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1 Introduction 

Local protein synthesis is a key cellular mechanism required for several functions, in 

specifying the formation of axis and body pattern (Bashirullah et al., 1998), in responding to 

synaptic stimulation and modifying the neuronal synapses (Steward and Schuman, 2003)  and 

also in the cell cycle (Groisman et al., 2000). The mRNAs involved in this process have to be 

transported and regulated locally. This process of transport and protein synthesis to the 

respective sites is regulated by mRNA-binding proteins (Wells, 2006). Many of these proteins 

bind to the regulatory elements in the 3' untranslated region (UTR) of the responsive mRNAs 

(Wells, 2006). Zip-code binding protein1 (ZBP1), a member of the heterogeneous nuclear 

ribo-nucleoprotein (hnRNP) family was found to bind the 3' UTR of β-actin mRNA in 

neurons and regulate its transport and translation (Huttelmaier et al., 2005). Similarly, Fragile 

X mental retardation protein (FMRP), hnRNPA2, Staufen1 and Staufen2 are other RNA 

binding proteins which are involved in mRNA transport in neurons (Eberhart et al., 1996; 

Shan et al., 2003; Kiebler et al., 2005). FMRP regulates metabotropic glutamate receptor 

(mGluR) dependent long term depression, a form of activity-induced, protein synthesis-

dependent synaptic plasticity (Huber et al., 2002). The target mRNAs localized in the distinct 

compartments of the neuronal cell bodies are either translated upon external stimuli or kept in 

an inactive state (Wells, 2006). One class of mRNA-binding proteins which regulate 

translation by binding to the 3' regulatory elements of the target mRNAs are Cytoplasmic 

Polyadenylation Element Binding (CPEB) proteins. 

 

1.1 Cytoplasmic polyadenylation element binding (CPEB) proteins  

CPEBs are RNA binding proteins which recognize and bind to a cis element named 

cytoplasmic polyadenylation element (CPE) located upstream of the hexanucleotide (poly (A), 

AAUAAA) sequence at varying distances in the 3' UTR (McGrew and Richter, 1990). 

Structurally, CPEBs contain an N-terminal regulatory domain, two RNA recognition motifs 

and a zinc finger domain required for RNA recognition and binding (Fig. 1) (Hake and 

Richter, 1994; Stebbins-Boaz et al., 1996; Hake et al., 1998; Theis et al., 2003b).  

 

 

Figure 1: CPEB general domain structure. CPEB proteins contain an N-terminal regulatory domain (Reg 

domain) and a C-terminal RNA binding domain which consists of two RNA recognition motifs (RRM) (RRM1 

and RRM2) and a Zinc finger domain (Znf). 
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The general consensus CPE sequence is UUUUUAU (Mendez and Richter, 2001), in addition  

there are variable CPE sequences reported, as UUUUAU (McGrew and Richter, 1990; Du and 

Richter, 2005) or UUUUAACA (Barkoff et al., 2000). Upon binding to the CPE-containing 

mRNAs, CPEBs regulate translation of the bound mRNA. CPEB is a key factor that regulates 

the process of cytoplasmic polyadenylation by elongating the poly(A) tails upon external 

stimuli, thus ensuing translation (Groisman et al., 2001). The founding member of the CPEB 

family, CPEB1, on which much of the studies were carried out is involved in key cellular 

processes either via translational activation (elongation of poly(A) tail) or translational 

repression of the target mRNAs (Mendez and Richter, 2001; Richter, 2007). Recently it was 

shown that the number of CPEs present, the distance between CPEs, and the distance between 

CPE and the poly(A) signal on a specific mRNA have a strong impact on the translation of 

mRNA, determining whether it is being translated or repressed by CPEB1 (Pique et al., 2008). 

In mammalian cells, CPEB1 was shown in a complex with stress granules, where the mRNAs 

can be stored until translated or these stored mRNAs can be degraded by recruiting dcp1 in 

so-called P bodies (Wilczynska et al., 2005). 

 

So far, different mechanisms were proposed by which CPEB1 regulates its target mRNA, 

which were reviewed in detail recently (Villalba et al., 2011). In Xenopus oocytes, CPEB1 

binds the mRNAs containing CPEs and keeps them translationally dormant in a complex 

containing maskin and eukaryotic initiation factor (eIF4E) (Mendez and Richter, 2001). The 

CPEB binding protein maskin prevents the interaction of mRNA-cap binding factor eIF4E 

with another translational initiation factor (eIF4G) by binding at the region normally occupied 

by eIF4G (Stebbins-Boaz et al., 1999). Upon oocyte maturation, CPEB1 is activated with 

progesterone by phosphorylation at serine 174 via Eg2 kinase, a member of the Aurora kinase 

family (Mendez et al., 2000a; Mendez et al., 2000b). Apart from CPEB1 phosphorylation, the 

cytoplasmic polyadenylation complex requires other factors, namely the cytoplasmic 

polyadenylation and specificity factor (CPSF) (Dickson et al., 1999) and poly (A) polymerase 

(PAP) (Gebauer and Richter, 1995) for translational activation. Upon CPEB1 

phosphorylation, CPSF is recruited to the hexanucleotide and elongates the poly (A) tail, but 

also disrupts the maskin-eIF4E association and results in the interaction of eIF4G with eIF4E. 

The eIF4G/eIF4E complex then recruits the 43S ribosome at the start codon, resulting in 

translation of the bound mRNA (Cao and Richter, 2002; Richter and Lorenz, 2002). 
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In neurons, CPEB1 regulates the translation very similar to early Xenopus development (Wu 

et al., 1998; Huang et al., 2002) and directs the transport of the specific target mRNA (Huang 

et al., 2003). The CPE-containing mRNAs, maskin and CPEB1 are packed into a 

ribonucleoprotein (RNP) complex and transported to dendrites along microtubules (Huang et 

al., 2003). As depicted in Fig. 2, N-methyl-D-aspartate (NMDA) receptor stimulation at 

synapses activates Aurora A kinase which then phosphorylates CPEB1. This leads to the 

elongation of the poly (A) tail followed by the disruption of the maskin interaction with eIF4E 

and the translation of bound mRNA (Richter and Lorenz, 2002). The translation of the alpha 

subunit of the calcium/calmodulin-dependent protein kinase II (α-CamKII) mRNA containing 

two CPEs is regulated by CPEBs (Wu et al., 1998; Wells et al., 2000; Huang et al., 2002). It 

was also shown that Calmodulin dependent kinase II (CamKII) can phosphorylate Thr171 of 

mouse CPEB1 (Atkins et al., 2004) indicating a positive feedback loop. Another maskin like 

protein named neuroguidin which interacts with CPEB1 is expressed in the mammalian CNS 

and present in the complex that inhibits translation in a CPE dependent manner (Jung et al., 

2006).  

 

Figure 2:  A model of synapse-specific translational control. CPEB1 in the non-phosphorylated state is inactive 

and keeps the mRNA dormant. Upon activation via glutamate (shown as small circles), the NMDA receptor 

activates Aurora kinase which in turn phosphorylates CPEB1 interacting with CPE. Recent findings indicate 

CamKIIα might also phosphorylate CPEB1 (Atkins et al., 2004). The hexanucleotide (AAUAAA) binding 

protein CPSF probably gets stabilized by this modification of CPEB1 and attracts poly (A) polymerase (PAP) 

which then catalyzes polyadenylation at the end of mRNA. This further enables maskin (CPEB1 associated 

protein) to dissociate from eIF4E, a cap binding factor and allowing eIF4G to bind eIF4E, which then initiates 

translation. Adapted and modified from Richter and Lorenz (2002). 
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In Xenopus oocytes, CPEB1 regulates the localization of cyclinB1 mRNA to the mitotic 

apparatus and involves in oocyte maturation during embryonic cell cycle (Groisman et al., 

2000; Groisman et al., 2002). CPEB1 knockout (KO) mice have deficits in germ cell 

development, where CPEB1 regulates the mRNAs in the synaptonemal complex (Tay and 

Richter, 2001; Tay et al., 2003). CPEB1 KO mice exhibited deficits with some forms of long 

term potentiation (LTP) dependent on protein synthesis, whereas long term depression (LTD) 

was only weakly affected (Alarcon et al., 2004). Further, these mice showed alterations in 

their behavioural pattern related to hippocampus-dependent tasks (Berger-Sweeney et al., 

2006). Moreover, CPEB1 is present at the post synaptic density (PSD) (Wu et al., 1998) and 

regulates the translation of tissue plasminogen activator (tPA) mRNA (Shin et al., 2004), a 

serine protease involved in LTP. Studies carried out on embryonic fibroblasts (MEFs) derived 

from CPEB1 KO mice show that CPEB1 is involved in controlling cellular senescence by 

regulating the translation of myc mRNA (Groisman et al., 2006).  

 

The mild deficits observed in LTP of the CPEB1 KO mouse could be due to a compensatory 

effect of the other members of the CPEB family (CPEB2-4) (Alarcon et al., 2004). These 

include the murine CPEB2, which was initially discovered on mouse chromosome 5 and is 

abundantly expressed in testis (Kurihara et al., 2003). It was also reported in mouse brain 

(Theis et al., 2003b; Hagele et al., 2009) (Turimella et al., in preparation). CPEB3 and CPEB4 

were discovered in mouse brain along with the expression of mCPEB2 in brain (Theis et al., 

2003b). CPEB3 and CPEB4 are close mouse homologues of the human cDNAs encoding 

KIAA0490 and KIAA1673. CPEB1 and CPEB2-4 were reported as structurally distinct 

classes of proteins across and within phyla (Mendez and Richter, 2001). CPEB (2-4) lack the 

Aurora A kinase phosphorylation site present in CPEB1. CPEB (2-4) contain putative 

phosphorylation sites for various kinases in their so-called B-region (Fig. 3) for cyclic AMP 

dependent protein kinase (PKA), CamKII and p70S6 kinase, a serine threonine kinase which 

acts on components involved in translation (Gingras et al., 2001; Theis et al., 2003b). 

Alternative splicing has led to several isoforms for each CPEB which were described in the 

mouse hippocampus: mCPEB1 contains three isoforms called CPEB1-N (full length isoform) 

(Gebauer and Richter, 1996), CPEB1-∆5 (with a 5 amino acid deletion; (Wilczynska et al., 

2005), and CPEB1-∆17 (with a 17 amino acid deletion; Turimella et al., in revision). For 

mCPEB2, four isoforms were described in brain: 2a, 2a*, 2c & 2c* (Turimella et al., in 

revision). Similarly, mCPEB3 and 4 each contain four different splice isoforms, named as 3a, 

3b, 3c and 3d for CPEB3 (Fig. 3) and similarly 4a, 4b, 4c and 4d for CPEB4.  The ‘a’ and ‘c’ 
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isoforms of CPEB3 and 4 contain the putative phosphorylation sites (with the B region) and 

are specifically upregulated after kainate injection in the principal cell layers of the mouse 

hippocampus (Theis et al., 2003b).  

 

Figure 3: CPEB3 domain structure with the B (hatched box with dark circle, dark circle represents the putative 

phosphorylation sites present) and C (striated box) regions labelled in the regulatory domain. Reg domain: 

regulatory domain, RRM1: RNA recognition motif 1, RRM2: RNA recognition motif 2, Znf: Zinc finger. 

 

In neurons, CPEB3 and CPEB4 were found in the postsynaptic density (PSD) fractions and 

CPEB3 was shown to repress the basal translation of GluR2 mRNA, an α-amino-3-hydroxy-

5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit (Huang et al., 2006). Recently, 

CPEB3 was reported to affect the stability of mRNAs by interacting with Tob, which 

functions as mRNA decay factor (Hosoda et al., 2011).  

 

Apart from the expression and the functional role of CPEB proteins in Xenopus oocytes and 

neurons of the mouse hippocampus, CPEBs are also expressed in other cell types. Recent 

reports show the expression of CPEB1 in rat primary astrocytes in culture, where it regulates 

β-catenin translation, a protein localized at the leading edge of migrating astrocytes (Jones et 

al., 2008). In rat primary astrocytes, CPEB1 co-localizes with cyclin B1 and Aurora A kinase 

in centrosome fractions, where CPEB1 repressed the translation of cyclin B1 mRNA until 

phosphorylated by Aurora kinase (Kim et al., 2011). Upon phosphorylation, the repression is 

abolished and leads to an increase in cyclin B1 protein and progression into mitosis (Kim et 

al., 2011). These results show the importance of local protein synthesis of various target 

mRNAs required for different processes in astrocytes. Much less information is available for 

the expression and function of CPEB (2-4) in astrocytes. 

 

1.2 Transgenic approaches for studying gene functions 

One of the most important ways for evaluating gene function in vivo is by molecular genetic 

manipulation. Various techniques have been developed which involve either disruption of an 

endogenous gene via gene targeting in embryonic stem (ES) cells or introducing a gene into 

the mouse germline via transgenic approaches. By analyzing the phenotype of the mutant or 

the transgenic mice, knowledge about the gene functions during mammalian development as 
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well as molecular insight into certain human diseases can be gained (Smithies, 1993). Despite 

success, the conventional transgenic approaches have limitations due to the fact that most 

genes are disrupted or expressed throughout the life span of the recipient animal, and these 

manipulations are present not only in the adult stage but also during embryonic development. 

So, the ectopic expression, overexpression or disruption of these genes has often led to 

embryonic lethality which prevents studying the function of these genes in adult tissues (Gao 

et al., 1999). To overcome these problems, new approaches have been developed for genetic 

manipulation of target genes that allow stringent temporal and spatial control (Gingrich and 

Roder, 1998). 

 

One of the most powerful approaches is overexpression of the gene of interest in genetically 

engineered mice to investigate the functional role of the gene in vivo. The Tetracycline (Tet)-

inducible expression system is the most prominent inducible system used, which allows to 

rapidly and reversibly switch the transgene expression on or off in a specific cell type or 

tissue(s) at any time of the animal development (Sun et al., 2007). The Tet system uses the 

bacterial Tet resistance operon to reversibly turn the gene expression on or off (Fig. 4). There 

are two basic variants of the Tet-inducible expression system: the Tet transactivator (tTA) 

(Tet-off) system (Gossen and Bujard, 1992) and the reverse tTA (rtTA) (Tet-on) system 

(Gossen et al., 1995). tTA is a fusion protein of the DNA binding domain of the Tet repressor 

(TetR) and the herpes simplex virus VP16 transactivator protein (Gossen and Bujard, 1992). 

Expression of tTA is controlled by a promoter that can be used to direct cell type specific 

expression. For instance, the human glial fibrillary acidic protein (hGFAP) promoter was used 

to drive the expression of transgene specifically in hippocampal astrocytes (Fiacco et al., 

2007). tTA binds and activates a promoter that contains several Tet-operator (tetO) sites 

coupled to a minimal cytomegalovirus (CMV) promoter. The TetO-CMV promoter is placed 

at the 5' of the transgene whose expression is to be regulated. Tet (or doxycycline (Dox)) 

binds to tTA and turns off gene activation by preventing the binding of tTA to tetO and this is 

referred to as tet-off system. The other variant, the  Tet-on system (Fig. 4), contains rtTA, in 

which the TetR domain of tTA is mutated and the binding of tTA to tetO occurs only in the 

presence of Dox (Gossen et al., 1995).  
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Figure 4: Schematic showing the Tet based inducible gene expression. In the Tet-Off system in which the tTA 

contains the TetR and herpes simplex virus VP16 domain, tTA recognizes and binds to the seven tetO (tetO7) 

domains connected to a minimal cytomegalovirus (CMV) promoter  in the absence of doxycycline and activates 

gene expression. In the tet-on system, mutated tTA (rtTA) binds to the tetO7 only in the presence of doxycycline 

to activate gene expression, adapted from Kohan, 2008. 

 

1.3 Astrocytes  

Astrocytes are star shaped cells with multiple fine processes, which comprise approximately 

70-80 % of the neuroglial cells in the mammalian central nervous system (CNS). Structurally 

mature astrocytes in grey matter are called protoplasmic astrocytes which are spherical and 

bushy whereas in white matter, fibrous astrocytes with process-bearing and less bushy 

appearance are often observed (Kimelberg and Nedergaard, 2010). Another important type of 

astroglial cells are radial glia. These cells are characterized by elongated processes and an 

ovoid cell body. Radial glia cells are neural stem cells and generate neurons at early 

embryonic stages, a common feature of the developing brain. Radial glia cells assist in 

neuronal migration and lateron, they mature or transform into stellate astrocytes (Schmechel 

and Rakic, 1979), whereas Müller glia in retina and Bergmann glia in cerebellum retain the 

radial glial morphology (Verkhratsky and Butt, 2007). Not only in the embryonic stage but 

also in adult neurogenesis radial glia cells with stem cell properties in the subgranular zone in 

the adult dentate gyrus and subventricular zone give rise to neurons and glial cells (see below) 

(Kempermann et al., 2004).  

Star shaped Elongated or radial 

Fibrous astrocytes in white matter Bergmann glia in the cerebellum 

Protoplasmic astrocytes in grey matter Muller glia across the retina 

Table 1: Classification of mature astrocytes. 
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Most astrocytes express an intermediate filament called glial fibrillary acidic protein (GFAP) 

(Eng et al., 1971; Bignami et al., 1972). The expression of GFAP in astrocytes varies between 

regions i.e., cerebellum (all Bergmann glia express GFAP), cortex (only 15% of astrocytes are 

GFAP positive) and hippocampus (all express GFAP) (Verkhratsky and Butt, 2007). GFAP 

negative astrocytes which are morphologically similar to astrocytes can be identified using 

antibodies against glutamine synthetase (GS), a glutamate-glutamine converting enzyme 

specifically expressed by astrocytes and also by S100β, a calcium binding protein (Nishiyama 

et al., 2005). However, S100β and GS were also reported in other cell types: S100β in up to 

20% of NG2 cells (Karram et al., 2008; Nishiyama et al., 2009), and GS in oligodendrocytes 

(Tansey et al., 1991; Polito and Reynolds, 2005). Recently aldehyde dehydrogenase 1 family, 

member L1 (Aldh1L1) was identified as an astrocyte specific marker from microarray studies 

performed on isolated astrocytes (Cahoy et al., 2008). A BAC Aldh1L1-EGFP transgenic 

mouse expressed GFP specifically in astrocytes (Cahoy et al., 2008). 

 

Astrocytic processes form endfeet on blood vessels and the pial surface (Butt and Ransom, 

1989) and cover intraparenchymal capillaries (Peters et al., 1991). The protoplasmic 

astrocytes in grey matter form separate domains with their elaborated processes, thereby 

forming structurally individual units (Nedergaard et al., 2003; Bushong et al., 2004). Within 

these micro-anatomical domains, these cells establish contact with blood vessels and neuronal 

membranes. This type of micro-architectural organisation of astrocytes is conserved in 

mammals and is basically similar between humans and rodents (Oberheim et al., 2009). 

Furthermore, astrocytes are integrated into syncytia by forming gap junctions with the aid of 

connexins that are localized on their peripheral processes (see below). Gap junctions formed 

by connexins facilitate intercellular diffusion of small molecules and are involved in long-

range signalling (Giaume and Venance, 1998). With an efficient domain organisation and by 

establishing contacts with other cells, astrocytes are involved in several key functions. One 

such important function is the neuron-astrocyte communication with the aid of intracellular 

astrocytic Ca
2+

 signalling, where astrocytes integrate and process synaptic information and 

control synaptic transmission and plasticity by releasing gliotransmitters (Perea et al., 2009). 

This release of transmitters by astrocytes leads to a paracrine action on astrocytes which 

supports inter-astrocytic Ca
2+ 

signal propagation, thereby regulating neuronal excitability and 

synaptic transmission (Guthrie et al., 1999). Astrocytes in vivo display Ca
2+ 

elevations 

triggered by physiological external stimuli and also respond to neuronal activity (Wang et al., 

2006; Perea et al., 2009).  
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Some of the important functions of astrocytes are summarized in the table 2: 

# Function Description References 

1 Potassium buffering 

 

Involved in extracellular [k
+
]o ion 

homeostasis 

(Orkand et al., 1966) 

(Wallraff et al., 2006) 

2 Astrocyte receptor functions 

 

Astrocytes express mainly 

metabotrophic receptors which act by 

intracellular Ca
2+

 or cAMP. 

(Kimelberg and 

Nedergaard, 2010) 

3 Control of [H
+
]o 

 

pH control of extracellular space by 

different transporting enzymes (H
+
 and 

HCO3
-
) 

(Kimelberg et al., 1979) 

4 Glutamate and GABA  

(γ-aminobutyric acid) uptake 

 

Clearance of glutamate and GABA  (Martinez-Hernandez et 

al., 1977) (Schousboe et 

al., 1977) (Levi et al., 

1983) 

5 Cerebral blood flow control 

 

Regulate blood flow with their end-feet 

processes surrounding blood vessels. 

ProstaglandinE2 (PGE2) released by 

astrocytes is a key vasodilator. 

(Zonta et al., 2003) 

(Takano et al., 2006) 

(Gordon et al., 2007) 

6 Water transport  

 

AQP4 specifically expressed at 

astrocytic perivascular processes 

regulates water transport. 

(Nielsen et al., 1997) 

7 Antioxidant functions 

 

Antioxidants such as glutathione are 

present in astrocytes.  

(Aschner, 2000) 

8 Astrocyte-neuronal lactate shuttle 

(ANLS) 

 

Astrocytes support neurons by 

supplying lactate as substrate (lactate 

shuttle hypothesis). 

(Pellerin and Magistretti, 

1996) 

9. Tripartiate synapse 

 

Astrocytes are involved along with 

neurons in controlling brain function. 

(Halassa et al., 2007) 

Table 2: Functions of astrocytes. 

 

1.4 Gap junctions and connexins  

Gap junctions are cell-cell contacts that provide intercellular communication by connecting 

the cytoplasm of two cells. These gap junctions occur as gap-junctional plaques (Fig. 5a) and 

can contain up to thousands of single gap-junctional channels (Kumar and Gilula, 1996). 

Depending on their molecular composition, three different types of gap junction channels 

have been described: 1) homomeric / homotypic, 2) heterotypic and 3) heteromeric. 

Homotypic gap junctions contain two identical types of hemichannels and heterotypic 

channels contain two different hemichannels, whereas homomeric hemichannels are 

composed of identical connexins and heteromeric are composed of different connexins in a 

hemichannel (Sohl et al., 2005). So far, 20 different connexin genes in mouse and 21 genes in 

the human genome have been described (Sohl and Willecke, 2003). Connexins (abbreviated 

as Cx, followed by their molecular mass in kilodaltons (kDa)) are expressed in most cell types 

of lower and higher vertebrates during development as well as in the adult stage (Sohl et al., 

2004). These gap junctions allow passive diffusion of small molecules such as: second 
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messengers (Bedner et al., 2012), K
+
 (Wallraff et al., 2006), glucose (Rouach et al., 2008), 

Na
+
 (Langer et al., 2012) with a size exclusion limit of about 1,000 daltons.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Gap-junctional plaque – Molecular organization and schematic topology.  

a) Hemichannels of two neighbouring cells with plasma membranes near to each other can join together to form 

gap junction channels.  Each channel consists of two hemichannels (also termed connexons), each of which 

contains an assembly of six subunits of connexin proteins. b) Connexins contain four membrane-spanning 

domains, three cytoplasmic loops, two extracellular loops, a cytoplasmic loop and one amino- and one carboxy-

terminal region. Connexin proteins are membrane spanning and share three conserved extracellular cysteine 

residues that are important for docking. S-S represents disulphide bonds in the extracellular domains of these 

proteins, adapted from Söhl et al (2005). 

 

Apart from forming gap junctional channels between cells, connexins can also function as 

hemichannels (HCs) which are involved in the exchange of ions and molecules not only 

between cells but also with the external medium, thereby supporting both autocrine and 

paracrine actions (Spray et al., 2006; Giaume and Theis, 2010). HCs are closed under normal 

conditions but are opened during pathological states by various factors such as exposure to 

pro-inflammatory agents (Retamal et al., 2007), with reduced extracellular concentrations of 

Ca
+2  

or Mg
+2 

ions as observed in the ischemic brain (Orellana et al., 2009) and with moderate 

increase in the intracellular Ca
+2

 concentration (Orellana et al., 2012).  

 

Invertebrates express innexins which mediate similar gap junctional coupling as connexins in 

vertebrates. Around 25 distinct innexins have been identified so far (Scemes et al., 2009; 

Fushiki et al., 2010). These innexins are evolutionary distinct from connexins, and the 

junctions formed by innexins are distinct from the junctions formed by connexins (Larsen, 
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1977). The homologues of innexins in vertebrates are named pannexins, which show 20% 

sequence similarity to innexins (Shestopalov and Panchin, 2008; D'Hondt et al., 2009; Scemes 

et al., 2009). So far, three different pannexin genes (named Panx1, Panx2 and Panx3) have 

been described in mammals (Baranova et al., 2004; Scemes et al., 2007). Pannexins were 

shown to form gap junctions when expressed in Xenopus oocytes (Bruzzone et al., 2003). 

