > 1 de�nes a set of intervals with the following discretization points

xn = ±Λ, n = 0, 1, 2.... (A.3)
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Figure A.1: The logarithmic discretization of the conduction band. The red oval represents
the impurity that couples to all the di�erent energies scales of the conduction band. This
set of logarithmic intervals is ushered in via the NRG discretization parameter Λ.

Each of the intervals has a width

dn = Λ−n(1− Λ−1) (A.4)

In order to analyze this discrete intervals, a complete orthonormal basis set of functions
is introduced in each of the intervals.

ψ±np(ε) = {
1√
dn
e±iωnpε for xn+1<±ε<xn,

0 outside this interval
(A.5)

p is an integer value from −∞ to +∞ and plays the role of the Fourier harmonic index
and ωn = 2π/dn is the fundamental frequency of each interval. The conduction electrons
operators cεσ are now expanded in this new basis.

cεσ =
∑
np

[anpσψ
+
np(ε) + bnpσψ

−
np(ε)] (A.6)

where anpσ, bnpσ constitute a complete set of new operators and are labeled with respect to
the interval n and p, the harmonic index. The above expression of cεσ is then substituted
in (A.1) and one thus obtains the following Hamiltonian

HK =
1

2
(1 + Λ−1)

∑
np

Λ−n(a†npσanpσ − b†npσbnpσ) (A.7)

+
(1− Λ−1)

2πi

∑
n

∑
p 6=p′

Λ−n(a†npσanp′σ − b†npσbnp′σ)e
2πi(p−p′)

1−Λ−1

+ Jc†0,σσσµc0,µ.S

The operators anpσ, bnpσ and their hermitian conjugates obey the usual anticommuntation
rules for fermions. anpσ acts in the positive range whereas bnpσ in the negative range of the
intervals. In terms of the new operators the localized state has the following expression

c†0,σ = (1− Λ−1)1/2
∑
n

Λ−n/2(a†0pσ + b†0pσ) (A.8)
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This is where the approximation comes in, by neglecting all the terms with p 6= 0. This
means that all higher terms in the Fourier series are dropped, which physically means
that only one electron per logarithmic interval is kept. This approximation is logical
since the impurity only couples indirectly to states with p 6= 0 and so this coupling is
weak and can thus be neglected. Neglecting these states is equivalent to neglecting the
o�-diagonal matrix elements, which are proportional to (1−Λ−1) and the approximation
becomes valid as Λ → 1. The discretization parameter Λ is always adjusted correctly in
order to obtain reasonable results. If Λ is too close to unity then the system will not
converge su�ciently quickly and if it is large compared to unity then the error due to the
logarithmic discretization becomes huge. For practical NRG calculations for the single
channel case one generally choses Λ = 2 and for the two-channel case Λ = 3.

A.2 Mapping onto a semi in�nite chain

A.2.1 Lanczos procedure

The Lanczos procedure is used to transform the kinetic energy part of the conduction
band to a new set of operators. It takes it from the diagonal form to the tridiagonal
form. This goal is attained by constructing a sequence of orthogonal states generated by
repeatedly applying the kinetic part of the Kondo Hamiltonian to the vacuum state as
shown below

|1〉 =
1

t0
[Hc|0〉 − |0〉〈0|Hc|0〉] (A.9)

|n+ 1〉 =
1

tn
[Hc|n〉 − |n〉〈n|Hc|n〉 − |n− 1〉〈n− 1|Hc|n〉] (A.10)

Using the expression for Hc and dropping the spin index for simplicity, one obtains

Hc =
∞∑
n=0

[εnc
†
ncn + tn(c†ncn+1 +H.c)] (A.11)

where εn = 〈n|Hc|n〉 and tn = 〈n+ 1|Hc|n〉 are the Lanczos coe�cients which depend on
the dispersion. For most cases, these Lanczos coe�cients do not fall o� with n. The falling
o� of this coe�cients is a behavior necessary for the convergence of the NRG scheme. This
problem is solved by the logarithmic discretization of the conduction band which ensures
that these coe�cients fall o� exponentially with n.

