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Chapter 1

Introduction

The current understanding of matter at the fundamental level, that is of the elementary
particles and their interactions, is based on the Standard Model of particle physics (SM)
which has its origins in the 1960s and 70s and has since been experimentally tested and
verified. The SM has been very successful in describing experimental data and has correctly
predicted the existence of several particles, like the gluon, the charm quark, the W and Z
bosons and the top quark. The recent discovery of a boson consistent with the Standard
Model Higgs boson completes the boson content of the SM. However, some important
questions in physics are not answered by the Standard Model. What is the nature of dark
matter and dark energy? What is the explanation for the so called hierarchy problem, which
has to with the huge difference in fundamental mass scale of gravity and the electroweak
interaction leading to a serious fine tuning problem? These questions have inspired various
theoretical extensions of the SM, most prominent among them Super Symmetry which
predicts many new particles with masses in the TeV range.

The historical progress in particle physics was achieved mainly through the study of high
energy particle collisions using accelerators. The Large Hadron Collider, the most powerful
accelerator to date, was built to discover and study the Higgs boson, to explore possible
extensions to the SM which predict new particles at the TeV scale, and to perform precision
measurements of Standard Model processes. A Higgs-like particle has been discovered
by the two large experiments at the LHC, ATLAS and CMS, but no other signs for physics
beyond the SM have been found so far.

At the LHC, W and Z bosons are produced with high rates. Since their properties are
well established, precision measurements allow comparisons with the theory, in particular
with higher order perturbative predictions of the cross sections. Differential cross section
measurements provide a more complete understanding not only of the final state, but also
of the production dynamics, including non-perturbative effects, and allow to constrain the
parton distribution functions of the proton, which are needed to predict the production
rates at the LHC. A strong test of the consistency of the SM will be possible from a precise
measurement of the W mass combined with other electroweak measurements as well as
the Higgs boson mass.

In this thesis, the Z boson transverse momentum distribution is measured with the Z
bosons decaying into muon pairs. Apart from testing higher order QCD predictions, the
precise theoretical modelling of differential boson cross sections is an important requirement
for the Higgs measurements, as well as the W mass measurement at the LHC. Initially,
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Chapter 1 Introduction

the measurement was performed with data taken in 2010 corresponding to an integrated
luminosity of 40pb−1. Contributions from this thesis went into a first measurement of
the transverse momentum distribution of Z bosons by the ATLAS collaboration, published
in Ref. [1]. The measurement is finalised in this thesis using the full 2011 data set
corresponding to an integrated luminosity of 4.7 fb−1. The results presented provide a
more stringent test of QCD predictions compared to [1] because the transverse momentum
distribution is sampled in finer bins - with smaller statistical and systematic uncertainties,
where the improvements on the systematic uncertainty are due to the use of more advanced
unfolding methods and improved measurements of the muon efficiency. The measurement
reaches up to a transverse momentum of the produced Z boson of 800GeV and has an
expected precision of < 1% for pT < 150GeV. Furthermore, the measurement range is
extended to the differential cross section both as a function of the Z bosons transverse
momentum and its rapidity y .

This thesis is organised as follows. Chapter 2 gives a brief introduction to the Standard
Model and an overview of predictions for Z boson production. The experimental setup at
the Large Hadron Collider and the ATLAS experiment are described in Chapter 3. This is
followed by a description of the event reconstruction algorithms concentrating on the muon
reconstruction in Chapter 4. The next chapters describe in detail all steps towards the cross
section measurement. First, the selection of a Z boson sample in data and simulation is
presented in Chapter 5. Next, Chapter 6 describes the extraction of the differential cross
section. The systematic uncertainties are discussed in Chapter 7 and Chapter 8 summarises
the results. Conclusions of this work are presented in Chapter 9.
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Chapter 2

Theoretical background

The topic of this thesis is the production of Z bosons in proton-proton collisions at the
LHC. The general framework for describing the physics of elementary particle interactions
is given by the Standard Model of particle physics (SM) of which a very brief summary
is given here. The second part of this chapter deals with the aspects of the SM that are
relevant to describe proton-proton collisions, the proton structure, Z production, as well as
the most important predictions for the transverse momentum distribution of Z bosons.

2.1 The Standard Model

The Standard Model describes the elementary particles and their interaction via the strong,
electromagnetic and weak interactions. There are two categories of fundamental particles:
fermions (spin 1/2), which make up all visible matter of the universe, and bosons (integer
spin) which act as the force carriers. The particles and their properties are summarised in
Figure 2.1.

The fermions come in two groups, quarks and leptons. There are six types of leptons and
6 flavours of quarks, that can be arranged in 3 generations. In addition each quark and
lepton has its antiparticle. Each lepton generation consists of a charged lepton, the electron,
e, the muon, µ, or the tau, τ, and a neutral lepton called neutrino, νe, νµ, ντ. The neutrinos
interact only via the weak force, while e, µ and τ interact via the weak and electromagnetic
forces. The quark generations are made up from u, d, c, s, t and b with fractional charges
-1/3 and 2/3. Quarks also interact via the weak and electromagnetic forces. In addition,
they carry colour charge and interact via the strong force. In contrast to leptons, which exist
as free particles, quarks can only be observed in bound states, called hadrons. Hadrons
contain either a quark and an antiquark (mesons), or three quarks (baryons), and carry no
net colour charge. In addition to these so-called valence quarks, which define the quantum
numbers of the hadron, part of a hadron’s momentum is carried by virtual quark-antiquark
pairs, called sea quarks, and gluons. In so called hard inelastic collisions the interaction of
all partons (valence and sea quarks, gluons) occur.

The interactions between the particles are mediated by the exchange of gauge bosons
with spin 1. The electromagnetic force is mediated by the massless photon, γ. The weak
force is mediated by the massive weak bosons W± and Z . The strong force is mediated by
the gluon, g, which is also massless.

3



Chapter 2 Theoretical background

Figure 2.1: The fundamental particles of the Standard Model [2].

The Standard Model is formulated as a relativistic quantum field theory where the
interactions follow from local gauge invariance. The gauge group governing the SM of
strong and electroweak interactions is

G = SU(3)× SU(2)×U(1).

The strong interaction is described by the SU(3) part of this group structure by a theory
called Quantum Chromodynamics (QCD). Its gauge bosons, the gluons, carry colour charge,
and couple to quarks and to themselves. This leads to the confinement property of QCD,
that all colour charged objects are found in colour singlet bound objects. Thus quarks and
gluons can not be observed as free particles. The electromagnetic and weak interactions are
unified in the gauge group SU(2)L×U(1)Y . The electromagnetic interaction is contained in
this group and is described by the Abelian gauge theory Quantum Electrodynamics (QED).
The gauge bosons W±, Z of the electroweak gauge group have self-couplings, while the
photon does not couple to itself.

In the basic electroweak model all gauge bosons are required to be massless. Since
the weak bosons are observed to have a mass, the electroweak symmetry must be broken.
This happens through the introduction of an additional scalar field with non-zero vacuum
expectation value [3–6]. The Higgs mechanism predicts the existence of at least one
additional boson with spin 0, while the mass of this so-called Higgs boson is not predicted.
Direct searches at LEP could establish a lower bound of 114.4GeV on its mass at 95%
confidence level (CL) [7]. An indirect upper limit on mH of 158 GeV at 95% CL was set by
global fits to electroweak precision measurements [8]. In the mass region around 125 GeV,
the Higgs boson has prominent decays into γγ and Z Z (with subsequent decay of each Z
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Figure 2.2: Invariant mass distributions of the search for the Standard Model Higgs boson from the
combination of the ATLAS data at

p
s = 7TeV and

p
s = 8TeV. a) Distribution of the four-lepton

invariant mass for the selected candidates compared to the background expectation in the 80 to
250GeV mass range and the signal expectation for a SM Higgs with mH = 125 GeV. b) Distribution
of the invariant mass of diphoton candidates after all selections. The result of a fit to the data of the
sum of a signal component fixed to mH = 126.5GeV and a background component described by a
fourth-order Bernstein polynomial is superimposed. The residuals of the data with respect to the
fitted background component are displayed in the lower plot. [9]

into 2 leptons), where it appears as a localised excess in the invariant mass distributions of
the decay products. The ATLAS and CMS collaborations have first observed a new particle
with a mass of about 126GeV in the decays into γγ and Z Z in data collected in 2011 and
2012 at the LHC [9, 10]. The γγ and 4-lepton invariant mass distributions of the ATLAS
searches are shown in Fig. 2.2, together with the distributions of the expected background
and the expected Higgs signal. From current observations the new particle is consistent
with a SM Higgs boson. It has been observed with about the expected signal strength in the
decay channels into γγ, Z Z and WW . Measurements in the fermion decay channels, bb̄
and ττ are not yet sensitive enough to make an observation, but are consistent with the
Standard Model Higgs prediction [11, 12]. The measured signal strength for the different
decay channels is shown in Fig. 2.3. Regarding the properties other than the mass, so far it
is known to be a neutral particle and the spin 1 hypothesis is ruled out, according to the
Landau-Yang theorem which states that a spin 1 particle can not decay into 2 photons [13,
14]. More precise measurements of the coupling strength to fermions, as well as its spin
and parity, are needed to determine if the found particle is identical to the SM Higgs boson.

Assuming that the Higgs boson has been found in [9, 10], the Standard Model is now
complete. However, it is likely not a complete theory of particle physics, as it provides no
candidate for dark matter and gives no explanation for the accelerated expansion of the
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universe (dark energy) among other issues. Extensions to the SM that offer explanations
for these problems mostly predict a range of new particles at energies accessible by the
LHC. Direct searches for these particles have not found anything beyond SM expectations.
At the same time, any new theories are constrained by precision measurements of the SM
parameters. The precision of many measurements and corresponding theoretical predictions
inside the Standard Model can still be improved, at the LHC for example with measurements
involving top quarks and W±, Z bosons.

2.2 QCD and Z production at hadron colliders

In proton-proton collisions at hadron colliders, like the LHC, quantum chromodynamics
(QCD) forms the basis of the underlying physics. Due to the large value of strong coupling
compared with the electroweak couplings, all processes are dominated by QCD effects. The
most important aspects of QCD regarding high energy pp collisions are described in the
following. The description is based on [15, 16].

2.2.1 Running of the strong coupling constant

One fundamental property of QCD is the running of the strong coupling, that is the fact
that the coupling strength of QCD decreases as quarks and gluons come closer together.
At the lowest order approximation, the running of the strong coupling constant αS with a
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2.2 QCD and Z production at hadron colliders

momentum transfer scale q2 of the interaction is

αS(|q2|) =
12π

(11n− 2 f ) ln(|q2|/Λ2
QC D)

(|q2| � Λ2
QC D)), (2.1)

where n = 3 is the number colours, f = 6 is the number of quark flavours, and ΛQC D ∼
100MeV is the QCD scale [17]. The numerical value of the strong coupling changes from
0.119 at q2 = M2

Z to values larger than 1 as q2→ Λ2
QC D. According to the size of the coupling

constant at the relevant energy scale, collision processes in QCD are grouped into soft and
hard interactions. Soft processes, where αS is large, cannot be calculated perturbatively.

Hard processes on the other hand, which are characterised by large momentum transfer,
can be calculated using perturbation theory because αS is small. The cross sections for
hard quark and gluon interactions can be calculated using the Feynman rules derived
from the QCD Lagrangian with the fundamental interactions given by the quark-gluon
vertex and the gluon-gluon vertex. The running of the strong coupling constant can be
derived from perturbation theory itself. Higher order corrections in the form of (virtual)
loops introduce diverging contributions because the loop momenta are not constrained.
For the gluon propagator, loop corrections have to be considered from virtual quarks as
well as virtual gluons. Renormalisation allows to absorb these divergences into the strong
coupling constant αS. As a consequence of this procedure αS becomes a function of the
renormalisation scale µr .

2.2.2 Proton structure

In order to calculate cross sections for proton-proton collisions one must consider that
protons are bound states, composed of the valence quarks, uud, and of virtual quark-
antiquark pairs and virtual gluons. A consequence of the renormalised coupling in QCD
is asymptotic freedom, which means that in high energy collisions with large momentum
transfer |q2| � Λ2

QC D, quarks and gluons inside a proton can be treated as essentially free
particles. The high momentum transfer can be translated to short length scales to which
the proton structure will be resolved. The structure of the proton is described by the parton
distribution functions (PDFs), fq(x , q2), which give the probability to extract a parton
of a given flavor with a fraction x of the proton momentum in a hard interaction. The
dependence on the momentum transfer q2 indicates that the structure changes depending
on the length scales with which the proton is probed. The PDFs can not be calculated
from QCD perturbation theory, but instead are determined from fits to experimental data
obtained from fixed target and electron-proton deep inelastic scattering experiments, as
well as proton-antiproton cross sections. Several collaborations perform these fits to global
data [18, 19], the results of the MSTW fit [20] is shown in Fig. 2.4. As a general feature of
the distribution functions the valence quarks u, d carry roughly one third of the momentum,
while gluons dominate the region of small x . With increasing q2 more of the virtual gluon
pairs are resolved and the gluon contribution becomes more important.

With the help of the process independent PDFs, perturbation theory can be used to
calculate cross sections for proton collisions. According to the QCD factorisation theorem,
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Figure 2.4: MSTW 2008 NLO parton distribution functions at q2 = 10 GeV2 (left) and q2 = 104 GeV2

(right). The x axis shows the fraction of the proton momentum, x , carried by the parton, and the y
axis shows x times the probability, f (x), to find a parton of a given type with that momentum [20].

the cross section for any hard scattering process pp→ X with |q2| � Λ2
QC D can be written

as:

σpp→X =
∑

a,b

∫

d x1d x2 fa(x1, q2) fb(x2, q2) σ̂ab→X (q
2) , (2.2)

where fa/b(x1/2, q2) (a/b = q, q̄, g) are the PDFs of the colliding protons, σ̂ab→X is the
partonic cross section calculable with perturbative QCD and the sum runs over parton
flavors [21]. The scale q2 introduced here is called the factorisation scale (in the following
µF). It divides between contributions from hard radiative corrections included in the
perturbative calculation and the soft gluon emissions which are absorbed in the PDF. In
this way the soft QCD describing the internal structure of the proton is separated from the
perturbative part describing the hard scattering of quarks and gluons.

2.2.3 Z production at hadron colliders

The theoretical description of Z production in hadron collisions is based on the Drell-
Yan process, which is the application of the factorisation theorem to massive lepton pair
production in hadron-hadron collisions [22]. The term Drell-Yan originally meant the
production of lepton pairs through photon exchange. Since the same process can take place
with Z boson exchange according to the electroweak theory, the meaning of the term is
expanded to include to the interference of γ and Z exchange. By restricting the lepton pair
invariant mass to a region around the Z mass, the cross section is dominated by Z exchange.

To obtain the cross section for pp → Z → µ+µ− using the factorisation theorem, the
partonic cross section σqq̄→µ+µ− (and higher order contributions) has to be calculated. Since
the initial state is dominated by QCD effects and the final state does not interact strongly,
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2.2 QCD and Z production at hadron colliders
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Figure 2.5: Feynman diagrams for Z production. (a) The leading order Drell-Yan diagram. (b)-(e)
Next-to-leading order corrections to the Drell-Yan process.

the calculation can be simplified by separating production and decay. In the context of this
thesis the production process is relevant.

The leading order production process for Z bosons is quark-antiquark annihilation. At the
next higher order, the Z can be radiated by a quark that has been excited by a gluon. The
real and virtual corrections to the Drell-Yan process of order αS are shown in Fig. 2.5. At
leading order, Z bosons are produced with zero transverse momentum due to momentum
conservation since the initial state partons carry only momentum along the beam axis. The
higher order processes with real emission of gluons, and of quark-gluon scattering introduce
a boost of the Z boson.

The differential cross section as a function of pT has been calculated including higher
order corrections up to second order in αS [23]. However, the perturbative expansion of
the cross section includes terms proportional to αn

S lnm(M2/p2
T) (with m≤ 2n− 1) at each

order n [24]. For pZ
T � M these higher order terms are not small, in fact each terms by

itself diverges for pT→ 0. The correct sum of the corrections of all orders would provide a
finite cross section but a truncated perturbation series does not provide a valid prediction
for low pT.

Transverse momentum resummation

The largest part of the Z boson production cross section occurs with small values of
transverse momentum (pT � M) where the fixed order predictions are not valid. The
diverging terms can be identified with large contributions to the cross section from the
emission of soft and collinear gluons. Considering only the leading contributions at each
order of αS, the cross section is:

1

σ

dσ

dp2
T

'
1

p2
T

�

A1αS ln(M2/p2
T ) + A2α

2
S ln3(M2/p2

T ) + . . .+ Anα
n
S ln2n−1(M2/p2

T ) + . . .
�

,

where the Ai are calculable coefficients of order unity [15]. When taking into account the
size of the coefficients Ai and αS, the limit below which the higher order terms can not
be neglected is 10− 15GeV. Even though it is not possible to calculate all higher order
corrections, the form of the leading logarithmic terms αn

S ln2n−1(M2/p2
T ) can be extracted.

The solution that allows to calculate predictions for pT� M is to summarise these leading
logarithmic terms from all orders in αS [25]. A resummation formalism has been developed
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(a) (b)

Figure 2.6: Predictions for the pT spectrum of Z bosons using transverse momentum resummation.
(a) results at NLL+LO (b) and NNLL+NLO accuracy. The full result is compared to the corresponding
fixed-order result (dashed line) and to the finite difference between the fixed order result and the
expanded resummed result (dotted line) in each case [27].

to include all contributions up to next-to-next-to-leading logarithmic (NNLL) accuracy [26].
To get a consistent result for small and large values of pT the resummed cross section has to
be matched with fixed order predictions at NLO:

�

dσ

dpT

�

NNLL+NLO
=
�

dσ

dpT

�

NNLL
+
�

dσ

dpT

�

NLO
−
�

dσ

dpT

�

NNLL expanded to NLO
,

where the last term is the expansion of the resummed result up to the same order as the fixed
order calculation thus avoiding double counting [27]. Figure 2.6 show the NLL+LO as well
as the NNLL+NLO predictions for the pT distribution at the Tevatron using this procedure.
In addition the (diverging) fixed order results for LO and NLO are shown by themselves
as well as the finite difference obtained after subtracting the expanded NLL/NNLL cross
section from the LO/NLO cross sections. Numerical predictions for the resummation at
low pt matched to next-to-leading-order (NLO) calculation can also be produced with the
RESBOS generator.

Theoretical predictions are limited in precision due to the unknown contributions of
higher order terms that are not included in the calculation. The size of the effects is best
estimated by varying the scale factors used to separate perturbative and non-perturbative
effects. The choice of these unphysical scale factors is somewhat arbitrary, and different
choices can be argued for. For Z production the mass of the Z boson is the characteristic
energy scale of the event, it is therefore chosen for the renormalisation and factorisation
scales. Scales are varied by a factor 2 to estimate the effect of leaving out the higher
order terms. The resulting theoretical uncertainties for the predictions from resummed
calculations are shown in Fig. 2.7 [27]. As can be seen, the uncertainties are substantially
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(a) (b)

Figure 2.7: Theoretical uncertainty of the pT spectrum of Z bosons due to scale variations. The
bands are obtained (a) by varying µF and µR and (b) by varying the resummation scale [27].

reduced when using the higher order calculations.

2.2.4 Parton showers

A practical approach to calculate higher order effects is given by the parton shower tech-
nique [28]. Starting from the initial and final state quarks and gluons produced in a
hard process, it describes the successive radiation of gluons and gluon splitting into quark-
antiquark pairs.