Recent studies indicate that glycosylation of the pannexin extracellular loop prevents the 

docking of hemichannels of neighbouring cells (Boassa et al., 2007). Similar to connexins, 

pannexins are also reported to form HCs which exhibit similar unitary conductance and 

pharmacology as connexins (Giaume and Theis, 2010). However in studies performed on 

astrocyte cultures, pannexins were shown to form nonselective, high-conductance 

plasmalemnal channels that are permeable to ATP (Iglesias et al., 2009).  

 

Connexins are expressed in most of the cell types in brain and form functional gap junction 

channels. Neurons mainly express three different types of connexins namely Cx36, Cx45 and 

Cx57 depending on the region (Sohl et al., 2005). Cx36 expression is mainly observed in 

interneurons in deep cerebellar nuclei during early development (Degen et al., 2004). In the 

hippocampus, Cx36 was shown to mediate gap junctional coupling between hippocampal 

interneurons (Venance et al., 2000). From reporter gene studies, Cx45 was reported to be 

expressed highly during embryogenesis and up to two weeks after birth and afterwards is 

restricted to the thalamus, cerebellum and the pyramidal neurons of the CA3 region of the 

hippocampus (Maxeiner et al., 2003). In kainate injection studies, Cx45 was found to play a 

role in neuronal homeostasis and cell survival (Condorelli et al., 2003). Cx57 was thought to 

have a role in electrical and tracer coupling between horizontal cells of the retina (Hombach et 

al., 2004). Neuronal connexins are required to build gap junctions which facilitate fast 

oscillatory networks and synchronisation (Bennett and Zukin, 2004). At gap junctions which 

undergo activity dependent plasticity, CamKII interacts with and phosphorylates Cx36, 

showing a possible pathway for plasticity of electrical synapses (Alev et al., 2008). 

 

The major connexins expressed in oligodendrocytes are Cx32, Cx47 and Cx29 (Nagy et al., 

2003; Odermatt et al., 2003; Eiberger et al., 2006). Cx32 expression is observed during 

myelin development, axonal regeneration and Wallerian degeneration (Sohl et al., 2004). 

Cx29 protein was detected in internodal and juxta-paranodal regions of small myelin sheaths 

of oligodendrocytes in the CNS whereas Cx32 was localized to large myelin fibers (Altevogt 

et al., 2002; Theis et al., 2005). Cx47 is strongly expressed in the somata of oligodendrocytes 
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and is co-localized with Cx32 and also with the astrocytic Cx43, suggesting that Cx47 might 

be on the oligodendroglial side and involved in the formation of oligodendrocyte-astrocyte 

gap junctions (Altevogt and Paul, 2004; Nagy et al., 2004). Similarly, Cx32 is expressed on 

the oligodendritic side together with Cx30 and Cx26 on the astroglial side. Astrocytes not 

only form gap junctions between astrocytes (astrocyte-astrocyte or A/A gap junctions) but 

also form heterocellular junctions with oligodendrocytes (astrocyte-oligodendrocyte or A/O 

gap junctions). This type of intercellular gap junctional communication with other cell types is 

termed panglial coupling (Nagy et al., 2003; Nagy and Rash, 2003; Theis et al., 2005).  

 

Among the astroglial connexins, Cx43 and Cx30 are the major gap junctional proteins 

(Dermietzel et al., 2000; Bedner et al., 2012). Cx43 knockout (KO) mice do not survive 

postnatally due to cardiac malfunction (Reaume et al., 1995). In vitro studies performed on 

Cx43 deficient astrocyte cultures from these KO mice showed an impaired growth, decreased 

tracer coupling and reduced saturation density, all of which indicate the importance of Cx43 

in gap junctional coupling and growth (Naus et al., 1997; Theis et al., 2004; Magnotti et al., 

2011). Residual coupling was observed in astrocyte cultures of Cx43KO mice probably 

through other connexin proteins present in cultures namely Cx26, Cx30, Cx40, Cx45 and 

Cx46 (Kunzelmann et al., 1999; Dermietzel et al., 2000). Specific deletion of Cx43 using the 

Cre/loxP system in astrocytes led to only a 50% reduction in the tracer coupling (Theis et al., 

2003a; Wallraff et al., 2006). The remaining coupling could be influenced by the 

compensatory up-regulation of Cx30 in mice lacking Cx43 (Theis et al., 2003a; Nakase et al., 

2004), Cx30 contributes only 20% of the coupling between astrocytes (Gosejacob et al., 

2011). In double knock out mice lacking Cx43 and Cx30 in astrocytes, a complete inhibition 

of tracer coupling was observed (Wallraff et al., 2006; Rouach et al., 2008). Using reporter 

gene studies a low abundance of Cx30 was observed in the cerebral cortex and the 

hippocampus (Gosejacob et al., 2011), whereas in thalamus, cerebellum and leptomeningeal 

cells Cx30 is highly expressed (Nagy et al., 2004; Theis et al., 2005). The gap junctional 

plaques near by the blood vessels are composed of Cx30 in most of the brain areas (Rouach et 

al., 2008). Another connexin is Cx26 which localizes abundantly in perivascular, sub-pial and 

subependymal areas and co-localizes with the astrocytic marker GFAP (Mercier and Hatton, 

2001; Nagy et al., 2004). Conversely, reporter studies from Cx26 BAC transgenic mice 

concluded that Cx26 is not expressed in neurons or in glia but is restricted to the meninges in 

both embryonic and adult brain (Filippov et al., 2003). Recent reports indicated the expression 

of Cx26 mRNA in radial glia like cells (Kunze et al., 2009). The expression of Cx26 in 
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astrocytes was not yet clearly elucidated and was a matter of debate until recently, when 

widespread Cx26 expression was found in the thalamus (Nagy et al., 2011).  

 

Astrocytic connexins are involved in spatial buffering of ions. Studies performed on DKO 

mice lacking Cx43 and Cx30 showed that astrocytic gap junctions are required for 

extracellular K
+
 clearance (Wallraff et al., 2006). The coupling-deficient astrocytes in DKO 

mice showed a reduced threshold for generation of spontaneous and induced epileptiform 

events (Wallraff et al., 2006). A recent study performed on DKO mice showed that astroglial 

connexins were also involved in clearance of extracellular glutamtate and K
+
 during synaptic 

activity by modulating the astroglial clearance rate and extracellular space volume (Pannasch 

et al., 2011). Astroglial networks in the hippocampus formed mainly by Cx43 and Cx30 are 

involved in the supply of glucose and its metabolites to neurons in an activity-dependent 

manner (Rouach et al., 2008). These studies prove the important role of astrocytic connexins 

in controlling neuronal activity. 

 

The C-terminus of Cx43 interacts with β-catenin and moreover the C-terminus of Cx43 

localizes in the nucleus where it might be involved in regulating the gene expression (Theis et 

al., 2005). Cx43 3' UTR contains regulatory elements such as microRNA binding sites and 

CPEs by which it can be regulated post-transcriptionally. The 3' UTR of Cx43 possesses 

binding sites for miRNA-206 and miRNA-1 (miRNAs are 20-21 short nucleotide sequences 

which bind to mRNAs and regulate their translation). While miRNA-206 regulates Cx43 

expression during skeletal muscle development (Anderson et al., 2006) and miR-1 regulates 

Cx43 expression in viral myocarditis (Xu et al., 2012).  

 

1.5 Adult neurogenesis 

In adult brains of mammals, neurogenesis takes place at two locations: in the subgranular 

zone (SGZ) of the dentate gyrus in the hippocampus and in the subventricular zone (SVZ) of 

the lateral ventricles (Fig. 6), which was also observed in humans (Eriksson et al., 1998; 

Curtis et al., 2007). Adult neurogenesis depends on several physiological and pathological 

conditions at different levels, which includes proliferation of adult neural stem cells (NSCs), 

differentiation and fate determination of progenitors, as well as on the maturation, survival 

and integration of newborn neurons. These NSCs might be involved in various functions of  

the olfactory bulb and the hippocampus both of which are important for learning and memory 

(Zhao et al., 2008). It was recently shown that ablation of adult neurogenesis in hippocampus 
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leads to impairment of spatial memory in mice (Clelland et al., 2009). Neurogenesis in 

mammalian brain regions other than SVZ and SGZ remains controversial (Gould, 2007). 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6: Schematic depicting adult neurogenesis in mammals: Adult neurogenesis mainly occurs in the 

subventricular zone (SVZ) and in the subgranular zone (SGZ) of the dentate gyrus. Image with a sagittal view of 

the mouse brain. Blue colour represents the active neurogenic niches. In the SVZ, stem cells (green) give rise to 

transit amplifying cells (light blue) and neuroblasts (purple), and reside on the wall in the lateral ventricle just 

below the ependymal layer (grey). These neuroblasts migrate to the olfactory bulb through the rostral migratory 

stream (RMS) where these cells are functionally integrated as granule (peach) and periglomerular (red) neurons. 

In the SGZ, the stem cells (green) are clustered at the base of the hippocampal dentate gyrus (DG) granule cell 

layer (GCL) and give rise to transit amplifying cells (light blue). Neuroblasts (blue) and newborn neurons 

(purple) arise from these stem cells and are eventually transformed to granule cell neurons. These mature 

neurons are located in the GCL and extend their radial processes to the molecular layer to receive cortical input; 

adapted from Johnson et al, (2009).   

 

In the SGZ of the DG, astrocytes with radial glia (RG)-like morphology expressing GFAP and 

nestin are considered as stem cells which eventually give rise to new neurons (Kempermann 

et al., 2004). These cells extend long processes over the GCL and display 

electrophysiologically a passive current pattern (Fukuda et al., 2003; Huttmann et al., 2003). 

These cells play an important role in neurogenesis; they promote neuronal differentiation of 

the adult progenitor cells from hippocampus and also aid in the integration of newborn 

neurons into the neuronal networks with functional synaptic transmission in vitro (Song et al., 

2002). Wnt signalling pathway blockade prevents neurogenic activity of astrocytes in vitro 

and SGZ neurogenesis in vivo, suggesting that RG-like cells may act via Wnt signalling in 

promoting neurogenesis (Lie et al., 2005). Other possible signalling pathways regulating adult 

neurogenesis are Notch (Ninkovic and Gotz, 2007), Sonic hedgehog (Shh) (Favaro et al., 

2009), and signalling by bone morphogenetic proteins (BMPs) (Colak et al., 2008) which was 

reviewed in detail recently (Morrens et al., 2011). Adult neurogenesis in the DG of the 
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hippocampus requires astrocytic connexin expression in RG-like cells (Kunze et al., 2009) 

and Cx43 expression is also required in radial glia for neuronal migration (Cina et al., 2009). 

 

1.6 Glutamate transporters and glutamine synthetase 

One of the important roles of astrocytes is the maintenance and modulation of glutamergic 

and GABAergic neurotransmission (Schousboe, 2003), and astrocytes are considered as a sink 

for the extracellularly released glutamate. In the mammalian CNS L-glutamate is the major 

excitatory neurotransmitter which contributes to fast synaptic neurotransmission, complex 

physiological processes such as learning and memory, plasticity and cell death (Dingledine et 

al., 1999). The extracellularly released glutamate activates different ionotropic and 

metabotropic glutamate receptors for fast excitatory as well as for slower modulatory effects 

on neurotransmission (Shigeri et al., 2004). The extracellular glutamate concentration is 

controlled via various Na
+
-dependent high-affinity glutamate transporters (excitatory 

aminoacid transporters, EAATs) to prevent excitotoxicity and cell death. These EAATs are 

expressed on the plasma membranes of neurons and glial cells and aid in removing the 

glutamate rapidly from the extracellular space (Danbolt, 2001; Balcar, 2002). So far, five 

different Na
+
-dependent high-affinity glutamate transporters have been identified namely: 

EAAT1-EAAT5 (Sheldon and Robinson, 2007) which are expressed in different cell types. 

GLAST and GLT-1 are the two transporters which are primarily expressed by astrocytes 

(Rothstein et al., 1994; Lehre et al., 1995), these are also called EAAT1 and EAAT2 

respectively (Arriza et al., 1994). EAAT3 is expressed on the somatodendritic compartments 

of the neurons, particularly in pyramidal cells of the hippocampus and cortex, whereas 

EAAT4, another neuronal transporter is expressed in the Purkinje neurons of the cerebellum 

(Rothstein et al., 1994). EAAT5 is expressed in the retina (Arriza et al., 1997). With 

quantitative electron microscopy, both GLAST and GLT-1 were found to be enriched mainly 

on the astrocytic processes near neuronal synaptic termini (Lehre et al., 1995) where the 

synaptically released glutamate is taken up by astrocytes through these transporters (Lehre 

and Danbolt, 1998; Gegelashvili et al., 2000). From gene knock out studies in mice, GLAST 

and GLT-1 were found to be the essential transporters in extracellular glutamate clearance 

(Rothstein et al., 1996; Tanaka et al., 1997). Either a loss or alteration in the expression of 

glutamate transporters has been observed in several neurodegenerative disorders such as 

Amyotropic lateral sclerosis (ALS), Huntington’s disease, Parkinson disease and Alzheimer’s 

disease (Sheldon and Robinson, 2007). By using anti-sense oligonucleotide mediated 

knockdown of glutamate transporters, it was shown that neurodegeneration was associated 
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with loss of transporter expression (Rothstein et al., 1996) and mice lacking GLT-1 showed 

lethal spontaneous seizures and susceptibility to acute cortical injury (Tanaka et al., 1997). 

 

The glutamate that is released synaptically is taken up by astrocytes via glutamate transporters 

and converted rapidly into glutamine by the enzyme glutamine synthetase (GS) (Martinez-

Hernandez et al., 1977). GS is the major component of the glutamate-glutamine cycle 

controlled by astrocytes, where the glutamate is converted into glutamine and transported 

back to neurons and repackaged into synaptic vesicles (Hertz and Zielke, 2004). GS is mainly 

expressed by astrocytes both in vitro and in vivo and is localized to the fine processes 

surrounding neuronal excitatory synapses (Martinez-Hernandez et al., 1977; Derouiche and 

Frotscher, 1991). Variations in GS expression lead to disturbances in neuronal functions 

(Suarez et al., 2002). Glial GS was shown to be involved in different brain pathologies where 

GS expression was either upregulated or downregulated (Suarez et al., 2002). Loss of GS 

expression is observed in the perisynaptic processes of astrocytes of the cerebral cortex in 

patients with Alzheimer’s disease in the vicinity of senile plaques (Robinson, 2001). GS is 

also reduced under conditions of glucose deprivation (Rosier et al., 1996). Conversely 

increased GS expression is observed after ischemia in vivo (Petito et al., 1992) and after 

chronic hypoxia (Sher and Hu, 1990). In patients with mesial temporal lobe epilepsy (MTLE), 

an increased extracellular glutamate concentration was observed which made neurons 

hyperexcitable, together with loss of GS (Eid et al., 2008b). The regulation of GS activity is 

crucial in maintaining extracellular glutamate levels and thereby preventing the adverse 

effects of hyperexcitability and excitotoxicity of neurons.  

 

1.7 Astrocyte dysfunction in Epilepsy 

Epilepsy is a chronic neurological disorder which affects about 1% of the world population. It 

is a condition which is characterized by the periodic and unpredictable occurrence of seizures 

which are due to the hypersynchronous activity of the neurons. Changes in the neuronal 

properties have been attributed to the induced seizure activity in humans or in experimental 

models of epilepsy (Steinhäuser and Seifert, 2002). MTLE is one of the most common types 

of epilepsy which often is medically-intractable and surgical removal of the sclerotic 

hippocampus is considered for seizure control in some patients. Sclerosis in the hippocampus 

is characterized by loss of neurons in specific areas of the hippocampus (CA1, CA3 and hilus 

of dentate gyrus), glial and microvasculature proliferation, and synaptic reorganization 

(Blumcke et al., 1999). Apart from neuronal loss, a hallmark of the sclerotic hippocampus is 
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the hypertrophy of glial cells, characterized by increased GFAP immunoreactivity with long 

and thick processes (Binder and Steinhäuser, 2006). Many recent studies indicate that 

astrocyte dysfunction is a crucial aspect contributing to epilepsy (Fig. 7). The astrocytic gap 

junction proteins Cx43 and Cx30 are required for glucose trafficking and transport of 

energetic metabolites to neurons from blood to maintain synaptic transmission (Rouach et al., 

2008). The delivery of glucose with the syncytium formed by astrocytic gap junctions is 

required to sustain epileptiform activity (Giaume et al., 2010). This would indicate a pro-

epileptic function of connexins. On the other hand, the lack of astrocytic connexins led to 

impaired K
+
 buffering, spontaneous epileptiform activity and reduced threshold to elicit 

hyperactivity (Wallraff et al., 2006). This would indicate an anti-epileptic function of 

connexins. Using transcriptome analysis, a decrease in connexin transcripts was shown in a 

model with disruption of the blood-brain barrier (BBB) and albumin-dependent generation of 

epileptic seizures (Cacheaux et al., 2009). Conversely, patients with pharmacoresistant MTLE 

and hippocampal sclerosis (HS) show an increased immunoreactivity for Cx43 protein and 

also increased transcript levels (Naus et al., 1991; Fonseca et al., 2002; Collignon et al., 

2006). The authors proposed that this upregulation of Cx43 might have increased seizure 

spread and the progression of MTLE. 

 

The expression of the glutamate transporters (GLAST and GLT-1) is altered in patients with 

epilepsy and also in other brain disorders (Seifert et al., 2006); one of the proposed 

mechanisms is the reduced clearance of extracellular glutamate by glutamate transporters 

expressed by astrocytes. Increased extracellular glutamate found in human epileptic tissue can 

induce seizure activity and neuronal cell death (Glass and Dragunow, 1995). Contrasting 

results about the expression of glutamate transporters were reported in patients suffering from 

HS and TLE. Tessler et al., (1999) have reported no difference in the expression of GLAST 

and GLT-1 in tissue from patients with HS using in situ hybridisation and Western blotting 

(Tessler et al., 1999), whereas other groups have reported a reduction in GLT-1  levels in the 

hilus and CA1 region associated with neuronal loss in HS patients (Mathern et al., 1999; 

Proper et al., 2002). Increased GLAST expression was found in CA2 and CA3 regions of the 

sclerotic hippocampus (Mathern et al., 1999). Downregulation of both the transporters 

GLAST and GLT-1 in the hippocampal CA1 region was also reported from other studies 

where the authors speculated the decrease in the transporter expression might be either an 

adaptive response to neuronal death or a causative event (Sarac et al., 2009). The enzyme 

encoding protein GS that is expressed in astrocytes was reported to be deficient in patients 
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with MTLE, which was thought to be the underlying reason for an increase in extracellular 

glutamate levels (Eid et al., 2008b). In experimental models, it was found that 

pharmacological inhibition of GS induced recurrent seizure activity and rat brain pathology 

resembling human HS (Eid et al., 2008a). But, in a recent study performed on the pilocarpine 

model of TLE in rats, no reduction in the number of GS positive cells and the GS containing 

cell volume was observed, rather a redistribution of the enzyme was reported at both 

intracellular and tissue levels in the epileptic hippocampus (Papageorgiou et al., 2011). 

Synaptic GABA release as well as regulation of the inhibitory synaptic strength is mainly 

controlled by the glial glutamate-glutamine cycle (Liang et al., 2006). In addition epileptiform 

activity is maintained by glutamine transported to neurons (Tani et al., 2010). So, the loss of 

GS leads to reduced glutamine availability to neurons and further reduced GABA release from 

interneurons and subsequently decreased inhibition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Astrocyte dysfunction in epilepsy: 1) Increased extracellular K
+
 concentration results in seizure 

activity. Reduced expression of Kir channels in human and experimental epilepsy lead to decreased K
+
 uptake. 2) 

Spatial redistribution of K
+
 is mediated by gap junctions. 3) Impaired K

+ 
buffering is also due to displaced water 

channels. 4) Blood-brain barrier disruption, albumin uptake and TGFβ activation results in Cx43, Cx30 and 

Kir4.1 downregulation and impaired K
+ 

buffering. 5) The glutamate uptake by astrocytes is thought to be 

impaired in human epilepsy, as the glutamate transporters EAAT1 and EAAT2 are downregulated. 6) The 

glutamate converting enzyme GS expressed by astrocytes is downregulated in patients with epilepsy. This loss of 

GS leads to increased glutamate levels extracellularly, and reduced availability of glutamine which leads to 

reduced inhibition as a result of decreased release of GABA by interneurons. 7) mGluR5 activation leads to 

increase in intracellular Ca
2+

. Increased mGluR5 levels in epileptic patients were observed which can lead to 

increased glutamate release. 8) ATP release, ectonucleotidases and adenosine kinase (ADK) regulate the levels 

of ambient adenosine. In epilepsy, seizure activity leads to increased ADK levels and reduced adenosine 

concentration; adapted and modified from Seifert and Steinhäuser, (2011).  

 

The expression of inward rectifying potassium channel (Kir) channels which are responsible 

for spatial buffering of K
+ 

was downregulated in patients with MTLE, leading to impaired K
+
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buffering and enhanced susceptibility to seizures (Seifert and Steinhäuser, 2011). Using 

molecular and functional analyses, the main subunit of Kir channels in astrocytes was shown 

to be Kir 4.1 (Olsen and Sontheimer, 2008; Seifert et al., 2009). Genetic downregulation of 

Kir 4.1 led to decreased ability of glutamate and K
+
 clearance from the extracellular space 

both in vitro (Kucheryavykh et al., 2007) and in vivo (Djukic et al., 2007) and moreover mice 

with astrocytic deletion of Kir 4.1 exhibited seizures (Djukic et al., 2007). Another astrocytic 

protein, aquaporin4 (AQP4), which forms a water channel and localizes at the astrocytic end 

feet contacting the capillaries, is co-localized with Kir 4.1 (Higashi et al., 2001; Badaut et al., 

2002). Impaired K
+
 buffering and increased seizure duration was observed in mice with AQP4 

deletion (Binder et al., 2006). In patients with MTLE and HS a loss of AQP4 at the 

vasculature associated with astrocyte endfeet was observed by immunostaining (Eid et al., 

2005). Dystrophin is required for the membrane anchoring of AQP4 (Amiry-Moghaddam et 

al., 2003). The loss of AQP4 at the endfeet is due to the loss of the dystrophin anchoring 

complex whose expression was also found to be absent at the perivascular end feet in the 

MTLE hippocampus (Eid et al., 2005). Dislocation of water channels and also the decreased 

expression of Kir channels in astrocytes would explain the impaired K
+
 buffering and 

increased seizure susceptibility observed in MTLE (figure 6) (Seifert and Steinhäuser, 2011). 

It is still unclear whether the alterations in the expression levels of the various mRNAs 

leading to dysfunctional astrocytes in epileptic condition are the causative factors or rather a 

compensatory phenomenon. Further studies are required. Interestingly, Cx43, Cx30, GLT-1, 

GLAST, GS, dystrophin and AQP4 all have CPEs in their 3' UTRs. Thus a change in 

expression of CPEBs in astrocytes could be responsible for dysfunction of many typical 

astrocytic proteins and be a key player in astrocyte dysfunction in epilepsy. 
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2 Aim of the thesis 

Little information is available about the expression pattern and the possible role of CPEB 2-4 

in astroglial cells. Astrocyte dysfunction is increasingly considered as a key aspect in the 

progression of epilepsy (Seifert and Steinhäuser, 2011). Several mRNAs which are involved 

in key cellular functions of astrocytes are dysregulated in epilepsy and possess binding sites 

for CPEBs and thus could be potential CPEB targets. The main aims of this thesis work were 

to investigate the following 4 questions: 

 

1. What is the expression pattern of CPEBs in astrocytes? 

The expression pattern of CPEBs is well characterized in neurons (Theis et al., 2003b; 

Richter, 2007), whereas the role of CPEBs in astrocytes is less explored. Recently expression 

of CPEB1 was also observed in primary astrocytes in culture (Jones et al., 2008), but the 

expression of other CPEBs i.e., CPEB 2-4 was not investigated in astrocytes. In the present 

study the expression of CPEB1-4 was studied in detail using primary astrocyte cultures.  

 

2. What is the impact of astrocytic overexpression of CPEB3? 

CPEB3 in neurons acts as a basal repressor of GluR2 protein (Huang et al., 2006). In mice 

overexpressing CPEB3 in neurons, GluR2 protein levels were downregulated (Kaczmarczyk, 

Unpublished). To investigate the functional role of CPEB3 in astrocytes transgenic mice were 

generated using the Tet-Off system where the CPEB3-EGFP transgene was specifically 

expressed in astrocytes driven by the GFAP promoter.  

 

3. Which targets can be regulated by CPEB3 in astrocytes? 

Several mRNAs expressed in astrocytes (Cx43, Cx30, GS, GLT-1) contain CPEs in their 3' 

UTRs and thus can be regulated by CPEB3. These proteins are involved in key cellular 

functions of astrocytes and are de-regulated in epilepsy (Seifert et al., 2010). Using mice 

overexpressing CPEB3 in astrocytes, studies were performed to identify its potential targets 

and investigate a possible role of CPEB3 in epilepsy. 

