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Summary 
 

Macrophages (M) and dendritic cells (DC) constitute the first line of defense against 

invading microorganisms. These myeloid cells have been identified as the major components 

of the outer ringwall of suppurative granulomas present in patients with chronic listeriosis. M 

and DC acquire diverse pro-inflammatory features in response to bacteria. However, using 

infection of in vitro generated professional phagocytes with Listeria monocytogenes (L.m.) as 

a model, it has been shown that M like DC express a set of regulatory molecules in 

response to L.m. infection. This regulatory program comprises the expression of indoleamine 

2,3-dioxygenase (IDO1), CD25 and IL-10. Moreover, the data indicated that this program has 

functional relevance since supernatants of infected M suppressed T cell proliferation. In 

addition, whole transcriptome analysis has shown that M and DC react to Listeria infection 

by inducing a common transcriptional program that includes proinflammatory and 

immunomodulatory mediators. Moreover, the data suggest that an important part of the 

transcriptional response of M after L.m. infection is not tuned according to the level of threat 

represented by phagosome-restricted or fully competent bacteria. In line with these findings, I 

could show that around half of the transcriptional changes induced upon L.m. infection in M 

are dependent on host factors mainly TNF- and IFN-, while the remaining 50% might be 

attributed to interactions between the host cell and viable invading bacteria. 

IDO1 has been recognized as an antimicrobial effector, essential in the defense against 

numerous pathogens. Herein I present data demonstrating that IDO1 is amongst the highest 

expressed genes and proteins after L.m. infection in human myeloid cells, including DC and 

M. Several mechanisms such as IDO1-mediated tryptophan (Trp) depletion, but also 

accumulation of tryptophan catabolites have been associated with the antimicrobial effects of 

IDO1 expressing cells. The results obtained via IDO1 specific knockdown and enzymatic 

activity inhibition, have shown that human M and DC use IDO1 to control the growth of 

cytosolic L.m. Furthermore, accumulation of tryptophan catabolites, but not Trp depletion has 

been identified as the main anti-bacterial mechanism in human myeloid cells against L.m. 

infection. In contrast to the important role exerted by IDO1 in human DC and M, this protein 

was not induced in murine myeloid cells highlighting the specificity of host-pathogen 

interactions amongst species.  
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1. Introduction 

1.1 The innate immune system and immune recognition 
Individuals are constantly exposed to microorganisms and environmental agents that can be 

beneficial or represent a hazard for the host. In order to respond to this challenge, 

vertebrates possess two mechanisms that recognize and defend against potential threats: 

the innate and the adaptive immune system. The innate immune system is considerate as an 

ancient tool in evolution since its basic molecular modules are present in plants and animals. 

This evidence indicates that this defense system emerged for the first time before the split of 

these two kingdoms (Hoffmann, Kafatos et al. 1999; Janeway and Medzhitov 2002). Innate 

and adaptive immunity differ fundamentally in the way they perform recognition of danger 

signals. Adaptive immunity relays on a set of non-germ line encoded receptors generated de 

novo in each organism providing high specificity (Iwasaki and Medzhitov 2010). In contrast, 

innate immune cells recognize a broad range of invariant microbial components, known as 

pathogen- associated molecular patterns (PAMPs), but also abnormal self-antigens, using a 

defined set of germ line encoded pathogen recognition receptors (PPR). Innate immune cells 

include M, DC, neutrophils, granulocytes and mast cells amongst others. Upon a challenge, 

they respond rapidly and in most of the cases their actions are sufficient to clear the 

invaders. However, when the innate immune system is overwhelmed T and B cells as 

cellular mediators of adaptive immunity are activated providing specific recognition and 

immune memory (Janeway and Medzhitov 2000).  

PPRs can be classified as secreted, transmembrane and cytosolic receptors. Secreted PPRs 

comprise colectins, ficolins and pentraxins. These molecules bind to microbial surfaces and 

are able to activate the complement response. In addition, they can act as opsonins 

promoting phagocytosis of microorganisms by M. Transmembrane receptors include the 

Toll like receptor family (TLR), which in humans is composed of ten members. TLR1, 2, 4, 5 

and 6 are located in the extracellular membrane and recognize microbial products at the 

surface like lipotheichoic acid (TLR1/2), lipoproteins (TLR2/6), lipopolysaccharide (LPS) 

(TLR4), and flagelin (TLR5). Intracellular TLR receptors, including TLR3, 7 and 9 localize in 

the membrane of phagocytic compartments and recognize nucleic acids (Kawai and Akira 

2006). All TLRs elicit pathways that culminate with the activation of the nuclear factor (NF) 

κB and the activation protein-1 (AP-1). The activation of these transcription factors is 

mediated by signaling events occurred after PAMP recognition. TLRs contain two domains, 

the leucine rich and the Toll/ interleukin-1 receptor (TIR) (Takeda and Akira 2004). Whereas 

the first one is involved in PAMPs recognition, the second one is involved in signal 
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transduction via its interaction with cytosolic adapters like the myeloid primary response 

protein 88 (MyD88), the TIR domain-containing protein (TRAP) and the TIR domain-

containing inducing IFNβ (Trif) protein. Once the signal is detected, MyD88 recruits signaling 

molecules that activate the IL-1R activated kinase (IRAK) family leading to activation of 

tumor necrosis receptor-associated factor 6 (TRAF6) and finally to NFactivation and 

nuclear translocation. Nevertheless, TLRs can also signal trough a MyD88 independent 

pathway using TRIF as adapter. This pathway is essential to induce IFNβ expression, since 

Trif-deficient mice show a deficiency in type I interferon production upon stimulation with LPS 

(Takeda, Kaisho et al. 2003; Takeda and Akira 2004). Cytosolic PPRs include the retinoic 

acid-inducible gene I (RIG-I) like receptors and the nucleotide binding domain and leucine 

rich-repeat containing receptors (NLRs). RLRs are important to response against virus since 

they recognize viral nucleic acids in the cytoplasm leading to the production of type I 

interferon and antiviral effector proteins (Pichlmair and Reis e Sousa 2007). RLRs use the 

common adaptor mitochondrial antiviral signaling protein (MAVS) to drive activation of NF 

and proteins from the interferon response factor (IRF) family (Takeuchi and Akira 2009). The 

NLR family is diverse and is comprised of 22 members in humans. They are involved not 

only in recognition of PAMPs, but also in the response to endogenous stress and danger 

signals (Chen, Shaw et al. 2009). 

M and DC are key components of the innate immune system and drive nearly all 

inflammatory processes (Janeway and Medzhitov 2002). M and DC recognize and clear 

pathogens as well as present hazardous antigens to T cells leading to a productive immune 

response. Nonetheless, M and DC are highly plastic cells, able to integrate a broad range of 

signals from the microenvironment, leading to changes in their phenotype and function which 

enable these cells to shape adaptive immune responses and influence the balance between 

immunity and tolerance (Gordon and Taylor 2005; Mosser and Edwards 2008; Schmidt, 

Nino-Castro et al. 2012). 

 

1.2 Macrophage heterogeneity 
M were first described by Elie Metchnikoff, who observed their outstanding capacity to 

phagocytize foreign particles (Cavaillon 2011). Besides their well-known capability to clear 

invading microorganisms, M play a fundamental role in organ homeostasis, tissue 

remodeling, ontogenesis, response to tissue injury and orchestrate metabolic functions 

(Mosser and Edwards 2008). M like DC are a diverse population; they are found in the vast 

majority of tissues and have been divided in different subpopulations according to their 

anatomical location and expression of surface markers (Murray and Wynn 2011). In mice, 
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tissue resident M originate mainly from monocytes that circulate in the bloodstream and 

enter the tissues to differentiate via the action of macrophage-colony stimulating factor (M-

CSF) (Gordon and Taylor 2005). However in murine models, it has been recently reported 

that M can develop at the yolk sac, before the development of hematopoietic stem cells. 

Furthermore, this population might act as precursor of a myeloid cell lineage that does not 

depend on hematopoietic stem cells for its replenishment (Schulz, Gomez Perdiguero et al. 

2012). Interestingly, the yolk sac lineage comprises M subpopulations that have been 

previously described as able of self-renewal directly at the tissues, including Kupffer cells 

(Klein, Cornejo et al. 2007), microglia (Ajami, Bennett et al. 2007), pleural macrophages 

(Jenkins, Ruckerl et al. 2011), but also epidermal Langerhans cells (Merad, Manz et al. 

2002). Despite their heterogeneity, M keep an essential transcriptional program that 

preserves their identity. Probably the transcription factor PU.1 plays a key role in this matter 

since it is a genome wide modifier which enables the formation and accessibility of 

macrophage-specific regulatory genomic regions (Natoli 2010). 

 

1.2.1 Macrophage polarization 

M are plastic cells and their interactions with other components of the immune system in 

vivo are versatile and complex. In order to approach the intricate network of M responses, a 

useful strategy has been to stimulate them in vitro with microbial agonists or cytokines that 

mimic an in vivo situation. This approach, in combination with evidence obtained in murine 

models has enabled the characterization of two distinct phenotypic and functional profiles, 

known as classical and alternative activation, or by mirroring the T cell nomenclature M1 and 

M2 respectively. 

Classical M1 activated macrophages  

Mackaness showed for the first time in 1962, that M extracted from mice which overcame a 

prior infection with L.m., were more efficient in the control of this bacterium, than their 

counterparts isolated from mice that were not previously infected (Mackaness 1962). After 

this seminal work, Bloom and Bennet established lymphocytes as main activators of M 

(Bloom and Bennett 1970) and IFN- emerged as the obligatory cytokine leading classical M 

activation (Nathan, Murray et al. 1983; Adams and Hamilton 1984; Mosser 2003). In vitro, the 

phenotype of M1 macrophages has been characterized via stimulation with IFN- alone or in 

concert with TNFα and / or TLR agonists (Mosser and Edwards 2008). Classically activated 

M1 Mare potent antigen presenting cells that secrete high levels of pro-inflammatory 

cytokines like IL-12, IL-6, TNF-α and IL-15. All of these immune modulators are involved in 
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the promotion of T helper 1 (TH1) and T helper 17 (TH17) responses (Krausgruber, Blazek et 

al. 2011). In contrast, they only express low levels of the immunosuppressive cytokine IL-10 

(Sica and Mantovani 2012). M1 also express a wide variety of pro-inflammatory chemokines 

and chemokine receptors like CCL3, CCL2, CCL4, CCL5, IL-8 and CCR7 amongst others, 

that promote the recruitment of NK and TH1 cells at the sites of infection (Mantovani, Sica et 

al. 2004). Consistent with their microbicidal properties, M1 are efficient in the production of 

reactive oxygen species (ROS). In mice M1 M express inducible nitric oxide (iNOS) leading 

to the production of nitric oxide (NO) and reactive nitrogen intermediaries that play an 

important role in the control of diverse intracellular pathogens (Chakravortty and Hensel 

2003). 

In the last years, a significant effort has been made to identify the transcription factors that 

direct M polarization. The canonical IRF/STAT pathway is involved in shaping the M1 

phenotype via STAT1 transcriptional activity (Lawrence and Natoli 2011). Similarly, IRF5 is 

responsible for the induction of genes encoding the different subunits of IL-12, but also for 

the repression of IL-10 transcription. Furthermore, adding exogenous IRF5 led to the 

expression of M1 phenotypic markers (Krausgruber, Blazek et al. 2011). NFκB is strongly 

induced upon TLR activation and leads to the production of pro-inflammatory mediators 

related to a M1 phenotype (Bonizzi and Karin 2004). At the same time, NFκB activity 

mediates the transcriptional program necessary for the resolution of inflammation (Lawrence 

and Gilroy 2007) making it less likely that this transcription factor is specific for a particular 

polarization (Figure1). 

Functionally M1 have been associated with a protective response against infection including, 

L.m. (Shaughnessy and Swanson 2007), Samonella typhimurium and the acute phase of 

Mycobacterium tuberculosis (Benoit, Desnues et al. 2008). However, an uncontrolled M1 

activation can lead to tissue damage and multiple organ failure. In septic patients high 

production of M1-type cytokines is associated with a high mortality rate (Bozza, Salluh et al. 

2007). 
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Figure 1. Models of M activation 

Activation of M has been traditionally assessed by the expression of hallmark molecules, including 

cytokines, chemokines and more recently transcription factors. M1 classical activation is characterized 

by the expression of proinflammatory cytokines (TNF-α IL-6, IL-12, and IL-15) and chemokines that 

recruit monocytes, natural killer and TH1 cells, including CCL2, CCL4 and CCL8. Several transcription 

factors mediate the acquisition of an M1 phenotype including IRF5, STAT1 and NF. Hallmarks of 

M2 alternative activation is the expression of the anti-inflammatory mediators IL-10 and TGF-β. 

Several transcription factors have been suggested for the acquisition of a M2 phenotype including 

STAT3, STAT6, IRF4, PPAR and CREB (Mantovani, Sica et al. 2004; Martinez, Gordon et al. 2006; 

Sica and Mantovani 2012). 

Alternatively M2 activated macrophages  

Alternative activation of M emerged after the description of IL-4 (Howard and Paul 1983) 

and IL-13 (Minty, Chalon et al. 1993) as the immunological counterparts of IFN- and key 

drivers of TH2 responses (Wynn 2003). Abramson and Gallin, demonstrated for the first time, 

that IL-4 impaired the respiratory burst and decreased production of IL-1β and IL-8 on M 

(Abramson and Gallin 1990). The discovery of the mannose receptor as a surrogate marker 

expressed on IL-4 treated M, together with the important role of these cells in the control of 

Trypanosoma cruzi, led to the concept of alternative activation of M (Martinez, Helming et 

al. 2009). More recently, other factors have been described to shape M phenotype and 

function, amongst them IL-10, glucocorticoid receptor ligands and, TLR ligands e.g. bacterial 

LPS in concert with immune complexes. Therefore, a new classification of alternative M2 

activation has been proposed as follows: M2a comprises M induced by IL-4 and/or IL-13, 

M2b macrophages induced by TLR ligands and immune complexes and finally M2c induced 

by glucocorticoids and IL-10 (Benoit, Desnues et al. 2008). 

M2 are characterized by the expression of surface receptors like CD23, MCR1, scavenger 

receptors, but also by the secretion of high levels of IL-10 concomitant with low or no IL-12 
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secretion (Sica and Mantovani 2012). However, the expression of other hallmark genes 

varies between human and mice. In murine models, M2 macrophages express the proteins 

Ym1 and Fizz1 and the enzyme Arginase-I that shift the metabolism from NO production to 

accumulation of ornithine and polyamines through induction of L-arginine metabolism (Raes, 

Van den Bergh et al. 2005). Regarding chemokine production in murine M2, CCL2 and CCL7 

promote the recruitment of basophils and eosinophils. In contrast, human alternatively 

activated M express the chemokines CCL13, 14 and 17, although they recruit the same cell 

types at sites of inflammation (Martinez, Helming et al. 2009). 

Transcription factors driving alternative activation in M have not been completely elucidated 

yet. However, studies performed in murine models have contributed to the discovery of 

several interesting candidates. STAT6 as downstream transcription factor of the signaling 

pathway initiated by IL-4 and IL-13 has been involved in this process. Another transcription 

factor activated after IL-4 stimulation is the peroxisome proliferator-activated receptor gamma 

(PPAR) (Huang, Welch et al. 1999). This transcription factor has an important role in M 

metabolic functions, particularly in lipid metabolism and has been found constitutively 

expressed in adipose tissue M, where it promotes anti-inflammatory processes (Lawrence 

and Natoli 2011). Interestingly, it was shown that PPAR can act in concert with STAT6 to 

regulate gene expression (Szanto, Balint et al. 2010). Similarly, in human and mice STAT3 

acts as an effector transcription factor of IL-10 and mediates the transcription of some of the 

hallmark genes of M2 polarization, like IL-10, TGFβ and MRC1 (Takeda, Clausen et al. 1999; 

Lang, Patel et al. 2002; Williams, Bradley et al. 2004). Finally, epigenetic changes induced 

by the jumonji domain containing-3 demethylase (Jmjd3) in concert with the transcription 

factor IRF4 promote the transcription of M2 related genes in mice (Satoh, Takeuchi et al. 

2010) (Figure 1).  

Traditionally M2 have been associated with tissue repair and successful immune responses 

against helminthes. M of p50NF deficient mice are unable to acquire M1-related 

characteristics. These animals showed a strong M2 polarization in response to the chronic 

infection with the nematocestode Taenia crassiceps associated with a decrease in the 

parasitic burden (Porta, Rimoldi et al. 2009). Along the same lines, mice holding a 

M/neutrophil selective lineage knock-out of the IL-4 receptor α (IL-4R) chain were highly 

susceptible to Schistosoma mansoni infection (Herbert, Holscher et al. 2004). Nevertheless, 

alternative activation of M can be deleterious for the organism and has been associated 

with the promotion of a broad range of chronic pathological conditions, including asthma, 

atherosclerosis, cancer and obesity (Sica and Mantovani 2012). 
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1.3 General aspects of dendritic cell immunobiology 
DC were first described in the mouse spleen as an unusual “stellate” cell, morphologically 

distinct from M by Steinman and Cohn (Steinman and Cohn 1973). Soon after this 

discovery, Steinman and Witmer showed that DC were potent stimulators of T cells in mixed 

leukocyte reaction (MLR) assays (Steinman and Witmer 1978). This pioneering work enabled 

the characterization of DC as the main antigen presenting cells (APC) in the immune system. 

DC constitute the bridge between the innate and the adaptive immune system due to their 

remarkable capacity to capture, process and present antigens to T cells via major 

histocompatibility complexes (MHC) (Banchereau and Steinman 1998). In general, these 

cells originate from bone marrow precursor cells (Banchereau and Steinman 1998; 

Geissmann, et al. 2010), with the exception of Langerhans cells, which have the capacity of 

self-renewal directly in the tissues (Merad, et al. 2002) and seem to be generated from yolk 

sac M in the embryo (Schulz, Gomez Perdiguero et al. 2012). In mice, DC develop from 

CD34+ stem cells that give rise to two main branches, known as the common lymphoid 

progenitor and the common myeloid progenitor. The common myeloid progenitor will 

differentiate into a M common precursor followed by a common DC precursor giving origin 

to DC, M and monocytes (Fogg, et al. 2006). However, in humans the common DC 

precursor has not been identified yet and it seems that DC can originate from a granulocyte-

macrophage precursor as well as from precursor cells with combined lymphoid and myeloid 

potential known as multi-lymphoid progenitors (Doulatov, et al. 2010). 

 

1.3.1 Dendritic cells subsets 
DC are a heterogeneous cell population. Classically, they have been divided into different 

subtypes primarily based on phenotypic markers, migratory capabilities, and functional status 

(Kushwah and Hu 2011). DC classification is complex, and it has been difficult to unify 

between human and mouse models, mainly because some of the hallmark genes of mice are 

absent in human and because of ethical constraints associated with the study of human 

tissues (Collin, et al. 2011). Broadly, DC have been divided into myeloid cells that can be 

considered equivalent to conventional DC in mice, plasmacytoid DC, which are functionally 

equivalent in both species, and monocyte derived DC. Monocyte derived DC have been 

described only in mice, although they are commonly used in vitro to study the biology of 

human DC (Sallusto and Lanzavecchia 1994). Conventional DC are specialized in antigen 

processing and presentation. They have been subdivided according to their migratory 

capacity and the tissue of residence. In mice, migratory DC are generally characterized by 

the expression of CD11b. However, they can be further subdivided into CD11b+ and CD11b- 

CD103+ DC. They sample constantly their microenvironment and upon antigen encounter 
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migrate to lymph nodes (Banchereau, et al. 2000). In contrast, resident lymphoid DC do not 

traffic between organs and they are likely generated directly in the lymph node.  

Human and murine plasmacytoid DC (pDC) are a rare cell population that can be found in 

lymphoid and non-lymphoid organs and in humans also as circulating cells in the blood 

(Reizis, et al. 2011). Despite molecular differences and the expression of certain markers, 

the overall phenotype and function of pDC seems to be conserved between mouse and 

human (Crozat, et al. 2010). In contrast to myeloid DC, immature pDC seem to be only weak 

APC due to their low expression of MHC class II or co-stimulatory molecules on the cell 

surface (Reizis, et al. 2011). One of the most outstanding features of pDC is their ability to 

produce high amounts of type I interferons in response to viral infections (Fitzgerald-

Bocarsly, et al. 2008; Liu 2005). Consistently with this role pDC express preferentially TLR7 

and TLR9, both implicated in recognition of viral RNA and DNA (Ito, et al. 2005).  

In murine models, it has been described that under inflammatory conditions fully 

differentiated DC characterized by CD209 expression can be originated from circulating 

monocytes (Cheong, et al. 2010). Furthermore, in vivo after cutaneous infection with 

Leishmania major a population of monocytes is recruited to the dermis and differentiates into 

dermal monocyte-derived DC, which subsequently can migrate into draining lymph nodes 

(Leon, et al. 2007). Along the same lines, Serbina et al. have identified a subtype of 

inflammatory DC that emerge in response to L.m. infection via CCR2 mediated recruitment of 

monocytes to the spleen (Serbina, et al. 2003). Although the differentiation of human 

monocytes driven by GM-CSF and IL-4 in vitro (Sallusto and Lanzavecchia 1994) is one of 

the most extended procedures to study DC biology, in vivo it has not been proven yet that 

monocytes can give rise to DC in humans. Interestingly, a subset of CD209+ CD14+ cells 

sharing some of the characteristics of monocyte derived DC from mouse, have been found in 

human dermis (Angel, et al. 2007). 

 

1.3.2 Maturation of dendritic cells 
The process of DC maturation can be considered as a continuum of closely linked events. 

This process starts in the periphery, where DC capture antigens, and finalizes upon T cell 

encounter in the lymph node (Banchereau, Briere et al. 2000). Immature DC are highly 

phagocytic and can take up a wide range of antigens under steady state conditions via 

several mechanisms, like macropinocytosis, receptor mediated endocytosis and 

phagocytosis (Sallusto, Cella et al. 1995). Upon encounter with pathogens, but also after 

stimulation with cytokines like TNFα, IL-1 and IL-6, DC undergo phenotypic and functional 

changes. For example, they lose their phagocytic capacity, start to secrete cytokines and 
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increase the expression of MHCII and co-stimulatory molecules like CD40, CD80 and CD86 

(Gallucci and Matzinger 2001). The stimuli that induce DC maturation trigger also the 

process of migration from peripheral tissues to lymphoid organs. In order to guarantee the 

efficiency of this process, maturation implies drastic changes in the repertoire of chemokine 

receptors present on the surface of DC. On the one hand, CCR7 expression is up-regulated 

enabling DC to respond to gradients of CCL19 and CCL21 that are produced abundantly in 

the lymph node. On the other hand, the expression of CCR1, CCR2 and CCR5 is decreased, 

avoiding the interaction with their ligands, which are mainly produced at sites of injury and 

inflammation (Sanchez-Sanchez, Riol-Blanco et al. 2006; Randolph, Ochando et al. 2008). 

DC present antigen to T cells in the context of MHC I and II molecules triggering CD8+ and 

CD4+ T cell responses respectively. Exogenous antigens are presented via MHCII molecules 

that are located in the endocytic compartment, where they encounter antigens. 

Subsequently, the loaded complexes are translocated to the cell surface and remain stable 

and available for recognition by CD4+ T cells (Cella, Engering et al. 1997). In contrast, MHCI 

molecules present antigens from endogenous and exogenous nature. DC are crucial in 

priming CD8+ T cell cytotoxic as well as CD4+ T cells mediated responses. In this process, 

recognition of MHC molecules via TCR receptors constitutes the first signal to prime T cell 

clonal expansion and activation. The second signal is provided by the interaction between 

co-stimulatory molecules on the DC surface and their counterparts in T cells, whereas the 

microenvironment constitute a third signal that further shapes the nature of T cell responses 

(Banchereau, Briere et al. 2000). The outcome of these complex interactions can be an 

effective immune response, but can also lead to tolerance or immunosuppression.  

 

1.4 Regulatory functions of macrophages and dendritic 

cells 
The immune system exists in a delicate balance between immunity and tolerance that allows 

the development of effective but limited responses, avoiding a destructive uncontrolled 

reaction against host tissues. Classically, T cells have been recognized as the main players 

in immunoregulation and tolerance. Nevertheless, there is an enlarged body of evidence 

which suggests the relevance of DC as key modulators of the immune response in the 

periphery (Schmidt, Nino-Castro et al. 2012). More recently, it has been proposed that a 

subset of regulatory M might also play a role in inducing tolerance in different pathological 

conditions including transplantation (Wood, Bushell et al. 2012) and models of septic shock 

(Fleming and Mosser 2011).  
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While activation of M (classical and alternative) and the maturation of immunogenic DC 

have been linked to a defined set of phenotypic characteristics, there is not a clear set of 

hallmark molecules for myeloid cells that exert regulatory functions. For instance, it has been 

the common view that only immature DC can induce tolerance. This concept was developed 

on the basis of early experiments, which demonstrated that antigen presentation in the 

absence of co-stimulation, leads to T cell anergy and T cell deletion (Jonuleit, Schmitt et al. 

2000; Lutz, Kukutsch et al. 2000; Reis e Sousa 2006; Manicassamy and Pulendran 2011). 