The parton shower technique uses the approximation of repeated independent emissions
or splittings of the kind q→ qg, q→ gq, g → g g, g → qq, where the splitting probability
is described by a set of splitting functions Pqq, Pgq, Pg g and Pqg . The phase space for the
splitting a→ bc can be parameterised by the momentum fraction z taken by b, with 1− z
taken by c, the opening angle θ between b and c, and the azimuth angle φ. Each function
Pi j(z,φ) describes the emission of a parton with particular flavour j and momentum fraction
z from a parton of flavour i. With this notation the emission probability is

dPi =
αS

2π

dθ 2

θ 2

∫

dzPi j(z). (2.3)

The probability diverges for θ → 0, that means when to two outgoing partons are collinear.
The collinear divergence of the splitting probability can be treated by introducing a cutoff
value for θ . This can be seen as a limit on the resolution since a measurement cannot
differentiate between one parton and two exactly collinear partons with the same total
momentum. The value for this limit can be better expressed when using an alternative
paramerisation of the phase space in terms of the virtuality of the quark q2 = z(1− z)θ 2E2,
where E is its energy, or the transverse momentum of the gluon with respect to the parent
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quark k2
T = z(1− z)2θ 2E2. In terms of the virtuality the limit is usually set to a value of

1 GeV, below which confinement sets in.

In order to obtain the exclusive one gluon emission probability an ordering of the
emissions by θ or alternatively of the virtuality q2 or transverse momentum kT has to be
introduced, where ordering means that the first branching is the hardest of all branchings.
The probability that no branching occurs at a value larger than q2, given a maximum
possible virtuality Q2, defines the function ∆i(Q2, q2). It follows the differential equation

d∆i(Q2, q2)
dq2 =∆i(Q

2, q2)
dPi

dq2 (2.4)

with the solution

∆i(Q
2, q2) = exp



−
∫ Q2

q2

dk2

k2

αS

2π

∫ 1−Q2
0/k

2

Q2
0/k

2

dzPi j(z)



 . (2.5)

The value of the maximum virtuality Q2 needs to be fixed. In order to avoid double counting,
it should be ensured that parton shower emissions should be softer than the partons coming
out of the matrix element, for example by setting the Q2 to the momentum transfer scale of
the hard process.

The non-branching probability can be used to construct the parton shower. In an iterative
procedure, the parton shower evolves quarks and gluons downwards in virtuality q2, starting
from the maximum virtuality Q2, down to a scale Q2

0, typically ≈ 1GeV at which partons
start to be confined into hadrons. For each parton at a given virtuality Q2, the probability
not to radiate a soft or collinear gluon, or for a gluon to split into a quark-antiquark pair
at a lower scale q2, is given by the Sudakov form factors ∆i(Q2, q2) which can be derived
from the collinear splitting functions Pi j(z) as described above. The q2 at which a branching
occurs is obtained by generating a flat random number ρ between 0 and 1 and solving the
equation ∆i(Q2, q2) = ρ for q2. A branching is generated at q2 if the solution is q2 > Q2

0.
The procedure is repeated for each produced parton until q2 <Q2

0 [28].

Implementations of the parton shower are provided for example by the PYTHIA, HERWIG

and SHERPA programs. In the case of PYTHIA, the evolution is performed in order of
decreasing virtuality as described above, while HERWIG uses angular ordering. The evolution
can alternatively be formulated as emissions from colour dipoles, which is implemented
in PYTHIA 8 and SHERPA. These parton shower programs can be used in combination with
other programs providing the hard scattering matrix element. Parton shower algorithms are
constructed using soft and collinear approximations to the full cross section. Processes with
hard wide angle emissions, like Z production with large transverse momentum, can only
be described accurately using higher order matrix elements. The parton shower formalism
can also be applied to the final states of higher order predictions, if care is taken to avoid
double counting of phase space. The correct matching of NLO matrix element and parton
shower is implemented in the POWHEG and MC@NLO event generators.
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2.2 QCD and Z production at hadron colliders

Hadronisation

It has been stated so far, that the parton shower evolution has to be cut off at some scale
at which the effects of confinement set in. This must happen at an energy scale close to
the hadron masses, which means non-perturbative models to group final state partons
into hadrons must be used. The two main models for hadronisation are the string and
cluster models. In the Lund string model, implemented in PYTHIA, separating partons
stretch between them a colour string which breaks up after pumping sufficient energy
into the system, that is by separating the quarks over a distance quark-antiquark pairs are
produced. Hadrons are then formed by the combination of adjacent quarks. The cluster
model, implemented in HERWIG, takes a different approach. Gluons are are split into
quark-antiquark pairs, and all quarks are grouped into colour singlet clusters. The transition
from clusters to hadrons is done via decays. Both models need tuning to experimental data
to correctly describe hadron formation.
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Chapter 3

LHC and ATLAS

3.1 The Large Hadron Collider

The Large Hadron Collider (LHC) [29] is a proton-proton accelerator designed for a beam
energy of 7TeV and a peak luminosity of 1034cm−2s−1, with the option to accelerate and
collide heavy ion (lead) beams with an energy of up to 2.76 TeV per nucleon and a luminosity
of 1027cm−2s−1. The LHC was installed in the tunnel of the LEP accelerator at CERN and
makes use of the existing accelerator chain to supply it with 450 GeV proton beams.

Four large detectors have been built around the four interaction points of the LHC.
The ATLAS [30] and CMS [31] experiments are designed to make use of the highest
luminosity and to study a broad physics program. The LHCb experiment [32] intends to
measure precisely CP violation and rare decays of B hadrons at a lower peak luminosity of
1032cm−2s−1. The ALICE experiment [33] specifically studies heavy ion collisions and the
properties of quark-gluon plasma in special ion runs.

The main performance goals in the design and construction of the LHC were high energy
and high luminosity. Unlike in e+e− colliders the beam energy at LHC is not limited by
synchrotron radiation. In the accelerating phase, the protons gain 485 keV per turn inside
the radio frequency cavities, compared with 7 keV energy loss due to synchrotron radiation
(at 7TeV). The beam energy limitation comes from the magnetic field strength needed
to bend the beams around the radius of the ring. The LHC uses superconducting dipole
magnets, cooled with liquid helium to 1.9 K, which can produce the magnetic field of
8.33 T needed for 7TeV beams. At such high magnetic fields the temperature margins of
the superconducting magnets are very small and therefore the heat load on the magnets,
for example through beam losses, needs to be carefully controlled. Stable LHC operation
has been achieved so far with energies up to 4TeV per beam. The peak luminosity can
be achieved by circulating 2808 proton bunches with 1.15× 1011 protons each inside the
LHC. At these values each bunch crossing is expected to produce on average 23 inelastic
proton-proton collisions.

After a commissioning phase at lower beam energies and intensities in 2009, the physics
program started with collisions at 7TeV center-of-mass energy in 2010 and 2011. The
LHC accelerator delivered high energy proton-proton collisions to ATLAS and CMS with an
integrated luminosity of about 50pb−1 in 2010 and 5.5 fb−1 in 2011. For 2012 the beam
energy was raised to 4 TeV. A longer technical stop in 2013 and 2014 will be used to prepare
the LHC to operate at the design energy of 7 TeV per beam.
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3.2 The ATLAS experiment

The ATLAS experiment [30] is a general purpose detector designed to study new physics
phenomena at the TeV scale and to perform precision measurements of the Standard Model.
The signatures of the interesting processes involve photons, electrons, muons, taus, as
well as high energy (b-)jets, and neutrinos. Efficient and precise measurements of position
and energy of these objects are needed. The presence of neutrinos needs to be inferred
from the undetected energy they carry away, requiring hermetic detectors and excellent
energy resolution. At the LHC the cross section for QCD jet production dominates all the
interesting new physics phenomena, which means excellent particle identification is needed.
Further, the event recording needs efficient triggers on the interesting physics signatures,
to keep the rates at a level that can be read out, stored and processed offline. The high
luminosity also leads to a very high total rate of inelastic proton-proton collisions such that
each bunch crossing will produce on average 23 inelastic collisions. These ’pileup’ events
produce additional signals in any studied event, against which the event reconstruction
needs to be robust. ATLAS has been designed to cope with the experimental conditions at
the LHC, which means radiation resistant detectors, fast readout and high granularity.

The ATLAS detector is constructed of several subdetectors with specific purpose and
technology that form layers around the nominal interaction point. The main features will
be reported in the following based on the detailed description given in Ref. [30]. Closest
to the interaction point are the inner tracking detectors (silicon pixel, silicon strip, straw
tube tracker) which are contained inside a solenoid magnet with 2 T, to allow efficient
tracking. These are surrounded by an electromagnetic calorimeter for electron and photon
identification and a hadron calorimeter for jet and missing transverse energy measurement.
Outside the calorimeter is the muon spectrometer, with a toroid magnet with 1-2 T, to
allow muon identification, and muon momentum and charge measurement at the highest
energies. The layout of ATLAS showing these detector components is shown in Fig. 3.1.

The coordinate system used in ATLAS is defined in the following. The nominal pp
interaction point at the centre of the detector is defined as the origin of the coordinate
system. The z-axis is defined by the beam direction. The positive x-axis is defined by
the direction from the interaction point to the centre of the LHC ring, with the positive
y-axis pointing upwards. The azimuth angle φ is measured around the beam axis and
the polar angle θ is the angle from the z-axis. The pseudorapidity η = −ln tan(θ/2) (or
for massive objects the rapidity y = 1/2 ln[(E + pz)/(E − pz)]) is used in place of the
polar angle in most cases, because differences of it are invariant under Lorentz boosts
along the z axis. The transverse momentum pT, the transverse energy ET, and the missing
transverse energy Emiss

T are defined in the x − y plane. The commonly used distance ∆R in

the pseudorapidity-azimuth angle space is defined as ∆R=
p

∆η2+∆φ2.

3.2.1 Inner tracking detectors

The task of the inner detector (ID) is the reconstruction of tracks of charged particles in a
high track density environment. This task is performed by the silicon pixel (Pixel) and strip
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Figure 3.1: A cutout view of the ATLAS detector showing the main detector components [30]

(SCT) detectors and the straw tube transition radiation tracker (TRT). The ID is contained
inside the central solenoid magnet which generates a 2 T magnetic field. The coverage of
the silicon tracking detectors extends to |η| = 2.5, and that of the TRT to |η| = 2.0. The
detectors are arranged on concentric shells around the beam axis in the barrel region and
on disks perpendicular to the beam axis in the two endcaps. A computer image of a charge
particle traversing the ID barrel region is shown in Fig. 3.2.

The pixel detector forms the three layers closest to the collision region, where the
fine segmentation is needed due to the high track density and for precise reconstruction
of primary and secondary vertex positions. The normal pixel size in R− φ × z is 50×
400µm2, which allows intrinsic accuracies of 10µm in R−φ and 115µm in z/R for the
barrel/endcaps.

The semiconductor tracker (SCT) consists of four double layers of silicon strip sensors
with strip pitch of 10µm and strip length of 6.4 cm. Each double layer is made of two
sensors mounted at a small angle of 40 mrad, allowing to measure both coordinates. The
SCT provides a precision measurement in R−φ with an accuracy of 10µm in R−φ and
580µm in z/R for the barrel/endcaps.

The TRT at largest radii adds up to 36 measurements of the R−φ coordinate per track
with a precision of 130µm. The straw tubes which form the TRT have a diameter of 4 mm
and are oriented in z direction in the barrel and radially in the disks. The TRT also provides
electron identification by measuring transition-radiation photons.
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Figure 3.2: Computer image of a charged particle of pT = 10GeV traversing the inner tracking
detectors. Shown is a section of the ID barrel and the beam pipe. [30]

3.2.2 Calorimeters

Sampling calorimeters covering the range up to |η| = 4.9 are used to measure the total
energy of electrons, photons and hadronic jets. Calorimeters with several technologies are
used, depending on the physics requirements and on the radiation levels in the detector
region. The liquid argon electromagnetic calorimeter, covering a range up to |η| = 3.2,
is finely segmented in η−φ with 3 segmentations in depth for precision measurements
of electromagnetic showers. Hadronic calorimetry in the central region up to |η|= 1.7 is
performed by the tile calorimeter, which uses steel as absorber and scintillating tiles as active
material. The more forward regions are covered again by liquid argon calorimeters. In order
to provide good energy resolution and also to shield the muon system, electromagnetic
and hadronic showers need to be contained by the calorimeters. The electromagnetic
calorimeter has a total thickness of > 22 radiation lengths. The total thickness of the
active calorimeter is about 10 in terms of interactions lengths (λ). Together with inactive
material from support structures, the total thickness is about 11λ, enough so that hadronic
punch-through is limited to rates lower then those of prompt and decay muons.

3.2.3 Muon spectrometer

Forming the outer part of ATLAS, the muon system is designed to detect charged particles
which pass through the calorimeters and measure momenta up to |η| < 2.7. The muon
system also provides trigger capability for the region |η| < 2.4. The muon system was
designed with the performance goal of 10% momentum resolution for 1TeV tracks. The
low momentum limit for muons to reach the muon system is ∼3 GeV, due to energy loss in
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Figure 3.3: Cross section of the muon system in an R− z plane [30].

the calorimeter. In the muon system high precision tracking chambers are combined with
separate fast readout trigger chambers.

The principle of the momentum measurement in the muon system is to measure the
deflection of charged tracks in the magnetic field using precision measurements at three
stations along the track. The magnetic field is produced by three superconducting air
core toroid magnets. The barrel toroid covers the region |η| < 1.4 and the two endcap
toroids cover the region 1.6< |η|< 2.7, the magnetic field in between is produced by the
overlap of barrel and endcap toroid fields. The advantage of using toroid magnets is that
the magnetic field created by them is orthogonal to the muon tracks in most regions. At
the same time, the toroid design uses relatively little material thereby minimising multiple
scattering. For high energy tracks the performance is determined by the bending power of
the magnets, given by the integrated magnetic field strength along the tracks, which ranges
from 1− 7.5 Tm.

A cross section of the muon system is shown in Fig. 3.3. The tracking chambers are
mounted between and on the coils of the barrel toroid, and in front and behind the two
endcap toroids. In the barrel they are grouped in three concentric cylinders around the beam
axis at radii of approximately 5 m, 7.5 m and 10 m. In the end cap regions the chambers
are mounted on wheels perpendicular to the beam axis at distances of 7.4 m, 10.8 m, 14 m
and 21.5 m. The chambers are installed with some overlap, allowing alignment between
chambers. In the centre of the detector, around η= 0 there is a gap that is needed to pass
the services of the solenoid magnet, the calorimeters and the inner detector. The size of
the gap is up to 2 m changing around φ. The large detector support structures under the
detector cause acceptance gaps in the barrel region at φ = 240° and 300°.

The precision measurement in the bending plane is performed by monitored drift tubes
(MDT) chambers, which equip the 3 barrel layers at |η| < 2.0, and the 2 outer layers at
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2.0 < |η| < 2.7. The MDT chambers consist of 3 to 8 layers of drift tubes, each drift tube
with a diameter of 29.97 mm, operating with Ar/CO2 gas at 3 bar. The MDT resolution
is about 80µm for individual tubes and 35µm per chamber. The innermost precision
measurement in the forward regions comes from cathode-strip chambers (CSC) that are
able to deal with the higher rates and have better time resolution. These are multiwire
proportional chambers with readout over segmented cathodes. The CSC measure both track
coordinates, in the bending plane the resolution is 40µm and 5 mm in the transverse plane.

Trigger capability in the barrel region (|η|< 1.05) is added by resistive plate chambers
(RPC), and in the endcap region (1.05 < |η| < 2.4) by thin-gap chambers (TGC). Both
chamber types deliver signals with a spread of 15-25 ns, thus can be used to identify the
correct bunch crossing. The trigger chambers measure both coordinates of the track, with
precision sufficient to set momentum thresholds for the trigger.

The stated accuracies of the deflection measurement of the precision chambers can only
be reached, if the positions of the MDT wires and the CSC strips are known with a precision
better then 30µm. To accomplish this, the tubes were mounted with high mechanical
precision in the chambers, and the chamber positions and deformations are monitored
with an optical alignment system. In addition, muon tracks are used to align the chambers
with respect to each other. The amount of material traversed by muons in the muon
system is about 1.3 radiation lengths, resulting in multiple scattering effects being the
dominating resolution degrading factor for muon momenta between 30GeV and 200GeV.
The measurement of higher momenta is limited by the intrinsic and alignment precision.

3.2.4 Trigger system

The task of the trigger system is to reduce the event rate from the 40 MHz bunch crossing
rate (∼1GHz event rate at design luminosity) down to 200 Hz which is the limit of the data
recording rate of ATLAS. It is implemented in three levels, each refining the decision made
by the previous level and reducing the rate.

The first level (L1) trigger is based on custom electronics and uses fast algorithms on a
subset of the detector information enabling it to reach a trigger decision in 2.5µs and an
output rate of 75 kHz. The L1 trigger reconstructs muons using only the measurements of
the RPC and TGC in the muon spectrometer. Electromagnetic clusters, jets, τ− leptons and
large missing or total transverse energy are reconstructed from readout of all calorimeters
at reduced granularity.

The level-2 (L2) and event filter (EF), together referred to as high-level trigger (HLT),
are implemented in software and use full-granularity readout to allow reconstruction close
to the offline reconstruction. To limit the amount of data to be transferred, the L2 trigger
is seeded by regions-of-interest (RoI’s) information supplied by the L1 trigger. The RoI
information contains the region in η−φ where a trigger object was found, together with
information about the type of signature and its energy. The output rate after the L2 trigger
is reduced to below 3.5 kHz, taking on average 40 ms to process one event. The further
reduction of the rate down to 200 Hz is performed by the event filter. With access to the
full event data and calibration databases, the event filter reconstructs the entire event and
applies offline analysis procedures.
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Figure 3.4: Illustration of the muon trigger roads in a cross section of the muon system in the R− z
plane. The trigger roads for low and high pT muons in the barrel and endcap regions are shown in
blue and red [34].

The L1 muon trigger is based on the RPC in the barrel (|η|< 1.05) and the TGC in the
endcap (1.05 < |η| < 2.4), which are fast enough to identify the correct bunch crossing.
The basic idea of the muon trigger in both the endcap and barrel regions is to search for a
coincidence of hits in the three trigger stations within a projective region. The centre of the
region is defined by the path of an infinite momentum muon from the vertex to the muon
system. The width of the region defines a threshold for the transverse momentum of muons,
where a smaller region corresponds to higher pT. An illustration of the trigger algorithm is
shown in Fig. 3.4. In the barrel region, each of the three RPC stations consist of a double
layer of detectors, each one measuring the η and φ coordinates. The trigger algorithm is
started by a hit in the central layer. This defines the centre of the road within which hits
in the other layers are searched. For low pT threshold a coincidence of 3-out-of-4 hits in
the inner two layers is required. The high pT threshold requires in addition a 1-out-of-2
coincidence with the outer station. In the endcap region the principle is the same, but there
the outermost station starts the trigger and the coincidence is checked in R and φ. The
geometrical coverage of the L1 muon trigger is about 99% in the endcap region and about
80% in the barrel region.