 

4. Is the interaction of CPEB3 with target mRNAs CPE dependent? 

CPEB1 binds to CPEs present in the 3' UTR of target mRNAs. Studies were performed to 

check if CPEB3 is interacting with its target mRNA in a CPE dependent manner. For this 

purpose, various vectors were generated containing the 3' UTR regions with and without 

CPEs. By using RNA co-immunoprecipitation and real time PCR, the interaction of CPEB3 

with its target mRNAs were studied.  
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3. Materials and Methods 
 

3.1 Materials 
 

3.1.1 Solutions and reagents (ready-to-use) 

2-Mercaptoethanol 

Aqua polymount 

Acetic acid 

Acrylamide solution (Rotiphorese Gel 30 (37, 5:1)  

CepetorKH (1mg/ml) 

Chloroform 

DNase/RNase free water  

DNase free RNasin 

Dimethyl sulfoxide (DMSO) 

Ethanol 

Ethidium bromide (10mg/ml) 

Entellan 

Gene expression master mix 

Isopropanol 

Ketamin 10% 

Methanol 

Normal goat serum (NGS) 

Permafluor 

Qiazol 

Restore western blot stripping buffer 

Roti-liquid barrier marker  

SOC medium  

Sucrose 

Superscript III reverse transcriptase 

Supersignal west dura extended duration substrate 

Tissue-tek (O.C.T compound) 

TritonX-100 

Trizol reagent 

Tween-20 

TEMED 

 

3.1.2 Kits used 

Product Name Company 

One Taq polymerase New England Biolabs 

Accuprime Taq DNA polymerase system Invitrogen 

Advantage 2 polymerase kit Clontech 

Advantage HD polymerase kit Clontech 

Advantage high fidelity PCR kit Clontech 

RNase free DNase kit Qiagen 

Endofree plasmid maxi  kit Qiagen 

Fast-link DNA ligation kit Epicentre 

Gel and PCR cleanup kit Promega 

Go taq flexi DNA polymerase Promega 
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Hipure plasmid filter midiprep kit Invitrogen 

Infusion PCR cloning kit Clontech 

Marathon ready cDNA kit Clontech 

Miniprep kit Promega 

Pierce BCA protein assay kit Thermo scienctific 

RQ1 RNase-free DNase kit Promega 

Rneasy plus mini Qiagen 

TOPO-XL-PCR Cloning kit Invitrogen 

TUNEL staining kit Invitrogen 

 

3.1.3 Buffers and solutions 

3.1.3.1 Western blotting (WB) buffers 

 Buffer Contents and preparation Final 

concentration 

Lysis buffer 

(modified RIPA 

buffer) 

6.05 g Tris  

8.76 g NaCl  

5 ml Nonidet P-40 (NP40) 

5 g sodium deoxycholate (NaDOC) 

10 ml TritonX-100 

Contents (without NP40 & Triton) were dissolved 

in 700 ml of deionized water (dH2O). pH was 

adjusted to 7.5. Later NP40 & Triton were added 

and volume adjusted to 1 L with dH2O, aliquoted 

and stored at -20°C. 

50 mM  

150 mM   

0.5%   

0.5%   

1%   

pH 7.5 

APS 0.05 g of APS was dissolved in 500 µl of dH2O. 

Always prepared before use. 

10% 

Resolving gel buffer

 

  27.23 g of Tris base was dissolved in  

  80 ml of dH2O. Adjusted the pH to 8.8. 

  Volume adjusted to 150 ml with dH2O.  

  Stored at 4
o
C 

1.5 M  

pH 8.8 

 

  Stacking gel buffer 

    

   6.05 g Tris base was dissolved in 60 ml dH2O.  

   Adjusted the pH to 6.8. Volume adjusted to 100 ml 

with dH2O. Stored at 4
o
C. 

0.5 M 

pH 6.8 

    SDS   10 g of SDS pellets were dissolved 

   in 100 ml of dH2O. 

10% 

  10x Tris-glycine  

   SDS buffer (WB   

   running buffer) 

   

  30.3 g Tris base  

  144.0 g glycine  

  10 g SDS pellet. Contents were dissolved in 1 l of 

  dH2O, stored at 4
o
C.   

25 mM  

192 mM 

0.1%  

pH 8.3 

  1x WB running  

   buffer 

   50 ml of 10x WB running buffer  

   Volume was adjusted to 450 ml with dH2O. 

1x 

  10x Tris-glycine  

   buffer (transfer  

   buffer) 

  30.3 g Tris base  

  144.0 g glycine  

  Contents were dissolved in 1 l of dH2O,  

  stored at 4
o
C. 

25 mM 

192 mM 

pH 8.3 

  1x Transfer buffer     50 ml of 10x transfer buffer 

   100 ml of methanol 

   Volume adjusted to 500 ml with dH2O 

1x 

20% methanol 
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10x TBS-T  

(Tris-buffered 

saline and Tween-

20) 

  30.3 g Tris base, 

  87.7 g NaCl  

  Contents were dissolved in 900 ml dH2O.  

  Adjusted pH to7.4.  5 ml of Tween-20 was added.  

  Volume was adjusted to 1 l. 

25 mM 

150 mM  

 

0.05%  

pH – 7.4 

1x WB wash 

buffer 

   50 ml of 10x TBS-T  

   Volume adjusted to 450 ml with dH2O. 

1x 

3x Sample buffer 0.77 g Tris HCL (pH 6.8) 

2 g  SDS 

1.54 g DTT 

10 ml glycerol 

10 µl bromophenol blue 

Contents were dissolved in 100 ml dH2O, 

aliquoted 1 ml each and stored at -20
o
C. 

50 mM  

2% (w/v) 

100 mM  

10% (v/v) 

0.01% (w/v) 

Blocking buffer 5 g of milk powder was dissolved in 100 ml of 1x 

TBS-T 

5% milk powder 

 

Antibody solution  2.5 g of milk powder was dissolved in 100ml of 

1x TBS-T 

2.5% milk 

powder 

 

3.1.3.2 Buffers for SDS-PAGE gel 

Amounts used to prepare 2 gels. Contents were added in the order mentioned. 

# Contents 10% Resolving gel 12% Resolving gel 4% Stacking gel 

1 H2O 6.15 ml 6.8 ml 6.1 ml 

2 Buffer 3.75 ml  

(1.5 M Tris pH 8.8) 

5 ml  

(1.5 M Tris pH 8.8) 

2.5 ml  

(0.5 M Tris pH 6.8) 

3 SDS (10%) 150 µl 200 µl 100 µl 

4 Acrylamide 4.95 ml 8 ml 1.3 ml 

5 APS (10%) 75 µl 100 µl 50 µl 

6 TEMED 7.5 µl 10 µl 10 µl 

 Total 20 ml 20 ml 10 ml 

 

3.1.3.3 Buffers for Immunofluorescence 

Buffers Contents and preparation Final 

concentration 

0.1 M Phosphate 

buffered saline  

(PBS) 10x 

pH – 7.4 

2.04 g NaH2PO4 

14.77 g Na2HPO42H2O 

87.6 g NaCl 

All contents were dissolved in dH20 and pH 

adjusted to 7.4 

17 mM  

3 mM  

1.5 mM  

1x PBS with sodium 

azide (0.01%) 

1x PBS 

0.1 g of NaN3 dissolved in 1 l dH20 and pH 

adjusted to 7.4 

1x PBS 

0.01% NaN3 

Paraformaldehyde 

(PFA) 

40 gm of PFA was dissolved in 800 ml of 

dH2O and heated to 60
o 

C. Solution was 

cleared by adding 1 M NaOH, allowed it to 

cool down and then 100 ml of 1x PBS was 

added. Adjusted pH to 7.4, volume adjusted 

4% 
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to 1 l and filtered, aliquoted and stored at -20
 o 

C. 

PFA with sucrose 5 g of sucrose was dissolved in 100 ml of 4% 

PFA, aliquoted and stored at -20
o
C 

4% PFA 

5% sucrose 

Cryoprotection 

solution  

30 g of sucrose dissolved in 100 ml of 1x 

PBS. 

30% sucrose in 

1x PBS 

Crystal violet 

solution  

(Nissl staining) 

1.25 g dissolved in 500 ml dH2O. Later 1.5 ml 

of acetic acid was added and filtered. 

0.25% 

 

3.1.3.4 Solutions for stainings  

Solution Contents 

Blocking solution  

for primary astrocyte cultures (PACs)  

5% NGS in 1x PBS (pH 7.4) 

Permeabilization solution (PACs) 0.5% TritonX-100 in 1x PBS (pH 7.4) 

Primary antibody solution  

(for PACs) 

Diluted in solution with 2.5% NGS in 1x PBS 

(pH 7.4) 

Secondary antibody solution  

(for PACs) 

Diluted in 1x PBS  

Blocking solution for mouse brain 

sections 

10% NGS, 0.4% TritonX-100 in 1x PBS  

(pH 7.4) 

Primary antibody solution  Diluted in 5 % NGS, 0.1% TritonX-100 in  

1x PBS (pH 7.4) 

Secondary antibody solution  Diluted in 1x PBS 

Blocking for biocytin visualization 10% NGS, 2% TritonX-100 in 1x PBS (pH 7.4) 

Primary antibody solution for biocytin Diluted in 2% NGS, 0.1% TritonX-100 in  

1x PBS (pH 7.4) 

Nuclei staining – Hoechst (1 mg/ml) Diluted 1:10 or 1:100 in dH2O 

Nuclei staining – DRAQ5  Diluted 1:1000 in 1x PBS 

 

3.1.3.5 Solutions for genotyping 

Solution Contents and preparation Final 

concentration 

Laird buffer 

 

6.057 g Tris (pH 8.5) 

5.84 g NaCl 

were first dissolved in dH2O, pH was adjusted to 8.5,  

0.73 g EDTA   

1 g SDS 

Contents were dissolved and volume adjusted to 500 ml  

100 mM  

200 mM  

 

5 mM  

0.2%  

Proteinase-K Stock (20 mg/ml) dissolved in dH20  50 µg 

70% Ethanol 70 ml of absolute ethanol was dissolved with 30 ml of 

dH2O 

70% 

TBE buffer 

(10x) 

121.1 g Tris 

51.35 g boric acid 

3.72 g EDTA  

Contents were dissolved in 1 l dH20.  

1 M  

0.83 M  

10 mM  

TBE buffer 

(1x) 

100 ml of 10x TBE was adjusted to 1 l using dH2O. 1x 
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3.1.3.6 Solutions for bacterial cultures 

Solution Contents and preparation Final 

concentration 

LB agar (Lennox) 

 

35 g dissolved in 1 l of dH2O.  Sterilized by 

autoclaving at 121
o
C, 15 lbs pressure for 20 

min. (appropriate antibiotics were added 

before pouring plates) 

 

--- 

LB medium (Lennox) 

 

20 g dissolved in 1 l of dH2O and sterilized. --- 

Ampicillin 10 g of Ampicillin dissolved in 100 ml of 

dH2O. Sterile filtered, aliquoted and stored at 

-20
o
C. 

100 µg/ml 

Kanamycin 5 g of Kanamycin dissolved in 100 ml of 

dH2O. Sterile filtered, aliquoted and stored at 

-20
o
C. 

50 µg/ml 

 

3.1.3.7 RNA Co-immunoprecipitation buffers 

Buffer Preparation Final 

concentration 

NaCl 2.92 g was dissolved in 50 ml of RNase/DNase free 

water 

1 M 

HEPES 0.60 g was dissolved in 50 ml  of RNase/DNase free 

water 

0.5 M 

EDTA 0.73 g was dissolved in 50 ml of RNase/DNase free 

water. Adjusted pH to 8 with 1M NaOH 

0.5 M 

TritonX-

100 

5 ml of TritonX-100 was dissolved in 25 ml of 

RNase/DNase free water 

20% 

RNA-

FLAG lysis 

buffer 

1 ml 

10 ml 

3 ml 

1.25 ml, volume adjusted to 50 ml with RNase/DNase 

free water and filtered using sterile filters. 200 U/ml 

RNasin, complete mini without EDTA (Roche) 1 

tablet/ 10 ml of lysis buffer, 1µg tRNA/ 1 ml lysis 

buffer were added before using. 

10 mM HEPES  

200 mM NaCl   

30 mM EDTA  

0.5% Triton X-100   

 

RNA-

FLAG wash 

buffer 

1 ml 

25 ml 

3 ml 

1.25 ml, volume adjusted to 50 ml with RNase/DNase 

free water and filtered using sterile filters. 100 U/ml 

RNasin, complete mini without EDTA (Roche) one 

tablet/ 50 ml of wash buffer were added before using. 

10 mM HEPES  

200 mM NaCl    

30 mM EDTA  

0.5% TritonX-100   

 

RNA-

FLAG 

blocking 

buffer 

RNA-FLAG lysis buffer (without RNasin and 

complete mini tablet). 

1 µg tRNA  

30 µl beads  

3% BSA  

per 0.5 ml of  lysis 

buffer 
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3.1.4 Antibodies 

3.1.4.1 Primary antibodies 

Name Species Dilution Company 

WB IHC 

FLAG epitope Mouse 1:1000 -- Sigma Aldrich 

BLBP Rabbit --  1:500 Abcam 

CPEB1 serum  Rabbit --   1:500 Eurogentec 

CEPB2 serum Rabbit -- 1:500 Eurogentec 

CEPB3 serum Rabbit -- 1:500 Eurogentec 

CPEB3 Rabbit -- 1:1000 Abcam 

CPEB4 Rabbit -- 1:500 Eurogentec 

CPEB1 PA* Rabbit -- 1:100 Eurogentec 

CPEB2 PA* Rabbit -- 1:250 Eurogentec 

CPEB4 PA* Rabbit -- 1:100 Eurogentec 

β-Actin Mouse 1:5000 -- Sigma Aldrich 

GFP Rabbit -- 1:1000 Synaptic systems 

GFP Chicken -- 1:500 Abcam 

GFP (FITC coupled)  Rabbit -- 1:500 Invitrogen 

GFP Mouse 1:1000 -- Clontech 

GFAP Mouse 1:1000 1:500 Millipore 

Glutamine synthetase Mouse 1:1000 1:500 Millipore 

GLT-1 Guinea pig 1:1000 1:500 Millipore 

Ki67 Rabbit -- 1:500 Novocasta 

Connexin43 Rabbit 1:2000 1:1000 Sigma Aldrich 

Connexin30 Rabbit 1:250 1:500 Invitrogen 

S100β Rabbit -- 1:3000 Abcam 

Iba1 Rabbit -- 1:500 Alamone labs 

NG2 Rabbit -- 1:250 Millipore 

NeuN Mouse -- 1:500 Millipore 

Prox1 Rabbit -- 1:2500 Chemicon 

Tubulin Mouse 1:10,000 -- Sigma Aldrich 

*purified antibody 

 

3.1.4.2 Secondary antibodies 

Name Species Application  Dilution Company 

Anti mouse HRP Sheep WB 1:10,000 GE Healthcare 

Anti rabbit HRP Donkey WB 1:10,000 GE Healthcare 

Anti guniea pig HRP Goat WB 1:5000 Abcam 

Alexa fluor 488 Goat anti mouse IHC/ICC 1:500 Molecular probes 

Alexa fluor 488 Goat anti rabbit IHC/ICC 1:500 Molecular probes 

Alexa fluor 488 Goat anti chicken IHC/ICC 1:500 Molecular probes 

Alexa fluor 594 Goat anti mouse IHC/ICC 1:500 Molecular probes 

Alexa fluor 594 Goat anti rabbit IHC/ICC 1:500 Molecular probes 

Cy3 coupled Goat anti guinea pig IHC/ICC 1:500 Dianova 

Alexa fluor 647 Goat anti rabbit IHC/ICC 1:500 Molecular probes 

Alexa fluor 647 Goat anti mouse IHC/ICC 1:500 Molecular probes 
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3.1.5 Restriction enzymes 

Enzyme Recognition sequence (5' to 3')  Source 

EcoRI G´AATTC NEB 

EcoRV GAT´ATC NEB 

HindIII A´AGCTT NEB 

MfeI C´AATTG NEB 

SalI G´TCGAC NEB 

SfiI GGCCNNNN´NGGCC NEB 

XbaI T´CTAGA NEB 

 

3.1.6 Expression vectors 

Vector Company 

PCR-XL topo vector Invitrogen 

pEGFP-N1 Clontech 

pGL4.75 Promega 

p3XFLAG-CMV-7.1 expression vector Sigma 

pMM403-400 Provided by Dr. Martin Theis 

 

3.1.7 Competent E. coli 

Self made competent E. coli (Appendix I) 

Top10 chemically competent E. coli (Invitrogen) 

Fusion blue competent cells (Clontech) 

 

3.1.8 Lab devices 

Device Company 

ABI 7900HT fast real time PCR system Applied Biosystems, Darmstadt, Germany 

Axiophot Carl Zeiss, Carlzeiss microimaging GmbH, 

Göttingen, Germany 

Binocular  Moticam, Xiamen, China 

Centrifuges Eppendorf GmbH, Wesseling, Germany 

Cryostat Microm HM560, Thermoscientific 

Gel electrophoresis chamber Biorad, Munich, Germany 

Genegnome syngene bioimaging Synaptics ltd. Cambridge, England 

GeneFlash syngene bioimaging Synaptics ltd. Cambridge, England 

Heat block VWR, Darmstadt, Germany 

Incubator  BINDER, USA 

Leica TCS confocal Leica Microsystems, Wetzlar, Germany 

Nanophotometer Pearl Implen GmbH, München, Germany 

Novex Minicell WB module Invitrogen, Darmstadt, Germany 

Olympus (FLUOVIEW FV1000) confocal Olympus, Hamburg, Germany 

PCR machines (MyCycler thermal cycler) Biorad, München, Germany 

Table top small centrifuge VWR, Darmstadt, Germany 

Table top centrifuge (Centrifuge5424) Eppendorf GmbH, Wesseling, Germany 

Centrifuge (15ml and 50ml falcons) HERAEUS LABOFUGE centrifuge,  

Thermo Fisher Scientific, Schwerte, Germany 

Cooling centrifuge HERAEUS Fresco17 centrifuge,  
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Thermo Fisher Scientific, Schwerte, Germany 

Hybridization oven Labnet International Inc., Edison, USA 

pH meter Mettler Toledo, Giessen, Germany 

Refrigerators (4
o
C and -20

o
C) Liebherr GmbH, Biberach, Germany 

Refrigerators (-80
o
C) Thermo Fisher Scientific, Schwerte, Germany 

Rotator mixer Grant-Bio, UK 

Shaker Heidolph Rotomax120 

Shaking incubator (GFL) Progen Scientific, London, England 

Shaking water bath Memmert GmbH, Schwabach, Germany 

Vibratome (VT1000S) Leica, Nussloch, Germany 

Vortexer VWR, Darmstadt, Germany 

Mini-Protean 3 cell (WB) Biorad, Munich, Germany 

WB power supply Biorad, Munich, Germany 

Weigh balance ACCULAB, Sartorius group 

Water bath P-D Industriegesellschaft GmbH, Germany 

 

3.1.9 General lab materials 

Material Company 

Agarose Invitrogen 

Cell culture materials Grenier Bio-one,/Millipore, Germany 

Cell scrapers, Tubes Sarstedt, Germany 

Gloves Ansell ltd, Staffordshire, UK 

Mice surgery equipment  Fine Science Tools (F.S.T), Heidelberg, Germany 

Microscopic slides Thermo Fisher Scientific 

Pasteur pipettes Carl-Roth, Karlsruhe, Germany 

Pipette tips Greiner Bio-one  

Pipettes, PCR tubes BRAND, Wertheim, Germany 

PVDF membrane Millipore, Germany 

Sterile filters Millipore 

Syringes, Venofix safety Braun, Melsungen, Germany 

Whatman paper Whatman International, Maidstone, UK 
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3.2 Methods 
 

3.2.1 Cell culture 
 

3.2.1.1 Primary astrocyte cell culture 

Primary astrocyte cultures were prepared as described previously (Derouiche and Frotscher, 

2001). Briefly, cortical astrocytes were isolated from 2-4 day old rat pups. The tissue was 

dissociated using trypsin (Gibco/Invitrogen, Darmstadt, Germany) and cells were plated in 75 

cm
2
 tissue culture flasks (Sarstedt, Nümbrecht, Germany) with Dulbecco Modified Eagle 

Medium (DMEM, Sigma-Aldrich, Munich, Germany) supplemented with FCS (10%, Sigma-

Aldrich) and incubated at 37
o
C with 5% CO2. Medium was exchanged after 5 days and later 

on regularly at 2-3 day intervals, but only with DMEM. After 8-14 days, cells were shaken for 

18 hrs in a shaking incubator (Heidolph Instruments, Germany) at 37
o
C/250 rpm, and the 

adherent cells were re-plated (McCarthy and de Vellis, 1980) onto 10 cm or 6-well plates for 

further experiments. At least 95% of these cells in culture were type I astrocytes (McCarthy 

and de Vellis, 1980).  

 

3.2.1.2 Transfection 

Primary astrocytes were transiently transfected using Lipofectamine 2000 (Invitrogen) or 

Fugene (Roche, Manheim, Germany) as per the manufacturer instructions. Briefly, cells were 

plated in a 6-well plate 24-48 hrs before transfection with poly-L-lysine (PLL, Sigma) coated 

12 mm coverslips (Carl Roth, Karlsruhe, Germany), care was taken not to overgrow the 

cultures before transfection. For each well, 680 µl of the DMEM without serum was mixed 

with DNA and Lipofectamine (5 µl Lipofectamine:4 µg DNA). After 5 hrs medium was 

replaced with medium containing serum. For Fugene, 680 µl of the DMEM with serum was 

mixed with DNA and fugene (6 µl Fugene:2 µg DNA) complex and were used for 

transfection. After 48 hrs of transfection, the cells were fixed for further stainings. 

 

3.2.2 RNA isolation and reverse transcription PCR from primary astrocytes 

in culture 
 

3.2.2.1 RNA purification 

For extracting RNA, cells were grown in 10 cm dish until 90% confluent. The medium was 

removed and the cells were washed 3 times with 1x PBS. Using 1ml Trizol reagent 

(Invitrogen) / dish, cells were scraped and collected into a 2 ml tube and frozen immediately 
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on dry ice and stored at -80
o
C until further use. 250 µl of chloroform was added to each tube 

and vigorously shaken followed by centrifuging at 10,000 xg/10 min/4
o
C. The aqueous upper 

layer was taken into a new tube and 500 µl of isopropanol was added and incubated on ice for 

10 min and then centrifuged at 10,000 xg/10 min/4
o
C. Supernatant was removed and the pellet 

was washed with 75% ethanol at 7500 xg/5 min/4
o
C. The supernatant was removed and the 

pellet was air dried for 5 min and dissolved in 20 µl of DEPC water. The RNA samples were 

stored at -20
o
C. DNase treatment was done using RQ1 RNase-free DNase kit (Promega, 

Madison, USA) as per the manufacturer instructions.  

 

3.2.2.2 Reverse transcription PCR 

For reverse transcription, Omniscript Reverse Transcription kit (Qiagen, Hilden, Germany) 

was used according to manufacturer instructions and the reaction mix used is in table 3. 

 

Components Amount 

10x RT buffer 2 µl 

dNTP (5 mM each) 2 µl 

Oligo dT primer (50 µM) 0.4 µl 

RNase inhibitor (40 U/µl) 0.25 µl 

Omniscript reverse transcriptase 1 µl 

RNase free water 8.6 µl 

Total 15 µl 

Table 3: Reverse transcription reaction mix for astrocyte cultures. 

 

5 µl of template RNA was used for each reverse transcription reaction. Samples were 

incubated at 37
o
C for 1 hr. The cDNA samples were used for PCR with primers specific to 

identify the splice isoforms of each CPEB (Table 4). Accuprime DNA polymerase system 

(Invitrogen) was used for the PCR amplification as per manufacturer instructions. The primers 

used are in table 4 and the program used is in table 5. 

 

# Type Sequence Gene 

1 forward 

reverse 

5´-AGGCCATCTGGGCTCAGCGGG- 3´  

CPEB1 5´ -GGATTGGTTAACACCTTCCGTGTTTTTGGC- 3´ 

2 forward 

reverse 

5´ -ATGTGTTCAGGACAGACAATAGTAACA- 3´  

CPEB2 5´ -CAAGCTATCATCTATTGGAAATAGGGAAGA- 3´ 

3 forward 

reverse 

5´ -GGATATGATCAGGACTGATCATGAGCCTCTGAAAG- 3´  

CPEB3 5´ -CCATGGCTGTCATCCAAGAAGGCGTC- 3´ 

4 forward 

reverse 

5´ -CCCAGGACATTTGACATGCACTCATTG- 3´  

CPEB4 5´ -CAGACCACTGTGAAGAGGCTGGTCCCCACGG- 3´ 

5 forward 

reverse 

5´ -CGTGGGCCGCCCTAGGCACCA- 3´  

β-actin 5´ -CGGTTGGCCTTAGGGTTCAGAGGGG- 3´ 

Table 4: Primer sequences of CPEBs (1-4). β-actin served as a positive control. 
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Initial denaturation                       94
o
C for 30 sec 

Denaturation 94
o
C for 30 sec   

Annealing 

                                                            

55
o
C for 30 sec for CPEB2 & CPEB3                           

58
o
C for 30 sec  for CPEB1, CPEB4 and β-actin           30x 

Extension      68
o
C for 1 min 

Final extension                            68
o
C for 20 min  

Hold   4
o
C 

Table 5: PCR program for CPEB isoforms. 

