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RHEINISCHEN FRIEDRICH–WILHELMS–UNIVERSITÄT BONN

Abstract
by Ioannis (John) Antoniadis

for the degree of

Doctor rerum naturalium

Neutron stars are the degenerate relic cores of massive stars formed in the after-
math of a supernova explosion. Matter in their centres is believed to be condensed
in densities as high as ten times that found in atomic nuclei. Thus, observational
access to their properties provides the means to study the behaviour of physical
laws in extreme conditions, beyond the reach of terrestrial experiments. Rapidly
rotating, highly magnetized neutron stars emit a narrow intense beam of radio
emission from their magnetospheric poles. When this pulse happens to intersect
our line of sight, it gives rise to the pulsar phenomenon. Regular radio-timing of
pulse arrival times on earth, results in some of the most precise measurements in
astrophysics. This thesis deals with the study of binary millisecond pulsars with
white dwarf companions and is divided in 7 Chapters.
Chapters 1 & 2 give a brief introduction to neutron stars, pulsars, and binary
pulsars.
Chapter 3 describes spectroscopic and optical observations of the low mass white
dwarf companion to PSRJ1909−3744. For this system, radio observations have
yielded a precise mass measurement as well as distance information. Combined
with the optical data, these provide the first observational test for theoretical
white-dwarf cooling models and spectra. The latter, if reliable, can be used to
infer theory-independent masses for similar systems.
In Chapter 4, I discuss the measurement of the component masses in the short-
orbit PSRJ1738+0333 system based on spectroscopy of its white-dwarf com-
panion. This system is particularly important for understanding the physics of
pulsar recycling and binary evolution. Moreover, combined with the measure-
ment of the orbital decay from radio-timing, the masses pose the most stringent
constraints on Scalar-Tensor gravity.
Chapter 5 describes radio and optical observations of PSRJ0348+0432, a com-
pact pulsar-white dwarf binary discovered recently with the 100-m Green-Bank
Radio Telescope. Spectral observations of its bright white-dwarf companion show
that the neutron star in the system is the most massive known to date. This mea-
surement is based on a new set of white-dwarf cooling models, designed to take
into account the remaining uncertainties not constrained by PSRJ1909−3744.
Furthermore, I discuss radio-timing observations that have yielded a significant
measurement of the orbital decay which is completely consistent with the Gen-



eral Relativity prediction. This provides a verification of the theory in a highly
non-linear gravitational regime, far beyond the reach of previous experiments.
PSRJ0348+0432 also poses significant constraints on the equation-of-state at
supra-nuclear densities and sheds light to the evolution of low-mass X-ray bina-
ries.
In Chapter 6, I present the detection of the optical counterpart of the 1 solar mass
companion to PSRJ1141−6545 that verifies its white-dwarf nature. This simple
observation is particularly important for understanding the unique evolutionary
history of the binary and justifies the constraints on alternative-gravity theories
imposed by the system.
Finally, Chapter 7 summarizes the main conclusions of this work.
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Each piece, or part, of the whole nature is always an approximation to the complete
truth, or the complete truth so far as we know it. In fact, everything we know is only
some kind of approximation, because we know that we do not know all the laws as
yet. Therefore, things must be learned only to be unlearned again or, more likely, to
be corrected. The test of all knowledge is experiment. Experiment is the sole judge of
scientific “truth”.

Richard Feynman
The Feynman Lectures, Introduction
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Effective temperature of the Sun (Teff) = 5770K



Chapter 1

Neutron Stars and Pulsars

I switched on the high speed recorder and it came blip.... blip.... blip.... Clearly the
same family, the same sort of stuff and that was great, that was really sweet!

Jocelyn Bell-Burnell
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1.1 Birth, Life and Death

It is now understood that stellar evolution is driven by nuclear fusion, which in turn
depends on the stellar mass and composition (Vogt, 1926; Russell, 1931), as well as
on macroscopic interactions with the stellar environment. This is how it works in a
nutshell:

Stars form through the gravitational collapse of fragmenting molecular clouds. Dur-
ing this process, a collapsing fragment of mass M , releases gravitational energy and
heats-up. The thermal energy of the core nuclei opposes their mutual Coulomb re-
pulsion and eventually forces them to trap in the attractive potential of the strong
interaction:

3

2
kBT =

kZ1Z2e
2

r
(1.1)
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If rs is the range of the nuclear force, then the former condition is fulfilled when r

becomes equal to the de-Broglie wavelength, r = λ = h/p = (h2/3mkBT )1/2, increasing
the chance for a close encounter through quantum tunnelling (which scales as e−rs/λ).
From Eq. 1.1 it immediately follows that the critical temperature for this is:

T =
4

3

k2Z2
1Z

2
2e

4m

k2
Bh

2
(1.2)

Eq. 1.2 implies that the first element to ignite is hydrogen (when T ∼ 107 K), which
also happens to be the most abundant. The released energy of the exothermal reaction
balances the gravitational attraction and brings matter to thermal equilibrium; the
star is on the main sequence. Main-sequence stars with masses smaller than ∼ 1.5M�
primarily fuse their hydrogen through the proton-proton (pp-) chain while more massive
ones through the CNO bi-cycle 1.

When the core’s hydrogen is exhausted, equilibrium breaks, and the star contracts
again. For masses below M ∼ 0.25M�, the temperature never becomes high enough
to re-ignite the core (now made of helium), and equilibrium is reached only due to
electron Fermi gas pressure (discussed below), transforming the star to a helium-core
white dwarf. For M > 0.25M�, the burning process continues with helium fusion after
the star has climbed the Red-Giant branch on the H-R diagram. Long-story short, the
cycle of contraction and re-ignition continues and sufficiently massive stars form white
dwarfs with cores made of progressively heavier elements (carbon, oxygen etc.).

A critical situation arises when the stellar core grows beyond ∼ 1.2− 1.5M� and,
for whatever reason, the burning reactions halt. To understand what happens, it is
necessary to recap the physics of a self-gravitating Fermi gas.

1.1.1 Fermi Gasses and the Chandrasekhar Limit

Let us consider a (sufficiently small) sphere of radius R that contains a (sufficiently
large) number of fermions, say protons, neutrons and electrons, that obey the Fermi-
Dirac statistics (T → 0). The central inward pressure exerted due to gravity is

Pg = − 3

8π

GM2

R4
, (1.3)

whereM =
∫ R

0 4πρ0r
2 dr is the total mass and the density ρ0 is taken to be uniform over

the sphere. We need now find the opposing-outward pressure caused by the degenerate
gas. The number-density per-unit-volume of identical fermions with momenta between
p and p+ dp is

n(p)dp = F (p)
g4π

h3
p2dp, (1.4)

where F (p) is the Fermi-Dirac distribution function, which reads F (p) = 1 for p < pF

and F (p) = 0 for p > pF, and g = 2 for fermions. We can now find the Fermi momentum

1Obviously these masses depend on the availability of CNO catalysts and therefore on the metallicity
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for a given particle density, n by integrating Eq. 1.4 to infinity:

n =

∫ ∞
0

n(p)dp =
8π

h3

∫ pF

0
p2dp⇒ pF =

(
3h3

8π
n

)1/3

. (1.5)

The pressure P exerted by the gas, assuming that it behaves ideally is P = 1
3n 〈pu〉

which, combined with the above, in the relativistic limit yields:

P =
8π

3h3m

∫ pF

0

p4√
1 + p2/m2c2

dp. (1.6)

With a change of variables, x = pF/mc, the integration gives:

P =
πm4c5

3h3

{
x
√

1 + x2(2x2 − 3) + 3 ln
[
x+

√
1 + x2

]}
(1.7)

In the classical limit (pF � mc, x→ 0), Eq. 1.5 reduces to:

P =
1

20

(
3

π

)2/3 h2

m2
n5/3, (1.8)

while in the fully relativistic limit (x→∞) one gets:

P =
1

8

(
3

π

)1/3

hcn4/3. (1.9)

Now that we have a feeling for the equation-of-state (EoS, P (n)) we can calculate
the maximum mass that can be supported by this pressure. Assuming that our ideal
ball contains approximately equal number of neutrons, protons and electrons (so that
it is overall neutral) and that the exerted pressure is only due to the electron gas, the
condition P < Pg yields:

Mmax ≤
3

16π

(
hc

G

)3/2 1

µe−m
2
n

, (1.10)

where µe− = A/Z ∼ 2 is the mean molecular weight per electron. Mmax gives the
maximum mass of a body that can be supported by electron pressure. It was discovered
by Chandrasekhar during his first boat trip to the U.K., on his way to become a
graduate student.

Modern calculations that take into account low-pressure and finite-temperature
corrections place the "Chandrasekhar Mass" limit around ∼ 1.3M�. Any star capable
of developing a core beyond Mmax is a candidate for giving birth to a neutron star or
a black hole. During the transition, things may become explosive.

1.2 Supernovae and the birth of neutron stars

1.2.1 Core-Collapse Supernovae

In the textbook example of core collapse, stars with masses above ∼ 10M� ultimately
develop massive Silicon 28

14Si cores. The latter fuse to 60
30Zn which is unstable and rapidly
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decays to 56
28Ni and finally 52

26Fe. These nuclei of the iron group are stable (Wapstra &
Audi, 1985) and thus do not transform into heavier elements. When the mass grows
beyond the Chandrasekhar limit and fusion ceases, electron pressure fails to counteract
gravity and the star collapses.

Stars with initial masses above ∼ 40M� probably form directly a black hole (Heger
et al., 2003). For lower-mass stars, the extreme pressure raises the central temperature
to some 1011 K and produces a thermal spectrum that peaks at γ−rays. The released
energy results in photo-disintegration of the iron nuclei to neutrons and protons. It
also favours electron capture from the protons via inverse β−decay (p+ e− → n+ νe),
which results in neutronization of matter. The emitted neutrinos interact with the
stellar envelope — which in the meantime has bounced on the core and is moving
outwards, and accelerate it dramatically (Woosley & Janka, 2005; Janka et al., 2007).
The released energy results in an electromagnetic counterpart that outshines the hole
galaxy.

The former process, called a core-collapse supernova, marks the birth of a neutron
star: a ball of neutrons ∼ 20 km wide that has a mean density higher than that of an
atomic nucleus. The heaviest of neutron stars formed via this channel collapse further
into black holes, after fall-back of material onto their surface (Fig. 1.1). The mass
threshold for that process strongly depends on the mater equation-of-state in neutron
star interiors, the detailed description of which remains elusive and is further discussed
below.

1.2.2 Electron-Capture Supernovae et al.

While the overwhelming majority of neutron stars form in core-collapse supernovae,
some of them also emerge from lighter stars, owing to loss of outwards or increase of
inwards pressure:

• Stars with initial masses between ∼ 9 and 10M� ultimately develop Oxygen-
Neon-Magnesium cores, more massive than the Chandrasekhar limit. When the
remaining fuel is exhausted, pressure neutralizes the nuclei (Miyaji et al., 1980;
Iben & Renzini, 1983). The series of events is very similar to what described
above and results in an electron-capture supernova (Heger et al., 2003). The neu-
tron stars formed via this channel are tentatively thought to be less massive and
have different spin properties than their direct core-collapse counterparts. Fur-
thermore, there is increasing evidence that neutron stars formed via this channel
receive small super-nova kicks (Knigge et al., 2011).

• Electron capture can be induced by transfer of mass onto a lighter-than-9M�
progenitor, that would normally descent to a O/Ne/Mg-core white dwarf (Dessart
et al., 2006). This process is called accretion-induced collapse and is thought to
be responsible for a large fraction of neutron stars in dense stellar environments.

Regardless of their formation channel, neutron stars count among the most extreme
objects that can exist in the Universe. In the remaining of this chapter I briefly discuss
the salient properties that give them their fame.
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Figure 1.1: Stellar remnants as a function of initial stellar mass and metallicity. Taken
from Heger et al. (2003).

1.3 Neutron star structure

Neutron stars were devised on paper long before their actual discovery. Soon after the
firm detection of neutrons in Sir James Chadwick’s laboratory, Walter Baade and Fritz
Zwicky proposed that super-nova explosions “represent the transition of an ordinary
star to a neutron star” (Baade & Zwicky (1934a); also see Baade & Zwicky (1934b,c)).
Some years later, Tolman, Oppenheimer and Volkov (TOV), derived the equations of
hydrostatic equilibrium in General Relativity (Tolman, 1939; Oppenheimer & Volkoff,
1939), necessary for inferring the structure and behaviour of these stars. These read:

dm

dr
= 4πr2ρ, (1.11)

dP

dr
= −Gρm

r2

(
1 +

P

ρc2

)(
1 +

4πPr3

mc2

)(
1− 2Gm

rc2

)−1

, (1.12)

dmB

dr
=

4πρr2√
1− 2Gm/rc2

. (1.13)

Integration of Eq. 1.11 gives the inertial mass (baryonic mass minus the negative of the
gravitational binding energy) and Eq. 1.13 yields the baryonic mass. The TOV system
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is open and needs explicit information for the equation-of-state, P = P (ρ) to be solved.
The latter depends on the nature of strong interactions at densities up to ten times
the nuclear-saturation density (ρ0 ∼ 2.7 × 1014 g cm−3; Shapiro & Teukolsky, 1969).
This is far beyond the energies available in the controlled environment of terrestrial
experiments. Consequently the equation-of-state remains highly uncertain. Below we
discuss what is known so far.

1.4 Equation-of-State

Neutron Star Crust For areas close to the atmosphere, one can assume that the
pressure approaches the ambient value and thus the equilibrium nucleus is 56Fe, which
has the highest binding energy per nucleon. At very small depths the iron nuclei form
a lattice which is surrounded by an electron cloud, like in earthly conditions (Carroll
& Ostlie, 1996). Further below, pressure is provided by the degenerate electron gas as
we discussed above: P = K1n

5/3 and then P = K2n
4/3.

Neutronization As we progressively move towards higher depths and densities, the
conditions favour heavier neutron-rich isotopes: When the pressure raises at about half
the nuclear-saturation density, ρ ∼ 0.5ρ0, the Fermi Energy becomes higher than the
mass difference between neutrons and protons, EF > ∆E = (mn −mp)c2 = 1.29MeV,
and the equilibrium of β−decay is shifted towards higher neutron concentrations. Ac-
cording to the Saha equation,

npne

nn
=
ZpZe

Zn
. (1.14)

where Zi is the partition function of each component, which can be broken to the
product of an internal energy factor and a kinetic factor (Carroll & Ostlie, 1996).
After a change of variables, np = ne = xn, nn = (1− x)n, the former equation yields:

x2

1− x
=

8πmkBT

nh3

(
2pFe

−pF
2mkBT +

√
2πmkBT erfc

(
pF√

2mkBT

))
e∆E . (1.15)

Here, m = mpme/mn and we have assumed that the particle momenta can take any
value from pF to infinity. As pF increases, x → 0 and neutrons dominate; hence the
name "neutron star".

Neutron Drip and Superfluidity Although neutrons are initially formed within
the nucleus, with increasing pressure strong interactions favour a phase transition to an
unbound state. This happens above ρdrip ∼ 4×1011 g cm−3 which is called the neutron
drip line (Shapiro & Teukolsky, 1969). At the nuclear-saturation density almost all
matter is transformed to free floating neutrons. This fluid has the properties of a
superfluid with no viscosity. Rotation breaks the latter into vortices that make the
crust rotate rigidly.
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The Core Above the nuclear-saturation density the composition is largely unknown
and the behaviour of matter depends strongly on the nature of the short-range inter-
actions between the particles (Shapiro & Teukolsky, 1969; Lattimer & Prakash, 2007).
If these allow situations where the available energy density is ≥ 140MeV, the neutrons
will start emitting pions via n → π− + p+. These will then form a Bose-Einstein
condensate with many particles at the minimum energy that do not contribute to the
overall pressure. An attractive alternative possibility is the excitation of quark de-
grees of freedom, i.e. strange matter composed of free quarks not confined in nuclei.
These so-called soft equations-of-state allow for larger pressures and generally result to
stars with smaller masses compared to baryon equations-of-state (Lattimer & Prakash,
2007).

The determination of the underlying (correct) behaviour of matter at such high
densities is an open problem that can only be probed with neutron-star observations.

1.4.1 Tackling the Equation-of-State Problem

But how can we probe the dense-matter physics using neutron stars? For a given
equation-of-state and a given central density, integration of Eqs. 1.11 & 1.12 yields a
star of a specific mass and radius. For different initial conditions (i.e. central densi-
ties) the solutions form a continuous line on the mass-radius plane with a one-to-one
correspondence to the underlying equation-of-state (Fig.1.2). This correlation opens a
window for experimental constraints2.

Ideally, one would aim to measure both mass and radius simultaneously and for a
range of different neutron stars. Unfortunately, this has so-far been achieved only for a
handful of weakly-magnetized neutron stars undergoing nuclear-powered X-ray bursts
as a result of accretion from their Roche-lobe filling companion (e.g.[ Özel et al., 2010).
Despite that a large number of such observations are now available (thanks to sensitive
X-ray satellites such as the Rossi X-ray Timing Explorer mission), masses and radii
have been inferred only in a handful of occasions, due to the general lack of accurate
distance information (Heinke et al., 2006; Özel et al., 2010). Furthermore, even for
these exceptional cases, the large systematic uncertainties (Steiner et al., 2010) do not
allow for definite conclusions.

An alternative (and less complicated) method relies on the mass measurement alone
(Lattimer & Prakash, 2007). This is possible in a variety of occasions, e.g. when the
motion of the neutron star can be studied in a binary (see next chapter). First, when
the mass of a neutron star is known, we can constraint its radius by requiring that
the star is larger than its Schwarzschild radius R ≥ 2GM/c2. An even more stringent
constraint is set by requiring causality, i.e. that the speed-of-sound is always smaller
than the speed-of-light: vs = (dP/dρ)

1/2
S ≤ c, where S is the entropy per-baryon. Over

the hole volume this translates to: R ≥ 2.83GM/c2 (Lattimer & Prakash, 2007).
In addition to the theory-independent constraints, each proposed equation-of-state

2Strictly speaking, neutron star interiors can be probed without a-priori knowledge of the mass and
radius, e.g. through pulsar-glitch and seismology. However, these methods will not be considered here
(see Lattimer & Prakash, 2007, for an excellent review).
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Figure 1.2: Example mass–radius relations of neutron stars for equations-of-state with
different degrees of “softening” due to matter phase-transitions. Soft equations-of-state,
such as GS3, generally predict smaller maximum masses and are therefore excluded by
observations. On the other hand, stiffer equations-of-state (FPS, AP3, AP3+, “0.2”
& “0.14”) yield larger maximum masses, consistent with the experimental constraints.
Note that radii larger than ∼ 13 km seem to be inconsistent with the constraints from
observations of type-1 thermonuclear X-ray bursts (Steiner et al., 2010) and are there-
fore also excluded (these constraints are not shown here). The TOV system has been
solved using a Runge-Kutta method of the 4th order. Tabulated equations-of-state
were taken from Haensel et al. (1981) (“0.2” & “0.14”) and Lattimer & Prakash (2001)
(FPS, AP3, GS3). In all cases, the “SLy” equation-of-state (Douchin & Haensel, 2001)
was used for the outer core and inner crust and further connected to the laboratory-
based values of Haensel & Pichon (1994) for the outer crust. The AP3+ curve was
produced by fitting the AP3 equation-of-state using a piecewise polynomial with 3
fixed fiducial densities (ρ3 = 2ρ2 = 2ρ1 = 1.85 × 1014.3 g cm−3, Read et al., 2009a;
Özel & Psaltis, 2009) and subsequently increasing by a factor-of-two the pressure at
ρ3, thereby allowing for a higher maximum mass. Over-plotted are the constraints im-
posed by general relativity, causality, the two most massive neutron stars known (see
text) and the fastest-spinning pulsar (716Hz, Hessels et al., 2006)
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has to be able to support a star at least as massive as the heaviest neutron star observed
(Fig.1.2). Fig.1.3 summarizes all available mass measurements by the time of writing.
With a few glaring exceptions, most observed neutron stars have masses of 1.2−1.4M�.
This range is not very constraining since most equations-of-state, including those of
“strange quark stars”, are consistent with this limit. The situation recently changed
with the accurate measurement of a 2M� neutron star (Demorest et al., 2010) in the
binary PSRJ1614−2230. Its mass is high enough to exclude “free floating” quarks
in the core (Özel et al., 2010) and suggests that if quarks do exist, they have to be
strongly-interacting and colour-conducting. Currently, the most massive neutron star
with a precise mass measurement known is PSRJ0348+0432, presented in chapter 5.
Evidence for even more massive neutron stars has recently been found by van Kerkwijk
et al. (2010a) and Romani et al. (2012) for two pulsars with low-mass companions.
However, due to systematic uncertainties arising from the complicated phenomenology
of these systems, the validity of these measurements remains to be seen (Fig. 1.3).

Finally, information about the rotational period sets an additional constraint be-
cause the surface velocity has to be lower than the break-up velocity. For a given
equation-of-state the maximum spin is allowed for the star with the highest central
density, which means that, roughly, one can relate this quantity to the maximum pos-
sible mass. In fully relativistic calculations (e.g. Stergioulas & Friedman, 1995), this
limit is given by (Ωmax/104 s−1) ' κ(MNS/M�)1/2(RNS/10 km)−3/2. Here κ is a numer-
ical constant which ranges from κ = 0.77 (Haensel & Zdunik, 1989) to κ = 0.786±0.030

(Read et al., 2009b) for most equations-of-state. All constraints imposed by current
observations are shown in Fig. 1.2.

Looking at Fig. 1.3 we notice a complete correlation between accurate mass mea-
surements and radio pulsars, a unique manifestation of neutron stars with clock-like
properties comparable with our best atomic clocks. For the remaining of this chapter
(and thesis) we will focus on these remarkable objects and the ways they can be used
to probe fundamental physics.

1.5 Pulsars

Neutron stars were recognised as part of reality in the late 1960s, after Jocelyn Bell and
Antony Hewish picked up an unusual radio signal with their high temporal resolution
telescope. Unlike anything else detected before, the signal was highly periodic (P =

1.33 s), dispersed in frequency and kept sidereal time. The subsequent discovery of
three similar sources and confirmation with other telescopes excluded the possibility
for terrestrial origin. Follow-up observations also ruled out most proposed (reasonable)
explanations: The signal was fast — thus the source of origin had to be small, and
displayed no apparent irregularities — thus it also had to be large. Pacini (1967) and
Gold (1968) proposed that the regularity of the signals can be explain if one accepts
that they originate from a spinning neutron star powered by a magnetic field: with
its ∼ 10 km radius, fast rotation would not pose a stability problem and with its high
moment of inertia, spinning down would require a huge amount of energy. The pulsed
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Cen_X-3
Her_X-1
LMCX-4
SMC_X-1
Vela_X-1
EXO_0748-676
2S0921-630
4U_1538-52
4U_1608-248
4U_1608-52
EXO_1722-363
KS_1731-260
SAXJ1749-2021
IGR_J18027-2016
4U_1820-30
4U_1822-371
XTE_J2123-058
J1311-3430
J1816+4510
B1957+20
J0737-3039A
J0737-3039B
J1518+4904
J1518+4904(c)
B1534+12
B1534+12(c)
J1756-2251
J1756-2251(c)
J1807-2500B
J1811-1736
J1811-1736(c)
J1829+2456(c)
J1829+2456
J1906+0746
J1906+0746(c)
B1913+16
B1913+16(c)
B2127+11C
B2127+11C(c)
J0024-7204H
J0348+0432
J0437-4715
J0514-4002A
J0621+1002
J0751+1807
J1012+5307
J1141-6545
B1516+02B
J1614-2230
J1713+0747
J1738+0333
J1748-2021B
J1748-2446I
J1748-2446J
J1750-37A
B1802-07
B1802-2124
J1855+09
J1909-3744
J1910-5959A
J1949+3106
B2303+46
J0045-7319
J1903+0327

Figure 1.3: Measured masses of neutron stars by the time of writing (style adopted from
Lattimer & Prakash, 2007). Colours depict different types of NS systems. From top
to bottom: Main-sequence/neutron-star binaries (yellow), white-dwarf/neutron star
binaries (blue), double neutron stars (red), “black widows” and “redbacks” (green) and
X-ray binaries. Links to the original papers can be found at www.mpifr-bonn.mpg.de/
staff/iantoniadis/nsmasses.html.

www.mpifr-bonn.mpg.de/staff/iantoniadis/nsmasses.html
www.mpifr-bonn.mpg.de/staff/iantoniadis/nsmasses.html
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signals would then be instances of beamed emission from the surrounding plasma as
it sweeps the line of sight of our telescopes. Indeed, the discovery of the 33ms Crab
Pulsar and the measurement of its spin-period derivative confirmed the Pacini & Gold
predictions and solidified their model.

1.5.1 Pulsar Emission

The details of pulsar emission are, until today, poorly understood. However, we have
good reasons to believe that their basic properties would be the same if their external
magnetic field was a pure magnetic dipole of the form

B =
µ0

4π

(
3r (mr)

r5
− m

r3

)
, (1.16)

were |m| = B0/R
3 is the magnetic dipole moment and |r| ≥ R (Fig. 1.4). In the most

general case the magnetic field and spin axes are misaligned by an angle θ.

We shall first consider a pulsar where the spin and magnetic axes are parallel.
Assuming conservation of magnetic flux during the super-nova collapse, B0 has to be
at least ∼ 109 G. The field rotation induces a strong electric field that strips off charge
particles from the surface. Consequently, the surrounding plasma builds-up in density
until it reaches an equilibrium state in which the plasma-induced electric field cancels
out that from the neutron star. This force-free state allows the charges to co-rotate

Figure 1.4: Dipole Magnetic Field of a Pulsar for α = 0, 45 and 90 degrees

rigidly with the star, up to a radius rc = Pc/2π where the speed of the particles equals
that of light. At that point (a.k.a. the light cylinder radius), the magnetic field lines are
forced open and any particle trapped along them accelerates due to the large potential
around rc (Lorimer & Kramer, 2005). The geometrical area of open-field lines forms a
cone around the magnetic pole known as the polar cap region which is thought to be
the source of beamed emission.
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1.5.2 Spin-Down and Ages

Pulsars have been observed to spin down, typically at rates Ṗ ∼ 3µs per century. This
results to a loss of rotational kinetic energy at a rate of (Lorimer & Kramer, 2005):

Ėrot = −IΩΩ̇ = 4π2IṖP 2 (1.17)

where I is the moment of inertia and Ω the angular velocity.
If we assume that the kinetic energy is carried away in the form of electromagnetic

radiation induced by the spinning magnetic dipole, then

Ėspin = −IΩΩ̇ = Ėdipole =
2

3c3
|m|2Ω4 sin2 α (1.18)

where we have considered the most general case were the magnetic and spin axes are
misaligned. A rearrangement of Eq. 1.18 yields:

B = 3.2× 1019

√
PṖ

sin2 α
G. (1.19)

This equation allows to estimate the age of the pulsar, assuming a spin-down law of
the form ν̇ = ˙P−1 = −Kνn:

T = −ν
ν̇

[
1−

(
n

n0

)n−1
]
, (1.20)

where ν0 is the initial spin frequency of the pulsar and n = 3 for a pure magnetic dipole.
If we further assume that the pulsar was spinning much faster when it was born the
above reduces to the simple

T = − ν

2ν̇
=

P

2Ṗ
(1.21)

called the Characteristic Age (Lorimer & Kramer, 2005).

1.5.3 The P–Ṗ Diagram and Binary Pulsars

Fig 1.5 shows the distribution of spin periods and their derivatives for all known pulsars
in the Galactic disk. While most of them cluster around P ' 1 s and Ṗ ' 10−15 s s−1,
some 100 of them have millisecond periods and very small spin period derivatives.
The overwhelming majority of millisecond pulsars are found in orbit around low- or
intermediate-mass white dwarfs. Their fast spin periods are thought to be the result
of mass accretion from the progenitor of the white dwarf (Alpar et al., 1982). This
”recycling” process transfers mass and angular momentum to the pulsar and, through
a mechanism not yet understood, buries its high magnetic field. Millisecond pulsars
show extraordinary rotational stability and therefore make excellent probes of their
environments. In binary systems, their clock-like periodic pulses can be used to infer
their orbital motion with high precision. Because of their exotic nature, the orbital
characteristics can then be used to map intrinsic neutron-star properties and their
influence on their surroundings. This will be the subject of the following chapters.
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Figure 1.5: A PṖ–diagram of the 1805 known radio pulsars in the Galactic disk
(adapted version of the same figure in Ewan Bahr’s PhD Thesis). Colours depict
different pulsar population. Dotted lines correspond to example values for quantities
described in the text. Finally, the blue shows the “death line”, i.e. the critical period
at which pulsar emission ceases (Chen & Ruderman, 1993).
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1.6 Thesis Outline

This thesis deals with optical, radio and theoretical studies of a selected sample of
binary pulsars with white dwarf companions. The text is organized as follows:

• Chapter 2 begins with discussing the physics of pulsar–white dwarf binaries: the
way they come to life, their properties and their use as laboratories for fundamen-
tal physics, such as the equation-of-state of dense matter and strong-field gravity.
The last part of the chapter focuses on strong-field gravity. In particular, I discuss
how the motion of a pulsar in a binary is sensitive to deviations from General
Relativity, even if these vanish in the Solar System and in other astrophysical
objects.

• Chapter 3 describes spectroscopic and optical observations of the low-mass white-
dwarf companion to PSRJ1909−3744. For this system, radio-observations have
yielded a precise mass measurement as well as distance information. Combined
with the optical data, these provide the first observational test for theoretical
white-dwarf cooling models and spectra. The latter, if correct, can be used to
infer the masses of similar systems, independently of strong-field effects.

• In Chapter 4, I discuss the measurement of the component masses in the short-
orbit PSRJ1738+0333 system based on spectroscopy of its white-dwarf compan-
ion. This system is particularly important for understanding the physics of pulsar
recycling and binary evolution. Moreover, combined with the measurement of the
orbital decay from radio-timing, the masses pose the most stringent constraints
for a wide range of scalar-tensor gravity theories.

• Chapter 5 describes radio and optical observations of PSRJ0348+0432, an ultra-
compact pulsar–white dwarf binary discovered recently with the 100-m Green-
Bank Radio Telescope. Spectral observations of its bright white-dwarf compan-
ion show that the neutron star in the system is the most massive known to
date. This measurement is based on a new set of white-dwarf cooling models,
designed to take into account the remaining uncertainties not constrained by
PSRJ1909−3744. Furthermore, I discuss radio-timing observations that yield a
significant measurement of the orbital decay which is completely consistent with
the General-Relativity prediction. This provides a verification of the theory in
a highly non-linear gravitational regime, far beyond the reach of previous ex-
periments. PSRJ0348+0432 also poses the most stringent constraints on the
equation-of-state at supra-nuclear densities and sheds light to the evolution of
low-mass X-ray binaries.

• Chapter 6 describes the detection of the optical counterpart of the 1M� com-
panion to PSRJ1141−6545 that verifies its white dwarf nature. This simple
observation is particularly important for understanding the unique evolutionary
history of the binary and also verifies the constraints on alternative gravity the-
ories imposed by the system, which up to now were based on less convincing
arguments.
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• Finally, Chapter 7 summarizes the main conclusions of this work.





Chapter 2

Binary and Millisecond Pulsars

No, I don’t understand my husband’s theory of relativity,
but I know my husband, and I know he can be trusted.

Elsa Einstein
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2.1 The Observed Population of Binary Pulsars

The first evidence for neutron stars residing in binaries came in the early 60s when
Giacconi et al. (1962) discovered the first extrasolar X-ray source, ScoX−1. Its high
X-ray luminosity of L > 1035 erg s−1 could be naturally understood if the source is
powered by a compact object (neutron star or black hole) that accretes mass from
a stellar companion. Matter falling onto the surface would then result in significant
release of gravitational energy which, due to the small column density of ∼ 0.3 g cm−2,
can easily penetrate the system in the form of X-rays (Tauris & van den Heuvel, 2003).
This hypothesis was confirmed with the discovery of 4.9 s pulsations from the 2 d binary
CenX−3 (Schreier et al., 1972).

The first binary radio pulsar was discovered some years after by Hulse & Taylor
(1975) during a sensitive survey conducted with the 300-m Arecibo radio telescope
(Hulse & Taylor, 1974). The “Hulse–Taylor” binary consists of two neutron stars (one
of them is the pulsar) that orbit each other every 7.75 hr. Among else, radio-timing
observations yielded the first accurate determination of neutron-star masses and the
first indirect detection of gravitational waves through the measurement of the system’s
orbital decay.
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Today, more than 120 pulsars have been observed to orbit around planets, main-
sequence stars, evolved giants, semi-degenerate stars, white dwarfs and neutron stars.
Like the original Hulse–Taylor binary, their clock-like properties allow for precision
measurements of their orbital dynamics that can be used to infer stellar properties,
probe the physics of binary evolution and test the predictions of General Relativity
and alternative theories of gravity.

