
On Approximability of
Bounded Degree Instances of

Selected Optimization Problems

Dissertation
zur

Erlangung des Doktorgrades (Dr. rer. nat.)
der

Mathematisch-Naturwissenschaftlichen Fakultät
der

Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von
Richard Schmied

aus
Mährisch Ostrau

Bonn, 2013

Angefertigt mit Genehmigung
der Mathematisch-Naturwissenschaftlichen Fakultät
der Rheinischen Friedrich-Wilhelms-Universität Bonn

1. Gutachter: Prof. Dr. Marek Karpinski
2. Gutachter: Prof. Dr. Andrzej Lingas

Tag der Promotion:
Erscheinungsjahr:

dyck
Typewritten Text

dyck
Typewritten Text

dyck
Typewritten Text
 25.07.2013

dyck
Typewritten Text

dyck
Typewritten Text

dyck
Typewritten Text

dyck
Typewritten Text
2013

Abstract

In order to cope with the approximation hardness of an underlying opti-
mization problem, it is advantageous to consider specific families of instances
with properties that can be exploited to obtain efficient approximation algo-
rithms for the restricted version of the problem with improved performance
guarantees. In this thesis, we investigate the approximation complexity of se-
lected NP-hard optimization problems restricted to instances with bounded
degree, occurrence or weight parameter. Specifically, we consider the fam-
ily of dense instances, where typically the average degree is bounded from
below by some function of the size of the instance. Complementarily, we ex-
amine the family of sparse instances, in which the average degree is bounded
from above by some fixed constant. We focus on developing new methods
for proving explicit approximation hardness results for general as well as for
restricted instances.

The fist part of the thesis contributes to the systematic investigation of the
VERTEX COVER problem in k-hypergraphs and k-partite k-hypergraphs
with density and regularity constraints. We design efficient approximation
algorithms for the problems with improved performance guarantees as com-
pared to the general case. On the other hand, we prove the optimality of
our approximation upper bounds under the Unique Games Conjecture or a
variant.

In the second part of the thesis, we study mainly the approximation hard-
ness of restricted instances of selected global optimization problems. We es-
tablish improved or in some cases the first inapproximability thresholds for
the problems considered in this thesis such as the METRIC DIMENSION
problem restricted to graphs with maximum degree 3 and the (1,2)-STEINER
TREE problem. We introduce a new reductions method for proving explicit
approximation lower bounds for problems that are related to the TRAVEL-
ING SALESPERSON (TSP) problem. In particular, we prove the best up to
now inapproximability thresholds for the general METRIC TSP problem, the
ASYMMETRIC TSP problem, the SHORTEST SUPERSTRING problem,
the MAXIMUM TSP problem and TSP problems with bounded metrics.

iii

Acknowledgement

I am deeply indebted to my advisor Marek Karpinski, in particular, for
his invaluable guidance on my research, his everlasting willingness to spend
time discussing new ideas with me, and also for creating the prefect working
conditions at the Computer Science Department of the University of Bonn.
His dedication to research and scientific curiosity were a great source of in-
spiration for me.

In addition, I would like to express my gratitude to the coauthors with
whom I had the great pleasure to collaborate with: Jean Cardinal, Math-
ias Hauptmann, Marek Karpinski, Michael Lampis and Claus Viehmann. I
enjoyed working with them very much and I have learned a lot from them.

I am also very grateful to Marek Karpinski, Andrzej Lingas, Heiko Röglin
and Jens Franke to agree to be in my Thesis Committee.

I thank the whole team of the Algorithms and Distributed Systems group
at the University of Bonn. Special thanks to my colleagues and friends who
made my time in Bonn joyful and productive: Manuel Arora, Mathias Haupt-
mann, Matthias Kretschmer, Johannes Mittmann and Claus Viehmann.

Many thanks to the helpful and competent administrative staff at the
Computer Science Department and BIGS, especially Christiane Andrade and
Karen Bingel.

I gratefully acknowledge the Hausdorff Center for Mathematics for their
financial support.

I am forever indebted to my father for his everlasting encouragement
and support. This thesis is dedicated to my fiancee without whose love and
support I would not be where I am today.

iv

Contents

1 Introduction 1

1.1 Outline of the Thesis . 5
1.2 Contributions . 6

I Foundations 9

2 Background 11

2.1 Standard Notation . 12
2.2 Random Variables and Expectation 13
2.3 Asymptotic Notation . 14
2.4 Hypergraphs . 15
2.5 Symmetric and Asymmetric Metric Spaces 17

3 Basic Complexity Classes 19

3.1 The Computational Model . 20
3.2 The Complexity Classes P and NP 21
3.3 Randomized Computation . 23

4 Complexity of Optimization Problems 27

4.1 Optimization Problems . 28
4.2 Approximation Classes . 30
4.3 Gap and Promise Problems . 31

v

CONTENTS

4.4 Approximation Preserving Reductions 33
4.5 Probabilistically Checkable Proofs 34
4.6 Label Cover Problem . 36
4.7 Håstad’s 3-Bit PCP . 38
4.8 Unique Games Conjecture . 39
4.9 Bounded Occurrence CSPs . 41

II Dense Instances 45

5 Vertex Cover of k -Hypergraphs 47
5.1 Introduction . 48
5.2 Outline of this Chapter . 51
5.3 Preliminaries . 52
5.4 The General Problem . 53

5.4.1 Approximation Algorithms 53
5.4.2 Approximation Hardness Results 55

5.5 Dense k-Hypergraphs . 56
5.5.1 Previously Known Results 57
5.5.2 Our Contributions . 59
5.5.3 The Generalized Approximation Algorithm 61
5.5.4 Tight Approximation Hardness Results 70

5.6 Nearly Regular k -Hypergraphs 75
5.6.1 Previously Known Results 76
5.6.2 Our Contributions . 79
5.6.3 The Randomized Approximation Algorithm 83
5.6.4 Approximation Lower Bounds 95

5.7 Bibliographic Notes . 100

6 Vertex Cover of k -Partite k -Hypergraphs 101
6.1 Introduction . 102
6.2 Outline of this Chapter . 105
6.3 Preliminaries . 105
6.4 The General Problem . 106

vi

CONTENTS

6.4.1 An Approximation Upper Bound 106
6.4.2 Approximation Lower Bounds 113

6.5 Dense k -Partite k -Hypergraphs 115
6.5.1 Our Contribution . 115
6.5.2 The Dense k-Balanced Case 118
6.5.3 An Improved Approximation Algorithm 128
6.5.4 Approximation Lower Bounds 137

6.6 Nearly Regular k-Partite k-Hypergraphs 144
6.6.1 Contribution . 144
6.6.2 The Randomized Bucketing Algorithm 145
6.6.3 An Optimal Inapproximability Result 157

6.7 Bibliographic Notes . 160

III Sparse Instance Methods and Paradigms 161

7 The (1,2)-Steiner Tree Problem 163
7.1 Introduction . 164
7.2 Outline of this Chapter . 166
7.3 Preliminaries . 166
7.4 Our Contribution . 167
7.5 The High-Level View of the Reduction 169
7.6 Constructing (GL , SL) from L 170
7.7 Constructing the Steiner tree Tϕ from ϕ 172
7.8 Defining the Assignment . 174
7.9 Proof of the Main Theorem . 184

8 The Metric Dimension Problem 187
8.1 Introduction . 188
8.2 Outline of this Chapter . 190
8.3 Notations and Definitions . 190
8.4 Our Contributions . 191
8.5 APX-Hardness and Explicit Lower Bounds 194

8.5.1 High-Level View of the Reduction 194

vii

CONTENTS

8.5.2 Constructing GM from a 4-Regular Graph G 194
8.5.3 Constructing a Resolving Set of GM 200
8.5.4 Constructing a Vertex Cover from a Resolving Set . . 206
8.5.5 Proof of Theorem 8.4.1 209

8.6 Improved Approximation Lower Bound 210
8.6.1 Constructing GI from a 4-regular Graph G 210
8.6.2 Constructing a resolving set from a vertex cover 212
8.6.3 Constructing the Corresponding Vertex Cover 218
8.6.4 Proof of Theorem 8.4.3 222

8.7 Bibliographic Notes . 222

9 The Shortest Superstring and Related Problems 223
9.1 Introduction . 224
9.2 The Proof Methods and Summary of Results 228
9.3 Outline of this Chapter . 229
9.4 Preliminaries . 230
9.5 Our Contribution . 232
9.6 The First Reduction . 234
9.7 The High-Level View of the Reduction 236
9.8 Description of the Instance SL given L 236
9.9 Constructing Superstrings from Assignments 244
9.10 Defining Assignments From Superstrings 252

9.10.1 The Proof of Theorem 9.6.1 268
9.11 An Improved Reduction . 269

9.11.1 The Proof of Theorem 9.5.1 270
9.12 Bibliographic Notes . 271

10 Traveling Salesman Problems 273
10.1 Introduction . 274
10.2 The Proof Methods and Summary of Results 278
10.3 Outline of this Chapter . 280
10.4 Preliminaries . 280
10.5 Related Work . 282

viii

CONTENTS

10.6 Our Contributions . 284
10.7 The (1,2)-ATSP Problem . 289

10.7.1 High-Level View of the Reduction 289
10.7.2 Constructing GL from L 290
10.7.3 Constructing a Tour from an Assignment 293
10.7.4 Constructing the Assignment from a Tour 305
10.7.5 Proof of Theorem 10.6.1 (i) 326

10.8 The (1,4)-ATSP Problem . 326
10.8.1 Proof of Theorem 10.6.1 (ii) 327

10.9 The (1,2)-TSP Problem . 334
10.9.1 Proof of Theorem 10.6.2 (i) 336

10.10 The (1,4)-TSP Problem . 337
10.10.1 Proof of Theorem 10.6.2 (ii) 339

10.11 The (1,2)-TSP Restricted to Subcubic Instances 341
10.11.1 The Construction of G12SC 341
10.11.2 Tours in G12SC From Assignments 344
10.11.3 Assignments From Tours in G12SC 346

10.12 (1,2)-TSP Restricted to Cubic Instances 347
10.12.1 The Construction of the Graph G12CU 347
10.12.2 Tours in G12CU to Assignments 349

10.13 Graphic TSP on Subcubic and Cubic Graphs 350
10.13.1 The Construction of G12CU and G12SC 350
10.13.2 Tours to Assignments 352

10.14 The Metric TSP Problem . 353
10.14.1 The General Overview of the Reduction 353
10.14.2 Notations and Conventions 354
10.14.3 Bi-Wheel Amplifiers . 355
10.14.4 Special Instances of the MAX-Hybrid-Lin2 Problem . 360
10.14.5 Construction of the Instances of the TSP 362
10.14.6 Tours in GS from Assignments 364
10.14.7 Assignments from Tours in GS 367

10.15 The Asymmetric TSP Problem 372
10.15.1 The Construction of the Graph GA 373

ix

CONTENTS

10.15.2 Assignments to Tours in GA 376
10.15.3 Tours in GA to Assignments 377

10.16 Bibliographic Notes . 380

11 Conclusions and Further Research 383

Bibliography 387

List of Tables 403

List of Figures 405

Index 409

x

CHAPTER 1

Introduction

1

CHAPTER 1. INTRODUCTION

In order to study the hardness of computational problems, the notion of
NP-hardness was introduced independently by Cook [C71] and Levin [L73].
Nowadays, it is widely believed that it is not possible to solve efficiently a NP-
hard problem. As demonstrated in the early 1970’s, a large class of natural
combinatorial problems arising in practice, which had by then withstood all
efforts of computer scientists all over the world to design efficient algorithms
for those problems, were proved to be NP-hard.

Fortunately, it is sufficient for many applications to find an approximate
solution that is very close to the optimum. Algorithms that construct a
feasible solution for a given problem are called approximation algorithms
and their quality is measured by the approximation ratio, which is the worst
possible relative discrepancy between the value of an optimum solution and
the solution produced by the algorithm.

The discovery of the PCP-Theorem [AS98, ALM+98] and its consequences
lead to the fact that there are problems, for which it is as hard to compute
an approximate solution to within a certain precision as solving it exactly.
Moreover, the existence of a sharp inapproximability threshold was proved
for some problems, that is, there is an approximation ratio, for which it is
feasible to approximate the problem, but on the other hand, computing an
solution with an even slightly smaller factor becomes NP-hard. Nevertheless,
for many problems, there still exists a gap between the approximation ratio of
the best known efficient algorithm and the best inapproximability threshold.

It reflects the research in this area, in which we have given an optimiza-
tion problem and we do not only want to know the approximation ratio of
the best known efficient algorithm, but we also want to know what is the
best approximation that can be achieved efficiently. Is it worthwhile to seek
for algorithms with improved approximation ratios or have we already found
the best possible approximation? Moreover, it is known that optimization
problems have different behavior with respect to inapproximability. In par-
ticular, there are problems, which are NP-hard to approximate to within
every constant factor. For other problems, it is possible to find a solution
with some constant approximation ratio. On the other hand, there are NP-
hard problems, for which it is possible to compute efficiently a solution within

2

arbitrary precision.
In order to cope with the approximation hardness of an underlying opti-

mization problem, it is advantageous to consider specific families of instances
with properties that can be exploited to design efficient algorithms with im-
proved approximation ratios as compared to general instances of the prob-
lem.

In this thesis, we investigate the approximation complexity of selected
NP-hard optimization problems restricted to instances with bounded de-
gree, occurrence or weight parameter. Specifically, we consider the family of
dense instances, where typically the average degree is bounded from below
by some function of the size of the instance. Complementarily, we examine
the family of sparse instances, in which the average degree is bounded from
above by some fixed constant. Moreover, we focus on developing new meth-
ods for proving explicit approximation hardness results for general as well as
for restricted instances.

Dense Instances

Density is a property of the instance of the underlying optimization problem.
A graph, for example, is called dense, whenever its average degree is linear in
the number of vertices. From the probabilistic point of view, almost all graphs
are dense and therefore, dense graphs obviously constitute an important fam-
ily of instances. In 1995, Arora, Karger and Karpinski [AKK95] proved that
a wide range of NP-hard optimization problems restricted to dense instances
can be approximated within arbitrary precision. Later, Karpinski and Ze-
likovsky [KZ97a] defined and studied dense cases of covering problems. In
particular, they investigated the approximation complexity of dense instances
of the SET COVER problem, the VERTEX COVER problem and the STEINER
TREE problem.

In the following years, researchers exhibited other dense covering prob-
lems that admit approximation algorithms with improved approximation ra-
tios as compared to general instances. A prominent member of this category
of covering problems is the EDGE DOMINATING SET problem. Cardinal

3

CHAPTER 1. INTRODUCTION

et al. [CLL+05] studied the EDGE DOMINATING SET problem restricted to
dense graphs and gave an efficient algorithm for the problem with approxima-
tion ratio parametrized by the density of the input graph. If the underlying
graph is dense enough, the algorithm due to Cardinal et al. [CLL+05] out-
performs the best known approximation algorithm for the general problem
(cf. [GLR08]). The approximation upper bound for the problem was im-
proved by Cardinal, Langerman and Levy [CLL09] and later, by Schmied
and Viehmann [SV11]. Another important optimization problem with this
property is the VERTEX COVER problem restricted to dense k-hypergraphs,
which was studied by Bar-Yehuda and Zehavit [BK04]. They extended the
greedy approach due to Karpinski and Zelikovsky [KZ97a] to k-hypergraphs.

The study of subdense instances of the VERTEX COVER problem in
graphs was initiated by Imamura and Imava [II05]. After that, Cardinal,
Karpinski, Schmied and Viehmann [CKSV11] extended the study of sub-
dense instances of covering problems. In particular, they investigated the
approximability of subdense instances of the CONNECTED VERTEX COVER

problem, the SET COVER problem, the STEINER TREE problem and the
VERTEX COVER problem in graphs.

The first part of this work is dedicated to the study of the approxima-
tion complexity of the VERTEX COVER problem in dense and subdense k-
hypergraphs. Furthermore, we extend our investigations and framework for
the special case of the problem when the underlying k-hypergraph is even
k-partite.

Sparse Instances

Another interesting family of instances are sparse instances, as many opti-
mization problems restricted to sparse instances are known to admit efficient
approximation algorithms with improved approximation ratios as compared
to the general case. A graph, for example, is called sparse whenever the size
of the edge set is at most linear in the number of vertices. On the other hand,
the PCP Theorem [ALM+98, AS98] combined with the approximation pre-
serving reductions due to Papadimitriou and Yanakakis [PY91] implies that

4

1.1. OUTLINE OF THE THESIS

bounded degree instances of several optimization problems are NP-hard to
approximate to within some constant factor. Moreover, Berman and Karpin-
ski [BK99] proved inapproximability thresholds for various bounded degree
optimization problems with a very small bound.

Explicit approximation lower bounds for bounded degree instances with
a very small bound on the degrees have emerged to be important in prov-
ing inapproximability results for global optimization problems, for which di-
rect PCP constructions leading to tight inapproximability results are not
known. Prominent members of this category of global problems are the
TRAVELING SALESPERSON (TSP) problem (cf. [L12], [PV06]), SHORTEST
SUPERSTRING problem (cf. [V05]), the asymmetric and symmetric TSP

problem restricted to distances one and two (cf. [EK06]) and the STEINER

TREE problem with weights one and two (cf. [H07]).
The second part of this work contributes to the study of the approx-

imation hardness of bounded occurrence, degree and weight optimization
problems. Moreover, we focus on new methods for proving explicit approxi-
mation lower bounds for restricted and also for general instances of selected
problems by constructing reductions from well-suited bounded occurrence
CSPs. In particular, we obtain the best up to now explicit approximation
lower bounds for the METRIC and ASYMMETRIC TSP problem, the TSP

problem with bounded metrics and some other restrictions on the underlying
metric space, the SHORTEST SUPERSTRING problem restricted to instances
with bounded occurrences of characters, the METRIC DIMENSION problem
in graphs with maximum degree 3 and the STEINER TREE problem with
weights one and two.

1.1 Outline of the Thesis

The thesis divides into three relatively independent parts. In Part I, we pro-
vide some relevant background knowledge and introduce preliminaries from
complexity theory.
In particular, in Chapter 2, we fix the notation used in the thesis. In Chap-

5

CHAPTER 1. INTRODUCTION

ter 3, we define the basic complexity classes. In Chapter 4, we give a brief
introduction in the topic of approximation algorithms, optimization prob-
lems and lower bound techniques.
In Part II, our work is mainly on understanding the approximability of the
VERTEX COVER problem with density and regularity constraints.
In Chapter 5, we study the VERTEX COVER problem in k-hypergraphs.
In Chapter 6, we consider the VERTEX COVER problem in k-partite k-
hypergraphs with given k-partition.
In Part III, we investigate the approximation hardness of selected bounded
occurrence, degree and weight optimization problems. In addition, we de-
velop new approaches for proving explicit approximation lower bounds by
using and extending sparse instance methods.
Specifically, we examine the (1,2)-STEINER TREE problem in Chapter 7, the
METRIC DIMENSION problem restricted to graphs with maximum degree 3

in Chapter 8, the SHORTEST SUPERSTRING problem and related problems
in Chapter 9, and TSP problems in Chapter 10.

1.2 Contributions

In Chapter 5, we study the approximability of the VERTEX COVER prob-
lem in (ε, ℓ)-dense k-hypergraphs and design an efficient approximation al-
gorithm the problem with an improved approximation ratio for all k > 2 and
ℓ > 0. On the other hand, we give an optimal inapproximability result the
problem. Then, we consider a more general class of k-hypergraphs, which
are called nearly regular. We give a randomized approximation algorithm for
the VERTEX COVER problem in nearly regular k-hypergraphs with approxi-
mation ratio strictly less than k and running time depending on the density
of the underlying k-hypergraph. It entails the existence of quasi-polynomial
and polynomial time randomized approximation algorithms with approxima-
tion ratio less than k for mildly sparse and subdense instances, respectively.
Furthermore, we obtain tight approximation lower bounds for the problem.
In particular, we prove the best known approximation lower bounds for the

6

1.2. CONTRIBUTIONS

VERTEX COVER problem in regular k-hypergraphs. This chapter is based
on the work [CKSV12].

In Chapter 6, we investigate the approximability of the VERTEX COVER

problem in dense and nearly regular k-partite k-hypergraphs. We first con-
sider the VERTEX COVER problem in dense k-balanced hypergraphs and
prove that the problem is efficiently approximable within an approximation
ratio better than k/2. After that, we develop an improved technique for the
extraction of a minimum vertex cover of a dense k-partite k-partite by which
we obtain an efficient approximation algorithm for the VERTEX COVER prob-
lem in dense k-partite k-hypergraphs with a better approximation ratio. On
the approximation hardness side, we propose a conjecture about the UG -
hardness of the VERTEX COVER problem in k-partite k-hypergraphs. As-
suming this conjecture, we prove an optimal inapproximability result for
the dense version of the problem. This part of the chapter is based on the
work [KSV11].
By combining the framework developed for the VERTEX COVER problem in
nearly regular k-hypergraphs with a new method called randomized bucket-
ing extraction, we prove the existence of quasi-polynomial and polynomial
time randomized approximation algorithms with approximation ratio less
than k/2 for mildly sparse and subdense instances, respectively. On the
other hand, we prove the optimality of the approximation ratio achieved by
our algorithm based on the conjecture mentioned above.

In Chapter 8, we study the approximation complexity of the
METRIC DIMENSION problem restricted to graphs with maximum degree
3 and prove that the problem is APX-hard. In addition, we establish the
inapproximability threshold of 353/352 for the problem. This part of the
chapter is based on the work [HSV12].
Afterwards, we construct a reduction implying that it is NP-hard to approx-
imate the problem to within any constant factor less than 153/152.

In Chapter 7, we give an improved approximation lower bound for the
(1,2)-STEINER TREE problem and prove that the problem is NP-hard to
approximate to within any constant factor less than 221/220.

In Chapter 9, we introduce a new reduction method for proving explicit

7

CHAPTER 1. INTRODUCTION

approximation lower bounds for optimization problems that are related to the
SHORTEST SUPERSTRING problem. Based on this reduction method, we
are able to improve the best up to now known approximation lower bounds for
the SHORTEST SUPERSTRING problem and the MAXIMUM COMPRESSION

problem by an order of magnitude. The inapproximability results holds for
strongly restricted instances of the SHORTEST SUPERSTRING problem, in
which no character appears more than eight times and all given strings have
length at most four. It also implies an improved approximation lower bound
for the MAX-ATSP problem. This chapter is based on the work [KS11].

In Chapter 10, we investigate the approximation hardness of TSP prob-
lems with bounded metrics. By extending our method from Chapter 9, we
give improved approximation lower bounds for the (1,2)-ATSP problem, the
(1,2)-TSP problem, MAX-(0,1)-ATSP problem, the (1,4)-ATSP problem,
the (1,2)-TSP problem restricted to cubic and subcubic instances, and the
GRAPHIC-TSP problem in cubic and subcubic graphs. This part is based on
the works [KS12] and [KS13].
By constructing a new bounded degree wheel amplifier and exploiting the
special properties of a well-suited bounded occurrence CSP, we prove the
best up to now inapproximability thresholds for the general METRIC and
ASYMMETRIC TSP problem improving upon results of Lampis [L12], and
Papadimitriou and Vempala [PV06]. This part is based on the work [KLS13].

8

Part I

Foundations

9

CHAPTER 2

Background

11

CHAPTER 2. BACKGROUND

This chapter serves as a foundation of notation for subsequent chapters.
We fix the notation that we will use in this work and provide some relevant
background knowledge. In particular, we review topics that are related to
hypergraphs, symmetric metric spaces, strings, finite probability spaces and
asymptotical behaviour of functions.

2.1 Standard Notation

We let Z = {0,1,−1,2,−2, . . .} denote the set of integers, N0 = {0,1,2, . . .} the
set of non-negative integers, N = N0/{0} the set of natural numbers and R the
set of real numbers. For a natural number n ∈ N, we define [n] = {1,2, . . . , n}
and [n]0 = {0} ∪ [n]. Furthermore, we use the abbreviation [0] = ∅. Given a
set S, we let 2S = {S′ ∣ S′ ⊆ S} denote the power set of S and

(S
k
) = {S′ ⊆ S ∣ ∣S′∣ = k }

the collection of subsets of S with cardinality exactly k.
A multiset is defined as a pair (A,m), where A is a set and m∶A→ N. The

set A is called the underlying set of elements. For each a ∈ A, the multiplicity,
that is, the number of occurrences of a is m(a).

For a real number x, we denote by ⌈x⌉ the smallest integer n with n ≥ x,
whereas ⌊x⌋ is the largest integer such that n ≤ x. Whenever we use a real
number x in a context requiring an integer, ⌈x⌉ is implied. By logx, we
denote the logarithm of a positive real x to the base 2 and exp[x] = ex.

Strings

Let Σ be a finite alphabet. A string s of length n over Σ is a mapping
s ∶ [n] → Σ. For notational simplicity, we identify a string s ∶ [n] → Σ with
the n-tuple s1s2⋯sn of elements from Σ. The empty string is denoted by
Λ0. For n ∈ N, we define Σn as the set of all strings over Σ having length n,
Σ0 = {Λ0} and Σ∗ = ⋃n≥0Σn. If x and y are strings, then, we denote their
concatenation simply by xy. The length of a string x is denoted by ∣x∣.

12

2.2. RANDOM VARIABLES AND EXPECTATION

2.2 Random Variables and Expectation

A finite probability space is a finite set Ω ≠ ∅ along with a function Pr ∶ Ω →
R>0 such that

for all ω ∈ Ω,Pr(ω) > 0 and ∑
ω∈Ω

Pr(ω) = 1.

The set Ω is the sample space and the function Pr is the probability distri-
bution. The elements ω ∈ Ω are called elementary events. An event E is a
subset of Ω, for which we define the probability of E by Pr(E) = ∑

ω∈E
Pr(ω).

The uniform distribution over the sample space is specified by setting
Pr(ω) = 1/∣Ω∣ for every ω ∈ Ω.

Given a finite probability space (Ω,Pr), a random variable X is a function
X ∶ Ω → R. The expectation of a random variable X, denoted by E[X], is
defined as follows.

E[X] = ∑
ω∈Ω

Pr(ω) ⋅X(ω)

Chernoff Bounds

We are going to state the most commonly used version of the Chernoff bound
applicable for the tail distribution of a sum of independent 0/1 valued random
variables.

Poisson trials are repeated independent trials with two possible outcomes
called success and failure. In general, the success probability is allowed to
change with each trial. Let us represent n Poisson trials by indicator random
variables X1, . . . ,Xn that can take values 1 and 0 representing success and
failure, respectively. The following statement is a simplified version of the
Chernoff bounds.

Theorem 2.2.1
Let X1,X2, . . . ,Xn be independent Poisson trials with Pr[Xi = 1] = pi for all
i ∈ [n]. Let X = ∑

i∈[n]
Xi and µ = E[X]. Then, the following Chernoff bounds

hold:

13

CHAPTER 2. BACKGROUND

(i) For any δ ∈ (0,1], we have

Pr [X ≥ (1 + δ)µ] ≤ exp [−µδ
2

3
] .

(ii) For any δ ∈ (0,1), we have

Pr [X ≤ (1 − δ)µ] ≤ exp [−µδ
2

2
] .

We omit the proof of Theorem 2.2.1 and refer to the textbook by Mitzen-
macher and Upfal [MU05].

2.3 Asymptotic Notation

In the remainder, we will typically measure the computational efficiency of
an algorithm by the number of performed basic operations as a function of
its input length. In other words, the efficiency of an algorithm is captured
by a function T ∶ N → N with T (n) being the maximum number of basic
operations that the algorithm performs on inputs of length n. However,
this function can be overly dependent on the details of our definition of a
basic operation. In order to help us ignoring low-level details and focus on
the big picture, we define the following well-known notation introduced by
P. Bachmann [B92] and E. Landau [L09].

Definition 2.3.1 (Bachmann−Landau Notation)
Let f and g be two functions mapping from N to N. We say that

• f = O(g) if there is a constant c > 0 and n0 ∈ N such that f(n) ≤ c ⋅g(n)
for every n ≥ n0,

• f = Ω(g) if there is a constant c > 0 such that for infinitely many n ∈ N,
c ⋅ g(n) ≤ f(n) holds,

• f = Θ(g) if f = O(g) and g = O(f),

• f = o(g) if for every ϵ > 0, there is a natural number nε such that
f(n) ≤ ε ⋅ g(n) for every n ≥ nε, and

14

2.4. HYPERGRAPHS

• f = ω(g) if g = o(f).

In order to emphasize the input parameter, we write f(n) = O(g(n)) instead
of f = O(g). Analogously, we use a similar notation for o,Ω, ω,Θ.

For a function f ∶ Rn → R, we write f(x1, x2, . . . , xn) = poly(x1, x2, . . . , xn) if
f(x1, x2, . . . , xn) = (x1 ⋅ x2⋯xn)O(1).

2.4 Hypergraphs

A hypergraph H is a pair (V (H),E(H)), where V (H) is the vertex set of
H and E(H) the edge set of H satisfying E(H) ⊆ 2V (H). For every vertex
v ∈ V (H) in a given hypergraph H, we define its degree in H, denoted dH(v),
by ∣ {e ∈ E(H) ∣ v ∈ e} ∣. Analogously, we define the degree of a set S ⊆ V (H)
in H to be dH(S) = ∣ {e ∈ E(H) ∣ S ⊆ e} ∣. The neighborhood NH(v) of a vertex
v in H is defined as NH(v) = ⋃

e∈E∶v∈e
e/{v}. The maximum degree of a given

hypergraph H is denoted by ∆H, where ∆H = max
v∈V (H)

{dH(v)} . We introduce

the average degree dH of a hypergraph H defined as follows.

dH =
∑

v∈V (H)
dH(v)

∣V (H)∣

A hypergraph H is said to be d-regular whenever dH(v) = d ∈ N for all
v ∈ V (H) and regular whenever there exists a d ∈ N such that H is d-regular.
We refer to H as r-nearly regular if there exists a constant r ∈ (0,1] with
dH ≥ r ⋅∆H and nearly regular if there exists a constant r ∈ (0,1] such that
H is r-nearly regular.

A k-uniform hypergraph or simply k-hypergraph is a hypergraph H with
the restriction that every edge e ∈ E(H) has size ∣e∣ = k. In particular, we
refer to a 2-hypergraph simply as graph denoted by G. In the remainder,
unless stated explicitly, we will suppose that k = O(1).

A k-hypergraph H is said to be k-partite whenever V (H) can be par-
titioned in k classes V1(H), . . . , Vk(H) such that for all e ∈ E(H) and all
i ∈ [k], we have ∣e ∩ Vi(H)∣ = 1. If the vertex partition {Vi(H) ∣ i ∈ [k]} of

15

CHAPTER 2. BACKGROUND

a k-partite k-hypergraph H is given as a part of the input, we assume that
∣Vi+1(H)∣ ≤ ∣Vi(H)∣ for all i ∈ [k − 1].

Matchings, Vertex Cover and Independent Sets

A vertex cover of a k-hypergraph H is a set C ⊆ V (H) such that for all edges
e ∈ E(H), we have e∩C /= ∅. An independent set of a k-hypergraph H is a set
I ⊆ V (H) having the property that V (H)/I is a vertex cover of H. A clique of
H is a set K ⊆ V (H) with ∣K ∣ ≥ k such that for all distinct v1, . . . , vk ∈K, we
have {v1, . . . , vk} ∈ E(H). A matching of a k-hypergraphH is a setM ⊆ E(H)
such that for all distinct edges e1, e2 ∈ M , we have e1 ∩ e2 = ∅. A matching
M ⊆ E(H) of H is called maximal if for all e ∈ E(H)/M , there is a e0 ∈ M
with e0∩e ≠ ∅. A maximum matching of H is a maximal matching of H with
maximum cardinality. For a set E ⊆ E(H) of edges, we define V (E) = ⋃

e∈E
e.

A matching M of a hypergraph H is called perfect if V (M) = V (H).

Induced Subgraphs and Basic Operations

Given a k-hypergraph H, we call H′ a subhypergraph of H if V (H′) ⊆ V (H)
and E(H′) ⊆ E(H). H′ is said to be an induced subhypergraph of H if
H′ contains all edges e ∈ E(H) with e ⊆ V (H′). The subhypergraph of H
induced by a vertex set U ⊆ V (H) is denoted by H[U].

Directed Graphs and Multi-graphs

A directed graph G or simply digraph is a pair (V (G),E(G)) with vertex
set V (G) and arc set E(G) ⊆ V (G) × V (G)/{(v, v) ∣ v ∈ V (G)}. A (directed)
multigraph G is a pair (V (G),E(G)), where E(G) is a multiset of edges (arcs).

Given a directed graph G and E′ ⊆ E(G), for e = (x, y) ∈ E(G), we
define V (e) = {x, y} and V (E′) = ⋃e∈E′ V (e). For convenience, we abbreviate
a sequence of arcs (x1, x2), (x2, x3), . . . , (xn−1, xn) by x1 → x2 → x3 → . . . →
xn−1 → xn. In the undirected case, we use sometimes x1−x2−x3−. . .−xn−1−xn
instead of {x1, x2}, {x2, x3}, . . . ,{xn−1, xn}. Given a directed (multi)graph G,
an Eulerian cycle in G is a directed cycle that traverses all edges of G exactly
once. We refer to G as Eulerian, if there exists an Eulerian cycle in G.

16

2.5. SYMMETRIC AND ASYMMETRIC METRIC SPACES

2.5 Symmetric and Asymmetric Metric Spaces

A asymmetric metric space is an ordered pair (V, d), where V is a set and d
an asymmetric metric on V , that is, a function d∶V ×V → R such that for all
x, y, z ∈ V , the following holds.

(i) d(x, y) ≥ 0

(ii) d(x, y) = 0 if and only if x = y

(iii) d(x, z) ≤ d(x, y) + d(y, z)

A asymmetric metric space (V, d) is called metric space if for all x, y ∈ V , we
have that d(x, y) = d(y, x).

17

CHAPTER 2. BACKGROUND

18

CHAPTER 3

Basic Complexity Classes

19

CHAPTER 3. BASIC COMPLEXITY CLASSES

One subject of computational complexity theory is the classification of
computational problems by their intrinsic difficulty. In this chapter, we only
give a brief introduction and define the basic concepts of the computational
model, complexity classes and probabilistic computational model. Readers
asking for a more profound introduction into this important field of computer
science are referred to the text book by Arora and Barak [AB09].

3.1 The Computational Model

Since we are interested in issues of computational efficiency, we need to de-
fine a mathematical model that is sufficient for studying questions about
computation and its efficiency. For this reason, Turing [T36] introduced the
model of Turing machines (TM for short) in 1936 in order to formalize the
intuitive notion of an algorithm. A TM M consists of a finite control and
a finite number of tapes. M has read/write access to its tapes by means of
read/write-heads. The finite control contains a finite program coordinating
the movement of its read/write-heads, the write operations in dependence of
the symbols of the input at the current tape positions and the actual state
of the program stored in the finite control. Let us give the formal definition
of a TM.

Definition 3.1.1 (Turing MachineM)
A k-tape TM is a tuple M = (Q, δ, q0, F,Γ) with

• Q is a finite set of states

• q0 ∈ Q is the starting state,

• F ⊆ Q is the set of accepting states,

• Γ is a finite set of tape symbols containing at least two elements,

• δ is the transition function of the finite control

δ ∶ Q × Γk → Q × Γk × {L,N,R}

20

3.2. THE COMPLEXITY CLASSES P AND NP

δ(q, a1, . . . , ak) = (q′, a′1, . . . , a′k, d⃗) with d⃗ ∈ {L,N,R}k means that the
machine is initially in the state q and the i-th head over the tape symbol
ai, the machine writes the symbol a′i replacing ai, proceeds to state q′

and moves the head one cell in direction d⃗i for all i ∈ [k], where L,N
and R corresponds to the directions left, neutral and right, respectively.

After having fixed a model of computation, we are going to formalize the
notion of running time and computation of a function.

Definition 3.1.2 (Computation of a Function and Running Time)
Let f ∶ {0,1}∗ → {0,1}∗ and T ∶ N → N be some functions. Given a Turing
machineM, we say thatM computes f if for every x ∈ {0,1}∗,M initialized
to the start configuration on input x reaches an accepting state with f(x)
written on its output tape. In addition, we say that M computes f in T (n)-
time if M computes f and for every x ∈ {0,1}∗, M on input x requires at
most T (∣x∣) steps for its computation.

We are going to define our first complexity class. A complexity class is a
set of functions for each of which there exist a Turing machine computing the
function within a specified resource bound. Boolean functions f ∶ {0,1}∗ →
{0,1} specify decision problems or languages. In the remainder, we say that
a Turing machine M decides a language L ⊆ {0,1}∗ if M computes the
function fL ∶ {0,1}∗ → {0,1}, where fL(x) = 1⇔ x ∈ L.

Let us now introduce the complexity class DTIME that was defined by
Hartmanis and Stearns [HS65] in 1965.

Definition 3.1.3 (The Class DTIME)
Let T ∶ N→ N be some function. A language L ⊆ {0,1}∗ is in DTIME(T (n))
iff there exists a TM that decides L in c ⋅ T (n) time for some constant c > 0.

3.2 The Complexity Classes P and NP

In order to formalize the term efficient computation, Cobham [C64] defined
the class P. In the context of presenting a polynomial time algorithm for

21

CHAPTER 3. BASIC COMPLEXITY CLASSES

finding a maximum matching in general graphs, Edmonds [E65] made a sim-
ilar suggestion. Let us give the definition of the complexity class P.

Definition 3.2.1 (The Class P)
The class P contains all languages L ⊆ {0,1}∗ that can be decided by a Turing
machine in polynomial time or equivalently,

P = ⋃
p=poly(n)

DTIME(p).

The class P contains all decision problems that can be solved efficiently.
In contrast, we are going to define the class NP of decision problems that
can be verified efficiently.

Definition 3.2.2 (The Class NP)
A language L ⊆ {0,1}∗ is contained in NP if there exists a polynomial p =
poly(n) and a polynomial time Turing machine M such that for every x ∈
{0,1}∗,

x ∈ L⇐⇒ ∃c ∈ {0,1}p(∣x∣) such that M(x, c) = 1

If x ∈ L and c ∈ {0,1}p(∣x∣) satisfyM(x, c) = 1, then, we call c a certificate for
x.

Let us give an example of a decision problem that belongs to the class NP.
We denote by the SAT problem the language of all satisfiable Boolean for-
mulae in CNF form (shorthand for Conjunctive Normal Form) and by the
kSAT problem the language of all satisfiable Boolean formulae in CNF form,
in which all clauses contain at most k literals.

Around 1971, Cook and Levin independently developed the notion of NP-
completeness and proved that the SAT problem is NP-complete. Soon after
that, Karp [K75] showed that the decision version of 21 important problems
in combinatorial optimization are in fact NP-complete. In order to define
NP-completeness, we need to introduce the notion of Karp-reductions.

Definition 3.2.3 (Karp-Reductions, C-Hardness and C-Completeness)
We say that a language A ⊆ {0,1}∗ is polynomial time Karp reducible to a
language B ⊆ {0,1}∗ (short: polynomial time reducible), denoted A ≤p B, if

22

3.3. RANDOMIZED COMPUTATION

there is a polynomial time computable function f ∶ {0,1}∗ → {0,1}∗ such that

for every x ∈ {0,1}∗, x ∈ A if and only if f(x) ∈ B.

Let C be a complexity class. We say that B is C-hard if A ≤p B for every
A ∈C. We say that B is C-complete if B is C-hard and B ∈C.

The following theorem is due to Cook and Levin providing us with our first
NP-complete problems.

Theorem 3.2.1 (Cook-Levin Theorem [C71],[L73])
The SAT problem and the 3SAT problem are both NP-complete.

3.3 Randomized Computation

In order to formalize the notion of probabilistic computation, we extend our
mathematical model of computation and introduce the probabilistic Turing
machine. The probabilistic Turing machine was firstly defined by de Leeuw,
Moore, Shannon and Shapiro [LMSS55]. Gill [G77] gave the definitions
of the classes BPP (bounded error probabilistic polynomial time), RP

(randomized polynomial time) and ZPP (zero error probabilistic polynomial
time).

Let us start with the definition of a probabilistic Turing machine.

Definition 3.3.1 (Probabilistic Turing Machine (PTM))
A probabilistic Turing machine M is a Turing machine with two transition
functions δ0 and δ1. Given an input x ∈ {0,1}∗, M chooses in each step
to apply the transition function δi with i ∈ {0,1} each with probability 1/2.
In every step, the choice is made independently of all previous choices. The
machine only outputs 1 (YES) or 0 (NO). We denote by M(x) the random
variable corresponding to the value that M writes on input x. Let T ∶ N→ N
be a function. We say thatM runs in T (n) time if for any input x ∈ {0,1}∗,
M halts on x requiring at most T (∣x∣) steps regardless of the random choices.

23

CHAPTER 3. BASIC COMPLEXITY CLASSES

We are going to introduce the class BPP that implements the term ef-
ficient probabilistic computation. The class BPP captures the nature of
probabilistic algorithms with two sided error. It means that the machineM
is allowed to output both 0 when x ∈ L and 1 when x /∈ L.

Definition 3.3.2 (The Classes BPTIME and BPP)
Let T ∶ N→ N be a function, L ⊆ {0,1}∗ a language and fL its corresponding
Boolean function. We say that a PTMM decides L in T (n) time if for every
x ∈ {0,1}∗, M halts within T (∣x∣) steps regardless of its random choices and

Pr[M(x) = fL(x)] ≥
2

3

We let BPTIME(T (n)) be the class of languages decided by PTMs in
O(T (n)) time and define BPP= ⋃

k∈N
BPTIME(nk).

As mentioned above, the class BPP captures the nature of probabilistic
algorithms with two sided error. However, as many probabilistic algorithms
have the property of one sided error, we introduce the class RP to capture
this behavior.

Definition 3.3.3 (The Classes RTIME and RP)
Let T ∶ N → N be a function. RTIME(T (n)) contains the languages L ⊆
{0,1}∗, for which there is a is a PTMM running in T (n) time and satisfying
the following conditions.

x ∈ L⇒ Pr[M(x) = 1] ≥ 2

3

x /∈ L⇒ Pr[M(x) = 1] = 0

We define RP = ⋃
k∈N

RTIME(nk).

For a PTM M, a function T ∶ N → N and input x ∈ {0,1}∗, we define the
random variable TM,x to be the running time ofM on input x. In particular,
we set Pr[TM,x = T (∣x∣)] = p if M on input x halts in at most T (∣x∣) steps
with probability p over all random choices ofM. We say thatM has expected
running time T (n) if for every x ∈ {0,1}∗, the expectation E[TM,x] is at most
T (∣x∣). We are going to define zero error machines which are PTMs with the
property that they never err.

24

3.3. RANDOMIZED COMPUTATION

Definition 3.3.4 (The Classes ZTIME and ZPP)
Let T ∶ N→ N be a function. The class ZTIME(T (n)) contains all languages
L ⊆ {0,1}∗ for which there is a PTM M with M(x) = fL(x) for every input
x ∈ {0,1}∗ and expected running time O(T (n)).
We define ZPP = ⋃

k∈N
ZTIME(nk).

25

CHAPTER 3. BASIC COMPLEXITY CLASSES

26

CHAPTER 4

Complexity of Optimization
Problems

27

CHAPTER 4. COMPLEXITY OF OPTIMIZATION PROBLEMS

In this chapter, we are concerned with the computational complexity
of optimization problems. Most of this material deals with approximation
algorithms, hardness of approximation and lower bound techniques. For a
broader overview on this topic, we recommend the text books by Ausiello et
al. [ACG+99] and by Arora and Barak [AB09].

This chapter is organized as follows. In Section 4.1, we define optimiza-
tion problems. In Section 4.2, we formalize the notion of approximation algo-
rithms and approximation classes. In Section 4.3, we review basic facts on gap
and promise problems. In Section 4.4, we focus on approximation preserving
reductions. In Section 4.5, we give a brief introduction to probabilistically
checkable proofs. In Section 4.6 and 4.7, we consider the LABEL COVER

and the MAX-E3LIN2 problem, respectively. In Section 4.8, we formulate the
Unique Games Conjecture. In Section 4.9, we survey some results on the
approximation hardness of bounded occurrence CSPs.

4.1 Optimization Problems

As we want to extend complexity theory from decision problems to optimiza-
tion problems, we need to introduce appropriate definitions. In addition, we
will discuss the relationships between the complexity of optimization prob-
lems and the complexity of decision problems. Let us first give the formal
definition of an optimization problem.

Definition 4.1.1 (Optimization Problem)
An optimization problem Π is specified by a 4-tuple (IΠ,SΠ,mΠ, goalΠ), where

• IΠ ⊆ {0,1}∗ is the set of valid instances of Π,

• SP is a function that associates to each valid instance I the set of fea-
sible solutions SΠ(I) of I with SΠ(I) ⊆ {0,1}∗,

• mΠ ∶ {(I, S) ∣ I ∈ IΠ and S ∈ SΠ(I)} → N is the objective function and
mΠ(I, S) is the objective value of the feasible solution S with respect to
I,

28

4.1. OPTIMIZATION PROBLEMS

• goalΠ ∈ {MIN,MAX} characterizes the type of optimization problem.

In the remainder, we will drop the subscript Π, when the context is clear.
Given an instance I of an optimization problem Π, we denote by S∗Π(I) the
set of all optimal solutions of I. More formally, it is the set of all S∗ ∈ SΠ(I)
such that

mΠ(I, S∗) = goalΠ{mΠ(I, S′) ∣ S′ ∈ SΠ(I)}.

In the following, we will assume that there exists always optimal solutions
provided that SΠ(I) ≠ ∅. The corresponding objective value of any S∗ ∈
S∗Π(x) is denoted by optΠ(I).

The Classes PO and NPO

We now define the optimization counterparts of the classes P and NP. Let
us start with the definition of NPO.

Definition 4.1.2 (The class NPO)
NPO is the class of all optimization problems Π = (IΠ,SΠ,mΠ, goalΠ) such
that

• IΠ ∈ P meaning the set of valid instances is decidable in polynomial
time.

• there is a polynomial p such that given I ∈ IΠ, for all S ∈ SΠ(I), we
have ∣S∣ ≤ p(∣I ∣). Furthermore, for all S′ with ∣S′∣ ≤ p(∣I ∣), we can
decide in poly(∣I ∣) time whether S ∈ SΠ(I).

• mΠ is computable in polynomial time.

Based on the previous definition, we define the class of optimization prob-
lems that are solvable in polynomial time.

Definition 4.1.3 (The class PO)
PO is the class of all optimization problems Π ∈ NPO, for which there exists
a polynomial time algorithm that, for any valid instance I ∈ IΠ, returns an
optimal solution S ∈ S∗Π(I).

29

CHAPTER 4. COMPLEXITY OF OPTIMIZATION PROBLEMS

Next, we are going to define approximation algorithms for optimization
problems.

4.2 Approximation Classes

In the most general sense, an approximation algorithm computes on input of
a valid instance I of an optimization problem a feasible solution.

Definition 4.2.1 (Approximation Algorithm)
Let Π be an optimization problem. An algorithm A is an approximation
algorithm for Π if for all instances I ∈ IΠ, we have A(I) ∈ SΠ(I).

In order to classify the performance of approximation algorithms, we are
going to develop a framework to measure the quality of a produced solution.

Definition 4.2.2 (Approximation Ratio)
Let Π be an optimization problem, I ∈ IΠ and S ∈ SΠ(I). The approximation
ratio of S with respect to I, denoted R(I, S), is defined as follows.

R(I, S) = max{ mΠ(I, S)
opt(I)

,
opt(I)

mΠ(I, S)
}

Let α ∶ N → Q+ be a function. An approximation algorithm A for Π has
approximation ratio α, if for all I ∈ IΠ, we have that R(I,A(I)) ≤ α(∣I ∣).

We are going to introduce the class APX. It is the set of NPO opti-
mization problems having a polynomial time approximation algorithm with
approximation ratio bounded by a constant.

Definition 4.2.3 (The class APX)
APX is the class of all NPO problems Π, for which there exist a constant
α ≥ 1 and a polynomial time approximation algorithm for Π with approxima-
tion ratio α.

Some optimization problems in the class APX even admit a polynomial
time approximation scheme, that is roughly speaking, a family of approxima-
tion algorithms that achieve an arbitrarily good approximation ratio α > 1

30

4.3. GAP AND PROMISE PROBLEMS

for the cost of a longer runtime. Let us give the precise definition.

Definition 4.2.4 (PTAS, EPTAS, FPTAS)
Let Π be a NPO problem. A family {Aε}ε>0 of approximation algorithms
for Π is called a polynomial time approximation scheme (PTAS) if for any
instance I ∈ IΠ and every fixed ε > 0, the algorithm Aε returns a solution
with approximation ratio at most (1 + ε) in poly(∣I ∣) time.
We call a PTAS {Aε}ε>0 for a problem Π an efficient polynomial time approx-
imation scheme (EPTAS) if for any instance I ∈ IΠ and every fixed ε > 0, the
running time of Aε is f(1/ε) ⋅poly(∣I ∣), where f ∶ Q+ → Q+ is some function.
A PTAS {Aε}ε>0 for Π is said to be a fully polynomial time approximation
scheme (FPTAS) if for any instance I ∈ IΠ and every ε, the running time of
Aε is poly(∣I ∣,1/ε).

Accordingly, we define the classes PTAS, FPTAS and EPTAS , which
by definition are subclasses of APX.

Definition 4.2.5 (The classes PTAS, FPTAS and EPTAS)
PTAS, FPTAS and EPTAS are the classes of all optimization problems
in NPO that admit a PTAS, FPTAS and EPTAS, respectively.

In the next section, we are going to define gap problems and promise
problems

4.3 Gap and Promise Problems

In order to relate the approximation hardness of optimization problems to
the hardness of decision problems, we are going to introduce the notion of
promise problems.

Definition 4.3.1 (Promise Problem)
A promise problem Λ is a pair of non-intersecting sets denoted by (ΛYES,ΛNO)
with ΛYES,ΛNO ⊆ {0,1}∗. The set ΛNO ∪ΛYES is called the promise.

We refer to elements in ΛYES as YES-instances, whereas elements in ΛNO

31

CHAPTER 4. COMPLEXITY OF OPTIMIZATION PROBLEMS

are called NO-instances. The remaining elements in {0,1}∗/ (ΛNO ∪ΛYES) are
called don’t care-instances. Decision problems are a special case of promise
problems, in which we have ΛNO ∪ΛYES = {0,1}∗.

Polynomial time reductions can be extended to promise problems in a
very natural way. Let Λ1 = (Λ1

YES,Λ
1
NO) and Λ2 = (Λ2

YES,Λ
2
NO) be two promise

problems. We say that Λ1 is polynomial time reducible to Λ2 if there is a
polynomial time computable function f ∶ Λ1

YES∪Λ1
YES → Λ2

YES∪Λ2
NO such that

the following holds.
I ∈ Λ1

YES Ô⇒ f(x) ∈ Λ2
YES

and

I ∈ Λ1
NO Ô⇒ f(x) ∈ Λ2

NO

It simply means that YES-instances are mapped to YES-instances and NO-
instances to NO-instances.

A promise problem Λ is C-hard for some class C of decision problems, if
every problem in C is polynomial time reducible to Λ.

Definition 4.3.2 (Gap Problem)
For an optimization problem Π = (IΠ,SΠ,mΠ, goalΠ) and some constants
A,B ∈ Q+ with A < B, the corresponding promise problem [A,B]-GAP-Π is
defined as follows.

YES-instances ∶
⎧⎪⎪⎪⎨⎪⎪⎪⎩

{I ∈ IΠ ∣ opt(I) ≥ B} if goalΠ =MAX

{I ∈ IΠ ∣ opt(I) ≤ A} if goalΠ =MIN

NO-instances ∶
⎧⎪⎪⎪⎨⎪⎪⎪⎩

{I ∈ IΠ ∣ opt(I) ≤ A} if goalΠ =MAX

{I ∈ IΠ ∣ opt(I) ≥ B} if goalΠ =MIN

By definition of gap problems, we obtain immediately the following lemma
that relates the hardness of approximating an optimization problem to the
hardness of a gap problem.

Lemma 4.3.1
Let [A,B]-GAP-Π be an NP-hard gap problem of an optimization problem
Π ∈ NPO for some constants A,B ∈ Q+ with A < B. Then, it is NP-hard to

32

4.4. APPROXIMATION PRESERVING REDUCTIONS

approximate the optimization problem Π to within any constant approxima-
tion ratio less than (B/A).

In order to prove hardness of approximation to within a particular ap-
proximation ratio, it suffices to prove hardness of the corresponding gap
problem.

4.4 Approximation Preserving Reductions

There have been defined different kind of reducibilities in the literature. The
AP-reducibility, which we are going to define, is sufficiently general to in-
corporate almost all known reducibilities while preserving a linear relation
between approximation ratios. Let us give the precise definition of the AP-
Reduction.

Definition 4.4.1 (AP-Reduction)
Let Π1 and Π2 be optimization problems in NPO. We say that Π1 is AP-
reducible to Π2 (in symbols: Π1 ≤AP Π2) if there is a function f ∶ {0,1}∗×Q+ →
{0,1}∗, a constant α ≥ 1 and a function g ∶ {0,1}∗ × {0,1}∗ ×Q+ → {0,1}∗

such that

• for all I ∈ IΠ1 and all rational β > 1, we have f(I, β) ∈ IΠ2 ,

• for all I ∈ IΠ1 and all rational β > 1, if SΠ1(I) ≠ ∅, then, we have that
SΠ2(f(I, β)) ≠ ∅,

• for all I ∈ IΠ1 , S ∈ SΠ2(f(I, β)), and β > 1, we have g(I, S, β) ∈ SΠ1(I),

• f and g are polynomial time computable for fixed β > 1,

• for all I ∈ IΠ1 and all S ∈ SΠ2(f(I, β)), if S is a solution to f(I, β)
with approximation ratio β, then, g(I, S, β) is a solution to I with ap-
proximation ratio at most (1 + α(β − 1)).

We call the triple (f, g,α) an AP-reduction from Π1 to Π2.

33

CHAPTER 4. COMPLEXITY OF OPTIMIZATION PROBLEMS

We are going to state some properties of the AP-reduction. The proofs
of the statements can be found in the textbook by Ausiello et al. [ACG+99].

Lemma 4.4.1
Let Π1 and Π2 be optimization problems.

• If Π1 ≤AP Π2 and Π2 ∈ APX, then, we have Π1 ∈ APX.

• If Π1 ≤AP Π2 and Π2 ∈ PTAS, then, Π1 ∈ PTAS.

• The relation ≤AP is transitive.

Next, we are going to define the notion of completeness for optimization
problems.

Definition 4.4.2 (Complete Optimization Problems)
Let C be a class of optimization problems in NPO. An optimization problem
Π is C-hard (under AP-reductions) if for all Π2 ∈C, we have Π2 ≤AP Π. The
optimization problem Π is said to be C-complete if it is contained in C and
C-hard.

As an implication of Lemma 4.4.1, we obtain the following statement.

Corollary 4.4.1
Let C be a class of optimization problems in NPO and Π, Π′ be optimization
problems. If Π ≤AP Π′ and Π is C-hard, then, Π′ is also C-hard.

4.5 Probabilistically Checkable Proofs

A polynomial time probabilistic verifier V is a polynomial time probabilistic
Turing machine with oracle access to a proof π ∈ {0,1}∗. That means each
bit of π can be independently queried by V by means of a special address
tape. Let us say that the verifier queries the i-th bit in the proof π, then, it
writes i on the address tape and receives the bit π[i].

In addition, we restrict verifiers to be non-adaptive meaning the verifier
may write several positions of π at one time. If it enters the query state,

34

4.5. PROBABILISTICALLY CHECKABLE PROOFS

it receives the values of all queried positions. But, the verifier is allowed
to enter the query state only once. Therefore, the verifier has to decide in
advance which bits it wants to query.

A non-adaptive probabilistic verifier V with access to π is called
(r(n), q(n))-restricted if for all n ∈ N and on all inputs x ∈ {0,1}n, the
verifier V uses at most r(n) random bits and queries at most q(n) bits of π.
We are ready to give the definition of the class PCP[r, q].

Definition 4.5.1 (The Class PCP[r, q])
Let r, q ∶ N → N be functions and L a language. L is a member of the
class PCP[r, q] if there exists a (r′, q′)-restricted non-adaptive polynomial
time probabilistic verifier V with r′ = O(r), q′ = O(q) and the following
properties.

• For any x ∈ L, there is a proof πx such that

Pr
r∈{0,1}r(n)

[V(x, r, πx) = 1] = 1.

• For any x /∈ L and for all proofs π, the following holds.

Pr
r∈{0,1}r(n)

[V(x, r, π) = 1] ≤ 1

2

Following a long sequence of work, Arora and Safra [AS98] and Arora et
al. [ALM+98] constructed polynomial time probabilistic verifier for the class
NP. This result is also known as the PCP Theorem.

Theorem 4.5.1 (PCP Theorem [AS98], [ALM+98])
NP = PCP[log(n),1].

The PCP Theorem implies that it is NP-hard to approximate the
MAX-3SAT problem to within some constant r > 1. Moreover, Arora et
al. [ALM+98] proved that these statements are equivalent.

Theorem 4.5.2 ([ALM+98])
The following two statements are equivalent:

• NP= PCP[log(n),1],

35

CHAPTER 4. COMPLEXITY OF OPTIMIZATION PROBLEMS

• There is a constant ϵ > 0 such that [1 − ε,1]-GAP-MAX-3SAT is NP-
hard.

4.6 Label Cover Problem

In 1993, Arora, Babai, Stern and Sweedyk [ABSS93] introduced a new
paradigm for proving hardness of approximation results. On the basis of
their paradigm, Håstad [H01] gave tight hardness results for approximat-
ing the MAX-E3SAT problem and many other optimization problems. This
paradigm is based on the hardness of approximating the LABEL COVER prob-
lem defined below.

Definition 4.6.1 (LABEL COVER Problem)
An instance L of the LABEL COVER problem is defined by a tupel
(G, V1(G), V2(G), [m], [n],{πe ∣ e ∈ E(G)}) consisting of

• A bipartite graph G with bipartition {V1(G), V2(G)}.

• Every vertex in V1(G) is supposed to get a label from a set [m] and
every vertex in V2(G) is supposed to get a label from a set [n], where
n ≥m.

• Every edge e ∈ E(G) is associated with a projection πe ∶ [n]→ [m].

A labeling L for L is a mapping L ∶ V1(G) → [m], L ∶ V2(G) → [n]. We say
that L satisfies an edge {v,w} if π{v,w}(L(w)) = L(v). The task is to find a
labeling that maximizes the number of satisfied edges. Let us define opt(L) to
be the maximum fraction of edges that are satisfied by any labeling meaning

opt(L) = max
all labeling L

{ r ∣ ∃ L for L that satisfies r ⋅ ∣E(G)∣ edges}.

There is a natural correspondence between PCP verifier and the
LABEL COVER problem. Moreover, the PCP Theorem implies that it is
NP-hard to approximate the LABEL COVER problem to within any constant
approximation ratio less than r for some r > 1.

36

4.6. LABEL COVER PROBLEM

Theorem 4.6.1 ([AS98], [ALM+98])
There exists a constant ε ∈ (0,1) such that [1,1 − ε]-GAP-LABEL COVER is
NP-hard.

Proof of Theorem 4.6.1.
We prove Theorem 4.6.1 by constructing a reduction from the MAX-3SAT
problem to the LABEL COVER problem. Given an instance f of the
MAX-3SAT problem, construct a bipartite graph G such that all vertices
on the left side V1(G) correspond to clauses of f and the vertices on the right
side V2(G) correspond to variables in f . Vertices v1i ∈ V1(G) and v2x ∈ V2(G)
are connected by an edge if the variable x occurs in the clause Ci of f .

We are now going to describe the labels and projections. A label of a
vertex v1i decodes one of the 7 satisfying assignments to the variables of Ci

and the label of a vertex vx is supposed to be the value of the variable x.
Therefore, the projection π{v1i ,v2x} is just a consistency check which verifies
that the label of v1x is as claimed by the label of v2i . ∎

Thereafter, Raz [R98] gave a low error version of the previous theorem.
It improves the inapproximability factor in Theorem 4.6.1 from some con-
stant to any constant. This theorem is also known as the Parallel Repetition
Theorem.

Theorem 4.6.2 (Parallel Repetition Theorem [R98])
For every δ > 0, there exist label sizes m and n such that given an instance
of the LABEL COVER problem L = (G, V1(G), V2, [m], [n],{πe ∣ e ∈ E(G)}), it
is NP-hard to tell whether opt(L) = 1 or opt(L) ≤ δ.

More generally, the LABEL COVER problem is a Constraint Satisfaction
Problem (CSP). An instance of a CSP consists of a set of variables, a set of
values for the variables and a set of constraints that restrict the combinations
of values for certain subsets of variables. Let us give the formal definition of
a CSP.

Definition 4.6.2 (Constraint Satisfaction Problem (CSP))
An instance of a Constraint Satisfaction Problem is defined by a tupel

37

CHAPTER 4. COMPLEXITY OF OPTIMIZATION PROBLEMS

(X,D,Γ) consisting of

• A set of n variables X.

• Every variable in X is supposed to get a value from the domain D.

• Γ is a collection of constraints Ri, where Ri is a relation Ri ⊆Dk with
arity k.

An assignment d ∈ Dk satisfies a constraint Ri if d ∈ Ri. The task is to find
an assignment d ∈ Dn to the variables in X that maximizes the number of
satisfied constraints.

4.7 Håstad’s 3-Bit PCP

A sequence of developments in constructing PCP verifier with low query com-
plexity culminated in the results due to Håstad proving that every language
in NP has a PCP verifier querying 3 bits and having error probability ar-
bitrarily close to 1/2. Furthermore, the verifier’s decision process consists of
checking the parity of the 3 bits. This characterization lead to tight inapprox-
imability results for various problems such as the MAX-E3SAT problem and
the MAX-E3LIN2 problem. Let us first give the definition of the MAX-E3LIN2
problem.

Definition 4.7.1 (MAX-E3LIN2 problem)
Instances: A system of linear equations L with variables {x1, . . . , xn}

and all equations are of the form xi ⊕ xj ⊕ xk = cijk
with cijk ∈ {0,1}

Solutions: Assignment ϕ ∶ {x1, . . . , xn}→ {0,1}
Task: Maximize the number of satisfied equations in L

Let us formulate the tight hardness result for the MAX-E3LIN2 problem-
due to Håstad [H01].

Theorem 4.7.1 ([H01])
For every ε > 0, the [1 − ε, 12 + ε]-GAP-MAX-E3LIN2 problem is NP-hard.

38

4.8. UNIQUE GAMES CONJECTURE

Note that given an instance of the MAX-E3LIN2 problem, a random as-
signment satisfies half of the equations in expectation. On the other hand, it
is possible to use Gaussian elimination to efficiently check whether any sys-
tem of linear equations mod 2 can be completely satisfied. Hence, the result
above is tight. By using a simple gadget construction, we obtain another
tight inapproximability result for the MAX-3SAT problem.

Corollary 4.7.1
For every ε > 0, the [78 + ε,1 − ε]-GAP-MAX-3SAT problem is NP-hard.

4.8 Unique Games Conjecture

Håstad’s work gives optimal inapproximability results for the MAX-E3SAT
and the MAX-E3LIN2 problem. For many other problems, like the VERTEX

COVER problem or the MAX-CUT problem, the status remained open. In
2002, Khot [K02] formulated the Unique Games Conjecture in order to prove
hardness of approximation results for NP-hard problems that researchers
have been unable to prove otherwise. This conjecture postulates the inap-
proximability of a restricted version of the LABEL COVER problem, where
the projections πe on the edges are permutations. This restricted version is
called the UNIQUE GAMES problem.

Definition 4.8.1 (UNIQUE GAMES Problem)
An instance of the UNIQUE GAMES problem is a restricted instance of the
LABEL COVER problem L = (V (G),W (G),E(G), [m], [n],{πe ∣ e ∈ E(G)}),
in which m = n and for all edges e ∈ E(G), πe ∶ [n]→ [n] is a bijection.

Based on the Unique Games Conjecture, it was possible to prove optimal
inapproximability results for the MAX-CUT problem (cf. [KKMO07]) and the
VERTEX COVER problem (cf. [KR08]).

Conjecture 4.8.1 (Unique Games Conjecture (UGC) [K02])
For every constant ε > 0, there is an integer kε such that for all instances of
the UNIQUE GAMES problem L with label size greater than kε, it is NP-hard

39

CHAPTER 4. COMPLEXITY OF OPTIMIZATION PROBLEMS

to tell whether opt(L) ≥ 1 − ε or opt(L) ≤ ε.

We will formulate an equivalent version of the UGC. For this, we need to
define a special case of the UNIQUE GAMES problem called the MAX-E2LINq
problem.

Definition 4.8.2 (MAX-E2LINq problem)
Instances: A system of linear equations L with variables {x1, . . . , xn}

and all equations are of the form xi + xj = cij (mod q)
with cij ∈ {0, . . . , q − 1}

Solutions: Assignment ϕ ∶ {x1, . . . , xn}→ {0, . . . , q − 1}
Task: Maximize the number of satisfied equations in L

Clearly, the MAX-E2LINq problem is a special case of the Unique Games
problem with alphabet size q. By the work of Khot, Kindler, Mossel and
O’Donnell [KKMO07], it is also known that the UGC is equivalent to the
following statement.

Conjecture 4.8.2 (Equivalent statement of the UGC)
For any constant ε > 0, there exists large enough q ∈ N such that [1 − ε, ε]-
GAP-MAX-E2LINq is NP-hard.

We now formalize the statement that a gap version of an optimization
problem is UG-hard.

Definition 4.8.3 (UG -Hardness)
Let Π be an NPO optimization problem and 0 < A < B some constants. We
say that [A,B]-GAP-Π is UG -hard if for some γ > 0, there is a polynomial
time reduction from the [γ,1 − γ]-GAP-UNIQUE GAMES problem to [A,B]-
GAP-Π.

In this case, we also say that Π is UG -hard to approximate to within
any approximation ratio less than (B/A). Furthermore, we note that if the
UGC holds, then, for a gap problem being UG -hard is equivalent to the gap
problem being NP-hard.

40

4.9. BOUNDED OCCURRENCE CSPs

4.9 Bounded Occurrence CSPs

In order to prove hardness of approximation results for several optimization
problems restricted to instances with bounded occurrences or bounded de-
gree, Berman and Karpinski [BK99], see also [BK01] and [BK03], introduced
the following CSP called the MAX-HYBRID-LIN2 problem. It will play a key
role in the subsequent chapters, in which we construct several reductions
from this problem.

Definition 4.9.1 (MAX-HYBRID-LIN2 problem)
Instances: A system of linear equations L with variables {x1, . . . , xn},

m2 equations of the form xi ⊕ xj = bij with bij ∈ {0,1} and
m3 equations of the form xi ⊕ xj ⊕ xk = cijk with cijk ∈ {0,1}.

Solutions: Assignment ϕ ∶ {x1, . . . , xn}→ {0,1}
Task: Maximize the number of satisfied equations in L

In particular, Berman and Karpinski [BK99] constructed special instances of
the MAX-HYBRID-LIN2 problem with bounded occurrences of variables, for
which they proved the following inapproximability result.

Theorem 4.9.1 ([BK99])
For any constant ϵ > 0, there exists instances of the MAX-HYBRID-LIN2
problem with 42ν variables, 60ν equations with exactly two variables, and 2ν

equations with exactly three variables such that:

(i) Each variable occurs exactly three times.

(ii) Either there is an assignment to the variables that leaves at most ϵν
equations unsatisfied, or else every assignment to the variables leaves
at least (1 − ϵ)ν equations unsatisfied.

(iii) It is NP-hard to decide which of the two cases in item (ii) above holds.

The instances of the MAX-HYBRID-LIN2 problem produced in Theorem 4.9.1
have an even more special structure, which we are going to describe. The
equations with three variables are of the form x⊕y⊕z = b with b ∈ {0,1} and

41

CHAPTER 4. COMPLEXITY OF OPTIMIZATION PROBLEMS

stem from Theorem 4.7.1. We now formulate a slightly extended version of
this theorem.

Theorem 4.9.2 ([H01])
For every δ ∈ (0, 12), there exists a positive constant Bδ and instances L 3 of
the MAX-E3LIN2 problem with 2ν equations such that each variable in L 3

occurs in at most Bδ equations and it is NP-hard to tell whether there is
an assignment satisfying all but at most δ ⋅ ν equations, or every assignment
leaves at least (1 − δ)ν equations unsatisfied.

Let us describe the construction due to Berman and Karpinski [BK99]
and give the proof of Theorem 4.9.1. In order to reduce the occurrences of
the variables in Theorem 4.9.2, we are going to introduce a special class of
graphs which are called amplifier. Amplifier graphs are useful in proving
inapproximability results for bounded occurrence CSPs.

Definition 4.9.2 (Regular Amplifier Graph)
A graph G is called a r-regular amplifier for a given set X ⊆ V (G) if

• for all A ⊆ V (G), we have ∣{e ∈ E(G) ∣ 1 = ∣e∩A∣}∣ ≥min{∣X∩A∣, ∣X/A∣}

• every vertex in X has r − 1 neighbors and every vertex in V (G)/X has
r neighbors.

Given a r-regular amplifier G for X ⊆ V (G), the vertices in X are called
contact vertices, whereas all v ∈ V (G)/X are called checker vertices.

The following result was proved on the existence of 3-regular amplifier.

Theorem 4.9.3 ([BK99])
For a set of ν vertices, there is a 3-regular amplifier with 7ν vertices and
10ν edges.

In the following, we will describe the structure of the 3-regular amplifier
from Theorem 4.9.3 more in detail and introduce some terminology. Due to
the special structure of the 3-regular amplifier constructed by Berman and
Karpinski [BK99], they also refer to it as a wheel amplifier . In Figure 4.1,
we displayed such a 3-regular amplifier. The contact vertices of a wheel

42

4.9. BOUNDED OCCURRENCE CSPs

Checker vertex
Contact vertex

Figure 4.1: A 3-regular wheel amplifier, where checker vertices are indi-
cated by circles (○) and contact vertices by filled circles (●).

amplifier W with B = 7ν vertices {v1, . . . , vB} is defined by the set {vi ∣ i ∈
[B],0 = i (mod 7)}. The edges of W are defined by E(W) = C(W)∪M(W),
where C(W) induces a Hamiltonian cycle C(W) = {{vi, vi+1} ∣ i ∈ [B − 1]} ∪
{{vB, v1}} and M(W) is a perfect matching on the set of checker vertices.

We now give the proof of Theorem 4.9.1.

Proof of Theorem 4.9.1.
Let us fix a constant δ ∈ (0, 12). By Theorem 4.9.2, there exist instances L 3

of the MAX-E3LIN2 problem with 2ν equations such that each variable in L 3

occurs in at most Bδ equations and it is NP-hard to tell whether there is
an assignment satisfying all but at most δ ⋅ ν equations, or every assignment
leaves at least (1 − δ)ν equations unsatisfied. For each variable xi in the
instance L 3, we generate a corresponding wheel Wi of size 7ti, where xi

occurs exactly ti times in L 3. Since Bδ is a constant that depends only on δ,
it can be accomplished in constant time. Then, we replace the occurrences

43

CHAPTER 4. COMPLEXITY OF OPTIMIZATION PROBLEMS

x
(1)
i , . . . , x

(ti)
i of the variable xi in L 3 by newly created variablesX i

7⋅1, . . . ,X
i
7⋅ti

(the contact variables) in some order. Finally, we add all equations X i
j⊕X i

k =
0 for all {vj, vk} ∈ E(Wi) to L 3.

Let us denote this instance of the MAX-HYBRID-LIN2 problem by L .
According to Theorem 4.9.3, L has 2ν equations with three variables, 60ν
equations with two variables and every variable in L occurs in exactly three
equations due to the construction of a wheel.

Let ϕ denote an assignment to the variables of L , Vi = {X i
1, . . . ,X

i
7ti
}

be the variables corresponding to Wi and V 0
i = {X i

j ∈ Vi ∣ ϕ(X i
j) = 0}. We

assume that the number of contact vertices contained in V 0
i is at most the

number of contact variables contained in Vi/V 0
i . By setting ϕ(X i

j) = 1 for
all X i

j ∈ V 0
i , the number of satisfied equations in L is not decreased due

to the property of an amplifier. Notice that this fact holds for all variables
associated to wheels in L . Accordingly, we obtain that it is NP-hard to
distinguish whether there is an assignment to the variables of L satisfying
all but at most δ ⋅ ν equations, or every assignment leaves at least (1 − δ)ν
equations unsatisfied. ∎

In order to specify the equations in an instance of the MAX-HYBRID-LIN2
problem, we are going to introduce some conventions. Given a wheelW with
B = 7n vertices V (W) = {v1, . . . , vB}, we refer to the associated equations
with two variables of the form xi⊕xi+1 = 0 with i ∈ [B−1] as cycle equations.
The equation x1 ⊕ xB = 0 is called wheel border equation. Furthermore, we
refer to equations of the form xi ⊕ xj = 0 with {vi, vj} ∈M(W) as matching
equations.

44

Part II

Dense Instances

45

CHAPTER 5

Vertex Cover of k -Hypergraphs

47

CHAPTER 5. VERTEX COVER OF k -HYPERGRAPHS

In this chapter, we study the approximability of the VERTEX COVER

problem in dense, subdense, mildly sparse and nearly regular k-hypergraphs.
For the VERTEX COVER problem in (ε, ℓ)-dense k-hypergraphs, we design

a polynomial time approximation algorithm with an improved approximation
ratio for all k > 2 and ℓ > 0. On the other hand, we give an optimal inap-
proximability result the problem. The approach designed for the (ε, ℓ)-dense
case will also be applicable for the k-balanced case in Section 6.5.

For the VERTEX COVER problem in nearly regular hypergraphs, we give
a randomized approximation algorithm with approximation ratio strictly
less than k and running time depending on the density of the underlying
k-hypergraph. More precisely, it entails the existence of quasi-polynomial
and polynomial time approximation algorithms with approximation ratio less
than k for mildly sparse and subdense instances, respectively. Furthermore,
we obtain tight approximation lower bounds for this problem. In particu-
lar, we prove the best known approximation lower bounds for the VERTEX

COVER problem in regular k-hypergraphs.

5.1 Introduction

The VERTEX COVER problem in k-uniform hypergraphs is among the most
fundamental problem in combinatorial optimization. Especially, in the case
k = 2, it is the classical VERTEX COVER problem in graphs. In 1972,
Karp [K75] proved that the decision version of the problem is NP-complete.
Accordingly, there is only little hope for efficient algorithms solving the
VERTEX COVER problem to optimality. On the other hand, there exists
a simple approximation algorithm for the problem with approximation ratio
2 by constructing greedily a maximal matching in the given graph. However,
the currently best known approximation algorithm for the VERTEX COVER

problem in graphs achieves only an approximation ratio 2−o(1) [K09]. For the
case k > 2, the best known approximation algorithm is due to Halperin [H02]
and yields an approximation ratio k − o(1).

On the approximation hardness side, Papadimitriou and Yan-

48

5.1. INTRODUCTION

nakakis [PY91] proved that the VERTEX COVER problem in graphs is APX-
hard. After that, Bellare, Goldreich and Sudan [BGS98] gave the first explicit
NP-hardness of approximation result. In particular, they proved that it is
NP-hard to approximate the problem to within any constant approximation
ratio less than 233/218. Håstad gave an improved inapproximability result
for the problem yielding an inapproximability factor of (7/6− δ) for all δ > 0.
Finally, Dinur and Safra [DS05] proved that it is NP-hard to approximate the
VERTEX COVER problem in graphs to within any constant approximation
ratio less than 1.36. Assuming the UNIQUE GAMES CONJECTURE, Khot
and Regev [KR08] gave an optimal inapproximability result for the problem.
More precisely, they showed that it is UG -hard to approximate the VERTEX

COVER problem in graphs to within any constant approximation ratio less
than 2.

For larger k, the first explicit approximation hardness result proved for the
VERTEX COVER problem in k-hypergraphs is due to Trevisan [T01] who con-
sidered the approximation hardness of bounded degree instances of several
combinatorial problems. He achieved an inapproximability factor of k1/19.
Holmerin [H02a] studied the VERTEX COVER problem in 4-hypergraphs and
proved that this restricted version of the problem is NP-hard to approx-
imate to within any constant less than 2. Independently, inspired by the
work of Feige et al. [FGL+96], Goldreich [G11] obtained the same inapprox-
imability factor for the VERTEX COVER problem in k-hypergraphs for some
constant k. After that, Holmerin [H02b] showed that the problem is NP-
hard to approximate within any approximation ratio k1−o(1). By exploiting
the notion of covering complexity introduced by Guruswami, Håstad and Su-
dan [GHS02] together with some ideas from [DS05], Dinur, Guruswami and
Khot [DGK02] achieved a hardness factor of (k − 3 − δ) for all δ > 0. Dinur,
Guruswami, Khot and Regev [DGKR05] proved that the VERTEX COVER

problem in k-hypergraphs is NP-hard to approximate to within any constant
approximation ratio less than (k − 1). The best known approximation hard-
ness result is due to Khot and Regev [KR08], who proved that it is UG -hard
to approximate the problem to within any constant approximation ratio less
than k.

49

CHAPTER 5. VERTEX COVER OF k -HYPERGRAPHS

Dense k-Hypergraphs

Karpinski and Zelikovsky [KZ97a] studied the approximability of dense in-
stances of various covering problems and designed an approximation algo-
rithm for the VERTEX COVER problem in average and everywhere dense
graphs with approximation ratio strictly less than 2. Exploiting a different
approach, Nagamochi and Ibaraki [NI99] gave an approximation algorithm
for VERTEX COVER problem using cycle decompositions of graphs with ap-
proximation ratio less than 2 in dense graphs, but the approximation ratio is
weaker as compared to the previously mentioned algorithm. Bar-Yehuda and
Kehat [BK04] studied the VERTEX COVER problem in dense k-hypergraphs.
Using a greedy approach, they gave an approximation algorithm for this
problem with a better approximation ratio than k. To the author’s knowl-
edge, this is the only result tackling the dense version of the VERTEX COVER

problem in k-hypergraphs. On the other hand, Clementi and Trevisan [CT99]
proved that the VERTEX COVER problem in average and everywhere dense
graphs is APX-complete. Eremeev [E99] gave the first explicit inapprox-
imability result and proved that it is NP-hard to approximate the VERTEX

COVER problem in ε-dense graphs within any constant approximation ra-
tio better than (7 + ε)/(6 + 2 ⋅ ε). Assuming that there is no polynomial
time approximation algorithm for the VERTEX COVER problem in graphs
with approximation ratio better than 2, Bar-Yehuda and Kehat [BK04] con-
structed a reduction implying that the approximation ratios achieved by the
algorithm due to Karpinski and Zelikovsky [KZ97a] are optimal.

For the VERTEX COVER problem in (ε, ℓ)-dense in k-hypergraphs, we de-
sign an efficient approximation algorithm with improved approximation ratio
for all k > 0 and ℓ > 0. Furthermore, we give an optimal inapproximability
result for the problem. The approach designed for the (ε, ℓ)-dense case will
also be applicable for the k-balanced case in Section 6.5.

Nearly Regular k-Hypergraphs

The VERTEX COVER problem in nearly regular graphs, which is a gen-
eralization of the class of dense graphs, was first studied by Imamura

50

5.2. OUTLINE OF THIS CHAPTER

and Iwama [II05]. They gave a polynomial time approximation algo-
rithm that achieves with high probability an approximation ratio strictly
smaller than 2 whenever the graph is nearly regular and has average degree
Ω(n ⋅ log logn/ logn). Assuming that there is no polynomial time approxima-
tion algorithm for the VERTEX COVER problem in graphs with approxima-
tion ratio better than 2, they proved that the approximation ratio of their
algorithm is best possible.

By reducing the sample size of the algorithm due to Imamura and
Iwama [II05], Cardinal, Karpinski, Schmied and Viehmann [CKSV11] ex-
tended the range of the approximation algorithm achieving an approxima-
tion ratio strictly smaller than 2 in nearly regular graphs having an average
degree Ω(n ⋅ log log logn/ logn).

For the VERTEX COVER problem in nearly regular k-hypergraphs, we
give a randomized approximation algorithm with approximation ratio strictly
less than k and running time depending on the density of the underlying k-
hypergraph. In particular, it entails the existence of quasi-polynomial and
polynomial time approximation algorithms with approximation ratio less
than k for mildly sparse and subdense instances, respectively. Especially,
in the case k = 2, our approximation algorithm achieves the same approxi-
mation ratio as in [CKSV11], but for a larger class of graphs.

On the other hand, we give tight approximation lower bounds for this
problem. Moreover, we prove the best known approximation lower bounds
for the VERTEX COVER problem in regular k-hypergraphs.

5.2 Outline of this Chapter

This chapter is organized as follows. In Section 5.4, we survey some of the
known approximation algorithms and approximation hardness results for the
VERTEX COVER problem in k-hypergraphs. In Section 5.5, we investigate
the approximability of the VERTEX COVER problem in dense k-hypergraphs.
In Section 5.6, we study the approximability of the VERTEX COVER problem
in a more general class of k-hypergraphs called nearly regular k-hypergraphs.

51

CHAPTER 5. VERTEX COVER OF k -HYPERGRAPHS

5.3 Preliminaries

We are going to introduce the notation used in this chapter. Let us first
define the underlying problem according to Definition 4.1.1.

Definition 5.3.1 (VERTEX COVER problem in k-hypergraphs)
Instances: k-hypergraphs H
Solutions: Subsets C ⊆ V (H) such that C ∩ e ≠ ∅ for all e ∈ E(H)

Task: Minimize the cardinality of C

For a given k-hypergraph H with k ≥ 2 and a vertex v ∈ V (H), we intro-
duce the v-induced hypergraph H(v) defined by V (H(v)) = V (H)/{v} and
E(H(v)) = { e/{v} ∣ v ∈ e ∈ E(H)}. Let H be a k-hypergraph with n vertices
and u ∈ [n]. We refer to A ⊂ B ⊆ V (H) with ∣A∣ = u as a set of u-heaviest
vertices in B if the vertices in A obey the property

min
v∈A
{dH(v)} ≥ max

v∈B/A
{dH(v)}.

Given a k-hypergraph H with n vertices, we are going to introduce the pa-
rameter ΨH(n) defined as follows.

ΨH(n) = (
n

k
)(∣E(H)∣)−1

By means of the parameter Ψ, we define classes of k-hypergraphs. Given
a k-hypergraph H with n vertices, we refer to H as dense, subdense, mildly
sparse and non-dense if we have ΨH(n) = O(1), ΨH(n) = O(logn), ΨH(n) =
poly(logn) and ΨH(n) = ω(1), respectively.

For dense k-hypergraphs, we introduce even finer-grained classes. Given a
k-hypergraphH with n vertices, we say thatH is (ε, ℓ)-dense with (ℓ+1) ∈ [k]
and ε ∈ (0,1] whenever for every subset

S ∈ (V (H)
ℓ
), we have dH(S) ≥ ε ⋅ (n − ℓ

k − ℓ
).

Thus, for instance, an (ε,0)-dense k-hypergraph containing n vertices is a
k-hypergraph with at least ε(nk) edges, whereas an (ε,1)-dense k-hypergraph
has the property that every vertex is contained in at least ε(n−1k−1) edges.

52

5.4. THE GENERAL PROBLEM

This definition naturally generalizes the notion of everywhere density ((ε,1)-
density) and average density ((ε,0)-density) in graphs [KZ97a]. For nota-
tional simplicity, we refer to an (ε,0)-dense k-hypergraph as an ε-dense k-
hypergraph.

5.4 The General Problem

Before we study the VERTEX COVER problem in dense and nearly regu-
lar k-hypergraphs, we survey some of the known approximation algorithms
and approximation hardness results for the VERTEX COVER problem in k-
hypergraphs.

5.4.1 Approximation Algorithms

There is a well-known and simple approximation algorithm for the VERTEX

COVER problem in k-hypergraphs. It constructs a maximal matching M ⊆
E(H) in the given k-hypergraph H and returns the union of the edges in
M . The constructed set V (M) is a vertex cover of H since the remaining
vertices contained in V (H)/V (M) form an independent set in H. The simple
approximation algorithm is defined in Figure 5.1

Algorithm A5.1

Input : A k-hypergraph H.
Output: A vertex cover S of H.

À S ← ∅;
while (E(H) ≠ ∅) do

Á Let e ∈ E(H) be an arbitrary edge in H;
Â S ← S ∪ e;
Ã H ← H[V (H)/ e];

end
return S;

Figure 5.1: Algorithm A5.1

53

CHAPTER 5. VERTEX COVER OF k -HYPERGRAPHS

We are going to prove that algorithm A5.1 returns a vertex cover of the
given k-hypergraph with approximation ratio at most k.

Lemma 5.4.1 (Folklore)
Algorithm A5.1 is a polynomial time approximation algorithm for the VERTEX
COVER problem in k-hypergraphs with approximation ratio k.

Proof of Lemma 5.4.1.
Let H be a k-hypergraph. Furthermore, let S = e1 ∪ e2 ∪ . . . ∪ el be the
set constructed by Algorithm A5.1 on input H, where ei ∈ E(H) denotes
the edge that is taken by the algorithm in the i-th iteration. Let C be an
minimum vertex cover of H. By definition of C, we have ∣C ∩ei∣ ≥ 1 for every
i ∈ [l]. Since the intersection of ei with the vertex set of the k-hypergraph
H[V (H)/ei] is empty, we obtain ei ∩ ej = ∅ for every distinct j, i ∈ [l]. Let
us bound the cardinality of S from above. We see that

∣S∣ = ∑
i∈[l]
∣ei∣ ≤ ∑

i∈[l]
∣ei ∩C ∣∣ei∣ (by ∣C ∩ ei∣ ≥ 1)

= ∑
i∈[l]
∣ei ∩C ∣k (by ∣ei∣ = k)

≤ ∑
v∈C

k (by ei ∩ ei = ∅ for all i ≠ j)

≤ k ⋅ ∣C ∣.

It remains to be proved that S is indeed a vertex cover of H. Suppose for
the sake of contradiction that there is a edge e′ in H with e′ ∩ S = ∅. Then,
we get e′ ∈ E(H[V (H)/S]). Thus, by definition of the set S, e′ must be
contained in S contradicting our assumption. ∎

The currently best known approximation algorithm for the VERTEX

COVER problem in k-hypergraphs achieves an approximation ratio at most
k(1 − o(1)) and is due to Halperin [H02]. He designed an algorithm that
uses the semidefinite programming relaxation combined with a randomized
rounding procedure. Let us give the precise statement.