Figure A.2: The Wilson chain with the �rst site in red being the impurity and the blue
sites are the conduction electron. ε are the on-site energies while t are the hopping matrix
elements between two sites.
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A.3 Iterative diagonalization

Figure A.3: Iterative diagonalization of the Wilson chain with neighboring sites coupled
to one another. The impurity couples to the �rst conduction electron and the chain
parameters are εn and tn

The renormalization group (RG) scheme is illustrated in Fig. A.3 where the iteration starts
up with the impurity and an electron on the �rst site of the chain. This Hamiltonian is
diagonalized. The Hamiltonian say HN is now coupled to the (N + 1) − th site of the
Wilson chain consequently setting up the Hamiltonian, HN+1 in which the diagonalization
procedure is also carried out on it. This gives us a series of Hamiltonians that approaches
HK as N →∞

HK = lim
N→+∞

Λ−(N−1)/2HN (A.12)

where the Hamiltonian HN is made up of the �rst N sites of the Wilson chain and has
the form

HN = Λ(N−1)/2

(
JSd · s0 +

N∑
N=0,σ

[εNc
†
NσcNσ + tN(c†NσcN+1σ + c†N+1σcNσ)]

)
(A.13)

The role of Λ(N−1)/2 is to suppress the N dependence of the hopping matrix elements tN−1
between the last two sites of HN . This rescaling is important because it ensures that the
energies obtained are of order 1. Knowing HN enables us to set up the iteration equation
as follows

HN+1 =
√

ΛHN +
∑
σ

[εN+1c
†
N+1σcN+1σ + tN(c†NσcN+1σ + c†N+1σcNσ)] (A.14)

(A.14) shows how two successive Hamiltonians are related in the Wilson chain which leads
to the following recursion relationship

HN+1 = R(HN) (A.15)

where R is the RG transformations.
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Appendix B

Calculation of starting matrices for the
numerical renormalization group
procedure

We have considered only the two U(1) symmetries of the model that are generated by
the charge operators, Q and the z-component of the total spin, Sz. The multiplets of the
Hamiltonian are classi�ed according to these quantum numbers, Q and Sz. The hopping
operators are not related by symmetries and one has to keep track of three operators
in the 1CK case (since the electrons are polarized) and six operators in the 2CK case
(degeneracy of electron magnetic spin) namely c†−1↑, c

†
0↑, c

†
1↑, c

†
−1↓, c

†
1↓, c

†
1↓. The initial

block states and the matrix elements of the hopping operators must be constructed before
the start of the computation since they serve as input data for the NRG procedure. The
�rst step in this regards is to identify all the states of the system at the beginning. To
do this, one takes a vacuum state |0〉 and then acts the above mentioned operators to it.
This operation is explicitly carried out below to show how these states are created. It
turns out that for the 1CK and 2CK cases, there are 8 and 64 possible states at each site
hence the Hilbert space grows by a factor of 8 and 64 upon the addition of a new site,
respectively. The input NRG Hamiltonian has a dimension of 24× 24 and 192× 192 for
1CK and 2CK since the impurity has three states and each of these states couples to the
8 and 64 states of the conduction electron site, respectively.

B.1 Single-channel Kondo case

The possible basis states in the 1CK scenario are the following |0〉, c†−1|0〉, c
†
0|0〉, c