2.2 Timing and Orbits

As briefly mentioned before, much of the interesting science related to radio pulsars
comes from the regular monitoring of their rotation.

For any astrophysical source, the time of arrival (TOA) of an emitted signal depends
on its (changing) distance from the earth; for pulsars, the signal of interest is the pulse
that sweeps the Earth once-per-rotation. Because the rotation is nearly constant, the
rotational phase φ corresponding to a time of emission t can be approximated by a
Taylor expansion:

φ(t) = φ0 + ν(t− t0) +
1

2
ν̇(t− t0)2 + . . . , (2.1)

where φ0 and t0 are arbitrarily chosen reference phase and time. The salient property
that enables precision measurements is that the difference between any two times of
emission has to be an integer number, ∆φ = N ∈ Z. The TOA differs from t by
an amount that depends on propagation delays due to the motion of the Earth, the
interstellar medium and the motion of the pulsar:

∆t = ∆E� + ∆R� + ∆S� −D/f2 + ∆Binary. (2.2)

Here, the first three terms account for the Einstein, Roemer and and Shapiro delays
of the bodies in the Solar System; the fourth term is the contribution due to the
dispersion of the signal from the interstellar medium at an observing frequency f and
the fifth term accounts for the binary motion of the pulsar and secular terms due
to the system’s motion as a hole (Lorimer & Kramer, 2005). We shall now focus
on the last term adopting the convention of Damour & Deruelle (1986) and Damour
& Taylor (1992). A summary of the basic (Keplerian) orbital elements and naming
conventions used throughout this thesis can be seen in Fig. 2.1. Obviously, ∆Binary has
to be a function of the orbital period, time of ascending node passage, eccentricity and
projected semi-major axis (x ≡ a sin i/c):{

pK
}

= {Pb, T0, e0, ω0, x0} , (2.3)

where all subscripted values refer to an arbitrary epoch. For the detailed description
of the binary motion we also need an additional set of parameters that can model any
possible deviation from the classical Keplerian motion:{

pPK
}

=
{
Ṗb, γ, r, s, δθ, ė, ẋ, ω̇, δr, A,B,D

}
. (2.4)
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Figure 2.1: Angles and orientation related to the pulsar orbit.
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Here, Ṗ , ė, ẋ and ω̇ can be thought of as the first term of the Taylor expansions for the
relevant parameters. Damour & Taylor (1992) showed that the above combination of
Keplerian and post-Kelperian (PK) terms can correct for deviations (up-to) O(v5/c5)

weaker than the Newtonian gravitational interaction:

∆R = D−1
{
x sinω [cosu− e(1 + δr)] + x[1− e2(1 + δθ)

2]1/2 cosω sinu
}
, (2.5)

∆E = D−1γ sinu, (2.6)

∆S = −D−12r ln
{

1− e cosu− s
[
sinω (cosu− e) + (1− e2)1/2 cosω sinu

]}
, (2.7)

∆A = D−1 {A[sin(ω +Ae(u)) + e sinω] +B[cos(ω +Ae(u)) + e cosω]} , (2.8)

Ae(u) = 2 arctan

[(
1 + e

1− e

)1/2

tan
u

2

]
, (2.9)

ω = ω0 + κ∆e(u) (2.10)

and

u− e sinu = 2π

[(
t− t0
Pb

)
− 1

2
Ṗb

(
t− t0
Pb

)2

+ . . .

]
. (2.11)

Here, D−1 can be thought of as a Doppler term due to the secular motion of the center
of mass and can be reabsorbed into re-definitions of the other parameters so that
one can adopt D = 1 for the fitting procedure (Damour & Taylor, 1991; Lorimer &
Kramer, 2005). Similarly, A and B are non-separable and can be neglected by redefining
T0, x, e, δr and δθ. Eqs. 2.5–2.11 resemble the Roemer, Einstein, Shapiro and aberration
delays respectively; δθ and δr quantify possible relativistic orbital deformations of order
O(v2/c2) and {r, s} parametrize the “range” and “shape” of the Shapiro delay. An
important thing to note is that the former timing formula is theory independent and
describes the orbit in a phenomenological manner. In case the system is “clean” (i.e
the orbiting bodies can be approximated by non-rotating point particles), the PK
parameters are (in the most general case) functions of their masses and the properties
of their internal gravitational field (Will, 1993).

2.2.1 Masses and Tests of General Relativity

In General Relativity, the effacement of the internal structure, the gravitational in-
teraction between the binary’s (non-rotating) components is only a function of their
masses. Hence, the PK parameters become functions of (only) the masses and Keple-
rian parameters:

ω̇ = 3

(
Pb

2π

)−5/3

(T�M)2/3 (1− e2
)−1

, (2.12)

γ = e

(
Pb

2π

)1/3

T
2/3
� M−4/3m2 (m1 + 2m2) , (2.13)

Ṗb = −192π

5

(
1 +

73

24
e2 +

37

96
e4

)(
1− e2

)−7/2
T
−5/3
� m1m2M

−1/3, (2.14)
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r = T�m2 (2.15)

s = sin i = x

(
Pb

2π

)−2/3

T
−1/3
� M2/3m−1

2 (2.16)

and
δr = δθ. (2.17)

Here, T� = GM�/c
3 and M = m1 +m2 is the total mass of the binary. We note that

the former set of equations refers to the intrinsic PK effects that can be extracted from
the measured values after taking into account kinematic corrections (i.e. finding Ḋ/D):
if these were constant, their contribution would cancel-out directly. Unfortunately, this
is normally not the case, since the accelerated motion of the system in the Galaxy
results in secular variations that need to be corrected explicitly.

The measurement of two post-Keplerian parameters defines a set of functions on
the mass-mass plane, the intersection of which yields the masses of the pulsar and
the companion. If a third PK parameter becomes measurable and General Relativity
is correct, the corresponding mass-mass curve should intersect with the previous two
at the same point. For the original Hulse–Taylor binary the first PK parameters to
be measured were γ and ω̇. Some years after, Weisberg & Taylor (1981) announced
the detection of orbital decay which was a strong-field relativistic effect entering the
orbital dynamics at the 2.5 (O(v5/c5)) Post-Newtonian level (in GR Will, 1993). The
measured value followed the prediction of the quadrupole formula (Eq. 2.13) providing
the first radiative test of General Relativity.

Today, the Hulse–Taylor pulsar is outshined by the Double Pulsar for which all
the former PK parameters have been measured. Owing to its short orbit (2.45 h) and
proximity to the Earth, the kinematic effects can be constrained with high accuracy,
yielding 5 distinct tests of General Relativity (including Shapiro delay).

Similarly, all proposed alternative theories of gravity result to unique formulas for
the PK parameters. In the following Chapters we focus on two different families of
alternative theories:

1. Scalar-Tensor Gravity: Scalar-Tensor (ST) theories of gravity are extensions
of General Relativity in which gravity is mediated by a spin−2 graviton and a
spin−0 scalar partner, φ. The motivation for these theories is multi-fold and
related, among-else, to Grand Unification attempts and questions concerning
Dark Matter, Dark Energy and Inflation.

In ST-gravity the Strong Equivalence Principle is violated, leading to emission of
dipole gravitational radiation that enters the orbital dynamics at the 1.5 Post-
Newtonian level (Will, 1993). The amount of dipolar waves emitted by the system
depends on the difference of the binding energies inside the two bodies. Systems
composed of two neutron stars, like the Double Pulsar and the Hulse- Taylor
binary are therefore less sensitive to dipolar waves. The predictions of ST gravity
can be best tested with “clean” assymetric systems composed of a pulsar and a
white dwarf.
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2. Tensor-Vector-Scalar Gravity (TeVeS): TeVeS is a relativistic formulation
of Modified-Newtonian-Dynamics (MOND) designed to explain galaxy-rotation
curves without invoking Dark Matter. The gravitational interaction is mediated
by spin–2, spin–1 and spin–0 particles that lead to modifications of all PK pa-
rameters. These theories can be tested with both neutron star/neutron star and
neutron star/white dwarf binaries

2.2.2 Special Cases: Circular Orbits

As we discuss further bellow, many millisecond pulsars reside in short-period, circular-
orbit binaries. For these systems most PK parameters vanish and only the Shapiro delay
and orbital decay can be measured. The former depends strongly on the inclination
and therefore can be constrained only for systems viewed nearly edge-on; the latter is
sensitive to the orbital period and can be measured only in “relativistic binaries”, i.e.
systems with short orbital periods.

2.2.3 Special Cases: Mass Ratios and Spectroscopy

For a handful of binary millisecond pulsars, the companion is bright enough for phase-
resolved optical spectroscopy. This allows the measurement of its radial velocity which,
together with the radial velocity of the pulsar measured with radio-timing, yields the
mass ratio of the system. Furthermore, in case the companion is a white dwarf, com-
parison of its spectrum with model atmospheres yields its mass. Combined, the mass
ratio and companion mass yield the mass of the pulsar. This information allows for
strong-field radiative tests in relativistic binaries, even if constraints on Shapiro delay
are not possible. Similarly, for the Double Pulsar where both neutron stars are visible,
the Roemer delays yield a theory-independent mass ratio.

2.3 Recycled Pulsars and their Formation

With few exceptions, the fastest spinning pulsars known, have white-dwarf or semi-
degenerate companions. These systems share remarkable similarities, thought to be
the relics of their evolutionary history: They spin down ∼ 103 − 105 times slower
than their single counterparts (Lorimer & Kramer, 2005) which implies that they have
relatively weak magnetic fields of order ∼ 108 G. Furthermore, their orbits are almost
perfectly circular and in some cases the mass of their companions is so low that they
would not have formed within a Hubble-time if they were single stars.

Today, it is firmly established that these binaries emerge from systems initially
formed by a massive, M > 8M� star (the progenitor of the pulsar) and a lighter
companion. After formation of the neutron star, the system evolves on a timescale
determined by the orbital separation and companion mass. For donor star masses
above 2.5M� and short initial periods, the evolution off the main sequence results in
engulfment of the neutron star in the donor’s envelope. Efficient removal of angular
momentum during the common-envelope (CE) phase shrinks the orbit on a very short
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timescale (∼ 104 yr) (Tauris & van den Heuvel, 2003). If the orbital separation is larger
than donor’s radius during its entire lifespan, mass accretion will initiate when (and if)
the donor fills its Roche-lobe. During this period the binary is observed as an X-ray
binary. In X-ray binaries, the accretion episode can be long-lasting (108 − 109 yr) and
thereby allow the neutron star to accrete sufficient mass (and angular momentum) and
spin it up to millisecond periods. Furthermore, the developed tidal torques synchronize
the donor on a short timescale resulting in almost perfectly circularized orbits. For what
follows, we shall only consider cases with donor star masses ≤ 2.5M� that ultimately
lead to formation of low-mass white dwarfs or semi-degenerate stars. For a recent
general review on the evolution of other systems see Tauris & van den Heuvel (2003).

2.3.1 Evolution of the Orbital Separation

During the X-ray binary phase, transfer of angular momentum changes dramatically
the orbital dynamics. The orbital angular momentum is given by:

Jorb =
m1m2

M
Ωa2

√
1− e2, (2.18)

where Ω =
√
GM/a3 is the angular orbital velocity. We can find the evolution of the

orbital separation, by differentiating the above equation:

ȧ

a
= 2

J̇orb

Jorb
− 2

ṁ1

m1
− 2

ṁ2

m2
+
ṁ1 + ṁ2

M
. (2.19)

Here, the total change in angular momentum can be thought of as the sum of con-
tributions due to gravitational radiation, magnetic braking, spin-orbit couplings and
mass-loss from the system (Tauris & van den Heuvel, 2003):

J̇orb

Jorb
=
J̇GW

Jorb
+
J̇mb

Jorb
+

J̇ls

Jorb
+
J̇ml

Jorb
, (2.20)

where we have neglected changes to the eccentricity, because tidal interactions circular-
ize the orbit on a much sorter timescale. Depending on the initial orbital separation,
Roche-lobe overflow (RLO) can initiate when the star is still on the main sequence
(Case-A RLO), during the RGB phase (Case-B RLO) or during helium shell-burning
(Case-C RLO).

Case-A Roche-Lobe Overflow For short initial separations RLO initiates while
the star is still on the main sequence. The evolution of these systems is driven by
angular momentum loses due to magnetic braking (MB) and mass ejection from the
system.

MB is thought to be the main mechanism responsible for the deceleration of low-
mass stars with convective envelopes. In binaries, it operates at the expense of orbital
angular momentum due to the tidal torques that tent to synchronize the spin. The
details of the MB mechanism are uncertain but it seems that the dependence between
the angular momentum loss and the stellar parameters is of the form:

J̇mb

Jorb
' −0.5× 10−28f−2

mb

k2R4
2

a5

GM3

m1m2
s−1 (2.21)



26 Chapter 2. Binary and Millisecond Pulsars

where k2 is the gyration radius of the donor and fmb a constant of order unity (Tauris
& van den Heuvel, 2003).

Additionally, mass loss from the system results in an angular momentum loss rate
given by:

J̇ml

Jorb
=
α+ βq2 + δγ(1 + q)2

1 + q

ṁ2

m2
(2.22)

where α, β and δ are the fractions of mass lost through a direct wind, mass ejected
(uniformly) from the accretor and from a circumbinary coplanar toroid with radius
r = γ2α.

Systems in this category evolve with decreasing orbital periods and eventually form
binaries with a semi-degenerate companion (a.k.a “black widow” systems) or, perhaps,
relativistic binaries with white dwarf companions (see next Chapters).

Case-B Roche-Lobe Overflow For larger initial neutron star-donor separations
(Pb ≤ 2 d, Tauris & Savonije, 1999), RLO initiates when the star evolves to a sub-giant
and starts climbing its Hayashi track on the H-R diagram. The angular momentum
loss mechanisms are generally not important and these systems evolve with increasing
orbital period and descent to binaries with helium-core white dwarf companions.

For stars on the RGB, the growth of the helium core is directly related to the
luminosity which is generated entirely by hydrogen-shell burning. Additionally, during
this phase the temperature remains nearly constant and therefore the luminosity is
also proportional to the stellar radius (L = 4πσT 4R2) which is equal to the Roche
lobe radius. Consequently, the mass of the core is correlated with the orbital period
and therefore the final mass of the white dwarf is also a function of the final orbital
period. This theoretical mass-orbital period relation has been studied extensively in
the literature (e.g Pylyser & Savonije, 1989; Tauris & Savonije, 1999) and seems to
follow fairly well the observational data (Fig. 2.2).

An additional relation that can be verified observationally is a positive correlation
between the orbital period and the eccentricity arising from tidal perturbations due
to the convective envelope of the donor that prohibit perfect circularization (Phinney,
1992).

Case C Roche-Lobe Overflow In this case the initial separation is wide and mass
transfer initiates when the star fuses its helium layer to carbon. These systems descent
to binary pulsars with typical ∼ 0.4M� white dwarf companions.

2.4 Low-Mass He-Core White Dwarf Companions

Low-mass white dwarf companions accompanying millisecond pulsars are, in principle,
very simple objects: they consist of a degenerate helium core, surrounded by a residual
hydrogen envelope of size inversely proportional to the core mass (see Chapter 5).
Unlike regular white dwarfs, the main source of energy is not the latent heat of the



2.4. Low-Mass He-Core White Dwarf Companions 27

0.15 0.20 0.25 0.30
White Dwarf Mass (Solar Mass)

10-2

10-1

100

101

102

Pe
rio

d 
(d

ay
s)

Figure 2.2: White dwarf mass–orbital period relation based on the detailed binary
evolution calculations of Tauris & Savonije (1999). The shaded area reflects the un-
derlying modeling uncertainties due to the metallicity of the progenitor, which affects
the cessation of mass-transfer through regulation of the magnetic-braking and size of
the convective zone. The dotted line is an extrapolation of the relation to values below
the bifurcation period where, in principle, the correlation does not hold. The points
depict all currently known systems with determined masses. The plotted periods are
inferred from the current orbital-periods and cooling ages of the white-dwarf compan-
ions, assuming that the orbit after the Roche-lobe decoupling phase was only affected
by gravitational-wave damping.
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core but residual hydrogen burning in the envelope. This allows them to stay hot and
therefore be observable for timescales of several Gyr (van Kerkwijk et al., 2005).

The first low-mass white dwarf detected in the optical was the companion of
PSRB0655+66 (Kulkarni, 1986). It was immediately recognized that its cooling age
can be used as an independent clock that can probe the magnetic field decay of the
pulsar. Furthermore as mentioned above, sufficiently hot white dwarfs could be used
as tools to infer pulsar masses independently of any post-Keplerian parameters.

In practice, both these uses are somewhat complicated by several issues: First,
the calibration of white dwarf cooling ages requires detailed modelling of diffusive and
convective processes in their interiors as well as treatment of non-gray effects on their
atmospheres (van Kerkwijk et al., 2005). Furthermore, gravitational settling of CNO
nuclei towards the core results in runaway hydrogen burning that consumes a large
fraction of the envelope and ceases the stable nuclear fusion. It is now established
that hydrogen flashes are significant only for white dwarfs more massive than a certain
threshold. The latter however depends on a large number of parameters and remains
poorly constrained. In the next Chapter we discuss this in more detail.
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Abstract

In this work we present a spectroscopic and photometric analysis of the low-mass white
dwarf companion to the pulsar PSRJ1909−3744 for which radio timing has yielded a
precise mass estimate and an accurate paralactic distance. Based on these we inferred
the temperature TWD = 9050 ± 150K, radius, RWD = 0.0301 ± 0.015R� and surface
gravity of the WD, both in a model independent manner (log gτ = 6.77 ± 0.04) and
using model atmospheres (log g = 7.13± 0.15). We find that , for that range of masses
and temperatures, the atmospheric models overestimate the surface gravity by ∼ 5%,
as expected for WDs with fully convective envelopes. Furthermore we show that thick-
envelope mass-radius relations reproduce accurately the mass and radius of the WD
and they can therefore be used to infer reliable masses for WD companions of other
millisecond pulsars.
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3.1 Introduction

An interesting group among the degenerate remnants of stars are white dwarfs with
such low mass (≤0.35M�) that they must consist mostly of helium. These helium white
dwarfs (hereafter, He WD) cannot have formed from single stars, since the required
low-mass progenitors have lifetimes well in excess of the age of the Universe. Instead,
their formation requires interaction in a binary, in which a ≤ 1.5M� star looses its
hydrogen envelope to a companion as it ascends the red giant branch, before it can
ignite helium fusion. Indeed, spectroscopic follow-up confirmed that “low-mass white
dwarfs need friends” (Marsh et al., 1995), and their companions range from other white
dwarfs (helium and carbon-oxygen) to main sequence stars, sub-dwarfs, and neutron
stars (NSs).

Low-mass He WD companions had been expected for many millisecond pulsars in
binaries, since these are thought to be spun up in a preceding phase as a low-mass X-ray
binary, in which they accrete mass from a low-mass (≤ 1.5M�) companion. But the
first bright counterpart, to the pulsar PSR J1012+5307, led to a surprise: for the age
of ∼8Gyr inferred from the pulsar’s spin-down rate, the white dwarf was surprisingly
hot: ∼ 9000K. Alberts et al. (1996) suggested that this might reflect a hydrogen
envelope thick enough that it could sustain residual hydrogen burning. The possibility
of very low-mass WDs having sufficiently thick hydrogen envelopes was pointed out by
Webbink (1975), and has been confirmed by numerous studies since (e.g. Driebe et al.,
1998a; Serenelli et al., 2001). A major uncertainty, however, remains the limiting
mass: whether or not a last flash occurs that removes the envelope seems to depend
not just on the mass, but also on the amount of CNO present (which in turn depends
on metallicity) and the amount of settling and mixing of metals. As a result, estimates
of the critical mass range from ∼ 0.17 to ∼ 0.2M�. Pulsar binaries may help resolve
this question, since they do not just provide good prospects for mass measurements,
but also an independent clock (van Kerkwijk et al., 2005).

The companion of PSR J1012+5307 (Nicastro et al., 1995) was followed up spectro-
scopically by van Kerkwijk et al. (1996) and Callanan et al. (1998), with the intention to
use model-atmosphere fits to determine the temperature and surface gravity, combine
these with a mass-radius relation to estimate the WD mass, and then infer the NS mass
using the mass ratio. The two model-atmosphere fits, however, yielded different values
of the surface gravity, subsequently traced to differences in the models. Amusingly, the
WD masses were nevertheless the same, since the authors used different mass-radius
relations (van Kerkwijk et al., 2005).
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Given the above problems, it would be good to test both the model-atmosphere
analysis and the mass–radius relation empirically. If we could determine the WD
masses with confidence, we could not just determine accurate masses of NSs — and test
models for their ultra-dense interiors — but also transform systems with independent
post-Keplerian measurements into laboratories for testing strong-field gravity (e.g.,
PSR J1738+0333, Freire et al. 2012, see also next chapter). Furthermore, we could
characterize with more confidence other binaries, such as the large number of He WDs
with white-dwarf companions unveiled in the the SDSS sample (e.g. see Eisenstein
et al., 2006; Kilic et al., 2010, and references therein).

Here, we present a test using the He WD companion of PSR J1909−3744, a pul-
sar for which radio timing has yielded accurate masses as well as an accurate timing
parallax (Jacoby et al., 2005). We present our spectroscopy and photometry in Sec-
tion 3.2, and in Section 3.3 use them to infer temperature, gravity, radius, and mass
ratio, checking the consistency of the mass and radius with the inferred surface gravity,
and the consistency of all three with current mass–radius relations. We discuss the
ramifications of our work in Section 3.4.

3.2 Observations

3.2.1 Spectroscopy

Our dataset consists of fourteen long-slit phase-resolved spectra obtained with the
Gemini Multi Object Spectrograph (GMOS) of the Gemini-South telescope over the
course of seven nights between April 2004 and July 2005 (see Table 1). GMOS is
equipped with a mosaic of three 2048 × 4608 CCD arrays which we read out binned
by two, giving a spatial scale of 0.′′146 pix−1. With the 1200 line mm−1 B1200 grism
centered at 4300Å, we covered 3500–5100Å at 0.4 pix−1.

The slit was oriented at position angle 274.◦58 (N through E) to include a bright
star 34′′ East of the target, which we use for local flux and velocity calibration. To
minimize slit losses due to differential atmospheric refraction, we observed with a wide,
1.′′5 slit, and guided at a wavelength of 4300Å (after acquiring through a g′−band
filter). The exposure time for all frames was 3600 s. The conditions were generally
good to photometric and the seeing ranged from 0.′′7 to 1.′′3, giving a resolution of
∼3Å(or ∼200 km s−1) at 4300Å.

All science exposures were followed by a flat-field lamp exposure and a Copper-
Argon (CuAr) arc exposure for wavelength calibration. Finally, on June 6th 2005
under photometric conditions, we used the same setup, but with a 5.′′0 slit to acquire a
60 s exposure of the spectrophotometric flux standard Feige 110 and a 900 s exposure
of PSR J1909−3744 and the local reference star.

The data reduction was performed inside the Munich Image Data Analysis System
(MIDAS) and follows closely the one presented in detail in a companion paper for
PSRJ1738+0333 by Antoniadis et al. (2012) (hereafter AVK+12, see also next chapter).

During the reduction, and after converting raw ADUs to electrons using the gain
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values listed in the GMOS website1, we noticed that the column averaged flux in
flat fields displayed gaps between chips, suggesting that the amplifiers’ gain might be
slightly miss-estimated. We also found that the effect was varying from night to night.
After accounting for that in all frames (using as reference the middle CCD) and flat-
fielding our exposures (as in AVK+12), we subtracted the sky by fitting a second-degree
polynomial along the spatial direction to clean regions between the stars and extracted
the spectra using a method similar to that of Horne (1986).

We established the dispersion solution by fitting a second-degree polynomial to
the identified lines’ positions. This gave root-mean-square (rms) residuals of less than
∼ 0.04Å (or ≤1 km s−1 at 4300Å).

The wide-slit spectra of the comparison and Feige 110 were processed similarly.
After correcting all spectra for atmospheric extinction using the average extinction
table for La Silla (which should also be reliable for Cero Pachòn) we calculated the
flux losses due to the finite size of the slit by comparing the wide-slit spectrum of the
comparison with each of the narrow slit spectra. The relation was approximated with
a quadratic function of wavelength which was then applied to narrow slit observations.

Finally, we derived the instrumental response of GMOS by comparing our Feige 110
spectrum to its HST/STIS template and smoothly interpolating the ratio. The latter
is tabulated at 3Å and thus before comparing we accounted for the (small) difference
in resolution by convolving the template with a Gaussian kernel. We used this to flux
calibrate the narrow-slit spectra.

3.2.2 Photometry

We analysed all available g′−band acquisition images taken at the beginning of each
set of observations before the spectral observations. Following standard practice, we
de-biased and flat-fielded the frames, measured the fluxes of the WD and the reference
star inside 3.′′6 apertures and subsequently scaled them up to 7.′′0 radii. Using all
available 11 measurements, we find that the magnitude difference with reference star
is ∆g = 4.789(7)mag. We found no apparent signs for variability.

We flux-calibrated our measurements using data taken on two photometric
nights. First on 2004 Sep 10, a g′−band image was taken of the field containing
DMSB2139−0405, for which SDSS photometry is available. Using this, we infer
g′ = 21.87(2). Second, on 2005 June 6, images were taken of NGC4550 and LTT7379.
These yield g′ = 21.88(2).

3.3 Results

3.3.1 Radial Velocities and Orbit

The radial velocities of the WD and the comparison were inferred via cross-correlation
with templates using the method discussed in Bassa et al. (2006). For the comparison
star we first identified it as a G6V star by comparison with classification spectra from

1http://www.gemini.edu/sciops/instruments/gmos/?q=node/10477
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Table 3.1: Log of observations and radial velocities for PSRJ1909−3744 and the com-
parison star for the Gemini and Keck datasets.

ID Date MJDbar φbar υWD υC
Gemini

1 19April 2004 53114.264729 0.2048 -127(18) 59.0(2)
2 19April 2004 53114.317736 0.2403 -56(20) 54.1(2)
3 19 June 2004 53175.097504 0.8789 -221(18) 52.9(2)
4 19 June 2004 53175.148732 0.9123 -239(17) 57.0(2)
5 17 July 2004 53203.077298 0.1253 -210(16) 60.9(2)
6 17 July 2004 53203.129993 0.1596 -130(13) 67.3(2)
7 10 Sep 2004 53258.114798 0.0146 -231(32) 68.6(2)
8 10 Sep 2004 53258.169397 0.0502 -283(27) 62.3(2)
9 11 Sep 2004 53259.033404 0.6135 +66(24) 68.9(2)
10 12May 2005 53502.345332 0.2839 -27(17) 80.1(2)
11 12May 2005 53502.396567 0.3173 +37(23) 85.3(2)
12 07 June 2005 53528.395516 0.2389 -51(17) 81.6(2)
13 07 June 2005 53528.395516 0.2729 +6(17) 87.2(2)
14 11 July 2005 53562.052169 0.2216 -66(15) 78.5(2)

the on-line atlas of R.OGray and then used as template the UVESPOP2 spectrum of
HD140901 tabulated at 2Å. For the WD companion we used a template DA model
atmosphere determined iteratively as in AVK+12.

Each spectrum was fitted for a grid of velocities from −700 to +700 km s−1 with a
step size of 5 km s−1. At each velocity step we fitted for the normalization and possible
variations with wavelength using a 3d polynomial. Best-fit velocities and errors were
determined by fitting a parabola to the χ2 values to within 60 km s−1 of minimum.

We accounted for the spectral resolution of the instrument by convolving the tem-
plates with a Gaussian with FWHM equal to the seeing, truncated at the slit width.
Best fit values had typical reduced χ2 values of 1.2 and 1.5 for the WD and the com-
parison respectively. The velocities were transformed to the Solar-system barycenter
and corrected for the −5.2 km s−1 velocity of HD140901.

The radial velocity of the comparison displayed random scatter with rms ∼
18 km s−1, well above the typical 0.2 km s−1 formal errors. This large scatter is likely
associated with slit-positioning errors and differential atmospheric diffraction. Thus,
for further analysis we chose to use velocities relative to the comparison.

We fitted the WD velocities for a circular orbit using a period of Porb =

1.533449474590 days and epoch of ascending node T0 = MJD 53630.723214894 from
the timing ephemeris of Jacoby et al. (2005). The fit gave a velocity amplitude
of Kobs = 193 ± 12 km s−1 and a systemic velocity (relative to the comparison) of
∆γobs = −115±6 km s−1 with χ2

red = 1.19 for 12 degrees of freedom. After rejecting one
outlier (ID 8 in Table 1) we obtain Kobs = 187±11 km s−1 and γobs = −115±5 km s−1

with χ2
red = 1.02 for 11 degrees of freedom. The solution corresponds to a mass ratio of

2http://www.sc.eso.org/santiago/uvespop/DATA
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KWD/KPSR = KWDPb/2πcx = MPSR/MWD = 7.0 ± 0.5. For the systemic velocity γ
we adopt γ = −73± 30 km s−1 which is the value obtained by fitting the raw barycen-
tric WD velocities. The phase-folded velocities and the best-fit orbit are depicted in
Fig. 4.2.

3.3.2 Interstellar Extinction

The reddening towards PSRJ1909−3744 was traced using the Red Clump Stars method
(Durant & van Kerkwijk, 2006a). We used 30100 stars from the 2MASS catalogue
located within 35′.0 from the companion. The sample was split in seven 0.5mag-wide
stripes covering the range from K = 10 to K = 13.5. The J −K distribution in each
stripe was then fitted with a Gaussian superposed to a power-law function. For our
calculations we assumed K0 = −1.65 and (J −K)0 = 0.65 for the intrinsic luminosity
and color of the Helium red giants (inferred from low extinction 2MASS fields) and
the relations of Schlegel et al. (1998a). The extinction was found to increase smoothly
with distance from AV = 0.1 at 100 pc to a maximum of AV = 1.15 at 1.6 kpc. For
the parallactic distance of PSRJ1909−3744 (1.14 kpc) we measure AV = 0.98 ± 0.06,
hence for g−band one infers: Ag = 1.065AV = 1.04 ± 0.06. The extinction-corrected
apparent magnitude implies a distance modulus of (m−M)0 = 10.28± 0.08 mag and
thus Mg = 10.66± 0.10.

3.3.3 Spectral Fit

In Fig.3.2 we show the average of the 14 individual Gemini spectra shifted to zero
velocity. The spectrum shows deep Balmer lines, from Hβ down to H13, typical of a
DA WD with low surface gravity.

The spectrum was fitted with a set of model atmospheres generated by one of us
(DK). The atmospheres are a recent update of the ones presented by Koester (2008)
that incorporate the improved treatment of pressure broadening of the absorption lines
by Tremblay & Bergeron (2009). We scanned a grid of temperatures from Teff = 6000

to 20000K in steps of 250K and surface gravities from log g = 6.00 to 8.00 with a
step of 0.25 dex. At each point of the grid we fitted for the normalization and possible
variations with wavelength using a third degree polynomial (this gave the best fit to
higher Balmer lines that are most sensitive to gravity). As above, we accounted for
the spectral resolution of the instrument by convolving the templates with a truncated
gaussian. For the fit we excluded a small spectral range from 4500 to 4700Å (absent of
Balmer lines), were the flux calibration seemed to be imperfect. This region coincides
with some features seen in the flat fields likely associated with the holographic grating.

