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Abstract

The multidrug resistance of bacteria is a serious phenomenon in current medical

treatment. Beginning with the introduction of antibiotics more and more bacterial

strains achieved resistance against these chemical compounds and over the years a

competition between antibiotic drug discovery and bacterial drug resistance arose.

The well studied Gram-negative bacteria Escherichia coli and Pseudomonas aerugi-

nosa serve in this work as a model organisms for bacterial resistance against antibi-

otics. Both bacteria evolved multidrug resistant strains through several strategies,

including the expelling of harming compounds through efflux systems. The over

expression of these efflux systems in the bacterial membranes are responsible for

resistance against many antibiotic compounds.

The AcrA/B–TolC efflux system induces resistance of E.coli against a broad

range of antibiotics. Ranging from the inner membrane towards the outer mem-

brane, the efflux system spans the entire periplasmic space. The system consists

of the inner membrane transporter AcrB, the membrane fusion protein AcrA and

the outer membrane channel TolC. TolC itself cooperates with several inner mem-

brane transporters and facilitates the export of harming compounds across the outer

membrane. Due to this versatility TolC could become a target of drug treatment.

A disabled or blocked TolC could prevent drug extrusion via systems that use TolC

as an exit gate. At the time of writing the gating functionality of TolC is not known

in detail. To gain insights into TolC functionality two series of unbiased molecular

dynamics (MD) simulations were performed. Whereas the first series was carried

out in absence of AcrB the second one was executed in presence of the AcrB docking

domain (AcrB-DD).

For the first series unbiased MD simulations between 150-300 ns in a Palmitoyl-

oleoylphosphatidylethanolamine (POPE) / NaCl / water environment were calcu-

lated. In most of these simulations TolC opens and closes freely on extracellular side

hinting at the absence of a gating functionality on this side. On periplasmic side a

double aspartate ring restricts substrate passage in all simulations and grasping-like

motions were noticed for the tip loops of helix 7 & 8. A consecutive binding of two

sodium ions inside the lower periplasmic part of TolC occured in one simulation,

which induced a stabilized closed state on periplasmic side. TolC remained closed

on periplasmic side unless all ions were removed from the simulation box indicating

a sodium dependent lock on this side.

For the second series of MD simulations we added the AcrB-DD to the previously

described system setup based on orientations of a previously published data driven

modeled structure. Four unbiased 150 ns MD simulations were calculated and in

one of these simulations the docking domain spontaneously docks onto TolC. The

latter simulation was extended to a simulation time of 1.05 µs resulting in a tighter

viii



binding between AcrB and TolC with regards to the modeled structure. A preferred

open conformation on extracellular hints analogue to TolC only simulations at the

absence of a lock on extracellular side. On the AcrB-facing side TolC’s tip loops

located at helix 7 & 8 opened up and were stabilized by the AcrB docking domain.

However, the double aspartate ring remained closed until the end of the simulation,

meaning that either the simulation time is too short to observe an opening of TolC

or that another part of the AcrA/B–TolC efflux system is missing to open TolC.

In Pseudomonas aeruginosa OprM had been identified as a TolC homologue

protein. OprM is part of the multidrug efflux system MexA/B–OprM and acts as

an exit duct for several inner membrane transporters. Also for OprM the gating

mechanisms are not known in detail at time of writing. To explore OprM’s gating

mechanisms it has been simulated in a POPE / NaCl / water environment. During

all five 200 ns long MD simulations OprM opens and closes freely on extracellular

side suggesting also for OprM the absence of a gating mechanism on extracellular

side. The tip loops of helix 7 & 8 on periplasmic side open up in a way comparable

to TolC simulations and in contrast to TolC no closing motions were noticed for

these helices for OprM. In OprM a single aspartate ring limits substrate passage on

the inner membrane facing side of OprM. In contrast to TolC simulations a slight

opening of this aspartate ring was measured in all five simulations. The absence of

heightened sodium densities near the periplasmic entrance regions could mean that

either longer simulation time is needed to observe a sodium induced closure of OprM

or that the periplasmic access is regulated only by the aspartate ring. Despite the

absence of heightened sodium densities in the aspartate ring region, clear peaks of

high sodium densities identified sodium pockets between the equatorial region and

the aspartate ring region formed by Asp171 and Asp230.

Voids inside of proteins can indicate substrate binding sites, ion pockets, pathways

through channel proteins, their open and closed states and active sites. Over the

years numerous cavity detection tools have been introduced to identify and highlight

these voids. All available cavity detection tools were based on static structures and

present cavities for single protein conformations only.

With dxTuber we developed and introduced a novel cavity detection tool based

on an ensemble of protein conformations. It uses averaged protein and solvent den-

sity maps, which are derived from MD trajectories, as input. With this technique

protein dynamics are taken into account and cavities are detected through the sep-

aration of protein external solvent from protein internal solvent. Protein internal

solvent can be grouped into cavities and stored in the commonly used PDB file for-

mat. Individual cavities can be separated via the atom name field of the PDB file

format. dxTuber itself can calculate cavity volume and the cross-sectional area of a

single cavity along a principle axis. For convenience a graphical user interface (GUI)

and a command line interface (CLI) of dxTuber are released under the GPL v2.
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Chapter 1. Introduction

Chapter 1

Introduction

1.1 Antibiotics

In 1889 Paul Vuillemin described the concept of antibiosis, which means a process

by which life can be used to destroy life (Vuillemin, 1889). Later Ernest Duch-

esne a military physician discovered that moulds can kill bacteria (Duchesne, 1897).

The discovery of the first and most prominent natural antibiotic, penicillin was re-

ported by Fleming (1929), who received the Nobel price in 1945 (Fleming, 1945).

Six years later (1935) ProtonsilTM a sulfonamide, the first commercially available

antibacterial antibiotic, was released by Bayer AG and later in 1939 Gerhard Do-

magk, inventor of ProtonsilTM, received the Nobel price for his work on antibiotics

(Domagk, 1939).

Shortly after the introduction of sulfonamides the mortality rate caused by crude

infections sank dramatically (Shlaes, 2011). This initial success of antibiotics was

slowed down by multidrug resistant strains induced by the broad administration

of antibiotics, which results in a challenge of drug discovery against bacterial drug

resistance (Alanis, 2005). On the one hand new antibiotics arouse evolutionary

pressure on bacteria, which on the other hand evolved survival strategies to achieve

resistance against antibiotics.

Main strategies against DNA attacking drugs are point mutations and the import

of homologue genes from other species, causing a loss of affinity of the drug to the

targeted DNA. This lowered affinity makes the drug inefficient. Drugs affecting

proteins can be disabled by newly evolved enzymes or loose binding affinity due to

alterations of the targeted protein. To prevent drug access, bacteria evolved several

transporters and multidrug efflux systems, which are capable to expel a broad range

of harming chemical compounds (figure 1.1) (Nikaido, 2009).
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Inner membrane

Outer membrane
Efflux pumps

Antibiotics

Cytoplasm

Periplasm Gene import

Enzymatic 
disassembly

Alteration of targets

...ACCACC...
...ACAACA...

Figure 1.1: Overview of bacterial defense strategies against antibiotic compounds;

enzymes render antibiotics harmless, DNA or proteins are modified via point muta-

tions, post-translational modification or via gene import and antibiotic compounds

can be expelled via efflux systems.

1.2 Bacterial Multidrug Resistance

Bacteria are classically divided into Archaebacteria and Eubacteria and the latter

one in Gram-positive and Gram-negative bacteria. Both feature a cytosolic mem-

brane followed by a peptidoglycan cell wall, which is thicker in Gram-positive bac-

teria (Lugtenberg and Alphen, 1983; Osborn, 1969). In contrast to Gram-positive

bacteria, Gram-negative bacteria own a second bilayer - the outer membrane (OM) -

consisting of lipopolisaccarids, phospholipids and proteins (Osborn et al., 1974). In

this work the bacteria Escherichia coli and Pseudomonas aeruginosa serve as model

organism for antibiotic resistance.

1.2.1 Escherichia coli

Escherichia coli (E. coli.) belongs to the Gram-negative bacteria, features two lipid

membranes an 6.87 nm outer (OM), an 5.84 nm thick inner (IM) one and a 6.35 nm

thick peptido-glycan layer in between (Typas et al., 2010). IM and OM comprise the

20.99 nm wide periplasmic space (Matias et al., 2003). E. coli. is facultative anaer-

obic, lives symbiotically in the lower intestine of mammals and produces vitamin K.

E. colis massive population in the intestine hinders other bacteria to harm the host-

ing mammal (Actor, 2007; Römer et al., 2012). After the introduction of antibiotics

in the 1930s beside pathogenetic bacteria also strains of E. coli. achieved multiple

resistances to antibiotics including the oportunistic pathogens EPEC, STEC, EHEC,

ETEC, EIEC, DEAC and EAEC, which are taking an advantage of a weakened im-

mune system causing infections that could be suppressed by a healthy host (Blank

et al., 2002; Day and Maurelli, 2002; Elsinghorst, 2002; Nataro and Steiner, 2002;

Thorpe et al., 2002).

A major role in multidrug resistance of E. coli. plays the AcrA/B-TolC efflux

2
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system, which is capable to export a broad range of toxic substrates (Nikaido, 2009).

The AcrA/B–TolC Efflux System

The over expression of the AcrA/B–TolC system prevents toxins and antibiotics to

pass the inner membrane making the efflux system responsible for many multidrug

resistant strains of E.coli (Murakami, 2008; Nikaido, 2009). The system consists

of the membrane fusion protein (MFP) AcrA, the inner membrane proton drug

antiporter (IMA) AcrB and the efflux duct (ED) TolC.

Whereas individual crystal structures of AcrA, AcrB and TolC have been pub-

lished (Akama et al., 2004; Bavro et al., 2008; Das et al., 2007; Eicher et al., 2012;

Higgins et al., 2004; Koronakis et al., 2000; Mikolosko et al., 2006; Murakami et al.,

2006, 2002; Nakashima et al., 2011; Pei et al., 2011; Seeger et al., 2006; Sennhauser

et al., 2007; Su et al., 2006; Törnroth-Horsefield et al., 2007; Yu et al., 2005, 2003a,b),

the entire system was not solved at time of writing. Based on cross linking studies

(Lobedanz et al., 2007; Tamura et al., 2005) and homology modeling on MexA Sym-

mons et al. (2009) assembled a complete model for the AcrA/B–TolC efflux system

(see figure 1.2).

Figure 1.2: The AcrA/B–TolC multidrug efflux system is composed of the inner

membrane drug antiporter (IMA) AcrB, the efflux duct (ED) TolC and the adapter

protein (AP) AcrA. Although individual X-ray structures of the participating pro-

teins are available, their structures in complex are not determined yet. Based on

cross linking studies, Symmons et al. (2009) introduced the currently best available

atomistic model for the efflux system.

3
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AcrA The acriflavin resistance protein A (AcrA) is anchored in E. coli.’s inner

membrane by an N-terminal lipid anchor, consists of 373 amino acids and is seg-

mented in the α-helical hairpin, the lipoyl, the β-barrel and the membrane proximal

domain (Ge et al., 2009; Symmons et al., 2009). The α-helical domain has two

coiled-coil α-helices and is 58 Å long. The central part of AcrA, the lipoyl domain,

consists of four β-strands, which interlink with one another to form a β-sandwich

and connects the hairpin domain with the β-barrel domain. The latter one is formed

by six antiparallel β-strands and a short α-helix (Mikolosko et al., 2006).

Whereas the hairpin domain interacts with TolC (Lobedanz et al., 2007; Touzé

et al., 2004), all three remaining domains form contacts with AcrB (Krishnamoorthy

et al., 2008; Tikhonova and Zgurskaya, 2004). The crystal structure 2FIM lacks

the membrane proximal domain (Mikolosko et al., 2006), which later was spatially

resolved via homology modeling based on X-ray crystallography data of the AcrA

homologue MexA (2V4D) (Symmons et al., 2009).

α-helical-hairpin
domain

Lipoyl domain

β-barrel domain

Membrane proximal
 domain

Figure 1.3: The adapter protein (AP) AcrA consists of four domains; the α-

helical-hairpin domain (red), the lipoyl domain (orange), the beta barrel domain

(green) and the membrane proximal domain, which is not solved in any available

crystal structure.

Classified as a membrane fusion protein (MFP) AcrA acts as a stabilizing and

stimulating adapter protein for AcrB and TolC (Tikhonova et al., 2011; Zgurskaya

et al., 2009). The initial inner membrane AcrA/B complex assembles without TolC

and as a second step TolC completes the efflux system (Zgurskaya, 2009).

The stoichiometry of the AcrA–AcrB/TolC complex is not clear. While crosslink-

ing and complex modeling studies report three AcrAs per TolC (Bavro et al., 2008;

Symmons et al., 2009), biochemical assays of AcrA-AcrB, AcrA-TolC and AcrA-

AcrB complexes show preferred stoichiometry of six AcrAs per AcrB/TolC and

fluorescence studies of the homologues MexA–OprM complex observe ranges from

4
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two to six MexAs per OprM (Reffay et al., 2009).

AcrB The acriflavin resistance protein B (AcrB), member of the resistance nodu-

lation division (RND) super family, an efflux pump located in E. coli.’s inner mem-

brane, is capable of trans-locating a wide range of chemical compounds. AcrB,

initially called AcrE (Ma et al., 1993), was discovered in 1993 and is divided into

the TolC docking domain (DD), the pore domain (PD) and the transmembrane do-

main (TMD) (Nikaido, 2011). The latter is built by twelve transmembrane α-helices

and empowers the pump mechanism by proton transfer across the inner membrane

(Fischer and Kandt, 2011; Pos, 2009). The PD is divided into the subdomains PN1,

PN2, PD1 and PD2 and facilitates the substrate pumping mechanism. The DD is

built by the subdomains DN & DC and arranges the docking onto TolC (Murakami

et al., 2002).

AcrB is able to pump wide range of substrates including cationic dyes such as

acriflavine, crystal violet, ethidium bromide, and rhodamine 6G; antibiotics such as

penicillins, cephalosporins, fluoroquinolones, macrolides, chloramphenicol, tetracy-

clines, novobiocin, fusidic acid, oxazolidinones, and rifampicin; detergents such as

Triton X-100, sodium dodecylsulfate, bile acids and even to simple solvents, such

as Methodspentane and cyclohexane (Nakajima et al., 1995; Nikaido, 2011; White

et al., 1997). Whereas the first available atomistic structure containing confor-

mational identical monomers was solved by (Murakami et al., 2002), in 2006 two

asymmetric structures revealed three conformational stages of the pump mechanism:

“loose / access”, “tight / binding” and “open / extrusion” (Murakami et al., 2006;

Seeger et al., 2006).

Driven by proton motive force each monomer undergoes conformational changes

into the next state of the transport mechanism to export toxins and drugs from the

periplasmic space towards TolC the exit gate leading outwards E. coli. (Murakami,

2008).

TolC The tolC gene of E. coli. was discovered through its deletion, which leads

to a resistance of the bacteria against toxic colicins and was also the origin of its

name; tolerence to colicins (Nomura and Witten, 1967). While colicins use TolC as

a back door to bypass the outer membrane (Cascales et al., 2007; Zakharov et al.,

2004), TolC acts as an efflux duct (ED) for inner membrane transporters of the

ATP binding cassette (ABC), resistance nodulation devision (RND) super family

and the major facilitator (MF) type (Moussatova et al., 2008; Nikaido, 2011; Saier

and Paulsen, 2001).

Assembled as a trimer of 471-residue protomers, TolC is divided in the β-barrel,

the α-helical and the equatorial domain (Koronakis et al., 2000). The 40 Å long,

twelve stranded, right twisted β-barrel embedded in E. coli.’s outer membrane has

three lid like loops on extracellular side, which occlude the extracellular entrance

of TolC (Vaccaro et al., 2008). The main body of TolC, a 100 Å cylinder, with a
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Docking Domain

Porter Domain

Transmembrane
Domain

Figure 1.4: AcrB member of the resistant nodulation devision (RND) super family

is the inner membrane drug antiporter (IMA) of the AcrA/B–TolC system. AcrB is

a trimer and is composed of the transmembrane domain (green), the porter domain

(orange) and the docking domain (red).

volume of 43,000 Å
3
, ranging from the outer membrane into the periplasm, is built

by the left twisted α-helical and the equatorial domain, a mixture of short α-helices

and β-strands (Andersen et al., 2001). The lower end of this cylinder is closed by

the twisted α-helices.

TolC occurs in at least two conformations, one permitting and one preventing the

passage of substrates (Koronakis et al., 2004; Zgurskaya et al., 2011). Combined in

vitro mutagenesis-conductance experiments revealed two bottlenecks, an inner one

(BNI) built by an double aspartate ring at Asp371 and at Asp374 and an outer one

(BNII) stabilized by inter- and intra-monomeric hydrogen bonds and salt bridges at

Tyr362 and Arg367 (see figure 1.6) (Andersen et al., 2002a,b). The inner bottleneck

BNI can be occluded temporarily by trivalent ions and blocked by administration

of hexaminecobalt (Co(NH3) 3+
6 ) to the extracellular side (Andersen et al., 2002a;

Higgins et al., 2004). Mutations disturbing BNII lead to (a)symmetric “partially

open” crystal structures of TolC induced by an outwards shift of helix 7 (Bavro

et al., 2008; Pei et al., 2011). MD simulation based-studies on TolC mutants affecting

BNII report a heightened flexibility compared to wild-type TolC at the periplasmic

mouth region, indicated by the triangular cross sectional area (TCA) of the Gly365

Cα atoms (Vaccaro et al., 2008). Additionally Schulz and Kleinekathöfer (2009)

identified a potassium pocket at Thr152, Asp 153 and Asp367Glu in a mutated

TolC. A proposed allosteric opening mechanism on periplasmic side is based on an

iris-like movement of the inner helices 7 & 8 to realign with the outer helices 3 & 4

(Zgurskaya et al., 2011).

Due to the fact that TolC cooperates with several inner membrane transporters

6
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α-helical Domain

Transmembrane
Domain

Equatorial
Domain

Figure 1.5: The efflux duct (ED) TolC is a homo trimer and consists of a 40

Å β-barrel domain followed by an 100 Å long α-helical domain pointing into the

periplasmic space. The α-helical domain is surrounded by the equatorial domain,

which is formed by a mixture of α-helices and β-sheets.

TolC becomes to a possible target of drug research. Drugs affecting the gating mech-

anisms of TolC could interfere its main function. A blocked, disabled or malfunc-

tioning TolC could deny substrate ejection across the outer membrane and therefor

disturb efflux systems, which are using TolC as an efflux duct. With the loss of drug

efflux functionality bacteria could also loose resistance against several drugs. To tar-

get TolC with drugs the knowledge of TolC’s gating functionality is a prerequisite

and represents one aim of the current work.

1.2.2 Pseudomonas aeruginosa

Pseudomonas aeruginosa belongs like E. coli. to the Gram-negative bacteria and

is encapsulated by two lipid membranes, an 7.48 nm outer (OM) an 5.95 nm thick

inner (IM) one and a 2.41 nm thick peptido-glycan layer in between. IM and OM

border the 23.89 nm width periplasmic space (Matias et al., 2003). Pseudomonas

aeruginosa is facultative anaerobic and can cause diseases in humans and animals.

It thrives on most man made surfaces so that this bacterium is also found on med-

ical equipment causing bacterial infections in hospitals (Balasubramanian et al.,

2013; Lyczak et al., 2000). Over the past decades several strains of Pseudomonas

aeruginosa gained resistance to many antibiotics due to intensive treatment with

antibiotics (Livermore, 2002). A major role in multidrug resistance of Pseudomonas

7
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Figure 1.6: Detailed view of the periplasmic region of TolC. Asp371 and Asp374

form an aspartate double ring and build a constriction for ions as described in An-

dersen et al. (2002b) (BNI). Asp153 and Arg367 stabilize the closed conformation

on periplasmic side by an intermonomer salt bridge (Andersen et al., 2002a; Bavro

et al., 2008; Pei et al., 2011). Gly365 is located on the loop between helices 3 & 4

and was used as an indicator for the open and close states of the outer bottleneck

(BNII) (Bavro et al., 2008; Raunest and Kandt, 2012b; Schulz and Kleinekathöfer,

2009). Opening states of the inner and outer periplasmic bottlenecks were moni-

tored via distant measurements between Asp374 and Gly365 (Bavro et al., 2008;

Raunest and Kandt, 2012b; Schulz and Kleinekathöfer, 2009). A more detailed

overview of periplasmic key residues can also be found in table 3.2.

aeruginosa plays the MexA/B–OprM efflux system capable to export a broad range

of toxic substrates (Lomovskaya et al., 2001).

The MexA/B–OprM Efflux System

The MexA/B–OprM system is a functional homologue to the AcrA/B–TolC system

and act as an multidrug efflux protein complex in Pseudomonas aeruginosa. The

underlying sequence identity between AcrA/B–TolC and MexA/B–OprM is 55%,

69% and 19%, respectively (Phan et al., 2010). While MexA is the adapter pro-

tein (AP), MexB acts an inner membrane proton drug antiporter (IMA) expelling

chemical compounds towards OprM the efflux duct (ED) (figure 1.2).

OprM The outer membrane protein OprM operates, similar to TolC, as an efflux

duct (ED. figure 1.2) for several inner membrane transporters and despite the low

sequence identity (19%), the structural similarity with a Cα RMSD of 1.6 Å shows

a close relationship between TolC and OprM (Gotoh et al., 1998; Koch et al., 2013;

Masuda et al., 2000a; Zhao et al., 1998).

OprM is a 472-residue homo trimer and is composed of an β-barrel transmem-

brane domain followed by the α-helical domain pointing into the periplasmic space.

The equatorial domain consists of a mixture of short α-helices and β-strands and sur-

rounds the α-helical domain. Analogue to TolC, at least two conformations should

8
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α-helical Domain

Transmembrane
Domain

Equatorial
Domain

Figure 1.7: The 472-residue homo trimer OprM, a homologue protein of TolC

in Pseudomonas aeruginosa is formed by the β-barrel transmembrane domain fol-

lowed by the α-helical domain, which is surrounded by the equatorial domain. In

contrast to the available TolC crystal structures, for OprM parts of the membrane

anchor could be resolved.

exist for OprM, one permeable and one impermeable for substrates. OprM’s access is

restricted on extracellular side by three inwards pointing loops and by the coiled-coil

α-helices 3,4,7 and 8 on periplasmic side in both available X-ray structures (1WP1,

3D5K) (Akama et al., 2004; Phan et al., 2010).

For the inner membrane-facing coiled-coil helix bundle an iris-like opening was

proposed due to the similarity to TolC (Zgurskaya et al., 2011). Twisting and stretch-

ing conformational changes were proposed for OprM’s gating mechanism based on

elastic network normal-mode analysis (Phan et al., 2010). Both proposals do not

consider the possible role of ions and their influences on OprM gating and the un-

derlying gating mechanisms still remain unclear.

Similar to TolC, OprM interacts with several inner membrane transporters and

becomes through this versatility to a possible target of drug discovery Masuda et al.

(2000b)Masuda et al. (2000a). Chemical compounds affecting OprM’s gating mech-

anisms might disturb OprM’s role as an exit duct. A blocked or malfunctioning

OprM could permit substrate transport across the outer membrane and therefor

interfere efflux systems, which are using OprM as an exit gate. With a loss of drug

efflux ability bacteria could also loose resistance against drugs. Whereas the un-

derstanding of the gating mechanisms of OprM is crucial to develop drugs against

OprM, the exploration of these mechanisms are another aim of this work.
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1.3 Cavity Detection

In the early 90s of the last century the Human Genome Project started to determine

and to identify the human genes and published a complete human base pair sequence

in 2001 (Lander et al., 2001). Based on that and partner projects containing the

genomes of E.coli, the fruit fly and the laboratory mouse sequence analysis began

to identify genes, their role and functionality in the organisms.

The products of this sequence oriented research; proteins and peptides can be

spatially solved via X-ray crystallography, NMR and electron microscopy. In 1971

the protein data bank (PDB) was established at Brookhaven National Laborato-

ries (BNL) as an archive for biological macromolecular crystal structure (Bernstein

et al., 1977). In the first decades until the invention of the world wide web and the

migration of the data to the Research Collaboratory for Structural Bioinformatics

(RSCB) in 1998, the usage of the PDB was limited to a small group of researchers

involved in structural research via data transfer on magnetic media (Berman et al.,

2000).

Alongside the PDB, hosted in the USA, structural databases arose in Europe

at the European Bioinformatics Institute (EBI) and in Japan at the Institute for

Protein Research. In 2003 these databases were condensed into the world wide pro-

tein data bank (wwPDB) a single and uniform database for structural data (Berman

et al., 2003). The open access of the wwPDB enables researches around the globe

to create structure based studies exploring protein functionality. Over the years the

number of solved structures raise up to 89,212 at the time of writing (2013).

Figure 1.8: Cavity types: Clefts on the protein surface (A), Tunnel like cavities

(B), Protein interior cavities (C)

Beside the atomistic details, solved structures (PDB entries) do not describe

voids in a direct way. These voids or cavities are often hints for active sites and can

10
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identify open and close states of proteins or explore binding pockets located in clefts

of the protein surface (figure 1.8). Thus the knowledge of cavities onside and inside

the protein can be very helpful in understanding protein functionality.

Table 1.1: Commonly used cavity detection tools and their methods

Rolling sphere Voronoi diagram Pathway Fill voids

3V (Voss and Gerstein, 2010) x

Cast (Liang et al., 1998) x

CAVER 1&2 (Petrek et al., 2006) x x

Chunnel (Coleman and Sharp, 2009) x x

dxTuber (Raunest and Kandt, 2011a) x

Grasp (Nicholls et al., 1991) x

HOLE (Smart et al., 1996) x

Hollow (Ho and Gruswitz, 2008) x x

LIGSITE (Hendlich et al., 1997) x

MOLE (Petrek et al., 2007) x x

MoleAxis (Yaffe et al., 2008b) x x

PROPORES (Lee and Helms, 2011) x

PoreWalker (Pellegrini-Calace et al., 2009) x x

PyMOL (Delano, 2002) x

SURFNET (Laskowski, 1995) x

unnamed (Exner et al., 1998) x

unnamed (Kim et al., 2008) x x

Voidoo (Kleywegt and Jones, 1994) x

1.3.1 Geometric Cavity Detection Methods

Over the last decades a wide range of prediction tools for active sites and cavity

detection tools have been introduced. While tools like SILCS (Guvench and MacK-

erell, 2009) and Q-SiteFinder (Laurie and Jackson, 2005) use chemical properties

of the specimen to identify active sites and binding pockets, cavity detection tools

use geometrical approaches to explore cavities in their entirety. Based on differ-

ent geometrical approaches cavity detection tools can be divided into four major

groups (see table 1.1). In the following a brief overview of these groups is given and

prominent members are listed in table 1.1.

Rolling Sphere Approach

The rolling sphere approach introduced by Richards (1977) creates a molecular sur-

face representation by rolling a probe sphere over the van der Waals (vdW) repre-

sentation of atoms. In 1983 Connolly (1983b) developed an algorithm to determine

the three dimensional surface representation of the solvent accessible surface (SAS)

and of the solvent excluded surface (SES) for molecules (figure 1.9).

Cavity detection tools applying this approach typically use a mixture of varying

probe radii in combination of SAS- and SES-analysis to identify cavities (Delano,

2002; Voss and Gerstein, 2010) or combine this approach with voronoi or pathway

approaches as described in (Coleman and Sharp, 2009; Ho and Gruswitz, 2008; Kim

et al., 2008).

11
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r

Probe

Solvent excluded surface (Connolly surface)

Solvent accesible surface

Atoms (vdW)

Figure 1.9: In order to create a surface representation a probe sphere is rolled over

the van der Waals (vdW) representation of a given structure. While the surface

described by the edge of the sphere generates the solvent excluded surface (SES) or

Connolly surface, the surface based on the center of the probe is defined as solvent

accessible surface (Richards, 1977).

Voronoi Diagram Approach

A Voronoi diagram consists of:

• A set of seeds A = {a1, a2, ... an}

• Voronoi regions V R = {V R1, V R2, ... V Rn}

• Voronoi edges E = {e1, e2, ... en}

• Voronoi vertices V = {v1, v2, ... vn}

Based on the set of seeds A a Voronoi diagram divides a given space into Voronoi

regions V R. Each region has a central seed ai ∈ A and consists of all points, which

are closer to ai than to other seeds. Two neighboring Voronoi regions V Ri, V Rj ∈
V R are limited by a Voronoi edge ei ∈ E, which is equidistant to the seeds ai, aj ∈ A
at all of its points. Voronoi edges E are limited by Voronoi vertices V , which are

equidistant to three neighboring Voronoi seeds ai, aj , ak ∈ A (figure 1.10).

Voronoi diagrams are often used to identify possible paths through voids located

inside proteins (Chovancova et al., 2012). Some algorithms combine pathway ap-

proaches with Voronoi diagrams. Beginning from an initial coordinate algorithms

follow the Voronoi edges in order to find possible exit paths from the initial coordi-

nate (Chovancova et al., 2012; Petrek et al., 2007; Yaffe et al., 2008b). Beside the

exit path approaches Voronoi methods are combined with rolling sphere approaches

to identify pockets on the protein surface (Kim et al., 2008).

12
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Figure 1.10: Simplified 2D representation of a Voronoi diagram for the six seeds

a1 to a6 containing ten Voronoi edges e1 to e10, five Voronoi vertices v1 to 10 and

six Voronoi regions V R1 to V R6. The Voronoi region V R1 is defined by its central

seed a1 and all points that are closer to a1 than to other seeds. Voronoi regions

V R1 and V R2 are limited by the Voronoi edge e1, which is equidistant to the

seeds a1 and a2. the Voronoi edge e1 is limited by the Voronoi vertex v1, which is

equidistant to the seeds a1, a2 and a6.

