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Music Synchronization, Audio Matching,
Pattern Detection, and User Interfaces

for a Digital Music Library System

Verena Kriesel

Abstract

Over the last two decades, growing efforts to digitize our cultural heritage could be observed.
Most of these digitization initiatives pursuit either one or both of the following goals: to
conserve the documents – especially those threatened by decay – and to provide remote
access on a grand scale. For music documents these trends are observable as well, and by
now several digital music libraries are in existence. An important characteristic of these
music libraries is an inherent multimodality resulting from the large variety of available
digital music representations, such as scanned score, symbolic score, audio recordings,
and videos. In addition, for each piece of music there exists not only one document of
each type, but many. Considering and exploiting this multimodality and multiplicity, the
DFG-funded digital library initiative Probado Music aimed at developing a novel user-
friendly interface for content-based retrieval, document access, navigation, and browsing in
large music collections. The implementation of such a front end requires the multimodal
linking and indexing of the music documents during preprocessing. As the considered music
collections can be very large, the automated or at least semi-automated calculation of these
structures would be recommendable. The field of music information retrieval (MIR) is
particularly concerned with the development of suitable procedures, and it was the goal of
Probado Music to include existing and newly developed MIR techniques to realize the
envisioned digital music library system. In this context, the present thesis discusses the
following three MIR tasks: music synchronization, audio matching, and pattern detection.
We are going to identify particular issues in these fields and provide algorithmic solutions
as well as prototypical implementations.

In Music synchronization, for each position in one representation of a piece of music the
corresponding position in another representation is calculated. This thesis focuses on the
task of aligning scanned score pages of orchestral music with audio recordings. Here, a
previously unconsidered piece of information is the textual specification of transposing
instruments provided in the score. Our evaluations show that the neglect of such information
can result in a measurable loss of synchronization accuracy. Therefore, we propose an
OCR1-based approach for detecting and interpreting the transposition information in
orchestral scores.

For a given audio snippet, audio matching methods automatically calculate all musically
similar excerpts within a collection of audio recordings. In this context, subsequence
dynamic time warping (SSDTW) is a well-established approach as it allows for local and
global tempo variations between the query and the retrieved matches. Moving to real-life
digital music libraries with larger audio collections, however, the quadratic runtime of
SSDTW results in untenable response times. To improve on the response time, this thesis

1 Optical character recognition
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introduces a novel index-based approach to SSDTW-based audio matching. We combine
the idea of inverted file lists introduced by Kurth and Müller (Efficient index-based audio
matching, 2008) with the shingling techniques often used in the audio identification scenario.

In pattern detection, all repeating patterns within one piece of music are determined.
Usually, pattern detection operates on symbolic score documents and is often used in
the context of computer-aided motivic analysis. Envisioned as a new feature of the
Probado Music system, this thesis proposes a string-based approach to pattern detection
and a novel interactive front end for result visualization and analysis.

Keywords: digital music representations, sheet music, optical music recognition, digital
music libraries, user interfaces, automatic document organization, music synchronization,
transposing instruments, audio matching, motivic analysis, pattern detection
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1 Introduction

Some of the most important achievements of modern information technology are the
development of the World Wide Web and the tremendous advances in data storage, data
acquisition, and computing power. This technological progress enabled the emergence of
new ways to solve problems that seemed unsolvable only a few decades ago. One such
problem is the long-term preservation of our cultural heritage. Vast amounts of cultural
material of all document types, such as books, newspapers, images, photos, (gramophone)
records, and video tapes, are stored in libraries, museums, and private collections all over
the world. Not only are these physical documents threatened by decay and thus ultimately
destruction, they are also difficult to access as one has to visit the respective institution
or apply for an inter-library loan. However, especially old documents are usually kept in
special storage in order to slow down their decay and are therefore not available to the
general public. Thanks to technological progress, the creation of digital surrogates of these
documents is now a realistic enterprise, and several national and international digitization
initiatives for the preservation of our cultural heritage have been launched.1 In addition,
several libraries and collections decided to create digital copies of their archives as well.

However, the generation and collection of digitized surrogates is only the first step. To
avoid digital graveyards, the generated data has to be processed, analyzed, annotated,
and organized. Due to the potentially large data volumes, a high degree of automation
of these tasks would be desirable. Furthermore, to enable access to digital collections,
intuitive interfaces that support searching, browsing, navigating, and the extraction of
information from the collections should be made available. For scanned text documents,
various solutions for automated document processing and document access have been
proposed. Typically, these systems include optical character recognition (OCR) to extract
the textual content from the images and fault-tolerant full-text indexing and retrieval. To
provide access to the documents, these two representations are then combined accordingly.
The scanned images are used for document presentation, while the extracted textual
information (in combination with the known position in the image) is used to provide
users with convenient navigation and content-based search functionalities. A well-known
example of such a system is Google Books [81].2

In contrast to the advances in the textual domain, there is still a significant lack of
corresponding systems for general digitized non-textual documents, such as audios, videos,

1 Examples are the project Presto Space (http://www.prestospace.org, February 2013) or the internet
portal Europeana [68].

2 The first two paragraphs were inspired by our papers [57,194] and borrow some phrasings from them.

1

http://www.prestospace.org


1 Introduction

audio lyrics 

Freude, schoener Goetterfunken, 
Tochter aus Elysium, 

Wir betreten feuertrunken, 
Himmlische dein Heiligtum. 

Deine Zauber binden wieder, 
Was die Mode streng geteilt; 

Alle Menschen werden Brueder, 
Wo dein sanfter Fluegel weilt. 

 
Wem der grosse Wurf gelungen, 
Eines Freundes Freund zu sein, 
Wer ein holdes Weib errungen, 

Mische seine Jubel ein! 
Ja - wer auch nur eine Seele 

Sein nennt auf dem Erdenrund! 
Und wer's nie gekonnt, der stehle 
Weinend sich aus diesem Bund! 

Das Wandern ist des Müllers Lust,  
Das Wandern!  

Das muss ein schlechter Müller 
sein,  

Dem niemals fiel das Wandern ein,  
Das Wandern.  

 
Vom Wasser haben wir's gelernt,  

Vom Wasser!  
Das hat nicht Rast bei Tag und 

Nacht,  
Ist stets auf Wanderschaft 

bedacht,  
Das Wasser.  

 
Das sehn wir auch den Rädern ab,  

Den Rädern!  
Die gar nicht gerne stille stehn,  
Die sich mein Tag nicht müde 

drehn,  
Die Räder 

Magnificat anima mea Dominum, 
et exsultavit spiritus meus in Deo 

salvatore meo. 
Quia respexit humilitatem ancillae 

suae. 
Ecce enim ex hoc beatam me 
dicent omnes generationes. 

Quia fecit mihi magna, qui potens 
est, 

et sanctum nomen eius. 
Et misericordia eius in progenies 

et progenies 
timentibus eum. 

Fecit potentiam in brachio suo, 
dispersit superbos mente cordis 

sui. 
Deposuit potentes de sede 

et exaltavit humiles. 
Esurientes implevit bonis 
et divites dimisit inanes. 

Suscepit Israel puerum suum, 

score 
Schubert, 

Op. 25 No. 1, 
»Das Wandern« 

Beethoven, 
Op. 125, 
1st mvmt.  

Liszt, Dante 
Symphony, 
1st mvmt. 

 
 
 
 

Freude, schoener Goetterfunken, 
Tochter aus Elysium, 

Wir betreten feuertrunken, 
Himmlische dein Heiligtum. 

Deine Zauber binden wieder, 
Was die Mode streng geteilt; 

Alle Menschen werden Brueder, 
Wo dein sanfter Fluegel weilt. 

 
Wem der grosse Wurf gelungen, 
Eines Freundes Freund zu sein, 
Wer ein holdes Weib errungen, 

Mische seine Jubel ein! 
Ja - wer auch nur eine Seele 

Sein nennt auf dem Erdenrund! 
Und wer's nie gekonnt, der stehle 
Weinend sich aus diesem Bund! 

 
 

Magnificat anima mea Dominum, 
et exsultavit spiritus meus in Deo 

salvatore meo. 
Quia respexit humilitatem ancillae 

suae. 
Ecce enim ex hoc beatam me dicent 

omnes generationes. 
Quia fecit mihi magna, qui potens est, 

et sanctum nomen eius. 
Et misericordia eius in progenies et 

progenies 
timentibus eum. 

Fecit potentiam in brachio suo, 
dispersit superbos mente cordis sui. 

Deposuit potentes de sede 
et exaltavit humiles. 

Esurientes implevit bonis 
et divites dimisit inanes. 

Suscepit Israel puerum suum, 

 
 
 
 

Das Wandern ist des Müllers Lust,  
Das Wandern!  

Das muss ein schlechter Müller sein,  
Dem niemals fiel das Wandern ein,  

Das Wandern.  
 

Vom Wasser haben wir's gelernt,  
Vom Wasser!  

Das hat nicht Rast bei Tag und Nacht,  
Ist stets auf Wanderschaft bedacht,  

Das Wasser.  
 

Das sehn wir auch den Rädern ab,  
Den Rädern!  

Die gar nicht gerne stille stehn,  
Die sich mein Tag nicht müde drehn,  

Die Räder 

Figure 1.1. Change from a document- and document-type-centered data collection (left) to an
arrangement focusing on pieces of music (right).

images, and 3D data. The recently terminated Probado project3 attempted to address
this imbalance by exploring and creating digital library services for non-textual documents
that provide innovative user interfaces for content-based document access [20, 23, 28]. The
definition and implementation of a widely automated document-processing chain (digitiza-
tion, representation, indexing, annotation, content-based access, and presentation) that can
be easily integrated into an existing library work flow constituted another important objec-
tive of the research initiative. Probado was further subdivided into the two sub-projects
Probado 3D [21,22,29] and Probado Music [57,106,190] that focused on the support of
3D architectural models and digital music documents, respectively. Despite the restriction
on these two data types, the developed architecture is not limited to these and it could be
extended relatively simply to provide access to other types of multimedia documents. The
research presented in this thesis was mostly inspired and driven by Probado Music and
the particular challenges of creating such a digital music library system.

An important characteristic of music libraries is their inherent multimodality resulting
from the large variety of available digital music representations (scanned score, symbolic
score, audio and video recordings, as well as related material like musicological analyses,
libretti, programs, critical reviews, photographs, and sketches for stage designs or costumes).
Furthermore, for each piece of music there exists not one document of each type, but many.
For example, there usually exist several score versions by different publishers and audio
recordings of the same piece by different musicians. In music research, education, and
experience one is often interested in accessing several documents representing the same piece
of music simultaneously (to read the lyrics or the score while listening to the performance)
or in direct succession (to compare different performances with each other). Therefore,
digital music libraries can benefit tremendously from a work-centered4 organization of their
digital collection, see Figure 1.1, in combination with a multimodal document presentation.
With Probado Music a prototype of such a library system was developed. In the current
version, the system supports scanned scores and audio recordings, but its extensibility to
further documents types, like video recordings, could be demonstrated in the context of
this thesis.

While processing a real-life music collection, we gradually discovered new problems that
have to be considered to allow for the envisioned functionality. In this thesis, we will focus

3 http://www.probado.de/en_home.html, February 2013
4 In the context of Probado Music a work denotes an individual piece of music (e.g., one movement of a
piano sonata), see also Section 3.2.
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on some designated challenges in music synchronization and audio matching and introduce
our respective developed approaches. In addition, our work on Probado Music gave rise
to a desire for several new features. Here, a particular focus was on the development of
computational approaches to musicological analyses, such as structure analysis [136,139],
harmonic analysis [104], or – as in this thesis – motivic analysis [189].5

By means of music synchronization, music representations of the same work are semantically
linked, see, e.g., [133, Chapter 5]. Given a score and a matching audio recording, these
linking structures help to determine the measure in the score that matches the current
position in the audio, and vice versa. Probado Music can thereby provide the user with
score-following (i.e., during playback, the current position in the score is highlighted) and
score-based navigation (i.e., selecting a measure in the score results in an update of the
playback position in the audio). Given multiple audio interpretations, the synchronization
data further allow the audio recording to be changed while retaining the musical position
(interpretation switching). Most of the recently proposed synchronization approaches
concentrate on piano music and chamber music. When moving on to more complex
orchestral pieces, new issues emerge that currently have not been properly dealt with.
For one, with increasing complexity of the score the employed optical music recognition
(OMR) systems are inclined to produce more recognition errors. Another problem is the
fact that no current recognition system detects transposing instruments in the score. Here,
the sounding pitch produced by the instrument is several semitones higher or lower than
the notes written down in the score. In this thesis, we demonstrate that neglecting the
transposition information during synchronization results in a distinct quality loss. We then
introduce a novel approach for reconstructing the transposition information from scanned
score images. In the first step, OCR reconstructs the textual information in the score,
which is subsequently translated into instrument labels and transposition information. The
particular conventions in music notation lead to the fact that not all staves of a score might
be equipped with textual labels. In the second step, a propagation method therefore aims
at filling these potential gaps.

Similar to the full-text search in Google Books [81], content-based music retrieval techniques
allow users of Probado Music to search for score samples, audio snippets, or lyrics. As a
special feature, the graphical user interface of Probado Music offers the possibility to
simply select a snippet from the currently visualized document as a query (intra-collection
query). The task of searching for sections in an audio collection that present some similarity
to a given audio snippet is often referred to as audio matching, see, e.g., [133, Chapter 6].
A powerful audio matching method is subsequence dynamic time warping (SSDTW) as it
is capable of considering global as well as local tempo variations between the query and its
reoccurrences. For music performances, where musicians often employ tempo changes as a
stylistic feature, this is a most valuable property. However, the quadratic time complexity
prevents the application of SSDTW in real-life systems such as Probado Music. In this
thesis, we propose to exploit the specific intra-collection search scenario in Probado Music
to create an index-based audio matching procedure for SSDTW that produces fast and
accurate results. The underlying idea is to split the audio collection into equal-sized
overlapping segments, to precompute their retrieval results, and to store these matches in

5 The mentioned publications present work that was carried out in the extended context of Probado Music.
More information and a selection of other approaches on structure analysis [61, 133, 153], harmonic
analysis [18,123,179], and motivic analysis [43,90,111,128] are available in the respective cited publication.
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1 Introduction

appropriate index structures. During query processing the indexes of the segments covering
the query are then merged to efficiently calculate the retrieval results.

In motivic analysis, a different type of similarity is studied in order to gain insights into
the structure of a piece of music and the stylistic methods employed by the composer.6
Motivic analysis is a delicate task, which for some subtasks requires the expert knowledge
of trained musicologists. One such task is the establishment of the function and meaning
of a motif. Due to the complexity and vagueness of this task, the complete automation of
motivic analysis through computer algorithms has to be considered impossible. However,
there are some steps that can be automated to yield systems for computer-aided motivic
analysis. It is the goal of pattern detection methods to find repeating note sequences within
a piece of music that constitute admissible motif candidates. In this thesis, we propose
to add the feature of computer-aided motivic analysis techniques to digital music library
systems like Probado Music. As a first contribution, we present a novel pattern detection
approach. Most existing approaches only search for exact repetitions of note sequences. In
contrast, we propose to also consider common motivic variations, such as inversions and
retrogrades. Furthermore, we introduce a prototypical interactive front end for accessing
and analyzing the detected patterns.

1.1 Contributions of this Thesis and Related Publications

We now provide a summary of the main contributions of this thesis. Parts of this work
have been previously published. Therefore, a list of related publications by the author is
provided for each topic. Some of the figures in this thesis were also taken from our own
publications.7

A first major contribution of this thesis is the integration of video and lyrics support
into the Probado Music system. The following papers report on Probado Music
and act as a basis for Chapter 3. Particularly noteworthy is the first publication as it
provides a detailed description of our work on integrating video recordings and lyrics.

[192] Verena Thomas, Christian Fremerey, David Damm, and Michael Clausen. SLAVE:
a score-lyrics-audio-video-explorer. In Proceedings of the International Society for
Music Information Retrieval Conference (ISMIR), pages 717–722, Kobe, Japan,
2009.

[20] René Berndt, Ina Blümel, Michael Clausen, David Damm, Jürgen Diet, Dieter
Fellner, Christian Fremerey, Reinhard Klein, Frank Krahl, Maximilian Scherer,
Tobias Schreck, Irina Sens, Verena Thomas, and Raoul Wessel. The PROBADO
project - approach and lessons learned in building a digital library system for
heterogeneous non-textual documents. In Proceedings of the European Conference
on Digital Libraries (ECDL), pages 376–383, Glasgow, Scotland, 2010.

[57] David Damm, Christian Fremerey, Verena Thomas, Michael Clausen, Frank
Kurth, and Meinard Müller. A digital library framework for heterogeneous music
collections – from document acquisition to cross-modal interaction. International
Journal on Digital Libraries, 12(2-3):53–71, 2012.

6 http://de.wikipedia.org/wiki/Formenlehre_(Musik), February 2013
7 Figures 1.1, 2.5, 2.9, 2.13, 2.15, 2.16, 3.10a, 3.10b, 3.11, 3.12, 4.1–4.6, 4.9, 4.12, 4.18, 5.1, and 5.2
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1.2 Structure of this Thesis

[190] Verena Thomas, David Damm, Christian Fremerey, Michael Clausen, Frank Kurth,
and Meinard Müller. PROBADO music: A multimodal online music library. In
Proceedings of the International Computer Music Conference Conference (ICMC),
pages 289–292, Ljubljana, Slovenia, 2012.

A novel procedure for the reconstruction of transposition information in scanned score
documents constitutes another contribution of this thesis. The papers below together
with the diploma thesis [204] form the basis of our description of this work.

[193] Verena Thomas, Christian Fremerey, Sebastian Ewert, and Michael Clausen.
Notenschrift-Audio Synchronisation komplexer Orchesterwerke mittels Klavier-
auszug. In Proceedings of the Deutsche Jahrestagung für Akustik (DAGA), pages
191–192, Berlin, Germany, 2010.

[195] Verena Thomas, Christian Wagner, and Michael Clausen. OCR-based post-pro-
cessing of OMR for the recovery of transposing instruments in complex orchestral
scores. In Proceedings of the International Society for Music Information Retrieval
Conference (ISMIR), pages 411–416, Miami, FL, USA, 2011.

[194] Verena Thomas, Christian Fremerey, Meinard Müller, and Michael Clausen.
Linking sheet music and audio - challenges and new approaches. In Meinard
Müller, Masataka Goto, and Markus Schedl, editors, Multimodal Music Process-
ing, Dagstuhl Follow-Ups, pages 1–22. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, Dagstuhl, Germany, 2012.

In this thesis we also propose a novel index-based approach to audio matching in larger
document collections. The chapter on this subject is based on the following paper.

[191] Verena Thomas, Sebastian Ewert, and Michael Clausen. Fast intra-collection
audio matching. In Proceedings of the ACM Workshop on Music Information
Retrieval with User-Centered and Multimodal Strategies (MIRUM), pages 1–6,
Nara, Japan, 2012.

As a final contribution, a novel string-based pattern detection approach is introduced.
Parts of the according chapter are based on the following publication.

[189] Verena Thomas and Michael Clausen. MotifViewer: Hierarchical pattern detec-
tion. In Proceedings of the International Computer Music Conference Conference
(ICMC), pages 555–558, Ljubljana, Slovenia, 2012.

1.2 Structure of this Thesis

This thesis consists of seven chapters. Chapter 2 introduces the different types of music
representations of relevance for this thesis. Furthermore, we describe a derived feature
representation and its calculation from digital music documents. Chapters 3–6 constitute
the main part of this thesis and introduce our work on a digital music library system
(Chapter 3) as well as new approaches to music synchronization (Chapter 4), audio matching
(Chapter 5), and computer-aided motivic analysis (Chapter 6). Each chapter gives an
introduction in the respective field and provides a review of related work before presenting
our own contribution. We conclude the thesis in Chapter 7 with an outlook on possible
future directions.
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2 Music Representations,
Transformations, and Music Features

Music is an acoustic art form and, therefore, comes alive through its performance. To store
such a performance and enable the reproduction of a particular piece of music by other
musicians, various music representations (or data formats), both physical and digital, have
been developed over time. These formats differ considerably in their structure and content,
which is why they usually capture different aspects of the given piece of music. In this
chapter, we give a brief introduction to some existing music representations. We concentrate
particularly on those (digital) representations relevant to the work presented in this thesis.
Furthermore, we describe possible transformations between those representations with a
special focus on the creation of symbolic score data from scanned score pages (optical
music recognition). Both in music synchronization (Chapter 4) and in audio retrieval
(Chapter 5), a derived music representation is created from the given music documents.
Such a mid-level or feature representation captures only certain aspects of the piece of
music, like the harmonic progression, while discarding others. Thus, the selection of
an appropriate representation can significantly enhance the comparability of the music
documents with respect to the given notion of similarity. At the end of this chapter, we
introduce the chroma features used in this thesis and describe their calculation for different
input formats.

2.1 Common Practice Notation

Common practice notation (CPN) is a system for the graphical representation of music. To
this end, a fixed set of musical symbols and textual instructions was developed. The main
goal of CPN is the creation of written instructions whereby musicians are able to rehearse
and perform a piece of music. However, music notation is in many aspects restricted to
providing rough instructions (e.g., tempo, dynamics, and articulation) and thereby offers
performers a great deal of space for interpretation. In the remainder of this section, we
describe the basic layout conventions of CPN and introduce some expressions required in
this thesis.

Figure 2.1 shows an extract from a score representation of Bach’s Cello Suite No. 1. In CPN,
music events are represented by note objects capturing attributes such as pitch, musical
onset time, duration, dynamics, and articulation. In addition, textual instructions, like
"Moderato", "Andante con moto" (global instructions) or "accelerando", "ritardando"

7



2 Music Representations, Transformations, and Music Features

Figure 2.1. Score representation of the first two measures of Bach’s Cello Suite No. 1 (publisher:
C. F. Peters) using CPN.

(for local tempo variations), specify the tempo. Often, the score also provides more explicit
tempo instructions via metronome marks. For example, the metronome mark in Figure 2.1
indicates that the piece should be performed with a speed of 84 quarter notes per minute
(84 BPM).1 Other than the Latin writing system, CPN is a two-dimensional notation.
Usually, the playing instructions for one instrument (or in orchestral music for a group
of instruments) are represented in a staff line or staff, see Figure 2.2. A staff comprises
five horizontal lines and normally spans the entire width of a score page. In such a staff,
the horizontal position of the notes defines their timing, whereas the vertical placing (in
combination with the clef) encodes their tone height (or pitch). In most classical music,
several instruments perform simultaneously. To capture this parallelism, the staves of the
individual instruments are placed below each other with a connecting vertical line in front
of the staves. The resulting structure is referred to as staff system or system. Playing
instructions for polyphonic instruments like the piano or the harp are usually provided in
two separate staves connected by a brace (also accolade) at the beginning of the system.
In piano music, this grouping of two staves is also called a grand staff.

In orchestral music a fixed seating plan – ordered by instrument families – is usually
maintained during performances, see Figure 2.3. Equally, the staff order for the individual
instruments typically obeys a common convention. In Table 2.1 the standard instrument
order in scores for classical music is presented. While it is common practice to apply this
order, there exist scores that deviate from it, see Figure 2.4. In the majority of cases, a
piece of music uses only a subset of instruments and not a complete orchestra. To indicate
the instrumentation of a given piece of music and which instrument is supposed to play a
given staff (instrument-staff mapping), the first system provides textual information on
the instrumentation, see Figure 2.2. In most scores, the number of staves remains constant
throughout the entire piece of music. Therefore, the instrument names are often omitted
after the first system. However, there also exists a non-negligible number of scores where a
compressed notation is used instead. In compressed notation, the instrument order (usually)
established in the first system remains valid throughout the score. However, the staves of
pausing instruments are removed and staves of the same instruments that temporarily play
in unison might be merged (or vice versa), see Figures 2.5 and 2.6.2 Equally, additional
staves for new voices of a particular instrument can appear in the course of the piece of
music. Thus, the number of staves in the systems varies and the instrument-staff mapping
from the first system cannot be transferred. To clarify the instrument-staff mapping in these
cases, textual information on the instrumentation is provided. However, the instrument
names are usually abbreviated after the first system. While some editors choose to provide
instrument names in front of all systems, most only clarify the instrument-staff mapping

1 "Tempo (i)", Grove Music Online. http://www.oxfordmusiconline.com/subscriber/article/grove/
music/27649, February 2013.

2 In most compressed scores, the first system provides information on all instruments occurring in the
piece of music. However, a small number of scores only introduces instruments once they start playing.
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2.1 Common Practice Notation

Clarinet in A

Piano

Violin I

Violin II

Viola

Violoncello 

and Bass

grand staff

(staff) system

group

brace

clef bar line bar/measure

3
4

3
4

3
4

3
4

3
4

3
4

3
4

staff

Figure 2.2. Example of CPN layout and naming conventions. The note material of an instrument is
placed in a staff. To describe multiple simultaneously performing instruments, the individual staves are
connected by a bracket to create a (staff) system. The score is segmented into measures (also bars),
which are visually divided by measure lines. The time signature at the beginning of the score indicates
the number of beats per measure. To deal with the different note ranges of instruments and the limited
range provided by a staff, clefs are used. For example, for the treble clef (first staff) the middle line of a
staff represents the pitch B4, whereas for the bass clef (third staff) this line coincides with the pitch D3.

in case of changes in comparison to the previous system. If the mapping is obvious for a
human reader (e.g., strings are always the last instrument group), the textual information
might even be omitted in spite of changes.

In addition to those text labels, braces, musical brackets, and instrument groups further
help in structuring the score and determining the instrument-staff mapping. While braces
mark grand staves or staves holding playing instructions for the same instrument (e.g.,
first staff for the first horn and the second staff for the second horn), instrument groups
cluster whole instrument families. This grouping is indicated in the score by interrupting
the vertical measure lines between two groups and/or by clustering the according staves
with brackets, see Figure 2.2. These conventions for structuring and annotation orchestral
scores are usually met in modern prints. However, for older prints we could observe a
range of deviations. Examples are the usage of brackets instead of braces, the omission of
measure line gaps, or their usage to only separate the strings from the rest of the orchestra.
In Figure 2.7, we depict some examples of encountered instrument grouping conventions.

Besides the mere information on which staff of a system contains the playing instructions
for an instrument, the instrument-staff mapping has a particular relevance in the context of

9
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harps
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violins II violas

violoncelli

d
o
u
b
le

 

b
as

se
s

conductorSOLOISTS

horns trumpets

trombones tuba

VOICES

Figure 2.3. Common instrument placing in classical
orchestras [130].

WOODWINDS piccolo
flutes
oboes
English horn
clarinets
bassoons

BRASSES horns
trumpets
cornets
trombones
tuba

PERCUSSION timpani
other

PLUCKED harp
KEYBOARDS keyboard
SOLO various
VOICES choir
STRINGS violins

violas
celli
double basses

Table 2.1. Common order of instruments
in CPN.

transposing instruments.3 For these instruments, the sounding pitch differs from the notated
pitch information in the score. More precisely, the produced pitch when playing a written
C determines the interval of transposition for the specific instrument. A comprehensive
listing of transposing instruments in Western classical music is available in Table 2.2. Note
that for some instruments, the sounding pitch is still a C but in a different octave (e.g., the
guitar sounds one octave higher than notated). The main motivation for the application of
transpositions is a uniform fingering for the written notes of all instruments in the same
instrument family – regardless of their individual size and pitch range.

Timpani are usually tuned to the tonic and dominant notes. In the 17th and early 18th
century, timpani were often treated as transposing instruments as well. In transposed
notation, they are notated as C and G with the tuning indicated by the text label (e.g.,
"Timpani in Es-B"). While Bach, Mozart, and in the beginning also Schubert used this
notation, Handel, Haydn, and Beethoven chose to write the timpani score in concert pitch,
see Figure 2.8.

Octave transpositions are either not marked in the score at all or are specified by an
eight above or below the clef. In contrast, the non-octave transpositions are indicated by
adding an according textual label to the instrument name, for example, "Clarinet in
A" (denoting a three semitones lower sounding pitch). Depending on the language of the
score and the editor, the names of keys, the font, and the layout of the textual labels vary,
see Figure 2.9. Like instrument labels, transpositions are usually only indicated in the
first system of a piece or in the case of a change (of transposition). These changes are
indicated in the measure before the new transposition becomes valid through a text label,

3 Actually, the transposition is a convention of CPN rather than a property of the instruments themselves.
Nevertheless, it is common practice to refer to instruments for which the music is typically notated in
transposition as transposing instruments.
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2.1 Common Practice Notation

Figure 2.4. Instrument order of different scores. On the left, the beginning of the first movement
from Beethoven’s Symphony No. 5 in an edition by Breitkopf & Härtel is shown. The score utilizes
the common instrument order as established in Table 2.1. On the right, the beginning of Wagner’s
opera The Flying Dutchman in a reprint edition by Kalmus is depicted. As in most orchestral pieces by
Wagner we encountered, the order of the horns and the bassoons is altered.

...
...

...
...

...
...

Figure 2.5. Extracts from Liszt’s A Symphony to Dante’s Divine Comedy in compressed notation
(publisher: Breitkopf & Härtel). The overall order of the instruments in the score remains unchanged,
but staves of instruments that have a long rest are temporarily removed. Thereby, the location of
the score information related to a particular instrument changes. For example, in the first system the
bassoons ("Fagotte" in German) are notated in the seventh staff, whereas in the two later systems
their score is written down in the third staff.
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2 Music Representations, Transformations, and Music Features

Figure 2.6. Left: Extracts from Berlioz’s Roméo et Juliette (publisher: C. Joubert & Cie.) using
compressed notation. The staves of the four horns are merged into one staff in a subsequent system of
the score. Right: Example from Thus Spoke Zarathustra by R. Strauss (publisher: Dover Publications)
where two additional horns appear in the second system of the score.

instrument transpositions
piccolo C, D[
alto flute G
oboe d’amore A
English horn C, F
piccolo clarinet A[
sopranino clarinet D, E[
soprano clarinet D, E[, G, A, B[
clarinet C, E[, A, B[
alto clarinet E[
bass clarinet C, A, B[
contra bass clarinet E[, B[
horn C, D, E, E[, F, G, A, B[
tenor horn E[
piccolo trumpet E[, B[
trumpet C, D, E, E[, F, A, B[
cornet G, A, E[, B[
alto trumpet F
bass trumpet C, E[, B[
tuba E[, F, B[
tenor tuba E[, B[
bass tuba F, B[
flugelhorn B[
euphonium B[

Table 2.2. Transposing instruments in Western classical music and their possible transpositions.
Instruments that have only octave transpositions are not listed.

e.g., "(muta) in A", see Figure 2.10. Thus, to reconstruct which playing instructions in a
system have to be read in transposition, both the instrument-staff mapping and the last
given transposition information need to be considered.

Classical music is a highly structured art form, where whole sections are repeated to create
a certain musical form (e.g., sonata form or the strophic form of songs). To save space
and to highlight the structure of the piece in the score, CPN provides special symbols
indicating repeating sections or jumps in the score. A comprehensive overview of repeat
and jump instructions in CPN is available in Figure 2.11.