†
1|0〉,

c†−1c
†
0|0〉, c

†
1c
†
0|0〉, c

†
−1c
†
1|0〉, c

†
−1c
†
1c
†
0|0〉. If the above basis states are denoted by say |u〉 then

the fermionic operators are obtained by the following computation

c†mσ = n〈u|c†mσ|u〉n (B.1)
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where n is a positive integer. Using (B.1) one obtains the following hopping operators

c†−1 =



|0〉 c†−1|0〉 c†0|0〉 c†1|0〉 c†0c
†
−1|0〉 c†1c

†
−1|0〉 c†1c

†
0|0〉 c†1c

†
0c
†
−1|0〉

|0〉 0 0 0 0 0 0 0 0
c†−1|0〉 1 0 0 0 0 0 0 0

c†0|0〉 0 0 0 0 0 0 0 0
c†1|0〉 0 0 0 0 0 0 0 0
c†0c
†
−1|0〉 0 0 −1 0 0 0 0 0

c†1c
†
−1|0〉 0 0 0 −1 0 0 0 0

c†1c
†
0|0〉 0 0 0 0 0 0 0 0

c†1c
†
0c
†
−1|0〉 0 0 0 0 0 0 1 0


(B.2)

c†0 =



|0〉 c†−1|0〉 c†0|0〉 c†1|0〉 c†0c
†
−1|0〉 c†1c

†
−1|0〉 c†1c

†
0|0〉 c†1c

†
0c
†
−1|0〉

|0〉 0 0 0 0 0 0 0 0
c†−1|0〉 0 0 0 0 0 0 0 0

c†0|0〉 1 0 0 0 0 0 0 0
c†1|0〉 0 0 0 0 0 0 0 0
c†0c
†
−1|0〉 0 1 0 0 0 0 0 0

c†1c
†
−1|0〉 0 0 0 0 0 0 0 0

c†1c
†
0|0〉 0 0 0 −1 0 0 0 0

c†1c
†
0c
†
−1|0〉 0 0 0 0 0 −1 0 0


(B.3)

c†1 =



|0〉 c†−1|0〉 c†0|0〉 c†1|0〉 c†0c
†
−1|0〉 c†1c

†
−1|0〉 c†1c

†
0|0〉 c†1c

†
0c
†
−1|0〉

|0〉 0 0 0 0 0 0 0 0
c†−1|0〉 0 0 0 0 0 0 0 0

c†0|0〉 0 0 0 0 0 0 0 0
c†1|0〉 1 0 0 0 0 0 0 0
c†0c
†
−1|0〉 0 0 0 0 0 0 0 0

c†1c
†
−1|0〉 0 1 0 0 0 0 0 0

c†1c
†
0|0〉 0 0 1 0 0 0 0 0

c†1c
†
0c
†
−1|0〉 0 0 0 0 1 0 0 0


(B.4)

The operators for the di�erent transitions of the impurity levels are already given in (6.5)
and (6.6).

B.2 Two-channel Kondo case

Due to the fact that this matrices are quite huge, we will not write them down explicitly in
this thesis. The starting Hamiltonian (6.3) is very large and can not �t into a page so we
will just give the di�erent components of the Hamiltonian such as the fermionic operators
and impurity operators. With the knowledge of these operators one can easily build up
the matrix repesentation of the Hamiltonian. Table B.1 shows the 64 possible states which
are obtained in the same way as in the case of 1CK, which has already been explained
above. To obtain the di�erent fermionic operators, one has to carry out a multiplication
of square matrices of dimension 64 × 64. This is a very tedious and painstaking process
and it is done exactly the same way as in the case of the single-channel fermionic operators
of dimension 8× 8 that has already been mentioned in the preceding subsection. We just
state the non-zero elements of these operators below.
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|0〉 c†−1↑|0〉 c†0↑|0〉 c†1↑|0〉
c†−1↓|0〉 c†0↓|0〉 c†1↓|0〉 c†−1↑c