Theorem 5.4.1 ([H02])
Let H be a k-hypergraph with V (H) = n and k ≥ 2. There is an efficient

54

5.4. THE GENERAL PROBLEM

randomized approximation algorithm for the VERTEX COVER problem in k-
hypergraphs with approximation ratio

k − [1 − o(1)]k ⋅ ln lnn
lnn

.

5.4.2 Approximation Hardness Results

As for approximation lower bounds, we present two approximation hardness
results relying on different assumptions. The first result is due to Khot
and Regev [KR08] and concerns the UG -hardness of approximation of the
VERTEX COVER problem in k-hypergraphs.

Theorem 5.4.2 ([KR08])
Let H be a k-hypergraph with k ≥ 2. For every δ > 0, the following cases (i)
and (ii) are UG -hard to decide.

(i) Every vertex cover of H has size at least ∣V (H)∣ (1 − δ) .

(ii) The cardinality of a minimum vertex cover is at most

∣V (H)∣ (1
k
+ δ) .

In particular, this result implies that it is UG -hard to achieve a constant
approximation ratio better than k for the VERTEX COVER problem in k-
hypergraphs.

Corollary 5.4.1
For every k ≥ 2, it is UG -hard to approximate the VERTEX COVER problem
in k-hypergraphs to within any constant approximation ratio less than k.

Proof of Corollary 5.4.1.
Let H be a k-hypergraph with k ≥ 2 and C an optimal vertex cover of H.
According to Theorem 5.4.2, it is UG -hard to tell

(i) whether ∣V (H)∣ (1 − δ) ≤ ∣C ∣

(ii) or ∣C ∣ ≤ ∣V (H)∣ (1
k
+ δ) holds.

55

CHAPTER 5. VERTEX COVER OF k -HYPERGRAPHS

By approximating the VERTEX COVER problem in k-hypergraphs with an
approximation ratio

k − δ′ < (1 − δ)

(1
k
+ δ)

= ∣V (H)∣ (1 − δ)

∣V (H)∣ (1
k
+ δ)

,

we are able to decide, which one of the cases (i) and (ii) applies. ∎

On the other hand, Dinur, Guruswami, Khot and Regev [DGKR05]
proved the following NP-hardness of approximation result. In particular,
it implies that it is NP-hard to approximate the VERTEX COVER problem
to within any constant approximation ratio less than (k − 1).

Theorem 5.4.3 ([DGKR05])
Let H be a k-hypergraph with k ≥ 3. For every δ > 0, the following cases (i)
and (ii) are NP-hard to decide.

(i) Every vertex cover of H has size at least ∣V (H)∣ (1 − δ) .

(ii) The size of a minimum vertex cover is at most

∣V (H)∣ (1

k − 1
+ δ) .

Analogously, it yields the following inapproximability result for the
VERTEX COVER problem in k-hypergraphs.

Corollary 5.4.2
For every k ≥ 3, it is NP-hard to approximate the VERTEX COVER problem
in k-hypergraphs within any constant approximation ratio better than (k−1).

5.5 Dense k-Hypergraphs

As an important restriction of the general problem, we study the approxima-
bility of the VERTEX COVER problem in dense k-hypergraphs. We design
an improved approximation algorithm and give tight approximation lower
bounds. Before we present our results, we are going to review some previ-
ously known results for this restricted version of the problem.

56

5.5. DENSE k-HYPERGRAPHS

5.5.1 Previously Known Results

The VERTEX COVER problem in dense graphs was studied by Karpinski
an Zelikovsky [KZ97b]. They designed an approximation algorithm for this
problem with an approximation ratio strictly less than 2 in dense and average
dense graphs. In particular, they proved the following theorem.

Theorem 5.5.1 ([KZ97b])
The VERTEX COVER problem can be approximated in polynomial time with
an approximation ratio

•
2

1 + ε
in ε-everywhere dense graphs and

•
2

2 −
√
1 − ε

in ε-average dense graphs.

The approximation algorithm due to Karpinski and Zelikovsky [KZ97b]
achieves the best known approximation ratio for the VERTEX COVER prob-
lem in average and everywhere dense graphs. The basic idea of their algo-
rithm is to extract a large enough subset W of a minimum vertex cover of
the underlying graph G by exhaustive search in the first phase. In the second
phase, the algorithm computes a 2-approximate solution Y of the VERTEX

COVER problem in the remaining graph defined by G′ = G[V (G)/W]. Then,
the set Y ∪W yields a vertex cover of the original graph G.

Independently, Nagamochi and Ibaraki [NI99] gave an approximation al-
gorithm for the VERTEX COVER problem with approximation ratio that is
parametrized by the average density of the given graph. Their algorithm uses
cycle decompositions of graphs leading to an approximation ratio below 2 if
the given graph is dense. More precisely, they obtained the following result.

Theorem 5.5.2 ([NI99])
Given a graph G with n vertices and m edges, there is an approximation
algorithm for the VERTEX COVER problem in graphs that constructs a vertex
cover for G with approximation ratio at most

2 − 8m

13n2 + 8m
in O(n ⋅m) time.

57

CHAPTER 5. VERTEX COVER OF k -HYPERGRAPHS

Bar-Yehuda and Kehat [BK04] studied the VERTEX COVER problem in
dense k-hypergraphs and proved that the problem is approximable with an
approximation ratio strictly less than k.

Theorem 5.5.3 ([BK04])
There is a polynomial time approximation algorithm for the VERTEX COVER

problem with approximation ratio

k

k − (k − 1) (1 − ε)
1
k

in ε-dense k-hypergraphs.

Trevisan and Clementi [CT99] investigated the approximation hardness
of the VERTEX COVER problem in average and everywhere dense graphs and
proved that both versions of the problem are APX-complete.

Theorem 5.5.4 ([CT99])
The VERTEX COVER problem restricted to dense graphs is APX-complete.
In particular, for any ε > 0, there exists a constant α > 1 (depending on
ε) such that it is NP-hard to approximate the VERTEX COVER problem
restricted to graphs in which any node has degree at least ε ⋅ ∣V (G)∣ within any
constant approximation ratio less than α.

The idea of the reduction constructed in [CT99] is to join an APX-hard
instance G of the VERTEX COVER problem in graphs with a clique of size
ε ⋅ ∣V (G)∣(1−ε)−1 together with all edges between G and the clique yielding an
ε-everywhere dense graph G′. The resulting graph is an APX-hard instance
of the VERTEX COVER problem in dense graphs.

A similar construction was used by Eremeev [E99], who obtained an ex-
plicit approximation lower bound parametrized by the density of the result-
ing graph. The hard instance of the VERTEX COVER problem in graphs was
given by Håstad [H01].

Theorem 5.5.5 ([E99])
It is NP-hard to approximate the VERTEX COVER problem in ε-everywhere

58

5.5. DENSE k-HYPERGRAPHS

graphs to within any constant approximation ratio less than

7 + ε
6 + 2 ⋅ ε

.

Assuming that there is no polynomial time approximation algorithm for
the VERTEX COVER problem in graphs with approximation ratio below 2,
Bar-Yehuda and Kehat established the following hardness of approximation
result.

Theorem 5.5.6 ([BK04])
There is no polynomial time algorithm with an approximation ratio less than

2

1 − ε
and

2

1 +
√
1 − ε

in ε-everywhere dense graphs and in ε-average dense graphs, respectively,
unless there is a polynomial time approximation algorithm for the VERTEX

COVER problem in general graphs with an approximation ratio better than 2.

In particular, it implies that under the assumption in Theorem 5.5.6, the
approximation upper bounds achieved in Theorem 5.5.1 are best possible.

5.5.2 Our Contributions

For the VERTEX COVER problem in (ε, ℓ)-dense k-hypergraphs, we design
an approximation algorithm with an improved approximation ratio for all
k > 2 and ℓ > 0. More precisely, we prove the following theorem.

Theorem 5.5.7
There is a polynomial time approximation algorithm for the VERTEX COVER

problem in (ε, ℓ)-dense k-hypergraphs with approximation ratio at most

k

k − (k − 1) (1 − ε)
1

k−ℓ
− o(1).

Our algorithm matches the approximation ratio of the algorithms due
to Bar-Yehuda and Kehat [BK04] for ℓ = 0 and due to Karpinski and Ze-
likovsky [KZ97b] for k = 2 and ℓ ∈ {0,1}, but achieves a better result for all

59

CHAPTER 5. VERTEX COVER OF k -HYPERGRAPHS

ℓ > 0 and k > 2. As a byproduct of our approach, we obtain three additional
results. Firstly, we give a constructive proof for a lower bound on the size
of a minimum vertex cover of (ε, ℓ)-dense k-hypergraphs. More precisely,
we design an efficient algorithm that extracts a large subset of a minimum
vertex cover of a given (ε, ℓ)-dense k-hypergraph.

Lemma 5.5.1 (Extraction Lemma)
Given an (ε, ℓ)-dense k-hypergraph H, there is an algorithm that constructs
on input H in polynomial time a set W̃ = {Wi ⊆ V (H) ∣ i ∈ [s]} of size
s = O(nk) with the following properties.

(i) There exists i ∈ [s] such that Wi is a subset of a minimum vertex cover
of H.

(ii) For all i ∈ [s], we have ∣Wi∣ ≥ [1 − (1 − ε)
1

k−ℓ] [n − k + 1].

Consequently, we obtain the following result.

Corollary 5.5.1
Given a (ε, ℓ)-dense k-hypergraph H containing n vertices, the size of a min-
imum vertex cover of H is bounded from below by [1 − (1 − ε) 1

k−ℓ] [n − k + 1].

Secondly, in section 5.6.3, we design a randomized version of the extrac-
tion algorithm with decreased number of candidate sets. It will play a crucial
role in our improved approximation algorithm for the VERTEX COVER prob-
lem in nearly regular k-hypergraphs.

Thirdly, in section 6.5.2, we will see that this approach can also be success-
fully applied to the k-balanced case. In particular, we give an approximation
algorithm for the VERTEX COVER problem in dense k-balanced hypergraphs
with approximation ratio strictly less than k/2.

On the other hand, we obtain a tight approximation lower bound with
respect to Theorem 5.5.7.

Theorem 5.5.8
For every k ≥ 2, it is UG -hard to approximate the VERTEX COVER problem
in (ε, ℓ)-dense k-hypergraphs to within any constant approximation ratio less

60

5.5. DENSE k-HYPERGRAPHS

than
k

k − (k − 1)(1 − ε) 1
k−ℓ

.

Furthermore, we prove a NP-hardness of approximation result stated
below.

Theorem 5.5.9
For every k ≥ 3, it is NP-hard to approximate the VERTEX COVER problem
in (ε, ℓ)-dense k-hypergraphs to within any constant approximation ratio less
than

k − 1
k − 1 − (k − 2)(1 − ε) 1

k−ℓ
.

5.5.3 The Generalized Approximation Algorithm

We are going to define our generalized approximation algorithm with im-
proved approximation ratio for the VERTEX COVER problem in (ε, ℓ)-dense
k-hypergraphs. More precisely, we are going to prove Theorem 5.5.7 restated
below.

Theorem 5.5.7
There is a polynomial time approximation algorithm for the VERTEX COVER

problem in (ε, ℓ)-dense k-hypergraphs with approximation ratio at most

k

k − (k − 1) (1 − ε)
1

k−ℓ
− o(1).

In order to prove Theorem 5.5.7, we first design an approximation algo-
rithm that on input of a k-hypergraph H and a subset W of an minimum
vertex cover computes a vertex cover of H with approximation ratio depend-
ing on the size of W . Afterwards, we prove that we can extract a sufficiently
large subset of an optimal vertex cover of a given dense k-hypergraph. In
particular, we will give a proof of the Extraction Lemma (Lemma 5.5.1).

61

CHAPTER 5. VERTEX COVER OF k -HYPERGRAPHS

Approximating the Remaining Instance

Assuming we have given a k-hypergraph and a large subset W of a minimum
vertex cover C of H, the algorithm A5.2 defined in Figure 5.2 constructs a
vertex cover of H with approximation ratio parametrized by the cardinality
of W ∩C.

Algorithm A5.2

Input : (H,W, j), where H is a k-hypergraph, W a subset of
V (H) and j ≥ k an integer.

Output: A vertex cover S of H.

begin
À H′ ← H[V (H)/W];
Á S′ ← A5.1(H′);
Â S ←W ∪ S′;

foreach Y ∈ {D ∈ (V (H)
n − i

) ∣ i ∈ {k − 1, . . . , j}} do

if (Y is a vertex cover of H and ∣Y ∣ < ∣S∣) then
Ã S ← Y ;

end

end
return S;

end

Figure 5.2: Algorithm A5.2

We are going to prove the following Lemma.

Lemma 5.5.2
Let H be a k-hypergraph containing n vertices, C a minimum vertex cover
of H and W ⊆ V (H) with ∣W ∩C ∣ ≥ δ ⋅ ∣W ∣ for a fixed constant δ ∈ (k −1,1] .
For every integer j ≥ k, the algorithm A5.2 computes on input (H,W, j) in

62

5.5. DENSE k-HYPERGRAPHS

polynomial time a vertex cover of H with size at most

max

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∣C ∣ , k

1 + (δk − 1) ∣W ∣
n − j

⋅ ∣C ∣

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

.

Proof of Lemma 5.5.2.
Given a k-hypergraph H containing n vertices and a set W such that there
is a minimum vertex cover C of H with the property

∣W ∩C ∣ ≥ δ ⋅ ∣W ∣ for a fixed constant δ ∈ (1
k
,1] , (5.1)

the algorithm A5.1 computes a vertex cover Y of the k-hypergraphH′ induced
by the edges that are not covered by W . Let us denote by C ′ a minimum
vertex cover of H′. For every integer j ≥ k, we introduce the set V (j) given
by

V (j) = {S ⊆ V (H) ∣ S ∈ (V (H)
n − i

) and i ∈ {k − 1, ..., j}} . (5.2)

Clearly, for every fixed integer j ≥ k, we can find in polynomial time the
smallest set Xj in V (j) being a vertex cover of H. Since the solution S,
returned by the algorithm, is the smallest set among Xj and Y ∪W , we may
assume that ∣S ∣ ≤ n − j as otherwise, S is an optimal solution. We are going
to deduce an upper bound on the size of S.

∣S∣ = ∣W ∣ + ∣Y ∣

≤ ∣W ∣ + k ⋅ ∣C ′∣ (by Theorem 5.4.1)

≤ ∣W ∣ + k ⋅ (∣C ∣ − ∣W ∩C ∣)

≤ ∣W ∣ + k ⋅ (∣C ∣ − δ∣W ∣) (by (5.1))

≤ k∣C ∣ − (δk − 1) ∣W ∣
n − j

∣S∣ (by
∣S∣
n − j

≤ 1 and δ ∈ (1
k
,1])

All in all, we obtain the following upper bound on the size of S

∣S∣ ≤ k

1 + (δk − 1) ∣W ∣
n − j

⋅ ∣C ∣

completing the proof of Lemma 5.5.2. ∎

63

CHAPTER 5. VERTEX COVER OF k -HYPERGRAPHS

A Deterministic Extraction Algorithm

In order to apply algorithm A5.2 successfully, we need to find a large subset
W of a minimum vertex cover of a given k-hypergraph H. The recursive
algorithm A5.3 defined in Figure 5.3 constructs efficiently on input of a dense
k-hypergraph H a collection W̃ of subsets Wi ⊆ V (H) such that at least one
of them is contained in a minimum vertex cover of H.

Algorithm A5.3

Input : (H, ε), where H is an ε-dense k-hypergraph.
Output: A collection W̃ of subsets Wi ⊆ V (H).

begin
À W̃ ← ∅;
if k = 1 then

Á W̃ ← {V (E(H))};

return W̃ ;

else

Â Find a set B consisting of some (1 − (1 − ε)
k

(k+1))-heaviest

vertices in V (H);
Ã Add B to W̃ ;
foreach v ∈ B do

Ä H′ ← H(v);
Å ε′ ← (1 − (1 − ε)

k
(k+1));

Æ W ′ ← A5.3(H′, ε′);
Ç W̃ ← W̃ ∪W ′;

end

end
return W̃ ;

end

Figure 5.3: Algorithm A5.3

64

5.5. DENSE k-HYPERGRAPHS

We are going to prove the following lemma that enables us to extract effi-
ciently a large part of a minimum vertex cover of a given dense k-hypergraph.

Lemma 5.5.3
Given an ε-dense k-hypergraph H containing n vertices, the algorithm A5.3

returns on input (H, ε) in polynomial time a set W̃ = {Wi ⊆ V (H) ∣ i ∈ [s]}
of size s = O(nk) with the following properties.

(i) For all vertex covers C of H, there exists a j ∈ [s] such that Wj is a
subset of C.

(ii) For all i ∈ [s], we have ∣Wi∣ ≥ [1 − (1 − ε)
1
k] (n − k + 1).

In order to give the proof of Lemma 5.5.3, we provide the following simple
statement.

Lemma 5.5.4
Let H be an ε-dense k-hypergraph containing n vertices and B ⊆ V (H) a
set of [(1 − (1 − ε) 1k)n]-heaviest vertices in V (H). Then, for all v ∈ B, the
degree of v can be bounded from below as follows.

dH(v) ≥ (1 − (1 − ε)
k−1
k)(n − 1

k − 1
)

Proof of Lemma 5.5.4.
Let us consider a k-hypergraph H containing n vertices and m edges, where

m ≥ ε ⋅ (n
k
). (5.3)

We denote by B ⊆ V (H) a set of [(1 − (1 − ε)1/k)n]-heaviest vertices in V (H).
Suppose the statement is not true. Then, the number m of edges in H is
strictly smaller than the number of edges in a k-hypergraph in which all
vertices of B have the maximum possible degree, whereas all the remaining
vertices have degree exactly

(1 − (1 − ε) k−1k)(n − 1
k − 1

).

65

CHAPTER 5. VERTEX COVER OF k -HYPERGRAPHS

Therefore, we deduce the following bound on the number of edges in the
k-hypergraph H.

m < 1

k
(∣B∣ ⋅ (n − 1

k − 1
) + (n − ∣B∣) [(1 − (1 − ε) k−1k] (n − 1

k − 1
))

= 1

k
([1 − (1 − ε) 1k]n ⋅ (n − 1

k − 1
) +

[n − [1 − (1 − ε) 1k] ⋅ n] [1 − (1 − ε) k−1k] (n − 1
k − 1

))

= (1 − (1 − ε) 1k)(n
k
) + (1 − ε) 1k (1 − (1 − ε) k−1k)(n

k
)

= ε ⋅ (n
k
)

It contradicts our assumption (5.3), since H is ε-dense. ∎

Let us proceed to give the proof of Lemma 5.5.3.

Proof of Lemma 5.5.3.
Let H be an ε-dense k-hypergraph containing n vertices and B be a set of
[(1 − (1 − ε)1/k)n]-heaviest vertices of H. On input H, algorithm A5.3 returns
a set W̃ of size O (nk) in time O(nk), which is polynomial since we assumed
k = O(1).
(i) Let C be a vertex cover of H. We claim that there is a Wj ∈ W̃ with
Wj ⊆ C, which will be verified by induction. If all vertices in B belong to C,
we are done.
Otherwise, there exists v ∈ B that does not belong to C. But then, C must
contain a vertex cover of the v-induced (k−1)-hypergraph H(v) as otherwise,
some edges will not be covered. By induction, the recursive call returns one
subset contained in C. The base case (k = 1) is trivial.
(ii) We prove the second property by induction as well. Suppose that we
have ∣Wi∣ ≥ [(1 − (1 − ε)

1
k] (n − k + 1) for all i ∈ [s] and for all k-hypergraphs

with some fixed value of k. We now prove the property for k + 1. According
to Lemma 5.5.4, the recursive calls are performed on ε′-dense k-hypergraphs
with n − 1 vertices. By induction hypothesis the recursive call returns a

66

5.5. DENSE k-HYPERGRAPHS

collection of sets Wi of size

∣Wi∣ ≥ [1 − (1 − ε′)
1
k] [(n − 1) − k + 1]

= [1 − (1 − [1 − (1 − ε) k
k+1])

1
k] [n − (k + 1) + 1]

= [1 − (1 − ε) 1
k+1] [n − (k + 1) + 1] ,

as claimed. The base case k = 1 is verified, as in that case, the algorithm
returns at least εn vertices. ∎

We are going to tackle the case ℓ > 0. Therefore, let us consider algorithm
A5.4 defined in Figure 5.4. On input of an (ε, ℓ)-dense k-hypergraph H with
n vertices, it constructs a collection of subsets of V (H) such that one of
them is contained in a minimum vertex cover of H and has size at least
[1 − (1 − ε) 1

k−ℓ] [n − k + 1].

Algorithm A5.4

Input : (H, ε, ℓ), where H is an (ε, ℓ)-dense k-hypergraph.
Output: A collection W̃ of subsets Wi ⊆ V (H).

begin
À W̃ ← ∅;

foreach S ∈ (V (H)
ℓ
) do

Á H′ ← (V (H)/S,E(H′)) with
E(H′) = {e/S ∣ S ⊆ e ∈ E(H)};
Â W̃ ′ ← A5.3(H′, ε);
Ã W̃ ← W̃ ∪ W̃ ′;

end
return W̃ ;

end

Figure 5.4: Algorithm A5.4

67

CHAPTER 5. VERTEX COVER OF k -HYPERGRAPHS

Finally, we are going to prove the Extraction Lemma.

Lemma 5.5.1 (Extraction Lemma)
Given an (ε, ℓ)-dense k-hypergraph H, there is an algorithm that constructs
on input H in polynomial time a set W̃ = {Wi ⊆ V (H) ∣ i ∈ [s]} of size
s = O(nk) with the following properties.

(i) There exists i ∈ [s] such that Wi is a subset of a minimum vertex cover
of H.

(ii) For all i ∈ [s], we have ∣Wi∣ ≥ [1 − (1 − ε)
1

k−ℓ] [n − k + 1].

Proof of Lemma 5.5.1.
Let H be an (ε, ℓ)-dense k-hypergraph and C a minimum vertex cover of
H. Consider a subset S of ℓ vertices with S ∩ C = ∅. Then, we define
the (k − ℓ)-hypergraph H′ by the vertex set V (H′) = V (H)/S and edge set
E(H′) = {e∩(V (H)/S) ∣ e ∈ E(H), S ⊆ e}. Since S has an empty intersection
with C, the set C ∩ V (H′) is a vertex cover of H′. From the definition of
(ε, ℓ)-density, the number of edges in H′ is bounded from below by

∣E(H′)∣ = dH(S) ≥ ε ⋅ (
n − ℓ
k − ℓ
).

Hence, H′ is an ε-dense (k−ℓ)-hypergraph containing n−ℓ vertices. According
to Lemma 5.5.3, algorithm A5.3 extracts O(nk−ℓ) candidates Wi, which are
subsets of V (H′) of size at least

∣Wi∣ ≥ [1 − (1 − ε)
1

k−ℓ] [(n − ℓ + 1) − (k − ℓ)] .

Note that at least one of them is contained in the vertex cover C ∩ V (H′)
and therefore, in a minimum vertex cover of H. By enumerating all O(nℓ)
possibilities for S, we get the result in O(nk) time. ∎

Thus far, we are ready to give the proof of Theorem 5.5.7.

Proof of Theorem 5.5.7

Let us consider algorithm A5.5 defined in Figure 5.5. Let H be an (ε, ℓ)-
dense k-hypergraph containing n vertices and C a minimum vertex cover of

68

5.5. DENSE k-HYPERGRAPHS

H. Then, by Lemma 5.5.1, algorithm A5.4 extracts efficiently a collection C̃

of sets Ci ⊆ V (H) such that there is a Cp ∈ C̃ with

∣Cp ∩C ∣ = ∣Cp ∣ ≥ (1 − [1 − ε]
1

k−ℓ) (n − k + 1) . (5.4)

Furthermore, we know that ∣C̃ ∣ = O(nk).

Algorithm A5.5

Input : (H, ε, ℓ, j), where H is an (ε, ℓ)-dense k-hypergraph and
j ≥ k an integer.

Output: A vertex cover S of H.

begin
À W̃ ← ∅;
Á C̃ ← A5.4(H, ε, ℓ);
foreach S ∈ C̃ do

Â Y ← A5.2(H, S, j);
Ã W̃ ← W̃ ∪ {Y };

end
return the smallest set S among all sets in W̃ ;

end

Figure 5.5: Algorithm A5.5

Let Sp be the vertex cover of H that was constructed by algorithm A5.2

on input (H,Cp, j) with j ≥ k. By testing all possible sets Wi ∈ W̃ and
choosing the smallest vertex cover of H, denoted by S, we have that ∣S∣ ≤
∣Sp∣. According to Lemma 5.5.2, we obtain a polynomial time approximation
algorithm with approximation ratio at most

∣S∣
∣C ∣

≤
∣Sp∣
∣C ∣

≤ k

1 + (k − 1)
∣Wp∣
n − j

≤ k

1 + (k − 1)
[1 − (1 − ε) 1

k−ℓ] (n − k + 1)
n − j

(by 5.4)

69

CHAPTER 5. VERTEX COVER OF k -HYPERGRAPHS

For every j ≥ k, the approximation ratio of algorithm A5.5 becomes
k

k − (k − 1)(1 − ε) 1
k−ℓ
− o(1)

and the proof follows. ∎

5.5.4 Tight Approximation Hardness Results

As for approximation lower bounds, we give an UG -hardness and a NP-
hardness of approximation result for the VERTEX COVER problem in dense
k-hypergraphs. Especially, the former approximation lower bound is tight
with respect to the approximation ratio achieved by algorithm A5.5.

An Optimal Inapproximability Result

We are going to prove the following theorem, which implies that it is UG -hard
to achieve a better approximation ratio than achieved by the approximation
algorithm given in the previous section.

Theorem 5.5.8
For every k ≥ 2, it is UG -hard to approximate the VERTEX COVER problem
in (ε, ℓ)-dense k-hypergraphs to within any constant approximation ratio less
than

k

k − (k − 1)(1 − ε) 1
k−ℓ

.

Proof of Theorem 5.5.8.
As starting point of the reduction, we consider the UG -hard instance H of
the VERTEX COVER problem in k-hypergraphs from Theorem 5.4.2. We
are going to densify H in order to obtain the (ε, ℓ)-dense k-hypergraph H′.
Recall that according to Theorem 5.4.2, the following is UG -hard to decide
for every δ > 0.

(i) Every vertex cover of H has size at least ∣V (H)∣ (1 − δ) .

(ii) The cardinality of a minimum vertex cover of H is at most

∣V (H)∣ (1
k
+ δ) .

70

5.5. DENSE k-HYPERGRAPHS

Let us fix a constant ε ∈ (0,1) and (ℓ + 1) ∈ [k]. Furthermore, we introduce
ε′ defined by

ε′ = ε + k(k + 1)
∣V (H)∣

.

For notational simplicity, we will use n = ∣V (H)∣. Then, we join the clique

K = (V (K),(V (K)
k
)) of size

1 − (1 − ε′) 1
k−ℓ

(1 − ε′) 1
k−ℓ

⋅ n to H.

In addition, we add all edges e of size k to H′ having a non-empty intersection
with K. Thus, we obtain

E(H′) = E(H) ∪ {e ∈ (V (K) ∪ V (H)
k

) ∣ e ∩ V (K) ≠ ∅} .

Since we need to cover all the edges of the clique K, the cases (i) and (ii)
from Theorem 5.4.2 being UG -hard to decide transform into the following.

(iii) Every vertex cover of H′ has size at least

n (1 − δ) + [1 − (1 − ε
′) 1

k−ℓ]n
(1 − ε′) 1

k−ℓ
.

(iv) The cardinality of a minimum vertex cover is at most

n(1
k
+ δ) + [1 − (1 − ε

′) 1
k−ℓ]n

(1 − ε′) 1
k−ℓ

.

It implies that for every δ > 0, it is UG -hard to approximate the VERTEX

COVER problem in (ε, ℓ)-dense hypergraphs to within any constant approx-
imation ratio less than R(δ), where R(δ) is defined as follows.

R(δ) =
n(1 − δ) + [1 − (1 − ε

′) 1
k−ℓ]n

(1 − ε′) 1
k−ℓ

n(1
k
+ δ) + [1 − (1 − ε

′) 1
k−ℓ]n

(1 − ε′) 1
k−ℓ

Before we prove that this construction yields an (ε, ℓ)-dense k-hypergraph,
we first obtain a simpler term for R(δ).

71

CHAPTER 5. VERTEX COVER OF k -HYPERGRAPHS

Let us deduce a lower bound on the inapproximability factor R(δ).

R(δ) =
n(1 − δ) + [1 − (1 − ε

′) 1
k−ℓ]n

(1 − ε′) 1
k−ℓ

n(1
k
+ δ) + [1 − (1 − ε

′) 1
k−ℓ]n

(1 − ε′) 1
k−ℓ

= n(1 − δ)(1 − ε′) 1
k−ℓ + [1 − (1 − ε′) 1

k−ℓ]n

n(1
k
+ δ) (1 − ε′) 1

k−ℓ + [1 − (1 − ε′) 1
k−ℓ]n

= 1 − δ(1 − ε′) 1
k−ℓ

(1 − ε′) 1
k−ℓ

k
+ δ(1 − ε′) 1

k−ℓ + 1 − (1 − ε′) 1
k−ℓ

= k − kδ(1 − ε′) 1
k−ℓ

(1 − ε′) 1
k−ℓ + kδ(1 − ε′) 1

k−ℓ + k − k(1 − ε′) 1
k−ℓ

≥ k − kδ
k − (k − 1)(1 − ε′) 1

k−ℓ + kδ

= k

k − (k − 1)(1 − ε′) 1
k−ℓ
− γ(δ, k).

Since we have ε′ = ε + k(k + 1)
n

= ε + o(1), we obtain the inapproximability
factor

k

k − (k − 1)(1 − ε′) 1
k−ℓ
− γ(δ, k) = k

k − (k − 1)(1 − ε) 1
k−ℓ
−O(1

n
1
k

) − γ(δ, k).

The remaining part to be proved is the density condition of H′. Let us
introduce the abbreviation N = ∣V (H′)∣. Note that we have n = (1− ε′) 1

k−ℓN .
We will show that

dH′(S) ≥ ε (N − ℓ
k − ℓ

) is satisfied for all S ∈ (V (H
′)

ℓ
). (5.5)

Let us consider an arbitrary set S ⊆ V (H′) with ∣S∣ = ℓ. In order to derive
a lower bound on dH′(S), we may assume that { e ∈ E(H′) ∣ e ⊆ V (H) } = ∅

72

5.5. DENSE k-HYPERGRAPHS

and get

dH′(S) ≥ (
N − ℓ
k − ℓ

) − (n − ℓ
k − ℓ
)

= (N − ℓ
k − ℓ

) − ((1 − ε
′)k−ℓN − ℓ
k − ℓ

)

≥ (N − k + 1)
k−ℓ

(k − ℓ)!
−
((1 − ε′) 1

k−ℓN − ℓ)
k−ℓ

(k − ℓ)!

=
Nk−ℓ [(1 − (k + 1)

N
)
k−ℓ

− ((1 − ε′) 1
k−ℓ − ℓ

N
)
k−ℓ
]

(k − ℓ)!

=

Nk−ℓ

⎡⎢⎢⎢⎢⎢⎣
(1 − (k + 1)

N
)
k−ℓ

−
⎛
⎝
(1 − ε − k(k + 1)

n
)

1
k−ℓ

− ℓ

N

⎞
⎠

k−ℓ⎤⎥⎥⎥⎥⎥⎦
(k − ℓ)!

≥
Nk−ℓ [1 − (k − ℓ)(k + 1)

N
− 1 + ε + k(k + 1)

n
]

(k − ℓ)!

≥ ε
Nk−ℓ

(k − ℓ)!
≥ ε (N − ℓ

k − ℓ
) .

Since the density condition (5.5) is satisfied, the proof of Theorem 5.5.8
follows. ∎

NP-Hardness of Approximation

The former construction combined with the hard instance of the VERTEX

COVER problem in k-hypergraphs in Theorem 5.4.3 yields the following NP-
hardness of approximation result.

Theorem 5.5.9
For every k ≥ 3, it is NP-hard to approximate the VERTEX COVER problem
in (ε, ℓ)-dense k-hypergraphs to within any constant approximation ratio less
than

k − 1
k − 1 − (k − 2)(1 − ε) 1

k−ℓ
.

73

CHAPTER 5. VERTEX COVER OF k -HYPERGRAPHS

Proof of Theorem 5.5.9.
Let us consider the k-hypergraph H given in Theorem 5.4.3, for which the
following is NP-hard to decide.

(i) Every vertex cover of H has size at least ∣V (H)∣ (1 − δ) .

(ii) The cardinality of a minimum vertex cover of H is at most

∣V (H)∣ (1

k − 1
+ δ) .

We are going to densify the k-hypergraph H similarly to the construction in
Theorem 5.5.8. Let us introduce the abbreviation n = ∣V (H)∣. For a fixed
ε ∈ (0,1) and (ℓ + 1) ∈ [k], we add the clique K of size

[1 − (1 − ε) 1
k−ℓ]n

(1 − ε) 1
k−ℓ

to H and all edges e ∈ (V (K) ∪ V (H)
k

) with e ∩ V (K) ≠ ∅.

Since we need to cover all the edges of the clique K, the cases (i) and (ii)
from Theorem 5.4.3 being NP-hard to decide transform into the following.

(iii) Every vertex cover of H′ has size at least

n (1 − δ) + [1 − (1 − ε)
1

k−ℓ]
(1 − ε) 1

k−ℓ
⋅ n.

(iv) The cardinality of a minimum vertex cover of H′ is at most

n(1

k − 1
+ δ) + [1 − (1 − ε)

1
k−ℓ]

(1 − ε) 1
k−ℓ

⋅ n.

For every δ > 0, it implies the NP-hardness of approximating the VERTEX

COVER problem in (ε, ℓ)-dense hypergraphs to within any constant approx-
imation ratio less than R(δ), where R(δ) is defined as follows.

R(δ) =
n(1 − δ) + [1 − (1 − ε

′) 1
k−ℓ]n

(1 − ε′) 1
k−ℓ

n(1

k − 1
+ δ) + [1 − (1 − ε

′) 1
k−ℓ]n

(1 − ε′) 1
k−ℓ

74

5.6. NEARLY REGULAR k -HYPERGRAPHS

We are going to derive a lower bound on the term R(δ).

R(δ) =
n(1 − δ) + [1 − (1 − ε

′) 1
k−ℓ]n

(1 − ε′) 1
k−ℓ

n(1

k − 1
+ δ) + [1 − (1 − ε

′) 1
k−ℓ]n

(1 − ε′) 1
k−ℓ

= (1 − δ)(1 − ε′) 1
k−ℓ + [1 − (1 − ε′) 1

k−ℓ]

(1

k − 1
+ δ) (1 − ε′) 1

k−ℓ + [1 − (1 − ε′) 1
k−ℓ]

= 1 − δ(1 − ε′) 1
k−ℓ

(1 − ε′) 1
k−ℓ

k − 1
+ δ(1 − ε′) 1

k−ℓ + 1 − (1 − ε′) 1
k−ℓ

≥ (k − 1) − (k − 1)δ
(k − 1) − (k − 2)(1 − ε′) 1

k−ℓ + (k − 1)δ

≥ k − 1
k − 1 − (k − 2)(1 − ε′) 1

k−ℓ
− γ(δ, k).

Since we have ε′ = ε + k(k + 1)
n

, we obtain the inapproximability factor

k − 1
k − 1 − (k − 2)(1 − ε) 1

k−ℓ
− o(1) − γ(δ, k).

Since we have already proved that the density condition (5.5) holds, the
proof of Theorem 5.5.9 follows. ∎

5.6 Nearly Regular k -Hypergraphs

As a generalization of the class of dense k-hypergraphs, we investigate
the approximability of the VERTEX COVER problem in nearly regular k-
hypergraphs. We design a randomized approximation algorithm for the prob-
lem with approximation ratio strictly less than k and running time depending
on the density of the underlying k-hypergraph. In particular, it entails the
existence of quasi-polynomial and polynomial time approximation algorithms

75

CHAPTER 5. VERTEX COVER OF k -HYPERGRAPHS

with approximation ratio less than k for mildly sparse and for subdense in-
stances, respectively. On the other hand, we give tight approximation hard-
ness results. In particular, we prove the best known approximation lower
bound for the VERTEX COVER problem in regular k-hypergraphs with k > 3.
Before we start to describe our algorithm, we review known results concern-
ing the approximability of the VERTEX COVER problem in subdense and
regular k-hypergraphs.

5.6.1 Previously Known Results

Let us first survey some known results for the VERTEX COVER problem
restricted to d-regular k-hypergraphs focusing on instances with d = ω(1).

Regular k-Hypergraphs

The best known approximation algorithm for this restricted version of the
problem is due to Halperin [H02] achieving an approximation ratio k(1 −
o(1)). The algorithm is based on randomized rounding of a semidefinite
programming relaxation.

Theorem 5.6.1 ([H02])
There is an efficient randomized approximation algorithm for the VERTEX

COVER problem in k-hypergraphs that on input of a k-hypergraph H computes
a solution with approximation ratio

k − k(k − 1) log log∆H
log∆H

+ o(log log∆H
log∆H

)

for all k ∈ N with k 3 = o(log log∆H
log log log∆H

).

On the approximation hardness side, Alimonti and Kann [AK00] proved
that the VERTEX COVER problem restricted to 3-regular graphs is APX-
hard. Based on the case d = 3, Manthey [M05] extended the range of d
proving the APX-hardness of the VERTEX COVER problem in d-regular
graphs for all integer d ≥ 3.

76

5.6. NEARLY REGULAR k -HYPERGRAPHS

Theorem 5.6.2 ([M05])
The VERTEX COVER problem restricted to d-regular graphs is APX-hard
for all integer d ≥ 3.

Feige [F03] constructed an approximation preserving construction im-
plying that the VERTEX COVER problem in regular graphs is as hard to
approximate as in graphs without any restrictions.

Theorem 5.6.3 ([F03])
If there is an approximation algorithm for the VERTEX COVER problem with
approximation ratio ρ in regular graphs, then, there is an approximation al-
gorithm for the VERTEX COVER problem with approximation ratio ρ in every
graph.

Combining this reduction with the result due to Khot and Regev [KR08],
it implies the UG -hardness of approximating the VERTEX COVER problem
in regular graphs within any constant approximation ratio better than 2.

Corollary 5.6.1
It is UG -hard to approximate the VERTEX COVER problem in regular graphs
to within any constant approximation ratio less than 2.

Nearly Regular k-Hypergraphs

Imamura and Iwama [II05] studied the VERTEX COVER problem in sub-
dense graphs. They designed a randomized approximation algorithm with
approximation ratio and running time depending on the average degree and
maximum degree of the underlying graph. In more detail, on input of a
graph G, their algorithm recursively extracts subsets of a minimum vertex
cover of G until a sufficiently small subgraph of G remains. On the remaining
instance, they apply the simple approximation algorithm A5.1 with approxi-
mation ratio 2. In each recursion level, they use a randomized version of the
approximation algorithm for the VERTEX COVER problem in dense graphs
due to Karpinski and Zelikovsky [KZ97b]. More precisely, they obtained the
following result.

77

CHAPTER 5. VERTEX COVER OF k -HYPERGRAPHS

Theorem 5.6.4 ([II05])
For every ε > 0, there is a randomized approximation algorithm for the
VERTEX COVER problem in graphs that on input of a graph G containing
n vertices computes in poly(n) exp [n

∆G
log logn] time a solution with ap-

proximation ratio at most
2

1 + γ(G)
+ ε,

where γ(G) is defines as

γ(G) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dG
2∆G

if ∣E(G)∣ ≤∆G(n −∆G)

n +∆G −
√
(n +∆G)2 − 4dG ⋅ n
2n

if ∣E(G)∣ >∆G(n −∆G).

In particular, their approximation algorithm for the VERTEX COVER

problem achieves in polynomial time an approximation ratio smaller than 2
if the given graph G obeys the property dG/∆G ≥ c for some constant c > 0
and ∆G = Ω(n log logn/ logn).

Cardinal, Karpinski, Schmied and Viehmann studied subdense instances
of several covering problems. In particular, for the VERTEX COVER problem
in graphs, they obtained an improved result when the underlying graph G
satisfies ∆G ≤ ∣V (G)∣/2.

Theorem 5.6.5 ([CKSV11])
For every ε > 0, there is a randomized approximation algorithm with an
approximation ratio

2

1 + dG
2∆G

+ ε

for the VERTEX COVER problem in graphs G having n vertices, average
degree dG and maximum degree ∆G ≤ n/ψG(n) with ψG(n) ≥ 2 in time
poly(n) exp [O(ψG(n) log logψG(n))].

It means that they achieve in polynomial time an approximation ratio
below 2 for a wider range of graphs, in particular, for graphs G with
dG/∆G ≥ c for some constant c ∈ (0,1] and ∆G = Ω(n log log logn/ logn).

78

5.6. NEARLY REGULAR k -HYPERGRAPHS

On the other hand, Imamura and Imawa [II05] proved that the ap-
proximation ratio achieved by their algorithm for the VERTEX COVER

problem in Theorem 5.6.4 is optimal assuming that the approximation ratio
2 is best possible for the general problem. More precisely, they gave the
following hardness result.

Theorem 5.6.6 ([II05])
For every constant δ > 0, suppose that there is a polynomial time algorithm for
the VERTEX COVER problem in graphs G having n vertices and dG = Ω(nc)
for a constant c ∈ (0,1) which achieves an approximation ratio

2

1 + γ (G)
− δ

where γ(G) is defied as follows.

γ(G) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dG
2∆G

if ∣E(G)∣ ≤∆G(n −∆G)

n +∆G −
√
(n +∆G)2 − 4dG ⋅ n
2n

if ∣E(G)∣ >∆G(n −∆G).

Then, there is a polynomial time approximation algorithm for the VERTEX

COVER problem in graphs with approximation ratio (2 − δ).

5.6.2 Our Contributions

We give a randomized approximation algorithm for the VERTEX COVER

problem in nearly regular hypergraphs with approximation ratio strictly less
than k and running time depending on the density of the underlying k-
hypergraph. In particular, it entails the existence of quasi-polynomial and
polynomial time approximation algorithms with approximation ratio less
than k for mildly sparse instances and for subdense instances, respectively.
Let us give the precise statement.

Theorem 5.6.7
For every ε > 0 and k ≥ 2, there is an approximation algorithm which com-

79

CHAPTER 5. VERTEX COVER OF k -HYPERGRAPHS

putes with probability at least 3/4 a vertex cover for a given r-nearly regular
k-hypergraph H containing n vertices with approximation ratio

k

1 + r − r
k

+ ε

in poly(n) exp [O(ΨH(n))] time.

Let us first formulate several corollaries of the main theorem. By set-
ting ΨH(n) = O(log(n)) or ΨH(n) = poly(log(n)), we obtain the following
corollary.

Corollary 5.6.2
The VERTEX COVER problem is approximable in subdense and mildly sparse
r-nearly regular k-hypergraphs with approximation ratio arbitrarily close to

k

1 + r − r
k

in polynomial time and quasi-polynomial time, respectively.

If we additionally assume that the given k-hypergraph is regular, it yields
the following corollary.

Corollary 5.6.3
The VERTEX COVER problem is approximable in subdense and mildly sparse
regular k-hypergraphs with approximation ratio arbitrarily close to

k

2 − 1

k

in polynomial time and quasi-polynomial time, respectively.

By setting k = 2 in Theorem 5.6.7, our algorithm achieves the same
approximation ratio as in Theorem 5.6.5, since a graph G with dG/∆G ≥ c for
some c ∈ (0,1) is also c-nearly regular. Moreover, it is applicable on a wider
range of graphs by a factor of O(log logΨG(n)) since dG/∆G = Θ(1) implies
that

ψG(n) =
n

∆G
= Θ(n

dG
) = Θ(n2

∣E(G)∣
) = Θ (ΨG(n)) (5.6)

80

5.6. NEARLY REGULAR k -HYPERGRAPHS

and the running time of the algorithm given in [CKSV11] can be written as

poly(n) exp [O(ΨH(n) log logΨ(n))] .

On the one hand, our algorithm achieves an approximation ratio smaller
than 2 for the whole class of subdense nearly regular graphs and on the other
hand, it can be applied to k-hypergraphs with k > 2.

A crucial ingredient of our approximation algorithm for the VERTEX

COVER problem in nearly regular k-hypergraphs is the Sampling Lemma
given below.

Lemma 5.6.1 (Sampling Lemma)
Let H be a k-hypergraph containing n vertices, C a minimum vertex cover
of H. For every constant γ ∈ (3/4,1), there is a randomized algorithm that
constructs in polynomial time a collection Ŵ of subsets Wi ⊆ V (H) with the
following properties.

(i) The size of Ŵ is ∣Ŵ ∣ ≤ f(γ), where f(γ) = O(1).

(ii) Every set W ∈ Ŵ has cardinality at least

∣W ∣ ≥
⎡⎢⎢⎢⎢⎢⎣
1 − (1 − 1

ΨH(n)
)
1
k
⎤⎥⎥⎥⎥⎥⎦
(n − k + 1). (5.7)

(iii) There is a set W ′ ∈ Ŵ such that ∣W ′ ∩ C ∣ ≥ γ∣W ′∣ with probability at
least γ.

In contrast to the algorithm given in [CKSV11], we use a decreased
sample size of O(1) compared to O([log(ΨG(n))]2) leading to an improved
running time of our algorithm. Note that this is a randomized version of
the extraction algorithm A5.3 defined in Section 5.5.3. In comparison to
algorithm A5.3, the randomized version constructs a set Ŵ of size O(1)
instead of O(nk).

On the approximation hardness side, we obtain two inapproximability

81

CHAPTER 5. VERTEX COVER OF k -HYPERGRAPHS

results. The first approximation lower bound matches exactly the approx-
imation ratio achieved in Theorem 5.6.7 in a specified range of the density
of the given k-hypergraph.

Theorem 5.6.8
For every k ≥ 2, it is UG -hard to approximate the VERTEX COVER problem
in r-nearly regular k-hypergraphs H having n vertices, maximum degree ∆H =
Ω(nε) and ∣E(H)∣ = o(nk) to within any constant approximation ratio less
than

k

1 + (k − 1) r
k

for every ε > 0.

In addition, we prove a NP-hardness of approximation result for the
VERTEX COVER problem in nearly regular hypergraphs with density and
regularity conditions.

Theorem 5.6.9
For every k ≥ 3, it is NP-hard to approximate the VERTEX COVER problem
in r-nearly regular k-hypergraphs H having n vertices, maximum degree ∆H =
Ω(nε) and ∣E(H)∣ = o(nk) to within any constant approximation ratio less
than

k − 1
1 + (k − 2) r

k

for every ε > 0.

As a corollary, we obtain the best known approximation lower bounds for
the VERTEX COVER problem in regular k-hypergraphs.

Corollary 5.6.4
It is UG -hard and NP-hard to approximate the VERTEX COVER problem in
regular k-hypergraphs H to within any constant approximation ratio less than

k

2 − 1

k

for every k ≥ 2 and
k

2
for every k ≥ 3, respectively.

82

5.6. NEARLY REGULAR k -HYPERGRAPHS

5.6.3 The Randomized Approximation Algorithm

In the subsequent sections, we are going to prove Theorem 5.6.7 restated
below.

Theorem 5.6.7
For every ε > 0 and k ≥ 2, there is an approximation algorithm which com-
putes with probability at least 3/4 a vertex cover for a given r-nearly regular
k-hypergraph H containing n vertices with approximation ratio

k

1 + r − r
k

+ ε

in poly(n) exp [O(ΨH(n))] time.

Let us first describe the main ideas of the proof and give an overview of
the techniques.

Overview and Main Ideas

Given a r-nearly regular k-hypergraph H, the algorithm first iteratively re-
moves vertex subsets until a sufficiently small set of vertices remain. Then,
we apply the simple approximation algorithm A5.1 with approximation ratio
k on the remaining induced hypergraph. Suppose that at every step i of
the algorithm, we are able to guess a sufficiently large subset of an optimal
solution of the current hypergraph Hi. This subset of vertices is removed
together with the edges, that they cover, forming Hi+1. In the next subsec-
tion, we will see how we can sample the set W̃ computed by algorithm A5.4

to perform this guessing step efficiently. The union of the removed sets will
form the set W allowing us to use Lemma 5.5.2. We aim at obtaining such
a set W of size approximately

βH∣V (H)∣, where βH =
r

k
.

Letting Hi be the hypergraph considered in the i-th step, we denote by ni

its number of vertices (n1 = n = ∣V (H)∣), by Ei its edge set and define

Ψi(ni) = (
ni

k
)(∣Ei∣)−1.

83

CHAPTER 5. VERTEX COVER OF k -HYPERGRAPHS

In addition, we introduce si = ni − (1 − βH)n. Note that if si = 0, we have
ni = (1−βH)n and thus, n−ni = βHn. Since n−ni is the size of the extracted
set W , si can serve as a measure of progress.

A key role will play the Sampling Lemma (Lemma 5.6.1). It enables us
to efficiently guess a large subset of a minimum vertex cover of the actual
hypergraph while introducing only a small number of candidate sets. Let us
give the precise statement

Lemma 5.6.1 (Sampling Lemma)
Let H be a k-hypergraph containing n vertices, C a minimum vertex cover
of H. For every constant γ ∈ (3/4,1), there is a randomized algorithm that
constructs in polynomial time a collection Ŵ of subsets Wi ⊆ V (H) with the
following properties.

(i) The size of Ŵ is ∣Ŵ ∣ ≤ f(γ), where f(γ) = O(1).

(ii) Every set W ∈ Ŵ has cardinality at least

∣W ∣ ≥
⎡⎢⎢⎢⎢⎢⎣
1 − (1 − 1

ΨH(n)
)
1
k
⎤⎥⎥⎥⎥⎥⎦
(n − k + 1). (5.7)

(iii) There is a set W ′ ∈ Ŵ such that ∣W ′ ∩ C ∣ ≥ γ∣W ′∣ with probability at
least γ.

For technical reasons, we will only extract (βH −α)n vertices of the given
k-hypergraph for a small constant α ∈ (0, rk −2). Due to the Sampling Lemma,
we are able to extract [1− (1− 1/Ψi(ni))1/k](ni − k + 1) vertices of the actual
hypergraph Hi. In order to derive the number of iterations that are needed
to extract the desired number of vertices, we have to obtain a lower bound
on the number of extracted vertices in terms of ∣V (H)∣ and the density of H.
In addition, we prove that the actual hypergraph Hi is still dense enough to
extract sufficiently many vertices. More precisely, we will prove the following
lemma.

Lemma 5.6.2
Let H be a r-nearly regular k-hypergraph and α ∈ (0, rk −2). Then, for every

84

5.6. NEARLY REGULAR k -HYPERGRAPHS

k-hypergraph Hi = H[V (H)/Vi] with Vi ⊆ V (H) and ∣Vi∣ ≤ (βH−α)n, we have

⎡⎢⎢⎢⎢⎢⎣
1 − (1 − 1

Ψi(ni)
)
1
k
⎤⎥⎥⎥⎥⎥⎦
(ni − k + 1) ≥ α

n

ΨH(n)
. (5.8)

By combining the Sampling lemma and Lemma 5.6.2, we are able to remove
in each step

α ⋅ n
ΨH(n)

vertices until si ≤ αn for a fixed constant α ∈ (0, 1

2k
) .

Therefore, at the end of the extraction process, we obtain si ≤ αn implying
∣W ∣ ≥ (βH − α)n. The number TH(α) of steps required to extract (βH − α)n
vertices is at most

TH(α) =
(βH − α)n
bH(α)

= (βH − α)nα ⋅ n
ΨH(n)

= ΨH(n) (
βH
α
− 1) . (5.9)

Finally, we define a collecting algorithm and give a lower bound on the ex-
pected number of collected vertices being contained in a minimum vertex
cover of H.

As for the running time, the algorithm generates a search tree of height
TH(α) and fan-out less than f(γ). At every node of the tree, it takes
poly(n)+O(f(γ)) time to generate at most f(γ) candidate subsets. Accord-
ingly, the overall running time of the algorithm is poly(n) ⋅ (f(γ))O(TH(α)) =
poly(n) exp [O(ΨH(n))].

The Sampling Lemma

We are going to define a recursive sampling algorithm that allows us to
efficiently guess subsets of a minimum vertex cover of a given k-hypergraph.
In particular, it entails proving the Sampling Lemma (Lemma 5.6.1).

Before we define our recursive sampling algorithm, we introduce some
notation to be used in the detailed description of the algorithm. Given a
k-hypergraph H containing n vertices, we define the parameter ĥ(H) by

ĥ(H) =
⎛
⎝
1 − [1 − 1

ΨH(n)
]
1/k⎞
⎠
(n − k + 1). (5.10)

85

CHAPTER 5. VERTEX COVER OF k -HYPERGRAPHS

In addition, we introduce the sample size ŝ (γ, k) in dependence of the pa-
rameter γ ∈ (0,1) and k ≥ 2 defined by

ŝ (γ, k) = ⌈log (1 − γ 1
k−1) (log(γ))−1⌉ . (5.11)

The Algorithm A5.6 defined in Figure 5.6 returns a small set of candidate sub-
sets. It is a randomized version of the Algorithm A5.3 given in Section 5.5.3.

Algorithm A5.6

Input : (H, t, l), where H is a k-hypergraph H, t ∈ N with
t ≤ ĥ(H) and l ∈ N with l ≥ ŝ(γ, k).

Output: A collection Ŵ of subsets Wi ⊆ V (H).

begin
À Ŵ = ∅;
if k = 1 then

Á Ŵ ← {A}, where A is a set of t vertices in V (E(H));
return Ŵ ;

else
Â Let B be a set of t-heaviest vertices in V (H);
Ã Ŵ ← Ŵ ∪ {B};
Ä Let B′ be a set of l uniformly at random chosen vertices
from B;
foreach v ∈ B′ do

Å Ŵ ′ ← A5.6(H(v), t, l);
Æ Ŵ ← Ŵ ∪ Ŵ ′;

end

end
return Ŵ ;

end

Figure 5.6: Algorithm A5.6

We are going to prove the following lemma which generalizes the Sampling
Lemma.

86

5.6. NEARLY REGULAR k -HYPERGRAPHS

Lemma 5.6.3
Let H be a k-hypergraph containing n vertices, C a minimum vertex cover
of H. Furthermore, let γ ∈ (3/4,1), t ∈ N with t ≤ ĥ(H) and l ∈ N with l ≥
ŝ (γ, k). Then, on input (H, t, l), the algorithm A5.6 constructs in polynomial
time a set Ŵ containing subsets of V (H) with the following properties.

(i) The size of Ŵ is at most ∣Ŵ ∣ ≤ (l + 1)k−1.

(ii) Every set W ∈ Ŵ has cardinality ∣W ∣ = t.

(iii) There is a set W ′ ∈ Ŵ such that ∣W ′ ∩ C ∣ ≥ γ∣W ′∣ with probability at
least γ.

Before we give the proof of Lemma 5.6.3, we argue that it implies the
Sampling Lemma. By letting t = ĥ(H) and l = (ŝ (γ, k) + 1)k−1, we obtain
f(γ) = (ŝ (γ, k) + 1)k−1 = O(1) and all other properties described in the
Sampling Lemma. We now give the proof of Lemma 5.6.3.

Proof of Lemma 5.6.3.
Let H be a k-hypergraph, C a vertex cover of H, γ ∈ (3/4,1) and B a set
consisting of ĥ(H) -heaviest vertices of H.
(i) Since we create at most (l + 1) sets in each recursion level, it yields at
most (l + 1)k−1 subsets of V (H) after (k − 1) recursions.
(ii) This property follows by definition of the set A and B in the description
of algorithm A5.6.
(iii) According to Corollary 5.5.1, we have that ∣C ∣ ≥ ĥ(H) implying that it
is possible to extract ĥ(H) vertices from C. We will distinguish two cases.
If ∣B ∩C ∣ ≥ γ∣B∣, we have nothing to show.

Hence, we may assume that ∣B ∩ C ∣ < γ∣B∣ holds. The probability that
a random vertex of B belongs to C is at most γ. Thus, with probability at
least 1 − γ ŝ (γ,k), we get a vertex v /∈ C in the selected sample and C must
contain a vertex cover of the v-induced hypergraph H(v). By Lemma 5.5.4,
we know that H(v) is dense enough in order to extract the desired number
of vertices. By iterating this step at most (k − 1)-times, we obtain that the

87

CHAPTER 5. VERTEX COVER OF k -HYPERGRAPHS

probability is at least

(1 − γ l)k−1 ≥ (1 − γ ŝ (γ,k))k−1 ≥ (1 − [1 − γ 1
k−1])

k−1
≥ γ,

by definition of ŝ (γ, k). Furthermore, we notice that this argumentation
holds for all t ≤ ĥ(H) and all vertex cover C of H, and the proof follows. ∎

Deriving a Lower Bound on the Size of the Extracted Set

In order to bound the number of iterations needed to extract a large enough
subset of a minimum vertex cover of H, we have to provide a lower bound on
the number of vertices obtained in every iteration in terms of the density and
the cardinality of the vertex set of H. In particular, we are going to prove
Lemma 5.6.2.

Lemma 5.6.2
Let H be a r-nearly regular k-hypergraph and α ∈ (0, rk −2). Then, for every
k-hypergraph Hi = H[V (H)/Vi] with Vi ⊆ V (H) and ∣Vi∣ ≤ (βH−α)n, we have

⎡⎢⎢⎢⎢⎢⎣
1 − (1 − 1

Ψi(ni)
)
1
k
⎤⎥⎥⎥⎥⎥⎦
(ni − k + 1) ≥ α

n

ΨH(n)
. (5.8)

In order to give the proof of Lemma 5.6.2, we will provide three interme-
diate results.

Lemma 5.6.4
Let H be a k-hypergraph with n vertices, maximum degree ∆H and maximum
independent set of size at least x. Then, H has at most ∆H(n − x) edges.

Proof of Lemma 5.6.4.
LetH be a k-hypergraph with n vertices, maximum degree ∆H and maximum
independent set of size at least x. Every vertex covers at most ∆H edges.
Hence, the size of a minimum vertex cover ofH, say τ , satisfies ∣E(H)∣ ≤∆Hτ .
Also, by definition, the largest independent set of H has size n − τ ≥ x.
Consequently, we obtain ∣E(H)∣ ≤ τ ⋅∆H ≤ (n − x)∆H. ∎

Next, we are going to prove a lower bound on the number of edges con-
tained in the actual k-hypergraph Hi.

88

5.6. NEARLY REGULAR k -HYPERGRAPHS

Lemma 5.6.5
Let H be a r-nearly regular k-hypergraph with maximum degree ∆H and Vi ⊆
V (H) with ∣Vi∣ ≤ βH∣V (H)∣. Then, the size of the edge set Ei of the k-
hypergraph Hi defined by Hi = H[V (H)/Vi] having ni = si + (1 − βH)∣V (H)∣
vertices can be bounded from below as follows.

∣Ei∣ ≥ ∆Hsi

Proof of Lemma 5.6.5.
Let H be a r-nearly regular k-hypergraph having n vertices and maximum
degree ∆H. Furthermore, let Vi ⊆ V (H) with ∣Vi∣ ≤ βHn. We denote by Ei

the edge set of the k-hypergraph Hi defined by Hi = H[V (H)/Vi] and by ni

the size of the vertex set of Hi. Clearly, we have si = ni − (1 − βH)n. Let
us introduce the k-hypergraph H′ defined by V (H′) = V (H) and E(H) =
E(H)/Ei. Note that H′ has an independent set of size at least ni = si + (1 −
βH)n as by definition, all the vertices of Hi form an independent set in H′.
Thus, by Lemma 5.6.4, H′ can have at most

∆H[n − (si + [1 − βH]n)] = ∆H(βHn − si) (5.12)

edges. By the r-nearly regularity of H and (5.12), we obtain the following
inequality.

∣Ei∣ = ∣E(H)∣ − ∣E(H′)∣ ≥
∆H ⋅ r ⋅ n

k
−∆H(βHn − si)

Then, by definition of βH, we get

∣Ei∣ ≥ ∆H ⋅ βHn −∆H(βHn − si) = ∆Hsi

and the proof of Lemma 5.6.5 follows. ∎

Finally, we will need the following simple inequality, which can be proved
inductively.

Lemma 5.6.6
For all real ε ∈ [0,1] and all integer k ≥ 1, we have 1 − (1 − ε)

1
k ≥ ε

k
.

Thus far, we are ready to give the proof of Lemma 5.6.2.

89

CHAPTER 5. VERTEX COVER OF k -HYPERGRAPHS

Proof of Lemma 5.6.2.
Let H be a r-nearly regular k-hypergraph containing n vertices and α ∈
[0, rk −2). Furthermore, let Vi ⊆ V (H) with ∣Vi∣ ≤ (βH − α)n and Hi be the
k-hypergraph given by Hi = H[V (H)/Vi]. We denote by ni the number of
vertices contained in Hi and define si = ni − (1 − βH)n. We are going to
consider two different cases. Let us start with ni = n. Since we may assume
that n ≥ k holds, we obtain by choice of α that
⎡⎢⎢⎢⎢⎢⎣
1 − (1 − 1

ΨH(n)
)
1
k
⎤⎥⎥⎥⎥⎥⎦
(n − k + 1) ≥ (n − k + 1)

ΨH(n)k
(by Lemma 5.6.6)

≥ α ⋅ n
ΨH(n)

(by choice of α)

Otherwise, we may assume that n > ni holds. Due to Lemma 5.6.6, we have
⎡⎢⎢⎢⎢⎢⎣
1 − (1 − 1

Ψi(ni)
)
1
k
⎤⎥⎥⎥⎥⎥⎦

ni − k + 1
si

≥ (ni − k + 1)
Ψi(ni)k ⋅ si

. (5.13)

Then, the right hand side of (5.13) can be further simplified as follows.

(ni − k + 1)
Ψi(ni)ksi

≥ ∣Ei∣(ni − k + 1)

ksi(
ni

k
)

≥ ∆Hsi(ni − k + 1)

ksi(
ni

k
)

(by Lemma 5.6.5)

= ∆H

(ni

k − 1
)

≥ k∣E(H)∣

n(ni

k − 1
)

≥ ∣E(H)∣

(n
k
)

= 1

ΨH(n)

Combining the deduced facts together with si ≥ α ⋅ n, we have that
⎡⎢⎢⎢⎢⎢⎣
1 − (1 − 1

Ψi(ni)
)
1
k
⎤⎥⎥⎥⎥⎥⎦
(ni − k + 1) ≥

si
ΨH(n)

≥ α ⋅ n
ΨH(n)

and the proof follows. ∎

90

5.6. NEARLY REGULAR k -HYPERGRAPHS

The Collecting Algorithm

We are going to define an algorithm that extracts and collects all candidate
sets in each iteration. Before we describe the algorithm, we need to introduce
some notation.

Given a r-nearly regular k-hypergraph H with n vertices and a con-
stant α ∈ (0, rk −2), we will use the abbreviation b̂H(α) defined by

b̂H(α) = α ⋅ n
ΨH(n)

. (5.14)

Recall that due to Lemma 5.6.2, we are able to extract b̂H(α) vertices of H in
each iteration provided si ≤ αn holds. The number TH(α) of required steps
in order to extract (βH − α)n vertices is

TH(α) =
(βH − α)n
b̂H(α)

= ΨH(n) (
βH
α
− 1) . (5.15)

The algorithm A5.7 defined in Figure 5.7 iterates this extraction until si ≤ αn
using exactly TH(α) recursion levels.

Algorithm A5.7

Input : (H, b, t, γ), where H is a r-nearly regular k-hypergraph,
b ∈ N with b ≤ b̂H(rk−2), t ∈ N with t ≥ 0 and
γ ∈ (1 − rk −2,1).

Output: A collection Ĉ of subsets Wi ⊆ V (H).

À Ĉ ← ∅;
if (t > 0) then

Á X̂ ← A5.6(H, b, ŝ (γ, k));
Â Ĉ ← {X ∪ Y ∣X ∈ X̂, Y ∈ Ĉ ′ ← A5.7(H[V (H)/X], b, t − 1, γ)};

else
return Ĉ;

end

Figure 5.7: Algorithm A5.7

91

CHAPTER 5. VERTEX COVER OF k -HYPERGRAPHS

On input of a r-nearly regular k-hypergraph, algorithm A5.7 performs a
recursive exploration of a search tree branching on every subset X in the set
of candidates Ĉ. A root-to-leaf path in this tree yields a set W defined as
the union of all the candidates X selected along the path. We now prove
that this search tree contains a path yielding a suitable set W with high
probability.

Lemma 5.6.7
Let H be a r-nearly regular k-hypergraph containing n vertices, C a minimum
vertex cover of H and γ ∈ (1 − rk −2,1). On input

(H, b̂H(1 − γ), TH(1 − γ), γ),

the algorithm A5.7 constructs in poly(n) exp[O(ΨH(n))] time a collection
Ĉ = {Wi ∣Wi ⊆ V (H)} with the following properties.

(i) The size of Ĉ is at most (ŝ (γ, k) + 1)(k−1)TH(1−γ).

(ii) Every set W ∈ Ĉ contains exactly (βH − (1 − γ))n vertices.

(iii) For every δ ∈ (0,1), there is a W ′ ∈ Ĉ such that ∣W ′∩C ∣ ≥ (1−δ)γ 2∣W ′∣
with probability at least

1 − exp [−ΨH(n) (
βH
1 − γ

− 1)γ ⋅ δ
2

2
] .

Proof of Lemma 5.6.7.
Let H be a r-nearly regular k-hypergraph containing n vertices and C a
minimum vertex cover of H.
(i) According to Lemma 5.6.3, the size of the actual set Ĉ is increased by a
multiplicative factor of at most (ŝ(γ, k)+1)k−1 in every iteration of algorithm
A5.7. By iterating this extraction TH(1 − γ) times, we obtain a set with size
at most (ŝ(γ, k) + 1)(k−1)⋅TH(1−γ).
(ii) By (5.15), the size of a set W in Ĉ is exactly

TH(1 − γ) ⋅ b̂H(1 − γ) = (βH − (1 − γ))n,

as claimed.
(iii) For every i ∈ [TH(1 − γ)], we introduce the random variable Xi ∈ {0,1}

92

5.6. NEARLY REGULAR k -HYPERGRAPHS

denoting the success in the i-th step. More precisely, Xi = 1 corresponds to
the event of obtaining at least γ ⋅ b̂H(1− γ) vertices of a optimal vertex cover
of H in the i-th iteration of algorithm A5.7. From Lemma 5.6.3, we know
that this event happens with probability at least γ. The random variables
define TH(1 − γ) independent Poisson trials. We introduce

X = ∑
i∈[TH(1−γ)]

Xi. (5.16)

Then, the expected value of the random variable X is given by

E[X] = TH(1 − γ) ⋅ γ = ΨH(n) (
βH
1 − γ

− 1) ⋅ γ. (5.17)

Since we obtain at least γ ⋅̂bH(1−γ) vertices in each step, the expected number
of vertices of W ′ that are contained in C is at least

E[X]γ ⋅ b̂H(1 − γ) = [ΨH(n) (
βH
1 − γ

− 1)γ]γ (1 − γ) ⋅ n
ΨH(n)

≥ (βH − (1 − γ))γ 2n.

By using Theorem 2.2.1, we conclude that for every δ ∈ (0,1), it yields at
least (1 − δ)(βH − (1 − γ))γ 2n vertices of C with probability at least

1 − exp(−ΨH(n) (
βH
1 − γ

− 1)γ δ
2

2
) ,

as stated.
As for the running time, algorithm A5.7 generates a search tree of height
TH(1 − γ) and fan-out less than (ŝ(γ, k) + 1)k−1. At every node of the tree,
the algorithm A5.6 is called taking

poly(n) +O([ŝ(γ, k)]k−1)

time. Thus, the overall running time of the algorithm is poly(n) ⋅
[ŝ(γ, k)]O((k−1)⋅TH(1−γ)). Since we have

(k − 1)TH(1 − γ) = (k − 1)ΨH(n) (
βH
1 − γ

− 1) = O(ΨH(n))

and ŝ(γ, k) = O(1), the running time becomes

poly(n) exp [O (ΨH(n))]

and the proof follows. ∎

93

CHAPTER 5. VERTEX COVER OF k -HYPERGRAPHS

Thus far, we are ready to give the proof of Theorem 5.6.7.

Proof of Theorem 5.6.7

In order to prove Theorem 5.6.7, we are going to analyze algorithm A5.8 given
in Figure 5.8.

Algorithm A5.8

Input : (H, ε, r, k), where H is a r-nearly regular k-hypergraph
and ε > 0 a constant.

Output: A vertex cover S of H .

begin

À Set δ ←min{1
4
,
ε

4k
};

Á Set γ ← 1 − βH
8k ⋅ δ−2 + 1

;

Â Let Ŵ ← A5.7(H, b̂H(1 − γ), TH(1 − γ), γ);

foreach Wi ∈ W̃ do
Ã Y ← A5.2(H,Wi, k);
Ä Ŷ ← Ŷ ∪ {Y };

end
return S being the smallest set in Ŷ ;

end

Figure 5.8: Algorithm A5.8

Let H be a r-nearly regular k-hypergraph containing n vertices and C a
minimum vertex cover of H. Furthermore, we choose a constant ε > 0. By
letting

δ =min{1
4
,
ε

4k
} and γ = 1 − βH

8k ⋅ δ−2 + 1
, (5.18)

we have that γ ∈ (1 − rk−2,1). Then, we run algorithm A5.7 on input
(H, b̂H(1 − γ), TH(1 − γ), γ) with output Ŵ . According to Lemma 5.6.7,

94

5.6. NEARLY REGULAR k -HYPERGRAPHS

Ŵ contains a set W ′ such that

∣W ′ ∩C ∣ ≥ (1 − δ)γ2(βH − (1 − γ))n (5.19)

with probability at least

1 − exp(−ΨH(n) (
βH
1 − γ

− 1)γ δ
2

2
) ≥ 3

4
.

The right hand side in (5.19) can be bounded from below as follows.

(1 − δ)γ2(βH − (1 − γ))n ≥ (1 − δ)γ2 (1 − 1 − γ
βH
)βHn

≥ (1 − δ)γ2 (1 − 1

8k ⋅ δ−2 + 1
)βHn

≥ (1 − δ) (1 − 1

8k ⋅ δ−2 + 1
)
3

βHn

≥ (1 − δ)4βHn

≥ (1 − 4δ)βHn

By Lemma 5.5.2, the algorithm A5.2 produces on input (H,W ′) a vertex
cover S of H with approximation ratio at most

k

1 + ∣W
′∣

n − k

≤ k

1 + ((1 − 4δ)k − 1)βH
≤ k

1 + (k − 1) r
k
− 4δ

≤ k

1 + k − 1
k

r

+ 4kδ ≤ k

1 + k − 1
k

r

+ ε.

Due to Lemma 5.6.7, we know that the running time of algorithm A5.8 is
poly(n) exp [O(ΨH(n))] . ∎

5.6.4 Approximation Lower Bounds

In the previous section, we designed an approximation algorithm for the
VERTEX COVER problem in r-nearly regular k-hypergraphs. The approxi-
mation ratio that was achieved by the algorithm is parametrized by the reg-
ularity of the input k-hypergraph, whereas its running time is parametrized

95

CHAPTER 5. VERTEX COVER OF k -HYPERGRAPHS

by its density. In this section, we study the approximation hardness of the
VERTEX COVER problem in nearly regular k-hypergraphs. In particular, we
prove that it is UG -hard to obtain a better approximation upper bound than
given in Theorem 5.6.7 for a large range of r-nearly regular k-hypergraphs.
In addition, we give a NP-hardness of approximation result for the VERTEX

COVER problem in nearly regular k-hypergraphs.

A Tight Inapproximability Result

We are going to prove the following hardness result.

Theorem 5.6.8
For every k ≥ 2, it is UG -hard to approximate the VERTEX COVER problem
in r-nearly regular k-hypergraphs H having n vertices, maximum degree ∆H =
Ω(nε) and ∣E(H)∣ = o(nk) to within any constant approximation ratio less
than

k

1 + (k − 1) r
k

for every ε > 0.

Proof of Theorem 5.6.8.
First, we concentrate on the case r ∈ (0,1). Let H be the k-hypergraph from
Theorem 5.4.2 with k ≥ 2. According to Theorem 5.4.2, for every δ > 0, the
following cases (i) and (ii) are UG -hard to decide.

(i) Every vertex cover of H has size at least ∣V (H)∣ (1 − δ) .

(ii) The cardinality of a minimum vertex cover is at most

∣V (H)∣ (1
k
+ δ) .

We will use n = ∣V (H)∣. For a fixed j ∈ N, we construct a new hypergraph
H′ consisting of (1− r/k)nj disjoint copies of H together with njr/k disjoint
k-uniform cliques of size n + k − 1. Let us denote by VH the set of vertices
of the copies of H and VK the set of vertices of the cliques. For notational

96

5.6. NEARLY REGULAR k -HYPERGRAPHS

simplicity, we introduce N = ∣V (H′)∣ = ∣VH∣ + ∣VK∣ = nj+1 + o(nj+1). Note that
the degrees of the vertices restricted to neighbors in VH or VK are at most

(n + k − 2
k − 1

) = O (n(k−1)) = O (N
k−1
j+1) .

Accordingly, we can makeH′ to have ∣E(H′)∣ = ω (N
k−1
j+1) edges and maximum

degree ∆H′ = ω(N
k−1
j+1) by adding as many edges as needed with vertices in

both VH and VK defining E(H′). Using this construction, it is possible to
construct edge sets with cardinality o(n(j+1)k).

By definition, a vertex cover ofH′ must contain at least n+k−1−(k−1) = n
vertices of each clique. Thus, we need to include at least nj+1r/k vertices.
Let us analyze the cases in the promise problem above. (i) If a vertex cover
of H requires n(1 − δ) vertices, then, we need at least

(1 − r
k
)nj ⋅ n(1 − δ) = (1 − r

k
)nj+1(1 − δ)

additional vertices to cover all the copies. (ii) In the other case, we see that

(1 − r
k
)nj+1 (1

k
+ δ)

vertices suffice. Up to an O(nj) term, those vertices are sufficient to cover
H′. Consequently, for every δ > 0, the following is UG -hard to decide.

(iii) Every vertex cover of H′ has size at least

(1 − r
k
)n1+j(1 − δ) + n

1+jr

k
+O (nj) .

(iv) The cardinality of a minimum vertex cover of H′ is at most

(1 − r
k
)n1+j (1

k
+ δ) + n

1+jr

k
+O(nj).

This implies the UG -hardness of approximating the VERTEX COVER problem
to within any constant approximation ratio less than R(δ), where R(δ) is
defined as follows.

R(δ) =
(1 − r

k
)n1+j(1 − δ) + n

1+jr

k
+O (nj)

(1 − r
k
)n1+j (1

k
+ δ) + n

1+jr

k
+O(nj)

(5.20)

97

CHAPTER 5. VERTEX COVER OF k -HYPERGRAPHS

We are going to deduce a lower bound on the term R(δ) defined in (5.20).

R(δ) ≥
(1 − r

k
)n1+j(1 − δ) + n

1+jr

k
+O (nj)

(1 − r
k
)n1+j (1

k
+ δ) + n

1+jr

k
+O (nj)

=
k (1 − r

k
) (1 − δ) + k ⋅ r

k
+O(1

n
)

k (1 − r
k
) [1
k
+ δ] + k r

k
+O(1

n
)

=
k − δk (1 − r

k
) +O(1

n
)

1 − r
k
+ r + δk (1 − r

k
) +O(1

n
)

≥ k − δk
1 − r

k
+ r + δk + o(1)

= k

1 + (k − 1)r
k

− [ε(δ) + o(1)]

The claimed inapproximability factor follows for the case r ∈ (0,1). Moreover,
we see that it suffices to add if necessary o(nj+1) vertices to VK together
with the corresponding edges in order to obtain a regular k-hypergraph.
Accordingly, it affects the inapproximability factor R(δ) only by a term of
o(1). ∎

NP-Hardness of Approximation

Using the construction defined in the proof of the previous theorem, we are
going to prove the following inapproximability result.

Theorem 5.6.9
For every k ≥ 3, it is NP-hard to approximate the VERTEX COVER problem
in r-nearly regular k-hypergraphs H having n vertices, maximum degree ∆H =
Ω(nε) and ∣E(H)∣ = o(nk) to within any constant approximation ratio less

98

5.6. NEARLY REGULAR k -HYPERGRAPHS

than
k − 1

1 + (k − 2) r
k

for every ε > 0.

Proof of Theorem 5.6.9.
The claimed inapproximability factor will be proved by combining the con-
struction from Theorem 5.6.8 together with the hard instance from Theo-
rem 5.4.3. Recall from Theorem 5.4.3 that given a k-hypergraph H with
k ≥ 3, for every δ > 0, the following cases (i) and (ii) are NP-hard to decide.

(i) Every vertex cover of H has size at least ∣V (H)∣ (1 − δ) .

(ii) The size of a minimum vertex cover of H is at most

∣V (H)∣ (1

k − 1
+ δ) .

Let us fix a constant r ∈ (0,1) and an integer j ≥ 1. The construction will be
carried out as in Theorem 5.6.8. Let H′ be the constructed k-hypergraph.
Consequently, the following is NP-hard to decide.

(i) Every vertex cover of H′ has size at least

(1 − r

k − 1
)n1+j(1 − δ) + n

1+jr

k − 1
+O (nj) .

(ii) The size of a minimum vertex cover of H′ is at most

(1 − r

k − 1
)n1+j (1

k − 1
+ δ) + n

1+jr

k − 1
+O(nj).

This implies the NP-hardness of approximating the VERTEX COVER prob-
lem to within any constant approximation ratio less than R(δ), where R(δ)
is defined as follows.

R(δ) =
(1 − r

k − 1
)n1+j(1 − δ) + n

1+jr

k − 1
+O (nj)

(1 − r

k − 1
)n1+j (1

k − 1
+ δ) + n

1+jr

k − 1
+O(nj)

(5.21)

99

CHAPTER 5. VERTEX COVER OF k -HYPERGRAPHS

Let us deduce a lower bound on the term R(δ) in (5.21). We have that

R(δ) =
(1 − r

k − 1
)n1+j(1 − δ) + n

1+jr

k − 1
+O (nj)

(1 − r

k − 1
)n1+j (1

k − 1
+ δ) + n

1+jr

k − 1
+O (nj)

=
(k − 1) (1 − r

k − 1
) (1 − δ) + (k − 1) ⋅ r

k − 1
+O(1

n
)

(k − 1) (1 − r

k − 1
)(1

k − 1
+ δ) + (k − 1) r

k − 1
+O(1

n
)

=
k − 1 − δ(k − 1) (1 − r

k − 1
) +O(1

n
)

1 − r

k − 1
+ δ(k − 1) (1 − r

k − 1
) + r +O(1

n
)

≥ k − 1 − δ(k − 1)

1 − r

k − 1
+ δ(k − 1) (1 − r

k − 1
) + r + o(1)

= k − 1

1 + (k − 2)r
k − 1

− [ε(δ) + o(1)],

as claimed. In order to prove the case (r = 1), we may argue as in the proof
of Theorem 5.6.8. ∎

5.7 Bibliographic Notes

The material presented in this chapter is based on the paper [CKSV12], which
contains the proofs of the Theorem 5.6.7, 5.6.8, 5.6.9, 5.5.7 and 5.5.9.

100

CHAPTER 6

Vertex Cover of k -Partite
k -Hypergraphs

101

CHAPTER 6. VERTEX COVER OF k -PARTITE k -HYPERGRAPHS

In this chapter, we investigate the approximability of the VERTEX COVER

problem in dense and nearly regular k-partite k-hypergraphs.
We first consider the VERTEX COVER problem in dense k-balanced hy-

pergraphs and prove that the problem is efficiently approximable with ap-
proximation ratio better than k/2. After that, we develop an improved tech-
nique for the extraction of a minimum vertex cover of a dense k-partite
k-hypergraph by which we obtain an efficient approximation algorithm for
the VERTEX COVER problem in dense k-partite k-hypergraphs with better
approximation ratio. On the approximation hardness side, we propose a con-
jecture about the UG -hardness of the VERTEX COVER problem in k-partite
k-hypergraphs. Assuming this conjecture, we prove an optimal inapproxima-
bility result for the dense version of the problem.

By combining the framework developed for the VERTEX COVER prob-
lem in nearly regular k-hypergraphs with a new method called randomized
bucketing extraction, we design a randomized approximation algorithm for
the VERTEX COVER problem in nearly regular k-partite k-hypergraphs with
approximation ratio strictly less than k/2 and running time depending on the
density of the underlying k-hypergraph. In particular, it entails the existence
of quasi-polynomial and polynomial time approximation algorithms with ap-
proximation ratio less than k/2 for mildly sparse and subdense instances,
respectively. On the other hand, we prove the optimality of the approxi-
mation ratio achieved by our algorithm based on the conjecture mentioned
above.

6.1 Introduction

When the vertex set of a k-hypergraph is partitioned into k disjoint sets such
that every edge contains exactly one vertex of every set of the k-partition
and the k-partition is given as a part of the input, this restricted version is
called the VERTEX COVER problem in k-partite k-hypergraphs.

The underlying problem has been investigated for applications connected
to database problems including distributed data mining [FMO+03], schema

102

6.1. INTRODUCTION

mapping discovery [GS10a] and optimization of finite automata [ISY05]. In
bipartite graphs (k = 2), the size of a minimum vertex cover can be computed
efficiently by finding a maximum matching in the same graph due to König’s
Theorem. On the other hand, for general k, Gottlob and Senellart [GS10a]
proved that the VERTEX COVER problem in k-partite k-hypergraphs is NP-
hard by constructing a reduction from the 3SAT problem. Since the reduc-
tion given in [GS10a] is also approximation preserving, it implies the APX-
hardness of the problem. Lovasz [L75] studied the the VERTEX COVER

problem restricted to k-partite k-hypergraphs and proved that the integral-
ity gap of the natural linear programming relaxation is bounded by k/2. In
more detail, he constructed a rounding scheme for the solution of the natural
linear programming relaxation implying an efficient approximation algorithm
for the problem with approximation ratio k/2. Aharoni, Holzman and Kriv-
elevich [AHK96] constructed a family of tight examples witnessing that the
integrality gap of the natural linear programming relaxation is k/2 − o(1).

Based on the inapproximability result given by Dinur, Guruswami, Khot
and Regev [DGKR05] for the VERTEX COVER problem in k-hypergraphs,
Guruswami and Saket [GS10b] constructed a reduction from the former
mentioned problem implying that for all k ≥ 5, it is NP-hard to approx-
imate the VERTEX COVER problem in k-partite k-hypergraphs to within
any constant approximation ratio less than k/4. By applying the result
of Kumar, Manokaran, Tulsiani and Vishnoi [KMTV11] with a modifica-
tion to the LP integrality gap construction due to Ahorani, Holzman and
Krivelevich [AHK96], Guruswami and Saket [GS10b] gave an optimal in-
approximability result for the problem. More precisely, they proved that
for all k ≥ 3, it is UG -hard to approximate the VERTEX COVER problem
in k-partite k-hypergraphs to within any constant approximation ratio less
than k/2. Combining Long Code based gadgets with the Multi-Layered PCP

constructed by Dinur, Guruswami, Khot and Regev [DGKR05] as starting
point of their reduction, Sachdeva and Saket [SS11] gave a nearly optimal
NP-hardness of approximation result for the problem. They proved that
for all k ≥ 4, it is NP-hard to approximate the VERTEX COVER problem
in k-partite k-hypergraphs to within any constant approximation ratio less

103

CHAPTER 6. VERTEX COVER OF k -PARTITE k -HYPERGRAPHS

than (k/2 − 1 + (2k)−1).

Dense k-partite k-hypergraphs

To the best of the author’s knowledge, this is the first result concerning
the approximability of the VERTEX COVER problem in dense k-partite k-
hypergraphs.

First, we consider the VERTEX COVER problem in dense k-balanced
hypergraphs and prove that a similar approach designed for the VERTEX

COVER problem in dense k-hypergraphs yields an efficient approximation al-
gorithm for the VERTEX COVER problem in dense k-balanced hypergraphs
with an approximation ratio better than k/2. After that, we develop an im-
proved technique for the extraction of a minimum vertex cover of a dense
k-partite k-partite by which we obtain an efficient approximation algorithm
for the VERTEX COVER problem in dense k-partite k-hypergraphs with an
approximation ratio better than k/2. It achieves a better approximation ratio
and is applicable to a whole class of dense k-partite k-hypergraphs. As for
approximation lower bounds, we propose a conjecture about the UG -hardness
of the VERTEX COVER problem in k-partite k-hypergraphs. Assuming this
conjecture, we prove an optimal inapproximability result for the dense version
of the problem.

Nearly Regular k-partite k-hypergraphs

We investigate the approximability of the VERTEX COVER problem in nearly
regular k-partite k-hypergraphs. By combining the framework developed in
Section 5.6 for the VERTEX COVER problem in nearly regular k-hypergraphs
with a new method called Randomized Bucketing Extraction, we design an
randomized approximation algorithm for the VERTEX COVER problem in
nearly regular k-partite k-hypergraphs with approximation ratio strictly less
than k/2 and running time depending on the density of the underlying k-
hypergraph. In particular, it entails the existence of quasi-polynomial and
polynomial time approximation algorithms with approximation ratio less
than k/2 for mildly sparse instances and for subdense instances, respec-

104

6.2. OUTLINE OF THIS CHAPTER

tively. On the other hand, we prove the optimality of the approximation
ratio achieved by our algorithm based on the conjecture mentioned above.

6.2 Outline of this Chapter

This chapter is organized as follows. In Section 6.4, we survey some of the
known results concerning the approximability of the VERTEX COVER prob-
lem in k-partite k-hypergraphs. In Section 6.5, we study the VERTEX COVER

problem restricted to dense k-balanced hypergraphs and dense k-partite k-
hypergraphs. Finally, in Section 6.6, we investigate the approximability of
the VERTEX COVER problem in nearly regular k-partite k-hypergraphs.

6.3 Preliminaries

We are going to introduce some notation used in this chapter. Let us first
define the underlying problem according to Definition 4.1.1.

Definition 6.3.1 (VERTEX COVER problem in k-partite k-hypergraphs)
Instances: A k-partite k-hypergraph H with given vertex

partition {Vi(H) ∣ i ∈ [k]}
Solutions: Subset C ⊆ V (H) such that C ∩ e ≠ ∅ for all e ∈ E(H)

Task: Minimize the cardinality of C

If the k-partition {Vi(H) ∣ i ∈ [k]} of a k-partite k-hypergraph H is given
as a part of the input, we assume that ∣Vi+1(H)∣ ≤ ∣Vi(H)∣ for all i ∈ [k − 1].
Furthermore, we say that H is k-balanced if the k-partition {Vi(H) ∣ i ∈ [k]}
of H satisfies the property ∣Vj(H)∣ = ∣Vi(H)∣ for all i, j ∈ [k].

