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Köln

Bonn 2013







Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät
der Rheinischen Friedrich-Wilhelms-Universität Bonn

1. Gutachter: Prof. Dr. Ulf-G. Meißner

2. Gutachter: Prof. Dr. Hans-Werner Hammer

Tag der Promotion: 14.05.2013

Erscheinungsjahr: 2013



Summary:

The theory of the strong interaction, Quantum Chromodynamics (QCD), pro-
vides the generally accepted description of strongly interacting processes. Due to
the confinement of the fundamental degrees of freedom of QCD, the quarks and
gluons, the objects that are observable in experiments are their bound states, the
hadrons. Since QCD cannot be analysed within perturbation theory in the low-
energy domain relevant here, different approaches are necessary. One of these, an
effective field theory (EFT) approach, has been very successful for the descrip-
tion of low-energy reactions. Especially, systems of few nucleons, which are the
subject of this work, require a systematic scheme for the formulation of the inter-
actions of the nucleons involved to be able to predict their low-energy observables
with controlled accuracy. Here, a brief summary of the content of this thesis is
given:

In Chapter 1, we constitute the problem that we want to advance, namely the
calculation of bound and excited states of few-nucleon systems by solving the
non-relativisic Schrödinger equation. We motivate, why a systematic derivation
of the nuclear interactions is needed, and review the theoretical framework of
chiral EFT. The expansion of the chiral nuclear potential and the appearance of
few-nucleon forces up to fourth order is discussed. Additionally, a decoupling of
high- and low-momenta contributions is desirable for the potential, realised by
renormalisation group methods that are introduced briefly. At the end of this
chapter, we give an overview of existing techniques for the numerical calculation
of light nuclei, their fields of applicability and strengths and failures. Special
emphasis lies on the no-core shell model (NCSM) approach since it is the aim of
this thesis to develop a Jacobi coordinate based formalism within this method.
Jacobi or relative coordinates are more advisable for calculations that explicitly
take higher order contributions to the nuclear potential into account.
In the NCSM, the few-nucleon basis states are given in a harmonic oscillator
basis.Due to the Pauli principle, the basis states of bound few-nucleon systems
have to be antisymmetric. An algorithm for the antisymmetrisation of the Jacobi
coordinate based states is derived in Chapter 2 which forms a matrix eigenvalue
problem. We describe this formalism in detail for three-nucleon states and gen-
eralise the explicit evaluation of the required matrix elements to systems with A
nucleons. To solve the Schrödinger equation, new basis states are derived which
make it possible to consider three- and few-nucleon contributions explicitly. With
this, the solution of the Schrödinger equation, also a matrix eigenvalue equation,
takes a similar form as the antisymmetrisation of basis states.
In Chapter 3, numerical aspects of the calculations are discussed including tests
of the parallelisation. The parallelisation is strongly required due to the large
dimensions of the matrices for the antisymmetrisation and the Schrödinger equa-
tion likewise. Additionally, we specify the evaluation of the matrix elements of
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the two-nucleon contribution to the nuclear potential and the method with which
we analyse the results.
The results for the binding energies of 3H and 4He as well as for the ground state,
the lowest excited state and of the excitation energy of 6Li considering NN forces
are presented in Chapter 4. We also discuss first results of the binding energy of
7Li and our expectations for larger model spaces that are in progress. Further-
more, we analyse these results with regard to their convergence and their cutoff
dependence.
Finally, a summary and an outlook on future work is given in Chapter 5.
The Appendices contain technical details and explicit calculations.
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Chapter 1

Introduction

Within the Standard Model, the theory of the strong interaction is Quantum
Chromodynamics (QCD). Due to the so-called confinement, the fundamental de-
grees of freedom of QCD, the quarks and gluons, can not be observed as free par-
ticles. However, their bound states, the hadrons, are observable in experiments.
At high energies, the running coupling constant of QCD, αs, is small [1,2], so that
QCD has been confirmed for high energy processes. For low energy reactions, a
perturbative treatment of QCD is not feasible. One possibility to approach this
area are numerical solutions based on lattice field theory. Though further algo-
rithmic and technical progress is demanding, hadron masses for QCD have been
predicted [3]. However, investigations of systems consisting of more than one
baryon have not yet advanced to be comparable to experiments [4]. In this work
we are specifically interested in systems of few nucleons. It is conceivable that
quark and gluon degrees of freedom cannot be resolved for a description of few-
nucleon systems at low energies since first excitations of the nucleons themselves
are much higher in energy than excitations of few-nucleon systems. To make pre-
dictions for this area of QCD a formulation in terms of nucleon degrees of freedom
is more efficient. In the energy regime we work in, even relativistic effects are not
important, therefore we describe the system with the non-relativistic Schrödinger
equation, involving the interactions between the nucleons.
There are several approaches to derive the nucleon-nucleon (NN) interaction, for
example NN interaction models that are based on meson exchange or on phe-
nomenology alone, such as Nijmegen I and II, CD–Bonn and the Argonne V18
(AV18) [5–7]. These NN interaction models describe existing NN data very suc-
cessfully and are therefore generally called “realistic interactions”. Although their
prediction of many low energy few-nucleon observables is model independent and
in good agreement with experiments, scattering observables at higher energies
and binding energies are not well described and model dependent which is inter-
preted in general as an indication for a significant contribution of three-nucleon
forces (3NF) [8]. Especially the aspect that few-nucleon observables like binding
and excitation energies are strongly dependent on the chosen NN model indicates
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6 CHAPTER 1. INTRODUCTION

that the 3NF are not uniquely defined but depend on the representation of the
NN forces [9, 10]. In the context of these models, the 3NF are usually tuned to
reproduce the 3H binding energy, however, this does not remove all discrepancies
concerning the 3N data. For such calculations, 3NF based on a two-pion exchange
are implemented in general, such as the Tucson–Melbourne [11], Urbana–IX [12]
or Illinois [13] model. Although it is known that these models need to be consis-
tent with the employed NN interaction, such a consistency is not inherent in this
approach. In many modern studies of NN and 3N forces, a different approach
has therefore been used. Here the nuclear interaction has been derived from the
symmetries of QCD by the formulation of an effective field theory (EFT). Sepa-
rating the energy scales of the problem, an effective Lagrangian is devised that
describes the interaction of the relevant degrees of freedom: pions and nucle-
ons. The derivation of both the NN and the 3N forces from the same effective
Lagrangian ensures that the formulation of NN, 3N and higher body forces is
consistent. It is also possible to give a systematic estimate of the importance of
the few-nucleon forces and their contribution to the nuclear potential within a
model-independent framework. An overview of this approach is given in Sec. 1.1.
With the nuclear potential resulting from this formulation, predictions for nuclear
systems can be made by solving the Schrödinger equation. Unfortunately, this
becomes technically difficult for systems larger than 4 nucleons. A considerable
problem is the rather strong short-range interaction in combination with a much
longer ranged one-pion exchange force. However, it turns out that this short-
range interaction can be systematically reduced by renormalisation group (RG)
methods, as outlined in Sec. 1.2. Interestingly, this is again strongly related to
multi-body forces. Finally, we briefly summarise the techniques available for the
solution of the few- and many-nucleon problem in Sec. 1.3.

1.1 Chiral nuclear forces

The nucleon is primarily composed of u and d quarks which are much lighter
than the mass of the nucleon itself, mN = 938.92 MeV, whereas the u- and d-
quark masses at reasonable renormalisation scales of 1-2 GeV are smaller than 10
MeV [14]. Therefore, the quark masses can be neglected in first approximation
when studying QCD. In this limit, the Lagrangian of QCD is symmetric under so-
called chiral SU(2)L×SU(2)R transformation, i.e. under independent rotations in
flavour space of left- and right-handed quarks. Experimentally, only simultaneous
flavour rotations seem to be a symmetry of QCD, the well-known isospin symme-
try. This is now understood as the spontaneous breakdown of chiral symmetry to
isospin SU(2)V symmetry. According to Goldstone’s theorem [15], this gives rise
to one massless scalar particle for every generator of the broken symmetry group.
The group SU(2) is generated by the three Pauli matrices, hence the spontaneous
breaking of SU(2)L×SU(2)R to SU(2)V results in three Goldstone bosons. In case
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of the spontaneous chiral symmetry breakdown they can be identified with the
three charge states of the pion. Due to the explicit symmetry breaking by the
non-vanishing quark masses, these pseudo-Goldstone bosons acquire a non-zero
mass. However, the pion mass mπ ≈ 140 MeV is still much smaller than other
hadronic masses.
Based on chiral symmetry, an EFT can be formulated in terms of pions and nu-
cleons, chiral perturbation theory (χPT) [16]. Since the pion fields decouple for
low momenta due to the SU(2)L×SU(2)R symmetry, a perturbative expansion of
the chiral Lagrangian in terms of (Q/Λχ) is possible, where Q is a typical mo-
mentum, usually assumed to be of the order of the pion mass mπ, and Λχ the
so-called chiral symmetry breaking scale. Since terms that are induced by the
explicit chiral symmetry breaking are proportional to mπ, the chiral Lagrangian
is expanded simultaneously in both low momenta and pion masses. With this
expansion, a systematic estimate of the importance of diagrams contributing to
a specific process scaling as

(
Q/Λχ

)ν
can be given, the so-called power counting.

The counting index ν is determined using naive dimensional analysis by

ν = −4 + 2N + 2L+
∑

i

Vi∆i with ∆i = di +
1

2
ni − 2 , (1.1)

for a diagram with N nucleons involved, L pion loops, Vi vertices of type i, di
derivatives and ni nucleon lines at vertex i. Since ∆i ≥ 0 due to chiral symmetry,
a finite number of diagrams that contribute to a given order can be identified,
classifying the diagrams with lowest ν as leading order (LO) contributions, those
with the second smallest ν as next-to-leading (NLO) order and so on. Thus, the
pion-nucleon (πN) interaction is described in a systematic way.
Although ππ and πN interactions are well-described by χPT, perturbation the-
ory is obviously not applicable for the NN interaction. The NN interaction is too
strong which is reflected e.g. by the existence of bound states of nucleons. Wein-
berg [17–19] realised that the large mass of the nucleon implies an enhancement
of certain contributions that destroy the naive dimensional analysis leading to
Eq. (1.1). This is most easily seen within time-ordered perturbation theory. It
becomes evident that the so-called reducible diagrams with an intermediate state
that involves only nucleons destroy the naive power counting. This is exemplified
in Fig. 1.1, where the Feynman box diagram of the two-pion exchange is shown as
the sum of all possible time-ordered graphs. The first two time-ordered diagrams
do not contain a purely nucleonic intermediate state (irreducible diagrams) and
scale as expected. The other time-ordered diagrams are reducible which leads
to an unnatural enhancement proportional to mN/mπ. However, the reducible
diagrams can be taken into account to infinite order by the iterations of the
Lippmann–Schwinger (LS) equation with the kernel that contains the irreducible
diagrams. With this modification of the original power counting one derives a
nuclear potential that includes all irreducible diagrams up to a certain order in
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= + + + + + 

Figure 1.1: Feynman diagram of the two-pion exchange and its time-ordered
representation; solid lines denote nucleons and dashed lines denote pions. The
last four diagrams contain intermediate states involving only nucleons and are
therefore called reducible.

a systematic way which also allows for a derivation of 3NF and higher-body in-
teractions within the same framework. The bound states are naturally generated
by this procedure. For details we refer to [20] and references therein.
With each order of the expansion new terms appear in the chiral Lagrangian that
are not fixed by symmetry aspects and that parameterise the short range physics.
These parameters are generally called low-energy constants, LEC’s. While πNN
coupling constants can be extracted from πN data, the new LEC’s for NN and
3N (or other) contributions require NN and 3N (or other) data to be determined.
With this the chiral power counting exhibits the very natural hierarchy that NN
forces are the most dominant ones while few-N forces are suppressed, illustrated
in Fig. 1.2 from [21]:
The LO contributions with ν = 0 result from two-nucleon tree diagrams (Eq. (1.1):
N = 2 and L = 0) with vertices of the type ∆i = 0, i.e. with two nucleon lines
(ni = 2) and one derivative (di = 1) or four nucleon lines and no derivative.
These are the one-pion exchange and the NN contact interactions, parameterised
by two LEC’s CS and CT , as pictured in Fig. 1.2.
As the diagrams for ν = 1 vanish due to parity conservation, the NLO contribu-
tions are those with ν = 2: two-nucleon one-loop diagrams with LO vertices and
the NN contact interaction involving two derivatives, determined by seven new
LEC’s C1-C7.
At N2LO (ν = 3), additional two-pion exchange diagrams contribute to the NN
potential. There are no new NN contact interactions but first 3NF contributions
with three topologies: a two-pion exchange contribution which also is the basis
of most 3NF models, a one-pion contact diagram (D-term) and a pure contact
diagram (E-term). While the strength of the 3NF two-pion exchange diagram
is given by the same πNN and ππNN couplings already determined for the NN
forces, the contact diagrams have a priori unknown strength, parameterised by
the LEC’s cD and cE respectively. In current studies including 3NF, they are
adjusted to correctly reproduce the binding energy of 3H. For a unique determi-
nation of these LEC’s, at least one additional few-body datum is required, such as
e.g. the neutron–deuteron doublet scattering length 2and [22], the binding energy
of 4He [23], the radius of 4He [24] or even the 3H beta decay [25]. With this, the
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Figure 1.2: Chiral expansion of the contributions of few-nucleon forces to the
nuclear potential [21].

determination of the chiral nuclear forces is complete up to N2LO which allows for
a qualitative description of low-energy observables. However, for a quantitative
analyse with today’s applications higher accuracies are required. Proceeding to
N3LO, NN observables show the desired accuracy [26, 27]. The here appearing
3NF [28,29] and 4NF [30,31] have also been formulated. Fortunately, their LEC’s
are those related to the NN forces. Thus, no new unknown parameters are impli-
cated. Since first investigations indicate that their contribution is quantitatively
significant [32, 33], further studies are required. The preparation of such studies
is the major motivation for this work.
In practice it is important to regularise the nuclear forces. The LS equation
generates a series of loop diagrams that are divergent. Since these divergencies
cannot be removed analytically, the most practical way for the regularisation of
this problem is a cutoff function to remove momenta larger than a parameter
Λ from the integrals. Predictions of the observables therefore depend on this
parameter Λ. This variation is used as an estimate for contributions of higher
orders of the chiral expansion. In this thesis, we employ realisations of the chiral
potential where Λ ∼ 500 − 600 MeV.
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1.2 Low–momentum potentials

Most nuclear interactions induce a strong correlation of nucleons due to their
strongly repulsive short-distance behaviour which is a long standing problem for
the calculation of few- and many-body problems. Though this behaviour is much
softer for standard chiral interactions with Λ ∼ 500 MeV than for phenomeno-
logical ones, these correlations cannot be handled in today’s many-body applica-
tions. In recent years, RG techniques that derive low–momentum potentials, the
so-called Vlow k and VSRG, were developed to further soften the interactions.
To obtain Vlow k the high–momentum modes are integrated out under the condi-
tion that the on-shell t-matrix is not changed for the initial NN potential, VNN,
in all NN partial waves. Therefore, the binding energy of the deuteron and the
phase shifts remain the same for momenta below the momentum cutoff of this
technique, i.e. below the scale that separates high and low momenta of the initial
potential [34,35]. Yet the numerous evaluations of the t-matrix slow the numeri-
cal calculation of the potential considerably and complicate the formalism if 3NF
are included.
The Similarity Renormalisation Group (SRG) offers a more efficient method that
evolves the low–momentum potential, VSRG, with a continous sequence of uni-
tary transformations U of an initial NN potential. This potential is energy-
independent like Vlow k. In addition, due to the nature of the unitary transfor-
mations, not only the low–energy phase shifts are preserved but also those at
high energies and other high–energy observables [35]. Instead, the application of
the so-called flow equation formalism renders the nuclear Hamiltonian close to a
band-diagonal form in the full momentum range considered. The initial Hamil-
tonian H = Trel + VNN (with Trel the relative kinetic energy) is transformed as
Hs = UsHU

†
s , where s is the so-called flow parameter. Since Trel is assumed to

be independent of s, the evolved potential Vs is given by Hs = Trel + Vs. With a
suitable specification of the transformation the evolution of Vs is defined as

dVs
ds

=
[[
Gs, Hs

]
, Hs

]
. (1.2)

Among others, the simplest choice for the operator Gs is Trel. This leads to an
exponential suppression of matrix elements that are far from the diagonal with
increasing s, hence:

VSRG (p′, p) ≈ Vs=0 (p′, p) e−s(p′ 2−p2)
2

. (1.3)

With this the variable λ = s−1/4 is a measure of the diagonal width of VSRG in mo-
mentum space and is regarded as the momentum cutoff for this low–momentum
potential [35]. A more detailed derivation of the flow equation formalism is given
in [36] and references therein.
The transformation of the NN interaction to an equivalent one leads to corre-
sponding changes of 3N and higher-body forces in both techniques. Though in
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principle possible, it is not feasible to calculate these additional 3NF for Vlow k

at this point, but only for VSRG. A study of corresponding terms for the chiral
interactions is useful for a quantitative understanding of these higher-body inter-
actions. To this aim, it is assumed that in first approximation changes of pure 3N
and 4N contact interactions in the chiral approach correspond to the change of
the induced 3N and higher-body forces if the cutoff parameter Λ or the variable
λ, respectively, is varied in the range of 300− 500 MeV. Explicit calculations are
consistent with this assumption:
For 3H (4He) it has been shown that the 3NF contribution to the binding energy
is approximately 700 keV (4 MeV). This agrees to the observed cutoff dependence
of predictions of these energies for a variation of Λ or λ, respectively, in the above
mentioned range. It is conceivable though not strictly proven that this cutoff
dependence estimates the contributions of the 3N contact term that is part of the
leading 3NF.
Furthermore, the cutoff dependence decreases to ∼ 50 keV for the binding energy
of 4He if the SRG method is also applied to the 3NF. In contrast, first estimates
of the 4NF contribution give ∼ 500 keV here [33]. Since a 4N contact interaction
is not expected for the leading 4NF, this also indicates that the cutoff variation
is a good estimate for the contribution of multi-nucleon contact interactions.
Hence, at least for Λ or λ ≥ 300 MeV, the multi-nucleon force contributions
seem to be compatible with the expectations based on chiral interactions, and
the SRG method does not induce unnaturally large multi-nucleon forces. On the
other hand, it becomes clear that for quantitative studies of binding and excita-
tion energies the inclusion of at least 3NF and probably 4NF is required.
With this in mind, we now discuss state-of-the-art few- and many-body tech-
niques to solve the quantum mechanical bound state problem.