12



2.1 Common Practice Notation

(a) Breitkopf & Härtel (b) Dover Publications (c) MuseData [45]

Figure 2.7. Example of different instrument groupings for the Symphony No. 5 by L. v. Beethoven as
applied by different editors. (a) Shows a print by Breitkopf & Härtel without any groupings. (b) The
reprint edition by Dover Publications visibly separates the strings from the other instruments. (c) In the
MuseData score all instrument families are grouped and visibly separated by disrupted measure lines.
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2 Music Representations, Transformations, and Music Features

Figure 2.8. Different notation styles for timpani. In the upper extract from Mozart’s opera The Magic
Flute (publisher: Bärenreiter), timpani are treated as transposing instruments by notating the score in C
and G while indicating the actual tuning through transposition labels in front of the staff. In the second
example (extract from Beethoven’s Symphony No. 2, publisher: Breitkopf & Härtel), the timpani are
notated in concert pitch (albeit still indicating the tuning through textual labels).

Figure 2.9. Examples of instrument and transposition labels applied by different editors and in different
languages. The examples show that French, Italian, and Spanish scores use fixed do solmization (Solfège),
e.g., the key A is referred to as "la".

Figure 2.10. Examples of changes in transposition that take place within a piece of music (publisher:
Breitkopf & Härtel). In the third staff, the transposition of the first and second horns is changed
to F (previously in E) and in the fourth staff, the transposition of the trumpet is changed. As the
instrument order did not change in this system, no instrument labels are given, thus requiring the reader
to remember the instrument-staff mapping.
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2.1 Common Practice Notation

(a) Simile mark, the previous measure is repeated. Structure: a1a2a2a3.

(b) Repeat the whole piece. Structure: a1a1.

(c) Repeat individual sections. Structure: a1b1b1c1c1.

1. 2.

(d) Volta brackets to indicate different endings for a repeated passage. Structure: a1a2a1b1b2.

fine

D.C. al fine

(e) Da capo al fine, repeat whole piece until the word fine. Structure: a1b1a1.

D.S. al fine

fine

(f) Dal Segno al fine, repeat piece from the Segno sign until the word fine. Structure: a1a2b1a2.

D.C. al Coda

Coda

(g) Da capo al Coda, repeat from beginning and jump to the coda at the Coda sign. Structure:
a1a2a1b1.

Figure 2.11. Jump indicators in CPN (adapted from [73]).
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2.2 Digital Music Representations

Digital music representations can be divided roughly into graphical, symbolic, and auditory
score formats. In this section, we briefly introduce each group and comment on their
similarities and differences.

Graphical: Given a printed score in CPN, it can be digitized by scanning every page. As
a result, a graphical representation as an image (PNG, TIFF, or JPEG) or a PDF file is
created. For the human reader, the resulting digital document is as readable as the paper
document. However, for the computer, these scans are merely a conglomeration of pixels
without any musical meaning. In places that require a clear distinction, we explicitly state
whether we are talking about printed or scanned score documents. Furthermore, we use
the terms score and sheet music interchangeably.

Symbolic: The symbolic score class refers to digital, machine-readable data formats
explicitly representing musical entities. Symbolic scores can differ largely in their structure
and description level. Therefore, musical entities range from note events with explicit timing
information as in MIDI files to graphical shapes with attached musical meaning, as in the
*.mro files created by the OMR system SharpEye, see Section 2.3. Some well-established
symbolic formats are MIDI, MusicXML, Humdrum, LilyPond, and NIFF. Various ways exist
to create a symbolic score representation of a piece of music. First, one could manually type
the code describing the score. However, this is a time-consuming and error-prone endeavor.
Second, music notation software, such as MuseScore4 or Capella,5 provide convenient
graphical user interfaces for the creation of digital scores. Most of these programs support
the export of the resulting representations into the more popular symbolic formats. Finally,
given the scanned score of a piece of music, the contained symbolic music information can
be restored using optical music recognition software (OMR), the musical analog to optical
character recognition (OCR), see Section 2.3. In the context of the Probado project, see
Chapter 3, we employ OMR to enable the application of MIR techniques, while using the
digitization of the printed score as visualization.

Audio: From a physical point of view, striking a tuning fork causes vibrations of the air
that ultimately result in periodic changes of the air pressure at our ear drums. Basically,
every sound we hear arises from such vibrations induced by some object, e.g., the afore-
mentioned tuning fork, the vocal chords of a living being, or the vibrating string of a
guitar. The induced pressure changes travel through the air as a wave. The time between
two consecutive high pressure points of this wave is called the period and the amplitude
of the wave corresponds to the intensity of the produced sound signal. The frequency is
the reciprocal of the period, i.e., a measure of the amount of vibrations per seconds. The
corresponding perceptual experience of frequency is referred to as pitch. For example,
the frequency of the MIDI pitch 69, which is the middle A of the chromatic scale, has a
frequency of 440 Hz.6 A particular property of the chromatic scale is that octave changes
result in a doubling/halving of the frequency. Therefore, A5 has a frequency of 880 Hz
and the frequency of A3 is 220 Hz. The sound produced when playing a single tone on
an instrument is not such a simple sound of a well-defined frequency. It rather consists
of a superposition of sounds of various frequencies; the so-called harmonics or overtones.

4 http://musescore.org, February 2013
5 http://www.capella.de/us/, February 2013
6 In practice, an entire frequency range is associated with a single pitch to smooth out small deviations.
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transcription rendering

synthesis / sonification OMR

Audio
Symbolic

score

Sheet

music

Figure 2.12. Illustration of transformations between the three types of digital music representations
(adapted from [73]).

The frequencies of these harmonics differ by an integer multiple from the fundamental
frequency, which is the frequency of the produced pitch. In addition to the harmonics,
a tone usually also contains some non-periodic noise-like frequency components. The
intensity distribution of the harmonics and the noise components strongly characterize the
timbre of an instrument.

The sound waves produced by an orchestra can be captured with a microphone. Thus,
the air pressure changes are converted into an electrical signal, which can subsequently be
transformed into a digital, computer-readable representation. To this end, the recorded
sound waves are sampled and quantized to produce a digital, discrete audio signal. The
resulting signal can be stored as a digital audio recording. Common file formats are WAV
and MP3. For more information on the production of sound and digital audio recordings, we
refer to [119,133]. While an audio file captures all peculiarities of the recorded performance
(room acoustics, deviations from the score, etc.), it does not provide sufficient information
to allow a reproduction of the piece by other musicians (exceptions are simple pieces of
music or exceptionally talented musicians/composers like W. A. Mozart7).

Having defined the three classes of digital music representations, transformations between
them can now be specified, see Figure 2.12. By means of audio synthesis or sonification,
symbolic score can be transformed into a synthetic audio recording. This task is basically
well defined. However, the quality of the output strongly depends on the applied sonification
method. The reverse transformation from an audio recording to its symbolic representation
is called audio transcription [103] and poses a much harder problem. Especially for
orchestral pieces, which feature several instruments, the reconstruction of the underlying
score might not be possible at all. A given symbolic score file can be transformed into a
visual sheet music representation by means of score rendering. Depending on the input
format, this task varies in its complexity and solvability. For example, a MIDI file usually
does not contain information on the key signature and clef of the piece of music and thus this
information has to be reconstructed beforehand. However, an unambiguous reconstruction
might not always be possible. In contrast, other symbolic formats like MusicXML or
Humdrum explicitly represent all musical symbols and thus contain information on note
durations, clefs, accidentals, and the current key. But due to the particular layout of
CPN, score rendering remains a non-trivial task even for these formats. The reverse
transformation from sheet music to symbolic score was already mentioned briefly and is
referred to as OMR. In Chapter 4, we will employ this transformation to calculate sheet
music-audio alignments. Therefore, a more detailed description of OMR is provided in
the following section. The interested reader can find a more detailed description of the
transformations in [73].

7 According to the popular story, in April 1770, the 14-year-old Mozart produced a transcription of
the Miserere mei, Deus by G. Allegri entirely from memory after listening to it once. Family letters
support this story, see http://www.freemedialibrary.com/index.php/Documents_describing_Mozart’
s_transcription_of_the_Allegri_Miserere, February 2013.
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2.3 Optical Music Recognition

Similar to OCR with the goal to reconstruct the textual information given on scanned text
pages, OMR aims at restoring musical information from scanned score images.8 However,
the automatic reconstruction of music notation from scanned images has to be considered as
being much harder than OCR. Music notation is two-dimensional, contains more symbols,
and those symbols mostly overlap with the staves. A large number of approaches to
OMR have been proposed and a range of commercial and non-commercial OMR systems
are available today. Three of the more popular commercial systems are SharpEye [145],
SmartScore,9 and PhotoScore.10 All of them operate on CPN. While the former two only
work for printed sheet music, PhotoScore also offers the recognition of handwritten scores.
Two prominent examples for non-commercial OMR systems are Gamera11 and Audiveris.12

While Audiveris is not competitive in terms of recognition rates, Gamera is actually a more
general tool for image analysis. Therefore, Gamera requires training on the data to be
recognized in order to yield adequate recognition results. Since the introduction of OMR
in the late 1960s [155], many researchers have worked in the field and relevant work on the
improvement of the recognition techniques has been reported. For further information, we
refer to the comprehensive OMR bibliography by Fujinaga [78].

Three factors exist that affect the difficulty of the OMR task and the selection of the
pursued approach. First, there exist different types of scores (e.g., CPN, medieval notation,
or lute tablatures) that differ significantly in their symbol selection and their basic layout.
Therefore, the type of music notation present on the images has to be considered. Second,
the transcription format is of influence. Printed score is regular and usually well formatted,
while handwritten score can be rather unsteady and scrawly. Additionally, crossing outs,
corrections, and marginal notes make the interpretation of handwritten scores even more
challenging. Finally, the envisioned application of the resulting symbolic representation
influences the required precision. OMR results intended for playback or score rendering
have to present a much higher accuracy on the note level than a reconstruction serving
as score representation during sheet music-audio synchronization on the measure level,
see Chapter 4, or similar MIR tasks. In the first scenario, most OMR systems support
the creation of an initial approximation of a symbolic representation and provide user
interfaces for manual correction.

Several studies on the performance of OMR systems and the types of errors that occur
were conducted [33,39, 40, 73]. Those studies showed that OMR systems vary with regard
to their strengths and weaknesses. Nevertheless, the types or classes of recognition errors
are the same for all systems. Some examples of common errors are given in Figure 2.13.
Most of those errors are of local nature and concern individual music symbols or small
groups thereof. Examples are articulation marks, ornaments, accidentals, dynamics, and
note durations that are mistaken for some other symbol or missed altogether. But there
are also types of recognition errors that influence larger areas of the score. Those might
include incorrect time signatures or key signatures, missed clefs, staff systems that were

8 The first four paragraphs of this section are to a great extent adopted from [194].
9 http://www.musitek.com, February 2013

10 http://www.sibelius.com/products/photoscore/ultimate.html, February 2013
11 http://gamera.informatik.hsnr.de, February 2013
12 http://audiveris.kenai.com, February 2013
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2.3 Optical Music Recognition

Figure 2.13. Examples of common OMR errors. Left: Besides incorrect note durations and an
accidental that was mistaken for a note, the staff system was split into two systems and some notes
were missed. Middle: The key signature was not correctly recognized for the lower staff. Right: In the
lower staff, the clef was not detected.

Figure 2.14. Comparison of a high-quality score scan (top) and a scan of lower image quality (bottom).
The encountered scan quality has a strong impact on the error rate of the OMR output.

split up,13 or missed repetition instructions. Two important factors influencing the overall
amount of errors are the complexity of the score itself (e.g., large staff systems, closely
placed notes, or many ornaments can render the recognition difficult) and the image quality
of the score scans to be processed, see Figure 2.14.

Another shortcoming of most OMR systems is the interpretation of textual information
in the score. While some systems are capable of determining text, such as the lyrics,
correctly, text-based instructions on dynamics, title headings, and instruments are either
recognized without associating their (musical) meaning or are not detected at all. For
orchestral music to be recognized correctly, the most significant textual information is
that on transposing instruments. If transposing instruments are part of the orchestra and
their specific transposition is not considered during the reconstruction, their voices will be
shifted with respect to the remaining score, see Figure 2.15. To the best of our knowledge,
no OMR system considers this type of information and attempts its detection.

For the work presented in this thesis, the commercial OMR system SharpEye is used.
Besides a command-line-capable recognition engine, a graphical user interface to access, edit,
and correct the created recognition results is provided. SharpEye can export the created
symbolic score data to MusicXML, MIDI, and NIFF. In addition, SharpEye supports a

13 Systems might be split up due to arpeggios that travel through several staves, percussion staves in form
of single horizontal lines, or textual annotations that disrupt the vertical measure lines.
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Figure 2.15. Voices of transposing instruments are shifted with respect to other voices if their
transpositions are not known. Left: Score extract. Middle: Erroneous reconstruction in absence of
transposition information (depicted in piano roll view). Right: Correct symbolic representation of the
highlighted score extract.

proprietary text-based file format that uses the file extension *.mro. In contrast to the
other supported formats, this format captures more low-level information. For example,
*.mro files contain some information on the layout of the score, such as the placing of
staves and measures in the original image.

Concluding, OMR systems are capable of providing good automatic interpretations of
sheet music. Unfortunately, due to the complexity of CPN, not all information can be
restored. Particularly challenging are scores of orchestral music. Here, information on
instrument-staff mappings and transpositions is not reconstructed. As we will see in
Chapter 4 this information is, however, crucially relevant for the calculation of high-quality
sheet music-audio synchronizations of orchestral music.

2.4 Mid-Level Representations

As discussed in the previous sections, music comprises a wealth of information (instrumenta-
tion, articulation, dynamics, tempo, timbre, harmonics, etc.) and each data format captures
them to a different extent and in a different manner. For most MIR tasks, certain aspects
of music are of particular relevance, while others have to be disregarded altogether. For
example, in some applications one may be interested in characterizing an audio recording
irrespective of certain details concerning the interpretation or instrumentation. In contrast,
other applications may be concerned with measuring a musician’s individual articulation
or emotional expressiveness. Also, automatic music processing often requires several music
documents (that can be of a different type) to be compared with one another. Therefore,
the first step in practically all music processing tasks is to extract a suitable mid-level
representation (also feature representation) that captures key aspects relevant to the given
task while disregarding those without relevance.

In the remainder of this section, we introduce the chroma features, a mid-level representation
particularly useful in the context of music synchronization (Chapter 4) and music retrieval
(Chapter 5).

2.4.1 Chroma Features

As is generally known, humans perceive two pitches as similar in "color" if they differ by one
or more octaves. Using this periodicity, a pitch can be separated into the two components
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tone height and chroma, see [180]. Here, the chromas correspond to the 12 traditional
pitch spelling attributes C,C],D, . . . ,B of the equal-tempered scale, while the tone height
indicates the respective octave number of the pitch.14 For example, the MIDI pitch p = 37
can be represented by chroma C] and octave number 2. The chroma representation of
a music document is then given as a sequence of 12-dimensional chroma vectors where
each vector captures the local energy distribution among those 12 pitch classes. By
identifying and clustering pitches that differ by octave multiples in this manner, the chroma
features show a high degree of robustness to variations in timbre and instrumentation
while correlating closely to the musical aspect of harmony. Therefore, those features
are particularly suited for the analysis of Western music, which is usually characterized
by a prominent harmonic progression [15]. There exist both many variants of chroma
features and many approaches for their computation. In this thesis, we focus on the
description of a well-established chroma variant, the Chroma Energy Normalized Statistics
(CENS) features. In particular, we describe their calculation for different digital music
representations. Furthermore, we present an extension of those chroma features whereby
their robustness towards timbre and instrumentation could be increased even further.

Given an audio recording, the digital music signal is first decomposed into 88 frequency
bands whose center frequencies correspond to the pitches A0 to C8 (MIDI pitches 21 to
108).15 This decomposition can be derived from the audio data in different ways, for example,
by pooling Fourier coefficients obtained from one or more spectrograms [15,67,80], by using
a constant-Q transform [31], or by applying multirate filter bank techniques [133, 141].
From this pitch representation the short-time mean-square power (STMSP) is calculated
by squaring the samples of each sub-band using a rectangular window of fixed window size
and overlap. In the next step, one obtains a chroma-pitch representation by summing up all
STMSP values belonging to the same pitch class. For example, to compute the value of the
chroma C, all values corresponding to the musical pitches C1,C2, . . . ,C8 have to be added
up. The resulting 12-dimensional chroma-pitch vector is subsequently normalized using the
`1-norm.16 Based on suitably chosen thresholds, the resulting normalized features are then
quantized. By using logarithmic thresholds, one accounts for the logarithmic sensation
of sound intensity [214]. Finally, we obtain CENSwd features through smoothing with a
Hann window of length w, downsampling by a factor d, and a subsequent normalization
with respect to the `2-norm. For more details on the individual steps, we refer to the
literature [133,141].

The transition from a scanned score to its chroma representation requires two additional
processing steps [108]: First, the musical information is restored from the score images
using OMR. Subsequently, the recognition result is used to create the note events of the
score. Assuming a fixed tempo, uniform dynamics, and standard tuning,17 a MIDI file
is created. This file can then be converted into CENS in a similar way as described for
audio recordings [91]. As previously discussed, the OMR extraction step is error-prone
and consequently the quality of the produced chroma features might be degraded. While
local errors can usually be canceled out by appropriate parameter settings (particularly the

14 Note that different pitch spellings, such as C] and D[, are mapped to the same chroma.
15 The selected pitches coincide with the 88 keys of a piano.
16 For p ∈ [1,∞) the `p-norm of an n-dimensional vector x = (x1, x2, . . . , xn) is defined by ‖ x ‖p:=(∑n

i=1 |xi|p
)1/p.

17 For Western classical music a standard tuning of 440 Hz for the note A4 was defined. However, most
orchestras slightly deviate from this tuning, see [150].

21



2 Music Representations, Transformations, and Music Features
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Figure 2.16. Illustration of the CENS chroma features for the first eight measures from the third
movement of Beethoven’s Piano Sonata No. 23 (publisher: G. Henle Verlag). The color values
represent the intensity of a chroma at a given position (black: low intensity, red: medium intensity, and
yellow/white: high intensity). The left diagram shows a chroma sequence that was calculated for the
depicted sheet music extract. The middle and the right diagram show the chroma features for two audio
interpretations of the same music extract. The chroma features manage to capture the higher tuning
(by one semitone) of the second recording.

feature resolution), global misrecognitions, like missed jump instructions or transpositions,
are propagated to the mid-level representation. To enable the robust comparison of sheet
music with other music documents, those global errors should be identified and corrected.
Some error classes particularly relevant in the context of sheet music-audio synchronization
and approaches for their automatic detection and correction will be discussed in Chapter 4.

Figure 2.16 shows three CENS representations of the same musical section derived from
different music documents (scanned score and two different audio recordings). A major
difference of the audio-derived chromagrams compared to the chroma representation of
the sheet music is their noisiness. This is mainly owing to harmonics and variations in
dynamics. In contrast, harmonics are not modeled for the sheet music and a uniform
volume – regardless of playing instructions and instrument-related variations – is assumed.

2.4.2 Timbre-invariant Chroma Features

It is a generally accepted observation that the lower mel-frequency cepstral coefficients
(MFCCs) [63,118] are closely related to timbre [9,186]. Müller and Ewert [69,137] proposed
to disregard information similar to those lower MFCCs for further increasing the timbre-
invariance of chroma features without degrading their discriminative power. To this end,
they first logarithmize the STMSPs using a nonlinear pitch scale (instead of the nonlinear
mel scale used for the MFCCs). Then, a discrete cosine transform (DCT) is applied to
obtain pitch-frequency cepstral coefficients (PFCCs). After removing the lower PFCCs
(related to the aspect of timbre), the inverse DCT is applied. Finally, to yield the chroma
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(b) CRP

Figure 2.17. Comparison of CENS features (a) and CRP features (b) for the same extracts of the
second Waltz of the Jazz Suite No. 2 by D. Shostakovich. The chromagrams on the left represent the
main theme played by the clarinet, and the chromagrams on the right correspond to the same theme
performed by the trombone (source [69]).

DCT-reduced log pitch (CRP) features, the resulting pitch vectors are projected onto
12-dimensional chroma vectors and normalized with respect to the `2-norm.

Figure 2.17 compares the conventional chromagrams (CENS) to the corresponding CRP
chromagrams. As an audio example, Shostakovich’s second Waltz from the Jazz Suite No. 2
in a recording conducted by Dimitry Yablonski is used. The theme of this piece occurs
four times played in four different instrumentations (clarinet, strings, trombone, and tutti).
In addition, the four occurrences exhibit significant differences in the instrumentation of
the secondary voices and their dynamics (in relation to the melody). For the chroma
comparisons presented in Figure 2.17, the clarinet and the trombone versions of the theme
were considered. While the differences in instrumentation and voicing bring about that the
CENS chromagrams deviate considerably, the corresponding CRP chromagrams coincide
to a much larger degree.
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3 PROBADO MUSIC
A Multimodal Digital Music Library

The Google Books project [81] is a large-scale initiative that aims at digitizing, organizing,
and providing access to all books ever published.1 Two of the most amazing features of
this digital library are remote access to scanned versions of the books from any place in
the world – provided an internet connection is available – and full-text search in the entire
collection that even features the display of the exact match positions in the documents. In
contrast to these advances in the textual domain, there is a lack of corresponding progress
for general digital and digitized non-textual documents, such as audio recordings, images,
videos, or 3D models. There exist several initiatives for the digitization of such documents
with the goal of preventing their loss due to physical decay, and some attempts at making
these collections available to the general public can be observed as well. However, what
most or all of the systems reported so far lack are content-based search methods. In Google
Books, a quote from a book suffices for retrieval. In contrast, digital library systems for
non-textual documents are usually constrained to searches based on textual meta data.

The recently finished Probado project2 was funded by the German Research Foundation
(DFG). The project aimed at developing prototypes of digital library systems that provide
innovative interfaces for content-based access and presentation of selected types of non-
textual documents. The five involved institutions3 concentrated their efforts on two
document types, namely music documents (Probado Music) and 3D architectural models
(Probado 3D). For the music part, the Bavarian State Library was in charge of collecting,
digitizing, and preparing a collection of music documents. At the Multimedia Signal
Processing Group in the Department of Computer Science from the University of Bonn, the
digital music library system was developed. Besides the front end for document access, a
whole work flow for the preparation of music documents and their deployment was defined
and implemented. Furthermore, various innovative tools for the automated processing and
content-based access to music documents have been developed by the group. The research
questions we discuss and address in this thesis arose in the course of the group’s work on

1 As of March 2012, more than 20 million of the approximately 130 million unique existing books worldwide
have been scanned by Google.

2 "Prototypischer Betrieb allgemeiner Dokumente" (engl.: Prototypical Operation of Common Documents),
http://www.probado.de/en_home.html

3 University of Bonn – Computer Science III, Multimedia Signal Processing; University of Bonn – Computer
Science II, Computer Graphics; Technical University Darmstadt, Interactive Graphics Systems Group;
German National Library of Science and Technology (TIB Hannover); and Bavarian State Library,
Munich [16].
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3 PROBADO MUSIC – A Multimodal Digital Music Library

Probado Music. This chapter, therefore, provides some details on digital music libraries
(Section 3.1) and Probado Music (Section 3.2) in particular.

3.1 Background to Existing Digital Music Libraries and Collec-
tions

Hankinson et al. [88] evaluated several digital music library systems [6,30,66,81,98,117,188,
197–201,208] with respect to their user interfaces and identified three main drawbacks that
may be observed in most of them: First, they usually do not maintain document integrity
and, for instance, present scores as a series of separate images. Second, simultaneous
presentation of related music documents is often not possible. As a third drawback, the
meta data of the currently selected music document cannot be accessed at a glance, omitting
further valuable information.

Probably the worst shortcoming is the lack of simultaneous access to multiple documents
as users are thereby restricted in their possibilities of experiencing a musical work. A
piece of music has various representations, describing it on different semantic levels and
addressing different modalities. Therefore, a digital music library system should offer access
to as many different representations as possible. In the context of the ongoing digitization
efforts for the preservation of our cultural heritage, several institutions/projects aim at
establishing such multimodal digital library systems for general document types. Naturally,
those collections also contain large amounts of music-related documents. For example,
the Europeana project [68] offers open online access to a large collection of text, audio,
video, and image documents of different European cultural institutions. A similar initiative
for the digitization of European libraries is the project Quaero [156,157] that focuses on
the same data formats. Further examples of multimodal general digital libraries are the
Internet Archive [99] and the World Digital Library [201]. The Greenstone project [148,209]
is another interesting project in the context of multimodal digital libraries. In contrast
to the projects mentioned so far, Greenstone aims at offering tools for the creation and
management of digital libraries. Some of its main features are the support of multimodal
document collections, possibilities for content-based retrieval, a plug-in mechanism to add
functionalities, and a basic, extensible user interface. Furthermore, a tool for the creation
of a digital library from a given digital document collection was proposed in [11].4

In the music domain, many institutions by now provide online access to their collections.
However, several of these institutions only hold music data of one format. Examples are
the sheet music collections Chopin Early Editions [198] – based on the Greenstone system –
and the Schubert-Autographe [208]. There also exist various digital audio collections of
contemporary and public domain audio recordings, such as British Library Sounds [7],
Piano Society [181], or the online music library of the Isabella Stewart Gardner Museum [95].
For symbolic score files similar offers exist, e.g., Kern Scores [102] (formats: Humdrum,
MIDI and rendered score PDF), or Mutopia Project [146] (formats: Lilypond, MIDI, and
rendered score PDF).

4 The first two paragraphs of this section were in large parts taken from [57]. Portions of the rest of this
section, e.g., the paragraph on the IEEE 1599 standard, take this publication as a basis as well.
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3.1 Background to Existing Digital Music Libraries and Collections

The International Music Score Library Project (IMSLP or Petrucci Music Library) [87]
started as a sheet music digitization and collection initiative providing access to public
domain sheet music material. Since its launch in 2006, over 221,000 scanned scores for
more than 60,000 works have been added to the collection (numbers are taken from [87],
February 2013). Some time ago, the system was extended to also contain public domain
audio recordings (approx. 19,000). Due to a work-based organization of the collections,
users receive a direct overview of and fast access to all documents related to a certain work.
Furthermore, a score viewer was recently added. Thus, the simultaneous playback of a
recording while reading a score is made possible. However, the system lacks synchronization
data and, therefore, cannot offer score-following and score-based navigation. To extend the
meta data search by content-based retrieval, the Peachnote Music Ngram Viewer [203] was
recently integrated. Thus, users can search for melodies, chord sequences, and rhythmic
patterns. The Internationale Stiftung Mozarteum provides an online version of the Neue
Mozart-Ausgabe (New Mozart Edition, publisher: Bärenreiter-Verlag) [197]. In addition to
the scanned score – digitized by the Bavarian State Library – the online collection provides
critical comments and audio recordings for most of the pieces. The web interface also
allows for a visualization of the sheet music while one of the available interpretations is
being listened to. However, automatic score-following is not available either.

The last two systems fulfill most of the requirements for digital music libraries established
by Hankinson et al. [88]. Two further examples of such systems are Variations2 [66]
and EASAIER [59, 109]. Variations2 is a digital music system intended for educational
institutions. The main objective is the realization of shared access to music collections
throughout a classroom. The system was established by Indiana University and has been
in use since 1996. Besides user interfaces for the simultaneous visualization of meta data
information, audio tracks, and sheet music, the system offers tools for manual music analysis
(musical structure, musical beat). Furthermore, the manual creation of sheet music-audio
alignments is supported. In [162] work towards automatic synchronization was reported.
To offer enhanced search functionalities, a query-by-humming system was proposed [25,26].
In the context of several follow-on projects (Variations/FRBR,5 Variations36), the system
was converted to use a FRBR-compliant data model and distributed to other institutions
(e.g., New England Conservatory, Ohio State University, and the University of Maryland).
Variations on Video7 is an ongoing research effort with the goal of adapting the Variations
technology to manage and access both audio and video documents. EASAIER enables
access and simultaneous visualization of various music representations like audio, score, and
images. In addition to content-based search mechanisms, several different audio analysis
and processing tools are available, e.g., time stretching and source separation. In the
project goals,8 ‘multi-media synchronization’ is mentioned, but so far no details on this
topic have been reported.

The social website musescore.com allows users to access and download digital scores
created with the free notation software MuseScore (available at http://musescore.org).
In contrast to the previously mentioned projects and websites, musescore.com already
utilizes synchronization techniques to enhance the document presentation in a similar way
as proposed in Probado Music (in particular, score-following and score-based navigation).

5 http://www.dlib.indiana.edu/projects/vfrbr, February 2013
6 http://www.dlib.indiana.edu/projects/variations3, February 2013
7 https://wiki.dlib.indiana.edu/display/VarVideo, February 2013
8 http://www.elec.qmul.ac.uk/easaier/index-1.html, February 2013
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However, musescore.com exploits the symbolic score information from the MuseScore
documents and a MIDI sequencer to provide sonifications, which is why no alignments have
to be calculated. An additional feature are the Videoscores where MuseScore documents
are presented together with YouTube videos. In this scenario, alignments have to be
created to support score-following and score-based navigation. The video tutorial "How To
Synchronize Your Score With A Youtube Video – MuseScore"9 demonstrates that these
have to be created manually by the users. To the best of our knowledge, no future plans
regarding automatic music synchronization have been mentioned so far.

Recently, a new standard – IEEE 1599 – to encode music with XML was published [120].
The new format offers the possibility to combine all information related to a musical work
(different audio interpretations, scores, lyrics, images, annotations) in a single XML file.
The standard also provides for the possibility of including synchronization information [54]
(currently manually created) as well as MIR models [154] to the XML file. Using this
standard, user interfaces for the holistic presentation of musical works were proposed,
see, e.g., [10]. Work towards a web player that supports multimedia document access
and provides three different interface sections (Enjoy, Interact, and Create) was reported
in [12,13].

Despite a great deal of activity in the field of digital music libraries, to our knowledge,
no project has reported on performing synchronization of scanned score and audio data
on a larger scale. However, with multiple documents available, it is an obvious goal to
pursue. We will now report on the Probado Music project where automatic measure-
wise sheet music-audio synchronization is performed for large document collections. The
resulting alignments are subsequently used to provide a novel, truly multimodal interface
for document presentation. Furthermore, in Probado Music a complete processing chain
from document acquisition to document access was designed, implemented, and tested in a
real-life library setting.

3.2 The PROBADO MUSIC System

In Probado Music, a prototype of a digital music library system that incorporates
content-based retrieval and provides innovative user interfaces for document access was
developed. More precisely the project goals can be summarized as follows.

Establishment of a (semi-)automated document management process.

Inclusion of state-of-the-art MIR techniques.

Content-based music retrieval: provide efficient indexing methods and user inter-
faces for the formulation of queries.

Music synchronization: perform pair-wise synchronization between all documents
that represent the same piece of music (during preprocessing).

9 http://www.youtube.com/watch?v=Eya3eQfjvzs&feature=youtu.be, February 2013
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3.2 The PROBADO MUSIC System

Development of an innovative user interface for remote access to music data. The system
should include means for content-based retrieval via the query-by-example paradigm10

and multimodal document visualizations using the precalculated linking structures.

Installation of a prototype of the developed system.

