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Abstract

Quark helicity distributions can be accessed by measuring spin asymmetries in polarised
deep-inelastic scattering, but for a full flavour separation the precise knowledge of quark
fragmentation functions is essential. Those can only be inferred from experimental data,
and are still poorly determined today. The few existing parametrisations of fragmentation
functions are derived from world data (mainly on electron-positron annihilation), and often
differ considerably, most notably for strange quarks.

This thesis presents an independent evaluation of fragmentation functions from deep-
inelastic scattering data recorded at the COMPASS experiment. A method of extrac-
tion was developed, based on the relation between hadron multiplicities, rh(x, z), un-
polarised parton distribution functions, q(x), and quark fragmentation functions into
hadrons, Dh

d (z). (In this work x stands for the Bjorken scaling variable, and z for the
fraction of the quark momentum that is transferred to the produced hadron.) Multiplici-
ties for charged kaons and pions from 2004 data extracted by the COMPASS collabora-
tion and two sets of unpolarised parton distribution functions from global parametrisations
(CTEQ6 and MSTW) were used as input for a system of equations, and five different frag-
mentation functions (Dfav, Dunf for pions and Dstr, Dfav, Dunf for kaons) were extracted
in four z bins. To evaluate the stability of the results a number of tests was performed,
among them limiting the x range of the multiplicities and unpolarised parton distribu-
tion functions used for the analysis, and comparing them to results derived with a set of
artificial multiplicities generated with the particle physics event generator PYTHIA.

Four of the five extracted fragmentation functions - Dfav and Dunf for both pions and
kaons - are quite stable with regard to the parton distribution used as well as to the x
range in which the analysis was performed, and agree with an earlier evaluation by the
EMC collaboration. The fifth fragmentation function, Dstr for charged kaons, shows in-
compatible results for the different x intervals of the multiplicities used in the analysis,
and also differs considerably for the two parametrisations of unpolarised parton distribu-
tion functions. The extracted values for Dstr are often negative - and therefore physically
impossible, and do not agree with predictions from parametrisations.





Zusammenfassung

Helizitätverteilungen von Quarks im Nukleon lassen sich durch die Messung von Spin-
Asymmetrien in polarisierter tiefinelastischer Streuung erforschen, doch für eine kom-
plette Flavourzerlegung ist die genaue Kenntnis von Quark-Fragmentationsfunktionen
unerlässlich. Diese können nur aus experimentellen Daten erschlossen werden, und sind
noch immer schlecht bestimmt. Die extistierenden Parametrisierungen von Fragmenta-
tionsfunktionen beruhen größtenteils auf Elektron-Positron-Annihilations-Daten, und un-
terscheiden sich zum Teil stark voneinander, insbesondere für Strange-Quarks.

In der vorliegenden Arbeit wird eine unabhängige Bestimmung von Fragmentationsfunk-
tionen präsentiert, die auf Daten über tiefinelastische Streuung des COMPASS-Experi-
ments beruht. Es wurde eine Extraktionsmethode entwickelt, die die Beziehung zwischen
Hadronmultiplizitäten, rh(x, z), unpolarisierten Partondistributionsfunktionen, q(x), und
Fragmentationsfunktionen Dh

q (z), ausnutzt. (Hierbei steht x für die Bjorken Skalenvari-
able, und z für den Impulsbruchteil, der vom Quark auf das produzierte Hadron übertragen
wird.) Ein Gleichungssystem wurde entwickelt, in dem von der COMPASS-Kollaboration
aus 2004er Daten extrahierte Multiplizitäten für geladene Kaonen und Pionen, sowie zwei
Parametrisierungen unpolarisierter Partondistributionsfunktionen (CTEQ6 und MSTW)
als Eingabedaten verwendet wurden. Es konnten fünf verschiedene Fragmentationsfunk-
tionen (Dfav, Dunf für Pionen und Dstr, Dfav, Dunf für Kaonen) in vier z-Intervallen
extrahiert werden. Die Stabilität der Ergebnisse wurde überprüft, unter anderem durch
Einschränkung des x-Bereichs der in der Analyse verwendeten Multiplizitäten und Par-
tondistributionsfunktionen. Als weiterer Test wurden die experimentellen Multiplizitäten
durch künstliche ersetzt, die mit Hilfe des Elementarteilchen-Physik-Generators PYTHIA
erstellt wurden, und die Ergebnisse der beiden Extraktionen verglichen.

Die Ergebnisse für vier der fünf extrahierten Fragmentationsfunktionen - Dfav and Dunf

für sowohl Pionen als auch Kaonen - sind stabil in Hinsicht auf die verwendeten Par-
tondistributionsfunktionen, und ebenso für die unterschiedlichen x-Bereiche, in denen die
Analyse durchgeführt wurde. Sie stimmen überein mit den Ergebnissen einer früheren Ex-
traktion, die von der EMC-Kollaboration durchgeführt wurde. Die extrahierten Werte für
die fünfte Fragmentationsfunktion, Dstr für geladene Kaonen, sind stark von der verwen-
deten Parametrisierung der Partondistributionsfunktionen abhängig, und die Ergebnisse
für verschiedene x-Intervalle sind nicht miteinander vereinbar. Die Werte für Dstr sind
in mehreren Fällen negativ - und damit physikalisch unmöglich, und widersprechen den
vorhandenen Parametrisierungen.
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Chapter 1

Introduction and Outline

Understanding the fundamental structure of matter, its constituents and their interactions,
is one of the central goals of physics. To our present knowledge matter is composed of two
types of elementary particles: leptons and quarks. In addition to those there are the gauge
bosons of the four fundamental interactions (electromagnetic, strong and weak interaction,
and gravitation).

The static quark model describes the constituents of the atomic nucleus - the nucleons -
as composed of three quarks, called valence quarks, with fractional electric charge values
(either 1/3 or 2/3 of the elementary charge) and a spin of 1/2 ~. According to the theory
of quantum chromodynamics the valence quarks are held together by gluons, the gauge
bosons of the strong interaction, and are surrounded by a ‘sea’ of quark-antiquark pairs,
which are produced and annihilated via the exchange of gluons.

It was assumed for a long time that the nucleon spin was composed of the spin of the three
valence quarks, just like the electric charge of the nucleon is composed of the fractional
charges of the valence quarks. Experiments with deep-inelastic scattering (DIS) in the late
1980s (notably by the European Muon Collaboration at CERN) however indicated that
the spin carried by the valence quarks was not sufficient to account for the total nucleon
spin. These findings were so astonishing that for a time the problem of the missing spin
was referred to as ‘spin crisis’.

It is known by now that the spin structure of the nucleon is more complex. Not only the
spin carried by the valence quarks contributes to the nucleon spin. Part of its angular
momentum must be carried by the sea quarks and gluons, and by gluon and quark orbital
angular momentum.
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This is expressed in the relation

1

2
=

1

2
∆Σ +∆G+ Lq + Lg, (1.1)

where ∆Σ - normalised to 1 - is the contribution of the quark spins, ∆G the contribution
of the spins of the gluons, and Lq and Lg the respective contributions of the quark and
gluon orbital angular momentum. The quark spin contribution can be further broken
down into the helicity distributions of the different quark and antiquark flavours; ∆Σ =
∆u+∆d+∆s+∆ū+∆d̄+∆s̄. The contributions of charm or heavier quarks are anticipated
to be very small and are therefore neglected.

Deep-inelastic scattering has proved to be an effective method to investigate the nucleon
spin structure. The contribution of the quark spins to the total spin of the nucleon can be
accessed by measuring spin asymmetries in polarised deep-inelastic scattering of muons off
nucleons. Semi-inclusive DIS cross section asymmetries, where in addition to the scattered
lepton hadrons, i.e. pions and kaons, are detected are sensitive to the individual quark and
antiquark flavours.

While evaluations of the parton helicity distributions do exist, their uncertainties are still
significant, particularly for low values of the Bjorken scaling variable x. New analyses of
data with improved precision, covering a large region of x, should help to clarify some of
the challenging observations made in the last few years. One of these observations regards
discrepancies in measurements of ∆s, the contribution of the strange quarks to the nucleon
spin. Although inclusive DIS data indicate a large and negative strange quark contribution,
semi-inclusive measurements of ∆s as a function of x appear to be compatible with zero,
or even slightly positive, at least in the measured x range.

A possible explanation for this incongruity may be found in the dependency of the re-
sults on the precise knowledge of two basic quantities: the unpolarised parton distribution
functions (PDFs) describing the distribution of the nucleon momentum among its con-
stituents, and the fragmentation functions (FFs), which describe the distribution of the
parton momentum among the hadrons produced in the fragmentation of the partons (and
thus provide a probability estimate for a quark of a particular flavour fragmenting into a
hadron of a particular type). The significance of fragmentation functions has only become
evident in the last few years, since semi-inclusive DIS has become available as a tool to
explore the parton spin distributions. Neither the unpolarised PDFs nor the fragmenta-
tion functions can be described by perturbation theory; they can only be inferred from
experimental data. While the unpolarised PDFs are quite well determined today, the frag-
mentation functions are still poorly known. Only few parametrisations of FFs are available,
sometimes differing significantly from each other, in particular for strange quarks.
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The method for determining fragmentation functions was to fit experimental data, using
various leading order or non-leading order ansätze, both for the cross section of the consid-
ered process and for the FFs. The data used in these analyses are mainly electron-positron
annihilation into charged hadrons. Some parametrisations use complementary information
from proton-proton collisions, and deep-inelastic lepton-nucleon scattering.

The work presented here introduces a method for the extraction of fragmentation functions
from semi-inclusive scattering data collected by the COMPASS collaboration at CERN,
in particular charged pion and kaon multiplicities extracted from data recorded in 2004.

The thesis is organised as follows:

The next chapter gives an introduction to the formalism of deep-inelastic lepton-nucleon
scattering, including the special cases of inclusive and semi-inclusive cross sections. The
factorisation of polarised parton distributions is discussed and a method of their extraction
via spin asymmetries is introduced. Finally the concept of fragmentation functions is
explained, as well as their influence on the extracted helicity distributions.

Chapter 3 introduces the experimental set-up of the COMPASS experiment. Here the
focus is on the description of the detector elements relevant for the analysis of the data.

The next chapter reports on a previous evaluation of quark helicity distributions by the
COMPASS collaboration, demonstrating that precise knowledge of fragmentation func-
tions is a crucial factor in the investigation of the nucleon spin structure.

Chapter 5 covers the extraction of fragmentation functions from COMPASS data. The
method of extraction is derived and explained, the hadron multiplicities extracted from
COMPASS data are introduced and discussed, as well as the parametrisations for the
unpolarised PDFs used in the analysis.

In Chapter 6 the results for the fragmentation functions are presented and discussed.

The summary and outlook in Chapter 7 complete this thesis.



4 CHAPTER 1. INTRODUCTION AND OUTLINE



Chapter 2

Formalism of Deep-Inelastic
Scattering

The spin structure of the nucleon, in particular the contributions of the quarks, can be
studied through polarised deep-inelastic lepton-nucleon scattering.

This chapter will give an introduction to deep-inelastic scattering, its formalism, and its
interpretation in the quark parton model (QPM). The special cases of inclusive and semi-

inclusive cross sections will be explained, with emphasis on polarised semi-inclusive DIS.
Following this, it will be discussed how polarised parton distribution functions can be
extracted via the measuring of spin asymmetries. Finally, these definitions and quantities
will be used to explain the concept and structure of quark fragmentation functions, with
special weight given to their influence on the extracted helicity distributions.

2.1 Deep-Inelastic Lepton-Nucleon Scattering

The scattering of a high energy lepton (l) off a nucleon (N) is represented by the following
process:

l +N → l′ +X, (2.1)

where l′ is the scattered lepton and X the unidentified remains. This process is defined as
deep-inelastic if the mass of the final state MX is much larger than the masses of nucleon
resonances. In the final state either only the scattered lepton (inclusive process), or the
scattered lepton as well as part of the hadronic final state X (semi-inclusive process) are
observed.

5
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2.1.1 Inclusive Lepton-Nucleon Scattering

Figure 2.1 illustrates the concept and kinematic of the deep-inelastic scattering process.
The variables in parentheses denote the four-vectors of each particle.

Figure 2.1: Concept and kinematic of deep-inelastic lepton-nucleon scattering. µ (µ′) denotes
the ingoing (outgoing) muon, γ∗ the virtual photon, N the incoming nucleon, h the
produced hadron, and x the unidentified remains. The variables in parenthesis denote
the four-vectors of each particle.

The salient variables of deep-inelastic scattering areQ2, the squared four-momentum trans-
fer, and x, the Bjorken scaling variable; all variables used in the following are listed in
Table 2.1.

In the kinematic range of the COMPASS experiment the exchange of a single virtual
photon is most likely [1], the contribution of weak interaction is neglectable. The cross
section for this process can be written as a combination of a leptonic and a hadronic
tensor [2]:

d2σ

dxdy
∼ Lµν(k, k

′, s)
︸ ︷︷ ︸

lep. tensor

·
had. tensor
︷ ︸︸ ︷

Wµν(P, q, S)
α2

Q4
, (2.2)

where α denotes the fine structure constant1. For the unpolarised process the leptonic
tensor is given by:

Lµν =
1

2

∑

s,s′

< k′|jµ(0)|k >< k′|jν(0)|k >, (2.3)

1Fine structure constant: The current value of α = 7.2973525698(24)× 103 = 1/137.035999074(44)
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with jµ as the operator for the electromagnetic lepton flux. The sum here runs over all
the possible spin states. For a point-like particle with mass m and spin 1

2 the tensor is:

Lµν = 2(k′µkν + kµk′ν + (k · k′ −m2)gµν). (2.4)

The corresponding hadronic tensor is:

Wµν =
1

4π

∑

X,S

< p, S|Jµ(0)|X >< X|Jν(0)|p, S > (2π)4δ4(p+ q − px), (2.5)

with the sum running over all possible hadronic final states and spin states of the nucleon.
Jµ is the hadronic electromagnetic flux operator.

The nucleon is not a point-like particle, it has an inner structure. On account of this the
hadronic tensor cannot be boiled down to a simpler form like the leptonic one. For the
parity conserving electromagnetic interaction the Wµν can be parametrised by means of
two structure functions:

Wµν = W1

(

−gµν +
qµqν
q2

)

+
W2

M2
TµTν , (2.6)

with Tµ := pµ − p · q
q2

qµ. (2.7)

The structure functions W1 and W2 depend on invariants formed by the participating
four-vectors, which in this case are:

p2, q2, p · q.

In the target rest frame p2 ≡ M2 applies, so that p2 is a constant. The structure functions
depend on any combination of the scalars q2 and p · q. For the next step the squared
four-momentum Q2 and the scaling variable x are chosen as their new argument.

Contraction of the leptonic and hadronic tensors yields for the cross section:

dσlN→l′X

dxdy
=

8πMEα2

Q4
[xy2F1(x,Q

2) + (1− y − y2γ2

4
)F2(x,Q)], (2.8)

with γ2 = (2Mx)/(Ey) = Q2/ν. The lepton mass is neglected here. The new structure
functions F1 and F2 are given by:

F1(x,Q
2) = MW1(x,Q

2) (2.9)

F2(x,Q
2) = νW2(x,Q

2). (2.10)
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Variable Meaning

Deep-inelastic lepton-nucleon scattering, inclusive case

m Lepton mass

M Nucleon mass

MX Mass of the hadronic final state

k (k′) Four-vector of incident (scattered) lepton

s (s′) Spin four-vector of incident (scattered) lepton

p Four-vector of nucleon in initial state

S Spin four-vector of nucleon in initial state

pX Four-vector of hadronic final state

θl Scatter angle of lepton in rest frame

θγ Scatter angle of photon relative to the lepton in rest
frame

E = p·k
M

Energy of incident lepton in rest frame

E′ = p·k′

M
Energy of scattered lepton in rest frame

q = k − k′ Four-momentum transfer

Q2 = −q2 Four-momentum squared

ν = E − E′ = p·q
M

Energy transfer in rest frame

W 2 = (p+ q)2 Mass of the hadronic final state squared

x = Q2

2p·q

(lab)
= Q2

2Mν
Bjorken scaling variable (0 ≤ x ≤ 1)

y = p·q
p·k = ν

E
Energy transfer from photon to quark

γ2 = 2Mx
Ey

= Q2

ν2

Deep-inelastic lepton nucleon scattering, semi-inclusive case

mh Mass of the observed hadron

ph Four-momentum of the observed hadron

z = p·ph
p·q = Eh

ν
Energy fraction of the observed hadron (lab system)

ph‖ =
~ph~q
|~q| Longitudinal momentum component of the observed

hadron, relative to the photon

ph⊥ =
√

~p2h − ~p2
h‖ Transverse momentum component of the observed

hadron, relative to the photon

θh Angle between observed hadron and virtual photon

φh Azimuthal angle of the observed hadron (lab system)

~q∗ Three-momentum of the virtual photon

~p∗h Three-momentum of the observed hadron

p∗h‖ Momentum fraction of the observed hadron parallel to
the momentum of the virtual photon (photon-nucleon
rest frame)

Table 2.1: Variables used in deep-inelastic scattering
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2.1.2 Semi-Inclusive Lepton-Nucleon Scattering

In semi-inclusive measurements a final state hadron is observed in addition to the scattered
lepton. The kinematic variables relevant to the process are introduced in Fig. 2.2 and
Table 2.1. The most important one for semi-inclusive lepton-nucleon-scattering is another
scaling variable:

z =
p · ph
p · q =

Eh

ν
. (2.11)

It is equal to the energy fraction of the virtual photon transferred to the produced hadron in
the lab frame (equivalent to the target rest frame) of reference. Additional to the inclusive
variables another independent four-vector is introduced here, the hadron momentum ph.
The six invariants composed of the variables p, q and ph are:

p2, q2, p2h, p · q , p · ph, q · ph .

Two of these are constants, p2 ≡ M2 and p2h ≡ m2
h, which leaves the following variables for

the description of the semi-inclusive scattering process. Already known from the inclusive
process are Q2 = −q2 and ν = (p · q)/M . For the additional variables one finds in the lab
frame of reference:

p · ph = MEh = Mνz , (2.12)

q · ph = νEh − ~q · ~ph
= νEh − |~q||~ph|cos(θh)
= ν2z − |~q|ph‖
= ν2z − |~q|

√

(zν)2 −m2
h − p2h⊥ . (2.13)

Figure 2.2: Kinematic of semi-inclusive deep-inelastic lepton-nucleon-scattering in the lab system.
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The cross section for semi-inclusive processes can be parametrised with four structure
functions, H1 - H4 [3]. As arguments for the four structure functions are chosen x, Q2, the
energy fraction of the virtual photon carried by the produced hadron, z, and the transverse
momentum of the produced hadron in the lab frame, ph⊥. As shown in Eq.s 2.12 and 2.13
these arguments can be expressed by the four remaining invariables q2, p · q, p · ph, q · ph.

dσlN→l′X

dxdzdyp2h⊥dφh

=
4πMEα2

Q4

Eh

ph⊥

[

xy2H1 + (1− y − y2γ2

4
)H2

]

+
|ph⊥|
Q

(2− y)

√

1− y − y2γ2

4

1 + γ2
cos(φh)H3

+
|ph⊥|2
Q2

(1− y − y2γ2

4 )

1 + γ2
cos(2φh)H4,

(2.14)

with Hi = Hi(x, z, y,Q
2). As before (cf. Eq. 2.8) the lepton mass is neglected.

Since the structure functions are not dependent on the azimuthal angle φh one can integrate
over φh, thus obtaining a cross section with only two of the structure functions, H1 and
H2, contributing. A second integration, over ph⊥, yields for the cross section:

dσlN→l′hX

dxdydz
=

8πMEα2

Q4

[

xy2Fh
1 + (1− y +

y2γ2

4
)Fh

2

]

, (2.15)

with the structure functions F h
1 and F h

2 :

Fh
i (x,Q

2, z) :=
1

2

∫ ∫

dφ2
h⊥Hi(x,Q

2, z, ph⊥)

= π

∫

dφ2
h⊥Hi(x,Q

2, z, ph⊥), i = 1, 2.

(2.16)

The kinematic prefactors before F h
1 and F h

2 are the same as the ones before F1 and F2 in
the inclusive cross section (cf. Eq. 2.8). The relation between the structure functions F h

1 ,
F h
2 and F1, F2 is:

nh(x,Q2)Fi(x,Q
2) =

∫

dzFh
i (x, z,Q

2), i = 1, 2, (2.17)

where nh(x,Q2) is the multiplicity of a hadron h:

nh(x,Q2) =
1

dN l(x,Q2)
dxdQ2

∫ 1

0

dNh(x,Q2, z)

dxdQ2dz
dz, (2.18)

with N l and Nh the numbers of scattered leptons and produced hadrons, respectively.
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2.2 The Quark Parton Model

Figure 2.3: The proton structure function F2 as a function of Q2 for different values of x [4].

The measurement of the structure functions F1 and F2 in the range of 0.1 > x > 0.3
shows only a very weak dependence on Q2 for Q2 > 1 (GeV/c)2. Figure 2.3 shows F2 as
a function of Q2 for different values of x. James Bjorken predicted this kind of scaling [5]

for the limit Q2, ν → ∞, with Q2

2Mν
= const. This phenomenon can be explained with the

quark parton model (QPM).

2.2.1 Inclusive Processes in the QPM

In the QPM the deep-inelastic scattering process is regarded as an incoherent superposition
of elastic scattering processes, not on the nucleon itself, but on its constituents, the partons
(see Fig. 2.4). This perspective is only valid, however, if the momentum transfer Q2 is large
enough to resolve the partons within the nucleon.

In a fast moving frame of reference the nucleon can be regarded as a parallel beam of
partons without transverse momentum. In this system each parton carries a fraction ǫ of
the nucleon momentum. For electromagnetic scattering on a free parton with the mass mp

and the momentum pp = ǫp the following condition applies:
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(pp + q) = p′p (2.19)

⇒ m2
p + 2ǫpq −Q2 = m2

p

⇒ ǫ =
Q2

2pq
= x.

(2.20)

This means that the Bjorken scaling variable x is actually the fraction of the nucleon
momentum carried by the parton before the scattering process. If the partons are quarks
and therefore point-like spin 1

2 particles, the corresponding structure functions FQ
1 and FQ

2

are given (cf. cross section for point-like spin 1
2 particles in Eq. 2.8) by:

FQ
1 = e2q

1

2

Q2

2mpνx
· δ

(

1− Q2

2mpν

)

and

FQ
2 = e2qδ

(

1− Q2

2mpν

)

,

(2.21)

with eq and mp representing charge and mass of the quark. Using the relation mp = xM

reveals that FQ
1 and FQ

2 only depend on the ratio Q2

2Mν
= x.

Figure 2.4: Kinematic of deep-inelastic lepton-nucleon scattering in the quark parton model

The scattering process can be considered as incoherent superposition of scattering pro-
cesses on the quarks in the QPM. Therefore, the next step is to introduce the quark
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distributions q(x). Integrated over x, they yield the number of quarks of the flavour q car-
rying a fraction of the nucleon momentum in the interval [x, x+dx]. Using these definitions,
the quark structure functions can now be written as:

F1(x) =
1

2

∑

q

e2qq(x) and

F2(x) = x
∑

q

e2qq(x),
(2.22)

with the sum running over the six light quarks u, d, s, ū, d̄ and s̄. For typical COMPASS
energies (E ≈ 160GeV) the contributions of the heavier quarks can be neglected. Equa-
tion 2.22 leads to the Callan-Gross relation:

2xF1(x) = F2(x), (2.23)

which origins from the assumption that quarks are spin 1
2 particles [6]. The structure

function ratio R helps to understand this. It is given by the ratio of cross sections for the
absorption on longitudinally2 (σL) and transversally (σT ) polarised virtual photons:

R =
σL
σT

=
F2(1 + γ2)− 2xF1

2xF1

≈ F2 − 2xF1

2xF1

. (2.24)

Due to the preservation of angular momentum a longitudinally polarised virtual photon
cannot be absorbed by a quark, if the quark is considered massless. Therefore the assump-
tions σL = 0, and consequently R = 0, are valid. For charged partons which are spin 0
particles, σT = 0 and, accordingly, R = ∞ would be expected [7].

Measurements of R as a function of x (cf. Fig. 2.5) show that the constituents of the
nucleon are spin 1

2 particles and as such can be identified as quarks.

The QPM explains why the structure functions do not depend on the momentum transfer
Q2 as well as the validity of the Callan-Gross relation. The cross section in the QPM
adopts now the following form:

dσlN→l′N

dxdy
=

8πα2ME

Q2

[
1

2
y2 + (1− y − y2γ2

4
)

]

F2(x)

=
8πα2ME

Q2

[
1

2
y2 + (1− y − y2γ2

4
)

]

x
∑

i

e2qq(x).

(2.25)

2Longitudinal polarisation is signified by lepton and nucleon spin orientation parallel (↑↑) or antiparallel
(↑↓) to the lepton momentum vector.
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Figure 2.5: Measurements of R. The cross section ratio R = σL/σT = (F2(1+γ2)−2xF1)/(2xF1)
as a function of x. The mean value of Q2 varies from 1.3 (GeV/c)2 in the first x bin
to 20.6 (GeV/c)2 in the last x bin [8].

2.2.2 Semi-Inclusive Processes in the QPM

To apply the QPM to semi-inclusive processes, a description of the hadronisation of the
struck quark is needed. Just as a nucleon can be regarded as a beam of partons, a fast
moving quark can be regarded as a source of hadrons with negligible transverse momentum
in the final state. Each hadron is carrying a fraction ξ of the quark momentum p′q:

ph = ξp′p = ξ(xp+ q). (2.26)

Analogous to the quark distributions, fragmentation functions Dh
q (ξ) are introduced, with

the integral over dξ being the number of hadrons of the type h produced from the quark
in the momentum window [ξ, ξ + dξ]. Multiplying Eq. 2.26 with p yields:

p · ph = ξp(xp+ q)

= ξ(xp2 + p · q)
≈ ξp · q

(2.27)

⇒ ξ =
p · ph
p · q = z. (2.28)
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Consequently ξ is identical to the scaling variable z, revealing z as the momentum fraction
of the struck quark carried by the hadron. Considering the parallels between the quark
distributions q(x) and the fragmentation functions Dh

q (z):

• q(x): number of quarks q with momentum fraction x in hadron h,

• Dh
q (z): number of hadrons h with momentum fraction z in quark q.

This leads to the assumption that the fragmentation of a quark into hadrons does not
depend on the quark’s origin. The creation of hadrons in deep-inelastic scattering is con-
sequently described by a product of two independent processes:

• absorption of a virtual photon γ∗ by a quark q,

• fragmentation of a quark q into a hadron h.

The probability of the first process is proportional to e2qq(x), whereas the second one

depends on Dh
q (z). This justifies a factorisation ansatz for the structure functions F h

1 and

F h
2 :

Fh
1(x, z) =

1

2

∑

q

e2qq(x)D
h
q (z)

Fh
2(x, z) = x

∑

q

e2qq(x)D
h
q (z) with q = u, d, s, ū, d̄, s̄,.

(2.29)

The corresponding cross section is:

dσlN→l′hX

dxdydz
=

8πα2ME

Q4

[
1

2
y2 + (1− y − y2γ2

4
)

]

Fh
2(x, z)

=
8πα2ME

Q4

[
1

2
y2 + (1− y − y2γ2

4
)

]

x
∑

q

e2qq(x)D
h
q (z).

(2.30)

Dividing Eq.s 2.25 and 2.30 yields:

1

dσlN→l′N

dσlN→l′hX

dz
=

∑

q e
2
qq(x)D

h
q (z)

∑

q e
2
qq(x)

. (2.31)

An experimental proof of the ansatz in Eq. 2.29 is shown in Fig. 2.6. Fragmentation
functions derived from e+e−-annihilation and deep-inelastic lepton-nucleon scattering are
shown to be in good agreement, regardless of origin of the fragmenting quarks [8].

Is the struck quark the origin of the produced hadrons, we speak of current fragmentation.
However, the spectator quarks, which are not involved in the scattering process, fragment
into hadrons as well; this is called target fragmentation.