1.3 Numerical techniques

The aim of this thesis is an implementation of the no-core shell model (NCSM)
approach for the solution of a nuclear bound state problem. Therefore, we want
to summarise techniques available to study light nuclear systems and motivate
our formalism.
In general, the Schrödinger equation can also be solved exactly for scattering
problems of systems up to A ≤ 4 [37–40] which has been used extensively to
study 3NF [8]. Low-energy observables do not seem to be largely influenced by
3NF in 3N systems which do not show any resonances. Scattering reactions only
become sensitive to 3NF at high energies, Elab ∼ 100 MeV [8]. The models
cannot describe these data correctly due to the absence of consistently defined
3NF. Since the accuracy of predictions based on chiral interactions at the order
Q3 is too low in this energy regime, reasonable conclusions on chiral 3NF cannot
be drawn from 3N scattering. For 4N scattering, calculations are restricted to
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energies below three-body breakup. Due to the existence of resonances in this
regime still some sensitivity to 3NF is expected [37].
For the 3N- and 4N-system, very precise results have been achieved within the
Faddeev–Yakubovsky scheme (FY) e.g. by Nogga et al. [41] for bound states, by
Witala et al. [42] for scattering and breakup reactions including relativistic effects,
and most recently by Deltuva et al. [43] for three–cluster nuclear reactions. The
Yakubovsky components of the wave function are decomposed into partial waves
and defined iteratively by the Faddeev–Yakubovsky equations, for four nucleons
as:

ψ1 = G0t12P
[

(1 − P34)ψ1 + ψ2

]

ψ2 = G0t12P̃
[

(1 − P34)ψ1 + ψ2

]
. (1.4)

The two-nucleon transition matrix t12 is determined by a two-nucleon LS equa-
tion, and P and P̃ are permutation operators that can be expressed in terms of
transposition operators Pij that interchanges the particles i and j:

P = P12P23 + P13P23

P̃ = P13P24 . (1.5)

The fully antisymmetrised wave function Ψ, which is required because the nucle-
ons are identical particles, is obtained as:

Ψ =
[
1 − (1 + P )P34

]
(1 + P )ψ1 + (1 + P )

(
1 + P̃

)
ψ2 . (1.6)

The set of FY equations is usually presented in a momentum space basis lead-
ing to a set of coupled integral equations. After discretisation a high dimensional
eigenvalue equation is obtained that can be solved iteratively [44]. This is feasible
only for 3H, 3He and 4He. The results are very accurate and can be obtained for a
large class of NN potentials, i.e. non-local interactions. We remark that 3NF can
also be incorporated in such calculations. Therefore, we will use the results of FY
calculations of 3H and 4He binding energies as a test of the formalism developed
in this work.
A different technique to calculate 3N and 4N observables very accurately is the
Hyperspherical Harmonics (HH) Variational Method, applied e.g. by Viviani et
al. [45]. The calculations are performed in a basis of fully antisymmetrised HH,
and the coefficients for the expansion of the wave functions are determined with
a variational principle. Like the FY formalism, this is also applicable to non-local
potentials. An extension to larger A is in progress, very recently formulated for
A = 5 and 6 in [46, 47], including test calculations with not fully realistic poten-
tials.
A similar method is the Effective Interaction HH method where, in addition to
the expansion in HH, projectors are used that divide the Hilbert space of the



1.3. NUMERICAL TECHNIQUES 13

Hamiltonian into a model space and a residual space with corresponding effec-
tive interaction operators [48, 49]. This improves the numerical aspect of the
calculations since the number of required basis states is decreased significantly
and short–distance contributions are described more efficiently, which results in
a better convergence [50]. Calculations for few-nucleon systems up to A = 6
are possible and more complicated potentials can be included already, yet only
NN forces have been considered so far for A = 6, 3NF have been included for
calculations of 3H and 3He [51]. Since calculations for larger A have started only
recently, it remains to be seen wether converged results for ground and excited
states become possible in future.
Within the Stochastic Variational Method (SVM) the wave functions are approx-
imated by Gaussian trial functions, including the orbital part by a successively
coupled product of spherical harmonics. This results in a large number of vari-
ational parameters that are determined by a stochastic optimisation procedure.
Trial functions that yield the lowest energies ar chosen as basis states [52]. Thus
the SVM is applicable to larger systems, e.g. A = 10 [53], since the number of
basis states is small when employing an efficient optimisation procedure. How-
ever, for such large systems only semi-realistic interactions and no 3NF have been
used. Due to technical difficulties this limitation has not been overcome yet to
our knowledge.
For nuclei with A = 6−10, the Argonne–Los Alamos collaboration developed the
so-called Green’s Function Monte Carlo Method (GFMC). Within this method,
the calculation is done in two steps. First, a trial wave function is obtained using
a variational method. In the second step, thir trial wave function is improved by
an imaginary time evolution that projects on the trial ground state for a specific
total angular momentum, parity and isospin [54]. By orthogonalisation, it has
also been possible to extract first excited states [55]. Since the time evolution
is performed stochastically, wave functions cannot be obtained by this method.
The main technical problem is that this method is limited to the class of local
potentials with the operator structure of the AV18 family of interactions. Calcu-
lations with these phenomenological AV18 NN potential and the Illinois 7 (IL7)
3NF yield by construction the energies of ground states and excited states close
to the experimental values. Yet the restriction to this class of interactions does
not allow to study any model dependence within this scheme. Thus, especially
predictions for systems that are not or not yet experimentally determined are
not comparable to results from other methods which is usually a useful error
estimate. However, the existing results [54, 56, 57] may well serve as benchmark
for calculations within a different scheme. Remarkably the current limit of the
calculations is not set by the spatial coordinates of the nucleons which can be
handled by the stochastic methods used. Instead, the limit is given by the num-
ber of spin-isospin channels that grows exponentially for large A. Here, a recently
developed formalism to calculate the properties of light nuclei based on lattice
calculations in combination with the theoretical framework of chiral EFT is more
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efficient [58–60]. It turns out that a direct implementation of the effective La-
grangian, the perturbative treatment of higher order terms and the use of the
approximate Wigner symmetry lead to a linear scaling of the computation times
with the number of nucleons A. Even states that have a cluster structure like
the 12C Hoyle state [61, 62] can be obtained with high accuracy. For this system
∼ 3% were estimated in [63,64], calculations for heavier systems can be expected
in near future [65].
In this thesis, we want to advance the NCSM. This is a highly efficient technique
for light nuclei which is formulated in the harmonic oscillator (HO) basis. A finite
model space is accomplished by truncating the basis at a finite oscillator energy
N = 2n + l, where n is the HO quantum number and l the orbital momentum
of the state. Originally, the truncation of the HO basis was realised such that
the center-of-mass (CM) motion can be exactly separated from the internal mo-
tion even for a formulation in single-particle coordinates, the so-called m–scheme.
Recently, it was proposed to drop this constraint in favour of an importance trun-
cation algorithm (IT-NCSM) where the basis states are accepted if a test shows
their significance. In this way, very large model spaces can be accessed [66], how-
ever, there is an ongoing discussion whether this induces uncontrolled errors due
to spurious CM admixtures [67]. In the m–scheme, antisymmetric basis states
can be realised with the Slater determinant. Unfortunately, it turns out that
calculations including 3NF are extraordinarily more computationally demanding
than those using NN interactions due to the large size of 3NF matrices. There-
fore, an extension to 4NF does not seem to be in reach.
To obtain the antisymmetric basis states in relative or Jacobi coordinates, a ma-
trix eigenvalue problem has to be solved that is defined by an explicit application
of the antisymmetrisation operator (for details see 2.1). So far, only very light
systems have been described in Jacobi coordinates [68–71] since the antisymmetri-
sation is difficult to implement. We want to overcome this limitation mainly due
to the fact that 3NF are much better to handle in this scheme. Employing rela-
tive coordinates, the large size of the 3NF matrices is considerably reduced since
the they allow an easy implementation of angular momentum and isospin conser-
vation. In view of these constraints a further development of a Jacobi coordinate
based NCSM formalism appears to be timely.
Very sophisticated calculations have been performed for systems up to A = 13
within the m–scheme but using 3NF. The results show good convergence of the
binding energies. The strength of this method is the possibility to extract exci-
tation energies with good accuracy since it turns out that for many excitation
energies only small model spaces are required. Unfortunately, there are excep-
tions, e.g. the Hoyle state is not easily reproduced in a NCSM formulation. On
the other hand, the energies of narrow resonances can be well obtained.
The NCSM has been used in several studies involving chiral 3NF [23, 24]. The
results show that the description of light nuclei is improved by considering the
leading chiral forces, still some dicrepancies remain that imply significant contri-
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butions at higher orders. For a complete higher order calculation, also 4NF need
to be taken into account. This work is therefore a prerequisite for investigations
of extended chiral studies within the NCSM.
There are approaches to heavier nuclei, such as the Coupled Cluster (CC) and
the Density Functional Theory (DFT). The Coupled Cluster method is used for
A < 100 [35] systems which works best for closed shell nuclei like 16O [72] and
those close by with ongoing progress towards open–shell nuclei [73,74]. Developed
for nuclear systems [75,76], it was mostly applied in quantum chemistry [77] since
typical nuclear interactions were difficult to handle within this scheme. With the
upcoming of low–momentum interactions this has changed. 3NF have been im-
plemented [78].
A > 100 nuclei are object of DFT. Because of the large number of nucleons pre-
dictions for those nuclei are not based on microscopic forces which are the subject
of this work. We still note that there is an ongoing research on the implementa-
tion of realistic interactions [79–83].
Due to the observed significance of higher order contributions to the nuclear po-
tential it is demanding to analyse light nuclei thoroughly, of which the p–shell
nuclei are of special interest. They are the first systems of bound states where all
combinations of neutrons and protons appear in a three– and four–nucleon sub-
system which leads to various possible spin–isospin configurations Thus, several
bound states of the individual nuclei exist which are largely influenced by 3NF.
Within the NCSM approach, not only very precise results of ground-state ener-
gies but also these excited states can be calculated without difficulty. Moreover,
the excitation energies show a considerably faster convergence than the binding
energies. Therefore, a realisation of the NCSM approach in Jacobi coordinates is
a promising endeavour on the way to gain more insight into the nature of few–
nucleon forces.

This thesis is organised as follows:
In Chapter 2 we introduce the formalism of the antisymmetrisation of the HO
basis states for three- and A-nucleon systems. The transposition operator P̂23

is evaluated explicitly followed by a generalised extension to P̂A(A−1) and the re-
quired recoupling of the related basis states. In order to solve the Schrödinger
equation, new basis states are derived which makes it possible to take three- and
few-nucleon forces into account explicitly.
In Chapter 3, the parallelisation of the calculations is described including tests of
the numerical performance with regard to the runtime behaviour and the mem-
ory capacity that is required for an exemplary model space. Additionally, the
evaluation of the two-nucleon contribution to the binding energy is described.
We specify the nuclear potential that is used for the calculations and introduce
a method to extrapolate converged results.
In Chapter 4, we present the results for the binding energies of 3H, 4He, the
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ground state and the lowest excited state of 6Li and the excitation energy in the
model space of N6 = 8, and of the ground state of 7Li in the model space of
N7 = 7 including NN forces. The convergence with increasing model spaces and
the cutoff dependence is discussed.
Chapter 5 summarises the present achievements and gives an outlook on the pos-
sibilities of improvement and on the extension of our formalism to other sectors
of nuclear physics.
Technical details and explicit calculations are deferred to the Appendices.



Chapter 2

Formalism

As motivated in Chapter 1 we want to study binding and excitation energies
of few-nucleon systems by solving the Schrödinger equation. The Schrödinger
equation describes few-nucleon systems at low energies, for which relativistic
effects do not play an important role. This forms an eigenvalue problem assuming
a finite basis of antisymmetric states since the nucleons are considered to be
identical. The NCSM describes many-body systems containing A point-like non-
relativistic nucleons in the HO basis where all A nucleons of the system are
considered to be active [84]. In order to do practical calculations, the HO basis
is truncated at a maximal total oscillator energy NA with

NA =
A∑

i=1

2ni + li , (2.1)

where ni = 0, 1, 2, . . . is the HO quantum number and li the orbital momentum of
the i-th nucleon. For our calculations we choose Jacobi coordinates, expressed in
single-nucleon coordinates as defined in Eq. (2.10), since they separate the relative
motion from the CM motion and ensure translational symmetry of the system if
the space is constrained according to (2.1). The CM contribution can simply be
omitted, and with this the Hamiltonian only contains the nuclear potential and
the intrinsic kinetic energy that depend on relative coordinates which renders the
Hamiltonian spherically symmetric. Therefore, the permutation operator P̂ not
only preserves the total oscillator energy NA but also the total angular momentum
JA and the total isospin TA, which allows for an exact antisymmetrisation within
a given model space. The formalism of antisymmetrisation is discussed in detail
in the following section.

2.1 Generation of antisymmetrised basis states

Bound few-nucleon states are restricted by the Pauli principle to antisymmetric
states. The antisymmetrisation of any complete set of basis states is realised in

17
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general for A nucleons as follows:
The antisymmetrisation operator Â is the sum of all A! possible permutations
P̂ of the A nucleons. Accordingly, for A − 1 nucleons the antisymmetrisation

operator contains all (A− 1)! permutations ̂̃P of the A−1 nucleons. Considering

that every permutation can be decomposed in a number of transpositions P̂ij with
definite signum εP̂ , the set of permutations of A nucleons, which is the symmetric
group with A objects (SA), can be written as :

{
P̂
}

=
{̂̃P1, ̂̃PP̂A1,

̂̃PP̂A2, . . . ,
̂̃PP̂A(A−1) | ̂̃P ∈ SA−1

}
= SA. (2.2)

Useful properties of the transposition operator P̂ij are specified in App. A.3.

With this the general expression for Â reads

Â =
1

A!

∑

P̂ ∈ S
A

εP̂ P̂

=
1

A!

∑

̂̃P ∈S
A−1

εP̂

(
̂̃P +

A−1∑

i=1

̂̃P P̂Ai

)

=
1

A!

∑

̂̃P ∈S
A−1

ε ̂̃P

(
̂̃P −

A−1∑

i=1

̂̃P P̂Ai

)

=
1

A!

∑

̂̃P ∈S
A−1

ε ̂̃P
̂̃P
(
1−

A−1∑

i=1

P̂Ai

)
. (2.3)

A convenient choice for the complete basis is the set of antisymmetric (A − 1)-
nucleon states coupling to a single nucleon, i.e. the states are antisymmetric with
respect to all (A− 1)! permutations of the A − 1 nucleons. In this work, we
denote such HO–states by | βAN〉. To find the antisymmetric A-nucleon HO-basis

states, which we will refer to as |ΓAN〉, the matrix 〈 β ′
AN| Â | βAN〉 is diagonalised

to solve the matrix eigenvalue equation

∑

β
AN

〈 β ′
AN| Â | βAN〉〈 βAN |Γ〉 = λ 〈 β ′

AN|Γ〉 . (2.4)

Since the antisymmetrisation operator Â is hermitean and Â 2 = Â, which indi-
cates that Â is a projector, Eq. (2.4) has solutions for λ = 0 and λ = 1 only. The
physical eigenstates |ΓAN〉 are those with λ = 1. It turns out that this reduces
the number of ΓAN–states approximately by a factor of 1

A
relative to the number

of βAN–states. While the βAN are a complete basis for the space of antisymmetric
(A−1)-nucleon states, the ΓAN–states span the space of antisymmetric A-nucleon
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states, which is why we can express the ΓAN–states completely in terms of βAN–
states. This results in one orthogonality relation for the overlap 〈 βAN|ΓAN〉:

∑

β
AN

〈Γ ′
AN| βAN〉〈 βAN|ΓAN〉 = δΓ ′

AN Γ
AN
. (2.5)

Additionally, the antisymmetry of the (A − 1)-nucleon states of | βAN〉 can be
used to further simplify the antisymmetrisation operator:

〈 β ′
AN | 1

A!