Pathway Approach

Pathway approaches explore cavities via paths and place spheres along the discovered

path to fill and describe the underlying cavity. These paths are either detected via

cost functions (Pellegrini-Calace et al., 2009; Petrek et al., 2006) or via Voronoi

diagrams (Chovancova et al., 2012).

Some tools also need parameters like user specified initial coordinates of the

cavity and number of exit paths and analyze only one cavity at once (Petrek et al.,

2006; Yaffe et al., 2008a).

Fill Voids Approach

Tools, using the filling voids approach, usually fill cavities via grid based algorithms.

Grid points are classified as protein internal (cavity) or protein external points.

Depending on the method a range of altering sphere radii (Kleywegt and Jones,

1994; Laskowski, 1995) or voxels or spheres of the same size (Exner et al., 1998;

Hendlich et al., 1997; Ho and Gruswitz, 2008; Lee and Helms, 2011; Raunest and

Kandt, 2011a) are used to fill the initially detected cavities.
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1.3.2 Dynamics and Cavity Detection Tools

The increasing use of MD simulations of molecular complexes discovered more and

more the underlying dynamics of proteins and peptides and indirectly also the dy-

namics of their voids. MD simulations provide an ensemble of protein conformations,

which could be used to describe cavities over time. For example active membrane

transporters undergo a set of stages to trans-locate substances across a membrane.

These conformational changes have an effect on its cavities, which were used to dis-

tinguish between open and close states of a transporter (Kandt and Tieleman, 2010).

Since no cavity detection tool based on dynamics was available at that time, Kandt

and Tieleman (2010) calculated mass weighted protein density (MPD) maps for time

frames of different MD simulation setups and identified open and close states of the

transporter through MPD slices and residues located at the entrance region. This

cavity detection has the disadvantage that one MPD slice only represents only one

layer of protein density and that the detection was done by hand. One aim of this

work is to develop a new cavity detection tool based on solvent and protein dynamics

since all prior introduced cavity detection tools do not consider protein and water

dynamics during their cavity analysis and thus cavity detection tools are limited to

static structures.
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1.4 Objectives of this Work

1.4.1 TolC – Gating

The first aim of this work is to explore TolC’s gating mechanisms on extracellular

and periplasmic side. For this purpose multicopy (Caves et al., 1998; Das et al.,

2000; Kandt and Tieleman, 2010; Kandt et al., 2006) unbiased molecular dynamics

(MD) simulations were calculated for membrane embedded TolC in a NaCl / water

environment (Raunest and Kandt, 2012b). On extracellular side TolC opens and

closes freely suggesting the absence of a gating mechanism. On periplasmic side ini-

tially open motions were measured at the tip loops of TolC (BNII). The successive

binding of two sodium ions in one simulation after 90 ns of simulation time trig-

gered the closing of BNII and caused a more closer conformation of TolC compared

to available X-ray structures. The inner bottleneck formed by an Asp double ring

(Asp371 and Asp374) did not open up in the simulations unless all NaCl was re-

moved. This removal of all ions induced also reopening of BNII and a slight opening

of BNI pointing to a sodium dependent lock on the periplasmic side.

As a second step we introduced, to the prior TolC setup, the docking domain

of AcrB (AcrB-DD) and placed it 1 nm apart from TolC based on orientations of a

docked model published by Symmons et al. (2009). Multicopy MD simulations were

calculated and whereas in three simulations AcrB-DD drifted apart in one the AcrB-

DD docked onto TolC and results in a tighter binding after 1.05 µs of simulation time.

On extracellular side again TolC opens and closes freely and moreover prefers an

open conformation in presence of the AcrB-DD on extracellular side. On periplasmic

side the AcrB-DD stabilized the open conformation of the tip loops between helix

7 & 8 but neither opened nor relax the inner bottleneck (BNI) formed by Asp371

and Asp374 meaning that either longer simulation time is needed or another part is

needed to open TolC on periplasmic side.

1.4.2 OprM – Gating

Analogue to the first aim of this work unbiased multicopy MD simulations were cal-

culated for OprM in a membrane / NaCl–water environment. Similar to TolC OprM

opens and closes freely on extracellular side, which also negate a gating function on

extracellular side.

However, on periplasmic side a different behavior in comparison to TolC was

noticed for OprM. After the initial opening of the tip loops neither heighten sodium

densities nor closing motions was noticed during the simulations. Moreover, the inner

bottleneck located at the aspartate ring located at Asp416 opens slightly during all

simulations. Additionally a new sodium hotspot located between the equatorial

domain and the aspartate ring was identified. The absence of closing motions for

the lower tip loops of OprM and the low sodium densities hints for a different gating

functionality in comparison to TolC.
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1.4.3 Cavity Detection

The third aim of this work is to develop a novel cavity detection tool, which takes

protein and solvent dynamics into account. All cavities of a macromolecular com-

plex should be detected during one analysis and should be saved distinguishable.

Additional further, results should be stored in a well known file format in order to

allow users to post process resulting cavity data. For this purpose it was assumed,

that solvent molecules of MD trajectories can be used for cavity detection. To put

it at its simplest: Solvent molecules highlight biomolecular cavities through their

diffusion during a MD simulation and the separation of internal solvent molecules

from exterior ones represent the distribution of cavities inside a biomolecular struc-

ture. For this purpose we developed dxTuber a novel cavity detection tool (Raunest

and Kandt, 2011a).

Using the VolMap plugin of VMD (Humphrey et al., 1996) average mass weighted

spatial density maps of solvent and protein are calculated from trajectories and

stored in the OpenDX file format in a grid representation. dxTuber uses these den-

sity maps as input for cavity detection. In a first step interior solvent voxels (ISVs)

are separated from exterior solvent voxels (ESVs). As a second step adjacent ISVs

are assembled to cavities. These resulting cavities can be stored either individually

in OpenDX or in PDB file format. In the latter case individual cavities are separated

via the atom name field of the PDB file and solvent densities are stored as B-factors.

After cavity detection dxTuber can extract cavity volume and the cross-sectional

area along a principle axis. For convenience dxTuber analysis can be executed

via graphical user interface (GUI) or via command line interface (CLI). Both ver-

sions of dxTuber are licensed under the GPL v21 and can be downloaded at http:

//www.csb.bit.uni-bonn.de/dxtuber.html or at http://code.google.com/p/

dxtuber/.

1http://www.gnu.org/licenses/licenses.html#GPL
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Chapter 2

Methods

The current chapter describes the theoretical background of molecular dynamics

(MD) simulations. Detailed descriptions of the applied simulations can be found in

chapters 3, 4, 5 and 6.

2.1 Molecular Dynamics Simulations

Molecular dynamics (MD) simulations describe the movement of atoms in a given

biomolecular simulation system based on Newtons equation of motions F = m ∗ a
with F as force acting on an atom m as mass and a as the acceleration. The forces

acting on each atom can be divided in internal and external ones. While bonds,

(dihedral-) angles, electrostatics and van der Waals (vdW) interactions belong to

the internal forces, pressure and temperature are part of the external forces. The

main intention of MD simulations is to gain and quantify macromolecular dynamics,

which can neither be achieved nor observed in classical experimental procedures in

such detail.

Based on collisions Alder and Wainwright (1957) introduced in the late 1950’s

the first molecular dynamics algorithm. From that on many MD packages have

been developed (Brooks et al., 2009; Case et al., 2005; Hess et al., 2008; John-

ston et al., 2005; Phillips et al., 2005); computers become faster and algorithms

were improved fulfilling the requirements for establishing MD simulations of solu-

able proteins (Karplus and McCammon, 2002) and membrane proteins (Gumbart

et al., 2005; Kandt et al., 2007). Furthermore groups reach simulation times of mil-

liseconds for small molecules (Shaw et al., 2009) and an atomistic simulation of a

complete virus of more than 50 ns (Freddolino et al., 2006).

2.1.1 Equations of Motion

Molecules can be described by the Schrödinger equation,

HΨ(R, r) = EΨ(R, r) (2.1)
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with H as the Hamilton operator considering all atomic nuclei of the system r and

their electrons R, the wave function Ψ regarding the dynamics, R and r representing

the positions of the electrons and nuclei and E the energy of the system. Equation

2.1 can only be solved for the hydrogen atom and approximations are necessary

to describe bigger systems. Since the nucleus of an atom represents more than

99% of the atom mass the electrons move much faster than the nucleus. Born

and Oppenheimer divided equation 2.1 into electronic and nuclear components and

built the basis for computational simulation through their approximation (Born and

Oppenheimer, 1927).

The force Fi acting on each atom i can be calculated by taking the negative

gradient of the potential energy function νi. The latter one consists of a set of

equations that empirically describe (non-) bonded interaction, artificial restrains

and external forces like barostats and thermostats. νi is called force field (equation

2.2) (Kandt et al., 2007).

Fi = −∇νi (2.2)

νi =
∑

νbonded interactions +
∑

νnon−bonded interactions

+
∑

νexternal forces +
∑

νrestraints

The application of these forces molecules allows to calculate the atom movement

over time based on Newton’s law of motion, with Fi as force, mi as the mass of the

atom i and ai as acceleration.

Fi = mi ∗ ai (2.3)

Starting from the atomic positions ri(t), the forces Fi(t) acting on each atom at the

time t are calculated for all atoms i. By knowing the forces Fi(t), the accelerations

ai can be calculated. Based on the assumption, that the forces Fi(t) acting on the

atoms i are constant during the time step ∆t and initial velocities at t0 = 0 are

obtained by Gaussian or Boltzman distributions to achieve a simulation system at

a desired temperature, new atom positions ri(t + ∆t) and velocities vi(t + ∆t) are

calculated. Several on Taylor series based algorithms have been invented to integrate

the equations of motions (Hockney, 1970; Schofield, 1973; Verlet, 1967). The most

common one is the verlet leap frog algorithm from Hockney (1970). Based on the

initial velocities at t0 = 0, it calculates stepwise coordinates ri(t + ∆t) and new

velocities vi for each atom i for each timestep t+ 1
2 based on the velocities at t− 1

2

as described in equations 2.4. Thus the atomistic movements can be calculated over

small increments of time.

vi

(
t+

1

2
∆t

)
= vi

(
t− 1

2
∆t

)
+ ∆t a(t) (2.4)

ri (t+ ∆t) = ri(t) + ∆t vi

(
t+

1

2
∆t

)
The vibration of covalently bond hydrogens represents the fastest movements in

biological MD simulations and limits the integration step ∆t to 1 fs. To achieve
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longer MD simulations methods like SHAKE (Ryckaert et al., 1977) and LINCS

(Hess et al., 1997) eliminate this degree of freedom and allow an integration step

size of 2 fs for all atom simulations.

2.1.2 Force Field and Potential Energy Function

Through force fields the forces acting on each atom i are calculated at each time step.

A force field is built by a sum of bonded-, non-bonded- and optional restraining-

potential energy functions ν describing the interactions between all atoms i based on

experimental measured reference values and empirically determined force constants

(equation 2.5).

ν(i) =
∑
i

νbonds +
∑
i

νangles +
∑
i

νdihedrals︸ ︷︷ ︸
bonded interactions

+

∑
i

νelectrostatic +
∑
i

νvan der Waals︸ ︷︷ ︸
non−bonded interactions

+
∑
i

νrestraints (2.5)

Bonded Interactions

Covalent bonds fluctuate around an average length (Haynes, 2012) and are modeled

as harmonic potentials, that describe the increase of energy as the bond length bij
deviates from its reference value bij0 . The empirical determined force constant kbij
describes the rise of the function dependent on atom types of atoms i and j (equation

2.6 and figure 2.1a).

∑
νbonds(ijn) =

bonds∑
n=1

1

4
kbij
(
b2ijn − b

2
ij0

)2
(2.6)

Analogue to bonds, angles θijk also fluctuate around a reference θ0
ijk and are also

described by an empirical determined force constant κθijk of involved atoms i, j and

k (equation 2.7 and figure 2.1b).

∑
νangles(θijkn) =

angles∑
n=1

1

2
κθijk

(
cos (θijkn)− cos

(
θ0
ijk

))2
(2.7)

Torsions along a covalent bond are implemented via the angle φijkl between two

planes, which are spanned by the atoms i, j, k and l (see figure 2.1c), the empirical

determined force constant kφijkl, m the number of minima between 0 to 360 degrees

and the first minima given by φ0
ijkl (equation 2.8 and figure 2.1c).

∑
νdihedrals (φijkln) =

dihedals∑
n=1

kφijkl
(
1 + cos

(
mφijkln − φ0

ijkl

))
(2.8)
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Improper dihedral angles ξijkl are used to stabilize planar groups like aromatic

rings and peptide bonds. ξijkl is spanned by the atoms i, j, k and l. Atoms i − l
are either consecutively bond in case of the peptide bond or atoms j − l are bound

radial to atom i for ring structures. The improper angle ξijkl is located between the

planes of i, j, k and j, k, l and is implemented as a harmonic potential with ξ0
ijkl

as the reference angle and κξijkl as the empirical force constant (equation 2.9 and

figure 2.1c, d).

∑
νimproper dihedrals (ξijkln) =

improper
dihedrals∑
n=1

1

2
κξijkl

(
ξijkln − ξ0

ijkl

)2
(2.9)

θi

b
i j

j

k
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i
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j
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Figure 2.1: Bonded interactions (a-d) are implemented in GROMACS (Berendsen

et al., 1995a) via harmonic (a,b,d) and periodic potentials (c). Coulomb- (e) and

Lennard-Jones potentials (f) describe the non-bonded interactions (e,f).
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Non-bonded Interactions

Non-bonded interactions are divided into electrostatics and van der Waals (vdW)

interactions. Electrostatics describe attractive and repulsive interactions between

charged atoms and are modeled using Coulomb potentials with the atomic charges

qi and qj , their distance dij and ε0 the dielectric constant (equation 2.10 and figure

2.1e).

∑
νCoulomb (dijn) =

pairs(ij)∑
n=1

qiqj
4πε0dijn

(2.10)

In atoms the asymmetric distribution of electrons induce transient dipoles, which

cause short range electrostatics. These electrostatics, also called van der Waals in-

teractions and are divided in an attractive and repulsive term. While the approx-

imation of two dipoles represents the attractive term, the repulsive one describes

the repelling force when the distance of atoms is to small and electron radii overlap.

vdW forces can be described via Lennard-Jones potentials (Lennard-Jones, 1931)

with (σij/dij)
12 as the repulsive and (σij/dij)

6 as the attractive term, σij the distance

at which the potential is zero, ε the depth of the potential well and dij the distance

between atoms i and j (equation 2.11 and figure 2.1f).

∑
νLennard−Jones (dijn) =

pairs(ij)∑
n=1

4ε

((
σij
dijn

)12

−
(
σij
dijn

)6
)

(2.11)

2.1.3 Restraints

Potentials can additionally be added to the force field either to avoid unwanted

movements or to steer the simulation system. For membrane proteins position re-

straints are a common method to equilibrate the membrane after the insertion of the

protein into the membrane. In this case position restraints are applied on the protein

for a short MD simulation in order to relax the membrane. Position restraints are

described by the reference position Ri, the force constant ki and the current position

ri of the atom i (equation 2.12).

∑
ν(rin)postition restraints =

restraints∑
n=1

1

2
kin |rin −Rin |

2 (2.12)

2.1.4 Periodic Boundary Conditions

In computational simulations the “world” or the experiment is limited by a simu-

lation box and within this box edge effects will distort results more and more over

time. To eliminate this error translated copies of the simulation box are placed

surrounding the original box effecting that atoms passing an edge will enter on an

opposite side into the original box (figure 2.2). The box size or the unit cell should be
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i' i' i'

i'ii'

i' i' i'

Figure 2.2: Two dimensional representation of periodic bondary conditions

(PBC). Atoms that leave a simulation system a side enter the original system

on the opposite side.

chosen wisely, because within a too small box protein atoms interact with translated

copies from other boxes. These interactions can be avoided by a bigger simulation

box, but the increase of the box size causes also an increase of computational time

for a simulation due to the increased amount of solvent inside the system.

2.1.5 External Forces

The described force field implementation (section 2.1.2) assumes so far a constant

number of particles (N), a constant volume (V) and energy (E), while pressure (P)

and temperature (T) are variable. This NVE simulating engine is not compatible

with experiments in vivo, where usually pressure and temperature are constant. To

achieve a simulation engine with a constant number of particles (N), a constant

pressure (P) and constant temperature (T) temperature and pressure need to be

controled by the simulation engine. The kinetic energy Ekin of a system can be

calculated at each timestep based on the product of the massesmi and their velocities

vi. This energy is translated into temperature via the Boltzmann constant k and

the degrees of freedom Ndf (equation 2.13).

Ekin =
1

2

N∑
i=1

miv
2
i =

1

2
NdfkT (2.13)

dT

dt
=

T0 − T
τ
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Constant temperature is achieved by means of coupling the system to an external

temperature bath, as introduced by Berendsen et al. (1984). Here the temperature

T is slowly corrected based on a reference external bath T0 with the time constant τ .

The modified temperatures result in a rescaling of the velocity vectors vi (equation

2.13).

The pressure P of the entire system is calculated via the difference of the virial

tensor (Clausius, 1870) and the kinetic energy Ekin and the volume V of the system.

The virial itself is defined by the sum of the dot products of the atom positions ri
and the acting forces Fi (equation 2.14).

P =
2

V
(Ekin − Ξ) (2.14)

(excluding pbc :) Ξ = −1

2

N∑
i=1

ri ⊗ Fi

P =
trace (P)

3

Analogue to temperature (equation 2.13) pressure is kept constant via an external

reference pressure bath P0 leading to rescaled atom positions ri (equation 2.15).

dP

dt
=
P0 − P
τp

(2.15)

2.2 Energy Minimization

An initial system usually contains unfavored atom contacts which lead to a high

kinetic energy of involved atoms. Through energy minimization algorithms these

locally misplaced atoms can be rearranged.

The combination of atom positions of the initial system represents a point on

a potential energy landscape. The steepest descent method (Petrova and Solov’ev,

1997) follows iteratively the steepest descent in a zig-zag manner to find a local

minimum on this potential energy landscape. The method is a common energy

minimization algorithm to minimize the potential energy of an initial system. For

this purpose the steepest descent method is applied on the potential energy surface

to find a local minimum.

2.3 Workflow of an MD Simulation

MD simulations are based on static structures gained either from experimental pro-

cedures such as X-Ray crystalogrophy, nuclear magnetic resonance spectroscopy

(NMR), electron microscopy or from theoretical models like molecular modeling, ab

initio modeling or structures taken from previously calculated MD simulations.
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Then the compounds of interest are inserted into a simulation box. In case of an

membrane protein the protein needs to be embedded into a lipid bilayer. Then the

system is salvated into a water and salt solution. The next step is to minimize the

potential energy of the system to eliminate sterical clashes. For membrane proteins

an additional membrane equilibration simulation, introducing position restraints for

the protein, over several nanoseconds is recommended. Afterwards the main loop of

an MD simulation can be executed:

1. Calculate the potential energy functions

2. Determine forces acting on the atoms

3. Calculate the velocity vectors

4. Scale velocity vectors by means of temperature coupling

5. Compute new atom coordinates

6. Scale atom coordinates by means of pressure coupling

7. Append coordinates, forces and velocities to output files (if required)

8. If end of simulation is not reached: go to 1

9. Store coordinates, forces and velocities in output files

2.4 GROMACS

The Groningen Machine for Chemical Simulations (GROMACS) is a molecular dy-

namics (MD) package capable to run MD simulations on symmetric multiprocessing

(SMP) systems, clusters, supercomputers and on graphics processing units (GPU)

via Open MPI and OpenMM (Eastman and Pande, 2010; Gabriel et al., 2004; Hess

et al., 2008). Beside the simulation routines, a set of tools for the analysis of resulting

simulation data are part of the GROMACS package.

While initially GROMACS was released by Herman Berendsen’s group, depart-

ment of Biophysical Chemistry of Groningen University (Berendsen et al., 1995a),

today a global community under the leadership of Stockholm Center for Biomem-

brane Research & Biomedical Centre in Uppsala develops GROMACS. It is licensed

as free software under the GNU General Public License1 and can be compiled on

Macintosh, Unix/Linux and Windows machines.

1http://www.gnu.org/licenses/licenses.html#GPL
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2.5 Molecular Viewer

In the field of MD simulations molecular viewers are used to generate protein rep-

resentations to illustrate results and to discuss biological implications. Beside the

spatial representation of biomolecular structures, most viewers also contain a broad

set of tools for further analysis like e.g. distance measurements, cavity detection or

RMSD calculations.

2.5.1 PyMOL

PyMOL is an open source molecular viewer and was introduced in 2000 by War-

ren Lyford DeLano (Delano, 2002). In this study many images were rendered via

PyMOL (e.g. all CAVER & SURFNET representation in chapter 6).

2.5.2 VMD

Visual molecular dynamics (VMD) is a molecular viewer and acts as a graphical

interface for NAMD (Not (just) Another Molecular Dynamics program Phillips et al.

(2005)). It was introduced by Humphrey et al. (1996) and is distributed free of

charge for non-commercial use. In the current work most images were rendered via

VMD and most angles and atom distances were monitored with VMD (see chapters

3, 4 and 5 for detailed descriptions). Density maps created by the VolMap plugin

of VMD are mandatory input files of the cavity detection tool dxTuber, which is

introduced in chapter 6.
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Chapter 3

Locked on One Side Only:

Ground State Dynamics of the

Outer Membrane Efflux Duct

TolC

The outer membrane channel TolC acts as an efflux duct for several inner membrane

transporters. This versatility makes TolC to a possible target of drug research. A

blocked, disabled or malfunctioning TolC could deny substrate export across the

outer membrane and therefor disturb efflux systems which are using TolC as an

efflux duct. The understanding of TolC’s gating functionality is a prerequisite to

target TolC with drugs. Hence we examined TolC’s gating mechanism on extracel-

lular and periplasmic side in the current chapter.

Adapted from:

Raunest, M. and Kandt, C. (2012b). Locked on one side only: ground state dynamics

of the outer membrane efflux duct tolc. Biochemistry, 51(8):1719–1729
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3.1 Abstract

Playing a major role in the expulsion of antibiotics and the secretion of cell toxins

in conjunction with inner membrane transporters of three protein superfamilies, the

outer membrane channel TolC occurs in at least two states blocking or permitting the

passage of substrates. The details of the underlying gating mechanism are not fully

understood. Addressing the questions of extracellular access control and periplasmic

gating mechanism, we conducted a series of independent, unbiased 150 - 300 ns

molecular dynamics simulations of wild-type TolC in a phospholipid membrane/150

mM NaCl water environment.

We find that TolC opens and closes freely on the extracellular side, suggesting

the absence of a gating mechanism on this side in the isolated protein. On the

periplasmic side, we observe the outer periplasmic bottleneck region adopting in all

simulations a conformation more open than the TolC wild-type crystal structures

until in one run the successive binding of two sodium ions induces the transition

to a conformation more closed than any of the available TolC X-ray structures.

Concurrent with a heightened sodium residence probability near Asp374, the inner

periplasmic bottleneck region at Asp374 remains closed throughout the simulations

unless all NaCl is removed from the system, inducing a reopening of the outer and

inner bottleneck. Our findings suggest that TolC is locked only on the periplasmic

side in a sodium-dependent manner.
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3.2 Introduction

A member of the outer membrane efflux protein (OEP) family, TolC is a channel

protein in the outer membrane of Escherichia coli (Koronakis et al., 2004; Zgurs-

kaya et al., 2011) facilitating the transport of various toxic molecules (Benz et al.,

1993; Fralick, 1996). Playing a major role in the expulsion of antibiotics (Fralick

and Burns-Keliher, 1994; Sulavik et al., 2001) and the secretion of cell toxins (Del-

gado et al., 1999; Haynes, 2012; Wandersman and Delepelaire, 1990), TolC is highly

versatile, functioning in conjunction with inner membrane transporters of the ATP

binding cassette (ABC), resistance nodulation division (RND), or major facilita-

tor (MF) type (Moussatova et al., 2008; Nikaido, 2011; Saier and Paulsen, 2001).

Interaction of the inner membrane transporter and outer membrane efflux duct is

mediated by specialized periplasmic adaptor or membrane fusion proteins anchored

to the inner membrane (Dinh et al., 1994; Zgurskaya, 2009).

A prominent example of a TolC-dependent transport system is the AcrAB-TolC

multidrug efflux pump employing the energy of a proton gradient over the inner

membrane to power the expulsion of a broad range of substrates from the cell

(Nikaido, 2011). Although predominantly involved in substrate export, TolC is also

known to be used as a backdoor by cell toxins like colicins to penetrate the outer

membrane (Cascales et al., 2007; Zakharov et al., 2004). Whereas channels like the

cell toxin α-hemolysin, whose individual and unfolded subunits are also exported

through TolC (Zgurskaya et al., 2011), are constantly open, TolC access is regulated

with the protein occurring in at least two states permitting or blocking the passage

of substrates (Koronakis et al., 2004; Zgurskaya et al., 2011).

The details of the underlying gating mechanism are not fully understood (Zgurs-

kaya et al., 2011). The first crystal structure of the wild-type protein (Koronakis

et al., 2000) revealed that TolC is a homotrimer, resembling the shape of a hollow

cylinder organized in three domains. From a membrane-embedded β-barrel, coop-

eratively formed by all three monomers, an α-helical domain extends ≈ 100 Å into

the periplasmic space surrounded in its middle section by the ringlike structure of

an α/β equatorial domain (Koronakis et al., 2004; Zgurskaya et al., 2011).

TolC access was found to be restricted on both ends with three extracellular

loops oriented toward the center of the β-barrel, limiting access to the channel

to compounds with diameters of ¡ 7 - 8 Å in the wild type (Higgins et al., 2004;

Koronakis et al., 2000) and 7.2 - 10 Å in the mutant X-ray structures (Bavro et al.,

2008; Pei et al., 2011). On the periplasmic side, the dense packing of the tip regions

of 12 α-helices constricts the TolC channel to a diameter of ≈ 4.4 Å in the wild type

(Higgins et al., 2004; Koronakis et al., 2000) and 4 - 7.8 Å in the mutant crystal

structures (Bavro et al., 2008; Pei et al., 2011).

Whereas the occurrence of gating on the extracellular side is unclear (Bavro

et al., 2008; Higgins et al., 2004; Koronakis et al., 2000; Pei et al., 2011), combined

mutagenesis-conductance experiments (Andersen et al., 2002a,b) and subsequent
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wild-type (Higgins et al., 2004) and mutant TolC crystal structures (Bavro et al.,

2008; Pei et al., 2011) indicated the existence of two periplasmic bottlenecks: an

inner bottleneck (BNI) at Asp371 and Asp374 where the binding of TolC-blocking

hexaamminecobalt occurs (Andersen et al., 2002b; Higgins et al., 2004) and an outer

bottleneck (BNII) at Tyr362 and Arg367 involved in inter- and intramonomeric hy-

drogen bonds and salt bridges stabilizing a closed conformation (Andersen et al.,

2002a). Single and double mutations of these residues lead to increased ion conduc-

tance (Andersen et al., 2002a) as well as crystal structures showing partial symmetric

(Pei et al., 2011) and asymmetric (Bavro et al., 2008) opening toward the periplasm

(table 3.1).

Computational studies of TolC focused on molecular dynamics (MD) simula-

tions comparing the wild type and BNII mutants (Schulz and Kleinekathöfer, 2009;

Vaccaro et al., 2008), as well as elastic network normal-mode analyses exploring

possible opening mechanisms (Phan et al., 2010). In a 20 ns MD study of wild-

type and Tyr362Phe/Arg367Ser TolC, the mutant was reported to exhibit height-

ened flexibility in the periplasmic mouth region, while for the extracellular loops,

a gating function was proposed on the basis of the observed closing motions (Vac-

caro et al., 2008). Another study compared wild-type, Tyr362Phe/Arg367Glu, and

Tyr362Phe/Arg367Asp TolC in a series of 20 - 30 ns MD simulations reporting

wild-type-like closed periplasmic mouth conformations stabilized by potassium ions

coordinated by Thr152, Asp153, and Glu/Asp367 in the mutant structures. Only

when the potassium binding sites were emptied using an outer electric field was

a BNII opening trend observed (Schulz and Kleinekathöfer, 2009). Beyond TolC,

other multidrug efflux pump components have also recently been investigated com-

putationally (Fischer and Kandt, 2011; Phan et al., 2010; Schulz and Kleinekathöfer,

2009; Schulz et al., 2011; Vaccaro et al., 2006; Vargiu et al., 2011; Yao et al., 2010).

Addressing the questions of extracellular access control and periplasmic gating

mechanism, we performed nine independent, unbiased MD simulations of membrane-

embedded wild-type TolC in a 150 mM NaCl solution sampling TolC conformational

dynamics on a 150 - 300 ns time scale. Opening and closing freely on the extracellular

side, TolC opens in the BNII region on the periplasmic side until the successive

binding of two sodium ions preferably interacting with Asp371, Thr366, Thr368,

and Asp153 induces closure.