Given a k-partite k-hypergraph H with k-partition {Vi(H) ∣ i ∈ [k]} and
k ≥ 2, for each integer j ∈ [k] and each vertex v ∈ Vj(H), we define the v-
induced (k−1)-partite (k−1)-hypergraph H(v) by V (H(v)) = ⋃i∈[k]/{j} Vi(H)
and E(H(v)) = {e/{v} ∣ v ∈ e ∈ E(H)}.

In the following, we introduce classes of k-partite k-hypergraphs with
respect to the parameter ΨH(n) which is defined for a k-partite k-hypergraph

105

CHAPTER 6. VERTEX COVER OF k -PARTITE k -HYPERGRAPHS

H with n vertices and given k-partition {Vi(H) ∣ i ∈ [k]} as follows.

ΨH(n) =
⎛
⎝∏i∈[k]

∣Vi∣
⎞
⎠
(∣E(H)∣)−1

We refer to a k-partite k-hypergraph H with n vertices as dense, subdense,
mildly sparse and non-dense if we have ΨH(n) = O(1), ΨH(n) = O(logn),
ΨH(n) = poly(logn) and ΨH(n) = ω(1), respectively.

For dense k-partite k-hypergraphs, we introduce even finer-grained
classes. A k-partite k-hypergraph H with given vertex partition {Vi ∣ i ∈ [k]}
is called (ε, ℓ)-dense for an integer ℓ ∈ [k − 1] ∪ {0} and a constant ε ∈ (0,1)
if there exists a set

I ∈ ([k]
ℓ
) s. t.∀S ∈ {Y ∈ (V (H)

ℓ
) ∣ ∣Vi ∩ Y ∣ = 1∀i ∈ I} ∶ dH(S) ≥ ε ⋅ ∏

i∈[k]/I
∣Vi∣

holds.

6.4 The General Problem

Before we investigate the approximability of the VERTEX COVER problem
in dense and nearly regular k-partite k-hypergraphs, we survey some of the
known results concerning the approximability of the VERTEX COVER prob-
lem in k-partite k-hypergraphs.

6.4.1 An Approximation Upper Bound

First of all, we present a generalization of the König Theorem due to
Lovász [L75] implying a rounding procedure that constructs efficiently a
vertex cover of a given k-partite k-hypergraph with approximation ratio at
most k/2. The rounding procedure uses the fractional solution of the nat-
ural linear programming relaxation LP6.1 given in Figure 6.1. Afterwards,
we describe the integrality gap construction of Aharoni, Holzman and Kriv-
elevich [AHK96] for the LP6.1. More precisely, they constructed a family of
k-partite k-hypergraphs yielding an integrality gap of k/2 − o(1).

106

6.4. THE GENERAL PROBLEM

Minimize ∑
v∈V (H)

xv

Subject to

∑
v∈e

xv ≥ 1 ∀e ∈ E(H)

0 ≤ xv ≤ 1 ∀v ∈ V (H)

Figure 6.1: Linear program LP6.1

In his doctoral thesis, Lovász [L75] studied the VERTEX COVER problem
in k-partite k-hypergraphs and proved the following result.

Theorem 6.4.1 ([L75])
Let H be a k-partite k-hypergraph with k ≥ 3, τ∗(H) the value of a fractional
solution to the corresponding linear program LP6.1 and τ(H) the cardinality
of a minimum vertex cover of H. Then, the following inequality holds.

τ(H)
τ∗(H)

≤ k

2

We are going to present the proof of Theorem 6.4.1. For this reason, we
introduce some notation that will be used in the proof.

For every odd integer m ≥ 1, we define the 3×m matrix A(m) = (aij)i∈[3],j∈[m]
as follows.

A(m) =

⎛
⎜⎜⎜⎜⎜
⎝

1
m + 3
2

2
m + 5
2

3 ...
m − 1
2

m
m + 1
2

m + 1
2

1
m + 3
2

2
m + 5
2

... m − 1 m − 1
2

m

m m − 1 m − 2 m − 3 m − 4 ... 3 2 1

⎞
⎟⎟⎟⎟⎟
⎠

Furthermore, for every integer m ≥ 1, we introduce the 2 ×m matrix B(m)

107

CHAPTER 6. VERTEX COVER OF k -PARTITE k -HYPERGRAPHS

defined as follows.

B(m) =
⎛
⎝
1 2 3 ... m − 2 m − 1 m

m m − 1 m − 2 ... 3 2 1

⎞
⎠

By combining the former introduced matrices A(m) and B(m), we are going
to define the k ×m matrix C(k,m) for every odd integer m ≥ 1 and every
k ∈ N.

Definition 6.4.1 (Matrix C(k,m))
Let m ≥ 1 be an odd integer. For every even integer k ≥ 2, the k ×m matrix
C(k,m) = (cij)i∈[k],j∈[m] is given as follows.

cij =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

b1j for even i and j ∈ [m]

b2j for odd i and j ∈ [m]
(6.1)

For every odd integer k ≥ 3, we define C(k,m) = (cij)i∈[k],j∈[m] as follows.

cij =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

aij for i ∈ [3] and j ∈ [m]

b1j for even i ≥ 4 and j ∈ [m]

b2j for odd i ≥ 5 and j ∈ [m]

(6.2)

Before we prove Theorem 6.4.1, we give an example of such a matrix.

Example 6.4.1 (Matrix C(5,9))

C(5,9) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 5 1 6 2 7 3 8 4

4 0 5 1 6 2 7 3 8

8 7 6 5 4 3 2 1 0

0 1 2 3 4 5 6 7 8

8 7 6 5 4 3 2 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Let us now turn to the proof of Theorem 6.4.1.

Proof of Theorem 6.4.1.
Let H be a k-partite k-hypergraph with given vertex partition {Vi(H) ∣ i ∈
[k]} and k ≥ 3, τ∗(H) the value of an optimal solution of LP6.1 for H and

108

6.4. THE GENERAL PROBLEM

τ(H) the cardinality of a minimum vertex cover of H. Since LP6.1 has only
integral coefficients, there exists an optimal solution x∗ ∶ V (H) → [0,1] of
LP6.1 such that x∗(v) is rational for every v ∈ V (H). Let us define the integer
f by

f = min{n ∈ N ∣ (n ⋅ x∗(v)) ∈ Z for all v ∈ V (H)} . (6.3)

Furthermore, we introduce m = 2f − 1. Notice that for all k ≥ 2 and all odd
integer m ≥ 1, the matrix C(k,m) has the following properties.

(i) Every row of C(k,m) is a permutation of the numbers contained in the
set [m].

(ii) The sum of every column of C(k,m) is bounded from above by

k ⋅ (m + 1)
2

. (6.4)

For every j ∈ [m], we introduce the subset Cj of V (H) as follows.

Cj = ⋃
i∈[k]
{v ∈ Vi ∣ kf ⋅ x∗(v) ≥ cij } (6.5)

We claim that for every j ∈ [m], Cj is a vertex cover of H. For the sake of
contradiction, suppose that there exists an edge e′ = {v1, ..., vk} ∈ E(H) and
an integer l ∈ [m] such that e′ ∩ Cl = ∅ holds. By definition of Cl, we have
that kf ⋅ x∗(vi) < cil for every i ∈ [k]. It implies that

∑
i∈[k]

x∗(vi) < ∑
i∈[k]

cil
kf
≤

k(m + 1)
2
kf

≤ m + 1
m + 1

= 1 (6.6)

contradicting the definition of x∗.
Since each row of the matrix C(k,m) is a permutation and by (6.5), we

have ∣{j ∈ [m] ∣ v ∈ Cj}∣ ≤ kf ⋅ x∗(v) for every v ∈ V (H). Consequently, we
deduce the following bound on the sum of the sizes of the sets Cj.

∑
j∈[m]
∣Cj ∣ ≤ ∑

v∈V (H)

k

2
(m + 1) ⋅ x∗(v) = k

2
(m + 1) ⋅ τ∗(H) (6.7)

109

CHAPTER 6. VERTEX COVER OF k -PARTITE k -HYPERGRAPHS

Since every Cj with j ∈ [m] is a vertex cover of H, we obtain the following.

min{∣Cj ∣ ∣ j ∈ [m]} ≤ ∑
j∈[m]

∣Cj ∣
m

≤

k

2
(m + 1)τ∗(H)

m

= k

2
τ∗(H) (1 + 1

m
)

By letting m tend to infinity, the proof of Theorem 6.4.1 follows. ∎

As we will see, the proof of Theorem 6.4.1 implies the existence of an
efficient approximation algorithm that on input of a k-partite k-hypergraph
H and its k-partition constructs a vertex cover with approximation ratio k/2.
Given the fractional solution x∗ ∶ V (H) → [0,1] of LP6.1, n = ∣V (H)∣ and a
positive integer t, we introduce the upscaled function xt ∶ V (H) → [0,1]
defined by

xt(v) = ⌈ (x∗(v) ⋅ n ⋅ t ⋅ 3k) ⌉ (3k ⋅ t ⋅ n)−1 for every v ∈ V (H). (6.8)

Furthermore, we set f = 3k ⋅n ⋅ t in (6.3) and obtain m = 6k ⋅n ⋅ t+1. For each
j ∈ [m], we define the set Ct

j = ⋃
i∈[k]
{v ∈ Vi(H) ∣ k ⋅ f ⋅ xt(v) ≥ cij } . We present

the approximation algorithm for the VERTEX COVER problem in k-partite
k-hypergraphs given in Figure 6.2.

Algorithm A6.2

Input : (H,{Vi(H) ∣ i ∈ [k]}), where H is a k-partite
k-hypergraph and {Vi(H) ∣ i ∈ [k]} its k-partition.

Output: A vertex cover S of H.

begin
À Compute the fractional solution x∗ of LP6.1 for H;
Á Compute C̃ = {Ct

j ∣ j ∈ [6n ⋅ k ⋅ t + 1]} with t = 2n2;
Â Let Cmin be the smallest set in C̃ ;
return Cmin;

end

Figure 6.2: Algorithm A6.2

110

6.4. THE GENERAL PROBLEM

By using the construction given in the proof of Theorem 6.4.1, we are
going to prove the following statement.

Corollary 6.4.1
Let H be a k-partite k-hypergraph with k ≥ 3 and {Vi(H) ∣ i ∈ [k]} its k-
partition. Then, on input (H,{Vi(H) ∣ i ∈ [k]}), algorithm A6.2 constructs in
polynomial time a vertex cover of H with approximation ratio at most k/2.

Proof of Corollary 6.4.1.
Let H be a k-partite k-hypergraph with k ≥ 3 containing n vertices and
{Vi(H) ∣ i ∈ [k]} its k-partition. Furthermore, let x∗ be the fractional solution
of LP6.1 for H. Let us fix a t ∈ N. Note that for all t ∈ N and v ∈ V (H), we
have that x∗(v) ≤ xt(v). By (6.6), we deduce that for every j ∈ m, the set
Ct

j is a vertex cover of H. By (6.7), we obtain the following bound on the
sum of the sizes of the sets Ct

j .

∑
j∈[m]
∣Ct

j ∣ ≤ ∑
v∈V (H)

k

2
(m + 1) ⋅ xt(v) ≤ k

2
(m + 1) ⋅ τ∗(H) + n ⋅ k(m + 1)

2(3n ⋅ k ⋅ t)

Let C be a minimum vertex cover of H and Cmin the set that was constructed
by algorithm A6.2 on input (H,{Vi(H) ∣ i ∈ [k]}). Since τ∗(H) is a lower
bound on the cardinality of ∣C ∣, the size of Cmin can be bounded from above
as follows.

∣Cmin∣ ≤ ∑
j∈[m]

∣Ct
j ∣
m

≤ k

2

m + 1
m
⋅ τ∗(H) + m + 1

6 ⋅ t ⋅m
≤ ∣C ∣m + 1

m
(k
2
+ 1

6t
) .

Therefore, we obtain the following bound on the approximation ratio of al-
gorithm A6.2.

∣Cmin∣
∣C ∣

≤ k

2
+ 1

m
(k
2
+ 1

6t
) + 1

6t
≤ k

2
+ 1

t

Since we have ∣Cmin∣, ∣C ∣ ∈ N, ∣C ∣ ≤ n and t = 2n2, we conclude that ∣Cmin∣ ≤
(k/2) ⋅ ∣C ∣. Finally, we note that x∗ can be computed efficiently and the proof
of Corollary 6.4.1 follows. ∎

Next, we will see that the bound given in Theorem 6.4.1 is tight.

111

CHAPTER 6. VERTEX COVER OF k -PARTITE k -HYPERGRAPHS

Integrality Gap of LP6.1

We are going to describe the integrality gap construction of Aharoni, Holz-
man and Krivelevich [AHK96] for the linear program LP6.1 and present the
proof of the following theorem.

Theorem 6.4.2 ([AHK96])

For every k ≥ 3, the integrality gap of LP6.1 is (k
2
− o(1)).

Proof of Theorem 6.4.2.
Given a positive integer n, we are going to construct a k-partite k-hypergraph
H, for which the value of the LP solution yields an integrality gap of

nk

2(n + 1)
= k

2
(1 − k

2(n + 1)
) = k

2
− o(1). (6.9)

Let us start with the description of H. The vertex set V (H) of H is parti-
tioned into V1(H), . . . , Vk(H), where

Vi(H) = {y1ij ∣ j ∈ [n]} ∪ {y2il ∣ l ∈ [nk + 1]}. (6.10)

Before we specify the edge set of H, we define the LP solution. The LP values
of the vertices of H are given by x∗ ∶ V (H)→ [0,1] with

x∗(y1ij) =
2j

nk
, for all j ∈ [n]

x∗(y2il) = 0, for all l ∈ [nk + 1].

The set of edges of H is defined as the set of all possible edges with exactly
one vertex from each Vi(H) and the property that the sum of the LP values
of the corresponding vertices is at least 1. Formally, we have

E(H) = { e ⊆ V (H) ∣ ∀i ∈ [k] ∶ ∣e ∩ Vi(H)∣ = 1 and ∑
v∈e
x∗(v) ≥ 1 } . (6.11)

Accordingly, we see that H is k-partite with {Vi(H) ∣ i ∈ [k]} being the
k-partition of V (H). The value of the corresponding LP solution is

∑
v∈V

x∗(v) = k ∑
j∈[n]

2j

nk
= n + 1. (6.12)

112

6.4. THE GENERAL PROBLEM

Let Ṽ be a minimum vertex cover of H. In order to bound the size of the
minimum vertex cover from below, we note that the set

{v ∈ V (H) ∣ x∗(v) > 0}

is a vertex cover of H with size nk. Thus, we have ∣Ṽ ∣ ≤ nk. Notice that for
any i ∈ [k], the vertices in {y2il ∣ l ∈ [nk + 1]} have the same neighborhood.
Consequently, we may assume that yil /∈ Ṽ , as otherwise, Ṽ would include at
least nk + 1 such vertices.

For all i ∈ [k], we introduce the index j(i) ∈ [n] ∪ {0} given by

j(i) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 if for all j ∈ [n], xij ∈ Ṽ ,

max {j ∈ [n] ∣ xij /∈ Ṽ } otherwise.
(6.13)

Since Ṽ is a vertex cover of H and by definition of the indices j(i), we have

∑
i∈[k]

x∗(y1i j(i)) < 1 implying ∑
i∈[k]

j(i) < nk

2
.

On the other hand, it yields a lower bound on the cardinality of Ṽ given by

∑
i∈[k]
(n − j(i)).

Combining the deduced facts, we attain

∣V ′∣ ≥ ∑
i∈[k]
[n − j(i)] ≥ nk − ∑

i∈[k]
j(i) ≥ nk − nk

2
= nk

2
. (6.14)

By (6.12) and (6.14), we obtain the claimed integrality gap of LP6.1 in (6.9)
and the proof of Theorem 6.4.2 follows. ∎

6.4.2 Approximation Lower Bounds

Next, we are going to state some known hardness of approximation results
for the VERTEX COVER problem in k-partite k-hypergraphs. We start with
an inapproximability result due to Guruswami and Saket [GS10b].

113

CHAPTER 6. VERTEX COVER OF k -PARTITE k -HYPERGRAPHS

UG -Hardness

By applying the techniques of Kumar, Manokaran, Tulsiani and Vish-
noi [KMTV11] with a modification to the LP integrality gap construc-
tion due to Ahorani, Holzman and Krivelevich [AHK96], Guruswami and
Saket [GS10b] gave an optimal inapproximability result for the VERTEX

COVER problem in k-partite k-hypergraphs. More precisely, they proved
that for all k ≥ 3, it is UG -hard to approximate the problem to within any
constant approximation ratio less than k/2. Let us present the precise state-
ment.

Theorem 6.4.3 ([GS10b])
Let H be a k-partite k-hypergraph with given vertex partition and k ≥ 3. For
every δ > 0, the following is UG -hard to decide.

• Every vertex cover of H has size at least

∣V (H)∣ (1

2(k − 1)
− δ) .

• The size of an optimal vertex cover of H is at most

∣V (H)∣ (1

k(k − 1)
+ δ) .

Next, we are going to state the inapproximability result for the VERTEX

COVER problem in k-partite k-hypergraphs due to Sachdeva and Saket [SS11]
based on a weaker assumption.

NP-Hardness of Approximation

Sachdeva and Saket [SS11] obtained a nearly optimal NP-hardness of approx-
imation result for the VERTEX COVER problem in k-partite k-hypergraphs.
It implies that it is NP-hard to approximate the VERTEX COVER problem
in k-partite k-hypergraphs to within any constant approximation ratio less
than (k/2 − 1 + (2k)−1). In more detail, they proved the following theorem.

114

6.5. DENSE k -PARTITE k -HYPERGRAPHS

Theorem 6.4.4 ([SS11])
Let H be a k-partite k-hypergraph with given vertex partition and k ≥ 4. For
every δ > 0, the following is NP-hard to decide.

(i) Every vertex cover of H has size at least

∣V (H)∣ (k − 1
2k [2k + 1]

− δ) .

(ii) The cardinality of a minimum vertex cover of H is at most

∣V (H)∣
⎛
⎝

1

(k − 1)(2k + 1)
+ δ
⎞
⎠
.

6.5 Dense k -Partite k -Hypergraphs

According to Theorem 6.4.3, it is UG -hard to approximate the VERTEX

COVER problem in k-partite k-hypergraphs to within any constant approxi-
mation ratio less than k/2. In this section, we investigate the approximability
of the dense version of the problem and design an approximation algorithm
for the problem with approximation ratio strictly less than k/2. On the other
hand, we give an optimal inapproximability result.

6.5.1 Our Contribution

By extending the approach for the VERTEX COVER problem in dense k-
hypergraphs in Section 5.5.3, we design an efficient approximation algorithm
for the VERTEX COVER problem in dense k-balanced hypergraphs with ap-
proximation ratio better than k/2. Let us formulate our first result.

Theorem 6.5.1
There is a polynomial time approximation algorithm for the VERTEX COVER

problem in (ε, ℓ)-dense k-balanced hypergraphs with approximation ratio

k

k − (k − 2)(1 − ε)
1

k−ℓ
.

115

CHAPTER 6. VERTEX COVER OF k -PARTITE k -HYPERGRAPHS

Afterwards, we develop a technique for the extraction of a minimum ver-
tex cover of given k-partite k-hypergraphs. In particular, we design an ex-
traction algorithm that on input of a dense k-partite k-hypergraph H and
its vertex partition constructs a large part of a minimum vertex cover of H.
More precisely, we obtain the following result.

Lemma 6.5.1
Let H be an ε-dense k-partite k-hypergraph with given k-partition {Vi(H) ∣
i ∈ [k]} and C a minimum vertex cover of H. There is an algorithm that on
input H and its k-partition computes in polynomial time a collection M̃ of
subsets Wi ⊆ V (H) such that the size of M̃ is polynomial in ∣V (H)∣ and M̃
contains a set SC ⊆ C with ∣SC ∣ ≥ ε ⋅ ∣Vk(H)∣.

As a consequence, we obtain a lower bound on the size of a minimum
vertex cover of a given dense k-partite k-hypergraph.

Corollary 6.5.1
Let H be an ϵ-dense k-partite k-hypergraph and s the cardinality of its smallest
partition. Then, the size of a minimum vertex cover of H is bounded from
below by (ε ⋅ s).

In addition, we construct a family of k-hypergraphs, for which the bound
in Lemma 6.5.1 is tight.

The mentioned extraction algorithm will play a key role in our improved
approximation algorithm for the VERTEX COVER problem in dense k-partite
k-hypergraphs. On the one hand, it achieves a better approximation ratio
compared to the approximation algorithm given in Theorem 6.5.1. On the
other hand, it is applicable to k-partite k-hypergraphs with given vertex
partition. Let us formulate the precise statement.

Theorem 6.5.2
There is a polynomial time approximation algorithm for the VERTEX COVER

problem in ε-dense k-partite k-hypergraphs with approximation ratio

k

2 + (k − 2)ε
.

116

6.5. DENSE k -PARTITE k -HYPERGRAPHS

As for approximation lower bounds, we give an UG -hardness and a NP-
hardness of approximation result for the VERTEX COVER problem in dense
k-partite k-hypergraphs. In particular, we obtain the following hardness
result.

Theorem 6.5.3
For every k ≥ 3, it is UG -hard to approximate the VERTEX COVER problem
in (ε, ℓ)-dense k-partite hypergraphs to within any constant approximation
ratio less than

k

2 + (2(k − 1)
k + (k − 2)ε

)(k − 2)ε

for every ℓ ∈ [k − 1].

In addition, we formulate the following conjecture about the approxima-
tion hardness of the VERTEX COVER problem in k-partite k-hypergraphs. It
implies the same inapproximability factor as in Theorem 6.4.3. But on the
other hand, by combining the approximation preserving reduction used in
Theorem 6.5.3 with Conjecture 6.5.1, we obtain an optimal inapproximabil-
ity result for the VERTEX COVER problem in dense k-partite k-hypergraphs.
Let us formulate our conjecture.

Conjecture 6.5.1
Let H be a k-partite k-hypergraph with given k-partition {Vi(H) ∣ i ∈ [k]} and
k ≥ 3. Then, for every δ > 0, the following is UG -hard to decide.

(i) Every vertex cover of H has size at least

∣V (H)∣ (1
k
− δ) .

(ii) The cardinality of a minimum vertex cover of H is at most

∣V (H)∣ (2
k2
+ δ) .

Assuming Conjecture 6.5.1, we give an approximation lower bound indi-
cating that further densification in the sense of (ε, ℓ)-density does not affect

117

CHAPTER 6. VERTEX COVER OF k -PARTITE k -HYPERGRAPHS

the approximability of the underlying problem in contrast to the VERTEX

COVER problem in (ε, ℓ)-dense k-hypergraphs. Let us formulate our inap-
proximability result.

Theorem 6.5.4
For every k ≥ 3, it is UG -hard to approximate the VERTEX COVER problem
to within any constant approximation ratio less than

k

2 + (k − 2)ε

in (ε, ℓ)-dense k-partite hypergraphs for all ℓ ∈ [k − 1] assuming Conjec-
ture 6.5.1.

Based on Conjecture 6.5.1, we also give in Section 6.6.3 an optimal in-
approximability result for the VERTEX COVER problem restricted to nearly
regular k-partite k-hypergraphs

6.5.2 The Dense k-Balanced Case

We are going to design an approximation algorithm for the VERTEX COVER

problem in k-balanced hypergraphs with an approximation ratio better than
k/2. In particular, we are going to prove Theorem 6.5.1, which is restated
below.

Theorem 6.5.1
There is a polynomial time approximation algorithm for the VERTEX COVER

problem in (ε, ℓ)-dense k-balanced hypergraphs with approximation ratio

k

k − (k − 2)(1 − ε)
1

k−ℓ
.

In order to prove Theorem 6.5.1, we extend our approach for approximat-
ing the VERTEX COVER problem in dense k-hypergraphs in Section 5.5.3 to
the dense k-balanced case. Firstly, we design an approximation algorithm
that on input of a k-partite k-hypergraph H and a subset W of an optimal
solution of H constructs a vertex cover of H with approximation ratio that

118

6.5. DENSE k -PARTITE k -HYPERGRAPHS

is parametrized by the cardinality of the set W . Secondly, we give an al-
gorithm that on input of a dense k-balanced hypergraph H extracts a large
subset of a minimum vertex cover of H. By combining the mentioned algo-
rithms, we obtain the desired result. Afterwards, in Section 6.5.3, we design
an improved extraction algorithm, which is applicable to dense k-partite k-
hypergraphs and extracts a larger part of a minimum vertex cover of the
input k-hypergraph.

Approximating the Remaining Instance

We present the approximation algorithmA6.3 defined in Figure 6.3 that on in-
put of a k-partite k-hypergraph H and a subset W of a minimum vertex cover
of H constructs a vertex cover of H with approximation ratio parametrized
by the cardinality of the set W .

Algorithm A6.3

Input : (H,{Vi(H) ∣ i ∈ [k]},W), where H is a k-partite
k-hypergraph with given vertex partition {Vi(H) ∣ i ∈ [k]}
and W a subset of V (H).

Output: A vertex cover S of H.

begin
À R ← Vk(H);
Á H′ ← H[V (H)/W];
Â S′ ← A6.2(H′,{Vi(H′) ∣ i ∈ [k]});
Ã Let S be the smallest set among R and S′ ∪W ;
return S;

end

Figure 6.3: Algorithm A6.3

We are going to prove the following lemma.

Lemma 6.5.2
Let H be a k-partite k-hypergraph with given k-partition {Vi(H) ∣ i ∈ [k]}, C

119

CHAPTER 6. VERTEX COVER OF k -PARTITE k -HYPERGRAPHS

a minimum vertex cover of H and W a subset of V (H) with ∣W ∩ C ∣ ≥ δ ⋅
∣W ∣ for some fixed constant δ ∈ (2k −1,1]. On input (H,{Vi(H) ∣ i ∈ [k]},W),
algorithm A6.3 constructs in polynomial time a vertex cover of H with ap-
proximation ratio

k

2 + (δk − 2) ∣W ∣
∣Vk(H)∣

.

Proof of Lemma 6.5.2.
Let H be a k-partite k-hypergraph with given k-partition {Vi(H) ∣ i ∈ [k]},
C a minimum vertex cover of H and W a subset of V (H) with

∣W ∩C ∣ ≥ δ ⋅ ∣W ∣ for some constant δ ∈ (2
k
,1] . (6.15)

On input (H,{Vi(H) ∣ i ∈ [k]},W), algorithm A6.3 constructs the remaining
k-partite k-hypergraph H′ defined by H′ = H[V (H)/W]. Let C ′ be a mini-
mum vertex cover of H′. Due to Theorem 6.4.1, we are able to construct in
polynomial time a vertex cover S′ of H′ such that

∣S′∣ ≤ k

2
⋅ ∣C ′∣ (6.16)

holds. Then, algorithm A6.3 returns S ⊆ V (H) being the smallest set among
W ∪ S′ and Vk(H). Consequently, we may assume that we have

∣S∣ = min{∣W ∪ S′∣, ∣Vk(H)∣} ≤ ∣Vk(H)∣. (6.17)

Let us derive an upper bound on the cardinality of the produced solution
S. Since the size of the optimal solution C can be bounded from below by
∣C ∣ ≥ ∣C ∩W ∣ + ∣C ′∣, we obtain

∣S∣
∣C ∣

≤ ∣S∣
∣C ∩W ∣ + ∣C ′∣

≤ ∣S∣
δ∣W ∣ + ∣C ′∣

(by (6.15))

= k

k ⋅ δ ⋅ ∣W ∣ + k∣C ′∣
∣S∣

= Rδ

120

6.5. DENSE k -PARTITE k -HYPERGRAPHS

By the choice of δ (6.15), we have δk − 2 > 0. Consequently, we deduce that

Rδ =
k

2 ∣W ∣ + 2 ∣S′∣
∣S∣

+ (δk − 2)∣W ∣ + k ⋅ ∣C
′∣ − 2 ∣S′∣

∣S∣

≤ k

2 +
(δk − 2)∣W ∣ + k ⋅ (∣C ′∣ − 2

k
∣S′∣)

∣S∣

(by (6.17))

≤ k

2 + (δk − 2) ∣W ∣
∣S∣

(by (6.16))

≤ k

2 + (δk − 2) ∣W ∣
∣Vk(H)∣

(by (6.17))

and the proof of Lemma 6.5.2 follows. ∎

In the next section, we are going to define our first algorithm for the ex-
traction of a part of an optimal vertex given a dense k-balanced hypergraph.

Extracting a Part of a Minimum Vertex Cover

In order to provide the set W for algorithm A6.3, we need to extract a large
part of an optimal vertex cover of a given dense k-balanced hypergraph.
Accordingly, we are going to define an algorithm for the extraction. As for
the first step, we prove the following lemma.

Lemma 6.5.3
Let H be an ε-dense k-balanced hypergraph with given k-partition of the vertex
set {Vi(H) ∣ i ∈ [k]} and n vertices. Given a set B of [(1 − (1 − ε) 1k)n/k]-
heaviest vertices in V (H), then, all vertices v ∈ B have degree in H at least

dH(v) ≥ (1 − (1 − ε)
k−1
k)(n

k
)
k−1

.

Proof of Lemma 6.5.3.
Let H be a k-balanced hypergraph with given k-partition {Vi(H) ∣ i ∈ [k]}. H

121

CHAPTER 6. VERTEX COVER OF k -PARTITE k -HYPERGRAPHS

contains n vertices and m edges, where due to our assumption on the density
of the hypergraph, we have that

m = ∣E(H)∣ ≥ ε ⋅ (n
k
)
k

. (6.18)

Furthermore, let us denote by B the set consisting of some

[(1 − (1 − ε) 1k) n
k
] -heaviest vertices in V (H).

For the sake of contradiction, suppose the statement is not true. Then, the
number m of edges in H is strictly smaller than the number of edges in a k-
balanced hypergraph, in which all vertices of B have the maximum possible
degree and all the remaining vertices in V (H)/B have degree exactly

(1 − (1 − ε) k−1k)(n
k
)
k−1

.

Combining the bounds on the degree of the vertices, we attain that

m < (∣B∣ (n
k
)
k−1
+ (n

k
− ∣B∣) [1 − (1 − ε) k−1k] (n

k
)
k−1
)

= ((1 − (1 − ε)
1
k) n
k
(n
k
)
k−1

+ [n
k
− (1 − (1 − ε) 1k) n

k
] (1 − (1 − ε) k−1k)(n

k
)
k−1
)

= (1 − (1 − ε)
1
k)(n

k
)
k

+ (1 − ε) 1k (1 − (1 − ε) k−1k)(n
k
)
k

= ε(n
k
)
k

,

which is a contradiction with respect to (6.18). ∎

We are going to prove Theorem 6.5.1 and first consider the case ℓ = 0. In
order to apply Lemma 6.5.2, we need to find a large subset W of a minimum
vertex cover.

The algorithm A6.4 defined in Figure 6.4 returns a collection W̃ of subsets
Wi ⊆ V (H) such that at least one of them is contained in a minimum vertex
cover of H.

122

6.5. DENSE k -PARTITE k -HYPERGRAPHS

Algorithm A6.4

Input : (H,{Vi(H) ∣ i ∈ [k]}, ε), where H is an ε-dense k-balanced
hypergraph with given k-partition {Vi(H) ∣ i ∈ [k]}.

Output: A collection W̃ of subsets of V (H).

begin
À W̃ ← ∅;
if (k = 1) then

Á W̃ ← { ⋃
e∈E(H)

e};

return W̃ ;

else
Â Find a set B consisting of some
[(1 − (1 − ϵ)1/k)n/k]-heaviest vertices of H;
Ã W̃ ← W̃ ∪ {B};
foreach v ∈ B do

Ä ϵ′ ← (1 − (1 − ϵ)
k

(k+1));

Å W̃ ′ ← A6.4(H(v),{Vi(H) ∣ i ∈ [k], v /∈ Vi(H)}, ϵ′);
Æ W̃ ← W̃ ∪ W̃ ′;

end

end
return W̃ ;

end

Figure 6.4: Algorithm A6.4

We are going to prove the following lemma.

Lemma 6.5.4
Let H be an ε-dense k-balanced hypergraph containing n vertices and given
k-partition {Vi(H) ∣ i ∈ [k]}. In addition, let C be a vertex cover of H. On
input (H,{Vi(H) ∣ i ∈ [k]}, ε), algorithm A6.4 constructs in polynomial time
a collection W̃ = {Wi ⊆ V (H) ∣ i ∈ [s]} of size s = O(nk) having the following

123

CHAPTER 6. VERTEX COVER OF k -PARTITE k -HYPERGRAPHS

properties.

(i) There exists j ∈ [s] with Wj ⊆ C.

(ii) For all i ∈ [s], we have ∣Wi∣ ≥ (1 − (1 − ε)
1
k) n

k
.

Proof of Lemma 6.5.4.
Let H be an ε-dense k-balanced hypergraph with n vertices and given k-
partition {Vi(H) ∣ i ∈ [k]}. Furthermore, let C be a vertex cover of H. On
input (H,{Vi(H) ∣ i ∈ [k]}, ε), algorithm A6.4 returns a collection W̃ of size
at most ∣V1∣k = O(nk) in O(nk) time, which is polynomial since we assumed
k = O(1).

The first condition is verified by induction. If all vertices in B belong to C,
we have nothing to prove. Therefore, we may assume that there is a vertex
v ∈ B and a b ∈ [k] such that v ∈ Vb(H) and v /∈ C. Then, the algorithm
subtracts the whole partition Vb from V (H) and proceeds on the (k − 1)-
balanced hypergraph H(v) with (k − 1)-partition {Vi(H(v)) ∣ i ∈ [k]/{b}}
and E(H(v)) = { e/{v} ∣ v ∈ e ∈ E(H) } . A vertex cover of H must contain
a vertex cover of the (k − 1)-balanced hypergraph H(v) as otherwise, some
edges will not be covered. By induction, the recursive call returns a collection
of subsets of H(v) including a subset W ′

j contained in C. The base case k = 1
is trivial.

We prove the second property by induction as well. Suppose that for a
fixed value of k, we have ∣Wi∣ ≥ (1 − (1 − ε)1/k) (n/k) for all i ∈ [s] and all k-
balanced hypergraphs. We now prove the property for k+1. By Lemma 6.5.3,
the recursive calls are performed on ε′-dense k-balanced hypergraphs with
n − n/(k + 1) vertices. Thus, by the induction hypothesis, the recursive call
returns a collection of sets Wi of size

∣Wi∣ ≥ (1 − (1 − ε′)
1
k)(n − n

k + 1
) 1
k
=
⎡⎢⎢⎢⎢⎣
1 − (1 − (1 − ε)

k
k+1)

1
k
⎤⎥⎥⎥⎥⎦

kn

(k + 1)k

≥ (1 − (1 − ε)
1

k+1)(n

k + 1
) ,

as claimed. The base case k = 1 is verified, as in that case the algorithm
returns at least εn vertices. ∎

124

6.5. DENSE k -PARTITE k -HYPERGRAPHS

When the given k-balanced hypergraph H is (ε, ℓ)-dense with ℓ > 0, it
is possible to extract an even larger part of a minimum vertex cover of H.
We present the extraction algorithm A6.5 for the (ε, ℓ)-dense case with ℓ > 0
defined in Figure 6.5.

Algorithm A6.5

Input : (H,{Vi(H) ∣ i ∈ [k]}, ε, ℓ), where H is an (ε, ℓ)-dense
k-hypergraph with ℓ > 0 and given k-partition
{Vi(H) ∣ i ∈ [k]}.

Output: A collection W̃ of subsets Wi ⊆ V (H).

begin
À W̃ ← {Vi(H) ∣ i ∈ [k]};

foreach S ∈ {P ∈ (V (H)
ℓ
) ∣ ∃I ∈ ([k]

ℓ
)∀i ∈ I ∶ ∣Vi ∩ P ∣ = 1} do

Á Let S = {vi ∈ Vi(H) ∣ i ∈ I};
Â Define H′ to be the (k − ℓ)-balanced hypergraph with
vertex partition {Vi(H) ∣ i ∈ [k]/ I}, edge set
E(H′) = {e/S ∣ S ⊆ e ∈ E(H)} and vertex set ⋃

i∈[k]/ I
Vi(H);

Ã W̃ ′ ← A6.4(H′,{Vi(H) ∣ i ∈ [k]/ I}, ε);
Ä W̃ ← W̃ ∪ W̃ ′;

end
return W̃ ;

end

Figure 6.5: Algorithm A6.5

We are going to prove the following lemma.

Lemma 6.5.5
Let H be an (ε, ℓ)-dense k-balanced hypergraph with ℓ > 0, n vertices and
given k-partition {Vi(H) ∣ i ∈ [k]}. Furthermore, let C be a vertex cover of H
with k ⋅ ∣C ∣ ≤ n. On input (H,{Vi(H) ∣ i ∈ [k]}, ε, ℓ), algorithm A6.5 constructs

125

CHAPTER 6. VERTEX COVER OF k -PARTITE k -HYPERGRAPHS

in polynomial time a collection of sets W̃ = {Wi ⊆ V (H) ∣ i ∈ [s]} of size
s = O(nk) having the following properties.

(i) There exists j ∈ [s] such that Wj is a subset of C.

(ii) For all i ∈ [s], we have that

∣Wi∣ ≥ (1 − (1 − ε)
1

k−ℓ)(n
k
) .

Proof of Lemma 6.5.5.
Let H be an (ε, ℓ)-dense k-balanced hypergraph with ℓ > 0, n vertices and
given vertex partition {Vi(H) ∣ i ∈ [k]}. By definition, there exists a I ⊆ [k]
with ∣I ∣ = ℓ such that for all subsets

S ∈ {S′ ∈ (V (H)
ℓ
) ∣ ∣Vi ∩ S′∣ = 1 for all i ∈ I} ∶ dH(S) ≥ ε ⋅ (

n

k
)
k−ℓ

(6.19)

holds. On input (H,{Vi(H) ∣ i ∈ [k]}, ε, ℓ), algorithm A6.5 finds in polynomial
time the set I of indices with the property (6.19) by exhaustive search. If
there is a k0 ∈ [k] with Vk0 ⊆ C, we are done. Otherwise, there is a set
SC = {vCi ∈ Vi ∣ i ∈ I} of ℓ vertices with SC ∩ C = ∅. Let us consider the
(k − ℓ)-balanced hypergraph H′ with vertex partition {Vi ∣ i ∈ [k]/ I} and
edge set E(H′) = {e/SC ∣ SC ⊆ e ∈ E(H) } . Due to the property (6.19), we
know that H′ is ε-dense. In order to cover the edges in E(H′), there is a
vertex cover C ′ of H′ that is also contained in C. According to Lemma 6.5.4,
algorithm A6.4 returns a set W̃ = {Wi ⊆ V (H′) ∣ i ∈ [s]} on input H′ with the
following properties.

(i) There exists j ∈ [s] such that Wj is a subset of C ′.

(ii) For all i ∈ [s], we have that ∣Wi∣ ≥ (1 − (1 − ε)
1

k−ℓ)(n
k
) .

In particular, it implies that there exists a j ∈ [s] with Wj ⊆ C. Further-
more, we know that algorithm A6.4 constructs W̃ in polynomial time and
s = O(nk−ℓ). By enumerating all O(nℓ) possibilities for SC , we obtain the
result in O(nk) time. ∎

We now give the proof of Theorem 6.5.1.

126

6.5. DENSE k -PARTITE k -HYPERGRAPHS

Proof of Theorem 6.5.1

Let H be an (ε, ℓ)-dense k-balanced hypergraph with given k-partition {Vi ∣
i ∈ [k]} containing n vertices and C a minimum vertex cover of H. In
order to prove our theorem, we are going to analyze algorithm A6.9 given in
Figure 6.9. It combines both extraction algorithms providing a large part
W of a minimum vertex cover of a given dense k-balanced hypergraph H
with algorithm A6.5. As we will see, we obtain in this way the approximation
algorithm for the VERTEX COVER problem in dense k-balanced hypergraphs
with the desired approximation ratio.

Algorithm A6.9

Input : (H,{Vi(H) ∣ i ∈ [k]}, ε, ℓ), where H is an (ε, ℓ)-dense
k-partite k-hypergraph with given vertex partition
{Vi(H) ∣ i ∈ [k]}.

Output: A vertex cover S of H.

begin
À S̃ ← ∅;
if (ℓ = 0) then

Á W̃ ← A6.4(H,{Vi(H) ∣ i ∈ [k]}, ε);
else

Â W̃ ← A6.5(H,{Vi(H) ∣ i ∈ [k]}, ε, ℓ);
end

foreach Wi ∈ W̃ do
Ã S̃′ ← A6.3(H,{Vi(H) ∣ i ∈ [k]},Wi);
Ä S̃ ← S̃ ∪ S̃′ ;

end
Å Let S be the smallest set in the collection S̃ ;
return S;

end

Figure 6.6: Algorithm A6.6

127

CHAPTER 6. VERTEX COVER OF k -PARTITE k -HYPERGRAPHS

Let us first consider the case ℓ > 0. On input (H,{Vi(H) ∣ i ∈ [k]}, ε, ℓ),
algorithm A6.5 constructs in polynomial time a collection W̃ of subsets Wi ⊆
V (H). According to Lemma 6.5.5, W̃ contains a set Wj being included in
C. In addition to that, the size of Wj is at least

∣Wj ∣ ≥ ∣C ∩Wj ∣ ≥ (1 − (1 − ε)
1

k−ℓ) n
k
. (6.20)

For every set Wi ∈ W̃ , algorithm A6.3 returns on input (H,{Vi(H) ∣ i ∈
[k]},Wi, t) in polynomial time a vertex cover Si of H. By Lemma 6.5.2, we
know that the size of the particular vertex cover Sj of H is at most

∣Sj ∣
∣C ∣

≤ k

2 + (k − 2)
∣Wj ∣
∣Vk(H)∣

≤ k

2 + (k − 2)
∣Wj ∣
(n/k)

≤ k

2 + (k − 2) (1 − (1 − ε)
1

k−ℓ)
(by (6.20))

= k

k − (k − 2)(1 − ε)
1

k−ℓ

Since the algorithm A6.9 returns the smallest vertex cover among Si with
i ∈ [s], we obtain the claimed result. Finally, we note that a similar argu-
mentation holds in the case ℓ = 0.

By Lemma 6.5.5, the number s of sets Wi contained in W̃ is O(nk).
Consequently, the running time of algorithm A6.9 remains polynomial and
the proof of Theorem 6.5.1 follows. ∎

6.5.3 An Improved Approximation Algorithm

In this section, we are going to design an efficient approximation algorithm
for the VERTEX COVER problem in dense k-partite k-hypergraphs. It is
the first approximation algorithm for the VERTEX COVER problem in dense

128

6.5. DENSE k -PARTITE k -HYPERGRAPHS

k-partite k-hypergraphs with approximation ratio strictly less than k/2. In
addition, it achieves a better approximation ratio than algorithm A6.9 given
in the previous section. In particular, we are going to prove Theorem 6.5.2
restated below.

Theorem 6.5.2
There is a polynomial time approximation algorithm for the VERTEX COVER

problem in ε-dense k-partite k-hypergraphs with approximation ratio

k

2 + (k − 2)ε
.

A crucial ingredient of the proof of Theorem 6.5.2 is Lemma 6.5.1, in
which we show that we can extract efficiently a large part of an optimal
vertex cover of a given ε-dense k-partite k-hypergraph H with k-partition
{Vi(H) ∣ i ∈ [k]}. Moreover, we obtain in this way a constructive proof that
the size of a vertex cover of H is bounded from below by (ε ⋅ ∣Vk(H)∣).

The Improved Extraction Algorithm

We are going to define an improved extraction algorithm. On the one hand, it
extracts a larger part of a minimum vertex cover compared to algorithm A6.9.
On the other hand, it can be applied to k-partite k-hypergraphs, whereas al-
gorithm A6.9 extracts only a large part of a minimum vertex cover if the
given hypergraph is dense k-balanced. Moreover, we are going to prove
Lemma 6.5.1.

Lemma 6.5.1
Let H be an ε-dense k-partite k-hypergraph with given k-partition {Vi(H) ∣
i ∈ [k]} and C a minimum vertex cover of H. There is an algorithm that on
input H and its k-partition computes in polynomial time a collection M̃ of
subsets Wi ⊆ V (H) such that the size of M̃ is polynomial in ∣V (H)∣ and M̃
contains a set SC ⊆ C with ∣SC ∣ ≥ ε ⋅ ∣Vk(H)∣.

We present our extraction algorithm for k-partite k-hypergraphs given in
Figure 6.7.

129

CHAPTER 6. VERTEX COVER OF k -PARTITE k -HYPERGRAPHS

Algorithm A6.7

Input : (H,{Vi(H) ∣ i ∈ [k]}), where H is an ε-dense k-partite
k-hypergraph with given k-partition {Vi(H) ∣ i ∈ [k]}.

Output: A collection M̃ of subsets Wi ⊆ V (H).

begin
if (k = 1) then

À M̃ ← { ⋃
e∈E(H)

e};

return M̃ ;

else

Á p← ⌈∣Vk(H)∣
ΨH(n)

⌉;

Â Find a set {v1, .., vp} consisting of some p -heaviest vertices
of Vk(H) with dH(vi) ≥ dH(vi+1) for all i ∈ [p − 1];
Ã M̃ ← {{v1, .., vp}};
for i = 1, . . . , p do

Ä R ← {vj ∣ j ∈ [i − 1]};
Å M̃ ′ ← A6.7(H(vi),{Vj(H) ∣ j ∈ [k − 1]});
Æ M̃ ← M̃ ∪ {R ∪ S ∣ S ∈ M̃ ′};

end

end
return M̃ ;

end

Figure 6.7: Algorithm A6.7

Before we prove Lemma 6.5.1, we describe the main idea of the proof. We
denote by nk the cardinality of the set Vk(H). Let C be an optimal vertex
cover of H. For a p ∈ [nk], let R = {v1, .., vp} be a set consisting of some
p -heaviest vertices of Vk(H) with dH(vi) ≥ dH(vi+1). Then, we argue that
either the whole set R is contained in C, or algorithm A6.7 finds the highest
degree vertex in R, say vu, with vu /∈ C. Clearly, we have {v1, . . . , vu−1} ⊆ C.

130

6.5. DENSE k -PARTITE k -HYPERGRAPHS

Accordingly, algorithm A6.7 tries to obtain a large part of a vertex cover of
the vu-induced hypergraph H(vu). As we will see, H(vu) is still dense enough
and algorithm A6.7 returns a part of a vertex cover C ′ of H(vu) with C ′ ⊆ C.
The union {v1, . . . , vu−1} ∪C ′ yields a large part of a minimum vertex cover
of H.

Let us now turn to the proof of Lemma 6.5.1.

Proof of Lemma 6.5.1.
We will split the proof of Lemma 6.5.1 in several parts. In particular, we
prove that given an ε-dense k-partite k-hypergraph H with n vertices and its
k-partition {Vi(H) ∣ i ∈ [k]}, the algorithm A6.7 produces a collection M̃ of
subsets S ⊆ V (H) having the following properties:

(i) For all vertex cover C of H, there is a SC ∈ M̃ such that SC ⊆ C.

(ii) For every S ∈ M̃ , the cardinality of S is at least ∣S∣ ≥ ε ⋅ ∣Vk(H)∣.

(iii) The algorithm A6.7 constructs M̃ in polynomial time and the cardinal-
ity of M̃ is O(nk).

Let us start with property (iii).
(iii)We see that the size of M̃ is bounded from above by ∣V1∣k = O(nk). This
implies that the running time of A6.7 on input H is polynomial in n.
The properties (ii) and (iii) will be proved by induction.

In the case (k = 1), the set ⋃
e∈E(H)

e is by definition subset of every vertex

cover of H. Since H is ε-dense, the cardinality of ∣E(H)∣ is bounded from
below by ε ⋅ ∣V1(H)∣.

We may assume that k > 1 and the statement is true for all (k−1)-partite
(k−1)-hypergraphs. Let H be an ε-dense k-partite k-hypergraph, C a vertex
cover of H and {v1, .., vp} be a set consisting of some p -heaviest vertices of
Vk(H), where

p = ⌈∣Vk(H)∣
ΨH(n)

⌉ . (6.21)

131

CHAPTER 6. VERTEX COVER OF k -PARTITE k -HYPERGRAPHS

Furthermore, we assume that dH(vi) ≥ dH(vi+1) for all i ∈ [p−1]. If {v1, .., vp}
is contained in C, we have constructed a subset of C with cardinality

p = ⌈∣Vk(H)∣
ΨH(n)

⌉ ≥ ∣E(H)∣ ⋅ ∣Vk(H)∣
∏
i∈[k]
∣Vi(H)∣

≥ ε ⋅ ∣Vk(H)∣.

Otherwise, there is an integer u ∈ [p] such that Ru = {v1, . . . , vu−1} ⊆ C
and vu /∈ C. But this means that C contains a vertex cover of the vu-
induced (k − 1)-partite (k − 1)-hypergraph H(vu) in order to cover all edges
in {e ∈ E(H) ∣ vu ∈ e} . By our induction hypothesis, algorithm A6.7 returns
on input H(vu) a collection M̃u containing a set Su which is a subset of a
vertex cover of H(vu) and of C.

It remains to be proved that the cardinality of Su is large enough. More
precisely, we are going to prove that ∣Su∣ can be bounded from below by

∣Su∣ ≥ ε ⋅ ∣Vk(H)∣ − ∣Ru∣. (6.22)

Therefore, we need to analyze the density of the vu-induced hypergraph
H(vu). The edge set of H(vu) is given by { e/{vu} ∣ vu ∈ e ∈ E(H) }. Thus,
we have to obtain a lower bound on the degree of vu in H. Since we have

∣{ e ∈ E(H) ∣ e ∩Ru ≠ ∅}∣ ≤ ∣Ru∣ ∏
i∈[k−1]

∣Vi(H)∣, (6.23)

the vertices included in Vk(H)/Ru have an average degree in H at least

∑
v∈Vk(H)/ Ru

dH(v)

∣Vk(H)/Ru∣
≥

ε ⋅ ∏
i∈[k]
∣Vi(H)∣ − ∣{e ∈ E(H) ∣ e ∩Ru ≠ ∅}∣

∣Vk(H)/Ru∣

≥
ε ⋅ ∏

i∈[k]
∣Vi(H)∣ − ∣Ru∣ ∏

i∈[k−1]
∣Vi(H)∣

∣Vk(H)/Ru∣
(by (6.23))

≥
(ε ⋅ ∣Vk(H)∣ − ∣Ru∣) ∏

i∈[k−1]
∣Vi(H)∣

∣Vk(H)/Ru∣

132

6.5. DENSE k -PARTITE k -HYPERGRAPHS

Let ṽ be the heaviest vertex included in Vk(H)/Ru. Then, ṽ must have
a degree in H at least

dH(ṽ) ≥
(ε ⋅ ∣Vk(H)∣ − ∣Ru∣) ∏

l∈[k−1]
∣Vl∣

∣Vk(H)/Ru∣
.

Accordingly, we deduce that the size of E(H(vu)) can be bounded from below
by

∣E(H(vu))∣ ≥
(ε ⋅ ∣Vk(H)∣ − ∣Ru∣) ∏

i∈[k−1]
∣Vi(H)∣

∣Vk(H)/Ru∣
(6.24)

The vertex partition of H(vu) is simply given by {Vi(H) ∣ i ∈ [k−1]}. By our
induction hypothesis and by (6.24), the size of every set contained in M̃ u is
at least

∣E(H(vu))∣
∏

i∈[k−1]
∣Vi(H)∣

⋅ ∣Vk−1(H)∣ ≥
(ε ⋅ ∣Vk(H)∣ − ∣Ru∣) ⋅ ∏

i∈[k−1]
∣Vi(H)∣

∣Vk(H)/Ru∣ ⋅ ∏
i∈[k−1]

∣Vi(H)∣
⋅ ∣Vk−1(H)∣

By ∣Vk−1(H)∣ ≥ ∣Vk(H)∣, we deduce the following lower bound on the size of
sets contained in M̃u .

(ε ⋅ ∣Vk(H)∣ − ∣Ru∣) ∏
i∈[k−1]

∣Vi(H)∣

∣Vk(H)/Ru∣ ∏
i∈[k−1]

∣Vi(H)∣
⋅ ∣Vk−1(H)∣ ≥

(ε ⋅ ∣Vk(H)∣ − ∣Ru∣)
∣Vk(H)/Ru∣

⋅ ∣Vk(H)∣

≥ (ε ⋅ ∣Vk(H)∣ − ∣Ru∣)
∣Vk(H)∣

⋅ ∣Vk(H)∣

= ε ⋅ ∣Vk(H)∣ − ∣Ru∣

We obtain the claimed property (6.22). By combining the deduced facts, we
get that

∣Ru ∪ Su∣ ≥ ∣Ru∣ + (ε ⋅ ∣Vk(H)∣ − ∣Ru∣) = ε ⋅ ∣Vk(H)∣.

Clearly, this argumentation on the size of Ru ∪ Su can be applied to every
u ∈ [p] and the proof of Lemma 6.5.1 follows. ∎

Before we present our polynomial time approximation algorithm for the
VERTEX COVER problem in dense k-partite k-hypergraphs, we prove that
the bound stated in Lemma 6.5.1 is tight.

133

CHAPTER 6. VERTEX COVER OF k -PARTITE k -HYPERGRAPHS

Family of Tight Examples

We are going to define a family of k-balanced hypergraphs and prove that
for each member of this family, the bound stated in Lemma 6.5.1 is tight.
Let us define the family of k-balanced hypergraphs.

Definition 6.5.1 (Family of k-balanced hypergraphs HT)
For every k ∈ N, l ∈ N and u ∈ [l], we define the k-balanced hypergraph
H(k, l, ε) with ε = u/ l and k-partition {Vi(H(k, l, ε)) ∣ i ∈ [k]}. Vk(H(k, l, ε))
consists of the set of vertices {v1, . . . , vl}. For each u ∈ [l], we introduce the
subset V u

k = {v1, . . . , vu} of Vk(H(k, l, ε)). Then, the edge set of H(k, l, u/l)
is given by

E(H(k, l, u/l)) = {{v1, . . . , vk} ∣ v1 ∈ V1(H(k, l, u/l)), . . . , vk ∈ V u
k } .

The family HT of k-balanced hypergraphs is defined as follows.

HT = {H (k, l,
u

l
) ∣ k ∈ N, l ∈ N, u ∈ [l]}

We are going to prove the following lemma.

Lemma 6.5.6
For every k ∈ N, l ∈ N and u ∈ [l], the algorithm A6.4 constructs on in-
put H(k, l, u/l) ∈HT a collection M̃ containing a minimum vertex cover of
H(k, l, u/l) of size u.

Before we turn to the proof of Lemma 6.5.6, we display a member of the
family HT in Figure 6.8.

Vk(H(k, l, ε)) Vk−1(H(k, l, ε)) V2(H(k, l, ε)) V1(H(k, l, ε))

V u
k

Figure 6.8: Illustration of the k-hypergraph H(k, l, ε)

134

6.5. DENSE k -PARTITE k -HYPERGRAPHS

Let us proceed to the proof of Lemma 6.5.6.

Proof of Lemma 6.5.6.
For a fixed p ≥ 1, u ∈ [p] and k ≥ 2, we consider H(k, p, ε) ∈HT with ε = u/p.
First, we note that H(k, p, ε) is ε-dense, since we have

∣E(H(k, p, ε))∣
∏
j∈[k]
∣Vj(H(k, p, ε))∣

=
∣V u

k ∣
∣Vk(H(k, p, ε))∣

= u

p
= ε. (6.25)

Then, algorithm A6.4 returns a collection M̃ including V u
k . By (6.25), we

obtain

∣V u
k ∣ = (

∣V u
k ∣

∣Vk(H(k, p, ε))∣
∣Vk(H(k, p, ε))∣) = ε ⋅ ∣Vk(H(k, p, ε))∣.

On the other hand, the remaining hypergraph H′ with vertex partition
{V1(H(k, p, ε)), . . . , Vk(H(k, p, ε))/V u

k } and edge set E(H′) = {e ∈ E(H) ∣
e ∩ V u

k = ∅} is already covered, since E(H′) is by definition of H(k, p, ε) the
empty set. Therefore, V u

k is a vertex cover of H(k, p, ε).
According to Corollary 6.5.1, every vertex cover of H(k, p, ε) is bounded

from below by ε ⋅ ∣Vk(H(k, p, ε))∣ implying that V u
k must be an optimal vertex

cover. ∎

Let us now turn to the proof of Theorem 6.5.2.

Proof of Theorem 6.5.2

Let H be an ε-dense k-partite k-hypergraph with given k-partition {Vi(H) ∣
i ∈ [k]} and C a minimum vertex cover of H. The algorithm A6.9 defined in
Figure 6.9 combines the extraction algorithm A6.7 to generate a large enough
subset W of a minimum vertex cover of H together with the algorithm A6.3

that on input W and H constructs a vertex cover of H with approximation
ratio parametrized by the cardinality of W .

We present our polynomial time approximation algorithm for the
VERTEX COVER problem in dense k-partite k-hypergraphs given in Fig-
ure 6.9.

135

CHAPTER 6. VERTEX COVER OF k -PARTITE k -HYPERGRAPHS

Algorithm A6.9

Input : (H,{Vi(H) ∣ i ∈ [k]}), where H is an ε-dense k-partite
k-hypergraph and {Vi(H) ∣ i ∈ [k]} the given vertex
partition of H.

Output: A vertex cover S of H.

begin
À S̃ ← ∅;
Á M̃ ← A6.7(H,{Vi(H) ∣ i ∈ [k]});
foreach M ∈ M̃ do

Â S ← A6.3(H,{Vi(H) ∣ i ∈ [k]},M);
Ã S̃ ← S̃ ∪ {S}

end
Ä Let S be the smallest set in the collection S̃ ;
return S;

end

Figure 6.9: Algorithm A6.9

The extraction algorithm A6.7 constructs on input H and its partition
{Vi(H) ∣ i ∈ [k]} a collection M̃ of subsets M ⊆ V (H). According to
Lemma 6.5.1, there is a MC ∈ M̃ such that MC ⊆ C and ∣Vk(H)∣ ⋅ ε ≤ ∣MC ∣.
In addition, we know that the size of M̃ is polynomial in ∣V (H)∣. Then, we
apply algorithm A6.3 to every set in M̃ together with H yielding a vertex
cover of H. Due to Lemma 6.5.2, the size of the smallest vertex cover among
them, say S′, can be bounded from above by

∣S′ ∣ ≤

⎛
⎜⎜⎜⎜
⎝

k

2 + (δk − 2) ∣MC ∣
∣Vk(H)∣

⎞
⎟⎟⎟⎟
⎠

⋅ ∣C ∣.

Since we have ∣MC ∣ ≤ ∣MC ∩C ∣ and ∣Vk(H)∣ ⋅ ε ≤ ∣MC ∣, we obtain

∣S′∣
∣C ∣

≤ k

2 + (k − 2) ∣Vk(H)∣ ⋅ ε
∣Vk(H)∣

≤ k

2 + (k − 2)ε

136

6.5. DENSE k -PARTITE k -HYPERGRAPHS

and proof of Theorem 6.5.2 follows. ∎

6.5.4 Approximation Lower Bounds

In this section, we study the approximation hardness of the VERTEX COVER

problem restricted to dense k-partite k-hypergraphs. We give an UG -
hardness and a NP-hardness of approximation result for the underlying prob-
lem. Furthermore, we propose a conjecture on the UG -hardness of approxi-
mating the VERTEX COVER problem in k-partite k-hypergraphs. Assuming
this conjecture, we obtain an optimal inapproximability result.

UG -Hardness

We construct an approximation preserving reduction from the VERTEX

COVER problem in k-partite k-hypergraphs to the dense version of the prob-
lem. By densifying hard instances given in Theorem 6.4.3, we are going to
prove the following UG -hardness result.

Theorem 6.5.3
For every k ≥ 3, it is UG -hard to approximate the VERTEX COVER problem
in (ε, ℓ)-dense k-partite hypergraphs to within any constant approximation
ratio less than

k

2 + (2(k − 1)
k + (k − 2)ε

)(k − 2)ε

for every ℓ ∈ [k − 1].

Proof of Theorem 6.5.3.
Let us first concentrate on the ε-dense case. Afterwards, we extend the
range of ℓ. As starting point of our reduction, we consider the k-partite
k-hypergraph H given in Theorem 6.4.3 and construct an ε-dense k-partite
k-hypergraph H′ by adding a k-partite clique K of appropriate size to H.
Recall that according to Theorem 6.4.3, for every δ > 0, the following two
cases (i) and (ii) of the promise problem are UG -hard to decide.

137

CHAPTER 6. VERTEX COVER OF k -PARTITE k -HYPERGRAPHS

(i) Every vertex cover of H has size at least

∣V (H)∣ (1

2(k − 1)
− δ) .

(ii) The cardinality of a minimum vertex cover is at most

∣V (H)∣ (1

k(k − 1)
+ δ) .

We start with the description of H′. Let {Vi(H) ∣ i ∈ [k]} be the given k-
partition of H. The i-th partition of the clique K is denoted by Vi(K). Then,
we join the set Vi(K) of

(ε

1 − ε
) ∣Vi(H)∣ (6.26)

vertices to Vi(H) forming the set Vi(H′) for every i ∈ [k]. Consequently, we
obtain

∣Vi(H′)∣ = ∣Vi(H)∣ + (
ε

1 − ε
) ∣Vi(H)∣ for all i ∈ [k]. (6.27)

Then, we add all possible edges e to E(H′) with the restrictions ∣e∣ = k,
Vk(K) ∩ e ≠ ∅ and e ∩ Vi(H′) ≠ ∅ for every i ∈ [k − 1].

Let us now analyze how the size of a vertex cover of H transforms. The
cases (i) and (ii) from Theorem 6.4.3 transform into the following. For every
δ > 0, it is UG -hard to decide which of the cases (iii) and (iv) hold.

(iii) Every vertex cover of H′ has size at least

∣V (H)∣ (1

2(k − 1)
− δ) + ε

1 − ε
∣Vk(H)∣

k
.

(iv) The cardinality of a minimum vertex cover is at most

∣V (H)∣ (1

k(k − 1)
+ δ) + ε

1 − ε
∣Vk(H)∣

k
.

Let us introduce n = ∣V (H)∣. It implies that for every δ > 0, it is UG -
hard to approximate the VERTEX COVER problem in ε-dense k-partite k-

138

6.5. DENSE k -PARTITE k -HYPERGRAPHS

hypergraphs to within any constant approximation ratio less than R(δ),
where R(δ) is defined as follows.

R(δ) =
n(1

2(k − 1)
− δ) + ε

1 − ε
∣Vk(H)∣

k

n(1

k(k − 1)
+ δ) + ε

1 − ε
∣Vk(H)∣

k

Due to our assumption on the sizes of the k-partitions {Vi(H) ∣ i ∈ [k]}, we
have k ⋅ ∣Vk(H)∣ ≤ n. We are going to deduce a lower bound on R(δ).

R(δ) ≥

(1 − ε)n
2(k − 1)

− δ(1 − ε)n + εn
k

(1 − ε)n
k(k − 1)

+ δ(1 − ε)n + εn
k

=

(1 − ε)k
2(k − 1)k

+ 2ε(k − 1)
2k(k − 1)

1 − ε
(k − 1)k

+ ε(k − 1)
k(k − 1)

− δ′

=

k − εk + 2εk − 2ε
2(k − 1)k

1 − ε + εk − ε
(k − 1)k

− δ′ = k + (k − 2)ε
2(1 + (k − 2)ε)

− δ′

= k

2k(1 + (k − 2)ε)
k + (k − 2)ε

− δ′

The last term can be simplified in the following way in order to obtain the
desired inapproximability factor.

k

2k(1 + (k − 2)ε)
k + (k − 2)ε

− δ′ = k

2k + 2(k − 2)ε + (2k − 2)(k − 2)ε
k + (k − 2)ε

− δ′

= k

2 + (2k − 2)(k − 2)ε
k + (k − 2)ε

− δ′

= k

2 + 2(k − 1)(k − 2)ε
k + (k − 2)ε

− δ′

Finally, we have to verify that the constructed k-partite k-hypergraph H′ is

139

CHAPTER 6. VERTEX COVER OF k -PARTITE k -HYPERGRAPHS

indeed ε-dense.

∣E(H′)∣
∏
i∈[k]
∣Vi(H′)∣

≥
(ε∣Vk(H)∣

1 − ε
) ∏
i∈[k−1]

∣Vi(H′)∣

(∣Vk(H)∣ +
ε∣Vk(H)∣
1 − ε

) ∏
i∈[k−1]

∣Vi(H′)∣
=

ε

1 − ε
(1 − ε
1 − ε

+ ε

1 − ε
)
= ε

Note that the constructed k-partite k-hypergraph is also (ε, ℓ)-dense for all
ℓ > 0. Hence, we obtain the same inapproximability factor for those cases
finishing the proof of Theorem 6.5.3. ∎

An Optimal Inapproximability Result

Next, we combine the former construction with a conjecture on the UG -
hardness of the VERTEX COVER problem in k-partite k-hypergraphs. In
particular, we postulate the following.

Conjecture 6.5.1
Let H be a k-partite k-hypergraph with given k-partition {Vi(H) ∣ i ∈ [k]} and
k ≥ 3. Then, for every δ > 0, the following is UG -hard to decide.

(i) Every vertex cover of H has size at least

∣V (H)∣ (1
k
− δ) .

(ii) The cardinality of a minimum vertex cover of H is at most

∣V (H)∣ (2
k2
+ δ) .

Combining Conjecture 6.5.1 with the construction in Theorem 6.5.3, it
yields the following inapproximability result, which matches asymptotically
the approximation upper bound achieved by our approximation algorithm
described in Section 6.5.3. In addition, it indicates that further densification
in the sense of (ε, ℓ)-density does not affect the approximability of the un-
derlying problem in contrast to the VERTEX COVER problem in (ε, ℓ)-dense
k-hypergraphs.

140

6.5. DENSE k -PARTITE k -HYPERGRAPHS

We now prove Theorem 6.5.4 restated below.

Theorem 6.5.4
For every k ≥ 3, it is UG -hard to approximate the VERTEX COVER problem
to within any constant approximation ratio less than

k

2 + (k − 2)ε

in (ε, ℓ)-dense k-partite hypergraphs for all ℓ ∈ [k − 1] assuming Conjec-
ture 6.5.1.

Proof of Theorem 6.5.4.
Let us consider the k-partite k-hypergraph H from Conjecture 6.5.1. Then,
we fix a constant ε ∈ (0,1). Assuming Conjecture 6.5.1, the following promise
problem is UG -hard to decide.

(i) Every vertex cover of H has size at least

∣V (H)∣ (1
k
− δ) .

(ii) The cardinality of a minimum vertex cover of H is at most

∣V (H)∣ (2
k2
+ δ) .

Utilizing H as a hard instance combined with the construction in Theo-
rem 6.5.3, we obtain the k-partite k-hypergraph H′, for which the following
is UG -hard to decide for every δ > 0.

(iii) Every vertex cover of H′ has size at least

∣V (H)∣ (1
k
− δ) + ε

1 − ε
⋅ ∣Vk(H)∣.

(iv) The cardinality of a minimum vertex cover of H′ is at most

∣V (H)∣ (2
k2
+ δ) + ε

1 − ε
⋅ ∣Vk(H)∣.

141

CHAPTER 6. VERTEX COVER OF k -PARTITE k -HYPERGRAPHS

Let us denote n = ∣V (H)∣. It implies the UG -hardness of approximating
VERTEX COVER problem in ε-dense k-partite k-hypergraphs for every δ > 0
to within

n(1
k
− δ) + ε

1 − ε
⋅ ∣Vk(H)∣

n(2
k2
+ δ) + ε

1 − ε
⋅ ∣Vk(H)∣

≥
n(1

k
− δ) (1 − ε) + εn

k

n(2
k2
+ δ) (1 − ε) + εn

k

(by ∣Vk∣ ≤
n

k
)

= k − δ(1 − ε)k2

2(1 − ε) + δ(1 − ε)k2 + kε

= k

2 + (k − 2)ε
− δ′.

Finally, we note that the resulting k-partite k-hypergraph H′ is (ε, ℓ)-dense
for all ℓ ∈ [k − 1]. ∎

NP-Hardness of Approximation

Combining our reduction from Theorem 6.4.3 with the hard instance given
in Theorem 6.4.4, we are going to prove the following NP-hardness of ap-
proximation result.

Theorem 6.5.5
For every k ≥ 4, it is NP-hard to approximate the VERTEX COVER problem
in (ε, ℓ)-dense k-partite k-hypergraphs to within any constant approximation
ratio less than

(k − 1 + 3ε(k + 1))(k − 1)
2(k + ε(2k2 − 2k − 1))

for all ℓ ∈ [k − 1].

Proof of Theorem 6.5.5.
Let us consider the k-partite k-hypergraph H with n vertices constructed in
Theorem 6.4.4, for which the following two cases (i) and (ii) are NP-hard
to decide for every δ > 0.

(i) Every vertex cover of H has size at least

∣V (H)∣ (k − 1
2k(2k + 1)

− δ) .

142

6.5. DENSE k -PARTITE k -HYPERGRAPHS

(ii) The cardinality of a minimum vertex cover of H is at most

∣V (H)∣ (1

(k − 1)(2k + 1)
+ δ) .

Let us fix a constant ε ∈ (0,1). Utilizing H as a hard instance combined
with the construction in Theorem 6.5.3, we obtain the ε-dense k-partite k-
hypergraph H′, for which the following is NP-hard to decide for every δ > 0.

(iii) Every vertex cover of H′ has size at least

∣V (H)∣ (k − 1
2k(2k + 1)

− δ) + ε

1 − ε
⋅ ∣Vk(H)∣.

(iv) The cardinality of a minimum vertex cover of H′ is at most

∣V (H)∣ (1

(k − 1)(2k + 1)
+ δ) + ε

1 − ε
⋅ ∣Vk(H)∣.

It implies the NP-hardness of approximating the VERTEX COVER problem
in ε-dense k-partite k-hypergraphs for every δ > 0 to within any constant
approximation ratio better than R(δ), where R(δ) is defined as follows.

R(δ) =
∣V (H)∣ (k − 1

2k(2k + 1)
− δ) + ε

1 − ε
⋅ ∣Vk(H)∣

∣V (H)∣ (1

(k − 1)(2k + 1)
+ δ) + ε

1 − ε
⋅ ∣Vk(H)∣

(6.28)

The inapproximability factor R(δ) can be simplified in the following way.

R(δ) =

(k − 1)(1 − ϵ)
2k(2k + 1)

+ ϵ
k

1 − ϵ
(k − 1)(2k + 1)

+ ϵ
k

− δ′

=

k − 1 + 3ε(k + 1)
2k(2k + 1)(1 − ε)
k + ε(2k2 − 2k − 1)
(1 − ε)k(k − 1)(2k + 1)

− δ′

= (k − 1 + 3ε(k + 1))(k − 1)
2(k + ε(2k2 − 2k − 1))

− δ′

Finally, we note that the constructed k-partite k-hypergraph is (ε, ℓ)-dense
for all ℓ ∈ [k − 1]. ∎

143

CHAPTER 6. VERTEX COVER OF k -PARTITE k -HYPERGRAPHS

6.6 Nearly Regular k-Partite k-Hypergraphs

In this section, we extend the range of the density of the considered k-
hypergraph and investigate the approximability of the VERTEX COVER prob-
lem in nearly regular k-partite k-hypergraphs. Especially, for subdense and
mildly sparse instances, we design a randomized approximation algorithm
with approximation ratio strictly less than k/2 running in polynomial and
quasi-polynomial time, respectively. On the other hand, we obtain a hard-
ness of approximation result for the problem proving the optimality of the
approximation ratio of our algorithm based on Conjecture 6.5.1.

6.6.1 Contribution

By combining the techniques developed in Section 5.6.3 for the VERTEX

COVER problem in nearly regular k-hypergraphs with a new method called
randomized bucketing extraction, we design a randomized approximation
algorithm with approximation ratio strictly less than k/2 and running time
depending on the density of the nearly regular k-hypergraph. More precisely,
we prove the following theorem.

Theorem 6.6.1
For every ε > 0 and k ≥ 3, there is a randomized approximation algo-
rithm which computes a vertex cover for a given r-nearly regular k-partite
k-hypergraph H with n vertices and given k-partition with approximation ra-
tio

k

2 + (k − 2) ⋅ r
+ ε

in poly(n) exp [O(ΨH(n))] time.

The crucial ingredient of our approximation algorithm is the randomized
bucketing extraction method which could be also applicable to related cov-
ering problems with density constraints.

As for lower bounds, we obtain a tight approximation hardness result
proving the optimality of the approximation ratio of our algorithm under
Conjecture 6.5.1. Let us formulate the precise statement.

144

6.6. NEARLY REGULAR k-PARTITE k-HYPERGRAPHS

Theorem 6.6.2
For every k ≥ 3, it is UG -hard to approximate the VERTEX COVER problem
in r-nearly regular k-balanced hypergraphs with ∣E(H)∣ = Ω(nε) for every ε > 0
to within any constant approximation ratio less than

k

2 + (k − 2) ⋅ r

assuming Conjecture 6.5.1.

6.6.2 The Randomized Bucketing Algorithm

This section is devoted to the proof of Theorem 6.6.1. For this reason, we
first introduce the notation that will be needed and give a high level view of
the proof of Theorem 6.6.1.

Conventions and Outline of the Proof

Similarly to the approach developed in Section 5.6.3 for the VERTEX COVER

problem in nearly regular k-hypergraphs, we iteratively remove small subsets
of a minimum vertex cover of a given nearly regular k-partite k-hypergraph.
However, the randomized extraction technique used in Section 5.6.3 cannot
be applied successfully and we have to establish a more sophisticated method
to overcome this problem. We propose the randomized bucketing extraction
method which will be described later on.

Starting with a r-nearly regular k-partite k-hypergraph H, we first it-
eratively remove and collect vertex subsets until a sufficiently small set of
vertices remain. Let us first suppose that at every iteration i of the algo-
rithm, we are able to guess a sufficiently large subset of an optimal solution
of the current k-partite k-hypergraph Hi. This subset of vertices is removed
together with the edges that they cover to form Hi+1. We will see in the next
subsection how we can sample the set M̃ computed by the improved extrac-
tion algorithm in Section 6.5.3 to perform this guessing step efficiently. The
union of the removed sets will form the setM allowing us to use Lemma 6.5.2.
All in all, we aim at obtaining a subset M of a minimum vertex cover of H

145

CHAPTER 6. VERTEX COVER OF k -PARTITE k -HYPERGRAPHS

having cardinality approximately r ⋅ ∣Vk(H)∣.
Letting Hi be the k-partite k-hypergraph considered at the i-th step

(H1 = H), we denote by ni its number of vertices, by E(Hi) its edge set.
Furthermore, we define the parameter Ψi(ni) as follows.

Ψi(ni) =
⎛
⎝∏j∈[k]

∣Vj(Hi)∣
⎞
⎠
(∣E(Hi)∣)−1

We denote by {Vj(Hi) ∣ j ∈ [k]} its given vertex partition and introduce the
parameter si defined below.

si = ni − (1 − r)∣Vk(Hi)∣ − ∑
j∈[k−1]

∣Vj(Hi)∣

In the case si = 0, we obtain that

ni = (1 − r)∣Vk∣ + ∑
i∈[k−1]

∣Vi∣⇒ ni = n − r∣Vk∣.

Since n − ni is the size of the extracted set M , si can serve as a measure
of progress of the procedure. At every step, we remove α∣Vk(H)∣/ΨH(n)
vertices until si ≤ α∣Vk(H)∣ for a small constant α > 0 specified later on.
Thus, at the end of the procedure, we will have si ≤ α∣Vk(H)∣ implying
∣M ∣ ≥ (r −α)∣Vk(H)∣. We now show that we can always find a set of this size
contained in a minimum vertex cover.

Randomized Bucketing Extraction

By utilizing our randomized bucketing extraction method, we turn algorithm
A6.7 into a randomized version for extracting a part of a minimum vertex
cover of a given k-partite k-hypergraph while introducing only a constant
number of candidate sets. In order to define the method and describe our
algorithm, we are going to introduce some notation.
For a fixed integer k ≥ 2, we introduce for every constant γ ∈ (2/3 ,1) the
scaled probability ζ(γ) ∈ (2/3 ,1) defined as follows.

ζ(γ) = 1 − 1 − γ
k

(6.29)

146

6.6. NEARLY REGULAR k-PARTITE k-HYPERGRAPHS

For a given set of vertices, we are going to introduce the corresponding buck-
ets. Let Bt = {v1, . . . , vt} be a set of t vertices of a given k-hypergraph H. For
every l ∈ [t] and q ∈ [f] with f = ⌊t ⋅ l−1⌋, we introduce the set Bt,l(q) ⊆ Bt,
where

Bt,l(q) = { vj ∣ j ∈ {1 + (q − 1) ⋅ l, . . . , l + (q − 1) ⋅ l}}.

Furthermore, we define B +t,l(0) = ∅. For every q ∈ [f], we introduce the set
B +t,l(q) and Bt,l(f + 1) given by

B +t,l(q) = ⋃
i∈[q]

Bt,l(i) and Bt,l(f + 1) = Bt/B +t,l(f).

For every t ∈ N and γ ∈ (2/3,1), we define the interval length L(t, γ) and the
number of intervals n(t, γ) by

L(t, γ) =max{1, ⌊t(1 − ζ(γ))⌋} and n(t, γ) = ⌈ t

L(t, γ)
⌉ , respectively. (6.30)

Finally, for every k ≥ 2 and γ ∈ (2/3,1), we introduce the sample size ŝk (γ)
defined as follows.

ŝk (γ) =
log (1 − γ(k−1)−1)

log(ζ(γ))
(6.31)

Before we define the algorithm for the extraction, we describe briefly the
main idea of the method. Let H be a dense k-partite k-hypergraph and C a
minimum vertex cover of H. Recall from algorithm A6.7 that for a given set
of vertices Rp ⊆ Vk(H) with Rp /⊆ C, we had to find the highest degree vertex
v ∈ Rp with v /∈ C. This task was accomplished by exhaustive search. As
we want to decrease running time, we will solve this problem approximately.
We divide the vertices in Rp into disjoint buckets Bi ⊆ Rp according to their
degree in H. For a constant β ∈ (0,1), we have either ∣Rp∩C ∣ ≥ β∣Rp∣ or there
is a bucket Bj with ∣Bi ∩ C ∣ < β∣Bi∣. In the latter case, we have to find the
bucket Bk with the highest degree vertices and ∣Bk ∩ C ∣ < β∣Bk∣. Then, we
have ∣(B1 ∪ . . .Bk−1)∩C ∣ ≥ β∣B1 ∪ . . .Bk−1∣ and we can choose a vertex v ∈ Bk

such that v /∈ C with probability at most (1 − β).
We present the randomized extraction algorithm defined in Figure 6.10.

147

CHAPTER 6. VERTEX COVER OF k -PARTITE k -HYPERGRAPHS

Algorithm A6.10

Input : (H,{Vi(H) ∣ i ∈ [k]}, t, γ, l, ŝk (γ)) with k-partition
{Vi(H) ∣ i ∈ [k]}, where H is a k-partite k-hypergraph,
t ∈ N with t ≤ ∣Vk(H)∣/ΨH(n), γ ∈ (2/3,1), l ∈ N with
l ≤ L(t, γ) and ŝk (γ) the sample size.

Output: A collection W̃ of subsets Wi ⊆ V (H).

begin
À W̃ ← ∅;
if k = 1 then

Á Find a set A ⊆ V1(H) containing t arbitrary vertices of H;
Â W̃ ← {A};
return W̃ ;

else
Ã Find a set {v1, . . . , vt} containing t-heaviest vertices of
Vk(H) with dH(vi) ≥ dH(vi+1) for all i ∈ [t − 1];
Ä Bt ← {v1, . . . , vt};
Å W̃ ← W̃ ∪ {Bt};

Æ f ← ⌈t
l
⌉;

foreach q ∈ [f] do
for i = 1, . . . , ŝk (γ) do

Ç Choose vj ∈ Bt,l(q) uniformly at random;
È W̃ ′ ← A6.10(H(vj), t − (j − 1), γ, l, ŝk (γ));
É W̃ ← W̃ ∪ {{v1, . . . , vj−1} ∪A ∣ A ∈ W̃ ′};

end

end

end
return W̃ ;

end

Figure 6.10: Algorithm A6.10

148

6.6. NEARLY REGULAR k-PARTITE k-HYPERGRAPHS

We are going to prove the following lemma.

Lemma 6.6.1
Let H be a k-partite k-hypergraph with given k-partition {Vi(H) ∣ i ∈ [k]},
C a minimum vertex cover of H, t ∈ N with t ≤ ∣Vk(H)∣/ΨH(n), l ∈ N with
l ≤ L(t, γ) and a constant γ ∈ (2/3,1). On input (H, t, γ, l, ŝk (γ)), algorithm
A6.10 constructs in polynomial time a collection W̃ of subsets Wi ⊆ V (H)
with the following properties.

(i) Every Wi ∈ W̃ has size ∣Wi∣ = t.

(ii) There is a Wj ∈ W̃ with ∣Wj ∩C ∣ ≥ γ ⋅ t with probability at least γ.

(iii) The cardinality of W̃ can be bounded from above as follows.

∣W̃ ∣ ≤ (⌈t
l
⌉ ⋅ ŝk (γ) + 1)

(k−1)

Proof of Lemma 6.6.1.
Let H be a k-partite k-hypergraph with given k-partition {Vi(H) ∣ i ∈ [k]}
and C a minimum vertex cover of H. Furthermore, we fix a constant γ ∈
(2/3,1), t ∈ N with

t ≤ ∣Vk(H)∣
ΨH(n)

(6.32)

and l ∈ N with l ≤ L(t, γ). Let Bt = {v1, . . . , vt} be a set containing t-heaviest
vertices of Vk(H) with dH(vi) ≥ dH(vi+1) for all i ∈ [t − 1]. Notice that
by definition of ζ(γ) in (6.29), we obtain ζ(γ) ≥ γ. Due to step Å in the
description of algorithm A6.10, we have that Bt ∈ W̃ . Consequently, in the
case, in which we have ∣Bt∩C ∣ ≥ ζ(γ) ⋅ ∣Bt∣ ≥ γ ⋅ ∣Bt∣, we have nothing to prove.

Since we may assume that ∣Bt ∩C ∣ < ζ(γ) ⋅ ∣Bt∣ holds, there is an integer
u′ ∈ [n(t, γ)] with ∣Bt,l(u′) ∩ C ∣ < ζ(γ) ⋅ ∣Bt,l(u′)∣. Let u ∈ [n(t, γ)] be the
smallest index in [n(t, γ)] with the property

∣Bt,l(u) ∩C ∣ < ζ(γ) ⋅ ∣Bt,l(u)∣. (6.33)

By the definition of u, we obtain the following.

∣B +t,l(u − 1) ∩C ∣ = ⋃
i∈[u−1]

∣Bt,l(i) ∩C ∣ ≥ ζ(γ) ⋅
RRRRRRRRRRR
⋃

i∈[u−1]
Bt,l(i)

RRRRRRRRRRR
= ζ(γ) ⋅ ∣B +t,l(u − 1)∣

149

CHAPTER 6. VERTEX COVER OF k -PARTITE k -HYPERGRAPHS

Let Bt,l(u) be given by Bt,l(u) = {x, . . . , y} with dH(y) ≤ dH(v) for all
v ∈ Bt,l(u). In the worst case, there is no vertex in Bt,l(u) that is also
contained is C. In addition to that, in step Ç in the description of algorithm
A6.10, we choose the vertex y. By ∣B +t,l(u − 1) ∩C ∣ ≥ ζ(γ) ⋅ ∣B +t,l(u − 1)∣ and
Bt,l(u) ∩C = ∅, we obtain

L(γ) + (1 − ζ(γ)) ⋅ ∣B +t,l(u − 1)∣ ≥ ∣Bt,l(u)/C ∣ + ∣B +t,l(u − 1)/C ∣ (6.34)

after one iteration. We are going to prove that it is possible to extract
t′ = t − ∣B +t,l(u)∣ + 1 vertices of C/B +t,l(u) by proceeding on the (k − 1)-partite
(k − 1)-hypergraph H(y). For this reason, let us analyze the density of the
hypergraph H(y). The degree of y in H is at least

(∣Vk(H)∣
ΨH(n)

− ∣B +t,l(u)∣ + 1)

∣Vk(H)∣ − ∣B +t,l(u)∣ + 1
⎛
⎝ ∏i∈[k−1]

∣Vi(H)∣
⎞
⎠
.

This implies that the density of the hypergraph H(y) is bounded from below
by

(∣Vk(H)∣
ΨH(n)

− ∣B +t,l(u)∣ + 1)

(∣Vk(H)∣ − ∣B +t,l(u)∣ + 1)
By the definition of H(y), there is a vertex cover Cy of H(y) that is contained
in C. Since we want to extract t′ = t − ∣B +t,l(u)∣ + 1 vertices from V (H(y)),
we have to prove that ∣Cy ∣ ≥ t′. According to Lemma 6.5.1, the size of Cy is
bounded from below by the product of the density ofH(y) and the cardinality
of Vk−1(H(y)). Consequently, we obtain

∣Cy ∣ ≥

∣Vk(H)∣
ΨH(n)

− ∣B +t,l(u)∣ + 1

∣Vk(H)∣ − ∣B +t,l(u)∣ + 1
⋅ ∣Vk−1(H(y))∣

≥

∣Vk(H)∣
ΨH(n)

− ∣B +t,l(u)∣ + 1

∣Vk(H)∣ − ∣B +t,l(u)∣ + 1
⋅ ∣Vk(H)∣

≥ ∣Vk(H)∣
ΨH(n)

− ∣B +t,l(u)∣ + 1

≥ t − ∣B +t,l(u)∣ + 1.

150

6.6. NEARLY REGULAR k-PARTITE k-HYPERGRAPHS

Thus, by recursively removing vertices from H, algorithm A6.10 constructs a
collection W̃ of subsets Wi ⊆ V (H) each having size t.

We are going to prove that there is a Wj ∈ W̃ such that ∣Wj∩C ∣ ≥ t⋅γ with
probability at least γ. Let us first suppose that we obtain in each iteration
a vertex u /∈ C. By (6.34), after (k − 1) iterations, we have extracted at least
one set Wj ∈ W̃ including at most (k − 1)L(t, γ) + (1 − ζ(γ))t vertices that
are not contained in C. Note that

(k − 1)L(t, γ) + (1 − ζ(γ))t = (k − 1) ⌊(1 − ζ(γ))t⌋ + (1 − ζ(γ))t

≤ k ⋅ (1 − ζ(γ))t.