However, in more recent years, this concept has changed and there is increasing evidence 

showing that mature DC can have a regulatory function. For example, in a murine asthma 

model fully matured DC expressing high levels of co-stimulatory molecules promoted the 

development of regulatory T cells (Treg) via an IL-10 depending mechanism (Akbari, DeKruyff 

et al. 2001). In humans, monocyte-derived DC stimulated with prostaglandin E2 (PGE2), 

Pam3CSK4 (Pam3) and TNFα (named DCreg) exhibit a fully mature phenotype characterized 

by high expression levels of co-stimulatory molecules and proinflammatory cytokines, yet 

they suppress T cell activation via an effective combination of factors like IDO1, CD25, and 

IL-10 (Popov, Abdullah et al. 2006; von Bergwelt-Baildon, Popov et al. 2006; Popov, Driesen 

et al. 2008). Along the same lines, the presence of IDO+ DC has been documented in 

different malignancies, including melanoma (Vermi, Bonecchi et al. 2003) and head and neck 

cancers (Hartmann, Wollenberg et al. 2003). Moreover, IDO+ pDC present in tumor draining 

lymph nodes of human and mice, were described to induce anergy towards tumor antigens 

(Baban, Hansen et al. 2005). Finally, DC with intermediate features between the immature 

and mature state expressing co-stimulatory molecules, but only low levels of inflammatory 

cytokines, such as IL-12, IL-6 and TNF-α, are also characterized by regulatory function (Lutz 

and Schuler 2002).  

Activation of M has been classified in classical and alternative. However, experimental 

evidence suggests that M can also exert regulatory functions that differ from the tasks 

accomplished by alternative activated M in tissue remodeling, parasitical infections or 

response to injury (Fleming and Mosser 2011). Although, stable phenotypic markers have 

not yet been defined, it has been shown recently that human monocyte derived M cultured 

in presence of human AB serum and treated with IFN- were able to suppress T cell 

proliferation in vitro. Moreover, when these regulatory M were transferred to recipients of 

kidney transplant, they reduced the need for immunosuppressive medication, suggesting 

their tolerogenic activity in vivo (Hutchinson, Riquelme et al. 2011). Similarly, it has been 

shown in mice that the treatment of bone marrow derived Mwith immune complexes in 

concert with LPS leads to an increased production of IL-10 concomitant with low levels of IL-

12 secretion; these cells were able to suppress T cell proliferation in vitro. Furthermore, in 

vivo M treated with immune complexes and LPS were able to increase the survival of mice 
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treated with lethal doses of LPS (Gerber and Mosser 2001). More recently, it has been 

shown that the interaction between B cells and M confers the later with a unique phenotype 

characterized by the simultaneous expression of pro-inflammatory cytokines and 

chemokines, but also IL-10 production (Wong, Puaux et al. 2010). Moreover, Schaefer et al. 

demonstrated in vitro that human monocyte derived M, treated with TNF-α in concert with 

PGE2 and Pam3 suppress T cell proliferation MLR in assays. These regulatory M (named 

Mreg) exhibit a similar phenotype to DC treated under the same conditions and do also 

express IDO1, IL-10 and CD25. However, they have a unique transcriptional program 

probably reflecting their common functions in regulation of immune responses (Schaefer 

2009). 

1.4.1 Anti-inflammatory mediators in the acquisition of regulatory 

functions in myeloid cells 

The microenvironment plays a decisive role in the generation of regulatory M and DC. 

Several immunomodulatory factors including IL-10 and PGE2 have a crucial influence on the 

differentiation of regulatory myeloid cells. During inflammatory immune responses PGE2 is 

expressed by epithelial cells, fibroblasts and proinflammatory infiltrating cells (Kalinski 2012). 

PGE2 increases CCR7 expression in monocyte-derived DC and is often used as an 

immunogenic factor to promote DC maturation (Scandella, Men et al. 2002; Legler, Krause et 

al. 2006). Nevertheless, PGE2 treated DC show only a transient expression of CCR7 and 

reduced levels of secreted CCL19, which is the key chemokine attracting naïve and central 

memory T cells (Muthuswamy, Mueller-Berghaus et al. 2010). Along the same lines, PGE2 

treated monocyte derived DC have shown an enhanced IL-12p40 secretion which is not 

accompanied by production of IL-12p35 leading to an overall diminished production of the 

bioactive IL-12 heterodimer (Kalinski, Vieira et al. 2001). Furthermore, PGE2 induces the 

expression of immunomodulatory molecules on DC such as thrombospondin-1 (TBS-1) 

(Doyen, Rubio et al. 2003), IL-10 (Kalinski, Hilkens et al. 1997) and in combination with TNF-

α, IDO1 (von Bergwelt-Baildon, Popov et al. 2006). Similarly, PGE2 might also promote the 

acquisition of an anti-inflammatory function on M. Recently, it has been shown in vitro that 

PGE2 secreted by human mesenchymal stem cells inhibited the secretion of IL-12, IL-6 and 

TNF-α by LPS treated M, and increased IL-10 secretion (Ylostalo, Bartosh et al. 2012). 

Similarly, high levels of PGE2 in the lung have been associated with low phagocytic and 

microbicidal activity in mouse alveolar M (Ballinger, Aronoff et al. 2006). IL-10 has a well-

recognized immunoregulatory role on myeloid cells. DC exposed to IL-10 fail to induce IL-12 

(De Smedt, Van Mechelen et al. 1997) and TNF-α. This loss of chemokine production is 

associated with a poor surface expression of MHC class II molecules and CD86, resulting in 

an impaired ability of IL-10 primed DC to induce T cell allogeneic responses (Moore, de Waal 
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Malefyt et al. 2001). Similarly, it has been demonstrated that IL-10 secreted by M in 

response to different infections, but also TLR agonists has a modulatory effect on bystander 

M, avoiding the production of pro-inflammatory cytokines associated with classical 

activation including TNF-α, IL-6, IL-12 amongst others, via a STAT3 mediated mechanism 

(Bode, Ehlting et al. 2012). 

 

1.4.2 Molecular mechanisms of T cell suppression by macrophages 

and dendritic cells 

M and DC exposed to an immunosuppressive environment acquire a set of molecular 

mechanisms able to suppress T cells responses (Popov, Driesen et al. 2008). These 

mechanisms include IDO1, CD25, Cyclooxygenase 2 (COX-2) and IL-10. IDO1 catalyzes the 

first rate-limiting step in Trp degradation (Yamamoto and Hayaishi 1967), leading to Trp 

depletion and accumulation of Trp catabolites, collectively known as kynurenines (Sugimoto, 

Oda et al. 2006). IDO1 was first described as a potent inhibitor of the growth of intracellular 

pathogens via a mechanism that involves Trp depletion (Pfefferkorn 1984; MacKenzie, 

Worku et al. 2003; Oberdorfer, Adams et al. 2003). However, later it was found that besides 

their microbicidal effect, IDO1 was responsible for the maintenance of the maternal T cell 

tolerance to fetal tissues and by this action is proposed as a natural immunoregulatory 

mechanism (Munn, Zhou et al. 1998). More recently it has been found that IDO-mediated Trp 

starvation and accumulation of Trp catabolites can lead to T cell proliferation arrest and 

apoptosis (Terness, Bauer et al. 2002; von Bergwelt-Baildon, Popov et al. 2006). 

Furthermore, DC can induce the expansion of autologous Treg via an IDO-dependent 

mechanism (Chung, Rossi et al. 2009). In addition, it has been reported that the Trp 

catabolite kynurenine (Kyn) can bind and activate the aryl hydrocarbon receptor (AHR) on T 

cells leading to AHR-dependent Treg generation in mice (Mezrich, Fechner et al. 2010). CD25 

(α chain of the IL-2 receptor) has been proposed as a marker of DC maturation that mediates 

strong stimulatory signals upon ligand binding. However, in human and mouse DC the β-

chain of the IL-2 receptor which is required for signal transduction is not expressed (Velten, 

Rambow et al. 2007) and it has been proposed that CD25, in particular its soluble form, acts 

as a decoy receptor for IL-2 leading to an impaired T cell activation and proliferation 

(Driesen, Popov et al. 2008). COX-2 catalyzes the synthesis of PGE2. This mediator has a 

strong effect, on phenotype and function of myeloid cells but also modifies T cell mediated 

responses. PGE2 inhibits T cell proliferation and dampens the production of IFN- and IL-2 by 

TH1 activated cells (Hilkens, Snijders et al. 1996; Harris and Phipps 2002). Similarly, it has 

been reported that PGE2 inhibits TH17 cell differentiation in vitro (Duffy, Pindjakova et al. 

2011). Finally, IL-10 is a well-known suppressor of T cell responses and can inhibit IL-2, IL-5 
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and TNF- secretion as well as the expression of CXCR4 and chemotaxis in response to its 

ligand SDF1 (Moore, de Waal Malefyt et al. 2001). It has also been shown that IL-10 in 

concert with TGF-β and retinoic acid are involved in the development of induced Treg cells in 

the periphery which is a mechanism crucial for gut homeostasis (Murai, Krause et al. 2010).  

 

1.5 The pathogenesis of L. monocytogenes 
L.m. is a gram positive bacterium that can survive as a saprophyte in a broad range of 

environmental conditions (Freitag, Port et al. 2009). Upon encounter with a potential host, 

L.m. activates different molecular mechanisms to guarantee its internalization, as well as, its 

replication inside the cytoplasm of mammalian cells. In humans L.m. causes listeriosis, a 

food borne disease that is characterized in healthy individuals by a self-limited 

gastroenteritis. However, in the elderly population, but also newborns, pregnant women and 

immunocompromised individuals, L.m. can cause a potentially life threatening disease and 

can lead to chronic meningoencephalitis and sepsis with the presence of suppurative 

granulomas in multiple organs (Swaminathan and Gerner-Smidt 2007; Allerberger and 

Wagner 2010; Mook, Patel et al. 2011; Silk and Mahon 2011).  

Extensive studies in a mouse model of systemic L.m. infection are the foundation for the 

characterization of L.m. pathogenesis (Unanue and Carrero 2012) in mice (Figure 2). For 

example, it was determined that L.m. can infect a wide variety of cell types. In the gastro-

intestinal epithelium, L.m. triggers its own phagocytosis via interactions of internalins A (InlA) 

and B (InlB) with E-cadherin and the hepatocyte growth factor receptor, respectively 

(Seveau, Pizarro-Cerda et al. 2007). Once L.m. is internalized, it escapes from the 

phagocytic compartment via the action of listeriolysin O (LLO) (Schnupf and Portnoy 2007), 

phosphatydilinositol-specific phospholipase C (PI-PLC) and phosphatydilcholine 

phospholipase C (PC-PLC) (Mengaud, Braun-Breton et al. 1991). These molecules allow 

L.m. to disrupt the phagosomal compartment and reach the cytoplasm, where it replicates 

using the nutrients provided by the host cell. Once in the cytoplasm it uses the actin 

assembly-inducing protein (ActA) to exploit host actin as a molecular motor to propel itself to 

the next cell (Domann, Wehland et al. 1992). Finally, L.m. spreads through the next cell via 

the actions of LLO, PI-PLC and PC-PLC. It is important to note that nearly all genes that 

mediate L.m. virulence are under the control of the transcriptional regulator PrfA. Mutants 

that lack the functional expression of this protein are unable to replicate in infected cells and 

are 100.000 fold less virulent than wild type bacteria (Freitag, Rong et al. 1993). 

 



Introduction 

 

24 
 

 

Figure 2. The pathogenesis of L.m. 

Microenvironmental cues trigger PrfA expression in L.m. PrfA acts as a transcriptional regulator that 

controls the expression of virulence factors, including InlA and InlB which guarantees the bacterial 

entry into the host cell. LLO and phospholipases facilitate the escape from the phagosomal 

compartment. Finally, the expression of ActA results in invasion of a new cell via a host actin 

propulsion mechanism. 

 

1.5.1. Innate immune responses against L. monocytogenes 
The important role of innate immunity in the response against L.m. was first appreciated in 

mice suffering from severe combined immunodeficiency syndrome. Surprisingly, these mice 

were highly resistant to L.m. infection, although they were unable to clear the bacteria in the 

long term (Nickol and Bonventre 1977; Bancroft, Schreiber et al. 1991). Several components 

of the innate immune system have shown to be crucial for the development of a successful 

immune response against L.m. including PPR receptors, cytokines and myeloid cells.  

TLR2 senses PAMPs of gram positive bacteria, including lipoproteins and lipotheichoic acid. 

Therefore, it was proposed as a key mediator in the recognition and triggering of the innate 

immune response against L.m. infection. Although, M lacking TLR2 showed a diminished 

capability to internalize L.m. via phagocytosis (Shen, Kawamura et al. 2010), TLR2 deficient 

mice did not show any disadvantage in the clearance of L.m. infection (Edelson and Unanue 

2002). On the contrary, mice deficient for the protein adaptor MyD88 were extremely 

susceptible to L.m. infection and showed low production of pro-inflammatory cytokines 

(Edelson and Unanue 2002; Seki, Tsutsui et al. 2002). Once L.m. escapes from phagosomal 

compartments, it enters the cytoplasm where it encounters intracellular PPRs. Mice deficient 

for the nod like receptor NOD-2 showed an increased sensibility upon L.m. intragastric 

infection associated with higher bacterial burdens, suggesting the importance of this receptor 

during the intestinal immune response to L.m. (Kobayashi, Chamaillard et al. 2005). 
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Cytokines produced by cells of the innate immunity are relevant in the control of L.m. For 

example, IL-12 blockade in mice results in high bacterial burden. This effect is abrogated 

upon IFN- administration (Tripp, Gately et al. 1994). Similarly, IFN- knockout mice showed 

high susceptibility and early lethality upon L.m. infection (Harty and Bevan 1995). More 

recently Kernbauer et al. showed that a M restricted ablation of STAT1 leads to an 

increased bacterial burden in L.m. infected mice, corroborating the importance of IFN- in the 

early response against this pathogen (Kernbauer, Maier et al. 2012). Another important 

cytokine for the early control of L.m. infection is TNF- since mice lacking the TNF- receptor 

are highly prone to the infection (Rothe, Lesslauer et al. 1993). Moreover, mice expressing a 

functional mutant form of the TNF- receptor that is constitutively active during infection are 

significantly more resistant to L.m. than their wild type counterparts (Xanthoulea, Pasparakis 

et al. 2004).  

In mice, it has been demonstrated that DC, M and neutrophils play a role in the clearance of 

L.m. after the injection into the blood stream. However, the extent of their cooperation, as 

well as, the overall effect for the host remains controversial. For instance, it has been 

proposed that Kupffer cells, resident M of the liver, are responsible for clearing L.m. in the 

first stages of infection (Gregory, Cousens et al. 2002). Nevertheless, it has also been 

suggested that neutrophils and monocytes recruited to sites of infection might play a crucial 

role in this process. On the one hand, neutrophil depletion led to an increment in the bacterial 

load of 10-10.000 fold in the liver (Carr, Sieve et al. 2011). On the other hand, mice deficient 

for the chemokine receptor CCR2 were unable to clear L.m. (Kurihara, Warr et al. 1997), 

suggesting the relevance of monocyte recruitment in this process (Pamer 2004). On the 

contrary, the uptake of L.m. by splenic DC seems to have a deleterious effect for the host 

and promotes bacterial dissemination. Mice temporarily depleted of DC show a decrease of 

50-500 folds in the bacterial burden of the spleen and were less prone to systemic infection. 

Additionally it was shown that CD8α+, but not CD8α- DC were heavily infected suggesting 

their predominant role in the establishment of the infection (Neuenhahn, Kerksiek et al. 

2006). Furthermore, mice deficient for expression of the basic leucine rich zipper 

transcription factor ATF-like 3 lack functional CD8+ DC and were resistant to lethal doses of 

L.m. (Edelson, Bradstreet et al. 2011). In contrast, it has been shown that a DC population 

emerging upon recruitment of monocytes is characterized by the production of high amounts 

of TNF-and NO both essential for the control of L.m. in vivo (Serbina, Salazar-Mather et al. 

2003). 
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1.5.2 Human chronic listeriosis 
The immune response to L.m. has been well characterized in murine models. However, 

much less is known about the events involved in human chronic listeriosis, a rare, but life 

threatening condition associated with impairment of the adaptive immune response (Popov, 

Abdullah et al. 2006). Patients in advanced stages of chronic listeriosis present granuloma 

formation in lymph node tissues (Gray and Killinger 1966). These structures are organized 

immune cell aggregates that form in response to persistent stimuli of infectious or non-

infectious nature (Ramakrishnan 2012). Traditionally it has been considered that once the 

immune system has failed to eradicate pathogens, granulomas act as a containment 

strategy, avoiding the dissemination of the pathogenic agents (Ehlers 2005). Recently, it has 

been found that M and DC are the main constitutive elements of L.m. suppurative 

granulomas, whereas cells from the adaptive immune system like B and T cells are excluded 

from these structures (Popov, Abdullah et al. 2006). Furthermore, transcriptome profiling 

revealed that DC infected with L.m. present a distinctive signature characterized by the 

expression of pro-inflammatory and immunomodulatory mediators, including TNF-α, IFN-, 

IL-10, COX-2, IDO1 and CD25. The expression of these factors confers these cells with 

regulatory properties, including the capacity to suppress activated T cell proliferation (Popov, 

Abdullah et al. 2006; Popov, Driesen et al. 2008).  
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2.Aim of the study 

The pathogenesis of L.m. has been extensively studied in mice. However, immunological 

processes involved in the development of human chronic listeriosis have been barely 

studied. Previously it has been demonstrated that M along with DC are the major 

components of the outer ringwall of suppurative granulomas present in patients with chronic 

listeriosis (Popov, Abdullah et al. 2006). Similarly, it has been demonstrated that human 

monocyte derived DC acquire regulatory properties upon L.m. infection, including the 

expression of IDO1, an enzyme that can exert microbicidal, as well as, regulatory functions 

(Popov et al., 2006;Popov et al., 2008). Moreover, it was established that IDO1 expressing 

DCreg, are capable to control more efficiently the intracellular growth of L.m. in comparison 

to their immature and mature counterparts (Popov, Driesen et al. 2008). In contrast, infection 

of M with bacteria, including L.m., has been associated with a strong proinflammatory 

phenotype, displaying characteristics for classically activated M1 M (Benoit et al., 2008). 

This observations triggered several questions: first, are M in granuloma counteracting the 

regulatory function of DC in chronic L.m. infection? Second, how are M infected with L.m. 

related to the current model of M polarization? Third, is IDO1 expression a key mechanism 

that allows DCreg to control the intracellular growth of L.m.? And fourth, is IDO1 also 

relevant in defense mechanisms in M against L.m. infection? These questions were 

approached on different levels using an in vitro model of infection of M and DC. The host-

pathogen interaction was studied via unbiased whole transcriptome analysis, as well as, by 

hypothesis driven in vitro assays. 
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3. Materials 

3.1 Chemicals and Reagents 

1-methyl-DL-tryptophan Sigma  Aldrich, Taufkirchen, DE 

Anthranilic acid Sigma Aldrich, Taufkirchen, DE 

3- Hydroxy-L-Kynurenine Sigma  Aldrich, Taufkirchen, DE 

3- Hydroxyanthranilicacid Sigma  Aldrich, Taufkirchen, DE 

BCA protein assay kit  Thermo Scientific, Rockford, USA 

BHI agar Roth, Karlsruhe, DE 

BHI broth  Applichem, Gatersleben, DE 

Boric acid Merck, Darmstadt, DE 

Brefeldin A Sigma Aldrich, Taufkirchen, DE 

BSA Sigma, St Louis, USA 

Cell-Gro Cellgenix, Freiburg, DE 

CFSE Sigma-Aldrich, München, DE 

Cytofix/Cytoperm kit BD Biosciences, Heidelberg, DE 

Dimethylsulfoxid (DMSO) Sigma-Aldrich, München, DE 

Dithiothreitol (DTT) Sigma Aldrich, München, DE 

Dynabeads® M-450  InvitrogenLifeTechnologies,Karlsruhe, DE 

Ethylendiamintetraacetat (EDTA) Sigma, St Louis, USA 

Ethanol Roth, Karlsruhe, DE 

Fetal calf serum (FCS) Invitrogen LifeTechnologies,Karlsruhe, DE 

Glacial acetic acid  Roth, Karlsruhe, DE 

Gentamycin Sigma-Aldrich, DE 

Glacial acetic acid Roth, Karlsruhe, DE 

Glutamax Invitrogen Life Technologies, Karlsruhe, DE 

Griess reagent system Promega, Fitchburg, Winsconsin, USA 

Ionomycin Sigma Aldrich, Taufkirchen, DE 

L-kynurenine Sigma Aldrich, Taufkirchen, DE 

Luminol Sigma Aldrich, Taufkirchen, DE 

Methanol  Roth, Karlsruhe, DE 

MicroBeads CD14+ MiltenyiBiotech, Bergisch Gladbach, DE 

miRNAeasy Mini Kit Qiagen, Hilden, DE 
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Sodium chloride (NaCl)  Roth, Karlsruhe, DE 

Naïve CD4+ T cell isolationKit II MiltenyiBiotech, Bergisch Gladbach, DE 

NuPAGE®Transferpuffer 20x Invitrogen Life Technologies, Karlsruhe, DE 

Odyssey® Blocking Buffer Licor Biosciences, Bad Homburg, DE 

Odyssey® Two-Color molecular weight 

marker (10-250 kDa) 

Licor Biosciences, Bad Homburg, DE 

OptimemReduced Serum Medium InvitrogenLifeTechnologies,Karlsruhe, DE 

PBS PAA Laboratories GmbH, Pasching, AT 

Pancoll PAA Laboratories GmbH, Pasching, AT 

P-dimethylbenzaldehyde Roth, Karlsruhe, DE 

Penicillin PAA Laboratories GmbH, Pasching, AT 

Phorbol 12- myristate 13-acetate Sigma Aldrich, Taufkirchen, DE 

Picolinicacid Sigma Aldrich, Taufkirchen, DE 

Propidium Iodide  Sigma Aldrich, Taufkirchen, DE 

Prostaglandin E2  Sigma Aldrich, Taufkirchen, DE 

QIAzol
®

 Qiagen, Hilden, DE 

Quinolinicacid Sigma Aldrich, Taufkirchen, DE 

Re-Blot plus mild solution Merck-MIllipore, Darmstadt, DE 

RosetteSep CD4+ T cell enrichment kit Stem Cell Technologies, London, GB 

RPMI PAA Laboratories GmbH, Pasching, AT 

Running buffer 20x  Invitrogen Life Technologies, Karlsruhe, DE 

SDS  AppliChem, Darmstadt, DE 

Sodium chloride (NaCl)  Roth, Karlsruhe, DE 

Sodium hydroxide (NaOH) (32 %)  Merck, Darmstadt, DE 

Streptomycin  PAA Laboratories GmbH, Pasching, AT 

Targetamp-Nanolabeling kit  

for IlluminaBeadChip Epicentre, Madison, Wisconsin, USA 

Trichloroaceticacid  Merck, Darmstadt, DE 

TRIS (hydroxymethyl)-aminomethane  Roth, Karlsruhe, DE 

Tryptophan  Sigma Aldrich, Taufkirchen, DE 

Triton X-100  Promega Corporation, Madison, USA 

Trypanblue  Merck, Darmstadt, DE 

Tween 20  Merck, Darmstadt, DE 

Trypanblue  Merck, Darmstadt, DE 
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3.2 Cytokines and TLR agonists 
Human recombinant GM-CSF, IL-4, IFN-, TNF-α, mouse recombinant GM-CSF and M-

CSF were purchased from Immunotools. Friesoythe, DE. Pam3Cysk4 was purchased from 

Invivogen, San Francisco California, USA.  