†
−1↓|0〉

c†0↑c
†
0↓|0〉 c†1↑c

†
1↓|0〉 c†0↑c

†
−1↑|0〉 c†0↓c

†
−1↓|0〉

c†0↓c
†
−1↑|0〉 c†0↑c

†
−1↓|0〉 c†1↑c

†
−1↑|0〉 c†1↓c

†
−1↓|0〉

c†1↑c
†
−1↓|0〉 c†1↓c

†
−1↑|0〉 c†1↑c

†
0↑|0〉 c†1↓c

†
0↓|0〉

c†1↑c
†
0↓|0〉 c†1↓c

†
0↑|0〉 c†1↑c

†
0↑c
†
−1↑|0〉 c†1↓c

†
0↓c
†
−1↓|0〉

c†1↓c
†
0↓c
†
−1↑|0〉 c†1↓c

†
0↑c
†
−1↑|0〉 c†1↑c

†
0↓c
†
−1↑|0〉 c†1↓c

†
0↑c
†
−1↓|0〉

c†1↑c
†
0↓c
†
−1↓|0〉 c†1↑c

†
0↑c
†
−1↓|0〉 c†0↑c

†
−1↑c

†
−1↓|0〉 c†0↓c

†
−1↑c

†
−1↓|0〉

c†1↑c
†
−1↑c

†
−1↓|0〉 c†1↓c

†
−1↑c

†
−1↓|0〉 c†−1↑c

†
0↑c
†
0↓|0〉 c†−1↓c

†
0↑c
†
0↓|0〉

c†1↑c
†
0↑c
†
0↓|0〉 c†1↓c

†
0↑c
†
0↓|0〉 c†−1↑c

†
1↑c
†
1↓|0〉 c†−1↓c

†
1↑c
†
1↓|0〉

c†0↑c
†
1↑c
†
1↓|0〉 c†0↓c

†
1↑c
†
1↓|0〉 c†0↑c

†
0↓c
†
−1↑c

†
−1↓|0〉 c†1↑c

†
1↓c
†
−1↑c

†
−1↓|0〉

c†1↑c
†
1↓c
†
0↑c
†
0↓|0〉 c†1↑c

†
0↑c
†
−1↑c

†
−1↓|0〉 c†1↓c

†
0↓c
†
−1↑c

†
−1↓|0〉 c†1↓c

†
0↑c
†
−1↑c

†
−1↓|0〉

c†1↑c
†
0↓c
†
−1↑c

†
−1↓|0〉 c†1↑c

†
−1↑c

†
0↑c
†
0↓|0〉 c†1↓c

†
−1↓c

†
0↑c
†
0↓|0〉 c†1↓c

†
−1↑c

†
0↑c
†
0↓|0〉

c†1↑c
†
−1↓c

†
0↑c
†
0↓|0〉 c†0↑c

†
−1↑c

†
1↑c
†
1↓|0〉 c†0↓c

†
−1↓c

†
1↑c
†
1↓|0〉 c†0↑c

†
−1↓c

†
1↑c
†
1↓|0〉

c†0↓c
†
−1↑c

†
1↑c
†
1↓|0〉 c†1↑c

†
0↑c
†
0↓c
†
−1↑c

†
−1↓|0〉 c†1↓c

†
0↑c
†
0↓c
†
−1↑c

†
−1↓|0〉 c†0↓c

†
1↑c
†
1↓c
†
−1↑c

†
−1↓|0〉

c†0↑c
†
1↑c
†
1↓c
†
0↑c
†
0↓|0〉 c†−1↑c

†
1↑c
†
1↓c
†
0↑c
†
0↓|0〉 c†−1↓c

†
1↑c
†
1↓c
†
0↑c
†
0↓|0〉 c†1↑c

†
1↓c
†
0↑c
†
0↓c
†
−1↑c

†
−1↓|0〉

Table B.1: 64 possible states in the 2CK case obtained when the fermionic operators act
on the vacuum state.