By the definition of ζ(γ) in (6.29), we deduce that k ⋅ (1− ζ(γ))t ≤ (1− γ) ⋅ t
implying ∣Wj ∩C ∣ ≥ γ ⋅ t.

Next, we are going to prove that the probability of extracting a subset
of C having size at least γ ⋅ t is at least γ. By (6.33), the probability that a
random vertex of Bt,l(u) belongs to C is at most ζ(γ). Thus, with probability
at least 1 − (ζ(γ))ŝk (γ), we get a vertex y /∈ C in the selected sample, and C

must contain a vertex cover of the (k − 1)-partite (k − 1)-hypergraph H(y)
defined by y. By iterating this step at most (k − 1) times, we get in worst
case that the probability is at least

(1 − [ζ(γ)]ŝk (γ))
(k−1)

≥ γ,

due the definition of ŝk (γ).
Finally, we will bound the size of the collection W̃ . Since we generate

at most ⌈t/l⌉ buckets together with a set consisting of the union of all in
each iteration created buckets and choose randomly ŝk (γ) vertices from each
bucket, the size of W̃ can be bounded from above by (⌈t/l⌉⋅ŝk (γ)+1)k−1. Due
to the choice of the parameter values, we deduce that W̃ can be constructed
efficiently and the proof follows. ∎

Deriving a Uniform Lower Bound

Due to the previous lemma, we are able to extract efficiently a large part of a
minimum vertex cover of a given k-partite k-hypergraphHi while introducing

151

CHAPTER 6. VERTEX COVER OF k -PARTITE k -HYPERGRAPHS

only a constant number of candidate sets. Unfortunately, the number of
extracted vertices depends on the density of Hi and cardinality of Vk(Hi).
As both could decrease in the extraction process, we want to deduce a lower
bound on the number of extracted vertices of algorithm A6.10 in terms of the
density and number of vertices of the original k-hypergraph. More precisely,
we are going to prove the following lemma.

Lemma 6.6.2
Let H be a r-nearly regular k-partite k-hypergraph with n vertices, given k-
partition {Vi(H) ∣ i ∈ [k]} and maximum degree ∆H. For a constant α ∈ (0, r),
let Vi be a subset of V (H) with ∣Vi∣ ≤ (r − α)∣Vk(H)∣. For every k-partite k-
hypergraph Hi defined by Hi = H[V (H)/Vi] with ni vertices, the following
inequality holds.

∣Vk(Hi)∣
ΨHi
(ni)

≥ α ⋅ ∣Vk(H)∣
ΨH(n)

Proof of Lemma 6.6.2.
Let H be a r-nearly regular k-partite k-hypergraph with n vertices and given
k-partition {Vi(H) ∣ i ∈ [k]}. We fix a constant α ∈ (0, r) and a subset
Vi ⊆ V (H) with ∣Vi∣ ≤ (r−α)∣Vk(H)∣. Then, we define Hi by Hi =H[V (H)/Vi]
with ∣V (Hi)∣ = ni. Furthermore, we introduce the parameter si defined as
follows.

si = ni − (1 − r)∣Vk(H)∣ − ∑
i∈[k−1]

∣Vi(H)∣ (6.35)

First of all, we will bound the number of edges of the k-hypergraph from
below and prove that ∣E(Hi)∣ ≥ si ⋅ ∆H holds. For this reason, we in-
troduce the k-partite k-hypergraph H′ defined by V (H′) = V (H) and
E(H′) = E(H)/E(Hi). As by definition all the vertices of Hi form an in-
dependent set in H′, the size of an maximum independent set of H is at least
ni = si + (1 − r)∣Vk(H)∣ + ∑

i∈[k−1]
∣Vi(H)∣. According to Lemma 5.6.4, we know

that the number of edges of H′ is bounded from above by

∆H
⎛
⎝
n −
⎛
⎝
si + (1 − r)∣Vk(H)∣ + ∑

i∈[k−1]
∣Vi(H)∣

⎞
⎠
⎞
⎠
=∆H(r∣Vk(H)∣ − si).

152

6.6. NEARLY REGULAR k-PARTITE k-HYPERGRAPHS

Consequently, the number of edges of Hi can be bounded from below by

∣E(Hi)∣ = ∣E(H)∣ − ∣E(H′)∣ ≥ r ⋅∆H ⋅ ∣Vk(H)∣ −∆H(r ⋅ ∣Vk(H)∣ − si)

= ∆H ⋅ si.

Combining the deduced facts, we conclude that

∣Vk(Hi)∣
ΨHi
(ni) ⋅ si

= ∣E(Hi)∣∣Vk(Hi)∣
si ∏

j∈[k]
∣Vj(Hi)∣

≥ ∆H ⋅ si ⋅ ∣Vk(Hi)∣
si ∏

j∈[k]
∣Vj(Hi)∣

≥ ∆H

∏
j∈[k−1]

∣Vj(Hi)∣
≥ ∣E(H)∣
∣Vk(H)∣ ∏

j∈[k−1]
∣Vj(Hi)∣

≥ ∣E(H)∣
∏
j∈[k]
∣Vj(H)∣

= 1

ΨH(n)
.

By the definition of Hi, we get ni ≥ ∣V (H)∣ − (r − α)∣Vk(H)∣ implying the
following.

si = ni − (1 − r)∣Vk(H)∣ − ∑
i∈[k−1]

∣Vi(H)∣

≥ ∣V (H)∣ − (r − α)∣Vk(H)∣ − (1 − r)∣Vk(H)∣ − ∑
i∈[k−1]

∣Vi(H)∣

≥ α ⋅ ∣Vk(H)∣

In conclusion, we derive the following inequality finishing the proof.

∣Vk(Hi)∣
ΨHi
(ni)

≥ si
ΨH(n)

≥ α ⋅ ∣Vk(H)∣
ΨH(n)

∎

Thus far, we are ready to give the proof of Theorem 6.6.1.

Proof of Theorem 6.6.1

Let H be a r-nearly regular k-partite k-hypergraph with given k-partition
{Vi(H) ∣ i ∈ [k]} and n vertices. Given H, for every constant α ∈ (0, r), we
define the number of iterations TH(α), where TH(α) = ⌈(r/α − 1)ΨH(n)⌉ .

153

CHAPTER 6. VERTEX COVER OF k -PARTITE k -HYPERGRAPHS

We now present the approximation algorithm for the VERTEX COVER

problem in nearly regular k-partite k-hypergraphs defined in Figure 6.11.

Algorithm A6.11

Input : (H, r,{Vi(H) ∣ i ∈ [k]}, ε), where H is a r-nearly regular
k-partite k-hypergraph with k-partition {Vi(H) ∣ i ∈ [k]}
and ε > 0 a constant.

Output: A vertex cover W of H.

begin

À δ ←min{1
3
,
ε

8k2
} , γ ← 1 − δ, α ← r

9 ⋅ δ −2 + 1
;

Á W̃ ← ∅,H act ← {H}, H new ← ∅;

Â t← ⌈α ⋅ ∣Vk(H)∣
ΨH(n)

⌉, l ← L(t, γ);

for j = 1, . . . , TH(α) do
foreach H′ ∈H act do

Ã Ĉ ← A6.10(H′,{Vi(H′) ∣ i ∈ [k]}, t, γ, l, ŝk (γ));
Ä H new ←H new ∪ {H′[V (H′)/C] ∣ C ∈ Ĉ };

end
Å H act ←H new ;
Æ H new ← ∅;

end
foreach Hi ∈H act do

Ç W ← A6.3(H,{Vi(H) ∣ i ∈ [k]}, V (H)/V (Hi));
È W̃ ← W̃ ∪ {W};

end
É Let W be the smallest set among W̃ ;
return W ;

end

Figure 6.11: Algorithm A6.11

In each iteration, we apply algorithm A6.10 to the actual k-hypergraph

154

6.6. NEARLY REGULAR k-PARTITE k-HYPERGRAPHS

Hi in order to extract a part of a minimum vertex cover of H. According
to Lemma 6.6.2, for a small enough constant α > 0 specified later on, the
number of extracted vertices is at least α ⋅ ∣Vk(H)∣/ΨH(n) provided that si ≥
α∣Vk(H)∣ holds. Then, the number of required iterations in order to extract
(r − α)∣Vk(H)∣ vertices is

TH(α) =
⎡⎢⎢⎢⎢⎢
(r − α)∣Vk(H)∣ (

α ⋅ ∣Vk(H)∣
ΨH(n)

)
−1⎤⎥⎥⎥⎥⎥
= ⌈(r

α
− 1)ΨH(n)⌉ . (6.36)

Let us fix a constant ε > 0. Then, we determine the values of the parameters
δ, γ, and α as follows.

δ =min{1
3
,
ε

8k2
} , γ = 1 − δ, and α = r

9 ⋅ δ −2 + 1
(6.37)

Let H act
j be the collection of k-hypergraphs constructed by algorithm A6.11

after j iterations, where j ∈ [TH(α)]. For each Hi ∈H act
j , we consider the set

W i
j defined by W i

j = V (H)/V (Hi). We see that A6.11 performs a exploration
of a search tree branching on every subset W i

j in the collection of candidates
{W i

j ∪ C ∣ C ∈ Ĉ = A6.10(Hi,{Vs(Hi) ∣ s ∈ [k]}, t, γ, l, ŝk (γ))}. A root-to-leaf
path in this tree yields a set W i

TH(α) defined as the union of all the candidates
selected along the path. We now prove that this search tree contains a path
yielding a suitable set W c

TH(α)
with probability at least 3/4.

Let C be a minimum vertex cover of H. We are going to prove that
for every ρ ∈ (0,1), algorithm A6.11 constructs a set W c

TH(α) containing (r −
α)∣Vk(H)∣ vertices such that ∣W c

TH(α)∩C ∣ ≥ (1−ρ)⋅γ
2 ⋅∣W c

TH(α)∣ with probability
at least

1 − exp [−ΨH(n)(r/α − 1)γ
ρ2

2
] . (6.38)

For each i ∈ [TH(α)], we introduce the random variable Xi ∈ {0,1}, where
Xi = 1 corresponds to the event of extracting at least γ ⋅α ⋅∣Vk(H)∣/ΨH(n) ver-
tices of C in the i-th iteration of algorithm A6.11. According to Lemma 6.6.1,
we know that Pr(Xi = 1) ≥ γ. By letting

X = ∑
i∈[TH(α)]

Xi, (6.39)

155

CHAPTER 6. VERTEX COVER OF k -PARTITE k -HYPERGRAPHS

we define TH(α) independent poisson trials with expected value

E [X] ≥ TH(α) ⋅ γ = (
r

α
− 1) ⋅ γ ⋅ΨH(n)

Since we extract at least γ ⋅α ⋅ ∣Vk(H)∣/ΨH(n) vertices of C in every iteration
with probability at least γ, the expected number of vertices of W c

TH(α) that
are contained in C is

E[X] ⋅ γ ⋅ α ⋅ ∣Vk(H)∣
ΨH(n)

≥ (r − α) ⋅ γ 2 ⋅ ∣Vk(H)∣

By using Chernoff bounds, we derive the claimed statement given in (6.38).
In particular, by setting ρ = δ, we obtain a set W c

TH(α) containing at least

(1 − δ)γ 2(r − α)∣Vk(H)∣ (6.40)

vertices of C with probability at least

1 − exp [−ΨH(n)(r/α − 1)γ
δ 2

2
] ≥ 1 − exp [−3] ≥ 3

4
. (6.41)

By using (6.40) and the parameter values, the cardinality of W c
TH(α) ∩C can

be further simplified in the following way.

∣W c
TH(α)

∩C ∣ = (1 − δ)γ 2(r − α)∣Vk(H)∣

≥ (1 − δ)3 (r − α) ⋅ ∣Vk(H)∣

≥ (1 − 3 ⋅ δ) ⋅ (r − α) ⋅ ∣Vk(H)∣

Let W be the smallest vertex cover among all by algorithm A6.3 constructed
vertex covers. Since we apply algorithm A6.3 to each set W i

TH(α), according
to Lemma 6.5.2, we obtain with probability at least 3/4 a vertex cover with
approximation ratio at most

∣W ∣
∣C ∣

≤ k

2 + ([1 − 3δ]k − 2)(r − α)∣Vk(H)∣
∣Vk(H)∣

≤ k

2 + (k − 2) ⋅ r − 4 ⋅ δk

≤ k

2 + (k − 2) ⋅ r
+ 4δ ⋅ k2

≤ k

2 + (k − 2) ⋅ r
+ ε

156

6.6. NEARLY REGULAR k-PARTITE k-HYPERGRAPHS

The algorithm A6.11 generates a search tree of height TH(α) and fan-out less
than (ŝk (γ) ⋅(t/l+2))k−1. At every node of the tree, algorithm A6.10 is called
taking

poly(n) +O((ŝk (γ) ⋅ (
t

l
+ 2))

k−1
)

time. This implies that the overall running time of algorithm A6.11 is

poly(n) ⋅O((ŝk (γ) ⋅ (
t

l
+ 2))

(k−1)⋅TH(α)
) = poly(n) ⋅ exp [O (ΨH(n))]

and the proof follows. ∎

6.6.3 An Optimal Inapproximability Result

Assuming Conjecture 6.5.1, we give a tight approximation lower bound for
the VERTEX COVER problem in nearly regular k-partite k-hypergraphs in a
specified range of the density and maximum degree of the given k-hypergraph.
In particular, we prove that the approximation ratio achieved by algorithm
A6.11 is optimal under this conjecture. Let us restate our theorem.

Theorem 6.6.2
For every k ≥ 3, it is UG -hard to approximate the VERTEX COVER problem
in r-nearly regular k-balanced hypergraphs with ∣E(H)∣ = Ω(nε) for every ε > 0
to within any constant approximation ratio less than

k

2 + (k − 2) ⋅ r

assuming Conjecture 6.5.1.

Proof of Theorem 6.6.2.
As starting point of our reduction, we consider the k-partite k-hypergraph
H with k ≥ 3 and given k-partition {Vi(H) ∣ i ∈ [k]} from Conjecture 6.5.1.
By densifying H, we are going to construct a k-balanced k-hypergraph H′

having the claimed properties. Recall that, assuming Conjecture 6.5.1, the
following is UG -hard to decide for every δ > 0.

157

CHAPTER 6. VERTEX COVER OF k -PARTITE k -HYPERGRAPHS

(i) Every vertex cover of H has size at least

∣V (H)∣ (1
k
− δ) .

(ii) The cardinality of a minimum vertex cover of H is at most

∣V (H)∣ (2
k2
+ δ) .

Let us fix a constant r ∈ (0,1) and an integer j ∈ N. We use n = ∣V (H)∣.
Then, we construct H′ consisting of (1 − r)knj disjoint copies of H and of
knjr disjoint complete k-balanced cliques of size n. In order to define the k-
partition and edge set of H′, we need to introduce some notation. We denote
the l-th copy of H by Hl with k-partition {Vi(Hl) ∣ i ∈ [k]}. In addition, the
l-th copy of the clique is denoted by Kl with k-partition {Vi(Kl) ∣ i ∈ [k]}.
For every s ∈ [k], we introduce the sets V Hs defined as follows.

V H1 = {v ∈ Vi(Hl) ∣ 1 = i + l − 1 (mod k)}

⋮ ⋮

V Hs = {v ∈ Vi(Hl) ∣ s = i + l − 1 (mod k)}

⋮ ⋮

V Hk−1 = {v ∈ Vi(Hl) ∣ k − 1 = i + l − 1 (mod k)}

V Hk = {v ∈ Vi(Hl) ∣ 0 = i + l − 1 (mod k)}

Accordingly, for all i ∈ [k] and u ∈ [k], we define the sets V Kiu of vertices,
where

V Kiu = {v ∈ Vi(Kp) ∣ p = s + (u − 1)njr with s ∈ [njr]} .

Then, the vertex partition of the k-partite k-hypergraph H′ is given by

{V Hi ∪ (⋃
j

Vi(Kj)) ∣ i ∈ [k]} .

In order to define the edges of the k-hypergraph H′, we introduce the sets of

158

6.6. NEARLY REGULAR k-PARTITE k-HYPERGRAPHS

edges E′i for i ∈ [k].

E′1 = {{v1, . . . , vk} ∣ v1 ∈ V K11 , v2 ∈ V H2 , . . . , vk ∈ V Hk }

⋮ ⋮

E′i = {{v1, . . . , vk} ∣ v1 ∈ V H1 , . . . , vi ∈ V Kii , . . . , vk ∈ V Hk }

⋮ ⋮

E′k = {{v1, . . . , vk} ∣ v1 ∈ V H1 , . . . , vk−1 ∈ V Hk−1, vk ∈ V Kkk}

By introducing N = ∣V (H′)∣, we obtain ∣Vi(H′)∣ = N/k for every i ∈ [k]. The
edge set of H′ contains all edges of the copies of H and the k-partite cliques.
Furthermore, by adding as many hyperedges as needed from the set ⋃

i∈[k]
E′i,

it is possible to construct a r-nearly regular k-balanced hypergraph H′ with
∣E(H′)∣ = ω(N

k−1
j+1). Notice that a vertex cover ofH′ must include n/k vertices

of each clique. Assuming Conjecture 6.5.1, the following is UG -hard to decide
for every δ > 0.

(i) Every vertex cover of H′ has size at least

(1 − r)knj+1 (1
k
− δ) + kn

j+1r

k
.

(ii) The cardinality of a minimum vertex cover of H is at most

(1 − r)knj+1 (2
k2
+ δ) + kn

j+1r

k
.

It implies that for every δ > 0, it is UG -hard to approximate the VERTEX

COVER problem to within any constant approximation ratio less than R(δ),
where R(δ) is defined as follows.

R(δ) =
(1 − r)knj+1 (1

k
− δ) + kn

j+1r

k

(1 − r)knj+1 (2
k2
+ δ) + kn

j+1r

k

In order to derive the desired inapproximability factor, we are going to deduce

159

CHAPTER 6. VERTEX COVER OF k -PARTITE k -HYPERGRAPHS

a lower bound on R(δ).

R(δ) =
(1 − r)knj+1 (1

k
− δ) + kn

j+1r

k

(1 − r)knj+1 (2
k2
+ δ) + kn

j+1r

k

= (1 − r)nj+1 + nj+1r − δ (1 − r)nj+1k

(1 − r)nj+12

k
+ nj+1r + δ (1 − r)nj+1k

= k − δ (1 − r)k2

(1 − r)2 + kr + δ (1 − r)k2

≥ k − δk2

2 + (k − 2)r + δk2

= k

2 + (k − 2)r
− ε (k, δ)

We obtain the claimed inapproximability factor and the proof follows. ∎

6.7 Bibliographic Notes

Some parts of the material presented in this chapter are based on the paper
[KSV11]. In particular, the proofs of Theorem 6.5.2, 6.5.3, 6.5.4 and 6.5.5
appeared in [KSV11].

160

Part III

Sparse Instance Methods and
Paradigms

161

CHAPTER 7

The (1,2)-Steiner Tree Problem

163

CHAPTER 7. THE (1,2)-STEINER TREE PROBLEM

In this chapter, we investigate the approximation hardness of a bounded
weight optimization problem and use sparse instance methods to derive ex-
plicit approximation lower bounds for the underlying problem. In particular,
we construct an approximation preserving reduction from a bounded occur-
rence CSP called the MAX-HYBRID-LIN2 problem (cf. Definition 4.9.1) to
the (1,2)-STEINER TREE problem. We exploit the very special structure of
the constraints of the CSP in order to obtain an improved inapproximability
threshold for the (1,2)-STEINER TREE problem. In the subsequent chapters,
we construct several reductions from a well-suited bounded occurrence CSP

to other problems and apply this method successfully.

The best up to now known inapproximability threshold for the (1,2)-
STEINER TREE problem is 383/382 due to Hauptmann [H07]. We prove
that it is NP-hard to approximate the problem to within any constant ap-
proximation ratio less than 221/220.

7.1 Introduction

Given a connected graph G with non-negative costs on edges and a subset of
terminal vertices S ⊆ V (G), the STEINER TREE problem asks for the mini-
mum cost subgraph of G spanning S.

The STEINER TREE problem belongs to the fundamental problems in
combinatorial optimization and is among the most important problems in
network design with great theoretical and practical relevance. It emerges
in a number of contexts with applications ranging from optical and wire-
less communication systems, energy supply, transportation and distribution
networks, internet routing and broadcast problems to VLSI design (see,
e.g., [HRW92]). Furthermore, it appears either as a subproblem or as a
special case of many other combinatorial optimization problems.

In 1972, Karp proved in his seminal work [K75] the NP-hardness of the
STEINER TREE problem leaving less hope for polynomial time exact algo-
rithms for this problem. Accordingly, we are interested in efficient approxima-
tion algorithms for the STEINER TREE problem with good performance guar-

164

7.1. INTRODUCTION

antees. A sequence of improved approximation algorithms appeared in the
literature. Here, we only mention the most important results starting with
the approximation algorithm due to Zelikovsky [Z93] with approximation ra-
tio 1.83. Berman and Ramaiyer [BR94] improved the approximation upper
bound for this problem to 1.78. Karpinski and Zelikovsky [KZ97a] designed
an approximation algorithm with approximation ratio 1.64 by a sophisti-
cated preprocessing method. By iterating the former approach, Hougardy
and Prömel [HP99] achieved an approximation ratio of 1.60. In 2000, Robins
and Zelikovsky [RZ00] designed an approximation scheme with approxima-
tion ratio (1.55 + ε) for every constant ε > 0. After 10 years without pro-
gression, the long series of improved approximation algorithm culminated in
the work of Byrka, Grandoni, Rothvoß and Sanità [BGRS10] with the cur-
rently best known approximation upper bound of 1.39 using a novel iterative
randomized rounding technique.

On the other hand, Bern and Plassmann [BP89] proved that the
STEINER TREE problem is APX-hard. In 2003, Thimm [T03] claimed erro-
neously an inapproximability result for the STEINER TREE problem yielding
an approximation lower bound of 163/162. The reduction uses the hardness
result due to Håstad [H01] as a starting point. Nevertheless, his construction
was corrected and improved by M. Chlebík and J. Chlebíková [CC08]. They
proved that it is NP-hard to approximate the STEINER TREE problem to
within any constant approximation ratio less than 96/95.

The Steiner Tree Problem with Weights One and Two

The (1,2)-STEINER TREE problem is an important restriction of the
STEINER TREE problem, in which we restrict the input graph G to be the
complete graph with edge weights one and two.

In 1989, Bern and Plassmann [BP89] introduced and considered the (1,2)-
STEINER TREE problem. They were able to achieve an approximation upper
bound of 4/3 for this problem. Robins and Zelikovsky [RZ00] developed an
approximation scheme for the (1,2)-STEINER TREE problem with approxi-
mation ratio (1.28+ε) for every constant ε > 0. After that, Berman, Karpinski

165

CHAPTER 7. THE (1,2)-STEINER TREE PROBLEM

and Zelikovsky [BKZ09] designed the currently best known polynomial time
approximation algorithm for this problem with approximation ratio 5/4.

On the lower bound side, Berman and Plassmann [BP89] proved that
the (1,2)-STEINER TREE problem is APX-hard by constructing a reduc-
tion from the VERTEX COVER problem restricted to graphs with bounded
maximum degree. Hauptmann [H07] combined this reduction with the ex-
plicit lower bounds for the VERTEX COVER problem restricted to graphs
with maximum degree 4 due to Berman and Karpinski [BK99]. It implies
that it is NP-hard to approximate the (1,2)-STEINER TREE problem to
within any constant approximation ratio less than 383/382.

In this work, we prove that it is NP-hard to approximate the (1,2)-
STEINER TREE problem to within any constant approximation ratio less
than 221/220.

7.2 Outline of this Chapter

This chapter is organized as follows. In Section 7.4, we formulate our main
results. In Section 7.5, we give a high-level view of our reduction. In
Section 7.6, we define the corresponding instance (GL , SL) of the (1,2)-
STEINER TREE problem given an instance L of the MAX-HYBRID-LIN2
problem. In Section 7.7, we construct a Steiner tree for SL in GL according
to a given assignment ϕ to the variables in L . In Section 7.8, we define the
assignment ψT from a Steiner tree T for SL in GL . In Section 7.9, we give
the proof of Theorem 7.4.1.

7.3 Preliminaries

Given a graph G and a subset S ⊆ V (G), a Steiner tree T for S in G is a tree
in G containing all vertices of S. We refer to the elements of S as terminals
and to the elements of V /S as Steiner vertices .

According to Definition 4.1.1, the STEINER TREE problem is defined as
follows.

166

7.4. OUR CONTRIBUTION

Definition 7.3.1 (STEINER TREE problem)
Instances: A graph G, a set S ⊆ V (G) of terminals

and a cost function c ∶ E(G)→ Q+
Solutions: A tree T in G with S ⊆ V (T)

Task: Minimize c(T) = ∑
e∈E(T)

c(e)

The special case of the STEINER TREE problem, in which we have given
a complete graph and a cost function being restricted to weights one and
two, is called the (1,2)-STEINER TREE problem. Let us formulate the
problem according to Definition 4.1.1.

Definition 7.3.2 ((1,2)-STEINER TREE problem)
Instances: A graph G with E(G) = (V (G)2

), a set S ⊆ V (G)
of terminals and a cost function c ∶ (V (G)2

)→ {1,2}
Solutions A tree T in G with S ⊆ V (T)

Task: Minimize c(T) = ∑
e∈E(T)

c(e)

In order to describe an instance of the (1,2)-STEINER TREE problem,
it suffices to specify the edges of weight one. Therefore, we represent an
instance (G, S, c) of the (1,2)-STEINER TREE problem by a graph G′ and
the set S′ = S. Edges of the graph G′ denote edges with weight one in (V (G)2

),
whereas all e ∈ (V (G)2

)/E(G) are edges with weight two. Moreover, the cost
function c ∶ (V (G)2

) → {1,2} of the instance (G, S, c) can be reconstructed as
follows.

c(e) =
⎧⎪⎪⎨⎪⎪⎩

1 if e ∈ E(G′)
2 otherwise

In the following, we refer to edges with weight one as black edges, whereas
edges with weight two will be called red edges.

7.4 Our Contribution

In the subsequent sections, we construct an approximation preserving re-
duction from the MAX-HYBRID-LIN2 problem (see Definition 4.9.1) to the

167

CHAPTER 7. THE (1,2)-STEINER TREE PROBLEM

(1,2)-STEINER TREE problem. In particular, we prove the following state-
ment.

Theorem 7.4.1
Given an instance L of the MAX-HYBRID-LIN2 problem with n variables, m2

equations with two variables and m3 equations with three variables as given
in Theorem 4.9.1, we construct in polynomial time an instance (GL , SL) of
the (1,2)-STEINER TREE problem with the following properties.

(i) If there exists an assignment to the variables of L , which leaves at
most u equations unsatisfied, then, there exist a Steiner tree T for SL

in GL with c(T) = 2 ⋅ n + 2 ⋅m2 + 8 ⋅m3 + u.

(ii) From every Steiner tree T for SL in GL with c(T) = 2⋅n+2⋅m2+8⋅m3+u,
we can construct in polynomial time an assignment ψT to the variables
of L that leaves at most u equations in L unsatisfied.

The former theorem can be used to derive an explicit approximation
lower bound for the (1,2)-STEINER TREE problem by reducing instances of
the MAX-HYBRID-LIN2 problem of the form described in Theorem 4.9.1 to
the (1,2)-STEINER TREE problem.

Corollary 7.4.1
It is NP-hard to approximate the (1,2)-STEINER TREE problem to within
any constant approximation ratio less than 221/220.

Proof of Corollary 7.4.1.
For a fixed constant ε > 0, we choose δ ∈ (0,1/2) such that

221 − δ
220 + δ

≥ 221

220
− ε

holds. Given an instance L of the MAX-HYBRID-LIN2 problem with 42ν

variables, 60ν equations with two variables and 2ν equations with ex-
actly three variables, we construct the corresponding instance (GL , SL) of
the (1,2)-STEINER TREE problem with the properties described in Theo-
rem 7.4.1. Then, we conclude according to Theorem 4.9.1 that there exist a

168

7.5. THE HIGH-LEVEL VIEW OF THE REDUCTION

Steiner tree for SH in GH with cost at most

2 ⋅ 42ν + 2 ⋅ 60ν + 8 ⋅ 2ν + δν = (220 + δ)ν

or the cost of a Steiner tree for SL in GL is bounded from below by

2 ⋅ 42ν + 2 ⋅ 60ν + 8 ⋅ 2ν + (1 − δ)ν = (221 − δ)ν.

By Theorem 4.9.1, we know that the two cases above are NP-hard to dis-
tinguish. Hence, for every ε > 0, it is NP-hard to find a solution to the
(1,2)-STEINER TREE problem to within any constant approximation ratio
better less than

221 − δ
220 + δ

≥ 221

220
− ϵ

and the proof of Corollary 7.4.1 follows. ∎

7.5 The High-Level View of the Reduction

Given an instance L of the MAX-HYBRID-LIN2 problem, we will construct
a corresponding graph GL and define the associated terminal set SL .

For every variable xi occurring in an equation in L , GL contains two
Steiner vertices representing the two possible values of xi. We refer to them
as the variable vertices of xi. The instance (GL , SL) has the property that it
is advantageous to include exactly one of the variable vertices corresponding
to a variable. Moreover, every Steiner tree T with c(T) can be transformed
into a normed solution T ′ such that c(T ′) ≤ c(T) and T ′ includes exactly
one variable vertex for every variable.

For every equation ℓ in L , we define an associated subgraph G(ℓ) simu-
lating the equation ℓ given an assignment to the variables in ℓ. The subgraph
G(ℓ) is connected to a variable vertex if the corresponding variable occurs in
ℓ. Furthermore, we show that if we include a wrong combination of variable
vertices corresponding to a non-satisfying assignment of the equation ℓ, we
have to use at least one red edge, whereas a satisfying combination entails the
possibility of using only black edges. Therefore, a non-satisfying combination
will be punished by paying a unit more.

169

CHAPTER 7. THE (1,2)-STEINER TREE PROBLEM

7.6 Constructing (GL , SL) from L

Given an instance L of the MAX-HYBRID-LIN2 problem with variables
{x1, . . . , xn}, m2 equations ℓ2i with two variables and m3 equations ℓ3j with ex-
actly three variables, we now describe the construction of the corresponding
instance (GL , SL) of the (1,2)-STEINER TREE problem.

Variable Graph

For every variable xi ∈ {x1, . . . , xn}, we introduce two vertices, v1i and v0i .
They correspond to the possible assignments to xi. In the remainder, we
refer to them as the variable vertices. In addition, we introduce the terminal
ti, which we call the variable terminal of xi. Both variable vertices are
connected to its variable terminal.
Next, for every equation ℓ in L , we are going to define the corresponding
subgraph G(ℓ) in GL . We start with equations with two variables.

v1i2

v1i1 v0i2

ti2ti1

t1i

v0i1 t0i

Figure 7.1: The subgraph corresponding to ℓ2i ≡ xi1 ⊕ xi2 = 0 connected to
variable terminals ti1 and ti2 .

Subgraph for Equations with Two Variables

For every equation of the form ℓ2i ≡ xi1 ⊕ xi2 = 0 with i ∈ [m2] and i1 < i2,
we define the subgraph G(ℓ2i) consisting of the vertices v1i1 , v

0
i1
, v1i2 , v

0
i2
, t1i

and t0i . Both, t1i and t0i are terminals. We refer to t1i and t0i as the equation
terminals of G(ℓ2i). The terminal t1i is connected to v1i1 and v0i2 . On the other

170

7.6. CONSTRUCTING (GL , SL) FROM L

hand, G(ℓ2i) contains the edges {t0i , v0i1} and {t0i , v1i1}. The graph is displayed
in Figure 7.1.

T
(3,1)
j

T
(2,1)
j

T
(3,0)
j

T
(2,0)
j

T
(1,1)
j

T
(1,0)
j

(1,0,1)j

(0,1,1)j(1,1,0)j

(0,0,0)j

tj3tj2tj1

T a
j

v0j1 v1j1 v0j2 v1j2 v0j3 v1j3

Figure 7.2: Subgraph for the equation ℓ3j ≡ xj1 ⊕ xj2 ⊕ xj3 = 0 with the
corresponding variable terminals.

As for the next step, we define the graph G(ℓ3j) corresponding to the equation
with three variables ℓ3j in L .

Subgraph for Equations with Three Variables

Let us start with equations of the form xj1⊕xj2⊕xj3 = 0. Then, the subgraph
G(ℓ3j) contains the Steiner vertices (0,0,0)j, (1,0,1)j, (1,1,0)j and (0,1,1)j.
We refer to these vertices as the special vertices of G(ℓ3j). In addition, we
introduce the terminals T (1,0)j , T (1,1)j , T (2,0)j , T (2,1)j , T (3,0)j , T (3,1)j and T b

j . The
terminal T b

j is connected to all special vertices of G(ℓ3j), whereas the special
vertex (i1, i2, i3)j is connected to T

(l,1−il)
j for all l ∈ {1,2,3}. Finally, all

special vertices are joined by an edge with the main terminal. We call T (1,0)j ,
T
(1,1)
j , T (2,0)j , T (2,1)j , T (3,0)j and T (3,1)j the equation terminals of G(ℓ3j). On the

other hand, we refer to T b
j as the base terminal of G(ℓ3j). The graph G(ℓ3j) is

displayed in Figure 7.2. For equations ℓ3j of the form xj1 ⊕ xj2 ⊕ xj3 = 1, we

171

CHAPTER 7. THE (1,2)-STEINER TREE PROBLEM

introduce a similar graph G(ℓ3j). The special vertices are given by (1,1,1)j,
(0,0,1)j, (1,0,0)j and (0,1,0)j, whereas the equation terminals are defined
as T (1,0)j , T (1,1)j , T (2,0)j , T (2,1)j , T (3,0)j and T (3,1)j . As before, the special vertices
of G(ℓ3j) are all connected to the base terminal T b

j . Finally, we join the
special vertex (i1, i2, i3)j with T

(l,1−il)
j by an edge for all l ∈ {1,2,3}. The

graph G(ℓ3j) is displayed in Figure 7.3.

v1j3

T
(3,1)
j

T
(3,0)
j

T
(2,1)
j

T
(2,0)
j

T
(1,1)
j

T
(1,0)
j

(0,1,0)j

(0,0,1)j(1,0,0)j

(1,1,1)j

tj3tj2tj1

T a
j

v0j1 v1j1 v0j2 v1j2 v0j3

Figure 7.3: Subgraph for ℓ3j ≡ xj1 ⊕ xj2 ⊕ xj3 = 1 with the corresponding
variable terminals.

Finally, we introduce the terminal Tm which is called the main terminal.
Every introduced Steiner vertex of GL will be connected to the terminal Tm.

7.7 Constructing the Steiner tree Tϕ from ϕ

Given an assignment ϕ to the variables of L , we are going to construct a
Steiner tree Tϕ for SL in GL . Let us begin with the description of Tϕ.

172

7.7. CONSTRUCTING THE STEINER TREE Tϕ FROM ϕ

Variable Vertices

For all i ∈ [n], we connect the Steiner vertex v
ϕ(xi)
i to the main terminal

Tm. Furthermore, every variable vertex v
ϕ(xi)
i is joined by an edge with its

variable terminal ti for all i ∈ [n].
As for the next step, we are going to connect equation terminals in graphs

corresponding to equations with two variables.

Equations with Two variables

Let us consider the equation ℓ2k ≡ xi⊕xj = 0 with i < j. We have to distinguish
two cases.
Case (ϕ(xi) = ϕ(xj)):
If ϕ(xi) = ϕ(xj) holds, it is possible to add the edges {vϕ(xi)

i , t
ϕ(xi)
k } and

{vϕ(xj)
j , t

1−ϕ(xj)
k } to the actual tree. Notice that both edges are black.

Case (ϕ(xi) ≠ ϕ(xj)):
In this case, we use the edge {vϕ(xi)

i , t
ϕ(xi)
k } and join Tm with t1−ϕ(xi)

k by means
of a red edge.

Next, we consider equations with exactly three variables.

Equations with Three Variables

Given an equation of the form ℓ3j ≡ xi1 ⊕ xi2 ⊕ xi3 = bj with bj ∈ {0,1}, we

connect the vertex v
ϕ(xil

)
il

with the terminal T (l,ϕ(xil
))

j for all l ∈ {1,2,3} in
G(ℓ3j). Analogously, we will distinguish two cases.
Case (ϕ satisfies the equation ℓ3j):
In this case, we join the special vertex (ϕ(xi1), ϕ(xi2), ϕ(xi3))j with the main
terminal and T b

j by a black edge. Then, we connect (ϕ(xi1), ϕ(xi2), ϕ(xi3))j
with terminals T

(1,1−ϕ(xi1
))

j , T (2,1−ϕ(xi2
))

j and T
(3,1−ϕ(xi3

))
j . Notice that we

used only black edges due to the construction of G(ℓ3j).
Case (ϕ leaves ℓ3j unsatisfied):
Then, we join (ϕ(xi1),1−ϕ(xi2), ϕ(xi3))j with T b

j and Tm by black edges. In

addition, we connect (ϕ(xi1),1 − ϕ(xi2), ϕ(xi3))j with terminals T (1,1−ϕ(xi1
))

j

and T
(3,1−ϕ(xi3

))
j . The remaining terminal T (2,1−ϕ(xi2

))
j is joined with T b

j by a

173

CHAPTER 7. THE (1,2)-STEINER TREE PROBLEM

red edge.

In summary, we note that we have to use at most one red edge in or-
der to include all terminals if the underlying equation is not satisfied.
Accordingly, we have to spend two black edges for each variable in L , two
black edges for each satisfied equation with two variables and eight black
edges for each satisfied equation with three variables. In addition, we have
to pay one unit more for every equation that is not satisfied by ϕ.

We obtain the following statement.

Lemma 7.7.1
Let L be an instance of the MAX-HYBRID-LIN2 problem with n variables,
m2 equations with two variables, m3 equations with three variables and ϕ an
assignment to the variables of L leaving u equations in L unsatisfied. Then,
Tϕ is a Steiner tree for SL in GL with cost c(Tϕ) ≤ 2n + 2m2 + 8m3 + u.

7.8 Defining the Assignment

Given a Steiner tree T for SL in GL , we are going to construct an assignment
ψT according to T . In order to assign a value to a variable xi in L , we have
to establish a criterion that tells us which value we have to assign to xi. The
associated mapping ψT assigns the value b ∈ {0,1} to xi if the corresponding
variable vertex vbi is included in T . Therefore, we have to transform the
underlying solution T into a Steiner tree T̂ for SL in GL containing exactly
one variable vertex per variable without increasing the cost. In addition,
this normed Steiner tree has some other nice properties in order to achieve a
stronger basis for relating the number of satisfied equations in L by ψT̂ to
the cost of T̂ .

The Normed Steiner Tree

In order to specify a well-defined assignment, we have to attain a normed
solution. We now give the definition of a normed Steiner tree.

174

7.8. DEFINING THE ASSIGNMENT

Definition 7.8.1 (Normed Steiner tree)
Let L be an instance of the MAX-HYBRID-LIN2 problem, (GL , SL) its cor-
responding instance of the (1,2)-STEINER TREE problem and T a Steiner
tree for SL in GL . We refer to T as a normed Steiner tree for SL in GL if
the following conditions hold.

• For all variables xi in L , we have that ∣{v1i , v0i } ∩ V (T)∣ = 1.

• For all variables xi in L , we have ∣{{v1i , Tm},{v0i , Tm}} ∩E(T)∣ = 1.

• For all equations with three variables ℓ3j in L , there is at least one
special vertex of G(ℓ3j) contained in V (T).

Given a normed Steiner tree T for SL in GL , we define an assignment
to the variables in L according to which variable vertices are included in
V (T). We introduce the assignment ψT , which assigns the value b ∈ {0,1} to
the variable xi if vbi is included in V (T). Note that due to the definition of
a normed Steiner tree, ψT is indeed well-defined. We now give the definition
of ψT .

Definition 7.8.2 (Assignment ψT)
Let L be an instance of the MAX-HYBRID-LIN2 problem with vari-
ables {x1, . . . , xn}, (GL , SL) its corresponding instance of the (1,2)-
STEINER TREE problem and T a normed Steiner tree for SL in GL . Given
T , we define the associated assignment ψT ∶ {x1, . . . , xn}→ {0,1} as follows.

ψT (xi) =
⎧⎪⎪⎨⎪⎪⎩

1 if v1i ∈ V (T)
0 otherwise

As for the next step, we are going to analyze the relation between the
cost of a normed Steiner tree T and the number of satisfied equations by ψT .

Local Costs in Subgraphs G(ℓ)

Given a normed Steiner tree T for SL in GL , we are interested how the
cost of T change depending on which variable vertices are included in T .
For this reason, we define the assignment star ST of a normed Steiner tree

175

CHAPTER 7. THE (1,2)-STEINER TREE PROBLEM

T . ST consists of the main terminal of GL which is joined by an edge with
every variable vertex included in V (T). In addition, those variable vertices
are connected to their corresponding variable terminals. We now give the
definition of the assignment star.

Definition 7.8.3 (Assignment Star ST)
Let L be an instance of the MAX-HYBRID-LIN2 problem with vari-
ables {x1, . . . , xn}, (GL , SL) its corresponding instance of the (1,2)-
STEINER TREE problem and T a normed Steiner tree for SL in GL . The
assignment star ST of T is defined by V (ST) = {Tm, vbi , ti ∣ vbi ∈ V (T), i ∈ [n]}
and E(ST) = {{Tm, vbi},{vbi , ti} ∣ vbi ∈ V (T), i ∈ [n]}.

Next, we are going to analyze how the cost of a normed Steiner T tree
change and in particular, the local cost of a subgraph G(ℓ) with ℓ in L

according to whether ψT satisfies ℓ or not. More precisely, we want to attain
a lower bound on the cost that are associated with the subgraph G(ℓ) given
a normed Steiner tree T and furthermore, how the cost increase when ψT

leaves the corresponding equation ℓ unsatisfied. For this reason, we introduce
the notion of local costs.

Definition 7.8.4 (Local Costs for ST in G(ℓ))
Let L be an instance of the MAX-HYBRID-LIN2 problem, (GL , SL) its cor-
responding instance of the (1,2)-STEINER TREE problem and T a normed
Steiner tree for SL in GL . Given an equation ℓ in L and the assignment
star ST of T , we define the local costs for ST in G(ℓ) as the minimum cost
of edges that must be added to ST in order to connect all equation terminals
of G(ℓ).

Given a normed Steiner tree T for SL in GL and its assignment star ST ,
we are going to analyze the local cost in subgraphs G(ℓ) for every ℓ in L .
More precisely, we are going to prove the following lemma.

Lemma 7.8.1
Let L be an instance of the MAX-HYBRID-LIN2 problem, (GL , SL) its cor-
responding instance of the (1,2)-STEINER TREE problem and T a normed

176

7.8. DEFINING THE ASSIGNMENT

Steiner tree for SL in GL . Given an equation with two variables ℓ2, the local
costs for ST in G(ℓ2) are 2 units if ψT satisfies ℓ2, and 3 otherwise. Given
an equation with three variables ℓ3, the local costs for ST in G(ℓ3) are 8 units
if ψT satisfies ℓ3 and 9 otherwise.

Proof of Lemma 7.8.1.
By differentiating between equations with two and three variables, we now
analyze the local costs in the corresponding subgraph. Let us start with
equations of the form ℓ2i ≡ xi1 ⊕ xi2 = 0.

Case (equations with two variables):
Let us consider the equation ℓ2i ≡ xi1 ⊕ xi2 = 0. Let T be a normed Steiner
tree for SL in GL and ST its assignment star. Since both terminals, t0i
and t1i , must be included in T , we attain a lower bound on the local costs
in G(ℓ2i) of 2 units for including two black edges. Clearly, the only two
possibilities to connect both terminals with black edges are firstly, v0i1 and
v0i2 are included in V (T) and secondly, v1i1 and v1i2 are contained in V (T).
Otherwise, we have to use at least one red edge, which means that we have
to spend an unit more in order to connect all terminals.

Case (equations with three variables):
Given an equation of the form ℓ3j ≡ xj1 ⊕ xj2 ⊕ xj3 = 0, we have to connect all
seven terminals of G(ℓ3j). Hence, we obtain a lower bound on the local cost
for S(T) in G(ℓ3j) of 8 units.

If the variable vertices vi1j1 , v
i2
j2

and vi3j3 possess one of the following com-
binations (i1, i2, i3) ∈ {(0,0,0), (1,1,0), (0,1,1), (1,0,1)}, we may use black
edges to connect the terminals T (1,i1)j ,T (2,i2)j and T

(3,i3)
j . Furthermore, we

join the main terminal with the special vertex (i1, i2, i3)j by a black edge.
By including (i1, i2, i3)j in our solution, it entails the possibility of connecting
all remaining three terminals by black edges. The former combinations of
vertices induce local costs for S(T) in G(ℓ3j) of 8 units.

If, by contrast, the variable vertices vi1j1 , v
i2
j2

and vi3j3 admit one of the
combinations (i1, i2, i3) ∈ {(1,0,0), (1,1,1), (0,1,0), (0,0,1)}, there are only

177

CHAPTER 7. THE (1,2)-STEINER TREE PROBLEM

special vertices that are connected to at most two remaining terminals by
black edges. Hence, we obtain local cost for S(T) in G(ℓ3j) of 9 units.

Finally, we conclude that a similar situation holds when the underlying
equation is of the form xj1 ⊕ xj2 ⊕ xj3 = 1 and the proof follows. ∎

Local Transformation

We now define a series of local transformations which enables us to convert
a given Steiner tree T for SL in GL successively in a normed Steiner tree
T ′ with c(T ′) ≤ c(T). By each of the local transformations, the underlying
solution T gains another property without increasing the cost of it. Our first
transformation is concerning Steiner trees T for SL , in which both variable
vertices corresponding to a variable in L are not included in V (T).

Transformation ¶

Let xi be a variable in L with ∣{v1i , v0i }∩ V (T)∣ = 0. Let C be the connected
component of T that arises by removing the variable terminal ti from V (T)
with Tm ∈ V (C). Notice that the edge r ∈ E(T) connecting ti with C must
be red. We remove r from E(T) and add two black edges to E(T) instead.
More precisely, we use the black edges {ti, v0i } and {Tm, v0i }. Every path,
that used the edge r, can now lead over ti − v0i − Tm. Hence, the solution is
still connected. Since we added a vertex and an edge, the obtained solution
remains a tree. Notice that the cost of the solution has not been increased
during the process.∎

So far, the actual solution T is a Steiner tree for SL in GL including
at least one variable vertex for every variable in L . But still, there is
possibly a variable vertex in V (T), which is not connected to the main
terminal. The next transformation resolves this situation.

Transformation ·

Let vai with a ∈ {0,1} be a variable vertex included in V (T). Furthermore,
we assume that {vai , Tm} is not contained in E(T). We add the black edge

178

7.8. DEFINING THE ASSIGNMENT

{vai , Tm} to E(T). As a consequence, we obtain a simple cycle Cs in T ,
which contains the edge {Tm, vai }. Due to the construction of GL , we can
delete an arbitrary edge from Cs, except black edges joining a variable vertex
with Tm. Since we added and then, deleted an edge of a simple cycle, T
remains connected. Finally, we note that T maintains a Steiner tree for SL

in GL and the cost of the solution has not been increased during the process.∎

Our actual solution T contains for every variable xi in L at least
one variable vertex and all contained variable vertices are connected to Tm
by a black edge. However, our goal is to obtain a normed Steiner tree for SL

in GL , which contains exactly one variable vertex for every variable. The
following transformation removes one of the two possibly existing variable
vertices. In what follows, we will differentiate between variables according
to their occurrences in equations. Recall from Theorem 4.9.1 that a variable
of an instance of the MAX-HYBRID-LIN2 problem occurs exactly in three
equations, thereof at least twice in equations with two variables. The last
occurrence is either in an equation with exactly three variables or in another
equation with two variables. The following transformation deals with the
latter case.

Transformation ¸

Let ℓ2i1 ≡ xj1 ⊕ xi = 0, ℓ2i2 ≡ xi ⊕ xj2 = 0 and ℓ2i3 ≡ xi ⊕ xj3 = 0 be the three
equations in which the variable xi occur. Furthermore, we assume that v0i
and v1i are both included in T as well as the edges {v0i , Tm} and {v1i , Tm}. In
the following, we define some operations, which we will apply exemplary to
the scenario displayed in Figure 7.4. We now define the rule that determines
the particular variable vertex to be removed from V (T). For this reason, we
introduce a notion that will be very useful in this concept.

In the remainder, we refer to an equation terminal t as switchable in
T if there exists two Steiner vertices v,w ∈ V (T) with {t, v} ∈ E(GL) and
{t,w} ∈ E(GL). In the scenario displayed in Figure 7.4, the terminals t1i1 , t

0
i3

and t1i2 are switchable. In addition, we refer to equation terminals, which are
not switchable in T , simply as unswitchable.

179

CHAPTER 7. THE (1,2)-STEINER TREE PROBLEM

(i)

v1j1 v1j2

t1i2

t0i3

t1i3

v0i

t1i1

t0i1

t0i2

v1i

v1j3

Tm

ti

(ii)

v1j1

v1j3

ti

Tm

v1j2

t1i2

t0i3

t1i3

v0i

t1i1

t0i1

t0i2

v1i

Figure 7.4: Situations before (i) and after (ii) Transformation ¸. The
straight black lines are black edges of GL , whereas thick lines
represent black edges in E(T). Finally, red edges included in
E(T) are indicated by dashed lines.

We remove the variable vertex from T which is connected to at most one
unswitchable terminal. If both variable vertices possess this property, we

180

7.8. DEFINING THE ASSIGNMENT

remove v0i from V (T).
Notice that the existence of a variable vertex with at most one unswitch-

able terminal is guaranteed due to the crucial property of having at least
one variable vertex per variable included in T and due to the fact that a
variable occurs in three equations.
Let v0i be the variable vertex which we want to remove. In the next step, we
consider switchable equation terminals.

Uncoupling switchable terminals:
Let t be an equation terminal, which is connected to v0i by an black edge
in T . In addition, let t be joined with v1j2 by an edge in E(GL)/E(T).
We remove {v0i , t} from E(T) and insert the black edge {v1j2 , t} instead.
The situation is displayed in Figure 7.4. The obtained solution T ′ is still
connected, since all paths that contained the edge {v0i , t} can lead over
v0i − Tm − v1j2 − t. Notice that we have not changed the number of edges.
Hence, T ′ is a Steiner tree for SL in GL with the same cost as before.

At this point, we are ready to remove the redundant variable vertex and
take care of the possibly existing unswitchable terminal.

Removing redundant variable vertices:
First of all, we remove all red edges r ∈ E(T) with endpoint v0i from E(T)
and insert red edges r′ with new endpoint Tm instead. If v0i is connected to
ti, we delete {v0i , ti} and add {v1i , ti} to E(T). Clearly, those conversions do
not affect the connectivity of our solution. By now, v0i is connected only to
Tm and the remaining unswitchable terminal t. We delete both black edges,
{t, v0i } and {Tm, v0i }. Finally, we add the red edge {t, Tm} to E(T). We note
that the solution remains connected. Since we deleted a vertex and an edge,
we obtain a Steiner tree for SL in GL . All in all, the cost has not been
increased during the whole transformation.∎

At this point, we are close to our goal. It remains to remove redun-
dant variable vertices whose corresponding variables occur in equations with
exactly three variables. Furthermore, in order to obtain a normed Steiner

181

CHAPTER 7. THE (1,2)-STEINER TREE PROBLEM

tree, T is supposed to contain at least one special vertex for every subgraph
G(ℓ3j) with ℓ3j in L . The last property will be achieved by means of the
following transformation.

Transformation ¹

Let G(ℓ3j) be a subgraph for an equation with exactly three variables ℓ3j in
L . Furthermore, we assume that there is no special vertex of G(ℓ3j) included
in V (T). Let C be the connected component which results from deleting
T b
j from T with Tm ∈ V (C). Notice that due to our assumption, the edge r,

connecting T b
j with C in T , must be red. We remove r from E(T) and add

an arbitrary special vertex sj of G(ℓ3j) to V (T). Then, we connect sj with
T b
j and Tm by black edges. Clearly, T ′ is connected. Since we added a vertex

and an edge, we obtain a Steiner tree for SL in GL with the same cost.∎

By now, the underlying solution contains at least one special vertex
in every subgraph G(ℓ3j) with j ∈ [m3]. In the last transformation, we
remove redundant variable vertices corresponding to variables which occur
in equations with exactly three variables.

Transformation º

Let xi be a variable in L whose corresponding variable vertices are both
included in V (T). Furthermore, let ℓ3j ≡ xi ⊕ xj2 ⊕ xj3 = 0, ℓ2k ≡ xi ⊕ xk1 = 0
and ℓ2l ≡ xi ⊕ xl1 = 0 be the equations, in which xi occur. Both, {T (1,1)j , v1i }
and {T (1,0)j , v0i } are black edges in E(GL). As before, we want to remove one
of the variable vertices and choose the variable vertex which is connected
to at most one unswitchable terminal. Due to the former transformations
and the construction of G(ℓ3j), we may assume that one of the terminals in
{T (1,1)j , T

(1,0)
j } is connected to the special vertex sj by an black edge in GL .

Hence, the existence of a variable vertex with at most one unswitchable
terminal is guaranteed. The scenario is displayed in Figure 7.5.

In the following, we are going to uncouple switchable terminals.

182

7.8. DEFINING THE ASSIGNMENT

(i)

v0l1

v0i

v1i

T
(1,0)
j

t0k

t0l

t1l

T
(1,1)
j

Tm

sj

v1k1

T b
j

t1k

ti

(ii)

v1i

v0i

v0l1

T
(1,0)
j

t0k

t0l

t1l

T
(1,1)
j

Tm

sj

v1k1

T b
j

t1k

ti

Figure 7.5: Situations before (i) and after (ii) uncoupling switchable ter-
minals. The straight black lines are black edges of GL , whereas
thick lines represent black edges in E(T). Finally, red edges
included in E(T) are indicated by dashed lines.

Uncoupling switchable terminals: Let v0i be the variable vertex with at most
one unswitchable terminal. Let t be the equation terminal which is connected

183

CHAPTER 7. THE (1,2)-STEINER TREE PROBLEM

to v0i by a black edge in T and to the Steiner vertex v by an black edge in
E(GH)/E(T). If t is an equation terminal corresponding to an equation with
two variables, we know how to handle this situation due to Transformation
¸. Therefore, we may assume that v is the special vertex sj contained in
T . We remove the edge {T (1,0)j , v0i } and insert the black edge {T (1,0)j , sj}
in E(T). The situation is displayed in Figure 7.5. After this conversion,
our solution T ′ remains connected, since all paths that contained the edge
{T (1,0)j , v0i } can lead over v0i − Tm − sj − T

(1,0)
j . Furthermore, since we have

not changed the number of edges, T ′ is a Steiner tree for SL in GL with the
same cost as before.
Removing redundant variable vertices: The vertex v0i is possibly connected
to at most one equation terminal and its corresponding variable terminal.
We notice that we have to deal with a similar situation which we solved in
Transformation ¸. Hence, we can proceed analogously in order to obtain a
normed Steiner tree T ′ for SL in GL with c(T ′) ≤ c(T).∎

By applying successively Transformation ¶ until º to a solution for
the instance (GL , SL), we obtain a normed Steiner tree for SL in GL . In
addition, none of the defined transformations increases the cost of the actual
solution. Since every transformation can be accomplished in polynomial
time, we obtain the following lemma.

Lemma 7.8.2
Let L be an instance of the MAX-HYBRID-LIN2 problem, (GL , SL) its cor-
responding instance of the (1,2)-STEINER TREE problem and T a Steiner
tree for SL in GL with cost c(T). It is possible to transform T in polynomial
time into a normed Steiner tree T ′ for SL in GL with c(T ′) ≤ c(T).

7.9 Proof of the Main Theorem

We now give the proof of Theorem 7.4.1.
Given an instance L of the MAX-HYBRID-LIN2 problem with m2 equations
with two variables, m3 equations with exactly three variables and n variables

184

7.9. PROOF OF THE MAIN THEOREM

{x1, . . . , xn}, we construct the corresponding instance (GL , SL) of the (1,2)-
STEINER TREE problem as described in Section 7.6.
● Let ϕ ∶ {x1, .., xn}→ {0,1} be an assignment to the variables of L leaving u
equations in L unsatisfied. Then, we construct the Steiner tree Tϕ according
to the description given in Section 7.7. By Lemma 7.7.1, we know that the
cost of Tϕ is at most c(Tϕ) = 2n + 2m2 + 8m3 + u.
● In order to prove the second part of Theorem 7.4.1, we are given a solution
T of an instance (GL , SL) of the (1,2)-STEINER TREE problem with cost
c(T) = 2n + 2m2 + 8m3 + u. Then, we apply Transformation ¶ until º to
T . According to Lemma 7.8.2, we obtain in polynomial time a normed
Steiner tree T̂ with the properties described in Definition 7.8.1. The normed
Steiner tree T̂ , however, enables us to specify the well-defined assignment
ψT̂ according to Definition 7.8.2. In order to relate the cost of T̂ to the
number of satisfied equations in L by ψT̂ , we intend to apply Lemma 7.8.1.
For this reason, we construct the assignment star S(T̂) of T̂ according to
Definition 7.8.1, for which we analyze the additional cost in subgraphs G(ℓ)
for every ℓ in L . By Lemma 7.8.1, we have to pay 2 units for subgraphs G(ℓ2j)
corresponding to equations with two variables in order to connect the variable
vertices in S(T̂) with the equation terminals of G(ℓ2j) assuming that the
assignment ψT̂ satisfies the equation ℓ2j . For subgraphs G(ℓ3k) corresponding
to equations with three variables, we have to pay 8 units under the same
circumstances. If the underlying equation is left unsatisfied by ψT̂ , we have
to spend one unit more. Hence, we conclude that the number of unsatisfied
equations in L by ψT̂ is at most c(T̂)− 2n− 2m2 − 8m3 = u and the proof of
Theorem 7.4.1 follows. ∎

185

CHAPTER 7. THE (1,2)-STEINER TREE PROBLEM

186

CHAPTER 8

The Metric Dimension Problem

187

CHAPTER 8. THE METRIC DIMENSION PROBLEM

In this chapter, we study the approximation hardness of the
METRIC DIMENSION problem restricted to graphs with maximum de-
gree B. By constructing an approximation preserving reduction from the
VERTEX COVER problem in 4-regular graphs, we prove that for every B ≥ 3,
the METRIC DIMENSION problem in graphs with maximum degree B is
APX-hard. In addition, it implies the first explicit approximation lower
bound for this restricted version of the problem. More precisely, we prove
that the METRIC DIMENSION problem in graphs with maximum degree
3 is NP-hard to approximate to within any constant approximation ratio
less than 353/352. Afterwards, we construct an improved approximation
preserving reduction implying that it is NP-hard to approximate this
restricted version of the problem to within any constant approximation ratio
less than 153/152.

8.1 Introduction

A resolving set of connected graph G is a subset S ⊆ V (G) such that for each
pair of vertices {u,w} ⊆ V (G), there exists some vertex v ∈ S with dG(v, u) ≠
dG(v,w), where dG(⋅, ⋅) denotes the shortest path metric induced by G. The
minimum cardinality of a resolving set is called the metric dimension of G,
denoted by dimM(G). The METRIC DIMENSION problemis the following
problem: given a connected graph G and the task is to find a resolving set S
for G with ∣S ∣ = dimM(G).

The notion of resolving sets were introduced independently by Harary and
Melter [HM76], and by Slater [S75]. Applications of resolving sets arise in var-
ious areas including coin weighing problems [SS63], drug discovery [CEJO00],
robot navigation [KRR96], network discovery and verification [BEE+05], con-
nected joins in graphs [ST04], and strategies for the Mastermind game [C83].
The METRIC DIMENSION problem has been widely investigated from the
graph theoretical point of view [S88a, FGO06, CHM+07, HMP+10, T08,
CGH08, CHM+09]. Bailey and Cameron [BC11] note in their survey an in-
teresting connection to graph isomorphism and group theory. In particular,

188

8.1. INTRODUCTION

Babai [B80] proved that given a graph G with n vertices and dimM(G) ≤ k,
isomorphism of G against any graph can be decided in O(nk+2) time.

So far, only a few papers discuss the computational complexity is-
sues of this problem. The NP-hardness of the decision version of the
METRIC DIMENSION problem was first mentioned in Gary and John-
son [GJ79]. An explicit reduction from the 3SAT problem was given by
Khuller, Raghavachari and Rosenfeld [KRR96]. In addition, they design
an efficient approximation algorithm for the METRIC DIMENSION problem
with approximation ratio 2 ln(n) +Θ(1) based on the well-known greedy al-
gorithm for the SET COVER problem. On the other hand, they gave a poly-
nomial time exact algorithm for the METRIC DIMENSION problem restricted
to trees and to graphs with maximum degree 2. Beerliova et al. [BEE+05]
proved that it is NP-hard to approximate the METRIC DIMENSION problem
(which they call the Network Verification problem) with an approximation
ratio o(log(n)). Hauptmann, Schmied and Viehmann [HSV12] improved the
approximation lower bound to (1−ϵ) ln(n) for all ε > 0, under the assumption
NP/⊆DTIME(nlog(log(n))). In the same work, an efficient approximation al-
gorithm for the METRIC DIMENSION problem was given with a matching
approximation ratio of (1 + o(1)) ln(n) settling the approximation complex-
ity of the problem.

The METRIC DIMENSION problem restricted to point sets in Rd was con-
sidered in [HSV12] and proved to be solvable in polynomial time, whenever
d is constant. Díaz, Pottonen, Serna and van Leeuwen [DPSL11] studied
the hardness of planar instances of the METRIC DIMENSION problem. They
showed that the restricted version of the problem is NP-hard, whereas out-
erplanar instances are solvable in polynomial time.

By constructing an approximation preserving reduction from the
VERTEX COVER problem in 4-regular graphs, Hauptmann, Schmied and
Viehmann [HSV12] proved that for all B ≥ 3, the METRIC DIMENSION

problem in graphs with maximum degree B is APX-hard. The reduction
implies that it is NP-hard to approximate the METRIC DIMENSION prob-
lem in graphs with maximum degree 3 within any constant approximation
ratio better than 353/352. Subsequently, Hartung and Nichterlein [HN12]

189

CHAPTER 8. THE METRIC DIMENSION PROBLEM

gave an improved inapproximability result which implies that it is NP-hard
to approximate the METRIC DIMENSION problem in graphs with maximum
degree 3 with an approximation ratio o(log(n)).

In this work, we present the approximation preserving reduction from the
VERTEX COVER problem in 4-regular graphs to the METRIC DIMENSION

problem in graphs with maximum degree 3 due to Hauptmann, Schmied and
Viehmann [HSV12]. Based on the inapproximability results due to Chlebik
and Chlebikova [CC06], we prove that the METRIC DIMENSION problem
in graphs with maximum degree 3 is NP-hard to approximate within any
constant approximation ratio better than 353/352. Afterwards, we construct
an improved approximation preserving reduction yielding an approximation
lower bound of 153/152. We point out that both inapproximability results
are prior to the result due to Hartung and Nichterlein [HN12].

8.2 Outline of this Chapter

The chapter is organized as follows. In Section 8.4, we formulate our main
results. In Section 8.5, we construct our first approximation preserving re-
duction. In Section 8.6, we give an improved approximation lower bound for
the METRIC DIMENSION problem in graphs with maximum degree 3.

8.3 Notations and Definitions

Before we formulate our contributions, we are going to fix the notation used
in this chapter and provide some definitions.

Given a connected graph G, we say that a vertex v ∈ V (G) resolves,
splits or distinguishes a pair {u,w} ∈ (V (G)2

) if dG(v, u) ≠ dG(v,w) holds.
Furthermore, we say that a set S ⊆ V (G) resolves all pairs p ∈ P ⊆ (V (G)2

)
if for all p ∈ P , there exists some s ∈ S splitting p. A subset S ⊆ V (G) of
vertices is said to be resolving for G if S resolves every pair p ∈ (V (G)2

). The
minimum cardinality of a set S, that is resolving for G, is defined as the

190

8.4. OUR CONTRIBUTIONS

metric dimension of G, denoted by dimM(G).
According to Definition 4.1.1, the METRIC DIMENSION problem is de-

fined as follows.

Definition 8.3.1 (METRIC DIMENSION problem)
Instances: A connected graph G
Solutions: S ⊆ V (G) such that for all pairs {v,w} ∈ (V (G)2

),
there exists some s ∈ S with dG(s, v) ≠ dG(s,w)

Task: Minimize ∣S ∣

For a connected graph G and a non-empty set S ⊆ V (G), we introduce
the notion of distance classes.

Definition 8.3.2 (Distance Classes)
Let G be a connected graph and S ≠ ∅ a subset of V (G). The sets V1, . . . , Vk
are called the distance classes induced by S in G if the following conditions
hold.

(i) The sets V1, . . . , Vk define a partition of V (G).

(ii) For all i ∈ [k], all pairs {u,w} ∈ (Vi
2
) and all t ∈ S, we have that

dG(u, t) = dG(u, t).

(iii) S resolves all pairs p ∈ {{u,w} ∈ (V (G)
2
) ∣ u ∈ Vi,w ∈ Vj,{i, j} ∈ (

k

2
)}.

Let G be a connected graph, S ≠ ∅ a subset of V (G) and V1, . . . , Vk the
distance classes induced by S in G. Then, we say that Vi is unresolved by S
if ∣Vi∣ ≥ 2 holds.

8.4 Our Contributions

We present our first result concerning the approximation hardness of the
METRIC DIMENSION problem restricted to graphs with maximum degree 3,
which we are going to prove in the subsequent section.

Theorem 8.4.1
Given a 4-regular graph G, it is possible to construct in polynomial time an

191

CHAPTER 8. THE METRIC DIMENSION PROBLEM

instance GM of the METRIC DIMENSION problem with the following proper-
ties.

(i) The constructed graph GM has maximum degree 3.

(ii) Given a vertex cover C of G, it is possible to construct in polynomial
time a resolving set of GM with size at most ∣C ∣ + ∣E(GM)∣ + ∣V (GM)∣.

(iii) From every resolving set R of GM , it is possible to construct in polyno-
mial time a vertex cover of G of size at most ∣R∣ − ∣E(G)∣ − ∣V (G)∣.

In order to prove that the METRIC DIMENSION problem restricted to
graphs with maximum degree 3 is NP-hard to approximate with some con-
stant, we will use the following inapproximability result due to Chlebik and
Chlebiková [CC06].

Theorem 8.4.2 ([CC06])
Let G be a 4-regular graph. For every δ ∈ (0, 12), the following cases (i) and
(ii) are NP-hard to decide.

(i) Every vertex cover of G has size at least ∣V (G)∣ (53 − 2δ
100

) .

(ii) The size of a minimum vertex cover of G is at most ∣V (G)∣ (52 + 2δ
100

) .

By means of Theorem 8.4.1, we are going to prove the following statement.

Corollary 8.4.1
For every B ≥ 3, the METRIC DIMENSION problem restricted to graphs with
maximum degree B is APX-hard and NP-hard to approximate to within any
constant approximation ratio less than 353/352.

Proof of Corollary 8.4.1.
For a constant ε > 0, we select δ ∈ (0, 12) such that the following holds.

353 − 2δ
352 + 2δ

≤ 353

352
− ε

Given an instance G of the VERTEX COVER problem in 4-regular graphs
described in Theorem 8.4.2, we construct in polynomial time an instance of

192

8.4. OUR CONTRIBUTIONS

the METRIC DIMENSION problem with the properties guaranteed by Theo-
rem 8.4.1. According to Theorem 8.4.2, either the metric dimension of the
constructed graph GM is at least

∣E(G)∣ + ∣V (G)∣ + ∣V (G)∣ (53 − 2δ
100

) = 3 ⋅ ∣V (G)∣ + ∣V (G)∣ (53 − 2δ
100

)

or dimM(G) is bounded from above by

∣E(G)∣ + ∣V (G)∣ + ∣V (G)∣ (52 + 2δ
100

) = ∣V (G)∣ (352 + 2δ
100

) .

Furthermore, we know that it is NP-hard to decide which case above
holds. Therefore, we conclude that it is NP-hard to approximate the
METRIC DIMENSION problem in graphs with maximum degree 3 to within
any constant approximation ratio less than (353/352 − ε) for every constant
ε > 0. Recall from Theorem 5.6.2 that the VERTEX COVER problem in 4-
regular graphs is APX-hard. Accordingly, it implies the APX-hardness of
the METRIC DIMENSION problem in graphs with maximum degree 3. ∎

Afterwards, in Section 8.6, we will construct an approximation preserv-
ing reduction implying an improved approximation lower bound. We now
formulate our second result.

Theorem 8.4.3
Given a 4-regular graph G, it is possible to construct in polynomial time an
instance GI of the METRIC DIMENSION problem with the following proper-
ties.

(i) The corresponding graph GI has maximum vertex degree 3.

(ii) Given a vertex cover C of G, then, it is possible to construct an resolving
set RI

G of GI with size at most ∣C ∣ + ∣V (G)∣.

(iii) From every resolving set R of GI , it is possible to construct in polyno-
mial time a vertex cover CI

G of G with size at most ∣R∣ − ∣V (G)∣.

Analogously to the proof of Corollary 8.4.1, we combine Theorem 8.4.2 with
Theorem 8.4.3 and obtain the following approximation hardness result.

193

CHAPTER 8. THE METRIC DIMENSION PROBLEM

Corollary 8.4.2
For every B ≥ 3, the METRIC DIMENSION problem restricted to graphs with
maximum degree B is NP-hard to approximate to within any constant ap-
proximation ratio less than 153/152.

8.5 APX-Hardness and Explicit Lower Bounds

Before we start to describe our approximation preserving reduction, we first
give an outline of the construction and try to build some intuition.

8.5.1 High-Level View of the Reduction

In order to reduce the VERTEX COVER problem to the METRIC DIMENSION

problem, we have to convert a covering problem into a splitting problem. It
will be accomplished by introducing pairs of nodes for every element that
needs to be covered. Moreover, these pairs can only be distinguished by
special vertices representing a vertex cover of the original graph.

Given a 4-regular graph G as an instance of VERTEX COVER problem,
we introduce for each vertex v ∈ V (G) and each edge e ∈ E(G) an associated
graph GMv and GMe , respectively. These associated graphs will be connected
and build the corresponding instance GM of the METRIC DIMENSION prob-
lem. Every graph GMe contains a pair of vertices pe that represents the edge e
of the original graph that is supposed to be covered. The only vertices of GM

that are able to distinguish the pair pe can be associated to vertices a ∈ V (G)
with a ∈ e.

8.5.2 Constructing GM from a 4-Regular Graph G

Given a 4-regular graph G as an instance of the VERTEX COVER prob-
lem, we are going to define the corresponding instance GM of the
METRIC DIMENSION problem. As we will see, the construction of GM can be
accomplished in polynomial time and the degree of every vertex v ∈ V (GM)
is bounded from above by 3. At the end of this section, we prove some

194

8.5. APX-HARDNESS AND EXPLICIT LOWER BOUNDS

important properties of the corresponding graph GM . Let us start with the
description of GM .

vfxi

vp2i

v2i

v1i

vu3i

vu2i

vu1i

vf2i

vp1i

vs1ivs2ivs3ivu4i

vy2i

vy1i

vy3i

vy4i vs4i

vw4
i

vw3
i

vw2
i

vw1
i

vx4i

vx3i

vx2i

vx1i

vf1i

vf3i

vfwivfyivfui

Figure 8.1: Subgraph GMi with i ∈ V (G) and NG(i) = {u, y,w, x}.

Construction of the Corresponding Graph GM

Let G be a 4-regular graph. For every vertex v ∈ V (G) and every edge
e ∈ E(G), we introduce the corresponding subgraphs GMv and GMe , respec-
tively. Then, GM is defined by connecting the subgraphs GMv and GMe in an
appropriate way specified later on.

In the following, we refer to the subgraph GMv with v ∈ V (G) as the
vertex graph of v and to GMe as the edge graph of e ∈ E(G). Let us give the
description of the subgraphs GMx with x ∈ V (G) ∪ E(G) starting with the
vertex graphs.

Vertex Graph GMv
Let i ∈ V (G) be a vertex in G and NG(i) = {u, y, w, x} the set of its
neighbours in G. Then, we introduce the subgraph GMi of i specified in
Figure 8.1.

In the remainder, we refer to vp1i and vp2i as the main vertices of GMi . For
notational simplicity, we introduce for every vertex i ∈ V (G), the sets

DG(i) = {vαki , vski ∣ α ∈ NG(i), k ∈ [4]} and D−G(i) =DG(i)/{vx1i ∣ x ∈ NG(i)}.

195

CHAPTER 8. THE METRIC DIMENSION PROBLEM

Finally, we remark that the approximation preserving properties of the con-
struction are independent of the order of appearance of the vertices u, y, w
and x.

vp2e

v2e

vcte

vcfe

v3e
vse vte

vcse

vp1e
v1e

Figure 8.2: Subgraph GMe with e ∈ E(G).

Edge Graph GMe
Let e ∈ E(G) be an edge in G. Then, we define GMe as displayed in Figure 8.2.

We refer to vp1e and vp2e as the main vertices of GMe . In addition, we
introduce the split pairs of GMe defined by p1e = {vcse , vcte } and p2e = {vse, vte}. For
notational simplicity, for every e ∈ E(G), we introduce the set DG(e) = p1e∪p2e.
Finally, we denote by Rm(G) the set of the first main vertices of GM given
by

Rm(G) = {vp1x ∣ x ∈ V (G) ∪E(G)}.

The disjoint union of the vertices in V (GMx) with x ∈ V (G) ∪ E(G) already
defines the vertex set V (GM) of GM . Nevertheless, we still have not specified
all edges of GM . So far, we only have

⋃
x∈V (G)∪E(G)

E(GMx) ⊂ E(GM).

The remaining edges are needed to connect the subgraphs in order to form
the connected graph GM . We are going to describe how the subgraphs GMx
with x ∈ V (G) ∪E(G) are connected appropriately.

196

8.5. APX-HARDNESS AND EXPLICIT LOWER BOUNDS

vp2e

vs4w

vs2w

v1evp1e

vcse

vcfe

v2e

vte
v3e

vse

vu1w

vu2w

vu3w

vu4w

vw2
u

vw3
u

vw4
u

vs1w

vp2wv1w

vp1w
v2w

vf1w

vfuw

vs1uvs2u

vp1u

vp2uv1u

vw1
u

v2u

vf1u

vs4uvf3w

vfwu

vf3u

vcte

Figure 8.3: Connecting GMu , GMw and GMe , where e = {w,u}.

Let e = {u,w} ∈ E(G) be an edge in G. Then, we connect the subgraphs
GMu and GMw both with GM{u,w} by adding the edges {vw1

u , vcs{u,w}}, {v
fw
u , vcf{u,w}},

{vu1w , vcs{u,w}} and {vfuw , vcf{u,w}} to E(GM). A part of the construction is dis-
played in Figure 8.3.

By implementing the former construction for every edge e ∈ E(G), we
obtain in this way the graph GM . Since the degree of every vertex of G
is bounded from above by 4, we see that the maximum degree of GM is
bounded by 3. Finally, we note that given G, the construction of GM can be
accomplished in polynomial time.

Properties of the Corresponding Graph GM

In the following, we prove some crucial properties of the subgraphs GMx with
x ∈ V (G) ∪ E(G). In particular, we will see that every resolving set of GM

includes at least one main vertex of GMx for each x ∈ V (G) ∪ E(G). Let us

197

CHAPTER 8. THE METRIC DIMENSION PROBLEM

give the precise statement.

Lemma 8.5.1
Let G be a 4-regular graph, GM its corresponding graph and R a resolving set
of GM . Then, for every x ∈ V (G) ∪E(G), we have that

R ∩ {vp1x , vp2x } ≠ ∅.

Proof of Lemma 8.5.1.
Let G be a 4-regular graph and R a resolving set of the corresponding graph
GM . Given an edge e ∈ E(G), we consider the subgraph GMe in GM and the
pair {vp2e , vp1e } of vertices. Notice that for every v ∈ V (GM)/{vp2e , vp1e }, we
have dGM (vp1e , v) = dGM (vp2e , v). Accordingly, the only vertices resolving this
pair are vp2e and vp1e themselves. Therefore, we need to include either vp2e or
vp1e in a resolving set of GM .

Finally, we note that if we have given a vertex graph GMv with v ∈ V (G),
we may use a similar argumentation. ∎

Next, we are going to prove another crucial property of the edge graph GMe .
The following lemma enables us to concentrate on resolving only one of the
split pairs of a given edge graph.

Lemma 8.5.2
Let G be a 4-regular graph and e an edge in G. If a vertex v ∈ V (GM)
distinguishes the pair p1e, then, v resolves both split pairs of GMe .

Proof of Lemma 8.5.2.
In order to prove Lemma 8.5.2, we proceed by case analysis. Let G be a
4-regular graph and e ∈ E(G). Let us start with vertices v ∈ V (GMe).
Case (v ∈ V (GMe)):
Since we have dGM (vse, v) = dGM (v, vte) and dGM (vcse , v) = dGM (v, vcte) for any
vertex

v ∈ { vp1e , vp2e , v1e , v2e , vcfe , v3e } ,

neither p1e nor p2e can be distinguished by v. Hence, the claim holds for these
vertices. The same holds for v ∈ p1e ∪ p2e, because every v ∈ p1e ∪ p2e splits both

198

8.5. APX-HARDNESS AND EXPLICIT LOWER BOUNDS

pairs. Therefore, it remains to consider vertices v ∈ V (GM)/V (GMe).

Case (v ∈ V (GM)/V (GMe)):
Let us assume that there is a vertex v ∈ V (GM)/V (GMe) such that
dGM (v, vse) /= dGM (v, vte) holds, as otherwise, we have nothing to prove. We
claim that there is a shortest path P v

s−e from v to vse, in which the vertex
vcfe is not contained. The former statement will be proved by contradiction:
Let us assume that all shortest paths from v to vte all include the vertex vcfe .
But this leads to a contradiction, since we obtain dGM (v, vse) = dGM (v, vte).
Consequently, we may assume that there is a path P v

t−e from v to vte not
including vcfe . It implies that P v

t−e must contain the vertices vse and v3e . Let
the path P v

t−e be given by

P v
t−e = v − v1 − . . . − vk − vcse − vse − v3e − vte.

The situation is displayed in Figure 8.4. But then, P v
s−e = v − v1 − . . . − vk −

vcse − vse is a shortest path from v to vse not containing vcfe contradicting our
assumption of non-existence.

v

v1

vk

v1e

vp2e

v2e

vctevte

v3e

vse

vcse

vcfe

vp1e

Figure 8.4: The path P v
t−e = v − v1 − . . . − vk − vcse − vse − v3e − vte.

Since we know that there exists a shortest path from v to vse not including
vcfe and dGM (v, vse) /= dGM (v, vte), we conclude that dGM (v, vse) < dGM (v, vte).
But this means that we have dGM (v, vcse) < dGM (v, vcte) as well and the proof
of Lemma 8.5.2 follows. ∎

199

CHAPTER 8. THE METRIC DIMENSION PROBLEM

8.5.3 Constructing a Resolving Set of GM

Given a 4-regular graph G and a vertex cover C of G, we are going to
construct the resolving set R(C) of the corresponding graph GM based on
the vertex cover C.

We first give the definition of the set R(C). Afterwards, we prove
that R(C) is indeed resolving for GM .

Definition 8.5.1 (Resolving Set R(C))
Let G be a 4-regular graph, GM the corresponding graph constructed as de-
scribed in Section 8.5.2. Given a vertex cover C of G, the resolving set R(C)
is defined as follows.

R(C) = Rm(G) ∪ {vs1u ∣ u ∈ C}

In the remainder of this section, we will prove that the former defined set
R(C) is resolving for GM .

Lemma 8.5.3
Let G be a 4-regular graph and C a vertex cover of G. Then, the vertex set
R(C) is resolving for GM .

In what follows, it will be convenient to separate the proof of Lemma 8.5.3
into two parts. First of all, we show that the set Rm(G), defined by

Rm(G) = {vp1x ∣ x ∈ V (G) ∪E(G)},

resolves every pair of vertices in GM except p1e = {vcse , vcte } and p2e = {vse, vte}
with e ∈ E(G). At this point, we recall that according to Lemma 8.5.2, we
only have to take care of the remaining pairs p2e in the sense that every vertex
v ∈ V (GM) resolving p2e distinguishes also the pair p1e. Finally, we prove that
given a vertex u ∈ V (G) and an edge e ∈ E(G), vs1u distinguishes p2e if and
only if u is contained in e.

Since Rm(G) is a subset of R(C) and C a vertex cover of G, we conclude
that R(C) is resolving for GM . Let us start with the following Lemma.

200

8.5. APX-HARDNESS AND EXPLICIT LOWER BOUNDS

Lemma 8.5.4
Let G be a 4-regular graph and GM its corresponding graph. Then, the set
Rm(G) resolves every pair p ∈ (V (G

M)
2
) except p ∈ {p1e, p2e ∣ e ∈ E(G) } .

Proof of Lemma 8.5.4.
Let G be a 4-regular graph and GM its corresponding graph. First of all, we
prove that the set Rm(G) resolves all pairs

p ∈ (V (G
M)

2
)/
⎛
⎝ ⋃e∈E(G)

{p1e, p2e }
⎞
⎠
.

Afterwards, we show that all pairs p ∈ {p1e, p2e ∣ e ∈ E(G)} remain unresolved
by Rm(G). The first part will be accomplished by case analysis on pairs
p ∈ (V (G

M)
2
)/(⋃e∈E(G){p1e, p2e}) starting with the case p ∈ (V (G

M
e)
2
)/ {p1e, p2e} for

a fixed e ∈ E(G).

1.Case (p ∈ (V (G
M
e)
2
)/{p1e, p2e} with e ∈ E(G)):

The distance classes induced by {vp1e } in GMe are given by

{vp1e }, {v1e}, {v2e , vp2e }, {vse, vte}, {v3e , vcse , vcte } and {vcfe }.

Finally, this distance classes are splitted by vp1i with i ∈ e into

{vp1e }, {v1e}, {v2e}, {vp2e }, {vse, vte}, {vcse , vcte } {v3e}, and {vcfe }.

2.Case (p ∈ (V (G
M
i)
2
) with i ∈ V (G)):

Let i ∈ V (G) be a vertex with neighbours u, y,w and x in G. Furthermore,
we have that e = {w, i} and a = {u, i}. The corresponding subgraphs GMi ,
GMe and GMa are connected as displayed in Figure 8.5. Let us consider the
distance classes induced by {vp1i } in GMi given below.

{vp1i }, { v1i , v2i }, { v
f1
i , v

p2
i , v

s1
i }, { v

f2
i , v

f3
i , v

s2
i },

{ vfui , vfyi , v
fw
i , vfxi , vs3i , v

s4
i }, { vu4i , v

y4
i , v

w4
i , vx4i }, { vu3i , v

y3
i , v

w3
i , vx3i }

{ vu2i , v
y2
i , v

w2
i , vx2i } and { vu1i , v

y1
i , v

w1
i , vx1i }.

201

CHAPTER 8. THE METRIC DIMENSION PROBLEM

By including vp1e in our resolving set, the remaining unresolved distance
classes are

{ vfyi , v
fu
i }, { v

y4
i , v

u4
i }, { v

y3
i , v

u3
i }, { v

y2
i , v

u2
i } and { vy1i , vu1i }.

Finally, we see that these remaining pairs can be resolved by vp1a .

vcta

v3a

vcfa

v2a

vsa

vcfe

vp2i

vfui

vf2i

vp1i

vs1ivs2ivs3ivu4i

vy2i

vy1i

vy3i

vy4i vs4i

vw4
i

vw3
i

vw2
i

vw1
i

vx4i

vx3i

vx2i

vx1i

vf1i

vf3i

vfyi

v2i

v1i

vu3i

vu2i

vu1i

v1e

vp2e

v2e

vcte

v3e
vse vte

vp1e

vcse

vfwi

vfxi

vcsa

vp1a vp2a
v1a

vta

Figure 8.5: Subgraphs GMi , GMa and GMe with e = {w, i} and a = {u, i}.

3.Case ({x, y}, where x ∈ V (GMe), y ∈ V (GMe′) and {e, e′} ⊆ E(G)):
Notice that for every x ∈ V (GMe) and y ∈ V (GMe′), we have dGM (x, vp1e) ≤ 5

and dGM (y, vp1e) ≥ 9. Hence, we can choose vp1e to distinguish all these pairs.

202

8.5. APX-HARDNESS AND EXPLICIT LOWER BOUNDS

4.Case ({x, y}, where x ∈ V (GMe), y ∈ V (GMi), i ∈ V (G) and e ∈ E(G)):
From the former case, we know that dGM (x, vp1e) ≤ 5 holds. If we have
dGM (y, vp1e) > 5 for every y ∈ V (GMi), we have nothing to prove.

Therefore, we may assume that there is a vertex vw1
i ∈ V (GMi) such that

{vcse , vw1
i } ∈ E(GM) holds. But then, vp1e leaves only the pair {vw1

i , vcfe }
unresolved. The remaining pair can be distinguished by vp1i since we obtain
dGM (vcfe , vp1i) = 5 and dGM (vw1

i , vp1i) = 8.

5.Case ({x, y}, where x ∈ V (GMj), y ∈ V (GMi) and {i, j} ⊆ V (G)):
Let i ∈ V (G) be a vertex in G and {u, y,w, x} its neighbors in G. Then, we
introduce the set of vertices X6 defined as follows.

X6 = {vyki , vuki , vwk
i , vxki ∣ k ∈ [3]}

Notice that we have dGM (x, vp1i) ≤ 5 for all x ∈ V (GMi)/X6 and dGM (y, vp1i) ≥ 6
for all y ∈ V (GMj). We illustrated the corresponding situation in Figure 8.6.
Hence, the pairs that we have to consider are {x, y} with x ∈ X6 and y ∈
V (GMj). But for the former described pairs, we obtain dGM (y, vp1j) ≤ 8 and
dGM (x, vp1j) ≥ 9.