 

The PCR amplified products were separated on 1.5% agarose gel, and the respective bands for 

each CPEB were excised from the gel. The DNA was purified from excised bands using a gel 

extraction kit (Promega) according to manufacturer instructions.  Later, the PCR products 

were cloned into the PCR-XL-TOPO vector (Invitrogen) as per the manufacturer instructions. 

The cloned products were transformed with Top10 chemically competent Ecoli (Invitrogen) 

and plated onto LB agar plates with kanamycin (50 µg/ml) as selection marker and incubated 

at 37
o
C overnight. Single colonies were picked and grown overnight in LB medium with 

kanamycin (50 µg/ml) in a shaking incubator at 250 rpm/37
o
C. DNA was isolated with a 

Miniprep kit (Promega) according to manufacturer instructions. The PCR-XL-TOPO cloned 

CPEB inserts were analyzed by restriction digestion with EcoRI enzyme (NEB, Frankfurt, 

Germany), as EcoRI flanks the cloning site (and is used to verify the size of the cloned PCR 

product). Minipreps were sequence analyzed (Qiagen sequencing services) to identify the 

isoforms for each CPEB. 

 

3.2.3 Immunocytochemistry  
 

3.2.3.1 Staining for CPEBs in primary astrocytes 

For immunofluorescence, primary astrocytes were grown for 2-3 days on 12 mm coverslips 

coated with PLL (Sigma) in 6 well plates. The medium was removed, washed twice with 1x 

PBS and fixed with 4% PFA in 1x PBS (pH 7.4) with 5% sucrose for 20 min at room 

temperature (RT). Cells were washed twice with 1x PBS for 5 min each, permeabilized with 

0.5% TritonX-100 (Applichem, Darmstadt, Germany) for 5 min at RT and washed twice 

quickly. Blocking was done with 5% normal goat serum (NGS) in 1x PBS (pH 7.4) for 1 hr at 

RT and then incubated with primary antibodies in antibody solution (2.5% NGS in 1x PBS) 

(pH 7.4) at 4
o
C overnight. The primary antibodies used were CPEB (custom made purified 

antibodies or serum (Eurogentec, Cologne, Germany) for CPEB1 (dilution 1:100), CPEB2 

(1:250), CPEB4 (1:100) and for CPEB3 (1:100, Abcam, Cambridge, UK) and GFAP (1:500, 
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Millipore, Germany). The cells were washed three times with 1x PBS for 5 min at RT each 

and incubated with respective secondary antibodies in 1x PBS for 1 hr at RT. It was followed 

by washes with 1x PBS and nuclei staining with Hoechst (1:10, Invitrogen) in dH20 water for 

10 min at RT.  After washing with 1x PBS, coverslips with cells were mounted onto 

microscopic slides (Thermo Fisher Scientific, Schwerte, Germany) using Permafluor (Thermo 

Fisher Scientific) mounting medium. Slides were dried and images were taken with Axiophot 

microscope (Carl Zeiss, Göttingen, Germany) with 20x and 40x objectives. 

 

3.2.3.2 Triple staining of primary cultures 

Cells were prepared as described in 3.2.3.1 and incubated with primary antibodies directed to 

Cx43 (1:1000, rabbit polyclonal, Sigma) and GFAP (1:500, mouse monoclonal, Millipore) 

diluted in 2.5% NGS in 1x PBS (pH 7.4) for 2 hr at RT. After washes, cells were incubated 

with respective secondary antibodies: Alexa594 (1:500, goat anti-rabbit, Invitrogen) and 

Alexa647 (1:500, goat anti-mouse, Invitrogen) in 1x PBS for 1.5 hr at RT. Cells were washed 

with 1x PBS for 3 times 5 min each and incubated with GFP antibody (1:500, FITC coupled) 

for 2 hr at RT, followed by washes with 1x PBS. Nuclear staining and mounting were done as 

mentioned in 3.2.3.1. 

 

3.2.4 Generation of vectors for transgenic mice 
 

3.2.4.1 3' RACE of CPEB3 

Rapid amplification of cDNA ends (RACE) experiments were done to determine the 3' end of 

CPEB3. Marathon Ready cDNA kit (Clontech) was used as per the manufacturer instructions. 

Gene specific primers of 23-28 nt length with a GC content of 40-60% and melting 

temperature higher than or equal to 70
o
C were designed for the touchdown PCR (Don et al., 

1991; Roux, 1995). Four forward primers were designed which bind approximately 1.6 kb, 1 

kb, 535 bp and 300 bp upstream of the 3' end of the CPEB3 UTR as per the sequence 

information obtained from Ensembl (www.ensembl.org). The primer sequences are in table 6. 

 

Primer name Sequence 

1.6 kb 5´ -GGGTTTCCCCTGGACCCTTTGGTAA- 3´ 

1 kb 5´ -GACTCCACTTGGTGCTGAGGGCTGT- 3´ 

535 bp 5´ -GCAGACTTTAGACATTGTGCTCACAG- 3´ 

300 bp 5´ -GGGAGGGACTTTCATATCTGGTCAA- 3´ 

Table 6: Primer used for CPEB3 RACE. 
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Advantage 2 polymerase (Clontech) was used for the PCR and the PCR program used is 

described in table 7. 

 
Initial denaturation             94

o
C  for 1 min 

Denaturation 94
o
C  for 30 sec 

Annealing and extension    68
o
C for 3 min                   40x 

Final extension                   68
o
C for 20 min   

Hold   4
o
C 

Table 7: PCR program for CPEB3 RACE. 

 

Electrophoresis of the PCR products was done on 1.2% agarose gels. In cases when smear 

(which indicates non specific products) was observed, a nested PCR was done using the PCR 

product from 535 bp as a template. The 300 bp primer and nested adapter primer (RACE kit) 

were used with a touchdown PCR program as in table 8.  

 
Initial denaturation             94

o
C for 1 min 

Denaturation 94
o
C for 5 sec 

Annealing and extension    72
o
C for 3 min                 5x 

Denaturation 94
o
C for 5 sec 

Annealing and extension    70
o
C for 3 min                 5x 

Denaturation 94
o
C for 5 sec 

Annealing and extension    68
o
C for 3 min                 25x 

Final extension                   68
o
C for 20 min   

Hold 4
o
C 

Table 8: Touchdown PCR program for CPEB3 RACE. 

               

After electrophoresis, PCR products were excised from the agarose gel and DNA was purified 

and cloned into PCR-XL-TOPO vector (Invitrogen) and transformed as described in 3.2.2.2. 

The minipreps from the RACE PCR were sequence analysed. 

 

3.2.4.2 Generation of vectors 

Expression vectors were generated using PCR based, infusion and conventional cloning 

strategies (Sambrook and Russell, 2001). Vectors for transgenic mice were generated by 

cloning the sequences of different CPEB3 forms using infusion cloning technology (Clontech) 

as per the manufacturer’s instructions. These vectors were further used for zygote injection to 

generate transgenic mice. 
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3.2.4.3 Cloning of short and long UTRs of CPEB3 into pMM vector  

Following the identification of the 3' ends of CPEB3 by RACE, the two full length 3' UTRs 

(shortUTR and longUTR) were isolated and cloned: For cloning the shortUTR (0.9 kb, 

shUTR) and longUTR (3.5 kb lgUTR) fragments of CPEB3, infusion cloning was performed. 

Inserts were cloned into the MfeI site of the pMM403-400 vector (Appendix II). CPEB3-

EGFP-pMM vector was digested with MfeI (NEB) and run on 1 % agarose gel, excised the 

respective band and DNA was purified using gel extraction kit (Promega). Simultaneously, 

the inserts were PCR amplified using Advantage HD polymerase (Clontech) using a two step 

program as described in table 9. 

 
Intial denaturation       98°C for 30 sec 

Denaturation    98°C for 10 sec 

Annealing and extension 68°C for 1 min   for shUTR             

68
o
C for 3 min 40 sec for lgUTR        35x                                

Final extension            68°C for 20 min 

Hold  4°C 

Table 9: Two step PCR program for infusion cloning.  

 

The primers used for amplifying CPEB3sh/lgUTR with MfeI flanking sites are in table 10. 

 

Vector  Primer sequence 

shUTR forward 5' -AAAATGAATGCAATTGAGGCCGCCACAGCTACAAGTACTGG- 3´ 

reverse 5' -TTAACAACAACAATTGGGATATAAAATTTATTGCATGCAG- 3´ 

lgUTR forward 5' -AAAATGAATGCAATTGAGGCCGCCACAGCTACAAGTACTGG- 3´ 

reverse 5' -TAACAACAACAATTGCACGTTCTGCTCATTCTGTCGTTTTATTATCC- 3´ 

Table 10: Primer sequences for CPEB3sh and lgUTR amplification. 

 

The PCR amplified UTR inserts with MfeI overhangs were purified after electrophoresis and 

ligated with the purified vector as per the manual from infusion cloning. The ligated vectors 

were transformed with Fusion blue competent cells (Clontech) as per the manual, and plated 

onto LB plates containing ampicillin (100 µg/ml) antibiotic and incubated at 37
o
C overnight. 

Single colonies were picked and inoculated each in 2 ml LB medium with ampicilln (100 

µg/ml), incubated at 37
o
C/overnight/250 rpm in a shaking incubator. DNA was isolated using 

Miniprep kit (Promega). The cloning was verified by restriction digestion with SfiI and by 

sequencing (Qiagen).  
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3.2.4.4 Cloning of CPEB3d and CPEB3aKD into pMM403-400 vector 

The CPEB3d isoform, which lacks the B-region containing putative phosphorylation sites for 

PKA, S6kinase and CamKII (Theis et al., 2003b), was cloned into the unique EcoRV site of 

the pMM403-400 vector. CPEB3aKD is the kinase dead form of CPEB3a (full length 

isoform), which was generated by mutating two serines (S419 and S420) in the 

phosphorylation site. These two serines were mutated to alanines using the Splicing on 

Overlapping Extension (SOE) PCR (Sambrook and Russell, 2001) strategy. This mutated 

form was later cloned into the EcoRV site of pMM403-400 vector (Appendix II) using 

infusion cloning (Clontech). These two vectors were tagged with EGFP at the 3' end of the 

CPEB3 coding region. The pMM403-400 vector was digested with EcoRV restriction enzyme 

(NEB) and was purified after electrophoresis. The inserts (CPEB3d, CPEB3aKD) were PCR 

amplified using a two step program (as described in the Methods section 3.2.4.3) using 

Advantage HD polymerase and primers flanking with EcoRV restriction enzyme sites are: 5'– 

GCG GAT CCT GCG GAT ATC TCA GCG CCC CTT CTC CGC G -3' (forward) and 5'– 

GTG TGA TGG ATG GAT ATC TTA CTT GTA CAG CTC GTC -3' (reverse). These PCR 

amplified products with the EcoRV overhangs were purified from agarose gel after 

electrophoresis and ligated with the vector as described in the infusion cloning manual. Later 

fusion blue competent cells (Clontech) were transformed with the ligated products; the same 

procedure was followed as described in 3.2.4.3 Methods section. 

 

3.2.5 Generation of CPEB3-GFAP transgenic mice 

Handling and maintenance of the animals was according to the rules and regulations of federal 

law (University of Bonn, Germany). All the animals were housed under 12 hr day and night 

cycle. 

 

3.2.5.1 Cloning 

CPEB3-EGFP transgene was cloned into the EcoRV sites of the pMM403-400 vector 

(Appendix II) inframe with the tetracycline operator (TetO) sequences (generated by Dr. 

Matin Theis).  

 

3.2.5.2 Construct preparation for zygote injection 

The CPEB3-pMM403-400 plasmid was linearized with SfiI and the DNA fragments were 

separated by electrophoresis on 1% agarose gel, after clear separation the right band was 

excised. This DNA product was purified from gel using gel extraction kit (Promega) and 
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eluted in injection buffer (provided by House for Experimental Therapy (HET)). The purified 

DNA was injected into the male pronuclei of zygote (Injection was performed at the HET, 

University Hospital Bonn, Germany). 

 

3.2.5.3 Isolation of genomic DNA from mouse tail tips 

Lysis of mouse tail tips was done in Laird buffer (Laird et al., 1991) supplemented with 50 µg 

Proteinase-K/ ml at 55
o
C overnight in a water bath with agitation. The DNA was precipitated 

in isoproponal (one volume) by centrifuging at 13,500 rpm/10 min/RT. DNA pellet was 

washed in 70% ethanol in de-ionized water by centrifuging at 13,500 rpm/8 min/RT, air dried 

and eluted in an appropriate volume of TE buffer.     

 

3.2.5.4 Genotyping PCR 

To determine the presence of transgene, tail tip DNA was used as a template and PCR was 

performed with the primers specific to the TetO and tetracycline controlled transactivator 

(tTA) sequences. Primer sequences used are shown in table 11. 

 

PCR Primer name Primer sequence 

TetO  tetO-A/B (forward) 5´ -GCGGCCGCCAACTCTCG- 3´ 

tetO-A (reverse) 5´ -TCAAAACAGCGTGGATGGCGTCTC- 3´ 

tetO-B (reverse) 5´ -GATCGGTCCCGGTGTCTTCTATG- 3´ 

tTA  tTA-A1 (forward) 5´ -GCGCTGTGGGGCATTTTACTTTAG- 3´ 

tTA-A2 (reverse) 5´ -CCGCCAGCCCCGCCTCTTC- 3´ 

tTA-B1 (forward) 5´ -TAGAAGGGGAAAGCTGGCAAGATT- 3´ 

tTA-B2 (reverse) 5´ -CCGCGGGGAGAAAGGAC- 3´ 

Table 11: Primer sequences for genotyping (TetO and tTA) PCR. 

 

The reaction mix used for genotyping PCR was as in table 12. 

 
dH20 14,8 µl 

5x Promega PCR buffer 5,0 µl 

MgCl2  25 mM  1,0 µl 

dNTP´s 2.5 mM each 1,0 µl 

Primer 1 (10 µM) 1,0 µl 

Primer 2 (10 µM)  1,0 µl  

GoTaq Flexi DNA polymerase 0,2 µl 

DNA template (tail tip DNA) 1,0 µl 

Total 25 µl  

Table 12: Reaction mix for genotyping PCR. 

 

The program for both the genotyping PCRs (TetO and tTA) is in table 13. 
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Intial denaturation      94°C for 3 min  

Denaturation    94°C for 30 sec 

Annealing   62°C for 1 min                                                   30x                                   

Extension 72°C for 2 min (5 sec increase per cycle)    

Final extension           72°C for 10 min 

Hold  8°C 

Table 13: PCR program for genotyping. 

 

The PCR products were run on a 1.5% agarose gel and the size was estimated with reference 

to the 1 kb marker (Invitrogen). 

 

3.2.5.5 Breedings 

After zygote injection, the mouse litters were screened for positive founders carrying the 

transgene (TetO-CPEB3) by genotyping (Methods 3.2.5.4). The positive TetO-CPEB3 mice 

were further bred with hGFAP-tTA mice (Pascual et al., 2005; Fiacco et al., 2007) and the 

litters were screened for double transgenics (DT) by genotyping. 

 

3.2.5.6 Doxycycline treatment  

CPEB3-GFAP mice were given doxycycline (Dox) (a derivative of tetracycline) in their food 

at a concentration of 650 mg doxycycline/kg of the food (Altromin, Lage, Germany). Dox 

was given up to postnatal 21-28 days to the mice. After removing Dox from the food, mice 

were analyzed after 7 weeks.  

 

3.2.6 Immunohistochemistry  

All the experiments with CPEB3-GFAP mice were performed 7 weeks after removal of Dox 

from the food, which was given during birth and until 3 - 4 weeks of age. Mice were aged p70 

- p75 at the time of analysis.   

 

3.2.6.1 Perfusion fixation 

Mice were anesthetized with a 2:3 ratio of Ketamin (10%, Medistar, Aschberg, Germany) and 

Cepetor-KH (1 mg/ml, cp-pharma, Burgdorf, Germany) intraperitoneally. The abdomen was 

cut open removing the diaphragm and thoracic cavity was opened. The left atrium was cut for 

the blood to flow. Following insertion of a 25G needle (Braun, Melsungen, Germany) into the 

left ventricle, 30 ml of 1x PBS (pH 7.4) was injected to remove blood and fixation was done 
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by perfusing with 30 ml of 4% PFA in 1x PBS (pH 7.4). Brains were isolated and stored in 4 

% PFA 1x PBS (pH 7.4) overnight at 4
o
C. 

 

3.2.6.2 Cryoprotection and sectioning 

After 24 hr of fixation, cryoprotection was done by soaking the brains in 30% sucrose in 1x 

PBS (pH 7.4) at 4
o
C (at least for 48 hr). Brains were embedded in Tissue-tek (Sakura, 

Netherlands), frozen and stored at -80
o
C. Forty µm thick, free floating coronal sections were 

cut using a cryostat (Microm HM560, Thermo Fisher Scientific) and slices were collected in 

1x PBS with 0.01 % sodium azide (for longer preservation of tissue) and stored at 4
o
C.  

 

3.2.6.3 Staining procedure 

For staining, sections were washed three times in 1x PBS for 10 min each and blocked with 

blocking solution (10% NGS, 0.4% TritonX-100 in 1x PBS (pH 7.4)) for 2 hr at RT and 

incubated in appropriate primary antibodies diluted in blocking solution (5% NGS, 0.1% 

TritonX-100 in 1x PBS (pH 7.4)) overnight at 4
o
C with gentle shaking. Primary antibodies 

used were: rabbit GFP (1:1000 dilution, Synaptic Systems), chicken GFP (1:500, Abcam), 

mouse GFAP (1:500, Millipore), mouse GS (1:500, Millipore), rabbit Cx43 (1:1000, Sigma), 

rabbit S100β (1:3000, Abcam), rabbit Iba1 (1:500, Alamone labs), rabbit NG2 (1:250, 

Millipore), mouse NeuN (1:200, Millipore), rabbit Cx30 (1:500, Invitrogen), rabbit BLBP 

(1:500, Abcam), rabbit Ki-67 (1:500, Novocastra) and rabbit Prox1 (1:2500, Chemicon). For 

Ki-67 staining, sections were incubated with primary antibody for 48 hr at 4
o
C with gentle 

shaking. Sections were washed three times in 1x PBS and then incubated with the appropriate 

secondary antibodies diluted in 1x PBS (pH 7.4) for 1.5 hr at RT. Sections were washed 3 

times with 1x PBS, 10 min each and stained for nuclei with Hoechst (1:100 in dH2O, 

Invitrogen) by incubating for 10 min at RT, followed by washes for 3 times with 1x PBS, 10 

min each, and mounted using Permafluor (Thermo Fisher Scientific) onto microscopic slides. 

For double immunofluorescence, the same procedure was followed with appropriate primary 

and secondary antibodies. 

 

3.2.6.4 TUNEL staining 

To estimate if there was any cell death caused due to the overexpression of CPEB3 in 

astrocytes, Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining 

was performed. Mouse brains were isolated after cervical dislocation, cerebellum and frontal 

brain was cut off and placed facedown in a cryomold (Sakura, Netherlands) and covered with 
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Tissue-tek. The cryomold was placed in a styrofoam box containing liquid nitrogen for 5-10 

min for fast freezing. Later the brains were stored at -80
o
C. Fourteen µm thick sections were 

taken onto Superfrost object slides (Thermo Fisher Scientific) allowed to air dry and stored at 

-80
o
C. 

 

For labelling of TUNEL positive cells, the Click-it TUNEL Alexa Fluor Imaging Assay 

(Invitrogen) was used and the manufacturer instructions were followed with some 

modifications. Sections were fixed with acetone for 2 min at RT, slides were air dried and a 

barrier (Roti-Liquid Barrier Marker, Roth) was applied around the section, followed by a 

wash with 1x PBS. For GFAP staining, sections were blocked with 5% NGS, 0.125% 

TritonX-100 in 1x PBS (pH 7.4) for 1 hr at RT and incubated with mouse GFAP antibody 

(1:400) in 2% NGS, 0.125% TritonX-100 in 1x PBS (pH 7.4) for 1hr at RT. The sections 

were washed three times for 5 min each with 1x PBS followed by incubation with goat anti 

mouse Alexa fluor 488 (1:500) secondary antibody  in 2% NGS, 0.125 % TritonX-100 in 1x 

PBS (pH 7.4) for 1 hr at RT. Sections were washed three times with 1x PBS for 5 min each, 

followed by staining for nuclei with Draq5 (1:1000, Biostatus ltd, Leicestershire, UK) in 1x 

PBS for 10 min at RT followed by two short washes, drying of the sections and mounting 

using Aqua polymount (Polysciences Inc, USA) mounting medium.  

 

3.2.6.5 Nissl staining 

Fourty µm thick, free floating sections were collected in 1x PBS (pH 7.4) after perfusion 

fixation and cryoprotection as described in Methods section 3.2.6.1, 3.2.6.2. Sections were 

mounted onto Superfrost object slides (Thermo Fischer Scientific) and allowed to dry 

completely for approximately 1 hr at RT. Sections were washed with dH2O for 2 min at RT 

and stained with crystal violet solution (0.25%) at 70
o
C for 10 min in a hybridization oven 

(Labnet International Inc., Edison, USA). Crystal violet was preheated at 70
o
C. Later sections 

were washed first with 70% ethanol, then 96% ethanol and with isopropanol each for 30 sec at 

RT. The slides were dried and mounted using Entellan (Merck, Darmstadt, Germany). Images 

were taken with a 30x objective of a binocular microscope (Moticam, Xiamen, China) with 

Motic Images Plus 2.0ML software.  

 

3.2.6.6 Image acquisition and processing 

All the images except the Nissl stained were acquired using 10x, 20x or 40x objectives of an 

Axiophot microscope (Carl Zeiss). For higher resolution, images were taken using 20x or 40x 
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objectives of a Leica TCS confocal (Leica Microsystems) or Olympus confocal (FLUOVIEW 

FV1000, Olympus, Hamburg, Germany) microscopes. Image processing and quantification 

was done using the ImageJ software (Rasband, 1997-2011; Abramoff et al., 2004).  

 

3.2.6.7 Quantification 

The overexpression of CPEB3-EGFP was quantified by taking 1-in-5 series sections with a 

total number of 4 sections/mice (8 hippocampi/mouse). The total number of GFP positive and 

GFP/GFAP, GFP/S100β co-localized cells were counted using ImageJ, in one view field of 

the Cornu Ammonis area 1 (CA1) region of the hippocampus taken with the 20x objective of 

the Axiophot microscope (Carl Zeiss). Similar quantification was performed for GFP/Iba1 and 

GFP/NG2 co-localizations. Quantification of the stainings related to adult neurogenesis (Ki-

67, Prox1 and BLBP positive cells) was performed by Mr. Jiong Zhang in the institute, as 

previously described (Kunze et al., 2009). 

 

3.2.6.8 Electrophysiology and biocytin visualization 

Electrophysiology on these mice was performed by Dr. Peter Bedner in the institute, where 

the diffusion of the tracer N-biotinyl-L-lysine (biocytin; Sigma, Germany) between astrocytes 

was analyzed as described previously (Theis et al., 2003a; Wallraff et al., 2004; Wallraff et 

al., 2006). Mice were anesthetized with Isofluran, decapitated and the brains were isolated 

quickly and 200 µm thick transversal sections of the hippocampus were cut on a vibratome 

(VT1000S; Leica). Single astrocytes from acute brain slices of CPEB3-GFAP mice were 

injected with biocytin after electrophysiological characterization by their passive current 

pattern (Wallraff et al., 2004). Cells from the CA1 region of the hippocampus were selected 

for biocytin injection.  

 

After electrophysiology, sections were fixed in 4% PFA in 1x PBS overnight at 4
o
C, washed 

three times in 1x PBS for 10 min each and blocked for 2 hr at RT with 10% NGS/2% 

TritonX-100 in 1x PBS (pH 7.4). Sections were incubated with Cy3-coupled streptavidin (1: 

300 dilution) in 2% NGS/ 0.1% TritonX-100 in 1x PBS (pH 7.4) overnight at 4
o
C. Sections 

were washed with 1x PBS three times and stained for nuclei with Hoechst (1:10 dilution in 

dH2O) for 10 min at RT. Sections were washed briefly and mounted onto slides using 

Permafluor (Thermo Fisher Scientific) and allowed to dry. Stacks were made using the 

Axiophot microscope (Carl Zeiss) with a 20x objective and the extent of coupling was 

estimated by counting the number of cells positive for biocytin. For double labelling with 
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GFP antibody, the sections were co-incubated with GFP (1:1000) and Cy3-coupled 

streptavidin with the same conditions as described above. After washing, the sections were 

incubated with Alexa fluor 488 (1:500) secondary antibody in 1x PBS (pH 7.4) for 1.5 hr at 

RT followed by washing, nuclei staining and mounting as described in Methods section 

3.2.6.3. Cells which were positive for GFP were considered in the quantification. A Student t-

test was used to test for significant differences in the extent of coupling between the DT and 

control mice. 