The L2 muon trigger is passed the RoI from the L1 trigger and first performs a pattern
recognition on the hits in this region, including the precision MDT hits. Then a fast track fit
is performed using these hits and the MDT drift times, from which the pT is determined. At
L2 a combination of the track reconstructed in the muon system with a track in the inner
detector is formed, which improves resolution and helps to reject muons from decays of
light mesons created in the calorimeter. At the EF trigger stage the full muon reconstruction
starting with the input of L1 and L2 is performed.
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Event reconstruction

This chapter describes the reconstruction of the physics objects which are needed for the
analysis of the Z → µ+µ− process. This analysis needs charged particle tracks reconstructed
in the inner detector (ID) and in the muon spectrometer (MS), which are used to reconstruct
and identify muons. Moreover the tracks of charged particles are used for the primary
vertex reconstruction. Information about the primary vertex is used to reject non-primary
collision backgrounds and can be used to estimate the amount of pileup. For all used physics
objects the reconstruction is provided by the standard ATLAS reconstruction software.

The reconstruction of charged particle tracks is described in the following section for
the inner detector, and in Section 4.3 for the muon spectrometer, after the description of
the primary vertex reconstruction in Section 4.2. The reconstruction and identification of
muons is summarised in Section 4.4. The performance of the muon measurement relating
to the reconstruction efficiency and the momentum resolution is described in Section 4.5.

4.1 Track reconstruction in the inner detector

The tracks of charged particles with transverse momentum pT > 0.5GeV and |η| < 2.5
are reconstructed from the ID measurements [30]. The ATLAS track reconstruction al-
gorithm [35] incorporates several pattern recognition and track fitting methods, as well as
track extrapolation which uses accurate models of the active and passive material of the
ATLAS detector. The track reconstruction uses as input calibrated hit clusters from the pixel
and SCT detectors and calibrated drift circles, which are obtained from the TRT drift time
measurement.

The primary track reconstruction strategy is to first build tracks for prompt particles, by
seeding the track reconstruction from the measurements of the innermost detector layers. In
a preparation step, the pixel detector (Pixel) and semiconductor tracker (SCT) hit clusters
are converted into three dimensional space points, where the SCT clusters from two layers
of the stereo modules are combined. The space points from the pixel layers and the first
SCT layer are then used to build track seeds. The directional information of the track
seeds can then be used to extrapolate the tracks into the SCT. The extension is performed
using a Kalman-filter approach, where the track is successively extrapolated to the next
detector layer. If a hit is found on this layer within a search window defined by the track
covariance matrix, it is added to the track and the track fit is updated. Otherwise the track
extrapolation continues to the next active layer, to account for the possibility of a missing
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measurement. After the track has been extrapolated to the outermost active layer, outlier
hits which degrade the quality of the track fit are removed from the track. When the track
building from all track seeds is completed, there are often ambiguities from hits that are
shared by tracks. In addition many fake and incomplete tracks are present. These issues are
resolved by ranking the tracks according to a score calculated from the fit quality and the
types of hits associated to the track. Shared hits are mostly assigned to the higher ranked
track and the lower ranked tracks are refit without the shared hits. Fake and incomplete
tracks with low score are rejected at this stage. Finally, the TRT drift-circle information is
added to the tracks and a refit using the full information is performed. Hits and drift circles
that degrade the fit quality are classified as outliers and are not included in the final fit.

A second tracking method is used to recover tracks not found by the inside-out tracking,
for instance secondary tracks from photon conversions or decays of long lived particles.
This method starts by searching for unassociated track segments in the TRT which are then
extrapolated back into the SCT and pixel detectors.

4.2 Vertex reconstruction

The primary vertices are reconstructed from the inner detector tracks using a two step
iterative procedure [36]. A preselection of tracks compatible with originating from the
interaction region is performed in order to remove tracks originating from secondary
interactions. First, a vertex candidate is identified by finding the global maximum in the
distribution of z-position of the tracks, computed at the point of closest approach to the
beam spot. The beam spot is defined as the centre of the interaction region, as determined
from a fit to an unconstrained vertex distribution collected over some time. The vertex
position is then determined with an adaptive fitting algorithm that uses the vertex candidate
and tracks around it, down-weighting tracks less compatible with the vertex. Tracks that
are incompatible with the already found vertex are disassociated from the vertex. This
procedure is repeated with all tracks which are not yet associated to a primary vertex and
additional primary vertices are constructed until no compatible tracks remain.

4.3 Muon reconstruction

The muon reconstruction is based on the measurement of the muon system and the
inner detector. Different reconstruction strategies lead to the main types of muons [37]:
Standalone muons are reconstructed from the muon spectrometer measurements only.
Combined muons are obtained by building combinations of standalone muon tracks with
inner detector tracks. Segment tagged muons are inner detector tracks that could be
matched to a muon spectrometer track segment or to hits, which are not part of any
standalone muon spectrometer track. A fourth strategy identifies muons based on the
energy deposition in the calorimeters, without using muon spectrometer information. The
different strategies are illustrated in Fig. 4.1 and described in more detail in the following.
In addition to the existence of different strategies, the muon reconstruction is implemented
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Figure 4.1: The four muon reconstruction strategies used in ATLAS: standalone, combined, segment
tagged, calorimeter tagged. The muon is represented by a line from the interaction point outwards
to the muon spectrometer. The line is dashed where the muon track is extrapolated outside the
region it is measured. The detector regions whose measurement define the track parameters or are
used to identify the muon are shown in a darker colour. The dark grey boxes indicate the measured
track segments in the muon spectrometer layers.

in multiple reconstruction software packages, where each strategy exists in at least two
software implementations. The implementations are divided into two families, each with
a complete set of algorithms for each strategy. Both families produce separate muon
collections, which are referred to by the name of the combination package - Staco and
Muid. The two collections are very similar, in the sense that a muon reconstructed by an
algorithm from the Staco family is also reconstructed by the corresponding algorithm in the
Muid family as well as in the sense that the track parameters for reconstructed muons are
compatible between the collections. Even though some different approaches where used
in the Staco/Muid algorithms, the differences between the families are mainly due to the
different treatment of special cases in the reconstruction, that are too intricate to detail
here. Therefore the difference between Staco and Muid is mentioned only where a clear
difference in design is used. This analysis uses muons from the Muid collection.

Standalone muons The track reconstruction in the muon spectrometer is based on
the drift-time measurement in the monitored drift tubes (MDT) and the hit clusters in
the cathode-strip chambers (CSC), resistive plate chambers (RPC) and thin-gap chambers
(TGC). In a first step, straight line track segments are formed in single muon stations.
Next, full tracks are built by associating segments that are on an extrapolated trajectory
from the interaction region starting from segments in the outer stations. The final track
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Figure 2: ATLAS muon spectrometer integrated magnetic field strength as a function of |h |.

Figure 3: Number of detector stations traversed by muons passing through the muon spectrometer
as a function of |h | and j .
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Figure 4.2: Number of muon spectrometer stations passed by muons as function of η and φ [37].

parameters are found by fitting all measurements of connected track segments taking into
account the detailed geometrical description of the traversed material and the magnetic field
along the track. The track parameters at the interaction point are found by extrapolation,
taking into account multiple scattering and correcting the momentum for energy loss in
the calorimeter. The energy loss in the calorimeter is estimated using a parameterization of
the expected energy loss (most-probable value of a Landau distribution) or the measured
calorimeter energy in case it exceeds significantly the most probable energy loss. The
measured calorimeter energy is however only used if it is not increased by additional energy
depositions of close by particles which would bias the muon momentum measurement. The
standalone reconstruction allows efficient muon reconstruction up to |η|= 2.7, except in
those detector regions where the muon passes less than 2 detector stations (mostly around
|η|= 0 and |η|= 1.2 , see Fig. 4.2 for the number of stations passed as function of η−φ).

Combined muons The standalone muon tracks can be combined with tracks reconstruc-
ted in the inner detector. This significantly improves the momentum resolution for tracks
with momenta below 100 GeV. The decision which tracks to combine is based on the match
chi-square, defined as the difference between muon standalone and inner detector track
vectors weighted by their covariance matrix. The track parameters for the combined track
are determined either by statistical combination, taking into account the covariances, or by
a refit of the track. Both choices are realised in two different implementations of the muon
reconstruction algorithms. Combined muons have very similar reconstruction efficiency as
standalone muons up to η= 2.5.

Segment tagged muons Segment tagged muons provide a way to identify inner de-
tector tracks as muons even if the standalone muon could not be reconstructed, for instance
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4.4 Muon collections

in regions of reduced MS coverage. Tracks are extrapolated to the muon spectrometer and
close by MS track segments or drift circles and clusters are searched. If they are found to
be compatible with the track, the inner detector track is tagged as a muon. In cases where
sufficient information is added by the associated track segments, a refit of the track taking
these measurements into account is attempted. Otherwise, tagged muons keep the track
parameters of the inner detector track.

Calorimeter tagged muons Calorimeter tagged muons are reconstructed without in-
formation from the muon system. The aim is mainly to recover efficiency in the regions
without detector coverage by the MS, mostly around η = 0 (see Fig. 4.2), and to allow
reconstruction of low energy muons. Inner detector tracks are tagged as muons if the
energy depositions in the calorimeter along their trajectories is compatible with a minimum
ionising signal. Calorimeter tagged muons allow to recover the efficiency loss from the
acceptance hole at |η| < 0.1 which represents about 4% of the acceptance region of the
combined reconstruction (|η|< 2.5). The fake rate of calorimeter tagged muons is however
about 100 times higher compared with the other reconstruction methods.

4.4 Muon collections

For the study of the Z → µ+µ− process, the muon reconstruction needs to be efficient,
have good momentum resolution and a low fake rate. The muon reconstruction efficiency
as a function of η and pT for standalone muons, combined muons and a combination
of these with segment tagged muons is shown in Fig. 4.3. The segment tag algorithm
allows to recover inefficiencies in the standalone reconstruction, mainly in the barrel-
endcap transition region and the region of the detector feet. The fake rate for muons with
pT > 10 GeV is of the order of a few 10−3 per event for these three muon types.

The relative momentum resolution for standalone and combined muons as a function
of |η| and pT is shown in Fig. 4.4. Combined muons improve the momentum resolution
significantly, especially in the region 1.1 < |η| = 1.7. In this region, the standalone
momentum measurement is degraded because muons traverse only two muon stations and
because the magnetic field strength is reduced.

For physics analysis the standard approach is to use combined muons wherever possible,
and adding additional muons from the standalone and tagged reconstruction to recover
efficiency. A potential overlap between the different algorithms is avoided by ensuring that
muon spectrometer segments or inner detector tracks are only used for exactly one muon
candidate [37].

To ensure that the various ATLAS analyses are consistent in their use of muons, quality
definitions for muons are introduced, classifying muons as loose, medium and tight. The
quality definitions are listed in Table 4.1. The recommendation of the muon combined
performance group in ATLAS is to use tight muons, since they provide the best momentum
resolution [38].
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Table 4.1: Definition of the muon quality classes for the Muid collection [39].

Quality class Reconstruction method
Combined (Muid) Standalone (Moore) Segment tagged (MuGirl+MuTagIMO)

tight yes for |η|> 2.5 yes (with extended track)
medium yes for |η|> 2.5 yes (with extended track,

or |η|< 0.2,
or ≥ 2 track segments)

loose yes yes yes

28



4.5 Muon performance measurements in data

4.5 Muon performance measurements in data

4.5.1 Momentum resolution

The momentum resolution of muon tracks is limited by several factors. Chamber mis-
alignment and intrinsic resolution of the detectors limit the precision with which the track
curvature can be measured, resulting in a pT uncertainty proportional to p2

T. The effect of
multiple scattering in material leads to an uncertainty on the muon direction and therefore
the curvature measurement proportional to 1/pT, which can be translated to a pT uncer-
tainty proportional to pT. In addition, muons lose part of their energy in the calorimeter
and passive material before reaching the muon system. For muon energies of E < 100 GeV
the predominant energy loss mechanism is ionisation. Only at energies of 300GeV and
higher, pair creation, bremsstrahlung, and nuclear interactions become important energy
loss mechanisms [40]. In ionisation processes, muons can lose almost all their energy to
one δ-electron, however the most probable energy loss in the calorimeter is a few GeV.
As confirmed by the simulation of the energy loss using GEANT4, which implements the
cross sections for the different energy loss processes correctly, the energy loss distribution
follows an approximate Landau distribution [37]. The most probable energy loss and the
width of the distribution depend on the momentum and the amount of material traversed.
In the region of muon energies from 10GeV to 100GeV the energy dependence is weak,
at |η| < 0.15 the most probable energy loss is 3GeV and the width is about 0.3GeV. The
maximum energy loss for muon with energy 30GeV is 22GeV. The muon reconstruction
corrects for this energy loss as described in Section 4.3 using a parameterization of the most
probable energy loss or the measured energy loss in the calorimeter in case it exceed signi-
ficantly the most probable value. The second option is however not available if additional
particles have deposited energy in the calorimeter close or overlapping with the muon. As a
result the energy loss fluctuations introduce uncertainty that is constant with pT.

For the momentum measurement in the MS, fluctuations in the energy loss in material
before entering the MS dominate at low pT, while multiple scattering is the leading effect
at medium pT. For very high pT > 300GeV the chamber alignment and the intrinsic
resolution of the detectors are the dominant effects [37]. The individual contributions to
the momentum resolution and their pT-dependence is illustrated in Fig. 4.5. The overall
resolution can be parameterized with

σ(pT)
pT

=
pMS

0

pT
+ pMS

1 + pMS
2 · pT. (4.1)

The momentum resolution in the ID can expressed in the same way, but there is no significant
contribution from energy loss fluctuations:

σ(pT)
pT

= pID
1 + pID

2 · pT. (4.2)

For combined muons, the resolution is optimised over the entire pT range due to comple-
mentary measurements in the inner detector and muon spectrometer. For low pT < 30 GeV
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the resolution of the ID is better, because of the missing energy loss term, and smaller
influence of multiple scattering. At very high pT > 300GeV the MS measurement is more
precise, because of the much longer lever arm. For the intermediate region of pT the
resolution of both detectors is comparable [37].
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Figure 4.5: Momentum resolution for muons reconstructed in the MS as a function of pT for η < 2.5.
The individual contributions from energy loss fluctuations, multiple scattering, chamber alignment
and intrinsic tube/hit resolution are shown [37].

The muon momentum resolution can be extracted from the measured resolution of the Z
boson resonance, and from the difference between the independent MS and ID momentum
measurements for combined muons from Z boson decays, as described in Ref. [41]. The
method first modifies the resolution in the simulation to fit the data, and then the resolution
parameters of Equations 4.1, 4.2 are taken from the corrected simulation. The procedure
uses template fits to the invariant mass distribution and to the charge weighted momentum
difference, q/pID

T −q/pMS
T . The templates are taken from simulation with additional smearing

of the form
p′T = pT(1+ g1∆pID,MS

1 + g2∆pID,MS
2 pT), (4.3)

where ∆pID,MS
1 and ∆pID,MS

2 are the fit parameters related to the multiple scattering and
intrinsic resolution terms, and g1,2 is a random number from a Gauss distribution with
mean 0 and width 1. The energy loss term is not included in the fit, because they it
is well known from simulation and its contribution is secondary to the other effects for
muon momenta above 20GeV. External constraints are applied on the parameters from
the size of multiple scattering in the ID and alignment accuracy of the MS. The fitted
parameters are shown in Table 4.2. Four regions in η with different momentum resolution
are treated separately: barrel 0< |η|< 1.05; transition region 1.05< |η|< 1.7; end-caps
1.7 < |η| < 2.0 and CSC/no TRT 2.0 < |η| < 2.5. The determined parameters are in the
following used to correct the simulation to reproduce the momentum resolution observed
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MS ID
η region ∆pMS

1 (%) ∆pMS
2 (TeV−1) ∆pID

1 (%) ∆pID
2 (TeV−1)

barrel 1.8± 0.05 0.095± 0.016 0 0.238± 0.011
transition 3.17± 0.15± 0.22 0.25± 0.026± 0.067 0 0.736± 0.022± 0.567
end-caps 1.23± 0.11 0.169± 0.069 0 0.871± 0.017

CSC/no TRT 0.52± 0.58 0.453± 0.028 0 0.050± 0.001

Table 4.2: Correction parameters for muon momentum resolution [41].

in data. The pT dependence of the momentum resolution for the MS and ID measurements
is shown in Fig. 4.6.
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Figure 4.6: Muon momentum resolution as a function of pT from the fitted resolution parameters
obtained in [41]. The solid lines shows the region covered by the fit to data, the dashed lines show
the extrapolation outside this region.

4.5.2 Reconstruction efficiency

The muon reconstruction efficiency is measured in data, using the muons from Z → µ+µ−
events with the tag-and-probe technique [42, 43]. The measured efficiency for Muid tight
muons as a function of |η| and pT is shown in Fig. 4.7. The efficiency is about 95% and
nearly constant for pT > 15GeV. The efficiency has a hole around |η|= 0 where no muon
chambers are installed to allow services for the calorimeter and inner detector to pass. The
efficiency is reduced by about 5% at |η| = 1.1, because in this region the MS coverage is
reduced as well, and by 5% for |η|> 2.4 because the tracks do not pass all ID layers. The
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Figure 4.7: Top row: Muon reconstruction efficiency as a function of (a) |η| and (b) pT for Muid
tight muons. The efficiency measured in data is shown and compared with the simulation [43].
Bottom row: Event filter muon trigger efficiency with respect to isolated offline muons measured in
data and compared with the simulation. For muons in the (c) barrel region, |η|< 1.05, and (d) end
cap region, |η|> 1.05 [43].

inefficiency is well modelled by the simulation, with relative difference to the data of less
then 2%.

4.5.3 Trigger efficiency

The muon trigger efficiency is also measured in data with a tag-and-probe method using
Z → µ+µ− decays. The efficiency of the event filter trigger with respect to isolated offline
muons is about 70% in the barrel region and 90% in the forward region, for muons with
pT above 18.5GeV [34]. The lower efficiency in the barrel is mostly a consequence of
reduced coverage of the trigger chambers. The event filter trigger efficiency as a function
of pT for muons in the barrel region and in the end cap region is shown in Fig. 4.7. The
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trigger efficiency is flat for pT > 20 GeV and an efficiency of 95% of the plateau efficiency is
reached at pT = 18.1GeV in both the barrel and endcap regions. The trigger efficiency is
well modelled by the simulation, with a relative difference to the data of less then 2%.
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Chapter 5

Data set, simulated event samples
and event selection

The selection of Z → µ+µ− events is based on the measurement of two high pT muons,
with the data recording being triggered by the presence of at least one high pT muon. This
chapter presents first the data set and simulated signal and background samples and then
the selection criteria. In the following the background estimation and corrections applied
to MC samples are discussed.

5.1 Data set

The LHC has delivered proton-proton collisions at
p

s = 7TeV starting in March 2010. In
2011 the instantaneous luminosity was increased, and during that year the LHC delivered an
integrated luminosity of 5.6 fb−1 [44], compared with 48 pb−1 in 2010. The measurement
of this thesis uses the data set collected with the ATLAS detector in 2011. The earlier data
from 2010 are not included for more consistent treatment of the data due to changing
detector conditions and pileup from 2010 to 2011.

Further, only data are used that were taken during stable beam conditions, and with fully
operating magnet system and tracking and calorimeter subdetectors as defined by the ATLAS
data quality group. These conditions allow good quality track and muon reconstruction
that is necessary for this measurement. In addition, quality requirements for electron, jet
and missing transverse energy reconstruction are applied in order to define a common data
set for all measurements of W and Z production with ATLAS. The luminosity of the data
sample taking into account these requirements is 4.7 fb−1 [45].