Best-fit values and their formal uncertainties were determined by fitting a parabola
to the χ2 surface. Using the choices above we find Teff = 9050 ± 35K and log g =

7.13 ± 0.07 with χ2 ' 1.4 for 798 degrees of freedom. However, experimentation with
our choices for the fit showed that these uncertainties are clearly underestimated and the
spectrum is likely polluted by systematics: First, changing the degree of the polynomial
for the normalization from 1st to 4th degree results in changes of ∆Teff ∼ 150K and
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Figure 3.1: Radial velocity measurements of the companion to PSRJ1909−3744 as
a function of the orbital phase. Filled black circles depict the points used to fit the
orbit and the blue line the best-fit solution. The red line depicts the velocity of the
pulsar as inferred from radio timing. All velocities are relative to the comparison star,
but corrected for its estimated −73 km s−1 barycentric radial velocity. All error bars
represent 1σ uncertainties.
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Figure 3.2: Average spectrum of the WD companion to PSRJ1909−3744 created by
the coherent addition of 14 individual spectra shifted to zero velocity (see text for
details). Left: The blue line depicts the best-fit model-atmosphere corresponding to
Teff = 9100K and log g = 7.25. The red line is a model- atmosphere corresponding to
Teff = 9100 and log g = 6.77 inferred from photometry and timing. Right: Details of
the spectral lines.
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Derived Parameters
Temperature (K, spectroscopy) . . 9050(150)

Radius (R�) . . . . . . . . . . . 0.306(15)

Surface gravity (log g, spectroscopy) 7.13(15)

Surface gravity (log g, mass+radius) 6.77(4)

Table 3.2: Parameters of the He WD companion to PSRJ1909−3744, derived through-
out this Chapter.

∆(log g) ∼ 0.1 dex. Second, for the temperature, a fit to individual spectra (keeping
log g fixed to 7.25) yielded an average of Teff = 9021±30 with an rms scatter of ∼ 150K.
On the contrary, small changes to the resolution did not affect the results more than
1σ and a fit by one of us (DK) using a different technique yielded T = 9130±50K and
log g = 7.20 ± 0.12 that are consistent to the values listed above. Given these results
we adopt Teff = 9050± 150K and log g = 7.13± 0.15 dex with the uncertainties being
a conservative estimate of the systematics.

3.3.4 Radius and Surface Gravity

The spectral and photometric observations make it possible to calculate the radius and
surface gravity of the WD independently of any modelling assumptions. Convolving
the best-fit model (Teff = 9050K, log g = 7.13) with the SDSS g′−band filter curve
yields Mg = 3.09 ± 0.02 for a 1R� object. Combined with the parallactic-distance
estimate, d = 1.14 ± 0.04 kpc, this implies R = 0.0306 ± 0.015R�. Hence, combined
with the mass from timing, M = 0.2038± 0.0022M�, one infers log gτ = 6.77± 0.04.

3.4 Ramifications

3.4.1 A Test of the Atmospheric Models

Table 3.2 shows the main observational quantities derived in this chapter. The accu-
rately constrained mass and radius, for the first time allow an independent determina-
tion of the WD surface gravity, log gτ = 6.77± 0.04. The latter seems to be lower than
the measured value log g = 7.13±0.15. While the difference (log g/ log gτ = 1.05±0.02)
is 2σ consistent with zero, the trend resembles that found for higher mass white dwarfs
with temperatures Teff ≤ 12000K (Tremblay et al., 2011). For these stars the incon-
sistency is attributed to the incomplete treatment of convective energy transfer within
the framework of the mixing-length theory employed in 1D model atmospheres. For
low-mass WDs, one generally expects the same trend, although for somewhat cooler ob-
jects, given that higher temperature low-mass WDs are purely radiative (see chapter 5
for details). Independently of the envelope size, the companion of PSRJ1909−3744 is
convective and a difference of the same magnitude is expected.
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3.4.2 3D velocity: A pulsar coming from the Galactic center

Combining our analysis in Section 3.3.1 with the estimates for the proper motion and
parallax of Jacoby et al. (2005), makes it possible to calculate the 3D velocity of
PSRJ1909−3744: The two components of the transverse velocity are vα = µαd =

−50.61 ± 0.01 km s−1 and vδ = µδd = −192.32 ± 0.01 km s−1. Hence the 3D veloc-
ity of the system is |v| = 212 ± 11 km s−1. This information, allows us to trace the
Galactic path of the system back in time. Using the potential of Kenyon et al. (2008)
we find that PSRJ1909−3744 has a peculiar orbit that intersects the Galactic center
every ∼ 100Myr. We reproduced similar results using the potentials of Kuijken &
Gilmore (1989) and Paczynski (1990). Interestingly, we find that the former result is
not particularly sensitive to the radial velocity component, γ.

3.4.3 Comparison of atmospheric properties and mass radius rela-
tions

In this section we compare the observational constrains on mass and radius with
the predictions of various mass-radius relations found in the literature. Models with
thick hydrogen envelopes (Panei et al., 2000; Serenelli et al., 2002) yield a mass of
MWD ∼ 0.2M� and a radius of RWD ∼ 0.03R�, both consistent with the independent
constraints. On the opposite, relations with thin hydrogen atmospheres (Panei et al.,
2000; Serenelli et al., 2001; Panei et al., 2007) predict somewhat smaller masses, e.g.
the one of Panei et al. (2000) yieldsMWD = 0.172±0.005M�, RWD = 0.028±0.001R�.
The latter evidence for a thick envelope undergoing residual hydrogen burning is further
supported by the pulsar age. Although the characteristic age, τc = 16 ± 3Gyr, is too
large to be considered real, it is a strong indicator of a large true age. All thin-envelope
models yield an age of ∼ 0.6Gyr which is too small. On the other thick envelope
relations give τc ∼ 5Gyr which seems more reasonable.

Interestingly, all thick-envelope mass-radius relations consistent with our observa-
tions show a relatively large diversity on input physics. Specifically, PSRJ1909−3744
seems to be insensitive to the adopted metallicity and treatment of convection. There-
fore observations of lower-mass WDs are necessary to account for the remaining uncer-
tainties.

3.5 Conclusions

We have presented spectroscopic and photometric observations of the companion to
PSRJ1909−3744. These, for the first time allow a model-independent inference of the
radius and surface gravity of a low mass WD. Our comparison with model atmospheres
shows that, for that range of masses, the model atmospheres overestimate the surface
gravity by ∼ 4%. This discrepancy is similar to the “high log g” problem found for
higher-mass WDs and can be explained by the incomplete treatment of convection in
1D atmospheric models. Hence, this systematic should be absent in lower mass WDs
with purely radiative atmospheres (e.g. the ones presented in the next Chapters).
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The comparison with cooling tracks shows clear evidence for a thick envelope which
is also consistent with the spin-down age of the pulsar. This is generally not predicted
by recent calculations that incorporate a detailed treatment of gravitational settling and
other diffusive processes. These models yield thin envelopes above a threshold mass of
∼ 0.17− 0.18M� as a result of extensive hydrogen flashes due to gravitational settling
of CNO nuclei during the pre-WD phase. A possible explanation for the discrepancy
could be that the progenitor star had a lower metallicity. An alternative explanation
could be that the rotation of the WD plays a significant role in the mixing of elements
(Panei et al., 2007). In chapter 5, I present a new set of WD models which take into
account the constraints found here.
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Abstract

PSR J1738+0333 is one of the four millisecond pulsars known to be orbited by a white
dwarf companion bright enough for optical spectroscopy. Of these, it has the short-
est orbital period, making it especially interesting for a range of astrophysical and
gravity related questions. We present a spectroscopic and photometric study of the
white dwarf companion and infer its radial velocity curve, effective temperature, sur-
face gravity and luminosity. We find that the white dwarf has properties consistent
with those of low-mass white dwarfs with thick hydrogen envelopes, and use the cor-
responding mass-radius relation to infer its mass; MWD = 0.181+0.007

−0.005 M�. Combined
with the mass ratio q = 8.1±0.2 inferred from the radial velocities and the precise pul-
sar timing ephemeris, the neutron star mass is constrained to MPSR = 1.47+0.07

−0.06 M�.
Contrary to expectations, the latter is only slightly above the Chandrasekhar limit.
We find that, even if the birth mass of the neutron star was only 1.20M�, more than
60% of the matter that left the surface of the white dwarf progenitor escaped the sys-
tem. The accurate determination of the component masses transforms this system in
a laboratory for fundamental physics by constraining the orbital decay predicted by
general relativity. Currently, the agreement is within 1σ of the observed decay. Further
radio timing observations will allow precise tests of white dwarf models, assuming the
validity of general relativity.
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4.1 Introduction

Millisecond pulsars (MSPs) are extreme in many ways. Their interior consists of the
densest form of observable matter known and they can spin at least as fast as 716
times per second (Hessels et al., 2006). Hence, they offer a rich laboratory for a wide
range of physical inquiry: Mass measurements provide direct comparison to quantum
chromodynamics’ predictions for the state of ultra-dense matter (Lattimer & Prakash,
2004; Demorest et al., 2010) and studies of their orbits in binaries have provided the
first confirmation for gravitational wave emission and the most stringent strong-field
tests of general relativity (Taylor & Weisberg, 1982; Weisberg et al., 2010; Kramer
et al., 2006).

Most of the fastest spinning Galactic-disk pulsars are paired with low mass helium-
core WDs (hereafter LMWDs, for recent reviews see Lorimer, 2008; Tauris, 2011), and
their fast spins and weak magnetic fields are thought to be the product of mass transfer
from the progenitor of the WD, a process also known as recycling. As the progenitor
star evolves, it fills its Roche lobe and loses its envelope, either while on the main
sequence (for sufficiently short initial periods), or when moving up the red-giant track
(Webbink et al., 1983). The mass transfer rate is a strongly increasing function of the
initial orbital period and donor mass (Tauris & Savonije, 1999), and is expected to
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be at a stable, sub-Eddington rate (≤10−8 M� yr−1) for light companions in relatively
tight orbits. The final result of such long-term (nuclear timescale) mass transfer is a
highly circular (due to fast tidal dissipation in the secondary) close binary consisting
of a fast spinning MSP and a low mass, helium-core WD.

These systems are important for several reasons. First, it is these binaries that allow
one to probe certain aspects of the radiative properties of gravity that are poorly con-
strained by the relativistic effects seen in double neutron stars, like the Hulse–Taylor
or the double pulsar. For example, in a wide range of theories, the rate of gravita-
tional wave emission is driven by a leading dipolar term that depends crucially on the
difference in gravitational binding energies between the binary members. Hence, if ac-
curate component masses can be determined, one can directly confront the predictions
of different gravity theories in terms of dipolar radiation with observations.

Second, measuring their masses provides access to the accretion process and evo-
lution of these systems as well as the formation of MSPs, the only neutron stars with
secure precise masses significantly above the Chandrasekhar limit (Freire et al., 2011;
Demorest et al., 2010). In addition, observational constraints on the upper mass limit
of stable neutron stars, constrains the equation of state for super-dense matter.

Unfortunately, precise MSP and companion masses can be determined from timing
in exceptional cases only: either when the orbit is (unexpectedly) eccentric, allowing
for a measurement of the rate of advance of periastron (Freire et al., 2011), or if the
system has an orbit seen edge on (Kaspi et al., 1994; Jacoby et al., 2005; Demorest
et al., 2010) which allows for a measurement of pulse time-of-arrival (TOA) delays due
to the curvature of space-time around the companion (Shapiro delay, Shapiro, 1964).

Fortunately, another method exists that relies on combined optical and radio timing
observations (van Kerkwijk et al., 1996; Callanan et al., 1998). If the WD companion
is bright enough for detailed spectroscopy, a comparison of its spectrum with model
atmospheres yields its effective temperature and surface gravity. These can then be
compared with a mass–radius relation for LMWDs to yield its mass. Combining the
radial velocity for the white dwarf with the pulsar timing measurements yields the mass
ratio and therefore the mass of the pulsar.

In the previous Chapter, we test this method on PSR J1909−3744, for which the
masses are precisely known from timing. We find it reliable and are confident to
apply it also to other similar systems. In this Chapter we report on the application
of this method to PSRJ1738+0333, a pulsar-LMWD binary, discovered in a Parkes
survey Jacoby et al. (2007). Because of its short orbital period of ∼ 8.5hours and for
the reasons mentioned above, the system is of particular interest for radiative tests of
gravity. Furthermore it provides a valuable input for binary evolution theory since it lies
in a regime where nuclear-driven evolution had most likely been overtaken by magnetic-
braking and gravitational radiation Phinney & Kulkarni (1994) The text is organized
as follows: section 4.2 starts with presenting results from radio timing, necessary for
calculations throughout the rest of this chapter. These are described in detail in a
companion work led by P. Freire (Freire et al., 2012, Paper II from know on). We then
describe the spectroscopic and photometric observations and in section 4.3 we present
our results. We discuss our findings and comment on the evolution of the system and
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its importance for gravity tests in section 4.4. Finally, in section 4.5 we summarize our
results and in section 4.6 the conclusions of Paper II.

4.2 Observations

4.2.1 Radio

PSRJ1738+0333 was discovered in a 20-cm high Galactic latitude survey in 2001 ?,
carried out with the multi-beam receiver of the Parkes Telescope. The pulsar has a spin
period of 5.85ms and orbits a low-mass helium-core WD companion in a 8.5 h orbit.
Since 2003 it has been regularly timed with the 305m Arecibo Telescope, leading to
∼ 17000 times of arrival with typically 3µs uncertainties. The corresponding timing
solution provides measurements of the system’s parallax and proper motion, and a
significant detection of the intrinsic orbital period derivative (see Paper II for details).
In Table 4.2 we list the measured spin, Keplerian and astrometric parameters of the
system.

The spin period derivative is that of a typical low-surface magnetic field pulsar
(B0 = 3.7×108 G), and the characteristic age (≡ P/2Ṗ ) after subtracting the kinematic
effects (Paper II) is 4.1Gyr. The parallax measurement corresponds to a distance of
d = 1.47 ± 0.10 kpc. The system’s proper motion combined with the parallax implies
transverse velocities of vα = dµα = 49 km s−1 and vδ = dµδ = 36 km s−1 in α and δ

respectively. In section 4.3 we combine these values with the systemic radial velocity,
γ, to derive the 3D spatial velocity and calculate the Galactic orbit of the binary.
The estimate for the orbital eccentricity is one of the lowest observed in any binary
system: When Shapiro delay is accounted for in the solution (Paper II), the apparent
eccentricity diminishes to e = (3.5± 1.1)× 10−7. We discuss the implication of this for
evolutionary scenarios in section 4.4.

4.2.2 Optical

Our main data set consists of eighteen long-slit phase resolved spectra of
PSRJ1738+0333, obtained with the Gemini South telescope at Cerro Pachón on ten
different nights between April and June 2006 (see Table 4.1). For our observations we
used the Gemini Multi-Object Spectrograph (GMOS-S). The GMOS detector consists
of three 2048 × 4608 EEV CCDs, each of which was read-out at 2 × 2 binning by a
different amplifier, giving a scale of 0.′′14 per binned pixel in the spatial direction, and,
with the 1200 lines permm B1200 grism, 0.4Å per binned pixel in the dispersion direc-
tion. We chose a relatively wide, 1.′′5 slit, to minimize atmospheric dispersion losses (see
below). This meant that the resolution was set by the seeing, at ∼3Å, or ∼200 km s−1

at 4300Å. In order to cover the higher Balmer lines, we centred the grating at 4300Å,
for a wavelength coverage from 3500 to 5100Å.
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Table 4.1: Log of observations and radial velocity measurements.

vR vWD ∆v

Date MJDmid,bar φ (km s−1) (km s−1) (km s−1) ∆B′

(1) (2) (3) (4) (5) (6)
Gemini,GMOS-S

2006Apr 27 53852.310219 0.0250 +56.3± 0.8 −209± 27 −265± 27 2.91± 0.06

53852.366314 0.1831 +49.1± 0.8 −143± 26 −192± 26 2.88± 0.06

2006Apr 28 53853.295453 0.8019 +53.7± 0.5 −100± 14 −154± 14 2.88± 0.04

53853.350638 0.9575 +68.8± 0.6 −185± 15 −254± 15 2.88± 0.04

2006May 07 53862.333037 0.2749 +40.1± 0.5 −35± 13 −75± 13 2.83± 0.03

53862.391933 0.4409 +84.9± 0.6 +162± 21 +77± 21 2.87± 0.04

2006May 26 53881.198674 0.4489 +60.8± 1.1 +121± 37 +60± 37 3.03± 0.11

53881.252933 0.6018 +67.0± 0.9 +33± 32 −34± 32 2.97± 0.09

2006May 27 53882.352291 0.7005 +43.1± 0.5 −6± 15 −49± 15 2.85± 0.04

2006May 28 53883.296760 0.3625 +54.9± 0.6 +28± 16 −27± 16 2.86± 0.03

53883.350144 0.5130 +53.9± 0.6 +134± 17 −189± 17 2.85± 0.03

2006 Jun 19 53905.174549 0.0264 +41.5± 0.5 −226± 12 +80± 12 2.85± 0.04

2006 Jun 23 53909.170100 0.2881 +39.9± 0.7 −5± 14 −45± 14 2.88± 0.03

53909.210618 0.4023 +95.6± 1.1 −103± 36 −45± 36 2.84± 0.04

2006 Jun 26 53912.156147 0.7045 +60.4± 0.5 −7± 14 −67± 14 2.85± 0.04

53912.209838 0.8558 +60.7± 0.6 −136± 15 −197± 15 2.88± 0.04

2006 Jun 27 53913.120000 0.4212 +42.5± 0.5 +79± 12 +37± 12 2.84± 0.04

53913.176660 0.5809 +43.6± 0.5 +106± 13 +62± 13 2.82± 0.04

Keck, LRIS
2008Aug 04 54682.377697 0.6224 50± 1,+61± 5 −2± 9 −52± 9 3.01± 0.05

Notes: (1) refers to the barycentric mid-exposure time. (2) is the orbital phase using the ephemeris in Table 4.2. (3) is the comparison’s
velocity in respect to the solar system barycenter and (4) the raw barycentric velocities of PSRJ1738+0333. (5) is the differential velocity used

to determine the orbit in section 4.3. Finally, (6) are the differential spectrophotometric magnitudes in B′ (equal to B, but limited to the
wavelength range covered by our spectra; see section 4.2.2). Here, the errors are the quadratic sum of the photometric uncertainties of the WD
and the comparison. For LRIS, two velocities are listed for the comparison star, for the blue and red arm, respectively. For the white dwarf,

the velocity is for the blue arm (see text).
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All exposures had integration times of 3720 s and were followed by an internal flat-
field exposure and a Copper-Argon (CuAr) exposure for wavelength calibration. The
slit was oriented to include a bright comparison star located 25.′′2 at position angle
127.◦57 (north through east) of the WD (see Fig. 6.1). We use this star as a local
velocity and flux standard (since GMOS-S does not have an atmospheric dispersion
corrector, slit losses vary with offset from the parallactic angle).

The conditions during the observations were mostly good to photometric, but some
exposures were taken through thin cirrus. The seeing ranged from 0.′′6 to 1.′′2. For
flux calibration, we acquired additional frames of the comparison star and the spectro-
photometric standard EG274 through a 5.′′0 slit on the night of 2006 April 27 (which
was photometric and had 0.′′8 seeing). Furthermore, for absolute velocity calibration,
we observed the radial velocity standard WD 1743−132 on 2006 June 19.

The data were reduced using standard and custom routines inside the Munich Im-
age and Data Analysis System (midas). First, the bias level of each exposure was
removed using average values from the overscan region. Subsequently, we corrected the
raw counts on the red and middle chips for the small, few percent variations in gain
(see vK+12 for details on the method), that affected several sets of exposures (but
fortunately not those of the night the flux calibrator was taken). Finally, the frames
were corrected for small-scale sensitivity variations using normalised lamp exposures,
where the normalisation was done both along each wavelength position as well as along
each spatial position. These normalisation steps were required since the lamp spectra
showed rather sharp bumps in the dispersion direction whose position and shape was
different from bumps seen in target spectra, and also varied between sets of spectra
(possibly because the holographic grating was not illuminated exactly identically be-
tween the different exposures), while in the spatial direction they showed striations due
to irregularities in the slit.

For sky subtraction, we selected a 100′′ region centred on the WD, but excluding
5′′ spots around it and the comparison star. Each column in the spatial direction was
fitted with a second degree polynomial and the interpolated sky contributions at the
positions of the WD and the comparison were removed.

Optimally weighted spectra and their uncertainties were extracted using a method
similar to that of Horne (1986). The extraction was done separately in each chip and
the spectra were merged after flux calibration.

The dispersion solution was established using the CuAr spectra taken after each
exposure. First, the 1D lamp spectrum was extracted by averaging the signal over the
spatial direction in areas of the chip that coincided with each star. Then the lines’
positions were measured and identified and the dispersion relation was approximated
with a 3rd degree polynomial that gave root-mean-square residuals of less than 0.04Å
for typically 18 lines.

The wide-slit spectra of EG274 and the comparison star were extracted with the
same procedure and used to calibrate the narrow-slit exposures. Initially, all wide and
narrow slit data were corrected for atmospheric extinction using the average extinction
table for La Silla (which should be a good approximation to that of Cerro Pachón).
Then, we calculated the wavelength-dependent flux losses due to the finite size of the
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Figure 4.1: Finding chart for PSRJ1738+0333 (using the SOAR V image). Indicated
are the white-dwarf counterpart, the slit orientation used, and the comparison star that
was included in the slit.
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slit by comparing the wide-slit spectrum of the comparison with each of the narrow-
slit spectra. The relation was analytically approximated with a quadratic function of
wavelength that was then applied to the narrow slit observations. Finally, the GMOS
instrumental response was calculated by dividing the spectrum of EG274 with a syn-
thetic template and smoothly interpolating the ratio. The template was created by
normalizing an appropriate DA model atmosphere to the catalogued flux (V = 11.03,
Zwitter et al., 2004, see §4.5 for more details on the model atmospheres used in this
chapter). Prior to comparison, we smoothed the template with a Gaussian kernel to
match the resolution of the observed spectrum and excluded the cores of the Balmer
lines.

Given the possible issues with the detector gain and the flat fielding, both of which
could affect the flux calibration, we obtained an additional smaller set of spectra of the
WD companion, the comparison star and the spectro-photometric standard Feige 110
using the two-armed Low Resolution Imaging Spectrometer (LRIS Oke et al., 1995) of
the Keck telescope on the night of 2008 August 3 (Table 4.1). During the night the
sky was photometric and the seeing was ∼0.′′8.

For the observations we used the atmospheric dispersion corrector and both narrow,
0.′′7, and wide, 8.′′7 slits. The light was split with a dichroic at 6800Å and directed on
the two arms of LRIS (blue and red arm hereafter). On the blue arm we used a
600 linesmm−1 grism, blazed at 4000Å, that covers 3100–5600Å with a resolution of
∆λ = 3.2Å or ∆v = 220 km s−1. On the red arm we used the 1200 lines mm−1 grating,
blazed at 8000Å, that covers 7600–8900Å at ∆λ = 2.1Å or ∆v = 75 km s−1. The
blue-side detector is a mosaic of two Marconi CCDs with 4096× 4096 pixels 15µm on
the side, which we read out binned by two in the dispersion direction. The red-side
detector is a Tektronic CCD with 2048 × 2048 pixels 24µm on the side, which we
read-out unbinned.

The spectra were extracted and calibrated as above. Here, on the blue arm we
replaced the poorly exposed part of the flat fields shortward of 4000Å with unity and
normalized the rest using a third degree polynomial. On the red side we normalized the
flat field using a bi-linear fit. Wavelength calibration was done using arc spectra and
sky lines. On the blue arm we used the well exposed arc frames taken at the beginning
of the night to establish an overall solution that had rms residuals of 0.16Å for 22
lines fitted with a third-degree polynomial and then calculated offsets using the less
well-exposed arc frames taken throughout the night. For the red arm we used the well
exposed arc-frames taken interspersed with the science exposures. Here, we corrected
for offsets by shifting the bright OH and O2 lines at 8344.602, 8430.174 and 8827.096Å
to laboratory values. Flux calibration was again done as above; we found that the
solution was consistent with that obtained from Gemini (see also below).

4.2.3 Photometry

On the night of 2008 February 28, images of the field containing PSRJ1738+0333 were
acquired for us with the 4.1m Southern Astrophysical Research Telescope (SOAR) at
Cerro Pachón, Chile, using the Goodman High Throughput Spectrograph



4.2. Observations 49

(Clemens et al., 2004), with its Fairchild 4096× 4096 CCD and B and V filters (with
throughputs on the Kron-Cousins photometric system). The instrument has a plate
scale of 0.′′15 pix−1 and a usable field of view of 5.′0. During the run, the sky was
photometric and the seeing as determined from the images was ∼ 1.′′8. Two 300 s
images each in V and B were obtained. Of these, however, the first had reduced count
rates for all stars and a distorted point-spread function, possibly because the telescope
and instrument had not yet settled when the exposure was started; we have not used
that image. For calibration, sets of 30 s B and V images of the photometric standard
field PG1633+099 were acquired both before and after the science frames.

Following standard prescriptions, individual frames were bias-corrected and flat-
fielded using twilight flats. Hot pixels and cosmic rays were replaced by a median over
their neighbours. The instrumental fluxes were measured inside 3.′′6 radii and then
corrected to a radius of 7′′ using measurements of bright isolated stars. For the calibra-
tion, we used 5 standard stars with a range of B − V colors in the PG1633+099 field
(Stetson, 1990). Measured magnitudes were compared to their catalogued counterparts
to derive zero-points and colour terms. Both calibration sets yielded similar results.
Small differences in airmass were corrected using standard values for La Silla. The
root-mean-square residuals of the zero points in both bands were ∼0.01mag. We find
that the optical counterpart of the WD has V = 21.30(5) and B = [21.70(7), 21.73(7)],
where the two measurements in B are for the two exposures, and where for the errors,
we combined in quadrature the measurement and zero-point uncertainties. For the
comparison star, we measure V = 18.00(1) and B = [18.73(2), 18.75(3)]. Since the B
magnitudes are consistent, we use the averages below.

We verified our calibration in several ways. First, we integrated our flux-calibrated
spectra over the B-band filter curve of Bessell (1990). For the comparison star, using
the wide-slit spectra, we find B′ = 18.81 for the Gemini spectrum and B = 18.71 for
the Keck spectrum. For the white dwarf, we find B′ = 21.69 for the averaged Gemini
white dwarf spectra, and B = 21.70 for the single narrow-slit Keck spectra. Here, we
label the Gemini magnitudes as B′, since the GMOS spectra do not fully cover the
Bessell-B bandpass, which will introduce color terms.

Second, we tried to calibrate the g′-band GMOS acquisition images, by calibrating
relative to our velocity standard, WD 1743−132, which has V = 14.290, B − V =

0.300 (Mermilliod et al., 1990), and thus, using the relations of Fukugita et al. (1996),
g′ = V + 0.56(B − V ) − 0.12 = 14.34. We find g′ = 18.23 for the comparison star
and, using the average magnitude difference ∆g′ = 3.091(17) between the WD and the
comparison, we infer g′ = 21.32 for the WD (here, the uncertainty will be dominated
by systematics, but should be ≤ 0.05mag). These numbers are consistent with the
g′ = 18.39(7) and 21.42(7) expected from our SOAR photometry.

Looking at individual acquisition frames, the scatter of the magnitude difference
was ∼ 0.05mag, somewhat larger than expected based on measurement noise, though
with no obvious correlation with orbital phase. We find somewhat smaller scatter from
convolving individual flux calibrated WD and comparison spectra with the Bessell B-
band, and using those to determine differences (see Table 4.1). Ignoring the two points
from our worst night (2006 May 26), the root-mean-square scatter is 0.032mag. Since
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no obvious phase dependence is found, this places a limit on the irradiation of the WD
atmosphere from the pulsar. However, the limit is too weak to be useful: Assuming
a spin-down luminosity of LPSR = dE/dt = −4π2IṖ /P 3 ∼ 4.8 × 1033 ergs s−1 and
defining an irradiation temperature Tirr = (LPSR/4πa

2σ)1/4 ' 3800 K (where from
Table 4.2, we inferred a ' 1.8 × 1011 cm), the expected orbital modulation is only
∆L/L ' [πR2

WD(LPSR/4πa
2)/LWD] sin i ' [T 4

irr/4T
4
WD] sin i ≤ 4× 10−3.

4.3 Results

4.3.1 Radial Velocities

Radial velocities of the WD, the comparison and the velocity standard were extracted
by fitting their spectra with templates using the method discussed in Bassa et al. (2006).
For the comparison, we first classified it using the on-line atlas by R. O. Gray1. We find
that its spectrum resembles that of a G0V star, with an uncertainty of about 1 subtype.
Comparing with various spectra from the UVESPOP2 library of high resolution spectra
(Bagnulo et al., 2003), we find the best fit for the G1V star HD 20807 (where, to match
the resolution of the observations, we convolve the UVESPOP spectra with a Gaussian
with FWHM equal to that of the seeing, truncated at the slit width). We fitted this
template to each spectrum for a range of velocities, from −600 to 600 km s−1 with a
step size of 5 km s−1. We corrected for the 11.5 km s−1 barycentric velocity of HD20807
after the fact.

Similarly, the WD spectra were compared to an appropriate DA model atmosphere.
The latter was determined iteratively, where we first fitted a high S/N single spectrum
with a grid of model atmospheres created by one of us (D. Koester, see next section),
then used the best fit solution to shift the spectra and average them at zero velocity, and
finally fitted the average again to determine the best template. For WD1743−132 we
fitted the single spectrum with the grid and determined all parameters simultaneously.

For all above fits, we multiplied the templates with a 3rd degree polynomial to
account for the normalization and possible variations with wavelength (see §4.5 for
details). Our best fits gave typical reduced χ2 values of χ2

red,min ∼ 1.2, 2.2 and 1.6
for the WD, the comparison star, and the velocity standard, respectively. Best-fit
velocities were determined by fitting a parabola to the χ2 values to within 60 km s−1

of minimum, with uncertainties taken to be the difference in velocity over which χ2

increased by χ2
red,min (thus effectively increasing our uncertainties to account for the

fact that χ2
red,min did not equal unity).

For the Keck spectra, we proceeded similarly. Here on the red side, we could not
use the UVES spectrum due to a gap over the Ca II triplet, and hence we used instead a
Teff = 6000K, log g = 4.5 dex model by Zwitter et al. (2004). As we trust the absolute
wavelength calibration of this observation most (being calibrated relative to telluric
emission lines), we use this estimate of the velocity below to transform all velocities to
the barycentric reference frame.

1http://nedwww.ipac.caltech.edu/level5/Gray/Graycontent
2http://www.sc.eso.org/santiago/uvespop/DATA
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4.3.2 Radial Velocity, Orbit and Mass Ratio

In Table 4.1 we list the measured radial velocities for all targets, with barycentric
corrections applied. For determining the orbit, we folded the barycentric velocities
using the ephemeris in Table 4.2 and fitted for a circular orbit keeping the orbital
period and time of accenting node passage fixed to the timing values. The fit gave a
radial velocity semi-amplitude of Kobs = 165± 7 km s−1 and a systemic radial velocity
of γ = −50± 4 km s−1 with χ2

red = 1.55 for 16 degrees of freedom.
The radial velocity of the comparison star in the Gemini dataset varied as much as

55 km s−1 which is considerably higher than the uncertainties of individual points. We
found no evidence for binarity and thus we attribute the large scatter to systematics,
likely induced by slit positioning errors and differential atmospheric diffraction. For
that reason, we chose to use velocities relative to the comparison star, ∆v. This choice
relies on the assumption that both the WD and the comparison star are affected by
the same systematics. This should be correct to first order, but given the relatively
large separation of the two stars on the slit, their different distances from the centre of
rotation of the instrument, and their different colours, small second-order differences
may remain. Even if any are present however, they should not be correlated with
orbital phase (since our measurements are taken on many different nights), and thus
be taken into account automatically by our rescaling of the measurement errors such
that reduced χ2 equals unity.

After subtracting the velocity of the comparison star, we obtain Kobs = 166 ±
6 km s−1, ∆γ = −101 ± 4 km s−1 with χ2

red = 1.07. This orbit is shown in Fig. 4.2.
This fit has two outliers, which both are from spectra taken in the night with the
worst condition (they are also outliers in the relative flux between the WD and the
comparison star; see Table 4.1). Excluding these, we find Kobs = 167 ± 5 km s−1 and
∆γ = −103 ± 3 km s−1 with χ2

red = 0.93 for 14 degrees of freedom. We will use these
latter values as our best estimates, but note that all fits gave consistent results, so our
inferences do not depend on this choice.

Because the exposure time is a significant fraction of the orbit (texp ' 0.12Pb), the
observed semi-amplitude is affected by velocity smearing. This reduces the measured
amplitude by a factor sin(πtexp/Pb)/(πtexp/Pb) = 0.976. Thus, the true radial-velocity
amplitude is KWD = 171± 5 km s−1.

Likewise, the semi-amplitude of the pulsar’s projected radial velocity is KPSR =

2πcx/Pb = 21.103059(2) km s−1, where x is the projected semi-major axis of the
pulsar orbit. Based on the two values calculated above we derive a mass ratio of
q = KWD/KPSR = 8.1± 0.2.