 

3.2 Antibodies 
Western blot and functional assays 

Antigen Species Distributor 

α-actin Mouse anti-human Merck- Millipore, Darmstadt, DE  

CD3 Mouse anti-human Janssen-Cilag, NeUSAs, DE 

CD28 

Mouse anti-human a kind gift of Dr. Carl June, Abramson Cancer 

Research Center, University of Pennsylvania, 

Philadelphia 

COX-2 rabbit Caymanchemicals, Ann Arbor, Michigan USA 

IDO1 Mouse anti-human Oriental yeast 

IDO1 Rat anti-mouse Biolegend, San Diego, California USA 

iNOS Rabbit  Caymanchemicals, Ann Arbor, Michigan USA 

IgG, IRDye 680 Anti-mouse Licor Biosciences, Bad Homburg, DE 

IgG, IRDye 

800CW 

Anti-mouse Licor Biosciences, Bad Homburg, DE 

IgG, IRDye 680 Anti-rabbit Licor Biosciences, Bad Homburg, DE 

IgG, IRDye 

800CW 

Anti -rabbit Licor Biosciences, Bad Homburg, DE 
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Flow cytometry  

Antigen Conjugate Distributor 

CD11c PE BD Biosciences, Heidelberg, DE 

CD25 PE BD Biosciences, Heidelberg, DE 

CD80 FITC, PE BD Biosciences, Heidelberg, DE 

CD83 FITC, APC BD Biosciences, Heidelberg, DE 

CD86 APC BD Biosciences, Heidelberg, DE 

CD206 FITC BD Biosciences, Heidelberg, DE 

CD163 
APC RandD systems, Minneapolis, 

 Minnesota, USA 

CD 23 FITC Biolegend, San Diego, California, USA 

CD 14 APC BD Biosciences, Heidelberg, DE 

CD 64 PE BD Biosciences, Heidelberg, DE 

CD4 PE BD Biosciences, Heidelberg, DE 

CD45RA FITC BD Biosciences, Heidelberg, DE 

CD3 APC-Cy7 BD Biosciences, Heidelberg, DE 

IL-4 Alexafluor 488 BD Biosciences, Heidelberg, DE 

IFN- PE-Cy7 Biolegend, San Diego, California, USA 

IL-17 Pacific blue Biolegend, San Diego, California, USA 

IL-2 Alexafluor 647 Biolegend, San Diego, California, USA 

Anti-mouse IgG1κ 
APC, APC-Cy7, 
PE, PE-Cy7, 
Pacific blue 

BD Biosciences, Heidelberg, DE 

Biolegend, San Diego, California, USA 

Anti.mouse IgG2b 
APC, PE, FITC BD Biosciences, Heidelberg, DE 

Biolegend, San Diego, California, USA 

Anti-rat IgG2κb Alexafluor 647 Biolegend, San Diego, California, USA 

Anti-rat IgG2κb Alexafluor 647 Biolegend, San Diego, California, USA 
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3.3 siRNA oligonucleotides 
Target Gene Description Target Sequence 5’-3’ Distributor 

INDO IDO siRNA - 1 UCACCAAAUCCACGAUCAU 
Thermo 

Scientific, 
Rockford, USA 

INDO IDO siRNA - 2 UUUCAGUGUUCUUCGCAUA 
Thermo 

Scientific, 
Rockford, USA 

INDO IDO siRNA - 3 GUAUGAAGGGUUCUGGGAA 
Thermo 

Scientific, 
Rockford, USA 

INDO IDO siRNA - 4 GAACGGGACACUUUGCUAA 
Thermo 

Scientific, 
Rockford, USAA 

Renilla control siRNA AAAAACATGCAGAAAATGCTGTT 
Biomers.net, 

Ulm, DE 

 

3.4 cDNA synthesis and RT-PCR primers 
The Transcriptor first strand cDNA synthesis kit as well as the universal probe library 

system for semi-quantitative real time PCR were purchased from Roche applied sciences, 

Switzerland. The primers were designed using the ProbeFinder software. The 

corresponding oligonucleotides were purchased from Sigma-Aldrich, Taufkirchen, DE.  
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Target Gene Sequence5’-3’ 

IL6 gaggagcccagctatgaact 

gaaggcagcaggcaacac 

IL1B tacctgtcctgcgtgttgaa 

tctttgggtaatttttgggatct 

 

IL8 ctagagccgaactcaagtttcc 

atggttccttccggtggt 

 

IFNG ggcattttgaagaattggaaag 

tttggatgctctggtcatctt 

IL10 tgggggagaacctgaagac 
ccttgctcttgttttcacagg 

PTGES2 cttcacgcatcagtttttcaag 

tcaccgtaaatatgatttaagtccac 

GADPH agccacatcgctcagacac 

gcccaatacgaccaaatcc 

IDO2 gaaatgaagcttgacacttcacc 

tctgtggggctccattattt 

 

3.5 Enzyme linked immunosorbent assay 
Human IL-10, IL-6 and TNF-α ELISA MAX standard kit were purchased from Biolegend, 

San Diego California, USA. The human IL-12 (p70) OptEIA kit was purchased from DB, 

Heidelberg, DE. Human soluble CD25 and IFN- Eli-pair kit were purchased from 

Diaclone, Besancon, Fr. Human interferon-α ELISA kit was purchased from Pbl interferon 

source, Piscataway, USA and human IFN-β was purchased from USACNK, Wuhan, 

China. 
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3.6 Plastic ware 
96-well tissue culture plate    

0,2 - 2 ml Eppendorf tubes    

Hyperfilm™ ECL     

LS columns      

Nitrocellulose-Membrane,  

Hybond-C Extra   

Nunclon™ 6-well tissue culture plate  

Nunclon™ 24-well tissue culture plate  

Nunclon™ 48-well tissue culture plate  

NuPAGE® Novex Bis-Tris Gels, 10 %  

Parafilm      

Pipettes 2, 5, 10 and 25 ml   

Pipette tips, 10, 200, 1000 µl   

Pre-Separation Filters    

Safe Seal Tips 

SentrixBeadChips V3                 

Falcon 15 ml      

Falcon 50 ml      

Syringe 50 ml     

Sterile filter 22 µm 

Greiner bio-one, Frickenhausen, DE 

Eppendorf GmbH, Hamburg, DE 

GE healthcare, Piscataway, US 

Miltenyi Biotech, Bergisch Gladbach, DE 

 

GE healthcare, Piscataway, US 

Thermo Scientific, Rockford, US 

Thermo Scientific, Rockford, US 

Thermo Scientific, Rockford, US 

Invitrogen, Carlsbad, US 

Pechiney, Chicago, US 

Greiner bio-one, Frickenhausen, DE 

Greiner bio-one, Frickenhausen, DE 

MiltenyiBiotech, Bergisch-Gladbach, DE 

BIOzym Diagnostik GmbH, DE 

Illumina,Eidenhoven, NL 

Greiner bio-one, Frickenhausen, DE 

Greiner bio-one, Frickenhausen, DE 

Braun, Melsungen, DE 

Sartorius, Hannover, DE 

3.7 Equipment 
Centrifuges 

Type 5810R    

Type 5415                                                   

Type 5424                                                  

Incubators      

Binder C series 

Binder B series 

 

Eppendorf GmbH, Hamburg, DE 

Eppendorf GmbH, Hamburg, DE 

Eppendorf GmbH, Hamburg, DE 

 

Binder, Tuttlingen, DE 

Binder, Tuttlingen, DE 
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Orbital shaking incubator                            

BD LSR II Flow cytometer    

Gene pulserXcell™    

HiScanSQ system 

LightCycler 480 PCR system 

Magnet MPC-S     

Magnet MACS Multi Stand    

Auto MACS pro separator 

Medgenix 400 AT microplate reader   

Mikroskope SM-LUX    

Mini-Protean Electrophoresis System  

NanoDrop 

Neubauer chamber     

Odyssey® Infrared Imaging System    

pH-meter      

Pipette boy      

PowerPac HC Power Supply   

Roller Mixer SRT 1     

Scale       

Shaker (type 3011)     

Trans-Blot Semi-Dry Transfer Cell  

Vortex Genie2      

Stuart, Sttafordshire, UK 

BD Biosciences, Heidelberg, DE 

BioRad Laboratories, München, DE 

Illumina, Eidenhoven, NL 

Roche diagnostics, Basel, Switzerland 

DynalBiotech, Oslo, NO 

MiltenyiBiotech, Bergisch Gladbach, DE 

MiltenyiBiotech, Bergisch Gladbach, DE 

SLT Instruments, Salzburg, AT 

Leitz, Wetzlar, DE 

Bio-Rad Laboratories, München, DE 

Thermo Scientific, Rockford, USA 

Carl Roth Karlsruhe, DE 

LI-COR Biosciences, Bad Homburg, DE 

Knick, Berlin DE 

IBS Integra Biosciences, CH 

Bio-Rad Laboratories, München, DE 

Stuart, Staffordshire, UKMettler-Toledo, 
Zwingenberg, DE 

GFL, Burgwedel, DE 

Bio-Rad Laboratories, München, DE 

Bender&Hobein AG, Zürich, CH 

3.8 Software 
Mayday Integrative Transcriptomics. Center for 

Bioinformatics Tuebingen, University of 

Tuebingen 

CorelDRAW X4 

FACS Diva 

Flowjo 7.6.1 

GenomeStudio 

Corel Corporation, Ontario, CA 

BD Biosciences, Heidelberg, DE 

Tree Star, Ashland, Oregon, USA 

Illumina, Einhoven, NL  
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LightCycler 480 SW 1.5 

Microsoft Office 

ImageJ 

Odyssey V3.0 

Partek genomics suite 

ProbeFinder 

SigmaPlot 10.0 

Roche applied sciences, Basel, CH 

Microsoft GmbH, Unterschleissheim, DE 

free license, http://rsb.info.nih.gov/ij/  

Licor Biosciences, Bad Homburg, DE 

Partek, Saint Louis, Missouri, USA 

Roche applied science, CH 

Systat Software GmbH, Erkrath, DE 
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4. Methods 

Blood samples from healthy blood donors were collected at the Institute for Experimental 

Hematology and Transfusion Medicine of the University Hospital Bonn, after written 

consent was obtained. The blood samples in form of buffy coats were provided 

immediately after processing. 

 

4.1 Isolation of monocytes 

Monocytes were isolated from human blood by CD14 positive selection using the 

magnetic assorted cell sorting (MACS) technique. In the first step, peripheral blood 

mononuclear cells (PBMCs) were isolated by centrifugation at 250xg for 25 minutes in a 

Pancol density gradient. After the centrifugation step, the interface containing the PBMCs 

was collected and washed twice with PBS. The fraction of white blood cells was 

resuspended in 3 ml of MACS buffer (BSA 0.5%, 20mM EDTA in PBS) and incubated with 

200 µl of CD14+ magnetic beads for 20 minutes. During this incubation time, LS columns 

were assembled in a midi-MACS separation magnet. In addition, a pre-separation filter 

was used to avoid the transfer of cell aggregates. Subsequently, the cells were washed 

once and applied directly onto the separation filter. The column was washed three times 

with 3 ml of MACS buffer, after magnet removal the CD14+ fraction was eluated and 

counted. The purity was assessed via staining with CD14 and CD11c antibodies coupled 

to fluorochromes, followed by fluorescence activated cell sorting (FACS) analysis. Only 

monocyte fractions with purity above 95% were used for subsequent analysis. 

 

4.2 Generation of human monocyte derived macrophages 
Freshly isolated monocytes were cultured in RPMI supplemented with 10% fetal calf 

serum (FCS) in the presence of 500U/ml of recombinant human (rh) granulocyte 

macrophage colony- stimulating factor (rhGM-CSF) or 50U/ml macrophage colony-

stimulating factor (rhM-CSF) at a cell density of 2x106cells/ml. The cells were seeded in 6 

well- plates (5ml/well) and maintained for 72 h at 37°C 5%CO2. M were harvested after 

this time, and the purity of the cell culture was tested through staining with CD206 and 

CD14 fluorochrome coupled antibodies followed by FACS analysis. Depending on the 
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experiments to perform, M were harvested directly at day three or culture for additional 3 

days with maturation stimuli for polarization experiments (Figure 1). 

 

4.3 Generation of human monocyte derived dendritic 

cells 
Freshly isolated monocytes were cultured in Cell-Gro serum free media, supplemented 

with 1% glutamine and 800U/ml of rhGM-CSF and 500U/ml rhIL-4 at a cell density of 

2x106 cells/ml. The cells were seeded in 6 -well tissue culture plates (5ml/well) and 

maintained for 72 h at 37°C and 5%CO2. DC were harvested after this time, and the purity 

of the cell culture was tested through staining with CD209 fluorochrome coupled antibody 

followed by FACS analysis. 

 

4.4 Polarization of human macrophages 
After 72 h, M were counted and resuspended in RPMI supplemented with 10% FCS and 

500U/ml rhGM-CSF. In addition to obtain M populations with different polarization status, 

M cultures were treated with soluble factors and cytokines as described in Table 1. The 

M polarization experiments were carried out with the kind support of Dr. Susanne 

Schmidt and other members of the group of Genomics and Immunoregulation from the 

Life and Medical Sciences (LIMES) Institute. 

 

Table 1. Cytokines and 

soluble factors used to 

stimulate M 

 

 

 

 

 

 

Polarization Factor Dose 

M1 rhIFN- 200U/ml 

M2 rhIL-4 500U/ml 

Mreg rhTNF-α 

PGE2 

Pam3CSK4 

800U/ml 

1µg/ml 

1µg/ml 

M1 rhTNF- 800U/ml 

other PGE2 1µg/ml 

other Pam3CSK4 1µg/ml 

other rhIFN 100U/ml 

other rhIFN-, rhIFN, PGE2 Pam3 200, 100U/ml, 1 µg/ml 
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Stimulated Mwere kept in culture for further 24 h. A minimum of 1x106 cells were lysed in 

QIAzol® after the stimulation period. RNA extraction for microarray and qRT-PCR 

validation was performed with the miRNeasy mini kit, according to manufacturer’s advice. 

Alternatively, supernatants of at least 5x106 cells were collected to perform western blot, 

and ELISA assays. Additionally, for T cell polarization experiments, 24h post-stimulation 

M were washed three times with 10ml PBS and further cultured in RPMI supplemented 

with 10% FCS and rhGM-CSF (500 U/ml) during 24h at 37°C and 5%CO2 (Figure 3).  

 

Figure 3. Flowchart depicting the experimental procedure followed to generate polarized M 

Freshly isolated monocytes were cultured in the presence of rhGM-CSF during 72 h. After this 

time, differentiated M were cultured in the presence of different cytokines and factors to generate 

cells with different polarization status. 

 

4.5 Maturation and stimulation of human dendritic cells 
Immature monocyte derived DC (immDC) were counted and cultured in Cell-Gro medium 

supplemented with rhGM-CSF (800 U/ml) and rhIL-4 (500 U/ml). In addition, immDC were 

either left untreated or stimulated with rhTNF-α (800U/ml) alone or in concert with PGE2 

and Pam3 to originate mature DC (matDC) or regulatory DC (DCreg) respectively. DC 

were harvested after 48 h and were stained with fluorochrome coupled antibodies against 

CD86, CD83 and CD25 for FACS analysis, in order to corroborate the success of the 

stimulation process, or collected to perform infection with L.m. After this period of 

incubation, DC viability was assessed via propidium iodide (PI) staining followed by FACS 

analysis. 



Methods 

 

40 
 

 

4.6 Generation of murine bone marrow derived dendritic 

cells and macrophages 
Murine DC and M were generated from the bone marrow of 10-16 week old C57BL/6 

mice. Briefly, mice were sacrificed by exposure to Isofluran, followed by cervical 

dislocation. Immediately after the sacrifice, the tibiae and femur of hind legs were 

released, and the soft tissue was removed. Subsequently, the bones were cut on the 

extremes and the bone marrow was flushed out using a 27G syringe. After one washing 

step, the recovered cells were cultured for 7 days in IMDM medium supplemented with 

10% FCS, 100 U/ml penicillin and 0.1 mg/ml streptomycin. To drive the differentiation of 

bone marrow cells towards DC or M 10ng/ml (200U/ml) of recombinant murine (rm) GM-

CSF or rmM-CSF, respectively, were added to the cell culture medium.  

 

4.7 IDO1 silencing and enzymatic activity inhibition 
IDO1 was silenced using small interfering RNA (siRNA) technique, a method that allows 

the post-transcriptional targeting of genes based on the principle of RNA interference. By 

this mechanism, short double strand RNAs (20-25 bp) target the degradation of 

complementary and usually fully processed mRNAs mediated by the RNA induced 

silencing complex (RISC) (Moss 2001). ImmDC were collected, counted and washed 

twice with PBS. Finally, cells were resuspended in Opti-MEM® medium at a cell density of 

4x107 cells/ml. In the next step, four different pre-designed artificial siRNA sequences 

targeting IDO1 were prepared in 1X siRNA dilution buffer at a final concentration of 20µM. 

In total 10µg of siRNA (2.5 µg/each sequence) were placed on the bottom of 4 mm 

electroporation cuvettes. 100 µl of the cell suspension were added gently to the mixture. 

After 3 minutes of incubation at room temperature, the cells were electroporated using a 

wave square protocol composed of two pulses of 1000 V with a pulse length of 0.5ms. 

Immediately after the procedure, the cells were transferred to fresh culture media 

supplemented with rhGM-CSF and rhIL-4 and incubated for further 48 h. ImmDC 

transfected with 10µg of renilla control siRNA under the same conditions described above 

were used as controls. IDO1 and control siRNA transfected DC were stimulated with TNF-

 together with PGE2 and Pam3 or left untreated. After 24 h the cells were collected and 

infected with L.m. as described in chapter 4.9. Approximately 2x106 cells were used to 

evaluate the bacterial burden during 6 hpi. Additionally, 2x106 infected cells were kept in 
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culture for 24h in order to evaluate IDO1 silencing efficiency via western blot and 

determination of Kyn by Ehrlich colorimetric reaction (Figure 4). 

 

 

Figure 4. Flowchart depicting the experimental approach followed to silence IDO1 in DC 

immDC were transfected with 10µg of control or IDO1 specific siRNA via electroporation. After 48 h 

of incubation immDC transfected with IDO1 or control siRNA were stimulated with TNF- in 

combination with PGE2 and Pam3 and incubated for 24h. Pretreated DC were infected with L.m. 

and the bacterial burden was assessed. IDO1 silencing efficiency was determined via western blot 

and Ehrlich colorimetric reaction. 

 

The enzymatic activity of IDO1 was inhibited in DC and M with the competitive inhibitor 

1-methyl-tryptophan (1-MT). Prior to infection with L.m., myeloid cells were treated with 

150 µM 1-MT. To evaluate the bacterial burden after IDO1 enzymatic inhibition DC and 

M were kept during 6h in HBSS supplemented with 150 µM of 1-MT and 24 µM of Trp. 

The cell viability was assessed via PI staining followed by FACS analysis. The efficiency 

of IDO1 enzymatic inhibition was evaluated by measuring of Kyn accumulation in 

supernatants of treated cells. 

 

4.8 Bacteria culture and FITC labeling 
Listeria innocua (L.i), L.m. strain EGD-e wild type and hly mutant were kindly provided by 

Professor Doctor Trinad Chakraborty, Institute for Medical Microbiology, Justus-Liebig-

University of Giessen, Germany. The bacteria were cultured overnight in brain heart 

infusion (BHI) broth at 37°C. The next day, the cultures were diluted 1:50 in fresh BHI 

broth and cultured under the same conditions until the optical density at 600nm (OD600) 

reached 1. At this point, the bacteria were centrifuged at 4000xg for 30 minutes at 4°C. 
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Approximately half of the total recovered bacteria were mixed in 10% DMSO in PBS and 

were frozen immediately at -80°C. The rest of the culture was resuspended in a solution of 

fluorescein isothiocyanate (FITC) 0.1 mg/ml in 0.1M NaHCO3 (pH 9.0) and incubated for 1 

h at 25°C. After this incubation, the bacteria were washed extensively and frozen as 

described previously. 24h after the procedure, the viability of the bacteria in the frozen 

aliquots was determinate via colony forming unit assay (CFU). Briefly, serial dilutions of 

bacteria suspensions (10-4-10-7) were performed and plated on BHI agar. The plates were 

incubated at 37°C overnight and counted the next day. Streptococcus piogenes (S.p) was 

cultured in sheep blood agar during 24 h. The next day the bacteria were transferred in 

BHI broth and frozen aliquots were prepared in 10% DMSO. 

 

4.9 Infection of human dendritic cells and macrophages 

with L. monocytogenes 
DC and M were counted and washed twice with PBS. After the last wash step, the cells 

were resuspended in HBSS at a cell density of 4x106 cells /ml. Meanwhile, the suspension 

of FITC labeled L.m. was prepared in HBSS supplemented with 10% of human serum, to 

achieve a multiplicity of infection (MOI) of 1:10. Subsequently, 500µl of the bacterial 

suspension were mixed 1 to 1 with the cell suspension. The bacteria-cell mixture was 

placed during 30 minutes at 37°C under constant rotation. As a control, the cells were 

resuspended in PBS supplemented with 10% of human serum. After this incubation time, 

the cells were chilled immediately on ice and washed extensively four times. To avoid the 

transference of free bacteria to further cell cultures, the cell suspension was passed 

through a density gradient of 30% glucose. Finally, the cells were counted and cultured 

either in RPMI (M) or Cell-Gro (DC) supplemented with 50µg of gentamycin and the 

percentage of infection was assessed via FACS analysis. Additionally, DC and Mwere 

placed on HBSS, to evaluate their microbicidal capabilities by determining L.m. viability 

via CFU as described under section 4.10. Cell pellets and supernatants of infected cells 

were collected at 24hpi and kept at -80°C. For some experiments, freshly collected 

supernatants were passed through a 0.22 µm membrane, to avoid the transference of 

extracellular bacteria. Experiments of M and DC infection were performed with the kind 

support of Dr. Zeinab Abdullah (Institutes of Molecular Medicine and Experimental 

Immunology, University of Bonn, Bonn, Germany). 
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4.10 Determination of bacterial burden in infected 

dendritic cells and macrophages 
The bacterial burden of infected cells was evaluated by CFU analysis. Immediately after 

infection, 2x106 DC or M were resuspended in 1ml HBSS. To establish the initial number 

of bacteria that entered the cells, 100µl of the cell suspension were added to a solution of 

triton 0.001% in water during 5 minutes, to lyse eukaryotic cells without affecting the 

viability of bacteria (Campbell, Canono et al. 2001). After the lysis, 1:10 dilutions were 

performed sequentially (10-2-10-5) and seeded on BHI agar. The remaining cell suspension 

was placed at 37°C under constant rotation. To establish L.m. viability in a time course 

100 µl aliquots of the cell suspension were taken at 0.5, 1, 2, and 6 hours post infection 

(hpi) and treated as described for the determination of initial bacterial burden. The 

inoculated plates were kept overnight at 37°C for counting on the next day. Dependent on 

the experiment HBSS was supplemented with Kyn 50-100 µg/ml or Trp (98 µM). In order 

to calculate the bacterial burden of infected cells at different time points, the initial number 

of colonies was set to 100% and the fraction of surviving colonies for the following time 

points was calculated on this basis. 

 

4.11 Infection of murine bone marrow derived dendritic 

cells and macrophages with L. monocytogenes 
Bone marrow derived M (BMM) and DC (BMDC) were harvested and counted. 24h prior 

to the infection with L.m. BMM and BMDC cells were washed three times and seeded on 

six-well culture plates at a cell density of 3x105 cells/ml in RPMI medium supplemented 

with 10% FCS, without any further additives. Immediately before the infection, L.m. 

suspension was prepared in HBSS supplemented with 5% of mouse serum and added to 

the cell monolayer to obtain a MOI of 1:5. The plates were incubated for 30 minutes at 

37°C. After this incubation time the plates were chilled on ice and washed four times with 

cold HBSS. The cells were cultured for 24h in RPMI supplemented with 50µg/ml of 

gentamycin. 

 

4.12 Evaluation of the anti-bacterial and cytotoxic effect 

of tryptophan catabolites 
Stable intermediaries of the kynurenine pathway including Kyn, 3-hydroxy-L-kynurenine 

(3HK), anthranilic (AA), 3-hydroxy-anthranilic (HA), picolinic (PA) and quinolinic acid (QA) 
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were dissolved in water (100°C) at concentrations between 1-5 g/ml. To evaluate the anti-

bacterial effect of Trp catabolites the stock solutions were filtered (0.22µM) and added to 

RPMI medium to obtain final concentrations between 48 and 200µM. Meanwhile, L.m., L.i. 

and S.p. frozen aliquots were thawed and resuspended in RPMI to a final OD600 of 

0.100. The bacterial suspension was mixed 1:1 with the solutions of Trp catabolites or 

RPMI alone in 48 well-plates and the resultant cultures were incubated during 24 h at 

37°C. In the next step, serial dilutions of the bacterial cultures were performed (10-2-10-5) 

and plated on BHI agar for L.m. and L.i. or sheep blood agar for S.p. The plates were 

incubated overnight, and the colonies were counted the next day. The number of colonies 

observed in RPMI alone was set as 100%. The fraction of colonies counted in RPMI 

supplemented with the different concentrations of Trp catabolites was estimated according 

to this. 

To establish the potential cytotoxic effect of Trp catabolites on DC the stock solutions of 

Trp catabolites were diluted in Cell-Gro at a final concentration of 100µM. Subsequently, 

immDC and DCreg were resuspended in Cell-Gro alone or supplemented with Trp 

catabolites. The cell cultures were incubated during 48 h at 37°C, and the cell viability was 

assessed by PI staining, followed by FACS analysis. 

 

4.13 Plaque assay 
L.m. was grown overnight in BHI broth at 37°C with shaking (150 rpm). On the next day 

bacterial cultures were diluted and further incubated during 3 h alone or in the presence of 

Kyn at concentrations of 12.5 µM, 25µM and 50µM. 3T3 fibroblast monolayers were 

cultured in RPMI supplemented with 10% FCS without antibiotics prior to infection the 

cells were seeded in 6-well plates and plaque assay was performed as follows. Confluent 

cell monolayers of 3T3 fibroblast were infected with an MOI of 0.1 or alternatively with 

serial dilutions (10-2-10-5) obtained after lysis of immDC or DCreg 6 hpi. After the infection 

cells were overlaid with 0.5% low melting point agarose supplemented with 10µg/ml of 

gentamycin and incubated during 72 h at 37°C. Plaques were visualized by addition of 

agarose 0.5% supplemented with 0.1% of neutral red and 10µg/ml of gentamicin. After 6 h 

the plates were scanned on a HP precision scanner. The plaque diameter was determined 

using image J (U. S. National Institutes of Health, Bethesda, Maryland, USA, 

http://imagej.nih.gov/ij/, 1997-2012). 
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4.14 Isolation of human CD4
+
 T cells 

The population of CD4+ T cell was enriched from human blood via Rossettesep method. 

Briefly, 50 µl of enrichment cocktail were added per ml of blood. After 20 minutes of 

incubation at room temperature, the cells were overlaid carefully on Pancol density media 

and centrifuged at 250xg during 20 minutes with the brake off. The enriched CD4+Tcell 

population was recovered from the interface and stained with carboxyfluorescein diacetate 

succinimidyl ester (CFSE). Alternatively, CD4+ naïve T cells were isolated via MACS 

technique, according to the protocol provided by the manufacturer. PBMCs were isolated 

as described under section 4.1. After the procedure, 10x106 cells were incubated during 

10 minutes with 10µl of the biotin antibody cocktail II at 4°C. Next, the cells were washed 

twice and incubated for 15 minutes with the anti-biotin magnetic beads at 4°C. In the final 

step, the cells were washed and resuspended in 500 µl of MACS buffer, to perform 

magnetic separation using the auto MACS pro separator under the sensitive depletion 

program. The purity of T cells was evaluated via FACS analysis after staining with 

fluorochrome coupled antibodies against CD4 respectively CD3. For naïve T cells, a third 

anti-CD45RA antibody was added to the staining panel.  

 

4.15 Generation of artificial antigen presenting cells 
Artificial antigen presenting cells (aAPCs) were generated via coating of magnetic beads 

with a solution of antibodies as follows; anti-CD3 (5%), anti-CD28 (13%) and anti MHC-1 

(81%) prepared in 0.1M of boric acid. The magnetic beads were incubated overnight with 

the antibody solution at 4°C under constant rotation. In the next step, the beads were 

washed three times using bead wash buffer (PBS 3% BSA and 0.1% NaN3) by placing the 

containing vials on a magnet and replacing the buffer. Each wash step was followed by 

incubations of 30 minutes in a rotator, and the last incubation step was performed 

overnight. The washed beads were counted and resuspended to a density of 50x106 

beads/ml. Alternatively, control beads coated only with CD3 and MHC-1 antibody were 

prepared following the same process described above. 