5.2 Simulated samples

Simulated event samples are used to estimate the acceptance, selection efficiency, resolution
effects and to estimate the backgrounds. Moreover the measured differential cross-section
is compared to the predictions from simulations. The main Z → µ+µ− signal sample is
simulated using the POWHEG event generator [46] in combination with the PYTHIA parton
shower [47] and using the CT10 parton distributions [18]. Further signal samples, simu-
lated with PYTHIA using the MRST LO* PDF set [47, 48] and MC@NLO [49] in combination
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with the parton shower from HERWIG [50], are used to study systematic uncertainties.
Simulated samples are also used to study the background contributions. Events from the

following processes contribute as background to the Z → µ+µ− selection [51]:

• W → µν: a small contribution is expected from this process from events with
associated jet production, where the other reconstructed muon originates from a jet.

• Z → τ+τ−: this process contributes as background when both taus decay into muons.

• t t̄ production: this process contributes through final states containing two muons,
where the muons result from the W decays or semi leptonic charm or bottom decays.

• WW and W Z production: decays into muons contribute as background, where muons
originate directly from W or Z decays but also from semi leptonic charm or bottom
decays.

• Z Z production: these events are also considered as background since the transverse
momentum is mostly not due to the dynamics of QCD.

• W → τν: similar to the W → µν process a small contribution is expected from this
process from events with associated jet production, where a muon is reconstructed
originating from the jet and the tau decays into a muon.

• QCD: processes with semi-leptonic decays of heavy quarks and hadrons misidentified
as leptons contribute as background. Simulated for this are samples of cc̄ and bb̄
production.

The W → µν , Z → τ+τ−, cc̄ and bb̄ background processes are simulated using the PYTHIA

generator. The t t̄ process is simulated with MC@NLO [52], and the WW , W Z , Z Z processes
are simulated with HERWIG [53]. The W → τν background process is simulated with
ALPGEN [54].

A summary of all samples used is listed in Table 5.1. The Z → `+`−, W → `ν , t t̄, WW ,
W Z , Z Z samples are normalised to their respective cross sections calculated at NLO and
NNLO following the procedure given in [51] and [55, 56]. The Z → `+`−, W → `ν samples
are normalised to the cross sections calculated at NNLO with the FEWZ program [57, 58]
with MSTW 2008 NNLO PDFs [20]. A total uncertainty of 5% is assigned on the cross
section, coming from the choice of PDF set (3%) and from factorisation and renormalization
scale dependence. The cross section for t t̄ production, calculated at approximated NNLO,
is assigned a 6% uncertainty. The cross sections for the WW , W Z , Z Z processes were
calculated with FEWZ at NLO. They have about 7% uncertainty.

To simulate the effect of QED final state radiation all generators are interfaced to PHO-
TOS [59]. The interaction of the generated particles with the sensitive and insensitive
parts of the ATLAS detector is simulated using a detailed detector model implemented in
GEANT 4 [60, 61].

Depending on the instantaneous luminosity each bunch crossing causes on average up to
17 inelastic pp interactions (pileup). To include this effect, simulated minimum bias events
are overlayed with the signal and background events in the simulated samples. These
minimum bias events are simulated with PYTHIA.
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Table 5.1: MC samples used in the analysis for estimating the background and to correct data for
detector effects.

Process Generator Dataset ID Reco ID Events σ × BR [nb]

Z → µ+µ− PYTHIA 106047 r3043 10 · 106 0.99± 0.05
Z → µ+µ− POWHEG+PYTHIA 108304 r3043 20 · 106 1.02± 0.05
Z → µ+µ− MC@NLO 106088 r3043 5 · 106 0.99± 0.05
W → µν PYTHIA 106044 r3043 7 · 106 10.46± 0.52

Z → τ+τ− PYTHIA 106052 r3060 1 · 106 0.99± 0.05
t t̄ MC@NLO 105200 r3043 15 · 106 0.16± 0.01

WW HERWIG 105985 r3043 2.5 · 106 (44.9± 0.3)× 10−3

WZ HERWIG 105987 r3043 1 · 106 (18.5± 0.1)× 10−3

ZZ HERWIG 105986 r3043 0.25 · 106 (6.0± 0.04)× 10−3

W → τν ALPGEN 107700-05 r3043 12.3 · 106 10.5
bb̄,≥ 1µ, pµ > 15GeV PYTHIA 108405 r3043 4.5 · 106 73.9
cc̄,≥ 1µ, pµ > 15GeV PYTHIA 106059 r3043 1.5 · 106 28.4

5.2.1 Corrections to the simulation

Despite the great level of detail of the simulation it suffers from certain shortcomings. For
one, the knowledge of the event generation process is not perfect, for instance due to non
perturbative effects. On the other hand, the detector model is not perfect. Temporary
detector malfunctions are not simulated correctly. The relative positions of the detector
elements (alignment) are known within some uncertainty, and ground movement might
cause a change in them. All these effects may lead to differences between the simulation
and data. These differences can be minimised by applying weights to simulated events to
correct for individual uncorrelated effects.

Z boson pT reweighting

The pT spectrum of the Z boson in the default signal MC sample POWHEG shows a systematic
shift to higher pT values compared with the data in the region around 10GeV where the
peak of the cross section is. A much better agreement is found with the PYTHIA generator
in the MC10 tune. Therefore, the events in the signal sample are reweighted in order to
recover the Z boson pT spectrum of PYTHIA MC10. A comparison of detector level shapes
for data, original MC and weighted MC is shown in Fig. 5.1. The original distribution shows
a disagreement with respect to data of up to ∼20% in the first 2 bins, which is reduced to
∼10% after reweighting to the pT distribution of PYTHIA MC10.

Pileup reweighting

The data taking periods of 2011 feature different instantaneous luminosity profiles and
different detector conditions. The different detector and pileup conditions are simulated, but
not for the correct integrated luminosity. Therefore the simulated samples are reweighted
to match the integrated luminosity per period of identical detector conditions and to match
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Figure 5.1: Comparison of the Z boson transverse momentum distribution for data and the signal
sample (a) standard POWHEG, and (b) POWHEG after reweighting to the pT distribution predicted by
PYTHIA MC10. Both distributions are normalised to one.

the average number of simultaneous interactions, < µ >, observed in data.

Muon momentum scale and resolution correction

The modelling of the detector resolution is central to this measurement. Any remaining
misalignment of the tracking detectors leads to a degradation of the muon momentum
resolution and can introduce a shift of the momentum scale. Correction values as a function
of muon η and pT are determined from a measurement of the muon momentum resolution
and scale in data, as described in Section 4.5.1. To correct for scale differences, 1/pT

is shifted; to correct for resolution differences 1/pT is altered by a Gaussian distributed
random value. Since the resolution and scale differences are not the same for the ID
and MS measurement these corrections are applied differently for the two components.
The final correction is a statistical combination of the two, where the components are
weighted according to their relative resolution. Moreover, different corrections are applied to
negatively and positively charged muons. The effect of the scale and resolution corrections
on the invariant mass distribution is shown in Fig. 5.2. The correction leads to much
improved agreement of the line shape. The effect of the correction on the Z boson transverse
momentum distribution is about 5% as shown in Fig. 5.3.

Muon efficiency correction

Inefficiencies in the muon reconstruction are due to the combination of detector cover-
age, hit efficiencies, hit resolution and the combination of the measurement of different
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Figure 5.2: Comparison of the Z boson line shape for data and signal MC. Both distributions are
normalised to unity, in order to compare shapes. (a) Comparison without applying the scale and
resolution corrections. (b) Comparison with the corrections applied.
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Figure 5.4: Effect of applying efficiency correction to the simulation on the Z boson pT distribution
when applying (a) the muon reconstruction efficiency weights and (b) the trigger efficiency weights.
Each time, only one type of weight is applied.

subdetectors. The offline muon reconstruction efficiency and trigger efficiency have been
measured in data, as described in Section 4.5.2. The measured muon efficiencies are well
modelled by simulation. Nevertheless, small differences of order 1% remain. They are
corrected by applying event weights for each muon as a function of its reconstructed η and
φ. The effect of the corrections on the Z boson pT distribution is smaller than 0.1%, as
shown in Fig. 5.4.

5.3 Z → µ+µ− event selection

The selection of Z → µ+µ− events is based on the measurement of two high pT muons. To
trigger the data recording the presence of at least one high pT muon is sufficient. The event
selection criteria follow those used for previous measurements of the Z boson cross section
at ATLAS [1, 51], with small changes to adapt for the increased pT thresholds of the single
muon triggers and the increased instantaneous luminosity.

5.3.1 Trigger selection

The trigger required is the single muon trigger with the lowest pT threshold for which all
events could be recorded for the run period. Two different triggers are used, both with
a threshold of pT = 18GeV. The trigger for data periods B to I is EF_mu18_MG; for data
periods J to M it is EF_mu18_MG_medium. Both triggers are based on muons reconstructed
with the MuGirl algorithm, requiring a track in the inner detector matching a track segment
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Table 5.2: Summary of event selection criteria.

Trigger EF_mu18_MG(Periods B-I) EF_mu18_MG_medium(Periods J-M)

Event cleaning One primary vertex with ≥ 3 tracks
|zvtx|< 200mm

Muon selection Combined plus segment tagged muons (Muid tight)
pT > 20 GeV
η < 2.4
Track based isolation

∑

pT/p
µ
T < 0.1 in cone of ∆R< 0.2

Track quality cuts

Z → µ+µ− selection Exactly two muons
Muons oppositely charged
66 GeV< mµµ < 116GeV

in the internal muon trigger chambers. They differ only in the seeding L1 trigger, L1_MU10
for EF_mu18_MG and L1_MU11 for EF_mu18_MG_medium, with thresholds of pT = 10GeV
and pT = 11GeV. Apart from the different pT thresholds the first L1 trigger is based on
a two station coincidence, while the second is based on a three station coincidence [34].
The trigger efficiency with respect to isolated offline muons is measured in data to be
about 70% in the barrel region and 90% in the forward region in the plateau pT > 20 GeV
(see Section 4.5.2). Being able to use a single muon trigger is of advantage, because the
efficiency to trigger events with 2 offline muons is close to 100%.

5.3.2 Event selection

For this analysis, only events with a reconstructed primary vertex with at least three associ-
ated tracks are considered in order to reject pure cosmic-ray and beam halo background. The
vertex position is required to be close in z to the nominal interaction region, |zvtx|< 200 mm.
Z → µ+µ− events are selected by requiring two oppositely charged muons with an invariant
mass close to the Z boson mass: 66 GeV< mµµ < 116 GeV. The muon acceptance is limited
to pT > 20GeV in order to match the threshold of the trigger, and to |η| < 2.4 which is
given by coverage of the trigger chambers. The muons are reconstructed from matching
tracks in the inner detector and the muon system (Muid tight, see Section 4.3) and have
to pass some additional quality requirements that ensure good momentum measurement
which are described in Section 5.3.3. Further, the muons are required to be isolated in
order to suppress background from pion, kaon and heavy flavor decays [62]. The isolation
requirement uses the sum of transverse momenta of tracks with pT > 1GeV within a cone
of size ∆R= 0.2 around the muon track. Requirements on the muons’ impact parameters
d0, z0 and their difference ∆d0,∆z0 further ensure that both muons originate from the same
hard interaction. Events with more than two selected muons are vetoed. All selection
criteria are summarised in Table 5.2.
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5.3.3 Muon track quality requirements

In order to ensure an accurate momentum measurement, the following properties are
required of the inner detector track of all muons [38]:

• A pixel B-layer hit on the track, except the extrapolated muon track passes an unin-
strumented or dead area of the B-layer

• Number of pixel hits+number of crossed dead pixel sensors > 1.

• Number of SCT hits+number of crossed dead SCT sensors > 5.

• Number of pixel holes + number of SCT holes < 3.

• A successful TRT extrapolation where expected in the η acceptance of the TRT. An
extrapolation is classified as unsuccessful, if either no TRT hits can be associated with
the track, or the associated TRT hits are classified as outliers by the track fit. The
technical definition is the following:

• Let nTRThits denote the number of TRT hits on the muon track, nTRToutliers the
number of TRT outliers on the muon track, and n = nTRThits + nTRToutliers

– Case 1:|η|< 1.9. Require n> 5 and nTRToutliers < 0.9n.

– Case 2: |η| ≥ 1.9. If n> 5, then require nTRToutliers < 0.9n.

5.3.4 Result of the selection

A total of 1.8 million Z → µ+µ− candidate events are selected in data. The number of
events passing the selection cuts is listed in Table 5.3. The distributions of pT, η, φ of
muons as well as the isolation variable in the selected events are shown in Figure 5.5. The
figure also contains the background expectation, even though it is so small as to be barely
visible. The background estimation will be described in the next section. The agreement
between data and simulation is very good. The same holds for the distributions of the
transverse and longitudinal impact parameters which are shown in Figure 5.6. The raw
transverse momentum distribution of the selected Z boson candidates and the invariant
mass distribution are shown in Figure 5.7.

5.4 Backgrounds

The event selection presented in Section 5.3 leads to a very pure Z boson sample. It contains
a background contribution of less then 0.5%, which is composed of t t̄, Z → τ+τ−, WW ,
W Z , Z Z , W → τν , W → µν and QCD processes. The contribution from QCD events is
estimated from data, as described in the following section. The number of background
events after selections is listed in Table 5.4.
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5.4 Backgrounds

Table 5.3: Number of events in 2011 data passing the event selection cuts. The first entry refers to
the size of the data sample used for the study. The data sample contains only events with at least
two 17 GeV muons, or a pair of a 17 GeV muon and a 17 GeV charged particle track measured by the
inner detector, or a W boson candidate event. The definition of the cuts is given in Section 5.3.

Cut name Number of events

Skim 80957248
Trigger 71034584
Vertex 70933696

Muid Tight 13401361
Track Quality 11321909

d0 10926810
z0 9487652
pT 2388251
η 2265385

Isolation 1950033
Opposite charge 1948688
Invariant mass 1817107

∆d0 1817107
∆z0 1817050

veto extra muons 1816817
Trigger match 1816784
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Figure 5.5: Kinematic distributions of the muons in the selected Z → µ+µ− events. The background
from electroweak processes (W → µν , W → τν , Z → τ+τ−, WW , W Z , Z Z), t t̄ production and
QCD production are contained in the figures.
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Figure 5.6: Impact parameter distributions of the muons in the selected Z → µ+µ− events. The
background from electroweak processes (W → µν , W → τν , Z → τ+τ−, WW , W Z , Z Z), t t̄
production and QCD production are contained in the figures.
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Figure 5.7: Distribution of the selected Z boson candidates in (a) transverse momentum, (b) invariant
mass.
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Table 5.4: Number of events in data and expected background. The electroweak background is
estimated using MC samples and the QCD background using a data driven method.

Process Number of events

Data
1816777

Expected Signal
Z → µ+µ− 1783196

Expected background
W → µν 131
W → τν 16

Z → τ+τ− 1230
t t̄ 1949

WW 474
ZZ 907
WZ 1273
QCD 1950

Total background 7931

Total expected 1791127

5.4.1 Estimation of the QCD background

Compared with the cross section of Z boson production, the cross section of inclusive jet
production is about 4 orders of magnitude larger, while the total inelastic proton-proton
cross section is even 9 orders of magnitude larger. Fortunately the selection of two high pT

muons significantly reduces this type of background since the thickness of the calorimeter
efficiently shields the muon system from particles other than muons. The source of real
muons in QCD events are heavy flavour decays as well as pion and kaon decays [62, 63].
The hadrons do not necessarily decay close to the primary vertex, but the impact parameters
may still satisfy the requirements listed in Section 5.3.

The contribution of this background is not sufficiently well modelled in the simulation,
because not all sources are included, but also because of a considerable uncertainty on the
production cross sections. Furthermore, a large fraction of these events are rejected by the
reconstruction and selection cuts, which means that very large simulated samples would
be needed to obtain statistical precision. Therefore this background is estimated using
control regions in data. Two ways of defining the control regions are studied to estimate
the systematic uncertainty, similar to the procedure used in Ref. [1].

2-dimensional side-band method

The normalisation of the QCD background is determined from the number of events in
three control regions and the signal region which are defined as:
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Figure 5.8: Invariant mass distribution for a) isolated and b) non-isolated muon pairs.

Region A (signal region): 66GeV< mµµ < 116 GeV, isolated
Region B : 47GeV< mµµ < 60 GeV, isolated
Region C : 66GeV< mµµ < 116 GeV, non-isolated
Region D : 47GeV< mµµ < 60 GeV, non-isolated

where non isolated means the inversion of the track based muon isolation cut defined in
Section 5.3,

∑

pT/p
µ
T > 0.1 in a cone of ∆R < 0.2 around the muon. Regions C and D

are largely dominated by the QCD background and only suffer a tiny contamination from
other background and signal events (see Fig. 5.8). To first order, the properties of the QCD
background, other than the isolation variable itself, do not depend on the isolation variable.
Therefore, the relative number of QCD events, nQCD, in regions A over B and C over D are
identical, and can be used to extract the number of events in the signal region:

nA
QCD = nB

QCD× nC
QCD/n

D
QCD . (5.1)

The number of QCD events in regions B, C, D is obtained from the observed number of
events by correcting for the expected contribution of the other backgrounds and the signal
events. The normalisation of the Z → µ+µ− signal and the other backgrounds is taken from
the signal region, A, taking into account the QCD contribution and extrapolated to the other
regions using relative efficiencies which are taken from simulation. The number of QCD
events in the signal region is:

ni
QCD = ni − c i(nA− nA

QCD) , i = B,C, D , (5.2)
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Table 5.5: Number of observed events in regions A, B, C and D of the 2-dimensional side-band
method.

Region Data Signal Electroweak ci

A 1821455 1731652 5803
B 41327 35073 2673 0.0217
C 31101 110 80 1.1× 10−4

D 22284 15 48 3.5× 10−5

where ni is the number of events observed in region i, and c i is the relative efficiency for
the signal and the other backgrounds:

c i = ni
signal+EWK/n

A
signal+EWK, i = B,C, D . (5.3)

The resulting equation can be solved for the number of QCD events in region A, in terms of
the observed number of events, which are given in Table 5.5. The number of QCD events
was estimated as 2500±370 events, or 0.14±0.02%, where the uncertainty is the statistical
uncertainty only.

Same sign method

The production of same sign muon pairs is dominated by QCD production, and can be used
to normalise this background in the signal region. As was shown in Ref. [62], most of the
high pT muon background originates from heavy flavor decays. The ratio of same-sign to
opposite-sign muon pairs in the QCD background can be therefore taken from the PYTHIA

heavy flavor samples. The value for the ratio is 4.1± 0.5, where the uncertainty is the
statistical uncertainty only. The number of same sign muon pairs observed in data is 446,
keeping all other selection requirements, compared with 106 events which are expected
from the signal and electroweak background processes. This resulting estimate for QCD
events in the signal region is thus 1400± 180 events.

Summary QCD background

The QCD background contribution is found to be 2500±370 events with the 2-dimensional
side-band method, and 1400 ± 180 events with the same sign method. No systematic
uncertainties are explicitly assigned to the two methods, but the average is taken as the
QCD background normalisation and the difference is considered as systematic uncertainty.
Given the small relative size of this background, this is a sufficiently good estimation. The
shape of the QCD background was obtained from the non isolated control region. Figure 5.9
shows the invariant mass and pT distributions after the Z → µ+µ− selection, including the
contribution from the QCD background.
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background, labelled ’QCD’ is the red filled histogram.
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Chapter 6

Measurement of the differential
cross section

This chapter describes the measurement of the normalised differential cross sections of the
Z boson production using the sample of Z → µ+µ− events which was obtained as described
in the previous chapter (Chapter 5).