Finally, we have to show that all pairs p1e and p2e with e ∈ E(G) remain
unresolved in order to finish the proof of Lemma 8.5.4. For this reason,
we consider the graph GMe for a fixed e ∈ E(G). Let {ei ∈ E(G) ∣ i ∈ [6]}
be the set of edges with ei ∩ e ≠ ∅ and ei ≠ e for all i ∈ [6]. Notice that
for every i ∈ [6], the shortest path from vp1ei to vse contains the vertex vcfe .
The same holds for all shortest paths from vp1ei to v ∈ {vcte , vcse , vte}. Since
we have dGM (vcfe , vse) = dGM (v

cf
e , vte) and dGM (vcfe , vcse) = dGM (v

cf
e , vcte), we

conclude that dGM (vp1ei , vse) = dGM (v
p1
ei , v

t
e) and dGM (vp1ei , vcse) = dGM (v

p1
ei , v

ct
e)

for all i ∈ [6]. With this fact in mind, we are able to prove inductively that
all shortest paths from vp1e′ with e′ ≠ e to v ∈ {vse, vcte , vcse , vte} lead over the
vertex vcfe . Hence, the vertices v ∈ {vp1e ∣ e ∈ E(G)} leave every split pair of
GMe unresolved.

The remaining vertices to be analyzed are vp1i with i ∈ V (G):
Notice that given a vertex vp1i with i ∈ e, we have that dGM (vp1i , vse) =
dGM (vp1i , vte) = 7 and dGM (vp1i , vcse) = dGM (v

p1
i , v

ct
e) = 8.

203

CHAPTER 8. THE METRIC DIMENSION PROBLEM

vp1j

vse

vcse

vp1e v1e vp2e

v2e

vcte

vcfe

vte
v3e

vf3j

vf1j

v2j

vp2jv1j

vs1jvs2j

vs4j

vi4j

vi3j

vi2j

vi1j

vfij

vs4i

vj4i

vj3i

vj2i

vj1i

vs1ivs2i

vp2i

vp1i

v1i

v2i
vf1i

vf3i

vfji

Figure 8.6: 5.Case ({x, y}, where x ∈ V (GMj), y ∈ V (GMi) and i ≠ j).

Therefore, let e1 ≠ e be an edge in G and j ∈ e1/ e a vertex in G. Then, the
shortest path from vp1j to vse can be divided into the shortest path from vp1j
to vcfe1 and the shortest path from vcfe1 to vse. The same holds for shortest
paths from vp1j to v ∈ {vcte , vcse , vte}. From the former case, we know that
dGM (vcfe1 , vse) = dGM (v

cf
e1 , v

t
e) and dGM (vcfe1 , vcse) = dGM (v

cf
e1 , v

ct
e) holds. Thus, vp1j

cannot resolve any split pair of GMe . By a similar argument, we conclude that
the same holds for all v ∈ {vp1j ∣ j ∈ V (G)/ e} finishing the proof. ∎

Thus far, we know that the set Rm(G) resolves all pairs p ∈ (V (G
M)

2
) except

p ∈ {p1e, p2e ∣ e ∈ E(G)}. Consequently, we want to know which vertices are
able to distinguish the remaining pairs. In order to resolve this question, we
are going to prove the following lemma.

Lemma 8.5.5
Let G be a 4-regular graph and e an edge in G. Then, the vertex vs1i ∈ V (GM)

204

8.5. APX-HARDNESS AND EXPLICIT LOWER BOUNDS

resolves the pair p2e if and only if i ∈ e holds.

Proof of Lemma 8.5.5.
Let G be a 4-regular graph and e ∈ E(G). We are going to analyze two cases
starting with i ∈ e:
In the case (i ∈ e), we have dGM (vs1i , vse) = 8 and dGM (vs1i , vte) = 9, which by
definition means that the vertex vs1i resolves p2e.

v2i

vp2iv1i

vfxi

vf3i
vu4i

vu3i

vu2i

vu1i

v1e

vp2e

v2e

vcte

v3e
vse vte

vp1e

vcse vcsa

vp1a vp2a
v1a

vcta
vta

v3a

vcfa

v2a

vsa

vcfe

vfiuvw4
u

vw3
u

vw2
u

vw1
u vi1u

vi2u

vi3u

vi4u

vs4u

vs2u

v2u

vf1u

vf3uvp2uv1u

vs1u

vp1u

vfwu

vp1i

vs1ivs2i

vs4i

vf1i

Figure 8.7: Case (i ≠ e) with a = {i, u} and e = {u,w} in Lemma 8.5.5.

Now, let us consider the case (i /∈ e):
We are going to analyze the situation displayed in Figure 8.7. In this situ-
ation, we have dGM (vs1i , vse) = dGM (vs1i , vte) = 13. Notice that a shortest path
from vs1i to both vertices vte and vse lead over the edge {vcfe , v3e} causing that
the considered pair remains unresolved. More generally, a similar argumen-
tation as in the proof of Lemma 8.5.4 leads to the fact that shortest paths

205

CHAPTER 8. THE METRIC DIMENSION PROBLEM

from every vs1i with i /∈ e to both, vte and vse, contain the vertex vcfe . Hence,
these vertices cannot resolve p2e. ∎

At this point, we are ready to give the proof of Lemma 8.5.3.

Proof of Lemma 8.5.3.
Let G be a 4-regular graph and C a vertex cover of G. By definition, Rm(G)
is a subset of R(C). Thus, by Lemma 8.5.4, we know that the only pairs
which could be unresolved are p1e and p2e for every e ∈ E(G).

On the other hand, the vertices i ∈ V (G) with vs1i ∈ R(C)/Rm(G) form
a vertex cover of the original graph G. Therefore, Lemma 8.5.5 applies to
R(C)/Rm(G) resolving all pairs p2e with e ∈ E(G).

According to Lemma 8.5.2, the same vertices in R(C)/Rm(G) also split all
remaining pairs p1e with e ∈ E(G) and the proof of Lemma 8.5.3 follows. ∎

8.5.4 Constructing a Vertex Cover from a Resolving Set

Given a 4-regular graph G and a resolving set R of GM , we are going to
construct the corresponding vertex cover CG(R) of the original graph G
based on the resolving set R.

Let us first give the definition of the corresponding vertex cover CG(R).
Afterwards, we prove that CG(R) is indeed a vertex cover of the graph G.

Definition 8.5.2 (Vertex Cover CG(R))
Let G be a 4-regular graph with V (G) = {1, . . . , n} and R a resolving set of
GM . Given R, the vertex cover CG(R) is defined as follows.

CG(R) =
⎛
⎜⎜
⎝
⋃

{i,j}∈E(G)
i<j

{ i ∣ R ∩D({i, j}) ≠ ∅ }
⎞
⎟⎟
⎠
∪
⎛
⎝ ⋃v∈V (G)

{ v ∣D(v) ∩R ≠ ∅ }
⎞
⎠

According to Lemma 8.5.1, we know that any resolving set R of GM must
contain at least one main vertex of every subgraph GMx with x ∈ V (G)∪E(G).
Let us fix a x ∈ V (G)∪E(G). Then, for every v ∈ V (GM)/{vp2x , vp1x }, we have
dGM (v, vp1x) = dGM (v, vp2x). Thus, the vertices vp1x and vp2x resolve the same

206

8.5. APX-HARDNESS AND EXPLICIT LOWER BOUNDS

pairs in GM . Moreover, even by including both vertices, it will not change
the number of resolved pairs. Consequently, we may assume without loss of
generality that Rm(G) ⊆ R holds.

Recall from Lemma 8.5.4 that Rm(G) resolves all p ∈ (V (G
M)

2
) except p1e

and p2e with e ∈ E(G). Hence, we have to determine which vertices are able
to distinguish the remaining pairs. According to Lemma 8.5.2, it suffices to
identify the particular vertices resolving p2e with e ∈ E(G).

At this point, we provide the following lemma whose proof will be given
later on in this section.

Lemma 8.5.6
Let G be a 4-regular graph and {u,w} be an edge in G. Then, v ∈ V (GM)
resolves the pair p2{u,w} if and only if

v ∈ [DG({u, w}) ∪D−G(u) ∪D−G(w) ∪ { vw1
u , vu1w }] .

Given an edge e = {u,w} ∈ E(G), according to Lemma 8.5.6, the only vertices
resolving the pair p2{u,w} are subsets of V (GMu), V (GMw) and V (GMe). Since
R is resolving for GM and by definition of CG(R), for every e ∈ E(G), there
exist at least one vertex i ∈ (e∩CG(R)). In summary, we obtain the following
statement.

Lemma 8.5.7
Let G be a 4-regular graph and R a resolving set of GM . Given R, the set of
vertices CG(R) can be constructed in polynomial time and is a vertex cover
of G.

In order to complete the proof of Lemma 8.5.7, it remains to give the proof
of Lemma 8.5.6.

Proof of Lemma 8.5.6.
Let G be a 4-regular graph and e = {w,u} ∈ E(G). We are going to determine
which vertices of GM are able to resolve p2e. Let us first consider vertices
v ∈ V (GMe): Notice that all v ∈ D({w,u}) = p1e ∪ p2e possess this property,
whereas vp1e , vp2e , v1e , v2e , v3e and vcfe cannot resolve p2e.

207

CHAPTER 8. THE METRIC DIMENSION PROBLEM

vk3u

vk2u

vk1u

vl3u

vl2u

vl1u

vl4u

vu4i

vu3i

vu2i

vu1i

vfui

v1e

vp2e

v2e

vcte

v3e
vse vte

vp1e

vcse vcsa

vp1a vp2a
v1a

vcta
vta

v3a

vcfa

v2a

vsa

vcfe

vfiuvw4
u

vw3
u

vw2
u

vw1
u vi1u

vi2u

vi3u

vi4u

vs4u

vs2u

v2u

vf1u

vf3uvp2uv1u

vs1u

vp1u

vfwu

vp1i

vs1ivs2i

vs4i

vf1i

v2i

vp2iv1i vf3i

vs3u

vk4u

Figure 8.8: Graphs Ge, Gu, Ga with a = {i, u} and {w,u}, a ∈ E(G).

Hence, we are left to analyze the vertices in V (GM)/V (GMe):
We are going to analyze the situation displayed in Figure 8.8. The neighbor-
hood of u in G is given by NG(u) = {l, k,w, i}. Furthermore, we use a = {i, u}.
Note that all vertices in D−G(u) are able to distinguish the pair p2e. On the
other hand, for vi1u , we obtain dGM (vse, vi1u) = 10 = dGM (vte, vi1u). Since we have
dGM (vse, v) = 12 and dGM (vte, v) = 12 for each v ∈ {vl1u , vk1u }, both, vl1u and
vk1u cannot split p2e. For vw1

u , we obtain dGM (vse, vw1
u) = 2 ≠ dGM (vte, vw1

u) = 4.
Furthermore, we see that shortest paths from

v ∈ {v1u, vp1u , vp2u , v2u, vf1u , vf2u , vf3u , vflu , vfku , vfwu , vfiu }

to w ∈ {vte, vse} all contain vcfe and conclude that v cannot resolve p2e. By
symmetry, we infer that the only vertices in V (GMw) splitting p2e are v ∈D−G(w)
and vu1w .

Let us consider the vertex vcsa . Then, all shortest paths from vcsa to vte as
well as to vse contain the vertex vcfe and in particular, we obtain dGM (vse, vcsa) =
9 and dGM (vte, vcsa) = 9.

208

8.5. APX-HARDNESS AND EXPLICIT LOWER BOUNDS

For the remaining vertices, we argue analogously to the proof of
Lemma 8.5.5 that all shortest paths to vte and vse contain the vertex vcfe .
In other words, these vertices cannot distinguish the pair p2e.

In summary, the only vertices resolving p2e are contained in the set

D−G(u) ∪D−G(w) ∪ { vu1w , vw1
u } ∪DG(e).

∎

At this point, we are ready to give the proof of Theorem 8.4.1.

8.5.5 Proof of Theorem 8.4.1

Given a 4-regular graph G as an instance of the VERTEX COVER problem,
we construct in polynomial time the corresponding graph GM as described
in Section 8.5.2. Recall that the maximum degree of GM is bounded by 3.
Since G is connected, GM inherits this property due to its construction.
(i) Let C be a vertex cover of G. Then, we construct in polynomial time the
set RG(C) as described in Section 8.5.3. According to Lemma 8.5.3, RG(C)
is a resolving set of GM . Then, the metric dimension of GM is at most

dimM(GM) ≤ ∣RG(C)∣ = ∣C ∣ + ∣E(G)∣ + ∣V (G)∣.

(ii) On the other hand, given a resolving set R of GM , we construct in
polynomial time the vertex cover CG(R) of the original graph G by applying
Lemma 8.5.7. From Lemma 8.5.1, we know that every resolving set of GM

contains at least one main vertex of every subgraph GMx with x ∈ E(G)∪V (G).
Moreover, for every vertex in the set

R/
⎛
⎝ ⋃
x∈E(G)∪V (G)

{ vp1x , vp1x }
⎞
⎠
,

CG(R) contains at most one vertex of V (G). Therefore, we conclude that

∣CG(R)∣ ≤ ∣R∣ − ∑
x∈E(G)∪V (G)

∣{ vp1x , vp1x } ∩R ∣ ≤ ∣R∣ − ∣E(G)∣ − ∣V (G)∣

and the proof of Theorem 8.4.1 follows. ∎

209

CHAPTER 8. THE METRIC DIMENSION PROBLEM

8.6 Improved Approximation Lower Bound

In this section, we give an improved approximation preserving reduc-
tion from the VERTEX COVER problem in 4-regular graphs to the
METRIC DIMENSION problem restricted to graphs with maximum degree
3. Given a 4-regular graph G, we construct the corresponding graph GI with
its subgraphs GIe and GIv having improved properties and less vertices com-
pared to the subgraphs GMv and GMe in the previous section. In particular, a
resolving set S of the graph GI with ∣S∣ = dimM(GI) contains only one vertex
of every subgraph GIv with v ∈ V (G) in contrast to the previous construction,
in which we needed one vertex per each subgraph GMx with x ∈ E(G)∪V (G).
Moreover, we will give the proof of Theorem 8.4.3.

8.6.1 Constructing GI from a 4-regular Graph G

Given a 4-regular graph G as an instance of the VERTEX COVER problem,
we are going to construct the corresponding graph GI with maximum degree
3 as an instance of the METRIC DIMENSION problem. In addition, we prove
some important properties of the corresponding graph GI . Let us start with
the description of the graph GI .

Construction of GI

Let G be a 4-regular graph. For convenience, we split the neighbourhood
of every vertex v ∈ V (G) into two sets of equal size, denoted by N1

G(v) and
N2
G(v). Given G, the corresponding graph GI consists of the subgraphs GIv

and GIe for every vertex v ∈ V (G) and every edge e ∈ E(G). We refer to them
as the vertex and the edge graph, respectively. In the following, we are going
to specify the subgraphs GIx with x ∈ V (G) ∪E(G) beginning with GIv .

Vertex Graph GIv

Let i ∈ V (G) be a vertex andNG(i) = N1
G(i)∪N2

G(i) be the set of its neighbours
in G, where N1

G(i) = {y, x} and N2
G(i) = {u,w}. The corresponding vertex

210

8.6. IMPROVED APPROXIMATION LOWER BOUND

graph GIi is displayed in Figure 8.9. We refer to vp1i and vp2i as the main
vertices of GIi . Furthermore, we introduce the set of vertices R1

G defined by
R1
G = {v

p1
i ∣ i ∈ V (G)}.

vs1i

vp1i

vp2i

vf1i
vf2i

vxyis vuwis vxyi vuwi

vs3i vs2i

Figure 8.9: Subgraph GIi with i ∈ V (G), N1
G(i) = {x, y} and N2

G(i) = {u,w}.

Edge Graph GIe

Let e ∈ E(G) be an edge in G joining the vertices u and w. Then, GIe is
defined as displayed in Figure 8.10. Furthermore, we introduce the split pair
of GIe given by pe = {vse, vte}. For a vertex i ∈ V (G) with N1

G(i) = {v,w} and
N2
G(i) = {x, y}, we define the set D(i) as follows.

D(i) = { vs2i , vs1i , vs3i , vvwis , v
xy
is , v

il
{i,x}, v

il
{i,y}, v

il
{i,w}, v

il
{i,v} ∣ l ∈ [2]}

vf2e

vu1e

vu2e

vw1
e

vte

vf1e

vw2
e

vse

Figure 8.10: The subgraph GIe with e = {u,w}.

As mentioned, the disjoint union of the vertices in V (GIx) with x ∈ V (G) ∪

211

CHAPTER 8. THE METRIC DIMENSION PROBLEM

E(G) defines the vertex set of GI meaning

V (GI) = ⋃
x∈V (G)∪E(G)

V (GIx).

We now describe how the subgraphs are connected in order to form GI .
Let {u,w} ∈ E(G) be an edge in G. In addition, we let N1

G(u) = {y,w} and
N1
G(w) = {z, u}. Then, we connect the subgraphs GIu and GIw both with GI{u,w}

by adding the edges {vywus , vu2{u,w}}, {v
yw
u , vf1{u,w}}, {vzuws, v

w2
{u,w}} and {vzuw , v

f1
{u,w}}

to E(GI). By implementing the former construction for every edge e ∈ E(G),
we obtain in this way the graph GI with maximum vertex degree 3.

Properties of the Corresponding Graph GI

First of all, we are going to prove that for each v ∈ V (G), every resolving set
of GI includes at least one main vertex of GIv .

Lemma 8.6.1
Let G be a 4-regular graph and R a resolving set of GI . Then, for every
v ∈ V (G), there is at least one main vertex of GIv included in R.

Proof of Lemma 8.6.1.
Let G be a 4-regular graph, i ∈ V (G) and R a resolving set of GI . We note
that for every vertex v ∈ V (GI)/ {vp1i , v

p2
i }, we have dGI(vp1i , v) = dGI(v

p2
i , v).

Thus, in order to resolve the pair {vp1i , v
p2
i }, at least one vertex v ∈ {vp1i , v

p2
i }

is contained in R. ∎

8.6.2 Constructing a resolving set from a vertex cover

Let G be a 4-regular graph and GI the corresponding graph constructed as
described in the previous section. Given a vertex cover C of G, we are going
to construct the resolving set RI

G(C) of GI based on C.

The crucial difference between the sets RI
G(C) and RG(C) from Defi-

nition 8.5.1 is that RI
G(C) includes only vertices corresponding to elements

contained in V (G) and in C. It entails a decreased size of the resolving

212

8.6. IMPROVED APPROXIMATION LOWER BOUND

set implying an improved approximation preserving reduction. Let us first
define the set RI

G(C) given a vertex cover C of G. Afterwards, we are going
to prove that RI

G(C) is indeed resolving for GI .

Definition 8.6.1 (Resolving Set RI
G(C))

Let G be a 4-regular graph, GI the corresponding graph constructed as de-
scribed in Section 8.6.1 and C a vertex cover of G. Then, the resolving set
RI
G(C) is defined as follows.

RI
G(C) = {vp1v , vs1u ∣ v ∈ V (G), u ∈ C}

The remaining part of this section is devoted to prove that the set RI
G(C) is

resolving for GI . Let us formulate the precise statement.

Lemma 8.6.2
Let G be a 4-regular graph, GI the corresponding graph constructed as de-
scribed in Section 8.6.1 and C a vertex cover of G. Then, the set RI

G(C) is
resolving for GI .

Let us describe the structure of the proof of Lemma 8.6.2.
First of all, we show that the set R1

G, defined by R1
G = {v

p1
w ∣ w ∈ V (G)},

resolves every pair of vertices of GI except the split pair pe = {vse, vte} for each
e ∈ E(G).

Then, we prove that vs1u with u ∈ e resolves pe. Since R1
G is a subset of

RI
G(C) and C is a vertex cover of G, we conclude that RI

G(C) is a resolving
set of GI . Let us proceed to prove the following statement.

Lemma 8.6.3
Let G be a 4-regular graph. The set R1

G resolves every pair p ∈ (V (G
I)

2
) except

p ∈ { pe ∣ e ∈ E(G) } .

Proof of Lemma 8.6.3.
In the first part of the proof of Lemma 8.6.3, we show that any pair in

(V (G
I)

2
)/
⎛
⎝ ⋃e∈E(G)

{pe}
⎞
⎠

213

CHAPTER 8. THE METRIC DIMENSION PROBLEM

can be distinguished by some vertex w ∈ R1
G. We proceed by case analysis

starting with p ∈ (V (G
I
e)

2
)/{pe} for a fixed e ∈ E(G):

vw2
e

vf1e

vklws

vf2w

vklw

vf1w

vp1w

vp2w

vs3w vs1w

vs2w

vp1u

vodu

vs3u
vs2u vf1u

vodus

vu2e
vu1e

vwy
u

vwy
us vp2uvs1u

vf2u

viuws viuw

vte

vf2evse

vw1
e

Figure 8.11: Subgraphs GIe , GIu and GIw with e = {u,w}.

1.Case (p ∈ (V (G
I
e)

2
)/{pe} with e ∈ E(G)):

Let {u,w} be an edge in G and GI{u,w} its edge graph. Furthermore, we
let N1

G(w) = {i, u}, N2
G(w) = {k, l}, N1

G(u) = {w, y} and N2
G(u) = {o, d}. This

situation is displayed in Figure 8.11. Then, we consider the following distance
classes induced by {vp1u } in GIe .

{ vf1e }, { vf2e , vu2e }, { vse, vte, vu1e }, { vw2
e }, { vw1

e }

By taking vp1w into account, we can resolve all distance classes except {vte, vse}.

2.Case (p ∈ (V (G
I
i)

2
) with i ∈ V (G)):

Let i ∈ V (G) be a vertex and NG(i) = N1
G(i) ∪ N2

G(i) its neighbours in G,
where N1

G(i) = {x, y} and N2
G(i) = {u,w}. Then, the following distance

classes are induced by {vp1i } in GIi .

{ vp1i }, { v
f1
i , v

s1
i }, { v

p2
i , v

f2
i , v

s2
i }, { v

xy
i , v

uw
i , vs3i }, { v

xy
is , v

uw
is }

214

8.6. IMPROVED APPROXIMATION LOWER BOUND

We note that the remaining unresolved distance classes can be resolved by
vp1u .

vwy
is

vs2ivs3i

vte

vf2evse

vw1
e

vi1e

vw2
e vi2e

vf1e

vklws

vf2w

vklw

vf1w

vp1w

vp2w

vs3w vs1w

vs2w

vta

vf2a

vw2
a

vw1
a

vn2a

vsa

vf1avn1a

vp2i
vs1i

vf2i

vjiws vjiw

vp1i

vf1i

vwy
i vodi

vodis

Figure 8.12: Case (e ∩ a ≠ ∅) with e = {i,w} and w ∈ e ∩ a.

3.Case ({x, z}, where x ∈ V (Ge), z ∈ V (Ga) and {e, a} ⊆ E(G)):
Let e and a be edges in G. We begin with the case (e ∩ a ≠ ∅). Then, we
define e = {i,w} and w ∈ e ∩ a. The corresponding situation is displayed in
Figure 8.12. The unresolved distance classes induced by {vp1i } in GIe and GIa
are

{vf2e , vi2e }, { vte, vse, vf1a , vi1e }, { vf2a , vw1
e }, { vsa, vta, vw2

e },

{vw1
a , vn1a } and {vw2

a , vn2a }.

By considering vp1w , we are left with the unresolved distance classes pe and
pa.

In the case (e ∩ a = ∅), we define e = {u,w} and a = {c, y}. Then, there
is a vertex j ∈ {c, y} such that for all x ∈ V (GIe), we have dGI(vp1j , x) ≥ 8.
On the other hand, for all z ∈ V (GIa), we obtain dGI(vp1j , z) ≤ 8. Note that
there could be only one remaining unresolved pair {x, z} with x ∈ V (GIe) and
z ∈ V (GIa). By taking vp1u into account, this last pair can be resolved by vp1u .

215

CHAPTER 8. THE METRIC DIMENSION PROBLEM

4.Case ({x, y}, where x ∈ V (GIe), y ∈ V (GIi), i ∈ V (G) and e ∈ E(G)):
In case of i /∈ e, we obtain dGI(vp1i , x) ≤ 4 and dGI(vp1i , y) ≥ 6 for all x ∈ V (GIi)
and y ∈ V (GIe).

Therefore, we may assume that we have e = {i, k}. Let NG(i) be
partitioned by N1

G(i) = {k, l} and N2
G(i) = {u,w}. Again, we analyze the

distance classes induced by vp1i . The remaining unresolved distance classes
are {vklis , v

f1
e } and {vuwis , v

f1
e }. But, these pairs can be resolved by vp1k .

5.Case ({x, y}, where x ∈ V (GIj), y ∈ V (GIi) and {i, j} ⊆ V (G)):
Let i and j be different vertices in G. Then, we note that for all x ∈ V (GIi)
and y ∈ V (GIj), we have that dGI(x, vp1i) ≤ 4 and dGI(y, vp1i) ≥ 5.

vf1z

vymz

vs2z

vs1z

vs3z

vymzs

vodzs

vp1y

vf1y
vf2y

vkly

vp2y

vy2e

vy1e

vte

vf1e

vy1e′

vse′

vz1e′

vp2z

vodz
vklys

vs2y

vxzy

vy2e′

vs3y vs1y

vf2evse

vx1e

vx2e

vxzys

vf2z

vte′

vf2e′

vf1e′
vz2e′

vp1z

Figure 8.13: Case (e ∩ e′ ≠ ∅) with e = {y, x} and e′ = {z, y}.

Hence, we can distinguish all considered pairs finishing the first part of the
proof. In the second part, we will prove that all pairs pe with e ∈ E(G) re-
main unresolved by R1

G. For this reason, we consider the graph GIe for a fixed
e = {x, y} ∈ E(G). We notice that dGI(vte, v

p1
x) = dGI(vse, v

p1
x) = 6 holds. Thus,

216

8.6. IMPROVED APPROXIMATION LOWER BOUND

vp1x cannot resolve pe. By symmetry, the same is true for vp1y .
Let e′ = {y, z} ∈ E(G) be an edge in G sharing a vertex with e. Fur-

thermore, let the neighborhood of z be defined by N1
G(z) ∪ N2

G(z), where
N1
G(z) = {y,m} and N2

G(z) = {o, d}. Then, we conclude that the shortest
path Pp1−z

t−e from vp1z to vte in GI is given by

Pp1−z
t−e = vp1z − vf1z − vf2z − vymz − v

f1
e′ − vxzy − vf1e − vf2e − vte.

The situation is displayed in Figure 8.13. We keep in mind that Pp1−z
t−e contains

the vertex vf1e . The same holds for the shortest path from vp1z to vse. More
generally, all the shortest paths from a vertex vp1y with y ∈ V (G) to vse or
vte possess this property, which can be proved inductively. Consequently, we
conclude that this pair cannot be resolved by any vp1y with y ∈ V (G). In
summary, the set R1

G leaves all pairs pe with e ∈ E(G) unresolved. ∎

Thus far, we know that the set R1
G resolves all p ∈ (V (G

I)
2
) except pairs p ∈

{pe ∣ e ∈ E(G) }. Therefore, we want to know which vertices are able to
distinguish the remaining pairs. A step towards this goal is the following
lemma.

Lemma 8.6.4
Let G be a 4-regular graph and GI its corresponding graph. For a fixed e ∈
E(G), the vertex vs1i with i ∈ V (G) resolves the pair pe if and only if i ∈ e
holds.

Proof of Lemma 8.6.4.
Let G be a 4-regular graph, i ∈ V (G) a vertex and e ∈ E(G) an edge in G. We
begin with the case i ∈ e. Then, we obtain dGI(vs1i , vse) = 6 and dGI(vs1i , vte) = 7
implying that the pair pe is indeed resolved by vs1i .
Next, we consider the case (i ∉ e). Let us analyze the situation displayed
in Figure 8.14. We let e = {y, a} and e′ = {i, y}. In this situation, we
have dGI(vs1i , vse) = dGI(vs1i , vte) = 9. Notice that shortest paths from vs1i to
vte and vse lead over the edge {vf1e , vf2e } causing that the considered pairs
remain unresolved. Similarly to the proof of Lemma 8.6.3, it can be proved
that shortest paths form every vs1i with i /∈ e to vte and vse contain the edge
{vf2e , vf1e }. Accordingly, vertices vs1i with i /∈ e leave the pair pe unresolved. ∎

217

CHAPTER 8. THE METRIC DIMENSION PROBLEM

vkly

vp2y

vy2e

vy1e

vte

vf1e

vy1e′

vse′

vklys

vs2y

vy2e′

vs3y vs1y

vf2evse

vp1i

vf1i

vodi
vodis

vs2ivs3i

vymis
vs1i vp2i

vymi

vi2e′
vf1e′vi1e′va1e

va2e

vaiy
vaiys

vf2i

vte′

vf2e′

vp1y

vf1y
vf2y

Figure 8.14: Case (i ∉ e), where e = {y, a} and e′ = {i, y}.

At this point, we are ready to give the proof of Lemma 8.6.2.

Proof of Lemma 8.6.2.
Let G be a 4-regular graph and C a vertex cover of G. Recall that by definition
of RI

G(C), we have R1
G ⊆ RI

G(C). From Lemma 8.6.3, we know that R1
G

resolves all pairs of vertices in GI except pe with e ∈ E(G).
On the other hand, the corresponding vertices i ∈ V (G) with vs1i ∈

RI
G(C)/R1

G form a vertex cover of the original graph G. Therefore,
Lemma 8.6.4 applies to RI

G(C)/R1
G resolving the remaining pairs pe with

e ∈ E(G). ∎

8.6.3 Constructing the Corresponding Vertex Cover

Given a 4-regular graph G, its corresponding graph GI and a resolving set R
of GI , we construct in polynomial time a vertex cover CI

G(R) of the original
graph G based on R. Let us first define the corresponding vertex cover CI

G(R)
given a resolving set R of GI .

218

8.6. IMPROVED APPROXIMATION LOWER BOUND

Definition 8.6.2 (Vertex Cover CI
G(R))

Let G be a 4-regular graph with V (G) = {1, . . . , n}, GI its corresponding graph
and R a resolving set of GI . The set of vertices CI

G(R) is defined as follows.

CI
G(R) =

⎛
⎜⎜
⎝
⋃

{i,j}∈E(G)
i<j

{ i ∣ R ∩ p{i,j} ≠ ∅}
⎞
⎟⎟
⎠
∪
⎛
⎝ ⋃k∈V (G)

{k ∣D(k) ∩R ≠ ∅}
⎞
⎠

In the remainder of this section, we will prove that the former defined set
CI
G(R) is indeed a vertex cover of the original graph G. More precisely, we

are going to prove the following statement.

Lemma 8.6.5
Let G be a 4-regular graph, GI its corresponding graph and R a resolving set
of GI . Given R, the set CI

G(R) is a vertex cover of G and is constructible in
polynomial time.

Given a resolving set R of GI , it is straightforward to construct the set CI
G(R)

in polynomial time. Hence, it remains to be proved that CI
G(R) is a vertex

cover of G. According to Lemma 8.6.1, a resolving set R of GI contains at
least one main vertex of the every graph GIv with v ∈ V (G). Moreover, we
may assume that every resolving set contains R1

G as a subset. This can be
deduced from the fact that for every x ∈ V (GI)/{vp1i , v

p2
i } with i ∈ V (G),

we have dGI(vp1i , x) = dGI(v
p2
i , x). As a matter of fact, even when including

both vertices, vp1i and vp2i , we resolve the same number of pairs in GI . By
Lemma 8.6.3, the remaining unresolved pairs p ∈ (V (G

I)
2
) are exactly pe with

e ∈ E(G). It gives rise to the question which vertices in GI are able to
distinguish the remaining pairs. The following lemma resolves this question.

Lemma 8.6.6
Let G be a 4-regular graph and GI its corresponding graph. Given an edge
{u,w} ∈ E(G), then, the vertex v ∈ V (GI) resolves the pair p{u,w} if and only
if v ∈ (p{u,w} ∪D(u) ∪D(w)) .

Proof of Lemma 8.6.6.
Let G be a 4-regular graph and {u,w} ∈ E(G) an edge in G. Furthermore, let

219

CHAPTER 8. THE METRIC DIMENSION PROBLEM

the neighborhood of u in G be given by N1
G(u) = {w,x} and N2

G(u) = {z, y}.
Then, from Lemma 8.6.3, we know that vp1u , vp2u , vp1w and vp2w cannot resolve
pe. On the other hand, we see that the vertices v ∈ pe are able to distinguish
pe. According to Lemma 8.6.4, vs1u and vs1w , both split the pair pe. It implies
that every vertex along the shortest path Ps1−u

s−e from vs1u to vse possesses this
property, where Ps1−u

s−e is defined as follows.

Ps1−u
s−e = vs1u − vs2u − vs3u − vwx

us − vu2e − vu1e − vse

The situation is displayed in Figure 8.15. For convenience, we use the ab-
breviations a = {u,x} and b = {u, y}. Then, we note that dGI(vu1a , vse) = 5 and
dGI(vu1a , vte) = 7 holds. Accordingly, all vertices along the shortest path Pu1−a

s−e

from vu1a to vse resolve the pair pe, where

Pu1−a
s−e = vu1a − vu2a − vwx

us − vu2e − vu1e − vse.

By contrast, the vertex vsa cannot distinguish the pair pe since we have
dGI(vu1a , vse) = 6 and dGI(vu1a , vte) = 6. For the vertex vy1b , we observe that
dGI(vu1b , vse) = 7 and dGI(vu1b , vte) = 9 implying that every vertex on the short-
est path Pu1−b

s−e from vu1b to vse splits the pair pe, where

Pu1−b
s−e = vu1b − vu2b − vzyus − vs3u − vwx

us − vu2e − vu1e − vse.

On the other hand, we have dGI(vsb , vse) = 8 and dGI(vsb , vte) = 8. A similar
situation holds for the vertex vu1c with c = {u, z} yielding dGI(vu1c , vse) = 7 and
dGI(vu1c , vte) = 9. Therefore, we conclude that vertices v ∈D(u) all resolve the
pair pe. By symmetry, the same holds for vertices v ∈ D(w). On the other
hand, for the vertices

v ∈ { vf1u , vf2u , vf1w , vf2w , vwx
u , vzyu , v

pq
w , v

ut
w ∣ p, q ∈ N1

G(w), u, t ∈ N2
G(w)} ,

we obtain dGI(v, vse) = dGI(v, vte). Analogously, for all vertices w having the
property that a shortest path Pw

s−e from w to vse in GI is including vwx
u , we

obtain dGI(w, vse) = dGI(w, vte).
By induction, it can be proved that all vertices

v ∈ V (GI)/(pe ∪D(u) ∪D(w))

220

8.6. IMPROVED APPROXIMATION LOWER BOUND

possess this property. In summary, we conclude that the only vertices resolv-
ing the pair pe are v ∈ (pe ∪D(u) ∪D(w)). ∎

vte

vf2e

vw1
e

vf1e

vw2
e

vp1u

vf2u
vp2u

vzyu

vwx
uvzyusvwx

us

vs3u vs1u

vs2u

vf1u

vsa

vta

vf2a

vsb vf2b
vtb

vf1b

vf1a

vu2a

vu1a

vu2b

vu1b

vy2b

vy1b

vx1a

vx2a

vse

vu1e

vu2e

Figure 8.15: Subgraphs GIu, GIe , GIa and GIb , where a = {u,x} and b = {u, y}.

After having resolved which vertices can distinguish the pairs pe with e ∈
E(G), we are ready to give the proof of Lemma 8.6.5.

Proof of Lemma 8.6.5.
Let G be a 4-regular graph and R a resolving set of GI . From Lemma 8.6.1, we
know that any resolving set R of GI includes at least one main vertex of every
subgraph GIv with v ∈ V (G). According to Lemma 8.6.3, the vertices in R1

G

resolve every pair in GI except pe with e ∈ E(G). By applying Lemma 8.6.6,
for every e = {u,w} ∈ E(G), there exists a vertex ir ∈ (CI

G(R)∩e) correspond-
ing to the vertex r ∈ R ∩ (pe ∪D(u) ∪D(w)) and the proof of Lemma 8.6.5
follows. ∎

221

CHAPTER 8. THE METRIC DIMENSION PROBLEM

8.6.4 Proof of Theorem 8.4.3

Given a 4-regular graph G, we construct in polynomial time the corresponding
graph GI as described in Section 8.6.1. Note that the maximum degree of GI

is 3.
(i) Let C be a vertex cover of the original graph G. Given C, we construct
in polynomial time the corresponding resolving set RI

G(C). According to
Lemma 8.6.2, RI

G(C) is indeed resolving for GI and the metric dimension of
GI can be bounded from above as follows.

dimM(GI) ≤ ∣RI
G(C)∣ = ∣C ∣ + ∣R1

G ∣ = ∣C ∣ + ∣V (G)∣

(ii) On the other hand, given a resolving set R of GI , we are able to construct
in polynomial time the set CI

G(R). By Lemma 8.6.5, we know that CI
G(R)

is a vertex cover of G. Furthermore, we know that every resolving set of
GI contains at least one main vertex of every subgraph GIx with x ∈ V (G).
Furthermore, for each vertex w ∈ (R/{vp1v , vp2v ∣ v ∈ V (G)}), CI

G(R) contains
at most one vertex uw ∈ V (G). We conclude that the size of the set CI

G(R)
can be bounded from above by

∣CI
G(R)∣ ≤ ∣R∣ − ∑

i∈V (G)
∣R ∩ { vp1i , v

p2
i } ∣ ≤ ∣R∣ − ∣V (G)∣

and the proof of Theorem 8.4.3 follows. ∎

8.7 Bibliographic Notes

Some parts of the material presented in this chapter are based on the paper
[HSV12]. In particular, the proof of Theorem 8.4.1 appeared in [HSV12].

222

CHAPTER 9

The Shortest Superstring and
Related Problems

223

CHAPTER 9. THE SHORTEST SUPERSTRING AND RELATED PROBLEMS

In this chapter, we study the approximation hardness of the SHORTEST

SUPERSTRING, the MAXIMUM COMPRESSION and the MAXIMUM

ASYMMETRIC TRAVELING SALESPERSON (MAX-ATSP) problem. We in-
troduce a new reduction method that produces strongly restricted instances
of the SHORTEST SUPERSTRING problem, in which the maximal orbit size is
8 (with no character appearing more than 8 times) and all given strings hav-
ing length exactly 4. Based on this reduction method, we are able to improve
the best up to now known approximation lower bound for the SHORTEST

SUPERSTRING problem and the MAXIMUM COMPRESSION problem by an
order of magnitude. In particular, our first reduction implies an inapproxima-
bility threshold of 345/344 for the SHORTEST SUPERSTRING problem and
207/206 for the MAXIMUM COMPRESSION problem. By designing more effi-
cient gadgets, we improve the corresponding bounds to 333/332 and 204/203,
respectively. The results imply also an improved approximation lower bound
for the MAX-ATSP problem.

9.1 Introduction

The SHORTEST SUPERSTRING problem is the following problem: given a
finite set S of strings and we would like to construct their shortest superstring,
which is the shortest possible string such that every string in S is a proper
substring of it.

The task of computing a shortest common superstring appears in a wide
variety of application related to computational biology (see. e.g. [L88] and
[L90]). Intuitively, short superstrings preserve important biological structure
and are good models of the original DNA sequence. In context of com-
putational biology, DNA sequencing is the important task of determining
the sequence of nucleotides in a molecule of DNA. The DNA can be seen
as a double-stranded sequence of four types of nucleotides represented by
the alphabet {A,C,G,T}. Identifying those strings for different molecules
is an important step towards understanding the biological functions of the
molecules. However, with current laboratory methods, it is quite impossible

224

9.1. INTRODUCTION

to extract a long molecule directly as a whole. In fact, biochemists split
millions of identical molecules into pieces each typically containing at most
500 nucleotides. Then, from sometimes millions of these fragments, one has
to compute the superstring representing the whole molecule.

Interested in computational aspects of this problem, Maier and
Storer [MS77] proved that the decision version of the SHORTEST

SUPERSTRING problem is NP-complete. However, there are many ap-
plications that involve relatively simple classes of strings. Motivated by
those applications, many authors have investigated whether the SHORTEST

SUPERSTRING problem becomes polynomial time solvable under various re-
strictions to the set of instances. Gallant, Maier and Storer [GMS80] proved
that this problem in the exact setting is still NP-complete for strings of
length three and polynomial time solvable for strings of length two. On the
other hand, Timkovskii [T90] studied the SHORTEST SUPERSTRING prob-
lem under restrictions to the orbit size of the letters in the alphabet. The
orbit size of a letter is the number of its occurrences in the strings of S.
Timkovskii proved that this problem restricted to instances with maximal
orbit size two is polynomial time solvable. He raised the question about
the status of the problem with maximal orbit size k for any constant k ≥ 3.
Middendorf [M94] proved that the restricted problem, in which instances S
have maximal orbit size six and the length of all strings in S equals four,
is NP-hard. Furthermore, we mention that the SHORTEST SUPERSTRING

problem remains NP-hard for strongly restricted instances, such as

• all strings have length three and the maximal orbit size is eight [M94],

• the size of the alphabet of the instance is exactly two [GMS80], and

• all strings are of the form 10p10q, where p, q ∈ N [M98].

In order to cope with the exact computation intractability, approxima-
tion algorithms were designed to deal with this problem. In 1990, Li [L90]
gave a polynomial time approximation algorithm for this problem with an
approximation ratio O(logn). The first polynomial time approximation al-
gorithm for the problem with a constant approximation ratio was given by

225

CHAPTER 9. THE SHORTEST SUPERSTRING AND RELATED PROBLEMS

Blum et al. [BJL+94] achieving an approximation ratio 3. This factor was im-
proved in a series of papers yielding approximation ratios of 2.89 by Teng and
Yao [TT93], 2.84 by Czumaj, Gasieniec, Piotrow and Rytter [CGPR97], 2.80
by Kosaraju, Park and Stein [KPS94], 2.75 by Armen and Stein [AS95], 2.67
by Armen and Stein [AS96]; 2.60 by Breslauer, Jiang and Jiang [BJJ97] and
2.5 by Sweedyk [S99]. Kaplan, Lewenstein, Shafrir and Sviridenko [KLSS05]
and Paluch, Elbassioni and van Zuylen [PEZ12] designed an efficient approx-
imation algorithm for the MAX-ATSP problem (see Definition 9.4.3) with
approximation ratio 1.5. By using a black-box reduction due to Breslauer,
Jiang, and Jiang [BJJ97], the approximation algorithms mentioned above for
the MAX-ATSP problem yields an approximation ratio 2.5 for the SHORTEST
SUPERSTRING problem. Both, especially the approximation algorithm given
by Paluch, Elbassioni and van Zuylen [PEZ12], are significantly simpler
than the approximation algorithm for the SHORTEST SUPERSTRING prob-
lem due to Sweedyk [S99]. More recently, Mucha [M13] broke the long-
standing bound of 2.5 and developed an efficient approximation algorithm
for the SHORTEST SUPERSTRING problem with approximation ratio 2.48.
For the special case, when all input strings have length exactly γ, the prob-
lem can be approximated within (γ2+γ−4)/(4γ−6) improving on the general
bound of 2.48 for all γ ∈ {3, . . . ,7} (cf. [GKM13]).

On the lower bound side, Blum et al. [BJL+94] proved that the
SHORTEST SUPERSTRING problem is APX-hard. However, the con-
structed reduction produces instances with arbitrarily large alphabets.
Ott [O99] gave the first explicit approximation hardness result and proved
that the problem is APX-hard even if the size of the alphabet is two. More-
over, he established an inapproximability threshold of 17246/17245 for in-
stances over a binary alphabet. In 2005, Vassilevska [V05] improved this
bound to 1217/1216 by using a natural construction. The constructed in-
stances of the SHORTEST SUPERSTRING problem have maximal orbit size
20 and the length of the strings is exactly 4.

In this chapter, we prove that even instances of the SHORTEST

SUPERSTRING problem with maximal orbit size 8 and all strings having
length 4 are NP-hard to approximate to within any factor less than 333/332.

226

9.1. INTRODUCTION

Maximum Compression Problem

Given a collection of strings S, we want to find a superstring for S with
maximum compression, which is the difference between the sum of the lengths
of the given strings and the length of the superstring.

In the exact setting, we note that an optimal solution to the SHORTEST

SUPERSTRING problem is an optimal solution to this problem, but the
approximate solutions can differ significantly in the sense of approxima-
tion ratio. The MAXIMUM COMPRESSION problem arises in various data
compression problems (cf. [SS82], [S88b] and [MJ75]). The decision ver-
sion of the problem is NP-complete [MS77]. Tarhio and Ukkonen [TU88]
and Turner [T89] gave efficient approximation algorithms for the problem
with approximation ratio 2. The best known approximation upper bound
is 1.5 [KLSS05] by reducing the MAXIMUM COMPRESSION problem to the
MAX-ATSP problem defined below.

On the approximation lower bound side, Blum et al. [BJL+94] proved
that the MAXIMUM COMPRESSION problem is APX-hard. The first ex-
plicit approximation lower bound was given by Ott [O99], who proved that
it is NP-hard to approximate the problem to within any factor less than
11217/11216. This hardness result was improved by Vassilevska [V05] imply-
ing an approximation lower bound of 1072/1071.

In this chapter, we prove that it is NP-hard to approximate the
MAXIMUM COMPRESSION problem to within any constant factor less than
204/203.

Maximum Asymmetric Traveling Salesperson (MAX-ATSP) Problem

Given a complete directed graph G and a weight function w assigning each
edge of G a non-negative weight, the task is to find a closed tour of maximum
total weight visiting every vertex of G exactly once.

Since the MAX-ATSP problem is APX-hard [PY93], there is little hope
for polynomial time approximation algorithms with arbitrary good preci-
sion. Besides being an interesting problem on its own, we are interested in
designing good approximation algorithms for the MAX-ATSP problem since it

227

CHAPTER 9. THE SHORTEST SUPERSTRING AND RELATED PROBLEMS

implies good approximations for a number of related problems. For example,
it was proved by Breslauer, Jiang and Jiang [BJJ97] that an approximation
algorithm for the MAX-ATSP problem with approximation ratio α entails an
approximation algorithm for the SHORTEST SUPERSTRING problem with
approximation ratio (7/2 − 3/2 ⋅ (1/α)). In addition, Kaplan, Lewenstein,
Shafrir and Sviridenko [KLSS05] proved that it implies an approximation
algorithm for the MAXIMUM COMPRESSION problem with approximation
ratio α.

The first efficient approximation algorithm for the MAX-ATSP prob-
lem with guaranteed approximation performance is due to Fisher,
Nemhauser, and Wolsey [FNW79] and achieves an approximation ratio 2.
This approximation upper bound was improved in a series of papers yielding
approximation ratios of 1.66 by Kosaraju, Park, and Stein [KPS94], 1.63 by
Bläser [B02], 1.60 by Lewenstein and Sviridenko [LS03] and 1.50 by Kaplan,
Lewenstein, Shafrir and Sviridenko [KLSS05]. More recently, Paluch, Elbas-
sioni and van Zuylen [PEZ12] gave a simpler approximation algorithm com-
pared to the one due to Kaplan, Lewenstein, Shafrir and Sviridenko [KLSS05]
with the same approximation ratio.

On the approximation hardness side, Engebretsen [E03] proved that it is
NP-hard to approximate the MAX-ATSP problem within any constant ap-
proximation ratio better than 2804/2803. The approximation lower bound for
this problem was improved to 320/319 by Engebretsen and Karpinski [EK06].

In this chapter, we prove that approximating the MAX-ATSP problem to
within any constant factor less than 204/203 is NP-hard.

9.2 The Proof Methods and Summary of Results

The results of this chapter depend on a new reduction method for prov-
ing approximation hardness of the SHORTEST SUPERSTRING and related
problems. This reduction method defines for each problem so called parity
gadgets that on the one hand, are simulating the variables of a well-suited
bounded occurrence CSP and on the other hand, transmit the parity infor-

228

9.3. OUTLINE OF THIS CHAPTER

mation to the gadgets that are simulating the linear equation mod 2 with
exactly three variables of the CSP. The crucial point of the reduction is that
we make essential use of the underlying structure of the constraints in the
CSP, which are induced by a 3-regular amplifier graph. In Chapter 10, we
will extend this method to TSP problems and we believe that it could be a
more widely useful method for improving the approximation lower bounds of
other problems.

In Table 9.1, we summarize our approximation lower bounds as compared
with previous inapproximability results.

Problem Previously known Our Results
SHORTEST 1217/1216 333/332

SUPERSTRING problem [V05]
MAXIMUM 1072/1071 204/203

COMPRESSION problem [V05]
MAX −ATSP problem 320/319 204/203

[EK06]

Table 9.1: Comparison of known explicit lower bounds and our results.

9.3 Outline of this Chapter

This chapter is organized as follows. In Section 9.5, we formulate our main
results. In Section 9.6, we describe the properties of our first reduction and
its implications. In Section 9.7, we give a high-level view of the reduction. In
Section 9.8, we define the special instances of the SHORTEST SUPERSTRING

problem. In Section 9.9, we construct a superstring from an assignment to
a given instance of the MAX-HYBRID-LIN2 problem (cf. Definition 4.9.1).
In Section 9.10, we give the description the corresponding assignment given
a superstring and prove our first result. In Section 9.11, we construct an
improved reduction and give the proof of our main results.

229

CHAPTER 9. THE SHORTEST SUPERSTRING AND RELATED PROBLEMS

9.4 Preliminaries

As we will deal with strings, we are going to introduce some basic terminology
used in this context. In addition, we introduce some notation related to tours
in directed graphs.

Basic String Terminology and Problem Specification

Given two strings v = v1 . . . vn and w = w1 . . .wm over a finite alphabet Σ, v
is said to be a substring of w if m ≥ n and there exists a j ∈ {0, . . . , n −m}
such that for all i ∈ [n], we have vi = wj+i. A string v is said to be a prefix
of w if v is a substring of w and w = v1 . . . vnwn+1 . . .wm. We say that v is a
suffix of w if there is a prefix w′ of w such that w = w′1 . . .w′m−nv1 . . . vn.

Furthermore, we define the overlap of w and v, denoted ov(w, v), as the
longest suffix of w that is also a prefix of v. Also, we define the prefix of v with
respect to w, denoted pref(v,w), as the string v′ such that v = v′ ov(v,w).
w is said to be a superstring of v if v is a substring of w. Given a finite set of
strings S = {s1, . . . , sn}, a string s is a superstring for S if s is a superstring
of every si in S.

According to Definition 4.1.1, the SHORTEST SUPERSTRING problem is
defined as follows.

Definition 9.4.1 (SHORTEST SUPERSTRING problem)
Instances: A set of strings S
Solutions: A superstring s for S

Task: Minimize ∣s ∣

Given a superstring s for a collection of strings S, the compression of s
with respect to S, denoted comp(S, s), is defined as follows.

comp(S, s) = ∑
si∈S
∣si∣ − ∣s ∣.

By means of the notion of compression, we are going to specify the MAXIMUM

COMPRESSION problem.

230

9.4. PRELIMINARIES

Definition 9.4.2 (MAXIMUM COMPRESSION problem)
Instances: A set of strings S
Solutions: A superstring s for S

Task: Maximize comp(S, s)

Given a finite set of strings S over a finite alphabet, we introduce the no-
tion of the maximal orbit size of S being the maximum number of occurrences
of a letter in S.

MAX-ATSP Problem

Given a complete directed graph G, a tour σ in G is formally a subset of
V (G)× V (G) inducing a directed cycle in G that visits each vertex in G only
once. Given a weight function w ∶ V (G)×V (G)→ Q≥0 and a tour σ in G, the
length or cost of σ in (G,w) is defined as follows.

length of σ in (G,w) = ∑
a∈σ
w(a)

According to Definition 4.1.1, the MAX-ATSP problem is specified as follows.

Definition 9.4.3 (MAX-ATSP problem)
Instances: A complete directed graph G and

a weight function w ∶ A(G)→ Q≥0
Solutions: A tour σ in G

Task: Maximize the length of σ in (G,w)

In order to relate the MAXIMUM COMPRESSION problem to
the MAX-ATSP problem, we are going to introduce the overlap graph for
a given collection of strings.

Definition 9.4.4 (Overlap Graph)
Given a finite set of strings S = {s1, . . . , sn} over a finite alphabet Σ such that
no si is a substring of a sj for all i ≠ j. We define the overlap graph GovS with
weight function wov

S ∶ A(GovS)→ N0 as follows.

V (GovS) = S, A(GovS) = S × S/{(si, si) ∣ i ∈ [n]} and wov
S (si, sj) = ∣ov(si, sj)∣

231

CHAPTER 9. THE SHORTEST SUPERSTRING AND RELATED PROBLEMS

Given a collection of strings S = {s1, . . . , sn} as an instance of the
MAXIMUM COMPRESSION problem, we define an instance GS of the
MAX-ATSP problem by adding a special vertex sn+1 to the overlap graph
GovS and constructing the weight function wS ∶ V (GS) × V (GS)→ N≥0 with

wS(si, sj) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

wov
S (si, sj) if {i, j} ⊆ [n],

0 else.

Then, the optimal compression of a superstring for S is identical to the
maximum length of a tour in GS. This simple approximation preserving
reduction was used by Kaplan, Lewenstein, Shafrir and Sviridenko [KLSS05]
in order to obtain an improved approximation algorithm for the MAXIMUM

COMPRESSION problem.

Lemma 9.4.1 ([KLSS05])
A polynomial time approximation algorithm for the MAX-ATSP problem with
approximation ratio α implies a polynomial time approximation algorithm for
the MAXIMUM COMPRESSION problem with approximation ratio α.

9.5 Our Contribution

We now formulate the results of our first approach.

Theorem 9.5.1
Given an instance L of the MAX-HYBRID-LIN2 problem with n wheels,
m2 equations with two variables and m3 equations with exactly three vari-
ables with the properties described in Theorem 4.9.1, we construct in poly-
nomial time an instance SL of the SHORTEST SUPERSTRING problem and
MAXIMUM COMPRESSION problem with the following properties:

(i) If there exists an assignment ϕ to the variables of L which leaves u
equations in L unsatisfied, then, there exist a superstring for SL with
length at most 5m2 + 16m3 + 7n + u.

(ii) From every superstring s for SL with length ∣s ∣ = 5m2 + 16m3 + u + 7n,

232

9.5. OUR CONTRIBUTION

we can construct in polynomial time an assignment ψs to the variables
of L that leaves at most u equations in L unsatisfied.

(iii) If there exists an assignment ϕ to the variables of L which leaves u
equations unsatisfied, then, there exist a superstring with compression
at least 3m2 + 12m3 − u + 5n.

(iv) From every superstring s for SL with compression 3m2+12m3−u+5n,
we can construct in polynomial time an assignment ψs to the variables
of L that leaves at most u equations in L unsatisfied.

(v) The maximal orbit size of the instance SL is 8 and the length of each
string in SL is 4.

The former theorem can be used to derive an explicit approximation lower
bound for the SHORTEST SUPERSTRING problem by reducing instances of
the MAX-HYBRID-LIN2 problem of the form described in Theorem 4.9.1 to
the SHORTEST SUPERSTRING problem.

Corollary 9.5.1
It is NP-hard to approximate the SHORTEST SUPERSTRING problem to
within any constant approximation ratio less than 333/332.

Proof of Corollary 9.5.1.
For a given ε > 0, we choose constants k ∈ N and δ ∈ (0, 12) such that the
following holds.

333 − δ

332 + δ + 42

k

≥ 333

332
− ε

Given an instance L3 of the MAX-E3LIN2 problem, we generate k copies of
L3 and produce an instance L of the MAX-HYBRID-LIN2 problem. Then, we
construct the corresponding instance SL of the SHORTEST SUPERSTRING

problem with the properties described in Theorem 9.5.1. We conclude ac-
cording to Theorem 4.9.1 that there exist a superstring for SL with length
at most

5 ⋅ 60νk + 16 ⋅ 2νk + δνk + 7n ≤ (332 + δ + 7n

kν
) νk ≤ (332 + δ + 7 ⋅ 6

k
) νk

233

CHAPTER 9. THE SHORTEST SUPERSTRING AND RELATED PROBLEMS

or the length of a superstring for SL is bounded from below by

5 ⋅ 60νk + 16 ⋅ 2νk + (1 − δ)νk + 7n ≥ (332 + (1 − δ))νk ≥ (333 − δ)νk.

From Theorem 4.9.1, we know that the two cases above are NP-hard to
distinguish. Hence, for every ε > 0, it is NP-hard to find a solution to the
SHORTEST SUPERSTRING problem with an approximation ratio

333 − δ

332 + δ + 42

k

≥ 333

332
− ε

and the proof of Corollary 9.5.1 follows. ∎

Analogously, Theorem 9.5.1 can be used to derive an approximation lower
bound for the MAXIMUM COMPRESSION problem.

Corollary 9.5.2
It is NP-hard to approximate the MAXIMUM COMPRESSION problem to
within any constant approximation ratio less than 204/203.

By applying Lemma 9.4.1, we obtain the following hardness result for the
MAX-ATSP problem.

Corollary 9.5.3
It is NP-hard to approximate the MAX-ATSP problem to within any constant
approximation ratio less than 204/203.

9.6 The First Reduction

In this section, we present the proof of a slightly weaker result by using
a more intuitive approach. In particular, it uses strings with length 6

simulating equations with exactly three variables. In section 9.11, we will
introduce smaller gadgets for equations with exactly three variables implying
the claimed inapproximability results.

Let us state the properties of our first approach.

234

9.6. THE FIRST REDUCTION

Theorem 9.6.1
Given an instance L of the MAX-HYBRID-LIN2 problem with n wheels,
m2 equations with two variables and m3 equations with exactly three vari-
ables with the properties described in Theorem 4.9.1, we construct in poly-
nomial time an instance SL of the SHORTEST SUPERSTRING problem and
MAXIMUM COMPRESSION problem with the following properties:

(i) If there exists an assignment ϕ to the variables of L which leaves u
equations in L unsatisfied, then, there exist a superstring sϕ for SL

with length at most 5m2 + 22m3 + 7n + u.

(ii) From every superstring s for SL with length ∣s ∣ = 5m2 + 22m3 + u + 7n,
we can construct in polynomial time an assignment ψs to the variables
of L that leaves at most u equations in L unsatisfied.

(iii) If there exists an assignment ϕ to the variables of L which leaves u
equations unsatisfied, then, there exist a superstring for SL with com-
pression at least 3m2 + 14m3 − u + 5n.

(iv) From every superstring s for SL with compression 3m2+14m3−u+5n,
we can construct in polynomial time an assignment ψs to the variables
of L that leaves at most u equations in L unsatisfied.

(v) The maximal orbit size of the instance SL is eight and the length of a
string in SL is bounded by six.

Combining Theorem 4.9.1 with Theorem 9.6.1, we obtain the following ex-
plicit lower bound for the SHORTEST SUPERSTRING problem.

Corollary 9.6.1
It is NP-hard to approximate the SHORTEST SUPERSTRING problem to
within any constant approximation ratio less than 345/344.

Before we proceed to the proof of Theorem 9.6.1, we describe the reduc-
tion from a high-level view and try to build some intuition.

235

CHAPTER 9. THE SHORTEST SUPERSTRING AND RELATED PROBLEMS

9.7 The High-Level View of the Reduction

In order to build some intuition, let us first give the high-level view of the
reduction. Given an instance L of the MAX-HYBRID-LIN2 problem (cf. Def-
inition 4.9.1), we want to transform L into an instance of the SHORTEST

SUPERSTRING problem. Fortunately, the special structure of the linear
equations in the MAX-HYBRID-LIN2 problem is particularly well-suited for
our reduction, since a part of the equations with two variables form a
cycle and every variable occurs exactly three times. For every equation
ℓi+1 ≡ xi ⊕ xi+1 = 0 included in this cycle, we introduce a set S(ℓi+1) contain-
ing two strings, which can be aligned advantageously in two natural ways.
If those fragments, corresponding to two successively following equations
xi−1 ⊕ xi = 0 and xi ⊕ xi+1 = 0, use the same natural alignment, we are able
to overlap them by one letter. From a high level view, we can construct
an associated superstring for each wheel in L , which contains the aligned
strings.

We will define for every equation ℓ in L an associated set of strings
S(ℓ) and the corresponding natural alignments. The instance SL of the
SHORTEST SUPERSTRING problem is defined as the union of all sets S(ℓ).
Due to the construction of the sets S(ℓ), there is a particular way to inter-
pret an alignment of the strings in S(ℓ) included in the resulting superstring
as an assignment to the variables in the instance of the MAX-HYBRID-LIN2
problem. The major challenge in the proof of correctness is to prove that
every superstring for SL can be interpreted as an assignment to the variables
of L with the property that the number of satisfied equations is connected
to the length of the superstring.

9.8 Description of the Instance SL given L

Given an instance L of the MAX-HYBRID-LIN2 problem, we are going to
construct the corresponding instance SL of the SHORTEST SUPERSTRING

problem. Furthermore, we introduce some useful notation.

236

9.8. DESCRIPTION OF THE INSTANCE SL GIVEN L

For every equation ℓ in L , we define a set S(ℓ) of corresponding strings.
The corresponding instance SL of the SHORTEST SUPERSTRING problem is
given by SL = ⋃

ℓ in L
S(ℓ). The strings in the set S(ℓ) differ by the type

of equation ℓ in L . In particular, we distinguish four types of equations
contained in L .

• Cycle equations

• Matching equations

• Wheel border equations

• Equations with exactly three variables

Let us begin with the description of the strings corresponding to wheel border
equations.

Strings Corresponding to Wheel Border Equations

Given an instance L of the MAX-HYBRID-LIN2 problem, a wheel Wx in L

and its wheel border equation ℓx1 ≡ x1 ⊕ xn = 0, we introduce six associated
strings, that are all included in the set S(ℓx1). Due to the construction of the
wheel Wx, the variable xn is a contact variable. This means that xn appears
in an equation ℓ3j with exactly three variables. The strings in the set S(ℓx1)
differ by the type of equation ℓ3j . We begin with the case ℓ3j ≡ xn ⊕ y ⊕ z = 0.

The string LxC l
x is used as the initial part of the superstring correspond-

ing to this wheel, whereas Cr
xRx is used as the end part. Furthermore, we

introduce strings that represent an assignment that sets either the variable
x1 to 0 or the variable xn to 1. The corresponding two strings are

C l
xx

m0
1 xl1nC

r
x and xl1nC

r
xC

l
xx

m0
1 .

Finally, we define the last two strings of the set S(ℓx1) given by

C l
xx

r1
1 x

m0
n Cr

x and xm0
n Cr

xC
l
xx

r1
1

having a similar interpretation. Both pairs of strings can be overlapped by
two letters. Those natural alignments have a crucial influence during the

237

CHAPTER 9. THE SHORTEST SUPERSTRING AND RELATED PROBLEMS

process of constructing a superstring. For this reason, we introduce a notion
for this alignments. By the 0-alignment of the strings in S(ℓx1), we refer to
the following alignment of the four strings. In the following, (↓) will denote
the overlapping of the strings.

C l
xx

m0
1 xl1nC

r
x and xl1nC

r
xC

l
xx

m0
1 C l

xx
r1
1 x

m0
n Cr

x and xm0
n Cr

xC
l
xx

r1
1

↓ ↓

C l
xx

m0
1 xl1nC

r
xC

l
xx

m0
1 and xm0

n Cr
xC

l
xx

r1
1 x

m0
n Cr

x

On the other hand, we the define the 1-alignment of the strings in S(ℓx1) as
follows.

C l
xx

m0
1 xl1nC

r
x and xl1nC

r
xC

l
xx

m0
1 C l

xx
r1
1 x

m0
n Cr

x and xm0
n Cr

xC
l
xx

r1
1 .

↓ ↓

xl1nC
r
xC

l
xx

m0
1 xl1nC

r
x and C l

xx
r1
1 x

m0
n Cr

xC
l
xx

r1
1

Both ways to join the four strings are called 0/1-alignments.
After having described how the strings corresponding to S(ℓx1) in case of

ℓ3j ≡ xn⊕y⊕z = 0 are defined, we are going to deal with the case ℓ3j ≡ xn⊕y⊕z =
1. As before, we use LxC l

x as the initial part of the superstring corresponding
to this wheel, whereas Cr

xRx is used as the end part. Furthermore, we define
the remaining four strings contained in S(ℓx1) as follows.

C l
xx

m0
1 xm1

n Cr
x xm1

n Cr
xC

l
xx

m0
1

and

C l
xx

r1
1 x

l0
nC

r
x xl0nC

r
xC

l
xx

r1
1

238

9.8. DESCRIPTION OF THE INSTANCE SL GIVEN L

Both pairs of strings can be overlapped by two letters. We introduce a
notation for these alignments.

C l
xx

m0
1 xm1

n Cr
x and xm1

n Cr
xC

l
xx

m0
1 C l

xx
r1
1 x

l0
nC

r
x and xl0nC

r
xC

l
xx

r1
1 .

↓ ↓

C l
xx

m0
1 xm1

n Cr
xC

l
xx

m0
1 and xl0nC

r
xC

l
xx

r1
1 x

l0
nC

r
x

The former introduced alignment is called the 0-alignment of the strings in
S(ℓx1). On the other hand, we the define the 1-alignment of the strings in
S(ℓx1) as follows.

C l
xx

m0
1 xm1

n Cr
x and xm1

n Cr
xC

l
xx

m0
1 C l

xx
r1
1 x

l0
nC

r
x and xl0nC

r
xC

l
xx

r1
1 .

↓ ↓

xm1
n Cr

xC
l
xx

m0
1 xm1

n Cr
x and C l

xx
r1
1 x

l0
nC

r
xC

l
xx

r1
1

In the remainder, we refer to both ways to overlap the four strings as 0/1-
alignments.

Strings Corresponding to Matching Equations

Let Wx be a wheel in L and M(Wx) its associated perfect matching. Let
{i, j} be an edge in M(Wx) and ℓx{i,j} ≡ xi ⊕ xj = 0 the associated matching
equation. We now define the corresponding set S(ℓx{i,j}) consisting of two
strings. Assuming i < j, we introduce two strings of the form

xr0j x
l0
j x

r1
i x

l1
i and xr1i x

l1
i x

r0
j x

l0
j

corresponding to the matching equation. There are two ways to align those
two strings to obtain an overlap of two letters. In the remainder, we refer

239

CHAPTER 9. THE SHORTEST SUPERSTRING AND RELATED PROBLEMS

to those alignments as 0/1-alignments. (The brace notation indicate original
strings).

xr0j x
l0
j x

r1
i x

l1
i and xr1i x

l1
i x

r0
j x

l0
j

↙ ↘
xr0
j xl0

j xr1
i xl1

i

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
xr0j x

l0
j

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
xr1
i xl1

i xr0
j xl0

j

xr1i x
l1
i x

r0
j x

l0
j

xr1
i xl1

i xr0
j xl0

j

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
xr1i x

l1
i

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
xr0
j xl0

j xr1
i xl1

i

xr0j x
l0
j x

r1
i x

l1
i

The first way to overlap the strings is called the 0-alignment, whereas the
second one is called the 1-alignment. Next, we describe the strings corre-
sponding to wheel equations.

Strings Corresponding to Cycle Equations

Let Wx be a wheel in L and M(Wx) its associated matching. Furthermore,
let {i, j} and {i + 1, j′} be both contained in M(Wx). Assuming i < j, we
introduce the corresponding strings for xi ⊕ xi+1 = 0. If i + 1 < j′, we have

xl1i x
r1
i+1x

m0
i xm0

i+1 and xm0
i xm0

i+1x
l1
i x

r1
i+1.

Otherwise (i + 1 > j′), we use

xl1i x
m1
i+1x

m0
i xr0i+1 and xm0

i xr0i+1x
l1
i x

m1
i+1.

In case of (i > j and i + 1 > j′), we use

xm1
i xm1

i+1x
l0
i x

r0
i+1 and xl0i x

r0
i+1x

m1
i xm1

i+1.

Finally, if (i > j and i + 1 < j′) holds, we introduce

xm1
i xr1i+1x

l0
i x

m0
i+1 and xl0i x

m0
i+1x

m1
i xr1i+1.

Let xi be a variable in L that occurs in an equation ℓ3j with three variables.
We now define the corresponding strings for the equations xi−1 ⊕ xi = 0 and

240

9.8. DESCRIPTION OF THE INSTANCE SL GIVEN L

xi ⊕ xi+1 = 0. We assume that {i − 1, j} and {i + 1, j′} are both included in
M(Wx). Furthermore, we assume i − 1 < j and i + 1 < j′. If the equation ℓ3j
is of the form xi ⊕ y ⊕ z = 0, we introduce

xl1i−1x
r1
i x

m0
i−1x

m0
i and xm0

i−1x
m0
i xl1i−1x

r1
i .

for xi−1 ⊕ xi = 0. Furthermore, for xi ⊕ xi+1 = 0, we use the strings

xl1i x
r1
i+1x

m0
i xm0

i+1 and xm0
i xm0

i+1x
l1
i x

r1
i+1.

On the other hand, if the equation ℓ3j is of the form xi⊕y⊕z = 1, we introduce

xl1i−1x
m1
i xm0

i−1x
r0
i and xm0

i−1x
r0
i x

l1
i−1x

m1
i .

corresponding to the equation xi−1 ⊕ xi = 0. For xi ⊕ xi+1 = 0, we use the
strings

xm1
i xr1i+1x

l0
i x

m0
i+1 and xl0i x

m0
i+1x

m1
i xr1i+1.

Analogously, we introduce the notation of 0/1-alignments for the strings in
S(ℓxi+1). For the strings,

xm1
i xm1

i+1x
l0
i x

r0
i+1 and xl0i x

r0
i+1x

m1
i xm1

i+1,

we define the following alignments as 0/1-alignments.

xm1
i xm1

i+1x
l0
i xr0

i+1³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
xm1
i xm1

i+1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
xl0
i xr0

i+1x
m1
i xm1

i+1

xl0i x
r0
i+1x

m1
i xm1

i+1 and

xl0
i xr0

i+1x
m1
i xm1

i+1³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
xl0i x

r0
i+1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
xm1
i xm1

i+1x
l0
i xr0

i+1

xm1
i xm1

i+1x
l0
i x

r0
i+1

The the former alignment is called the 1-alignment and the latter one is called
the 0-alignment. Next, we describe the strings corresponding to equations
with three variables.

Strings Corresponding to Equations with Three Variables

We now concentrate on equations with exactly three variables. Let ℓ3j be an
equation with three variables in L . For every equation ℓ3j , we define two
corresponding sets SA(ℓ3j) and SB(ℓ3j), both containing exactly three strings.

241

CHAPTER 9. THE SHORTEST SUPERSTRING AND RELATED PROBLEMS

The set S(ℓ3j) is defined by the union SA(ℓ3j)∪SB(ℓ3j). We distinguish whether
ℓ3j is of the form x ⊕ y ⊕ z = 1 or x ⊕ y ⊕ z = 0. The description starts with
the former case.

An equation of the form x⊕ y⊕ z = 0 is represented by SA(ℓ3j) containing
the strings

xr1A1
jx

l1yr1A2
jy

l1 yr1A2
jy

l1xm0A3
jCj xm0A3

jCjx
r1A1

jx
l1

and by SB(ℓ3j) including the following strings.

xr1B1
jx

l1zr1B2
j z

l1 zr1B2
j z

l1CjB
3
jx

m0 CjB
3
jx

m0xr1B1
jx

l1

The strings in the set SA(ℓ3j) can be aligned in a cyclic fashion in order to
obtain different fragments, which we will use in our reduction. Every specific
alignment possesses its own abbreviation given below.

xr1A1
jx

l1yr1A2
jy

l1 yr1A2
jy

l1xm0A3
jCj xm0A3

jCjx
r1A1

jx
l1

↓
xr1A1

jx
l1yr1A2

jy
l1

³¹¹·¹¹µ
xr1A1

jx
l1

´¹¹¹¸¹¹¹¶
yr1A2

jy
l1xm0A3

jCj

yr1A2
jy

l1

xm0A3
jCjx

r1A1
jx

l1

³¹¹·¹¹¹µ
xm0A3

jCjx
r1A1

jx
l1 ≡ xr1Ajx

l1 called x1- alignment

↓

´¹¹¹¸¹¹¹¶
yr1A2

jy
l1xm0A3

jCj

yr1A2
jy

l1

xm0A3
jCjx

r1A1
jx

l1

³¹¹·¹¹¹µ
xm0A3

jCj

´¹¹¸¹¹¶
xr1A1

jx
l1yr1A2

jy
l1

xr1A1
jx

l1yr1A2
jy

l1 ≡ yr1Ajy
l1 called y1- alignment

↓

´¹¹¸¹¹¹¶
xm0A3

jCjxr1A1
jx

l1

xm0A3
jCj

xr1A1
jx

l1yr1A2
jy

l1

³¹¹·¹¹µ
xr1A1

jx
l1

´¹¹¹¸¹¹¹¶
yr1A2

jy
l1xm0A3

jCj

yr1A2
jy

l1xm0A3
jCj ≡ xm0AjCj called left-x0- alignment

The strings in SB(ℓ3j) can also be aligned in a cyclic fashion. For each of the
fragments, we are going to define an abbreviation.

242

9.8. DESCRIPTION OF THE INSTANCE SL GIVEN L

xr1B1
jx

l1zr1B2
j z

l1 zr1B2
j z

l1CjB
3
jx

m0 CjB
3
jx

m0xr1B1
jx

l1

↓

´¹¹¹¸¹¹¹¶
CjB3

j x
m0xr1B1

j x
l1

CjB
3
jx

m0

xr1B1
j x

l1zr1B2
j z

l1

³¹¹·¹¹¹µ
xr1B1

jx
l1

´¹¹¸¹¹¹¶
zr1B2

j z
l1CjB3

j x
m0

zr1B2
j z

l1CjB
3
jx

m0 ≡ CjBjx
m0 called right-x0- alignment

↓
xr1B1

j x
l1zr1B2

j z
l1

³¹¹·¹¹¹µ
xr1B1

jx
l1

´¹¹¸¹¹¹¶
zr1B2

j z
l1CjB3

j x
m0

zr1B2
j z

l1

CjB
3
j x

m0xr1B1
j x

l1

³¹¹¹·¹¹¹µ
CjB

3
jx

m0xr1B1
jx

l1 ≡ xr1Bjx
l1 called x1- alignment

↓

´¹¹¸¹¹¹¶
zr1B2

j z
l1CjB3

j x
m0

zr1B2
j z

l1

CjB
3
j x

m0xr1B1
j x

l1

³¹¹¹·¹¹¹µ
CjB

3
jx

m0

´¹¹¸¹¹¹¶
xr1B1

j x
l1zr1B2

j z
l1

xr1B1
jx

l1zr1B2
j z

l1 ≡ zr1Bjz
l1 called z1- alignment

The strings in SB(ℓ3j) and SA(ℓ3j) can be overlapped in a special way that
corresponds to assigning the value 0 to x.

xr1A1
jx

l1yr1A2
jy

l1 yr1A2
jy

l1xm0A3
jCj xm0A3

jCjx
r1A1

jx
l1

zr1B2
j z

l1CjB
3
jx

m0 CjB
3
jx

m0xr1B1
jx

l1 xr1B1
jx

l1zr1B2
j z

l1

↓

´¹¹¸¹¹¹¶
xm0A3

jCjxr1A1
jx

l1

xm0A3
jCj

xr1A1
jx

l1yr1A2
jy

l1

³¹¹·¹¹µ
xr1A1

jx
l1

´¹¹¹¸¹¹¹¶
yr1A2

jy
l1xm0A3

jCj

yr1A2
jy

l1xm0A3
j

CjB
3
j x

m0xr1B1
j x

l1

³¹¹¹·¹¹¹µ
CjB

3
jx

m0

´¹¹¸¹¹¹¶
xr1B1

j x
l1zr1B2

j z
l1

xr1B1
jx

l1

zr1B2
j z

l1CjB
3
j x

m0

³¹¹·¹¹¹µ
zr1B2

j z
l1CjB

3
jx

m0

In the remainder, we call this alignment the x0-alignment of S(ℓ3j) and use
the abbreviation xm0Cjxm0 for this string.

243

CHAPTER 9. THE SHORTEST SUPERSTRING AND RELATED PROBLEMS

When the equation with three variables is of the form ℓ3j ≡ x⊕ y ⊕ z = 1, the
set SA(ℓ3j) contains the following strings.

xr0A1
jx

l0yr0A2
jy

l0 yr0A2
jy

l0xm1A3
jCj xm1A3

jCjx
r0A1

jx
l0

Furthermore, the set SB(ℓ3j) includes three strings defined as follows.

xr0B1
jx

l0zr0B2
j z

l0 zr0B2
j z

l0CjB
3
jx

m1 CjB
3
jx

m1xr0B1
jx

l0

The corresponding alignments for the strings in SA(ℓ3j) and SB(ℓ3j) can be
defined in an analogous way.

9.9 Constructing Superstrings from Assignments

Given an assignment ϕ to the variables of L , we are going to construct the
associated superstring sϕ for the instance SL .

For every equation ℓ in L , we formulate rules for aligning the corre-
sponding strings in S(ℓ) according to the assignment ϕ. We start with sets
corresponding to wheel border equations and cycle equations. Afterwards,
we show how the actual fragments can be overlapped with strings from
the sets corresponding to matching equations and equations with three
variables. Furthermore, we analyze the relation between the number of
satisfied equations by ϕ and the length of the obtained superstring sϕ. We
begin with the description of the alignment of strings corresponding to wheel
border equations in L .

Aligning Strings Corresponding to Wheel Border Equations

Let Wx be a wheel in L and x1⊕xn = 0 its wheel border equation. Further-
more, we assume that xn is contained in a equation with three variables of the
form xn⊕y⊕z = 0. First, we set the string LxC l

x as the initial part of our su-
perstring corresponding to the wheel Wx. Then, we use the ϕ(x1)-alignment
of the strings

C l
xx

m0
1 xm1

n Cr
x, xl1nC

r
xC

l
xx

m0
1 , C l

xx
r1
1 x

m0
n Cr

x, and xm0
n Cr

xC
l
xx

r1
1 .

244

9.9. CONSTRUCTING SUPERSTRINGS FROM ASSIGNMENTS

In this condition, one of the strings sl can be overlapped from the left
side with LxC l

x by one letter. The other string sr will be joined from the
right side with Cr

xRx by one letter. This construction will help us to check
whether ϕ assigns the same value to the variable xn as to x1. The string sr
can be interpreted as the ϕ(x1)-alignment of the strings corresponding to
xn ⊕ xn+1 = 0, since the first letter of sr is either xm0

n or xl1n .

The parts corresponding to a wheel border equation with xn⊕y⊕z = 1 can be
constructed analogously. Next, we are going to align strings corresponding
to cycle equations.

Aligning Strings Corresponding to Cycle Equations

Let xi ⊕ xi+1 = 0 be a cycle equation contained in L . Furthermore, let the
corresponding strings be given by

xm0
i xm0

i+1x
l1
i x

r1
i+1 and xl1i x

r1
i+1x

m0
i xm0

i+1.

In dependence of the given assignment ϕ, we use simple alignments to overlap
the considered strings. More precisely, we make use of the ϕ(xi+1)-alignment.
For every pair of associated strings, we derive an overlap of two letters. We
are going to align those fragments with strings corresponding to matching
equations and equations with three variables.

Aligning Strings Corresponding to Matching Equations

Let xi⊕xj = 0 be a matching equation in L . Let us assume that i < j holds.
We define the alignment of the strings in S(ℓx{i,j}) according to the value of
ϕ(xi+1). More precisely, we use the ϕ(xi+1)-alignment of the strings

xr0j x
l0
j x

r1
i x

l1
i and xr1i x

l1
i x

r0
j x

l0
j .

Due to this alignment, we obtain an overlap of two letters. We are going
to analyze the length of the resulting superstring in dependence of the as-
signment ϕ to the variables xi, xi+1, xj and xj+1. We start with the case
ϕ(xi+1) = ϕ(xj+1) = 1.

245

CHAPTER 9. THE SHORTEST SUPERSTRING AND RELATED PROBLEMS

Case (ϕ(xi+1) = ϕ(xj+1) = 1):
We use the 1-alignment of the strings xr1i xl1i xr0j xl0j and xr0j x

l0
j x

r1
i x

l1
i . The

situation is displayed below. (The two triangle notation ▷▷ and ◁◁ will be
explained hereafter.)

b▷▷ Xi x
r0
j x

l0
j x

r1
i x

l1
i xl1i ◁◁m▷▷ Xj x

r1
i x

l1
i x

r0
j x

l0
j xm1

j ◁◁e

↓

b▷▷ Xi

xr1
i xl1

i xr0
j xl0

j

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
xr1i x

l1
i

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
xr0
j xl0

j xr1
i xl1

i

xr0j x
l0
j x

r1
i xl1i ◁◁m▷▷ Xj xm1

j ◁◁e

The actual superstring s is denoted by the following sequence.

s = b▷▷ Xi x
r0
j x

l0
j x

r1
i x

l1
i xl1i ◁◁m▷▷ Xj x

r1
i x

l1
i x

r0
j x

l0
j xm1

j ◁◁e

The part ▷▷ Xi represents a simple alignment of the strings corresponding
to xi−1 ⊕ xi = 0 ending with the letter Xi ∈ {xm0

i , xr1i }, which means

▷▷ Xi ∈ {xm0
i−1x

m0
i xl1i−1x

r1
i x

m0
i−1x

m0
i , xl1i−1x

r1
i x

m0
i−1x

m0
i xl1i−1x

r1
i }.

The letter in the box emphasizes the letter which can be used to overlap from
the right side with other strings. Furthermore, the string xl1i ◁◁ denotes

xl1i x
r1
i+1x

m0
i xm0

i+1x
l1
i x

r1
i+1. Analogously, ▷ ▷ Xj is a simple alignment of the

strings corresponding to xj−1 ⊕ xj = 0, where Xj ∈ {xr0j , xm1
j }. Furthermore,

we use xm1
j ◁◁ to denote xm1

j xm1
j+1x

l0
j x

r0
j+1x

m1
j xm1

j+1. Finally, b, m and e are
sequences of letters, which we do not specify in detail. They define the
remaining parts of the superstring.
If Xi = xr1i holds, we align ▷ ▷ Xi with xr1i x

l1
i x

r0
j x

l0
j x

r1
i x

l1
i to achieve an

additional overlap of one letter. An analogous situation holds for▷▷ Xj and

xm1
j ◁◁. All in all, we obtain an overlap of three letters if ϕ(xi) = ϕ(xi+1) = 1

and ϕ(xj+1) = ϕ(xj) = 1 holds. Otherwise, we lose an overlap of one letter
per unsatisfied equation.

246

9.9. CONSTRUCTING SUPERSTRINGS FROM ASSIGNMENTS

Case (ϕ(xi+1) = ϕ(xj+1) = 0):
We use the 0-alignment of the strings xr1i xl1i xr0j xl0j and xr0j xl0j xr1i xl1i .

b▷▷ Xi x
r0
j x

l0
j x

r1
i x

l1
i xm0

i ◁◁m▷▷ Xj x
r1
i x

l1
i x

r0
j x

l0
j xl0j ◁◁ e

↓

b ▷▷ Xi xm0
i ◁◁m▷▷ Xj

xr0
j xl0

j xr1
i xl1

i

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
xr0j x

l0
j

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
xr1
i xl1

i xr0
j xl0

j

xr1i x
l1
i x

r0
j xl0j ◁◁ e

In this case, we use xm0
i ◁◁ as an abbreviation for xm0

i xm0
i+1x

l1
i x

r1
i+1x

m0
i xm0

i+1

and xl0j ◁◁ for xl0j xr0j+1xm1
j xm1

j+1x
l0
j x

r0
j+1. If Xi = xm0

i holds, we align ▷▷ Xi

with xm0
i ◁◁ and gain an additional overlap of one letter. An analogous

situation holds for ▷ ▷ Xj and xl0j ◁ ◁. Hence, we obtain an overlap
of three letters if ϕ(xi+1) = ϕ(xi) = 0 and ϕ(xj+1) = ϕ(xj) = 0 holds. If the
corresponding equation with two variables is not satisfied, we lose an overlap
of one letter.

Case (ϕ(xi+1) ≠ ϕ(xj+1) = 1):
In this case, we use the 0-alignment of the strings xr1i x

l1
i x

r0
j x

l0
j and

xr0j x
l0
j x

r1
i x

l1
i .

b▷▷ Xi x
r0
j x

l0
j x

r1
i x

l1
i xm0

i ◁◁m▷▷ Xj x
r1
i x

l1
i x

r0
j x

l0
j xm1

j ◁◁e

↓

b▷▷ Xi xm0
i ◁◁m▷▷ Xj xm1

j ◁◁e

xr0
j xl0

j xr1
i xl1

i

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
xr0j x

l0
j

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
xr1
i xl1

i xr0
j xl0

j

xr1i x
l1
i x

r0
j x

l0
j

247

CHAPTER 9. THE SHORTEST SUPERSTRING AND RELATED PROBLEMS

We attach xr0j x
l0
j x

r1
i x

l1
i x

r0
j x

l0
j at the end of our actual solution sϕ without

having any overlap with the so far obtained superstring. Notice that we
obtain in each case an additional overlap of one letter if the corresponding
equation with two variables is satisfied, i.e. Xi = xm0

i and Xj = xm1
j .

Case (ϕ(xi+1) ≠ ϕ(xj+1) = 0):
According to ϕ, we use the 1-alignment of the strings xr1i x

l1
i x

r0
j x

l0
j and

xr0j x
l0
j x

r1
i x

l1
i .

b▷▷ Xi x
r0
j x

l0
j x

r1
i x

l1
i xl1i ◁◁m▷▷ Xj x

r1
i x

l1
i x

r0
j x

l0
j xl0j ◁◁e

↓

b▷▷ Xi

xr1
i xl1

i xr0
j xl0

j

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
xr1i x

l1
i

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
xr0
j xl0

j xr1
i xl1

i

xr0j x
l0
j x

r1
i xl1i ◁◁m▷▷ Xj xl0j ◁◁e

We join xr1i x
l1
i x

r0
j x

l0
j x

r1
i x

l1
i from the right side with xl1i ◁◁ and obtain an

overlap of one letter. This reduces the length of the superstring by one
letter independent of the assignment ϕ(xj). In case of Xi = xr1i , we achieve
another overlap of one letter, since we are able to align ▷▷ Xi from the
right side with xr1i x

l1
i x

r0
j x

l0
j x

r1
i x

l1
i . It corresponds to the satisfied equation

xi ⊕ xi+1 = 0. Hence, we obtain at least the same number of overlapped
letters as satisfied equations.

As for the next step, we are going to align strings corresponding to
equations with three variables.

Aligning Strings Corresponding to Equations with Three Variables

Let ℓ3j be an equation with three variables x, y and z in L . Furthermore,
let xi−1 ⊕ x = 0, x ⊕ xi+1 = 0, yj−1 ⊕ y = 0, y ⊕ yj+1 = 0, zk−1 ⊕ z = 0 and
z ⊕ zk+1 = 0 be the equations with two variables, in which the variables

248

9.9. CONSTRUCTING SUPERSTRINGS FROM ASSIGNMENTS

x, y and z occur. Given the assignment ϕ to x, y and z, we are going
to define the alignment of the corresponding strings. Let us start with
equations of the form ℓ3j ≡ x ⊕ y ⊕ z = 0. Then, we define the rules for
aligning strings in SA(ℓ3j) and SB(ℓ3j) as follows. In particular, we handle
the cases (ϕ(xi+1) + ϕ(yj+1) + ϕ(zk+1)) ∈ {3,2,1,0} separately starting with
ϕ(xi+1) + ϕ(yj+1) + ϕ(zk+1) = 3.