16 CHAPTER 2. FORMALISM OF DEEP-INELASTIC SCATTERING

Figure 2.6: Comparison of fragmentation functions Dπ+
+π−

u , extracted from data from e+e−-
production (curve, from [9]) and deep-inelastic scattering (dots, from [10]). Correc-
tions due to the production of heavy quarks in the e+e−-production are negligible
[8].

2.2.2.1 The LUND model

The process of current and target fragmentation can be described with the aid of the
LUND model [11], [12]. Figure 2.7 shows the process pictured in the photon nucleon rest
frame, and follows the fragmentation process step by step. The photon is absorbed by a
u quark. The u quark and the ud quark pair move away from each other, back to back. This
is where the LUND model description starts. The energy of the QCD colour field between
the quark and the quark pair increases with increasing distance (≈ 1GeV/10−15m). At
a sufficient distance and corresponding energy a new qq̄ pair is produced. The u and
d̄ quarks form a charged pion, π+, which carries a fraction z of the available energy. The
fragmentation process continues with the remaining d quark and the ud quark pair in the
same manner. Another qq̄ pair is created, another hadron, K0, forms, which again carries
off a fraction of the remaining energy of the system. This process is repeated until all the
remaining energy is exhausted.

Starting with only one quark flavour and one hadron type, a fragmentation function can
be parametrised as follows [13]:

D(z) =
1

z
(1 + c)(1− z)c, (2.32)

where c is a constant corresponding to experimental data.
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Figure 2.7: The fragmentation process in the LUND model

To expand the model to include more quark flavours and hadron types, further factors
have to be included. The salient parameters and their values (taken from [13]) are:

• the probability to find a quark-antiquark pair of a particular flavour:

– P (uū) : P (dd̄) : P (ss̄) = 1 : 1 : 0.3,

• the probability for a produced meson having spin 1:

– for mesons with only u- or d quarks: P (u) = P (ū) = P (d) = P (d̄) = 0.5

– for mesons with s quarks: P (s) = P (s̄) = 0.6,

• the probability of creating quark pairs to produce baryons:

– P (uū) : P (udūd̄) = 1 : 0.1.

Equation 2.32, the above listed probabilities, and further considerations detailed in [8]
allow an approximation of a threshold value of z for current fragmentation in deep-inelastic
scattering: z < 0.2 implies target fragmentation; for z > 0.2 current fragmentation is
assumed.
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2.3 Polarisation in Deep-Inelastic Lepton-Nucleon
Scattering

We now examine the case of deep-inelastic scattering with both lepton and nucleon po-
larised before the scattering process. The polarisation in the final state is not observed.

2.3.1 Inclusive Processes

For a polarised lepton in the intial state, the leptonic tensor breaks up into two parts:

Lµν = Lµν(S)(k, k′, s)
︸ ︷︷ ︸

symmetric

+

antisymmetric
︷ ︸︸ ︷

iLµν(A)(k, k′, s) . (2.33)

The symmetric part Lµν(S) is equal to the leptonic tensor in unpolarised scattering
(Eq. 2.3). The antisymmetric part iLµν(A) is:

Lµν(A) = 2imǫµναβsαqβ . (2.34)

The hadronic tensor also breaks up into two parts, symmetric and antisymmetric:

Wµν = W (S)
µν (P, q, S)

︸ ︷︷ ︸

symmetric

+

antisymmetric
︷ ︸︸ ︷

iW (A)
µν (P, q, S) with (2.35)

W (A)
µν = ǫµναβq

α

(
Sβ

(p · q)g1 +
1

(p · q)2
(

(p · q)Sβ − (S · q)pβ)
)

g2

)

. (2.36)

The symmetric part is again equal to the hadronic tensor in unpolarised scattering
(cf. Eq. 2.5). The antisymmetric part adds two structure functions which carry information
about the nucleon spin structure.

The cross section can be expressed by the contraction of the leptonic and hadronic tensors:

dσ ∼ LµνWµν
α2

Q4

=
(

Lµν(S)W (S)
µν + Lµν(A)W (A)

µν

) α2

Q4
.

(2.37)
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The mixed terms Lµν(S)W
(A)
µν and Lµν(A)W

(S)
µν do not contribute. The symmetric parts

of the tensors do not depend on the spins. Consequently only the structure functions g1
and g2 appear in the difference of the cross sections for parallel (↑↑) and antiparallel (↑↓)
spin orientation of lepton and nucleon. In this thesis only the longitudinal polarisation
(cf. Eq. 2.24 in Section 2.2.1) is of interest. Longitudinal polarisation is signified by lepton
and nucleon spin orientation parallel or antiparallel to the lepton momentum vector. The
cross section difference for parallel and antiparallel spin orientation is:

d2σ(↑↓)

dxdy
− d2σ(↑↑)

dxdy

=
32πMEα2xy

Q4

[(

1− y

2
− y2γ2

4

)

g1(x,Q
2)− y

2
γ2g2(x,Q

2)

]

.

(2.38)

The measured quantity in the COMPASS experiment is the lepton-nucleon cross section
spin asymmetry AlN = (dσ↑↓ − dσ↑↓)/(dσ↑↓ + dσ↑↓). It can be expressed as:

AlN = D

[
g1 − γ2g2

F1

+ ηγ
g1 + g2

F2

]

, (2.39)

with:

D =
y(2− y)(1 + γ2y2

2 )

(1 + γ2)y2 + 2(1− y − γ2y2

4 )(1 +R)
, (2.40)

and:

η = γ
1− y − γ2y2

4

(1− y
2 )(1 +

γ2y
2 )

. (2.41)

Only the lepton mass was neglected here. By neglecting the nucleon mass as well (by
assuming M ≪ E) Eq. 2.39 simplifies to:

AlN = D
g1
F1

. (2.42)

For the next step it is helpful to examine the asymmetry for the process γ∗ +N → X:

AγN =
g1
F1

. (2.43)
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The photon-nucleon asymmetry AγN only depends on the structure functions g1 and F1,
not on the prefactor D. The correlation between the lepton-nucleon asymmetry and the
photon-nucleon asymmetry is consequently as follows:

AlN = DAγN . (2.44)

The factor D is therefore identified as depolarisation factor, which specifies the fraction
of polarisation which is transferred from lepton to photon.

2.3.1.1 Interpretation of g1 in the QPM

To interpret the structure function g1 in the QPM it is again useful to regard the deep-
inelastic scattering process as a superposition of elastic scattering processes on the partons.

Figure 2.8: Kinematic of lepton-quark scattering

The cross section for scattering of point-like polarised spin 1
2 particles (here: quarks and

leptons) is proportional to:

σ↑↓
lq ∼ (k + pq)

4 ≈ (2k · pq)2 = (2xk · p)2 = (2xME)2

σ↑↑
lq ∼ (k′ − pq)

4 ≈ (−2k′ · pq)2 = (−2xk′ · p)2 = (2xME′)2.
(2.45)

Assuming lepton and nucleon with antiparallel spin orientation (Fig. 2.9, left), and q↑ (q↓)
the number of quarks with parallel (antiparallel) spin orientation relative to the nucleon
spin, the lepton-nucleon cross section in the QPM (for one quark flavour) is then given
by:
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Figure 2.9: Polarised lepton-nucleon scattering in the QPM. The arrows indicate the direction of
the particle momentum, double arrows the orientation of the particle spin. q↓(q↑) is
the number of quarks with spin parallel (antiparallel) to the nucleon spin.

σ↑↓
lN ∼ σ↑↓

lq q
↑ + σ↑↑

lq q
↓

∼ E2q↑ + E′2q↓.
(2.46)

The lepton-nucleon cross section for parallel spin orientation is accordingly:

σ↑↑
lN ∼ σ↑↑

lq q
↑ + σ↑↓

lq q
↓

∼ E′2q↑ + E2q↓.
(2.47)

Applied to the asymmetry AlN this yields:

AlN =
σ↑↓
lN − σ↑↑

lN

σ↑↓
lN + σ↑↑

lN

=
E2 − E′2

E2 + E′2

q↑ − q↑

q↑ + q↑
=

2y − y2

2− 2y + y2
∆q

q
, (2.48)

with ∆q := q↑ − q↓ and q := q↑ + q↓.

The last step included:

E2 − E′2

E2 + E′2
=

2y − y2

2− 2y + y2
with y = 1− E′

E
. (2.49)

For all quark flavours AlN is as follows:
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AlN (x, y) =
2y − y2

2− 2y + y2

∑

q e
2
q∆q(x)

∑

q e
2
qq(x)

with q = u, d, s, ū, d̄, s̄. (2.50)

The prefactor (2y − y2)/(2− 2y + y2) is equal to the depolarisation factor D in Eq. 2.44,
assuming that R ≈ 0 and M ≪ E. In the QPM R = 0 approximately applies, as well as
F1 =

1
2

∑

q e
2
qq(x). This yields for g1:

g1 =
1

2

∑

q

e2q∆q(x). (2.51)

Therefore in the QPM the structure function g1 contains information about the helicity
contribution of the quarks to the nucleon spin. The QPM term for photon-nucleon spin
asymmetry does not contain any kinematic prefactors at all, the asymmetry only depends
on the scaling variable x:

AγN (x) =

∑

q e
2
q∆q(x)

∑

q e
2
qq(x)

. (2.52)

2.3.2 Semi-Inclusive Processes

By observing a hadron additionally to the scattered lepton, the number of the structure
functions in the cross section increases to 18. As shown in Section 2.1.2, the cross section
depends on four structure functions in the unpolarised case. An additional structure func-
tion contributes in case of a polarised lepton and an unpolarised nucleon. If both lepton
and nucleon are polarised, 13 more structure functions are added. The complete term for
this cross section can be found e.g. in [14]. As in the unpolarised case, one integrates over
the azimuthal angle φh and the transverse momentum ph⊥ of the hadron. If the hadron
spin is not observed, no additional structure functions contribute to the semi-inclusive
cross section, and Eq. 2.52 can be expanded to:

AγN (x, z) =
gh
1

Fh
1

=

∑

q e
2
q∆q(x)Dh

q (z)
∑

q e
2
qq(x)D

h
q (z)

with q = u, d, s, ū, d̄, s̄. (2.53)

For this it was assumed that fragmentation functions are not spin dependent (Dh
q↑ = Dh

q↓),
which is a valid assumption for a parity conserving fragmentation process if the hadron
spin is not observed.

If the quark distributions q(x) and the fragmentation functions Dh
q (z) are known from

experiments with unpolarised targets, the polarised quark distribution ∆q(x) can be de-
termined by measuring the asymmetry AγN

h (x, z). To quantify the additional information
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that can be obtained from semi-inclusive asymmetries Eq.s 2.52 and 2.53 are broken down
into contributions from q and q̄:

AγN (x) =

∑

q e
2
q

(

∆q(x) + ∆q̄(x)
)

∑

q e
2
q

(

q(x) + q̄(x)
) , (2.54)

AγN
h (x) =

∑

q e
2
q

(

∆q(x)Dh
q (z) + ∆q̄(x)Dh

q̄ (z)
)

∑

q e
2
q

(

q(x)Dh
q (z) + q̄(x)Dh

q̄ (z)
) , (2.55)

with q = u, d, s. Equation 2.54 only yields information about helicity contributions of
the sum of quarks and antiquarks ∆q + ∆q̄. Equation 2.55, on the other hand, allows
for a separate observation of quark and antiquark helicity contributions, since generally
fragmentation functions for quarks and antiquarks are not the same (Dh

q 6= Dh
q̄ ).

There is also not enough information in the inclusive asymmetry AγN (x) to extract po-
larised quark distributions for all the quark flavours. Only two independent measurements,
AγN

p (x, z) and AγN
d (x, z) (for a proton and a deuteron target), are possible. Scattering on

a deuteron target is again regarded as an incoherent superposition of proton and neutron
scattering.

Like the unpolarised quark distributions the polarised ones are given, via isospin symme-
try, by the proton-quark distributions. However, semi-inclusive asymmetries also contain
information about the observed hadron. So by measuring semi-inclusive asymmetries for
hadrons like h = π+, π−,K+,K−, ... it is possible to obtain equations for the helicity con-
tributions of the quark flavours contained in the observed hadrons: ∆u(x), ∆ū(x), ∆d(x),
∆d̄(x), ∆s(x), ∆s̄(x).
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2.4 Quantum Chromodynamic Effects in DIS

The last chapters described the deep-inelastic scattering in the (näıve) quark parton model
only. However, the ‘spin crisis’ (cf. Chapter 1) led to the realisation that this simplified
model failed to explain the experimental results.

The missing part of the nucleon spin was an indication that some contributions had been
neglected. One of those possible contributions is the spin of the gluons. Gluons do not
interact directly with the exchanged virtual photon, but they mediate the strong interac-
tion as the exchanged gauge bosons in the field theory of Quantum Chromodynamics [15]
(QCD) and lead therefore to corrections to the QPM. With these corrections the parton
distributions depend on Q2 in a way that is calculable in QCD. The formalism of the QPM
remains in principle unchanged, apart from replacing q(x) with q(x,Q2), which, in turn,
leads to a Q2 dependence of the structure functions F1 and g1 as well.

2.4.1 Q2 Dependence of Quark Distributions and
Fragmentation Functions

The interpretation of this dependence onQ2 can be found in the interaction between quarks
and gluons. The gluons as gauge bosons are radiated and re-absorbed by the quarks, but
can also produce quark-antiquark pairs by themselves or radiate further gluons. These
dynamics create a ‘cloud’ of gluons and virtual qq̄ pairs, the so-called ‘sea’.

Figure 2.10: Q2 dependence of structure functions. In Fig. (a) the photon ‘sees’ only the compos-
ite of quark and gluon, while in Fig. (b) the momentum transfer is large enough to
resolve the quark itself.

How the outside world observes a quark therefore depends on the resolution power of
the virtual photon, and can be described with the following image: A photon with the
momentum transfer Q2

0 can resolve a dimension of the scale 1/Q2
0. In Fig. 2.10(a) the

photon therefore only ‘sees’ the composite of quark and emitted gluon. Is Q2 larger, Q2
1 ≫

Q2
0, the photon ‘sees’ only the quark (Fig. 2.10(b)). This explains, qualitatively, the increase
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of the structure function F2 for small x with increasing Q2 (cf. Fig. 2.3), and its decrease
with Q2 for larger x. For a large Q2 the probability of scattering on a quark carrying a
small momentum fraction x increases. The Q2 dependence of the structure functions is
also known as scale breaking; the structure functions depend not only on x anymore, but
also on Q2. This has been verified by various experiments (cf. Fig. 2.11).

Figure 2.11: Scaling violation of the proton structure function F2. Left: For small x the F2 in-
creases with increasing Q2. Right: For x ? 0.25 the structure function decreases
with increasing Q2 [16].

The Q2 evolution of the parton distributions can be calculated by using a system of linked
equations, the so-called DGLAP3 equations [18, 19, 17]. Those describe the fact that a
quark with a momentum fraction x can come from a parent quark with a larger momentum
which had radiated a gluon before, or from a parent gluon which had created a qq̄ pair. If
the parton distribution functions are known at a certain scale of Q2, they can be calculated
at any other scale.

Using DGLAP equations, the structure functions F1 and F2 in Eq. 2.22 can be expressed
by exchanging the x dependent quark distributions by distributions dependent on both x
and Q2:

3DGLAP (Dokshitzer, Gribov, Lipatov, Altarelli and Parisi) were the authors who first developed the
equation of the QCD evolution. DGLAP was first published outside Russia by Altarelli and Parisi in 1977
(see [17]), therefore DGLAP and its various derivations are often still called Altarelli-Parisi equations. It
became known only later in the Western world that an equivalent had been published in St. Petersburg
by Gribov and Lipatov already in 1972, and also by Dokshitzer in 1977.
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F1(x,Q
2) =

1

2

∑

q

e2qq(x,Q
2) and

F2(x,Q
2) = x

∑

q

e2qq(x,Q
2).

(2.56)

The interactions between gluons and quarks also result in a Q2 dependence of the frag-
mentation functions [20]. The corresponding DGLAP equations account for the possibility
that the fragmentation of a parton may happen via the radiation of a second parton which
fragments into a hadron.

Figure 2.12 shows a parametrisation of the fragmentation function Dπ++π−

u (z), evaluated
via a fit to e+e−-annihilation data [9]. The number of produced hadrons with a small
energy fraction z increases with increasing Q2, while the production of hadrons with a
large z becomes less probable.
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Figure 2.12: Parametrisation of the fragmentation function Dπ+
+π−

u (z), evaluated via a fit to
e+e−-annihilation data [9] for different values of Q2 [8].

For semi-inclusive processes the structure functions F h
1 and F h

2 can be written as product
of Q2 dependent quark distributions and fragmentation functions [21, 22]:
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Fh
1(x, z,Q

2) =
1

2

∑

q

e2qq(x,Q
2)Dh

q (z,Q
2) and

Fh
2(x, z,Q

2) = x
∑

q

e2qq(x,Q
2)Dh

q (z,Q
2).

(2.57)

The Q2 dependence of the polarised quark distributions is determined by the fraction of
the helicity transferred from the ‘mother’ parton to the ‘daughter’ parton, and can also
be described by DGLAP equations. The polarised structure functions are given by:

g1(x,Q
2) =

1

2

∑

q

e2q∆q(x,Q2), (2.58)

gh
1(x, z,Q

2) =
1

2

∑

q

e2q∆q(x,Q2)Dh
q (z,Q

2). (2.59)

The expected effect of the Q2 dependence of fragmentation functions is quite small (cf.
Fig. 2.12). In actual measurements of inclusive and semi-inclusive asymmetries no signif-
icant dependency on Q2 is observed, it is therefore neglected in the extraction of helicity
distributions (cf. Sections 2.5 and 4.3), and all measurements are assumed to be valid at a
fixed Q2

0. The method of extraction of fragmentation functions developed in this thesis (cf.
Section 5.1) also disregards the Q2 dependence of FFs and parton distribution functions.
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2.5 Fragmentation Functions

The first sections of this work presented an introduction to the concept and structure
of fragmentation functions. This section will serve as an illustration of the significance
of FFs regarding extracted values of ∆q, and in particular for the values extracted for
∆s. Results of a recent analysis [23] by the COMPASS collaboration demonstrate that a
precise knowledge of fragmentation functions is not only important, but crucial for the
further exploration of the spin structure of the nucleon.

In this analysis inclusive (A1,d) and semi-inclusive asymmetries (Aπ+

1,d, A
π−

1,d , A
K+

1,d , A
K−

1,d ,
see Fig. 2.13) measured in deep-inelastic muon-deuteron scattering were used to determine
the polarised PDFs for valence quarks (∆uv +∆dv), non-strange sea quarks (∆ū +∆d̄),
and strange quarks (∆s, assumed to be equal to ∆s̄).

Figure 2.13: Comparison of final asymmetries of COMPASS as a function of x with results of
HERMES [24]. Bands at bottom of graphs represent systematic uncertainties. Solid
markers and bands correspond to COMPASS data. Open markers and bands are
taken from the HERMES publication.

Assuming that hadrons in the current fragmentation region (cf. Section 2.2.2) are produced
in independent quark fragmentation, their spin asymmetries can be written in terms of
the parton distribution functions, q(x,Q2) and ∆q(x,Q2), and fragmentation functions,
Dh

q (z,Q
2) (cf. Eq. 2.53 and Section 2.4.1). The analysis used unpolarised PDFs from

MRST4 [25], and the DSS5 parametrisation of FFs which was obtained from a combined
analysis of inclusive pion and kaon production data from e+e−-annihilation, semi-inclusive

4MRST: A.D. Martin, R.G. Roberts, W.J. Stirling and R.S Thorne
5DSS: D. de Florian, R. Sassot and M. Stratmann
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data from the HERMES collaboration, and proton-proton collider data [26]. To test the
dependence of the polarised PDFs on the fragmentation functions, a second set of FFs
was used as well, this one using data from the European Muon Collaboration (EMC)
[10]. While the MRST and DSS values were derived from global fits, the EMC ones were
extracted from EMC data only. The asymmetries were assumed to be independent of Q2;
therefore all PDFs were obtained at a common Q2 fixed to 3 (GeV/c)2.

Figure 2.14: The quark helicity distributions evaluated at common value Q2 = 3 (GeV/c)2 as
a function of x for two sets of fragmentation functions (DSS and EMC). Bands
at bottom of graphs represent systematic uncertainties. Solid markers and bands
correspond to PDFs obtained with DSS parameterisation of FFs. Open markers
and bands are obtained with EMC parameterisation of FFs. The curves represent
the leading order DNS (D. de Florian, G.A. Navarro, R. Sassot) parameterisation
of polarised PDFs [27].

The results of the fit obtained with the two sets of FFs are shown in Fig. 2.14. While
the valence quark and non-strange sea quark helicity distributions show no significant
dependence on the fragmentation functions used in the analysis, this is not the case for
∆s. The main difference of DSS with respect to EMC is the augmented s (s̄) quark
contribution to the production of K+ (K−). The values extracted for ∆s differ by up to
a factor of two for the different parametrisations, as does their respective statistical error.
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The dependence of ∆s(x) on the FFs can be further explored in relation with the charged

kaon asymmetry AK++K−

1,d . This asymmetry is the weighted average of AK+

1,d and AK−

1,d with

weights given by the spin-averaged K+ and K− cross sections.

AK++K−

1,d =
σK+

AK+

1,d + σK−

AK−

1,d

σK+ + σK−
. (2.60)

It has been found to be very stable with respect to the ratio σK+
/σK−

. A change of this

ratio by ±10% does not alter AK++K
1,d by more than 10% of its statistical error.

At leading order, the cross section depends only on the unpolarised PDFs and two ratios;
RUF and RSF , which are the ratios of unfavoured to favoured and strange to favoured6

FFs respectively:

RUF =

∫
DK+

d (z)dz
∫
DK+

u (z)dz
, RSF =

∫
DK+

s̄ (z)dz
∫
DK+

u (z)dz
, (2.61)

Both have distinct values for the used sets of fragmentation functions:

for EMC: RUF = 0.35, RSF = 3.4

and for DSS: RUF = 0.13, RSF = 6.6.

For an isoscalar target, the charged kaon asymmetry and the inclusive asymmetry can be
written as:

AK++K
1,d = ǫ

∆Q+ α∆s

Q+ αs
, A1,d = ǫ

∆Q+ 4
5∆s

Q+ 4
5s

, (2.62)

where Q = u + d + ū + d̄ is the non-strange quark density, and ∆Q the corresponding
helicity density, and α = (2RUF + 2RSF )/(2 + 3RUF ). The similarity between the two
asymmetries can be used to write the strange quark polarisation as:

∆s

s
=

1

ǫ

[

A1,d + (AK++K
1,d −A1,d)

Q/s+ α

α− 0.8

]

. (2.63)

The use of this formula leads to values of ∆s that are nearly equal to those derived from
the semi-inclusive asymmetries, with just a slightly larger statistical error.
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Figure 2.15: Integral of ∆s over the measured range of x (0.004 ≤ x ≤ 0.3), as a function of the
ratio RSF for RUF fixed at the DSS value of 0.13 (black curve). The green area shows
the statistical uncertainty and the grey band inside of it shows the effect of increasing
RUF to 0.35 (EMC value). The blue horizontal band represents the full moment of
∆s derived from the COMPASS value of the first moment of gd1(x) [23]. The values
of RSF corresponding to DSS [26], EMC [10] and KRE [28] parameterisations of
FFs are indicated by arrows.

Figure 2.15 shows the variation of the first moment of ∆s, truncated to the measured
range of x, as a function of the fragmentation function ratio RSF .

The integral of ∆s over the measured range of x,
∫ 0.3
0.004 dz∆s, takes on the value of -0.01

for the DSS FFs, and -0.03 for the EMC ones, although also with a much larger error. For
RSF > 5, the values of ∆s are close to zero and larger than the full moment derived from
the inclusive analysis by the COMPASS collaboration [29].

It is evident that the first moment and its error are very sensitive to the value of RSF

(and, to a lesser extent, to the value of RUF ), and with this to the version of fragmentation
functions used in the analysis. Clearly the precise knowledge of fragmentation functions is
essential for the evaluation of helicity distributions, in particular for the extracted values
of ∆s.

6A fragmentation function Dh
q is called favoured if the quark q is one of the valence quarks of the

produced hadron h. So is, for example,DK+

u a favoured FF, sinceK ≡ s̄u. Correspondingly, a fragmentation
function is called unfavoured if the quark q is not one of the valence quarks of h. Favoured strange quark

fragmentation functions, e.g. DK+

s̄ are expected to be larger in magnitude than non-strange favoured
fragmentation functions. Here they are simply called strange fragmentation functions.
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Chapter 3

The COMPASS Experiment

The COmmon Muon and Proton Apparatus for Structure and Spectroscopy, abbreviated
COMPASS, is a fixed target spectrometer located at the end of the M2 beamline of
the Super-Proton-Synchrotron (SPS) at CERN1 in Geneva. The physics programme of
COMPASS breaks down into two components: The muon programme is dedicated to the
detailed study of the nucleon spin structure via deep-inelastic scattering of polarised muons
off polarised nucleons. The main objectives of the COMPASS hadron programme are the
spectroscopy of charmed hadrons and the investigation of the hadron structure by means
of various hadron beams (proton, pion, kaon) colliding with a nuclear target. This chapter
will give a brief overview of the COMPASS spectrometer. For a detailed description consult
[1].

Figure 3.1: Artistic view of the COMPASS spectrometer [30]

1CERN: Conseil Européen pour la Recherche Nucléaire, European Organization for Nuclear Research

33
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Figure 3.1 shows a schematic view of the COMPASS detector in the muon beam set-up.
The beam enters from bottom left. A small fraction of the beam particles interact in the
nucleon target, which can be polarised either longitudinally or transversely with respect
to the beam direction. The scattered muons and the produced hadrons are detected in a
50m long spectrometer built downstream of the target.

To ensure the detection of potentially interesting physics events, the spectrometer has to
fulfill a number of specific requirements. A large interval of Q2 has to be covered, which
requires the detection of muons in a wide range of scattering angles. In order to cope with
the particle rate, the spectrometer components must have a good time resolution. The rate
of particles also necessitates a fast and efficient trigger system for the event selection, and
a data acquisition system capable of recording a high flux of data. Track reconstruction
and particle identification are essential for the identification of physics events.

In order to fulfill all of these requirements as best as possible COMPASS uses a two-
stage spectrometer. The first stage is located downstream of the first spectrometer magnet
(SM1). It is used to detect particles with large polar angle and small momenta. In the
second stage, downstream of the second spectrometer magnet SM2, particles with small
polar angles and large momenta are detected. The two stages are accordingly named large
angle spectrometer (LAS) and small angle spectrometer (SAS), respectively. This setup
provides a total polar acceptance of ±180mrad and allows measurements in a wide kine-
matic range. Each stage contains two calorimeters, one electromagnetic and one hadronic,
and a muon filter for particle identification of electrons, hadrons and muons. In the LAS
a Ring Imaging Cherenkov (RICH) detector provides additional particle identification of
pions, kaons, protons and low energy electrons. A large variety of tracking detectors, each
serving different requirements for spatial resolution, particle rate or covered solid angle,
is distributed over the whole spectrometer. A system of trigger detectors allows to select
events according to energy loss of the beam muons and their interaction in the target.

The COMPASS set-up is changed and improved constantly; new detectors are employed,
older spectrometer components are upgraded. Additionally, the parameters of the polarised
muon beam vary, depending on the demand by the various experiments provided with
particles by the SPS. In order to provide an accurate description of the data used in the
analysis (which is the main topic of this thesis), the following sections will give a more
detailed description of the 2004 COMPASS set-up, and only occasionally include notes on
later upgrades of the spectrometer. Also, a large section of this chapter is dedicated to the
COMPASS trigger system. The author worked on the installation of various detectors for
this system, and was responsible for its maintenance during data taking periods; it will
therefore be described in more detail.