6.1 Measurement strategy

The normalised transverse momentum distribution of Z bosons is measured, which is
defined here as

1

σfid
×

dσfid

dpT
, (6.1)

where σfid is the measured inclusive cross section for pp → Z/γ∗ + X multiplied by the
branching fraction of Z → µ+µ−. Furthermore, the transverse momentum distribution is
measured in three regions of Z rapidity

1

σfid,y
×

dσfid

dpTd y
, (6.2)

where σfid,y is the measured cross section in the respective rapidity region inclusive in
transverse momentum.

In the normalised measurement, large contributions related to the absolute value of
the cross section cancel in the systematic uncertainty. The luminosity uncertainty cancels
completely, while efficiency uncertainties cancel partly. Further, the cross section is measured
in the phase space region defined by the detector acceptance and the kinematic cuts of
the experimental selection needed to suppress backgrounds. It is therefore free from the
theoretical uncertainties that would be caused by the extrapolation to the full phase space.
The phase space is defined by the muon pseudorapidity and transverse momentum and the
dimuon invariant mass: ηµ < 2.4, pµT > 20GeV, 66 GeV< mµµ < 116GeV.

The transverse momentum of the Z boson candidates is reconstructed from the sum
of the 4-vectors of the decay muons. The measured pT distribution is therefore distorted
by resolution effects, inefficiencies in the muon reconstruction and by QED final state
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Figure 6.1: Migration effects in the binned Z boson pT distribution obtained from Z → µ+µ− MC
simulation. (a) Bin purity, the fraction of events in a measurement bin that were generated in the
same bin. (b) Response matrix, showing the distribution of measured versus the true pT values
obtained from the POWHEG Z → µ+µ− sample. The size of the boxes reflects the number of events in
each region.

radiation. To correct for these effects, an unfolding procedure is applied, which is described
in Section 6.3.

6.2 Binning

The transverse momentum distribution is measured up to 800GeV divided into 26 bins.
Due to the limited experimental resolution on pZ

T the bin-to-bin migrations are important
and can significantly distort the measured distribution with respect to the true distribution.
If the migration effects are too dominant it is not possible to revert them and extract the
underlying distribution. Therefore the bin sizes are chosen so that at least 50% of the
events measured in each bin where generated in the same bin, as shown in Fig. 6.1a. The
migrations between bins are shown in Fig. 6.1b. For pT > 150GeV the bin size is limited
by the available statistics. The chosen bins have width of 2GeV up to 18GeV, then 4GeV
from 18GeV to 54 GeV, and further increasing up to 800 GeV. The small bin size at low pT

allows to resolve the shape of the peak of the pT distribution. At low pT the bin size also
reflects the typical resolution of the detector. The binning allows a statistical precision of
better than 1% up to 150GeV.

The three regions in Z rapidity chosen are 0 < |y| < 1, 1 < |y| < 2 and 2 < |y| < 2.4.
The rapidity is limited to 2.4 due to the muon acceptance of the ATLAS detector. The
different rapidity regions correspond to events with different values of momentum fraction
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of the original parton. Since the most significant change in the shape of the cross section
is expected at large rapidity, the binning is chosen to isolate this bin. The measurement is
repeated in each of the rapidity regions independently, meaning that no migrations between
the y bins are considered.

6.3 Unfolding

As stated before, the measured pT distribution is different from the true distribution due to
the influence of finite detector resolution, inefficiencies in the reconstruction as well as of
QED final state radiation. In order to be able to compare the measurement with theoretical
predictions and other measurements these effects need to be corrected for. The process
of estimating the true distribution of a physical quantity from a measured distribution is
commonly referred to as ’unfolding’. Due to the random nature of the measurement process,
unfolding presents a complex statistical problem. An overview of unfolding methods used
in particle physics is given in Refs. [64, 65]. The following mathematical description of the
unfolding problem uses the notation found in Ref. [65].

The measurement process that transforms a true value y into a measured value x , can be
described by the response function R(x |y), which gives the probability to measure value x
for a given true value y . The response function depends only on the measurement process,
but is independent of the true distribution. It is obtained in general from simulated event
samples using a detailed simulation of the detector. The relation between a measured
distribution fmeas(x) and a true distribution ftrue(y) can be stated as

fmeas(x) =

∫

R(x |y) ftrue(y)d y . (6.3)

Here the measured and true distributions are approximated by histograms t = (t1, . . . , tM)
and m = (m1, . . . , mM), where each bin contains the expectation value of fmeas(x) and
ftrue(y) in the range of the bin. For this application, the bins are chosen according to
Section 6.2. The response function R is approximated by a matrix Ri j. With these approxim-
ations Equation 6.3 becomes:

mi =
N
∑

j=1

Ri j t j . (6.4)

where the sum runs over the number of bins, N . The response matrix is not anymore
independent of the true distribution used to create it because the distribution of events inside
the bin has some influence on the number of events that migrate across bin boundaries.

The most straightforward solution to the problem of unfolding would be to invert the
response matrix and apply the inverse to the measurement histogram:

t= R−1m . (6.5)

This requires that the inverse of the matrix exists and in order to get stable results, the
numerical inversion has to be stable as well. Since the actual measurement, n = (n1, . . . , nN )
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is subject to random fluctuations, the expectation values m can only be estimated with
some error. That is the true distribution, t is estimated by

t̂= R−1n . (6.6)

This solution is the unbiased result with the smallest possible variance for t̂. However, if
the migration effects between bins are large, the inverse of the response matrix has large
off-diagonal elements, which leads to large negative correlations between neighbouring
bins. As a result, the estimated true distribution has very large variances and oscillates from
bin to bin. In effect the variances in estimating m from n are amplified when moving from
m to t. This is the case even if the response matrix is known with absolute precision and can
be inverted numerically. This behaviour is illustrated in Fig. 6.2, which shows the attempt
at unfolding a flat distribution. The response matrix shown was constructed by assuming a
Gaussian resolution. The bin size in this case is about twice the resolution, resulting in a bin
purity of about 55%. A test sample is drawn from the uniform distribution, and submitted
to the same smearing used to construct the response matrix. The unfolded distribution,
which is the result of applying the inverted response matrix to the test sample smeared
distribution, oscillates around the expected true distribution. Thus, although the solution is
unbiased, it is not very useful.

Modifications of the matrix inversion method define regularisation procedures, that
introduce a small bias into the solution in order to reduce the variances. One approach is to
numerically limit the first or second derivatives of the distributions. Another approach is to
enforce a smoothing by decomposing the response matrix, and ignoring the contributions
responsible for fine structure. The choices of regularisation type and strength are however
somewhat arbitrary and may bias the result. The different regularisation approaches were
tested for a measurement of the W boson transverse momentum distribution at the LHC,
but were rejected due to the difficulty in choosing the appropriate regularisation [66].

A very basic and much simpler approach, called bin-by-bin unfolding, reduces the
response matrix to simple correction factors for each bin. Migration effects are therefore
taken into account only indirectly. The method gives good results if migrations between
bins are small, and if the simulated MC sample used to define the correction factors is
close to the data, as is illustrated using the same toy model as before in Fig. 6.2c. The
method is very stable by definition but its results are strongly biased towards the simulated
distribution, unless the bin purity is close to 100%.

The unfolding problem can also be solved without explicit matrix inversion using iterative
methods. The next section describes the iterative Bayesian unfolding which suffers less
from the instabilities which may occur in the matrix inversion method.

6.3.1 Iterative unfolding using Bayes theorem

The unfolding problem can be solved also without explicit matrix inversion, through the
use of Bayes theorem and iteration. The method is described in detail in Refs. [67, 68]. The
method is implemented in the RooUnfold software package [69, 70] which is used in this
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Figure 6.2: Comparison of unfolding methods with a toy model. (a) Response matrix, from Gaussian
smearing with σ = 3. (b) - (d) Comparison of the unfolded distribution (points) with the sampled
true distribution (dashed line) and the underlying true distribution (solid line)
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measurement. In the iterative unfolding equation 6.4 is considered in terms of probabilities:

mi =
N
∑

j=1

P(meas in bin i | truth in bin j) t j , (6.7)

where the response matrix is interpreted as the probability P(meas in bin i | truth in bin j).
The expected true distribution can be expressed as:

t̂ i =
N
∑

j=1

P(truth in bin i | meas in bin j)m j . (6.8)

The conditional probability P(truth in bin i |meas in bin j), can be inverted using Bayes
theorem:

P(truth in bin i |meas in bin j) =
P(meas in bin j | truth in bin i) P0(truth in bin i)

∑nT

l=1 P(meas in bin j | truth in bin l) P0(truth in bin l)
,

where the probabilities P(reconstructed in bin j | truth in bin i) are equivalent to the re-
sponse matrix, and P0(truth in bin i) is an initial probability, the prior. This means, that an
initial assumption about the true spectrum is required. This initial assumption is updated
by the measurement, and in successive iterations P0(truth in bin i) is replaced by the true
spectrum which results from Eq. 6.8. This method usually is reasonably close to the true
spectrum after a few iterations and mostly independent of the initial assumption for the
true distribution. Since the statistical uncertainty increases with each iteration, there is a
trade-off between the bias of the result and the statistical uncertainty. The optimum number
of iterations depends on the problem and needs to be determined with toy experiments. A
good prior to get fast convergence is to use a predicted spectrum, for example the prediction
from a MC generator which is in good agreement with the data. The bias after n-iterations
is not known a priori and needs to estimated. In the iterative method regularisation is
achieved by stopping the procedure after a few iterations. To confirm that the choice of
the initial assumption for the true distribution does not bias the unfolded result, different
distributions can be chosen as a starting point. In the toy model test, the iterative Bayesian
unfolding delivers an good result, as shown in Fig. 6.2d.

6.3.2 Closure test

The correctness of the implementation of the Bayesian unfolding in the RooUnfold package
is tested as follows. Pseudo measurements are created from the default signal MC sample.
The prior is set to the true Z boson pT spectrum of this sample, and this sample is also used
to determine the response matrix. The relative difference between the true distribution and
the unfolded distribution is smaller than 10−12 in each bin and independent of the number
of iterations.
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Figure 6.3: Shape of the pT distribution of different MC generators compared with data at detector
level.

6.3.3 Convergence of the iterative unfolding

While the closure test is a trivial check, it needs to be shown that the iterative unfolding
converges when the measured distribution is different to the one used to define the response
matrix and the initial assumption on the true distribution. This test is performed with
pseudo data samples where the unfolded distributions can be compared with the truth
distributions. The pseudo data samples are created by applying pT dependent weights to the
original MC simulation, with weights chosen to model the true pT spectrum from RESBOS

and from a different PYTHIA tune (MC11). The resulting distributions are shown in Fig. 6.3.
These distributions are unfolded, where the response matrix and initial true distribution
are always the default PYTHIA MC10. The convergence of the unfolded result towards the
true values is shown in Fig. 6.4. As can be seen, the unfolded distributions approach the
true distributions after a small number of iterations, but they do not become identical. The
largest differences are observed for the unfolding of the PYTHIA MC11 pseudo data sample,
where the unfolded result converges to values different from the true values by 2σ in the
first bins. The result is better for the pseudo data test with the shape taken from RESBOS.
This indicates the amount of bias inherent in the method, when the initial assumption of
a true distribution is very different from the distribution to be unfolded, as it is the case
here. The bias is however not as large as it seems. The difference between PYTHIA MC10
and PYTHIA MC11 is 30% is in the first bin. The difference between the unfolded pseudo
data with shape taken from PYTHIA MC11 to its true distribution using the response matrix
and initial true distribution from PYTHIA MC10 is smaller then 0.3%. This bias will be
considered as systematic uncertainty on the measurement, and is comparable in size to
other systematic uncertainties.

Since the observed differences between the unfolded and true distributions are a combin-
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Figure 6.4: Comparison of the unfolded pseudo data distributions after 1 to 5 iterations with the
true distributions.

Number of iterations

2 3 4 5 6 7 8 9 10

σ
(u

nf
ol

de
d-

tr
ut

h)
/

∆

-4

-2

0

2

4

6
pseudo data shape: RESBOS

bin1 bin2

bin3 bin4

bin5 bin6 - bin26

(a) Pseudo data shape is taken from RESBOS

Number of iterations

2 3 4 5 6 7 8 9 10

σ
(u

nf
ol

de
d-

tr
ut

h)
/

∆

-4

-2

0

2

4

6
pseudo data shape: PYTHIAMC11

bin1 bin2

bin3 bin4

bin5 bin6 - bin26

(b) Pseudo data shape is taken from PYTHIA MC11

Figure 6.5: Reduced difference between pseudo data unfolded and truth distributions as a function
of the number of unfolding iterations.
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Figure 6.6: Convergence of pseudo data unfolded distributions to their true distributions with the
number of iterations. The convergence criterion is the sum of the squared difference between
unfolded and truth value divided by the statistical uncertainty in each bin.

ation of unfolding bias (which is expected to decrease with the number of iterations) and
variance (which increases with the number of iterations), this test is used to determine the
optimal number of iterations. Naturally the variance is expected to be larger in bins with
less entries. For this reason, to judge the unfolding convergence the difference between the
true and unfolded distribution in each bin is divided by the statistical uncertainty of the
raw distribution before unfolding. This i call the reduced difference ∆/σ, with

∆/σ = (unfolded− truth)/σ . (6.9)

It is shown as a function of the number of iterations in Fig. 6.5. As can be seen only the
first 5 bins show significant differences between the unfolded and the true values, and
after the fourth iteration the differences between successive unfolding results are small.
The unfolding bias is at most twice the size of the statistical uncertainty, which has to be
accepted. In bins 6 to 26, the difference between unfolded and true distribution is smaller
than the statistical uncertainty in those bins.

To determine the optimal number of iterations, a global convergence criterion is defined
by the squared sum of∆/σ over all bins. As shown in Fig. 6.6, it is minimal after 3 iterations
for the test with the pseudo data shape taken from PYTHIA MC11 and after 4 iterations for
the test with RESBOS. The convergence for unfolding the transverse momentum distribution
binned in y is shown in Fig. 6.7. As can be seen the convergence is very similar in this case,
which is expected since the migrations are similar in these distributions. The difference
in the sample size for the double differential measurement has no strong effect. In the
following 3 iterations are used to unfold the Z boson pT distribution.
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Figure 6.7: Convergence of pseudo data unfolded distributions to their true distributions with the
number of iterations. The convergence criterion is the sum of the squared difference between
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Uncertainties

Uncertainties in the measurement are introduced for one by the limited size of the data
and MC samples, and by experimental and theoretical uncertainties in the modelling of the
signal and background processes. The evaluation of the statistical uncertainties is described
in Sections 7.1 and 7.2. Experimental sources of uncertainty are the muon reconstruction
efficiency, trigger efficiency (Section 7.3), muon momentum resolution (Section 7.4) and
the background subtraction (Section 7.5). The definition of the response matrix from
simulated samples has theoretical uncertainties, which are described in Section 7.6.

The calculation of the normalised cross section 1/σdσ/dpT involves three steps: the
measurement of the uncorrected spectrum, subtraction of the expected background con-
tribution, and unfolding. The systematic uncertainties in the measurement enter in the
background subtraction, and in the definition of the response matrix used to unfold the
data. The evaluation of the different sources of uncertainties involves propagating the
related variation to the normalised cross section. Each variation is performed independently
resulting in the normalised cross section σx(pT ). The uncertainty due to source x is taken
from the difference between the values of the resulting normalised cross section and the
nominal cross section:

δx(pT) = |σx(pT)−σ(pT)| . (7.1)

Since the unfolding and normalisation procedures introduce correlations between bins, the
covariance matrix for each variation is computed as:

Ci j =
�

(σx(pT)i −σ(pT)i)(σx(pT) j −σ(pT) j)
�

, (7.2)

where σi, j and σx ,i, j are the values of the nominal and varied cross sections in bins i, j.

7.1 Data statistical uncertainty

Since the unfolding introduces non-trivial correlations between bins, the statistical un-
certainty is determined with the help of pseudo-experiments. The bin contents of the
data distribution before background subtraction and unfolding are considered independent
variables distributed according to Poisson statistics with mean given by the nominal content
of the bin. From the measured pT distribution an ensemble of distributions is obtained by
fluctuating the bin contents in each bin according to a Poisson distribution. The normalised
cross section is calculated for each resulting distribution by subtracting the background

61



Chapter 7 Uncertainties

and unfolding. From the set of unfolded distributions the covariance matrix is calculated
according to:

C stat
i j =

1

M

M
∑

k=1

h

(U k
i − Unom

i )(U k
j − Unom

j )
i

, (7.3)

where M is the number of samples and Unom
i and U k

i are the contents of bin i of the nominal
and fluctuated distributions. Neglecting correlations, the uncertainty in each bin calculated
as:

δstat
i =

p

C stat
ii . (7.4)

The statistical uncertainty is 0.2% to 1% for the bins with pT < 150GeV, and increasing for
the last bin up to 6%.

7.2 Statistical uncertainty from simulated samples

A systematic uncertainty is introduced by the limited size of the simulated sample used
to define the response matrix. The uncertainty is estimated by producing an ensemble of
response objects and using these to unfold the data. The response matrix is constituted by
three parts, the migration matrix, and two histograms which contain the events present
at truth level which are not measured or the events which do not fall inside the truth
acceptance but are reconstructed inside the acceptance. Each bin in these distributions is
considered as independent, and therefore collections of response objects are obtained by
fluctuating the bin contents in each bin according to a Poisson distribution. The fluctuation
procedure is done separately for each part of the response object. For each set of variations
the covariance matrices are computed according to Equation 7.3. The related uncertainty is
0.05% to 1%.

7.3 Efficiency

A correction for the event selection efficiency is performed implicitly in the unfolding
procedure. The efficiency correction values are obtained from the simulated signal sample
that defines the response object. The selection efficiency as a function of Z boson pT is
shown in Figure 7.1 for the default signal sample. Since the trigger and offline selection is
based on muons, their trigger and reconstruction efficiencies are studied in detail. To be
able to study the selection efficiency in data, it is factorised into the muon reconstruction
efficiency, εreco, the muon trigger efficiency, εtrig, the efficiency of the muon isolation cut,
εiso, and the efficiency of all other event selection cuts, εother. The event efficiency can be
written as:

εevent = ε
2
reco · ε

2
iso · (1− (1− εtrig)

2) · εother . (7.5)

The correct modelling of the selection efficiency is tested by measuring the muon related
efficiencies in data and comparing with the simulation. The only other event selection
requirements, which are described by εother, are basic event cleaning requirements on the
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Figure 7.1: Event selection efficiency as a function of Z boson pT in the POWHEG sample.

presence and position of the primary vertex. These are independent of the specifics of the
hard process, and are assumed to be flat with respect to Z boson pT.

The muon reconstruction efficiencies for the 2011 data sample have been measured
before as a function of muon pT, η and φ (see Section 4.5.2). The muon trigger and
reconstruction efficiencies have been measured to be essentially constant as a function of
muon pT above 20GeV. Inefficiencies are mainly due to holes in the detector coverage,
therefore the efficiency varies with η and φ. As there is no strong correlation between
these and Z boson pT, the influence of these inefficiencies on Z boson pT is expected to be
flat. One aspect not taken into account by the studies, which are dominated by the peak in
the Z boson pT distribution at low pT, is the changing event topology with increasing pT.
At higher pT the event contains more likely contributions from hard jets, and the angular
separation between jets and the decay muons changes with pT. An overlap of hadronic
activity with the muon can have an influence on the reconstruction, and in particular on
the isolation efficiency. In addition the pileup dependence of the efficiencies is studied.