Case (ϕ(xi+1) + ϕ(yj+1) + ϕ(zk+1) = 3):
In this case, we align the strings in S(ℓ3j) in such a way that we obtain the
former introduced strings yr1Ajyl1 and zr1Bjzl1. The situation, which we
want to analyze, is displayed below.

b▷▷ X xl1 ◁◁m1▷▷ Y yr1Ajy
l1 yl1 ◁◁m2▷▷ Z zr1Bjz

l1 zl1 ◁◁ e

↓

b ▷▷ X xl1 ◁◁m1▷▷ Y
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
yr1Ajyl1

yr1Aj yl1 ◁◁m2▷▷ Z

zr1Bjz
l1

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
zr1Bj zl1 ◁◁ e

Similarly to the situations that we discussed concerning matching equations,
we define the actual superstring s in the way described below.

s = b▷▷ X xl1 ◁◁m1▷▷ Y yr1Ajy
l1 yl1 ◁◁m2▷▷ Z zr1Bjz

l1 zl1 ◁◁e

Here, b, m1, m2 and e denote parts of s, which we do not specify in detail
to emphasize the parts corresponding to the equation with three variables.
The string xl1 ◁◁ denotes the ϕ(xi+1)-alignment of the strings in S(ℓxi+1).
The strings zl1 ◁ ◁ and yl1 ◁ ◁ are defined analogously. In this sit-
uation, we want to analyze the cases X ∈ {xr1, xm0}, Y ∈ {yr1, ym0} and
Z ∈ {zr1, zm0}. We infer that we obtain an overlap of four letters if all
equations with two variables are satisfied. Otherwise, we lose an overlap of
one letter per unsatisfied equation with two variables.

249

CHAPTER 9. THE SHORTEST SUPERSTRING AND RELATED PROBLEMS

Case (ϕ(xi+1) + ϕ(yj+1) + ϕ(zk+1) = 2):
Let α, γ ∈ {xi+1, yj+1, zk+1} be variables such that ϕ(γ) = ϕ(α) = 1 holds.
Then, we use the α1-alignment and γ1-alignment of the strings in SA(ℓ3j)
and SB(ℓ3j) breaking ties arbitrarily. We display exemplary the situation for
ϕ(zk+1) = ϕ(xi+1) = 1.

b▷▷ X xr1Ajx
l1 xl1 ◁◁m1▷▷ Y ym0 ◁◁m2▷▷ Z zr1Bjz

l1 zl1 ◁◁e

↓

b▷▷ X
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
xr1Ajxl1

xr1Aj xl1 ◁◁m1▷▷ Y ym0 ◁◁m2▷▷ Z

zr1Bjz
l1

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
zr1Bj zl1 ◁◁e

In this case, we achieve an overlap of five letters if all equations with two
variables are satisfied. Otherwise, we lose an overlap of one letter per
unsatisfied equation with two variables.

Case (ϕ(xi+1) + ϕ(yj+1) + ϕ(zk+1) = 1):
If ϕ(zk+1) + ϕ(xi+1) = 1 holds, we align the strings in SB(ℓ3j) and SA(ℓ3j)
to obtain xr1Ajxl1 and zr1Bjzl1. Otherwise, we make use of the strings
xr1Bjxl1 and yr1Ajyl1. We display the situation for ϕ(yj+1) = 1.

b▷▷ X xr1Bjx
l1 xm0 ◁◁m1▷▷ Y yr1Ajy

l1 yl1 ◁◁m2▷▷ Z zm0 ◁◁e

↓

b▷▷ X xm0 ◁◁m1▷▷ Y

yr1Ajy
l1

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
yr1Aj yl1 ◁◁m2▷▷ Z zm0 ◁◁exr1Bjx

l1

250

9.9. CONSTRUCTING SUPERSTRINGS FROM ASSIGNMENTS

Notice that we obtain an overlap of four letters if the equations with two
variables are satisfied, i.e. X = xm0, Z = zm0 and Y = yr1. Otherwise, we lose
an overlap of one letter per unsatisfied equation with two variables.

Case (ϕ(xi+1) + ϕ(yj+1) + ϕ(zk+1) = 0):
In this case, we use the x0-alignment of the strings in S(ℓ3j). The situation
is displayed below.

b▷▷ X xm0Cjx
m0 xm0 ◁◁m1▷▷ Y ym0 ◁◁m2▷▷ Z zm0 ◁◁e

↓

b▷▷ X
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

xm0Cjxm0

xm0Cj xm0 ◁◁m1▷▷ Y ym0 ◁◁m2▷▷ Z zm0 ◁◁e

Here, we are able to achieve an overlap of five letters if all equations with
two variables are satisfied, i.e. X = xm0, Z = zm0 and Y = ym0.

The situation for equations of the form x ⊕ y ⊕ z = 1 can be analyzed
analogously. In summary, we obtain the following statement.

Lemma 9.9.1
Given an instance L of the MAX-HYBRID-LIN2 problem with n wheels, m2

equations with two variables, m3 equations with three variables and an as-
signment ϕ to the variables of L leaving u equations unsatisfied, then, it is
possible to construct a superstring sϕ for SL with length at most

7 ⋅ n +m2 ⋅ 5 +m3 ⋅ 22 + u.

As for the next step, we are going to define the assignment ψs, which is
associated to a given superstring s for SL .

251

CHAPTER 9. THE SHORTEST SUPERSTRING AND RELATED PROBLEMS

9.10 Defining Assignments From Superstrings

Given a superstring s for SL , we are going to define the associated assign-
ment ψs to the variables in L . In order to deduce the values assigned to
the variables in L from s, we have to normalize the underlying superstring
s. For this reason, we define rules that transform a superstring for SL into
a normed superstring for SL without increasing the length.

Let us first give the definition of a normed superstring for SL .

Definition 9.10.1 (Normed Superstring for SL)
Let L be an instance of the MAX-HYBRID-LIN2 problem, SL the correspond-
ing instance of the SHORTEST SUPERSTRING problem and s a superstring
for SL . We refer to s as a normed superstring for SL if for every equation
ℓ in L , the superstring s contains sℓ as a substring, where sℓ is a 0/1-
alignment of the strings in S(ℓ).

After having defined a normed superstring, we are going to state rules which
transform a superstring for SL into a normed superstring for SL without
increasing the length. All transformation can be performed in polynomial
time. Once accomplished to generate a normed superstring, we are able to
define the assignment ψs and analyze the number of overlapped letters in
relation to the number of satisfied equations in L by ψs. Let us start with
transformations of strings corresponding to cycle equations and wheel border
equations.

Normalizing Strings for Cycle and Wheel Border Equations

Let xi ⊕ xi+1 = 0 be a cycle equation in L . Furthermore, let xm0
i xr0i+1x

l1
i x

m1
i+1

and xl1i x
m1
i+1x

m0
i xr0i+1 be its corresponding strings. We note that these strings

can have an overlap of at most one letter from the left side as well as from
the right side with other strings in SL . Given a superstring s for SL , we
obtain at least the same number of overlapped letters if we use one of the 0/1-
alignments in s. More precisely, we will use the 0/1-alignment that maximizes

252

9.10. DEFINING ASSIGNMENTS FROM SUPERSTRINGS

the overlap with the remaining strings after separating xm0
i xr0i+1x

l1
i x

m1
i+1 and

xl1i x
m1
i+1x

m0
i xr0i+1 from s. In order to build some intuition, we first consider the

following example.

Example 9.10.1
Let S be a finite set of strings over the alphabet Σ such that no string is
a substring of another string in S and {xm0

i xr0i+1x
l1
i x

m1
i+1, x

l1
i x

m1
i+1x

m0
i xr0i+1} ⊆ S.

Let s be a superstring for S defined by

s =

bxm0
i¬

b
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
xm0
i xr0

i+1x
l1
i xm1

i+1

xm0
i xr0i+1x

l1
i

xm1
i+1mxl1

i³¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
xm1
i+1m
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
xl1
i xm1

i+1x
m0
i xr0

i+1

xl1i x
m1
i+1x

m0
i

xr0
i+1e¬
xr0i+1e

where b,m, e ∈ Σ+. By separating xm0
i xr0i+1x

l1
i x

m1
i+1 and xl1i x

m1
i+1x

m0
i xr0i+1 from s,

we obtain three remaining strings bxm0
i , xm1

i+1mx
l1
i and xr0i+1e such that

bxm0
i xm1

i+1mx
l1
i x

r0
i+1e

is a superstring for S/{xm0
i xr0i+1x

l1
i x

m1
i+1, x

l1
i x

m1
i+1x

m0
i xr0i+1}. Then, we define the

transformed superstring s′ for S with at least the same number of overlapped
letters by

s′ = b
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
xm0
i xr0

i+1x
l1
i xm1

i+1

xm0
i xr0i+1

xl1
i xm1

i+1x
m0
i xr0

i+1³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
xl1i x

m1
i+1x

m0
i xr0i+1e x

m1
i+1mx

l1
i .

Given a wheel Wx in L , we successively transform the underlying super-
string s for SL according to the order of the cycle equations ℓxi in Wx. For
each equation ℓxi in the wheelWx, we apply the following rule that determines
the particular 0/1-alignment of the strings in S(ℓxi) that is used in s.

We denote by s1 and s0 the 1-alignment and the 0-alignment of the strings
in S(ℓxi), respectively. Furthermore, let s1, s2 and s3 be the strings that result
by separating the strings in S(ℓxi) from s. Note that one of them could be the
empty string Λ0. Then, we say that the strings in S(ℓxi) use the 1-alignment
in s if the following condition holds.

max
{t,j}⊆[3]

{∣ov(st, s1)∣ + ∣ov(s1, sj)∣} ≥ max
{t,j}⊆[3]

{∣ov(st, s0)∣ + ∣ov(s0, sj)∣}

253

CHAPTER 9. THE SHORTEST SUPERSTRING AND RELATED PROBLEMS

Otherwise, we say that the strings in S(ℓxi) use the 0-alignment in s.

Let us assume that the strings in S(ℓxi) use the a-alignment in s,
where a ∈ {0,1}. Furthermore, let sx, sy ∈ {s1, s2, s3} be strings with the
following property.

∣ov(sx, sa)∣ + ∣ov(sa, sy)∣ ≥ max
{t,j}⊆[3]
b∈{0,1}

{ ∣ov(st, sb)∣ + ∣ov(sb, sj)∣ }

Let k ∈ {1,2,3}/{x, y}. Then, we define the transformed superstring as fol-
lows.

s′ = pref(sx, sa) pref(sa, sy) sy sk

Let us fix an arbitrary order of wheels in L . For each wheel Wx in the
fixed order and for every cycle equation ℓxi inWx, we define the 0/1-alignment
for the strings in S(ℓxi) in s according to the rule given above and apply the
corresponding transformation. Note that we obtain a superstring s′ for SL

with ∣s′ ∣ ≤ ∣s ∣.
For wheel border equations, we use a similar argumentation. Let ℓx1 ≡

x1 ⊕ xn = 0 be the wheel border equation of Wx. Furthermore, we let the
strings in S(ℓx1) be represented by

LxC
l
x, C

l
xx

m0
1 xl1nC

r
x, x

l1
nC

r
xC

l
xx

m0
1 , C l

xx
r1
1 x

m0
n Cr

x, x
m0
n Cr

xC
l
xx

r1
1 and Cr

xRx.

Since the 0/1-alignments of the strings in S(ℓx1) achieve an over-
lap of two letters for each pair, {C l

xx
m0
1 xl1nC

r
x, xl1nC

r
xC

l
xx

m0
1 } and

{C l
xx

r1
1 x

m0
n Cr

x, x
m0
n Cr

xC
l
xx

r1
1 }, we argue as before that these strings can be

rearranged such that these pairs use a 0/1-alignment without increasing the
length of the underlying superstring for SL . Note that if both pairs are us-
ing the same 0/1-alignment, it is possible to overlap one of the mentioned
pairs with LxC l

x from the left side and the other one with Cr
xRx from the

right. This construction checks whether the variables x1 and xn have the
same assigned value, which is rewarded by another overlap of one letter.

For the aforementioned fixed order of the wheels in L , we build the
backbone of our new superstring consisting of the concatenation of the strings

254

9.10. DEFINING ASSIGNMENTS FROM SUPERSTRINGS

sxsy . . . sz, where the string sx is associated to its wheel Wx. Furthermore,
sx consists of the corresponding 0/1-alignments of the strings in S(ℓxi) used
in s for each cycle equation ℓxi in Wx and the order of the strings is given by
the order of appearance of cycle equations in Wx. The string sx starts with
the letter Lx and ends with Rx.

Note that similar transformations can be applied to strings corresponding
to matching equations and equations with three variables, but we are going
to define the transformation for those strings in detail while analyzing the
upper bound of overlapped letters.

Before we start our analysis, we define the assignment ψs based on the
actual superstring s for SL , which is not necessarily a normed superstring
for SH. By applying the transformations, which we are going to define, the
assignment ψs will change in dependence to the actual considered superstring.

ψs(xi) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if the strings in S(ℓxi) use a 1-alignment in s

0 otherwise

Due to the transformations for the strings corresponding to cycle and wheel
border equations, the assignment ψs is well-defined.

Defining the Assignment for Checker Variables

Let Wx be a wheel in L and M(Wx) its associated perfect matching.
Furthermore, let xi ⊕ xi+1 = 0, xi−1 ⊕ xi = 0, xj−1 ⊕ xj = 0, xj ⊕ xj+1 = 0 and
xi ⊕ xj = 0 be equations in L , where {i, j} ∈ M(Wx) and i < j. Let s be a
superstring for SL such that the strings corresponding to cycle and wheel
border equations are using a 0/1-alignment in s. Based on the particular
alignments of the strings in s corresponding to ℓxi , ℓxi+1, ℓxj and ℓxj+1, we are
going to define the assignment to the variables xi and xj. Furthermore,
we analyze the number of overlapped letters that can be achieved by
0/1-alignments and relate them to the number of satisfied equations in L

by ψs. Before we start our analysis, we introduce a notation to specify the
0/1-alignments used by the strings corresponding to ℓxi , ℓxi+1, ℓxj and ℓxj+1 in s.

255

CHAPTER 9. THE SHORTEST SUPERSTRING AND RELATED PROBLEMS

Given a superstring s for SH and {i, j} ∈ M(Wx), a constellation c is
defined by (XiXi+1,XjXj+1)s{i,j} with Xi,Xi+1,Xj,Xj+1 ∈ {0,1}, where
Xk = b if and only if the strings in S(ℓxk) use the b-alignment in s for
k ∈ {i, i+1, j, j+1}. We call a constellation (XiXi+1,XjXj+1)s{i,j} inconsistent
if there is a k ∈ {i, j} such that Xk ≠ Xk+1. Otherwise, we refer to c as
consistent.

Based on a given superstring s and a corresponding constellation, we
are going to define ψs.

Definition 9.10.2 (Assignment ψs to Checker Variables)
Let L be an instance of the MAX-HYBRID-LIN2 problem, SL its correspond-
ing instance of the SHORTEST SUPERSTRING problem and s a superstring
for SL . Given the constellation c = (XiXi+1,XjXj+1)s{i,j}, we define ψs for
the variable xi as follows.

ψs(xi) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 −Xi if Xi ⊕Xj = 1 and Xi ≠Xi+1

Xi otherwise

For the variable xj, we use the following assignment.

ψs(xj) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 −Xj if Xi ⊕Xj = 1,Xi =Xi+1 and Xj ≠Xj+1

Xj otherwise

In the following, we are going to analyze the different constellations and
discuss the associated cases of the definition of ψs. We start with the case
when c is consistent and Xi ⊕Xj = 1.

Case (Xi ⊕Xj = 1 and c is consistent):
There are two constellations, which we have to analyze, namely (11,00)s{i,j}
and (00,11)s{i,j}. Starting with the former constellation, we obtain the
scenario displayed below. Since we know that using the most profitable
0/1-alignment of the strings in S(ℓx{i,j}) does not increase the length of the
superstring, we make use of the 1-alignment and transform the superstring
s in the superstring s′, which are both displayed below.

256

9.10. DEFINING ASSIGNMENTS FROM SUPERSTRINGS

s = b▷▷ xr1i xr1i x
l1
i x

r0
j x

l0
j xl1i ◁◁m▷▷ xr0j xr0j x

l0
j x

r1
i x

l1
i xl0j ◁◁e

↓

s′ = b▷▷

xr1
i xl1

i xr0
j xl0

j

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
xr1i xl1i

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
xr0
j xl0

j xr1
i xl1

i

xr0j x
l0
j x

r1
i xl1i ◁◁m ▷▷ xr0j xl0j ◁◁e

Let us derive an upper bound on the number of overlapped letters. More
precisely, we are interested in the number of overlapped letters being addi-
tional to the overlap of two letters due to the 0/1-alignment. In both cases,
either by using the 1-alignment or the 0-alignment of the strings in S(ℓx{i,j}),
we cannot obtain more than an overlap of two letters. It corresponds to the
number of satisfied equations, xi ⊕ xi+1 = 0 and xj ⊕ xj+1 = 0, by ψs.

In case of the constellation (00,11)s{i,j}, we separate the strings xr1i xl1i xr0j xl0j
and xr0j x

l0
j x

r1
i x

l1
i from the superstring s. Then, we attach the aligned string

xr1i x
l1
i x

r0
j x

l0
j x

r1
i x

l1
i at the end of the actual solution. The considered situation

is displayed below.

b▷▷ xm0
i xr1i x

l1
i x

r0
j x

l0
j xm0

i ◁◁m▷▷ xm1
j xr0j x

l0
j x

r1
i x

l1
i xm1

j ◁◁e

↓

b

▷▷ xm0
i

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
▷▷ xm0

i ◁◁m

▷▷ xm1
j

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
▷▷ xm1

j ◁◁e

xr1
i xl1

i xr0
j xl0

j

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
xr1i x

l1
i

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
xr0
j xl0

j xr1
i xl1

i

xr0j x
l0
j x

r1
i x

l1
i

257

CHAPTER 9. THE SHORTEST SUPERSTRING AND RELATED PROBLEMS

In this scenario, we obtain an overlap of at most two letters. This cor-
responds to the number of satisfied equations, namely xi ⊕ xi+1 = 0 and
xj ⊕ xj+1 = 0.

Case (Xi ⊕Xj = 0):
Let us start with the constellation (0Xi+1,0Xj+1)s{i,j}. In this case, we set

ψs(xi) = 0 and ψs(xj) = 0. Given the strings ▷▷ xm0
i , Xi+1 ◁◁, ▷▷ xr0j

and Xj+1 ◁◁ with Xi+1 ∈ {xm0
i , xl1i } and Xj+1 ∈ {xm1

j , xl0j }, we obtain the
following scenario:

b▷▷ xm0
i xr1i x

l1
i x

r0
j x

l0
j Xi+1 ◁◁m▷▷

xr0
j xl0

j xr1
i xl1

i

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
xr0j xl0j x

r1
i x

l1
i Xj+1 ◁◁e

↓

b▷▷ xm0
i Xi+1 ◁◁m▷▷

xr0
j xl0

j xr1
i xl1

i

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
xr0j xl0j

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
xr1
i xl1

i xr0
j xl0

j

xr1i x
l1
i x

r0
j x

l0
j Xj+1 ◁◁e

The most advantageous 0/1-alignment in this case is the 0-alignment of the
strings in S(ℓx{i,j}). If ψs(xi) = ψs(xi+1) = 0 and therefore, Xi+1 = xm0

i holds,

we obtain another overlap of one letter by aligning ▷▷ xm0
i with xm0

i ◁◁.
A similar argument holds for ψs(xj) = ψs(xj+1) = 0. Notice that the equation
xi⊕xj = 0 is satisfied by ψs. In summary, we state that we obtain an overlap
of one additional letter per satisfied equation. Hence, we obtain an overlap
of three letters according to the satisfied equations xi ⊕ xi+1 = 0, xi ⊕ xj = 0
and xj ⊕ xj+1 = 0.

Let us consider the constellation (1Xi+1,1Xj+1)s{i,j}. Hence, we are

given the strings ▷ ▷ xr1i , Xi+1 ◁ ◁, ▷ ▷ xm1
j and Xj+1 ◁ ◁ with

Xi+1 ∈ {xm0
i , xl1i } and Xj+1 ∈ {xm1

j , xl0j }. We obtain the scenario displayed

258

9.10. DEFINING ASSIGNMENTS FROM SUPERSTRINGS

below.

b▷▷ xr1i xr1i x
l1
i x

r0
j x

l0
j Xi+1 ◁◁m▷▷ xm1

j xr0j x
l0
j x

r1
i x

l1
i Xj+1 ◁◁e

↓

b▷▷

xr1
i xl1

i xr0
j xl0

j

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
xr1i xl1i

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
xr0
j xl0

j xr1
i xl1

i

xr0j x
l0
j x

r1
i x

l1
i Xi+1 ◁◁m▷▷ xm1

j Xj+1 ◁◁e

In this case, we use the 1-alignment of the strings in S(ℓx{i,j}). If
ψs(xi) = ψs(xi+1) = 1 holds, which means Xi+1 = xl1i , we obtain another
overlap of one letter by aligning

▷▷

xr1
i xl1

i xr0
j xl0

j

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
xr1i xl1i

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
xr0
j xl0

j xr1
i xl1

i

xr0j x
l0
j x

r1
i x

l1
i with xl1i ◁◁.

In case of ψs(xj) = ψs(xj+1) = 1, we may apply a similar argument. Notice
that the equation xi ⊕ xj = 0 is satisfied by ψs. In summary, we state that
we obtain an overlap of one additional letter per satisfied equation. Hence,
we obtain an overlap of three letters according to the satisfied equations
xi ⊕ xi+1 = 0, xi ⊕ xj = 0 and xj ⊕ xj+1 = 0.

Case (Xi ⊕Xj = 1 and Xi ≠Xi+1):
Let us begin with the constellation (10,0Xj+1)s{i,j}. We consider the scenario

depicted below, in which we are given the strings ▷ ▷ xr1i , xm0
i ◁ ◁,

▷▷ xl0j and Xj+1 ◁◁ with Xj+1 ∈ {xl0j , xm1
j }.

259

CHAPTER 9. THE SHORTEST SUPERSTRING AND RELATED PROBLEMS

b▷▷ xr1i xr1i x
l1
i x

r0
j x

l0
j xm0

i ◁◁m▷▷ xr0j xr0j x
l0
j x

r1
i x

l1
i Xj+1 ◁◁e

↓

b

▷▷ xm0
i

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
▷▷ xm0

i ◁◁m ▷▷

xr0
j xl0

j xr1
i xl1

i

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
xr0j xl0j

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
xr1
i xl1

i xr0
j xl0

j

xr1i x
l1
i x

r0
j x

l0
j Xj+1 ◁◁e

Instead of using the 1-alignment of the strings in S(ℓxi), we rather switch to
the 0-alignment, i.e. we obtain the string ▷▷ xm0

i and define ψ(xi) = 0. It
results directly in gaining two additional satisfied equations and an overlap
of one additional letter. As a matter of fact, we might lose an overlap of
one letter, because the string ▷ ▷ xm1 could have been aligned from the
right side with another string. Furthermore, the equation xi−1 ⊕ xi = 0

could be unsatisfied. But all in all, we obtain at least 2 − 1 additional
satisfied equations by switching the value without increasing the length the
superstring. Notice that we may achieve an additional overlap of one letter
if Xj+1 = xl0j holds, which means that ψs satisfies the equation xj ⊕ xj+1 = 0.

The next constellation, which we are going to analyze, is (01,1Xj+1)s{i,j}.
Hence, we are given the strings ▷ ▷ xm0

i , xl1i ◁ ◁, ▷ ▷ xm1
j and

Xj+1 ◁◁, with Xj+1 ∈ {xl0j , xm1
j }. The situation is displayed below.

b▷▷ xm0
i xr1i x

l1
i x

r0
j x

l0
j xl1i ◁◁m▷▷ xm1

j xr0j x
l0
j x

r1
i x

l1
i Xj+1 ◁◁e

↓

b▷▷

xr1
i xl1

i xr0
j xl0

j

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
xr1i xl1i

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
xr0
j xl0

j xr1
i xl1

i

xr0j x
l0
j x

r1
i xl1i ◁◁m▷▷ xm1

j Xj+1 ◁◁e

260

9.10. DEFINING ASSIGNMENTS FROM SUPERSTRINGS

We obtain a similar situation, in which we switch ▷▷ xm0
i to ▷▷ xr1i .

Accordingly, we define ψs(xi) = 1. We obtain at least one additional
satisfied equation by switching the value without increasing the length of the
superstring. Notice that we may achieve an additional overlap of one letter
if Xj+1 = xm1

j holds. It corresponds to the satisfied equation xj ⊕ xj+1 = 0.

Case (Xi ⊕Xj = 1, Xj ≠Xj+1 and Xi =Xi+1):
Starting our analysis with the constellation (00,10)s{i,j}, we obtain the
following scenario.

b▷▷ xm0
i xr1i x

l1
i x

r0
j x

l0
j xm0

i ◁◁m▷▷ xm1
j xr0j x

l0
j x

r1
i x

l1
i xl0j ◁◁e

↓

b

▷▷ xm0
i

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
▷▷ xm0

i ◁◁m▷▷

xr0
j xl0

j xr1
i xl1

i

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
xr0j xl0j

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
xr1
i xl1

i xr0
j xl0

j

xr1i x
l1
i x

r0
j xl0j ◁◁e

In this case, we argue that we switch the string ▷▷ xm1
j to ▷▷ xr0j . This

means that we set ψs(xj) = 0. This transformation yields an overlap of at
least the same number of letters since we could lose an overlap of one letter
from the left side. On the other hand, we align the string

▷▷ xr0j with

xr0
j xl0

j xr1
i xl1

i

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
xr0j x

l0
j

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
xr1
i xl1

i xr0
j xl0

j

xr1i x
l1
i x

r0
j xl0j ◁◁

from the right side by one letter. Notice that we gain at least one additional
satisfied equation.

The last constellation, we are going to analyze, is (11,01)s{i,j}. The

261

CHAPTER 9. THE SHORTEST SUPERSTRING AND RELATED PROBLEMS

corresponding situation is displayed below.

b▷▷ xr1i xr1i x
l1
i x

r0
j x

l0
j xl1i ◁◁m▷▷ xr0j xr0j x

l0
j x

r1
i x

l1
i xm1

j ◁◁e

↓

b▷▷

xr1
i xl1

i xr0
j xl0

j

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
xr1i xl1i

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
xr0
j xl0

j xr1
i xl1

i

xr0j x
l0
j x

r1
i xl1i ◁◁m

▷▷ xm1
j

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
▷▷ xm1

j ◁◁e

In this case, we switch the string ▷ ▷ xr0j to ▷ ▷ xm1
j . Similarly to

the former case, this transformation does not increase the length of the
superstring. By defining ψs(xj) = 1, we achieve at least one more satisfied
equation.

As for the next step, we are going to define the assignment ψs for
contact variables. After that, we will analyze the relation between the
number of satisfied equation by ψs and the overlap of the associated strings.

Defining the Assignment for Contact Variables

Let ℓ3j ≡ x⊕y⊕z = 0 be an equation with exactly three variables in L . Given
a 0/1-alignment of the strings corresponding to the equations xj1−1 ⊕ x = 0,
x⊕ xj1+1 = 0, yj2−1 ⊕ y = 0, y ⊕ yj2+1 = 0, zj3−1 ⊕ z = 0, and z ⊕ zj3+1 = 0, we are
going to define an assignment based on the underlying 0/1-alignments. As
before, we introduce a notation in order to specify the 0/1-alignments used
in the underlying superstring.

For a given superstring s for SL and equation ℓ3j ≡ x ⊕ y ⊕ z = 0, we define
a constellation c = (X1X2, Y1Y2, Z1Z2)sj with X1,X2, Y1, Y2, Z1, Z2 ∈ {0,1},
where X1 = b1, X2 = b2, Y1 = b3, Y2 = b4, Z1 = b5 and Z2 = b6 if and only
if the strings corresponding to xj1−1 ⊕ x = 0, x ⊕ xj1+1 = 0, yj2−1 ⊕ y = 0,

262

9.10. DEFINING ASSIGNMENTS FROM SUPERSTRINGS

y ⊕ yj2+1 = 0, zj3−1 ⊕ z = 0 and z ⊕ zj3+1 = 0 are using a b1, b2, b3, b4, b5
and b6-alignment in s, respectively. We call a constellation inconsistent if
there is an A ∈ {X,Y,Z} with A1 ≠ A2. Otherwise, we refer to c as consistent.

Based on a constellation for a given superstring s and an equation ℓ3j
with three variables, we are going to define the assignment ψs for the
variables in ℓ3j .

Definition 9.10.3 (Assignment ψs to Contact Variables)
Let L be an instance of the MAX-HYBRID-LIN2 problem, SL its correspond-
ing instance of the SHORTEST SUPERSTRING problem, s a superstring for
SL and ℓ3j ≡ x ⊕ y ⊕ z = 0 an equation with three variables in L . For the
associated constellation c = (X1X2, Y1Y2, Z1Z2)sj, we define ψs for the variable
x as follows.

ψs(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 −X1 if X1 ⊕ Y1 ⊕Z1 = 1 and X1 ≠X2

X1 else

For the variable y, we use the following assignment.

ψs(y) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 − Y1 if X1 ⊕ Y1 ⊕Z1 = 1,X1 =X2 and Y1 ≠ Y2
Y1 else

For the variable z, we define ψs as follows.

ψs(z) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 −Z1 if X1 ⊕ Y1 ⊕Z1 = 1,X1 =X2, Y1 = Y2 and Z1 ≠ Z2

Z1 else

In the following, we will analyze the relation of satisfied equations by
ψs and the number of overlapped letters in the given superstring. In par-
ticular, we consider the following three cases and define the corresponding
transformations.

• X1 ⊕ Y1 ⊕Z1 = 1 and c is consistent.

• X1 ⊕ Y1 ⊕Z1 = 0 and c is inconsistent.

263

CHAPTER 9. THE SHORTEST SUPERSTRING AND RELATED PROBLEMS

• X1 ⊕ Y1 ⊕Z1 = 1 and c is inconsistent.

Let us begin with the first case.

Case (X1 ⊕ Y1 ⊕Z1 = 1 and c is consistent):
In this case, we start with the constellation (11,11,11)sj . We display the
considered situation below.

b▷▷ xr1 xl1 ◁◁m1▷▷ yr1 yr1Ajy
l1 yl1 ◁◁m2▷▷ zr1 zr1Bjz

l1 zl1 ◁◁e

↓

b▷▷ xr1 xl1 ◁◁m1▷▷
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

yr1Ayl1

yr1 Aj yl1 ◁◁m2▷▷
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

zr1Bzl1

zr1 Bj zl1 ◁◁e

According to the definition of ψs, we have ψs(x) = ψs(y) = ψs(z) = 1.
Notice that the equation x ⊕ y ⊕ z = 0 is unsatisfied. On the other hand,
the assignment ψs satisfies the equations x ⊕ xj1+1 = 0, y ⊕ yj2+1 = 0 and
z ⊕ zj3+1 = 0.
We note that a string corresponding to SA(ℓ3j) or SB(ℓ3j) using a 0/1-
alignment can have an overlap of at most one letter from the right side as
well as from the left side. Therefore, one possibility, maximizing the number
of overlapped letters given the constellation (11,11,11)sj , is to align the
string yr1Ajyl1 with ▷ ▷ yr1 and yl1 ◁ ◁ each by one letter. We may
argue similarly for the string zr1Bjzl1. Consequently, we conclude that the
number of overlapped letters is bounded from above by four.

In case of X1 + Y1 + Z1 = 1, we analyze exemplary the constellation
(00,00,11)sj . We set ψs(z) = 1, ψs(x) = 0 and ψs(y) = 0. This situation is
displayed below.

264

9.10. DEFINING ASSIGNMENTS FROM SUPERSTRINGS

b▷▷ xm0 xm0 ◁◁m′▷▷ ym0 yr1Ajy
l1 ym0 ◁◁m▷▷ zr1 zr1Bjz

l1 zl1 ◁◁e

↓

b
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
▷▷ xm0

▷▷ xm0 ◁◁m′
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
▷▷ ym0

▷▷ ym0 ◁◁m▷▷
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

zr1Bjzl1

zr1 Bj zl1 ◁◁e yr1Ajy
l1

Due to the z1-alignment of the strings in SB(ℓ3j), we obtain an overlap of
two letters. Additionally, we align the string ▷▷ xm0 from the left with
xm0 ◁◁. The same holds for ▷▷ ym0 and ym0 ◁◁. Notice that it is
not more advantageous to align the string xm0BjCj with ▷▷ xm0 since we
lose the overlap of one letter with xm0 ◁◁. Hence, we are able to get an
overlap of at most four letters, which corresponds to the satisfied equations
x⊕ xj1+1 = 0, y ⊕ yj2+1 = 0 and z ⊕ zj3+1 = 0.

Case (X1 ⊕ Y1 ⊕Z1 = 0 and c is inconsistent):
First, we concentrate on constellations with the property X1 + Y1 + Z1 = 2.
Exemplary, we analyze the constellation (0X2,1Y2,1Z2)sj displayed below.

b▷▷ xm0 X2 ◁◁m1▷▷ yr1 yr1Ajy
l1 Y2 ◁◁m2▷▷ zr1 zr1Bjz

l1 Z2 ◁◁e

↓

b▷▷ xm0 X2 ◁◁m1▷▷
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
yr1Ajyl1

yr1 Ajy
l1 Y2 ◁◁m2▷▷

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
zr1Bjzl1

zr1 Bj z
l1 Z2 ◁◁e

The strings ▷▷ yr1 and ▷▷ zr1 can be used to align from the right side
with zr1Bjzl1 and yr1Ajyl1, respectively. It yields an overlap of two letters.
If the corresponding equations with two variables are satisfied, which means
X2 = xm0, Y2 = yl1 and Z2 = zl1, we gain an additional overlap of one letter

265

CHAPTER 9. THE SHORTEST SUPERSTRING AND RELATED PROBLEMS

per satisfied equation. Notice that using the x0-alignment of S(ℓ3j) does not
yield more overlapped letters. In summary, it is possible to attain an overlap
of at most five letters, which corresponds to the constellation (00,11,11)sj .
An analogous argumentation holds for the constellations (1X2,1Y2,0Z2)sj
and (1X2,0Y2,1Z2)sj .

Next, we discuss constellations with the property X1 + Y1 + Z1 = 0. For
this reason, we consider the constellation (0X2,0Y2,0Z2)sj .

b▷▷ xm0 X2 ◁◁m1▷▷ ym0 yr1Bjy
r1 Y2 ◁◁m2▷▷ zm0 yr1Bjy

r1 Z2 ◁◁e

↓

b▷▷
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
xm0AjCj

xm0 Aj

CjBjx
m0

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
CjBjx

m0 X2 ◁◁m1▷▷ ym0 Y2 ◁◁m2▷▷ zm0 Z2 ◁◁e

Recall that xm0Cjxm0 denotes the x0-alignment of S(ℓ3j). This string can
be aligned from the left with ▷ ▷ xm0. If X2 = xm0 holds, we achieve
another overlap of one letter. Furthermore, the string ▷ ▷ ym0 can be
aligned from the right with Y2 ◁ ◁ if and only if Y2 = ym0 holds. A
similar argumentation can be applied to the strings ▷▷ zm0 and Z2 ◁◁.
Finally, we note that we cannot benefit by aligning the string yl1 ◁◁ with
yr1Ajyl1. Consequently, we see that using the string xm0Cjxm0 is generally
more profitable. All in all, we gain an additional overlap of one letter for
satisfying x⊕ y⊕ z = 0 and another overlap of one letter if the equation with
two variables corresponding to the considered variable is satisfied.

Case (X1 ⊕ Y1 ⊕Z1 = 1 and c is inconsistent):
Let us start with constellations satisfying X1 + Y1 + Z1 = 3. Exemplary, we
analyze the constellation (10,1Y2,1Z2)sj . According to the definition of ψs,
we set ψs(x) = 1 −X1, ψs(y) = 1 and ψs(z) = 1. Notice that ψs satisfies the
equation x ⊕ y ⊕ z = 0. By switching the value ψs(x) from X1 to 1 − X1,

266

9.10. DEFINING ASSIGNMENTS FROM SUPERSTRINGS

the equation xj1−1 ⊕ x = 0 could become unsatisfied. Furthermore, we could
lose an overlap of one letter by flipping the 1-alignment of the strings
corresponding to xj1−1 ⊕ x = 0 to the 0-alignment. On the other hand, we
gain an overlap of one letter by aligning the string ▷▷ xm0 from the right
side with xm0 ◁◁. This transformation yields at least one more satisfied
equation. In addition, the strings yr1Ajyl1 and zr1Bjzl1 can be aligned by
one letter with ▷▷ yr1 and ▷▷ zr1 , respectively. If Z2 = zl1 and Y2 = yl1

holds, we achieve another overlap of one letter in each case (see below).

b▷▷ xr1 xm0 ◁◁m1▷▷ yr1 yr1Ajy
l1 Y2 ◁◁m2▷▷ zr1 zr1Bjz

l1 Z2 ◁◁e

↓

b
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
▷▷ xm0

▷▷ xm0 ◁◁▷▷
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
yr1Ajyl1

yr1 Ajy
l1 Y2 ◁◁▷▷

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
zr1Bjzl1

zr1 Bjz
l1 Z2 ◁◁

The other constellations satisfying X1 + Y1 + Z1 = 3 can be analyzed
analogously.

The remaining constellations (X1X2, Y1Y2, Z1Z2)sj to be discussed satisfy
X1+Y1+Z1 = 1 and are inconsistent. Exemplary, we analyze the constellation
(01,0Y2,1Z2)sj . For (01,0Y2,1Z2)sj , we set ψs(x) = 1 −X1, ψs(y) = Y1 and
ψs(z) = Z1. The scenario is displayed below.

b▷▷ xm0 xr1Ajx
l1 xl1 ◁◁m1▷▷ ym0 Y2 ◁◁m2▷▷

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
zr1Bjzl1

zr1 Bjz
l1 Z2 ◁◁e

↓

b▷▷
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

xr1Ajxl1

xr1 Aj xl1 ◁◁m1▷▷ ym0 Y2 ◁◁m2▷▷
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
zr1Bjzl1

zr1 Bjz
l1 Z2 ◁◁e

267

CHAPTER 9. THE SHORTEST SUPERSTRING AND RELATED PROBLEMS

By flipping the 0-alignment of the strings corresponding to xj1−1 ⊕ x = 0 to
the 1-alignment, we can overlap xr1Ajxl1 from the left side with ▷▷ xr1

and with xl1 ◁ ◁ from the right side. This transformation achieves an
overlap of at most one more letter. Moreover, we obtain at least one more
satisfied equation. If Z2 = zl1 and Y2 = ym0 holds, it yields an overlap of
three additional letters, which corresponds to the constellation (11,00,11)sj .

Finally, we note that the strings corresponding to equations of the
form x⊕ y ⊕ z = 1 can be discussed analogously. In summary, we obtain the
following statement.

Lemma 9.10.1
Let L be an instance of the MAX-HYBRID-LIN2 problem with n wheels, m2

equations with two variables and m3 equations with three variables. Given a
superstring s for SL with length ∣s∣ = 7 ⋅ n + 5 ⋅m2 + 22 ⋅m3 + u, it is possible
to transform s in polynomial time into a superstring t without increasing the
length such that the associated assignment ψt leaves at most u equations in
L unsatisfied.

9.10.1 The Proof of Theorem 9.6.1

Given an instance L of the MAX-HYBRID-LIN2 problem with n wheels, m2

equations with two variables and m3 equations with exactly three variables
with the properties described in Theorem 4.9.1, we construct in polynomial
time an instance SL of the SHORTEST SUPERSTRING problem with the
properties described in section 9.8.

Let ϕ be an assignment to the variables of L leaving at most u equations
in L unsatisfied. According to Lemma 9.9.1, it is possible to construct in
polynomial time a superstring sϕ for SL with length at most

∣sϕ∣ ≤ 7 ⋅ n + 5 ⋅m2 + 22 ⋅m3 + u

since the length of the superstring increases by at most one letter for every
unsatisfied equation of the assignment. Regarding the compression measure,

268

9.11. AN IMPROVED REDUCTION

we obtain the following.

comp(SL , sϕ) ≥ ∑
s∈SL

∣s∣ − (7 ⋅ n + 5 ⋅m2 + 22 ⋅m3 + u)

= (4 + 8)n + 8 ⋅m2 + 36 ⋅m3 − (7 ⋅ n + 5 ⋅m2 + 22 ⋅m3 + u)

= 5n + 3m2 + 14m3 − u

On the other hand, let s be a superstring for SL with length

∣s∣ = 5m2 + 22m3 + u + 7n,

it is possible to construct in polynomial time a normed superstring s′ without
increasing the length by applying the transformations defined in section 9.10.
According to Lemma 9.10.1, it enables us to define an assignment ψs to the
variables of L that leaves at most u equations in L unsatisfied. A similar
argumentation leads to the conclusion that given a superstring s for SL with
compression

comp(SL , sϕ) = 5n + 3m2 + 14m3 − u,

it is possible to construct in polynomial time an assignment to the variables
in L that leaves at most u equations unsatisfied. ∎

In the next section, we are going to describe smaller gadgets for equations
with three variables implying an improved explicit lower bound and give the
proof of Theorem 9.5.1.

9.11 An Improved Reduction

Given an equation with three variables g3c ≡ x ⊕ y ⊕ z = 0, we introduce the
sets Sα(g3j) and Sβ(g3j) including the following strings.

xr1αxl1yr1yl1, yr1yl1xm0Cj, xm0Cjx
r1αxl1 ∈ Sα(g3j)

xr1βxl1zr1zl1, zr1zl1Cjx
m0, Cjx

m0xr1βxl1 ∈ Sβ(g3j)

In addition, we introduce new strings for the equation xi−1 ⊕ x = 0. On the
other hand, the strings corresponding to x⊕xi+1 = 0, yi−1⊕y = 0, y⊕yi+1 = 0,

269

CHAPTER 9. THE SHORTEST SUPERSTRING AND RELATED PROBLEMS

zi−1 ⊕ z = 0 and z ⊕ zi+1 = 0 remain the same. Let us define the strings for
xi−1 ⊕ x = 0:

xl1i−1x
r1βxl1i−1x

r1α xl1i−1x
r1αxm0

i−1x
m0 xm0

i−1x
m0xl1i−1x

r1β

These three strings can be aligned each by two letters in a cyclic fashion.
Accordingly, we obtain three combinations that can be used to overlap with
other strings by one letter from the left side as well as from the right side.
Note that we have only two combinations if we consider only the left most
position of the combined strings. For example, the combination

xl1i−1x
r1βxl1i−1x

r1αxm0
i−1x

m0xl1i−1x
r1β

can be used to overlap from the right side with strings in Sβ(g3j), whereas

xl1i−1x
r1αxm0

i−1x
m0xl1i−1x

r1βxl1i−1x
r1α

can be aligned with strings contained in Sα(g3j). Therefore, we may apply the
same arguments as in the proof of Theorem 9.5.1. The strings corresponding
to equations of the form x⊕ y ⊕ z = 1 can be constructed analogously.

9.11.1 The Proof of Theorem 9.5.1

Given an instance L of the MAX-HYBRID-LIN2 problem with n wheels, m2

equations with two variables and m3 equations with exactly three variables
with the properties described in Theorem 4.9.1, we construct in polynomial
time an instance SL of the SHORTEST SUPERSTRING problem. Let ϕ be an
assignment to the variables of L which leaves at most u equations unsatisfied.
Then, it is possible to construct a superstring sϕ with length

∣sϕ∣ ≤ 7 ⋅ n + 5 ⋅m2 + 16 ⋅m3 + u,

since the length of the superstring increases by at most one letter for every
unsatisfied equation of the assignment. Regarding the compression measure,
we obtain the following.

comp(SL , sϕ) ≥ ∑
s∈SH
∣s∣ − (7 ⋅ n + 5 ⋅m2 + 16 ⋅m3 + u)

= (4 + 8)n + 8 ⋅m2 + 28 ⋅m3 − (7 ⋅ n + 5 ⋅m2 + 16 ⋅m3 + u)

= 5n + 3m2 + 12m3 − u

270

9.12. BIBLIOGRAPHIC NOTES

On the other hand, given an superstring s for SL with length

∣s∣ = 5m2 + 16m3 + u + 7n,

we can construct in polynomial time a normed superstring s′ without in-
creasing the length of it. The corresponding assignment ψs′ to the variables
of L leaves at most u equations in L unsatisfied. A similar argumentation
leads to the conclusion that given a superstring s for SL with compression

comp(SL , sϕ) = 5n + 3m2 + 12m3 − u,

we construct in polynomial time an assignment to the variables in L such
that at most u equations are unsatisfied. ∎

9.12 Bibliographic Notes

The presented material in this chapter is based on the paper [KS11], in which
the proofs of Theorem 9.5.1 and 9.6.1 appeared.

271

CHAPTER 9. THE SHORTEST SUPERSTRING AND RELATED PROBLEMS

272

CHAPTER 10

Traveling Salesman Problems

CHAPTER 10. TRAVELING SALESMAN PROBLEMS

In this chapter, we investigate the approximation hardness of symmetric
and asymmetric TSP problems with bounded metrics. By extending our
reduction method from Chapter 9, we give improved explicit approximation
lower bounds for the (1,2)-ATSP problem, (1,2)-TSP problem, (1,4)-ATSP
problem, (1,4)-TSP problem and the MAX-(0,1)-ATSP. In particular, we
prove the best known approximation lower bound for TSP with bounded
metrics for the metric bound equal to 4.

We study the approximation complexity of the (1,2)-TSP problem and
the GRAPHIC-TSP problem restricted to subcubic and cubic instances, and
obtain new inapproximability bounds for those problems.

By constructing a new bounded degree wheel amplifier and exploiting the
special properties of a well-suited bounded occurrence CSP, we obtain the
best up to now inapproximability thresholds for the general METRIC and
ASYMMETRIC TSP problem.

10.1 Introduction

The Metric Traveling Salesman (TSP) problem is the following problem:
Given a metric space (V, d) and the objective is to construct a shortest tour
visiting each element in V exactly once.

The TSP problem in metric spaces is one of the most fundamental NP-
hard optimization problems. The decision version of this problem was shown
early to be NP-complete by Karp [K75]. Christofides [C76] gave an efficient
algorithm approximating the TSP problem with an approximation ratio 3/2,
that is, an algorithm that produces in polynomial time a tour with length
being at most a factor 3/2 from the optimum.

As for lower bounds, a reduction due to Papadimitriou and Yan-
nakakis [PY93] and the PCP Theorem [AS98, ALM+98] together imply that
there exists some constant, not greater than 1 + 10−6, such that it is NP-
hard to approximate the TSP problem with distances either one or two. For
discussion of bounded metrics TSP, see also [T00]. This hardness result was
firstly improved by Engebretsen [E03], who proved that it is NP-hard to

274

10.1. INTRODUCTION

approximate the TSP problem restricted to distances one and two to within
any constant less than 5381/5380. Böckenhauer and Seibert [BS00] stud-
ied the TSP problem with distances one, two and three. They obtained an
approximation lower bound of 3813/3812 for this restricted version of the
problem. After that, Papadimitriou and Vempala [PV06] proved that ap-
proximating the general problem to within any constant approximation ratio
less than 220/219 is NP-hard. Only recently, this lower bound was improved
by Lampis [L12]. In particular, he gave an approximation lower bound for
the problem of 185/184.

In this chapter, we prove that it is NP-hard to approximate the TSP

problem to within any constant approximation ratio less than 123/122.

The Asymmetric Traveling Salesperson (ATSP) Problem

In the ATSP problem, we are given an asymmetric metric space (V, d), that
is, d is not necessarily symmetric, and we would like to construct a shortest
tour visiting every vertex exactly once.

The best known efficient algorithm for the ATSP problem approximates
the solution within O(logn/ log logn), where n is the number of vertices
in the metric space (cf. [AGM+10]). On the other hand, the currently
best known inapproximability threshold for the ATSP problem is 117/116
(cf. [PV06]).

In this chapter, we prove that that the ATSP problem is NP-hard to
approximate to within any constant approximation ratio less than 75/74.

TSP Problems with Bounded Metrics

It is conceivable that the special cases of the ATSP problem with bounded
metrics are easier to approximate than the cases when the distance between
two points grows with the size of the instance. Clearly, the (1,B)-ATSP
problem, in which the distance function is taking values in the set {1, . . . ,B},
can be approximated within B by just picking any tour as the solution.

When we restrict the problem to distances 1 and 2, it can be approxi-
mated within 5/4 due to Bläser [B04]. Furthermore, it is NP-hard to ap-

275

CHAPTER 10. TRAVELING SALESMAN PROBLEMS

proximate the problem within any constant approximation ratio less than
321/320 [EK06].

For the case B = 8, Engebretsen and Karpinski [EK06] constructed a
reduction yielding the approximation lower bound of 135/134 for the problem.

In this chapter, we prove that it is NP-hard to approximate the
(1,2)-ATSP problem and the (1,4)-ATSP problem to within any constant
approximation ratio less than 207/206 and 141/140, respectively.

The restricted version of the TSP problem, in which the distance function
takes values in {1, . . . ,B}, is referred to as the (1,B)-TSP problem.

The (1,2)-TSP problem can be approximated in polynomial time with
an approximation ratio 8/7 due to Berman and Karpinski [BK06]. On the
other hand, Engebretsen and Karpinski [EK06] gave an approximation lower
bound for the (1,B)-TSP problem of 741/740 for B = 2 and 389/388 for B = 8.

In this chapter, we prove that the (1,2)-TSP problem and the (1,4)-TSP
problem are NP-hard to approximate to within any constant approximation
ratio less than 535/534 and 337/336, respectively.

An instance of the (1,2)-TSP problem is called cubic and subcubic if
the graph induced by the edges of weight 1 is cubic (3-regular) and subcubic
(maximum degree 3), respectively. As claimed in [CKK02], the inapproxima-
bility thresholds for the (1,2)-TSP problem restricted to cubic and subcubic
instances are 1141/1140 and 673/672 , respectively.

In this chapter, we prove new inapproximability bounds for cubic and
subcubic instances of the (1,2)-TSP problem of 1141/1140 and 673/672, re-
spectively.

The Graphic TSP Problem on Subcubic and Cubic Graphs

The restricted version of the TSP problem in the shortest path metric com-
pletion of graphs is referred to as the GRAPHIC-TSP problem.

The problem is known to be NP-hard in exact setting even when we
restrict the input graph to be cubic, as the Hamiltonian cycle problem is
NP-hard for 3-regular graphs (cf. [GJT76]) and can be reduced to the
GRAPHIC-TSP problem. The (1,2)-TSP problem can be viewed as a spe-

276

10.1. INTRODUCTION

cial case of the GRAPHIC-TSP problem. To see this, we simply augment
the subgraph induced by all weight 1 edges in an instance of the (1,2)-TSP
problem by a new vertex z and add all edges connecting the original ver-
tices with that vertex z. Thus, the explicit approximation lower bound of
535/534 for the (1,2)-TSP problem is also the inapproximability bound for
the GRAPHIC-TSP problem. On the algorithmic front, there was a remark-
able progress on the GRAPHIC-TSP problem ([OSS11] ,[MS11], [M12]) lead-
ing to the approximation ratio 7/5, cf. Sebö and Vygen [SV12].

The GRAPHIC-TSP problem on cubic graphs as well as subcubic graphs
played a crucial role in some recent developments on the GRAPHIC-TSP
problem (cf. [GLS05], [BSSS11a], [BSSS11b], [MS11], [M12]). Both prob-
lems are of special interest because of its connection to the famous 4/3 con-
jecture on the integrality gap of the metric TSP problem (cf. [BSSS11a],
[BSSS11b]). It is also known that the approximation ratio 3/2 of Christofides’
algorithm [C76] for the general metric TSP is tight for the GRAPHIC-TSP
problem on cubic graphs. Recently, the first efficient approximation algo-
rithms with approximation ratio 4/3 for the above problem on cubic and
subcubic graphs were designed in [BSSS11b] and [MS11]. Correa, Larré and
Soto [CLS12] managed to break the bound of 4/3 and gave an efficient al-
gorithm for the problem with approximation ratio (4/3 − ε0), where ε0 is a
small constant (0 < ε0 < 10−4).

In this chapter, we shed some light on the inapproximability status of the
GRAPHIC-TSP problem and prove explicit approximation hardness bounds
of 1153/1152 for the cubic and 685/684 for the subcubic case.

The MAX-ATSP Problem with Weights 1 and 2

The MAX-(0,1)-ATSP problem is the restricted version of the MAX-ATSP
problem, in which the weight function w takes values in the set {0,1}.

Vishwanathan [V92] constructed an approximation preserving reduction
proving that an approximation algorithm for the MAX-(0,1)-ATSP prob-
lem with approximation ratio α transforms into an approximation algo-
rithm for the (1,2)-ATSP problem with approximation ratio (2 − 1/α). Due

277

CHAPTER 10. TRAVELING SALESMAN PROBLEMS

to this reduction, all negative results concerning the approximation of the
(1,2)-ATSP problem imply hardness results for the MAX-(0,1)-ATSP prob-
lem. Since the (1,2)-ATSP problem is APX-hard [PY93], there is little hope
for polynomial time approximation algorithms with arbitrary good precision
for the MAX-(0,1)-ATSP problem. Due to the explicit approximation lower
bound for the (1,2)-ATSP problem obtained by Engebretsen and Karpin-
ski [EK06], it is NP-hard to approximate the MAX-(0,1)-ATSP problem to
within any constant approximation ratio less than 320/319. The best up to
now known approximation algorithm for the restricted version of this prob-
lem is due to Bläser [B04] and achieves an approximation ratio 4/3.

In this chapter, we prove that approximating the MAX-(0,1)-ATSP prob-
lem to within any constant approximation ratio less than 206/205 is NP-
hard.

10.2 The Proof Methods and Summary of Results

The results of this chapter depend on several new reductions from a bounded
occurrence CSP problem called the MAX-HYBRID-LIN2 problem (cf. Defi-
nition 4.9.1). We extend our reduction method from Chapter 9 and define
parity gadgets for TSP problems with bounded metrics. The crucial point
of the reductions is that we make essential use of the underlying structure
of the equations in the MAX-HYBRID-LIN2 problem, which are induced by a
3-regular wheel amplifier graph. This could be a more widely useful method
for improving the approximation lower bounds of other problems.

In order to give improved inapproximability results for the ATSP

problem and the TSP problem, we introduce a new 3-regular amplifier graph
called bi-wheel amplifier. This bi-wheel amplifier graph entails an even more
advantageous structure of the linear equations in the MAX-HYBRID-LIN2
problem, which enables us to define parity gadgets simulating two variables
of the CSP instance simultaneously. Furthermore, we prove that it is only
necessary to construct gadgets for roughly one third of the constraints of
the CSP instance, while the remaining constraints are simulated without

278

10.2. THE PROOF METHODS AND SUMMARY OF RESULTS

additional cost using the consistency properties of our gadgets. This crucial
idea leads to very economical reductions with less vertices in the instances
produced by the reduction to the ATSP problem and the TSP problem.
We believe that this approach may be useful in improving the efficiency of
approximation preserving reductions for other problems.

In Table 10.1, we summarize our approximation lower bounds as com-
pared with previous inapproximability results.

(1,B)-ATSP problem B = 2 B = 4 B = 8 unbounded
Previously known 321/320 321/320 135/134 117/116
results [EK06] [EK06] [EK06] [PV06]
Our results 207/206 141/140 75/74

(1,B)-TSP problem B = 2 B = 4 B = 8 unbounded
Previously known results 741/740 741/740 389/388 185/184

[EK06] [EK06] [EK06] [L12]
Our results 535/534 337/336 337/336 123/122

MAX-(0,1)-ATSP problem
Previously known results 320/319

[EK06]
Our results 206/205

Table 10.1: Comparison of our approximation lower bounds with previously
known inapproximability results.

In order to prove the new inapproximability bounds for the (1,2)-TSP
problem restricted to subcubic and cubic instances, we design new cu-
bic gadgets simulating the linear equations with three variables of the
MAX-HYBRID-LIN2 problem. This construction will be extended, in a
special way, to the cubic and subcubic instances of the GRAPHIC-TSP
problem.

279

CHAPTER 10. TRAVELING SALESMAN PROBLEMS

In Table 10.2, we summarize our approximation lower bounds as com-
pared with previous inapproximability results.

(1,2)-TSP problem Cubic instances Subcubic instances
Previously known results 1291/1290 787/786

[CKK02] [CKK02]
Our results 1141/1140 673/672

Graphic-TSP problem Cubic instances Subcubic instances
Previously known results – –

– –
Our results 1153/1152 685/684

Table 10.2: Known explicit lower bounds and the new results.

10.3 Outline of this Chapter

This chapter is organized as follows. In Section 10.5, we review some se-
lected results related to the topics covered in this chapter. In Section 10.6,
we formulate our main results. We give improved inapproximability results
for the (1,2)-ATSP problem in Section 10.7, the (1,4)-ATSP problem in Sec-
tion 10.8, the (1,2)-TSP problem in Section 10.9, the (1,4)-TSP problem in
Section 10.10, the (1,2)-TSP problem restricted to subcubic instances in
Section 10.11, the (1,2)-TSP problem restricted to cubic instances in Sec-
tion 10.12 and the GRAPHIC-TSP problem restricted to subcubic and cubic
graphs in Section 10.13. In Section 10.14 and 10.15, we study the hard-
ness of approximation of the general metric and asymmetric TSP problem,
respectively.

10.4 Preliminaries

In this section, we fix the notation and provide some definitions.

280

10.4. PRELIMINARIES

Given an asymmetric metric space (V, d) with V = {v1, . . . , vn} and
d ∶ V × V → Q≥0, a tour σ in (V, d) is a tour in the associated complete
directed graph (V,{(vi, vj) ∈ V × V ∣ i ≠ j}) (cf. Section 9.4). The length or
cost of a tour σ in (V, d) is defined as follows.

length of σ in (V, d) = ∑
a∈σ
d(a)

By means of this notation, we define the ATSP problem as follows.

Definition 10.4.1 (ATSP problem)
Instances: A asymmetric metric space (V, d)
Solutions: A tour σ in (V, d)

Task: Minimize the length of σ in (V, d)

For every integer B ≥ 2, the (1,B)-ATSP problem is the ATSP problem re-
stricted to instances (V, d) with d ∶ {(vi, vj) ∈ V × V ∣ i ≠ j}→ [B].

Given a complete graph G, a tour σ in G is a subset of E(G), which
induces a cycle in G visiting every vertex of G only once. A Hamiltonian path
in G is a simple path containing all vertices of G. For a given metric space
(V, d) with V = {v1, . . . , vn} and d ∶ (V2) → Q>0, a tour σ in (V, d) is a tour
in the associated complete graph (V, (V2)). The length or cost of a tour σ in
(V, d) is defined as follows.

length of σ in (V, d) = ∑
e∈σ
d(e)

Analogously, the TSP problem can be formulated as follows.

Definition 10.4.2 (TSP problem)
Instances: A metric space (V, d)
Solutions: A tour σ in (V, d)

Task: Minimize the length of σ in (V, d)

For every integer B ≥ 2, the (1,B)-TSP problem is the TSP problem re-
stricted to instances (V, d) with d ∶ (V2)→ [B].

In order to specify, an instance (V, d) of the (1,2)-ATSP problem, it
suffices to identify the arcs a ∈ V × V with d(a) = 1. Accordingly, we de-
code an instance ({v1, . . . , vn}, d) by a directed graph Gd, where for every

281

CHAPTER 10. TRAVELING SALESMAN PROBLEMS

a ∈ {(vi, vj) ∈ V × V ∣ i ≠ j}, we have

d(a) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if a ∈ A(Gd)

2 else.

Analogously, in the symmetric case, an instance of the (1,2)-TSP problem is
completely specified by a graph.

In the following, for every c ∈ {1,2}, we refer to an arc a and an edge e
with d(a) = d(e) = c as a c-arc and a c-edge, respectively.
We call an instance of the (1,2)-TSP problem cubic and subcubic if the graph
induced by the all weight 1 edges is cubic and subcubic, respectively.

sc

v3c

v2c

v1c sc+1

Figure 10.1: Graph G3A simulating equations of the form x⊕ y ⊕ z = 0.

10.5 Related Work

Engebretsen and Karpinski [EK06] constructed approximation preserving
reductions from the MAX-HYBRID-LIN2 problem to the (1,2)-ATSP prob-
lem and to the (1,2)-TSP problem implying explicit approximation lower
bounds for both problems. They introduced graphs (gadgets), which simu-
late variables, equations with two variables and equations with three vari-
ables. For equations of the form x ⊕ y ⊕ z = 0, they used a gadget that was

282

10.5. RELATED WORK

constructed in [PV06] displayed in Figure 10.1. We rely on this gadget and
use it in our reduction. In particular, we will exploit the following statement
that was proved by Papadimitriou an Vempala [PV06].

Lemma 10.5.1 ([PV06])
There is a simple path from sc to sc+1 in G3A (Figure 10.1) containing all
vertices of G3A if and only if an even number of dashed arcs is traversed.

In [EK06], a similar gadget was constructed to prove explicit approximation
lower bounds for the (1,2)-TSP problem. The graph corresponding to an
equation of the from x⊕ y ⊕ z = 0 is displayed in Figure 10.2.

sc sc+1

v1c

v2c

Figure 10.2: Gadgets used in [EK06] to prove approximation hardness of
the (1,2)–TSP problem.

In the reduction of the (1,2)-TSP problem, the following statement was
proved by Engebretsen and Karpinski [EK06] concerning the graph corre-
sponding to equations of the form x⊕ y ⊕ z = 0.

Lemma 10.5.2 ([EK06])
There is a simple path from sc to sc+1 in G3S (Figure 10.2) containing the
vertices v ∈ {v1c , v2c} if and only if an even number of parity graphs (Figure

283

CHAPTER 10. TRAVELING SALESMAN PROBLEMS

10.50) is traversed.

By using the hardness results due to Berman and Karpinski [BK99] for the
MAX-HYBRID-LIN2 problem, the reductions due to Engebretsen and Karpin-
ski [EK06] yield the following inapproximability results.

Theorem 10.5.1 ([EK06])
The (1,2)-ATSP problem and the (1,2)-TSP problem are NP-hard to ap-
proximate to within any constant approximation ratio less than 321/320 and
741/740, respectively.

Inapproximability Results for the MAX-ATSP problem

By replacing all arcs with weight 2 of an instance of the (1,2)-ATSP prob-
lem by arcs of weight 0, we obtain an instance of the MAX-(0,1)-ATSP prob-
lem. Vishwanathan [V92] proved that this reduction relates the (1,2)-ATSP
problem to the MAX-ATSP problem in the following sense.

Lemma 10.5.3 ([V92])
A polynomial time approximation algorithm with approximation ratio α for
the MAX-(0,1)-ATSP problem implies a polynomial time approximation al-
gorithm for the (1,2)-ATSP problem with approximation ratio (2 − 1/α).

This reduction transforms every hardness result addressing the (1,2)-ATSP
problem into a hardness result for the MAX-(0,1)-ATSP problem. In par-
ticular, Theorem 10.5.1 implies the best known explicit approximation lower
bound for the MAX-(0,1)-ATSP problem stated below.

Corollary 10.5.1
It is NP-hard to approximate the MAX-(0,1)-ATSP problem to within any
constant approximation ratio less than 320/319.

10.6 Our Contributions

We now formulate our main results.

284

10.6. OUR CONTRIBUTIONS

Theorem 10.6.1
Suppose we are given an instance L of the MAX-HYBRID-LIN2 problem with
n wheels, m2 equations with two variables and m3 equations with exactly three
variables with the properties described in Theorem 4.9.1.

(i) Then, it is possible to construct in polynomial time an instance GL of
the (1,2)-ATSP problem with the following properties:

• If there exists an assignment ϕ to the variables of L which leaves
at most τ equations unsatisfied, then, there exist a tour in GL with
length at most 3m2 + 13m3 + 3(n + 1) − 1 + τ .

• From every tour σ in GL with length 3m2+13m3+3(n+1)−1+τ , it
is possible to construct in polynomial time an assignment ψσ to the
variables of L that leaves at most τ equations in L unsatisfied.

(ii) Furthermore, it is possible to construct in polynomial time an instance
(VL , dL) of the (1,4)-ATSP problem with the following properties:

• If there exists an assignment ϕ to the variables of L which
leaves at most τ equations unsatisfied, then, there exist a tour
in (VL , dL) with length at most 4m2 + 20m3 + 6(n + 1) + 2τ − 2.

• From every tour σ in (VL , dL) with length 4m2+20m3+6(n+1)+
2τ −2, it is possible to construct in polynomial time an assignment
ψσ to the variables of L that leaves at most τ equations in L

unsatisfied.

The former theorem can be used to derive an explicit approximation
lower bound for the (1,2)-ATSP problem by reducing instances of the
MAX-HYBRID-LIN2 problem of the form described in Theorem 4.9.1 to the
(1,2)-ATSP problem.

Corollary 10.6.1
It is NP-hard to approximate the (1,2)-ATSP problem to within any constant
approximation ratio less than 207/206.

285

CHAPTER 10. TRAVELING SALESMAN PROBLEMS

Proof of Corollary 10.6.1.
Let L 3 be an instance of the MAX-E3LIN2 problem. For a fixed ε > 0, we
choose constants δ ∈ (0,1/2) and k ∈ N such that

207 − δ

206 + δ + 7

k

≥ 207

206
− ε

holds. Then, we generate k copies of L 3 and the corresponding instance
L of the MAX-HYBRID-LIN2 problem. Given L , we construct the corre-
sponding instance GL of the (1,2)-ATSP problem with properties described
in Theorem 10.6.1. We conclude according to Theorem 4.9.1 that there exist
a tour in GL with length at most

3 ⋅ 60ν ⋅ k + 13 ⋅ 2ν ⋅ k + δν ⋅ k + n + 1 ≤ (206 + δ + n + 1
ν ⋅ k
) ν ⋅ k

≤ (206 + δ + 6 + 1
k
)ν ⋅ k

or the length of a tour in GL is bounded from below by

3 ⋅ 60ν ⋅ k + 13 ⋅ 2ν ⋅ k + (1 − δ)ν ⋅ k + n + 1 ≥ (206 + (1 − δ))ν ⋅ k

≥ (207 − δ)ν ⋅ k.

From Theorem 4.9.1, we know that the two cases above are NP-hard to
distinguish. Hence, for every ϵ > 0, it is NP-hard to find a solution to the
(1,2)-ATSP problem with approximation ratio better than

207 − δ

206 + δ + 7

k

≥ 207

206
− ε

and the proof follows. ∎

Analogously, we derive the following statement by combining Theo-
rem 4.9.1 and Theorem 10.6.1.

Corollary 10.6.2
It is NP-hard to approximate the (1,4)-ATSP problem to within any constant
approximation ratio less than 141/140.

286

10.6. OUR CONTRIBUTIONS

For the symmetric version of the problems, we construct reductions from the
MAX-HYBRID-LIN2 problem with similar properties.

Theorem 10.6.2
Suppose we are given an instance L of the MAX-HYBRID-LIN2 problem with
n wheels, m2 equations with two variables and m3 equations with exactly three
variables with the properties described in Theorem 4.9.1.

(i) Then, it is possible to construct in polynomial time an instance GL of
the (1,2)-TSP problem with the following properties:

• If there exists an assignment ϕ to the variables of L which leaves
at most τ equations unsatisfied, then, there exist a tour in GL with
length at most 8m2 + 27m3 + 3n + 2 + τ .

• From every tour σ in GH with length 8m2 + 27m3 + 3n+ 2+ τ , it is
possible to construct in polynomial time an assignment ψσ to the
variables of L that leaves at most τ equations in L unsatisfied.

(ii) Furthermore, it is possible to construct in polynomial time an instance
(VL , dL) of the (1,4)-TSP problem with the following properties:

• If there exists an assignment ϕ to the variables of L which leaves
at most τ equations unsatisfied, then, there exist a tour in (VH, dH)
with length at most 10m2 + 36m3 + 6(n + 1) + 2 + 2τ .

• From every tour σ in (VL , dL) with length 10m2+36m3+6(n+1)+
2+2τ , it is possible to construct in polynomial time an assignment
ψσ to the variables of L that leaves at most τ equations in L

unsatisfied.

Analogously, we combine the former theorem with the explicit approximation
lower bound for the MAX-HYBRID-LIN2 problem described in Theorem 4.9.1
yielding the following approximation hardness result.

Corollary 10.6.3
It is NP-hard to approximate the (1,2)-TSP problem and the (1,4)-TSP
problem to within any factor better than 535/534 and 337/336, respectively.

287

CHAPTER 10. TRAVELING SALESMAN PROBLEMS

By Lemma 10.5.3 and Corollary 10.6.1, we obtain the following explicit ap-
proximation lower bound for the MAX-(0,1)-ATSP problem.

Corollary 10.6.4
It is NP-hard to approximate the MAX-(0,1)-ATSP problem to within any
constant factor less than 206/205.

For the (1,2)-ATSP problem restricted to subcubic instances, we prove
the following explicit inapproximability result.

Theorem 10.6.3
The (1,2)-TSP problem restricted to subcubic instances is NP-hard to ap-
proximate to within any factor less than 673/672.

For cubic instances of the (1,2)-ATSP problem, we obtain the following
inapproximability threshold.

Theorem 10.6.4
The (1,2)-TSP problem restricted to subcubic instances is NP-hard to ap-
proximate to within any factor less than 1141/1140.

For subcubic and cubic instances of the Graphic TSP, we prove the fol-
lowing.

Theorem 10.6.5
The GRAPHIC-TSP problem restricted to subcubic and cubic graphs is NP-
hard to approximate to within any factor less than 685/684 and 1153/1152,
respectively.

For the general version of the metric TSP problem, we give the following
inapproximability result.

Theorem 10.6.6
It is NP-hard to approximate the TSP problem to within any constant ap-
proximation ratio less than 123/122.

For the general version of the ATSP problem, we obtain the following
explicit approximation lower bound.

288

10.7. THE (1,2)-ATSP PROBLEM

Theorem 10.6.7
It is NP-hard to approximate the ATSP problem to within any constant ap-
proximation ratio less than 75/74.

10.7 The (1, 2)-ATSP Problem

Before we proceed to give the proof of Theorem 10.6.1 (i), we describe the
reduction from a high-level view and try to build some intuition.

10.7.1 High-Level View of the Reduction

As mentioned above, we prove our hardness results by a reduction from the
MAX-HYBRID-LIN2 problem (cf. Definition 4.9.1). Suppose we are given an
instance L 3 of the MAX-E3LIN2 problem and L the corresponding instance
of the MAX-HYBRID-LIN2 problem. Recall that every variable xl in the
original instance L 3 introduces an associated wheel Wl in the instance L

as illustrated in Figure 4.1.
The idea of our reduction is to make use of the special structure of the

wheels in L . Every wheelWl in L corresponds to a graph Gl in the instance
GL of the (1,2)-ATSP problem. Moreover, Gl is a subgraph of GL , which
forms almost a cycle. An assignment to the variable xl will have a natural
interpretation in this reduction. The parity of xl, that is, the value b ∈
{0,1} of the variable xl, corresponds to the direction of movement in Gl
of the underlying tour. The wheel graphs of GL are connected and build
together the inner loop of GL . Every variable xli in a wheel Wl possesses
an associated parity graph P l

i (Figure 10.4) in Gl as a subgraph. The two
natural ways to traverse a parity graph will be called 0/1-traversals and
correspond to the parity of the variable xli. Some of the parity graphs in
Gl are also contained in graphs G3Ac (Figure 10.1 and Figure 10.6 for a more
detailed view) corresponding to equations with three variables of the form
ℓ3c ≡ x ⊕ y ⊕ z = 0. (By negating a variable in an equation x ⊕ y ⊕ z = 1, we
obtain the equation x̄ ⊕ y ⊕ z = 0, which is satisfied by an assignment to x,
y and z if and only if the former equation is satisfied. Accordingly, we only

289

CHAPTER 10. TRAVELING SALESMAN PROBLEMS

need to consider equations of the from x̄⊕ y ⊕ z = 0 or x⊕ y ⊕ z = 0)

inner loop

outer loop

G3

G5G4

G6

G3A2
G2

G3A1
G1

Figure 10.3: An illustration of the instance GL and a tour in GL .

The graphs corresponding to equations with three variables are connected
and build the outer loop of GL . The whole construction is illustrated in
Figure 10.3. The outer loop of the tour checks whether the 0/1-traversals of
the parity graphs correspond to a satisfying assignment of the equations with
three variables. If an underlying equation is not satisfied by the assignment
defined via a 0/1-traversal of the associated parity graph, it will be punished
by using a costly 2-arc.

10.7.2 Constructing GL from L

Given a instance L of the MAX-HYBRID-LIN2 problem, we are going to
construct the corresponding instance GL of the (1,2)-ATSP problem.

For every type of equation in L , we will introduce a specific graph or a
specific way to connect the so far constructed subgraphs. In particular, we
will distinguish between graphs corresponding to cycle equations, matching
equations, wheel border equations and equations with three variables. First
of all, we introduce graphs corresponding to the variables in L .

290

10.7. THE (1,2)-ATSP PROBLEM

vl0i vl1ivl�i

Figure 10.4: Parity graph P l
i corresponding to the variable xli in Wl.

Variable Graphs

Let L be an instance of the MAX-HYBRID-LIN2 problem and Wl a
wheel in L . For every variable xli in the wheel Wl, we introduce the par-
ity graph P l

i consisting of the vertices vl1i , vl�i and vl0i displayed in Figure 10.4.

vl0i vl1ivl�i
vl0i+1 vl1i+1vl�i+1

vl�e

v
l(i+1)
e

vl1j+1 vl�j+1

vl0j+1

vl1j vl0jvl�j

vlje

Figure 10.5: Connecting the parity graph P l
e.

Matching and Circle Equations

Let L be an instance of the MAX-HYBRID-LIN2 problem, Wl a wheel in L

andM(Wl) the associated perfect matching. Furthermore, let xli⊕xlj = 0 with
e = {i, j} ∈M(Wl) and i < j be a matching equation. Due to the construction
of L , the cycle equations xli ⊕ xli+1 = 0 and xlj ⊕ xlj+1 = 0 are both contained
in Wl. Then, we introduce the associated parity graph P l

e consisting of the
vertices vlje , vl�e and v

l(i+1)
e . In addition to it, we connect the parity graphs

P l
i , P l

i+1, P l
j, P l

j+1 and P l
e as displayed in Figure 10.5.

291

CHAPTER 10. TRAVELING SALESMAN PROBLEMS

Graphs Corresponding to Equations with Three Variables

Let ℓ3c ≡ xli ⊕ xsj ⊕ xkt = 0 be an equation with three variables in L . Then,
we introduce the graph G3Ac (Figure 10.1) corresponding to the equation ℓ3c .
The graph G3Ac includes the vertices sc, v1c , v2c , v3c and sc+1.

sc
sc+1

vl0e

vl�e

vl1e

vl�ivl0i

vl�i+1vl1i+1

vl0i+1

vl1i
vk1a

vk0a

vk�a

vs1b
vs�b

vs0b

v3c

v1c

v2c

Figure 10.6: The graph G3Ac corresponding to ℓ3c ≡ xli⊕xsj ⊕xuk = 0, which is
connected to the graph corresponding to xli ⊕ xli+1 = 0.

Furthermore, it contains the parity graphs P l
e, Ps

b and Pk
a as subgraphs,

where e = {i, i + 1}, b = {j, j + 1} and a = {t, t + 1}. Exemplary, we display
G3Ac with its connections to the graph corresponding to the cycle equation
xli ⊕ xli+1 = 0 in Figure 10.6.

In case of ℓ3c ≡ x̄li ⊕ xsj ⊕ xuk = 0, we connect the parity graphs with arcs
(vl1i , vl1e), (vl0i+1, vl1i) and (vl0e , vl0i+1).

Graphs Corresponding to Wheel Border Equations

Let Wl and Wl+1 be wheels in L . In addition, let xl1 ⊕ xln = 0 be the wheel
border equation of Wl. Recall that xln also occurs in an equation ℓ3c with
three variables. Let us assume that ℓ3c is of the form x̄ln ⊕ y ⊕ z = 0. Then,
we introduce the vertex bl and connect it to vl01 and vl1n . Let bl+1 be the
vertex corresponding to the wheel Wl+1. We draw an arc from vl01 to bl+1.

292

10.7. THE (1,2)-ATSP PROBLEM

Finally, we connect the vertex vl0{n,1} to bl+1. This construction is illustrated
in Figure 10.7, where we displayed only a part of the corresponding graph
G3Ac .

vl�nvl0n

vl11

vl1{1,n}

vl02

vl�{1,n}bl+1

bl

vlnavljb

vl1n
vl01

vl�1

vl0{1,n}

v1c v2c

vl1n−1

Figure 10.7: The graph corresponding to xl1⊕xln = 0 in the case x̄ln⊕y⊕z = 0

For equations ℓ3c of the form xln⊕y⊕z = 0, we use a similar construction, in
which the parity graph P l

{1,n} is connected to bl and vl1n by means of (bl, vl0{1,n})
and (vl1{1,n}, vl1n). Furthermore, we connect vl1n with bl+1. Let Wn be the last
wheel in L . Then, we set bn+1 = s1 as s1 is the starting vertex of the graph
G3A1 corresponding to the equation ℓ31. This is the whole description of the
graph GL .

10.7.3 Constructing a Tour from an Assignment

Let L be an instance of the MAX-HYBRID-LIN2 problem and GL the corre-
sponding instance of the (1,2)-ATSP problem as defined in Section 10.7.2.
Given an assignment ϕ to the variables of L , we are going to construct a
tour in GL in dependence of ϕ. In addition to it, we analyze the relation
between the length of the tour and the number of satisfied equations by ϕ.

Let L be an instance of the MAX-HYBRID-LIN2 problem consisting
of the wheels W1,W2, . . . ,Wn and equations with three variables ℓ3c , where
c ∈ [m3]. The tour in GL starts at the vertex b1. From a high-level view, it

293

CHAPTER 10. TRAVELING SALESMAN PROBLEMS

traverses all graphs corresponding to equations associated with the wheel
W1 ending with the vertex b2. Successively, it passes all graphs for each
wheel in L until it reaches the vertex bn+1 = s1 as s1 is the starting vertex
of the graph G3A1 .

At this point, the tour begins to traverse the remaining graphs G3Ac which
are simulating equations with three variables in L . By now, some of the
parity graphs appearing in graphs G3Ac already have been traversed in the
inner loop of the tour. The outer loop checks whether for each graph G3Ac ,
an even number of parity graphs has been traversed in the inner loop. In
every situation, in which ϕ leaves the underlying equation unsatisfied, the
tour needs to use a 2-arc. For each wheel Wl, we have to use 2-arcs in order
to obtain a Hamiltonian path from bl to bl+1 traversing all graphs associated
with Wl in some order except in the case when all variables in the wheel
have the same parity.

In order to analyze the length of the tour in relation to the number of
satisfied equation, we are going to examine the part passing the graphs
corresponding to the underlying equation and account the local length to
those parts of the tour. Let us begin to describe the tour passing through
parity graphs associated to variables in L .

vl1ivl�ivl0i vl1ivl�ivl0i

1-traversal of P l
i given ϕ(xli) = 1. 0-traversal of P l

i given ϕ(xli) = 0.

Figure 10.8: Traversal of the graph P l
i given the assignment ϕ. The tra-

versed arcs are represented by thick arrows.

Traversing Variable Graphs

Let xli be a variable in L . Then, the tour traverses the parity graph P l
i by

using the path vl[1−ϕ(x
l
i)]

i → vl�i → v
lϕ(xl

i)
i . In the following, we call this part of

294

10.7. THE (1,2)-ATSP PROBLEM

the tour a 0/1-traversal of the parity graph. In Figure 10.8, we displayed the
corresponding traversals of the graph P l

i given the assignment ϕ(xli), where
the traversed arcs are illustrated by thick arrows.
In both cases, we associate the local length 2 with this part of the tour.

Traversing Graphs Corresponding to Matching Equations

Let Wl be a wheel in L and xli ⊕ xlj = 0 with e = {i, j} ∈M(Wl) a matching
equation. We assume that i < j holds. Given xli ⊕ xli+1 = 0, xli ⊕ xlj = 0,
xlj ⊕xlj+1 = 0 and the assignment ϕ, we are going to construct a tour through
the corresponding parity graphs in dependence of ϕ. We begin with the case
ϕ(xli)⊕ ϕ(xli+1) = 0, ϕ(xli)⊕ ϕ(xlj) = 0 and ϕ(xlj)⊕ ϕ(xlj+1) = 0.

vl�e

vlje

v
l(i+1)
e

vl1i

vl0j+1

vl1j

vl0i+1

vl�e

vlje

v
l(i+1)
e

vl1i

vl0j+1

vl1j

vl0i+1

(a) (b)

Figure 10.9: The scenario in the 1. Case.

1.Case (ϕ(xli)⊕ ϕ(xli+1) = 0, ϕ(xli)⊕ ϕ(xlj) = 0 and ϕ(xlj)⊕ ϕ(xlj+1) = 0):
In this case, we traverse the corresponding parity graphs as displayed in Fig-
ure 10.9. In Figure 10.9 (a), we have ϕ(xli) = ϕ(xli+1) = ϕ(xlj) = ϕ(xlj+1) = 1,
whereas in Figure 10.9 (b), we have ϕ(xli) = ϕ(xli+1) = ϕ(xlj) = ϕ(xlj+1) = 0. In
both cases, this part of the tour has local length 5.

295

CHAPTER 10. TRAVELING SALESMAN PROBLEMS

vl�e

vl1j

vl0i+1

vlje

vl0j+1

vl1i
2

2

v
l(i+1)
e

vl1i

vl0j+1

vl1j

vlje

v
l(i+1)
e

vl�e

2

vl0i+1

(a) (b)

Figure 10.10: The scenario in the 2. Case.

vl1i

vl0j+1

vl1j

vl0i+1

v
l(i+1)
e

vl�e

22

vlje
vl1i

vl0j+1

vl0i+1

vlje

vl�e

vl1j

2 2

v
l(i+1)
e

(a) (b)

Figure 10.11: The scenario in the 3. Case.

296

10.7. THE (1,2)-ATSP PROBLEM

2.Case (ϕ(xli)⊕ ϕ(xli+1) = 0, ϕ(xli)⊕ ϕ(xlj) = 1 and ϕ(xlj)⊕ ϕ(xlj+1) = 0):
The tour is displayed in Figure 10.10 (a) and (b).

In the case ϕ(xli) = ϕ(xli+1) = 1 and ϕ(xlj) = ϕ(xlj+1) = 0 displayed in
Figure 10.10 (a), we are forced to enter and leave the parity graph P l

e via
2-arcs. So far, we associate the local length 6 with this part of the tour.

In Figure 10.10 (b), we have ϕ(xli) = ϕ(xli+1) = 0 and ϕ(xlj) = ϕ(xlj+1) = 1.
This part of the tour contains one 2-arc yielding the local length 6.

vl1i

vl0j+1

vl0i+1

v
l(i+1)
e

2

vl1j

vl�e

2

vlje

vl1i

vl0j+1

vl0i+1

v
l(i+1)
e

vl1j

vlje

22

vl�e

(a) (b)

Figure 10.12: The scenario in the 4. Case.

3.Case (ϕ(xli)⊕ ϕ(xli+1) = 0, ϕ(xli)⊕ ϕ(xlj) = 0 and ϕ(xlj)⊕ ϕ(xlj+1) = 1):
In dependence of ϕ, we traverse the parity graphs as displayed in Figure 10.11.
The situation, in which ϕ(xli) = ϕ(xli+1) = 1 and ϕ(xlj) = 1 ≠ ϕ(xlj+1)
holds, is depicted in Figure 10.11 (a). On the other hand, if we have
ϕ(xli) = ϕ(xli+1) = 0 and ϕ(xlj) = 0 ≠ ϕ(xlj+1), the tour is pictured in
Figure 10.11 (b). In both cases, we associate the local length 6.

4.Case (ϕ(xi)⊕ ϕ(xi+1) = 0, ϕ(xi)⊕ ϕ(xj) = 1 and ϕ(xj)⊕ ϕ(xj+1) = 1):
The tour is displayed in Figure 10.12. In Figure 10.12 (a), we are given
ϕ(xli) = ϕ(xli+1) = 1 and ϕ(xlj) ≠ ϕ(xlj+1) = 1, whereas in Figure 10.12 (b), we

297

CHAPTER 10. TRAVELING SALESMAN PROBLEMS

have ϕ(xli) = ϕ(xli+1) = 0 and ϕ(xlj) ≠ ϕ(xlj+1) = 0. In both cases, we associate
the local length 6 with this part of the tour.

vlje

v
l(i+1)
e

vl�e

2

vl1i

vl0j+1

vl0i+1

vl1j

2

vlje

vl�e

vl1i

vl0j+1

vl0i+1

2

v
l(i+1)
e

vl1j

2

(a) (b)

Figure 10.13: The scenario in the 5.Case.

vl0j+1

vlje

vl0i+1

vl�e

vl1i

2

2
vl1j

v
l(i+1)
e

2

2

vl1i

vl0j+1 v
l(i+1)
e

vl1j
2

vl0i+1

vl�e

2

vlje

2 2

(a) (b)

Figure 10.14: The scenario in the 6. Case.

298

10.7. THE (1,2)-ATSP PROBLEM

5.Case (ϕ(xli)⊕ ϕ(xli+1) = 1, ϕ(xli)⊕ ϕ(xlj) = 1 and ϕ(xlj)⊕ ϕ(xlj+1) = 1):
In this case, we traverse the corresponding parity graphs as depicted in Fig-
ure 10.13.
In Figure 10.13 (a), we notice that ϕ(xli) ≠ ϕ(xli+1) = 0 and ϕ(xlj) ≠ ϕ(xlj+1) =
1, whereas in (b), we have ϕ(xli) ≠ ϕ(xli+1) = 1 and ϕ(xlj) ≠ ϕ(xlj+1) = 0. This
part of the tour has local length 7.

vl1i

vl0j+1

vl1j

vlje

v
l(i+1)
e

vl�e

2

2
vl0i+1

vl�e

vlje

v
l(i+1)
e

vl1i

vl1j

vl0i+1

2 2

vl0j+1

(a) (b)

Figure 10.15: The scenario in the 7. Case.