 

4.16 T cell proliferation assay 
Freshly isolated CD4+T cells were stained with CFSE as follows. Immediately after the 

isolation procedure, 10x106 CD4+T cells were washed twice and resuspended in a CFSE 

solution (0.5 µM in PBS). The cells were incubated at room temperature during 8 minutes 

with constant shaking. After this incubation, two wash steps were performed, and the cells 
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were counted. Next, the stained CD4+T cells were resuspended in fresh RPMI medium 

supplemented with 10% FCS at a cell density of 1x106 cells/ml and were co-cultured with 

aAPCs at a 1:1 ratio. For some experimental conditions, the RPMI medium was 

supplemented with 50% of supernatants conditioned previously by Mwith different status 

of polarization, including untreated control, M1, and L.m.-infected. After 72 h, the cell 

proliferation was assessed by detecting the dilution of the CFSE dye via FACS analysis. 

The percentages of proliferating cells, as well as the division index were calculated with 

the tool for cell proliferation of the Flowjo 7.6.1 software. 

 

4.17 T cell cytokine production assay 
Freshly isolated naïve CD4+T cells were co-cultured with aAPCs (1:1 ratio) in RPMI 

supplemented 10% FCS alone or with 50% of supernatants conditioned previously by 

Mwith different status of polarization. After 72 h, T cells were stimulated during 2 h with 

phorbolmyristate acetate (PMA) and ionomycin. The cells were washed once, and treated 

with brefeldin A during 2 h. After this incubation time, the cells were washed twice and 

stained during 30 minutes with a solution 1:3000 of the Invitrogen live/dead AmCyan ® 

coupled dye, in order to identify the population of viable cells. Subsequently, intracellular 

staining with fluorochrome coupled antibodies against the cytokines, IFN-, IL-10, IL-17, 

IL-4 and IL-2 was performed followed by FACS analysis.  

 

4.18 Flow cytometry 
Flow cytometry is a versatile technique that uses light scattering, light excitation and 

emission of fluorochromes to generate multi-parameter information of cells (Macey 2007). 

To assess the expression of surface molecules in M and DC, between 1 and 2x105 cells 

per treatment were resuspended in 300µl of blocking buffer (PBS 10% FCS) and 

incubated during 20 minutes on ice. After this incubation period, 1-5 µl of antibodies 

coupled to fluorochromes (see materials section) were added to the cells and incubated at 

4°C for 20 minutes. Next, the cells were washed with 2ml of PBS and centrifuged at 300g 

during 8 minutes. The supernatants were discarded, and 200µl of fresh PBS were added. 

To control the unspecific binding of antibodies, 2x105 cells per each treatment were 

stained with matching isotype controls for each one of the antibodies used for the staining. 

Simultaneously, the compensation controls were prepared by performing single stainings 

on anti-IgG1 coated polystyrene beads using antibodies coupled to the complete panel 
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of fluorochromes used on each assay. To control the viability of the analyzed populations, 

the cells were stained with PI at a final concentration of 1µg /ml added immediately before 

the acquisition of the events in the flow cytometer. 

To evaluate the expression of intracellular molecules, the cells were collected after 

treatment with the Invitrogen live/dead AmCyan dye®. Subsequently, the cells were 

incubated during 20 minutes in the dark with 1ml of the fix/perm buffer. Immune cells were 

washed once and incubated with 1ml of permeabilization buffer for 15 minutes at room 

temperature in the dark followed by a wash step. After this procedure, the cells were 

incubated with 5 µl of the selected antibodies or their correspondent isotype antibodies 

during 30 minutes at room temperature followed by a wash step with PBS. Finally, the cell 

pellets were resuspended in 200 µl of fresh PBS. The compensation controls were 

prepared as described for surface staining. 

The data were acquired within a maximum of 2 h after sample preparation using a flow 

cytometer (BD LSRII) and the FACS Diva software. The cells were gated according to the 

expected size and granularity. Subsequently the population of viable cells was set based 

on the information provided by staining with PI (surface staining) or live/dead dye ® 

(intracellular staining). After suitable gates were fixed, 10.000-50.000 were acquired and 

the results were analyzed using the FlowJo7.6.1 software. 

 

4.19 RNA isolation 

Cell lysates prepared in 1ml of QIAzol
®

 reagent were thawed and 200 µl of chloroform 

were added by mixing vigorously. Next, the samples were centrifuged at 12.000 g at 4°C 

for 15 minutes and the aqueous phase was transferred to a new tube. The aqueous phase 

was applied immediately to a miRNeasy mini kit 
®

 column. After 3 wash steps with the 

buffers provided by the supplier, the RNA was eluated in RNAse free water. The quantity 

and quality of the isolated RNA was evaluated by measuring the absorption of the 

samples at 260 and 280 nm in a NanoDrop spectrophotometer. A ratio OD260/OD280 

equal to 2 was considered as optimal. For microarray experiments, an additional quality 

control was carried out by analyzing the electrophoretic mobility of the RNA samples on a 

denaturing agarose gel. 
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4.20 Semi-quantitative real time PCR 

The first strand cDNA synthesis kit
®

 (Roche applied systems) was used to obtain cDNA 

starting from 500-1000 ng of RNA following the instructions provided by the manufacturer. 

In the first step, the RNA was annealed to the Anchored-olio (dT)18 primer by heating the 

mixture at 65°C. Next, the solution was chilled on ice and a master mix containing 

transcriptor reverse transcriptase enzyme, deoxynucleotides mix and RNAse inhibitor was 

added. After 1 hour of incubation at 50°C, the reaction was inactivated by a heating step 

at 85°C for 5 minutes. The method is described in detail on table 2. 

The semi quantitative real time (qRT-PCR) reaction was performed using the universal 

probe library system. The specific primers for every gene of interest were designed with 

the ProbeFinder software and were used together with the dye suggested by the program. 

The data were acquired with a Light Cycler 1.3 instrument and the analysis was 

performed using LightCycler
®

4.05 software. In all cases, the expression of target genes 

was normalized by the expression of the house keeping gene glyceraldehyde-3-

phosphate dehydrogenase (GAPDH). The composition of the qRT-PCR reaction, as well 

as, the program used for amplification are described in table 3. 
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Component Amount 

RNA 500-1000 ng 

Anchored oligo (dT)18 50pmol/µl 1µl 

H2O Up to 13 µl 

Incubate for 10 minutes at 65°C, immediately chill on ice 

Reverse Transcription buffer 5X 4µl 

Deoxynucleotide mix (10mM each) 2µl 

Transcriptor reverse transcriptase 20U/µl 0.5 µl 

Incubate 50°C for 1 h the inactivate 85°C for 5 minutes 

 

Table 2. cDNA synthesis procedure  

The cDNA was synthetized with the first strand cDNA synthesis kit from Roche applied systems 

following the instructions of the manufacturer. 

 

RT-PCR master mix Component amount 

Universal ProbeLibrary probe 0.1 µl 

Primer for 10uM 0.2 µl 

Primer rev 10uM 0.2 µl 

ddH2O 0.5 µl 

Probe master mix: Reaction buffer, Hot start  
Taq polymerase, and dNTPs 

5    µl 

cDNA 4    µl 

 RT-PCR Programm Temperature°C/ time/ number of cycles 

Initial denaturation 95/10 min/1 

Denaturation 95 /10s 
60/ 30s 40 cycles 
72/ 5s 

Annealing  

Extension  

cooling 40/10s/1 

 

Table 3. Composition of qRT-PCR reaction and amplification program 

4µl of cDNA were seeded onto 96 well-plates and 6µl of the RT-PCR master mix were added. 

Every sample was assessed by triplicate. 

 

4.21 Microarray analysis 
The sample preparation for microarray analysis was carried out by Mr. Michael Kraut and 

Mrs. Laura Bohmman in the laboratory of genomics and immunoregulation at the LIMES 

Institute (Bonn, Germany). Briefly, biotin labeled cRNA was generated using the 

TargetAmp™-Nano Labeling Kit for Illumina
®

 Expression BeadChip
®

. The biotin labeled 
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cRNA samples (1.5 µg) were hybridized on SentrixBeadChips V3 (Illumina) and scanned 

on an IlluminaHiScanSQ system
®

, following the instructions provided by the 

manufacturer. Suitable reports for further analysis were generated from raw data with the 

GenomeStudio software (Illumina). Subsequent data analysis was performed with Partek
®

 

genomics suite software. Quality of array data was assessed using pairwise scatterplots 

whereby the correlation coefficient should account to r2≥0.95 (Beyer, Mallmann et al. 

2012). The experiments included in the microarray analysis are summarized in table 4. 

Cell type stimulus Time after  

stimulus (h) 

Donors 

(n>3) 

immDC rhGM-CSF,rhIL-4 72 3 

L.m.-DC L.m. infection 24 3 

M rhGM-CSF 72 6 

GM-CSF L.m.-M L.m. infection 72 6 

M rhM-CSF 24 3 

M-CSF L.m.-M L.m. infection 24 3 

M1 rhGM-CSF,rhIFN- 24 3 

M2 rhGM-CSF, rh IL-4 24 3 

Mreg rhGM-CSF,  

rhTNF-α, PGE2, Pam3 

24 5 

M rhTNF- 24 3 

M PGE2 24 3 

M Pam3 24 3 

M IFN- 24 3 

M rhTNF-, PGE2, Pam3  

IFN- IFN- 

24 3 

 

Table 4. Summary of experiments included for microarray analysis 
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4.22 Bioinformatic Analysis 
After passing the quality control, the data were normalized via the quantile normalization 

method and further bioinformatic analysis was conducted using the genomics suite of 

Partek® software. As first approach to study the relationship between the experimental 

groups, principal component (PCA) and hierarchical cluster analysis on variable genes 

were performed. Subsequently, the determination of differential expressed (DE) genes 

between the experimental groups was performed via ANOVA analysis. For all the data 

sets, the genes with a fold of change (FC) between 2 and -2 and a FDR corrected p-value 

<0.05 were defined as DE genes. To confirm that the variance between the experimental 

groups was dependent mainly on the treatment, and was not associated to random 

factors, like experimental error or donor-dependent variation, a two way ANOVA was 

conducted and the sources of variation were identified. Only data sets in which the 

treatment explained more than 60% of the variability were used. Additionally, in cases in 

which factors like donor intrinsic properties, or the variation associated to the beadchip 

used in the experiment explained over 10% of the variation between the groups, a batch 

removal correction was implemented. To compare the set of DE genes between groups, 

gene lists were generated and plotted as Venn diagrams. In order to determine wether the 

DE genes common between two groups presented similar tendencies, the relationship 

between FC was represented in a scatter FC vs FC (FC/FC) plots. To visualize the levels 

of gene expression in different experimental groups, the average expression values of 

target genes, were obtained from microarray experiments and were standardized using z-

score transformation. The visualization of the data was obtained using Mayday software. 

Finally, to stablish the biological meaning of DE genes observed in the experimental 

groups, gene ontology (GO) analysis was performed. 

 

4.23 Cell lysis and western blot 
Cell pellets were lysed in 30 µl per 2x106 of lysis buffer (20mM Tris-HCl, 10% Triton X-

100,100mM NaCl, 1mM EDTA, 1M DTT) and 1 miniTab of Roche protease cocktail 

inhibitor. The samples were incubated on ice for 30 minutes and centrifuged at 12.000 g 

for 10 minutes. The soluble phase was recovered, and the protein determination was 

performed by the bicinchoninic acid method. Between 20-50µg of total protein were 

loaded on a sodium dodecylsulfate-polyacrylamide (SDS) gel and the electrophoresis was 

run at 150 V for about 1.5 h. The protein transference from the gel to a nitrocellulose 

membrane was conducted at 100V for 20 min. Subsequently, the membranes were 

soaked in blocking buffer for 1 h. Immediately after blocking step, the membranes were 
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incubated overnight at 4°C, with primary antibodies at the concentrations recommended 

by the manufacturer. The next day, the membranes were washed four times with 0. 1% 

Tween in PBS, and were incubated for 1 h with suitable secondary antibodies coupled to 

infrared dyes (IRDye 700® or IRDye800®) at a concentration of 1 to 5000. After four 

washing steps, the membranes were scanned in an Odyssey imager. In all cases, β-Actin 

was used as a loading control and the acquired images were analyzed using ImageJ 

software. 

 

4.24 Enzyme linked immunosorbent assay 
Enzyme linked immunosorbent (ELISA) assays were performed to determine the 

concentration of the cytokines IL-6, TNF-, IL-10, IFN-, IFN-, IFN-β and the soluble 

receptor CD25 in supernatants of DC and M from different experimental groups. In all 

cases, the instructions provided by the supplier were followed precisely. Briefly, 

supernatants from treated DC and Mwere incubated for 2 h in 96 well-plates previously 

coated with suitable capture antibodies. The plates were washed extensively with the 

solution recommended by the supplier. Subsequently the plates were incubated with 

suitable biotinylated detection antibodies. After extensive washing steps, the plates were 

in incubated with streptavidin coupled horseradish peroxidase. For signal detection, the 

ready-to-use tetramethylbenzidine substrate was used. The reaction was stopped by the 

addition of 1 M H2SO4, and the absorbance was read at 450 nm with a microplate reader. 

 

4.25 Kynurenine and nitrite determination 
The Kyn amount in DC supernatants was determined by Ehrlich colorimetric reaction 

assay (Braun et al., 2005). Briefly, cell supernatants were mixed with 30 % of trichloracetic 

acid in a ratio of 2:1, vortexed and centrifuged at 10,000 rpm for 5 minutes. 75 μl of the 

upper phase were removed and added to an equal volume of Ehrlich reagent (100 mg P-

dimethylbenzaldehyde and 5 ml glacial acetic acid) in a 96-well plate. Samples were 

assessed by triplicate against a standard curve of Kyn (0-100 μg/ml). Optical density was 

measured with a microplate reader at 492 nm. 

The nitrite detection was carried out via Griess colorimetric reaction. The cell supernatants 

were incubated for 10 min with Griess reagent A (1%Sulfanilamide solution) in 96-well 

plates. Next, the Griess reagent B (0.1% of N-(1- naphthyl) ethylene-diamine-di-

hydrochloride) was added to the mixture and incubated for further 10 minutes protected 
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from light. The absorbance was determined within 30 minutes after the reaction in a 

microplate reader.  

 

4.26 Determination of reactive oxygen species production 
ROS production was assessed via the luminol amplified chemiluminescence method. DC 

and M infected with L.m. were seeded in dark 96 well-plates (2x105 cells/well). Next, 50 

µl of a solution containing luminol (250µM) and horseradish peroxidase (16U/ml) were 

added. Subsequently, the plates were transferred to a luminometer provided with 

temperature control. Measurements of light intensity were taken every 8 minutes during 6 

h at 37°C. 
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5. Results 

5.1 Macrophages infected with L. monocytogenes 

present inmmunostimulatory and immunomodulatory 

features 
M and DC are the main constitutive elements of the outer ring wall of granuloma in 

patients chronically infected with L.m. (Popov, Abdullah et al. 2006; Popov, Driesen et al. 

2008). Whereas previous studies have shown that human monocyte derived DC acquire 

regulatory properties upon L.m. infection (Popov, Abdullah et al. 2006; Popov, Driesen et 

al. 2008), bacterial infection of M including L.m. has been associated with a strong 

proinflammatory phenotype characteristic for M1 polarization (Benoit, Desnues et al. 

2008). In order to gain insights about the function that M can accomplish in granuloma, 

an in vitro model of infection was used. Briefly, M differentiated from human blood 

monocytes in the presence of either GM-CSF (GM-CSF M) or M-CSF (M-CSF M) were 

exposed to L.m. using an MOI of 1:10. 24 hpi supernatants and cell pellets were collected 

to assess mRNA and protein expression of some distinctive markers for M1 polarization 

as well as immunomodulatory markers previously observed on DC infected with L.m., but 

also in regulatory myeloid cells, including DCreg and Mreg. 

In agreement with previous reports, GM-CSF and M-CSF M infected with L.m. increased 

significantly the mRNA expression of proinflammatory mediators, including the cytokines 

IL1B, IL6, IFNG and the chemokine IL8 when compared to uninfected M (Figure 5). 

Furthermore, a strong accumulation of the proinflammatory cytokines IL-6, IFN-, TNF- 

and IL-12 was detected via ELISA in supernatants of L.m. infected M whereas 

supernatants from control M contained low or non-detectable levels of these cytokines 

(Figure 6). Although, M-CSF M tend to produce lower amounts proinflammatory 

cytokines when compared to GM-CSF M, these differences were only statistically 

significant for IL-12 production suggesting that in general terms the pro-inflammatory 

response against L.m. is common for both subtypes. Together, this data suggest that the 

in vitro model of infection herein established reflects the features of L.m. infected M 

(L.m.-M) described in the literature including the acquisition of properties associated to a 

M1 phenotype. 
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Figure 5. M infected with 
L.m. express 
proinflammatory cytokines 

The fold of change (FC) in 

mRNA expression of A. IL1B, 

B. IL8, C. IL6 and D. IFNG was 

assessed via q RT-PCR in 

GM-CSF (white bars) and M-

CSF derived M (grey bars) 

either infected with L.m. or 

untreated at 24 hpi. The 

expression of the target mRNA 

was normalized by GADPH 

expression. The FC was 

calculated in respect to the 

control. The results represent 

the mean ± sd of four 

independent experiments *p< 0.05 (student’s t test) non detected (n.d). 

 

Figure 6. M infected with 
L.m. secrete proinflammatory 
cytokines 

The secretion of A. IL-6, B. 

IFN-C. IL-12 and D. TNF-α 

was evaluated via ELISA in 

supernatants of GM-CSF (white 

bars) and M-CSF (grey bars) 

derived M control or infected 

with L.m. at 24 hpi. The results 

are presented as the mean ± sd 

of four independent 

experiments *p< 0.05 (student’s 

t test), non detected (n.d). 

 

 

Despite the prominent proinflammatory properties exhibited by L.m.-M, these cells also 

expressed molecules associated with regulatory function. For instance, the mRNA 
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expression of IL10, a hallmark cytokine for M2 polarized M (Sica and Mantovani 2012) 

was upregulated between 6 and 10 fold in L.m.-M when compared to control cells (Figure 

7A). Moreover, the increase in IL10 mRNA transcripts was concomitant with a robust 

accumulation of IL-10 protein in the supernatants of GM-CSF and M-CSF infected M (60- 

65 ng/ml), but it was not detectable in supernatants of control cells (Figure 7B). Similarly, 

the expression of PTGS2 mRNA increased around 10 fold in the infection model of L.m.-

M (Figure 7C). In addition, the product of the PTGS2 gene, the enzyme COX-2, which 

acts in concert with several prostaglandin synthases to produce the anti-inflammatory 

mediator PGE2 (Kalinski 2012) was also detected via western blot in L.m. infected, but not 

in control M (Figure 7D). 

 

Figure 7. M infected with L.m. express immunomodulatory mediators 

A. The expression of IL10 was evaluated via qRT-PCR in GM-CSF (white bars) and M-CSF (gray 

bars) M infected with L.m. or untreated cells at 24 hpi. B. IL-10 secretion was evaluated via ELISA 

in supernatants of GM-CSF M (white bars) and M-CSF M (grey bars) infected with L.m. or 

untreated control at 24 hpi. C. PTGS2 expression was evaluated by qRT-PCR in GM-CSF (white 

bars) and M-CSF (gray bars) M infected with L.m. or untreated M at 24 hpi. D. COX-2 protein 

expression was evaluated by western blot. Protein levels of the housekeeping gene β-actin were 

used as loading control. The relative expression (RE) of COX-2 was estimated by analyzing the 

intensity of each band normalized by β-actin. The results represent the mean ± sd of at least 3 

independent experiments *p< 0.05 (student’s t-test), non-detected (n.d). 
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Along the same lines, CD25, a hallmark molecule of regulatory myeloid cells, was present 

in 78±19% of the L.m.-M, but absent in the control population (Figure 8A). Interestingly, 

CD25 can be excised from the cell membrane giving rise to a soluble form (sCD25) (Robb 

and Kutny 1987). This soluble form binds to IL-2 with an affinity similar to its membrane 

bound counterpart. Thereby, sCD25 acts as a decoy receptor for IL-2, leading to impaired 

T cell activation (Driesen, Popov et al. 2008; Popov, Driesen et al. 2008; Lindqvist, 

Christiansson et al. 2010). An accumulation of sCD25 was determined in supernatants of 

infected and control M. Whereas supernatants of control M did not show any detectable 

levels of sCD25, supernatants from L.m.-M contained between 16 to 19±3 ng/ml of this 

soluble receptor (Figure 8 B). 

Finally, a second marker for regulatory myeloid cells, namely IDO1, was induced strongly 

upon L.m. infection in both GM-CSF and M-CSF M reaching a fold change of 12 when 

compared to controls (Figure 8 C). Interestingly, IDO1 has been classified as a typical 

marker for M1 (Benoit, Desnues et al. 2008), but also as a hallmark for M2 activation 

(Lawrence and Natoli 2011). This divergence in the literature can be explained by the 

apparently contradictory role that IDO1 plays as a microbicidal mediator and as a 

modulator of T cell responses (Mellor and Munn 2004). 
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Figure 8. M infected with L.m. express CD25 and IDO 

A. CD25 expression was evaluated by flow cytometry in GM-CSF (white bars) and M-CSF (grey 

bars) M either infected with L.m. or untreated at 24 hpi. The results are presented as percentage 

of positive cells. B. sCD25 secretion was assessed via ELISA in supernatants of GM-CSF (white 

bars) and M-CSF (grey bars) derived M either infected with L.m. or untreated at 24 hpi. C. IDO1 

protein expression was evaluated via western blot in GM-CSF (white bars) and M-CSF (grey bars) 

M either infected with L.m. or untreated at 24 hpi. IDO1 RE (relative expression) was estimated by 

analyzing the intensity of each band normalized by β-actin. The results represent the mean ± sd of 

at least three independent experiments, *p< 0.05 (student’s t test), non-detected (n.d). 

 

In summary, the presented data suggest that independently from GM-CSF or M-CSF 

human monocyte derived M infected with L.m. present characteristics from a 

proinflammatory M1 phenotype, but also exhibit features previously associated to a 

regulatory function including, secretion of IL-10, expression of surface and soluble CD25, 

IDO1 and COX-2. 
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5.2 Soluble factors secreted by macrophages infected 

with L. monocytogenes modulate the phenotype of 

bystander macrophages and suppress T cell proliferation 
To assess the impact of soluble factors secreted by L.m. infected M on uninfected 

bystander cells, the cell culture medium of untreated GM-CSF M was supplemented with 

increasing percentages (10, 25 and 50% v/v) of supernatants from L.m. infected M 

previously filtered to avoid the transference of bacteria to the new culture. As control, M 

treated with supernatants from control cells were used. Additionally, M with regulatory 

properties (Mreg), were generated via stimulation with TNF- in concert with PGE2 and 

Pam3. M were treated under these conditions for 48 h. After this period, the expression of 

surface CD25, COX-2 and IDO1 was evaluated and compared to the expression of these 

markers in Mreg generated from the same donors. Interestingly, the treatment with 10% 

v/v of supernatants from L.m.-M was sufficient to induce the expression of CD25 in 

46±8% of the M population. The induction of CD25 expression was dose dependent 

since the treatment with 50% of L.m.-M supernatants induced CD25 expression in 

80±10% of the M population. This level of expression is comparable to the observed 

levels in Mreg (Figure 9 A). Along the same lines, the treatment of M with supernatants 

from infected cells led to a significant induction in the protein expression of COX-2 and 

IDO1, but only upon treatment with 50% of the supernatants of L.m.-M. For both IDO1 

and COX-2 the relative expression of the protein reached similar values to those observed 

in Mreg (Figure 9 B-D). 
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Figure 9. Supernatants of L.m. infected M induce the expression of regulatory factors in 

uninfected M 

A. CD25 expression was assessed by flow cytometry in Mreg and GM-CSF Mexposed to 

increasing percentages of supernatants from infected M. As control M treated with 50% of 

control cells supernatants were used. The results were analyzed as the percentage of positive 

cells. B. The expression of IDO1 and COX-2 was assessed in the same experimental groups 

described in A. via western blot. β-Actin was used as loading control. The displayed membrane is 

representative of three similar experiments. C. RE (relative expression) for COX-2 was estimated 

by analyzing the intensity of each band normalized by β-actin. D. RE for IDO1 was estimated by 

analyzing the intensity of each band normalized by β-actin. The results represent the mean ± sd of 

three independent experiments, *p< 0.05 (student’s t test). 

 

Together the data presented above, suggest that soluble factors produced by infected 

GM-CSF M have a strong impact on bystander M and are sufficient to induce the 

expression of immunomodulatory molecules in these immune cells.  

According to this observation, the impact of soluble factors secreted by L.m. infected M 

on T cell activation was investigated. CD4+T cells were cocultured with aAPCs alone or in 

the presence of 50% (v/v) supernatants conditioned by M1, M2, Mreg or L.m. infected M. 
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Strikingly, CD4+ T cells treated with supernatants conditioned by infected M showed 

around 36±6% less proliferation than those treated only with aAPCs or supernatants from 

M1 and M2 M. As reported previously, supernatants of Mreg exerted the highest 

percentage of inhibition (72±7%) on CD4+T cell proliferation (Schaefer 2009). These data 

suggest that supernatants of L.m.-M, but not M1 or M2 are able to suppress CD4+T cell 

proliferation. In order to establish whether this effect is accompanied by altered cytokine 

secretion, naïve CD4+T cells were treated with supernatants conditioned by M1 and L.m.-

M during 72h. After this incubation time, naïve T cells were stimulated with PMA in 

combination with ionomycin, and the production of IL-2, IL-4, IL-17 and IFN- was 

assessed via intracellular staining followed by FACS analysis. To enhance the detection 

of cytokines, the protein secretion was inhibited via treatment with brefeldin A. 