 

3.2.7 Western blotting 
 

3.2.7.1 Sample preparation  

Mice were sacrificed by cervical dislocation, and the brain was isolated and cut into two 

halves. One half was used for immunostaining, fixed in 4% PFA/1x PBS (pH 7.4) at 4
o
C for 

24 hr and cryoprotected with 30% sucrose in 1x PBS at 4
o
C for a minimum of 48 hr.  From 

the second half, the cerebellum was harvested into a 1.5 ml Eppendorf tube and frozen in 

liquid nitrogen. The olfactory bulbs and the frontal cortex were cut off, and by placing the 

brain on the coronally cut side, the hippocampus and cortex were separated carefully and 

collected into a tube and frozen immediately in liquid nitrogen and stored at -80
o
C until 

further use. Lysis buffer (50 mM Tris, 150 mM NaCl, 0.5% NP-40, 0.5% NaDOC, 1% 

TritonX-100, pH 7.5) supplemented with complete mini tablet (1 tablet/10 ml, Roche) was 

used to lyse the tissue. A volume of 350 µl lysis buffer for hippocampus, 500 µl for both 

cortex and cerebellum was aliquoted into a prechilled tube. Tissue was transferred and lysed 

using a pestle until no further homogenization was possible. A 27G (Braun) 1 ml needle was 

used to further disrupt the tissue.  The lysed samples were incubated on ice for 30 min 

followed by centrifugation for 30 min/10,000 g/4
o
C. Supernatant was aliquoted into a new 

prechilled tube. The concentration of the protein was estimated using a BCA kit (Thermo 

scienctific) as per the manufacturer’s instructions.  

 

3.2.7.2 SDS-PAGE, blotting and detection 

A 10% or 12% SDS polyacrylamide resolving gel and 4% stacking gel (self made) were used 

for electrophoresis. Thirty µg of protein each was used, samples were denatured in 3x loading 

dye at 65
o
C for 10 min, after that samples were spin briefly and loaded onto respective gels. 

The proteins were seperated for 15 min at 80 V and 1 hr and 15 min at 160 V with running 

buffer (1x Tris-glycine-SDS). Novex (Invitrogen) standard was loaded along with the samples 
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to estimate the size based on separation of proteins. Seperated proteins were transferred onto 

0.45 µm polyvinylidene fluoride (PVDF) membrane (Immobilon-P Transfer membrane, 

Millipore) which was activated by soaking in methanol for 1min and washed briefly by 

transfer buffer (1x Tris-glycine buffer with 20% methanol). Blotting was done for 2 hr at 50 V 

with transfer buffer. Membranes were blocked in 5% milk powder (Carl Roth)/1x Tris-

buffered saline with Tween-20 (TBS-T) for 1 hr at RT and incubated with primary antibodies 

diluted in 2.5% milk/1x TBS-T overnight at 4
o
C. Primary antibodies used were rabbit Cx43 

(1:1000, Sigma), rabbit Cx30 (1:250, Invitrogen), mouse GS (1:1000), mouse GFAP (1:1000, 

Millipore), guinea pig GLT-1 (1:1000, Millipore), mouse GFP (1:1000, Clontech) and mouse 

tubulin (1:10,000, Sigma). Membranes were washed three times with 1x TBS-T and incubated 

with horseradish peroxidase (HRP)-coupled secondary antibodies diluted in 2.5% milk/1x 

TBS-T for 1 hr at RT. Secondary antibodies used were anti-mouse HRP (1:10,000, GE 

Healthcare, Munich, Germany), anti-rabbit HRP (1:10,000, GE healthcare) and anti-guniea 

pig (1:5000, Abcam). After washing three times, blots were developed using ECL substrates 

(Supersignal West Dura extended duration substrate, Thermo scientific) using the Genegnome 

imaging device (Syngene bioimaging, Synoptics ltd, Cambridge, England). For Cx30, 50 µg 

of the protein was loaded and after separation of proteins the membrane was blocked as 

explained above and incubated with primary antibodies diluted in 5% milk/1x TBS-T for 48 

hr at 4
o
C. For probing with tubulin antibody, blots were stripped (Restore Western Blot 

stripping buffer, Thermoscientific) for 15 min at RT followed by washing 3 times each with 

1x TBS-T for 10 min and blocking as described above, followed by incubating with the 

primary antibody (tubulin, 1:10,000) diluted in 2.5% milk/1x TBS-T overnight at 4
o
C. The 

same procedure as described above was followed for incubation with secondary antibodies.  

 

3.2.7.3 Quantification  

To quantify differences in the protein levels between transgenic and control mice, the blots 

were probed with tubulin as a loading control. The intensity of the bands was measured using 

the Gene tools software of Genegnome (Syngene bioimaging). After substracting the 

background value for each band, the values from the target proteins were normalized to the 

values from their respective loading controls (tubulin). Significance was tested using the 

Student’s t-test and p value less than 0.05 was considered as significant. Error bars are shown 

as standard errors of the mean (SEM). 
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3.2.8 RNA isolation and real time PCR 
 

3.2.8.1 RNA preparation from mouse brain  

Tissue was harvested from mouse brains was as described in Methods section 3.2.7.1 and 

stored at -80
o
C.  

 

3.2.8.2 RNA purification and reverse transcription 

Hippocampi were lysed in a 2 ml tube using Qiazol (Qiagen) with a pestle. A 27G 1 ml 

syringe (Braun) was used to further disrupt the small chunks of tissue until the mixture was 

homogenous. Samples were incubated at RT for 5 min, 200 µl of chloroform was added and 

tubes were shaken vigorously. The samples were centrifuged at 12,000 g/15 min/4
o
C and the 

aqueous phase was transferred into a new 1.5 ml tube containing 600 µl of 70% ethanol and 

mixed well. RNA was isolated using the RNeasy plus mini kit (Qiagen) according to the 

manufacturer’s protocol, 30 µl of RNase free water was used to elute the RNA (provided in 

the kit). On column DNase (provided in the kit) treatment was done for the samples as 

described in the kit. Concentration of RNA was determined by Nanophotometer Pearl (Implen 

GmbH, Munich, Germany). Reverse transcription was done by taking equal amounts of RNA 

by Superscript III reverse transcriptase (Invitrogen) according to the manufacturer protocol. 

The reverse transcription reaction mix is described in table 14. 

 

Contents Amount 

5x first strand buffer 4 µl 

DTT 1 µl 

dNTP 1 µl 

Random hexamers 1 µl 

Superscript III reverse transcriptase 1 µl 

RNasin (40 U/µl) 1 µl 

DEPC dH2O 1 µl 

Total 10 µl 

Table 14: Reverse transcription reaction mix for RNA from mouse brain. 

 

Ten µl of equal amounts of RNA template were used for reverse transcription reaction. The 

program for reverse transcription was: 50
o
C for 2 hr, 75

o
C for 20 min and after termination 

the products were kept at 4
o
C. 

 

3.2.8.3 Real time PCR 

After the reverse transcription reaction, a real time PCR was performed using a Gene 

Expression Master Mix (Applied Biosystems, Darmstadt, Germany). 0.5 µl of cDNA was 

used as template in 12.5 µl total reaction volume.  Ten µM of each primer and 5 µM probe 
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mix were prepared and 0.5 µl of this primer probe mix was used for real time PCR. Each 

reaction was done in triplicates. The reactions were carried out in optical 384-well reaction 

PCR plates (Applied Biosystems) in 7900HT Fast Real Time PCR System (Applied 

Biosystems). The PCR program used was at 50
o
C for 2 min, 95

o
C for 10 min, 95

o
C for 15 sec 

and 60
o
C for 1 min with 40 repetitions. Premixed taqman primers for β-actin and GLT-1 

(Applied Biosystems) were provided by Dr. Gerald Seifert in the institute. All probes were 

labeled at 5' with fluorescein amidite (FAM) and at 3' end with carboxytetramethylrhodamine 

(TAMRA), except for β-actin where the quencher is non fluorescent. For each reaction, the 

critical threshold cycle (Ct) value was determined using SDS 5.0 software (Applied 

Biosystems). The data was analyzed with the ∆∆Ct method, using GAPDH and β-actin as 

reference genes. The efficiency of the different gene specific primers used was calculated by 

performing real time PCR (as mentioned above) with serial dilutions (100 ng, 10 ng, 1 ng, 0.1 

ng, 0.01 ng, 0.001 ng) of mouse brain cDNA template. The Ct values were plotted against the 

concentration and the slope and correlation co-efficient were estimated. Primers and probe 

sequences used for each gene are described in table 15. 

 

# Type Oligonucleotide sequence Target 

 

1 

Forward 5'-TTTGACTTCAGCCTCCAAGGA- 3'  

Cx43 Reverse 5' -TCTGGGCACCTCTCTTTCACTTA- 3' 

Probe 5' -TTCCACCACTTTGGCGTGCCG- 3' 

 

2 

Forward 5' -CGTACACCAGCAGCATTTTCTT- 3'  

Cx30 Reverse 5' -ACCCATTGTAGAGGAAGTAGAACACAT-3' 

Probe 5' -CGCATCATCTTCGAAGCCGCCT- 3' 

 

3 

Forward 5' -GAGAAGGACTGCGCTGCAA- 3'  

GS Reverse 5' -CCACTCAGGTAACTCTTCCACACA- 3' 

Probe 5' -CCGTACCCTGGACTGTGAGCCCAA- 3' 

 

4 

Forward 5' -AGCTGTTCTGTCTACACTCCTGTTACTC- 3'  

S100β Reverse 5' -CCTTCTCCAGCTCGGACATC- 3' 

Probe 5' -ACACTGAAGCCAGAGAGGACTCCAGCA- 3' 

 

5 

Forward 5' -CGACAGTCAGCCGCATCTT- 3'  

      GAPDH Reverse 5' -CCGTTGACTCCGACCTTCAC- 3' 

Probe 5' -CGTCGCCAGCCGAGCCACA- 3' 

Table 15: Real time PCR primers and probe sequences of transcripts. 

 

3.2.9 Generation of luciferase vectors 
 

3.2.9.1 GS 3' RACE 

RACE (Clontech) was performed to identify the 3' end of the GS mRNA according to 

manufacturer instructions. Touchdown PCR was performed as mentioned in the Methods 

section 3.2.4.1. Primers were binding at 230 bp (RaceGS1), 369 bp (RaceGS2) and 617 bp 

(RaceGS3) upstream of 3' UTR end (sequence obtained from ensemble.org). Sequences of 

primers used were as in table 16. 
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Primer Sequence 

RaceGS1 5' -GTAAACACACCCCCACCTCCATCCCAGCC- 3' 

RaceGS2 5' -CAATGTCTCCCTCCACTTGGCTCTTAGGG- 3' 

RaceGS3 5' -CCAGGCTTAGGTTTAGGGGATGCGTATAC- 3' 

Table 16: Primers for GS 3' RACE. 

 

3.2.9.2 Luciferase vectors 

For studying functional interactions between CPEB3 and its target proteins, luciferase 

expressing plasmids were generated. pGL4.75 [hRluc/CMV] was generated by replacing the 

renilla luciferase open reading frame (ORF) with firefly luciferase ORF (done by Lech 

Kaczmarczyk, IZN).  The distal UTR sequences of the corresponding targets with CPEs were 

cloned into luciferase reporter plasmid.  

 

3.2.9.2.1 Isolation and cloning of WT and MUT 3' UTR of GS 

The GS distal 3' UTR of 281 bp length was isolated which contains a CPE (wildtype, WT) 

from mouse brain cDNA (Clontech) with primers containing flanking restriction enzyme sites 

for XbaI and SalI.  Advantage HF polymerase (Clontech) was used as per the manufacturer’s 

instructions. The PCR program used is described in table 17. 

 
Intial denaturation       94°C for 1 min  

Denaturation    94°C for 5 sec 

Annealing   45°C for 30 sec            35x                                   

Extension 68°C for 1 min     

Final extension            68°C for 20 min 

Hold  4°C 

Table 17: PCR program for generating luciferase vectors.  

 

The PCR product was run on a gel and the DNA was purified using a gel extraction kit 

(Promega) and cloned into the PCR-XL-TOPO vector (Invitrogen). The minipreps were 

verified by sequencing (Qiagen). The mutant (MUT) version was generated by mutating the 

CPEs using an SOE PCR-based strategy (Sambrook and Russell, 2001) and cloned into the 

PCR-XL-TOPO vector as above. Both the WT and MUT versions were sequence verified 

(Qiagen). The inserts were isolated from the PCR-XL-TOPO vector by digesting with XbaI 

and SalI enzymes; similarly, the luciferase vector was lineralized using the same enzymes. 

They were separated on an agarose gel and DNA was purified using a gel extraction kit 

(Promega). The inserts and the vector were ligated with Fast-link ligase (Epicentre, Madison, 
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WI, USA) as per manufacturer’s instruction to obtain a GSWT-pGL and GSMUT-pGL 

vectors of GS 3' UTR. The primers used are shown in table 18. 

 

Primer  Sequences 

GSCPE left 5' -TCTAGAGACTGTTACTTTCCTTCTG- 3' 

GS CPE right 5' -GTCGACGGAACCACAAAGAAACAAGTCAG- 3' 

GS MUT up 5' -CTTTTTTTTTTTCGGCCATAGTAAACACACCCCC- 3' 

GS MUT down 5' -GGGGGTGTGTTTACTATGGCCGAAAAAAAAAAAG- 3' 

Table 18: Primers used for generating GS luciferase vectors. 

 

3.2.9.2.2 Isolation and cloning of WT 3' UTR of Cx30 

A Cx30 3'UTR fragment (WT) of 183 bp length was isolated from mouse brain cDNA 

(Clontech) using primers shown in table 19. Primers were flanked by sites for the restriction 

enzymes XbaI at the 5' end and Sal1 at the 3' end. Advantage HF polymerase (Clontech) was 

used as per the manufacturer’s instructions. The PCR program used was identical to the one 

described in Methods section 3.9.2.1, except for the annealing temperature, which was set to 

49
o
C, and the same procedure was followed as described in 3.9.2.1.  

 

Primer  Sequence 

Cx30lt_sh 5' -TCTAGAGTTTAATGAGCTAGTGTGTGCTC- 3' 

Cx30UTR_rt 5' -GTCGACGAAGCAACAGGGTCAAGCTTTATTGGC- 3' 

Table 19: Primers used for generating Cx30 luciferase vectors. 

 

3.2.10 Generation of the CPEB3a-FLAG vector 
 

The ORF of CPEB3a was cloned downstream of the 3x FLAG sequence in a p3XFLAG-

CMV-7.1 expression vector. Primers were designed as per the instructions in the infusion 

cloning manual (Clontech) with flanking restriction enzymes HindIII at 5' and EcoRI at 3' end.  

 

3.2.11 RNA Co-immunoprecipitation or pulldown 

To study the interaction between CPEB3 protein and the target mRNAs containing CPEs, 

RNA Co-immunoprecipitation (Co-IP) experiments were performed. 

 

3.2.11.1 HeLa cell culture and transfection 

HeLa cells were maintained regularly in DMEM medium supplemented with 10% FCS, 

Penstrep (100 u/ml) at 37
o
C with 5% CO2.  Cells were trypsinised at 48 hr intervals and 

replated in 75 cm
2
 tissue culture flasks. HeLa cells were plated (1.7x10

6
 cells/10 cm dish) 24 

hr before transfection. Cells were allowed to grow until they reach 70-80% confluency. Cells 

were co-transfected with bait (CPEB3a-FLAG, CPEB1-FLAG (vector provided by Dr. Martin 
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Theis) or FLAG-GFP) and prey (luciferase constructs with WT or MUT CPEs) plasmids with 

lipid-based transfection using Lipofectamine 2000 (Invitrogen) according to the 

manufacturer’s instructions. For each pulldown experiment, 6 µg of bait and 2 µg of prey 

plasmid DNA was used for transfection. Transfection was done using medium without serum, 

medium was exchanged with medium containing serum 5 hr after transfection. The 

transfected cells were used for further analysis after 24 hr. 

 

3.2.11.2 Co-IP assay 

Co-IP was performed to determine the interaction of CPEB3 with the target mRNAs (Cx43, 

Cx30 and GS) using FLAG antibody. Cells were harvested 24 hr post transfection, medium 

was removed and cells were washed twice with ice cold 1x PBS. The cell lysate was obtained 

by scraping in ice-cold lysis buffer (1 ml/10 cm dish) (10 mM HEPES pH 7.4, 200 mM NaCl, 

30 mM EDTA, 0.5% TritonX-100) with RNAsin (200 U/ml), Roche complete mini tablet (1 

tablet/10 ml), tRNA (1 µg tRNA/ml)) and taken into a pre-chilled 1.5 ml tube. The cell lysate 

was passed through a 27G needle (Braun) for 5-6 times for obtaining a homogenized lysate 

and was centrifuged at 16,000 g/4
o
C/20 min. Protein A sepharose beads (Invitrogen) were 

used for pre-clearing, 60 µl beads were first equilibrated in 1 ml of lysis buffer (without 

additives) by centrifuging at 6,000 g/4
o
C for 1 min, the buffer was removed and 1 ml of  the 

supernatant from the centrifuged lysate was added to the beads and incubated at 4
o
C/1 hr by 

rotating at 12 rpm (Rotator mixer, Grant-Bio). To capture immunoprecipitated complexes 

protein G-Dyna beads (Invitrogen) were used, beads were first equilibrated with lysis buffer 

(without additives) and blocked (1 µg of tRNA/30 µl of beads/0.5 ml of lysis buffer with 3% 

BSA) for 1 hr on ice. Later the pre-cleared lysates were incubated for 2-4 hr/4
o
C/12 rpm with 

10 µl of anti-FLAG mouse monoclonal antibody (Sigma) and Protein G-Dyna beads 

(Invitrogen) mixture. Thirty µl of the sample were taken to determine the amount of input 

material. Then the beads were washed (1 ml/tube) for 5-6 times/5 min each with ice cold wash 

buffer (10 mM HEPES pH 7.4; 500 mM NaCl; 30 mM EDTA; 0.5% TritonX-100 with 100 U 

of RNasin and one complete mini tablet /50 ml of wash buffer). 350 µl of RLT buffer 

(RNeasy mini kit, Qiagen) was added to the beads and stored at -20
o
C.  

 

3.2.11.3 RNA extraction and reverse transcription 

The CPEB3 bound mRNA was extracted from the co-immunoprecipitate. Reverse 

transcription was performed by using Superscript III (Invitrogen). RNA was extracted from 

both the pull down samples and inputs using an RNeasy plus mini kit (Qiagen) following 
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manufacturers instructions. For reverse transcription reaction, equal amounts of RNA were 

used with Superscript III reverse transcriptase (Invitrogen) according to manufacturer’s 

instructions. The reverse transcription reaction mix used for RNA Co-IP is in table 20. 

 

Contents Amount 

5x first strand buffer 4 µl 

DTT 1 µl 

dNTP 1 µl 

Random hexamers 1 µl 

Superscript III reverse transcriptase 1 µl 

RNasin (40 U/µl) 1 µl 

DEPC dH2O 1 µl 

Total 10 µl 

Table 20: Reverse transcription reaction mix for RNA extracted from Co-IP samples. 

 

For pulldowns, 10 µl of RNA template was used for the reverse transcription reaction. For the 

inputs, the concentration was determined using Nanophotometer (Implen GmbH), and equal 

amounts of RNA were taken. Reaction conditions were the same as mentioned in the Methods 

section 3.2.8.2. 

 

3.2.11.4 Real time PCR 

To measure the enrichment of the co-immunoprecipitated mRNAs, Taqman (Applied 

Biosystems) based quantitative real time PCR for luciferase was performed. After reverse 

transcription reaction, a Taqman reaction was performed using a Gene Expression Master Mix 

(Applied Biosystems). Each reaction was done in triplicate. The reactions were carried out in 

Optical 384-Well Reaction PCR plates (Applied Biosystems) using a 7900HT Fast Real Time 

PCR System (Applied Biosystems). The reaction mix and PCR conditions used were identical 

to the conditions mentioned in 3.2.8.3 except that 60 repetitions were carried out. Human 

GAPDH was used as reference gene. Data was analyzed using the ∆∆Ct method and the 

retention of mRNA by the bait proteins was calculated using normalized input mRNA values. 

The primers and probe sequences used for real time PCR are shown in table 21. 

 

# Type Oligonucleotide sequence Target Species 

 

1 

Forward 5' - CCAATTCAGCGGGAGCC - 3'  

Luciferase 

 

Firefly Reverse 5' - TTCGACGCAGGTGTCGC - 3' 

Probe 5' - TGTTGGGGTGTTGGAGCAAGATGGAT- 3' 

 

2 

Forward 5' - AAGATGCGGCTGACTGTCG - 3'  

GAPDH 

 

 

Human Reverse 5' - GTGAAGGTCGGAGTCAACGG - 3' 

Probe 5' - TGTGGCTCGGCTGGCGACG - 3' 

Table 21: Taqman primer and probe sequences used for real time PCR of RNA Co-IP samples. 
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4. Results 
 

4.1 Expression of CPEBs in primary astrocyte cultures 

 In order to investigate the role of CPEBs in astrocytes, the expression pattern of different 

CPEBs (1-4) was studied in primary astrocyte cultures.  

 

4.1.1 Expression pattern of CPEB isoforms 

For investigating the expression pattern of CPEBs in astrocytes, RNA was harvested from rat 

primary astrocyte cultures and reverse transcription PCR was done. For each CPEB, primers 

flanking the alternatively spliced region were used to differentiate between splice isoforms. 

All CPEB transcripts i.e. CPEB (1-4) were expressed in primary astrocyte cultures. The 

different bands observed for each CPEB represent splice isoforms of the respective CPEB 

(Fig. 8). These PCR products were subcloned and analyzed by sequencing. Table 22 

summarizes different splice isoforms observed for each CPEB and their relative abundance. 

For CPEB1 predominantly the ∆5 type (Wilczynska et al., 2005) was observed. For CPEB2 

and CPEB3, isoforms lacking the B-region which contain the putative phosphorylation sites 

for various kinases as CamKII, S6-kinase and PKA (Theis et al., 2003b) were more 

abundantly expressed. For CPEB4, only the isoforms lacking the B-region were observed. 

The isoforms containing the B-region were more abundantly expressed in the principal 

neuronal cell layers of the mouse hippocampus (Theis et al., 2003b). The presence of B-region 

lacking isoforms is consistent with the results obtained from single cell reverse transcription 

PCR data (Turimella et al., in revision; Vangoor et al., in revision). 

 

CPEB Isoforms 

CPEB1 

 

15x -  ∆5 

1x -  ∆17 

 

CPEB2 

 

8x – 2d 

3x – 2a 

2x – 2c 

1x – 2b 

 

CPEB3 

 

11x – 3d 

2x – 3b 

2x – 3c 

1x – 3a 

CPEB4 

 

11x – 4d 

5x – 4b 

Table 22: Distribution of CPEB isoforms, for each CPEB 16 minipreps were sequence analyzed. 
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Figure 8: RT-PCR for CPEBs on primary astrocyte cultures for CPEBs. Representative image showing CPEB 1-

4 transcripts in cultured astrocytes (n=3 experiments). The different bands represent splice isoforms of CPEBs. β 

actin was used as a positive control. bp: base pairs, NC-RT: negative control reverse transcription PCR, PC-RT: 

positive control reverse transcription PCR. 

 

4.1.2 Localization of CPEBs in astrocytes 

Primary astrocytes were stained with antibodies specific for each CPEB (1-4) to visualize the 

localization of the endogenous CPEB proteins. All CPEBs were localized in the cytoplasm 

(Fig. 9).  For CPEB1, 2 and 4 a diffuse localization in the cytoplasm and also in the processes 

was observed, whereas CPEB3 protein was found to be enriched more in the processes than in 

the cytoplasm (Fig. 9g, shown by arrows). A similar pattern of localization was observed for 

CPEB3 in primary hippocampal neurons (Huang et al., 2006). The presence of CPEB3 in the 

distal processes might give a clue about its possible role in modulating local protein synthesis. 

Together with nonradioactive in situ hybridization showing CPEB3 and CPEB4 mRNA in 

GFAP positive cells of the hippocampus (Theis et al., unpublished; Vangoor et al, in 

revision), single cell reverse transcription PCR for CPEBs 2-4 in astrocytes of acute 

hippocampal slices (Turimella et al., unpublished; Vangoor et al., in revision) and FACS 

purification of fluorescently labeled astrocytes from Cx43kiECFP mice followed by real time 

PCR for CPEBs 2-4 (Kaczmarczyk et al., unpublished; Vangoor et al., in revision), it can 

concluded that CPEBs 1-4 are present in astrocyte cultures, while CPEBs 2-4 are expressed in 

astrocytes of the mouse brain. 
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Figure 9: Staining for different CPEB (1-4) proteins in primary astrocyte cultures shows the localization of 

endogenous CPEB proteins. CPEB (red), GFAP (green), Hoechst (blue). CPEB1 (a-c), CPEB2 (d-f), CPEB3 (g-

i) and CPEB4 (j-l). Scale bar, 20 µm.  