3.1 The Muon Beam

One of the distinctive features of the COMPASS experiment is the high energy polarised
muon beam. The production and properties of the beam will be described in the following
subsections. Fig. 3.2 shows the mechanisms and accelerators involved.
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3.1.1 The Production of the Muon Beam

In the Proton Synchrotron (PS) protons are accelerated to a momentum of 14GeV/c
and then injected into the Super Proton Synchrotron. The SPS accelerates the proton
beam to a momentum of up to 450GeV/c, which is then extracted with an intensity of
approximately 2× 1013 protons within the time of a spill (lasting 4.8 s) in each cycle. An
SPS cycle includes the injection, acceleration and extraction of the protons and lasts in
total 16.8 s.

Figure 3.2: The CERN accelerator complex. COMPASS is located in the North Area (figure taken
from [31]).

The protons extracted from the SPS then collide with the Beryllium production target
T6. The thickness of this target can be varied between 40mm and 500mm, and deter-
mines the intensity of the resulting secondary beam, which consists mainly of pions, with
just a small (amounting to a few percent) contamination of kaons and protons. The pro-
duced hadrons, now travelling along the M2 beam line are selected by their momentum
via a number of bending magnets and collimators and sent through a 600m long beam
tunnel, where approximately 10% of the pions and kaons decay via weak interaction into
positive muons and muon neutrinos. Subsequently the produced muons are focused and
the remaining hadrons are filtered out with Beryllium absorbers. The muon beam is then
momentum selected by magnets and directed to the surface level. Muon momenta up
to 280GeV can be chosen; COMPASS runs with 160GeV µ+ beam with a momentum
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spread of approximately 5%. Before entering the COMPASS experimental hall the mo-
mentum of every beam muon is measured with the Beam Momentum Station (BMS), a
set of scintillator hodoscopes placed before and behind the last vertical bending magnet.
Approximately 2 × 108 muons per spill cross the target area, resulting in about 6 × 104

recorded interactions per spill.

3.1.2 Beam Properties

The properties of the muon beam are determined by the production mechanism described
above. Especially interesting for the COMPAS experiment are the polarisation and the
phase space properties of the beam.

Due to the parity violating weak decay π+ → µ+νµ the muons are naturally polarised
along the direction of their momentum. In the pion center-of-mass frame the muons are
polarised completely. In the lab frame their polarisation depends on the fraction of pion
momentum transferred to the muon. In 2004 it was found to be in average PB = 0.80±0.04
[32].

Compared to primary particle beams the phase space volume of a muon beam is very
large. The reasons for this lie in its tertiary nature and the penetration capability of the
muons, which make beam collimation difficult.

Figure 3.3: (a) Momentum distribution and (b) horizontal profile at the target centre for incoming
particles obtained with a random trigger. The shaded areas correspond to particles
passing through both target cells [33].

The beam is focussed at the target to a sigma of 7mm for the Gaussian core with a
momentum spread of σp/p ≈ 5%. Figure 3.3 (a) shows the momentum distribution for
incoming muons for a sample of events; Fig. 3.3 (b) shows the spatial distribution at the
target centre for the same events. The non-Gaussian tail outside the core is called ‘near
halo’ and amounts to approximately 30% of the core intensity. At larger distances from
the beam lower energy muons contribute as well; this is called ‘outer halo’ [33].
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3.2 The Polarised Target

Measuring double spin asymmetries requires a polarised muon beam and a polarised target,
as well as the relative spin orientation of both to be invertible. Since the orientation of the
muon beam polarisation is fixed, the COMPASS experiment uses a target with a variable
polarisation.

Figure 3.4: Technical drawing of the polarised target. Upstream (1) and downstream (2) target
cell, microwave cavity (3), target holder (4), 3He/4He refrigerator (5-8), solenoid coil
(9), compensation coil (10-11), dipole coil (12).

The COMPASS target system includes three main components: target cells, magnets
(solenoid and dipole), and cryostat.

The centre of the target system consists of two cylindrical cells containing the target ma-
terial, either lithium deuterit (6LiD, deuteron target) or ammonium (NH3, proton target).
The use of a massive target allows for higher luminosities. Each target cell is 60 cm long
and has a diameter of 4 cm. The target material in the cells is polarised in opposite di-
rection. This allows a simultaneous measurement of both spin states and, together with a
periodic polarisation reversal, is aimed to significantly reduce systematic effects.

The target cells reside in a homogenous, longitudinal magnetic field, generated by a super
conductive solenoid. Cells and solenoid are enclosed in a 3He/4He dilution refrigerator
which allows the cooling of the target material down to 60mK. The low temperature and
the strong solenoid field provide the means to polarise the target material, to increase the
relaxation time and therefore to maintain its polarisation as long as possible.

The polarisation itself is achieved by dynamic nuclear polarisation, transferring polarisa-
tion from the electrons to the nucleons [34].
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At a temperature of 60mK and a magnetic field of 2.5T almost 100% of the electrons are
polarised, but only about 0.5% of the protons. Using microwaves of a suitable frequency,
the polarisation of the electrons can be transferred to the protons of the target material.
Once the proton spins are aligned the temperature is kept at 60mK to maintain the polar-
isation. Solenoid and dipole magnetic fields allow to adjust the spins in a longitudinal or
transversal direction. Each target cell contains five NMR coils used for the local monitor-
ing of the polarisation. To compensate for possible differences in acceptance and amount
of target material in the cells the magnetic field, and consequently the spin orientation, is
rotated every 24 hours.

The COMPASS target was upgraded for the 2006 run. The two target cells were replaced by
three. Additionally a new solenoid was used, with a larger opening angle, and consequently
a larger acceptance for hadrons.

3.3 Tracking Detectors

The COMPASS spectrometer with its large overall acceptance uses a variety of tracking
detectors to measure the projections of the particle tracks on the bending (X) or the
non-bending (Y ) plane of the spectrometer magnets. The requirements for a particular
detector are dictated by its proximity to the beam. Tracking stations near the beam axis
are exposed to a higher particle flux, which makes a good time and spatial resolution
a main requirement. Stations which are farther away from the beam core are exposed
to a lower particle rate, which allows for a lower resolution. The main requirement for
those detectors is the ability to detect particles scattered with large angles, demanding
the coverage of a large area.

3.3.1 Small Area Trackers

Scintillating Fibre Detectors (SciFis): Particle tracks in the primary beam are iden-
tified by scintillating fibres (SciFis) [35] [36]. The COMPASS spectrometer contains eight
SciFi stations. Each consists of two to three different layers of scintillating wires rotated
with respect to each other to measure more than one projection. The individual lay-
ers themselves are composed of a number of parallel fibres with a diameter between 0.5
and 1mm, resulting in a spatial resolution of 130 to 250µm. The SciFi detectors cover
areas from 40mm × 40mm (in front of the target) up to 123mm × 123mm (farther
downstream), their time resolution ranges between 350 and 500 ps. They are read out via
optical fibres and photomultiplier tubes. The hodoscopes cover approximately 90% of the
beam.

Silicon Microstrip Detectors: The COMPASS silicon detectors are semiconductor strip
detectors with pn junctions. Each covers an active area of 5 × 7 cm2, with a pitch of 50µm.
Two nearly orthogonal readout structures are used to obtain two projections simultane-
ously. Two detectors make up one silicon station. They are mounted back-to-back such
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that one detector measures the horizontal and vertical coordinates of a particle trajectory,
while the other is rotated around the beam axis by 5◦, providing two additional projec-
tions. The silicons are only 280µm thick, due to the high average energy loss of typically
390 eV/µm, and also to minimise Coulomb scattering, which would reduce the resolution.
An advantage over gas detectors is the low energy threshold of 3.6 eV for the generation
of an electron/hole pair. The silicon detectors have an average spatial resolution of about
11µm due to their small pitch, and a time resolution of 2.5 ns. They are positioned in
front of the target; together with the first two scintillating fibre stations they provide a
precise beam definition.

Microstrip Gas Detectors: Two different types of microstrip gas detectors cover the
zone outside the beam core up to a distance of the beam axis of approximately 45mm;
a region with a high rate of halo muons and hadrons produced in the interactions in
the target. Micromesh gas chambers, short Micromegas, are used as small area trackers
between the target and the first spectrometer magnet SM1. The special feature of this
detector is the presence of a metallic micromesh which separates the gaseous volume into
two regions; one for conversion and one for amplification. The field configuration near the
mesh provides a barrier that ensures that most of the ions from the avalanche are captured
by the mesh and do not drift back in the conversation gap. The fast evacuation of the
positively charged ions in combination with reduced transverse diffusion of the electrons
enable a high rate capability of the micromegas. The detector has an active area of 40 ×
40 cm2 and a central dead zone of 2.5 cm radius. The strip pitch is 360µm for the central
part of the detector and 420µm for the outer part. The Micromegas have a time resolution
of 9 ns and spatial resolution of 90µm [1].
A GEM detector consists of a 50µm thin Polyamide foil with copper cladding on both
sides, into which a large number of micro-holes (about 104/cm2, 35µm radius) has been
chemically etched. The foil is inserted between parallel plate electrodes of a chamber filled
with a mixture of argon and carbon dioxide. Avalanche multiplication of primary electrons
drifting into the holes is achieved by applying a voltage of several 100V across the foil.
Electric fields extract the electrons from the holes on the other side of the foil and guide
them to the next amplification stage or to the readout module. The detector is read out
in two layers simultaneously. Two of these planes form a station giving four projections in
total. Each of the seven GEM stations located throughout the length of the spectrometer
has an active area of 32 cm × 32 cm. A central disc with a 2.5 cm radius is independently
powered in order to enable a switching off of the region during high intensity runs. The
spatial resolution for minimal ionising particles is on average 46µm, the time resolution
amounts to 12 ns.

3.3.2 Large Area Trackers

Drift Chambers: Three identical drift chambers are in operation at COMPASS. One is
installed upstream of the spectrometer magnet SM1, the other two downstream of it. All
three drift chambers have an active area of 180 cm × 127 cm. Each chamber consists of
eight layers of wires with four different inclinations: vertical, horizontal, and tilted with
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respect to the vertical direction, by ±20◦ [1]. Each layer consists of approximately 350
wires, half of them sensitive, half of them potential, alternating. Each layer is enclosed by
two Mylar cathode foils, defining a gas gap of 8mm. The chambers are segmented into
small drift cells of 8mm × 7mm, giving the advantage of decreasing the incident flux
per cell and reducing the electron drift time (thus allowing for a short time window and
minimising the number of uncorrelated particles). The Ar/C2H6/CF4 gas mixture ensures
a high primary electron rate as well as a high drift velocity (77mm/µs). The resolution of
the drift chambers is 110µm for the horizontal coordinate (bending direction of the dipole
spectrometer magnet) and 170µm for the vertical coordinate.

Straw Tube Chambers: Straw drift tube chambers are used to track charged particles
at large scattering angles downstream of the first spectrometer magnet SM1. The 30µm
diameter anode wires are encased in tubes consisting of two thin layers of Kapton foil. The
straws are arranged in double layers, which are displaced by half a diameter with respect
to each other to resolve left-right ambiguities. The length of the straw tubes increases
with humidity, which can result in increased tension on the frame or even in a bending
of the straws. To avoid these problems, each straw station is surrounded by a protective
gas volume of N2 gas, enclosed in aluminised Mylar foil. The COMPASS spectrometer is
equipped with 15 straw detectors, consisting of more than 12,000 straw tubes in total. Each
detector has an active area of about 9m2. The counting gas mixture is Ar/C2H6/CF4. To
allow for the measuring of three projections of the particle trajectory, each station consists
of three detectors, with horizontal, vertical, and inclined layers of straw tubes. The average
spatial resolution of the straw detectors is 190µm.

Multi-wire Proportional Chambers: Multi-wire proportional chambers (MWPCs) are
wire chambers with a large number of readout wires. They are used throughout the whole
spectrometer; the tracking of particles at large distances from the beam axis is based
mainly on these detectors. Three chambers are positioned between the spectrometer mag-
nets SM1 and SM2, four behind SM2, and another four behind the second muon wall,
MW2. A total of 34 layers of wire, corresponding to about 25,000 detector channels is in
operation at COMPASS. All layers are equipped with wires of about 1m in length, 20µm
in diameter, with a pitch of 2mm and an anode/cathode gap of 8mm. A fast gas mixture
(Ar/C2/CF4/Co2) results in a drift velocity of approximately 100µm/ns. Three different
types of MWPCs are in use, each with an active area of up to 178 cm × 120 cm, and
two to four layers of wires, allowing for a spatial resolution of 1.6mm. All MWPCs have
a central dead zone of 16 to 22mm diameter, depending on the position of the detector
along the beam axis. All wire layers are enclosed by graphite coated Mylar cathode foils,
which provide field symmetry and encase the detector gas.

3.4 Particle Identification

Both stages of the COMPASS spectrometer include various detectors to ensure an efficient
particle identification. A RICH detector in the LAS separates outgoing hadrons into pions,
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kaons and protons. Two hadron calorimeters (HCAL1 and HCAL2) measure the energy of
hadrons and provide also a corresponding trigger signal. The electromagnetic calorimeter
in the SAS (ECAL2) determines the energies of photons and electrons. Muons are detected
in two muon wall systems MW1 and MW2, which consist of medium resolution tracking
detectors combined with a hadron absorber.

3.4.1 The Ring Imaging Cherenkov Detector (RICH)

The COMPASS RICH (see Fig. 3.5) plays a crucial role in the identification of pions,
kaons and protons within a momentum range of 5 and 43GeV/c. The large-size Ring
Imaging Cherenkov detector covers the whole angular acceptance of the COMPASS LAS
(±250mrad in the horizontal plane and ±180mrad in the vertical plane), has a high-rate
capability and introduces a minimum of material in the region of acceptance.

Figure 3.5: Schematic view of the COMPASS RICH [37]

The RICH detector makes use of the phenomenon that charged particles emit Cherenkov
radiation if their velocity is larger than the speed of light in the medium in which they
advance. The photons are emitted with a characteristic angle θch relative to the direction
of the travelling particle:

cos θch =
1

nβ
=

1

n

1
√

1 + m2

p2

. (3.1)

Therefore, by measuring θch with the RICH and the momentum of the particle with the
spectrometer, the mass of the particle, and consequently its type, can be determined. The
threshold momentum pthr for which Cerenkov photons are emitted follows from Eq. 3.1:
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pthr =
m√

n2 − 1
(3.2)

For β approaching 1 the angle θch reaches its maximum. Consequently, each particle type
can be distinguished from lighter particles only up to a certain momentum. For example
pions with momenta larger than 8GeV/c cannot be distinguished from electrons anymore
(which emit Cherenkov photons always with the maximum angle).

The radiator gas used in the RICH is C4F10. It is characterised by a low chromaticity
despite its high refractive index of n ≈ 1.0015 in the UV domain [38], which allows for a
separation between pions and kaons up to a momentum of 43GeV/c. Water vapour and
oxygen contaminations of the C4F10 radiator gas impair the light transmission in the UV
range due to their large UV light absorption cross section. To combat this problem the
gas is continuously circulated in a closed loop circuit in order to remove the traces of
water vapour and oxygen. The Cherenkov thresholds for different particles are listed in
Table 3.1.

Particle Threshold in GeV/c

e 0

µ 1.9

π 2.5

K 8.9

p 16.9

Table 3.1: Cherenkov thresholds for different particle types of the COMPASS RICH [39]

The optical system consists of two spherical focal surfaces with a radius of 6.6m, each
composed of 58 spherical mirror units in different sizes, in the form of hexagons and pen-
tagons. The focal surfaces cover an area of 21m2. They are placed outside the spectrometer
acceptance to minimise the material in the detection region. The mirror substrate is a glass
of 7mm thickness covered by an 80 nm reflective layer of aluminium and 30 nm protective
layer of MgF2. The reflectance of the optical system was measured in the wavelength range
[165 nm, 200 nm] and found to be in the range 83-87%. The photon detection is ensured
by eight multiwire proportionl chambers (MWPC) (cf. Section 3.3.2), which are read out
by front-end boards coupled with amplifier chips.

The RICH operated with this system until 2004. For the 2006 data taking, an important
upgrade has been implemented in order to improve its performance. In the very central
region of the RICH, the MWPC chambers were replaced by a new photon detection system
based on Multi-Anode Photo Multiplier Tubes (MAPMT), increasing thereby the number
of detected Cherenkov photons which, in turn, increased the momentum range of identified
particles. The separation of pions and kaon is possible up to 50GeV/c with the new system
compared to 43GeV/C for the old one.
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3.4.2 Electromagnetic and Hadronic Calorimeters

Both stages of the spectrometer contain calorimeters at the downstream end. The purpose
of the electromagnetic calorimeter is to detect neutral particles, e.g the two photons from
a π0 decay, and to identify electrons. The hadronic calorimeters measure hadron energies
and can also be used to identify muons, which deposit a characteristic small amount of
energy. The hadronic calorimeters are included in the trigger (cf. Section 3.5.2), allowing
to trigger on events with hadrons in the final state.

3.4.2.1 The Electromagnetic Calorimeters

The COMPASS spectrometer features an electromagnetic calorimeter (ECAL2) in the
SAS. A second one (ECAL1) was put in operation in the LAS in 2006.

The ECAL2 is a homogenous calorimeter and consists of 2972 lead glass modules in a
matrix of 64 × 48, measuring 38 × 38 × 450mm3 each, corresponding to 16 radiation
lengths. A high energy photon or electron generates an electromagnetic shower in the lead
glass; the produced electrons and positrons emit Cherenkov light on their way through
the glass. The amount of light is proportional to the energy deposited in the counter.
Every lead glass unit is read out at one end via a photomultiplier tube which measures
the intensity of the light emitted.

The modules are installed inside a movable frame which can be shifted horizontally and
vertically to the beam axis. Additionally the ECAL2 frame is mounted on a platform
which can be moved on rails along the beam axis. An opening of 10 × 10 modules in the
centre of the calorimeter allows the passage of the beam particles. Two different kinds
of lead glass are used for the ECAL2 modules, TF1 and TF101 (radiation hardened by
the addition of 0,2% Cerium). The radiation hard modules are arranged around the beam
opening in the centre of the calorimeter.

3.4.2.2 The Hadron Calorimeters

The COMPASS spectrometer contains two hadron calorimeters, HCAL1 (in the LAS) and
HCAL2 (in the SAS).

HCAL1 has a modular structure. Each module consists of 40 layers of iron and plastic scin-
tillator plates, 20mm and 5mm thick, respectively, amounting to 4.8 nuclear interaction
lengths. The incoming hadrons generate a shower in the iron layer; the produced shower
particles generate light in the subsequent scintillator layer. The sum of the light signals
from the scintillator layers is proportional to the energy deposited in the module. The light
from the scintillators is collected by a single flat wavelength shifting light guide placed on
the open sides of the scintillators. The amount of light emitted and collected from the
scintillator layers is read out via PMT. The 480 calorimeter modules are assembled within
a frame in form of a matrix of 28 × 20 (horizontal × vertical). A window of 8 × 4 modules
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in the centre of the calorimeter allows the passage of the beam and scattered muons. The
active area of the HCAL1 amounts to 10.8m2. The calorimeter frame is mounted on a
platform that can be moved across the beam axis.

The HCAL2 calorimeter has the form of a 22 × 20 matrix. Similar to the HCAL1 set-up the
modules are arranged on a mobile platform. The calorimeter has a hole with the dimensions
of 2 × 2 modules to pass the high intensity beam. Two different types of modules are used
for the detector. The majority of them consist of 36 layers of steel (25mm) and scintillator
(5mm) plates. The overall thickness of the counters corresponds to 5.0 nuclear interaction
lengths for pions and seven for protons. The 8 × 6 cells in the centre (around the beam
window) are filled with thicker modules consisting of 40 layers. The principle of light
collection is similar to the one used for the HCAL1 modules. Instead of flat light guides
placed on the sides of the modules the HCAL2 modules contain wavelength shifting fibres
of 1mm diameter placed in a circular groove in each scintillator sheet. The bundle of fibres
from all sheets of one module collects the light onto the photocathode of a PMT.

Table 3.2 contains a summary of the technical data of both COMPASS HCALs.

HCAL1 HCAL2

module size 15 cm×15 cm 20 cm×20 cm

number of modules 480 216

calorimeter size 429 cm×306 cm 440 cm×200 cm

layers per modul 40 36

thickness of iron/scintillator 20mm/5mm 25mm/3mm

radiation length 46 X0 51 X0

interaction length 4.8 λi 5.4 λi

maximum hadron energy 80GeV 230GeV

read-out WLS light guides WLS fibres

energy resolution 60%√
E[GeV ]

+ 7, 6% 65%√
E[GeV ]

+ 5%

Table 3.2: Summary of the technical data of HCAL1 and HCAL2. Maximum hadron energy
stands here for the energy limit above which 95% of the shower length is larger than
the length of the calorimeter modules. [40] [41]

3.4.3 Muon Filters

At the very end of the LAS and of the SAS (behind the hadronic calorimeters) absorbers
are placed, consisting of iron and concrete, respectively (µF1 and µF2). These absorbers
serve to filter out all non-muon particles, such as high energetic pions which are not
stopped in the hadronic calorimeter. The absorber at the end of the LAS has an opening
around the beam axis to allow particles produced under small angles to enter the SAS.
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Large area trackers are installed upstream and downstream of both absorbers, permitting
reliable muon identification, in particular of the scattered muon, which is essential for the
reconstruction of the DIS variables.

3.5 The Trigger System

The muon beam has an intensity of approximately 2×108 muons per spill (cf. Section 3.1)
and a considerable halo component. The rate of useful scattering events is about 104 per
spill. The purpose of the trigger system is to identify these events with a decision time
below 500 ns and a minimum deadtime, in order to start the detector readout system and
to provide a time reference for other detectors. The system is based on fast hodoscope
signals, energy deposits in the calorimeters, and a veto system. Depending on the incident
beam - muons or hadrons - and on the kinematics of the reactions, different elements are
combined to form the trigger signal. In the following the muon triggers are described in
detail; for the hadron triggers consult [1].

Figure 3.6: Position of the trigger components in the COMPASS spectrometer, pictured for the
bending plane of the spectrometer magnets. There are in total four trigger hodoscope
subsystems: H4I & H5I, H4M & H5M, H4L & H5L and H3O & H4O. The veto
detectors (dark red) are positioned in front of the target. The electromagnetic and
hadron calorimeters are pictured in blue, the spectrometer magnets SM1 and SM2 in
green [40]

.

For the COMPASS muon programme two types of processes are of interest: quasi-real
photoproduction and deep-inelastic scattering. Both have a muon in the final state in
common. Therefore it is reasonable to base the trigger decision on the detection of the
scattered muon, in particular because muons can be easily identified by hits in detectors
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located behind the hadron absorber. At COMPASS pairs of scintillator hodoscopes are
used, with at least one of the two hodoscopes placed behind the hadron absorber to identify
the scattered muon.

There are four different hodoscope subsystems in total: H4I & H5I (‘Inner’), H4M & H5M
(‘Middle’), H4L & H5L (‘Ladder’) and H3O & H4O (‘Outer’)2. Each of these systems
possesses a granularity allowing to select muons pointing back to the target region in the
non-bending plane of the spectrometer magnets, or to select muons with an energy loss
beyond a certain minimum in the bending plane.

The trigger decision cannot be based on the scattered muon alone. Due to the large amount
of halo muons surrounding the beam core trigger signals are generated in the hodoscope
pairs even if the muons have not traversed the target cells or have not interacted with
the target nucleons. These unwanted signals can be eliminated by placing additional veto
hodoscopes in front of the target and demanding that no signal was present. A second
possibility for reducing the contribution from trigger signals caused by halo events is to
demand, in addition to the hodoscope signal, a signal above a certain threshold in the
hadron calorimeters.

The location of these three main components of the COMPASS trigger system - hodoscope
subsystems, veto detectors, calorimeters - are shown in a schematical view in Fig. 3.6.

3.5.1 The Muon Trigger

As already mentioned in the introduction, two kinematic regimes are of interest for the
COMPASS muon programme:

• deep-inelastic scattering (Q2 ? 0.5GeV2/c2)
for the measurement of spin asymmetries (cf. Chapters 2 and 4) and the hadron
multiplicities (cf. Chapter 5) used in this thesis

• quasi-real photoproduction (Q2 > 0.5GeV2/c2)
for the determination of the helicity contribution of the gluons, ∆G

The DIS events can be identified by detecting muon tracks pointing back to the target. The
small four-momentum transfer in quasi-real photoproduction though results in scattering
angles that are too small to allow this kind of ‘target pointing’. In this case the energy loss
of the scattered muon is used to select the relevant events. The muon triggers identifying
these signatures are the trigger for Q2 ? 0.5 GeV2/c2 and the energy-loss trigger. They
will be described in detail in the following sections.

2The numbers assigned to the hodoscope subsystems (and other detectors) have historical reasons. They
used to mark the distance from the target along the beam axis. The lower-numbered detectors closer to
the target area were not part of the COMPASS apparatus anymore in 2004.
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3.5.1.1 The Energy-Loss Trigger

Quasi-real photoproduction is characterised by a very small four-momentum transfer
(Q2 ≈ 0), which corresponds to a small muon scattering angle. At the same time a large
energy transfer y is necessary to ensure a sufficient photon polarisation. As a consequence
only events with an energy transfer y above a certain minimum - and in turn, an energy-loss
of the scattered muon beyond a certain limit - are of interest.

Figure 3.7: The muon energy is determined by measuring the deflection of the particles in two
different places (x4 and x5) along the beam axis. The two spectrometer magnets are
represented by one ‘effective magnet’ in this drawing [1].

The muon energy is determined by the deflection in the field of the spectrometer magnets
(cf. Fig. 3.7). Because the muons already enter the field at an angle θ due to their interac-
tion with the target nucleons a simple measurement of their distance to the beam axis in
the bending plane (X-coordinate) is not sufficient. The solution is the combination of two
measurements. The X-coordinate of the muon track is determined twice along the beam
axis (Z-coordinate).

Figure 3.8: Lines of constant energy-loss in the x4-x5 plane (cf. Fig. 3.7) [40].

This method allows the determination of the muon scattering angle θ, projected on the
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bending plane, as well as the deflection due to the field of the spectrometer magnets (α)
[40]. Figure 3.8 shows lines of constant energy-loss in the x4-x5 plane.

A trigger decision within 500 ns necessitates the use of detectors with a fast response.
Additionally the short time frame only allows for basic signal processing. The COMPASS
trigger system uses a coincidence measurement. Two X-coordinates and their respective
times are measured. Plastic scintillators offer a good time resolution and are used for this
reason in this part of the trigger. The scintillators are read-out via photomultiplier tubes.
The response time of such a scintillator detector is determined by its respective components
and usually amounts to 30 ns. The time resolution of these detectors is approximately 1 ns.

The energy-loss trigger is based on pairs of scintillators in two different hodoscopes of a
hodoscope subsystem. The subsystems used for the energy-loss trigger are ‘Inner’, ‘Middle’
and ‘Ladder’. Each of the hodoscopes consists of up to 32 scintillators, placed perpendicular
to the bending plane of the beam. Each pair of scintillators (x4, x5) in the two hodoscopes
corresponds to a combination of scattering angle projection (θx) and energy-loss (y).

Figure 3.9: Principle of the energy-loss trigger. A muon scattered at a small angle is deflected
in the magnetic field of the spectrometer magnets according to its energy-loss y. It
triggers a coincidence in the active area of the matrix (and in turn a trigger signal),
while coincidences triggered by halo muons are ignored [33].

The two scintillator signals of a pair are linked by a coincidence logic; for all combinations
(x4, x5) satisfying the condition y(x4, x5) ≥ ymin, and therefore indicating an energy-loss
of the muon larger than ymin, a trigger signal is generated.
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The so-called coincidence matrix constitutes the salient part of this electronic system. The
matrix consists of 32 rows and columns, corresponding to the number of scintillators in the
hodoscopes H4 and H5, and allows to select the coincidence of every possible combination
of scintillator signals. Each of those coincidences (up to 32× 32 = 1024) can be activated
and deactivated independently.