The Bavarian State Library [16] in Munich, Germany, and the Multimedia Signal Processing
Group at the University of Bonn, Germany,11 were the two project partners involved in
Probado Music. While the Bavarian State Library digitized and collected large parts of
their music documents and created the according meta data, at the University of Bonn
algorithms and tools for the (semi-)automated organization of large music collection and
their presentation were developed. The devised systems were constantly tested at the
Bavarian State Library and improved by means of a close feedback loop between the project
partners. The idea for Probado Music and the basic synchronization and matching
techniques are based on work by Michael Clausen, Frank Kurth, and Meinard Müller. In
the course of the project, several developers were involved in the implementation of the
system architecture, in particular David Damm, Christian Fremerey, and the author of this
thesis. Several components were developed in close cooperation between the developers, and
thus a detailed description of the individual contributions might be difficult. Overall, David
Damm made tremendous contributions to the general architecture of Probado Music and
had a leading role in the implementation of the server component – which we do not further
discuss in this thesis – and the Probado Music web interface, see [55, 57]. Christian
Fremerey developed first versions of the Probado Music front end for document access
and the management tool Macao, see [73]. The author of this thesis joined the project at
an advanced stage and took over the work on the Probado Music front end and Macao.
Significant contributions are the conversion of the front end into a Java applet that can be
integrated into the Probado Music web interface, the integration of lyrics and video into
the front end and the extension of Macao with new editing masks for the correction of
OMR errors and the repeat structure of the music documents.

The primary music representations currently considered in Probado Music are sheet
music and audio recordings of Western classical music. Over the course of the project,
the Bavarian State Library digitized a total of approx. 72,000 score pages and roughly
6,600 audio recordings (≈ 491 hours). During the preparation of the collection, the sheet
music data are processed by the OMR system SharpEye to reconstruct the contained music
information. In the process, most of the text in the sheet music – in particular the lyrics –
is reconstructed as well. Thus, by means of appropriate postprocessing methods the lyrics
can be extracted and provided as additional music representation [55,174].

To offer conventional text-based search, a rich set of meta data annotations was pre-
pared by the Bavarian State Library. To this end, Probado makes use of the popular
Functional Requirements for Bibliographic Records (FRBR) model [94]. FRBR is an
entity-relationship model where the data are organized in the four main entities: work,
expression, manifestation, and item. In addition, information on contributors, such as

10 Here, queries are created by example extracts from a music document such as an audio snippet, a score
extract, or a text string from the lyrics.

11 http://www-mmdb.iai.uni-bonn.de/index.php?language=en, February 2013
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3 PROBADO MUSIC – A Multimodal Digital Music Library

composer, performer, or publisher, can be modeled. As the above-mentioned entities will
be encountered again in this thesis, we summarize the most important information below.12

Work: In the music context, a work denotes a piece of music as an abstract entity, i.e.,
independent of any performance or score representation. The work is, so to say, the
mental idea we conjure when thinking of Schubert’s song Halt! from the cycle Die Schöne
Müllerin. To meet the special requirements of music collections, the FRBR model had
to be extended in some places. The most important modification concerns the work
entity. As our example already demonstrates, pieces of music often present a hierarchical
structure. There is the whole song cycle, which is a work by Schubert, but equally each
song constitutes an individual subwork of the cycle. To describe this hierarchy, the relation
"part_of" between works was added. Through this relationship, each work can contain
several (child) works and can itself be contained in one distinct parent work.

Expression: An expression denotes a particular performance or score edition of a work
as an abstract entity. Examples would be the performance of the song Halt! by Ian
Bostridge and Mitsuko Uchida or the score of the song as published by C. F. Peters.

Manifestation: A manifestation is a particular physical realization of an expression. For
the music representations considered in Probado Music, therefore, a manifestation is an
audio CD (or a whole CD collection) or a printed score book. According to this definition,
a manifestation can and usually does comprise several expressions (of different works).

Item: An item represents a particular copy of a manifestation. For example, a CD copy of
the Schöne Müllerin performed by I. Bostridge and M. Uchida and released in 2005 by
EMI Classics stored at the Bavarian State Library denotes a different item than a CD
copy of the same performance located at the British Library.

For more detailed information on the Probado Music database model we refer to [64].

To realize the targeted goals, the Probado Music system was implemented as a classic
three-layer architecture comprising a repository layer, a server layer, and a presentation
layer. In the repository layer, search indexes, meta data annotations, linking structures,
and derived data for document dissemination are created in an offline preprocessing step.
To this end, the document management system Macao was designed and implemented.
In Section 3.2.1, details on the designed preprocessing work flow and the Macao system
are provided. In the server layer, the delivery of the musical content to the user is handled.
Furthermore, access to the precalculated index structures (to process content-based queries)
and the linking structures is processed here. For details on this layer, we refer to [55].
Finally, the presentation layer consists of user interfaces for document presentation, content-
based search, navigation, and browsing within the documents and the collection as well as
synchronized playback of audio, sheet music, and lyrics. The Probado Music front end
is introduced in more detail in Section 3.2.2. Further information on the Probado Music
project and the individual system components is available in [55–58,73,106,190].

12 Parts of the provided information on the Probado Music database model are based on the descriptions
in [73, Section 4.1].
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3.2 The PROBADO MUSIC System

3.2.1 The Music Administration System MACAO

The administration system Macao (“Music Administration for Content Analysis and
Organization”) implements a process chain for digitizing, processing, organizing, annotating,
indexing, and linking digital music collections. The system was developed in a close feedback
loop between users and developers to create a clearly defined and optimized work flow.
The concept for Macao as well as the first version were created by Christian Fremerey,
see [73]. In the context of this thesis, several new features have been added to the system.
The two main contributions are the editing masks for OMR errors and jump instructions,
see Figures 3.8 and 3.9. In this section, we nevertheless provide a full description of the
system to give the reader an idea of the essential work flow for creating, preparing, and
managing a music collection.

As input data, the system accepts scanned scores (as PDF or TIFF images) and audio
recordings (as WAV and/or MP3 files). Furthermore, Gracenote data13 can be added in
order to help with the segmentation and mapping of the audio content. The given input
data are then organized and prepared by complying with the following steps.14

Meta data annotation: In cooperation with the Bavarian State Library, an entity-
relationship model based on the FRBR model [94] was developed. Using this model the
meta data information of the music collection is created. To help with this manual step,
Macao provides convenient input masks for adding and editing work and manifestation
entities, see Figures 3.1 and 3.3.

Dissemination preparation: To enable streaming and presentation of music documents,
derived file types need to be created (e.g., textures for the score and audio visualizations
or MP3 files). In addition, several file types that are only required for the subsequent
preprocessing steps are derived from the input data. Examples are symbolic score data
and JPEG versions of the score scans in lower resolution (for visualization purposes in
Macao). Upon adding a CD or a score book to the collection, these derived file formats
are created completely automatically.

Content extraction: Given scanned sheet music pages, their musical content has to be
reconstructed using OMR techniques. The resulting symbolic score formats contain all
music-related information available on the scanned images. The lyrics of pieces containing
voice parts are usually recognized by the OMR system as well. In Probado Music, this
information is used as the lyrics data presented to the user. Thus, the additional effort of
finding and digitizing libretti can be avoided. For the upcoming music synchronization
and indexing, score documents and audio files need to become comparable. Therefore,
they are converted into a common mid-level feature representation. For the given data
types and the intended MIR tasks, chroma features are a well-suited representation, see
Chapter 2. Their calculation can again be performed fully automatically and no user
interaction is required.

Segmentation and work identification: The content of a new music document has to
be split into individual segments, each associated with a single work. Afterwards, the
according meta data entries of the pieces of music have to be mapped to the segments.
Automatic segmentation techniques [73, 74], filters, and input masks support the user in

13 http://www.gracenote.com/, February 2013
14 The description of the work flow is taken from our publication [190].
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3 PROBADO MUSIC – A Multimodal Digital Music Library

accomplishing this task. In particular, Macao provides the user with access to the score
images and an integrated audio player to enable fast and convenient manual validation
and editing of segmentations, see Figures 3.4 and 3.5.

Synchronization: Music synchronization techniques, see Chapter 4, are employed to enable
score-following and score-based navigation. Once the input data were correctly associated
to the pieces of music, the linking data are calculated without requiring further user
interaction. Using the sheet music-audio synchronization results in combination with the
lyrics extracted from the score scans, lyrics-audio synchronizations are created quickly as
well.

Content-based indexing: The indexes for content-based search are calculated fully auto-
matically. In Chapter 5, content-based audio retrieval is discussed in more detail. For
further information on score retrieval and lyrics retrieval we refer to [55,57].

Revision: The employed synchronization method can produce erroneous linking structures,
which will result in a poor music presentation by the Probado Music front end. The main
error source is introduced by the OMR process. Although the recognition rates of current
OMR systems are already remarkable, they will probably never be perfect. Fremerey [73]
identified a set of critical error classes that have a strong influence on the synchronization
result (e.g., unrecognized or misrecognized transposing instruments, accidentals, and
clefs), see Section 2.3. In the context of this thesis, we created a graphical interface
for validating and editing the according score information, see Figure 3.8. Furthermore,
performance-related deviations in the repeat structure can occur and might require manual
rework. Figure 3.9 shows the interface for the correction of jump instructions, which we
have developed.

While the above list properly represents the required steps in preparing a music collection,
they may not reflect well which individual operations have to be performed by a user. For
example, all derived files are created completely automatically. Given a scanned score
and matching audio recordings, we now walk through all of the required steps from a user
perspective.

All work entries for the pieces given in the score or the audio have to be created. This
also includes the generation of parent works. In Figure 3.1 the input mask for work
entries is depicted.

The score manifestation is created next. This task involves several steps.

First, the files containing the music document have to be specified via the interface
in Figure 3.2. After choosing to create the new manifestation, all required derived
documents, such as the OMR output, textures, and low-resolution JPEGs, are created
fully automatically.

Subsequently, the manifestation editing mask shown in Figure 3.3 appears. Here the
user has to add the meta data for the new manifestation.

Finally, the manifestation has to be segmented into individual expressions. The
user can either create the expression entries manually or use a basic segmentation
algorithm to obtain a proposed division. Then, the user has to either set or check the
boundaries of each expression through the score visualization shown in Figure 3.4.
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After mapping an expression to the correct work entry, its meta data, e.g., creation
date and contributors, have to be edited.

To create the audio manifestation, the user has to proceed in the same manner as for
the score manifestation. Instead of a visualization of the score, the expression editing
environment provides an integrated audio player, see Figure 3.5.

At this point, the new documents are already properly accessible through the Probado Mu-
sic front end. However, they cannot yet be searched by means of content-based search
mechanisms and their views are not aligned to provide score-following and score-based
navigation. Therefore, the following steps are necessary.

The search indexes for audio matching, lyrics search, and symbolic search have to be
updated, see Figure 3.6. In addition the browsing tree, see Figure 3.10d, has to be
recreated.

The synchronization files have to be created next, see Figure 3.7. For convenience, three
possible choices exist: delete all existing synchronizations and create a fresh alignment
index, create only alignments for missing pairs of expressions that are associated to the
same work, or select a list of works whose synchronizations should be (re-)created.

Now, the new manifestations are properly accessible in Probado Music. If the quality of
the created alignments is not acceptable, the user can go back and do some revisions on
the input data.

Critical OMR errors can be corrected via the interface shown in Figure 3.8.

The jump instructions in the score might have been recognized incorrectly or the repeat
structure of the audio can deviate from the one in the score. In this case, the respective
jump instructions can be checked and validated, see Figure 3.9.

After correcting the OMR data and/or the jump instructions, the affected alignments
and search indexes have to be recreated.
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Figure 3.1. Macao input mask for creating and editing work entities. Here, the meta data for the
song cycle Die schöne Müllerin by F. Schubert are depicted. The mask for work entries consists of three
sections. The Work Information section provides text fields for adding or editing general information,
such as title, opus number, creation date, etc. In the next box, Contributors can be added to the work.
Each contributor also has a role, such as composer, librettist, or lyricist, assigned. The currently edited
work represents the whole song cycle and is thus the parent work of all individual songs that are part of
the cycle. These hierarchical relations between various work entities are managed via the last box of the
depicted mask.

34
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Figure 3.2. Macao interface for adding a new manifestation to the collection. Here, the TIF images
and OMR files of a score version of Die schöne Müllerin have been selected. Upon creating the
new manifestation, the steps dissemination preparation and content extraction are performed fully
automatically. Afterwards, the editing mask depicted in Figure 3.3 appears.

35



3 PROBADO MUSIC – A Multimodal Digital Music Library

Figure 3.3. Mask for manifestation editing in Macao. The figure shows the already edited sheet
music manifestation of Die schöne Müllerin. The two upper grey areas contain general meta data on the
manifestation. In the box labeled Global Constraints, filters can be added to help with the segmentation
and annotation process. Underneath there follows a list of all expressions contained in the manifestation
with individual foldout editing masks, see Figures 3.4 and 3.5.
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Figure 3.4. Integrated score view for expression editing showing the expression of the second song
(Wohin?) from Die schöne Müllerin. The visualized score scans are enriched by OMR information on
the position of the measures, and thus allow for selection-based determination of the start and end
point of the expression. The currently set boundaries are marked blue. On the right, all detected text
elements from the score pages are listed. These might provide some help in manually segmenting the
score. Below the score, a drop-down list provides a quick means of selecting the correct work entry for
the expression. Furthermore, the expression meta data can be edited.
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Figure 3.5. The expression editing mask for audio manifestations provides an audio player for fast and
convenient segmentation. This feature is especially relevant if – as in the depicted example – one audio
recording contains multiple works. On the right, Gracenote data can be made available to help with the
segmentation and work identification. Again, components for work selection and meta data annotation
are available below the player.

Figure 3.6. Menu entries for creating the retrieval indexes of the content-based search methods provided
by Probado Music.
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Figure 3.7. Menu entry to perform the synchronization. Before the calculation starts, the user can
choose whether to recreate all alignments, create only missing alignments, or select a list of works whose
alignments should be calculated.

Figure 3.8. User interface for validation and correction of the symbolic score data created by the OMR
system. A single score page is visualized on the right. The user can browse through the score by means
of the slider or the arrows above the image. The according recognition information is depiced on the
left. For each staff, the following information can be edited (from left to right): is the staff the upper
staff of a grand staff, is the staff in a brace with the staff below, clef, key signature, transposition (in
semitones), instrument name, and is the staff the first staff of a new system?
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Figure 3.9. Editing mask for the repeat structure in the score and audio data. Given a correctly
annotated score interpretation, the employed sheet music-audio synchronization algorithm [73, 75]
attempts an automatic computation of the jump structure in the audio recordings. This data can be
subsequently revised. The upper box on the left provides quick navigation between the different works
in the score. To select which expression should be edited, a drop-down list of all expressions for the
currently selected work is available above the score. In the bottom left, all jumps within the selected
expression are listed. By selecting an entry, the according positions in the score are highlighted. To
validate the jump instructions of audio expressions, the mask also provides an integrated audio player
(not depicted).
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Implementation Details

The meta data of a music collection managed with Probado Music are stored in a
MySQL database.15 Furthermore, the database contains information on the start and end
points of the individual works within the manifestations. The actual documents in the
collection are stored in the file system and mapped by the database. The Java application
Macao encapsulates all required read and write accesses to this database (and the therefore
required MySQL statements) by means of intuitive input masks. To this end, the JDBC
(Java Database Connectivity) driver for MySQL is employed.16

To provide the functionalities described in the previous section, Macao uses a variety of
additional Java libraries and programs. The most important dependencies are listed below.
We introduce the external libraries and programs as met during the document preparation
work flow.

ImageMagick: Macao allows for sheet music documents to be added in form of PDF files
(single- and multi-page) or TIFF images (single page). PDF input is immediately converted
into single page TIFF images by means of the command-line file convert mechanism of
ImageMagick.17

Liszt OMR engine: For the automatic calculation of OMR data from the given (or previ-
ously derived) bitmap images, the SharpEye [145] command-line application Liszt OMR
engine is accessed.

JOGL: The sheet music documents are visualized in the Probado Music front end by
texture mapping with the Java Binding for the OpenGL API (JOGL).18 To provide this
visualization, the textures have to be created during preprocessing in Macao. Thus, the
management system requires JOGL as well.

FFmpeg: The free command-line tool FFmpeg19 is used for audio conversion.

MP3 SPI: Java Service Provider Interface (SPI) that supports the MP3 audio format and
adds streaming and playback functionalities to Macao.20

3.2.2 The PROBADO MUSIC Front End

When first accessing Probado Music, several masks for the formulation of queries are
offered to the user, see Figure 3.10.21 Besides meta data-based search, the system includes
content-based search mechanisms. For each supported modality (lyrics, score, and audio),
the system implements according MIR techniques to search through all documents of
that modality. Therefore, the user can also use lyrics to search for a piece of music.
Furthermore, a score editor allows for the formulation of symbolic queries. Audio matching
techniques are available as well. However, rather than free query formulation, the user
can use extracts from the document collection for search. We will explain this type of

15 http://www.mysql.com, February 2013
16 http://dev.mysql.com/downloads/connector/j/, February 2013
17 http://www.imagemagick.org, February 2013
18 http://jogamp.org/jogl/www/, February 2013
19 http://ffmpeg.org/, February 2013
20 http://www.javazoom.net/mp3spi/mp3spi.html, February 2013
21 The majority of this section is adopted from our publication [190].
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(a) Meta data search in a music collection hosted by the
Probado Music system.

(b) Lyrics search mask. The content of the query bag for
cross-modal queries is shown on the right.

(c) Editor for symbolic score queries. The user can choose
between a classic score view and a more technical piano
roll visualization (not depicted).

(d) Tree-based access to the music collection.

Figure 3.10. Various search masks of the Probado Music web interface, see Figure 3.11.

query formulation later on. In addition, Probado Music introduced the new concept
of cross-modal queries [55,57]. The user can mix information of different modalities and
combine it into a query bag to form one query. For example, the user can search for a piece
of music by Schubert (meta data) containing the song text "ei willkommen". Probably,
the user might even remember a melody fragment which can be used as additional score
information. As a final option, a tree-based presentation of all pieces of music contained in
the music collection is offered, see Figure 3.10d. This tree can be sorted either by composer
or artist (musician, conductor).

After starting a search (e.g., searching for the string "schöne Müllerin" in the meta
data), the hit list is presented to the user, see Figure 3.11. In Probado Music, a work-
centered document access, as illustrated in Figure 1.1 on page 2, is pursued. Therefore,
rather than listing all documents matching the current query, work entries are returned
as hits. Upon selecting a result, all documents containing the according piece of music
are made available for presentation. The current Probado Music prototype supports
three document types – sheet music, audio, and lyrics – and offers visualizations for each
of them, see Figures 3.11, 3.12, and 3.13. After a piece has been selected for visualization,
a document of the according document type is opened in every view. However, the user
can easily exchange the document selected for presentation through lists containing all
sheet music versions and all recordings of the current piece of music, respectively, see
Figure 3.15a.
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Figure 3.11. Web interface for query formulation (top) and result list (bottom left). The music
documents are presented on the bottom right. Here, the audio player view offering common audio player
capabilities together with a spectrogram visualization of the recording is shown.

Figure 3.12. Presentation of a scanned score book in the Probado Music front end. The current
measure is highlighted and updated during audio playback. Above the document, the related meta data
are depicted. Below, media player controls are provided.
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Figure 3.13. In the lyrics visualization, the current musical position is highlighted (on the word level).
The lyrics are automatically extracted from the scanned score pages, see [55,174], and may thus contain
some misrecognitions.

Figure 3.14. List of contents for the currently selected sheet music manifestation. By selecting a work,
the position in the score is updated accordingly and all related audio recordings are determined and
made available.
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(a) Direct access to all available interpretations of
a work. The user can change the audio recording
(depicted) and sheet music edition during playback
and thereby directly compare the documents.

(b) Formulation of content-based queries from the
Probado Music front end. The user can select a
region in any visualization – score, audio, or lyrics
(depicted) – and use it as score, audio, or lyrics query
or add it to the query bag.

Figure 3.15. Features of the Probado Music front end: interpretation switching and query
formulation.

A further innovation of Probado Music are multimodal navigation functionalities, realized
through the inclusion of sheet music-audio synchronization techniques. As one benefit,
these techniques enable score-following. While playing the audio, the currently audible
measure is highlighted in the score. Another convenience introduced by sheet music-audio
synchronization is score-based navigation. The user can freely browse through the currently
loaded score book. Upon selecting a measure in the score, the audio recording automatically
jumps to the according time position and playback will continue from there. In addition,
the employed synchronization allows for keeping the musical position while exchanging the
score or audio document selected for visualization. Thus, the user can quickly compare
different recordings of a piece of music without repeatedly searching for the specific position
he/she is interested in. Similarly, lyrics following and lyrics-based navigation are available.

In addition to the previously described search masks, the user can create content-based
queries from within the visualized documents, see Figure 3.15b. In each view, the user can
mark an arbitrary region. Due to the previously described synchronization, the user can
then decide whether to use the according score-, audio-, or lyrics-extract as query. Upon
accessing the result of a content-based query, the exact match positions are visualized in
the documents, see Figure 3.16. The user can thereby quickly navigate through all matches
and compare them.

Implementation Details

The Probado Music front end is divided into an HTML- and JavaScript-based web
interface for retrieval and presentation of the result list and a Java applet for document
presentation that is integrated into this website (compare Figure 3.11). Similar to Macao,
the Java applet utilized JOGL and the MP3 SPI for document presentation (texture
rendering and audio playback). The two components of the front end communicate with
each other through JavaScript (e.g., to select a query result for presentation or to trigger
a content-based query from a music example selected in the applet, Figure 3.15b). The
communication between the front end and the Probado server – also implemented in
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Figure 3.16. Hit visualization for an audio query consisting of the first 15 measures from the third
movement of Beethoven’s Piano Sonata No. 17. The matching regions are highlighted both in the music
documents and on the timeline below. The color intensities on the time line indicate the ranking values
of the matches.

Java – is realized through the Simple Object Access Protocol (SOAP)22 and the Java
Remote Method Invocation (RMI) technology.23 For further details, we refer to [55].

3.2.3 Supporting Video Recordings

The most frequently encountered digitally available music representations are scanned
sheet music and audio recordings. Therefore, those two file types were considered in
Probado Music and served as proof of concept. Of course, several similarly popular and
important music representations exist (symbolic score, libretti, video recordings) that would
also qualify for consideration in a digital music library. Extending digital music libraries to
provide multimodal access to as many different media sources and types as possible can
support the process of experiencing and analyzing the music. To demonstrate the general
possibility of processing and presenting further document types in Probado Music we
conducted a feasibility study and added video support [192].

22 http://www.w3.org/TR/soap/, February 2013
23 http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136424.html, February 2013
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Figure 3.17. Experimental support of video recordings in a previous version of the Probado Music
front end (source [57]).

Nowadays, most performances are recorded as video to be distributed to a broad audience
via DVD, television, or online services.24 Furthermore, specific video productions of pieces
of music are available, too. After digitizing these documents they can be added to the
Probado Music library. By extracting the audio tracks of the video recordings, all
content-based preprocessing steps for audio files, such as chroma calculation, indexing, or
the calculation of music synchronizations, can be reused for the videos. To access the video
recordings in the Probado Music front end, a video player was integrated. Figure 3.17
shows a previous version of the Probado Music front end that offers video visualization
and playback. The concept of content-based linking of all music representations associated
with the same piece of music was extended to include video recordings. Thereby, score-
following and score-based navigation is available for videos as well. In addition, smooth
transitions between different audio and video recordings are possible. To provide the user
with only one auditory music representation at a time, the video and the audio player are
exchanged as necessary.

In order to implement the described video support, the media player from the JavaFX
framework25 was employed. The player supports all required playback functions (open a
video file, play, pause, jump in video, and get current position in video). At the time when

24 For example, the Digital Concert Hall offers access to concerts of the Berliner Philharmoniker, http:
//www.digitalconcerthall.com, February 2013.

25 http://www.javafx.com/, February 2013
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video support was integrated, the front end was a standalone Java application with direct
file system access for audio and video playback. Later, the system was converted into an
applet and file streaming was added. While this was not done for video recordings, the
used media player would be capable of video streaming and could thus be easily extended.

Although, simultaneously looking at both the video and the score scans might be im-
practicable, having a time aligned view constitutes several advantages. In longer video
recordings, it might be cumbersome to search for a specific point in time, whereas using
the score for navigation is easier and faster for most users. Furthermore, we envision
the application of our system in the education of prospective conductors. The students
can analyze and compare recordings of different conductors and thus improve their style.
Having a time-aligned score can help in understanding difficult sections and the decisions
of the recorded conductors. This type of visual learning can also be advantageous in
other areas, for example, in dance. Dancers, choreographers, or dance theorists can use
Probado Music to compare different performances of the same piece. Equally, recording a
performance from various angles can help in restages. During rehearsals, dancers can switch
between the different recordings to analyze the movements more thoroughly. Furthermore,
aspects such as orchestra arrangements, stage designs, costumes, and make-up can be
compared with Probado Music if video recordings are available.
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4 Music Synchronization
Aligning Sheet Music and Audio

In Chapter 2, we discussed the most common music representations. Afterwards, the
previous chapter described the Probado Music system. One of the most innovative
features of the Probado front end is its capability of indicating which measure in a score is
currently being played back in an audio recording. In this chapter, we address the problem
of automatically generating such musically relevant linking structures between scanned
score images and audio recordings by means of a process referred to as sheet music-audio
synchronization. We introduce the synchronization task and the specific issues to be
dealt with in more detail in Section 4.1. In Section 4.2, we subsequently describe a basic
alignment technique called dynamic time warping (DTW). Before DTW can be applied to
music documents in a larger music collection, a mapping between audio recordings and
sheet music documents that represent the same musical content has to be created. This
task is called sheet music-audio mapping and an approach developed in the context of
the Probado Music project is briefly described in Section 4.2.2. In Section 4.2.3, we
discuss some ideas on how to deal with repetition-related structural differences between two
music documents. The complexity of the music and thus also of the score is significantly
higher for orchestral pieces of music, and new issues such as transposing instruments have
to be considered during synchronization. In Section 4.3, we present a novel approach
for reconstructing the transposition information for orchestral scores. In addition, we
discuss evaluation results that establish a distinct improvement of the synchronizations by
applying the proposed method. Concluding, we discuss some possible applications of sheet
music-audio alignments in Section 4.4.

Parts of this chapter have previously been published. Sections 4.1, 4.2, and 4.4 are to a
great extent based on our publication [194]. Equally, Sections 4.3.2 and 4.3.3 are in large
parts based on our paper [195].

4.1 Task Specification

The goal of music synchronization is the generation of semantically meaningful bidirectional
mappings between two music documents representing the same piece of music. Those
documents can be of the same data type (e.g., audio-audio synchronization) or of different
data types (e.g., score-audio synchronization or lyrics-audio synchronization). In the case
of score-audio synchronization, the created linking structures map regions in a musical
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(a) Score-audio mapping on the detail level of pieces of music. The score and the audio data are segmented into
individual pieces of music. Afterwards, the correct score-audio pairs have to be determined.

(b) Score-audio synchronization on the measure level. Time segments in the audio stream are mapped to
individual measures in the score representation. The depicted audio track contains a repetition. Therefore, the
according score measures have to be mapped to both audio segments.

Figure 4.1. Examples for score-audio synchronization on different detail levels.

score, e.g., pages or measures, to semantically corresponding sections in an audio stream,
see Figure 4.1.

Although the task of score-audio synchronization appears to be straightforward, several
aspects exist along which the task and its realization can vary, see Figure 4.2. The
particular choice of settings with respect to these aspects is always influenced by the
intended application of the synchronization results.

The first choice concerns the sought detail level or granularity of the synchronization. A
very coarse synchronization level would be a mapping between score and audio sections
representing the same piece of music, see Figure 4.1a. This type of alignment is also referred
to as score-audio mapping. The Neue Mozart-Ausgabe [197], for example, employs score-
audio mapping to provide online access to scanned sheet music and corresponding audio
recordings. Finer detail levels include page-wise [8, 66], system-wise, measure-wise [108],
or note-wise [17, 161] linking structures between two music documents. The choice of
granularity can in turn affect the level of automation. The manual annotation of the
linking structure might be achievable for page-wise synchronizations. For finer granularities
semi-automated or automated synchronization algorithms would be preferable. While
automatic approaches do not need (and also not allow) any user interaction, in semi-
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Score-Audio 

Synchronization

Automation level

Detail level of

synchronization

Type of input

data

Online vs. offline

Music genre

Figure 4.2. Aspects of score-audio synchronization.

automatic approaches some user interaction is required. However, the extent of the manual
interaction can vary between manually correcting a proposed alignment on the selected
detail level and correcting high-level aspects like the repeat structure before recalculating
the alignment. The selected automation level also depends on the amount of data to be
processed. For a single piece of music given only one score and one audio interpretation,
a full-fledged synchronization algorithm might not be required. But for the digitized
music collection of a library, manual alignment becomes impossible. Finally, reliability and
accuracy requirements also play a role in the automation decision.

Another huge differentiation concerns the runtime scenario. In online synchronization, the
audio stream is only given up to the current playback position, and the synchronization
should produce an estimation of the current score position in real-time. There exist two
important applications of online score-audio synchronization techniques, namely score
following and automated accompaniment [52, 60, 131, 132, 161, 163, 202]. The real-time
requirements of this task turn local deviations between the score and the audio into a
difficult problem. Furthermore, recovery from local synchronization errors is problematic.
In contrast, in offline synchronization the complete audio recording and the complete score
data are accessible throughout the entire synchronization process [108, 149]. Also, the
computation is not required to run in real-time. Due to the less strict calculation time
requirements and the availability of the entire audio and score data during calculation,
offline synchronization algorithms usually achieve higher accuracies and are more robust
with regard to local deviations in the input data. The calculated linking structures can
afterwards be accessed to allow, e.g., for score-based navigation in audio files.

The genre/style of the music to be synchronized also influences the task of score-audio
synchronization. While Western classical music and most popular music feature strong
melodic/harmonic components, other music styles like African music may mainly feature
rhythmic drumming sounds. Using harmonic information for the synchronization of
rhythmic music will prove ineffective and, therefore, different approaches have to be
employed.

The type of input data – more precisely the score representation – constitutes the last
aspect of score-audio synchronization. The score data can either be available as scanned
score images or as symbolic score, e.g., MIDI or MusicXML. Obviously, the choice of score
input affects the type of challenges to be mastered during synchronization. While symbolic
score representations are usually of reasonable quality and the extraction of the individual
music events is straightforward, some sort of rendering is required to present the score data.
In contrast, scanned sheet music already provides a visualization. However, the music
information needs to be reconstructed from the image data before the linking structures
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can be calculated. OMR systems approach this task and achieve high reconstruction rates
for printed Western music. Nevertheless, the inclusion of OMR into the synchronization
process may result in defective symbolic score data. Usually, the errors are mainly of
local nature. Thus, by choosing a slightly coarser detail level (e.g., measure level) sound
synchronization results can be achieved. For a differentiation between these two types of
input data, the term sheet music-audio synchronization is often utilized if scanned images
are given as score input.

Various researchers are active in the field of score-audio synchronization and work on
all settings of the listed aspects has been reported. In this chapter, we focus on the
task of automated offline sheet music-audio synchronization for Western classical music
producing linking structures on the measure level. Furthermore, the processing of large
music collections should be possible.

The basic idea in most score-audio synchronization scenarios is to transform both input
data types into a common mid-level representation. These data streams can then be
synchronized by applying standard alignment techniques, see Section 4.2. Regardless of
the selected approach, one has to cope with the following problems to get reasonable
synchronization results.