 

4.1.3 Cx43 and GFAP downregulation 

To study if CPEB3 has any negative impact on the astrocytic target proteins, primary 

astrocytes were transfected with a CPEB3-EGFP fusion vector. A reduction in the 

immunoreacitivity for Cx43 and GFAP was observed when the cells were transfected with 

CPEB3. Specifically, the cells overexpressing CPEB3 had reduced levels of Cx43 (Fig. 10), 

together where the expression was normal in the neighboring untransfected cells; this gives a 
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hint that CPEB3 could regulate the basal translation of Cx43 in astrocytes. Cx43 mRNA 

contains two CPEs in its 3' UTR. CPEB3 was also shown to regulate the basal translation of 

GluR2 in neurons (Huang et al., 2006). The immunoreactivity for GFAP was also reduced in 

those cells overexpressing CPEB3 (Fig. 10) (n= 20 cells from two independent transfection 

experiments). 

 

Figure 10: Representative picture showing decreased Cx43 (a) and GFAP (c) expression in cells overexpressing 

CPEB3 (b). Overlay of Cx43 (red), GFP (green) and GFAP (blue) (d). Scale bar, 100 µm. 

 

4.2 Generation of CPEB3-GFAP transgenic mice 

For studying the role of CPEB3 in astrocytes, transgenic mice over expressing CPEB3 in 

astrocytes were generated. 

 

4.2.1 Transgenic mouse generation 

To study the functional role of CPEB3 in astrocytes, transgenic mouse over expressing 

CPEB3-EGFP fusion protein in astrocytes were generated. The expression of CPEB3 was 

driven by the human GFAP (hGFAP) promoter (Fig. 11) specifically in astrocytes (Fiacco et 

al., 2007). These mice were generated using the Tet-Off system (Gossen and Bujard, 1992). In 

the absence of Dox, tTA binds to the TetO and drives the expression of the gene under the 

control of hGFAP promoter. CPEB3-EGFP was cloned downstream of TetO sequences in a 

pMM403-400 vector which has a SV40 poly (A) (Fig. 11). The resulting vector was linearized 

with SfiI to isolate the transgene (TetO-CPEB3-EGFP) from the plasmid backbone and the 

transgene was injected into zygotes; the embryos were later transplanted into a foster mother. 

The litters obtained from these mice were genotyped and the positive founders with TetO-

CPEB3 were further bred with hGFAP-tTA mice (Fiacco et al., 2007) to get astrocytic 

specific expression. The astrocytic tTA binds to TetO and drives CPEB3 expression in 

astrocytes. 
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Figure 11: Schematic showing the Tet-Off system. hGFAP promoter, SV40pA: Simian virus 40 polyadenylation 

signal, TetO7: seven repeats of tetracycline operator, CMV tata: cytomegalovirus minimal promoter and TATA 

box. 

 

4.2.2 Genotyping of mice 

To analyze if the litter from breedings of hGFAP-tTA and TetO-CPEB3 mice were carrying 

single (hGFAP-tTA or TetO-CPEB3) or double transgenes (hGFAP-tTA: TetO-CPEB3), mice 

were genotyped by extracting tail tip DNA and amplification with primers specific to the 

TetO and tTA transgenes. Fig. 12 shows an example of the result obtained from a genotyping 

PCR with both TetO and tTA PCR for hGFAP-tTA: tetO-CPEB3-EGFP mice. Two bands 

were observed at a size of approximately 419 bp and 395 bp for the TetO transgene and a 

single band of size 318 bp for the tTA transgene (represented by circles). The TetO primers 

for genotyping always yielded two bands for CPEB3-GFAP mice, this may be due to a head 

to head integration of the transgene. Only DT mice which were positive for both the PCRs 

were considered for further analysis along with single transgenic littermate controls.  

 

 

Figure 12: Representative gel image showing the genotyping PCR for TetO and tTA transgenes. TetO PCR 

yields 419 bp and tTA PCR yields 318 bp, represented by circles. PC – positive control, NC – negative control. 

 

4.2.3 Screening of lines 

Single transgenic mice carrying the TetO-CPEB3-EGFP transgene were bred with hGFAP-

tTA mice. The litters obtained from breeding were considered as individual lines and the 

expression was tested by staining for GFP in DT mice, after genotyping (4.2.2). Among the 

various lines analyzed (# 1, 6, 23, 28, and 40) for expression of CPEB3-EGFP in astrocytes, 

mice from line #28 were found to show expression specifically in astrocytes. This mouse line 

was selected for all the studies performed. 
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4.3 Characterization of CPEB3-GFAP transgenic mice 

CPEB3 mice were characterized by immunohistochemical techniques. The localization of 

CPEB3 protein was visualized by staining for GFP, as GFP was tagged to the CPEB3 at the 

C-terminus of the CPEB3 coding region. 

 

4.3.1 Expression of CPEB3 across brain regions 

Upon staining with GFP, expression of CPEB3 was observed in many of the astrocytes in the 

hippocampus (Fig. 13). Apart from the expression in hippocampus, a spotty expression 

pattern of CPEB3-EGFP was also observed in some regions of cortex and thalamus.  Notably, 

CPEB3 overexpression led to a decreased GFAP protein content (Fig. 13c, f, i). 

 

Figure 13: Representative images showing the expression of CPEB3-EGFP across brain regions. Hippocampus 

(a-c), cortex (d-f) and thalamus (g-i). Scale bar, 25 µm. DG- dentate gyrus, SR – stratum radiatum, SO – stratum 

oriens, SLm – stratum lacunosum moleculare. 
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4.3.2 Localization of CPEB3 within astrocytes 

To check for the localization of CPEB3-EGFP in astrocytes, mice overexpressing CPEB3 

were perfused and expression was studied after postnatal 21 (p21) days. CPEB3 protein was 

localized in the cytoplasm and also in peripheral astrocytic processes (Fig. 14A). The identity 

of the astrocytes was confirmed by co-staining with the astrocytic marker GFAP. Co-

localization of CPEB3-EGFP with the astrocytic marker GFAP was clearly visible (Fig. 14A). 

Overexpression was also confirmed by immunoblotting for CPEB3-EGFP protein by probing 

the hippocampal protein lysates with GFP antibody (Fig. 14B).  

 
 

Figure 14: A) Representative image showing localization of CPEB3-EGFP in astrocytes. GFP (green), GFAP 

(red), co-localization is in yellow. Scale bars, 50 µm (a), 20 µm (b). B) Immunoblot image showing the 

overexpressed CPEB3-EGFP protein in DT mice.  

 

4.3.3 Developmental deficit in CPEB3-GFAP mice 

Mice overexpressing CPEB3 in astrocytes exhibit developmental deficits i.e., they have 

enlarged ventricles as shown in Fig. 15.  The DT mouse brains were morphologically larger 

(hydrocephalus) and had a different, much more fragile consistency than their control 

littermates. The 3
rd

 ventricle and the lateral ventricles of the brain were enlarged. The reason 

for this enlargement is not known. However, not all DT mice showed enlarged ventricles 

(62.5%, n= 8 mice). 

 

Figure 15: Nissl stained coronal section of CPEB3-GFAP (a) mice showing an enlarged ventricle compared to 

control mice (b). 
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4.3.4 Doxycycline treatment  

As these mice were generated using the inducible Tet system, transgene expression can be 

turned off by giving Dox in the food. To rescue the mice from developmental defects and to 

study the role of CPEB3 in adult astrocytes, these mice and their parents were given Dox in 

their food during birth and until the age of weaning. Application of Dox blocks the tTA from 

binding TetO and prevents expression of the CPEB3 transgene. So, transgene expression was 

turned off until the age of weaning and the mice were analyzed later at different time points to 

check for optimum expression levels. Mice were analyzed at 4 weeks and 7 weeks after 

removing Dox. When the mice were analyzed after 4 weeks of Dox removal, enlarged 

ventricles were not observed, and CPEB3-EGFP expression was prominent in astrocytes (Fig. 

16). The 7 weeks time point was selected for all experiments, as maximum expression levels 

were observed.  

 

Figure 16: Image showing the comparison of CPEB3-EGFP expression during (a-c) after withdrawal of Dox (d-

f) and in control mice (g-i). GFAP in red, GFP in green and Hoechst in blue. Scale bar, 25 µm. DG- dentate 

gyrus, SR – stratum radiatum, SO – stratum oriens. 

 



Doctoral thesis - Vangoor                                                                                               Results                         

 57 

4.3.5 Extent of CPEB3 overexpression in astrocytes 

For estimating the extent of CPEB3-EGFP overexpression in the hippocampus, cells 

expressing EGFP and GFAP were counted in the CA1 region. 50% of the GFAP positive cells 

were expressing CPEB3-EGFP (Fig. 17A). Almost 90% of these GFP positive cells co-

expressed GFAP. To further confirm the extent of overexpression, the specificity of CPEB3-

EGFP expression was also checked by co-staining with S100β where a similar 90% of the 

cells expressing CPEB3-EGFP were also positive for S100β (Fig. 17B). It is at present unclear 

which cell type the remaining 10% of the CPEB3-EGFP positive cells represent. 

 

 

Figure 17: A) Histogram showing the extent of overexpression. Approximately 50% of the GFAP positive cells 

were overexpressing CPEB3-EGFP in the hippocampus (n=3, 4 sections/mouse). B) Histogram showing the 

extent of overexpression, quantified for S100β and GFP, (n=3, 4 sections/mouse). Error bars represent SEM. C) 

Representative image showing staining for S100β and GFP. Scale bar, 50 µm. 

 

4.3.6 Specificity of CPEB3 expression 

To determine the specificity of CPEB3-EGFP expression, the sections were stained with other 

cell type specific markers such as NG2 (NG2 glia), Iba1 (microglia) and NeuN (neurons) (Fig. 

18). Cells expressing GFP and the respective cell type markers were counted to check if there 

was any co-expression of CPEB3 with the above mentioned cell type. CPEB3-EGFP 

expression was found to be not co-localized with NG2, Iba1 or NeuN (n= 3 mice, 4 
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sections/mouse). This shows that the expression of CPEB3-EGFP driven by hGFAP-tTA 

promoter was specifically in astrocytes. 

 

Figure 18: Representative image showing that CPEB3-EGFP is not co-expressed with cell type specific markers 

of NG2 cells (a-c), microglial (d-f) or with neurons (g-i). Scale bar, 20 µm. 

 

4.3.7 Increase in GFAP immunoreactivity 

In constitutively overexpressing CPEB3-EGFP mice, an enhanced immunoreactivity for 

GFAP was observed around the cells expressing CPEB3-EGFP in hippocampus (Fig. 14). To 

clarify whether this enhanced GFAP expression was due to developmental disturbances or 

whether it reflected an acute reaction in adult hippocampal astrocytes, double 

immunofluorescence stainings with EGFP and GFAP were performed in mice after Dox 

withdrawal (Fig. 19). In areas of the cortex where occasionally a region of EGFP expression 

was observed, a strong expression of endogenous GFAP was found, which is normally not 

prominent in adult cortex (Fig. 19 a-c). The increased GFAP immunoreactivity was locally 

confined to the region of CPEB3-EGFP overexpression. Similarly, in the thalamus of mice 

overexpressing CPEB3-EGFP, strong GFAP expression was observed (Fig. 19 d-f), whereas 

in control animals thalamic GFAP expression was weak to non-existent.  
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Most intriguingly, endogenous GFAP expression was weak in the very cells which expressed 

CPEB3-EGFP, while it was increased in the neighboring cells not expressing CPEB3-EGFP 

(figure 19c, f). Although GFAP is a non-CPE containing mRNA in mouse (unlike in humans 

and rats), there could be an indirect effect on GFAP protein expression by CPEB3. 

 

Figure 19: hGFAP-tTA driven overexpression of CPEB3 in astrocytes leads to increased immunoreactivity of 

GFAP in cortex (a-c) and thalamus (d-f). Paradoxically, there is a negative correlation between the expression of 

CPEB3 (shown by arrowheads) and GFAP (shown by arrows) in individual cells of these mice. SP – stratum 

pyramidale, SO – stratum oriens. Scale bar, 25 µm. 

 

4.3.8 No change in GFAP protein levels 

As reduced immunoreactivity for GFAP was observed in those cells expressing CPEB3-EGFP 

(4.3.7), immunoblotting was performed with hippocampal protein lysates of CPEB3-GFAP 

mice and probed for GFAP. Upon quantification, no change in the protein levels for GFAP 

was observed between controls and DT mice (Fig. 20). The CPEB3-EGFP expressing cells 

were showing reduced immunoreactivity for GFAP, whereas the non-CPEB3 expressing cells 

showed enhanced reactivity (Fig. 19). Due to this, there might be no overall alteration in 

hippocampal protein levels of GFAP observed in immunoblotting. Moreover the expression of 

CPEB3-EGFP was only in the 50% of the GFAP positive cells; this might be not enough to 

observe an effect on overall GFAP protein levels. The most prominent changes in GFAP 

immunoreactivity in situ were consistently observed in cortex and thalamus. 
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Figure 20: Representative immunoblot image (A) and histogram (B) showing the quantification for hippocampal 

GFAP protein levels in CPEB3-GFAP mice. n=5 mice/genotype, Error bars represent SEM. 

 

4.3.9 CPEB3 overexpression did not affect the number of astrocytes 

To address the question if the overexpression of CPEB3 in astrocytes has any detrimental 

effects on the number of astrocytes, stainings for S100β were performed. S100β is an 

astrocytic marker and has no binding sites for CPEB. Quantification was done by counting the 

number of S100β and Hoechst (nuclei staining) positive cells in the SR and SLM regions in 

the CA1 region of the hippocampus. There was no difference observed in the number and 

density of astrocytes between CPEB3-GFAP mice and their control littermates in both regions 

(Fig. 21).  
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Figure 21: A) Representative image showing staining for S100β and Hoechst in the hippocampus. Scale bar, 25 

µm. B) Histogram showing the ratio of astrocytes in SR and SLm regions (n= 5 mice/genotype, 4 sections/mice), 

Error bars represent SEM. DG- dentate gyrus, SR – stratum radiatum, SO – stratum oriens, SLm – stratum 

lacunosum moleculare.  

 

4.3.10 TUNEL staining  

TUNEL staining was performed to test if overexpression of CPEB3-EGFP has led to cell 

death. No significant difference in the number of TUNEL positive cells was observed in DT 

mice compared to their control litters. The positive control (TUNEL staining performed after 

DNase treatment) showed a very strong signal (Fig. 22). We conclude that overexpression of 

CPEB3 does not lead to apoptotic cell death. 
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Figure 22: Representative image with the staining for TUNEL. No significant staining was observed in DT (a) 

and control littermates (b) mice compared to the positive controls (c). Scale bar, 25 µm. DG: dentate gyrus. 

 

4.4 Putative astrocytic mRNA targets  

The expression of mRNAs can be modulated by regulatory elements present in either 5' or 3' 

UTR of the mRNAs. These regulatory elements can be the binding sites for microRNAs or for 

RNA binding proteins. CPEBs are one class of RNA binding proteins which bind to CPEs 

present in the 3' UTR and regulate the translation of several mRNAs (Richter, 2007). Many 

mRNAs present in neurons contain CPEs in their 3' UTRs (Du and Richter, 2005). Recent 

reports show the expression of CPEB1 protein in distal processes of astrocytes, where it 

regulates the translation of β-catenin mRNA present at the leading edge of migrating astrocyte 

in an in vitro wound healing assay (Jones et al., 2008). CPEB1 also regulates the translation of 

cyclin B1 mRNA in rat astrocytes thereby controlling the cell cycle (Kim et al., 2011). The 

presence of CPEBs in astrocytes (4.1.1 and 4.1.2) indicates their possible role in regulating 

the translation of astrocytic mRNAs. Bioinformatics analysis was performed to screen for new 

CPEB targets in astrocytes. The 3' UTRs of several astrocytic mRNAs which are involved in 

key cellular processes were analyzed. Table 23 summarizes different astrocytic mRNAs 

across species which contain CPEs in their 3' UTR.  
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mRNAs 

Number of CPEs in the  

3' UTR across species 

 

Function 

 HUMAN RAT MOUSE 

Connexin 43 3 2 2  

Gap junctional coupling 

(Nagy and Rash, 2003) 
Connexin 30 3 3 4 

Connexin 26 2 2 2 

GS 2 3 3 Glutamate metabolizing 

enzyme (Martinez-Hernandez 

et al., 1977) 

GLAST (EAAT1) 4 3 2 Glutamate transporters 

(Rothstein et al., 1994) 
GLT-1 (EAAT2) 8 NA 11 

β-catenin 3 2 3 Migration of astrocyte (Jones 

et al., 2008) 

Cyclin B1 2 NA 4 Cell cycle (Kim et al., 2011) 

 

GFAP 1 1 --- Intermediate filament protein 

(Bignami et al., 1972) 

Dystrophin 5 NA 6 Anchoring AQP4 (Amiry-

Moghaddam et al., 2003) 

AQP4 8 4 4 Water channel 

(Badaut et al., 2002) 

Table 23: Putative CPEB targets expressed in astrocytes and the number of CPEs in their 3' UTR present among 

different species. NA- complete sequence information not available. 

 

4.5 Interaction of CPEB3 with target mRNAs 

Bioinformatics show that several astrocytic target mRNAs contain CPEB binding sites in their 

3' UTR regions (Table 23). To determine if these mRNAs are interacting with CPEB3 protein, 

RNA Co-IP experiments were performed. Therefore, a luciferase vector pGL4.75 

[hRluc/CMV] (where the renilla luciferase was replaced with firefly luciferase) containing 

UTR fragments with and without the CPEs of the targets were generated. A vector containing 

CPEB3a appended with the FLAG epitope was also generated to be used as a bait.  

 

4.5.1 Co-IP of Cx43 mRNA 

The distal part of the Cx43 3' UTR containing one CPE (220 bp) (Fig. 23A) was cloned into 

the pGL4.75 vector. A mutant version, where the CPE was mutated was also cloned in a 

similar way. HeLa cells were co-transfected with the CPEB3-FLAG (bait) and Cx43wt-pGL 

or Cx43mut-pGL (prey) plasmids. The CPEB3 interacting with Cx43 mRNA was co-

immunoprecipitated using FLAG antibodies. The precipitated mRNA was detected by real 

time PCR using luciferase-gene specific primers. A clear interaction between the Cx43 3' 

UTR and CPEB3 was observed, whereas this interaction was strongly diminished almost to 

control levels when the CPE was mutated.  Fig. 23B shows a three fold increase in CPEB3 

binding to WT Cx43 UTR in comparison with the mutant. The interaction of CPEB3 with 



Doctoral thesis - Vangoor                                                                                               Results                         

 64 

Cx43 was found to be CPE specific while the interaction with a non-CPE containing UTR, 

GAPDH (Fig. 23B) was unspecific. There was no interaction observed when FLAG-GFP was 

used as bait to Co-IP the Cx43 UTR which further showed the specificity of the interaction 

between Cx43 UTR and CPEB3.  

 

 

Figure 23: A) Schematic of Cx43 mRNA 3' UTR with binding sites for CPEBs and poly (A) sequences marked. 

B) Co-IP of overexpressed luciferase reporter mRNA appended with wild-type (WT) or mutated (MUT) 3’UTR 

derived from Cx43 mRNA or GAPDH 3' UTR (as control); FLAG-CPEB3 fusion protein was used as bait; 

precipitated mRNA was detected by real time PCR using luciferase-gene specific primers: Values were 

normalized with the average Ct values obtained for FLAG-GFP using GAPDH as a reference gene. *** 

P<0.0001 (student’s t-test). n = 3 independent transfections, error bars are SEM. 

 

4.5.2 Co-IP of Cx30 mRNA 

The distal 3' UTR of Cx30 bearing a single CPE (183 bp) and poly (A) signal (Fig. 24A) was 

cloned into a pGL vector (Cx30WT). HeLa cells were co-transfected with either CPEB3-

FLAG or CPEB1-FLAG together with the Cx30WT-pGL vector. Using FLAG antibody, 

CPEB3 or CPEB1 interacting with Cx30 mRNA was co-immunoprecipitated. The 

precipitated mRNA was detected by real time PCR using luciferase-gene specific primers. 

The interaction of Cx30 mRNA with CPEB3 was significantly higher compared to its 

interaction with CPEB1 (Fig. 24B). It could be that similar target mRNAs can be bound by 

different CPEBs with different affinities. CamKIIα mRNA is preferentially bound by CPEB1 

in comparison with CPEB2 (Turimella et al., in revision).  
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Figure 24: A) Schematic of Cx30 mRNA 3' UTR with binding sites for CPEBs and poly (A) sequences marked. 

B) Co-IP of overexpressed luciferase reporter mRNA with wild-type (WT) 3’UTR derived from Cx30 mRNA; 

FLAG-CPEB3 or FLAG-CPEB1 fusion protein were used as baits; precipitated mRNA was detected by real time 

PCR using luciferase-gene specific primers: Values were normalized with the average Ct values obtained for 

FLAG-GFP using GAPDH as reference gene. **P<0.0001 (student’s t-test), n = 3 independent transfections, 

error bars are SEM. 

 

4.5.3 Co-IP of GS mRNA 

The 3' end of GS mRNA was isolated by 3' RACE of mouse brain cDNA. It was found that 

mouse GS 3' UTR contains four CPEs and two non-consensus overlapping poly (A) 

sequences (UAUAAA, AAUCAA) unlike the consensus poly (A) sequence observed in rat 

GS (AAUAAA) (Du and Richter, 2005) (Fig. 25A). The distal parts of the GS 3’ UTR 

containing WT and MUT versions with one CPE (281 bp) were isolated and cloned into the 

pGL vector. CPEB3 interaction with GS 3' UTR was tested with Co-IP assay using FLAG 

antibodies as in 4.5.1. Interaction between the GS 3' UTR and CPEB3 was observed, whereas 

this interaction was significantly reduced when the CPE was mutated (Fig. 25B).  
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Figure 25: A) Schematic of GS mRNA 3' UTR with binding sites for CPEBs and poly (A) sequences marked. B) 

Co-IP of overexpressed luciferase reporter mRNA with wild-type (WT) or mutated (mut) 3’UTR derived from 

GS mRNA: FLAG-CPEB3 fusion protein was used as bait; precipitated mRNA was detected by Real Time PCR 

using luciferase-gene specific primers; Values were normalized with the average Ct values obtained for FLAG-

GFP using GAPDH as reference gene. * P<0.001 (student’s t-test), n = 3 independent transfections, error bars 

are SEM. 

 

4.6 CPEB3 downregulates major astrocytic connexins  

The major astrocytic gap junctional proteins Cx43 and Cx30 are involved in metabolite 

supply to neurons (Rouach et al., 2008), ion homeostasis, potassium buffering (Wallraff et al., 

2006) and adult neurogenesis (Kunze et al., 2009). A bioinformatics search and Co-IP 

identified Cx43 and Cx30 mRNAs as potential targets for CPEBs due to the presence of CPEs 

in the 3' UTR (Figs. 23A, 24A). 

  

4.6.1 Downregulation of Cx43  

The astrocytic gap junction protein Cx43 is expressed abundantly in astrocytes both in situ 

and in culture (Theis et al., 2003c; Theis et al., 2004). The interaction of Cx43 with CPEB3 

was verified by Co-IP assay (4.5.1), which showed a specific CPE dependent interaction 

between CPEB3 and Cx43 mRNA. To examine any effect on the expression of Cx43 protein 

in mice overexpressing CPEB3, antibody staining for Cx43 was performed. A strong 

reduction in the immunoreactivity for Cx43 was observed in the regions of CPEB3 

overexpression (Fig. 26A). In addition, the hippocampal protein levels of Cx43 in CPEB3 

mice showed a significant 25% reduction (p<0.05) compared to their control littermates (Fig. 

26B, C).  
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Figure 26: A) Loss of Cx43 protein in the cortex, hippocampus (HC - boxed region) and in thalamus. Scale bar, 

25 µm. B) Representative image from the immunoblotting of hippoampal lysates shows a significant reduction in 

the Cx43 protein levels between DT and control mice, also shown in the histogram (C) *p<0.05 (student’s t-test), 

n= 6 mice/genotype. Error bars are SEM. 

 

4.6.2 Downregulation of Cx30  

Cx30 is another important astrocytic protein expressed in the mouse hippocampus and is 

involved in interastrocytic gap juctional coupling (Gosejacob et al., 2011). To test if CPEB3 

overexpression has any impact on Cx30 protein in the hippocampus of CPEB3-GFAP mice, 

antibody staining was performed. A reduced Cx30 immunoreactivity was observed around the 

blood vessels in the CA1 region (Fig. 27A, a-c). Typically Cx30 surrounds the blood vessels, 

where the astrocytic endfeet enwrap the vessel (Rouach et al., 2008; Gosejacob et al., 2011) 

(Fig. 27g). Cx30 staining in CPEB3-GFAP mice (Fig. 27A, a-c) was almost as pronounced as 
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the staining in Cx30 knockout mice (Teubner et al., 2003) (Fig. 27A, d-f). The absence of 

staining in Cx30KO mice shows also the specificity of the antibody used. Control mice show 

WT levels of Cx30 (Fig. 27A, g, i). Immunoblots were performed for the total protein content 

of Cx30 from the hippocampal lysates which showed a significant 45% reduction (p<0.05) in 

the CPEB3-GFAP mice in comparison to their control littermates (Fig. 27B, C).  