∑

̂̃P ∈S
A−1

ε ̂̃P
̂̃P
(
1−

A−1∑

i=1

P̂Ai

)
| βAN〉

=
1

A!
〈 β ′

AN |
∑

̂̃P ∈S
A−1

ε 2
̂̃P

(
1−

A−1∑

i=1

P̂Ai

)
| βAN〉

with P̂Ai
Eq. (A.18)

= P̂AiP̂(A−1)iP̂(A−1)i

Eq. (A.21)
= P̂(A−1)iP̂A(A−1)P̂(A−1)i

=
1

A!
〈 β ′

AN |
∑

̂̃P ∈S
A−1

(
1− (A− 1) P̂A(A−1)

)
| βAN〉

=
1

A
〈 β ′

AN |
(
1− (A− 1) P̂A(A−1)

)
| βAN〉 , (2.6)

where P̂A(A−1) performs a coordinate transformation corresponding to an inter-
change of the nucleons A and A− 1.
As mentioned above, the antisymmetrisation operator Â conserves the total oscil-
lator energy NA in addition to JA and TA, which will be demonstrated later in this
section. Therefore, the antisymmetrisation can be done (NA , JA , TA)-blockwise,
which decreases the dimensionality of the problem and makes the antisymmetri-
sation feasible in fact. With this, the ΓAN–states are uniquely numerated by the
block-internal index | γAN〉 and its (NA , JA , TA)-block, | (NA , JA , TA) γAN〉, and
the complete set of antisymmetric A-nucleon states is:

{
|ΓAN 〉

}
=

⋃

Nn ≤N
A

{
| (Nn , JA , TA) γAN 〉

}
. (2.7)

A step-by-step antisymmetrisation of systems with A = 2, 3, . . . , A is therefore
required to find the antisymmetric A-nucleon states. This successive application
of the formalism starts with A = 3 since antisymmetric 2N–states are selected by
the Pauli principle in a trivial way:

|Γ2N〉 = |(N12 , J12 , T12) n12 ( l12 s12) J12 T12; (s1 s2) s12 (t1 t2) T12 〉
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1

2

3

γ2N

l12 n12 l3

n3, I3

Figure 2.1: β3N–state

(2.8)

with the condition (−1)l12+s12+T12 = −1. The subscripts 1 and 2 distinguish the
single nucleons with spin si and isospin ti (si = ti = 1

2
for single nucleons),

l12 is their relative orbital momentum and n12 the HO quantum number of this
oscillator. As throughout this work, the explicit coupling is specified after the
semicolon. These Γ2N–states are the antisymmetric (A − 1)-nucleon subsystems
coupling to a single nucleon to form the | β3N〉 as shown in Fig. 2.1.
We define them as

| (N3 , J3 , T3 ) β3N〉 = | (N3 , J3 , T3 ) Γ2N n3 (l3 s3) I3 t3 ; (J12 I3)J3 (T12 t3)T3
〉
,

(2.9)

where n3 is the HO quantum number of nucleon 3, l3 its relative orbital momen-
tum with respect to the antisymmetric subsystem, spin and isospin s3 = t3 = 1

2

and I3 its angular momentum. Again, the explicit coupling scheme is pointed out
after the semicolon.
We start with a system where nucleon 1 and nucleon 2 are coupled in an an-
tisymmetric subsystem while nucleon 3 is a spectator (Fig. 2.2 i) ). For these
assignments the Jacobi coordinates are defined as follows:

~ρ12 =
~r1 − ~r2
b12

~ρ3 =
~r3 − 1

m1+m2
(m1 ~r1 +m2 ~r2)

b3
, (2.10)

where ~ri and mi are the single particle coordinate and the mass of particle i,
respectively. These coordinates are dimensionless since we express them in terms
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i) ii)

11

22

33

γ2N γ ′
2N

l12 n12 l3

n3, I3 n13 , l13

n2

l2 , I2

Figure 2.2: i) β3N– and ii) β ′
3N–state

of the characteristic HO lengths bi given by1

b12 =

√
1

µ12 ω

and b3 =

√
1

µ3 ω
, (2.11)

where µ12 =
m1m2

m1 +m2

and µ3 =
m3 (m1 + m2)

m1 +m2 +m3

. (2.12)

Here, ω is the angular frequency of the oscillator, and µ12 and µ3 are the reduced
masses of the subsystem (12) and of the third particle with respect to the the
cluster m1 + m2, respectively. We assume the i particles to be identical (nucle-
ons), therefore mi = mN.

A possible choice for the antisymmetrisation operator is Â = 1
3

(
1− 2 P̂23

)
. The

transposition operator P̂23 interchanges nucleon 2 and nucleon 3, which corre-
sponds to a transformation of their coordinates, as illustrated in Fig. 2.2 ii). The
antisymmetric subsystem is now (13), nucleon 2 is a spectator, and the set of
Jacobi coordinates is defined analogously to Eq.s (2.10)-(2.12), e.g.:

~ρ13 =
~r1 − ~r3
b13

1As throughout this work we use natural units where ~ = 1 = c.
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~ρ2 =
~r2 − 1

m1+m3
(m1 ~r1 +m3 ~r3)

b2
etc. (2.13)

For the transition from (12)3 to (13)2 one finds:

〈 β ′
3N|P̂23| β3N〉

= 〈(N ′
3 , J

′
3 , T

′
3 ) (N13 , J13 , T13) γ

′
2N n2 (l2 s2) I2 ; (J13 I2)J

′
3 (T13 t2)T

′
3 |

| (N3 , J3 , T3) (N12 , J12 , T12) γ2N n3 (l3 s3) I3 ; (J12 I3) J3 (T12 t3)T3〉

= δN ′
3N3

δJ ′
3J3

δT ′
3 T3

× (−1)s13+s2+s12+s3+T13+t2+T12+t3+l2+l3

×Ĵ13 Î2 Ĵ12 Î3 ŝ13 ŝ12 T̂13 T̂12

×
∑

LS

L̂2 Ŝ2

{
s2 s1 s12
s3 S s13

}{
t2 t1 T12
t3 T3 T13

}

×





l13 s13 J13
l2 s2 I2
L S J3









l12 s12 J12
l3 s3 I3
L S J3





×〈n13 l13 , n2 l2 : L |n12 l12 , n3 l3 : L〉 , (2.14)

where N ′
3 = N13 + 2n2 + l2, as usual si = 1

2
= ti for single nucleons, x̂ =

√
2x+ 1,

and 〈n13 l13 , n2 l2 : L |n12 l12 , n3 l3 : L〉 is the general HO bracket for the
transition (12)3 → (13)2 in configuration space as defined e.g. in [85].

This relation is found in three steps:

a) JJ-coupling → LS-coupling :

First, it is useful to disentangle the orbital matrix elements from the spin
part. A standard recoupling gives the desired result:

〈[
(l13 s13)J13 (l2 s2) I2

]
J ′
3

∣∣ [ (l12 s12)J12 (l3 s3) I3
]
J3
〉

= δL′L δS′S δJ ′
3J3

Ĵ13 Î2 Ĵ12 Î3

×
∑

LS,L′S′

L̂′ Ŝ ′ L̂ Ŝ





l13 s13 J13
l2 s2 I2
L′ S ′ J ′

3









l12 s12 J12
l3 s3 I3
L S J3
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×
〈[

(l13 l2)L
′ (s13 s2)S

′
]
J3
∣∣ [ (l12 l3)L (s12 s2)S

]
J3
〉

= Ĵ13 Î2 Ĵ12 Î3
∑

LS

L̂2 Ŝ2





l13 s13 J13
l2 s2 I2
L S J3









l12 s12 J12
l3 s3 I3
L S J3





×
〈[

(l13 l2)L (s13 s2)S
]
J3
∣∣ [ (l12 l3)L (s12 s3)S

]
J3
〉

(2.15)

b) spin S/isospin T matrix elements:

The spin part of the coordinate transformation is simply given by a 6j–
symbol:
〈[

(s1 s3) s13 s2
]
S ′
∣∣ [ (s1 s2) s12 s3

]
S
〉

= δS′S (−1)s13+s2−S′−s1−s2+s12

×
〈[
s2 (s1 s3) s13

]
S ′
∣∣ [ (s2 s1) s12 s3

]
S
〉

= (−1)s13−S−s1+s12+s1+s2+s3+S

× ŝ13 ŝ12

{
s2 s1 s12
s3 S s13

}

= (−1)s13+s12+s2+s3

× ŝ13 ŝ12

{
s3 s1 s13
s2 S s12

}

(2.16)

The same calculations can be done analogously for the isospin T showing
the conservation of the total isospin.

c) configuration space:

The probably most complicated step is the transformation of the orbital
part. We want to rewrite this in such a way that HO brackets of [85] can
be used. There, the matrix elements 〈n13 l13 , n2 l2 : L |n12 l12 , n3 l3 : L〉
for the HO brackets are introduced corresponding to a transformation T
for the coordinate transformation (12)3 → (13)2 of the form

T =



√

d
1+d

√
1

1+d√
1

1+d
−
√

d
1+d


 . (2.17)
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For our definition of the Jacobi coordinates (Eq. (2.10)) this requires addi-
tional phases:

(
~ρ13
~ρ2

)
=




√
d

1+d
−
√

1
1+d

−
√

1
1+d

−
√

d
1+d



(
~ρ12
~ρ3

)

or

(
~ρ13
−~ρ2

)
=



√

d
1+d

√
1

1+d√
1

1+d
−
√

d
1+d



(

~ρ12
−~ρ3

)
(2.18)

with d =
m2m3

m1 (m1 +m2 +m3)
=

1

3
for three nucleons. The transformation

is therefore given by:

(−1)l2+l3 〈n13 l13 , n2 l2 : L |n12 l12 , n3 l3 : L〉d= 1
3
. (2.19)

We remark that the required sign changes for ~ρ2 and ~ρ3 lead to an additional
phase factor. The complete expression Eq.(2.14) easily follows from a) –
c). We will show that the antisymmetrisation for A-nucleon states can be
traced back to these expressions which demonstrates the conservation of
NA, JA and TA. Therefore, we will drop the ’prefix’ (NA , JA , TA) for all
basis states in the following and always presume δN ′

A
N

A

δJ ′
A
J
A

δT ′
A
T
A

.

With this one finds the antisymmetric γ3N–states by diagonalising the matrix

〈 β ′
3N| 1

3

(
1− 2 P̂23

)
| β3N〉 and selecting eigenstates of the eigenvalue 1.The

eigenstates will be complicated linear combinations of β3N–states and therefore
finally only given numerically in form of weight factors of β3N–states.
Keeping this complication in mind, the proceeding to higher A is similar: based
on the antisymmetric γ(A−1)N–states, a single nucleon is coupled to form the βAN–

states (Fig. 2.3 ii) ). To solve the eigenvalue problem Eq. (2.4) for A nucleons

with Â = 1
A

(
1− (A− 1) P̂A(A−1)

)
(Eq. (2.6)) we need to go back to β(A−1)N–

states and combine them with a single nucleon as illustrated in Fig. 2.3 i). These
intermediate states are here denoted by | β ⋆

AN〉 and contain two single nucleons so
that we can perform the coordinate transformation of the A-th and the (A−1)-th

nucleon, P̂A(A−1).

To shorten the notation, we identify the antisymmetric subsystem | γ(A−2)N〉 with

| γa 〉, which together with the single nucleon b forms the β(A−1)N = βb–states;
nucleon A is labelled by the index c. This notation also emphasises the analogy
to the 3N case since the transposition operator P̂A(A−1) = P̂bc corresponds to a

transition from (ab) c to (ac) b.
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γa = γ(A−2)N

b

c

βb = β(A−1)N

lb nb, Ib
lc

nc, Ic c ′

l ′c

n ′
c, I

′
c

γb = γ(A−1)N

i) ii)

Figure 2.3: i) β ⋆
AN–state and ii) βAN–state

With this the antisymmetrisation matrix is calculated as:

〈 β ′
AN |P̂bc| βAN 〉 =

∑

β ⋆ ′
ANβ ⋆

AN

〈 β ′
AN | β ⋆ ′

AN 〉〈 β ⋆ ′
AN|P̂bc| β ⋆

AN 〉〈 β ⋆
AN | βAN 〉 . (2.20)

For comprehensibility, this sum can also be shown in a descriptive way:

〈 β ′
AN |P̂bc| βAN 〉 =

P̂bc ,
(2.21)

where single nucleons are depicted as solid dots and antisymmetric subsystems
as shaded blobs. For this simplified notation, we assume that a sum over inter-
mediate states is implied.
The overlap 〈 β ⋆

AN |βAN〉 can be deduced from Fig. 2.3: if particle c (and its
quantum numbers) are the same as c ′ (and its quantum numbers), the resulting
coefficient is known from the antisymmetrisation of the (A− 1)-nucleon system.

〈 β ⋆
AN |βAN〉 = δc ′c 〈 β(A−1)N | γ(A−1)N 〉

where δc ′c = δn ′
c nc

δl ′c lc δI ′
c Ic (2.22)

The coefficients cannot be given in an analytical form but will be calculated
numerically. Here it is obvious, that antisymmetrised states have to be generated
successively for A = 3, 4, . . . , A. For | β ⋆

AN〉 we define the Jacobi coordinates for
the system (ab)c analogously to Eq. (2.10):

~ρb =
~ra − ~rb
bb
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γa = γ(A−2)N
γ ′
a = γ ′

(A−2)N

bb

cc

βb = β(A−1)N β ′
c = β ′

(A−1)N

lb
l ′bnb, Ib

lc

nc, Ic

n ′
b, I

′
b

n ′
c, l

′
c, I

′
c

i) ii)

Figure 2.4: i) β ⋆
AN–state and ii) β ⋆ ′

AN–state

~ρc =
~rc − 1

ma+m
b

(ma ~ra +mb ~rb)

bc
(2.23)

and compare the assignments for the quantum numbers of | β3N〉 and | β ⋆
AN〉, as

depicted in Fig. 2.1 and Fig. 2.4 i), respectively, in order to be able to lead back

the expression for 〈 β ⋆ ′
AN| P̂bc | β ⋆

AN〉 to Eq. (2.14). To account for the opposite

direction of lb and l12, the coordinate ~ρb acquires a phase (−1)lb . The system (ac)b

is defined analogously including a phase (−1)l
′
c . The transposition P̂bc leaves the

γa–state unchanged which yields δΓ ′
aΓa

= δN ′
aNa

δJ ′
aJa δT ′

aTa
δγ ′

aγa .
This simple consideration fixes the required phase in order to match Eq. (2.14).
Unfortunately, the coupling scheme of the βb– and β ′

c–states is not identical to
that used in Eq. (2.14). Focussing on the angular momentum part of

〈 β ⋆ ′
AN |P̂bc| β ⋆

AN 〉

= 〈(N ′
c , J

′
c , T

′
c ) β ′

c n ′
b (l ′b sb) I

′
b ;
{[
Ja (l ′c sc) I

′
c

]
J ′
c I

′
b

}
JA
[

(Ta tc)T
′
c tb

]
TA |

| (Nb , Jb , Tb)βb nc (lc sc) Ic ;
{[
Ja (lb sb) Ib

]
Jb Ic

}
JA
[

(Ta tb)Tb tc
]
TA〉 ,

the angular momenta of | β ⋆
AN〉 need to be recoupled in the following way

(δN ′
A
N

A

δJ ′
A
J
A

δT ′
A
T
A

implied):

〈{[
Ja (l ′c sc) I

′
c

]
J ′
c (l ′b sb) I

′
b

}
JA
∣∣{[Ja (lb sb) Ib

]
Jb (lc sc) Ic

}
JA
〉

= (−1)lb+l ′c (−1)I
′
c−l ′c−sc (−1)Ib−lb−sb
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×
〈{[

Ja (sc l
′
c) I

′
c

]
J ′
c (l ′b s

′
b) I

′
b

}
JA
∣∣{[Ja (sb lb) Ib

]
Jb (lc sc) Ic

}
JA
〉

= (−1)I
′
c−sc+I

b
−s

b (−1)Ja+sc+l ′c+J ′
c (−1)Ja+s

b
+l

b
+J

b

×
∑

S ′
cSb

Î ′
c Ŝ

′
c

{
Ja sc S ′

c

l ′c J ′
c I ′

c

}
Îb Ŝb

{
Ja sb Sb

lb Jb Ib

}

×
〈{[

(Ja sc)S
′
c l ′c

]
J ′
c (l ′b sb) I

′
b

}
JA
∣∣{[ (Ja sb)Sb lb

]
Jb (lc sc) Ic

}
JA
〉

= (−1)I
′
c+I

b
+2Ja+l ′c+J ′

c+l
b
+J

b (−1)l
′
c+S ′

c−J ′
c (−1)lb+S

b
−J

b

×
∑

S ′
cSb

Î ′
c Ŝ

′
c Îb Ŝb

{
Ja sc S ′

c

l ′c J ′
c I ′

c

}{
Ja sb Sb

lb Jb Ib

}

×
〈{[

l ′b (Ja sc)S
′
c

]
J ′
c (l ′b sb) I

′
b

}
JA
∣∣{[lb (Ja sb)Sb

]
Jb (lc sc) Ic

}
JA
〉

= (−1)I
′
c+I

b
+2Ja+S ′

c+S
b

×
∑

S ′
cSb

Î ′
c Ŝ

′
c Îb Ŝb

{
Ja sc S ′

c

l ′c J ′
c I ′

c

}{
Ja sb Sb

lb Jb Ib

}

×
〈{[

l ′c (Ja sc)S
′
c

]
J ′
c (l ′b sb) I

′
b

}
JA
∣∣{[lb (Ja sb)Sb

]
Jb (lc sc) Ic

}
JA
〉

(2.24)

This expression can now be compared to Eq. (2.14). Adding the phase factor

(−1)lb+l ′c from above and using d = 1
A(A−1)

we find the full expression for the

coordinate transformation (ab) c to (ac) b:

〈 β ⋆ ′
AN |P̂bc| β ⋆

AN 〉

= 〈(N ′
c , J

′
c , T

′
c ) β ′

c n ′
b (l ′b sb) I

′
b ;
[

(J ′
a I

′
c )J ′

c (l ′b sb) I
′
b

]
JA
[

(T ′
a tc)T

′
c tb

]
TA |

| (Nb , Jb , Tb)βb nc (lc sc) Ic ;
[

(Ja Ib) Jb (lc sc) Ic
]
JA
[

(Ta tb)Tb tc
]
TA〉

= δΓ′
aΓa

(−1)I
′
c+I

b
+2Ja+T ′

c+T
b
+l ′

b
+lc

×Î ′
c Ĵ

′
c Î

′
b Îb Ĵb Îc T̂

′
c T̂b

×
∑

S ′
cSb

Ŝ ′ 2

c Ŝ
2

b

{
Ja sc S ′

c

l ′c J ′
c I ′

c

}{
Ja sb Sb

lb Jb Ib

}
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×
∑

LS

L̂2 Ŝ2

{
sc Ja S ′

c

sb S Sb

}{
tc Ta T ′

c

tb TA Tb

}

×





l ′c S ′
c J ′

c

l ′b sb I ′
b

L S JA









lb Sb Jb
lc sc Ic
L S JA





×〈n ′
c l

′
c , n

′
b l

′
b : L |nb lb , nc lc : L〉d= 1

A(A−2)
, (2.25)

We remark that the number of β ⋆
AN–states always exceeds the number of βAN–

states. The βAN–states are more restricted by symmetry aspects, similar to | βAN〉
with respect to | γAN〉, since they are a complete basis for the space of antisym-
metric (A − 1)-nucleon states while the β ⋆

AN–states are a complete basis for the
space of antisymmetric (A− 2)-nucleon states. Therefore we can always describe
the βAN–states completely in terms of the β ⋆

AN–states, but not vice versa.
We also note that the HO basis allows one to construct antisymmetrised states
that are independent of ω. Once a basis is evaluated, it can be employed for all
ω. This is obviously important for the application.