 

Figure 10. Supernatants of L.m. infected MΦs are able to suppress T cell proliferation 

CD4
+ 

Tcells were stained with CFSE and the proliferation was assessed 72 h after treatment by 

flow cytometry. The percentage of dividing CD4
+
 T cells treated only with aAPCs was set as 100%. 

The results represent the mean ± sd of four independent experiments *p< 0.05 (student’s t test). 

 

The percentage of IFN- producing cells was significantly diminished (50±11%) in CD4+T 

cell cultures treated with supernatants of L.m. infected M (Figure 11), whereas no 

significant change was observed in the production of IL-2, IL-4 or IL-17 (data not shown). 

Together, these observations suggest that supernatants from M infected with L.m. exert 

an overall suppressive effect on CD4+T cells, clearly different from the effects exerted by 

supernatants of M1 or M2 polarized M. 
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Figure 11. Supernatants of M infected with L.m. reduce 

the production of IFN- in activated CD4
+
T cells 

CD4+ naïve T cells were incubated with aAPCs alone or 

with supernatants previously conditioned by M1 or L.m. 

infected M. After 72 h, the production of IFN- was 

assessed by flow cytometry. The percentage of IFN- 

producing cells in M1 conditioned media was set as 100% 

and the ratio for the rest of the treatments was calculated on 

this basis. The results represent the mean ± sd of 3 

independent experiments *p< 0.05 (student’s t test). 

 

In summary, these data indicate that L.m.-M acquire features classically known for 

proinflammatory M1 M, but also gain regulatory characteristics that have been previously 

described for DC infected with L.m. as well as for regulatory myeloid cells including Mreg 

and DCreg. At a functional level, the evidence suggests that soluble molecules secreted 

by L.m.-M are able to confer bystander M with the expression of immunomodulatory 

molecules. In addition, factors secreted by L.m.-Mexert a suppressive effect on CD4+ T 

cell responses. 

 

5.3 The transcriptional response of macrophages to L. 

monocytogenes infection 
So far the results suggests that M differentiated from monocytes using GM-CSF and M-

CSF show a characteristic phenotype upon L.m. infection and exhibit both 

proinflammatory and immunomodulatory features independently from the factor used in 

their differentiation process. However, in comparison to GM-CSF M the population of M-

CSF M secreted lower levels of IL-12 in response to L.m infection. Similarly, previous 

reports suggested that upon stimuli with TLR ligands GM-CSF M acquire 

proinflammatory functions, whereas M-CSF M behave in a regulatory fashion producing 

high amounts of IL-10 (Fleetwood, Lawrence et al. 2007). In order to obtain a global view 

about the differences observed between infected GM-CSF M and M-CSF M the 

transcriptional profiles of these two cell populations was assessed via microarray analysis. 

A PCA revealed that non-infected GM-CSF and M-CSF M clustered in proximity, 

whereas their L.m. infected counterparts were separated in a second group (Figure 12 A). 
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In addition, hierarchical clustering analysis performed on variable genes showed again a 

clear separation between infected and non-infected M suggesting the key contribution of 

infection to the variability observed amongst these two groups (Figure 12 B). ANOVA 

analysis comparing uninfected GM-CSF and M-CSF M showed that 103 genes are 

differentially expressed (DE) (-2>FC>2, *p< 0.05) between these groups. The gene 

ontology enrichment (GO) analysis for these 103 DE genes showed that GM-CSF and M-

CSF M differ in categories related to antigen processing and presentation (Table 6). In 

contrast to the differences observed between uninfected GM-CSF and M-CSF M the 

direct comparison of these groups after infection with L.m. yielded only 3 DE genes. 

To gain a better understanding of the transcriptional changes that follow L.m. infection, an 

ANOVA analysis comparing infected GM-CSF or M-CSF M against their respective 

uninfected controls was performed. GM-CSF and M-CSF M infected with L.m. shared a 

common transcriptional signature that comprised 921 DE genes (Figure 12 C). This 

transcriptional signature represented over 60% of the total transcriptional changes 

observed in M upon L.m. infection. Moreover, with the exception of IL-6, those genes 

showed comparable tendencies as this was shown by FC/FC plot (Figure 12 D). 
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Figure 12. GM-CSF and M-CSF derived M regulate a similar transcriptional profile upon 
L.m. infection 

A. PCA analysis of the expressed genes in GM-CSF and M-CSF M infected (GM-CSF-L.m. and 

M-CSF-L.m. respectively) and non-infected (GM-CSF and M-CSF) with L.m. B. Hierarchical 

clustering analysis based on 1000 variable genes observed in L.m. infected GM-CSF and M-CSF 

M versus control M.C. Venn diagram of DE observed between GM-CSF and M-CSF M infected 

with L.m. and their corresponding untreated controls. D. Expression of 921 genes in the 

intersection between GM-CSF and M-CSF M as FC/FC plot. 
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Function Type Enrichment 

Score 

GM-CSF up vs. M-

CSFdown 

 

MHC class II protein complex Cellular 

component 

18 HLA-DRB3, HLA-

DPA1, HLA-DPB1, 

HLA-DRA, CD74 

Antigen processing and 

presentation of peptide or 

polysaccharide antigen via MHC 

class II 

Biological 

process 

15 HLA-DRB3, HLA-

DPA1, HLA-DPB1, 

HLA-DRA 

antigen processing and 

presentation 

Biological 

process 

10.4 CD1B, HLA-DPB1, 

HLA-DRA, CD74, 

CD74 

 

Table 6. GO enrichment analysis of DE between GM-CSF and M-CSF M

GO categories with the highest enrichment scores of 103 DE genes observed between control GM-

CSF and M-CSF M



In the next step, a GO enrichment analysis was performed on the 921 DE genes that were 

common between M-CSF and GM-CSF M upon L.m. infection. As expected, in the 

biological process category, the GO terms with higher enrichment scores were those 

related to immune responses. Remarkably, Type I interferon mediated signaling, pathway 

and the response to virus category showed the highest enrichment scores (60), followed 

by the IFN- mediated signaling category (30). In addition, the respiratory transport 

electron chain and the mitochondrial ATP synthesis terms presented also high enrichment 

scores (25 and 23 respectively), suggesting the relevance of active energy metabolism in 

the inflammatory process is driven by L.m. infection (Figure 13).  
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Figure 13. GO enrichment analysis of differentially express genes in GM-CSF and M-CSF 
MΦs upon L.m. infection 

GO enrichment analysis was performed on DE genes that were common between GM-CSF and M-

CSF M upon L.m. infection. The bar chart displays the GO terms with the highest enrichment 

scores in the biological process category. 

 

Figure 14. Heatmap of highly 
regulated genes in in GM-CSF and 

M-CSF M infected with L.m. 

Average expression signals of the 

most regulated genes (FC 20˂FC<-

20, p<0.05) were standardized using 

Z score transformation. The 

comparative analysis included non-

infected GM-CSF and M-CSF M, as 

well as L.m.-M Expression values of 

up- and downregulated genes are 

color-coded; genes with low 

expression are shown in blue and 

genes with high expression in red, 

respectively. Gene symbols for 

transcripts previously related to 

immunomodulatory function of myeloid 

cells are highlighted in red. 
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Interestingly, the hallmark genes for the regulatory program (PTGS2, INDO, IL2RA) 

previously observed in DC infected with L.m. and regulatory myeloid cells appeared 

amongst the top DE genes (FC>20 or FC<-20, *p<0.05) in L.m. infected M together with 

genes coding for molecules associated with proinflammatory functions including the 

cytokines IL1A, IL1B, the chemokines CCL5, CCL8 and the transcription factor STAT4 

(Figure 14). 

In summary, the data suggest that despite the differences in growth factors that lead M 

differentiation, GM-CSF and M-CSF M respond to L.m. infection with a common 

transcriptional signature that includes proinflammatory and immunomodulatory genes 

supporting the results previously described for the in vitro assays. Taking these findings 

into account GM-CSF M were chosen for further analysis and will be referred shortly in 

the following sections as M. 

 

5.4 The transcriptional response of macrophages and 

dendritic cells to L. monocytogenes infection 
The transcriptome of DC and M were compared under resting conditions as well as upon 

L.m. infection to find a common gene signature specifically induced by L.m. Despite the 

fact that DC and M share GM-CSF as driving factor in their process of differentiation from 

monocytes, a PCA analysis performed on variable genes revealed that under steady state 

conditions DC and M cluster separately into two well defined groups, underlining the 

strong influence of IL-4 in the differentiation process of DC. In contrast, after infection the 

distance between L.m.-M and L.m.-DC decreased, suggesting similarities in their 

transcriptional responses (Figure 15 A). ANOVA analysis comparing uninfected DC and 

M revealed that 300 genes were DE between these two groups. In agreement with the 

functional differences between DC and M the GO enrichment analysis showed that 

under resting conditions the DE genes between DC and M were related to categories like 

immune response and chemotaxis (Table 7). For instance, DC expressed CCL23 and 

CCL18, two chemokines that have been reported as strong chemoattractants for naïve T 

cells (Blengio, Raggi et al. 2012). In contrast, M expressed higher levels of molecules 

involved in pathogen recognition, including TLR5, 6, 8, CD14, and also NLRP3, which 

although does not recognize PAMPs directly, can be activated upon a plethora of 

microbial stimuli, including LPS, bacterial RNA and lipopeptides (Franchi, Munoz-Planillo 

et al. 2012). In agreement with the results observed in the PCA analysis of variable genes, 
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the comparison of DE genes observed in L.m.-DC, L.m.-M and their respective 

uninfected controls, showed that L.m. infection induces 903 genes common in DC and 

M Furthermore, these genes were regulated in the same direction (Figure 15 B and C). 

 

 

Figure 15. DC and M express a common transcriptional signature upon L.m. infection 

A. PCA analysis of variable genes (1350 transcripts) expressed in uninfected and L.m. infected M 

and DC. B. Venn diagram representing the intersection between the DE genes observed in L.m. 

infected versus uninfected DC and L.m. infected versus uninfected M. C. FC/FC plot of the 903 

genes detected as DE between non-infected vs. infected DC and non-infected vs. infected M. D. 

Heatmap displaying DE genes (FC˂-20, FC>20) expressed in DC and M after L.m infection. The 

average expression values were obtained from microarray experiments and were standardized 

before visualization (z-score transformation). 
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Table 7. GO enrichment analysis of DE genes between M and DC 

 

These data indicate that DC and M respond to L.m. infection by regulating an important 

number of genes in a similar fashion, despite their different backgrounds. This group of 

common genes include IDO1, IL2RA, PTGES2, but also the cytokines IL-6, IL1A, IL1B, 

the chemokine ligands CCL5, CCL8, CCL3 and the transcription factor STAT4 (Figure 15 

D). Nevertheless, between 40 to 46% genes are regulated only in one of the two cell types 

(DC and M) (Figure 15 B). On the one hand, the GO enrichment analysis showed that 

the DE genes expressed only in DC after L.m. infection are related to inflammatory 

responses, chemotaxis and the response to LPS (Figure 16 A). On the other hand, those 

genes only regulated in M are associated to oxidoreductase and metabolic activity, but 

also to inflammatory and cell defense responses (Figure 16 C). Additionally, those genes 

with the highest FC upon DC infection with L.m. include molecules that amplify the 

Function Type Enrichment 

score 

DC up vs. M 

down 

 

M up vs. DC 

down 

inflammatory 

response 

Biological 

process 

31 ALOX15, CCL18 

CAMK1D, CRH, 

MMP25, CCL23, 

CCL26 

NLRP3, RIPK2, 

NFKBIZ,TLR8, 

TLR6, TLR5, 

CCR2, CYBB, 

CD14, CD163 

chemotaxis Biological 

process 

15 CCL23, CCL18, 

CCL26, CCL15, 

CCR6 

FPR1, ENPP2, 

CX3CR1 

defense 

response 

Biological 

process 

10 IL17RB NLRP3,CD48,CSF

3R 

 

immune 

response 

Biological 

process 

9 CCL23,CCL18, 

CCL26,CCL15,CD1

A, CCR6, NFIL3, 

SUSD2, CTSC 

TLR6, IRF8, CCR2, 

GBP2, FYB, 

ENPP2,CEBPB 
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inflammation like the alarmins S100A and S100B (Ehrchen, Sunderkotter et al. 2009), the 

chemokine CXCL9 and the leukocyte immunoglobulin-like receptor 5 (LILRA5). 

Interestingly, in M the expression of these genes remained similar before and after L.m. 

infection. Additionally, infection of DC with L.m. also induced high expression of 

SERPINB2, a molecule that has been recently described as an immunomodulator able to 

control Th1 responses in vivo (Schroder, Le et al. 2010) (Figure 16 B). In contrast, the DE 

genes with the highest FC present in M upon infection with L.m. include the two matrix 

metalloproteinases MMP7 and MMP12 and several components of the chemokine system 

including the receptor CXCR7 and the chemokine ligand CCL23. Infected M also up-

regulate the expression of Epstein-Barr virus induced gene 3 (EBI3) (Figure 16 D). The 

protein encoded by the EBI3 gene can form dimers either with IL12B leading to 

expression of the proinflammatory cytokine IL-27 or with IL12A producing the 

immunomodulatory cytokine IL-35. However, the expression of none of its dimerization 

partners was significantly changed upon L.m. infection in M (data not shown).  

In summary, in silico data suggest that M and DC independently from their functional 

differences and their basal transcriptional background respond to L.m. infection with a 

common transcriptional signature that represents around 60% of the total transcriptional 

changes induced by L.m. in these cell populations. 
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Figure 16. DC and M also express cell specific programs upon L.m. infection 

A. GO enrichment analysis of DE genes observed only in DC infected with Lm. B. Heatmap 

displaying DE genes (FC˂-35, FC>35) expressed only in DC in response to L.m. infection. The 

average expression values were obtained from microarray experiments and were standardized 

before visualization (z-score transformation). C. GO enrichment analysis of DE genes observed 

only in M infected with L.m. D. Heatmap displaying DE genes (FC˂-30, FC>30) observed only in 

M in response to L.m. infection. The average expression values were obtained from microarray 

experiments and were standardized before visualization (z-score transformation). 

 

5.5 The transcriptional response of macrophages to 

infection with wild type L. monocytogenes or hly mutant. 
Despite the identification of a common transcriptional program in M and DC in response 

to L.m. infection, the events shaping this transcriptional response are still unknown. It 

remains also to be elucidated whether this transcriptional program can be fine adjusted 

depending on the intracellular fate of the bacteria. L.m. infection is a complex process 

involving two phases of recognition; the first one is carried out at the cell surface and 

subsequently in the phagosome, whereas the second one is executed directly in the 

cytoplasm once L.m. has reached the cytosol. To understand whether the transcriptional 

responses of M to L.m. infection depend on the events triggered upon bacteria 
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recognition at the cell surface and inside the phagosome or at the cytosol, the 

transcriptomes of M infected either with wild type L.m. or the phagosome restricted hly 

mutant, were compared. A PCA analysis on all variable genes showed a close 

relationship between M infected with L.m wt. and the hly mutant (Figure 17 A). This 

finding was further supported by the unsupervised hierarchical cluster analysis showing 

that infected cells clustered together irrespective of the infection with wt L.m. or the hly 

mutant (Figure 17 B).  

 

Figure 17. L.m. intracellular fate does not condition the transcriptional response of M 

A. PCA analysis on variable genes (2300) expressed L.m. wild type infected (L.m. wt- M), L.m. hly 

mutant infected M (L.m. hly-M) and control M B. Unsupervised hierarchical cluster analysis on 

variable genes expressed in uninfected, L.m. wt and L.m. hly infected M.  
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Figure 18. M infected with L.m. and hly share 85% of DE genes 

A. Venn diagram comparing the DE genes observed in L.m wt infected and L.m hly versus non 

infected M .B. FC/FC plot for the comparison of 1400 DE genes observed in M infected with L.m. 

wt and with the hly mutant. 

 

Similarly, the comparison of DE genes expressed by L.m. wt and hly infected M with 

uninfected cells revealed that the compared transcriptional programs shared 85% of the 

total DE genes observed (Figure 18 A). In addition, the comparison of the FC for the 

common DE genes, present in both wt and hly infected M showed that they were 

regulated in the same direction and with a similar order of magnitude. (Figure 18 B). 

Despite the fact that M infected with the L.m. wt and hly mutant have in common 85% of 

the total DE genes; a certain number of genes were regulated only in response to L.m. wt. 

The GO enrichment analysis on these 264 genes revealed that terms related to 

translational elongation; viral transcription and viral infectious cycle presented the highest 

enrichment scores (Figure 19A). Interestingly, the genes with the highest FC (FC˂-10, 

FC>10) observed only upon infection with L.m. wt included IFNB, IRF1 and OASL1 

amongst others (Figure 19 B). 
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Figure 19. GO enrichment analysis of DE present exclusively upon infection of M with L.m. 
wt 

A. The bar chart displays 10 GO terms with the highest enrichment scores among the category of 

biological process. B. The heatmap displays the expression of DE genes (FC˂-10, FC>10) present 

only after infection of M with L.m. wt Average expression values were obtained from microarray 

experiments and were standardized before visualization. 

 

Taken together, at transcriptional level the presented data revealed that M react in a 

similar fashion to the threat represented by a vacuolar-restricted mutant, than to a fully 

competent wild type L.m. This observation suggests that the signals triggered in the early 

stages of infection like bacterial recognition at the cell surface or the phagosome are 

sufficient to acquire the majority of the components that integrate the transcriptional 

response of M against L.m. To support these findings, the identity of the hly mutant used 

in this study was confirmed via PCR using primers to amplify the hlyA gene, previously 

reported in the literature (Conter, Vergara et al. 2010). The hlyA gene encodes the 

virulence factor LLO, essential for phagosome lysis and the subsequent release of L.m. 

into the cytoplasm (Figure 2). In addition, the expression of proinflammatory hallmarks 

(IFN- and TNF-) and immunomodulatory molecules (IL-10 and CD25) were assessed 

via ELISA and flow cytometry at 24 hpi. The data obtained via PCR confirmed that the hly 

mutant used in this study lacked indeed the hlyA gene since it was amplified only in the wt 

strain (Figure 20 A). In addition, the hly mutant, as well as, wt bacteria were positive for 

the ActA gene, an essential virulence factor present in the genome of L.m. Finally, L.i one 

of the non-pathogenic members of the genus Listeria was negative for both hlyA and ActA 

gene (Figure 20 A). Furthermore, IFN-, TNF- and IL-10 were secreted in similar 

amounts in M infected with wt L.m. or the hly mutant (Figure 20 B-D).Similarly, the 
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percentage of CD25 positive M was equivalent, independently whether the infection was 

performed with wt L.m. or the hly mutant (Figure 20 E). 

 

Figure 20. M infected with wt L.m. and hly express similar amounts of proinflammatory and 

immunomodulatory factors 

A. The identity of the hly mutant was confirmed by PCR using primers directed to hlyA gene. The 

ActA gene was used as loading control. L.i. was included in the analysis as negative control. The 

secretion of B. IFN- C. TNF- and D. IL-10 was assessed in supernatants of Minfected with wt 

L.m. and hly mutant at 24 hpi. E. The percentage of CD25 expressing cells was assessed in M 

infected with L.m. or hly 24 hpi (n=3, mean±sd). 

 

In summary, the herein presented data suggest that the infection with L.m. drives the 

expression of a common transcriptional program in myeloid cells that probably depends to 

a significant extent on the early events of infection associated to bacterial recognition at 

the cell surface and inside the phagosome. These initial events might trigger a conserved 

defense mechanism, which is not tuned according to the level of threat represented by the 

invading microorganism. 
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5.6 Comparative analysis of transcriptional responses in 

macrophages infected with L. monocytogenes and 

classical models of macrophage polarization 
The response of M to bacterial infection, including the infection with L.m., has been 

identified as a classic example of M1 polarization (Benoit, Desnues et al. 2008; Mosser 

and Edwards 2008). However, in vitro obtained evidence suggest that M infected with 

L.m. acquire immunomodulatory properties previously described for alternatively activated 

M including the expression of IL-10 (Sica and Mantovani 2012), IDO1 (Lawrence and 

Natoli 2011) and the capacity to suppress T cell proliferation. Moreover, in silico and in 

vitro data herein presented, suggest that L.m. infection leads to the acquisition of a 

transcriptional signature comparable in DC and M. This common profile includes the 

expression of immunomodulatory hallmark molecules like CD25, COX-2, IL-10 and IDO1. 

To improve the understanding of the factors that contribute to the transcriptional response 

of M to L.m. infection and to elucidate how L.m. infected M fit in the current model of M 

polarization, a comparative analysis between the transcriptional profiles of M infected 

with L.m. and IFN- derived M1 or IL-4 derived M2 M was performed. 

 

Figure 21. The transcriptional 

profile of L.m.-M differs from 

M1 and M2 polarized M 

PCA on variable genes (2000) 

present in M infected with L.m. in 

comparison to the transcriptional 

profiles of IFN- generated M1, IL-4 

derived M2 and untreated control 

M

I 

 

An initial analysis by two dimensional PCA revealed no direct relationship of M infected 

with L.m. to M1, M2 or untreated M since the genomic fingerprints of each cell population 

were separated in the two dimensional space from L.m.-M(Figure 21). Nevertheless, the 

analysis of the DE genes between each one of the groups and untreated control M 
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demonstrated that the IFN-signature encompasses approximately 30% of the total DE 

expressed genes in L.m.-M (Figure 22 A and C). Only 8 genes of the common pool 

regulated upon L.m. infection and IFN-stimulation were regulated in the opposite 

direction. This group of genes included amino acid (SLC1A5 neutral and SLC16A10 

aromatic amino acids) and fatty acids transporters (SCL27A3), the enzyme spermine 

synthase (SMS), but also the chromatin remodeler HMGA1 and the modulator of cell cycle 

cyclin-D2 (Figure 22 C). Interestingly, the increase in the expression of SLC16A10, which 

is significantly up-regulated upon L.m. infection (FC10, p*<0.05), but not upon stimulation 

with IFN- has been identified as an early event in the infection of murine M by 

Mycobacterium tuberculosis (Stavrum, Valvatne et al. 2012). 

In contrast, the contribution of the IL-4 derived M2 Mwas minimal and represented only 

9% of the transcriptional changes observed upon infection of M with L.m. Furthermore, 

about 13% of the common genes between L.m. infected and M2 Mwere regulated in the 

opposite direction (Figure 24 B and D). Interestingly, the expression of IL-10, the hallmark 

cytokine for M2 polarization (Biswas and Mantovani 2010) was not detected in IL-4 

derived M2 Mused in this study. In addition, IL-10 was not present in supernatants from 

this experimental group (Schaefer 2009). However, IL-4 derived Mexpressed several 

previously reported M2 marker genes, including FCER2 (Beyer, Mallmann et al. 2012), 

AlOX15 (Wuest, Crucet et al. 2012), IRF4 (Satoh, Takeuchi et al. 2010), CCL17, CCL18 

and CCL23 (Mantovani, Sica et al. 2004) (Figure 23 A). Moreover, M2 and L.m. infected 

M expressed MMP7 and MMP12 and the chemokines CCL22 and CCL23 at similar 

levels (Figure 23 A). 

In agreement with previous reports, the intersection of similarly expressed genes in L.m. 

infected and IFN- treated M comprised hallmark genes for M1 polarization, including 

transcription factors like STAT1 and IRF1, the chemokine ligands CCL5, CXCL10 and 

CCL8,the proinflammatory cytokine IL-6 (Sica and Mantovani 2012),but also a set of 

genes that are well-known targets of IFN-, like IDO1 (Mellor and Munn 2004), members 

of the guanylate binding protein (GBP) family (GBP1, GBP4 GBP5) and the protein 

myxovirus resistance 1 (MX1) (Martens and Howard 2006) (Figure 25). Although, M1 M 

expressed IDO1, neither M1 nor M2 Mexpressed the complete set of immunomodulatory 

molecules expressed by L.m. infected M 
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Figure 22. The observed IFN-signature in L.m. infected Mrepresents 30% of DE genes 

A. Venn-diagram visualizing the intersection between DE genes expressed in M1 and L.m. infected 

M in comparison to control MB. The Venn diagram displays the intersection between the set of 

DE genes expressed in M2 and L.m. infected MC. FC/FC plot of the DE genes being common 

between M1 and L.m. infected M.D. FC/FC plot of the DE genes common between M2 and L.m. 

infected M. 
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Figure 23. Hallmark genes of M1 and M2 polarization and their expression in L.m- M

A. The heatmap displays the expression of hallmark genes for M2 polarized Min comparison to 

untreated and L.m. infected MB. The heatmap displays the expression for DE genes found in 

IFN-and L.m.-MThe average expression values were obtained from microarray experiments 

and were standardized before visualization (z-score transformation).  