Differences in structure: A score can contain a variety of symbols representing jump
instructions (e.g., repeat marks, segno signs, or keywords such as "da capo", "Coda",
or "Fine", see Figure 2.11 on page 15). While OMR systems are capable of detecting
repeat marks, they often fail to reliably detect most other jump instructions in the
score. Therefore, the correct playback sequence of the measures cannot be reconstructed.
However, even if all jump instructions are correctly recognized, the audio recording may
reveal additional repeats or omissions of entire passages notated in the score. Again,
the given sequence of measures does not coincide with the one actually played in the
audio recording. Such structural differences lead to major challenges in score-audio
synchronization.

Differences between music representations: Score pages and audio recordings represent
a piece of music on different levels of abstraction and capture different facets of the music.
One example is the tempo. Music notation may provide some written information on
the intended tempo of a piece of music and tempo changes therein (e.g., instructions
such as "Allegro" or "Ritardando"). However, those instructions provide only a rough
specification of the tempo and leave a great deal of space for interpretation. Therefore,
different performers might deviate significantly in their specific tempo choices. Most
musicians even add tempo changes that are not specified by the score in order to emphasize
certain musical passages. For an example piece with substantial tempo changes, we refer
to Figure 4.3.

The differences in the loudness of instruments and the loudness variations during the
progression of a piece of music are further important characteristics of a given performance.
Just like tempo, loudness is notated only in a very vague way and OMR systems often fail
to detect the few available instructions. Similarly, music notation only provides timbre
information through instrument labels. Therefore, timbre-related sound properties, such
as instrument-dependent overtone energy distributions, are not explicitly captured by the
score.
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Largo Allegro Adagio Largo Allegro

Figure 4.3. Extract of Beethoven’s Piano Sonata No. 17 (publisher: G. Henle Verlag, pianist:
V. Ashkenazy). In the first nine measures alone, four substantial tempo changes are performed. Thus,
the duration of the measures in the audio recording varies significantly. However, the score only provides
vague instructions that result at best in an approximation of the intended tempo changes.

In conclusion, in view of practicability, score-audio synchronization techniques need to
be robust towards variations in tempo, loudness, and timbre to deal with the mentioned
document type-related differences.

Errors in the input data: As already discussed in Section 2.3, OMR is not capable of
reconstructing the score information perfectly. The errors introduced by OMR can
be divided into local and global ones. Local errors include, e.g., misidentifications of
accidentals, missed notes, or incorrect note durations. In contrast, examples for global
errors are errors in the detection of the musical key or the ignorance of transposing
instruments. While errors in the score are introduced during the reconstruction from
the scanned images, the audio recordings themselves can be erroneous. The performer(s)
may locally play some wrong notes or a global detuning may occur. For example, most
international orchestras deviate slightly from the standard tuning of A4 = 440Hz, see [150].
Furthermore, in Baroque music a deviation by a whole semitone is common practice.

Score-audio mapping: Especially in library scenarios, the goal is not the synchronization
of one piece of music. Usually, the input consists of whole sheet music books and whole
CD collections. Therefore, the scanned score and the audio data need to be segmented
into individual pieces of music. As the order in the sheet music books and on the
CDs might differ, a mapping on this level of granularity needs to be created before the
synchronizations on a finer level of detail can be calculated.

Although we focused on the task of synchronizing scanned scores and audio recordings
when we prepared the presented listing, most of the mentioned problems also exist for
other score-audio synchronization variants.
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Figure 4.4. Schematic example for score-audio synchronization on the measure level. Time segments
in the audio stream are mapped to individual measures in the score.

4.2 Alignment Techniques

The goal of sheet music-audio synchronization is to link regions in two-dimensional score
images to semantically corresponding temporal sections in audio recordings, see Figure 4.4.
To compare the sheet music of a piece of music with an audio recording thereof, both
representations are converted into a common mid-level representation. In the synchro-
nization context, chroma-based music features turned out to be a powerful and robust
mid-level representation. These features have the property of eliminating differences in
timbre and loudness to a certain extent while preserving the harmonic progression in
the music. Therefore, their application is most suitable for music with a clear harmonic
progression, like most Western classical music. In addition, by appropriately choosing the
size of the sections represented by individual chroma vectors, local errors in the input data
can be canceled out for the most part. For details on how the chroma representation of
audio recordings and scores can be calculated, we refer to Section 2.4.1.

As we first transform the input documents into chroma features, the following steps
for the calculation of sheet music-audio alignments is equally applicable to other music
synchronization scenarios, such as audio-audio, symbolic score-audio, or score-score syn-
chronization. Given the feature sequences, most alignment procedures define a local cost
measure. Afterwards, the actual synchronization result is calculated by using a suitable
alignment strategy. A commonly used computational approach to this task is a dynamic
programming approach called dynamic time warping (DTW). This approach is employed
for the calculation of music alignments in Probado Music and forms the base for most
of the work presented in the remainder of this chapter. A description of DTW for music
synchronization is provided in the following section. In combination with chroma features,
some variations in timbre, loudness, and tempo as well as small deviations in the data
streams (due to errors) can be handled. Thus, the presented DTW approach already copes
with some of the problems mentioned in Section 4.1. However, it is assumed that only one
sheet music representation and one audio interpretation of the same piece of music are
given. An approach for sheet music-audio mapping is presented in Section 4.2.2. A further
assumption is that the structure of the score and the audio recording coincide. Some ideas
on how to handle structural differences will be presented in Section 4.2.3.
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4.2.1 Dynamic Time Warping

Dynamic time warping was originally used for the comparison of different speech pat-
terns [158] and has since then successfully been applied to other research areas, such as data
mining, information retrieval, and MIR. In general, the goal of DTW is to find an optimal
non-linear alignment between two given sequences that observes certain restrictions. In
the following, we will introduce the main idea of DTW. Our descriptions in this section
follow [133, Section 4.1].

Let V := (v1, v2, . . . , vN ) ∈ FN and W := (w1, w2, . . . , wM ) ∈ FM be the chroma feature
sequences that represent the two documents to be aligned. Here, F denotes the underlying
feature space. For chroma features, F consists of all elements in [0, 1]12. To compare two
chroma vectors vn, wm ∈ F , a local cost measure c : F × F → [0, 1] on F is defined by
c(vn, wm) := 1− 〈vn, wm〉 (which is the cosine measure for normalized vectors). Pairwise
comparison of the feature vectors of the two sequences with this cost measure yields
an (N ×M)-cost matrix C defined by C(n,m) := c(vn, wm). Then, the goal in music
synchronization is the identification of a path through this cost matrix C that connects
the beginnings and endings of the two feature sequences. This path should further
be optimal with respect to the local costs along the path. More formally, we define
an (N,M)-warping path (also alignment path) as a sequence p = (p1, p2, . . . , pL) with
p` = (n`,m`) ∈ [1 :N ]× [1 :M ] for ` ∈ [1 :L] that satisfies the following conditions.1

1. The path connects the beginnings and the endings of the two feature sequences: p1 =
(1, 1) and pL = (N,M).

2. The path moves monotonic through V and W : n1 ≤ n2 ≤ . . . ≤ nL and m1 ≤ m2 ≤
. . . ≤ mL.

3. The path only proceeds according to a set of admissible step sizes Σ: p`+1 − p` ∈ Σ
for ` ∈ [1 : L − 1]. Typical choices for Σ are Σ = Σ1 := {(1, 1), (1, 0), (0, 1)} or
Σ = Σ2 := {(1, 1), (2, 1), (1, 2)}.

We would like to remark that the third condition indirectly results in condition 2 being
true. Figure 4.5 shows an example of such an alignment path and the set Σ1 of admissible
step sizes. Given an eligible alignment path p for two sequences V and W over F , its total
cost cp(V,W ) with respect to the cost measure c is defined as the sum of the local cost
covered by the path

cp(V,W ) :=
L∑
`=1

C(p`).

The synchronization between two music representations is then encoded by an optimal
alignment path p∗, i.e., the alignment path having the minimal cost among all possible
paths. More precisely, the DTW distance DTW (V,W ) between V and W is defined as the
total cost of the optimal alignment path p∗

DTW (V,W ) := cp∗(V,W ) = min{cp(V,W ) | p is a valid path between V and W}. (4.1)

1 We distinguish between [0 :n] := {x ∈ Z | 0 ≤ x ≤ n} and [0, n] := {x ∈ R | 0 ≤ x ≤ n}.
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Figure 4.5. (a) Local cost matrix for the score chromagram and one of the audio chromagrams depicted
in Figure 2.16 on page 22. The optimal alignment path is highlighted in light blue. (b) Visualization of
the allowed steps of Σ = Σ1 := {(1, 1), (1, 0), (0, 1)} in the DTW procedure.

Instead of computing and testing all possible paths through C, a dynamic programming
algorithm with computational complexity O(NM) can be used. To this end, we define the
accumulated cost matrix D ∈ RN×M by

D(n,m) := DTW (V (1 :n),W (1 :m)).

Here, V (1 : n) := (v1, v2 . . . , vn) with n ∈ [1 :N ] and W (1 :m) := (w1, w2 . . . , wm) with
m ∈ [1 :M ] are defined as the prefix sequences of V and W, respectively. Intuitively, at
position (n,m) the matrix D stores the minimum cost of any admissible alignment path,
i.e., the cost of the optimal alignment path, starting at position (1, 1) and ending at position
(n,m). For the set of admissible steps Σ1 the accumulated cost matrix can be computed
by means of the following recursion

D(n,m) =



C(1, 1) if n = m = 1∑n
k=1C(k, 1) if n ∈ [2 :N ] and m = 1∑m
k=1C(1, k) if n = 1 and m ∈ [2 :M ]

C(n,m) + min


D(n− 1,m)
D(n,m− 1)
D(n− 1,m− 1)

otherwise.

(4.2)

For other step conditions, such as Σ2, the accumulated cost matrix can be computed in a
similar way.

Starting with pL = (N,M), an optimal warping path p∗ = (p1, . . . , pL) can then be
computed in reverse order. To this end, we check at each position (n,m) which of the
possible predecessor positions, e.g., (n− 1,m), (n,m− 1), and (n− 1,m− 1) for Σ1, has
the lowest accumulated costs.

The presented approach does not consider tuning differences between the music documents.
In the case of varying tunings, however, the feature sequences may show significant
differences that can result in poor synchronization quality, see Figure 2.16 on page 22.
To suitably adjust the chroma features in the case of small tuning deviations, a tuning
estimation step can be included in the feature calculation process [65]. If the tuning
differences exceed a semitone, e.g., because the piece was transposed to match the vocalists
range, one may apply brute-force techniques such as trying out all possible cyclic shifts of
the chroma features [83,135].
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4.2.2 Sheet Music-Audio Mapping

Arranging the music data of a digital library in a work-centered way or, more precisely,
piece of music-wise has proven beneficial. Thus, in the context of a digitization project
to build up a large digital music library, one important task is to group all documents
that belong to the same piece of music. Note that in this scenario, the music documents
to be organized are not given as individual songs or movements, but rather as complete
scanned score books or audio CD collections that usually contain several pieces of music. In
addition, we typically have to deal with numerous versions of audio recordings of one and
the same piece of music2 and with a number of different score versions (different publishers,
piano reductions, orchestra parts, transcriptions, etc.) of that piece. Thus, the final goal
at this level of detail is to segment both the score books and audio recordings in such
a way that each segment corresponds to one piece of music. Furthermore, each segment
should be provided with the appropriate meta data. This segmentation and annotation
process, called sheet music-audio mapping, is a crucial prerequisite for sheet music-audio
synchronization on a higher level of detail. One possibility to solve this task is to manually
perform this segmentation and annotation. However, for large collections this would be an
endless undertaking. Thus, semi-automatic or even fully automatic mapping techniques
should be developed.

For audio recordings and short audio extracts, music identification services, like Shazam,3
can provide meta data. Furthermore, ID3 tags, CD covers, or annotation databases, such
as Gracenote4 and Music Info Disc,5 can contain information on the recorded piece of
music. However, their automated interpretation can quickly become a challenging task. To
name just two prominent issues, the opus numbers given by the different sources might
not use the same catalog or the titles might be given in different spellings or different
languages. Furthermore, the mentioned services do not provide information for public
domain recordings. Another issue can be introduced by audio tracks that contain several
pieces of music. Here, the exact start and end positions of the individual pieces of music
have to be determined.6 However, this information is usually not provided on CD covers or
in meta data databases. Still, the mentioned information sources can be used to support
the manual segmentation and annotation process. The automatic extraction and analysis
of textual information on scanned score images has to be considered at least as challenging.

Given one annotated audio recording of all the pieces contained in a score book, Fremerey
et al. [73,76] proposed an automatic identification and annotation approach for sheet music
that is based on content-based matching. First, chroma features are calculated for all music
documents. Then, to identify the audio recording that contains the same material as a
given score segment, audio matching as described in Chapter 5 is performed. By retrieving
consecutive segments of the score a so-called mapping matrix is constructed. In such a
matrix, the rows correspond to the audio documents, the columns to the consecutive score

2 For example, the British Library Sounds includes recordings of about 750 performances of Beethoven
String Quartets, as played by 90 ensembles, see http://sounds.bl.uk/Classical-music/Beethoven,
February 2013.

3 http://www.shazam.com, February 2013
4 www.gracenote.com, February 2013
5 http://mid-music-info-disc.software.informer.com, February 2013
6 Usually, longer periods of silence can hint at the beginning of a new piece. However, the direction
"attacca" resulting in two successive movements played without a pause, can prevent this clue from
existing.
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queries, and the individual entries hold the costs of the top k matches of each query. This
mapping matrix combined with the information on the audio segmentation finally gives
both the segmentation and the annotation of the scanned sheet music.

In the same manner, additional audio recordings of already known pieces can be segmented
and annotated. Therefore, through the presented approach the manual processing of only
one manifestation of each piece of music is required.

4.2.3 Dealing with Structural Differences

When comparing and synchronizing scores and performances, it may happen that their
global musical structures disagree due to repeats and jumps performed differently than
suggested in the score. These structural differences have to be resolved to achieve meaningful
synchronizations. In the scenario of online score-audio synchronization, this issue has
already been addressed [8, 112,152,185]. Pardo and Birmingham [152] and Arzt et al. [8]
both used structural information available in the score data to determine music segments
where no jumps can occur. The first publication employs an extended Hidden Markov
Model to allow for jumps between the known segment boundaries. In the second approach,
an extension of the DTW approach to music synchronization is used to tackle structural
differences. At each ending of a section, three hypotheses are pursued in parallel: First,
the performance continues on to the next section. Second, the current section is repeated.
Third, the subsequent section is skipped. After enough time has passed in the performance,
the most likely hypothesis is kept and followed. Besides approaches exploiting structural
information available from the score, Müller et al. [134,136] approached a more general
case where two data sources (e.g., two audio recordings) are given but no information on
allowed repeats or jumps is available. In this case, only partial alignments of possibly large
portions of the two documents are computed.

Fremerey et al. [73,75] presented a method for offline sheet music-audio synchronization in
the presence of structural differences, called JumpDTW. Here, jump information is derived
from the sheet music reconstruction to create a block segmentation of the piece of music,
see Figure 4.6. As already mentioned, OMR systems may not recognize all types of jump
instructions and especially textual instructions are often missed. Therefore, bold double
bar lines, which can be detected with a high reliability, are used as block boundaries. At
the end of each block, the performance can then either continue to the next block or jump
to the beginning of any other block in the piece, including the current one (in contrast to [8]
where only forward jumps skipping at most one block are considered). To allow for jumps
at block endings, the set of DTW steps is modified. For all block endings, transitions to all
block starts in the score are added to the usual steps. By calculating an optimal alignment
path using a thus modified accumulated cost matrix, possible jumps in the performance
can be detected and considered during the synchronization process.

4.3 Orchestral Scores and Transposing Instruments

Due to the large number of instruments in orchestral music, the score notation inevitably
becomes more complex. Typically, this results in a reduced OMR accuracy. Furthermore,
orchestral scores contain information commonly neglected by OMR systems. One very
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Figure 4.6. Score block sequence β1β2β3β4 created from the notated score jumps and alignment path
for an audio with block structure β1β2β3β2β4 (adapted from [73]).

important example is the transposition information. The specific transposition of an
instrument is usually marked in the score by textual information such as "Clarinet in E",
see Figure 2.9 on page 14. If this information is disregarded during the OMR reconstruction,
the pitch information for transposing instruments will be incorrect. In Section 4.3.1, we will
present an evaluation of the impact of different types of OMR errors on the synchronization
quality. The results show that the lack of transposition information can have a strong
impact on the accuracy of the calculated alignments and has to be considered the worst
OMR error – apart from missing jump instructions that lead to structural mismatches. In
our experiments, we also included sheet music of piano reductions. Interestingly, those
proved to be equally well or even better suited for sheet music-audio synchronization than
the original orchestral scores lacking transposition information.

In Section 4.3.2, we introduce an approach for the reconstruction of transposition in-
formation from sheet music. The basic idea of the proposed method is to combine the
results of OMR and OCR to regain the information available through text annotations
in the score. In addition, a method is proposed for reconstructing the instrument and
transposition information for staves where text annotations were omitted or not recognized.
The presented approach was initially studied in the context of a diploma thesis project [204]
and was subsequently further extended and properly formalized [194,195]. Furthermore,
we built on the initial evaluations and performed a set of experiments to evaluate the
impact of the automatic transposition reconstruction, see Section 4.3.3. The results again
establish the need for knowing the transposition information and, on top of that, prove the
positive impact of the proposed reconstruction procedure on the alignment quality.

4.3.1 Evaluation of OMR Errors

In this section, we present the results of an evaluation studying the impact of OMR
errors and missing transposition information on the quality of sheet music-audio syn-
chronization. As a ground truth, we employ the beat annotation of the RWC Music
Library [84]. We generated reference synchronizations on the measure level by extracting
the measure starting points from these beat annotation files. Our test data comprise the
audio recordings of the 11 orchestral pieces in the RWC library that contain at least one
transposing instrument, see Table 4.1. For each recording, the respective sheet music
was processed with the OMR system SharpEye (data sources: IMSLP [87] and Bavarian
State Library [16]). Then, we calculated for each piece of music four synchronizations
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Label Composer Work Publisher
BE1 Beethoven Symphony No. 5, 1st mvmt. Breitkopf & Härtel
BR1 Brahms Horn Trio in Eb major, 2nd mvmt. Peters
BR2 Brahms Clarinet Quintet in B minor, 3rd mvmt. Breitkopf & Härtel
HA1 Haydn Symphony No. 94, 1st mvmt. Kalmus
MO1 Mozart The Marriage of Figaro, Overture Bärenreiter
MO2 Mozart Symphony No. 40, 1st mvmt. Bärenreiter
MO3 Mozart Clarinet Quintet in A major, 1st mvmt. Breitkopf & Härtel
MO4 Mozart Violin Concerto No. 5, 1st mvmt. Bärenreiter
ST1 Strauss The Blue Danube Dover Publications
TC1 Tchaikovsky Symphony No. 6, 4th mvmt. Dover Publications
WA1 Wagner Tristan and Isolde, Prelude Dover Publications

Table 4.1. Test data for evaluating the impact of OMR errors and transposing instruments on the
synchronization quality. For each piece of music, an audio snippet of roughly two minutes’ length and
the according sheet music extract were used.

between an audio extract of roughly two minutes’ length and the according score clipping.
First, the unaltered OMR data were aligned to the audio extracts. In the other cases we
manipulated the OMR result before performing the synchronization. In the second case,
we manually corrected the OMR (OMRc).7 In the third case, we annotated the missing
transposition labels in the score (OMRt) and in the last setting, the OMR was corrected
and supplemented with transposition labels (OMRc,t). For each setting, the difference
between the measure starting points calculated by the alignment and those given by the
RWC beat annotations was determined. Table 4.2 shows the mean and standard deviations
for all the mentioned settings. As the numbers indicate, both correcting the OMR result
and adding transposition information have a positive impact on the synchronization quality.
However, the improvements achievable by adding transposition information are distinctly
higher. In summary, the presented evaluation supports the necessity of identifying and
annotating transposing instruments in orchestral scores to improve the synchronization
accuracy.

Piano Reductions

In a piano reduction or piano transcription, the music material initially composed for
an orchestra is adapted and reduced to its most basic components to produce a version
playable by one – sometimes two – piano(s), see Figure 4.7. Thus, other than the original
score, the piano reduction does not contain any transposing instruments. In this additional
experiment, we investigated whether synchronizing a piano reduction with a full orchestral
recording of a piece of music is possible and how good the results are compared to a
synchronization with the full orchestral score.

We only found piano reductions (PR) for three of the orchestral pieces from the RWC Music
library (BE1, MO2, and MO4). The results are presented in Table 4.3. To our surprise,
the piano reduction without any manual correction on average achieves distinctly better
results than OMR, OMRc, or OMRt and only slightly weaker results than the corrected
and annotated orchestral score OMRc,t. Even upon inspecting the individual results, the

7 OMR errors such as incorrect clefs, key signatures, and time signatures and misrecognized/missing
accidentals and notes were manually corrected in the SharpEye user interface.
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Label OMR OMRc OMRt OMRc,t

mean std mean std mean std mean std
BE1 462 700 342 528 265 391 151 169
BR1 390 671 376 651 110 125 92 80
BR2 266 803 265 803 124 84 125 82
HA1 456 1016 265 287 283 441 268 281
MO1 247 349 244 343 128 178 130 178
MO2 93 88 89 83 93 86 89 81
MO3 243 383 257 392 65 53 64 52
MO4 79 81 103 181 69 66 68 66
ST1 451 658 451 658 310 492 328 477
TC1 434 502 418 470 385 378 368 304
WA1 1005 980 1018 967 889 884 936 856
∅ 375 566 348 488 247 289 238 239

Table 4.2. Overview of the deviation of the different synchronization results from the ground truth (in
ms). OMR: the recognition result as produced by the SharpEye system. OMRc: OMR output adjusted
by the recognition errors of SharpEye. OMRt: OMR result annotated with transposition information.
OMRc,t: corrected OMR with transposition information.

Figure 4.7. Example of a piano transcription of the Presto from the 4th movement of Symphony No. 9
by L. v. Beethoven (publisher: Breitkopf & Härtel). The material, which was distributed to multiple
instruments in the original orchestral score, is compressed and transferred into a piano score.
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Label OMR OMRc OMRt OMRc,t PR
mean std mean std mean std mean std mean std

BE1 462 700 342 528 265 391 151 169 178 201
MO2 93 88 89 83 93 86 89 81 93 95
MO4 79 81 103 181 69 66 68 66 82 80
∅ 211 290 178 264 142 181 103 105 118 125

Table 4.3. Comparison of the synchronization results for the various orchestral score versions and the
piano reductions (PR). Again, the numbers indicate the mean and standard deviation in milliseconds.

Label Composer Work
BE2 Beethoven Symphony No. 9, 4th mov., Presto
BE3 Beethoven Symphony No. 9, 4th mov., Vivace
BE4 Beethoven Symphony No. 9, 4th mov., Ode to Joy instrumental
BE5 Beethoven Symphony No. 9, 4th mov., Ode to Joy vocals

Table 4.4. List of additional test data for the evaluation of piano reductions. All score material was
published by Breitkopf & Härtel.

piano reduction proved to be always at least as good as the orchestral score without any
corrections.

In addition, an orchestral score and a piano reduction of several extracts from the fourth
movement of Symphony No. 9 by L. v. Beethoven were compared, see Table 4.4. For each
extract two recordings, one conducted by Wilhelm Furtwängler and the other by Rafael
Kubelik, were available. As we lack a proper ground truth, the alignment results for the
corrected and annotated orchestral score (OMRc,t) were used as the basis of comparison for
the unaltered OMR results of the orchestral score and the piano reduction. The evaluation
results are depicted in Table 4.5. Again, the numbers indicate a much better or similar
performance of the piano transcription.

As the experiments show, it is possible to produce synchronizations of a full orchestral
recording with a piano reduction. If the orchestral score was not corrected (of OMR errors
or transposition information), the quality of the alignment even turned out to be distinctly
higher most of the time. An idea for obtaining high-quality sheet music-audio alignments
of orchestral pieces would be to synchronize the piano reduction with both the orchestral
score and the audio recording. Subsequently, the alignment path for the piano reduction
and the audio could be transferred to the orchestral score. While this is a reasonable
approach, piano transcriptions do not exist for all orchestral pieces. Furthermore, a library
might not accept the additional effort for digitizing and preparing the piano reductions. In
the next section, we therefore present an automatic approach for annotating orchestral
scores with transposition information.

4.3.2 Reconstruction of Transposition and Instrument Information

In Western classical music, the score notation usually obeys some common typesetting
conventions. Examples are the textual transposition information, but also the introduction
of all instruments playing in a piece of music by labeling the staves of the first system.
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Label OMR PR
mean std mean std

BE1 398 726 86 139
BE2, W. Furtwängler 12,047 5,824 312 557
BE3, W. Furtwängler 440 969 90 158
BE4, W. Furtwängler 97 214 156 359
BE5, W. Furtwängler 1,097 1,948 183 529
BE2, R. Kubelik 11,911 6,018 194 321
BE3, R. Kubelik 262 391 102 255
BE4, R. Kubelik 91 179 109 225
BE5, R. Kubelik 143 312 184 472
∅ 2,943 1,842 157 335

Table 4.5. Synchronization results for the test data listed in Table 4.4. For each piece of music, a
recording conducted by W. Furtwängler and one conducted by R. Kubelik was used. The first column
shows the mean and standard deviation (in ms) between the alignment path for the orchestral score
with the path calculated for the corrected and annotated OMR data of the same score (OMRc,t). In the
second column, the alignments for the piano reduction and for OMRc,t are compared.

Furthermore, a fixed instrument order and the usage of braces and accolades help in
reading the score [171]. However, despite of all these rules, the task of determining which
instrument is supposed to play in a given staff (instrument-staff mapping) and whether
or not it is a transposing instrument can be challenging. For most scores the number of
staves remains constant throughout the entire piece of music. Therefore, the instrument
names and transposition information are often omitted after the first system, and the
information given in the first system needs to be passed on to the remaining systems.
The task of determining the instrument of a staff and its transposition becomes even
more complicated for compressed score notations where staves of pausing instruments are
removed, see Figure 2.5 on page 11. Here, the instrument order is still valid, but some of the
instruments introduced in the first system may be missing. To clarify the instrument-staff
mapping in these cases, textual information is given. However, in these cases the instrument
names are usually abbreviated and, therefore, more difficult to recognize. Furthermore,
transposition information is often only provided in the first system of a piece or in the case
that the transposition changes. The textual information might be omitted altogether if the
instrument-staff mapping is obvious for a human reader (e.g., strings are always the last
instrument group in a system).8

In this section, we present our method for reconstructing the instrument and transposition
labels in staves of orchestral scores. Basically, the algorithm can be subdivided into three
parts. In the first part of the process, the relevant text areas on the score scans are identified
and processed by an OCR software. Subsequently, the recognition results are transformed
into instrument labels and matched to the corresponding staves. In Section 4.3.2.1, we give
a detailed description of the OCR-based label reconstruction. After this step, all staves,
where textual information was given in the score and recognized by the OCR software,
possess an instrument label. But in orchestral scores, instrument text labels are often
omitted after the first system. In the second step of the algorithm, missing labels are,
therefore, reconstructed by propagating existing labels, see Section 4.3.2.2. Afterwards,
each staff has an instrument label associated with it. In the final step of the algorithm the

8 This paragraph originates from our publication [194].
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transposition labels that were found in the first system are propagated through the score,
see Section 4.3.2.3.

We impose some assumptions on the scores processed with our method.

The first system contains all instrument names that occur in the piece. Some older
editions do not stick to this convention and use compressed notation from the start, see
Figure 4.8.

The instrument order established in the first system is not changed in subsequent
systems.

A maximum of two staves share a common instrument text label.

When first introduced, full instrument names are used.

For compressed scores, text labels are given if the instrumentation changed compared to
the preceding system.

Changes for transposing instruments are indicated at the beginning of a staff, directly
after the instrument label.

For most orchestral scores these assumptions are met.

We will now provide a detailed account of the three steps of the instrument and transposition
labeling algorithm. For an even more extensive description, we refer to [204].

4.3.2.1 OCR-based Labeling

In this part of the reconstruction, we analyze textual information given on the score sheets
to create instrument and transposition labels. The rough work flow for this part is depicted
in Figure 4.9.

First, regions of a scanned score image that possibly contain text/words naming an
instrument or a transposition are detected. By convention, the instrumentation and
transposition information is either placed in front of the staff system or above the staves
directly at the start of the system, see Figure 4.10. It is therefore sufficient to search these
areas – instead of the whole image – for eligible text labels. To determine the area to be
checked, the staff location information from the OMR data are employed. Then, connected
components (CCs) of black pixels in these areas are determined [169, 204]. Afterwards,
CCs that definitely do not contain letters are discarded. Using a sweep line algorithm [19],
horizontally neighboring CCs are then merged to form words. Subsequently, the determined
image areas are used as input for the ABBYY FineReader 10 OCR software.9

At this point, we have a list of CCs, their OCR results, and their positions on the score
scans. To achieve a proper instrument labeling two additional steps are required: First,
the recognized text is compared against an instrument library, see Table 4.6. The library
contains names and abbreviations for typical orchestral instruments in German, English,
French, and Italian. Using the Levenshtein distance [116], the library entries with the
longest word count, which are the most similar to the recognitions, are identified and

9 http://finereader.abbyy.com, February 2013
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Figure 4.8. Beginning of Wagner’s opera Tristan and Isolde in a Breitkopf & Härtel edition from 1860.
Other than most scores – in particular modern editions – new instruments are introduced after the first
system.

used as instrument labels in the according text areas.10 Secondly, using the staff position
information available in SharpEye, the identified instrument labels are mapped to the
according staves of the score, see Figure 4.11.

In the majority of cases, transposition information is available from text labels like "clari-
net in A". To detect transpositions, we therefore search for occurrences of text labels

10 In the event of two equally good matches, currently the first library entry is applied. An extension of the
approach to, for example, check the previous systems for occurrences of the candidates would be possible.
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Figure 4.9. Overview of the reconstruction of instrument and transposition labels from the textual
information in the score.

Figure 4.10. Common placement of instrument and transposition text labels in CPN using the example
of Liszt’s A Symphony to Dante’s Divine Comedy (publisher: Breitkopf & Härtel). Given the OMR of a
score image, the search for text labels can be constrained to the area in front of the staves and directly
above the beginning of the staves.

Figure 4.11. Mapping text labels to staves. While text labels placed within the red/blue area are
mapped to staff i or staff i+ 1, respectively, those in the regions with a color gradient are mapped to
both staves.

containing the keyword "in" followed by a valid transposition. The detected transposition
labels are also mapped to the according staves.
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Label Language(s) Group Instrument Type
Große Flöte. ger woodwind flute full
Große Flöten. ger woodwind flute full
Gr. Fl. ger woodwind flute abbreviation
Fl. it ger eng fr woodwind flute abbreviation
Flauti. it woodwind flute full
Flöte. ger woodwind flute full
Flöten. ger woodwind flute full
Flauto. it woodwind flute full
Flutes. fr woodwind flute full
Kl. Fl. ger woodwind piccolo abbreviation
kl. Flöte ger woodwind piccolo abbreviation
kleine Flöte. ger woodwind piccolo full
Flauto piccolo. it woodwind piccolo full
Piccolo Flöte. ger woodwind piccolo full
Piccolo-Flöte. ger woodwind piccolo full
Picc. it woodwind piccolo abbreviation

Table 4.6. Extract of the employed instrument library including full names and common abbreviations.