The resulting BNII conformation is more closed than any of the available crystal

structures. Concurrent with a third site of heightened sodium residence probability

at Asp374, TolC remains closed in the BNI region unless the removal of all NaCl

from the system induces an opening response of BNI followed by a reopening of

BNII. Displaying a so far unreported high degree of conformational dynamics in

the channel mouth regions, our findings suggest that TolC is locked only on the

periplasmic side in a sodium-dependent manner.
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3.3 Experimental Procedures

Molecular Dynamics Simulations. MD simulations were performed employing GRO-

MACS version 4.0.3 (Berendsen et al., 1995a; Hess et al., 2008) and the GROMOS96-

53a6 force field (Oostenbrink et al., 2004), using the 1EK9 TolC crystal structure

(Koronakis et al., 2000) as a starting structure. The protein was inserted in a pre-

equilibrated 9.6 nm x 9.6 nm palmitoyloleoylphosphatidylethanolamine (POPE) bi-

layer patch (Tieleman and Berendsen, 1998) using INFLATEGRO (Kandt et al.,

2007). The system was solvated with simple point charge water molecules (Berend-

sen et al., 1981) and 170 Na+ and 152 Cl− ions, yielding a 150 mM NaCl solution

and a total system charge of zero (figure 3.1A).

Standard protonation states were assumed for titratable residues. After a 20 ns

membrane equilibration with protein atoms position-restrained using a force con-

stant of 1000 kJ
mol nm2 , five independent MD runs with different starting velocities

were performed, each 150 ns in length. Of these initial simulations, one was ex-

tended in four independent copies to 300 ns: two copies without any modifications,

one copy with four Na+ ions removed, and one copy from which all NaCl ions had

been deleted. In the simulations, all bond lengths were constrained by LINCS (Hess

et al., 1997) so that an integration time step of 2 fs could be chosen.

Systems were simulated at 310 K, maintained separately for protein, lipids, and

water by a Berendsen thermostat (Berendsen et al., 1984) with a time constant (τT )

of 0.1 ps. Pressure coupling was done employing a Berendsen barostat (Berendsen

et al., 1984) using a 1 bar reference pressure and a time constant of 4 ps. Semi-

isotropic pressure coupling was employed to permit bilayer fluctuations in the mem-

brane plane. Electrostatic interactions were calculated using particle mesh Ewald

(PME) summation (Darden et al., 1993; Essmann et al., 1995), and twin range

cutoffs of 1.0 and 1.4 nm were applied for computing the van der Waals interactions.

Analysis

Similar to the analysis described in ref (Schulz and Kleinekathöfer, 2009), the TolC

opening state on the periplasmic side was monitored by calculating the triangular

cross-sectional area (TCA) defined by the α-carbons of Asp374 and Gly365. On

the extracellular side, the opening state was monitored through the dihedral angle θ

spanned by the Cα atoms of Asp56 located in the β-barrel and Ala270 at the tip of

each extracellular loop (figure 3.2). As the outwardly closed 1EK9 crystal structure

displays an average θ value of 89.8◦ (figure 3.2A), an extracellular loop was regarded

as closed as or more closed than 1EK9 whenever θ ≤ 90◦. Conversely, a loop for

which θ > 90◦ was considered more open than the 1EK9 X-ray structure.

In each simulation, θ was monitored for each extracellular loop (figure 3.2B, first

panel) and subsequently converted to a binary representation of “more open” than

1EK9 (a value of 0) or “more closed” (assigned a value of 1) (figure 3.2B, second
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Figure 3.1: (A) Wild-type 1EK9 TolC was simulated in a POPE phospho-

lipid/water environment at 150 mM NaCl. (B) As indicated by Cα root-mean-

square deviations after respective least-squares alignment with the starting struc-

ture, the largest conformational changes occur in the region of the β-barrel and the

extracellular loops. (C) Using the protein’s α-carbons, TolC’s path through con-

formational space in all simulations was mapped onto the first three eigenvectors

in a principal component analysis.

panel). As a summary for each run, the number of loops in the closed conformation

was determined (figure 3.2B, third panel) and converted to a frequency histogram

(figure 3.2B, fourth panel) reflecting for each simulation the percentage occurrence

of closed loop conformations (figure 3.2C). To obtain an overview of the extracellular

loop conformations visited throughout our simulations, we calculated a histogram

showing the θ distribution in all unmodified runs (figure 3.2E).

To analyze the distribution of sodium throughout the simulations, both one-

dimensional (1D) Na+ density profiles along the membrane normal and average

spatial sodium distributions were computed. The former was done using the GRO-

MACS tool g density, and for the latter, we employed the VolMap function in VMD

version 1.9 (Humphrey et al., 1996) using a spatialresolution of 1 Å
3

to analyze

the distribution of sodium in the periplasmic bottleneck region at five density levels
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Figure 3.2: On the extracellular side, the TolC opening state was monitored using

the dihedral angle θ defined by the α-carbons of Asp56 in the β-barrel and Ala270

in the tip of each extracellular loop. As the 1EK9 starting structure exhibits θ

dihedrals of 89.8◦ (A), an extracellular loop was regarded closed or more closed

than 1EK9 when θ was ≤ 90◦ (B). For each simulation, we calculated the number

of closed extracellular loops and the percentage of simulation time spent in that

conformation (C). Whereas TolC opens and closes throughout the simulations as

illustrated by X-ray and simulation snapshots (D), partially open with one or two

loops closed is the preferred conformation. As indicated by a θ histogram calculated

over all unmodified simulations (E), the palette of extracellular loop conformations

visited throughout our simulations exceeds the range of conformations observed in

the known TolC X-ray structures (F).

ranging from 0.01 to 0.6 Na+/Å
3
.

Sodium binding and unbinding were monitored analyzing the Z-coordinate tra-

jectory of each Na+ ion and computing for each TolC monomer the percentage of

simulation time a residue of the periplasmic mouth region (residues 134 - 158 and

352 - 374) comes into contact with at least one sodium ion in at least one monomer.

For this analysis, we employed a residue-Na distance cutoff of ≤ 3 Å. Both the

sodium distributions and the residue contact analyses were performed using time

frames of (I) 1 - 150 ns for the four simulations during which the outer periplasmic
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bottleneck (BNII) was open, (II) 125 - 300 ns for the two simulations during which

BNII was closed, and (III) 150 - 300 ns for the run during which BNII remained

closed after removal of four Na+ ions from the bottleneck region.

As described in Fischer and Kandt (2011), simulation average structures were

calculated using an iterative scheme of calculating the average conformation and

realigning the trajectory to that average structure before computing a new aver-

age structure. This procedure was repeated until the average structure stopped

changing.

Table 3.1: TolC Opening States As Observed in the Crystal Structures and Our

Molecular Dynamics Simulations

#closed bottleneck Gly365 (BNII) bottleneck Asp374 (BNI)

TolC structure loops‡ ∅ TCA† (Å2) ∅ Cα distance (Å) ∅ TCA† (Å2) ∅ Cα distance (Å)

X-ray

1EK9, wild type 3 64.4 12.2 58.6 11.6

2VDD, Y362F/R367E 0 203.8 21.8 76.7 13.8

2VDE, Y362F/R367E 2 202.1 21.6 71.2 13.8

2WMZ, R367S 0 154.8 18.9 65.7 12.3

2XMN, Y362F/R367S 0 195.6 21.3 99.5 15.2

1TQQ, wild-type-bound 3 61.3 11.9 64.6 12.2

hexaamminecobalt

unmodified Simulations

BNII open 0-3 195.1 ± 42.6 21.6 ± 3.4 64.4 ± 8.2 12.3 ± 1.1

(max of 334.8) (max of 31.3) (max of 98.4) (max of 17.3)

BNII closed 0-2 32.0 ± 17.7 11.7 ± 1.6 58.7 ± 7.4 11.7 ± 1.2

(min of 0.9) (min of 3.3) (min of 40.2) (min of 8.3)

modified Simulations

-4 Na+, BNII closed 1-3 19.3 ± 7.9 10.7 ± 1.2 64.7 ± 6.7 12.3 ± 0.6

(min of 0.9) (min of 3.3) min of 46.0) (min of 9.0)

no NaCl, BNII closed 2 66.8 ± 31.7 14.4 ± 2.5 88.7 ± 11.6 14.4 ± 0.9

BNI and BNII reopening (max of 133.5) (max of 25.6) (max of 125.3) (max of 19.3)

† TCA is the triangular cross-sectional area

‡ As closed as or closer than 1EK9 with θ ≤ 90◦

3.4 Results

Protein Stability and Conformational Sampling. To monitor protein stability and

conformational sampling throughout the simulations, we computed for each run

Cα root-mean-square deviations (RMSD) of the entire protein, the β-barrel with

extracellular loops, the α-helical domains, and the equatorial domain after least-

squares fitting to the α-carbons of the crystal structure (figure 3.1B).

With RMSDs ranging from 3.5 to 5.1 Å, the largest conformational changes

occur in the β-barrel-extracellular loop regions, whereas the smallest changes take

place in the equatorial domains with RMSDs between 2 and 2.5 Å. Both α-helical

domains and the entire protein display intermediate RMSDs of 3 - 3.5 Å. Within 300

ns, no stable RMSD plateau is reached. As is evident from the Cα-based principal

component analysis (figure 3.1C) in each simulation, TolC samples different regions

of conformational space.
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3.4.1 Gating

Extracellular Side

To analyze TolC’s opening state on the extracellular side, we monitored the dihedral

angle θ formed by the Cα atoms of Asp56 in the β-barrel and Ala270 at the tip of

each extracellular loop (figure 3.2). Using the 1EK9 starting structure’s average θ

dihedral of 89.8◦ as a reference, we determined the number of loop conformations as

closed or more closed than the aforementioned crystal structure.

Throughout our simulations, the extracellular loops adopt a variety of confor-

mations (figure 3.2C) ranging from zero to three loops in the closed conformation

(figure 3.2D). As indicated by the percentage occurrence of the number of closed

loop conformations in each run, “partially open” with one or two loops closed is the

preferred conformation in our simulation (figure 3.2C). Ranging from -30◦ to 180◦

with two distinctive peaks at 30◦ and 135◦, the histogram of distributions calculated

for all unmodified simulations (figure 2E) indicates that the range of θ dihedrals in

our simulations exceeds the range of 87.1 - 111.5◦ observed in all known wild-type

and mutant TolC crystal structures (figure 3.2F).

Periplasmic Side

On the periplasmic side, we monitored the TolC opening state by calculating the

triangular cross-sectional area (TCA) spanned by the Cα atoms of Asp374 and

Gly365 (figure 3.3) representing the inner (BNI) and outer periplasmic bottleneck

region (BNII) (figure 3.3A). In all runs, BNII opens within 10 ns with the TCA

subsequently fluctuating around 195 ± 43 Å2 (figure 3.3B and table 3.1). Concurrent

with the successive binding of two sodium ions, in one simulation the TCA decreases

in two steps below the 1EK9 crystal structure’s TCA of 64.4 Å2 (table 3.1), reaching

a new average plateau of 32 ± 18 Å2 in the two unmodified extensions (figure 3.3B,

bold dark green lines, and table 3.1) and 19 ± 8 Å2 in the extension where four

sodium ions were removed from the bottleneck regions (figure 3.3B, dashed green

line, and table 3.1).

When all NaCl is removed from the system, the TCA increases again, reaching

105 Å2 by the end of the simulations (figure 3.3B, dotted green line). With average

BNI TCAs of 64 ± 8 Å2 (BNII open) and 59 ± 7 Å2 (BNII closed) in the unmodified

simulations (figure 3.3B, bold red line, and table 3.1) and 65 ± 7 Å2 after the removal

of four Na+ atoms from the bottleneck region (figure 3.3B, dashed red line, and table

3.1), the inner bottleneck remains closed displaying a TCA similar to that of the

1EK9 X-ray structure except for the NaCl-free extension: here the TCA increases

to 125 Å2, settling at 80 Å2 by the end of the simulations (figure 3.3B, dotted red

line).

Whereas figure 3.3C shows the conformation of BNI and BNII in the crystal

structure, panels D-F of figure 3.3 are simulation snapshots illustrating the maximal
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(figure 3.3D) and minimal BNII opening (figure 3.3E) of 334 and 0.9 Å2, respectively

(table 3.1), as well as a maximal BNI opening of 125 Å2 after the complete removal

of NaCl (figure 3.3F and table 3.1).

Figure 3.3: On the periplasmic side, the TolC opening state was monitored using

the triangular cross-sectional area (TCA) spanned by the α-carbons of Asp374

and Gly365 representing the inner (BNI) and outer bottleneck region (BNII) (A).

BNII visits open and closed conformations, with maximal closure occurring after

a successive binding of two sodium ions (B). Simulation snapshots (C-F) illustrate

periplasmic TolC conformations in the X-ray structure (C), at the maximal opening

(D) and closure (E) of BNII at Gly396, and at the maximal opening of BNI, 53 ns

after the removal of all NaCl from the system (F). For the sake of clarity, the TCAs

have been smoothed using a running average filter of 5 ns. Bold crosses mark the

unfiltered TCA maxima and minima corresponding to the simulation snapshots

shown in panels D-F.

Sodium Distributions

To determine the distribution of sodium ions and check for potential binding sites,

we calculated 1D Na+ density profiles along the Z-axis (figure 3.4A) and computed

average spatial Na+ density distributions focusing on sodium in the periplasmic

bottleneck regions (figure 3.4B-D). Computed separately for the open and closed

BNII conformations, the results were averaged over the respective runs using time

frames of 0 - 150 ns (BNII open), 125 - 300 ns (BNII closed), and 150 - 300 ns (BNII
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closed after the removal of four Na+ atoms from the bottleneck region).

As indicated by the peaks in the sodium density profile (figure 3.4A), two pre-

ferred Na+ residence sites become apparent: the lipid headgroups and the region of

the periplasmic bottlenecks where the density maximum is most pronounced in the

unmodified simulations when BNII is closed. Zooming in on the bottleneck region,

we find a heightened three-dimensional Na density near Asp374 and Asp371 exceed-

ing 0.1 Na+/Å
3

regardless of whether BNII is open (figure 3.2B) or closed (figure

3.2C,D).

When BNII is closed, three density maxima become apparent in the unmodified

runs (figure 3.2C): two distinctive ones exceeding 0.6 Na+/Å
3

at Asp371, Thr368,

Thr366, and Asp153 and a smaller one between 0.2 and 0.3 Na+/Å
3

near Asp374.

When BNII is closed and four sodium ions are removed from the bottleneck region

(figure 3.2D), the 0.1 Na+/Å
3

density is more smeared out and the former maxima

are less pronounced.

3.4.2 Sodium Binding

Monitoring the Z-trajectories of all sodium ions in the system, we find that next to

the lipid headgroup region an additional sodium trace becomes apparent near 14 nm,

forming after 100 ns and remaining stable until the end of the simulations (figure

3.5A). Zooming in on this region, we find that starting at 94 ns in the unmodified

simulations the sodium trace is at first formed by single Na+ ions (figure 3.5B,C),

whereas after 120 ns, two Na+ ions contribute simultaneously to the trace with

individual sodium residence times ranging up to 180 ns. In the simulation where all

(four) sodium ions have been removed from the periplasmic bottleneck region after

150 ns, the sodium trace reappears after 5 ns (figure 3.5D). During the remaining

145 ns of simulation time, single-ion occupancy is predominant and individual Na+

residence times do not exceed 30 ns. Via comparison of the Na+ trajectories with the

BNII closure observed in the TCA analysis (figure 3.3), it becomes evident that the

binding of the first stable sodium at 94 ns precedes the first decrease in TCA in BNII

closure by 8 ns, whereas the binding of the second sodium at 118 ns is concurrent

with the beginning of the second decrease in TCA completing BNII closure.

To determine which residues are involved in sodium binding, we calculated for

all residues in the periplasmic tip region their frequency of sodium contact (figure

3.5E). Exceeding in at least one monomer 15% of observation time, Asp371, Thr366,

Thr368, Asp153, and Asp374 were identified as main sodium interaction sites with

ion residence times ranging from 20 to 82%. Whereas Asp374 showed in all sim-

ulations similar Na+ contact times in all monomers, the other residues display an

asymmetry in Na+ interaction characterized by Na+ residence times clearly higher

in one monomer than in the other two.
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Figure 3.4: As indicated by partial sodium densities (A) calculated over all simu-

lations where the outer bottleneck BNII is open (black) or closed during the unmod-

ified runs (red) or after removal of the initially bound sodium ions (blue), there are

two preferred sodium binding sites: at the lipid headgroups and between BNI and

BNII. Spatial sodium density distributions in this area (B-D) indicate that Na den-

sities exceeding 0.01 Na+/Å
3

(transparent white isosurfaces) are present regardless

of whether BNII is open or closed (B-D). When BNII is closed and the simula-

tion system is unmodified, two distinctive maxima of Na+ density are present at

Asp371, Thr368, Thr366, and Asp153, suggesting distinctive interaction sites (C).

A third maximum of smaller density occurs near Asp374. After the removal of four

sodium ions from the bottleneck regions, the 0.1 Na+/Å
3

density is more smeared

out and the former maxima are less pronounced (D). However, the reoccurrence of

maximal sodium densities in this region suggests an immediate reoccupation of the

interaction sites.

3.4.3 Simulation versus X-ray

Throughout our simulations, wild-type TolC adopts conformations on the extra-

cellular and periplasmic side that have not been reported in the published crystal

structures (Bavro et al., 2008; Higgins et al., 2004; Koronakis et al., 2000; Pei et al.,

2011). To provide possible evidence explaining this discrepancy, we calculated the

simulation average structure over all unmodified simulations and compared it to the

1EK9 crystal structure (figure 3.6). As indicated by superimposition of the simu-
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Figure 3.5: Sodium Z-

trajectories (A-D) and frequency

of Na+ residue contact (E).

Monitoring the Z-coordinate of

each sodium ion in the system,

we find next to the lipid head-

groups another preferred sodium

residence site becomes apparent

as indicated by a stable sodium

trace near 14 nm forming after

100 ns (A). The following three

panels are close-ups of this region

showing individual sodium ions

contributing to the stable Na+

trace in the unmodified simula-

tions (B and C) and in the run

following the removal of four Na+

ions from the bottleneck region

after 150 ns (D). After 90 ns, at

least one Na+ is present between

14 and 14.5 nm, whereas in the

unmodified simulations after 120

ns, this region is preponderantly

occupied by two Na+ ions (B and

C) whose individual residence

times range up to 180 ns. When

Na+ is removed from the bottle-

neck region, the Na+ interaction

region is reoccupied within 5

ns. Now, however, single-ion

occupancy is predominant, and

individual occupancy times are

much shorter (D). Sodium-

interacting residues exhibiting

Na+ contacts of a minimum of

15% observation times in at least

one monomer are summarized in

panel E.

lation average and X-ray structure after Cα least-squares fitting (figure 3.6A) and

calculation of Cα displacements for each monomer (figure 3.6B), with an overall

RMSD of 1.5 Å, the conformational differences are small and the largest deviations

occur in the extracellular loops and the periplasmic tip region.

Residues exceeding Cα displacements of 3 Å (highlighted in dark cyan in figure
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3.6C) partially coincide with 4 Å crystal contacts (van der Waals representation

in figure 3.6C) in the 1EK9 X-ray structure. Additionally, we have analyzed the

B-factors in all wild-type and mutant TolC X-ray structures and plotted their Cα

root-mean-square fluctuations along the membrane normal (figure 3.7).

Figure 3.6: As indicated by the superposition of the 1EK9 X-ray structure

(white) and TolC simulation average structure calculated over all unmodified sim-

ulations and colored by Cα displacement (A) and Cα displacements graphs for

each monomer (B), the largest conformational differences occur in the extracel-

lular loops and the periplasmic tip regions. The overall Cα RMSD between the

simulation average and crystal structre is 1.5 Å. Residues exceeding Cα displace-

ments of 3 Å (dark cyan) partially coincide with 4 Å crystal contacts (van der

Waals representation) in the 1EK9 X-ray structure (C).

3.5 Discussion

In this study, we report unbiased 150 - 300 ns MD simulations of wild-type TolC

in a phospholipid/water environment in which TolC visits conformations on the ex-

tracellular and periplasmic side that have not been observed in any of the available

wild-type and mutant TolC crystal structures (Bavro et al., 2008; Higgins et al.,

2004; Koronakis et al., 2000; Pei et al., 2011). We find TolC freely opening and

closing on the extracellular side as well as in the region of the outer periplasmic bot-

tleneck (BNII), monitored at Gly365, until the subsequent binding of two sodium

ions interacting with Asp371, Thr366, Thr368, and Asp153 induces a closure result-

ing in a BNII conformation more closed than any of the available crystal structures.

In the inner bottleneck (BNI) region at Asp374, TolC remains closed unless all NaCl

is removed from the system, inducing an opening response of BNI followed by a re-

opening of BNII. We begin this section discussing the limitations of our approach

and then proceed to our findings and their biological implications.
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Table 3.2: TolC Residues Affecting Conductance and Tertiary Structure and

Involved in Ligand Binding

Residue single-channel conductance X-ray crystallography MD simulation

Thr152 part of the potassium binding pocket

(Schulz and Kleinekathöfer, 2009)

Asp153 D153A increases

conductance (Andersen

et al., 2002a)

part of the potassium binding pocket

(Schulz and Kleinekathöfer, 2009)

high sodium binding affinity leads to

a closure of BNII (this work)

Tyr362 Y362F increases

conductance (Andersen

et al., 2002a)

Y362F/R367E double mutants in

2VDD and 2VDE show an

asymmetrically open BNII (Bavro

et al., 2008)

Y362F/R367S double mutants in

2WMZ and 2XMN show a

symmetrically open BNII (Pei et al.,

2011)

Y362F/R367S double mutant

increases flexibility in the tip region

(Vaccaro et al., 2008)

Thr366 high sodium binding affinity leads to

a closure of BNII (this work)

Arg367 R367S increases

conductance (Andersen

et al., 2002a)

Y362F/R367E double mutants in

2VDD and 2VDE show an

asymmetrically open BNII (Bavro

et al., 2008)

Y362F/R367S double mutants in

2WMZ and 2XMN show a

symmetrically open BNII (Pei et al.,

2011)

part of the potassium binding pocket

(Schulz and Kleinekathöfer, 2009)

Thr368 high sodium binding affinity leads to

a closure of BNII (this work)

Asp371 D371A increases

conductance(Andersen

et al., 2002b)

binding site for

hexaamminecobalt(Higgins et al.,

2004)

high sodium binding affinity leads to

a closure of BNII (this work)

Asp374 D374A increases

conductance(Andersen

et al., 2002b)

binding site for

hexaamminecobalt(Higgins et al.,

2004)

Asp374 ring as an indicator for BNI

closure (Pei et al., 2011)

high sodium binding affinity (this

work)

† TCA is the triangular cross-sectional area

‡ As closed as or closer than 1EK9 with θ ≤ 90◦

3.5.1 Limitations of Our Approach

As an outer membrane protein, TolC’s microenvironment is characterized by a het-

erogeneous and asymmetric lipid composition containing lipolysaccharides in the

outer leaflet, while the protein interacts with the peptidoglycan layer on the periplas-

mic side (Lugtenberg and Alphen, 1983). In our simulations, we approximated the

outer membrane by a homogeneous POPE bilayer omitting a representation of the

peptidoglycan layer. While it would certainly be desirable to have both components

fully included in simulation studies, the development of the appropriate lipopolysac-

charides and peptidoglycan molecular topologies is still in its infancy (Kotra et al.,

1999; Lins and Straatsma, 2001; Meroueh et al., 2006; Piggot et al., 2011; Straatsma

and Soares, 2009; Vollmer and Bertsche, 2008; Vollmer et al., 2008a), and at the

time of writing, such simulation parameters were not yet available for E. coli. It

will be interesting to see the influence these components have on the dynamics of

outer membrane proteins especially because all crystallographic (Bavro et al., 2008;

Higgins et al., 2004; Koronakis et al., 2000; Pei et al., 2011) and TolC conductance

experiments (Andersen et al., 2002a,b) were conducted on the isolated protein.

On the other hand, our choice of a simple uniform membrane model exclud-
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ing the peptidoglycan is also justified by other simulation studies of outer mem-

brane proteins making biologically relevant predictions using similar simplifications

(Cuesta-Seijo et al., 2010; Gumbart et al., 2009; Hajjar et al., 2010). Whereas one

could argue that the TolC behavior we observe on the extracellular side could be

an artifact of our simplified membrane model, it is encouraging that one of the first

lipopolysaccharide simulations studying outer membrane protein OprF (Straatsma

and Soares, 2009) reported that the lipopolysaccharids have a stabilizing effect on

the open conformation of the OprF extracellular loops that exhibit an architecture

similar to that in TolC.

With any molecular dynamics study, the question of whether the simulated time

has been sufficiently long with respect to the problem under investigation arises.

Given the findings reported by Grossfield and Zuckerman (Grossfield and Zucker-

man, 2009) that 1.6 µs atomistic MD simulation of membrane-embedded rhodopsin

was not enough for the protein structure to converge, our observations that TolC Cα

RMSDs are still increasing after 300 ns (figure 3.1B), each run sampling different

regions of conformational space (figure 3.1C), and that the protein structure has

therefore not equilibrated yet are not surprising, underscoring the need for long-

time simulations as well as a careful restraint in using the term “equilibrated” when

addressing protein structures in MD simulations.

However, given that (a) our study’s focus is on exploring wild-type TolC ground

state dynamics near the crystal structure and (b) within the simulated time of 150 -

300 ns the protein already displayed unreported conformations (figures 3.2 and 3.3)

and ion interaction (figures 3.4 and 3.5) both of which might provide potential new

insights into the TolC functional mechanism (see below), we consider the amount

of sampling achieved (figure 3.1C) adequate for the purpose of this investigation,

providing insights into wild-type TolC dynamics on a time scale that is 7.5 - 10 times

longer than those of any previous TolC simulations (Schulz and Kleinekathöfer, 2009;

Vaccaro et al., 2008).

3.5.2 Simulation and X-ray

As summarized in figure 3.8, throughout our simulations, wild-type TolC opens and

closes on the extracellular (figure 3.2) and periplasmic (figure 3.3) side, adopting

conformations that have not been reported in the wild-type (Higgins et al., 2004;

Koronakis et al., 2000) and mutant TolC crystal structures (Bavro et al., 2008; Pei

et al., 2011). A possible explanation for why these conformations have not been de-

tected yet could be that the crystal environment hinders the conformational changes

we observe. Next to crystal type-dependent conformational differences of the same

TolC mutant (Bavro et al., 2008), this hypothesis is supported by the distribution

of 4 Å crystal contacts in the 1EK9 X-ray structure (figure 3.6C), overlapping with

residues where the conformational differences between the simulation average and

crystal structure are maximal (figure3.6A,B).
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Figure 3.7: Crystallographic B-factor distribution in the TolC wild type crystal

structure (Koronakis et al., 2000) used as starting structure for our molecular

dynamics simulations (a) and all currently available wild type (Higgins et al., 2004;

Koronakis et al., 2000) and mutant (Bavro et al., 2008; Pei et al., 2011) TolC X-ray

structures (b).

Furthermore, with an overall Cα RMSD of 1.5 Å, the conformational difference

between the X-ray and simulation average structure is very small, suggesting that

similar to the results in Kandt et al. (2006) the protein crystal could already contain

the open and closed TolC conformations we observe in our simulations. In that case,

these conformations either constitute only a minority of the total conformational

ensemble in the 1EK9 crystal structure or on average are canceling each other out.

Either way, the B factor maximum in the 100K wild-type TolC crystal structures

(Higgins et al., 2004; Koronakis et al., 2000) already implies a heightened degree of

flexibility or crystal disorder in the extracellular loop region (figure 3.7).

3.5.3 Extracellular Access

Whereas the available structural (Bavro et al., 2008; Higgins et al., 2004; Koronakis

et al., 2000; Pei et al., 2011) and computational data (Schulz and Kleinekathöfer,

2009; Vaccaro et al., 2008) suggest that TolC access is restricted on both sides, our

findings imply that TolC gating occurs only on the periplasmic side (figures 3.3

and 3.8) as TolC freely opens and closes on the extracellular side, suggesting here

the absence of a gating mechanism in the isolated wild-type protein (figures 3.2

and 3.8). The broad range of extracellular loop conformations visited throughout

our simulations includes loop orientations both more closed and more open (figure

3.2D,E) than the available crystal structures (Bavro et al., 2008; Higgins et al., 2004;

Koronakis et al., 2000; Pei et al., 2011) (figure 3.2E,F).

As indicated by the distribution of θ dihedral angles that we used to monitor

the extracellular loops’ opening state (figure 3.2E), with θ values located between

the two simulation maxima of 30◦ and 135◦, the X-ray conformations represent only
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Figure 3.8: Whereas the available wild-type crystal structures restrict TolC ac-

cess on both sides (A), throughout our simulations TolC opens and closes on the

extracellular side. On the periplasmic side, the outer bottleneck BNII fluctuates

around a conformation that is more open than the wild-type X-ray structures un-

til the binding of two sodium ions induces a transition to a conformation that

is more closed than in any of the known crystal structures. In both cases, the

inner bottleneck BNI remains closed (B), unless all sodium is removed from the

system, inducing a reopening of BNII and a beginning opening of BNI (C). If our

simulations are correct, this observation could imply a locklike mechanism that

is dependent on sodium or similar monovalent cations. Whereas the fluctuations

of the outer bottleneck might play a role in the interaction with inner membrane

transporters (IMT) or membrane fusion proteins (MFP), the principal accessibility

from the extracellular side could hint at a novel mode of action for pharmaceutics

specifically targeting the TolC interior.

a small section of possible loop conformations. Whereas the crystal structures limit

extracellular access to compounds with diameters of up to 7 - 8 Å in the wild-type

(Higgins et al., 2004; Koronakis et al., 2000) and 7.2 - 10 Å in the mutant crystal

structures (Higgins et al., 2004; Koronakis et al., 2000) (which we estimated by

computing Connolly surfaces employing different probe sphere radii), we find that

TolC accessibility is sterically only limited by the inner diameter of the β-barrel

itself when all three loops are open (figure 3.2D).