4.3.3 Systemic Velocity

The systemic velocity ∆γ derived above is relative to the comparison star. Thus, for
an absolute value one needs to obtain an estimate of the true velocity of the latter.
From the Gemini spectra we derived an average value of 64 ± 5 km s−1. As discussed
above, the individual velocities have a large scatter and one may thus worry about
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Figure 4.2: Radial velocity measurements of the companion to PSRJ1738+0333 as
a function of the orbital phase. Filled black circles depict the points used to fit the
orbit and the blue line the best-fit solution. Red crosses indicate two outliers that we
excluded and the black line the best-fit solution with these points included. The latter
agrees well and is almost indistinguishable. The blue triangle shows the Keck point.
The green line depicts the velocity of the pulsar as inferred from radio timing. All
velocities are relative to the comparison star, but corrected for its estimated 61 km s−1

barycentric radial velocity. All error bars represent 1σ uncertainties. The orbit is
depicted two times for clarity.
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systematics. It seems, that these are of the order of 15 − 20 km s−1. First, for the
velocity standard WD1743−132 we find a velocity of −58.6± 1 km s−1, which is offset
by 14.2 km s−1 from the catalogue value of −72.8 km s−1 Reid (1996). Second, for the
comparison star, our Keck spectrum yields 61 ± 5 km s−1. As mentioned above, we
believe the wavelength calibration is most reliable for the Keck spectrum, so we adapt
this velocity. For PSRJ1738+0333, correcting for the gravitational red-shift of the
white dwarf of 3 km s−1 (using the mass and radius derived in Section 4.3), we infer a
systemic velocity of γ = −42± 16 km s−1.

4.3.4 Interstellar Reddening

We calculated the run of reddening along the line of sight using the Galactic extinction
model of Drimmel et al. (2003a). We find that the interstellar extinction increases
smoothly to reach a maximum value of AV = 0.56 at 1.3 kpc and remains constant
thereafter. This is similar to the maximum value along this line of sight of AV = 0.65

inferred from the maps of Schlegel et al. (1998a). Therefore, for both PSRJ1738+0333
and the comparison value we adopt AV = 0.56 ± 0.09, with the uncertainty taken to
be the difference between the two models.

We can now use these results to estimate the distance of the comparison star:
AdoptingMV = 4.3 and (B−V )0 = 0.57 for a G0V star Cox (2000) and AB = 1.321AV
Schlegel et al. (1998a) we obtain a distance of ∼ 4.3 kpc for both bands. As a sanity
check for the systemic velocity derived above, we can calculate the expected velocity
of the comparison for the photometric parallax: Assuming the Galactic potential of
Kenyon et al. (2008), a distance to the Galactic center of 8.0 kpc and a peculiar velocity
of the Sun relative to the local standard of rest of (U, V,W ) = (10.00, 5.25, 7.17) km s−1

Cox (2000), we find that the local standard of rest at the position of the comparison
star moves with a speed of ∼60 km s−1. Given the uncertainties of the model and our
measurements and the possibility of peculiar motion, the latter agrees well with our
estimated value.

4.3.5 Temperature and Surface Gravity of the White Dwarf

The zero-velocity average spectrum (Fig. 6.3) shows deep Balmer lines up to H12, typ-
ical for a WD with a hydrogen atmosphere and low surface gravity.

Quantitative estimates for the atmospheric parameters were obtained by modelling
the spectrum with a grid of DA model atmospheres extending from 7000K to 25000K
and log g = 6.00 to log g = 8.00 with step-sizes of 100K and 0.1 dex respectively. The
models used in this chapter are a recent update of the grid presented in Koester (2008)
which incorporates the improved treatment of pressure broadening of the absorption
lines by Tremblay & Bergeron (2009).

At each point of the grid that we scanned, we fitted for the normalization with a
polynomial function of the wavelength. This was found necessary in order to account
for the (up to) ∼ 10%, slowly varying continuum deviations, caused by in-perfect flux
calibration. Assuming our flux calibration is perfect (namely, using a normalization
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Figure 4.3: Left: From top to bottom: The zero-velocity flux-calibrated average spec-
trum of PSRJ1738+0333 obtained with Gemini, the corresponding best-fit atmospheric
model, the (single) spectrum obtained with Keck, and the residuals from the fit (see
Section4.3). The model and the Keck spectrum are shifted down by 10 and 20 units
respectively. Right: Details of of the Balmer series in the average spectrum (Hβ to
H12, from bottom to top), with the best-fit model overdrawn (red lines). Lines are
shifted by 8 units with respect to each other.



4.3. Results 55

factor that does not vary with wavelength) resulted in a poor fit with large scale
structure in the residuals and lines systematically deeper than the best-fit model (best-
fit values: Teff = 9010 ± 50K, log g = 6.81 ± 0.12 dex with χ2

red ∼ 9). Similarly
underestimated lines were obtained using a fitting routine normally used by one of us
(D. Koester) that assumes a fixed slope for the continuum over the length of each line.
The former comparison revealed that there was also a smaller spectral range between
4400−4780Å with features similar with the ones seen in the flat fields (see Section4.2.2),
likely associated with the holographic grating (we were alerted to this effect because it
was much more obvious for the companion of PSR J1909−3744; vK+12). Fortunately,
no Balmer lines are present in this region, and hence we simply modelled the spectrum
excluding this range (specifically, we fitted the ranges 3700–4400, and 4780–4960Å).
Like for our radial-velocity fits, we accounted for the spectral resolution by convolving
the models with a truncated Gaussian.

Using the choices described above we obtain Teff = 9129±20K (implying a spectral
type DA5.5) and log g = 6.55 ± 0.07 dex with χ2

red,min ' 1.5 (for ∼ 800 points and 6
parameters). Here, the best-fit values and statistical uncertainties were determined by
fitting the χ2 surface with a paraboloid as in Bassa et al. (2006). We verified these
estimates using a Monte-Carlo simulation with 106 iterations (see Fig. 6.4). The results
are almost identical, with the simulation giving slightly larger uncertainties. However,
as we will see below, the systematic uncertainties are larger.

The best-fit model is shown in Fig. 6.3. Most lines are matched almost perfectly,
but H11 and H12 are slightly underestimated. We do not know the reason for this.
As the continuum matches very well, it cannot be due to errors in the flux calibration
(which would be multiplicative), while most other observational issues (scattered light,
etc.) would lead to lines that have reduced rather than increased depth.

Given the above discrepancies, as well as previous experience with fitting model
atmospheres, it is likely our uncertainties are dominated by systematics rather than
measurement errors. We investigated this in three ways. First, we tried small changes
in the assumed spectral resolution (by 5 %) and varied the different polynomial degrees
for the continuum (2nd to 4th order). The former had only very small effect (∼ 20K
changes in T and ∼0.03 dex changes in log g ), while changing the degree of the poly-
nomial caused larger differences: 0.1 dex (1.5σ) for the surface gravity and up to 150K
(7σ) for the temperature. Our central values are based on a 3rd degree polynomial,
since it gave the best fit for the higher lines.

As a second check, we obtained an independent measure of the atmospheric pa-
rameters using the Keck spectrum. Again using a third-degree polynomial for the
continuum, and fitting the same wavelength regions, we find Teff = 9281 ± 110K and
log g = 6.57±0.13 dex. Here, switching between polynomials for the continuum normal-
ization had a slightly smaller impact on the estimated values (∼100K in T and ∼0.1

in log g ). While the surface gravity agrees almost perfectly with the Gemini value, the
effective temperature is somewhat higher, suggesting, again, that temperature is more
sensitive to our modelling assumptions.

Finally, we fitted the individual spectra with the model atmospheres and obtained
a mean temperature of < T >= 9153± 38K with an rms scatter of 155K.
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Figure 4.4: Left: Constraints on the temperature and gravity of the white dwarf
companion to PSRJ1738+0333 inferred from our model-atmosphere fit, with contours
at ∆χ2 = χ2

red,min ,4χ2
red,min, 9χ

2
red,min, and 16χ2

red,min. The horizontal and vertical sub-
panels show the histograms of the distributions for Teff and log g from our Monte Carlo
simulation. Right: Constraints on the mass and radius of the WD. The shaded area
depicts the distribution of realizations from our Monte-Carlo simulation. Overdrawn
are: the central value and 1σ confidence limits of the observed surface gravity (red
lines); the model tracks of Panei et al. (2000) for constant temperature (8000 and
12000K; dotted lines); the mass-radius relations of Serenelli et al. (2001) (solid) and
Panei et al. (2007) (dashed) for our best-fit temperature of 9130K; errorbars showing
the independent constraints from photometry and radio timing. The horizontal and
vertical panel show the inferred distributions for the WD radius and mass, respectively,
as well as the independent photometric estimate for the former (in green; see also below

From the above, it is clear the formal uncertainty on especially the temperature
is too small, and we adopt as realistic estimates Teff = 9130 ± 150K and log g =

6.55 ± 0.10 dex. Fortunately, the effect of the larger temperature uncertainty on the
derived masses is small, because the mass-radius relation is much more sensitive to
surface gravity than to temperature. For our mass calculation below, we thus choose
to inflate the original χ2 map to include the systematics mentioned above but preserve
information about the covariance between parameters.

Finally we searched the average spectrum for signatures of rotational broadening.
For that we proceeded in two ways: First, we broadened a 9000K, log g = 6.5 model
atmosphere using the analytical profile of Gray (2005) with a limb darkening coefficient
of 0.3 and scanned a grid of rotational velocities 0 ≤ vr sin i ≤ 1500 km s−1 in steps
of 50 km s−1. Second, we let all parameters free. In both cases we accounted for the
spectral resolution of the instrument as above. We find the rotational broadening
consistent with zero with the 1σ upper limit being 440 and 510 km s−1 respectively.
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4.3.6 White dwarf radius from photometry

We can use the best-fit atmosphere model, the observed fluxes, and the distance to
obtain an estimate of the WD radius. In terms of magnitudes,

mλ − 5 log(d/10 pc)−Aλ = 43.234− 5 log(R/R�)− 2.5 log Fλ + cλ (4.1)

wheremλ is the apparent magnitude in band λ, the numerical term is−5 log(R�/10 pc),
Fλ is the emitted flux per unit surface area integrated over the relevant filter, and
cλ the zero-point. Convolving the best-fit model with the B and V band passes
of Bessell (1990) yields FB = 6.289 × 107 erg cm−2 s−1 Å−1 and FV = 4.353 ×
107 erg cm−2 s−1 Å−1. Here the uncertainty due to the fit is ∼ 5% (mostly due to
the ∼ 1.5% uncertainty in temperature). Using the zero-points of Bessel (1990),
cB = −20.498 and cV = −21.100, and the reddening inferred above we obtain radii
R = 0.042 ± 0.004R� and R = 0.042 ± 0.004R� for B and V , respectively (with the
uncertainty dominated by the uncertainty in the parallax).

4.3.7 Masses of the White Dwarf and the Pulsar

The mass of the WD can be estimated using a mass-radius relation appropriate for
low mass helium white dwarfs. We use the finite-temperature relation for low-mass
WDs from Panei et al. (2000), which gave good agreement for the companion of PSR
J1909−3744 (vK+12).

For the calculation we proceeded as follows: We sampled the inflated χ2 surface
derived above in a Monte-Carlo simulation using 106 points uniformly distributed in
the Teff − log g plane. For each point within the expectations, we linearly interpolated
the 8000 and 12000K models of Panei et al. (2000) for WDs with extended hydro-
gen envelopes to the given temperature and calculated the mass and radius at the
cross-section of the observed value (which scales as g = GM/R2) and the model. Sub-
sequently, we calculated the mass of the pulsar, assuming a normal distribution for the
mass ratio with q = 8.1 ± 0.2. Furthermore, we calculated the inclination using the
mass function fM of the binary (sin3 i = fM (MWD +MPSR)2/M3

WD).
We show the mass distribution in Fig. 6.4. Since the mass-radius relation is steeper

towards higher masses, the companion’s mass distribution is asymmetric, with larger
wings towards higher masses. The same holds for the distribution for the radius,
with larger wings towards smaller radii. The error on the pulsar mass is dominated
by the uncertainties in the companion’s mass estimate. To summarize, the values
that we will be using for the rest of this chapter are: MWD = 0.181+0.007,+0.017

−0.005,−0.013 M�,
MPSR = 1.47+0.07,+0.14

−0.06,−0.08 M�, RWD = 0.037+0.004,+0.007
−0.003,−0.006 R� and i = 32.6o+1.0,+2.1

−1.0,−2.1 . Here,
the errors separated by commas are the corresponding 68% and 95% intervals spanned
by the Monte-Carlo realizations.

Finally, we also derived mass estimates using two different sets of tracks, that gave
reliable results for PSRJ1909−3744 (vK+12): The tracks of Serenelli et al. (2001)
yielded MWD = 0.183+0.007,+0.011

−0.004,−0.005 M� and RWD = 0.037+0.005,+0.007
−0.004,−0.007 R�, almost iden-

tical to the above. The tracks of Panei et al. (2007) yielded slightly different values:
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MWD = 0.175+0.017+,0.029
−0.005,−0.006 M� and RWD = 0.038+0.005,+0.010

−0.003,−0.004 R�. However, we note
that these models predict a cooling age much smaller than the characteristic age of the
pulsar (see next section).

4.3.8 Cooling Age

We compared the absolute photometric magnitudes in B and V with the theoretical
cooling tracks of Serenelli et al. (2001) for solar metallicity progenitors to infer the
cooling age of the WD. We did this by minimizing a χ2 merit function based on the
sum of differences between observed and model fluxes in both bands. The track of
Serenelli et al. (2001) closest in mass to the companion of PSRJ1738+0333 is that
of a 0.169M�, for which we find τc ∼ 4.2Gyr. For that age and mass, the predicted
temperature and surface gravity are Teff ∼ 8500K and log g ∼ 6.35 dex. For our best-fit
spectroscopic estimates the same track yields τc ∼ 2.6Gyr. Since the observed mass
is slightly heavier, its cooling age must be somewhat lower. Using the 0.193M� track,
we get τc ∼ 600Myrs. The large difference is due to the dichotomy around 0.2M�
expected between WDs with thick and thin hydrogen atmospheres. Using the tracks of
Panei et al. (2007), for the mass of 0.175M� inferred using those, we again find short
ages, τc ∼ 500Myrs from the photometry and τc ∼ 450Myrs for the spectroscopic
parameters.

Finally, the suggested relatively large age of the system (4Gyr plus 2–10Gyr for the
progenitor to have evolved ) motivated us to compare our observations with models for
lower metallicity progenitors. Using the 0.183M�, Z = 0.001 track of Serenelli et al.
(2002) we obtain τc ∼ 5Gyr.

The above analysis demonstrates that with the current set of observations it is diffi-
cult to constrain the cooling age of the WD, since this depends on both the thickness of
the WD envelope and the metallicity of its progenitor. Future, more precise constraints
on the parallax and consequently on the radius, might help to discriminate between
different cases.

4.3.9 3D Velocity and Galactic Motion

In Section 4.2 we computed the two components of the transverse velocity based on
the parallax and proper motion estimates from radio timing measurements of the pul-
sar. Combined with the systemic radial velocity γ = −42± 16 km s−1 from the optical
observations of the white dwarf (Table 4.1), we have the full 3D velocity and can com-
pute the Galactic path back in time (like was done for PSRJ1012+5307 by Lazaridis
et al. (2009a)). For our calculations we have used the Galactic potential of Kenyon
et al. (2008), verifying our results with those of Kuijken & Gilmore (1989) and Paczyn-
ski (1990). We infer that the PSRJ1738+0333 system has an eccentric orbit with a
Galacto-centric distance between 6 and 11 kpc, and an oscillating Z-motion with an
amplitude of 1 kpc and a (averaged) period of 125 Myr. We also calculated the peculiar
velocity of the system with respect to the local standard of rest at every transition of
the Galactic plane (Z = 0) during the last 4Gyr, and find that it ranges between 70
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and 160 km s−1. We will discuss this further in Section4.4.

4.4 Ramifications

In Table 4.2 we list the properties of the system derived in previous sections and
in Fig. 4.5 we show our constrains on the masses. In what follows we discuss the
ramifications of our work for stellar and binary astrophysics.

Table 4.2: Parameters for the PSRJ1738+0333 system. In parentheses we present
the 1-σ uncertainties in the last digit quoted, as estimated by tempo2. If the value
and uncertainty are signalled with an (a) then they were derived from a Monte-Carlo
procedure (Freire et al., 2012). (b) The Shapiro delay parameters r and s were not fitted
in the derivation of the timing model; the values used were derived from a combination
of other timing and optical parameters (Freire et al., 2012). All timing parameters are
derived using tempo2 and are displayed as measured at the Solar System Barycenter,
in barycentric coordinate time (TCB). The “test parameters" were not fitted when
deriving the main timing model, but their values were derived fitting for all the other
parameters in the model.

Timing Parameters
Reference Time (MJD) . . . . . . . . . . . . . . . . . 54600.0001776275
Right Ascension, α (J2000) . . . . . . . . . . . . . . . 17h 38m 53s9658386(7)
Declination, δ (J2000) . . . . . . . . . . . . . . . . . . 03.◦ 33′ 10.′′86667(3)
Proper Motion in α, µα (mas yr−1) . . . . . . . . . . . +7.037(5)
Proper Motion in δ, µδ (mas yr−1) . . . . . . . . . . . +5.073(12)
Parallax, πx (mas) (a) . . . . . . . . . . . . . . . . . . 0.68(5)
Spin Frequency, ν (Hz) . . . . . . . . . . . . . . . . . 170.93736991146392(3)
First Derivative of ν, ν̇ (fHz s−1) . . . . . . . . . . . . −0.704774(4)
Orbital Period Pb (days) . . . . . . . . . . . . . . . . . 0.3547907398724(13)
Projected Semi-Major Axis, x (lt-s) . . . . . . . . . . . 0.343429130(17)
Time of Ascending Node, Tasc (MJD) . . . . . . . . . . 54600.20040012(5)
η ≡ e sinω . . . . . . . . . . . . . . . . . . . . . . . . (−1.4 ± 1.1) × 10−7

κ ≡ e cosω . . . . . . . . . . . . . . . . . . . . . . . (3.1 ± 1.1) × 10−7

First Derivative of Pb, Ṗb (fs s−1) . . . . . . . . . . . . −17.0(3.1)
“range" parameter of Shapiro delay, r (µs) (b) . . . . . . 0.8915
“shape" parameter of Sapiro delay, s ≡ sin i (b) . . . . . 0.53877
Dispersion Measure, DM (cm−3 pc) . . . . . . . . . . . 33.77312(4)
Test parameters
First Derivative of x, ẋ (fs s−1) . . . . . . . . . . . . . 0.7(5)
Second Derivative of ν, ν̈ (10−28 Hz s−2) . . . . . . . . −0.6(2.3)

Derived Parameters
Galactic Longitude, l . . . . . . . . . . . . . . . . . . 27.◦7213
Galactic Latitude, b . . . . . . . . . . . . . . . . . . . 17.◦7422
Distance, d (kpc) . . . . . . . . . . . . . . . . . . . . 1.47(10)
Total Proper Motion, µ (mas yr−1) . . . . . . . . . . . 8.675(8)
Position angle of proper motion, Θµ (J2000) . . . . . . . 53.◦72(7)
Position angle of proper motion, Θµ (Galactic) . . . . . 116.◦12(7)
Spin Period, P (s) . . . . . . . . . . . . . . . . . . . . 0.005850095859775683(5)
First Derivative of Spin Period, Ṗ (10−20s s−1) . . . . . . 2.411991(14)
Continued on Next Page. . .
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Table 4.2 – Continued
Intrinsic Ṗ , ṖInt (10−20s s−1) (a) . . . . . . . . . . . . . 2.243(13)
Characteristic Age, τc (Gyr) . . . . . . . . . . . . . . . 4.1
Transverse magnetic field at the poles, B0 (109G) . . . . 0.37
Rate or rotational energy loss, Ė (1033 erg s−1) . . . . . 4.4
Mass Function, f (M�) . . . . . . . . . . . . . . . . . 0.0003455012(11)
Mass ratio, q ≡Mp/Mc . . . . . . . . . . . . . . . . . 8.1(2)
Orbital inclination, i (◦) . . . . . . . . . . . . . . . . . 32.6(1.0)
Temperature (K) . . . . . . . . . . . . . . . . . . . . 9130(150)
Surface gravity (log g, spectroscopy) . . . . . . . . . . . 6.55(10)
Surface gravity (log g, Ṗb + q + π+photometry). . . . . . 6.45(7)
Photometry, V -band . . . . . . . . . . . . . . . . . . . 21.30(5)
Photometry, B-band . . . . . . . . . . . . . . . . . . . 21.71(4)
Semi-amplitude of radial velocity, KWD (km s−1) . . . . 171(5)
Systemic radial velocity, γ (km s−1) . . . . . . . . . . . −42(16)
Transverse velocity, vT (km s−1) . . . . . . . . . . . . . 59(6)
3D velocity amplitude (km s−1) . . . . . . . . . . . . . 72(17)
Mass ratio, q . . . . . . . . . . . . . . . . . . . . . . 8.1(2)

WD mass, MWD (M�, spectroscopy) . . . . . . . . . . 0.181+0.007
−0.005

WD mass, MWD (M�, q + Ṗb) . . . . . . . . . . . . . 0.182 ± 0.016

WD radius (Spectroscopy) (R�) . . . . . . . . . . . . . 0.037+0.004
−0.003

WD radius (Photometry) (R�) . . . . . . . . . . . . . 0.042(4)

Cooling age, τc (Gyr) . . . . . . . . . . . . . . . . . . 0.5 – 5

Pulsar Mass, Mp (M�) . . . . . . . . . . . . . . . . . 1.46+0.06
−0.05

Total Mass of Binary, Mt (M�) . . . . . . . . . . . . . 1.65+0.07
−0.06

Eccentricity, e . . . . . . . . . . . . . . . . . . . . . . (3.4 ± 1.1) × 10−7

Apparent Ṗb due to Shklovskii effect, Ṗ Shk
b (fs s−1) (a) . . 8.2+0.6

−0.5

Apparent Ṗb due to Galactic acceleration, ṖGal
b (fs s−1) (a) 0.58+0.16

−0.14

Intrinsic Ṗb, Ṗ Int
b (fs s−1) (a) . . . . . . . . . . . . . . . −25.9(3.2)

Predicted Ṗb, ṖGR
b (fs s−1) . . . . . . . . . . . . . . . . −27.7+1.5

−1.9

“Excess” orbital decay, Ṗ xs
b = Ṗ Int

b − ṖGR
b (fs s−1) (a) . . +2.0+3.7

−3.6

Time until coalescence, τm (Gyr) . . . . . . . . . . . . ∼ 13.2

4.4.1 Kinematics

PSRJ1738+0333 has a velocity of 85± 17 km s−1 with respect to the local standard of
rest that co-rotates with the Galaxy (Z = 0) at the distance of the pulsar. The latter
compares well with the mean transverse velocity for the bulk of MSPs with measured
proper motions (∼ 85 km s−1 according toHobbs et al. (2005)). Our semi-quantitative
analysis in section 4.3 shows that the system’s velocity varies as much as 150 km s−1

over the course of its Galactic orbit. Based on the simplified potential of Kenyon
et al. (2008) used herein, PSRJ1738+0333 has a peculiar velocity between 70 km s−1

and 160 km s−1 when it crosses the Galactic plane (Z = 0). Thus, assuming that the
system had a small peculiar motion before the SN explosion, the systemic velocity after
the formation of the NS must have been in that range. This is consistent with a SN
explosion with a small, or even negligible kick Tauris & Bailes (1996); Nice & Taylor
(1995).
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4.4.2 Evolutionary History

Millisecond pulsars with low-mass helium WD companions are expected to form
through mainly two different channels depending on the initial separation of the pro-
genitor binary (e.g. Tauris (2011) and references therein). The initial separation of the
progenitor binary determines the evolutionary status of the donor star at the onset of
the Roche lobe overflow (RLO):

• CaseA RLO: For systems with initial periods short enough to initiate mass trans-
fer on the main-sequence, it is expected that magnetic-braking (aided to some
extent by gravitational radiation) drives the system to shorter periods, resulting
in a compact binary in an orbit which is close to being perfectly circular (the
eccentricity, e < 10−5). These systems were first studied in detail by Pylyser &
Savonije (1989).

• CaseB RLO: For progenitors with larger initial separations the mass transfer
is expected to start at a later phase, since the star fills its Roche lobe only
during shell hydrogen burning, while moving-up the red giant branch. In this
case the orbit will diverge resulting in a wider binary. Interestingly, for systems
following this path, there are two theoretical predictions that can be verified
observationally: The first is a correlation between the orbital period and the mass
of the WD companion which results from the unique relation between the radius of
the giant donor and the mass of its core which eventually forms the WD Savonije
(1987). The second is a correlation between the orbital eccentricity and the
orbital period Phinney (1992) arising because the turbulent density fluctuations
in the convective envelope — of which the size increases in more evolved stars
(wider orbits) — do not allow for a perfect tidal circularization.

The critical period that separates diverging from converging systems (often called
bifurcation period) is expected to be ∼ 1 day, however its precise value depends on the
treatment of tidal interactions and magnetic braking (e.g. Pylyser & Savonije (1989))
and is still a subject of debate. The residual eccentricity in binaries with radiative
donors (i.e. those binaries that evolve to tight converging systems) should be closer to
zero compared to binaries in wider orbits but it is difficult to estimate by how much,
as pointed out by Phinney & Kulkarni (1994).

With a current orbital period of 8.5 h, PSRJ1738+0333 is most likely the fossil of
the former case (Case A RLO). However it is interesting to note that our mass estimate
and the non-zero eccentricity derived in Paper II (see also below) pass both tests for the
latter case mentioned above (Case B RLO) that predict mc = 0.18± 0.01M� Tauris &
Savonije (1999) and e ∼ 4× 10−7, respectively (deduced by extrapolating the Phinney
(1992) relation to the observed period). This apparent agreement seems to be confirmed
not only for PSRJ1738+0333 but also for the other short-period LMWD binaries with
measured masses (PSRJ1012+5307, Lazaridis et al. (2009a); PSRJ0751+1807, Nice
et al. (2008)), as well as low-mass WD companions to non-degenerate stars (e.g., van
Kerkwijk et al. (2010b); Breton et al. (2011)). Since companion masses in converging
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systems are not expected to follow these relations, we cannot exclude a coincidence,
but the matches seem to suggest that there is a grey zone with properties from both
cases – something which should help improve our as yet rather simplified models of
these systems.

4.4.3 Pulsar Mass and Efficiency of the Mass Transfer

Regardless of the evolutionary path followed, the mass transfer was sub-Eddington
(e.g.Tauris & Savonije (1999)) and thus one would expect that a substantial fraction of
the mass leaving the donor was accreted by the neutron star. For PSRJ1738+0333, this
is demonstrably false: The minimum mass of the donor star can be constrained from
our WD mass estimate to be ≥ 1M� because the available time for evolution is limited
by the Hubble time (minus the cooling age of the WD). The amount of mass lost by
the donor is Mdonor−MWD, while the amount accreted by the pulsar is MPSR−M init

PSR,
with the last term being the birth mass prior to accretion. For any realistic birth mass
of the neutron star at the low end of its “canonical“ birth mass range (≥1.20M�), we
find that more than 60% of the in-falling matter must have escaped the system (after
correcting for the conversion from baryonic mass to gravitational mass). This translates
to an accretion efficiency of only ε < 0.40. This result confirms the findings of Tauris
& Savonije (1999) who concluded that a substantial fraction of the transferred matter
in LMXBs is lost from the system, even at sub-Eddington mass-transfer rates.

Possible mechanisms for mass ejection discussed in the literature include propeller
effects, accretion disc instabilities and direct irradiation of the donor’s atmosphere
from the pulsar (e.g. Illarionov & Sunyaev, 1975)) Alternatively, the neutron star in
PSRJ1738+0333 might have formed via the accretion-induced collapse of a massive
ONeMg WD. If the neutron star was formed towards the end of the mass transfer
it would not have accreted much since its birth. A possible problem with the above
mechanism however, is that it is specific to pulsars, while similarly inefficient accretion
has been found also for low-mass WDs with non-degenerate companions (e.g., Breton
et al. (2011)), suggesting the problem in our understanding is more general. Finally, we
note that even major inefficiencies in the mass accretion process do not pose a problem
for the recycling scenario: the accreted mass needed to spin-up a pulsar to a ∼ 5ms
period is only of the order of 0.05M�.

More constraining (but less stringent) estimates are also obtained for the 6.3 h
orbital period binary, PSRJ0751+1807 Nice et al. (2008) for which we find ε ∼ 0.1−0.3.

4.5 Conclusions

The main result of this chapter is the determination of the component masses of the
PSR J1738+0333 system and adds to the three previously known MSP-LMWD bi-
naries with spectroscopic information (PSRJ1012+5307, van Kerkwijk et al. (1996)
and Callanan et al. (1998); PSRJ1911−5958A, Bassa et al. (2006); PSRJ1909−3744,
vK+12).
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Our mass estimates are derived independently of any strong field effects and thus
transform the PSR J1738+0333 system into a gravitational laboratory, which – due
to its short orbital period, gravitationally asymmetric nature, and timing stability –
provides the opportunity to test the radiative properties of a wide range of alternatives
to GR (see Paper II for details).

Based on our measurements of the component masses, GR predicts an orbital decay
of Ṗb = −2.77+0.15

−0.19 × 10−14. While the actual Ṗb inferred observationally is still less
precise than this prediction, it will eventually provide a precise test for the input physics
of atmospheric and evolutionary models. Assuming the validity of GR, one can confront
the spectroscopic WD mass estimate implied by the mass ratio and intrinsic orbital
decay of the system and thus test the assumptions for stellar astrophysics and WD
composition that were used to model the evolution of the WD. Additionally, this mass
estimate, combined with parallax and absolute photometry constrains independently
the surface gravity of the WD. The current estimates on these parameters imply a
surface gravity of log g = 6.45±0.07 dex. While this is formally more accurate than our
spectroscopic constraint, it might still be dominated by systematics on the distance,
arising from correlations between the parallax and DM variations (see Paper II for
details).

Finally, the interpretation of the mass estimates within the context of our current
understanding for binary evolution implies that a significant fraction of the accreted
material during the LMXB phase is ejected by the system. The discovery and study of
more similar systems in the future will allow further tests of this result.

4.6 Summary of Results Presented in Paper II

Paper II reports the results of a 10-year timing campaign on PSRJ1738+0333, a 5.85-ms
pulsar in a low-eccentricity 8.5-hour orbit with a low-mass white dwarf companion (sum-
marized in Tab. 4.2). It is quite fortunate that the timing precision of PSRJ1738+0333
allows a precise measurement of the key observables necessary for an estimation of the
intrinsic orbital decay (Ṗb, µα, µδ and πx) and that the optical observations provide
a precise estimate of a general relativistic prediction for the orbital decay. The latter
is consistent with the orbital decay from the emission of gravitational waves predicted
by general relativity, ṖGR

b = −27.7+1.5
−1.9 × 10−15 s s−1, i.e., general relativity passes the

test represented by the orbital decay of this system. This agreement introduces a tight
upper limit on dipolar gravitational wave emission (Fig. 4.6), a prediction of most al-
ternative theories of gravity for asymmetric binary systems such as this. In Paper II,
Freire et al. use this limit to derive the most stringent constraints ever on a wide class
of gravity theories, where gravity involves a scalar field contribution (Fig. 4.7). When
considering general scalar-tensor theories of gravity, our new bounds are more strin-
gent than the best current solar-system limits over most of the parameter space, and
constrain the matter-scalar coupling constant α2

0 to be below the 10−5 level. For the
special case of the Jordan-Fierz-Brans-Dicke theory, we obtain the one-sigma bound
α2

0 < 2× 10−5, which is within a factor two of the Cassini limit.
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Figure 4.5: Constraints on system masses and orbital inclination from radio and optical
measurements of PSRJ1738+0333 and its WD companion. The mass ratio q and the
companion mass mc are theory-independent (indicated in black), but the constraints
from the measured intrinsic orbital decay (Ṗ Int

b , in orange) are calculated assuming
that GR is the correct theory of gravity. All curves intersect, meaning that GR passes
this important test. Left: cos i–mc plane. The gray region is excluded by the condition
mp > 0. Right: mp–mc plane. The gray region is excluded by the condition sin i ≤ 1.
Each triplet of curves corresponds to the most likely value and standard deviations of
the respective parameters.