IP POP IOC 
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BEGIN BEGIN 

END END 

Figure 4.12. Overview of the iterative approach to the reconstruction of missing instrument and
transposition labels.

4.3.2.2 Instrument Label Reconstruction

As we discussed earlier, text labels containing instrumentation and/or transposition in-
formation are often omitted if they are not essential for understanding. Therefore, after
finishing the OCR-based staff labeling described in the previous section, not all staves might
have a label associated. In this section, we use the labeling from the previous section as the
initialization of an iterative process to reconstruct the labeling for all staves, see Figure 4.12.
As both the OCRreconstruction and all information deduced through musical knowledge
are uncertain, all instrument-staff mappings are equipped with plausibility values. Besides
filling missing mappings, the following iterative update process also strengthens/weakens
existing plausibilities.

Given a score, we define the sequence of all systems M = (M1, . . . ,Mm) and the set of
all instrument labels I in M that were reconstructed in Section 4.3.2.1, see Figure 4.13.
With S = [1:N ] we number all the staves in M and let Sa ⊂ S denote the staff numbers
corresponding to Ma. Furthermore, we create a matrix π ∈ [0, 1]|S|×|I|, where |S| = N and
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Figure 4.13. Example of system labelsM = (M1,M2,M3,M4,M5) for the depicted score. Furthermore,
all staves are numbered consecutively to yield S = [1:N ] (here N = 64). Thus, for example, the staff
numbers of M2 are given as S2 = (18, 19, 20, 21, 22, 23, 24).

π1 =


0.0 0.0 0.0 0.0 0.0 0.965 0.003 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.002 0.888 0.0 0.0
0.0 0.0 0.0 0.0 0.003 0.0 0.95 0.0 0.0
0.0 0.0 0.0 0.0 0.997 0.0 0.002 0.002 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.997 0.0



Figure 4.14. Plausibility matrix π1 for the first system (M1) of score example MO3, see Table 4.1 on
page 60, after the OCR-based label reconstruction.

|I| are the cardinality of S and I, respectively. Each entry π(i, I) of this matrix will be
interpreted as the “plausibility” of staff i having the instrument label I. The submatrix
πa ∈ [0, 1]|Sa|×|I| corresponds to Ma. We initialize π with the instrument labels determined
in the previous section, see Figure 4.14. As plausibility values, the Levenshtein distances
between the instrument labels and the original instrument text on the score sheets are
applied. Note that due to this initialization, several instruments might be mapped to
one staff (e.g., for the text label "viola and violoncello"). Afterwards, the plausibility
matrix π0 := π is iteratively updated using an update method that can be subdivided into
three steps

πk+1 = IOC ◦ IP ◦ POP (πk).

We will now explain these three steps of the update process in chronological order.

Propagation of Plausibilities (POP)

In this step, we propagate the already detected instrument plausibilities from system
Ma to system Mb, for several a < b specified below. Here, we employ the convention
that the initially established instrument order in the score is not altered and apply the
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(a) Valid propagation. In both systems, there exist two
staves between the piccolo and the clarinet. Therefore,
the instrument plausibilities of these two staves in the
first system are propagated to the second system.
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(b) Example of a setup where propagation is not possi-
ble. In the first system two staves are located between
the piccolo and the clarinet. In contrast, there are three
in the second system. Thus, an unambiguous mapping
of the intermediate staves is not possible.

Figure 4.15. Sketch of the plausibility propagation step. For each system, two additional labels at the
beginning and end of the system are added (BEGIN and END). These assure that a propagation can be
performed, e.g., in full scores where only the first system contains text labels and all subsequent systems
have the same number of staves.

following propagation rule. If two instruments occur in both systems and the number of
intermediate staves between these instruments coincides, the instrument information of
the intermediate staves of system Ma is propagated to the according staves in Mb, see
Figure 4.15. More precisely, we first calculate the set Ca,b ≡ Ca,b(πa, πb) consisting of all
triples (i, j, I) ∈ Sa × Sb × I whose joint plausibility πa(i, I) · πb(j, I) is positive. We then
reduce Ca,b by removing all crossings. A crossing between two triples (i, j, I) and (k, `,K)
with i < k occurs if j > `. In case of a crossing, the triple with smaller joint plausibility is
removed. The resulting set will be denoted by C ′a,b. By projecting the elements of C ′a,b onto
the first two components, (i, j, I) 7→ (i, j), we end up with the set C×a,b ≡ C

×
a,b(πa, πb). To

deal with uninitialized systems and full scores, we add the pairs (0, 0) and (|Sa|+1, |Sb|+1)
to C×a,b. After sorting C×a,b lexicographically, we perform the following update process
↑(πb|πa) for πb given πa.

1. For the smallest element (i, j) ∈ C×a,b, search the minimal t ≥ 1 such that (i+ t, j + t) ∈
C×a,b.

2. If no such t exists, goto 5.

3. Compute Pij consisting of all (i+ s, j + s) ∈ Sa × Sb \ C×a,b such that s ∈ [1 : t− 1] and
staff i+ s and staff j + s share the same clef label.

4. For all (`, I) ∈ Sb × I update πb as follows:
πb(`, I) = max ({πb(`, I)} ∪ {πa(k, I) | (k, `) ∈ Pij}).

5. Update C×a,b by removing (i, j).

6. If |C×a,b| > 1, goto 1.
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horn 

horn 

horn 

? 

Figure 4.16. Example of how instrument properties can be applied. On the left, we detected that
the two staves connected by a brace are both played by horns. On the right, only the upper staff was
identified as the score for a horn. Furthermore, the brace connecting the two staves was detected. Using
the knowledge from the left system, we can assume that the lower staff will be played by a horn as well
and the plausibility is increased according to Equation 4.3.

Using this local update instruction, we define POP (πk) in two steps: First, we calculate
π̃kb :=↑ (πkb |πk1) for all b ∈ [2 :m] and then POP (πkb ) :=↑

(
π̃kb |POP (πkb−1)

)
. Before we

proceed to the next step, we redefine πk := POP (πk).

Applying Instrument Properties (IP)

We extract knowledge from the plausibility matrix to reconstruct missing instrument labels
and to fortify already existing plausibility entries, see Figure 4.16. We define some staff-
related properties E1, . . . , Ep as subsets of S where i ∈ Ej means that staff i has property
Ej (e.g., staff i has treble clef or staff i is the first/last staff in the system). Similarly, we
define properties F1, . . . , Fq ⊂

⋃m
a=1 Sa × Sa between two staves of the same system (e.g.,

staff i is in the same brace as staff j). We now use these staff-related properties and π to
deduce instrument-related properties.

For each instrument I, we calculate the probability distribution PI on E := {E1, . . . , Ep}
given π:

PI(E|π) :=
∑
i∈E wi · π(i, I)∑

E′∈E
∑
i∈E′ wi · π(i, I) ,

where wi = 3
4 for staves i in S1 and wi = 1

4 otherwise. For (I, F ) ∈ I × F with F :=
{F1, . . . , Fq}, we compute the probability distribution PI,F on I given π:11

PI,F (J |π) :=
∑

(i,j)∈F wi
√
π(i, I) · π(j, J)∑

J ′∈I
∑

(i,j)∈F wi
√
π(i, I) · π(j, J ′)

.

Using these global instrument properties, we now define the plausibility increase

π∆(I, i) :=
∑

E∈E : i∈E
wEPI(E|π) +

∑
j∈S,J∈I

∑
F∈F : (i,j)∈F

wF

√
π(j, J)PI,F (J |π), (4.3)

where wE , wF are suitable property weights. Using π∆, we define IP (πk) := N(πk + πk∆),
where for a non-zero matrix X, N(X) := X/maxij |xij |. We redefine πk := IP (πk).

11 We chose two different probability distributions to account for the differences between the two sets of
properties E and F.
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Figure 4.17. Example of a crossing between two systems. As the flute and the oboe changed their
order, the corresponding plausibilities are reduced according to Equation 4.4.

Exploiting the Instrument Order Constraint (IOC)

A common convention for score notation is that the instrument order established in the
first system is not altered in subsequent systems. Therefore, we use the instrument labels
of S1 to penalize systems where the instrument order established by S1 is violated, see
Figure 4.17.

Given M1 and a system Ma, a > 1, we extract the sequences I1 = (I1, . . . , I|S1|) and
Ia = (J1, . . . , J|Sa|) of most plausible instrument labels. Afterwards, we calculate the set
L1a of all pairs (i, j) ∈ S1 × Sa with Ii = Jj for which a pair (k, `) ∈ S1 × Sa exists with
Ik = J` such that (i, j, Ii) and (k, `, Ik) constitute a crossing. The plausibility decrease

π∇,a(j, Jj) := λ
∑

i : (i,j)∈L1a

πa(i, Ii) (4.4)

with suitable parameter λ > 0 is calculated for all a ∈ [2 :m]. Finally, the plausibility
update using the instrument order constraint is given by IOC(πk) := N(πk − πk∇), where
πk∇ =

(
πk∇,1, . . . , π

k
∇,m

)
.12

4.3.2.3 Transposition Propagation

During the OCR-based reconstruction of the instrument labels, the available transposition
information is also transformed into transposition labels and subsequently mapped to the
according staves. After the reconstruction process described in the previous subsection
has terminated, the transposition labels from the first system are propagated through
the entire score. For each staff in S1 holding a transposition label, the occurrences of its
instrument label in the rest of the score are determined. The concerned staves will then be
assigned with the transposition label from S1.

In the context of our evaluation in Section 4.3.3 we used this method to propagate manually
corrected transposition labels in the first system to the whole score.

12 By definition πk
∇,1 = 0|S1|,|I|, which is the (|S1| × |I|)-null matrix.

71



4 Music Synchronization – Aligning Sheet Music and Audio

Instrument labels % Transposition labels %
total errors total errors

Compressed 401 53 87 75 17 77
Full 63 1 98 12 3 75

Total 464 54 88 87 20 77

Table 4.7. Percentage of correctly reconstructed text labels for the test collection introduced in
Table 4.1.

We are aware of the fact that some orchestral scores contain transposition information next
to arbitrary staves. However, extracting those short text labels that often use a very small
font, see Figure 2.10 on page 14, is a new challenge and is left for future investigation.

4.3.3 Evaluation

In this evaluation, we employ the same test data as we did in Section 4.3.1, see Table 4.1
on page 60. The score editions of four pieces in our collection use a compressed notation
(HA1, TC1, MO1, and WA1). Before presenting the synchronization results, we first wish
to briefly comment on the accuracy of the instrument-labeling results of the proposed
method. For our test data there was a total of 464 instrument text labels given in
the score. In addition, 87 transposition text labels were found. The proposed label
reconstruction method could correctly determine 88% of the instrument and 77% of the
transposition labels, see Table 4.7. The error sources are diverse (e.g., OCR misrecognitions,
unconsidered instrument abbreviations) and some will be discussed after the presentation
of the synchronization results.

As in the evaluation presented in Section 4.3.1, we use the beat annotation from the RWC
Music Library as ground truth and compare the mean and standard deviation from this
ground truth for four different settings, see Table 4.8. The first two are the unaltered
OMR output (OMR) and the OMR result with manually annotated transpositions (OMRt)
we already presented earlier. They represent the worst case (no transposition labels are
available) and the best case (all transpositions are correctly annotated) achievable by our
reconstruction approach. The third column of Table 4.8 shows the synchronization accuracy
after applying the label reconstruction method described in Section 4.3.2 (OMR+LR).13

In the last case, we manually corrected the transposition labels in the first system before
the transposition propagation is performed (OMR+LR∗).

For six pieces – one of which has a compressed score – our method produced equally good
alignments as OMRt (WA1, BR1, BR2, MO3, MO4, and ST1, see column OMR+LR). For
the remaining pieces, other than HA1 and MO2 the method improved the synchronization
results compared to not applying any post-processing. By annotating the transposition
labels in the first system manually before propagating them through the score (OMR+LR∗),
the results became equal to OMRt for all full scores and the compressed score HA1.
Although manual interaction was still required, only annotating the first system constitutes a
significant improvement compared to annotating all systems of an orchestral piece manually.
For the compressed scores TC1 and MO1, a correct reconstruction of the transposition
labels was not possible. In addition, using the propagation of the transposition labels from

13 We performed 18 iterations of the propagation step and chose suitable experimentally determined
parameter settings.
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Type Label OMR OMRt OMR+LR OMR+LR∗

mean std mean std mean std mean std

Compressed

HA1 456 1,016 283 441 456 1,016 283 441
TC1 434 502 385 378 424 504 425 503
MO1 247 349 128 178 134 183 181 247
WA1 1,005 980 889 884 889 884 889 884
∅ 536 712 421 470 476 647 445 519

Full

BE1 462 700 265 391 284 493 265 391
BR1 390 672 110 125 110 125 110 125
BR2 266 803 124 84 124 84 124 84
MO2 93 88 93 86 93 88 93 86
MO3 243 383 65 53 65 53 65 53
MO4 79 81 69 66 69 66 69 66
ST1 451 658 310 492 310 492 310 492
∅ 283 484 148 185 151 200 148 185

Table 4.8. Overview of the deviation of the different synchronization results from the ground truth
(in ms). OMR+LR: OMR data with automatically annotated instrument and transposition labels.
OMR+LR∗: the manually corrected transposition labels in the first system were propagated through the
score using the reconstructed instrumentation information.

the first system results in a degradation of the synchronization compared to OMR+LR
(due to instrument-labeling errors).

We will now discuss the labeling results for some scores in more detail. For two pieces the
transposition text labels given in the score were not recognized. The score notation in HA1
uses an unusual setting of the transposition text labels, see Figure 4.18a. This particular
text labeling results in the recognition of three separate text labels ("in", "G", and "Sol")
instead of one text label (e.g., "in G"). Therefore, our method could not reconstruct the
transposition labeling. In MO2 the alignment of the transposition text labels would allow
for a successful recognition, but the OCR engine produced results such as "i n Sol" or
"inSiw", see Figure 4.18b. In both of these examples the keyword "in" with a subsequent
space followed by a transposition identifier was not available. Although for all other pieces
the transposition labels in the first system were correct, some instrument-labeling errors
occurred which sometimes influenced the transposition labeling of subsequent systems in
a negative manner. Some of these errors result from incorrect OCR recognitions (e.g.,
recognition of "FI." instead of "Fl." (flute) resulted in a mapping to "Fg." (Fagott, German
for bassoon)). Furthermore, some text labels are incorrectly interpreted as instrument text
labels and thereby produce erroneous instrument labels. An interesting mix-up occurred
for MO1. Here, Italian text labels are used and both the clarinet and the trumpet are part
of the instrumentation. In Italian the trumpet is called "clarino" which is abbreviated by
"Cl." However, in English this abbreviation is used for the clarinet.

4.3.4 Outlook

In this section, we present some recent work towards increasing the recognition accuracy
of the proposed label reconstruction method.
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(a) (b)

Figure 4.18. Examples of missed transposition text labels.

Language-based Filtering of OCR results

Upon evaluating the proposed method, we noticed that the label "Cl." is a valid abbrevia-
tion for "clarino" – Italian for trumpet – as well as "clarinet" (English),"clarinette"
(French), or "Clarinette" (German). A straightforward idea to prevent those types of
language-related mix-ups is to determine the predominant language of the instrument
labels in the first staff system of the score and to filter the instrument library accordingly.
In the first system of the score, the full instrument names are given. Therefore, the labeling
errors here are marginal and the language can usually be determined unambiguously. We
employed the policy that more than half of the labels of the first system have to be identified
as being of the same language. After adding the language-based filtering to our algorithm,
the mentioned mislabeling of the trumpet did not occur any more.

Detection of Braces and Instrument Groupings

In the reconstruction step of our approach, the properties "staff i is in the same brace
as staff j" and "staff i is in the same group as staff j" can be used to determine the
correct instrumentation of a system. Unfortunately, SharpEye does not reliably support
the reconstruction of this information.14 To evaluate the effect of the two aforementioned
properties, Wagner [204] manually annotated the missing data for one piece of music. He
concluded that knowing and using the braces and groupings does not have a positive effect
on the outcome of the reconstruction. However, a more extensive evaluation might be
advisable. Furthermore, new rules could be designed to exploit this information. For
example, given the groupings in the first system, the plausibility of instrument pairs in
later systems can be reduced if they are in the same group by mistake. As a first step, we
want to propose two approaches for the reconstruction of groups and braces, respectively.

To determine the instrument groups in a staff system, one has to check for gaps in the
measure lines. We already know the approximate location of the measure boundaries from
the SharpEye OMR reconstruction. Using this information, we follow a measure line and
search for gaps of sufficient length (at least half the height of a staff line). To deal with the
possibility of the measure line being crooked, we re-estimate the current center of the line
after each step along the y-axis. After all gaps in the system were detected, the respective
staves above and below each gap are determined. Commonly, all measure lines – except for
the first and the last – are disrupted between two instrument groups. For the purpose of
robustness, see Figure 4.19, we perform the described gap detection for all inner measure

14 The brace detection of SharpEye retrieved less than 10% of the braces in our test collection, and
instrument groups were not detected at all.
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Figure 4.19. Example of a problematic gap detection. If only the end of the first measure in the
system was checked for sufficiently large gaps, the gap between the timpani and the violin would not be
detected. By considering all measure lines, the beginning of a new group could correctly be detected
(score extract from Symphony No. 94 by J. Haydn, publisher: Kalmus).

lines in the staff system. A gap denotes the beginning of a new group if this gap was
detected for at least half of the inner measure lines in the system.

In CPN, it is a hard rule that the braces are placed directly in front of the staff system. We
further know that a brace is a rather narrow symbol. By searching for CCs (i.e., connected
components) of black pixels in the immediate vicinity of the beginning of the staff system,
we will find all of the braces. Especially in older print editions, the ink often spilled and,
therefore, the braces sometimes touch the staff system, see Figure 4.20a. To separate
braces from the system, we perform a modified version of the line-following employed for
the detection of instrument groups. After determining the position of the first vertical
line in a system, we flip all corresponding pixels to white. Thus, we remove the line and
reliably separate braces from the staff system. After retrieving all CCs in front of the
system, we apply various filters to eliminate false positives. Two examples are that the
CCs have to exceed a minimal number of pixels and the width/height ratio has to indicate
a vertically long and horizontally narrow symbol. Often, the print or the scan are of lower
quality and, therefore, some pixels might erroneously be white instead of black. This can
lead to a brace being split into two or more CCs, see Figure 4.20b.15 To reunite a brace,
we merge pairs of CCs that are sufficiently close to each other. Finally, the detected brace
candidates are mapped to the staves.

An OMR system capable of recognizing braces and groups is capella-scan.16 In an evaluation
on our previously introduced test collection 91% (182 out of 201) of the braces were correctly
recognized. Disrupted measure lines and thus instrument groups were detected more or less
correctly. However, five systems were incorrectly split into multiple systems. In comparison,
our approach detected all instrument groupings and reconstructed 196 braces (96%).

15 This issue also has to be considered by the applied filters. Otherwise, parts of a brace might be dismissed.
16 http://www.capella.de/de/index.cfm/produkte/capella-scan/info-capella-scan, February 2013
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(a) Publisher: Dover Pub-
lications

(b) Publisher: Breitkopf
& Härtel

Figure 4.20. Examples of critical braces. (a) the brace touches the line of the staff system. (b) the
brace is disrupted in the middle. These types of printing-related issues occur frequently and have to be
considered by the brace detection method.

4.4 Applications

First, we give a detailed overview of existing user interfaces that employ synchronization
techniques (using scanned sheet music or symbolic score data). Then, we focus on current
issues in MIR and show how to exploit sheet music-audio synchronization to solve them.

4.4.1 Graphical User Interfaces

Wedelmusic [17] is one of the first systems presenting score images and audio data
simultaneously. During playback a marker moves through the sheet music to identify the
currently audible musical position. In addition, page turning is performed automatically
by gradually replacing the current sheet/system with the next one. However, the employed
automatic synchronization approach is rather simple. Using the start and end points in
the sheet music and the audio as anchor points, linear interpolation was applied. As local
tempo deviations may result in alignment errors, a user interface for the manual rework of
the proposed synchronization was available. In Section 3.1, we gave an overview of existing
digital music library systems. Some of those systems, i.e., Variations2, the IEEE 1599
standard, and musescore.com, utilize score-audio alignments to support new and enhanced
document-access mechanisms. However, all of them require the manual calculation of the
synchronization data, and only initial work towards large-scale automatic computation has
been reported. With the Probado Music system introduced in Chapter 3, a digital music
library system for the management of large document collections was developed. The front
end of Probado Music employs sheet music-audio alignments to provide a multimodal
music presentation with score-following and score-based navigation, see Figure 3.12 on
page 43. The required alignment paths are calculated nearly automatically using the
techniques presented in this chapter. The linking structures further allow for score-based
query formulation. More precisely, Probado Music offers techniques for score-retrieval,
audio-retrieval, and lyrics-retrieval using the query-by-example paradigm. As all documents
related to the same piece of music are linked to each other, the user can utilize the score or
any other visualization to formulate a query of any one of these types.
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4.4 Applications

Xia et al. [210] presented a rehearsal management tool for musicians that exploits semi-
automated score-audio synchronization. Here, recordings of various rehearsals are clustered
and aligned to a score representation of the piece of music. Additional challenges are
introduced by the fact that the recordings can differ in length and may cover different
parts of the piece. Another application designed to support musicians is automated
accompaniment. To this end, online score-audio synchronization determines the current
position in the score as well as the current tempo to replay a time-stretched audio recording.
Two well-known accompaniment systems are Music Plus One by Raphael [161,163] and
ANTESCOFO by Cont [51,52].

4.4.2 MIR Research

There are various MIR tasks that exploit score information as additional knowledge. For
example, in score-informed source separation one assumes that along with the audio
recording a synchronized MIDI file is given. With this file, the occurring note events as well
as their position and duration in the audio are specified. We refer to Ewert and Müller [71]
for an extensive overview. At the moment, all approaches use symbolic score data (e.g.,
MIDI), but score scans may be applicable as well. However, in this case recognition errors
need to be considered by the source separation method. A similar task is the estimation
of note intensities in an audio recording where the notes are specified by a symbolic
representation [70]. Again, to avoid the manual creation of a MIDI file, the exploitation of
score scans together with sheet music-audio synchronization techniques seems reasonable.

Another important research topic is lyrics-audio synchronization [77, 207]. Instead of
using the commonly employed speech analysis techniques, sheet music can be added
as additional information. Thereby, the lyrics can be derived from the OMR results.
Afterwards, the lyrics-audio alignment can be calculated by means of the sheet music-audio
synchronization [55,142,174].

There are several other tasks where score-audio synchronization could reduce the complexity
of the problem. Some examples are structure analysis [140], chord recognition [47, 104],
and melody extraction [96,196].
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Digital audio formats in combination with today’s storage capabilities enabled the de-
velopment of digital audio collections on a grand scale. Thereby, content-based retrieval
techniques are becoming increasingly important. Content-based retrieval for audio files
can be categorized into four types. Given an audio snippet, the task of audio identification
is to find the exact audio recording it originates from. In version identification or cover
song retrieval, for a given piece of music or a sufficiently large audio snippet thereof, all
corresponding recordings that can be regarded as a version or reinterpretation of the
same piece, e.g., played by different musicians or using different instrumentations, are to
be retrieved. In audio matching, rather than whole recordings, audio extracts that are
similar to a query snippet are to be reported as retrieval results. The last retrieval type is
category-based music retrieval, where the recordings in the music collection are categorized
or clustered with respect to some predefined cultural or musicological category, e.g., genre
or mood. Given a recording, category-based retrieval can then propose similar songs to the
user. For details on the different approaches and an extensive bibliography, we refer to [86].

In this chapter, we focus on the audio matching scenario. Here, queries are formed (at
least implicitly, see Section 5.3) by audio snippets of arbitrary length, and the retrieval
results are arbitrary audio extracts from the collection that bear some similarity to the
query. In particular, one recording might even contain several hits. Therefore, to find
all occurrences of a given query, a comparison of the query with all feasible contiguous
subsegments of the collection is necessary. Two prominent approaches for solving this task
are diagonal matching (or linear scan) and subsequence dynamic time warping (SSDTW),
see Section 5.1 for details. In diagonal matching, a sequential warping-free comparison of
the query with subsegments of the collection (having the same length) is performed. By
using appropriate feature representations, local variations (e.g., in timbre, harmony, or
instrumentation) can be canceled out. However, the approach is constraint to comparing
sequences of equal length and, therefore, does not consider tempo variations. To allow
for global tempo variations of ±40%, Kurth and Müller [107] proposed the retrieval of
several time-stretched versions of the query. In contrast, SSDTW enables the comparison
of feature sequences with different length by performing non-linear warping. Thereby,
SSDTW allows for both global and local tempo variations. In addition, a higher robustness
towards local variations, e.g., insertions and deletions, is achieved.

Unfortunately, the good retrieval quality comes at the cost of SSDTW being rather slow.
For DTW, the imposition of global constraints on the admissible warping paths is a common
approach to improving the runtime [133, Section 4.2.3]. However, this approach is not
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applicable to SSDTW as employed in the audio matching context. Besides, the runtime
of classical diagonal matching becomes problematic for large datasets as well. For both
approaches, the precalculation of a retrieval index has proven to be a reasonable approach
for handling large collections. Kurth and Müller [107] proposed an indexing approach for
diagonal matching that significantly speeds up the retrieval process while causing only
minor quality losses, see Section 5.1.2. The general idea is to use a set of reference feature
vectors (codebook vectors) and to store their occurrence positions in the database using
inverted lists. During retrieval the matches can be determined using shifted versions of the
relevant inverted lists in combination with fast list intersections. Another approach widely
used in audio identification and version identification is indexing based on locality-sensitive
hashing (LSH), see, e.g., [44,85,211]. After converting the audio data into some feature
representation, the feature sequence of the audio collection is segmented into equal-sized
subsequences (shingles), which are subsequently stored using LSH. During retrieval, the
feature sequence of a query is split into shingles as well. For each query shingle, all shingles
with the same hash value are retrieved from the index before applying some merging
approach to determine valid matches. For example, Casey et al. [44] counted the number
of matching shingles, while Yang [211] employed the Hough transform.

The issue with DTW (in general) is that it cannot be indexed without loss of quality.
Instead, several approaches suggest the introduction of a lower bounding function (LBF)
for DTW that enables a fast filtering of match candidates and can be indexed using
multidimensional indexing methods such as R-trees, e.g., [72, 101, 151, 160, 212]. After
index look-up, these candidates are subsequently verified by calculating the DTW distance.
Agrawal et al. [3] combined the LBF-based indexing approach with the previously mentioned
shingling to deal with subsequence matches (i.e., the query is part of one of the documents).
However, all of these approaches are constraint to DTW comparisons of the query (or query
shingles) with equal-sized subsequences from the database and thus weaken the benefits of
SSDTW-based matching.

In conclusion, diagonal matching achieves short response times but lacks the flexibility of
SSDTW to search for arbitrarily time-warped (globally and locally) versions of a query.
Similarly, the discussed approaches to indexing of SSDTW can only retrieve matches
of the same length as the query and require online verification of candidates via DTW
calculation. For large candidate lists, this step can potentially result in long response times.
In Section 5.2, we propose a new procedure whereby the advantages of index-based retrieval
and SSDTW are combined. To this end, we utilize the fact that in practical applications
queries are often given as audio extracts from the music collection itself (intra-collection
query). As we will see, this leads to a simple yet very efficient and effective retrieval
approach that combines the efficiency of indexing techniques with the retrieval quality of
classical SSDTW-based matching. Evidently, indexing the retrieval results for all possible
queries, which would be the obvious first idea, is not feasible for larger collections. Instead,
we follow the shingling approach and split the dataset into overlapping segments of equal
length, calculate the corresponding audio matches, and store them as search indexes.
During query processing the indexes of the segments covering the query are merged to
calculate the retrieval result. In Section 5.2.2, we present a set of experiments for evaluating
the proposed method. Depending on the size of the music collection we observed speed-up
factors between 42 and 311 in comparison to classical SSDTW-based audio matching.
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Our descriptions in this chapter, in particular Sections 5.1.1, 5.2.1, 5.2.2, 5.3, and this
introduction, in large parts follow our publication [191].

5.1 Audio Matching

In this section, we provide a detailed description of two common approaches to audio
matching, i.e., diagonal matching and SSDTW, which served as basis and inspiration for
the intra-collection audio matching method proposed in Section 5.2.

The first step in both approaches is to transform the audio collection and the query into a
suitable feature representation. Let Q be the query audio clip and let (D0, D1, . . . , DN )
be the collection of audio recordings. To simplify matters, we create a large dataset
document D by concatenating all documents D0, D1, . . . , DN , where we keep track of
the document boundaries in a supplemental data structure. Subsequently, Q and D are
transformed into feature sequences Q = (Q0,Q1, . . . ,QK) ∈ FK+1 (with |Q| = K+ 1) and
D = (D0,D1, . . . ,DL) ∈ FL+1, respectively. A valid feature choice for Western classical mu-
sic collections would be one of the chroma features introduced in Section 2.4.1. Using the pre-
viously introduced cost measure c(x, y) := 1− 〈x, y〉 subsequences (Dk,Dk+1, . . . ,Dk+M ),
with k ∈ [0 :L−M ], of D that are sufficiently similar to the query sequence Q are deter-
mined. While the dynamic programming approach in Section 5.1.1 is capable of detecting
matching subsequences with M 6= K, the diagonal matching approach in Section 5.1.2
retrieves subsequences with the same total length as the query. Our descriptions of the
two audio matching approaches closely follow [133, Sections 4.4 and 6.4].

5.1.1 Subsequence Dynamic Time Warping

In this section, we describe a variant of the DTW approach introduced in Section 4.2.1
that is called subsequence DTW (SSDTW). Instead of calculating a global alignment, the
objective in SSDTW is to search for subsequences within a long sequence that optimally
fit a much shorter sequence.

Given the cost measure c(x, y) := 1− 〈x, y〉, we define a distance function ∆D
Q : [0 :L]→

[0,∞] between Q and D that locally compares Q to subsequences of D

∆D
Q(`) = |Q|−1 min

a∈[0 : `]
(DTW(Q,D(a : `)) . (5.1)

Here, D(a : `) denotes the subsequence of D starting at index a and ending at index `
and DTW(Q,D(a : `)) denotes the DTW distance between Q and D(a : `) as defined in
Equation 4.1 on page 55.

Each entry ∆D
Q(`) of the distance function measures the distance between Q and the subse-

quence D(a` : `) of D, where a` = a`(Q,D) denotes the minimizing index in Equation 5.1,
see Figure 5.1 for an example. As we apply DTW, it is usually true that |Q| 6= |D(a` : `)|.
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Figure 5.1. Distance function with respect to a query consisting of the beginning of Symphony No. 9,
Molto Vivace by L. v. Beethoven in an interpretation conducted by R. Kubelik. For two different
interpretations of the Molto Vivace, the distinct peaks at the three match locations in each document
are visible (vertical red lines). The horizontal blue line indicates the ranking threshold θ = 0.225. As
expected, for a different piece (Piano Sonata No. 1 by L. v. Beethoven), no matches are reported.