 

Figure 27: A) Reduced expression of Cx30 protein in the CPEB3-GFAP mice which is similar to Cx30 KO mice 

(shown by arrows). Staining for Cx30 in WT control gives a strong signal around the vessel in the CA1 region. 

Scale bar, 10 µm. B) Representative image from the immunoblotting of the hippoampal lysates shows a 

significant reduction in the Cx30 protein levels, also shown in the histogram (C) *p<0.05 (student’s t-test), n= 5 

mice/genotype. Error bars are SEM. 

 

4.6.3 Interastrocytic coupling is reduced in CPEB3 mice 

Connexins are involved in interastrocytic gap junctional communication (Theis et al., 2003a; 

Wallraff et al., 2006; Rouach et al., 2008; Gosejacob et al., 2011). As there was a reduction in 
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the expression of both connexins in CPEB3 mice (4.6.1 - 4.6.2), tracer coupling studies were 

performed, as described previously (Wallraff et al., 2004). Biocytin was filled for 20 min into 

astrocytes in the CA1 region of the hippocampus and the sections were then analyzed. Upon 

staining for biocytin and quantifying the number of cells coupled from the Z-stack images, a 

significant 40% reduction (Fig. 28B) in the interastrocytic coupling was observed. Fig. 28A 

shows a representative image with the reduced number of coupled cells in the CPEB3-GFAP 

mice compared to control. Notably, in these mice, expression is observed in roughly 50% of 

all astrocytes (Fig. 17A). 

 

Figure 28: A) Representative image showing the extent of coupling in CPEB3-GFAP mice compared to controls. 

Scale bar, 10 µm. B) The quantification shows that the average numbers of coupled cells were reduced by 40% 

in DT mice compared to controls. Mice were on Dox until p21. Seven weeks after removal of Dox, mice were 

analyzed for coupling. *p<0.05 (student’s t-test), n= 12 sections/genotype and 3 mice/genotype respectively. 

Error bars are SEM. 

 

Interestingly in these DT mice, when biocytin was injected into a CPEB3-EGFP expressing 

astrocyte, the diffusion of tracer was confined to very few cells and moreover the tracer was 

taken up specifically by cells which were not expressing CPEB3 (Fig. 29). This further 

indicates the inhibitory role of CPEB3 on connexin expression. 
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Figure 29: A GFP positive astrocyte filled with biocytin shows gap junctional coupling selectively with the 

neighboring non GFP astrocytes (arrowhead) and at the same time there was no coupling observed with the 

neighbouring GFP positive astrocytes (arrow) which could reflect the inhibitory role of CPEB3 upon Cx43. 

Scale bar, 10 µm. 

 

4.7 Role of CPEB3 in adult neurogenesis 

Connexin expression in radial glia (RG) -like cells is required for adult neurogenesis in the 

DG of the subgranular zone (SGZ) of mouse hippocampus (Kunze et al., 2009). RG-like cells 

in the DG were shown to be coupled via gap junctions (Kunze et al., 2009). In mice 

constitutively overexpressing CPEB3-EGFP, a reduced expression of connexins (4.6.1 - 4.6.2) 

and significant reduction in interastrocytic gap juctional coupling (4.6.3) was observed. Since 

endogenous GFAP is expressed in RG-like cells, we wondered whether adult neurogenesis 

may likewise be impaired in mice overexpressing CPEB3. Together with Mr. Jiong Zhang, 

these mice were also analyzed for any impact on adult neurogenesis due to impaired connexin 

expression. 

  

4.7.1 Reduced proliferation  

The proliferation marker Ki-67 was used for assessment of proliferating cells in the SGZ of 

CPEB3 mice. Upon quantifying the number of Ki-67 positive cells (Table 24, Fig. 30A) a 

significant reduction in the number of proliferating cells was observed in CPEB3 mice 

compared to the control mice (Fig. 30B) which accounts up to 40%. A complete loss of 

connexins (DKO mice lacking Cx43 and Cx30) has led to a stronger reduction (87%) in the 

number of Ki-67 positive cells in the SGZ (Kunze et al., 2009). 

 
         Mouse line Total number of Ki67 

positive cells 

Total number of DG 

sections analyzed 

Ki-67 positive nuclei per 

DG section (mean ± SD) 

Control (n =3) 

CPEB3-GFAP (n =3) 

             292 

             194 

            30 

            30 

         9.7 ± 3.0 

         6.5 ± 2.4 

Table 24: Quantitative evaluation of Ki67 expression in the SGZ of the DG. 
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Figure 30: A) Confocal images of the DG of WT mice (a-c) and CPEB3-GFAP mice (d-f). (red- Ki-67, green- 

NeuN). Ki-67 positive cells are framed with yellow boxes and the dotted lines indicate the border between SGZ 

and GCL. Upon quantifying, a 40% reduction was observed in the number of Ki-67 positive cells indicating a 

low proliferative activity in CPEB3-GFAP mice. B) Histogram showing the reduction in the number of Ki-67 

positive cells. *p<0.05 (student’s t-test), n= 3 mice/genotype. Error bars are SEM. Scale bar, 100 µm. 

 

4.7.2 Decreased number of granule neurons 

In the adult SGZ, RG-like cells give rise to granule neurons which differentiate and migrate to 

the granule cell layer (Zhao et al., 2008). To find out if the translational inhibition of 

connexins by CPEB3 has any effect on the number of granule neurons in SGZ, stainings for 

Prox1 and NeuN were done. Confocal Z-stack images were taken and counting boxes were 

used to estimate the number of Prox1 positive cells. A significant 10% reduction in the 

number of granule neurons was observed (Table 25 and Fig. 31A, B) in DT mice compared to 

control mice. In the DKO mice, a 21% reduction in the number of Prox1 positive granule 

neurons in the DG was reported (Kunze et al., 2009). 
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         Mouse line Total number of Prox1 

positive cells 

Total number of counting 

boxes analyzed 

Prox1 positive cells per 

counting box (mean ±SD) 

Control (n =3) 

CPEB3-GFAP (n =3) 

           2582 

           2368 

            60 

            60 

        43 ± 7.5 

        39 ± 6.8 

Table 25: Quantitative evaluation of Prox1 expression in the DG. 

 

 

Figure 31: A) Prox1 staining for granule neurons of the DG (p76). B) Histogram showing a significant reduction 

of Prox1 positive cells. *p<0.01 (student’s t-test), n= 3 mice/genotype and 60 counting boxes/genotype. Scale 

bar, 100 µm. Error bars are SEM. 

 

4.7.3 Reduction in the number of BLBP positive cells 

To identify if there was any change in the number and the arrangement of the RG-like cells in 

the SGZ, expression of brain lipid binding protein (BLBP) an RG marker was assessed in 

mice overexpressing CPEB3. There was a strong reduction in the number of RG-like cells in 

CPEB3 mice (Fig. 32A). We observed a 50% reduction in BLBP positive cells in the SGZ of 

DT mice compared to the controls (Fig. 32B, Table 26). 

 
         Mouse line Total number of BLBP 

positive cells 

Total number of counting 

boxes analyzed 

BLBP positive cells per 

DG section (mean ± SD) 

Control (n =4) 

CPEB3-GFAP (n =4) 

           356 

           203 

            39 

            40 

        9.1 ± 3.2 

        5.1 ± 2.9 

Table 26: Quantitative evaluation of BLBP expression in the DG. 
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Figure 32: A) BLBP staining showing a strong reduction of BLBP positive RG-like cells in CPEB3 mice 

compared to control mice. B) Histogram showing the quantification of BLBP positive cells. **p<0.001 

(student’s t-test). (n= 3 mice/genotype, p76). Scale bar, 100 µm.  Error bars are SEM. 

 

4.8 Analysis of other targets in CPEB3 mice 

The other astrocytic proteins that were found to be regulated in these mice overexpressing 

CPEB3 were GS and EAAT2 (GLT-1).  

 

4.8.1 Downregulation of GS 

GS is an enzyme converting the excitatory aminoacid glutamate to glutamine and is expressed 

in astrocytes. GS is downregulated during epilepsy (Eid et al., 2004). The 3' UTR of GS 

contains CPEs (Fig. 25A); hence CPEBs could possibly bind and regulate its translation. The 

Co-IP showed a CPE specific interaction of CPEB3 with GS mRNA (4.5.3). Upon staining 

for GS in CPEB3-GFAP mice, a strong reduction in the immunoreactivity for GS was 

observed in regions of CPEB3 overexpression (Fig. 33A). Immunoblots from hippocampal 

protein lysates showed a significant reduction of GS protein levels in DT mice compared to 

their control litters (Fig. 33B, C). 
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Figure 33: A) Representative picture showing the loss of GS protein in cortex, hippocampus and thalamus of 

CPEB3-GFAP mice. Scale bar, 25 µm. B-C) Representative WB image and histogram showing a significant 

reduction in the GS protein levels in the hippocampus of the DT mice compared to the controls.  *p<0.05 

(student’s t-test), n= 5 mice/genotype. Error bars are SEM. 

 

4.8.2 Downregulation of GLT-1 

GLT-1 is an astrocytic protein involved in the glutamate uptake of astrocytes which contains 

several CPEs in its 3' UTR (Table 23). The expression of GLT-1 was reduced in the regions of 

CPEB3 overexpression in CPEB3-GFAP mice compared to the control staining (Fig. 34A). 

Immunoblots of hippocampal protein lysates showed a significant reduction in GLT-1 protein 

levels in DT mice compared to controls (Fig. 34B, C).  
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Figure 34: A) Representative image showing the loss of GLT-1 protein in cortex of the DT mice (a-c) compared 

to the control (d-f) staining. Scale bar, 25 µm. B) WB image showing the reduction in protein levels of GLT-1 in 

DT mice compared to control mice and the corresponding histogram (C). *p<0.05 (student’s t-test). n= 5 

mice/genotype. Error bars are SEM. 

 

4.9 No significant change in the transcript levels of CPEB3 targets 

As a significant reduction in the hippocampal protein levels of Cx43, Cx30 and GS were 

observed, the mRNA levels of the targets were checked by quantitative real time PCR. 

Taqman based assays were used. The efficiency of the taqman primers was calculated 

(methods section 3.2.8.3). Figure 35A, 35B shows the slope, linear equation and correlation 

co-efficient for Cx30 and GLT-1 taqman primers respectively. The efficiency of the primers 

was calculated with the formula given below. 

 

E = [10 
(-1/slope)

] – 1 (Dorak, 2006) 

 

 The efficiency (E) for Cx30 was estimated as 1.83, with 82.5% efficiency and for GLT-1 as 

1.90, with 90% efficiency. The efficiency of the other primers was also quantified in a similar 
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way (data not shown, Cx43: E= 1.83, S100β: E= 1.83, GS: E= 1.83). There was a minor 

decrease in the mRNA levels of the target proteins in CPEB3 mice compared to their control 

litters (Fig. 35C, D), which was not significant.  

 

 

Figure 35: A-B) Standard curves showing the efficiency of Cx30 and GLT-1 primers. E= 1.83 for Cx30 and E= 

1.90 for GLT-1 primers. C) Transcript levels of Cx30, Cx43 were not changed between control mice (C) and 

CPEB3-GFAP mice (DT). S100β was used as a non-CPE containing mRNA control.  D) Transcript levels of GS 

and GLT-1 were not changed between C and DT mice. The transcript levels were normalized to β actin. Five 

mice/genotype were used for the study. 

 

4.10 Endogenous expression of CPEB3 in WT and transgenic mice 

Co-localization of the endogenous CPEB3 and overexpressing CPEB3-EGFP protein was 

observed in the astrocytes of CPEB3-GFAP mice (Fig. 36). The antibodies used against 

CPEB3 also recognized the overexpressed protein.  

 

 



Doctoral thesis - Vangoor                                                                                               Results                         

 77 

 
 

Figure 36: Representative image showing the co-localization of CPEB3 protein with the overexpressed CPEB3-

EGFP positive cells in the CA1 region of hippocampus. SP- stratum pyramidale, SR – stratum radiatum. Scale 

bars, (c) 20 µm, (d) 10 µm.  

 

The localization of the endogenous CPEB3 protein in astrocytes was also studied using 

transgenic mice in which astrocytes are fluorescently labeled. Cx43ki-ECFP mice (Degen et 

al., 2012) were used where astrocytes are labeled with ECFP. Upon staining for CPEB3 and 

GFP, CPEB3 was found to be co-localized with the CFP signal (Fig. 37) which confirms the 

in vivo localization of CPEB3 protein in astrocytes. Localization of CPEB3 is observed in the 

fine processes of astrocytes (Fig. 37a). In the SGZ of the DG there was an increased 

immunoreactivity observed for CPEB3 (Fig. 37 b-d) where it might be localized in RG-like 

cells and be involved in adult neurogenesis, as overexpression of CPEB3 has a negative 

impact on adult neurogenesis (4.7). Only 50% of RG-like cells were gap junction coupled. 

Also, transient amplifying cells and neuroblasts were not coupled (Kunze et al., 2009). It is 

possible that strong expression of CPEB3 in these cells provides a fast cut-off in gap 

junctional coupling by translational repression.  

 
 

Figure 37: a) Representative image showing the immunolocalization of CPEB3 in fine processes of a CFP 

labeled astrocyte in hippocampus. b) Immunostaining showing a strong labeling of endogenous CPEB3 in the 

SGZ of DG, represented by dotted lines. c) Immunostaining for ECFP representing Cx43 expression. d) merged 

image. Scale bars, (a) 5 µm, (d) 25 µm. 

 

4.11 CPEB3 constructs for transgenic mice 

For comparing the individual effects of the different regulatory elements present in the 

CPEB3 gene, different transgenic mice were generated.  
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4.11.1 Investigation of the 3' end of CPEB3 

Northern blot analysis revealed two brain specific isoforms for CPEB3: a short version of 4.8 

kb and a long version of 6.9 kb (Theis et al., 2003b). The short (sh) version contains a UTR of 

927 bp and the long (lg) version contains a ~3.5 kb fragment at the 3' end of CPEB3 mRNA 

(Theis et al., 2003b). To verify this and further prove that this 3.5 kb fragment was the real 

end of CPEB3 transcript, a 3' RACE was performed using commercial mouse brain cDNA. 

The RACE products obtained were sequence analyzed. The UTR of 3.5 kb in size was found 

to be the end of CPEB3 mRNA. There were several CPEs and poly (A) sequences present in 

the 3' UTR (Fig. 38), but only sh and lg UTR were functionally verified as true 3' ends.   

 

 

Figure 38: A schematic of CPEB3 3' UTR with CPEs and poly (A) sequences. shUTR – short untranslated 

region, lgUTR – long untranslated region. 

 

4.11.2 Constructs generated with 3' regulatory elements of CPEB3 

From published results (Theis et al., 2003b) and the RACE experiments (4.11.1), the 3' end of 

CPEB3 mRNA transcript was confirmed with two types of UTRs: 0.9 kb and 3.5 kb with 

consensus poly (A) signal in both the variants (Fig. 37). These UTRs contain several CPEs to 

which other CPEBs could bind and regulate the expression of CPEB3, an auto-regulatory 

effect among CPEB proteins themselves (Theis et al., 2003b). The vectors were generated 

successfully by cloning the different UTRs (shUTR, lgUTR) into the CPEB3-pMM403-400 

vector. The TetOff system was used in generating these mice. The transgenes 

(TetO:CPEB3shUTR, TetO:CPEB3lgUTR) were isolated from the vector and zygote injected 

for generating new transgenic mice. These mice were used to compare expression and 

localization of CPEB3 with UTRs in various cell types and also comparing the regulatory 

effects of CPEB3 on the target proteins with CPEB3 mice without UTRs. The positive 

founders carrying the transgenes were identified with genotyping PCR for the TetO transgene. 

These mice are currently screened for expression using GFAP-tTA (Fiacco et al., 2007) and 

CamKII-tTA mice (Mayford et al., 1996). 
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4.11.3 CPEB3d and CPEB3aKD constructs for transgenic mice 

The CPEB3 full length isoform, CPEB3a contains the so called B-region with putative 

phosphorylation sites for CamKII, p70S6 kinase, PKA (Theis et al., 2003b).  Indeed, CPEB3 

was found to be phosphorylated at S419/S420 residues in the B-region by both PKA and 

CamKII (Lech Kaczmarczyk., unpublished). To study the expression pattern among CPEB3 

isoforms in vivo and also the CPEB3 targets, an isoform lacking the B- region (CPEB3d) was 

cloned into the pMM403-400 vector for generating transgenic mice. Similarly, a mutant form 

of CPEB3a in the B-region where two serines in the phosphorylation site were mutated to 

alanines (kinase dead), named CPEB3aKD was cloned into the pMM403-400 vector. These 

two transgenes (TetO:CPEB3d,  TetO:CPEB3aKD) were digested from the pMM vector and 

used for zygote injection to generate transgenic mice using TetOff system. The positive 

founders carrying the transgenes were identified with genotyping PCR for tetO transgene and 

are currently screened for expression using GFAP-tTA (Fiacco et al., 2007) and CamKII-tTA 

mice (Mayford et al., 1996). 
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5 Discussion 
 

5.1 Expression of CPEBs in astrocytes 

CPEBs are expressed in different cell types of the CNS. While most of the work was done on 

CPEBs in neurons, recent reports showed CPEB1 expression in astrocytes (Jones et al., 2008). 

In the present study, all four CPEB transcripts (CPEB 1-4) were found to be expressed (Fig. 

8) in astrocytes in vitro. Mainly, isoforms lacking the B-region were abundantly expressed 

compared to the isoforms containing the B-region. The B-region contains putative 

phosphorylation sites for various kinases such as CamKIIα, S6 kinase and PKA (Theis et al., 

2003b). The authors reported that only isoforms containing the B-region were expressed in 

principal cell layers of the hippocampus and also hypothesized that the B-region lacking 

isoforms might be expressed in non neuronal cells. The current findings of B-region lacking 

isoforms in astrocytes is consistent with the published results (Theis et al., 2003b). In primary 

astrocyte cultures, all CPEBs (1-4) were found to be localized in the cytoplasm and the 

expression was diffusely present throughout the cytoplasm (Fig. 9). Notably, CPEB3 was 

observed in astrocytic processes (Fig. 8g), similar to the localization of CPEB3 protein in the 

neuronal processes (Huang et al., 2006). Expression of CPEB3 and CPEB4 in hippocampal 

astrocytes was confirmed by non-radioactive in situ hybridization with probes specific to each 

CPEB (Vangoor et al., in revision). The localization of CPEB3 protein in vivo in hippocampal 

astrocytes is further confirmed by the co-expression of CPEB3 protein with ECFP in fine 

processes in Cx43ki-ECFP transgenic mice (Fig. 37). The distinct localization of CPEB3 in 

astrocytic processes might indicate its role in local protein synthesis.  

 

A high complexity of expression of CPEBs is observed among glial cells (astrocytes and NG2 

cells) similar to that of neurons (Turimella et al., in revision). Among different CPEBs, 

CPEB3 was more abundantly expressed in NG2 cells (Turimella et al., in revision) compared 

to astrocytes (Vangoor et al., in revision). Several mRNAs which contain CPEs in their 

3’UTRs are expressed in NG2 cells, for example Cx43 and GLT-1; but unlike in astrocytes, 

they are not able to form functional proteins (Seifert et al., unpublished). So, in NG2 cells, 

CPEB3 might regulate the translation of these NG2-specific mRNAs.  

 

5.2 CPEB3-GFAP transgenic mice 

For studying the role of CPEB3 in astrocytes and to identify new putative target proteins 

transgenic mice were generated. Mice expressing CPEB3 in astrocytes were generated where 
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the expression of CPEB3-EGFP was driven by the hGFAP promoter (hGFAP-tTA: TetO-

CPEB3EGFP). These mice were generated using the Tet-Off system in which the transgene 

expression can controlled at any time by Dox. Transgene expression was observed in GFAP 

positive astrocytes. These mice overexpressing CPEB3 develop enlarged ventricles during 

postnatal brain development (Fig. 15). This developmental deficit (hydrocephalus) could be 

due to several reasons. Due to interruption in the flow of the cerebrospinal fluids (CSF) or 

alterations in the synthesis or absorption of CSF, leading to accumulation of CSF in these 

ventricles (Bruni et al., 1988; Koh et al., 2005). The cells lining the ventricles of the brain are 

the ependymal cells (cells of the glial lineage) which regulate CSF flow and facilitate the 

circulation of brain CSF in between ventricles (Cathcart and Worthington, 1964). Loss of 

polarity of these cells could lead to hydrocephalus as this causes disturbances in the flow of 

the brain CSF (Kobayashi et al., 2002). There are studies showing that genetic ablation of the 

β-catenin gene could also lead to hydrocephalus in mice (Ohtoshi, 2008). β-catenin is an 

important component of the Wnt-1 signalling pathway (Butz et al., 1992) and was shown to 

be a CPEB1 target in astrocytes (Jones et al., 2008). Wnt signalling is involved in many 

developmental processes such as proliferation, migration, polarity and cell fate specification 

(Cadigan and Nusse, 1997). Wnt-1/β-catenin signalling is required for brain morphogenesis 

(Brault et al., 2001). So, the developmental deficit observed in CPEB3-GFAP mice could be 

due to any of the reasons mentioned above and could be a direct or indirect effect of CPEB3 

overexpression in astrocytes.  

 

Mice were on Dox until weaning to prevent developmental deficit, and after removing Dox 

the mice were analyzed for transgene expression. 50% of the GFAP positive cells in the 

hippocampus were expressing CPEB3 and 90% of the GFP positive cells co-express GFAP 

(Fig. 17A). As not all astrocytes in the hippocampus are GFAP positive (Verkhratsky and 

Butt, 2007), it could be that indeed all GFP positive cells were astrocytes. The specificity of 

CPEB3 expression was also verified with co-staining for S100β and GFP, where a similar 

number of cells (90%) co-expressed both markers. There was no co-localization of CPEB3-

EGFP with non-astrocytic markers such as NG2 (for NG2 glia), NeuN (neurons) and Iba1 

(microglia), showing the specificity of CPEB3 expression. CPEB3-EGFP protein was often 

localized in the distal processes of astrocytes in hippocampus, where it might modulate local 

protein synthesis.   
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5.3 Bimodal impact on GFAP protein expression 

In regions of cortex and thalamus, local CPEB3 overexpression was observed. Surrounding 

these overexpressing cells, there was an increase in GFAP immunoreactivity, whereas in 

control mice GFAP expression was not observed in cortex and thalamus (not shown). 

Paradoxically, in those very regions of cortex and thalamus the very cells overexpressing 

CPEB3 showed weak or no expression of endogenous GFAP. However, the neighbouring 

cells which were weakly positive or negative for CPEB3 showed strong GFAP expression. 

Similarly, reduced immunoreactivity for GFAP was observed in cells transfected with CPEB3 

while no change was found in the GFAP protein amount in the untransfected cells. This 

reflects a negative impact of CPEB3 on GFAP expression. So far GFAP was considered as a 

non-CPEB target, as mouse GFAP mRNA does not contain CPEs (but CPEs are present in 

human and rat versions, verified with the sequences from Ensembl.org). In fact, it has been 

utilized as an mRNA which is explicitly not subject to stimulated polyadenylation (Huang et 

al., 2002; Huang et al., 2003). However, it is possible that manipulation of CPEB-mediated 

translational control changes other CPEB targets which are required to maintain the cellular 

phenotype of astrocytes thereby indirectly causing GFAP downregulation. But, in contrast 

there was no difference in the hippocampal protein levels of GFAP in CPEB3-GFAP mice 

compared to the control litters. This could be due to overexpression of CPEB3 in only 50% of 

the astrocytes and could be also compensated by the upregulation of GFAP in non-CPEB3 

overexpressing cells in the hippocampus. We refrained from immunoblot analysis of cortex 

and thalamus, as the overexpression of CPEB3 in astrocytes was confined to very local areas. 

Interestingly, the number of S100β positive cells was not affected in mice overexpressing 

CPEB3 in astrocytes.  