4.6. Summary of Results Presented in Paper II 65

Figure 4.6: Limits on Ġ/G and κD derived from the measurements of Ṗ xs
b of

PSRJ1738+0333 and PSR J0437−4715. The inner blue contour level includes 68.3%
and the outer contour level 95.4% of all probability. At the origin of coordinates, gen-
eral relativity is well within the inner contour and close to the peak of probability
density. The gray band includes regions consistent with the measured value and 1-σ
uncertainty of Ġ/G from Lunar Laser Ranging (LLR). Generally only the upper half
of the diagram has physical meaning, as the radiation of dipolar GWs must necessarily
make the system lose orbital energy.

Freire et al. also use the limit on dipolar gravitational wave emission to constrain
a wide class of theories of gravity which are based on a generalization of Bekenstein’s
Tensor-Vector-Scalar gravity (TeVeS), a relativistic formulation of Modified Newtonian
Dynamics (MOND). PSRJ1738+0333 is also the most constraining test of TeVeS-like
theories when the quadratic matter-scalar coupling constant |β0| ≥ 0.1 (Fig. 4.8). In
fact, for β0 < −1 and β0 > 3, such theories are excluded altogether. Bekenstein’s
TeVeS (a special case with β0 = 0) is still allowed by the results of this experiment,
but already needs some tuning given the small limit |α0| < 0.035 that we obtain from
the double pulsar results (Kramer et al., 2006). We note that the precision of the
latter result has greatly improved since 2006 and will be presented in a forthcoming
publication (Kramer et al., in prep.). This will significantly reduce the allowed values
of |α0| in the gap around β0 = 0. As a consequence, all surviving TeVeS-like theories
will have to be unnaturally fine-tuned, including Bekenstein’s TeVeS.



66 Chapter 4. The Relativistic Binary PSRJ1738+0333

LLR

LLR

SEP

J1141–6545

B1534+12

B1913+16
J0737–3039

J1738+0333

−6 −4 −2 2 4 6
0

0

0

0|

10

10

10

10

10

Cassini

Figure 4.7: Solar-system and binary pulsar 1-σ constraints on the matter-scalar cou-
pling constants α0 and β0. Note that a logarithmic scale is used for the vertical axis
|α0|, i.e., that GR (α0 = β0 = 0) is sent at an infinite distance down this axis. LLR
stands for lunar laser ranging, Cassini for the measurement of a Shapiro time-delay
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Abstract

Many physically motivated extensions to general relativity (GR) predict significant
deviations in the properties of spacetime surrounding massive neutron stars. We re-
port the measurement of a 2.01±0.04 solar mass (M�) pulsar in a 2.46-hr orbit with
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a 0.172±0.003 M� white dwarf. The high pulsar mass and the compact orbit make
this system a sensitive laboratory of a previously untested strong-field gravity regime.
Thus far, the observed orbital decay agrees with GR, supporting its validity even for
the extreme conditions present in the system. The resulting constraints on deviations
support the use of GR-based templates for ground-based gravitational wave detectors.
Additionally, the system strengthens recent constraints on the properties of dense mat-
ter and provides insight to binary stellar astrophysics and pulsar recycling.
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5.1 Introduction

Neutron stars (NSs) with masses above 1.8M� manifested as radio pulsars are valu-
able probes of fundamental physics in extreme conditions unique in the observable
Universe and inaccessible to terrestrial experiments. Their high masses are directly
linked to the equation-of-state (EOS) of matter at supra-nuclear densities (Lattimer &
Prakash, 2004; Demorest et al., 2010) and constrain the lower mass limit for produc-
tion of astrophysical black holes (BHs). Furthermore, they possess extreme internal
gravitational fields which result in gravitational binding energies substantially higher
than those found in more common, 1.4M� NSs. Modifications to GR, often motivated
by the desire for a unified model of the four fundamental forces, can generally imprint
measurable signatures in gravitational waves (GWs) radiated by systems containing
such objects, even if deviations from GR vanish in the Solar System and in less massive
NSs (Damour & Esposito-Farese, 1993, 1996; Will, 1993).

However, the most massive NSs known today reside in long-period binaries or other
systems unsuitable for GW radiation tests. Identifying a massive NS in a compact,
relativistic binary is thus of key importance for understanding gravity-matter coupling
under extreme conditions. Furthermore, the existence of a massive NS in a relativistic
orbit can also be used to test current knowledge of close binary evolution.

5.2 Results

5.2.1 PSRJ0348+0432 & Optical Observations of its Companion

PSRJ0348+0432, a pulsar spinning at 39ms in a 2.46-hr orbit with a low-mass compan-
ion, was detected by a recent survey (Boyles et al., 2012; Lynch et al., 2012) conducted
with the Robert C. Byrd Green Bank Telescope (GBT). Initial timing observations
of the binary yielded an accurate astrometric position, which allowed us to identify
its optical counterpart in the Sloan Digital Sky Survey (SDSS) archive. The colors
and flux of the counterpart are consistent with a low-mass white dwarf (WD) with
a helium core at a distance of d ∼ 2.1 kpc. Its relatively high apparent brightness
(g′ = 20.71 ± 0.03mag) allowed us to resolve its spectrum using the Apache Point
Optical Telescope. These observations revealed deep Hydrogen lines, typical of low-
mass WDs, confirming our preliminary identification. The radial velocities of the WD
mirrored that of PSRJ0348+0432, also verifying that the two stars are gravitationally
bound.

In December 2011 we obtained phase-resolved spectra of the optical counterpart
using the FORS2 spectrograph of the Very Large Telescope (VLT). For each spectrum,
we measured the radial velocity which we then folded modulo the system’s orbital pe-
riod. Our orbital fit to the velocities constrains the semi-amplitude of their modulation
to be KWD = 351± 4 km s−1 (Fig. 5.1; see also below). Similarly, the orbital solution
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Figure 5.1: Upper: Radial velocities of the WD companion to PSRJ0348+0432
plotted against the orbital phase (shown twice for clarity). Over-plotted is the best-
fit orbit of the WD (blue line) and the mirror orbit of the pulsar (green). Lower:
Details of the fit to the Balmer lines (Hβ to H12) in the average spectrum of the
WD companion to PSRJ0348+0432 created by the coherent addition of 26 individual
spectra shifted to zero velocity. Lines from Hβ (bottom) to H12 are shown. The red
solid lines are the best-fit atmospheric model (see text). Two models with (Teff , log10 g)
= (9900K, 5.70) and (Teff , log10 g) =(10200K, 6.30), each ∼ 3-σ off from the best-fit
central value (including systematics) are shown for comparison (dashed blue lines).

from radio-pulsar timing yields KPSR = 30.008235 ± 0.000016 km s−1 for the pulsar.
Combined, these constraints imply a mass ratio, q = MPSR/MWD = KWD/KPSR =

11.70± 0.13.

Modeling of the Balmer-series lines in a high signal-to-noise average spectrum
formed by the coherent addition of individual spectra (Fig. 5.1) shows that the WD
has an effective temperature of Teff = (10120 ± 47stat ± 90sys)K and a surface grav-
ity of log10(g [cm s−2]) = (6.035 ± 0.032stat ± 0.060sys)dex. Here the systematic error
is an overall estimate of uncertainties due to our fitting technique and flux calibra-
tion. We found no correlation of this measurement with orbital phase and no signs
of rotationally-induced broadening in the spectral lines. Furthermore, we searched
for variability using the ULTRACAM instrument (Dhillon et al., 2007) on the 4.2-m
William-Herschel Telescope at La Palma, Spain. The lightcurves, spanning 3 hours in
total, have a root-mean-square scatter of ∼ 0.53, 0.07 and 0.08mag in u′, g′ and r′

respectively and show no evidence for variability over the course of the observations.
The phase-folded light-curve shows no variability either. Additionally, our calibrated
magnitudes are consistent with the SDSS catalogue magnitudes, implying that the WD
shone at a constant flux over this ∼ 5 yr timescale.
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5.2.2 Mass of the White Dwarf

The surface gravity of the WD scales with its mass and the inverse square of its radius
(g ≡ GMWD/R

2
WD). Thus, the observational constraints combined with a theoretical

finite-temperature mass-radius relation for low-mass WDs yield a unique solution for
the mass of the companion (van Kerkwijk et al., 2005). Numerous such models exist
in the literature, the most detailed of which are in good agreement for very low mass
WDs (< 0.17−0.18M�), but differ substantially for higher masses (e.g. Serenelli et al.,
2001; Panei et al., 2007; Kilic et al., 2010). The main reason for this is the difference in
the predicted size of the hydrogen envelope, which determines whether the main energy
source of the star is residual hydrogen burning (for “thick” envelopes) or the latent heat
of the core (for “thin” envelopes).

In the most widely accepted scenario, WDs lose their thick hydrogen envelope only
if their mass exceeds a threshold. The exact location of the latter is still uncertain
but estimated to be around ∼ 0.17 – 0.22M� [e.g. (Serenelli et al., 2001; Panei et al.,
2007; Kilic et al., 2010)]. Two other pulsars with WD companions, studied in the
literature, strongly suggest that this transition threshold is indeed most likely close to
0.2M� (see previous chapters). In particular, the WD companion of PSRJ1909−3744
has a well-determined mass of 0.20M� (Jacoby et al., 2005), a large characteristic age
of a several Gyr and a WD companion that appears to be hot (van Kerkwijk et al.,
2005), suggesting that its envelope is thick. For this reason we base the WD mass
estimate on cooling tracks with thick hydrogen atmospheres for masses up to 0.2M�,
which we constructed using the “MESA” stellar evolution code (Paxton et al., 2011).
Initial models were built for masses identical to the ones in Serenelli et al. (2001) — for
which previous comparisons have yielded good agreement with observations (Antoniadis
et al., 2012, ,see also previous chapters) — with the addition of tracks with 0.175 and
0.185M� for finer coverage (Fig. 5.2). For masses up to 0.169M� our models show
excellent agreement with Serenelli et al. (2001); our 0.196M� model though is quite
different, because it has a thick envelope instead of a think one. Being closer to the
constraints for the WD companion to PSRJ0348+0432, it yields a more conservative
mass constraint: MWD = 0.165 – 0.185 at 99.73% confidence (Fig. 5.3) & Table 5.1),
which we adopt. The corresponding radius is RWD = 0.046 – 0.092R� at 99.73%
confidence. Our models yield a cooling age of τcool ∼ 2Gyr.

5.2.3 Pulsar Mass

The derived WD mass and the observed mass ratio q imply a NS mass in the
range 1.97 – 2.05M� at 68.27% or 1.90 – 2.18M� at 99.73% confidence. Hence,
PSRJ0348+0432 is only the second NS with a precisely determined mass around
2M�, after PSRJ1614−2230 (Demorest et al., 2010). It has a 3-σ lower mass limit
0.05M� higher than the latter, and therefore provides a verification, using a differ-
ent method, of the constraints on the EOS of super-dense matter present in NS in-
teriors (Özel et al., 2010; Demorest et al., 2010). For these masses and the known
orbital period, GR predicts that the orbital period should decrease at the rate of
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Figure 5.2: Left: Constraints on effective temperature, Teff , and surface gravity, g,
for the WD companion to PSRJ0348+0432 compared with theoretical WD models.
The shaded areas depict the χ2 − χ2

min = 2.3, 6.2 and 11.8 intervals (equivalent to 1, 2
and 3-σ) of our fit to the average spectrum. Dashed lines show the detailed theoretical
cooling models of Serenelli et al. (2001). Continuous lines depict tracks with thick
envelopes for masses up to ∼ 0.2M� that yield the most conservative constraints for
the mass of the WD. Right: Finite-temperature mass-radius relations for our models
together with the constraints imposed from modeling of the spectrum (see text). Low
mass – high temperature points are an extrapolation from lower temperatures.



5.2. Results 75

M
WD

M
WD

P
.

b

P
.

b qq

Figure 5.3: Constraints on system masses and orbital inclination from radio and optical
measurements of PSRJ0348+0432 and its WD companion. Each triplet of curves
corresponds to the most likely value and standard deviations (68.27% confidence) of
the respective parameters. Of these, two (the mass ratio q and the companion mass
MWD) are independent of specific gravity theories (in black). The contours contain
the 68.27 and 95.45% of the two-dimensional probability distribution. The constraints
from the measured intrinsic orbital decay (Ṗ int

b , in orange) are calculated assuming
that GR is the correct theory of gravity. All curves intersect in the same region,
meaning that GR passes this radiative test. Left: cos i–MWD plane. The gray region
is excluded by the condition MPSR > 0. Right: MPSR–MWD plane. The gray region
is excluded by the condition sin i ≤ 1. The lateral panels depict the one-dimensional
probability-distribution function for the WD mass (right), pulsar mass (upper right)
and inclination (upper left) based on the mass function, MWD and q.
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Optical Parameters
Effective temperature, Teff (K) . . . . . . . . . . . . 10120 ± 47stat ± 90sys

Surface gravity, log10(g[cm s−1]) . . . . . . . . . . . 6.035 ± 0.032stat ± 0.060sys

Semi-amplitude of orbital radial velocity, KWD (km s−1) 351 ± 4

Systemic radial velocity relative to the Sun, γ (km s−1) −1 ± 20

Timing Parameters
Right ascension, α (J2000) . . . . . . . . . . . . . . 03h 48m 43s.639000(4)

Declination, δ (J2000) . . . . . . . . . . . . . . . . +04◦ 32′ 11.′′4580(2)

Proper motion in right ascension, µα (mas yr−1) . . . +4.04(16)

Proper motion in declination, µδ (mas yr−1) . . . . . +3.5(6)

Parallax, πd (mas) . . . . . . . . . . . . . . . . . . 0.47*
Spin frequency, ν (Hz) . . . . . . . . . . . . . . . . 25.5606361937675(4)

First derivative of ν, ν̇ (10−15 Hz s−1) . . . . . . . . −0.15729(3)

Dispersion measure, DM (cm−3 pc) . . . . . . . . . . 40.46313(11)

First derivative of DM, DM1 (cm−3 pc yr−1) . . . . . −0.00069(14)

Orbital period, Pb (d) . . . . . . . . . . . . . . . . 0.102424062722(7)

Time of ascending node, Tasc (MJD) . . . . . . . . . 56000.084771047(11)

Projected semi-major axis of the pulsar orbit, x (lt-s) . 0.14097938(7)

η ≡ e sinω . . . . . . . . . . . . . . . . . . . . . . (+1.9 ± 1.0) × 10−6

κ ≡ e cosω . . . . . . . . . . . . . . . . . . . . . . (+1.4 ± 1.0) × 10−6

First derivative of Pb, Ṗb (10−12 s s−1) . . . . . . . . −0.273(45)

Derived Parameters
Galactic longitude, l . . . . . . . . . . . . . . . . . 183.◦3368

Galactic latitude, b . . . . . . . . . . . . . . . . . . −36.◦7736

Distance, d (kpc) . . . . . . . . . . . . . . . . . . . 2.1(2)

Total proper motion, µ (mas yr−1) . . . . . . . . . . 5.3(4)

Spin period, P (ms) . . . . . . . . . . . . . . . . . 39.1226569017806(5)

First derivative of P , Ṗ (10−18 s s−1) . . . . . . . . . 0.24073(4)

Characteristic age, τc (Gyr) . . . . . . . . . . . . . 2.6

Transverse magnetic field at the poles, B0 (109 G) . . ∼ 2

Rate or rotational energy loss, Ė (1032 erg s−1) . . . . ∼ 1.6

Mass function, f (M�) . . . . . . . . . . . . . . . . 0.000286778(4)

Mass ratio, q ≡MPSR/MWD . . . . . . . . . . . . . 11.70(13)

White dwarf mass, MWD (M�) . . . . . . . . . . . . 0.172(3)

Pulsar mass, MPSR (M�) . . . . . . . . . . . . . . . 2.01(4)

“Range" parameter of Shapiro delay, r (µs) . . . . . . 0.84718*
“Shape" parameter of Shapiro delay, s ≡ sin i . . . . . 0.64546*
White dwarf radius, RWD (R�) . . . . . . . . . . . . 0.065(5)

Orbital separation, a (109 m) . . . . . . . . . . . . . 0.832

Orbital separation, a (R�) . . . . . . . . . . . . . . 1.20

Orbital inclination, i . . . . . . . . . . . . . . . . . 40.◦2(6)

Ṗb predicted by GR, ṖGR
b (10−12 s s−1) . . . . . . . . −0.258+0.008

−0.011

Ṗb/Ṗ
GR
b . . . . . . . . . . . . . . . . . . . . . . . 1.05 ± 0.18

Time until coalescence, τm (Myr) . . . . . . . . . . . ∼ 400

Table 5.1: Timing parameters for the PSRJ0348+0432 system, indicated with their 1-
σ uncertainties as derived by tempo2 where appropriate (numbers in parentheses refer
to errors on the last digits). The timing parameters are calculated for the reference
epoch MJD 56000, and are derived from TOAs in the range MJD 54872− 56208.
*For these timing parameters we have adopted the optically derived parameters (see
text for details).
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Ṗ GR
b = (−2.58+0.07

−0.11) × 10−13 s s−1 (68.27% confidence) due to energy loss through
GW emission.

5.2.4 Radio Observations

Since April 2011 we have been observing PSRJ0348+0432 with the 1.4GHz receiver of
the 305-m radio telescope at the Arecibo Observatory, using its four Wide-band Pulsar
Processors (Dowd et al., 2000). In order to verify the Arecibo data, we have been
independently timing PSRJ0348+0432 at 1.4GHz using the 100-m radio telescope in
Effelsberg, Germany. The two timing data sets produce consistent rotational mod-
els, providing added confidence in both. Combining the Arecibo and Effelsberg data
with the initial GBT observations (Lynch et al., 2012), we derive the timing solution
presented in Table 5.1. To match the arrival times, the solution requires a significant
measurement of orbital decay, Ṗb = (−2.73± 0.45)× 10−13 s s−1 (68.27% confidence).

The total proper motion and distance estimate (Table 5.1) allows us to calculate
the kinematic corrections to Ṗb from its motion in the Galaxy, plus any contribution
due to possible variations of Newton’s gravitational constant G: δṖb = 0.016±0.003×
10−13 s s−1. This is negligible compared to the measurement uncertainty. Similarly, the
small rate of rotational energy loss of the pulsar (Table 5.1) excludes any substantial
contamination due to mass loss from the system; furthermore we can exclude substantial
contributions to Ṗb from tidal effects (see below for details). Therefore, the observed
Ṗb is caused by GW emission and its magnitude is entirely consistent with the one
predicted by GR: Ṗb/Ṗ

GR
b = 1.05± 0.18 (Fig. 5.3).

If we assume that GR is the correct theory of gravity, we can then derive the
component masses from the intersection of the regions allowed by q and Ṗb (Fig. 5.3):
MWD = 0.177+0.017

−0.018 M� and MPSR = 2.07+0.20
−0.21 M� (68.27% confidence). These values

are not too constraining yet. However, the uncertainty of the measurement of Ṗb

decreases with T−5/2 (where T is the timing baseline); therefore this method will yield
very precise mass measurements within a couple of years.

5.3 Discussion

5.3.1 PSRJ0348+0432 as a Testbed for Gravity

There are strong arguments for GR not to be valid beyond a (yet unknown) critical
point, like its incompatibility with quantum theory and its prediction of the forma-
tion of spacetime singularities under generic conditions. Therefore, it remains an open
question if GR is the final description of macroscopic gravity. This strongly motivates
testing gravity regimes that have not been tested before, in particular regimes where
gravity is strong and highly non-linear. Presently, binary pulsars provide the best high-
precision experiments to probe strong-field deviations from GR and the best tests of
the radiative properties of gravity (, see also chapters 2 &5 Damour & Taylor, 1992;
Freire et al., 2012). Among these systems PSRJ0348+0432 has a special role: it is
the first massive (∼ 2M�) NS in a relativistic binary orbit. The orbital period of
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Figure 5.4: Left: Fractional gravitational binding energy as a function of the inertial
mass of a NS in GR (blue curve). The dots indicate the NSs of relativistic NS-NS (in
green) and NS-WD (in red) binary-pulsar systems currently used for precision gravity
tests. Right: Effective scalar coupling as a function of the NS mass, in the “quadratic”
scalar-tensor theory of Damour & Esposito-Farese (1996). For the linear coupling of
matter to the scalar field we have chosen α0 = 10−4, a value well below the sensitiv-
ity of any near-future Solar System experiment [e.g. GAIA Hobbs et al. (2010)]. The
solid curves correspond to stable NS configurations for different values of the quadratic
coupling β0: −5 to −4 (top to bottom) in steps of 0.1. The yellow area indicates the pa-
rameter space allowed by the best current limit on |αPSR−α0| (Freire et al., 2012), while
only the green area is in agreement with the limit presented here. PSRJ0348+0432
probes deeper into the non-linear strong-field regime due to its high mass.

PSRJ0348+0432 is only 15 seconds longer than that of the double pulsar system, but
it has ∼ 2 times more fractional gravitational binding energy than each of the double
pulsar NSs. This places it far outside the presently tested binding energy range (see
Fig. 5.4 and below). Because the magnitude of strong-field effects generally depends
non-linearly on the binding energy, the measurement of orbital decay transforms the
system into a gravitational laboratory for a previously untested regime, qualitatively
very different from what was accessible in the past. In physically consistent and exten-
sively studied alternatives, gravity is generally mediated by extra fields (e.g. scalar) in
addition to the tensor field of GR (Will, 1993). A dynamical coupling between matter
and these extra fields can lead to prominent deviations from GR that only occur at
the high gravitational binding energies of massive NSs. One of the prime examples is
the strong-field scalarization discovered by Damour & Esposito-Farese (1993). If GR is
not valid, in the PSRJ0348+0432 system where such an object is closely orbited by a
weakly self-gravitating body, one generally expects a violation of the strong equivalence
principle that in turn leads to a modification in the emission of gravitational waves.
While in GR the lowest source multipole that generates gravitational radiation is the
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quadrupole, alternative gravity theories generally predict the presence of monopole and
dipole radiation, on top of a modification of the other multipoles (Will, 1993). For a
binary system, the leading change in the orbital period is then given by the dipole
contribution, which for a (nearly) circular orbit reads:

Ṗ dipolar
b ' −4π2G

c3Pb

MPSRMWD

MPSR +MWD
(αPSR − αWD)2 , (5.1)

where αPSR is the effective coupling strength between the NS and the ambient fields
responsible for the dipole moment (e.g. scalar fields in scalar-tensor gravity), and αWD

is the same parameter for the WD companion. The WD companion to PSRJ0348+0432
has a fractional gravitational binding energy (Egrav/MWDc

2) of just −1.2× 10−5, and
is therefore a weakly self-gravitating object. Consequently, αWD is practically identical
to the linear field-matter coupling α0, which is well constrained (|α0| < 0.004) in Solar
System experiments.

For αPSR, the situation is very different. Even if α0 is vanishingly small, αPSR

can have values close to unity, due to a non-linear behavior of gravity in the interac-
tion between matter and the gravitational fields in the strong-gravity regime inside NSs
(Damour & Esposito-Farese, 1993, 1996). A significant αPSR for NSs up to 1.47M� has
been excluded by various binary pulsar experiments (see previous chapter). The consis-
tency of the observed GW damping (Ṗb) with the GR predictions for PSRJ0348+0432
(table 5.1) implies |αPSR − α0| < 0.005 (95% confidence) and consequently excludes
significant strong-field deviations, even for massive NSs of ∼ 2M�.

To demonstrate in some detail the implications of our results for possible strong-
field deviations of gravity from Einstein’s theory, we confront our limits on dipolar
radiation with a specific class of scalar-tensor theories, in which gravity is mediated by
a symmetric second-rank tensor field g∗µν and by a long-range (massless) scalar field ϕ.
Scalar-tensor theories are well motivated and consistent theories of gravity, extensively
studied in the literature (e.g. Fujii & Maeda, 2003; Goenner, 2012). For this reason,
they are the most natural framework for us to illustrate the gravitational phenomena
that can be probed with PSRJ0348+0432.

Concerning the EOS of NS matter, in our calculations we use the rather stiff EOS
“.20” of Haensel et al. (1981) that supports (in GR) NSs of up to 2.6M�. We make
this choice for two reasons: i) a stiffer EOS generally leads to more conservative limits
when constraining alternative gravity theories, and ii) it is able to support even more
massive NSs than PSRJ0348+0432, which are likely to exist (??Romani et al., 2012).
Furthermore, in most of our conclusions a specific EOS is used only for illustrative
purposes, and the obtained generic results are EOS independent.

Fig. 5.4 illustrates how PSRJ0348+0432 probes a non-linear regime of gravity that
has not been tested before. A change in EOS and gravity theory would lead to a modi-
fied functional shape for the effective coupling strength, αPSR. However, this would not
change the general picture: even in the strong gravitational field of a 2M� NS gravity
seems to be well described by GR and there is little space for any deviations, at least in
the form of long-range fields, which influence the binary dynamics. Short range inter-
actions, like massive Brans-Dicke gravity (Alsing et al., 2012) with a sufficiently large
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scalar mass (heavier than ∼ 10−19 eV/c2), cannot be excluded by PSRJ0348+0432.
Nevertheless, as we will argue below, in combination with the upcoming ground-based
GW detectors, this could lead to particularly illuminating insights into the properties
of gravitational interaction.

5.3.2 Constraints on the Phase Evolution of Neutron Star Mergers

The first likely direct GW detection from astrophysical sources by ground-based laser
interferometers, like the LIGO (Laser Interferometer Gravitational Wave Observatory)
and the VIRGO projects, will mark the beginning of a new era of GW astronomy. One
of the most promising sources for these detectors are in-spiralling compact binaries,
consisting of NSs and BHs, whose orbits are decaying towards a final coalescence due
to GW damping. While the signal sweeps in frequency through the detectors’ typical
sensitive bandwidth between about 20 Hz and a few kHz, the GW signal will be deeply
buried in the broadband noise of the detectors (Sathyaprakash & Schutz, 2009). To
detect it, one will have to apply a matched filtering technique, i.e. correlate the output
of the detector with a template wave form. Consequently, it is crucial to know the
binary’s orbital phase with high accuracy for searching and analyzing the signals from
in-spiraling compact binaries. Typically, one aims to lose less than one GW cycle in
a signal with ∼ 104 cycles. For this reason, within GR such calculations have been
conducted with great effort by various groups up to the 3.5 post-Newtonian order,
i.e. all (non-vanishing) terms up to order (v/c)7, providing sufficient accuracy for a
detection (Blanchet, 2006).

If the gravitational interaction between two compact masses is different from GR,
the phase evolution over the last few thousand cycles, which fall into the bandwidth
of the detectors, might be too different from the (GR) template in order to extract
the signal from the noise. In scalar-tensor gravity for instance, the evolution of the
phase is driven by radiation reaction, which is modified because the system loses en-
ergy to scalar GWs (Will, 1994; Damour & Esposito-Farese, 1998). Depending on the
difference between the effective scalar couplings of the two bodies, αA and αB, the 1.5
post-Newtonian dipolar contribution to the phase evolution could drive the GW signal
many cycles away from the GR template. For this reason, it is desirable that poten-
tial deviations from GR in the interaction of two compact objects can be tested and
constrained prior to the start of the advanced GW detectors. For “canonical” 1.4M�
NSs and long-range gravitational fields, this has already been achieved to a high de-
gree in binary pulsar experiments (e.g. Damour & Esposito-Farese, 1998). So far, the
best constraints on dipolar gravitational wave damping in compact binaries come from
the observations of the millisecond pulsar PSR J1738+0333 (see chapter 5). However,
as discussed in detail above, these timing experiments are insensitive to strong-field
deviations that might only become relevant in the strong gravitational fields associ-
ated with high-mass NSs. Consequently, the dynamics of a merger of a 2M� NS with
a “canonical” NS or a BH might have a significant contribution from dipolar GWs.
With our constraints on dipolar radiation damping from the timing observations of
PSRJ0348+0432, given above, we can already exclude a deviation of more than ∼ 0.5
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cycles from the GR template during the observable in-spiral caused by additional long-
range gravitational fields, for the whole range of NS masses observed in nature (Fig. 5.5)
This compares to the precision of GR templates based on the 3.5 post-Newtonian ap-
proximation (Blanchet, 2006). Furthermore, in an extension of the arguments of Will
(1994); Damour & Esposito-Farese (1998) to massive NSs, our result implies that bi-
nary pulsar experiments are already more sensitive for testing such deviations than
the upcoming advanced GW detectors. Finally, as mentioned before, our results on
PSRJ0348+0432 cannot exclude dipolar radiation from short-range fields. Hence, if
the range of the additional field in the gravitational interaction happens to lie between
the wavelength of the GWs of PSRJ0348+0432 and the wavelength of the merger sig-
nal (∼ 109 cm; ∼ 10−13 eV/c2), then the considerations concerning the applicability
of the GR template given here do not apply. On the other hand, in such a case the
combination of binary pulsar and LIGO/VIRGO experiments can be used to constrain
the mass of this extra field.

5.3.3 Formation, Past and Future Evolution of the System

The measured spin period P and spin-period derivative Ṗ of PSRJ0348+0432, com-
bined with the masses and orbital period of the system (Table 5.1), form a peculiar
set of parameters that gives insight to binary stellar evolution. The short 2.46-hr or-
bital period is best understood from evolution via a common envelope where the NS is
captured in the envelope of the WD progenitor, leading to efficient removal of orbital
angular momentum on a short timescale of ∼ 103 yr (Iben & Livio, 1993). This implies
that the NS was born with an initial mass close to its current mass of 2.01M�, because
very little accretion was possible. Whereas the slow spin period of ∼ 39 ms and the
unusually strong magnetic field of a few 109 G (Table 5.1) provide further support for
this scenario, the low WD mass contradicts the standard common-envelope hypothesis
by requiring a progenitor star mass smaller than 2.2M�, because more massive stars
would leave behind more massive cores (see below) For such low donor star masses,
however, the mass ratio of the binary components is close to unity, leading to dynam-
ically stable mass transfer without forming a common envelope (Tauris & Savonije,
1999; Podsiadlowski et al., 2002). One potential solution to this mass discrepancy
for common-envelope evolution is to assume that the original mass of the WD was
≥ 0.4 M� and that it was subsequently evaporated by the pulsar wind (Fruchter et al.,
1988) when PSRJ0348+0432 was young and energetic, right after its recycling phase.
Such an evolution could also help explain the formation of another puzzling system,
PSRJ1744−3922 (Breton et al., 2007). However, we find that this scenario is quite un-
likely given that the observed spectrum of the WD in PSRJ0348+0432 only displays
hydrogen lines, which is not expected if the WD was indeed a stripped remnant of a
much more massive helium or carbon-oxygen WD. Furthermore, it is unclear why this
evaporation process should have come to a complete stop when the WD reached its
current mass of 0.17 M�. A speculative hypothesis to circumvent the above-mentioned
problems would be a common-envelope evolution with hypercritical accretion, where
∼ 0.6M� of material was efficiently transferred to a 1.4M� NS (see also below).
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Figure 5.5: Maximum offset in GW cycles in the LIGO/VIRGO band (20Hz to a
few kHz) between the GR template and the true phase evolution of the in-spiral in
the presence of dipolar radiation, as a function of the effective coupling of the massive
NS for two different system configurations: a 2M� NS with a 1.25M� NS (NS-NS),
and a merger of a 2M� NS with a 10M� BH (NS-BH). In the NS-NS case, the green
line is for αB = α0, and the gray dotted line represents the most conservative, rather
unphysical, assumption α0 = 0.004 and αB = 0. In the NS-BH case, αB is set to zero
(from the assumption that the no-hair theorem holds). The blue line is for α0 = 0.004
(Solar System limit for scalar-tensor theories), and the purple line represents α0 = 0.
The gray area to the right of the red line is excluded by PSRJ0348+0432. In this plot
there is no assumption concerning the EOS.
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An alternative, and more promising, formation scenario is evolution via a close-
orbit low-mass X-ray binary (LMXB) with a 1.0−1.6M� donor star that suffered from
loss of orbital angular momentum due to magnetic braking (Pylyser & Savonije, 1989;
Podsiadlowski et al., 2002; van der Sluys et al., 2005). This requires a finely tuned
truncation of the mass-transfer process which is not yet understood in detail, but is
also required for other known recycled pulsars with short orbital periods of Pb ≤ 8 hr

and low-mass helium WD companions with MWD ≈ 0.14 − 0.18 M�. The interplay
between magnetic braking, angular momentum loss from stellar winds (possibly caused
by irradiation) and mass ejected from the vicinity of the NS is poorly understood
and current stellar evolution models have difficulties reproducing these binary pulsar
systems. One issue is that the converging LMXBs most often do not detach but keep
evolving with continuous mass transfer to more and more compact systems with Pb ≤
1 hr and ultra-light donor masses smaller than 0.08 M�.