To remove the penalization of omissions at the beginning and the end of the alignment
path, we modify the definition of the accumulated cost matrix D as follows

D(n,m) =



C(0, 0) if n = m = 0∑n
k=0C(k, 0) if n ∈ [1 :K] and m = 0

C(0,m) if n = 0 and m ∈ [1 :L]

C(n,m) + min


D(n− 1,m)
D(n,m− 1)
D(n− 1,m− 1)

otherwise.

As in Equation 4.2 on page 56, Σ1 was employed as set of admissible steps. The last row
D(K, :) of the accumulated cost matrix then coincides with the output of the distance
function ∆D

Q.

The best match between Q and D is now encoded by the index `0 ∈ [0 :L] minimizing ∆D
Q.

The distance value ∆D
Q(`0) is also referred to as the ranking value of the match corresponding

to the feature sequence D(a`0 : `0). As the goal is to find all audio extracts that are similar
to the query, the calculation then continues by searching for the second best match. But
first a neighborhood of `0 is excluded from further considerations to avoid overlaps between
matches. In our implementation, we exclude the region [a`0 : `0 + 0.85 · (`0 − a`0)] by setting
the respective ∆D

Q-values to ∞. Then, to find subsequent matches, the above procedure of
identifying the minimum of ∆D

Q is performed repeatedly until the minimal distance exceeds
a specified distance threshold θ or until a certain number of matches is obtained. This way,
we iteratively compute all matches of Q in D (using the threshold-condition)

H(Q) :=
{

(a`, `, r) | ` ∈ [0 :L], r = ∆D
Q(`) ≤ θ

}
.

For more details on SSDTW, we refer to [133, Section 4.4].

5.1.2 Diagonal Matching

Diagonal matching can essentially be seen as a special case of SSDTW where the set
of admissible step sizes is set to Σ = {(1, 1)}. This equals a point-wise comparison of
the query sequence Q = (Q0,Q1, . . . ,QK) with all subsequences (Dx,Dx+1, . . . ,Dx+K),
for x ∈ [0 :L −K]. The ranking value is simply calculated as the sum of the local cost
∆D

Q(x) =
∑K
i=0 c(Qi,Dx+i).

82



5.2 Fast Intra-Collection Audio Matching

Codebook Vectors and Index-based Retrieval

Calculating the matches as proposed results in a computational complexity of O(L). To
improve the runtime, Kurth and Müller [107] developed an index-based approach that uses
inverted file indexes. In what follows, we describe the fundamental idea of the approach.

A crucial component of the proposed index-based retrieval is the definition of a suitable
codebook consisting of a finite set C of characteristic feature vectors C0, . . . , CR ∈ F . To
determine a suitable codebook, unsupervised learning techniques can be applied. Instead,
domain knowledge can be exploited to manually identify a good set of feature vectors. In
addition to the codebook, a quantization function Q : F → [0 :R] is defined whereby every
feature vector v ∈ F is assigned to a class label Q[v] ∈ [0 :R] defined by

Q[v] := argmin
r∈[0 :R]

(arccos (〈v, Cr〉)) .

We will now define the retrieval index for a document collection D and explain how it
is calculated. First, the feature sequence D = (D0,D1, . . . ,DL) is transformed into a
quantized sequence Q[D] := (r0, . . . , rL) where ri := Q[Di] is the quantization of feature
vector Di with respect to the codebook C. For each class label r ∈ [0 :R] we calculate an
inverted list

L(r) := {m ∈ [0 :L] | rm = r}

of all index positions m in Q[D] whose quantized vector equals Cr. The inverted file index
of the database D consists of all inverted lists (L(r))r∈[0 :R]. We can precompute this index
in a preprocessing step.

To process a query Q, we compute its feature sequence Q = (Q0, . . . ,QK) and subsequently
the quantized sequence Q[Q] = (s0, . . . , sK). Given an inverted list, we define its p-shifted
version by

L(r)− p := {m− p | m ∈ L(r)}.

Now, the set of all match positions is given by

H(Q[Q]) := {k ∈ [0 :L−K] | ∀n ∈ [0 :K] : sn = rk+n}

and can be calculated efficiently by intersecting suitably shifted inverted lists

H(Q[Q]) =
⋂

n∈[0 :K]
(L(sn)− n).

5.2 Fast Intra-Collection Audio Matching

By employing SSDTW, a high robustness towards global and local tempo variations as well
as small local variations is achieved. However, for large datasets, the required sequential
scanning results in long response times. For applications where the query originates from
within the dataset, we therefore propose the calculation of an audio matching index that
allows for fast SSDTW-based audio matching in larger datasets. The general idea is
to split the dataset into small overlapping segments, perform the previously described
SSDTW-based audio matching procedure, and to store the result lists as retrieval index.
During retrieval, those lists are used to efficiently determine the matches of a given query.
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Figure 5.2. Segmentation of D (λ = 5, τ = 3). For the approximate feature representation D(4 : 14)
of query Q (red) the best-fitting segment subsequence is SD(1 : 3). In a sense, this best-fitting coverage
corresponds to minimizing the symmetric difference between the red and the blue squares projected
onto the D-strip.

5.2.1 Index Creation and Retrieval Strategy

Given Q and D, we calculate their respective feature sequences Q = (Q0,Q1, . . . ,QK) ∈
FK+1 and D = (D0,D1, . . . ,DL) ∈ FL+1. In our implementation, we chose the CRP
features introduced by Müller and Ewert, see Section 2.4.2, using their implementation
provided by the Chroma Toolbox [138]. We employ non-overlapping features with a window
size of one second. For CRP features the feature space F consists of all elements in [−1, 1]12

that have euclidean length 1. The cost measure c and the distance function ∆D
Q are defined

as in Section 5.1.1.

Index Calculation

Given a segment length λ ∈ N, λ > 1 and a step size τ ∈ [1 :λ], the segmentation SD of
feature sequence D is defined as

SD = (S0, S1, . . . , SM )

where M =
⌈
|D|−λ
τ

⌉
and Sm = D(mτ :mτ + λ − 1) for m ∈ [0 :M − 1] and SM =

D(Mτ : |D| − 1), see Figure 5.2. If not stated otherwise, we use λ = 20, τ = 5.

For each segment Sm, m ∈ [0 :M ], we perform the SSDTW-based audio matching procedure
presented in Section 5.1.1 and store the respective retrieval results as inverted lists. We
use the modified list definition

L(m) = {m} ×H(Sm) (5.2)

containing all tuples (m, a`, `, r) with ` ∈ [0 :L] and r = ∆D
Sm

(`) ≤ θ (we set θ = 0.225).

The computational complexity of this preprocessing step is in O(λ ·M · |D|) = O(|D|2).
Therefore, its calculation becomes rather time consuming for larger collections. However,
the index creation can be accelerated significantly by employing distributed processing.
Furthermore, a given index does not need to be recalculated if a new audio track DN+1 is
added. Instead, two steps are required: First, the inverted lists for all segments in DN+1
have to be calculated (using (D0, D1, . . . , DN+1) as music collection). Second, all segments
in (D0, D1, . . . , DN ) need to be queried in DN+1 to update their respective inverted lists.
In this way, the computational complexity for adding a new document DN+1 (usually:
|DN+1| � |D|) is in O(|DN+1| · |D|).
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Retrieval Method

As the given query Q is a subsegment of D, we can approximate its feature representation
by a subsequence D(i : j) of D, with 0 ≤ i < j < |D|. Then, we determine the subsequence
SD(i∗ : j∗) of segments in SD through which the query feature sequence D(i : j) is properly
represented. We use a best-fitting coverage of the query by setting i∗ =

⌊
i
τ

⌉
and j∗ =⌊

j+1−λ
τ

⌉
, see Figure 5.2.1

Subsequently, the inverted lists L(m),m ∈ [i∗ : j∗], of all segments in SD(i∗ : j∗) are loaded.
Using these, we will now calculate the index-based (approximate) set of matches H̃(Q).2
To this end, we employ a similar approach as the index-based diagonal matching method
described in Section 5.1.2. A fundamental observation is that for a subsegment D(u : v) to
be a valid retrieval result, a sufficient number of inverted lists L(m),m ∈ [i∗ : j∗], need to
contain a match whose start and end points lie within [u : v]. To determine such subsegments
D(u : v) efficiently, we exploit the fact that the regions of elements in the individual inverted
lists belonging to the same match can be made overlapping by shifting them appropriately.
For a list L(m), m ∈ [0 :M ], as defined in Equation 5.2, we define its p-shifted version by

L(m)− p := {(m, a` − p, `− p, r) | (m, a`, `, r) ∈ L(m)}

and create the list of all shifted segment retrieval results

B(Q) =
⋃

m∈[i∗ : j∗]
L(m)−mτ. (5.3)

The shifting procedure is illustrated in Figure 5.3. As we employ SSDTW, the regions
are of varying length and, therefore, do not necessarily become identical after list shifting.
Using B(Q) we will now calculate H̃(Q) in two steps: First, we determine all regions
D(u : v) that contain sufficiently overlapping elements of B(Q), see Algorithm 1. Second,
the ranking value of these regions is calculated and their eligibility as retrieval results is
tested, see Algorithm 2.

For a match (m, a`, `, r) ∈ L(m), let a` := a` −mτ and ` := ` −mτ represent the mτ -
shifted versions of the start and end positions of the match, a` and `, respectively. By
sorting B(Q) by the shifted start indexes of the matches, we now derive the sequence
B(Q) = ((sk,ak, `k, rk))k∈[0 : |B(Q)|−1] with ak := a`k , `k := `k and a0 ≤ a1 ≤ . . . ≤
a|B(Q)|−1. Further, sk denotes the segment index the according match originates from
and rk = ∆D

Ssk
(`k) is its ranking value. Then, we define Su,v := {su, su+1, . . . , sv}, u ≤

v ∈ [0 : |B(Q)| − 1] , as the duplicate-free set of segment indexes between u and v. In
Algorithm 1, we now step through B(Q) and combine successive entries to form the
set I(Q) of merged retrieval candidate regions. Here, only those segments that overlap
sufficiently with the other segments of a candidate region are added to this region, see
line 4 in Algorithm 1. There are two conditions a group of segment matches has to satisfy
to be a valid retrieval candidate: First, the offset between the shifted start position of the
first and the last segment in the group must be smaller than λ. Second, the shifted start
positions of subsequent segment matches must not differ by more than λ/4.

1 bxe rounds x to the nearest integer.
2 For i∗ = j∗, H̃(Q) = L(i∗).
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L(1) . . .

L(2) . . .

L(3) . . .

(a) Matches of segments S1, S2, and S3 as stored in their inverted lists.

L(1)− τ . . .

L(2)− 2τ . . .

L(3)− 3τ . . .

(b) Shifted versions of the segment matches. According to Equation 5.3, the matches of segment Sm have to
be shifted by −mτ.

Figure 5.3. Illustration of the shifting of inverted lists. We continue the example from Figure 5.2 and
load the inverted lists of the segments S1, S2, and S3 and shift the contained matches accordingly. As
the example demonstrates, the shifted match positions do not need to be exactly the same. Therefore,
the lists have to be merged (instead of intersected as in the index-based diagonal matching approach
described in Section 5.1.2).

Algorithm 1. merge regions
1: I(Q)← ∅
2: k ← 0
3: while k < |B(Q)| do
4: search maximum t ∈ [0 : |B(Q)| − 1− k] with

(1) |ak+t − ak| < λ

(2) ∀p < t : |ak+p+1 − ak+p| ≤ λ/4
5: if t > 0 then
6: I(Q)← I(Q) ∪ {(k, k + t)}
7: end if
8: k ← k + |Sk,k+t|
9: end while

The ranking value of a region in I(Q) is defined as the average mean of the ranking values
from the partial matches in the segments S(i∗ : j∗) (only one ranking value per segment is
used). In addition, we apply a penalty factor (j∗ − i∗) · |Su,v|−1 whereby the ranking value
of matches with only a few contributing segments is degraded, see line 3 in Algorithm 2.

In line 4 of Algorithm 2, the eligibility of a match as a retrieval result for Q is tested. To
this end, we apply two conditions: First, matches formed by at least half the segments
present in the query that have a ranking value Ru,v ≤ θ are valid matches. However, by
means of the second condition, we also allow partial matches with |Su,v| < 1

2(j∗ − i∗) that
have a very good ranking.
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Algorithm 2. verify candidates
1: H̃(Q)← ∅
2: for all (u, v) ∈ I(Q) do
3: Ru,v :=

(∑
j∈Su,v

rj
)
· (j∗ − i∗) · |Su,v|−2

4: if
[
Ru,v ≤ θ and |Su,v| ≥ 1

2 (j∗ − i∗)
]

or
[
Ru,v · (j∗ − i∗)−1 · |Su,v| < 0.1 · θ

]
then

5: H̃(Q)← H̃(Q) ∪
{(

min
t∈[u : v]

(a`t), max
t∈[u : v]

(`t), Ru,v

)}
6: end if
7: end for

5.2.2 Evaluation

In this section, we report on a series of experiments to indicate how the proposed index-
based audio matching approach for intra-collection retrieval performs in comparison to
the classical SSDTW-based matching. First, we show that through indexing the response
times decrease considerably. Afterwards, we examine the quality of the reported matches.

Experimental Setup

We prepared two collections featuring audio recordings of Western classical music. The
first dataset C1 comprises 444 tracks that contain four different interpretations of all piano
sonatas by L. v. Beethoven. In total, C1 consists of 44.7 hours of audio. While the first
collection is constrained to piano music, the second set C2 (C2 ⊃ C1) additionally contains
orchestral music and several songs for voice and piano. In particular, C2 contains six
recordings of the Symphony No. 9 by L. v. Beethoven, two of which are piano versions
based on the piano transcription by F. Liszt. Overall, the second collection is significantly
larger as it comprises 2,012 audio tracks yielding a total of 141 hours of music.

All algorithms were implemented in the Matlab (7.11.0) environment and all experiments
were conducted on a standard PC. Furthermore, we used a feature resolution of 1 Hz and
employed the Σ2 set of admissible steps. If not stated otherwise, the parameter settings
for our indexing method are: θ = 0.225, λ = 20, and τ = 5.

Query Length and Response Time

In this experiment, we compare the performance of the classical SSDTW-based audio
matching procedure described in Section 5.1.1 (label: SSDTW) to the performance of our
index-based matching approach (label: SSDTWindex) by measuring the average response
times. Besides comparing the two approaches, we focused on three aspects: the impact
of the query length on the runtime by using audio snippets with durations of 25 − 125
seconds as queries, the impact of the size of the data set on the response time by performing
searches for all queries in C1 as well as C2, and finally we compare the runtime of the
index-based method for indexes consisting of all retrieval results with a ranking value
≤ θ (SSDTW≤θ

index) to indexes containing at most the best 1,000 matches of each segment
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query C1 C2

length (s) SSDTW SSDTW≤θ
index SSDTW1,000

index SSDTW SSDTW≤θ
index SSDTW1,000

index
25 3.15 0.13 0.08 19.51 0.28 0.06
45 4.45 0.15 0.08 24.43 0.30 0.08
65 5.79 0.20 0.11 30.35 0.45 0.11
85 7.23 0.23 0.12 34.84 0.51 0.13
105 8.85 0.27 0.15 39.81 0.61 0.16
125 10.63 0.29 0.16 45.02 0.66 0.18

Table 5.1. Comparison of the response times (in seconds) for SSDTW, SSDTW≤θ
index and

SSDTW1,000
index .

(SSDTW1,000
index). For each setup, we performed 24 runs. The measured average runtimes

are depicted in Table 5.1.

For SSDTW≤θ
index the speed increase over SSDTW ranges from 24 (25s query in C1) to 81

(45s query in C2), whereas for SSDTW1,000
index the speed-up factors increase even further and

go from 39 to 325. In addition, comparing the runtimes for C1 and C2, the scalability of the
index-based procedure with respect to the size of the audio collection becomes apparent.
While for SSDTW the response times for queries in C2 on average increase by a factor of
five (compared to C1), with SSDTW1,000

index they remain nearly constant.

Furthermore, the evaluations show that with increasing query length both approaches
decrease in their performance. However, for the 125s queries SSDTW1,000

index still achieves
response times below 0.2s. Finally, with respect to the runtime a clear advantage of
applying a top-1,000 strategy – especially for larger datasets – over the threshold-based
indexing becomes apparent (up to 4.5 -times-faster responses).

In a further set of experiments we evaluate the competitiveness (in terms of runtime) of our
approach with DTW indexing methods that apply a lower bounding function, e.g., [101,212].
For this purpose, we calculated the average runtime of the required candidate verification
step, which yields a lower bound on the total runtime. Using queries of 25− 125s length
the verification of 20 candidates required 0.15 − 0.24s. For 100 candidates we observed
response times of 0.66 to 1.22s. These results suggest that our method is a competitive
alternative for intra-collection audio matching scenarios. All reported evaluations were
performed for audio collection C2.

All in all, the presented evaluations show a significant efficiency boost by applying the
proposed index-based audio matching method. However, to access its practical usability
one should also examine the quality of the created matches.

Matching Quality

We present a variety of experiments on the performance of SSDTWindex in terms of the
matching quality. As the proposed method is intended as a fast index-based approximation
of SSDTW-based audio matching, we compare the generated matches to those calculated
by SSDTW.

In the first set of experiments, we evaluate the impact of the segment length λ used during
index creation on the quality of the retrieval results. On the one hand, the selected segment
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C1
λ = 10 λ = 20

EM T 20 T 30 EM T 20 T 30
Q1 1.00 0.45 0.53 1.00 0.80 0.70
Q2 1.00 0.60 0.53 1.00 0.75 0.67
Q3 1.00 0.55 0.40 1.00 0.65 0.60
Q4 1.00 0.40 0.33 1.00 0.65 0.60
Q5 1.00 0.65 0.50 1.00 0.70 0.53
Q6 1.00 0.55 0.50 1.00 0.80 0.77
Q7 0.88 0.60 0.43 1.00 0.85 0.80
Q8 0.75 0.30 0.23 1.00 0.80 0.67
∅ 0.95 0.51 0.43 1.00 0.75 0.67

Table 5.2. Recall of SSDTW≤θ
index for different segment length λ in relation to the matches of

SSDTW-based audio matching. The results of SSDTW1,000
index coincide with the depicted values.

length naturally directly influences the minimal query length processable by SSDTWindex.
Therefore, too large values will render the approach useless for real-life applications. On the
other hand, too short queries usually result in numerous insignificant matches. We chose
to compare the performance of SSDTWindex for λ = 10 and λ = 20. In our experiment,
we use C1 as the data collection and take the first 21 measures of the Piano Sonata No. 1
by L. v. Beethoven as the query. This extract is played twice during each of the four
performances in C1 (due to a repetition). We use both the first and the second repetition
in each performance as query, thereby receiving a total of eight queries (Q1 −Q8) with
durations between 21 and 25 seconds. Obviously, the collection contains eight exact matches
for each query. The classical SSDTW approach ranks them as the top eight matches (no
matter which query Q1 − Q8 is used). The column labeled “EM” in Table 5.2 presents
the recall values for those exact matches using SSDTWindex (i.e., ratio of exact matches
occurring in the top eight matches). While for λ = 10 some queries do not result in a
perfect recall, no qualitative difference to the classical SSDTW approach is observable for
λ = 20.

Furthermore, we evaluate the recall for the 20/30 best-ranked queries (i.e., ratio of 20/30
best matches calculated by SSDTW also belonging to the 20/30 best retrieval results
when using SSDTWindex). The results are shown in the columns “T 20” and “T 30” of
Table 5.2. Here, the impact of the segment length on the result quality becomes even more
distinct. While with λ = 10 only one half of the top 20 matches was retrieved, for λ = 20
an accordance of 0.75 could be achieved. This supports our assumption that too short
queries seem to result in a great deal of insignificant matches and thus consequently reduce
the overall retrieval accuracy.

In the experiment presented in Table 5.1, we already showed that the truncated index
SSDTW1,000

index attains up to 4.5 times better response times compared to SSDTW≤θ
index. In

the next experiment, we now compare the performance of the two indexes in terms of
matching quality. Furthermore, we will extend our experiments to the larger collection C2
and introduce a second set of queries to evaluate the effect of larger collections and the
chosen query on the retrieval results.

Again, we use Q1−Q8 as queries and perform audio matching on C1 (see Table 5.2, results
for λ = 20) as well as C2, see Table 5.3. For C2 we additionally use audio snippets from
the beginning of Symphony No. 9, Molto vivace by L. v. Beethoven as queries (Q9 −Q14,
70− 76s). As the beginning of the Molto vivace is repeated twice during the piece, each
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C2
SSDTW≤θ

index SSDTW1,000
index

EM T 20 T 30 EM T 20 T 30
Q1 1.00 0.75 0.63 1.00 0.75 0.63
Q2 1.00 0.70 0.60 1.00 0.70 0.60
Q3 1.00 0.85 0.70 1.00 0.85 0.70
Q4 1.00 0.75 0.63 1.00 0.75 0.63
Q5 1.00 0.80 0.83 1.00 0.80 0.83
Q6 1.00 0.75 0.77 1.00 0.75 0.77
Q7 1.00 0.65 0.87 1.00 0.65 0.87
Q8 1.00 0.70 0.63 1.00 0.70 0.63
∅ 1.00 0.74 0.71 1.00 0.74 0.71
Q9 1.00 0.90 0.63 1.00 0.90 0.67
Q10 1.00 0.90 0.63 1.00 0.90 0.67
Q11 1.00 0.90 0.67 1.00 0.90 0.63
Q12 1.00 0.90 0.63 1.00 0.90 0.67
Q13 1.00 0.90 0.67 1.00 0.95 0.67
Q14 1.00 0.95 0.70 1.00 0.90 0.73
∅ 1.00 0.91 0.66 1.00 0.91 0.67

Table 5.3. Recall values for SSDTW≤θ
index and SSDTW1,000

index .

interpretation contributes three exact matches, thereby generating a total of 18 exact
matches for Q9 −Q14 (six of which are extracts of the piano recordings).

For Q1 − Q8 (both in C1 and in C2) no differences between the matching results of
SSDTW1,000

index and SSDTW≤θ
index could be detected. In contrast, subtle difference could be

observed for Q9−Q14. However, the overall performance remains unchanged, see Table 5.3.

The presented results, in combination with the runtime evaluations discussed in the previous
section, suggest that SSDTW1,000

index with λ = 20 constitutes a good trade-off between speed,
processable query length, and performance.

5.3 Applications

Usually, libraries and museums that provide access to their digital audio collections (possibly
consisting of thousands of audio tracks) do not allow visitors to connect their USB devices
to upload queries. Therefore, the users are constrained to searching within the given
collection using extracts of the available audio as queries (i.e., intra-collection search). The
proposed method was designed specifically with such library systems in mind and aims at
providing fast and accurate retrieval results for these intra-collection query scenarios. This
way, our procedure allows users, for example, to quickly find and access repetitions of a
music extract in all available recordings of the underlying piece or to search a database for
pieces of music that borrow ideas from other pieces.

The digital music library system Probado Music, see Chapter 3, is also constrained to
intra-collection audio retrieval.3 Intra-collection retrieval is particularly interesting as it
allows convenient user interfaces for query formulation to be created. For example, rich

3 In contrast, the free creation of lyrics and score queries through adequate search masks is provided as
these do not require query-by-humming or plugging in a USB device, see Figure 3.10b and Figure 3.10c
on page 42.
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audio visualizations like spectrograms, see Figure 3.11 on page 43, can be offered to assist
the user in selecting a query within the audio collection. Furthermore, for a given music
recording, the corresponding scanned score sheets can be made available. In these cases,
each position in the score can be linked to a corresponding position in an audio recording
by using the sheet music-audio synchronization techniques described in Chapter 4. Thus,
queries can be formulated using an intuitive score-based interface where the computed
linking information is used to automatically translate the queries into the audio domain.
Equally, the linking information can be employed to indicate the matches in the score, see
Figure 3.16 on page 46.
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In the previous chapter, we introduced the task of content-based audio retrieval. We
particularly focused on audio matching and aimed at finding sections in a large audio
database that are in some respect similar to a given audio snippet. For other types of
music representations such music matching tasks can be defined as well. Given a collection
of lyrics, similar text passages can be retrieved, and for symbolic scores musically similar
score extracts can be searched. The Probado Music system introduced in Chapter 3
implements such lyrics retrieval and score retrieval algorithms and provides user interfaces
for query formulation and result visualization. For details on the employed methods, we
refer to Chapter 3 and the references cited therein.

Besides a differentiation of the type of music representation used for retrieval, one can
also distinguish retrieval tasks based on their search space. While in inter-opus retrieval a
whole collection of music documents is queried, in intra-opus retrieval only the document
the query originates from is searched. In the case of focusing on one document, another
scenario is the automatic detection of interesting repeating fragments and their match
positions. Repetition is an important stylistic element of music from all areas, genres, and
cultures, and it is used on all detail levels. Large sections are repeated (unchanged or in
slight modification) to give a piece of music its structure, also called the musical form. This
occurs both in classical music, e.g., the typical fugue forms, and in popular music by means
of dividing a song into choruses and verses. On finer detail levels, short note sequences are
reused to capture the listener’s attention. Furthermore, those motifs are used to develop
the next-larger form elements such as phrases and figures through repetition, variation,
and imitation of their musical material.

So far, the Probado Music system does not provide any functionality for intra-opus
retrieval or for the automatic detection of repeating fragments within a piece of music. In
this chapter, we want to present our work towards supporting those features for symbolic
music documents. The motif is commonly regarded as the smallest structural unit in
music that still maintains independence. Thus, it can be seen as the basic element to be
considered when analyzing/determining the musical form of a piece of music. The detection
of motifs as well as their repetitions within a piece of music constitutes the goal of the
musicological discipline of motivic analysis. In Section 6.1, we give a brief introduction
to musicology before presenting some details on motivic analysis and typical types of
motif variations in Western classical music. In Section 6.2, we present related work on
computer-aided motivic analysis, and in Section 6.3, we introduce our own computational
approach. Using similarity matrices exact repetitions and repetitions in retrograde and/or
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inversion are detected. In contrast to most approaches, both pitch intervals and durations
are considered individually and in combination to account for different types of variation.
Following the idea of subsequence relations between musical patterns presented by Adiloğlu
and Obermayer [2], a pattern hierarchy is calculated as well. In addition, we introduce an
interactive graphical user interface for online motivic analysis, see Section 6.4.1.

6.1 Musicological Theory

Musicology (Musikwissenschaft in German) can be defined as the academic study of music.
It emerged as its own discipline during the second half of the 19th century. In 1885, Guido
Adler proposed the subdivision of what we will refer to as the classic musicology into two
sub-disciplines, see [121, Musicology, §I: The nature of musicology]. On the one hand,
there is historical musicology where the music history of Western culture is studied. More
precisely, this sub-discipline focuses on the development of notation types, musical forms
and genres, historical laws, and music instruments over time. On the other hand, Adler
introduced a field labeled systematic musicology, which again contains several sub-fields
that loosely speaking address questions about music in general. Grove Music Online [121]
defined systematic musicology as a field that studies the ‘tabulation of the chief laws
applicable to the various branches of music’ and includes music theory, aesthetics, music
education, and (comparative) musicology as its sub-fields.1 At the end of the 20th century,
the study of music as a social force became a new trend and resulted in the emergence of
the new musicology (also critical or cultural musicology). Studies are no longer restricted to
Western classical music, and the fields of research include, among others, culture, context,
gender, and identity. Despite this change of focus, classic musicology and its subdisciplines
remain an important part of musicological studies.

The composer, pianist, and music critic Robert Schumann stated in his Musikalische Haus-
und Lebensregeln, ‘The Spirit will not become clear to you, before you understand the forms
of composition’ [177, page 32], [5]. With exactly this intention the systematic musicological
discipline Formenlehre (study of form in English) developed during the 19th century.
Following Schumann’s opinion, the basic objective of the study of form is to facilitate the
access to current and past music through the description of musical form principles [5].
In the beginning, the studies were closely oriented towards the instrumental pieces by
Ludwig van Beethoven. This shaped the field notably as even today studies of musical
form mostly concentrate on instrumental pieces of music from the time period between
1600 and 1900 [105]. Blessinger [27] described the study of form as a discipline that aims
at detecting common external characteristics of classical instrumental pieces to create a
fixed number of types that have to be sorted systematically.2 This definition illustrates two
things: First, the previously mentioned concentration on instrumental music and, second,
the fact that the study of form is about defining musical forms and classifying pieces with
regard to those forms. Musical form itself can be defined as the constructive, organizing
element in music that governs the presentation, development, and interrelationship of
ideas [121]. Further, form does not only comprehend the basic structure of a work, but

1 http://www.oxfordmusiconline.com/subscriber/article/grove/music/46710, February 2013
2 ‘...stellt sie sich die Aufgabe, die den klassischen Instrumentalsätzen gemeinsamen äußeren Merkmale zu
erkennen, zu sammeln und daraus eine Anzahl fester Typen zu konstruieren, die systematisch zu ordnen
sind.’ [27, page 11]
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also the techniques and procedures used to develop ideas within the structure. Techniques
commonly referred to are: repetition, variation, contrast, development, diversity, sequence,
and unrelatedness [105], [205, Musical form]. Other important components of musical form
are the structural units (also elements, models) of music which, by applying the stated
techniques, give rise to the musical forms.3 In the literature, one can find a variety of
definitions of the structural units in music. For example, Berry stated that the ‘progress of
music in time achieves form and intelligibility through the occurrences of small groupings
of sound’ [24, page 1] and ‘[it] is from small structural units – especially the motives
and phrases – that large forms evolve’ [24, page 2]. Similarly, Stöhr [183] stated that the
understanding of forms requires the knowledge of the elements building those forms.4 The
most important units of musical form are (roughly ordered by size): motif, soggetto, figure,
phrase, theme, period, group, part, and movement [130].

6.1.1 Motivic Analysis

For this section, we used a large collection of literature. For the sake of readability, we
refrain from stating the source of each individual statement – except for original quotes.
Instead, we now provide a list of all used literature [5, 24, 27,89, 100,105,114,121,147,164,
172,173,175,178,182,183].

According to Scruton, motivic analysis ‘shows how the audible structure of a piece is derived
from basic elements or motifs’ [178, page 398]. Thus, it can be considered fundamental
for the study of form. Effectively, the overall goal of motivic analysis is the detection of
all motifs as well as all their reoccurrences/variations in a piece of music. To this end,
Gingerich [79] stated that the process of creating a motivic analysis of a piece of music
can be subdivided into three stages: 1) identify all motifs in the given piece of music,
2) detect all their reoccurrences and describe how they are varied, and 3) determine the
function of the motivic development with respect to the whole piece of music. These
stages do not need to be processed in the above order, and often a proper analysis even
requires going back and forth between them. While this general description appears rather
clear and comprehensible, this often does not translate into practice, ‘In practice, analysis
operates on the basis of fuzzy and ill-defined terminology – so much that, when all is said
and done, motifs, themes, or phrases will often be identified intuitively’ [147, page 159].
Upon consulting the literature for definitions of the musical term motif, the mentioned
ill-definedness becomes quickly apparent. Most definitions only differ in their nuances
and essentially capture very similar notions. However, sometimes one also encounters
contradicting statements. Two such examples of contradictions will be presented in the
course of this section. Several textbooks on musicology and the study of form even hint
at these inconsistencies [27,100,147]. Even if one ignores the vagueness of the definition
there is vast space for interpretation when it comes to determining the motifs of a piece of
music. For example, Berry stated that ‘[the] lines of distinction, especially between motive
and phrase, are often a question of subjective impression; precise and absolute definitions
that will apply for all listeners in all cases are not possible’ [24, page 3]. When it comes to

3 ‘[Music] is essentially abstract, and its structural components achieve integration chiefly by their corrobo-
ration through repetition’ [24, page 1].