Figure 3.9 shows the principle of the energy-loss trigger. Two different muon tracks are
indicated; both muons generate signals in the hodoscopes and coincidences in the matrix.
The scattered muon, due to its larger energy-loss, is deflected more strongly in the magnetic
field than a beam or halo muon. Both generate signals in different areas of the coincidence
matrix. Areas indicating an energy-loss of less than 20% are deactivated. The borderline
between activated and deactivated areas of the matrix is the line of the constant energy-
loss y = 0.2. The active area (lower right) corresponds to larger energy-losses, the inactive
area (upper left) to smaller energy-losses. Therefore, only muons with an energy-loss of at
least y = 0.2 generate a trigger signal.

3.5.1.2 The Trigger for Q2 ? 0.5 GeV2/c2

This part of the trigger system selects deep-inelastic scattering events with a momentum
transfer of Q2

min ≈ 0.5GeV2/c2 up to Q2 ≈ 50GeV2/c2 and covers energy-losses of 0.1 ≤
y ≤ 0.9. The hodoscope system distinguishes scattered muons and halo muons by ensuring
that the muon passed through the target. This trigger is designed for large scattering
angles and determines the position of the scattered muon in the plane perpendicular to the
deflection plane of the spectrometer magnets (Y-plane). Due to its principle of operation
it is also called the geometrical trigger.

Figure 3.10: Principle of the geometrical trigger. The place of origin of the muon is determined
via selection of scintillator pairs [1]. The dotted lines mark the ‘visual field’ of the
trigger, the volume the trigger cannot discern from the target volume.
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Basis of this trigger are again pairs of scintillators in two hodoscope subsystems; the
‘Middle’ and ‘Outer’ systems. The scintillators are arranged horizontally in this case,
parallel to the deflection plane of the spectrometer magnets. A coincidence logic similar
to the one used for the energy-loss trigger ensures that only muons pointing back to the
target generate a trigger signal.

Figure 3.10 shows the lateral view of the layout. The dotted lines mark the ‘visual field’
of the trigger, the volume the trigger cannot discern from the target volume. The extent
of this volume depends strongly on the width of the scintillator strips.

3.5.2 The Calorimeter Trigger

Basing the trigger decision on the scattered muon alone in the whole kinematic range
allows for contamination with certain background processes. A pure energy-loss trigger
does not discern between low-energy muons from processes relevant for the determination
of ∆G and low-energy muons from other processes. Resulting in an energy-loss of the same
magnitude are:

• Low-energy beam particles
The beam momentum spectrum is normally distributed around its nominal value.
The 1σ-width of this distribution is 7GeV or 4.4%. Accordingly, a large number
of beam muons are misidentified, especially for a small energy-loss y. This number
decreases strongly with increasing energy-loss.

• Elastic muon-electron scattering: µ+ e− → µ′ + e−

The cross section for this process increases for small y with 1/y2.

• Radiative events: µ+N → µ′ +N + γ
The cross section for internal bremsstrahlung depends strongly on the atomic number
Z of a particular material and increases for small energy-loss.

The background sources listed above have one similarity; they result in an energy-loss for
the muon, but - unlike DIS events - do not produce a hadron. Therefore, an additional
hadron detection allows the suppression of these processes in the trigger.

This hadron trigger is based on the hadronic calorimeters HCAL1 and HCAL2. The trigger
system uses their approximately 700 calorimeter modules to generate a signal for every
hadron with a minimum energy.

The high-energy hadron showers usually extend a single calorimeter module. As a conse-
quence the signals of several adjacent cells have to be added up to determine the deposited
energy of a single hadron. 4× 4 calorimeter modules are combined to one block. Hadrons
hitting the edge of one of those blocks distribute their energy among two or four blocks,
which necessitates four different layers of summation to guarantee that at least 85% of the
hadron’s energy is deposited in one block.
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The summation of the signals is achieved in two steps (cf. Fig. 3.11). In a first step the
PMT signal is split to supply both the calorimeter read-out and the trigger logic. The
signal copies for the trigger logic are combined in groups of 2× 2, and fed into the second
summation step. They are again duplicated and combined to blocks of 4 × 4. Each of
these signals is evaluated by a constant fraction discriminator, and a logical OR of the
discriminator outputs is computed. Every signal above a certain threshold is included in
the trigger coincidence.

Figure 3.11: Sketch of the summation logic of the calorimeter trigger. 16 calorimeter modules are
grouped into four blocks. In a second step the signals are added up into blocks of
16. The different colours indicate the amount of deposited energy per block [40].

The beam halo exposes the hadron calorimeters to a high muon flux. HCAL2 with its rela-
tively small beam opening is especially vulnerable; it is traversed by several million muons
per spill. Sufficiently suppressing the muon signals is therefore essential for an efficient use
of the trigger. This is achieved via reasonable energy thresholds for the hadrons.

Figure 3.12: Average energy-loss for muons in iron as a function of the muon energy [40].
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Figure 3.12 shows the average energy-loss of muons in iron [42]. The most important
energy-loss process is ionisation; for muons with an energy of less that 160GeV it amounts
to 66%. Other significant processes are pair production, bremsstrahlung and nuclear reac-
tions.

The typical energy-loss of a 160GeV muon traversing iron amounts to approximately
3.2MeV/(g/cm2), which corresponds to a probable energy deposition of 2GeV for HCAL1
and 2.3GeV for HCAL2.

Figure 3.13: Principle of the energy-loss trigger (cf. Fig. 3.9) with the calorimeter trigger in-
cluded [1].

To successfully suppress the muon signal the energy threshold has to be well above the
typical energy-loss of a 160GeV muon. An energy threshold of twice the value of the
average muon energy-loss cuts the muon signal down to approximately 10%, a threshold
at three times of that value down to 4%. On the other hand a high energy threshold reduces
the efficiency of the calorimeter trigger because low-energy hadrons are disregarded. The
COMPASS hadron calorimeter thresholds are typically set between twice and three times
of the value of the average muon energy deposition.

Figure 3.13 depicts the principle of the energy-loss trigger, with additional hadron detec-
tion from the calorimeters.
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3.5.3 The Veto System

The disadvantage of the calorimeter trigger is that it introduces some bias in the selec-
tion of inclusive events. The hadron calorimeters for example do have different detection
probabilities for positive, negative and neutral hadrons [33]. For the measurement of in-
clusive asymmetries and hadron multiplicities it is therefore preferable to avoid using the
calorimeter trigger information.

On the other hand, a trigger based on a coincidence between two hodoscope planes alone
would result in rates of the order of 106 per spill, much too high for the data acquisition
system to handle. The reason for this is that a considerable fraction of the halo muons cause
a trigger signal as well, without interacting in the target. These unwanted coincidences
can be rejected by a veto system. It consists of scintillator hodoscopes upstream of the
target. Their task is the tagging of all particle tracks within the visual field of the trigger
that did not pass through the target. By demanding the absence of a signal in the veto
system together with a coincidence in two hodoscope planes an adequate trigger purity
can be achieved.

Figure 3.14: Layout of the veto detectors and principle of the veto system. Beam muons traversing
the target are marked in blue and green (µ1 and µ2). Muons entering the spectrome-
ter at an angle (µ3 and µ4 in red) are detected in the trigger hodoscopes even though
there was no interaction with the target. These tracks are registered in either one
or both of the veto detectors ‘Inner 1’ and ‘Inner 2’, and the generation of a trigger
signal is suppressed.

Figure 3.14 shows the principle of the veto system and the layout of the detectors used.
The system is based on the two veto detectors ‘Inner 1’ and ‘Inner 2’, which are located
approximately 8m and 3m in front of the target. The veto counters form a wall of plastic
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scintillators with a circular beam window in the centre. The diameter of the window is
chosen to ensure exclusively the detection of halo muons missing the target.

The use of two veto detectors allows for the detection of muons entering the spectrometer
at an angle to the beam axis. With a hole diameter of approximately 4 cm the system is
able to detect all halo particles with an angle larger than 8.5mrad.

A disadvantage of a veto system like this is the dead time associated with it. A halo muon
hitting one of the veto detectors, even if it does not cause an allowed coincidence in the
trigger hodoscopes, will prohibit a trigger signal for typically 15 ns. The total rate seen by
the veto system in 2004 was approximately 15MHz, resulting in a dead time of the order
of 15 ns × 15MHz ≈ 23% [32].

3.5.4 The Trigger Hodoscopes

The four different hodoscope subsystems consist of a total of 14 scintillator hodoscopes
and nearly 400 scintillators. Each of the hodoscope pairs covers a different range of Q2

and y. This kind of subdividing also allows for customising the respective detectors to fit
the necessary requirements, like selectivity and particle rate.

System name hodoscope name # elements Z-position covered area (X × Y )

Inner H4I (up) 32 32.00m 17.34 cm×32.00 cm

H4I (down) 32 32.00m

H5I (up) 32 51.00m 35.30 cm×51.00 cm

H5I (down) 32 51.00m

Ladder H4LV 32 40.65m 128.20 cm×40.00 cm

H5LV 32 48.05m 168.20 cm×47.50 cm

Middle H4MV (up) 20 40.30m 120.00 cm×102.00 cm

H4MV (down) 20 40.30m

H4MH 32 40.40m

H5MV (up) 20 47.70m 150.00 cm×120.00 cm

H5MV (down) 20 47.70m

H5MH 32 47.80m

Outer H3OH 16 23.00m 200.00 cm×100.00 cm

H4OH (up) 32 40.00m 480.00 cm×225.00 cm

Table 3.3: Hodoscope systems of the COMPASS trigger [40]. The letters ‘H’ and ‘V’ at the end
of a hodoscope name indicate horizontally and vertically arranged scintillator slabs.

Table 3.3 lists all trigger hodoscopes and their most important properties. Hodoscopes
whose names only differ by a number are regarded as two parts of a pair (cf. Section 3.5.1.1)
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by the coincidence logic. Systems with more than one pair, like the ‘Inner’ or ‘Middle’
system, use the logical OR of all pairs as trigger signal.

Figure 3.15 depicts the covered kinematic regions of the respective trigger systems in the
y−Q2 plane. The ‘Inner’ and ‘Ladder’ systems (and part of the ‘Middle’ system) cover the
region of small Q2; they form the energy-loss trigger (spatial resolution in both the X and
Y planes). ‘Outer’ and ‘Middle’ are parts of the deep-inelastic trigger (spatial resolution
only in the X plane).

Figure 3.15: Simplified representation of the kinematic regions (momentum transfer Q2 and en-
ergy transfer y) covered by the respective hodoscope systems [8].

3.6 Data Acquisition and Reconstruction

There are two ways to measure the analog signals of the detectors in COMPASS. Either
they are measured with analog to digital converters (ADC), which yield the amplitude
of the signal; or they are first discriminated and the resulting signals are measured with
time to digital converters, which provide a time information of the hit. This information,
combined with a unique number for every channel of every detector, is read out with
each trigger, then first written to disk and finally transferred to and stored on the CERN
Advanced STORage manager (CASTOR).

These data files, so-called raw data files, contain all available information about the
recorded events. Before they can be used for a physics analysis they have to be recon-
structed to extract the essential information of the physical event. In practical terms this
means the reconstruction of particle tracks and vertices, energy clusters in the calorimeters,
and identification of particle types from RICH data. Used for this is the official COMPASS
reconstruction programme CORAL3, a software package implemented in C++.

3CORAL: COmpass Reconstruction and AnaLysis programme
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Decoding is the first step; for this the actual positions of detector channels are taken into
account, as well as specific properties of the detectors, like timing and energy calibration.
Completed, this results in a list of hits. The second step is clustering; hits in neighboring
channels are grouped into clusters.

Using a Kalman filter4 tracks and vertices are reconstructed, based on the produced list
of clusters. The output of this process contains e.g. interaction vertices, track parameters
and RICH likelihoods. These are written to mini Data Summary Tapes (mDST), which
contain the collected and reconstructed information in root trees [43]. The actual physics
analysis is performed on these mDSTs. For this PHAST (Physics Analysis Software Tools)
is used. The software package provides an interface for the user to access the features of
the reconstructed events, as well as a set of algorithms to compute the relevant physical
values of each event, which are then stored in a user defined root subsample tree. These
are then used for the final physics analyses.

4The Kalman filter is an algorithm which operates recursively on streams of noisy input data to produce
a statistically optimal estimate of the underlying system state.



Chapter 4

The Extraction of ∆q from
COMPASS Data

In the following a brief report is given on a previous evaluation of quark helicity distri-
butions from COMPASS data. For an in-depth description of the analysis, see [44]. The
chapter is structured as follows: After a short introduction summarising the results from
earlier publications, Section 4.2 specifies the data used to determine the double spin cross
section asymmetries. Then the method of extraction for the polarised PDFs is explained
and the results are discussed. Finally the influence of fragmentation functions on the ex-
tracted polarised distributions is examined, with special emphasis on the strange quark
fragmentation functions.

4.1 Introduction

As discussed in Chapter 2 the measurement of semi-inclusive asymmetries grants a direct
access to flavour-separated valence as well as sea quark contributions to the nucleon spin.
The first measurement of semi-inclusive DIS (SIDIS) asymmetries was performed by the
EMC collaboration in 1989 [10]. More recently, in 1997, the SMC collaboration measured
SIDIS asymmetries for unidentified charged hadrons [45]. In 2008 the HERMES collab-
oration published semi-inclusive DIS asymmetries [24] for charged pion production on a
proton and a deuteron target, and for charged kaon production on a proton target. While
these asymmetries allowed for a flavour decomposition into five1 helicity distributions,
they did not permit a separate extraction of ∆s̄.

An earlier publication by the COMPASS collaboration presented a LO evaluation of the
isoscalar2 polarised valence, sea and strange distributions (∆uv + ∆dv), (∆ū + ∆d̄) and

1The five extracted helicity distributions were ∆u,∆d,∆ū,∆d̄, and ∆s = ∆s̄.
2Due to the exclusive use of data collected with an isoscalar target, only the sum of the valence and

antiquark distributions could be extracted.
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(∆s+∆s̄), derived from DIS and SIDIS asymmetries on a polarised deuteron target only
([23], cf. Section 2.5).

The analysis discussed here was based on several sets of asymmetries:

• new semi-inclusive asymmetries for scattering high-energy muons
off a polarised proton target for

– charged pions: Aπ+

1,p, A
π−

1,p

– charged kaons: AK+

1,p , A
K−

1,p (first time measurement)

• previously measured semi-inclusive asymmetries for scattering high-energy muons
off a polarised deuteron target for

– charged pions: Aπ+

1,d, A
π−

1,d

– charged kaons: AK+

1,d , A
K−

1,d

• previously measured inclusive asymmetries for both proton and deuteron targets:
A1,d [23], A1,p [46].

Using these measurements, a full flavour decomposition in LO was performed, accessing
for the first time all up, down and strange quark (and antiquark) distributions separately
[47].

4.2 Data and Asymmetries

The data used for this analysis were collected in 2007, using the COMPASS spectrometer
(see Chapter 3). A 160GeV muon beam was scattered off a polarised NH3 target consist-
ing of three consecutive cells. The energy of the muons was constrained to the interval
140GeV< Eµ < 180GeV. The deep-inelastic scattering region was defined by cuts on
the photon virtuality, Q2 > 1 (GeV/c)2, and on the fractional energy transfered from the
muon to the virtual photon, y, constrained to 0.1 < y < 0.9. The data sample used covered
the x range of 0.004 < x < 0.7, and consisted of 85.3 million events.

All events were required to have a reconstructed primary vertex inside one of the three
target cells. Hadron tracks were required to originate from the primary vertex, with their
fractional energy z larger than 0.2 in order to select hadrons produced in the current frag-
mentation region (cf. Section 2.5), and smaller than 0.85 to suppress hadrons produced in
diffractive processes. Hadrons were identified in the RICH detector. The available momen-
tum range was therefore restricted to an interval of 10GeV/c < p < 50GeV/c in order
to ensure the identification of both pions and kaons (cf. Section 3.4.1). The total samples
of π+ (π−) amounted to 12.3 (10.9) million hadrons, the ones for K+ (K−) to 3.6 (2.3)
million hadrons, respectively.
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The experimental double-spin asymmetries for a proton target which were used in the anal-
ysis are shown in Fig. 4.1. Two additional sets of asymmetries are displayed for comparison;
the predictions of the DSSV3 fit [48] for (x,Q2) values of the data, and the HERMES in-
clusive [49] and semi-inclusive [24] measurements for π+ and π−. Even though no kaon
data had been available for the DSSV fits, they agree very well with the COMPASS asym-
metries, including the semi-inclusive kaon asymmetries. The agreement of the COMPASS
and HERMES inclusive and pion asymmetries is also good, despite the different kinematic
regions (in Q2 for the same x), illustrating the fact that the Q2 dependence for a fixed
value of x is small for semi-inclusive asymmetries.

Figure 4.1: The inclusive asymmetry A1,p [46] and the semi-inclusive asymmetries Aπ+

1,p, A
π−

1,p ,

AK+

1,p , A
K−

1,p (closed circles). The bands at the bottom of each plot show the systematic

errors. The A1,p, A
π+

1,p and Aπ−

1,p measurements from HERMES [49], [24] (open circles)
are shown for comparison. The curves show the predictions of the DSSV fit [48]. (plot
taken from [44])

.

4.3 Extracted Helicity Distributions

At LO in QCD and under the assumption of independent quark fragmentation, the spin
asymmetry for hadrons produced in the current fragmentation region can be written as
(see also Eq. 2.55 in Chapter 2.3.2):

3DSSV: D. de Florian, R. Sassot, M. Stratmann, and W. Vogelsang
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Ah
1(x, z,Q

2) =

∑

q e
2
q

(
∆q(x,Q2)Dh

q (z,Q
2) + ∆q̄(x,Q2)Dh

q̄ (z,Q
2)
)

∑

q e
2
q

(
q(x,Q2)Dh

q (z,Q
2) + q̄(x,Q2)Dh

q̄ (z,Q
2)
) (4.1)

with q = u, d, s. The asymmetries were measured at the average Q2 values in each x bin
starting from 1.3 (GeV/c)2 at low x up to 60 (GeV/c)2 for the larges x values. Since no
significant dependence uponQ2 had been observed, theQ2 dependence was neglected in the
analysis; all measurements were assumed to be valid at Q2

0 = 3 (GeV/c)2. The unpolarised
PDFs (in LO) from the MRST parametrisation [25] were used, the fragmentation functions
were taken from the DSS LO parametrisation [26].

The values for the unpolarised MRST PDFs originate from the measured structure func-
tion F2 in which the ratio R = σL/σT adopts non-zero values whereas R is assumed to be
zero at LO (cf. Eq. 2.24). To correct for this, the asymmetries were divided by 1+R(x,Q2

0).
The asymmetries for a deuteron target were corrected by a factor (1 − 1.5ωD) with ωD

being the probability for a deuteron to be in a D state4.

Integrating over the measured range of z (0.2 < z < 0.85) and neglecting the Q2 depen-
dence of the asymmetries, Eq. 4.1 is reduced to:

Ah
1(x) =

∑

q e
2
q

(
∆q(x)Dh

q +∆q̄(x)Dh
q̄

)

∑

q e
2
q

(
q(x)Dh

q + q̄(x)Dh
q̄

) , (4.2)

in which Dh
q stands for

∫ 0.85
0.2 Dh

q (z,Q
2
0 = 3(GeV/c)2. The ten asymmetries used in the

analysis (A1,p, A
π±

1,p , A
K±

1,p , A1,d, A
π±

1,d , A
K±

1,d ) provide a system of ten equations for six

unknowns (∆u, ∆d, ∆s, ∆ū, ∆d̄, ∆s̄):

~A = B ~∆q, (4.3)

with

~A =
(

A1,p, A
π±

1,p , A
K±

1,p , A1,d, A
π±

1,d , A
K±

1,d )
)

, (4.4)

and

~∆q =
(
∆u,∆d,∆d,∆ū,∆d̄,∆s̄

)
. (4.5)

B is a matrix containing linear combinations of the unloarised PDFs. To extract the
polarised quark distributions ∆q(x) as a function of x, the system of equations had to be

4D state refers to an orbital angular momentum of L = 2. The deuteron D-state admixture accounts
for its magnetic moment: ωD ≈ 0.04.
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solved in each x bin by performing a least-square fit, which required to minimize the χ2,
defined by:

χ2 = ( ~A−B ~∆q)T (covA)
−1( ~A−B ~∆q), (4.6)

where covA is the covariance matrix containing the uncertainties of the measured asym-
metries.

Since the antiquark distributions become insignificant for large values of x, x = 0.3 was
used as an upper limit for the analysis. Above this limit, ∆u(x) and ∆d(x) were taken
from the inclusive structure functions gp1(x) and gd1(x) (assuming the antiquark helicity
distributions ∆q̄ to be zero).

Figure 4.2 shows the results of the least-square fit for the ∆s and ∆s̄ distributions, as
well as the difference ∆s − ∆s̄. Both distributions are compatible with zero within the
measured range. This also applies to their difference.

Figure 4.2: Comparison of x∆s (open circles) and x∆s̄ (squares) at Q2
0 = 3 (GeV/c)2 (top) and

the corresponding values of the difference x(∆s−∆s̄) (bottom) (plot taken from [44])

.

For unpolarised PDFs of the MRST parametrisation s(x) = s̄(x) was assumed. To verify
that this assumption does not artificially generate the vanishing values for ∆s −∆s̄, the
s(x) and s̄(x) distributions were scaled simultaneously by a factor of 2 and 0.5, respectively,
and allowed to differ by a factor up to 2 in any interval of x. The resulting values of ∆s
and ∆s̄ were found to be nearly independent of those modifications.

It was concluded that there is no significant difference between ∆s(x) and ∆s̄(x) in the
covered range; a conclusion that also remained valid when the DSS fragmentation functions
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used in the fit were replaced by those derived by the EMC collaboration. Therefore the
distributions of ∆s(x) and ∆s̄(x) were assumed to be equal, reducing the number of
unknowns from six to five, which in turn improved the statistical precision of the fit
results.

The results for the quark helicity distributions ∆u(x), ∆d(x), ∆ū(x), ∆d̄(x) and ∆s(x)
(∆s(x) = ∆s̄(x)) are shown in Fig. 4.3. Three additional values of ∆u(x) and ∆d(x)
are displayed for the range 0.3 < x < 0.7, derived from the gp1(x) and gd1(x) structure
functions. The curves show the results of the DSSV fit at Next-to-Leading Order (NLO)
[48]. Therefore the comparison with the experimental results derived at LO can be only
qualitative. Even so, the DSSV curves reproduce the shape of the data quite well, which
indicates that a direct extraction at LO provides a good estimate of the shape of the
helicity distributions.

The antiquark distributions ∆ū and ∆d̄ do not show any significant variation in x; ∆ū
remains consistant with zero in the measured range, while ∆d̄ is slightly negative.

Figure 4.3: The quark helicity distributions x∆u, x∆ū, x∆u, x∆ū, x∆u at Q2
0 = 3 (GeV/c)2

as a function of x. The values for x < 0.3 (black dots) are derived at LO from the
COMPASS spin asymmetries using the DSS fragmentation functions. The values for
x > 0.3 (squares) are derived from the values of the polarised structure function
g1(x), assuming ∆q̄ = 0 . The bands at the bottom show the systematic errors, the
curves show the predictions of the DSSV fit calculated at NLO (plot taken from [44]).

The values of the strange quark helicity distribution confirm the results obtained from
the deuteron data ([23], cf. Chapter 2.5), with slightly reduced errors. With the first
point at low x as the only exception ∆s(x) shows no significant variation and remains
compatible with zero over the measured range. These results are particularly interesting,
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due to the apparent contradiction between the inclusive and semi-inclusive measurements
already outlined previously (cf. Chapters 1 and 2); while the first moment of the polarised
strange quark distribution derived from the spin structure function g1(x) [50] is large and
negative, the semi-inclusive results indicate a ∆s(x) compatible with zero in the measured
x range.

Two possible explanations for these observations are a breaking of the SU(3) flavour
symmetry, or a sign change of ∆s(x) at lower values of x. Supporting the first possibility
are recent model calculations5 [51], resulting in a non-negative value for the first moment
of ∆s. The second option is used by the DSSV fit, which compensates for the differences
between the results from inclusive and semi-inclusive measurements by including a negative
contribution for small values of x.

Finally, as already illustrated in Chapter 2.5, the results for the polarised parton distri-
butions depend strongly on the fragmentation functions used in the analysis. This will be
further explored in Section 4.4.

4.3.1 First Moments of ∆q

The first moments of the helicity distributions are listed in Table 4.1. The missing contri-
butions outside the measured range have been evaluated twice, once by extrapolating the
measured values, and alternatively by using the values provided by the DSSV parametri-
sation.

Extrapolation DSSV

∆u 0.71± 0.02± 0.03 0.71± 0.02± 0.03

∆d -0.34± 0.04± 0.03 -0.35± 0.04± 0.03

∆ū 0.02± 0.02± 0.01 0.03± 0.02± 0.01

∆d̄ -0.05± 0.03± 0.02 -0.07± 0.03± 0.02

∆s(∆s̄) -0.01± 0.01± 0.01 -0.05± 0.01± 0.01

∆uv 0.68± 0.03± 0.03 0.68± 0.03± 0.03

∆dv -0.29± 0.06± 0.03 -0.28± 0.06± 0.03

∆Σ 0.32± 0.03± 0.03 0.22± 0.03± 0.03

Table 4.1: Full first moments of the quark helicity distributions at Q2
0 = 3 (GeV )2. The unmea-

sured contributions at low and high x were estimated by extrapolating the data towards
x = 0 and x = 1 and by using the DSSV parametrisation (data taken from [44]).

5The evaluation of ∆s from inclusive measurements relies on the value of the octet axial charge a8, which
in turn is derived - under the assumption of SU(3)f symmetry - from hyperon weak decays. A possible
solution is offered by [51], suggesting a substantially reduced value for a8, in which case the inclusive data
would no longer imply a negative value ∆s(x).
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Both methods lead to similar values for the valence quark moments ∆uv = ∆u−∆ū and
∆dv = ∆d −∆d̄. However, the results for the strange quark moments show considerable
differences, depending on the method of evaluation. The values for the first moments of
∆s (∆s̄) derived using the DSSV parametrisation are not compatible with zero, but signif-
icantly negative due to the sign change of the parametrisation at x = 0.03. Consequently,
the values for ∆Σ, as the total sum of the valence and sea quark contributions, differ
strongly for the two evaluations.

4.4 Influence of Fragmentation Functions on ∆q

As already explored in Chapter 2.5, the relation between the semi-inclusive asymmetries
and the quark helicity distributions depends only on ratios of fragmentation functions
integrated over the measured interval of z (0.2 < z < 0.85). The relevant ratios for kaon
asymmetries are RSF and RUF , of the strange-to-favoured and unfavoured-to-favoured
fragmentation functions (cf. Eq. 2.61). Both ratios have distinct values for the fragmenta-
tion function parametrisations used; RSF = 6.6 and RUF = 0.13 for DSS, and RSF = 3.4
and RUF = 0.35 for EMC.

The dependence of the first moments (truncated to the measured range) on the fragmen-
tation functions was evaluated as follows: RSF was gradually increased from 2.0 to 7.0. To
ensure that the K+ multiplicities remained approximately constant, the value of RUF was
decreased simultaneously. For this the relation RUF = 0.35 − 0.07(RSF − 3.4) was used,
resulting in values of 0.45 to 0.10 for the unfavoured-to-favoured ratio.

Figure 4.4 shows the resulting first moments ∆u, ∆ū, ∆d, ∆d̄, ∆s, (∆ū−∆d̄) as a function
of RSF . The values of ∆u decrease from 0.50 to 0.47, while the ones for ∆ū increase from
zero to 0.015 with the evolution of RSF from EMC to DSS values. ∆d and ∆d̄ remain
nearly constant. Correspondingly, the difference ∆ū−∆d̄ follows the same trend as ∆ū.

∆s on the other hand changes much more strongly. It increases from -0.04 for the EMC
fragmentation functions to -0.01 for the DSS FFs, although is has to be noted that the
statistical uncertainty for the EMC fragmentation functions is quite large.

4.5 Conclusions

The inclusive and semi-inclusive asymmetries measured by the COMPASS collaboration
were used to evaluate the quark and antiquark helicity distributions ∆u, ∆d, ∆ū, ∆d̄
and ∆s (assumed equal to ∆s̄). The first moments determined for all extracted distri-
butions have been found in good agreement with previous measurements and the DSSV
parametrisation.