If our simulations are correct, these results could either indicate the presence of

additional regulation mechanisms in vivo or hint at the possibility of designing a

novel group of TolC-directed drugs specifically targeting the protein interior. Possi-

ble experimental scenarios for testing the hypothesis of extracellular TolC accessibil-

ity could involve double-spin-label electron spin resonance spectroscopy measuring

the distance between the tip regions of the extracellular loops or fluorescence spec-

troscopy experiments in which first a fluorescence dye-specific cross-linker is intro-

duced into the TolC interior and then fluorescence activity is checked after external
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dye application, using dyes of different sizes, and protein extraction and purification.

Beyond that, TolC-dependent colicin import (Hwang et al., 1997; Zakharov et al.,

2004) already provides evidence of the principal occurrence of an outwardly open

conformation, and our findings might indicate that the extracellular entrance does

not constitute a rate-limiting barrier in the colicin uptake process as wild-type TolC

is capable of opening by itself.

As we observe both opening and closing of the extracellular loops (figure 3.2), our

findings are also compatible with previous simulations (Schulz and Kleinekathöfer,

2009; Vaccaro et al., 2008) reporting extracellular closure. The fact that extracellular

opening has not been reported in previous TolC simulations is likely due to the

amount of conformational sampling achieved, which is larger in this study because

of longer simulation times and the usage of multicopy MD (Caves et al., 1998; Das

et al., 2000; Fischer and Kandt, 2011; Kandt and Tieleman, 2010; Kandt et al.,

2006).

3.5.4 Periplasmic Access and a Sodium-Dependent Lock

Exhibiting an inner (BNI, monitored at Asp374) (Andersen et al., 2002b) and an

outer periplasmic bottleneck (BNII, monitored at Gly365) (Andersen et al., 2002a),

inwardly closed TolC has been shown by conductance experiments to be stabilized by

inter- and intramonomeric hydrogen bonds and salt bridges (Andersen et al., 2002a).

Mutating residues involved in this network (table 3.2) led to crystal structures more

open than the wild type (Bavro et al., 2008; Pei et al., 2011) (table 3.1), whereas 20 -

30 ns MD simulations of the mutants reported increased flexibility of the periplasmic

tip region (Vaccaro et al., 2008), potassium binding sites (Schulz and Kleinekathöfer,

2009), but no unforced opening of BNI or BNII (Schulz and Kleinekathöfer, 2009;

Vaccaro et al., 2008). Only when the effect of an outer electric field was simulated,

accelerating cations toward the extracellular medium, could an opening of BNII be

induced (Schulz and Kleinekathöfer, 2009).

In our simulations, Na+ binding sites and spontaneous BNII opening and clo-

sure were observed in the wild-type protein without applying any biasing forces.

However, as high-residence probability sodium binding sites were observed in only

one simulation after 120 ns, the presence of potassium sites in wild-type TolC can-

not be excluded on the basis of the available data. Furthermore, given that (a)

the ionic and hydration radii of sodium lie between those of potassium and lithium

(Cordero et al., 2008; Nightingale, 1959; Shannon, 1976), for which a conductance-

lowering effect was reported compared to potassium (Andersen et al., 2002a), and

(b) TolC-NaCl conductivity experiments have not been reported yet to the best of

our knowledge, different K- and Na-TolC interactions cannot be excluded on the

basis of the currently available data.

Although they display similar opening states in the wild-type crystal structures

(figure 3.3 and table 3.1), BNI and BNII behave differently in our simulations.
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Whereas BNI remains closed unless all NaCl is removed from the system (figure

3.3B), BNII occurs in two conformational states that have not been reported in

previous wild-type X-ray structures or MD simulations (figures 3.3 and 3.8 and

table 3.1).

In the open state, BNII is more open than the wild type and comparably open

compared to the mutant crystal structures (table 3.1), whereas in the closed state,

BNII is more closed than any of the available TolC crystal structures but still permits

the passage of ions. Though open is the predominant state in our simulations, in

one run we observe a spontaneous transition to closed state BNII completed after

120 ns that is induced and subsequently stabilized by two sodium ions (figure 3.3)

interacting with residues located in a region where a network of hydrogen bonds and

salt bridges has been identified as stabilizing inwardly closed TolC (Andersen et al.,

2002a; Bavro et al., 2008; Pei et al., 2011) (figures 3.4 and 3.5 and table 3.2).

Closed BNII does not reopen during the following 180 ns unless all NaCl is re-

moved from the system. In total, we find three preferred sodium residence sites

(figure 3.4B-D): two sharply defined ones with Na+ preferentially interacting with

Asp371, Thr366, Thr368, and Asp153 of monomer A or B when BNII is closed

and a less pronounced and centrally located site near Asp374 that does not show

any monomer preference and is present regardless if BNII is open or closed (fig-

ures 3.4 and 3.5). If our simulations are correct, our findings of distinctive sodium

interaction sites and the bottlenecks responding to the presence (BNII closure) or

absence (opening of BNI and BNII) of sodium imply that periplasmic TolC access

is restricted by a sodium-dependent lock.

Whereas so far ion binding sites have been reported for only hexaamminecobalt

(Higgins et al., 2004) and potassium (Schulz and Kleinekathöfer, 2009), the presence

of sodium binding sites in thebottleneck region is plausible given the high concen-

tration of negative surface charges in this area (Koronakis et al., 1997), as well

as the locationand preferred residue interaction of our proposed sodium sites over-

lapping with residues shown to be involved in stabilizing an inwardly closed TolC

conformation (Andersen et al., 2002a; Bavro et al., 2008; Pei et al., 2011) (table

3.2). Furthermore, given that it is not uncommon that ion electron density is misin-

terpreted as water in the determination of X-ray crystallographic structures (Faust

et al., 2008), the presence of several water molecules in the region of our proposed

sodium interaction sites in the wild-type 1EK9 crystal structure (Koronakis et al.,

2000) could be interpreted as further evidence supporting our hypothesis, assuming

some of the crystal water positions actually correspond to sodium.

Depending on whether the observed BNII closure is reversible without requir-

ing further interaction partners, the sodium-dependent lock mechanism we propose

would involve a single (BNI) or double bolt (BNII). Although closed state BNII

remains stable for 180 ns throughout our simulations under unaltered (figure 3.3B,

bold lines) and modified (figure 3.3B, dashed line) conditions, our results cannot

exclude the reopening of BNII after, for example, 1800 ns. On the other hand, the
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increasing TCA observed during the last 50 ns in one of the unmodified extensions

(figure 3.3B, bold line) could indicate a beginning reopening of BNII, and the pres-

ence of only a single sodium trace instead of two (figure 3.5B) supports a stabilizing

sodium effect. However, as the question of whether BNII opens and closes freely

cannot be decided on the basis of our current simulation data, further experiments

to measure the periplasmic opening state in the Gly365 region using, for example,

double-spin-label EPR spectroscopy are required.

Whether sodium-induced BNII closure would be observable in electrophysiolog-

ical conductance measurements, which to the best our knowledge have so far not

been reported yet investigating the effect of NaCl on TolC conductivity, depends

on (a) the lifetime of the BNII closed state, (b) the difference in Na+ flow (BNII

closure in our simulations only slows ion flow but does not lead to a full block-

age) and whether that difference is detectable in conductance experiments, and (c)

the effect of the voltage used in the measurements and if the presence of an outer

electric field hinders Na+ binding. Whereas the absence of open and closed state

BNII conformations in wild-type crystal structures (Higgins et al., 2004; Koronakis

et al., 2000) and simulation studies (Schulz and Kleinekathöfer, 2009; Vaccaro et al.,

2008) could be explained as an effect of the crystal environment and the amount of

conformational sampling as discussed above, plausible functional interpretations are

conceivable for both fluctuating open state BNII and closed state BNII with regard

to the interaction of TolC with its target proteins.

The graspinglike motions of open state BNII (figure 3.8B, left) could be inter-

preted as a first stage of initiating contact with the inner membrane transporter

or membrane fusion protein, whereas closed state BNII (figure 3.8B, right) could

be relevant when TolC couples to an already assembled CusBA-like transporter-

membrane fusion protein complex (Su et al., 2011) in which the outer membrane

efflux duct has to slide into the hoselike arrangement of membrane fusion proteins to

complete the assembly of the entire pump, regardless of whether direct interaction

occurs between the outer membrane efflux duct and the inner membrane transporter.

Displaying a continuously heightened sodium residence probability near Asp374 (fig-

ures 3.4B-D and 3.8B) and a consistently X-ray-like closed conformation in all runs

unless complete NaCl removal induces a so far unreported opening of first BNI and

then BNII (figures 3.3 and 3.8C and table 3.1), BNI could constitute a bolt in our

proposed sodium-dependent lock mechanism regardless of whether BNII opens and

closes freely.

Further underscoring the crucial role of the aspartate ring region in TolC gating

(Andersen et al., 2002b; Higgins et al., 2004), our findings could be interpreted as

showing that in vivo complex formation of TolC with its respective inner membrane

transporter and membrane fusion protein induces conditions in the periplasmic TolC

interior that hinder prolonged sodium interaction in the observed Asp374 region

contributing to the unlocking of TolC. Without sodium, the three presumably de-

protonated carboxyl groups of Asp374 would repel each other, inducing a sequential
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opening of BNI and BNII as observed in the NaCl-free simulation. Although this

result could also imply an involvement of chloride in stabilizing an inwardly closed

TolC conformation, the absence of any preferred interaction sites speaks against a

chloride involvement.

Whereas TolC conductance studies in the presence and absence of sodium could

provide experimental evidence to test the hypothesis of a sodium-dependent lock,

computer simulations of TolC in the presence of the inner membrane transporter or

membrane fusion protein could yield insights into the involvement of the other com-

ponents in the TolC opening mechanisms. MD simulations of TolC in presence of

the isolated AcrB docking domain and the entire AcrB-AcrA complex are currently

underway in our lab. Whereas we observe TolC opening motions on the periplasmic

side, our data so far do not provide enough evidence to decide if periplasmic TolC

opening occurs in a symmetrical (Pei et al., 2011) or asymmetrical manner (Bavro

et al., 2008). However, the observation of two sodium interaction sites preferentially

interacting only with two monomers of the TolC trimer (figure 3.5E) could be inter-

preted as favoring the asymmetric opening hypothesis. Either way, one should keep

in mind the possibility that the different opening conformations observed crystallo-

graphically (Bavro et al., 2008; Pei et al., 2011) could simply represent two states

of the same process.

3.6 Conclusions

Conducting a series of independent, unbiased 150 - 300 ns MD simulations of wild-

type TolC in a phospholipid membrane / 150 mM NaCl water environment, we find

that TolC opens and closes freely on the extracellular side, suggesting the absence

of a gating mechanism on this side in the isolated protein.

On the periplasmic side, we observe the outer periplasmic bottleneck region

adopting in all simulations a conformation more open then the TolC wild-type crys-

tal structures until in one run the successive binding of two sodium ions induces

the transition to a conformation more closed than any of the available TolC X-ray

structures.

Concurrent with a heightened sodium residence probability near Asp374, the

inner periplasmic bottleneck region at Asp374 remains closed throughout the simu-

lations unless all NaCl is removed from the system, inducing a reopening of outer and

inner bottlenecks. Our findings suggest that TolC is locked only on the periplasmic

side in a sodium-dependent manner.
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Chapter 4

Influences of the AcrB Docking

Domain on TolC Gating

As discussed in chapter 3 and (Raunest and Kandt, 2012b) TolC seems to be locked

only on periplasmic side in a sodium dependent manner and as suggested in section

3.5.4, we applied molecular dynamic simulations of TolC in presence of the docking

domain of the inner membrane transporter AcrB in order to explore the influences

of AcrB on TolC’s gating behavior.

4.1 Abstract

The outer membrane channel TolC functions with a broad range of inner membrane

transporters facilitating the export of toxins and antibiotics and occurs in at least

two states, one blocking and one passable for substrates. TolC gating and docking

mechanisms especially on the periplasmic side are not fully understood yet. To

explore the influences of AcrB onto TolC gating we computed an unbiased 1.05

µs molecular dynamic simulation of TolC embedded in a phospholipid membrane

and the docking domain of AcrB in a 150 mM NaCl water environment. In this

simulation protein orientations were adapted from a previously published docked

model, AcrB was reduced to its docking domain (AcrB-DD) and was moved 1 nm

apart from TolC along the membrane normal. We observe initial contacts between

both protein after 3 ns of simulation time and measure a tight binding at the end

of the simulation. On extracellular side TolC’s loops favor an open conformation

in presence of the AcrB-DD indicating the absence of a gating functionality on

this side. On periplasmic side the outer bottleneck (BNII) outlined by Gly365

turns into an open conformation before the docking of the AcrB-DD and stays

open until the end of the simulation. The inner bottleneck (BNI) defined by a

double aspartate ring (Asp371 and Asp374) remained closed throughout the entire

simulation indicating that another component is missing to open TolC on periplasmic

side or longer simulations are needed to observe an opening of TolC.
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4.2 Introduction

As a member of the outer membrane efflux protein family the channel protein TolC

acts as an efflux duct for a broad range of toxic molecules in Escherichia coli (Benz

et al., 1993; Fralick, 1996; Koronakis et al., 2004; Zgurskaya et al., 2011) and plays a

major role in drug expulsion (Fralick and Burns-Keliher, 1994; Sulavik et al., 2001)

and the secretion of cell toxins (Delgado et al., 1999; Hwang et al., 1997; Wander-

sman and Delepelaire, 1990). TolC is compatible to inner membrane transporters

of the ATP binding cassette (ABC), to the resistance nodulation division (RND)

and to the major facilitator (MF) type (Moussatova et al., 2008; Nikaido, 2011;

Saier and Paulsen, 2001). A prominent example of TolC mediated transport is the

AcrAB-TolC multidrug efflux system using the proton gradient between periplasm

and cytoplasm to power the extrusion of a broad range of harming substances out

of the bacterial cell (Nikaido, 2011). The first TolC crystal introduced by (Koron-

akis et al., 2000) revealed that the protein is a homotrimer, resembling the shape

of a hollow cylinder organized in 3 domains. From a membrane-embedded β-barrel,

cooperatively formed by all 3 monomers, an α-helical domain extends ≈ 100 Å into

the periplasmic space surrounded in its middle section by an α/β equatorial domain

(Koronakis et al., 2004; Zgurskaya et al., 2011).

On extracellular side in this and all succeeding X-ray structures (Bavro et al.,

2008; Higgins et al., 2004; Koronakis et al., 2000; Pei et al., 2011) the access of TolC

is limited by 3 inward oriented loops. Whereas for these loops closing motions are

reported in a computational study of 20 ns molecular dynamic (MD) simulation time

suggesting a gating functionality on the extracellular side (Vaccaro et al., 2008), a

study of multi copy MD of 150-300 ns simulation time showed a broad range of

loop conformations indicating a random like movement of the extracellular loops

(Raunest and Kandt, 2012b).

On periplasmic side combined mutagenesisconductance experiments (Andersen

et al., 2002a,b), wild-type (Koronakis et al., 2000) and mutant TolC crystal struc-

tures (Bavro et al., 2008; Pei et al., 2011) indicated the existence of two periplasmic

bottlenecks: An inner bottleneck (BNI) at Asp371 and Asp374, where the binding

of blocking hexamminecobalt occurs (Andersen et al., 2002b; Higgins et al., 2004)

and an outer bottleneck (BNII) at Gly365, which is stabilized by Tyr362 and Arg367

involved in inter- and intramonomeric hydrogen bonds and salt bridges inducing a

closed conformation (Andersen et al., 2002a). Single and double mutations of Tyr362

and Arg367 lead to increased ion conductance (Andersen et al., 2002a) as well as

mutated crystal structures showing symmetric (Bavro et al., 2008) and asymmetric

(Pei et al., 2011) “partially opening” toward the periplasm.

Computational studies on mutations disturbing the network of salt bridges and

hydrogen bonds of BNII reported an increased flexibility (Vaccaro et al., 2008) of

BNII and identified a potassium ion pocket (Schulz and Kleinekathöfer, 2009). Fur-

thermore a sodium dependent lock of BNI and BNII was proposed by multi copy
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150 - 300 ns molecular dynamic (MD) simulations for wild-type TolC (Raunest and

Kandt, 2012b). Mutations affecting BNII as well as the absence of sodium ions in

wild-type simulations did not result in a complete opening of TolC (Bavro et al.,

2008; Pei et al., 2011; Raunest and Kandt, 2012b). The underlying gating mecha-

nism of TolC especially of BNI is not fully understood yet and it seems that another

component, maybe an inner membrane transporter like AcrB, is needed to open

TolC for substrate passage.

To prove that AcrB and TolC interact Tamura and coworkers applied cysteine

cross linking experiments for the ranges a) TolC’s tip region of helix 3 & 4 (139,

142, 145, 147 and 150) and AcrB DD’s tip loop (254 - 257) and b) TolC’s tip region

of helix 7 & 8 (360, 363 - 366) and AcrB DD’s β-hairpin (794 - 796) (Tamura et al.,

2005). Their cross linking results built the basis for the data driven docking of

AcrB and TolC in the published model of the AcrAB-TolC efflux system (Symmons

et al., 2009). In this docked model AcrB (Seeger et al., 2006) and TolC (Koronakis

et al., 2000) crystal structures were conformationally adjusted. Helix 7 of TolC was

shifted outwards into a “partially open” conformation adapted from mutated X-ray

structures (Bavro et al., 2008) effecting an open state of BNII. Additionally, AcrB’s

β-hairpin (residues 794-796) was bend into an open conformation (Symmons et al.,

2009).

We initially reduced AcrB to its AcrB-DD (residues 182 - 272, 724 - 812) taken

from Seeger et al. (2006) to avoid the complexity of two phospholipid bilayers. Fo-

cusing on the influence of AcrB on TolC, we computed an 1.05 µs MD simulation

of membrane-embedded wild-type TolC 1EK9 (Koronakis et al., 2000) and AcrB’s

docking domain (AcrB-DD) (Seeger et al., 2006), in a 150 mM NaCl solution. Both

protein orientations were adapted from the docked model (Symmons et al., 2009),

whereas the AcrB-DD was moved 1 nm apart from TolC along the membrane nor-

mal. Additionally we performed an unbiased 100 ns MD simulation of the isolated

AcrB-DD in a 150 mM NaCl solution to validate AcrB-DD’s stability in comparison

to previously published AcrB simulations (Fischer and Kandt, 2011, 2013).

In the 1.05 µs simulation we observed, that the initially closed BNII of TolC

opens within the first 3 ns causing a “partially open” (Bavro et al., 2008) confor-

mation induced by a shift of helix 7 stabilized by the spontaneous docking of the

AcrB-DD. This opening on the outer bottleneck II of TolC supports the conforma-

tional changes applied in the data driven model of Symmons (Symmons et al., 2009).

Although we notice an opening of the outer bottleneck (BNII), AcrB-DD was not

able to open the inner bottleneck (BNI) after 1.05 µs simulation time, suggesting

that either another component is missing or the AcrB-DD on its own is not able to

open TolC within the simulated time of 1.05 µs.
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4.3 Methods

4.3.1 Molecular Dynamics Simulations

Figure 4.1: A 100 ns MD simulation in a 150 mM NaCl / water environment

was applied for the AcrB docking domain (AcrB-DD) to verify its stability (A).

Cα-RMSDs were calculated after least square fitting on the starting structure for

the current and for previous AcrB simulations (Fischer and Kandt, 2013)(B). Cα-

displacements between the final conformations and the crystal are shown in (C).

We identified residues located in the interface of TolC and AcrB by a distance cutoff

of 1 nm applied on the Symmons model (Symmons et al., 2009) and highlighted

them as gray bars in (C).

MD simulations were performed employing GROMACS version 4.0.3 (Berendsen

et al., 1995a; Hess et al., 2008) and the GROMOS96-53a6 force field (Oostenbrink

et al., 2004). To test the stability of the AcrB docking domain (AcrB-DD) we

isolated residues 182 - 272 and 724 - 812 from the crystal structure 2GIF (Seeger

et al., 2006) and performed a 100 ns MD simulation in a 150 mM NaCl / water

environment containing 108 Na+ and 111 Cl− ions in a 10.6 nm x 10.6 nm x 10.6

nm simulation box. For the TolC AcrB-DD simulations the starting structure of

membrane embedded TolC of our prior study (Raunest and Kandt, 2012b) and the

AcrB-DD were aligned on the Symmons AcrAB-TolC model (Symmons et al., 2009).

Afterwards the AcrB-DD was moved 1 nm apart from TolC along the membrane

normal, the system was solvated in a 150 mM Na+ / Cl− H2O solution including
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205 Na+ and 190 Cl− ions and 47423 H2O molecules in a simulation box of 10.06

nm x 9.97 nm x 21.0 nm. This starting structure was used for four unbiased 150 ns

MD simulations. In one of them we noticed a spontaneous docking of the AcrB-DD

on TolC’s periplasmic end and extended this simulation up to 1.05 µs.

Figure 4.2: TolC and POPE phospholipid bilayer coordinates were adapted from

our previous work (Raunest and Kandt, 2012b). Whereas orientations of TolC and

AcrB-DD are based on a docked model from Symmons (Symmons et al., 2009), the

AcrB-DD was moved 1 nm apart from TolC. Afterwards both proteins were solvated

into a 150 mM NaCl / water environment (A). Cα-RMSD’s were calculated after

least square fitting on the individual domain / protein (B).

In all simulations bond lengths were constrained by LINCS (Hess et al., 1997) so

that an integration time step of 2 fs could be chosen and standard protonation states

were assumed for titratable residues. Systems were simulated at 310 K, maintained

separately for protein, lipids, and water by a Berendsen thermostat (Berendsen et al.,

1984) with a time constant (τT ) of 0.1 ps. Pressure coupling was done employing a

Berendsen barostat (Berendsen et al., 1984) using a 1 bar reference pressure and a

time constant of 4 ps. While for the AcrB-DD solvent simulation isotropic pressure

coupling were used, semiisotropic pressure coupling was employed to permit bilayer

fluctuations in the membrane plane for the AcrB-DD TolC simulation. Electrostatic

interactions were calculated using particle mesh Ewald (PME) summation, (Darden

et al., 1993; Essmann et al., 1995) and twin range cutoffs of 1.0 and 1.4 nm were

applied for computing the van der Waals interactions.

4.3.2 Analysis

To monitor the stability of the TolC AcrB-DD complex, the domains of TolC and

AcrB-DD we calculated Cα root-mean-square deviations (RMSD) after least square

fitting on Cα carbons of the starting structure (figure 4.1 and 4.2). Additionally, we

calculated Cα displacements for the last conformations of the 100 ns simulation con-

taining the AcrB-DD in absence of TolC and of prior AcrB simulations Fischer and
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Kandt (2013) after least square fitting on the AcrB-DD of 2GIF (Seeger et al., 2006)

(figure 4.1C). We identified interfacing Cα carbons in the docked model (Symmons

et al., 2009) by a 1 nm distance cutoff for TolC and AcrB-DD and marked them as

gray bars in figure 4.1C.

Based on these reference atoms we calculated Cα-RMSDs for each time frame

the 1.05 µs simulation (figure 4.3B) in order to compare the AcrB-DD TolC MD

interfaces with the interface of the docked model (figure 4.3B). To quantify the

docking of AcrB-DD on TolC we monitored the buried surface area between both

proteins. Therefor the solvent accessible surface areas (SASA) of AcrB-DD, TolC

and the entire complex were determined via NACCESS (Hubbard and Thornton,

1993). Afterwards the complex SASA was subtracted from the sum of AcrB-DD

and TolC to achieve the buried surface area (figure 4.3C).

Figure 4.3: In the beginning of the MD

simulation AcrB is located 1 nm apart von

from TolC. After 3 ns first contacts be-

tween AcrB and TolC occur and result in a

tight binding after 1.05 µs (A). Residues of

the interface between AcrB-DD and TolC

were identified by a 1 nm distance cutoff re-

garding the Cα coordinates of the docked

model. Based on these Cα atoms we cal-

culated Cα-RMSDs for our simulation af-

ter least square fitting (B). To quantify the

docking of AcrB-DD onto TolC we calcu-

lated the buried surface area lying in be-

tween via NACCESS (Hubbard and Thorn-

ton, 1993). The interface area increase

over time exceeds the interface area of the

Symmons model (4054 Å
2
) after 300 ns of

simulation time and ends with a value of

4701 Å
2

(C). For further analysis we iden-

tified four plateau regions marked in green,

blue, cyan and orange.
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To identify frequently interacting residue pairs (FIRP), atom distances of TolC

and AcrB were measured by the GROMACS tool g dist with a 2 Å cutoff for the

four plateau regions of figure 4.3B. The small threshold of 2 Å was chosen in order

to name residue pairs which are close together and therefore highlight interacting

residues. Multiple distances below 2 Å during a time step between the same residues

of AcrB and TolC were counted as 1 in order to achieve a percentage representation

(figure 4.4). We mapped FIRPs on average structures of the individual plateaus

(figure 4.4A), which were calculated as described in Fischer and Kandt (2011) using

an iterative scheme of calculating the average conformation and realigning the tra-

jectory to that average structure before computing a new average structure. This

procedure was repeated until the average structure stopped changing. In the grid

representation of figure 4.4B only FIRPs above a frequency of 20% are listed and ad-

ditionally the frequencies of monomer contacts are highlighted by gray backgrounds.

Cα distances of prior tested (Tamura et al., 2005) interface residue pairs were calcu-

lated for each time step of plateau 4 by g dist (figure 4.4B). Distances below 0.647

nm were assumed to be able to form a cystein cross link as reported in (Schmidt

et al., 2006) and are listed in table 4.1 in percent of observed simulation time.

Table 4.1: Cystein crosslinks between AcrB & TolC

TolC Gln139 Gln142 Arg143 Asn145 Gly147 Ala150

AcrB Asn254 N 0% N 96.2% N 97.5% N 100% N ¡ 0.1% N 98.8%

Gln255 N ¡ 0.1% Y 97.4% Y 83.3% N 53.4% Y 0% Y 92.5%

Asp256 N 0.2% Y 79.1% Y 0% N ¡ 0.1% Y 0% N 22.1%

Gly257 N 0% N 0.3% N 0% N 0% Y 0% N 0.1%

TolC Ala360 Ser363 Val364 Gly365 Thr366

AcrB Ala794 N 0% N 0% N 6.4% N 0% N 5.2%

Asp795 N 0% N 0% N 0% Y 0% N 0%

Gly796 N 0% N 0% N 0% Y 99.2% N 99.7%

Y stands for reported cys cross links, N stands for negative responses in cross linking experiments

(Tamura et al., 2005). Observed Cα distances below 0.647 nm in the fourth plateau region in

% simulation time. Green cells indicate an agreement between our simulation and Tamura et al.

(2005). Red cells highlight residue pairs that do not behave similar in our simulation and in Tamura

et al. (2005)

On the extracellular side the opening state of TolC’s extracellular loops was

monitored through the dihedral angle θ spanned by the Cα atoms of Asp56 located

in the β-barrel and Ala270 at the tip of each extracellular loop (figure 4.5). As

the 1EK9 crystal structure displays an average θ value of 89.8◦ (figure 4.5), an

extracellular loop was regarded as closed as or more closed than 1EK9 whenever

θ ≤ 90◦. Conversely, a loop for which θ ¿ 90◦ was considered more open than the

1EK9 X-ray structure. θ was monitored for each extracellular loop (figure 4.5A) and

subsequently converted into a binary representation of “more open” than 1EK9 (a

value of 0) or “more closed“ (assigned a value of 1). The number of loops in the
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Figure 4.4: To monitor

the docking of AcrB and

TolC, we determined

frequently interacting

residue pairs (FIRPs)

by a distance cutoff of

2 Å for the four plateau

regions in figure 4.3C. In

(A) 3D representations

show the location and

frequency of FIRPs. The

grid representation in (B)

focuses on FIRPs with fre-

quencies above 20% and

while the highest amount

of FIRPs (monomers C-C

in plateau 4) were colored

in gray (50% black), the

remaining monomers were

colored by their amount

of FIRPs in gray scale

(B). Contacts of the

docked model (Symmons

et al., 2009) are shown in

panel A (right) and are

marked as ’X’ in the grid

representation (B). Both

representations show an

increase of quantity and

frequency of FIRPs over

time.
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closed conformation was determined and in figure 4.5, the θ angle distribution of the

current and our TolC only work (Raunest and Kandt, 2012b) are colored in black and

gray, respectively. On periplasmic side TolC opening state was monitored similar

to (Raunest and Kandt, 2012b; Schulz and Kleinekathöfer, 2009) by calculation of

the triangular cross-sectional area (TCA) defined by the Cα atoms of Asp374 and

Gly365 (figure 4.5B and C).

Figure 4.5: Similar to Raunest and Kandt (2012b) we monitored TolC open

state using the dihedral angle θ build by the Cα atoms of Asp56 in the β-barrel

and Ala270 in in the tip of each extracellular loop. For a better comparison we

show previous TolC only results in gray (Raunest and Kandt, 2012b) and our

current results in black (A). The extracellular loops prefer with a peak at 153◦

an open conformation. Simulation snapshots display 0, 1, 2 closed loop(s) and

1EK9 conformations (B). On periplasmic side, TolC open states were monitored

via the triangular cross sectional areas (TCA) build by the Cα atoms of Asp374

and Gly365 highlighting the inner and outer bottleneck region, respectively (C).