7.3.1 Tag-And-Probe method

The Tag-And-Probe method allows to measure muon efficiencies directly from the measured
data itself, by selecting a clean, unbiased sample of muon probes. An event sample is
selected in the phase space region corresponding to Z → µ+µ− production, by requiring
two tracks with an invariant mass in the region around the Z mass. To reduce combinatorial
background, tight requirements are placed on one of the tracks to identify it as a real
muon, which is then called the tag muon. The other track is deduced to be a real muon as
well. It is then used to probe the efficiency of the trigger, reconstruction or isolation. To
avoid a bias coming from the event recording, the tag muon is in all cases required to be
matched to a trigger. The correlation between tag and probe muons is sufficiently weak, so
that an inefficiency of the tag muon selection does not affect the uniformity of the probe
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coverage for differential measurements. An unbiased efficiency measurement requires that
all possible tag and probe combinations are counted. Since the efficiency for the tight muon
cuts are around 90%, most events contribute twice. The event selection can be summarised
by the following requirements:

• the tag, probe muons must fulfil pT > 20 GeV, |η|< 2.4,

• the invariant mass is in 10GeV around the Z mass,

• the tag and probe muons must have opposite charge,

• the tag muon is tight,

• the tag muon is matched to the trigger.

A smaller mass window is used here in comparison with the default selection to reduce the
relative background fraction. This is intended to counterbalance the increase in background
due to the looser selection requirements on the probe muon, whose exact definition depends
on the efficiency to be measured.

7.3.2 Muon reconstruction efficiency

Muons in this analysis are reconstructed by the combined muon algorithm or the segment
tagged muon algorithm. Both match an inner detector track with a track or track segments
in the muon spectrometer to form a combined muon object (see Section 4.4). The single
muon reconstruction efficiency can therefore be factorised into the efficiency of the track
reconstruction in the inner detector, and the combined reconstruction efficiency,

εreco = εID · εcombined . (7.6)

The efficiency measurement of the combined muon reconstruction, given the reconstruc-
tion if the inner detector track, is described first. The selected probes are inner detector
tracks with the same requirements on hits on track and the isolation variable as in the
main analysis cuts, described in Section 5.3. The rest of the event selection follows the
requirements listed above.

The so selected probe tracks are used to test the reconstruction, by looking for muons
within a cone of ∆R< 0.05 around the probe track. The efficiency is calculated from the
ratio of the number of probe tracks for which a matching muon was found, to the total
number of probe tracks:

εTP =
nmatched

nall
. (7.7)

In the same way, the efficiency is determined in the simulation. The backgrounds taken into
account are the same as in the main analysis, with the QCD background being estimated by
the PYTHIA heavy flavor samples, listed in Table 5.1. Some of the background contributions
lead to a lower measured efficiency in data, most notably the W → µν process. Since
the aim here is to compare the efficiency modelling in the simulation with the data, the
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Figure 7.2: Tag-and-probe efficiency determination for Muid tight reconstruction. (a) Reconstructed
transverse momentum pµµT of the tag and probe pairs. (b) Reconstruction efficiency for Muid tight
muons as a function of the dimuon transverse momentum. The data, shown with full dots, are
compared with the efficiency measured in the simulation. The efficiency for the signal is shown with
open circles, and the efficiency for signal plus backgrounds is shown with open triangles.

measured data efficiency is not corrected for these backgrounds but instead they are
included in the simulated efficiency. This means that the actual muon efficiencies are higher
than the ones shown here.

The pµµT reconstructed from the tag and probe tracks is shown in Fig. 7.2a. An increased
contribution from W → µν events can be observed at intermediate values of the reconstruc-
ted transverse momentum. This is expected, since the muon from the W decay passes the
tag requirements. There is a small chance to have another track in the event that fulfils
the probe requirements, which is most likely not a muon. The background contribution
in the intermediate pT range has a sizeable effect on the efficiency determination. The
reconstruction efficiency as a function of the transverse momentum reconstructed from the
tag and probe pair is shown in Fig. 7.2b. The efficiency determined in data is compared
with the efficiency obtained from simulation, considering the signal only, as well as the
signal plus backgrounds. The W boson background leads to a lower efficiency in the region
20 . . . 100GeV, which is very well modelled by the simulation when including background.

To test the influence of additional pileup events on the reconstruction efficiency, the
reconstruction efficiency is determined as a function of the number of primary vertices
present in the events. The muon reconstruction efficiency for isolated muons is not affected
by pileup, as is illustrated in Fig. 7.3.
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Figure 7.3: Reconstruction efficiency for Muid tight muons as a function of the number of pileup
vertices in the event.

7.3.3 Inner Detector track reconstruction efficiency

This section describes the measurement of the inner detector track reconstruction, given the
presence of a muon spectrometer track. The probe selection requires a muon spectrometer
standalone track, while the tag selection and the event selection is unchanged to above.

The pµµT reconstructed from the tag and probe track pairs is shown in Fig. 7.4a. In this
selection the background is negligible for the efficiency determination. The reconstruction
efficiency as a function of the transverse momentum reconstructed from the tag and probe
pair is shown in Fig. 7.4b. It is flat up to 100GeV, and decreasing by 5% at the highest pT

values. The track reconstruction efficiency is very well modelled by the simulation. The
tracking efficiency for isolated muons is not affected by pileup, as is illustrated in Fig. 7.5.

7.3.4 Muon isolation efficiency

Muons in the analysis are required to be isolated from other tracks. The efficiency of this
cut on the muon tracks can be studies by selecting events according to the Tag-and-Probe
selection described above, where the probe muon fulfils the same requirements as the tag
muon with the exception of the isolation requirement. The efficiency is calculated from the
ratio of the number of probe muons that fulfil the isolation requirement to the total number
of probe muons.

The pµµT reconstructed from the tag and probe track pairs is shown in Fig. 7.6a. The
isolation efficiency as a function of the transverse momentum reconstructed from the tag
and probe pair is shown in Fig. 7.6b. It is about 99.5% at low pT and decreases to 98.5% at
intermediate values of pT. The isolation efficiency is well modelled by the simulation, but a
slight trend to overestimate the efficiency by 0.5% at the highest pT can be observed. This
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Figure 7.4: Tag-and-probe efficiency determination for inner detector track reconstruction. (a)
Reconstructed transverse momentum pµµT of the tag and probe pairs. (b) Inner detector track
reconstruction efficiency for muons as a function of the dimuon transverse momentum. The data,
shown with full dots, are compared with the efficiency measured in the simulation. The efficiency
for the signal is shown with open circles, and the efficiency for signal plus backgrounds is shown
with open triangles.
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Figure 7.5: Reconstruction efficiency for ID tracks for muons as a function of the number of pileup
vertices in the event.
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Figure 7.6: Tag-and-probe isolation efficiency determination for muons. (a) Reconstructed transverse
momentum pµµT of the tag and probe pairs. (b) Isolation efficiency for muons as a function of the
dimuon transverse momentum. The data, shown with full dots, are compared with the efficiency
measured in the simulation. The efficiency for the signal is shown with open circles, and the
efficiency for signal plus backgrounds is shown with open triangles.

hints at differences in the event topology (track multiplicity, jet structure) between data
and simulation in the high pT region. The isolation efficiency for muons is not affected by
pileup, as is illustrated in Fig. 7.7.

7.3.5 Trigger efficiency

The muon trigger efficiency is measured using the Tag-and-Probe selection as described in
Section 7.3.1 for the muon reconstruction efficiency. The probe muon must fulfil all the
requirements of the tag muon with the exception of the requirement to be matched to a
trigger object. The trigger efficiency is tested by looking for a muon trigger object in a cone
of ∆R < 0.18 around the probe muon. The efficiency is calculated from the ratio of the
number of probe muons, that could be matched to a trigger object, to the total number
of probe muons. The pµµT reconstructed from the tag and probe track pairs is shown in
Fig. 7.8a. The trigger efficiency as a function of the transverse momentum reconstructed
from the tag and probe pair is shown in Fig. 7.8b. It is observed to be constant as a function
of pT, and well modelled by the simulation, except for an offset of about 1.5%.
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Figure 7.7: Isolation efficiency for muons as a function of the number of pileup vertices in the event.

 [GeV]µµ
T

p
1 10 210

E
nt

rie
s/

G
eV

10

210

310

410

510

610

710

810 Data µµ→Z
νµ→W µ→b/bcc

tt WW/WZ/ZZ
ττ→Z ντ→W

(a)

 [GeV]µµ
T

p
1 10 210

tr
ig

ge
r

∈

0.6

0.7

0.8

0.9

1

1.1

 [GeV]µµ
T

p
1 10 210

S
F

0.98

1

1.02

Data

MC (Signal+Bkg.)

MC (Signal)

(b)

Figure 7.8: Tag-and-probe trigger efficiency determination. (a) Reconstructed transverse momentum
pµµT of the tag and probe pairs. (b) Trigger efficiency for muons as a function of the dimuon
transverse momentum. The data, shown with full dots, are compared with the efficiency measured
in the simulation. The efficiency for the signal is shown with open circles, and the efficiency for
signal plus backgrounds is shown with open triangles.
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7.3.6 Uncertainty from the modelling of muon efficiencies

In the normalised measurement the global efficiencies cancel, but not so efficiencies that
change with pµµT . The efficiency correction is part of the unfolding procedure, where
the correction is taken from simulation. To account for a possible mis-modelling in the
simulation, the difference between the efficiency measured in data from the efficiency in
the simulation is described by scale factors, defined as:

SF=
εdata

εMC
. (7.8)

As was shown in the previous sections, the scale factors are very close to unity, and almost
flat with respect to pµµT . Variations in these scale factors as a function pµµT introduce an
uncertainty on the measurement. Using the factorisation into the sub efficiencies measured
in data the event efficiency is:

εevent = ε
2
ID · ε

2
Muid · ε

2
iso · (1− (1− εtrig)

2) · εother . (7.9)

The pµµT dependence of the scale factors for the dimuon (event) efficiency for Muid, ID,
isolation and trigger are shown in Fig. 7.9. Since the scale factors factorise in the same
way as the efficiencies, the deviation from the average scale factor in each bin is treated as
a systematic uncertainty due to the modelling of the muon efficiencies in the simulation.
The deviations of the event scale factor in pT bins from the average SF are summarised
in Table 7.1. In bins where the statistical uncertainty on the scale factor is larger than
the deviation from the average, the systematic uncertainty is increased to the size of the
statistical uncertainty. The largest deviations from the average scale factor are observed for
the Muid tight reconstruction and the isolation requirement, with up to 1% difference.

7.4 Muon momentum resolution

As described in Section 5.2.1, the momentum scale and the momentum resolution of
muons in simulated events is corrected to match the observation obtained in Z → µ+µ−
data. Since the correction influences the migration between pµµT bins, the uncertainties on
the scale and resolution parameters lead to an uncertainty in the response matrix. This
uncertainty is evaluated by building modified response matrices using up/down variations
of the scale/smearing parameters, where the variations follow the recommendations of the
ATLAS muon combined performance group [38]. The uncertainty is then propagated to
the final result by repeating the unfolding with these modified response objects. For the
momentum resolution, the contributions from the Muon Spectrometer and Inner Detector
measurement are independently varied. The resulting difference in the normalised cross
section with respect to the nominal result is shown in Fig. 7.10. For the momentum scale,
charge independent and charge dependent contributions are varied, the effect on the
normalised cross section is shown in Fig 7.11. The level of accuracy in the description of
the muon resolution can be observed in the dimuon invariant mass distribution, which is
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Figure 7.9: Ratio of the dimuon efficiencies measured in data and the simulation. The solid line
indicates the extracted average scale factors (SF). The deviations from the average SF are treated as
a systematic uncertainty.
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Table 7.1: Difference between the event efficiency scale factors in pµµT bins from the average scale
factors as well as the statistical uncertainty on the efficiency scale factors.

Muid tight Inner Detector Isolation Trigger
pT SF− SF δstat(SF) SF− SF δstat(SF) SF− SF δstat(SF) SF− SF δstat(SF)
(GeV) (%) (%) (%) (%) (%) (%) (%) (%)

0 - 4 0.02 0.09 0.04 0.06 0.33 0.09 -0.05 0.04
4 - 8 0.07 0.11 0.07 0.05 0.28 0.07 -0.09 0.03
8 - 12 -0.16 0.12 -0.10 0.06 0.27 0.09 -0.01 0.04

12 - 16 0.41 0.21 0.03 0.07 0.05 0.07 0.09 0.05
16 - 22 0.04 0.18 -0.08 0.07 0.27 0.14 0.09 0.05
22 - 30 -0.03 0.20 0.00 0.08 -0.08 0.09 0.07 0.05
30 - 38 0.54 0.30 -0.06 0.10 0.18 0.21 -0.01 0.06
38 - 46 0.95 0.43 0.27 0.18 -0.21 0.17 0.08 0.08
46 - 54 -0.47 0.31 -0.10 0.15 -0.14 0.33 -0.02 0.10
54 - 70 -0.02 0.38 -0.15 0.14 -0.43 0.11 0.07 0.09
70 - 100 -0.14 0.24 0.33 0.16 -0.50 0.12 0.09 0.10

100 - 200 -0.54 0.24 -0.08 0.23 -0.43 0.12 0.02 0.14
200 - 800 0.09 0.67 -1.46 0.86 -0.53 0.35 0.09 0.43

shown in Appendix A binned in pT and y .

7.5 Background uncertainty

The uncertainty due to the background contributions is evaluated by changing the nor-
malisation of each background contribution separately, then subtracting the background
distribution from data and repeating the unfolding procedure. The QCD background un-
certainty is 30%, and the combined uncertainty on the other backgrounds is 13%. The
contribution to the overall uncertainty on the normalised cross section is negligible. It is
less than 0.2% for all measurement bins.

7.6 Theoretical uncertainties

7.6.1 Modelling of the true pT shape

The imperfect modelling of the true Z boson pT distribution in the simulated sample
may lead to a bias in the unfolded distribution, as described in Section 6.3. To evaluate
this uncertainty, the nominal simulated sample is reweighted in pT to different shapes.
The unfolding is repeated using the response object and initial assumption of the truth
distribution produced from these alternative samples.

A comparison of different pT shapes is shown in Fig. 7.12a, including the baseline MC
(POWHEG-PYTHIA (MC11 tune) reweighted to PYTHIA (MC10 tune), the PYTHIA MC11 shape,
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Figure 7.10: Systematic uncertainties arising from the muon momentum resolution uncertainty. (a)
Difference to the nominal result due to variation of the inner detector resolution parameter. (b)
Difference to the nominal result due to variation of the muon spectrometer resolution parameter. Up
variations are shown as solid circles, down variations as open triangles.
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Figure 7.11: Systematic uncertainties arising from the muon momentum scale uncertainty. (a)
Difference to the nominal result due to variation of the charge independent parameter. (b) Difference
to the nominal result due to variation of charge dependent scale parameter. Up variations are shown
as solid circles, down variations as open triangles.
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Figure 7.12: Comparison of different pT shapes used to estimate the pT modelling unfolding
systematic. (a) Different shapes, including MC baseline and data, (b) Comparison of two variations
with respect to the baseline. [71]

the data points (measurement), an extrapolation made from Z → e+e− data points (using
splines), and the shape obtained by reweighting the POWHEG-PYTHIA sample to the data
shape (weights computed using the extrapolation) [71].

The alternative shape of the PYTHIA (MC11) sample is very far from the observed data. In
order to avoid an overestimation of the systematic uncertainty, the shape obtained from
the data extrapolation is chosen to reweight the baseline simulation, and to repeat the
unfolding. The resulting difference to the nominal result is shown in Fig. 7.13a. The
difference shows large fluctuations between bins, due to statistical fluctuations. Since the
two distributions are obtained from the same samples, they are largely correlated but the
exact correlations are not easy to determine. As there is no reason to suspect such large
changes from bin to bin, an attempt to smoothen the uncertainty estimate is made by
combining neighbouring bins. The resulting uncertainty estimate is shown in Fig. 7.13b.
Since the uncertainty due to the limited MC sample statistics is already accounted for, the
smoothed values are assigned as systematic uncertainty. The size of this uncertainty is 0.1%
to 1.5% which is negligible compared with the statistical uncertainty.

7.6.2 MC generator model dependence

Here the uncertainty from the theoretical modelling apart from the pT shape is evaluated.
The dependence on the hard matrix element calculation, the parton shower model and the
hadronisation model is tested by comparing the nominal result with the result obtained using
the response object defined by MC@NLO (Table 5.1). MC@NLO implements an alternative
NLO matrix element calculation and uses HERWIG for the parton shower. The MC@NLO

sample is reweighted to the same pT shape as the nominal sample, in order to separate the
effect of the pT shape modelling from other model uncertainties.

The resulting difference in the normalised unfolded distribution to the nominal result
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Figure 7.13: Systematic uncertainty associated with the modelling of the Z boson pT shape in
simulation. a) Relative difference between the unfolded distribution obtained using the response
object reweighted to data, and the nominal result. (b) smoothed uncertainty obtained by dividing
the number of bins by 2. The data statistical uncertainty is shown for reference by the red line.

is shown in Fig. 7.14a. As can be seen, the difference shows large statistical fluctuations
between bins. Since the samples used to define the response matrices are statistically
independent, the error bars on the difference are computed from the MC statistic error
estimations for each sample, according to the procedure explained in Section 7.2. The error
is dominated by the statistical uncertainty of the very small MC@NLO sample. Given that
the error bars cover the range of the fluctuations between bins and the absence of a slope or
trend, the difference is compatible with zero. A conservative estimate of an uncertainty due
to a generator dependence is given by the statistical uncertainty on the difference, shown
in Fig. 7.14b. The resulting uncertainty on the normalised cross section is 0.3% to 8%,
which is an important contribution to the overall uncertainty of the same size as the data
statistical uncertainty.