Using the Langer stellar evolution code, we have attempted to model the formation
of the PSRJ0348+0432 system via LMXB evolution (Fig. 5.6). To achieve this, we
forced the donor star to detach its Roche lobe at Pb ∼ 5 hr, such that the system
subsequently shrinks in size to its present value of Pb ' 2.46 hr due to GW radiation
within 2 Gyr, the estimated cooling age of the WD. An illustration of the past and
future evolution of PSRJ0348+0432 from the two different formation channels is shown
in Fig. 5.7.

An abnormality of PSRJ0348+0432 in view of the LMXB model is its slow spin
period of P ∼ 39 ms and, in particular, the high value for the spin period deriva-
tive, Ṗ = 2.41 × 10−19 s s−1. These values correspond to an inferred surface magnetic
flux density of B ∼ 2 × 109 G, which is high compared to most other recycled pul-
sars (Tauris et al., 2012). However, a high B value naturally explains the slow spin
period of PSRJ0348+0432 from a combination of spin-down during the Roche-lobe
decoupling phase (Tauris, 2012) and subsequent magnetic dipole radiation from this
high-magnetic-field pulsar Tauris et al. (2012). Another intriguing question concerning
this evolutionary channel is the spread in NS masses. In the five currently known NS-
WD systems with Pb ≤ 8 hr, the NS masses span a large range of values, ranging from
∼ 1.4 up to 2.0M�. The lower masses imply that the mass transfer during the LMXB
phase is extremely inefficient — only about 30% of the material leaving the donor is
accreted by the NS (see chapter 5). If this is indeed the case, and one assumes that the
physical processes that lead to the formation of these systems are similar, it is likely
that PSRJ0348+0432 was born with an initial mass of 1.7± 0.1M�, providing further
support for a non-negligible fraction of NSs born massive (Tauris et al., 2011).

Emission of GWs will continue to shrink the orbit of PSRJ0348+0432 and in
400Myr (when Pb ' 23 min) the WD will fill its Roche lobe and possibly leave behind a
planet orbiting the pulsar (Bailes et al., 2011; van Haaften et al., 2012). Alternatively,
if PSRJ0348+0432 is near the upper-mass limit for NSs then a BH might form via
accretion-induced collapse of the massive NS in a cataclysmic, γ-ray burst-like event
(Dermer & Atoyan, 2006).
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Figure 5.6: Formation of PSR J0348+0432 from our converging LMXB model calcu-
lation. The plot shows orbital period as a function of time (calibrated to present day).
The progenitor detached from its Roche lobe about 2Gyr ago (according to the esti-
mated cooling age of the WD) when Pb ' 5 hr, and since then GW damping reduced
the orbital period to its present value of 2.46 hr (marked with a star).
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Figure 5.7: An illustration of the formation and evolution of PSR J0348+0432. The
zero-age main sequence (ZAMS) mass of the NS progenitor is likely to be 20 – 25M�,
whereas the WD progenitor had a mass of 1.0 – 1.6M� (LMXB) or 2.2 – 5M� (common
envelope, CE), depending on its formation channel. In ∼ 400Myr (when Pb ' 23min)
the WD will fill its Roche lobe and the system becomes an ultra-compact X-ray binary
(UCXB) leading to the formation of a BH or a pulsar with a planet.
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5.4 Materials & Methods

5.4.1 Radial Velocities and Atmospheric Parameters

A detailed log of the VLT observations can be found in Fig, 5.8 & Table 5.2). We
extracted the spectra following closely the method described in the previous chapter
and compared them with template spectra to measure the radial velocities. Our best
fits for the WD had reduced χ2 minimum values of χ2

red,min = 1.0− 1.5. Uncertainties
were taken to be the difference in velocity over which χ2 increases by χ2

red,min to account
for the fact that χ2

red,min is not equal to unity. After transforming the measurements
to the reference frame of the Solar System Barycenter (SSB), we folded them using
the radio-timing ephemeris described below. We then fitted for the semi-amplitude
of the radial velocity modulation, KWD, and the systemic radial velocity with respect
to the SSB, γ, assuming a circular orbit and keeping the time of passage through the
ascending node, Tasc, fixed to the best-fit value of the radio-timing ephemeris. Our
solution yields KWD = 351± 4 km s−1 and γ = −1± 20 km s−1.

Details of the Balmer lines in the average spectrum of PSRJ0348+0432, created
by the coherent addition of the individual spectra shifted to zero velocity, are shown
in Fig. 5.1. We modeled the spectrum using a grid of detailed hydrogen atmospheres
(Koester, 2008). These models incorporate the improved treatment of pressure broad-
ening of the absorption lines presented in Tremblay & Bergeron (2009). As mentioned
above, our fit yields Teff = (10120 ± 35stat ± 90sys)K for the effective temperature
and log10 g = (6.042 ± 0.032stat ± 0.060sys) for the surface gravity. The χ2 map
shown in Fig. 5.2 is inflated to take into account systematic uncertainties. The av-
erage spectrum was also searched for rotational broadening. Using the analytic profile
of Gray (2005) to convolve the model atmospheres, we scanned the grid of velocities
0 ≤ vr sin i ≤ 2000 km s−1 with a step size of 100 km s−1. The result is consistent with
no rotation and our 1-σ upper limit is vr sin i ≤ 430 km s−1.

5.4.2 Modeling of the White Dwarf Mass

Low-mass WDs are thought to form naturally within the age of the Universe via mass
transfer in a binary, either through Roche-lobe overflow or common-envelope evolution.
In both cases, the WD forms when the envelope mass drops below a critical limit, which
depends primarily on the mass of the stellar core, forcing the star to contract and detach
from its Roche lobe. After the contraction, the mass of the relic envelope is fixed for
a given core mass, but further reduction of its size may occur shortly before the star
enters the final cooling branch due to hydrogen shell flashes which force the star to re-
expand to giant dimensions. Additional mass removal via Roche-lobe overflow as well as
rapid shell hydrogen burning through the CNO cycle may then lead to a decrease of the
envelope size and affect the cooling history and atmospheric parameters. To investigate
the consequence of a reduced envelope size for the WD companion to PSRJ0348+0432,
we constructed WD models in which we treat the envelope mass as a free parameter.
For the WD companion to PSRJ0348+0432, an envelope mass below the critical limit
for hydrogen fusion is not likely for two main reasons:
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First, for a pure helium composition, the observed surface gravity translates to a
WD mass of ∼ 0.15M� and a cooling age of ∼ 20Myr, which is anomalously small.
Such a small age would also imply a large increase in the birth and in-spiral rate of
similar relativistic NS–WD systems (Kim et al., 2004). Furthermore, post-contraction
flash episodes on the WD are not sufficient to remove the entire envelope. Therefore,
creation of a pure helium WD requires large mass loss rates before the progenitor
contracts, which is unlikely. For small progenitor masses (≤ 1.5M�) large mass loss
prevents contraction and the star evolves to a semi-degenerate companion on a nuclear
timescale that exceeds the age of the Universe. For more massive progenitors (>
1.5M�) the core grows beyond ∼ 0.17M� in a short timescale and ultimately leaves a
too-massive WD.

Second, even for envelope hydrogen fractions as low as Xavg = 10−6, the observed
temperature and surface gravity cannot be explained simultaneously: The low surface
gravity would again require a small mass of ∼ 0.15M�. However, in this case the
surface hydrogen acts like an insulator, preventing the heat of the core from reaching
the stellar surface. As a result, temperatures as high as 10000K can only be reached
for masses above ∼ 0.162M�.

Past a critical envelope mass, the pressure at the bottom of the envelope becomes
high enough to initiate hydrogen-shell burning. The latter then becomes the dominant
energy source and the evolutionary time-scale increases; the radius of the star grows by
∼ 50% (depending on the mass), expanding further for larger envelopes. The depen-
dence of the surface gravity on the radius implies that the observed value translates to
a higher mass as the envelope mass increases. Therefore, the most conservative lower
limit for the WD mass (and thus for PSRJ0348+0432, given the fixed mass ratio) is
obtained if one considers models with the absolute minimum envelope mass required
for hydrogen burning. In this scenario, the mass of the WD is in the range 0.162 –
0.181M� at 99.73% confidence. Despite this constraint being marginally consistent
with our observations, it is not likely correct due to the high degree of fine-tuning.

For these reasons we have adopted the assumption that the WD companion to
PSRJ0348+0432 has a thick envelope as generally expected for WDs with such low
surface gravity and high temperature.

5.4.3 Radio Timing Analysis

The Arecibo observing setup and data reduction are similar to the well tested ones
described in Freire et al. (2012). Special care is taken with saving raw search data,
which allows for iterative improvement of the ephemeris and eliminates orbital-phase
dependent smearing of the pulse profiles, which might contaminate the measurement of
Ṗb (Nice et al., 2008). From this analysis we derive 7773 independent measurements of
pulse times of arrival (TOAs) with a root-mean-square (rms) uncertainty smaller than
10µs. Similarly the Effelsberg observations yield a total of 179 TOAs with uncertainties
smaller than 20µs.

We use the tempo2 timing package (Hobbs et al., 2006) to derive the timing solu-
tion presented in Table 5.1, using 8121 available TOAs from GBT (Lynch et al., 2012),
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Arecibo and Effelsberg. The motion of the radiotelescopes relative to the barycenter of
the Solar System was computed using the DE/LE 421 Solar System ephemeris. The or-
bit of PSRJ0348+0432 has a very low eccentricity, therefore we use the “ELL1” orbital
model Lange et al. (2001) to describe the motion of the pulsar.

For the best fit, the reduced χ2 of the timing residuals (TOA minus model pre-
diction) is 1.66, a result similar to what is obtained in timing observations of other
millisecond pulsars. The overall weighted residual rms is 4.6µs. There are no unmod-
eled systematic trends in the residuals; either as a function of orbital phase or as a
function of time. Therefore χ2 > 1 is most likely produced by under-estimated TOA
uncertainties. We increased our estimated TOA uncertainties for each telescope and
receiver to produce a reduced χ2 of unity on short timescales; for our dominant dataset
(Arecibo) the errors were multiplied by a factor of 1.3.

This produces more conservative estimates of the uncertainties of the timing param-
eters; these have been verified using the Monte Carlo statistical method described in
Freire et al. (2012): when all parameters are fitted, the Monte Carlo uncertainty ranges
are very similar to those estimated by tempo2. As an example, tempo2 estimates
Ṗb = (−2.73 ± 0.45) × 10−13 s s−1 (68.27% confidence) and the Monte Carlo method
yields Ṗb = (−2.72 ± 0.45) × 10−13 s s−1 (68.27% confidence), in excellent agreement.
The observed orbital decay appears to be stable; no higher derivatives of the orbital
period are detected.

5.5 Further Details on the Analysis

5.5.1 VLT Spectral Observations and Analysis

We observed the companion of PSRJ0348+0432 during December 19 & 20, 2011 with
the FORS2 (Appenzeller et al., 1998) instrument on Unite-Telescope 1 (Antú), using
its blue sensitive E2V CCD detectors and the G1200B grism. This setup delivers a
resolution of 0.36 per binned-by-two-pixel along dispersion and 0.′′25 per binned-by-two-
pixel along the spatial direction. Because of the short orbital period of the binary, we
chose a relatively wide 1′′ slit to avoid severe radial velocity smearing (by reducing the
exposure time) and minimize possible dispersion losses not corrected by the dispersion
corrector of the instrument. However, this choice may potentially result in systematic
offsets in radial velocity measurements due to non-uniform illumination of the slit. To
monitor these effects we rotated the slit by 134.◦8 (north-through east) with respect
to the parallactic angle to include a bright nearby star for local flux and velocity
calibration (Fig. 5.8). Our setup covers the spectral range from ∼ 3700 to 5200 with
a resolution ranging from ∼ 2 to 3 depending on the seeing. During the first night the
conditions were good to photometric and the seeing varied between ∼ 0.′′7 and 1.′′2. The
second night was sporadically plagued with thin cirrus and the seeing ranged from ∼
0.′′9 to 1.′′7. Bias, flat and Mercury-Cadmium (HgCd) frames for wavelength calibration
were collected during day-time after each run. We collected a total of 34 spectra of the
white dwarf companion to PSRJ0348+0432 and the nearby comparison star. Of these,
22 had 800-s exposures and were taken with the slit rotated by the angle mentioned
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above, 4 were taken with 850-s exposures during bad weather instances and 8 with the
slit rotated by a slightly different angle during experimental stages. In addition, we
collected 2 spectra of the comparison through a wider, 2.′′5 slit and spectra of several
flux standards at the beginning and the end of each run through both 1′′ and 2.′′5 slits.

We reduced the data using routines inside the Munich Image and Data Analysis
System (midas). Our analysis, from cosmetic corrections to extraction of spectra, is
identical to that followed for the white dwarf companion to PSRJ1738+0333, described
in detail in chapter 5. The dispersion solution has root-mean-square (rms) residuals of∼
0.03 for 18 lines. Flux calibration was performed separately for each night by comparing
flux-standard observations (Table 5.8) with high S/N templates or appropriate white
dwarf model spectra (Koester, 2008). Overall, the response curves from each standard
are consistent with each other, with the largest differences (up to 10%) observed at
short wavelengths (λ ≤ 4000 ); we use their average for flux calibration. Prior to the
latter, we corrected the narrow-slit spectra for wavelength dependent slit losses using
the wide slit spectra of the comparison and accounted for atmospheric extinction using
the average extinction curve for La Silla.

5.6 Radial Velocities

We extracted the radial velocities of the white dwarf companion and the nearby compar-
ison star following the procedure described in the previous chapter. First, we identified
the nearby comparison star as being a type G1V star (with an uncertainty of about 2
subtypes) and used a high-resolution spectrum of the similar star HD20807 (Bagnulo
et al., 2003) as a template. For the PSRJ0348+0432 white-dwarf companion we fitted
a high S/N spectrum with a grid of DA model atmospheres (Koester, 2008), used the
best-fit template to measure radial velocities, averaged the zero-velocity spectra and
finally re-fitted the average spectrum to determine the final template. We scanned a
grid of velocities from −800 to +800 km s−1 with a step-size of 5 km s−1. The best fits
had χ2

red,min = 1 − 1.5 and χ2
red,min = 1.1 − 3.0 for the comparison star. As described

above, we scaled the errors to account for the fact that χ2
red,min was not equal to unity.

The velocities of the comparison star show a peak-to-peak variation of ∼ 40 km s−1,
much higher than the typical 0.8 km s−1 measurement error. While we find no evi-
dence for binarity, the measurements form 5 distinct groups, each of which display a
variability only marginally higher than the formal errors. These coincide with blocks
of observations interrupted for target repositioning. The scatter of velocities is there-
fore clearly related to the instrument and most probably associated with positioning
uncertainties. For this reason we chose to use velocities relative to the comparison.

The best-fit solution using all available (barycentred) data gave KWD = 346 ±
6 km s−1 and a systemic velocity of δγ = +8±4 km s−1 relative to the comparison with
χ2

red,min = 2.78 for 32 degrees of freedom (dof). However, 8 of the observations used
here were taken with the slit at a different angle and the white dwarf’s velocity relative
to the comparison is thus most likely contaminated with an extra systematic shift due
to slit rotation. For this reason we neglect these data. Using the homogeneous set of



90 Chapter 5. A Massive Pulsar in a Compact Relativistic Binary

observations only and further rejecting one outlier with spuriously shaped continuum
(no. 15 in Table 5.2) we obtain KWD = 345 ± 4 km s−1 and δγ = +23 ± 5 km s−1

respectively with χ2
red,min = 0.99 for 23 degrees of freedom (Fig. 5.1).

After correcting for the small effect of orbital smearing
(sin(π〈texp〉/Pb)/(π〈texp〉/Pb) = 0.98636) we find a semi-amplitude of
KWD = 351 ± 4 km s−1. The best-fit systemic velocity of PSRJ0348+0432 us-
ing the raw white dwarf velocity measurements is γ = −1± 6 km s−1. Given the large
scatter of the comparison’s velocity we adopt γ = −1± 20 km s−1 with the uncertainty
being a conservative estimate based on the scatter of the data.

5.7 Average Spectrum and Atmospheric Parameters

We scanned a grid of models covering effective temperatures from Teff = 8000 to
25000K with a step-size of 250K and surface gravities ranging from log g = 5.00 to
log g = 8.00 with a step-size of 0.25 dex. At each point of the grid we fitted for the nor-
malization using a polynomial function of the wavelength to account for non-perfect
flux calibration. Analysis of statistical errors is again identical to that followed for
the white dwarf companion of PSRJ1738+0333 (chapter 5). We achieved the best fit
to higher Balmer lines when excluding the continuum regions between 4000 − 4050,
4180 − 4270 and 4400 − 4790 , which had small irregularities due to leftover detector
imperfections: Teff = 10120± 35K and log g = 6.042± 0.032 (1σ) with χ2

red,min = 1.02.
To estimate the influence of systematics we varied the degree of the polynomial used
for normalization (1st to 5th degree), the spectral regions used for the fit (lines-only
to whole spectrum) and the assumed spectral resolution (by steps of ∼ 5%). We also
searched for velocity smearing by checking the consistency of the solution in an average
of spectra taken close to orbital conjunction and an average of spectra taken close to
the nodes. Finally, we fitted each line (from Hβ to H12) separately to verify the con-
sistency of the fit over the spectrum and examined the influence of our flux calibration
by fitting the average uncalibrated spectrum. Overall, all tests gave fits consistent
within statistical errors with only few exceptions that had (higher) central values that
differed by 120K and 0.11 dex compared to the numbers above. The good agreement is
probably due to the high S/N of the spectrum. The values adopted above are based on
the solution using a third degree polynomial and the systematic error is a conservative
estimate based on the scatter of the different fits mentioned above.

5.7.1 Spectroscopic Modeling and the “high log g” problem

Spectroscopic modeling of the Balmer lines in higher mass white dwarfs shows a spuri-
ous increase in surface gravity for stars with temperatures between ∼ 8000 and 11000K.
This well-known problem is linked to the incomplete treatment of convection in 1-D
atmospheric models and disappears with the use of 3-D model atmospheres (Tremblay
et al., 2011, 2013). However, our modeling below shows that for the parameter space
relevant to the PSRJ0348+0432 companion, the atmosphere is not yet convective (e.g.
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convection sets in at Teff ≤ 9300K for MWD = 0.17M�). Therefore this problem is
very unlikely to be relevant for the mass determination presented here.

5.7.2 Initial White Dwarf Models

To construct the white dwarf models presented above, we evolved solar composition
stars (metal mass-fraction of Z = 0.02) with masses between 1.0 and 1.5M� and
applied a large mass-loss wind at various points on the Red Giant Branch (RGB). To
constrain the upper limit of the envelope mass expected from natural binary evolution,
we removed the mass before the star enters the asymptotic RGB, letting the star evolve
and contract naturally to become a white dwarf. Our upper limits agree well with the
results of previous studies (D’Amico et al., 1998; Serenelli et al., 2001; Panei et al.,
2007). Finally, to fully control the envelope mass of the white dwarf at the final stages
of evolution we neglected hydrogen fusion through the CNO bi-cycle that is responsible
for the hydrogen shell flashes1.

In Fig. 5.9 we show the post-contraction white dwarf cooling age when Teff =

10000K, as a function of the total hydrogen mass (after cessation of the mass transfer),
for masses ranging from 0.155 to 0.185M�. For low envelope masses, hydrogen burning
cannot be initiated and the white dwarf quickly radiates the latent thermal energy of
the core and cools in a few Myr. The thick-envelope modes presented in the main text
were constructed as above.

5.7.3 Metallicity

The metallicity of the white dwarf plays an important role in both regulating the CNO
luminosity and changing the chemical profile of the stellar envelope. Qualitatively,
our main models described above are in good agreement with the Z = 0.001 models of
Serenelli et al. (2002) for the parameter space relevant to the white dwarf companion to
PSRJ0348+0432. Specifically, their 0.172M� track has a thick envelope and predicts
a surface gravity of log g = 6.13 for Teff = 10000K which is reached at a cooling
age of τcool = 2.85Gyr. This agreement is not surprising given that CNO burning
is neglected in our analysis, convective mixing has not yet set in at T = 10000K
and consequently metals are absent from surface layers due to gravitational settling.
Therefore we consider that any uncertainties due to metallicity are small and anyway
included in our adopted errors.

5.7.4 Input Physics of the Stellar Evolution Models

Stellar models used in our analysis were constructed using the 1-D stellar evolution code
“star" provided with the Modules for Experiments in Stellar Astrophysics (mesa)
(Paxton et al., 2011). star solves for the equations of hydrostatic equilibrium, nu-
clear energy generation, convection and time-dependent element diffusion using a self-

1For a white dwarf at the final cooling branch, CNO luminosity accounts for less than 5% of the
total energy budget. Hence, it is safe to neglect it without influencing the macroscopic characteristics
of the models ?.
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adaptive non-Lagrangian mesh and analytic Jacobians. We used default options for the
equation-of-state, radiative and neutrino opacities, thermonuclear and weak reaction
rates described in Paxton et al. (2011) and references therein. We implemented the
mixing length theory of convection from Henyey et al. (1965) that takes into account
radiative losses near the outer layers of the star. Diffusion was taken into account us-
ing the method and coefficients from Thoul et al. (1994) and transport of material was
calculated using the method described in Iben & MacDonald (1985) after grouping the
elements in “classes" in terms of atomic mass ranges. Finally, boundary atmospheric
conditions were calculated using the gray-atmosphere approach of Eddington (1926).

5.7.5 Photometry

A photometric campaign on the white dwarf companion to PSRJ0348+0432 was carried
out during February 1, 2012 using the ULTRACAM instrument (Dhillon et al., 2007)
on the 4.2-m William-Herschel Telescope at La Palma, Spain. The data were reduced
using the standard ULTRACAM pipeline (Fig. 5.10).

The lightcurves have an rms scatter of ∼0.53, 0.07 and 0.08mag in u′, g′ and r′

respectively and show no evidence for variability over the course of the observations.
The phase-folded light-curve shows no variability either. Additionally, our calibrated
magnitudes are consistent with the SDSS catalogue magnitudes implying no significant
variability at the ∼ 5 yr time-scale.

Qualitatively, this result supports the use of the PSRJ0348+0432 system as a gravi-
tational laboratory (see timing analysis below). In what follows, we discuss the limits on
various parameters in more detail. Three effects that cause phase-dependent variability
are: deformation of the white dwarf by tides raised by the neutron star, irradiation by
the pulsar wind, and Doppler boosting caused by the white dwarf’s orbital motion. For
a circular orbit, the combined modulation in photon rate nγ is given by

∆nγ/nγ,0 ' fell

(
RWD

a

)3

q sin2 i cos(4πφ)+fdb
KWD

c
sin i cos(2πφ)−firr

T 4
irr

32T 4
eff

sin i sin(2πφ),

(5.2)
with fell, fdb, and firr factors of order unity describing the observability in a given filter,
0 ≤ φ ≤ 1 the orbital phase, and Tirr = Lpsr/4πa

2σ ' 2400K the effective temperature
corresponding to the pulsar flux incident on the white dwarf. We find that all terms
should be small. For the tidal deformation, fell = −3(15+u1)(1+τ1)/20(3−u1) = 1.75,
where we use linear approximations for limb and gravity darkening, with coefficients
u1 = 0.36 (Hermes et al., 2012) and τ1 = 1 (appropriate for a radiative atmosphere).
Thus, the expected modulation is 1.5×10−3. For the Doppler boosting, approximating
the white dwarf as a black-body emitter, fdb ' α expα/(expα − 1) ' 2.6, where α =

hc/λkTeff ' 2.8 (van Kerkwijk et al., 2010a), with λ ' 550 nm the typical observing
wavelength. Hence, the expected amplitude is ∼3× 10−3. Finally, for the irradiation,
firr = (1−A)fdb ≤ 2, where the maximum is for albedo A ' 0. Thus, irradiation could
cause a modulation of up to ∼1.2× 10−4.

Fitting the observed lightcurves with a function of the form ∆nγ/〈nγ〉 = 1 +

aell cos(4πφ) + adb cos(2πφ)− airr sin(2πφ), we find good fits (χ2
red ' 1) but no signifi-
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cant detections, with averaged amplitudes of the higher S/N r and g band lightcurves
of aell = 0.003 ± 0.003, adb = 0.003 ± 0.003 and airr = 0.006 ± 0.004. The marginal
irradiation signal would correspond to a temperature difference between the irradiated
and non-irradiated side of ∼ 100K, which is substantially larger than the expected
difference of 2K. Even if confirmed, however, this would not affect our inferred radial
velocity amplitude or white dwarf parameters.

Finally, another possible source of variability is quadrupole moment variations of
the white dwarf (?): these typically change the star’s luminosity by a few per-cent (e.g.
∼ 20% for the only three known cases of pulsating low-mass white dwarfs (Hermes
et al., 2012) and result in changes of the orbital period Pb through classical spin-
orbit coupling (Applegate, 1992). To our knowledge, all possible mechanisms for such
variations would result in modulations much higher than the precision of our lightcurve.
Therefore we can neglect this effect and assume that the star is in equilibrium. Our
assumption is further supported by the lack of second or higher-order derivatives in
the measured orbital period (see below) and recent theoretical findings (Córsico et al.,
2012) that locate the instability strip for g-mode oscillations outside the parameter
space relevant for the white dwarf companion to PSRJ0348+0432.

The SDSS photometry places a constraint on the distance to the system. Adopting
the model of Schlegel et al. (1998a) for the interstellar reddening and the 0.169M�
cooling track of Serenelli et al. (2001), we find that the luminosities (Fig. 5.10) are
consistent with a distance of d ' 2.1 kpc (and a reddening of AV ∼ 0.7). Given the
uncertainties in the models the error is difficult to estimate but it should be better
than ∼ 10%. Our estimate is also consistent with the distance of dDM ∼ 2 kpc implied
by the dispersion measure (DM) of the pulsar and the NE2001 model for the Galactic
free electron density (Cordes & Lazio, 2001).

5.7.6 Radio Observations

The observing setup for the Arecibo telescope is identical to the well-tested setup
described in Freire et al. (2012), with the exception of one WAPP now being centered
at 1610 MHz instead of 1310 MHz; the former band is cleaner and its use improves
the precision of our DM measurements. Also, as in the former case, data are taken in
search mode and processed off-line. This allows for iterative improvement of the pulsar
ephemeris which is important at the early stages when the timing parameters are not
yet very precise. With each improved ephemeris, we de-disperse and re-fold the data,
obtaining pulse profiles with higher S/N that yield more accurate pulse times-of-arrival
(TOAs). This helps to avoid orbital-phase dependent smearing and timing artefacts,
which may corrupt the determination of orbital parameters, particularly the orbital
phase and orbital period variation (Nice et al., 2008).

We de-disperse and fold the radio spectra following the procedure described in Freire
et al. (2012). TOAs are derived every 4 minutes to preserve the orbital information
in the signal. The pulse profile template, resulting from more than 1 hour of data,
is displayed in Fig. 5.11. Although the pulse profile changes significantly from 350 to
2200 MHz (Lynch et al., 2012), the changes within the band of the L-wide receiver
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used for timing (1100-1660 MHz, also displayed in Fig. 5.11) are small enough for us
to consider this single average profile taken at 1410 MHz as a good template for all the
data. The latter is cross-correlated with every 4-minute/25MHz-wide pulse profile in
the Fourier domain (Lorimer & Kramer, 2005; Taylor, 1992) and the phase offset that
yields the best match is used to derive the topocentric TOA of a reference sub-pulse
(normally that closest to the start of each sub-integration). The results described below
are obtained using 7773 TOAs with stated rms uncertainty smaller than 10µs.

In order to verify the Arecibo data we have been timing PSRJ0348+0432 with
the 100-m radio telescope in Effelsberg, Germany, which has a very different observing
system. The polarization characterization of the radio emission of PSRJ0348+0432,
displayed in the top plot of Fig. 5.11, was made with this telescope. Overlaid on the
polarization data is a theoretical Rotating Vector Model (RVM). It is generally difficult
to fit a RVM model to polarization data from recycled pulsars, but for PSRJ0348+0432
this model works surprisingly well. For instance, as explained in Lorimer & Kramer
(2005), the covariance between the angle between the spin and magnetic axis, α, and
the angle between the spin axis and the line of sight ζ, allows for a wide range of
possible solutions (Fig. 5.13). However, if we assume that during the accretion episode
that recycled the pulsar the spin axis of the pulsar was aligned with the orbital angular
momentum (which has an angle i = 40.◦2 ± 0.◦6 to the line of sight) then α ' 45◦.
The minimum angle between the magnetic axis and the line of sight is then given by
β = ζ − α = −5.◦.

Apart from the polarimetry, the Effelsberg data yielded a total of 179 high-quality
TOAs. As can be seen in Fig. 5.12, these follow the Arecibo timing very closely,
providing added confidence in both.

5.7.7 Timing Analysis

The combined timing dataset contains 8121 TOAs. The TOA residuals obtained with
the best ephemeris (Table 5.1) are displayed as a function of time in the top panel and
as a function of orbital phase in the bottom plot of Fig. 5.12. To derive the ephemeris in
Table 5.1 (using tempo2) we increased the TOA uncertainties by factors of 1.3 for the
GBT and Arecibo data and by 1.8 for the Effelsberg data. This results in the residuals
of each dataset having a normalized χ2 of 1. Using these slightly increased (but more
realistic) TOA uncertainties results in more conservative (i.e. larger) uncertainties for
the fitted timing parameters. Globally, the residuals have a weighted rms of 4.6µs and
the reduced χ2 is 1.019 for 8102 degrees of freedom. The TOA uncertainties presented
in Fig. 5.12 are those used to derive the timing solution.

The orbit of PSRJ0348+0432 has a very low eccentricity, therefore we use the
“ELL1” orbital model (Lange et al., 2001) to parametrize it.2 This parametrization

2The ELL1 timing model as implemented in the tempo2 software package is a modification of the
DD timing model (Damour & Deruelle, 1985, 1986) adapted to low-eccentricity binary pulsars. In
terms of post-Keplerian observables, it contains all those which are numerically relevant for systems
with e� 1. The “Einstein delay" term is not relevant for such systems and is therefore not taken into
account.
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yields Keplerian and post-Keplerian parameters very weakly correlated with each other.
In order to estimate the intrinsic (“real”) eccentricity of the binary (Table 5.1) we
adopt MWD = 0.172M� and i = 40.◦2 obtained from the optical observations. This
assumption is safe because GR is known to provide a sufficiently accurate description of
spacetime around weakly self-gravitating objects (Bertotti et al., 2003). According to
Freire & Wex (2010), the orthometric amplitude of the Shapiro delay (which quantifies
the time amplitude of the measurable part of the Shapiro delay) is h3 = 42 ns. Fitting
for this quantity we obtain h3 = 69 ± 53 ns. This is 1-σ consistent with the prediction
but the low relative precision of this measurement implies that we cannot determine
MWD and sin i independently from the existing timing data. A precise measurement of
the component masses of this system from Shapiro delay would require an improvement
in timing precision that is much beyond our current capabilities.

5.7.8 Intrinsic Orbital Decay

As described in the main text, we detect an orbital decay consistent with the prediction
of General Relativity. When we say that this decay is stable, we mean that we detect
no higher-order variations of the orbital frequency fb ≡ 1/Pb nor large variations in
x ≡ ap sin i/c:

d2fb

dt2
= −4.5± 4.4× 10−23 Hz s−2, (5.3)

d3fb

dt3
= +4.1± 2.5× 10−36 Hz s−3, (5.4)

dx

dt
= +7.4± 4.4× 10−15 s s−1, (5.5)

where the values and 1-σ uncertainties were obtained using the tempo implementa-
tion of the BTX orbital model. In systems where the quadrupole moment of the white
dwarf changes, we should expect such timing effects plus significant photometric vari-
ations with orbital phase (discussed above). Since none are observed, the companion
to PSRJ0348+0432 is very likely to have a stable quadrupole moment.