(B.1) in conjunction with the basis states in Table B.1 is used to compute the six di�erent
fermionic operators listed below.
For c†−1↑

c†2,1 = c†8,5 = c†35,9 = c†39,10 = c†23,19 = c†25,20 = c†27,21 = c†26,22 = 1.0 (B.5)

c†47,24 = c†48,28 = c†49,29 = c†46,30 = c†43,36 = c†44,40 = c†62,45 = c†64,63 = 1.0

c†11,3 = c†15,4 = c†13,6 = c†18,7 = c†32,12 = c†31,14 = c†34,16 = c†33,17 = −1.0

c†50,37 = c†52,38 = c†54,41 = c†57,42 = c†58,51 = c†59,53 = c†61,55 = c†60,56 = −1.0

For c†−1↓

c†5,1 = c†36,9 = c†40,10 = c†31,11 = c†32,13 = c†33,15 = c†34,18 = c†30,19 = 1.0 (B.6)

c†24,20 = c†29,21 = c†28,22 = c†63,45 = c†59,50 = c†58,52 = c†60,54 = c†61,57 = 1.0

c†8,2 = c†14,3 = c†17,4 = c†12,6 = c†16,7 = c†46,23 = c†47,25 = c†48,26 = −1.0

c†49,27 = c†43,35 = c†53,37 = c†51,38 = c†44,39 = c†56,41 = c†55,42 = c†64,62 = −1.0

For c†0↑

c†3,1 = c†11,2 = c†14,5 = c†9,6 = c†31,8 = c†41,10 = c†36,12 = c†35,13 = 1.0 (B.7)

c†43,32 = c†54,39 = c†56,40 = c†45,42 = c†60,44 = c†63,55 = c†62,57 = c†64,61 = 1.0

c†19,4 = c†22,7 = c†23,15 = c†28,16 = c†30,17 = c†26,18 = c†38,20 = c†37,21 = −1.0

c†51,24 = c†52,25 = c†50,27 = c†53,29 = c†46,33 = c†48,34 = c†58,47 = c†59,49 = −1.0
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For c†0↓

c†6,1 = c†13,2 = c†12,5 = c†32,8 = c†42,10 = c†37,19 = c†38,22 = c†50,23 = 1.0 (B.8)

c†52,26 = c†51,28 = c†53,30 = c†57,39 = c†55,40 = c†61,44 = c†59,46 = c†58,48 = 1.0

c†9,3 = c†21,4 = c†20,7 = c†35,11 = c†36,14 = c†27,15 = c†24,16 = c†29,17 = −1.0

c†25,18 = c†43,31 = c†49,33 = c†47,34 = c†45,41 = c†62,54 = c†63,56 = c†64,60 = −1.0

For c†1↑

c†4,1 = c†15,2 = c†19,3 = c†17,5 = c†21,6 = c†10,7 = c†33,8 = c†37,9 = 1.0 (B.9)

c†23,11 = c†29,12 = c†27,13 = c†30,14 = c†40,16 = c†39,18 = c†42,20 = c†41,22 = 1.0

c†55,24 = c†57,25 = c†54,26 = c†56,28 = c†46,31 = c†49,32 = c†44,34 = c†50,35 = 1.0

c†53,36 = c†45,38 = c†59,43 = c†61,47 = c†60,48 = c†63,51 = c†62,52 = c†64,58 = 1.0

For c†1↓

c†7,1 = c†18,2 = c†22,3 = c†16,5 = c†20,6 = c†34,8 = c†38,9 = c†26,11 = 1.0 (B.10)

c†24,12 = c†25,13 = c†28,14 = c†48,31 = c†47,32 = c†52,35 = c†51,36 = c†58,43 = 1.0

c†10,4 = c†39,15 = c†40,17 = c†41,19 = c†42,21 = c†54,23 = c†57,27 = c†55,29 = −1.0

c†56,30 = c†44,33 = c†45,37 = c†60,46 = c†61,49 = c†62,50 = c†63,53 = c†64,59 = −1.0

One uses all the above matrices to build up the starting Hamiltonian that is needed for
the NRG calculations.
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Appendix C