7.7 Summary of uncertainties

All uncertainties are summarised in Fig. 7.15 and in Table 7.2. The total uncertainty is
below 1% for pT < 34GeV and below 2% for pT up to 150GeV. The experimental and
theoretical systematic uncertainties and the data statistical uncertainty contribute with
about the same size. The dominant experimental uncertainties are the muon momentum
scale modelling and the isolation efficiency. The theoretical uncertainty is dominated by
the MC model dependence. The estimation of this uncertainty suffers from the limited size
of the simulated MC@NLO sample, especially at high pT where this uncertainty dominates

75



Chapter 7 Uncertainties

 [GeV]
T

p
1 10 210

 [%
]

δ

-5

-4

-3

-2

-1

0

1

2

3

4

5

(a)

 [GeV]
T

p
1 10 210

 [%
]

δ

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

(b)

Figure 7.14: Systematic uncertainty associated with MC generator model dependence. (a) Relative
difference between the unfolded distribution obtained using MC@NLO and the nominal result. (b)
Uncertainty assigned, using the size of the error bars in (a). The data statistical uncertainty is shown
for reference by the red line.

the measurement. The uncertainties for the measurement of the transverse momentum
distribution in rapidity bins are listed in Appendix B
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7.7
Sum

m
ary

ofuncertainties
Momentum Efficiency Theory

pT Resol. Scale εmuid εID εiso εtrig Bkg. pT shape Generator MC stat. Sys. Stat. Total
(GeV) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

0.0-2.0 0.20 0.22 0.09 0.06 0.33 0.05 0.02 0.02 0.36 0.06 0.58 0.36 0.68
2.0-4.0 0.10 0.18 0.09 0.06 0.33 0.05 0.02 0.02 0.22 0.04 0.47 0.22 0.52
4.0-6.0 0.03 0.08 0.11 0.07 0.28 0.09 0.01 0.05 0.21 0.04 0.40 0.23 0.46
6.0-8.0 0.04 0.06 0.11 0.07 0.28 0.09 0.01 0.05 0.23 0.04 0.40 0.24 0.47
8.0-10.0 0.07 0.06 0.16 0.10 0.27 0.04 0.01 0.03 0.26 0.04 0.43 0.27 0.51

10.0-12.0 0.06 0.04 0.16 0.10 0.27 0.04 0.01 0.03 0.28 0.05 0.45 0.31 0.54
12.0-14.0 0.06 0.05 0.41 0.07 0.07 0.09 0.01 0.04 0.29 0.06 0.53 0.32 0.62
14.0-16.0 0.03 0.03 0.41 0.07 0.07 0.09 0.01 0.04 0.34 0.06 0.55 0.35 0.65
16.0-18.0 0.03 0.06 0.18 0.08 0.27 0.09 0.01 0.04 0.36 0.07 0.51 0.39 0.64
18.0-22.0 0.05 0.07 0.18 0.08 0.27 0.09 0.01 0.04 0.28 0.05 0.46 0.33 0.56
22.0-26.0 0.05 0.10 0.20 0.08 0.09 0.07 0.02 0.07 0.34 0.06 0.45 0.39 0.59
26.0-30.0 0.06 0.15 0.20 0.08 0.09 0.07 0.01 0.07 0.40 0.07 0.50 0.45 0.68
30.0-34.0 0.07 0.11 0.54 0.10 0.21 0.06 0.01 0.00 0.45 0.08 0.75 0.51 0.91
34.0-38.0 0.07 0.17 0.54 0.10 0.21 0.06 0.01 0.00 0.50 0.09 0.80 0.58 0.98
38.0-42.0 0.05 0.10 0.95 0.27 0.21 0.08 0.02 0.06 0.54 0.10 1.16 0.63 1.32
42.0-46.0 0.05 0.21 0.95 0.27 0.21 0.08 0.02 0.06 0.62 0.11 1.22 0.66 1.38
46.0-50.0 0.05 0.21 0.47 0.15 0.33 0.10 0.03 0.02 0.65 0.12 0.92 0.74 1.18
50.0-54.0 0.05 0.17 0.47 0.15 0.33 0.10 0.04 0.02 0.71 0.13 0.96 0.80 1.25
54.0-60.0 0.05 0.13 0.38 0.15 0.43 0.09 0.04 0.04 0.62 0.13 0.89 0.80 1.19
60.0-70.0 0.06 0.31 0.38 0.15 0.43 0.09 0.06 0.04 0.60 0.12 0.91 0.74 1.17
70.0-80.0 0.05 0.23 0.24 0.33 0.50 0.10 0.08 0.15 0.82 0.14 1.10 0.88 1.40

80.0-100.0 0.06 0.35 0.24 0.33 0.50 0.10 0.11 0.15 0.73 0.14 1.07 0.83 1.35
100.0-150.0 0.03 0.30 0.54 0.23 0.43 0.14 0.10 0.15 0.81 0.15 1.16 0.84 1.43
150.0-200.0 0.08 0.37 0.54 0.23 0.43 0.14 0.07 0.15 1.59 0.31 1.83 1.62 2.45
200.0-300.0 0.13 0.49 0.67 1.46 0.53 0.43 0.08 0.81 2.34 0.49 3.11 2.55 4.03
300.0-800.0 0.61 1.42 0.67 1.46 0.53 0.43 0.09 0.81 7.67 1.42 8.18 5.84 10.05

Table 7.2: Uncertainties on 1/σdσ/dpT
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Figure 7.15: Uncertainties on the measurement of 1/σdσ/dpT, given in percent of the central value
of the bin.
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Chapter 8

Results

In this chapter the results are reported for the differential cross section of Z boson production
in bins of pZ

T . From the distribution of all selected Z → µ+µ− candidate events the estimated
backgrounds are subtracted, as described in Chapter 5. The resulting distribution is unfolded
to particle level as described in Chapter 6 and normalised to the inclusive cross section. The
estimation of uncertainties is described in Chapter 7.

8.1 1/σdσ/dpT

The normalised differential cross section measured in the Z → µ+µ− production within the
fiducial volume is listed in Table 8.1 together with the statistical and systematic uncertainties
in each pZ

T bin. The measurement is reported at Born level, that is fully corrected for the
effect of QED final state radiation (FSR), where the measurement can be combined with
a measurement in the Z → e+e− decay channel. Correction factors to different reference
points regarding QED FSR are included in the table: "bare" level means the true pZ

T is
defined by the final state leptons after QED FSR, and "dressed" level means the true pZ

T
is defined by the final state leptons recombined with radiated photons within a cone of
∆R =

p

(∆η)2+ (∆φ)2 = 0.1. The "bare" level corresponds closely to what is measured for
muons, while the "dressed" level is closer to the measurement of electrons. The QED FSR
corrections have been calculated with PHOTOS [59]. The measured cross section at Born
level is shown in Fig. 8.1. The cross section is dominated by the range 0 to 30 GeV, with a
peak in the bins 2 to 6 GeV and a tail extending up to 800 GeV. The total uncertainty is on
average 0.6% from 0 to 30 GeV, and 1.4% over the total range, rising to 10% in the highest
bin.

In the following the measured cross section will be compared with different types of QCD
predictions for the Z boson transverse momentum distribution. Theoretical predictions for
the entire pZ

T -range covered by this measurement are available from MC event generators
that employ the parton shower (PS) mechanism, for example PYTHIA [47], ALPGEN [54],
POWHEG [46] and MC@NLO [49]. A comparison of the predictions from various event
generators with the normalised cross section is shown in Fig. 8.2.

Event generators that only include the leading order of the matrix element calculation
for the process pp→ Z without any radiation of (hard) gluons produce the Z-boson with
a momentum parallel to the beam line and any transverse boost is generated only by the
parton shower acting on initial state partons. A pure parton shower prediction is provided
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Chapter 8 Results

Table 8.1: The normalised differential cross section 1/σdσ/dpT in bins of pZ
T for Z → µ+µ− events.

The cross section is given at Born level, with correction factors for the cross section at the level of
bare and dressed final state muons given in addition. The statistical (δstat) and total systematic
(δsys) uncertainties, as well as their combination (δtotal), are given in percent.

pZ
T

1
σfid

dσfid

dpT
(1/GeV) δstat δsys δtotal

(GeV) Born kbare kdressed (%) (%) (%)

0 - 2 0.0285 0.968 0.981 0.36 0.58 0.68
2 - 4 0.0584 0.974 0.985 0.22 0.47 0.52
4 - 6 0.0580 0.986 0.991 0.23 0.40 0.46
6 - 8 0.0493 1.002 0.999 0.24 0.40 0.47

8 - 10 0.0409 1.015 1.007 0.27 0.43 0.51
10 - 12 0.0338 1.027 1.013 0.31 0.45 0.54
12 - 14 0.0282 1.036 1.018 0.32 0.53 0.62
14 - 16 0.0238 1.040 1.020 0.35 0.55 0.65
16 - 18 0.0201 1.041 1.021 0.39 0.51 0.64
18 - 22 0.0159 1.037 1.020 0.33 0.46 0.56
22 - 26 0.0120 1.027 1.014 0.39 0.45 0.59
26 - 30 0.00915 1.017 1.009 0.45 0.50 0.68
30 - 34 0.00724 1.013 1.007 0.51 0.75 0.91
34 - 38 0.00579 1.005 1.004 0.58 0.80 0.98
38 - 42 0.00461 1.004 1.003 0.63 1.16 1.32
42 - 46 0.00379 1.000 1.002 0.66 1.22 1.38
46 - 50 0.00313 0.998 0.999 0.74 0.92 1.18
50 - 54 0.00258 0.994 0.999 0.80 0.96 1.25
54 - 60 0.00210 0.994 0.998 0.80 0.89 1.19
60 - 70 0.00147 0.990 0.998 0.74 0.91 1.17
70 - 80 0.000983 0.985 0.993 0.88 1.10 1.40
80 - 100 0.000542 0.984 0.993 0.83 1.07 1.35

100 - 150 0.000191 0.977 0.987 0.84 1.16 1.43
150 - 200 4.95e-05 0.970 0.985 1.62 1.83 2.45
200 - 300 1.07e-05 0.965 0.984 2.55 3.11 4.03
300 - 800 4.02e-07 0.947 0.978 5.84 8.18 10.05
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8.1 1/σdσ/dpT
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Figure 8.1: The normalised differential cross section 1/σdσ/dpT in bins of pZ
T for Z → µ+µ− events,

(a) for the full pZ
T range; (b) for the region pZ

T < 80GeV. The combined statistical and systematic
uncertainty is smaller than the markers showing the data points.

by the leading order event generator PYTHIA 6.4. PYTHIA is used here with MRST LO* parton
distributions [48] and with a pT ordered parton shower using two different settings. The
MC10 set was tuned to the pZ

T distribution from the Tevatron [72], while the MC11 version
includes a first tuning to ATLAS jet data [73]. A difference of 15% at low pZ

T and 20% at
high pZ

T to the data can be observed for PYTHIA MC10. The newer tuning of PYTHIA MC11
shows a worse agreement with the data.

Another class of generators adds tree level diagrams with a fixed number of additional
outgoing partons. The ALPGEN generator provides a prediction from the calculation of tree
level matrix elements for the production of Z bosons with up to 5 additional outgoing
partons. It is interfaced to HERWIG [50] for the parton shower, and uses CTEQ6L1 parton
distributions [19]. The ALPGEN prediction shows a 10-30% difference to the data.

The generators POWHEG and MC@NLO use matrix element calculations at next-to-leading
order and match these to parton shower algorithms. These NLO event generators include
the matrix elements for the processes pp → Z g and pp → Zq, which should describe
accurately hard radiations, while the region of soft and collinear radiations is described
by the parton shower. The POWHEG generator is used with the parton shower provided by
PYTHIA, and MC@NLO is used with the parton shower from HERWIG [50]. Both generators
were used with the CT10 parton distributions [18]. The POWHEG prediction underestimates
the data by up to 25% at low and high pZ

T . MC@NLO agrees with the data at low pZ
T but is

significantly lower than the data for pT > 30 GeV.
The state-of-the art in the calculation of the perturbative corrections for the pp → Z

process is NNLO precision, that is up to O (α2
s ). For the moment these predictions have
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Figure 8.2: Comparison between common MC generators used in hadron collisions using either LO
plus PS (PYTHIA), NLO plus PS (MC@NLO and POWHEG) or multi leg LO + PS predictions (ALPGEN)
and data at Born level. (a) 1/σdσ/dpT (b) Ratio of the predictions to data. The error bars indicate
the size of the combined statistical and systematic uncertainty of the measurement.

not yet been matched to parton shower algorithms, but comparisons can be carried out at
parton level. However, these fixed order perturbative predictions are not valid for pZ

T → 0,
because of terms proportional to αn

S lnm(M2/p2
T), with m≤ 2n− 1 appearing at each order

n of αS in the perturbative expansion, which cause the fixed order prediction to diverge at
each individual order [24]. An implementation of a fixed order prediction at O (α2

s ) is given
by the FEWZ 2.1 program [74]. The FEWZ predictions were obtained with various PDF sets:
CT10, HERAPDF 1.5, JR09, MSTW2008, NNPDF 2.3 and ABM11. The ratio of the FEWZ

prediction for each PDF set to the measured normalised cross section is shown in Fig. 8.3a.
At the lowest pZ

T the fixed order prediction is not valid, therefore the FEWZ prediction is
shown only for pZ

T > 8 GeV. An uncertainty on the prediction was calculated from the 68%
confidence interval of the PDF uncertainties and from the strong coupling uncertainty. Scale
uncertainties have not been evaluated for this particular calculation, but are known to be
around 7% [1]. The FEWZ predictions underestimate the data by about 8%.

Perturbative QCD predictions that are valid for the region of pZ
T � M are obtained by

resummation of the leading logarithmic terms αn
S lnm(M2/p2

T) in the perturbative expansion.
Predictions are available based on the Collins-Soper-Sterman formalism where the cross
section is expanded in the Fourier space of pZ

T space and all leading logarithmic contributions
are resummed into a form factor [25]. The QCD prediction by A. Banfi et al. [75] performs
the resummation of the leading contributions up to next-to-next-to-leading logarithms
(NNLL) and matches the calculation with the next-to-leading order QCD calculation from
MCFM [76]. This result uses the CTEQ6m parton density functions. The uncertainty on the
prediction was evaluated by varying the resummation, renormalisation and factorisation
scales µQ,µR,µF between mZ/2 and 2mZ , with the constraints 1/2 ≤ µi/µ j ≤ 2 and
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Figure 8.3: Comparison of QCD predictions which use (a) O (α2
S) calculations (FEWZ) and (b) pT-

resummed predictions with a non-perturbative form factor (RESBOS) and without (Banfi et al.) with
the measured normalised cross section 1/σdσ/dpT in bins of pZ

T . The FEWZ prediction is shown
for several PDFs. For the prediction using the CT10 PDF the uncertainty due to PDF variations is
shown by the dashed band. The diverging part for pZ

T < 8 GeV is not shown. The RESBOS prediction
(solid line) and the prediction by Banfi et al., for which the theoretical uncertainty is shown as a
shaded band, were both produced with an upper limit on pZ

T that does not include the last measured
bin, which is therefore not shown. The error bars indicate the size of the combined statistical and
systematic uncertainty of the measurement.

µF/µQ ≥ 1, where i, j ∈ F,Q, R. The RESBOS program also provides predictions using
resummation at NNLL accuracy which are matched to fixed order calculation at O (αs) [77–
79]. RESBOS includes a non-perturbative correction, with parameters fitted to Drell-Yan and
Z production data [80]. The ratio of the prediction from RESBOS as well as the Banfi et
al. prediction to the measured normalised differential cross section as a function of pZ

T is
shown in Fig. 8.3b. RESBOS describes the data within 5% over the measured pZ

T range. The
prediction from A. Banfi et al. provides a worse description than RESBOS, underestimating
the data by 5-8% for pZ

T < 10 GeV and overestimating the data by up to 15% for pZ
T > 10 GeV.

The agreement at values of pZ
T > 100GeV is good.

The measured cross section is about one order more precise than the theoretical pre-
dictions, thus presenting a stringent test of perturbative QCD, perturbative QCD with
non-perturbative form factors (RESBOS) and of perturbative QCD coupled with the parton
shower approach. The perturbative QCD calculations need to include resummation to be
able to describe the low pZ

T region. The theoretical uncertainty evaluated via scale variations
are large, however significant differences between the measurement and prediction are
observed. The RESBOS prediction, which includes a non-perturbative contribution provides
the best description of the cross section. The NNLO prediction from FEWZ underestimates
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the data by about the same amount as the uncertainty due to scale variations. The scale
uncertainties dominate effects from different parton distributions. Unlike the total cross sec-
tion and the differential cross section in rapidity of Z production, the transverse momentum
distribution is not directly sensitive to the parton distributions.

Different strategies for MC generators can be tested against the measurement, none are
able to describe the cross section as well as RESBOS. A good description over the largest
pZ

T range is provided by the multi leg generator ALPGEN. The NLO generators MC@NLO

and POWHEG do not describe the cross section better than PYTHIA, but there are substantial
differences between their predictions at high/low pZ

T . The behaviour of the prediction of
the LO generator PYTHIA shows that by careful tuning of shower parameters it is in principle
possible to describe the pZ

T distribution with the parton shower approach. Such an attempt
is described in Ref. [81] based on the published ATLAS measurement of the Z-transverse
momentum spectrum using lower statistics (35 pb−1) [1].

8.2 1/σdσ/dpT in |yZ | regions

The measurement of the normalised differential cross section 1/σdσ/dpT was repeated
in three rapidity regions, |yZ | < 1, 1 < |yZ | < 2 and 2 < |yZ | < 2.4. In each region,
the cross section is normalised to the inclusive cross section in this respective yZ bin, in
order to facilitate a comparison of the shapes. The normalised differential cross section
at Born level in bins of pZ

T and in three |yZ | regions is listed in Table 8.2, together with
the statistical and systematic uncertainties in each pZ

T bin. The uncertainties in the two
central yZ regions are similar to the uncertainties of the inclusive measurement. In the
forward region the statistical precision decreases significantly. In addition, the uncertainty
estimation for the MC generator dependence is dominated by the lack of statistics in the
alternative MC sample, which more than doubles the uncertainty in most bins. Figure 8.4
shows a comparison between the cross sections in the three yZ bins as well as the ratio to
the cross section inclusive in yZ . Only a small change can be observed between the two
central yZ regions, while in the region 2 < |yZ | < 2.4 the pZ

T distribution is significantly
broadened.

The amount of broadening of the pZ
T distribution with increasing yZ can be correctly

described by the RESBOS prediction, as is shown in Fig. 8.5. The RESBOS prediction employs
a non-perturbative form-factor, which is obtained from a fit to the transverse momentum
distributions in Drell-Yan and Z production data [80]. In the prediction shown here, the
form factor used does not depend on parton x , therefore it is the same for the prediction in
all y bins. It was suggested in Ref. [82] that this form factor needs to be changed for low x
values, following the observation that the transverse momentum distribution of hadrons
produced in deep-inelastic scattering at HERA could be described by resummed QCD
predictions with a broadening of the non-perturbative form factor for low x processes [83].
In contrast, this measurement allows the conclusion that the non-perturbative form factor
used in RESBOS does not need to be adapted for low x values. This conclusion agrees with
the conclusion drawn from the measurement of the transverse momentum distribution of
Z bosons at the Tevatron [84]. Further, the measurement of 1/σdσ/dpT in yZ regions
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Figure 8.4: Normalised differential cross section 1/σdσ/dpT at Born level in bins of pZ
T and in

three |yZ | regions for Z → µ+µ− events. (a) Comparison of the normalised cross sections in the
rapidity bins |yZ |< 1, 1< |yZ |< 2 and 2< |yZ |< 2.4 for the region pZ

T < 80GeV. (b) Ratio of the
normalised cross section in yZ bins to the normalised cross section inclusive in yZ .

provides an important input to parton shower tuning efforts for MC event generators.
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Table 8.2: The normalised differential cross section 1/σdσ/dpT at Born level in bins of pZ
T and

in three |yZ | regions for Z → µ+µ− events. Correction factors for the cross section at the level
of bare and dressed final state muons are given. The statistical (δstat) and total systematic (δsys)
uncertainties are given in percent.