The problem of the discrepancies between evaluations of the strange quark contribution to
the nucleon spin from inclusive and semi-inclusive measurements has remained unsolved so
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Figure 4.4: Variation of the first moments ∆u, ∆ū, ∆d, ∆d̄, ∆s, ∆ū −∆d̄, integrated over the
interval 0.004 < x < 0.3 as a function of the ratio RSF of s and u quark fragmentation
functions into K+. The ratio RUF is varied linearly from 0.13 at RSF = 6.6 to 0.35
at RSF = 3.4. The black dots indicate the values obtained using the EMC and the
DSS kaon fragmentation functions, respectively (plot taken from [44]).

.

far. However, studies have been performed, examining the evolution of the first moments of
the extracted helicity distributions with the FF ratios RSF and RUF . The results strongly
indicate a substantial dependence of the extracted polarised PDFs on the fragmentation
functions used in the analysis. The moments of ∆u, ∆ū and ∆s all vary significantly with
the choice of fragmentation functions. Particularly for ∆s this dependence appears to be
critical; a negative strange quark contribution may be possible, although the uncertainties
for the evaluation are very large.

A more precise determination of fragmentation functions is therefore essential. The devel-
opment of a method for the extraction of FFs from COMPASS data is the main subject
of this thesis and will be covered in detail in the following chapters.
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Chapter 5

The Extraction of Fragmentation
Functions from COMPASS Data

In the following a method for extracting fragmentation functions from hadron multiplicities
is developed and tested. As described in detail in Section 2.5, and again illustrated by the
results presented in Chapter 4, the evaluation of the strange quark helicity distribution
from semi-inclusive asymmetries depends strongly on the fragmentation functions used in
the analysis. Kaon fragmentation functions in particular are poorly known; therefore an
independent evaluation of those FFs would be useful for the further exploration of the
nucleon spin distribution.

5.1 Method of Extraction

The starting point in deriving the method of extraction of fragmentation functions is the
relation between the number of hadrons dNh

dxdz
, depending on the two scaling variables x

and z, and the unpolarised quark distributions, q(x), and the fragmentation functions,
Dh

q (z):

dNh

dxdz
∼

∑

q

e2qq(x)D(z). (5.1)

There is an additional Q2 dependence to all the factors (cf. Section 2.4.1), which is omitted

here. Normalised to the number of scattered leptons dN l

dx
one obtains in LO QCD:

rh(x, z) =
dNh

dxdz

dN l

dx

=

∑

q e
2
qq(x)D

h
q (z)

∑

q e
2
qq(x)

, (5.2)
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where rh(x, z) stands for the hadron multiplicities (cf. Eq. 2.31). The sum runs over all
six light quark flavours: q = u, d, s, ū, d̄, s̄.

For a proton target Eq. 5.2 reads:

rh(x, z) =
4uDh

u + dDh
d + sDh

s + 4ūDh
ū + d̄Dh

d̄
+ s̄Dh

s̄

4(u+ ū) + (d+ d̄) + (s+ s̄)
. (5.3)

For a deuteron target the relation can be expressed via the sum for a proton and neutron
target. Using isospin symmetry (uproton ≡ dneutron and dproton ≡ uneutron) one finds:

rh(x, z) =
(u+ d)(4Dh

u +Dh
d ) + (ū+ d̄)(4Dh

ū +Dh
d̄
) + 2sDh

s + 2s̄Dh
s̄

5(u+ ū+ d+ d̄) + 2(s+ s̄)
. (5.4)

Using existing parametrisations for the unpolarised PDFs, and the multiplicities measured
by the COMPASS collaboration [39], these equations can be used to extract fragmentation
functions.

If now a hadron type h is specified, twelve fragmentation functions appear in this ex-
pression, corresponding to six quark flavours and two hadron charges. For instance, for
charged kaons (K+,K−) these twelve fragmentation functions are: DK+

u , DK+

d , DK+

s ,

DK+

ū , DK+

d̄
, DK+

s̄ , DK−

u , DK−

d , DK−

s , DK−

ū , DK−

d̄
, DK−

s̄ . Assuming charge conjugation

symmetry (DK+

u = DK−

ū , DK+

d = DK−

d̄
, ...), this number can be reduced to six1.

5.2 System of Equations for Kaons

For kaons (K+ ≡ s̄u, K− ≡ sū) these remaining six fragmentation functions (DK+

u , DK+

d ,

DK+

s , DK+

ū , DK+

d̄
, DK+

s̄ ) can be classified as follows:

The largest one is the favoured strange quark fragmentation function, DK+

s̄ , followed in
magnitude by the favoured up quark fragmentation function, DK+

u , and the unfavoured
fragmentation functions, DK+

s , DK+

ū , DK+

d̄
, DK+

d .

In a first step it is now assumed that these unfavoured fragmentation functions are the
same. They are denoted Dunf . Correspondingly, the strange quark favoured fragmentation
function is denoted Dstr, and up quark favoured fragmentation function Dfav.

1No further symmetry considerations apply. Note that the isospin partner of K+ is K0.
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An overview of the three groups, their denotations, and the fragmentation functions con-
tained is given in the following table:

Dstr DK+

s̄ ≡ DK−

s

Dfav DK+

u ≡ DK−

ū

Dunf DK+

s ≡ DK−

s̄ , DK+

ū ≡ DK−

u , DK+

d ≡ DK−

d̄
, DK+

d̄
≡ DK−

d

For a deuteron target this leads to the following equations:

rK
+
=

2s̄Dstr + 4(u+ d)Dfav + (u+ d+ 5(ū+ d̄) + 2s)Dunf

5(u+ d+ ū+ d̄+ 2(s+ s̄))
(5.5)

rK
−

=
2sDstr + 4(ū+ d̄)Dfav + (ū+ d̄+ 5(u+ d) + 2s̄)Dunf

5(u+ d+ ū+ d̄+ 2(s+ s̄))
(5.6)

The next step makes use of the factorisation ansatz for hadron production in deep-inelastic
scattering (cf. Section 2.2.2); the assumption that the unpolarised PDFs, q(x), only depend
on x, while the fragmentation functions Dh

q (z) only depend on z . By writing Eq.s 5.5 and
5.6 in bins of x for a fixed range of z allows to extract the fragmentation functions for this
z range:

~r = B(q)× ~D. (5.7)

The resulting system of equations for twelve bins of x is:
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The entries bi,i for the matrix B contain the unpolarised PDFs according to Eq.s 5.5
and 5.6:
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[2s̄](x1)
DIS(x1)

[4(u+d)](x1)
DIS(x1)

[u+d+5(ū+d̄)+2s](x1)
DIS(x1)

[2s](x1)
DIS(x1)

[4(ū+d̄)](x1)
DIS(x1)

[ū+d̄+5(u+d)+2s̄](x1)
DIS(x1)

[2s̄](x2)
DIS(x2)

[4(u+d)](x2)
DIS(x2)

[u+d+5(ū+d̄)+2s](x2)
DIS(x2)

[2s](x2)
DIS(x2)

[4(ū+d̄)](x2)
DIS(x2)

[ū+d̄+5(u+d)+2s̄](x2)
DIS(x2)

...
...

...

[2s̄](x12)
DIS(x12)

[4(u+d)](x12)
DIS(x12)

[u+d+5(ū+d̄)+2s](x12)
DIS(x12)

[2s](x12)
DIS(x12)

[4(ū+d̄)](x12)
DIS(x12)

[ū+d̄+5(u+d)+2s̄](x12)
DIS(x12)




































Dstr

Dfav

Dunf











, (5.9)

with DIS(xi) = 5[u+ d+ ū+ d̄+ 2(s+ s̄)](xi).

In a simple model the nucleon can be described in terms of a valence quark (qv) and a sea
quark distribution (q̄). The u and d valence quark distributions differ only in magnitude,
but not in shape, and all sea quark distributions are considered to be roughly equal (see
Fig. 5.1).

Figure 5.1: Parton distribution functions from the CTEQ6 parametrisation. In a simplified model
all sea quark distributions can be considered roughly equal [52].
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In this case the resulting unpolarised PDFs for the individual quark flavours can be written
as:

u(x) = 2qv(x) + αuq̄(x) (5.10)

d(x) = qv(x) + αdq̄(x) (5.11)

q(x) = αq q̄(x) (5.12)

for q = ū, d̄, s, s̄.

With this the matrix in Eq. 5.9 can be re-written as:
























rK
+
(x1)

rK
−

(x1)

rK
+
(x2)

rK
−

(x2)

...

rK
+
(x12)

rK
−

(x12)
























=

























[2αq q̄](x1)
DIS(x1)

[12qv+8αq q̄](x1)
DIS(x1)

[3qv+14αq q̄](x1)
DIS(x1)

[2αq q̄](x1)
DIS(x1)

[8αq q̄](x1)
DIS(x1)

[15qv+14αq q̄](x1)
DIS(x1)

[2αq q̄](x2)
DIS(x2)

[12qv+8αq q̄](x2)
DIS(x2)

[3qv+14αq q̄](x2)
DIS(x2)

[2αq q̄](x2)
DIS(x2)

[8αq q̄](x2)
DIS(x2)

[15qv+14αq q̄](x2)
DIS(x2)

...
...

...

[2αq q̄](x12)
DIS(x12)

[12qv+8αq q̄](x12)
DIS(x12)

[3qv+14αq q̄](x12)
DIS(x12)

[2αq q̄](x12)
DIS(x12)

[8αq q̄](x12)
DIS(x12)

[15qv+14αq q̄](x12)
DIS(x12)



































Dstr

Dfav

Dunf











. (5.13)

Analysing Eq. 5.13 one finds the rank of the matrix containing the unpolarised PDFs
is three. Thus, even by using a very simplified model of nucleon quark distributions as
described above, and without regarding the values of the αq, the system of equations
represented by the matrix can be solved for three unknown fragmentation functions.

5.2.1 Assumption DK+

s = DK+

ū = DK+

d = DK+

d̄

While the assumption DK+

d = DK+

d̄
seems valid considering the quark content of the K+

(≡ us̄), a more careful consideration of the processes involved in the production of charged
kaons yields another picture. A K+ may originate from K0∗ ≡ ds̄ via the decay K+π− but
not from K̄0∗ ≡ d̄s which decays to K−π+. Therefore a K+ is more likely to be produced
from a d quark, via K0∗, than from a d̄ quark. This leads to the expectation DK+

d > DK+

d̄
.

To confirm this assumption, the particle physics event generator PYTHIA [53] was used
to simulate the fragmentation process for kaons.

The values for the PYTHIA generated kaon fragmentation are plotted in Fig. 5.2, for
0.2 < z < 1. The integrated values are listed in Table 5.1. The results confirm the above
explained expectations. So is e.g. DK+

d ≈ 2DK+

d̄
.
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Figure 5.2: Kaon fragmentation functions generated with PYTHIA [53]. The fragmentation func-
tions are plotted in eight z bins, with a bin width of dz = 0.1

Considering these findings, it does seem advisable to increase the number of fragmentation
function groups to extract from three to four.

quark q hadron h
∫ 1
0.2D

h
q (z) quark q hadron h

∫ 1
0.2D

h
q (z)

s̄ K+ 0.358 s K− 0.342

u K+ 0.092 ū K− 0.093

d K+ 0.061 d̄ K− 0.067

s K+ 0.043 s̄ K− 0.052

ū K+ 0.036 u K− 0.030

d̄ K+ 0.037 d K− 0.029

Table 5.1: Expected values for the kaon fragmentation functions from PYTHIA simulation

5.2.2 Alternative System of Equations for Kaons

For this approach the remaining six fragmentation functions for charged kaons (DK+

u ,
DK+

d , DK+

s , DK+

ū , DK+

d̄
, DK+

s̄ ) are classified in a slightly different way. They are now
divided into four different groups; the first consisting of the favoured strange quark frag-
mentation function, DK+

s̄ , followed by the favoured up quark fragmentation function,
DK+

u . The unfavoured fragmentation functions are again divided into two groups, accord-
ing to the expected values from the PYTHIA simulation (see Table 5.1). The third group
is made up of the unfavoured fragmentaion functions for the d and s quarks, DK+

d and

DK+

s (PYTHIA values of 0.06 and 0.05, respectively), while the fourth one contains the
fragmentation functions with the smallest expected values (0.03), DK+

ū and DK+

d̄
.
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The new denotations are listed in table below:

Dstr DK+

s̄ ≡ DK−

s

Dfav DK+

u ≡ DK−

ū

Duf1 DK+

s ≡ DK−

s̄ , DK+

d ≡ DK−

d̄

Duf2 DK+

ū ≡ DK−

u , DK+

d̄
≡ DK−

d

For a deuteron target this leads to the following equations:

rK
+
=

2s̄Dstr + 4(u+ d)Dfav + (u+ d+ 2s)Duf1 + 5(ū+ d̄)Duf2

5(u+ d+ ū+ d̄+ 2(s+ s̄))
(5.14)

rK
−

=
2sDstr + 4(ū+ d̄)Dfav + (ū+ d̄+ 2s̄)Duf1 + 5(u+ d)Duf2

5(u+ d+ ū+ d̄+ 2(s+ s̄))
. (5.15)

Like before (cf. Section 5.2) one can take advantage of the fact that the unpolarised parton
distributions only depend on x, while the fragmentation functions only depend on z (see
Eq. 5.7). The obtained system on equations now has the structure:
























rK
+
(x1)

rK
−

(x1)

rK
+
(x2)

rK
−

(x2)

...

rK
+
(x12)

rK
−

(x12)
























=
























b1,1 b1,2 b1,3 b1,4

b2,1 b2,2 b2,3 b2,4

b3,1 b3,2 b3,3 b3,4

b4,1 b4,2 b4,3 b4,4

...
...

...

b23,1 b23,2 b23,3 b23,4

b24,1 b24,2 b24,3 b24,4







































Dstr

Dfav

Duf1

Duf2
















. (5.16)

The entries bi,i for the matrix B contain the unpolarised PDFs according to Eq.s 5.14 and
5.15:
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rK
+
(x1)

rK
−

(x1)

rK
+
(x2)

rK
−

(x2)

...

rK
+
(x12)

rK
−

(x12)
























=


























[2s̄](x1)
DIS(x1)

[4(u+d)](x1)
DIS(x1)

[u+d+2s](x1)
DIS(x1)

[5(ū+d̄)](x1)
DIS(x1)

[2s](x1)
DIS(x1)

[4(ū+d̄)](x1)
DIS(x1)

[ū+d̄+2s̄](x1)
DIS(x1)

[5(u+d)](x1)
DIS(x1)

[2s̄](x2)
DIS(x2)

[4(u+d)](x2)
DIS(x2)

[u+d+2s](x2)
DIS(x2)

[5(ū+d̄)](x2)
DIS(x2)

[2s](x2)
DIS(x2)

[4(ū+d̄)](x2)
DIS(x2)

[ū+d̄+2s̄](x2)
DIS(x2)

[5(u+d)](x2)
DIS(x2)

...
...

...

[2s̄](x12)
DIS(x12)

[4(u+d)](x12)
DIS(x12)

[u+d+2s](x12)
DIS(x12)

[5(ū+d̄)](x12)
DIS(x12)

[2s](x12)
DIS(x12)

[4(ū+d̄)](x12)
DIS(x12)

[ū+d̄+2s̄](x12)
DIS(x12)

[5(u+d)](x12)
DIS(x12)









































Dstr

Dfav

Duf1

Duf2
















,

(5.17)

with DIS(xi) = 5[u+ d+ ū+ d̄+ 2(s+ s̄)](xi).

Using the simplified model for the nucleon-quark distributions from Section 5.2 again (cf.
Eq.s 5.10, 5.11, 5.12 and Fig. 5.1), the matrix in Eq. 5.17 can be rewritten as:
























rK
+
(x1)

rK
−

(x1)

rK
+
(x2)

rK
−

(x2)

...

rK
+
(x12)

rK
−

(x12)
























=

























[2αq q̄](x1)
DIS(x1)

[12qv+8αq q̄](x1)
DIS(x1)

[3qv+4αq q̄](x1)
DIS(x1)

[10αq q̄](x1)
DIS(x1)

[2αq q̄](x1)
DIS(x1)

[8αq q̄](x1)
DIS(x1)

[4αq q̄](x1)
DIS(x1)

[15qv+10αq q̄](x1)
DIS(x1)

[2αq q̄](x2)
DIS(x2)

[12qv+8αq q̄](x2)
DIS(x2)

[3qv+4αq q̄](x2)
DIS(x2)

[10αq q̄](x2)
DIS(x2)

[2αq q̄](x2)
DIS(x2)

[8αq q̄](x2)
DIS(x2)

[4αq q̄](x2)
DIS(x2)

[15qv+10αq q̄](x2)
DIS(x2)

...
...

...

[2αq q̄](x12)
DIS(x12)

[12qv+8αq q̄](x12)
DIS(x12)

[3qv+4αq q̄](x12)
DIS(x12)

[10αq q̄](x12)
DIS(x12)

[2αq q̄](x12)
DIS(x12)

[8αq q̄](x12)
DIS(x12)

[4αq q̄](x12)
DIS(x12)

[15qv+10αq q̄](x12)
DIS(x12)








































Dstr

Dfav

Duf1

Duf2
















(5.18)

Analysing the matrix in Eq. 5.18 one realises that the third column is a linear combination
of the first two columns:

C3 = C2/4 + C1. (5.19)

The rank of the matrix is 3, which implies that it is not possible to extract four unknown
fragmentation functions. Assuming that the relations 5.10, 5.11 and 5.12 hold, any attempt
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to extract more than three unknown fragmentation functions would have to rely on the
difference in shape of the valence quark PDFs uv and dv, or sea quark PDFs ū, d̄ and s̄.
Considering the shapes of these two (respectively three) distributions are very similar (cf.
Fig. 5.1), this would result in an unacceptably large statistical error.

5.3 System of Equations for Pions

If the hadron type specified for Eq. 5.4 are charged pions (π+ ≡ ud̄, π− ≡ dū), the following
twelve fragmentation functions remain:Dπ+

u ,Dπ+

d ,Dπ+

s ,Dπ+

ū ,Dπ+

d̄
,Dπ+

s̄ ,Dπ−

u ,Dπ−

d ,Dπ−

s ,

Dπ−

ū , Dπ−

d̄
, Dπ−

s̄ . Assuming charge conjugation symmetry (Dπ+

u = Dπ−

ū , Dπ+

d = Dπ−

d̄
, ...),

this number can be reduced to six.

These six remaining fragmentation functions are Dπ+

u , Dπ+

d , Dπ+

s , Dπ+

ū , Dπ+

d̄
, Dπ+

s̄ . They
can be treated in a similar way as the ones for the charged kaons. The favoured frag-
mentation functions are in this case Dπ+

u and Dπ+

d̄
. Because pions do not contain s or s̄

valence quarks, the strange quark fragmentation functions are to be expected of the same
order of magnitude as the other unfavoured fragmentation functions. It follows that all
remaining fragmentation functions (Dπ+

d , Dπ+

ū , Dπ+

s , Dπ+

s̄ ) are unfavoured and considered
equal. PYTHIA simulations of pion fragmentation (Fig. 5.3 and Tab. 5.2) support that
assumption. Accordingly, the pion fragmentation functions can only be divided into two
groups, denoted Dfav and Dunf . The new denotations are listed in the table below:

Dfav Dπ+

u ≡ Dπ−

ū , Dπ+

d̄
≡ Dπ−

d

Dunf Dπ+

d ≡ Dπ−

d̄
, Dπ+

ū ≡ Dπ−

u

Dπ+

s ≡ Dπ−

s̄ , Dπ+

s̄ ≡ Dπ−

s

Using these new definitions and assuming a deuteron target, the pion multiplicities can
be expressed by the following equations:

rπ
+
=

4[(u+ d) + ū+ d̄]Dfav + [u+ d+ 4(ū+ d̄) + 2s+ 2s̄]Dunf

5(u+ d+ ū+ d̄+ 2(s+ s̄))
(5.20)

rπ
−

=
4[(ū+ d̄) + u+ d]Dfav + [4(u+ d) + ū+ d̄+ 2s+ 2s̄]Dunf

5(u+ d+ ū+ d̄+ 2(s+ s̄))
. (5.21)
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As for the kaon multiplicities Eq.s 5.20 and 5.21 can be written in bins of x to allow the
extraction of the fragmentation functions:
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...
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+
(x12)

rK
−
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b1,1 b1,2

b2,1 b2,2

b3,1 b3,2

b4,1 b4,2

...
...

b23,1 b23,2

b24,1 b24,2





























Dfav

Dunf




 . (5.22)

The entries bi,i of the matrix contain the linear combinations of the unpolarised PDFs
according to Eq.s 5.20 and 5.20:
























rπ
+
(x1)

rπ
−

(x1)

rπ
+
(x2)

rπ
−

(x2)

...

rπ
+
(x12)

rπ
−

(x12)
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[4(u+d)+ū+d̄](x1)
DIS(x1)

[u+d+4(ū+d̄)+2s+2s̄](x1)
DIS(x1)

[4(ū+d̄)+u+d](x1)
DIS(x1)

[ū+d̄+4(u+d)+2s+2s̄](x1)
DIS(x1)

[4(u+d)+ū+d̄](x2)
DIS(x2)

[u+d+4(ū+d̄)+2s+2s̄](x2)
DIS(x2)

[4(ū+d̄)+u+d](x2)
DIS(x2)

[ū+d̄+4(u+d)+2s+2s̄](x12)
DIS(x2)

...
...

[4(u+d)+ū+d̄](x12)
DIS(x12)

[u+d+4(ū+d̄)+2s+2s̄](x12)
DIS(x12)

[4(ū+d̄)+u+d](x12)
DIS(x12)

[ū+d̄+4(u+d)+2s+2s̄](x12)
DIS(x12)































Dfav

Dunf




 , (5.23)

with DIS(xi) = 5[u+ d+ ū+ d̄+ 2(s+ s̄)](xi).
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Using again the simplified model of the nucleon quark distribution (see Eq.s 5.10, 5.11 and
5.12 and Figure 5.1), this matrix can be re-written as:
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−
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...

rπ
+
(x12)

rπ
−
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[12qv+10αq q̄](x1)
DIS(x1)

[3qv+14αq q̄](x1)
DIS(x1)

[3qv+10αq q̄](x1)
DIS(x1)

[12qv+14αq q̄](x1)
DIS(x1)

[12qv+10αq q̄](x2)
DIS(x2)

[3qv+14αq q̄](x2)
DIS(x2)

[3qv+10αq q̄](x2)
DIS(x2)

[12qv+14αq q̄](x12)
DIS(x2)

...
...

[12qv+10αq q̄](x12)
DIS(x12)

[3qv+14αq q̄](x12)
DIS(x12)

[3qv+10αq q̄](x12)
DIS(x12)

[12qv+14αq q̄](x12)
DIS(x12)






























Dfav

Dunf




 . (5.24)

The rank of the matrix containing the unpolarised PDFs is two, therefore the system of
equations can be solved for the two unknown fragmentation functions.

Figure 5.3 shows PYTHIA simulated pion fragmentations, the respective values for
∫ 1
0.2D

h
q (z)

are listed in Table 5.2.
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Figure 5.3: Pion fragmentation functions generated with PYTHIA [53]. The fragmentation func-
tions are plotted in eight z bins, with a bin width of dz = 0.1.
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quark q hadron h
∫ 1
0.2D

h
q (z) quark q hadron h

∫ 1
0.2D

h
q (z)

d̄ π+ 0.486 d π− 0.479

u π+ 0.468 ū π− 0.474

d π+ 0.256 d̄ π− 0.251

s̄ π+ 0.248 s π− 0.245

s π+ 0.226 s̄ π− 0.227

ū π+ 0.217 u π− 0.214

Table 5.2: Expected values for the pion fragmentation functions from a PYTHIA [53] simulation.

5.4 Multiplicities

The pion and kaon multiplicities used in this analysis have been extracted from COMPASS
data collected in 2004 by deep-inelastic scattering of muons off a deuteron (6LiD) target
[39].

The multiplicities are shown in Fig. 5.4 as a function of x in four z bins ([0.2, 0.3], [0.3,
0.45], [0.45, 0.65], [0.65, 0.85]). They are compared to theoretical predictions, which have
been calculated using the LO definition of hadron multiplicities:

1

σincl(x,Q2)

dσh(x,Q2, z)

dxdQ2dz
=

∑

q e
2
qq(x,Q

2Dh
q (z,Q

2))
∑

q e
2
qq(x,Q

2)
, (5.25)

the LO DSS parametrisation [26] for fragmentation functions and the LO MRST 2004
parametrisation [25] for unpolarised parton distribution functions. The MRST parametri-
sation was chosen because of its validity in the kinematic range of COMPASS. The PDFs
have been evaluated in every x bin, at the mean values of x and Q2 in that bin. The frag-
mentation functions have been evaluated at the mean value of Q2 and integrated over z in
each interval. Both the experimental multiplicities and theoretical predictions are plotted
at the mean value of x in each bin of x and z.

The charged kaon multiplicities (Fig. 5.4, bottom) increase (K+), respectively decrease
(K−), with x in nearly all regions of z, a tendency that is more pronounced in the high
z bins. Both multiplicities agree with the LO predictions in the low x region only, but
deviate from the theoretical curves significantly for larger x.

These discrepancies might be explained by higher order corrections missing in the LO defi-
nition of hadron multiplicities (see Eq. 5.25), or by the poor knowledge of the strange quark
distributions and strange quark fragmentation functions. Figure 5.5 (left) shows s quark
PDFs from various parametrisations. They show significant differences in all x regions.
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The knowledge of strange quark fragmentation functions is limited to parametrisations
using a number of assumptions (see Chapter 2); and there has been only one attempt to
measure them experimentally as of now [39].

Figure 5.4: Charged pion (π+ and π−)and kaon (K+ and K−) multiplicities extracted from
COMPASS data as a function of x in four z bins, compared to LO theoretical calcu-
lations using the LO DSS for FFs and the LO MRST 2004 for PDFs [39]

Nonetheless, the large number of negatively charged kaons for large x (Fig. 5.4, bottom left)
does seem to contradict all knowledge of the fragmentation process. While the favoured
u quark fragmentation function, DK−

ū , is the second largest fragmentation function for
kaons, it should decrease strongly with increasing x, corresponding to the decreasing num-
ber of available ū quarks at large x (see Fig. 5.5 (right)).



80 CHAPTER 5. THE EXTRACTION OF FRAGMENTATION FUNCTIONS

The charged pion multiplicities (Fig. 5.4, top) show a weak x dependence in high z bins,
confirming the theoretical predictions. Both show some discrepancies in the highest z bin,
0.65 < z < 0.85, however.

Figure 5.5: Strange quark (left) and anti-up quark (right) distributions from various parametri-
sations [52]

5.5 Unpolarised Parton Distribution Functions

The method of extraction of fragmentation functions is based on the LO definition of
hadron multiplicities (cf. Eq. 5.2). Owing to that two different LO parametrisations of par-
ton distributions have been used as input in the calculations, CTEQ6l, and MSTW2008-
LO.

5.5.1 CTEQ6

CTEQ2 [54, 55] is a programme for the determination of parton distributions through a
global QCD analysis of data for various hard scattering processes. The global analysis of
the CTEQ group has two goals: Firstly, trying to find a universal set of parton distributions
which provide an accurate description of all of the used sets of data and can therefore be
utilised in the calculation of other high energy processes. Secondly, a determination of the
degree in which the theoretical treatment of the hard scattering processes in the QCD
framework is consistent with the available experimental results.

The experimental input includes data from various DIS experiments measuring different

2CTEQ: The Coordinated Theoretical-Experimental Project on QCD
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nucleon structure functions, e.g. NMC3 [56], CCFR4 [56] [57], BCDMS5 [58], E605 [59],
CDF6, Na51 [60] and others.

5.5.2 MSTW

The MSTW7 [61] collaboration is dedicated to the determination of leading order, next-to-
leading order and next-to-next-to-leading order parton distribution functions from global
analysis of hard-scattering data. These parton distributions supersede the previously avail-
able MRST sets.