With this method of coordinate transformation different sets of basis states can
be constructed. To include NN- and few-N forces to the nuclear potential in a
simple way we perform the transformation in such a way that antisymmetric 2N-
or few-N states are separated. This formalism is discussed in the following section.

2.2 Matrix elements of n-body operators

For the calculation of the energies we need to solve the eigenvalue equation

∑

Γ
AN

〈Γ ′
AN |Ĥ|ΓAN 〉〈ΓAN |Ψ 〉 = E

(AN)
b 〈Γ ′

AN |Ψ 〉 . (2.26)

The eigenvalue equation is readily solved using standard methods so that the
problem is reduced to the calculation of the matrix elements of the Hamiltonian

Ĥ = T̂AN +
∑

pairs

V̂NN +
∑

triples

V̂3N +
∑

quadruples

V̂4N + . . . (2.27)

As shown in App. A.2, the kinetic energy can be written as

T̂AN =
∑

i<j

2

A
T̂ij , (2.28)
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where T̂ij = p 2
ij/mN is the relative kinetic energy of the pair (ij). Using the

antisymmetry of the basis states, we can simplify the expression for the matrix
elements to

〈Γ ′
AN |Ĥ|ΓAN 〉 =

(
A

2

)〈
Γ ′
AN

∣∣
(

2

A
T̂12 + V̂12

) ∣∣ΓAN

〉

+

(
A

3

)〈
Γ ′
AN

∣∣V̂123
∣∣ΓAN

〉

+ . . . (2.29)

Therefore, we want to show in this section how such matrix elements can be
evaluated in the to our experience most efficient way. We start with the example
of two-body operators for A = 3 and generalise these to the more complex cases.
For the triton (3H) or 3He we make use of the 〈 β | γ 〉–coefficients of the 3N-
system. As pointed out in the previous section, the γ3N–states can completely be
expressed in terms of the β3N–states. The β3N–states are constructed as a single
nucleon coupled to an antisymmetric 2N–state, Eq. (2.9), which is then used to
calculate the two-nucleon contribution of the binding energy:

E
(3N)
b 〈Γ ′

3N |Ψ 〉

=
∑

Γ3N

〈Γ ′
3N |Ĥ|Γ3N 〉 〈Γ3N |Ψ 〉

=
⋃

N ′
3 ,N3

3×
∑

γ3N

∑

β ′
3Nβ3N

〈 γ ′
3N| β ′

3N〉〈 β ′
3N|
(

2

3
T̂12 + V̂12

)
| β3N〉〈 β3N| γ3N〉〈 γ3N |Ψ 〉

(2.30)

For A > 3 the two-nucleon contribution can be calculated similarly if we are able
to identify an antisymmetric 2N-subsystem from | γAN〉. To this aim we consider
β ⋆
AN–states and perform a coordinate transformation such that the antisymmetric

(A− 2)-nucleon system couples as a spectator to an antisymmetric 2N–state, as

indicated in Fig. 2.5. These states will be denoted by | β̃(2)
AN〉; the superscript (2)

indicates which antisymmetric subsystem is separated. The projection onto the
completely antisymmetrised A-nucleon states 〈 γAN| β̃(2)

AN〉 is calculated via:

〈 γAN |β̃(2)
AN〉 =

∑

ββ⋆

〈 γ | β 〉〈 β | β⋆ 〉〈β⋆ | β̃(2) 〉

= (2.31)

For simplicity the subscript AN is omitted on the right-hand side. The transition
〈β ⋆

AN | β̃(2)
AN 〉 requires another recoupling of 〈β ⋆

AN |:

〈β ⋆
AN | = 〈

(
NA−1, JA−1, TA−1

)
β(A−1)N n2 (l2 s2) I2;
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i) ii)

1 1

2

2

γ(A−2)N

γ(A−2)N

β(A−1)N

l2

n2, I2
lA−1

nA−1, IA−1

λ

nλ, Iλ

γ2N

Figure 2.5: β⋆
AN–state ( i) ) and β̃

(2)
AN–state ( ii) ); solid blobs denote single

nucleons.

{[
JA−2

(
lA−1 s1

)
IA−1

]
JA−1 I2

}
JA
[ (
TA−2 t1

)
TA−1 t2

]
TA| (2.32)

so that the angular momenta couple as follows:

〈 {[
JA−2

(
lA−1 s1

)
IA−1

]
JA−1 (l2 s2) I2

}
JA
∣∣

= (−1)IA−1−l
A−1−s1

×
〈 {[

JA−2

(
s1 lA−1

)
IA−1 JA−2

]
JA−1 (l2 s2) I2

}
JA
∣∣

= (−1)IA−1−l
A−1−s1+J

A−2+s1+l
A−1+J

A−1

×
∑

S
A−1

ÎA−1 ŜA−1

{
JA−2 s1 SA−1

lA−1 JA−1 IA−1

}

×
〈 {[ (

JA−2 s1
)
SA−1 lA−1

]
JA−1 (l2 s2) I2

}
JA
∣∣

= (−1)IA−1+J
A−2+J

A−1−J
A−1+l

A−1+S
A−1

×
∑

S
A−1

ÎA−1 ŜA−1

{
JA−2 s1 SA−1

lA−1 JA−1 IA−1

}

×
〈 {[

lA−1

(
JA−2 s1

)
SA−1

]
JA−1 (l2 s2) I2

}
JA
∣∣

= (−1)IA−1+J
A−2+l

A−1+S
A−1−S

A−1+s1+J
A−2

×
∑

S
A−1

ÎA−1 ŜA−1

{
JA−2 s1 SA−1

lA−1 JA−1 IA−1

}
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×
〈 {[

lA−1

(
s1 JA−2

)
SA−1

]
JA−1 (l2 s2) I2

}
JA
∣∣

= (−1)IA−1+2J
A−2+l

A−1+s1−T
A−1+t1+T

A−2

×
∑

S
A−1

ÎA−1 ŜA−1

{
JA−2 s1 SA−1

lA−1 JA−1 IA−1

}

×
〈 {[

lA−1

(
s1 JA−2

)
SA−1

]
JA−1 (l2 s2) I2

}
JA
∣∣ (2.33)

Defining | β̃(2)
AN 〉 as

| β̃(2)
AN 〉 = | (N12, J12, T12) γ2N nλ λ

(
NA−2, JA−2, TA−2

)
γ(A−2)N ;

{
[l12 (s1 s2) s12]J12

(
λ JA−2

)
Iλ
}
JA

[
(t1 t2) T12 TA−2

]
TA〉, (2.34)

the individual quantum numbers for the transition 〈 β⋆
AN | β̃(2)

AN 〉 can be identified
with those of Eq.s (2.15) - (2.19):

〈 β⋆
AN | β̃(2)

AN 〉 = (−1)IA−1+2J
A−2+l

A−1+s1−T
A−1+T

A−2+t1

×
∑

S
A−1

ÎA−1 ŜA−1

{
JA−2 s1 SA−1

lA−1 JA−1 IA−1

}

×
〈 {[

lA−1

(
s1 JA−2

)
SA−1

]
JA−1 (l2 s2)I2

}
JA

[ (
t1 TA−2

)
TA−1 t2

]
TA
∣∣

∣∣{[l12 (s1 s2) s12
]
J12

(
λ JA−2

)
Iλ
}
JA

[
(t1 t2) T12 TA−2

]
TA
〉

= (−1)3JA−2+I
A−1+l

A−1+l2+λ+s12+s1+s2+T12+t1+t2+2T
A−2

× ĴA−1 Î2 Ĵ12 Îλ ŝ12 T̂12 T̂A−1 ÎA−1

×
∑

S
A−1

(−1)SA−1 Ŝ 2
A−1

{
JA−2 s1 SA−1

lA−1 JA−1 IA−1

}

×
∑

LS

L̂2 Ŝ2

{
s2 s1 s12
JA−2 S SA−1

}{
t2 t1 T12

TA−2 TA TA−1

}

×





lA−1 SA−1 JA−1

l2 s2 I2
L S JA









l12 s12 J12
λ JA−2 Iλ
L S JA





×〈nA−1 lA−1, n2 l2 : L |n12 l12 , nλ λ : L〉d=A−2
A

(2.35)
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Again we regard the completeness of these states with respect to each other which
leads to the following orthogonality relations in addition to Eq. (2.5):

∑

β ⋆

AN

〈 β̃(2) ′
AN | β ⋆

AN 〉〈 β ⋆
AN | β̃(2)

AN 〉 = δ
β̃
(2) ′
AN β̃

(2)
AN

(2.36)

∑

β̃
(2)
AN

〈 β ′
AN | β̃(2)

AN〉〈 β̃(2)
AN | βAN 〉 = δβ ′

ANβ
AN

(2.37)

∑

β̃
(2)
AN

〈 γ ′
AN | β̃(2)

AN〉〈 β̃
(2)
AN | γAN 〉 = δγ ′

ANγ
AN

(2.38)

Furthermore, Eq. (2.36) also yields δβ ⋆ ′
ANβ ⋆

AN
if the 2N-subsystem of | β̃(2)

AN〉 is not

restricted to antisymmetric states but covers the full two-nucleon space:
∑

β̃
(2)
AN

〈 β ⋆ ′
AN | β̃(2)

AN 〉〈 β̃(2)
AN| β ⋆

AN 〉 = δβ ⋆ ′
ANβ ⋆

AN
(2.39)

With the 〈 γAN | β̃(2)
AN 〉-coefficients the two-nucleon contribution to the binding

energy takes a similar form as Eq. (2.30):

E
(AN)
b 〈Γ ′

AN |Ψ 〉

=
∑

Γ
AN

〈Γ ′
AN |Ĥ|ΓAN 〉 〈ΓAN |Ψ 〉

=
⋃

N ′
A
,N

A

(
A

2

)
×
∑

γ
AN

∑

β̃
(2) ′
AN β̃

(2)
AN

〈 γ ′
AN| β̃(2) ′

AN 〉〈β̃(2) ′
AN |

(
2

A
T̂12 + V̂12

)
| β̃(2)

AN〉〈β̃
(2)
AN |γAN〉〈γAN|Ψ〉

(2.40)

This formalism provides a straight forward extension to the inclusion of few-N
forces: performing an appropriate coordinate transformation i-nucleon subsys-
tems can be separated from A-nucleon states such that they are coupled to an an-
tisymmetric (A− i)-nucleon state as spectator. The orthogonality relation (2.38)

holds for all 〈 β̃(i)
AN| γAN 〉. Accordingly, for nuclei with A > 4 the construction of

β̃
(3)
AN–states, where | γ3N〉 couple to | γ(A−3)N〉, includes 3NF in a convenient way.

The projections onto | γAN 〉 require a sum over three intermediate states:

〈γAN |β̃(3)
AN〉 =

∑

β̃(2) β(2)⋆ β̂(2)

〈γ|β̃(2)〉〈 β̃(2)| β(2)⋆〉〈β(2)⋆| ˆβ(2)〉〈 ˆβ(2)| ˜β(3)〉

= .
(2.41)

Their derivation is outlined in App. B.



Chapter 3

Implementation

As discussed in the previous chapter the antisymmetrisation of basis states and
the calculation of binding energies represent eigenvalue problems, the former of
the matrix Mβ′β = 〈 β ′

AN|Â| βAN〉 with the dimension βmax × βmax, the latter of

MΓ′Γ = 〈Γ ′
AN|Ĥ |ΓAN〉 with the dimension Γmax × Γmax. Considering NN forces

only, the calculation of both matrices require a double sum, for Mβ′β over β⋆ ′
AN

and β⋆
AN, and for MΓ′Γ over β̃

(2) ′
AN and β̃

(2)
AN. All numbers increase considerably

with A and NA. Since not only the number of β–states exceeds the number of
γ–states approximately by a factor of A, but also the number of β⋆–states is
approximately twice as large as the number of β̃(2)–states, the antisymmetrisa-
tion is the most memory consuming part of the formalism, apart from the 3NF
coefficients 〈 β̃(2)

AN | γAN 〉. Furthermore, the number of β⋆–states even exceeds the
number of β–states approximately by a factor of (A − 1). From Eq. (2.22) this
becomes evident since the projection 〈 β ⋆

AN | βAN 〉 is the overlap 〈 β | γ 〉 of the
(A − 1)-nucleon system times a δ-function for the spectator nucleon and since
there are (A − 1)-times more β– than γ–states in the (A − 1)-nucleon system.
Though the antisymmetriation can be done (NA, JA, TA)-blockwise, this results
in data that requests memory capacity of the order of several GB. Therefore, the
storage of the data as well as the evaluation of eigenvalues and eigenvectors needs
to be parallelised in a highly efficient way. Tables 3.1 and 3.2 show examples for
the increase of βmax with A, NA and JA, and for the relation of the numbers of
γ-, β- and β⋆–states, respectively.
To achieve an efficient parallelisation we use several libraries for the calcula-
tions: For the matrix eigenvalue equations we employ the routines of the library
ScaLAPACK (Scalable Linear Algebra Package) that are fairly well parallelised
and sufficient for our purposes. They work on completely distributed matrices
which is essential for an efficient use of the available memory. Therefore, a sim-
ilarly efficient calculation of the matrix elements is challenged. We found that
compromises have to be made here between an efficient use of memory and a
reduction of communication time. For the communication we choose the library

33
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A = 4 A = 5 A = 6 A = 7NA J4 = 4, T4 = 1 J5 = 7/2, T5 = 1/2 J6 = 3, T6 = 1 J7 = 1/2, T7 = 1/2

5 250 831 1519 987

6 571 2231 4856 3340

7 1139 5258 13499 9957

8 2065 11248 33756 26954

9 3485 22309

10 5565 41610

A = 4 A = 5 A = 6
JA N4 = 10, JA N5 = 10, JA N6 = 8,

T = 1 T = 1/2 T = 1

2 4812 3/2 31532 1 23411

3 5553 5/2 39756 2 32218

4 5565 7/2 41610 3 33756

5 5001 9/2 38074 4 29303

6 4073 11/2 31021 5 21615

Table 3.1: Increase of βmax with NA for the largest blocks (upper table) and with
JA (lower table) for several A.
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A = 4 A = 5 A = 6
J=3, T=1 J=7/2, T=1/2 J=3, T=1

NA γmax βmax β ⋆
max γmax βmax β ⋆

max γmax βmax β ⋆
max

2 3 12 39

3 13 52 162 11 61 264 8 74 481

4 37 151 463 48 258 1084 49 391 2294

5 88 353 1073 159 831 3431 217 1519 8473

6 178 715 2165 433 2231 9117 718 4856 26277

Table 3.2: Examples for the relation β ⋆
max ≈ (A− 1)×βmax ≈ (A− 1)×A×γmax.
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MPI (Message Passing Interface). Both ScaLAPACK and MPI provide the pos-
sibility to build groups of processes that can exchange data in a way that is
independent of each other. This enables us to define a practical compromise of
data distribution and reduction of communication time. In MPI language, these
groups are called communicator. Since we use a two-dimensional arrangement
of processes, the communicator can usually also be chosen as two-dimensional.
For a descriptive illustration of the parallelisation we will therefore denote these
two dimensions of the communicator by ’row’ and ’col’ so that the number of
processes is npe = nperow · npecol.
The definition of the antisymmetrised states is given by the weights of β–states
in a fully antisymmetrised γ–state. These coefficients form large datasets that
need to be written to disk machine-independently. Since the data is generated
in a distributed way, parallel input/output (I/O) will be required. Apart from
saving such data, an efficient reading is required, since the coefficients of the
(A−1)-nucleon system need to be retrieved for the evaluation of antisymmetrised
A-nucleon states. This task can be performed by the parallel I/O library HDF5.
HDF5 enables us to write distributed data globally to disk and generates machine
independent files. With this all coefficients that are generated once can also be
read in in every desired distribution with HDF5 which helps to save memory
capacity for each run.
The following section will be devoted to the considerations of these aspects. For
readability we omit the subscript AN throughout this chapter and label only the
(A− 1)-nucleon system.

3.1 Parallelisation scheme

We illustrate the parallelisation of double sums with the example of Mβ′β. The
two-dimensional communicator is used to distribute two of the involved indices.
Here, notations like β ⋆

col and β ⋆ ′
row imply that β ⋆ is distributed over col–processes

and β ⋆ ′ over row–processes. The sums are separated into two steps :

M ′
β′β⋆′

row
=
∑

β⋆

col

〈 β ′ | β ⋆
col 〉〈 β ⋆

col |P̂bc | β ⋆ ′
row 〉 (3.1)

With this the matrix 〈 β ⋆ |P̂bc | β ⋆ ′ 〉 (calculated from Eq. (2.25)) with the largest
dimension is most widely distributed in both indices and the sum is performed lo-
cally followed by one communication over col, corresponding to a MPI REDUCE
operation. The intermediate result M ′

β′β⋆′
row

is not distributed in its first index in
order to minimise the communication for this step but distributed in its second
index. This choice is advisable since β⋆

max is (A−1)-times larger than βmax. Con-
sequently we need to keep both distributions of the β⋆-coefficientsThe projection
〈 β ′ | β ⋆ 〉 contains the overlap 〈 γ | β 〉 of the (A− 1)-nucleon system. Though N ,
J and T are conserved for the A-nucleon system, this does not constrain these
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quantum numbers of the (A − 1)-nucleon system. Therefore, all blocks of the
(A−1)-nucleon system need to be known for the antisymmetrisation which illus-
trates again the large quantity of data, even though the overlaps are distributed
in one index over col-processes, 〈 γ | βcol 〉, to match 〈 β ′ | β ⋆

col 〉 of the sum.