Numerical renormalization group
symmetry construction

Like any physically relevant model, the partially broken SU(3) Kondo model is charge
conserving. Since this model is a non-magnetic impurity model and the spin of the
conduction sea electrons act like the channel index, consequently the z-component of
the spin of these electron is conserved. We make use of these two symmetries in our
code. All the states in the subspaces are classi�ed according to the respective quantum
number Q and Sz. In the single-channel version of our model only the charge symmetry is
considered since only electrons of a the same spin direction are present due to the strong
magnetic �eld applied to the conduction sea. The single-channel case can even be ran
without making use of the symmetries since that Hilbert space grows only by a factor of
8. This means that, the sizes of the matrices to be diagonalized are not so large and can
e�ectively be stored in moderate computer memory. The sophisticated case here is the
two-channel version of the model where the Hilbert space grows by a factor of 64 after
each iteration. Therefore the matrices to be diagonalized are so large that, they can not
be stored in moderate computer memory. Even if they could be stored in memory, it will
take an extremely long time for the computer to diagonalize these matrices. As already
mentioned, the use of symmetry gives us a way round this problem of memory and speed.
It also reduces round-o� errors due to the diagonalization of large matrices.

C.1 Charge (Q) and z-component of the total spin (Sz)

symmetry

Single-channel Kondo

Here we only have the charge conserving quantum number Q and it is quite easy to
implement. The 8 possible states are enumerated as done in the preceding appendix and
then the charge of each of the states is summed. These charges are then used to break
up the Hamiltonian matrix into block matrices that are indexed by these charges. These
block Hamiltonian matrices can now be diagonalize independent of each other. The block
matrices are far smaller than the whole Hamiltonian matrix hence greatly reducing the
roundo� errors compared to the diagonalization of the full matrix.

In Table C.1, the �rst column i numbers the possible ways of adding the angular
momenta together. In the partially broken SU(3) Kondo, i runs from 1 to 8. The second
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column in Table C.1 is for the charge quantum number Q which is obtained (5.5). While
the third column denoted by n just indexes di�erent states with the same Q values. This
enables us to generate a basis with well de�ned Q and Sz for a newly added site in
the Wilson chain when provided with the eigenstates of the rest of the chain from the
preceding iteration.

i Q n
1 -1 1
2 0 3
3 0 3
4 0 3
5 1 3
6 1 3
7 1 3
8 2 1

Table C.1: Charge conserving basis states for the new iteration in an NRG calculation.

Two-channel Kondo

The Sz component comes into play in the 2CK scenario since the conduction sea electrons
are degenerate. Using both (5.4) and (5.5) one obtains Table C.2. The use of symmetries
here is very essential since the Hilbert space grows very fast. Due to this large Hilbert
space, the system is truncated just after the �rst iteration when 1000 states are kept.
It takes about three days to complete an entire NRG calculations when the number of
iteration is 50 on a computer with a processor speed of 3.00 GHz and at least 8 GB
of memory (RAM). In the case where 2000 states are kept, the time to complete the
calculations will be multiplied by 8 since the time to diagonalize the matrices scales as
a factor of N3 where N is the dimension of the matrix. So if the number of states is
doubled then the time is multiplied by 23. This means that for 2000 states, it takes about
24 days for a complete NRG run and about 30 GB of memory (RAM). Without the use
of symmetries, it would practically be impossible to run the 2CK version of this model.

Table C.1 gives us the di�erent values of the possible ways for the adding of angular
momenta i in column one. Column two is the charge quantum number Q, while column
three is the z-component of the total spin Sz. The value of Sz is usually multiplied by 2
just to avoid dealing with fractions, hence the whole numbers in the third column. The
last but not least is column �ve, which is represented by n that indexes the states with the
same Q and Sz. The di�erent states involved in the 2CK case have already been given in
the preceding appendix. One can see in Table C.1 that, instead of dealing with a 64× 64
matrix, one is rather dealing with much smaller matrices of the di�erent subspaces of the
di�erent quantum numbers Q and Sz of dimensions indicated by the n values in the fourth
column.
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i Q Sz n
1 -1 0 1
2 0 1 3
3 0 1 3
4 0 1 3
5 0 -1 3
6 0 -1 3
7 0 -1 3
8 1 0 9
9 1 0 9
10 1 0 9
11 1 0 9
12 1 0 9
13 1 0 9
14 1 0 9
15 1 0 9
16 1 0 9
17 1 -2 3
18 1 -2 3
19 1 -2 3
20 1 2 3
21 1 2 3
22 1 2 3
23 2 -3 1
24 2 -1 9
25 2 -1 9
26 2 -1 9
27 2 -1 9
28 2 -1 9
29 2 -1 9
30 2 -1 9
31 2 -1 9
32 2 -1 9