The new data sets fitted include CCFR/NuTeV8 [62] dimuon cross sections, which con-
strain the strange quark and antiquark distributions, as well as Tevatron and HERA9 jet
data.

5.6 Testing the Method of Extraction

The systems of equations derived above (cf. Sections 5.2 and 5.3) were tested by assuming
fragmentation functions in the order of magnitude of the PYTHIA results (cf. Table 5.1).
Using these artificial fragmentation functions and CTEQ6 parton distribution functions,
multiplicities were calculated using Eq. 5.7. These multiplicities were then used to extract
fragmentation functions for two sets of parton distribution functions. (For a detailed de-
scription of the calculation method consult Appendix A.) The first set used was again
taken from the CTEQ6 parametrisation, while for the second calculation MSTW parton
distribution functions were employed. Solving the system for the CTEQ6 PDFs, the ini-
tially injected fragmentation functions were extracted. The use of MSTW PDFs yielded
slightly differing results, most notably for the strange fragmentation function. The test
results for kaon fragmentation functions are listed below:

x
∫ 0.85
0.2 D CTEQ PDFs MSTW PDFs

Dstr 0.300 0.260

Dfav 0.100 0.102

Dunf 0.030 0.030

RSF 3.000 2.449

RUF 0.300 0.294

3NMC: New Muon Collaboration
4CCFR: Chicago Columbia Fermilab Rochester Collaboration
5BCDMS: Bologna CERN Dubna Munich Saclay
6CDF: Collider Detector at Fermilab
7MSTW: A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt
8NuTeV: Neutrinos at the Tevatron
9HERA: Hadron-Electron Ring Accelerator
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5.7 Use of the Unpolarised PDFs and Hadron Multiplicities

The fragmentation functions for charged kaons and pions were evaluated in each of the
four z intervals [0.2, 0.3], [0.3, 0.45], [0.45, 0.65], [0.65, 0,85] separately, integrated over
the width of the z bin.

The values of the parton distribution functions used in the analysis (CTEQ6l [54] and
MSTW2008-LO [61]) were retrieved at the mean value of Q2 corresponding to the x
interval at COMPASS energies. Table 5.3 lists the values of Q2 for each x; they are plotted
in Fig. 5.6.
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Figure 5.6: The mean values of Q2 for the x intervals used in the analysis, cf. Tab. 5.3

The COMPASS kaon and pion multiplicities for each of the twelve x bins, four z intervals
and two charges were used including their statistical and systematical errors; all are listed
in Tables C.1, C.2 (pions) and C.3, C.4 (kaons) in Appendix C.

x Q2 x Q2 x Q2

[0.004, 0.006] 1.17 [0.03, 0.04] 4.03 [0.15, 0.2] 17.70

[0.006, 0.01] 1.45 [0.04, 0.06] 5.56 [0.2, 0.3] 25.30

[0.01, 0.02] 2.06 [0.06, 0.1] 8.29 [0.3, 0.4] 42.60

[0.02, 0.03] 2.99 [0.1, 0.15] 12.60 [0.4, 0.7] 60.20

Table 5.3: The average Q2 for various x ranges

Figure 5.7 shows the evolution of both the CTEQ6 and the MSTW parton distribution
functions for u, d, ū, d̄ and s quarks with increasing values of Q2 (1, 10 and 100 (GeV/c)2),
and in Fig. 5.8 the CTEQ6 PDFS are plotted as a function of x, at the Q2 value corre-
sponding to each x interval.
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Figure 5.7: The evolution of the unpolarised parton distribution functions for u (black), d (red
dashed), ū (green dotted), d̄ (blue dashed dotted), and s (yellow) quarks with in-
creasing Q2, for CTEQ6 (top) and MSTW (bottom) PDFs, plotted against x for Q2

= 1, 10 and 100 (Gev/c)2 [52]
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Figure 5.8: The CTEQ6 parton distribution functions, plotted against x. The PDFs were re-
trieved at the mean value ofQ2 corresponding to the x interval at COMPASS energies.
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Chapter 6

Results for Pion and Kaon
Fragmentation Functions

In the previous chapter the method of extraction of fragmentation functions from hadron
multiplicities was developed. Systems of equations for charged kaon and pion FFs were
derived and tested, and the data used for extraction was introduced. This chapter will
present and discuss the results for the extracted fragmentation functions. The pion FFs
have been determined before by other experiments; they will serve as a test case here. The
results for charged pions are presented first, followed by the ones for charged kaons.

6.1 Results for the Pion Fragmentation Functions

The charged pion fragmentation functions were extracted in four bins of z, using two
versions of unpolarised PDFs (CTEQ6 and MSTW, cf. Section 5.5) and the full set of
pion multiplicities available (cf. Tables C.1 and C.2 in Appendix C and Section 5.4). The
method of extraction and the calculation of the uncertainties are described in detail in
Chapter 5 and Appendix A.

To test the influence of uncertainties of the multiplicities and the validity of the factori-
sation assumption (cf. Section 2.2.2), the analysis was performed again using only pion
multiplicities from limited ranges of x. This section presents and discusses the results.

6.1.1 Pion Fragmentation Functions for 0.004 < x < 0.7

The pion fragmentation functions Dfav and Dunf extracted using the full set of multipli-
cities are listed in Table B.1 and plotted in Fig. 6.1.

The results for both the favoured and the unfavoured pion fragmentation functions show
very little dependence on the unpolarised parton distribution used in the calculation. The

85
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difference due to the disparity of the two PDFs is less than 3% in all intervals of z. Only
in the largest z bin it increases to 6% for Dfav and 12% for Dunf . The uncertainty is of
the same order of magnitude over the whole z range for both FFs. Within their margin of
error the results for both sets of unpolarised PDFs agree very well for the two extracted
fragmetation functions.

z
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(EMC)favD

(EMC)unfD

D vs. z (pions), 0.004 < x < 0.7, COMPASS and EMC

Figure 6.1: The extracted kaon fragmentation functions Dfav (green) and Dunf (blue) for
0.004 < x < 0.07, plotted against z. The full triangles mark the fragmentation func-
tions extracted with CTEQ6 parton distribution functions, the open circles the ones
extracted by using the MSTW parton distributions. The errors shown are statistical
and systematical uncertainties combined (cf. Table B.1).

6.1.2 Pion Fragmentation Functions for 0.006 < x < 0.4

The pion multiplicities used for this analysis show rather large uncertainties as well as
missing data points in the smallest (0.004 < x < 0.006) and the largest (0.3 < x < 0.7)
bins of x (cf. Tables C.1 and C.2 in Appendix C and Fig. 5.4). Even though data points
with large errors are given little weight in the calculation (cf. Section A.1) it is worth
exploring how these deficiencies influence the calculation. For this reason the pion FFs
were extracted again, this time using only the ten ‘middle’ x bins (0.006 < x < 0.3).

The resulting values for the charged pion fragmentation functions are listed in Table B.2
and plotted in Fig. 6.2.

The differences in the fragmentation functions due to the different sets of unpolarised par-
ton distributions are minimal. Similar to the values calculated using the full x range there
are very slight differences between fragmentation functions extracted with the MSTW and
the CTEQ PDFs in the first and last z bin, but within their error bars they agree very
well.
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z
0.2 0.3 0.4 0.5 0.6 0.7 0.8

D

0

0.5

1

1.5

2

2.5
/CTEQ6favD

/CTEQ6unfD

/MSTWfavD

/MSTWunfD

D vs. z (pions), 0.006 < x < 0.4

Figure 6.2: The extracted pion fragmentation functions Dfav and Dunf for 0.006 < x < 0.4,
plotted against z. The full triangles mark the fragmentation functions extracted with
CTEQ6 parton distribution functions, the open circles the ones extracted by using
the MSTW parton distributions. The errors shown are statistical and systematical
uncertainties combined (cf. Table B.2).

The comparison of the extracted values with the ones including all x bins reveals virtually
no change for either of the fragmentation functions in any of the four z intervals.

It appears that inclusion of the outer x bins, and with that the inclusion of the uncertainties
and missing data points from the multiplicities does have little influence the extracted
values.

6.1.3 Test for Split x Range

The x dependence of hadron multiplicities can be used to test the factorisation assumption
which states that the fragmentation of a quark is independent of the initial scattering event
from which it originates (cf. Section 2.2.2). If the factorisation holds, the fragmentation
functions must be independent of x, and the x dependence of the hadron multiplicities is a
result of the x dependence of the parton distribution functions alone. For this purpose, the
twelve intervals of x of the pion multiplicities used in this analysis have been divided into
two parts. The lower six x bins cover the interval [0.004, 0.06], the upper six the interval
[0.06, 0.7]. The fragmentation functions were again calculated, using twelve multiplicities
(for six x bins and two charges) as input twice, once for the lower and once for the higher
x range. The results are listed in Tables B.3 and B.4 and plotted in Fig. 6.3.

Both Dfav and Dunf show very little change due to the different x ranges used in the
analysis. Almost all extracted values agree with the ones for the full set of multiplicities
within their margin of error, with only two exceptions.
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Figure 6.3: The extracted pion fragmentation functionsDfav (green) andDunf (blue) for 0.004 <
x < 0.06 (left) and 0.06 < x < 0.7 (right), plotted against z. The full triangles mark
the fragmentation functions extracted with CTEQ6 parton distribution functions,
the open circles the ones extracted by using the MSTW parton distributions. The
errors shown are statistical and systematical uncertainties combined (cf. Tables B.3
and B.4).

The analysis for the lower x range shows very little effect on both fragmentation functions,
only a very slight increase for Dfav and decrease for Dunf (less than 2%) in almost all
z intervals for the CTEQ values and the opposite for the MSTW results. The effects of
the use of the higher x range on the extracted values are a slightly stronger; both Dunf

extracted with the CTEQ parton distribution and Dfav extracted with the MSTW PDFs
increase by more than 10% in the lowest z bin, and do not agree with the values extracted
with the full set of multiplicities. Again the MSTW and CTEQ calculations show the
opposite effect.

In conclusion, the use of different intervals of x for the analysis does not appear to have a
significant influence on the results for pion fragmentation functions.

6.1.4 Conclusions

The pion fragmentation functions Dfav and Dunf have been extracted, using two sets of
unpolarised parton distribution functions, and the full set of pion multiplicities available,
as well as multiplicities for a limited range of x. The FFs appear to be quite stable with
regard to the parton distribution used in the calculation as well as to the x range in which
the analysis was conducted.

6.2 Results for the Kaon Fragmentation Functions

Like the pion fragmentation functions, the kaon FFs were extracted multiple times. (For
details on the method of extraction consult Chapter 5 and Appendix A.) After using the
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full set of kaon multiplicities (cf. Tables C.3 and C.4 in Appendix C and Section 5.4)
available, the analysis was performed again for a limited range of x. The factorisation
assumption was tested by splitting the full range of x into two sub-intervals and extract-
ing the fragmentation functions for the low and the high x bins separately. This section
presents and discusses the results.

6.2.1 Kaon Fragmentation Functions for 0.004< x < 0.7

The kaon fragmentation functions extracted using the full set of charged kaon multiplicities
are listed in Table B.5 and plotted in Fig. 6.4.
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Figure 6.4: The extracted kaon fragmentation functionsDstr (red),Dfav (green) andDunf (blue)
for 0.004< x < 0.7 plotted against z. The full triangles mark the fragmentation func-
tions extracted with CTEQ6 parton distribution functions, the open circles the ones
extracted by using the MSTW parton distributions The errors shown are statistical
and systematical uncertainties combined (cf. Table B.5).

.

The results for the Dfav and the Dunf fragmentation functions show little dependence on
the parton distributions used in the analysis. While the CTEQ PDFs result systematically
in slightly larger values for the two fragmentation functions, the difference is very small.
Within their margin of error both Dfav and the Dunf agree very well for both sets of
PDFs.

The values for Dfav agree within 2% in all z bins, as does their integral over all z intervals
[0.2, 0.8]. The same applies to Dunf ; the extracted values are in very good agreement in
all bins of z, with only a slightly bigger difference in the third interval. Both the favoured
and unfavoured fragmentation functions have the same errors for the CTEQ and MRST
parton distributions.
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The results for the strange quark fragmentation function on the other hand are less con-
sistent and adopt unphysical values in nearly every bin of z. In the first two z intervals
large negative values for Dstr are extracted for both sets of parton distribution functions.
The errors in these z bins are large, especially so for the MSTW PDFs.

The Dstr values for the larger z have smaller uncertainties, but still larger than the ones for
the favoured and unfavoured fragmentation functions in the same z intervals. The values
themselves are larger than zero in the third bin and negative again in the fourth. The
strange quark fragmentation function remains well below the theoretical expectations (cf.
Section 5.2.1) over the whole range of z. The extracted Dstr values for the CTEQ and
MSTW parton distributions do not agree with each other in three of the four z bins.

The fragmentation function ratio RSF =
∫ 0.85
0.2 Dstr/

∫ 0.85
0.2 Dfav (cf. Eq. 2.61) calculated

from these results is also negative and unphysical, regardless of the unpolarised PDF used
in the calculations.

RCTEQ6
SF = −0.870± 0.038

RMSTW
SF = −0.852± 0.106

The ratio RUF =
∫ 0.85
0.2 Dunf/

∫ 0.85
0.2 Dfav takes on the values 0.26 ± 0.10 for the CTEQ

and 0.25 ± 0.11 for the MSTW parton distributions, respectively, and falls in-between the
corresponding values calculated from the EMC (REMC

UF = 0.36) and DSS (RDSS
UF = 0.13)

results (cf. Section 4.4).

RCTEQ6
UF = 0.256± 0.105

RMSTW
UF = 0.247± 0.107

6.2.2 Kaon Fragmentation Functions for 0.01< x < 0.3

Even more so than the pion multiplicities the kaon multiplicities used for this analysis
show large uncertainties and missing data points in the outer x intervals, especially in the
first two (0.004< x < 0.01) and last two (0.3< x < 0.7) bins of x (cf. Tables C.3, C.4 in
Appendix C and Fig. 5.4).

To test how these uncertainties influence the results, and if they possibly are responsible
for the unphysical values of the extracted strange quark fragmentation functions in the
lower z intervals, the above analysis was performed again, this time using only the eight
‘middle’ x bins (0.01< x < 0.3). The resulting values for the fragmentation functions are
listed in Table B.6 and plotted in Fig. 6.5.

The results for the favoured and unfavoured fragmentation functions show very little
change. The values for Dfav are slightly smaller (about 2%) for the CTEQ parton distri-
butions and slightly larger (about 1%) for the MSTW parton distributions, compared to
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the calculations using the multiplicities for the whole x range. The unfavoured fragmen-
tation functions decrease by up to 4% for both sets of parton distributions. Within their
(slightly increased) error bars both Dfav and Dunf remain virtually unchanged.
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Figure 6.5: The extracted kaon fragmentation functionsDstr (red),Dfav (green) andDunf (blue)
for 0.1< x < 0.3, plotted against z. The full triangles mark the fragmentation func-
tions extracted with CTEQ6 parton distribution functions, the open circles the ones
extracted by using the MSTW parton distributions. The errors shown are statistical
and systematical uncertainties combined (cf. Table B.6).

The strange fragmentation function increases strongly for both sets of parton distributions,
but still remains negative in all but one of the z bins. The uncertainty of Dstr increases
as well (in most bins of z by more than a factor 2), especially for the MSTW calculations.
For both sets of parton distributions the strange quark fragmentation function is much
smaller than expected or physically possible.

The large uncertainty of the fragmentation function ratio RSF calculated from these results
allows for values larger than zero for both parton distributions, but still remains much
smaller than the ratios from the EMC and DSS parametrisations (3.4 and 6.6, respectively,
cf. Section 4.4):

RCTEQ6
SF = −0.002± 0.216

RMSTW
SF = −0.273± 0.323.

The ratio RUF decreases slightly for both parton distribution functions compared to the
values obtained using the multiplicities for the full x range:
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RCTEQ6
UF = 0.242± 0.108

RMSTW
UF = 0.231± 0.106.

In conclusion, it can be assumed that the uncertainties and missing data points in the
outer x bins of the COMPASS multiplicities are not responsible for the unphysical results
obtained using the full x range (cf. Section 6.2.1).

These results do, however, raise the question if the factorisation assumption of hadron
fragmentation can be trusted in this case.

6.2.3 Test for Split x Range

Like for the pion fragmentation functions (cf. Section 6.1.3), the factorisation assumption
is tested by splitting the twelve x intervals for the multiplicities into two parts. The lower
six x bins cover the interval [0.004, 0.06], the upper six the interval [0.06, 0.7]. The pion
fragmentation functions were again calculated, using twelve multiplicities (for six x bins
and two charges) as input, for the lower and the higher x range, respectively. The results
are listed in Tables B.7 and B.8 and plotted in Figure 6.6.
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Figure 6.6: The extracted charged kaon fragmentation functions Dstr (red), Dfav (green) and
Dunf (blue) for 0.004 < x < 0.06 (left) and 0.06 < x < 0.7 (right), plotted against
z. The full triangles mark the fragmentation functions extracted with CTEQ6 par-
ton distribution functions, the open circles the ones extracted by using the MSTW
parton distributions. The errors shown are statistical and systematical uncertainties
combined (cf. Tables B.7 and B.8).

The values for the favoured fragmentation function (CTEQ parton distributions) increase
for the lower x intervals, compared to the extraction using the whole available x range,
especially for the larger z bins. The opposite effect can be observed for the second anal-
ysis using the multiplicities in the higher x range. Dfav (MSTW PDFs) shows a similar



6.2. RESULTS FOR THE KAON FRAGMENTATION FUNCTIONS 93

behaviour, although it does not increase in all z intervals for the low x range. All these
effects are more pronounced for high z intervals.

The unfavoured fragmentation function increases for the smaller x range, especially for the
analysis using the CTEQ PDFs as input. For the interval 0.06< x < 0.3 Dunf decreases;
this effect is stronger for the MSTW parton distribution.

Uniformly, for larger x both the favoured and the unfavoured fragmentation function values
decrease, especially for larger z, regardless of the parton distributions used for the analysis.
For the lower x range both Dfav and Dunf increase for the calculations using the CTEQ
parton distributions as input, the MSTW values decrease or increase, depending on the
z interval. There’s no change in the uncertainties for any of the favoured or unfavoured
fragmentation functions.

Overall, both Dfav and Dunf show only little change. Both still agree within their margin
of error for the higher and the lower x range, and also with the fragmentation functions
extracted using the full set of the measured multiplicities.

Accordingly, the values of the ratio RUF agree with the ones calculated for the full x
range. RUF decreases for the fragmentation functions extracted using the larger x bins
from 0.26 to 0.24 and from 0.25 to 0.22 for the CTEQ and the MRST parton distributions
respectively. For smaller x RUF increases slightly, most notably for the CTEQ PDFs (from
0.26 to 0.27).

(for 0.004 < x < 0.06)

RCTEQ6
UF = 0.268± 0.097

RMSTW
UF = 0.246± 0.105

(for 0.06 < x < 0.7)

RCTEQ6
UF = 0.243± 0.119

RMSTW
UF = 0.216± 0.110

The strange fragmentation function values decrease or increase, depending on the x range
of the multiplicities, the parton distribution functions used and the z interval, with no
recognisable pattern. Especially for the MSTW parton distributions and small z bins the
errors are strongly increased (by more than a factor of 2) in comparison with the results
for the full x range. The values of Dstr do not agree within their margin of error for either
of the intervals of x used in the analysis. For 0.004< x < 0.06 Dstr is negative in all z
bins, resulting in large negative values for RSF . For 0.06< x < 0.3 Dstr is positive in all
intervals of z. Consequently, RSF is large and positive for this x range.
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(for 0.004 < x < 0.06)

RCTEQ6
SF = −1.859± 0.013

RMSTW
SF = −1.285± 0.394

(for 0.06 < x < 0.7)

RCTEQ6
SF = 2.275± 0.775

RMSTW
SF = 1.560± 0.654

While the values for RSF for large x are physically possible (but still smaller that the DSS
and EMC results both), the behaviour of the Dstr values as a function of both x and z
suggest that this is pure coincidence.

6.2.4 Conclusions

The kaon fragmentation functions Dfav, Dunf and Dstr have been extracted, using two
sets of unpolarised parton distribution functions, and the full set of pion multiplicities
available, as well as multiplicities for a limited range of x. The favoured and unfavoured
kaon FFs are quite stable with regard to the parton distribution used, as well as to the x
interval in which the analysis was performed, and - in order of magnitude - fall between
the results of the EMC and the DSS parametrisation.

The extracted values forDstr on the other hand tend to differ by a large amount, depending
on the unpolarised PDFs used in the analysis, and especially with regard to the x range of
multiplicities. They are often negative, and therefore physically impossible. These results
cast serious doubts on this method of extraction, and therefore on the validity of the
factorisation assumption, at least for strange quarks.

It is also possible that the problems with the extraction of Dstr are related to other issues,
e.g. the data used as input for the equations. Both the multiplicities and the parton
distributions contain diverse uncertainties, in particular for very large and very small x.

For 0.004 < x < 0.02 the various unpolarised parton distributions show significant dif-
ferences for strange quarks (cf. Fig. 5.5). The COMPASS multiplicities show large uncer-
tainties in the same x range, as well as missing data points, especially for large z. Both
these uncertainties are reproduced in the extracted fragmentation functions. For small x
all extractions of Dstr have large errors, and show also large differences for the two used
parton distributions.

For x > 0.06 the available unpolarised strange quark PDFs agree with each other quite
well. However, the multiplicities show for x > 0.2 again large uncertainties and missing
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data. Especially for small z they disagree with the LO theoretical calculations. The ex-
tracted fragmentation functions reflect these problems as well. The largest uncertainties
appear for large x and small z.

Apart from the difference between the unpolarised strange quark parton distributions at
small x, these issues apply to all the extractions. And yet the results for the non-strange
fragmentation functions are quite stable and appear to be physically reasonable.

This could indicate that the measured kaon asymmetries do not carry as much information
about ∆s as assumed [63]. Another possibility is that the Q2 dependence of fragmentation
functions may be more significant than expected (cf. Section 2.4.1), and neglecting it may
not be an option, at least in the case of strange quarks.

6.3 Comparison with EMC Results

Both pion and non-strange kaon fragmentation functions have been extracted before by
the EMC collaboration in 1989 [10]. EMC was a fixed target experiment which used a
280GeV muon beam to scatter off proton and deuterium targets. It was designed to cover
a large acceptance and was equipped with detectors allowing particle identification.

The data analysis covered the kinematic domain of Q2 > 4 (GeV/c)2, a W 2 interval of
[16, 200]GeV2, an energy transfer ν in the range [20, 260]GeV and x > 0.12. The final
statistics for the deuterium target include approximately 8000 DIS events. The parton
distribution functions were taken from a parametrisation.

While the favoured and unfavoured pion fragmentation functions were defined as they are
in this analysis, for the kaon fragmentation functions the following ad-hoc assumption has
been made:

1

2
(DK+

s +DK+

s̄ ) = DK+

u (6.1)

This method allowed to extract the u and ū quark fragmentation functions into charged
pions, kaons and protons. These data are usually refered to as ‘EMC parametrisation of
fragmentation functions’. In this section the EMC results for DK+

u , DK+

ū , Dπ+

u and Dπ+

ū

are compared with the values for Dfav and Dunf for kaons and pions extracted in this
analysis.

6.3.1 Pion Fragmentation Functions

Figure 6.7 shows the extracted pion fragmentation functions Dfav and Dunf from Sec-
tion 6.1.1 and the pion fragmentation functions published by the EMC collaboration.

It has to be noted that the errors shown on the EMC pion fragmentation functions are
statistical errors only. Their experimental systematic error was estimated to be about 10%
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due to uncertainties in particle identification and less than 2% due to the parametrisation
of the quark distribution functions [10].

The fragmentation functions extracted with the COMPASS multiplicities are uniformly
larger than the EMC ones. Restricting the x range of this analysis to the EMC one
(0.030< x < 0.440) does not change the results.

Taking into account the above mentioned systematic errors, the EMC fragmentation func-
tions agree with the ones extracted from COMPASS multiplicities in all but the lowest z
interval. In this interval, the COMPASS values are larger than the EMC ones by approx-
imately 8% and 9% for Dfav and Dunf respectively.
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D vs. z (pions), 0.004 < x < 0.7, COMPASS and EMC

Figure 6.7: Pion fragmentation functions Dfav (green) and Dunf (blue). The full triangles mark
the fragmentation functions extracted with CTEQ6 parton distribution functions, the
open circles the ones extracted by using the MSTW parton distributions. The errors
shown are statistical and systematical uncertainties combined. The open squares mark
the fragmentation functions extracted by the EMC collaboration. The EMC errors
shown are statistical errors only [10].

6.3.2 Kaon Fragmentation Functions

Figure 6.8 shows the extracted kaon fragmentation functions Dfav and Dunf from Sec-
tion 6.2.1 and the kaon fragmentation functions published by the EMC collaboration.

As for the pion fragmentation functions, the errors shown for the EMC pion fragmentation
functions are statistical errors only. Their systematic error was estimated to be approxi-
mately 15% due to uncertainties in the particle identification and less than 4% due to the
parametrisation of the distribution functions [10].

Even without taking these systematic uncertainties into account the values for both the
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Dfav andDunf agree very well for the EMC fragmentation functions and the ones extracted
in this analysis.
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Figure 6.8: Kaon fragmentation functions Dfav (green)and Dunf (blue). The full triangles mark
the fragmentation functions extracted with CTEQ6 parton distribution functions, the
open circles the ones extracted by using the MSTW parton distributions. The errors
shown are statistical and systematical uncertainties combined. The open squares mark
the fragmentation functions extracted by the EMC collaboration. The EMC errors
shown are statistical errors only [10].

6.3.3 Conclusions

The pion fragmentation functions extracted with the COMPASS multiplicities are larger
than the EMC ones in all z bins, but agree with them within their systematic and statistical
errors in all but the lowest z interval. The COMPASS kaon fragmentation functions Dfav

and Dunf agree with the ones published by EMC very well.

6.4 Fragmentation Functions from Generated Multiplicities

The last few sections presented and discussed the results for fragmentation functions ex-
tracted from COMPASS multiplicities. While the values for the favoured and unfavoured
fragmentation functions agree within the margin of error with the theoretical expectations,
this is not the case for the kaon strange quark fragmentation functions. Possible reasons
for these puzzling results might be found in the differences of the two sets of unpolarised
PDFs used as input for the analysis, an underestimation of the importance of the Q2

dependence of the fragmentation functions, or problems with the factorisation assumption
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itself. Another reason for the unphysical results might lie in the multiplicities used in the
analysis. This last option can be investigated by using another set of multiplicities.

Since no second set of experimental multiplicities was available, the PYTHIA simulation
programme was used to create artificial multiplicities, which then were used as input for
the system of equations to extract charged pion and kaon fragmentation functions. As in
the analysis presented in the sections above, the unpolarised PDFs were again taken from
the MSTW and the CTEQ6 parametrisations. Since all fragmentation functions extracted
with the generated multiplicities showed the same dependency on the different sets of
unpolarised PDFs as the ones for the measured multiplicities, only the results extracted
with CTEQ PDFs are discussed in the following sections.

6.4.1 Generated Multiplicities

The particle physics event generator programme PYTHIA [53] uses a combination of var-
ious QCD-based models and parametrisations of experimental results to simulate physical
processes (in this case deep-inelastic scattering) in an analytical way.

For this analysis ten million lepton-nucleon DIS events have been generated in the kine-
matic domain of the 2004 COMPASS muon set-up. The fragmentation of quarks into
hadrons was simulated according to the LUND fragmentation model (cf. Section 2.2.2.1),
and parametrisations of experimentally measured branching ratios were used to simulate
the subsequent decay of unstable particles into stable ones.

In the following sections the generated charged pion and kaon multiplicities are shown and
compared to the ones measured at COMPASS (cf. Section 5.4).

6.4.1.1 Generated Charged Pion Multiplicities

Figure 6.9 shows the generated multiplicities for charged pions, together with the exper-
imentally extracted COMPASS pion multiplicities used in the analysis in the sections
above. Both sets of multiplicities are plotted together, for two charges, in ten bins of x
and four z intervals.