Simulation snapshots show initial, maximum and minimum conformations for BNII

(D left, middle, right panel). For the minimum state of BNII we did not regard

the first 10 ns, where the docking of the AcrB-DD happens. TCA’s have been

smoothed using a running average filter of 5 ns. Bold crosses mark the unfiltered

maximum and minimum snapshots in panels D center and right.

To analyze the distribution of sodium throughout the simulation spatial sodium

distributions were computed via the VolMap plugin in VMD version 1.9 (Humphrey

et al., 1996) using a spatial resolution of 1 Å
3

to analyze the distribution of sodium

in the periplasmic bottleneck region at the two density levels 0.01 and 0.1 Na/Å
3

(figure 4.6). To validate our simulation we compared final conformations of TolC

and AcrB-DD to the underlying crystal structures. Therefor we superimposed the

final simulation conformation on 1EK9 and 2GIF after Cα least square fitting on

the crystal structures and calculated Cα displacements (figure 4.7B and D).
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Figure 4.6: Focused on the BNI and BNII regions 3D spacial residence probabil-

ities densities above 0.01 Na+/ Å
3

occur for both bottlenecks and while densities

above 0.1 Na+/Å
3

were measured they did not exceed 0.2 Na+/Å
3

(B). The mea-

sured sodium distribution is comparable to BNII open state simulations in Raunest

and Kandt (2012b).

4.4 Results

4.4.1 AcrB Docking Domain Stability

To monitor the stability of the isolated AcrB docking domain (AcrB-DD) we per-

formed a MD simulation of the isolated AcrB-DD in a 150 mM NaCl solution (fig-

ure 4.1A). Afterwards we computed Cα root-mean-square deviations (RMSDs) after

least square fitting on the Cα atoms of the starting structure and compared it to

previously published simulations of AcrB (Fischer and Kandt, 2013). While the iso-

lated AcrB-DD reaches a plateau after 80 ns and ends with an RMSD of 0.41 nm, the

Acrb’s DDs reach plateaus in one case after 20 ns and for another two simulations

after 90 ns. The end conformation RMSDs range from 0.29 nm to 0.36 nm (figure

4.1B). The Cα-displacements between end conformations of prior AcrB (Fischer and

Kandt, 2013) and of current AcrB-DD were calculated after least square fitting on

2GIF (Seeger et al., 2006). TolC interfacing residues are marked as gray bars in

figure 4.1C.

Beside the ends (residues 182, 272, 724 and 812), Arg765 and Lys226 part of

the inter monomer connecting-loop (ICL (Pos, 2009)), the AcrB-DD shows compa-

rable Cα-displacements to previous AcrB simulations (Fischer and Kandt, 2011).

Whereas these divergent regions are located on the TolC averted side of the ArcB-

DD, the interface residues show Cα-displacements close or below the displacements

of previous simulations (Fischer and Kandt, 2013) (figure 4.1C).
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Figure 4.7: To compare our findings with experimental results we superimposed

1EK9 with the last simulation conformation after least square fitting (A), calcu-

lated their Cα-displacements and colored them monomer wise in black (monomer

A), cyan (monomer B) and yellow (monomer C) (B). The largest conformational

differences occur in the extracellular loop region followed by the periplasmic region

leading to an open conformation on extracellular side and to an open state of BNII

/ “partial open state” (Bavro et al., 2008) as already shown in figure 4.5. The final

conformation of AcrB-DD in complex with TolC was superimposed on 2GIF after

least square fitting (C). Cα-displacements were recorded in (CD) and colored by

monomer. Interface residues between AcrB and TolC of the Symmons model and

of the last conformation of our simulation were identified by a distance cutoff of 1

nm and are highlighted by gray and green bars, respectively (D). The largest dif-

ferences occur at Lys226 member of the intermonomer connecting loop (ICL (Pos,

2009)) (CD). Whereas the β-hairpins (794 - 796) move inwards, the tip loops (255

- 257) keep their orientation (C).

4.4.2 Complex Stability

To examine the complex stability we calculated RMSDs of the entire complex, the

AcrB-DD, the complete TolC, the α-helical domain, the transmembrane domain and

the equatorial domain (figure 4.1). With an RMSD of 0.83 nm the largest confor-

mational changes occur at 369 ns of simulation time in the TolC-AcrB-DD complex,

which reaches a plateau of 0.72 nm after 500 ns of simulation time. Followed by

the AcrB-DD domain, which reaches a plateau after 800 ns of simulation time. The

transmembrane domain achieves a plateau after 700 ns and ends with changes of
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0.56 nm. The RMSDs of the complete TolC, the α-helical and the equatorial domain

do not reach plateaus and end with RMSDs of 0.45 nm, 0.39 nm and 0.35 nm.

4.4.3 Interface between AcrB-DD and TolC

Within the first 3 ns we observe initial contacts between AcrB-DD and TolC follwed

by an asymmetric docking, which results in a tight binding after 1.05 µs simulation

time (figure 4.3A). To quantify the similarity between the interface of the docked

model (Symmons et al., 2009) and the interfaces of our simulation we identified

facing Cα atoms by a distance cutoff of 1 nm for the docked model. Based on this

selection we calculated Cα-RMSDs for our simulation after least square fitting on

the coordinates of the docked model. The initial RMSD between our simulation and

the docked model is 0.65 nm. It decreases until 200 ns of simulation time, afterwards

it rises until the the end of the simulation and reaches a value of 0.75 nm (figure

4.3B).

The buried surface area between AcrB-DD and TolC raises throughout the simu-

lation and exceeds the interface area of the Symmons model (Symmons et al., 2009)

after 300 ns (figure 4.3C). To gain insight into the docking interface we focus on the

four plateau regions of the interface area highlighted in green, blue, cyan and or-

ange in figure 4.3C. For these plateaus we calculated frequently interacting residues

pairs (FIRPs) and analogue to the results of the interface area analysis we observe

an increase of FIRPs. Beginning with the third plateau (640–830 ns) residue pairs

above 60% frequency appear (figure 4.4).

While asymmetric monomer contacts are barely perceptible in figure 4.4A, the

grid representation indicates asymmetric monomer contacts for the plateaus 1, 3

and 4 highlighted by gray backgrounds (figure 4.4). FIRPs of the Symmons model

(Symmons et al., 2009) are shown in figure 4.4A, as ’X’ in B. In our simulation none

of the Symmons (Symmons et al., 2009) FIRPs were observed (figure 4.4B).

To identify facing residues between AcrB-DD and TolC, Tamura and coworkers

applied cystein cross linking experiments pair wise for a) TolC’s tip region of helix

3 & 4 (139, 142, 145, 147 and 150) and AcrB-DD’s tip loop (254 - 257) and for

b) TolC’s tip region of helix 7 & 8 (360, 363 - 366) and AcrB-DD’s β-hairpin (794

- 796) (Tamura et al., 2005). a) Our data are in agreement with experimental re-

sults for AcrB-DDs residues 254 - 267 except the contacts between 254AcrB-DD &

142,143,145,150TolC, 255AcrB-DD & 145,147TolC, 256AcrB-DD & 143,147,150TolC

and 257AcrB-DD & 147TolC. We observe a tendency that AcrB-DD’s Asn254 inter-

acts with TolC tip region of helix 3 & 4 (142,143,145TolC). b) For the tip region of

TolC’s helix 7 & 8 our data are in agreement with experimental results except the

contacts between 795AcrB-DD & 365TolC and 796AcrB-DD & 366TolC (table 4.1),

respectively. To sum it up we measured 27/39 (69.2 %) accordances in our simulation

and Tamura et al. (2005) and 12/39 (30.8 %) variations to residue pairs Tamura et al.

(2005) tested in their cross linking study (table 4.1).
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4.4.4 TolC Gating

Extracellular Side

To analyze TolC’s opening state on the extracellular side, we monitored the dihedral

angle θ formed by the Cα atoms of Asp56 in the β-barrel and Ala270 at the tip of

each extracellular loop (figure 4.5A and B). Using the 1EK9 average θ dihedral of

89.8◦ as a reference, we determined the number of loop conformations as closed or

more closed than the aforementioned crystal structure. The histogram ranges from

30◦ to 180◦ of θ distributions (figure 4.5A) and shows three peaks at 110◦, 153◦ and

165◦ indicating that the open conformation is preferred in our simulation.

Periplasmic Side

On the periplasmic side we monitored the TolC opening state by calculating the

triangular cross-sectional area (TCA) spanned by the Cα atoms of Asp374 and

Gly365 representing the inner (BNI) and outer periplasmic bottleneck region (BNII)

(figure 4.5C and D). Similar to Raunest and Kandt (2012b) BNII opens immediately

within the first 3 ns. The average TCA of BNII in the 1.05 µs is with 216± 26 Å
2

slightly bigger and fluctuates lesser than in (BNII open)-TolC only simulations (195.1

± 42.6 table 3.1, figures 3.3B, 4.5C).

For the inner bottleneck, we measure a TCA of 64± 6 Å
2
. It remains closed and

displays a TCA similar the 1EK9 X-ray structure (59 Å
2
). Whereas the left panel

in figure 4.5D shows the start conformation of BNI and BNII, panels D middle and

right illustrate simulation snapshots of the maximal and minimal BNII opening of

352 and 131 Å
2
, respectively.

4.4.5 Sodium Distribution

To determine the distribution of sodium ions and check for potential binding sites,

we calculated the average spatial Na+ density distribution. Zooming in on the

bottleneck region, we find a heightened three-dimensional Na+ density near Asp374

and Asp371 exceeding 0.1 Na+/Å
3

(figure 4.7).

4.4.6 Simulation versus X-ray

To compare the docked structure to the crystal structures 1EK9 and 2GIF, we

aligned the final conformation of the simulation to the crystal structures after least

square fitting and calculated Cα displacements for the individual proteins (figure

4.7). In case of TolC the open conformation of the extracellular loops cause the

highest displacements of 1.9 nm, followed by displacements of the tip region reaching

1.5 nm at helix 3 & 4 of monomer B. Slight outwards movements of helix 7 in

monomer B and C caused displacements of 1 to 1.3 nm (figure 4.7). For AcrB-

DD the largest conformational changes occur at the ICL of monomer A reaching a
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displacement of 1.5 nm followed by displacements of 1.3 nm at Tyr 779 of monomer

B (figure 4.7). While our simulations indicate an inward movement of the beta

hairpins (residues 794 - 796), the tip loops of AcrB-DD (residues 255 - 257) keep

their orientation except an outward bending of the tip loop in monomer B.

4.5 Discussion

In this work, we report an unbiased 1.05 µs MD simulation, where AcrB’s docking

domain (AcrB-DD) docks asymmetrically on TolC. We measure a tighter binding of

AcrB-DD on TolC in comparison to a previously published docked model (Symmons

et al., 2009). On extracellular side TolC prefers an open state for its extracellular

loops in presence of the AcrB-DD. While on periplasmic side TolC’s outer bottleneck

(BNII) opens due to a shift of helix 7, the inner bottleneck (BNI) remains closed

(figure 4.5C), supporting the idea of an “partially open state” of TolC during the

assembly of the AcrAB-TolC efflux system (Bavro et al., 2008). We begin with the

limitations of our approach and then precede for our finding and their biological

implications.

4.5.1 Limitations of our Approach

As an outer membrane protein, TolC’s micro environment is characterized by a het-

erogeneous lipid composition containing lipolysaccharides in the outer leaflet, while

the protein interacts with the peptidoglycan layer on the periplasmic side (Lugten-

berg and Alphen, 1983). In our simulation we approximated the outer membrane by

a homogeneous POPE bilayer omitting a representation of the peptidoglycan layer.

While it would certainly be desirable to have both components fully included

in simulation studies, the development of the appropriate lipopolysaccharides and

peptidoglycan molecular topologies is still in its infancy (Kotra et al., 1999; Lins

and Straatsma, 2001; Meroueh et al., 2006; Piggot et al., 2011, 2012; Straatsma

and Soares, 2009; Vollmer and Bertsche, 2008; Vollmer et al., 2008b) and at the

time of writing, such simulation parameters were not available for E. coli. Whereas

one could argue, that the TolC behavior we observe on the extracellular side could

be an artifact of our simplified membrane model, it is encouraging, that one of

the first lipopolysaccharide simulations studying the outer membrane protein OprF

(Straatsma and Soares, 2009), reported that the lipopolysaccharids have a stabilizing

effect on the open conformation of the OprF extracellular loops, that exhibit an

architecture similar to that of TolC.

We assume that the isolated AcrB-DD is a good model to explore the influence

of AcrB onto the periplasmic gating mechanisms of TolC, because the Cα displace-

ments and the RMSDs of AcrB’s DD show that the isolated AcrB-DD behavior is

comparable to previously 100 ns MD simulations of AcrB (Fischer and Kandt, 2013).

With any molecular dynamics study, the question of whether the simulated time
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has been sufficiently long with respect to the problem under investigation arises.

Given the findings reported by Grossfield and Zuckerman (Grossfield and Zucker-

man, 2009), that 1.6 µs atomistic MD simulation of membrane-embedded rhodopsin

was not enough for the protein structure to converge, our observations that TolC Cα

RMSDs are still increasing after 1.05 µs (figure 4.2B), and that the protein struc-

ture has therefore not equilibrated yet, are not surprising. Underscoring the need for

long-time simulations as well as a careful restraint in using the term “equilibrated”

when addressing protein structures in MD simulations.

However, given that a) our study’s focus is on the influences of the AcrB-DD

on TolC’s gating mechanisms, b) in one of four simulations AcrB-DD docs sponta-

neously onto TolC, c) AcrB-DD stabilizes the open conformation of TolC’s BNII,

we consider the amount of sampling achieved adequate for the purpose of this in-

vestigation providing insights into AcrB-DD docking and its influence on TolC on a

time scale that is 3.5 to 35 times longer than those of any previous TolC simulations

(Raunest and Kandt, 2012b; Schulz and Kleinekathöfer, 2009; Vaccaro et al., 2008).

4.5.2 Simulation and X-ray

To compare the last conformation of the 1.05 µs simulation to the X-ray struc-

tures 1EK9 and 2GIF we superimposed the final simulation conformations of TolC

and AcrB-DD on the underlaying crystals structures after least square fitting and

calculated Cα displacements (figure 4.7).

TolC

As shown in figure 4.5A, the open conformation for TolC’s extracellular loops is

favored in our simulation causing the highest displacements of 2.1 nm in presence

of the AcrB-DD after 1.05 µs (figure 4.7A). On periplasmic side the tip region show

the second most displacements reaching 1.5 nm induced by an outward shift of helix

7 in all monomers in the final conformation (figure 4.7A), which is also indicated by

the TCA of BNII (figure 4.5C).

Both ends of TolC, the extracellular loops and the outer bottleneck (BNII),

show wider open conformations in our simulation than in the crystal structure. A

possible explanation of these discrepancies to the crystal structure is that the crystal

environment may hinder TolC to open up on both sides. In a previous study we

identified 4 Å crystal contacts on both ends, which might stabilize the closed state

on both sides of TolC (Raunest and Kandt, 2012b) (see chapter 3 figure 3.6C). These

crystal contacts could induce the predominant closed conformations in the wild-type

crystal structures.

Moreover with a rising RMSD until the end of the simulation TolC did not reach

an equilibrium state hinting that TolC undergoes conformational changes until the

end of the simulation and maybe longer simulation time is needed to observe a

complete opening of TolC on periplasmic side.
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AcrB-DD

For AcrB-DD the highest displacements occur on the TolC averted side at an inner-

and at the intermonomer connecting-loop (ICL). While we notice an increased Cα

displacement of the ICL in prior AcrB (Fischer and Kandt, 2013), the inwards

movement of the inner loop at Arg765 occurred only for the isolated AcrB-DDs

simulations and could be caused by the isolation of the AcrB-DD (figure 4.7C and

D). However the inward movement of the loop at Arg765 had little to no effect on

the TolC facing side of AcrB-DD, since we measure comparable interface regions for

our simulation and the Symmons model (figure 4.7D).

4.5.3 Interface between AcrB and TolC

In our simulations initial contacts between the AcrB-DD and TolC occur within the

first 3 ns of simulation time resulting into a docked conformation where all monomers

of AcrB-DD are in contact with TolC after 1.05 µs of simulation time (figure 4.3A).

To measure the similarity between our simulation and the Symmons model (Sym-

mons et al., 2009) we used facing Cα atoms within a 1 nm cutoff of AcrB and TolC

in the docked model (Symmons et al., 2009) as basis for RMSD calculations. The

initial decrease of the RMSDs until 200 ns indicates a conformational convergence is

followed by a continuously increase of the RMSDs after 200 ns show conformational

distinctions (figure 4.3B). The buried surface area rises until the end of the simula-

tion and exceeds the interface area of the Symmons model (4054 Å
2
) after 300 ns

of simulation time and ends with a value of 4701 Å
2

(figure 4.3C). The increase of

the frequently interacting residue pairs (FIRPs) in frequency and quantity indicate

a tighter binding of the AcrB-DD over time (figure 4.4).

Beside this tighter binding we notice an asymmetric docking of the AcrB-DD

onto TolC as highlighted by gray quadrants in figure 4.4B. The 2 Å contacts of the

Symmons model (144TolC-255AcrB and 143TolC-794AcrB), marked as ’X’ in figure

4.4B, could not be confirmed in our simulation. A possible explanation of this is

that the asymmetric docking of the AcrB-DD on TolC disturbs the 2 Å contacts

of the Symmons model and induced other short range interactions. Building only

one conformation of the AcrAB-TolC complex and as indicated by a smaller buried

surface area maybe the computational docking routine avoids atom distances below

2 Å. Previous point mutation / cystein cross linking experiments identified facing

residues of a) TolC’s tip region of loop 3 & 4 and AcrB-DD’s tip loop and b) TolC’s

tip region of loop 7 & 8 AcrB-DD’s β-hairpin (Tamura et al., 2005). In their work

a closed conformation of helix 7 & 8 at the outer bottleneck (BNII) and a two

stage docking mechanism for AcrB and TolC has been proposed. We measured Cα

distances of the same residue ranges and assumed, that distances below 0.647 nm

are able to form a cystein cross link as reported in Schmidt et al. (2006). Results

of the cross linking study and the current study are compared in table 4.1 and

display an 69.2 % accordance between Tamura et al. (2005) and our measurements.
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The simultaneous occurrence of false-positives and false-negatives in table 4.1 could

mean that the docking of AcrB-DD on TolC has not reached its final stage in our

simulation. Since the interface area is rising until the end of the simulation longer

simulation time is needed to achieve this final stage.

4.5.4 Extracellular Access

Available X-ray structures (Bavro et al., 2008; Higgins et al., 2004; Koronakis et al.,

2000; Pei et al., 2011) and a computational study suggest, that the access could be

restricted on both sides (Vaccaro et al., 2008). Whereas in our current simulation we

find a predominant open state for the extracellular loops in presence of the AcrB-DD

(figure 4.5A). Maybe the docking of the AcrB-DD onto TolC is responsible for the

constant open state of the extracellular loops of TolC. Previous simulations have

shown flexible extracellular loops (figure 4.5A gray), which means, that the sterical

accessibility is only limited by the inner radius of the β-barrel.

4.5.5 Periplasmic Access

In 2002 Andersen and coworkers identified two bottlenecks on the periplasmic side

via conductance experiments: An inner one outlined by a double aspartate ring build

by the residues 371 and 374 of the 3 monomers (BNI), and an outer one (BNII),

stabilized by network of an inter monomer salt bridge and intra monomer hydrogen

bonds. Mutations, affecting BNI or BNII, lead to higher conductance (Andersen

et al., 2002a,b). Based on these experiments mutations of BNII have been introduced

into the crystal structures 2VMD, 2VDD, 2WMZ and 2XMN (Bavro et al., 2008;

Pei et al., 2011) causing an opening of BNII, but not of BNI suggesting that BNII

is able to open and close independently from BNI (Raunest and Kandt, 2012b).

Dividing TolC open states into an inner (BNI) (Andersen et al., 2002b) and

outer periplasmic bottleneck (BNII) (Andersen et al., 2002a), the question whether

TolC is open or closed on periplasmic side during the efflux system assembly needs

to be stated more precisely in order to differentiate between BNI and BNII states

(Tikhonova et al., 2011).

The inner Bottleneck (BNI)

Identified by Andersen et al. (2002b), the inner bottleneck (BNI) remains closed

during our simulation and no opening motions were measured (figure 4.5C). Ana-

logue to Raunest and Kandt (2012b) increased sodium residence probabilities of 0.1

Na+ atoms / Å
3

occur near BNI, which might stabilize the closed conformation BNI

(figure 4.6). Maybe a flush of solvent induced by the AcrB pump could push the

ions outward of the Asp371 and Asp374 double ring and therefore relax and open

the inner bottleneck. Schulz and Kleinekathöfer (2009) applied an electric field to

pull potassium ions out of an ion pocket in order to open TolC’s BNII. However,
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our simulation shows, that the AcrB docking domain (AcrB-DD) is not able to open

BNI during 1.05 µs, meaning that either the complete AcrB, eventually including

also a bound drug, or both AcrA and AcrB or a longer simulation is necessary to

open BNI.

The outer Bottleneck (BNII)

While the outer bottleneck (BNII) is stabilized by a network of salt bridges and

hydrogen bonds (Andersen et al., 2002a), mutations disturbing this network lead

to open conformations of BNII / “partial open conformation” in crystal structures

2VMD, 2VDD, 2WMZ and 2XMN (Bavro et al., 2008; Pei et al., 2011). Monitored

BNII by the TCA of Gly365 Cα atoms, simulation studies report a lock of BNII in a

potassium and sodium dependent manner for mutants (Schulz and Kleinekathöfer,

2009) and wild-type TolC (Raunest and Kandt, 2012b). In presence of the AcrB-DD

the sodium distribution near the bottlenecks is similar to sodium distributions of

the open state of BNII in (Raunest and Kandt, 2012b). Comparing the average

TCA of BNII of the 1.05 µs simulation to the BNII open time frames of chapter

3, we measured a higher average TCA of BNII with lesser fluctuations for the 1.05

µs simulation meaning that the AcrB-DD stabilizes the open conformation of BNII.

Analogue to Raunest and Kandt (2012b) we measure an initial opening of BNII

within 3 ns and observe initial contacts between AcrB-DD and TolC after 3 ns

of simulation time (figure 4.3A). This means that BNII is already open before the

AcrB-DD docks completely on TolC. This hypothesis can be validated by locking the

periplasmic side of TolC as described in Eswaran et al. (2003) and apply afterwards

the very same mutational cystein cross linking experiments with the locked TolC

and AcrB as described in Tamura et al. (2005). If BNII is closed before AcrB docks

on TolC, the results should be comparable to results of Tamura et al. (2005).

4.6 Conclusions

Computing an unbiased 1.05 µs MD simulation containing AcrB’s docking domain

(AcrB-DD) and TolC in a phospholipid membrane / 150 mM NaCl water environ-

ment, we report a tighter but asymmetric binding of the AcrB docking domain

(AcrB-DD) onto TolC in comparison to the best available docked model (Symmons

et al., 2009). On TolC’s extracellular side, analogue to (Raunest and Kandt, 2012b),

we find freely open and closing motions for the extracellular loops and moreover we

notice a favored open conformation of these loops in presence of AcrB-DD hinting

for the absence of a gating functionality on extracellular side.

We measured on periplasmic side an open state of TolC’s outer bottleneck (An-

dersen et al., 2002a) (BNII) supporting the “partially open” / BNII open confor-

mation of the docked model published by Symmons et al. (2009). Furthermore, our

data indicate, that the outer bottleneck (BNII) is open before or at least during
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the assembly of TolC and AcrB. This open state of BNII is stabilzed by the docked

AcrB-DD. The inner bottleneck (BNI) (Andersen et al., 2002b) remained closed

throughout the simulation meaning that AcrB-DD could not open TolC during the

simulation and that additional components are missing or a longer simulation time

is needed to open TolC.
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Chapter 5

Unilateral Access Regulation:

Ground State Dynamics of the

Pseudomonas aeruginosa Outer

Membrane Efflux Duct OprM

OprM is a TolC homologue protein located in the outer membrane of Pseudomonas

aeruginosa. Similar to TolC it interacts with several inner membrane transporters

and facilitates the export of many harming substances. Through this circumstances

OprM may become a target of drug research, because a disabled blocked or mal-

functioning OprM could deny substrate expulsion across the outer membrane. With

the loss of this export functionality strains could loose resistance against drugs. The

understanding of the gating mechanisms of OprM are a prerequisite to target OprM

with drugs. In the following chapter Dennis Koch performed MD simulations as

part of his Master thesis under my co-supervision to explore the gating mechanisms

of OprM.

Adapted from:

Koch, D. C., Raunest, M., Harder, T., and Kandt, C. (2013). Unilateral access

regulation: Ground state dynamics of the pseudomonas aeruginosa outer membrane

efflux duct oprm. Biochemistry, 52(1):178–187
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5.1 Abstract

Acting as efflux duct in the MexAB-OprM multidrug efflux pump, OprM plays a ma-

jor role in the antibiotic resistance capability of Pseudomonas aeruginosa, trafficking

substrates through the outer cell membrane. Whereas the available crystal struc-

tures showed restricted OprM access on both ends, the underlying gating mechanism

is not fully understood yet.

To gain insight into the functional mechanism of OprM access regulation we

carried out a series of five independent, unbiased molecular dynamics simulations,

computing 200 ns dynamics samples of the wild type protein in a phospholipid

membrane / 150 mM NaCl water environment. On extracellular side OprM opens

and closes freely under the simulated conditions suggesting the absence of a gating

mechanism on this side of the isolated protein. On periplasmic side we observe an

opening of the tip regions at Val408 and to a lesser degree at Asp416 located 1.5 nm

further inward the channel, leading to OprM end conformations up to 3 respectively

1.4 more open than the asymmetric crystal structure.

If our simulations are correct our findings imply that periplasmic gating involves

only the Asp416 region and that in vivo additional components, absent in our simu-

lation, might be required for periplasmic gating if the observed opening trend near

Asp416 is not negligible. In addition to that we identified in each monomer a previ-

ously unreported sodium binding site in the channel interior coordinated by Asp171

and Asp230 whose function role remains to be investigated.
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5.2 Introduction

The aerobic, Gram-negative bacterium Pseudomonas aeruginosa is a common patho-

gen that can be found in almost all kind of environments (Ramos, 2010). Especially

for humans with weak immunity or damaged tissue P. aeruginosa can cause severe

medical conditions (Mesaros et al., 2007). One of the most troublesome charac-

teristics of P. aeruginosa is the strong antibiotic resistance capability which often

originates from the expression and activity of multidrug efflux pumps (Putman et al.,

2000; Strateva and Yordanov, 2009). Until now several multidrug efflux pump sys-

tems have been characterized in P. aeruginosa, including the most prominent ones

MexA-MexB-OprM (Poole et al., 1993), MexC-MexD-OprJ, MexE-MexF-OprN, and

MexX-MexY-OprM (Köhler et al., 1997; Masuda et al., 2000a,b). Displaying differ-

ent substrate specifities, these systems extrude a wide range of antimicrobial agents,

including quinolones, tetracyclines and most penicillins (Masuda et al., 2000b).

In wild-type cells MexAB-OprM is the only efflux system that is expressed

constantly (Nakajima et al., 2002). The corresponding operon encodes MexA, a

periplasmic adaptor or membrane fusion protein (MFP), MexB, an inner mem-

brane drug-proton antiporter of the resistance nodulation division (RND) protein

super family, and the outer membrane factor (OMF) OprM (Hancock and Brinkman,

2002; Wong et al., 2001; Zgurskaya and Nikaido, 2000). Assembling transiently these

components form a tripartite efflux system with MexB acting as engine and active

transporter expelling various compounds out of the cell via the outer membrane

efflux duct OprM.

MexA is assumed to couple the MexB and OprM in the assembled pump (Xu

et al., 2012). Beyond interacting with MexA and MexB, OprM also functions as

efflux duct in conjunction with other inner membrane transporters (Gotoh et al.,

1998; Masuda et al., 2000a; Zhao et al., 1998). At the time of writing two OprM

crystal structures have been solved, the first of a single monomer (Akama et al.,

2004), the second of the entire trimer(Phan et al., 2010), showing the efflux duct at

resolutions of 2.56 Å and 2.4 Å respectively.

OprM is a homo-trimer forming a hollow cylinder and displays a very high degree

of conformational similarity to its Escherichia coli homologue TolC with an α-carbon

root-mean-square deviation (RMSD) of 1.6 Å despite a low sequence identity of 19%

(Phan et al., 2010). Like TolC OprM exhibits a β-barrel domain embedded in the

outer membrane from which an α-helical domain extends 100 Å into the periplasmic

space. A ring-like equatorial domain surrounds the α-helical domain’s middle section

while the protein’s N-terminus is attached to the outer membrane via a palmitoyl

lipid anchor (figure 5.1A). Acting as efflux duct in a transiently assembled transport

system, OprM occurs in at least two different states: one permitting and one blocking

the passage of substrates. While in the available X-ray structures OprM access is

restricted on extracellular and periplasmic side, the underlying mechanisms of gating

and access regulation are not fully understood yet.
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Similar to TolC an iris-like opening mechanism has been proposed on periplas-

mic side (Zgurskaya et al., 2011), whereas elastic network normal mode analyses

suggested additional conformational changes involving twisting and stretching mo-

tions of OprM (Phan et al., 2010). For TolC recent computer simulations suggested

that channel access is regulated only on periplasmic side in a sodium-dependent

manner while on extracellular side the isolated wild type protein opens and closes

freely (Raunest and Kandt, 2012b).