i Q Sz n
33 2 1 9
34 2 1 9
35 2 1 9
36 2 1 9
37 2 1 9
38 2 1 9
39 2 1 9
40 2 1 9
41 2 1 9
42 2 3 1
43 3 -2 3
44 3 -2 3
45 3 -2 3
46 3 0 9
47 3 0 9
48 3 0 9
49 3 0 9
50 3 0 9
51 3 0 9
52 3 0 9
53 3 0 9
54 3 0 9
55 3 2 3
56 3 2 3
57 3 2 3
58 4 -1 3
59 4 -1 3
60 4 -1 3
61 4 1 3
62 4 1 3
63 4 1 3
64 5 0 1

Table C.2: The basis states for an added site for the 2CK scenario used to build up the
i− th combination of the basis states of the current iteration for the Q and Sz basis.
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Appendix D

Calculation of impurity contribution to
the entropy of the system

In an attempt to calculate the impurity contribution to the entropy of the system, we
follow exactly the approach of Bulla et al. in [50]. The knowledge of the low-lying energy
levels of the system can permit us to acquire insight into the physical properties of the
system under study especially the thermodynamic ones. The inverse temperature at each
iteration is de�ned as follows

βN = (kBTN)−1 (D.1)

where by de�nition
βNΛ−(N−1)/2 = β̄ (D.2)

N is the iteration number and TN is the temperature at the respective iteration number.
One can use the truncated Hamiltonian to calculate the impurity contribution to the
entropy at each iteration at the energy scale of kBTN . The value of β̄ depends on two
factors namely the number of states kept and the discretization parameter. Generally, β̄
is of order one. In this thesis we have used β̄ in the range of 1.2 to 1.5. If the Hamiltonian
at each iteration is denoted by HN where N is the iteration number, then the expression
of the entropy by de�nition has the form below

SN/kB = β〈HN〉+ lnZN (D.3)

This quantity is actually calculated using the NRG in the following way

〈HN〉 =
1

ZN

∑
Q,Sz

∑
i

EN(Q,Sz, i)e
−βEN (Q,Sz ,i) (D.4)

where EN(Q,Sz, i) are the eigenenergies labeled with respect to the di�erent subspaces
of the charge (Q) and z-component of the total spin (Sz) quantum number, respectively.
While ZN is the partition function at iteration N and it is de�ned as follows

ZN =
∑
Q,Sz

∑
i

EN(Q,Sz, i)e
−βEN (Q,Sz ,i) (D.5)

One can then deduce the impurity contribution to the entropy for temperature

kBTN = Λ−(N−1)/2/β̄. (D.6)
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as follows
Simp(TN)/kB ≈ SN/kB − SNcb/kB (D.7)

where SNcb/kB is the entropy of the conduction sea without the impurity and obtained in
the following way

SNcb/kB = β〈HN
cb 〉N + lnZN

cb (D.8)

where Hcb is the Hamiltonian of the bare conduction band and given by

HN
cb =

N∑
σn=0

[εnc
†
nσcnσ + tn(c†nσcn+1σ + c†n+1σcnσ) (D.9)

where tn is the hopping matrix between nearest sites on the chain and decays like Λ−n/2

for large n. The fact that tn behaves in this way is very important because it enables
one to associate a particular chain length N with the temperature or energy scale of the
model as in [1, 52, 62].
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