The second step is

M ′′
β′βcol

=
∑

β⋆′
row

M ′
β′β⋆′

row
〈 β ⋆ ′

row | βcol 〉 . (3.2)

Again, the projection 〈 β ⋆ | β 〉, i.e. the overlap 〈 β | γ 〉 of the (A−1)-nucleon sys-
tem, needs to be known as input. Here, this overlap is distributed as 〈 βrow | γ 〉
to match the distribution of β⋆′

row of the sum; the second index remains undis-
tributed to minimise the communication as in the first step. Then the sum can
again be performed locally and the result is obtained using a MPI REDUCE step
over row. As the second index of M ′′

β′βcol
is already distributed over col, each

of the nperow picks out its local β ′
row from M ′′

β′βcol
for the final result Mβ′

rowβcol
.

The routines of ScaLAPACK diagonalise Mβ′
rowβcol

and give back the eigenvalues
0 or 1 and their corresponding eigenvectors which solves the matrix eigenvalue
equation Eq. (2.4).
With similar considerations we split the double sums of MΓ′Γ (Eq. (2.40)) and

of Eq. (2.31) to evaluate the projection 〈 γ | β̃(2) 〉. β̃
(2)
max differs from β ⋆

max by a
factor of 1/2 due to the additional antisymmetry in the 2N-subsystem, still it
exceeds βmax by (A− 1) /2 . Therefore the overlap 〈β ⋆ | β̃(2)〉 needs to be dis-
tributed in both directions. Even more careful considerations are necessary for
the parallelisation of the triple sum for the projection 〈 γ | β̃(3) 〉 (App. B). With
the orthogonality relations, Eqs. (2.5), (2.36)- (2.39) , we are able to verify the
completeness and the antisymmetry of the respective states.
Now HDF5 enables us to store these A-nucleon bookkeepings in a convenient way
that takes account for the (N , J, T )-block structure of our formalism by subdivid-
ing the data into groups. Each group may contain several datasets. As an exam-
ple, for the antisymmetrisation these are the β- and γ-bookkeepings, i.e. the num-
ber of β–states βmax and the quantum numbers n, l, I,

(
NA−1, JA−1, TA−1

)
γ(A−1)N

for each β, the number of γ–states γmax and the overlaps 〈 β | γ 〉 (Eq. (2.25)), while
the γ–states are uniquely defined by the quantum numbers of their (N , J, T )-
block and a counting index. The parity of the states is determined by N . From
these files, the relevant information on the A-nucleon system can be read in when
proceeding to A+ 1 in both required distributions. Going to higher model spaces
already existing groups, i.e. (N , J, T )-blocks, can be skipped, and new groups
are simply appended to the database. Thus bookkeepings can be extended block
by block for each A.
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Figure 3.1: Memory usage (left) for several distributions of nperow× npecol for
calculations on 128 nodes x 2 tasks/node = 256 tasks and their runtime be-
haviour (right). The total runtime is composed of the runtime for reading existing
bookkeepings with HDF5 (I/O–time, red)and the runtime for the evaluation of
the antisymmetrisation matrix and its solution with ScaLAPACK (γ–book time,
blue).

3.2 Performance and scaling

The calculations were performed on JUQUEEN (Jülich Blue Gene/Q) with a
memory capacity of 16 GB per node and 16 cores per node.
To test the parallelisation we analyse the efficiency for the antisymmetrisation of
6N states regarding the memory usage and the runtime. In the model space of
N = 6, the dimensions of the largest (N , J, T )-block are γmax = 133, βmax = 901
and β⋆

max = 4691. The memory usage, which is the most limiting aspect for this
formalism, depends on the number and the distribution of the parallel processes,
and in particular on the partition of the communicators row and col. As shown
in the left diagram of Fig 3.1 a choice of 4 times as many row-distributed as
col-distributed processes, nperow = 4× npecol, optimises the memory usage and
the runtime (Fig 3.1, right diagram). This factor originates from the above de-
scribed evaluation of Mβ′β (Eq.s (3.1) and (3.2)): the dimension of M′, which
is βmax × β⋆

max, outnumbers the dimension of M′′ (βmax × βmax) approximately
by a factor of (A − 1), therefore an (A − 1)-times higher parallelisation in the
row-direction is necessary to get a balanced memory usage.
The dependence of the memory usage and the runtime on the number of tasks is
illustrated in Fig. 3.2. Since we distribute in the two directions row and col, we
need to multiply the number of tasks by a factor of 4, i.e. a factor of 2 for each
direction simultaneously, to divide the memory usage by a factor of 2 (upper left
diagram). In this sense, we observe a good memory scaling up to npe = 64, larger
partitions are unfavourable due to the rather small dimension of this example.
Similarly, the runtime scaling is acceptable though not ideal up to npe = 64 (up-
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per right diagram): the total I/O-time does not decrease, however, its percentage
of the total runtime is considerably smaller than that of the time to evaluate and
solve the matrix Mβ′

rowβcol
, called γ–book time in the following, so that this effect

is less significant. The γ–book time decreases measurably (though not about a
factor of 4 but approximately a factor of 3).
We also examined the behaviour of this test calculation with npe = 1024 and
npe = 4096 where we observe an enormous increase of the I/O-time for the HDF5
routines. This turns out to be a serious problem for large dimensions where the
I/O-time dominates the total runtime by far. For this reason we prefer small
numbers of tasks for the further calculations and ensure the required memory
capacity by choosing the number of tasks per node accordingly. Though a small
number of tasks increases the scalapack/gammabook-time this was more efficient
at this point. Further studies on the parallel I/O are in progress.
From the third diagram of Fig. 3.2 we deduce that, fortunately, the number of
tasks per node has no significant influence on the runtime. Therefore, we are able
to choose the number of tasks per node according to the required memory per
task, which will be the full capacity (16 GB/task =̂ 1 task/node) for very large
dimensions.
So far, the largest production run was performed on 16384 tasks to calculate
γmax = 8239 basis states in terms of βmax = 41610 for A = 5, N = 10, J = 7/2
and T = 1/2 with a runtime of 24 minutes. It will be interesting if further im-
provement of the performance will be possible once the parallel I/O has been
better analysed.
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Figure 3.2: Upper diagrams: Memory usage and runtime dependent on the num-
ber of tasks (nperow×npecol = 8 × 2, 16 × 4, 32 × 8, 64 × 16, and 128 × 32,
respectively; tasks per node = 4). Lower diagram: Runtime behaviour of calcula-
tions with 1024 tasks and 1, 2, 4 and 8 tasks per node, nperow×npecol = 64× 16.
Color code as described in Fig. 3.1
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3.3 NN contribution to the binding energy

Considering NN forces, the matrix eigenvalue equation for the solution of the
Schrödinger equation, Eq. (2.40), can be solved in a convenient way employing
the above described β̃(2)-bookkeeping due to the separation of antisymmetric 2N–
states.
The matrix elements of the kinetic energy simplifies working in momentum space
and in natural units, derived explicitly in App. A.1. With Eq. (A.9) the following
standard expression holds:

〈β̃(2) ′ | T̂12 | β̃(2)〉 = δΓ ′
(A−2)N

Γ
(A−2)N

× 1
2
ω δl′12l12

×
(
−δ

n′
12,(n12+1)

√
(n12 + 1) (n12 + l12 + 3/2)

+δn′
12,n12

(2n12 + l12 + 3/2)

−δ
n′
12,(n12−1)

√
(n12 + 1) (n12 + l12 + 1/2)

)

(3.3)

This is, for the first time, ω dependent.
The matrix elements of the potential,

〈β̃(2) ′ | V̂NN | β̃(2)〉 = δΓ ′
(A−2)N

Γ
(A−2)N

× (−1)n
′
12+n12+(l ′12−l12)/2 b 312

×
∫
dp′12 p

′ 2
12 R̂n ′

12 l
′
12

(p̃ ′
12)

∫
dp12 p

2
12 R̂n12 l12

(p̃12) VNN (~p ′
12, ~p12) ,

(3.4)

contains the dimensionless radial HO wave functions Rn12 l12
(p̃12) as defined in

Eq. (A.6). The symmetric, charge-independent NN potential consists of three

different charge-dependent components V
T m

T

NN , according to the three different
pairs of nucleons nn, pp (T = 1,mT = −1 and mT = 1, respectively) and np
(T = 0). To account for their individual contribution, we consider the coefficients
cT m

T

from [86] to sum up these charge-dependent potentials:

VNN =
∑

m
T

cT m
T

V
T m

T

NN ,

c00 = 1

c1 1 =
4Z (Z − 1)

3A (A− 2) + 4T (T + 1)
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Figure 3.3: Convergence with the number of grid points for the potential VSRG.

c1 0 =
8NZ − A (A− 1) + 4T (T + 1)

3A (A− 2) + 4T (T + 1)

c1−1 =
4N (N − 1)

3A (A− 2) + 4T (T + 1)

with normalisation
∑

m
T

cT m
T

= 1 ,

(3.5)

where N denotes the number of neutrons and Z the number of protons. Further-
more, we restrict the evaluation of Eq. (3.4) to JNN = 6 since we estimate that
only the corresponding partial waves are relevant, and optimise the integration by
interpolating the potential using cubic hermitean splines of App.B of [87] which
reduces the number of actual evaluations of the potential.
Throughout this work, we employ the NN-only VSRG evolved from the 500 MeV
N3LO NN potential from Ref. [26] including the electromagnetic interaction with
different cutoffs λ for our calculations. Further input parameters are the nucleon
mass mN = 938.92 MeV and ~c = 197.33 MeV·fm. Test calculations with λ = 1.5
fm−1 showed that the binding energy of 4He is converged up to 1 keV for a num-
ber of 120 grid points for the potential matrix and 200 interpolation points for
momenta p ′

12 and p12 from 0 fm−1 to 4 fm−1. The runtime is not affected signif-
icantly by an increase of these grid points since they parameterise simple sums
that can be well parallelised with respect to p ′

12 and p12, whereas the number of
internal grid points for the VSRG evolution needs to be regarded more carefully.
Fig. 3.3 shows the convergence of the binding energy of 4He with this number.
Since we observe an immense increase of the runtime for a larger number of grid
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Figure 3.4: Example of the ω-dependence of the 4He binding energy; λ = 2.5 fm−1

and N = 6. The red crosses depict the results of the calculations, the dashed
green line illustrates the fit to Eb (ω). The solid red line is generated using cubic
splines to guide the eye.

points a minimum choice is important. Here we decided on 52 grid points due
to the convergence of the binding energy up to 1 keV likewise. With this we are
able to solve the eigenwert problem for the Schrödinger equation, Eq.(2.40).
First investigations of the convergence of the binding energy of 4He with N =
4, 6, 8 and 10 are illustrated in Fig. 3.5. Since the oscillator length b depends
on ω (Eq. (2.11)) there is an ωopt for which the 4He wave function is optimal pa-
rameterised by the HO wave functions in the given model space. Consequently,
calculations with ωopt give the lowest results of Eb for each N , EωN . To find this
value we apply the following technique, exemplified for λ = 2.5 fm−1 in the model
space of N = 6 in Fig. 3.4: To approximate Eb (ω) we choose a logarithmic scale
for ~ω and fit a polynomial of second degree around the minimum of the curve,
denoted by the dashed line, with the following ansatz:

Eb (ω) = EωN + κ
(
log (ω) − log

(
ωopt

))2
. (3.6)

A Taylor expansion around the minimum gives a measure for the variation of
EωN , ∆EωN , if ωopt is changed by a small variation ∆ω around this minimum:

∆EωN =
κ

ω 2
opt

(∆ω)2 , (3.7)

which is indicated by the error bars. For a realistic measure of uncertainty it
turned out that ~ (∆ω) = 2 MeV is a reasonable choice.
We assume this ansatz for all examined nuclei and refer to the subsequent chapter
for a more detailed discussion of the ω-dependence of the binding energies.
The test calculations of the 4He binding energy with λ = 1.5 fm−1 are converged
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Figure 3.5: Example for the extrapolation of the 4He binding energy. Values with
error bars are the results of the calculations and their variation with ω, dashed
lines the exponential curve fit (red: λ = 2.5 fm−1, blue: λ = 1.5 fm−1), and the
solid lines denote the extrapolated value E∞ (violet: λ = 2.5 fm−1, black: λ = 1.5
fm−1). The error estimates are depicted as bands around E∞, for λ = 1.5 fm−1

hardly discernable (light blue line; λ = 2.5 fm−1: orange band).

within 10 keV in the model space of N ≥ 8. For larger λ as well as for heavier
nuclei, Bogner et al. motivate a method to extrapolate the ground-state energies
with truncation at N to determine the parameter E∞ with N = ∞ in Ref. [68]
based on the following ansatz:

EωN = E∞ + Aω e
−bωN , (3.8)

where Aω and bω are constants to be determined from calculations in limited
model spaces. For the curve fitting we assign different weights to each EωN that
depend on the slope between EωN and Eω(N+2) in order to enhance the results
of larger model spaces that are close to E∞. This curve fitting is depicted as
dashed lines in Fig. 3.5. For A > 4 we notice that curves of the smallest model
space are considerably separated from those of larger model spaces which largely
influences the extrapolation to E∞. Therefore, the results from N = A − 4 are
not considered for the extrapolation.
Bogner et al. also suggested a method to determine a confidence interval for
E∞ by considering calculations with neighbouring values of ~ω. Since this yields
disproportional small error estimates, we prefer to estimate the deviation of E∞

by the interval between the result of our largest model space and the extrapolated
value which makes use of uncorrelated calculations to avoid an underestimation.



Chapter 4

Binding energies of selected
nuclei

The aim of this thesis is to establish the new Jacobi coordinate based formulation
of the NCSM. In this chapter, we show the feasibility of calculations within this
scheme by means of the lighter nuclei 3H, 4He and 6Li. Since complete calculations
for 3H and 4He are available within the FY approach [88], the evaluation of the
matrix elements for the nuclear potential can be tested appropriately with these
systems. 6Li is the first system where we can apply the formalism, in particular
the method of extrapolating the converged values of the binding energy, in a non-
trivial way. The dependence on the SRG–cutoff parameter λ can be studied for
binding energies and, for the first time, also excitation energies.

4.1 The 3H system

The first system we want to discuss is 3H. It is the first bound state where all
partial waves of the NN potential contribute. The results already show the char-
acteristic dependence on ω and on N3 that we expect for larger systems. Due to
the rather small dimensions, we are able to access very large model spaces such as
N3 = 18, where the number of β– and γ– states are βmax = 380 and γmax = 127,
respectively, already with a standard desktop computer. Though larger model
spaces can be obtained without difficulty they do not seem to be required for
calculations involving low–momentum interactions.
With these first studies, we also inteded to get acquainted with the systematic
extraction of binding energies for several ω and N3. Fig. 4.1 shows the results
for different N3 dependent on ~ω on the left-hand side. As expected, the result
for the smallest λ of the SRG interaction, λ = 1.0 fm−1, is the best converged
one. We observe a plateau for ~ω = 5 − 15 MeV in the model space of N3 = 18
as expected for fully converged results. Based on Eqs. (3.6) and (3.7), we are
able to extract the optimal value for ω and the corresponding binding energy for

45
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λ [fm−1] NCSM FY

1.0 -7.46 MeV -7.460(2) MeV

1.2 -7.929 MeV —

1.5 -8.264(1) MeV -8.262(2) MeV

1.8 -8.334(2) MeV —

2.0 -8.313(4) MeV -8.309(2) MeV

2.2 -8.270(7) MeV —

2.5 -8.185(12) MeV -8.195(2) MeV

experiment -8.481 MeV

Table 4.1: Binding energy of 3H calculated within NCSM and FY with error
estimates.

each N3 systematically including an estimate of uncertainty. These results are
shown on the right-hand side of Fig. 4.1 as blue symbols with error bars. Note the
scale of this diagram which illustrates the extraordinarily small uncertainty for
λ = 1.0 fm−1. With this we extract the converged result according to Eq. (3.8),
shown as the red line, with an accuracy estimate less than 1 keV. This agrees
well with the FY result, indicated by the green band.
For larger cutoffs, the results converge more slowly, hence also the error bars are
larger, illustrated in the lower diagrams of Fig. 4.1 and in Fig. 4.2.
Nevertheless, the so found binding energies are well converged and in agreement
with FY for all cutoffs. In Tab. 4.1, our results are given in comparison to FY
calculations for 3H [88] explicitly.
Additionally, we note that the shifts of optimal ω is in line with naive expecta-
tions. The stronger the short-distance correlations, the larger λ, the larger is the
optimal ω. At the same time, the optimal ω shifts to smaller values when increas-
ing the model space. This is an interesting effect that we believe to be related
to the long-distance behaviour of the 3H wave function. The more compact 4He
does not show this effect. We discuss this system in the following section.
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Figure 4.1: Binding energy of 3H dependent on ω for several N3 (left diagrams)
obtained using the VSRG evolved from the 500 MeV N3LO NN potential from
Ref. [26] including the electromagnetic interaction (see Sec. 3.3); λ = 1.0 fm−1

and λ = 1.5 fm−1, respectively. As in Fig. 3.4, the dashed lines illustrate the fit
to Eb (ω) according to Eq. (3.6), the solid lines are generated using cubic splines.
The right diagrams illustrate the dependence of Eb on N3 and the extrapolation
to N3 = ∞, Eq. (3.8). The blue curve is the exponential curve fit, where the
error bars give a relative measure of the variation with ω, the red line depicts the
extrapolated value E∞ and the blue band (if dinstinguishable) its error estimate.
The dark green line is the FY result from [88] with error estimate (green band).
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Figure 4.2: Binding energy of 3H dependent on N3 and ω and the extrapolation
to N3 = ∞; lines and symbols as described in Fig. 4.1.
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Figure 4.3: Binding energy of 4He dependent on N4 and ω and the extrapolation
to N4 = ∞; lines and symbols as described in Fig. 4.1.