Addressing the question of OprM access regulation and gating mechanism as

well as exploring the potential influence of sodium ions, we conducted a series of five

independent, unbiased 200ns molecular dynamics (MD) simulations of membrane-

embedded wild-type OprM in a 150 mM NaCl solution. On extracellular side we

find OprM opening and closing freely, suggesting the absence of a gating mechanism

on this side in the isolated protein. Assuming a similar architecture as in its E. coli

homologue TolC, comprising an inner and outer bottleneck region, we monitored

OprM’s periplasmic opening state using Asp416 and Val408 which we selected based

on their proximity to their TolC counterparts after superimposing OprM and TolC

X-ray structures. In all simulations an opening of both bottlenecks occurs.

However, the effect is stronger pronounced in the outer bottleneck region reaching

end conformations up to 3 times more open than the starting crystal structure.

At the same time the inner bottleneck displays post-simulation conformations only

1.1 to 1.4 times more open than in the starting structure. If our simulations are

correct our findings imply that periplasmic gating occurs only in the inner bottleneck

region at Asp416 and that in vivo additional components, absent in our simulation,

might be required for periplasmic gating if the observed opening trend at Asp416

is not negligible. In addition to that we identified in each monomer a previously

unreported sodium binding site in the channel interior coordinated by Asp171 and

Asp230. Apparently uninvolved in gating or structure stabilization the functional

role of the Na site remains to be investigated.

5.3 Experimental Procedures

5.3.1 Molecular Dynamics Simulations

MD simulations were performed employing GROMACS version 4.0.3 (Berendsen

et al., 1995a; Hess et al., 2008) and the GROMOS96-53a6 force field (Oostenbrink

et al., 2004) using the 3D5K OprM crystal structure (Phan et al., 2010) as a starting

structure. The protein was inserted in a pre-equilibrated 9.6 nm x 9.6 nm palmitoyl-

oleoylphosphatidylethanolamine (POPE) bilayer patch (Tieleman and Berendsen,

1998) using INFLATEGRO (Kandt et al., 2007). The system was solvated with

simple point charge water molecules (Berendsen et al., 1981) and 181 Na+ and 166

Cl− ions, yielding a 150 mM NaCl solution and a total system charge of zero (figure

5.1A). Standard protonation states were assumed for titratable residues.
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After a 20 ns membrane equilibration with protein atoms position-restrained us-

ing a force constant of 1000 kJ mol-1 nm-2, five independent MD runs with different

starting velocities were performed, each 200 ns in length. In the simulations, all

bond lengths were constrained by LINCS (Hess et al., 1997) so that an integration

time step of 2 fs could be chosen. Systems were simulated at 310 K, maintained sep-

arately for protein, lipids, and water by a Berendsen thermostat (Berendsen et al.,

1984) with a time constant (τT ) of 0.1 ps. Pressure coupling was done employing a

Berendsen barostat (Berendsen et al., 1984) using a 1 bar reference pressure and a

time constant of 4 ps. Semiisotropic pressure coupling was employed to permit bi-

layer fluctuations in the membrane plane. Electrostatic interactions were calculated

using particle mesh Ewald (PME) summation, (Darden et al., 1993; Essmann et al.,

1995) and twin range cutoffs of 1.0 and 1.4 nm were applied for computing the van

der Waals interactions.

5.3.2 Analysis

To monitor protein stability and conformational drift throughout the simulations

we computed Cα RMSDs after least square fitting to the starting structure (figure

5.1). This was done for the entire protein as well as the trans-membrane β-barrel in-

cluding the extracellular loops, the α-helical domain, the equatorial domain and the

membrane-anchoring N-terminus. To assess the overall amount of conformational

sampling throughout the simulation a principal component analysis was performed

on the α-carbon trajectories of all simulations.

Similar to Raunest and Kandt (2012b) the OprM opening state on extracellular

side was monitored through the dihedral angle θ spanned by the Cα atoms of Ser113

located in the β-barrel and Thr106 at the tip of each extracellular loop (figure 5.2).

As the outwardly closed 3D5K crystal structure displays an average θ value of 99.6◦

(figure 5.2C), an extracellular loop was regarded as closed as or more closed than

3D5K whenever θ ≤ 99.6◦. Conversely, a loop for which θ ¿ 99.6◦ was considered

more open than the 3D5K X-ray structure. In each simulation, θ was monitored

for each extracellular loop (figure 5.2A, first panel) and subsequently converted to

a binary representation of “more open” than 3D5K (a value of 0) or “more closed”

(assigned a value of 1) (figure 5.2A, second panel).

As a summary for each run, the number of loops in the closed conformation was

determined (figure 5.2A, third panel) and converted to a frequency histogram (figure

5.2A, fourth panel) reflecting for each simulation the percentage occurrence of closed

loopconformations (figure 5.2B). To obtain an overview of the extracellular loop

conformations visited throughout all simulations, we calculated a histogram showing

the θ distribution in all five runs (figure 5.2E). Similar to Schulz and Kleinekathöfer

(2009) and Raunest and Kandt (2012b), the periplasmic OprM opening state was

monitored through α-carbon triangular cross-sectional area (TCA) analysis (figure

5.3). The corresponding Asp416 and Val408 OprM residues representing the inner
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Figure 5.1: (A) Molecular dynamics simulations of wild-type 3D5K OprM were

conducted in a POPE phospholipid / 150 mM NaCl water environment. The

coloring scheme represents different OprM regions: β-barrel extracellular loops

(green), α-helical domain (black), equatorial domain (red), membrane-anchoring N-

terminus (blue). (B) Cα root-mean-square deviations after respective least- square

fitting to the starting structure. While the largest conformational changes occur in

the membrane-anchoring N-termini and the β-barrel / extracellular loops region,

the overall RMSDs of the entire protein are still rising after 200 ns. (C) To assess

the amount of conformational sampling during our simulations we carried out a

principal component analysis mapping for each simulation OprM’s path through

conformational space down to the three dimensions spanned by the first three

Eigenvectors.

(BNI) and outer periplasmic bottleneck (BNII) were selected based on their average

minimum α-carbon distance to their TolC counterparts Asp374 (1.97 Å) and Gly365

(2.36 Å) (Andersen et al., 2002a,b) after superimposing the 3D5K and 1EK9 OprM

and TolC crystal structures using PyMOL 1.5 (Delano, 2002) (figure 5.3A).

To analyze the distribution of sodium throughout the simulations, both one-

dimensional (1D) Na+ density profiles along the membrane normal and average

spatial sodium distributions were computed. The former was done using the GRO-

MACS tool g density, and for the latter, we employed the VolMap function in VMD

version 1.943 using a spatial resolution of 1 Å
3

to analyze the distribution of sodium
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Figure 5.2: On the extracellular side the OprM opening state was monitored

through the dihedral angle θ formed by the α-carbons of Ser113 in the β-barrel

and Thr106 at the tip of each extracellular loop (A). As the outwardly closed

3D5K crystal structure displays an average θ value of 99.6◦, an extracellular loop

was regarded as closed as or more closed than 3D5K whenever θ ≤ 99.6◦. In each

simulation, θ was monitored for each extracellular loop (B1) and subsequently con-

verted to a binary representation of “more open” than 3D5K (assigned a value of

0) or “more closed” (assigned a value of 1) (B2). As a summary for each run, the

number of loops in the closed conformation was determined (B3) and converted

to a frequency histogram (B4), reflecting for each simulation the number of closed

extracellular loops and the percentage of simulation time spent in that conforma-

tion (C). As shown by the overall θ distribution calculated over all runs (D) and

simulation snapshots and the 3D5K crystal structure (E), the extracellular loops

adopt a broad range of conformations preferring the completely open state under

the simulated conditions (C, D).

at four density levels ranging from 0.01 to 0.8 Na+/Å
3
. Sodium binding and un-

binding were monitored analyzing the z-coordinate trajectory of each Na+ ion and

computing for each OprM monomer the percentage of simulation time a residue

comes into contact with at least one sodium ion in at least one monomer. For this

analysis, we employed a residue-Na distance cutoff of ≤ 3 Å. Both the sodium dis-

tributions and the residue contact analyses were performed for all five simulations.
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Figure 5.3: On the periplasmic side, the OprM opening state was monitored using

the triangular cross- sectional area (TCA) spanned by the α-carbons of Asp416 and

Val408, representing an inner (BNI) and outer periplasmic bottleneck (BNII) based

on the residues’ close proximity to their TolC counterparts Asp374 and Gly365

(A). Both bottlenecks open during the simulations, however in BNII the opening is

stronger pronounced, leading to TCAs up to 3 times higher as in the 3D5K starting

structure by the end of the simulations, whereas BNI is only 1.1 - 1.4 times more

open after 200 ns (B). Conformational snapshots (C-E) illustrate periplasmic OprM

conformations in the asymmetric (C) and symmetric crystal structure (E) as well

as at maximum BNII opening (D). For the sake of clarity, the TCAs have been

smoothed using a running average filter of 5ns. Bold crosses mark the unfiltered

TCA maxima.

To quantify sodium occupation of the detected interaction site, we calculated the

run and time-averaged percentage of simulation time one, two or three sodium ions

are simultaneously present within 3 Å of Asp171 and Asp230. As described in Fischer

and Kandt (2011), simulation average structures were calculated using an iterative

scheme of calculating the average conformation and realigning the trajectory to that

average structure before computing a new average structure. This procedure was

repeated until the average structure stopped changing.
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Figure 5.4: Sodium distribution and interaction sites. Partial sodium densities

calculated for all simulations indicate the presence of two preferred sodium bind-

ing sites: at the lipid headgroups and in the lower equatorial region of the OprM

channel (A). The protein site is continuously occupied for the entire simulation

time as indicated by a stable sodium trace in a Na+ z-trajectory plot shown rep-

resentatively for run 1 (B). Run and time-averaged spatial sodium distributions in

the lower equatorial region show for each monomer maxima in Na+ density in the

channel interior near Asp171, Asp230 and Leu226 (C) which we find interacting

with sodium for 78%, 77% and 32% of the simulation time at a distance ≤ 3 Å

(D).

5.4 Results

5.4.1 Protein Stability and Conformational Sampling

To monitor protein stability and conformational drift we computed for each sim-

ulation the Cα RMSDs for the whole protein, the β-barrel including the extracel-

lular loops, α-helical domain, the equatorial domain and the membrane-anchoring

N-terminus (figure 5.1B). With RMSDs ranging from 4 to 8 Å the largest confor-
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mational changes occurred in the membrane-connecting N-terminal regions followed

by the β-barrel / extracellular loops regions displaying RMSDs up to 4.5 Å.

For the equatorial and α-helical domain we observed RMSD ranges of 2 - 3.5 and

1.5 - 3 Å, respectively. As indicated by the continuously increasing RMSD curves of

the entire protein, within the simulation time of 200 ns no stable RMSD plateaus

are reached. Assessing the overall amount of conformational changes during our

simulations we carried out a principal component analysis of the concatenated Cα-

trajectories. Projecting OprM’s pathway onto the first three Eigenvectors we find

that in each run the protein explores different regions of conformational hyperspace

around the X-ray structure (figure 5.1C).

5.4.2 Gating

Extracellular Side

To analyze the extracellular opening state of OprM, we monitored the dihedral angle

θ formed by the Cα atoms of Ser113 in the β-barrel and Thr106 at the tip of each

extracellular loop. Using the 3D5K X-ray structure’s average θ dihedral of 99.6◦ as

a reference, loop conformations were classified as “closed or more closed” than the

crystal structure when θ ≤ 99.6◦, whereas loop conformations with θ ¿ 99.6◦ were

regarded as “more open” than the 3D5K X-ray structure.

Throughout the simulations we observe a variety of extracellular loop conforma-

tions ranging from 0 up to 3 closed loops (figure 5.2D), whereas the highest frequency

was found to be in the range of 0 closed loops. Whereas the overall θ distribution

calculated over all simulations ranges from 30◦ to 165◦, displaying a maximum at

120 (figure 2D), the 1WP1 and 3D5K crystal structures show average θ values of

∼ 105◦ and ∼ 100◦ (figure 2D).

Periplasmic Side

Monitoring the OprM opening state on the periplasmic side, we calculated the tri-

angular cross-sectional area (TCA) rendered by the Cα atoms of Asp415 and Val408

representing the inner (BNI) and outer periplasmic bottleneck (BNII) (figure 5.3A).

In all five simulations, the outer bottleneck BNII consistently opens up during

the first 100 ns (figure 5.3C) reaching TCAs in the range of 206.1 ± 45.5 Å
2

with a

maximum of 351.9 Å
2

after 165.2 ns in run 2 (figure 5.3D). The corresponding TCAs

of the starting structure 3D5K (figure 5.3C) and the 1WP1 crystal structure (figure

5.3E) amount to 83.9 Å
2

and 125.3 Å
2
, respectively. Starting from 59.4 Å

2
TCA

in the 3D5K crystal structure, the inner bottleneck BNI also shows a slight opening

trend leading to a TCA range from 60 to 84 Å
2

by the end of the simulations.

A summary of the average, minimum and maximum opening states of inner and

outer periplasmic bottleneck compared to the 1WP1 and 3D5K crystal structures is

given in table 5.1. Computing Connolly surfaces with different probe sphere radii
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Table 5.1: OprM periplasmic opening states as observed in the crystal structures

and our molecular dynamics simulations

Outer bottleneck Val 408 (BNII) Inner bottleneck Asp416 (BNI)

OprM structure avg TCA (Å2) avg Cα distance (Å) avg TCA (Å2) avg Cα distance (Å)

3D5K 83.9 13.9 59.4 11.7

1WP1 125.3 17 38.7 9.5

Simulation 206.1 ± 45.5 21.9 ± 3 69.7 ± 11.3 12.7 ± 1.4

max 351.9 31.1 103.6 18.1

min 85.4 12 39.4 8.6

we find that the 3D5K X-ray structure is sterically permeable for molecules with a

diameter of 1.2 Å or smaller, whereas the maximum BNI opening observed in one

simulation at 107 ns permits the passage of molecules with a diameter of 6.4 Å or

smaller.

5.4.3 Sodium Distributions and Binding Sites

Computing time-averaged 1D Na+ density profiles along the z-axis, sodium z-tra-

jectories as well as time and run-averaged spatial Na+ density distributions, we

searched for potential OprM sodium binding sites similar to the ones recently de-

scribed for TolC (Raunest and Kandt, 2012b). Next to the lipid head groups the

1D Na+ density profiles indicate a site of heightened sodium density in the lower

equatorial region of the channel (figure 5.4A) continuously occupied throughout the

entire simulation time as evident by a stable sodium trace in the Na+ z-trajectory

representatively shown for MD run 1 (figure 5.4B).

Zooming in on the individual sodium ions contributing to this trace, we find

that once initial binding has occurred (during the first 5 - 40 ns), all three binding

sites remain occupied but not by the same individual Na+ ions as these exchange

in all simulations (figure 5.5). Spatial sodium distributions in this region display

maxima in sodium density exceeding 0.8 Na+ / Å
3

near Asp171, Asp230 and Leu226

in each monomer (figure 5.4C). Counting the number of Na+ - residue contacts

within 3 Å we find that sodium predominantly interacts with Asp171 and Asp230

exhibiting run-averaged contact frequencies of 78 respectively 77% of the simulation

time (figure 5.4D). Calculating the number of sodium ions simultaneously located

within 3 Å of Asp171 and Asp230, we find single occupation of the Na+ interaction

site predominant, exhibiting run and time-averaged residence frequencies of 88 % in

monomers A and B as well as 89% in monomer C (table 5.2).

To gain insight in the structural basis underlying the different sodium binding

sites observed for OprM and TolC (Raunest and Kandt, 2012b) we compared the

channel-internal distribution of Asp and Glu residues in the 3D5K OprM and 1EK9

TolC crystal structures (figure 5.6). In both cases in silico sodium binding is re-

stricted to regions where two aspartates are located in close proximity to each other

77



5.4. Results Chapter 5. Unilateral Access Regulation: OprM

Figure 5.5: z-trajectories of the sodium ions occupying the observed

Asp171/Asp230 Na+ binding sites in each OprM monomer. Once initial sodium

binding has occurred during the first 40 ns, in all five independent runs (A-E) the

binding sites remain occupied for the rest of the simulation time albeit individual

sodium ions do exchange. Vertical gaps between the sodium traces in (E) are due

to a slightly tilted orientation OprM adopts in this simulation.

such as Asp374 and Asp371 in TolC’s periplasmic bottleneck or Asp171 and Asp230

near the inward-facing side of the equatorial domain in OprM.

5.4.4 Simulation vs X-ray

Throughout our simulations, wild-type OprM adopts conformations on the extra-

cellular (figure 5.2) and periplasmic side (figure 5.3) that have not been reported in

the published crystal structures (Akama et al., 2004; Phan et al., 2010). To provide

possible evidence explaining this discrepancy, we calculated the simulation average

structure over all five simulations and compared it to the 3D5K X-ray structure

(figure 5.7).

As indicated by superposition of the simulation average and X-ray structure af-

ter Cα least-squares fitting (figure 5.7A) and calculation of Cα displacements for

each monomer (figure 5.7B), with an overall RMSD of 1.98 Å the conformational

differences are small and the largest deviations occur in membrane-connecting N- ter-

minus, the extracellular loop and the periplasmic tip regions. Particularly residues

at the periplasmic tip region exceeding Cα displacements of 3 Å (highlighted in

cyan in figure 5.7C) partially coincide with 4 Å crystal contacts (van der Waals
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Figure 5.6: Aspartate

and Glutamate (red) dis-

tribution in the 3D5K

OprM (A) and 1EK9

TolC crystal structure

(B). For a better view

of the channel interior

both proteins are shown

in a cutaway represen-

tation. Aspartates con-

stituting the inner bot-

tleneck (BNI) (Asp416

in OprM, Asp374 in

TolC) or involved in

sodium binding (Asp171

and Asp230 in OprM,

Asp374 and Asp371 in

TolC) are highlighted in

bright red.

Table 5.2: Run and time-averaged occupancy of the detected Asp171, Asp230

sodium interaction sites using a distance cutoff of 3 Å

Number of Na+ Monomer A Monomer B Monomer C

0 10.8 % 10.6 % 10.1 %

1 88.3 % 88.4 % 88.9 %

2 0.9 % 1.0 % 1.0 %

3 0% 0% 0%

representation in figure 5.7C) in the 3D5K X-ray structure.

Additionally, we have analyzed the crystallographic B-factors of the OprM crys-

tal structures plotting their Cα root-mean- square fluctuations along the membrane

normal (figure 5.8). Both X-ray structures display flexibility patterns with maxima

of root-mean-square fluctuations occurring at the extracellular and periplasmicend

of the protein.

5.5 Discussion

In this study, we report a series of five independent, unbiased 200 ns MD simulations

of wild-type OprM in a 150 mM NaCl phospholipid membrane / water environment,

addressing the question of access regulation. On extracellular and periplasmic side

OprM visits conformations throughout the simulations that have not been observed

in the available OprM crystal structures. While opening and closing freely on ex-
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Figure 5.7: Superposition of the 3D5K

OprM crystal structure (white) and the

simulation average structure calculated

over all simulations and colored by Cα

displacement (A). Cα displacement graphs

for each monomer indicate that the largest

conformational differences occur in the ex-

tracellular loops, the periplasmic tips and

the membrane anchor region (B). Residues

with Cα displacements larger than 3 Å

(dark cyan) partially coincide with 4 Å

crystal contacts (van der Waals represen-

tation) in the 3D5K X-ray structure.

tracellular side we observe on periplasmic side an opening of the outer periplasmic

bottleneck region (BNII) monitored at Val408. At the same time the inner periplas-

mic bottleneck (BNI) monitored through Asp416 shows a slighter opening trend

restricting passage to molecules with a maximum diameter of 6.4 Å.

In addition to that we report a new sodium binding site at Asp171 and Asp230

located inside the OprM channel near the lower, periplasm-facing equatorial domain

of the protein. We start this section discussing the limitations of our approach and

then proceed to our findings and their biological implications.
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Figure 5.8: Crystal structure flexibility. Using the crystallographic B-factors, the

backbone root-mean-square fluctuations (RMSF) of the OprM crystal structures is

shown as profile along the membrane normal (A) as well as mapped onto the protein

structure in case of the asymmetric 3D5K which we used as starting structure for

our simulations (B).

5.5.1 Limitations of Our Approach

The microenvironment of OprM in the outer membrane of Pseudomonas aeruginosa

is characterized by a variety of different lipids and membrane proteins (Stover et al.,

2000), and whereas the extracellular side of OprM is exposed to lipopolysaccharides

in the outer membrane leaflet, the periplasmic side is in contact with the peptido-

glycan layer (Lambert, 2002). In contrast to these in vivo conditions, in silico we

reduced the microenvironment to a simple POPE bilayer omitting a representation

of the peptidoglycan layer.

While including both components in simulation studies would certainly be de-

sirable, the development of the appropriate lipopolysaccharides and peptidoglycan

molecular topologies is still in its infancy (Piggot et al., 2011, 2012; Straatsma and

Soares, 2009) and at the time of writing such simulation parameters were not yet

available for P. aeruginosa. On the other hand, our choice of a simple uniform mem-

brane model excluding the peptidoglycan and other components is also justified by

other simulation studies of outer membrane proteins making biologically relevant

predictions using similar simplifications (Cuesta-Seijo et al., 2010; Gumbart et al.,

2009; Hajjar et al., 2010; Raunest and Kandt, 2012b). Whereas one could argue that

the OprM behavior we observe on the extracellular side could be an artifact of our

simplified membrane model, it is encouraging that one of the first lipopolysaccha-

ride simulations studying the outer membrane protein OprF (Straatsma and Soares,
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2009) reported that the lipopolysaccharides have a stabilizing effect on the open

conformation of the OprF extracellular loops that exhibit an architecture similar to

that in OprM.

With any molecular dynamics study the question arises whether the simulation

length is appropriate for the problem under investigation. In light of recent find-

ings of atomistic membrane protein simulations showing that neither 300 ns TolC

(Raunest and Kandt, 2012b) nor 1600 ns rhodopsin MD simulations (Grossfield and

Zuckerman, 2009) were long enough for the protein structure to converge, our obser-

vation that OprM’s Cα RMSDs still rise after 200 ns (figure 5.1B) is not surprising.

With OprM sampling different regions of conformational space in each run (figure

1C), the protein structure has clearly not equilibrated yet, underscoring the need

for long-time simulations.

However, our study’s focus is on exploring wild-type OprM ground state dynam-

ics near the X-ray structure and on the simulated 200 ns time scale the protein al-

ready displays unreported conformations (figure 5.2, 5.3) and ion interaction (figure

5.4) which might provide potential new insight into the OprM functional mecha-

nism as discussed below. In that light, we consider the amount of conformational

sampling achieved in our simulations adequate for the purpose of this investigation

providing the first samples of membrane-embedded OprM dynamics at atomistic

detail.

5.5.2 Simulation vs. X-ray

Undergoing opening and closing motions on extracellular side (figure 5.2) as well as

opening on periplasmic side in the Val408 and to a lesser extent in the Asp416 region

(figure 5.3), wild-type OprM adopts conformations throughout our simulations that

have not been reported in the available crystal structures (Akama et al., 2004; Phan

et al., 2010). A possible explanation for why these conformations have not been

detected yet could be that the crystal environment sterically hinders the conforma-

tional changes we observe. This hypothesis is supported by the distribution of 4 Å

crystal contacts in the 3D5K X-ray structure (figure 5.7C), coinciding particularly

on periplasmic side with residues where the conformational differences between the

simulation average and crystal structure are maximal (figure 5.7B, C).

Furthermore, with an overall Cα RMSD of 1.98 Å the conformational difference

between simulation average and crystal structure is small, suggesting that similar to

the results described in (Kandt et al., 2006; Raunest and Kandt, 2012b) the crystal

might already contain the open and closed OprM conformations we observe in our

simulations. In that case these conformations either constitute only a minority of the

conformational ensemble in the 3D5K OprM crystal or on average are canceling each

other out. Either way, the B-factor distributions in the 100 K (Phan et al., 2010)

and 90 K (Akama et al., 2004) OprM crystal structures (figure 5.8), already imply a

heightened degree of flexibility or crystal disorder on extracellular and periplasmic
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side of the protein.

5.5.3 Extracellular Access

Whereas the available structural data (Akama et al., 2004; Phan et al., 2010) suggest

that OprM access is restricted on both sides, our findings imply that OprM gating

takes place only on the periplasmic side (figure 5.3) with OprM opening and closing

freely on extracellular side (figure 5.2), suggesting here the absence of a gating

mechanism in the isolated wild-type protein. Similar to our previous findings on the

OprM homologue TolC (Raunest and Kandt, 2012b) the broad range of extracellular

loop conformations visited throughout our simulations includes conformations both

more closed and more open than the available X-ray structures (Akama et al., 2004;

Phan et al., 2010) (figure 5.2C, D).

As indicated by the distribution of θ dihedral angles that we used to monitor the

extracellular loops’ opening state (figure 5.2C), with average θ dihedrals of 85◦ the X-

ray conformations likely represent only a small section of possible loop conformations

compared to the 30◦ - 160◦ θ range we observe in our MD simulations.

Whereas the OprM crystal structures limit extracellular access to compounds

with diameters of up to 8 - 10 Å (which we estimated computing Connolly surfaces

using different probe sphere radii), we find that OprM accessibility is sterically only

limited by the inner diameter of the β-barrel itself when all three loops are open

(figure 5.2D). If our simulations of the isolated protein are correct, these results could

either indicate the presence of additional gating mechanisms in vivo or hint at the

possibility of designing a novel group of OprM-directed drugs specifically targeting

the protein interior.

Possible experimental scenarios for testing the hypothesis of extracellular OprM

accessibility could involve double-spin-label electron spin resonance spectroscopy

experiments measuring the distance between the tip regions of the extracellular ap-

proach. Another approach could be fluorescence spectroscopy experiments in which

first a fluorescence dye-specific cross-linker is introduced into the OprM interior and

then fluorescence activity is checked after the external application of dyes of different

sizes followed by protein extraction and purification.

Beyond that, the extracellular accessibility behavior we observe for OprM bears

a striking similarity to our previous findings on its E. coli homologue TolC (Raunest

and Kandt, 2012b), displaying the same unrestricted opening and closing motions on

extracellular side. In that light one could hypothesize that unregulated extracellular

access might represent a general characteristic shared by all similarly structured

efflux ducts. It will be interesting to see this possibility investigated further in

future wet lab and computer experiments.
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5.5.4 Periplasmic Access and Sodium Binding Sites

Whereas for the OprM E. coli homologue TolC combined mutagenesis - conductance

experiments (Andersen et al., 2002a,b) as well as wild-type and mutant crystal struc-

tures (Bavro et al., 2008; Pei et al., 2011) indicated the existence of an inner (BNI)

and outer periplasmic bottleneck (BNII), to the best of our knowledge corresponding

investigations on OprM have not been reported yet. Given that (a) in TolC Asp374

and Gly365 have been used to monitor the opening states of the periplasmic bot-

tlenecks (Bavro et al., 2008; Raunest and Kandt, 2012b; Schulz and Kleinekathöfer,

2009), and (b) the OprM structure is very similar to TolC (Phan et al., 2010) (fig-

ure 5.3A), we monitored OprM’s periplasmic opening state using Asp416 (BNI) and

Val208 (BNII) as these residues display the closest distance to their TolC coun-

terparts after superimposing the OprM 3D5K and TolC 1EK9 wild-type crystal

structures (figure 5.3A).

The following section is based on the assumptions that OprM too contains two

periplasmic bottlenecks and Asp416 and Val408 are appropriate residues to monitor

the bottlenecks’ respective opening states. Whereas in TolC BNI and BNII display

similar opening states in the wild type X-ray structures (Koronakis et al., 2000),

inner and outer periplasmic bottleneck already differ by 21 (BNI) respectively 41

Å
2

TCA in the symmetric 1WP1 and asymmetric 3D5K OprM crystal structures

(Akama et al., 2004; Phan et al., 2010). Throughout our simulations that difference

becomes more pronounced in all runs (figure 5.3, table 5.1). BNII opens up in all

simulations, reaching TCA values 2.08 - 2.98 times higher than in the 3D5K starting

structure by the end of the simulations.

BNI on the other hand also displays an opening trend albeit much less pro-

nounced, resulting in 1.08 - 1.4 times higher TCA values after 200 ns. At the same

time we observe in all runs the occurrence of a previously unreported sodium bind-

ing site located inside the OprM channel near the equatorial domain where in each

monomer the site is predominantly occupied by a single Na+ ion coordinated by

Asp171 and Asp230 (figure 5.4, table 5.2).

If our simulations are correct the observed BNII and BNI behavior could be

interpreted in a similar way as our previous findings on TolC (Raunest and Kandt,

2012b) in so far that OprM gating on periplasmic side involves only the inner but

not the outer bottleneck. Moreover the open BNII conformation could play a role

in the formation of the functional complex, initiating interaction with the inner

membrane transporter or the adaptor protein. Although not observed throughout

the simulations, BNII closure in isolated OprM sodium-induced as seen for TolC

(Raunest and Kandt, 2012b) or otherwise - cannot be excluded based on the available

data.

Confining the BNII opening state by cross linking and subsequent OprM activity

measurements could be one way to investigate this aspect experimentally. Whether

the slight BNI opening trend of 5 - 24 Å
2

increase in TCA is negligible, a relaxation
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effect or represents the beginning of a longer conformational transition inducing a

periplasmic opening, cannot be decided based on our simulation data alone. How-

ever, the two available OprM crystal structures already displaying a much higher

variation in the bottlenecks’ opening state than the corresponding TolC structures

could be interpreted as hinting at a principal functional difference between the two

proteins.