4 Original: ‘Das Verständnis der Formen setzt die Kenntnis der dieselben zusammensetzenden Elemente
voraus.’ [183, page 76]

95



6 Motivic Analysis

developing computer-based or computer-aided systems for motivic analysis, this lack of
clarity and objectiveness constitutes a major concern.

We will now try to give a description of the term motif by collecting and combining the
definitions encountered in the literature. A notion that is common to nearly all definitions
is that of the motif being the smallest/shortest musical unit or cell that in some way is
self-existent, intelligible, or characteristic. At this point, we already encounter the first
contradiction [173]. On the one hand, most textbooks and dictionaries define the motif as
being the smallest independent musical unit. On the other hand, a motif can be further
subdivided into submotifs.5 Thus, strictly speaking, the motif containing the submotifs
cannot be the smallest musical unit. Often coupled with the notion of the motif being a cell
is its significance as motivating idea for the rest of the piece. Some examples are, ‘smallest
characteristic unit whose significance is established in development’ [24, page 4], ‘energy
source and developable seed’,6 ‘seed of musical development’.7 A closely related aspect that
also occurs quite often in definitions is the repetition or restatement of the motif in the
piece of music.8,9 Basically, those statements say that a sequence of notes has to occur at
least twice within a single piece of music to be considered a motif. The restatement does
not need to be an exact repetition of the sequence but can be a variation. We will discuss
in detail the types of possible variations of a motif at the end of this section. The motif as
a musical seed together with its variations eventually gives rise to larger musical structures
(e.g., phrase, period) and thus constitutes the foundation of any musical form.

But what part of a given note sequence turns it into a motif? Which components have to
reoccur to call a later note sequence a variation of the motif? In principle, a motif can be
of melodic, rhythmic, or harmonic nature or any combination of these. In other words, the
restatement of a rhythmic motif has to have a very similar rhythm, while the harmony and
melody can be completely different. In our initial definition of the motif it was also referred
to as a characteristic unit. So, what makes a note sequence characteristic? Altmann [5]
said that to be characteristic and to be perceived as such by the listener, the note sequence
has to be rather fast with no or only very short pauses in between. In addition, the already
mentioned restatement has to be made in order to remind the listener of the note sequence
and to strengthen his or her recollection of it.

In addition to the features mentioned thus far, some textbooks also comment on the typical
length of motifs (roughly 2− 12 notes [182]) and their position and distinction within the
notes through rests or other musical incisions, ‘Often, they [the motifs] are punctuated
by means of metric division, by rests, by articulation, or by a momentary cessation of
movement on a longer note’ [24, page 4].

Historically, two types of motif can be distinguished. In the polyphonic music until the
middle of the 18th century, the so-called Fortspinnungsmotiv (spinning-forth motif in
English) was predominant. Here, the motif was mainly of a melodic-rhythmic character.
As the name indicates, the motivic material is constantly repeated whilst freely continued

5 ‘Das Motiv kann aus ... Teilmotiven bestehen.’ [213, page 141]
6 Original: ‘Energiequelle und entwicklungsfähiger Keim’ [114, page 24]
7 Original: ‘Keimzelle einer musikalischen Entwicklung’ [27, page 60]
8 ‘Thus, the potential and significance of a thematic fragment may be unapparent until it is subjected to
manipulation in the course of a work.’ [24, page 3]

9 ‘Die Eigenschaft Motiv zu sein kommt einer Tonfolge nur rückwirkend zu: als Folge des Wiederauftauchens
... in derselben oder in variierter Form.’ [173]
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using the motivic impulse to create new variations which are often difficult to recognize.
In the homophonic oriented music of the 18th and 19th century, the Entwicklungsmotiv
(developmental motif in English) was commonly used. Unlike in the spinning-forth motif,
all variations are clearly recognizable and the original motivic material is still apparent
in all variations. In the classical music of the 20th century, both motif types could be
found. For example, Schönberg’s famous twelve-tone technique included rules for the
restatement of the set10 in prime, inversion, retrograde, and retrograde-inversion (see below
for the definitions) [176]. When speaking of motifs and their variations, most often the
developmental motif is actually meant. The same holds for the motif variations we will
discuss below – they are predominantly variations typical for developmental motifs.

One or multiple motifs give rise to the theme, a characteristic musical unit. A piece of
music, i.e., a movement, usually only contains a few themes,11 while there can exist a
significantly larger number of motifs. In the definition of the theme as a note sequence
composed of motifs we could find a further inconsistency. Stöhr [183] described the theme
as a ‘stretched and furthermore slowly played melody’.12 However, as previously stated,
a motif – from which a theme develops – is often understood to consist of a fast note
sequence.

Before concluding our musicological excursion, we will present a list of the most commonly
used and cited motivic variations. We want to clarify that the presented list is and cannot
be absolute. Over the course of their professional lives, composers usually develop their own
recognizable style. Of course, this can also include their own types of motivic variations.13

Repetition

The most basic restatement is that of repeating the motif in the same voice (sequence)
or in another voice (imitation), possibly in a different pitch (transposition). One further
distinguishes between real repetitions, where the size of the intervals between consecutive
notes remains unchanged and tonal repetitions that allow for small interval changes in favor
of keeping the key. Below, we illustrate the different types of repetitions using the example
of a four-note motif from the Invention in B minor by J. S. Bach (original source [24]).
The score extracts are based on the free scores available from the Werner Icking Music
Archive (WIMA) [93].

Original motif Real repetition Tonal repetition Real imitation

10 As basis of the twelve-tone technique, the twelve tones of the chromatic scale are arrange in a specific
ordering. This ordering is called the set (Grundgestalt in German) on which a piece is based.

11 Barlow and Morgenstern [14,187] created a dictionary of 9, 825 themes for the works of over 150 composers.
Most of the pieces contain 1 − 3 themes but for some the number is considerably higher. An Alpine
Symphony, Op. 64 by R. Strauss and A Children’s Overture by R. Quilter both contain 12 themes – the
highest reported number of themes in the dictionary.

12 Original: ‘eine länger gedehnte, noch dazu langsam ablaufende Melodie,..., sondern wir geben einer
solchen Tonfolge den Namen "Thema".’ [183, page 77]

13 ‘Some of the transformations defined here are familiar, such as transposing or inverting an entire motif.
Others are less familiar, but common in the music of [Charles] Ives...’ [79, page 76]
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Retrograde

In a retrograde, the motif is played backwards, i.e., there occurs a mirroring along the
vertical axis. There exist different variations: either only the melody line is reversed
while the rhythm remains unchanged, the rhythm is also reversed resulting in a complete
retrograde, or the melody is reversed and the rhythm is freely altered. A retrograde can
also occur as a real or a tonal repetition.

Original motif Real retrograde

Inversion

The inversion can be imagined as a mirroring along the horizontal axis resulting in the
original motif to be played upside-down. Here, the rhythm can remain unchanged or might
be altered freely as well.

Original motif Tonal inversion

Retrograde Inversion

The retrograde inversion – as already suggested by the name – combines the two previous
types of variations resulting in the motif to appear backwards and turned upside-down.

Original motif Real retrograde in-
version

Rhythmic and Melodic Variations

In rhythmic variations, the melody remains the same, while the rhythm is altered. Equally,
the reverse applies for melodic variations. We will now list the different rhythmic and
melodic variations we found in the literature.

Rhythmic augmentation/diminution of whole motif: The durations of all notes in the
motif are doubled/halved.
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Rhythmic augmentation in Piano Sonata No. 27 by L. v. Beethoven (publisher: Mutopia [146])

Rhythmic augmentation/diminution of an individual note: The duration of a note in
the motif is freely altered.

Free rhythmic variation: The rhythm is freely modified. An example of a free rhythmic
variation can be found in the Fugue 22 from The Well-Tempered Clavier, Book 1 by
J. S. Bach [82].

Inversion of the main
motif (publisher: Kern-
Scores [102])

Free rhythmic variation of
the motif inversion

Augmentation/diminution of all intervals: All intervals are increased/decreased.14 A
melodic diminution can be found in the Sarabande No. 1 by J. Brahms.15

Original motif (pub-
lisher: Breitkopf &
Härtel)

Interval diminution

Augmentation/diminution of parts of the intervals: The pitch of individual notes is
shifted up/down.

Free melodic variation: The melody (size and direction of intervals) is relatively freely
modified, while the rhythm of the original motif is maintained.

Splitting and Shortening

A motif can contain small parts that are themselves subject to restatements and, therefore,
submotifs of the original motif. If the motif is subdivided into several submotifs, a splitting
occurred. In contrast, a motif can also contain only one (shorter) submotif. In this case,
musicologists speak of a shortening. In the Symphony No. 6 by L. v. Beethoven a motif
shortening occurs [183].

14 The diminution can be performed to such an extent that all notes have the same pitch and thus only the
rhythm remains (‘Bei der melodischen Verkleinerung kann das Melodische soweit schwinden, daß nur
noch das rhythmische Element übrig bleibt’ [114, page 24]).

15 http://solomonsmusic.net/Brahmsara.htm, February 2013
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Original motif (pub-
lisher: Breitkopf &
Härtel)

Sequence of the original motif and four repe-
titions of the last two notes of the motif as
shortened submotif

Ornamentation

The basic outline of a motif is extended by trills, turns, mordents, or "free" material. In
ornamentations the fundamental pitches of the motif have to appear in their original metric
position [53].

The first example is an artificial illustration of the concept of ornamentation from [53].

Original motif (source [53]) Ornamentation of the original motif

In freer realizations of the concept, the original pitches of the motif are allowed to alter
their metric position. The example below shows the original (main) motif and a free
ornamentation from the Twelve Variations on "Ah vous dirai-je, Maman" by W. A. Mozart.

Original Motif (publisher:
NMA [197])

Free ornamentation of the original motif

In addition to the mentioned variations, any combination of those might be considered
a valid motivic variation. Sometimes the modification of a motif can be carried to such
extremes that the original motif is nearly unrecognizable.

6.2 Computer-aided Motivic Analysis

Judging from the previous section, motivic analysis can be considered a highly time-
consuming process. Therefore, its automation through appropriate algorithms and tools is
a vital field of MIR research. Similar to the three steps in manual motivic analysis, the
ongoing research efforts can also be subdivided into different categories. Pattern detection
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algorithms determine all repeating patterns within a given piece of music.16 In contrast,
the goal of pattern matching is to determine all occurrences of a given pattern in a piece
of music. Here, the types of (motif) variations detected by the matching algorithms can
vary strongly. The two tasks employ the term pattern rather than motif as repetition
is a necessity but not a sufficiency for a note sequence to be a motif. In addition, more
musically conditions – see also the definition of motif in the previous section – such as the
pattern being musically interesting, characteristic, or self-existent have to be considered.
That is why most pattern detection approaches also contain some pattern ranking function.
Again, the approaches vary significantly. For example, some only consider pattern length
and number of repetitions [41,49], whereas others also include measures such as the melodic
and rhythmic diversity of a pattern [97]17 or other musically reasonable features [127].
While rankings can help in eliminating patterns that are obviously irrelevant, they can only
provide support in determining the motifs of a piece of music. A musicologist performing a
motivic analysis uses a lot of additional knowledge that cannot or only with difficulty be put
into a ranking equation. Furthermore, the last step in motivic analysis – determining the
function and meaning of a motif in the context of the piece of music – requires musicological
experts even more. For example, musicologist might perform cross-comparisons with other
pieces from the same composer, the same area, or of the same genre to describe a motif
properly. Due to these restrictions, current algorithms can only support musicologists in
their work. This is why one usually speaks about computer-aided motivic analysis rather
than computer-based. Furthermore, the restricted automation possibilities strongly call for
interactive graphical user interfaces for result presentation and manipulation by human
users, see Section 6.4.

Computer-aided motivic analysis (or similar music analysis of, e.g., themes) is usually per-
formed on symbolic score data. However, some work on audio-based pattern detection and
pattern matching has been reported [34,62,143,170]. Some of the mentioned publications
analyze non-Western music genres which often lack score representations. As our work
focuses on symbolic score data, we will not give a detailed account of existing approaches
for audio-based motivic analysis and instead concentrate on reporting on pattern detection
and pattern matching approaches for symbolic score data.

Approaches to pattern detection can roughly be divided into string-based [41, 43, 46,
90, 97, 110, 111, 113, 126, 127, 166–168, 184] and geometric [50, 128] approaches. String-
based methods transform the given piece of music into a string18 and therein search
for repeating substrings. While some approaches only consider pitches and/or a pitch
contour [90,110,111,127], other approaches additionally consider note durations in their
string representation [41,43,126,166]. Furthermore, a variety of different techniques has
been proposed. For example, in [110,111,126,166] similarity matrices are employed to find
repeating patterns, whereas Hsu et al. [90], Takasu et al. [184], and Jekovec et al. [97] used
trees for the same task. Other than the string-based methods, the geometric approaches
are applicable to arbitrary polyphonic pieces; they are capable of detecting non-consecutive
patterns extending to several voices and consider pitch and onset time of the individual

16 It is sometimes also referred to as pattern discovery, pattern extraction, pattern identification, or pattern
mining.

17 A melodic pattern with many pitch changes is usually perceived as more diverse than a pattern that
only features one pitch. Equally, a lot of rhythmic changes make a pattern rhythmically more interest-
ing/diverse.

18 Details on how to convert a polyphonic piece of music and score material of polyphonic instruments into
strings will be presented in Section 6.3.2.
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notes. The mentioned geometric approaches only consider patterns that are repeated
unmodified, except for time translation and pitch transposition. In contrast, some string-
based approaches also account for some other pattern variation types. For instance,
Adiloğlu et al. [1] proposed an approach where repetitions as well as pattern occurrences
in inversion are detected. Furthermore, small melodic variations of the original pattern
are considered, while rhythm is disregarded altogether. Additionally, they extended their
framework and computed substring relationships between musical patterns [2]. In [126,166]
similarity matrices are employed to detect exact melodic repetitions of patterns as well as
patterns appearing in retrograde and/or inversion. To allow for small interval variations,
which are often required in tonal compositions, a generic interval division was chosen, see
Section 6.3.2. In contrast to the two previous approaches, Lehmann [113] employed a
two-stage approach to find most of the variations introduced in the previous section. First,
he detected repeating patterns using the melody contour of the piece, and afterwards he
performed pattern matching on different string representations to find the occurrences of
the detected patterns in retrograde, inversion, retrograde inversion, augmentation, and
diminution. The geometric pattern detection approaches can be extended and thus used
for pattern matching as well [128,129]. In the context of motivic analysis, several other
approaches to pattern matching have been proposed [4,37,42,48,115,122]. Some of them
focus on finding repetitions while others also search for variations of the given pattern.

6.3 String-Based Pattern Detection using Similarity Matrices

Usually, motifs identified by musicologists are of monophonic character. Therefore, in
combination with an appropriate resolution of polyphony, string-based approaches to
pattern detection are of high relevance for motivic analysis. In the following, we present
a string-based pattern detection method intended for computer-aided motivic analysis.
Our approach is capable of identifying patterns of all lengths (starting from a minimal
length) that repeat at least once within the piece of music. Due to the usage of several
modified versions of a similarity matrix, occurrences of a pattern in inversion, retrograde,
and retrograde inversion are detected in addition to its repetitions.

6.3.1 Algebraic Formalization

The Mathematical music theory as introduced by Mazzola [124,125] is a general theory for a
mathematical approach to music and music theory. The theory includes a formal language
for the description of musical and musicological objects and their relations. Furthermore,
various models of musical phenomena have been developed. Some examples are harmony,
rhythm, the theory of music performance, and motivic analysis. The mathematical model
for motivic analysis is based on topological spaces of motifs [35, 37]. Here, structural
relationships between melodic shapes are determined by a suitably chosen subgroup of
the affine group. This so-called paradigmatic motivic analysis also defines an inheritance
property whereby similarities between musical objects and their sub-objects and thus motif
hierarchies are modeled. Before presenting the details of the proposed pattern detection
algorithm, we give an algebraic formalization of a pattern/motif and its variations. Our
terminology largely follows the concepts of the paradigmatic motivic analysis.
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S BA

Figure 6.1. Hierarchical motifs in the first movement of Piano Sonata No. 1 by L. v. Beethoven. Motifs
A and B are submotifs of S. As they are also repeated outside the context of S, they are independent.

The most important parameters describing a musical note are onset time t, pitch p, and
duration d. Using those three parameters, a piece of musicM can roughly be represented by
a finite set of notes [t, p, d]. We are going to study repeated patterns within M. In general,
a pattern in M is just a non-empty subset M ′ of M. To specify repetitions, we let the
counter point group CP act on the (idealized) universe N = R×R×R>0 of all notes. This
group is generated by all time and pitch shifts together with time and pitch inversions. In
this group, every element g is specified by g = (εt, εp, τ, π) with εt, εp ∈ {±1} and τ, π ∈ R.
Such a group element g shifts the note [t, p, d] to g · [t, p, d] := [εt · t + τ, εp · p + π, d].
Thus, εt = −1 induces a time inversion (retrograde), whereas εp = −1 corresponds to a
pitch inversion. By setting both εp and εt to −1 retrograde inversions of musical patterns
are described. The action of CP on N induces an action of CP on subsets X of N via
g ·X := {g · x | x ∈ X}. If P is a subgroup of CP and M ′ is a pattern in M , then

P ·M ′ := {g ·M ′ | g ∈ P ∧ g ·M ′ ⊆M}

is the set of all P -repetitions of M ′ in M. The elements in P ·M ′ are called P -equivalent.
The P -equivalence classes form a partially ordered set: If M1 and M2 are two subsets of
M , then, by definition, P ·M1 ≤P P ·M2 iff g ·M1 ⊆M2, for some g ∈ P. In this case, we
say that M1 is a P -subpattern of M2 in M , M1 ≤P M2, see Figure 6.1. M1 is called an
independent P -subpattern of M2 iff the number of patterns in M that are P -equivalent to
M1 exceeds the corresponding number w.r.t. M2. Thus, independency guarantees that the
subpattern occurs at least once outside the context of the superpattern.19

6.3.2 Pattern Detection Method

String-based approaches to motivic analysis work on monophonic note sets M.20 In such
sets, no two notes are active21 at the same time. Thus, a monophonic note set M can
be viewed as a sequence of notes ordered by onset times: ([t1, p1, d1], . . . , [tn, pn, dn]) with
t1 < . . . < tn and ti + di ≤ ti+1 for i < n. To support the analysis of polyphonic music, the
note sequences of the individual instruments are concatenated (i.e., the instruments are

19 This paragraph originates from our publication [189].
20 The descriptions in this section largely follow our publication [189].
21 By definition, a note [t, p, d] is active in the time interval [t, t+ d).
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Figure 6.2. Extract from the first movement of Beethoven’s Piano Sonata No. 2. In the right hand
(upper staff) two independent voices are notated.

played consecutively rather than in parallel). In CPN polyphonic instruments, such as
the piano, organ, or harp, are usually assigned multiple staves. Thereby, the same rule
of concatenating the individual staves/voices can be applied. However, in some pieces
the score becomes even more complicated and there are more melodic lines than staves
assigned to the instrument, see Figure 6.2. In these cases, most symbolic score formats
keep track of those melody lines and the appropriate separation of the note material is
possible. For chords or in case the symbolic file does not offer the described functionalities
(e.g., MIDI files), melody extraction algorithms can be applied to achieve the required
monophony [96, 196]. For this purpose, we implemented the straightforward but rather
effective skylining approach to melody extraction. This method assumes that the melody
is always located in the highest pitches. Therefore, only the note elements with the highest
pitch are kept if overlaps have to be resolved. Of course, this method might fail for
orchestral pieces where the main theme is often repeated in the lower voices, like the violas
or the double basses, while the higher tuned voices play accompaniment. But as most
symbolic score formats at least provide a separation of the individual instrument voices,
this will not be an issue.

String-based approaches as proposed in this chapter are concerned with consecutive patterns
in M , i.e., we consider subsequences

Mij := ([ti, pi, di], [ti+1, pi+1, di+1], . . . , [tj , pj , dj ]), 1 ≤ i < j ≤ n.

In the first step of the algorithm, M is transformed into a string sM = s = (si)i. We
use P -invariant transformations, where P denotes the subgroup of CP consisting of all
g = (1, 1, τ, π). P -invariant mappings satisfy sM = sg·M , for all g ∈ P. The benefit of
P -invariance is that P -equivalent substrings ofM are mapped to identical substrings in sM .
In the presented approach, we use two such invariant mappings: the duration string DM =
D = (di)i∈[1 :n] and the generic pitch interval string GM = G =

(
I−1
g (pi+1 − pi)

)
i∈[1 :n−1]

.22

For generic intervals, the number of diatonic scale steps between two consecutive notes
rather than the number of semitones (pi+1−pi) is counted. Thus, generic intervals represent
sets of semitones

. . . , Ig(−1) := {−1,−2},
Ig(0) := {0},
Ig(1) := {1, 2},
Ig(2) := {3, 4},
Ig(3) := {5, (6)},

22 We would like to explicitly point out that in this chapter D no longer represents the document collection
but the string of note durations.
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score

pitch 80 79 77 76 77 82 80 79 77 79
pitch interval −1 −2 −1 +1 −2 −1 −2 +2
generic pitch interval −1 −1 −1 +1 −1 −1 −1 +1

Figure 6.3. Example of different string representations for the first two occurrences of motif B from
Figure 6.1. In pitch and pitch-interval representation, the two motifs are represented by different strings.
By contrast, the two are the same for the generic pitch interval representation.

Ig(4) := {(6), 7},
Ig(5) := {8, 9},
Ig(6) := {10, 11},
Ig(7) := {12}, . . .

A chord of six semitones can be interpreted as augmented fourth or diminished fifth
and can therefore appear either in Ig(3) or Ig(4). In our implementation, we instead
decided to merge the two and consider five, six, and seven semitones to be tonal similar.
Using this notation, I−1

g (x) denotes the index j satisfying x ∈ Ig(j). By using G as string
representation, transposed and translated tonal repetitions of a melody will be represented
by the same string as the original melody, see Figure 6.3.

By transforming M into a string s, via M 7→ DM or M 7→ GM , the task of pattern
detection is transformed into the task of finding all repeating independent substrings of
length ` ≥ `min in the string s, where `min defines the minimal length to be considered.
As the results are required for motivic analysis, all occurrence positions of a detected
pattern should be reported. Subpattern relationships constitute important information in
the context of motivic analysis. Therefore, all subpattern relationships between pairs of
independent patterns should be detected as well.

To achieve the stated goals, the `-gram similarity matrix S`[s, t] ∈ {0, 1}|s|−`+1×|t|−`+1

between two string s and t is defined

S`[s, t](i, j) :=
{

1, if (si, . . . , si+`−1) = (tj , . . . , tj+`−1)
0, otherwise.

Calculating S`[s] := S`[s, s] yields the `-gram self-similarity matrix of a string s and thus
allows for repeating patterns to be detected in s. By definition S`[s](i, j) = S`[s](j, i) so
that it is sufficient to compute only half the matrix. In addition to patterns of length `,
represented by non-zero entries in S`, longer patterns can also be deduced from the matrix.
An `-diagonal of length k is a non-extendable diagonal of k non-zero entries in S`. Such
a diagonal represents a substring of length k + `− 1 that occurs both in string s and in
string t, see Figure 6.4. We can then define the set of all `-diagonals of length k by

∆k
` [s, t] := {(i, j) | ∀(m,n) ∈ {(i+ κ, j + κ) | κ ∈ [0 : k)} : S`[s, t](m,n) = 1

∧S`[s, t](i− 1, j − 1) = 0
∧S`[s, t](i+ k, j + k) = 0}.

Furthermore, subpattern relationships are easily deduced from S` as well. To this end, we
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Figure 6.4. Upper half of the 3-gram self-similarity matrix for the generic pitch interval representation
of the first movement of the Piano Sonata No. 1 by L. v. Beethoven (left) and enlargements of the
marked regions (right). Matrix entries S3(i, j) = 1 are depicted in black, while zero-entries are white.
The colored diagonals in the enlargements coincide with the patterns depicted in Figure 6.1 and their
repetitions.

proceed as follows. Let (i, j) ∈ ∆k
` be an `-diagonal of length k. The pattern represented by

this diagonal is a subpattern if its position interval [i : i+ k+ `− 2] in string s constitutes a
proper subset of the position interval (in s) of another diagonal in S`, see Figure 6.4. More
precisely, let (i, j) ∈ ∆k

` and (a, b) ∈ ∆c
` with k < c be the start positions of two diagonals

in S`. Then, the pattern (si, . . . , si+k+`−2) is a subpattern of the pattern (sa, . . . , sa+c+`−2)
iff a ≤ i ∧ a+ c ≥ i+ k.

By calculating the self-similarity matrix S`min [D], rhythmic patterns of length ≥ `min
and all their occurrence positions are determined. Equally, S`min−1[G] detects pitch
sequences and their translated and transposed repetitions.23 To find pattern occurrences
in inversion, the string G is compared with its sign inversion −G = (−Gi)i∈[1 :n−1] by
means of the similarity matrix S`min−1[G,−G]. For retrograde inversions S`min−1[G,G′]
with G′ = (Gn−1, Gn−2, . . . , G2, G1) is used. Finally, retrogrades are detected by combining
the two. As the last type, rhythmic pattern retrogrades are considered by computing
S`min [D,D′].

It is obvious that a pattern might be detected in more than one of these similarity matrices.
Equally, an occurrence might match with respect to several variation types. All information
on pattern occurrence positions as well as their variation types are stored. Based on this
information, the detected patterns are ranked using a ranking strategy that considers
pattern length, number of pattern repetitions as well as their respective variation types.
Given a pattern p in s with length |p| and its occurrences o1, . . . , ok, we calculate the
ranking value r(p) of p by

r(p) = |p| ·
∑k
i=1w(oi)
|s|

, (6.1)

where w(o) = wm · bm(o) +wr · br(o) describes the importance of occurrence o. Here, bm(o)
and br(o) represent the binary information for whether o is a melodic, respectively rhythmic

23 Note that a substring (si)i∈[j : k−1] of G corresponds to the note sequence ([ti, pi, di])i∈[j : k].
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variation. Moreover, the weights wm and wr influence the individual impact of the two
types of variations.

6.3.3 Evaluation

Jekovec et al. [97] proposed a method for string-based pattern detection with suffix trees.
For the evaluation of their approach, they performed theme detection on the 48 fugues
of Bach’s Well-Tempered Clavier. They searched for patterns of 4 − 30 notes’ length
and considered a theme as detected if a pattern starting with the very first note of the
piece of music was among the ten top-ranked patterns. With this setup, their proposed
suffix-tree approach correctly detected the themes of 19 fugues. In this section, we present
the results of a similar evaluation we conducted for the previously introduced pattern
detection approach.24

The Dictionary of Musical Themes [14] by Barlow and Morgenstern provides a list of
themes for most classical pieces of music. The stated 48 themes of the fugues from The
Well-Tempered Clavier contain between 12 and 31 notes and are exclusively located at the
beginning of the respective piece of music. In the first run of our evaluation, we use the
same values for the minimal and maximal pattern length as Jekovec et al., i.e., four and
30. However, we also consider a pattern as a valid result if it was not located at the very
beginning of the piece of music. Thereby, all sufficiently long subsequences of the sought
theme are admissible matches as well. With this setup a valid subpattern of the theme
was among the ten highest-ranked patterns for all 48 fugues.25 For 22 fugues the pattern
was even located right at the beginning.

A theme is constructed from one or multiple motifs and thus is usually longer than a regular
motif. Scanning the dictionary by Barlow and Morgenstern, we found that a theme usually
consists of at least ten notes. However, only six of the successfully detected patterns were
of length ≥ 10. The remaining patterns had an average length of 5.6 notes. In a second
experiment, we therefore changed the pattern-length range to 10− 30 notes, which seems a
more suitable choice for theme detection. Here, 44 of the themes could be identified by
one of the ten top-ranked patterns (34 of the patterns were located at the very beginning
of the corresponding fugue). In Figure 6.5, an example of a successfully detected theme
is shown, and in Figure 6.6 we discuss one of the fugues where the theme detection was
unsuccessful.

The results demonstrate that musicological tasks such as theme detection can be supported
by automatic approaches as the one presented in Section 6.3 but still require human
interaction for verification, modification, and interpretation of the detected patterns. To
this end, human experts need intuitive and visually appealing graphical user interfaces. In
the following section, we discuss existing work in this field and introduce a new front end
for motivic analysis (and theme detection).

24 Even though we have so far focused on the task of motivic analysis, the proposed pattern detection
approach can also be used for the detection of larger musical forms, such as themes or periods.

25 The themes of The Well-Tempered Clavier all feature a very characteristic melody. In contrast, the
rhythm of the fugues is often limited to repetitive unvarying note durations. Therefore, we chose
wm = 1.0, wr = 0.0 as the weights for our ranking function, see Equation 6.1.
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4
4

Figure 6.5. The first three measures of the Fugue No. 1 from The Well-Tempered Clavier, Book 1 by
J. S. Bach and the highest-ranked pattern with more than ten notes. According to [14], the theme of
this fugue is four notes longer than the depicted pattern. The score was rendered in the MotifViewer.
The system currently does not support the visualization of ties and slurs, which is why the tie between
the 10th and 11th note of the theme is missing.

4
4

(a) The highest-ranked pattern that is a subpattern of the main theme (rank 19).

(b) The highest-ranked pattern of the fugue. The pattern first occurs in measure 36. Except for the missing G]

before the sequence of sixteenth notes, this pattern coincides with the third theme of the fugue [32].

Figure 6.6. Pattern detection results for Fugue No. 14 from The Well-Tempered Clavier, Book 2. In
this example, we searched for patterns containing 10− 30 notes. Bruhn [32] performed a full analysis of
all fugues from The Well-Tempered Clavier. For this fugue, she identified ten occurrences of the main
theme. The best-ranked theme-related pattern detected by our pattern detection method is shown in
Figure (a). The number of repetitions and their positions in the piece coincide with those described
by Bruhn. In addition to the main theme, the fugue contains two additional themes that appear at a
later point in the piece, one of which is depicted in Figure (b). This theme is longer than the main
theme and has a higher number of repetitions. Therefore, the employed ranking function assigned this
pattern a higher ranking value. In addition, several variations of this theme, e.g., with a shorter length,
or starting a few notes earlier or later, were detected as well and most of them received relatively high
rankings. Thus, this secondary theme pushed the main theme of the fugue from the list of the ten
highest-ranked patterns.

6.4 Graphical User Interfaces

Although a great deal of approaches for computer-aided motivic analysis have been
developed, only a few graphical user interfaces have been proposed. However, without
appropriate interfaces for accessing, analyzing, and manipulating the automatically detected
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motif candidates, these algorithms are of little use to musicologists. In [36,38] an interactive
visualization is presented. The authors implemented three representations: weight functions,
motivic evolution trees, and melodic clustering. All provide information on the detected
variations of given patterns. Furthermore, the score of the motif candidates can be accessed.
However, no full score visualization where the motifs and their variations are highlighted
is available. Collins published a video of a tool using his automatic pattern discovery
method [49].26 With this tool, arbitrary symbolic score data encoded in the Humdrum file
format, see Appendix A.1, can be opened for analysis. The detected patterns are ranked
and made available for visualization and sonification in a rendered score visualization.
To this end, the system employs the music notation software Noteflight.27 However, the
patterns and their occurrences can only be browsed successively and are not made available
simultaneously.