The generated multiplicities show considerable differences to the ones extracted from
COMPASS data. The PYTHIA generated π+ values disagree with the experimental ones
in almost all intervals of z. At low z (0.2 < z < 0.3) they are smaller by 20 to 30% in all
but the highest two bins of x. In the interval 0.3 < z < 0.45 the generated multiplicities
agree with the extracted ones within their margin of error. In the largest two intervals
of z (0.45 < z < 0.85) the simulated values are larger than the experimental ones, and
their difference increases with increasing x. Here the two multiplicities only agree at in
the lowest bins of x.
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Figure 6.9: Generated and extracted multiplicities for charged pions (π+ left and π− right) in ten
bins of x and four z intervals. The red triangles mark the values for the experimentally
extracted COMPASS multiplicities, the black triangles the multiplicities simulated
with PYTHIA.

The simulation of the π− multiplicities is closer to the ones extracted from the experimental
data. They agree within their margin of error in all but the lowest interval of z. For this
interval the simulated values are again smaller than the experimental ones, by about 20
to 30% in all but the highest bin of x, much like the π+ simulation for low z.

6.4.1.2 Generated Charged Kaon Multiplicities

Figure 6.10 shows the generated multiplicities for charged kaons, together with the exper-
imentally extracted COMPASS kaon multiplicities. Both sets of multiplicities are plotted
together, for two charges, in ten bins of x and four z intervals.

Like the generated pion multiplicities, the generated kaon multiplicities show significant
differences to the experimental ones. For positvely charged kaons they are uniformly
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smaller than the measured multiplicities for small z (0.2 < z < 0.45), with the largest
x bin as the only exception. For large z (0.65 < z < 0.85) on the other hand the generated
multiplicities exceed the experimentally measured values over the whole x range and also
follow an opposite trend; the generated multiplicities increase with increasing x, while the
measured ones decrease.

The generated K− multiplicities show a better agreement with the experimental data;
within the margin of error they agree with the measured multiplicities in three of the four
intervals of z (0.2 < z < 0.85), in almost every bin of x. For small z they show the same
trend as the generated K+ multiplicities and fall below the measured values in all but the
largest x bin, but the difference is much smaller.
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Figure 6.10: Generated and extracted multiplicities for charged kaons (K+ left and K− right) in
ten bins of x and four z intervals. The red triangles mark the values for the exper-
imentally extracted COMPASS multiplicities, the black triangles the multiplicities
simulated with PYTHIA.

Generally the generated charged kaon multiplicities display the same behaviour as the
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ones for charged pions; they are smaller then the measured ones for small z and larger for
large z, and the best agreement is reached for negatively charged hadrons and z > 0.2.

6.4.2 Fragmentation Functions from PYTHIA Generated Multiplicities

In the following sections the pion and kaon fragmentation functions extracted with both
sets of multiplicities (generated and measured) are presented together with simulated
values for charged pion and kaon fragmentation functions (cf. Fig. 5.3 in Section 5.3 and
5.2 in Section 5.2) and their differences are discussed.

6.4.2.1 Dfav and Dunf for Charged Pions

The favoured and unfavoured pion fragmentation functions Dfav and Dunf extracted with
the generated multiplicities are plotted in Fig. 6.11. For comparison the FFs extracted with
the measured COMPASS multiplicities are shown, as well as the PYTHIA simulations of
the corresponding pion fragmentation functions. For the latter the mean values of the
favoured (Dπ+

u , Dπ−

d̄
, Dπ−

ū , Dπ−

d ) and unfavoured (Dπ+

ū , Dπ+

d , Dπ+

s , Dπ+

s̄ , Dπ−

u , Dπ−

d̄
,

Dπ−

s , Dπ−

s̄ ) pion FFs respectively were calculated for each charge in each bin of z.
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Figure 6.11: Favoured and unfavoured pion fragmentation functions Dfav (left) and Dunf (right)
in four z bins. The black markers indicate the FFs extracted with generated mul-
tiplicities, the red markers the FFs extracted with experimental multiplicities. The
green markers show the mean values for the corresponding simulated pion fragmen-
tation functions (Dπ+

u and Dπ+
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(+) and Dπ−
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d (∗) for Dfav and Dπ+

ū , Dπ+

d ,

Dπ+

s and Dπ+
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s and Dπ−

s̄ (∗) for Dunf ) for comparison.

The Dfav values extracted with generated multiplicities are slightly smaller than the ones
from the measured multiplicities for the first z bin (0.2 < z < 0.3), and larger for the last
three (0.3 < z < 0.85). The same applies for the mean of the simulated fragmentation
functions Dπ+

u and Dπ+

d̄
(Dπ−

ū and Dπ−

d ), but their values are uniformly smaller than the
FFs from the simulated multiplicities.
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For Dunf both the simulated fragmentation functions and the ones extracted with simula-
ted multiplicities are smaller than the FFs extracted with measured COMPASS multiplici-
ties in all bins of z. Unlike for Dfav the simulated multiplicities result in lower values than
the simulation of the fragmentation functions themselves. While the latter agree within
their margin of error with the values from the measured multiplicities in all but the lowest
z interval, the FFs extracted using the simulated multiplicities differ by up to 35% from
the ones for the experimental multiplicities. The differences are especially large for low z.

Generally, the values for both Dfav and Dunf from the PYTHIA simulated pion multiplici-
ties and fragmentation functions display a more flat distribution as a function of z than the
ones extracted from the measured multiplicities. It is also worth noting that the simulated
fragmentation functions show significant differences to the FFs extracted with simulated
multiplicities, despite the fact that the same fragmentation model (cf. Section 2.2.2.1) was
used for both simulations.

6.4.2.2 Dfav, Dunf and Dstr for Charged Kaons

The favoured and unfavoured kaon fragmentation functions Dfav and Dunf extracted with
the simulated multiplicities are plotted in Fig. 6.12. For comparison the FFs extracted with
the measured COMPASS multiplicities are shown, as well as the PYTHIA simulations of
the corresponding quark fragmentation functions into kaons. These are DK+

u and DK−

ū for
Dfav; for Dunf the mean values of all unfavoured FFs (DK+

ū , DK+

d , DK+

d̄
, DK+

s , DK−

u ,

DK−

d , DK−

d̄
and DK−

s ) were calculated in each interval of z for K+ and K− respectively.
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Figure 6.12: The favoured and unfavoured kaon fragmentation functions Dfav (left) and Dunf

(right) in four bins of z. The black markers indicate the FFs extracted with simulated
multiplicities, the red markers the FFs extracted with experimental multiplicities.
The green markers show the corresponding simulated kaon fragmentation functions:
DK+

u (+) and DK−

ū (∗) for Dfav and the mean values of DK+
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Like the pion Dfav, the favoured kaon fragmentation function extracted from simulated
multiplicities shows a more flat distribution as a function of z than the one for the measured
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multiplicities; with lower values for small z and higher values for large z. The simulated
fragmentation functions show the same behaviour, but have uniformly smaller values over
the whole range of z.

Dunf from simulated multiplicities agrees within the (quite large) margin of error with
the one from the measured COMPASS multiplicities in all bins of z, as well as with
the simulated fragmentation functions for K−. The latter though show quite significant
differences to the simulated FFs for K+, especially for the higher z intervals, casting doubt
on the validity of the assumption that Dunf is equal for positively and negatively charged
kaons (see also Section 5.2.1). Also, unlike the favoured kaon fragmentation functions,
both are larger than the Dunf extracted with the simulated multiplicities.

Like the pion fragmentation functions, the simulated kaon FFs do not agree with the ones
extracted from the simulated multiplicities; they are smaller for Dfav and larger for Dunf ,
even though both are based on PYTHIA simulations and the same model of fragmentation.

Figure 6.13 shows the strange quark fragmentation function Dstr extracted with the
PYTHIA generated multiplicities, together with the ones from the measured multiplicities
and the simulated FFs DK+

s̄ and DK−

s for comparison.
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Figure 6.13: The kaon fragmentation function Dstr in four bins of z. The black markers indicate
the Dstr values extracted with simulated multiplicities, the red markers the ones ex-
tracted with experimental multiplicities. The green markers show the corresponding
simulated kaon fragmentation functions: DK+

s̄ (+) and DK−

s (∗)

The Dstr extracted using the simulated multiplicities shows the same trend as a function
of z as the simulated one, but is smaller by more than 50% over the whole range, and
even negative for the lowest two z bins, although just slightly. None of the PYTHIA based
strange quark fragmentation functions agree with the ones from the measured multipli-
cities. Again significant differences show between the simulated FFs for K+ and K−, in
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this case especially for low z, casting doubt on the validity of grouping DK+

s̄ and DK−

s

together into Dstr.

While the results extracted with the PYTHIA generated multiplicities do not agree with
the expectations from the simulation and even show negative and therefore unphysical
values for large z, the overall distribution of Dstr as a function of z does look much more
reasonable than the one for the strange quark fragmentation function extracted with the
measured multiplicities. To examine these results further, the influence of the x dependence
of the simulated multiplicities on the extracted fragmentation functions will be tested here
as well.

6.4.2.3 Dstr for Charged Kaons for Split x Range

As already discussed in Sections 6.1.3 and 6.2.3 the x dependence of hadron multiplicities
can be used to test the assumption that the fragmentation of a quark is independent
of the initial scattering event from which it originates. If this factorisation holds, the
fragmentation functions must be independent of x. To verify this assumption the x range
for the multiplicities is divided into two parts, covering the intervals [0.01 < x < 0.1] and
[0.1 < x < 0.7], respectively. The fragmentation functions are extracted again, using ten
values of the simulated multiplicities (for five x bins and two charges) as input twice, once
for the lower and once for the higher range of x. The results are plotted in Fig. 6.14. Like
in the plots in the sections above, the FFs from the measured COMPASS multiplicities
are shown for comparison, as well as the PYTHIA simulated strange quark fragmentation
functions into kaons.
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Figure 6.14: The kaon fragmentation function Dstr in four bins of z for 0.01 < x < 0.1 (left) and
0.1 < x < 0.7 (right). The black markers indicate the Dstr values extracted with
simulated multiplicities, the red markers the ones extracted with experimental mul-
tiplicities. The green markers show the corresponding simulated kaon fragmentation
functions DK+

s̄ (+) and DK−

s (∗).

Like the results for the full x range, the values for Dstr extracted from simulated multipli-
cities are significantly smaller than the ones for the simulated fragmention functions DK+

s̄
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and DK−

s in almost all bins of z for both the lower and the higher x range, and become
compatible with zero or even slightly negative for z > 0.45. The values for the lower x
interval are more than 50% lower for 0.01 < x < 0.1 than they are for 0.1 < x < 0.7.

It is worth noting though, that the distribution of the FFs as a function of z is quite sim-
ilar for the two ranges of x. In both intervals Dstr follows the same trend as the PYTHIA
simulated DK+

s̄ and DK−

s , something that is not the case for the strange fragmentation
function extracted with the experimental multiplicities. While the results based on the
simulation are far from the expected values, they do reproduce the shape of their dis-
tribution quite well, and also appear to be more stable in regard to the chosen range of
x.

6.4.3 Conclusions

Pion and kaon multiplicities in ten x bins and four intervals of z have been simulated using
the particle physics event generator PYTHIA. A comparison of the generated multiplici-
ties with the experimental ones measured at COMPASS revealed significant differences,
notably for positively charged hadrons, with the largest discrepancies found for z > 0.65;
while the experimental multiplicities tend to decrease with increasing values of x, the simu-
lated ones increase. To evaluate these results it is important to note that the PYTHIA
generated multiplicities do not include a simulation of detector responses or accceptances,
or an experimental set-up of any kind. The simulation is based on theoretical models and
parametrisations of experimental results only.

These generated multiplicities were then used as input for the system of equations to
extract charged pion and kaon fragmentation functions. The unpolarised PDFs were again
taken from the MSTW and the CTEQ6 parametrisations. The two sets of fragmentation
functions (extracted with simulated and measured multiplicities respectively) were then
compared with each other as well as with PYTHIA simulations of quark fragmentation
functions into charged pions and kaons.

The three sets of favoured and unfavoured pion fragmentation functions do not agree within
their margin of error, but they only show larger deviations (up to 35%) for the smallest bin
of z. The PYTHIA fragmentation functions and the FFs from the simulated multiplicities
show the same distribution in z as the ones from the experimental multiplicities, although
both decrease more slowly with increasing z. The same deviations can be observed for the
favoured and unfavoured kaon fragmentation functions; the three sets of FFs agree with
each other only for large z (Dfav) or small z (Dunf ). Like for charged pions, the distribution
of the FFs based on simulations appears to be more flat than the ones extracted with the
measured multiplicities.

The strange quark fragmentation functions extracted with the PYTHIA generated multi-
plicities are up to 50% smaller than the simulated FFs DK+

s̄ and DK−

s , but do reproduce
the shape of their distribution quite well. Both decrease with increasing z. They do not
agree with the FFs from the experimental multiplicities. The extracted Dstr for two differ-
ent intervals of x do not agree with either the corresponding simulated FFs, or each other.
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However, they do display the same trend as a function of z (decreasing with increasing
z), and as such appear to be more reasonable physically. Compared to strange quark FF
extracted from measured multiplicities they also prove much more stable in regard to the
chosen interval of x. It is also worth noting that the values for Dstr are much larger for
larger x, regardless of the multiplicities (experimental or simulated) used in the analysis,
casting doubt on the validity of the factorisation assumption.

While these results suggest the possibility that the sets of kaon multiplicities measured
at COMPASS are at least partly responsible for unphysical results for strange quark
fragmentation function extracted with them, the evidence is not very convincing. The
simulated multiplicities do not lead to results that agree with the simulated FFs or the
various parametrisations for strange quark fragmentation. Another set of experimentally
measured multiplicities would be necessary to clarify this issue.



Chapter 7

Summary and Outlook

Quark helicity distributions can be accessed by measuring spin asymmetries in polarised
deep-inelastic scattering, but for a full flavour separation the precise knowledge of quark
fragmentation functions is essential. Those can only be inferred from experimental data,
and are still poorly determined today. The few existing parametrisations of fragmentation
functions are derived from world data (mainly on electron-positron annihilation), and often
differ considerably, most notably for strange quarks.

This thesis presents an independent evaluation of fragmentation functions from charged
pion and kaon multiplicities extracted from data recorded at the COMPASS experiment. A
method of extraction was developed, based on the relation between hadron multiplicities,
rh(x, z), unpolarised parton distribution functions, q(x), and quark fragmentation func-
tions into hadrons, Dh

q (z). An additional Q2 dependence to all the factors was expected
to be insignificant, and was neglected in this analysis.

The number of fragmentation functions in the equation can be reduced to six by specifying
the hadron type and assuming charge conjugation symmetry. By grouping the remaining
FFs according to magnitude and making use of the assumption that they depend only on
the scaling variable z - while the unpolarisd PDFs only depend on the scaling variable x -
a system of equations can be constructed that allows to extract fragmentation functions.
Using experimental multiplicities and unpolarised PDFs from global parametrisations,
three different FFs can be extracted for charged kaons (Dstr,Dfav,Dunf ), and two different
ones (Dfav, Dunf ) for pions.

Multiplicities for charged kaons and pions from 2004 semi-inclusive deep-inelastic scatter-
ing data have been extracted by the COMPASS collaboration last year. Together with two
sets of unpolarised parton distribution functions from global parametrisations (CTEQ6
and MSTW) they were used as input for the system of equations outlined above, and
charged pion and kaon fragmentation functions were extracted in four z bins. To evaluate
the stability of the results a number of tests was performed. The x range of the multi-
plicities and unpolarised PDFs was limited to study the influence of larger uncertainties
and missing data points of the experimental multiplicities on the resulting fragmentation
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functions. The factorisation assumption - stating that the fragmentation of a quark is
independent of the initial scattering event from which it originates - was put to the test
by splitting the multiplicities and unpolarised PDFs into two subsets, one for the lower
and one for the higher intervals of x. The extracted fragmentation functions were com-
pared to the ones published by EMC, as well as to results derived with a set of artificial
multiplicities generated with the particle physics event generator PYTHIA.

Four of the five extracted fragmentation functions - Dfav and Dunf for both pions and
kaons - are quite stable with regard to the parton distribution used in the calculation
as well as to the x range in which the analysis was performed, and agree with the ones
published by EMC.

This is not the case for the fifth fragmentation function, Dstr for charged kaons. The
extracted strange quark fragmentation function is very unstable with regard to the x range
of the multiplicities and PDFs used in the analysis, and also shows significant differences for
the two different sets of unpolarised parton distribution functions. The extracted values for
Dstr are often negative - and therefore physically impossible. The test of the factorisation
assumption leads to incompatible results for the two intervals of x. The two sets of Dstr

extracted using experimental and simulated multiplicities also do not agree. While the use
of PYTHIA generated multiplicities leads to results that are more stable with regard to
the interval of x used in the analysis, as well as physically possible, they are much smaller
than expected. All sets of Dstr extracted in this analysis, regardless of the interval of x,
the version unpolarised PDFs or multiplicities used, disagree with PYTHIA simulations of
strange quark fragmentation functions, as well as with predictions from parametrisations.

The study of fragmentation functions, in particular the strange quark fragmentation func-
tions into kaons, is a subject of ongoing and future research for the COMPASS collabo-
ration. Alternative methods of extraction of FFs are being explored, as are various ap-
proaches of integrating the Q2 dependence of fragmentation functions into the analysis.
The charged pion and kaon multiplicities used in this analysis represent only a first attempt
of an extraction of hadron multiplicities from experimental data. This, too, continues to
be an important field of research for COMPASS.



Appendix A

Calculation of the Fragmentation
Functions

The matrices in Eq.s 5.9 and 5.23 (cf. Sections 5.2 and 5.3) represent a system of 24
linear equations (for twelve x bins and two charges each) which is used to calculate three
(for kaons) or two (for pions) unknowns - the three and two unknown fragmentation
functions for kaons and pions, respectively. The 24 equations constrain the system, it is
overdetermined; therefore no exact solution exists. To find an approximate solution the
method of least squares is used. For the system of equations

~r = B × ~D,

χ2 is given by

χ2 = (B ~D − ~r)TG(B ~D − ~r), (A.1)

where ~D is the vector containing the fragmentation functions, B the matrix containing
the unpolarised PDFs, and ~r the vector containing the multiplicities.

The errors for the multiplicities are enclosed in the covariance matrix, cov. The inverted
error matrix, cov−1, is represented by G.

Minimising χ2:

δ

δ ~D
χ2 = 0 (A.2)

yields the equation for the fragmentation functions:

~D =
[
(BTGB)−1 ·BTG

]
~r. (A.3)

The error matrices used in this analysis are explained in detail below.
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A.1 Error Matrices

The extracted COMPASS multiplicities [39] are given with a statistical and a systematical
error in each x and z bin (cf. Tables C.3, C.4, C.1, C.2).

The statistical uncertainties, σstat
K±(xi)

, are uncorrelated; the respective error matrix is there-
fore diagonal:

covstat =















(

σstat
K+(x1)

)2
0 · · · 0 0

0
(

σstat
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)2
· · · 0 0
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0 0 · · ·
(

σstat
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0
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σstat
K−(x12)
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(A.4)

The systematical error for the multiplicities, σsys, also given for each x and z bin, breaks
down into three parts (cf. Appendix C):

• Stability of hadron multiplicities versus time (σCOMP
sys )

• Acceptance calculation (σMC
sys )

• Sensitivity to the parameters used for identification in the RICH detector (σRICH
sys )

Unlike the statistical uncertainties, these systematical errors are not uncorrelated. To be
able to include these errors into the calculation while keeping the covariance matrix in-
vertible, the total systematical error has been averaged over the twelve x bins in each
bin of z. The average systematic error σ and the statistical errors σstat

K±(xi)
have been com-

bined quadratically for each of the calculations. Assuming 100% correlation, the covariance
matrix for the full error covfull is therefore given by:
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(A.5)
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The actual level of correllation is very difficult to evaluate with the available data. To
ensure that the uncertainties were not underestimated the error matrix in Eq. A.5 was
used for all calculations in this analysis. The quadratical combination of the systematic and
statistical errors may lead to a slight overestimation of errors as well, since uncertainties
that are common to positively and negatively charged hadron are counted twice.
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Appendix B

Pion and Kaon Fragmentation
Functions vs. z

This section lists the extracted fragmentation functions for charged pions and kaons from
COMPASS multiplicities:

• Pion fragmentation functions

– Pion fragmentation functions Dfav, Dunf for 0.004 < x < 0.7: Table B.1

– Pion fragmentation functions Dfav, Dunf for 0.006 < x < 0.4: Table B.2

– Pion fragmentation functions Dfav, Dunf for 0.004 < x < 0.06: Table B.3

– Pion fragmentation functions Dfav, Dunf for 0.06 < x < 0.7: Table B.4

• Kaon fragmentation functions

– Kaon fragmentation functions Dstr, Dfav, Dunf for 0.004 < x < 0.7: Table B.5

– Kaon fragmentation functions Dstr, Dfav, Dunf for 0.01 < x < 0.3: Table B.6

– Kaon fragmentation functions Dstr, Dfav, Dunf for 0.004 < x < 0.06: Table B.7

– Kaon fragmentation functions Dstr, Dfav, Dunf for 0.06 < x < 0.7: Table B.8

Details:

• all fragmentation functions extracted with the COMPASS multiplicities listed in
Section C

• all fragmentation functions extracted with CTEQ6-LO and MSTW2008-LO parton
distributions
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z DCTEQ
fav ∆DCTEQ

fav DCTEQ
unf ∆DCTEQ

unf

0.20 - 0.30 0.226 ± 0.007 0.140 ± 0.007

0.30 - 0.45 0.148 ± 0.007 0.077 ± 0.007

0.45 - 0.65 0.074 ± 0.007 0.033 ± 0.007

0.65 - 0.85 0.026 ± 0.007 0.009 ± 0.007

0.20 - 0.80 0.474 ± 0.013 0.258 ± 0.013

z DMSTW
fav ∆DMSTW

fav DMSTW
unf ∆DMSTW

unf

0.30 - 0.45 0.219 ± 0.007 0.143 ± 0.007

0.45 - 0.65 0.147 ± 0.007 0.077 ± 0.007

0.65 - 0.85 0.075 ± 0.007 0.032 ± 0.007

0.65 - 0.85 0.024 ± 0.007 0.010 ± 0.007

0.20 - 0.80 0.466 ± 0.013 0.262 ± 0.013

Table B.1: The extracted pion fragmentation functions Dfav and Dunf for 0.004< x < 0.7 in four
z bins, and integrated over the whole z range, including their combined statistical and
systematical errors (cf. Fig. 6.1).

z DCTEQ
fav ∆DCTEQ

fav DCTEQ
unf ∆DCTEQ

unf

0.20 - 0.30 0.226 ± 0.007 0.142 ± 0.007

0.30 - 0.45 0.148 ± 0.007 0.078 ± 0.007

0.45 - 0.65 0.074 ± 0.007 0.033 ± 0.007

0.65 - 0.85 0.028 ± 0.007 0.013 ± 0.007

0.20 - 0.85 0.476 ± 0.013 0.266 ± 0.013

z DMSTW
fav ∆DMSTW

fav DMSTW
unf ∆DMSTW

unf

0.20 - 0.30 0.221 ± 0.007 0.145 ± 0.007

0.30 - 0.45 0.148 ± 0.007 0.077 ± 0.007

0.45 - 0.65 0.075 ± 0.007 0.032 ± 0.007

0.65 - 0.85 0.028 ± 0.007 0.012 ± 0.007

0.20 - 0.85 0.472 ± 0.013 0.266 ± 0.013

Table B.2: The extracted pion fragmentation functions Dfav and Dunf for 0.006< x < 0.4 in four
z bins, and integrated over the whole z range, including their combined statistical and
systematical errors (cf. Fig. 6.2).



115

z DCTEQ
fav ∆DCTEQ

fav DCTEQ
unf ∆DCTEQ

unf

0.20 - 0.30 0.225 ± 0.007 0.137 ± 0.007

0.30 - 0.45 0.150 ± 0.007 0.076 ± 0.007

0.45 - 0.65 0.078 ± 0.007 0.032 ± 0.007

0.65 - 0.85 0.029 ± 0.007 0.007 ± 0.007

0.20 - 0.85 0.481 ± 0.013 0.252 ± 0.013

z DMSTW
fav ∆DMSTW

fav DMSTW
unf ∆DMSTW

unf

0.20 - 0.30 0.214 ± 0.007 0.145 ± 0.007

0.30 - 0.45 0.146 ± 0.007 0.078 ± 0.007

0.45 - 0.65 0.077 ± 0.007 0.032 ± 0.007

0.65 - 0.85 0.024 ± 0.007 0.011 ± 0.007

0.20 - 0.85 0.461 ± 0.013 0.265 ± 0.013

Table B.3: The extracted pion fragmentation functions Dfav and Dunf for 0.004< x < 0.06 in
four z bins, and integrated over the whole z range, including their combined statistical
and systematical errors (cf. Fig. 6.3).

z DCTEQ
fav ∆DCTEQ

fav DCTEQ
unf ∆DCTEQ

unf

0.20 - 0.30 0.234 ± 0.007 0.157 ± 0.007

0.30 - 0.45 0.147 ± 0.007 0.078 ± 0.007

0.45 - 0.65 0.065 ± 0.007 0.030 ± 0.007

0.65 - 0.85 0.023 ± 0.007 0.008 ± 0.007

0.20 - 0.85 0.468 ± 0.013 0.273 ± 0.013

z DMSTW
fav ∆DMSTW

fav DMSTW
unf ∆DMSTW

unf

0.20 - 0.30 0.237 ± 0.007 0.153 ± 0.007

0.30 - 0.45 0.149 ± 0.007 0.076 ± 0.007

0.45 - 0.65 0.066 ± 0.007 0.029 ± 0.007

0.65 - 0.85 0.024 ± 0.007 0.007 ± 0.007

0.20 - 0.85 0.477 ± 0.013 0.265 ± 0.013

Table B.4: The extracted pion fragmentation functions Dfav and Dunf for 0.06< x < 0.7 in four
z bins, and integrated over the whole z range, including their combined statistical and
systematical errors (cf. Fig. 6.3).
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z DCTEQ
str ∆DCTEQ

str DCTEQ
fav ∆DCTEQ

fav DCTEQ
unf ∆DCTEQ

unf

0.20 - 0.30 - 0.050 ± 0.010 + 0.059 ± 0.007 + 0.021 ± 0.007

0.30 - 0.45 - 0.070 ± 0.009 + 0.055 ± 0.007 + 0.014 ± 0.007

0.45 - 0.65 + 0.022 ± 0.008 + 0.030 ± 0.007 + 0.003 ± 0.007

0.65 - 0.85 - 0.037 ± 0.007 + 0.012 ± 0.007 + 0.001 ± 0.007

0.20 - 0.80 - 0.135 ± 0.017 + 0.156 ± 0.013 + 0.040 ± 0.013

z DMSTW
str ∆DMSTW

str DMSTW
fav ∆DMSTW

fav DMSTW
unf ∆DMSTW

unf

0.20 - 0.30 -0.073 ± 0.020 0.058 ± 0.007 0.022 ± 0.007

0.30 - 0.45 -0.088 ± 0.013 0.054 ± 0.007 0.014 ± 0.007

0.45 - 0.65 0.051 ± 0.010 0.030 ± 0.007 0.002 ± 0.007

0.65 - 0.85 -0.020 ± 0.008 0.011 ± 0.007 0.000 ± 0.007

0.20 - 0.80 -0.130 ± 0.027 +0.152 ± 0.013 +0.038 ± 0.013

Table B.5: The extracted kaon fragmentation functions Dstr, Dfav and Dunf for 0.004< x < 0.7
in four z bins, and integrated over the whole z range, including their combined sta-
tistical and systematical errors (cf. Fig. 6.4).