6.Case (ϕ(xli)⊕ ϕ(xli+1) = 1, ϕ(xli)⊕ ϕ(xlj) = 0 and ϕ(xlj)⊕ ϕ(xlj+1) = 1):
In this case, we traverse the corresponding parity graphs as depicted
in Figure 10.14. In Figure 10.14 (a), we have ϕ(xli) ≠ ϕ(xli+1) = 0 and
ϕ(xlj) ≠ ϕ(xlj+1) = 0, whereas in (b), we have ϕ(xli) ≠ ϕ(xli+1) = 1 and
ϕ(xlj) ≠ ϕ(xlj+1) = 1. This part of the tour has local length 7.

7.Case (ϕ(xi)⊕ ϕ(xi+1) = 1, ϕ(xi)⊕ ϕ(xj) = 0 and ϕ(xj)⊕ ϕ(xj+1) = 0):
In this case, we traverse the corresponding parity graphs as displayed
in Figure 10.15. In Figure 10.15 (a), we have ϕ(xli) ≠ ϕ(xli+1) = 1 and
ϕ(xlj) = ϕ(xlj+1) = 0, whereas in (b), we have ϕ(xli) ≠ ϕ(xli+1) = 0 and
ϕ(xlj) = ϕ(xlj+1) = 1. This part of the tour has local length 6.

299

CHAPTER 10. TRAVELING SALESMAN PROBLEMS

vlje

v
l(i+1)
e

vl1j

vl0i+1
2

vl1i

vl0j+1

vl�e

2

vl1i

vl0j+1

vlje

v
l(i+1)
e

vl0i+1

2 2

vl�e

vl1j

(a) (b)

Figure 10.16: The scenario in the 8. Case.

8.Case (ϕ(xli)⊕ ϕ(xli+1) = 1, ϕ(xli)⊕ ϕ(xlj) = 1 and ϕ(xlj)⊕ ϕ(xlj+1) = 0):
In the last case, we traverse the corresponding parity graphs as depicted
in Figure 10.16. In Figure 10.16 (a), we notice that ϕ(xli) ≠ ϕ(xli+1) = 0

and ϕ(xlj) = ϕ(xlj+1) = 0, whereas in (b), we have ϕ(xli) ≠ ϕ(xli+1) = 1 and
ϕ(xlj) = ϕ(xlj+1) = 1. This part of the tour has local length 6.

As for the next step, we are going to analyze the length of the tour
in graphs corresponding to equations with three variables.

Traversing Graphs for Equations with Three Variables

Let ℓ3c ≡ xli ⊕ xsj ⊕ xkt = 0 be an equation with three variables in L . Further-
more, let xli ⊕ xli+1 = 0, xsj ⊕ xsj+1 = 0 and xkt ⊕ xkt+1 = 0 be cycle equations
in L . For notational simplicity, we introduce e = {i, i + 1}, a = {t, t + 1}
and b = {j, j + 1}. In Figure 10.17, we display the construction involving the
graphs G3Ac , Pk

a , Ps
b , P l

e, P l
i and P l

i+1. Exemplary, we depicted the connections
of the graphs G3Ac , P l

e, P l
i and P l

i+1 in this figure. We are going to construct
the tour traversing the corresponding graphs and analyze the relation of the
local length and the number of satisfied participating equations.

300

10.7. THE (1,2)-ATSP PROBLEM

sc
sc+1

vl0e

vl�e

vl1e

vl�ivl0i

vl�i+1vl1i+1

vl0i+1

vl1i
vk1a

vk0a

vk�a

vs1b
vs�b

vs0b

v3c

v1c

v2c

Figure 10.17: The graph G3Ac with its connections to P l
i and P l

i+1.

Recall from Lemma 10.5.1 that there is a simple path from sc to sc+1

containing the vertices v1c , v2c and v3c in G3Ac if and only if an even number of
parity graphs P ∈ {Pk

a ,Ps
b ,P l

e} is traversed.

vl0i+1 vl�i+1vl�i vl1i

vl0i

vl0e vl�e vl1e

vl1i+1

v2cv3c

Figure 10.18: A part of the graphs corresponding to xli ⊕ xli+1 = 0 and xli ⊕
xsj ⊕ xkt = 0.

The outer loop traverses the graph G3Ac starting at sc and ending in sc+1

while passing the vertices v1c , v2c and v3c in some order. If the inner loop of the
tour contains an odd number of parity graphs P ∈ {Pk

a ,Ps
b ,P l

e}, it is possible
to construct a simple path from sc to sc+1 containing the vertices that are
not included in the inner loop of the tour. In particular, it passes an even

301

CHAPTER 10. TRAVELING SALESMAN PROBLEMS

number of remaining parity graphs, and we associate the local length 3 ⋅3+4
with this part. In the other case, we have to use a 2-arc yielding the local
length 14.

Let us analyze the part of the tour traversing graphs corresponding to
xli ⊕ xli+1 = 0. For this reason, we will examine the situation displayed in
Figure 10.18. Let us begin with the case (ϕ(xli)⊕ ϕ(xli+1) = 0).

vl0i+1 vl�i+1vl�i vl1i

vl0i

vl0e vl�e vl1e

v3c v2c

vl1i+1

Figure 10.19: Case (ϕ(xli) = ϕ(xli+1) = 1).

1.Case (ϕ(xli)⊕ ϕ(xli+1) = 0):
If ϕ(xli) = ϕ(xli+1) = 1 holds, the tour uses the arc (vl1i , vl0i+1). Afterwards, the
parity graph P l

e will be traversed when the tour leads through the graph G3Ac .
More precisely, it will use the path v3c → vl0e → vl�e → vl1e → v2c . In Figure 10.19,
we illustrated this part of the tour.
In the other case (ϕ(xli) = ϕ(xli+1) = 0), we use the path vl0i+1 → vl1e → vl�e →
vl0e → vl1i . Afterwards, the tour contains the arc (v2c , v3c).

In both cases, we associate the local length 1 with this part of the tour.

vl�e

vl1i+1

vl�i+1

vl0i

vl1evl0e

vl�i vl1i
vl0i+1
2

v3c

2

v2c

Figure 10.20: Case (ϕ(xli) ≠ ϕ(xli+1) = 1).

302

10.7. THE (1,2)-ATSP PROBLEM

2.Case (ϕ(xli+1)⊕ ϕ(xli+1) = 1):
Assuming ϕ(xli) ≠ ϕ(xli+1) = 1, the tour uses a 2-arc entering vl1e and the path
vl1e → vl�e → vl0e → vl1i . Furthermore, we need another 2-arc in order to reach
vl0i+1. The situation is depicted in Figure 10.20.
In the other case (ϕ(xli) ≠ ϕ(xli+1) = 0), we use 2-arcs leaving vl0i+1 and vl1i .
Afterwards, the tour uses the path v3c → vl0e → vl�e → vl1e → v2c while traversing
the graph G3Ac .

In both cases, we associate the local length 2 with this part of the tour.

In the next section, we are going to analyze the length of the tour in
graphs corresponding to wheel border equations.

Traversing Graphs Corresponding to Wheel Border Equations

Let Wl be a wheel in L and xl1 ⊕ xln = 0 its wheel border equation. Recall
that the variable xln is also included in an equation with three variables. We
assume that the equation is of the form x̄ln⊕y⊕z = 0. We are going to describe
the part of the tour passing through the graphs depicted in Figure 10.21 in
dependence of the assigned values to the variables xl1 and xln. Let us start
with the case (ϕ(xl1)⊕ ϕ(xln) = 0).

vl�nvl0n

vl11

vl1{1,n}

vl02

vl�{1,n}bl+1

vlnavljb

vl1nvl�1

vl0{1,n}

vl01

v3c v2c

vl1n−1

bl

Figure 10.21: Traversing graphs corresponding to wheel border equations.

1. (Case ϕ(xl1)⊕ ϕ(xln) = 0):
The starting point of the tour passing through the graph corresponding to

303

CHAPTER 10. TRAVELING SALESMAN PROBLEMS

xl1 ⊕ xln = 0 is the vertex bl. Given the values ϕ(xl1) = ϕ(xln), we use in each
case the ϕ(xl1)-traversal of the parity graphs P l

1 and P l
n ending in bll+1. Note

that in the case ϕ(xl1) = ϕ(xln) = 0, we use the 1-traversal of the parity graph
P l
{1,n}. Exemplary, we display the situation ϕ(xl1) = ϕ(xln) = 1 in Figure 10.22.

vl�nvl0n

vl11

vl1{1,n}

vl02

vl�{1,n}bl+1

vlnavljb

vl1nvl�1

vl0{1,n}

vl01

v3c v2c

vl1n−1

bl

Figure 10.22: Case (ϕ(xl1) = ϕ(xln) = 1).

In both cases, we associated the local length 2 with this part of the tour.
2.Case (ϕ(xl1)⊕ ϕ(xln) = 1):
Given the assignment ϕ(xl1) ≠ ϕ(xln) = 0, we traverse the arc (bl, vl01). Due to
the construction, we have to use 2-arcs to enter bl+1 and vl1n as displayed in
Figure 10.23.

vl�nvl0n

vl11

vl1{1,n}

vl02

bl+1

bl

vlnavljb

vl�1

vl0{1,n}

vl01

v3c v2c

vl1n−1

2

vl1n
2

vl�{1,n}

Figure 10.23: Case (ϕ(xl1) ≠ ϕ(xln) = 0).

304

10.7. THE (1,2)-ATSP PROBLEM

In the other case, we have to use a 2-arc in order to leave
the vertices bl and vl01 . In addition, the tour contains the path
vl1n → vl0{1,n} → vl�{1,n} → vl1{1,n} → bl+1.

Hence, in both cases, we associate the local length 3 with this part of
the tour.

In summary, our analysis yields the following statement.

Lemma 10.7.1
Let L be an instance of th MAX-HYBRID-LIN2 problem with n wheels, m2

equations with two variables, m3 equations with three variables and ϕ an
assignment to the variables of L leaving u equations in L unsatisfied. Then,
there is a tour in GL with length at most n + 1 + 3m2 + 13m3 + u.

10.7.4 Constructing the Assignment from a Tour

Let L be an instance of the MAX-HYBRID-LIN2 problem, GL the associated
instance of the (1,2)-ATSP problem and σ a tour in GL . We are going to
define the corresponding assignment ψσ to the variables in L . In addition
to it, we establish a connection between the length of σ and the number of
satisfied equations by ψσ. In order to define an assignment, we first introduce
the notion of consistent tours in GL .

Definition 10.7.1 (Consistent Tour)
Let L be an instance of the MAX-HYBRID-LIN2 problem and GL the associ-
ated instance of the (1,2)-ATSP problem. A tour in GL is called consistent
if it uses only 0/1-traversals of all parity graphs that are in contained in GL .

Due to the following lemma, we may assume that the underlying tour is
consistent.

Lemma 10.7.2
Let L be an instance of the MAX-HYBRID-LIN2 problem and GL the asso-
ciated instance of the (1,2)-ATSP problem. Any tour σ in GL can be trans-
formed in polynomial time into a consistent tour π in GL without increasing

305

CHAPTER 10. TRAVELING SALESMAN PROBLEMS

the length.

Proof of Lemma 10.7.2.
For every parity graph contained in GL , it can be seen by considering all
possibilities exhaustively that any tour in GL , that is not using the corre-
sponding 0/1-traversals, can be modified into a tour with at most the same
number of 2-arcs. The less obvious cases are shown in Figure 10.24 and
Figure 10.25 ∎

2 2

2

2

(i) (ii)

2

2 2

2

(i) (ii)

Figure 10.24: Situations before (i) and after the transformation (ii).

In the following, we assume that the underlying tour σ is consistent. Let us

306

10.7. THE (1,2)-ATSP PROBLEM

now define the corresponding assignment ψσ given σ.

Definition 10.7.2 (Assignment ψσ)
Let L be an instance of the MAX-HYBRID-LIN2 problem, GL the associated
instance of the (1,2)-ATSP problem. Given a consistent tour σ in GL , the
corresponding assignment ψσ is defined as follows.

ψσ(xli) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if σ uses a 1-traversal of P l
i

0 otherwise

2

2

(i) (ii)

2

2

(i) (ii)

Figure 10.25: Situations before (i) and after the transformation (ii).

307

CHAPTER 10. TRAVELING SALESMAN PROBLEMS

We are going to analyze the local length of σ in dependence of the number
of corresponding satisfied equations by ψσ. In some cases, we will have to
modify the underlying tour improving in this way on the number of satisfied
equations by the corresponding assignment ψσ. Let us start with the analysis.

Transforming σ in Graphs for Matching Equations

Given the equations xli ⊕ xli+1 = 0, xli ⊕ xlj = 0, xlj ⊕ xlj+1 = 0 and a tour σ,
we are going to construct an assignment in dependence of σ. In particular,
we analyze the relation between the length of the tour and the number of
satisfied equations by ψσ.

vl�e

vljevl1i

vl0j+1

x

vl0i+1

z y

2
2

2

2
v
l(i+1)
e

vl1j
2

v

vl�e

vljevl1i

vl0j+1

vl0i+1

v

y

v
l(i+1)
e

vl1j

z

2

2
x

(a) (b)

Figure 10.26: The scenario in the 1. Case.

1.Case (ψσ(xli)⊕ψσ(xli+1) = 0, ψσ(xli)⊕ψσ(xlj) = 0 & ψσ(xlj)⊕ψσ(xlj+1) = 0):
Given ψσ(xli) = ψσ(xlj) = ψσ(xlj) = ψσ(xlj+1) = 1, it is possible to trans-
form the underlying tour such that no 2-arcs enter or leave the vertices vl1i ,
vl0i+1, vl0j+1, v

lj
e , vl(i+1)e and vl1j . Exemplary, we display in Figure 10.26 such

a transformation, where Figure 10.26 (a) and Figure 10.26 (b) illustrate
the underlying tour σ and the transformed tour σ′, respectively. The case

308

10.7. THE (1,2)-ATSP PROBLEM

ψσ(xli) = ψσ(xli+1) = ψσ(xlj) = ψσ(xlj+1) = 0 can be discussed analogously. In
both cases, we obtain the local length 5 for this part of σ while ψσ satisfies
all 3 equations.

vl�e

vl1j

vl0i+1

vlje

vl0j+1

vl1i
2

2

v
l(i+1)
e

vl1i

vl0j+1

vl1j

vlje

v
l(i+1)
e

vl�e

2

vl0i+1

(a) (b)

Figure 10.27: The scenario in the 2. Case.

2.Case (ψσ(xli)⊕ψσ(xli+1) = 0, ψσ(xli)⊕ψσ(xlj) = 1 & ψσ(xlj)⊕ψσ(xlj+1) = 0):
Assuming ψσ(xli) = ψσ(xli+1) = 1 and ψσ(xlj) = ψσ(xlj+1) = 0, we are able to
transform the tour such that it uses the arcs (vl1i , vl0i+1) and (vl0j+1, vl1j). Due
to the construction and our assumption, the tour cannot traverse the arcs
(vl1j , v

lj
e), (vlje , vl1i), (v

l(i+1)
e , vl0j+1) and (vl0i+1, v

l(i+1)
e). Consequently, we have to

use 2-arcs entering and leaving the parity graph P l
e. The situation is displayed

in Figure 10.27 (a). We associate only the cost of one 2-arc yielding the local
length 6, which corresponds to the fact that ψσ leaves the equation xli⊕xlj = 0
unsatisfied.

Note that a similar situation holds in the case when ψσ(xli) = ψσ(xli+1) = 0
and ψσ(xlj) = ψσ(xlj+1) = 1 (cf. Figure 10.27 (b)).

309

CHAPTER 10. TRAVELING SALESMAN PROBLEMS

vl1i

vl0j+1

vl1j

vl0i+1

v
l(i+1)
e

vl�e

22

vlje
vl1i

vl0j+1

vl0i+1

vlje

vl�e

vl1j

2 2

v
l(i+1)
e

(a) (b)

Figure 10.28: The scenario in the 3. Case.

vl0j+1

vlje

vl0i+1

vl�e

vl1i

2

2
vl1j

v
l(i+1)
e

2

2

vl1i

vl0j+1 v
l(i+1)
e

vl1j
2

vl0i+1

vl�e

2

vlje

2 2

(a) (b)

Figure 10.29: The scenario in the 4. Case.

310

10.7. THE (1,2)-ATSP PROBLEM

(a)

vlje

vl�e

v
l(i+1)
e

x

2

z

vl0i+1

vl1j

vl1j−1vl0j+1

vl1i

2

(b)

vl0i+1

vlje

vl�e

v
l(i+1)
e

vl1j

z

2

x

vl1j−1

vl1i

vl0j+1

2

Figure 10.30: The scenario in the 5. Case.

3.Case (ψσ(xli)⊕ψσ(xli+1) = 0, ψσ(xli)⊕ψσ(xlj) = 0 & ψσ(xlj)⊕ψσ(xlj+1) = 1):
Let us start with the case ψσ(xli) = ψσ(xli+1) = 1 and ψσ(xlj) ≠ ψσ(xlj+1) = 0.
The situation is displayed in Figure 10.28 (a). Due to the construction, we
are able to transform σ such that it uses the arc (vl1i , vl0i+1). Note that the
tour cannot traverse the arcs (vl(i+1)e , vl0j+1) and (vl0j+1, vl1j). Hence, we are
forced to use two 2-arcs increasing the cost by 2. All in all, we obtain the

311

CHAPTER 10. TRAVELING SALESMAN PROBLEMS

local length 6.
The case ψσ(xli) = ψσ(xli+1) = 0 and ψσ(xlj) ≠ ψσ(xlj+1) = 1 can be analyzed
analogously (cf. Figure 10.28 (b)). Similar arguments can be applied when
ψσ(xli)⊕ ψσ(xli+1) = 1, ψσ(xli)⊕ ψσ(xlj) = 0 and ψσ(xlj)⊕ ψσ(xlj+1) = 0.

(a)

vlje

x

vl1j

2

vl0i+1

z

2

vl1i

vl0j+1

vl�e

v
l(i+1)
e

vlke′

(b)

vlje

vl�e

vl1j

vl0i+1

v
l(i+1)
e

2 2

vlke′

vl0j+1

vl1i

z

x

Figure 10.31: 5.Case (ψσ(xli) = ψσ(xli+1) = 0 & ψσ(xlj) ≠ ψσ(xlj+1) = 0).

312

10.7. THE (1,2)-ATSP PROBLEM

4.Case (ψσ(xli)⊕ψσ(xli+1) = 1, ψσ(xli)⊕ψσ(xlj) = 0 & ψσ(xlj)⊕ψσ(xlj+1) = 1):
Given ψσ(xli) ≠ ψσ(xli+1) = 0 and ψσ(xlj) ≠ ψσ(xlj+1) = 0, we are able to
transform the tour such that it uses the arc (vl0i+1, v

l(i+1)
e). This situation is

depicted in Figure 10.29 (a). Notice that we are forced to use four 2-arcs in
order to connect all vertices. Consequently, it yields the local length 7.

The case, in which ψσ(xli) ≠ ψσ(xli+1) = 0 and ψσ(xlj) ≠ ψσ(xlj+1) = 0 holds,
is displayed in Figure 10.29 (b) and can be discussed analogously.

(a)

vlje

vl1j

vl0i+1

vl1j−1

vl0j+1

vl1i

vl�e

v
l(i+1)
e

2
2

(b)

vl�e

vl1j

vl0i+1

2
vl1i

vl0j+1

vl1j−1

vlje

v
l(i+1)
e

2

Figure 10.32: 6.Case (ψσ(xli) ≠ ψσ(xli+1) = 1 and ψσ(xlj) ≠ ψσ(xlj+1) = 0).

5.Case (ψσ(xli)⊕ψσ(xli+1) = 0, ψσ(xli)⊕ψσ(xlj) = 1 & ψσ(xlj)⊕ψσ(xlj+1) = 1):
Let the tour σ be characterized by ψσ(xli) = ψσ(xli+1) = 1 and ψσ(xlj) ≠

313

CHAPTER 10. TRAVELING SALESMAN PROBLEMS

ψσ(xlj+1) = 1. Then, we transform σ in such a way that we are able to use the
arc (vl1i , vl0i+1). The corresponding situation is illustrated in Figure 10.30 (a).
In order to change the value of ψσ(xlj), we transform the tour by traversing
the parity graph P l

j in the other direction and obtain ψσ(xlj) = 1. This
transformation induces a tour with at most the same cost. On the other
hand, the corresponding assignment ψσ satisfies at least 2−1 more equations
since xlj ⊕ xlj−1 = 0 could be unsatisfied. In this case, we associate the local
cost 6 with σ.

(a)

vlje

vl0i+1

2

v
l(i+1)
e

vl1j

2

vl1i

vl�e

vl0j+1 vl1j−1

(b)

vlje

vl�e

vl1j

vl0i+1

v
l(i+1)
e

2

2

vl0j+1

vl1i

vl1j−1

Figure 10.33: 6.Case (ψσ(xli) ≠ ψσ(xli+1) = 0 and ψσ(xlj) ≠ ψσ(xlj+1) = 1).

314

10.7. THE (1,2)-ATSP PROBLEM

In the other case, in which ψσ(xli) = ψσ(xli+1) = 0 and ψσ(xlj) ≠ ψσ(xlj+1) = 0
holds, we may argue similarly. The transformation is depicted in Fig-
ure 10.31 (a) − (b).

6.Case (ψσ(xli)⊕ψσ(xli+1) = 1, ψσ(xli)⊕ψσ(xlj) = 1 & ψσ(xlj)⊕ψσ(xlj+1) = 1):
Given a tour σ with ψσ(xli) ≠ ψσ(xli+1) = 1 and ψσ(xlj) ≠ ψσ(xlj+1) = 0, we
transform σ such that it traverses the parity graph P l

j in the opposite
direction meaning ψσ(xlj) = 0 (cf. Figure 10.32). This transformation
enables us to use the arc (vl0j+1, vl1j). Furthermore, it yields at least one more
satisfied equation in L . In order to connect the remaining vertices, we are
forced to use at least two 2-arcs. In summary, we associate the local length
7 with this situation in conformity with the at most 2 unsatisfied equations
by ψσ.

If we are given a tour σ with ψσ(xli) ≠ ψσ(xli+1) = 0 and ψσ(xlj) ≠
ψσ(xlj+1) = 1, we obtain the situation displayed in Figure 10.33 (a). By
applying local transformations without increasing the length of the under-
lying tour, we obtain the scenario displayed in Figure 10.33 (b). We ar-
gue that the associated local length of the tour is 7. The case, in which
ψσ(xli) ⊕ ψσ(xli+1) = 1, ψσ(xli) ⊕ ψσ(xlj) = 1 and ψσ(xlj) ⊕ ψσ(xlj+1) = 0 holds,
can be discussed analogously.

Transforming σ in Graphs for Equations With Three Variables

Let ℓ3c ≡ xli ⊕ xsj ⊕ xrk = 0 be an equation with three variables, Wl a wheel
and xli ⊕ xli+1 = 0 a cycle equation in L . For notational simplicity, we set
e = {i, i + 1}. We are going to analyze the relation between the number of
satisfied equations by ψσ and the local length of σ in the graphs P l

i , P l
i+1,

P l
e and G3Ac . First, we transform the tour traversing the graphs P l

i , P l
i+1

and P l
e such that it uses the ψσ(xli)-traversal of P l

e. Afterwards, due to
the construction of G3Ac and Lemma 10.5.1, the outer loop of the tour can
be transformed such that it has local length 3 ⋅ 3 + 4 if it passes an even
number of parity graphs P ∈ {P l

e,Pk
a ,Ps

b } by using a simple path through
G3Ac . Otherwise, it yields a local length of 13 + 1. Let us start with the case

315

CHAPTER 10. TRAVELING SALESMAN PROBLEMS

ψσ(xli) = 1 and ψσ(xli+1) = 1.

(a)

vl�e

vl0i+1 vl�i+1vl�i vl1i

vl1evl0e

2

2

vl0i

v2c v1c

vl1i+1

(b)

vl�e

vl�i+1vl�i vl1i

vl1evl0e

vl0i vl1i+1
vl0i+1

v1cv2c

Figure 10.34: 1.Case (ψσ(xli) = 1 and ψσ(xli+1) = 1).

1.Case (ψσ(xli) = 1 and ψσ(xli+1) = 1):
In Figure 10.34 (a) and (b), we display the tour passing through P l

i , P l
i+1

and P l
e with ψσ(xli) = 1 and ψσ(xli+1) = 1 before and after the transformation,

respectively. It is possible to transform the tour σ without increasing the
length such that it traverses the arc (vl1i , vl0i+1). In the outer loop, the tour
may use at least one of the arcs (v2c , vl0e) and (vl1e , v1c) depending on the
parity check in G3Ac . We associate the local length 1 with this part of the tour.

2.Case (ψσ(xli) = 0 and ψσ(xli+1) = 0):
In Figure 10.35, we display the underlying scenario with ψσ(xli) = 0 and
ψσ(xli+1) = 0. The transformed tour uses the 0-traversal of the parity graph
P l
e. The vertices v2c and v1c are connected via a 2-arc. We assign the local

316

10.7. THE (1,2)-ATSP PROBLEM

length 1 to this part of the tour.

(a)

vl0i+1vl�i vl1i

vl0e vl�e vl1e

v2c

vl0i vl1i+1
2

v1c

vl�i+1

(b) vl0i+1vl�i vl1i

vl0e vl�e
vl1e

v2c v1c

vl1i+1vl0i
vl�i+1

2

Figure 10.35: 2.Case (ψσ(xli) = 0 and ψσ(xli+1) = 0).

(a)

vl0i+1

vl1i+1vl0i

vl0e vl�e vl1e

vl�i

x

2
z

2

vl1i

v2c v1c

vl�i+1

(b)

vl0i+1

vl1i+1vl0i

vl0e vl�e vl1e

vl�i

x
2

vl1i z 2

v1cv2c

vl�i+1

Figure 10.36: The scenario in the 3. Case with ψσ(xli)⊕ψσ(xsj)⊕ψσ(xrk) = 0.

317

CHAPTER 10. TRAVELING SALESMAN PROBLEMS

(a)

vl�e

vl�i+1

vl0i

vl1evl0e

vl�i vl1i
vl0i+1

x 2

vl1i−1

2y

v2c v1c

vl1i+1

(b)

vl�e

vl�i+1

vl0i

vl1evl0e

vl�i vl1i
vl0i+1

x

vl1i−1

y 2
2

v2c v1c

vl1i+1

Figure 10.37: The scenario in the 3. Case with ψσ(xli)⊕ψσ(xsj)⊕ψσ(xrk) = 1.

3.Case (ψσ(xli) = 1 and ψσ(xli+1) = 0):
Let us assume that ψσ(xli)⊕ψσ(xsj)⊕ψσ(xrk) = 0 holds. Hence, it is possible
to transform the tour such that it uses the path v2c → vl0e → vl�e → vl1e → v1c

and thus, the 0-traversal of the parity graph P l
e as displayed in Figure 10.36.

In the other case, namely ψσ(xli)⊕ψσ(xsj)⊕ψσ(xrk) = 1, we will change the
value of ψσ(xli) achieving in this way at least 2 − 1 more satisfied equation.
Let us examine the scenario in Figure 10.37. The tour uses the 0-traversal
of the parity graph P l

e, which enables σ to pass the parity check in G3Ac .
In both cases, we associate the local length 2 in conformity with the at

most one unsatisfied equation by ψσ.

4.Case (ψσ(xli) = 0 and ψσ(xli+1) = 1):
Assuming ψσ(xli) ⊕ ψσ(xsj) ⊕ ψσ(xrk) = 0 and the scenario depicted
in Figure 10.38 (a), the tour will be modified such that the parity
graphs P l

i and P l
e are traversed in the same direction. Since we have

ψσ(xli) ⊕ ψσ(xsj) ⊕ ψσ(xrk) = 0, we are able to uncouple the parity graph P l
e

318

10.7. THE (1,2)-ATSP PROBLEM

from the tour through G3Ac without increasing its length. We display the
transformed tour in Figure 10.38 (b).

(a)

vl�e

v1cv2c

vl1i+1

vl�i+1

vl0i

vl1evl0e

vl�i vl1i
vl0i+1

vl1i−1

x y
2

2

(b)

vl�e

v1cv2c

vl1i+1

vl�i+1

vl0i

vl1evl0e

vl�i vl1i
vl0i+1

vl1i−1

x y
2

2

Figure 10.38: The scenario in the 4. Case with ψσ(xli) = 0, ψσ(xli+1) = 1

and ψσ(xli)⊕ ψσ(xsj)⊕ ψσ(xrk) = 0.

Assuming ψσ(xli) ⊕ ψσ(xsj) ⊕ ψσ(xrk) = 1 and the scenario displayed in
Figure 10.39 (a), we transform σ such that the parity graph P l

e is traversed
when σ is passing through G3Ac , that is, the path v2c → vl0e → vl�e → vl1e → v1c

is a part of the tour. In addition, we change the value of ψσ(xli) yielding
at least 2 − 1 more satisfied equation. The transformed tour is displayed in
Figure 10.39 (b). In both cases, we associate the local length 2 with σ. On
the other hand, ψσ leaves at most one equation unsatisfied.

319

CHAPTER 10. TRAVELING SALESMAN PROBLEMS

(a)

vl�e

v1cv2c

vl1i+1

vl�i+1

vl1evl0e

vl�i vl1i
vl0i+1

vl1i−1

x y
2

2
vl0i

(b)

vl�e

v1cv2c

vl1i+1

vl�i+1

vl1evl0e

vl�i vl1i
vl0i+1

vl1i−1

x y2
2

vl0i

Figure 10.39: The scenario in the 4. Case with ψσ(xli) = 0, ψσ(xli+1) = 1

and ψσ(xli)⊕ ψσ(xsj)⊕ ψσ(xrk) = 1.

Transforming σ in Graphs for Wheel Border Equations

Let Wl be a wheel in L and xl1 ⊕ xln = 0 its wheel border equation.
Furthermore, let ℓ3c ≡ xln ⊕ xsj ⊕ xrk = 1 be an equation with three variables
contained in L . We are going to transform a given tour σ passing through
the graph corresponding to xl1⊕xln = 0 such that it will have the local length
2 if xl1⊕xln = 0 is satisfied by ψσ and 3, otherwise. In each case, we modify σ
such that it uses the ψ(xln)-traversal of P l

{1,n}. Afterwards, σ will be checked
in G3Ac whether it passes the parity test.

Let us begin with the analysis starting with the case ψσ(x1) = 1 and
ψσ(xn) = 1.

320

10.7. THE (1,2)-ATSP PROBLEM

1.Case (ψσ(x1) = 1 and ψσ(xn) = 1):
Let us assume that ψσ leaves ℓ3c unsatisfied meaning ψσ(xln) ⊕ ψσ(xsj) ⊕
ψσ(xrk) = 0.

(a)

vl�nvl0n

vl11

vl1{1,n}

vl02

vl�{1,n}bl+1

bl

vlnavljb

vl1n

vl01
vl�1

2 vl0{1,n}

v3c v2c

vl1n−1

(b)

vl�nvl0n

vl11

vl1{1,n}

vl02

vl�{1,n}bl+1

bl

vlnavljb

vl1n

vl01
vl�1

vl0{1,n}

2
v3c v2c

vl1n−1

Figure 10.40: 1.Case (ψσ(x1) = 1 and ψσ(xn) = 1).

In addition to it, we assume that the path v3c → vl1{1,n} → vl�{1,n} → vl0{1,n} →
v2c is a part of σ. Note that σ fails the parity check in G3Ac if v3c → vl1{1,n} →
vl�{1,n} → vl0{1,n} → v2c is not contained in σ. First, we modify the tour such that
it includes the arc (bl, vl01). Furthermore, we may assume that vl1n and bl+1

are connected via a 2-arc. We obtain the scenario depicted in Figure 10.40
(a). As for the next step, we transform σ such that it contains the arcs
(vl1n , vl0{1,n}) and (vl1{1,n}, bl+1). Consequently, we use the 1-traversal of the

321

CHAPTER 10. TRAVELING SALESMAN PROBLEMS

parity graph P l
{1,n} and connect v3c and v2c via a 2-arc. The modified tour

is displayed in Figure 10.40 (b). If ψσ satisfies ℓ3c and σ contains the path
v3c → vl1{1,n} → vl�{1,n} → vl0{1,n} → v2c , we modify σ in G3Ac such that it passes the
parity test in G3Ac and contains the arc (v2c , v3c). In both cases, we associate
the local length 2 with this part of σ.

(a)

vl�nvl0n

vl11 vl02

bl+1

bl

vlnavljb

vl1nvl�1vl01

vl1n−1

2

v3c v2c

2
x

y
vl0{1,n}vl1{1,n}

(b)

vl�nvl0n

vl11 vl02

bl+1

bl

vlnavljb

vl1nvl�1vl01

vl1n−1

v3c v2c

x

y
2 vl1{1,n} vl0{1,n}

Figure 10.41: 2.Case (ψσ(x1) = 0 and ψσ(xn) = 0).

2.Case (ψσ(x1) = 0 and ψσ(xn) = 0):
Let us assume that ψσ(xln) ⊕ ψσ(xsj) ⊕ ψσ(xrk) = 0 holds and σ contains the
arc (v2c , v3c). Given this scenario, we may assume that (bl, vl1n) is contained
in σ due to a simple modification. Then, we are going to analyze the situa-
tion depicted in Figure 10.41 (a). We transform σ in the way described in
Figure 10.41 (b). Afterwards, σ will be modified in G3Ac such that it uses a

322

10.7. THE (1,2)-ATSP PROBLEM

simple path in G3Ac failing the parity check.

(a)

vl�n

vl11 vl02

bl+1

vlnavljb

vl0{1,n}

vl01
vl1n

2
x

y

2

bl

vl1n−1 v
l0
n

vl1{1,n}

v3c vl�{1,n}
v2c

vl�1

(b)

vl�n

vl11 vl02

vl�{1,n}bl+1

vlna

vl�1

vl0{1,n}

vl01

vl1{1,n}

vl1n

x
bl

vl1n−1 v
l0
n

y
2

2

v3c v2c

vljb

(c)

vl�n

vl11 vl02

vlnavljb

vl�1vl01
vl1n

2
x

ybl

vl1n−1 v
l0
n

vl�{1,n}
v2cbl+1 vl1{1,n}

2

v3c

vl0{1,n}

Figure 10.42: 3.Case (ψσ(x1) = 0 and ψσ(xn) = 1).

The case, in which ψσ(xli) ⊕ ψσ(xli) ⊕ ψσ(xli) = 1 holds and σ contains

323

CHAPTER 10. TRAVELING SALESMAN PROBLEMS

the arc (v2c , v3c), can be discussed similarly since σ passes the parity check by
including the path v3c → vl1{1,n} → vl�{1,n} → vl0{1,n} → v2c .

In both cases, we associate the length 2 with this part of σ.

(a)

vl�nvl0n

vl11

vl1{1,n}

vl02

vl�{1,n}

bl

vlnavljb

vl1n

vl1n−1

2

vl0{1,n}

vl01

y

2

xbl+1

v3c v2c

vl�1

(b)

vl�nvl0n

vl11

vl1{1,n}

vl02

vl�{1,n}

bl

vlna

vl1n

vl0{1,n}

vl01

y

x

vl1n−1

vljb

2

2

v2c

bl+1

v3c

vl�1

(c)

vl�nvl0n

vl11

vl1{1,n}

vl02

vl�{1,n}

bl

vlnavljb

vl1n

vl1n−1

2

vl0{1,n}

vl01

y

2

x

v3c v2cbl+1

vl�1

Figure 10.43: 4.Case (ψσ(x1) = 1 and ψσ(xn) = 0).

324

10.7. THE (1,2)-ATSP PROBLEM

3.Case (ψσ(x1) = 0 and ψσ(xn) = 1):
Let us assume that ψσ(xln) ⊕ ψσ(xsj) ⊕ ψσ(xrk) = 0 holds and σ traverses the
path v3c → vl1{1,n} → vl�{1,n} → vl0{1,n} → v2c . Then, we transform the tour σ such
that it contains the arc (vl01 , bl+1). Note that neither (bl, vl01) nor (bl, vl1n) is
included in the tour. Hence, σ contains a 2-arc to connect bl. The same
holds for the vertex vl1n . This situation is displayed in Figure 10.42 (a).
We are going to invert the value of ψσ(xln) such that ψσ satisfies ℓ3c and
xl1 ⊕ xln = 0. In this way, we gain at least 2 − 1 more satisfied equations. The
corresponding transformation is displayed in Figure 10.42 (b).

On the other hand, if we assume that ψσ(xln)⊕ψσ(xsj)⊕ψσ(xrk) = 1 holds
and σ traverses the path v3c → vl1{1,n} → vl�{1,n} → vl0{1,n} → v2c , we modify the
tour as depicted in Figure 10.42 (c). Note that σ passes the parity check in
G3Ac and therefore, the tour may use a simple path in G3Ac . We associate the
local length 3 with σ in this case.

4.Case (ψσ(x1) = 1 and ψσ(xn) = 0):
Let us assume that ψσ(xln) ⊕ ψσ(xsj) ⊕ ψσ(xrk) = 0 holds and σ uses the arc
(v2c , v3c). Then, we transform the tour σ such that it contains the arc (bl, vl1n).
We note that neither (vl01 , bl+1) nor (vl1n , vl0{1,n}) is included in the tour. For
this reason, σ is forced to use a 2-arc to connect vl0{1,n}. The same holds for
the vertex vl01 . The corresponding situation is displayed in Figure 10.43 (a).
We modify the tour as displayed in Figure 10.43 (b) and obtain at least 2−1
more satisfied equations.

On the other hand, if we assume that ψσ(xln)⊕ψσ(xsj)⊕ψσ(xrk) = 1 holds,
we need to include the path v3c → vl1{1,n} → vl�{1,n} → vl0{1,n} → v2c as depicted
in Figure 10.43 (c). In both cases, we associate the local length 3 with this
part of the tour.

In summary, our analysis yields the following statement.

Lemma 10.7.3
Let L be an instance of the MAX-HYBRID-LIN2 problem with n wheels, m2

equations with two variables and m3 equations with three variables. Given

325

CHAPTER 10. TRAVELING SALESMAN PROBLEMS

a consistent tour σ in GL with length n + 1 + 3m2 + 13m3 + τ , it is possible
to transform σ in polynomial time into a tour π such that the corresponding
assignment ψπ leaves at most τ equations in L unsatisfied.

Thus far, we are ready to give the proof of Theorem 10.6.1 (i).

10.7.5 Proof of Theorem 10.6.1 (i)

Let L be an instance of the MAX-HYBRID-LIN2 problem consisting of n
wheels W1, . . . ,Wn, m2 equations with two variables and m3 equations with
three variables. Then, we construct in polynomial time the corresponding
instance GL of the (1,2)-ATSP problem as described in Section 10.7.2.
● Let ϕ be an assignment to the variables in L leaving τ equations in

L unsatisfied. According to Lemma 10.7.1, it is possible to construct in
polynomial time a tour with length at most

3 ⋅m2 + (4 + 3 ⋅ 3) ⋅m3 + n + 1 + τ.

● Let σ be a tour in GL with length 3 ⋅ m2 + 13 ⋅ m3 + n + 1 + τ . Due
to Lemma 10.7.2, we may assume that σ uses only 0/1-traversals of every
parity graph included in GL . According to Definition 10.7.2, we associate
the corresponding assignment ψσ with the underlying tour σ. Recall from
Lemma 10.7.3 that it is possible to convert σ in polynomial time into a tour
π without increasing the length such that ψπ leaves at most τ equations in
L unsatisfied. ∎

10.8 The (1, 4)-ATSP Problem

In order to prove the claimed inapproximability results for the (1,4)-ATSP
problem, we use the same construction described in Section 10.7.2 with the
difference that all arcs in parity graphs have weight 1, whereas all other
arcs contained in the directed graph GL obtain weight 2. The asymmetric
metric space (VL , dL) is given by VL = V (GL) together with the distance

326

10.8. THE (1,4)-ATSP PROBLEM

function dL ∶VL ×VL → Q≥0, which is defined by the shortest path metric in
GL bounded by the value 4. In other words, given x, y ∈ VL , the distance
between x and y in VL is

dL (x, y) =min{ length of a shortest path from x to y in GL , 4}.

By construction of (VL , dL), we may apply similar arguments as in the
proof of Theorem 10.6.1 (i). However, the remaining difficulty is to prove
that given a tour σ in (VL , dL), we are able to transform σ in polynomial
time into a tour π in (VL , dL), which uses only 0/1-traversals of the parity
graphs, that are contained in GL , without increasing the length of the tour.
This statement can be proved by considering all possibilities exhaustively
for each parity graph in GL . We displayed some of the less obvious cases in
Figure 10.46 – 10.45.

We are ready to give the proof of Theorem 10.6.1 (ii).

10.8.1 Proof of Theorem 10.6.1 (ii)

Let L be an instance L of the MAX-HYBRID-LIN2 problem consisting of n
wheels, m2 equations with two variables and m3 equations with three vari-
ables. We construct in polynomial time the associated instance (VL , dL) of
the (1,4)-ATSP problem.
● Let ϕ be an assignment to the variables of L that leaves τ equations

unsatisfied in L . Then, it is possible to construct efficiently a tour with
length at most

m2 ⋅ (2 + 2) +m3 ⋅ (3 ⋅ 4 + 2 ⋅ 4) + 2 ⋅ τ + 2(n + 1).

● On the other hand, suppose we are given a tour σ in (VL , dL) with
length 4m2 + 20m3 + 2n + 2 + 2 ⋅ τ . Then, it is possible to transform σ in
polynomial time into a tour π without increasing the length such that the
associated assignment ψπ leaves at most τ equations in L unsatisfied. ∎

327

CHAPTER 10. TRAVELING SALESMAN PROBLEMS

(i)

1

2

2

2

3

(ii)

1

2

2

1

4

(i)

3

3

2

2

2

4

3

(ii)

2

4

4 1

1

1

4

Figure 10.44: Situations before (i) and after (ii) the transformation.

328

10.8. THE (1,4)-ATSP PROBLEM

(i)

3

2

2

1

2

(ii)

4

1

1
2

2

(i)

4

1

2

2

2

(ii)

1

2

2

4

1

Figure 10.45: Situations before (i) and after (ii) the transformation.

329

CHAPTER 10. TRAVELING SALESMAN PROBLEMS

(i)

2

21

2

3

(ii)

2

2
1

14

(i)

4
4

2

2

2

2

(ii)

2

1

4

4

4

1

Figure 10.46: Situations before (i) and after (ii) the transformation.

330

10.8. THE (1,4)-ATSP PROBLEM

(i)

4

2

2

3

3

2

2

(ii) 2

4

4

1

4

2

1

(i)

1 2
4

2

2

(ii)

1 2

2

4

1

Figure 10.47: Situations before (i) and after (ii) the transformation.

331

CHAPTER 10. TRAVELING SALESMAN PROBLEMS

(i)

2

2

4

2

3

3

2

2

(ii)
2

2

1

4

4
4

1

(i)

3

3

2

2

2

4

3

(ii)

2

4

4 1

1

1

4

Figure 10.48: Situations before (i) and after (ii) the transformation.

332

10.8. THE (1,4)-ATSP PROBLEM

(i)

3

2

2

1

2

(ii)

4

1

1
2

2

(i)

4

1

2

2

2

(ii)

1

2

2

4

1

Figure 10.49: Situations before (i) and after (ii) the transformation.

333

CHAPTER 10. TRAVELING SALESMAN PROBLEMS

10.9 The (1, 2)-TSP Problem

In order to prove Theorem 10.6.2 (i), we adapt the construction given in
Section 10.7 for the (1,2)-ATSP problem. As for the parity gadget, we use
the graph depicted in Figure 10.50 with its corresponding traversals.

The parity graph P l
i 1-traversal of P l

i . 0-traversal of P l
i .

Figure 10.50: Traversal of the graph P l
i given the assignment ϕ. The tra-

versed edges are indicated by thick lines.

Let L be an instance of the MAX-HYBRID-LIN2 problem with n wheels
W1, . . . ,Wn. Given a matching equation xli⊕xlj = 0 ofWl and the correspond-
ing cycle equations xli ⊕ xli+1 = 0 and xlj ⊕ xlj+1 = 0, we connect the associated
parity graphs P l

i , P l
i+1, P l

{i,j}, P l
j and P l

j+1 as displayed in Figure 10.51.

P l
i

P l
i+1

P l
{i,j}

P l
j

P l
j+1

Figure 10.51: Graphs corresponding to equations xli ⊕ xlj = 0, xli ⊕ xli+1 = 0
& xlj ⊕ xlj+1 = 0.

334

10.9. THE (1,2)-TSP PROBLEM

sc sc+1

v1c

v2c

Figure 10.52: The graph G3Sc corresponding to ℓ3c ≡ x⊕ y ⊕ z = 0.

For equations with three variables of the form x ⊕ y ⊕ z = 0, we use
the graph G3S displayed in Figure 10.52. Recall from Lemma 10.5.2 that
there is a simple path from sc to sc+1 in Figure 10.52 containing the vertices
v ∈ {v1c , v2c} if and only if an even number of parity graphs is traversed.
For the cycle border equation of a wheel Wl with associated variables
{xl1, . . . , xlp}, we introduce the path b1l − b2l − b3l and the parity graph P l

{1,p}.
In addition, we connect b3l and b1l+1 to the parity graphs P l

1, P l
p and P l

{1,p} in
a similar way as in the reduction from the MAX-HYBRID-LIN2 problem to
the (1,2)-ATSP problem. The graphs corresponding to equations with three
variables are hooked together such that the vertex sc+1 of G3Sc is identified
with the vertex sc+1 of the graph G3Sc+1. This is the whole description of the
corresponding graph GSL .

Due to the following lemma, we may assume that the underlying tour
is using only 0/1-traversals of the parity gadgets contained in GSL .

Lemma 10.9.1
Let σ be a tour in GSL . For every parity graph P , the tour σ in GSL can be
transformed in polynomial time into a tour π in GSL such that π is using a

335

CHAPTER 10. TRAVELING SALESMAN PROBLEMS

0/1-traversal of P without increasing length of the tour.

Proof of Lemma 10.9.1.
For every parity graph contained in GL , it can be seen by considering all
possibilities exhaustively that any tour in GL , that is not using the corre-
sponding 0/1-traversals, can be modified into a tour with at most the same
number of 2-edges. The less obvious cases are shown in Figure 10.53 and
Figure 10.54 ∎

2
2

Tour σ1 Modified tour σ′1

2
2

Tour σ2 Modified tour σ′2

Figure 10.53: Transformations yielding a consistent tour.

10.9.1 Proof of Theorem 10.6.2 (i)

Given L an instance of the MAX-HYBRID-LIN2 problem consisting of n
wheels W1, . . . ,Wn, m2 equations with two variables and m3 equations with
three variables, we construct in polynomial time the associated instance GSL
of the (1,2)-TSP problem.

336

10.10. THE (1,4)-TSP PROBLEM

● Given an assignment ϕ to the variables of L leaving τ equations unsatisfied
in L , then, there is a tour with length at most

8 ⋅m2 + (3 ⋅ 8 + 3) ⋅m3 + 3(n + 1) − 1 + τ.

● On the other hand, if we are given a tour σ in GSL with length 8 ⋅m2 + (3 ⋅
8 + 3) ⋅m3 + 3(n + 1) − 1 + τ , it is possible to transform σ in polynomial time
into a tour π which uses 0/1-traversals of all parity graphs contained in GSL
without increasing the length of the tour.

Moreover, we are able to construct in polynomial time an assignment to
the variables of L , which leaves at most τ equations in L unsatisfied. ∎

2

2 2

Tour σ3 Modified tour σ′3

2

2

Tour σ4 Modified tour σ′4

Figure 10.54: Transformations yielding a consistent tour.

10.10 The (1, 4)-TSP Problem

In order to prove the claimed approximation hardness results for the
(1,4)-TSP problem, we cannot use the same parity graphs as in the con-
struction in the previous section since tours are not necessarily consistent in

337

CHAPTER 10. TRAVELING SALESMAN PROBLEMS

the induced metric. For this reason, we introduce the parity graph displayed
in Figure 10.55 with its corresponding traversals.

Parity graph P l
i 1-Traversal of P l

i . 0-Traversal of P l
i .

Figure 10.55: 0/1-Traversals of the graph P l
i . The traversed edges are in-

dicated by thick lines.

Given a matching equation xli⊕xlj = 0 in L and the cycle equations xli⊕xli+1 =
0 and xlj ⊕ xlj+1 = 0, we connect the corresponding graphs as displayed in
Figure 10.56.

P l
{i,j}

P l
jP l

j+1

P l
i+1P l

i

Figure 10.56: The graphs corresponding to equations xli⊕xlj = 0, xli⊕xli+1 =
0 and xlj ⊕ xlj+1 = 0.

In order to define the new instance of the (1,4)-TSP problem, we replace
all parity graphs in GSL by graphs displayed in Figure 10.55. In the following,
we refer to this graph as G4L . All edges contained in a parity graph have
weight 1, whereas all other edges have weight 2. The remaining distances in
the associated metric space (V S

L , d
S
L) are induced by the shortest path metric

338

10.10. THE (1,4)-TSP PROBLEM

in G4L bounded by the value 4 meaning

dSL ({x, y}) =min{length of a shortest path from x to y in G4L , 4}.

This is the whole description of the associated instance (VL , dL) of the
(1,4)-TSP problem.

3 2

2

2

2

4

2

Tour σ1 Modified tour σ′1

4

2

2

4

Tour σ2 Modified tour σ′2

Figure 10.57: Transformations yielding a consistent tour.

We are ready to give the proof of Theorem 10.6.2 (ii).

10.10.1 Proof of Theorem 10.6.2 (ii)

Given L an instance of the MAX-HYBRID-LIN2 problem consisting of n
wheels W1, . . . ,Wn, m2 equations with two variables and m3 equations with
three variables, we construct in polynomial time the associated instance

339

CHAPTER 10. TRAVELING SALESMAN PROBLEMS

(V S
L , d

S
L) of the (1,4)-TSP problem.

● Given an assignment ϕ to the variables of L leaving u equations in L

unsatisfied, then, there is a tour in (V S
L , d

S
L) with length at most

m2 ⋅ (2 + 8) +m3 ⋅ (3 ⋅ 10 + 2 ⋅ 3) + 6(n + 1) − 2 + 2 ⋅ u.

● On the other hand, if we are given a tour σ in (VL , dL) with length
10m2+36m3+6(n+1)−2+2⋅u, it is possible to transform σ in polynomial time
into a tour σ′ such that it uses 0/1-traversals of all contained parity graphs in
GH without increasing the length. Some cases are displayed in Figure 10.57
and 10.58. Then, we are able to construct in polynomial time an assignment
to the variables of L , which leaves at most u equations in L unsatisfied. ∎

4

4

2

2

2

2
2

4

2

Tour σ3 Modified tour σ′3

2

2

2

4

2

4

4

Tour σ4 Modified tour σ′4

Figure 10.58: Transformations yielding a consistent tour.

340

10.11. THE (1,2)-TSP RESTRICTED TO SUBCUBIC INSTANCES

10.11 The (1,2)-TSP Restricted to Subcubic Instances

This section is devoted to the proof of Theorem 10.6.3 restated below.

Theorem 10.6.3
The (1,2)-TSP problem restricted to subcubic instances is NP-hard to ap-
proximate to within any factor less than 673/672.

In order to prove Theorem 10.6.3, we introduce a special subcubic graph
G12SC as an instance of the (1,2)-TSP problem that is simulating the equations
in the MAX-HYBRID-LIN2 problem. For this, we first construct the graph
GSL given an instance L of the MAX-HYBRID-LIN2 problemas described in
Section 10.9. Then, we define a new outer loop of GSL in order to obtain an
instance of the (1,2)-TSP problem in subcubic graphs. Let us start with the
description of the subcubic graph G12SC given GSL .

10.11.1 The Construction of G12SC
The gadgets simulating equation with three variables in GSL contain vertices
with degree 5. We are going to replace these gadgets by cubic graphs which
we will specify later on. In order to understand the cubic gadgets, we first
describe a reduction from the MAX-E3LIN2 problem to the MAX-2in3SAT
problem. The reduction is straightforward: Given an equation of the form
x ⊕ y ⊕ z = 0, we create three clauses (x ∨ a1 ∨ a2), (y ∨ a2 ∨ a3) and (z ∨
a1 ∨ a3). Note that if we are given an assignment to x, y and z that satisfies
the equation, then, it is possible to find an assignment to a1, a2 and a3

that satisfies all three corresponding clauses. In the other case, we find
assignments to a1, a2 and a3 that make at most two clauses satisfied.

In the next step, we are going to design a gadget that simulates the
predicate 2in3SAT. This gadget is displayed in Figure 10.50 (a). The boxes
can be viewed as modules, which will be replaced with a parity gadget or a
graph with similar properties (see Figure 10.63). Any graph with less vertices
and the properties of a parity gadget will lead to improved inapproximability
factors for the corresponding problems.

341

CHAPTER 10. TRAVELING SALESMAN PROBLEMS

smid

c1

c2

c3

s∨
e∨

y

x

z

c2

smid
e∨s∨

c1

c3

(a) Modular view of the graph G3∨ (b) Detailed view of G3∨

Figure 10.59: The graph G3∨ simulating the 2in3SAT predicate (x ∨ y ∨ z).

Note that the graph in Figure 10.59 (b) has degree at most 3. For this graph,
we are going to prove the following statement.

Lemma 10.11.1
There is a Hamiltonian path from s∨ to e∨ in the graph displayed in Fig-
ure 10.59 (a) if and only if 2 edges with modules are traversed.

Proof. There are three possibilities to enter the vertex smid. Therefore, a
Hamiltonian path in G3∨ contains (i) c1−smid−c2, (ii) c1−smid−e∨ or (iii) c2−
smid−e∨. In the case (i), we are forced to use {c3, e∨} and then, either {s∨, c1}
and {c3, c2} or {s∨, c2} and {c3, c1}. In the case (ii), we first note that we
cannot use {e∨, c3}. Due to the degree condition, we have to use c2 − c3 − c1.
The only remaining vertex with degree one is c2 and has to be connected to
s∨. In case (iii), we may argue similarly to case (ii). ∎

As for the next step, we introduce a gadget that simulates a11 ⊕ a21 = 0

displayed in Figure 10.60. We see that in order to get from the vertex s1 to
e1, we simply use the edge {s1, e1} or the three edges which are connecting

342

10.11. THE (1,2)-TSP RESTRICTED TO SUBCUBIC INSTANCES

the two parity gadgets.

s= e=

a11 a21

(a) Modular view of the graph G=

s= e=

(b) Detailed view of G=

Figure 10.60: Graph G= corresponding to a11 ⊕ a21 = 0.

We are ready to describe the construction that simulates the equation x⊕y⊕
z = 0: We create three copies of the gadget G3∨, denoted by G31∨ , G32∨ and G33∨ ,
to simulate (x ∨ a11 ∨ a12), (y ∨ a22 ∨ a13) and (z ∨ a21 ∨ a23). For each i ∈ [3], the
vertex set of G3i∨ is defined by {si∨, ci1, ci1, ci2, ci3, ei∨, simid}. In order to connect
those three copies, we add the edge {ei∨, si+1∨ } for each i ∈ [2]. In the next
step, we create three copies of the gadget G=, denoted by G1=, G2= and G3=, to
simulate a11⊕a21 = 0, a12⊕a22 = 0 and a13⊕a23 = 0. For each i ∈ [3], the vertex set
of Gi= is defined by {si=, ei=}. Again, we connect those three copies by adding
{ei=, si+1= } for each i ∈ [2] and we also create {e3∨, s1=} in order to connect G3∨
with G1=. The whole construction is illustrated in Figure 10.61.

Finally, we connect the graphs that we introduced by parity gadgets as
follows: For each graph Gi=, we create two parity gadgets and connect them
to the graph G3j∨ corresponding the clause, in which the variable aki with
k ∈ {1,2} appear (See Figure 10.62 for a detailed view). The parity gadgets,

343

CHAPTER 10. TRAVELING SALESMAN PROBLEMS

s1mid

c12

e1∨

s2∨

a11

x

s2mid
s3mid

c21

c32

e3∨

s1=
s1∨

a12

y

a22
a13

a21

a23

z

e3∨ e1= e2=

s3=

e3=

s1= a11 a21 s2= a12 a22 a13 a23

c11 c13

c22

c23

e2∨

c31 c33

s3∨

Figure 10.61: Modular view of the construction simulating x⊕ y ⊕ z = 0.

which are associated to the variables x, y and z, are attached to G3j∨ with
j ∈ {1,2,3} similarly as in the construction described in Section 10.9 for the
graph G3Sc . Hence, the parity gadget is also connected to the graph which is
associated to the wheel Wα, where α ∈ {x, y, z}.

Given an instance L of the MAX-HYBRID-LIN2 problem, we refer to the
corresponding instance of the (1,2)-TSP problem on subcubic graphs as G12SC .

10.11.2 Tours in G12SC From Assignments

We are going now to construct a tour from a given assignment and prove the
following lemma.

Lemma 10.11.2
Let L be an instance of the MAX-HYBRID-LIN2 problem with n wheels,
60ν equation with two variables, 2ν equations with three variables and ϕ an
assignment that leaves at most δν equations unsatisfied. Then, there is a tour
in G12

SC with cost at most 672ν + 3(n + 1) − 1 + δν

Proof. Let ϕ be an assignment to the variables of L . Due to the properties
of a wheel amplifier graph, we may assume that the variables associated to
wheel in L take the same value under ϕ.

Given the assignment ϕ, we define the inner loop of the tour in G12SC in

344

10.11. THE (1,2)-TSP RESTRICTED TO SUBCUBIC INSTANCES

the same way as in the proof of Theorem 10.6.2 (i). This means that some
of the parity gadgets which are connected to gadgets simulating equations
with three variables may have been traversed in the inner loop of the tour.

In the outer loop of the tour, if the assignment satisfies the underlying
equation x⊕y⊕ z = 0, then there is a Hamiltonian path traversing all graphs
corresponding to (x∨a11∨a12), (y∨a22∨a13), (z∨a21∨a23), a11⊕a21 = 0, a12⊕a22 = 0
and a13⊕a23 = 0. For each satisfied equation with three variables, we associate
the cost 3 ⋅(6+3 ⋅8+2). If the underlying equation is not satisfied, we have to
introduce a 2-edge. Thus, we associate the cost 3 ⋅ (6+3 ⋅8+2)+1. Summing
up, we obtain a tour in G12SC with cost at most

8 ⋅ 60ν + 3 ⋅ (6 + 3 ⋅ 8 + 2) ⋅ 2ν + 3(n + 1) − 1 + δν = 672ν + 3(n + 1) − 1 + δν

and the proof of Lemma 10.11.2 follows. ∎

s2= e2=

s1∨

c12

s1mid

c11

c13

c21

s2∨

c23

e1∨ e2∨

c22

s2mid

Figure 10.62: Detailed view of the gadget for (x∨a11∨a12), (y∨a22∨a13) and
a12 ⊕ a22 = 0.

345

CHAPTER 10. TRAVELING SALESMAN PROBLEMS

10.11.3 Assignments From Tours in G12SC
Given a tour in G12SC , we are going to construct an assignment to the variables
of the corresponding instance L of the MAX-HYBRID-LIN2 problem and
prove the following lemma.

Lemma 10.11.3
Let L be an instance of the MAX-HYBRID-LIN2 problem with n wheels, 60ν
equations with two variables, 2ν equations with three variables and π a tour
in G12SC with cost 672ν + 3(n + 1) − 1 + δν. Then, it is possible to construct
efficiently an assignment that leaves at most δν equations in L unsatisfied.

Proof. In the first step, we convert the underlying tour in G12SC into a consis-
tent one without increasing its cost. This is done by applying Lemma 10.9.1
to each parity gadget in G12SC . In the second step, we use the same 0/1-
traversals of the parity gadgets in the inner loop of the tour which enables
us to construct a tour in the corresponding instance GSL with cost at most

672ν+3(n+1)−1+δν−3 ⋅(6+3 ⋅8+2) ⋅2ν+(3 ⋅8+3) ⋅2ν = 534ν+3(n+1)−1+δν.

Finally, we apply Theorem 10.6.2 (i) and compute efficiently an assignment
that leaves at most δν equations in L unsatisfied. ∎

We are ready to give the proof of Theorem 10.6.3.

Proof of Theorem 10.6.3.
Given L an instance of the MAX-HYBRID-LIN2 problem consisting of n
wheels, 60ν equations with two variables and 2ν equations with three vari-
ables, we construct in polynomial time the associated instance G12SC of the
(1,2)-TSP problem.

Given an assignment ϕ to the variables of L leaving δ ⋅ ν equations un-
satisfied with δ ∈ (0,1), then, according to Lemma 10.11.2, it is possible to
find a tour with cost at most 672ν + 3(n + 1) − 1 + δ ⋅ ν.

On the other hand, if we are given a tour σ in G12SC with cost 672ν +3(n+
1) − 1 + δ ⋅ ν, due to Lemma 10.11.3, we are able to construct efficiently an

346

10.12. (1,2)-TSP RESTRICTED TO CUBIC INSTANCES

assignment to the variables of L , which leaves at most δν equations in L

unsatisfied.
Similarly to the proof of Corollary 10.6.1, for a constant τ > 0, we may

assume that (3n+4)/ν ≤ τ holds. According to Theorem 4.9.1, we know that
for all ε > 0, it is NP-hard to decide whether there is a tour with cost at
most 672ν + 3(n + 1) − 1 + ε ⋅ ν ≤ 672 ⋅ ν + ε′ν or all tours have cost at least
672 ⋅ ν + (1 − ε)ν + 3(n + 1) − 1 ≥ 673 ⋅ ν − ε′ ⋅ ν, for some ε′ that depends only
on ε and τ . By appropriate choices for ϵ and τ , the ratio between these two
cases can get arbitrarily close to 673/672. ∎

10.12 (1,2)-TSP Restricted to Cubic Instances

This section is devoted to the proof of Theorem 10.6.4 restated below.

Theorem 10.6.4
The (1,2)-TSP problem restricted to subcubic instances is NP-hard to ap-
proximate to within any factor less than 1141/1140.

In order to prove Theorem 10.6.4, we are going to define the cubic graph
G12CU as an instance of the (1,2)-ATSP problem.

10.12.1 The Construction of the Graph G12CU

Given an instance L of the MAX-HYBRID-LIN2 problem with n wheels,
60ν equations with two variables and 2ν equations with three variables, we
construct the corresponding graph G12SC . In order to convert the instance
G12SC of the (1,2)-TSP problem in subcubic graphs into an instance G12CU of
the (1,2)-TSP problem in cubic graphs, we replace all vertices with degree
exactly two by a path in which all vertices will have degree exactly three. Let
us describe this in detail: Let w be a vertex with degree two in G12SC , which
is connected to x and y. Replace w with the path pw = v1w − v2w − v3w − v4w. In
addition, we add edges {v1w, v3w}, {v2w, v4w}, {x, v1w} and {y, v4w}. By applying
this modification to each vertex of degree exactly two, we create a cubic
graph and refer to it as G12CU .

347

CHAPTER 10. TRAVELING SALESMAN PROBLEMS

A modified parity gadget is displayed in Figure 10.63 (a). The corre-
sponding traversals are defined in Figure 10.63 (b) and (c).

(a) Modified parity gadget (b) 1-traversal (c) 0-traversal

Figure 10.63: 0/1-Traversals of a modified parity gadget. The traversed
edges are pictured by thick lines.

The following lemma enables us to construct a tour in G12CU given an
assignment ϕ to the variables of the corresponding instance L of the
MAX-HYBRID-LIN2 problem with a certain cost that depends on the number
on unsatisfied equations in L by ϕ.

Lemma 10.12.1
Let L be an instance of the MAX-HYBRID-LIN2 problem with n wheels,
60ν equation with two variables, 2ν equations with three variables and ϕ

an assignment that leaves δ ⋅ ν equations unsatisfied for some δ ∈ (0,1).
Then, it is possible to construct efficiently a tour in G12CU with cost at most
1140ν + 6(n + 1) − 1 + δ ⋅ ν

Proof. Basically, we use the same tour as constructed in Lemma 10.11.2 for
the graph G12SC with the difference that instead of traversing a vertex w of
degree exactly two in G12SC , we have to use the path v1w−v2w−v3w−v4w consisting of
3 more vertices. Thus, if we have given a tour σ in G12SC , that was constructed
according to Lemma 10.11.2, we have to add 6 ⋅ 60ν (for each equation with
two variables), 9 ⋅ 6 ⋅ 2ν (for each equation with three variables), and 3(n+ 1)
(for each wheel) to the cost of σ and obtain a tour in G12CU with cost at most

672ν+3(n+1)−1+δ ⋅ν+(6 ⋅60ν)+9 ⋅6 ⋅2ν+3(n+1) = 1140ν+6(n+1)−1+δ ⋅ν

and the proof of Lemma 10.12.1 follows. ∎

348

10.12. (1,2)-TSP RESTRICTED TO CUBIC INSTANCES

10.12.2 Tours in G12CU to Assignments

We are going to prove the other direction of the reduction and give the proof
of the following lemma.

Lemma 10.12.2
Let L be an instance of the MAX-HYBRID-LIN2 problem with n wheels, 60ν
equation with two variables, 2ν equations with three variables and π a tour
in G12CU with cost 1140ν + 6(n + 1) − 1 + δ ⋅ ν. Then, it is possible to construct
efficiently an assignment that leaves at most δ ⋅ν equations in L unsatisfied.

Proof. Let π be a tour in G12CU with cost 1140ν + 6(n + 1) − 1 + δ ⋅ ν. We are
going to show that we can convert efficiently π into a tour π′ in G12SC with cost
672ν+3(n+1)−1+δ ⋅ν. For this, we consider the path x−v1c −v2c −v3c −v4c −y in
G12CU , where pc = v1c − v2c − v3c − v4c corresponds to the vertex c of degree exactly
two in the instance G12SC . As we want to contract the path pc into one vertex,
we will ensure that the (1,2)-tour is using either the path v1c − v2c − v3c − v4c or
v1c − v3c − v2c − v4c .

Let us assume that either v2c or v3c is an endpoint of a 2-edge, say v2c .
Clearly, it implies that there is another endpoint in {v1c , v3c , v4c} or v2c is an
endpoint of another 2-edge. We delete all edges of weight 1 that the tour
is using and are incident on v2c and v3c . Then, we add {v1c , v2c}, {v2c , v3c}
and {v3c , v4c} to connect v4c and v1c by edges of weight 1. Note that this
transformation decreased the total number of 2-edges and the cost of the
(1,2)-tour.

By applying this transformation successfully to each such path pc, we
obtain a tour which is using the complete path that corresponds to a vertex
of degree 2 in the instance G12SC without increasing the cost of the tour. By
contracting each path pc into the vertex c, it yields a (1,2)-tour in G12SC with
cost at most 672ν +3 ⋅ (n+1)+1+ δ ⋅ν. Finally, we apply Lemma 10.11.3 and
obtain an assignment that leaves at most δ ⋅ν equations in L unsatisfied. ∎

Analogously to the proof of Theorem 10.6.3, we combine Lemma 10.12.1
with Lemma 10.12.2 and obtain Theorem 10.6.4.

349

CHAPTER 10. TRAVELING SALESMAN PROBLEMS

10.13 Graphic TSP on Subcubic and Cubic Graphs

In this section, we are going to give the proof of Theorem 10.6.5 restated
below.

Theorem 10.6.5
The GRAPHIC-TSP problem restricted to subcubic and cubic graphs is NP-
hard to approximate to within any factor less than 685/684 and 1153/1152,
respectively.

For the reduction to the GRAPHIC-TSP problem on cubic and subcubic
Graphs, we are going to define the graphs G12CU and G12SC .

10.13.1 The Construction of G12CU and G12SC
Let L be an instance of the MAX-HYBRID-LIN2 problem. We first construct
the corresponding instances G12CU and G12SC of the (1,2)-TSP problem in cubic
and subcubic graphs, respectively. Each gadget G= in G12SC is replaced by the
graph Ggr= displayed in Figure 10.64. We refer to this construction as the
graph GgrSC . In order to obtain an instance of the GRAPHIC-TSP problem on
cubic graphs, we use the modified parity gadgets in Ggr= and denote this
instance as GgrCU .

Let us prove one direction of the reductions.

Lemma 10.13.1
Let L be an instance of the MAX-HYBRID-LIN2 problem with n wheels,
60ν equation with two variables, 2ν equations with three variables and ϕ

an assignment that leaves at most δν equations unsatisfied. Then, there is
a tour in GgrSC and in GgrCU with cost at most 684ν + 3(n + 1) − 1 + δν and
1152ν + 6(n + 1) − 1 + δν, respectively.

Proof. Let L be an instance of the MAX-HYBRID-LIN2 problem and ϕ an
assignment to the variables of L . Recall that we may assume that the

350

10.13. GRAPHIC TSP ON SUBCUBIC AND CUBIC GRAPHS

e=

a21

s= c1 c2

a11

(a) Modular view of the graph Ggr=

e=s= c1 c2

(b) Detailed view of Ggr=

Figure 10.64: Graph Ggr= corresponding to a11 ⊕ a21 = 0.

variables associated to a wheel in L take the same value under ϕ. Let us
start with the description of the tour in GgrSC . As for the inner loop, we use
the same tour as in Lemma 10.11.2. Note that we traversed only edges with
weight 1 in the inner loop of the tour in G12SC . In the outer loop, we cannot
use the same shortcuts as in the (1,2)-TSP problem, since in some cases the
weight of an edge can be greater than 2. To ensure that the cost traversing
a gadget corresponding to an equation with three variables increases only by
one if the equation is unsatisfied by the assignment, we will use the following
trick: Consider an equation of the form x ⊕ y ⊕ z = 0 that is simulated by
(x∨a11 ∨a12), (y ∨a22 ∨a13), (z ∨a21 ∨a23), a11⊕a21 = 0, a12⊕a22 = 0 and a13⊕a23 = 0.
If we have an assignment that satisfies x ⊕ y ⊕ z = 0, then there is also an
assignment that satisfies all 6 associated predicates. Furthermore, we see
that in the other case, we can find an assignment that satisfies all predicates
except exactly one equation with two variables.

In particular, it implies for a tour traversing the gadget Ggr= simulating
a11 ⊕ a12 = 0 that if (a11 + a12 = 0) and (a11 + a12 = 2) holds, we use s= − c2 − c1 − e=

351

CHAPTER 10. TRAVELING SALESMAN PROBLEMS

and s= − c2 − c1 − e=, respectively. On the other hand, assuming (a11 + a12 = 1),
we traverse either s= − c1 − c2 − c1 − e= or s= − c2 − c1 − c2 − e=. Thus, we use
the edge {c1, c2} twice increasing the cost only by 1.

Summarizing, given an assignment leaving δν equations unsatisfied, we
find a tour in G12SC with cost at most 672ν +3(n+1)−1+δν and a tour in GgrSC
with cost at most 684ν + 3(n+ 1)− 1+ δν, since we have to take into account
the small detour and add 3 ⋅ 2 ⋅ 2ν to the cost.

Under the same conditions, we find a tour in G12CU with cost at most
1140ν + 6(n + 1) − 1 + δν and a tour in GgrCU with cost at most 1152ν + 6(n +
1) − 1 + δν. ∎

10.13.2 Tours to Assignments

We now give the other direction of the reductions and prove the following
lemma.

Lemma 10.13.2
Let L be an instance of the MAX-HYBRID-LIN2 problem with n wheels, 60ν
equation with two variables, 2ν equations with three variables, π a tour in
GgrSC with cost 684ν + 3(n + 1) − 1 + δν and σ a tour in GgrCU with cost 1152ν +
6(n+ 1)− 1+ δν. By using either π or σ, it is possible to construct efficiently
an assignment that leaves at most δν equations in L unsatisfied.

Proof. Let us consider a tour π in GgrSC with cost 684ν + 3(n+ 1)− 1+ δν. We
interpret π as a (1,2)-tour in GgrSC with cost at most 684ν + 3(n + 1) − 1 + δν.
In the first step, we convert the underlying tour in GgrSC into a consistent one
without increasing its cost by applying Lemma 10.9.1 to each parity gadget in
GgrSC . In the second step, we use the same 0/1-traversals of the parity gadgets
in the inner loop which enables us to construct a tour in the corresponding
instance G12SC with cost at most 672ν + 3(n + 1) − 1 + δν. Finally, we apply
Lemma 10.11.3 and construct an assignment leaving at most δν equations in
L unsatisfied.

Analogously, if we have given a tour in GgrSC with cost 1152ν+6(n+1)−1+
δν, we convert it into a (1,2)-tour without increasing its cost. By applying

352

10.14. THE METRIC TSP PROBLEM

the contractions defined in Lemma 10.12.2, we obtain a (1,2)-tour in GgrSC
with cost at most 684ν + 3(n+ 1)− 1+ δν, for which we already know how to
construct an assignment with the desired properties. ∎

By combining Lemma 10.13.1 and Lemma 10.13.2, we obtain immediately
Theorem 10.6.5.

10.14 The Metric TSP Problem

This section is devoted to the proof of the following theorem.

Theorem 10.6.6
It is NP-hard to approximate the TSP problem to within any constant ap-
proximation ratio less than 123/122.

Let us first give an general overview of the reduction and the new techniques.

10.14.1 The General Overview of the Reduction

The hardness proof proceeds in two steps. First, we start from the
MAX-E3LIN2 problem. Optimal inapproximability results for this problem
were shown by Håstad [H01]. We reduce this problem to a special CSP

where variables appear exactly 3 times. The main tool here is a new vari-
ant of the wheel amplifier graphs of Berman and Karpinski [BK01]. The
construction of the bi-wheel amplifier is described in Section 10.14.3. In the
second step (Section 10.14.5), we reduce this bounded occurrence CSP to the
TSP problem and manage to obtain an improvement by exploiting the special
properties of the bounded occurrence CSP. In particular, we show that it is
only necessary to construct gadgets for roughly one third of the constraints
of the CSP instance, while the remaining constraints are simulated without
additional cost using the consistency properties of our gadgets.

In Section 10.15, we use our approach to derive the best up to now ap-
proximation lower bound for the ATSP problem.

353

CHAPTER 10. TRAVELING SALESMAN PROBLEMS

Thus, overall we follow an approach unlike that of [PV06], where the
reduction is performed in one step, and closer to [L12]. The improvement over
[L12] comes mainly from the idea mentioned above, which is made possible
using the new wheel amplifiers, as well as several other tweaks. The end
result is a more economical reduction which improves the bounds for both
the TSP and ATSP problem.

An interesting question may be whether our techniques can also be used
to derive improved inapproximability results for variants of the ATSP and
TSP problem (cf. [EK06], [KS13] and [KS12]), or other graph problems,
such as the STEINER TREE problem.

10.14.2 Notations and Conventions

In the following, we give some definitions concerning directed (multi-)graphs
and omit the corresponding definitions for undirected (multi-)graphs if they
follow from the directed case.

For a multiset ET of directed edges and a vertex that is incident to an arc
in ET , we define the outdegree (indegree) of v with respect to ET , denoted
by outdT (v) (indT (v)), to be the number of edges in ET that are outgoing
of (incoming to) v. The balance of a vertex v with respect to ET is defined
as balT (v) = indT (v) − outdT (v). In the case of a multiset ET of undirected
edges, we define the balance balT (v) of a vertex v ∈ V (ET) to be one if
the number of incident edges in ET is odd and zero otherwise. We refer to
vertices v ∈ V (ET) with balT (v) = 0 as balanced with respect to ET . It is well
known that a (directed) (multi-)graph G is Eulerian if and only if all edges
are in the same (weakly) connected component and all vertices v ∈ V (G) are
balanced with respect to E(G).

Given a multiset of edges ET , we denote by conT the number of (weakly)
connected components in the graph induced by ET . A quasi-tour ET in a
(directed) graph G is a multiset of edges from E(G) such that all vertices are
balanced with respect to ET and V (ET) = V (G). We refer to a quasi-tour
ET in G as a tour if conT = 1. Given a cost function w ∶ E(G)→ R+, the cost
of a quasi-tour ET in G is defined by ∑e∈ET

w(e) + 2(conT − 1).

354

10.14. THE METRIC TSP PROBLEM

In this section, we will use the following equivalent reformulation of the
ATSP problem: Given a directed graph G with weights on edges, we want
to find a tour ET in G, that is, a spanning connected multi-set of edges that
balances all vertices, with minimum cost.

10.14.3 Bi-Wheel Amplifiers

In this section, we define the bi-wheel amplifier graphs which will be our
main tool for proving hardness of approximation for a bounded occurrence
CSP with some special properties. Bi-wheel amplifiers are a variation of the
wheel amplifier graphs given in [BK01]. Let us first recall the definition of a
regular amplifier graph (see also Definition 4.9.2).

Let G be a graph and X ⊂ V (G) a set of vertices. Then, we say that G is
a ∆-regular amplifier for X if the following conditions hold:

• All vertices of X have degree ∆ − 1 and all vertices of V (G)/X have
degree ∆.

• For every non-empty subset U ⊂ V (G), we have the condition that
∣E(U,V (G)/U)∣ ≥min{ ∣U ∩X ∣, ∣(V (G)/U)∩X ∣ }, where E(U,V (G)/U)
is the set of edges with exactly one endpoint in U .

We refer to the set X as the set of contact vertices and to V (G)/X as the
set of checker vertices. Amplifier graphs are useful in proving inapproxima-
bility for CSPs, in which every variable appears a bounded number of times.
Here, we will rely on 3-regular amplifiers. A probabilistic argument for the
existence of such graphs was given in [BK01], with the definition of wheel
amplifiers.

A wheel amplifier with 2n contact vertices is constructed as follows: first
construct a cycle on 14n vertices. Number the vertices 1,2, . . . ,14n and select
uniformly at random a perfect matching of the vertices whose number is not
a multiple of 7. The matched vertices will be our checker vertices, and the
rest our contacts. It is easy to see that the degree requirements are satisfied.

355

CHAPTER 10. TRAVELING SALESMAN PROBLEMS

Berman and Karpinski [BK01] gave a probabilistic argument to prove that
with high probability the above construction indeed produces an amplifier
graph, that is, all partitions of the sets of vertices give large cuts.

Theorem 10.14.1 ([BK01])
With high probability, wheel amplifiers are 3-regular amplifiers.

Here, we will use a slight variation of this construction, called a bi-wheel.

Definition 10.14.1 (Construction of a Bi-wheel Amplifier)
A bi-wheel amplifier with 2n contact vertices can be generated as follows:
First, we construct two disjoint cycles, each on 7n vertices and number the
vertices of each 1,2, . . . ,7n. The contacts are the vertices whose number is
a multiple of 7, while the remaining vertices are checkers. To complete the
construction, select uniformly at random a perfect matching from the checkers
of one cycle to the checkers of the other.

Intuitively, the reason that amplifiers are a suitable tool here is that,
given a CSP instance, we can use a wheel amplifier to replace a variable
that appears 2n times with 14n new variables (one for each wheel vertex)
each of which appears 3 times. Each appearance of the original variable is
represented by a contact vertex and for each edge of the wheel we add an
equality constraint between the corresponding variables. We can then use
the property that all partitions give large cuts to argue that in an optimal
assignment all the new vertices take the same value.

We use the bi-wheel amplifier in our construction in a similar way. The
main difference is that while cycle edges will correspond to equality con-
straints, matching edges will correspond to inequality constraints. The con-
tacts of one cycle will represent the positive appearances of the original vari-
able, and the contacts of the other the negative ones. The reason we do this
is that we can encode inequality constraints more efficiently than equality
with a TSP gadget, while the equality constraints that arise from the cycles
will be encoded in our construction “for free” using the consistency of the
inequality gadgets.

Before we apply the construction however, we have to prove that the

356

10.14. THE METRIC TSP PROBLEM

bi-wheel amplifiers still have the desired amplification properties.

Theorem 10.14.2
With high probability, bi-wheels are 3-regular amplifiers.

Proof of Theorem 10.14.2.
Exploiting the similarity between bi-wheels and the standard wheel ampli-
fiers of [BK01], we will essentially reuse the proof given there. First, some
definitions: We say that U is a bad set if the size of its cut is too small,
violating the second property of amplifiers. We say that it is a minimal bad
set if U is bad but removing any vertex from U gives a set that is not bad.

Recall the strategy of the proof from [BK01]: for each partition of the
vertices into U and V (G)/U , they calculate the probability (over the random
matchings) that this partition gives a minimal bad set. Then, they take the
sum of these probabilities over all potentially minimal bad sets and prove
that the sum is at most γ−n for some constant γ < 1. It follows by union
bound that with high probability, no set is a minimal bad set and therefore,
the graph is a proper amplifier.

Our first observation is the following: consider a wheel amplifier on 14n

vertices where, rather than selecting uniformly at random a perfect matching
among the checkers, we select uniformly at random a perfect matching from
checkers with labels in the set {1, . . . ,7n − 1} to checkers with labels in the
set {7n, . . . ,14n}. This graph is almost isomorphic to a bi-wheel. More
specifically, for each bi-wheel, we can obtain a graph of this form by rewiring
two edges, and vice-versa. It easily follows that properties that hold for this
graph, asymptotically with high probability also hold for the bi-wheel.

Thus, we just need to prove that a wheel amplifier still has the amplifica-
tion property if, rather than selecting a random perfect matching, we select
a random matching from one half of the checker vertices to the other. We
will show this by proving that, for each set of vertices S, the probability that
S is a minimal bad set is roughly the same in both cases. After establishing
this fact, we can simply rely on the proof of [BK01].

Recall that the wheel has 12n checker vertices. Given a set S with ∣S∣ = u,
what is the probability that exactly c edges have exactly one endpoint in S?

357

CHAPTER 10. TRAVELING SALESMAN PROBLEMS

In a standard wheel amplifier, the probability is

P (u, c) = (u
c
)(12n − u

c
)c!(u − c)!!(12n − u − c)!!

(12n)!!
,

where we denote by n!! the product of all odd natural numbers less than or
equal to n, and we assume without loss of generality that u−c is even. Let us
explain this: the probability that exactly c edges cross the cut in this graph
is equal to the number of ways we can choose their endpoints in S and in its
complement, times the number of ways we can match the endpoints, times
the number of matchings of the remaining vertices, divided by the number
of matchings overall.

How much does this probability change if we only allow matchings from
one half of the checkers to the other? Intuitively, we need to consider two
possibilities: one is that S is a balanced set, containing an equal number of
checkers from each side, while the other is that S is unbalanced. It is not
hard to see that if S is unbalanced, then, we can easily establish that the cut
must be large. Thus, the main interesting case is the balanced one (and we
will establish this fact more formally).

Suppose that ∣S∣ = u and S contains exactly u/2 checkers from each
side. Then, the probability that there are exactly c edges crossing the cut is
P ′(u, c), where P ′(u, c) is defined below.

P ′(u, c) = (u/2
c/2
)
2

(12n/2 − u/2
c/2

)
2

(c
2
)!2 (u/2 − c/2)! (12n/2 − u/2 − c/2)!

(6n)!

Let us explain this. If S is balanced and there are c matching edges with
exactly one endpoint in S, then, exactly c/2 of them must be incident on a
vertex of S on each side, since the remaining vertices of S must have a perfect
matching. Again, we pick the endpoints on each side, and on the complement
of S, select a way to match them, select matchings on the remaining vertices
and divide by the number of possible perfect matchings.

Using Stirling formulas, it is not hard to see that (n2)!2 = Θ(n!2−n
√
n).

Also n!! = Θ((n2)!2n/2). It follows that P ′ is roughly the same as P in this
case, modulo some polynomial factors which are not significant since the
probabilities we are calculating are exponentially small.

358

10.14. THE METRIC TSP PROBLEM

Let us now also show that if S is unbalanced, the probability that it is a
minimal bad set is even smaller. First, observe that if S is a minimal bad set
whose cut has c edges, we have c ≤ u/6. The reason for this is that since S is
bad, then, c is smaller than the number of contacts in S minus the number
of cycle edges cut. It is not hard to see that, in each fragment, that is, each
subset of S made up of a contiguous part of the cycle, two cycle edges are
cut. Thus, the extra edges we need for the contacts the fragment contains
are at most 1/6 of its checkers.

Suppose now that S contains u/2 + k checkers on one side and u/2 − k
checkers on the other. The probability P ′′(u, c, k) that c matching edges
have one endpoint in S is as follows.

(
u
2 + k
c
2 + k
)(

u
2 − k
c
2 − k
)(

12n−u
2 − k
c
2 − k

)(
12n−u

2 + k
c
2 + k

)(c
2
+ k)!(c

2
− k)!

(u−c
2
)! (12n−u−c2

)!
(6n)!

The reasoning is the same as before, except we observe that we need to select
more endpoints on the side where S is larger, since after we remove checkers
matched to outside vertices S must have a perfect matching. Observe that
for k = 0 this gives P ′. We will show that for the range of values we care
about P ′′ achieves a maximum for k = 0, and can thus be upper-bounded
by (essentially) P , which is the probability that a set is bad in the standard
amplifier. The rest of the proof follows from the argument given in [BK01]. In
particular, we can assume that k ≤ c/2, since 2k edges are cut with probability
1. To show that the maximum is achieved for k = 0, we look at

P ′′(u, c, k + 1)
P ′′(u, c, k)

.

We will show that this is less than 1. By using the identity (n+1k+1)/(
n
k
) =

(n + 1)/(k + 1), we obtain after short calculation the following.

P ′′(u, c, k + 1)
P ′′(u, c, k)

=
⎛
⎜
⎝
1 − 2k + 1

c

2
+ k + 1

⎞
⎟
⎠

⎛
⎜
⎝
1 + 2k + 1

u

2
− k

⎞
⎟
⎠

⎛
⎜⎜
⎝
1 + 2k + 1

12n − u
2

− k

⎞
⎟⎟
⎠

Using the fact that 1+x < ex, we end up needing to prove that the following
inequality holds.

359

CHAPTER 10. TRAVELING SALESMAN PROBLEMS

2k + 1
c

2
+ k + 1

> 2k + 1
u

2
− k
+ 2k + 1
12n − u

2
− k

(10.1)

Combining u ≤ 6n with the bounds of c and k we have already mentioned,
the inequality (10.1) is straightforward to establish. ∎

10.14.4 Special Instances of the MAX-Hybrid-Lin2 Problem

By using the bi-wheel amplifier from the previous section, we are going to
prove hardness of approximation for a bounded occurrence CSP with very
special properties. This particular CSP will be well-suited for constructing
a reduction to the TSP problem given in the next section. As the starting
point of our reduction, we make use of the inapproximability result due to
Håstad [H01] for the MAX-E3LIN2 problem.

Let L1 be an instance of the MAX-E3LIN2 problem and {xi}νi=1 the set of
variables, that appear in L1. We denote by d(i) the number of appearances
of xi in L1.