0< |yZ|< 1 1< |yZ|< 2 2< |yZ|< 2.4

pZ
T

1
σfid

dσfid

dpT
δstat δsys

1
σfid

dσfid

dpT
δstat δsys

1
σfid

dσfid

dpT
δstat δsys

(GeV) (1/GeV) (%) (%) (1/GeV) (%) (%) (1/GeV) (%) (%)

0 - 2 0.0289 0.49 0.66 0.0282 0.52 1.2 0.0268 1.7 7.8
2 - 4 0.0588 0.31 0.51 0.0580 0.32 0.61 0.0566 0.98 3.9
4 - 6 0.0584 0.31 0.47 0.0578 0.33 0.56 0.0567 0.99 3.0
6 - 8 0.0501 0.36 0.48 0.0487 0.35 0.61 0.0471 1.1 3.5
8 - 10 0.0412 0.38 0.51 0.0405 0.38 0.54 0.0398 1.2 2.8
10 - 12 0.0338 0.42 0.59 0.0338 0.42 0.56 0.0326 1.3 2.5
12 - 14 0.0283 0.48 0.63 0.0281 0.48 0.72 0.0269 1.4 4.1
14 - 16 0.0237 0.50 0.68 0.0240 0.52 0.77 0.0228 1.6 2.5
16 - 18 0.0199 0.56 0.64 0.0204 0.58 0.75 0.0201 1.7 3.2
18 - 22 0.0159 0.46 0.57 0.0160 0.50 0.63 0.0160 1.5 10
22 - 26 0.0118 0.56 0.58 0.0122 0.57 0.62 0.0123 1.8 2.9
26 - 30 0.00894 0.62 0.67 0.00935 0.65 0.79 0.00973 2.0 3.7
30 - 34 0.00712 0.73 0.90 0.00735 0.76 1.0 0.00772 2.3 4.7
34 - 38 0.00568 0.79 0.97 0.00587 0.80 1.1 0.00633 2.5 6.0
38 - 42 0.00451 0.90 1.4 0.00468 0.91 1.4 0.00509 2.6 5.1
42 - 46 0.00378 0.95 1.4 0.00374 1.0 1.5 0.00428 2.9 5.3
46 - 50 0.00314 1.0 1.3 0.00309 1.1 1.4 0.00347 3.1 5.8
50 - 54 0.00256 1.2 1.3 0.00257 1.2 1.8 0.00296 3.5 4.7
54 - 60 0.00203 1.1 1.2 0.00213 1.1 1.4 0.00262 3.2 5.2
60 - 70 0.00144 0.98 1.2 0.00148 1.1 1.2 0.00182 3.0 5.6
70 - 80 0.000963 1.2 1.4 0.000997 1.4 1.7 0.00110 4.1 6.8
80 - 100 0.00054 1.1 1.4 0.00054 1.3 1.5 0.000584 3.9 6.4
100 - 150 0.000187 1.1 1.4 0.000194 1.3 1.6 0.000196 4.2 7.4
150 - 200 4.98e-05 2.3 2.7 4.9e-05 2.7 3.3 4.99e-05 8.8 9.4
200 - 300 1.12e-05 3.5 3.6 1.02e-05 4.1 9.5 8.03e-06 14 15
300 - 800 4.7e-07 7.4 12 3.29e-07 11 19 1.91e-07 48 21
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Figure 8.5: Ratio of the normalised differential cross section 1/σdσ/dpT at Born level in bins of
pZ

T for each of the three |yZ | regions to the normalised differential cross section in bins of pZ
T and

inclusive in yZ and comparison with the same ratio using the RESBOS prediction. (a) |yZ |< 1; (b)
1< |yZ |< 2; (c) 2< |yZ |< 2.4.

87





Chapter 9

Summary and conclusions

This thesis presents a measurement of the transverse momentum distribution of Z bosons
produced in pp collisions at

p
s = 7TeV. A total of 1.8 million events with Z boson

candidates decaying to two muons are selected in the data recorded with the ATLAS
detector in 2011 with a corresponding integrated luminosity of 4.7 fb−1. The large data set
allows to measure the normalised differential cross section 1/σdσ/dpT in bins of pZ

T with
good precision up to 800 GeV. It is also possible to subdivide the data in three |yZ |-intervals.
The uncertainty on 1/σdσ/dpT is smaller than 1.5% for the range of pZ

T < 150 GeV. Thanks
to the excellent performance of the ATLAS detector the experimental sources of systematic
uncertainty are very well under control. The very good knowledge of the muon momentum
scale and resolution in particular reduce the related uncertainty. The largest remaining
experimental source of systematic uncertainty is the modelling of the reconstruction and
isolation efficiencies as a function pZ

T . The largest contribution to the systematic uncertainty
comes from the theoretical modelling of events needed to unfold the data to parton level.

The measured cross section 1/σdσ/dpT is compared with the predictions of common
event generators for hadron collisions: PYTHIA, ALPGEN, MC@NLO and POWHEG. It is found
that none of the generators are able to describe the spectrum over the entire pZ

T range. The
multi leg generator ALPGEN, which includes the tree level matrix elements for the production
of Z bosons accompanied by up to 5 partons, provides a good description over the largest pZ

T
range of the tested generators. The NLO generators MC@NLO, used with the HERWIG parton
shower and POWHEG, used with the PYTHIA parton shower, exhibit substantial differences
between their predictions at high/low pZ

T and the data. The prediction of the lowest order
using the PYTHIA parton shower is not worse compared with the NLO generators.

The fixed order result at O (α2
s ) of FEWZ 2.1 is found to provide a reliable prediction for

pZ
T > 10 GeV, but it underestimates the data by about 8% in the region 14 . . . 150GeV.
A good description of the data is provided by two predictions that use resummation of

the leading contributions αn
S lnm(M2/p2

T) up to next-to-next-to-leading logarithms (NNLL)
to describe the low pZ

T region and match the result to NLO calculations for the high pZ
T

region. The purely perturbative prediction of Ref. [75] comes with a theoretical uncertainty
originating from variations of the factorisation, renormalisation and resummation scales
that is about one order of magnitude larger than the measurement uncertainty. Given
that the techniques employed in this prediction are state-of-the-art, the presented measure-
ment provides a good challenge to further improve the theoretical description. The best
description of the data is provided by the RESBOS generator, which includes an additional
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non-perturbative form factor in the description.
The transverse momentum distribution 1/σdσ/dpT is also presented in three |yZ |-

intervals. It is observed that the pT distribution is shifted to higher values with increas-
ing rapidity. The effect can be described by the RESBOS prediction using the same non-
perturbative form factor for all yZ -intervals. The large effect of additional low x broadening
of the form factor predicted in Ref. [82] was not observed.

The obtained results will be combined with the equivalent measurement in the Z → e+e−

decay channel, allowing to further reduce the uncertainty to better than 1% for pZ
T <

150GeV. The measured cross sections provide an important input to the tuning of parton
shower event generators. The improved description of the event kinematics in Z production,
which also relates to the description of W production, will help precision measurements of
W and Z properties at the LHC, as well as for new physics searches, where W and Z boson
production are background processes. One direct application of the result is in the W mass
measurement, where the transverse momentum distribution of W bosons can be modelled
more precisely using the results measured in this thesis.
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Appendix A

Dimuon invariant mass distributions
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Figure A.1: Comparison of the dimuon invariant mass distribution in data with simulation. Data
are shown as solid points, simulation as solid line. The green band shows the uncertainty on the
simulation, due to uncertainty on the muon scale and resolution.
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Appendix B

Uncertainties of the measurement in
rapidity regions

This appendix lists the uncertainties for the measurement of 1/σdσ/dpTd y . The calculation
of the uncertainties is equivalent to the description in Chapter 7 for 1/σdσ/dpT. For the
bin |y| < 1 the uncertainties are listed in Table B.1, for 1 < |y| < 2 in Table B.2, and
for 2 < |y| < 2.4 in Table B.3. The size of the relative uncertainties is illustrated in
Figures B.1, B.2 and B.3.
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Momentum Efficiency Theory
pT Resol. Scale εmuid εID εiso εtrig Bkg. pT shape Generator MC stat. Sys. Stat. Total
(GeV) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

0.0-2.0 0.07 0.16 0.09 0.06 0.33 0.05 0.02 0.03 0.52 0.09 0.66 0.49 0.83
2.0-4.0 0.03 0.17 0.09 0.06 0.33 0.05 0.02 0.03 0.33 0.06 0.51 0.31 0.60
4.0-6.0 0.02 0.11 0.11 0.07 0.28 0.09 0.02 0.01 0.32 0.06 0.47 0.31 0.57
6.0-8.0 0.02 0.02 0.11 0.07 0.28 0.09 0.01 0.01 0.35 0.06 0.48 0.36 0.60
8.0-10.0 0.03 0.05 0.16 0.10 0.27 0.04 0.01 0.01 0.38 0.07 0.51 0.38 0.64

10.0-12.0 0.04 0.03 0.16 0.10 0.27 0.04 0.01 0.01 0.48 0.08 0.59 0.42 0.73
12.0-14.0 0.05 0.07 0.41 0.07 0.07 0.09 0.01 0.04 0.44 0.08 0.63 0.48 0.79
14.0-16.0 0.03 0.03 0.41 0.07 0.07 0.09 0.01 0.04 0.52 0.08 0.68 0.50 0.85
16.0-18.0 0.03 0.04 0.18 0.08 0.27 0.09 0.02 0.03 0.53 0.10 0.64 0.56 0.85
18.0-22.0 0.01 0.09 0.18 0.08 0.27 0.09 0.02 0.03 0.44 0.08 0.57 0.46 0.73
22.0-26.0 0.03 0.10 0.20 0.08 0.09 0.07 0.02 0.08 0.50 0.09 0.58 0.56 0.80
26.0-30.0 0.04 0.09 0.20 0.08 0.09 0.07 0.02 0.08 0.60 0.10 0.67 0.62 0.91
30.0-34.0 0.05 0.13 0.54 0.10 0.21 0.06 0.02 0.02 0.65 0.13 0.90 0.73 1.16
34.0-38.0 0.05 0.14 0.54 0.10 0.21 0.06 0.02 0.02 0.75 0.14 0.97 0.79 1.25
38.0-42.0 0.06 0.22 0.95 0.27 0.21 0.08 0.03 0.01 0.86 0.16 1.36 0.90 1.63
42.0-46.0 0.06 0.21 0.95 0.27 0.21 0.08 0.03 0.01 0.91 0.16 1.39 0.95 1.68
46.0-50.0 0.10 0.19 0.47 0.15 0.33 0.10 0.04 0.00 1.09 0.19 1.28 1.02 1.64
50.0-54.0 0.10 0.15 0.47 0.15 0.33 0.10 0.04 0.00 1.09 0.20 1.28 1.19 1.74
54.0-60.0 0.03 0.19 0.38 0.15 0.43 0.09 0.05 0.02 0.99 0.20 1.19 1.09 1.61
60.0-70.0 0.07 0.26 0.38 0.15 0.43 0.09 0.08 0.02 0.96 0.18 1.18 0.98 1.53
70.0-80.0 0.14 0.17 0.24 0.33 0.50 0.10 0.11 0.15 1.14 0.21 1.36 1.24 1.84
80.0-100.0 0.05 0.27 0.24 0.33 0.50 0.10 0.14 0.15 1.13 0.20 1.37 1.11 1.76

100.0-150.0 0.03 0.23 0.54 0.23 0.43 0.14 0.13 0.14 1.14 0.21 1.41 1.07 1.77
150.0-200.0 0.21 0.28 0.54 0.23 0.43 0.14 0.09 0.14 2.57 0.47 2.74 2.33 3.60
200.0-300.0 0.27 0.20 0.67 1.46 0.53 0.43 0.08 0.65 3.02 0.70 3.63 3.47 5.03
300.0-800.0 0.52 0.84 0.67 1.46 0.53 0.43 0.10 0.65 11.18 1.78 11.51 7.36 13.66

Table B.1: Systematic uncertainties on 1/σdσ/dpTd y for 0< |y|< 1. 94



Momentum Efficiency Theory
pT Resol. Scale εmuid εID εiso εtrig Bkg. pT shape Generator MC stat. Sys. Stat. Total
(GeV) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

0.0-2.0 0.28 0.30 0.09 0.06 0.33 0.05 0.01 0.08 1.02 0.09 1.16 0.52 1.27
2.0-4.0 0.16 0.23 0.09 0.06 0.33 0.05 0.01 0.08 0.41 0.05 0.61 0.32 0.69
4.0-6.0 0.07 0.11 0.11 0.07 0.28 0.09 0.01 0.10 0.42 0.05 0.56 0.33 0.65
6.0-8.0 0.05 0.11 0.11 0.07 0.28 0.09 0.01 0.10 0.49 0.05 0.61 0.35 0.71

8.0-10.0 0.10 0.10 0.16 0.10 0.27 0.04 0.01 0.04 0.40 0.06 0.54 0.38 0.67
10.0-12.0 0.11 0.08 0.16 0.10 0.27 0.04 0.01 0.04 0.42 0.06 0.56 0.42 0.70
12.0-14.0 0.08 0.04 0.41 0.07 0.07 0.09 0.01 0.03 0.57 0.07 0.72 0.48 0.86
14.0-16.0 0.07 0.05 0.41 0.07 0.07 0.09 0.01 0.03 0.63 0.08 0.77 0.52 0.93
16.0-18.0 0.02 0.08 0.18 0.08 0.27 0.09 0.01 0.05 0.65 0.09 0.75 0.58 0.95
18.0-22.0 0.07 0.08 0.18 0.08 0.27 0.09 0.01 0.05 0.51 0.07 0.63 0.50 0.80
22.0-26.0 0.06 0.10 0.20 0.08 0.09 0.07 0.01 0.05 0.55 0.08 0.62 0.57 0.84
26.0-30.0 0.09 0.21 0.20 0.08 0.09 0.07 0.01 0.05 0.71 0.09 0.79 0.65 1.02
30.0-34.0 0.13 0.17 0.54 0.10 0.21 0.06 0.01 0.03 0.77 0.10 1.00 0.76 1.26
34.0-38.0 0.08 0.24 0.54 0.10 0.21 0.06 0.01 0.03 0.83 0.11 1.05 0.80 1.32
38.0-42.0 0.06 0.11 0.95 0.27 0.21 0.08 0.02 0.11 0.97 0.13 1.42 0.91 1.68
42.0-46.0 0.09 0.25 0.95 0.27 0.21 0.08 0.02 0.11 1.12 0.14 1.54 1.01 1.84
46.0-50.0 0.20 0.30 0.47 0.15 0.33 0.10 0.02 0.04 1.15 0.17 1.36 1.06 1.73
50.0-54.0 0.14 0.24 0.47 0.15 0.33 0.10 0.03 0.04 1.61 0.18 1.75 1.19 2.12
54.0-60.0 0.07 0.13 0.38 0.15 0.43 0.09 0.04 0.06 1.22 0.16 1.38 1.12 1.77
60.0-70.0 0.06 0.37 0.38 0.15 0.43 0.09 0.04 0.06 1.00 0.15 1.24 1.09 1.65
70.0-80.0 0.08 0.40 0.24 0.33 0.50 0.10 0.06 0.14 1.51 0.19 1.71 1.37 2.19
80.0-100.0 0.09 0.47 0.24 0.33 0.50 0.10 0.08 0.14 1.29 0.19 1.54 1.33 2.04

100.0-150.0 0.07 0.43 0.54 0.23 0.43 0.14 0.08 0.13 1.38 0.19 1.65 1.26 2.07
150.0-200.0 0.13 0.64 0.54 0.23 0.43 0.14 0.07 0.13 3.16 0.41 3.34 2.72 4.31
200.0-300.0 0.39 0.83 0.67 1.46 0.53 0.43 0.07 1.37 9.16 0.64 9.49 4.15 10.36
300.0-800.0 1.43 2.80 0.67 1.46 0.53 0.43 0.08 1.37 18.47 2.17 18.99 10.58 21.74

Table B.2: Systematic uncertainties on 1/σdσ/dpTd y for 1< |y|< 2.
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Momentum Efficiency Theory
pT Resol. Scale εmuid εID εiso εtrig Bkg. pT shape Generator MC stat. Sys. Stat. Total
(GeV) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

0.0-2.0 0.95 0.17 0.09 0.06 0.33 0.05 0.01 0.16 7.68 0.26 7.75 1.68 7.93
2.0-4.0 0.36 0.15 0.09 0.06 0.33 0.05 0.01 0.16 3.90 0.16 3.94 0.98 4.06
4.0-6.0 0.12 0.10 0.11 0.07 0.28 0.09 0.01 0.18 3.02 0.15 3.05 0.99 3.21
6.0-8.0 0.20 0.05 0.11 0.07 0.28 0.09 0.01 0.18 3.51 0.17 3.54 1.07 3.69
8.0-10.0 0.31 0.06 0.16 0.10 0.27 0.04 0.01 0.07 2.75 0.18 2.79 1.16 3.02

10.0-12.0 0.22 0.05 0.16 0.10 0.27 0.04 0.01 0.07 2.50 0.20 2.54 1.28 2.84
12.0-14.0 0.12 0.17 0.41 0.07 0.07 0.09 0.00 0.04 4.11 0.23 4.14 1.39 4.37
14.0-16.0 0.15 0.18 0.41 0.07 0.07 0.09 0.01 0.04 2.43 0.26 2.49 1.60 2.96
16.0-18.0 0.23 0.14 0.18 0.08 0.27 0.09 0.00 0.04 3.13 0.28 3.17 1.71 3.60
18.0-22.0 0.16 0.11 0.18 0.08 0.27 0.09 0.00 0.04 10.44 0.20 10.45 1.53 10.56
22.0-26.0 0.29 0.21 0.20 0.08 0.09 0.07 0.01 0.05 2.88 0.24 2.93 1.81 3.44
26.0-30.0 0.16 0.09 0.20 0.08 0.09 0.07 0.00 0.05 3.70 0.28 3.73 2.04 4.25
30.0-34.0 0.20 0.17 0.54 0.10 0.21 0.06 0.01 0.09 4.69 0.32 4.74 2.32 5.28
34.0-38.0 0.40 0.18 0.54 0.10 0.21 0.06 0.01 0.09 5.97 0.34 6.02 2.55 6.54
38.0-42.0 0.25 0.20 0.95 0.27 0.21 0.08 0.01 0.14 4.97 0.42 5.10 2.61 5.73
42.0-46.0 0.23 0.17 0.95 0.27 0.21 0.08 0.01 0.14 5.22 0.45 5.35 2.90 6.08
46.0-50.0 0.22 0.28 0.47 0.15 0.33 0.10 0.02 0.08 5.74 0.47 5.80 3.05 6.55
50.0-54.0 0.25 0.24 0.47 0.15 0.33 0.10 0.02 0.08 4.57 0.54 4.66 3.47 5.81
54.0-60.0 0.71 0.17 0.38 0.15 0.43 0.09 0.02 0.08 5.05 0.51 5.16 3.23 6.09
60.0-70.0 0.44 0.42 0.38 0.15 0.43 0.09 0.02 0.08 5.53 0.48 5.62 2.95 6.35
70.0-80.0 0.30 0.29 0.24 0.33 0.50 0.10 0.04 0.09 6.74 0.64 6.82 4.09 7.95
80.0-100.0 0.47 0.51 0.24 0.33 0.50 0.10 0.04 0.09 6.35 0.60 6.45 3.94 7.56

100.0-150.0 0.22 0.29 0.54 0.23 0.43 0.14 0.06 0.63 7.28 0.66 7.39 4.19 8.49
150.0-200.0 0.87 0.72 0.54 0.23 0.43 0.14 0.05 0.63 9.12 1.55 9.37 8.77 12.84
200.0-300.0 1.39 1.07 0.67 1.46 0.53 0.43 0.09 0.88 14.96 2.22 15.35 13.78 20.63
300.0-800.0 7.84 3.17 0.67 1.46 0.53 0.43 0.23 0.88 0.00 19.15 21.03 47.86 52.27

Table B.3: Systematic uncertainties on 1/σdσ/dpTd y for 2< |y|< 2.4. 96
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Figure B.1: Systematic uncertainties on 1/σdσ/dpTd y for 0 < |y| < 1, given in percent of the
central value of the bin.
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Figure B.2: Systematic uncertainties on 1/σdσ/dpTd y for 1 < |y| < 2, given in percent of the
central value of the bin.
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Appendix B Uncertainties of the measurement in rapidity regions
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Figure B.3: Systematic uncertainties on 1/σdσ/dpTd y for 2 < |y| < 2.4, given in percent of the
central value of the bin.
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