 

In summary, these findings suggest that while it is true that the transcriptome of L.m. 

infected M has an IFN-signaturecommon to M1 polarized M, this explains only one 

third of the total transcriptional variability induced by L.m. infection. However, in the 

original characterization of classical activated M the combination of two signals coming 

from IFN-and TNF- was described as a necessary event to promote the acquisition of 

the M1 phenotype with the capacity to secrete high levels of proinflammatory cytokines 

(O'Shea and Murray 2008). Posterior findings indicate that some TLR agonists are able to 

induce TNF-transcription via MyD88 and can - at the very same time - activate TRIF 

which in turn promotes the production of endogenous IFN-In this manner, synergistic 

action of TNF- and IFN-overcomes the signaling provided by IFN- to obtain a 

proinflammatory phenotype in M (Mosser and Edwards 2008). Along the same lines 

TNF-(Collart, Belin et al. 1986; Vila-del Sol, Punzon et al. 2008) and IFN-(Schroder, 

Hertzog et al. 2004) have been identified as downstream targets of IFN-signaling. In 

principle the endogenous signal from TNF- might provide the second signal necessary 

for the acquisition of a proinflammatory phenotypeInterestingly, TNF- and IFN- were 
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not found amongst the DE genes observed after stimulation of M with IFN- (TNF FC 1, 

p*<0.05; IFN-FC-1.1, p*<0.05). Despite this initial finding, the secretion of endogenous 

TNF- (1,5±0.7 ng/ml)and IFN- (26±6 pg/ml) was validated by ELISA in supernatants of 

IFN- treated M, although in lower amounts than those detected in supernatants of L.m. 

infected M (Figure 24). Together these findings suggest that the stimulation of M with 

IFN-leads to the production of endogenous IFN- and TNF- Therefore, a single signal 

from the IFN- receptor might provide the necessary activation for the acquisition of a M1 

proinflammatory program in M However, it does only reflect a smaller part of the 

transcriptional program of infected L.m. infected M 

 

Figure 24. M1 Mstimulate the production of endogenous TNF-and IFN-

A. TNF- was measured via ELISA in the supernatants of untreated, M1 and L.m.-MB.IFN-

was measured in the supernatants of untreated, M1 and L.m.-M (n=4, mean±std, p*< 0.05, 

student’s t test). 

 

5.7 Comparative analysis of transcriptional responses in 

macrophages infected with L. monocytogenes and 

regulatory macrophages  
Despite the overlap of the genomic profile between L.m. infected M and M1, soluble 

factors secreted by L.m.-Mdid not engage T cell proliferation as it is supported by M1 M 

(Figure 10). This finding suggests that also at a functional level L.m. infected M differ 

from the classic models of polarizationMoreover, L.m.-M share functional and 

phenotypic characteristics with Mreg, including the capacity to suppress T cell proliferation 

and the expression of immunomodulatory molecules like, IDO1, CD25, COX-2 and IL-10. 

Therefore, it was questioned whether the transcriptional responses of L.m. infected M 
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are better explained by the responses generated by the factors that determine Mreg 

polarization, namely TNF- in combination with PGE2 and Pam3. To answer this question, 

biological samples of Mreg were investigated on whole transcriptome level by microarray 

analysis.  

 

Figure 25. L.m.-M and Mreg share a transcriptional signature that represents 50% of the 

transcriptional response observed upon L.m. infection 

A. PCA analysis on 2380 variable genes of L.m.-M, Mreg and untreated M. B. Venn diagram of 

DE genes in L.m.-Mor Mreg calculated against the untreated control C. FC/FC plot of the genes 

DE in Mreg but also in L.m.-MD. Heatmap of the top 20 DE genes similarly regulated in Mreg 

and L.m.-M. The average expression values were obtained from microarray experiments and 

were standardized before visualization (z-score transformation) 
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Using the expression values of variable genes present in the data set, a PCA revealed 

that the transcriptional responses of L.m.-Mdiffered substantially from those observed in 

Mreg (Figure 25 A). However, the comparison between the DE genes in L.m.-M and 

Mreg against resting Mshowed that infection with L.m. as well as a combinatorial signal 

provided by TNF-, PGE2 and Pam3 lead to the expression of a common transcriptional 

program integrated by 787 genes (Figure 25 B). This common transcriptional program of 

L.m.-Mand Mreg represents 48% of the total transcriptional variation triggered by L.m. 

infection. In addition, over 98% of these genes were regulated in the same direction 

(Figure 25 C). In total, only four transcripts were regulated in the opposite direction. Those 

genes were upregulated in L.m.-M but downregulated in Mreg cells. This group of genes 

encompasses MX1, OAS2, IFI44 and TNFSF10. Interestingly, those genes have been 

identified as part of the response to type I interferon in humans (Kemp, Elzey et al. 2003; 

Barr, Smiley et al. 2008; Onomoto, Morimoto et al. 2011) underlining once more the 

relevance of the type I interferon pathway in the fight against L.m. infection. In agreement 

with the in vitro data, Mreg and L.m.-Mexpress simultaneously genes like IL6, IL1A, 

IL1B, CCR7, CCL5, STAT4, which are all involved in proinflammatory processes, but 

express also genes linked to immunomodulatory functions including INDO, PTGES2 and 

IL2RA (Figure 25 D). Taken together, these findings lead to the conclusion that the 

transcriptional program of Mreg is closer to the program observed in L.m.-Mthan to the 

transcriptional programs induced in M1 and M2 M

Since the transcriptional changes in Mreg are a consequence of signaling processes 

triggered by the combination of TNF-PGE2 and Pam3, the contribution of each one of 

these factors to the common transcriptional profile of L.m.-Mand Mreg was explored. For 

this purpose Mwere treated independently with TNF-, PGE2 or Pam3 and harvested 24 

h after the stimulation and used for microarray analysis.  

 

Figure 26. The transcriptional responses of 

Mtreated with TNF-, PGE2 or Pam3 do not 

explain in detail the transcriptome of L.m.-M  

PCA analysis on variable genes (1925 transcripts) 

of Mreg, L.m.-M and Mtreated with TNF-, PGE2 

or Pam3 
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The PCA analysis for all M treated with the immune activators described above, revealed 

that each single stimulus does not induce transcriptional changes comparable to those 

observed in Mreg or L.m.-M 24 post-stimuli or infection (Figure 26). 

 

Figure 27. The single stimuli provided by TNF-PGE2 and Pam3 do not reproduce 

transcriptional signature common between Mreg and L.m.-M 

A. Venn-diagram of DE genes between L.m.-M and TNF-treated M and the untreated control. 

B. Venn-diagram of DE genes between L.m.-M and PGE2 treated M and the untreated control. C. 

Venn-diagram of DE genes between L.m.-M and Pam3 treated M and the untreated control. D. 

FC/FC plot of the DE common between TNF- treated and L.m.-M.E.FC/FC plot of the DE 

commonPam3 treated and L.m.-M.F.FC/FC plot of the DE common PGE2 treated and L.m.-M

 

In detail, TNF- treated M shared 551 DE genes with L.m.-M (Figure 27 A). This group 

of genes represented 34% of those genes being regulated upon L.m. infection. In addition, 

a TNF- signature was present in infected M and encompassed 50% of the genes 

common between IFN-induced M1 and L.m.-MThe majority of the DE genes (96%) 

common between L.m.-Mand TNF-stimulated Mwere regulated in the same direction 

(Figure 27 D). However, 4% of the genes presented an opposite behavior. These genes 

included CCL8, LILRA3, DUSP19 and NAMPT which were up-regulated in response to 

L.m. infection, but not after TNF- treatment. Unexpectedly, although Pam3 and 
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lipotheichoic acid from L.m. are both ligands for the TLR2 receptor, Mtreated with this 

synthetic agonist shared only 348 DE genes with L.m.-M (Figure 27 B). A certain amount 

of these transcripts (12%) were regulated with an opposite trend (Figure 27 E) suggesting 

that a mere activation of TLR2 signaling does not play a crucial role in the transcriptional 

changes occurring 24 h after L.m. infection. Along the same lines, M treated only with 

PGE2 shared only 300 DE genes with L.m.-M (Figure 27 C), all of them regulated in the 

same direction (Figure 27 F). The data demonstrate that amongst the factors driving Mreg 

polarization, TNF-exerts the strongest similarity to L.m.-MNevertheless, it is important 

to note that the genes regulated by TNF-treated Mrepresent only 50% of the total 

common genes observed between Mreg and L.m.-M. Furthermore, the union of the 

genes common to L.m.-Mand each one of the single stimuli represents only 40% of the 

total genes common between Mreg and L.m.-MThese findings suggest that beyond the 

transcriptional responses provided by each separated factor (TNF-, PGE2 and Pam3) the 

interactions between them are relevant to explain the transcriptional changes that follow 

L.m. infection.  

In summary, the data suggest that early events following L.m. infection lead to a strong 

transcriptional response in M and DC. In addition, the results indicate that the 

transcriptional modifications driven by L.m. infection in M are better mirrored by Mreg 

than by the model of M1 polarized M 

5.8 Integration of host factor derived signals and its 

comparison with the transcriptome of L. monocytogenes 

infected macrophages  
The evidence suggested that, stimulation with TNF- in concert with PGE2 and Pam3 

reproduces important aspects of L.m. infection in M. However, IFN- stimulation alone 

represented approximately a third part of the transcriptional program observed in infected 

cells (Figure 22). Furthermore, GO enrichment analysis has revealed a key role of a type I 

interferon signature in the transcriptional changes of M to L.m. infection (Figure 13). 

Interestingly, previous work suggested that IFN- expression is regulated only in response 

to infection with wild type L.m. but not in response to the phagosome restricted hly mutant 

(Figure 19 B) (Leber, Crimmins et al. 2008; Abdullah, Schlee et al. 2012). Furthermore, 

IFN- has been described as a key factor in the orchestration of transcriptional responses 

once L.m. has reached the cytosol (Leber, Crimmins et al. 2008). To evaluate whether the 

addition of IFN- and IFN-, to the signals provided by TNF- PGE2 and Pam3, results in 
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a better reproduction of the transcriptional features of M infected with L.m., M were 

stimulated with IFN- and IFN separately or in concert with TNF- PGE2 and Pam3. The 

transcriptome of the different experimental groups was compared to the one derived from 

M infected with L.m. 

 

Figure 28. Additon of IFN- and IFN- to TNF-PGE2 and Pam3 does not lead to major 

changes in the transcriptome of M.  

PCA analysis on variable genes (1124 transcripts) expressed by  M treated with IFN-, IFN-, 

TNF- in combination with PGE2 and Pam3, infected with L.m. and treated with TNF-, PGE2, 

Pam3 in combination with IFN- and IFN-(TPP-I-I)



The two dimensional PCA analysis revealed that M treated with IFN- and IFN- in 

concert with TNF-, PGE2 and Pam3 (abbreviated as TPP-I-I) maintained a close 

relationship with Mreg, suggesting that the addition of IFN- and IFN-  to the triple stimuli 

constituted by TNF-, PGE2 and Pam3, did not lead to a major modification of the 

transcriptome observed in Mreg MIntestingly, the stimulation of M with IFN- alone did 

not involve drastical changes in their transcriptome since IFN- treated M clustered in 

proximity to non-polarized M (Figure 28). Furthermore, the comparison between non-

polarized and IFN- treated M revealed only 20 genes to be differentially expressed 

between these groups. As expected this group of genes included several well-known 

targets of type I IFN, including: MX1, OAS2, CCL8 (Waddell, Popper et al. 2010), and 

several members of the IFN-induced protein with tetratricopeptide repeats (IFIT) family 
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amongst others (Diamond and Farzan 2013) (Table 8). Additionally, 5 of the DE genes 

were also expressed in response to the infection with wt L.m. including, OASL, OAS2, 

IFI44L, IFIT1 and IFIT3.

Gene symbol FC Description 

IFI27 8.0 IFN- up vs. M

MX1 5.0 IFN- up vs. M 

OASL 4.2 IFN- up vs. M 

IFI44L 3.0 IFN- up vs. M 

OAS2 3.0 IFN- up vs. M 

IFIT1 3.0 IFN- up vs. M 

IFIT3 3.0 IFN- up vs. M 

CCL8 2.5 IFN- up vs. M 

 

Table 8. Transcripts regulated upon stimulation with IFN- in M

Table shows 8 genes with the highest FC regulated upon treatment of M with IFN- the genes 

highlighted in bold were regulated also in response to infection with wt L.m. 

 

Although the addition of IFN- and IFN- to the stimuli provided by TNF-, PGE2 and 

Pam3, did not result in major changes of location in the PCA analysis , the addition of 

interferons led to the regulation of 244 transcripts in common with L.m. infected M, that 

were not observed between those and Mreg (Figure 29). Moreover, 190 of these 

transcripts were not regulated in M treated with IFN- or IFN- separately (Data not 

shown).
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Figure 29. IFN- and IFN- addition to TNF-, PGE2 and Pam3 resulted in the regulation of 

200 new genes in common with L.m-M 

The Venn diagram depicts DE genes observed in Mreg, L.m. infected and TPP-I-I in comparison to 

untreated M

 

The GO enrichment analysis of the 200 genes common to TPP-I-I stimulated and L.m 

infected M revealed that genes belonging to the type I interferon mediated signaling 

pathway are highly represented in this group since this category showed one of highest 

enrichment scores (27). Similarly, the GO category ‘response to virus’ presented an 

enrichment score of 16, suggesting once more the predominant presence of genes related 

to the type I IFN pathway (Figure 30 A). In addition, IRF7 a key regulator of the type I IFN 

production (Genin, Vaccaro et al. 2009), is amongst the genes that exhibited the highest 

FC common in TPP-I-I and L.m. infected M. Along the same lines, the transcription factor 

STAT1 which is activcated in response to type I and II IFN signaling, was also highly 

upregulated in TPP-I-I treated and L.m. infected M. Finally, several members of the 

family of guanylate binding proteins are regulated similarly in TPP-I-I and L.m. infected 

M, indicating the strong response to IFN- observed in both groups (Martens and Howard 

2006) (Figure 30 B).  



Results 

 

88 
 

 

Figure 30. The genes in TPP-I-I and L.m. infected M are related mainly to Type I interferon 

mediated signaling. 

A. GO enrichment analysis of 200 genes common between TPP-I-I treated and L.m. infected M B. 

Heatmap of the top 12 DE genes similarly regulated in TPP-I-I and L.m.-M. The average 

expression values were obtained from microarray experiments and were standardized before 

visualization (z-score transformation)



The presented findings indicated that signaling cascades activated by TNF-, Pam3 and 

PGE2 together with IFN- and IFN- induced a genomic profile that explains 64% of the 

total transcriptional changes of M upon L.m. infection. These data further support the 

notion that the transcriptional reprograming of non-infected macrophages e.g. at the 

outside of the ringwall within granuloma can be explained to a large extent by a cascade 

of host factors induced by infection and then resembling the transcriptional program 

induced by infection itself.  

 

5.9. IDO1 is expressed in human myeloid cells upon L. 

monocytogenes infection 
The enzyme IDO1 catalyzes the degradation of the essential amino acid Trp generating 

metabolites such as Kyn. In recent years, the pivotal role of IDO1 in immunomodulation 

has been documented (Munn and Mellor 2004). In vitro assays showed that an increased 

turnover of Trp leads to Trp depletion inducing T cell proliferation arrest and induction of 

apoptosis (Fallarino, Grohmann et al. 2002; Terness, Bauer et al. 2002; von Bergwelt-

Baildon, Popov et al. 2006). More recently, the immunomodulatory effects of IDO1 have 
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been associated to the expansion (Chung, Rossi et al. 2009) and induction of Treg cells 

(Mezrich, Fechner et al. 2010). However, IDO1 was first described as an important 

effector in the clearance of a broad range of pathogens via a mechanism that involved Trp 

depletion (Pfefferkorn 1984; MacKenzie, Hadding et al. 1998; Oberdorfer, Adams et al. 

2003). In addition, more recently it has been described that Trp catabolites might also 

exert a toxic effect on different microorganisms, including bacteria and protozoa (Narui, 

Noguchi et al. 2009; Knubel, Martinez et al. 2010; Knubel, Martinez et al. 2011). The data 

presented in previous chapters showed that IDO1 expression is a distinctive feature in the 

response of myeloid cells to L.m. infection. Moreover, previous studies have 

demonstrated that DCreg which share several common hallmarks with DC infected with 

L.m., including the expression of IDO1, CD25 and COX-2 can control the intracellular 

growth of L.m. more efficiently than immDC and matDC (Popov, Driesen et al. 2008). To 

assess the potential role of IDO1 as microbicidal effector in DC but also other myeloid 

cells, time kinetics of IDO1 expression was explored via western blot analysis. 

 

Figure 31. IDO1 expression is an early event after L.m. infection 

IDO1 protein expression was assessed by western blot technique in human infected immDC at 

indicated time points after infection. In all cases β-actin was used as loading control. IDO1 RE was 

estimated by analyzing the intensity of each band normalized to the intensities of β-actin. The 

displayed membrane is representative of 3 experiments. The results for the FC are presented as 

mean ±sd. *p-value ˂0.05 (student’s t-test) 

 

IDO1 was detectable already at 6 hpi, and its expression reached a significant level at 8 

hpi (Figure 31). These findings differed from previous results that reported a significant 

induction of IDO1 only at 12 hpi (Popov, Abdullah et al. 2006). This discrepancy might be 

due to the lower sensitivity provided by the ECL (enhanced chemiluminescence) method 

used previously to detect the signal from the secondary antibody when compared to the 
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infrared detection method used currently. IDO1 is early induced after L.m. infection in 

immDC (Figure 31) and untreated M (Figure 8). The question whether IDO1 expression 

could also become induced in already matured matDC as well as in different polarized M 

infected with L.m. was addressed via western blot 24 hpi. The results revealed that L.m. 

infection induces the expression of IDO1 in matDC (Figure 32 A), but also in M1 and M2 

polarized M (Figure 32 B). For instance, IDO1 was two times higher expressed in M1 

M after L.m. infection. In contrast, DCreg and Mreg did not further increased IDO1 

expression after L.m. infection (Figure 32). 

 

Figure 32. IDO1 is induced upon L.m. infection in mat DC and polarized M 

A. IDO1 expression was assessed by western blot analysis at 24hpi in human immDC, matDC and 

DCreg. β-actin was used as loading control. IDO1 FC was calculated by the same procedure 

described before (n=4, mean±sd). B. IDO1 expression was evaluated in control, M1, M2 and Mreg 

M 24 hpi via western blot. -Actin was used as loading control and IDO1 RE was calculated as 

described before. (n=3, mean±sd,*p-value ˂0.05, student’s t-test) 

 

5.10 IDO1 competent myeloid cells efficiently control the 

intracellular growth of L. monocytogenes 
The data described in section 5.9 suggested that IDO1 expression is an early event in the 

response of myeloid cells to L.m. infection occurring even after maturation or polarization 

of these cells. To gain more insight into the potential microbicidal role of IDO1 in myeloid 



Results 

 

91 
 

cells, the capacity to restrain the intracellular growth of L.m. was assessed in IDO1 

competent and non-competent DC and M during 6 h after L.m. infection via CFU assay. 

During the first 2 hpi no significant difference between the microbicidal activity could be 

observed in IDO1 competent and non-competent myeloid cells. However, at 6 hpi DCreg, 

Mreg and M1 M showed significantly less (between 60 and 90%) bacterial burden than 

their IDO1- counterparts and as a consequence controlled L.m. growth for longer periods 

of time (Figure 33). Although, the data suggest that IDO1 is key for the control of L.m. 

growth in myeloid cells, other mechanisms like the production of reactive oxygen and 

nitrogen species (ROS and RNS respectively) are well-known defense mechanisms that 

enable the control of intracellular microorganisms in mammalian cells. To evaluate the 

role of these microbicidal mediators in infected DC and M, ROS and nitrite production 

were determined via the peroxidase luminol-enhanced chemiluminescence method (LEC) 

and Griess colorimetric reaction respectively. 

 

 Figure 33. The microbicidal activity of IDO1 competent and non-competent myeloid cells 

A. The intracellular growth of L.m. was assessed via CFU analysis in immDC, matDC and DCreg 

during 6hpi. B. The intracellular growth of L.m. was assessed via CFU analysis in non-polarized, 

M1, M2 and Mreg M during 6hpi. In both cases the bacterial load at 0 time point was set to 100%. 

The bacterial burden for the indicated time points was calculated on this basis. (n=4 mean±sd, *p-

value ˂0.05, student’s t-test). 

 

Human DC and M produced ROS already between 0.5 and 4hpi (Figure 34 A and B). 

After this time point the detected luminescence intensities were similar to the background 
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levels observed in non-infected cells. M were more efficient in ROS production and 

started the process only half an hour after infection, whereas DC showed delayed ROS 

production distinguishable from the background at 1 hpi. Along the same lines, the ROS 

production in infected M was approximately three fold higher than in infected DC 

(maximal luminescence intensities of 120±7 for DC and 324±3 for M). In contrast, neither 

increased accumulation of nitrite nor iNOS expression were detected in infected cells at 

24 hpi (Figure 34 C). Together the results suggest that ROS production, possibly in 

concert with bacterial degradation in the phagosome, but not nitrite production play a role 

in the control of L.m. infection at early time points of infection. Meanwhile, IDO1 might play 

a decisive role in the control of L.m. once ROS production and phagosome containment 

have been overcome. 

 

Figure 31. ROS and nitrite production in L.m. infected DC and M 

A. Screening of ROS production via LEC method in human DC infected with L.m. versus non-

infected DC during 5hpi. The results are presented as relative light units (RLU)/2x10
4 

cells. B. 

Production of ROS in human M infected with L.m. (L.m.-M) and non-infected M. The results are 

presented as RLU/2x10
4
cells. C. NO3 production was measured via Griess colorimetric reaction in 

DC and M infected with L.m. In addition iNOS expression was assessed in DC at different 

maturation phases via western blot (n=4, mean±sd, *p-value ˂0.05, student’s t-test). 
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5.11 Loss of IDO1 function leads to unrestrained bacterial 

growth 
 

To test if a loss of IDO1 function impacts the growth of L.m., IDO1 was knocked down in 

DC, and the microbicidal performance of DCreg and IDO1- DCreg was monitored over 

6hpi. 

 

Figure 32. Knock-down of IDO1 in DC 

A. IDO1 silencing experiments were 

performed via electroporation in DC. The 

efficiency of silencing was controlled by 

western blot analysis 24h after L.m. 

infection. The percentage of IDO 

expression was estimated by analyzing 

the intensity of each band normalized by 

the β-actin intensity. Expression of IDO in 

DCreg treated with control siRNA was set 

to 100%. B. The production of IFN-α was 

assessed in DC treated with control and 

IDO1 specific siRNA via ELISA. Poly IC 

(1µg/ml) treated DC were used as a 

positive control for this assay. . 

 

DC transfected with IDO1 targeting siRNA showed a reduction of 94±3% in protein 

expression in comparison to untreated or control transfected cells (Figure 35 A). In 

addition, DC transfected with IDO1 or unspecific siRNA did not produce IFN-, whereas 

DC treated with poly IC were able to produce significant amounts of this cytokine (Figure 

35 B). To extend the experimental settings to M these cells were transfected with siRNA 

targeting IDO1. However, the electroporation of M caused massive cell dead since 

70±20 % of the population was not viable after the procedure. In contrast, lipofection 

treatment led to insufficient rates of silencing (less than 20%) (data not shown). Due to 

these reasons, all further silencing experiments were only performed in DC.  

After IDO1 knockdown, immDC were treated during 48h with TNF- in combination with 

PGE2 and Pam3 to obtain DCreg. Untreated, control siRNA and IDO1 siRNA transfected 
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DCreg were infected with L.m. and the intracellular viability of bacteria was evaluated via 

CFU analysis. The silencing of IDO1 in DCreg caused a dramatic increase of 80±12% in 

the bacterial load at 6 hpi in comparison to untreated or control siRNA transfected DCreg. 

No significant change in the anti-bacterial performance of these cells was observed at 

earlier time points (Figure 36). 

 

Figure 33. IDO1 mediates the control of L.m. 
infection in DCreg 

The bacterial load of DCreg untreated or treated with 

control or IDO1 specific siRNA was assessed via CFU 

analysis during 6hpi. The bacterial load at 0h time point 

was set to 100% and the bacterial burden for the 

following time points was calculated on this basis. (*p-

value ˂0.05, student’s t-test) 

 

 

 

Indoleamine 2,3-dioxygenase 2 (IDO2) has emerged as a Trp catabolizing enzyme, 

possibly redundant to IDO1 (Ball, Yuasa et al. 2009). To evaluate the role of IDO2 in 

myeloid cells upon L.m. infection, the expression of this enzyme was evaluated in control 

and infected myeloid cells via qRT-PCR. Additionally Trp catabolism was assessed 

indirectly by measuring Kyn accumulation in supernatants of infected DC after IDO1 

silencing or treatment with control siRNA. The results showed that IDO2 expression is 

induced after L.m. infection in DC and M (Figure 37 A). However, Kyn accumulation 

decreased in 92% after silencing of IDO1, but not after treatment with control siRNA 

(Figure 37 B). These results indicate that in human DC IDO1 is the key enzyme that 

catalyzes Trp degradation, whereas IDO2 does not seem to play a role. 
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Figure 34. IDO1 but not IDO2 is essential for Trp catabolism in human DC 

A. IDO2 expression in DC and Mupon L.m. infection. In all the test conditions, the expression of 

the target mRNA was normalized by GADPH expression and the FC was calculated in respect to 

the non-infected control cells. B. Kyn accumulation in supernatants of DCreg infected by L.m. 

treated with control or IDO1 specific siRNA was evaluated by Ehrlich colorimetric method. (*p-value 

˂0.05, student’s t-test) 

 

So far the results suggest that IDO1 plays a key role for the control of the intracellular 

growth of L.m. in DC. However, it is not yet clear whether this effect depends on the 

enzymatic activity of IDO1 or its recently discovered function as signaling molecule 

(Pallotta, Orabona et al. 2011). Along the same lines, due to technical difficulties, the role 

of IDO1 in the microbicidal performance of Mhas not been assessed yet. To evaluate 

the role of IDO1 enzymatic activity in the control of L.m. intracellular growth in DC and M, 

the catalytic function of IDO1 was inhibited via treatment with 1-MT in DCreg and M1 M. 

Kyn accumulation was measured subsequently via Ehrlich reaction, as a surrogate 

indicator of IDO1 activity. 