z DCTEQ
str ∆DCTEQ

str DCTEQ
fav ∆DCTEQ

fav DCTEQ
unf ∆DCTEQ

unf

0.20 - 0.30 -0.019 ± 0.016 0.057 ± 0.007 0.021 ± 0.007

0.30 - 0.45 -0.033 ± 0.016 0.053 ± 0.007 0.013 ± 0.007

0.45 - 0.65 0.039 ± 0.016 0.030 ± 0.007 0.002 ± 0.007

0.65 - 0.85 0.013 ± 0.016 0.011 ± 0.007 0.000 ± 0.007

0.20 - 0.80 -0.000 ± 0.033 0.151 ± 0.013 0.036 ± 0.013

z DMSTW
str ∆DMSTW

str DMSTW
fav ∆DMSTW

fav DMSTW
unf ∆DMSTW

unf

0.20 - 0.30 -0.055 ± 0.027 0.058 ± 0.007 0.021 ± 0.007

0.30 - 0.45 -0.065 ± 0.027 0.054 ± 0.007 0.013 ± 0.007

0.45 - 0.65 0.061 ± 0.027 0.030 ± 0.007 0.001 ± 0.007

0.65 - 0.85 0.017 ± 0.027 0.011 ± 0.007 -0.001 ± 0.007

0.20 - 0.80 -0.042 ± 0.053 0.153 ± 0.013 0.035 ± 0.013

Table B.6: The extracted kaon fragmentation functions Dstr, Dfav and Dunf for 0.01< x < 0.3 in
four z bins, and integrated over the whole z range, including their combined statistical
and systematical errors (cf. Fig. 6.5).
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z DCTEQ
str ∆DCTEQ

str DCTEQ
fav ∆DCTEQ

fav DCTEQ
unf ∆DCTEQ

unf

0.20 - 0.30 -0.070 ± 0.013 0.061 ± 0.007 0.022 ± 0.007

0.30 - 0.45 -0.110 ± 0.011 0.058 ± 0.007 0.015 ± 0.007

0.45 - 0.65 -0.019 ± 0.010 0.034 ± 0.007 0.004 ± 0.007

0.65 - 0.85 -0.117 ± 0.009 0.016 ± 0.007 0.005 ± 0.007

0.20 - 0.80 -0.316 ± 0.022 0.170 ± 0.013 0.045 ± 0.013

z DMSTW
str ∆DMSTW

str DMSTW
fav ∆DMSTW

fav DMSTW
unf ∆DMSTW

unf

0.20 - 0.30 -0.017 ± 0.053 0.056 ± 0.007 0.020 ± 0.007

0.30 - 0.45 -0.228 ± 0.037 0.059 ± 0.007 0.019 ± 0.007

0.45 - 0.65 0.028 ± 0.032 0.033 ± 0.007 0.001 ± 0.007

0.65 - 0.85 0.015 ± 0.032 0.010 ± 0.007 -0.001 ± 0.007

0.20 - 0.80 -0.202 ± 0.079 0.157 ± 0.013 0.039 ± 0.013

Table B.7: The extracted kaon fragmentation functions Dstr, Dfav and Dunf for 0.004< x < 0.06
in four z bins, and integrated over the whole z range, including their combined sta-
tistical and systematical errors (cf. Fig. 6.6).

z DCTEQ
str ∆DCTEQ

str DCTEQ
fav ∆DCTEQ

fav DCTEQ
unf ∆DCTEQ

unf

0.20 - 0.30 0.039 ± 0.063 0.055 ± 0.007 0.020 ± 0.007

0.30 - 0.45 0.063 ± 0.038 0.048 ± 0.007 0.013 ± 0.007

0.45 - 0.65 0.176 ± 0.014 0.025 ± 0.007 0.000 ± 0.007

0.65 - 0.85 0.034 ± 0.013 0.009 ± 0.007 0.000 ± 0.007

0.20 - 0.80 0.311 ± 0.076 0.137 ± 0.013 0.033 ± 0.013

z DMSTW
str ∆DMSTW

str DMSTW
fav ∆DMSTW

fav DMSTW
unf ∆DMSTW

unf

0.20 - 0.30 0.019 ± 0.061 0.057 ± 0.007 0.020 ± 0.007

0.30 - 0.45 0.043 ± 0.037 0.050 ± 0.007 0.012 ± 0.007

0.45 - 0.65 0.141 ± 0.014 0.028 ± 0.007 0.000 ± 0.007

0.65 - 0.85 0.024 ± 0.013 0.010 ± 0.007 0.000 ± 0.007

0.20 - 0.80 0.226 ± 0.074 0.145 ± 0.013 0.031 ± 0.013

Table B.8: The extracted kaon fragmentation functions Dstr, Dfav and Dunf for 0.06< x < 0.7 in
four z bins, and integrated over the whole z range, including their combined statistical
and systematical errors (cf. Fig. 6.6).
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Appendix C

Multiplicities vs. x and z

This section lists the COMPASS multiplicities (corrected for acceptance, smearing and
radiative effects) used for the extraction of the fragmentation functions. They are given in
twelve x bins and four intervals of z (taken from [39]):

• π+ multiplicities: Table C.1

• π− multiplicities: Table C.2

• K+ multiplicities: Table C.3

• K− multiplicities: Table C.4

Details:

• COMPASS data taken in 2004: muon beam on 6LiD target

• Q2 > 1 [GeV/c]2

• 0.1 < y < 0.9

• 0.004 < x < 0.7

• W > 7 GeV
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z bin x bin Mπ+

σstat σCOMP
sys σMC

sys σRICH
sys σtot

sys

[0.20, 0.30] [0.004, 0.006] 1.470 0.011 0.012 0.0202 0.0490 0.0543

[0.20, 0.30] [0.006, 0.01] 1.605 0.006 0.006 0.0298 0.0642 0.0711

[0.20, 0.30] [0.01, 0.02] 1.775 0.004 0.004 0.0003 0.0565 0.0567

[0.20, 0.30] [0.02, 0.03] 1.934 0.005 0.006 0.0224 0.0488 0.0540

[0.20, 0.30] [0.03, 0.04] 1.985 0.007 0.008 0.0349 0.0405 0.0541

[0.20, 0.30] [0.04, 0.06] 2.011 0.007 0.008 0.0328 0.0372 0.0502

[0.20, 0.30] [0.06, 0.10] 2.081 0.008 0.009 0.0332 0.0348 0.0490

[0.20, 0.30] [0.10, 0.15] 2.058 0.014 0.015 0.0149 0.0387 0.0440

[0.20, 0.30] [0.15, 0.20] 2.071 0.026 0.028 0.0183 0.0451 0.0562

[0.20, 0.30] [0.20, 0.30] 2.055 0.039 0.043 0.0409 0.0377 0.0701

[0.20, 0.30] [0.30, 0.40] 1.943 0.113 0.124 0.0005 0.0496 0.1337

[0.20, 0.30] [0.40, 0.70] 1.611 0.363 0.400 0.0096 0.1401 0.4236

[0.30, 0.45] [0.004, 0.006] 0.645 0.008 0.009 0.0458 0.0687 0.0831

[0.30, 0.45] [0.006, 0.01] 0.700 0.004 0.004 0.0158 0.0392 0.0425

[0.30, 0.45] [0.01, 0.02] 0.754 0.002 0.003 0.0065 0.0224 0.0234

[0.30, 0.45] [0.02, 0.03] 0.795 0.003 0.003 0.0018 0.0157 0.0161

[0.30, 0.45] [0.03, 0.04] 0.804 0.004 0.004 0.0094 0.0122 0.0160

[0.30, 0.45] [0.04, 0.06] 0.814 0.004 0.004 0.0073 0.0124 0.0150

[0.30, 0.45] [0.06, 0.10] 0.824 0.004 0.004 0.0104 0.0091 0.0146

[0.30, 0.45] [0.10, 0.15] 0.824 0.007 0.007 0.0106 0.0041 0.0134

[0.30, 0.45] [0.15, 0.20] 0.798 0.012 0.013 0.0109 0.0002 0.0170

[0.30, 0.45] [0.20, 0.30] 0.804 0.018 0.020 0.0076 0.0072 0.0228

[0.30, 0.45] [0.30, 0.40] 0.842 0.056 0.061 0.0296 0.0000 0.0680

[0.30, 0.45] [0.40, 0.70] 0.950 0.209 0.230 0.3551 0.0432 0.4253

[0.45, 0.65] [0.004, 0.006] 0.256 0.019 0.021 0.0144 0.0427 0.0496

[0.45, 0.65] [0.006, 0.01] 0.270 0.003 0.004 0.0065 0.0239 0.0250

[0.45, 0.65] [0.01, 0.02] 0.284 0.001 0.002 0.0032 0.0109 0.0115

[0.45, 0.65] [0.02, 0.03] 0.293 0.002 0.002 0.0006 0.0079 0.0081

[0.45, 0.65] [0.03, 0.04] 0.285 0.002 0.002 0.0015 0.0061 0.0067

[0.45, 0.65] [0.04, 0.06] 0.279 0.002 0.002 0.0035 0.0052 0.0066

[0.45, 0.65] [0.06, 0.10] 0.272 0.002 0.002 0.0005 0.0031 0.0039

[0.45, 0.65] [0.10, 0.15] 0.274 0.003 0.004 0.0020 0.0009 0.0041

[0.45, 0.65] [0.15, 0.20] 0.276 0.006 0.006 0.0054 0.0028 0.0089

[0.45, 0.65] [0.20, 0.30] 0.290 0.010 0.010 0.0056 0.0073 0.0139

[0.45, 0.65] [0.30, 0.40] 0.263 0.026 0.029 0.0045 0.0393 0.0490

[0.45, 0.65] [0.40, 0.70] 0.211 0.063 0.069 0.0661 0.0000 0.0959

[0.65, 0.85] [0.004, 0.006] 0.000 0.000 0.000 0.0000 0.0000 0.0000

[0.65, 0.85] [0.006, 0.01] 0.120 0.005 0.006 0.0004 0.0138 0.0150

[0.65, 0.85] [0.01, 0.02] 0.125 0.001 0.001 0.0008 0.0055 0.0058

[0.65, 0.85] [0.02, 0.03] 0.122 0.001 0.001 0.0001 0.0040 0.0043

[0.65, 0.85] [0.03, 0.04] 0.117 0.002 0.002 0.0006 0.0037 0.0041

[0.65, 0.85] [0.04, 0.06] 0.102 0.001 0.001 0.0008 0.0034 0.0038

[0.65, 0.85] [0.06, 0.10] 0.091 0.001 0.001 0.0001 0.0002 0.0014

[0.65, 0.85] [0.10, 0.15] 0.086 0.002 0.002 0.0002 0.0022 0.0030

[0.65, 0.85] [0.15, 0.20] 0.089 0.003 0.004 0.0015 0.0058 0.0071

[0.65, 0.85] [0.20, 0.30] 0.104 0.006 0.007 0.0011 0.0137 0.0152

[0.65, 0.85] [0.30, 0.40] 0.092 0.016 0.018 0.0022 0.0290 0.0339

[0.65, 0.85] [0.40, 0.70] 0.098 0.044 0.048 0.0597 0.0983 0.1247

Table C.1: Positive pion multiplicities in bins of x and z [39]
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z bin x bin Mπ−

σstat σCOMP
sys σMC

sys σRICH
sys σtot

sys

[0.20, 0.30] [0.004, 0.006] 1.423 0.011 0.007 0.0330 0.0345 0.0483

[0.20, 0.30] [0.006, 0.01] 1.560 0.006 0.004 0.0161 0.0957 0.0972

[0.20, 0.30] [0.01, 0.02] 1.701 0.004 0.003 0.0005 0.0622 0.0622

[0.20, 0.30] [0.02, 0.03] 1.816 0.005 0.004 0.0226 0.0207 0.0309

[0.20, 0.30] [0.03, 0.04] 1.829 0.007 0.005 0.0270 0.0172 0.0325

[0.20, 0.30] [0.04, 0.06] 1.807 0.007 0.005 0.0255 0.0125 0.0288

[0.20, 0.30] [0.06, 0.10] 1.812 0.008 0.006 0.0345 0.0025 0.0350

[0.20, 0.30] [0.10, 0.15] 1.784 0.013 0.009 0.0379 0.0163 0.0422

[0.20, 0.30] [0.15, 0.20] 1.736 0.024 0.017 0.0130 0.0187 0.0282

[0.20, 0.30] [0.20, 0.30] 1.736 0.037 0.026 0.0112 0.0090 0.0294

[0.20, 0.30] [0.30, 0.40] 1.828 0.108 0.076 0.0724 0.0155 0.1058

[0.20, 0.30] [0.40, 0.70] 1.179 0.311 0.218 0.1755 0.0000 0.2799

[0.30, 0.45] [0.004, 0.006] 0.610 0.008 0.005 0.0335 0.0309 0.0459

[0.30, 0.45] [0.006, 0.01] 0.650 0.004 0.003 0.0155 0.0241 0.0288

[0.30, 0.45] [0.01, 0.02] 0.691 0.002 0.002 0.0044 0.0246 0.0250

[0.30, 0.45] [0.02, 0.03] 0.719 0.003 0.002 0.0082 0.0169 0.0189

[0.30, 0.45] [0.03, 0.04] 0.704 0.004 0.003 0.0032 0.0155 0.0161

[0.30, 0.45] [0.04, 0.06] 0.699 0.003 0.002 0.0089 0.0132 0.0162

[0.30, 0.45] [0.06, 0.10] 0.671 0.004 0.003 0.0093 0.0120 0.0154

[0.30, 0.45] [0.10, 0.15] 0.645 0.006 0.004 0.0120 0.0053 0.0137

[0.30, 0.45] [0.15, 0.20] 0.626 0.011 0.008 0.0158 0.0086 0.0195

[0.30, 0.45] [0.20, 0.30] 0.616 0.016 0.011 0.0182 0.0136 0.0254

[0.30, 0.45] [0.30, 0.40] 0.578 0.049 0.034 0.0398 0.0168 0.0550

[0.30, 0.45] [0.40, 0.70] 0.700 0.168 0.117 0.0057 0.0368 0.1232

[0.45, 0.65] [0.004, 0.006] 0.222 0.017 0.012 0.0245 0.0319 0.0420

[0.45, 0.65] [0.006, 0.01] 0.244 0.003 0.002 0.0050 0.0172 0.0180

[0.45, 0.65] [0.01, 0.02] 0.253 0.001 0.001 0.0035 0.0077 0.0085

[0.45, 0.65] [0.02, 0.03] 0.253 0.002 0.001 0.0003 0.0070 0.0071

[0.45, 0.65] [0.03, 0.04] 0.239 0.002 0.001 0.0025 0.0059 0.0065

[0.45, 0.65] [0.04, 0.06] 0.225 0.002 0.001 0.0026 0.0054 0.0061

[0.45, 0.65] [0.06, 0.10] 0.211 0.002 0.001 0.0020 0.0064 0.0068

[0.45, 0.65] [0.10, 0.15] 0.197 0.003 0.002 0.0003 0.0058 0.0061

[0.45, 0.65] [0.15, 0.20] 0.186 0.005 0.003 0.0028 0.0088 0.0098

[0.45, 0.65] [0.20, 0.30] 0.179 0.007 0.005 0.0006 0.0095 0.0108

[0.45, 0.65] [0.30, 0.40] 0.168 0.021 0.015 0.0201 0.0098 0.0267

[0.45, 0.65] [0.40, 0.70] 0.241 0.078 0.055 0.0510 0.0688 0.1017

[0.65, 0.85] [0.004, 0.006] 0.000 0.000 0.000 0.0000 0.0000 0.0000

[0.65, 0.85] [0.006, 0.01] 0.103 0.005 0.003 0.0004 0.0065 0.0073

[0.65, 0.85] [0.01, 0.02] 0.119 0.001 0.001 0.0029 0.0044 0.0053

[0.65, 0.85] [0.02, 0.03] 0.107 0.001 0.001 0.0016 0.0029 0.0034

[0.65, 0.85] [0.03, 0.04] 0.089 0.001 0.001 0.0000 0.0042 0.0043

[0.65, 0.85] [0.04, 0.06] 0.079 0.001 0.001 0.0003 0.0040 0.0041

[0.65, 0.85] [0.06, 0.10] 0.068 0.001 0.001 0.0014 0.0036 0.0039

[0.65, 0.85] [0.10, 0.15] 0.057 0.002 0.001 0.0019 0.0057 0.0061

[0.65, 0.85] [0.15, 0.20] 0.054 0.003 0.002 0.0002 0.0039 0.0044

[0.65, 0.85] [0.20, 0.30] 0.047 0.004 0.003 0.0009 0.0080 0.0084

[0.65, 0.85] [0.30, 0.40] 0.027 0.008 0.006 0.0024 0.0042 0.0076

[0.65, 0.85] [0.40, 0.70] 0.101 0.045 0.032 0.1193 0.0000 0.1234

Table C.2: Negative pion multiplicities in bins of x and z [39]
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z bin x bin MK+

σstat σCOMP
sys σMC

sys σRICH
sys σtot

sys

[0.20, 0.30] [0.004, 0.006] 0.305 0.005 0.002 0.0042 0.0764 0.0766

[0.20, 0.30] [0.006, 0.01] 0.334 0.003 0.001 0.0065 0.0156 0.0169

[0.20, 0.30] [0.01, 0.02] 0.359 0.002 0.001 0.0010 0.0018 0.0024

[0.20, 0.30] [0.02, 0.03] 0.362 0.004 0.002 0.0047 0.0006 0.0051

[0.20, 0.30] [0.03, 0.04] 0.362 0.005 0.002 0.0016 0.0012 0.0031

[0.20, 0.30] [0.04, 0.06] 0.392 0.005 0.002 0.0077 0.0009 0.0081

[0.20, 0.30] [0.06, 0.10] 0.411 0.006 0.003 0.0109 0.0109 0.0157

[0.20, 0.30] [0.10, 0.15] 0.441 0.011 0.005 0.0110 0.0159 0.0200

[0.20, 0.30] [0.15, 0.20] 0.436 0.020 0.009 0.0021 0.0157 0.0183

[0.20, 0.30] [0.20, 0.30] 0.443 0.028 0.013 0.0175 0.0030 0.0218

[0.20, 0.30] [0.30, 0.40] 0.533 0.088 0.039 0.0485 0.0193 0.0654

[0.20, 0.30] [0.40, 0.70] 0.274 0.146 0.066 0.1742 0.1201 0.2215

[0.30, 0.45] [0.004, 0.006] 0.157 0.004 0.002 0.0086 0.0703 0.0709

[0.30, 0.45] [0.006, 0.01] 0.170 0.002 0.001 0.0045 0.0314 0.0317

[0.30, 0.45] [0.01, 0.02] 0.193 0.001 0.001 0.0006 0.0100 0.0100

[0.30, 0.45] [0.02, 0.03] 0.208 0.002 0.001 0.0017 0.0023 0.0030

[0.30, 0.45] [0.03, 0.04] 0.215 0.002 0.001 0.0047 0.0004 0.0049

[0.30, 0.45] [0.04, 0.06] 0.223 0.002 0.001 0.0032 0.0029 0.0044

[0.30, 0.45] [0.06, 0.10] 0.233 0.003 0.001 0.0051 0.0049 0.0071

[0.30, 0.45] [0.10, 0.15] 0.241 0.004 0.002 0.0031 0.0064 0.0074

[0.30, 0.45] [0.15, 0.20] 0.263 0.008 0.004 0.0031 0.0052 0.0070

[0.30, 0.45] [0.20, 0.30] 0.244 0.011 0.005 0.0028 0.0038 0.0068

[0.30, 0.45] [0.30, 0.40] 0.337 0.040 0.018 0.0197 0.0036 0.0269

[0.30, 0.45] [0.40, 0.70] 0.367 0.162 0.073 0.0540 0.1222 0.1522

[0.45, 0.65] [0.004, 0.006] 0.065 0.010 0.004 0.0013 0.0488 0.0490

[0.45, 0.65] [0.006, 0.01] 0.072 0.002 0.001 0.0051 0.0251 0.0256

[0.45, 0.65] [0.01, 0.02] 0.082 0.001 0.000 0.0024 0.0067 0.0071

[0.45, 0.65] [0.02, 0.03] 0.093 0.001 0.000 0.0003 0.0040 0.0040

[0.45, 0.65] [0.03, 0.04] 0.092 0.001 0.001 0.0015 0.0044 0.0047

[0.45, 0.65] [0.04, 0.06] 0.092 0.001 0.001 0.0011 0.0058 0.0059

[0.45, 0.65] [0.06, 0.10] 0.092 0.001 0.001 0.0013 0.0060 0.0062

[0.45, 0.65] [0.10, 0.15] 0.103 0.002 0.001 0.0015 0.0081 0.0083

[0.45, 0.65] [0.15, 0.20] 0.100 0.004 0.002 0.0005 0.0096 0.0098

[0.45, 0.65] [0.20, 0.30] 0.098 0.005 0.002 0.0003 0.0065 0.0069

[0.45, 0.65] [0.30, 0.40] 0.130 0.020 0.009 0.0212 0.0511 0.0561

[0.45, 0.65] [0.40, 0.70] 0.215 0.137 0.062 0.0529 0.0000 0.0812

[0.65, 0.85] [0.004, 0.006] 0.000 0.000 0.000 0.0000 0.0000 0.0000

[0.65, 0.85] [0.006, 0.01] 0.024 0.002 0.001 0.0033 0.0145 0.0149

[0.65, 0.85] [0.01, 0.02] 0.028 0.001 0.000 0.0003 0.0063 0.0063

[0.65, 0.85] [0.02, 0.03] 0.030 0.001 0.000 0.0005 0.0035 0.0036

[0.65, 0.85] [0.03, 0.04] 0.030 0.001 0.000 0.0001 0.0035 0.0036

[0.65, 0.85] [0.04, 0.06] 0.030 0.001 0.000 0.0000 0.0038 0.0038

[0.65, 0.85] [0.06, 0.10] 0.031 0.001 0.000 0.0002 0.0061 0.0061

[0.65, 0.85] [0.10, 0.15] 0.032 0.001 0.000 0.0000 0.0076 0.0076

[0.65, 0.85] [0.15, 0.20] 0.036 0.002 0.001 0.0008 0.0078 0.0079

[0.65, 0.85] [0.20, 0.30] 0.033 0.003 0.001 0.0037 0.0120 0.0126

[0.65, 0.85] [0.30, 0.40] 0.030 0.008 0.004 0.0002 0.0122 0.0128

[0.65, 0.85] [0.40, 0.70] 0.013 0.013 0.006 0.0086 0.0126 0.0164

Table C.3: Positive kaon multiplicities in bins of x and z [39]
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z bin x bin MK−

σstat σCOMP
sys σMC

sys σRICH
sys σtot

sys

[0.20, 0.30] [0.004, 0.006] 0.266 0.005 0.003 0.0047 0.0011 0.0057

[0.20, 0.30] [0.006, 0.01] 0.284 0.003 0.002 0.0047 0.0055 0.0075

[0.20, 0.30] [0.01, 0.02] 0.283 0.002 0.001 0.0038 0.0022 0.0046

[0.20, 0.30] [0.02, 0.03] 0.280 0.003 0.002 0.0036 0.0018 0.0045

[0.20, 0.30] [0.03, 0.04] 0.278 0.004 0.003 0.0022 0.0022 0.0041

[0.20, 0.30] [0.04, 0.06] 0.278 0.004 0.003 0.0005 0.0001 0.0027

[0.20, 0.30] [0.06, 0.10] 0.266 0.005 0.003 0.0002 0.0021 0.0036

[0.20, 0.30] [0.10, 0.15] 0.247 0.008 0.005 0.0063 0.0002 0.0079

[0.20, 0.30] [0.15, 0.20] 0.230 0.014 0.008 0.0134 0.0010 0.0158

[0.20, 0.30] [0.20, 0.30] 0.233 0.020 0.012 0.0001 0.0046 0.0127

[0.20, 0.30] [0.30, 0.40] 0.255 0.055 0.033 0.0266 0.0061 0.0427

[0.20, 0.30] [0.40, 0.70] 0.212 0.167 0.100 0.0511 0.1061 0.1548

[0.30, 0.45] [0.004, 0.006] 0.124 0.003 0.002 0.0091 0.0572 0.0579

[0.30, 0.45] [0.006, 0.01] 0.139 0.002 0.001 0.0036 0.0181 0.0185

[0.30, 0.45] [0.01, 0.02] 0.143 0.001 0.001 0.0020 0.0045 0.0050

[0.30, 0.45] [0.02, 0.03] 0.140 0.001 0.001 0.0000 0.0009 0.0012

[0.30, 0.45] [0.03, 0.04] 0.139 0.002 0.001 0.0019 0.0011 0.0025

[0.30, 0.45] [0.04, 0.06] 0.135 0.002 0.001 0.0007 0.0008 0.0015

[0.30, 0.45] [0.06, 0.10] 0.132 0.002 0.001 0.0019 0.0031 0.0038

[0.30, 0.45] [0.10, 0.15] 0.118 0.003 0.002 0.0002 0.0030 0.0035

[0.30, 0.45] [0.15, 0.20] 0.108 0.005 0.003 0.0010 0.0005 0.0032

[0.30, 0.45] [0.20, 0.30] 0.101 0.008 0.005 0.0109 0.0025 0.0121

[0.30, 0.45] [0.30, 0.40] 0.132 0.029 0.018 0.0213 0.0018 0.0277

[0.30, 0.45] [0.40, 0.70] 0.091 0.069 0.042 0.0118 0.0000 0.0433

[0.45, 0.65] [0.004, 0.006] 0.060 0.009 0.005 0.0072 0.0462 0.0471

[0.45, 0.65] [0.006, 0.01] 0.053 0.001 0.001 0.0024 0.0211 0.0212

[0.45, 0.65] [0.01, 0.02] 0.057 0.001 0.000 0.0002 0.0046 0.0046

[0.45, 0.65] [0.02, 0.03] 0.055 0.001 0.000 0.0001 0.0013 0.0014

[0.45, 0.65] [0.03, 0.04] 0.051 0.001 0.001 0.0001 0.0013 0.0014

[0.45, 0.65] [0.04, 0.06] 0.046 0.001 0.000 0.0004 0.0008 0.0010

[0.45, 0.65] [0.06, 0.10] 0.042 0.001 0.001 0.0005 0.0001 0.0007

[0.45, 0.65] [0.10, 0.15] 0.033 0.001 0.001 0.0005 0.0006 0.0010

[0.45, 0.65] [0.15, 0.20] 0.029 0.002 0.001 0.0017 0.0005 0.0021

[0.45, 0.65] [0.20, 0.30] 0.025 0.003 0.002 0.0000 0.0002 0.0015

[0.45, 0.65] [0.30, 0.40] 0.017 0.006 0.004 0.0032 0.0021 0.0053

[0.45, 0.65] [0.40, 0.70] 0.000 0.000 0.000 0.0000 0.0000 0.0000

[0.65, 0.85] [0.004, 0.006] 0.000 0.000 0.000 0.0000 0.0000 0.0000

[0.65, 0.85] [0.006, 0.01] 0.016 0.002 0.001 0.0003 0.0146 0.0146

[0.65, 0.85] [0.01, 0.02] 0.016 0.000 0.000 0.0000 0.0050 0.0050

[0.65, 0.85] [0.02, 0.03] 0.014 0.000 0.000 0.0001 0.0019 0.0019

[0.65, 0.85] [0.03, 0.04] 0.014 0.001 0.000 0.0002 0.0013 0.0013

[0.65, 0.85] [0.04, 0.06] 0.013 0.000 0.000 0.0001 0.0012 0.0012

[0.65, 0.85] [0.06, 0.10] 0.011 0.000 0.000 0.0002 0.0004 0.0005

[0.65, 0.85] [0.10, 0.15] 0.009 0.001 0.000 0.0001 0.0001 0.0004

[0.65, 0.85] [0.15, 0.20] 0.006 0.001 0.001 0.0001 0.0002 0.0006

[0.65, 0.85] [0.20, 0.30] 0.004 0.001 0.001 0.0001 0.0002 0.0006

[0.65, 0.85] [0.30, 0.40] 0.010 0.005 0.003 0.0027 0.0020 0.0046

[0.65, 0.85] [0.40, 0.70] 0.000 0.000 0.000 0.0000 0.0000 0.0000

Table C.4: Positive kaon multiplicities in bins of x and z [39]
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