 

5.4 Downregulation of astrocytic connexins by CPEB3 

CPEB3 acts as a basal repressor of translation of its target proteins (Huang et al., 2006). Si-

RNA mediated knockdown of CPEB3 in primary neuronal cultures showed an increase in 

GluR2 protein levels (Huang et al., 2006). This was confirmed by the finding that mice 

overexpressing CPEB3 in neurons show a reduction of GluR2 protein levels (Lech 

Kaczmarczyk., unpublished). To find out more targets for CPEB3, a screening for putative 

astrocytic targets was carried out which yielded connexins (Cx43 and Cx30) as possible 

targets. Both Cx43 and Cx30, the major astrocytic connexins which form gap junctions in the 

hippocampus possess CPEs in their 3' UTRs (Table 23). RNA Co-IP showed an interaction of 
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CPEB3 protein with Cx43 UTR in a CPE dependent fashion, and the interaction was 

significantly reduced upon mutating CPEs. Moreover, CPEB3 protein is binding Cx30 mRNA 

with high affinity compared to CPEB1 (Fig. 24). It could be that similar target mRNAs are 

bound by different CPEBs with varying affinities. For example, cyclinB1 mRNA is bound by 

CPEB1 with high affinity compared to other CPEBs (Novoa et al., 2010). We investigated the 

impact of CPEB3 on the translation of Cx43 and Cx30 in astrocytes. As a first hint, the 

immunoreactivity of Cx43 in the primary astrocyte cultures transfected with CPEB3-EGFP 

vector was reduced (Fig. 10). Similarly, in mice overexpressing CPEB3 in astrocytes the 

immunoreactivity for Cx43 protein was reduced in regions of overexpression in cortex, 

thalamus and hippocampus. Immunoblots of hippocampal protein lysates from CPEB3-GFAP 

mice showed a significant reduction of Cx43 protein levels compared to their control litters. 

Similarly Cx30 immunoreactive  puncta which are more prominently observed around the 

blood vessels of the hippocampus (Gosejacob et al., 2011) are strongly reduced in CPEB3-

GFAP mice (Fig. 27A). This reduced immunoreactivity for Cx30 around vessels was also 

observed in thalamus and cortex (not shown). Immunoblots from total hippocampal protein 

also showed a reduction of Cx30 in comparison with the controls.  

 

The most important function of connexins in the hippocampus is forming functional 

intracellular gap junctions between astrocytes which mediate the exchange of small 

molecules, metabolites and ions (Giaume and Theis, 2010). Gap junctional coupling can be 

assessed electrophysiologically by injecting tracers (e.g., biocytin, sulforhodamine B, Lucifer 

yellow, Alexa dyes, neurobiotin) with low molecular weights (<1 kDa) into a single astrocyte 

with the patch clamp technique and analysing the extent of tracer spread (Giaume and Theis, 

2010). As both connexins (Cx43, Cx30) were downregulated in mice overexpressing CPEB3, 

biocytin tracer injections were performed which revealed an approximate 40% reduction in 

the number of coupled cells compared to the control litters. Interestingly, the tracer was 

spreading preferentially through the non-CPEB3 overexpressing cells, showing the strong 

inhibition of connexins by CPEB3. In Cx43 deficient mice (Cx43KO), 50% reduction of 

tracer coupling was observed (Theis et al., 2003a). In Cx30KO mice, 22% reduction of the 

tracer coupling in the hippocampus was observed (Gosejacob et al., 2011). However, genetic 

ablation of both connexins resulted in a complete inhibition of tracer spread between 

astrocytes in the hippocampus (Wallraff et al., 2006; Rouach et al., 2008). Similarly, as both 

connexins are CPEB targets and were downregulated in CPEB3-GFAP mice, a strong 

reduction in astrocytic coupling has been observed.  
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Connexins form HCs and at the unapposed cell surface enable diffusion of ions and small 

molecules between the intra- and extracellular space and thereby support autocrine/paracrine 

actions (Spray et al., 2006; Saez et al., 2010). HCs are oligomerized in the golgi/trans-golgi 

network (Musil and Goodenough, 1991; Koval et al., 1997; George et al., 1999) and after 

assembling they are transported to the non-junctional plasma-membrane through a 

cytoskeleton-mediated route (Jordan et al., 1999; Giepmans et al., 2001; Martin et al., 2001). 

After insertion in the plasma membrane they diffuse laterally to join gap junctional plaques 

and are docked with HCs from neighbouring cells to form intercellular channels (Lauf et al., 

2002). Moreover Cx43 HCs are directly targeted to the region of gap junctional plaques via a 

microtubule/N-cadherin-dependent pathway (Shaw et al., 2007). But, recently it was shown 

that HCs formed by Cx43 are also delivered at all cell surface domains that lack contacting 

cells, and the authors speculate that this might be due to differences in either channel packing 

or due to the interactions of Cx43 with its binding partners (Simek et al., 2009). Similarly, 

overexpression of CPEB3 in astrocytes which downregulates Cx43 could also lead to the 

mislocalization of connexins. For example, the presence of CPEB3 could lead to production 

of Cx43 protein in the soma or in the proximal processes. This may favour the presence of 

Cx43 as HCs instead of gap junction channels in the fine processes. This could also be one of 

the reasons which resulted in reduced coupling between hippocmapal astrocytes in CPEB3-

GFAP mice.  

 

Astrocytic connexins form gap junctions and mediate spatial buffering of potassium (Orkand, 

1986; Wallraff et al., 2006), and metabolite supply to neurons (Rouach et al., 2008). Most 

importantly both astrocytic connexins are expressed and mediate gap junctional coupling also 

in RG-like cells in the SGZ of the hippocampus and their function is required for adult 

neurogenesis (Kunze et al., 2009). In mice lacking both connexins, a strong inhibition of cell 

proliferation and a reduction in the granule cell number (Prox1 positive cells) was observed 

(Kunze et al., 2009). In mice overexpressing CPEB3 in astrocytes connexin expression was 

reduced which has resulted in inhibition of gap junctional coupling. So, we decided to study 

the role of CPEB3 in adult neurogenesis. Staining for Ki-67 revealed a reduction in the 

number of proliferating cells in the SGZ and Prox1 staining demonstrated a significant 

reduction of granule neurons. Furthermore, a reduction in the number of RG-like cells, the 

neural stem cells itself, was also observed upon staining for BLBP. The actual underlying 

mechanism of decreased proliferation and neurogenesis is not known. Studies performed on 

Cx43KO mice show that the absence of Cx43 leads to effects on cell proliferation (Wiencken-
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Barger et al., 2007) and moreover gap junction coupling has an important role in modifying 

neurogenesis (Sutor and Hagerty, 2005). In various studies Cx43 was shown to form cell-cell 

adhesion contacts either independent or dependent on gap junctional coupling (Theis et al., 

2005). However recent studies performed by Mr. Jiong Zhang (unpublished), indicate that 

coupling rather than adhesion is required for adult neurogenesis. The present study proves 

connexins as new targets of CPEB3, and the involvement of CPEB3 in adult neurogenesis via 

regulating connexins.  

 

5.5 Downregulation of GLT-1 and GS 

Glutamate is the major excitatory neurotransmitter expressed in the mammalian CNS. An 

equlibrium of the glutamate levels in the extracellular space has to be maintained to prevent 

excitotoxicity, which otherwise leads to cell death (Sheldon and Robinson, 2007). Glutamate 

released from neurons into the extracellular space is cleared by Na
+
-dependent high affinity 

glutamate transporters family (Shigeri et al., 2004). GLAST and GLT-1 are the glutamate 

transporters which belong to this family and are primarily expressed by astrocytes (Rothstein 

et al., 1994; Lehre et al., 1995). GLT-1 has a predominant role in the clearance of extracellular 

glutamate (Danbolt, 2001). These transporters were found to be deregulated in several 

neurodegenerative disorders. There are several reports showing that these transporters were 

regulated by both transcriptional and post-transcriptional mechanisms (Sheldon and Robinson, 

2007). As the mRNA encoding GLT-1 contain CPEs in its 3' UTR (Table 23), the impact of 

CPEB3 overexpression on GLT-1 was studied. Immunoreactivity for GLT-1 was reduced in 

regions of CPEB3 overexpression in cortex and hippocampus (not shown). Moreover, there 

was a significant reduction in the hippocampal protein levels of GLT-1 protein in CPEB3 

mice compared to controls. CPEB3 regulates the translation of GLT-1 in astrocytes possibly 

by binding to CPEs present in the 3' UTR of GLT-1 mRNA, but this has still to be confirmed. 

The decrease in the protein levels of GLT-1 could lead to accumulation of glutamate in the 

extracellular space and thereby causing excitotoxicity, as the inhibition of GLT-1 and GLAST 

by antisense oligonucleotides leads to neurodegeneration characteristic of excitotoxicity 

(Rothstein et al., 1996). Even though endogenous expression of CPEB3 in astrocytes is low, 

mRNA levels of CPEB3 were upregulated 2 hr post injection of kainate, a glutamate receptor 

agonist (Theis et al., 2003b). The possible upregulation of CPEB3 in disease conditions such 

as epilepsy could downregulate GLT-1, which has yet to be studied. A second possible 

mechanism for GLT-1 decrease could be via Eph-ephrin signalling: The Eph family of 

receptors (receptor tyrosine kinases) binds to ephrin ligands by cell surface association with 
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neighbouring cells. This complex of Eph-ephrins has the ability of generating bidirectional 

signalling which effects both receptor expressing and ephrin expressing cells (Pasquale, 

2008). EphA4 is involved in neuron to glia signalling via interacting with glial ephrinA3 

ligand and is a negative regulator of glutamate transporters, GLT-1 and GLAST (Carmona et 

al., 2009). EphA4 receptor is also found in reactive astrocytes (Goldshmit et al., 2006). In the 

present study, overexpression of CPEB3 leads to reactive nature of astrocytes. Hence, EphA4 

which might be present in the reactive astrocytes of CPEB3-GFAP mice may downregulate 

GLT-1. Indeed, one of the CPEB family members, CPEB2 regulates EphA4 translation in 

neurons (Turimella et al., unpublished). Glutamate released from neuronal synapses is taken 

up by astrocytes mainly through glutamate transporters GLT-1 and GLAST (Rothstein et al., 

1996; Gegelashvili et al., 2000) and converted into glutamine by GS. GS converts the 

glutamate to the receptor-inactive substrate glutamine upon consuming ATP and ammonia 

(Seifert et al., 2010).  GS protein was downregulated in astrocytes of human patients with 

hippocampal sclerosis and MTLE thereby impairing the glutamate-glutamine cycle (Eid et al., 

2004; van der Hel et al., 2005). The mRNA encoding GS was polyadenylated after kainate 

induced seizures in rat brain (Du and Richter, 2005). As GS contains four CPEs in its 3' UTR 

it could be a putative target for CPEBs. The Co-IP studies showed an interaction of GS 

mRNA with CPEB3 protein in a CPE dependent fashion. Furthermore, in mice 

overexpressing CPEB3 in astrocytes immunoreactivity for GS was reduced in the regions of 

CPEB3 overexpression. In addition a significant reduction in the total protein levels of GS 

was observed in the hippocampus of CPEB3 mice (Fig. 33B, C). The impairment of GS could 

disturb the glutamate-glutamine cycle and lead to the accumulation of extracellular glutamate 

levels. This could eventually lead to excitotoxicity and seizure activity, which is observed in 

patients with MTLE (Eid et al., 2008a). Seizure activity in CPEB3-GFAP mice should be 

analyzed by performing telemetric EEG measurements.  

 

5.6 CPEB3 regulation does not induce cell death or affects astrocyte identity  

TUNEL staining was used to check if there was cell death as an adverse effect of CPEB3 

overexpression in astrocytes. No apoptotic cells were observed in the regions of CPEB3 

overexpression and no change in the number and the density of astrocytes in the hippocampus 

was found. Thus the effects observed in mice overexpressing CPEB3 in astrocytes are 

translational, by directly binding to the CPEs present in the 3' UTRs of the target mRNAs. 

There was no change in the immunoreactivity for NeuN in cortex, thalamus and hippocampus, 

and no change in the number of S100β positive astrocytes.  Moreover the transcript levels of 
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the altered proteins (Cx43, Cx30, GS and GLT-1) tested was not altered, confirming the 

translational effect of CPEB3.  

 

5.7 Upregulation of CPEB3 leads to astrocyte dysfunction 

Astrocyte dysfunction is a key feature observed in brain disorders, especially in epilepsy 

(Seifert et al., 2010) during which several of the key proteins involved in the normal cellular 

functions are dysregulated. CPEB3 overexpression in astrocytes has led to the downregulation 

of connexins, GS and GLT-1. These studies also raise the possibility of translational 

regulation by CPEB3 being involved in astrocytic dysfunction in epilepsy. The functions of 

all these proteins are found to be altered in diseased condition and are hallmarks of TLE 

(Seifert et al., 2010). Hence it can be speculated that the expression of CPEB3 might be 

upregulated and involved in the progression of epilepsy by contributing to astrocyte 

dysfunction. The expression of another astrocytic protein, a water channel protein (AQP4) is 

reduced at the endfeet in patients presenting with MTLE with hippocampal sclerosis (Eid et 

al., 2005; Binder and Steinhauser, 2006), this could be due to the disruption of the dystrophin 

complex (Amiry-Moghaddam et al., 2003). But, both AQP4 and dystrophin in the dystrophin 

complex are CPE containing mRNAs (Table 23) and are influenced by CPEB3 as well (not 

shown). By leading to decreased and/or mislocalized expression of all these astrocytic 

proteins, CPEBs might contribute to astrocytic dysfunction. Studies should be performed by 

subjecting CPEB3-GFAP mice to the kainate model of epilepsy (TLE animal model 

established in the institute by Dr. Peter Bedner) and analyzing the changes of the target gene 

proteins and compare with their expression in normal conditions.  

 

5.8 Regulation of CPEB3 activity 

Two brain specific isoforms were identified for CPEB3, a short version of 4.8 kb and a long 

version of 6.9 kb. The short version contains a 3' UTR of 927 bp and the long version contains 

a 3' UTR of ~3.5 kb (Theis et al., 2003b). RACE experiments were performed to further 

confirm this and the isolated UTR fragments were sequence analyzed. The 3.5 kb fragment of 

the 3' UTR contains several CPEs to which other CPEB proteins could bind and regulate their 

own translation by an autoregulatory feedback loop (Theis et al., 2003b). The autoregulatory 

feedback mechanism of CPEB was shown previously with Drosophila CPEB protein orb,  in 

directing the on-site accumulation of orb protein in developing Drosophila oocyte (Tan et al., 

2001). CPEB proteins could also be regulated by miRNAs. Recently it was predicted that the 
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CPEB 2-4 subfamily possess miRNA binding sites for miR-92 and miR-26 in their 3' UTRs. 

The binding and the regulation of CPEB 2-4 by these miRNAs was validated by luciferase 

reporter gene assays (Morgan et al., 2010). Recently CPEB1 in astrocytes was shown to be 

phosphorylated by Aurora A kinase and to regulate the translation of cyclin B1 mRNA (Kim 

et al., 2011). As CPEB3 contains recognition sites for CamKII, S6 kinase and PKA (Theis et 

al., 2003b), the activity of CPEB3 can be also regulated by phosphorylation through these 

kinases depending on their presence in astrocytes. CPEB3 is indeed proven to be 

phosphorylated by PKA and by CamKII at S419/S420 residues in the B-region (Lech 

Kaczmarczyk, unpublished), and so the regulatory activity of CPEB3 can be affected by the 

presence of these kinases in astrocytes.   
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6 Future outlook 

All the four CPEB proteins (CPEB 1-4) were expressed in primary astrocyte cultures. CPEB3 

was localized in the fine processes of astrocytes similar to neurons where it can modulate 

local protein synthesis. The overexpression of CPEB3 in astrocytes downregulated two major 

astrocytic connexins (Cx43 and Cx30). Consistently, with the astrocytic overexpression of 

CPEB3, interastrocytic gap junctional communication was also reduced. Thus, CPEBs may 

play a role in astrocytic heterogeneity. For example, in the somatosensory cortex (barrel 

cortex), Cx43 and Cx30 together with GLT-1 and GS are differentially expressed: In the so-

called barrel fields, connexins, GLT-1 and GS expression is strong, while in the septal regions 

between the barrels, the expression of all four proteins is weak (Voutsinos-Porche et al., 2003; 

Houades et al., 2008). The same applies to the neurogenic niche of the hippocampus, where a 

strong expression of CPEB3 is observed. Only 50% of the neural stem cells are coupled, 

while transient amplifying cells and neuroblasts are not coupled (Kunze et al., 2009). Since 

we observed a negative correlation between CPEB3 and connexin expression, high expression 

of CPEB3 in half of the neural stem cells and possibly in precursor cells could be directly 

related to lack of coupling in this cell population. This would be consistent with the 

requirement of connexin expression for adult neurogenesis (Kunze et al., 2009) and with the 

effect of CPEB3 expression on adult neurogenesis observed in this study. In addition, both 

NG2 cells and astrocytes express mRNA for Cx43 and the glutamate transporters GLAST and 

GLT-1, but only astrocytes show the corresponding protein functions. The mRNA levels for 

connexins and glutamate transporters in NG2 cells are much lower compared to astrocytes 

(Gerald Seifert, unpublished), while NG2 cells express much higher levels of CPEBs 

compared to astrocytes. Maybe the strong expression of CPEBs prevents the translation of 

typical astrocytic mRNAs expressed at low levels in NG2 cells, just like myc mRNA 

translation was prevented by CPEB1 in cultured fibroblasts (Groisman et al., 2006). The 

hypothesis that astrocyte heterogeneity and glial identity is based on differential CPEB 

expression should be investigated further in various brain regions and cell types. 

 

In a mouse model of TLE, a reduction in astrocytic gap junctional coupling was observed 

before the onset of spontaneous seizures, indicating that the loss of astrocytic connexins may 

play a role in the progression of epilepsy (Bedner et al., unpublished). Is the loss of connexin 

expression due to translational regulation by CPEB3? To investigate this, Cx43ki-ECFP mice 

should be brought into the epilepsy model, and expression changes for CPEBs should be 

investigated by antibody stainings and FACS purification followed by WB analysis for 
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CPEBs. One possibility is that the expression of CPEB3 is upregulated and causes 

downregulation of connexins during epilepsy. Loss of interastrocytic gap junctional coupling 

leads to hyperexcitability in acute hippocampal slices (Wallraff et al., 2006). The reduced 

interastrocytic gap junctional coupling observed in CPEB3-GFAP mice could also be due to 

the mislocalization of the HCs formed by Cx43 and Cx30 proteins. HC activity of astrocytes 

in CPEB3-GFAP mice can be determined by performing electrophysiology and measuring 

HC currents and comparing them with astrocytes in the DKO mice (Giaume and Theis, 2010). 

Further experiments are required to examine the impact of CPEBs for connexin expression in 

astrocytes. 

 

The overexpression of CPEB3 in astrocytes reduced GLT-1 and GS levels. This could lead to 

accumulation of glutamate in the extracellular space and in turn to seizure activity, a common 

feature in patients with MTLE (Eid et al., 2008a). Both of these findings predict a 

predisposition of CPEB3-GFAP mice towards epilepsy. The susceptibility of these mice to 

epileptiform activity can be tested by various stimulation protocols using hippocampal slices. 

The following paramaters can be checked: 1) spontaneous epileptiform activity, 2) 

epileptiform activity induced by electrical stimulation, and 3) epileptiform activity in the zero 

magnesium model (Wallraff et al., 2006). In addition, spontaneous seizure activity can be 

measured by telemetric EEG recordings. Upon subjecting CPEB3-GFAP to the model of 

TLE, the severity of status epilepticus, duration of latency, seizure activity at different time 

point’s post-injection of kainate should be studied. Morphological changes such as neuronal 

loss, granule cell dispersion, and astrogliosis should also be studied. Target gene expression 

can also be analyzed in the TLE model of CPEB3-GFAP mice. In an independent approach, 

Cx43ki-ECFP mice (Degen et al., 2012) can be brought into the TLE model, the ECFP 

labelled astrocytes can be isolated using FACS and the expression levels of CPEBs can be 

investigated by reverse transcription PCR and WB. The expression levels should be compared 

between the injected and non-injected side of the hippocampus at different stages of epilepsy. 

 

By downregulating various proteins (Cx43, Cx30, GS and GLT-1), CPEB3 might be one of 

the factors contributing to astrocyte dysfunction observed during epilepsy (Seifert et al., 

2010). The other putative targets of CPEBs which are altered in astrocytes are: 1) AQP4, a 

water channel expressed in astrocytes (Badaut et al., 2002), 2) dystrophin which helps in 

anchoring AQP4 to the membrane (Amiry-Moghaddam et al., 2003), 3) Kir4.1, a potassium 

channel subunit expressed in astrocytes which is overlapping with AQP4 at the astrocytic end 
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feet (Higashi et al., 2001), and 4) the other astrocytic glutamate transporter, GLAST. Even 

though Kir4.1 does not contain CPEs, CPEBs might have an indirect effect via dystrophin, 

which anchors Kir4.1 to endfeet (Connors et al., 2004). The translation of all the above 

mentioned targets should be tested in CPEB3-GFAP mice. In addition, the 3' UTRs containing 

CPEs of the respective target mRNAs should be isolated and the interaction of CPEB3 with 

them studied by RNA Co-IP.  
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7 Summary 

CPEBs regulate the translation of mRNAs encoding key players involved in synaptic 

plasticity (Richter, 2007). CPEB1 in neurons is involved in synaptic plasticity (Alarcon et al., 

2004), learning and memory (Berger-Sweeney et al., 2006). Several studies were focused on 

the role of CPEBs in neurons, but not much is known about the role of CPEB 2-4 subfamily in 

astrocytes. Hence the present study was aimed to investigate the expression of CPEBs in 

astrocytes and also to study the functional role of CPEB3 in astrocytes. 

 

In the present work, the expression of CPEB (1-4) proteins in astrocytes was investigated. All 

CPEB transcripts and proteins were found to be expressed in astrocytes. CPEB3 was localized 

to the distal processes of astrocytes compared to the other CPEBs, similar to the localization 

observed in primary neuronal cultures. To study the functional role of CPEB3, transgenic 

mice were generated using the Tet-off system. Overexpression of CPEB3-EGFP in astrocytes 

during development caused enlarged ventricles, and acute overexpression in adult mice 

induced increased immunoreactivity for GFAP in cortex, hippocampus and thalamus, while in 

cells overexpressing CPEB3, GFAP protein content was decreased. In these brain areas, 

CPEB3 overexpression also led to downregulation of the protein levels for Cx43 and Cx30, 

two major astrocytic gap junction proteins involved in extracellular ion homeostasis and 

metabolite supply to neurons. Consistently, in the hippocampus of CPEB3 overexpressing 

mice, intercellular gap junction coupling was strongly impaired. Connexin function in RG-

like cells is required for adult neurogenesis in the SGZ, a neurogenic niche in the 

hippocampus. In the SGZ of CPEB3 overexpressing mice, a significant reduction in the 

number of proliferating cells, reduced granule neurons and RG-like cells was observed. 

Altogether, the present study showed a negative correlation between CPEB3 expression and 

gap junctional coupling, which might be responsible for astrocyte heterogeneity. All these 

results confirm that astrocytic connexins are CPEB3 targets. CPEB3 overexpression also led 

to downregulation of GLT-1 and GS, key players involved in extracellular glutamate 

clearance. Since interastrocytic coupling and astrocytic GLT-1 and GS activities are 

downregulated in epilepsy patients presenting with hippocampal sclerosis, it can be 

hypothesised that upregulation of CPEBs in astrocytes may contribute to the pathogenesis of 

epilepsy.  
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9 Appendix 
 

I. Competent cells preparation for transformation 

A sterile loop was used to take cells from a glycerol stock (containing commercially available 

Ecoli. K12 cells, Invitrogen), inoculated in 2.5 ml of YT++ medium and incubated by shaking 

at 37
o
C/overnight/250 rpm. 200 µl of overnight culture was added to 5 ml of YT++ medium 

and shaken for 1.5 hr at 37
o
C (during this time 100 ml of YT++ medium was prewarmed in a 

flask at 37
o
C). OD at 600 nm was determined using a spectrophotometer (Eppendorf) which 

should lie in between 0.7 – 0.8. The complete 5 ml culture was poured into 100 ml of 

prewarmed YT++ medium and shaken for 2 hr at 37
o
C.  The OD at 600 nm was determined 

and if it was ≥ 0.5, the growth was stopped by incubating the flask on ice for 5 min. The 

culture was centrifuged at 3500 rpm for 5 min by aliquoting into two 50 ml falcons. The 

supernatant was discarded and the pellet was resuspended in 10 ml of TFBI buffer and 

incubated on ice for 10 min. Following a centrifugation at 3500 rpm for 5 min, the supernatant 

was discarded and the pellet was resuspended in 2 ml of TFBII buffer. Appropriate amounts 

of aliquots were prepared in 1.5 ml Eppendorf tubes and frozen immediately in liquid 

nitrogen. Tubes with cells were stored at -80
o
C. 

 

Buffers: 

Medium / Buffer Contents Preparation 

YT medium 8 g tryptone 

5 g yeast extract 

5 g NaC l  

pH  - 7.5 

Dissolved in 1 l of dH2O 

Sterilization by autoclaving 

YT++ medium YT medium  

20 mM MgSO4 

10 mM KCl 

80 ml YT medium 

10 ml MgSO4 (sterile filtered) 

10 ml KCl (sterile filtered) 

TFBI 30 mM KAC 

50 mM MnCl2 

100 mM RbCl 

10 mM CaCl2 

15 % glycerol 

in dH2O 

Sterile filtered 

TFBII 10 mM Na MOPS 

75 mM CaCl2
 

10 mM RbCl 

15 % glycerol 

in dH2O 

Sterile filtered 
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II. pMM403-400 vector map 
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