4.2 The 4He system

The 4He is a different and even more simple test than 3H in some aspects. As
it is still an s–shell nucleus, it is dominated by N4 = 0 HO configurations but
much more strongly bound and therefore compact. Proceeding as in the previous
section, we extract converged values and error estimates that can be compared
to FY [88]. The results are shown in Figs. 4.3 and 4.4.
We observe a much smoother dependence on ω than for 3H. Correspondingly,
convergence is achieved in much smaller model spaces which can be expected since
the 4He wave function drops off much faster and is therefore better parameterised
by HO wave functions. This is also reflected by larger optimal ω. As mentioned in
the previous section, no strong shifts of this value can be observed for increasing
model spaces or cutoffs.
Here, we are also able to test the formulation of the β̃(2)–states. In our largest
model space of N4 = 12, the dimensions are γmax = 417, βmax = 1551 and

β̃
(2)
max = 2380.
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Figure 4.4: Binding energy of 4He dependent on N4 and ω and the extrapolation
to N4 = ∞; lines and symbols as described in Fig. 4.1.



4.2. THE 4HE SYSTEM 51

λ [fm−1] NCSM FY

1.0 -24.270 MeV -24.28(1) MeV

1.2 -24.549 MeV —

1.5 -28.173 MeV -28.17(1) MeV

1.8 -28.396(1) MeV —

2.0 -28.189(4) MeV -28.19(1) MeV

2.2 -27.887(7) MeV —

2.5 -27.384(29) MeV -27.44(1) MeV

experiment -28.3 MeV

Table 4.2: Binding energy of 4He calculated within NCSM and FY with error
estimates. If the calculations of the NCSM are converged within 1 keV, no error
estimate is specified.

The results for the extrapolated energies are in good agreement with the FY
calculations, as can be seen from the right-hand sides of Figs. 4.3 and 4.4 and
from Tab. 4.2.
Before turning to the more interesting p–shell nuclei, we want to emphasise that
the basis states for A = 3 and A = 4 will finally be important for representing 3NF
and 4NF for all HO based many-body methods including m–scheme NCSM and
coupled cluster. Therefore, the results presented in this and the previous section
confirm that these states can be well obtained even for large model spaces.
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4.3 6Lithium

In this section, we examine the first example of a p–shell nucleus, the 6Li system.
These calculations are much more demanding since a large variety of antisym-
metrised states for A = 5 needs to be available. At this point, these states have
been generated up to N5 = 10, J5 = 25/2 and T5 = 3/2. Based on these, calcu-
lations for 6Li in the model space of N6 = 8 have been accessible for J6 = 1 and
J6 = 3 with T6 = 0. We present the results for the ground state, Jπ T = 1+ 0,
first.

4.3.1 Ground state 1+ 0

The binding energies are shown in Figs. 4.5- 4.7 for several ω and N6 for various
SRG-cutoffs λ. The extraction of the optimal ω and the corresponding energies
is again obtained according to Eq. (3.6). We also extrapolate converged results
with Eq. (3.8) and assume that the uncertainty can be estimated by the interval
between the result for our largest model space and the extrapolated value, as in
the case of 4He. Since the model spaces are naturally restricted more severely, this
has been done based on N6 = 4, 6 and 8. Due to the sizeable uncertainties, larger
model spaces are required, especially for cutoffs larger than 1.8 fm−1, which will
be available in near future. However, the pattern of convergence is very regular.
Concerning the shifts of optimal ω, the values show a similar behaviour to those
of 4He. At least for λ ≤ 1.8 fm−1, they are rather insensitive to the size of the
model spaces. For larger cutoffs, a quite surprising observation is that they tend
to increase with N6 which is different to the 3H case.
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Figure 4.5: Binding energy of the ground state of 6Li dependent on N6 and ω (left
diagrams) and the extrapolation to N6 = ∞ (right diagrams), obtained using the
VSRG evolved from the 500 MeV N3LO NN potential from Ref. [26] including the
electromagnetic interaction (see Sec. 3.3) for λ = 1.0 fm−1 and λ = 1.2 fm−1.
Again, the dashed lines illustrate the fit to Eb (ω) according to Eq. (3.6), and the
solid lines are generated using cubic splines. The blue curve shows the exponential
curve fit to the results of the calculation, Eq. (3.8), depicted with the estimate of
their ω variation (error bars), the red line shows the extrapolated value E∞ and
its error estimate (blue band).



54 CHAPTER 4. BINDING ENERGIES OF SELECTED NUCLEI

-30

-20

-10

 12  15  20  25  30

λ=1.5 fm−1

~ω [MeV]

E
b
[M

eV
]

N6=2
N6=4
N6=6
N6=8

-34

-32

-30

-28

 4  6  8  10  12

λ=1.5 fm−1

E
ω
N

[M
eV

]

N6

-30

-25

-20

-15

 12  15  20  25  30

λ=1.8 fm−1

~ω [MeV]

E
b
[M

eV
]

-34

-32

-30

-28

-26

-24

 5  10  15

λ=1.8 fm−1

E
ω
N

[M
eV

]

N6

Figure 4.6: Binding energy of the ground state of 6Li dependent on N6 and ω
and the extrapolation to N6 = ∞ for λ = 1.5 fm−1 and λ = 1.8 fm−1; lines and
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Figure 4.7: Binding energy of the ground state of 6Li dependent on N6 and ω
and the extrapolation to N6 = ∞ for λ = 2.0 fm−1, λ = 2.2 fm−1 and λ = 2.5
fm−1; lines and symbols as described in Fig. 4.5
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Figure 4.8: Binding energy of the lowest excited state of 6Li (3+ 0) dependent on
N6 and ω and the extrapolation to N6 = ∞ for λ = 1.0 fm−1 and λ = 1.2 fm−1;
lines and symbols as described in Fig. 4.5

4.3.2 Lowest excited state 3+ 0

The results for the lowest excited state of 6Li, Jπ T = 3+ 0, are presented in
Figs. 4.8 -4.10. The computational effort for these calculations is already approx-
imately twice as large as for the ground state. The dependence of the binding
energies on ω resembles that of the binding energies of the ground state not only
regarding their variation with ω but also the shift of the optimal ω that tends to
increase for λ > 1.8 fm−1. This issue will be interesting to investigate once larger
N6 are available or even for higher excited states.
Obtained again by extraction of optimal ω-values, the related binding energies
EωN show a behaviour similar to that of the ground state, as can be seen on
the right-hand sides of the figures. The convergence is comparable, i.e. for
λ ≤ 1.8 fm−1, the extrapolation gives reasonable results and error estimates,
whereas the study of larger cutoffs requires larger model spaces.



4.3. 6LITHIUM 57

-30

-25

-20

-15

 12  15  20  25

λ=1.5 fm−1

~ω [MeV]

E
b
[M

eV
]

N6=2
N6=4
N6=6
N6=8

-30

-28

-26

 4  6  8  10  12

λ=1.5 fm−1

E
ω
N

[M
eV

]

N6

-25

-20

-15

 12  15  20  25  30

λ=1.8 fm−1

~ω [MeV]

E
b
[M

eV
]

-30

-28

-26

-24

-22

 4  6  8  10  12  14

λ=1.8 fm−1

E
ω
N

[M
eV

]

N6
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Figure 4.10: Binding energy of the lowest excited state of 6Li (3+ 0) dependent
on N6 and omega and the extrapolation to N6 = ∞ for λ = 2.0 fm−1, λ = 2.2
fm−1 and λ = 2.5 fm−1. lines and symbols as described in Fig. 4.5
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4.3.3 Excitation energy of 3+ 0

Eventually, we turn to the investigation of the excitation energy of 3+ 0, ∆Eb.
Figs. 4.11 -4.13 show the ω dependence, fitted to a constant line around the op-
timal ω of the respective model space for both the ground state and the excited
state in the left-hand sided diagrams, and the extrapolated results on the right-
hand side. The error bars of ∆EωN are estimated, as before, by the interval
between the result of the calculation in the largest model space and the extrap-
olation.
From both left-hand and right-hand side diagrams the considerable faster con-
vergence is clearly visible. Except for λ = 1.0 fm−1, the ω dependence is very
similarly shaped for all cutoffs and smoothes notably with each higher N6 despite
the rather small model spaces. This is also reflected by the strong decrease of
the error bars in the right-hand side diagrams. Especially the calculations with
larger cutoffs show a similarly good behaviour for all λ, although the related
binding energies of 1+ 0 and 3+ 0 are not well converged for the larger cutoffs.
The accuracy of up to 100 keV is remarkably small considering the large uncer-
tainties of the binding energies in this range. Only the results for the largest
cutoff, λ = 2.5 fm−1, show somewhat larger error bars of the individual values of
∆EωN . At the same time, the error estimate of the extrapolation method yields
an unnaturally small uncertainty which we believe to be caused by an accidental
cancellation.
The results of the calculations for 6Li are summarised in Tab. 4.3. Although we
expected the excitation energies to be obtained considerably faster than the bind-
ing energies, we observed a surprisingly good outcome. 3NF calculations of the
excitation energies are especially promising since they are measurably influenced
by 3NF. This can be seen for example by investigating the cutoff dependence,
which is discussed in the following section.



60 CHAPTER 4. BINDING ENERGIES OF SELECTED NUCLEI

 2.6

 2.8

 3

 3.2

 3.4

 6  8  10  12  15  20  25

λ=1.0 fm−1

~ω [MeV]

∆
E

b
[M

eV
]

N6=2
N6=4
N6=6
N6=8

 3.08

 3.1

 3.12

 3.14

 3.16

 3.18

 4  6  8

λ=1.0 fm−1

∆
E

ω
N

[M
eV

]

N6

 1.5

 2

 2.5

 3

 3.5

 12  15  20  25

λ=1.2 fm−1

~ω [MeV]

∆
E

ω
N

[M
eV

]

 2.95

 3

 3.05

 3.1

 4  6  8

λ=1.2 fm−1

∆
E

ω
N

[M
eV

]

N6
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λ [fm−1] 1+ 0 3+ 0 excitation

1.0 -29.66(5) MeV -26.65(16) MeV 3.11 MeV

1.2 -31.78(25) MeV -28.69(29) MeV 3.09 MeV

1.5 -32.70(52) MeV -29.76(51) MeV 2.92(1) MeV

1.8 -32.40(144) MeV -29.48(126) MeV 2.77(5) MeV

2.0 -32.12(276) MeV -29.17(247) MeV 2.59(7) MeV

2.2 -32.53(528) MeV -29.63(491) MeV 2.42(8) MeV

2.5 -38.07(1452) MeV -35.17(1395) MeV 2.22(1) MeV

experiment -32.0 MeV -29.81 MeV 2.19 MeV

Table 4.3: Explicit results for the binding energies of 6Li (1+ 0, 3+ 0) and of
the excitation energy, respectively. The error of the excitation energy for λ =
2.5 fm−1 is presumably underestimated due to an accidental cancellation. Instead
we assume an error of 0.1 MeV. For comparison, the experimental values are
also given for the ground state [68], and for the excited state and the excitation
energy [89].
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4.4 Cutoff dependence

The cutoff dependence of 3H and 4He, shown in Fig. 4.14 together with the
cutoff dependence of 6Li (1+ 0, 3+ 0 and excitation energy, respectively), show a
well-known behaviour. As λ sets the scale for the relevant low momenta, small
λ exclude pions as comparably heavy in relation to this scale. The EFT for
this momentum range is the so-called pion–less EFT where 3NF appear at LO
already, resulting in a strong cutoff dependence. Our considerations explicitly
include the pions as relevant degrees of freedom, therefore the larger cutoffs are
of more interest here, and for the analysis of the cutoff dependence we leave out
the results for the smallest λ. With this we estimate the cutoff dependence and
thus the contribution of higher order effects such as the 3NF to be of the order of
∼ 0.5 MeV for 3H and of ∼ 2 MeV for 4He, respectively, which is a lower bound
of uncertainty.
A similarly shaped curve is observed for both 1+ 0 and 3+ 0 of 6Li, where we
do not consider the results for λ > 2.0 fm−1. As they are not converged, their
estimated uncertainty is considerably larger than the observed cutoff dependence
of ∼ 1 MeV and thus gives no exploitable information. However, this emphasises
the need for an extension of the accessible model spaces to make calculations for
larger cutoffs feasible.
Though the binding energies of 1+ 0 and 3+ 0 are not converged for larger λ,
the diagram for the excitation energy shows a reasonable dependence in the full
momentum range considered. The error bars do not superpose the variation of
the results with λ which indicates a significant contribution of ∼ 1 MeV from
higher order effects. Calculations including 3NF additionally will show how this
dependence decreases explicitly.

Another well-known behaviour is reflected in the so-called Tjon line, pictured in
Fig. 4.15. Neglecting higher order effects, the binding energies reveal a correlation
to the binding energy of 3H. Though this correlation is well reproduced for 4He,
for 6Li the large uncertainties for λ > 2.0 fm−1 do not approve of consideration
so far. Still, also here the behaviour for smaller λ encourages the proceeding of
our studies, especially regarding 3NF.
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the experimental value.

4.5 7Lithium

In Fig. 4.16, first results of calculations of 7Li are illustrated. It is the first neg-
ative parity system that we investigate. Unfortunately, the considered model
spaces of N7 ≤ 7 do not allow for an extrapolation to converged values since we
have to omit the results from the smallest model space. However, we are able to
draw some conclusions on the upcoming calculations from the completed calcula-
tions for 6Li and 7Li. To this aim we order the model spaces with the difference
δN of NA to the smallest model space of the calculation, i.e. δN = N6 − 2 and
δN = N7 − 3, respectively. Comparing 6Li and 7Li regarding the ω dependence
we observe a similar behaviour of the ω dependence itself and of the individual
curves for equal δN . The separation between the curves for δN = 0 and δN = 2
is approximately twice as large as that between δN = 2 and δN = 4. There-
fore, we assume that reasonable results may be achieved for 7Li with N7 = 9,
i.e. δN = 6, on the same level as for 6Li. The increase of the dimensions with
N7 implies dimensions of βmax ≤ 90, 000, β⋆

max ≤ 540, 000, β̃max ≤ 270, 000 and
γmax ≤ 13, 000 for this calculation. We are currently approaching the additionally
required blocks of the 6N bookkeeping for N6 = 9, J6 = 0, . . . , 10 and T6 = 0, 1.
Once these blocks are generated, we will also be able to proceed to the lowest
excited state of 7Li and to study the excitation energy, both regarding the obser-
vations described for 6Li concerning the ω dependence and the convergence.
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Figure 4.16: First results of the binding energy of 7Li dependent on N7 and ω for
several λ.



Chapter 5

Summary, conclusions and
outlook

In this thesis, we described the development of a NCSM formalism, expressed
in Jacobi coordinates in the HO basis, to solve the Schrödinger equation for
bound states of few–nucleon systems. The theoretical framework of chiral EFT
was explained, and the chiral expansion of the nuclear potential was introduced.
We described the concept of low–momentum potentials like Vlow k and VSRG and
the momentum cutoff that sets the relevant scale for low– and high–momentum
contributions. Additionally, we discussed existing A-body techniques and their
recent developments. With this, we motivated our work.

Bound states of A-nucleon systems are described by the Schrödinger equation
where the Hamiltonian depends on the relative coordinates of the nucleons.
Therefore, a formulation of the basis states in Jacobi coordinates is very nat-
ural. The CM motion is separated and can simply be omitted. Since all nucleons
are considered to be active, they are represented by (A− 1) harmonic oscillators
in the HO basis. The finiteness of the basis is realised by a truncation at a chosen
oscillator energy NA, and the results of the calculations converge with increasing
model spaces. Compared to the m–scheme, where the basis states are expressed
in single particle coordinates and antisymmetrised by a Slater determinant, the
separation of the CM motion and the rotational symmetry reduce the number
of basis states but complicate their antisymmetrisation which is traced back to
a matrix eigenvalue problem. However, the conservation of the well-defined to-
tal angular momentum JA and total isospin TA and of the oscillator energy NA

results in a highly convenient block structure of the antisymmetrisation matrix.
In Chapter 2 we explicitly defined the Jacobi coordinates for the 3N β–states,
constructed as a single nucleon coupling to an antisymmetric 2N subsystem that
satisfies the Pauli principle, and derived the antisymmetrisation matrix by ap-
plying the transposition operator P̂23 to perform a coordinate transformation of

nucleon 2 and 3. In spin–isospin space, P̂23 operates as a recoupling, while in

68
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configuration space the coordinate transformation of the nucleons is evaluated by

HO brackets. The antisymmetrisation operator Â = 1
3

(
1− 2P̂23

)
is a projector

with the eigenvalues 0 and 1, therefore only the physical eigenvectors correspond-
ing to non-zero eigenvalues are kept as the antisymmetric 3N-basis states, | γ3N〉.
This procedure can be generalised to A > 3 by coupling a single nucleon to
| γ(A−1)N〉 which form the β–states of the A-nucleon system. For the antisym-

metrisation the transposition operator P̂23 is replaced by P̂A(A−1). To be able

to calculate the coordinate transformation of the A-th and (A − 1)-th nucleon
explicitly, an intermediate type of states needs to be constructed where a single
nucleon couples to a β–state of the (A− 1)-nucleon system, labelled by β⋆. With
a recoupling of these β⋆–states we showed that the construction of the antisym-
metrisation matrix can be traced back to the expressions for the 3N case. Thus
we demonstrated that the A-nucleon γ–states can be evaluated successively based
on the (A− 1)-nucleon system.
The solution of the Schrödinger equation forms another matrix eigenvalue prob-
lem. The kinetic energy of an A-nucleon system in Jacobi coordinates can exactly
be calculated as the sum of the relative kinetic energy of two nucleons over all
pairs, as outlined in App. A.2. With new basis states that separate an anti-
symmetric 2N-subsystem, denoted by β̃(2), these matrix elements and the NN
contribution to the nuclear potential can be evaluated in a simple way. Similar
to the evaluation of the transposition operator for the antisymmetrisation, these
β̃(2)–states are obtained by a suitable coordinate transformation applied to the
single nucleons of the β⋆–states. The expression for this coordinate transforma-
tion including the required recoupling of the β⋆–states was calculated in detail.
The coefficients are independent of ω and the interactions and can therefore be
employed generally.
With this method, the inclusion of few–nucleon forces contributing to the nuclear
potential can be realised conveniently by separating larger antisymmetric subsys-
tems in a similar way. The explicit expression for β̃(3)–states with antisymmetric
3N-subsystems was derived in App. B. Additionally, the γ-, β-, β⋆-, β̃(2)- and
β̃(3)–states can be verified in a simple way with the constituted orthogonality
relations concerning their antisymmetry and their completeness.