If the observed BNI opening trend is negligible this would speak in favor of

isolated OprM capable of gating when reconstituted in a POPE environment. If the

BNI opening trend is not negligible it seems reasonable to assume that periplasmic

OprM access regulation requires an additional component that is absent in our

simulations. Electrophysiological conductance experiments on isolated OprM could

shed some light onto this question. Either way, to gain deeper insight into the

OprM gating and functional mechanism additional experiments are required which

could involve similar approaches as carried out for TolC (Andersen et al., 2002a,b)

complemented by double spin label EPR or fluorescence spectroscopy studies to

monitor and quantify the OprM opening state on periplasmic side.

Partial and spatial density analysis indicates for each monomer the presence of a

so far unreported sodium binding site coordinated by Asp171 and Asp230 (figure 5.4,

5.5). Unlike our previous findings on TolC (Raunest and Kandt, 2012b) our OprM

data do not support an involvement of the sites in a Na+ dependent periplasmic lock

mechanism as only low Na+ densities are observed in the bottlenecks region and the

removal of all NaCl does not alter OprM’s periplasmic opening behavior nor does

it lead to changes in the protein dynamics or conformation on a 200 ns time scale

(data not shown).

OprM’s unsensitivity to NaCl also speaks against a structure stabilizing function

of the three Na+ sites as does the lack of electron density data in the OprM crystal

structures in the region of the identified sites which could be interpreted as bound

sodium (Phan et al., 2010). Two possible explanations are conceivable accounting

for the different sodium interactions we observed for OprM and TolC. Either both

proteins share a sodium-dependent lock mechanism or they employ different means

of periplasmic access regulations. Given that each MD simulation is always limited

by the amount of conformational sampling achieved, the instance that we did not

observe any TolC-like sodium binding in OprM’s periplasmic bottleneck region does

not rule out the possibility that OprM and TolC employ a similar gating mechanism.

Longer simulation times might very well yield a different picture than our 200 ns

samples. However, spontaneous sodium binding does occur in all our OprM runs too

- albeit at a different position - which speaks for an adequate length of simulation

time. Given the different distributions of negatively charged residues in the OprM

and TolC channel interior and the observation that in silico sodium binding in OprM

and TolC is restricted to neighboring aspartates (figure 5.6) of which TolC exhibits

one near the BNI region and OprM near the inward-facing side of the equatorial

domain, it appears reasonable to assume that despite their structural similarity
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OprM and TolC are indeed different, employing different means of periplasmic access

regulation.

In both cases more experimental work is needed to further elucidate the func-

tional mechanism of efflux duct gating and the role of the potential sodium or com-

parable cation binding sites, for example by activity assays comparing wild-type and

mutant OprM under different ionic conditions.

5.6 Conclusions

To gain insight into the OprM functional mechanism of gating and access regulation

we computed 200 ns dynamics samples of the wild type protein in a phospholipid

membrane / 150 mM NaCl water environment in a series of five independent and

unbiased atomistic molecular dynamics simulations. On extracellular side we find

OprM opening and closing freely in all runs, suggesting the absence of a gating

mechanism on this side in the isolated protein. Assuming a similar architecture as

in its E. coli homologue TolC, comprising an inner and outer bottleneck region, we

monitored OprM’s periplasmic opening state using Asp416 and Val408 which we

selected based on their proximity to their TolC counterparts after superimposing

OprM and TolC X-ray structures.

In all simulations an opening of both bottlenecks occurs albeit stronger pro-

nounced in the outer bottleneck region reaching end conformations up to 3 times

more open than the starting crystal structure, while the inner bottleneck is only 1.1

to 1.4 times more open by the end of the simulations. If our simulations are correct

our findings imply that periplasmic gating occurs only in the inner bottleneck re-

gion at Asp416 and that in vivo additional components, absent in our simulations,

might be required for gating if the observed opening trend of the inner bottleneck

is not negligible. In addition to that we identified in each monomer a previously

unreported sodium binding site in the channel interior coordinated by Asp171 and

Asp230.
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Chapter 6

dxTuber: Detecting protein

cavities, tunnels and clefts based

on protein and solvent dynamics

At the beginning of my Ph.D. all available molecular cavity detection tools were

based on static structures and did not take protein and solvent dynamics into ac-

count. With dxTuber we introduced the first cavity detection tool relying on protein

ensembles taken from molecular dynamics (MD) simulations. The voxel based rou-

tine has a graphical (GUI) and command line interface (CLI) and stores results

in the common used PDB file format. dxTuber is licensed under the GPL v21

and can be downloaded at http://www.csb.bit.uni-bonn.de/dxtuber.html or

http://code.google.com/p/dxtuber/.

Adapted from:

Raunest, M. and Kandt, C. (2011a). dxtuber: Detecting protein cavities, tunnels and

clefts based on protein and solvent dynamics. J Mol Graph Model, 29(7):895–905

1http://www.gnu.org/licenses/licenses.html#GPL
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6.1 Abstract

Empty space in a protein structure can provide valuable insight into protein proper-

ties such as internal hydration, structure stabilization, substrate translocation, stor-

age compartments or binding sites. This information can be visualized by means of

cavity analysis. Numerous tools are available depicting cavities directly or identi-

fying lining residues. So far, all available techniques base on a single conformation

neglecting any form of protein and cavity dynamics.

Here we report a novel, grid-based cavity detection method that uses protein

and solvent residence probabilities derived from molecular dynamics simulations to

identify (I) internal cavities, (II) tunnels or (III) clefts on the protein surface. Driven

by a graphical user interface, output can be exported in PDB format where cavities

are described as individually selectable groups of adjacent voxels representing regions

of high solvent residence probability. Cavities can be analyzed in terms of solvent

density, cavity volume and cross-sectional area along a principal axis.

To assess dxTuber performance we performed test runs on a set of six example

proteins representing the three main classes of protein cavities and compared our

findings to results obtained with SURFNET, CAVER and PyMOL.
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6.2 Introduction

The successful determination of a protein’s high-resolution three-dimensional struc-

ture is a landmark on the way to understanding its function. Next to the actual

atomic XYZ coordinates, 3D structures often contain additional information that

can yield further insights into the protein in question. For example, empty space

in a protein structure can provide valuable insight into protein properties such as

internal hydration, structure stabilization, substrate translocation, storage compart-

ments or substrate binding sites (Schmidtke et al., 2010; Volkamer et al., 2010). This

information can be visualized by means of cavity analysis. Over the years numerous

cavity detection tools have been developed including (Coleman and Sharp, 2009;

Delano, 2002; Exner et al., 1998; Ho and Gruswitz, 2008; Kleywegt and Jones, 1994;

Laskowski, 1995; Liang et al., 1998; Maeda and Kinoshita, 2009; Nicholls et al., 1991;

Pellegrini-Calace et al., 2009; Petrek et al., 2007, 2006; Smart et al., 1996; Voss and

Gerstein, 2010; Yaffe et al., 2008b) that depict cavities either directly (Coleman and

Sharp, 2009; Delano, 2002; Exner et al., 1998; Ho and Gruswitz, 2008; Laskowski,

1995; Maeda and Kinoshita, 2009; Nicholls et al., 1991; Pellegrini-Calace et al., 2009;

Petrek et al., 2007, 2006; Smart et al., 1996; Voss and Gerstein, 2010; Yaffe et al.,

2008b) or indirectly by identifying lining residues (Liang et al., 1998) or filling a

cavity with water molecules (Kleywegt and Jones, 1994). The main strategies used

in these geometry-based algorithms (Schmidtke et al., 2010) can be grouped into

four categories plus combinations of these.

One approach employs the rolling probe sphere method (Connolly, 1983a,b; Lee

and Richards, 1971; Richards, 1977) where molecular surfaces are calculated com-

bining different probe radii and surface types in order to (a) distinguish external

from internal residues and (b) detect protein cavities. Examples of this approach

include, GRASP (Nicholls et al., 1991), 3V (Voss and Gerstein, 2010) and PyMOL

since version 1.3 (Delano, 2002).

Specifically aiming at pores and tunnel-like cavities, another strategy calculates

pathways connecting protein interior and exterior. Most tools employing this ap-

proach begin with a user-defined starting point inside the protein from where an

exit pathway is calculated while simultaneously recording a profile of the pore di-

mensions. Expressed as radius or diameter of a tunnel-filling sphere at given way

points, such pore profiles allow a detailed characterization of the channel in question.

Examples of this approach include HOLE (Smart et al., 1996), its successor CAVER

(Petrek et al., 2006) and MoleAxis (Yaffe et al., 2008b). On the other hand, CAST

(Liang et al., 1998) and the algorithm introduced by Maeda and coworkers (Maeda

and Kinoshita, 2009) resort to alpha shape theory, Voronoi diagrams and Delaunay

tessellation (Edelsbrunner and Mucke, 1994; Poupon, 2004; Richards, 1974) to iden-

tify protein cavities. Whereas the CAST algorithm is intended for general cavity

detection, the program by Maeda et al. specifically focuses on interprotein cavities.

The fourth category of tools describes cavities as entities filled with (a) probe
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spheres of parameterizable size as in SURFNET (Laskowski, 1995) and HOLLOW

(Ho and Gruswitz, 2008), (b) water molecules as in VOIDOO (Kleywegt and Jones,

1994) or (c) voxels like in the algorithm introduced by Exner and coworkers (Exner

et al., 1998) or dxTuber in this publication. Examples where combinations of these

main strategies have been implemented include the CAVER successor MOLE (Pe-

trek et al., 2007), PoreWalker (Pellegrini-Calace et al., 2009) and CHUNNEL (Cole-

man and Sharp, 2009). Whereas MOLE and PoreWalker employ the path finding

approach in conjunction with Voronoi diagrams and alpha shape theory, CHUN-

NEL combines the path finding strategy with probe-sphere based molecular sur-

faces. However, unlike other path finding programs, CHUNNEL calculates multiple

pathways leading into the protein without requiring a user-defined starting point.

All available techniques of cavity detection published to date have in common

that they detect cavities based on a single protein conformation, neglecting any

form of protein and cavity dynamics. Here we introduce a novel cavity detection

method that uses protein and solvent residence probabilities derived from molecular

dynamics (MD) simulations to detect cavities, tunnels and surface clefts. Using

the VolMap plugin in VMD 1.8.7 (Humphrey et al., 1996), solvent and protein

trajectories are converted to a voxel representation of OpenDX mass-weighed spatial

density maps which serve as input files for our algorithm.

The general work flow of the analysis procedure is summarized in figure 6.1.

Driven by a graphical user interface, dxTuber then separates protein-internal from

protein-external solvent voxels, describing cavities as groups of adjacent voxels that

represent protein-internal regions of high solvent residence probability. To this end

three different search algorithms have been implemented aiming at the detection of

three major types of protein cavities: (I) isolated protein internal cavities with no

connection to the protein exterior - both intra- and inter-molecular, (II) tunnel-like

cavities with at least one connection to the protein exterior and (III) clefts on the

protein surface.

dxTuber results can be exported in PDB format where each cavity is an individ-

ually selectable object of coherent voxels written as pseudo atoms. For each voxel

solvent residence probability information is stored as averaged and mass-weighed sol-

vent density encoded as formal B-factors. Cavities and solvent density can be readily

visualized and processed using common molecular viewers. Cavities can also be an-

alyzed in terms of volume and profiles of cross-sectional area along a principal axis.

The profiles are exportable in ASCII file format, and can be processed by common

spreadsheet applications. dxTuber is available free of charge at http://www.csb.

bit.uni-bonn.de/downloads.html and http://code.google.com/p/dxtuber/.

To assess dxTuber performance we performed test runs on a set of six example

proteins (Buhrman et al., 2010; Karpowich et al., 2003; Koronakis et al., 2000;

Schemberg et al., 2007; Schnell and Chou, 2008; Vreede et al., 2010) representing

each of the three cavity classes by a large and small variant (table 1) and compared

our findings to results obtained with SURFNET, CAVER and PyMOL. While an
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Figure 6.1: dxTuber work flow. Starting from an experimentally determined

protein structure (A) a molecular dynamics simulation is performed to sample pro-

tein and solvent dynamics (B). Trajectories are converted to voxel-based residence

probabilities using the VolMap function in VMD (Humphrey et al., 1996) (C). The

resulting time-averaged and mass-weighted OpenDX protein and solvent densities

constitute the dxTuber input files used to separate inside from outside solvent den-

sities to determine cavities, channels or surface clefts (D). Cavities can be exported

as OpenDX or PDB files where each cavity is stored as an individually selectable

group of voxels (E). Further analysis can be done computing cavity volume or pro-

files of cross sectional area along a principal axis (F). dxTuber is controlled via a

graphical user interface (G).

in-depth comparison of all cavity detection tools would certainly be desirable, such

a review is beyond the scope of this paper. In our benchmark tests we therefore
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restricted ourselves to these three cavity detection applications which we selected

based on their wide spreading in the community and their frequent usage in our lab.

6.3 Metherials and Methods

6.3.1 Creating DX input Files

MD Simulations

To generate a sample of solvent and protein dynamics, MD simulations are carried

out with the protein of interest solvated in, for example, water (figure 6.1A). The

simulation time required depends on the diffusion velocity of the solvent and whether

protein atoms are position-restrained. The usage of position restraints allows con-

trolling the amount of protein dynamics to be probed. If the cavity structure close

to the protein X-ray conformation is of interest, protein dynamics can be reduced or

disabled using position restraints during the MD. Without position restraints, full

protein and cavity dynamics will be considered.

For water as solvent, simulation times of 100 ps where found sufficient to sample

cavities, clefts and tunnels when position restraints of 1000 kJ
mol nm2 were used to

keep the protein close to its X-ray conformation. Due to extended equilibration

times of protein and environment, unbiased MD requires longer simulation time,

depending on the system of interest.

VolMap Options

VolMap offers different options to convert MD trajectories into OpenDX density

maps. Whereas “max” and “min” assign to each voxel the highest or lowest number

of atoms detected at this position throughout the trajectory, “avg” yields a time-

averaged value of the number of atoms per voxel (figure 6.2A).

For the use with dxTuber we applied two combinations of settings: (a) “av-

erage” for both water and protein and (b) “average” for water and “minimum”

for protein atoms (table 6.2). The latter setting filters out regions of high protein

flexibility, yielding the maximum volume accessible by water and thus the largest

possible extension of a given cavity. To eliminate protein drift in the simulation box,

trajectories should be aligned to a reference structure prior to VolMapping.

6.3.2 Cavity Detection

Scanning Density Voxels

To separate protein-interior solvent densities from exterior ones (figure 6.2), three

search algorithms have been implemented in dxTuber, each aiming at the detection

of a different type of cavity (figure 6.2B). Whereas 3D scanning is intended for

isolated buried cavities in the protein interior, and 2D scanning primarily aims for
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channel-like cavities that have a connection to the protein exterior, 1D scanning is

recommended for clefts on the protein surface. In each method every solvent voxel -

with a density exceeding 0.01 atoms/Å
3

- is tested if any protein voxels are located

in both directions of the three principal axes. Voxel by voxel the algorithm proceeds

away from the tested solvent voxel in positive and negative direction of the X, Y

and Z principal axes until either a protein voxel is found or the end of the simulation

box is reached. Depending on the scanning criterion used, different conditions of

protein voxel distributions need to be fulfilled before a solvent voxel is considered

protein-internal.

For 1D scanning at least one protein voxel in each direction of one principal axis

is required (figure 6.2C). For 2D scanning at least one protein voxel in each direction

of two principal axes is necessary (figure 6.2D), whereas 3D scanning expects at least

one protein voxel in each direction of all three principal axes before a solvent voxel

is classified as protein-internal (figure 6.2E). 2D scanning is the default method and

recommended for an initial scan. Protein voxels are identified based on a minimum

density cut-off of 0.005 protein atoms/Å
3
. This is the standard setting that we

found to give good results; however, protein and solvent density thresholds are freely

adjustable by the user.

After scanning, results may contain false positives, i.e. incorrectly assigned inter-

nal solvent voxels (ISVs) on the protein surface. As long as these are not connected

to true positives, dxTuber can separate them via subsequent grouping. However, if

false positives are connected to true positives, a more restrictive scanning method

should be applied. In terms of restrictiveness dxTuber’s scanning algorithms are

ranked 3D ¿ 2D ¿ 1D. Beyond that, results can be post-processed by filtering.

Grouping Cavities and Analysis

Detected ISVs can be summarized into groups of voxels representing protein cavities.

To that end dxTuber loops over the coordinate system of the ISVs starting in Z

direction followed by Y and then X (figure 6.3A). The first ISV detected will become

group one. Subsequent ISVs are tested based on their already visited neighborhood

to decide whether they are part of a known group or constitute a new one (figure

6.3B). If ISVs belong to different groups that are later found to nevertheless have

common neighbors, all respective voxels will be merged into a single group that

is assigned the smaller (= earlier) group identification number (figure 6.3C). Once

completed, ISVs have been clustered into individual cavities (figures. 6.1D and

6.3B).

Once ISVs have been grouped into cavities, dxTuber can derive the cross-sectional

area of a detected cavity along a selectable principal axis (X, Y or Z). To that end

dxTuber loops over the chosen axis, counting in each step the number of ISVs in

the plane perpendicular to the search axis. That way cross-sectional profiles can be

generated which are exported as ASCII text files (figure 6.1F).
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Figure 6.2: To convert an MD trajectory to a voxel representation VMD can cal-

culate the average, minimum or maximum atom density per voxel (A). Depending

on the type of cavity to be detected (B), dxTuber offers three search algorithms us-

ing different criteria to decide whether a solvent voxel (grey) is considered protein-

internal (C-E). Aiming at surface clefts, 1D scanning requires at least one protein

voxel in each direction of one principal axis (C). Intended for tunnel-like cavities,

2D scanning requires at least one protein voxel (dark grey) in each direction of two

principal axes (D), whereas 3D scanning expects at least one protein voxel in each

direction of three principal axes before a solvent voxel is regarded protein-internal.

Filtering

Next to grouping or employing a more restrictive scanning algorithm, dxTuber re-

sults can be filtered to reduce the amount of false positives. In particular if more

restrictive scanning is not successful due to incomplete cavity detection or if false pos-

itive ISVs are still connected to true positives subsequent filtering is recommended.

By applying the neighbor filter each ISV is re-evaluated based on its 26 neighbor

voxels and will be deleted if the amount of neighbor ISVs is smaller than a user-

defined minimum. The default for this minimum threshold is ten. The number of

neighboring ISVs for the filter option should be set carefully, since filtering always

leads to a loss of data as true positives not fulfilling the minimum neighbor criterion

are also deleted. Therefore the threshold should be set to a low value (¡ 10) to

keep data loss to a minimum. The filter works best if two cavities of interest are

connected by a thin line of voxels.
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Figure 6.3: To group protein-internal solvent voxels (ISVs) into cavities, dxTu-

ber loops over the coordinates space spanned by the ISVs starting in Z direction,

followed by Y and then X (A). The first ISV detected will become group one.

Subsequent ISVs are tested based on their already visited neighborhood to decide

whether they are part of a known group or constitute a new one (B, left). If ISVs

belong to different groups that are later found to nevertheless have common neigh-

bors (B, middle), all respective voxels will be merged into a single group that is

assigned the smaller (= earlier) group identification number (B, right).

6.3.3 Example Applications

Test Proteins

Each of the three main classes of protein cavities is represented by two proteins, each

featuring a large and small variant of a given cavity type. Whereas isolated internal

cavities are represented by 2ZOH photoactive yellow protein PYP after chromophore

removal (Vreede et al., 2010) and the 2OGX molybdenum/tungsten storage protein

MoSto (Schemberg et al., 2007), 1EK9 TolC (Koronakis et al., 2000) and the 2RLF

Influenza M2 proton channel (Schnell and Chou, 2008) serve as examples for tunnel-

like cavities. Clefts on the protein surface are represented by the 1N4D periplasmic

vitamin B12 binding protein BtuF (Karpowich et al., 2003) and the 3K8Y GTPase

H-Ras P21 (Buhrman et al., 2010).
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Table 6.1: Test proteins

Protein PDB Cavity type

PYP (Vreede et al., 2010) 2ZOH Small intra-molecular cavity

MoSto (Schemberg et al., 2007) 2OGX Large inter-molecular cavity

TolC (Koronakis et al., 2000) 1EK9 Wide continuous tunnel

M2 (Schnell and Chou, 2008) 2RLF Narrow continuous/discontinuous tunnel(s)

BtuF (Karpowich et al., 2003) 1N4D Large ligand binding cleft

H-Ras (Buhrman et al., 2010) 3K8Y Small ligand binding cleft, partially occluded

Simulation Settings

Molecular dynamics simulations were performed using the GROMACS 4.0.3 pack-

age (Berendsen et al., 1995b; Hess et al., 2008) and GROMOS96-53a6 force field

(Oostenbrink et al., 2004). In the simulations, all bond lengths were constrained by

LINCS so that an integration time step of 2 fs could be chosen (Hess et al., 1997).

Systems were simulated at a temperature of 310 K, maintained separately for pro-

tein, lipids (where present) and water by a Berendsen thermostat (Berendsen et al.,

1984) with a time constant of T = 0.1 ps.

Pressure coupling was done using a Berendsen barostat (Berendsen et al., 1984)

employing 1 bar reference pressure and a time constant of 4 ps. Whereas isotropic

pressure coupling was employed for the water-soluble proteins PYP, MoSto, H-Ras

P21 and BtuF, semiisotropic pressure coupling was used for the membrane proteins

TolC and M2 to allow for bilayer fluctuations in the membrane plane. Electrostatic

interactions were calculated using particle mesh Ewald (PME) summation (Dar-

den et al., 1993; Essmann et al., 1995) and twin range cut-offs of 1.0 nm and 1.4

nm were applied for computing the van-der-Waals interactions. TolC and M2 were

inserted in pre-equilibrated 9.6 nm x 9.6 nm and 6.8 nm x 6.8 nm palmitoyloleoyl-

phosphatidylethanolamine (POPE) bilayer patches based on (Tieleman and Berend-

sen, 1998) using INFLATEGRO (Kandt et al., 2007).

All systems were solvated with simple point charge water molecules (Berendsen

et al., 1981). Standard protonation states were assumed for titratable residues except

for M2 which was simulated with His37 in both protonated and deprotonated form.

An overview of simulation times and position restraints applied in each system is

given in table 6.2.

dxTuber, SURFNET, CAVER, and PyMOL Settings

All dxTuber analyses were run on average protein and water densities calculated

at 1 Å
3

resolution via VolMap in VMD 1.8.7. For M2, additional minimum pro-

tein densities were computed whereas for PYP and TolC additional density map

resolutions of 0.5 and 2.0 Å
3

were calculated to assess how voxel resolution affects

calculation speed. dxTuber search algorithms and filters used are detailed in table
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Table 6.2: Molecular dynamics simulation, VolMap and dxTuber settings

Protein Simulation

time

Used for

cavity

detection

Restraints

on protein

Figure dxTuber

settings

Calculated

Protein — Solvent

densities

PYP 100 ps — 10

ns

All — all Yes — no 6.4 3D Avg — avg

MoSto 100 ps All Yes 6.4 3D Avg — avg

TolC 20 ns All Yes 6.5 2D Avg — avg

TolC 21ns Last 10 ns No 6.5 2D Avg — avg

M2 † 20 ns Last 10 ns No 6.6 2D Avg and min —

avg

M2 ‡ 20 ns Last 10 ns No 6.6 2D Avg and min —

avg

BtuF \ 100 ps All Yes 6.7 1D (z-Axis) Avg — avg

H-Ras 100 ps All Yes 6.7 2D Avg — avg

† His37 deprotonated

‡ His37 protonated

\ Neighbor 6 filter was applied for BtuF

6.2. SURFNET (Laskowski, 1995) has three main user-adjustable parameters af-

fecting the cavity search: grid size, minimum gap sphere radius and maximum gap

sphere radius. To keep the numer of false positives to a minimum these parameters

were optimized for each protein (table 6.3). Main cavities were isolated using the

SURFNET tool MASK. As CAVER (Petrek et al., 2006) is designed to find a path

that leads out of the protein interior, cavity analysis requires a set of starting coor-

dinates inside the protein as well as the number of how many different exit pathways

to look for. Both parameters were optimized for each protein to describe the cavities

of interest as accurate as possible (table 6.4).

For better comparison with dxTuber, CAVER’s radius-based tunnel profiles were

converted to cross-sectional area profiles. Implemented since version 1.3, cavity de-

tection in PyMOL (Delano, 2002) is based on the MSMS molecular surface algorithm

(Sanner et al., 1995, 1996) and controlled via the search parameters cavity detection

radius and cavity detection cut-off. The settings used for each protein are listed

in table 6.5. All cavity calculations were performed using a single Intel R© Xeon R©

E5410 2.33 GHz CPU on a 4 GB RAM DELL Precision T5400 workstation running

32 bit Ubuntu Linux 10.04.

All results obtained with CAVER and SURFNET and PyMOL are based on

the reference X-ray structures, except for M2: representative for the channel’s open

and closed state, simulation snapshots at 18.7 ns (open state) and 13.9 ns (closed

state) were used. The conformations were selected based on their minimum Cα-

RMSD to the simulation average structures calculated over the last 10 ns of the

trajectories. All molecular illustrations were created using VMD (Humphrey et al.,

1996) or PyMOL (Delano, 2002).

6.4 Results

We developed a novel cavity detection method that uses protein and solvent residence

probabilities derived from molecular dynamics simulations to detect isolated internal
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Table 6.3: SURFNET search parameters

Protein Grid size [Å] Minimum probe radius [Å] Maximum probe radius [Å]

PYP 0.8 1.5 5.5

MoSto 2 2.5 10

TolC 2 3 10

M2 † 0.8 1.5 5.5

M2 ‡ 0.8 1.6 5.5

BtuF 0.8 3 10

H-Ras 0.8 1 10

† His37 deprotonated

‡ His37 protonated

Table 6.4: CAVER search parameters

Protein Start coordinates [distance to reference atoms] Exit pathways

TolC Thr163-CG2 chain Å: 11 Å, B: 10.3 Å, C: 9.9 Å 2

M2 † Trp19-HZ2 chain Å: 6.6 Å, B: 4.6 Å, C: 4 Å 5

His15-CG chain Å: 4.5 Å, B: 2.3 Å, C: 12.3 Å 2

M2 ‡ Trp19-CG chain Å: 5.8 Å, B: 7.5 Å, D: 3.5 Å 11

BtuF Gln154-NE2: 1.7 Å 3

Phe222-O: 2.9 Å

Glu223-O: 2 Å

H-Ras 1st coordinate 2nd coordinate 1 from 1st coordinate

GppNHp-PB: 2.0 Å 2.1 Å 2 from 2nd coordinate

GppNHp-PG: 1.1 Å 1.0 Å

GppNHp-N3B: 1.6 Å 1.2 Å

† His37 deprotonated

‡ His37 protonated

cavities, tunnels and surface clefts. To assess dxTuber performance we carried out

test runs on six example proteins and compared our findings to results obtained with

SURFNET, CAVER and PyMOL.

6.4.1 Isolated Internal Cavities

Specifically designed to find a path out of the protein interior CAVER does not

support this type of cavities and has therefore been excluded from this section.

PyMOL does not provide any quantitative volume information on detected cavities.

The molybdenum storage protein (MoSto) (Schemberg et al., 2007) features an inter-

molecular cavity, large enough to accommodate up to 100 molybdenum (Mo) or

tungsten (W) atoms (Schemberg et al., 2007).

Whereas SURFNET, dxTuber and PyMOL were all able to detect the cavity,

there are differences in cavity shape and volume. In SURFNET the cavity is repre-

sented having a smooth shape and a volume of 10720 Å
3

(figure 6.4B), whereas in
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Table 6.5: PyMOL search parameters

Protein Detection radius [Å] Detection cutoff radius [Å]

Pyp 7 3

MoSto 6 4

TolC 20 7

M2 † 7 4

M2 ‡ 8 4

BtuF 20 4

H-Ras 20 3

† His37 deprotonated

‡ His37 protonated

dxTuber a volume of 9223 Å
3

is calculated and the cavity has an overall less regular

shape revealing more structural detail (figure 6.4A). PyMOL gives a detailed view

of the storage cavity but also finds false positives on the protein surface which are

partly connected to the cavity. In this example restrained protein dynamics were

used for the dxTuber analysis, yielding a Cα-RMSD of 0.3 Å in the simulation end

conformation.

Photoactive yellow protein (PYP) is a 125 residue signaling bluelight photo re-

ceptor (Vreede et al., 2010) whose covalently bound chromophore (para-coumaric

acid, pCA) was removed to create a cavity representative for small intra-molecular

cavities. For dxTuber analysis both restrained (figure 6.4D) and unbiased protein

dynamics were investigated (figure 6.4G-I) yielding Cα-RMSDs of 3.5 Å and 0.3 Å in

the end conformations. For the unbiased simulation, cavity volume was monitored

throughout the trajectory using time windows of 1 ns (figure 6.4I).

dxTuber (figure 4D), SURFNET (figure 6.4E), and PyMOL (figure 6.4F) find

the cavity, and whereas PyMOL additionally detects five independent cavities with

the main cavity of interest being similar to SURFNET. In dxTuber the cavity is

smaller (50 Å
3

volume versus 152 Å
3

as reported by SURFNET) and also more

extended by 2 Å towards the center of the protein. The innermost section of the

dxTuber cavity coincides with a secondary cavity detected in PyMOL that is absent

in SURFNET. Without position restraints on the protein, the cavity fluctuates in

size and volume (figure 6.4G and H) and disappears after 6 ns (figure 6.4I).