Treatment with 1-MT (150µM) reduced the accumulation of Kyn in the medium down to 

50% in cultures of DCreg and M1 M. The percentage of viable cells was similar in 1-MT 

treated and non-treated cells, suggesting that this important reduction in the enzymatic 

activity of IDO1 is not due to an unspecific decrement in cell viability, caused by the 

inhibitor or the solvent used for its reconstitution (Figure 38 A and B). In DCreg, loss of the 

enzymatic activity of IDO1 led to an increment in bacterial burden of 80±15% (Figure 38 

C). Similarly, 1-MT treated M1 M also showed 60±11% increment in bacterial burden 
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relative to untreated controls (Figure 38 D). Altogether the presented data suggest that in 

vitro the enzymatic activity of IDO1 is crucial to control L.m. growth in human DC and M. 

 

 

Figure 35. IDO1 enzymatic activity is important for the control of L.m. infection in IDO 

competent cells 

A. The efficiency of 1-MT inhibition was evaluated by measuring Kyn accumulation in the medium 

of treated and untreated cells via Ehrlich reaction. B. Cell viability was determined after treatment 

with 1-MT via PI staining and flow cytometry. C. L.m. intracellular viability was tested in DCreg 

treated and untreated with 1-MT. The bacterial load at the 0h time point was set to 100% and the 

bacterial burden for the following time points was calculated on this basis. D. L.m. intracellular 

viability was evaluated in M1 M treated and untreated with 1-MT. The bacterial load at 0h was set 

to 100% and the bacterial burden for the following time points was calculated on this basis. (n=4, 

mean±sd, *p-value ˂0.05, student’s t-test) 
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5.12 IDO1 microbicidal activity is mediated by tryptophan 

catabolites 
The microbicidal activity of IDO1 has been attributed to Trp starvation (Pfefferkorn 1984; 

Byrne, Lehmann et al. 1986; MacKenzie, Hadding et al. 1998). However, more recently 

the accumulation of Trp catabolites has shown to be toxic for different bacteria including 

Staphylococcus aureus, Enterococcus faecalis, and Escherichia coli (Narui, Noguchi et al. 

2009) and for the protozoan parasite T. cruzi (Knubel, Martinez et al. 2010; Knubel, 

Martinez et al. 2011). To evaluate the impact of Trp starvation on the control of L.m. 

growth, DCreg were cultured under Trp enriched (50 µM), and Trp depleted conditions (no 

Trp was added to the medium). The anti-bacterial activity of DCreg was followed during 6 

h by CFU analysis. 

High concentrations of Trp (50µM) enabled DCreg to increase their bactericidal activity 

against L.m. Strikingly, conditions of Trp excess led to a 3-fold reduction of the bacterial 

burden of DCreg compared to cells cultured in the absence of this amino acid (Figure 39 

A). In contrast, the bactericidal performance of immDC was not affected by Trp starvation 

or enrichment since around 120% bacterial burden was observed in both cases. In 

addition, the enhanced microbicidal performance of DCreg cultured in the presence of Trp 

was associated to Kyn accumulation in the supernatants. Already 6 hpi DCreg cultured 

under excess of Trp produced 3-times more Kyn (12 ± 3.5 µM, p-value 0.02) than their 

counterparts cultured under Trp depleted conditions (Figure 39 B). 

In summary, Trp depletion does not play a key role in microbicidal activity of IDO1+ DCreg 

whereas Kyn accumulation was associated with an enhanced control of L.m. growth. To 

test the impact of Kyn on bactericidal activity of DC, immDC were cultured up to 6 hpi in 

presence of 50 and 100 µM of Kyn. The bacterial burden was followed during this time 

frame. Treatment with 50µM Kyn led to a 3-fold reduction of the bacterial burden of 

immDC whereas the incubation with higher concentrations (100µM) did not represent a 

further improvement of the anti-bacterial performance of these cells (Figure 40). 
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Figure 36. Tryptophan starvation does not mediate the anti-bacterial activity of DCreg 

A. Bacterial burden of infected immDC and IDO+ DC cultured under Trp excess (98 µM) or 

depletion was evaluated in CFU assays during 6h after L.m. infection (n=4, mean±sd). B. Kyn 

production was assessed by Ehrlich colorimetric reaction in supernatants of infected immDC and 

IDO+ DC at 6 hpi under Trp excess or Trp depleted conditions (n=4 mean±sd). (*p-value ˂0.05, 

student’s t-test) 

 

 

Figure 40. Kyn addition enhances the anti-

bacterial activity of immDC 

Anti-bacterial activity of immDC was assessed by 

CFU under normal culture conditions or in the 

presence of Kyn 50µM and 100µM (n=4, mean±sd). 

(*p-value ˂0.05, student’s t-test) 

 

 

The evidence presented above suggests that Kyn might have an intrinsic toxic effect on 

L.m. Trp degradation encompasses several enzymatic steps leading to the production of 

several catabolites including formylkynurenine, Kyn, anthranilic acid (AA), 3-

hydroxykynurenine (3HK), 3-hydroxy-anthranilic acid (HAA), picolinic acid (PA), and 

quinolinic acid (QA) (Figure 41 A). It has been described that Trp catabolites in a 

concentration range of 10 to 200µM can induce apoptosis of T cells, thymocytes and M 
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from murine origin (Fallarino, Grohmann et al. 2002). To assess the potential cytotoxic 

effect of Trp catabolites on human myeloid cells, DCreg and immDC were incubated with 

48h up to 100µM of several stable catabolites of the Kynurenine pathway (Figure 41 A). 

Subsequently, the cell viability was assessed via PI staining followed by FACS analysis.  

The data showed that DC cultures exposed to different kinds of Trp catabolites showed 

similar percentages of viability to those maintained under control cell culture conditions 

(Figure 41 B). This finding indicates that Trp catabolites do not have a deleterious impact 

on human DC viability. Suggesting that Kyn has an intrinsic anti-bacterial activity on L.m., 

whereas DC are refractory to its effects. Furthermore, the toxicity of Kyn, but not Trp 

depletion, might be the principal mechanism of DCreg to control the intracellular growth of 

L.m. after the bacteria has invaded the cytoplasm. 

 

Figure 41. Trp catabolites did not affect human DC viability 

A. Schematic representation of the kynurenine pathway including important intermediates. B. 

Viability of immDC and DCreg left untreated or exposed to 100µM of different Trp catabolites for 

24h was assessed by PI staining (n=3, mean±sd). The following acronyms were used: control, C; 

Hydroxykynurenine, 3HK; Anthranilic acid, AA; Picolinic acid, PA; Quinolinic acid, QA. 

 

Since all enzymes of the kynurenine pathway are expressed in M (Guillemin, Smith et al. 

2003), the possibility that other Trp catabolites might also contribute to the observed 

bactericidal activity of DCreg and M1 M was investigated. In order to address this point, 
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L.m. was cultured in the presence of several stable catabolites of the kynurenine pathway 

for 24 h and the bacterial viability was evaluated by CFU analysis. 

At a concentration of 100 µM L.m. was sensitive to all the tested catabolites, and virtually 

no colonies were detected. However, at lower concentrations (25 to 50µM) the impact of 

Trp catabolites on L.m. viability varied. For instance, QA did not exert any significant effect 

at the lowest concentration tested, whereas Kyn and 3HK reduced bacterial viability 

between 70-80% (Figure 42). In conclusion, L.m. viability is strongly decreased by the 

intermediaries of the kynurenine pathway. Furthermore, this evidence supports the 

hypothesis of the toxic effect of Trp catabolites and their key function in restraining L.m. in 

the cytoplasm of human myeloid cells.  

 

Figure 42. Trp catabolites have intrinsic anti-bacterial properties on L.m. 

L.m. viability was assessed by CFU 24h after exposure to Trp catabolites in a concentration range 

from 25 to 100µM (n=3, mean±sd). The following acronyms were used: Kynurenine, Kyn ; 3 

Hydroxykynurenine, 3HK ; Anthranilic acid, AA ; Picolinic acid, PA ; Quinolinic acid, QA ; 

Hydroxyanthranilic acid, HAA . (*p-value ˂0.05, student’s t-test) 

 

In the next step, the question was addressed whether Trp catabolites might also have an 

impact on other bacteria such as S.p. and L.i.. These bacteria were cultured with several 

intermediates of the kynurenine pathway and their viability was evaluated after 24h via 

CFU analysis.  

Similar to L.m. most Trp catabolites had bactericidal activity on S.p., albeit the pattern was 

different (Figure 43 A). After treatment with high concentrations of QA, AA, PA or Kyn a 

reduction of 70% in S.p. was observed. While 3HK was very effective against L.m., it did 

not show a significant effect on S.p. even at the highest concentration tested. In contrast, 

L.i. was practically insensitive to low and intermediate concentrations of the catabolites 
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and only at high concentrations a significant reduction of viability was observed for Kyn, 

3HK, AA, and QA (Figure 43 B). 

 

Figure 37. The sensitivity of bacteria against Trp catabolites varies between species 

A. L.i. viability was evaluated by CFU 24h after exposure to Trp catabolites in a concentration 

range from 25 to 100µM (n=3, mean±sd). B. S.p. viability was evaluated by CFU 24h after 

exposure to increasing kynurenine concentrations indicated in the diagram (n=3, mean±sd). The 

following abbreviations were used for A and B: Kynurenine, Kyn ; 3 Hydroxykynurenine, 3HK ; 

Anthranilic acid, AA ; Picolinic acid, PA ; Quinolinic acid, QA ; Hydroxyanthranilic acid, HAA

. (*p-value ˂0.05, student’s t-test) 

 

In summary, the data suggest that the anti-bacterial effects of kynurenines differ across 

bacterial species. Therefore, their contribution as microbicidal mechanism cannot be 

extrapolated a priori to different host cell-bacteria interactions.  

 

5.13 Exposure to kynurenine does not impair L. 

monocytogenes invasive capabilities 
So far, the data demonstrated that DCreg and M1 M can restrain the intracellular growth 

of L.m. efficiently through an IDO1 and Trp-catabolite dependent mechanism. However, a 

substantial number of bacteria (30% of the infecting bacteria) still evaded the surveillance 

exerted by IDO1 expressing myeloid cells and therefore could potentially infect 

neighboring cells. To test whether pre-exposure of L.m. with Kyn would alter infection 

kinetics of L.m. in DCreg and immDC, L.m. where precultured under conditions of high 

Kyn concentrations (25 µM) for 3h prior to infection. No difference in bacterial recovery 

during the infection cycle of L.m. pre-treated with high levels of Kyn in both DC subtypes 

was observed (Figure 44 A).  
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Figure 38. Kynurenine exposure to L.m. does not affect infective capabilities 

 
A. immDC and DCreg were infected with L.m. and cultivated in BHI broth alone (solid lines) or BHI 

supplemented with 25µM of Kyn (dashed lines) B. Plaque diameter were evaluated on confluent 

3T3 fibroblasts infected with L.m. cultivated in BHI broth alone or in broth supplemented with Kyn 

concentrations of 12.5, 25 and 50µM. C. Plaque diameter was evaluated on confluent 3T3 

fibroblasts infected with L.m. recovered after lysis of immDC and DCreg at 6 hpi or BHI cultured 

L.m.. (n=3, mean±sd). 

 

To test whether elevated levels of Trp catabolites can impair the ability of L.m. to infect 

non-phagocytic cells, L.m were exposed to increasing concentrations of Kyn for 3h and 

their capability to invade 3T3 fibroblasts in a standard plaque assay was tested. In 

contrast to professional phagocytes, L.m. is known to actively trigger its entry to 

fibroblasts (Cossart, Pizarro-Cerda et al. 2003). No difference in plaque size could be 
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identified between L.m. exposed to increasing concentrations of Kyn and untreated control 

bacteria (Figure 44 B) suggesting that the exposure of L.m. to Trp catabolites alone is not 

sufficient to impair invasiveness of L.m. for non-phagocytic cells.  

The infectious potential of L.m. might be altered post exposure to the bactericidal milieu of 

DCreg. To address this question immDC and DCreg were infected with L.m., recovered 6 

hpi from cell lysates of infected DC and their capacity to infect 3T3 fibroblasts was 

compared by plaque assay with L.m. cultured under standard culture conditions in BHI. 

The plaque diameter of these three L.m. preparations did not differ significantly (Figure 44 

C) suggesting that the antimicrobial activity of DCreg does not change the capacity of L.m. 

to invade non-phagocytic cells such as fibroblasts. In summary, these findings suggest 

that IDO1 expression in human myeloid cells confers a bactericidal intracellular 

environment. However, L.m. evading this milieu are still fully capable of infecting non-

infected phagocytic as well as non-phagocytic cells.  

 

5.14 IDO1 is not expressed in murine myeloid cells upon 

L. monocytogenes infection 
The herein presented data have shown that, IDO1 plays a key role in the defense of 

human myeloid cells against L.m. infection. However, is not yet clear whether IDO1 also 

plays a crucial role in murine cells. To answer this question murine bone marrow derived 

M (mM) and DC (mDC) were infected with L.m. After an incubation period of 24 h cell 

pellets and supernatants were collected to evaluate IDO1 and iNOS expression and 

activity. IDO1 was neither expressed in mDC nor in mM24 hpi (Figure 45 A). In contrast, 

murine myeloid cells expressed high levels of iNOS (RE 12 compared to non-infected 

cells) upon L.m. infection. These results were further supported by the indirect measure of 

enzymatic activity in supernatants of murine myeloid cells at 24 hpi. Whereas high 

amounts of nitrite (NO-
2) accumulated in the supernatants of murine infected cells, Kyn 

levels remained below detection limit (Figure 45 B). 
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Figure 39. IDO1 expression is not induced in murine myeloid cells upon L.m. infection 

A. IDO1 and iNOS protein expression in murine infected M and DC 24 hpi was evaluated by 

western blot. The RE of iNOS was calculated by analyzing the intensity of each band of iNOS 

normalized to the signal intensity of β-actin (n=3, mean±sd). B. The enzymatic activity of IDO1 and 

iNOS were evaluated in supernatants of infected murine M and DC 24 hpi by Ehrlich and Griess 

reaction (n=3, mean±sd). 

 

Taken together the data indicate that the regulation pattern of IDO1 expression in mouse 

myeloid cells infected with L.m. differs from the one observed in their human counterparts. 

This might indicate that in murine myeloid cells iNOS, but not IDO1, plays a role in the 

control of L.m. intracellular growth. 
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6. Discussion 
 

6.1 The phenotype of macrophages infected with L. 

monocytogenes and their regulatory properties 
The infection of M with different kinds of bacteria including L.m. has been associated with 

the acquisition of an M1 proinflammatory phenotype (Shaughnessy and Swanson 2007; 

Benoit, Desnues et al. 2008; Sica and Mantovani 2012). However, the herein presented 

data show that M infected with L.m. express proinflammatory, but also 

immunomodulatory molecules. This set of immunomodulators includes the two enzymes 

IDO1 and COX-2, the receptor CD25 in its transmembrane and soluble form, as well as 

the secretion of high amounts of IL-10 (Figure 5-8). Moreover, this regulatory program is 

not restricted to M, but is also present in DC infected with L.m. in vitro as well as in situ in 

granulomas of patients who have been chronically infected with this bacterium (Popov, 

Abdullah et al. 2006; Popov, Driesen et al. 2008). In addition, the data presented in this 

study suggest that at a functional level, the regulatory program of M prevails over the 

inflammatory program since soluble factors in the supernatants of infected M were able 

to induce the expression of regulatory mediators in non-infected cells, and are also able to 

suppress the proliferation of activated T cells (Figure 9-11). These contradictory findings 

might be explained by the high plasticity of Mwhich is a crucial factor beyond the 

classical model of M1 and M2 polarization. 

M are key components in the clearance of pathogens, but also play a role in the phase of 

resolution to guarantee the return of the immune system to homeostasis. Furthermore, the 

failure of M to switch from a proinflammatory to a resolution phenotype has been 

associated with a number of pathological conditions, including sepsis (O'Reilly, Newcomb 

et al. 1999), atherosclerosis (Khallou-Laschet, Varthaman et al. 2010) and chronic venous 

ulcers (Sindrilaru, Peters et al. 2011). Therefore, it is possible that the same cells 

participating in proinflammatory responses can also later play a role in the resolution 

phase. Alternatively, they might prepare the microenvironment at the site of infection for 

the functional switch of new infiltrating M. Infection of M with L.m. at 24 hpi led to the 

secretion of high levels of IL-10 (Figure 8). This interleukin has been recognized as a key 

factor in the control of inflammation upon infection and injury. For instance, it is known that 

upon stimulation with TLR agonists including microbial products, M(Fiorentino, Zlotnik et 

al. 1991; Boonstra, Rajsbaum et al. 2006; Chang, Guo et al. 2007) and DC (McGuirk, 
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McCann et al. 2002; Popov, Driesen et al. 2008) increase their IL-10 secretion in vitro and 

in vivo (Siewe, Bollati-Fogolin et al. 2006). In addition, the loss of IL-10 function is 

associated with the development of a hyperinflammatory pathological immune response 

upon a variety of infections including L.m. (Gazzinelli, Wysocka et al. 1996; Deckert, 

Soltek et al. 2001; Roffe, Rothfuchs et al. 2012). Cerebral listeriosis in IL-10 knockout 

mice led to severe brain edema and hemorrhage, associated with lethal ubiquitous 

encephalitis. Interestingly in these mice the bacterial load was not reduced in comparison 

with their wild type littermates (Deckert, Soltek et al. 2001). Similarly, in mice infected with 

Borrelia burgdorferi M and CD4+ T cells are the leading producers of IL-10 in the 

jointsIn this model of infection, abrogation of IL-10 signaling led to arthritis associated 

with the recruitment of high numbers of IFN- producing NK and T cells (Sonderegger, Ma 

et al. 2012).  

IDO1 is well-known for its antimicrobial and immunomodulatory properties (Mellor and 

Munn 2004). Upon infection with L.m. IDO1 is highly expressed in both M (Figure 8 and 

12) and DC (Figure 15). Systemic expression of IDO1 has been linked to an impairment of 

the immune response against pathogens (Makala, Baban et al. 2011; Plain, de Silva et al. 

2011; Loughman and Hunstad 2012). However, IDO1 modulation can have beneficial 

effects on the host by limiting the damage caused by unrestricted inflammation. Along 

these lines, mice deficient for IL-4receptor cannot generate M2 polarized M. However, 

upon infection with Schistosoma mansoni, IDO1 expressed by M1 M controls tissue 

damage associated with inflammation, and protects the host against otherwise lethal 

disease (Rani, Jordan et al. 2012). COX-2 and PTGES are highly upregulated in L.m. 

infected M (Figure 8) and DCThese enzymes are crucial for the synthesis of PGE2. This 

molecule is commonly classified as proinflammatory mediator due to its high expression at 

sites of inflammation and tissue injury (Chan and Moore 2010; Kalinski 2012). Moreover, 

COX-2 and PTGES expression have been associated with the M1 phenotype (Martinez, 

Gordon et al. 2006). Nevertheless, it is known that PGE2 exerts important modulatory 

functions on the phenotype and function of MFor instance, it efficiently suppresses the 

production of proinflammatory cytokines like TNF-, IL-1, the chemotactic factor MCP-1 

and IL-8 (Takayama, Garcia-Cardena et al. 2002). Similarly, PGE2 has been detected in 

the wound-fluid of patients. M treated with PGE2 or wound-fluid express the cytokine 

oncostatin M which in turn suppresses the secretion of TNF- and IL-1, suggesting that 

PGE2 plays a key role in wound healing by limiting inflammation (Ganesh, Das et al. 

2012). In synovial fibroblastsPGE2 enhanced the expression of IB avoiding the 

activation of NF and thereby attenuated their inflammatory responses (Gomez, 
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Pillinger et al. 2005). Primary murine epithelial cells infected with Helicobacter pylori 

expressed COX-2 in response to infection. Moreover, the treatment of mice with PGE2 

inhibited chronic inflammation and the development of precancerous lesions (Toller, 

Hitzler et al. 2010). 

The role of regulatory myeloid cells in chronic infections remains controversial. A number 

of studies support the idea that myeloid cells with regulatory properties dampen the 

development of an efficient immune response, fostering the persistence of pathogens. 

Two examples for this model are infections with hepatitis C virus (Higashitani, Kanto et al. 

2012) and L. major (Makala, Baban et al. 2011). However, in case of chronic infections 

that lead to granuloma formation the presence of myeloid cells with regulatory and 

proinflammatory functions might contribute to control the growth of pathogens while 

avoiding its dissemination. In patients suffering from chronic listeriosis, DC with similar 

characteristics to those observed in M infected with L.m. constitute the ringwall of 

granuloma. It has been proposed that these cells might avoid T cell proliferation in this 

structure via an IDO1 dependent mechanism. This function might be important to prevent 

the destruction of granuloma and the dissemination of bacteria (Popov, Driesen et al. 

2008). Granuloma disruption has been associated with reactivation of chronic diseases. 

For instance, patients treated with anti-TNF-antibodies suffer from a reactivation of 

chronic granulomatous diseases including L.m. (Ehlers 2005) and M. tuberculosis (Keane, 

Gershon et al. 2001). 

In summary, it is possible that M and DC acquire proinflammatory as well as 

immunomodulatory programs depending on the inflammatory milieu, to defend the host 

against the pathogens and at the same time limit the damage to healthy tissues. 

Moreover, in case of chronic infections associated with granuloma formation, the 

presence of myeloid cells with these mixed characteristics might be beneficial for the host 

since at the same time these cells control the bacterial burden and ensure the 

confinement of the bacteria when mechanisms of the adaptive immune system have failed 

to eradicate them. 

 

6.2 Genomic profiling of macrophages infected with L. 

monocytogenes  
M-CSF and GM-CSF are factors promoting monocyte differentiation into M (Lacey, 

Achuthan et al. 2012). However, it has been suggested that GM-CSF and M-CSF derived 

M might exert different functions upon stimulation with proinflammatory factors like LPS 

(Verreck, de Boer et al. 2004; Fleetwood, Lawrence et al. 2007; Lacey, Achuthan et al. 
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2012). Comparisons of the transcriptomes of GM-CSF and M-CSF derived M under 

basal conditions revealed that these cells have closely related transcription profiles 

independently of the factor used for their differentiation. Additionally, only 103 genes were 

found to be DE expressed between GM-CSF and M-CSF M Most of them are involved in 

antigen presentation (Table 7). This evidence is in line with previous reports, suggesting 

that GM-CSF might enhance antigen presenting properties of DC and M in vivo and in 

vitro. For instance, it has been reported that mice deficient for CFS2 gene (the murine 

homologue of GM-CSF) show a similar recruitment of M and DC to the uterus during the 

estrous cycle. However, these cells showed an impaired antigen presentation via MHC 

class II molecules (Moldenhauer, Keenihan et al. 2010). It has also been reported, that a 

recombinant respiratory syncytial virus expressing GM-CSF promotes the recruitment of 

DC and M to the lung and increases MHC class II expression in both cell types 

(Bukreyev, Belyakov et al. 2001). Recently, Lacey and coworkers compared the 

transcriptome of human GM-CSF and M-CSF M (Lacey, Achuthan et al. 2012), despite 

they find remarkable similarity between the transcriptomes of these two groups (87%), 

they reported over 3000 genes as DE expressed between them. This discrepancy might 

be attributed to the different experimental approaches used in both cases. For instance, 

Lacey and coworkers differentiated M during 7 days, whereas in this study 3 days were 

established as sufficient to achieve a complete differentiation of M. In addition, 

differentiation of M-CSF was obtained using 2500 U/ml of rhM-CSF an amount 100 times 

superior to the one used in the present work. These findings further support the 

similarities between GM-CSF and M-CSF M at the transcriptional level. However, the 

observed discrepancies indicate that the findings obtained in vitro must be carefully 

considered before extrapolations to in vivo situations are made. 

After infection with L.m., it was shown that M-CSF derived M secreted significantly 

reduced amounts of IL-12 when compared with their GM-CSF counterparts (Figure 6). 

However, the levels of IL-10 were similar for both cell types. Also these cells expressed 

similar levels of IDO1, COX-2, CD25 and IFN- whereas the differences in IL-6 and TNF- 

secretion were not statistically significant. In addition, it was shown that 65% of the 

transcriptional changes due to L.m. infection were comparable in GM-CSF and M-CSF 

M. This common program was associated with both proinflammatory as well as 

immunomodulatory functions. For instance, both cell types increased their expression of 

IL-1B, STAT4, CCL5 CCR7, but also IDO1, PTGS2 and EBI3 (Figure 14). In summary, 

there is no clear tendency suggesting that only M-CSF derived Macquired anti-

inflammatory features. In contrast to these findings, it has been shown that GM-CSF and 
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M-CSF skew M polarization towards M1 and M2 phenotypes respectively (Verreck, de 

Boer et al. 2004). Furthermore, it has been suggested that upon stimulation with LPS, M-

CSF derived M secrete lower levels of proinflammatory cytokines including TNF-, IL-12 

and higher levels of IL-10 than GM-CSF derived M (Fleetwood, Lawrence et al. 2007). 

Although in vitro, the differential behavior of GM-CSF and M-CSF M seems clear; the 

experiments considered the stimulation with one single TLR ligand, a process simpler 

than the infection with a microorganism. Along these lines, it has been shown that 

infection with several species of the genus Mycobacterium led to GM-CSF secretion by 

M (Beltan, Horgen et al. 2000). Interestingly, under in vivo situations the interplay 

between GM-CSF, M-CSF and the M population is complex. It has been described that 

M-CSF is secreted under resting conditions by a number of cells including fibroblast, 

epithelial, stromal cells, but also M (Hamilton 2008). Furthermore, M differentiation in 

the tissues depends in some extent on M-CSF since mice deficient for CSF-1 receptor 

show a decrement in the number of tissue resident M and present severe deficiency in 

osteoclast generation (Pixley and Stanley 2004). In addition, the blockage of CSF-1R 

reduces the number of monocytes and peritoneal M under homeostatic conditions in 

mice (Lenzo, Turner et al. 2012). Therefore, it has been proposed that under resting 

conditions M-CSF promotes proliferation and differentiation of M populations (Pixley and 

Stanley 2004; Hamilton 2008). In contrast, GM-CSF is not detectable under resting 

conditions. However, upon infection or inflammation, GM-CSF is secreted by similar cell 

types that secrete M-CSF (Hamilton 2008). Moreover in models of peritonitis and lung 

inflammation, it has been shown that both growth factors are necessary for the 

recruitment and maintenance of the Mpopulation (Lenzo, Turner et al. 2012). Following 

this observation it has been proposed that the balance between M-CSF and GM-CSF 

influences the development of M. tuberculosis infection in the lung. Whereas M-CSF 

levels are decreased over the course of infection, GM-CSF is elevated during this process 

enhancing the phagocytic activity and proliferation of M (Higgins, Sanchez-Campillo et al. 