The constraints on the total proper motion µ combined with the optically derived
distance d = 2.1 ± 0.2 kpc allow us to calculate the two kinematic corrections to the
observed Ṗb. The more important one is the Shklovskii effect (Shklovskii, 1970):

Ṗ Shk
b = Pb

µ2d

c
= 0.0129+0.0025

−0.0021 × 10−13 s s−1, (5.6)

where we have adopted the 10% error-estimate on the distance. The second correction
is caused by the difference of Galactic accelerations between the binary and the Solar
System. Using the detailed procedure outlined in Freire et al. (2012), we obtain:

ṖAcc
b = Pb

ac
c

= 0.0037+0.0006
−0.0005 × 10−13 s s−1. (5.7)

A third correction could arise from a possible variation of the gravitational constant
Ġ. Conservative limits are given by (Damour et al., 1988; Damour & Taylor, 1991;
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Nordtvedt, 1990):

Ṗ Ġb = −2Pb
Ġ

G
= (0.0003± 0.0018)× 10−13 s s−1, (5.8)

where we used the latest limit on Ġ from Lunar Laser Ranging (Hofmann et al., 2010).
Adding these corrections, we obtain a total of ∼ (+1.6±0.3)×10−15 s s−1, or about

0.006 of the measured value. This is much smaller than the current measurement
uncertainty and therefore we can conclude that, at the current precision limit, the
observed value is intrinsic to the system. Its magnitude is entirely consistent with
the GR prediction for the orbital decay caused by emission of gravitational waves:
Ṗb/Ṗ

GR
b = 1.05 ± 0.18. This agreement is depicted graphically in a cos i −MWD and

MPSR −MWD diagram (Fig. 5.3); the consequences are discussed above and in detail
further below.

5.7.9 Mass Loss contribution to Ṗb

If the system is losing mass, that should cause a change in the orbital period (Damour
& Taylor, 1991):

Ṗ Ṁb = 2
ṀT

MT
Pb, (5.9)

where ṀT = ṀPSR + ṀWD is the change of mass of both components.
We now estimate both mass loss terms. The pulsar is losing rotational energy at

a rate given by Ė = 4πIPSRṖP
−3 = 1.6 × 1032 erg s−1, where IPSR is the pulsar’s

moment of inertia, normally assumed to be 1045g cm2. This dominates the mass loss
for the pulsar (Damour & Taylor, 1991):

ṀPSR

MT
=

Ė

MTc2
= 4.1× 10−23 s−1. (5.10)

Most of this energy is emitted as a wind of relativistic particles, which we assume to
be isotropic to first order. A fraction of this energy F = R2

WD/4a
2 = 0.00074 (where

a = xc(q + 1)/ sin i = 8.32 × 108 m is the separation between components) strikes the
surface of the white dwarf. This is the energy available to power mass loss from the
white dwarf. Conservation of energy requires that

ĖF =
1

2
ṀWDv

2, (5.11)

where v is the velocity of the escaping particles. This equation shows that Ṁ increases
as v decreases, however v must be at least equal to the escape velocity for the star to
lose mass, i.e., v2/2 > GMWD/RWD. Putting all the constraints together, we obtain:

ṀWD

MT
< 5.4× 10−21 s−1. (5.12)

Therefore, ṀT ' ṀWD. Evaluating eq. 5.9, we obtain Ṗ Ṁb < 0.4 × 10−16, which is
∼ 5× 102 times smaller than the current uncertainty in the measurement of Ṗb.
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5.7.10 Tidal Contribution to Ṗb

We now calculate the orbital decay caused by tides. If these change the angular velocity
of the white dwarf Ω̇WD, this will be compensated by a change in the orbital period of
the system ṖT

b . We can relate the two because of conservation of angular momentum:

ṖT
b =

3kΩWD

2πq(q + 1)

(
RWDPb sin i

xc

)2 1

τs
, (5.13)

where τs = −ΩWD/Ω̇WD is the synchronization timescale and k ≡ IWD/(MWDR
2
WD),

where IWD is the white dwarf moment of inertia. For idealized white dwarfs (par-
ticularly those with a mass much below the Chandrasekhar limit) sustained solely by
degeneracy pressure of non-relativistic electrons, a polytropic sphere with n = 1.5 pro-
vides a good approximation. For such stars, we have k = 0.2 (Motz, 1952). However,
for this light white dwarf only the core is degenerate, and is surrounded by a deep non-
degenerate layer that accounts for only about 5% of the mass of the star. Therefore,
the mass distribution is much more centrally condensed than for an n = 1.5 polytrope
and the moment of inertia is much smaller. We therefore use the output of our white
dwarf model calculations (see Fig 5.2 and above) to estimate that factor. For the
model closer to the mean of the white dwarf mass distribution, withMWD = 0.169 M�,
RWD = 0.069R� and Teff = 9950K we obtain k = 0.0267. We adopt this value in
subsequent calculations.

The only unknown parameters in this expression are ΩWD and τs. If τs were much
smaller than the characteristic age of the pulsar τc = 2.6Gyr (which is similar to the
cooling age of the white dwarf, i.e., this number is likely to be a good approximation to
the true age of the system), then the white dwarf rotation would already be synchro-
nized with the orbit (ΩWD = 2π/Pb). In this case the orbital decay would be slightly
affected because, as the orbital period decreases, the white dwarf spin period would
decrease at exactly the same rate in order to preserve tidal locking. The resulting
exchange of angular momentum would change the orbital decay by a factor ∆Ṗb given
by the ratio of the moment of inertia of the white dwarf and the binary:

∆Ṗb

ṖGR
b

' IWD

Ib
=

k

q(q + 1)

(
RWD sin i

xc

)2

= 1.2× 10−4. (5.14)

This means that, were the system synchronized, ∆Ṗb would be an insignificant correc-
tion given our current measurement precision.

If the white dwarf is not yet synchronized, then τs > τc. In this case ΩWD can
be much larger than 2π/Pb, but it must still be smaller than the break-up angular
velocity, i.e., ΩWD < (GMWD/R

3
WD)1/2 = 0.0142 rad s−1. These conditions for ΩWD

and τs yield ṖT
b < 4.2 × 10−16 s s−1. Thus, even if the white dwarf were rotating

near break-up velocity, ṖT
b would still be two orders of magnitude smaller than the

uncertainty in the measurement of Ṗb. We note, however, that the progenitor of the
white dwarf was very likely synchronized with the orbit at formation, which had a
period of ∼ 5 hours (see below). When the white dwarf formed, fall-back of material
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within the Roche lobe into it would have spun it up, but not by more than 1 order of
magnitude (e.g., Appendix B2.2 of Bassa et al. (2006)). Therefore, at formation ΩWD

was of the order of 3.5× 10−3 rad s−1; this would yield ṖT
b < 1.0 × 10−16 s s−1.

5.7.11 Constraints on Dipolar Radiation and Scalar-Tensor Gravity

In scalar-tensor gravity, like for most other alternatives to GR, the dominant contri-
bution to the GW damping of the orbital motion of a binary system would come from
the scalar dipolar waves, proportional to (αA − αB)2, where αA and αB denote the
effective scalar-coupling constants of the two masses mA and mB, respectively, of the
binary system. Such deviations should then become apparent as a modification in the
orbital period decay observed in binary pulsars. In GR the emission of quadrupolar
tensor waves enters the orbital dynamics at the 2.5 post-Newtonian (pN) level, which
corresponds to corrections of order (v/c)5 in the equations of motion, v being a typical
orbital velocity. A contribution from dipolar GWs enters already at the 1.5pN level,
i.e. terms of order (v/c)3. As an example, in scalar-tensor gravity the change in an-
gular orbital frequency nb ≡ 2π/Pb for a circular orbit caused by gravitational wave
damping up to 2.5pN order is given by Damour & Esposito-Farese (1992) andDamour
& Esposito-Farese (1998):

ṅb

n2
b

=
XAXB

1 + αAαB

[
96

5
κ
(v
c

)5
+ (αA − αB)2

(v
c

)3
]
, (5.15)

where
v ≡ [G∗(1 + αAαB)(mA +mB)nb]1/3 , (5.16)

with G∗ denoting the bare gravitational constant, and XA ≡ mA/(mA + mB) and
XB ≡ mB/(mA +mB). The quantity κ, where κ = 1 in GR, holds terms arising from
the emission of scalar quadrupolar waves and higher order terms of the scalar dipolar
emission (Damour & Esposito-Farese, 1998):

κ = 1 +
1

6
(αAXB + αBXA)2 + d1 (αA − αB) + d2 (αA − αB)2 (5.17)

and

d1 =
1

6
(αAXA + αBXB)(XA −XB) +

5

48
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, (5.18)
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576
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−
5(XBα

2
BβA +XAα

2
AβB)

72(1 + αAαB)2
. (5.19)

GR is recovered for G∗ = G and αA = αB = 0. Equation (5.15) can directly be
confronted with the results compiled in Table 5.1, in combination with the p.d.f. of
the white dwarf mass in Fig. 5.3, where we use index A for the pulsar and index
B for the white dwarf companion.3 One finds from the mass ratio q that XA =

3Strictly speaking, when using the masses of Table 5.1 in equation (5.15) one has to keep in
mind the difference between the bare gravitational constant G∗ and Newton’s gravitational constant
G = G∗(1 + α0)2 as measured in a Cavendish-type experiment. However, since α2

0 < 10−5, we can
ignore this difference in our calculations.
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q/(q+ 1) = 0.9213±0.0008 and XB = 1/(q+ 1) = 0.0787±0.0008. Furthermore, since
G∗(mA+mB) ' GmB(q+1), one has v/c = (0.001970±0.000016)×(1+αAαB)1/3. With
the observed change in the orbital frequency ṅb = −2πṖb/P

2
b = (2.23± 0.36)× 10−20,

which agrees with GR, one can infer the following constraint on (αA−α0) using equation
(5.15):

|αA − α0| < 0.005 (95% C.L.) . (5.20)

Our detailed calculations show that this limit is solely enforced by the dominant 1.5pN
term of equation (5.15) (see also equation 5.1), and is practically insensitive to the
values assumed by βA and βB. Consequently, as in Freire et al. (2012) the limit (5.20)
can be seen as a generic limit, that is independent of the EOS.

To illustrate how PSRJ0348+0432 probes deeper into the strong-gravity regime, we
present detailed calculations based on a specific EOS and a specific class of alternative
gravity theories. As an EOS we use the rather stiff EOS “.20” of Haensel et al. (1981),
which supports (in GR) neutron stars of up to 2.6M�. Concerning the alternative
gravity theories, we use the class of “quadratic” mono-scalar-tensor theories used in
Damour & Esposito-Farese (1993, 1996), where the (field-dependent) coupling strength
α(ϕ) between the scalar field and matter contains two parameters: α(ϕ) = α0 + β0ϕ.
Every pair (α0, β0) represents a specific scalar-tensor theory of gravity. As discovered
in Damour & Esposito-Farese (1993), for certain values of β0, neutron stars can develop
a significant scalarization, even for vanishingly small α0, if their mass exceeds a critical
(β0-dependent) value. For this reason, this class of gravity theories is particularly well
suited to demonstrate how the limit (5.20) probes a new gravity regime that has not
been tested before (see Fig. 5.2). The specific parameters and EOS in Fig. 5.2 have
been chosen for demonstration purposes. A change in the EOS, for instance, would lead
to a modification in the details of the functional shape of αA, but would not change
the overall picture.

5.8 Constraints on the Phase Evolution of neutron star
mergers

So far, the best constraints on dipolar gravitational wave damping in compact binaries
come from the observations of the millisecond pulsar PSR J1738+0333, a 1.47+0.07

−0.06 M�
neutron star in a tight orbit (Pb ≈ 8.5 h) with a spectroscopically resolved white-dwarf
companion (chapter 5). However, as discussed in detail above, such timing experiments
are insensitive to strong-field effects that might only become relevant in the strong grav-
itational fields of high-mass neutron stars. Consequently, the dynamics of a merger of
a 2M� neutron star with a “canonical” neutron star or a black hole (BH) might have a
significant contribution from dipolar GW damping, leading to a modification of the or-
bital dynamics that is incompatible with the sophisticated GR templates used to search
for GWs with ground-based GW detectors, like LIGO and VIRGO (Sathyaprakash &
Schutz, 2009). With the results on PSRJ0348+0432, in particular with the limit given
in eq. (5.20), this question can finally be addressed in some details. For this purpose,
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we decompose equation (5.15) into the 2.5pN contribution, that is matched by an ap-
propriate GR template, and the 1.5pN contribution, that drives the phase evolution
away from the 2.5pN dynamics. Following Will (1994) and Damour & Esposito-Farese
(1998), we introduce the dimensionless orbital angular velocity

u ≡Mnb = πMfGW , (5.21)

where fGW denotes the frequency of the GW and

M≡ G∗M

c3

(XAXBκ)3/5

(1 + αAαB)2/5
. (5.22)

To leading order, one then finds

Mu̇ =
96

5
(u11/3 + Bu3) , (5.23)

where

B ≡ 5

96

(
XAXB

1 + αAαB

)2/5 (αA − αB)2

κ3/5
. (5.24)

The observed GW cycles in a frequency band [fin, fout] can be computed as follows:

NGW =

∫ tout

tin

f dt =

∫ fout

fin

(f/ḟ) df =
1

π

∫ uout

uin

u

Mu̇
du . (5.25)

Consequently, the difference between the 2.5pN dynamics and the 2.5pN + 1.5pN
dynamics is given by

∆NGW =
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32π
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− 1

3uB
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1
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arctan
(
u1/3/B1/2

)
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)∣∣∣∣∣
uout

uin

, (5.26)

where we made no assumption about the size of the value for B. For the LIGO/VIRGO
band uin � uout.4 Fig. 5.5 gives ∆NGW for the LIGO/VIRGO detectors, for which
a typical bandwidth of 20Hz to a few kHz was assumed, as a function of |αA − α0|
for two different systems, a 2/1.25M� NS-NS system and a 2/10M� NS-BH system.
Concerning the NS-BH systems, we considered the class of alternative gravity
theories where BHs are practically identical to GR, and consequently used αB = 0.
For instance, this is the case in scalar-tensor gravity theories with negligible time
dependence of the asymptotic scalar field (Damour & Esposito-Farese, 1998). For
the NS-NS system an extreme case is represented by the assumption that only the
massive neutron star has a significant scalar coupling strength αA, while the lighter
companion behaves like a weakly self-gravitating body, meaning αB = α0. Besides
this, for the NS-NS system we have also performed calculations using a hypothetical
most conservative (maximal ∆NGW) value for the effective coupling strength of the

4For a detector that is sensitive up to a few kHz, the frequency fout
GW is determined by the innermost

circular orbit, which is ∼ 1350Hz for a 2/1.25M� system and ∼ 370Hz for a 2/10M� system (see
Blanchet (2006)).
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companion B, which is αB = 0. However, such an assumption seems unphysical for
a non-zero α0, where αB is expected to approach α0 (and not 0) for less massive
stars. With the limit obtained from PSRJ0348+0432 we find a conservative upper
limit for the dipolar phase offset of ∼ 0.5 (NS-NS) and 0.04 (NS-BH) cycles, an
amount that would not jeopardize the detection of the gravitational wave signal in the
LIGO/VIRGO band (Sathyaprakash & Schutz, 2009).

5.8.1 Formation via a Common Envelope and Spiral-in Phase

Common-Envelope (CE) evolution (Paczynski, 1976; Iben & Livio, 1993) in X-ray bi-
naries is initiated by dynamically unstable mass transfer, often as the result of a high
mass-transfer rate and a large initial donor/accretor mass ratio, qi ≡M2/MPSR > 1. If
the CE is initiated while the donor star is still early in its main sequence stage (i.e. if
Pb < 1 day), the outcome is expected to be a merger (Taam & Sandquist, 2000). It is
generally believed that a binary can only survive the CE evolution, and thereby success-
fully eject the envelope of the donor star, if the binding energy of the envelope, Ebind, is
less than the released orbital energy from the in-spiral process, ∆Eorb (Webbink, 1984).
The orbital energy of PSRJ0348+0432 is: |Eorb| = GMPSRMWD/2a ' 5.5× 1047 erg.
Hence, even if assuming in-spiral from infinity to the current orbital separation, the
amount of liberated orbital energy from the CE phase cannot exceed this value. From
calculations of Ebind of intermediate-mass stars (Table 5.4), we find that Ebind � ∆Eorb

during most of their evolutionary stages. Only if the donor star (i.e. the white dwarf
progenitor) is an evolved giant is it possible to eject the envelope. However, in this
case the core mass of such an evolved star, Mcore, is more massive than the observed
white dwarf companion by at least a factor of 2 − 3. (As argued in the main text, a
reduction in white dwarf mass via evaporation from the pulsar wind seems to be ruled
out for PSRJ0348+0432 and therefore cannot help circumvent this discrepancy.)

From Fig. 5.14 we see that only a low-mass donor star with mass M2 ≤ 2.2 M�,
and not evolved beyond the terminal age main-sequence (TAMS), would leave behind
Mcore = MWD ' 0.17 M�. In this case, it is clear that energy sources other than
∆Eorb must contribute to expel the envelope (since in this case Ebind � ∆Eorb). Such
an energy source could be the release of gravitational potential energy from material
which accretes onto the neutron star during the CE. The amount of released energy per
accreted unit mass is roughly ∆U/m ∼ GM/R ∼ 2 × 1020 erg g−1. Hence, assuming
full absorption and 100% energy conversion of this released energy to eject the enve-
lope, this would require accretion of ∼ 4 × 10−5 M�; a value which is not unrealistic
given a timescale of the CE event of ∼ 103 yr with Eddington limited accretion (a few
10−8 M� yr−1).

As a consequence of this relatively short CE phase, the currently observed mass of
MPSR = 2.01 M� should be close to the original mass of the neutron star after its for-
mation in a type Ib/c supernova. According to recent studies by Ugliano et al. (2012),
neutron star birth masses of 2.0 M� are indeed possible. As mentioned in the main
text, however, having an initially massive neutron star would be a more serious problem
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for formation via a CE event with a ≤ 2.2 M� donor star. Such a high value of MPSR

would lead to a value of qi close to unity, in which case the Roche-lobe overflow (RLO)
is expected to be dynamically stable, thereby avoiding the formation of a CE (Tauris
& Savonije, 1999; Podsiadlowski et al., 2002). The only solution to this problem would
be that the neutron star was originally born with a more typical mass of ∼1.4 M�, in
which case qi would be sufficiently high to ensure formation of a CE. However, in that
case one would have to accept the concept of hypercritical accretion (Chevalier, 1993;
Ivanova, 2011), allowing the neutron star to accrete a large amount of mass ∼ 0.5 –
0.7 M� on a timescale of ∼ 103 yr. One could argue that PSRJ0348+0432 would then
be the best (and to our knowledge the only) candidate known in which hypercritical
accretion might have been at work.
To summarize, given the many issues discussed above we find that a CE formation chan-
nel is less favorable to explain PSRJ0348+0432 and we now proceed with investigating
another solution, the LMXB formation channel.

5.8.2 Formation via a Converging Low-Mass X-ray Binary

As mentioned in the main text, a handful of binary pulsars exist with values of Pb ≤ 8 hr

and MWD ≈ 0.14 − 0.18 M�, similar to those of PSRJ0348+0432. These systems are
tentatively thought to descend from low-mass X-ray binaries (LMXBs) in which the
binary suffered from loss of orbital angular momentum caused by magnetic braking
(Pylyser & Savonije, 1989; Podsiadlowski et al., 2002; van der Sluys et al., 2005).
However, there remains a general problem for reproducing these pulsar binaries using
current stellar evolution codes. A main issue is that converging LMXBs most often
do not detach but keep evolving with continuous mass transfer to more and more
compact systems with Pb ≤ 1 hr and ultra-light donor masses M2 < 0.08 M�. In a
few instances, where fine-tuning may lead to detachment and the right values of Pb

and M2, the donor star is typically too hydrogen rich to settle and cool as a compact
He white dwarf [however, see sequence d in fig. 16 of Podsiadlowski et al. (2002) for an
exception]. Our numerical studies are no exception from this general picture.

Using the Langer stellar evolution code (e.g. Tauris et al., 2011) we have attempted
to model the formation and evolution of the PSRJ0348+0432 system. Here we present
a solution where we have forced the donor star to detach its Roche lobe at Pb ∼ 5 hr,
such that the system subsequently shrinks in size to its present value of Porb ' 2.46 hr

due to GW radiation within the estimated cooling age of the white dwarf (tWD '
2 Gyr, depending on cooling models and assumed metallicity). To be more precise, the
estimated tWD is actually a lower limit on the timescale during which the detached
system evolved via GW radiation since it takes 108− 109 yr for the detached pre-white
dwarf to settle on the final cooling track. This can be compensated for by choosing a
slightly larger Pb at the ZAMS, which causes the system to detach from the LMXB in
a somewhat wider orbit.

In Fig. 5.15 (see also Fig. 5.6) we show an example of our LMXB calculations. The
model binary shown here consisted initially of a 1.75 M� neutron star and a 1.1 M�
donor star with metallicity Z = 0.02, mixing length parameter, α = 2.0 and ZAMS
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orbital period, Pb = 2.55 days. The initial Pb depends on the modeling of magnetic
braking. Here the value corresponds to onset of RLO at Pb ' 0.65 days, shortly after
the donor star ceased central hydrogen burning. Our high value of the initial neutron
star mass is motivated from studies which show that the accretion efficiency in LMXBs
must be rather small — even for systems which are expected to have accreted at sub-
Eddington levels. Hence, by adopting an accretion efficiency of only 30% we need an
initial high-mass neutron star in order to reach the present mass of PSR J0348+0432.
Note, that some neutron stars are indeed expected to have been born massive [for a
discussion, see Tauris et al. (2011) and references therein]. The outcome of our calcu-
lations would possibly have been somewhat similar by assuming an accretion efficiency
close to 100% and starting with MPSR = 1.3 M�. To model the loss of orbital angular
momentum due to mass loss from the system, we adopted the isotropic re-emission
model (Bhattacharya & van den Heuvel, 1991).

Based on its proper motion and radial velocity measurements, PSRJ0348+0432
has an estimated 3D space velocity of 56± 8 km s−1 with respect to the Solar System.
From Monte Carlo simulations of its past motion through our Galaxy [following the
method described in chapter 5, we find that this velocity corresponds to a peculiar
velocity with respect to the local standard of rest at every transition of the Galactic
plane of 75±6 km s−1. This result is rather independent of the applied Galactic model.
From subsequent simulations of the dynamical effects of the supernova explosion, we
find that a relatively small kick magnitude of w < 150 km s−1 was imparted to the
newborn neutron star, by probing a broad range of values of the pre-supernova orbital
period and the masses of the collapsing naked He-core and its companion star (the
white-dwarf progenitor).

5.8.3 Spin Evolution of PSRJ0348+0432

A peculiarity of PSRJ0348+0432, compared to other recycled pulsars with similar Pb

and MWD, is its slow spin period, P = 39 ms and its high value of the spin period
derivative, Ṗ = 2.41 × 10−19 s s−1, cf. the unusual location of PSRJ0348+0432 in
both the PṖ -diagram and the Corbet-diagram (Figs. 5.16 & 5.17). In particular, the
Corbet diagram clearly displays the unique characteristics of PSRJ0348+0432 with a
small Pb and a large value of P .

During the LMXB phase, a pulsar is generally expected to accrete much more mass
and angular momentum than needed to be spun-up to a few milliseconds (Tauris et al.,
2012). In the same process, its B-field should have decayed significantly — typically
to values ≤ 108 G. However, for some reason the B-field (∼ 2 × 109 G) remained
relatively high in PSRJ0348+0432. In contrast, the other known binary radio pulsars
with similar values of Pb ≤ 8 hr and MWD ≈ 0.14 − 0.18 M� (e.g. PSRs J0751+1807
and J1738+0333), besides from the many black-widow-like systems, have low B-fields
and spin periods of a few milliseconds, as expected from current theories of LMXB
evolution.

In Fig. 5.18 we have plotted the past and the future evolution of PSR J0348+0432.
In the upper panel is seen the evolution of Pb. In the lower panel is seen the spin
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evolution of the pulsar assuming different values of a constant braking index 2 ≤ n ≤
5. If the estimated cooling age of ∼ 2 Gyr is correct (and adding to this value a
pre-white dwarf contraction phase between RLO detachment and settling on the final
cooling track, yielding an assumed total age of about 2−2.5 Gyr) we can estimate that
PSR J0348+0432 was recycled with an initial spin period of about 10 − 20 ms. This
relatively slow spin could be (partly) caused by enhanced braking of the spin rate, due
to the high B-field of the pulsar, during the Roche-lobe decoupling phase when the
progenitor of the white dwarf ceased its mass transfer (Tauris, 2012). If the total post-
LMXB age is ∼ 2.6 Gyr then the pulsar could, at first sight, have been recycled with
an initial spin period of 1 ms for n ≥ 3. However, calculations of the pulsar spin-up
line (Tauris et al., 2012) do not predict such a rapid spin for pulsars with high B-fields
and which accreted with typical mass-accretion rates of Ṁ < 10−2 ṀEdd (evident from
both theoretical modeling of the LMXB RLO and observations of LMXB luminosities
(Lewin & van der Klis, 2006)).
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Figure 5.8: Finding chart for the PSRJ0348+0432 system and the comparison star
used in our analysis (see text), created from the archived SDSS g′ image.
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Figure 5.9: Left: White-dwarf cooling age (measured from the onset of the core
contraction) when the temperature reaches Teff = 10000K as a function of the total
hydrogen mass of the star. Each line depicts a different total mass (from 0.155 to
0.185M�). For each model, hydrogen burning through the pp-chain at the bottom of
the stellar envelope cannot be initiated below a critical envelope mass limit. As a result
the white dwarf cools in a few Myr. For models below ∼ 0.162M� a temperature of
10000K cannot be reached regardless of the envelope size. Right: Finite-temperature
mass-radius relation (for 10000K) for models that have the minimum envelope mass
required for hydrogen burning (red line). Over-plotted are the most-likely value and 1, 2
and 3σ constraints on the surface gravity for PSRJ0348+0432 (solid, dashed and dotted
black lines respectively). For masses below 0.162M� the radius is an extrapolation from
lower temperatures (in dashed red).
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Figure 5.10: Photometric (upper) and phase-folded (lower) light-curve of the white-
dwarf companion to PSRJ0348+0432 in u′, g′ and r′.
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Figure 5.11: Pulse profiles for PSRJ0348+0432 obtained with the WAPP spectrom-
eters at frequencies of 1170, 1410, 1510 and 1610 MHz. Two full cycles are displayed
for clarity. Their (almost) perfect overlap indicates that there is little pulse profile
evolution between 1170 and 1610 MHz. The 1410 MHz pulse profile is the template
used to derive all TOAs. The TOAs correspond to integer phases in this plot, which
mark the maximum of the fundamental harmonic.
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Figure 5.12: Post-fit residuals from the GBT (red), Arecibo (gray) and Effelsberg (blue)
TOAs, obtained with the timing model presented in Table 5.1. Top: Residuals versus
time. No significant un-modeled trends can be found in the TOA residuals. Bottom:
Post-fit residuals versus orbital phase, which for this very low-eccentricity system is
measured from the ascending node (i.e., the mean anomaly is equal to the orbital
longitude). No significant trends can be identified in the residuals; indicating that the
orbital model can describe the orbital modulation of the TOAs correctly. No dispersive
delays or unaccounted Shapiro delay signatures are detectable near orbital phase 0.25
(superior conjunction), nor artifacts caused by incorrect de-dispersion or folding of the
data.
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Figure 5.13: Top: Polarization profile of PSRJ0348+0432 obtained with the Effels-
berg Telescope. The upper panel shows total intensity (I, black), the linearly polarized
intensity (L, red) and the circularly polarized intensity (V , blue). The lower panel
shows the position angle of L measured at pulse longitudes where L exceeds 2σ mea-
sured from an off-pulse RMS. The red line shows the resulting fit of a Rotating Vector
Model (RVM), which indicates an “outer line-of-sight” (see Lorimer & Kramer (2005)
for details). Bottom: Map of the RVM parameters α (the angle between the spin axis
and magnetic axis) and ζ (the angle between the line of sight and the spin axis). The
green region corresponds to combinations of α, ζ for which the RVM provides a good
description of the polarimetry of PSRJ0348+0432. Based on the polarimetry alone we
would have a large uncertainty regarding α and ζ. However, if we assume that during
the accretion episode that recycled the pulsar the spin axis of the pulsar was aligned
with the orbital angular momentum (which has an angle i = 40.◦2 ± 0.◦6 to the line of
sight) then α ' 45◦. The minimum angle between the magnetic axis and the line of
sight is then given by β = ζ − α = −4.◦8.
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Figure 5.14: Stellar core mass at different evolutionary epochs as a function of zero-age
main sequence (ZAMS) mass. Assuming Mcore = MWD ' 0.17M� (as observed in
PSR J0348+0432) constrains the progenitor star ZAMS mass to be ≤ 2.2M� and that
its envelope was lost near the terminal-age main sequence (TAMS). All calculations were
performed without convective core overshooting. Including this effect (for example,
using δOV = 0.20) would lower the required donor mass even more. [Figure adapted
from Tauris et al. (2011)].
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Figure 5.15: Formation of PSR J0348+0432 from a converging LMXB for the same
model as shown in Fig. 5.6. The plot shows how Pb (red line) and the mass of the
accreting neutron star (green line) evolved as a function of decreasing donor star mass
(here assumed to be 1.1M� on the ZAMS). The RLO was initiated when Pb ' 16 hr
and detached when Pb ' 4.9 hr. In this model the initial mass of the neutron star was
assumed to be 1.75M�, although it may have been significantly lower if the neutron
star accreted with an efficiency close to 100%. The present location of PSR J0348+0432
is marked with a star.
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Figure 5.16: A PṖ–diagram of the 111 known binary radio pulsars in the Galactic
disk. The location of PSR J0348+0432 is marked with a black star in a region which
is mainly dominated by slow spin and high B-field pulsars with massive white-dwarf
companions (marked with blue diamonds). The dashed lines of constant B-fields were
calculated following Tauris et al. (2012) and assuming for simplicity MPSR = 1.4 M�
and sinα = φ = ωc = 1. All Ṗ values in this plot are intrinsic values obtained
from kinematic corrections to the observed values. Data taken from the ATNF Pulsar
Catalogue (Manchester et al., 2005), in Oct. 2012.
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Figure 5.17: A Pb − P (Corbet) diagram of the 63 known Galactic binary pulsars
with a He white-dwarf companion of mass MWD > 0.14 M�. The unique location of
PSR J0348+0432 is shown with a star. Another puzzling pulsar, PSR J1744−3922
(Breton et al., 2007) marked with a green asterisk, is included in this plot. These two
pulsars seem to share high B-field properties with the 6 pulsars in circles. Data taken
from the ATNF Pulsar Catalogue (Manchester et al., 2005), in Oct. 2012.
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Figure 5.18: Orbital evolution (top) and spin evolution (bottom) of PSR J0348+0432 in
the past and in the future. Different evolution tracks are plotted for different assumed
values of a (constant) braking index, n. The grey shaded region marks the estimated
white-dwarf cooling age. The past is for a negative value of time, future is for a positive
value of time. See text for a discussion.
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Table 5.2: Observations log and radial velocity measurements
Notes: (1) refers to the barycentric mid-exposure time. (2) is the orbital phase, φ, using the ephemeris
in Table 5.1. (3) is the comparison’s velocity in respect to the Solar System Barycenter and (4) the raw
barycentric velocities of the white-dwarf companion to PSRJ0348+0432.