6.4.2 Tunnel-like Cavities

In this section the calculation of cross-sectional profiles along the membrane normal

was restricted to CAVER and dxTuber, as SURFNET and PyMOL do not include

this feature. The outer membrane protein TolC functions as a major efflux duct

in the outer membrane of Escherichia coli and at a length of 140 Å and 20 Å in

diameter, the TolC channel is large enough to accommodate and transport entire

proteins (Federici et al., 2005).
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Figure 6.4: Isolated internal cavities with no connection to the protein exterior

are represented by the molybdenum/tungsten storage protein MoSto (A-C) and

photoactive yellow protein PYP (D-I). Whereas MoSto serves an example for a

large intermolecular cavity, PYP after chromophore removal represents small intra-

molecular cavities. Each protein’s main cavity is depicted as detected by dxTuber

with (A and D) and without position restraints on the protein atoms (G and

H), SURFNET (B and E) and PyMOL (C and F). As cavity separation is not

implemented in PyMOL, (C) and (F) also show secondary cavities and surface

clefts. When PYP dynamics are unrestrained, the main cavity fluctuates in size

and volume and disappears after 6 ns (G-I).

dxTuber analysis was performed using both restrained (figure 6.5A) and unre-

strained protein dynamics (figure 6.5B) yielding end Cα-RMSDs of 0.3 Å and 2.5 Å

respectively. While all four applications detect the main cavity, the results differ in

size and shape (figure 6.5A-E). In SURFNET the channel ends 10 Å before TolC’s
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lower (periplasmic) exit (figure 6.5C), whereas in dxTuber, the cavity is detected

completely only when restrained protein dynamics are applied (figure 6.5A). When

unrestrained protein dynamics are used the channel cavity ends 15 Å before the

upper (extracellular) exit (figure 6.5A).

In CAVER the channel is narrowest of all five cases (figure 6.5D) and requires

two tunnels set in the CAVER input parameters to be detected completely. If only

a single tunnel is used, a similar effect as with SURFNET is seen with the lower

10 Å of the cavity missing. PyMOL (figure 6.5E) describes the main cavity in a

similar way as SURNET, however the tunnel is shorter in the upper (extracellular)

exit region but longer towards the lower (periplasmic) exit (approximately half way

between the SURFNET and CAVER findings). Additionally PyMOL generates false

positives on the protein surface at the TolC equatorial region. Compared to CAVER

(figure 6.5G) the channel’s profile of cross-sectional area is larger in dxTuber (figure

6.5F), exhibiting a continuous progression with a maximum peak at 85 Å. The

CAVER profile is discontinuous displaying abrupt jumps and a maximum peak at

100 Å. While the dxTuber profiles are similar to each other, the ones obtained with

restrained protein dynamics are larger than those derived from unrestrained MD

(figure 6.5F).

With a trans-membrane channel 30 Å long and only a few water molecules wide,

the pH-gated Influenza proton channel M2 (Schnell and Chou, 2008) serves as an ex-

ample for a narrow tunnel-like cavity. M2 switches between two conformations where

extracellular and intracellular water phases are either connected (protonated His37,

open state) or separated (deprotonated His37, closed state) (figure 6.6). Whereas

closed state M2 was captured in the NMR structure, a transition to the open state

could be observed within 10 ns MD simulation when His37 was considered in pro-

tonated form. No position restraints were applied throughout the simulations. The

M2 end conformations exhibit a total Cα-RMSD of 5.3 Å over all four monomers

when His37 was protonated, and 4.4 Å when His37 was deprotonated.

All four applications identify separated cavities for closed state M2 - 2 in dxTuber

(figure 6.6A and B), SURFNET (figure 6.6C) and CAVER (figure 6.6D) and 4 in

PyMOL (figure 6.6E) - and a continuous tunnel cavity for open state M2 (figure

6.6F-J). Results differ in (a) channel narrowness ranging from dxTuber using average

protein density (figure 6.6A and F) and CAVER (figure 6.6D and I) up to dxTuber

run on minimum protein density (figure 6.6B and G) - and (b) the amount of false

positives, i.e. cavity sections extruding to the protein exterior. This effect is most

pronounced in SURFNET (figure 6.6C and H) and, to a lesser degree, in CAVER

(figure 6.6D and J) which required seven tunnels for the closed state and eleven

tunnels for open state M2 to find the cavities of interest. Apart from the exit

regions the tunnel profiles are similar in CAVER (figure 6.6M) and dxTuber run on

average protein density (figure 6.6K). When dxTuber is run on protein minimum

density, the channel is wider, the difference between open and closed state is more

pronounced and the bottle neck region in closed state M2 is 5 Å shorter (figure
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6.6L).

Figure 6.5: The bacterial efflux duct TolC is an example of a large tunnel-like

cavity whose main channel is shown as depicted by dxTuber with (A and F, black

tunnel profile) and without position restraints on the protein atoms (B and F, red

tunnel profile), SURFNET (C), CAVER (D and G) and PyMOL (E). In CAVER

two exit tunnels had to be calculated to represent the TolC channel completely.

(For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

6.4.3 Surface Clefts

In the periplasmic vitamin B12 binding protein BtuF (Karpowich et al., 2003) sub-

strate binding occurs in a wedge-shaped, un-occluded binding cleft that is approxi-

mately 20 Å wide and 15 Å deep when the protein is in its closed state (Kandt et al.,

2006). The cleft is detected by dxTuber (figure 6.7A), SURFNET (figure 6.7B) and

partially by CAVER (figure 6.7C). PyMOL only detects the borders of the binding

pocket; while additionally producing false positives lining the main binding cleft

(figure 6.7D).

Although dxTuber produces the most detailed rendering of the binding cleft, it
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Figure 6.6: The pH-gated Influenza M2 proton channel serves as an example of

a narrow tunnel-like cavity. Controlled by His37, the M2 tunnel either occurs as

two separate half channels when His37 is deprotonated (A-E) or as single channel

when His37 is protonated (F-J). The M2 channel is depicted as detected by dxTuber

showing average (A, F and K) and maximum cavity extension (B, G and L) colored

by solvent density (blue = low density, red = high density), SURFNET (C and

H), CAVER (D, I, M) and PyMOL (E,J). Whereas closed state M2 required the

calculation of seven CAVER exit tunnels (D), eleven exit tunnels were necessary

for the open state (I). CAVER tunnels used for the profiles of cross-sectional area

appear cyan.

incorrectly includes adjacent grooves in the surface of the N-terminal and C-terminal

domains. In SURFNET the cleft appears hose-like protruding by up to 9 Å on both

sides of the binding cleft whereas in CAVER, only a fraction of the cleft is detected

calculating 3 exit pathways. Restrained protein dynamics were employed during the

dxTuber MD leading to an end Cα-RMSD of 0.4 A. The partially occluded GTP

binding niche of the activated signal transduction protein H-Ras P21 (Buhrman

et al., 2010) concludes our set of example applications.

All four tools detect the entire binding cleft (figure 6.7E-H), with SURFNET

(figure 6.7F) and CAVER (figure 6.7G) yielding almost identical results of hose-

shaped cavities whereas dxTuber and PyMOL show more structural detail of the

binding cleft (figure 6.7E and H). Three tunnels were computed in the CAVER

analysis and restrained protein dynamics were employed for dxTuber resulting in an

end Cα-RMSD of 0.3 Å.
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Figure 6.7: The large unoccluded vitamin B12 binding cleft in BtuF (A-D) and

the small partially occluded GTP binding niche in H-Ras p21 (E-H) serve as ex-

amples for surface clefts. Clefts are shown as detected by dxTuber (A and E),

SURFNET (B and F), CAVER (C and G) and PyMOL (D and H). Three CAVER

tunnels were calculated for BtuF (C) and four for H-Ras p21 (H).

6.4.4 dxTuber Calculation Speed

Representing the smallest and the largest of our test proteins, the PYP and TolC

analyses were additionally carried out at 0.5 and 2.0 Å
3

voxel size to assess how voxel

resolution influences the calculation speed. At 0.5 Å
3

the PYP analysis required 3:53

min for trajectory conversion in VMD and 5:42 min for cavity detection in dxTuber.

At 1.0 Å
3

resolution the analysis took 0:29 (VMD) plus 0:19 min (dxTuber) and

0:08 plus 0.02 min at 2.0 Å
3

voxel size. For TolC, the analysis was complete after

24:54 min in VMD plus 130:05 min in dxTuber when a voxel size of 0.5 Å
3

was used.
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At 1.0 Å
3
resolution the analysis required 3:03 min plus 6:17 min and 0:35 min plus

0:18 when a voxel size of 2.0 Å
3

was selected.

6.5 Discussion

Proteins are in a continuous state of motion that can easily exceed mere thermal

fluctuations. To take into account the element of conformational dynamics which

has so far been neglected by other cavity detection tools, we have developed a

novel method employing protein and solvent residence probabilities obtained from

molecular dynamics simulations to detect and analyze cavities, tunnels and surface

clefts. After comparing dxTuber’s performance to SURFNET, CAVER and PyMOL

we proceed discussing our approach’s methodological characteristics in context of the

other three methods. We conclude proposing general proceeding recommendations

for cavity detection.

6.5.1 Performance and Methodological Characteristics

Each of the three main classes of protein cavities presents particular challenges to

cavity detection and the six example proteins we used as representatives might raise

the question whether the number of test cases is sufficient. While it is naturally de-

sirable to have as many test cases as possible, the six proteins used in this study are

nevertheless likely to give a reasonable representation of the palette of protein cavi-

ties. Given that each class is exemplified by a small and a large variant, representing

extreme sizes of each cavity type, it is reasonable to assume a tool’s performance

in these extreme cases is likely transferable to the range of intermediate cases in

between. Future applications to other proteins of different sizes will show whether

if this assumption is valid.

Whereas isolated cavities with no contact to the protein exterior are detected

equally well by SURFNET, PyMOL and dxTuber (figure 6.4), the CAVER algorithm

does not support this type of cavity but performs expectedly better with tunnel-like

cavities as long as multiple pathways are calculated (figures 6.5 and 6.6). PyMOL

and dxTuber also yield comparably good results here, whereas SURFNET did not

detect the entire tunnel in case of TolC (figure 6.6) or produced a large amount

of false positives on the protein surface in case of M2 (figure 6.7). Whereas H-

Ras p21’s small and partially occluded GTP binding cleft was detected by all four

applications (figure 6.7E-H), the large, un-occluded vitamin B12 binding cleft in

BtuF (figure 6.7A-D) was only detected by SURFNET and dxTuber although in

both cases the detected cavity exceeds the actual binding cleft.

SURFNET

Each strategy to cavity detection bears its own limitations. Using gap spheres

(Laskowski, 1995) placed on a 3D grid, SURFNET results depend on the orientation
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of the protein of interest. Common to all grid-based algorithms, this limitation

should be kept in mind particularly when comparing different conformations of the

same protein - such as open and closed state M2 (figure 6.7). To minimize this

artifact, structures should be aligned to the same reference conformation prior to

cavity analysis. When larger cavities like the storage compartment in MoSto (figure

6.4) are of interest, SURFNET’s hard-coded limit of 120,000 initial gap spheres

must be compensated at the cost of a lower spatial resolution by making the search

grid coarser. In case of MoSto we additionally increased the minimum gap sphere

radius to ensure the entire cavity is detected completely. The overall smoothness

of cavity shape, the general lack of fine structural detail as well as the protruding

BtuF ligand binding cleft (figure 6.7B) are another consequence of SURFNET’s gap

sphere technique that is also seen with other probe-sphere employing methods like

CAVER or PyMOL.

Although the SURFNET standard settings are a good starting point, grid size,

minimum and maximum gap sphere radius should be optimized for each protein to

achieve the best results (table 6.3). Often this requires a trade-off between complete-

ness of cavity detection and the amount of false positives. For example, although

a complete detection of the entire TolC channel (figure 6.5C) is possible using a

smaller maximum gap sphere radius, the channel cavity then merges with the clefts

on the outer protein surface into one inseparable entity under these conditions. On

the other hand, for the narrow channel in M2 (figure 6.6C and H) a larger maximum

gap sphere radius eliminates not only the false positives on the outer surface but

also the tunnel cavity itself. Any SURFNET analysis is restricted to the 50 largest

cavities and although initially handled as one object, individual cavities can be man-

ually separated into individual isosurfaces using the MASK script of the SURFNET

package. Although SURFNET calculates cavity volume, pore profiles cannot be

computed.

CAVER

Specifically designed to find the shortest way out of the protein interior along a 3D

grid from a user-defined starting point, the CAVER algorithm (Petrek et al., 2006)

is not applicable to class I cavities (figure 6.4). Whereas the large, un-occluded

surface cleft in BtuF was only detected partially (figure 6.7C), the smaller and

partially occluded GTP binding niche in H-Ras p21 was rendered correctly (figure

6.7G). However, like with the TolC (figure 6.5D) and M2 channels (figure 6.6D

and I), this requires calculating several exit tunnels and/or using multiple starting

points (table 6.4). This is a consequence of (a) the 3D grid constructed from the

user-defined starting point and (b) the cost function CAVER employs to calculate

the exit pathway. Aimed at maximizing the tunnel radius as quickly as possible, the

cost function favors an increase of the tunnel radius.

In each CAVER run several exit tunnels are calculated and the actual output
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tunnel is selected based on the amount of favored steps of radius increase and dis-

favored steps of radius decrease. As seen with TolC and M2, this is problematic

with bottleneck regions. One way to sample and output this disfavored regions is by

placing the starting point into the bottleneck and always calculate more than one

exit tunnel. While two tunnels were sufficient for TolC (figure 6.5D), eleven output

tunnels had to be calculated for open state M2 (figure 6.6I). CAVER tunnel profiles

approximate cross-sectional area by the radius of a tunnel-filling probe sphere. Com-

mon to all tools usingthat approach, this leads to inaccuracies with tunnel cavities

whose cross-sectional profile is not circular (Maeda and Kinoshita, 2009). Further-

more, in case of TolC we observed jumps in the CAVER pore profile (figure 6.5G)

suggesting the presence of a bottleneck when there is none. For reasons we do not

understand yet, the CAVER path here temporarily deviates from the tunnel center

and approaches the channel wall where only the placement of small probe spheres

is sterically possible.

PyMOL

Cavity detection is a recent addition to the PyMOL molecular viewer (Delano, 2002)

and is based on the MSMS molecular surface algorithm (Sanner et al., 1995, 1996).

Cavities cannot be further analyzed nor separated into individually selectable ob-

jects, and the large BtuF surface cleft was not detected (figure 6.7D). Nevertheless,

fast and robust results were yielded for all other example proteins (figures 6.4C and

F, 6.5E, and 6.6E and J) when the search parameters cavity detection radius and

cavity detection cut-off were manually optimized for each protein (table 6.5).

dxTuber

dxTuber is the first cavity detection tool that fully takes into account protein flex-

ibility. This is done on the grounds of protein and solvent residence probability

distributions derived from molecular dynamics simulations using solvent molecules

to probe for cavities. Achieving a more realistic and accurate representation of pro-

tein and cavity structure dxTuber allows to study cavities within the framework of

the dynamic protein.

Whereas statistics data on cavities can be difficult to obtain in other methods,

the dxTuber approach offers an easy way of doing that. For each cavity its average

and minimum or maximum extension can be calculated (figures 6.2A and 6.6A, B,

F, and G) based on (a) how protein and solvent trajectories were converted into

residence probability distributions or (b) which residence probability cut-off is used

for cavity display using the averaged and mass-weighed solvent density per voxel

encoded as formal B-factor in the exported PDB.

When multiple trajectory time windows are chosen for analysis (figure 6.4G-

I) cavity dynamics can also be computed over time, monitoring profiles of cross-

sectional area or cavity volume as in figure 6.4I. As the choice which molecules are
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used for cavity probing is user-defined, dxTuber offers a high degree of application

flexibility. For example, whereas assigning a prevalent solvent like water allows a

more general cavity search, less widespread molecules such as bound ligands can be

used for high-precision mapping of substrate binding sites or to determine preferred

ligand-protein interaction sites.

Recent MD studies where the dxTuber approach could be useful include the

mapping of protein-internal water distributions (Kandt et al., 2005, 2004; Yin et al.,

2010), monitoring the opening state of transport proteins (Kandt and Tieleman,

2010; Sonne et al., 2007), investigating protein-internal gas diffusion pathways (Baron

et al., 2009; Wang et al., 2010) or exploring ligand binding sites (Li et al., 2011).

Unlike many other cavity detection tools specialized in one or two cavity classes, dx-

Tuber is capable of reliably detecting all three main types of cavities where - apart

from initial choices of protein orientation, probing solvent and scanning algorithm

- no fine tuning of search parameters is required. Controlled by a graphical user

interface, dxTuber also offers a high degree of accessibility and usability.

A common problem in cavity detection is the occurrence of false positives - i.e.

additional cavities and surface grooves not in the current focus of analysis - and the

necessity to separate these from the actual cavities of interest for later visualization

or analysis. As detected cavities can be exported in PDB format where cavities

are stored as individually selectable groups of voxels sharing the same atom name,

dxTuber offers an easy and efficient way to identify and extract cavities of interest.

Relying on molecular dynamics simulation trajectories to probe protein cavities,

dxTuber’s major limitation is the amount of effort necessary to perform a cavity

analysis. Next to simulation length and system size, the total time required for a

dxTuber analysis is determined by the voxel resolution used in trajectory conversion

and cavity detection.

Whereas for a small system like PYP analysis times range from seconds to min-

utes using voxel resolution of 2.0 Å
3
, 1.0 Å

3
and 0.5 Å

3
, a large system like TolC

requires seconds to hours depending on voxel sizes applied. While a coarser reso-

lution might be beneficial for a quick assessment of large cavity structures, in our

test runs we did not find the increased resolution of 0.5 Å
3

leading to consider-

able improvements over 1.0 Å
3

resolution which we recommend as standard setting.

Another limitation is that per definition only those cavities will be detected that

actually contain solvent molecules designated for cavity probing.

Whereas using water as the only solvent in our test runs was unproblematic,

additional solvent types might become necessary to probe for, for example, hy-

drophobic compartments in a protein, micelle or a lipid bilayer. Pore profiles in

dxTuber are not computed via the common tunnel-filling probe sphere approach

used in (Pellegrini-Calace et al., 2009; Petrek et al., 2007, 2006; Smart et al., 1996).

Instead the cross-sectional area is calculated as an area sum of protein-internal sol-

vent voxels sharing the same Z coordinate.

While this leads to a higher accuracy and detail in tunnel profiles (figures 6.5F
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and 6.6K and L) independent of a channel’s cross-sectional shape, the approach

is restricted to approximately linear tunnels running parallel to a principal axis.

A potential way to overcome this limitation could be employing a slicing plane

through the cavity voxels that is aligned perpendicular to the local tunnel normal.

On the slicing plane local area, diameter or circumference of the tunnel could then

be measured. Furthermore the exit regions of channels or surface clefts should be

interpreted carefully as they might be represented incompletely due to the grid

approach’s dependence on the initial orientation of protein and cavity. When such

cavities are of interest (figure 6.7A) and need to be represented completely, we

recommend orienting the protein in such a way that the cavity is aligned to the X,

Y or Z axes.

Although dxTuber generated a complete rendition of the BtuF substrate binding

cleft that way (figure 6.7A), smaller adjacent surface clefts were also detected that

could not be separated or eliminated automatically. This is a limitation of the

employed 1D scanning algorithm which is currently the only way to represent large

surface clefts completely. Since all cavities can be exported in PDB format, we

suggest selecting and removing such artifact voxels manually. On the other hand,

the different lengths of TolC tunnel profiles derived from restrained (figure 6.5F,

black profile) or unrestrained protein dynamics (figure 6.5F, red profile) are not a

limitation of the algorithm but instead result from a partial closure of the protein

in the unrestrained MD simulation.

Similarly, the fluctuating and eventually disappearing cavity dxTuber detects

in unrestrained PYP (figure 6.4G-I) reflects an adaption of the protein to deleted

chromophore and an expulsion of initially cavity-internal water molecules. On the

other hand, when PYP is position-restrained (figure 6.4D) the cavity is stable but

smaller than in SURFNET (figure 6.4E) or PyMOL (figure 6.4F).

When protein position restraints are applied during the MD, one should keep in

mind that force constants of 1000 kJ
mol nm2 still allow modest protein fluctuation - as

reflected by Cα-RMSDs between 0.3 and 0.4 Å that can limit water diffusion as seen

with the MoSto or PYP dxTuber cavity volumes (figure 6.4A and D) which are 1497

Å
3

and 102 Å
3

smaller than their SURFNET counterparts (figure 6.4B and E). To

completely eliminate any form of protein motion we recommend a force constant of

100,000 kJ
mol nm2 .

6.5.2 General Proceeding Recommendations

For a first impression of a protein with unfamiliar cavity structure, we found PyMOL

a good starting point, yielding fast and robust results for the majority of cavity

classes while requiring little effort in optimizing cavity search parameters. For a

more in-depth analysis of a protein with familiar cavity structure there are two

scenarios to be considered.

When molecular dynamics simulation data are not available, SURFNET gives

109



6.6. Conclusions Chapter 6. Cavity Detection: dxTuber

robust results for isolated internal cavities or surface clefts whereas CAVER is a

reasonable choice for tunnel-like cavities. In both cases each method’s individual

limitations should be considered as discussed above. It is also beneficial to perform

each analysis in combination with an initial PyMOL search. That way useful infor-

mation is gained regarding (a) cavity types and choice of search algorithm, (b) cavity

orientation and shape which determine the placement of starting points, grid size as

well as minimum and maximum gap sphere radius and (c) validation of results and

search parameters.

When molecular dynamics simulation data are available and conformational dy-

namics are to be taken into account, dxTuber is currently the only cavity detection

tool available yielding excellent results for all cavity classes bearing in mind the spe-

cific limitations discussed above. Again, a prior PyMOL analysis can provide useful

information regarding the choice of search algorithm or protein and cavity orienta-

tion, but is also useful to inspect a cavity’s hydration state prior to MD simulation,

and as a means for general cross-checking.

To explore cavity structure near the X-ray conformation, protein atoms should

be positionrestrained (figures 6.4A and D, 6.5A, and 6.5A and E) whereas unbiased

MD is recommended to investigate protein and cavity dynamics (figures 6.4G-I, 6.5B,

and 6.6A and F). Depending on whether a cavity’s average, minimum or maximum

extension is of interest, trajectory to voxel conversion in VMD should be carried out

using the respective setting for the calculation of protein and water densities.

6.6 Conclusions

We introduce a novel cavity detection method that fully takes into account cavity

dynamics using protein and solvent residence probabilities derived from molecu-

lar dynamics simulations. Once MD trajectories have been converted to a voxel

representation of mass-weighed spatial density maps using VMD, dxTuber identifies

cavities as groups of coherent voxels representing protein-internal regions of high sol-

vent density. Three different search algorithms have been implemented that yielded

excellent results on six test proteins representing the three main classes of protein

cavities: isolated internal cavities, tunnels and surface clefts.

dxTuber results can be exported in PDB format where each cavity is an indi-

vidually selectable object of coherent voxels written as pseudo atoms, each holding

the residence probability information in form of averaged and mass-weighed solvent

density encoded as formal B-factors. Cavities can be (a) readily visualized and pro-

cessed using common molecular viewers and (b) further analyzed in terms of volume

and profiles of cross-sectional area along a principal axis. dxTuber is available free

of charge for academic use at http://www.csb.bit.uni-bonn.de/downloads.html

and at http://code.google.com/p/dxtuber/.
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Chapter 7

Summary

7.1 Bacterial multidrug resistance

Antibiotics represent one of the main therapeutic tools both in human and veteri-

nary medicine to cure bacterial infectious diseases. Over the past decades bacterial

resistance against these chemical compounds arose due to the intensive treatment

and today bacterial multidrug resistance is a serious issue in medical treatment.

Multidrug efflux systems expel a wide range of harming compounds out of the bac-

terium and through theire over expression and theire ubiquitous spread along the

bacterial membranes they play a major role in multidrug resistance of bacteria (Pos,

2009).

The efflux ducts (ED) TolC and OprM interact with several inner membrane

transporters and facilitate drug export (Köhler et al., 1997; Masuda et al., 2000a,b;

Moussatova et al., 2008; Nikaido, 2011; Poole et al., 1993; Saier and Paulsen, 2001).

A blocked or disabled ED could inhibit substrate efflux across the outer membrane

and therefor disturb or disable efflux systems. Without the drug efflux ability,

bacteria would loose resistance to drugs. To target EDs with drugs the knowledge

of their gating functionality is a prerequisite. In this thesis for both proteins unbiased

MD simulations were computed in a POPE / NaCl / water environment with special

focus on their gating mechanisms.

7.1.1 TolC

In both available wild-type crystal structures TolC access is limited by three loops on

extracellular side and by twelve coiled-coil helices on periplasmic side (Higgins et al.,

2004; Koronakis et al., 2000). On the latter side Andersen et al. (2002b) identified a

double aspartate ring formed by Asp371 and Asp374 (bottleneck I, BNI) restricting

substrate passage and found a network of hydrogen bonds and salt bridges between

Tyr362–Asp153 stabilizing a second bottleneck (BNII) (Andersen et al., 2002a). In

mutant “partially open“ crystal structures introduced by Bavro et al. (2008); Pei

et al. (2011) BNII was monitored by distance measurements of Gly365.
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Simulations in Absence of the AcrB-DD

Five independent unbiased MD simulations were computed to gain insights into TolC

gating. In all simulations the extracellular loops opened and closed freely hinting

at the absence of a gating functionality on this side and the passage of substrates is

only limited by the diameter of the transmembrane beta barrel on this side (figure

3.2). In one of the five simulations a closure of BNII was induced by the successive

binding of two sodium ions as shown by heightened sodium densities in figure 3.4.

BNII kept close for the remaining 180 ns of the simulation time, even if sodium ions

near the hotspots were removed from the simulation system. However, the removal

of all ions induced an reopening of BNII and BNI pointing to a sodium dependent

lock on TolC’s periplasmic side. By attacking this lock with antibiotics bacteria

could loose resistances to drugs, which were previously exported via TolC.

Simulations in Presence of the AcrB-DD

To explore the effects of the AcrB docking domain (AcrB-DD) onto TolC’s gating be-

havior the AcrB-DD has been added into the previously introduced TolC simulation

system.

In the 1.05 µs simulation of TolC and AcrB-DD we observed an spontaneous

docking of the AcrB-DD on TolC. At the end of the simulation we measured a tighter

but asymmetric binding of the AcrB-DD on TolC. TolC preferred an open state of

the extracellular loops hinting again for the absence of a gating functionality on this

side. While on periplasmic side BNII opened up within the first 3 ns of simulation

time, this open state was stabilized by the AcrB-DD indicating that BNII should be

open before or at least during the assembly of TolC and AcrB. During the simulation

BNI remained closed meaning that either AcrB-DD need more time to open BNI or

other parts of the efflux system and / or ligands are needed to open TolC’s BNI.

7.1.2 OprM

On periplasmic side of OprM a single aspartate ring composed of Asp416 (bottleneck

I, BNI) might restrict substrate passage and a salt bridge between Tyr406 and

Asp205 analogue to TolC’s Tyr362–Asp153 salt bridge could stabilize OprM’s closed

conformation on this side (Phan et al., 2010).

Like TolC, OprM opened and closed freely on extracellular side indicating also

the absence of an gating mechanism on extracellular side for OprM. Beside the open-

ing of BNII also BNI opened up slightly, which is 1.1 to 1.4 more open by the end of

the simulations in comparison to crystal structures (table 5.1, (Akama et al., 2004;

Phan et al., 2010)). Both bottlenecks show low sodium densities in all simulations

indicating the absence of an sodium dependant lock. OprM’s periplasmic access

is only limited by the inner aspartate ring formed by Asp416. However height-

ened sodium densities identified one sodium pocket for each monomer between the

112



Chapter 7. Summary 7.2. Cavity Detection

equatorial domain and the inner bottleneck BNI managed by Asp171 and Asp230,

respectively.

7.2 Cavity Detection

Biomolecular cavities can indicate functional regions like storage compartments,

active sides, ligand binding- and ion-pockets inside and onside molecular structures.

During the past decades lots of tools have been invented to discover these voids (see

table 1.1). All of these are based on static structures and therefore only display

cavities for single conformations.

With the release of dxTuber (chapter 6) the first cavity detection based on en-

sembles of protein conformations was introduced by Raunest and Kandt (2011a).

Based on the assumption, that protein internal solvent molecules highlight cavities,

the separation of internal solvent molecules from external ones can represent the

distribution of cavities inside and onside molecular structures. For this purpose

protein conformation and solvent distributions taken from MD trajectories are con-

verted into gridded density maps by VolMap, a plugin from VMD (Humphrey et al.,

1996).

Based on these grid or voxel representations of protein and solvent dxTuber

separates internal solvent voxel (ISV) and external solvent voxel (ESV) as the first

step and groups adjacent ISVs into cavities as the second step. Cavities can be

stored in the well known PDB file format, where cavities are separated via the

atom name field and solvent densities are stored as formal B-factors. After cavity

detection dxTuber can calculate individual cavity volumes and the cross-sectional

areas of single cavities along a principle axis and further more cavities can be easily

post processed due to the well known PDB file format. Users can use either a

graphical user interface or a command line version of dxTuber for cavity detection.

Both are licensed under GPL v21 and can be downloaded at http://www.csb.bit.

uni-bonn.de/dxtuber.html or http://code.google.com/p/dxtuber/.

1http://www.gnu.org/licenses/licenses.html#GPL
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