Recently, Jekovec et al. [97] proposed a suffix tree-based pattern detection approach. The
authors also introduced a graphical user interface for accessing the calculated patterns
in Harmonia.28,29 The presented user interface is already quite comprehensive. The most
important functionalities are: visualization of patterns and all occurrences in the score, a
ranked list of all detected patterns, access to the suffix tree for the analysis of subpattern
relationships, and sonification functionalities for the whole score and individual patterns.

6.4.1 MotifViewer

With the MotifViewer, we propose a Java-based graphical user interface for computer-
aided motivic analysis. The system takes symbolic score files in MusicXML, **kern, or
the MIDI format as input and performs online pattern detection as outlined in Section 6.3.
Based on the detection results, the MotifViewer offers an interactive visualization of
the patterns, their variations, and their pairwise hierarchical relations. All those patterns,
their occurrences, and the whole piece of music are also available for sonification with a
MIDI synthesizer.

The MotifViewer interface, see Figure 6.7, is roughly divided into two sections. On the
right side, the score material is rendered. The user can choose between a score rendering
in classical CPN and a more technical piano roll presentation.30 The latter might prove
useful for users less familiar with CPN as notes are represented by rectangles where the
y-position reflects the pitch, the x-position the onset time, and the width of the rectangle is
associated with the note duration. In addition, the detected patterns are highlighted in the
score. A piece of music usually contains a vast amount of patterns (of different length) and
each pattern can in turn reoccur multiple times. To maintain usability, the MotifViewer
offers two view modes for patterns of a given length `. In an overview, the beginnings for
all patterns of length ` are marked in the score, see Figure 6.9. Upon selecting a pattern
beginning, the MotifViewer switches to a detailed view showing the full pattern as well
as all its occurrences, see Figure 6.11. In this view, the matching types of each occurrence
are color-coded. The user can easily switch back and forth between these two views.

26 http://www.tomcollinsresearch.net, February 2013
27 http://www.noteflight.com, February 2013
28 http://sourceforge.net/projects/harmoniamusic/, February 2013
29 Harmonia is a free music analysis application implemented in Python. By means of the Canorus score

editor and LilyPond, MIDI files and MusicXML files can be loaded and rendered as CPN.
30 CPN is at the moment not available for MIDI files.
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On the left side of the MotifViewer front end, a control area is provided, see Figure 6.8.
Here, the user can select a file for analysis and manipulate various parameters (e.g., minimal
and maximal pattern length and the ranking weights wm and wr). Furthermore, several
controls allow for an interactive access to the detection result. For example, a different
pattern length can be selected to explore the extracted patterns of that length in the
score visualization. In addition, the MotifViewer provides a list of all detected patterns
(including the calculated pattern ranking) as well as a table describing the pattern hierarchy
of the given piece of music, see Figures 6.10 and 6.14. Both are accessed via the control
area and can be used to select specific patterns or to explore the exact occurrences of a
pattern and a subpattern, see Figure 6.15. Finally, the interface offers the possibility of
selecting the types of pattern variations to be visualized. Thus, the user can, e.g., decide
to concentrate on melodic and rhythmic repetitions of a pattern while ignoring retrogrades
and/or inversions.

A recently added feature of the MotifViewer is the manual selection of note sequence
for pattern matching using a modified version of the proposed pattern detection approach,
see Figure 6.16. Thus, the user can select a motif by hand and trigger the detection of all
its repetitions within the piece of music.

To give an idea of how to perform a motivic analysis with the MotifViewer, Figures 6.7–
6.16 provide step-wise examples on how to operate the user interface.
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(a) Rendered score, see Appendix A.

(b) Piano roll like visualization of the score.

Figure 6.7. The MotifViewer user interface after loading the **kern file of the Piano Sonata No. 1
by L. v. Beethoven (source [102]).
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Figure 6.8. Close-up of the control area on the left of the MotifViewer interface. Here, the user can
change various settings and control the pattern visualization. We will now walk through the individual
control elements: (1) before starting the pattern detection, the user can change the pattern-length range
using these textfields; (2) buttons for opening a score file in **kern, MIDI, or MusicXML format and
starting the pattern detection; (3) control elements to change the weights of the ranking function, see
Equation 6.1, and to recalculate the ranking values of the already detected patterns; (4) drop-down list
to change the pattern length selected for visualization; (5) buttons to open the pattern table depicted in
Figure 6.10 and the hierarchy table from Figure 6.14; (6) checkboxes for all supported types of motivic
variations. Only patterns that have at least one occurrence of one of the selected types are displayed.
Furthermore, only occurrences of the selected variation types are visualized in the score.
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Figure 6.9. After performing a pattern detection, the minimal available pattern length is used for the
visualization. In this example, the minimal pattern length is four. In the score view, the start positions
of all length-four patterns are indicated by a red rectangle. This view allows the user to get an overview
of all patterns of a certain length.

Figure 6.10. List of all detected patterns. The table can be accessed through the according button in
the control area. The individual columns denote the length of a pattern, its start position, the number
of detected repetitions, the number of repetitions per motivic variation type, and the ranking value.
By double-clicking an entry, the according pattern and all its repetitions are visualized. Here, the list
was sorted by the ranking value and the first, highest-ranked pattern was selected for visualization, see
Figure 6.11.
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Figure 6.11. Detailed view of the highest-ranked pattern of the Piano Sonata No. 1 visualized in CPN
and as piano roll. The original pattern of length four is highlighted in red. Repetitions are indicated in
green. In the score, the lower left corner of each marker color-codes the types of motivic variations that
are met by the respective repetition. In the piano roll view, the first note of each repetition contains the
information on the variation types.
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6.4 Graphical User Interfaces

Figure 6.12. Selecting a different pattern length (here, length five) for visualization. After verifying
the selection with the Change button, the overview with the start positions of all patterns of the chosen
length is created. For our example, this results in the view depicted in Figure 6.13a.
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6 Motivic Analysis

(a) Overview of the start positions of all length-five patterns. By clicking on a start position (in this example,
the one indicated by the blue arrow), the detailed visualization of that pattern and its occurrences is created, see
Figure (b).

(b) Detailed view of the length-five pattern selected from the pattern overview in Figure (a).

Figure 6.13. Example for manually selecting a pattern for close inspection.
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6.4 Graphical User Interfaces

Figure 6.14. The pattern hierarchy table can be accessed via the control area. Each row represents a
child-parent relation and states the length and start position of both patterns as well as the types of
motivic variations that both meet. Upon selecting an entry, the two patterns and their occurrences are
visualized, see Figure 6.15.

Figure 6.15. Visualization of the subpattern relationship selected through the hierarchy table in
Figure 6.14. The length-five pattern starting at position six is a subpattern of the length-10 pattern
starting at position one. This hierarchical relationship corresponds to the example in Figure 6.1 on
page 103. To keep the view clear, occurrences of the subpattern are visualized by marking only the first
note red. Equally, the beginnings of superpattern occurrences are marked in blue.
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6 Motivic Analysis

(a) The user can manually select a note sequence from the score view.

(b) Result of the manual pattern matching for the note sequence highlighted in Figure (a).

Figure 6.16. Manual motif selection and pattern matching in the MotifViewer interface.
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7 Conclusions

The long-standing efforts of the Multimedia Signal Processing Group at the University
of Bonn to create the digital music library system Probado Music inspired this thesis.
In addition to making substantial contributions to the developed interfaces for document
management and access, we addressed newly encountered issues in music synchronization
and audio matching and proposed an extension of the Probado Music functionality by
computer-aided motivic analysis.

Currently, Probado Music provides access to scanned score documents and audio
recordings. Furthermore, the lyrics available from the score are extracted and presented
separately. In the course of this thesis, we demonstrated the extensibility of the library
system to support further document types using the example of video recordings. In
the future, the inclusion of more music document types would be interesting. Just like
the music players proposed in [10,12], the system could provide access to programs, CD
covers, pictures, or texts (e.g., critical reviews or musicological analyses). Furthermore,
these documents can be aligned with the audio and score material, for example, to show
pictures from the second act of Mozart’s The Magic Flute while a corresponding recording
is playing.

During the preparation of a music collection for its presentation with the Probado Music
system, one encounters several tasks that currently cannot or only in parts be automatized.
While some might only be required in case of unsatisfactory synchronization results,
e.g., the correction of jump instructions, others are mandatory. In our experience, the
most important and also most time-consuming of them is the segmentation of the music
documents and the work identification for the individual segments. In his thesis, Christian
Fremerey proposes an innovative procedure that segments and identifies the content of
scanned score documents, provided that for each contained piece of music there already
exists a correctly assigned audio recording, see [73, 76] and Section 4.2.2. As an extension
of this work, it would be great to avoid the required first manual mapping or to support
this task as far as possible by using the information available from the music documents
themselves. For audio recordings, the back of CD covers – if available – can provide some
information on the content of the audio tracks. Similarly, ID3 tags might contain some
meta data about title, composer, and artist. In the score, the beginning of a new work is
in the majority of cases marked by an indented staff system. Furthermore, some textual
information on the piece is provided. Our results for the OCR-based reconstruction of
transposition information, see Section 4.3, strongly suggest that OCR can be used to detect
and interpret this text. While this might be a straightforward task for human subjects,
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7 Conclusions

Figure 7.1. Example excerpts of sheet music scans showing the title headings of the first and the 15th
song of the song cycle Winterreise by F. Schubert (publisher C. F. Peters). While for the first song the
name of the parent work and an opus number are stated, for the song Die Krähe only the child work title
is made available. Furthermore, this particular example might result in a misunderstanding. The title
heading states the name Wilhelm Müller, who is the author of the used poems and not the composer.

achieving the same computationally is far from trivial. This is mainly due to the lack of
unity in the input data. One obstacle is the language. The names of some composers, such
as P. I. Tchaikovsky, are spelled differently in different languages. In German, for example,
Tchaikovsky is usually spelled Tschaikowski and in Italian it is C̆ajkovskij. Equally, the
titles might differ (e.g., German original title: Die Zauberflöte, English: The Magic Flute,
French: La Flûte enchantée, Italian: Il flauto magico). Next, we give a score example to
explain some further issues to be dealt with when creating a computational approach to
segmentation and identification. In Figure 7.1, the beginnings of two songs from the song
cycle Winterreise by F. Schubert are depicted. For the first song, both the parent work
title and the title of the song are available. In contrast, in the second example only the song
title is given. Therefore, one has to remember the parent work information. Furthermore,
none of the title headings contain the composer’s name. The composer, therefore, has
to be deduced from the work title or from the cover page of the score book. It is also
important to note that different work catalogs can exist. In the given example, the opus
identifier "Op. 89" is used. However, for music by Schubert a more widespread catalog is
the "Deutsch-Verzeichnis" which assigns the identifier "D 911" to the Winterreise. Despite
all these issues – not to mention the question of how to correctly deduce which piece of
information is given in a detected string – pursuing this approach would constitute a very
interesting future direction, and we feel certain that satisfactory results can be achieved.

After introducing Probado Music, we focused on sheet music-audio synchronization. We
have seen that due to the complexity of CPN and the quality of the score scans the OMR
results are usually far from perfect. Additionally, all OMR systems known to us lack the
capability of detecting and interpreting transposing instruments properly. We have first
shown that without this information, the alignment accuracy is significantly reduced and
afterwards proposed a strategy for recovering the missing information. As some editors
employ compressed notation, we also had to recover the instrumentation of the score. By
means of this information, new instrument-based applications could be developed. Instead
of always highlighting the current measure for the whole staff system, users could use
the instrumentation information and decide to focus on one particular instrument, see
Figure 7.2. By further adding methods for score-informed source separation, as proposed
by Ewert and Müller [69, 71], the functionality could be further extended. Thus, users
could use the system in two settings: First, listen to their own voice and, second, play
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Figure 7.2. Design study on how to select and highlight only individual voices in the score visualization
of Probado Music. A first prototype of this functionality has already been implemented and tested.

their own voice accompanied by the recording (where their own voice is muted). To further
improve the alignment accuracy in the case of transposing instruments, some currently
disregarded scenarios have to be addressed: First, the transposition can change over the
course of the piece of music and such a change can also occur in the middle of a system, see
Figure 2.10 on page 14. Second, in some editions the instrument labels of some instruments
are omitted even in the event of an altered instrumentation, see Figure 7.3. Here, human
readers are capable of implicitly identifying the correct instrument-staff mapping by using
braces, instrument groupings, and their knowledge from the previous systems.

Next, we looked into the audio matching features of Probado Music. Despite the size
of the music collection and the real-life demands, we attempted to replace the previously
used diagonal matching approach by the more flexible SSDTW-based audio matching
technique. As the higher flexibility came at the cost of significantly longer response times,
some kind of speed-up had to be performed. However, a big disadvantage of SSDTW is its
incompatibility with common indexing approaches. In our specific application scenario
in the context of Probado Music, however, we managed to design and implement an
index-based approach that uses SSDTW. Here, we took advantage of the fact that the
queries are not arbitrary audio snippets, but extracts from the Probado Music document
collection itself (i.e., intra-collection queries). In this scenario, we were able to split the
collection into equal-sized overlapping segments and to precompute their respective retrieval
results using SSDTW. Storing these matches in appropriate index structures then enabled
us to efficiently recombine them at runtime.

To relax the restriction on intra-collection queries, the system could easily be extended by
an audio identification step [86,206]. In such a preprocessing step, a given external audio
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7 Conclusions

Figure 7.3. The system beginnings of pages 1, 3, 4, and 5 from the Manfred Symphony, Op. 58 by
P. I. Tchaikovsky (publisher: P. Jurgenson). In terms of instrumentation, page 2 (not depicted) is equal
to pages 1 and 3. The example shows a compression of the staff system on page 4. On page 5 the
instrumentation returns to the original instrumentation from page 1 without providing any textual labels.
Here, the reader has to deduce the instrumentation from prior knowledge.

snippet could be tested for membership with the collection. If this is the case, the according
audio snippet from the collection could be used instead (to benefit from intra-collection
search). Otherwise, the system could fall back on diagonal matching (accepting inferior
results) or classical SSDTW-based audio matching (accepting long response times). The
presented experiments in combination with the audio identification performances reported
in the literature suggest that this approach would still yield response times that are orders
of magnitude better than those of classical SSDTW-based audio matching (for queries that
are part of the collection).

Through personal correspondence, we recently learned of new efforts to improve the runtime
of DTW using LBFs [160]. Other than previous approaches the authors propose to use
multiple LBFs in combination with an early abandoning technique. Thereby, the number of
match candidates is successively and very quickly reduced. In a preprint, the authors also
suggest the applicability of their techniques to matching tasks [159]. Other than SSDTW,
their approach performs DTW between the query and segments from the database that
have the same size as the query. To handle global distortions that influence the total
length of the sequence, a uniform scaling approach is included. Thus, instead of one
query, multiple linearly stretched versions of the query are retrieved. While evaluations
demonstrate the efficiency of their approach, the applicability to music documents – in
terms of result quality – remains to be assessed.
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In the last part of the thesis, we investigated symbolic intra-document pattern detection
for application in computer-aided motivic analysis. We suggested a novel string-based
approach that considers several different types of common motivic variations and is above
that capable of detecting hierarchical relations between patterns of different length. An
essential next step is the detection of the remaining common motivic variations, such
as rhythmic and melodic augmentation/diminution. We suggest using an appropriate
ranking strategy to first select the most-promising motif candidates. Subsequently, pattern
matching techniques tailored to the specific features of the so far unacknowledged motivic
variations could be applied to these candidates.

Our long-term goal is the inclusion of the developed pattern detection techniques and the
corresponding front end into the Probado Music system. In contrast to the currently
used **kern and MusicXML files, the symbolic information created via OMR can contain
errors. Thus, the employed pattern detection approach should be extended to allow for
some fuzziness in the input data.
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A Loading and Rendering Symbolic
Score in the MotifViewer

The MotifViewer interface introduced in Section 6.4.1 is capable of importing several
different symbolic score formats, which are then rendered in CPN. In this chapter, we
briefly introduce the supported file formats, namely the Humdrum **kern format and
MusicXML. Afterwards, some details on the score rendering process are presented.

A.1 Humdrum Files

David Huron developed the software system Humdrum with the intention of assisting music
researchers. Humdrum consists of two parts: the Humdrum Toolkit and the Humdrum
Syntax. The toolkit provides a set of software tools that help with posing and answering
questions about music. Given this toolkit for computer-aided music research, the Humdrum
Syntax provides a sequential grammar to store and represent all sorts of music-related
information. Examples are score material, analysis results, piano fingerings, dance steps,
and concert programs. There exist approximately 20 pre-defined representation schemes in
the Humdrum Syntax. The most commonly known and used representation is the **kern
format, which can represent a variety of music notations, among others, CPN, medieval
square notation, and Indian tabla notation. In the remainder of this section, we focus
on introducing some details on the **kern representation of scores in CPN. For more
details on the Humdrum Toolkit and the Humdrum Syntax, we refer to the Humdrum user
guide [92].

CPN can be viewed as a table where the rows contain the score information for the individual
instruments – or rather voices – and the columns represent successive moments in time.
The **kern format employs the same layout, only flipped 90 degrees. A very simple **kern
example representing a single whole note of pitch C4 is depicted in Figure A.1. Individual
notes are represented by strings consisting of an integer, a (possibly repeated) character
and – if required – an accidental sign ("#" for sharps and "-" for flats). The integer encodes
the duration of the note with "1" for a whole note, "2" for a half note, "4" for a quarter
note, etc. The pitch is encoded by chroma and tone height. The character represents the
chroma class, whereas its frequency determines the octave (or tone height). The middle
C (C4) is represented using the lower-case letter "c" while an upper-case "C" designates
C3. Starting from those, successive higher and lower octaves are then designated by letter
repetition, for example, "eee" for E6 and "BB" for B2. In case of a rest, the character "r"
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A Loading and Rendering Symbolic Score in the MotifViewer

**kern
*clefG2
*k[]
*M4/4
=-
1c/
==
*-

(a) **kern code.

4
4

(b) Score in CPN.

Figure A.1. **kern example by which one measure in 4/4 time with a whole note on middle C (C4) is
represented. The score was rendered with the MotifViewer.

is employed instead. As each column represents one voice, the onset time of a note is
indirectly encoded via its position in the data stream. In polyphonic pieces of music, a
place holder represented by a single period character (".") helps with correctly aligning the
time events. In combination with a note or a rest, the period character, however, indicates
a dotted duration. At this point, we would like to remark that with the **kern format
the representation of syntactic information of a score is addressed. Thus, for example,
visual and orthographic information, which might be specific to a certain rendition of
the score, is not considered. One result is a duplicate statement of accidentals in case of
key signatures. More precisely, a note entry always explicitly describes the exact pitch of
the note, regardless of a possible key signature. In addition to the note elements, basic
information such as clef ("*clefG2"), time signature ("*M3/4"), key signature ("*k[b-]"),
measure boundaries ("="), and repetitions ("||:", ":||", and ":||:") can be described with
the **kern syntax. Furthermore, stem directions, beaming information, slurs, phrases,
embellishments, and grace notes have encodings as well. In Figure A.2 a more complex
example of a score for two voices and its visualization in CPN is depicted. For a more
detailed description of the **kern encoding of CPN, we refer to Chapters 2 and 6 of the
Humdrum user guide [92].

A.2 MusicXML

MusicXML is an open XML-based file format for the representation of score in CPN.1 The
goal was the creation of a common standard for the interchange of scores, in particular
between different score notation programs, and today the majority of notation programs
(e.g., Finale, Sibelius, Cubase, SharpEye, capella-scan, LilyPond) support the import and
export of score material in MusicXML.

Initially, MusicXML was an XML updating of the MuseData format [45] where some
key concepts of the Humdrum Syntax have been added. From there, it was significantly
extended to also support contemporary popular music and to turn it into a distribution
and interchange format.

In contrast to **kern, the layout does not directly reflect the structure of a score. Instead,
XML elements and their nesting reflect the structure. This is why most score elements like

1 http://www.makemusic.com/, February 2013
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A.2 MusicXML

**kern **kern
*staff2 *staff1
*clefF4 *clefG2
*k[b-] *k[b-]
*M3/4 *M3/4
=1- =1-
2.r 8r
. 8d/L
. 8g/
. 8b-/
. 8g/
. 8d/J
=2 =2
8r 4dd\
8GG/L .
8BB-/ 4r
8D/ .
8BB-/ 4r
8GG/J .
=3 =3
4G\ 8r
. 8dd\L
8GG/L 8b-\
8BB-/ 8g\
8D/ 8gg\
8G/J 8b-\J
=4 =4
4D\ 8a\L
. 8gg\
4d\ 8ff\
. 8ee\
4D\ 8ff\
. 8a-\J
=5 =5
*- *-

(a) **kern code.

3
4

(b) Rendering result of the MotifViewer.

Figure A.2. Example of a two-staff score encoding in the **kern syntax. Other than in CPN, the
score is laid out vertically and each column represents an individual staff/voice. In this example, stem
directions ("/" and "\") and beamings ("L" and "J") are explicitly indicated.
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A Loading and Rendering Symbolic Score in the MotifViewer

parts, measures, notes and even most of the attributes (e.g., key signature, time signature,
clef, pitch, duration) are represented as elements and XML attributes are scarcely used.
There exist two root document types which differ in their approach towards structuring
the score material. MusicXML files that conform with the <score-wise> type contain
parts which each contain measures, whereas <time-wise> MusicXML descriptions contain
measures, which are made up of parts. By courtesy, MusicXML provides two XSLT
stylesheets to convert back and forth between those two document types.

We refrain from discussing the MusicXML format in detail and instead only point out
some important aspects. In Figure A.3 the MusicXML description of the one-note example
shown in Figure A.1b is provided. The example illustrates the structuring of the score
into parts that contain measures which in turn contain notes. Just like the **kern format,
a pitch representation through chroma class (<step>) and tone height (<octave>) was
chosen. Furthermore, note durations are represented by integer values and optionally by a
string <type> description as well. Onset times are deduced implicitly by the position in
the description. In contrast to **kern, MusicXML can contain information on the score
layout, such as the size of the score pages and of the music symbols and their position. For
further details, we refer the interested reader to the MusicXML tutorial [165].

A.3 Score Rendering

Music notation – also referred to as music engraving – is the art of drawing music with
the purpose of mechanical reproduction. At the end of the 20th century the traditional
plate engraving2 was successively replaced by computer software designed for the same
purpose. Music engraving software is also known as scorewriter or music notation software.
While the techniques for creating engravings and reproducing music notation changed, the
challenges in attempting the creation of an appealing score representation remain the same.
Computer programs that provide a visualization of music score (score rendering) have to
face these issues as well even though their usage scenario is different. The **kern format
does not supply any layout information for score rendering. Equally, layout information in
MusicXML is only optional and thus often not available in the files. Thus, to provide a
visualization of a piece of music in the MotifViewer, a score layout has to be derived
from the given information. In the following, we will briefly discuss the employed score
rendering method. In the process, we point out some particular challenges and discuss the
chosen approaches for solving them.

The MotifViewer user interface allows a flexible adaptation of the font size and the size
of the score rendering area. Therefore, the zoom factor as well as the current width of
the score have to be considered throughout the layout process. For the majority of music
symbols freely available SVG files from Wikimedia Commons3 are used, see Figure A.4. In
addition, lines for the staves, measure boundaries, stems, and beams as well as the numbers
of the time signature and tuplets are rendered directly in Java. For a given score, its layout
is determined measure after measure. We will therefore first describe how the symbols

2 In plate engraving music was reproduced onto a zinc or pewter plate in a mirror image. For fixed symbols,
like clefs and note heads, dies were prepared while variable symbols, such as beams and slurs, were
engraved by hand [205, Music Engraving].

3 Category: SVG musical notation, http://commons.wikimedia.org/wiki/Category:SVG_musical_
notation, February 2013.
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A.3 Score Rendering

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE score-partwise PUBLIC

"-//Recordare//DTD MusicXML 3.0 Partwise//EN"
"http://www.musicxml.org/dtds/partwise.dtd">

<score-partwise version="3.0">
<part-list>

<score-part id="P1">
<part-name>Music</part-name>

</score-part>
</part-list>
<part id="P1">

<measure number="1">
<attributes>

<divisions>1</divisions>
<key>

<fifths>0</fifths>
</key>
<time>

<beats>4</beats>
<beat-type>4</beat-type>

</time>
<clef>

<sign>G</sign>
<line>2</line>

</clef>
</attributes>
<note>

<pitch>
<step>C</step>
<octave>4</octave>

</pitch>
<duration>4</duration>
<type>whole</type>

</note>
</measure>

</part>
</score-partwise>

Figure A.3. MusicXML code for the one-note example depicted in Figure A.1b.

in a measure are properly placed and subsequently talk about the proper positioning of
measures. A measure has assigned to it a clef, a time signature, and if required a key
signature. This information is usually placed at the beginning of a measure. However, it is
only visualized for the first measure in a line or if one of the three was changed compared
to the previous measure. In the latter event, only the modified property is shown. Next,
the note material is placed in the measure. It is important to note that the horizontal
position of a note in the measure reflects its onset time. Therefore, we defined a variable
quarter_note_spacing whereby the distance between two quarter notes is determined.
Using the onset time of a note (in quarters) and this variable, the position of the note in
the measure can be determined. It is obvious, that the quarter-note spacing has to be
large, if a lot of short note durations exist. In contrast, long values allow for a smaller
spacing. Therefore, the individual quarter-note spacing of each measure is calculated as a
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Figure A.4. Table of all music symbol images used by the MotifViewer (source Wikimedia Commons).
Lines such as the staff lines, measure lines, beams, and stems, and text (time signatures and tuplet
identifiers) are rendered directly in Java.

2
2

3

2
2

Figure A.5. Example of adjusted quarter-note spacings for different note durations. Measures two and
four are distinctly shorter than measure three. In addition, in measure three all notes starting from the
E4 in the first staff are slightly shifted to accommodate the natural symbol.

function of the shortest note value in the measure, see Figure A.5. With this approach,
accidentals and clefs in the middle of a measure might end up overlapping with the note
objects. We consider this case by always checking for overlaps if an accidental or a clef
has to be drawn. In the event of an overlap, all subsequent symbols in the measure are
appropriately shifted to the right. For polyphonic pieces, a measure spans multiple staves,
which have to obey a common horizontal spacing. Therefore, the previously described
approach for the placement of the score symbols has to consider all staves simultaneously.

On the note level, several music engraving rules should be observed to yield an appealing
visualization: First, stem directions need to be determined if they were not specified by
the symbolic score file. It is a common convention that all notes on or above the middle
line of a staff are stemmed down, whereas notes below the middle are stemmed up [144].
Furthermore, the stem length has to be checked. Usually, a stem spans one octave. For
chords, the length is calculated from the note that is closest to the end of the stem. If a
note is placed on ledger lines, the stem has to be extended to touch the middle line of the
staff. Another exception to be considered are chords containing an interval of a second.
Regularly placed, the two notes concerned would overlap. The Standard Music Notation
Practice of the Music Publishers Association of the United States [144] states that these
cases are to be resolved by placing the lower note on the left and the upper note on the
right. Remaining notes are then placed according to the stem: For upstem the lower note
is placed in correct relation, whereas for downstems the upper note has the correct placing,
see Figure A.6.

Concluding, we want to briefly comment on the placing of the measures. After determining
the appropriate positions for all symbols contained in a measure, its width can be deduced
as well. If adding the measure to the previous measure in the score would exceed the score
width, the current measure is moved into a new line. In this case, the measure needs to
be extended to also show its time signature, key signature, and clef. Afterwards, all note
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Figure A.6. Example of chord spacings in the MotifViewer. If the chord contains a second interval,
the lower note is placed on the left and the upper note in the interval is placed on the right. Depending
on the stem direction, further notes are placed in correct relation to the stem.

Piano Sonata no. 1 in F minor, mvmt. 1
Beethoven, Ludwig van

1
2
2

3

5

3 3 3

8

12

3

3

3

2
2

3

Figure A.7. Score rendering result in the MotifViewer showing the first 14 measures of Beethoven’s
Piano Sonata No. 1. Note that according to the stated score rendering conventions, in measure nine
the C3 in the second voice should have an upstem. However, the used **kern representation explicitly
notated a downstem for that note.

symbols in the measure have to be shifted accordingly as well. Following this rule, we
obtain a left-aligned score, see Figure A.7.

The reader may have noticed that at the current time the score visualization produced by
the MotifViewer lacks some elements like ties, slurs, ornamentations, trills, staccatos,
and dynamics. While these symbols are important for producing a proper performance of
the notated piece of music, they are of lower relevance when it comes to pattern detection
and motivic analysis. In future developments of the system, these shortcomings will be
addressed and support of the mentioned score symbols will gradually be added.
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BPM beats per minute
CC connected component
CD Compact Disc
CENS chroma energy normalized statistics
CPN common practice notation
CRP chroma DCT-reduced log pitch
DCT discrete cosine transform
DTW dynamic time warping
Hz hertz
LBF lower bounding function
LSH locality sensitive hashing
MFCC mel-frequency cepstral coefficient
MIDI Musical Instrument Digital Interface
MIR Music Information Retrieval
OCR optical character recognition
OMR optical music recognition
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SSDTW subsequence dynamic time warping
STMSP short-time mean-square power
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alignment, see music synchronization
alignment path, see warping path
audio matching, 79

diagonal matching, 82
subsequence dynamic time warping,

81

chroma features, see features
codebook, 83
common practice notation, 7

staff, 9
staff system, 9

compressed notation, 8
computer-aided motivic analysis, 101
connected component, 64
counter point group, 103

diagonal matching, 82
dynamic time warping, 55

jump, 58
subsequence, 81

expression, 30

features
CENS, 21
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CRP, 22
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FRBR
expression, 30
item, 30
manifestation, 30
work, 30
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instrument order constraint, 71

instrument properties, 70
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inter-opus, 93
intra-collection query, 3, 80
intra-opus, 93
inverted list, 83, 84

p-shifted, 83, 85
item, 30

manifestation, 30
mid-level representations, see features
motif, 96

developmental, 97
spinning-forth, 96

motif variation, 97
free melodic, 99
free rhythmic, 99
interval augmentation, 99
interval diminution, 99
inversion, 98
ornamentation, 100
repetition, 97
retrograde, 98
retrograde inversion, 98
rhytmic augmentation, 98
rhytmic diminution, 98
shortening, 99
splitting, 99

motivic analysis, 95
music synchronization, 49

audio-audio, 49
lyrics-audio, 49
offline, 51
online, 51
score-audio, 49
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optical music recognition, 18

paradigmatic melodic analysis, 102
pattern detection, 100

string-based, 102
pattern matching, 101
piano reduction, 60
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query bag, 42
query-by-example, 29

score-audio mapping, 50
score-based navigation, 3, 45
score-following, 3, 45
sheet music-audio mapping, 57
sheet music-audio synchronization, 52
similarity matrix, 105
study of form, 94
subpattern, 103

independent, 103
symbolic score, 16

**kern format, 125
MusicXML, 126

theme, 97
tone height, 21
transposing instrument, 10

warping path, 55
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