Target No. MJD1
bar φ2 slit exposure rotation pos. angle v3

R v4
WD

s deg deg (km s−1) (km s−1)

PSRJ0348+0432 1 55915.070159 0.9742 1′′ 799.96 −135.0 −150.0 −18.24 ± 0.41 −348.25 ± 7.17

2 55915.080011 0.0704 1′′ 799.96 −135.0 −155.1 −22.46 ± 0.39 −345.54 ± 7.55

3 55915.099359 0.2593 1′′ 799.95 −135.0 −166.5 −29.37 ± 0.40 −12.36 ± 9.71

4 55915.109036 0.3538 1′′ 799.96 −135.0 −172.8 −25.21 ± 0.39 +159.76 ± 9.54

5 55915.120877 0.4694 1′′ 799.96 −135.0 +179.2 −19.26 ± 0.38 +332.63 ± 8.37

6 55915.130692 0.5652 1′′ 799.98 −135.0 +172.7 −20.79 ± 0.38 +295.18 ± 8.08

7 55915.140364 0.6596 1′′ 799.97 −135.0 +166.4 −19.54 ± 0.38 +149.72 ± 8.77

8 55915.150194 0.7556 1′′ 799.98 −135.0 +160.4 −19.41 ± 0.38 −45.85 ± 8.76

9 55915.217387 0.4116 1′′ 799.96 −134.8 +132.1 −8.28 ± 0.44 +311.34 ± 11.94

10 55915.227349 0.5089 1′′ 849.96 −134.8 +129.7 −9.74 ± 0.43 +360.61 ± 11.87

11 55915.237602 0.6090 1′′ 849.97 −134.8 +127.3 −5.13 ± 0.44 +278.11 ± 11.03

12 55915.247859 0.7092 1′′ 849.95 −134.8 +125.4 −4.85 ± 0.46 +86.48 ± 13.56

13 55915.261379 0.8412 1′′ 799.96 −134.8 +123.1 −3.10 ± 0.42 −143.98 ± 13.42

14 55915.271051 0.9356 1′′ 799.97 −134.8 +121.7 −2.20 ± 0.46 −297.87 ± 14.87

15 55915.280729 0.0301 1′′ 799.96 −134.8 +120.4 −0.34 ± 0.52 −272.12 ± 18.87

16 55915.290404 0.1245 1′′ 799.97 −134.8 +119.5 +1.56 ± 0.61 −188.66 ± 33.02

17 55916.060700 0.6452 1′′ 799.98 −134.8 −146.8 −49.62 ± 0.44 +197.14 ± 15.88

18 55916.070535 0.7412 1′′ 799.97 −134.8 −151.6 −52.40 ± 0.50 −10.28 ± 21.58

19 55916.080364 0.8372 1′′ 799.96 −134.8 −156.8 −50.10 ± 0.51 −209.03 ± 20.37

20 55916.091598 0.9469 1′′ 799.97 −134.8 −163.4 −48.75 ± 0.49 −339.79 ± 20.05

21 55916.101421 0.0428 1′′ 799.96 −134.8 −169.6 −43.97 ± 0.44 −354.42 ± 15.82

22 55916.111221 0.1384 1′′ 799.97 −134.8 −176.1 −41.06 ± 0.42 −255.63 ± 13.45

23 55916.122672 0.2502 1′′ 799.96 −134.8 +176.6 −44.69 ± 0.46 −15.94 ± 18.30

24 55916.132782 0.3490 1′′ 849.96 −134.8 +169.6 −46.23 ± 0.46 +153.76 ± 19.31

25 55916.142895 0.4477 1′′ 799.96 −134.8 +163.1 −43.02 ± 0.46 +332.62 ± 18.44

26 55916.154536 0.5613 1′′ 799.96 −134.8 +156.3 −41.91 ± 0.49 +285.43 ± 20.94

Continued on Next Page. . .
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Table 5.2 – Continued

Target No. MJDbar φ slit exposure rotation pos. angle vR vWD

s deg deg (km s−1) (km s−1)
27 55916.164373 0.6574 1′′ 799.97 −134.8 +151.1 −40.10 ± 0.48 +165.98 ± 18.92

28 55916.174210 0.7534 1′′ 799.97 −134.8 +146.4 −39.74 ± 0.48 −54.07 ± 20.13

29 55916.229170 0.2900 1′′ 799.96 −134.8 +128.5 −12.85 ± 0.44 +89.37 ± 15.28

30 55916.238967 0.3857 1′′ 799.97 −134.8 +126.5 −9.24 ± 0.43 +300.61 ± 17.14

31 55916.250488 0.4982 1′′ 799.96 −134.8 +124.4 −9.52 ± 0.43 +350.95 ± 18.00

32 55916.260274 0.5937 1′′ 799.97 −134.8 +122.8 −15.17 ± 0.55 +331.23 ± 22.73

33 55916.270071 0.6894 1′′ 799.97 −134.8 +121.4 −18.58 ± 0.62 +89.53 ± 33.20

34 55916.279869 0.7850 1′′ 799.97 −134.8 +120.2 −19.10 ± 0.76 −110.32 ± 50.99

35 55915.181590 0.0641 2.′′5 799.97 −134.8 +144.0

36 55916.190536 0.9148 2.′′5 799.97 −134.8 +139.4

EG21 37 55915.031970 1′′ 21.99 0.0 −25.8

38 55915.034856 2.′′5 21.99 0.0 −24.5

HD49798 39 55915.350264 1′′ 2.00 0.0 +72.6

40 55916.343776 1′′ 2.00 0.0 +71.3

41 55916.346515 2.′′5 2.01 0.0 +72.3

LTT3218 42 55916.352238 2.′′5 22.01 0.0 +58.8

43 55916.357062 2.′′5 22.01 0.0 +62.4

44 55916.369131 1′′ 35.00 0.0 +64.5

GD108 45 55916.360948 2.′′5 22.00 0.0 −176.4

46 55916.365961 1′′ 35.00 0.0 +179.9
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Table 5.3: Fractional binding energies of neutron stars (Data for Fig 5.4).

Neutron Star Mass (M�) Reference Fractional Binding Energy
pulsars with white-dwarf companions

PSR J0348+0432 2.01 (this chapter) −0.1446
PSR J1141−6545 1.27 Bhat et al. (2008a) −0.0838
PSR J1738+0333 1.47 Antoniadis et al. (2012) −0.0993

pulsars with neutron star companions
PSR J0737−3039A 1.338 Kramer et al. (2006) −0.0890
PSR J0737−3039B 1.249 Kramer et al. (2006) −0.0822
PSR B1534+12 1.333 Stairs et al. (2002) −0.0887
. . . companion 1.345 Stairs et al. (2002) −0.0896
PSR B1913+16 1.440 Weisberg et al. (2010) −0.0969
. . . companion 1.389 Weisberg et al. (2010) −0.0929

Fractional binding energies of neutron stars in relativistic binaries, which are currently used in

precision tests for gravity, and where the neutron star masses are determined with good (< few %)

precision. The masses are taken from the given references. The specific numbers for the fractional

binding energy are based on the equation-of-state “.20” of Haensel et al. (1981). A different

equation-of-state gives different numbers, but does not change the fact that PSRJ0348+0432

significantly exceeds the tested binding energy range.



5.8. Constraints on the Phase Evolution of neutron star mergers 117

Table 5.4: Stellar envelope binding energies, Ebind, for given donors and evolutionary stages.

Stage Ebind (2.2 M�) Ebind (4.0 M�) CE outcome
Xc = 0.40 1.8× 1049 erg 3.8× 1049 erg merger∗

Xc = 0.20 1.6× 1049 erg 3.4× 1049 erg merger∗

Xc = 0.02 1.5× 1049 erg 3.2× 1049 erg merger∗

TAMS 1.6× 1049 erg 3.6× 1049 erg may survive if Lacc can eject envelope
RGB 9.8× 1047 erg 2.1× 1048 erg survives with 0.30 ≤MWD/M� ≤ 0.50
AGB 2.0× 1047 erg 1.9× 1047 erg survives with 0.44 ≤MWD/M� ≤ 0.72

Envelope binding energies of stars with a total mass of 2.2M� and 4.0M�, respectively. In all cases

Ebind was calculated assuming Mcore = MWD = 0.17M�, except for the cases where the RLO was

initiated at the tip of the RGB/AGB with resulting values of MWD as listed in the table.
∗ Note, that intermediate-mass donor stars on the main sequence (Xc > 0) with Pb > 1 day, or at

the TAMS, may avoid the onset of a CE altogether and evolve as a stable intermediate mass X-ray

binary, IMXB (Tauris et al., 2000).
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Abstract

Pulsars with compact companions in close eccentric orbits are unique laboratories for
testing general relativity and alternative theories of gravity. Moreover, they are ex-
cellent targets for future gravitational wave experiments like LISA and they are also
highly important for understanding the equation of state of super-dense matter and the
evolution of massive binaries. Here we report on optical observations of the 1.02M�
companion to the pulsar PSRJ1141−6545. We detect an optical counterpart with
apparent magnitudes V = 25.08(11) and R = 24.38(14), consistent with the timing
position of the pulsar. We demonstrate that our results are in agreement with a white
dwarf companion. However the latter is redder than expected and the inferred val-
ues are not consistent with the theoretical cooling tracks, preventing us from deriving
the exact age. Our results confirm the importance of the PSRJ1141−6545 system for
gravitational experiments.
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6.1 Introduction

The value of relativistic binaries is highly recognised, as their study can provide insight
into some of the holy grails of fundamental physics. Among them are tests of general
relativity and alternative theories of gravity, the detection of gravitational waves, the
study of the equation of state of super-dense matter and tests of evolutionary scenarios
for heavy stars (for a complete review see Lorimer & Kramer, 2004).

The sample of relativistic binaries discovered so far is dominated by double neutron
stars, covering a wide range of orbital parameters. Another substantial fraction consists
of white dwarf–neutron star binaries, most of them in almost perfectly circular orbits
(e.g. review by van Kerkwijk et al., 2005). These systems are the result of the evolution
of a massive primary which evolves fast, explodes as a supernova and becomes a neutron
star (NS); and of a lighter secondary which evolves slower and eventually becomes a
white dwarf (WD) (Driebe et al., 1998b). During the final interaction phase, the NS
is spun up to very short rotation periods and becomes a millisecond pulsar. Any
eccentricity (primordial or resulting from the supernova kick) is dampened by tidal
interaction before the secondary becomes a WD.

A significant exception to the preceding is the binary PSRB2303+46 (Stokes et al.,
1985). In that system, the WD (van Kerkwijk & Kulkarni, 1999) orbits the non-recycled
pulsar in a highly eccentric orbit. Investigations into possible formation scenarios for
this type of binary (Tauris & Sennels, 2000; Davies et al., 2002; Church et al., 2006)
have shown that they most likely originate from a binary system of massive stars with
nearly equal mass. When the initially more massive star reaches the red giant phase,
the secondary star accretes sufficient mass to surpass the Chandrasekhar limit, allowing
it to eventually evolve into a NS. The primary star, however, loses sufficient mass to
end up as a heavy WD. Hence, in the resulting system, the WD is expected to be older
than the pulsar.

The only other promising candidate for this category is the PSRJ1141−6545 binary
system, initially discovered in a Parkes survey (Kaspi et al., 2000). PSRJ1141−6545
is a 0.2 day binary in an eccentric orbit (e ∼ 0.17, Bhat et al., 2008b). The primary is
a relatively young 394ms pulsar (characteristic age ∼ 1.4Myrs), orbited by a compact
object of unknown nature. Bhat et al. (2008b) derivedMc = 1.02(1)M� for the mass of
the companion by applying the relativistic DDGR orbital model (Damour & Deruelle,
1986) to their timing measurements. The latter is consistent with both a heavy WD
and a light NS with the former case being more favoured by statistical evidence (Tauris
& Sennels, 2000). Jacoby et al. (2006) included the system in an optical survey but
found no optical counterpart down to R = 23.4.

This paper reports on optical observations of the companion star in the
PSRJ1141−6545 binary system. Our main scientific rationale for this study is that
in the case of a positive WD confirmation, the system would be of great impor-
tance for gravitational tests. In particular, because of its gravitational asymmetry,
PSRJ1141−6545 would be one of the most constraining systems known for general rel-
ativity in the strong field regime as it is expected to emit strong dipolar gravitational
radiation in a wide range of scalar-tensor theories (Will, 1993; Esposito-Farese, 2005;
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Bhat et al., 2008b).
The structure of the text is as follows: in Section 6.2 we describe the observations

and the data reduction process while in Section 6.3 we present our results. Finally, in
Section 6.4 we discuss our findings and comment on their astrophysical consequences
and their importance in gravitational tests.

6.2 Observations and Data Reduction

We have obtained optical images in the V -band and R-band filters, of the field contain-
ing PSRJ1141−6545 using the FORS1 instrument mounted at the UT2 of the Very
Large Telescope (VLT). Both filters resemble the standard Johnson-Cousin filters but
have slightly higher sensitivity in the red, sharper cut offs and higher throughput. The
observations were conducted in service mode during the night of 6th of April 2008.
The conditions were photometric and the average seeing of the night was 0.′′7. The
total exposure time was 600 seconds in V and 1500 seconds in R. In order to minimize
potential problems with cosmic rays and guiding errors and avoid saturation of bright
stars, the exposures were split in three sub-exposures of 200 seconds in the V -band
and three sub-exposures of 500 seconds in the R-band. For the data reduction we used
the FORS1 pipeline provided by ESO. Each image was first bias corrected and flat-
fielded using twilight flats. Bad pixels and cosmic ray hits in all frames were replaced
by a median over their neighbourghs. The resulting frames were then sky-subtracted,
registered and combined in one averaged frame for each filter.

6.2.1 Photometry

We performed point-spread function (PSF) photometry on the average frame of each
filter using DAOPHOT II (Stetson, 1987) inside the Munich Image Data Analysis Sys-
tem (MIDAS). The PSF was determined following a slightly modified version of the
recipe in Stetson (1987). First, we selected 100 bright, unsaturated stars (≤ 40000

ADUs) located within 1′ distance from our target. Then we fitted their PSFs with a
Moffat function and through an iterative process we rejected fits with root mean square
(rms) residuals greater than 1 per cent. The stars in the vicinity of the PSF template
stars were then removed with the SUBTRACT routine of DAOPHOT II and the PSF
was determined again on the subtracted image, improving the rms of the fit by a factor
of ∼2. Finally, the instrumental magnitudes of all stars within the same distance were
extracted.

For the photometric calibration we first found the offset between PSF and aperture
magnitudes of six isolated bright stars in both our science images. This offset was
used to transform the extracted PSF magnitudes to aperture ones. Zero-points and
colour terms were determined by analysing two archival images of NGC2437 (one in
each band), obtained during the 5th of April 2008. The latter contains more than 80
Stetson photometric standards (Stetson, 2000). Of those, we used only 30 depicted on
the same area of the CCD as our target. We determined their instrumental magnitudes
using the same aperture, inner and outer sky radii as in our science images. We fitted
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for zero-points and colour terms using the average extinction coefficients provided by
ESO (0.120(3) and 0.065(4) per airmass for V and R respectively) and used them to
transform our measurements to the standard Johnson-Cousin system. The rms residual
of the fit was 0.02mag in V and 0.04mag in R.

6.2.2 Astrometry

For the astrometric calibration we selected 58 astrometric standards from the USNO
CCD Astrograph Catalogue (UCAC3, Zacharias et al., 2010) that coincided with the
7′ × 4′ averaged V image. Because of the 200 sec exposure times, only 13 of them
were not saturated or blended and appeared stellar. The centroids of these stars were
measured and an astrometric solution, fitting for zero-point position, scale and position
angle, was computed. Two outliers were iteratively removed, and the final solution,
using 11 stars, had root-mean-square residuals of 0.′′056 in right ascension and 0.′′058 in
declination, which is typical for the UCAC3 catalogue.

The low number of astrometric standards used makes the astrometric solution sen-
sitive to random noise, and hence we computed another solution using stars from the
2MASS catalogue. Of the 360 stars from this catalogue that coincided with the V im-
age, 245 were not saturated and appeared stellar and unblended. The iterative scheme
removed outliers and converged on a solution using 210 stars with rms residuals of 0.′′14

and 0.′′13. This solution is consistent with the UCAC3 astrometric solution to within
the uncertainties and we are confident in using the UCAC3 solution for the astrometric
calibration.

6.3 Results

A faint star is present on the timing position of the pulsar (Manchester et al.,
2010) in both the averaged V and R images (Fig. 6.1). The optical position is
α2000 = 11h41m07s00(2) and δ2000 = −65 deg 45′19.′′01(10), where the uncertainty is
the quadratic sum of the positional uncertainty of the star (approximately 0.′′08 in both
coordinates) and the uncertainty in the astrometric calibration. This position is offset
from the timing position by ∆α = −0.′′08±0.′′11 in right ascension and ∆δ = 0.′′10±0.′′12

in declination. Hence, the timing and the optical positions agree within errors. The
images have an average stellar density of 239 stars per square arcminute, which trans-
lates to only a 0.9 per cent probability of a chance coincidence within the 95 per cent
confidence error circle, which has a radius of 0.′′20. The star has V = 25.08(12) and
R = 24.38(14) and at V − R = 0.70(18), it is significantly bluer than the bulk of the
stars in the field, which have V −R = 1.27(30) for 24 < V < 26. Any MS or post-MS
star would be brighter and/or redder given the distance (≥ 3.7 kpc, Section 6.3), hence
we are confident that the star inside the error circle is the white dwarf companion to
PSRJ1141−6545 (Fig. 6.2).
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Figure 6.1: A 45′′ × 45′′ subsection of the averaged V-band image. The timing position of PSRJ1141−6545
is denoted by 1′′ tickmarks.
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Figure 6.2: Left: The extracted V magnitudes of all objects in our data, plotted against their V − R

colours. The counterpart of PSRJ1141−6545 is placed among the faintest and bluest objects. Right:
Colour−Magnitude diagram of 2MASS sources, located within 20′ distance from PSRJ1141−6545. The
circles indicate the calculated position of red clump stars. The line is a 3rd order spline connecting all circles.
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6.3.1 Distance and Reddening

The intrinsic color and brightness of the WD and hence its cooling age and tem-
perature, can be inferred from our measurements under the condition of an accurate
distance and reddening estimate. Unfortunately, as for most pulsars, the distance to
the PSRJ1141−6545 system is not well known.

An estimate can be made from the observed dispersion measure (DM) and a
model of the free electron distribution in the Galaxy. Using the NE2001 Galactic
free electron model (Cordes & Lazio, 2002), we find d = 2.4 kpc for the observed
DM = 116.08 cm−3pc (Manchester et al., 2010) towards PSRJ1141−6545. Tradition-
ally the uncertainty on DM derived distances is quoted at 20 per cent, however, a
comparison with pulsar parallaxes indicate that the uncertainties may be as large as 60
per cent (Deller et al., 2009). Ord et al. (2002) placed a lower bound on the distance by
measuring the Hi absorption spectrum of the pulsar. They concluded that the binary
must be located beyond the tangent point predicted by the Galactic rotation model of
Fich et al. (1989) to be at 3.7 kpc.

The interstellar extinction towards PSRJ1141−6545 was traced using the red clump
stars method described in Durant & van Kerkwijk (2006b). We used a sample of 44168
stars from the 2MASS catalogue, situated within 20′ distance from PSRJ1141−6545
(right panel of Fig. 6.2). We then split the sample in seven 0.5mag−wide stripes,
ranging from K = 10 to K = 13.5 and traced the J −K location of the helium−core
giants by fitting their distribution with a power law plus a Gaussian, as in Durant
& van Kerkwijk (2006b) (right panel of Figure 6.2). We used K0 = −1.65 for the
intrinsic luminosity, (J −K)0 = 0.75 for the intrinsic colour (Wainscoat et al., 1992;
Hammersley et al., 2000) and AK = 0.112AV (Schlegel et al., 1998b). The extinction
was found to range from AV = 0.55 to AV = 2.04 for distances of 1.1 − 4.5 kpc. For
the 3.7 kpc distance of Ord et al. (2002), we deduce AV = 2.00. Our values are smaller
than the ones derived by the model of Drimmel et al. (2003b) (e.g. AV = 2.52 for
3.7 kpc), most likely due to the better resolution of our method, but consistent with
the values derived by Marshall et al. (2006) (e.g. AV = 2.05 for 3.7 kpc).

6.3.2 Age and Temperature

The thermodynamics of WDs are simple in nature, making the cooling rates and ages
easy to calculate. Several models exist for a wide variety of masses and compositions
(e.g. Holberg et al., 2008; Bergeron et al., 1995). In the high mass domain, the colours
and temperatures derived by these models are in good agreement, independently of
the chemical composition, especially for ages smaller than 8Gyrs. Once the mass and
absolute magnitudes are known, one can correlate them with a theoretical cooling
track and derive the age. In the case of the PSRJ1141−6545 binary, this calculation
is complicated by the uncertain distance estimate and by the fact that the measured
V − R color is redder than expected. In order to find the age of the WD we used the
O/Ne-core 1.06M� cooling track of Holberg et al. (2008) and searched for the best
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solution in the {d,AV , TWD} parameter space by minimising the quantity:

χ2 =
[V0(d,AV )− VWD(T )]2

σ2
V

+
[R0(d,AR)−RWD(T )]2

σ2
R

(6.1)

with V0 and R0 the absolute magnitudes for a given distance and reddening; VWD

and RWD the predicted magnitudes for a given age T; and σV,R the photometric un-
certainties. We varied the distance between 2 and 4.2 kpc with a 0.1 step size. For
each distance, AV was derived from our reddening calculations. Finally, the extinc-
tion was converted using AR = 0.819AV (Schlegel et al., 1998b). Unfortunately, our
method yielded no compelling solution (Fig. 6.3), not only for the most reliable 1.06M�
track but for other Holberg et al. (2008) and Bergeron et al. (1995) tracks of similar
masses as well. In each case the minimum χ2 was constrained by the minimum age
provided by the particular model. The impact of the results on formation scenarios of
PSRJ1141−6545 is discussed in the next section.

6.4 Conclusions and Discussion

The results of this paper, for the first time, provide indisputable evidence for the
gravitational asymmetry of the PSRJ1141−6545 binary system, i.e. its composition
of a strongly self-gravitating body, the pulsar (Egrav/mc2 ∼ 0.2), and a weakly self-
gravitating body, the white dwarf (Egrav/mc2 ∼ 10−4). This is of utmost importance
for testing alternative theories of gravity with this system, in particular tests of gravi-
tational dipolar radiation. In fact, the direct observation of the white dwarf companion
to PSRJ1141−6545 substantiates limits on alternative gravity theories derived in the
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Figure 6.4: Cooling track of a M = 1.06M� O/Ne WD (solid line) based on the work of Holberg et al.
(2008) as reflected in its (V − R)0 colour (lower panel) and brightness (upper panel). Further WD model
sequences are overplotted for comparison (masses: 1.16, 1.20, 1.24M�; dashed, dashed-dotted and dotted
line respectively). The color and brightness of PSRJ1141−6545 is also plotted against age, for the distance
of 3.7 kpc (Ord et al., 2002) and the 2.4 kpc DM distance. The error-bars in both panels represent the 1σ

uncertainties derived from monte-carlo simulations of photometric and calibration errors propagation. The
grey vertical line shows the characteristic age of the pulsar.
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past, like in Esposito-Farese (2005); Bhat et al. (2008b). Before the optical detec-
tion of the companion to PSRJ1141−6545, its WD nature was inferred from the mass
measurement, which is based on general relativity, and Monte-Carlo simulations of
interacting binaries. These arguments are clearly less compeling than the evidence
provided here, and become debatable when testing alternative theories of gravity, in
particular when performing generic tests like in the double pulsar (Kramer & Wex,
2009) and the PSRJ1012+5307 system (Lazaridis et al., 2009b).



Chapter 7

Summary and Future Work

7.1 Overview

This thesis dealt with a diverse ensemble of pulsars with white-dwarf companions.
The results drawn, have ramifications for a large range of (astro)physical applications.
Bellow I give some final remarks and comment on potential future perspectives.

First, in chapter 3 we presented an analysis of the spectrum and luminosity of
the white-dwarf companion to the millisecond pulsar PSRJ1909−3744. Together with
the Shapiro delay and parallax constraints, our observations allowed us to derive, for
the first time, a model-independent measurement of the white dwarf’s surface gravity
and compare it with the outcome of the spectral modelling. Despite the relatively
poor quality of the Gemini spectra, the qualitative comparison shows clear evidence
for the “high log g” problem, first identified in higher- mass, C/O–core white dwarfs.
During the course of this work, the problem was conclusively linked with the non-ideal
treatment of convective energy transport in 1D atmospheric models (Tremblay et al.,
2011, 2013). Until detailed 3D atmospheric grids become available, PSRJ1909−3744
provides an empirical rule for correcting spectral observations of similar convective
stars.

On the contrary, mass-radius relations for He-core white dwarfs with thick hydrogen
envelopes seem to reproduce the observational constraints on PSRJ1909−3744 on spot.
To begin with, this is particularly reassuring for the masses of white dwarfs derived
with the same technique. However, amusingly, none of the modern cooling numerical
codes that include a detailed treatment of element diffusion predict the existence of
such objects: for most models, a last CNO-induced hydrogen flash destroys the thick
envelope of the (pre-)white dwarf if its mass is above 0.17M�. Fortunately, systems
with similar masses (e.g. PSRJ1738+0333) are rather insensitive to the (non)treatment
of diffusion and thus older mass-radius relations can be used with safety.

Having established the regime of validity for white dwarf models, we moved on to apply
the same technique on the relativistic binary PSRJ1738+0333 (chapter 4). Fortunately,
due to the relatively lower mass and higher temperature, the companion’s atmosphere is
mostly radiative and thus the spectral constraints on surface gravity should be reliable
within errors. The inferred pulsar mass, MNS = 1.46± 0.06M� is surprising low. This
suggests that a large fraction of the companion’s matter escaped the system during the
X-ray binary phase, or, alternatively, that the neutron star formed via the accretion
induced collapse of a heavy O/Ne/Mg white dwarf.

Furthermore, the mass determination, together with the measurement of orbital de-
cay transform PSRJ1738+0333 in an unprecedented laboratory for strong-field gravity.
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The imposed constraints on dipole gravitational radiation rule out a large range of al-
ternative theories of gravity that involve a scalar-field contribution. For most of the
parameter space, these limits are better than the current Solar-system constraints; for
the special case of Jordan-Brans-Dicke Scalar-Tensor gravity, the limit is only ∼ 2

times weaker than the Cassini bound, but will improve in the future, as the timing
precision increases. In addition, PSRJ1738+0333 sets stringent limits on a wide class
of theories based on Tensor-Vector-Scalar gravity, a relativistic formulation of modified
Newtonian dynamics (MOND). If one accepts that General Relativity is indeed the
correct theory of gravity, then the orbital decay and mass ratio can be used to infer the
component masses, and thereby use them to improve the constraints on white dwarf
cooling models.

In chapter 5 we presented optical and radio-timing observations of the newly discov-
ered compact relativistic binary PSRJ0348+0432. In this system, the white dwarf
has a slightly lower surface gravity and is significantly hotter. On the one hand, this
means that its atmosphere is purely radiative and therefore the spectral modelling
should be completely reliable. On the other hand — contrary to PSRJ1909−3744 and
PSRJ1738+0333 — its parameters make it sensitive to the treatment of diffusion. For
that reason we calculated a new set of models that take into account the remaining
modelling uncertainties. Based on these conservative tracks we find that the neutron
star has a mass of 2.01 ± 0.03M�. This result, when considered together with the
orbital decay, has interesting consequences for several disciplines of astrophysics and
fundamental physics.

To begin with, PSRJ0348+0432 is the astronomical object with the highest con-
firmed binding energy, almost 50% higher than previously known neutron stars in
relativistic binaries. This could be the source of significant deviations from General
Relativity, which could not be tested by previous experiments, using pulsars with lower
masses. Indeed, as the magnitude of such deviations depends non-linearly on the bind-
ing energy, the tests possible now are qualitatively very different from what was avail-
able in the past. Hence, the short orbit of the binary allows for the first time a precise
test for these strong-field effects through the measurement of the binary’s orbital de-
cay. Our observations are perfectly consistent with GR and thus a) strongly support its
validity even for such extreme gravity-matter couplings and b) already rule out strong-
field phenomena predicted by extensively studied and physically motivated alternative
theories.

The confirmation of GR in this regime supports the use of GR-based templates for
the detection of gravitational waves from double neutron star and neutron star–black
hole coalescence events with advanced ground-based detectors, like LIGO and VIRGO.
These theoretical templates are the result of decades of mathematical research in GR.
With the PSRJ0348+0432 system, their theoretical foundation is now verified for the
whole range of neutron star masses observed in nature.

The pulsar is only the second with a precisely determined mass close to 2 solar
masses. Thus it independently confirms, using an entirely different methodology, the
existence of such massive neutron stars, first shown by Demorest et al. (2010). In
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the same regard, PSR J0348+0432, with its slightly higher mass, introduces the most
stringent constraints ever on the properties of cold matter at supra-nuclear densities.

Last but not least, the system has a peculiar combination of properties and
poses a challenge to our understanding of binary evolution and pulsar recycling.
Furthermore, due to its short merging timescale of only 400 Myr, it provides t a
direct link to the formation of an ultra-compact X-ray binary within a Hubble-
time, possibly leading to a pulsar–planet system like PSRJ1719−1438 (Bailes et al.,
2011), or a short γ−ray burst in case its mass is near the upper neutron star mass limit.

Finally, in chapter 6 I presented photometric observations of the binary
PSRJ1141−6545. For that system, the combination of high eccentricity and short
orbital period allow the measurement of a range of relativistic effects including the
orbital decay, Einstein & Shapiro delays. From these effects the companion mass is
constrained to ∼ 1M� which is consistent with both a heavy white dwarf and a light
neutron star formed through an electron-capture supernova. Our deep photometric
observations revealed the optical counterpart of the companion, thereby confirming its
white-dwarf nature.

7.2 Questions and Thoughts for the Future

7.2.1 White Dwarf Physics

The white-dwarf companion to PSRJ1909−3744 has a thick envelope and therefore
suggests that white-dwarf models incorrectly produce hydrogen flashes for lower-than-
0.2Modot stars. Indeed all white dwarfs studied herein have large ages — otherwise
the possibility for observing them simultaneously is insignificant.

This obviously raises the question: What stops hydrogen flashes from occurring?
Since the main driver for runaway fusion is gravitational settling of CNO nuclei, a likely
possibility is that this process is somehow altered by rotational mixing. The solution
on the other hand could be much more trivial, e.g. the standard “solar” metallicity of
z = 0.02 adopted for these models could be overestimated.

I am currently trying to explore these effects in my models in a self-consistent
manner. The initial results are promising but further investigation is required before
drawing definite conclusions. To that end, high-resolution Echelle spectra may yield
precise measurements of rotational velocities and provide an observational test of some
of the proposed hypotheses.

7.2.2 Millisecond Pulsar Ages

On a related issue, accurate white-dwarf cooling curves will help infer precise ages and
shed some (observational) light to the long-standing problem of Pulsar spin-down evo-
lution and magnetic field decay. Hopefully, the ongoing deep Pulsar surveys carried out
with Effelsberg, Arecibo, GBT and Parkes will yield a handfull of “J1909-like” systems
to work with. Similarly, there is already a significant number of double-degenerate and
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detached binaries hosting low-mass white dwarfs (e.g. Kilic et al., 2012, and references
therein) that can be used in a similar manner.

7.2.3 Evolution of Low-Mass X-ray Binaries

PSRJ1738+0333 and PSRJ0348+0432 are members of an emerging population of
short-orbit binaries that no binary-evolution code can currently reproduce precisely. In
particular, it is highly unclear how the donor star manages to detach from its Roche-
lobe at such a short orbital period and why this is not the case for the progenitors of
“black-widow” pulsars.

So far, some solutions to this problem (e.g. Podsiadlowski et al., 2002) have come
by fine-tuning the free parameters involved in magnetic braking and mass loss contri-
butions (see equations 2.20 & 2.21). However, non of these are stable and hence not
likely to reflect the underlying mechanism (since we know 5 of these systems already).

One possibility would (again) be that diffusion plays an important role at the last
stages of RGB evolution. My colleagues and I hope to investigate this in more detail,
along with other factors that might be important (e.g. irradiation or inhomogeneous
mass loss).

7.2.4 Neutron Star Masses

The mass measurement of PSRJ0348+0432 raises the question if heavy neutron stars
are a significant fraction of the neutron star population. If this is the case then, in
turn, one also wonders if the high mass can be a direct product of the supernova ex-
plosion or if it is a mere consequence recycling. Looking at the significantly different
masses of PSRJ1738+0333 and PSRJ0348+0432 — that presumably formed through
the same evolutionary channel — it is tempting to conclude that neutron stars can
indeed be born massive. Further evidence for that comes from the original massive
binary PSRJ1614−2230, which probably evolved via a common envelope and thus had
very little time to accrete (Tauris et al., 2011). On the other hand, there are many
uncertainties that still need to be addressed. For example, an alternative explanation
could be that the recycling mechanism (more specifically the accretion efficiency) is
pulsar-specific. Indeed, the pulsars studied in this work have very different observa-
tional properties and it would be interesting to look for patterns in the statistics of
future discoveries.

7.2.5 Strong-Field Gravity

The timing precision for PSRs J1738+0333 and J0348+0432 will continue to improve
with time, resulting to more stringent constraints on their post-Keplerian parameters.
Concerning Scalar–Tensor gravity, both these pulsar experiments will eventually sur-
pass in sensitivity the Solar-system experiments for the entire range of the parameter
space. To that end, some care must be taken in improving the masses, radii and ve-
locity constraints presented here. These will become increasingly important for both
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subtracting the kinematic contributions and improving the strong-field-independent
masses.
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