In Chapter 3 we described numerical aspects of our formalism. The largest part
of the calculations was the antisymmetrisation of A-nucleon basis states since the
relevant number, β⋆

max, exceeds the number of β–states by approximately a factor
of (A− 1). Therefore, we chose the antisymmetrisation of 6N states exemplarily
to test the numerical performance in detail.
The required memory capacity of several GB for these test calculations strongly
demands a parallel evaluation, especially with regard to the considerable growth
of data with increasing model spaces and larger A. Since both problems of this
formalism – the antisymmetrisation and the solution of the Schrödinger equation
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– are matrix eigenvalue equations, we employ the libraries of ScaLAPACK that
compute eigenvalues and eigenvectors of a matrix by diagonalisation in a twofold
distributed way. Therefore, we defined a two-dimensional communicator within
the chosen library for the communication of parallel processes, MPI. According
to the matrix structure of the data, these two directions of the distributions were
denoted by ’row’ and ’col’. With this we described the calculation of the antisym-
metrisation matrix based on the (A−1)-nucleon system. The largest part, i.e. the
evaluation of the transposition operator applied to the β⋆–states, is distributed
most widely in both directions. The double sum over the intermediate β⋆–states
was split into two steps, where we saved one index of the resulting matrix globally
in order to minimise the communication of the parallel processes. With similar
considerations the sums for the β̃(2)– and β̃(3)–projections were divided for their
generation.
The so generated bookkeepingsare stored in a global database employing the rou-
tines of the parallel I/O library HDF5. They are independent of the machine,
written in a universal format and thus only need to be generated once. The ability
to divide data into groups provides an excellent way to extend the database for
each A-nucleon system blockwise matching the block structure of our formalism
since already existing blocks can be skipped and new ones appended. Since the
A-nucleon bookkeepings are generated based on the (A− 1)-nucleon system, the
(A − 1)-nucleon bookkeepings do not have to be generated repeatedly but can
be read in from the database in the required distribution. Unfortunately, these
HDF5 routines are much less efficient than those for writing the data which be-
came problematic for large model spaces.
Otherwise, the test calculations showed the expected scaling concerning the num-
ber of parallel processes and their distribution in row- and col-direction, and con-
cerning their required memory capacity.
Currently, the existing databases for A = 3, 4 and 5 provide the bookkeepings
required for A ≥ 6 in the model space of NA = 10. Due to limited accessibility
of the supercomputer JUQUEEN, the generation of databases for A = 6 and 7
with NA > 8 and for A = 8 is ongoing and appears to be feasible.
For the calculation of the binding energies we used the NN-only VSRG evolved from
the 500 MeV N3LO NN potential from Ref. [26] including the electromagnetic in-
teraction, taking account of the nn, np and pp forces by using the coefficients
cT m

T

from [86]. Additionally, fit procedures for the value ωopt for which the
wave function is parameterised in an optimal way and for an extrapolation to
NA = ∞ [68] including an error estimate were introduced.

With this we calculated the binding energies of 3H, 4He, 6Li and 7Li and dis-
cussed the results in Chapter 4. The required memory capacity of systems with
A > 4 and the runtime made a high parallelisation necessary while it was possible
to perform the calculations of the 3H and the 4He binding energy on a standard
desktop computer. The results for 3H and 4He are converged and very accurate
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for small λ and for larger λ the extrapolation method gives reliable extrapolated
results. Moreover, the results agree with those calculated with a different tech-
nique (FY [88]) within the error estimate. Therefore, we did not proceed to higher
model spaces but regard our calculations as benchmarks for this scheme.
For 6Li, we analysed the ground state 1+ 0 as well as the lowest excited state
3+ 0. Since calculations of binding energies once the antisymmetrised states were
generated are considerably smaller than the generation of the states itself, it was
possible to study the ω dependence in all model spaces in detail. Although the
model spaces are comparably small for convergence, the extrapolation method
yields promising values for small λ with reasonable error estimates. While larger
λ require higher model spaces for the binding energies to converge, we obtained
good results for the excitation energy already in these first calculations. Consid-
ering the cutoff dependence this became even more evident. While the curve for
3H and 4He reproduced the well-known behaviour as expected, both the ground
state and the excited state of 6Li were too vaguely determined for large λ. This
conclusion was underlined by the Tjon lines. However, the diagram for the ex-
citation energy revealed a smooth dependence with meaningful error bars for all
cutoffs considered which is a strong indication of the significance of higher order
contributions. It is highly interesting how this dependence will decrease once
the relevant bookkeepings for the inclusion of the 3NF will have been generated.
Furthermore, we concluded from the results for 7Li obtained so far that their
behaviour is comparable to those of 6Li. Therefore, it is the subject of ongoing
studies to calculate the energies of higher excited states for both 6Li and 7Li. It
is conceivable that these excitation energies will be very informative concerning
the nature of the 3NF.

With the generated coefficients determining the antisymmetrised states numerous
calculations can be performed efficiently to study a large variety of states includ-
ing NN and 3N forces. This will be the main advantage of this Jacobi coordinate
based NCSM formalism.
These new sets of states will also be the basis of hypernuclear studies with a new
collaboration research center funded by the DFG (CRC 110, project B7). In a
first step, it is planned to extend the basis by coordinates of a single hyperon.
This can be done straightforwardly since further antisymmetrisation is not re-
quired for the distinguishable hyperon.
Meanwhile, a continous extension of the database of antisymmetrised states will
allow one to study the 3NF for more and more states of more complex nuclei.
At the same time, it will be worthwhile to improve the performance of the code.
Here it will be interesting to study the reading of the bookkeeping of the (A−1)-
system in more detail. We expect that some improvements could be obtained
specifically for this part of the runs.
For more complex nuclei, it will also be interesting to investigate antisymmetrised
states in incomplete model spaces where the A-nucleon systems are restricted to
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small angular momenta. Such truncations are part of our implementation and
their practical use will be investigated in near future.



Appendix A

The Hamilton operator in HO
basis

A.1 Energy eigenvalues and eigenfunctions

The eigenfunctions of the three-dimensional HO Hamiltonian ĤHO can be sepa-
rated – using spherical polar coordinates – in the usual way into an angular and
a radial part:

ĤHO Ψn (~r) =
(
T̂HO + V̂HO

)
Ψn (~r)

= En Ψn (~r) with

Ψn (~r) =
∑

lm

Ylm (r̂) Rnl (r) . (A.1)

The Ylm are the spherical harmonics that (can be neglected) are expanded in l for
our calculations due to the spherical symmetry of the HO potential, r̂ denotes the
direction of the space coordinate ~r/r (r = |~r |) and Rnl (r) is the radial function
of Ψn (~r) that depends on the HO quantum number n (n = 0, 1, 2 . . .), on the
orbital momentum l and on the magnitude of ~r.
The kinetic energy operator T̂HO can be written in a very convenient way based
on this ansatz, and by choosing the isotropic HO potential for V̂HO the eigenval-
ues of the HO Hamiltonian can be read off since ĤHO is diagonal for this choice.
Here, this is outlined for the 2N system, hence the subscript 12 is dropped for
readability.

a) radial function in momentum space : Fourier transformation

By performing a Fourier transformation of Ψn (~r) we obtain the expression

73



74 APPENDIX A. THE HAMILTON OPERATOR IN HO BASIS

of the radial function in momentum space, Rnl (p):

Ψn (~p) =
1

(2π)3/2

∫
d3r ei~p·~r Ψn (~r)

with ei~p·~r =
∑

lm

4π i l jl (p r) Y ⋆
lm (p̂) Ylm (r̂)

jl spherical Bessel functions

=
4π

(2π)3/2

∑

lm

il
∫
d3r jl (p r) Y ⋆

lm (p̂) Ylm (r̂) Ψn (r)

Y ⋆
lm (p̂) Ylm (r̂) = Ylm (p̂) Y ⋆

lm (r̂)

and Ψn (r) =
∑

l′ m′

Yl′ m′ (r) Rnl′ (r)

=

√
2

π

∑

lm

il
∫
d3r jl (p r) Ylm (p̂)

∑

l′ m′

Y ⋆
lm (r̂) Yl′ m′ (r) Rnl′ (r)

∫
dΩ Y ⋆

lm (r̂) Yl′ m′ (r) = δl l′ δmm′

=
∑

lm

Ylm (p̂)

√
2

π
il
∫
dr r2 jl (p r) Rnl (r)

=
∑

lm

Ylm (p̂) Rnl (p)

⇒ Rnl (p) =

√
2

π
il
∫

dr r2 jl (p r) Rnl (r) (A.2)

b) dimensionless radial function R̂nl (ρ) in configuration space

The radial functions Rnl (r) form a complete set of orthogonal eigenfunc-

tions to ĤHO, in configuration space normalised to 1. By defining the char-
acteristic oscillator length b =

√
1/ (µω) (in this case µ is the reduced mass

of the deuteron and ω the angular frequency of the oscillator) the coordi-
nate ρ = r/b is dimensionless (in momentum space: p̃ = p b dimensionless;
this leaves the product (p r) invariant). The relation between the Rnl (r)
and the dimensionless R̂nl (ρ) can easily be derived from the orthonormality
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of the Rnl (r):

r −→ ρ =
r

b

r = ρ b

dr = dρ b

→
∫
dr r2

∣∣Rnl (r)
∣∣ 2 =

∫
dρ b (ρ b)2 c2

∣∣R̂nl (ρ b)
∣∣ 2

=

∫
dρ ρ2 b3 c2

∣∣R̂nl (ρ b)
∣∣ 2

︸ ︷︷ ︸
|R̂nl(ρ)| 2

= 1

→ c2 = b−
3
2

⇒ Rnl (r) = b−3

2 R̂nl (ρ) (A.3)

With this the radial functions R̂nl (ρ) can be written in terms of the gener-

alised Laguerre polynomials L
(α)
n [85]:

R̂nl (ρ) = (−1)n
[

2n!

Γ
(
n+ l + 3

2

)
] 1

2

exp

(
−ρ

2

2

)
ρ l L

(l+ 1
2)

n

(
ρ 2
)
(A.4)

that satisfy the recurrence relation [90]

(n + 1) L
(α)
n+1 (x) = (2n+ α + 1 − x) L(α)

n (x) − (n+ α) L
(α)
n−1 (x)

↔ x L(α)
n (x) = − (n+ 1)L

(α)
n+1 (x) + (2n+ α + 1)L(α)

n (x) − (n+ α) L
(α)
n−1 (x) .

(A.5)

c) dimensionless radial function R̂nl (p̃) in momentum space
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Replacing p by p̃ = p b and using the results from a) and b) the expres-
sion for the dimensionless radial function in momentum space reads:

Rnl (p) =

√
2

π
il
∫
dρ b ρ2 b2 jl

(
p b

r

b

)
b−

3
2 R̂nl (ρ)

= b
3
2

√
2

π
il
∫
dρ ρ2 jl (p̃ ρ) R̂nl (ρ)

︸ ︷︷ ︸
≡(−1)n il R̂nl(p̃)

⇒ Rnl (p) = (−1)n il b
3

2 R̂nl (p̃) (A.6)

d) recurrence decomposition of R̂nl

The product p̃ 2 R̂nl (p̃) can be decomposed in the following way consid-
ering the recurrence relation of Eq. (A.5) and using xΓ (x) = Γ (x + 1):

p̃ 2 R̂nl (p̃) = (−1)n il exp

(
− p̃

2

2

)
p̃ l

×
{

(−1)n
[

2n!

Γ
(
n+ l + 3

2

)
] 1

2

(−1) (n + 1)L
(l+ 1

2)
n+1

(
p̃ 2
)

+ (−1)n
[

2n!

Γ
(
n+ l + 3

2

)
] 1

2 (
2n+ l + 3

2

)
L

(l+ 1
2)

n

(
p̃ 2
)

+ (−1)n
[

2n!

Γ
(
n + l + 3

2

)
] 1

2

(−1)
(
n+ l + 1

2

)
L

(l+ 1
2)

n−1

(
p̃ 2
)}

= (−1)n il exp

(
− p̃

2

2

)
p̃ l

×
{

(n+ 1) (−1)n+1

[
2 (n+ 1)!

Γ
(
n+ 1 + l + 3

2

)
(

2n+ l + 3
2

n + 1

)] 1
2

L
(l+ 1

2)
n+1

(
p̃ 2
)

+
(
2n+ l + 3

2

)
(−1)n

[
2n!

Γ
(
n + l + 3

2

)
] 1

2

L
(l+ 1

2)
n

(
p̃ 2
)

+
(
n+ l + 1

2

)
(−1)n−1

[
2 (n− 1)!

Γ
(
n− 1 + l + 3

2

)
(

n

n+ l + 1
2

)] 1
2

L
(l+ 1

2)
n−1

(
p̃ 2
)}
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= (−1)n il
(√

(n + 1)
(
n+ l + 3

2

)
R̂(n+1)l (p̃)

+
(
2n+ l + 3

2

)
R̂nl (p̃)

+
√
n
(
n + l + 1

2

)
R̂(n−1)l (p̃)

)
(A.7)

Analogous calculations can be done for the radial functions in configuration
space R̂nl (ρ), defined in Eq. (A.4):

ρ2 R̂nl (ρ) =

(√
(n + 1)

(
n+ l + 3

2

)
R̂(n+1)l (ρ)

+
(
2n+ l + 3

2

)
R̂nl (ρ)

+
√
n
(
n+ l + 1

2

)
R̂(n−1)l (ρ)

)
(A.8)

To compute the physical eigenvalues of ĤHO the antisymmetric part 〈 γ |Ψnlm〉 of
the HO wave function contributes. Since for the 2N system the quantum numbers
of the antisymmetric α-, β- and γ–states can be identified uniquely the following
calculation is formulated in terms of the γ–states with 〈 ~p γ |Ψnlm 〉 = Rnl (p) and
〈~r γ |Ψnlm 〉 = Rnl (r).
Based on the results from above we find for the expectation value of the kinetic
energy operator T̂HO:

〈 γ ′ |T̂HO| γ 〉 =

∫
dp p2 R⋆

n′l′ (p)
p2

2µ
Rnl (p)

=
(−1)n

′+n (−i)l′ il
2µ b2

∫
dp b p2 b2 R̂n′l′ (p̃) p2 b2 R̂nl (p̃)

=
(−1)n

′+n il−l′

2µ b2

∫
dp̃ p̃ 2R̂n′l′ (p̃) p̃ 2Rnl (p̃)

=
1

2
ω δl′l

(
δn′ (n+1) (−1)n

′+n
√

(n+ 1)
(
n + l + 3

2

)

+ δn′ n (−1)n
′+n (2n+ l + 3

2

)

+ δn′ (n−1) (−1)n
′+n
√
n
(
n + l + 1

2

) )
(A.9)

Note that for the off-diagonal matrix elements δn′ (n+1) and δn′ (n−1) of T̂HO this

results in a phase factor (−1)2n+1 = (−1)2n−1 = −1 whereas for the diagonal
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matrix elements δn′ n the phase factor (−1)2n equals +1.

As a test we consider the three-dimensional isotropic harmonic oscillator poten-
tial VHO = 1

2
µω2r2 where µ, ω and r are defined as above. For the expectation

value of V̂HO it is more convenient to work in configuration space:

〈 γ ′ |V̂HO| γ 〉 =

∫
dr r2 R⋆

n′l′ (r)
1

2
µω2r2 Rnl (r)

Eq. (A.3)
=

µω2

2
b−3

∫
dρ b ρ2 b2 R̂n′l′ (ρ) ρ2 b2 R̂nl (ρ)

=
µω2 b2

2

∫
dρ ρ2 R̂n′l′ (ρ) ρ2 R̂nl (ρ)

Eq. (A.8)
=

1

2
ω δl′l

(
δn′ (n+1)

√
(n + 1)

(
n+ l + 3

2

)

+ δn′ n

(
2n+ l + 3

2

)

+ δn′ (n−1)

√
n
(
n+ l + 1

2

) )
(A.10)

Comparing these matrix elements to those of T̂HO we note that they are the
same except for the phase factor (−1) in the off-diagonal matrix elements of T̂HO.

Therefore, the off-diagonal elements cancel in ĤHO = T̂HO + V̂HO and we finally
get the well-known expression for the energy eigenvalues of the three-dimensional
isotropic harmonic oscillator:

ĤHO ΨN (~r) = EN ΨN (~r)
with

ΨN (~r) = Rnl (r)

EN =

(
N +

3

2

)
ω in natural units

N = 2n+ l total oscillator energy (A.11)

A.2 Relative kinetic energy

For a system with A > 2 the kinetic energy operator T̂AN can be expressed in

terms of the kinetic energy in the 2N system, T̂12. In the following this is shown
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for the 3N system as an example.