Theorem 10.14.3 ([H01])
For every ϵ > 0, there exists a constant Bε such that given an instance L1

of the MAX-E3LIN2 problem with m equations and maxi∈[ν] d(i) ≤ Bε, it is
NP-hard to decide whether there is an assignment that leaves at most ε ⋅m
equations unsatisfied, or all assignment leave at least (0.5 − ϵ)m equations
unsatisfied.

Similarly to the work by Berman and Karpinski [BK99] (see also [BK01]
and [BK03]), we will reduce the number of occurrences of each variable to 3.
For this, we use our amplifier construction to create special instances of the
MAX-HYBRID-LIN2 problem and prove the following theorem.

Theorem 10.14.4
For every constant ε > 0 and b ∈ {0,1}, there exist instances of the
MAX-HYBRID-LIN2 problem with 31m equations such that: (i) Each vari-
able occurs exactly three times. (ii) 21m equations are of the form x⊕ y = 0,

360

10.14. THE METRIC TSP PROBLEM

9m equations are of the form x ⊕ y = 1 and m equations are of the form
x ⊕ y ⊕ z = b . (iii) It is NP-hard to decide whether there is an assign-
ment to the variables that leaves at most ε ⋅m equations unsatisfied, or every
assignment to the variables leaves at least (0.5 − ε)m equations unsatisfied.

Proof. Let ϵ > 0 be a constant and L1 an instance of the MAX-E3LIN2 prob-
lem with maxi∈[ν] d(i) ≤ Bε. For a fixed b ∈ {0,1}, we can flip some of the
literals such that all equations in the instance L1 are of the form x⊕y⊕z = b,
where x, y, z are variables or negations. By constructing three more copies
of each equation, in which all possible pairs of literals appear negated, we
may assume that each variable occurs the same number of times negated as
unnegated.

Let us fix a variable xi in L1. Then, we create 7 ⋅d(i) = 2 ⋅α new variables
V ar(i) = {xuij , xnij }αj=1. In addition, we construct a bi-wheel amplifier Wi

on 2 ⋅ α vertices (that is, a bi-wheel with d(i) contact vertices) with the
properties described in Theorem 10.14.2. Since d(i) ≤ Bε is a constant,
this can be accomplished in constant time. In the remainder, we refer to
contact and checker variables as the elements in V ar(i), whose corresponding
index is a contact and checker vertex in Wi, respectively. We denote by
M(Wi) ⊆ E(Wi) the associated perfect matching on the set of checker vertices
of Wi. In addition, we denote by Cn(Wi) and Cu(Wi) the set of edges
contained in the first and second cycle of Wi, respectively.

Let us now define the equations of the corresponding instance of the
MAX-HYBRID-LIN2 problem. For each edge {j, k} ∈ M(Wi), we create the
equation xuij ⊕ xnik = 1 and refer to equations of this form as matching equa-
tions. On the other hand, for each edge {l, t} in the cycle Cq(Wi) with
q ∈ {u,n}, we introduce the equation xqil ⊕ x

qi
t = 0. Equations of this form

will be called cycle equations. Finally, we replace the j-th unnegated ap-
pearance of xi in L1 by the contact variable xuiλ with λ = 7 ⋅ j, whereas the
j-th negated appearance is replaced by xniλ . The former construction yields
m equations with three variables in the instance of the MAX-HYBRID-LIN2
problem, which we will denote by L2. Notice that each variable appears in
exactly 3 equations in L2. Clearly, we have ∣L2∣ = 31m equations, thereof

361

CHAPTER 10. TRAVELING SALESMAN PROBLEMS

9m matching equations, 21m cycle equations and m equations of the form
x⊕ y ⊕ z = b.

A consistent assignment to V ar(i) is an assignment with xuij = b and
xnij = (1 − b) for all j ∈ [α], where b ∈ {0,1}. A consistent assignment to the
variables of L2 is an assignment that is consistent to V ar(i) for all i ∈ [ν].
By standard arguments using the amplifier constructed in Theorem 10.14.2,
it is possible to convert an assignment to a consistent assignment without
decreasing the number of satisfied equations and the proof of Theorem 10.14.4
follows. ∎

10.14.5 Construction of the Instances of the TSP

In this section, we are going to describe the instance of the TSP problem given
an instance the MAX-HYBRID-LIN2 problem. Furthermore, it is devoted to
the proof of Theorem 10.6.6.

Let us first sketch the high-level idea of the construction. Starting with an
instance of the MAX-HYBRID-LIN2 problem, we will construct a graph, where
gadgets represent the equations. We will design gadgets for equations of size
three (Figure 10.66) and for equations of size two corresponding to matching
edges of the bi-wheel (Figure 10.65). We will not construct gadgets for the
cycle edges of the bi-wheel; instead, the connections between the matching
edge gadgets will be sufficient to encode these extra constraints. This may
seem counter-intuitive at first, but the idea here is that if the gadgets for
the matching edges are used in a consistent way (that is, the tour enters and
exits in the intended way) then it follows that the tour is using all edges
corresponding to one wheel and none from the other. Thus, if we prove
consistency for the matching edge gadgets, we implicitly get the cycle edges
“for free”. This observation, along with an improved gadget for size-three
equations and the elimination of the variable part of the graph, are the main
sources of improvement over the construction of [L12].

Let us describe the construction that encodes an instance L2 of the
MAX-HYBRID-LIN2 problem into an instance of the TSP problem: Due to
Theorem 10.14.4, we may assume that the equations with three variables in

362

10.14. THE METRIC TSP PROBLEM

L2 are all of the form x⊕ y ⊕ z = 0.
In order to ensure that some edges are to be used at least once in any

valid tour, we apply the following simple trick that was already used in the
work by Lampis [L12]: Let e be an edge with weight w that we want to be
traversed by every tour. We remove e and replace it with a path of L edges
and L − 1 newly created vertices each of degree two, where we think of L as
a large constant. Each of the L edges has weight w/L and any tour that fails
to traverse at least two newly created edges is not connected. On the other
hand, a tour that traverses all but one of those edges can be extended by
adding two copies of the unused edge increasing the cost of the underlying
tour by a negligible value. In summary, we may assume that our construction
contains forced edges that need to be traversed at least once by any tour. If
x and y are vertices, which are connected by a forced edge e, we write {x, y}F
or simply x−F y. In the following, we refer to unforced edges e with w(e) = 1
as simple. All unforced edges in our construction will be simple.

xui−1 xui xui+1

xnj−1 xnj xnj+1

Figure 10.65: Gadget simulating equations with two variables. Dotted and
straight lines represent forced and simple edges, respectively.

Let us start with the description of the corresponding graph GS: For each
bi-wheel Wp, we will construct the subgraph Gp of GS. For each vertex of
the bi-wheel, we create a vertex in the graph and for each cycle equation
x⊕y = 0, we create a simple edge {x, y}. Given a matching equation between
two checkers xui ⊕ xnj = 1, we connect the vertices xui and xnj with two forced
edges {xui , xnj }1F and {xui , xnj }2F . We have w({xui , xnj }iF) = 2 for each i ∈ {1,2}.

Additionally, we create a central vertex s that is connected to gadgets

363

CHAPTER 10. TRAVELING SALESMAN PROBLEMS

simulating equations with three variables. Let x ⊕ y ⊕ z = 0 be the j-th
equation with three variables in L2. We now create the graph G3Sj dis-
played in Figure 10.66, where the (contact) vertices for x, y, z have already
been constructed in the cycles. The edges {γα, γ}F with α ∈ {r, l} and
γ ∈ {x, z, y} are all forced edges with w({γα, γ}F) = 1.5. Furthermore, we
have w({eαj , s}F) = 0.5 for all α ∈ {r, l}. {erj , s}F and {elj, s}F are both forced
edges, whereas all remaining edges of G3Sj are simple. This is the whole
description of GS.

erjelj

z

s

y

x

xl xr

yr

zrzl

yl

Figure 10.66: Gadgets simulating equations with three variables of the
form x⊕y⊕z = 0. Dotted and straight lines represent forced
and simple edges, respectively.

10.14.6 Tours in GS from Assignments

Given an instance L2 of the MAX-HYBRID-LIN2 problem and an assignment
ϕ to the variables in L2, we are going to construct a tour in GS according to
ϕ and give the proof of one direction of the reduction. In particular, we are
going to prove the following lemma.

364

10.14. THE METRIC TSP PROBLEM

Lemma 10.14.1
If there is an assignment to the variables of a given instance L2 of the
MAX-HYBRID-LIN2 problem with 31m equations and ν bi-wheels, that leaves
k equations unsatisfied, then, there exists a tour in GS with cost at most
61m + 2ν + k + 2.

Before we proceed, let us give a useful definition. Let G be an edge-
weighted graph and ET a multi-set of edges of E(G) that defines a quasi-tour.
Consider a set V ′ ⊆ V (G). The local edge cost of the set V ′ is then defined
as follows.

cT (V ′) = ∑
u∈V ′

∑
e∈ET , e={u,v}

w(e)
2

In words, for each vertex in V ′, we count half the total weight of its
incident edges used in the quasi-tour (including multiplicities). Observe that
this sum contains half the weight of edges with one endpoint in V ′ but the full
weight for edges with both endpoints in V ′ (since we count both endpoints
in the sum). Also note that for two sets V1, V2, we have

cT (V1 ∪ V2) ≤ cT (V1) + cT (V2)

(with equality for disjoint sets) and that cT (V (G)) = ∑
e∈ET

w(e).

Proof of Lemma 10.14.1.
First, note that it is sufficient to prove that we can construct a quasi-tour
of the promised cost which uses all forced edges exactly once. Since all
unforced edges have cost 1, if we are given a quasi-tour we can connect
two disconnected components by using an unforced edge that connects them
twice (this is always possible since the underlying graph we constructed is
connected). This does not increase the cost, since we added two unit-weight
edges and decreased the number of components. Repeating this results in a
connected tour.

Let {Wa}νa=1 be the associated set of bi-wheels of L2. For a fixed bi-wheel
Wp, let {xui , xni }zi=1 be its associated set of variables. Due to the construc-
tion of instances of the MAX-HYBRID-LIN2 problem in Section 10.14.4, we

365

CHAPTER 10. TRAVELING SALESMAN PROBLEMS

may assume that all equations with two variables are satisfied by the given
assignment. Thus, we have xui ≠ xnj , xui = xuj and xni = xnj for all i, j ∈ [z].

Assuming xα1 = 1 for some α ∈ {u,n}, we use once all simple edges
{xαi , xαi+1} with i ∈ [z − 1] and the edge {xαz , xα1}. We also use all forced
edges corresponding to matching equations once. In other words, for each
bi-wheel, we select the cycle that corresponds to the assignment 1 and use
all the simple edges from that cycle. This creates a component that contains
all checker vertices from both cycles and all contacts from one cycle.

As for the next step, we are going to describe the tour traversing G3Sj with
j ∈ [m] given an assignment to contact variables. Let us assume that G3Sj
simulates x ⊕ y ⊕ z = 0. According to the assignment to x, y and z, we will
traverse G3Sj as follows: In all cases, we will use all forced edges once.
Case (x + y + z = 2):
Then, we use {γl, γr} for all α ∈ {r, l} and γ ∈ {x, y, z} with γ = 1. For
δ ∈ {x, z, y} with δ = 0, we use {eαj , δα} for all α ∈ {r, l}.
Case (x + y + z = b with b ∈ {0,1}):
In both cases, we traverse {γα, eαj } for all γ ∈ {x, y, z} and α ∈ {r, l}.
Case (x + y + z = 3):
We use {γr, γl} with γ ∈ {y, z}. Furthermore, we include {xα, eαj } for both
α ∈ {r, l}.

Let us now analyze the cost of the edges of our quasi-tour given an as-
signment. For each matching edge {xui , xnj } consider the set of vertices made
up of its endpoints. Its local cost is 5: we pay 4 for the forced edges and
there are two used simple edges with one endpoint in the set. Let us also
consider the local cost for a size-three equation gadget, where we consider
the set to contain the contact vertices {x, y, z} as well the other 8 vertices
of the gadget. The local cost here is 9.5 for the forced edges. We also pay
6 more (for a total of 15.5) when the assignment satisfies the equation or 7
more when it does not.

Thus, we have given a covering of the vertices of the graph by 9m sets
of size two, m sets of size 11 and {s}. The total edge cost is thus at most
5 ⋅ 9m + 15.5 ⋅m + 0.5 ⋅m + k = 61m + k. To obtain an upper bound on the
cost of the quasi-tour, we observe that the tour has at most ν+1 components

366

10.14. THE METRIC TSP PROBLEM

(one for each bi-wheel and one containing s). The lemma follows. ∎

10.14.7 Assignments from Tours in GS

In this section, we are going prove the other direction of our reduction. Given
a tour in GS, we are going to define an assignment to the variables of the
associated instance of the MAX-HYBRID-LIN2 problem and give the proof of
the following lemma.

Lemma 10.14.2
If there is a tour in GS with cost 61m+ k − 2, then, there is an assignment to
the variables of the corresponding instance of the MAX-HYBRID-LIN2 prob-
lem that leaves at most k equations unsatisfied.

Again, let us give a useful definition. Consider a quasi-tour ET and a set
V ′ ⊆ V (G). Let conT (V ′) be the number of connected components induced
by ET which are fully contained in V ′. Then, the full local cost of the set V ′

is defined as cFT (V ′) = cT (V ′) + 2 ⋅ conT (V ′). By the definition, the full local
cost of V (G) is equal to the cost of the quasi-tour (plus 2).

Intuitively, cFT (V ′) captures the cost of the quasi-tour restricted to V ′: it
includes the cost of edges and the cost of added connected components. Note
that now for two disjoint sets V1, V2, we have cFT (V1 ∪ V2) ≥ cFT (V1) + cFT (V2)
since V1 ∪V2 could contain more connected components than V1, V2 together.
If we know that the total cost of the quasi-tour is small, then cFT (V (G)) is
small (less than 61m + k). We can use this to infer that the sum of the local
full costs of all gadgets is small.

The high-level idea of the proof is the following: we will use the same
partition of V (G) into sets as in the proof of Lemma 10.14.1. For each set,
we will give a lower bound on its full local cost for any quasi-tour, which will
be equal to what the tour we constructed in Lemma 10.14.1 pays. If a given
quasi-tour behaves differently its local cost will be higher. The difference
between the actual local cost and the lower bound is called the credit of that
part of the graph. We construct an assignment for the variables of L2 and
prove that the total sum of credits is higher that the number of unsatisfied

367

CHAPTER 10. TRAVELING SALESMAN PROBLEMS

equations. But using the reasoning of the previous paragraph, the total sum
of credits will be at most k.

Proof of Lemma 10.14.2. We are going to prove a slightly stronger statement
and show that if there exists a quasi-tour in GS with cost 61m + k − 2, then,
there exists an assignment leaving at most k equations unsatisfied. Recall
that the existence of a tour in GS with cost C implies the existence of a
quasi-tour in GS with cost at most C.

We may assume that simple edges are contained only once in ET due
to the following preprocessing step: If ET contains two copies of the same
simple edge, we remove them without increasing the cost, since the number
of components can only increase by one.

In the following, given a quasi-tour ET in GS, we are going to define an
assignment ϕT and analyze the number of satisfied equations by ϕT compared
to the cost of the quasi-tour.

The general idea is that each vertex of GS that corresponds to a variable
of L2 has exactly two forced and exactly two simple edges incident to it. If
the forced edges are used once each, the variable is called honest. We set
it to 1 if the simple edges are both used once and to 0 otherwise. It is not
hard to see that, because simple cycle edges connect vertices that represent
the variables, this procedure will satisfy all cycle equations involving honest
variables. We then argue that if other equations are unsatisfied the tour is
also paying extra, and the same happens if a variable is dishonest.

Let us give more details. First, we concentrate on the assignment for
checker variables.

Assignment for Checker Variables

Let us consider the following equations with two variables xui−1 ⊕ xui = 0,
xui ⊕xui+1 = 0, xnj−1⊕xnj = 0, xnj⊕xnj+1 = 0 and xui ⊕xnj = 1. We are going to analyze
the cost of a quasi-tour traversing the gadget displayed in Figure 10.65 and
define an assignment according to ET . Let us first assume that our quasi-tour
is honest, that is, the underlying quasi-tour traverses forced edges only once.

368

10.14. THE METRIC TSP PROBLEM

Honest tours: For x ∈ {xui , xnj }, we set x = 1 if the quasi-tour traverses both
simple edges incident on x and x = 0, otherwise. Since we removed all copies
of the same simple edge, we may assume that cycle equations are always
satisfied. If the tour uses xui−1 − xui −F xnj −F xui − xui+1, we get xui−1 = xui+1 = 1,
xnj−1 = xnj+1 = 0 and 5 satisfied equations. Given xnj−1−xnj −F xui −F xnj −xnj+1, we
obtain 5 satisfied equations as well. Let us define V p

i ∶= {xui , xnj }. Notice that
in both cases, we have local cost cFT (V

p
i) = 5. We claim that cFT (V

p
i) ≥ 5 for

a valid quasi-tour. In order to obtain a valid quasi-tour, we need to traverse
both forced edges in Gpi and use at least two simple edges, as otherwise,
it implies cFT (G

p
i) ≥ 6. Given a quasi-tour ET , we introduce a local credit

function defined by crT (V p
i) = cFT (V

p
i)−5. If xui −F xnj −F xui forms a connected

component, we get 4 satisfied equations and crT (V p
i) = 1, which is sufficient

to pay for the unsatisfied equation xui ⊕xnj = 1. On the other hand, assuming
xui−1 = xui+1 = 1 and xnj−1 = xnj+1 = 1, we get crT (V p

i) = 1 and 1 unsatisfied
equation.
Dishonest tours: We are going to analyze quasi-tours, which are using
one of the forced edges twice. By setting xui ≠ xnj , we are able to find an
assignment that always satisfies xui ⊕ xnj = 1 and two other equations out of
the five that involve these dishonest variables. The local cost in this case
is at least 7. Hence, the credit crT (V p

i) = 2 is sufficient to pay for the two
unsatisfied equations.

Assignment for Contact Variables

Again, we will distinguish between honest tours (which use forced edges
exactly once) and dishonest tours. This time we are interested in seven
equations: the size-three equation x ⊕ y ⊕ z = 0 and the six cycle equations
containing the three contacts.

Observe that the local cost of V 3S
j ∶= {xr, xl, x, yr, yl, y, zr, zl, z, erj , elj} is

at least 15.5. The local edge cost of any quasi-tour is 9.5 for the forced
edges. For each component {γ, γl, γr} with γ ∈ {x, y, z}, we need to pay at
least 2 more because there are two vertices with odd degree (γl, γr) and
we also need to connect the component to the rest of the graph (otherwise

369

CHAPTER 10. TRAVELING SALESMAN PROBLEMS

the component already costs 2 more). Let us define the credit of V 3S
j with

respect to ET by crT = cFT (V 3S
j) − 15.5.

Honest tours:
For each γ ∈ {x, y, z}, we set γ = 1 if the tour uses both simple edges
incident on γ and 0, otherwise. Notice that in the case (x + y + z = b) with
b ∈ {0,2}, this satisfies all seven equations and the tour has local cost at
least cFT (V 3S

j) = 15.5.
Case (x = y = z = 1): The assignment now failed to satisfy the size-three
equation, so we need to prove that the quasi-tour has local cost at least
16.5. Since all vertices are balanced with respect to ET , the quasi-tour has
to use at least one edge incident on erj and elj besides {s, erj}F and {s, elj}F .
If the quasi-tour takes {eαj , γα} for a γ ∈ {x, y, z} and all α ∈ {r, l}, since all
simple edges incident on x, y, z are used, we get at total cost of at least 16.5,
which gives a credit of 1.
Case (x+y+z = 1): Without loss of generality, we assume that x = y = 0 ≠ z
holds. Again, only the size-three equation is unsatisfied, so we must show
that the local cost is at least 16.5. We will discuss two subcases. (i) There
is a connected component δ −F δr − δl −F δ for some δ ∈ {x, y}. We obtain
that cFT ({δ, δl, δr}) ≥ 6 and therefore, a lower bound on the total cost of 16.5.
(ii) Since we may assume that xr, xl, yr and yl are balanced with respect
to ET , we have that {eαj , γα} ∈ ET for all α ∈ {r, l} and γ ∈ {x, y}. Because
eαj are also balanced, we obtain {eαj , zα} ∈ ET for all α ∈ {r, l}, which implies
a total cost of 16.5.

Dishonest tours:
Let us assume that the quasi-tour uses both of the forced edges {γr, γ} and
{γl, γ} for some γ ∈ {x, z, y} twice. We delete both copies and add {γr, γl}
instead which reduces the cost of the quasi-tour. Hence, we may assume that
only one of the two incident forced edges is used twice.

First, observe that if all forced edges were used once, then there would
be eight vertices in the gadget with odd degree: xr, xl, yr, yl, zr, zl, erj , elj. If
exactly one forced edge is used twice, then seven of these vertices have odd

370

10.14. THE METRIC TSP PROBLEM

degree. Thus, it is impossible for the tour to make the degrees of all seven
even using only the simple edges that connect them. We can therefore assume
that if a forced edge is used twice, there exists another forced edge used twice.

We will now take cases, depending on how many of the vertices x, y, z
are incident on forced edges used twice. Note that if one of the forced edges
incident on x is used twice, then exactly one of the simple edges incident on
x is used once.

First, suppose all three of x, y, z have forced edges used twice. The local
cost from forced edges is at least 14. Furthermore, there are three vertices
of the form γα, for γ ∈ {x, y, z} and α ∈ {l, r} with odd degree. These have
no simple edges connecting them, thus the quasi-tour will use three simple
edges to balance their degrees. Finally, the used simple edges incident on
x, y, z each contribute 0.5 to the local cost. Thus, the total local cost is at
least 18.5, giving us a credit of 3. It is not hard to see that there is always an
assignment satisfying four out of the seven affected equations, so this case is
done.

Second, suppose exactly two of x, y, z have incident forced edges used
twice, say, x, y. For z, we select the honest assignment (1 if the incident
simple edges are used, 0 otherwise) and this satisfies the cycle equations for
this variable. We can select assignments for x, y that satisfy three of the
remaining five equations, so we need to show that the cost in this case is at
least 17.5. The cost of forced edges is at least 12.5, and the cost of simple
edges incident on x, y adds 1 to the local cost. One of the vertices xl, xr

and one of yl, yr have odd degree, therefore the cost uses two simple edges
to balance them. Finally, the vertices zl, zr have odd degree. If two simple
edges incident to them are used, we have a total local cost of 17.5. If the
edge connecting them is used, then the two simple edges incident on z must
be used, again pushing the local cost to 17.5.

Finally, suppose only x has an incident forced edge used twice. By the
parity argument given above, this means that one of the forced edges incident
on s is used twice. We can satisfy the cycle equations for y, z by giving
them their honest assignment, and out of the three remaining equations
some assignment to x satisfies two. Therefore, we need to show that the cost

371

CHAPTER 10. TRAVELING SALESMAN PROBLEMS

is at least 16.5. The local cost from forced edges is 11.25 and the simple
edge incident on x contributes 0.5. Also, at least one simple edge incident
on xl or xr is used, since one of them has odd degree. For yl, yr, either two
simple edges are used, or if the edge connecting them is used the simple edges
incident on y contribute 1 more. With similar reasoning for zl, zr, we get that
the total local cost is at least 16.75.

Let us now conclude our analysis. Consider the following partition of
V (GS): we have a singleton set {s}, 9m sets of size 2 containing the matching
edge gadgets and m sets of size 11 containing the gadgets for size-three
equations (except s). The sum of their local costs is at most cFT (V (GS)) ≤
61m + k. But the sum of their local costs is (using the preceding analysis)
equal to 61m +∑ crT (Vi). Thus, the sum of all credits is at most k. Since
we have already argued that the sum of all credits is enough to cover all
equations unsatisfied by our assignment, this concludes the proof. ∎

We are ready to give the proof of Theorem 10.6.6.

Proof of Theorem 10.6.6.
We are given an instance L1 of the MAX-E3LIN2 problem with ν variables
and m equations. For all δ > 0, there exists a k such that if we repeat each
equation k time we get an instance L (k)

1 with m′ = km equations and ν

variables such that 2(ν + 1)/m′ ≤ δ.
Then, from L (k)

1 , we generate an instance L2 of the MAX-HYBRID-LIN2
problem and the corresponding graph GS. Due to Lemmata 10.14.1, 10.14.2
and Theorem 10.14.4, we know that for all ε > 0, it is NP-hard to tell whether
there is a tour with cost at most 61m′ + 2ν + 2 + ε ⋅m′ ≤ 61 ⋅m′ + (δ + ε)m′ or
all tours have cost at least 61m′ + (0.5 − ε)m′ − 2 ≥ 61.5 ⋅m′ − ε ⋅m′ − δ ⋅m′.
The ratio between these two cases can get arbitrarily close to 123/122 by
appropriate choices for ϵ, δ. ∎

10.15 The Asymmetric TSP Problem

In this section, we are going to construct a reduction from the
MAX-HYBRID-LIN2 problem to the ATSP problem and prove the following

372

10.15. THE ASYMMETRIC TSP PROBLEM

theorem.

Theorem 10.6.7
It is NP-hard to approximate the ATSP problem to within any constant ap-
proximation ratio less than 75/74.

10.15.1 The Construction of the Graph GA

Let us describe the construction that encodes an instance L2 of the
MAX-HYBRID-LIN2 problem into an instance of the ATSP problem. Again,
it will be useful to have the ability to force some edges to be used, that is,
we would like to have bidirected forced edges. A bidirected forced edge of
weight w between two vertices x and y will be created in a similar way as
undirected forced edges in the previous section: construct L− 1 new vertices
and connect x to y through these new vertices, making a bidirected path
with all edges having weight w/L. It is not hard to see that without loss of
generality, we may assume that all edges of the path are used in at least one
direction, though we should note that the direction is not prescribed. In the
remainder, we denote a directed forced edge consisting of vertices x and y by
(x, y)F , or x→F y.

Let L2 consist of the collection {Wi}νi=1 of bi-wheels. Recall that the bi-
wheel consists of two cycles and a perfect matching between their checkers.
Let {xui , xni }zi=1 be the associated set of variables of Wp. We write u(i) to
denote the function which, given the index of a checker variable xui returns
the index j of the checker variable xnj to which it is matched (that is, the
function u is a permutation function encoding the matching). We write n(i)
to denote the inverse function u−1(i).

Now, for each bi-wheel Wp, we are going to construct the correspond-
ing directed graph GpA as follows. First, construct a vertex for each checker
variable of the wheel. For each matching equation xui ⊕ xnj = 1, we create
a bidirected forced edge {xui , xnj }F with w({xui , xnj }F) = 2. For each contact
variable xk, we create two corresponding vertices xrk and xlk, which are joined
by the bidirected forced edge {xrk, xlk}F with w({xrk, xlk}F) = 1.

373

CHAPTER 10. TRAVELING SALESMAN PROBLEMS

xu
u(j−1)

xnj+1

xui+1xnj

xuixn
n(i−1)

Figure 10.67: Gadget simulating equation with two variables. Dotted and
straight lines represent forced and simple edges, respectively.

Next, we will construct two directed cycles Cpu and Cpn. Note that we are
doing arithmetic on the cycle indices here, so the index z + 1 should be read
as equal to 1. For Cpu, for any two consecutive checker vertices xui , xui+1 on the
un-negated side of the bi-wheel, we add a simple directed edge xn

u(i) → xui+1.
If the checker xui is followed by a contact xui+1 in the cycle, then we add
two simple directed edges xn

u(i) → xuri+1 and xuli+1 → xui+2. Observe that by
traversing the simple edges we have just added, the forced matching edges
in the direction xui →F xnu(i) and the forced contact edges for the un-negated
part in the direction xuri →F xuli we obtain a cycle that covers all checkers
and all the contacts of the un-negated part.

We now add simple edges to create a second cycle Cpn. This cycle will
require using the forced matching edges in the opposite direction and, thus,
truth assignments will be encoded by the direction of traversal of these edges.
First, for any two consecutive checker vertices xni , xni+1 on the un-negated side
of the bi-wheel, we add the simple directed edge xu

n(i) → xni+1. Then, if the
checker xni is followed by a contact xni+1 in the cycle then we add the simple
directed edges xu

n(i) → xnri+1 and xnli+1 → xni+2. Now by traversing the edges we
have just added, the forced matching edges in the direction xni →F xun(i) and
the forced contact edges for the negated part in the direction xnri →F xnli , we
obtain a cycle that covers all checkers and all the contacts of the negated
part, that is, a cycle of direction opposite to Cpu.

374

10.15. THE ASYMMETRIC TSP PROBLEM

zr

e1j

yl

e2j

tj

sj

s

e3j

xl

xr
yr

zl

Figure 10.68: Gadgets simulating equations with three variables of the
form x⊕y⊕z = 1. Dotted and straight lines represent forced
and simple edges, respectively.

What is left is to encode the equations of size three. Again, we have a
central vertex s that is connected to gadgets simulating equations with three
variables. For every equation with three variables, we create the gadget
displayed in Figure 10.68, which is a variant of the gadget used by Papadim-
itriou and Vempala [PV06]. Let us assume that the j-th equation with three
variables in L2 is of the form x ⊕ y ⊕ z = 1. This equation is simulated by
G3Aj . The vertices used are the contact vertices γα, γ ∈ {x, y, z}, α ∈ {r, l},
which we have already introduced, as well as the vertices {sj, tj, eij ∣ i ∈ [3]}.
For notational simplicity, we define the set V 3A

j of vertices as follows.

V 3A
j = {sj, tj, eij, γα ∣ i ∈ [3], γ ∈ {x, y, z}, α ∈ {r, l}}

All directed non-forced edges are simple. The vertices sj and tj are connected
to s by forced edges with w((s, sj)F) = w((tj, s)F) = λ, where λ > 0 is a small
fixed constant. This is the whole description of the graph GA.

375

CHAPTER 10. TRAVELING SALESMAN PROBLEMS

10.15.2 Assignments to Tours in GA
We are going to construct a tour in GA given an assignment to the variables
of L2 and prove the following lemma.

Lemma 10.15.1
Given an instance L2 of the MAX-HYBRID-LIN2 problem with ν bi-wheels and
an assignment that leaves k equations in L2 unsatisfied, then, there exists a
tour in GA with cost at most 37m + 5ν + 2mλ + 2νλ + k.

Before we proceed, let us again give a definition for a local edge cost
function. Let G be an edge-weighted digraph and ET a multi-set of edges of
E(G) that defines a tour. Consider a set V ′ ⊆ V (G). The local edge cost of
the set V ′ is then defined as follows.

cT (V ′) = ∑
u∈V ′

∑
(u,v)∈ET

w((u, v))

In words, for each vertex in V ′ we count the total weight of its outgo-
ing edges used in the quasi-tour (including multiplicities). Thus, that this
sum contains the full weight for edges with their source in V ′, regardless of
where their other endpoint is. Also note that again for two sets V1, V2, we
have cT (V1 ∪ V2) ≤ cT (V1) + cT (V2) (with equality for disjoint sets) and that
cT (V (G)) = ∑e∈ET

w(e).

Proof of Lemma 10.15.1.
Let Wp be a bi-wheel with variables {xui , xni }zi=1. Given an assignment to
the variables of L2, due to Theorem 10.14.4, we may assume that either
xui = 1 ≠ xnj for all i, j ∈ [z] or xui = 0 ≠ xnj for all i, j ∈ [z]. We traverse
the cycle Cpu if xu1 = 1 and the cycle Cpn otherwise. This creates ν strongly
connected components. Each contains all the checkers of a bi-wheel and the
contacts from one side.

For each matching edge gadget, the local edge cost is 3. We pay two for
the forced edge and 1 for the outgoing simple edge. We will account for the
cost of edges incident on contacts when we analyze the size-three equation
gadget below.

376

10.15. THE ASYMMETRIC TSP PROBLEM

Let us describe the part of the tour traversing the graph G3Aj , which
simulates x ⊕ y ⊕ z = 1. Recall that if x is set to true in the assignment
we have traversed the bi-wheel gadgets in such a way that the forced edge
xr →F xl is used, and the simple edge coming out of xl is used. According to
the assignment to x, y and z, we traverse G3Aj as follows:
Case (x + y + z = 1):
Let us assume that z = y = 0 ≠ x holds. Then, we use s →F sj → e2j → yl →F

yr → e3j → zl →F zr → e1j → tj →F s. The cost is 3 + λ for the forced edges, 6
for the simple edges inside the gadget, plus 1 for the simple edge going out
of xl. Total local edge cost cost: cT (V 3A

j) = 10 + λ.
Case (x + y + z = 3):
Then, we use s →F sj → e2j → e1j → e3j → tj →F s. Again we pay 3 + λ for the
forced edges, 4 for the simple edges inside the gadget and 3 for the outgoing
edges incident on xl, yl, zl. Total local edge cost: cT (V 3A

j) = λ + 10.
Case (x + y + z = 2):
Let us assume that x = y = 1 ≠ z holds. Then, we use s →F sj → e3j → zl →F

zr → e1j → e3j → e2j → tj →F s with total local edge cost cT (V 3A
j) = λ + 11.

Case (x + y + z = 0):
We use s →F sj → e2j → yl →F yr → e3j → zl →F zr → e1j → xl →F xr → e2j →
tj →F s with cT (V 3A

j) = λ + 11.
The total edge cost of the quasi-tour we constructed is 3⋅9m+(10+2λ)m+

k = 37m + 2λm + k. We have at most ν + 1 strongly connected components:
one for each bi-wheel and one containing s. A component representing a
bi-wheel can be connected to s as follows: let xl, xr be two contact vertices
in the component. Add one copy of each edge from the cycle s→F sj → e1j →
xl →F xr → e2j → tj →F s. This increases the cost by 5 + 2λ but decreases the
number of components by one. ∎

10.15.3 Tours in GA to Assignments

In this section, we are going to prove the other direction of the reduction.

Lemma 10.15.2

377

CHAPTER 10. TRAVELING SALESMAN PROBLEMS

If there is a tour in GA with cost 37⋅m+k+2λ⋅m, then, there is an assignment
that leaves at most k equations unsatisfied.

Proof. Given a tour ET in GA, we are going to define an assignment to checker
and contact variables. As in Lemma 10.14.2, we will show that any tour
must locally spend on each gadget at least the same amount as the tour we
constructed in Lemma 10.15.1. If the tour spends more, we use that credit
to satisfy possible unsatisfied equations.

Assignment for Checker Variables

Let us consider the following equations with two variables xui ⊕ xui+1 = 0,
xui−1 ⊕ xui = 0, xui ⊕ xnj = 1, xnj ⊕ xnj+1 = 0, xnj−1 ⊕ xnj = 0 and the corresponding
situation displayed in Figure 10.67 (b). Since ET is a valid tour in GA, we
know that {xui , xnj }F is traversed and due to the degree condition, for each
x ∈ {xui , xnj }, the tour uses another incident edge e on x with w(e) ≥ 1.
Therefore, we have that cT ({xui , xnj }) ≥ 3. The credit assigned to a gadget is
defined as crT ({xui , xnj }) = cT ({xui , xnj }) − 3.

Let us define the assignment for xui and xnj . A variable xui is honestly
traversed if either both the simple edge going into xui is used and the simple
edge coming out of xnj is used, or neither of these two edges is used. In the
first case, we set xui to 1, otherwise to 0. Similarly, xnj is honest if both the
edge going into xnj and the edge out of xui are used, and we set it to 1 in the
first case and 0 otherwise.
Honest tours:
First, suppose that both xui and xnj are honest. We need to show that the
credit is at least as high as the number of unsatisfied equations out of the
five equations that contain them. It is not hard to see that if we have set
xui ≠ xnj all equations are satisfied. If we have set both to 1, then the forced
edge must be used twice, making the local edge cost at least 6, giving a credit
of 3, which is more than sufficient.
Dishonest tours:
If both xui and xnj are dishonest the tour must be using the forced edge in
both directions. Thus, the local cost is 5 or more, giving a credit of 2. There

378

10.15. THE ASYMMETRIC TSP PROBLEM

is always an assignment that satisfies three out of the five equations, so this
case is done. If one of them is dishonest, the other must be set to 1 to
ensure strong connectivity. Thus, there are two simple edges used leaving
the gadget, making the local cost 4 (perhaps the same edge is used twice).
We can set the honest variable to 1 (satisfying its two cycle equations), and
the other to 0, leaving at most one equation unsatisfied.

Assignment for Contact Variables

First, we note that for any valid tour, we have cT (V 3A
j) ≥ 10 + λ. This is

because the two forced edges of weight λ must be used, and there exist 10

vertices in the gadget for which all outgoing edges have weight 1. Let us
define the credit crT (V 3A

j) = cT (V 3A
j) − (10 + λ).

Honest Traversals:
We assume that the underlying tour is honest, that is, forced edges are tra-
versed only in one direction. We set x to 1 if the forced edge is used in the
direction xr →F xl and 0 otherwise. In the first case we know that the simple
edges going into xr and out of xl are used. In the second, the edges e1j → xl

and xr → e2j are used. We do similarly for y, z.

We are interested in the equation x⊕y⊕z = 1 and the six cycle equations
involving x, y, z. The assignment we pick for honest variables satisfies the
cycle equations, so if it also satisfies the size-three equation we are done. If
not, we have to prove that the tour pays at least 11 + λ.
Case (x = y = z = 0): Due to our assumption, we know that e2j → yl →F

yr → e3j → zl →F zr → e1j → xl →F xr → e2j is a part of the tour. Since ET

is a tour, there exists a vertex in V 3A
j /{sj, tj} that is visited twice and we

get cT (V 3A
j) ≥ 11 + λ. Thus, we can spend the credit crT (V 3A

j) ≥ 1 on the
unsatisfied equation x⊕ y ⊕ z = 1.
Case (x+y+z = 2): Without loss of generality, let us assume that x = y = 1 ≠ z
holds. Then, we know that e3j → zl →F zr → e1j is a part of the tour. But,
this implies that there is a vertex in V (G3Aj) that is visited twice. Hence, we
have that crT (V 3A

j) ≥ 1.
Dishonest Traversals:

379

CHAPTER 10. TRAVELING SALESMAN PROBLEMS

Consider the situation, in which some forced edges {γr, γl}F are traversed
in both directions for some variables γ ∈ {x, y, z}. For the honest variables,
we set them to the appropriate value as before, and this satisfies their cycle
equations. Observe now that if a forced edge γl →F γr is also used in the
opposite direction, then there must be another edge used to leave the set
{γl, γr}. Thus the local edge cost of this set is at least 3. It follows that the
credit we have for the gadget is at least as large as the number of dishon-
est variables. We can give appropriate values to them so each satisfies one
cycle equation and the size-three equation is satisfied. Thus, the number of
unsatisfied equations is not larger than our credit.

In summary, for every tour ET in GA, we can find an assignment to the
variables of L2 such that all unsatisfied equations are paid by the credit
induced by ET . ∎

We are ready to give the proof of Theorem 10.6.7.

Proof of Theorem 10.6.7.
We are again given an instance L1 of the MAX-E3LIN2 problem with ν vari-
ables and m equations. For all δ > 0, there exists a k such that if we repeat
each equation k time we get an instance L (k)

1 with m′ = km equations and
ν variables such that ν/m′ ≤ δ.

Then, from L (k)
1 , we generate an instance L2 of the MAX-HYBRID-LIN2

problem and the corresponding directed graph GA. Due to Lem-
mata 10.15.1, 10.15.2 and Theorem 10.14.4, we know that for all ε > 0,
it is NP-hard to tell whether there is a tour with cost at most 37m′ +
5ν + 2m(ν + λ) + ε ⋅ m′ ≤ 37 ⋅ m′ + ε′m′ or all tours have cost at least
37m′+(0.5−ε)m′ ≥ 37.5 ⋅m′−ε′ ⋅m′, for some ε′ depending only on ε, δ, λ. The
ratio between these two cases can get arbitrarily close to 75/74 by appropriate
choices for ϵ, δ, λ. ∎

10.16 Bibliographic Notes

The presented material in this chapter is based on the papers [KS12], [KS13]
and [KLS13]. In particular, the proofs of Theorem 10.6.1 and 10.6.2 appeared

380

10.16. BIBLIOGRAPHIC NOTES

in [KS12]. The proofs of Theorem 10.6.3, 10.6.4 and 10.6.5 were given in
[KS13]. The paper [KLS13] contains the proofs of Theorem 10.6.6 and 10.6.7.

381

CHAPTER 10. TRAVELING SALESMAN PROBLEMS

382

CHAPTER 11

Conclusions and Further Research

383

CHAPTER 11. CONCLUSIONS AND FURTHER RESEARCH

In this thesis, we proved that it is hard to approximate the ATSP and
the TSP problem within any constant factor less than 75/74 and 123/122,
respectively. Since the best known upper bound on the approximability is
O(logn/ log logn) for the ATSP problem (cf. [AGM+10]) and 3/2 for the TSP
problem (cf. [C76]), there is certainly room for improvements. Especially, in
the asymmetric version of the TSP problem, there is a large gap between the
approximation lower and upper bound, and it remains a major open prob-
lem on the existence of an efficient approximation algorithm with constant
approximation ratio for that problem.

We gave an improved inapproximability threshold for the (1,2)-STEINER
TREE problem of 221/220. The best up to now known approximation up-
per bound is 5/4 (cf. [BKZ09]). Is the bound 5/4 the best possible under
usual complexity theoretic assumptions? Furthermore, it would be nice to
investigate if some of the ideas appeared in this thesis, and in particular the
bi-wheel amplifiers, can be used to offer improved approximation hardness
results for other optimization problems, such as the (1,2)-STEINER TREE

and the general STEINER TREE problem.
We provided new explicit inapproximability bounds for general, cubic

and subcubic instances of the (1,2)-TSP and GRAPHIC-TSP problem. The
important question is to improve the explicit inapproximability bounds on
those instances significantly. A bottleneck in our constructions, especially
for the cubic case, are the parity gadgets. Using the modularity of the con-
structions, any improvement of the costs of the parity gadgets will lead to
improved inapproximability bounds for the corresponding problems. The
current best upper approximation bound for general cubic instances of the
GRAPHIC-TSP problem is 4/3 (cf. [BSSS11a]). For the special case of 2-
connected cubic graphs, the bound was recently improved to (4/3 - 1/61236)
[CLS12]. How about further improving those bounds? How about improving
the general upper bound of 8/7 [BK06] for cubic instances of the (1,2)-TSP
problem?

An interesting question remains about even tighter lower approximation
bounds for the VERTEX COVER problem restricted to dense and subdense
k-partite k-hypergraphs, perhaps by resolving Conjecture 6.5.1 affirmatively.

384

We established an improved explicit approximation lower bound of
333/332 for the SHORTEST SUPERSTRING problem, even when we restrict
the length of the given strings to be exactly 4. Recently, this restricted ver-
sion of the problem was proved to be approximable within 8/5 (cf. [GKM13]).
Is it possible to use bi-wheel amplifier methods to obtain improved hardness
of approximation results for this problem as well?
Perhaps new PCP constructions or alternatively reductions from the UNIQUE
GAMES problem are the natural next step for proving stronger approxima-
tion hardness results for the SHORTEST SUPERSTRING problem and some
other problems that are related to the TSP problem considered in this thesis.

385

CHAPTER 11. CONCLUSIONS AND FURTHER RESEARCH

386

Bibliography

387

BIBLIOGRAPHY

[AHK96] R. Aharoni, R. Holzman and M. Krivelevich, On a Theorem of
Lovász on Covers in r-Partite Hypergraphs, Combinatorica 16, pp. 149–
174, 1996.

[AK00] P. Alimonti and V. Kann, Some APX-completeness Results for Cubic
Graphs, Theoretical Computer Science 237, pp. 123–134, 2000.

[AS95] C. Armen and C. Stein, Improved Length Bounds for the Shortest
Superstring Problem, in Proc. 5th WADS (1995), LNCS 955, pp. 494–
505, 1995.

[AS96] C. Armen and C. Stein, A 22
3 Approximation Algorithm for the Short-

est Superstring Problem, in Proc. 7th CPM (1996), LNCS 1075, pp.
87–101, 1996.

[ABSS93] S. Arora, L. Babai, J. Stern and Z. Sweedyk, The Hardness of
Approximate Optima in Lattices, Codes, and Systems of Linear Equa-
tions, in Proc. 34th FOCS (1993), pp. 724–733, 1993; also appeared in
J. Comput. Syst. Sci. 54, pp. 317–331, 1997.

[AB09] S. Arora and B. Barak, Computational Complexity: A Modern Ap-
proach, Cambridge University Press, 2009.

[AKK95] S. Arora, D. Karger and M. Karpinski, Polynomial Time Approx-
imation Schemes for Dense Instances of NP-Hard Problems, Journal of
Computer and System Sciences 58, pp. 193–210, 1999.

[ALM+98] S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy, Proof
Verification and the Hardness of Approximation Problems, Journal of
the ACM 45, pp. 501–555, 1998.

[AS98] S. Arora and S. Safra, Probabilistic Checking of Proofs: A New Char-
acterization of NP, Journal of the ACM 45, pp. 70–122, 1998.

[AGM+10] A. Asadpour, M. Goemans, A. Madry, S. Oveis Gharan and A.
Saberi, An O(logn/ log logn)-Approximation Algorithm for the Asym-
metric Traveling Salesman Problem, in Proc. 21st ACM-SIAM SODA
(2010), pp. 379–389, 2010.

388

BIBLIOGRAPHY

[ACG+99] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-
Spaccamela und M. Protasi, Complexity and Approximation, Springer,
1999.

[B80] L. Babai, On the Complexity of Canonical Labeling of Strongly Regular
Graphs, Siam Journal on Computing 9, 212–216, 1980.

[B92] P. Bachmann, Analytische Zahlentheorie, Teubner, 1892.

[BC11] R. Bailey and P. Cameron, Base Size, Metric Dimension and Other
Invariants of Groups and Graphs, Bulletin of the London Mathematical
Society 43, pp. 209–242, 2011.

[BGS02] A. Barvinok, E. Gimadi and A. Serdyukov, The Maximum Trav-
eling Salesman Problem, in: The Traveling Salesman Problem and Its
Variations, pp. 585–607, Kluwer, 2002.

[BK04] R. Bar-Yehuda and Z. Kehat, Approximating the Dense Set-Cover
Problem, Journal of Computer and System Sciences 69, pp. 547–561,
2004.

[BEE+05] Z. Beerliova, F. Eberhard, T. Erlebach, A. Hall, M. Hoffmann, M.
Mihalák and L. Ram, Network Discovery and Verification, IEEE Journal
on Selected Areas in Communications 24, pp. 2168–2181, 2006.

[BGS98] M. Bellare, O. Goldreich and M. Sudan, Free Bits, PCPs, and
Nonapproximability-Towards Tight Results, SIAM Journal on Comput-
ing 27, pp. 804–915, 1998.

[BK99] P. Berman and M. Karpinski, On Some Tighter Inapproximability
Results, in Proc. 26th ICALP (1999), LNCS 1644, pp. 200 –209, 1999.

[BK01] P. Berman and M. Karpinski, Efficient Amplifiers and Bounded De-
gree Optimization, ECCC TR01-053, 2001.

[BK03] P. Berman and M. Karpinski, Improved Approximation Lower
Bounds on Small Occurrence Optimization, ECCC TR03-008, 2003.

389

BIBLIOGRAPHY

[BK06] P. Berman and M. Karpinski, 8/7-Approximation Algorithm for
(1,2)-TSP, in Proc. 17th ACM-SIAM SODA (2006), pp. 641–648, 2006.

[BKZ09] P. Berman, M. Karpinski and A. Zelikovsky, 1.25-Approximation
Algorithm for Steiner Tree Problem with Distances 1 and 2, in Proc.
11th WADS (2009), LNCS 5664, pp. 86–97, 2009.

[BR94] P. Berman and V. Ramaiyer, Improved Approximations for the
Steiner Tree Problem, Journal of Algorithms 17, pp. 381–408, 1994.

[BP89] M. Bern and P. Plassmann, The Steiner Problem with Edge Lengths
1 and 2, Information Processing Letters 32, pp. 171–176, 1989.

[B02] M. Bläser, An 8
13-Approximation Algorithm for the Asymmetric Max-

imum TSP, in Proc. 13th ACM-SIAM SODA (2002), 64–73, 2002; also
appeared in J. of Algorithms 50, pp. 23–48, 2004.

[B04] M. Bläser, A 3/4-Approximation Algorithm for Maximum ATSP with
Weights Zero and One, in Proc. 7th APPROX (2004), LNCS 3122, pp.
61–71, 2004.

[BJL+94] A. Blum, T. Jiang, M. Li, J. Tromp and M. Yanakakis, Linear
Approximation of Shortest Superstrings, Journal of the ACM 41, pp.
630–647, 1994.

[BS00] H.-J. Böckenhauer and S. Seibert, Improved Lower Bounds on
the Approximability of the Traveling Salesman Problem, Informatique
Théorique et Applications 34, pp. 213–255, 2000.

[BSSS11a] S. Boyd, R. Sitters, S. van der Ster and L. Stougie, TSP on Cubic
and Subcubic Graphs, in Proc. 15th IPCO (2011), LNCS 6655, pp. 65–77,
2011.

[BSSS11b] S. Boyd, R. Sitters, S. van der Ster and L. Stougie, TSP on Cubic
and Subcubic Graphs, CoRR arXiv: abs/1107.1052, 2011.

[BJJ97] D. Breslauer, T. Jiang, and Z. Jiang, Rotations of Periodic Strings
and Short Superstrings, Journal of Algorithms 24, pp. 340–353, 1997.

390

BIBLIOGRAPHY

[BGRS10] J. Byrka, F. Grandoni, T. Rothvoß and L. Sanità, An Improved
LP-Based Approximation for Steiner Tree, in Proc. 42nd ACM STOC
(2010), pp. 583–592, 2010.

[CHM+07] J. Cáceres, C. Hernando, M. Mora, I. Pelayo, M. Puertas, C.
Seara and D. Wood, On the Metric Dimension of Cartesian Products of
Graphs, SIAM Journal on Discrete Mathematics 21, 423–441, 2007.

[CHM+09] J. Cáceres, C. Hernando, M. Mora, I. Pelayo and M. Puertas, On
the Metric Dimension of Infinite Graphs, Electronic Notes in Discrete
Mathematics 35, pp. 15–20, 2009.

[CKSV11] J. Cardinal, M. Karpinski, R. Schmied and C. Viehmann, Ap-
proximating Subdense Instances of Covering Problems, Electronic Notes
in Discrete Mathematics 37, pp. 297–302, 2011.

[CKSV12] J. Cardinal, M. Karpinski, R. Schmied and C. Viehmann, Ap-
proximating Vertex Cover in Dense Hypergraphs, Journal of Discrete
Algorithms 13, pp. 67–77, 2012.

[CLL+05] J. Cardinal, M. Labbé, S. Langerman, E. Levy and H. Mélot, A
Tight Analysis of the Maximal Matching Heuristic, in Proc. 11th CO-
COON 2005, LNCS 3595, pp. 701-709, 2005.

[CLL09] J. Cardinal, S. Langerman and E. Levy, Improved Approximation
Bounds for Edge Dominating Set in Dense Graphs, Theoretical Com-
puter Science 410, pp. 949–957, 2009.

[CL10] J. Cardinal and E. Levy, Connected Vertex Covers in Dense Graphs,
Theoretical Computer Science 411, pp. 2581–2590, 2010.

[CGH08] G. Chappell, J. Gimbel and C. Hartman, Bounds on the Metric
and Partition Dimensions of a Graph, Ars Combinatoria 88, 2008.

[CEJO00] G. Chartrand, L. Eroh, M. Johnson and O. Oellermann, Resolv-
ability in Graphs and the Metric Dimension of a Graph, Discrete Applied
Mathematics 105, pp. 99–113, 2000.

391

BIBLIOGRAPHY

[CC06] M. Chlebík and J. Chlebíková, Complexity of Approximating
Bounded Variants of Optimization Problems, Theoretical Computer Sci-
ence 354, pp. 320–338, 2006.

[CC08] M. Chlebík and J. Chlebíková, The Steiner Tree Problem on Graphs:
Inapproximability Results, Theoretical Computer Science 406, pp. 207–
214, 2008.

[C76] N. Christofides, Worst-Case Analysis of a New Heuristic for the Trav-
eling Salesman Problem, Technical Report CS-93-13, Carnegie Mellon
University, Pittsburgh, 1976.

[C83] V. Chvátal, Mastermind, Combinatorica 3, pp. 325–329, 1983.

[CT99] A. Clementi and L. Trevisan, Improved Non-Approximability Results
for Minimum Vertex Cover with Density Constraints, Theoretical Com-
puter Science 225, pp. 113–128, 1999.

[C64] A. Cobham, The Intrinsic Computational Difficulty of Functions, In
Proc. 2nd International Congress for Logic, Methodology, and the Phi-
losophy of Science (1964), pp. 24–30, 1964.

[C71] S. Cook, The Complexity of Theorem Proving Procedures, in Proc. 3rd
ACM STOC (1971), pp. 151–158, 1971.

[CLS12] J. Correa, O. Larré and J. Soto, TSP Tours in Cubic Graphs: Be-
yond 4/3, in Proc. 20th ESA (2012), LNCS 7501, pp. 790–801, 2012.

[CKK02] B. Csaba, M. Karpinski and P. Krysta, Approximability of Dense
and Sparse Instances of Minimum 2-Connectivity, TSP and Path Prob-
lems, in Proc. 13th ACM-SIAM SODA (2002), pp. 74–83, 2002.

[CGPR97] A. Czumaj, L. Gasieniec, M. Piotrow and W. Rytter, Sequential
and Parallel Approximation of Shortest Superstrings, Journal of Algo-
rithms 23 , pp. 74–100, 1997.

392

BIBLIOGRAPHY

[DPSL11] J. Díaz, O. Pottonen, M. Serna and E. van Leeuwen, On the Com-
plexity of Metric Dimension, in Proc. 20th ESA (2012), LNCS 7501, pp.
419–430, 2012.

[DGK02] I. Dinur, V. Guruswami and S. Khot Vertex Cover on k-Uniform
Hypergraphs is Hard to Approximate within Factor (k − 3 − ε), ECCC
TR02-027, 2002.

[DGKR05] I. Dinur, V. Guruswami, S. Khot and O. Regev, A New Multilay-
ered PCP and the Hardness of Hypergraph Vertex Cover, SIAM Journal
on Computing 34, pp. 1129–1146, 2005.

[DS05] I. Dinur and S. Safra, On the Hardness of Approximating Minimum
Vertex Cover, Annals of Mathematics 162, pp. 439–485, 2005.

[E65] J. Edmonds, Paths, Trees and Flowers, Canad. J. Math. 17, pp. 449–
467, 1965.

[E03] L. Engebretsen, An Explicit Lower Bound for TSP with Distances One
and Two, Algorithmica 35, pp. 301–318, 2003.

[EK06] L. Engebretsen and M. Karpinski, TSP with Bounded Metrics, Jour-
nal of Computer and System Sciences 72, pp. 509–546, 2006.

[E99] A. Eremeev, On some Approximation Algorithms for Dense Vertex
Cover Problem, in Proc. SOR (1999), Operations Research Proceedings
Series, pp. 48-52, Springer, 2000.

[FMO+03] T. Feder, R. Motwani, L. O’Callaghan, R. Panigrahy and
D. Thomas, Online Distributed Predicate Evaluation, Technical Report
2003-81, Stanford University, 2003.

[FGO06] M. Fehr, S. Gosselin and O. Oellermann, The Metric Dimension of
Cayley digraphs, Discrete Mathematics 306, pp. 31–41, 2006.

[F03] U. Feige, Vertex Cover is Hardest to Approximate on Regular Graphs,
Technical Report MCS03-15, Weizmann Institute, 2003.

393

BIBLIOGRAPHY

[FGL+96] U. Feige, S. Goldwasser, L. Lovasz, S. Safra and M. Szegedy, In-
teractive Proofs and the Hardness of Approximating Cliques, Journal of
the ACM 43, pp. 268–292, 1996.

[FNW79] M. Fisher, G. Nemhauser and L. Wolsey, An Analysis of Approx-
imations for Finding a Maximum Weight Hamiltonian Circuit, Opera-
tions Research 27, pp. 799–809, 1979.

[GMS80] J. Gallant, D. Maier and J. Storer, On Finding Minimal Length
Superstrings, Journal of Computer and System Sciences 20, pp. 50–58,
1980.

[GLS05] D. Gamarnik, M. Lewenstein and M. Sviridenko, An Improved Up-
per Bound for the TSP in Cubic 3-Edge-Connected Graphs, Oper. Res.
Lett. 33, pp. 467–474, 2005.

[GJ79] M. Garey and D. Johnson, Computers and Intractability: A Guide to
the Theory of NP-completeness, W. H. Freeman and Company, 1979.

[GJT76] M. Garey, D. Johnson and R. Tarjan, The Planar Hamiltonian Cir-
cuit Problem is NP-Complete, SIAM Journal of Computing 5, 704–714,
1976.

[G77] J. Gill, Computational Complexity of Probabilistic Turing Machines,
SIAM Journal on Computing 6, pp. 675–695, 1977.

[G11] O. Goldreich, Using the FGLSS-reduction to Prove Inapproximability
Results for Minimum Vertex Cover in Hypergraphs, ECCC TR01-102,
2001; also appeared in Studies in Complexity and Cryptography, LNCS
6650, pp. 88–97, 2011.

[GKM13] A. Golovnev, A. Kulikov and I. Mihajlin, Approximating Shortest
Superstring Problem Using de Bruijn Graphs, in Proc. 24th CPM (2013),
LNCS 7922, pp. 120–129, 2013.

[GLR08] Z. Gotthilf, M. Lewenstein, and E. Rainshmidt, A (2 − c lognn) Ap-
proximation Algorithm for the Minimum Maximal Matching Problem,
Proc. 6th WAOA (2008), LNCS 5426, pp. 267–278, 2009.

394

BIBLIOGRAPHY

[GS10a] G. Gottlob and P. Senellart, Schema Mapping Discovery from Data
Instances, Journal of the ACM 57, Article No. 6, 2010.

[GHS02] V. Guruswami, J. Håstad and M. Sudan, Hardness of Approximate
Hypergraph Coloring, SIAM Journal on Computing 31, pp. 1663–1686,
2002.

[GS10b] V. Guruswami and R. Saket, On the Inapproximability of Vertex
Cover on k-Partite k-Uniform Hypergraphs, in Proc. 37th ICALP 2010,
LNCS 6198, pp. 360–371, 2010; also appeared in ECCC TR13-071, 2013.

[H02] E. Halperin, Improved Approximation Algorithms for the Vertex Cover
Problem in Graphs and Hypergraphs, SIAM Journal on Computing 31,
pp. 1608–1623, 2002.

[HM76] F. Harary and R. Melter, On the Metric Dimension of a Graph, Ars
Combinatoria 2, pp. 191–195, 1976.

[HS65] J. Hartmanis and R. Stearns, On the Computational Complexity of
Algorithms, Transactions of the American Mathematical Society 117,
pp. 285–306, 1965.

[HN12] S. Hartung and A. Nichterlein, On the Parametrized and Approxima-
tion Hardness of Metric Dimension, CoRR arXiv:abs/1211.1636, 2012.

[H01] J. Håstad, Some Optimal Inapproximability Results, Journal of the
ACM 48, pp. 798–859, 2001.

[H07] M. Hauptmann, Approximation Hardness of the (1,2)-Steiner Tree
Problem, CS-Report 85283, University of Bonn, 2007.

[HSV12] M. Hauptmann, R. Schmied and C. Viehmann, Approximation
Complexity of Metric Dimension Problem, in Proc. 21st IWOCA (2010),
LNCS 6460, pp. 136–139, 2011; also appeared in Journal of Discrete Al-
gorithms 14, pp. 214–222, 2012.

395

BIBLIOGRAPHY

[HMP+10] C. Hernando, M. Mora, I. Pelayo, C. Seara, and D. Wood, Ex-
tremal Graph Theory for Metric Dimension and Diameter, The Elec-
tronic Journal of Combinatorics 17, 2010.

[H02a] J. Holmerin, Vertex Cover on 4-Regular Hyper-Graphs is Hard to
Approximate within 2 − ε, in Proc. 34th ACM STOC (2002), pp. 544–
552, 2002.

[H02b] J. Holmerin, Improved Inapproximability Results for Vertex Cover on
k-Uniform Hypergraphs, in Proc. 29th ICALP (2002), LNCS 2380, pp.
1005–1016, 2002.

[HP99] S. Hougardy and H. Prömel, A 1.598 Approximation Algorithm for
the Steiner Problem in Graphs, in Proc. 10th ACM-SIAM SODA (1999),
pp. 448–453, 1999.

[HRW92] F. Hwang, D. Richards and P. Winter, The Steiner Tree problem,
North-Holland, 1992.

[ISY05] L. Ilie, R. Solis-Oba and S. Yu, Reducing the Size of NFAs by Using
Equivalences and Preorders, in Proc. 16th CPM (2005), LNCS 3537,
pp. 310–321, 2005.

[II05] T. Imamura and K. Iwama, Approximating Vertex Cover on Dense
Graphs, in Proc. 16th ACM-SIAM SODA (2005), pp. 582-589, 2005.

[KLSS05] H. Kaplan, M. Lewenstein, N. Shafrir and M. Sviridenko, Ap-
proximation Algorithms for Asymmetric TSP by Decomposing Directed
Regular Multigraphs, Journal of the ACM 52, pp. 602–626, 2005.

[K09] G. Karakostas, A Better Approximation Ratio for the Vertex Cover
Problem, ACM Transactions on Algorithms 5, 2009.

[K75] R. Karp, On the Computational Complexity of Combinatorial Prob-
lems, Networks 5, pp 45–68, 1975.

396

BIBLIOGRAPHY

[K01] M. Karpinski, Polynomial Time Approximation Schemes for Some
Dense Instances of NP-Hard Optimization Problems, Algorithmica 30,
pp. 386–397, 2001.

[KLS13] M. Karpinski, M. Lampis and R. Schmied, New Inapproximability
Bounds for TSP, CoRR arXiv: abs/1303.6437, 2013.

[KS11] M. Karpinski and R. Schmied, Improved Lower Bounds for the
Shortest Superstring and Related Problems, CoRR arXiv: abs/1111.5442,
2011; also appeared in Proc. 19th CATS (2013), CRPIT 141, pp. 27-36,
2013; submitted to Theoretical Computer Science.

[KS12] M. Karpinski and R. Schmied, On Approximation Lower Bounds for
TSP with Bounded Metrics, CoRR arXiv: abs/1201.5821, 2012; also ap-
peared in Proc. 19th CATS (2013), CRPIT 141, pp. 27-36, 2013; sub-
mitted to Theoretical Computer Science.

[KS13] M. Karpinski and R. Schmied, Approximation Hardness of Graphic
TSP on Cubic Graphs, CoRR arXiv: abs/1304.6800, 2013.

[KSV11] M. Karpinski, R. Schmied and C. Viehmann, Tight Approxima-
tion Bounds for Vertex Cover on Dense k-Partite Hypergraphs, CoRR
arXiv: abs/1107.2000, 2011; submitted to Journal of Discrete Algo-
rithms.

[KZ97a] M. Karpinski and A. Zelikovsky, New Approximation Algorithms for
the Steiner Tree Problems Journal of Combinatorial Optimization 1, pp.
47–65, 1997.

[KZ97b] M. Karpinski and A. Zelikovsky, Approximating Dense Cases of
Covering Problems, ECCC TR97-004, 1997; also appeared in Proc. DI-
MACS Workshop on Network Design: Connectivity and Facilities Loca-
tion (1997), pp. 169–178, 1997.

[K02] S. Khot, On the Power of Unique 2-Prover 1-Round Games, in Proc.
34th ACM STOC (2002), pp. 767–775, 2002.

397

BIBLIOGRAPHY

[KKMO07] S. Khot, G. Kindler, E. Mossel and R. O’Donnell, Optimal In-
approximability Results for MAX-CUT and Other 2-Variable CSPs?,
SIAM Journal on Computing 37, pp. 319–357, 2007.

[KR08] S. Khot and O. Regev, Vertex Cover might be Hard to Approximate
to within 2-ϵ, Journal of Computer and System Sciences 74, pp. 335–349,
2008.

[KRR96] S. Khuller, B. Raghavachari and A. Rosenfeld, Landmarks in
Graphs, Discrete Applied Mathematics 70, pp. 217–229, 1996.

[KPS94] R. Kosaraju, J. Park and C. Stein, Long Tours and Short Super-
strings, in Proc. 35th FOCS (1994), pp. 166–177, 1994.

[KMTV11] A. Kumar, R. Manokaran, M. Tulsiani, and N. Vishnoi, On
LP-Based Approximability for Strict CSPs, in Proc. 22nd ACM-SIAM
SODA (2011), pp. 1560–1573, 2011.

[L12] M. Lampis, Improved Inapproximability for TSP, in Proc. 15th AP-
PROX (2012), LNCS 7408, pp. 243–253, 2012.

[L09] E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, B.
G. Teubner, 1909.

[LMSS55] K. de Leeuw, E. Moore, C. Shannon and N. Shapiro, Computabil-
ity by Probabilistic Machines, in Automata Studies, pp. 183–212, Prince-
ton Unviersity Press, 1955.

[L88] A. Lesk, Computational Molecular Biology: Sources and Methods for
Sequence Analysis, Oxford University Press, 1988.

[L73] L. Levin, Universal Sequential Search Problems, Problems of Infor-
mation Transmission 9, pp. 265–266, 1973; translated from Problemy
Peredachi Informatskii 9, pp. 115–116, 1973.

[LS03] M. Lewenstein and M. Sviridenko, Approximating Asymmetric Maxi-
mum TSP, in Proc. 14th ACM-SIAM SODA (2003), pp. 646–654, 2003.

398

BIBLIOGRAPHY

[L90] M. Li, Towards a DNA Sequencing Theory (Learning a String), in
Proc. 31st FOCS (1990), pp. 125–134, 1990.

[L75] L. Lovász, On Minimax Theorems of Combinatorics, Doctoral Thesis,
Mathematiki Lapok 26, pp. 209–264, 1975.

[MS77] D. Maier and J. Storer, A Note on the Complexity of the Superstring
Problem, Report No. 223, Princeton University, 1977.

[M05] B. Manthey, Approximability of Cycle Covers and Smoothed Analysis
of Binary Search Trees, Doctoral thesis, University of Lübeck, 2005.

[MJ75] A. Mayne and E. James, Information Compression by Factorising
Common Superstrings, The Computer Journal 18, pp. 157–160, 1975.

[M94] M. Middendorf, More on the Complexity of Common Superstring and
Supersequence Problems, Theoretical Computer Science 125, pp. 205–
228, 1994.

[M98] M. Middendorf, Shortest Common Superstrings and Scheduling with
Coordinated Starting Times, Theoretical Computer Science 191, pp.
205–214, 1998.

[MU05] M. Mitzenmacher and E. Upfal, Probability and Computing: Ran-
domized Algorithms and Probabilistic Analysis, Cambridge University
Press, 2005.

[MS11] T. Mömke and O. Svensson, Approximating Graphic TSP by Match-
ings, in Proc. IEEE 52nd FOCS (2011), pp. 560–569, 2011.

[M12] M. Mucha, 13/9-Approximation for Graphic TSP, in Proc. 29th
STACS (2012), Leibniz International Proceedings in Informatics 14, pp.
30–41, 2012.

[M13] M. Mucha, Lyndon Words and Short Superstrings, in Proc. 24th ACM-
SIAM SODA (2013), pp. 958–972, 2013.

399

BIBLIOGRAPHY

[NI99] H. Nagamochi and T. Ibaraki, An Approximation of the Minimum
Vertex Cover in a Graph, Japan Journal of Industrial and Applied Math-
ematics 16, pp. 369–375, 1999.

[O99] S. Ott, Lower Bounds for Approximating Shortest Superstrings over
an Alphabet of Size 2, in Proc. 25th WG (1999), LNCS 1665, pp. 55–64,
1999.

[OSS11] S. Oveis Gharan, A. Saberi and M. Singh, A Randomized Rounding
Approach to the Traveling Salesman Problem, in Proc. IEEE 52nd FOCS
(2011), pp. 550–559, 2011.

[PEZ12] K. Paluch, K. Elbassioni and A. van Zuylen, Simpler Approximation
of the Maximum Asymmetric Traveling Salesman Problem, in Proc. 29th
STACS (2012), Leibniz International Proceedings in Informatics 14, pp.
501–506, 2012.

[PV06] C. Papadimitriou and S. Vempala, On the Approximability of the
Traveling Salesman Problem, Combinatorica 26, pp. 101–120, 2006.

[PY91] C. Papadimitriou and M. Yannakakis, Optimization, Approximation,
and Complexity Classes, Journal of Computer and System Sciences 43,
pp. 425–440, 1991.

[PY93] C. Papadimitriou and M. Yannakakis, The Traveling Salesman Prob-
lem with Distances One and Two, Mathematics of Operations Research
18, pp. 1–11, 1993.

[R98] R. Raz, A Parallel Repetition Theorem, SIAM Journal on Computing
27, pp. 763–803, 1998.

[RZ00] G. Robins and A. Zelikovsky, Tighter Bounds for Graph Steiner Tree
Approximation, SIAM Journal on Discrete Mathematics 19, pp. 122–
134, 2005.

[SS11] S. Sachdeva and R. Saket, Nearly Optimal NP-Hardness of Vertex
Cover on k-Uniform k-Partite Hypergraphs, in Proc. 14th APPROX

400

BIBLIOGRAPHY

(2011), LNCS 6845, pp. 327–338, 2011; also appeared in ECCC TR13-
071, 2013.

[SV11] R. Schmied and C. Viehmann, Approximating Edge Dominating Set
in Dense Graphs, in Proc. 8th TAMC (2011) LNCS 6648, 37–47, 2011;
also appeared in Theoretical Computer Science 414, pp. 92–99, 2012.

[ST04] A. Sebö and E. Tannier, On Metric Generators of Graphs, Mathe-
matics of Operations Research 29, pp. 383–393, 2004.

[SV12] A. Sebö and J. Vygen, Shorter Tours by Nicer Ears, CoRR
arXiv: abs/1201.1870, 2012; to appear in Combinatorica.

[SS63] H. Shapiro and S. Söderberg, A Combinatory Detection Problem, The
American Mathematical Monthly 70, pp. 1066–1070, 1963.

[S75] P. Slater, Leaves of Trees, Congressus Numerantium 14, pp. 549-559,
1975.

[S88a] P. Slater, Dominating and Reference Sets in Graphs, Journal of Math-
ematical and Physical Sciences 22, pp. 445–455, 1988.

[S88b] J. Storer, Data Compression: Methods and Theory, Computer Science
Press, 1988.

[SS82] J. Storer and T. Szymanski, Data Compression via Textual Substitu-
tion, Journal of the ACM 29, pp. 928–951, 1982.

[S99] Z. Sweedyk, A 21
2-Approximation Algorithm for Shortest Superstring,

SIAM Journal on Computing 29, pp. 954–986, 1999.

[TU88] J. Tarhio and E. Ukkonen, A Greedy Approximation Algorithm for
Constructing Shortest Common Superstrings, Theoretical Computer Sci-
ence 57, pp. 131–145, 1988.

[TT93] S. Teng and F. Yao, Approximating Shortest Superstrings, SIAM
Journal on Computing 26, pp. 410–417, 1997.

401

BIBLIOGRAPHY

[T03] M. Thimm, On the Approximability of the Steiner Tree Problem, The-
oretical Computer Science 295, pp. 387–402 , 2003.

[T90] V. Timkovskii, Complexity of Common Subsequence and Superse-
quence Problems and Related Problems, Cybernetics and Systems Anal-
ysis 25 (1990), pp. 565–580; translated from Kibernetika 25 (1989), pp.
1–13.

[T08] I. Tomescu, Discrepancies between Metric Dimension and Partition
Dimension of a Connected Graph, Discrete Mathematics 308, pp. 5026–
5031, 2008.

[T00] L. Trevisan, When Hamming Meets Euclid: The Approximability of
Geometric TSP and Steiner Tree, SIAM Journal on Computing 30, pp.
475–485, 2000.

[T01] L. Trevisan, Non-Approximability Results for Optimization Problems
on Bounded Degree Instances, in Proc. 33rd ACM STOC (2001), pp.
453–461, 2001.

[T36] A. Turing, On Computable Numbers, with an Application to the
Entscheidungsproblem, in Proc. London Mathematical Society 1936, pp.
230–265.

[T89] J. Turner, Approximation Algorithms for the Shortest Common Super-
string Problem, Information and Computation 83, pp. 1–20, 1989.

[V05] V. Vassilevska, Explicit Inapproximability Bounds for the Shortest Su-
perstring Problem, in Proc. 30th MFCS (2005), LNCS 3618, pp. 793–800,
2005.

[V92] S. Vishwanathan, An Approximation Algorithm for the Asymmetric
Travelling Salesman Problem with Distances One and Two, Information
Processing Letters 44, pp. 297–302, 1992.

[Z93] A. Zelikovsky, 11/6-Approximation Algorithm for the Network Steiner
Problem, Algorithmica 9, pp. 463–470, 1993.

402

List of Tables

9.1 Comparison of results for the SHORTEST SUPERSTRING

problem, the MAXIMUM COMPRESSION problem and the
MAX −ATSP problem. 229

10.1 Comparison of results for the symmetric and asymmetric TSP

problems. 279
10.2 Comparison of results for the (1,2)-TSP and the Graphic-TSP

problem restricted to cubic and subcubic instances. 280

403

LIST OF TABLES

404

List of Figures

4.1 A 3-regular wheel amplifier . 43

5.1 Algorithm A5.1 . 53

5.2 Algorithm A5.2 . 62

5.3 Algorithm A5.3 . 64

5.4 Algorithm A5.4 . 67

5.5 Algorithm A5.5 . 69

5.6 Algorithm A5.6 . 86

5.7 Algorithm A5.7 . 91

5.8 Algorithm A5.8 . 94

6.1 Linear program LP6.1 . 107

6.2 Algorithm A6.2 . 110

6.3 Algorithm A6.3 . 119

6.4 Algorithm A6.4 . 123

6.5 Algorithm A6.5 . 125

6.6 Algorithm A6.6 . 127

6.7 Algorithm A6.7 . 130

6.8 Illustration of the k-hypergraph H(k, l, ε) 134

6.9 Algorithm A6.9 . 136

6.10 Algorithm A6.10 . 148

6.11 Algorithm A6.11 . 154

405

LIST OF FIGURES

7.1 The subgraph for xi1 ⊕ xi2 = 0. 170
7.2 The subgraph for xj1 ⊕ xj2 ⊕ xj3 = 0. 171
7.3 The subgraph for xj1 ⊕ xj2 ⊕ xj3 = 1. 172
7.4 Situations before and after Transformation ¸. 180
7.5 Uncoupling switchable terminals in Transformation º. 183

8.1 The vertex graph GMi . 195
8.2 The edge graph GMe . 196
8.3 Connecting Gu, Gw and Ge. 197
8.4 The path P v

t−e in Lemma 8.5.2. 199
8.5 The case 2 in Lemma 8.5.4. 202
8.6 The case 5 in Lemma 8.5.4. 204
8.7 The case (i ≠ e) in Lemma 8.5.5. 205
8.8 The case (v ∈ V (GM)/V (Ge)) in lemma 8.5.6. 208
8.9 The subgraph GIi . 211
8.10 The subgraph GIe . 211
8.11 The case 1 in Lemma 8.6.3. 214
8.12 The case 3 in Lemma 8.6.3. 215
8.13 The case (e ∩ e′ ≠ ∅) in Lemma 8.6.3. 216
8.14 The case (i ∉ e) in Proposition 8.6.4. 218
8.15 The subgraphs GIu, GIe , GIa and GIb in Lemma 8.6.6. 221

10.1 The graph for equations of the form x⊕ y ⊕ z = 0. 282
10.2 Gadgets used in [EK06]. 283
10.3 An illustration of the instance GL 290
10.4 The parity graph P l

i . 291
10.5 Connecting the parity graph P l

e. 291
10.6 The graph G3Ac corresponding to xli ⊕ xsj ⊕ xuk = 0. 292
10.7 The graph corresponding to xl1 ⊕ xln = 0. 293
10.8 Traversal of the graph P l

i given the assignment ϕ. 294
10.9 The case 1 in Lemma 10.7.1. 295
10.10 The case 2 in Lemma 10.7.1. 296
10.11 The case 3 in Lemma 10.7.1. 296

406

LIST OF FIGURES

10.12 The case 4 in Lemma 10.7.1. 297
10.13 The case 5 in Lemma 10.7.1. 298
10.14 The case 6 in Lemma 10.7.1. 298
10.15 The case 7 in Lemma 10.7.1. 299
10.16 The case 8 in Lemma 10.7.1. 300
10.17 The graph G3Ac . 301
10.18 A part of the graph corresponding to xli ⊕ xli+1 = 0. 301
10.19 The case (ϕ(xli) = ϕ(xli+1) = 1) in Lemma 10.7.1. 302
10.20 The case (ϕ(xli) ≠ ϕ(xli+1) = 1) in Lemma 10.7.1. 302
10.21 Traversing graphs for wheel border equations. 303
10.22 The case (ϕ(xl1) = ϕ(xln) = 1) in Lemma 10.7.1. 304
10.23 The case (ϕ(xl1) ≠ ϕ(xln) = 0) in Lemma 10.7.1. 304
10.24 Example of a transformation yielding a consistent tour. . . . 306
10.25 Example of a transformation yielding a consistent tour. . . . 307
10.26 The Case 1 in Lemma 10.7.3. 308
10.27 The Case 2 in Lemma 10.7.3. 309
10.28 The Case 3 in Lemma 10.7.3. 310
10.29 The Case 4 in Lemma 10.7.3. 310
10.30 The Case 5 (i) in Lemma 10.7.3. 311
10.31 The Case 5 (ii) in Lemma 10.7.3. 312
10.32 The Case 6 (i) in Lemma 10.7.3. 313
10.33 The Case 6 (ii) in Lemma 10.7.3. 314
10.34 The Case (ψσ(xli) = ψσ(xli+1) = 1) in Lemma 10.7.3. 316
10.35 The Case (ψσ(xli) = ψσ(xli+1) = 0) in Lemma 10.7.3. 317
10.36 The Case 1. with (ψσ(xli) ≠ ψσ(xli+1) = 0) in Lemma 10.7.3. . 317
10.37 The Case 2. with (ψσ(xli) ≠ ψσ(xli+1) = 0) in Lemma 10.7.3. . 318
10.38 The Case 1. with (ψσ(xli) ≠ ψσ(xli+1) = 1) in Lemma 10.7.3. . 319
10.39 The Case 2. with (ψσ(xli) ≠ ψσ(xli+1) = 1) in Lemma 10.7.3. . 320
10.40 The Case (ψσ(x1) = ψσ(xn) = 1) in Lemma 10.7.3. 321
10.41 The Case (ψσ(x1) = ψσ(xn) = 0) in Lemma 10.7.3. 322
10.42 The Case (ψσ(x1) ≠ ψσ(xn) = 1) in Lemma 10.7.3. 323
10.43 The Case (ψσ(x1) ≠ ψσ(xn) = 0) in Lemma 10.7.3. 324
10.44 Example of a transformation (i). 328

407

LIST OF FIGURES

10.45 Example of a transformation (ii). 329
10.46 Example of a transformation (iii). 330
10.47 Example of a transformation (iv). 331
10.48 Example of a transformation (v). 332
10.49 Example of a transformation (vi). 333
10.50 Traversal of the graph P l

i given an assignment. 334
10.51 Connecting the graph P l

{i,j}. 334
10.52 Graph simulating equations with three variables. 335
10.53 Example of a transformation (i). 336
10.54 Example of a transformation (ii). 337
10.55 Traversals of the graph P l

i . 338
10.56 Connecting the graph P l

{i,j}. 338
10.57 Example of a transformation (i). 339
10.58 Example of a transformation (ii). 340
10.59 The graph G3∨ simulating (x ∨ y ∨ z). 342
10.60 Graph G= corresponding to a11 ⊕ a21 = 0. 343
10.61 Modular view of the construction simulating x⊕ y ⊕ z = 0. . . 344
10.62 Detailed view of the gadget simulating x⊕ y ⊕ z = 0. 345
10.63 0/1-Traversals of a modified parity gadget. 348
10.64 Graph Ggr= corresponding to a11 ⊕ a21 = 0. 351
10.65 Gadget simulating equations with two variables. 363
10.66 Gadget simulating equations with three variables. 364
10.67 Gadget simulating equations with two variables. 374
10.68 Gadget simulating equations with three variables. 375

408

Index

(1,2)-STEINER TREE Problem, 167
(1,B)-ATSP Problem, 281
(1,B)-TSP Problem, 281

Amplifier Graph, 42
AP-Reduction, 33
Approximation Algorithm, 30
Approximation Ratio, 30
ATSP Problem, 281
Average Degree, 15

Balance of a Vertex, 354
Balanced Vertex, 354
Bi-Wheel Amplifier, 356
Black Edges, 167

Checker Vertices, 42
Class APX, 30
Class BPP, 24
Class BPTIME, 24
Class DTIME, 21
Class EPTAS, 31
Class FPTAS, 31
Class NP, 22
Class NPO, 29

Class P, 22
Class PCP[r,q], 35
Class PO, 29
Class PTAS, 31
Class RP, 24
Class RTIME, 24
Class ZPP, 25
Class ZTIME, 25
Completeness, 22
Compression, 230
Consistent Tour, 305
Constraint Satisfaction Problem

(CSP), 37
Contact Vertices, 42
Cubic Graph, 276
Cycle Equation, 44

Dense k-Hypergraph, 52
Dense k-Partite k-Hypergraph, 106
Directed Forced Edge, 373
Directed Graph, 16
Distance Classes, 191

Edge Set, 15

409

INDEX

EPTAS, 31
Eulerian, 16

Forced Edge, 363
FPTAS, 31

Gap Problem, 32
Graph, 15
GRAPHIC-TSP Problem, 276

Hamiltonian Path, 281
Hardness, 22
Heaviest Vertices, 52
Hypergraph, 15

Independent Set, 16

k-Balanced Hypergraph, 105
k-Hypergraph, 15
k-Partite, 15
Karp Reduction, 22

LABEL COVER problem, 36

Matching, 16
Matching Equation, 44
MAX-(0,1)-ATSP Problem, 277
MAX-ATSP Problem, 231
MAX-E2LINq Problem, 40
MAX-E3LIN2 Problem, 38
MAX-HYBRID-LIN2 problem, 41
Maximal Matching, 16
Maximal Orbit Size, 231
MAXIMUM COMPRESSION Prob-

lem, 230
Maximum Degree, 15

Maximum Matching, 16
Metric Dimension, 191
METRIC DIMENSION Problem,

191
Mildly Sparse k-Hypergraph, 52
Mildly Sparse k-Partite k-

Hypergraph, 106
Multigraph, 16
Multiset, 12

Nearly regular, 15
Neighborhood, 15
Non-Dense k-Hypergraph, 52
Non-Dense k-Partite k-Hypergraph,

106

Optimization Problem, 28
Overlap, 230
Overlap Graph, 231

Perfect Matching, 16
Prefix, 230
Probabilistic Turing Machine (PTM),

23
Promise Problem, 31
PTAS, 31

Quasi-Tour, 354

Red Edges, 167
Regular, 15
Resolving Set, 188
Running Time, 21

Set Degree, 15

410

INDEX

SHORTEST SUPERSTRING Prob-
lem, 230

STEINER TREE Problem, 167
Steiner Tree, 166
Steiner Vertex, 166
Subcubic Graph, 276
Subdense k-Hypergraph, 52
Subdense k-Partite k-Hypergraph,

106
Substring, 230
Suffix, 230
Superstring, 230

Terminal, 166
Tour, 231
TSP Problem, 281
Turing Machine (TM), 20

UG-Hardness, 40
Unique Games Conjecture, 39
UNIQUE GAMES Problem, 39

v-Induced Hypergraph, 52
v-Induced k-Partite k-Hypergraph,

105
Vertex Cover, 16
VERTEX COVER Problem In k-

Partite k-Hypergraphs, 105
Vertex Degree, 15
Vertex Set, 15

Wheel Border Equation, 44

411

INDEX

412

Publikationen

1. J. Cardinal, M. Karpinski, R. Schmied and C. Viehmann, Approxi-
mating Subdense Instances of Covering Problems, Electronic Notes in
Discrete Mathematics 37, pp. 297–302, 2011.

2. J. Cardinal, M. Karpinski, R. Schmied and C. Viehmann, Approximat-
ing Vertex Cover in Dense Hypergraphs, Journal of Discrete Algorithms
13, pp. 67–77, 2012.

3. M. Hauptmann, S. Kühl, R. Schmied and C. Viehmann Polynomial
Approximation Schemes for Dense and Geometric k-Restricted Steiner
Forest Problems, CS-Report 85288, University of Bonn, 2008.

4. M. Hauptmann, R. Schmied and C. Viehmann, Approximation Com-
plexity of Metric Dimension Problem, in Proc. 21st IWOCA (2010),
LNCS 6460, pp. 136–139, 2011; also appeared in Journal of Discrete
Algorithms 14, pp. 214–222, 2012.

5. M. Karpinski, M. Lampis and R. Schmied, New Inapproximability
Bounds for TSP, CoRR arXiv: abs/1303.6437, 2013.

6. M. Karpinski and R. Schmied, Improved Lower Bounds for the Shortest
Superstring and Related Problems, CoRR arXiv: abs/1111.5442, 2011;
also appeared in Proc. 19th CATS (2013), CRPIT 141, pp. 27–36,
2013; submitted to Theoretical Computer Science.

7. M. Karpinski and R. Schmied, On Approximation Lower Bounds for
TSP with Bounded Metrics, CoRR arXiv: abs/1201.5821, 2012; also
appeared in Proc. 19th CATS (2013), CRPIT 141, pp. 27–36, 2013;
submitted to Theoretical Computer Science.

8. M. Karpinski and R. Schmied, Approximation Hardness of Graphic
TSP on Cubic Graphs, CoRR arXiv: abs/1304.6800, 2013.

9. M. Karpinski, R. Schmied and C. Viehmann, Tight Approximation
Bounds for Vertex Cover on Dense k-Partite Hypergraphs, CoRR

arXiv: abs/1107.2000, 2011; submitted to Journal of Discrete Algo-
rithms.

10. R. Schmied and C. Viehmann, On Approximation Complexity of Edge
Dominating Set Problem in Dense Graphs, in Proc. 7th JCCGG (2009),
pp. 135–136, 2009.

11. R. Schmied and C. Viehmann, Approximating Edge Dominating Set in
Dense Graphs, in Proc. 8th TAMC (2011), LNCS 6648, 37–47, 2011;
also appeared in Theoretical Computer Science 414, pp. 92–99, 2012.