2008). In summary, it is likely that M-CSF M behave more like a steady state population 

that would constitute the first responder to an invading pathogen, whereas GM-CSF 

derived M or the resulting population shaped by the action of both growth factors in 

concert with cytokines at the infection site, might play a role in sustaining the inflammatory 

process. This model would explain better or at least in part differences but also similarities 

observed between GM-CSF and M-CSF M upon L.m. infection. It might be interesting to 

assess the transcriptional profile of M exposed simultaneously to GM-CSF and M-CSF in 
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response to the infection with L.m. to characterize M responses under conditions similar 

to those observed in vivo. 

 

6.3 Comparative analysis of the transcriptional responses 

of macrophages and dendritic cells to L. monocytogenes 

infection 
GM-CSF in concert with IL-4 have been described as essential factors, which promote DC 

differentiation from human monocytes (Sallusto and Lanzavecchia 1994). However, in 

murine models it has been established that GM-CSF alone is sufficient to drive DC 

differentiation from bone marrow cells (Inaba, Inaba et al. 1992). The data obtained in the 

present study have shown via PCA analysis that the transcriptomes of GM-CSF M and 

DC have important differences (Figure 13). In contrast, under resting conditions the 

transcriptomes of GM-CSF and M-CSF derived Mare closely related (Figure 15). In 

addition, GO enrichment analysis showed that monocyte derived DC and GM-CSF M 

differed in key aspects, including chemotaxis and inflammatory responses. In agreement 

with these observations are the higher expression levels of CCR6, CCL23, and CCL18 

amongst other chemokines in DC. These factors attract naïve T cells to sites of infections 

and reflect the central function of DC as a bridge between the innate and adaptive 

immune system. In contrast, M expressed higher levels of TLRs including TRL5, 6, 7, 8 

and 9, but also NLPR3. These findings underline the role of M in pathogen recognition. It 

has been recently reported that TLR3 and 5 activation promotes the phagocytosis of 

bacteria in M (Deng, Feng et al. 2012), suggesting that higher expression of TLRs might 

contribute to the high phagocytic capacity of these cells. Also a recent report showed that 

human monocyte derived GM-CSF-M and murine DC generated via single stimulation 

with GM-CSF treatment from bone marrow regulated only 17% of the genes in common 

(Lacey, Achuthan et al. 2012). This observation suggests that the features of murine bone 

marrow DC cannot be directly extrapolated to human monocyte GM-CSF derived M. 

Despite their background differences, M and DC acquire a common transcriptional 

program upon L.m. infection (Figure 15). These findings are in agreement with in vitro 

data showing that M and DC express a similar program that includes IDO1, CD25 and 

COX-2. Moreover, supernatants of both DC and M infected with L.m. were able to 

suppress T cell responses (Figure 7, 8, 10) (Popov, Abdullah et al. 2006). This evidence 

supported the hypothesis that DC and M as major constituent elements of granuloma in 

patients with chronic listeriosis (Popov, Abdullah et al. 2006) might act in concert to 
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guarantee the containment of bacteria and the suppression of potentially damaging T cell 

responses. Besides their common transcriptional response against L.m. infection, DC and 

M also expressed cell type specific programs. GO enrichment analysis for each cell type 

showed that the genes regulated exclusively on DC upon L.m infection are related to the 

inflammatory response and the response to LPS amongst others. Along these lines, DC 

expressed SERPINB2 (Figure 16 B), a molecule which expression is up-regulated upon 

treatment with LPS and other TLR ligands. Interestingly, SERPINB2 expression by APC 

seems to be important in the regulation of TH1 responses in mice since APC from mice 

lacking this gene promote elevated TH1 cytokine secretion in vivo and in vitro (Schroder, 

Le et al. 2010). Furthermore, elevated SERPINB2 expression has been observed in 

inflammatory diseases like asthma (Woodruff, Boushey et al. 2007) and certain forms of 

scleroderma (Kessler-Becker, Smola et al. 2004). Genes only regulated in M upon L.m. 

infection were related to oxidoreductase and metabolic activity (Figure 16 C). These 

evidence is in line with previous reports and herein presented data (Figure 31) showing 

that M are more efficient than DC in the production of ROS (Werling, Hope et al. 2004). 

Additionally, M infected with L.m. up-regulated the expression of MAOA which encodes 

the enzyme monoamine oxidase A (Figure 16 D). This enzyme has been associated with 

enhanced ROS production in epithelial cells upon stimulation with LPS (Ekuni, Firth et al. 

2009). In addition, M infected with L.m. increased the transcription of matrix 

metalloproteinase (MMP) -7 and 12. Interestingly, several members of the matrix 

metalloproteinase family have been implicated in granuloma formation upon infection with 

M. tuberculosis. For instance, mice treated with a broad spectrum inhibitor of MMPs 

showed smaller granulomas or at least a delayed granuloma formation upon infection with 

this pathogen (Hernandez-Pando, Orozco et al. 2000; Izzo, Izzo et al. 2004). In addition, 

MMP-9 seems to be a key factor in granuloma formation since mice lacking this gene 

showed poor granuloma formation in response to M. tuberculosis infection (Taylor, Hattle 

et al. 2006). However, it has been shown that MMP-1 is implicated in collagen 

degradation in granuloma with the concomitant release of the bacteria to the airways 

(Elkington, Shiomi et al. 2011).  

Taken together the presented evidence suggest that M and DC acquire a similar 

program in response to the infection with L.m. that might allow these cells to act in concert 

to suppress the growth of this bacterium and modulate the responses of the adaptive 

immune system. Nevertheless, these cells expressed cell type specific programs that 

should be further validated in pertinent in vivo and in vitro models. 
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6.4 Transcriptional responses of macrophages to 

phagosome restricted and cytosolic L. monocytogenes 
M infected with L.m. wt and hly, a mutant of this bacterium which fails to enter the 

cytosol, activated a common transcriptional response that comprised 85% of the genes 

regulated upon infection (Figure 18). The unsupervised hierarchical clustering and PCA 

analysis showed important similarities between the transcriptomes of M infected with hly 

and wt L.m. (Figure 17 and 18). Furthermore, it has been shown that the concentration of 

TNF-, IFN-and IL-10 were similar in the supernatants of M infected with hly and wt 

L.m. (Figure 20). In line with these findings, the comparison between the transcriptional 

responses of innate immune cells in response to a wide variety of pathogens including 

bacteria, virus, and fungi performed in previous studies, showed that around 340 genes 

were regulated similarly in immune cells regardless of the infecting pathogen (Jenner and 

Young 2005). Interestingly, 60% of these common response genes was regulated also in 

M infected with both wt and hly L.m. Additionally, it has been reported that human M 

respond to a variety of pathogenic bacteria inducing a core transcriptional response that 

covers around 200 genes (Nau, Richmond et al. 2002). This core response includes 

proinflammatory cytokines including IL-6, TNF- the chemokines CCL5 and IL-8 amongst 

others. Moreover, stimulation with TLR2 and 4 agonists was sufficient to acquire the key 

elements of this response (Nau, Richmond et al. 2002). It has been proposed that this 

common transcriptional response constitutes the first alarm signal against invading 

pathogens (Jenner and Young 2005). The herein presented data suggest that an 

important part of the transcriptome of M infected with L.m. might represent, at least 

partially this first alarm response and therefore is not tuned according to the level of threat 

represented by a phagosome restricted or fully invasive bacterium. However, in mice the 

infection of wt and hly Listeria differed in a crucial point: whereas the infection with wt L.m. 

leads to protective CD8+ T cell mediated immunity, the hly mutant does not induce proper 

T cell responses. Since cells from the innate immune system drive the process of 

inflammation, it has been proposed that they are in charge of integrating signals provided 

by the different PPRs and contribute to the escalation of the immune response (Blander 

and Sander 2012). The herein described data showed that 15% of the total transcriptional 

changes induced by L.m. were exclusive for the wt bacteria. These findings suggest, that 

the fine tuning of the M response to a phagosome restricted or fully competent bacteria 

might relay in this group of genes. GO enrichment analysis of the genes regulated 

exclusively upon infection with wt L.m. revealed that some of them are related to viral 

transcription and viral infectious cycle (Figure 19 A). The enrichment in these categories 
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might be explained by recent evidence demonstrating that cytosolic L.m. secretes RNA 

molecules that can be sensed by RIG-I and MDA 5 leading to IFN- production (Abdullah, 

Schlee et al. 2012). In addition, IFN- expression has been identified as a primary 

response gene, induced once L.m. has reached the cytoplasm. Moreover, it has been 

proposed that IFN- activates the transcriptional response to cytosolic L.m. to a significant 

extent (Leber, Crimmins et al. 2008). Strikingly, the stimulation of M only with IFN- 

resulted in the differential expression of only 21 genes of which only 5 were found as 

exclusively regulated in M infected with wt L.m. (Table 8). In contrast to these findings, 

previous studies suggested that IFN- has profound effects on the transcriptome of 

diverse cell types, regulating the expression of a number of genes that varies between 

100 and 500 (Geiss, Carter et al. 2003; Fernald, Knott et al. 2007; Zou, Kim et al. 2007; 

Farnsworth, Flaman et al. 2010). However, it is important to note that these reports are 

not entirely comparable to the present work. For instance, some of these studies 

measured the global response of peripheral blood cells to IFN- stimulus (Fernald, Knott 

et al. 2007). Moreover, some of them have been performed in cells non-related to the 

immune system (Farnsworth, Flaman et al. 2010) or in cell lines (Geiss, Carter et al. 

2003); hence the tissue specific regulation might explain at least in part these differences. 

Similarly, it is important to consider the time point after stimulation used to detect DE 

genes. Along these lines, Zhou and coworkers have reported that IFN- led to differential 

expression of 110 genes as early as 6 h post stimulation in bone marrow M. However, 

the expression of these DE genes decreased to basal levels 24 h after treatment (Zou, 

Kim et al. 2007). Taking into account this evidence, it is possible that human M 

presented a similar time kinetic of gene expression upon stimulation with IFN- leading to 

the detection of a reduced number of DE genes at 24 hpi. The stimulation of M with IFN-

 resulted in the regulation of only 5 genes in common with M infected with wt L.m. This 

can be explained because during L.m. infection IFN- does not act alone, but in concert 

with signals triggered by the vacuolar phase of infection including IFN- and TNF- 

(Leber, Crimmins et al. 2008). For instance, it has been shown that IFN- primed M 

showed an enhanced response to type I IFN. This enhanced response was enabled by an 

increased expression of STAT1 triggered by IFN- signaling (Tassiulas, Hu et al. 2004). 

Moreover the herein presented data suggested that M stimulated simultaneously with 

TNF-, PGE2, IFN- and IFN- expressed 180 genes in common with L.m. that are not 

regulated by these factors acting separately. These findings suggest the crucial role of 

signal integration in the transcriptional response of M to L.m. infection. 
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In addition to IFN-and its targets, the pool of genes upregulated in response to wild type 

L.m. include the transcription factor HESX1, essential for development of the forebrain in 

mice and humans via repression of targets of the Wnt- catenin pathway (Andoniadou, 

Signore et al. 2011). Although HESX1 has not been yet associated to infection or 

inflammation, alterations of the Wnt-catenin pathway have been found in a number of 

infections (Ahmed, Chandrakesan et al. 2012; Kessler, Zielecki et al. 2012). Similarly, the 

expression of LILRA3 is elevated in M infected with wt L.m. Despite LILRA3 has not 

been linked yet to the infection response, it has been reported as putative natural anti-

inflammatory protein in patients with rheumatoid arthritis. Moreover, in monocytes its 

expression is strongly induced upon stimulation with IL-10 while it is downregulated by 

TNF- (An, Chandra et al. 2010). Additionally, the chemokine CXCL10 is regulated only in 

M infected with wt L.m. It has been reported that, CXCL10 promotes the recruitment of 

M in the process of arterial remodeling (Zhou, Tang et al. 2010). More recently, it has 

been found that M infected with Mycobacterium avium produce CXCL10, probably as a 

strategy to recruit new M at the sites of infection (Vazquez, Rekka et al. 2012). 

Together, it can be postulated that an important part of the transcriptional response of M 

against L.m. is driven by events of recognition at the cell surface and in the phagosome. 

This primary transcriptional response is not tuned according to the intracellular fate of this 

bacterium. However, 15% of the genes that are regulated exclusively in response to wt 

Listeria might contribute to a modulation of M responses according to the level of threat, 

as it has been proposed for IFN-. Interestingly, the genes regulated only with wt L.m. 

encompass genes that have not been linked yet to the response of M to infection and 

might constitute interesting targets for further studies. 

6.5 Macrophage polarization upon infection with L. 

monocytogenes 
The infection of M with bacteria including L.m. has been associated to M1 polarization 

(Shaughnessy and Swanson 2007) and is characterized in vitro by IFN- stimulation. 

However, the herein presented data showed that although IFN- stimulated and L.m. 

infected Mexpressed the hallmark markers of M1 polarization, the signal provided by 

IFN- explains only 30% of the total transcriptional response of infected M. Furthermore, 

the comparison between the transcriptome of regulatory and L.m. infected M revealed 

that TNF-, PGE2 and Pam3, the three signals required for Mreg polarization, explained 
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50% of the total transcriptional changes that follow after L.m. infection including the 

regulatory program integrated by IDO1, COX-2 and CD25. These findings, led to the 

conclusion that the transcriptional profile of Mreg is the so far closest to the one observed 

in M infected with L.m. Surprisingly, the data has shown that the stimuli with IFN- 

(Figure 21) or TNF- are sufficient to induce up to 40% of the transcriptional responses 

observed in M upon L.m. infection (Figure 26). These data are further supported by 

evidence generated in vitro showing that soluble factors secreted by infected cells are 

able to induce an infected-like phenotype in non-infected M (Figure 9). In fact, there is an 

important body of evidence showing the essential role of host factors in the pathogenesis 

of infections like M. tuberculosis and Schistosoma mansoni. In granuloma developed upon 

M. tuberculosis infection, M are the most abundant cell type (Dannenberg 1993). 

However, not all M present in this structure are infected, yet the uninfected cells help to 

contain the infection (Silva Miranda, Breiman et al. 2012). Additionally, in an in vitro model 

of granuloma formation, a relative low inoculum of M. tuberculosis or supernatants of 

infected M were able to promote the formation of granuloma-like cell aggregates 

(Birkness, Guarner et al. 2007). Furthermore, it has been shown that TNF-signaling is 

crucial to keep a persistent granuloma structure since usage of blocking antibodies 

against TNF-led to granuloma disruption (Keane, Gershon et al. 2001). More recently, it 

has been suggested that IFN- secreted by T cells in concert with the interaction between 

CD40L on this cells and CD40 expressed in M leads to the development of Langhans 

giant cells, a key signature of granulomatous disorders including tuberculosis and 

sarcoidosis (Sakai, Okafuji et al. 2012). In addition, CCL3 seems to play an important role 

in granuloma formation upon infection with S. mansoni since knockout mice for this factor 

showed reduced granuloma generation in response to the infection with this parasite 

(Souza, Roffe et al. 2005). Moreover it has been shown that, mice deficient for 

macrophage inhibitory factor (MIF) developed smaller granulomas upon infection with S. 

mansoni, suggesting the important role of this factor in granuloma formation (Magalhaes, 

Paiva et al. 2009). In summary, the herein presented data indicate that beyond a model of 

M polarization there are key host derived factors that remodel the transcriptional 

landscape of M upon L.m. These factors include TNF-, IFN-, IFN- and PGE2. 

Strikingly, the experiments comparing the transcriptome of M treated simultaneously with 

these factors reproduces over 60% of the transcriptional responses observed upon 

infection of M (Figure 29). The 40% of genes regulated upon L.m. infection that cannot 

be explained by host derived factors might be regulated by the interaction between the 

host cell and specific features associated to L.m. biology and cycle of infection. It is well-
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known that microorganisms have multiple PAMPs that can be recognized by several 

PPRs placed in different cell compartments, and in some cases the same PAMP can be 

recognized by more than one sensor (Takeda, Kaisho et al. 2003; Kawai and Akira 2006; 

Witte, Archer et al. 2012). It has been proposed that this, in appearance of redundant 

recognition, can provide in concert important information that shapes the response of cells 

of the innate immune system (Vance, Isberg et al. 2009). For instance, TLR2 recognizes 

PAMPs present on the surface of L.m., including lipotheichoic acid, lipoprotein, and 

peptidoglycan. The stimulation of TLR2 leads to activation of MyD88, a common adaptor 

for the members of the TLR family, yet TLR2 stimulation via Pam3 only changed the 

expression of 348 genes in common with M infected with L.m. Furthermore, only 12% of 

the genes were regulated in the same direction between those two cell populations. 

Similarly, it has been reported that Mdeficient for TLR2 were able to control efficiently 

L.m. growth. In contrast M obtained from MyD88 knockout mice were susceptible to L.m. 

infection (Edelson and Unanue 2002). These findings suggest that mere TLR2 activation 

is not sufficient to reproduce important aspects of M response against L.m. infection. 

Another example that illustrates the non-redundancy of the information provided by 

different PPRs is the recognition of bacterial nucleic acids in the phagosome and the 

cytosol. L.m. DNA can be recognized by TLR9 (Kawai and Akira 2006) inside the 

phagosome and probably by LRRFIP1 in the cytoplasm (Yang, An et al. 2010). Whereas, 

recognition of L.m. DNA in the phagosome does not trigger IFN-production, the 

transfection of DNA directly into the cytoplasm leads to secretion of this cytokine (Stetson 

and Medzhitov 2006). More recently, it has been proposed that the recognition of so 

called vita-PAMPs by the innate immune system might provide information about the 

viability of the invader helping the immune cells to tune their responses according to the 

level of threat (Sander, Davis et al. 2011). In this sense L.m. produce cyclic adenosine 

monophosphate (c-di-AMP), a second messenger that is secreted by live bacteria into the 

cytoplasm of infected cells (Woodward, Iavarone et al. 2010). The entry of this molecule 

into the cytoplasm triggers IFN-production mediated by the adaptor molecule STING 

(stimulator of interferon genes protein) (Sauer, Sotelo-Troha et al. 2011). Taken together, 

this evidence highlights the importance to consider the interaction between the signals 

provided by different PPRs as a crucial factor in the tuning of responses of innate immune 

cells to infection. 

In summary, approximately half of the transcriptional changes observed upon L.m are 

dependent on host derived factors and can be characterized by in vitro models of 
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polarization. Nevertheless, the remaining transcriptional modifications might result from 

specific interactions between the host cell and viable invading bacteria.  

 

6.6 IDO1 plays a role as microbicidal mechanism in 

human myeloid cells 
Trp depletion mediated by IDO1 has been recognized previously as an important 

microbicidal mechanism (Pfefferkorn 1984; Byrne, Lehmann et al. 1986; MacKenzie, 

Hadding et al. 1998). The herein presented data suggests that in vitro human DCreg use 

IDO1 as an important molecule for the clearance of L.m. infection (Figure 33). Moreover, 

the evidence indicates that the microbicidal activity of IDO1 is mediated by the toxicity of 

Trp catabolites and not by Trp depletion itself (Figures 39, 40 and 41). In contrast to the 

observations in human myeloid cells, murine DC and M did not expressed IDO1 in 

response to L.m infection; instead these cells responded to the infection expressing iNOS. 

The role of IDO1 and iNOS as microbicidal mediators in human and rodents respectively 

remains controversial. Previously it has been reported that NO or peroxynitrite donors 

inhibited IDO1 activity (Thomas, Terentis et al. 2007) via nitration of the Tyrosine residues 

Tyr15, Tyr345 and Tyr353 (Fujigaki, Saito et al. 2006). Furthermore, Hucke et al. 

demonstrated NO as a regulator of IDO1 expression at post-translational level promoting 

its degradation in the proteasome (Hucke, MacKenzie et al. 2004). However, based on 

murine in vivo experiments, there is evidence that IDO1 plays an important role in the 

murine antiparasitic response against protozoa like Toxoplasma gondii (Divanovic, Sawtell 

et al. 2012). Additionally, during pregnancy IDO1 is basally expressed in mouse placenta, 

after L.m. infection its expression is further enhanced (Mackler, Barber et al. 2003). This 

evidence suggests that IDO1 expression can be differentially regulated among cell types 

and tissues in mice. Interestingly, the relevance of IDO1 as microbicidal mechanism might 

also depend on particular aspects of the host-pathogen interaction. Whereas IDO1 seems 

to dampen the immune response of mice infected with L. major, promoting parasite 

persistence (Makala, Baban et al. 2011), this enzyme plays a key role in the control of T. 

cruzi (Knubel, Martinez et al. 2010; Knubel, Martinez et al. 2011). In contrast, although 

IDO1 is induced strongly in murine and human cells upon infection with M. tuberculosis, 

the experiments performed in IDO1 knockout mice demonstrated that this enzyme is not 

essential to control the growth of this pathogen (Blumenthal, Nagalingam et al. 2012).  

IDO1 microbicidal activity against a wide range of pathogens has been attributed mainly to 

Trp starvation (MacKenzie, Worku et al. 2003; Heseler, Spekker et al. 2008). However, it 
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was shown herein that the IDO1-mediated accumulation of Trp catabolites has a striking 

impact on L.m. viability once this pathogen has reached the cytoplasm, whereas Trp 

depletion does not favor bacterial clearance in immDC and is deleterious for DCreg cells 

(Figure 40 and 41). These findings are in agreement with the fact that L.m. virulent strains 

can synthetize aromatic amino acids amongst them Trp (Marquis, Bouwer et al. 1993). 

Therefore they do not depend on their host to obtain these resources. Interestingly, it has 

been reported that once L.m. has reached the cytoplasm, it up-regulates the expression of 

genes related with Trp biosynthesis (Joseph, Przybilla et al. 2006), probably as an 

adaptation to survive in mammalian cells that are unable to synthetize this amino acid and 

depend on external sources to obtain it. Furthermore, mutants that lack the common 

branch of aromatic amino acid synthesis showed reduced replication in the cytoplasm of 

epithelial cells (Stritzker, Janda et al. 2004), reinforcing the hypothesis that intrinsically the 

supply of aromatic amino acids provided by the host cell is not enough to guarantee L.m. 

cytoplasmic growth. More recently, the comparison between the transcriptome of 

intracellular L.m. in unstimulated and IFN- stimulated M has revealed that genes 

involved in Trp biosynthesis are upregulated specifically in L.m. confined in IFN- 

activated M. Moreover, the up-regulation of genes participating in Trp synthesis is 

associated with an increment in IDO1 mRNA (Mraheil, Billion et al. 2011).  

The presented data demonstrated that Trp catabolites externally added to L.m. culture 

media, have an impact in the viability of this pathogen (Figure 41). Furthermore, the 

sensibility to Trp catabolites varied amongst different bacteria species: L.m. was found to 

be highly susceptible to Kyn and 3HK whereas S.p. was preferentially susceptible to Q 

and HA (Figure 43). Similarly Narui et al. reported that Trp catabolites can affect bacterial 

viability. In addition, they have shown that the anti-bacterial capacity varies among the 

compounds of the kynurenine pathway and depends on the sensitivity of the tested 

bacteria (Narui, Noguchi et al. 2009). Until now the mechanism that mediates the anti-

bacterial effect of Trp catabolites is unknown. Interestingly, L.i., a non-pathogenic 

bacterium, philogenetically related to L.m., showed only a moderate susceptibility to Trp 

catabolites. This finding might suggest, that the target of kynurenines action might be 

related to the approximately 20% of the genes that are not shared between this two 

species including virulence factors (Glaser, Frangeul et al. 2001). Nevertheless it is 

important to consider that the regulation of gene expression in L.m. is highly complex and 

differs substantially from L.i. (Wurtzel, Sesto et al. 2012). Therefore, a detailed 

comparison between the transcriptome of this species in presence of Trp catabolites 

might be necessary to identify the potential targets of Trp catabolites.  
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In humans, it has been demonstrated that IDO1 is expressed in granulomatous diseases 

including listeriosis (Popov, Abdullah et al. 2006; Popov, Driesen et al. 2008). 

Furthermore, IDO1 expression in granuloma associated myeloid cells, has been proposed 

as an important mechanism to prevent T cell mediated disruption of the granuloma, 

avoiding therefore bacterial dissemination (Popov, Driesen et al. 2008). However, recent 

observations in the zebra fish strongly argue for the granuloma to function as a reservoir 

for bacteria allowing spreading of the disease (Davis and Ramakrishnan 2009; 

Ramakrishnan 2012). These observations might suggest that granuloma formation is 

rather harmful for the host. Nevertheless, is important to notice that in non-mammalian 

vertebrates like zebra fish (Danio rerio) or Xenopus laevis only proto-IDO proteins with low 

efficiency for Trp degradation have been described (Yuasa, Takubo et al. 2007). 

Therefore, the granuloma function in such models might not be entirely comparable to the 

one observed in humans. 

To finally conclude, the herein presented data suggest that in human myeloid cells the 

production of Trp catabolites, mediated by IDO1, is an important mechanism to control 

cytoplasmic L.m. However, these findings are not easy to extrapolate between species or 

different models of host-microorganism interaction, pointing out the necessity to carefully 

consider these aspects when addressing the role of IDO1 in human disease. 
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