In the center of mass frame (CM) the kinetic energy is defined as

T̂CM
3N =

3∑

i=1

~̂ki
2

2mN

−
~̂P

2

2M
(A.12)

where ~ki is the single nucleon momentum and mN the mass of the i-th nucleon,

respectively, ~P = ~k1+
~k2+

~k3 denotes the CM momentum andM =
∑

imN = 3mN

the total mass of the system.
Using relative or Jacobi coordinates the CM motion vanishes since ~k1+~k2+

~k3 = 0,
and we define the Jacobi momenta as:

~p12 =
1

2

(
~k1 − ~k2

)

~p3 =
2

3
~k3 −

1

3

(
~k1 + ~k2

)
(A.13)

Analogous definitions hold for the set of momenta ~p23 and ~p1, and for the set ~p31
and ~p2, which yields:

~p3 = −4

3
~p23 −

2

3
~p12

~p3 =
4

3
~p31 +

2

3
~p12

Adding the squares of these equations we get:

~p 2
3 =

4

9

[
2
(
~p 2
23 + ~p 2

23

)
− ~p 2

12

]

Together with the expressions of the reduced masses (Eq. (2.12), using µ3 = 4
3
µ12

since mi = mN) we insert this into the kinetic energy operator in Jacobi basis:

T̂3N =
~̂p

2

12

2µ12

+
~̂p

2

3

2µ3

=
1

3

(
~̂p

2

12 +~̂p
2

23 +~̂p
2

31

)

µ12

(A.14)

Calculating the expectation value of T̂3N we make use of the total antisymmetry
of the γ–states which results in a factor (−1) for every exchange of particle i

and j, i.e. every two applications of the transposition operator P̂ij leaves the
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expectation value invariant. More properties of the permutation operator are
given in detail in App. A.3.
Neglecting the constant factors we have:

〈γ ′ | ~̂p 2

12 +~̂p
2

23 +~̂p
2

31|γ 〉 = 〈γ′ |~̂p 2

12 + P̂13P̂23 ~̂p
2

23 P̂23P̂13 + P̂12P̂23 ~̂p
2

31 P̂23P̂12| γ 〉

= 3 〈γ ′ |~̂p 2

12 | γ 〉

Thus it is shown that the factor 3 in this calculation
is a symmetry factor, counting the number of pairs.

⇒ 〈T̂3N〉 =
〈~̂p 2

12

µ12

〉
= 2

〈
T̂12
〉

(A.15)

With this the generalisation to the A-nucleon system is straight forward:

T̂AN =
1

A

(
A

2

)
2 T̂12

=
1

A

(
A

2

)
~̂p

2

12

µ12

(A.16)

Analogous calculations can be done for the isotropic HO potential with 3 nucleons
V̂3N = 1

2
µ12 ω12 r

2
12 + 1

2
µ3 ω3 r

2
3 , resulting in

V̂AN =
1

A

(
A

2

)
V̂12

=
1

A

(
A

2

)
µ12 ω12 r̂

2
12 (A.17)
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A.3 General properties of the transposition op-

erator

• Some useful properties of the transposition operator are:

P̂ 2
ij = 1 (A.18)

P̂ij = P̂ji = P̂ −1
ij (A.19)

P̂ij | γ 〉 = −1 | γ 〉 , (A.20)

where | γ 〉 is a fully antisymmetrised state. Additionally:

P̂ijP̂jk = P̂jk P̂jkP̂ijP̂jk︸ ︷︷ ︸
P̂
ik

= P̂jkP̂ik (A.21)

and P̂ijP̂jk = P̂ijP̂jkP̂ij︸ ︷︷ ︸
P̂
ik

P̂ij

= P̂ikP̂ij . (A.22)

• The full antisymmetrisation operator of the 3N-system can be completely
expressed in terms of the transposition operator. Assuming an antisym-
metric subsystem (12), this yields:

Â3N =
1

3!

∑

P̂∈S3

ε
P̂
P̂

=
1

6

(
1− P̂12 − P̂23 − P̂31 + P̂12P̂23 + P̂23P̂31

)

(12) antisym.
=

1

6

(
1 + 1− P̂23 − P̂13P̂12P̂12 − P̂23 + P̂21P̂23

)

=
1

6

(
21− 3 P̂23 − P̂12P̂23P̂12

)

=
1

3

(
1− 2 P̂23

)
=

1

A

(
1 + (A− 1) P̂(A−1)A

)
|A=3 .

(A.23)



Appendix B

Inclusion of 3NF: generation of
β̃(3)–states

For the inclusion of 3NF, we need to separate an antisymmetric 3N-subsystem
from the γAN–state similarly to the generation of | β̃(2)

AN〉 in Sec. 2.2. In order to
perform the required coordinate transformation, two additional sets of intermedi-
ate states are needed, denoted by | β(2)⋆

AN 〉 and | β̂(2)
AN 〉. An illustration is depicted

in Fig. B.1 i) and ii), respectively.
The β(2)⋆–states are constructed such that a β–state of the (A−2)-nucleon system
is coupled to an antisymmetric 2N-subsystem, which is a spectator, while for the
β̂
(2)
AN–states an antisymmetric (A − 3)-nucleon system couples to a β3N–state as

spectator. They are defined as

| β(2)⋆
AN 〉 = |

(
N(A−2), J(A−2), T(A−2)

)
β(A−2)N nλ λ (N12, J12, T12) γ12 ;

{ [
JA−3

(
lA−2 s3

)
IA−2

]
JA−2 (λ J12) Iλ

}
JA

[(
TA−3 t3

)
TA−2 T12

]
TA〉,

(B.1)

and

| β̂(2)
AN 〉 = | (N3, J3, T3) β3N nλ λ

(
N(A−3), J(A−3), T(A−3)

)
γ(A−3)N ;

{
[J12 (l3 s3) I3] J3

(
λ JA−3

)
Iλ
}
JA

[
(T12 t3)T3 TA−3

]
TA〉 .

(B.2)

Based on these definitions, the projections onto the antisymmetric A-nucleon
states an be expressed as a triple sum:

〈γ |β̃(3)〉 =
∑

β̃(2) β(2)⋆ β̂(2)

〈γ|β̃(2)〉〈 β̃(2)| β(2)⋆〉〈β(2)⋆| ˆβ(2)〉〈 ˆβ(2)| ˜β(3)〉

82
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γ(A−3)N

β(A−2)N

γ(A−3)N

β3N

Γ2N

Γ2N

i) ii)

Figure B.1: Illustration of i) β
(2)⋆
AN – and ii) β̂

(2)
AN–states, respectively.

= ,
(B.3)

As done before we drop the subscript AN and only label the smaller subsystems
here and throughout this appendix. Furthermore, we imply δN

A
N ′

A
δJ

A
J ′
A
δT

A
T ′
A

as
usual.
The individual transitions are explicitly evaluated in the following sections, where
the coordinate transformation is performed for the overlap 〈 β(2)⋆ |β̂(2) 〉. For the
projection 〈γ |β̃(2)〉 see Sec. 2.2.

B.1 Transition 〈 β̃(2)| β(2)⋆〉
For the transition 〈 β̃(2)| β(2)⋆〉, the quantum numbers λ, nλ, Iλ and λ′, n ′

λ, I ′
λ are

assigned to the spectators of the β̃(2)– and β(2)⋆–states, respectively, as illustrated
in Fig. B.2.
In order to account for different couplings and directions of the spectator coordi-
nates of β̃(2)– and β(2)⋆–states, a recoupling of their angular momentum part is re-
quired. Then, this transition is essentially given by the overlap 〈 γ | β 〉 of the (A−
2)-nucleon system which yields the δ–functions δN

(A−2)
N ′

(A−2)
δJ

(A−2)
J ′
(A−2)

δT
(A−2)

T ′
(A−2)

.

For the explicit expression we obtain, focussing here on the recoupling:

〈 β̃(2)| β(2)⋆〉 = δΓ ′
2NΓ2N

δN
(A−2)

N ′
(A−2)

δJ
(A−2)

J ′
(A−2)

δT
(A−2)

T ′
(A−2)

×
〈[
J12 (λ JA−2) Iλ

]
JA |
{[
J ′
A−3

(
l ′A−2 s3

)
I ′
A−2

]
J ′
A−2 (λ′ J ′

12) I
′
λ

}
JA

〉

=
〈[
J12 (λ JA−2) Iλ

]
JA |
[
JA−2 (λ′ J12) I

′
λ

]
JA

〉

= (−1)J12+λ+JA−2+JA

× Îλ Î
′′
λ

{
J12 λ I ′′

λ

JA−2 JA Iλ

}
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×
〈[

(J12 λ) I ′′
λ JA−2

]
JA |
[
JA−2 (λ′ J12) I

′
λ

]
JA

〉

= (−1)J12+λ+JA−2+JA+I ′′
λ
−J12−λ

× Îλ Î
′′
λ

{
J12 λ I ′′

λ

JA−2 JA Iλ

}

×
〈[

(λ J12) I
′′
λ JA−2

]
JA |
[
JA−2 (λ′ J12) I

′
λ

]
JA

〉

= (−1)JA−2+JA+I ′′
λ
+JA−JA−2−I ′′

λ

× Îλ Î
′′
λ

{
J12 λ I ′′

λ

JA−2 JA Iλ

}

×
〈[
JA−2 (λ J12) I

′′
λ

]
JA |
[
JA−2 (λ′ J12) I

′
λ

]
JA

〉

= δλ′ λ δI′
λ
I ′′
λ

(−1)2JA Îλ Î
′′
λ

{
J12 λ I ′′

λ

JA−2 JA Iλ

}
. (B.4)

For the isospin matrix elements, the recoupling simply results in a phase factor:

〈
(T12 TA−2)TA | (TA−2 T12)TA

〉
= (−1)TA−T12−TA−2 . (B.5)

Furthermore, another phase factor is originated from the opposite direction of λ
and λ′, which leads to the full expression:

〈β̃(2)|β(2)⋆〉 = (−1)λ+2JA+TA−T12−TA−2 Îλ Î
′
λ

×
{

J12 λ I ′
λ

JA−2 JA Iλ

}
〈 γ(A−2)N | β(A−2)N 〉 , (B.6)

where now the overlap 〈 γ(A−2)N | β(A−2)N 〉 of the (A − 1)-nucleon system is in-
cluded.
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Figure B.2: Illustration of the transition 〈β̃(2)|β(2)⋆〉.

B.2 Transition 〈β(2)⋆|β̂(2)〉
Fig. B.3 visualises the transition 〈β(2)⋆|β̂(2)〉. Since we have to evaluate the coor-
dinate transformation here, we proceed analogously to Eqs. (2.15)- (2.19):

a) JJ-coupling → LS-coupling :

First, we disentangle the angular momentum part according to:

〈{[
J ′
A−3

(
l ′A−2 s3

)
I ′
A−2

]
J ′
A−2 (λ′ J ′

12) I
′
λ

}
J ′
A |
{[
J12 (l3 s3) I3

]
J3 (λ JA−3) Iλ

}
JA

〉

=
〈{[

JA−3

(
l ′A−2 s3

)
I ′
A−2

]
JA−2 (λ′ J12) I

′
λ

}
JA |

{[
J12 (l3 s3) I3

]
J3 (λ JA−3) Iλ

}
JA

〉

= (−1)I
′
A−2−l ′

A−2−s3+I3−l3−s3

×
〈{[

JA−3

(
s3 l

′
A−2

)
I ′
A−2

]
JA−2 (λ′ J12) I

′
λ

}
JA |

{[
J12 (s3 l3) I3

]
J3 (λ JA−3) Iλ

}
JA

〉

= (−1)I
′
A−2−l ′

A−2−s3+I3−l3−s3

× (−1)JA−3+s3+l ′
A−2+J ′

A−2+J12+s3+l3+J3

×
∑

S ′
A−1S3

Ŝ ′
A−2 Î

′
A−2

{
JA−3 s3 S ′

A−2

l ′A−2 J ′
A−2 I ′

A−2

}
Ŝ3 Î3

{
J12 s3 S3

l3 J3 I3

}

×
〈{[ (

JA−3 s3
)
S ′
A−2 l

′
A−2

]
J ′
A−2 (λ′ J12) I

′
λ

}
JA |

{[
(J12 s3)S3 l3

]
J3 (λ JA−3) Iλ

}
JA

〉

= (−1)I
′
A−2+I3+J

A−3+J ′
A−2+J12+J3

× (−1)−J ′
A−2+l ′

A−2+S ′
A−2−J3+S3+l3
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×
∑

S ′
A−1S3

Ŝ ′
A−2 Î

′
A−2

{
JA−3 s3 S ′

A−2

l ′A−2 J ′
A−2 I ′

A−2

}
Ŝ3 Î3

{
J12 s3 S3

l3 J3 I3

}

×
〈{[

l ′A−2

(
JA−3 s3

)
S ′
A−2

]
J ′
A−2 (λ′ J12) I

′
λ

}
JA |

{[
l3 (J12 s3)S3

]
J3 (λ JA−3) Iλ

}
JA

〉

= (−1)I
′
A−2+I3+J

A−3+J12+l ′
A−2+S ′

A−2+S3+l3

× (−1)−S ′
A−2+s3+J

A−3−S3+J12+s3

×
∑

S ′
A−1S3

Ŝ ′
A−2 Î

′
A−2

{
JA−3 s3 S ′

A−2

l ′A−2 J ′
A−2 I ′

A−2

}
Ŝ3 Î3

{
J12 s3 S3

l3 J3 I3

}

×
〈{[

l ′A−2

(
s3 JA−3

)
S ′
A−2

]
J ′
A−2 (λ′ J12) I

′
λ

}
JA |

{[
l3 (s3 J12)S3

]
J3 (λ JA−3) Iλ

}
JA

〉

= (−1)I
′
A−2+I3+2J

A−3+l ′
A−2+l3+2s3

×
∑

S ′
A−1S3

Ŝ ′
A−2 Î

′
A−2

{
JA−3 s3 S ′

A−2

l ′A−2 J ′
A−2 I ′

A−2

}
Ŝ3 Î3

{
J12 s3 S3

l3 J3 I3

}

×
〈{[

l ′A−2

(
s3 JA−3

)
S ′
A−2

]
J ′
A−2 (λ′ J12) I

′
λ

}
JA |

{[
l3 (s3 J12)S3

]
J3 (λ JA−3) Iλ

}
JA

〉

(B.7)

b) isospin T matrix elements:

Step a) already recouples the spins. For the isospin T we get:
〈 [(

TA−3 t3
)
T ′
A−2 T12

]
TA|

[
(T12 t3)T3 TA−3

]
TA
〉

= (−1)T
′

A−2−T
A−3−t3−T3+T12+t3

×
〈 [(

t3 TA−3

)
T ′
A−2 T12

]
TA|

[
(t3 T12)T3 TA−3

]
TA
〉

= (−1)T
′

A−2−T
A−3−T3+T12

×
〈 [(

t3 TA−3

)
T ′
A−2 T12

]
TA|

[
(t3 T12)T3 TA−3

]
TA .

〉
(B.8)

Using the HO bracket for the corresponding transformation space and considering
that this transformation implies δΓ ′

2NΓ2N
and δΓ ′

(A−3)N
Γ
(A−3)N

, one obtains:

〈β(2)⋆|β̂(2)〉

= δΓ ′
2NΓ2N

δΓ ′
(A−3)N

Γ
(A−3)N
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Figure B.3: Illustration of the transition 〈β(2)⋆|β̂(2)〉.

× (−1)I
′
A−2+I3+2J

A−3+l ′
A−2+l3+2s3

× (−1)J12+JA−3+2T ′
A−2+2T12+λ ′+λ

×Î ′
A−2 Î3 Ĵ

′
A−2 Î

′
λ Ĵ3 Îλ T̂

′
A−2 T̂3

×
∑

S ′
A−1S3

(−1)S
′
A−2+S3 Ŝ ′ 2

A−2 Ŝ
2
3

{
JA−3 s3 S ′

A−2

l ′A−2 J ′
A−2 I ′

A−2

}{
J12 s3 S3

l3 J3 I3

}

×
∑

LS

L̂2 Ŝ2

{
J12 s3 S3

JA−3 S S ′
A−2

}{
T12 t3 T3
TA−3 TA T ′

A−2

}

×





l ′A−2 S ′
A−2 J ′

A−2

λ ′ J12 I ′
λ

L S JA









l3 S3 J3
λ JA−3 Iλ
L S JA





×〈n ′
A−2 l

′
A−2 , n

′
λ λ

′ : L|n3 l3, nλ λ : L〉
d=

2(A−3)
A

. (B.9)
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Figure B.4: Illustration of the transition 〈β̂(2)|β̃(3)〉

B.3 Transition 〈 β̂(2)| β̃(3)〉
This overlap is a rather simple one, see Fig. B.4: since the γ(A−3)N–state remains
unchanged for this transition, this reduces to the antisymmetrisation of the 3N-
subsystem of the β̂(2)–states, which is given by the 〈 β | γ 〉–coefficients of the
3N-system. Therefore, this projection yields:

〈β̂(2)|β̃(3)〉 = δΓ ′
A−3ΓA−3

δλ′λ δn ′
λ
n
λ
δI ′

λ
I
λ
〈 β3N| γ3N〉 . (B.10)

Based on this three-step procedure, we were able to implement a code that cal-
culates 〈 γ | β̃(3) 〉-overlaps. First sets of coefficients have been generated and or-
thogonality relations checked.
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[70] P. Navrátil and B. R. Barrett, “Shell-model calculations for the
three-nucleon system,” Phys. Rev. C 57 (1998) 562–568,
arXiv:nucl-th/9711027.
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